AIRCRAFT HYDRAULIC SYSTEMS DYNAMIC ANALYSIS

VOLUME VIII TRANSIENT THERMAL ANALYSIS (HYTTHA)
COMPUTER PROGRAM TECHNICAL DESCRIPTION

TECHNICAL REPORT AFAPL-TR-76-43, VOLUME VIII

This document has been approved for public release. Its distribution is unlimited.

AIR FORCE AERO PROPULSION LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report was submitted by McDennell Douglas Corporation, under contract 53615-74-C-2016.

The effort was sponsored by the Air Force Aero Propulsion Laboitatory, Air Force Systems Command, Wright-Patterson A.F.B., Ohio, under Project iNo. 3145-30-18 with AFAPL/POP/, and was under the direction of Paul Lindquist and William Kinzig.

Neil Pierce and Gerry Amies of McDonnell Douglas Corporation were technically responsible for the work.

This report has been reviewed by the Information Office, (ASD/OIP) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

UNCLASSIFIED
SECURITY CLASSIFICATION OF ThIS PAGE (When Dele Entered)

18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continuo on reverso side II nocossaty and ldently by

Computer Program
block number)
Hydraulic System
ILinsient Thermal Response
Reservoir
Piston Accumulator

Heat Exchanger
Pressure Compensated Pump
Actuator
User Manual
20 ABSTRACf (continue on reverso side il necessary and identity by block number)
The Hydraulic Transient Thermal Analysis (HYTTHA) computer program has been developed to predict temperatures, and temperature gradients in hydraulic components and systems, due to changes in flow demands.

The steady state flows and pressures throughout the system are used by the thermal portion of the program to predict fluid temperatures, line wall temperatures, component temperatures, and other component variables.

FORM
JAN 73 1473 EDItION OF 1 nov 65 IS OBSOLETE
403111^{111}

The engineering input data to the program is normally available to a design engineer. Additional components, not covered here, may be added if necessary without much effort.

TABLE OF CONTENTS

PACE

1.0 INTRODUCTION 1.0-1
2.0 TECHNLCAL SUMMARY 2.0-1
3.0 MAIN PROGRAM 3.0-1
3.1 THYTR 3.1-1
3.2 BLOCK DATA. 3.2-1
3.3 COMMON USAGE. 3.3-1
3.4 TFLUCD. 3.4-1
4.0 STEADY STATE SUBROUTINES 4.0-1
4.1 TSSDATA 4.1-1
4.2 TCALC 4.2-1
4.3 TLEGCAL 4.3-1
5.0 LINE SUBROUTLNES 5.1-1
5.1 TIINEA 5.1-1
6.0 COMPONENT SUBROUT; NES 6.0-1
6.1 TCOMPA. 6. 1-1
6.11 TBRAN11 6.11-1.
6.21 TVALV21 6.21-1
6.22 TVALV22 6.22-1
6.31 TCVAL 31 6.31-1
6.41 TREST41 6.41-1
6.51 TPUMP 51 6.51-1
6.61 TNSVR61 6.61-1
6.62 TRSVR62 6.62-1
6.69 THEX 69 6.69-1
6.71 TACUM71. 6.71-1
6.81 TiTLT81. $6.81-1$
6.101 TACTIO1 6.101-1
6.102 TACT102 $6.102-1$
7.0 OUTPUT SUBROUTINES 7.0-1
7.1 TSTOME. 7.1-1
7.2 TGRAPII. 7.2-1
7.3 SCALED. 7.3-1
8.0 UTILITY SUBROUTINES. 8.0-1
8.1 INTERP. 8.1-1
8.2 DISER1. 8.2-1
8.3 LAGRAN. 8.3-i
8.4 SIMULT. 8.4-1
8.5 TGAUSS. 8.5-1
8.6 UFW 8.6-1
8.7 XLIMTT. 8.7-1
8.8 FRIC 8.8-1
9.0 REFERENCES $9.0-1$

LIST OF CIGURES

NUMBER	TLTLE	PAGE
3.1-1	IHYTR FLON diagram.	3.1 .2
4.2-1	tcalc generalized flow diagram.	4.2-2
4.2-2	t'Calc example system.	4.2-6
4.2-3	tcalc slbroutine phase one operation.	4.2-7
4.2-4	tcalc subroutine phase two operation.	4.2-12
4.3-1	tlegcal organization.	4.3-2
5.1-1	line node reiresentation.	5.1.-1
5.1-2	LINE SEGMEKT NODE REPRESENTATION.	5.1-2
5.1-3	LIne segient thermal model.	5.1-5
6.1 .1	COMPONENT SUBROUTINE ORGANIzATİN	6.0-2
6.11-1	BRAICH CONFIGURATIONS	$6.1 \mathrm{i}-1$
6.11-2	"Cross" branch and line segment node representation	6.11-2
6.11-3	BRANCH THERMAL MODEL.	6.11-5
6.21-1	type no. 21 two-way valve	6.21-1
6.21-2	valve and line node rephesentation.	6.21-2
6.21-3	valve 21 thermal model.	6.21-6
6.22-1	four-way valve schematic.	6.22-1
6.22-2	valve node representation	6.22-2
6.22-3	FLUId flow paths.	6.22-3
6.2.2-4	valve 22 thermal model.	6.22-9
6.22-5	effective valve area characteristics.	6.22-11
6.31-1	TYPE NO. 31 Check valve	6.31-1
6.31-2	CHECK VALVE NODE REPRESENTATION	6.31-2
6.31-3	node representation for reverse flcw.	6.31-5

NUMi3ER	IITLE PACE
$6.31-4$	CHECK VAlve thermal model for forward flow. 6.31-7
$6.31-5$	TCVAL31 STEADY STATE PRESSURE DROP CHARACTERISTICS. 6.31-8
6.41-1	TYPE NO. 41 ORIFICE RESTRICTOR 6.41-1.
6.'s1-2	RESTRICTOR AND CONNECTOR NODE REPRESENTATION. 6.41-2
6.41-3	RESTRICTOR THERMAL MODEL. 6.41-5
6.51-1	TYPE NO. 51 PRESSURE REGULATED VARLABLE OISPLACEMENT PUMP . 6.51-1
6.51-2	rRESSURE REGULATED VARIABLE DISPLACEMENT PUMP AND LINE NODE REPRESENTATTON . 6.51-2
6.51-3	PUNP THERM, M MODEL. 6.51-11
6.51-4	PUMP OUTLET FI. W V V OUTLET PRESSURE CURVE 6.51-12
6.61-1	TYPE NO. 61 rn tant Prfissuri Reservoir 6.61-1.
6.61-2	RESERVOIR NOLE i \because. RES ENTATION FOR SAMPLE SYSTEM 6.61-2
6.62-1	TYPE NO. 62 BOOT..TiAP RESERVOIR 6.62-1.
6.62-2	BOOTSTRAP RESERVGIR AW LINE NOD! REPRESENTATTON. 6.62-2
6.62-3	RESERVOTR THERMAL MODL. 6.62-7
6.62-4	TRSVR6: STEADY STATE Flo ' diagram 6.62-8
6.69-1	TYPE NO. 69 HEAT EXCHANGER. 6.69-1
6.69-2	HEAT EXCHANGER ANI LINE NODE I IPRESLENTATTON 6.69-2
6.69-3	HEAT EXCHANGER THERMAL MODEL. 6.69-7
6. 11-1	TYPE NO. 71 FREE PISTON ACCUNULAAZOR 6.71-1
6.71-2	ACCUMULATOR AND CONNECTING LINE SEGMENT REPRESEATATION. . . 6.71-2
6.71-3	ACCUMILLATOR THERMAL MODEL 6.71-8
6.81-1	TYPE NO. 81. F-4 TYPE IN-LINE FILTER 6.81-1
6.81-2	Fllter and line segment vode representation 6.81-2
6.81-3	Filter thermal model. 6.81-5

NUMBER TI'RLE PAGE
6.101-1 TYPE NO. 101 VALVE CONTROLLED ACTUATOR. 6.101-1
6.101-2 ACTUATOR, VALVE AND LINE SEGMENT NODE REPRESENTATION 6.101-2
6.101-3 ACTUATOR WORKING SIMULATIONS 6.101-3
6.101-4 ACTUA'TOR THERMAL MODEL 6.101-12
6.102-1 TYPE NO. 102 UTILITY ACTUATOR 6.102-1
6.102-2 ACTU.TOR AND CONNECTOR NODE REPRESENTATION 6.102-2
6.102-3 ACTUATOR THERMAL MODEL 6.102-3
LIST OF TABLES
NUMBER TITLE PAGE
3.2-1 MATERIAL PROPERTY ARRAY 3.2-3
LIST OF PAGES
Title Page
i. through ix
1.0-1 Lhrough 9.0-i

1.0 INTRODUCTION

The Hydraulic Transient Thermal Analysis (HYTTHA) computer program is intended for use by designers with an interest in the thermal effects on the performance of an aircraft hydraulic system.

An aircraft hydraulic sfstem is basically a power source connected :o several loads. The main pover source is the pump, while the loads include components such as valves and actuators. The power is transmitted by hydraulic fluid in the lines which connect the components.

The system can also be considered as several thermal sources and sinks. The main thermal source is the pump while secondary sources include valves and restrictors. The sinks include the atmosphere and structure external to the sources. The HYTTHA program provides a tool for calculating the transient thermal response of the system when a thermal source, such as a valve, changes the flow cemand in the system, thus changing system temperatures.

The program calculates flow rates, pressures, and temperatures throughout the system. Initially input data are used to calculate steady state pressures and flow rates as input for an initial temperature calculation for the first time increment. The steady state values are then used to calculate all line temperatures for the same time increnent, and the line temperatures are used to calculate all component temperatures. Thr program continues to calculate steady state flow rates and pressures, and line and component temperatures for successive time increments.

To use the program, the designer inputs data describing lines, components, ℓ and system configurations. Since the simulated system is only as good as the data, care must be given to providing the best data possible.

In the steady state section of the program, the pressures and flow rates are balanced throughout the system (for the previous time step temperatures) ard all state variables are calculated.

In the line section, the lines are divided into segnents. The temperatures at the boundaries of each line are predicted from stored information and the temperatures of each successive line segment are calculated.

In the component section, the calcula:ed line cata is used to calculate the component fluid and wall temperatures.

After all calculations are completed, t.at output is printed and plotted. The designer selects the variables that are reg lired is output tables or plots. The output is essentially a time history of tht ielected variables.

Since the program calculations advance in wiscrete time steps, results can be integrated into other simulations, if the cost $2 .:$ running can be tolerated.

This report is a technical description of the Hront program. Included are detailed listing of the main program and subıovtines, and the theoretical basis and assumptions made in the calculaticns.

Volume VII o. this report is a users mat. $1 \exists 1$ which describes how the program can be used, the method of data input, and the interpretarion of the output.

2.0 TECHNICAL SUMMARY

The HYTTHA program uses a building block approach which allows a designer to solve transient thermal problems by combining existing hydraulic line and comprnent subroutines to thermally simulate hydraulic systems. This approach allows the user to add special component subroutines to the existing component r ibroutine library, as required.

For the analysis, the lines and components are represented by both wall and fluid nodes, equations are written for heat transfer to and from each node, and the equations are solved for successive time increments. The equations are defined in a backwards difference scheme and include modes of heat transfer such as conduction, convection, radiation, heat transfer due to mass transfer, and temperature rise due to a pressure drop. The line temperatures are calculated for one Δt and the results are used to calculate the component temperatures for the same Δt. The component results are then used to calculate new line temperatures and subsequently new component temperatures.

HYTTHA uses some basic assumptions and approximations throughout the program. The assumptions are:

1. $\mathrm{i} i \mathrm{~h}$: emissivity of the materials remain constant, (0.3).
2. The atmosphere and structure temperatures external to the lines and components are constant.
3. Each node is considered as a mass at one temperature.
4. The fluid exiting from a component is equal to the component fluid temperature calculated.
5. A pressure drop across an orifice results in a fluid temperature rise (DCAPT). A percentage (D(PERC)) of the heat goes directly into the fluid, and the remainder into the wall.
6. The interface conductance, between the lines and components, is infinite.
7. The pump heat rejection D (HTREJ) is constant.

The approximations are:

1. The radiative shape factor (SHAPF) is . 96
2. A default value for the coefficient of heat transfer (UFWIL) to and from the external component wall to the atmosphere is 0.0069 WATTS/FT. ${ }^{2}{ }^{\circ} \mathrm{F}$, which is that of still air.

The terms DCAPT, PERC, UFWLL, (convective heat transfer coefficient between the fluid and the wall), SHAPF, and HTREJ are explained below.

DCAPT - The temperature rise in a fluid due to a pressure drop across an orifice is a function of the fluid temperature at the orifice. The oil is essentially incompressible and energy extracted from the oil is assumed to be negligible. Because of incompressibility, the specific volume may be considered independent of pressure. A constant enthalpy process, which is insensitive to pressure variations is simulated. The temperature rise across an orifice is:
$I=$ ($1 /$ density) (High Pressure - Low Pressure) $/(C J \% C p)$
$C I=$ mechanical equivalent of heat
$C_{p}=$ specific heat of the fluid
(DCAPT is equal to T)
D(PERC)- This Lerm denotes how much of the heat, generated by a pressure drop, is added directly to the fluid. The remaining heat is added to the wall in contact witi the fluid. Normally $D(P E R C)$ is equal to 1.0 which means that 100% of the heat is added directly to the fluid.

UFWIL - This term is a coefficient for heat transfer between a fluid and a wall. It is calculated by a separate subroutine, FUNCTION UFW.

$$
2.0-2
$$

SHAPF - The radiation shape factor is defined as the "fraction of diffusely distributed radiation leaving a surface $A i$ that reaches surface $A j^{\prime \prime}$ (Reference 9.1). Since components are completely enclosed by structure, the shape factor should be equal to 1.0 , but this does not account for that part of the radiation from one component node which reaches another node of the same component. The value 0.96 is used for the shape factor of the components.

HTREJ - This term is heat rejection associated with the pump. This term includes the heat of compressirn of the fluid and heat due to friction in the moving parts in the pump. It is specified for many pumps, generally as a function of R.P.M. and volume flow rate. In the present pump model a constant value is input by the user. From this value, 32.3% of the heat is added to the exiting fluid, 25% is added to the pump walls, 18.7% is added to the pistor. mass, and the other 24% is added to the case fluid.

To use the program, the designer inputs:

1. Dimensions - such as lengths, areas,and volumes.
2. Material Properties - the user indicates type and the program uses tabulated values or Cp, ρ, and K at $100^{\circ} \mathrm{F}$. The materials stored in the program are titanium, aluminum, steel, and teflon.
3. Initial Temperature - the initial temperatures of the lines and components are inputted.
4. Initial Flows - the initial flow quesses in the 1 ines and components are inputted.
5. Heat Transfer Coefficients - Several may be needed. These are special for each subroutine.

The output is efther a table of graph of the time history of a component or line wall and Iluid temperatures.

It should be noted that the current maximum number of lines (MNLINE), components (NNEL), legs (MNLEG), nodes (MNODE), plots (MNPLOT), and line points (MNP'TS) that can be input are limited in BLOCK DATA. Hence BLOCK DATA must be changed if any of these maximum values are exceeded when irputting a system. These are defined in Section 3.2 in the manual.

3.0 MAIN PROGRAM

The main or executive program section of HYTTHA is named THYTR. THYTR controls the flow of the program, and keeps track of the counters for the time variables. The block data and fluid subroutines are also included in this section.

The HYTTHA program is very similar in organization to the HYTRAN (Hydraulic Transient Analysis) computer program. Many of the subroutines in HYTTHA have HYTRAN counterparts and function in the same way.

Some cost savings can be made by the use of overlays or segments. The implementation of these devices is left to the individual user.

3.1 THYTR PROGRAM

THYTR is the main or executive program of HYTTHA. The program flow is directed from THYTR. The main program card is set up to reud from a file called Data. This may be changed to suit the user's own data inputting scheme. Extensive use is made of common and equivalences in the program, so care is required in modifying variables that are contained therein.

A flow diagram of the main program is shown in Figure 3.1-1. In the first section of THYTR, the general system data is input. This deta is printed out and a call is made to the fluid subroutine. In TFLUTD the values of bulk modulus, viscosity and density are tabulated for the inputted fluid type. Next the TLINEA subroutine is called to read the line data cards, and to initialize the appropriate variables. Likewise TCOMPA reads in all the component data cards and calls the component subroutines. The TSSDATA subroutine is then called to input all the steady state leg and node information.

In the next section IENTR is set to zero and a call is made to TCALC to calculate the steady state flows and pressures throughout the system. The TLINEA subroutine is called to initialize the line temperature based on the steady state flows and pressures. TSTORE reais all the output data requirements and stores the user selected output data just calculated at time $=0.0$.

The third section advances the time step by DELT. TLINEA and TCOMPA are called to do the thermal transient calculations and the variables to be plotted are saved by TSTORE. If the sum of the time steps are less than the final time TSCALC is called to compute the latest steady state flows and pressures and this computation section is repeated. The program stops when the time exceeds the final time sperified in the input.

Figure 3.1-i
3.1.1 Math Model. Not applicable.
3.1.2 Assumptions.

The basic assumptions in THYTR are as follows:
o Flow is one-dimensional, that is, the fluid properties are constant across any transverse cross section of the pipe.

- Plpes have circular cross sections.

0 Stresses in pipes are always below the elastic limit.
o Pipe geometry is such that the "thin wall" case is valid.
o Pipe and liquid are perfectly elastic (all energy dissipation is due to shearing stresses at the walls).

3.1.3 Computation Methods. Not applicable.

3.1.4 Approximations.

THYTR approximations are those inherent in numerical analysis. They are kept small enough by errer control to be of no practical influence.

3.1.. 5 Limitations.

THY'R currently has the following constraints:

o Temperature range ... -65° to $300^{\circ} \mathrm{F}$

- Pressure range ... 0 psia to 5000 psia
o Maximum number of components ... 99
u Maximum number of ines . . . 150
o Maximum number of legs ... 70
o Maximum number of nodes ... 55
- Maximum number of plots ... 60

3.1 .6	Variable Names	
Variable	Description	Dimension
I	Counter	--
LFINAL	Number of transient iterations	--
PRESS	Working Pressure	PSI
TEMP	Working Temperature	of
Y	Dummy Variable	--

3．1．7 Nain Program Listing

PROGRA．THYTR（DATA，OURPUT，DNTA1，TAPE 5＝DATA，TAPLG＝OUTPUT， ＋TAPE7＝DATAl）
C＊＊＊REVISED AUGUS＇T 5， 1975 ＊＊＊
COABOY DUH（ 3500 ），VSTORE（ 6000 ）
CO：HON／TRANS／P 300$), \mathrm{D}(300), \mathrm{C}(300), \mathrm{TC}(300), \mathrm{TW}(300), \mathrm{TF}(300)$ ， ＋ACF（300），ACS（300），DXF（300），TIAE，DELT，PI，NLINE，NEL
COH：ON／LIAIT／INLINE，MNLL，MNLEG，YNNODL，MNPLOT，INLPPS，ADS COAHON／COMP／LTYPEイ99），NC（99），KTEMP（99），IND，IENTR，INLL
COHiON／FLUID／A＇MPKLS，CF，CPFi，F＇TEAP，PKOP $(13,3)$

＋NMBSO，NTOPL，NTOLPL
$\operatorname{ZCAD}(5,470)(\operatorname{TTCLL}(I), I=1,20)$
．VRI＇RE（5，480）TITLL
ISTLP＝0
$P I=3.1416$
TIMb＝0．0
C
C
C
C
C
C
C
THIS RLAD STATE．OENT IVPURS THE FOLLONING JATA
NLINE＝iNUMBER OF LIVES
NLE＝NURIBER OF COMPOHE VTS
DELT＝DEL＇RA TIAL ZETWEEN CNTGULATIONS SLC
TFINAL＝FINAL＇ilat SLC
听TDEL＝DELPA TI．AE ：ATNEH＇N PLOT POINTS SEC
RLAD（5，133）NILI VE，N：L，DLLI，TFINAL，PLTDEL
133 ［＇OR．IAT（2T5，3E13．ク）
WRI＇E（5，435）TEIMA：，DLLT，PLIDLL
IE（DEET．EO．0）GO＇ 225
$\because P T 3=1.01$＋TEINAL／OLTDLL

IFINML＝0．5＋TRI？AL／כLLT
$Y=$ PFLJID（TL．IP，PRLSS）
C
$\operatorname{IEITR}=-1$
C
CALL TLINLA
C
IMEL＝0
CALT，TCOMPA
C
CALL ASSDATA
C
C＊＊＊THIS SECTION CALLS TLINLA AUD TCD．APA TO INIMIALIZL ALC THE
C
C SYSTEA VARIABLES TO＇HALR STEADY S＇LATI VALULG

IUNTY＝0
INEL＝0
C
CALJ TCALC
C

3.1 .7 (Continued)

- call tlinea

C
c
C
C
150 TLNTR=0
CALL TSCALC
C

IS'REP=ISTLP +1
C
c

C
C Do bleridir calculatiois
I! LLL=0
CALL TCOAPA
C
C
C
CALL TSTORE
If (ISTuP. LT.tFImAL) 60 co 150
S'pop
251 covitude
S'TOP 3100
47.) FOP.ANT(20A1)

480 FORanT(1:11,25X,20A4,//)
405 FORAAT(20x,52月 THL THLRAAL TRANSIENT RLSPONSE IS FRO. $T=0.0$ TO T=

2 F7. 5,//,30K, 4BANI'CH OUTPUT POIN'S PLOTMLDD AT IVTLRVALS OF 3 F7.5,9:1 SLCO.:Dis , //)
END

3.2 BLOCK DATA

Block data is used to initialize values in COMMON/LIMTT/and COMMON/COMD/. The maximum number of various input values in COMMON/LIMIT/ are established using the following data initialization statement

DATA . INLINE, ANLL, MNLEG, MNNODE, MNPLOT, ANLPTS, ADS $+/ 150,99,70,55,60,1500,4509 /$

Maximum and minimum values for each individual component are initialized in COMMON/COMPD/ as follows:

```
DATA [.T/l00*0/
DATA L11/11,4,0,4,0,0,4,2,0,0/
DA\A ill220/20*0/
DATM L? 1/32,4,0,5,0,3,2,2,1,0/
DA:n
DA'TA L23/24,2,0,5,0,3,2,2,1,0/
DATA [,2430/9,12,0,12,0,0,8,8,0,0,60*3/
DATA L31/24,12,0,3,0,1,2,2,1,0/
DATA L32/6,5,0,3,0,0,3,3,1,0/
DATA L334n/80*0/
OATA [41/27,27,3,2,0,2,2,2,1,0/
DNTM L4250/90*0/
DAPA L51/35,30,0,4,0,5,3,3,1,0/
DA'rA L5%/10*0/
DATA L5360/80*0/
DATA L61/10,7,0,12,0,1,13,1,0,0/
DAT\ LGT2/24,18,0,9,0,2,5,2,0,0/
D.ATA L6363/60*0/
DiTA L,\mp@code{/24,5,0,4,0,3,2,2,1,0/}
DATA L79/13*0/
DATA L71/24,13,0,10,0,1,2,1,0,0/
DARA L7230/90*J/
DA'RA L&1/19,4,0,2,0,1,2,2,1,0/
DATA L8 2/24,21,0,8,0,3,6,5,1,0/
DARA L3390/B0*0/
DATA [91./0,3003,0,3.0,0,1,1,0,0/
DATA L92l10/90*0/
DATA [,101/56,27,0,7,0,2,2,2,1,0/
DAPA L102/32,21,0,6,0,2,2,2,1,0/
DAGT\ LEND/430*0/
DAT4 PKOP/140.4,144.,165.5,230.4,230.4,242.6,220.3,121.3
,119.3,115.2,115.2,115.2,295.34,.164,.16,.164,.101,.093,.093,.
101,.286,.285,.282
..28,.287,.0775,.0174,.105,.093,.226,.197,.213,.21,.35,.17,.
4 23,.25,.21,.00354/
3.2-1
```

In BLOCK DATA the material properties of thlrteen materials are stored in the PROP array in COMMON/FLULD/. The first column contains the specific heat of the material. Column two gives the material density and the conductivity is in column three. All the material properties are input for a temperature of $100^{\circ} \mathrm{F}$. Since these properties did not vary greatly over the operating temperature range of the program $\left(-65^{\circ} \mathrm{F}\right.$ to $\left.300^{\circ} \mathrm{F}\right)$, these values are not temperature compensated in the HYTTHA program, see Table $3.2-1$ for a list of the material properties.
table 3.2-1
Material property array
PROP (X,Y)

λ	MATERIAL TYPE	$\begin{gathered} \text { SPECIFIC } \\ \text { HEAT } \\ (x, 1) \end{gathered}$	$\begin{aligned} & \text { DENSITY } \\ & (\mathrm{X}, 2) \end{aligned}$	$\begin{aligned} & \text { CONDUCTIVITY } \\ & (\mathrm{x}, 3) \end{aligned}$
1	$\begin{gathered} \text { Titanium } \\ \text { 6AL-25N-42R-2MO } \end{gathered}$	140.4	. 164	. 1.074
2	$\begin{aligned} & \text { Titanium } \\ & 6 \mathrm{AL}-4 \mathrm{~V} \end{aligned}$	144	. 16	. 105
3	$\begin{aligned} & \text { Titanium } \\ & 6 \mathrm{AL}-6 \mathrm{~V}-25 \mathrm{~N} \end{aligned}$	165.6	. 1.64	. 093
4	$\begin{gathered} \text { Aluminum } \\ 2014 \end{gathered}$	230.4	. 101	. 226
5	${ }_{2024-\mathrm{T} 6}^{\text {Aluminum }}$	230.4	. 098	. 197
6	$\begin{gathered} \text { Aluminum } \\ 6061-\mathrm{T} 6 \end{gathered}$	242.6	. 098	. 219
7	$\underset{7075-\mathrm{T} 6}{\text { Aluminum }}$	229.3	. 101	. 21
8	$\begin{aligned} & \text { Steel } \\ & 4130 \end{aligned}$	121.3	. 286	. 35
9	$\begin{aligned} & \text { Steel } \\ & 301 \end{aligned}$	118.8	. 286	. 17
10	$\begin{aligned} & \text { Steel } \\ & 304 \end{aligned}$	115.2	. 282	. 23
1.1	$\begin{aligned} & \text { Steel } \\ & 17-4 \mathrm{PH} \end{aligned}$	115.2	. 28	. 25
12	$\begin{aligned} & \text { Steel } \\ & \text { A286 } \end{aligned}$	115.2	. 287	. 21
13	Teflon	295.34	. 0775	. 00354

3.3 COMMON USAGE

One blank and nine labeled common statements are used in the HYTTHA program. Their purpose is to share storage and pass argumonts between the various subroutines.

1. Blank column is used to store output variables and pass steady state information.

COMMON DUM (3500) VSORRE (6000)
2. Common TRANS contains all the temperature, pressure and flow information to be used by the lines and components. Also the current time, calculation interval, PI, number of 1 ines and number of elements are stored in this labeled common.

COMNO! /TRANS/P (300), 2(300), $\mathrm{C}(300), \mathrm{TC}(300), \operatorname{TW}(300), T F(300)$, $+A C E(300), A C W(300), D X F(300), T I M E, D L L T, D I, N L I N E, N L L$
3. Common LIMIT provides the maximum limits on the number of components, lines, nodes, legs, plots, line points and D variables.

4. Common LINE is used pass arguments concerning such line parameters as inside diameter and temperature of each fluid and wall segment.
 + NLSis(150)
5. Commou COMP passes information on component types, numbers of active conneciions, current component numbers and leg number.

COH:ON /COMP/LTYPL(99),NC(99), KTE:AP(99), IND,IENTR, INEL
6. Common STEADY contains information used in the steady state portion of all the component and steady state subroutines.
 + ?A, ?S, ni, PUP, ?DOU'N, NAODL, NLEG,NCPN, TERA,
 +ILLGA)(90), ILL?(1007)
7. Common ICC is used by the TCALC and TGAUSS subroutines in the steady state solution process to pass matrix information.

8. Common FLUID contains atmospheric pressure conductivity and specific heat of the fluid, the system default fluid temperature and physical properties of various materials.

9. Common PLOT is used to pass variables for the plotting subroutines.
 + ,NABS2, NMOPL,NTILPL
10. Common COMPD is used to pass varlables used in component calculations.

COMAN /COAPD/ D(4500), LT(100), L11(10), L1220(90), L21 (10), L22(10),
$+\mathrm{L} 23(17), \mathrm{L} 2430(70), \mathrm{L} 31(10), \mathrm{L} 32(10), \mathrm{L} 3340(80), \mathrm{L} 41(10), \mathrm{L} 4250(90)$,
$+\mathrm{L} 51(10), \mathrm{L} 52(10), \mathrm{L} 5360(90)$,

+ L61(10), L62 (10), L6368(60), L63(10), L70(10), L71(10),
$+57230(90), 481(10), \mathrm{L} 82(10), 18390(80), \mathrm{L} 91(10),[92100(90)$,
$+\operatorname{L1} 11(19), L 112(10), \operatorname{LLNO}(430), \operatorname{LE}(99,4)$

The maximum input simits of the program are set in BLOCK DATA. In order to decrease any of the limits, the initialized data statement in LIMIT must be changed.

Note: The maxi im number of lines that can be input is equal to the dimension of
the P array divided by 2.
Array initiallzation for the components used in BLKDTA are as follows:
Array Location $\quad \therefore$ Description

1
2

3

4

5

6

7

8

9
10

Number of real data points, $D($)
Number of temporary variables, DT()
Number of double precision variables, DD()
Number of integer variables, L()
Not used
Minimum number of data cards
Maximum number of connections
Minjmum number of connections
Not used
Not used

3.3.1 Variable Names

Variable	Descripicion	Dimension
ACF ()	Array of cross sectional areas of the fluid	IN^{2}
ACW()	Array of cross sectional tube areas	IN ${ }^{2}$
AtPres	Atmospheric pressure	PSI
C ()	Array of wall conductivity	WATTS/IN- ${ }^{\circ} \mathrm{F}$
CF	Conductivity of the fluid	WAT'TS/IN- ${ }^{\circ} \mathrm{F}$
CPFN	Specific heat of the fluid	WATTS-SEC/Lb- ${ }^{\circ} \mathrm{F}$
D ()	Component real data array	--
DELT	Program time step	SEC
DXF ()	Array of distances from fluid node to interface	IN.
FTEMP	Fluid temperature	${ }^{\circ} \mathrm{F}$
ICOL()	Computational array indicating rows and column locations in a square matrix	--
ICON	Component connection number	--
IENTR	Subroutine entry point indicator	---
ILEG()	Array containing component and line numbers identifying steady state legs	--
ILEGAD ()	Address of the start of each leg in the ILEG() array	--
IND	Number assigned to component by user	--
INEL	Current leg number in steady state computation	--
INV	Dummy variable	--
INX	Current element number in leg	--
INZ	Number of elements in a leg	--
IPOINT	Counter for number of paints stored	--
ISTEP	Sum of time steps up to current time	--

Variable	Description	Dimension
JCENT ()	Computational Arcay indicating number of filled columns in a square matrix	--
JRENT ()	Computational array indicating number of filled rows in a square matrix	--
KTEMP ()	Dummy variable array	--
L ()	Component integer data array	--
LE (N)	Address of real data for component N	--
LEGN	Dummy variable	--
LEND()	Dummy array	--
LSTART (N)	Address of first segment of line N	--
LT ()	Dummy array	--
LTYPE (N)	Component N :ype number	--
MDS	Maximum D() array size	--
MNEL	Maximum number of components	--
MNLEG	Maximum number of legs	--
MNLINE	Maximum number of lines	--
MNLPTS	Maximum number of line points	--
MNNODE	Maximum number of nodes	--
MNPLOT	Maximum number of plots	--
NABSO	$\begin{aligned} & 0=\text { normal plots } \\ & 1=\text { plots magnitude } \end{aligned}$	--
$\mathrm{NC}(\mathrm{N}, \mathrm{I})$	Line number attached to connection I of component N, and temporary storage area	--
NCPN	Number of constant fressure nodes	--
NDWN	Array of downstream node numbers	--
NEL	Number of components input	--

nelem()	Array of the number of legs and components in a leg	--
NLEG	Number of legs	--
NLINE	Number of lines input	--
NLPLT(, 1)	Address of variable in $\mathrm{P}, \mathrm{Q}, \mathrm{TC}, \mathrm{TW}$ or TF array	--
NLPlt (, 2)	Line number	---
NLPlt (, 3)	Coded input ($1=\mathrm{P}, 2=0,3=\mathrm{TC}, 4=\mathrm{TW}, 5=\mathrm{TF}$)	--
NLSEG (N)	Number of segments in 1 ine N	--
nNODE	Number of steady state nodes	--
NPTS	Number of plot points	--
NTOLPL	Number of 1ine plots	--
NTOPL	Total number of plots	--
nup	Array of upstream node numbers	--
P()	Array of line end pressures	PSI
$\operatorname{PARM}(, 1)$	Line length	1N.
PARM (, 2)	Inside line diameter	IN.
$\operatorname{PARM}(, 3)$	Line cquivalent lergth	IN.
PARM (4)	Transition flow when multiplied by viscosity	CIS
PdLEG()	Array of external pressure drops	PSI
PDOWN	Downstream leg pressure	PSI
PEX ()	Dummy array used in steady state section for external pressure calculations	--
PI	Constant 3.1416	--
Pltdel	Plot time interval	SEC
PN()	Array of node pressures	PSI.
$\operatorname{PrOP}(, 1)$	Material specific heat	trs-

Variable
$\operatorname{PROP}(, 2)$
$\operatorname{PROP}(, 3)$
PUP
Q()

QA
QL()
QN()
QS
Q1

TC()
TERM
TF ()
TFINAL
TIME
TITLE ()
TLF ()
TLW ()
TW ()
VSTORE ()

Description

Material density
Material conductivity
Upstream pressure
Array of line end flows
Magnitude of flow
Array of leg flows
External flow at a node
Sign of the flow
Flow rate
Array of component temperatures at line ends
Dummy Variable
Array of fluid temperatures at the line ends
Final calculation time
Current main program calculation time
Program run title array
Array of line segment fluid temperatures
Array of line segment wall temperatures
Array of wall temperatures at the line ends
Array for storage of line and component variable data required for plotting

SEC

SEC
Dimension
$\mathrm{LB} / \mathrm{CN}^{3}$
WATTS $/$ IN $\omega^{\circ}{ }^{\circ}$
PSI
CIS
CIS
CIS
CIS
--
--
${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}$
--
${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}$
--

3.4 TFLUID FUNCTION

Function TFLULD reads in the fluid parameters and computes tables of〔luid densit:y, adiabatic bulk modulus, and kinematic viscosity for the temperature range of $-65^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$. Data for three types of fluid are currently included in TFLLID. They are MIL-H-5606B, MLL-H-83282 and SKYDROL 500B. TFLUID is dimensioned to accept data on three additional fluids. The daca sources are contained in the TFLUID function subprogram.
3.4.1 MATH MODEL - Not applicable.
3.4.2 ASSUMPTIONS - Not applicable.
3.4.3 COMPUTATION METHOD - The arguments of TFLUID require that the temperature and pressure be input for any computation of density, viscosity or bulk modulus.

All the fluid parameters are dimensioned for nine input data points and six fluids. Data statements are used to input the name of each fluid, the nine temperature data points for each fiuid, and the bulk modulus and viscosity data corresponding to the nine temperature points for each fluid. Only two points are used for density input data, since a straight line interpolation is used over the entire temperature range for density calc llations. The values of specific heat and conductivity are stored for each fluid type in the DCF and DCPFN arrays.

Next the system fluid type, initial temperature vapor pressure and atmospheric pressure are read in. Default values are assigned when a initial temperature, vapor or atmospheric pressures are not assigned by the user.

Subroutine INTEPP is then called to estimate the fluid's viscosity and bulk modulus values from $-65^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$ in 2.5 degree increments. The values of the fluid properties are stored in $\operatorname{DVISC}()$ and DBULK (). Viscosity is converted from centistokes to NEWTS in the process. A pressure coefficient of viscosity is also computed and stored in DCOEFF () for every 2.5 degree increment of temperature.

Finally TFLUID writes out the fluid type and vapor pressure before returning control to the main program.

ENTRY TFLUID

Whenever a value of bulk modulus viscosity or density is required by the component or line subroutines a call is made to the TFLUID function through the appropriate entry statement, with the current values of temperature and pressure. For the bulk modulus computation the temperature is converted to an array location in DBULK ().

$$
I V=(T E M P+65 .) / 2.5
$$

DBULK (IV) gives the value of bulk modulus at the inputted temperature. The value is then pressure corrected and returned to the calling program. The process is similar for the viscosity calculation. Should the temperature exceed $300^{\circ} \mathrm{F}$ the fluid properties are given at $300^{\circ} \mathrm{F}$.

In entry RHO the equation of a straight line drawn between the inputted density data points is solved to obtain the density value.

3.4.4 APPROXIMATIONS

1. The values of specific heat and conductivity are input at $100^{\circ} \mathrm{F}$ for the different fluid types and are not corrected for any fluid temperature rise during program execution.
2. The fluid property values of bulk modulus and viscosity are only accurate to 2.5 degrees because of the table look-up feature.
3. For any fluid temperatures greater than $300^{\circ} \mathrm{F}$ the bulk modulus and viscosity value will be given at $300^{\circ} \mathrm{F}$.

34.5 VARIABLE NAMES

VARIABLE	DESC.PIPTION	DIMENSION
A	Temperature Ratio	--
ABULK ()	Array for Ten Adiabatic Bulk Modulus Input Data Points for Six Fluids	PSI
ARHO ()	Array for Two Density Input Data Points for Six Fluids	$L B * S E C{ }^{2} / \mathrm{NN}^{4}$
ATEMP()	Array for Ten Temperature Data Points for Six Fluids	TEMP
AVISC()	Array for Ten Viscosity Input Data Points for Six Fluids	CENTISTOKES
B	Viscosity Correction Exponent	--
COEFF ()	Array of Viscosity Correction Factors	--
DBULK ()	Tabulated Array of Bulk Modulus Values for User Selected Fluid	--
DCF ()	Array of Fluid Conductivities	WATTS / IN- ${ }^{\circ} \mathrm{F}$
DCOEFF ()	Array of Viscosity Pressure Correction Factors for User Select Fluid	--
DCPFN()	Array of Fluid Specific Heats	WATCS-SEC/LB- ${ }^{\circ} \mathrm{F}$
DVISC()	Tabulated Array of Viscosity Values of User Selected Fluid	$\mathrm{IN}^{2} / \mathrm{SEC}$
I, IEk	Dummy Variables	--
IF	Fluid Type Identification Number	--
IFLUMN()	Array for Fluid Names	--
IK ()	Number of Input Temperature Points	--
IV	Address of Tabulated Viscosity or Bulk Modulus Values	--
PRESS	Input Fluid Operating Pressure	PSI
PVAP	Fluid Vapor Pressure	PSI

VARIABIE	DESCRIPTION	DIMENSION
Slope	Slope of Density-Temperature Line	$\mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN}{ }^{4} /{ }^{\circ} \mathrm{F}$
tbulk	Dummy Variable	\cdots
TEMP	Input Fluid Operating Temperature	${ }^{\circ} \mathrm{F}$
TFLUID, TJ, TVISC	Dummy Varlables	--
Y1, Y2	Input Density Data Corrected for Operating Pressure	$\mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN} .{ }^{4}$

3．4．6 Subroutine Listing

FUNCTIUN TRLIJTD（TEMP，PRESS）
C

C
C
C
RLVJSED IARCH 3， 1975 ＊＊＊＊
COM：SOV／ELUT J／ATEREG，CE，CPFN，PTLMP，PROP $(13,3)$
DIMEVION ATHIP $(10,6), \operatorname{AVI} \operatorname{CC}(10,5), \operatorname{ABULK}(10,6), \operatorname{ARHO}(2,6)$ ，
1COEFE（6），IK（6），TF［JN，（3，6），DCE（6），DCPPN（6）
DIHENSION DVISC（148），DCOLFE（143），DOULK（148）
SLCOMD SUBSCPIPR RHFERS TO FLOLD TYPL（IE PARAAETER）
DilinA IFLUNu，
1／8H POR ．IIC，911－11－56053，9H
2313 FOR aIL， $8 \mathrm{H}-4-33232,3 \mathrm{ii}$
3313 FOR SKY，BHDROL 500，3H3
4б＊ 8 H
53 H
，8＇H
.8 H
C
DANA ALGuP／

$2-55 .,-40 ., 0 ., 50 ., 100 ., 150 ., 200 ., 250,1300 ., 300 \ldots$,
$3-55,-40 ., 0,50,170,150,200 ., 250,, 300 ., 300 .$,
$430 * 13.1$
RHO，3ULK ANO VISC DATA ARE FOK 0.0 PSIG
RHO DATA SOURCL：
J－uDC REPOR＇R A2GB6 DATCD 4／74
2－．IDC PEPORT $\$ ？ 25.36 DATLD $4 / 74$

DATA BRHO／
13．57L－5．7．63L－5，
29．49L－5，7．3t－5，
310．3L－5．8．9L－5，6＊10．／
3JLK DATA SOJRCL：

？－LHTTEK TM G．A．II．S PPO．：J．N．NOONAN DAMES 11／70 DJTA A3ULK／
$113.47 \mathrm{~L} 5,3.25 \mathrm{E} 5,2.9 \mathrm{~L} 5,2.48 \mathrm{~L} 5,2.03 \mathrm{~L} 5,1.73 \mathrm{~L} 5,1.42 \mathrm{E} 5,1.19 \mathrm{~L} 5, .93 \mathrm{~L} 5$ ， A．930゙5，
$213.47 \mathrm{E} 5,3.25 \mathrm{~L} 5,2.215,2.43 \mathrm{~L} 5,2.0 \mathrm{Q} \mathrm{E} 5,1.731,5,1.421,5,1.19 E 5, .9 \mathrm{E} 5$ ， A． 23 L 5 ，
 41．381．5，30＊1）．／

VISC DAEA G＇UURCL：
L－IDC RLPORN N2万35 DATLD $4 / 74$

3－WOHGANTO DATA BHLEOL DATED 5／G7（DOUGLAS HYD MANUNL）
DA＇s AVI：iC／

3.4.6 (Continued)

```
    11393.5,482.3,134.4,34.85,14.47,7.46,4.58,3.19,2.39,2.39,
    211446.9,201?.3,269.45,48.87,15.95,7.45,4.24,2.83,2.04,2.04,
    33435.5,590.07,104.13,27.9,11.7,5.5,4.18,2.89,2.15,2.15,
    A30*10./
```

C
DATA $[K / 3 * 9,3 * 10 /$
A11 COLFF/.335,.33,.42,3*10./
Divt nce /.0017,.0023,.0022, 3*0.0/,
+ OCPFN/552.7,451.48,403.99,3*0.0/

?LAD (5, 333) IF, FPLAP, PVAP, ATPRLS
333 FOR.AT(I5, 3E10.0)

I:(PVAP. 60.0.) PVAP=2.

C
$\mathrm{CF}=\mathrm{DCF}(\mathrm{IP})$
CPP, I= DCPM(IF)
$7 \mathrm{TJ}=-65$.
90) in $I=1,143$
CALL INHERP(PJ,ATtap(1,IF), AVIJC(1,IF),11
$+, T K(I F), T V I S C, I \in R)$

DVISC (I) =TVI.SC*l. $555 \mathrm{~L}-3$

$+, I K(I F), C O E F P(I F), I E R)$
DCOLFF I$)=$ COEFF (IF)

+, IK(IF), 「3UL?, I (R)
D 3 ULK (I) =T 3ULK
$\mathrm{T} \cdot \mathrm{J}=\mathrm{T} \mathrm{J}+2.5$
10 COMPIN!
TFLUI J=TJ

$30 \quad 1020$
E’inv 3ULK
$I V=(1 L .1 P+55) /$.
IF (IV.GT. 145) IV $=146$
TFLUIV= J'3ULK (IV) +12.*PRES:
RLTURiN
ENT?Y RHO

$Y 1=A B t I O(1, I F)$

3.4.6 (Continued)

$Y 2=$ NRHO $2, ~ T F)$
$\mathrm{Yl}=\mathrm{Yl}$ * (1.+PRESS/2.5L5)
$Y 2=\mathrm{Y} 2 *(1 .+\mathrm{PRLSS} / 2.5 \mathrm{~L} 5)$
SLOPE=(Y2-Y1)/340.
TPFLUID=SLOPE* (TLIP+65.) +Y].
RETURN
LNTRY VISC
IF (ABS (PRLSS) . G'P. 90000) PRESS $=90000$.
C wRITL(6,19) TLiMP, PRESS, JV
C 19 FORiAAT ($3 \mathrm{X}, \mathrm{GH*VI} \mathrm{BC*}, 3 \mathrm{~K}, 2 \mathrm{E} 12.5, \mathrm{I} 10$)
IV $=($ (TE.\{P+ó5.) $/ 2.5$
IF (IV.GT. 146) IV = 246
$A=560 . /(\mathrm{TLaP}+460$.
$B=((\operatorname{DCOLFF}(I V)) * * A) * \operatorname{PRLSG} * 2.3 E-4$
TFLUI $5=$ DVISC(IV)*EXP(3)
RETURN
27 wRITE (5, 600) (IrLUN, (I, IF), I=1, 3), DVAP
600 FORAAT ($22 \mathrm{~K}, 1$ JHFLUID DATA FOR , 3A8, 25 IWITH A VAPOR PKLSSURE OE , +F7.1,4H PST,//)
RETURA
END

4.0 STEADY STATE SUBROUTINES

The steady state subroutines comprising TSSDATA, TCALC and LEGGAL provide the thermal transient section with the distribution of pressures and flows in the system.

The steady state programs need to know how each constant flow path is connected, where the flow splits and adds, and where there is a net displacement or overboard flow.

This data is input after the component information. The input data used gives great flexibility and is very easy to modi:y.

The steady state program can cope with system configurations that are very complex and it is particularly valuable with closed loop systems and intertwined flow paths.

4.1 SUBRUUTINE TSSDATA

The TSSDATA subroutine reads the input data which specifies one system configuration.

ISCDATA is a simple input routine, with very little calculation. The data storage is divided into two sections; the basic leg data is contained in the NJY, NDWN and NELEM arrays, and the elements in a leg are stored in the ILEG array.

When all the data has been read in, it is written to the output so that a check can be made for errors in each data field.
4.1.1 Math Model - Not applicable.
4.1.2 Assumptions - Not applicable.
4.1.3 Computation Method -

The first set of input data to be read is the number of nodes, $N N O D E$, and the number of legs, NLFF. The data storage arrays are then filled with the steady state leg and element information. The NUP and NDNN arrays contain the upstream and downstream node numbers. The number of elements in the leg is stored in the NELEM array.

The LEG element data is stored in ILEG() in data pairs. If the first vadu is equal to zero, the second is the line number. If the first value is nonzero, it is the conponent number and the second is the connection number. There are ILEGAD(I) pairs of data for each LEG "I with the first value stored at ILEG (ILEGAD(I)).

4.1.4 Approximations - Not applicable.

4.1.5 Limitations - The ste.sdy state data is essentially a restatement of previously inputed thermal cransient data, in a form that can be followed during the steady state calculations. A sorting routine would eliminate the need for inputing steady state data, by generating it from the data inputed for the system comparents.

4.1.6 Variable Names

Name Description
I
J
JJ
K

NCPN
NLEG
NNODE
Do Loop Counter
Number of Elements in a LEG
Do Loop Counter
Address Counter
Dummy Variable
Number of LEGS
Number of Nodes

4.1.7 Subroutine Listing

```
SUBROU'T I AL TSSDATA
C**** REVISED AUGUST 5, 1975 **** COHION /COMP/ETYPE (99),NC(99), KTEMP(99), IND, IENTR, INEL
COAHON /STEADY/PN(90), ON(90), PEX(90), PDLEG(90), QL(90),
+ 2A, 2S, Q1, PUP, PDOWN,NNODE,NLEG,NCPN,TERM,
\(+\operatorname{LEGN,ICON,INV,INX,INZ,NUP(90),NDWN(90),NELEM(90),~}\)
\(+I \operatorname{LEGAD}(90)\), ILEG(1000)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
READ (5,69) NMODE,NLEG,NCPN
53 FORAAT (315)
C
C **** WRITL OUT TAL INPUTED DATA
C
WRITE (6,7n) N:NODE,NLEG,NCPN : \(\operatorname{VRITE}(6,71)\)
70 FORHAT(1A1,55X, \(2311 S^{\prime}\) PbADY GTATE INPUT DATA,//,
\(130 \mathrm{x}, 17\) Hivmizer OF NODES \(=, 13,5 x, 16\) HNUMBER OF LEGS \(=, I 3\),
2 5x,35H:NUH3LR OF CONGTANT PRESSURE NODES =,I3,//)
71 FORAATI \(52 x, 25\) ILEG CONNLCTIUN INPUT DATA,
4 //,10x,6HLEG NU,9x,12HUPST NOUE NO, 4X,12HDNS'T NODE NO,4X,
```



```
6 10HDwS' PRLSS)
\(\mathrm{K}=0\)
c
C *** rlad in data for bach leg
C
DO \(200 \mathrm{II}=1\), NLEG
\(\operatorname{READ}(5,75) \mathrm{I}, \operatorname{NUP}(\mathrm{I}), \operatorname{NDWN}(\mathrm{I}), \mathrm{JJ}, 2 \mathrm{~L}(\mathrm{I}), \mathrm{PUP}, \operatorname{PDOWN}\)
76 FOR:IAT (4I5, 3LILD.0)
NRITE \((6,80) I, N U P(I), N D W N(I), J J, Q L(I), P U P, P D O W N\)
80 FORAAT(10X, I5,10X,I5,10X,I5,10X,I5,9X,5X,F10.5,
1 5X,F10.5,5X,F10.5)
NELEM(II) \(=\mathrm{JJ}\)
\(\mathrm{JJ}=\mathrm{JJ} * 2\)
\(C\)
\(C\)
\(C\)
```

```
C READ ter, element data
```

```
C READ ter, element data
```

```
REAO(5,199) (ILEG(K+J),T=1,JJ)
```

REAO(5,199) (ILEG(K+J),T=1,JJ)
19n FORriAT(16I5)
ILLGAD(II)=K+1
200 K=K+.JJ
aRITE(6,90)
90 Foritat(1H0,9x,30hleg no Elenents in Leg----)
DO 300 II=1,NLFG
K=ILCGAD(II)
JJ=NELEil(II)*2-1+K
WRITE(G,152)II,(ILEG(J),J=K,.JJ)
300 CONTINUE
152 FORiAT(10X,I3,7X,10(I3,3H --,I3,1H,),//,20X,10(10(I3,3H --,T3,1H,)
+,//,20X))
RETURN
END

```

\subsection*{4.2 SUBROUTINE TCALC}

The TCALC subroutine is responsible for the steady state calculations in the system. TCALC is called from the THYTR main program. The subroutine will compute the pressures at all the system nodes and flows in all the legs, using pressure drop data obtained from TLEGCAL. Figure 4.2-1 is a generalized flow diagram of TCALC.

On entry into rCALC the first phase performed by the subroutine will be to initialize the appropriate calculation arrays. After the initialization, the computation phase begins. A11 the legs will be assigned conductance values from the TLEGCAL subroutine. These conductance values, along with constant factors, will then be inserted into two matrices. The TGA!'SS subroutine will be called to compute the new pressure values. These pressure values at the nodes are then used to calculate the new flow rates for the legs in the system. When all the flows pass the convergence test, the flows and pressures are written to labeled common arrays and program control is passed back to THYTR. If the number of iterations exceeds 50 , the most recent calculated values of flow and pressure are returned to the labeled common arrays and an error message is printed.
4.2.1 Math Model - The development of the TCALC subroutine to analyze complex flow systems results from the assumption that all resistance factors in a line can temporarily be assumed linear. The net flow around any node can then be written as the sum of all the flows entering and leaving that node or \(Q_{\text {NET }}=0\).

If \(\mathrm{R}_{12}\) is a resistance factor used to describe a resistance in a leg, then \(R_{12}=\Delta P_{12} / \mathrm{Z}_{12}\).


FIGURE 4.2-1
where:
\(R_{12}=\) Resistance from node 1 to node 2 of the leg
\(\Delta \mathrm{P}_{12}=\) Pressure drop from node 1 to node 2 of the 1 eg
\(Q_{12}=\) Flow in the leg
Conductance is then defined as:
\[
G_{12}=\frac{1}{R_{12}}
\]
where:
\(G_{12}=\) Conductance from node 1 to node 2 of the 1 cg
Then:
\[
\mathrm{Q}_{12}=\mathrm{G}_{12} \mathrm{P}_{12}
\]

The net flow at any node (where three or more legs come together) must be zero.

Therefore, the flow requirement is satisfied if:
\[
\Sigma_{J} G_{I J}\left[P_{I}-P_{J} \pm \Delta P_{I J}\right]-\Sigma_{K} \pm Q_{I K}=0
\]

Where:
\(P_{\text {? }}=\) pressure at node \(I\)
\(P_{J}=\) pressure at node \(J\)
\(\Delta \mathrm{P}_{\mathrm{IJ}}=\) a pressure rise or loss (from a pump or actuator) in leg IJ
\(Q_{I K}=\) fixed flow in leg IK connected to node \(I\)
Equations of the above form are input to a matrix for solution of pressures at nodes. These matrix solution pressures are used in conjunction with the calculated conductance (G) to calculate a new flow guess in each leg. When two surcessive flow guesses for all legs in the system are within a sperific. tolerance such as . 001 CIS, the solution has converged. Refer to Appendix A SSFAN Technical Manual, AFAPL-TR-76-43, Vol. VI, for a more detailed mathematical development.
4.2.2 TCALC Subroutine Description - The TCALC subroutine is divided into two phases. The first phase deals directly with the input data for establishing, the systom pressure node identification arrays. Six arrays are generated which are used in the ealculation of node pressures and leg flows in phase two. Specifically, these arrays are:

JCOL:
1) Dimension ( \(M, M\) )
2) The final JCOL array (in compressed form) identifies the columns in a square CALC1 array which are filled with non-zero terms. The rows of JCOL correspond to the rows of CALCI, and the elements in each row of JCOL correspond to the column number in each row of CALCl.
3) Note: JCOL describes a square CALCl array in order to be coinpatiole with the solution technique in TGAUSS.

IDIAG:
1) Dimension( \(M\) )
2) The IDIAG array identifies which columns of CALCl contain the positive flow values. IDIAG(1) corresponds to the column in which the positive element is located in the first row of the CALCl array. IDIAG(2) corresponds to the column in whirh the posilive element is located in the second row of the CaLCl array.
3) Note: IDIAG describes a compressed CALC array.

JNEG:
1) Dimension(ML)
2) The JNEG array identifies which column in CALCl contains the first appearance (in a row-by-row search) of the leg numbers used as G-subscripts for negative elements in the CALCl array. For example, JNEG(4) represents the leg to be used as a Gsubscript. If \(\operatorname{JNEG}(4)=3\), then the first time \(a-G_{4}\) appears is in column 3 of the CALCl array (the row number is already known).
3) Note: JNE \(;\) describes a compressed CALCl array.

INEG:
1) Dimension(ML)
2) The INEG array differs from the JNEG array in only one respect, that being the INEG array stores the second appearance of the leg numbers used as G-subscripts for negative elements in the CALCl array.
3) Note: The INEG array describes a compressed CALCl array. JRENT:
1) Dimension(M)
2) The JRENT array identifies the number of non-zero entries in each row of CALCl. IRENT is a duplicate of JRENT, however, IRENT is passed lo fGAuSS to be used in the solution process while JRENT remains permanent. For this reason, IRENT is easily built from JRENT for each iteration.
3) Note: JRENT describes either a square or compressed CALC1 array.

JCENT:
1) Dimension \((M)\)
2) The JCENT array identifies the number of non-zero entries in each column of CALC1. LCENT is built from JCENT for every iteration.
3) Note: JCENT describes a square CALC1.

To understand how Phase I works, the example system in Figure 4.2-2 is developed below. A simplified flow diagram of Phase \(I\) is shown in Figure 4.2-3.
(12)

\begin{tabular}{rrr}
1 & 1 & 2 \\
2 & 2 & 3 \\
3 & 2 & 4 \\
4 & 3 & 4 \\
5 & 3 & 5 \\
6 & 4 & 5 \\
7 & 5 & 6 \\
8 & 6 & 7 \\
9 & 6 & 7 \\
10 & 6 & 7 \\
11 & 7 & 8 \\
12 & 3 & 8 \\
13 & 8 & 9 \\
14 & 9 & 10 \\
ILEP & ARRAY
\end{tabular}

> NUMBER OF PRESSURE NODES \(M=10\)
> NUMBER OF LEGS ML \(=14\)

Figure 4.2-2
TCALC EXAMPLE SYSTEM


FIGURE 4.2-3
TCALC SUBROUTINE PHASE ONE OPERATION
I. JCOL is initially filled with non-zero terms to indicate the positions of non-zero terms in a square CALCl.
\[
\begin{aligned}
& \text { DO } 10 \mathrm{~K}=\mathrm{L}, \mathrm{ML} \\
& \mathrm{I}=\operatorname{ILEP}(\mathrm{K}, 2) \\
& \mathrm{J}=\operatorname{ILEP}(\mathrm{K}, 3) \\
& \mathrm{JCOI}(\mathrm{I}, \mathrm{~J})=\mathrm{I} \\
& \mathrm{JCOL}(\mathrm{~J}, \mathrm{I})=\mathrm{I} \\
& \mathrm{JCOL}(\mathrm{I}, \mathrm{I})=\mathrm{I} \\
& \mathrm{JCOL}(\mathrm{~J}, \mathrm{~J})=\mathrm{I}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & & 3 & 4 & 5 & 6 & 7 & 8 & 910 \\
\hline 1 & 1 & 1 & & & & & & & & \\
\hline 2 & 1 & 3 & & 2 & 3 & & & & & \\
\hline 3 & & 2 & 1 & 2 & 4 & 5 & & & 12 & \\
\hline 4 & & 3 & & 4 & 6 & 6 & & & & \\
\hline \(J \mathrm{COL}=5\) & & & & 5 & 6 & 7 & 7 & & & \\
\hline 6 & & & & & & 7 & 10 & 10 & & \\
\hline 7 & & & & & & & 10 & 11 & 11 & \\
\hline 8 & & & 1 & 2 & & & & 11 & 131 & 13 \\
\hline 9 & & & & & & & & & 131 & 1414 \\
\hline 10 & & & & & & & & & & 1414 \\
\hline
\end{tabular}
II. JCOL is renumbered to provide for easy conrtruction of JRENT, JCENT, JNEG, INEG, and IDIAG.

C-----RENUMBER JCOL AND BUILD JRENT
DO \(20 \mathrm{I}=1, \mathrm{M}\) KOUNT=0 DO \(3.5, \mathrm{~J}=1, \mathrm{M}\) \(\mathrm{JJ}=\mathrm{JCOL}(\mathrm{I}, \mathrm{J})\) IF (JJ.EQ. ) GO TO 35 JCO \({ }^{\text { }}=\) KOUNT'=KOUNI' + L JCOL ( \(\mathrm{I}, \mathrm{J}\) ) = KOUNT CONTINUE \(\operatorname{JRENT}(I)=\) KOUNT
20 CONT INUE

III. JNEG records the CALCl column containing the downstream appeaiance of the leg number as a negative element. INEG racords jis upstream occurrence.

C ------ LOCATE ALL OF OFF-DIAGONAL ELEMENTS
DO \(45 \mathrm{~K}=1\), ML
\(\mathrm{I}=\operatorname{ILEP}(\mathrm{K}, 2)\)
\(\mathrm{J}=\operatorname{ILEP}(\mathrm{K}, 3)\)
\(\operatorname{JNEG}(\mathrm{K})=\mathrm{JCOL}(\mathrm{I}, \mathrm{J})\)
\(45 \operatorname{INEG}(\mathrm{~K})=\mathrm{JCOL}(\mathrm{J}, \mathrm{I})\)
\[
\begin{aligned}
& \text { JNEG }=\begin{array}{|lllllllllllllll|}
\hline 2 & 3 & 4 & 3 & 4 & 4 & 4 & 3 & 3 & 3 & 3 & 5 & 4 & 3 \\
\hline
\end{array} \\
& \\
& \text { INEG }=\begin{array}{|llllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline
\end{array} 1
\end{aligned}
\]
IV.

C
BUILD JCENT AND IDIAS;
DO \(65 \mathrm{I}=1\), M
\(\operatorname{IDIAG}(\mathrm{K})=\mathrm{JCOL}(\mathrm{K}, \mathrm{K})\)
\[
\text { JCENT }=\begin{array}{rllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & 4 & 5 & 4 & 4 & 3 & 3 & 4 & 3 & 2 \\
\hline
\end{array}
\]

KOUNT'=0
DO \(67 \mathrm{~J}=1, \mathrm{M}\)
\(\operatorname{IF}(J C O L(J, I) . E Q .0) G O T O 67\)
TDIAG \(=\)\begin{tabular}{|llllllllll|}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1 & 2 & 2 & 3 & 3 & 2 & 2 & 3 & 2 & 2 \\
\hline
\end{tabular}
67 CONTINUE
JCENT (I) \(=\) KOUNT
V. The JCOL elements are all left-justified, and their previous positions are set equal to zero by the statement \(J C O L(I, J)=0\). This statement must precede \(\operatorname{JCOL}(1, K)=J\) so that, in the event that \(J=K\), the compressed JCOL matrix contains its non-zero elements in the proper location. ICOL can now be copied from JCOL and be passed to GAUSS for use in the solution process.
```

C COMPRESS THE JCOL MATRIX

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & & & \\
\hline 2 & 1 & 2 & 3 & 4 & \\
\hline 3 & 2 & 3 & 4 & 5 & 8 \\
\hline 4 & 2 & 3 & 4 & 5 & \\
\hline 5 & 3 & 4 & 5 & 6 & \\
\hline 6 & 5 & 6 & 7 & & \\
\hline 7 & 6 & 7 & 8 & & \\
\hline 8 & 3 & 7 & 8 & 9 & \\
\hline 9 & 8 & 9 & 10 & & \\
\hline 10 & 9 & 10 & & & \\
\hline
\end{tabular}

Phase two operation of the CALC subroutine begins with initializing \(t_{12}{ }^{\prime 2}\) conductance array - CAIC1, and the constant array - CALC2, to zero values. (See Figure 4.2-4 for a flow diagram of the phase two operation.) A call is now made to the subrout ine TLEGCAL for each leg in the system. TLEGCAL wiil return the value of conductance to the \(G\) array in the unlabeled common.

After all the conductance values are calculated for each leg, they must be entered into the compressed CALCl array. For the example system the CALCl array contains:

C


BUILD CALC 1 MATRIX
D0 \(9099 \mathrm{~K}=1\), ML
\(\mathrm{I}=\operatorname{ILEP}(\mathrm{K}, 2)\)
\(\mathrm{J}=\operatorname{ILEP}(\mathrm{K}, 3)\)
\(\mathrm{L}=\mathrm{IDIAG}\) ( I )
LM=IDIAG (J)
\(\operatorname{CALC1}(\mathrm{I}, \mathrm{L})=\operatorname{CALC1}(\mathrm{I}, \mathrm{L})+\mathrm{G}(\mathrm{K})\)
CALCI \((J, L M)=\operatorname{CALCl}(J, L M)+G(K)\)
L=JNEG (K)
\(\mathrm{LM}=\operatorname{INEG}(\mathrm{K})\)
\(\operatorname{CALCl}(\mathrm{I}, \mathrm{L})=\operatorname{CALCl}(\mathrm{I}, \mathrm{L})-\mathrm{G}(\mathrm{K})\)
\(\operatorname{CALCl}(\mathrm{J}, \mathrm{LM})=\operatorname{CALCl}(\mathrm{J}, \mathrm{LM})-\mathrm{G}(\mathrm{K})\)
9099
CONTINUE
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & \(\mathrm{G}_{1}\) & \(-G_{1}\) & 0 & 0 & 0 \\
\hline 2 & \(-_{1}\) & \(G_{1}+G_{2}+G_{3}\) & \(-\mathrm{G}_{2}\) & \(-^{-G}\) & 0 \\
\hline 3 & \(-\mathrm{G}_{2}\) & \(\mathrm{G}_{2}+\mathrm{G}_{4}+\mathrm{G}_{5}+\mathrm{G}_{12}\) & \(-G_{4}\) & \(-\mathrm{G}_{5}\) & -G12 \\
\hline 4 & \(-\mathrm{G}_{3}\) & \(-\mathrm{G}_{4}\) & \(\mathrm{G}_{3} \mathrm{IG}_{4} \mathrm{GG}_{6}\) & \(-_{6}\) & 0 \\
\hline 5 & \(-G_{5}\) & \(-\mathrm{G}_{6}\) & \(\mathrm{G}_{5}+\mathrm{G}_{6}+\mathrm{G}_{7}\) & \(-_{7}\) & 0 \\
\hline 6 & \(-\mathrm{G}_{7}\) & \(\mathrm{G}_{7}+\mathrm{G}_{8}+\mathrm{G}_{9}+\mathrm{G}_{10}\) & \(\mathrm{G}_{8} \mathrm{G}_{9}{ }^{-\mathrm{G}} 10\) & 0 & 0 \\
\hline 7 & \(-G_{8}-G_{9}-\mathrm{G}_{10}\) & \(\mathrm{G}_{8}+\mathrm{G}_{9}+\mathrm{G}_{10}{ }^{+G} 11\) & \({ }^{-6} 11\) & 0 & 0 \\
\hline 8 & \(-G_{12}\) & \(-_{11}\) & \(G_{11}+G_{12}+G_{13}\) & \(-G_{13}\) & 0 \\
\hline 9 & \(-\mathrm{G}_{13}\) & \(G_{13}+G_{14}\) & \(-_{14}\) & 0 & 0 \\
\hline 1.0 & -G 14 & \(\mathrm{C}_{14}\) & 0 & 0 & 0 \\
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}


FIGURE 4.2-4
CALC SUBROUTINE PHASE TWO OPERATION

CALC1 is built in this manner for each iteration. This compressed form speeds the solution process.

The CALC2 array contains the constant terms of the system of linear equations that describe the model. Constant pressure drops in legs, external flows and constant pressure sources are all inserted Into this array. Any constant pressure source or pressure drop is multiplied by the conductance of the leg it is associated with. If leg (6) has a pressure drop term - PDLEG(6), then PDLEG(6) will be muitiplied by the conductance for leg (6) which is \(G(6)\), making the resulting term a flow. Thus, all external flows have no multiplication factor.

With both CALC1 and CALC2 filled, the TGAUSS subroutine is called to solve for pressures in the system. The answers are returned through the CALCl array and then put into the PN array which contains all the system node pressures. Now a nev: flow is calculated for each leg in the system based on the recert calculation of the pressures. The new flow is equal to the difference of pressures between the nodes of the leg plus any constant pressure drops all multiplied by the conductance of the leg.

The solution for flows in all the legs are final when all the previous flows (Q) and the latest calculated llows (FLOW) are within a specified tolerance. For all flows if
\[
\begin{equation*}
\mathrm{ABS} \frac{(\text { FLON-Q(IT)) }}{\mathrm{ABS}(F L O W)+1} \leq .001 \tag{1}
\end{equation*}
\]
then the flows have converted.

If equation (l) is not satisfied in each leg of the system a new value of flow will be computed in each leg by the following equation:
\[
\begin{equation*}
Q(\mathrm{IT})=\frac{\mathrm{Q}(\mathrm{IT})+\mathrm{FLOW}}{2} \tag{2}
\end{equation*}
\]

These new flows will then be given to TLEGCAL for computation of new conductance values for another iteration. If all the legs do not converge after fifty iterations, the cycle will stop and al. the current values will be used as the steady-state variables. Before transfer is made back to THYTR a last call is made to TLEGCAl, to distribute pressure drops and flows for the steady state conditions.
4.2.3 Computations. The only direct computation made in the solution of the steady state values in TCALC is the calculation of FLOW. The purpose of this of course, is to establish an erroc tolerance in flows that is reduced through iterations to meet the convergence criteria as discussed in the previous section. The majority of the TCALC subroutine handles the bookkeeping necessary to manipulate the leg and node numbers to compute system pressures and flows.
4.2.4 Approximations. The coefficients of the CALC1 array are 1inearily approximated to represent the system conductances. Inherent approximations exlst in some of the constant data in CALC?.
4.2.5 Limitations. Most limitations exist in the areas of physical discontinutties. TCALC was written to solve a flow balance in a system. Any flow discontinuities that occur, such as in a simple unbalanced actuator, must have mathematical formula to describe what happens to the flow. TCALC also requires the leg pressure drops to be continuous over a specified flow range. When this does not occur, as in a check valve, the
proper input from the check valve subroutine must be fed to TCALC so it may respond to the changed conditions. Reier to Appendix D SSFAN Technical Manual for a more thorough disrussion on the limitations of TCALC.
4.2.6 Variable Names
\begin{tabular}{|c|c|c|}
\hline Variables & Description & Dimensions \\
\hline CALCl ( ) & Array of conductances & -- \\
\hline CALC2 ( ) & Array of constants & -- \\
\hline FLOW & Latest value of leg flow & CIS \\
\hline I & DO loop counter & -- \\
\hline G & Array of conductances & CIS/PSI \\
\hline IFAIL, , FLAG & Indicators & -- \\
\hline IL, IM & Dummy variables & -- \\
\hline INEG ( ) ,JNEG( ) & Arrays containing location of off diagonal conductance values & -- \\
\hline JFCOL ( ) & Computational array & -- \\
\hline ITER & Iteration counter & -- \\
\hline \[
\begin{aligned}
& \text { IU, IV , J , JJ , JL , } \\
& \text { JX, JY, K, KOUNT, } \\
& \text { K1, 2, LM , II }
\end{aligned}
\] & Dummy variables & -- \\
\hline M & Number of nodes & -- \\
\hline ML & Total number of legs & -- \\
\hline PN( ) & Array of node pressures & PSI \\
\hline PDLEG( ) & Location of pressure drops or increases & PSI \\
\hline PEX & Array of external pressure constants & PSI \\
\hline QL ( ) & Array of leg flows & CIS \\
\hline QN() & Flow gain or loss at a pressure node changed to an \(M\) matrix of constants & ClS \\
\hline
\end{tabular}

\subsection*{4.2.7 Subroutine Listing}

**** REVISLD JULY 07, 1976
DOURLE PRLCISION CALS 1, CALC 2
CO.AMON G(90), CALC 2 (55), JPCOL(55, 20), CALCL \((55,20)\)
COMOON/ICC/ICOL(55, 20), ,JRENT (55), JCENT(55)
COA, 1ON /STEADK/PN(90), QN(90), PEX(90), PDLEG(90), 2L(90),
+ DA, 2S, 2l, PUP, PDOWN, M, ML,NCPN,TERA,
+ LEGN, ICON, INV, INX, INZ,NUP(90), NDWN(90), NLLEA(90),
+ILEGAD (90), I LEEG(1000)
DI.At,NSIOU IDIAG(55), JCOL(55,55), JNEC(90), INEG(90)

BOUIVALENCE(JPCOL(1,1),JCOL(1,1))
iNRITE (5,900)
900 FOR.IAT(141,50X,30HSTEADY STATE CALCULATIUN OATA )
DO \(5 \mathrm{I}=1, \mathrm{M}\)
OV(I) \(=0.0\)
PLX! \(I)=0.0\)
\(5 \quad \operatorname{Pij}(I)=0.0\)
D) \(6 I=1, \because L\)

6 PDLEG(I) \(=0.0\)
DO \(80 \quad I=2,55\)
D. \(\$ 0 \mathrm{~J}=1,55\)
\(90 \operatorname{JCOL}(I, J)=0\)
DJ \(10 \mathrm{~K}=1, \ldots \mathrm{~L}\)
\(I=N U P(K)\)
\(J=\) - \(\operatorname{DDV}(K)\)
\(J C O L(I, J)=I\)
\(\operatorname{JCOL}(J, I)=I\)
\(\operatorname{JCOL}(I, I)=I\)
\(\operatorname{JCOL}(J, J)=I\)
10 COUTI YUE
C-----RLYJHIER JCOL A:B BUILD JREMT
DO \(20 \quad \mathrm{I}=1\), 4
KOU:1T=0
DO \(35 \mathrm{~J}=1, \mathrm{~A}\)
JJ=, JCOL(I, J)
IF (JJ.L?.0) GU זO 35
KOUNT=KOUN"N+1
\(\operatorname{JCOL}(I, \mathrm{~J})=\) KOUNT
35 CONTINUL
JRENT(I)=:OUM"
20 CONTIMUL
C-----LOCATE ALL THI. DFF-DIAGOMAI LLLMLNAS
万) \(45: k=1, \ldots \mathrm{~L}\),
\(I=\operatorname{NUP}(K)\)
\(J=. \operatorname{Drit}(k)\)
JiNLG ( K\()=\mathrm{JCOL}(\mathrm{I}, \mathrm{J})\)
\(45 \operatorname{INLG}(K)=J C O L(J, I)\)
C-----BULLD JCENT AND IDIAG
DO \(65 \mathrm{I}=1\), a
I.JIIG(I) \(=\mathrm{JCOL}(I, I\) !

KOリ: \(\mathrm{H}=0\)
\(0067 \mathrm{~J}=1 \mathrm{~A}\)
```

 4.2.7 (Continued)
 IF(JCOL(J,I).E@.0) GO ro 67
 KOUNT=KOUNT+1
 6 7 ~ C O N T I N U E ~
 65 JCENT(I)=KOUN'T
 C-----COHPRLGS THL JCOL MINTRIX
OO 70 I= l,II
NV=JRLNT(I)
J=0
DO 7! K=1,N\&
75 J=j+1
F]=JCO[(I, J)
IF(Kl.E?.0) 60 ro 75
JこのL(I,J)=0
JPCOL(I,Y)=J
70 CONTINUE
C OUITIALIZE CALCl AND CALCZ ARRAYS 'TO ZERO
ENTRY 介.SCALC
ITER=1
NRITE(6,91%)
910 FORAAT(//, 24X,10HFLON OULSS,4X,13HPRESSURL DROP,6X,9HLEG DLETP,
+ 9X,3HPUP,12X,5HPDOwN,9X,11HCONDUCTANCE,/)
200 ワO 220 Ll=1,\therefore
DO 2l0 Kl=1,20
ICOL(Ll,Kl)=0
210 CALCl(Ll,kl)=0.
PL:X(Ll)=0.0
Qis(Ll.)=0.0
220 CALC?(LI)=0.
DO 221 Hi=1,A:L
221 PDLEG(Ll)=0.0
C COIPIULG**S FOR CALC ARRAYS
CALL 'TLLEGCAL
DO 30ヶの K=1,\thereforeL
I=NUP(K)
J=.NDWN(K)
L=I\I^G(I)
L,:i=IDIAG(J)
CALCl(I,L) =C.MLCl(I,L)+G(K)
CMLC1(J,L.:)=CALC1(T,L!)+C(K)
L=Jiv\&G(K)
L|=I こ GG(K)
CALCI(I,L)=CALCl(I,L)-G(K)
CALCl(J,L:i)=C\&LCl(J,Lii)-G(K)
90`3 CONIINUL
DO 700 IL=1,55
DO 700, JL=1,20
700 ICOL(IL,JL)=JPCOL(IL,JL)
DO 400 JX=1,|L
IF(PDLES(JX).L2.0.)GO 10 100
JY=1HUP(JX)
CALC2(JY)=CALC2(JY)-PDLEG(JX)*C(JX)
JY={DvN(JX)

```
```

 4.2.7 (Continued)
 CALC2(JY)=CAIS2(JY)+PDLEG(JX)*G(JX)
 400 CONTINUE
 DO 60 I=1,M
 J=I'IAG(I)
 CALC2(I)=CALC 2(I)+2N(I)
 60) CALCl(I,J)=CALCl(I,J)+PEX(I)
 C WRITE(6,2005)((CALCI(I,J),J=1,20),I=1,M)
C WRITL(6,2005)(CALC2(I),I=1,M)
C WRITL(5,2004)((ICOL(I,J),J=1,20),I=1,M)
20n4 FORHAT(1X,20I6)
2005 FORiAMT(1X,10L12,5)
C VRITL(6,2005)(PLX(I),I=1,M)
C VRITL(6,2005)(POLEG(I),I=1,AL)
C WRITL(6,2005)(QN(I),I=1,il)
CALL rGAOSS(A,ITER)
DO 410 I_i=1,
410 P?(Ini)=C.\LCl(In,1)
WRITL(6,9000)(PN(I),I=1,A)
VRITE(6,9001)
9090 FORHAT(1AO,(5X,14HNODE PRLSSURLS, 2X,8P12.3,/)!
9001 FORrat(1H0)
IEAIL=n
C CALCOLNTL iNLN FLOw RATLS
DO) 435 I'R=1,aL
I!j= VUP(I'i')
IV=NDWN(I'N)
2OLD=2L(I'T)
FLOVI=((PN(IJ) + P'LEG(I'T)-PN(IV))*G(I'T))
O TLSm NEN RLUN RATES
IF(13S(FLON-OOLD)/(ABS(FLOW)+l.).GT.0.0001)GO IO 436
C RLCALCULATE FLOW RATLS
2L(I'T)=FLOG
GO '0 435
436 OL(I'T)=(OOLD+PLOW)/2.0
IFAIL=1
435 CONTTNUE
IF(IOSIL.EO.0)GO TO 520
IF(I:bR.EQ.50):dRI'んL(6,999)
999 FORHAT(10X,44:{**** WARNING LXCLEOLD 50 ITEPATIONS IV PCALC,
+ 19|-PROGRA, COUNINUIVG,//)
IF(INLR.EO.50)00 TO 520
ITLR=I'\GammaLR+1
GO TO 200
520 CONIINUE.
C BAKL A LAST CALL PO ALL LLLGS 'O DISTRI'SUTL PRESSURL
C DKOPG AVD FLOIG CMLCULATLD FOR ST\&ADY STNTL CONDIOIDAS
C DO 521 I=1,90
C521 PDLEG(I)=0.0
CALL TLEGCAI.
RETURN
END

```

\subsection*{4.3 SUBROUTINE TLEGCAL}

TLEGCAL is called by the TCALC to obtain a leg conductance and fixed pressure drops for a given flow guess for all the system.

The constant pressure drop such as that across a check valve, relief valve, actuator, or pump, is passed via PDIEG(NLEG) in common/steady. A positive \(\operatorname{PDLE}\) (NLEG) is a pressure rise such as at a pump, a negative is a drop such as across a check valve. The leg conductance is passed via \(G(N L E G)\) in common.

TLEGCAL obtains the line and component pressure drops by calling all the elements in the leg. The leg conductance is computed by dividing the leg flow by the leg pressure drop.

A flowehart of 'LLEGCAL's organization is shown in Figure 4.3-1.

\subsection*{4.3.1 Theory}

LEGCAL calls the elements in a leg to determine the pressure drop for a given flow.

The leg conductance (inverse of resistance) is calculated from the leg pressure drop, including the constant pressure drop value
\[
G(N L E G)=Q A / A B S(D E L T P)
\]

\section*{where}
\[
\text { DELTP }=P N(N U P(N L E G))-P U P+P D L E G(N L E G)
\]

The conductance is always positive. Using this formula the conductance value is flow dependent. It has to be updated whenever the flow guess is changed.

\subsection*{4.3.2 Assumptions}

The assumption that the pressure drop can be described using the leg presture drop is generally valid. If for some reason an element in a leg cannot be described in this manner then a pseudo description can


FIGURE 4.3.1
TLEGCAL ORGANIZATION
be used without loss of accuracy. This could finvolve generation a formula of the form
\[
\Delta P=K_{1}+K_{2} Q+K_{3} Q^{1.75}+K_{4} Q^{2}
\]
where \(\mathrm{Q}=\) leg flow
The line and component subroutines would then provide the values to the \(K_{1}, K_{2}, K_{3}\) and \(K_{4}\) constimnts.

\subsection*{4.3.3 Computation Method}

The variable Q1, the new flow guess, is first split into its absolute value and its sign, \(\pm 1.0\). The up and downstream node pressures for the leg are taken from the PN( ) array.

Each element in a leg is called and the pressure drop through the line or component is calculated and subtracted from the upstream pressure, Pup. Once the entire leg pressure drop has been determined the new conductance value is computed. The variables IND, and KNEL are the component number and the connection number respectively.

The common variables \(I N Z\) and \(I N X\) are set equal to the number of elements in the leg and the actual element that is being calculated respectively. This allows particular component subroutines to determine which end of the leg they are connected to, and hence which node is located at the component.

\subsection*{4.3.4 Approximations}

The use of a formula requires some approximations but these are usually related to approximations in the component model and are an integral part of the component model. In general this method is good but it could be easily extended to a higher order approximation if it was found desirable.

\subsection*{4.3.5 Limitations}

So far we have not found any limitations to the technique used in TLEGCAL itself.

However, some of the component subroutines called by TLEGCAL such as the bootstrap eservoir, pump and actuators, are complicated by the interaction between the flow guesses, flow direction and node pressures.

Some of these subroutines use calculations which, though conforming to the basic calculation terlinique, do not fall into any simple category and have to be treated individually.
4.3.6 Variable Names
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline DELTP & Line Pressure Drop & PSI \\
\hline INZ & Number of Elements in Leg & -- \\
\hline 1 & Address of Leg Data in ILEG & -- \\
\hline K & Ith Element in a Leg & -- \\
\hline KNEL & Component Connection Number & -- \\
\hline IND & Component or Line Number & -- \\
\hline M & Total Number of Legs & -- \\
\hline PUP & Flow Dependent Leg Pressure Drop & PSI \\
\hline QA & ABS Value of Leg Flow & CIS \\
\hline QT & Leg Transition Flow & CIS \\
\hline Q1 1 & Leg Flow Guess & -- \\
\hline QS & Flow Sign CIS & -- \\
\hline For varia & mon refer to Paragraph 3.3. & \\
\hline
\end{tabular}
```

4.3.7 Subroutine listing
SUBrOUTI vE TLEGCAL
C**** RLVISLD AUGUS'S 5, 1376
COHhON G(90)
CCHMON / TRANS/P(300),O(300),C(300),TC(300),TW(300),TF(300),
+ ACF(300), ACF(300),DXF(300),'TINE,DELT,PI,NLINE,NEL
COMON /COAP/LTYPE(29),NC(99),KTL!P(99),IND,IENTR,INLL
COMGION /LINL/PARI(150,4),TLW(2000),TLEF(2000), LSTART'(150),
+ vLSEg(150)
CO.LION / STLADY/PN(90), PN(90), PEX(90),PDLLG(90),QL(70),
+ 2.4,2S,21,PUP, YOWN,A,HL,NCPN,TLR.,
+ LEGN, ICON, INV,INX,INZ,NUP(90),NDMN(90),NELbu(90),
+ILESAO(90), ILPG(100.)
C FIND THE SISN OF THi: ELOM GUESS AND ITS ABSOLUTL VNLUL
DO 200 NLEG=1,IL
TヒR:=0.0
INV=1
21=GL(NLEG)
OA=A3S(21)
IF(OA,LL. . N0001) NA=.00001
OS=SI 3N(1,0,01)
C CALCULNHE THLE FOR|ULAL FOR THE LEG uRESSURE DROP
INEL=NLEG
INZ=,NLLE:(JLEG)
C INZ - NO OF LLENENTS IN A LEG
C IME[- LlG (ilni3ER
PJP= PM(NUP(NLLS))
PDNN= PN(NDGN(NLEG))
C NRITL(6,900)NLEG,INZ,NUP(NLLG),NDWN(ALLG)
200 FOR|AT(10X,5I10)
\approx wRIRt(5,910) P!JP,PDWN,Q1
91) FOR:ATT(17X,5L12.5)
CALL [ACH LLEiALJ' I \ THE LLG
C
I= ILEGAD(NLEG)
DO GO) K=1,IN',
C INX - CURREN'S =i.E.LNT NO, IV LIG
I.NX=K
INO=ILEG(I)
KNLL=ILEG(I+I)
I=I+2
ICOH= KiNEL
C ICON - CONNECTION iNO.
C IF TAL ELG.ALNI'IS A LINE GO PI 500
IF(IND.EQ.O) SO TO 500
SALL CO.APE
GO TO 600
C*** TUIS SECTION ADDS mHL VALULS IMNO TYL FOKIULAE FOR 'MHL LI NBS
C
50n CONTINUL
LOC=KNLC*2-1

```

\section*{4．3．7（Continued）}
```

 LOCワ=K゙NもL**2
 C wKIRL(6,503) LOC,TF(LUC),PUP
C 503 FOR.AT(3X,1I10,2L:12.5)
OT=PAR.a(KILL,4)*VI.SC(PF(LOC),P(PP)
IF(OA.G'T. Q'T)GO TO 505
DLLTP=2A*FRICL(KNLL,TF(LOC), PUP;
GO TU 593
505 DLLTP=?RICT(KNELa,TF(LOC),PUP)*QA**1.75
593 CONTINUL
P(LOC)=PUP
IF(JLR.I.GT.0.0)P(LOC)=TER.i
PUP=P(LUC)-DLLTP
P(L:OC:) = PUP
O(LOC) =-01
O(む`Cu)=?1 %O ‘O 600 600 CONTIPUE 7:LTP= Piv(NUP(NLEG))-PIJP+TLR:! C(NLEG) =OA/ABS(DELTP) wRIme(6,50),NLLG;Ol, PDLEG(NLLG),DELTPP,PN(NUP(NLEG)), + PN(NDms(NLLG)),G(NLEG) If(I*V.EQ.0)50 TO 2.00 MDLEG(`Li,G)=0.0
50 FORAAT(13H LLS HO,I3,5F15.5,L20.3)
200 CONTI iUL
alobden
E'ND

```
                为

\subsection*{5.0 LINE SUBROUTINE}

\section*{S.1 SUBROLTINE TLINEA}

TLINEA simulates a line or pipe connected to tivo components. It divides each line into segments, the length of each segment being not less than the volume flow rate times the time step divided by the cross sectional area of the fluid. The subroutine calculates the wall and fluid temperatures of each line segment.

The values of the flows ar I pressures in the line are calculated by the steady state subroutines.

TLINEA is called by the main program at the beginning of each new time step and uses the latest values of pressures and flows, to comprie line segment temperatures.
5.1.1 Math Model - The line is represented by numrs of seginents. Each segment consists of two nodes, one fluid and one wall, and the end segments are connected to components as shown in Figure 5.1-1.


FIGURE 5.1-1
LINE NODE REPRESENTATION

The 1 ine calculations are conducted as follows:
1. The component wall and fluid temperatures are predicted for the present time step. TC and TF equal the component wall and iluid temperatures of the last \(t\) ime step and TCO and TFO are equal to the component wall and fluid temperatures of the 2nd to last time step. The predicted wall and fluid temperatures are computed as:
\[
\begin{aligned}
& \mathrm{TCP}=\mathrm{TC} * 2-\mathrm{TC} \\
& \mathrm{TFP}=\mathrm{TF} * 2-\mathrm{TF}
\end{aligned}
\]
2. A zeroth line segment is assumed to exist (upstream of the first line segment) having wall and fluid temperatures equal to the predicted component lomperatures.
3. As shown in Figute 5.1-2, the predicted temporatures of the zeroth segment and the previous time step calculated values of the second segment are used to calculate the now temperatures of the first segment.
4. The new temperatures of the first segment and the previous time step temperatures of the third segment are used to calculate the now temperatures of the second segment. This continues until the n-i segment temperatures have been calculated.
5. The \(n+1\) line segment is assumed to exist (downstream of the nth line segment) having wall and fluid temperatures equal to the previous time step calculated values of the component.
6. The new temperatures of the \(n-1\) line segment and the previous temperatures of the \(n+1\) line segment are used to calculate the new temperatures of the nth segment.

The math model for the line includes heat transfer to and from components attached to each line and as well as to and from individual segments of the line. For the calculation six nodes are considered: three fluid nodes and three wall nodes as shown in Figure 5.1-2. The temperatures of the \(J-1\) wall and fluid nodes


FIGURE 5.i-2

LINE SEGMENT NODE REPRESENTATION
are \(\operatorname{TLW}(J-1)\) and \(\operatorname{TLF}(J-1)\), the temperatures of the \(J\) wall and \(\{1 u i d\) nodes are \(T L W(J)\) and TLF(J), and the temperatures of the \(\mathrm{J}+1 \mathrm{wall}\) and fluid nodes are \(\mathrm{TLW}(\mathrm{J}+1)\) and TLF \((J+1)\). Two heat transfer equations are written to solve for TLW(J) and TLF(J), using the line material properties and dimensions, the atmosphere and siructure temperatures external to the line, and \(\operatorname{TLW}(\mathrm{J}-1) \operatorname{TLW}(\mathrm{J}=\mathrm{L})\), and \(\operatorname{TLF}(\mathrm{J}-1)\). (Note: \(\operatorname{TLF}(J+1)=\operatorname{TLF}(J)\), see assumptions). One equation is for neat transferred to and from the \(J\) fluid node. The second equation is for heat transferred to and from the \(J\) wall node.

The first equation represents three modes of heat transfer with the \(J\) fluid node:
1. conduction to and from the J-1 fluid node
\[
\mathrm{R} 1 *(\operatorname{TLF}(\mathrm{~J}-1)-\operatorname{TLF}(\mathrm{J}))
\]
where \(R 1\) is the conduction coefficient and is equal to \(\mathrm{CF} /(2 . * \mathrm{DxF}(\mathrm{INO}) /\)
\(\operatorname{ACF}(\) INO \()+\) RMF*DEITT/(ACF (INO) \(* * 2 * R H O L I)\).
2. convection to and from the J wall node
\(B 9 *(\operatorname{TLW}(J)-\operatorname{TLF}(J))\)
where B 9 is the convection coefficient and is equal to UFNIL*ASFW(INO)
3. heat transfer due to mass transfer into the \(J\) segment from the \(J-1\)
segment.
\(M C_{p} *(\operatorname{TLF}(J-1)-\operatorname{TLF}(J))\)
where MCp is the flow rate and is equal to \(Q(L, 1) * R H O I L * C P F N\)
These heat transfer modes are combined to produce the equation for heat transferred to and from the \(J\) fluid node:
\[
\begin{align*}
& \frac{\mathrm{MCP}}{\mathrm{DELT}} *\left(\operatorname{TLF}(\mathrm{~J})-\operatorname{TLF}(\mathrm{J})_{O L D}\right)=\mathrm{P} .1 *(\operatorname{TLF}(\mathrm{~J}-1)-\operatorname{TLF}(\mathrm{J}))+\mathrm{B9} *(\operatorname{TLN}(\mathrm{~J})-\operatorname{TLW}(\mathrm{J}))+ \\
& Q(I L) * R H O I L * C P F N *(T L T(J-1)-T L F(J)) \tag{1}
\end{align*}
\]
where MCp is equal to \(\operatorname{FNM}(\mathrm{INO}) * C P F N\)

The second equation represents three modes of heat transfer with the \(J\) wall node:
1. conduction to and from the \(\mathrm{J}-1\) and \(\mathrm{J}+1\) wall nodes respectively
\[
\begin{aligned}
& \mathrm{R} 3 *(\operatorname{TLW}(\mathrm{~J}-1)-\operatorname{TLW}(\mathrm{J})) \\
& \mathrm{R} 4 *(\operatorname{TLW}(\mathrm{~J}+1)-\operatorname{TLW}(\mathrm{J}))
\end{aligned}
\]
where \(R 3\) and \(R 4\) are the conduction coefficients equal to \(C W\) (INO)/2.0* DXF (INO)/ACN(INO))
2. a. convection to and from the \(J\) fluid node
\[
B 9^{*}(\operatorname{TLF}(\mathrm{~J})-\mathrm{TLW}(\mathrm{~J}))
\]
where B9 was defined previously
2. b. convection to and from the external atmosphere C3* (TA (INO) -TLW (J) )
where C3 is the convection coefficient and is equal to UAW(INO)* ASAW (INO)
3. radiation exchange with the surrounding structure
\[
\operatorname{CIP} *\left(\operatorname{TST}(\operatorname{INO})-(\operatorname{TLW}(J)+460)^{4}\right)
\]
where CIP is the radiation coefficient and is equal to SIGMA*SHAPF*EPSION* \(\operatorname{ASAW}\) (INO).

These heat transfer modes are combined co produce the equation for heat transferred to and from the \(J\) wall node:
\(\frac{\operatorname{MCp}}{\text { DELT }} *(\operatorname{TLW}(\mathrm{~J})-\operatorname{TLW}(\mathrm{J}))=\mathrm{R} 3 *(\operatorname{TLW}(\mathrm{~J}-1)-\operatorname{TLW}(\mathrm{J}))+\) DELT
\[
\begin{align*}
& \mathrm{R} 4 *(\operatorname{TLW}(\mathrm{~J}+1)-\operatorname{TLW}(\mathrm{J}))+  \tag{2}\\
& \mathrm{B} 9 *(\operatorname{TLF}(\mathrm{~J})-\operatorname{TLW}(\mathrm{J}))+ \\
& \mathrm{C} 3 *(\operatorname{TA}(\operatorname{IN} 0)-\operatorname{TLW}(\mathrm{J}))+ \\
& \mathrm{CIP} *\left(\operatorname{TST}(\operatorname{INO})-(\operatorname{TLW}(\mathrm{J})+450)^{4}\right)
\end{align*}
\]
where \(M C\) p is equal to \(W N M(\) INO \() * C P W N\)

A thermal model of the above heat transfer terms for three line segments is shown in Figure 5.1-3.
FIGURE 5.1-3
\[
\begin{aligned}
B 9, C 3 & =\text { CONVECTION } \\
M_{N} C_{P} & =\text { STORAGE } \\
M_{P} & =\text { FLOW } \\
R_{N} & =\text { CONDUCTION } \\
C I P & =\text { RADIATION }
\end{aligned}
\]

THERMAL MODEL

\subsection*{5.1.2 Assumptions}
1. Atmosphere and structure temperatures remain constant.
2. Predicted temperatures are based upen the previous two calculated values.
3. Temperature of the fluid that leaves each node is the temperature calculated for this node, TLF(J).
4. The interface conductance between the line and components is infinite.
5. The wall node is all at the same temperature.
6. The emissivity of the walls is a constant (. 3 is use: for steel).
7. Transition from laminar to turbulent flow is assumed to occur at a Reynolds number of 1200.
8. Friction factors used are based on circular cross-section, smooth ID, drawn tubing.

\subsection*{5.1.3 Computational Methods}

Section 1000
Each line data card is read in and the equivalent line lengths for bends and fittings is calculated EQUIVL \(=D L A *(N 45 E L B * 12 .+N 90 E L B * 5 \% .+\)

NALT90/(45.*4.65) +NAGT90/(90.*7.5)
\(+\operatorname{PLENGIH}(N) \times D I A) / 100\).
The cquivalent line length is then added to the actual line length and is used to calculate the laminar and curbulent flow constants.

If the line segment length DELTAX(INO) is left blank a value of 36 inches is assigned and this number of line segments is computed. Line temperatures and input physical parameters are assigned to the appropriate arrays and the data is printed. The next set of line data cards is then read in. The above is repeated until the data for all the lines are read in.

The segment length for each line is recalculated based on the fluid flow in the line. If the segment length is larger than the read in value, the appropriate arrays in line are inftialized to reflect the different segment size and the new segment length is printed out. Otherwise this program continues
to check the next line.
After each line has been interrogated the fluid and wall temperature: for each line segment node is initialized. The heat transfer coefficient for the fluid to the line wall is calculated as
\(U F W I L=U F W(A A A, D D D, A B S(Q(I N A U)), T F(I N A U), P(I N A U))\)
The oid predicted temperatures are also calculated
\(T F O(\) INAU \()=T F(\) INAU \()\)
\(\operatorname{TCO}(\mathrm{INAD})=T C(\) INAD \()\)
Section 3000
All the constants dependent on the current values of the line volume flow rates and pressures are computed.

If there is only one segment then the fluid and wall temperatures are calculated with upstream and downstream nodes being the end components.

If there is more than one segment then the first segments fluid and wall temperatures are calculated with the upstream node being the upstream component. The other line segments are calculated as discussed in the math modei until the last segment is reached.

The last segment is calculated with its downstream nodes being the downstream components. The two temperatures of each segment (wall and fluid) are stored to be used by the line subroutine at next time step. The four end segment wall and fluid temperatures are stored in COMMON/TRANS/arrays to be transferred to the other subroutines.

\subsection*{5.1.4 Approximations}
(1) The predicted temperatures at the beginning of each line are approximated on the past time history of the component temperatures.

\subsection*{5.1.5 Limitations}

See technical summary.
5 1.6 Variable Listing
Variable
Description
A( ) dumm computational array
AAA dummy variable
ACF cross sectional area of the fluid
cross sectional area of the wall
\[
I N^{2}
\]
\[
T N^{2}
\]
\[
I N^{2}
\]
\(A 2, A 9, B 9\) dunmy variables
\[
\mathrm{IN}^{2}
\]
\(B(\) ) dummy computational array
C, CW thermal conductivity of the walls
CF \(\quad\) thermal conductivity of the fluid
CID1 dummy variable
CID2 dummy variable
CIP radiation coefficient
CPFN Specific heat of the fluid
CPWN specific heat of the walls
\({ }_{C 9}^{C l}, \mathrm{Cl2}, \mathrm{C3}\), dummy variables
DDD dummy variable
DELIAX distance of each line segment
IN
DIA outside diameter of the line or wall IN
DLAINS outside diameter of the line
DXF distance from the line segment node to interface with next segment
\[
\text { WATTS } /{ }^{\circ} \mathrm{F}
\]
\[
\text { WATTS } / \text { IN }-{ }^{\circ} \mathrm{F}
\]

WATTS/IN- \({ }^{\circ} \mathrm{F}\)
\[
\text { WATTS-scc/LBm- }{ }^{\circ}
\]
\[
\text { WATTS-sec } / L B m-{ }^{\circ} F
\]
\[
5.1-8
\]
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline EPSION & emissivity factor for radiation & - \\
\hline EQUIVL & equivalent line length & IN \\
\hline FNM & fluid mass of each node & \(L_{\text {b }}\) m \\
\hline FTEMP & dummy variable & - \\
\hline Flterp & input fluid temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline Futenp & dummy variable & - \\
\hline INAD & downstream leg address & - \\
\hline inau & upstream leg address & - \\
\hline Ino & line number & - \\
\hline J, JJ, JMl & dumny varlables & - \\
\hline MTYPE & material type of the line wall & - \\
\hline NAGT90 & number or bends greater than \(90^{\circ}\) & - \\
\hline nalt90 & number of bends less than \(90^{\circ}\) & - \\
\hline NPFRIC & percentage increase in line friction & - \\
\hline N45ELB & number of \(45^{\circ}\) elbows & - \\
\hline N90ELB & number of \(90^{\circ}\) elbows & - \\
\hline Piength & total line length & IN \\
\hline REN & Reynolds number & - \\
\hline RHOIL & fluid density & \(\mathrm{LBm} / \mathrm{LN}{ }^{3}\) \\
\hline RHOW & wall density & LBm/ \(/ \mathrm{N}^{3}\) \\
\hline RMF & dummy variable & - \\
\hline R1, R3, R4 & dummy variable & - \\
\hline SHAPF & radiation shape factor & - \\
\hline SIGMA & Stefan-Boltzmarn radiation constant & WATTS/IN \({ }^{2}-{ }^{\circ} \mathrm{R}^{4}\) \\
\hline SPMAF & dumny variable & - \\
\hline SPMAW & dummy variable & - \\
\hline TA & surrounding atmospheric temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline TC & storage variable (temperature of the component) & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline TCO & storage variable (old temperature of the component) & \({ }^{\circ} \mathrm{F}\) \\
\hline TCP & predicted component temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline TF & storage variable & - \\
\hline \multirow[t]{2}{*}{Tro} & storage varicble (old temperature of the component & \\
\hline & fluid) & \({ }^{\circ} \mathrm{F}\) \\
\hline TFP & predicted fluid temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline TLF & temperature of the segment fluid & \({ }^{\circ} \mathrm{F}\) \\
\hline 'RLW & temperature of the segment wall & \({ }^{\circ} \mathrm{F}\) \\
\hline TS'T & surrounding structure temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline IW & storage variable & \\
\hline UAN & external heat transfer coefficient of the wall & WATTS/LN \({ }^{2}{ }^{\circ} \mathrm{F}\) \\
\hline UFWIL & internal heat transfer coefficient of the wall & WATTS/IN \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline WNM & mass of each line wall segment & LBm \\
\hline WIHICK & wall thickness of the line & IN \\
\hline
\end{tabular}

SUBROIJINE TLIVEA
C *** RLVIsLD any 1, 1975 ***




\(+\operatorname{NLSLG}(150)\)

COMiOQ /ELUTD/ATPRES,CF,CPFN, FTLAP, PROP(13,3)



+ , widi(150), Fu"telp(300)
equivallace (C(1), LC(1)),(PAPM(1, 1), PLeNGith(1))
DATA SIGIA/.349L-11/, SHAPF/.96/, tipsion/.3/
\(k t \cdot N=1200\).
IF(IENTR) \(1000,2003,3000\)
10') Contitivde
C LiNO =INDIVIDJAL LINL NU.ibibe
LINET=LI NL TYPE:
NPFRIC=RERCEVAME INCREASE IV LINL, FRICMIDA:
NPWT = PLIRCENTAGE INCRLASL IV WLIOH"
M45LLB=AINABER OF 45 DEG LLROWS
! OOLLB=NLIBER OF gn DLS ELBOWS
NALTO日=TORAL OF BEND ANTLLS . LTR. 90 DIGG DES
VAGT9n=TOMAL OF BEND ANGLES .SL. 90 הIS DLG
LINETH(9)=LI W PLENGTA

WMTICK= WALI, THICRWLS
ATYPL =AATLRLAL TYPL

JAN(N) = HLAT 'RRANGFLR COLFE. AMBIENT PU WALL

gLf(y) =TLip. OF FLUID, JLG. F
m'S(N)=TLAP. OF ©TRJCTURE, DLC. F
PARa(N, 1) \(=\) LI IL LENGR!
PAPA \((N, 2)=\) INSIDL LI LL DIA-DIAI NS
PAR:! \((4,3)=\) EOUIVL
PARA(Y,4) = TRAMSIATION FLUV,
LSTART(1)=1
. \(\operatorname{FRJTL}(6,400)\)




DO 1100 I'VO \(=1\),NLIVL

433 FORAAT(8I5)

```

5.1.7 (Continued)
Mmmy,
+TS'r(INO), 'NA(INO), ELTE|?
439 FORMaT(3L17.0)
IF(INO.NL.'S) WRITRE(5,430) N

```

```

 "=N*2
 iC(.i)=1
 LC}(\therefore-1)=1
 TF(LINL'.LT.10) S0) TO 65
 LC(.1)=-1
 LIVE \Gamma=LIVE'T-10
 65 L\UIVL=NIA*(N45LL3*12.+N90LL?*57.+NALT90/(45.*4.65) +
 + *AGM90/(90.*7.5) +PLENGMH(N)*DIA)/100.
 C CALCULATE NU.iBLK OR SEGFLNTS
Ir(UAw(I NO).EO. O.0) JAw(INO)=0.0056
IF(OILPAX(I*O) . E?.0.0) JELTAX(INO)=36.

```

```

 NLSES(INO)=?[ENGTS(N)/OLIT"{X(INO)
 LO'RART(T.NO+1)=L:ATART(INO) +iNLSLG(INO)
 I VD=I VO
 IN^S=I ソO*2
 I:AU=INO*2-1
 RAM%=PKOP(.4TYPK, 2)
 CPW.V=OROP(,iTYPL, 1)
 F.HLA:P(I'SND)=FLI'MP
 FviRLaP(INAU)=FLTLAP
 DI\IVS=DIA-2.0*:N「.IICK
 PARa(N,2) = DIAIMS
 PM&:(N,3) = LOUIVL
 PAi&a(N,4) = .7354*REJ*DIAINS
 CV(INO)= PROP(aTYPL,3)
 AC.?(IND)=PI*(DIA**2-i)IAINS**2)/4.0.
 ACV(I JND)=AC& (IVD)
    ```


```

 SP.m\lambda.|(IND)=:N.A(I.NO)*CPr.N
 ASA.a(IND) = PI*CI*OLLDAX(INO)
 ACF(I`口)=?I*OI\I:S**2/4.0
    ```

```

 ACF(INAD)=ACP(IND)
 ASFn(I ND)=PI*DIAIVO*DLL'AAX(IVO)
 mF(INAU)=FLiTG,!P
 TF}(I,NAO)=FLPL,口
 Av(IN\U) = FLI'E.|P
 Tw(IN\D)=FLTH., P
    ```


```

 410 EORNAM(/LX,I5, 3X,FR.4,4X,F8.4,5X,F8.4,5X,F8.4,7X,F3.4,4X,F8.4
 + ,5X,F8.4,6%,I4)
 mST(IVD) = ('n.jn(I'vD) +460.)**4
 1100 CONTT:%U&
    ```

5．1．7（Continued）

IF（NLINE．GT．GNLINL－1）GO TO 252
RETURN
252 NRITE \((6,475)\) NLINL，LSTART（NLINL），NLSEG（NLINE）
475 FORAAT（5X， \(25 H E R R O R\) I＇SUBROUTINE＇TLINE，3I 10） S＇iop 5101
\(200 \eta\) CONTINUE
C INITALI\％ING ALL TGaIP．IN LINE
DO \(2012 \mathrm{I}=1\) ，NLIVL
XDI，L＝ABS（2（I＊2－1））＊DELT／（PARM（N，2）＊＊2＊PI／4．）
IP（XDEL．LE．DLLTAX（I））GO TO 2012
DELTAX（I）＝XDLL
I®（DLLCAX（I）。G＇J．PLLNGTH（I））DELTAX（I）＝PLENGTH（I）
NRITL（6，990）I，DLLTAX（I）
900 FORAMT \(10 \%, 13 H P H L D E L T A X ~ I N ~ L I V E, I 5,22 H\) HAS BEEN CORRECTLD RO，

\(\therefore \operatorname{ASLG}(\mathrm{I})=\mathrm{PLI}\) NG＇II（I）／DELTAX（I）
ASFN（I）\(=P I * P A R i(I, 2) * D L J M A X(I)\)
wN．：（I）＝AC．v（I）＊RHON＊DELTAX（I）
SPadir（I）\(=\) iNis．I（I）＊CP．Hid
\(2 \cap 12\) ASAW（I）＝PI＊2AR．a（I，2）＊DELTAX（I）
2013 INO＝1
\(2017 \mathrm{~J}=\mathrm{LSTART}\)（INO）
INMD＝INO＊2
\(\operatorname{Iivn} J=1.10 * 2-1\)
\(A A 1=\triangle C E(I \vee O)\)
\(\mathrm{DDD}=\mathrm{PARA}(\mathrm{I} 3(), 2)\)
UF，ILL＝JF～（AA1，DDD，ABG（S（IVAU）），＇TF（IVAU），P（INAU））
TLN \((J)=F w T \operatorname{Li} P(I N A U)\)
\(2020 \operatorname{TLF}(J)=\mathrm{PancciP}(\) INAU \()\)
Jい1＝Jー1
IF（Jぃl．in．0）J，il＝1
\(\operatorname{TLu}(J)=1 \mathrm{TLF}(J)\)



\(\mathrm{J}=\mathrm{J}+1\)
IF（J．LE．（LSTART（INO）＋NLSLG（INO）－1））GO TO 2027
\(C(I N A U)=C: \because(I N O)\)
\(C(\operatorname{IiAD})=C i(\operatorname{INO})\)
TFO（INMU）\(=\int \mathrm{CF}(\) INAU \()\)
TRO（IVAD）\(=\mathrm{TF}\)（INAD）
\(\mathrm{TCO}(\mathrm{I}, \mathrm{NAU})=\mathrm{TC}(\) INAU）
\(\operatorname{TCO}(I \because A D)=T C(I N A D)\)
\(\operatorname{DXF}(I N O)=0.5 *\) DLLTSX（INO）
DXF \((I N A D)=D X F(I N O)\)
\(\operatorname{DXF}(I N A U)=\operatorname{RXF}(I N O)\)
\(\operatorname{LSTART}(I N O+1)=\operatorname{LSTART}(I\) NO \()+N L S E G(I N O)\)
I V O \(=\mathrm{I} \mathrm{VO}+1\)
IF（INO．LF．JLI：JL）GO ro 2010
RETURN


3000 CONTINUL
DO 3550 INO =1,NLT JL.
I L=LS'iAR'í (INO)
\(\wedge A A=A C F(I N O)\)
DDD \(=\) PARA (INO, 2)
RHOIL=3.36.4*RHO(TLF(IL), P(INO))


\(S P_{1} \ \backslash F(I V O)=F N 1(I N()) * C P F N\)

.\(=\mathrm{LSTAR} \mathrm{R}^{\prime}(\mathrm{IN})\) )
\(\mathrm{JJ}=\mathrm{I},+\mathrm{N}-1\)

J \(=\). .

IS=1
I \(\mathrm{L}=\mathrm{I}\). \(\mathrm{N}^{*}\) *2-1

\(I L=I L+1\)
\(I S=-I:\)
\(J=\mathrm{J} . \mathrm{J}\)
C J IS THL L\B't VODL
\(\mathrm{JJ}=\) :
\(.1=1\)
3100 CoImT vil
Cl=A \(36(0(\mathrm{IL}))\) *RHOIL, C PEN
C 3: VA:i (INO)*ASAM (IVO)
CIP =SIG: \(1 A^{*} L P S I O N * S H A P F * A S A N(I V O)\)



IF(n(IL).L'R.0) SO TO 3033
\(C I O l=\mathrm{CO}(\mathrm{IL}+\mathrm{IS})\)
CI)2=Tr (ITs+I.i)
\(\mathrm{TC}(\mathrm{IL}+\mathrm{I}\) ) \()=\mathrm{TC}(\mathrm{IL})\)
TC(IL) \(=C I) I\)
\(\Gamma F(I L+I S)=T P(I I)\)
TF (IL) =CI 2
3033 2 \(\mathrm{CP}=\mathrm{TF}(\mathrm{IL}) * 2.0-\mathrm{T} P \mathrm{O}(\mathrm{IL})\)
\(\operatorname{TCP}={ }^{\circ} \mathrm{C}(\mathrm{IL}) * 2.0-\mathrm{PCO}(\mathrm{IL})\)
\(\operatorname{TCO}(\mathrm{IL})=\mathrm{TC}(\mathrm{IL})\)
\(\mathrm{TFO}(\mathrm{IL})=\mathrm{TF}(\mathrm{IL})\)
\(\mathrm{PCO}(\mathrm{IL}+\mathrm{I} \dot{\mathrm{S}})=\mathrm{TC}(\mathrm{I} \mathrm{L}+\mathrm{I} \mathrm{j})\)
\(\operatorname{TFO}(I L+I j)=T P(I L+J . j)\)
IT(N.GT.1)GO TO 3200
C THLRE IS ONLY OUE 3 EG .
\(3050 \mathrm{RJ}=\mathrm{CF} /(2.0 * \mathrm{D} \% \mathrm{~F}(\mathrm{INO}) / \mathrm{ACF}(\mathrm{INO})+\mathrm{R} \times \mathrm{F} * \mathrm{DLLT} /(\mathrm{ACF}\) (INO)
\(+\quad * * 2 * R H O I(1))\)
\(R 3=(\operatorname{Cw}(I ; 10)) /(2.0 * \operatorname{IXP}(I \cup 0) / A C w(I \cup O))\)
\(\mathrm{F} 4=\mathrm{R} 3\)

\subsection*{5.1.7 (Continued)}
\(\therefore 2=S\) Pand (INO) / DLLT+? \(3+39+\mathrm{C} 3+\mathrm{R} 4\)
\(\therefore 2=3 P a A F(\) INO \() / D E L T+C 1+\therefore 1+39\)
\(\mathrm{A}(1,1)=\mathrm{A} 9\)
\(A(1,2)=-39\)
\(A(2,1)=-89\)
\(A(?, 2)=\Lambda 2\)
\(3(1)=S P A A F(I N O) * T L F(J) / D L L T+(R 1+C l) * T F P\)
\(3(2)=S P A A W(I V O) * T L H(J) / D E L T+R 3 * T C P+24 * T C(I L+I S)\)
\(++C 3 * T A(I N O)+C I P * T B T(I N O)-C I P *(P L N(J)+460) * *\).
CALL SIMULT (A, 3, 2, IL,RRJR)
C9 \(=3\) (1)
C12=3(2)
\(\operatorname{TLF}(J)=3(1)\)
\(\operatorname{TLW}(J)=E(2)\)
GO CO 3500
3290 COVTINUL
C FIRS'L LINE StO.
\(\mathrm{Rl}=\mathrm{CF} /(2.0 * D X F(\mathrm{INO}) / \mathrm{ACF}(\mathrm{INO})+\mathrm{KmF}\) * DLLP/(ACF\((\mathrm{INO})\)
+ **2*RHOIL) )
\(R 3=1.0 /(2.0 * D X F(I 10) /(\Lambda C W(I N O) * C W(I N O)))\)
\(\mathrm{R} 4=\mathrm{R} 3\)
\(A 9=S P \cdot 1 A F(I N O) / D E L T+21+39+C 1\)
\(\mathrm{A} 2=5 \mathrm{PMA}(\mathrm{I}\) (O) / DLE \(\mathrm{P}+\mathrm{Z} 3+\mathrm{R} 4+39+\mathrm{C} 3\)
\(A(1,1)=\Lambda 9\)
\(A(1,2)=-39\)
\(A(2,1)=-39\)
\(A(2,2)=\Lambda 2\)
\(B(1)=S P \cdot A F(I N O) * T L F(J) / D L L T+(P I+C I) * T F P\)

\(++C 3 * T A(I N O)+C I P * T . j T(I V O)-C I P *(I L . V(J)+460) * *\).

\(\operatorname{TLF}(J)=1)\)
\(\operatorname{TLer}(J)=3(2)\)
C9=3(1)
C12=3(2)
3300 IF (N.E?.2) 60 TO 3400
\(\mathrm{J}=\mathrm{J}+\mathrm{I}:\)
C CAECULARING I VNLR SFO.
\(A(1,1)=19\)
\(A(1,2)=-39\)
\(A(2,1)=-39\)
\(\Lambda(2,2)=\AA 2\)
\(B(1)=S P: A F(I N O) * T L F(T) / D L L T+(R I+C l) * T L F(J-I S)\)

+ + C 3*TA (INO) +CIP*T j'T(IVOj-C[P* (ILN(J) +450.) **4
CALL SI:AUT(A,3,2,ILPROR)
\(\operatorname{TLE}(J)=B(1)\)
I L: \(: ~(J)=B(2)\)
\(y=n-1\)
30 TO 3300


\subsection*{5.1.7 (Continued)}
```

C CALCULAITVG LAS'R NODE
34nO CONTINUL
J=J+IS
R4=1.0/(2.0*JXF(INO)/(NCN(INO)*CN(INO)))
\(1,1)=A?
S(2,1)=-39
A(1,2)=-39
A(2,6)=\2
3(1)=SP.1AF(INO)*TLF(J)/OLLT+(R1+Cl)*TLE(J-IS)

```

```

 + +C3*IA(INO) +CIP*RS「(INO)-CIP*(TLM(J)+450.)**4
 CALL :;laULT(A,3,2,IEPROR)
 TLF(J)=3(1)
 I'L.v(J)=3(2)
 ILF(J)=(SPA.AE(I'NO)*TLF(J)/DLL'L+(RI+Cl)*TLF(J-IS)
 + +3*((SHnAw(INO)*TLW(J)/0LLT+R3*TLw(J-IO)+i4*PC(IL+IS)
 + +C3*PA(I*O)-CIP*((*Li(J)+460.)**4)+CIP*'SST(IVO))/(A2
 +)))/(A-3* 3/^2)
 TLN(J)=(JP.IA:(INO)*TLW(J)/DLLT'R3*TLN(J-IS)+R4*TC(IL+IJ)
 + +C3*IN(INO)+CIP*TST(INO)-CIP*((TLW(J)+460.)**4)+3*TLF(J))/A2
 IF(?(IL).L'T.0.0) SO '1O "500
 C TF
TF(IL)=TIFF(J)
C TMN(IL+I,j)=mLW(,:)
Tn(IL) =TL.N(J)
Tr (ILT+I.j) = Co
Tv(IL+IS)=Cl ?
(30 10) 3599
3500 TE(IL+IS)="NFF(J)
PF(IL)='RLF(a)
T|(IL+IS)=%L心(J)
C '?N(IL)="'Lw(i;)
TP(IL)=C!
Tv(IU)=Cl2
3599 CONMI.JUL
3550 CONTINUL
QLTURij
L.*)

```

\subsection*{6.0 COMPONENT SUBROUTINES}

The components modeled vary from the simple restrictor to a hydraulic pump. Each model is broken down into its most basic equations of motion, flow, and heat transfer. The sum total of all these equations can be very complex but individually they are usualiy simple.

New subroutines can be added without difficulty and, if the computer system can tolerate unsatisfied external references that are not called during execution then component subroutines not in use, can be omitted from the input deck or file when not required. Figure 6.1-1 shows the basic subroutine organization.

In working with the program it is necessary to get a good grasp of the fundamentals involved in the simulation, even the most carefully checked rourine can have traps built in which are not always found until he output data is carefully examined by someone who knows what it should look like.


FIGURE 6.i-1 COMPONENT SUBROUTINE ORGANIZATION

\subsection*{6.1 SUBROUTINE TCOMPA}

Subroutine TCOMPA which is called by THYTR, reads and prints all component input data, sorts out connection data for all components, and calls each individual component in the order in which it was input.

\subsection*{6.1.1 Math Model}

Not applicable.

\subsection*{6.1.2 Assumptions}

Not applicable.

\subsection*{6.1.3 Computation Methods}

Section 1000
f. component Integer card is read and its data is printed. Connection data for the component is sorted out and stored. The real data cards for the component are then read and printed, if any exists. Next, the addresses of the component's real data, temporary, double precision and integer variables are established. Finally, the individual component subroutine is called passing as arguments its starting address in the real data, temporary, double precision and integer arrays. This process is repeated until all input components have been called.

Section 2000
This section consists of a DO loop that ranges from 1 to the number of input components. Within the loop a component group type is isolated by taking its type number, dividing by 10 and forcing truncation (due to the use of integers). This truncated value is then used in a computed GO TO statement to direct control to a statement or section that calls the specific component. If there is more than one component of that group type, specific component isolation is accomplished by subtiacting the group component type number from the individual component type number and using the
resulting value in a computed GO TO statement. This GO TO statement then directs control to a statement that calls the component. ENTRY COMPE isolates and calls each component in a simple and straightforwari manner aiding in the running of the overall program since every component has to be called each time step in the thermal transient calculations and each iteration in the steady state solution.

\subsection*{6.1.4 Approximations}

No applicable.

\subsection*{6.1.5 Limitations \\ No applicable.}

\subsection*{6.1.6 Variable Names}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Units \\
\hline I & Counter & \\
\hline J & Counter & \\
\hline KK & Dumny Variable for L4 & \\
\hline K.TYPE & Dummy Variable for LTYPE( ) & \\
\hline LDATAC & Number of Element Real Data Cards & \\
\hline L1 & Data value 1 & \\
\hline L4 & Data value 1 & \\
\hline N & Counter & \\
\hline NCI & Number of Last Active Connection & \\
\hline NDATAC & LDATAC/ 1000 & \\
\hline ITLIM & Number of Real Data Fields & \\
\hline NN & Dummy Variable Representing Maximum Number of Component Connections & \\
\hline NTYPE & Group Type Number & \\
\hline NX & Data Value 2 & \\
\hline N1 & Dummy Variable Representing Max Number of Real Data Fields for a Given Component & \\
\hline N2 & Dummy Variable Representing Max Number of Temporary Variables for a Given Component & \\
\hline N3 & Dumny Variable Representing Max Number of Double Precision Variables for a Given Component & \\
\hline N4 & Dumny Variable Representing Max Number of Integer Variables for a Given Component & \\
\hline
\end{tabular}

\section*{6．1．7 Subroutine Listing}


SU3：ROUTI VL TCOmPA
C＊＊＊RLVISKD nocust 5，1976＊＊＊

\(+A C F(300), A C W(300), D X P(300), T T N E, D E L T, P I, N L I N, N E L\)

 \(+\therefore \operatorname{SLS}(150)\)

COL．109／STLADY／EN（90），ON（90），PLX（90），PDLEG（00），DL（90），
＋NA，Э，ר1，PUP，PDOMN，NNODL，NLEG，INCYN，TYRI，
 \(+\mathrm{ILLG} \mathrm{LD}(90), \mathrm{Itrg}(1000)\)


LOUVALEVCL（L（1），LT（1，1）），（n（1），DO（1）），（C（1），LC（1））
DAA L1，L4，NX／1，1，2／
I．v！\(=1\)
IF（I：vixk）1000，2000，2000
1000 COMIINJL
（） \(1001 \quad[=1,1\) ）
DO \(1002 \quad \mathrm{~J}=1,150\)

1001 Covitivis
1903 COJAIJUL
\(\therefore \mathrm{CI}=0\)


C \(\quad\) LTYPL \(=\) CO．，PONLYS TYPL
RLDつ（5，1909）I，LTYPL（I），LDAPMC，（L（L4－1＋J），J＝1，12）
1009 FORAAT（16I5）
\(\therefore R I T L(6,500) I, I, \operatorname{TYPL}(I), L O A T A C,(L(L A-i+J), J=1,12)\)
VDACIC＝LDATAC／ 1000
LDAmic＝LDATaC－ivDAMIC＊ 1000
HLI：＝L OA TAC＊ 9

KiYPL＝LTYPL（I）
\({ }^{\wedge} \mathrm{IC}(\mathrm{C})=: \therefore \mathrm{D}(\mathrm{KTYPL}, 7)\)
IF（．JC（I）．L〇．0） 30 （\％ 7
\(\because R=L d\)
\(W N=L 4+V C(I)-1\)
ก） 4 J＝KR，NA
IF（L（J））1，2，3
1 ！（に）\(=-\mathrm{L}(1)^{*} 2-1\)
\(\mathrm{LC}(\mathrm{L}(\mathrm{i}))=\) ）
\(: C I=: Z C T+1\)
30 ＠ 4

G）［1＂ 4
\(3 L(1)=L(N) * 2\)
\(\mathrm{L} C(\mathrm{~L}(\mathrm{I}))=0\)

\section*{6.1 .7 (Continued)}
\(N C I=N C I+1\)
4 CONITNUE
5 IF (L(NN).L'L•NHLNL*2-1) 60 TO 6
\(N C(I)=N C(I)-1\)
\(\mathrm{N} \backslash=\mathrm{N}: \mathrm{N}-1\)
GO TO 5
5 COnTINU
\(I \mathrm{NV}=\mathrm{iNCI}\)
IF (NCI.NE.NC(I).AND.MD(KTYPL, 10).NL. 0)GO PC 420
IF(NC(I).Lr.ND(KTYPL, 8)) VC(I)=VD(RTYPL, 8)
7 Nl=1D(KTYPL, 1)
: \(2=\) =VD(KTYPL, 2)
\(N 3=N D(\) KTYPL, 3)
\(.14=4 D(\) KTY \(\mathrm{L}, 4)\)
IF (11LI』. EO.O) GU TO 15
RLAD(5,9) (D(Ll+N-1),N=1,NLI:1)
9 FOMiAT(8L1J. \()\) )
IF(IND.NE.I) GO (i) 410
\(\because \because=I, 1\)
00 ? \(0^{\prime}\) KR=1, LDA PhC

\(\mathrm{VM}=: 3+8\)
19 CONTIV!J
15 I V \(\mathrm{K}=0\)
IF (idDAmAC.vE.0) 3:) MO 20

\(L L(I, l)=L 1\)
\(\mathrm{LL}(\mathrm{I}, 2)=\mathrm{L} 1+\mathfrak{C l}\)
C) ro 30

20 CONAINUL

\(\mathrm{LL}(\mathrm{I}, 2)=\mathrm{L} 1\)
I'X \(=1\)
30 [P(הX*!3. iL. 1) तo ro 4?
\(\operatorname{LE}(I, 3)=(L L(I, 2)+!J 2+3) / 2\)
\(\mathrm{L}]=(\mathrm{LF},(\mathrm{I}, 3)+\cdots 3) * 2+1\)
G(T) 5)
4.) Liv(I, 3) \(=\operatorname{Li}(I, 2)+i d ?\)
\(\mathrm{I}_{\mathrm{d}} \mathrm{l}=\mathrm{Lt}(5,3 ;+!!3\)
So \(\mathrm{L} .(\mathrm{I}, \mathrm{I}, 4)=\mathrm{L}, 4\)
\(L 4=L 4+\therefore 4\)
kNT:Q COnPI.
200n CoviIINUL

ATYUE = W'TYPi/1
\(\mathrm{H}=\mathrm{L} \mathrm{L} \cdot(\mathrm{I}\) ' \(\mathrm{D}, 1)\)
\(\mathrm{A} 2=\mathrm{IL}(\mathrm{IND}, 2)\)
\(13=L E(I, D, 3)\)
iv \(4=\mathrm{LE}(I N D, 4)\)
GOTO \((210,220,230,240,250,260,270,230,290,300), W \mathrm{NY}_{\mathrm{L}}\)

\section*{6．1．7（Continued）}

C \(360 \quad 90\) ro 400
210 CO：TTIUUL
CALL THRNALI（D（N1），D（N2），DD（N3），L（N4）） GO PO 400
220 COVTIUJU，
\(\because T Y P L=\) F＇TYPL \(^{20}\)
GOTO（221，222），\(\because T Y Y L\)
221 CALL TVALV21（D（N1），D（N2），OD（N3），L（N4））
GO［1］4！0
22．CALI，TVALN22（D（N1），D（N2），DD（N3），L（N1））
GO＇i＇） 400
230 CONTI：SUL

GC PO（231），K～YPL
231 CNLE TCVAL31（O（v1），O（N2），DD（N3），i（：1））
30 TO 4 のn
240 CONTI ML

（a）10 400
250 COTTINUL
\(\because \Gamma Y P L=\) КTYPL－5
SO ت＇（251），KiYPL
251 CALT，TP（1．1P5L（D（N1），D（N2），DD（N3），L（V4））
GO ro 40n
250 CONmI＇vul
\(\because \mathrm{TYPL}=\because \mathrm{OYPL}-63\)

261 CNL［ TKSVkG1（D（心1），D（N2），DD（N3），L（N4））
GC ：r）400
2ち2 CNLL TRSVにち2（D（N1），D（N2），DD（N3），L（N4））
（3）（10）407
2ك9 CM，L THLX69（ \(C(\)（N1），D（N2），DD（N3），L（N4））
30 1＇0 4） 0

万，（r）（27l，40n，40n），K丁YPL
271 CALL rACUM71（D（il），D（N2），DD（G3），L（N4））
30 TO 40リ
230 COITI JUL
\(<\mathrm{TYPL}=K \mathrm{KY} Y \mathrm{P}-80\)
G）TO（28l），K＇YPL

GO 10100
290 COJTINH：
KTYPL＝R＇PYP1．－9
GO TO（291），KIYPL

30 io 400
300 COMTIMUL
KTY \(\mathrm{S}_{\mathrm{L}}=\mathrm{V} \mathrm{TY} \mathrm{P}_{\mathrm{L}}-100\)
GO TO（301，302），KTYML

\subsection*{6.1.7 (Continued)}

301 CALT, TACT101 (D(N1), D(N2), DD(N3), L(N4))
GO TO 400
302 CALL TACT102 (O(N1), D(N2), DD(N3),L(N4))
400 CONTIINUE
IF (INEL.NE.O.OR.IND.GE, NETJ) RETIJRN
IND \(=I . N D+1\)
IF(IENTR) 1003,2000,2000
410 WRITE ( 6,130 )
3 TOP 6001
420 WRITE (6.190)IND
190 FORIAT'(5X, 4211 THLRL ARE MISSING CONIVECTIONS IN COHP NO IS) STOP 6001
ROPAAT ( \(35 H\) THE ELEAENT CAROS ARE OUT OF ORDER )

 Eid

\subsection*{6.11 SUBROUTINE TBRAN11}

TBRAN11 simulates a frictionless branch with two, three, or four cornecting 1 ines. As sketched in Figure 6.11-1 with two 1ines, TBRAN11 represents a "junction", with three lines it represents a " Y ", and with four lines, it represents a "cross". This subroutine calculates the temperature of the fluid within the branch and the temperatura of the branch wall.


FIGURE 6.11-1 BRANCH CONFIGURATIONS

\subsection*{6.11 .1 lath Model}

The thermal math molel for the hranch includes heat transfer to and from either two, three, or four line segments. At least one is an upstream (inlet) line while at least one is a downstream (outlet) line. To familiarize the reader with the branch subroutine, one of the most complex branches "the cross" (with one upstream line segment and three downstream line segments) will be discussed at this time. For this branch ten nodes are considered: five fluid nodes and five wall nodes. The nodal representation is shown in Figure 6.11-2.


FIGURE 6.11-2
"CROSS" SRANCH AND LINE SEGMENT NODE REPRESENTATION

The temperatures of the upstream line segment wall and fluid nodes are TW(L.1) and TF(LI), the temperatures of the branch wall and fluid nodes are DT(TBW) and \(\operatorname{DT}(T B F)\), and the temperatures of the downstream line segment wall and fluid nodes are TW(L2) and TF(L2), TW(L3) and TF (L3), and TW (L4) and TF (L4). (The branch consists of two nodes, regardless of the number of line connections). Two heat transfer equations are written to solve for DT(TBF) and DT(TBW), using the branch and line segment material properties and dimensions, the atmosphere and structure temperatures external to the branch, TW(L1) through TW(L4) and \(\mathrm{TF}(\mathrm{L} 1)\) through \(\operatorname{TF}(\mathrm{L4})\). One equation is for heat transferred to and from the branch fluid node. The other equation is for heat transferred to and from the branch wall node.

The first equation represents four modes of heat transfer wit the branch fluid node:
1. conduction with the upstream line segment fluid node
\[
R 1(\mathrm{Ll}) *(\mathrm{TF}(\mathrm{Li})-\mathrm{DT}(\mathrm{TBF}))
\]
where \(\mathrm{Kl}(\mathrm{Ll})\) is the conduction coefficient between the fluids and is equal to \(\mathrm{CF} /(\mathrm{DXF}(\mathrm{L} 1) / \mathrm{ACF}(\mathrm{L} 1)+\mathrm{DXFB} / \mathrm{ACFB}+\mathrm{RMT}(\mathrm{LJ}) * \mathrm{DELT} /(\mathrm{ACFB} * * 2 * \mathrm{RHOLL}))\)
2. convection with the branch node
\[
B 1 *(D T(T B W)-D T(T B F))
\]
where \(B 1\) is the convection coefficient and is equal to UFWIL*D(ASFW)
3. heat transfer due to mass transfer into the branci from upstream of the branch
\[
\operatorname{MCp} *(T F(L 1)-D T(T B F))
\]
where \(M C p\) is the \(f 1\) ow rate and is equal to \(\cap(L 1) * R H O I L * C D F N\)

These heat transfer terms are combined to produce the equation for heat balance for the branch fluid.
\[
\begin{align*}
\operatorname{MCp}\left(\mathrm{DT}\left(\mathrm{TBF} ;-\mathrm{DT}(\mathrm{TBF}) \mathrm{OLD}^{2}\right)\right. & =\mathrm{R} 1(\mathrm{LI}) *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TBF})) \\
& +\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TBW})-\mathrm{DT}(\mathrm{TBF}))  \tag{1}\\
& +\dot{\mathrm{MCp}}(\mathrm{TF}(\mathrm{Li})-\mathrm{DT}(\mathrm{TBF}))
\end{align*}
\]
where MCp is equal to FMASS*CPFN
The second equation represents tirec modes of heat transfer relative to the branch wall node:
1. Conduction to and from the upstream and downstream line segment walls
\[
R(L I *(T W(L J J)-D T(T B W))
\]
where \(R(L I)\) is the conduction coefficient and is
equal to \(1.0 /(\operatorname{DXF}(\mathrm{LI}) /(\operatorname{ACW}(\mathrm{LI}) * C(\mathrm{LI}))+\)
\(\mathrm{DXW} /(\mathrm{ACBW} \cdot \mathrm{CW})\) ) and I is the line number
2a. convection to and from the branch fluid
\[
\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TBF})-\mathrm{DT}(\mathrm{TBW}))
\]
where B1 was defined previously
2b. convection to and from the external atmosphere
\[
\mathrm{B} 2 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TBW}))
\]
where B2 is the convection coefficient and is equal to \(D(U A W) * D(A S A W)\).
3. radiation exchange with the surrounding structure
\[
\mathrm{C} 1 \mathrm{P} *\left(\mathrm{D}(\mathrm{TST})-\left(\mathrm{D}^{T}(\mathrm{TBW})+460 .\right)^{4}\right)
\]
where C1P is the radiation coefficient and is equal to SIGMA* EPSION*SHAPF*D (ASAW).

These equations combins to produce the equation for heat balance for the branch wall node:
\[
\begin{align*}
& \frac{\mathrm{MCP}^{\mathrm{DELT}}\left(\mathrm{DT}(\mathrm{TBW})-\mathrm{DT}(\mathrm{TBW})_{O L D}\right)}{}=\sum_{\mathrm{J}=1}^{4} \mathrm{R}(\mathrm{LI}) *(\mathrm{TW}(\mathrm{LI})-\mathrm{DT}(\mathrm{TBW})) \\
&+\mathrm{B} 1(\mathrm{DT}(\mathrm{TBF})-\mathrm{DT}(\mathrm{TBW}))  \tag{2}\\
&+\mathrm{B} 2(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TBW})) \\
&+\mathrm{C} 1 \mathrm{P}^{*}\left(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TBW})+460 .)^{4}\right)
\end{align*}
\]
where \(M C\) p is equal to \(D(B M A S S) * C P W N\)
A thermal model of the above heat transfer terms is shown in Figure
6.11-3. Equations (1) and (2) are combined to solve for DT(TBW) and DT(TBF).


FIGURE 6.11-3
THERMAL MODEL

BN \(=\) CONVECTION
MCp \(=\) STORAGE
\(\dot{M C D}=\) FLOW
RN \(=\) CCNDUCTION
CID - RADIATION
6.11-5

\subsection*{6.11.2 Assumptions}

The following assumptions are made to produce the equations discussed in the previous section.
1. The temperature of the rluid leaving the branch is equal to the branch fluid node temperature, DT (TBF)
2. The branch wall and fluid are each represented by one node only, the entire node is at the same temperature.
3. The temperatures of the atmosphere and structure surrounding the branch are constant.
4. The emissivity of the wall material is constant, 3 for steel
5. The interface conductance between the branch walls and the line walls is infinite.
6. The math model does not incorporate any of the losses which normally occur at junctions which have changes in diameter, flow direction, or flow division.
7. Complete fluid mixing occurs in the fluid volume.

\subsection*{6.11.3 Computational Methods}

\section*{SECTION 1.000}

The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

SECTION 2000
No thermal or hydraulic inputs or calculation accomplished here.
SECTION 3000
Prope:ty values are assigned. Dimensions and coefficients are calculated. The fluw direction is determined. (The program is set up
with the flow entering connection line one (L1) and leaving through connections tow, three and four, (L2), (L3) and (L4). During the calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line one). Some coefficients are then recalculated if the flow is reassigned. A. \(2 \times 2\) matrix is loaded and the mathematical equations are solved for DT(TRF) and DT(TBW) and stored in the B computational array. "he calculated values are assigned to their proper storage locations ind the boundary conditions assigned to special arrays (TC and TF) in /TRANS/.

\subsection*{6.11.4 Approximations}
1. DELTAX is the average value of all possible paths chrough the branch.

\subsection*{6.11.5 Limitalions}

The limitations of this subroutine are due to the pressure drop errors. Additional losses can be simulated by adding a pseudo 90 degree elbow or bend to the appropriate line.

\subsection*{6.11.6 Variable Names}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline A( ) & Computational array & -- \\
\hline AAA & Dummy variable & -- \\
\hline ACBW & Cross sectional area of the branch wall & IN \({ }^{2}\) \\
\hline ACFB & Cross sectional area of the branch fluid & \(\mathrm{IN}^{2}\) \\
\hline D (ASAW) & External surface area of the branch wall & \(\mathrm{IN}^{2}\) \\
\hline D (ASFW) & Internal surface area of the branch wall & IN \({ }^{2}\) \\
\hline B ( ) & Computational array & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline D (BMASS) & Branch Mass & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline ClP & Radiation coefficient & WATTS / \({ }^{\circ} \mathrm{R}^{4}\) \\
\hline CJ & Mechanical Equivalent of Heat & FT-LB \({ }_{\mathrm{m}} /\) WATTS-SEC \\
\hline CPWN & Specific heat of the branch material & WATTS \(-\mathrm{SEC} / \mathrm{LB}_{\mathrm{m}}-^{\circ} \mathrm{F}\) \\
\hline CW & Thermal conductivity of the branch material & WATTS / IN- \({ }^{\circ} \mathrm{F}\) \\
\hline DD1) & Dummy variable & -- \\
\hline D (DELTAX) & Average distance fluid travels through branch & IN \\
\hline DXW & Distance from branch node to interface & IN. \\
\hline EPSION & Emissivity factor for the branch wall & -- \\
\hline FMASS & Fluid mass in branch & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline I, IERROR & Dummy variables & -- \\
\hline D (ITC) & Initial wall temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D (ITF) & Initial fluid temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline L1, L2 & Leg connection addresses & -- \\
\hline R()\(, \mathrm{Rl}(\mathrm{)}\) & Computational array & -- \\
\hline RHOTL & Fluid density & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}^{3}
\] \\
\hline RMT ( ) & Mass flow rate of fluid array & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}\) \\
\hline SHAPF & Shape factor (wall to surrouncing structure) & -- \\
\hline SID & Dummy variable & -- \\
\hline SIGMA & Stifan-Boltzmann constant for radiation & WA'TIS/IN \({ }^{2}-{ }^{\circ} \mathrm{R}^{4}\) \\
\hline T ( ) & Computational array & -- \\
\hline D ( TA ) & Temperature of the surrounding atmosphere & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TBF) & Fluid temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TBW) & Wall temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline \(D(T S T)\) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline D (UAW) & Heat transfer coefficient (surrounding atmosphere to walls) & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UFWIL & Heat transfer coefficient (fluid to walls) & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (VOLUME) & Volume of fluid inside branch & IN \({ }^{3}\) \\
\hline
\end{tabular}

\section*{6．11．7 Subroutine Listing}




```

 + SCF(3'0),AC.(300), DXF(30N),TI.A,,DLLT,DI,DITNL,NH,
    ```














```

 Ir(IG'f, 1)0nf, 20,0, 300!)
    ```






```

 .TYD = MRLEIAL IYDL CE WALL,
    ```

```

1109 ここ,品甠
N1=:C(I~D)
G% l)Ol I=1,iCI
\because= L(I)
IP(')=T(I'fr')
1OV1 [C(:)=O(INC)

```




```

 R& i``.
    ```

```

 :LTJP`
 3クาの Ll=L(1)
NCI=, C(I?M)

```

```

 CPA:A=2!JD(唯品,1)
 CM=PNUP(RTYDL,3)
    ```





\section*{6．11．7（Continued）}
```

 DX.1=ワ(DLis(AX)/2.0
 DXF3=ワXル
 L2=L(?)
 SI)=?(L.1)
    ```

```

 D\capC=S\!i'(AAA*4./PI)
 IF(?(LI).LT.n(L?)) \cap(L_L)=2(L2)
 UFwIL=:TPW(4AN,DD1),A3S(O(LIL)),(TF(L(i))
 ++MF(L(2)))/2.n,(P(L(1))+P(L,(2)))/2.0)
 C
M:PPl=TC(Ll)
7(Gl)=SI`

```

```

 2l=:3F 江L*D(ASFvi)
 3?=D(U\N)*C(AB.A.i)
 3003 : CTI=\C(IND)
D! 30!9 I=l,?CI
DO 300n J=1,:1CI
A(I, J)=?.0
3007 3(I)=?.0
C) 350n I=1,`CI
:!= (., I)
PHOIT=335.4*RAの)(ir(N),F(N))

```

```

 IF(O(N).LL.0.7) K.IT(I)=0.0
    ```

```

 IF(\cap(1!).LL.0.0)Rl(I)=?.0
    ```

```

3450 A(1,1)=A(1,1)+R،T(I)*CPEA+Pl(I)
3(1)=R(1)+(R~.T(I)*CPPN+!l(I) *T'F(N)
i ?,?)=. (2,2)+.2(I)
e(2)=3(2)+,?(I)* P.i(!!)
3500 C0.ifI.vjL

```

```

 4(2,2)=A(?, 2)+D(3 iAsS)*CPWJ/DLLT+Ul+32
    ```


```

 + D(IA)+CIP*D(PS'T)-CIP*(D'!(T3日)}+450.)**
 A(1,2)=-31
 \(2,1)=-31
 O:IT, SI :UL"(A,B,2,I:ASOOr!
 O, 3600 I=1,:\CI
 |=L(I)
 \prime\prime
 TF(N)=3(l)
 IE(?(`).SL.n.0) Pr(N)="T(I)
 TC(:4)=3(2)
 3509 CJ!NTINUL
7N(T3F)=3(1)
OT(I34)=3(2)
[L"y!ev
END

```

\section*{6. 21 SUBROUTINE TVALI :}

TVALV2l simulates a simple two-way valve with a valve position vs time input. A typical valve is sketched in Figure 6.21-1. This subroutine aalculates tine valve wall, piston, and fluid temperatures.


GP 75009319
FIGURE 6.27-1
TYPE NO. 21 TWO.WAY VALVE

\subsection*{6.21.1 MATH MODEL}

The thermal math model for the two-way valve includes heat transfer to and from two connecting line segments, one upstream and one downstream. Seven nodes are considered: three fluid nodes, three wall nodes, and one piston node (as shown in Figure 6.21-2). The temperatures of the upstream line segment wall and fluid nodes are \(T W(L 1)\) and \(T F(L 1)\).


FIGURE 6.21-2 VALVE AND LINE SEGMENT NODE REFRESENTATION

The temperatures of the valve wall and fluid nodes are DT(TVW) and DT(TVF). The temperatures of the downstream segment line wall and fluid nodes are TW(L2) and TF(L2), and the temperature of the piston is denoted by DT(TVP). Three heat balance equations are written to solve for DT(TVF), DT(TVP), and DT(TVP), using the valve and line segment material properties and dimensions, the atmosphere and structure temperatures external to the valve, and TW(LI), TW(L2), and TF(L1) (Note: TF(L2) \(=\mathrm{DT}(\mathrm{TVF})\), see assumptions). One equation is a heat balance for the valve fluid node. The second equation is a heat balance for the valve wall node. The third equation is a heat balance for the valve piston.

The first equation represents four modes of heat transfer relative to the valve fluid node.
1. Conduction to or from the upstream line segment fluid node
\[
\mathrm{R} 3^{*}(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TVF}))
\]
where \(R 3\) is the conduction coefficient and is equal to CF/ (DXV/D (ACVF) + \(\operatorname{DXF}(\mathrm{L} 1) / \operatorname{ACF}(\mathrm{L} 1)+\mathrm{RMFL} 1 * \operatorname{DELT} /(\mathrm{D}(\mathrm{ACVF}) * * 2 * \mathrm{RHOLL}))\), and RMFLI is equal to Q(L1)*RHOIL .
2. a. convection to or from the valve walls
\[
B 1 *(D T(T V W)-D T(T V F) ;
\]
where \(B 1\) is the convection coefficient and is equal to UFWIL*D(ASFV).
b. convection to or from the piston
\[
\left.B 2 *\left(D^{T r}, i V_{r}\right)-r_{T}(T V F)\right)
\]
where \(B 2\) is equal to USW[i.*D (ASFI')
3. Heat transfer due to mass tranfer into the valve node from the upstream
line fluid segment.

where MCp is the flow rate coe:rficitert, and is equal to \(Q(L 1) * R H O L L * C P F N\)
4. Heat addition due to a pressure dap across the valve
\[
\dot{M C p} * \mathrm{DCAPT}:
\]
where DCAPTl was described in the terhnical summary and is equal to
\[
(1.0 / \mathrm{RHOIL}) *(P(L 1)-\mathrm{F}(L 2)) /(\mathrm{CJ} * \mathrm{CPFN})
\]

The heat transfer modes are combined to prociuce an equation for the heat balance for the valve fluid nocis:
\[
\begin{align*}
\frac{M C p}{D E L T}(\operatorname{IT}(T V F)-D T(T V F) O L D & =R 3 *(T F(L 1)-D T(T V F)) \\
& +B 1 *(D T(T V W)-D T(T V F))  \tag{1}\\
& +B 2 *(D T(T V P)-D T(T V F) \\
& +\dot{M C p *(T F(L 1)-D T(T V F))} \\
& +\dot{M C p * D C A P T 1}
\end{align*}
\]
where MCp is equal to FMASS*CPEN
The second equation represents three modes of heat transfer relative to the valve wall node.
1. Conduction to or from the upstream and downstream line segment wall nodes
\[
6.21-4
\]
\[
R I *(T W(L I)-D T(T V W))
\]
where \(R I=1.0 /(D X F(L I) /(A C W(L I) * C(L I))+D X V /(A C V W * C V))\), and \(I=1\) for the upstream line segment and 2 for downst:ream line segment
2. a. convection to or from the fluid in the valve \(B I *(D T(T V F)-D T(T V W))\)
where B1 was defined previously
b. convection to or from the external atmosphere
\[
B 3 *(D(T A)-D(T V W))
\]
where \(B 3\) is the convection coefficient, and is equal to \(D(U A V) * D(A S A V)\)
3. radiation exchange with the suriounding structure
\[
\mathrm{CIP*}(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TVW})+460 .) * * 4)
\]
where CID is the radiation coefficient, and is equal to SIGMA*EPSION* SHARF*D (ASAV)

These heat transfer modes are combined to produce an equation for the heat baiance for the valve wall node:
\[
\begin{align*}
\left.\frac{M C_{p} *(D T(T V W)-D T(T V W)}{D E L T}\right)= & R 1 *(\mathrm{TW}(\mathrm{LI})-\mathrm{DT}(\mathrm{TVW}))  \tag{2}\\
& +\mathrm{R} 2 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TVF})) \\
& +\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TVF})-\mathrm{DT}(\mathrm{TVW})) \\
& +\mathrm{B} 3 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TVW})) \\
& +\mathrm{CIP} *(\mathrm{D}(\mathrm{TST}) \\
& -\mathrm{CIP} *((\mathrm{DT}(\mathrm{TVW})+460 .) * * 4)
\end{align*}
\]
where MCp is equal to \(D(\) VMASS \() * C P V W\)
The third equation represents one mode of heat transfer relative to the valve piston node.
1. convection to or from the valve fluid node
\[
\mathrm{B} 2 \%(\mathrm{DT}(\mathrm{TVF})-\mathrm{DT}(\mathrm{TVP}))
\]
where B2 was defined previously

The third equation for the heat balance for the piston node is:
\[
\begin{equation*}
\left.\frac{\operatorname{MCp}^{\star}}{\operatorname{DELT}}\left(\mathrm{DT}(\mathrm{TVP})-\mathrm{DT}(\mathrm{TVP})_{O L D}\right)=\mathrm{B} 2^{\star}(\mathrm{DT}(\mathrm{~T} F \mathrm{~F})-\mathrm{DT}(\mathrm{TVP}))\right) \tag{}
\end{equation*}
\]

\section*{where \(M C p\) is equal to \(D(P M A S S) * C P P N\)}

A thermal model of the above heat transfer terms for the twoway valve is shown in Figure 6.21-3. Equations (1) thru (3) are solved for the appropriated temperatures.


FIGURE 6.21-3
THERMAL MODEL

In the hydraulic model the valve is considered to be a simple orifice.

The basic equation for flow through an orifice is used to define flow through the two-way valve.
\[
\mathrm{Q}=\mathrm{AREA} * \mathrm{CD} *(2 *(\mathrm{r} 1-\mathrm{P} 2) / \mathrm{RHO})^{1 / 2}
\]
where AREA=area of valve orifice ( \(I N^{2}\) )
Cd-discharge coefficient
RHO-fluid asnsity LB-SEC \({ }^{2} / \mathrm{IN}^{4}\)
\(\mathrm{Q}=\mathrm{flow}\) (CIS)
Pl=inlet pressure (PSI)
\(\mathrm{P} 2=\) outlet pressure (PSI)

The pressure drop due to \(1:\).. : rivon by Equation (5)
\[
P U P=P U P-Q A * Q 1 *(C O E F * R H O(T F(L(1)), P U P)
\]
where
\[
\begin{aligned}
\text { PUP } & =\text { upstream pressure }(\text { PSI }) \\
Q A & =\text { magnitude of flow }(C I S) \\
Q 1 & =\text { flow rate }(C I S) \\
\text { SOES } & =\text { constant coefficient }\left(\frac{1}{\text { NN }^{4}}\right) \\
\text { RHO }() & =\text { fluid density }\left(\mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{LN}^{4}\right)
\end{aligned}
\]

The constant coefficient is made up of the valve opening area and discharge coefficient. When the valve is closed COEF equals zero.

\subsection*{6.21.2 ASSUMPTIONS}
1. The temperature of the fluid leaving the valve is equal to the valve Sluid node temperature, DT(TVF).
2. Thi pressure drop across the valve raises the temperature of the fluit in the valve.
3. The temperatures of the atmosphere and structure surrounding the valve remain constant.
4. The emissivity of the wall material is a constant, 3 for steel.
5. The interface conductance between the valve and line walls is infinite.
6. The hydraulic math model assumes a square law characteristic and a constant discharge coefficient for the complete llow range, which in practice is not correct. At very low flows the pressure drop tends toward a linear characteristic, and the discharge coefficient varies.
7. The pressure drop due to the fittings is assumed to be much smaller than the valve pressure drop and they are ignored in the computation.
8. Complete mixing of the fluids is assumed.

\subsection*{6.21.3 COMP!TATIONAL METHODS}

Section 1000 - The fluid and wall temperatures are initialized, the external structure temperature is changed from degrecs Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

Section 2000 - A call to INTERP is made to derive the valve opening from the input data which includes a table of valve position versus time. A iirst order interpolation is used in this derivation, second or higher order interpolations will cause unintended valve motion.

Once the valve opening is established, the valve area is calculated, and the valve pressure drop is determined using Equation (5).

\section*{Section 3000}

Property values are assigned. Dimensions and coefficients are calculated.
The flow direction is determined. (The program is set up with the flow entering connection line one (LI) and leaving through connection line two (L2). During the calculation, the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line one). Some coefficients are then recalculated if the flow is reassigned. A \(3 \times 3\) matrix is loaded and the mathematical equations are solved for DT(TVF), DT(TVW) and DT(TVP) and stored in the \(B\) computational array. The calculated values are assigned to their proper storage locations and boundary conditions assigned to special arrays (TF and \(T C\) ) in COMMON/TRANS/ and distributed throughout the entire program.

\subsection*{6.21.4 APPROXIMATIONS}
1. The shape factor is 0.96 (described in the Technical Summary).
2. Distances from nodes to interfaces are approximated.
3. The coefiicient of heat transfer between the wall and external atmosphere is approximated.
6.21.5 LIMITATIONS - The computation is limited to a linear valve area versus position relationship. This apparent limitation can be overcome by inputing a nonlinear valve position versus time relationship which can produce any desired area versus time.

The constant discharge coefficient is also a limitation but since the changes in discharge coefficients depend on the particular valve configuration; this limitation is not easily overcome.

If the valve slot width and discharge coefficient are input as one, then the valve position table bromes a table of the product of valve area times the discharge coefficient versus time. The combined effects of area and discharge coefficient can then be inputted.

\subsection*{6.21.6 VARIABLE LISTING}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline AAA & Dummy variable & - \\
\hline D (ACVF) & Cross sectional area of the valve fluid & IN \({ }^{2}\) \\
\hline ACVW & Cross sectional area of the valve walls & IN \({ }^{2}\) \\
\hline D (ASAV) & Outer surface area of valve & IN \({ }^{2}\) \\
\hline D (ASFP) & Surface area of the piston & \(\mathrm{IN}^{2}\) \\
\hline D (ASFV) & Internal surface area of the valve walls & \(\mathrm{IN}^{2}\) \\
\hline \(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4\) & Dummy variables & - \\
\hline \(B()\) & Computational array & - \\
\hline CID & Dummy variable & - \\
\hline CIP & Radiation coefficient & WATTS \(/{ }^{\circ} \mathrm{R}^{4}\) \\
\hline CJ & Mechanical equivalent of heat & FT-LB \(\mathrm{B}_{\mathrm{m}} /\) WATTS SEC \\
\hline COEFF & Dummy variable & \(1 / \mathrm{NN}^{4}\) \\
\hline CPPN & Specific heat of the valve piston & WATTS-SEC \(/{ }^{\circ} \mathrm{F}\) \\
\hline CPVW & Specific heat of the valve walls & WATIS-SEC \(/{ }^{\circ} \mathrm{F}\) \\
\hline CV & Thermal conductivity of the valve walls & WATTS/IN- \({ }^{\circ} \mathrm{F}\) \\
\hline DCAPTI & Heat added to [luid due to a pressure change & \({ }^{\circ}\) \\
\hline
\end{tabular}
\[
6 \cdot 2.1-10
\]
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline DCOEF & Discharge coefficient & - \\
\hline DDD & Dummy variable & - \\
\hline D (DELTAX) & Distance fluid travels through valve & IN \\
\hline DXV & Distance from valve wall node to interface with line segment & IN \\
\hline EPSION & Emissivity of the valve walls & - \\
\hline FMASS & Mass of the fluid in the valve & \(L B_{m}\) \\
\hline IERR, IERROR & Dummy variables & - \\
\hline D (ITF) & Initial temperature of the fluid & \({ }^{\circ} \mathrm{F}\) \\
\hline D (ITV) & Initial temperature of the valve walls & \({ }^{\circ} \mathrm{F}\) \\
\hline L1, L2 & Leg connection addresses & - \\
\hline D (MTYPE) & Valve material type & - \\
\hline D (PERC) & Percent of heat added to fluid due to pressure drop & - \\
\hline D (PMASS) & Mass of the pision & LBm \\
\hline D (PTYPE) & Piston material type & - \\
\hline RHOIL & Fluid density & \[
L B_{m} / \mathrm{IN}^{3}
\] \\
\hline RHOV & Density of the valve walls & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}^{3}
\] \\
\hline RMFLI & Entering fluid mass flow & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}
\] \\
\hline RMPL2 & Exiting fluid mass flow & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}
\] \\
\hline R1, R2, R3, R4 & Dummy variables & - \\
\hline SHAPF & Shape factor valve walls to surroundings & - \\
\hline SIGMA & Stefan-Boltzman radiation constant & WATTS/IN \({ }^{2}{ }^{\circ} \mathrm{R}^{4}\) \\
\hline D (TA) & Temperature of the surrounding ambient atmosphere & \({ }^{\circ} \mathrm{F}\) \\
\hline D(TST) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline \(D(T F V)\) & Fluid temperature in the valve & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline DT (TVP) & Piston temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TVV) & Wall temperature of the valve & \({ }^{\circ} \mathrm{F}\) \\
\hline D (UAV) & Heat transfer coefficient (surrounding ambient to valve) & WATTS/IN \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UFWIL & Heat transfer coefficient (fluid to valve walls) & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline VALY & Valve piston position & IN \\
\hline D (VMASS) & Mass of the valve walls & \(L^{\text {m }}\) m \\
\hline D(VOLUME) & Internal volume of the valve & IN3 \\
\hline D (WIDTH) & Valve slot width & IN \\
\hline For variab & n refer to Paragraph 3.3. & \\
\hline
\end{tabular}

\section*{6．21．7 Subroutine Listing}

SU3 KUU＇TiNL TVALV？l（D，כT，DH，L）
C．＊＊＊RLVISED NJGIJST 20，1976＊＊＊
DIUBNSTON D（1），DI（1），DD（1），L（1）

\(+\operatorname{ACE}(300), \mathrm{AC}.(300), \mathrm{DXF}(300), \mathrm{CL}\)（H．，DLET，PI，NLTVL，NLL






CT．LNSIOiv \(1(3,3), B(3)\)


C D ARKiY VAPIABLHS
DAㄹ．


Di＇BR＇ふY VAFIAふLLS



10n）CrA…INO：
\(\because \mathrm{GY} \mathrm{C}=\cap(\sqrt{ } \mathrm{MPL})+.001\)
． \(\operatorname{RTY} P_{L}=D(\) PTYD \()+.001\)
RHDV＝PROP（ENYiNE，2）

C？M，＝Pirur（只TYPI，l）
CV＝PKOP（KPY？L，3）






\(\mathrm{Ll}=\mathrm{L}(1)\)
\(\left[\begin{array}{l}\text { ？} \\ =\mathrm{L}(2)\end{array}\right.\)
\(T P(L 1)=D(E N)\)
\(\mathrm{TE}(\mathrm{L}\) ？\()=\) ）（X＇n！\()\)
\(\mathrm{PC}(\mathrm{LI})=\)（ITV）
\(T C(L 2)=D(I \times V)\)

D \(\mathrm{P}(\mathrm{IV} \mathrm{V})=\)（I＇IF）
！T（I＇VF）\(=0\)（I＇TF）

C \(\quad L .(3)=\) VO．DF \(X\) VARII 3 LL：

\(L L=(L(3)+7) / 8\)
\(\mathrm{L}(1)=25+\mathrm{L} \mathrm{L}, *\) ，
RETUR！

\section*{6．21．7（Continued）}

\section*{2010 SOリIf：lUt}

IF（ICOV．NL，1）RL＇iv！R＂

IF（V）LY．L？．0．0）GO \(\mathrm{CH} 201!\)



291の ロコ？＝ロup－1015＊？1
RLTOP：

\(\mathrm{L} \mathrm{l}=\mathrm{L}(1)\)
\([2=5(2)\)

こDIJ＝．jา．ア・․․（．1AA＊4．／2I）

＇iLalpl＝ir（Ll）




－． \(152=133(\)（L2）\() *\) Rilota
13＝R．，rLi＊C？Fv
i32＝D（ASFP）＊JF．．IL


DXV＝D（D）LPAz \(/ 2.3\)






+ DELT／（D（ACVF）＊＊2＊RHOIL））

+ つELT／（D（MCVF）＊＊2＊ネHOIT，）



［．2－L．（1）
\(\mathrm{L} \mathrm{l}=\mathrm{F},(\) ？\()\)
\(k 3=0.0\)
． \(3=7.0\)
CT．\(=\mathbb{R} 1\)
r． \(1=122\)
に2＝CI•
\(\therefore 12=0.0\)
（0）P） 3009
\(3075: 3=\)（ACVF）＊D（Uふ）
k 4 \(\boldsymbol{2}=\mathrm{Fi} 3\)
\(\mathrm{K} 4=0.0\)
3）i： 3003

\subsection*{6.21 .7 (Continued)}
```

3003 FA=0.0
.15=0.0
R4?=0.0
3009 CONTINUL
A(1,1)=B1+A 3+32+R3+R1+F.InSS*CPFW/DELT+R 12+A5
A(i,2)=-B1
\lambda(1,3)=-32
A(2,1)=-31
A(2,2)=D(V,IASS)*CPVN/DLLT+IN1+R2+B1+33
A(2,3)=0.
\(3,1)=-32
1(3, 2)=0.
A(3,3)=D(P.ASS) *CPPN/DLL,T+32
3(1)=(A3+R4+R3+A5)*TF(L1)+RaFLl*CPFiN*D(PLIAC)*DCAPT1

```

```

 3(2)=D(V.iA3S)*CPV.* D'r(TVW)/DETT+R1*TM(LI)+I*2*
 + Tr:(L?)+33*D(\GammaN)+CIP*D(FS'N)-CI!?*(DN(TV.1)+460.)
 + **4+RIFLl*CPEN*(1.-D(PLRC))*DCAPT1
 : (3)=D(D.AASS)*CPRN*DT'(TVP)/DLLTT
 CNLL SIIUH'L(A,B,3,IERROR)
 TF(L2)=3(1)
 TC(L1)=3(2)
 TC(L,2)=3(2)
 DM(IVF)=B(l)
 DI(TVM.) =3(2)
 DT(PVP) =B(3)
 PlomJRN
 L.lD
    ```


\subsection*{6.22 SUBROUTTNE TVALV22}

Subroutine TVALV22 describes a generalized four-way valve which can be a segment of a servo actuator (connected to it by lines) or control any servo or utility type Eunction, as shown in Figure 6.22-1.

The valve position is derived from input data, tabulated versus time. The actual position is obtained using linear interpolation between the nearest two data inputs.

The valve orifice areas are derived using a variable law which can effectively describe leakage, open center, underlap and overlap conditions, with various pressure gains.

A fluid volume in the valve is associated with each connecting line. The subroutine calculates the temperatures of the four fluid volumes and the temperature of the valve wall.


FIGURE 6.22-1

TYPE NO. 22 FOUR-WAY VALVE

\subsection*{6.22.1 Math Model}

The thermal math model includes heat transfer to and from four connecting line segments, as shown in Figure 6.22-2. The valve is


FIGURE 6.22-2
VALVE NODE REPRESENTATION
represented by four fluid nodes and one wall node, and each line is represented by one fluid and one wall node, DT(TVW). The temperatures of the valve fluid volume downstrear or upstream of each connecting line segment are \(\mathrm{TO}(1), \mathrm{TO}(2), \mathrm{TO}(3)\), and \(\mathrm{TO}(4)\). The temperatures of the fluid and wall nodes of each connecting line segment are TF (Ll) Lhrough TF(L4) and TW(L1) through TW(L4). In a four way valve the fluid can enter two lines and can leave two lines. To understand the math model
let us consider the case where the fluid enters connection 1 , into volume 1, flows to volume 2 , leaves connection 2 , fiows through part of the system, reenters connection 3, into volume 3, flows to volume 4, and leaves connection 4. These paths are shown in Figure 6.22-3. The fluid in the four nodes are affected by the fluid in two other nodes. As shown, the fluid in volume 1 is affected due to losses to volume 3 and gain from volume 4. The other fluld volumes are affected similarly.


FIGURE 6.22-3

FLUID FLOW PATHS

Equations can be witten for fluid node 1 through 4 , and for the valve wal1 node.

The first four equations represents four modes of heat transfer to and from the volume fluid nodes.
1. Heat transfer due to mass transfer into the volume from upstream of the volume

RMF(1) * CPFN (TF (L1) - TO (1)) for volume 1
RMF (3) * CPFN (TF (L1) - TO(3)) for volume 3
zero for volumes 2 and 4
where \(\operatorname{RMF}(1)\) is equal to \(Q(L 1) *\) RHO11, etc.
2. Conduction to and from the fluid node in the connecting line segment.
\(R(1) *(T F(L(1)-T O(1))\) for volume 1
\(R(3) *(T F(L(3)-T L(3))\) for volume 3
where \(R()\) is the conduction coefficient
and is equal to \(C F /(D \times F(L(I) / A C F(L(I))+\)
\(D \times V F / D(A C V F)+R M F(I) * D E L T /(D(A C V F) * *\)
\(2 *\) RHOLL) ( where \(I * 1\) for line 1 and 3 for line 3
This term is zero for nodes 2 and 4
1. Heat transfer due to mass transfer into the volume from the other three fluid volumes.
```

RMD(4) * CPFN (TO(4) - TO(1)) for volume 1
RMD(1.) * CPFN (TO(1) - TO(2)) for volume 2
RMD(5) * CPFN (TO(1) - TO(3)) for volume 3
MMD(6) * CPFN (TO(2) - TO(4)) for volume 4

```
where \(\operatorname{RMD}(1)\) * CPFN is equal to \(Q I(1) * C P F N * R H O T L\) etc.
QI (5) and QI (6) are the leakage flows between volumes one and
three, and two and four, respectively, and are equal to zero
4. Convection with the wall
\[
\begin{aligned}
& U(4) * A(1) *(D T(T V W)-T O(1)) \text { for volume } 1 \\
& U(1) * A(2) *(D T(T V W)-T O(2)) \text { for volume } 2 \\
& J(5) * A(3) *(D T(T V W)-T 0(3)) \\
& U(2) * A(3) *(D T(T V W)-T O(3)) \text { for volume } 3 \\
& \square(3) * A(4) *(D T(T V W)-T O(4)) \\
& U(6) * A(4) *(D T(T V W)-T O(4)) \text { for volume } 4
\end{aligned}
\]

Where \(U(3)\) is a heat transfer coefficient for volume flow rate \(\operatorname{RMD}(3)\) and \(\mathrm{A}(4)\) is the surface area of volume four and the valve walls equal to \(D(A S F V)\) (or really \(D(A S F V) / 4.0)\).
5. Hf \(t\) addition due to a pressure drop experienced by the fluid.
```

DCAPT (1) * RMD(1) * CPFN for volume 2
DCAPT (2) * RMD(2) * CPFN
DCAPT (5) * RMD(5) * CPFN
DCAPT (3) * RMD(3) * CPFN
DCAPT (6) * RMD(6) * CPFN
for volume 4
DCAPT (4) * RMD(4) * CPFN for volume 1

```

Where DCAPT(2) is the heat add to volume two due to the pressure drop betseen line one and line two equal to (1.0/RHOIL) *
```

ABS (P(L1) - P(L2)) / (CJ * CPFN)

```

The heat transfer terms combine to produce four equations for heat balance for the valve four fluid nodes:

For volume one,
\[
\begin{aligned}
& \frac{\mathrm{MCD}}{\mathrm{DELT}} *(\mathrm{TO}(1)-\mathrm{TO}(1) \mathrm{OLD})= \operatorname{RMF}(1) * \operatorname{CPFN}^{*}(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{TL}(1))+ \\
& \mathrm{R}(1) *(\operatorname{TF}(\mathrm{~L} 1)-\mathrm{TO}(1))+\mathrm{RMD}(4) * \mathrm{CPFN} * \\
&(\mathrm{TO}(4)-\mathrm{TO}(1))+\mathrm{U}(4) * A(1) *(\mathrm{DT}(\mathrm{TVW}) \\
&-\mathrm{TO}(1))+\operatorname{DCAPT}(4) * \mathrm{RMD}(4) * \mathrm{CPFN}
\end{aligned}
\]

For volume two,
\[
\begin{aligned}
& \frac{\mathrm{MCD}}{\mathrm{DELT}^{*}} *(\mathrm{TO}(2)-\mathrm{TO}(2) \mathrm{OLD})=\mathrm{RMD}(1) * \mathrm{CPFN} *(\mathrm{TO}(1)-\mathrm{TO}(2))+ \\
& \mathrm{U}(1) * \mathrm{~A}(2) *\left(\mathrm{DT}^{\prime}(\mathrm{TVW})-\mathrm{TO}(2)\right)+ \\
& \mathrm{RMD}(1) * \mathrm{CPFN}+\mathrm{DCAPT}(1)
\end{aligned}
\]

For volume three,
\(\frac{\mathrm{MCD}}{\text { DELT }}:(\mathrm{MN}(3)-\mathrm{TO}(3) \mathrm{OLD})=\operatorname{RMF}(3) * \mathrm{CPFN}^{2}(\mathrm{TF}(\mathrm{L} 3)-\mathrm{TO}(3))+\) \(\mathrm{R}(3) *(\mathrm{TF}(\mathrm{L} 3)-\mathrm{TO}(3)+\mathrm{RMD}(2) * \mathrm{CPFN} *\) (TO (2) \(-\mathrm{TO}(3))+\mathrm{RMD}(5) * \mathrm{CPFN} *(\mathrm{TO}(1)-\) \(\left.\mathrm{TO}\left(?^{2}\right)\right)+\mathrm{U}(2) * \mathrm{~A}(3) *(\mathrm{DT}(\mathrm{TVW})-\) \(\mathrm{TO}(3))+\mathrm{U}(5) * \mathrm{~A}(3) *(\mathrm{DT}(\mathrm{TVW})-\mathrm{TO}(3))+\) DCAPT (2) *RMD (2)*CPFN + DCAPT \(^{\prime}(5) *\) \(\operatorname{RMD}(5) * C P F N\)

For the fourth fluid volume,
\[
\begin{aligned}
\frac{\mathrm{MCD}}{\mathrm{DELT}}(\mathrm{TO}(4)-\mathrm{TO}(4) \mathrm{OLD}) & =\operatorname{RMD}(3) * \operatorname{CPFN}(\mathrm{TO}(3)-\mathrm{TO}(4))+\operatorname{RMD}(6) * \\
& \operatorname{CPFN}^{(\mathrm{TO}(2)-\mathrm{TO}(4))+\mathrm{U}(3) * \mathrm{~A}(4) *} \\
& (\mathrm{DT}(\mathrm{TVW})-\mathrm{TO}(4))+U(6) * \mathrm{~A}(4) *(\mathrm{DT}(\mathrm{TVW})- \\
& \mathrm{TO}(4))+\operatorname{DCAPT}(3) * \operatorname{RMD}(3) * \operatorname{CPFN}+\mathrm{DCAPT}(6) \\
& * \operatorname{RMD}(6) * \operatorname{CPFN}
\end{aligned}
\]
where all MCp's are equal to \(\mathrm{FMASS} * \mathrm{CPFN}\)

The fifth equation represents three modes of heat transfer relative to the valve wall node;

1(a) Convection with all six internal volume flow rates
\[
\mathrm{U}(4) * \mathrm{~A}(1) *(\mathrm{rO}(1)-\mathrm{DT}(\mathrm{TVW}))+\mathrm{U}(1) * \mathrm{~A}(2) *
\]
\((\mathrm{TO}(2)-\mathrm{DT}(\mathrm{T} \times \mathrm{W}))+(\mathrm{U}(2)+\mathrm{U}(5)) * A(3) *\)
\((T O(3)-D T(T V W))+(U(3)+U(6)) * A(4)\)
* (TO (4) -DT'(TVW))
where the U's and A's were defined previously
1(b) Convection with the external atmosphere
\(D(U A V) * D(A S A V) *(D(T A)-D T(T V W))\).
\(D(U A V) * D(A S A V)\) is the convection heat transfer coefficient between the wall and the atmosphere.
2. Conduction with all four connecting lines
\(R I *(T W(L)(I))-D T(T V W))\)
where \(R I\) is the conduction coefficient between
line wall segment \(I\) and the valve wall and is equal to,
\(1.0 /(\mathrm{DXF}(\mathrm{L}(\mathrm{I}) /(\mathrm{ACS}(\mathrm{LI}) * \mathrm{C}(\mathrm{LI})+\mathrm{DXVW} /(\mathrm{ACVW} * \mathrm{CV}))\)
and I designates the Ith (connection) number.
3. Radiation exchange with the surrounding scructure is CIP* (D (TST) \(-(D T(T V W)+460) * * 4\).\() .\) CIP is the radiation coefficient equal to STCMA*SHAPF* EPSION*D (ASAV).

These heat transfer reactions combine to produce an equation for the heat balance in time DELT, for the valve wall node.
\[
\begin{align*}
\frac{M C D}{D E L T} *(D T(T V W)-D T(T V W) & O L D)= \\
& U(4) * A(1)+(T O(1)-D T(T V W))+ \\
& (U(1) *(A 2) *(T O(2)-D T(T V W))+  \tag{5}\\
& D T(T V W) ;+(\mathrm{IV}(3)+U(6)) * \\
& A(4) *(T O(4)-D T(T V W))+R 1 * \\
& (T W(L I)-D T(T V W))+\sum_{i=2}^{4}(R I * \\
& (T W(L I)-D T(T V W))+D(U A V) * D(A S A V) * \\
& (D(T A)-D T(T W V))+C I P *(D(T S T))- \\
& C I P *(D T(T V W)+460) * * 4
\end{align*}
\]
where \(M C p\) is equal to \(\mathrm{D}(\mathrm{VMASS}) * C P V W\)
A thermal model of the above heat transfer terms for the valve is shown in Figure 6.22-4. Equations (1) through (J) are solved for the appropriate temperatures.

\section*{CALCULATION OF ORIFICE AREAS}

Spool and sleeve type servo valves can have a variety of orifice configurations, the most common of which are round holes and square or rectangular slots.

Because of radial clearances between the spool and sleeve, there is usually a leakage flow when the orifice is completely covered. This leakage tends to round the ends of what would otherwise be a linear flow versus spool position characteristic. In order to simplify the flow calculations, we have assumed that the valve area is an equivalent area which allows the orifice equations to be used at all times.

To obtain the valve area, for a given valve position, a characteristic curve is generated based on the projected cut-off position, the projected \(\max\) open position and the max valve area.


THERMAL MODEL

The maximum valve area is combined with the discharge coefficient and the SQRT(2/RHO) to give an orifice resistance. The formula used to generate the characteristic curve is
\[
X=(.5+X T /(1+\operatorname{ABS}(X T * 2) * * Y) I T(1 / Y)
\]
where \(0 \leq X \leq 1.0\) for all values of \(X T\).
when \(Y\) is large, ie. 64 , the characteristic curve is almost a straight line between projected cut-off and projected maximum opening. Family of curves for different values of \(Y\) is shown in Figure 6.22-5.

\section*{©.22.2 Assumptions}
1. The piston is not considered a node since it is only a storage device and becomes the same temperature as that of the fluid.
2. The atmospheric and structure temperatures remain constant.
3. All four fluid volumes are the same volume, each \(1 / 4\) of the total volumes inside the valve.
4. The interface conductance between the lines and the valve walls is infinite, since the limiting condition is conduction in the line itself.
5. The emissivity of the valve walls remain constant at .3, which
is the value for steel.
6. The temperatures of the fluid leaving the valve are equal to the fluid node temperatures calculated, \(\mathrm{TO}(2)\) to \(\mathrm{TO}(4)\).
7. Complete fluid mixing occurs in the fluid volume.

\subsection*{6.22.3 Computational Methods}

\section*{SECTION 1000}

The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

VALVE STROKE IN
FIGURE 6.22-5
EFFECTIVE VALVE AREA CHARACTERISTICS
\(z^{\text {NI }}\) vady antva antiogata

\section*{SECTION 2000}

A test is made to determine if a port is not dimensioned, which can happen if it is a 3-way or 2-way valve. Tf the area is zero or XT is zero, XI' is set to .0001 to prevent the computation blowing up when XT is used in the dencminator.

The stead; state section is straight forward, the valve pressure drop is subtracted from the upstream pressure PUP for each call to a particular connection.

\section*{SECTION 3000}

Property values are assigned. Dimensions and coefficients are calculated. The flow direction is determined. (The program is set up with the flow entering connection line one (LI) and leaving through connection line four (L4). During the calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line one). Some coefficients are then recalculated if the flow is reassigned. A \(5 \times 5\) matrix is loaded and the mathematical equations are solved for \(\mathrm{TO}(1)\) thru TO(4) and DT(TVW) and stored in the B computational array. The calculated values are assigned to their proper storage lucations and the boundary conditions assigned to arrays (TC and TF) in common /TRANS/.

\subsection*{6.22.4 Approximations}
1. The valve wall is only one node and is all at the same temperature.
2. The heat transfer coefficients are calculated on the velocity
in the valve, by the function subroutine, UFW.
3. The heat transfer coefficient, external to the valve wall, is constant and input by the user.
4. Al. areas and distances are approximations based on the volume, the mass, or input data that is appropriate.

\subsection*{6.22.5 Limitations}

The current limitation of TVALV22 is the possible need for a variable orifice coefficient, particularly in the overlap region.

An undesireable feature is the need for up to four nodes at the junctions with the lines when all the parts have a significant flow. Leakage flows between connect was 1 and 3 , and 2 and 4 and not computed. 6.22.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline \(A^{\prime}\) ) & Computational Array & - \\
\hline AAA & Dummy variable & - \\
\hline D (ACVF) & Cross sectional area of the valve fluid & IN \({ }^{2}\) \\
\hline ACVN & Cross sectional area of the valve walls & \(\mathrm{IN}^{2}\) \\
\hline ADD & Dummy variable & - \\
\hline D (ASAV) & Surface area - atmosphere to valve & IN \({ }^{2}\) \\
\hline D (ASFV) & Surface area - fluid to valve walls & IN \({ }^{2}\) \\
\hline A1, AVG & Dummy variables & - \\
\hline B ( ) & Compliational array & - \\
\hline CIP & Dummy variable & - \\
\hline CJ & Mechanical equivalent of heat & \(\mathrm{FT}^{\text {-LB }} \mathrm{m}^{\text {/ WATTS-SEC }}\) \\
\hline CPVW & Specific heat of the valve & WATTS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\) \\
\hline CV & Thermal conductivity of the valve & WATTS / IN \({ }^{\circ} \mathrm{F}\) \\
\hline DCAPT ( ) & Heat added to fluid due to pressure drop & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline DDD & Dummy variable & - \\
\hline D (DELTAX) & Distance from entrance to exit or valve openings & IN. \\
\hline DXVF & Distance from a fluld node to the interiace with a connecting line & IN. \\
\hline DXVW & Distance from node to interface of valve and 1 ines & - \\
\hline EPSION & Emissivity factor & - \\
\hline FAC & Dummy variable & - \\
\hline FMASS & Fluid mass of each node & \(2 \mathrm{~B}_{\mathrm{m}}\) \\
\hline I, TERR, IJ, IS & Dummy variables & - \\
\hline D (ITF) & Initial fluid temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D (ITV) & Initial valve wall temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline KTYPE & Dumny variable & - \\
\hline D (LEAK5) & Laminar leakage coefficient & PSI/CTS \\
\hline D (LEAK6) & Laminar leakage coefficient & PSI/CIS \\
\hline \[
\begin{aligned}
& \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4, \\
& \mathrm{M} 5, \mathrm{M} 6, \mathrm{NM}
\end{aligned}
\] & Dummy Variables & - \\
\hline D (MTYPE) & Value material type & - \\
\hline D (PERC) & Percentage heat added to fluid due to pressure drop & - \\
\hline QI( ) & Array of internal volume flow rates & CIS \\
\hline RHOLL & Fluid density & \[
\mathrm{LB} \mathrm{~m}_{\mathrm{m}} / \mathrm{IN}^{3}
\] \\
\hline RHOV & Density of the valve mass & \[
L B_{\mathrm{in}} / \mathrm{LN}{ }^{3}
\] \\
\hline \(\mathrm{RMI}(\mathrm{)}, \mathrm{RMF}(\mathrm{)}\) & Computational arrays & - \\
\hline \[
\begin{aligned}
& \mathrm{RM}!\mathrm{I}, \mathrm{R} 1 \\
& \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4
\end{aligned}
\] & Dunty variables & - \\
\hline SHAPF & Shape factor val.ve case to surrounding structure, constar:t, . 96 & - \\
\hline SIGMA & Stefan-Boltzmann constant for radiation & WATTS \(/ \mathrm{IN}^{2}-\) \\
\hline
\end{tabular}
\[
6.22-1.4
\]
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline D (TA) & Temperature of the surrounding atmosphere & \({ }^{\circ} \mathrm{F}\) \\
\hline TEMP1, TERM & Dummy variables & - \\
\hline T0(1) & Array of valve fluid nede cemperatures & \({ }^{\circ} \mathrm{F}\) \\
\hline T (TST) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TVW) & Temperature of the valve walls & \({ }^{\circ} \mathrm{F}\) \\
\hline U ( ) & Heat transfer coefficients internal to the valve walls & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (UAW) & Heat transfer coefficient atmosphere to valve walls & WATTS / In \({ }^{2}-\mathrm{F}\) \\
\hline D (VMASS) & Valve mass & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline D (VOLUME) & Volume inside valve & IN \({ }^{3}\) \\
\hline XT, XV & Dummy variables & - \\
\hline
\end{tabular}

\subsection*{6.22.7 S:sbroutine Listing}








DIH!CIN \(D(1), D C(1), D D(1), L(1)\)
 \(+:(4,6), 01(6), 1 ?(6)\)

+ ITF, VOLU., , ACVE



+ , L.AA: 5/3l/, LLILG/32/

Min 'VV/17/


\(c^{100 n}\) COMTI vL




).





\(\mathrm{LL}=(\mathrm{L}(5)+7) / 3\)
L. 7 ) \(=33+\mathrm{L}\). * ?
\(L(6)=33\)
\(K T Y P_{L}=P\left(, \because Y P_{L}\right)+.711\)


\(C V=\) ©
Пつ 171) \(I=1,4\)
\(\mathrm{LI}=\mathrm{L}\) (I)
\(\mathrm{iC}(\mathrm{L}, \mathrm{I})=\mathrm{D}(\mathrm{I}: \mathrm{V})\)
\(\Gamma l^{\prime}(I, I)=R(I N F)\)
\(1010 \mathrm{PO}(\mathrm{I})=\) ( T (W)
\(\operatorname{DR}(\because \sqrt{n})=D(T \mathrm{CV})\)
\(O\left(A . S P^{\prime}\right)=D(\Lambda . S P V) / 4 . n\)


RもTURㄴ․
2000 CJU'IITJUL
\(\mathrm{J}=\mathrm{A}^{*} \mathrm{ICON}-3\)

\section*{6．22．7（Continued）}

\(X T=\Gamma(N+1)-D(N)\)
\(\lambda V G=(0(N)+)(i+1)) / 2\) 。
IF（XT．LO．0．0）Xi＇＝．0001
I：（FAC．LL．1）．）FAC＝．00001．
CALL INTERF（IIIAL，D（L（（）），D（L（7）i，10，L（5），XV，It，RR）
\(X T=(X V-N V G) / X I\)

\(+1))+.0001\)

\(3 \cap 0\) FORMAT（1）X，I1才，万L．12．5）
\(P \cup P=P U P-2 O^{*}(\cap A / T E \Omega, 1) * * 2\)
n（ICO～）\(=01\)
K！RURN
\(300 n\) COMATAUU
\(\mathrm{L} 1=\mathrm{L}(1)\)
\(\mathrm{L} 2=\mathrm{L}(2)\)
CPV．\(=F R O P(\because T Y P L, 1)\)
\(\mathrm{FK} O \mathrm{OV}=\mathrm{PKOR}(\mathrm{KTYPL}, 2)\)
CV＝PR（OP（K＇SYRL，3）
L． \(3=L(3)\)
\(\mathrm{L}, 4=\mathrm{L}(4)\)
？\(I(5)=(P(I, 1)-P(i .3)) / D(\) Li．is． 5\()\)
OI \((5 i=(P(L, 2)-R(5,4)) / D(L 6,1<6)\)
2I（「）\(=0.0\)
\(\mathrm{I}(\overline{0})=9.0\)
\(\mathrm{TO}(5)=\mathrm{TO}(1)\)
\(\mathrm{TO}(5)=\mathrm{TO}(?)\)

\(\left.\left.+\mathrm{H}_{\mathrm{p}}(\mathrm{L} 3)\right) / 3.\right)\)
\(\therefore 1=0(\operatorname{VAV}) * D(i S A J)\)




DVリF＝D（DLLIAX）／4．
\(K l=1.0 /\left(D \times F(L 1) /(A C . H(L 1) * C(L i))+J X V, 1 /\left(A C V . V^{*} C V\right)\right)\)


\(\mathrm{F} A=1.0 /\left(\mathrm{DXF}(\mathrm{L} A) /\left(A C_{.1}(L 4) * C(L 4)\right)+\cap X V: i /\left(A C V_{i r} * C V\right)\right)\)
D） \(3003 \quad 1=1,4\)
DO \(3003 \quad \mathrm{~J}=\mathrm{i}, 3\)
3003 マ．،D \((\mathrm{I}, \mathrm{J})=0.0\)
DO 3005 \(I=1,5\)
\(203006 \quad \mathrm{~J}=1,5\)
\(\Lambda(I, I)=0.0\)
\(3005.3(I)=0.0\)
\(\triangle A A=D(\lambda C V F)\)

\(.15=4\)

\section*{6．22．7（Continued）}
```

 ./5=`
 IS=1
 3009 D0 3400 T= 1,4
N=L(I)
ROIGIL=33r.4*_..IO(IO(I),P(N))
R.a(I)=?(*)*MHOIL
TP(R|F(I).LI.0.0) R.iF(I)=0.0
(I)=CE/(DX\Gamma(L(I))/ACF(LS(I))+DXVF/D(ACVE)+1,F(I)*
+ DLL[/(:(ACVF)**2*R(HOIL))
3193 '{.':= II(I)*RHOIL
IF(fir.GL.O.0) 'マ, r=0.n
U(I,I)=UF..(A.\A,DDD,A.3S(`I(I)),TO(I),D(N))
\# %l=DL(?V.j)
IF(i,IN.GL.0.O) O(I,I)=0.O
r.|(I, L)=NSE(R|, (2)

```

```

 I*(K., [.T,r.n.') R.v\Gamma=0.0
    ```


```

 R..r)(I, 2)=R.1T
 l?(I.t\cap.3.0R.I.&\cap.4) 30 TO 3200
    ```

```

 I*(,'.G*.).0) Sar=0.0
    ```

```

 IF(1.1T.SL.0.7) ?(I,N%)=0.0
 R.a(I, 3)=,135(\Omega,1T)
 *) 330n
 32のn R.\&=9I(..5)*{.|OILL

```


```

 IF(i,i!.L.t.n.n) 'J(I,.,反)=0.n
 P.،?(I, 3)=\n@(:.,T)
 337n この`!土INJL

```


```

 IJ:= I+2
 T~(I.,吅.?) IJ=i-2
 A(I, I,J)=-2.,D(I, 3)*CPF I
 I J=I +1
 IW(I,L.).4) IJ=1
 . = ra(TT)
 A(I, i,S)=-R,o(I, l)*CPFN
    ```

```

 -)(I, 15)=-2.:D(I, 2)*CPF:
 :=L(.5)
 ECSPf(I,.:5)=(1.0/KHCIL)*.\jS(P(.a)-P(:a))/(C.J*CPE::)
 .i=L(I+?)
 IF(I. 狺, 2) i = L(I - 2)
    ```

```

 A(I,5)=(-J(I,I)-U(I,.15)-U(I,.,6))*D(ASEV)
 BEST P
 *m年年
    ```

\section*{6．22．7（Continued）}

\(+\pi .1 D(I, 2) * C P F N * D C A P r(I, 15) * D(P L R C)+R * i)(I, 3) * D(P L R C) * D C A P T(I, 16) *\)
\(+\operatorname{CPFiSRaF}(I) * C P F M * T F(I(I))+R(I) * T F(L I))\)
    \(A(5, I)=(-1 J(I, I)-J(I, .15)-U(I, 46)) * D(\Lambda 3 F V)\)
    \(A(5,5)=\Lambda(5,5)-A(5, I)\)
    \(\therefore 5=I\)
    \(.!\varsigma=. i 6+I S\)
    \(I j=-I S\)

3400 COSTINUE
        \(\therefore(5,5)=A(5,5)+\partial(V, 1 A S S) * C P V i / O C L T+R 1+22+33+54+11\)


    \(++A 1 * D(T \lambda)\)

    DO \(3500: 1:=1,4\)
    \(\therefore 1=[\) (.1)
    \(\mathrm{TO}(:)=\mathrm{TP}(N .1)\)
    \(\square F(M, 1)=E(A)\)
    \(\operatorname{IF}(C(N 山) \cdot G L \cdot 0.0) 3^{5}(N 1)=10(, ~ 1)\)
    \(\operatorname{TO}(1)=.3(1)\)
\(3500 \quad \mathrm{PC}(\sqrt{2})=.3(5)\)
    \(\operatorname{Dr}\left(T \vee \mathrm{~N}^{2}\right)=5(5)\)
    Fじ! U: 2 i
    L \(\because \mathrm{D}\)

\subsection*{6.31 SUBROUTINE TCVAL31}

TCVAL31 simulates a simple undamped check valve as shown in Figure 6.31-1. Although the actual mechanical configurations of these values vary greatly, the basic method of operation remains the same. The subroutine calculistes the valve wall temperature, the valve fluid temperature, and the valve poppet temperature.


FIGURE 6.31-1
TYPE NO. 31 CHECK VALVE

\subsection*{6.31.1 Math Mode1}

A check valve has a varlabie geometry orifice, which is opened for forward flow and closed for reverse flow. The thermal math model for the check valve includes heat transfer to and from two connecting line segments, one upstream and one downstream. Seven nodes are cunsidered: three fluid nodes, three wall nodes, and one poppet node.

Temperature nodes are indicated in Figure 6.31-2. For forward flow the temperatures of the upstream line segment wall and fluid nodes are TW(LI) and TF (L1), the temperatures of the valve wall and fluid nodes are DT(TV) and DT(TVF), the temperature of the poppet node is DT(TP), and the temperatures of the downstream line segment wall and fluid nodes are \(\mathrm{TW}(\mathrm{L} 2)\) and \(\mathrm{TF}(\mathrm{L} 2)\). Three heat balance equations are written to solve for DT(TV), DT(TVF), and DT(TP), using the valve and line material properties and dimensions, the atmosphere and strunture temperatures external to the valve, and TW(L1), TW(L2), and TF (L1). (Note \(\operatorname{TF}(\mathrm{L} 2)=\) DT'TVF), see assumptions). One equation is a heat balance for the valve fluid node. The second equation is a heat balance for the valve wall node. The third equation is a heat balance for the poppet.


FIGURE 6.31-2 CHECK VALVE NODE REPRESENTATION

The first equation represents three modes of heat transfer relative to the fluid node:
1. Heat transfer due to mass transfer into tine valve from upstream of the valve
B4 * (TF (L1) - ET(TVF))
where \(B 4\) is equal to \(\operatorname{RMF}(1) * C P F N\)
2. convection to or from the valve walls and poppet

B1 * (DT(TV) - DT (TVF))
B2 * (DT (IP) - DT(TVF)) respectively.
where B1 and B2 are convection coefficients and are equal
to UFWIL * \(\mathrm{D}(\mathrm{ASFV})\) and UFNIL * D (ASFP)
3. heat addition due to a pressure drop across the valve
\[
\begin{aligned}
& \text { B4 * DCAPT * } D(\text { PERC })=1.0 / \text { RHOTL* }(P(L 1)-P(L 2)) / \\
& (C J * C P F N) * D(P E R C) * B 4
\end{aligned}
\]

If the fluid experiences a substantial pressure drop across the valve (greater than 100 psi ) then there is heat added directly to the fluid due to this pressure change.

The above heat transfer terms are combined to produce the equation for heat balance for the valve fluid node:
\[
\begin{align*}
& \begin{aligned}
& \frac{\mathrm{MCD}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TVF})-\mathrm{DT}(\mathrm{TVF})_{\mathrm{OLD}}\right)= \mathrm{B} 4 *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TVF})) \\
&+\quad \mathrm{BL} *(\mathrm{DT}(\mathrm{TV})-\mathrm{DT}(\mathrm{TVF}))
\end{aligned}  \tag{1}\\
& +\Delta L^{\dot{x}}\left(\nu^{\prime \prime} \mathrm{L}(\mathrm{IF})-\mathrm{JT}(\mathrm{IVF})\right) \\
& + \text { B4*DCAP'L * D(PERC) }
\end{align*}
\]
where \(M C p\) is equal to FMASS * CPEN
The second equation represents three modes of heat transfer relative to the valve wall node:
1. cunduction to or from the upstream and downstream line wall nodes
\[
\begin{aligned}
& \mathrm{R} 3 *(\mathrm{TW}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TV})) \\
& \mathrm{R} 4 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TV}))
\end{aligned}
\]
where \(R 3\) and \(R 4\) are the conduction coefficients are equal to \(1.0 /(\operatorname{DXF}(\mathrm{L} 1) /(\mathrm{ACF}(\mathrm{L} 1) * C(\mathrm{~L} 1))+\mathrm{DXV}(\mathrm{ACV} * \mathrm{CV}))\)
where \(I=1\) for \(R 3\) and 2 for \(R 4\)
2. (a) convection to or irom the fluid in the valve

B1 * (DT(TVF) - DT(TV))
wher: B1 was described previously
2. (b) convection to or from the external atmosphere

B3 * (D (TA) - DT(TV))
where \(B 3\) is the convection coefficient and is equal to \(D(U A V) * D(A S A V)\)
3. radiation exchange with the surrounding structure
\[
\mathrm{CIP} *(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TVW})+460) * * 4)
\]
where CIP is the radiation coefficient and is equal
to SIGMA * SHAPF * EPSION * D(ASAV)
These heat transfer modes are combined to produce the equation for heat balance for the valve wall node.
\[
\begin{align*}
& \frac{M C D}{D E L T}\left(D^{\prime}(T V)-D T(T V)_{O L D}\right)=B 1 *\left(D^{\prime} T(T V F)-D T(T V)\right)+R 3 *(T W(L 1)-D T(T V)) \\
& +\mathrm{R} 4 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TV}))+\mathrm{B} 3 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TV}))  \tag{2}\\
& + \text { CIP*D (TST) - CIP* (DT (TV) }+460 .) * * 4
\end{align*}
\]
where \(\quad M C p\) is equal to \(D(V M A S S) *\) CPVN

The third equation represents a heat balance for the poppet:

where B 2 is a convection coefficient and was described previously, and MCp is equal to \(D(T\) PMASS \() * C P P N\)

Equations (1), (2), and (3) are solved for the appropriate temperatures.

For reverse flow as shown in Figure 6.31-3 for the connecting lines are reversed. Three equations can also be written to solve for DT(TVF), \(\mathrm{DT}(\mathrm{TV})\) and \(\mathrm{DT}(\mathrm{TP})\).


FIGURE 6.31-3
NODE REPRESENTATION FOR REVERSE FLOW

The first equation represents two modes of heat transfer relative to the valve fluid node:
1. conduction to or from upstream connecting line
\[
R I *(D T(T V F)-T F(L 1))
\]
where \(\quad\) R1 is the conduction coefficient and is equal to \(\mathrm{CF} /(\mathrm{DXF}(\mathrm{L} 1) / \mathrm{ACF}(\mathrm{L} 1)+\mathrm{DXV} / \mathrm{ACFV}+\mathrm{RMF}(1) * \mathrm{DELT} /(\mathrm{ACVF}\) \(* * 2 *\) RHOLL) \()\)
2. convection to or from the valve wall and poppet nodes respectively
\[
\begin{aligned}
& B 1 *(D T(T V)-D T(T V F)) \\
& B 2 *\left(D^{\prime} T(T P)-D T(T V F)\right)
\end{aligned}
\]
where \(\quad B 1\) and B2 were defined previously
The above heat transfer modes are combined to produce the heat balance equation for the valve fluid node when flow is by the valve.
\[
\begin{align*}
\frac{M C P}{D E L T}_{\mathrm{ME}^{2}\left(\mathrm{DT}(\mathrm{TVF})-\mathrm{DT}(\mathrm{TVF})_{O L D}\right)}= & \mathrm{BI} *(\mathrm{DT}(\mathrm{TV})-\mathrm{DT}(\mathrm{TVF})) \\
& +\mathrm{BI} *(\mathrm{DT}(\mathrm{TP})-\mathrm{DT}(\mathrm{TVF}))  \tag{4}\\
& +\mathrm{RL} *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TVF})
\end{align*}
\]
with all terms previously defend.
The second equation is the same as Equation (2) for a heat balance for the valve wall node.

The third equation includes convection between the poppet, and the downstream line fluid node
\[
\begin{align*}
\frac{M C p}{D E L T} *(D T(T P)-D T(T P) O L D) & =B 2 *(D T(T V F)-D T(T P)) \\
& +B 5 *(T F(L 2)-D T(T P) \tag{5}
\end{align*}
\]
where \(\begin{gathered}B 2 \text { was defined previously and } B 5 \text { is equal to } \\ D(U A V) * A C F(L 2)\end{gathered}\)
Equations (2), (4), and (5) are solved for the appropriate
temperatures.

A thermal model of the heat transfer terms for the check valve with forward flow is shown in Figure 6.31-4.


> BN = CONVECTION
> \(B 4=\) FLOW
> \(\mathrm{MnCp}=\) STORAGE
> CIP \(=\) RADIATION
> B4*DCAPT \(=\) GENERATION

FIGURE 6.31-4
THERMAL MODEL
FORWARD FLOW

The hydraulic math model used to calculate the steady state pressure drop assumes a straight line flow/pressure drop characteristic between the cracking pressure and the fully open position. The cracking pressure drop is set equal to the inlet area divided by the spring preload and the slope, DT(5), is set to the change in pressure required to fully open the poppet divided by the flow at that condition which is
\[
\begin{equation*}
\operatorname{DT}(4)=D(1) * C V * \operatorname{SQRT}(D T(2) * A H O() / 2.0) \tag{6}
\end{equation*}
\]
where \(D(1)\) is considered to he the maximum yalve area.
The orifice resistance at the fully open position, is used when the flow exceeds DT(4). Figure 6.31-5 shows graphically how this is done.


FIGURE 6.31-5


\subsection*{6.31.2 Assumptions -}
1. There is no conduction between the poppet and the wall:s since there is little contact area and the poppet is completely submerged in oil
2. The interiace conductance between the valve and line walls is infinite
3. The atmosphere and structure temperatures remain constant
4. The emissivity of the wall material is a constant, . 3
5. No friction is generated when the poppec moves.
6. The fluid exiting from the check valve is equal to DT (TVF)
7. There is complete mixing of the fluids in the fluid volume.

\subsection*{6.31.3 Computational Methods}

\section*{SECTION 1000}

The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

SECTION 2000
This section is called from TLEGCAL via COMPE using CON \#1, if the check valve is connected so that the free flow direction is the same as the positive flow in the leg, or CON \#2 if the valve is in backwards. When the valve is closed
\[
L(3)=1 \text { and } Q S=-1 \text { or }((3)=C \text { and } Q S=1
\]

The value impedance is set at 1.0 E , which is essent lally an open circuit.
When the valve is fully open (ENTR \(=1, Q S=1\), or \(\operatorname{IENTR}=2, Q S=-1\) ) plus \(Q>\operatorname{DT}(4)\), the valve orifice impedance \(D T(3)\) is multiplied by the QA**2 term to obtain a pressure drop used in TLEGCAL.

With the same basic conditions but with Q1 > DT(4) the valve characteristics are assumed to be a constant pressure differential, plus a linear flow/pressure gain.

When the flow guess is negative for CON \#2 the constant differential becomes a pressure rise.

The three modes of the check valve, closed, partially open and fully open will show up in the leg as a pressure drop or rise.

SECTION 3000
Property values are assigned. Dimensions and coefficients are calculated. The flow direction is determined. (The program is set up with the flow entering connection line one (L1) and lcaving through connection line two (L2). During the
calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line one). Some coefficients are then recalculated if the flow is reassigned. A \(3 \times 3\) matrix is loaded and the mathematical equations are solved for \(\operatorname{DT}(T V F), D T(T V)\) and \(D T(T P)\) and stored in the \(B\) computational array. The calculated values are assigned to their proper storage locations and the boundary conditions are assigned to arrays in COMMON/TRANS/.

\subsection*{6.31.4 Approximations}
1. The distance from the valve wall node to the interface of the valve and tube wall is approximated by
\[
D X V=(D(V L E N G T H) / 2.0)
\]
2. The cross sectional area of the valve walls
\[
A C V=D(\text { VMASS }) /(D(\text { VENGTH }) * R H O V))
\]
3. The check valve wall is treated as one node, thus the entire valve is at the same temperature
4. The shape factors is constant at .96 as described in Section 2.0 of this manual.
6.31 .5 Limitations - Not applicable.
6.31.6 Variable Listing
\begin{tabular}{|c|c|c|c|}
\hline Variable & Description & & Dimension \\
\hline A( ) & Computational Array & & -- \\
\hline AAA & Dummy Variable & & -- \\
\hline ACFV & Cross Sectional Area of the Fluid in value & & \(\mathrm{IN}^{2}\) \\
\hline ACV & Cross Section Area of the Valve Wall & & IN \({ }^{2}\) \\
\hline D (ASAV) & External Surface Area & & IN \({ }^{2}\) \\
\hline D (ASFP) & Poppet Surface Area & & IN \({ }^{\text {- }}\) \\
\hline D (ASFV) & Internal Check Valve Surface Area & \(\mathrm{IN}^{2}\) & \(\mathrm{IN}^{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline VARLABLE & DESCRTPITION & DIMENSTON \\
\hline B ( ) & Computational Array & -- \\
\hline \[
\underset{B 5}{B 1}, B 2, B 3, B 4,
\] & Dummy Variables & -- \\
\hline CIP & Radiation Coefficient & WATTS \(/{ }^{\circ} \mathrm{R}^{4}\) \\
\hline CJ & Mechanical Equivalent of Heat & IN-LB \({ }_{m} /\) WATTS-SEC \\
\hline CPPN & Specific Heat of Check Valve & WATT'S-SEC/ \(\mathrm{LB}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathrm{F}\) \\
\hline CPVN & Specific Heat of the Poppe & \[
\text { WATTS }-S E C / L_{m}-{ }^{\circ} \mathrm{F}
\] \\
\hline CV & Conductivity of the Valve & WAYTS/IN- \({ }^{\circ} \mathrm{F}\) \\
\hline DCAPT & Heat Added Ine to Pressure Drop & \({ }^{\circ} \mathrm{F}\) \\
\hline DDD & Dummy Variables & -- \\
\hline DXV & Distance from Valve Wall Mode to Line Wall Interface & IN \\
\hline EPSION & Emissivity Factor & -- \\
\hline FIIASS & Fluid Mass & \(L_{\text {L }}{ }_{m}\) \\
\hline D (ITF) & Initial Fluid Temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D (ITV) & Initial Valve Temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline KTYI'E & Duumy Variable & -- \\
\hline D (M'YPE) & Valve Material Type & -- \\
\hline NTYPE & Dummy Variable & -- \\
\hline D (PERC) & Percentage Heat Added to Fluid Due to \(\Delta\) ? & -- \\
\hline PMASS & Fluid Mass in Valve & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline D (PTYPE) & Poppet Material Type & -- \\
\hline RHOIL & Flujd Density & LBm/IN \({ }^{3}\) \\
\hline RHOV & Valve Wall Density & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} \mathrm{~N}^{3}
\] \\
\hline RMF, R3, R4 & Dunmy Variables & -- \\
\hline SHAPF & Shape Factor, Valve Walls to Surroundings & -- \\
\hline SIGMA & Stefan - Boltzmann Constant & WATTS/IN \({ }^{2}-{ }^{\circ} \mathrm{R}^{4}\) \\
\hline D (TA) & Surrounding Ambient Temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline \[
\begin{aligned}
& \text { TEMP1,TFO, } \\
& \text { TFOO }
\end{aligned}
\] & Dummy Variables & -- \\
\hline DT (TP) & Poppet Temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D(TPMASS) & Poppet Mass & \(\mathrm{LB}_{\text {in }}\) \\
\hline D (TST) & Surrounding Structure Temperature & \({ }^{n} \mathrm{~F}\) \\
\hline DT (TV) & Valve Wall Temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TVF) & Fluid Temperature in the Valye & \({ }^{\circ} \mathrm{F}\) \\
\hline \(D(U \Lambda V)\) & Heat Transfer Coefficient - External to Valve Wall. & WATTS \(/ \mathrm{CN}^{2}-{ }^{\circ} \mathrm{T}\) \\
\hline UFWIL & ```
Heat Transfer Coefficient - Fluid to Valve
Wall
``` & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (VLENGTH) & Valve Length & IN \\
\hline D (VMASS) & Valve Mass & LE \({ }_{\text {m }}\) \\
\hline D (VOLI) & Volume of Fluid Inside Valve & In \({ }^{3}\) \\
\hline For variabl & common refer to Paragraph 3.3. & \\
\hline
\end{tabular}

\subsection*{6.31.7 SUBROUTINE LIS'IING}

C D Ambiz varivales

\(\mathrm{D}(1.1)=\mathrm{POPPL}\) T anss

lagn covirsum

\(\mathrm{Ll}=\mathrm{L}(1)\)
\(\mathrm{L}, 2=\mathrm{L}(2)\)
\(\mathrm{Dr}(\mathrm{TVF})=\mathrm{D}(\mathrm{ITP})\)
\(\square \mathrm{T}(\mathrm{IV})=\mathrm{D}(\mathrm{IT} \mathrm{V})\)

\(P F(L l)=D(I T F)\)
\(T F(L ?)=D(\mathrm{I}\) 「F)

\subsection*{6.31 .7 （Continued）}
```

    \(\cdots(\mathrm{Cl}, \mathrm{l})=\mathrm{D}(\mathrm{I} \mathrm{PV})\)
    \(\mathrm{IC}(\mathrm{L}, 2)=\mathrm{D}(\mathrm{I} \mathrm{I} V)\)
    \(\therefore \square=2([\mathrm{~F})\)
    \(\mathrm{D}\left(\mathrm{r}: \mathrm{z}^{\circ} \mathrm{C}\right)=(\mathrm{D}(\mathrm{T} \mathrm{S})+450) * *\).
    ```

```

    \(\therefore(1)=!(1) * * 2 . * \mathrm{i} I /\) \&
    MT(1) \(=0(5) /:(1)\)
    \(312(3)=0(4) * 0(5) / i)(1)+\operatorname{Van}^{\prime 2}(1)\)
    \(\mathrm{L}(\mathrm{z})=0\)
    ```


```

    2'00) COM'I: (UL
    ```



```

        I? (ICOV. H.. L.) \(\because\) io 1500
    ```

```

        \(L(3)=1\)
    ```

```

        ;
    ```



```

    FI 104
    ```

```

    \(=2(5)=0(5)\)
    ```

```

    : 1 [J:'
    ```



```

    \(1361 \therefore \approx 01331\)
    ```

```

        \(\mathrm{L} \mathrm{L}=\mathrm{L}(1)\)
    \(1,2=1 .(2)\)
    ```


```

    \(C V=\) ?'Un(《世Y及, 3)
    ```



```

    「Fの="'F(Ll)
    ```

\section*{6．31．7（Continued）}


```

    A.h = =106i
    ```


```

    ? l=า(L? )
    F:. Pl] \(=\mathrm{PC}(\mathrm{L}])\)
    ```



```

    \(\mathrm{P}(1)=0.7\)
    \(\geqslant 5=0, ?\)
    ```

```

    \(\mathrm{L} 1=\mathrm{L}(2)\)
    L2 \(2=\mathrm{L}(1)\)
    ```

```

    jう=ワ(U)V)*1CF(1,?)
    330 C CソILNM:

```



```

    \(\because 3=1.0 /(\cap \cup ?(5,2) /(1 C .([, ?) * C(L ?))+2 \times V /(4 C V * C V))\)
    ```



```

    \(1(1,2)=-11\)
    \(n(1,3)=-: ?\)
    \((?, 1)=-11\)
    ```

```

    \(\lambda(2, ?)=0 . ?\)
    \(\therefore(2,1)=-A 2\)
    \(\therefore(3,2)-0.0\)
    ```



```

$+\therefore$ ^*rca!

```


```

    "r (isl) ="'b")
    \(\cdots \cdots=6=(L ?)\)
    ```


\subsection*{6.31.7 (Continued)}
\[
\begin{aligned}
& \text { 'r(Ll) }=3(2) \\
& \because C(L ?)=31 ?!
\end{aligned}
\]
\[
\begin{aligned}
& \text { ') }]^{\prime}\binom{2}{2}=? 3(2) \\
& \text { 'T(PD)=3(3) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { (.さ!) }
\end{aligned}
\]

\subsection*{6.41 SUBROUTINE TREST41}

TREST41 simulates a fixed, two-way orifice restrictor with two connecting lines as sketched in Figure 6.4l-1. The same discharge coefficient is assumed for flow in either direction so that the unit may be installed backwards, i.e., eiiher end may be the entering line.

This subroutine calculates the temperature of the fluid in the restrictor, and the temperature of the restrictor wall.

FIGURE 6.41-1
TYPE NO. 41 ORIFICE RESTRIGTOR
6.41.1 Math Model - The thermal math model for the restrictor includes heat transfer to and from two line segments, one upstream and one downstream. Six nodes are considered: three fluid nodes and three wall nodes (as shown in Figure 6.41.2). The temperatures of the upstream line segment wall and fluid nodes are \(T W(L 1)\) and \(T F(L 1)\), the temperatures of the restrictor

FIGURE 6.41-2 RESTRICTOR AND CONNECTOR NODE REPRESENTATION 0P77.0065.8
wall and fluid nodes are DT(LTC) and DT(LTF), and the temperature of the downtream line segment wall and fluid nodes are TW(1,2) and TF(12). Two heat balance equations are written to solve for DT(LTF) and DT(LTC), using the restrictor and connecting line material properties and dimensions, the atmosphere and structure temperatures external to the restrictor, and \(\operatorname{TW}(\mathrm{L} 1), \operatorname{TW}(\mathrm{L} 2)\), and \(\operatorname{TF}(\mathrm{L} 1)\). (Note: \(\operatorname{TF}(\mathrm{L} 2)=\mathrm{DT}(\mathrm{LTF})\), see assumptions).

One equation is for heat transferred to and from the restrictor fluid node. The other equation is for the heat balance for the restrictor wall node.

The first equation represents four modes of heat transfer relative to the restrictor fluid node:
1. conduction to and from the upstream line segment fluid node
R1 * (TF (LL) - DT (LTF))
where Rl is the conduction coefficient between the fluids, and is equal to \(C F /(D X F(L 1) / A C F(L 1)+D X R / A C F R+\) RMFL1 * DELT/(ACFR**2*RHOIL))
2. convection with the restrictor wall node
\[
\text { B1 * (DT (LTC) }-\mathrm{DT}(\mathrm{LTF}))
\]
where B1 is the convection coefficient between the fluid and the wall and is equal to UFWLL*ASFR
3. heat transfer due to mass transfer into the restrictor node from the upstream of the restrictor node MCp* (TF (L1)-DT(LTF))
where MCp is the flow rate and is equal to \(Q(L 1) * R H O I L * C P F N\)
4. heat transfer due to a pressure drop across the orifice MCP*DCAPT*D (PERC) where DCAPT is the temperacure rise due to a pressure drop and is equal to \((1.0 / \mathrm{RHOLL}) *(P(\mathrm{~L} 1)-\mathrm{P}(\mathrm{L} 2)) /(\mathrm{CJ} * \mathrm{CPFN})\)

These heat transfer terms are combined to produce the equation for heat balance for the restrictor fluid:
\[
\begin{align*}
\operatorname{MCp}\left(\operatorname{DT}(\operatorname{LTF})-D T(\operatorname{LTF})_{O L D}\right)= & \mathrm{Rl} *(T F(L 1)-D T(L T F)+B 1 *(D T(L T C)-D T(L T F))+ \\
& M C p *(T F(L 1)-D T(L T F))+\dot{M C p * D C A P T * D(P E R C)} \tag{1}
\end{align*}
\]
where \(M C p\) is equal to \(D T(R F M) * C P F N\).

The second equation represents four nodes of heat transfer relative to the restrictor wall node:
la. conduction to and from the upstream line segment wall
\[
\mathrm{R} 3 *(\operatorname{TW}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{LTC}))
\]
where R3 is the conduction coefficient and is equal to \(1.0 /(\operatorname{DXF}(\mathrm{L} 1) /(\mathrm{ACW}(\mathrm{L} 1) * \mathrm{C}(\mathrm{L} 1))+\mathrm{DXR} /(\mathrm{DT}(\mathrm{ACWR}) * \mathrm{CR}))\)

1b. conduction to and from the downstream line scgment wall
R4 * (TW(L2) - DT (LTC))
where \(R 4\) is the conduction coefficient and is equal to \(1.0 /(\operatorname{DXF}(\mathrm{L} 2)!(\mathrm{ACW}(\mathrm{L} 2) \div \mathrm{C}(\mathrm{I} 2))+\mathrm{DXR} /(\mathrm{DT}(\mathrm{ACWR}) * \mathrm{CR}))\)

2a. convection to and from the restrictor riluid
\[
\text { B1 * (DT }(\operatorname{LTF})-\mathrm{DT}(\operatorname{LTC}))
\]
where B1 is the convection coefficiert, defined pieviously
2b. convection to and from the external atmosphere
\[
B 2 *(D(T A)-D T(L T C))
\]
where B 2 is the convection coefficient and is equal to \(D(U A R) * D(A S A R)\)
3. radiation exchange with the surrounding structure
\[
\text { CIP* }\left(1 .(T S T)-(D T(L T C)+460.0)^{4}\right)
\]
where CIP is the radiation coefficient and is equal to SIGMA: EPSION*SIIAPF*D (ASAR)

These heat transfer terms are combined to produce the equation for heat balance for the restrictor wall node:
\[
\begin{align*}
\frac{\operatorname{Mcp}}{\operatorname{DELT}}\left(\mathrm{DT}(\mathrm{LTC})-\mathrm{DT}(\mathrm{LTC})_{O L D}\right) & =\mathrm{R} 3 *(\operatorname{TW}(\mathrm{LI})-\mathrm{DT}(\mathrm{LTC}))+\mathrm{R} 4 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{LTC})) \\
& +\mathrm{B} 1 *(\mathrm{DT}(\mathrm{LTF})-\mathrm{DT}(\mathrm{LTC}))+\mathrm{B} 2 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{LTC})) \tag{2}\\
& +\mathrm{ClP} * \mathrm{D}(\mathrm{TST})-\mathrm{ClP} *(\mathrm{DT}(\mathrm{LTC})+460) * * 4)
\end{align*}
\]
where \(M C p\) is equal to RMASS*CPWR

A thermal model of the above heat transfer terms for the restrictor is shown in Figure 6.41-3. Equations (1) and (2) are solved simultaneously For the fluid and component wall temperatures.
FIGURE 6.41-3
\[
\begin{aligned}
& \mathrm{BN}=\text { CONVECTION } \\
& \mathrm{RN}=\text { CONDUCTION } \\
& \mathrm{M}_{\mathrm{n}} \mathrm{CP}=\text { STORAGE } \\
& \dot{M C P}=\text { FLOW } \\
& C I P=\text { RADIATION } \\
& \dot{M C P} * \text { DCAPT }=\text { GENERATION }
\end{aligned}
\]

THERMAL MODEL

In the hydraulic math model, the basic equation for flow through an orifice is used to compute the orifice pressure drop.
\[
\begin{equation*}
\Delta \mathrm{P}=\mathrm{Q} 1 * * 2 * \mathrm{RHO}() /(\mathrm{D}(13) * \mathrm{D}(12) * * 2 * 2) \tag{3}
\end{equation*}
\]
```

wtere Q1 = flow (CIS)
iPO}=\mathrm{ fluid density (LB-SEC,}/I\mp@subsup{N}{}{4}
\Gamma(i3) = orifice area (IN**2)
D',') = discharge coefficient
IP pressure drop (PSI)

```
6.41.2 Assumptions - The rollowing assumptions are made to write equations (1) and (2) discussed in Section 6.41.1.
1. The temperature of the fluid leaving the restrictor is equal to the restrictor fluid node temperature, DT (ITF)
2. The pressure drop across the restifctor orifice raises the temperature of the restrictor fluid, not the temperature of the restrictor wall.
3. The temperatures of the atmosphere and structure surrounding the restrictor are constant.
4. The emissivity of the wall material is constant. (. 3 for steel)
5. The interface conductance between the restrictor wall and 1 ine walls is infinite.
6. The discharge coefficient is considered the same in either flow direction.
7. Complete fluid mixing in the restrictor volume.

\subsection*{6.41.3 Computation Methods}

\section*{SECTION 1000}

The fluid and wall temperatures are indtialized; the external structure temperature is changed from degrees Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

The input orifice diameter \(\mathrm{D}(13)\) is converted to an area and a steady state orifice equation constant is calculated using the formula:
\[
D(13)=1 . /((D(13) * D(12)) * * 2 * 2)
\]

SECTION 2000
The pressure drop through the orifice is computed using equation (4).
\[
\begin{equation*}
P U P=P U P-Q 1 * Q A * R H O(T F(\mathrm{~L} 1)), P U P) * D(13) \tag{4}
\end{equation*}
\]
where \(P U P=\) upstieam pressure \(\mathrm{QA}=\) absolute value of Q 1

SECTION 3000
Property values are assigned. Dimensions and coefficients are calculated and the flow direction is determined. (The program is set up with the flow entering connection line one (L1) and leaving through connection line two (L2). During the calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line cne). Some coefficients are then recalculated if the flow is reassigned. A \(2 \times 2\) matrix is loaded and the mathematical equations are solved for \(\operatorname{DT}(\operatorname{LTF})\) and DT(LTC) and stored in the \(B\) computational array. The calculated values are assigned to their proper storage locations and the boundary conditions are assigned to arrays TC and TF in COMMON /TRANS/ for distribution throughout the entire program.

\subsection*{6.41 .4 Approximations}
i. The shape factor is 0.96 (described in Section 2.0).
2. The coefficient for heat transfer between the wall and the external atmosphere is assumed equal to .0069 , if not input by the user.
6.41.5 Limitations

The subroutine is limited to fixed two way restrictors having the same discharge coefficient for flow in either direction.
6.41.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline A () & Computational Array & -- \\
\hline AAA & Dummy variable & -- \\
\hline ACFR & Cross sectional area of the fluid in restrictor & IN \({ }^{2}\) \\
\hline DT (ALWR) & Cross sectional area of the restrictor walls & IN \({ }^{2}\) \\
\hline D (ASAR) & Surface area surrounding atmosphere to case & \(\underline{N}{ }^{2}\) \\
\hline ASFR & Surface area of the fluid and wall & \(1 N^{2}\) \\
\hline A1, A2 & Dummy variables & -- \\
\hline B () & Computational array & -- \\
\hline \[
\begin{aligned}
& \mathrm{BL}, \mathrm{~B} 2, \\
& \mathrm{~B} 3, \mathrm{B4}
\end{aligned}
\] & Dummy variables & -- \\
\hline CIP & Radiation coefficient & WATTS \(/{ }^{\circ} \mathrm{R}^{4}\) \\
\hline CJ & Mechanical equivalent of heat & \[
\text { FT-LB }{ }_{\mathrm{m}} / \text { WATTS-SEC }
\] \\
\hline CPRW & Specific heat of the wall & WATTS-SEC/I.B- \({ }^{\circ} \mathrm{F}\) \\
\hline CR & Thermal conductivity of the wall & WATTS/IN- \({ }^{\circ} \mathrm{F}\) \\
\hline C1 & Dummy variable & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline DCAPT & Heat added to fluid due to pressure change & \({ }^{\circ} \mathrm{F}\) \\
\hline DDD & Dummy variable & -- \\
\hline \(D(D I A)\) & Orifice diameter & IN \({ }^{2}\) \\
\hline DXR & Distance from wall node to interface with the connecting line segment & TN \\
\hline EFSION & Emissivity factor for the walls & -- \\
\hline IERROR & Dunmy variable & -- \\
\hline D (ITC) & Initial temperature of the wall & \({ }^{\circ} \mathrm{F}\) \\
\hline D (ITF) & Initial tel perature of the fluid & \({ }^{\checkmark} \mathrm{F}\) \\
\hline DT (LTC) & Restrictor wali temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline DT(LTF) & Restrictor fluid temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline L. 1. L2 & Addresses of leg and component data & -- \\
\hline MTYPE & Dummy variable & -- \\
\hline D (PERC) & Percentage heat DCAPT, added to fluid & -- \\
\hline DT (RFM) & Mass of the fluid & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline RHOLL & Fluid density & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}^{3}
\] \\
\hline RHOR & Density of the restrictor wall & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}^{3}
\] \\
\hline D (RiEngT) & Length nf restrictor & IN \\
\hline D (RMASS) & Mass of the restrictor & LB \\
\hline RMFL1 & Entering mass flow rate & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}\) \\
\hline RMPL2 & Exiting mass flow rate & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}\) \\
\hline D (RTYPE) & Material type & -- \\
\hline R1, R3, R4 & Dummy variables & -- \\
\hline SHAPF & Shape factor walls to surrounding structure & -- \\
\hline SIGMA & Stefan-boltzmann constant for radiation & WATTS/IN \({ }^{2}-\mathrm{R}^{4}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline \begin{tabular}{l}
DT (SPMAFR), \\
DT (SPMAR)
\end{tabular} & Dummy variables & -- \\
\hline D(TA) & Surrounding atmospheric temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D (TST) & Surrounding structure temperature & \({ }^{-1}\) \\
\hline D (UAR) & Heat transfer coefficient (surrounding atmosphere to walls) & Watts \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UFWIL & Heat transfer coefficient for fluid to walls & WATTS / \(\mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (VOLF) & Volume of fluid in restrictor & IN \({ }^{3}\) \\
\hline
\end{tabular}

\section*{6．41．7 Subroutine Listing}

```

    RLVI:GLD 1030.j 20,1076 ***
    OL.LHSI \: L(i), DT(1),DO(1),L(1)
    ```



```

    + Lr.si, ICOri, INV, I VX,INL,VUP(n ),NDW\(90),NLL&..(90),
    +ILE!;A?(9n):I If,G(1700)
    ```


```

    * ,SPadrR,SPan?,RLANCO,PLRC,ACWA,RF&,PNYYL,DIA
    OI LO:MIJN \(2,2),3(2)
    C D AKRNY VARI\3LL:心

```



```

    + ,CJ/R.35/
    C DUNERAY V.NNASLES

```

```

    + 2I.3/7/
        IF(ILNAR) 100n,200),30!0
    l00 CuMiNT:O!.
    MT(贝IN)=:)(13)
    D(13)=2(13)**2*PI/4.
    D(13)=1./((n(13)*2(12))**2*2.)
    OT(LIC)=D(INC)
    OT(LTP)=D(ITF
    Ll=L(1)
    L?= L(2)
    TP(Ll) = O(I'G゙M
    IF
    TC(Ll)=')(I'CC)
    ~C(L ? ) = i ( I I'C)
    O(n:5)=()(r:S)+4%2)**4
    ```

```

    A'TVPL=o(RIYPL)+.001
    ni
    C .GYPL =.NILRINL IYML

```


\section*{6．41．7（Continued）}

```

    *!""口:
    ```

```

    20nの 己):&I v!l.
    ```

```

    G!"Mに::
    3000 C.)vit!ul
        #MOL= (ハTYPL)+.0)01
        CPav= PROP(,TYOL,l)
        CR=PaOM(:OPRPL, 3)
        *")心="にOP(!":`L,2)
        L,1=L(1)
        L. ?=i.(2)
        \C「に=`(V)LE)/(O(NL心NON))
    ```


```

    \\习=(1CER+コI*'I'(DIS)**2/4.)
    ```



```

        i
    ```


```

    Cl=Cl2*(i,T(LIC)+150.)**4
    ```

```

    \?=11
    :!=L(2)
    \&100CU:iISOL

```


```

    * *L?= S..(~(i,?))*:"5[0
    1.=:, FL]*CP!
    ```

```

    +/(NOP!**2**,:)la))
    ```



```

    i(1, ) = =!
    1(1,2)=-31
    A(2,1)=--1
    \(2,?)=\1
    ```

```

    + *')C`,咨*!?
    ```


6．41．7（Continued）
```

+ D(Pa)+CTp*?(\#ジロ)-Cl

```

```

    NT(LTC)=?(2)
    T(LTF)=3(1)
    TM(L2)=3(1)
    rC(LL)=3(2)
    PC(L2)=3(2)
    A1 MURN
    L:O
    ```

\subsection*{6.51 Subroutine TPUMP51}

Subroutine TPUMP51 simulates a variable displacement inline piston pump sketched in Figure 6.51-1. The subroutine calculates the temperatures of the exit fluid, the inlet chamber fluid, the case fluid, the internal moving parts (assumed one node), and the pump walls.

FIGURE 6.51-1
TYPE NO. 51 PRESSURE REGULATED VARIABLE

\subsection*{6.51.1 Nath Model}

The thermal math model for the pump includes heat transfer to and from three connecting line segments, one upstream, one downstream and one at the case drain. Thirteen nodes are considered: six fluid nodes, six wall nodes, and one node for the internal moving parts of the pump, called the piston node (as shown in Figure 6.51-2). The pump consists of

FIGURE 6.51-2
TYPE NO. 51 PRESSURE REGULATED VARIABLE DISPLACEMENT PUUÑí AND LINE NODE REPRESENTATION

0P17.0063.22
seven nodes: three fluid (one inlet, one outlet, and one case), three walls, one inlet, one outlet, and one around the case drain, and one node for the internal moving parts of the pump, the piston.

The temperatures of the three line segment nodes are TF(LI) and TW(L1), \(T F(L 2)\) and \(T W(L 2)\), and \(T F(L 3)\) and \(T W(1,3)\) for the inlet segment, exit segment, and case drain line segment fluid and wall nodes respectively. The prmp
inlet volume temperature is \(\mathrm{DT}(\mathrm{TFP} 1)\), exit volume temperature is \(\mathrm{DT}(\mathrm{TFP} 2)\), the case drain fluid volume temperature is by DT(TFP3), the pump wall temperature, around the inlet, is denoted by \(\mathrm{DT}(\mathrm{TBN})\), the wall temperature around the exit is \(\operatorname{DT}(T C N)\), the wall cemperature around the case drain is DT(TDN), and the pistons temperature denoted by DT(TPN).

Seven heat balance equations are written to solve for the seven pump node temperatures, using the pump and line segment material properties and dimensions, the atmosphere and structure temperatures external to the pump, and TF(L1), TW(L1), TW(L1), TW(L2) and TW(L3). (Note TF(L2) \(=\) \(\mathrm{DT}(\mathrm{TFP} 2)\) and \(\mathrm{TF}(\mathrm{L} 3)=\mathrm{DT}(\mathrm{TFP} 3)\), see assumptions).

The first equation represents three modes of heat transfer relative to the pump inlet fluid volume (the volume within the wall node DT(TBN)).
1. Heat transfer due to mass transfer into the pump volume from tho upstream line segment.
\[
\mathrm{MCp} *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TFP} 1))
\]
where MCp is equal to \(Q(L 1) * R H O L L * C P F N\)
2. Convection to or from the pump walls around the inlet volume
\[
\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TBN})-1) T(T F P 1))
\]
where \(B 1\). is equal to \(D(U P 1 B) * A S P 1 B\), a convection coefficient.
3. Conduction to or from the upstream fluid line segment
\[
\mathrm{Rl} *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TFP} 1))
\]

R1 is the conduction coefficient equal to \(\mathrm{CF} /(\mathrm{DXF}(\mathrm{L} 1) / \mathrm{ACF}(\mathrm{L} 1)+\mathrm{DXP} 1 / \mathrm{ACP} 1+(\mathrm{RMFL} 1 * \operatorname{DELT}) /(\mathrm{ACF}(\mathrm{L} 1) * * 2 * \mathrm{RHOLL}))\) where RMFLI=Q(L.) *RHOIL

These three heat transfer modes then combine to produce the heat balance equation for the pump inlet fluid node.
\(\frac{\mathrm{MCp}}{\mathrm{DELT}} *\left(\mathrm{DT}(\operatorname{TFP} 1)-\operatorname{DT}(\mathrm{TFP} 1)_{O L D}\right)=(\mathrm{R} 1+\mathrm{MCp}) *(\mathrm{TF}(\mathrm{L} 1)-\mathrm{DT}(\mathrm{TFP} 1))+\) \(B 1 *\left(D^{\prime}(T B N)-D T(T F P 1)\right)\)
with \(\operatorname{MCp}\) equal to \(\operatorname{FMASS} 1 * C P F N\)
The second equation represents three modes of heat transfer relative to exit volume two (the volume within wall node DT (TCN) of the pump manifold).
la. Convection to or from the piston node.
\[
\mathrm{B} 3 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFP} 2))
\]
where \(B 3\) is the convection coefficient equal to \(D(U P 2 P) * A S P 2 P\).
1b. Convection to or from the pump walls at the exit chamber of the pump manifold, node DT (TCN)
\[
\mathrm{B} 8 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TFP} 2))
\]
where B 8 is equal to UP2C*ASP2C
2. Heat transfer due to mass transfer into the fluid volume from the inlet volume.
\[
\dot{M} C_{p} *(D T(T F P 1)-D T(T F P 2))
\]
where \(\dot{M} C p\) is equal to \(Q(L 2) * R H O L L * C P F N\)
3. Heat added directly to the fluid due to compression, friction, and the piston moving parts.
\[
D(\text { HTREJ }) * .323
\]
where \(D\) (HIREJ) is defined in the Technical Summary.
These heat transfer modes are combined to produce the heat balanace equation for the pump exit fluid node.
\[
\begin{aligned}
\frac{M C p}{D E L T} *\left(\mathrm{DTP}^{\prime}(\mathrm{TFP} 2)-\mathrm{DT}(\mathrm{TPP} 2)_{O L D}\right)= & \mathrm{B} 3^{*}(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFP1}))+\dot{\mathrm{MCp} *} \\
& \left(\mathrm{DT}^{\prime}(\mathrm{TFP} 1)-\mathrm{DT}(\mathrm{TFP} 2)\right)+.323 * \mathrm{D}\left(\mathrm{HTREJ}^{\prime}\right) \\
& +\mathrm{B} 8 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TFP} 2))
\end{aligned}
\]

The third equation represents three modes of heat transfer relative to volume three within the pump case.
1. Heat transfer due to mass transfer into the case volume three from the inlet, and exit volumes respectively. (Leakage flows).
\[
\begin{aligned}
& \mathrm{DT}(\mathrm{QLEAK} 1) * C P F N *(D T(T F P 1)-D T(T F P 3)) \text { and } \\
& \operatorname{DT}(Q L E A K 2) * C P F N *(D T(T F P 2)-D T(T F P 3))
\end{aligned}
\]
where DT (QLEAK1) is equal to \(1(\operatorname{COECIN}) *(P(L 1)-P(L 3))\) and DT(QLEAK2) is equal to \(D(C O E P L K) *(P(L 2)-P(L 3))\).

2a. Convection to or from the pump mass node around the case.
\[
\mathrm{B} 5 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TFP} 3))
\]
and B5 is equal to UP3D*ASP3D
2b. Convection to or from the piston mass node
\[
\mathrm{B} 2 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFP} 3))
\]
where \(B 2\) is equal to UP3D*ASP3P
3. Heat added to the fluid due to the heat rejection term
\[
.24 * D(H T R E J)
\]
where \(D\) (HTREJ) was defined previously.
These heat transfer terms combine to produce the heat balance equation for the fluid volume 3 in the case drain.
\[
\begin{align*}
& \frac{M C p}{D E L T} *\left(D T(T F P 3)-D T(T F P 3){ }_{\text {OLD }}\right)=\operatorname{DT}(Q L E A K 1) * C P F N *(D T(T F P 1)-D T(T F P 3)) \tag{3}\\
& \text { +DT(QLEAK2) *CPFN* (DT (TFP2)-DT (TFP3)) } \\
& +B 2 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\operatorname{TFP} 3))+\mathrm{B} 5 *(\mathrm{DT}(\mathrm{TDN})- \\
& \text { DT(TFP3)) }+.24 * \mathrm{D} \text { (HTREJ) }
\end{align*}
\]
where \(\dot{M} C p\) is equal to FMASS \(3 *\) CPFN
The fourth equation represents four modes of heat transfer relative to the pump wall mass (inlet manifold mass) around the inlet volume.
la. Conduction to or from the pump wall node around the exit volune.
(manifold node DT(TCN))
R9* (DT (TCN)-DT (TBN))
where R 9 is equal to \(\mathrm{COB} /(\mathrm{DXB} / \mathrm{ACB}+\mathrm{DXC} / \mathrm{ACC})\)
1b. Conduction to or from the upstream line wall segment
\[
R 3^{*}(\mathrm{TW}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TBN}))
\]
where R3 is the conduction coefficient equal to
\[
1.0 /(\mathrm{DKF}(\mathrm{~L} 1) /(\mathrm{ACW}(\mathrm{~L} 1) * \mathrm{C}(\mathrm{~L} 1))+\mathrm{DXB} /(\mathrm{ACB} * \mathrm{COB})
\]

1c. Conduction to or from the pump wails around the case fluid volume.
\[
\mathrm{R} 11 \because\left(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}^{\prime}(\mathrm{TBN})\right)
\]
where Rll is equal to \(C O B /((D X \bar{s} / \dot{m} O R+D X D / A C D) * 2.0)\)
1d. Conduction to or from the piston node
\[
R 5 *(D T(T P N)-D T(T B N))
\]
where R5 is equal to \(1 . /(2 . *(D X P /(D(A C P) * C O P)+D X B /(A C B * C O B)+\) \(1.0 /(\mathrm{D}(\mathrm{ASPB}) * \mathrm{D}(\mathrm{CBP}))))\).

2a. Convection to \(r\) from the pump fluid in inlet volume, fluid volume one.
\[
\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TFPL})-\mathrm{DT}(\mathrm{TBN}))
\]
with Bl defined previously.
2 b . Convection to or from the surrounding atmosphere
\[
B 6 *(D(T A)-D T(T B N))
\]
where \(B 6\) is equal to \(D(U A B) * D(A S A B) * D 1\)
\(D 1\) is equal to \(D(\) VOL1 \() /(D(\) VOL1 \()+D(\) VOL2 \())\)
3. Heat added due to the heat rejection term \(.125 * D\) (HTREJ)

D (HTREJ) has been defined previously.
4. Kadiation exchange with the surrounding structure
\[
C 2 *(D(T S T)-(D T(T B N)+460) * * 4)
\]
where \(C 2\) is a radiation coefficient equal to \(C 1 * D 1\) where Cf equals SIGMA*EPSION*SHAPF*D(ASAB) and D1 defined previously.

These heat transfer terms combine to produce the heat balance equation for the pump wall (manifold wall node \(B\) around the inlet volume).
\[
\begin{align*}
\frac{\mathrm{MCp}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TBN})_{0 L D}\right)= & \mathrm{R} 3+(\mathrm{TW}(\mathrm{LI})-\mathrm{DT}(\mathrm{TBN}))+\mathrm{R} 9 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TBN})) \tag{4}\\
& +\mathrm{R} 11 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TBN}))+\mathrm{R} 5 *(\mathrm{DT}(\mathrm{TPN})- \\
& \mathrm{DT}(\mathrm{TBN}))+\mathrm{B1} *(\mathrm{DT}(\mathrm{TFP1})-\mathrm{DT}(\mathrm{TBN}))+ \\
& \mathrm{B} 6 *(\mathrm{DLTA})-\mathrm{DT}(\mathrm{TBN}))+.125 * \mathrm{D}(\mathrm{HTREJ}) \\
& +\mathrm{C} 2 *(\mathrm{D}(\mathrm{TST}))-\mathrm{C} 2 *(\mathrm{DT}(\mathrm{TBN})+460 .) * * 4
\end{align*}
\]
where \(M C\) p is equal to \(D(T P M A S S) * C P B N * D 1\).
The fifth equation represents three modes of heat transfer relative to the piston node.
la. Convection to or from the fluid in the exit chamber
\[
B 3^{*}(\mathrm{DT}(\mathrm{TFP} 2)-\mathrm{DT}(\mathrm{TPN}))
\]
with B3 described previously
1b. Convection to or from the case fluid
\[
\mathrm{B} 2 *(\mathrm{DT}(\mathrm{TFP} 3)-\mathrm{DT}(\mathrm{TPN}))
\]
with B 2 being defined previously.
2. Conduction to or from the pump manifold walls
\[
\begin{aligned}
& \mathrm{R} 5 *(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TPN})) \\
& \mathrm{R} 8 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TPN}))
\end{aligned}
\]
when \(R 5\) is as defined previously.
and R8 equals 1./(\(D X P /(D(A C P) * C O P)+D X C /(A C C * C O B)\)
\(+1 . /(\mathrm{D}(\mathrm{ASBP}) * \mathrm{D}(\mathrm{CBP})) * 2\).
3. Heat added to the piston mass from the heat rejection term . \(187 \times \mathrm{D}\) (HTREJ)

These heat transfer terms combine to produce the heat balance equation for the piston node.
\[
\begin{align*}
\frac{\mathrm{MCp}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TPN})_{\mathrm{OLD}}\right)= & \mathrm{B} 3 *(\mathrm{DT}(\mathrm{TFP} 2)-\mathrm{DT}(\mathrm{TPN}))+ \tag{5}\\
& \mathrm{B} 2 *(\mathrm{DT}(\mathrm{TFP} 3)-\mathrm{DT}(\mathrm{TPN}))+ \\
& \mathrm{R} 5+(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TPN}))+.187 * \mathrm{D}(\mathrm{HTREJ}) \\
& +\mathrm{R} 8 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TPN}))
\end{align*}
\]
where \(M C p\) is equal to \(D(P M A S S) * C P P N\)
The sixth equation represents four modes of heat transfer relative to the pump manifold wall node surrounding the exit volume, Node \(C\).
la. Conduction to or from the downstream connecting line segment
\[
\mathrm{R} 4 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TCN}))
\]
where R4 equals \(1.0 /(D X F(L 2) /(A C W(L 2) * C(L 2))+D X C /(A C C * C O B))\)
1b. Conecution to or from the piston mass
\[
\mathrm{R} 8 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TCN}))
\]
where R8 was defined previously.
1c. Conduction to or from the two pump wall node manifold \(B\) (inlet, volume wall)
\[
\mathrm{R} 9 *(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TCN}))
\]
ld. Conduction to or from the case wall node
\[
\mathrm{R} 10 *\left(\mathrm{DT}^{\prime}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TCN})\right)
\]
where \(R 10\) is equal to \(C O B /((D X C / A C C+D X D / A C D) * 2\). and K 9 was defined previously.

2a. Convection to or from the exiting fluid node \(\mathrm{B} 8 *(\mathrm{DT}(\mathrm{TFP} 2)-\mathrm{DT}(\mathrm{TCN}))\)
where \(B 8\) was defined previously.
2b. Convection to or from the surrounding atmosphere
\[
\mathrm{B} 9 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TCN}))
\]
where \(B 9\) is equal to \(D(U A B) * D(A S A B) * D 2\)
\[
6.51-8
\]
3. Heat added to the walls due to a heat rejection term,
\(.125 * \mathrm{D}\) (HTREJ)
where \(D\) (litREJ) was defined previously.
4. Radiation exchange with the surrounding structure.
\[
\mathrm{C} 3 *(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TCN})+460 .) * * 4)
\]
where C3 equals C1*D2 and C1 was defined previously, and D2 equals \(D(\) VOL2 \() /(D(\) VOL1 \()+D(\) VOL2 \())\).

These heat transfer terms combine to produce the heat balance for the pump wall around the exit volume, manifold wall node (DT(TCN).
\[
\begin{align*}
\frac{\mathrm{MCp}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TCN})_{\mathrm{OLD}}\right)= & \mathrm{R} 4 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TCN}))+\mathrm{R} 9 *(\mathrm{DT}(\mathrm{TBN})- \tag{6}\\
& \mathrm{DT}(\mathrm{TCN}))+\mathrm{R} 8 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TCN}))+.125 * \\
& \mathrm{D}(\mathrm{HTREJ})+\mathrm{R} 10 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TCN}))+ \\
& \mathrm{B} 9 *(\mathrm{D}(\mathrm{TA})-\mathrm{LT}(\mathrm{TCN}))+\mathrm{B} 8 *(\mathrm{DT}(\mathrm{TFP} 2)-\mathrm{DT}(\mathrm{TCN})) \\
& +\mathrm{C} 3 * \mathrm{D}(\mathrm{TST})-\mathrm{C} 3 *(\mathrm{DT}(\mathrm{TCN})+460 .) * * 4
\end{align*}
\]
where MCp is equal to \(D(T P M A S S) * C P B N * D 2\).
The seventh equation represents three modes of heat transfer relative to the pump walls surround the case fluid.

1a. Conduction to or from the case drain connecting line wall segment.
R7* (TW(L3)-DT (TDN))
where R7 is equal to \(1.0 /(\operatorname{DXF}(\mathrm{L} 3) /(\mathrm{ACW}(\mathrm{L} 3) * C(\mathrm{~L} 3))+\mathrm{DXD} /(\mathrm{ACD} * \operatorname{COB}))\)
lb. Conduction t:o or from the two other pump manifold wall nodes,
around the inlet and outlet resfectively.
\[
\begin{aligned}
& \mathrm{R} 11 *(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TDN})) \\
& \mathrm{R10*}\left(\mathrm{D}^{\prime}(\mathrm{TCN})-\mathrm{D}^{\prime}(\mathrm{TDN})\right)
\end{aligned}
\]
where R10 and R1l were defined previously.

2a. Convection to or from the fluid in the case volume
\[
\mathrm{B} 5 *(\mathrm{DT}(\mathrm{TFP} 3)-\mathrm{DT}(\mathrm{TDN}))
\]
with B5 defined previously.
2b. Convection to or from the external surrounding atmosphere
\[
B 10 *(D(T A)-D T(T D N))
\]
where \(B 10\) is a convection coefficient equal to \(D(U A D) * D(A S A D)\).
3. Radiation exchange with the surrounding structure.
\[
\mathrm{C} 4 *\left(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\operatorname{TDN})+460)^{4}\right)
\]
where \(C 4\) is equal to SIGMA*EPSION*SHAPF*D (ASAD)
These heat transfer terns combine to produce the heat balance equation for the case wall node.
\[
\begin{align*}
\frac{\mathrm{MC} C_{1}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TDN})_{O L D}\right)= & \mathrm{R} 7 *(\mathrm{TW}(\mathrm{~L} 3)-\mathrm{DT}(\mathrm{TDN}))+\mathrm{R} 11 *(\mathrm{DT}(\mathrm{TBN})- \tag{7}\\
& \mathrm{DT}(\mathrm{TDN}))+\mathrm{R} 10 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TDN})) \\
& +\mathrm{B5} *(\mathrm{DT}(\mathrm{TFP} 3)-\mathrm{DT}(\mathrm{TDN}))+\mathrm{B} 10 *(\mathrm{D}(\mathrm{TA}) \\
& -\mathrm{DT}(\mathrm{TDN}))+\mathrm{C} 4 * \mathrm{D}(\mathrm{TST})-\mathrm{C} \because *(\mathrm{DT}(\mathrm{TDN})+ \\
& 460) * * 4
\end{align*}
\]
where \(M C p\) is equal to \(D\) (PDMASS)*CPBN.
A thermal model of the above heat transfer terms for the pump is shown in Figure 6.51-3.

Equations (1) thru (7) are solved for the appropriatc temperatures.
In the hydraulic math model the variable delive:y pump generates fluid flow in response to system flow demand. The output pressure is a function of outlet flow. The steady state pump simulation models the pump characteristic flow versus pressure out curve (Figure 6.5-4), the characteristic leakage from high pressure to pump case, the leakage from pump case back to inlet and the pump outlet flow versus inlet pressure curve.

FIGURE 6.51-3
THERMAL MODEL

\subsection*{6.51.2 Assumptions}
1. All internal moving parts are evaluated as one node, all at the same temperature, DT(TPN).
2. The mass of the pump walls are modeled as three nodes, two top mainfold nodes one each associated with the inlet and exit fluid volumes, and the third wall around the case volume.
3. External temperatures remain constant.
4. Interface conductances between pump wall and connecting lines is infinfte.
5. The fluids leaving volumes two (exit) and volume three(case) are equal to \(D T(T F P 2)\) and \(D T(T F P 3)\) respectively, so there is no interaction with the downstream line fluids nodes.
6. The emissivity of the walls remains constant, 3 for steel.
7. Complete mixing occurs in the fluid volumes.

\subsection*{6.51.3 Computational Methods}

Section 1000
The fluid and wali temperatures are initialized, the externai structure temperature is changed from degree Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

\section*{Section 2000}

The pump subroutine is salled in the order inlet, case drain and outlet. The inlet: pressure is decermined from the pump flow node. The pump rated flow at the operating RPM is calculated as
\[
D T(Q 2 R)=D(R Q) * D(R P M) / D(R R P M)
\]

The pump flow at zero system resistance is
\[
\mathrm{DT}(\mathrm{Q} 3)=1.05 * \operatorname{DT}(\mathrm{Q} 2 \mathrm{R})
\]

If the inlet il ow is less than the pump minimum inlet pressure D (PSMIN), a new rated flow is computed iased on a straight line interpolation between 10 psia and D(PSMIN). When inlet pressure fails below 10 psia a warning message is printed.

On entry into the case drain section the leakage flow from high pressure to the pump case is calculated as
\[
\mathrm{QPCD}=\mathrm{D}(\mathrm{RCDC})-\left(.3^{*}\left(\mathrm{DT}\left(\mathrm{QOUT}^{\prime}\right) / \mathrm{D}(\mathrm{RQ})\right)\right.
\]

The flow that leaks back to the inlet from the case is a function of the case flow out the port and \(Q P_{C} D\). The case pressure is computed based on this flow difference.
\[
D T(P C A S E)=D(R C D P) *(1-Q Q \prime Q P C D)+D T(P I N L E T)
\]

Using the flow out of the pump the characteristic : sure out is calculated for flow less than DT(Q2R)
\[
D T(P O U T L T)=D(R P O Q)-(D(R P O Q)-D(R P F Q)) *(Q Q / D T(Q 2 R))
\]

If the flow out is greater than DT(Q2R)
\[
\mathrm{DT}(\text { POUTLT })=(\mathrm{DT}(Q 3)-Q Q) * D(\mathrm{RPFQ}) /(\mathrm{DT}(09 \mathrm{R})-\mathrm{DT}(Q 3))
\]

The actual pump outlet pressure is calculated using DT(POUTLT) from the characteristic curve and adjusting this to account for the actual pressure in the case less the case pressure at which DT(POUTL'T) was set.
\[
\text { POUT }=D T(\text { POUTLT })+D T(P C A S E)-D(P S E T)
\]

Section 3000
Property valwes are assigned. Dimensions and coefficients are calculated. A \(7 \times 7\) matrix is loaded and equations (1) through (7) are solved for \(\mathrm{DT}^{(T F P 1)}\), DT(TFP2), DT(TFP3), \(\mathrm{DT}(T B N), \mathrm{DT}(T P N), \operatorname{DT}(T C N)\) and \(\mathrm{DT}(T D N)\). The calculated values are assigned to their proper storage locations and the boundary conditions are assigned to TF and TC in COMMON/TRANS/.

\subsection*{6.51.4 Approximations}
1. The heat transfer coefficients for fluid in the case to the case walls is one third of the coefficient from fluid ! \(n\) volume one to the case walls.
2. Many distances and areas are approximated.

\subsection*{6.51.5 Limitations}

The pump model cannot handle cavitation at the inlet port.
6.51.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline ACB & Cross sectional of manisole wall node B, around the inlet volume & IN. \({ }^{2}\) \\
\hline ACC & Cross Sectional area of manifold wall node \(C\), around the exit volume & IN. \({ }^{2}\) \\
\hline ACD & Cross sectional area of manifold wall node D, around the case volume & IN. \({ }^{2}\) \\
\hline \(D(A C P)\) & Estimated cross-sectional area of the rotating group & IN. \({ }^{2}\) \\
\hline ACP1 & Estimated cross-sectional area of the inlet fluid & IN. \({ }^{2}\) \\
\hline ACP2 & Estimated cross-sectional area of the outlet fluid & IN. \({ }^{2}\) \\
\hline ACP3 & Estimated cross-sectional area of the case fluid & IN. \({ }^{2}\) \\
\hline \(D(A S A B)\) & External surface area of the pump walls & IN. \({ }^{2}\) \\
\hline \(D(A S P B)\) & Contact area, walls and the internal mass (pistons) & IN. \({ }^{2}\) \\
\hline ASPIB & Surface area, inlet fluid to walls & LN. \({ }^{2}\) \\
\hline ASP2P & Surface area, outlet fluid to pistons & IN. \({ }^{2}\) \\
\hline ASP3P & Surface area, case fluid to walls & IN. \({ }^{2}\) \\
\hline ASP3P & Surface area, case fluid to internal mass (pistons) & IN. \({ }^{2}\) \\
\hline B & Dummy computational array & -- \\
\hline
\end{tabular}

\subsection*{6.51.6 Variable Listing (Continued)}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline \[
\begin{aligned}
& \mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \\
& B 5, \mathrm{B6}
\end{aligned}
\] & Dummy variables & -- \\
\hline D (CPB) & Interface Conductance between the piston and walls & WATTS / IN. \({ }^{20} \mathrm{~F}\) \\
\hline CJ & Mechanical Equivalent of Heat & FT-IA \(\mathrm{m}_{\mathrm{m}} /\) WATTS-SEC \\
\hline COB & Thermal conductivity of the walls & WATTS/IN- \({ }^{\circ} \mathrm{F}\) \\
\hline COP & Thermal conductivity of the pistons & WATTS/IN, - \({ }^{\circ} \mathrm{F}\) \\
\hline CPBN & Specific heat of the walls & WATTS-SEC/L. \(\mathrm{B}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\) \\
\hline CPPN & Specific heat of the pistons & WATTS-SEC/ \(/ B_{\mathrm{m}} \mathbf{-}^{\circ} \mathrm{F}\) \\
\hline C1 & Dumny variable & -- \\
\hline D (DELTA) & Distance from sonnection one to piston chamber & IN. \\
\hline D (DELTAL) & Case Depth & IN. \\
\hline DXB & Distance from wail node to interface of lines & IN. \\
\hline DXC & Distance from internal fluid node to interface of lines & IN. \\
\hline DXD & Distance from exit fluid node to interface & IN. \\
\hline DXP & Distance from piston node to interface & IN. \\
\hline DXP1 & Distance from fluid one node to interface with line & IN. \\
\hline D. 1.12 & Dummy variables & -- \\
\hline EPSION & Finissivity factor & -- \\
\hline FMASS1 & Inlet fluid mass & \(1 . B_{m}\) \\
\hline FMASS 2 & Outlet fluid mass & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline FMASS 3 & Sase fluid mass & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline D (HTREJ) & Heat rejection term & W/TTS \\
\hline D (ITF) & Initial temperature of the fluid in the pump & \({ }^{\circ} \mathrm{F}\) \\
\hline \(D(\operatorname{TTB})\) & Initial temperature of the pump \& piston masses & \({ }^{\circ} \mathrm{F}\) \\
\hline LTYPE & Durny variable & - \\
\hline NTYPE & Dummy variable & - \\
\hline
\end{tabular}
6.51.6 Variable Listing (Continued)
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimericions \\
\hline DT (PCASE) & Case Pressure & PSI \\
\hline DT (IINLET) & In1et Pressurc & PSI \\
\hline D (PMASS) & Piston Mass (all internal moving parts) & LBm \\
\hline DT(POUTLT) & Outlet Pressure & PSI \\
\hline POUT & Dummy Variable & - \\
\hline PP & Computational array & - \\
\hline D (PSET) & Pump Case Pressure at rated flow and pressure & PSI \\
\hline D (PSMIN) & Minimum inlet pressure & PSI \\
\hline D (PTYPE) & Piston Material Type & - \\
\hline DT (QCD) & Case Drain Flow & CIS \\
\hline DT (QLEAK1) & ceakage flow high pressure to case & CIS \\
\hline DT(QLEAK2) & Leakage flow case to inlet & CiS \\
\hline Q2C & Dummy Variable & - \\
\hline DT (Q2R) & Rate Flow adjustel for operating RPM & CIS \\
\hline D (RCDL) & Case drain fiow at rated conditions & CIS \\
\hline \(D(R C D P)\) & Maximum pressure difference between pump case and inlet & PSID \\
\hline RHOB & Case material density & \[
L B_{m} / \mathrm{IN}^{3}
\] \\
\hline RHOSL & Fluid density & \[
L B_{m} / \mathrm{IN}^{3}
\] \\
\hline RHOP & Rotating group material density & \[
\mathrm{LB} \mathrm{~m}_{\mathrm{m}} / \mathrm{IN}^{3}
\] \\
\hline RMFLI, R'ITL2, RMFL3 & Dummy Variables & - \\
\hline D (RPFQ) & Rated pressure at full flow & PSI \\
\hline D (RPM) & Pump operating speed & RPM \\
\hline
\end{tabular}
6.51.6 Variable Listing (Continued)
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline D (RPOQ) & Rated pressure at zero flow & PSI \\
\hline \(D(R Q)\) & Rated flow & CIS \\
\hline D (ERPM) & Pump speed at. rated flow and pressure & RPM \\
\hline RPM & Dummy variable & -- \\
\hline \[
\begin{aligned}
& \mathrm{R} 1, \mathrm{R} 2, \\
& \mathrm{R} 3, \mathrm{R} 4, \\
& \mathrm{R} 5, \mathrm{R} 7, \\
& \mathrm{R} 10, \mathrm{R} 11
\end{aligned}
\] & Dummy variables & -- \\
\hline SHAPF & Radiation shapf factor for the external walls & -- \\
\hline SIGMA & Stefan-Boltzmann radiation constant & WATTS/IN. \({ }^{2}-{ }^{\circ} \mathrm{R}^{4}\) \\
\hline D (TA) & Surrounding atmospher \(\pm c\) temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TBN) & Temperature of the pump walls & \({ }^{\circ} \mathrm{F}\) \\
\hline DT(TFP1) & Temperature of the inlet fluid & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TFP2) & Temperature of the cutlet fluid & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TFP3) & Temperature of the case iluid & \({ }^{\circ} \mathrm{F}\) \\
\hline D(TPMASS) & Pump wall mass & \(L B_{m}\) \\
\hline DT (T PN) & Temperature of the internal parts, piston & \({ }^{\circ} \mathrm{F}\) \\
\hline D (TST) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline \(D(U A B)\) & External heat transfer coefficient of the pump & WんTTS/LN. \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (UP1B) & Heat transfer coefficient, inlel fluid to the walls & WATTS/IN. \({ }^{2-}{ }^{\circ} \mathrm{F}\) \\
\hline D(UP2P) & Heat transfer coefficient, outlet fluid and the piston & WATTS/IN. \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UP3P & Heat transfer coefficient, case fluid and the walls & WATTS/IN. \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D(VOL1) & Inlet volume & IN. \({ }^{3}\) \\
\hline D (VOL2) & Outlet volume plus cylinders volume & IN. \({ }^{3}\) \\
\hline D (VOL3) & Case volume & IN. \({ }^{3}\) \\
\hline
\end{tabular}

\section*{6．51．7 Subrouting Listing}

```

        DI|LNSION D(1),D'1(1),DO(1),L(1)
        C0.m01, TRMNS; P(300),Q(300), C(300),TC(300),Tw(300),TP(300)
        + ,ACF(300),ACW(300),DXE(300),TIAH,DLL'T,PI,NLINE,NLL
    ```



```

        UIAL JS[0N P?(7,7),3(7)
    ```



```

    * rSE',OLLEAL,POUTLT, PINLLT,Q3,22R,RCDL,HTHLJ,NCD, POUC
        5 ARiBY VARIABLGS
    ```

```

        + vuL2/7/,VUL3/B/,ACK/9/, ASPB/l0/,UP2P/11/,HMRLJ/l2/,DLETM/13/,
        + ASAB/14/,ASAD/15/,UA3/15/,CBP/17, UP1B/13/,TST/19/,
        + [a; 20;,I'P/21/,IT3;22/,
        + RO/23/,R2D., 24, RR./ 25/,RPUO/ 26/,NPFJ/2%,
    ```



```

        + , 2CD/15/, PJU:%1%/
        DATASIMBA/.349L-11/,SHAPE, 96/ , LPJION/0.3/,CJ/8,85/
    ```

```

    DL[PA] =HaH TOPAL DLPMA GF PHE DKAIN 3JwL
    ```



```

        CBP = INTLRPACE CONDJCOANCL, DISPON PU CBSL
    vuisl =I iLI.i V!iLUi/L
    ```

```

    VOL3 =Clis! VOLJIN
    ```


```

        AM:
    ```

```

    OLLAKl =LbARAGL FLU., FNOM INLLI' 'OC DENI.V
    ```

```

    P.|\SE=PIO*OH |ASS
    ```

```

    320 3'R1J/AI.N. = 5625, vat't'=
    IF(IL,*&)1000,2000,3000
    C *** 1000 ふぃC'WIう:
1100 COMTINUE
Ll=L(1)

```

6．51．7（Continued）
\(L 2=L(2)\)
L． \(3=L(3)\)
－INITIARIZIVG MbaPLRAR！Jitu
\(\left.\because C(L 1)=2\left(I L^{\prime}\right\}\right)\)
\(\operatorname{TC}(L 3)=D(I T B)\)
\(\mathrm{TF}(\mathrm{L} 3)=\mathrm{B}\left(\mathrm{I} \mathrm{I}^{\prime} \mathrm{E}\right)\)
TC（L2）\(=\mathrm{D}(\mathrm{I}\)＇l 3 ）
\(\cdot \mathrm{PF}(\mathrm{L} 2)=\mathrm{C}(\mathrm{I} \mathrm{L} F)\)
\(\mathrm{fr}(\mathrm{Ll})=\overline{\mathrm{L}}(\mathrm{ITP})\)

\(D_{1}(1-c 2)=0(\) I＇PF \()\)

\(D A(L P G)=E(I+L F)\)
\(D\left(\Gamma . \perp^{\prime}\right)=\left(D\left(\Gamma . j^{\prime N}\right)+460,\right) * * 4\)
\(1 F(D(U P 1,3), L ?, 0,0) \quad D(U P 1 B)=.1\)

\(\operatorname{IF}\left(D\left(U \mathrm{~L}^{\prime} 2 P\right), L, 0,0,0\right) D(U P 2 P)=3.0\)
D＇ \(\mathrm{T}(\mathrm{PINTL} \mathrm{T}\) ）\(=-1\) 。
\(D \Gamma(\) にびい \()=1\) 。
RL＇縣：
C \(k k+2000\) SLC＇flと
2000 Cólil vui

［ド（ICOルー2）2100，2010，2200
C L．：Lti

\(3 \mathrm{C}=.1\)

+ （（D（YG：IV）－lJ，））
－（22：）－220

RLPリK！

nb＇uid
2200 IF（INX．Ni．．l）OO PO 27J0
（ CAOE CPNI．，
？\(=\)＝ 21
\(I F(21.2 i \cdot 0.0) 20=0.0\)
\(\because P C i=D(1, C D L)-(.3 *(3 T(O \cup U i) / D(\)（w）））

\section*{6．51．7（Continued）}
\(D I^{\prime}(P C A J L)=D(R C D P)+(1,-2 O / O P C i)+D C(P I A L 心 G)\)
DT（ 2Cっ）\(=00\)

I．NV＝0

RL＇IJR：
2013 Ir（IGX，IL．1）GO W27J0
OUTLLT
\(2 \cdot 2=21\)

\(\mathrm{I} \because(21, G 2 \cdot D \mathrm{C}(23)) \mathrm{QQ}=\mathrm{DT}(03)\)
「4＇ \(20 U^{\prime \prime}\) ）\(=20\)

30 10 2030

PUP＝D＇T（POUi＇）
INV＝0
こDLG（LALL \()=\) DT（PUCi \()\)
2600 RLTHRE
2700 wRITヒ（6，2300）INは，ICO＇i，INLL

3Tした 5リ）

300．）CO．．FI WUL
\(\mathrm{L} 1=\mathrm{L}(1)\)
\(\mathrm{L} 2=\mathrm{L}(2)\)
L \(3=\mathrm{L}(3)\)
KTYPL＝，J（：TYPL．）＋．001

CPPij＝PAJP（N＇YYL，1）

COP＝PROP（NIYOL，3）
CPC：I＝CP3：
CP：\(=\) CP3：

D1 \(=D(\) VOL 1\() /(D(\) NL1 \()+2(\) VOL2 \())\)
\(D 2=1(\) VOL 2\():(D(V O L 1)+D(v(2))\)

\(2 K 3=0(D L L G i), 4,(1\)

\section*{6．51．7（Continued）}

```

    Cl=3ISMA*EPSION*SHAPF*D(ASA3)
    こ?=Cl* Dl
    C3=C1*D2
    C4=SIS.a*&DSIUM* jn\Pr+D(ASAD)
    hHOIL=336.4*RHO(DT(iF+1),(P(L3)+P(Ll))/2.)
    F.|ASSl=D(VOLI)*RIOII
    F.A.j.s2=(D(vOL2))*R!OIL.
    F..入うこ!33=0(VOL,3)*N!ルIL
    C.4NSS=D([P|\ju)*ח2
    3.asis=D(\GammaPaivS)*Dl
    ```

```

    \CC=C.a\is%/(N|(%ij*D(DLLIA)/2,)
    AC:D=O(PD.'\SS)/(RAIj.3*D(DLLTAL))
    ACPl=O(VCLl)/D(DLLCS)
    ACP2=O(vOL2):(D(OLLQ\)/2,0)
    A:P3=: (VOL3)/(D(DELSAl).'2,0)
    1SP13=S2*゙「(4,*&ご?]/PI)*PI*D(DLIJTA)
    \SP3)=3 ?N:(4.*ACP3,PI)*PI*D(DLL'MA1)
    1SP2P=s"2N'(4.*ACR2'P[)*PI*D(DLLI'A)/2.
    ASP2C=s:*'(4.*ACP2/PI)*PI*D(DLLIN)/2.
    ```



```

C - IN2-F) LLFMUB'' VAGOL
UP3*3=D(UPl3)!2.
UP31=9!3,3*2,13.
Ui\mp@code{j=9(Uas)}
UP2C=!(リ\&2!): 2.0
KMFLl=1.3S(O(Ll))*R|MIL

```

```

    :<.aFL3=+.\3:5(O(L3))* & NULL
    ```


```

    F3=1,0,'(DXP(Ll)/(AC.N(LL)*C(Ll))+JXB; (AC!3*CO.s))
    ```

```

    K5=1.0/((UXP;(D(ACi)*CUP)+DXis/(AC.3*CUC)+
    + 1.,(0(2.0以3)*D((30)))*2.)
^7=1.0/(DN゙`(L3)/(AC.i(L3)*C(L3))+DND/(nCu*CJu))
:9=C')3/(D)<3, 3C:j+DXC/ACC)
R1)=COB/((DKC/ACC+DXO/ACD)*2.)
RJ.1=COH/((OX.3/ACs+2XD/ACD)*2,)

```

```

    31=i)(UPl 3)+Aっ以1;
    ```

```

    33=5(Uр2P) *ASP2?
    ```

```

    ?G=3(UA, * *(10.2.?)*,)l
    」&=JP2C*AsiP2C
    i 9=D(U^3)*D(A3.1.3)*D2
    ```

\subsection*{6.51.7 (Continued)}
```

    il)=UAD*D(ADAD)
    C P1,P2 P3 3,P,C,D, NOUES IN ORDER
DU 3333 I=1,7
DO 3333 J=1,7
pp(I,J)=0,0
3333 ;(I)=0.0

```

```

    P!P(1,4) = -31
    ```

```

    PP(2,1)=-k,a゙L2*CPEN
    PP(2,2)=F,ASS2*CPEN/DLL'F+R,FFL2*CPEN+33+38
    PP(2,5)=-34
    Pp(2,5)=-33
    ```

```

    pp(3,1)=-DT(QLLSKl)*CPE!N
    PP(3,2)=-DH(DLLAR2)*CPFN
    PP(3,3)=F.,AS:j3*CPF:*/DLLT+35+Di(OLEAK2)*CPFN
    ```

```

    PP(3,7)=-35
    PP(3,5)=-32
    ```

```

    PP}(4,1)=-3
    ```

```

    PP}(4,6)=-12
    PP(4,7)=-R11
    PP(4,5)=-155
    ```


```

    &?(5,6)=-i28
    PP(5,2)=-33
    PP}(5,3)=-3
    PP(5,4)=-i25
    ```

```

    3(5)=D(P,ABS'*CPRN*UT(TPM)/DLLT+0,187*D(HTRRLJ)
    PP(6,4)=-R9
    PP(6,5)=-128
    2n(6,7)=-1,12
    [2'(5, ?) =-3.3
    ```


```

    + -C3*(1'f(ICiV)+460.)**4+.125*D(1ITREJ)
    PP(7,3)=-35
    Pr(7,4)=-511
    PP(7,5)=-R10
    PP(7,7)=>(PU:AS:د)*CP13H/DLIS+R7+R10+R11+B5+:10
    ```

```

    + +C4*D(IJ:')-C4*(D'T(IDN)+460.)**4
    3600 C4LE ST,IULT(PP,!3,7,IERROR)
Di(TFPl)=3(1)
D'A(IF'P2)=3(2)

```

\subsection*{6.51.7 (Continued)}
\[
\begin{aligned}
& \operatorname{SN}(\operatorname{IPP} 3)=3(3) \\
& \operatorname{DT}(\operatorname{IRSN})=3(4) \\
& \text { D' }{ }^{\prime}(\mathrm{TCN})=3(6) \\
& \text { DT (TDN) }=13(7) \\
& \text { DT(} 1 \text { PN) }=3(5) \\
& \operatorname{rr}(\mathrm{L} 2)=3(2) \\
& \operatorname{TF}(L 3)=3(3) \\
& \mathrm{TC}(\mathrm{LL})=3(4) \\
& \operatorname{TC}(L 2)=3(6) \\
& \mathrm{IC}(\mathrm{~L} 3)=\mathrm{B}(7) \\
& \text { I.ND }
\end{aligned}
\]

\subsection*{6.61 SUBROUTINE TRSVR61}

TRSV61 models a hypothetical constant pressure, constant temperature reservoir that can be used in tesic simulation work as sketched in Figure 6.61-1. The input pressure is mainained without fluctuation while the flow rates are adjusted to meet the line requirements. A maximum of four connections can be used.

This subroutine calculates the fluid and wall temperatures of the component at each connection.

FIGURE 6.61-1
TYPE NO. 61 CONSTANT PRESSURE RESERVOIR

\subsection*{6.61.1 Math Model}

The thermal math model for the reservoir includes heat transfer to and from one to four connecting line segments. They can be either downstream or upstream of the reservoir. To understand TRSV61 we shall look at a hydrauiic system with twe reservoirs connected by a line as shown in Figure 6.61-2. The line is downstream of reservoir one and

FIGURE 6.61-2
RESERVOIR NODE REPRESENTATION FOR SAMPLE SYSTEM
9P77-0085.4
upstream of reservoir two. As is discussed in subroutine TLINEA. the line is divided into equal segments. In Figure 6.61-2 the iemperatures of the fluid and wall of reservoir 1 are \(D(I T F)\), and \(D(I T C)\), the temperature of the fluid and wall of the line segment connecting reservoir 1 are TLF1 and \(\operatorname{TLW}_{1}\), the temperatures of the fluid and wall of the 1 ine segment connecting reservoir 2 are \(T L F 2\) and \(T L W_{2}\), and the temperatures of , he fluid and wall of
reservoir 2 are \(D(I T F)_{2}\) and \(D(I T C)_{2}\). For downstream connecting line segments, such as these similar to segment 1 in Figure 6.61-2, the subroutine assigns the temperatures of the reservoir fluid and wall as end conditions of the reservoir, and boundary conditions of the first line segment,
\[
\begin{aligned}
& \mathrm{TF}(\mathrm{~L} 1)=\mathrm{D}(\mathrm{ITF})_{1} \\
& \mathrm{TW}(\mathrm{~L} 1)=\mathrm{D}\left(\mathrm{I}^{\prime} \mathrm{TC}\right) 1
\end{aligned}
\]

For upstream connecting line segments, such as those similar to segment 2 in Figure 6.61-2, the subroutine assigns the temperatures of the reservoir wall to the reservoir connection, or the bundary condition of the line segment
\[
\mathrm{TW}(\mathrm{~L} 2)=\mathrm{D}(\mathrm{ITC})_{2}
\]
and also assigns the temperatures of the fluid entering the reservoir to the temperature of the line segment, \(\mathrm{TF}(\mathrm{L} 2)=\mathrm{TLF}_{2}\). Note however that the temperature of the fluid in reservoir 2 is \(\mathrm{D}_{\mathrm{I}}(\mathrm{ITF})_{2}\) and eventually the fluid entering reservoir 2 will equal \(\mathrm{TLF}_{2}\). In the hydraulic math model the input constant reservoir pressure is assigned to the reservoir node number.

\subsection*{6.61.2 Assumptions}
1. Fluid and wall temperatures of the reservoir remain constant, except the fluid entering a reservoir makes the reservoir fluid the same temperature as the fluid in the connecting line.
2. The reservoir is assumed to have an infiniteiy large gas volume so that the pressure remains unchanged.
3. The interface conductance between the reservoir walls and the line walls is infinite.

\subsection*{6.61.3 Computation Methods}

\section*{SECTION 1000}

The number of active reservoir connections is determined from the NC() array. A DO loop is then set up to initialize all the connecting line wall and fluid temperatures.

SECTION 2.000
The node number of the reservoir is determined and the flow into and/or out of the reservoir is summed for each active connection.
\[
D(4)=D(4)+Q R
\]

Counter, \(L(6)\), is incremented by 1 each time an entry is made until the counter is equal to the number of active sonnections. Once the total net flow has been determined, \(Q N(N)\) is calculated
\[
\mathrm{QN}(\mathrm{~N})=\mathrm{D}(\text { PRESS }) * 20 .-\mathrm{D}(4)
\]

An external pressure array is set to a constant value
\[
\operatorname{PEX}(N)=20.0
\]

The total flow and counter, \(L(6)\), are then set to zero.
SECTION 3000
The number of connecting line segments and flow direction are first determined. Property values are assigned. The exiting fluid and all wall connection temperatures are assigned. The assigned values are put into arrays TC and TF in /TRANS/.
6.61.4 Variable Listing
\begin{tabular}{llc}
Variable & \multicolumn{1}{c}{ Description } & Dimension \\
\(\mathrm{D}(\mathrm{ITC})\) & In土tial temperature of the reservoir walls & \({ }^{\circ} \mathrm{F}\) \\
\(\mathrm{D}(\mathrm{ITF})\) & Initial temperature of the reservoir fluid & \({ }^{\circ} \mathrm{F}\) \\
\(\mathrm{Q}(\mathrm{II})\) & Flow in connector I & CIS \\
N & Reservoir node number & --
\end{tabular}
\begin{tabular}{llc}
Variable & \multicolumn{1}{c}{ Description } & Dimensions \\
\hline D(PRESS) & Pressure of reservoir & PSI \\
\(T F(L I)\) & Temperature of fluid leaving reservoir & \({ }^{\circ} \mathrm{F}\) \\
\(\mathrm{TC}(\mathrm{LI})\) & \begin{tabular}{l}
Temperature of reservoir wall connected to \\
connection \(I\)
\end{tabular} & \({ }^{\circ} \mathrm{F}\)
\end{tabular}

\section*{6．61．5 Subroutine Listing}

```

C *4* Rl.VISLD AUSUS'N 5,1975
C0%,0` / [R\N:/P(30)),O(300),C(300),TC(300),Tw(300), 14(300),

```



```

    +ItLG.)D(90), IT, O(1000)
    ```



```

    ]mn? (), im:m
    ?(4)=0.:
    .CI=.NC(INM)
    L(5)= \CI
    L(6)=?
    O l11\ I=1,N以I
    :=T,(I)
    MC(, )}=\Gamma(T\mp@subsup{\Gamma}{}{*}
    OC(i)=i(ICC)
    1^17 こ0!"IJUk
    ":'掠!
    2ng') CO.:口I\u
        :=.\":"(I...I.)
    rar:=^1
    ```

```

    L\because(IM,N1.1) BO i) 150n
    ッ=ーフ!
    `=``口(I ILL)
    1`!り \(a)=')(4)+i!
    f}(\therefore)=L(6)+
    O ..:IM(5,970)I ILT,, 1, Bl, PUP

```

```

    IN(L.(5).JL.[.(5)):RL,TJK`。
    ```

```

    DI.:(:)=20.)
    B(A)=0.0
    [,( , ) = ?
    ```

```

    1'L":口'!
    30のnc`:口T心ilL
    \GammaO30.1) I=1,ICI
        l= [,([)
    ```

```

    ~E(`.)=`(I P0)
    30n夕 I'C(:)=7(I'C)
    300n Cu滑T:UL
    ```

```

    1.1%;
    ```

\subsection*{6.62 SUBROUTLNE TRSVR62}

TRSVR62 simulates a bootstrap reservoir. The subrontine can accommodate up to four low pressure lines along with a high pressure (bootstrap) line, as shown in Figure 6.62-1. The calculated variables are, the reservoir fluid, wall and piston temperatures.

Figure 6.62-1.
TYPE NO. 62 BOOTSTRAP RESERVOIR

\subsection*{6.62.1 Math Model}

The tiermal math model for the reservoir includes beat transfer from three to five connecting lines, one high pressure line, al least one upstream line and at least one downstream line. Three reservoir nodes are considered, one wall, one piston, and one fluid node. There are two nodes, one fluid and one wall for each connecting line segment, and in our model we will consider five lines or ten nodes, so that there arr a total uf thirteen nodes in the math model, as shown in figure 6.62-2.

FIGURE 6.62-2

The temperatures of the higin pressure line segment nodes are TW(L1), and \(T F(L 1)\) for the wall and Iluid respectively. The two upstream line node temperatures are \(\mathrm{TW}(\mathrm{L} 2)\), \(\mathrm{TW}(\mathrm{L} 3), \mathrm{TF}(\mathrm{L} 2)\), and \(\mathrm{TF}(\mathrm{L} 3)\) for the wall and fluids, and the two downstream connecting line segment node temperatures are TW(L4), \(T W(L 5), T F(L 4)\) and \(T F(L 5)\) for the wall and fluids respectively. The reservoir fluid temperature is DT(TRF), the wall temperature is DT' TR), and the piston temperature is \(\operatorname{DT}(T P)\). Not every case has five connecting lines, but for this discussion there will be.

Three heat balance equations are written to solve for the through reservoir node temperatures, using the reservoir and line segment material properties and dimensions, the external atmosphere and structure temperacures, and \(\operatorname{TW}(\mathrm{L} 1) . \operatorname{TW}(\mathrm{L} 2), \mathrm{TW}(\mathrm{i} 3), \mathrm{TW}(\mathrm{L} 4), \mathrm{TW}(\mathrm{L} 5), \mathrm{TF}(\mathrm{L} 1), \mathrm{TF}(\mathrm{L} 2)\), ar: \(\operatorname{TF}(\mathrm{L} 3)\) (note: \(\operatorname{TF}(\mathrm{L} 4)\) and \(\operatorname{TF}(\mathrm{L} 5)\) equal \(\mathrm{DT}(\mathrm{TRF})\), see assumptions).

The first equation represents two modes of heat transfer relative to the reservoir fluid.

1a) convection to and from the reservoir walls
B1 * (DT (TR)-DT(TRF))
where B1 is a convection coefficient equal to DT(ASFR) * \(\because(\mathrm{UFR})\)

1b) convection to and from the piston node
B2 * (DT(TP)-DT (TRF))
where B 2 is also a convection coefficient equal to
D (AREAI) *D (UFR)
2) heat transfer duc to mass transfer into the reservoir volume from the connecting lines segment MCp* (TF (L2) -DT(TRF)) for line two and \(\dot{M} C P^{*}(T F(L 3)-D T(T R F)\) for line three where \(\dot{M} C p\) is the mass flow rate term equal to \(\operatorname{RMF}(\mathrm{I}) * \mathrm{CPFN}\) and \(\operatorname{RMF}(\mathrm{I})\) is equal to \(Q(L(I)) * R H O L L\) with \(I=2\) for line two and \(I=3\) for line three.

These heat tro er terms shen combine to produce the heat balance for the reservoir fluid node
\[
\begin{align*}
\frac{M C p}{D E L T}^{*}(\mathrm{DT}(\mathrm{TRF})-\mathrm{DT}(\mathrm{TRF}) \mathrm{OLD}) & =\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TR})-\mathrm{DT}(\mathrm{TRF}))+\mathrm{B} 2 *(\mathrm{DT}(\mathrm{TP})-\mathrm{DT}(\mathrm{TRF})) \\
& +\dot{\mathrm{MCp}} *(\mathrm{TF}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TRF}))+\dot{M C p} *(\mathrm{TF}(\mathrm{~L} 3)-\mathrm{DT}(\mathrm{TRF})) \tag{1}
\end{align*}
\]
where MCp is equal to FMASS*CPFN
The second equation tepresents three modes of heat transfer relative to the reservcir wall node.
la) convection to and from the reservoir fluid
\[
I: *(D T(T R F)-D T(T R))
\]
where B1 \({ }^{m}\) defined previously.
b) converiiu, to and from the external atmosphere
\[
B 3 \times\left(D\left(T A ;-D^{\prime} L^{\prime} T R\right)\right)
\]
where \(B 3\) is eq lita to \(D(A S A!) \% D\) (UAR)
2a) conduction \(t\), and from the nnecting line segment walls
\[
R(I) *(T W(L(I))-D T(T R))
\]
where \(R(I)\) is the caduction covfficient equal to
\(1.0 /\left(\operatorname{DXF}(\mathrm{L}(\mathrm{I})) /\left(\operatorname{ACF}\left(\mathrm{L}\left({ }^{-}\right), * \mathrm{C}(\mathrm{L}(\mathrm{I}))+\mathrm{DXR} /(\mathrm{ACR} * \mathrm{CR})\right)\right.\right.\)
and \(I=1\) to 5 for each of the five connecting lines considered.
b) conduction to and from the piston node
\[
\mathrm{R9*}(\mathrm{DT}(\mathrm{TP})-\mathrm{DT}(\mathrm{TR}))
\]
where R9 is equal to \(1,0 /(D X R /(A C R * C R)+D X P /(A C P * C P)+1.0 /\) \((A C P * 2.0 * D(C R P)))\).
3. radiation exchange with the surrounding external structure
\[
\text { CIP* }(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TR})+460) * * 4)
\]
where CIP is a radiation coefficient equal to SIGMA*EPSION* SHAPF*D (ASAR)

These terms then combine to produce the heat balance for the reservoir wa11
\[
\begin{aligned}
& \frac{\mathrm{MCP}^{\mathrm{DELT}}}{}{ }^{*}\left(\mathrm{DT}(\mathrm{TR})-\mathrm{DT}(\mathrm{TR})_{\mathrm{OLD}}\right)=\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TRF})-\mathrm{DT}(\mathrm{TR}))+\mathrm{B} 3 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TR})) \\
& +\int_{I=1}^{5} R(I) *(T W(L(I))-D T(T R F))+R 9 *(D T(T P)- \\
& \mathrm{DT}(T R)+C I P * D(T S T)-C I P *(D T(T R)+460 .) * * 4
\end{aligned}
\]
where MCp is equal to \(D(\) RMASS \() * C P R W\)
The third equation represents two modes of heat transfer relative to the reservoir piston

1a) convection to and from the reservoir fluid node
\[
\mathrm{B} 2 * \quad(\mathrm{DT}(\mathrm{TRF})-\mathrm{DT}(\mathrm{TP}))
\]
with B2 defined previously
b) convection to and from the high pressure fluid \(\mathrm{B} 5 *(\mathrm{TF}(\mathrm{I} 1)-\mathrm{DT}(\mathrm{TP}))\)
where \(B 5\) is equal to \(D(U A R) * D(A R E A 2)\)
c) convection to and from the external atmosphere
\[
B 4 *(D(T A)-D T(T P))
\]
where \(B 4\) is equal to \(D(A S A P) * D(U A R)\)
2. conduction to and from the reservoir wall node
\[
\mathrm{R} 9 *(\mathrm{DT}(\mathrm{TR})-\mathrm{DT}(\mathrm{TP}))
\]
where R9 has been defined previously
3. radiation exchange with the surrounding structure
\[
\mathrm{ClPP} *(\mathrm{D}(\mathrm{TST}) \cdot(\mathrm{DT}(\mathrm{TP})+460 .) * * 4)
\]
where CIPP is a radiation coefficient equal to SIGMA*SHAPF*EPSION*D (ASAP)*. 69. .69 was used since the shape factor for the piston is not nearly equal to .96 but \(.96 * .69=.6624\)

These terms than combine to produce the heat balance equation for the piston
\(\frac{\mathrm{MCp}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TP})-\mathrm{DTP}^{\prime}(\mathrm{TP})_{\mathrm{OLD}}\right)=\mathrm{B} 2^{*}(\mathrm{DT}(\mathrm{TRF})-\mathrm{DT}(\mathrm{TP}))+B 5^{*}\left(\mathrm{TF}(\mathrm{L} 1)-\mathrm{D}^{n}(\mathrm{TP})\right)\) \(+B 4 *(D(T A)-D T(T P))+R 9 *(D T(T R)-\)
 +460.\() * * 4\)
where MCp is equal to PMASS*CPPW
Equations (1), (2), and (3) are solved for the appropriate temperatures
A thermal model of the above heat transfer terms for the reservoir
is shown in Figure 6.62-3.

The steady state high and low reservoir pressures are determined as follows.

A sign convention is established such that flow into the low pressure end is positive. A pseudo leg (see Figure 6.62-4) that terminates at low pressure node \(N\) is established. The pressure at the external end of this leg is set as the average of the pressure at node \(N \mathrm{PN}(\mathrm{N})\) and pressure calculated for node \(N\) using the piston area ratio times pressure at node \(M\), PMN where:
\(P M N=P N(M) * D T(N A R E A R)+D T(E X P R E S)\)
Any difference in \(P M \mathbb{N}\) and \(P N(N)\) will produce flow in the pseudo leg and hence an unbalanced system. As TLEGCAL balances the flows at all system nodes, the pseudo leg flow is forced to zero which in turn forces PMN and PN(N) pressures to be equal.

RSVR62 STEADY STATE FLOW DIAGRAM

\subsection*{6.62.2 Assumptions}
<
1. The fluids exiting from the reservoir are trual to the calculated value of the fluid in the reservolr, DT(TRF).
2. The emissivity of the walls remain constant, . 3
3. The entire mass of the reservoir walls is at the same temperature
4. The temperatures external to the reservoir remain constant
5. The interface conductance brtween the reservoir walls and the line segment walls is infinite.
6. Seal friction is zero
7. Complete mixing occurs in the fluid volume.

\subsection*{6.62.3 Computational Methods}

SECTION 1000
The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

SECTION 2000
This section sums the flows into and/or out of the low pressure chamber as the entry is called for each active connection. It also determines overboard flow at the high pressure node (M) and low pressure node (N).

SECTION 3000
Property values are assigned. Dimensions and coefficients are calculated. The flow direction is determined. (The program is set up with the flow entering connection line one (L1) and leaving through connection lines four and five (L4) and (L5). During the calculation the flow direction is checked. If the flow has reversed flow dircction, the program reassigns connection numbers so that the flow still enters connection lines three and two \({ }^{\prime}\). Some coefficients are then recalculated if the flow is reassigned. A \(\mathbf{j x} 3\) matrix is loaded and the mathematical equations are solved for OT(TRF),

DT (TR) and DT(TP) and stcreci in the B computational array. The calculated values are assigned to their proper storage locations and the boundary conditions are assigned to arrays (TC and TF) in comnon /TRANS/ for distribution throughout the entire program.

\subsection*{6.62.4 Approximations}
1. Shape factor for the piston, SHAPF is multiplied by .69 since this is a good representation of the real shape factor piston to the surrounding structure, \(.96 * .69=.6224\)
6.62.5 Limitatyons

Reservoir 62 is limited to four low pressure connections and one high pressure connection.
6.62.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline A () & Dummy computational array & \\
\hline ACP & Cross sectional area of the piston & IN. \({ }^{2}\) \\
\hline ACR & Cross sectional area of the reservoir walls & IN. \({ }^{2}\) \\
\hline D (AREAI) & Piston surface area, low pressure side & IN. \({ }^{2}\) \\
\hline D (RREA 2\()\) & Piston surface area, high pressure side & 1N. \({ }^{2}\) \\
\hline D (ASAP) & External surface area of piston & IN. \({ }^{2}\) \\
\hline D (ASAR) & External surface area of the reservoir walis & IN. \({ }^{2}\) \\
\hline DT (ASFR) & Internal surface area of the reservoir walls & IN. \({ }^{2}\) \\
\hline \(B()\) & Dummy computational array & \\
\hline \[
\begin{aligned}
& B 1, B 2, B 3, B 4, \\
& B 5
\end{aligned}
\] & Dummy variables & \\
\hline C1P & Radiation coefficient for the reservoir & \\
\hline c1pp & Radiation coefficient for the piston & \\
\hline CJ & Mechanical equivalent of heat & LN-LB \({ }_{\text {m }} /\) WATMS - SEC \\
\hline CP & Thermal conductivity of the pistion node & WATTS /IN. - \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline SHAPF & Shape factor for the walls & -- \\
\hline SIGMA & Stefan-Boltzmann radiation constant & WATTS/IN \({ }^{2}-{ }^{\circ}{ }^{4}\) \\
\hline D (STROKE) & Total piston stroke & 1N. \\
\hline D(TA) & Temperature of the surrounding atmosphere & \({ }^{\circ} \mathrm{F}\) \\
\hline TFO & Dummy variable & -- \\
\hline DT(TP) & Temperature of the piston mode & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TR) & Temperature of the reservoir wall node & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TRF) & Temperature of the reservoir fluid node & \({ }^{\circ} \mathrm{F}\) \\
\hline D (TST) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline D (VAR) & Heat transfer coefficient external to the reservoir & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (VFR) & Heat transfer coefficient internal to the reservoir & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D'T (VOLUME) & Calculated volume of the reservoir & IN. \({ }^{3}\) \\
\hline D (VOL1) & Initial volume, low pressure side & IN. \({ }^{3}\) \\
\hline D(VOL2) & Initial volume, high pressure side & TN. \({ }^{3}\) \\
\hline
\end{tabular}

\subsection*{6.62.7 Subroutine Listing}

SHRAOUTIVL IRSVRG2 (D, LT, DD, L)
こ**** F'LVISED JANUARY 24, 1775 ****

C'),

+I LEGAD(90), TLLC:(1090)

 DTM ARLAl/4/, ARLA2/5/,VOL1/5/,VOL2/7/, INPOS/B/, ATYPL/l/

C Dr mbay visiables

1200 Cowis vil.

\section*{6．62．7（Continued）}


```

    ++2.*DT(VOLUME)/D(PHIT(BHTN)
    IF(D(ASA:D).EO.O.0) D(AS\P)=D(ARL,\2)*.OO
    ```

```

    DT(B\RLAR)=0(ARLA2)/D(ARL.\l)
    D'((1XDPLS)=\TPRLO**(D(APL,Al)-D(AREA2))/D(ARLA1)
    D'S(O,NL'W)=0.0
    L(7)=?
    [.(5)=跎(I :0)
    Rtrule!
    ```

```

`

```

```

こ

```

```

    L(7)=L(7)+1
    IF(ICOI:.VE.l) GO 20 2500
    .=NONN(I NETA)
    L}(E)=:
    IE(INR.NL.L) 30 TO 2?!)
    I= IIP(IVLL)
    I,( % = = \therefore
    30 サ% 200n
    2आクの ?:?=?1

```

```

    L(青)=:1
    JF(IN:. i.,.l) GO iO 2700
    フに=- M
    |= シリP(I 4LL)
    I.(9)=:"
    2790 כT(SHL~
    ```

```

    . =L(8)
    Y I, (7)
    IP(N.L?..4) vRTPT(5,2000)
    IF(?N(.a).E`.0.0) PN(,1)=303n.
    ```



```

    C'I(!2) = \'M( }\therefore\mathrm{ )
    !2(4)=2?.
    O'(7**'1')=0.0
    L(7)=0
    ```


```

    3000 こう%N!!u,
    \becauseYY+L= = (:rY2L)+.001
    ```

\subsection*{6.62.7 (Coratinued)}
\(\operatorname{VTYPL}=-2(\) PTYPL \()+. n 01\)
\(C R=P R O P(R T Y P L, 3)\)
\(C P=P R O P(N[Y P L, 3)\)
CPR, = PROP (KTYPL, 1)
CPPd=PROP (NTYRL, l)
RHOR=PKOP (RTYPL, 2)
HCT=IC(I:D)

DO) \(30 n 3 \mathrm{I}=2, \mathrm{VCI}\)

+ 17, RKOORA.: COMTI?UTNG,//)

\(31=\operatorname{Lin}(A S F \therefore) *)\left(U A_{i}\right)\)

\(D 3=2(1: 31:<) * D(1 \mathrm{BiP})\)
\(34=7(15 A P) * D(0 \wedge, ~)\)
\(35=0\left(J A^{\prime}\right) * 5(A 1112)\)
\(\Gamma 3=1.0 /(D Z R 2 /(A C R * C R)+D X P /(A C D * C P)+1.0 /(A C P * 2.0 * D(こ K D)))\)

DO 302 : \(I=2\), ACI
\(3: G(L)=T E(L(I))\)

\(A(1,1)=9 . ?\)
\(1(2,2)=7.0\)
\(2(1)=0\).?
\(3(2)=0 . n\)
") \(3799 \mathrm{I}=2, \therefore \mathrm{CI}\)

\(\lambda(1,1)=1(1,1)+G \cdot F(I) * C P F A\)
\(\lambda(2,2)=1(2,2)+\therefore(1)\)
is \((1)=B(1)+2 . i F(I) *\) ©PF \(13 * P F(L(I))\)

CO'Jifilut.

\section*{6．62．7（Dontinued）}
```

    Rl=1.0/(DXF(L(1))/(AC.v(L(L))*C(L(1)))+DRR/(ACR*CR))
    ```

```

    + +C[P*D(IS'^)-CI涪((D(TK)+450.)**4)
    3(1)=S(1)+F.AASS*CPEV*口T(F&F)/DLLI'
    A(1,1)=A(1, l)+EAASS*CPFH/DELr+31+32
    A(1,2)=-31
    A(1,3)=-32
    \lambda(2,1)=-31
    i(2,2)=A(2,2)+D(F.n.\S)*CPi\../D&LT+31+33+R9
    A(2,3)=-Kn
    1(3,1)=-32
    1(3,2)=-149
    \(3,3)=3.شっ5*C口及../DLLT+3?+24+89+35
    ```

```

    + +!50.)**4)+35* Pr(LL)
    Ch[r, SI.alin(A, 3, 3, IL:SNO)
    OZ(S:NF)=3(1)
    Mi(f.:)=3(2.)
    DP(TP)=2(3)
    O 3800 I=?,NCI
    TF(ILII))=`(1)
    TC(I,iI))=?(?)
    ```

```

3300 CJNTI.iH

```

```

    L.V?
    ```

\subsection*{6.69 SUBROUTINE THEX69}

Subroutine THEX69 simulates a variety of heat exchanger configurations which includes shell, tube and flat plate types. Each can have unidirection How, counter flow, or cross flow, as shown in Figure 6.69-1.

The subroutine calculates the exterior wall temperature, the hydraulic [luid and cooling liquid temperatures, and the interior wall temperature, of either pipes, fins or flat plates (whichever is considered).

FIGURE 6.69-1
TYPE NO. 69 HEAT EXCHANGER

\subsection*{6.69.1 Math Modei}

The thermal math model for the heat exchanger includes heat transfer to and from four connecting line segments, two hydraulic segments and two cooling segments, as shown in Figure 6.62-2.

FIGURE 6.69-2
HEAT EXCHANGER AND LINE NODE REPRESENTATION

The heat exchanger is represented by four nodes, one exterior wall node, one interior wall node (representing pipes or tubes etc), one hydraulic fluid node, and one cooling fluid node. Each connecting line segment (hydraulic and cooling) is represented by two nodes, one fluid and one wall. The temperature of the heat exchanger wall node is DT (TEW), interior wall node is DT(TEP), hydraulic fluid node is DT(TEF) and cooling fluid node is DT(TEC). The temperatures of the hydraulic connecting line segment wall and fluid nodes are TW(L1), TW(L2), TF(L1), and TF(L2). The temperatures of the cooling liquid connecting line segment wall and fluid nodes are \(\operatorname{TW}\left(\mathrm{L}^{3}\right), \mathrm{TW}(\mathrm{L} 4), \operatorname{TF}(\mathrm{L} 3)=\mathrm{D}(\mathrm{TECl})\), and \(\mathrm{TF}(\mathrm{L} 4)=\mathrm{TEMPCOT}\). (Note: TEMPCOT=DT(TEC), see assumptions).

Four equations are written to solve for DT(TEW), DT(TEP), DT(TEF), and DT(TEC), using the heat exchanger and line segment material properties and dimensions, the atmosphere and structure temperatures external to the heat exchanger and \(\mathrm{TW}(\mathrm{L} 1), \mathrm{TW}(\mathrm{L} 2), \mathrm{TF}(\mathrm{L} 1), \mathrm{TW}(\mathrm{L} 3), \mathrm{TW}(\mathrm{L} 4)\), and \(\mathrm{D}(\mathrm{TECL})\). (Note: \(\operatorname{TF}(\mathrm{L} 2)=\mathrm{DT}(\mathrm{TEF}), \operatorname{TW}(\mathrm{L} 3)=\mathrm{D}(\mathrm{TEC} 1)\) and \(\mathrm{TW}(\mathrm{L} 4)=\mathrm{TEMPLOT}\), see assumptions.)

The first equation represents three modes of heat transfer with the heat exchanger hydraulic fluid node:
1. Convection to and from the interior wall (pipe)
\[
\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TEP})-\mathrm{DT}(\mathrm{TEF}))
\]
where B1 is the convection coefficient and is equal to UFWIL*ASFP.
2. Heat transfer due to mass transfer into the heat exchanger from upstream of the heat exchanger.
\[
\dot{M} C p *(T F(L 1)-D T(T F F))
\]
where \(\dot{M} C p\) is the mass flow rate and is equal to \(Q(L 1) *\) RHOIL*CPFN
3. Heat transfer due to a pressure drop across the heat exchanger \(\dot{M} C p^{*}\) DCAPTI
where DCAPT \(=(1.0 /\) RHOLL \() *(\mathrm{P}(\mathrm{L} 1)-\mathrm{P}(\mathrm{L} 2)) /(\mathrm{C}, \mathrm{J} * \mathrm{CPFN})\)
These terms are combined to produce the equation for the heat balance for the heat exchanger fluid node.
\[
\begin{align*}
& \begin{aligned}
\frac{M C p^{*}}{\operatorname{DELT}}(\mathrm{DT}(\mathrm{TEF})-\mathrm{DT}(\mathrm{TEF}) \mathrm{OLD})= & \mathrm{BI} *(\mathrm{DT}(\mathrm{TEP})-\mathrm{DT}(\mathrm{TEF}) \\
& +\mathrm{MCp} *(\mathrm{TF}(\mathrm{LI})-\mathrm{DT}(\mathrm{TEF}))
\end{aligned} \tag{1}\\
& +{ }^{\prime \prime} C p \text { DCAPTI }
\end{align*}
\]
where \(\dot{M} C p\) is equal. to \(\operatorname{FMASS*CPFN}\)
The second equation represents three modes of heat transfer relative to the heat exchanger exterior wall node:
la. convection to and from the cooling fluid node B7* (DT (TEC)-DT (TEW))
where \(B 7\) is a convection coefficient equal to \(D(U C W) * D(A S C W)\)
1b. convection to and from the atmospheric air
\[
\mathrm{B} 5 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TEW}))
\]
where \(B 5\) is the convection coefficient and is equal to \(D\) (UAW)* D (ASAW)

2a. conduction to and from the hydraulic fluid connecting lines
RI* (TW(LI) -DT (TEW))
where RI is the conduction coefficient and is equal to \(1.0 /(\operatorname{DXF}(\mathrm{LI}) /(\mathrm{ACW}(\mathrm{LI}) * C(\mathrm{LI}))+\mathrm{DXE} /(\mathrm{ACEW} * \mathrm{CEW}))\) and \(\mathrm{I}=1\) for
line 1 and 2 for line 2
2 b. conduction to and from the cooling fluid connecting lines
R3* (TEMPCIN-DT (TEW)) and
R4* (TEMPCOT-DTI (TEW))
where \(R 3=R 4\) and are equal to \(1.0 /(2.0 * D X E / A C E W * C E W))\) and TEMPCOT=DT (TEW) OLD
3.0 radiation exchange with surrounding structure
\[
\operatorname{CIP} *(D(T S T)-(D T(T E W)+460 .) * * 4)
\]
whein CIP is equal to SIGMA*EPSION*SHAPF*D (ASAW)
These terms combine to produce the equation for heat balance for the exterior wall node:
\[
\begin{aligned}
\frac{\mathrm{MCP}}{\mathrm{DELT}}\left(\mathrm{DT}(\mathrm{TEW})-\mathrm{DT}(\mathrm{TEW})_{\mathrm{OLD}}\right) & =\mathrm{B} 7 *(\mathrm{DT}(\mathrm{TEC})-\mathrm{DT}(\mathrm{TEW}))+ \\
& \mathrm{Rl} *(\mathrm{TW}(\mathrm{LL})-\mathrm{DT}(\mathrm{TEW}))+\mathrm{R} 2(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TEW})) \\
& +\mathrm{R} 3 *(\mathrm{TEMPCIN}-\mathrm{DT}(\mathrm{TEW}))+\mathrm{R} 4(\mathrm{TEMPCOT}-\mathrm{DT}(\mathrm{TEW})) \\
& +\mathrm{B5}(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TEW}))+\mathrm{C} 1 \mathrm{P} * \mathrm{D}(\mathrm{TST})- \\
& \mathrm{ClP} *(\mathrm{DT}(\mathrm{TEW})+460 .) * * 4
\end{aligned}
\]
where MCp is equal to \(D(E M A S S) * C P C N\)
The third equation represents three modes of heat transfer relative to the heat exchanger cooling liquid node:
la. convection to and from the interior wall or pipe node
B4* (DT (TEP)-DT (TEC))
where \(B 4\) is the convection coefficient and is equal to \(D(U C P) * D(A S C P)\)
lb. convection to and from the exterior wall node
\[
B 7 *(D T(T E W)-D T(T E C))
\]
where \(B 7\) is equal to \(D(U C W) * D(A S C W)\)
2. heat transfer due to mass transfer into the cooling liquid node from upstream of the node
\[
\dot{M} C p(D(T E C 1)-D T(T E C))
\]
where \(\mathrm{M} C \mathrm{p}\) is the flow coefficient and is equal to D (RMFCL) \(* C P C N\)
3. heat transfer due to pressure drop across the heat exchanger coding liquid node
\[
\dot{\text { MCp }} \text { * DCAPT2 }
\]
where DCAPT2 is equal to (1.0/RHOLL) *D (PP3)/(CJ*CPCN)

These terms are combined to produce the equation for heat balance for the cooling fluid node:
\[
\begin{align*}
\left.\left.\frac{M C P^{*}}{D E L T^{(D T}(T E C)-D T(T E C)}\right)_{O L D}\right)= & B 4 *(D T(T E P)-D T(T E C)) \\
& +B 7 *(D T(T E W)-D T(T E C)) \tag{3}\\
& +\dot{M C p *(D(T E C 1)-D T(T E C))} \\
& +\dot{M C P * D C A P T} 2
\end{align*}
\]

The fourth equation represents one mode of heat tra ;fer relative to the interior wall (pipe) node:
la. convection to and from the coding fluid node
34*(DT(TEC)-DT (TEP))
where \(B 4\) was defined previously.
1b. convection to and from the hydraulic fluid node
\[
\text { B1* (DT (TEF) } \left.-\mathrm{DT}^{2}(\mathrm{TEP})\right)
\]
where B1 was described previously
These terms combine to produce the equation for heat transfer to and from the interior wall node:
\(\begin{aligned} \frac{\mathrm{MCD}}{\mathrm{DELT}}\left(\mathrm{DT}(\mathrm{TEP})-\mathrm{DT}(\mathrm{TEP})_{\mathrm{OLD}}\right) & =\mathrm{B4*}(\mathrm{DT}(\mathrm{TEC})-\mathrm{DT}(\mathrm{TEP})) \\ & +B 1 *(\mathrm{DT}(\mathrm{TEF})-\mathrm{DT}(\mathrm{TEP}))\end{aligned}\)
where \(M C\) p is equal to \(D\) (PMASS)*CPPN

Figure 6.69-3 is a thermal resistance for the heat exchanger and shows how all four nodes are interrelated. Equations (1) through (4) are solved simultaneously for the temperatures of each node.

FIGURE 6.69-3
THERMAL MODEL

In the hydraulic math model the pressure drop through the heat exchanger is computed using equation (5).
\[
\begin{align*}
P U P & =P U P-Q 1 * D(L A M) * V I S C(T F(L(I C O N), P U P) \tag{5}\\
& * R H O(T F(L(I C O N)), P U P) /(.028 * 8.2 E-5)
\end{align*}
\]
where
\(P U P=\) upstrean pressure (PSI)
Q1 \(=\) flow (CIS)
\(D(L A M)=\) laminar flow eoefficient
RHO()\(=\) fluid density \(\left(\mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN}^{4}\right)\)
\(\operatorname{VISC}()=\) fluid viscosity (\(\left.\mathrm{IN}^{2} / \mathrm{SEC}\right)\)
In equation (5) the laminar flow coefflcient is corrected to the system temperature and fluid.

\subsection*{6.69.2 Assumptions}
1. Atmosphere and structure temperatures remain constant
2. The entire wall or case of the exchanger is alı at the same temperature.
3. The interface conductance between the exchanger wall and the line wall segment is infinite.
4. The emissivity of the walls remaln constant at .3 ior steei.
5. TW(L4), the downstream cooling liquid line segment temperature is at the temperature of the exiting fluid TEMPCOT which also equals DT (TEC).
6. No conductance between the pipe and the walis of the exchanger.
7. The temperature of the exiting hydraulic fluid is equal to the calculated temperature, TF (L2) = DT (TEF).
8. Complete mixing occurs in the fluid volume.
9. TW(L3), the upstream cooling liquid line segment temperature is equal
to \(D(\) (TECL \()\) the cooling liquid inlet temperature.

\subsection*{6.69.3 Computation Methods}

The subroutine executes the above discussed calculations as follows:
SECTION 1000
The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Fahrenheit to Rankine and raised to the fourth power, and the default values are assigned.

SECTION 2000
The pressure drop of the hydraulic fluid through the heat exchanger is computed using equation (5).

SECTION 3000
Property values are assigned. Dimensions and coefficients are calculated. The flow direction is determined. (the program is set up with the flow entering connection line one (Ll) and leaving thru connection line two (L2). During the calculation the flow direction is checked. If the flow has reversed flow direction, the progiam reassigns connection numbers so that the fiow still enters connection line one). Some coefficients are then recalculated if the flow is reassigned. A \(4 \times 4\) matrix is leaded and the mathematical equations are solved for DT(TFW), DT(TEP), DT(TEC) and DT(TEF). The calculated values are assigned to their proper storage locations and the boundary conditions are assigned to arrays (TC and TF) in common /TRANS/.

\subsection*{6.69.4 Approximations}
1. The exit cooling fluid line wall is at the temperature of the cooling fluid exiting.
6.69.5 Limitations - Not applicable.
6.69.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline Varlable & Description & Units \\
\hline A () & Computational array & IN. \({ }^{2}\) \\
\hline ACEW & Cross sectisnal area of the exchanger salls & IN. \({ }^{2}\) \\
\hline D (ASAW) & External surface area of the exchanger wails & IN. \({ }^{2}\) \\
\hline D (ASCP) & Surface area cooling fluid to pipe (fins) & IN. \({ }^{2}\) \\
\hline D (ASCW) & Surface area cooling fluid to exchanger exterior walls & IN. \({ }^{2}\) \\
\hline ASFP & Internal surface area of the cooling pipe & IN. \({ }^{2}\) \\
\hline B () & Computational array & \\
\hline B1, \(\mathrm{B} 2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{~B} 5, \mathrm{~B} 7\) & Variable coefíicients & \\
\hline CEW & Thermal conductivity of the exchanger walls & WATTS / IN- \({ }^{\circ} \mathrm{F}\) \\
\hline CJ & Mechanical equilivant of heat, 8.85 & IN-LB \({ }_{\text {m }} /\) WATTS --SEC \\
\hline CMASS & Cooling liquid mass & \(1 . B_{m}\) \\
\hline CPCN & Specific heat of the cooling liquid & WATTS-SEC/LBm- \({ }^{\circ} \mathrm{F}\) \\
\hline CPYN & Specific heat of the exchanger pipe & WAT'TS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\) \\
\hline CPWN & Specific heat of the exchanger walls & WATTS-SEC/LB \(\mathrm{m}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\) \\
\hline D (CTYPE) & Cooling liquid type (use 1.) & \\
\hline D (DELTA) & Overall length of the length & IN. \\
\hline D (DELTAX) & Pipe length thri! exchanger & IN. \\
\hline DXE & Distance from node to interface, exchanger watts & IN. \\
\hline D (EMASS) & Exchanger mass & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline EPSION & Emissivity of the walls, constant . 3 & \\
\hline FMASS & Fluid mass & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline \(0(\) IDIA \()\) & Inside diameter of the pipe & IN. \\
\hline D (ITC) & Initial temperature of the walls & \({ }^{\circ} \mathrm{F}\) \\
\hline D (ITF) & Initial temperature of the fluid & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Units \\
\hline D (ITL) & Initial temperature of the cooling liquid & \({ }^{\circ} \mathrm{F}\) \\
\hline KTYPE & Dummy variable & - \\
\hline D (LAM) & Laminar flow coefficient & PSI/CIS \\
\hline D(MTYPE) & Exchanger wall material type & - \\
\hline NTYPE & Dummy variable & - \\
\hline D(PMASS) & Pipe mass (fins etc) & \(L^{\text {B }}\) m \\
\hline D (PP3) & Pressure drop across exchanger for cooling 1iquid & PSI \\
\hline RHOC & Density of the cocling fluid & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{TN} .{ }^{3}
\] \\
\hline RHOE & Density of the exchanger walls & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{TN} .^{3}
\] \\
\hline RHOIL & Density of the hydraulic fluid & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} .{ }^{3}
\] \\
\hline RHOP & Density of the exchanger pipe (fins) & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} .{ }^{3}
\] \\
\hline D (RMFCL) & Mass flow rate of entering cooling liquid & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}
\] \\
\hline \(\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4\) & Dummy variables coefficients & - \\
\hline SHAPF & Shape factor of the walls, constant . 96 & - \\
\hline SIGMA & Stefan-Boltzman radiation constant . \(385 \times 10^{-11}\) & WATTS/IN2-R \({ }^{4}\) \\
\hline D (TA) & Surrounding ambient temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TEC) & Temperature of the exchanger cooling liquid, to be calculated & \({ }^{\circ} \mathrm{F}\) \\
\hline D(TEC1) & Inlet temperature of the cooling liquid & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TEF) & Temperature of the exchanger fluid, to be calculated & \({ }^{\circ} \mathrm{F}\) \\
\hline TEMP1 & Temperature \(\mathrm{a}^{\circ}\) the walls for heat transfer calculation & \({ }^{\circ} \mathrm{F}\) \\
\hline TEMPCIN & Temperature of cooling liquid in & \({ }^{\circ} \mathrm{F}\) \\
\hline TEMPCOT & Temperature oi cooling liquid out & \({ }^{\circ} \mathrm{F}\) \\
\hline DT(TEP) & Temperature of the exchanger pipe (fins, to be calculated) & \({ }^{\circ} \mathrm{F}\) \\
\hline D (TST) & Surrounding structure temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}

Variable

DT (TEW)

D (UAN)
D (UCP)

D (UCW)

UFWIL

D (VOLC)

VOLF

Description

Temperature of the exchanger walls, to be calculated

Heat transfer coefficient ambient tu walls WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\)
Heat transfer coefficient cooling liquid WATTS/IN \({ }^{2}{ }^{\circ} \mathrm{F}\) to pipe

Heat transfer coefficient cooling liquid WATTS/TN \({ }^{2}{ }^{\circ} \mathrm{F}\) to walls

Heat transfer coefficient, fluid to pipe WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) walls

Volume of the cooling liquid in the IN. \({ }^{3}\) exchanger

Volume of the hydraulic fluid in exchanger

Units
\({ }^{\circ} \mathrm{F}\)

IN. \({ }^{j}\)

\subsection*{6.69.7 Subroutine Listing}
```

            SU3ROUTI il TILXG9 (D: DT, OD, L)
    ```

```

            DIILESSION D(1), DT(1), DC(1), L(1)
    ```

```

            \(+A C F(300), A C i(300)\), DXF (300), TIAL, BLLT, DI, NLIYL, NEL
    ```



```

            +ILLJD(90), ILAG(1000)
    ```

```

                        DT IL SSTON 1(4,4), 3(4)
    ```



```

            i) Arriy varibibls
    ```



```

            \(3 \mathrm{DO} / 24 / \mathrm{ASCD} / \mathrm{IL} /\)
    ```



```

    170. Coliritui.
            \(\mathrm{L}=\mathrm{L}=\mathrm{L}(1)\)
            \(\mathrm{L} 2=\mathrm{L}(2)\)
            \(\Gamma P(L 1)=2(I f F)\)
            \(\mathrm{F} F(\mathrm{~L} 2)=\mathrm{C}(\mathrm{ITF})\)
            \(\mathrm{CC}(\mathrm{Ll})=:(\mathrm{I} C \mathrm{C})\)
            \(\mathrm{rC}(\mathrm{L}\) ? \()=\because(\mathrm{IRC})\)
            \(\mathrm{T}(\mathrm{IL} \mathrm{F})=\mathrm{D}(\mathrm{I} \mathrm{C})\)
            \(D T(T L z)=D(I T C)\)
            DT( P CO ) \(=2(\mathrm{ITL})\)
    ```


\section*{6．69．7（Continued）}
 FIJS IG NO PIM

サinl C I：COOLI JG LI OUI：（JP－4）

iv！「URN

\(\left.+\therefore \mathrm{B}^{\circ}\right)(\mathrm{PP}([\mathrm{L}(\mathrm{ICOM})), \mathrm{P} \mathrm{JP}) /(.028 * 3.2 \mathrm{~L}-5)\)
Fl：
30nの Cu！ \(\mathrm{H}^{\mathrm{r}}\) ：JL

CDP：＝PNOP（YTYRL，1）

CPC！！＝537．4
： \(10 \mathrm{C}=.02\) ？
\(\mathrm{L} 1=\mathrm{L}(1)\)
\(\mathrm{L} . ?=\mathrm{L}\)（2）

クロ：ニア（IVI！）

：

？2＝1．\(\left./()^{Y} \because(L, ?) /(A C \ldots(L ?) * C(L 2))+\therefore 1\right)\)
\(\because 3=1 . /(2.0 * 11)\)
\(\therefore .1=1 . /(2.7 * 31)\)

\(34=2(1 ; C\) ）\() *\)（ Ascp）
\(\because 5=!\left(1 \mathrm{ABir}^{\circ}\right) * D(\lambda S 1 w)\)

\subsection*{6.69.7 (Continued)}

CT: =SISM*SIAPF*LDSIOM*D(ASMm)
\(D C \wedge P T=(1 . / R 10 T[) * A 3 S(P(L])-P(L ?)) /(C J * C P F N)\)

\(\quad(1,2)=0,7\)
\(\therefore(1,3)=0.7\)
\(A(2,1)=0.0\)

\(1(2,3)=-137\)
\(A(3,1)=0,0\)
\(\lambda(3,2)=-: 3\)

\(\therefore(4,1)=-31\)
\(a(1,4)=\Lambda(4,1)\)
\(1(4,2)=n, 3\)
\(\lambda(2,4)=7,0\)
\(3(4,3)=-24\)
\(1(3,4)=-3.4\)

 \(+4 凸 \cap) * *\).

\(\mathrm{T}(\mathrm{L} 2)=3(1)\)
\(\mathrm{TC}(\mathrm{L}, \mathrm{I})=3(2)\)
TC(L?) \(=3(2)\)
\(\mathrm{C}^{\prime}\left(\mathrm{I}^{\prime} \mathrm{L}^{\mathrm{F}}\right)=3(1)\)
\(D(\mathrm{~F}, \mathrm{P})=3(\mathrm{~A})\)
DT (ILN) \(=3(2)\)

L. iv)

\subsection*{6.71 SUBROUTINE TACUM71}

Subroutine TACMII simulates a simple gas charged piston type accumulator that can be used as a system accumulator, as sketched in Figure 6.71-1. When used as a system accumulator, the initial volume of oil in the accumulator is determined by the steady state pressure. Two connections are provided, both of which are assumed to be at the same pressure. When a single conncction is used, the other is blanked off automatically.

Since it is basically a passive device, its response is entirely dependent on line flow, pressure and temperature changes.

The subroutine calculates the accumulator fluid (oil) temperature, the gas temperature, and the temperature of the accumulator walls and piston.

FIGURE 6.71.1
TYPE NO. 71 FREE PISTON ACCUMULATOR

\subsection*{6.71.1 Math Model}

The THERMAL math model for the accumulator includes heat transfer to and from two connecting line segments, one upstream and one downstream. Nine nodes are considered: three fluid nodes, one gas node, and five wall nodes (as shown in Figure 6.71-2). The temperatures of the upstream connecting line segment wall and fluid nodes are denoted by TW(L1) and TF(L1). The temperatures

FIGURE 6.71-2
ACCUMULATOR AND CONNECTING LINE SEGMENT REPRESENTATION 0977.0085 .11
of the accumulator wall and fluid nodes are denoted by \(\operatorname{DT}(T A N)\), \(\operatorname{DT}(T B N), ~ D T(T P N)\), and DT(TAF), and the temperature of the gas node is DT(TG). The temperature of che downstream connecting line segment wall and fluid nodes a:e TW(L2) and TF(L2). Five heat balance equations are written to solve for the five accumulator nodes temperature DT(TAN), DY'(TBN), DT(TPN), DT(TG) and DT(TAF), using the accumulator and line segment material properties and dimensions, the atmosphero and structure temperature external to the accumulator, and TW(L1), TW(L2), and \(T F(L 1)\). (Note: \(T F(1,2)=D T(T A F)\), see assumptions). One equation for the heat balance for each of the accumulator nodes is produced. The first equation represents two modes of heat transfer relative to the accumulator gas node.
1. Heat transfer due to expansion or compression of the gas by the piston
\[
\mathrm{DT}(\mathrm{TG})=\frac{\mathrm{DT}(\mathrm{TG})_{O L D} * \mathrm{DT}(\mathrm{PG}) * \mathrm{DT}(\mathrm{VOLG})}{\mathrm{DT}(O \mathrm{PG}) * \mathrm{DT}(O \mathrm{OOLG})}
\]

This term calculates the new temperature of the gas just due to expansion or compression, not with its reactions with the other nodes.

2a. Convection to and from the accumulator wall node
\[
B 1 *(D T(T A N)-D T(T G))
\]
where Bl is the convection coefficient and is equal to D(UGA)*ASGA
2b. Convection to and from the accumulator piston node
\[
\mathrm{B} 2 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TG}))
\]
where \(B 2\) is the convection coefficient and is equal to \(D\) (UGA) *D (AREA)
These heat transfer terms are combined to produce the equation for the heat balance for the accumulator gas
\[
\mathrm{DT}(\mathrm{TG})=\mathrm{DT}(\mathrm{TG}) * \mathrm{DT}(\mathrm{PG}) * \mathrm{DT}(\mathrm{VOLG}) /(\mathrm{DT}(O \mathrm{VOLG}) * \mathrm{DT}(O P G))
\]
this new DT(TG) then becomes the DT(TG)OLD in the next equation
\[
\begin{align*}
\frac{\mathrm{MCp}}{\mathrm{DELT}}\left(\mathrm{DT}(\mathrm{TG})-\mathrm{DT}(\mathrm{TG})_{\mathrm{OLD}}\right)= & \mathrm{B} 1 *(\mathrm{DT}(\mathrm{TAN})-\mathrm{DT}(\mathrm{TG})) \tag{1}\\
& +\mathrm{B} 2 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TG}))
\end{align*}
\]

The second equation represents three modes of heat iransfer relative to the accumulator fluid (oil):
la. Conduction to and from the upstream line segment fluid
\[
R 1 *(T F(L L)-D T(T A F))
\]
where R1 is equal to CF/(DXF (L1)/ACF (L1) +DXAF/ACAF + RMFL1*DELT/
(ACAP** \(2 *\) RHOIL)), the conduction coefficient for the fluid. RMFLI equals \(Q(L 1) * R H O I L\).

1b. Conduction to and from the downstream line segment fluid node if the flow rate is negligible, or not seaving the accumulator.
\[
\mathrm{R} 2 *(\mathrm{TF}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TAF}))
\]
where R2 equals R1 except instead of \(\mathrm{L} 1, \mathrm{R} 2\) uses L 2 . (Note: There may only be one connecting ine with the second being closed off and conseq.ently this term would be zero.)

2a. Convection to and from the accumulator wall node around the fluid.
\[
\left.B 5 *\left(\mathrm{D}^{\top}(\mathrm{TBN})-\mathrm{D}\right)(\mathrm{TAF})\right)
\]
where \(B 5\) is the convection coefficient and is equal to \(D(U F H A) * A S F B\).
2b. Convection to and from the piston node
\[
B 4 *(D T(T P N)-D T(T A F))
\]
where \(B 4\) is the convection coefficient and is equal to \(D(U F W A) * D\) (AREA)
3. Heat transfer due to mass transfer into the accumulator from the upstream connecting line node
\[
\dot{M C p} *\left(T F(L I)-D^{\prime}(T A F)\right)
\]
where \(\dot{M} C p\) is the flow rate coefficient and is equal to \(Q(L I) * R H O I L\). If there is no fluid entering the accumulator the last term is set equal to zero.

These heat transfer terms are combined to produce the equation for the heat balance for the accumulator fluid node:
\[
\begin{aligned}
\frac{M C p}{D E L T} *\left(\mathrm{DT}(\mathrm{TAF})-\mathrm{DT}(\mathrm{TAF})_{O L D}\right)= & \mathrm{R} 1 *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DI}(\mathrm{TAF}))+\mathrm{R} 2 * \\
& (\mathrm{TF}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TAF}))+\dot{\mathrm{MCp}} * \\
& (\mathrm{TR}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TAF}))+\mathrm{B} 5(\mathrm{DT}(\mathrm{TBN}- \\
& \mathrm{DT}(\mathrm{TAF}))+\mathrm{B} 4 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TAF}))
\end{aligned}
\]
where MCp is equal to FMASS*CPFN

The third equation represents three modes of heat transfer relative to the accumulato: wall node surrounding the gas node.
la. Conduction to and from the accumulator wall surrounding the fluid.
\[
\mathrm{R} 4 *(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TAN}))
\]
where R4 is the conduction coefficient and is equal to \(C A /(D X A A / A C A A+D X A B / A C A B)\)

1b. Conduction to and from the accumulator piston node
\[
\mathrm{R} 3 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TAN}))
\]
where R3 is the conduction coefficient for the wall and is equal to \(1.0 /(\mathrm{DXAP} /(\mathrm{ACAP} * \mathrm{CP})+\mathrm{DXAA} /(\mathrm{ACAA} * \mathrm{CA})+1.0 /(\mathrm{CAP} * \mathrm{ACAP}))\)

2a. Conveciion to and from the gas node
\[
\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TG})-\mathrm{DT}(\mathrm{TAN}))
\]

B1 is a conveciion coefficient and was define! previously.
2b. Convection to and from the external atmosphere
\(D] * B 3 *(D(T A)-D T(T A N))\)
where \(B 3\) is the convection coefficient equal to \(D(U A A) * D(A S A A)\)
and D1 is equal to \(\mathrm{D}^{\prime} \mathrm{T}(\mathrm{VOLG}) /(\mathrm{IT}(\mathrm{VOLG})+\mathrm{DT}(\because O L O)\)), a term to
represent the accumulator mass surrounding the gas.
3. Radiation exchange with the surrounding structure \(D 1 * C I P * D(A S A A) *\left(D(T S T)-(D T(T A N)+460 .)^{4}\right)\)
where CIP is equal to SIGMA*EPSION*SHAPF, the radiation coefficient, and D1 is as above.

These terms are combined to produce the equation for the heat balance for the accumulator wall node.
\[
\begin{align*}
\frac{M C_{p}}{\mathrm{DELT}}\left(\mathrm{DT}(\mathrm{TAN})-\mathrm{DT}(\mathrm{TAN})_{O L D}\right)= & \mathrm{R} 4(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TAN}))+\mathrm{R} 3(\mathrm{DT}(\mathrm{TPN})- \\
& \mathrm{DT}(\mathrm{TAN}))+\mathrm{BI} *(\mathrm{DT}(\mathrm{TG})-\mathrm{DT}(\mathrm{TAN})) \tag{3}\\
& +\mathrm{B} 3 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TAN}))+\mathrm{CIP} * \mathrm{D}(\mathrm{ASAA}) \\
& *(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TAN})+460) * * 4)
\end{align*}
\]
where \(M C p\) is equal to \(D(A M A S S) * D 1 * C P A N\)
The fourti equation represents three modes of heat transfer relative to the accumulator wall node surrounding the oil volume.

1a. Conduction with the connecting line segment wall,
\[
\mathrm{R} 6 *(\mathrm{TW}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TBN}))
\]
where R6 is the conduction coefficient for the walls equal to \(1.0 /(\mathrm{DXF}(\mathrm{L} 1) /(\mathrm{ACW}(\mathrm{L} 1) * \mathrm{C}(\mathrm{L} 1))+\mathrm{D} 3)\).

D3 is equal to \(D X A B /(A C A B * C A)\).
This may be upstream if fluid is entering, or downstream if fluid
is only leaving, or either if there are two connecting lines.
1b. Conduction to and from that second conecting line wall node.
\[
\mathrm{R} 7 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{Dr}(\mathrm{TAN}))
\]
where R7 is a condaction coefficient equal to \(1.0 /(\mathrm{DXF}(\mathrm{L} 2) /\) \(\operatorname{ACW}(\mathrm{L} 2) \times \mathrm{C}(\mathrm{L} 2))+\mathrm{D} 3)\)

1c. Concuction to and from the accumulator wall node surrounding the gas.
\[
\mathrm{R} 4 *(\mathrm{DT}(\mathrm{TAN})-\mathrm{DT}(\mathrm{TBN}))
\]
where \(R 4\) has been defined previously.
1d. Conduction with the piston node
R5* (DT (TPN: -DT (TBN))
where R 5 is the conduction coefficient between the two nodes equal to \(1.0 /(\mathrm{DXAP} /(\mathrm{ACAP} * C P)+B 3+1.0 /(\mathrm{CAP} * A C A P))\)

2a. Convection to and from the external atmosphere
\[
\mathrm{D} 2 * \mathrm{D} 3 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TBN}))
\]

B3 being same as defined previously and D2 is equal to DT(VOLO)/ (DT(VOLO) + DT (VOLG)), a term for the amount of accumulator mass surrounding the fluid.

2b. Convection with the fluid node in the accumulator
B5 (DT (TAF)-DT(TBN))
where BS is the same as prsviously defined.
3. Radiation exchange with the surrounding structure
\[
\mathrm{D} 2 *\left(\mathrm{CP} * \mathrm{D}(\mathrm{ASAA}) *\left(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TBN})+46 \mathrm{O})^{4}\right)\right.
\]
where al. 1 terms have been previously defined.
These six terms are combined to produce the equation for the heat balance for the accumulator wall node surrounding the fluid.
\[
\begin{align*}
\frac{M C p}{D E L T}\left(\mathrm{DT}(\mathrm{TBA})-\mathrm{DT}(\mathrm{TBN})_{O L D}\right)= & \mathrm{R} .6 *(\mathrm{TW}(\mathrm{LL})-\mathrm{DT}(\mathrm{TBN}))+\mathrm{R} 7(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TBN})) \\
& +\mathrm{R} 4 *(\mathrm{DT}(\mathrm{TAN})-\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TBN}))+\mathrm{R} 5(\mathrm{DT}(\mathrm{TPN}) \\
& -\mathrm{DI}(\mathrm{TBN}))+\mathrm{D} 2 * \mathrm{~B} 3 *(\mathrm{D}(\mathrm{TA})-(\mathrm{DT}(\mathrm{TBI})) \tag{4}\\
& +\mathrm{B5}(\mathrm{DT}(\mathrm{TAF})-\mathrm{DT}(\mathrm{TBN}))+\mathrm{D} 2 * \mathrm{CTP} \\
& \mathrm{D}(\mathrm{ASAA}) *(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TBN})+460) * * 4)
\end{align*}
\]
where \(M C p\) is equal to \(D(\operatorname{ArASS}) \times D 2 * C P A N\)
The fifth equation represents two modes of heat transfer relative to the accumulator piston node.
la. Conduction to and from the accumulator wall node gas side
\[
\mathrm{R} 3 *(\mathrm{DT}(\mathrm{TAN})-\mathrm{DT}(\mathrm{TPN}))
\]
with R3 being defined previously
1b. Conduction to and from the accumulator wall node fluid side
\[
\operatorname{R5}(D T(T B N)-D T(T P N))
\]
with R5 being defined previously.
\(6.71-7\)

2a. Convection to and from the gas node
\[
B 2 *\left(D^{\prime} T(T G)-D T(T P N)\right)
\]
and again B 2 is the same as was defined previously.
2b. Convection to and from the fluid node
\[
B 4^{*}(\mathrm{DT}(\mathrm{TAF})-\mathrm{DT}(\mathrm{TPN}))
\]
with \(B 4\) being defined previously.
These terms combine to produce the equation for the heat balance for the accumulator piston node.
\[
\begin{align*}
\frac{M C p}{\operatorname{DELT}}\left(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TPN}) \mathrm{OLD}^{\prime}\right)= & \mathrm{R} 3 *(\mathrm{DT}(\mathrm{TAN})-\mathrm{DT}(\mathrm{TPN}))+\mathrm{R} 5 *(\mathrm{DT}(\mathrm{TBN})-\mathrm{DT}(\mathrm{TPN})) \tag{5}\\
& +\mathrm{B} 2 *(\mathrm{DT}(\mathrm{TG})-\mathrm{DT}(\mathrm{TPN}))+\mathrm{B} 4 *(\mathrm{DT}(\mathrm{TAF})-\mathrm{DT}(\mathrm{TPN}))
\end{align*}
\]
where \(M C\) is equal to \(D(P M A S S * C P P N\)
A thermal model of the above heat transfer equations is shown in Figure 6.71-3.
Equations (1) thru (5) are solved for the appropriate temperatures.

FIGURE 6.71-3
THERMAL MODEL

For the appropriate temperatures a thermal model for the accumulator is shown in Figure 6.71-3.

For entry and exit flow losses, a pressure loss term is input into the program. The term is currected for the fluid type and operating temperature. The resulting pressure loss is
\[
\begin{equation*}
\mathrm{PUP}=\mathrm{PUP}-\mathrm{Q} 1 * \mathrm{CORR} \tag{6}
\end{equation*}
\]
```

where Q1 = flow rate (CIS)
CORR = Entry exit flow constant (PSI/CIS)
PUP = Inlet Pressure (PSI)

```

CORR is the adjusted laminar flow constant determined by the following formula
\[
\text { CORR }=D(\text { LOSS }) *\left(\text { VISC }_{\text {OPERATING }}\right)\left(\text { DENS }_{\text {OPERATING }}\right) /\left(\text { VISC }_{100}\right)\left(\text { DENS }_{100}\right)
\]

\subsection*{6.71.2 Assumptions}
1. The temperature of the atmosphere and structure surrounding the accumulator remain constant.
2. The temperature rise in the gas is due to compression or expansion of the gas from the fluid in the accumilator, besides the heat transferred to and from it.
3. The emissivity of the walls remain constant.
4. Complete mixing occurs in the fluid volume.
5. The interface conductance between the accumulator walls and the line walls is infinite.
6. The temperature of the fluid leaving the accumulator is equal to the fluid calculated temperature, DT(TAF).

\subsection*{6.71.3 Computational Methods}

Section 1000
The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the forth power, and the default values are assigned.

Section 2000
The pressure loss due to fluid entry and exit is computed using equation (6) and the accumulator oil pressure is stored in \(\operatorname{DT}(P O)\). At time zero in the program the initial gas volume is computed as
```

DT(VOLG) = DT(MAVOLG)-(DT (APRECH)*DT (MAVOLG))/DT(PG)

```
where
\[
\begin{aligned}
& \text { DT (MAVOLG) = MAX VOLURE OF GAS (IN }) \\
& \text { DT }(\text { APRECH })=\text { PRECHARGE PRESSURE (PSI) } \\
& \operatorname{DT}(\mathrm{PG})=\text { GAS PRESSURE (PSI) } \\
& \operatorname{DT}(\text { VOLG })=\text { GAS VOLUME }\left(\mathrm{IN}^{3}\right)
\end{aligned}
\]

Section 3000
The present oil volume is computed using a simple integration
\(T V O L O=D T(V O L O)+(D T(I Q V)+T Q V) *\) DT \((\) NDELT \())\)
where
DT \((\) VOLO \()=\) OLD OLL VOLUME \(\left(\mathrm{IN}^{3}\right)\)
\(D T(T Q V)=\) SUM OF FLOW IN AND OUT OF ACCUMULATOR (CIS)
DT (IQV) \(=\) OLD SUM OF FLOWS (CIS)
\(D T(\) NDELT \()=.5 * T\) TME STEP
TVOLO \(=\) TOTAL OIL VOLUME

TVOLO is checked to determine if the accumulator is full, empty or in its working range. With an empty accumulator the oil volume, TVOLO, is set to the minimum oil volume and the volume of gas becomes DT(MAVOLG). Similarly for a full accumulator the proper volumes are initialized.

After the volumes of oil and gas have been determined the gas pressure is computed
\[
\mathrm{DT}(\mathrm{PG})=\mathrm{DT}(\mathrm{PG})+(\mathrm{DT}(\mathrm{DPG})+\mathrm{TDPG}) * \mathrm{DT}(\mathrm{NDELT})
\]
where
\[
\begin{aligned}
& \text { DT }(P G)=\text { OLD GAS PRESSURE (PSI) } \\
& \text { TDPG }=\begin{aligned}
& \text { RATE OF CHANGE OF GAS PRESSURE WITH } \\
& \text { TIME (PSI/SEC) } \\
& \text { DT }(D P G)= \text { OLD DIFFERENTIAL GAS PRESSURE (PSI/SEC) }
\end{aligned}
\end{aligned}
\]

Property values are assigned. Dimensions and coefficients are calculated. The flow direction is determined. (The program is set up with the flow entering connection line one (L1) and leaving through connection lines two (L2). During the calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line one). Some coefficients are then recalculated if the flow direction is changed. A \(5 \times 5\) matrix is loaded and the mathematical equations are solved for \(D T(T A F), ~ D T(T G), ~ D T(T A N), D T(T B N), ~ a n d ~ D T(T P N)\) and stored in the \(B\) computational array. The calculated values are assigned to their proper storage locations and the boundary conditions are assigned to special arrays \(T F\) and \(T C\) in COMMON/TRANS/.

\subsection*{6.71.4 Approximations}
1. The shape factor is .96 (described in the technical discussion earlier).
2. The properties for the gas are for nitrogen at \(100^{\circ} \mathrm{F}\), and remain constant.

\subsection*{6.71.5 Limitations}

The accumulator model may not be used as a pressure source in a hydraulic system.
6.71.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline VARIABLE & DEFINITION & DIMENSLON \\
\hline A & Computational Array & -- \\
\hline AAA & Area Associated with the Inlet Flow to Accumulator & \(1 N^{2}\) \\
\hline AAMASS & Accumulator Mass - Surrounding the Gas & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline ACAA & Cross Sectional Area of the accumulator wall & \[
\text { in. }{ }^{2}
\] \\
\hline \(A C A B\) & Cross sectional area of the accumulator wall & \[
\text { In. }{ }^{2}
\] \\
\hline ACAF & Cross sectional area of the accumulator fluid & IN. \({ }^{2}\) \\
\hline ACAP & Cross sectional area of the accumulator p iston & IN. \({ }^{2}\) \\
\hline D (AMASS) & Accumulate: Mass & \(L_{\text {L }}\) \\
\hline D (APRECH) & Precharge pressure adjusted to fluid temperature & PSI \\
\hline D (area) & Piston to oil area & IN. \({ }^{2}\) \\
\hline D (ASAA) & Surface area accumulator walls to atmosphere & IN. \({ }^{2}\) \\
\hline ASFB, ASGA & Dummy variables & -- \\
\hline B () & Computational Array & -- \\
\hline BMASS & Accumulator Mass Surrounding the fluid & \(L_{\text {L }}^{\text {m }}\) \\
\hline CA & Conducitivity of the accumulator walls & WATTS/IN. \({ }^{\circ} \mathrm{F}\) \\
\hline D (CAP) & Interface conductance - walls to piston & WATTS/IN. - \({ }^{\circ} \mathrm{F}\) \\
\hline CIP & Dummy variable & -- \\
\hline CJ & Mechanical equivalent of heat & \(\mathrm{IN}^{\text {- }} \mathrm{LB}_{\mathrm{m}} /\) WATTSS-SEC \\
\hline CORR & Laminar flow coefficient correction term & -- \\
\hline CP & Thermal conductivity of the piston & WATTS/IN. \(-^{\circ} \mathrm{F}\) \\
\hline CPAN & Specific heat of the accumulator walls & WATTS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
6.71.6 Variable Listing (Continued)

\section*{VARIABLE}

CPFN
CPGN Specific heat of the gas
SPPN
DOD
D (DIA)
D (DPG)
DXAA
DXAB
DXAF

D XAP
D1, D2, D3
EPSION
FMASS
D(CTYPE)
GMASS
IERROR
D(ITC)
D(ITF)
D (ITG)
D(LOSS)
KTYPE
DT(MAVOLG)
D(MAVOLO)
Specific heat of the fluid

Specific heat of the piston
Distance over which AAA Acts
Inside Diameter of accumulator
Differential gas pressure connecting line

\section*{Dummy Variables}

Emissivity factor of the walls
Accumulator fluid mass
Gas material type
Gas mass
Dummy variable
Initial wail remperature
Inftial fluid temperature
Initial gas temperature
Entrance and exit loss coefficient
Dummy variable
Maximum volume of gas
Maximum oil volume

DEFINITION

Distance from node to interface, wall to wall
Distance from node to interface, wall to wall
Distance from node to interface, fluid to

Distance from node to interface, piston to wall

\section*{DIMENSION}

WATTS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\)
WITTS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\)
WA.'TS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\)
IN.
IN.
PSI/SEC
IN.
IN.
IN.

IN.
--
--
\(\mathrm{LB}_{\mathrm{In}}\)
--
\(L_{m}\)
--
\({ }^{\circ} \mathrm{F}\)
\({ }^{\circ} \mathrm{F}\)
\({ }^{\circ} \mathrm{F}\)
PSI/CIS
--
IN. \({ }^{3}\)
IN. \({ }^{3}\)
6.71.6 Variable Listing (Continued)
\begin{tabular}{|c|c|c|}
\hline VARIABLE & DEFINITION & DIMENSION \\
\hline & & IN 3 \\
\hline D(MIVOLG) & Minimum gas volume & \\
\hline & Minimum oil volume & IN. \({ }^{3}\) \\
\hline D (MIVOLO) & rinimum oil volume & \\
\hline D (MTYPE) & Accumulator Wall Material Type & -- \\
\hline \(\geq \mathrm{T}\) (NDELT) & . 5 * Time Step & SEC \\
\hline NTYPE & Dummy Variable & -- \\
\hline DT(OPG) & Old gas pressure & PSI \\
\hline DT'(OVOLG) & Old gas volume & IN. \({ }^{3}\) \\
\hline DT(PG) & Gas pressure & PSI \\
\hline D(PMASS) & Piston mass & \(L_{\text {b }}\) \\
\hline DT(PO) & Oil pressure & PSI \\
\hline D(Pppes) & Gas precharge pressure & PSI \\
\hline D (PTYPE) & Piston material type & -- \\
\hline RHOIL & Density of the oil & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} .{ }^{3}\) \\
\hline RHOG & Density of the gas & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}\). \\
\hline RHOP & Density of the piston & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} .^{3}\) \\
\hline SHAPF & Shape factor of the walls for radiation & -- \\
\hline SIGMA & Stefan-Boltzmann constan! for radiation & WATTS/IN. \({ }^{2}-{ }^{\circ}{ }^{4}\) \\
\hline 1) (TA) & Temperature of surrounding atmosphere & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TAF) & Fluid temperature in accumulator & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TAN) & Temperature of the wall surrounding the gas & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TBN) & Temperature of the wall surrounding the fluid & \({ }^{\circ} \mathrm{F}\) \\
\hline TDPG, TFO & Dummy variables & -- \\
\hline DT(TG) & Gas temperature & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline VARIABLE & DEFINITION & DIMENSION \\
\hline DT(TPN) & Piston temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D (TST) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline D(UAA) & Heat transfer coefficient, accumulator to ambient & WATTS/IN. \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D \({ }^{\text {(UFL! }}\) (\({ }^{\text {S }}\) & Heat transfer coefficient, accunulator to fluid & WATTS/IN. \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D(LGA) & Heat transfer coefficient, accumulator to gas & WATTS/IN. \(.^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline DT (VOLG) & Volume of the gas & IN. \({ }^{3}\) \\
\hline DT (VOLO) & Volume of the oil & IN. \({ }^{3}\) \\
\hline D(WTHICK) & Accumulator wall thickness (average) & IN. \\
\hline
\end{tabular}

\subsection*{6.71 .7 (Continued)}
\(T C(T, 1)=D\left(I T^{\prime}\right)\)
\(D(A . A S S)=\partial(1 . A B S)-D(P A B S S)\)
CIP=SIG.n* SHADR*LP!SID!
\(\mathrm{D}(\mathrm{TBT})=(\mathrm{D}(\mathrm{\Gamma S} \mathrm{C})+450) * *\).

\(D T(\ldots A V O L G)=D\left(\ldots \hat{A} L_{0}\right)-D(\because I V O L O)+J(\ldots I V O L G)\)

DT(OVOL 2) \(=\) D (.II MCLG)
DT(OPG)=DT(APFLCA)
\(\operatorname{Dr}(:\) NLLLI \()=.5 *\) ')LL'
DT(IOV) \(=0.0\)
Dr(DPテ) \(=0.0\)
\(\operatorname{IF}(L(2) . L \cap .0)\) RLTMRH
\(\mathrm{AF}(\mathrm{L}(2))=\mathrm{D}(\mathrm{ITF})\)
\(\mathrm{TC}(\mathrm{L}(2))=\mathrm{D}(\mathrm{ITC})\)
flidut
200: 2 entrinul

+ *D(LJSS)

DT(PO) = PIJ)

JT(PG)=DT(PO)

RLTESN
3) 0 :) \(\mathrm{Ll}=\mathrm{L}(1)\)
\(22=0.0\)

\(\sqrt{1} \because P_{i}=0(a y)+.001\)

CA= P1:OD(KiYPl, 3)

\(C P G=247.0\)
CPAD=?ROE(STYRL, 1)
CPPA= PFOM(YY?L, 1)

\(\mathrm{P}^{\wedge}{ }^{\prime} j=\) (Ll) \(+\cdots 2\)

+ TVOLO, D'T(V)LO)

\subsection*{6.71 .7 （Continued）}
```

    007 FO&n\[(1X,3I17,6L.15.5)
        OT(VOLG)=OT(V')LG/&)-TV'LGO
        IF(ivSLO.ET.T(.IVOLO))GU TU 3100
    C lCOJ,JLA:ON I; LiveY
\becauseV)LU=D( .IVCLO)

```

```

    [\capV=.)..)
    Mリ[:=.).?
    \because% 3200
    31.00 tF(%JOLO.LT.0(.NVMLO)) OO TV 3200
C IC\&3.\LNETH I F FUL!
MVOLO=こ( \&.\OLO)
CT(VOLに)=n(.IVOL!⿱)
\imath\imath=3.9
ッツ『ン=!.?

```

```

    320n () \because丁口!!L,
    ```



```

        Tr(IOV)=`"V
        T(0,0)={5つ:
    ```



```

        B:M,=\(NI!)/i.G
        ACSA= (㐫心\)
    ```


```

        M.\P=%(P,AES)/(\Omega1OO゙*)(DT4))
    ```



```

        A!.|A:e= )(&.1^.3: *)l
        3..i.is=?(1..\:';)* 2?
    ```

```

    3101 23=.)\, %(1043*Ci1)
        A.B=2(\,\A)/2.3
    ```



```

    + **2*`(吕)(i))
    1:2=0. 
    !7=0.0
    &.[ॅ?=9.0
    ```
```

Tr(`(Ll).L\therefore.). O) : \l=0.0
I?(n(t,l).L:0.n) <<FLl=0.n
LF(L(2).LT, n.n)}\operatorname{lW}(L,(2))=0.
IF(L(2).L?.0.0) :, (L(2))=0.0
TF([, (2).L\thereforeON SC 河 3103
L2=Ts(?)

```

```

+ **2*R(OIU))

```

```

\because7=1.0/(DYF(L?)/(「C.(L?)*C(L,2))+)3)
IE(n(L2),IT.0.0) :?=0.0
IV(\cap(L2).LT.O.0) ※゙HL2=0.0

```

```

    [A=C 1/(DNBA/ACNi+) 人N'3/AC.AS)
    ```

```

    K5=l.0/(DXiP(Ll)/(AC*(Ll)*C(Ll))+D3)
    ```

```

    3?=~(15,\)*n(A,! 1)
    \therefore3=`)(1N.1)*つ(#ご1.1)
    \A= (UN: \)*J(\!M, \)
    ```



```

    i(1,?)=0.0
    \therefore(1,3)=-31
    A(1,4)=0.0
    A(1,5)=-32
    ```

```

    (7,1)=4.1
    ```


```

    i(2,3)=0.)
    \(2,4)=-0,5
    |(2,5)=-21
    ```


```

    3(3,1)=-.31
    i(3,2)=0, ?
    ```

```

    n(3,4)=-4,4
    i(3,5)=-i3
    ```


```

    A(4,1)=3.0
    A(4,?)=-55
    A(4,3)=-24
    ```

```

+ 33*r?
i(4,5)=-n;

```

\subsection*{6.71.7 (Continued)}


```

    \ (5, 1) = - 32
    i(5,2) =-2A
    1(5,3)=-23
    i(E, 1)=- ic5
    ```



```

    LF}=\textrm{P}\because(L1
    7T(n; !)=3(1)
    O("MF)=3(2)
    ```

```

    n口(P3.N)=2(4)
    n%("ロ?)="2(5)
    iC(LI)=3(4)
    I*(L(?),L`, D) i'(Ll)=3(?)
    Ir(L(2).1,.0) ris ro 40n?
    :7(L\hat{2)}=:(?)
    \because(1,2)=3(4)
    ```


```

    ! :"
    ```

\subsection*{6.81 SUBROUTINE TFILT81}

TFILT81 simulates an inline non-bypass filter with no moving parts as shown in Figure 6.81.1. This subroutine calculates the filter wall temperature and the cemperature of the rluid in the filter bowl.

\subsection*{6.81.1 Math Mode1}

The thermal math model for the filter includes heat transfer to and from two line segments, one upstream and one downstream of the filter. Six nodes are considered: three fluid nodes and three wall nodes (as shown in Figure 6.81-2). The filter consists of two nodes: one fluid, representing all the fluid in the filter, and one wall, representing all the walls. The temperatures of the upstream and line segment wall and fluid nodes are denoted by TW(L1) and TY(L1), the temperatures of the filter wall and fluid nodes

Figure 6.81-2
FILTER AND LINE SEGMENT NODE REPRESENTATION
\(6.81-2\)
are DT(TFRW) and DT(TFF1), and the temperatures of the downstream line segment wall and fluid nodes are \(\mathrm{TW}(\mathrm{L} 2)\) and \(\mathrm{TF}(\mathrm{L} 2)\). Two heat balance equations are written to solve for DT(TFRW) and DT('IFF1), using the filter and line segments material properties and dimensions, the atmosphere and structure temperatures external to the filter, and TW(L1), TW(L2), and TF(L1). (Note: \(T F(L 2)=D T(T F F 1)\), see assumptions). One equation is a heat balance for the filter fluid node. The second equations is a heat balance for the filter wall node.

The first equation represents four modes of heat transfer relative to the filter fluid node:
1. Conduction to and from the upstream line segment. fluid node
\[
\mathrm{R} 3 *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TFFL}))
\]
where \(R 3\) is the conduction coefficient between the fluids and is equal to \(\mathrm{CF} /(\mathrm{DXF}(\mathrm{L} 1) / \mathrm{ACF}(\mathrm{LL})+\mathrm{DXFF} / \Lambda \mathrm{CFF}+\mathrm{RMFL} 1 * D E L T /(A C F F * * 2 * R H O I L))\)
2. Convection to and from the filter wall node
\[
\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TFRN})-\mathrm{DT}(\mathrm{TFF} 1))
\]
where B1 is the convection coefficient between the fluid and the wall and is equal to UFWIL*D(ASFW).
3. Heat transfer due to mass transfer into the filter from the upstream line fluid segment.
\[
\dot{M} C p *(T F(L 1)-D T(T F F 1))
\]
where \(M C p\) is the flow rate coefficient and is equal to \(Q(L 1) * R H O I L * C P F N\).
4. Heat addition due to a pressure drop across the filter
MCp * DCAPT
where \(\operatorname{DCAPT}=(1.0 / \mathrm{RHOIL}) *(P(\mathrm{~L} 1)-\mathrm{P}(\mathrm{L} 2)) /(\mathrm{CJ} * \mathrm{CPFN})\)
Note: There may be a pressure drop across the filter and if sufficient may add heat to the fluid experiencing the pressure drop. If not an appreciable
pressure drop, (100 psi or greater) this term will be negligible.
These four heat transfer terms combine to produce the equation for the heat balance for the filter fluid:
\[
\begin{align*}
\frac{\mathrm{MCp}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TFF} 1)-\mathrm{DT}(\mathrm{TFF} 1)_{o 1 \mathrm{~d}}\right) & =\mathrm{Bl} *(\mathrm{DT}(\mathrm{TFRW})-\mathrm{DT}(\mathrm{TFF} 1)) \tag{1}\\
& +\dot{\operatorname{MCp} *(\mathrm{TF}(\mathrm{~T} 1)-\mathrm{DT}(\mathrm{TFF} 1))} \\
& +\dot{\mathrm{NC}}{ }^{*} * \operatorname{DCAPT}+\mathrm{R} 3 *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TFF} 1))
\end{align*}
\]
where MCp is equal to FFMAS*CPFN
The second equation represents three modes of heat transfer relative to the filter wall:
1. Conduction to and from the upstream and downstream line segment walls
\[
\mathrm{RL} L^{*}\left(\mathrm{TW}(\mathrm{~L} 1)-\mathrm{D}^{T}(\mathrm{TFRW})\right.
\]
where RI is the conduction coefficient and is equal to \(1.0 /(\mathrm{DXF}(\mathrm{LI}) /\) \(A C W(L I) * C(L I))+D X R W /(D(A C F W) * C W))\) and \(I=1\) for the upstream line and 2 for the downstream line.

2a. Convection to and from the filter fluid mode
\[
\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TFFl})-\mathrm{DT}(\mathrm{TFRW})
\]
where B1 is defined above.
2b. Convection to and from the external atmosphere
\[
B 2 *(D(T A)-D T(T F R W))
\]
where \(B 2\) is the convection coefficient and is equal to \(D(U A F) * D(A S A F)\).
3. Radiation exchange with the surrounding structure
\[
\mathrm{CIP} *(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TFRW})+460 .) * * 4)
\]
where CIP is the radiation coefficient and is equal to SIGMA*EPSION* SHAPE*D (ASAF).
these heat transfer modes combine to produce the equation for the heat balance of the filter wall node:
\[
\begin{align*}
\frac{M C_{p} *}{\operatorname{DELT}}\left(\mathrm{DT}(\mathrm{TFRW})-\mathrm{DT}(\mathrm{TFRW})_{\mathrm{old}}\right)= & \mathrm{Rl} *(\mathrm{TW}(\mathrm{LL})-\mathrm{DT}(\mathrm{TFRW})) \tag{2}\\
& +\mathrm{R} 2 *(\operatorname{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TFRW})) \\
& +\mathrm{B} 1 *(\mathrm{DT}(\mathrm{TFF} 1)-\mathrm{DT}(\mathrm{TFRW})) \\
& +\mathrm{B} 2 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TFRW})) \\
& +\mathrm{CIP} *(\mathrm{D}(\mathrm{TST})) \\
& -\mathrm{CIP} *((\mathrm{DT}(\mathrm{TFRW})+460) * * 4)
\end{align*}
\]
when MCp is equal to \(D(F M A S S) * C P W N\)
Equations (1) and (2) are solved for the appropriate temperatures.
A thermal model of the above heat transfer terms for the filter is shown in Figure 6.81-3.

FIGURE 6.81-3
THERMAL MODEL

In the hydraulic math model a second order relationship is used to compute the filter pressure drop.
\[
\begin{equation*}
\mathrm{PUP}=\mathrm{PUP}-Q A * Q S *(C O E F F L+Q A * C O E F F T) \tag{4}
\end{equation*}
\]
where \(\operatorname{PUP}=\) upstream pressure (PSI)
\(\mathrm{QA}=\) magnitude of llow (CIS)
\(\mathrm{QS}=\mathrm{sign}\) of flow
COEFFL = laminar flow coefficient (PSI/CIS)
COEFFT \(=\) turbulent flow coefficient (PSI/CIS \({ }^{2}\))

\subsection*{6.81.2 Assumptions}
1. The temperature of the fluid leaving the filter is equal
to the filter fluid node temperature, \(D T(T F F 1)\).
2. The entire filter wall is at the same temperature.
3. The temperatures of the atmosphere and structure surrounding the filter remains constant.
4. The interface conductance between the filter and line walls
is infinite.
5. The emissivity of the wall material is a constant.
6. romplete fluid mixing occurs in the fluid volume.

\subsection*{6.81.3 Computational Methods}

The subroutine executes the above discussed calculations as follows. Section 1000

The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the forth power, and the default values are assigned.

The laminar flow coefficient \(D(C O N S E L)\) and turbulent flow coefficient D (CONE2) are adjusted for fluid other than MIL-H-5606B and temperatures other than \(100^{\circ} \mathrm{F}\). Equation (4) is then solved to obtain the filter pressure prop. Section 3000

Property values are assigned. Dimensions and coefficients are calculated. The flow direction is determined. (The program is set up with the flow entering connection line one (L1) and leaving thru connection line two (L2). During the calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line one.) Some coefficients are then recalculated if the flow is reassigned. A \(2 \times 2\) matrix is loaded and the mathematical equations are solved for \(\operatorname{DT}(T F F 1)\) and \(\operatorname{DT}(T F R W)\) and stored in the \(B\) computational array. The calculated values are assigned to their proper storage locations and this boundary conditions are assigned to arrays in COMMON/TRANS/for distribution throughout the entire program.

\subsection*{6.81.4 Approximations}

Not applicable.
6.81.5 Limitations

Not applícable.
variable
A()
AAA
\(\mathrm{D}(\mathrm{ACB})\)
ACFF
D (ACFW)

D (ASAF)
D (ASFW)
A1, A2
\(B(\))
CENT
CIP
COEFFL
CoEfft
CJ
D(CONE2)
D (CONSEL)
CPWN
CW
DCAPT
DDD
DENS
DXRW

EPSION
D (FMASS)

Computational array
Dummy variable
Cross sectional area of the filter bowl
Cross sectional area of the fluid in the filter
Cross sectional area of the filter walls at the connections

External surface area of the filter
Internal surface area of the filter
Dummy variables
Computational array
Fluid viscosity
Radiation coefficient
Viscosity corrected laminar flow coefficient
Viscosity corrected turbulent flow coefficient
Mechanical equivalent of heat
Turbulent flow coefficient
Laminar flow coefficient
Specific heat of the filter walls
Thermal conductivity of the filter walls
Heat added to fluid due to a pressure change
Dummy variable
Fluid density
Distance from wall node to interface with line segment

Emissivity factor of the walls
Mass of the filter walls

Dimension
--
--
\(I N^{2}\)
\(\mathrm{IN}^{2}\)
\(\mathrm{IN}^{2}\)
\(\mathrm{IN}^{2}\)
\(\left[N^{2}\right.\)
--
--
\(\mathrm{IN}^{2} / \mathrm{SEC}\)
WATTS \(/{ }^{\circ} \mathrm{R}^{4}\)
PST/CIS
PSI/CIS \({ }^{2}\)
FT'-LB \(\mathrm{L}_{\mathrm{m}} /\) WAT'TS-SEC
PSI/CIS \({ }^{2}\)
PSI/CIS
IN
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline FRFM & Mass of the fluid in the filter & \({ }_{L} \mathrm{~B}_{111}\) \\
\hline IERROR & Dummy variable & -- \\
\hline D (ITC) & Inftial temperature of the filter wolls & \({ }^{\circ} \mathrm{F}\) \\
\hline D (ITF) & Initial temperature of the fluid & \({ }^{\circ} \mathrm{F}\) \\
\hline L1, L2 & Line connection addresses & -- \\
\hline MTYPE & Material type of the walls & -- \\
\hline D (PERC) & Percentage heat added to the fluid due to a pressur drop & e \\
\hline RHOIL & Fluid density & \[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}^{3}
\] \\
\hline RHOW & Density of filter walls & \(L^{\prime} \mathrm{m} / \mathrm{IN}^{3}\) \\
\hline RMFL1 & Mass flow rate entering filter & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}\) \\
\hline RMFL2 & Mass flow rate leaving filter & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}\) \\
\hline R1, R2 & Dummy variables & -- \\
\hline SHAPF & Shape factor case to surrounding structure & -- \\
\hline S?GMA & Stefan-Boltzman constant for radiation W & WATTS / IN \({ }^{2}-{ }^{\circ} \mathrm{R}^{4}\) \\
\hline D(TA) & Temperature of the surrounding atmosphere & \({ }^{\circ} \mathrm{F}\) \\
\hline TEMP1 & Dummy variable & -- \\
\hline DT (TFF1) & Filter fluid temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TFRW) & Filter wall temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D ('IST) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline D (UAF) & Heat transfer coefficient (surrounding atmosphere to filter walls) & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UFWIL & Heat transfer coefficient (fluid to filter walls) W & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (VOLUME) & Volume of fluid inside filter & IN \({ }^{3}\) \\
\hline
\end{tabular}

\subsection*{6.81.7 Subroutine Listing}
 DIMENSION D(1), DT(1), DO(1), L(1) COH, ON /TRANS, P (300), 2(300), C(300), TC(300), TW (300), TF (300),
+ ACF (300), ACTV(300), DXF (300), TIME, DLLT, PI,NLINL,NLL COMON /CO.AP/LIYPL(99),NC(99), KTEMP(39), IND, IENTR, INLL

+ DA, 2S, QL, PUP, PDOWN, NNODL, NLLG,NCPN, TLRM, LEGN, ICON, INV,
\(+\operatorname{INX}, \operatorname{INZ}, \operatorname{NUP}(90), \operatorname{NDWN}(90), N E L E A(90), \operatorname{ILLGXD}(90), I L E G(1000)\) COA,ION /FLUTi)/ATPRLS, CF, CPFN, \(\operatorname{FCLGP}, \operatorname{PROP}(13,3)\) DInL: ASION \(\lambda(2,2), 3(2)\)
INALGLR UAF, ASAF, EdASS,TA,TST,TFEL,TFRW,I'RC,ITF,ASFw,
+ VOLUHL, \(A C F W, A C B, C O N S L L, C O N L 2\), PLRC
\(C\) D ARRAY VARIABALES
DAMA . ITYPL/ / , EiASS/2/, VOLUME/3/, ACFW/4/, ACB/5/
+ , ASAF/6/,ASFw/7/,UAF/8/,TST/10/,TA/11/,ITF/12/,ITC/13/
+ , CONSEL/L4/,CONL2/15/, PERC/9/
DAPA SIG.iA/.349L-11/,SilAPF/.93/,E[SIOM/.3/,CJ/8.85/
C DT ARAAY VAARIABALIGS
DAOA TPF1/1/,TFRN/2/
C UAF =HEAT TRANSFER COLFEICIENT CASL AwALL TO AIBIENT
1SAF =SURFACL AREA CASE WALL TO AMBIENT
F.AASS =FILTLN WALL \(\triangle A S S\), LBS. (POTAL WLIGUT)

TFFI =TEMPLRATURE OF PHE FLUIO
TERN = " " OF THE CASSt iNALL
VOLU.ル=TOTAL VOLUNL OF FLUID IN CASE
ASFW =SURFACE AREA CASE WALL TO I'VSIDE FLUID
TA =rE:APLRATURE OF SURROUNJING A.!'3IENT
TST =TLAPLRA'TJRE OF "" STRUC'TURL
ACF: \(=\mathrm{DIS} \mathrm{CA} A N C L\) IVLET TO EXI'C
C ACB=CROSS SECTIUNAL ARLA OF THE INSIDE OF 'HIL EOHL
IF (IENTR) 1000,2000,3000
C *** 1000 SEETION
1900 COATINUL:
\(\mathrm{L} 1=\mathrm{L}(1)\)
\(\mathrm{L} 2=\mathrm{L}(2)\)
\(D T(\mathrm{IFFl})=\mathrm{D}(\mathrm{ITF})\)
DT(TFRW)=D (ITC)
\(\operatorname{IF}(\mathrm{D}(\) (OiNSEL) .LE.0.0) \(\quad \partial(\) CONSEL \()=.0001\)
\(\mathrm{D}\left(\mathrm{T} \mathrm{S}^{\prime}\right)=\left(\mathrm{D}\left(\mathrm{C} \mathrm{S}^{\prime}\right)+460 .\right)^{* \times 4} 4\)
\(I F^{*}(D(U A F) \cdot E Q \cdot 0.0) \quad D(U A F)=.0069\)
TF (Ll) \(=\mathrm{D}\) (ITE)
\(T F(L 2)=D(I T F)\)
\(T C(L 1)=D(I T C)\)
\(\mathrm{TC}(\mathrm{L} 2)=\mathrm{D}(\mathrm{I} \mathrm{TC})\)
\(K \subset Y P L=D(.1 T Y P L)+.001\)
RHOW=PROP(KTYPL, 2)
CW= PROP (KTYPL, 3)
CPW,J=PROP(KTYPL,1)
RETURRN
C *** 2000 SECTION

\subsection*{6.81.7 (Continued)}
```

2000 CONTINUE
DENS=RIO(TF(L(1)),PUP)
CENT=VISC(TF(L(l)), PUP)
COEFFL=CENT*DENS*D(CONSEL)/(.029*8.2L-5 5)
COEFF'r=CENT**.25*DENS*D(CONE2)/(.40906234*3.2E-5)
PUP=PUP-QA*2S*(COLFPL+QA*COEFFT)
RETURN
3000 Ll=L(1)
L_2=L(2)
IF(Q([.l).GT.O.C) GO TO 3003
Ll=L(2)
L2=L(1)
RIOTL=386.4*RHO(TF:',l),P(Ll))
FFHAGS=D(VOLUME) *RHOIL
3003 AAA=D(ACB)/2.
DDD=SQRT(AAA* 4./PI)
TLGPl=DT(TFRW)
UFWIL=UFW(AAA,DDD,^BS(Q(Ll)),TF(Ll),P(Ll))
DXRW=D(VOLUME)/(2.0*D(ACFW))
ACFF=D(AC3)/3.
DXFF=FFMASS/(RHOIL*D(ACB)*2.)
3033 RNFLI=ABS(2(L1))*RHOIL
RAFL2=ABS(2(L2))*RHOIL
Rl=1.0/(DXF(Ll)/(ACW(Ll)*C(Ll))+DXRw/(D(ACEW)*Cw')
R2=1.0/(DXF(L2)/(\LambdaCN(L2)*C(L2))+DXRN/(D(ACFW)*CW))
R3=CF/(DXF(Ll)/ACE(Ll)+DXFF/ACFF+RAFLI*DELT/(ACEF**2*RHOIL))
Bl=UFWIL*D(ASFN)
B2=D(UAF)*D(ASAF)
DCAPT=(1./RHOIL)*ABS(P(Ll)-P(L2))/(CPFN*CJ)
CIP=SIGCA* SHAPF*EPSION*D(ASAF)
C TEFl,TFRN NODES IN ORDER
3099 A(1,1)=FFAASS*CPEN/DELT+RAFLI*CPFN+3l+23
A(1,2) =-B1
B(1)=FFiJASS*CPFN*DT(TPFPl)/DELT+RMFLl*CPFN*TE(LI)
+ +RNFLl*CPF:N*DCAPT*D(PERC)+R3*TF(Ll)
A(2,1)=-B1
\Lambda(2,2)=D(F|ASS)*CPWN/DELT+32+31+Rl+R2
B(2)=D(F,IASS)*CPWN*D'T(TFRW)/DELT+R1*TW(L1) +R2*TW(L2)
+ +32*)(TA)+CIP*D(TST)-CIP*((DT(TFRN)4460.)**4)
CALL SIMULT(A,B,2,IE゙RROR)
TE(L2) = S(1)
TC(L1)=3(2)
TC(L2)=B(2)
DT(TFF1)=S(1)
D'T(TFRW)=B(2)
RETURN
END

```

\subsection*{6.101 SUBROUTINE ACT101}

TACT101 simulates a simple servo actuator with a mechanical input to the servo valve, which operates open loop, without feedback as shown in Figure 6.101-1.

A time history of valve position is inputed and a first order or straight line interpolation is used between the input points.

The valve is assumed to be a linear square port configuration, with zero lap. The width of each port slot is inputed independently, to allow the valve areas to be matched to the actuator piston areas. The initial actuator position is input, together with the external loads at the fully retracted and extended stroke positions. The load stroke curve is assumed to be linear between these positions. The steady state balancing system uses the load at the initial position to determine the pressure drop across the piston. The effects of atmospheric pressure is incorporated into the load.

The subroutine calculates two actuator fluid temperatures, two valve fluid temperatures, two actuator wall and one actuator piston temperatures, and one valve wall temperature.

FIGURE 6.101-1
TYrE NO. 101 VALVE CONTROLLED ACTUATOR

\subsection*{6.101-1 Math Mode1}

The thermal math model for the actuater includes heat transfer to and from two connecting line segments, one upstream and one downstream of the actuator valve. For the actuator valve combination there are a total of 12 nodes: six fluid nodes, five wall nodes, and one piston node, as shown in Figure 6.101-2.

FIGURE 6.101-2
ACTUATOR, VALVE AND LINE SEGMENT NODE REPRESENTATION
GP77.7065-13

The temperatures of the upstream line segment nodes are TF(L1) and TW(L1) for the fluid and wall respectively, the temperatures of the downstream line segment nodes are \(T F(L 2)\) and \(T W(L 2)\) for the fluid and wall respectively. The actuator valve nodes temperatures are DT (TVF1), DT(TVF2), and DT(TVN) for two
fluids and the valve wall respectively. The actuator wall temperatures are DT (TCN) for the walls around volume one, and DT(TDN) for the walls around volume two. The two actuator fluid nodes temperaturss are DT(TFAl) for the fluid in volume one, and DT(TFA2) for the fluid in volume two, and the actuator pistons node temperature is designated as DT(TPN).

Eight equations are written to solve for the eight valve and actuator temperatures, using the actuator, valve and line segment material properties and dimensions, and external atmosphere and structure temperatures of the actuator and valve. The equations represent the hat transferred to and from each of the eight actuator nodes.

2)

FIGURE 6.101-3
ACTUATOR WORKING SIMULATIONS

During operation of the actuator, fluid always enters connection one, or flows into valve volume one, and then has two possible paths as shown in Figure 6.10:-3. It either: 1) m ay enter actuator volume one. If titis happens fluid from actuator volume two then leaves actuator volume two, due to movement of the piston, and travels into valve volume two. The fluid then leaves valve volume two to line two, or 2) may enter actuator volume two moving the piston
which forces fluid out of actuator volume one into valve volume two which then leaves valve volume two again to line two.

To describe the math model we shall only consider the first path. Recall that eight equations are necessary. The first equation represents four modes of heat transfer relative to the valve volume one fluid.
1) Conduction to and from the upstream line fluid node
R15* (TF (L1) - DT (TVF1))
where R15 is the conduction coefficient for the fluids equal to CF/(DXF(L1)/ACF(L1) + DXV/ACFV + RMFL1*DELT/(ACFV**2*RHOIL)) and RMFL1 is the mass flow rate equal to \(Q(L 1) \times R H O I L\)
2) Heat transfer due to mass transfer of fluid into the valve from the upstream line segment
\[
\dot{M} C p *(T F(L 1)-D T(T V F 1))
\]
where MCp is the mass transfer term and is equal to RMFLI*CFFN
3) Convection to and from the valve wall node
\[
\mathrm{B} 7 火(\mathrm{DT}(\mathrm{TVN})-\mathrm{DT}(\mathrm{TVF} 1))
\]
where B7 is a convection coefficient and is equal to UFWLL* C (ASFV) \(/ 2.0\)
4) Heat added directly to the fluid due to a pressure drop from line one to the valve volume.
\(\dot{\mathrm{M}} \mathrm{Cp}^{*}\))CAPT1
where MCp is as defined previously and DCAPT1 is equal to \(1.0 /\) RHOiL*
\[
(P(L 1)-D T(P P l)) /(C J * C P F N * 2 .)
\]

These terms are combined to produce the equation for heat balance for a volume one.
\[
\begin{align*}
\frac{M C P}{D E L T}\left(\mathrm{OT}(\mathrm{TVF} 1)-\mathrm{DT}(\mathrm{TVF} 1)_{O L D}\right)= & \mathrm{R} 15 *(\mathrm{TF}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TVF} 1))+\mathrm{MCP}(\mathrm{TF}(\mathrm{~L} 1)- \tag{1}\\
& \mathrm{DT}(\mathrm{TVFL} 1)+\mathrm{B} 7 *(\mathrm{DT}(\mathrm{TVN})-\mathrm{DT}(\mathrm{TVF} 1))+ \\
& \text { MCP*DCAPT1 }
\end{align*}
\]
when \(M C \mathrm{P}=\) FMASS \(*\) CPFN

The second equation represents three modes of heat transfer relative to the actuator volume one.
1) Heat transfer due to mass transfer into the actuator volume from the valve volume one
\[
\dot{M} C p *(D T(T V F 1)-D T(T F A 1))
\]
where \(\dot{H} C p\) is equal to \(Q(L 1) * R H O L L * C P F N\)
2a) Convection to and from the actuator walls surrounding volume one \(\mathrm{B} 3 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TFA} 1))\)
where B3 is the convection coefficient equal to
UA.1C*ASAlC
2b) Convection to and from the piston node
\[
\mathrm{B} 5 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFAL}))
\]
where \(B 5\) is the convection coefficient equal to \(D(U A 1 P) * D(A R E A 1)\).
3) Heat added directly to the fluid due to a pressure drop across the orifice into the actuator.
\[
\dot{M} C p * D C A P T 1
\]
\(\dot{M} C p\) is equal to RFMLI*CPFN and DCAPT is the same as defined previously.
These terms are combined to produce the heat balance equation for the actuator volume one.
\[
\begin{align*}
\frac{\mathrm{MCp}}{\mathrm{DELT}}\left(\mathrm{DT}(\mathrm{TFAL})-\mathrm{DT}(\mathrm{TFAL})_{O L D}\right)= & \dot{\operatorname{MCp} *(\mathrm{DT}(\mathrm{TVFL})+\mathrm{DCAPT} 1-\mathrm{DT}(\mathrm{TFAl}))+} \tag{2}\\
& \mathrm{B} 3 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TFAL}))+\mathrm{B} 5 *(\mathrm{DT}(\mathrm{TPN})- \\
& \mathrm{DT}(\mathrm{TFAI}))
\end{align*}
\]
where \(\dot{M} C p\) is equal to FMASSI (CPFN).
The third equation represents one mode of heat transfer relative to the actuator volume two.

1a) Convection to and from the actuator wall surrounding volume two
\[
\mathrm{B} 4 * \mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TFA} 2))
\]
where B 4 is equal to UA2D*ASA2D.
lb) Convention to and from the actuator piston node
B6*(OITTPN) - DT (TFA2))
where B 6 is equal to \(\mathrm{JA} 2 \mathrm{P} * \mathrm{D}(\mathrm{ARFA} 2)\).

These terms combine to form the heat balance equation for the actuator exit volume two.
\[
\begin{align*}
\frac{\mathrm{MCp}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TFA} 2)-\mathrm{DT}(\mathrm{TFA} 2)_{O L D}\right)= & \mathrm{B} 4 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TFA} 2))+ \tag{3}\\
& B 6 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFA} 2))
\end{align*}
\]
where MCp is equal to \(\operatorname{FMASS} 2 * C P F N\).
The fourth equation represents three modes of heat transfer relative to the valve volume two, the exit volume.
1) Heat transfer due to mass transfer of fluid into the valve volume from actuator volume two.
\[
\dot{M C p} *(D T(T F A 2)-D T(T V F 2))
\]
where \(\dot{M} C p\) is equal to RMFL2*CpFN and RMFL2 is equal to \(Q(L 2) * R H O I L\).
2) Convection to and from the valve wall node
\[
B 7 \%(\mathrm{DT}(\mathrm{TVN})-\mathrm{DT}(\mathrm{TVF} 2))
\]
and B7 has been defined previously.
3) Heat added directly to the fluid due to a pressure drop into the actuator volume two.
\(\dot{\mathrm{MCp}}\) *DCAPT2
where MCp has just been defined and DCAPT2 is equal to \(1.0 /\) RHOLL* \(^{*}(\mathrm{DT}(\mathrm{PP} 2)-\mathrm{P}(\mathrm{L} 2)) /(\mathrm{CJ} * \mathrm{CPFN} * 2) *\).2.0 .

These terms combinc to produce the equalion for the heat transferred to and from the valve exit volume two.
\[
\begin{align*}
\frac{M C_{p}}{D E L T} *\left(\mathrm{DT}^{\prime}(\mathrm{TVF} 2)-\mathrm{DT}(\mathrm{TVF} 2)_{\mathrm{OLD}}\right)= & \dot{\operatorname{MCP}} \mathrm{N}^{*}(\mathrm{DT}(\mathrm{TFA} 2)-\mathrm{DT}(\mathrm{TVF} 2))+ \tag{4}\\
& \mathrm{B} 7 *(\mathrm{DT}(\mathrm{TVN})-\mathrm{DT}(\mathrm{TVF} 2))+\dot{M C p} * \mathrm{DCAPT} 2
\end{align*}
\]
where MCP is equal to FMASS*CPFN.
The fifth equation represents three modes of heat transfer to and from the valve walls.

1a) Conduction to and from the upstream line segment wall node R1*(TW(L1) - DT(TVN))
where R1 is the conduction ccefficient for the walls equal to \(1.0(\operatorname{DXF}(\mathrm{~L} 1) /(\mathrm{ACW}(\mathrm{L} 1) * C(\mathrm{Ll})+\mathrm{DXV} /(\mathrm{ACV} * C V))\) with the interface conductance between the two nodes being infinite.

1b) Conduction to and from the downstream line segment wall node
\[
\mathrm{R} 2 *(\mathrm{TW}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TVN}))
\]
and \(R 2\) is equal to R 1 with L 1 replaced by L 2
1c) Conduction to and from the actuator wall node surrounding volume one.
\[
\mathrm{R} 3 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TVN}))
\]
where R 3 is equal to \(1.0 /(\mathrm{DXV} /(\mathrm{ACV} * \mathrm{CV})+\mathrm{DXC} /(\mathrm{ACC} * \mathrm{CC})+\) \(1.0 /(D(A C C V) * D 1 * D(C C V)))\) and \(D 1\) represents the amount of mass that surrounds the actuator volume one and is equal to DT (VOL1) /(DT (VOL1) \(+\operatorname{DT}(\) VOL2 \())\)

1d) Conduction to and from the actuator wall node surrounding volume tw', equal to DT(VOL1)/(DTVOL1) + DT(VOL2))
\[
\mathrm{R}_{4 *}(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TVN}))
\]
where R 4 is equal to \(1.0 /(\mathrm{DXV} /(\mathrm{ACV} * \mathrm{CV})+\mathrm{DXD} /(\mathrm{ACD} * \mathrm{CC})+\) \(1.0 /(\mathrm{D}(\mathrm{ACCV}) * \mathrm{D} 2 * \mathrm{D}(\mathrm{CCV}))\). D 2 represents the amount of mass that suriounds the actuator volume two, and is equal to DT(YOV2) /(DT (VOL1) \(+\mathrm{DT}(\) VOL2 \()\).

2a) Convection \(: 0\) and from the valve fluid in the ertrance volume one.
\[
\mathrm{B} 7 *(\mathrm{DT}(\mathrm{TVF} 1)-\mathrm{DT}(\mathrm{TVN}))
\]
where B7 was defined previously.

2b) Convection to and from the valve fluid in the exit volume two.
\[
B 7 *(D T(T V F 2)-D T(T V N))
\]

2c) Convection to and from the external atmosphere
\[
A 2 *(D(T A)-D T(T V N))
\]
where \(A 2\) is the convection coefficient for the walls and is equal to \(D(U A V) * D(A S A V)\).
3) Radiation exchange with the surrcunding structure
\[
\operatorname{CIP} 1 *\left(D(T S T)-(D T(T V N)+460)^{4}\right)
\]
where CIP1 is the radiation coefficient equal to SICMA*SHAPF* EPSION*D (ASAV).

These terms are combined to produce the equation for the heat balance for the valve walls.
\[
\begin{aligned}
\frac{M C p}{D E L T}(\mathrm{DT}(\mathrm{TVN})-\mathrm{DT}(\mathrm{TVN}) \mathrm{OLD})= & \mathrm{R} 1 *(\mathrm{TW}(\mathrm{~L} 1)-\mathrm{DT}(\mathrm{TVN}))+\mathrm{R} 2 *(\mathrm{TW}(\mathrm{~L} 2)- \\
& \mathrm{DT}(\mathrm{TVN}))+\mathrm{R} 3 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TVN}))+ \\
& \mathrm{R} 4 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TVN}))+\mathrm{B} 7 *(\mathrm{DT}(\mathrm{TFA1})+ \\
& \mathrm{DT}(\mathrm{TFA} 2)-2 * \mathrm{DT}(\mathrm{TVN}))+\mathrm{A} 2 *(\mathrm{D}(\mathrm{TA})- \\
& \mathrm{DT}(\mathrm{TVN}))+\operatorname{CIP} 1 *(\mathrm{D}(\mathrm{TST}))-\operatorname{CIP} 1 *(\mathrm{DT}(\mathrm{TVN}) \\
& +460 .) * * 4
\end{aligned}
\]

The sixth equation represents three modes of heat transfer relative to the actuator wall node surrounding volume one.

1a) Convection to and from the fluid in volume one.
\[
B 3 *(D T(T F A 1)-D T(T C N))
\]
where B3 is the same as defined previouslv.
1b) Convection to and from the surrounding atmosphere
\[
B 1 *(D(T A)+D T(T C N))
\]
where \(B 1\) is equal to \(U A C * D(A S A C) * D 1\).

2a) Conduction to and from the actuator wall node that surrounds volune two
\[
\mathrm{R} 5 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TCN}))
\]
where \(R 5\) is the conduction coefficient equal to \(C C /(D X D / A C D+D X C / A C C)\).
2b) Conduction to and from the valve wall
\[
\text { R3* }(\mathrm{DT}(\mathrm{TVN})-\mathrm{DT}(\mathrm{TCN}))
\]
with R3 defined previously.

2c) Conduction to and from the piston node R9* (DT (TPN) - DT (TCN))
where R 9 is equal to \(1.0 /(\mathrm{DXP} /(\mathrm{ASCP} * \mathrm{CP})+\mathrm{DXC} /(\mathrm{ACC} * \mathrm{CC}))\).
3) Radiation exchange with the surrounding structure
\[
\mathrm{D} 1 * \mathrm{C} 1 \mathrm{P} 2 *\left(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TCN})+460)^{4}\right)
\]
where C1P2 is the radiation coefficient equal to SIGMA*SHAPE* EPSION*D (ASAC).

The terms then combine to produce the heat balance equation for the actuator wall node around volume one.
```

    MCD
    B3*(DT(TFAI) -
        DT(`CN)) + R5*(DT(TDN) - DT'(TCN)) + R3*(DT(TVN) -
        DT(TCN)) + R9*(DT(TPN) - DT(TCN)) + D1*C1P2*(D(TST)) -
        D1*CIP2*(DT(TCN) + 460)**4
        where MCp is equal to CMASS*CPCN.
    ```

The seventh equation represents two modes of heat transfer relative to the actuator piston.
1) Convection to and from the two actuator fluids in volume one and volume two, respectively, with coefficients defend previously B5*(DT(TFA1) - DT(TPN))
and \(\quad \mathrm{B} 6^{*}(\mathrm{DT}(\mathrm{TFA} 2)-\mathrm{DT}(\mathrm{TPN}))\).
2) Conduction to and from the two actuator wall nodes surrounding volumes one and two respectively, with the terms being defined previously
\[
\begin{aligned}
& \mathrm{R} 9 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TPN})) \text { and } \\
& \mathrm{R} 12 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TPN})) .
\end{aligned}
\]

These terms combine to produce the heat balance equation with the actuator piston.
\[
\begin{aligned}
\frac{M C p}{\text { DELT }} *\left(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TPN})_{\mathrm{OLD}}\right)= & \mathrm{B5*}(\mathrm{DT}(\mathrm{TFA} 1)-\mathrm{DT}(\mathrm{TPN}))+ \\
& \mathrm{B} 6 *(\mathrm{DT}(\mathrm{TFA} 2)-\mathrm{DT}(\mathrm{TPN}))+ \\
& \mathrm{R} 9 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TPN}))+\mathrm{R} 12 * \\
& (\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TPN}))
\end{aligned}
\]
where \(M C\) p is equal to PMASS*CPFN.
The eighth equation represents tiree modes of heat transfer relative to the actuator wall node surrounding actuator volume two.

1a) Convection to and from the fluid in volume two
\[
B 4 *(D T(T F A 2)-D T(T D N))
\]
where \(B 4\) is a convection coefficient equal to UA2D*ASA2D

1b) Convection to and from the surrounding atmosphere
\[
\mathrm{B} 2 *(\mathrm{D}(\mathrm{TA}) * \mathrm{DT}(\mathrm{TDN}))
\]
where B 2 is equal to \(\mathrm{D} 2 * \mathrm{UAC} * \mathrm{D}(\mathrm{ASAC})\) and D 2 is a variable to calculate the wall mass that surrounds volume two, equal to \(\mathrm{DT}(\) VOL2 \() /(\mathrm{DT}(\) VOL1 \()+\mathrm{DT}(\) VOL2 \())\).

2a) Conduction to and from the other actuator wall node
\[
\mathrm{R} 5 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TDN}))
\]
with R5 defined previously.
2b) Conduction to and from the valve wall mass
R4* (DT (TVN) - DT(TDN))
where \(R 4\) is the conduction coefficient between the walls equal to \(1.0 /(\mathrm{DXV} /(\mathrm{ACV} * \mathrm{CV})+\mathrm{DXD} /(\mathrm{ACD} * \mathrm{CC})+1.0 /(\mathrm{D}(\mathrm{ACCV}) * \mathrm{D} 2 * \mathrm{D}(\mathrm{CCV})))\)

2c) Conduction to and from the actuator piston R12* (DT (TDN) - DT (TDN))
where \(R 12\) is equal to \(1.0 /(\mathrm{DXP} /(\mathrm{ASCP} * \mathrm{CP})+\mathrm{DXD} /(\mathrm{ACD} * \mathrm{CC}))\)
3) Radiation exchange with the surrounding structure
\[
\mathrm{D} 2 * \mathrm{CIP} 2 *\left(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TDN})+460)^{4}\right)
\]
with these terms the same as defined previously.
These terms then combine to produce the heat balance equation for the actuator wall node
\[
\begin{aligned}
& \frac{\mathrm{MCD}_{\mathrm{D}}}{\operatorname{DELT}} *\left(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TDN})_{O L D}\right)=\mathrm{B4*}(\mathrm{DT}(\mathrm{TFA} 2)-\mathrm{DT}(\mathrm{TDN}))+ \\
& \mathrm{B} 2 *(\mathrm{D}(\mathrm{TA})- \\
& \\
& \quad \mathrm{DT}(\mathrm{TDN}))+\mathrm{R} 5 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TDN}))+\mathrm{R} 4 *(\mathrm{DT}(\mathrm{TVN})- \\
& \\
& \quad \mathrm{DT}(\mathrm{TDN}))+\mathrm{CIP} 2 * \mathrm{D} 2 * \mathrm{D}(\mathrm{TST})-\mathrm{CIP} 2 * \mathrm{D} 2 *(\mathrm{DT}(\mathrm{TDN}) \\
& \\
& +460) * * 4
\end{aligned}
\]
where MCp is equal to DMASS*CPDN. A thermal model of the above 8 equations is shown in Figure 6.101-4. Equations (1) thru (8) are solved for the appropriate temperatures.
\[
6.101-11
\]

FIGURE 6.101-4
THERMAL MODEL

In the hydraulic math model the total actuator load is given by \(D T(F O R C E)-D T(L O A D Z)+D T(L O A D S) * D T(X)\)
where
```

dT(LOADZ) - LOAD AT ZERO STROKE (Lb)
DT(LOADS) = LOAD/STROKE SLOPE (LB/IN)
DT(X) = ACTUATOR POSITION (IN)

```

The valve opening is determined from interpolation of the valve input data at the current time step. Depending on the direction of the valve movement the overboard flow at the actuator node is calculated. For an actuator that is extending
\[
\begin{equation*}
\mathrm{QN}(N)=-\mathrm{DT}(\mathrm{NCAV}) * Q 1 *(\mathrm{D}(\operatorname{AREA} 1)-\mathrm{D}(\operatorname{ARE} \Lambda 2)) / D(\operatorname{AREA} 1) \tag{9}
\end{equation*}
\]

The pressure gain or loss across the piston is calculated using the force
balance equation
\[
\begin{equation*}
\operatorname{DT}(\operatorname{PFORCE})=(-\operatorname{PN}(N) *(D(\operatorname{AREA} 1)-\mathrm{D}(\operatorname{AREA} 2))) / \mathrm{D}(\operatorname{AREA} 2)+\mathrm{QS} * \mathrm{D}(\mathrm{DAMP}) / \mathrm{D}(\operatorname{AREA} 2) \tag{10}
\end{equation*}
\]

If the actuator where retracting equations (9) and (10) would become
\[
\begin{equation*}
Q N(N)=-D T(N C A Y) * Q L *(D(A R E A 1)-D(A R E A 2)) / D(A R E A 2) \tag{11}
\end{equation*}
\]
and
\(\operatorname{DT}(\operatorname{PFORCE})=(-\mathrm{PN}(\mathrm{N}) *(\mathrm{D}(\operatorname{AREA} 2)-\mathrm{D}(\mathrm{AREA}))+\mathrm{DT}(\) PFORCE \()) / \mathrm{D}(\operatorname{AREAI})-\)
QS*D (DANP) D (AREA1)

\subsection*{6.101.2 Assumptions}
1) The fluid exiting from the actuator valve to the connecting line is equal to DT(TVF2).
2) The Interface conductance betwen the piston and the actuator walls is infinite.
3) Complete mixing occurs in all fluid volumes.
4) Piston and valve leakages are negligible.
5) The emissivity of the walls remains constant, at .3 for stecl.
6) The atmosphere and structure temperatures remain constant.

\subsection*{6.101.3 Computational Methods}

\section*{Section 1000}

The fluid and wall lemperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the fourth power, and the default values are assigned. Compute load/stroke slope, determine valve position and compute the coefficient for the valve opening.

Section 2000
This section is called from TLEGCAL via COMPE for each connection number for each iteration. Calls are made for each iteration because the overboard
flow and pressure drop across the piston head very with the flow into the actuator and the pressure in the piston cavity.

One of the cavities is required to be a system node. Which cavity it is depends on the valve position at the current time step. If NODE \(=1\) it is in \(\# 1\) cavity, if \(N O D E=2\) it is in \(\# 2\) cavity.

The steady state section is complicated by the need to determine if the actuator is at its stroke limits, and if the flow guess is taking it toward or away from the limit.

When it is at its limits, and is being driven into the limit, a high impedance is added into the leg, and the overboard flow is set to zero. (Overboard flow is a displacement flow due to unequal areas).

The steady state calculation set up requires that connection \(\# 1\) must be the last or only element in the upstream leg, and connection \#2 is the first element in the downstream leg.

The upstream leg flow is used to calculate the overboard flow and piston velocity. If the valve is closed the overboard flow is set to zero.

For the upstream leg the valve impedance \(D T(P P 1 P)\) is added into PUP of that leg. For the downstream leg, the valve impedance \(\operatorname{PT}(P P 2 P)\) is added into PUP and the constant pressure drop DT(PFORCE) across the piston is subtracted from PUP or added if it is a pressure rise.

Section 3000
This section calculates the thermal transient response of the actuator.
INTERP is called to obtain an interpolated value of valve position XV. With this value of \(X V\), the flows dnto the actuator chambers are calculated.

If \(X V\) is zero, the flows are set to zero. For \(X V>0\), Q1 is the flow from connection \#1 to chamber \#1, and Q2 the flow from chamber \#2 to connection \#2. For \(X V<0\) the flows are reversed.

From the valve position recalculate the flow coefficients through the valve. The position of the actuator piston is computed using a simple integration.
\[
\operatorname{DT}(X)=\operatorname{DT}(X)+(D T(V E L)+\operatorname{DT}(V E L O)) * D E L T / 2 .
\]

The cylinder volumes are easily calculated as
\[
\begin{aligned}
& \mathrm{D}^{\prime}(\text { VOL1 })=\mathrm{DT}(\text { VOL1 })+(\mathrm{DT}(\mathrm{x})-\mathrm{XO}) * \mathrm{D}(\text { AREA1 }) \\
& \mathrm{D}^{\prime} \mathrm{C}(\text { VOL2 })=\mathrm{DT}(\text { VOL2 })-(\mathrm{DT}(\mathrm{x})-\mathrm{XO}) * \mathrm{D}(\text { AREA } 2)
\end{aligned}
\]

Property values are assigned. Dimensions and coefficients are calculated. The flow direction is determined. (The program is set up with the [low entering connection line one (L1) and leaving thru connection line two (L2). During the calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numers so that the flow still enters connection line one). Some coefficients are then recalculated if the flow is reassigned. A \(8 \times 8\) matrix is loaded anc the mathematical equations are solved for \(\operatorname{DT}(T V F 1), \operatorname{DT}(T F A 1), \operatorname{DT}(T F A 2), \operatorname{DT}(T V F L)\), DT(TVN) DT (TCN), DT(TDN) and DT(TPN) and stored in the B computational array. The calculated values are assigned to their proper storage locations and the boundary conditions are on distribution throughout the entire program.

\subsection*{6.101.4 Approximations}
1) All input heat transfer and interface coefficients remain constant.
2) External temperatures all remain constant.

\subsection*{6.101.5 Limitations}

This straight line flow characteristics of the valve and the straight line ioad characteristics limit the applicability of this subroutine to a simple type of actuator.

\subsection*{6.101.6 Variable Listing}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline A() & Dummy computational array & \(\mathrm{IN}^{2}\) \\
\hline AAA & Dummy variable & \(1 N^{2}\) \\
\hline ACA1 & Cross sectional area actuator volume one & \(\mathrm{IN}^{2}\) \\
\hline ACA2 & Cross sectional area actuator volume two & \(\mathrm{IN}^{2}\) \\
\hline ACC & Cross sectional area actuet tor wall around volume & \(\mathrm{IN}^{2}\) \\
\hline D(ACCV) & Contact area between the valve and the actuator walls & \(1 \mathrm{~N}^{2}\) \\
\hline ACD & Cross sectional area actuator wall around volume two & IN \({ }^{2}\) \\
\hline ACFV & Cross sectional area of the fluid in the valve & \(\mathrm{IN}^{2}\) \\
\hline ACV & Cross sectional area of the valve wall (contacting lines & IN \({ }^{2}\) \\
\hline D(AMASS) & Mass of the actuator & LB \\
\hline D(AREA1) & Surface area, piston to volume one & IN \({ }^{2}\) \\
\hline D(AREA2) & Surface area, piston to volume two & IN \({ }^{2}\) \\
\hline D(ASAC) & Surface area, piston to actuator & \(1 N^{2}\) \\
\hline D (ASAV) & Surface area external to valve & \(\mathrm{IN}^{2}\) \\
\hline ASAlC & Surface area internal to actuator wall volume one & \(1 N^{2}\) \\
\hline ASA2D & Surface area internal to actuator wall volume two & IN \({ }^{2}\) \\
\hline ASCP & Contact area, piston and actuator wall volume one & \(\mathrm{IN}^{2}\) \\
\hline ASDP & Contact arca, piston and actuator wall volume two & IN \({ }^{2}\) \\
\hline \(D(A S F V)\) & Internal surface area of the valve & IN \({ }^{2}\) \\
\hline
\end{tabular}

ASIGN
\[
\begin{aligned}
& B 1, B 2, B 3, \\
& B 4, B 5, B 6, B 7
\end{aligned} \quad \text { Dumny variable }
\]

CC
CCV

Thermal conauctivity of the actuator mass
WATTS/IN- \({ }^{\circ} \mathrm{F}\)
Interface conductance between the valve and octuator WATTS/IN \({ }^{2}-{ }^{\circ} \mathrm{F}\)
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline Cl & Mechanical equivalent of heat & IN-LB \(\mathrm{m}_{\text {/ WATTS-SEC }}\) \\
\hline CMASS & Actuator mass around volume one & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline CP & Thermal conductivity of the piston & WATTS / IN- \({ }^{\circ} \mathrm{F}\) \\
\hline CPCN & Specific heat of the actuator walls & WATTS SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\) \\
\hline CPFN & Specific heat of the fluid & WATTS-SEC/ \(/ \mathrm{LB}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\) \\
\hline CPPN & Specific heat of the piston & WATTS-SEC/LIm \({ }^{\circ} \mathrm{F}\) \\
\hline CPVN & Specific heat of the valve walls & WATIS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\) \\
\hline CV & Thermal conductivity of the valve walls & WATIS / IN- \({ }^{\circ} \mathrm{F}\) \\
\hline D (DAMP) & Static seal friction & \({ }^{L B}{ }_{\text {f }}\) \\
\hline DCAPTI & Temperature change do to a pressure drop & \({ }^{\circ} \mathrm{F}\) \\
\hline DCAPT2 & Temperature change do to a pressure drop & \({ }^{\circ} \mathrm{F}\) \\
\hline DDD & Dummity variable & - \\
\hline deldal & Distance from inlet of valve to volume one of actuator & IN, \\
\hline DELTA 2 & Distance from outlet of valve to volume two of actuator & IN. \\
\hline delta 3 & Distance from outlet of valve to volume one of actuator & IN. \\
\hline DMASS & Actuator mass around volume two & LB. \\
\hline DXC & Distance from node of actuator volume one to interface & LN. \\
\hline DXD & Distance from node of actuator volume two to interface & IN. \\
\hline DXF & Distance from node of fluid in valve to interface & IN. \\
\hline DXP & Distance from node of piston to its interface & IN. \\
\hline DXV & Distance from rode of valve walls to its interface & Int. \\
\hline D1, D2 & Variable to determine actuator node mass & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline FMASS & Total mass of fluid in valve & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline FMASS 1 & Mass of fluid in actuator volume one & \(1 . \mathrm{Bram}_{\text {ra }}\) \\
\hline FMASS 2 & Mass of fluid in actuator volume two & LBm \\
\hline DT (FORCE) & Load on actuator & \({ }^{1} \mathrm{~B}_{\mathrm{F}}\) \\
\hline ITC & Initial temperature of the actuator valve walls & \({ }^{\circ} \mathrm{F}\) \\
\hline ITF & Initial temperature of the fluids & \({ }^{\circ} \mathrm{F}\) \\
\hline KTYPE & Dummy variable & - \\
\hline D (MAXST) & Maximum stroke & IN. \\
\hline D (MAXL) & Load at max stroke & \({ }^{L B}{ }_{\mathbf{f}}\) \\
\hline D (MINL) & Load at min stroke & \({ }^{L} B_{E}\) \\
\hline D (MTYPE) & Actuator material type & - \\
\hline NTYPE & Dummy variable & - \\
\hline D (PERC) & Persentage heat from pressure drop added to fluid & - \\
\hline DT (PFORCE) & Actuator pressure drop or rise & PSI \\
\hline P(PHEIGHT) & Piston wall height & \(L B_{m}\) \\
\hline D (PMASS) & Piston mass & \(L B_{m}\) \\
\hline DT(PP1) & Cylinder 1 pressure & PSI \\
\hline DT (\(\mathrm{PF} \mathrm{P}^{2}\)) & Cylinder 2 pressure & PSI \\
\hline DT(PP1P) & Dummy variable & - \\
\hline DT(PP2P) & Dummy variable & - \\
\hline D(PTHICK) & Piston wall thickness & IN. \\
\hline D(PTYPE) & Piston material type & - \\
\hline RHOC & Density of the actuator material & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} .3\) \\
\hline RHOIL & Density of the fluid & \(L B_{m} / \mathrm{IN} .{ }^{3}\) \\
\hline RHOP & Density of the actuator piston & \(\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} .^{3}\) \\
\hline
\end{tabular}

Variable
RHOV
RMFLI
RMFL2
R1, R2, R3, R4, R9, R12, R15

SHAPF

\section*{SIGMA}

D(SLOTW1)
D (SLOTW2)
D(SLOTW3)
D(SLOTW4)
\(D(T A)\)
DT (TCN)

DT (TDN)

DT(TFA1)
\(\operatorname{DT}(T F A 2)\)
DT(TPN)
D(TST)
DT(TVF1)
DT(TVF2)
DT (TVN)
UAC

D(UAV)
UAIC

\section*{Description}

Density of the valve walls
Mass flow rate into valve
Mass flow rate leaving valve
Dummy variables

Shape factor walls to atmosphere
Stefan-Botzmann constant for radiation
Slot widtl volume 1 to con \#1
Slot width volume 1 to con \#2
Slot width volume 2 to con \#1
Slot width volume 2 to con \(\# 2\)
Temperature of the surrounding atmosphere
Temperature of the actuator wall node surrounding volume one

Temperature of the actuator wall node surrounding volume two

Temperature of the actuator fluid node in volume one
Temperature of the actuator fluid node in volume two
Temperature of the piston nocie
Temperature of the surrounding structure
Temperature of the fluid node in valve volume one
Temperature of the fluid node in valve volume two
Temperature of the valve wall node
Heat transfer coefficient actuator walls to atmosphere
Heat transfer coefficient valve walls to atmosphere Heat transfer coefficient actuator fluid to wails, volume one
Heat transfer coefficient actuator fluid to piston

Dimension
\[
\mathrm{LB}_{\mathrm{m}} / \mathrm{IN} .^{3}
\]
\[
\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}
\]
\[
\mathrm{LB}_{\mathrm{m}} / \mathrm{SEC}
\]
-
-

WACTS \(/ N^{2}-{ }^{6} F^{4}\)
IN.
IN.
IN.
IN.
\({ }^{\circ} \mathrm{F}\)
WATIS \(/-N^{2}-{ }^{\circ} \mathrm{F}\) WATI'S \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) WATTS/ \(\mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) NATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\)
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline UA2D & Heat rransfer coefficient actuator fluid 2 to walls, volume two & WATTS \(/ 1 N^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UA2P & Heat transfer coefficient actuator fluid 1 to piston & WATI'S / IN \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UFWIL & Heat transfer coefficient actuator fluid in valve to valve & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D'T (VEL) & Actuator Velocity & IN/SEC \\
\hline DT (VELO) & O1d actuator velucity & IN/SEC \\
\hline D(VMASS) & Valve wall mass & \(\mathrm{LR}_{\mathrm{ml}}\) \\
\hline D (VOLUME2) & Total cylinder volume of actuator & IN. \({ }^{3}\) \\
\hline DT(VOLl) & Volume 1 & IN. \({ }^{3}\) \\
\hline DT (VOL2) & Volume 2 & IN. \({ }^{3}\) \\
\hline D (VOL3) & Valve volume & IN. \({ }^{3}\) \\
\hline D(VTYPE) & Material type of the valve & - \\
\hline DT (X) & Piston position & IN. \\
\hline XV & Valve position & IN. \\
\hline
\end{tabular}

\subsection*{0.101.7 Subroutine Listing}

SUBROUNI.NE TAC'Rlol (D, D'T, DD, L)

\subsection*{6.101.7 (Continued)}
```

1000 CONTINUE
$D($ VOL 3$)=D($ VOL 3$) / 4.0$
$D(A S F V)=D(A S F V) / 4.0$
$D(A S A C)=D(A S A C) / 2.0$
DT('IVN) $=\mathrm{D}(\mathrm{ITC})$
$D T(\operatorname{TCN})=\mathrm{D}(\mathrm{I} T \mathrm{C})$
DI'(IDN) $=D(I T C)$
$D I^{\prime}(T F A 1)=D\left(I I^{\prime} F\right)$
$D T(T F A 2)=D(I T F)$
$D T(\Gamma P N)=D(I T F)$
$\mathrm{DT}(\mathrm{TVF} 1)=\mathrm{D}(\mathrm{ITF})$
DT(TVF2) $=D(I T F)$
$\mathrm{L} 1=\mathrm{L}(1)$
$\mathrm{L} 2=\mathrm{L}(2)$
$T F(L 1)=D(I C F)$
$T F(L 2)=D(I T F)$
$T C(L 1)=D(I T C)$
$T C(L 2)=D(\operatorname{ITC})$
$D(T S T)=(D(T S T)+460) * *$.
$\operatorname{IF}(D(U A 1 P) . E Q .0 .0) \quad D(U A 1 P)=.09$
IF (D(UAV).E'2.0.0) $D(U A V)=.0069$
$\operatorname{IF}(D(U A C), E X Q .0 .0) D(U A C)=.0069$
C ACTUATOR PARAMETER INPJT
$D($ SLOTWl $)=D($ SLO'TN1)*0. 65
$D($ SLOTW 2 $)=D($ SLO'TW 2$) * 0.65$
$D($ SLOTw 3$)=D($ SLOTW 3$) * 0.65$
$D($ SLO'LW 4$)=D($ SLOTW 4$) * 0.65$
$D^{\prime} \mathrm{P}^{\prime}($ LOADS $)=(\mathrm{D}(: \Lambda \times L)-D(M I N L)) /(D($ MAXST $)-D($ MINST $))$
$D^{\prime}(L O A D Z)=D(\| \cap X L)-D T(L O A D S) * D(\because A X S T)$
$D T(F O R C E)=D^{\prime}($ LOADZ $)+D T($ LOADS $) * D(I \cup P O S)$
DT(LOADEX) =ATPRES* (D(AREA1)-D(AREA2))
$D_{1}(\mathrm{VELO})=0.0$
$D^{\prime \prime}(V E L)=0.0$
$D T(X)=D(I$ NPOS $)$
$L(I Y)=\left(L\left(N^{\prime} \mathrm{C} A B\right)+7\right) / 8$
$I(I Y)=41+L(I Y) * 8$
$\mathrm{L}(\mathrm{NODE})=1$
$X V=D(L(I Y))$
DT( NCAV$)=1.0$
$D T($ VOHI $)=D($ AREAl $) * D(I N P O S)$
$D T($ VOL 2$)=(D(4 A X S T)-D(I N P O S)) * D(A R L A 2)$
DT (PFORCE $)=\mathrm{DT}(F O R C E) / D(A R E A Z)$
IF $(X V) 60,70,30$
$60 \operatorname{DT}($ PPlP $)=1 /((\mathrm{D}(\operatorname{SLOTN} 2) * X V) * * 2 * 2)$
$D^{\prime} T(P P 2 P)=1 /((D(S L O T N 3) * X V) * * 2 * 2)$
$L($ NODE $)=2$
DT( PFORCE $)=C^{\prime}($ FORCE $) / D($ AREAl $)$
SO TO 90
$70 \quad D \mathrm{~T}(\mathrm{NCAV})=0.0$
GO TO 90

```

\subsection*{6.101 .7 (Continued)}
```

    80 DT(PPIP)=1/((D(SLOTV1)*XV)**2*2)
        D'P(PP2P) =1/((D(SLOTW4)*XV ** 2*2)
    90 RLTURN
    C *** 2000 SEC'rION
C THL STLADY S'TATE SEC'IION
2000 CONIINUL
IF(ICON.LQ.2) GO 'TO 2750
IF(ICON.NL.l) GO rO 2900
IF(L(NODE).EQ.2) 2S=-QS
N=`\DWN(I VEL)
IE(D'S(NCAV).EQ.0.0)GO TO 2.550
IF(DT(X).GT.D(NIVST)) GO TO 2600
IF(QS.G'R.0.0) SO TO 255:
2550 QN(N)=0.0
DT(PPlP)=Ql* lOEG
DT(PP2P)=01*10E6
DT(VEL)=0.0
Ir(IM(NODE).EQ.1) GO TO 2700
QS=-QS
GO TO 2850
2600 IF(DT(X).LT.D(aAXST)) GO TO 2650
IF(OS.GT.0.0) GO 'TO 2550
2650 IF(L(NODE).EO.2) GO TO 2800
2N(N)=-DT(NCAV)*Ql*(D(AREAl)-D(AREA2))/D(ARLAl)
DT(VLLO)=Dr(VLL)
DT(VLE)=O1/D(AREA1)
27!0 JTP(PFORCE)=(DT(FORCE)-PN(N)*(D(ARLAl)-D(ARLA2)))/D(ARLA2)
\$ +OS*D(DANP)/D(AREA2)
DT(PP1)=PN(N)
DT(PP2)=PN(iN)-DT(PFORCE)
PUP=PUP-DT(PPIP)*RHO(TF(L(ICON)),PUP)*OA*.2A*2S
RLT!IRN
2750 IF(DT(X).TAL.D({INST).OR.DT(X).GL.D(wNXST))GO TO 2960
PUP=PUP-DI'(PP2P)*RHO(TF(L(ICON)),PUP)*QA*OA*QS
PDLLG(INEL)=-OT(PFORCL)
PUP= PUP+PDLEG(INLL)
RLTIJRN
2300 0S=-0S
QN(N)=-Dr(NCAV)*Ni*(D(AREAl)-D(AREA2))/D(AREA2)
DT(VELO)=DT(VLL)
DT(VLL)=-?1/D(AiRIA2)
2850 DT(PEORCE ) = (-PIN(N)*(D(AREA2) - D(ARLA1)) +DT(FORCE))/D(AREAl)
\$ -OS*D(DA,IP)/D(ARE\1)
DT(PQ2)= PN(N)
D'(PP1)=PN(N)-D'T(PFORCE)
PUP=P!P-DT(PRL?)*RHO(TPE(L(ICON)),PUP)*QA*QA*.QS
RLTUP:{
2900 WRINE (6,1950) IND,ICON,INEL
1950 FORAAT(5X,7HCOHP NO,I3,20H, RAS INVALID CON NO ,I3,
1 32H, IN LEG NO ,I4)

```

\subsection*{6.101.7 (Continued)}

S'TOP 2101
2960 PUP=Q1*10E6
TER \(i=P D O W N\)
\(D T(P P 1)=P N(N)\)
\(\operatorname{DT}\left(P P_{2}\right)=\operatorname{PN}(N)\)
WRITE(5,2999)
2999 FORIAT (19X, 28UTHE ACTUATOR IS BOTROAED OU'
RETURN
C *** 3000 SECTION
3000 CONTINUL
C INXTALITING TEMPERATURES
ITYPL \(=D(\) VTYPE) +.001
NTYPE \(=D(\) PrYYPE \()+.001\)
\(K T Y P E=D(A T Y P E)+.001\)
\(C P=\operatorname{PROP}(N T Y P L, 3)\)
CW=PROP(ITYPL, 3)
\(C C=P R O P(K T Y P L, 3)\)
\(C V=P R O P(K T Y P E, 3)\)
RHOV \(=\operatorname{PROP}(K T Y P E, 2)\)
RHOC=PROP (KTYPE, 2)
RHOP = PROP (NTYPL, 2)
CPVN= PROP (I'TYPE゙, 1)
CPPN=PKOP (NTYPE, 1)
\(C P C i A=\operatorname{PROP}(K T Y P E, 1)\)
PMASS=D(PTHICK)*D(AFEAl)*RHOP
\(D T(F O R C E)=D T(L O A D Z)+D^{\prime} T(L O A D S) * D T(X)\)
\(L(\) NODE \()=1\)
\(D T(N C A V)=1.0\)
DT (PECRCE) = DT (FORCE \() / D(A R E A 2)\)
CALL INTERP(TIME, D(41), D(L(IY)), 10,L(VTAB), XV, IERR)
IF (ABS (XV).LE.0.00.2) XV=0.0
IF (XV) 3060,3070,3080
3060 DT(PPlP) \(=1 /\left((\mathrm{D}(\mathrm{SLOT} 2) * \mathrm{XV}) * * 2{ }^{*} 2\right)\)
DT (PP2P) \(=1 /((D(S L O T W 3) * X V) * * 2 * 2)\)
\(\mathrm{L}(\mathrm{NODE})=2\)
DT (PFORCE) \(=\mathrm{D} T(\) FORCE \() / \mathrm{D}(\) AREAl \()\)
GO TO 3090
\(3070 \operatorname{DT}(N C A V)=0.0\)
DT \((\) VLL \()=0.0\)
GO ro 3090
\(3080 \mathrm{D}^{\prime} \Gamma(\mathrm{PPlP})=1 /((\mathrm{D}(\mathrm{SLO} \mathrm{PW} 1) * \mathrm{XV}) * * 2+2)\)
\(D^{\prime} \Gamma(P P 2 P)=1 /((D(S L D W 1) * X V) * * 2 * 2)\)
3090 XO=DT(X)
\(\operatorname{DT}(X)=D^{\prime} \Gamma(X)+(D T(V E L)+D T(V E L O)) * D E L T / 2\).
CALL XLIMIT(DT(X), D'T(VEL), ASIGN, D(:NINST), D(rAXS'T))
IE(DT(VLL).EQ.0.0)GO TO 3099
\(D^{\prime} T(\) VOLL \()=D^{\prime} T(\) VOL 1\()+\left(D^{\prime} T(X)-K O\right) * D(\) RREAl \()\)
\(\operatorname{DT}(\) VOL2 \()=\operatorname{DT}(\) VOL 2\()-(\operatorname{DT}(X)-X O) * D(A R L A 2)\)
3099 CONTINUE
\(\mathrm{L} 2=\mathrm{L}\) (2)

\subsection*{6.101 .7 (Continued)}
```

    Ll=L(1)
    DO 3001 I=1.8
    SO 3001 J=1,8
    A(I,J)=0.0
    3001 3(I)=0.0
    RHOIL=386.4*RHO(TE(Ll),P(Ll))
    Dl=D'\Gamma(VOL1)/(D'r(VOL2)+D'I'(VOL1))
    D2=D1*OT(VOL2)/D'I(VOLl)
    DXP=D(PHEIGHT})/4.
    DXV=D(DELTAl)/2.
    DXC=OT(VOLl)/(2.*D(ARLAl))
    DXU=D'R(VOL2)/(2.*D(AREAl;)
    C INITINLIZING COMON EACTORS
F.IASS=D(VOL3)*RHOIL/2.
CiASS=D(A|ASS)*Dl
DNASS=D(A|ASS)*D2
F.AASSl=DT(VOLl)*R|OIL
FNASS2=D'T(VOL2)*RHOIL
ASCP=D(PTYICK)*(D(ARLAl)/D(PHEIGH'L))
ASDP=\SCP
ASAIC=D(SARLA)*D1
ABA2!}=D(SAREA)*D
ACAL=DT(VOLI)/D(PHLIGHm}
ACA2= DT(VOL2)/D(PHLIGH'S)
= ACC AND ACD ARE JUS'R BSTMAMLES OF CROSS SECTIONAL AREAS
ACC=OT(VOLI)/D(PHEIGH'T)
ACD=DT(VOL2)/D(PHLIGHN
ACV=D(VAASSS)/(RHOV*D(DELTAL))
ACFV=D(VOL3)/(2.*D(DELTA1))
AAA=D(VOL3)/(D(DLLI\1)*2.)
DDD=S\capRT(AAA*4./PI)

- LSTI.IATLS OF ILAT TRANSFER COEFEICIENTS
UFwIT=UFW(AAA,DDD,Q(Ll),TF(Ll),P(Ll))
UA 2F=D(UA1P)
JAlC=D(UA1P)
UN2V=D(UA1P)
UAC=D(UAJ)
A2=D(UAV)*D(ASAV)
RAFLI=人i3S(O(Ll))*RHOLL
CIP]=SIG:4A*SHAPF*EPSION*D(ASAV)
CIP2=SIGMA*EPSION*SHAPF*D(ASAC)
31=UAC* )(ASAC)*D1
32=31*D2/D1
B3=1MA1C*ASA1C
B4=UN2D*ASA2!)
R5=D(UA1?)*D(1REAl)
36=UA2P*D(NREA2)
B7=UFWIL**D(ASFV)/2.
Rl=1.0/(DXF([,l)/(14CN(LLl)*C(Ll))+DXV/(\LambdaCV*CV))
R2=1.0/(DXF(L%)/(ACN(L2)*C(L2))+DXV/(ACV*CV))

```

\subsection*{6.101.7 (Continued)}
```

    R3=1.0/(DXV/(ACV*CV)+DXC/(ACC*CC)+1./(D(ACCV)*Dl*D(CCV)))
    RA=1.0/(DXV/(ACV*CV)+DXD/(ACD*CC) +1./(D(ACCV)*D2*D(CCV)))
    R5=CC/(DXD/ACD+DXC/ACC)
    R9=1.0/(DXP/(ASCP*CP)+DXC/(ACC*CC))
    R12=1.0/(DXP/(ASCP*CP)+DXD/(ACD*CC))
    R15=CF/(DXF(Ll)/ACF(Ll)+DXV/ACFV+RMFLl*DELI
    + /(ACFV**2*RHOIL))
IF(XV.tQ.0.0) RaFLl=0.0
R.IFL2=ABS(Q(L2))*RHOIL
IF(XV.EQ.0.0) RAFL2=0.0
RHOTL=396.4*RHO(DT('IVE1),P(Ll))
IF(XV.GT.0.0) GO TO 3030
DCAPTl=0.0
DCAP'r 2=0.0
IF(XV.EQ.0.0) GO TO 3:066
DCAPT1=(1./RHOIf)*(P(Ll)-D'I(PP2))/(CJ*CPEN*2.)
DCAPT2=(1./RHOIL)*(DT(PP1)-P(L2.))/(CJ*CPFN*2.)
A(5,5)=R.AFLI*CPFN
A(5,1)=-RNFLl *CPFN
A(2,4)=-RהIFL2*CPEN
b(5)=R.IFL1*CPFN*DCAPP1
GO TO 3066
3030 DCAPT1=1./RHOTL*(P(L1)-DT(PP1))/(CJ*CPEN*2.)
DCAPT?=1./RHOIL*(DT(PP2)-P(L2))/(CJ*CPEN*2.)
A(2,5)=-R.IFL2*CPFN
A(4,4)=R|IFLl*CPFN
A(4,1)=-Ri\FLl*CPFN
B(4)=RHFLl*CPFN*DCAPT1
3066 CON'TINUE
A(1,1)=FANSS*CPFN/DELT+'37+R15+RAFLI*CPEN
B(1)=FMASS*CPFN*D'F(TVF1)/DELT+RNFLI*CPFN*(TFF(LI)+DCAPT1)+
    + R15*TF(Ll)
A(1,3)=-37
A(2,2)=F|ASS*CPFN/DELT+37+RANFL2*CPFN
3(2)=FNASS*CPFN*DT(TVF2)/DELT+RAFL2*CPFN*DCAPT2*2.
A(2,3)=-B7
A(3,1)=-37
A(3,2) =-37
1(3,3)=D(V!AASS) *CPVN/DELT+R1+R2+A2+2.*B7
3(3)=D(V.AASS)*CPVN*D'T(IVN)/DLLT+R1*TW(L1)+R2*TW(L2)*A2*D(TA)
    + +CIPl*D(TST)-CIPI*(D'I(TVN) +460.)**4
A(3,6) =-R3
A(3,7)=-R4
A(4,4)=FMASS1*CPFN/DELT+A (4,4)+B3+B5
A(4,5)=-33
A(4,8)=-B5
3(4)=F|ASS I*CPFN*DT (TFA1)/DELT+B(4)
A(5,5)=F!ASS2*CPFN/DELT+'34+36+A(5,5)
A(5,7)=-B4
A(5,8)=-B6

```

\subsection*{6.101.7 (Continued)}
```

    B(5)=FrASS2*CPFN*DT(TPFA2)/DELT+3(5)
    A(6,3)=-R3
    A(6,4)=-33
    A(6,6)=CHASS*CPCN/DELTT+R3+33+R5+31+R9
    A(6,7)=-R5
    A(6,9)=-R9
    B(6)=CrASS*CPCN*DT(TCN)/DLLT+31*D(TA ) +CIP2*D1*D(TST)
    + -CIP2*DI*(D'I(TCN)+460.)**4
A(7,3)=-R4
\therefore(7,5)=-34
1(7,6)=-R5
A(7,7)=D.IASS*CPCN/DELT+R5+34+R4+R.12+32
A(7,8)=-R12
B(7)=D.NASS*CPCN*DT(TDN)/DLLT+32*D(TA) +CIP2*D2*D(TST)
+ -CIP2*D2*(DT(TDN)+450.)**4
A(8,4)=-35
A(8,5)=-36
A(8,5)=-R9
A(8,7)=-RI2
A(Q,8)=PNASG*CPQN/DELT+212+R9+35+36
3(8)=P:IASS*CPPN*DT(TPAV)/DEL'T
CALL ST:IJLT(A,B, 3,ItRROR)
TF(L2)=!3(2)
DT(TVF1)=3(1)
DT(TVF2)=3(2)
DT(TV'N)=B(3)
DT(TCN ) = B ( 6)
DT(IDN ) = B(7)
DT(IPN)=B(3)
DT(TFAl)=3(4)
DT(TFFA2)=B(5)
TC(Ll)=B(3)
TC(L,2)=3(3)
RETURIN
ENi)

```

\subsection*{6.102 SUBROUTINE ACT102}

ACT102 simulates a basic utility actuator shown in Figure 6.102-1. The subroutine allows the input of piston rod loads at zero dud maximum stroke. Straight line interpolation is used between these two loads.

The subroutine calculates the actuator and piston wall temperatures, and actuator fluid temperatures in Volume 1 and Volume 2.

GP1401733
FIGURE 6.102.1
TYPE NO. 102 UTILITY ACTUATOR

\subsection*{6.102.1 Math Model}

The thermal math model for the actuator includes heat transfer to and from two conrecting line segments, one upstream and one downstream. Nine nodes are considered: four fluid nodes, four wall nodes, and one piston node (as shown in Figure 6.102-2).

FIGURE 6.102-2
ACTUATOR AND CONNECTOR NODE REPRESENTATION

The temperatures of the upstrean line segment, wall and fluid nodes are denoted by TW(L1), TF(L1), the temperatures of the actuator wall and fiuid nodes are DT (TCN), DT(TDN), DT (TFAL), DT(TFA2), and the temperature of the plston node is denoted by DT(T:'N). The downstream line segeent wall
and fluid node temperatures are TW(L2) and TF(L2). This identifies piston travel from lefr tr right. Note that the piston can also travel from right to left.

Then L1 and L2 would be reversed and the discussion to follow would require reversing nomenclature.

Five heat balance equations are written to solve for the five actuator temperatures just stated, using the actuator and line material properties and dimensions, the atmospheric and structure temperatures external to the actuator, and the temperatures of the 1 ine segment nodes, \(\mathrm{TW}(\mathrm{L} 1), \mathrm{TF}(\mathrm{L} 1)\), and \(\mathrm{TW}(\mathrm{L} 2) . \quad\) (Note: \(\mathrm{TF}(\mathrm{L} 2)=\mathrm{DT}(\mathrm{TFA} 2)\), see assumptions).

The first equation represents four modes of heat transfer relative to the actuator fluid node in volume one (entrance volume).
1. Heat transfer due to mass transfer into the actuator from the upstream line segment
\[
\dot{n} C p^{*}\left(T F(L l)-D_{L}^{\prime \prime}(T F A 1)\right)
\]
where \(\dot{m} C p\) is the volume flow rate coefficient and is equal to Q(L1) * RHOLL * CPFN.
2. Conduction to and from the upstream line segment fluid node R1 * (TF (L1) - DT(TFAl))
where R1 is the conducion coeffictent and is equal to CF/(DXF(LI)/ \(\mathrm{ACF}(\mathrm{LI})+\mathrm{DXA1} / \mathrm{ACAI}+\mathrm{ABS}(\mathrm{Q}(\mathrm{L} 1) * \mathrm{RHO1L} * \operatorname{DELT} /(\mathrm{ACF}(\mathrm{L} 2) * * 2 * \mathrm{RHOIL})\).

3a. Convection to and from the actuator wall node
\[
\text { B3 * (DT(TCN) }-\mathrm{DT}(\mathrm{TFAJ}))
\]
where B3 is a convection coefficient equal to UAlC * ASAlC.
3b. Convection to and from the piston node B5 * (DT(TPN) - DT(TFA1))
where \(B 5\) is the convection coefficient and is equal to
D(UA1P) * ASAIP
6.102-3
4. Heat addition due to a pressure drop experienced by the fluid as it flows thru the actuator orifice. If the flow is into volume one, the heat added is
A1 * DCAPTL
where A1 is equal to \(Q(L 1) * R H O L L * C P F N\) and DCAPTI is equal to 1.0/RHOLL* (P (L1)-DI (P1))/(CJ*CPFN) .

These heat transfer terms are then combined to produce the equation for the heat balance for the actuator volume one fluid node.
\[
\begin{aligned}
& (\operatorname{TF}(\mathrm{LL})-\mathrm{DT}(\mathrm{TFAL}))+\mathrm{B} 3 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TFAL})+\mathrm{B} 5 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFAL})) \\
& +\mathrm{A1} \text { *DCAPT1 }
\end{aligned}
\]

The second equation represents two modes of heat transfer relative to the actuator fluid in volume two.

1a. Convection to and from the actuator wall node
\[
\mathrm{B} 4 *(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TFA} 2))
\]
where \(B 4\) is the convection coefficient for the rluid equal to UA2D * ASA2D.
ib. Convection to and from the piston node
\[
\mathrm{B} 6 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFA} 2))
\]
where again, B6 is a convection coefficient and equal to UA2P * ASA2P.
2. Heat added directly to the fluid due to a pressure drop across an actuator orifice, (the exit). A2 * DCAPT2
where DCAPT2 is equal to \(1.0 /\) RHOIL* \(\left(\mathrm{D}^{\prime}(\mathrm{P} 2)-\mathrm{P}(\mathrm{L} 2)\right) /(\mathrm{CJ} * \mathrm{CPFN})\) and A 2 is equal to RMF (L1) *CPFN.

These terms are then combined to produce the equation for the heat balance for the actuator volume two fluid node.
\[
\begin{align*}
& \frac{M C D}{D E L T} *(D T(T F A 2)-D T(T P A 2) O L D)=B 4 *(D T(T D N)-D T(T P A 2)) \\
& +\mathrm{B5} *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TFA} 2)) \tag{2}\\
& + \text { A2 * DCAP'T2 }
\end{align*}
\]

The :hird equation represents three modes of heat transfer relative to the actuator wall surrounding volume one.
la. Conduction to and from the upstream connecting line wall node
\[
\mathrm{R} 2 \text { * (TW(Ll) - DT(TCN)) }
\]
where \(R 2\) is the conduction coefficient for the walls equal to \(1.0 /(\mathrm{DXF}(\mathrm{Ll}) /(\mathrm{ACW}(\mathrm{Ll}) * \mathrm{C}(\mathrm{Ll}))+\mathrm{DXC} /(\mathrm{ACC} * \mathrm{CC}))\)

1b. Conduction to and from the actuator wall node surrounding volume two. R8* (DT (TDN) - DT(TCN))
where R 8 is the conduction coefficient equal to \(C C /(D X D / A C D+\) DXC/ACC).

1c. Conduction to and from the piston node.
\[
\mathrm{R} 9 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{ICN}))
\]
where R9 is the conduction coefficient between the two nodes equal to \(1.0 /(\mathrm{DXP} /(\mathrm{CP*} A C P)+\mathrm{DXC} /(\mathrm{ACC} * \mathrm{CC}))\), where the interface conductance between the two nodes is infinite.

2a. Convection to and from the actuator fluid node in volume one.
B3 * (DT(TFA1) - DT(TCN))
and B3 is as defined previously.

2b. Convection to and from the external atmosphere
\[
\mathrm{B1} *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TCN}))
\]
where BL is a convection coefficient for the actuator wall equal to \(D(U A C) * D(A S A C) * D V O L L\) DVOLI is a coefficient to calculate the wall mass around volume one equal to DT(VOLUNEL)/(DT(VOLUMBL) + DT(VOLUME2)) .
3. Radiation exchange with the surrounding structure
\[
\mathrm{D} 3 *\left(\mathrm{D}(\mathrm{TST})-(\mathrm{DT}(\mathrm{TCN})+460 .)^{4}\right)
\]
where D3 is a radiation coefficient equal to SIGMA * EPSION * SHAPF * D(ASAC) * DVOL 1

These terms combine to produce the equation for the heat balance for the actuator wall node surrounding volume one.
\[
\begin{align*}
\frac{\mathrm{MCD}}{\mathrm{DELT}} *\left(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TCN})_{\mathrm{OLD}}\right)= & \mathrm{R} 2 *(\mathrm{TW}(\mathrm{LI})-\mathrm{DT}(\mathrm{TCN}))+\mathrm{R} 8 *(\mathrm{DT}(\mathrm{TDN}) \\
& -\mathrm{DT}(\mathrm{TCN}))+\mathrm{R} 9 *(\mathrm{DT}(\mathrm{TPN})-\mathrm{DT}(\mathrm{TCN}))+\mathrm{B} 3 * \tag{3}\\
& (\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TCN}))+\mathrm{D} 3 * \mathrm{D}(\mathrm{TST})-\mathrm{D} 3 * \\
& (\mathrm{DT}(\mathrm{TCN})+460 .) * * 4
\end{align*}
\]
where MCp is equal to CMASS \(*\) CPCN and CMASS is equal to D(AMASS) * DVOLl.
The fourth equation represents three modes of heat transfer the actuator wall surrounding volume two.
la. Conduction to and from the downstream line segment wall node.
\[
\mathrm{R} 3 \div(\operatorname{TH}(\mathrm{L} 2)-\operatorname{DT}(\mathrm{TDN}))
\]
where R3 is a conduction coefficient equal to \(1.0 /\) (DXF(L2)/
\[
(C(L 2) * A C W(L 2))+D X D /(A C D * C D))
\]

1b. Conduction to and from the actuator wall node surrounding volume one.
\[
\mathrm{R} 8 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TDN}))
\]
witl: R8 defined previously.

1c. Conduction to and from the piston node.
R12 * (DT (TDN) - DT(TDN))
where Rl2 is a conduction coefficient equal to \(1.0 /(\mathrm{DXP} /(\mathrm{ACP} \times \mathrm{CP})+\) \(\mathrm{DXD} /(\mathrm{ACD} * \mathrm{CD}))\) with the interface conductance being infinite.

2a. Convection with the actuator fluid node in volume two.
```

B4 * (DT(TFA2) - DT(TDN))

```
where 14 is the convection coefficient between the two nodes equal to UA2D * ASA2D.

2b. Convection to and from the external atmosphere
\[
\mathrm{B} 2 *(\mathrm{D}(\mathrm{TA})-\mathrm{DT}(\mathrm{TDN}))
\]
where \(B 2\) is the convection coefficient equal to B1 * DVOL2/DVOL1 with the terms defined previously and DVOL2 is a roefficient to calculate the wall mass around volume two, equal to DT(VOLUME2)/ (DT(VOLUME1) + DT(VOLUME 2)).
3. Radiation exchange with the surrounding structure.
\[
D 4 *\left(D(T S T)-(D T(T D N)+460 .)^{4}\right)
\]
where \(D 4\) is a radiation coefficient equal to \(03 *\) DVOL2/DVOL1, with these terms derined previously.

These terms then combine to produce the equation for the heat চalance for the actuatur wall node surrounding yolume 2 .
\[
\begin{align*}
\frac{\mathrm{HC}}{\mathrm{DELT}}(\mathrm{DT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TDN}) \mathrm{OLD}) & =\mathrm{R} 3 *(\mathrm{TN}(\mathrm{~L} 2)-\mathrm{DT}(\mathrm{TDN}))+\mathrm{R} 8 *(\mathrm{DT}(\mathrm{TCN})-\mathrm{DT}(\mathrm{TDN})) \\
& +\mathrm{B} 4 *(\mathrm{DT}(\mathrm{TFA} 2)-\mathrm{DT}(\mathrm{TDN}))+\mathrm{B} 2 *(\mathrm{D}(\mathrm{TA}) \tag{4}\\
& -\mathrm{DT}(\mathrm{TDN}))+\mathrm{D} 4 * \mathrm{D})(\mathrm{TST})-\mathrm{D} 4 *(\mathrm{DT}(\mathrm{TDN})+460 .) \\
& * * 4
\end{align*}
\]
where \(M C p\) is equal to DMASS*CPDN and DMASS is equal to D(AMASS)* DVOL2.
The fifth equation represents two modes of heat transfer to and from the piston node.
1. onduction to and from che two actuator wall ncies, one and two respectivelv.
a. R9 * (DT(TCN) - DT (TPN)) and
b. \(\mathrm{R} 12 *(\mathrm{IT}(\mathrm{TDN})-\mathrm{DT}(\mathrm{TDN}))\)
where R9 and 112 dre the same as defined previously.
2. Convection to and from the two actuator fluid nodes, one and two respectively.
a. \(B 5 *(\mathrm{DT}(\mathrm{TFAL})-\mathrm{DT}(\mathrm{TDN}))\) and
b. RG * (\(\mathrm{DT}(\mathrm{TFA2})-\mathrm{DT}(\mathrm{TDN}))\)
and B5 and B6 are the same as defined previously.
These terms then combine to ,roduce the equation for the teat
balance for the actuator piston node
\(\frac{M C P}{D E L T} *\left(D T(T D N)-D T(T D N)_{O L D}\right)=R 9 *(D T(T C N)-D T(T D N)+R 12 *\)
(DT (TDN) \(-\mathrm{DT}(\mathrm{TPN}))+\mathrm{B5} 5(\mathrm{DT}(\mathrm{TFAL})\)
- DT(TDN) \(+36 *(\mathrm{DT}(\mathrm{TFA} 2)-\mathrm{DT}(\mathrm{TDN}))\)
where \(M C p\) is equal to PMASS * CPPN.
A thermal model of the above heat transier terms for the Actuator is shown in Figure 6.102-3. Equations (1) thru (5) are solved for the appropriate temperatures.

FTCURE 6.102-3
THERMAL MODEI

In this hydrauiic math mocel, the external force due to atmospheric pressure is
ATRESS* (D (AREA1)--D (AREA2))

This value is subsequently used as part of the actuator load for any pi ton position.
.. total actuator load \(D T(L O A D E X)=: D T(\) LOADZ \()+D T(\) LOADS \() * D T(X)+(D(A R E A 1)-D(A R E A 2))\) *ATPRESS

A sign conven ion is estal ished surh that flow into the Volume 1 chamber and resulting p ; con velocity are positive.

A system node, \(N\), is siablished \(i\) : the Volume 1 end of the actuator.

The simple unbalanced actu, tor represents a flow and pressure discontinuity. In this case, the \(f, y\) out of th actuator is proportional to the flow in, but dres not equal it. The pseud verboard flow is the difference between the inie: and outlet llow: This flow is added or subtracted to the flow at the pressure node depending on the dirc tion of motion of the piston. The associated pressure gradient is appled to the leg connected downstream of the actuator.
uverboard fiow at the actuator node \(i\), calculated using the pistun ared ratio times the inlet actuator fiow
\[
0 N(N)=(-1 .) * Q A * O S *(D(\operatorname{AREA})-D(\operatorname{AREA} 2)) / D(\operatorname{AREA} 1)
\]

The pressure gain or loss across the piston is calculated using the force balance equation
\[
\begin{aligned}
\operatorname{DT}(D E L T P)= & L S *(P N(N) *(1)(A R E A I)-D(A R i A A 2))-D T(L O A D E S)-\text { } 2 S * \\
& D(D A M P)) / D(A R E A 2)
\end{aligned}
\]

\subsection*{6.102.2 Assumptions}
1. The temperature of the fluid leaving the actuator is equal to the fluid node temperature calculated, DT(TFA2).
2. Each entire actuator wall is at the same temperature.
3. The interface conductance between the actuator walls and the line walls is infinite.
4. The emissivity of the wall materials is a constant.
5. The atmospheric and structure temperatures remain constant.
6. Complete fluid mixing occur in the fluid volume.

\subsection*{6.102.3 Computationa1 Methods}

\section*{SECTION 1000}

The fluid and wall temperatures are initialized, the external structure temperature is changed from degrees Farenheit to Rankine and raised to the fourth power, and the default values are assigned.

SECTION 2000 - The entry first determines whether connection No. 1 is attached to an upstream or downstream line. This establishes the actuator steady state mode of operation. If entry is made using connection No. 2, leg pressure gain (or loss) and leg laminar constant are updated. Pressure at connection No. 2 is also calculated and stored. If entry is made using connection No. 1 , tests are performed to verify that the piston is free to move as prescribed by the flow guess.

If the piston is on a stop and the flow guess is such that motion would be into the stop, the node overboard flow is set to zerc and DT(DELTP) is set to a very large number.

If the piston is free to move, the overboard flow, piston velocity, \(\Delta \mathrm{P}\) across piston and pressure at connection No. 2 are calculated.

SECTION 3000
The position of the actuator piston is computed via a simple integration
\[
\operatorname{DT}(X)=\operatorname{DT}(X)+(D T(V E L)+\operatorname{DT}(V E L O)) * \operatorname{DELT} / 2 .
\]

The cylinder volumes are easily calculated as
\[
\begin{aligned}
& \left.D^{\prime \prime \prime}(\text { VOLL })=\text { DT (VOL1 }\right)+(D T(X)-X 0) * D(\text { AREA }) \\
& D^{\prime \prime}(\text { VOL2 })=\text { DT }(\text { OL2 })-(D T(X)-X O) * D(\text { AREA } 2)
\end{aligned}
\]
iroperty values are assigned. Dimensions and coefficients are callilated. The flow direction is determined. (The program is set up with the flow entering connection line one (L1) and leaving thru connection line two (L.2). During the calculation the flow direction is checked. If the flow has reversed flow direction, the program reassigns connection numbers so that the flow still enters connection line one). Some coetiticients are then recalculated if the flow is reassigned. A \(5 \times 5\) matrix is loaded and the mathematical equations are solved for DT(TFAL), DT(TFA2), DT(TCN), DT(TDN) and DT (TPN) and stored in the B computational array. The calculated values are assigned to their proper storage locations and the boundary conditions are assigned to arra \(s\) (TC and TF) in common /TRANS/.
\[
T C(L 1)=B(3)
\]
6.102.4 Approximations.
(a) Emissivity of the actuator is . 3, which is the emissivity ot steel.
(b) Areas and distances are approxinated.

\subsection*{6.102.5 Limitations}

Not applicable.
6.102.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline Variables & Description & Dimensions \\
\hline A () & Computational array & -- \\
\hline ACAl & Cross sectional area of fluid ; & IN. \({ }^{2}\) \\
\hline ACA2 & Cross sectlonal area of fluid? & IN. \({ }^{2}\) \\
\hline ACC & Cross sectiori. areu -f case 1 & IN. \({ }^{2}\) \\
\hline ACD & Cross sectional ar a of cose 2 & [N. \({ }^{2}\) \\
\hline ACP & Cross sectional an a of tre piston & IN. \({ }^{2}\) \\
\hline D (AMASS) & Actuator mass & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline D (AREAl) & Volume 1 pi.ton area & IN. \({ }^{2}\) \\
\hline D (AREA2) & Volume 2 pistc \({ }^{\text {aria }}\) & IN. \({ }^{2}\) \\
\hline D (ASAC) & Surface area external (.) qctuator & IN. \({ }^{2}\) \\
\hline ASAIC & Surface area fluio 1 t.) :ase 1 & IN. \({ }^{2}\) \\
\hline ASA1P & Surface area fanic l to riston & IN. \({ }^{2}\) \\
\hline ASA2D & Surface area fluid 2 to case 2 & IN. \({ }^{2}\) \\
\hline ASA2P & Surface area fluid 2 to wiston & IN. \({ }^{2}\) \\
\hline ASCD & Contact area between two actuator wall nodes & IN. \({ }^{2}\) \\
\hline ASCP & Surface area case, Volume 1 to piston & IN. \({ }^{2}\) \\
\hline ASDP & Surface area case, Volune 2 to piston & 1N. \({ }^{2}\) \\
\hline D (ASFA) & Totai internal surface area, fiuid to actuator & IN. \({ }^{2}\) \\
\hline ASIGN & Dummy variable & -- \\
\hline D (ATHICK) & Actuator wall thickness & IN. \\
\hline A1 & Dummy variable & -- \\
\hline A2 & Dummy variable & -- \\
\hline B () & Computational array & -- \\
\hline BUZ & Dummy variable & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variables & Description & Dimensions \\
\hline B1, \(\mathrm{B} 2, \mathrm{~B} 3, \mathrm{B4}, \mathrm{B5}, \mathrm{B6}\) & Dummy variables & -- \\
\hline CC & Thermal conductivity of the actuator wall surrounding volume one & WATTS/ \(\mathrm{IN}-{ }^{\circ} \mathrm{F}\) \\
\hline CD) & Thermal conductivity of the actuator wall surrounding volume two & WATTS \(/ T N={ }^{\circ} \mathrm{F}\) \\
\hline C.J & Mechanical equivalent of heat & IN-LB \(\mathrm{m}_{\mathrm{m}} /\) WATTS -SEC \\
\hline CMASS & Node C mass & \(L B_{m}\) \\
\hline CP & Thermal conductivity of the piston & WATTS/IN. - \({ }^{\circ} \mathrm{F}\) \\
\hline CPCN & Specific heat of the wall mass around volume one & WATTS-SEC/LB \(\mathrm{m}^{-}{ }^{\circ} \mathrm{F}\) \\
\hline CPDN & Specific heat of the wall mass around volume two & WATTS-SEC/LBm- \({ }^{\circ} \mathrm{F}\) \\
\hline CPPN & Specific heat of the piston & WATMS-SEC. \(/ \mathrm{LB}_{\mathrm{m}}-^{\circ} \mathrm{F}\) \\
\hline D (DAMP) & Dynamic friction & \(L^{\text {f }}\) \\
\hline DCAPTI & Temperature change due to pressure drop & \({ }^{\circ} \mathrm{F}\) \\
\hline DCAPT2 & Temperature change due to rressure drop & \({ }^{\circ} \mathrm{F}\) \\
\hline D (DELTP) & Actuator pressure drop & PSI \\
\hline ' (DIA) & Piston rod diameter & IN. \\
\hline DMASS & Node D mass, around volume two & \(\mathrm{LB}_{\mathrm{m}}\) \\
\hline DVOL 1 & Dummy variable & -- \\
\hline DVOi, 2 & Dummy variable & -- \\
\hline DXAI & Distance, node to interface, Volume 1 to Line 1 & IN. \\
\hline DXA2 & Distance, node to interface, Volume 2 to Line 2 & IN. \\
\hline DXC & Distance, node to interface, node \(r\), to interface with D & IN. \\
\hline DXD & Distance, node to interface, node \(D\) to interface with C & .N. \\
\hline DXP & Distance, node to interface, piston to case & IN. \\
\hline
\end{tabular}

D3, D4
EPSION
FAlM
FA2M
IR, IS
D (ITC)
D (ITF)

KTYPE
DT(LOADS)
DT(LOAD7)
D(MAXL)
D (MAXS'T)
D(MINST)
D(MINL)
D (MTYPE)
NTYPE
D(PHEIGHT)
PMASS
D(PIHICK)
D(PTYPE)
RHOC
RHOIL
RHOP
RMS
RQ

Dummy varlables
Emissivity factor of the case
Fluid in Volume 1 , mass
Fluid in Volume 2, mass
Dummy variables
Initial temperature of the case
Initia? temperature of the fluid

Dummy variable
Load/stroke slope
External load at piston stroke
Load at full stroke
Maximum actuator stroke
Minimum actuator stroke
Load at minimum stroke
Actuator material type
Dummy variable
Piston height
Piston mass
Piston thickness
Piston material type
Actual metal density
Fluid density
Piston metal density
Fummy variable
Dummy variable

Dimens;ons
\(\mathrm{LB}_{\mathrm{m}}\)
\(\mathrm{L}_{\mathrm{m}}\)
\({ }^{\circ} \mathrm{F}\)
\({ }^{\circ} \mathrm{F}\)
--
LB/IN
LB.
LB.
L.N.

IN.
LB.
--
--
IN.
\(L \mathrm{~m}_{\mathrm{n}}\)
IN.
--
\(L \mathrm{~B}_{\mathrm{m}} / \mathrm{IN}^{3}\)
\(\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}^{3}\)
\(\mathrm{LB}_{\mathrm{m}} / \mathrm{IN}^{3}\)
--
--
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline \(\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 6, \mathrm{R} 12\) & Dummy variables & -- \\
\hline SHAPF & Shape factor case to structure & \\
\hline SIGMA & Stefan-Boltzmann radiation constant & WATTS/IN \({ }^{3}-{ }^{\circ} \mathrm{F}\) \\
\hline D (TA) & Temperature of the surrounding ambient & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TCN) & Actuator wall temperature, Volume 1 & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TDN) & Actuator wall temperature, Volume 2 & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TFAI) & Fluid temperature, Volume 1 & \({ }^{\circ} \mathrm{F}\) \\
\hline ri(TFA2) & Fluid temperature, Volume 2 & \({ }^{\circ} \mathrm{F}\) \\
\hline DT (TPN) & Piston temperature & \({ }^{\circ} \mathrm{F}\) \\
\hline D (TST) & Temperature of the surrounding structure & \({ }^{\circ} \mathrm{F}\) \\
\hline D (UAC) & Heat transfer coefficient external to vase C & WATTS/IN \({ }^{2}{ }^{\circ} \mathrm{F}\) \\
\hline UAD & Heat transfer coefficient node \(D\) to atmosphere & WATTS \(/ \mathrm{CN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UAIC & Heat transfer coefficient fluid 1 to case C & WATTS/IN \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline D (UA1P) & Heat transfer coefficient fluid l to piston & WATTS/IN \({ }^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UA2D & Heat transfer coefficient fluid 2 to case D & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline UA2P & Heat transfer coefficient fluid 2 to pisten & WATTS \(/ \mathrm{IN}^{2}-{ }^{\circ} \mathrm{F}\) \\
\hline DT (VEL) & Actuator velocity & IN/SEC, \\
\hline DT(VELO) & Ild velocity & 1N/SEC \\
\hline DT'(VOLUME1) & Actuator Volume 1 & LN \({ }^{3}\) \\
\hline DT (VOLUME: \()\) & Actuntor Volume 2 & \(1 \mathrm{~N}^{3}\) \\
\hline D(VOLL) & Volume 1 (initially) & \(1 \mathrm{~N}^{3}\) \\
\hline D (VOL2) & Volume 2 (initially) & \(\mathrm{IN}^{3}\) \\
\hline DT (X) & Actuator position & [N . \\
\hline X0 & Old artuator position & IN. \\
\hline
\end{tabular}

For variables in common refer to Paragraph 3.3.

\subsection*{6.102.7 Subroutine Listing}

SUBROIJIINL PAC'T1O2 (D,DT,DD,L)
C *** REVISLD AUG 1975
DISLNSION D(1), D'C(1), DD(1), L(1)
COMHON /TRANS/P(300), O(300), C(300), TC(300), TW(300), TP(300),
+ ACF (300), ACN(300), DXP (300), TInL, DELT, PI,NLINE,NEL
CCA:ON/COHP/LTYPL(99),NC(99), KTLMP(99), INT, IENTR, INEL
COHION /STEADY/PN(90), QN(90), PEX(90), PDLEG(90), QL(90),
1 OA, 2S, Q1, PUP, PDONN, NNODE,NLEG,NCPN,TERI,LEGN, JCON,INV,
2 INX, IWZ, NUP(90), \(\operatorname{NDWN}(90), \operatorname{NELEM}(90), \operatorname{ILEGAD}(90), \mathrm{ILEG}(1000)\)
CGHION /FLUID/APPRES,CF, CPEN, FTLAP, PROP (13, 3)
DIIENSION R:F \(F(6), A(5,5), B(5)\)
IVIEGER VOLI, VOL2, ASAC, JAC, DIA, PHEIGH'T,TA,TST, TCN, TDN,
1 TPN,TFAL,TFA2, ITC, I'CF, PTHICK, AHASS, ATHICK, ASFA, VELO,
2 AREA1, AREA 2, P1, P2, HTYPL, PTYPL, UA1P, DAッP, X,
3 2O, VEL, DLLTP, VOLUHE1, VOLUME 2
C D ARRAY VARIABLES
DAMA VOLI/1/, VOL2/2/,ARLA1/3/, ARLA2/4/, MTYPL/5/,PCYPL/6/
1 , AnASS/7/,ATHICK/8/,ASFA/9/, PHBIGHT/lo/, PCHICK/l1/, DIA/l2/
2 , ASAC/13/, UAC/14/, UA1P/15/,TST/16/,TA/17/,ITF/13/,ITC/19/
3 , \(\operatorname{HINST} / 20 /,: A X S T / 21 /\),UAAP/22/,AINL/23/, AAXL/24/, INPOS/25/
C D ARRAY VARIABLES
DATA TCN/1/, TDN/2/, TPN/3/,TFAl/4/,TEA2/5/, Pl/6/,
\(1 \mathrm{P} 2 / 7 / \mathrm{X} / 8 / \mathrm{VLL} / 3 /\), LOMDZ/10/, LONDS/11/, ZQ/13/

3 ,VE[.0,18/
DATA SIGMA/.349k-11/, SHAPE/.96/, tPSICN/.3/.C.J/8.85/
IF (IL,NTR) \(1000,2000,3000\)
\(C\) ATHICK = ACTUATOR WALT 'PHICKULSS
C AIAASS =ACTUATOR AASS, INCLUDIVG PISTON
C ASFA =SURFACE ARLA FLUID 'IO ACTUATOP, INSIDE
C DELCS = DIAENSIOWS OF THL RESTRICTOR
C PTHICK
HHCN ="HICKNESS OF TIL PISTON
DIA =DIAAETER OF THE PISTON
UAC = HLAT TRANSFER COEFF. CASSE TO A.IBIENT
VLL \(\quad\) VELOCITY OF THE PIS'TON
C *** 1000 SLCTION
1000 CONTINUE
\(\mathrm{L} \mathrm{l}=\mathrm{L}(1)\)
\(\mathrm{L} 2=\mathrm{L}(2)\)
こ initalizing tidplratijkis
\(\mathrm{TC}(\mathrm{L} 1)=\mathrm{D}(\mathrm{ITC})\)
\(\mathrm{TC}(\mathrm{L} 2)=\mathrm{D}(\mathrm{I} \mathrm{PC})\)
\(T F(L, 1)=D(I ' \Gamma F)\)
\(T F(L 2)=D(I T F)\)
\(D T(\) TCN \()=D(I T C)\)
\(D^{\prime}(T D N)=D(I T C)\)
\(D T(T P N)=D(I T F)\)
\(\mathrm{DT}(\mathrm{TFA}])=\mathrm{D}(\mathrm{ITF})\)
\(D T(T F \lambda 2)=D(\operatorname{ITF})\)
\(D(T S T)=(D(\Gamma S T)+460) * *\).

\subsection*{6.102.7 (Continued)}
```

    KTYPL=D(VTYPI.)+.00]
    NTYPL=D(PTYPL)+.00J
    CP=PROP(\TYPL,3)
    CC=PROP(K'TYPL,3)
    CPPN=PROP(NTYPL,1)
    CPCN= PROP(KTY!L,l)
    RHOP=PROP(:U'YPL, 2)
    RHOC=PROP(KTYPL, 2)
    CD=CC
    CPDN=CPCN
    DT(VLI) =0.0
    IF(D(UA1P).E2.0.0) D(UA1P)=.0063
    IP (D(UAC).E(.0.0) D(UAC)=.0053
    D(A:ASS)=D(A,AASS)-D(AREAL)*D(PTHICK)*RHOP
    C(ASAC)=D(ASAC)/2.0
    L(3)=1
    DT(VOLUMiE l)=D(VOL1)
    DT(VOLUAE 2) = D(VOL2)
    IP(L(l)/2.NL.(L(1)+1)/2) L(3)=-1
    L(4)=-1
    LE(E(2)/2.NL.(L(2)+1)/2) L(4)=1
    OT(DLLIP)=0.0
    OT(X)=D(INPOS)
    DT(LOADS ) = (D(.AAXL) -D(MIVL) )/(D(NA:OS'T)-D(AINST) )
    DT(LOADR) = (mAXL) -D'r(LOMDS) *D(MAXST)
    D'l'(LOADLX)= D''(LJADS)* D'r(X) + Dr(LOADZ ) +(D(AREAl)-D(ARLA2))
    + *ATPPRLS
    RL.TURN
    C *** 2000 SEC「\GammaIUN
2.00 CONTI NUL
LS =L(2+ICON)
N=:IDWN(INEL)
IF(LS.GT.0) 30 TO 2510
IF(INX.NL.I.AND.ICON.EQ.1) GO TU 2900
N=NUP(INEL)
251) IF(ICOm.E?.2) 50 ro 2850
IF(DT(X).GT.D(丹INST)) GO TO 2G00
IF(DT(LOADLX).GE.0.0) GO TO 2550
IF(2S.G'.?.?) GO TO 2650
2550 @N(N)=0.0
D"(LJ\DEX)=0.?
DT(VLIJ)=0.0
DT(DHLTP)=0l*inL6
GO IO 2700
2500 IF(DP(X).LT.D(MAXS'T)) GO NO 2650
IF(DT(LOMDLX).LL.D.0) GO !O 2550
IF(OS.Gף.0.0) GO TO 2550
2650 CONTIMUL
DT(VELO)= DT(VEL)
ON(N) =(-1.)*Q1*(D(ARLA1)-D(AREA2))/D(AREAl)

```

\subsection*{6.102.7 (Continued)}
```

            DT(VEL)=01/D(AREAl)
            DT(DELTP)=(PN(N)*(D(AREAl)-D(AREA2))-DT(LOADEX)-
    + 2S*D(DAMP))/D(ARLA2)
    2700 D'I(Pl)=PN(N)
DT(P2)=PN(N)+DT(DELTP)
RLIURN
2350 IF(INX.EO.1.AHD.LG.EQ.-1) GO TO 2900
IF(DT(X).GE.D(tNXST).OR.D'T(X).LE.D(MINST))GO TO 2950
PDLEG(INEL)=DT(DELTP)*LS
PUP=PUP+DT(DELTP)*LS
RETIJRN
2950 PUP=+21*191.6
TERM= PDOWN
DT(P2)=PN(N)
RETMRN
2900 STOP
3000 CONTINUE
KTYPE=D(NTYPE ) +.001
NTYPE=D(PTYPE)+.001
CP=PROP(NTYPE,3)
CC=PROP(KTYYPE,3)
CPRN= PROP(NTYPL,1)
CPCN= PROP(KTYPE,1)
RHOP=PROP(NTYPE, 2)
RHOC=PROP(KTYPE,2)
CD=CC
CPDN=CPCN
DT(LOADEX) = D'T(LOADS)*DT(X) +DT(LOADZ) +(D(AREA1)-D(AREA2))
+ *ATPRLS
DT (X) = D'T(X) +( D'S(VLL) +D'T(VELO) )*DEL'T/2.
CALL XLIHIT(D'T}(X),DTY(VEL),ASIGN,D(AIVST),D(MAXS'T)
IC(DT(VEL).E2.0.0) GO TO 3001
DT(VOLUAE1) = DTP(VOLUMEl) +DT(X)*D(AREAl)
DT(VOLU\&E2)=DT(VOLUNE2)-DT(X)*D(AREA2)
3001 L2=[,(2)
Ll=L(1)
RHOIL=390.4*RHO(TP(Ll),P(Ll))
D.KA1=D(PHYIGH'T)/1.33
DXA2=OXAl
DXP=D(PHEIGH'?)/4.0
ASA2P=D(AREA?)
ASAIP=0(AREAl)
ASCP=D(P'THICK)*(D(ARLAl)/D(PHEIGHT))
ASDP=ASCP
C ACF(LI)=CROSS SECTIONAL AREA 3LTWEEN FLUID MI\&LI
C ACC\&ACD=ESTIIIATISS OF CROSS SECTIONAL AREAS, ALSO
C CONTACT AREA 3ETWEEN C\&D
3003 3U2=(D(A،AASS)/RHOC)/(D(ARLAl)/D\Gamma(VOLOHEl)+D(AREA2)/DT(VOLUHL2))
ACC=B|2
ACI}=\textrm{BIV

```

\subsection*{6.102 .7 （Continued）}
```

        (122P=D(U^1P)
        UA1C=D(UN1P)
        (1^2D=D(UAlP)
        UAD=D(UAC)
        EVOIJ=DT(VOLUrit,1)/(DT(VOLU.ILI) + DT(VOLUHE2))
        DUOI2=OVOLl*D'r(VOLU.IE 2)/D'T(VOLUNEl)
    ```

```

        DNASS=D(A.IASS)*DT(VOL(JME 2)/(DT(VOLU&E1) +DT(VOLU.L2))
        P:ASS=(D(ARLA1)*D(PRUICK)+(D(ARLA2)-D(AREA1))*D(DIA)
    +/4.0)*RHO!
    FAl.I=D'r(VOLUNEl)*RHOIL
    FA2I=DT(VOLUNE2)*RHOIL
    R.)=O(Ll)
    ACP=PiAMSs/(RHOP*D(PHi,IGHIG))
    ASA1C=D(ASEA)*D''(VOLUMLl)/(D'T(VOLUNL1) +DT(VOLJNL,2))
    ASA2D=D(ASFA)*DT(VOL!mE2)/(DT(VOLUHE1) + DT(VOLUN&2))
    ASCD=ACC
    DXC=DT(K1(UMEl)/(2.0*S(AREAl))
    DXD=OT(VOLU.L2)/(2.0* D(ARLA2))
    ACAl=D'(VOLS.HLl)/D(?HETGHTC)
    AC.12=DT(VOL!JiL2)/D(PHEICHIN)
    C ESTIMATLS OF HLAT TRANSPGR COEFF.
@LI,R:=0.0
R.aF(Ll)=Q(LJl)*RHOTL.
A2=A3S(R.1F(L,1))*CPEN
iRl=CF/(DXF(L`)/ACF(Ll)+DXAl/ACAl+ABS(RGF(LL))*DLLT/(ACF(Ll)**2     + *RHOLL))     IF(C(LJ).LT.0.0) R.IF(Ll)=0.0     RaF(L2)=O(L2)*kHOTL     R 6=CF/((CXF(L2)/ACP(L2))+DXA2/ACA2+ABS(R.IP(L2))*DLLT     +/(ACF(L2)**2*RHOTH))         IF(2(L2).LT.0.0) R.IF(L2)=0.0         D3=SI`nA*\&PSIOミ*SHAPE*D(AS\C)*DVOL1
D4=D3*DVOL?/DVOLl
Al=CPFN/EIAL
3033 ?1=ワ(U\C)*D(A.今AC)*D「゙っL1
32=ご*DVOL2/DVOLl
33=UA1C*ASN1C
34=0А 2D*ACA2D
B5=O(UAlD)*ASAL?
35=U^2p*ASA2p
R2=1.0/(DXF(Ll)/(C(Ll)*ACw(Ll))+DXC/(ACC*CC))
R3=1.0/(DXF(L2)/(C(L2)*ACN(L2))+OXD/(ACD*CD))
RQ=CC/(DXD/ACD+JXC/ACC)
R9=1.0/(DXP/(C!2*ACP)+DXC/(ACC*CC))
R12=1./(DXP/(ACP*CP)+DXI)/(ACD*CD))
IF(O(Ll).L'S.0.0) Rl=0.0
IF(2(LI).GT.0.0) RG=0.0
C CALCULATING 'RLAPLRATURL DISTRIBUTION
IS=Ll

```

\subsection*{6.102.7 (Continued)}
```

    IR=L.?
    DCAPTl=(1./RHOIL)*ABS(P(Ll)-DTM(Pl))/(CJ*CPFN)
    DCAP'2=(1./RHOIL)*ABS(DT(P2)-P(L2))/(CJ*CPFN)
    IF(O(Ll).GE.0.0) GO TO 3l00
    L2=Ll
    L1=L(2)
    IS=L2
    IR=Ll
    DCAPT 2=(1./RHOIL)*A.3S(P(L])-DF(P2))/(CJ*CPFN)
    DCAPTl=(1./RHOIL)*\lambdaBS(DT(P1)-P(L2))/(CJ*CPPN)
    3100 CONTI:NUE
    C Al,A2,C,D, P NODES I N OKDHR
3200 A(1,1)=(FAlA*CPE`iv)/DLLT+Rl+RAF(IJ)*CPFN+!35+33
A(1,2)=0.0
A(1,3)=-B3
A(1,4)=0.0
N(1,5)=-35
B(1)=FAl.A/DELT*DT(TFAl)*CPFM+(R1+RMF(IS)*CPFN)*TF(Ll)
+ +A2*DCAPR1
A(2,1)=0.0
A(2,2)=(FA2.1)*CPFN/DLLT+RG+R.AF(IR)*CDFN+36+34
A(2,3)=0.0
A(2,4)=-34
A(2,5)=-B6
B(2)=CPFN*FA2A*DT('TPA2)/DELT+(RG+RiF(IR)*CPFN)*TP(L1)

+ +A2*)CAP'\Gamma2
A(3,1)=-33
A(3,2)=0.0
A(3,3)=(C,IASS)* (CPCH/DL.LT})+\textrm{R}9+33+31+., B+R2
A(3,4) =-RB
A(3,5)=-R9
B(3)=(CMASS)*DT(TCW)*CPCN/DELT+31*D(TA)+53
+ *D(TST)-D3*(DT(TCN)+460.)**4+R2*TW(IS)
A(4,1)=0.0
A(4,2)=-B4
A(4,3)=-R3
A(4,4)=(D,ASS)*(CPON/DLLT})+R3+\textrm{i}212+34+32+.2
A(4,5)=-R12
B(4)=(D.4SS)*(CPDN/DHLT)*DT([DN)+32*D(TA)+ )4*D(TST)
    + -D4*(D'\Gamma(\GammaON)+450.)**4+R:3*Tw(IR)
A(5,1) =-35
A(5,2)=-35
A(5,3)=-R9
A(5,4)=-Rl2
A(5,5)=P:IASS*CPCN/DEL'L+R9+35+R12+35
B(5)=PMASS*CPPN*DT( [PN)/DLLT
CALL SIIULT(A, 3,5,I:KROR)
IF(RQ.LF:.).0) 30 'RO 3250
TC(Ll)=B(3)
TC(L2)=3(4)

```
6.102.7 (Continued)
\(T F(L 2)=3(2)\) GO TO 3390
3250 'пr (L2.) \(=3(1)\) \(\mathrm{TC}(\mathrm{L} 1)=3(4)\) \(T C(L 2)=B(3)\)
\(3390 \mathrm{BT}(\mathrm{TCl})=\mathrm{B}(3)\) \(\mathrm{DT}(\mathrm{TD}\) in \()=B(4)\) \(\operatorname{DT}(\operatorname{TFN})=3(5)\) DT(TFAl) \(=3(1)\) DT (TF+2) \(=3(2)\) RE TIRN END

\subsection*{7.0 OUIRUT SUBROUTINES}

The output subroutines comprising, TSTORE, TGRAPH and SCALED are currently dedicated to producing print plots of the data calculated by the program.

Current options allow maximum or minimum calculated values to be substituted for plot values in event these max or min values occurred between plot intervals. This assures that the \(\max\) or min values calculated are reflecied in the output plots. Another option allows tabulation of all calculated values for each plot variable

\subsection*{7.1 SUBROUTINE TSTORE}

Subroutine TS'IORE, which is called by THYTR, reads output requirements and storss data required for output plots, and prints an index of all the plots.

\subsection*{7.1.1 Math Mode1}

Not applicable.

\subsection*{7.1.2 Assumptions}

Not applicable.

\subsection*{7.1.3 Computation Methods}

Section 1000
Section 1000 reads in all the plot information for line and component plots.

Section 3000
This section first performs a test to determine if the current time step is also a plot time, if so line or component data is stored. If it is not time to store but the MAX/MIN option has been exercised, tests are made to determine if the current calculated value is less than or greater than (depending on which option was exercised) the previous value stored, if so che stored value is replaced by the current calculated value. If the LIST option has been exercised every calculated plot variable is printed. Once ali or a max of 101 points have been stored, TGRAPii is calied to piot the points. A test is then performed to determine if more than 101 points are to be plotted, if so the additional points (up to 101) are calculated and stored as before. :GRAPH is again called to plot these points. This procedure is repeated until all points have been plotted.
7.1.4 Approximations

Not applicable.
7.1.5 Limitations

Not applicable.
7.1.6 Variable Listing
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Diminsion \\
\hline 1 & Counter & - \\
\hline INDEX: & Line Number Associated with Pressure and/or Flow Plots & - \\
\hline IPLT & \begin{tabular}{l}
Number of Plots \\
Required along line INDEX
\end{tabular} & - \\
\hline IPTS & Dummy Variable & - \\
\hline J & Counter & - \\
\hline LIST & Input Integer Value 0 (No List) of 1 (List of all Points & - \\
\hline LPT & \[
\begin{array}{ll}
\text { Coded Inpui } & 1=\text { Pressure } \\
& 2=\text { Flow } \\
& 3=\text { Component Temperature } \\
& 4=\text { Fluid Temperature } \\
& 5=\text { Wall Temperature }
\end{array}
\] & - \\
\hline M & Counter & - \\
\hline MXTREM & Dummy Variable & - \\
\hline N & Counter & - \\
\hline NABSQ & \[
\begin{array}{ll}
\text { Input Integer } \quad 0=\text { Normal Graphs } \\
& 1=\text { Prints Magnitude }
\end{array}
\] & - \\
\hline NISTEP & Counter & - \\
\hline NLPLTC & Number of Line Plot Points & - \\
\hline NOGRAF & Not Used & - \\
\hline NOMSG & Not Used & \\
\hline NOSTOP & Not Used & - \\
\hline NPT & Dummy Variable & - \\
\hline
\end{tabular}
7.1-2

\subsection*{7.1.6 (Continued)}
\begin{tabular}{llc}
Variable & \multicolumn{1}{c}{ Description } & Dimension \\
NXTREM & \begin{tabular}{l}
Input Integer Value 0 (Normal Plot), \\
+1 (Plot with Max Values) or -1 (Plut \\
with Min Values)
\end{tabular} & - \\
N 1 & \begin{tabular}{l}
Counter
\end{tabular} \\
Y & Dummy Variable & - \\
\(\mathrm{YY}()\), & \begin{tabular}{l}
Array Used to Store Line Positions of \\
Required Plots
\end{tabular} & -
\end{tabular}

\section*{7．1．7 Subroutine Listing}

\section*{SJ3RMJI NL TSTORL}

こ＊＊＊＊RLVISLD AUGUS＇口 5， 1975 ＊＊＊＊
CO．1．iov DUn（3500），VSTORL（1）
COMON／TRANS／P（300），2（300），C（300），TC（300），TW（300），TF（30C），
＋AC：（300），ACW（300），DXP（300），TIME，DELT，PI，NLINE，NL［

COM．10N／LIVL／PARッ（150，4），TLW（2000），TLF（2000），LSTART（150），
\(+\operatorname{NLSLS}(150)\)

CU．，1ON／PLOT／TITLE（20），PLTDLI，NPRS，IPOINT，ISTLP，TPINAL，NLPET（61，3）
＋，NA 3：S2，NMOPL，NTOLPL

11ITICLL（40），ICHAR（12），ICI（40）

L？UIVALLVCb（DD（1），D（1））
DAPA ICHAR／4HLIVL，4HUPS，4HCOMP， \(4 H V A R, 2 H P, 2 H \quad 0,2 H M C\) ，
＋2HMF，2HAN，2H ，4HDVG，1H／
［F（ILNTR） \(1000,1000,3000\)
1000 COMITMUK．
I \(P_{2}^{\prime 2}=0\)
UISTLP＝
ITtR＝0
IPT．3＝APTS
IF（NDTH．Gr．lol）\(\because P R S=101\)
\(C\)
WPOLPL＝：

103 Fวniat（815）
IF（NLPLTC．LN．0）GO HO 142
כ） \(117 \mathrm{I}=1, \mathrm{NLPLTC}\)

109 FCR．AT（15I5）
DO 130 ．\(:=1\) ，IPLT
L． \(\mathrm{PT}=\mathrm{I} Y(4)\)
\(\mathrm{LOC}=2 * 1.3 D \mathrm{LX}-1\)
If（LPP．LL．0）LOC \(=2 *\) INDL \(X\)
NTOLPI＝ツMOLPL＋1
C LOC－ADDRESS OF VARIMBLE IV P，A，TC，TN OR TF ARRAY
C I．JDLX－LIJ VUn＇3E？
C LPT－CODLD I．NPII
NLPLT（NTGLPL，2）＝ I VDKX
＇：LOLT（N＇MOLPL，3）＝LPT
VLPLT（NTOLPL，l）\(=\) LOC
130 CONPINUL
140 CONTIT．JUL
14．COWンINUL
NTOPL＝NTOLPL＋NTELPL
IF（N＂OLPL．GT．ANPLO＇T）VTOLPL＝．NPRO＇T
C
IT（NTELPL．LQ．O）GO TO 144

\subsection*{7.1.7 (Continued)}
\(\operatorname{READ}(5,143)((N L P L T(1+N T O L P L, 2), N L P L T(I+N T O L P L, 3)), I=1, N T E L P L)\)
143 FORuAT(16I5)
144 CC.NTI.NUE.
IF (NTOLPL+NTELPL.G'T.NNPLOT) NTELPL=ANPLOT-NTOLPL
IF (NTOLPL+NTLLPL.NL. NTOPL) WRITE 6,520)
VTOPL=HTOLPL+NTELPL
IF (:JTELPL.EQ.0) GO TO 3000
LPT=NTOLPL+1
DO \(1200 \mathrm{I}=\mathrm{LPT}, \mathrm{NTOPL}\)
: \(\mathrm{APT}=\mathrm{NLPLT}(\mathrm{I}, 2)\)
\(y=\operatorname{NLPLT}(I, 3)\)
IF(N) \(1150,1180,1160\)
\(1150 \mathrm{Nl}=-\) !.t, \((\mathrm{NPM}, 3)+N+1\)
30 TO 1170
\(1160: N 1=\left[E\left(N P^{\prime} \mathrm{C}, 2\right)+\mathrm{N}-1\right.\)
1177 VLPLT \((I, 1)=\) 劫
GO ív 1200
1190 -JLPLT(I, 1)=1
120n CONTI JUE
C
3090 CiDNMTNUE
C
IE (ISTLP.E?.NIJTtP) GO TO 2010
IF(NXTREA.EQ.O.AND.LIST.E?.0) RETURN
MXTRLA=VXTRE,
30 TO 2020
2905 NISTLP=, JISTRP-IPOI V'T
2019 . \(\mathrm{XTR} \mathrm{RA}=0\)
I \(\mathrm{PT}=\mathrm{IPT}+1\)
VISTEP=iJIJTLPMIPOI:Nin

\(2020{ }^{\because 1} P_{4}^{\prime 2}=I P T\)
- I = \(=\)

DO 2200 \(\mathrm{I}=1\), VPOPL
NPT=ijPT+NPTS
\(i=N L P L T(I, 1)\)
\(N N=1 A 35(\) NLPLT \((I, 3))\)
LF (I.GT.NPOLPL) GO CO 2050
(30) TO(290i, 2902, 2903, 2904, 2905) NN
\(2901 \quad x=\) ? (N)
GO ©O 2030
\(2902 \mathrm{Y}=\) ? (N)
IE(NLPLT(I, 3).GT.0.0) \(\quad Y=-0(N)\)
GO TO 2080
\(2903 Y=\operatorname{TC}(1)\)
30 T○ 2!80
\(2904 Y=T F(N)\)
30 TO 2730
\(2905 \mathrm{Y}=\mathrm{Tw}(\mathrm{N})\)
GO TO 2080

\subsection*{7.1.7 (Continued)}
```

2050 IF(N) 2060,21511,2070
2060 1=00(-iN)
O0 (1) 298J
207) Y=0(N)
2030 IF(.1XTRE.!)2030,2085,2100
2095 IF(ISTLP+IPOINT.LO.NISTEEP) GO TO 2110
CO %(O) 2130
2030 IF(V.j\#)RL(NPR).GT.O) GO TO 2110
GO TO 2120
2300 IF(VSFORL(NPL).rL.Y) 30 TO 2120
2110 VS'T)KL(NPT)=Y
2120 IF(LIST.L`.7) GO एO 2200     IF(T.l?.l) NRITL(5,2211) PI.&F 2:3n :1=:il+]     YY(Nil)=Y     IF(Nl.NL.10) GO TO 2200     wRITL(6,2210) YY     N]=?     (%) 02200 ?150)     Y=PI.{&     30 T% 2090 2.00 Covirmul     IE(`1*LiS'r.NI:0) \forallRITL(6, 2?10) (YY(I),I=1,w])
IE(IOT.IL.VPTS) RETJRA
IF(ITHR.L?.l)30 ro 2550
~FITL(6,1501)
.~RTRL(6,1503)
IF(NSTRL,:) 5,12,10
5 wRITI(5,1505)
O TO 122?
17 vri Pl(6,1507)
GO TO 12%0
12 wRITL(6,1593)
(0) % 122.)
1220 ..PITL(6,160?)
JJ=?
I = ITOPL
111=1)
IN.j=1
0.) 1300 I= 1,II
J=I
J.J=5.J+l
15N1=NLPL,T(I,1)
NP'1=NLPLT(I, 2)
N=\LPL'T(I, 3)
IF(I.G'N.NTOLPL) GO TO 2500
TMITLE(JJ)={CHAR(1)

```

```

        IICTCLL(JJ)=ICHAR(2)
    ```

\section*{7．1．7（Continued）}
\(\operatorname{IF}(N . \operatorname{LT} .0) \operatorname{ITTELA}, 1 \mathrm{JJ})=\operatorname{ICHAR}(11)\)
\(L L=I A B .3(1)\)
\(\operatorname{IC}(J, J)=\operatorname{ICHAR}(4+L i)\)
\(\operatorname{IIC}(J J)=\operatorname{ICHAR}(10)\)
\(\operatorname{ICI}(J J)=\operatorname{ICHAR}(12)\)
60101700
\(2500 \operatorname{ITITLE}(\mathrm{JJ})=\operatorname{ICHAR}(3)\)
I ITIMLE（JJ）＝ICIIRR（4）
IN（J．J）＝N
ICl（JJ）＝ICHAR（12）
IY（JJ）\(=\)＇
\(I C(J J)=I C H A R(10)\)
\(\operatorname{ITC}(J . J)=\operatorname{ICHAR}(10)\)
1700 IF（JJ．LT． \(10 . A N D . I . L T . N \subset O R L) ~ G O ~ T O ~ 130 G\)
III＝III＋JJ
WRI「E（6，1500）（（ICI（JJJ），（JJJ）），JJJ＝JI号，III）
JI：\(=\mathrm{JIG}+1\) ）
IF（I．G＇T．VTOLPL，GO TO 75
wKI「L（6，1500）（（I＇fI＇NLE（JJ！），IV（JJJ），IIC（JJJ）），JJJJ＝1，JJ）

GO ro 15
75 ＇VRICL（5，1504）（（ITITLE（JJJ），IN（JJJ），IC（JJJ）），JJJ＝1，TJ）

16 URI＇fi．（6，1605）
J． \(\mathrm{J}=0\)
1300 CONTINUK
，JRITE（6，ln厅，2）
viRITE（6，1503）
ITLR＝1
2550 こALI TGRAP！
IT（IPTS－NPTS）2300，2350，2310
2300 ำ？
I \(\mathrm{PT}=0\)
GO TO ？ 005
2310 NP「：\(=101\)
I PrSi＝IPMS－100
I PT＝0
G） OO 2005
2350 COUTINU！
RETUR：
520 POITAAT（5X， \(424 T 00\) AANY PLORS RLOULSTLD AAX NUABER IS 60 ）
2．210 FOR．iAT（5X，1）L12．5）
2211 FORMAT（／／，5X，25iDDATA ChLCULATLD AT imIn＝，P8．4）

1500 PORAAT（5X，10（14，211 ，T4，A2））
\(1539 \operatorname{PORAAT}(5 X, 10(A 4,4 H \quad, 42,2 \mathrm{H}\) ；\()\)
1601 FORAAT（1月1，42 \(2,35 \mathrm{HV}\) RIABLES SLLECTED FOR OUTPU＇T PLO＇TS）
1502 FORAAT（1．11，53x，13：3HYTRAN OUTPG＂：
1603 FOR．AAT（1150）

\subsection*{7.1.7 (Continued)}

1504 FOR, NT(5X, 1)(14, 56,12\())\)
\(1605 \operatorname{POPAAT}(1.1)\)
1676 FORAMT \(29 \times, 71 H V A L U L S\) PLOMNLD RLPRLSLNE AIVIGUN VAL'JLS CALOULATED I 1N THL TI.LL INicRVAD)
 2is TaL ThE TNTERVAL)
 30 A" LACH PLOT INTHRVAI) 1 ND

\subsection*{7.2 SUBROUTINE TGRAPH}

Subroutine TGRAPH produces print plots of the output data stored in VSTORE () .

Most computers will have their own version of this zubroutine which could be used if necessary: however, since the plotted output is such an integral part of HYTTHA, this subroutine has been added to avoid the problems involved in changing from onc computer to another.
7.2.1 Theory - Not ipplicable.
7.2.2 Assumptions - iot applicable.

\subsection*{7.2.3 Limitations}

The program is executed one for each plot, up to the total number of plots NTOPL. The LO \(901 \mathrm{~J}=1\), NTOPL controls this loop.

The first section which sets the \(X\) scale, is only executed on the first pass, when \(J=1\).
[he program currently uses VSTORE (1) as XMIN and VSTORE (NPTS) as XMAX.
In the second section a DO loop is used to find the maximum and minimum values of the \(Y\) data to be plotted, using the functions AMAXI (YMAY, VSTORE, (I+IAJD)) and AMINI (YMIN, VSTORE (I+IADD)).

With the maximum and minimum values established, a check is made to see if they are equal, if they are, 25 is added to YMAX, and YMIN is set at 50 less than that, to avoid a fruitless search for a suitable scale.

Subroutine SCALED is then called to obtain a preferred scale for the Y axis, and returns with values for YMAX and YMCN.

The next siction finds the type of plot and sets the plot character, \(\mathrm{P}, \mathrm{Q}, \mathrm{T}\) or C and the data to be viritten at the bottom of the sutput plot.

The routine then starts the output plot section by going to the top of a new page, and proceeds to plot the output data, line by line until the plot is complete.

At the bottom of the plot a descriptive line is written which gives the line number and distance along the line for line pressure or flow plots or the variable number and the component number if it is a component data plot.

The next printed line is the title of the run, which was inputted on the first data card.

When all the plots have been completed, a listing of the titles is provided on the final page of the program output.

\subsection*{7.2.4 Approximations}

Not applicable.

\subsection*{7.2.5 Limitations}

The basic limitation of a print plot is the number of points that can be plotted on a single page graph and the resulting inaccuracy in reading the graph. To an extent these limitations can be over come by use of the MAX/MIN and LIST options noted in Section 8.0 of Volume \(I\) of this report.

\subsection*{7.2.6 Variable Listing}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline AvS & Absoiute vaiue or vo & - \\
\hline DIST & Distance of Plot Point Down a Line & IN \\
\hline I & Counter & - \\
\hline IADD & Address J*NPTS & - \\
\hline ICHAR & Plot Character & - \\
\hline ICHAR () & X and Y Axis Write Characters & - \\
\hline ISP & Counter & - \\
\hline ISPACE () & Temporary Variable for Writing \(X\) and \(Y\) Axis Scales & - \\
\hline ITEST & Counter & - \\
\hline J & Counter Indicating Plot Number & - \\
\hline L & Dummy Variable & - \\
\hline LINE & Integer Counter for Plot Line Number & - \\
\hline NABSQ & Integer value 1 or 0 Used as Indicator & - \\
\hline NCHAR & Dummy Variable Representing Plot Character & - \\
\hline NVAR & Dumm Variable Representing Point at which Line Plot is Taken or Component Number & - \\
\hline SP & Column Number Nearest to the Ith Value of X- Variabie & - \\
\hline
\end{tabular}

\section*{\%.2.6 (Continued)}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimensions \\
\hline vs & Dummy Variable & - \\
\hline XAX & Temporary Variable for Writing \(X\) Axis Scale Values & - \\
\hline XDELTA & Distance Between Stored Points on X Axis & - \\
\hline XMAX & Last (Largest) X Axis Value & - \\
\hline XMIN & First (Lowest) X Axis Value & - \\
\hline XSCALE & X Scale Range & - \\
\hline \(Y\) & Temporary Variable (Y Axis Scale Value) & - \\
\hline YDELTA & Distance Between Stored Points on the Y Axis & - \\
\hline I'.AST & Last \(Y\) Axis Scale Value & - \\
\hline YLO & Lowest Value in Search Range & - \\
\hline YMAX & Maximum Value to be plotted & \(\cdots\) \\
\hline YMIN & Minimum Value to be Plotted & - \\
\hline YUP & Highest Valur in Search Range & - \\
\hline
\end{tabular}

\subsection*{7.2.7 Subroutine Listing}

SU3ROUMINE TSRAPA
C**** RLVTjLi AUGUS'! 5, 1975 ****
COA..:ON DU.i(350 (1), VS'SOPL(1)
COmiON /TRANS/P (300), O(300), C(300), TC(300), TW (300), TE (300),
\(+A C F(300), A C N(300), D X F(300), T L A F, D L L T, P I, N L I N E, N L L\)

+ visbg(150)
COMAON /COHP/LTYPL(99), NC(99), KTEAP(99), IND, IriNTR

+ ,NABE , NPOPL,NTOLPL
DI.HNSION ISPACE(101), ISTR (2), XAX (6), ICHART(3)

DARA ITr.:T, XSCAJL/ \(0,0.0 /\)

C----BGGIN OUTER LOOP. FIND X PARAIETERS ON FI،STR PASS ONLY
1 DO 901 J=1, YTOPL
IAOD=J*NP's
IF (J.iNL. 1)GO ro 2
X.IAX=VSTORL (NDTS)
X.iI'V=VS F (ORL: (1)

ITLS'L=I [EST+1

XSCALE \(=\mathrm{X} \cdot \mathrm{I}\) M \(\mathrm{X}-\mathrm{XAI} \mathrm{V}\)
C CALI SCALED (XIIX, XSIV \()\)

C-----FIND Y PARAMTLPS
2 Y.AX \(=V\) STORL: \((1+I\) ADD \()\)
Y.iI.i=Y.JAX
no \(902 \mathrm{I}=2\), ivPTS
Y, AAX=A.IAXl(Y.AX, VETORL(I +IADD))

\(\therefore \cap 3 S ?=0\)
IF (J. GT.NTOLPL.OR.NLPLT(J,1).G!.0) GO TO 905
IF(NA3S').E?.7) 60 TO 905
Ir'(Y.IIN.GT.0) © OO TO 905
NASS年=1

Y:AX=YAAX + 25.
Y:IIN=V.iAX - 50.
GO TO 9025
\(9029 A_{14} A=(Y: 1 A X+X I H) * .001\)

\(Y_{A A} A Y=Y . A X+A . A X\)
YiIN \(=Y . I I \ddot{V}-A B A X\)
9025 CaLL SCALLD (YAAX, Y, IIV)
YDLLTA \(=(Y \pitchfork A X-Y a I V) / 50\).
C-----FILND LINE/COMPONENT NUMBLR, TYPL OF PLOT, OUTPUT DATA
\(\mathrm{L}=\mathrm{JLPLT}(\mathrm{J}, 2)\)

\section*{7．2．7（Continued）}
```

    IF (J.GR.NTOLPL) GO IO 5
    I:NJ=I{3:2(NLPLTT(J,3))
    NVAR=:ILPLT(J,3)
        GO TO(4,3,730,730,730) IHJ
    3 ICHAP=ICHART(1)
        OO [リ
        4 ICHAR=ICHAR'T(2)
        SO '口
    730 ICHAR=ICHART(9)
        3) (1) 6
    j ICHAR=ICHART(3)
    C-----GO Tr) 「GP OF illoxT PASK
5,\mp@code{INE}(6,501)
C-----LOOD FOR LACA PLOT LINE.
Y=Ytax + YDLLTS
7 DO 907 LIVL=1, 51
YTAS'!=Y
Y=Y-YDELTS
YUP=Y+Y')LSTM/2.
YL'O=Y-Y')LLTA/2.
C-----PIPS% + LAST CHAR. ON LINL = *I*
ISPACL(1)=ICHAPR(4)
ISPACL(101)=ICHANT(4)
ミ----FI{ST + LAS`NINL; ALL *-*, EXCEPT *+* IN 11,21.,31,41,...,81,+91         IF(LINE.NB.| . AVD. LINE.NE.5l)GO TO 1I         O O, 9の7 I.;P=2,100             1F((ISP-1).EO.(I&P-1)/10*10)s0 TO 10             I:SPACL(ISP)=ICHAR'(5)             GO MO O99         10 ISPACL(IJP)=ICHARA(6)     909 COHITIUE         OO W 14 C-----IVIPIMI%L, COL, 2-l0n ON LINLS 2-50 TO * *, OR *+ー---+-* IF d&Ij     11 IF(1.LL.O. .AHDD.YLAST,G'I'0.)GO TO 13     12 DO 912 IjP=2, 10n     712 T.SP\CL(I.うP)=ICIAK`(7)
60 1% 14
13 DO 913 T.;P=?,1.00
ISPAC!(ISP)=ICHARN(5)
913 [F((I.jP-1).LC.(I.SP-1)/17*10)ISPACL(IS?)=ICMART(6)
C---- SEARCH X-VALHF, ARRAY FOR THOGE IN KAIGL YLO.LT.VALUE.GL.YUP
1\because DO 3!4 I=1, IPTS
VS:=VGTORL(I +IADV)
\thereforeCHMi=ICHAR
IF(VG.CT.YLO .AND. V!.LE.YMP)GO MO 145
IF(:\ABS2.NL.l) SO TO 914
\VS=^!SS(VS)
TF(AVS.LT.OLO.OR.AVS.GT.YUP) SO TO 914
NCHAR=ICHART(8)
C--~--FIND COLOINN NH:ABLR NEAREST TO I-TH VALIE OF X-VARIARLL WHEN SCALEO

```

\section*{7．2．7（Continued）}
```

    145 SP=(VS'OURL(I)-XAIN)/XDLLTM + 1
        IF(SP-AIVT(SP).ST.0.50) 3P=SP + 0.50
        I.jP=sp
    C-----CHICR ISP. IF LTM O OK TM 102, LRROR; IF 0, ADN l; IF 102, jUOT. I
IF(ISP) 911, 15, 15
15 ISP=1
30 T0 19
16 If(Isp-1V2)13,17,914
17 I;P=171
18 [SPACF (ISP)=NCHAR
911 CONinNut
C-----I.IVES 1,11,21,31,4l,+51 4AVL Y-VALUES; THLSE LJNLふ, PLUS LINES 6,
C 16,26,··· 'LSSO BNUL *+* IV COL. 1+l\l IF E.4PTY
IF((L]NL-1).NL..(LINL-1)/5*5)GO 1O 19
IP(I.SPACL(1).NL.ICHAR) ISPACE(1)=1CHART(6)
IF(I:SPACL(131).NL.ICHAR)ISPACE}(101)=ICHAR'T(6
IF((LINL-I).NL..(LINH,-1)/l\*10)GO TO 1.
C-----WRI'Rt, OUHi PLO'í LINL, CON'NINUL
WRITL(6,602)?, ISPACE
(B) 10 90*
19 WRIRL(5,503)I.SPACF
077 CO:dINUL
------CALCI!ATRL + PRIY': X-\XIS VALJUL;
20 ח0 920 I=1, 5
020 X1X(I)=K.1IN + (I-1)*20.* XMLLTS
mPIT!(6,604) XAX
C-----i!RITL LOHE? TITLLS + VALJHS, RLENTER OUTEK LOOP
IP (J.GH.NTOLPL) SO :O 23
II=I STR(1)
I\because(NVAM.[I.0) I I= I.j「R(こ)
Nv=IAB: (NVAR)
GO TO(711,712,713,714,715)\N
7ll 'iRITE(6,505) J,II,L
G() TO 90つ
712 viRITL(6,505)J,II,L
GO mo 90)
713 WRITL(5,612)J,II,L
GO TO 90)
714 NRIMC(5,613).J,IT,L
GO TO }90
715 WRJTL(5,614)J,II,L
GO T2 900
23 NRITE(6,607)J,NLPLT(J,3),L
900 CONTINUE
wRITL(6,508)TI'TLL
0\1 CONTINUE
100) NRITE(5,601)
NRITE(6,610)
NRITE(6,511)
IF(TI:AL.LT.TEINAL-DLLT)RETURA

```

\subsection*{7.2.7 (Continued)}
i.
/
n) \(1250 \quad y=1, N \mathrm{~N}^{2} \mathrm{OPL}\)

L=NLPLT(J, 3)
IF (J.ST. VTOLPL) 50 TO 50
\(\mathrm{II}=\mathrm{IETR}(1)\)

\(\mathrm{N}: \mathrm{i}=\mathrm{T}\) A3S(L)
GO \(\operatorname{TO}(701,702,703,701,705)\) VN

G) ГO 1250

30 "'0) 1250
703 WRITL(5,512)J,T1, NLPLT(J, 2) 30 i (1250
\(734 \operatorname{GRITL}(6,613) \mathrm{J}, \mathrm{II}, \mathrm{NL}, \mathrm{PLT}(\mathrm{J}, 2)\)
(c) M 1250

705 WRIML(5,614)J,II, MLPLT(J, 2) (i) T() 1250

50 wRITL(5,507) T, JLPLT(J, 3), NLPLT(J, 2)
1250 COMT:NUL
601 POR:AT(1:11)
602 COR, MT(1X,15x,F12.4,1X,101A1)
603 FORAMT(1X,28X,10101)
6n4 FOFAM5(1Y,23x,5(F9.3,11X), F9.3)

 +. 'tal: (SLC.), Aln, I2! OF LITNL NG., I5)
613 FORAAT(\(1 \times, 23 x, 5 H G R A P H, I 3,1 X, 43 H\) FLUID TLIMPRATURE (DEG.F) VS. II tal (SLC.), A10,12月 OF LIVL \(\mathrm{NO}, \mathrm{I} 5\))
G14 FORAAT(1X,23X, 5IGGRAPH , I3,1X,42H WALL TGPLRATURE (DLG.E) VS. TIA + , (SLC.), Al), \(12 H\) OF LIVL NO., IS)
 + NLivT vUlaER , I 3,3BH VS. TIAE (SEC.) . THE VARIABLE IS ---)
603 FOR: \(\mathrm{AT}(1 \mathrm{x}, 23 \mathrm{x}, 20 \mathrm{~A} 4)\)
610 FORIAT(1AD,65x,27ATYTPAN PROGRA.: OUTPUT PLO'R.3)
gll monam(las) RLTHRN B.J1)

\subsection*{7.3 SUBROUTINE SCALED}

The subroutine SCALED is used by TGRAPH to obtain a preferred scale for the \(X\) and \(Y\) axis of the print plot graphs.

The number of divisions on the \(X\) axis \(=100\) and the number of divisions on the \(Y\) axis \(=50\), a preferred scale system was chosen which would give a difference between RMAX and RMIN of either \(1.0 * 10 * * N, 2.0 * 10 * * N\) or \(5.0 * 10 * * N\) where \(N\) can be tve or -ve.

The graph data MAX and MIN is centered between RMAX and RMIN unless either RMAX and RMIN can be set to zero.

An overriding requirement is that the scales should be at some reasonable number for easy reading hence with a range of 5000 , the MIN can be set at intervals of 500 , or range/10. This sometimes leads to a larger scale being used than would expected from the actual range.

The goai however was graphical readability and scalability without the need to resort to a salculator to find the value of a point, and in meeting this goal we have payed some penalty in the size of the actual graph.

\subsection*{7.3.1 Theory}

Not appiicable.

\subsection*{7.3.2 Assumptions}

NivL appiicabie.
7.3.3 Computation

See subroutine listing.
7.3.4 Approximation

Not afp..icable.

\subsection*{7.3.5 Limitations}

In its present form SCALED gives inconsistent answers for small values of RMAX and RMIN, and is not currently used to scale the \(X\) axis.

\subsection*{7.3.6 Variable Listing}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Dimension \\
\hline AMAX & Maximum value to be plotted & - \\
\hline AMIN & Minimum value to se plotted & - \\
\hline IBOT & Variable used to calculate \(Y\) axis scale values. & - \\
\hline IEMAX & Variable used to catculate \(Y\) axis scale values & - \\
\hline IEXP & Variable used to calculate Y axis scale values & - \\
\hline ITOP & Variable used to calculate \(Y\) axis scale values & - \\
\hline J & Integer counter & - \\
\hline MANT & Variable ised to calculate \(Y\) axis scale values & - \\
\hline RANGE & Range of values to be plot.ted & - \\
\hline RMAX & Maximum \(Y\) axis scale value & - \\
\hline RMIN & Minfmum \(Y\) axis scale value & - \\
\hline SCALE (-) & Scale factors for V axis & - \\
\hline
\end{tabular}

\subsection*{7.3.7 Subroutine Listing}

\section*{SU3ROHATNL SCALID(R.iAx,R.ITV)}
 DI.ILNSION SCALL(6)

DATA SCALr./.5,1.,2., 5., 1)., 20./

C----PDINTS IN *M, AX* AND *A.IIV*
R \(\mathrm{M}, \mathrm{SGL}=\mathrm{R}: \cap \mathrm{X}-\mathrm{R}, I I \mathrm{~J}\)
A. IAX=R.IAX
A. I \(\mathrm{A}=\mathrm{R}\) 'II N

C-..--~FIND AN TMREGER LXPONENT *LLXP* BND BASE *AANT* BUCH THAT THL

I. \(\mathrm{XP}=\mathrm{AL}\) OGI) (RANGE)

C----US VG AAN'A, JLLECT ONL OF THE PRLEERRED SCALES
I?(:ANT.GT.1才) BO TO 70
IF(:ANT.LT.l) GO 70
\(30 \mathrm{mo}(30,90,100,100,100,110,11), 110,120,70)\), rinisi
71) \(111 v^{\prime}=1\)

ILXP \(=\mathrm{IE} \mathrm{XP}+\mathrm{I}\)
\(80 \mathrm{~J}=2\)
GO 10170
20 J: \(=3\)
G0 TO 120
\(100 \mathrm{~J}=4\)
(G) TO l?n
\(110 \mathrm{~J}=5\)
C----SET *IEAAX* LOUAL TO TH. EXPONLN', JF 1 J. CORKLSPONOIVG PM RuAX

IL. \(A X=A \operatorname{LOG1O}(A B S(F A A Y))\)

C----SCALL. PLICL THi VALJE I I RAAX, AND COMPARE wITH TIE ACTJAL
C-----iAXI.IU.A PのI'v'r.

121 [F (RAAX. \(\left.3 \mathrm{H} . \mathrm{A}_{1} \mathrm{~A} A \mathrm{X}\right) \mathrm{GO} \mathrm{HO} 130\)

C-----r-RCLNT AND RICHLCK--SLPLAT AS NLCLSSARY

30 'R 121

C----BY k,l*X AND RaIN, COiTtiNUL.
130 R.II':=?:AX-SCALH(J)*10.**ILXP
IF (RII:.LL.A.IIN) SO T0 150
C----GO TO 'rIL JLXT LARGEST SCALF, RLCALCOLATE RAIN, AMD RLCHICX
\(\mathrm{J}=\mathrm{J}+1\)
IF (J.L'T.5.5) GO TO 130
\(\mathrm{J}=1\)
\(I \dot{I} X P=I L X P+1\)
GO TO 130

\section*{7．3．7（Continued）}
：

```

    150 [f(F|T:**: ! 1.GT.0.)CO RO 170
        R.IV=3.
    160 R.|AK=:5CA. (J)*1).**IFXP
    ```



```

        3-3-1
        IN(J.GT.1.5) SO ro 150
        J=A
        ILX?=11,XP-1
        G) TO 150
    C----IF RITN IS PNSITIVL AMD MLAR ZHRO, SUIMM THL SCALE DOWN TO O. UT`
        179 IF(P.II.LT.0.)G0 TO 175
        IO(R,IN.ST..I*R.InX)NO TO 190
        k:I漂O.
        Q.AX=3CALr(J)*12.**I& (% 
    ```



```

        RIMURA
    C--~-IF RAMY IG vGGATIVL AJD NLAR ZLRO, SHIFT MHE SCALS UP AD O. vAO
    175 1F(E.AX.GL.O.) 万人, TO 130
        IF(-R.1AX.GT.-0.1*R|IV) GO TO 130
        R\thereforeAX=0.
        P:IIN=-SCNLI(J)*in.**ItYP
    ```

```

    C----INCRASL T.L OCALE RANOS TO TAL NLXI LHRCL.ST
        I:(R.IIN.ST. R.IN) RaT:=-SCILE(J+l)*10 **IEXP
        RLWUSN
    ```

```

    190 IPOP=(:.AY-A.,1X)/(.05*SCNL!.(J)*10.**IEXP)
        IJO:=(A.II:~.<IIN)/(.05*SCALL(J)*10.**Ir:XP)
        I Ir = (I'T)P-I.3GI)/?
        IF(IOIP.1^.0) :!1%|!
    ```


```

        RFTIRN
        1.ID
    ```
 BE.

\subsection*{8.0 UTILITY SUBROUTINES}

The utility subroutines have been added to avoid some of the annoying problems encountered when a program is transferred to another system which may have similar but incompatibls library routines.

INTERP and DISER1 both of which started as library routines, have been modified to cut running rosts wherever possible.

A skilled user can probably replace INTERP, DLSER1, SIMULT, XLIMIT, and ThaUSS with local library routines and operate efficiently.

LAGRAN, UFIV and FRIC are specialized subprograms developed for use in HYTTHA. The LAGRAN subruatine not only interpolates data points but compues viscosity add a viscosity pressure correction factor. Functín UFW provides a heat transfer coefficient, and FRIC give laminar and turbulent flow coefficients.

\subsection*{8.1 INTERP SUBROUTINE}

The INTERP subroutine provides interpolation for continuous or discontinuous functions of the form \(Y=f(X)\). INTERP is a shortened version of a MCAUTO library functional subroutine named DISCOT.

INTERP uses two other subroutines, DISER1 and LAGRAN, to derive the dependent variable from tabulated data input by the programmer or already existing in the program subroutine. Subroutine DISERI gives the data points around the \(X\) variable. Lagrange's interpolation formula is used in the subroutine LAGRAN to obtain a \(Y\) value. For an \(X\) value lying outside the range of the tabulated data, the \(Y\) value will be extrapolated. Fluid viscosities are calculated using a modified Walther equation (Reference 9.5).
8.1.1 Solution Method. The INTERP subroutine provides the necessary control parameters to DISERI and LAGRAN to yield a dependent variable. The subroutine arguments are:

Subroutine INTERP (X, TABX, TABY, NC, NY, Y, IND)
where:
\(X \quad\) - Argument of function \(Y=f(X)\)
TABX - X array of independent variables in ascending order
TABY - Y array of dependent variables in ascending order
NC - Control word
\begin{tabular}{ll}
Tens Digit - & Degree of interpolation \\
Units Digit - & \(=1\) Walther equation \\
& \(=0\) LAGRAN interpolation
\end{tabular}

NY - Number of data points in the \(Y\) array
Y - Dependent variable

IND - Error indicator
\(0=\) Normal interpolation
1 = Extrapolation outside range of data points.
8.1.2 Assumptions. Not applicable
8.1.3 Computations. The degree of interpolation will be decoded from the contral word NC in the INTERP subroutine argument and passed to DISERI. The error indicator IND is set to zero. On finding the data point closest to the \(X\) value from DISER1, it is entered into the LAGRAN subroutine argument. If the modified Walther equation is to be used for a viscosity calculation, IDX will be set equal to -1 .
8.1.4 Approximations. Not applicable
8.1.5 Limitations. The \(X\) and \(Y\) data poincs must be entered in an ascending order. When tabulating a discontinuous function the independent variable (\(X\)) at the point of discontinuity is repeated, i.e.,
\[
\begin{aligned}
& X_{1}, X_{2}, X_{3}, X_{3}, X_{4}, X_{5} \\
& Y_{1}, Y_{2}, Y_{3}, Y_{4}, X_{5}, Y_{6}
\end{aligned}
\]

Thus for discontinuous functions there must be \(K+1\) points above and below the fiscontinufty, where \(K\) is the degree of interpolation.
8.1.6 INTERP Variable Names.
\begin{tabular}{|c|c|c|}
\hline Variables & Description & Dimensions \\
\hline IDX & Degree of interpolation & - \\
\hline \multirow[t]{3}{*}{IND} & Solution indicator & - \\
\hline & = 0 Normal interpolation & \\
\hline & = 1 Extrapolation outside of data range & \\
\hline NC & Control word & - \\
\hline NPX & Dummy array & - \\
\hline NPX1 & Location of data point \(X\), \(Y\) for interpolation & - \\
\hline NY & Number of \(Y\) data points & - \\
\hline TABX & \(X\) array of data points & - \\
\hline TABY & Y array of data points & - \\
\hline X, XA & Independent variable & - \\
\hline Y & Dependent variable & - \\
\hline
\end{tabular}
8.1-3

\subsection*{8.1.7 Subroutine Listing}
```

SUBROU'INL INTERP(X,TABX,TABY,NC,NY,Y,IND)
DrAL,NSION TABX(1),TABY(1),NPX(8)
IDX=(NC-(NC/100)*100)/10
IND=0
XA=
CALL DISERI(XA,TABX,1,NY,IDX,NPX,IND)
NPXI=NPX(1)
IF((NC-IDX*10).EO.1)IDX=-1
IF((NC-IOX*10).EQ.2)IDX=-2
CALL LAGRAN(XA,TABX(VPXI),TABY(NPXI),IDX+1,Y)
RLTURN
END

```

\subsection*{8.2 DISERI SUBROUTINE}

The subroutine DISER1 will return the array iocation of the lower bound value of the interval in which the independent variable lies. DISERI is a modification of a MCAUTO library subroutine named DISSER.

The arguments for the DTSERI subroutine are as follows:
Subroutine DISER1 (XA, TAB, I, NX, ID, NPX, IND)
XA - Independent variable
TAB - X array
I - Tabulated data location
NX - Number of points in the independent array
ID - Degree of interpolation
NPX - Location of lower bound for data point \(X A\), in the TAB array
IND - Indicator
8.2.1 Solution Method. Not applicable
8.2.2 Assumptions. Not applicable
8.2.3 Computations, On entry of the independent variable, XA, and the tabulated data form the TABX array, LISERl will find the tabuiated data values that bound XA, and return the smaller one to the calling program. If XA were to lie outside the lower end of the data, DISER1 would return the first data point as the lower bound. Should XA lie outside the upper tabulated value, the second from the last data point location will be returned by DISERI.
8.2.4 Approximations. Not applicable
8.2.5 Limitations. Not applicable
8.2.6 DISERI Varfable Names
\begin{tabular}{llc}
Variable & Description & Dimensions \\
IND & Solution indicator & - \\
I, ID, IT, J, NLOC, & Integer counters & - \\
NLOW, NPB, NPT, NPU, & \\
NPX, NUPP, NX, NXX & & \\
TAB & Array of independent variables & - \\
\(X A\) & Independent variable & -
\end{tabular}

\subsection*{8.2.7 Sutroutine Listing}

```

        I., •T. . . (1)
        「! (i1... \(\therefore\) (I) ) 71, 72, 7!
    7) 1. =1: \(\because+1\)
        \(13 \%=[\)
    , \(\because j\)
    7) \(\because=\therefore\) (I)
        \(\therefore \cdots=i\)
        •'
    $1=!+i-1$
$1 \because(\cdots-\vdots(1)) 1,77,71$
$\therefore \quad=1 \quad \therefore+1$
○. = J-I
$\because \therefore \cdots$
$\therefore=, i!(\mathrm{J})$
$\because=1-I ;$
-. : ; ,

```

```

        \(\cdots \cdots\) = ! ! ?
        \(\because \because=\cdots-;\)
    ```

```

        \(1 `=1 \quad-1\)
        - , 1
    7 $\quad$ - =
-. ';'
$1, \cdot=1+:>$
:1. $=i+\therefore-(, ~ w+1)$
+"(-n)1",1\%,1!
$\because=, \quad y^{2}+I$

```

```

        Ir( \(1-\therefore \cdot(\because \cdot))] i, 17,17\)
        \(\left.\therefore \because(\because-\therefore)^{\prime}, 1\right) 11,17,17\)
        \(\therefore 11\)
    $17 \quad 1=$

1. $\quad 1, I \mathrm{i}=1 ., 1, \cdot$,
......-「
I ( $\because(I)-\cdots(i), ? ", \cdots$
] $\therefore, 1.1$
$\therefore=11 \because-10^{\prime \cdots}+1$
ㄴ.. ${ }^{\prime \prime} \cdot 1$
$2 n \quad \therefore="\lrcorner \therefore-\cdots$.
1. 1.
```

\subsection*{8.3 LAGRAN SUBROUTINE}

The LAGRAN subroutine will interpolate or extrapolate a data point from two known rabulated values. In addition, LA^RAN will calculate viscosity using a modified Walther equation. The LAGRAN subroutine arguments are:

Subroutine LAGRAN (XA, X, Y, N, ANS)
XA - Independent variable
X - Xarray
Y - Y array
N - Dagree of interpolation
ANS - Dependent varaible
8.3.1 Math Model. LAGRANGES interpolation equation is used in this subroutine to calculate the dependent variable. The LAGRANGE formula is:
\[
\begin{equation*}
P(x)=\sum_{i=0} L_{i}(x) y_{i} \tag{1}
\end{equation*}
\]

Where:
\(L_{i}(x)\) is the Lagrange multiplier function.
\[
\begin{equation*}
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)} \tag{2}
\end{equation*}
\]

The LAGRANGE equation wi:l generate a polynomial between two data points. The degree of the polynominal will be that specified by the index value \(N\). The dependent variable will be returned as ANS in the subroutine argument.

A modified version of the Walther equation taken from Reference 9.6 is used in the calculation of viscosity. The ASTM charts are based on this equation.
\[
\begin{equation*}
\operatorname{LOG}[\operatorname{LOG}(v+C)]=A \operatorname{LOG}{ }^{\circ} R+B \tag{3}
\end{equation*}
\]

Where:
\[
c=a \text { constant }
\]
```

*}\mp@subsup{}{}{\circ}R=\mathrm{ remperature, }\mp@subsup{}{}{\circ}\mathrm{ RANKINE
v=Viscosity, cSt
A,B => Constants for each fluid
LOG = Log to the base 10

```

The ASTM chart expresses \(c\) as a constant varying from 0.75 at 0.4 cSt to 0.6 at 1.5 cSt and above.
8.3.2 Assumptions. The Lagrangian equation generated by the subroutine will only use the data points around the dependent variable to generate a polynomial for interpolation. The last or first set of two data points will be used for extrapolation. The equation used to determine the viscosity uses a constant factor that is applicable to viscosity values of 2 centistokes or more. 8.3.3 Computation. The procedure LAGRAN will perform whether it be interpolation or the viscosity calculation, will always be recognized by testing the \(N\) argumert in the subroutine statement. If \(N\) is equal to zero, then the viscosity will be calculated using the modified Walther equation. Otherwise \(N\) will specify the degree of interpolation to be used by the Lagrange formula. Both results will be returned to the calling program tlrough the variable named ANS. The LAGRAN interpolation is a direct application of equation (1) to the given data.

Before evaluating the viscosity equation (3) for the viscosity value at \(X A\) temperature, the constants \(A\) and \(B\) must be calculated. They are solved using the data points that surround the dependent variable, of the first or last set of two data points if the dependent variable lies outside the range of the tabulated data. With the constants calculated for this fluid the viscosity can be computed from Equation (3).
8.3.4 Approximations. In the viscosity calculation, 0.6 was used as a constant factor for all ranges of viscosity. See reference 9.6 for a more thorough discussion.
8.3.5 Limitations. Since the LAGRANGE method only uses two data points to interpolate it can become inaccurate for remotely spaced tabulated data points. Any degree of interpolation greater than two can lead to erroneous results.

For the viscosity equation, any computed value of viscosity less than 2 centistokes cannot be considered accurate, and should be weighed in the final results.

\subsection*{8.3.6 LAGRAN Subruutine Variable Names}
Variable Description Dimensions
\begin{tabular}{|c|c|c|}
\hline A & Constant for viscosity & - \\
\hline ANS & Dependent variable & - \\
\hline B & Constant for viscosity & - \\
\hline I, J & Integer counters & - \\
\hline N & Method of solution & - \\
\hline & \(N=0 \quad\) Viscosity calculation & \\
\hline & \(\mathrm{N}>0\) Degree of interpolation & \\
\hline PROD & Lagrange partial product & - \\
\hline P1 & LOG LOG of (\(\mathrm{Y}(1)+\mathrm{C}\)) & cst \\
\hline P2 & LOG LOG of (Y (2) + C) & sst \\
\hline Tl & LOG of \(T\) (1) & \({ }^{\circ} \mathrm{R}\) \\
\hline T2 & LOG of T (2) & \({ }^{\circ} \mathrm{R}\) \\
\hline X & X-array & - \\
\hline XA & Independent variable & - \\
\hline \(Y\) & Y-array & - \\
\hline
\end{tabular}

\subsection*{8.3.7 Subroutine Listing}
```

    SUBROUTINE LAGRAN(XA,X,Y,N,ANS)
    DI:ILNSION X(1),Y(1)
    IF(N.tQ.-1) GO TO 20
    IF(N.EQ.O)GO TO 10
    SUrI=0.0
    DO 3 I=1,N
    PROD=Y(I)
    DO 2 J=1,N
    N=X(I)-X(J)
    TF(N) 1,2,1
    !3=(XA-X(J))/A
    PROD=PROD*B
    2 CONTINUE
SUN=SUMI+PROD
ANN:=SU.1
RLTURN
c viscosity calculition
10 CONTINUL
Al=0.
IF(Y(1).LE.2.)Al=EXP{-i.47-1.84*Y(1)-.51*Y(1)**2)
42=0.
IF(Y(2).LE.2.)A2=EXP(-1.47-1.84*Y(2)-.51*'(2)**2)
Pl=ALOG10(ALOClO(Y(1)+.7+Al))
P2=ALOG10(1L)G1O(Y(2)+.7+A2))
Tl=AL`G10(X(1)+460.)     T2=ALOG10(X(2)+460.)     B=(P1-P2)/(T2-T1)     A=Pl+3*Tl     Z=10**(10**(A-3*ALOGiO(XA+460.)))     IP(Z.[f.-2.7)GO 'O 11     ANS=2-.1     RET:T:RN     11 ANS=(Z-.7)-LXP(-.7487-3.295*(2-.7)+.6119*(Z-.7)**2     +-.3193*(2-.7)**3)             RLTC!? J C Flutdl calCJlation 20 CONTTANUL     Pl=ALOGl9(ALJGlO(Y(1)+.6))     P2=iLUGin(ALJOiO(Y(2)+.6))     Tl=\L`cln(x(1)+460.)
T2=ALOGlO(x(2)+450.)
G=(P1-P2)/(T2-T1)
A=Pl+3*Tl
V0=1n**(10**(A-3*ALOG1つ(XA+450.)))-.6
T5=10**((.125933+A)/B)
T100!=1n**((-.477159+A)/B)
S=ALOG12((I5)/100.+1.)-ALOG10((T1000)/100.+1)
DELX=65.l0979*S
S=6.55/DELX
ALPIIA=3.23523-11.3886*S+13.1735*S**S-4.8881*S*S*S

```

\subsection*{8.3.7 (Continued)}
\[
\begin{aligned}
& \text { TO(} \\
& 1 \text { ! }
\end{aligned}
\]

\subsection*{8.4 SIMULT SUBROUTINE}

SIMUL'r is a Fortran library subroutine (Rっfexencé 9.7) that oolvas systems of \(N\) linear algebraic equations with \(N\) unknowns. SIMULT employs Gaussian elimination and positioning for size using the largest pivotal divisor as the solution process.
8.4.1 Solution Method - A system of 1inear equations may be written:
\[
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{m}=b_{1} \\
& a_{21 x_{1}}+a_{22} x_{2}+\ldots+a_{2 n} x_{m}=b_{2}
\end{aligned}
\]
\[
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m m} x_{n}=b_{m}
\]
(1)

Rewriting in matrix form:
\(\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1_{m}} \\ a_{21} & { }_{2} 22 & \cdot & { }^{a_{2 m}} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ a_{m 1} & a_{m 2} & & a_{m m}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ x_{m}\end{array}\right]=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \cdot \\ \cdot \\ b_{m}\end{array}\right]\)
(2)

Equation (2) may be further simplified by writing:
\[
\begin{equation*}
A X=B \tag{3}
\end{equation*}
\]
where
\(A=M * M\) Matrix of coefficients
\(B=M\) Matrix of Constants
\(X=M\) Matrix of \(M\) unknowns in the system.

The solution of a set of simultaneous linear equations as in (1) is by Gaussian elimination using pivoting. Each stage of elimination conoists of interchanging rows when necessary to avoid division by zero or small elements. The forward solution to obtain variable \(M\) is done in \(M\) stages. The back solution for the other variables is calculated by successive substitutions. Final solution values are developed in matrix \(B\), with variable 1 in \(B(1)\), variable 2 in \(B(2), \ldots\), variable \(M\) in \(B(M)\). If no pivot can be found exceeding a tolerance of 0.0 , the matrix is considered singular. The arguments lor SIMULT are as follows:

Subroutine SIMULT (CALC1, CALC2, M, J)
where:
CALC1 \(=A\)
CALC2 \(=B\)
\(M=\) number of equations
\(J=\) solution indicator
\(J=1\) when no solution can be found - equations are singular
\(J=0\) for a normal solution
Both the original CALC1 and CALC2 Matrices are destroyed in the computation. The answers are returned through the CALC2 Matrix.
8.4.2 Assumptions - The basic assumption used in the solution of simultaneous IInear equations involves the ability to actually linearize the complex mathematical system that is being described. If this can reasonably be done then a set of equations as in (1) may be written and solved.
8.4.3 Computation-Gaussian elimination and positioning for size using the largest pivotal divisor is used. Pusitioning for size or pivoting will ordinaril.y reduce some of the roundoff errors in the solution and may actually allow some ill-conditioned systems to be solved. See Appendix D SSFAN Technical Manual (MDC A3059 Vol II) for a more thorough discussion of this method.
8.4.4 Approximations - The approximations are inherent in the use of the Gaussian elimination procedure as described in Appendix D of the SSFAN Technical Manual.
8.4.5 Limitations - If no equation in the set (1) is a linear combination of the others, the system of equations is said to be linearly independent and a unique solution exists for the unknowns. A system of equations are homogeneous if each \(b_{i}\) in \(B\) (EQN 2) is equal to zero. The Gaussian elimination method will provide a unique solution to equation (3) when the corresponding homogenous system has only the solution \(X=0\). Both systems \(A X=B\) and \(A X=0\) as well as the coefficient natrix \(A\) are then termed non-singular. When \(A X=0\) has solutions other than zero, the two systems and matrix \(A\) are termed singular. This results in \(A X=B\) either having no solution or an infinite number of solutions.

\subsection*{8.4.6 SIMULT Subroutine Variable Names}
\begin{tabular}{|c|c|c|}
\hline Variables & Description & Dimensions \\
\hline A & \(N * N\) Matrix of Coefficients & -- \\
\hline B & \(N\) matrix of constants & -- \\
\hline BIGA & Largest element & -- \\
\hline \[
\begin{aligned}
& \text { IA, IB, IC, IJ } \\
& \text { IMAX,IQS,IT } \\
& \text { IX,IXJ, IXJX, } \\
& \text { II,I2,J,JJ, JJX, } \\
& \text { JX,JY, K, NY }
\end{aligned}
\] & Integer counters & -- \\
\hline N & Number of unknowns & -- \\
\hline SAVE & Temporary storage location & -- \\
\hline TOL & Tolerance & -- \\
\hline
\end{tabular}
\(8.4-4\)

\section*{8．4．7 Subroutine Listing}


```

    "I 1 ...1 … (1),"(1)
    \(\because \mathrm{L}=1.0\)
    - =1
    \(1 \mathrm{J=}-\mathrm{a}\)
    し1 「こ. J=1, :
    TM=1+1
    J \(=.11+\mathrm{t}\)
    - 1 : \(=\)
    \(i .=1 \mathrm{~J}-\mathrm{j}\)
    - 3) \(\mathrm{I}=3\),
    \(\mathrm{T} \mathrm{T}=\mathrm{I}+\mathrm{I}\)
    ```

```

?) 「「ご: (IT)
1 $\because=1$
3: $\because . \therefore$

```

```

    ? \(=\cdots, 1\)
    "に,
    ```



```

    \(11=\mathrm{I} 1+\)
    \(\mathrm{T})=\mathrm{T} 1+\mathrm{T}\).
    \(\left.\because \because \%_{1}=1(1]\right)\)
    \(\because(\mathrm{J})=1(\mathrm{I}\) ? \()\)
    \(i(\mathrm{I})=\because: \quad ;\)
    $\because \because(I l)=(11) / I ;$

```

```

    - (I..|") \(=\) ( 7 )
    ```


```

「T「"; ( $7-1$ )
", $\quad$; $I \because=1 \%$,

```

```

    \(\mathrm{I}=7-\mathrm{I}\) (
    \(\because \because 1=1 \%\)
    I:TR=*( \(\left.{ }^{\prime \prime}-1\right)+\mathrm{I}^{*}\)
    ```



```

$7 \because \cdot \gamma=-1$
I':' = '*
$\because \because$ ?? $1=1,!:$
$I_{i}=1: 1-1$
I $:=$, )
TC= :
「ンの) $\because=1,3$
$\because(I)=3(I `)-?\left(I^{n}\right) *$ (IC)
Tにさ!-!
-) $T C=1 く-1$
": "リ!

```

\subsection*{8.5 TGAUSS SUBROUTINE}

TGAUSS is a subroutine for in-core solution of large, sparse systems of linear equations (Reference 9.8). The subprogram employs minimum row minimun column elimination. A limited number of zeros is stored and trivial arithmetic is used to preserve computer storage and to reduce the time required for solution. TGAUSS is used in conjunction with TCALC to obtain the system flows and pressures.

\subsection*{8.5.1 Solution Method}

Excellent discussions on the Gauss-Jordan elimination technique can be found in many numerical analysis textbooks. Briefly the method is based on the three elementary row operations:
1. Interchange of any two rows.
2. Multip?ication of a row by a scalar.
3. Addition of a multiple of one row to another row.

For example by applying a sequence of row transformations to a system of simultaneous equations
\[
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 m} x_{m}=b_{1} \\
& a_{21} x_{1}+a_{22 x_{2}}+\ldots+a_{2 m} x_{m}=b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m m} x_{m}=b_{m} \\
& \text { Expressed in augmented form } \\
& {\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & a_{1 m} & \vdots & b_{1} \\
a_{21} & a_{22} & \cdot & a_{2 m} & \vdots & b_{2} \\
a_{m 1} & a_{m 2} & \cdot & a_{m m} & \vdots & b_{m}
\end{array}\right]} \\
& {[\mathrm{I}: \mathrm{X}]}
\end{aligned}
\]
whe: 1 is the identity matrix and \(X\) is the solution. The fauss elimination technique used in TGA \(S\) requires elimination of only the elements in the upper o: lower triangular partition of the array which is followed by a back substitution to obtain the solution.

Two drays are generated that contain the number of non-zero elements in each row (IRENT()) and the number of non-zero elements in each column (ICENT()) of an \(N \times N\) array. These arrays are updated each time an element is eliminated or generated, so that the current row and column count aro available for pivot selection.

In TGAUSS the IRENT array is searched to find the row with the least number of non-zero coefficients that has not been previously selected as the pivotal row. Should two or more rows satisfy this criteria, the row with the smallest row index is selected. Next the ICENT array is searched to select the column with least number of entries. Ir the event that two or more columns contain the same numbe of elements, the column with the s:rallest index is selected as the pivotal column.

Each row-column selection is thes used in the fack substitution to obtain the solution.
8.5.2 Assumptions - Not applicable.
 each column and row of the \(M \times M\) solution matrix is stored in ICENT() and [RENT (). At this noint the remainder of the program is contained within thre nested loops. The outer loop selects a new pivotal element on each pass. The pivot element is stored in the order array for future use during subsequent iterations in the TCALL program. This is a im: saving device to eliminate the necessitv of selecting the same sequence of pivot elements on each iteration. Once the pivotal element has been selected, the pivotal row is normalized ly dividing
the row by the pivotal element. Since the pivotal element is normalized, it is set to one as a precaution against round-off errors.

The second loop is entered, which involves a row-by-row search for rows containing elements in the pivotal column. If the number of entiaes in the pivotal column has been reduced to one entry, there is no need to continue and the program selects a new pivotal element. Also if the pivotal row is selected all further tests are bypassed and the next row is selected since operations on the pivotal row are not permitted.

Finally, the inner loop is a column-by-column search of each row to determine if the row contains the pivotal element. At this point, there are three alternatives available:
1. If the column index in the row being searched is less than the pivotal column, it is necessary to continue searching the row.
2. If the column index is greater than the pivotal column, the row does not contain the pivotal column and a new row must be selected.
3. If the column index is equal to the pivotal column, the row contains the pivotal element and the row can be operated on by the pivotal row.

If the conditions in 3 are met, the pivotal row is multiplied by the negative of the element in the pivotal column of the row being operated on. Ihen the two rows are added. The element being eliminated is simply dropped from consjdcration by movine all catrics to its right one space to the leit. All elements remaining in the row are compared to ZTEST to see if any elements other han the element in the pivotal column were eliminated. If so, the row was further compressed to eliminate the zero entry from the row. Finally, the row is test 1 to see if the row count is zero which indicates a singularity. If a singul \(\cdot\) ity is encountered an error message is printed:
```

* SINGULAR MATRIX-NO SOLUTION*

```

If a singularity is not encountered, the progr m continues looping until a pivotal element has been selected from each row and column, at this point, the solution vector is stored in the CALC2 array in a scrambled order. The solution is then unscrambled and stored in numerical order in the first column of the \(A(\)) array.
8.5.4 Approximations - In situations where it is known that an operation will result in a zero or a one, the arithmetic operation is bypassed and the element simply set to zero or one.
8.5.5 Limitations - TGAUSS is set up to solve only sparse symmetric systems of linear equations.

\subsection*{8.5.6 TGAUSS Variable Listing}
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Dimension \\
\hline A() & Matrix of coefficients & -- \\
\hline ATEST & Dummy variable & -- \\
\hline CALC2 () & NU matrix of constants & -- \\
\hline IC,II, IK & Dummy variables & -- \\
\hline ICENT () & Array containing number of non-zero elements in each column of \(A()\) & -- \\
\hline IORDER() & Array giving pivot selection hased on min-row min column criteria & -- \\
\hline IRENT () & Array containing number of non-zero elements in each row of \(A()\) & -- \\
\hline ITER & Iteration count & -- \\
\hline IX, IY, J, JKL, JKOP, JKPI,LKJ, NAA,NK & Dummy variables & -- \\
\hline Nu & Number of equations & -- \\
\hline OPROW & Dummy variable & -- \\
\hline
\end{tabular}
\begin{tabular}{llc}
Variable & Description & Dimension \\
PIVCOL & Pivot column & -- \\
PIVROW & Pivot row & -- \\
\(X, Z T E S T\) & Dummy variables & -
\end{tabular}

\subsection*{8.5.7 Subroutine Listing}
```

    SUBROUTINE TGAUSS(NU,ITER)
    DOUBLE PRECISION C,X,A,CALC2
    INTEGER PIVROW, PIVCOL,OPROW
    CO:MON G(90),CALC 2(55),JPCOL(55,20),A(55,20)
    COMMON/ICC/ICOL(55, 20),JRENT(55),JCENT(55)
    DIAENSION ICENT'(100), IRENT'(100),IORDER(100,3)
    ZTEST=0.0
    NAA=20
    C BUILD IRENT AND ICENT
DC 99 I=1,NU
IRENT(I)=JRENT(I*
ICEivT}(I)=JCENT(I
99 CONTINUE
wRI'TE(6,9010)(IRENT(I),I=1,100)
\approx WRITE(6,9010)(ICENT(I),I=1,100)
9010 FORiAAT(1X,20I6)
C IF(ITER.CT.1)WRITE(6,9020)((IORDER(I,J),J=1,3),I=1,NU)
9020 FORIANT(1X,6I10)
DO 65 LKJ=1,NU
IF(ITER.NL.l) GO TO 432
IK=130000
DO 103 T=1,NU
IF(IRLNT(T).GE.IK.OR.IRENT(I).LE.0;GO TO lO3
PIVROW= I
IK=IRENT(I)
103 CONTINUE
IORDLR(LKJ,1)= PIVROW
IK=1000N0
IC=IRLNT(PIVRON)
DO 104 I=1,IC
II=ICOL(PIVROW,I)
IF(ICENT(II).GE.IK.OR.ICENT(II).LE.0)GO TO 104
PIVCOT=I I
IK=ICENT(II)
IY=I
174 CONTIJUE
IORDER(LKJ, 2)=PIVCOL
IORDER(LNJ,3)=IY
C() '0) 450
432 PIVRO'N=IORDER(LKJ,1)
PIVCOL=IORDER(LKJ,2)
IY=IORDER(LKJ,3)
450 X=\(PIVROW,IY)
IC=IRENT(PIVRON)
DO 5 J=1,IC
5 n(PIVROm,J)=\Lambda(PIVROW,J)/X
A(PIVROw,IY)=1.0
CALC2(PIVROW)=CALC 2(PIVROW)/X
Di) 10K I=1,NU
IF(ICENT(PIVCOL).EQ.1)GO IO 107

```

\subsection*{8.5.7 (Continued)}

IF(I.EQ.PIVROW) GO TO 106
\(I C=I A B S(\operatorname{IRENT}(I))\)
DO \(105 \mathrm{~J}=1\), IC
IF(ICOL(I,J)-PIVCOL) 105,77,106
77 OPROW=I
\(J K O P=1\)
\(J K P I=1\)
\(C=-A(O P R O N, J)\)
\(X=\) CALC 2 (PIVROW) * \(C+C A L C 2\) (OPROW) CALC \(2(\) OPROW \()=\mathrm{X}\)
79 CONTINUE
IF (ICOL(PIVROW,JKPI).EQ.0) GO TO 106
IF (ICOL(OPROW, JKOQ) EEQ.0) GO TO 80
IF(ICOL(PIVROW, JKPI)-ICOL(OPROW,JKOP)) \(80,81,82\)
\(80 \quad \operatorname{IRENT}(\mathrm{I})=\mathrm{IRENT}(\mathrm{I})+1\)
\(\operatorname{IF}(\operatorname{IRENT}(\mathrm{I}) . \operatorname{LE} .0) \operatorname{IRENT}(I)=\operatorname{IRENT}(I)-2\)
\(I I=I A B S\) (iRENT(I))
IF (II.G'T.NAA)WRITE (6,9000)II
9000 FORHAT(10X,*EXCEEDED NAAX COLUNN NUMBER*, I10)
IE (II.G'T.NAA)STOP
JKL \(=\mathrm{JKOP}+1\)
90 CONTINUE
IX=II-1
A (OPROW, II) \(=\mathrm{A}(\) OIROW, IX)
ICOL(OPROW, II \()=\) ICOL (OPROW, IX \()\)
\(I I=I X\)
IF(II.GE.JKL) GO TO 90
\(X=A(\) PIVRON, JKPI) *C
A (OPRON, JKOP) \(=X\)
ICOL(OPROW, JKOP) \(=\) ICOL (PIVROW, JKPI)
IX=ICOL(OPROW, JKOP)
\(\operatorname{ICENT}(I X)=\operatorname{ICLNT}(I X)+1\)
GO 「O R3
31 IX=ICOL(OPROW,JKOP)
IF (IX.EO. PIVCOL) GO TO 11
\(X=A\) (DIVROW, JYPI) *C + (OPROW, JKOP)
A(OPROM, JKOP) =
ATLSTR=DABS (X. \()\)-2TEST
IF (ATES'T. GTO.0.0)GO TO 83
\(11 \operatorname{ICENT}(I X)=[\operatorname{CENT}(I X)-1\)
IRLNT(OPROW) \(=\) IRENT \((O\) ORROW \()-1\)
IF (IRENI (OPROW)) \(140,141,142\)
141 CONTINUE
WRITE (6,9030)
9020 FORAAT (10X,*SINGULAR :AATRIX-NO SOLUTION*) STOP
140 CONTINUE
\(\operatorname{IRENT}(\) OPROM \()=\operatorname{IRENT}(\) OPROW \()+2\)
142 IX=IMBS (IRLNT(OPROW))
DO 191 NK=, KOP, IX

\subsection*{8.5.7 (Continued)}
```

        A(I,NK)=A(I,NK+1)
    181 ICOL(I,NK)=ICOL(I,NK+1)
        IX=IX+1
        ICOL(I,IX)=0
        JKPI=JKPI +1
        GO TO 79
    83 JKPI=JKPI+1
    R2 JKOP=JKOP+1
        GO TO 79
    105 CONTINUE
    106 CON'CINUE
    107 CONTINUE
        IRENT(PIVROW) = - IRENT(PIVROW)
        ICENT(PIVCOL)=-ICENT(PIVCOL)
    66 CONTINUE
        DO 350 I=1,NU
        II=ICOL(I, 1)
    35n A(II,1)=CALC2(I)
    C WRITE(6,9040)(CALC2(I),I=1,NU)
9040 FORMAT(1X,10E12.5)
RETURN
END

```

\subsection*{8.6 FUNCTION UFW}

Function UFW is a heat transfer coefficient calculation subroutlne. The heat transfer coefficient between a wall and a fluid is calculated based on the volume flow rate, pressure, timperature, cross scctional area of the fluid and the distance over which the fluid flows.
8.6.1 Math Model - The function riutine UFW is called by several of the subroutines listed previously. The function is called from each subroutine in the form
\[
U F W I L=U F W(A A A, D D D, Q(L I), T F(L L), P(L I))
\]

AAA is equal to the cross sectional area of the fluid at the location where the heat transfer coefficient is of interest. DDD is the diameter or the orifice at the previous cross section. \(Q(L I)\) is the volume flow rate also at that section; \(T F(L I)\) is the temperature of the fluid and \(P(L I)\) is the pressure in the fluid at that point.

Once UFW is called from a subroutine the function UFW is exccuted and calculates the heat transfer coefficient as follows:

The feynolds number is calcuiated
```

                REN = DDD*ABS(FLOW)/(VISCLL*AAA)
    ```
where flow is equal to OiLI), the volume flow rate, and VISCIL is the fluid viscosity.

The Prandt number is calculated
\[
\mathrm{PRN}=\mathrm{VISCIL} * 386.4 * \mathrm{RHOIL}(\mathrm{TEMP}, \mathrm{PRESS}) * \mathrm{CPFN} / \mathrm{CF}
\]
where 386.4 is just a conversion factor for the density from Hydraulic units to thermal units of \(1 \mathrm{~b} . / \mathrm{in} .^{3}\).

A check on the Reynolds number is made to see if turbulent or laminar flow exists.

IF (REN.I.T. 1200.) go to 1000

If laminar or less than 1200 the heat transfer coefticient is calculated
\[
U F W=4.364 * C F / D D D
\]

But if turbulent then the heat transfer coefficient is calculated as UFW \(=0.0118 *(\) PRN**. 3\() *(\) REN**. 9\() * \mathrm{CF} / \mathrm{DDD})\)

The heat transfer coefficient is then returned to the subroutine which made the call.
8.6.2 Variable Listing
\begin{tabular}{llc}
Variable & \multicolumn{1}{c}{ Description } & Dimension \\
AAA & Fluid cross sectional area & IN. \({ }^{2}\) \\
DLD & Diameter of the cross sectional area & IN. \\
PRESS & Volume flcw rate in the considered section & CIS \\
PRN & Fluid pressure & PSI \\
REN & Prandtl number & Reynolds number \\
UFW & Heat transfer coefficient, fluid to wall & WATTS/IN \({ }^{2}{ }^{\circ} \mathrm{F}\) \\
VISCIL & Fluid viscosity
\end{tabular}

\subsection*{8.6.3 Subroutine Listing}

FUNCTION UFiv(AMA, DDD, FLOW, TLAP PRESS)
C ********** CACULATE HLAT TRANSFER COEFfiCIENT
CO.AOU /TRANS/P(200): \(2(300), \mathrm{C}(300), \mathrm{TC}(300), \mathrm{TW}(300), \mathrm{TF}(300)\),
\(+\operatorname{ACF}(30 n), \operatorname{ACa}(300), \operatorname{DXF}(300)\), TIAL, DELT, PI,NLINL, NEL

COinOV/FLIID/ATPRES,CF,CPFN,FTEHP, \(\operatorname{PROP}(13,3)\)
VISCIL=VISC(TL.ip, PRfisS)
REV \(=\) DND 1 IBS (FLOW) /(VISCIL*AAA)
PRA=VISCIL* 335.4*RHO (TLMP, ERESS)*CPF:N/CF
IF(RHN.LT. 1200.) GO TO 1000
UFir=0.0119*(PRN**.3)*(REN**.9)*CF/DDS
RLTURM
\(1000 \mathrm{UFV}=4.364 *\) ©F/DDD
RETUR's
Lvo

\subsection*{8.7 SUBROUTINE XLIMLT}

XLIMIT is a utility subroutine which provides the calling program with information to determine if a limit has been reached. The subroutine is typjcally used for components with mechanical movement and returns position and velocity data.

\subsection*{8.7.1 MATH MODEL}

Not applicable.

\subsection*{8.7.2 ASSLIMPTIONS}

Not applicable.

\subsection*{8.7.3 COMPUTATION METHOD}

Minimum (POSMN) and maximum (POSMAX) limits are input along with the current values of pusition (POS) and velocity (VEL) from the calling program. Initially the sign is set to zero and the position is compared against POSMAX.

If POS is greater than or equal to POSMAX, the position is set to POSMAX and ASIGN is set to 1 . Should VEL be greater than zero it is zeroed and a return is made to the calling program.

If \(\operatorname{POS}\) is less than POSMAX it is checked against POSMIN. When POS is less than or equal to POSMIN, POS is set to POSMIN, ASIGN equals -1 and the velocity is zeroed if it is less than zero.

Should POS be greater than POSMIN a return is made th the calling program without any position or velocity changes.

\subsection*{8.7.4 APPROXIMATIONS}

Not applicable.
8.7.5 LIMITATIONS

Not applicable.

\subsection*{8.7.6 VARIABLE NAMES}

Variable
Description
ASIGN
\(\operatorname{Sign}(-1,0,1)\)
POS
Position
POSMIN Minimum Position
POSMAX Maximum Position
VEL
Velocity

\subsection*{8.7.7 Subroutine Listing}
```

    SH'3ROUTIVE XIJIIT'(POS,VEL,ASIGN, POSUIN, POSNAX)
    ASIGN=0.0
    IF(POS-POSmAX) 20,10,10
    1!) POS=POSA1X
ASIGN=1.0
IF(VLL.GT.0.0) GO TO 40
GO TO 5)
27 [F(POS-POS.iIN) 30,30,50
30 POS=POSIIN
ASIGN=-1.0
IF(VLL.GE.0.0) GO IO 50
40 VLI=0.0
50 RE.TURN
END

```

\subsection*{8.8 FUNCTION FRIC}

FRIC is a function subroutine that is used to calculate steady state flow-pressure drop coefficients for laminar and turbulent flows. 8.8.1 Math Mode1 - Steady state pressure drops are computed using the Darcy-iWeisbach equation. For laminar flow

FRIC \(=128 . / \mathrm{PL} * V \operatorname{LSC}() * \operatorname{RHO}() /(\operatorname{PARM}(\) KNEL, 2\() * * 4)\)
\[
\star(\operatorname{PARM}(\operatorname{KNEL}, 1)+\operatorname{PARM}(K N E L, 3))
\]

For turbulent flow
```

FRIC = . 213*RHO( )*(V1SC( )**.25)/(PARM(KNEL,2)**4.75)

```
 * (PAFM (KNEL, 1\()+\) PARM (KNEL, 3\())\)
where
PARM (KNEL, 1) \(=\) Ljne length (IN)
\(\operatorname{PARM}(K N E L, 2)=\) inside line diameter (IN)
PARM(KNEL, 3) := equivalent line length (IN)

\subsection*{8.8.2 Assumptions -}
1. Transicion from laminar to turbulent flow is assumed to occur at a Reynolds number of 1200. Flows having a Reynolds number greater than 1200 are considered turbulent while flows having a Reynolds of 1200 or less are assumed laminat.
2. The iriction factors used are based on circular cross-section, smooth I.D., drawn tubing.
8.8.3 Computation Methods - Function FPIC arguments are

KNEL - Line number
TEMP - Line temperature (\({ }^{\circ} \mathrm{F}\))
PRESS - Line pressure (PSI)

The function returns either a laminar or turbulent coeffictent for use in a flow-pressure drop equation.
8.8.4 Approximations - Pressure drops calculated for flows in the Reynolds number range of 1200 to 3000 are approximate since a transition flow equation was not developed. The Lurbulent equation is used in this range.
8.8.5 Limitations - FRIC should not be used to calculate pressure drops across non-circular cross section passages or across rough I.D. tubing.

\subsection*{8.8.6 Subroutine Listing}

FUNCTION FRIC(KNEL,TEAP, PRESS)
C *** RLVISED AUSUST 15, 1976 ***
COA.AON /TRANS/P (300), \(\mathrm{C}(300), \mathrm{C}(300), \mathrm{TC}(300), \mathrm{Tb}(300), \mathrm{TF}(300)\),
\(+\lambda C F(300), A C W(300), \operatorname{DXF}(300), T I M E, D L L T, P I, N L I N E, N E L\)

+ NLSLG(150)
LNTRY ERICL
FRIC=12R./PI*VISC(TLAP, PRESS)*RHO(TEAP, PRLSS)/(PARM(YNLL, 2)**4.)
+ * (PARA(KNEL, 1) +PAR, (K:NEL, 3))
RLTURN
LVTRY FRTC'S

+ **4.75)*(PARal(KNEL, l) +PARia(KNEL, 3))
KETURW
END

\subsection*{9.0 REFERENCES}
1. Kreith, Frank, "Principals of Heat Transfer" 3rd Edition, Intext Press Inc., pg. 244
2. Memo E242-659, 17 March 1976, HEATRAN Procedure for Computing Temperature Rise of Hydraulic System 011 Passing through Pump and Servo Valve/Actuator
3. Kays, W. M., "Convective Heat and Mass Transfer", McGraw Hill, 1966
4. Ff.af, Enrico "Thermodynamics", Dover Publications, 1936
5. Streeter, Victor L., "Fluid Mechanics," McGraw Hill, 1951
6. Cambel, A,B., Jennings, B.H., "Gas Dynamics", MeGraw Hill, 1958
7. Report GH20-0205-4 'System/360 Scientific Subroutine Package Version III, Programmer's Manual," IBM Corp., August 1970
8. Key, John E., "Computer Program for Solution of Large, Sparse, Unsymmetric Systems of Linear Equations," International Journal for Numerical Methods in Engineering, Vol. 6, Pgs. 497-509 (1973).```

