IDENTIFICATION OF MINIMUM ACCEPTABLE CHARACTERISTICS FOR MANUAL STOL FLIGHT PATH CONTROL

O 0
 ADH0゙ 9

12 Voume I. Detailed Analyses and Tested Vehicle Characteristics

zune 1976
Final Repport

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. LEPARTMENT OF TRANSPORTATION
 FEDERAL AVIATION ADMNISTRATION
 Systems Research \& Development Service
 Washington, D.C. 20590

DISCLAMER NOTICR

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Goverument assumes no liability for its contents or use thereof.

This report presents the detailed results and analysis procedures utilized to identify minimally acceptable flight path control characteristics of powered lift STOL airplanes. Deficiencies in flight path control are identified via closed loop analysis of describing function results obtained during the simulation. Unacceptable characteristics for flare and landing are identified from correlations of pilot rating and commentary with key parameters obtained from closed loop pilot-vehicle analysis. A more concise summary of the overall program and the results is contained in Volume I.

METRIC COWYERSION FACTORS

	Appreximate C	Conversions to Mer	Iassures	
Sumber	Wheon Yeen inmo	monioly by	To Fiod	3 rmpen
	LEMETM			
$\begin{gathered} n \\ \text { n } \end{gathered}$	incros	-2.6	cenumeers	
	40ens	30.9	cemimsiors	${ }^{\text {cm }}$
	milos	1.8	M.	km
	AREA			
$\begin{aligned} & m^{2} \\ & m^{2} \\ & \boldsymbol{n}^{2} \\ & m^{2} \end{aligned}$	min Tinchos	6.5 0.09	square contimeters equere ments	${ }_{\text {m }}{ }^{2}$
	mpere yeme	0.8	muero moters	${ }^{\frac{m}{2}}$
	-7eres milee	2.6	spuere milommers	mm^{2}
	\%00s	0.4	mocteros	m
	mass (merint)			
$*$	amoose	${ }_{0.06}^{28}$	graws	9
	volume			
\cdots	copose	5	milliliove	$m 1$ $m 1$
lom_{0}	Anviciomes	30	melliticers	\cdots
c	cue	0.24	licess	1
\cdots	0	0.07		
	bellens	0.85	${ }^{\text {liteoss }}$	1
$\begin{gathered} \mathrm{n}^{\prime} \\ \mathrm{n}^{3} \end{gathered}$	catic toot	0.03	cabic moters	m^{3}
	cabie reots	0.78	cabic meters	m^{3}
	TEMPERATURE (exeet)			
*	Finconmit	$5 / 8$ lefter andertione 321	Colsius	${ }^{*}$

GABLE OF CONTHWNTS

Page

I. INTRODUCTION. 1
A. Background 1
B. Objectives 1
C. Description of the Program. 2
D. Guide to the Reader 3
II. DESCRIPTION OF GFNERIC STOL CONFIGURATIONS AND SIMULATION PROGRAM 5
A. Steady-State Characteristics 7
B. Dynamic Characteristics. 12
C. Description of the Simulation. 17
III. SIMULATION RESULTS. 21
A. Flight Path Control 21
B. Path/Speed Coupling 24
C. Closed Loop Tracking Behavior. 27
D. Flare and Landing. 35
E. Simulator Calibration for Landing 38
F. Flight Director Results. 41
IV. FLIGHT TEST RESUTTS 44
A. Description of Flight Program. 44
B. Flight Results 44
V. ANALYSIS OF RESULTS 51
A. Analysis of Final Approach Tracking 51
B. Analysis of Flare and Landing. 55
C. Discussion of Key Parameters 78
VI. CONCLUSIONS 83
A. Conclusions from Pre-Flight Simulation Phase 83
B. Conclusions from the Flight Test and Post-Flight Simulation Results 84
C. Conclusions from Analysis Phase 85
REFERENCES 86
Page
APPENDIX A. PIIOT RATTNGS, COMMENTARY, AND BACKGROUND A-1
APPENDIX B. MANUAI FLARE MDDEL DEVELOPMENT B- 1
APPENDIX C. DFA DESCRIPIION C- 1
APPENDIX D, PHOT BRIEFING AND QUESTIONNAIRES D- 1
APPENDIX E. DETAIHED SUMMARY OF GENERIC CONFIGURATIONS E-1

IIST OF FIGURES

Page

1. Lift and Drag Characteristics of the Simulated Configurations 6
2. Stall Characteristics Tested 8
3. $\gamma-V-\theta$ Plots for the Tested Generic Configurations 9
4. Pitch SAS Used in Generic STOL Simulation 12
5. Dynamic Response Characteristics of Beam Rate to Power (Attitude SAS On) 14
6. Generic Characteristics for Sink Rate Control with Attitude and Throttle 15
7. Effect of Airspeed on the Dynamic Response 16
8. Effect of Speed on Path Response to a Unit Step Power Input (AP10) 17
9. Flight Task Description 19
10. Pilot Ratings for Tasks 1.01 and 3.1 22
11a. Example of Typical Airspeed Control on Configuration with Large Speed-Path Coupling and Large $I_{\text {a }}$ (Configuration AP6, Pilot 7) Task 3.1 25
11b. Example of Pilot Technique for Path Control on Configuration with Very Large Path-Speed Coupling and Low $C_{L_{\alpha}}$ (Task 1.01 and 2.1 Combined, Pilot ? Configuration AP10) 26
11. Effect of 10 Percent Increase in $\mathrm{C}_{\mathrm{I}_{\max }}$ on
Stall Characteristics 2.8
12. Pilot/Vehicle Loop Structure for Glide Slope Tracking 30
13. Experimental-Analytical Pilot/Vehicle Model Correlations 32
14. Comparison of Pilot Ratings for INS Tracking (IFR) and Final Approach and Landing (VFR) 36
15. Effect of Turbulence on Pilot Ratings 36
16. Distribution of Ratings for Sof't, Firm, and Hard Laidings. 39
Page
17. Simulator Landing Correlation Plot 40
18. Effect of Flight Director On Ratings and Performance 43
19. Phase Trajectories for Five Consecutive Flares - No Turbulence - Configuration BSL2, Pilot 7 57
20. Assumed Conmand Structure for Closed Loop Flare 58
21. Effective Closed Loop System for Flare 61
22. Generic Response Characteristics of Attitude Flare 63
23. Generic Characteristics of Loop Closure for Attitude Flare 66
24. Use of Secondary Control to Stabilize Backside Mode Generic Configuration BSLI 67
25. Effect of Secondary Attitude Closure on Closed Loop Roots for Throttle Flare 72
26. Asymptotes of $\left|\theta / \dot{H}_{F}\right|$ 73
27. Migration of $\dot{\mathrm{h}} / \dot{H}_{F}$ Numerator Zeros with Secondary Control (Throttle) Gain, K_{2} 74
28. Generic Characteristics of Gust Response in Flare 76
29. Generic Root Locus Characteristics ($\tau=0$) of $1+Y_{p} Y_{c}=0$ 80
30. One Possible Way of Using Key Parameters to Correlate Minimum Acceptable Path Control with Aircraft Configuration 81
A-1. Summary of Preflight Simulation Pilot Ratings A- 2
B-1. Relationships Between Inertial and Perturbation Coordinates B-3
B-2. Block Diagram of Closed Loop Pilot and Vehicle System for Flare B-5
B-3. Block Diagram of Closed Loop Flare in Perturbation Coordinates and with Step Input Equivalent to Initial Conditions (H_{F} and \dot{H}_{F}) B-7
C-1. Pilot/Aircraft Model C-2
D-1. Pilot Briefing Outline D-2
D-2a. Pilot Evaluation - Flight Path Margin D-3
D-2b. Pilot Evaluation - Landing D-4
D-2c. Pilot Evaluation - Speed Margin D-5
E-1a. Untrinmed Drac Polar for BSL1 E-2
E-1b. Untrimned Drag Polar for BSL2 E-3
E-1c. Untrimmed Drag Polar for BSL2 RLD E-4
E-1d. Untrimmed Drag Polar for AP1 E-5
E-1e. Untrimmed Drag Polar for AP2 E-6
E-1f. Untrimmed Drag Polar for AP3 E-7
E-1g. Untrimed Drag Polar for APS E-8
E-1h. Untrimed Drag Polar for AP6 E-9
E-1i. Untrimmed Drag Polar for AP6 SR E-10
E-1J. Untrinmed Drag Polar for AP6 RLD E-11
E-1k. Untrinmed Drag Polar for AP7. E- 12
E-11. Untrimmed Drag Polar for AP10 E-13
E-1m. Untrirmed Drag Polar for BSL30 and AP30 ($30 \mathrm{deg} \mathrm{\delta}_{\mathrm{f}}$) E- 14
E-2. Trim Drag Polars for Five Test Configurations E-15
E-Za. Performance Curve for BSL1 E-18
E-3b. Performance Curve for BSL2 E- 19
E-3c. Performance Curve for BSL2 RLD E-20
E-3d. Performance Curve for AP1 E-21
E-3e. Performance Curve for AP2 E-2?
E-3f. Performance Curve for AP3 E. 23
E-3g. Performance Curve for APS E-24
Page
E-3h. Performance Curve for AP6 E-25
E-3i. Performance Curve for AP6 SR E-26
E-3j. Performance Curve for AP6 RLD E-27
E-3k. Performance Curve for AP7 E-28
E-31. Performance Curve for AP10 E-29
E-3m. Performance Curve for BSL30 or AP3O, $30 \mathrm{deg} \delta_{\mathrm{f}}$ E-30
Page
31. Summary of Characteristics of the Simulated Configurations 5
32. Simulation Task Designation and Description 18
33. Pilot Commentary Where Flight Path Control Problems on Short Final Were Specifically Noted (Tasks 2.1 and 3.1) 23
34. Landing "Rating" Scale 39
35. Summary of Landing Ferformance 41
36. Cooper Harper Ratings for Flare and Landing (Flight Program) 46
37. Cooper Harper Ratings for Final Approach (Flight Program) 46
38. Cooper Harper Ratings for Flare and Landing Post Flight Simulation-Configuration BSL1 50
39. Generic Forms of the Effective Controlled Element for Path Control with Throttle 54
40. Effect of Throttle Step as Secondary Control in Closed Loop Flare Maneuver 75
A-1, Task Code A-3
A-2. Cooper Herper Ratings for Flare and Landing Flight Program A-4
A-3. Cooper Harper Ratings for Final Approuch Flight Program A- 4
A-h. Cooper Harper Ratings for Flare and Landing Post Flight Simulation-Configuration ESLI A-5
E-1a. Longitudinal Stability Derivatives, Approach Configuration, Aircraft: BSLI E-31
E-1b. Longitudinal Stability Derivatives, Approach Configuration, Aircraft: BSL2 E-32
E-1c. Longitudinal Stability Derivatives, Approach Configuration, Aircra:'t: BSL2 RLD E-33

E-1d. Longitudinal Stability Derivatives,
Approach Configuration, Aircraft: AP1 E-34
E-1e. Longitudinal Stability Derivatives, Approach Configuration, Aircraft: AP2 E-35
E-1f. Longitudinal Stability Derivatives,
Approach Configuration, Aircraft: AP3 E-36
E-1g. Longitudinal Stability Derviatives, Approach Configuration, Aircraft: APS E-37
E-1h. Longitudinal Stability Derivatives, Approach Configuration, Aircraft: AP6 E-38
E-11. Longitudinal Stability Derviatives,
Approach Configuration, Aircraft: AP6 SR E-39
E-1j. Longitudinal Stability Derivatives,
Approach Configuration, Aircraft: AP6 RLD E-40
E-1k. Longitudinal Stability Derivatives,
Approach Configuration, Aircraft: AP7 E-4 1
E-11. Longitudinal Stability Derivatives, Approach Configuration, Aircraft: AP10 E-42
E-2a. Longitudinal Transfer Functions, (Approach Configuration), Aircraft: BSLI E-43
E-2b. Longitudinal Transfer Functions, (Appronch Configuration), Aircraft: BSLL E-44
E-2c. Longitudinal Transfer Functions,
(Approach Configuration), Aircraft: BSL2 RLD E-45
E-2d. Longitudinal Transfer Functions, (Approach Configuration), Aircraft: AP1 E-46
E-2e. Longitudinal Transfer Functions, (Approach Configuration), Aircraft: AP2 E-47
E-2f. Longitudinal Tr ansfer Functions, (Approach Configuration), Aircraft: AP3 E-48
E-2g. Longitudinal Transfer Functions,
(Approach Configuration), Aircraft: APS E-49
E-Th. Longitudinal Transfer Functions, (Approach Configuration), Aircraft: AP6 E-50

Page

E-2i. Longitudinal Transfer Functions,
(Approach Configuration), Aircraft: AP6 SR E-51
E-2j. Longituainal Transfer Functions, (Approach Configuration), Aircraft: AP6 RLD E-52
E-2k. Longitudinal Transfer Functions,(Approach Configuration), Aircraft: AP7 E-53
E-21. Longitudinal Transt'er Functions,(Approach Configuration), Aircraft: AP10 E-54

LIST OF ABBREVIATIONS

C.g.	Center of gravity
CTOL	Conventional Takeoff and Landing
DFA	Descriiing Function Analyzer
EBF	Externally Blown Flap
FSAA	Flight Simulator for Advanced Aircraft
IBF	Internally Blown Flap
IFR	Instrument flight rules
SAS	Stability Augmentation System
STOL	Short Takeoff and Landing
VFR	Visual flight rules
VT/MF	Vectored thrust/mechanical flap

a_{z}	Vertical acceleration; $f t / \mathrm{sec}^{2}$
C_{D}	Drag coefficient - includes thrust effects
${ }^{C} \mathrm{D}_{\text {min }}$	Minimm drag coefficient - includes thrust effects
${ }^{C} D_{\alpha}$	Drag curve slope - includes thrust effects
C_{L}	Lift coefficient - includes thrust effects
$\mathrm{C}_{\mathrm{I}_{\alpha}}$	Lift curve slope - includes thrust effects
$\mathrm{C}_{\mathrm{L}_{0}}$	Lift coefficient at zero angle of attack - includes thrust effects
$\mathrm{C}_{\text {mise }}$	Slope of pitching moment coefficient with elevator
C_{μ}	Blowing coefficient, T/SQ
d	Deviation from glide slope; ft
d_{ϵ}	Glide slope error
g	Acceleration due to gravity; $\mathrm{ft} / \mathrm{sec}^{2}$
h	Perturbation altitude (change in altitude from trim) ft
H_{F}	Flare height; ft
K_{D}	Flight director display scale or lift/drag relationship in Fig. 1d
$\mathrm{K}_{\text {d }}$	Pilot model parameter in Eq. 6
K_{θ}	Pitch-attitude-to-elevator feedback cain
$\mathrm{K}_{\boldsymbol{\theta}}$	Pitch-rate-to-elevator feedback gain; sec
m	Mass of airplane
Mb_{e}	Equels ($\mathrm{SSU}_{0} \mathrm{c} / 2 \mathrm{I}_{\mathrm{y}}$) $\mathrm{c}_{\mathrm{m}} \mathrm{e}_{\mathrm{e}}$
NE¢	Numerator of transfer function which describes pitch-attitude-to-elevator response (see Ref. 2); becomes denominator of sink-rate-to-throttle response when attitude is constrained
	Coupling numerator due to closure of two loops to two different control points; becomes numerator of sink-rate-to-throttle response when attitude is constrained

q_{B}
Q
R
S
t
T
T_{E}
T_{F}
$\mathrm{T}_{\mathrm{h}}{ }_{\theta}$
$\mathrm{T}_{\mathrm{h}_{1}}$
Tpilot
$\mathrm{T}_{\mathrm{u}_{\partial}}$
$\mathrm{T}_{\boldsymbol{\theta}}$
$\mathrm{T}_{\theta_{2}}$
u_{g}
U_{0}

V
V_{0}
$\mathrm{v}_{\text {trim }}$
$V_{\text {eq }}$
W_{g}
X
X_{u}
$X_{\text {w }}$

Body axis pitch rate; rad/sec
Dynamic pressure; lb/ft ${ }^{2}$
Range from the aircraft to the zlide slope transmitter
Wing area; ft2
Time; sec
Thrust; percent or lb
Pitch attitude SAS feedback time constan'ic, $K_{\dot{\theta}} / K_{\theta}$; sec
Time constant for exponential flare; sec
Zero of coupling numerator, $N_{\delta_{e} \delta_{T}}^{\theta} \dot{\mathrm{h}}$; sec
Zero of sink-rate-to-elevator numerator, $1 / T_{h_{1}}=-g(\partial \gamma / \partial V)_{\delta_{T}}$
Compensation provided by pilot based on experimental measurements; sec
Zero of coupling numerator, $\mathbb{N}_{\delta_{e}}^{\theta}{ }^{\frac{\delta_{T}}{T} ; ~ s e c}$
Pitch attitude numerator ($N_{\delta_{e}}^{\theta}$) zero; speed mode time constant when pitch attitude is constrained (see Eq. 1); sec

Pitch attitude numerator ($\mathrm{N}_{\delta_{e}}^{\theta}$) zero; path mode time constant when pitch attitude is constrained (see Eq. 1); sec

Horizontal wind gust; ft/sec
Trim speed; ft/sec
Airspeed; ft/sec
Irim airspeed (same as U_{0}); $\mathrm{ft} / \mathrm{sec}$
Trim airspeed (same as U_{0} and V_{0}); ft/sec
Equivalent airspeed; ft/sec
Vertical wind gust; ft/sec
Distance from runvay threshold; ft
Equals $-\left(\rho S U_{o} / m\right)\left(C D+C D_{u}\right) ; 1 / s e c$
Equals $\left(\rho S U_{0} / m\right)\left(C_{L}-C_{D_{\alpha}}\right) ; 1 / s e c$

$\mathrm{X}_{\mathbf{\delta}} \mathrm{T}$	
Y_{p}	Transfer function representing pilot control characteristics to a perceived error
Y_{C}	Transfer function for controlled element (airplane)
Zu	Equals $-\left(\rho U_{0} / \mathrm{m}\right)\left(\mathrm{C}_{工}+C_{I_{\sim}}\right) ; 1 / \mathrm{sec}$
Z_{W}	Equals $-\left(\rho S_{0} / 2 m\right)\left(C_{D}+C_{L_{\alpha}}\right) ; 1 / \mathrm{sec}$
Z_{α}	Equals $\mathrm{U}_{0} Z_{W} ;\left(\mathrm{ft} / \mathrm{sec}^{2}\right) / \mathrm{rad}$
${ }^{Z} \mathrm{~S}$ T	Equals -SQCist
α	Angle of attack; deg or rad
γ	Flight path angle; angle of velocity vector with respect to horizontal
$\gamma_{\text {peak }}$	Maximum flight path response to a step throttle input
$\gamma_{\text {SS }}$	Steady-state flight path response after a step throttle input
δ_{C}	Longitudinal control column position; in.
δ_{e}	Elevator position; rad
$\delta \mathrm{T}$	Percent power (throttle)
\triangle	Characteristic equation
$\epsilon_{G S}$	Glide slope error angle; deg
ζ_{θ}	See Eq. 8
Π_{p}	Powered-Iift efficiency parameter; $-\left(\partial C_{L} / \partial C_{\mu}\right)\left(C_{\mu} / C_{L}\right)$
	Pitch attitude; deg or rad
θ_{c}	Pitch attitude command; deg or rad
θ_{T}	```Effective thrus* inclination angle; lumps aerodynamic and thrust effects into an equivalent thrust vector (}\mp@subsup{0}{T}{}=90\textrm{deg}\mathrm{) when thrust is perpendicular to flight path); deg```
ρ	Air density; slug-ft ${ }^{2}$
σ_{θ}	Closed-loop bandwidth parameter (see Fig. 30)
T	Pilot model lag (see Eq. 6)
ω	Path mode frequency when pitch attitude is constrained (see Eq. 8)
\%R-103	XV

SECIION I

INIRODUCIION

A. BACKGROUND

This report presents the results of a research effort which included analysis, simulation, and flight test. The goal of this research was to define, in a quantitative way, the factors which result in minimally acceptable path control of physically realizable, $150,000 \mathrm{lb}$ jet STOL configurations. This effort has been conducted on a continuing basis in parallel with a joint FAA/NASA program to develop civil airworthiness criteria for powered-lift aircraft. The purpose of the present program was to allow research of fundamental effects and identify characteristics which strongly influenced manual STOL flight path control. A major benelit of this program has been therefore the ability to concentrate on the more intractable STOL handling problems and to make results immediately aviilable to engineers involved in formulation of airworthiness criteria.

Both the experimental and analytical phases of the program are a direct outgrowth of the notions set forth in Ref. 1 and the experimental results obtained in Ref. 2. Other basic references which set the stage for the present research were Refs. 3 and 4. In many cases the hypotheses and preliminary results set down in the above references were substantiated in this program; whereas in other cases more extensive testing revealed a requirement to modify or change these earlier notions.

B. OBJECTIVES

This experiment was conceived as a detailed study of STOL path mode dynamics independent of conventional short-period attitude control aspects. The overall objective was an identification of conditions for minimum acceptable manual path control in support of future airworthiness requirements. However, the desire to define precise "boundaries for the minimal acceptable condition" in conventional indices was tempered by the knowledge
that the factors limiting manual path control would most likely stem from closed-loop limits which are not easily described by such methods. Thus, the gitalte otarimit of trith affort wion mor pinctaily to.

1. Identify and quantify critical path control problems and relate these as far as practical to their underlying closed-loop deficiencies.
2. Define configuration variations which may be theoretically and/or empirically related to contemporary ($150,000 \mathrm{lb}$) jet SIOL transport aircraft lift augmentation concepts.
3. Verify the importance of task (i.e., glide slope and terminal maneuver), disturbances, and pilot-centered factors on the manual path control. The pilot-centered factors include such effects as adaptability, background, experience, and control technique/strategy during each phase of the approach task.

Item 2, above, was emphasized as a ground rule of the program, i.e., heavy emphasis was placed on consideration of physically realizeble STOL transport concepts as opposed to parametric variations of stability derivatives. To establish physically realizable parameters, candidate poweredlift systems were examined to define their crucial lift/drag and power characteristics (see Volume II). These candidates included the five contemporary concepts given below:

- Internally blown jet flaps (IBF)
- Extermally blown jet flaps (EBF)
- Augmentor wing (AW)
- Upper surface blowing (USB)
- Vectored thrust with mechanical flaps (VT/MF)

C. DESCRIPTION OF THE PROGRAM

The research effort described in this report spanned a period of approximately two years and involved the several phases of simulation, analysis, and flight test summarized below:

- Definition of the generic properties of various STOL concepts with emphasis on those characteristics expected to result in minimally acceptable path control. This included formulation, programming, and checkout of a digital computer program in which the nonlinear aerodynamic and thrust characteristics of the generic vehicles could easily be modified while maintaining fundamental aerodynamic principles. The corputer program equations and relations are given in Volume II of this report. It should be noted that at least three STOL simulations have utilized this computer program (for example, see Ref. 5) since completion of the simulations described herein.
- Conduct of a two-phase simulation program (preflight simulation) with 11 generic SIOL configurations and 9 pilots. Both phases of this simulation program were run on the NASA/Ames $\mathrm{S}-16$ Moving Base Simulator.
- Conduct of an abbreviated flight test program on the Princeton University Variable Stability NAVION to allow interpretation of the simulation final approach and landing results in light of a flight environment. The fiight test program involved 2 of the 11 configurations tested on the $\mathrm{S}-16$ simulator. There was considerable emphasis on comparing turbulence effects in the simulator with turbulence effects in flight.
- Participation in a NASA-sponsored program involving limited post-flight simulation in the FSAA to resolve questions regarding flight and simulator differences raised by the above flight program.
- Ferformance of analyses to allow interpretation of simu_cition results in terms of key parameters and critical flight regimes defining minimum acceptable flight path control for STOL vehicles.

D. GUIDE TO THE READER

The objective of this volume of the report is to document i:l detail all of the findings obtained during the two year program.

Section II presents a description of the static and dynamic characteristics of the tested configurations. The actual derivatives and transfer functions are deferred to Appendix E. The simulation program is also discussed in Section II.

The results of the simulation program are discussed in Section III.

A short flight test program was conducted to check certain simulator results. This is covered in Section IV. Also discussed in Section IV is a very short (two day) simulation program conducted to answer certain questions relative to discrepancies in flight/simulator comparison.

Sections III and IV present results of simulation and flight test. These results are analyzed, and certain key parameters were identified in Section V.

Finally, the conclusions are summarized in Section VI.

SECTION II

DESCRIPTION OF GENTERIC SIOL CONFICURATIONS AND SIMULATION PROGRAM

Eleven generic configurations were derived to characterize the extremes of potential variations in the performance parameters (C_{L}, C_{D}, and C_{μ}). The simulated airplanes are grouped and labeled in terms of their lift, drag, and thrust characteristics in Table 1. More specific descriptions of the variations of the performance parameters with thrust $\left(C_{\mu}\right)$ are given in Fig. 1. The configurations were arbitrarily labeled BSL1 and 2 and AP1 through 10. The letters RLD following the configuration label stand for "rounded lift and drag." and are indicative of nonlinear lift characteristics at high angles of a.ttack to be discussed in the following pages.

TABLE 1
SUMMARY OF CHARACTERISTICS OF THE SIMULATED CONFIGURATIONS

QROUP	COMFIGURATIONS	$\mathrm{C}_{\mathrm{L}_{0}}$ VS. CH_{μ}	$\mathrm{C}_{L_{\alpha}}$ VS. C_{μ}	θ	REPRESHTIATIVE STOL COHCEPT	COMENTS
I	BSLI, 2, 2RLD	Linear and moderate	Linear and moderate	61 deg	Low efficiency EBJF or VI	BSLI has ech lower CLa than BSLF and 2RLD. BSL2RL二 has modifled stall (F1g. 19).
II	AP2, 6, GRLD	Very non11 near	Nonli near and moderate	90 deg	HLeh efficiency IBJF	AP6 has improved Δ capability (-4 deg). APGRLD hal modified stall (Fig. 19).
III	AP3, 7	Linaar and moderetely high	Monlineer and moderate	75 des	Low efficiency VT/ME or poorly deaigred EBJF	AP7 has improved Δy capability.
Iv	API, 5	Linatr and moderetely high	Very low	81 deg	Low erficiancy VT/ME	APS hes lmproved Δy cepability.
v	APIO	Very nonIInear	Very low	90 des	Hich arriciency EBT	

 thrust coefficient were the major variables in the study and are classified into five "groups" in Table 1. Group I is representative of low efficiency EBF (externally blown jet flap) configurations with low effective thrust inclination angles, θ_{T}. The powered-lift effects ($C_{L_{O}}$ vs. C_{μ}) are low, and the flight characteristics would be expected to be somewhat conventional. The Group il configurations represent high efficiency powered-lift STU concepts. Because lift increases rapid?y as the power is increased from zero thrust; these configurations have inherently nonlinear $C_{L_{0}}$ vs. C_{μ} and $C_{I_{\alpha}}$ vs. C_{μ} characteristics as shown in Fig. 1. Group III has the higher $C_{L_{o}}$ vs. C_{μ} characteristics of Group II without the nonlinear shape (see Fig. la). The $C_{L_{\alpha}}$ vs. C_{μ} characteristics of Groups II and III are identical (Fig. ib). Group IV combines the linear $C_{L_{0}}$ vs. C_{μ} characteristics of Group III with a 50 percent reduction in lift curve slope. Finally, Group V combines the nonlinear $C_{L_{0}}$ vs. C_{μ} effects of Group II with the very low lift curve slope of Group IV.

Two configuration: were picked to investigate the effect of nonlinear lift curve shapes near stall as shown in Fig. 2. The BSLL RLD configuration represents the effect of a constantly decreasing lift curve slope with increasing angle of attack as compared with the more abrupt change in lift for BSL2. The AP6 RLD stall characteristics were hypothesized to show the effect of stalling at a constant C_{L} independent of C_{μ}. This is more typical of CTOL characteristics which show only minor variations in stall speed with power setting.

A. STEADY-STATE CHARACTERISTICS

Of the various methods of presenting steady-state performance characteristics, the most useful is a plot of flight path vs. airspeed ($\gamma-\mathrm{V}$) contours for constant power settings and pitch attitudes. Such a map graphically shows how the steady-state values of the important responses vary with trim condition and with off-nominal excursions about trim. The γ, V, θ contours for representative configurations in Groups II through V are given in Fig. 3. Nominal (symbol X) and off-nominal (symbols ∇ and D) trim conditions are shown. Key features of these plots are summarized as follows.

Figure 2 Stall Characteristics Tested

1. Constant power lines. Defines the appropriate control technique. If ($\mathrm{D} / \mathrm{\partial V})_{\delta T}$ is positive (or negative but small) the STOL technique of using pitch attitude to control speed and power to control sink rate is appropriate. This is the case for all the tested configurations.
2. Sonstant attitude lines.
a. The slope of the constant attitude lines $(\partial V / \partial y)_{\theta}$ defines the magnitude and sign of airspeed/flight path coupling for the steady-state situation. Positive values of $(\partial V / \partial y)_{\theta}$ are referred to as proverse coupling and are characteristic of the Group I configurations. Physically, this means that for constant attitude flight the trim speed will increase as the flight path angle is increased with power. Proverse coupling is typical of all CTOL aircraft. The constant attitude lines for Group III are nearly vertical $\left.(\partial \mathrm{V} / \partial \gamma)_{\theta} \doteq 0\right)$, indicating neutral airspeed/flight path coupling. Group IV exhibits weak to moderate adverse coupling, $(\partial \mathrm{V} / \partial \gamma)_{\theta}=-1.75 \mathrm{kt} / \mathrm{deg}$; and Groups II and V show strong adverse coupling, $(\partial V / \partial \gamma)_{\theta}$ from -4.8 to $-5.6 \mathrm{kt} / \mathrm{deg}$).
b. The spacing of the attitude lines (along lines of constant speed) is indicative of the magnitude of change in trim pitch attitude required to hold airspeed constant while changing flight path angle with power. This gradient, $(\partial \theta / \partial \gamma)_{V}$, tends to become quite nonlinear at low power settings for the adversely coupled vehicles (Groups II, IV, and V). The resulting large pitch attitude requirements (greater then 30 deg for AP 10) will, in some cases, limit the down γ capability; i.e., if the pilot is unwilling to either let speed vary or use extreme pitch attitude. Increasing the down (Δy) capability from -2^{0} to -40 (from the nominal $\gamma=-6^{\circ}$) tends to increase the attitude gradient. For example, compare AP2 and 6 in Group II (see Fig. 3).
c. The constant attitude lines may be quite nonlinear at low power settings, resulting in sudden changes in airspeed/ flight path coupling. For example, $(\partial y / \partial V)_{\theta}$ changes abruptly from $-1.7 \mathrm{deg} / \mathrm{kt}$ to $-5 \mathrm{deg} / \mathrm{kt}$ as the power is decreased below 20 percont in AP1 (Fig. 3e). Similar offects are seen to occur at very low power settings in Group I.
3. Trim point. The location of the trim point relative to the zero thrust constant power line defines the down capability in terms of degrees of Δy from the nominal glide slope angle. Unfavorable constant attitude contours in the region of trim may further restrict the down capability. Additionally, as
the trim point is moved to lower speeds the backside effects are magnified [increased slope of $(\partial y / \partial V)_{\delta T}$] and the speed/ path coupling is increased for adversely coupled configurations (Groups II, IV, and V). In the case of Groups II and V, lower trim speeds will result in flat constant attitude contours $\left[(\partial \gamma / \partial V)_{\theta}=0\right)$, indicating that power has no steadystate effect on flight path. Finally, moving the trim point to hjegher power settings generally improves the speed coupling characteristics. This implies a lower trim flight path angle or an increase in drag which would move the $\gamma-V$ contours downward.

Simple analytical expressions may be derived from the attitude constrained equations (Appendix B) which relate the basic performance parameters to the slope of the constant attitude linears $(\partial \gamma / \partial V)_{\theta}$ as follows.

$$
\begin{equation*}
\left(\frac{\partial \gamma}{\partial V}\right)_{\theta} \doteq-\frac{2}{V_{\operatorname{trim}}} \frac{\left(C_{D} / C_{L} \tan \theta_{T}+1\right)}{\left(1-C_{D_{\alpha}} / C_{L}\right) \tan } \frac{\theta_{T}-C_{L_{\alpha}} / C_{L}}{} \tag{1}
\end{equation*}
$$

or in terms of the dimensional derivatives

$$
\begin{equation*}
\left(\frac{\partial y}{\partial V}\right)_{\theta} \doteq \frac{1}{V_{\operatorname{trim}}} \frac{\tan \theta_{T} X_{u}+Z_{u}}{\tan \theta_{T} X_{W}+Z_{W}}=-\frac{\tan \theta_{T}}{V_{\operatorname{trim}}} \frac{T_{u_{\theta}}}{T_{d \theta}} \tag{2}
\end{equation*}
$$

It follows directly from these equations that adverse airspeed/flight path coupling [$(\partial \gamma / \partial v)_{\theta}$ negative] occurs when:

or

$$
\begin{equation*}
\tan \theta_{\mathrm{T}}>-\frac{\mathrm{Z}_{\mathrm{W}}}{\mathrm{X}_{\mathrm{W}}} \tag{4}
\end{equation*}
$$

Thus, we have established the underlying relationships which result in adverse airspeed/flight path coupling.

Physically, Eq. 3 shows that the factors responsible for adverse airspeed/flight path coupling are large effective turning angles combined with low lift curve slope and/or large lift coefficients. Note that the more severely coupled configurations (AP10) exhibit combined adverse effects (e.g., large θ_{T} and C_{L}, and low $C_{L_{\alpha}}$).

B. DYINAMIC CHARACTERRISTICS

1. P1tch Attitude SAS

Each of the configurations tested utilized the pitch attitude SAS shown in Fig. 4. The design philosophy of the pitch augmentation was to obtain a minimum acceptable SAS (pilot rating of $3-1 / 2$) that would keep the attitude dynamics from being a dominant factor in the ratings. A relatively low gain closure was utilized (bandwidth of about $0.8 \mathrm{rad} / \mathrm{sec}$).

This augmentation scheme meets the minimum needs of the pilot for attitude stabilization based on the criterion of Ref. 3 and the closed-loop requirements from which the criterion was derived. Furthermore, the attitude closure (i.e., bandwidth) cannot be significantly improved by the pilot's compensation; thus the influence of attitude loop tightness is minimized. The pilots generally did not tighten up on the attitude loop and were basically willing to accept the low gain attitude dynamics during IHS tracking.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =-4.0 \mathrm{deg} / \mathrm{in} . & \tau_{\mathrm{e}} & =0.1 \mathrm{sec} \\
\mathrm{~K}_{\theta} & =-1.0 & \mathrm{~T}_{\mathrm{E}} & =2.0 \mathrm{sec} \\
\mathrm{a}_{1} & =0.2 \mathrm{sec}^{-1} & \mathrm{~V}_{0} & =75 \mathrm{kt}
\end{aligned}
$$

Figure 4. Pitch SAS Used in Generic STOL Simulation

Thus, the pilots appear to have recognized that they could not improve the attitude loop or the path modes by a tighter inner attitude loop. This is to be expected since the path mode poles drive into the numerator zeros for very low values of K_{θ}. The result is identical responses of \dot{h} / δ_{T} for low and high values of K_{θ} at path mode frequencies. This explains why the assumption of constrained attitude in Appendix B is also valid for low attitude gain closures when analyzing path mode dynamics.

There was some tendency for the pilots to PIO in pitch attitude during flare and landing when tight attitude control is desired.

2. Flight Path Dynamics

The attitude-constrained beam-rate-to-throttle dynamics for the tested generic configurations are show in Fig. 5 in terms of time response to a unit step input and frequency response characteristics. The overshoot in the time response for some configurations is seen to be equivalent to a peak in the frequency response. This peak is generally characterized by a first-order zero, $1 / \mathbb{T} h \theta$, and the roots of the attitude-constrained characteristic equation (Appendix B). Thus, the generic forms of the \dot{d} / δ_{T} responses are defined by the coupling numerator zero, $1 / T_{h \theta}$, and the two roots of the attitude numerator, $N_{\delta_{e}}^{\theta}$. The generic forms of the \dot{h} / δ_{T} and \dot{r} / θ_{c} frequency response asymptotes are shown fin Fig. 6. The beam rate to attitude responses either exhibit a sign reversal ($1 / \mathrm{T}_{\mathrm{h}_{1}}$ negative) or decay to :ero ($1 / \mathrm{T}_{\mathrm{h}_{1}}=0$). This was discovered very early by the evaluation pilots and path control was accomplished with power in all cas ϵ s. The \dot{h} / δ_{T} overshoot is characterized by low values of the coupling numerator zero, $1 / \mathbb{I}_{h} \theta$. The definition of $1 / T_{h \theta}\left[1, T_{h \theta}=-X_{u}-Z_{u}\left(X_{\delta_{T}} / Z_{\delta_{T}}\right)\right]$ shows that increasing the effective thrust inclination angle $\theta_{\mathrm{T}}\left[\theta_{\mathrm{T}}=\tan ^{-1}\left(-\mathrm{Z}_{\delta_{\mathrm{T}}} / X_{\delta_{\mathrm{T}}}\right)\right]$ tends to reduce $1 / \mathbb{T}_{\mathrm{h}}$, thereby increasing the overshoot. In fact, it can be shown that the \dot{h} / δ_{T} response reverses sign (putting the vehicle on the backside for throttle control) when:

$$
\begin{equation*}
\theta_{T}>90^{\circ}+\tan ^{-1}\left(x_{u} / z_{u}\right) \tag{5}
\end{equation*}
$$

c) Group III (AP 7)

 b) Group III (AP2)
 - with

Group	Sink Rote to Attitude Asympłates, $\dot{\mathrm{h}} / \theta$	Sink Rote to Power Asymptotes, $\dot{\mathrm{h}} / \delta_{\mathrm{T}}$
I		$\left\|\frac{i}{\delta_{T}}\right\|_{\frac{1}{T_{n \theta}}}>\frac{1}{T_{\theta_{1}}} \underbrace{\frac{2}{T_{\theta_{2}}}}_{\frac{1}{T_{\theta_{1}}}}$
II		$\left\|\frac{\dot{n}}{\delta_{T}}\right\|{\underset{\frac{1}{T_{n \theta}}}{\frac{1}{T_{\theta_{1}}}} \quad \frac{1}{T_{\theta_{2}}}}_{\frac{1}{T_{n \theta}}<\frac{1}{T_{\theta_{1}}}}^{\frac{1}{T_{\theta}}}$
M, 工, प		$\left\|\frac{i}{8 \mathrm{~T}}\right\|>\frac{1}{\frac{1}{T_{n \theta}}<\omega_{n \theta}}$
		Note: The washout effect is almost negligible in Group III due to high ζ_{θ} and $1 / T_{h e}$ close to ω_{θ}

Figure 6. Generic C:iaracteristics for Sink Rate Control with Attitude and Throttle

Thus, there is a direct correlation between thrust inclination angle and dynamic path overshoot. Furthermore, the thrust inclination has been shown to be tied to the steady-state coupling (Eq. 1). Hence, there is a direct correspondence between the SIOL performance parameters and the dynamic response, and that the dymamic and steady-state characteristics are directly related. Specifically, high effective turning angles and large lift coefficients required for good STOL performance are directly responsible for adverse path/speed coupling and path overshoot. From a practical standpoint numerical solutions to Eqs. 4 and 5 indicate that the condition for low-frequency flight-path-to-throttle sign reversals ($1 / \mathbb{T}_{h e}<0$) occurs at significantly higher thrust inclination angles than the condition for adverse path/airspeed coupling. For the tested configurations, the value of θ_{T} required to obtain adverse path/speed coupling ranged from about 85 deg for Group I dewn to 50 deg on Group V. The critical value of θ_{T}
which would result in low-frequency $\dot{d} / \delta \mathrm{T}$ sign reversals varied from 100 deg on Group V to 104 deg on Group II. None of the configurations tested had this characteristic at the nominal trim flight condition (75 kt) although three configurations (AP2, 6 RLD , and 10) exhibited a flight-path-to-throttle sign reversal at 65 kt (e.g., add power and end up sinking faster in the steady state).

3. Rate Change of Dynamics

An important aspect of the STOL path control problem is the rate at which the basic vehicle dynamics change with speed or power setting. The piloted simulation results reported in Ref. 5 indicate that large changes in vehicle response characteristics with small changes in speed are very undesirable. In fact, a key issue in the present investigation is the character of speed margins based not only on stall but also on regions of unacceptably poor handing qualities. The variation in the dynamic response with speed for the tested configurations is given in Fig. 7 in terms of the ratio of peak to steady-state values of the Bode asymptotes in Fig. 6. It will be shown later that the shape of the \dot{h} / δ T frequency response has a significant effect on closed-loop piloted control during ILS tracking and landing. All of the

Figure 7. Effect of Airspeed on the Dynamic Response
adversely coupled configurations are seen to exhibit a fairly rapid increase in overshoot with decreasing speed. AP10 has the most rapid degradation and AP2, 6 RLD , and 10 all exhibit a reversal in sign at 65 kt . The time responses for AP10 (see Fig. 8) illustrate the dramatic effect of speed on this configuration.

C. DESCRIPTION OF THE SIMULATION

The equations defining the generic STOL simulator model and a complete description of the cockpit layout, computer facility, and moving lase cab are given in Volume II. The instrument display and cockpit controls were typical of a conventional present day CTOI transport.

1. Simulation Scenario

The piloting tasks were broken down into subtasks and a composite task as outlined in Table 2 below. The geometry of the flight task is shown in Fig. 9.

Figure . Effect of Speed on Path Response to a Unit Step Fower Input (AP10)

TABLE 2
SIMULATION TASK DESIGNATION AND DESCRIPTION

TASK DESIGNATION	TASK DESCRIPTION
Glide slope tracking (Start at 1100 ft and termiminate at 30 ft of altitude - all IFR)	
1.0	Calm air
1.01	Turbulence ($\sigma=4.5 \mathrm{ft} / \mathrm{sec}$) (IFR only)
1.1	High fast initial condition (IFR only) $\} \begin{gathered}\text { See } \\ \text { Fis. } 9\end{gathered}$
1.2	Low slow initial condition (IFR only)
1.7	Speed change on glide slope (IFR only)
Landing (Initial condition at 300 ft - IFR)	
2.0	Attitude flares and power flares in calm air
2.1	Add turbulence ($\sigma=4.5 \mathrm{ft} / \mathrm{sec}$)
2.7	Add discrete shear
Composite IIS apprcech task (Rate glide slope intercept, path control, and flare and landing separately)	
3.0	Calm air (IFR and VFR)
3.1	Turbulence ($\sigma=4.5 \mathrm{ft} / \mathrm{sec}$) (IFR and VFR)
3.2	Headwind
3.3	Tailwind $\}$ (IFR and VFR)

Each pilot was given a presimulation briefing which consisted of an oral presentation and a written outline (Appendix D). Several pilot questionnaires were developed (see Appendix D) to obtain pilot opinion of the tested configuration and to help quantify the pilot technique being used. The tes ${ }^{\text {h }}$ engineer (riding in the cockpit with the pilot) utilized these questionnaires to obtain spontaneous pilot responses (and pilot ratings) during and immediately after a series of runs for each piloting task. Particular emphasis was placed on obtaining specific literal interpretations of the Cooper Harper scale. In this regard, the pilots were asked to justify their rating by relating the verbal description on the Cooper Harper scale to specific handling problems they had encountered.

2. Date Gathering

1. The similation data consist of pilot ratings and commentary, analog strip chart records, pilot performance measures, and describing function data. Pilot ratings were obtained for each of the subtasks listed in the previcus section. In addition, pilot ratings were obtained for each segment of the composite Π S approacn task; glide slope intercept, glide slope tracking, flare and landing, and an overall rating.

SECTION III

sIMULATION RESULTS

An extensive two-phase simulation program involving eleven generic STOL configurations and nine research pilots was conducted on the NASA Ames S-16 Moving Base Simulator. The first simulation period served to identify the critical flight regions which were then investigated in detail in a second simulation period. The pilot ratings, commentary, and other results presented in the following sections are a direct result of the more detailed investigation (second simulation period).

A. FLIGHT PATH CONTROL

The pilot rating data and comentary for the glide slope tracking, flare and landing, and composite tasks (Tasks 1.01, 2.1, and 3.1) revealed that flight path control deficiencies were most apparent on short final during the visual portion of the approach. It was not possible to obtain a numerical assessment of flight path control on short final (last 300 ft of approach) since this case was not seperated out and rated as a separate task during the experiment. However, it was possible to draw certain inferences from comparison of the pilot ratings for the composite approach task (3.1) and the IIS tracking task (1.01). This comparison (shown in Fig. 10) allows us to make the following observations:

- The ratings for the IFR approach tracking task (1.01) showed little difference across the configurations, e.g., none of the configurations were rated worse than a 5 .
- The ratings for the composite task, which included both IFR and VFR tracking, indicated that two configurations (AP1 and AP10) were definitely unacceptable (large spread with ratings of 7 or worse) and that two configurations (AP6 and BSL2 RLD) were marginal (large spread with ratings up to 6).
- The only appreciable difference between the glide path tracking portion of Task 3.1 and Task 1.01 was that Task 3.1 included a VFR tracking segment on final approach after breakout (glide slope intercept was rated separately).

Figure 10. Pilot Ratings for Tasks 1.01 and 3.1

Based on the above observations, it seems reasonable to conclude that the tracking problems that resulted in degraded pilot ratings jor Task 3.1 were associated with the final portion of the approach between breakout and initiation of flare. This indirect inference led to a careful review of the pilot comments (see Appendix A) regarding flight path control and any indications of problems in setting up for flare. The results of this review are shown in Table 3 where it can be seen that most of the tested configurations received some advevse coumentary regarding flight path control on short final in turbulence. This reflects the experimental design, in that all configurations represent marginal cases of various STOL concepts. (Recall that the basic goal of the study was tn find out what features or combinations of features resulted in crossing the boundary from marginal to unacceptable.) The large number of, and intensity of, derogatory corments regarding flight path control on short final for

TABLE 3. PIHOT COMAMYTARY WHBRE FLTGHF PATH CONTROL PBOBLAMS ON SHORT FINAL WERE SLECTFICATYY HOTED (TASKS 2.1 AND 3.1)

	PIOT 1	PID:	PIIOT 5	PIIOT 7	PHIT 6	PIMT?
BSL 1	None	Proor vertical speed response makes it onsyto orercantrod Pat on too mach puver to correct for : low cocilition and ther don't cet it off in time, etc.		sione	Nope	A표 Myins :utide slope ins) is get to winnow for flaze
BSL2	None	- None		I a having quite a bit of proble: with the tirbu'euce particulerly turing the final glide slope tracking and the flare	Sunt	None
ESTCRTS	Requires moderste compenaetion on throtilas to set up for flare			Hone		Poor sink rate to throttle respanse is responsible for problens if fettirg set up ot flare point Flying IVSI to throteles even in close
AP1	The primary deficiency is a very sluggitu sink rate to throttle response. The eajor problen is the inability to recovar fram off nominal vartical porition in trae to set up foom landing on this shicit sumpay		Pilot ratime is a 3 down to brakcont and then 17 cm abort final	The worklond cets too high tryinz to get the power set stor your flare, particularly with these lest minute flift path eosrections where the pouer can be coins up and cion.	... real dicey to get - sood sinix rete and - cood eje point on the comay	Primary difficulty was the consider--ble leg in the throttle ad if your effectins e change on glife gath the rasulting change in sink rete lote in the approech vill sive you reel prot!enas
AP2	Tre primary probiln in landing is setting wo for the fhare witio porer in the presence of these fadrly laree gunt disturbences	Iecovery free turtulamee effects coudar into the flape mas defiticult		Jurbulence is not - problea and getting set up for flaca io en, bot proble with this coufle uration		
APS	Hoa:	rae		Hoae		
APETLD	Moderate cumpensetion on alink rate control with forar is required to set up che flare polnt			8ini rate regrase to attitucte and porer ere cood		Yone
AP7	Hece			Hape		Mone
AP10	Tto slucedih slok rete to throttle makes it difficult to gat set up. Ny prisary objection to this conclauration 11es in the fmeblity to coneral slink rete dering the lat severel thadrod foet of the approach			The malu protim vith R19it puth control is the: flest path angle makes out after - throitie luput. this proole is asperielly motice--hle as you approseh the Share po'nt and whe diring the thare	Cot low and slow, bear to correct	Soens very ser.sitive to throttle meinine it difficult to se: up for flayes. Extrepily kard to get into propar there vindor

Notep: Blask apace mens pliot 148 got 5 y the cenfiguration.
"roae" mans that mo speoflic cemante solative tc sidnt path coatral on short theal vere recorbid.

Configurations AP1 and AP10 tended to support the results inferred from the pilot ratings, that is, that these configurations wece unacceptable for flight path control and that the primary problem occurred during the visual portion of the approach.

B . PATH/SPEED COUFinING

Based on earlier work (for example, see Refs. 2, 4, and 5), adverse path/speed coupling was expected to be a heavy contributor towards the definition of minimum acceptable boundaries. This was not the case for the configurations tested in this experiment. While the pilots found that adverse speed/path coupling was undesirable, it was not a major factor in the final pilot ratings. The evidence upon which this conclusion is based is sumarized below.

- Quantitative measurements of the pilot's closed-loop tracking behavior via describing functions showed no evidence of active (closed-loop) speed control (these measurements are discussed in the next section).
- A review of the pilot conmentary (see Appendix A) indicated that seed was monitored rather than controlled for adverse coupled configurations. Additionally, some pilots volunteered that the adverse speed/ path coupling represented a rating degradation of only $1 / 2$ to 1 point. (For example, see the commentary for Pilots 2 and 7, Task 1.01, for Configuration APP in Appendix A.)
- The strip chart records of the simulation show evidence of changes in trin pitch attitude with long-term speed excursions but no evidence of closed-loop speed control. This result holds true for the IFR glide slope tracking portion of the approach, as well as the visual aim point control after breakout and before the initiation of flare. Two examples of this result are shown in Fig. 11. The example in Fig. 11a illustrates the use of a pitch attitude bias in response to a very large longterm airspeed excursion (see Channels 5 and 6). Note that errors in the flight path (Channel 3) are dealt with by use of the throttle (Channel 7). The lack of concern over airspeed excursions is even more dramatically illustrated in Fig. 11b where the pilot held constant attitude throughout the approach even in the presence of a long-term persistent airspeed error of between 5 and 9 irt. It should be noted that these results are consistent and repeatable across all the pilots for the adversely coupled configurations.

Figure 11a. Example of Typical Airspeed Control on Configuration with Large Speed-Path Coupling and Large Ia (Configuration AP6, Pilot 7) Task 3.1

Figure 11b. Example of Pilot Trehnique for Path Control on Configuration with Very Large Path-Speed Coupling and Low $C_{L_{\alpha}}$
(Task 1.01 and 2.1 Combined, Pilot 7
Configuration AP10)

> The pilot rating for Configuration AP6 RLD was initially a 9. This rating was given after a run where the pilot got low on short final and added power. Because of the strong adverse coupling on this configuration, the airspeed decreased to below stall and control was lost (too low to recover). The stall speed was decreased slightly (64 kt to 61 kt) so that increasing power at the trim pitch attitude did not result in a stall (increased CImax by 10 percent) as shown in Fig. 12. The pilot rading then improved to a. 5 .

In summary, the above results indicate that as long as the flight path response or aircreift safety margins were not degraded, the pilots tended to simply monitor speed and fly constant attitude. Adverse speed/path coupling had only a minimal effect on the pilot ratings, which tended to be more directly associate with ability to control the flight path. These results were published in early progress reports and were checked by other investigators running SIOL certification simulator programs (Ref. 5). These investigators concurred that the pilots were not controlling airspeed for adversely coupled configurations. There now appears to be a general acceptance of the fact that airspeed control in itself is not the appropriate filight reference for many STOL configurations. For the configurations in this experiment, constant attitude appeared to be a good flight reference. Considerations for formulating a flight reference for various STOL configurations are discussed in Ref. 5.

C. CLOSED LOOP TRACKING BEHAVIOR

1. Pilot Vehicle Loop Structure

All of the pilots indicated that the technique for glide slope tracking was primarily to control the glide slope deviation rate (\dot{d}). A summary of pilot commentary and interpretation of the time histories is given below in terms of a set of rules which effectively quantify the technique used for glide slope tracking with power.
a. Keep \dot{d} at a very low level by controlling IVSI with power, e.g., find a target IVSI that keeps the glide slope bug stationary on the display (nominally $800 \mathrm{ft} /$ min)

Figure 12. Effect of 10 Fercent Increase in $I_{\text {max }}$ on Stall Characterjstica
b. If glide slope error (d) is diverging, try to first zero d, then adjust power so d is slowly converging (i.e., pick a new target sink rate on the IVSI).
c. If the glide slope error is less than one dot, make very small power adjustments (if any).

The attitude control technique suggested by the pilot commentary (Appendix A) and strip chart records (for example, Figs. 11 and 12) may be summarized as:
a. Let the SAS hold attitude and occasionally adjust to correct back to target attitude when required.
b. Bias the target attitude in correct persistent speed errors that are large enough to be outside the indifference threshold.

These rules suggest a basic pilot vehicle system loop structure consisting of beam and beam rate feedback to the throttle with a very low gain attitude to column feedback (assumed to be zero in subsequent analyses). This is shown in block diagram form in Fig. 13. Further quantification of the model was obtained using the results of specifically designed simulation runs where the pilot was given deterministic inputs in beam error, sink rate, and vertical acceleration (sum of six sine waves) which was filtered to give the appearance of random vertical gusts. The method is described in detail in Appendix C. As shown in Appendix C, the describing function representing the pilot plus vehicle system may be experimentally derived from measurements of the system response. Describing function magnitude and phase points were computed at six frequencies thereby giving an experimental frequency response (Bode plot) for the beam to beam error response (the effective controlled element) of the pilot vehicle system which was fitted with pilot model parameters corresponding to the Fig. 13 throttle series loop structure.

The analytical approximation to the effective controlled element used to fit the experimental data was based on the assumption that the pilot flies constant attitiade and may be derived from the block diagram in Fig. 13 and approximate factors in Appendix B.
Attitude Indicator

$$
\begin{align*}
& \frac{d}{d}=Y_{p} Y_{c} \doteq \frac{Y_{p} N_{\delta_{e}}^{\theta} \delta_{T}}{d} \\
& N_{\delta_{e}}^{\theta}
\end{align*} \underbrace{K_{d}\left(s+K_{d}\right) e^{-\tau s} \frac{M_{\delta_{e}} Z_{\delta T}\left(s+\frac{1}{T_{d \theta}}\right)}{\operatorname{sN}_{\delta_{\delta_{e}}^{\theta}\left(T_{e} s+1\right)}^{d_{e}}} \underbrace{}_{\begin{array}{c}
\text { Augmented } \tag{6}\\
\text { Airframe }
\end{array}}}_{\text {Pilot }}
$$

where

$$
\begin{gather*}
N_{\delta e}^{\theta}=M_{\delta_{e}}\left(s+\frac{1}{T_{\theta_{1}}}\right)\left(s+\frac{1}{T_{\theta_{2}}}\right) \tag{7}\\
\text { or } \\
M_{\delta_{e}}\left(s^{2}+2 \zeta_{\theta} \omega_{\theta} s+\omega_{\theta}^{2}\right) \tag{8}
\end{gather*}
$$

K_{α} represents the pilot's internally derived sink rate cormand based on a beam error. $K_{\dot{\alpha}}^{\dot{\alpha}}$ represents the amount of throttle response that was used for a perceived error between the target sink rate and actual sink rate on the IVSI instrument or from the visual display during the final approach segment. τ represents the overall pilot lag that arises from several sources such as neuromuscular and scanning lags. The sink rate command, \dot{h}_{c}, is internally generated by the pilot by observing the IVSI reading that nulls the glide slope deviation rate, \dot{d}. As shown in Ref. 6, there is negligible lag associated with internally generated commands, which accounts for the fact that the outer loop pilot transfer function $Y_{p_{d}}$ is represented as a pure gain $(\tau=0)$.

2. Exparimental Results

The pilot model parameters (K_{d}, K_{d}, τ) were varied to obtain the experimental data fits in Fig. 14. Each data point in the figure represents the average experimental value across all the pilots who flew each of the configurations. Two glide slope sensitivities were run for each

(9dV) II dno19 (a
9-ع bu!!oy tol!d

d) Group $\overline{\text { G (AP } 10)}$
Figure 14. Experimental-Analytical Pilot/Vehicle Model Correlations [Pilot ratings are for the glide path control portion of the composite task (3.1) (IFR and VFR glide path tracking)]
configuration to help quantify the effect of the pinot's "tightening up" as glide slope sensitivity increases near decision height. The high sensitivity (squares) and normal sensitivity (triangles) cases represent a glide slope width of $\pm 50 \mathrm{ft}$ and $\pm 100 \mathrm{ft}$, respectively. To put this in perspective, these numbers correspond to glide slope tracking at a range of 0.67 miles and 1.34 miles from the 6 deg glide slope transmitter.* Figure 14 shows that the characteristic tightening up near decision height does not occur for some configurations (AP6 and AP10) and appears as an increase in gain for others (BSL2 and AP1). The pilot ratings for path control are shown below the experimental results for each of the configurations shown in Fig. 14. These ratings are seen to be significantly degraded for the cases where the pilots were unable to equalize the effective controlled element to a K / s shape (AP1 and AP10). Other implications of piloting technique to be drawn from these data fits are:

- The pilots are not regulating speed with attitude to any significant degree. This is evidenced by the tact that closure of a speed to attitude loop significantly alters the shape of the analytical fit to the point where it does not match the experimental data. This is especially true on the more highly coupled configurations such as AP10.
- The overriding pilot closed loop operation was beam and beam rate to throttle. Other pilot activity was of such low gain as to have negligible effect.
- The phase margin at crossover was generally about 50 deg for the high sensitivity glide slope resulting in a closed loop bandwidth of about $0.25 \mathrm{rad} / \mathrm{sec}$ for BSL1, 2, and 2 RLD , and $0.4 \mathrm{rad} / \mathrm{sec}$ for all other configurations.
- The effective pilot lag is considerably higher than indicated on previous single controller experiments (τ is usually about 0.4 sec). This could be due to the higher scanning workload inherent to increased rates of descent and low approach speeds. The latter results in increased lateral workload due to the increase in turn rate for a small bank angle excursion [$r \doteq\left(\mathrm{~g} \varphi / \mathrm{V}_{0}\right)$] requiring significantly more scanning

[^0]activity on the attitude gyro (bank angle) and HSI (localizer). Finally, the high degree of coupling on some configurations probably results in more than usual scanning activity on airspeed. However, a firm explanation cannot be supported from the current results.

3. Conclusions

The results obtained from experimental measurement of the pilot's closedloop tracking behavior have some very important implications in the definition of minimally acceptable handling qualities. Most importantly, there appears to be very good correlation between the ability of the pilots to equalize the effective controlled element to a K/s (see Fig. 14) and configurations that are less than minimally acceptable (e.g., Configurations AP1 and AP10). Configuration AP1 is an interesting example because it is not especially bad in terms of criteria developed in previous work (see Refs. 5 and 7). For example, Configuration AP2* relative to Configuration AP1 has
a. Thirty percent more flight path $\operatorname{jvershoot~}\left(\Delta \dot{y}_{\text {peak }} / \Delta \boldsymbol{\gamma}_{\text {SS }}\right)$
b. Three times more steady-state coupling ($\partial \delta V / \partial \gamma$).
c. Nearly identical $\mu \mathrm{SIOL}$ characteristics (see Ref. 5).
d. More rapid degradation of dynamics with speed change (see Fig. 7).
e. Identical control power characteristics (both have a -2 deg δ_{γ} capability).
Based on the above list, we would certainly not expect AP2 to receive better pilat ratings than AP1. However, this was indeed the case for the composite task (3.1), as well as the final approach and landing task (2.1). This

[^1]important result illustrates that limiting flight path control characteristics are more directly identified via analysis of the closed-loop pilot/ vehicle system (inability to equalize the effective controlled element to a K / s in the case of AP1) as opposed to considerations of open-loop response characteristics. Unfortunately, closed-loop response measurements are not easy to make. It would therefore be desirable to identify open-loop vehicle characteristics which are a valid measure of, and are sensitive to, changes in the closed-loop pilot/vehicle effective controlled element characteristics.

As earlier stated, deficiencies in flight path control were not apparent to the pilots until the last 300 ft . However, the above describing function analysis results suggest that certain fundamental limitations are apparent in terms of closed-loop tracking behavior on the glide s?ope long before the pilots recognize the deficiency. Thus, we may conclude that path control deficiencies which are limiting for visual aim point tracking may be identified by taking long term closed loop tracking measurements on the IIS glide slope. (The glide slope sensitivity should be high to induce tight control.) This is an important result in that it is very difficult to quantify the visual aim point tracking problem due to the short amount of time over which this task occurs.

D. FLARE AND LANDIVG

Comparison of the pilot ratings for the $\Pi \mathrm{S}$ glide slope tracking task (1.01) and the final approach and landing task (2.1) indicate that flight path control deficiencies were far more apparent to the pilots during the final approach and landing task. This comparison is shown in Fig. 15 below where it can be seen that some configurations which received acceptable pilot ratings for IiS tracking were rated as unacceptable for the flare and landing (for example, BSL1, AP1, and AP10). This result provably reflects the increased precision required for the final approach and landing task, especially in the presence of turbulence.

Atmospheric turbulence had a very strong adverse effect on pilot opinion ratings and performance for the final approach and landing. As shown in Fig. 16 below, Configurations BSL1, AP7, and AP1 were particularly sensitive to turbulence. The effect of steady winds was not tested.

Figure 15. Comparison of Pilot Ratings for Hs Tracking (IFR) and Final Approach and Landing (VFR)

Figure 16. Effect of Turbulence on Pilot Ratings

There was general agreement among the pilots that the sink rate excursions seemed extremely large near touchdown. This has also been noted on other STOL simulations (Refs. 5, 8, 9) where the pilots have complained of unusually large gusts which seem unrealistic based on CTOL experience. Possible explanations of this are:

- The magnitude of low-frequency shear in the turbulence model was unrealistically high.
- Turbulence effects tend to be magnified in the simulator due to limited peripheral vision, inadequate motion cues in heave, and lack of sink rate perception in the visual display.
- Turbulence has a much more pronounced effect on STOL vehicles than on CTOL airplanes.

A short flight test program using the Princeton University Variable Stability NAVION was conducted as a follow on to this simulation. (Discussed at greater length ir Section IV. One of the primary goals of the flight program was to gain a better appreciation of the seemingly unrealistic turbulence effects obtained in the simulator. In order to insure identical turbulence models in the simulator and in flight, a magnetic tape of the simulator turbulence was used to generate artificial turbulence in the variable staoility airplane. The following results were obtained

- Qualitatively, the effect of turbulence on the flight path seemed very similar in flight to that experienced in the simulator using the BSL: configuration in each case.
- The basic NAVION was flown with the turbulence tape and given a pilot rating of $4-1 / 2$ for the landing maneuver. The pilot's comment was that it was like flying with the NAVION in winds of 18 kt with gusts to 25 kt .

These results imply that the simulator results were valid and that the comments and ratings regarding severe effects of turbulence are attributable to STOL deficiencies (which are highly sensitive to turbulence). Jnly one pilot flew this phase of the experiment. Therefore, more testing is warranted to support this conclusion.

The above experimental results suggest that flight path control deficiencies are more correlated with the VFR task associated with final approach and landing than the IFR tracking task. Those features which appear to contribute most heavily towards this result are

- The effects of path disturbances due to turbulence and shear are very prominent due to near proximity of the ground.
- The terminal control nature of the task requires that errors (in the apparent touchdown aim point) be eliminated immediately. This sense of urgency does not exist in the HS task.

This has resulted in a switch in amphasis from analysis of the classical g?ide slope tracking task to the final approach and landing task. It was therefore appropriate to concentrate the analysis for identification of key parameters on the final approach and flare maneuvers. "This aralysis is presented in Section V of this report.

E. SIMULATOR CAIIBRATION FOR LANDING

There was general agreement suiong the pilots who have flown the NASA Ames simulators that the visual and motion cues do not have one to one correspondence with the real world during landing. Early in the program, it became apparent that what appeared to be a smooth landing was actually firm to hard from the standpoint of computed touchdown sink rate. It therefore appeared desirable to allow the pilots to rate their landing performance based on what they saw on the display. Since all of the pilots had considerable flying experience (greater than 2000 hr) it was reasoned that they should be able to distinguish a good landing from a bad landing. Moreover, the pilot can only operate in a closed loop sense based on ris information input, e.g., visual display and simulator motion. Allowing the pilots to rate their performance and using those ratings to calibrate the simulator should compensate in same way for the effect of the missing or erroneous cues from the data. The pilot ratings of touchdown sink rate consisted of "soft, firm, and hard." A numerical scale has been defined which quantifies these ratings in terms of percentage of responses in a given category. The pilot to pilot variation was found to be small enough to group all of the data and define a relationship between actual performance on the simulator and the pilot's subjective opinion across all pilots. This effectively calibrates the simulato:-

All the landing data were tabulated according to touchdown sink rate and pilot rating (soft, firm, hard) resulting in the three distributions shown in Fig. 17.

Figure 17. Distribution of Ratings for Soft, Firm, and Hard Landings

Based on these distributions, a numerical scale was developed to quantify the pilot's rating of touchdown sink rate as shown in Table 4. The correlation between simulator and pilot opinion of touchdown sink rate is made by plotting the actual (simulated) touchdow sink rate against the number corresponding to the pilot verbal descriptors in Table 4. The results is shown in Fig. 18.

TABLE L. LANDING "RAIING" SCALE

NUMERICAL SCALE	PERCEITAGE: OF IANDINGS RATFD AS SOFT, FTEM, OR HARD			VEFBAL SCALE
	SOFT	FIRN	HASD	
1	100	0	0	Soft
2	75	25	0	
3	50	50	0	Soft-firm
4	25	65	10	
5	15	70	15	Firm
6	10	65	25	
7	0	50	50	Firm-hard
8	0	25	75	
9	0	0	100	Hard

Figure 18. Simulator Landing Correlation Plot

Figure 18 verifies the subjective feeling that what would be a high touchdown sink rate in actual flight (order of $6 \mathrm{ft} / \mathrm{sec}$) looks like a "sof't to firm" $~$ inding in the simulator. Ii follows that landing data taken in the simulator ($\dot{h}_{T D}$) should be evaluated based on the landing opinion scale in Fig. 18.

The landing performance data for the tested generic STOL configurations are summarized in Table 5 in terms of the computed and adjusted (Fig. 18) touchdown sink rate and the touchdown position. All landings between 200 and 500 ft were considered as in the touchdown zone. Table 5 reveals that

- None of the configurations could be landed consistently soft and in the touchdown zone.
- The Group II configurations were rated significantly better than the rest.
- The Group II configurations exhibit the lowest touchdown sink rates and also the lowest dispersions from the mean (σ) in XTD.

It should be pointed out that the dispersions of $X_{I D}$ about the mean were not symmetrical, that is, an extremely low number of touchdows accurred short of the runway. In cases where the possibility of landing short or overshooting existed, the pilots executed a go-around.

TABLE 5
SUMMARY OF LANDING PERFORMANCE
(Turbulence $=4.5 \mathrm{ft} / \mathrm{sec} \mathrm{rms}$)

GROUP	CONFIGURATION	TOUCHDOWN PERFORMANCE					AVERAGE PILOT RATING (Task 2.1)
		SIINK RATE			POSITION, ft		
		AVG.	σ	AVG. RATING (FIG. 7)	AVG.	σ	
	BSL1	6.8	3.0	Firm	274	171	3-7
I	BSL2	6.1	2.4	Soft-firm	415	200	4-6
	BSS2 RLD	7.3	3.3	Firm	320	304	3.5-4
	AP2	5.1	2.4	Soft-firm	427	159	4
II	AP6	6.0	2.6	Soft-firm	1:23	161	4
	AP6 DID	4.3	2.5	Soft	214	82	3-5
III	AP7	7.6	3.0	Firm	444	245	4-6
IV	AP1	6.41	3.18	Soft-firm	361	194	3.5-8
V	AP10	6.7	2.0	Soft-firm	412	206	$6-8$

F. FLIGHT DIRECTOR RESULTS

Two flight director configurations were designed to provide the pilot with command information for column, throttle, and lateral wheel inputs. The flight directors were designed to be compatible with the Group I and Group II configurations using the STOL flight director design procedures developed in Ref. 10. The primary objectives of the flight directors were to reduce the pilots' workload and to increase glide slope and localizer tracking accuracy. In keeping with these objectives the guidance and control and pilot centered requirements discussed in Ref. 10 were a primary factor in formulating the appropriate feedback signals for the flight directors. A third objective was to investigate the flight director as a means of decoupling the airspeed flight path responses. It was hypothesized that with a good flight director the displayed quantities
can be quite well decoupled with regard to pilot inputs even though the basic airplane responses (airspeed and flight path) are quite highly coupled. The basic loop structures for the column and throttle flight director were taken directly from Ref. 10.

The directors were based on the principle of normal "backside" or STOL operation, i.e., throttle controls path deviations and attitude controls speed. The column flight director was basically an attitude hold with a low gain speed feedback $[\Delta \theta / \Delta V \doteq(0.34 \mathrm{deg} / \mathrm{kt})]$. The speed error limiter was set to $\pm 29.6 \mathrm{kt}$ which results in a maximum flight director pitch command of ± 10 deg. Attempts to increase the speed feedback gain and/or open up the speed error limiter met with unfavorable pilot commentary. This was primarily due to the increased activity of the pitch command bar. These results are consistent with the concept that the feedbacks to each of the controls must be frequency separated. That is, one control is primary (glide slope to throttle) and the other is a low frequency trim function (airspeed to attitude). We therefore may conclude that the flight director is effective in decoupling the aircraft responses only from the standpoint that one variable (speed in this case) is controlled very loosely. This is entirely consistent with the way the pilots flew the aircraft using "raw data" glide slope information.

The pilot ratings and ΠS tracking performance results are summarized in Fig. 19 to show comparisons with and without the flight director in turbulence. These results show that:

- The flight director improves the pilot rating 1 to $1-1 / 2$ points. In terms of Cooper Harper descriptors this implies "moderate to extensive compensation" with raw data to "minimal compensation" with the flight director.
- Averaged rms glide slope tracking performance was improved 25 to 40 percent with the flight director.
- Averaged rms localizer tracking showed the most dramatic improvement in performance (up to 86 percent reduction in rms tracking error).

Figure 19. Effect of Flight Director On Ratings and Performance

gECTION IV

FIGHR THET RESUTS

A. DESCRIPITON OF FLIGHM PROCRAM

The flight test program which spanned a period of about three months was basically a flight version of the final approach and landing task (Task 2.1 on the simulator). The Princeton University Variable Stability NAVION was programmed and checked out to simulate Configurations BSL 1 and AP1. The artificial turbulence was identical to that used on the simulator in that a magnetic tape of one hour of the simulator turbulence was used to generate artificial turbulence in flight.

The flight scenario involved the safety pilot's flying the aircraft around the pattern and setting up for each run, with the evaluation pilot taking over on final approach at about 1000 ft . Approach guidance consisted of a 6 deg microwave landing system glide slope and localizer (TALAR) plus a lighting system which provided visual indication of whether the pilot was above or below the 6 deg approach path. The evaluation pilot flew the airplane to touchdown or to the point at which the safety pilot felt an abort was necessary. Each configuration was tested for three basic levels of turbulence and two levels of attitude SAS bandwidth. The levels of turbulence tested were $0,2.25 \mathrm{ft} / \mathrm{sec} \mathrm{rms}$, and $4.5 \mathrm{ft} / \mathrm{sec} \mathrm{rms}$. The attitude SAS bandwidth was tested at a basic level of $0.7 \mathrm{rad} / \mathrm{sec}$ and also a level of $1.2 \mathrm{rad} / \mathrm{sec}$.

B. FLIGHT RESULTS

The basic NAVION was mechanized with the turbulence tape and several approaches to touchdown flown to gain an appreciation for the level of simulated turbulence with a known airplane. The pilot rating was $4-1 / 2$, and the pilot commenved that the situation appeared to be consistent with tower-reported winds of approximately $15-20 \mathrm{kt}$ with gusts to 25 kt . The evaluation pilot noted that the pilot rating for Task 2.1 (final approach and landing) with the basic NAVION in calm air is about a $2-1 / 2$. This is
an important result, because it associates the unreasonably large disturbances in the simulator with STOL response to turbulence rather than with simulation of unrealistically high gusts. Only one pilot flew this portion of the experiment (Princeton project pilot) and only a few approaches and landings were made. Because of its importance, further experimental validation of this result is warranted.

Two levels of attitude SAS were tested; a high gain SAS and a low gain SAS. The low gain SAS resulted in a very sluggish attitude response to column input (3 sec to 75 percent crs steady state) whereas the high gain SAS was quite responsive (1.8 sec to 75 percent). Three levels of turbulence were tested for two configurations (BSL1 and AP1). These configurations were selected because they exhibited marginal characteristics on the simulator and had different limiting effects. That is, BSL 1 was very sluggish and AP1 had dynamic coupling problems. The pilot ratings for each of the three levels of turbulence and two levels of SAS response are shown in Table 6 for flare and landing (Task 2.1) and in Table 7 for final approach only.

The following results are indicated from the pilot ratings in Tables 6 and 7 .

1. The high gain SAS resulted in consistently better pilot ratings for landing and had no effect on glide path control (on short final).
2. The turbulence level had a dramatic effect on the ratings with both configurations being clearly unacceptable at $\sigma_{u_{g}}=4.5 \mathrm{ft} / \mathrm{sec}$.
3. The ratings for maximum turbulence level ($\sigma_{u_{g}}=4.5 \mathrm{ft} /$ sec) were much worse that obtained in the sinulation program. For example, comparison of Fig. 15 with Table 6 shows that BSL1 was rated from 3 to 7 on the simulator and from 7 to 10 in flight.

Result number 2 is consistent with the simulation in that increasing the turbulence level had a degrading effect on the pilot ratings. This effect was more pronounced in flight.

The disparity between simulation and flight (result 3 above) indicated that worse pilot ratings were received in flight where the peripheral and motion cues were better than the simulator. It was not possible to resolve

COOPER HARPER RATINGS FOR FLARE AND LANDING (FLICHI PROGRAM)

TURBULENCE AND SAS	CONFIGURATION BSL 1		CONFIGURATION AP1	
	PILOT 1	PHOT 3	PIIOT 1	PILOT 3
$\sigma_{u_{g}}=0 \mathrm{ft} / \mathrm{sec}$ High Gain SAS Low Gain SAS	$\begin{gathered} 4-1 / 2 \\ 5 \end{gathered}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{gathered} 6-1 / 2 \\ 7 \end{gathered}$	$\begin{aligned} & 5-1 / 2 \\ & 6-1 / 2 \end{aligned}$
$\sigma_{u_{\mathrm{g}}}=2.25 \mathrm{ft} / \mathrm{sec}$ High Gain SAS Low Gain SAS	$\begin{gathered} 5 \\ 6-1 / 2 \end{gathered}$	5 6	Did not fly enough in tur-	$\begin{gathered} 6-1 / 2 \\ 9 \end{gathered}$
$\sigma u_{\mathrm{g}}=4.5 \mathrm{ft} / \mathrm{sec}$ High Gain SAS Low Gain SAS	7 8	$\left\lvert\, \begin{gathered} 6-1 / 2 \text { to } 10 \\ 7 \text { to } 10 \end{gathered}\right.$	bulence to race	$\begin{aligned} & 10 \\ & 10 \end{aligned}$

TABLE 7
COOPER HARPER RATINGS FOR FINAL APPROACH
(FLIGHT PROGRAM)

TURBULENCE LEVEL $\sigma_{u_{G}} \mathrm{ft} / \mathrm{sec}$	CONFIGURATION BSL1		CONFIGURATION AP1	
	PIHOT 1	PIIOT 3	PIIOT 1	PILOT 3
0	4	4	$5-1 / 2$	5
2.25	5	$5-1 / 2$	-	$6-1 / 2$
4.5	7	$8-1 / 2$ to 10	-	9 to 10

Ratings did not vary with high and low gain SAS.
*This rating improves to a 6 with increased throttle control power (throttle was limited to ± 20 percent about trim on Navion).
these flight/simulator discrepancies (with any confidence) without considerably more testing (which was beyond the scope of this program). There are two possible hypotheses which help to "explain" the data. These are sunmarized below.

1. The rating effect of the $4.5 \mathrm{ft} / \mathrm{sec}$ turbulence is more pronounced for flight than for simulation. To some extent this may be due to the fact that during the simulation many of the landing problems were attributed to poor simulator cues. The flight tests served to illustrate that the much improved visual and motion cues in flight were of no help in regulating against the large gust inputs near touchdown. In fact, the improved sink rate cues served to increase the pilot's awareness of "how bad things really were." Sink rates of 1200 to $1400 \mathrm{ft} / \mathrm{min}$ on short final tend to be far more dramatic in the flight environment than on the simulator with the Redifon display.
2. There were certain discrepancies in the environmental, task, and procedural variables between flight and simulation.

The discrepancies noted in item two above are summarized below.

- Task variables. Task variables comprise all the system inputs and those control system elements which enter directly and explicitly into the pilot's control task. The primary discrepancy here was the limited throttle authority on the Variable Stability NAVION (± 20 percent about trim) and lack of any engine noise cues in the airplane (due to variation of thrust with the Beta prop instead of power).
- Environmental variables. These are clearly superior in flight, and flight ratings are usually better than simulator ratings due to improved visual and motion cues and their generally favorable effects on closed-loop performance.
- Procedural variablas. These include aspests of the experimental procedure such as instructions, background, indoctrination, training, etc. These variables present a particularly difficult problem for the simulator landing task, especially with regard to definition of "desirable," "adequate," and "inadequate" performance. Clearly, these factors depend on aircraft specifics such as gear strength, gear softness, braking effectiveness, etc. Furthermore, the simulator motion cues at touchdown are frequeutly inappropriate no matter how the landing gear is modeled (due to hitting the motion
stops or to artificial effects caused by protection circuits to reduce wear on the simulator motion system). The pilots of the simulator program were given rather vague instructions in that they were told to assume that the gear was strong enough "within reason" (touchdown should be at least well below the glide slope sink rate of $13 \mathrm{ft} / \mathrm{sec}$) and that braking effectiveness was such that they could stop the airplane if on the ground and under control at midfield (1000 ft of runway left). The procedural variables in the Variable Stability airplane were quite different. The landing gear has finite strength and is very stiff. It is the safety pilot's responsibility to abort if the sink rate gets into the unsafe region near touchdown. For example, touchdowns of $8 \mathrm{ft} / \mathrm{sec}$ were relatively common on the simulator. In the aircraft, a touchdown sink rate of this magnitude was cause for alarm (the tests were interrupted while the gear was checked). There was some attempt during the flight test program to minimize this discrepancy in the procedural variables by having the evaluation pilots try to ignore the aborts and evaluate the landings. It is difficult to impossible to evaluate the ability of a pilot to ignore the fact that he has been aborted for a large percentage of his attempts to land the airplane. It would therefore seem that the safest way to maintain a high level of credibility for flight/simulator comparisons is to mechanize the simulator so that the procedural variables are as close as possible to the flight situation. This was done in the present program during a post-flight simulation and is discussed below.
- Pilot-centered variables. These are the characteristics that the pilots bring to the control task. One of the pilots had extensive experience with the simulation phase of this program, while the other had flown many hours evaluating STOL configurations on the Princeton Variable Stability NAVION. This was felt to be complementary, and the very low variability in ratings between the two pilots indicates that the pilot-centered effects were not responsible for the flight/simulator discrepancies.

In response to these preliminary results and findings, a short-term sirulator program sponsored by NASA Ames was undertaken to further investigate the effects of turbulence on STOL landings, especially with regard to simulator/flight comparisons. The same two pilots participated as in the flight test; however, the FSAA simulator was used (the $\mathrm{S}-16$ was the primary simulator in the pre-flight simulations). The BSL1 configuration was used since it received most of the attention in flight. This simulation
period was separated into two phases to evaluate the effects of task, environmental, and procedural variables. The primary differences between these phases were as follows:

- .Phase I - Direct Simulator/Flight Comparison

1. Program the safety pilot as an "abort mode." By scanning the strip chart records from the flight test, it was determined that the safety pilot was reasonably consistent in that he aborted if the sink rate exceeded approximately $6.5 \mathrm{ft} / \mathrm{sec}$ below an altitude of about 10 ft . The simulator was programmed to abort (go into reset mode) with this criterion.
2. Physical stops were clamped on the FSAA simulator throttle quadrant which limited thrust excursions about trim to ± 20 percent. (NAVION control power was 20 percent of simulated STOL.)
3. The pilot position was set to simulate the NAVION (eye height of 8 ft and longitudinal pilot position at the center of gravity).
4. Engine noise was eliminated (changes in power are not audible in the NAVION since they are accomplished via propeller pitch at constant rpm).

- Phase II - Same scenario as pre-flight simulation (Discussed in Sections III and IV)

1. Assume gear is "strong as required within reason," e.g., no abort.
2. The throttle stops were removed.
3. Engine noise cues were turnd back on.
4. Pilot position was made consistent with a large aircraft (eye height 17 ft and 20 ft forward of the aircraft center of gravity).

The pilots both commented that subjectively the large shears had the same effect in the simulator as in flight, e.g., they appeared extreme. A summary of the pilot ratings for each phase is shown in Table 8. These ratings are closer to the flight values than the original simulation, perhaps lending some credence to hypothesis number 1 above (since both pilots had recent flight experience). Pilot 1 felt that the differences between Phase I and Phase II (effect of experimental variables) was significant (about two rating points) and Pilot 3 did not (ratings about the same). Clearly more data would be required to resolve hypothesis number 2 above.

TABLE 8
COOPER HARPER RATINGS FOR FLARE AND IANDING POST FLIGHT SIMULATION-CONFIGRRATION BSL 1

TURBULENCE LEVEL$\sigma_{u_{g}} f t / \mathrm{sec}$	PHASE	FTARE AND LANDING		FINAL APPROACH	
		PILOT 1	PIIOT 3	PILOT 1	PIHOT 3
0	I	4-1/2	4	3	4
2.25		5-1/2	4 to 4-1/2	4	5
4.5	\dagger	7	5-1/2 to 10	5	7
0	II	3	4	3	4
2.25		3-1/2	4-1/2 to 5	4	5
4.5	\dagger	5	6 to 10	5	7

While the simulator results did not agree well with flight in terms of absolute value of pilot ratings, the problem areas identified via pilot commentary were identical. Since the objective of this program was to find effects or combination of effects which are limiting, the pilot rating discrepancies do not detract from the simulation results. However, these discrepancies should be resolved before actual numerical boundaries are derived for certification criteria.

One final comment. The majority of simulation was done on the S-16 simulator (very limited motion and marginal redifon) whereas the post-flight simulation was done on the FSAA (better motion and visual). A three day exercise was undertaken during the original simulation where three pilots flew Corfigurations APT, and AP10 on the FSAA and S-16 back to back. The FSAA ratings were one to two points better than the S-16, e.g., in the wrong direction to resolve the simulator/flight discrepancy.

gECTION V

ANALYSIS OF RESUUTS

Experimental results have shown that flight path control deficiencies were most apparent on short final when the pilot was tracking a visual aim point on the runway and during the flare. The analyses efforts were accordingly concentrated in this area. The approach taken here has been to quantify these tasks in terms of their closed-luop properties and to identify path control problems via the pilot-centered and guidance and control requirements from a well-established theory of closed-loop pilot/vehicle analysis (see Ref. 11, and 12). The structure of the closed-loop pilot/vehicle system is based on a combination of quantilative (describing function) measurements of closed-loop tracking behavior, pilot commentary, and analysis of strip chart records. These data were obtained from the pre-flight and the postflight (Phases I and II) simulations and the fligit test program.

A. ANALYEIS OF FITAL APPROACH TRACKING

The first step in quantification of the pilot's closed-loop structure during the final approach was to find out where the pilots transitioned from tracking the electronic glide slope to looking out the window and tracking the visual aim point on the runway. Most pilots commented that they were "in and out" right down to the point of flare initiation. In most cases the pilots noted that the outside tracking was primarily to get sink rate and lateral line up information. The primary scan inside was the glide slope display and airspeed. This explains the strip chart records which showed that the pilots tended to maintain a glide slope error near zero to very low altitudes. Based on this result, we have assumed that the tracking model close in (visual portion of the approach) is identical to further out (IFR). It follows that the pilot model given by Eq. 6 is valid for analysis of the final approach.

The fundamental hypothesis of this analysis is that minimally acreptable path control is a direct consequence of an inability to satisfy the pilotcentered and guidance and control requirements (see Ref. 11) summarized below:

- Guidance and control requirements

1. Command following and disturbance regulation
2. Stability

- Pilot-centered requirements

1. Minimum equalization to achieve K / s effective controlled element
2. Wide separation in crossover frequency of the primary and secondary controls
3. Tolerant of variations in pilot response (desire a broad region of K / s)
4. Response quality. The closed-loop system should be rapid and well damped, akin to a second-order system with minimum coupling between the modes of motion. The pilot should be able to easily sort out path mode response to a control input.

Assuning that the pilot flies constant attitude (attitude constrained assumption), the generic form of the affective controlled element (pilot plus airplane) for primary path control with throttle is given by Eq. 6. This is repeated below along with a definition of the effective controlled element.

The numerator time constant, $1 / \mathrm{T}_{\mathrm{d} \theta}$, and the path mode frequency and damping are primarily dependent on the STOL Gerodynamic charscteristics and thrust inclination angle (see Volume II of this report. The engine lag time
constant, τ_{e}, was 1.5 sec for most of the experimental runs in this stridy. The primary variables in the experiment which arise from variation of the SIOL generic characteristics are the $1 / T_{d \theta}$ zero and the path mode frequency and damping, ζ_{θ} and ω_{θ}. The extremes of variations in these parameters are well represented by the generic configurations, BSL1 and AP10, where the former is largely characterized by $1 / T_{d \theta} \doteq \omega_{\theta}$ and the latter by $1 / T_{d \theta} \ll \omega_{\theta}$. The frequency responses for these generic forms and the corresponding limiting factors for closed-loop control are shown in Table 9.

Bandwidth limited configurations ($1 / \mathrm{T}_{\mathrm{h} \theta} \geq \omega_{\theta}$) were the subject of considerable research in Ref. 9 where two possible criteria for determining the level of acceptability were derived. These criteria were based on the path mode r asponse to throttle and involved correlations between pilot ratings (level of acceptability), the time to achieve one-half peak amplitude, and the phase lag of the path response to throttle transfer function at $0.5 \mathrm{rad} / \mathrm{sec}$. Neither of these two criteria has been finalized; however, present (unpublished) indications are that rise time of greater than 3 sec to one-half peak amplitude result in unacceptable flight path control for the approach.

As can be seen from Table 9, configur ations with the generic characteristics involving $1 / \mathbb{T}_{h \theta} \ll \omega_{\theta}$, Groups IV and V, tend to have a larger number of combined effects which are limiting in terms of closed-loop control. We therefore would expect that configurations where the effective controlled element ($\mathrm{Y}_{\mathrm{p}} \mathrm{C}$) has a region of zeru slope are more likely to have deficiencies which are limiting. Experimental evidence to support this conclusion is shown in Fig. 10 where it is seen that Configurations AP1 and AP10 are raced quite poorly (a large spread in the ratings with ratings of 7 or worse), and in Table 3 where the nilot commentary for these configurations regarding flight path control is very unfavorable. Airplanes with nearly vertical thrust inciination angles (small $X_{\delta_{\mathrm{T}}} / \mathrm{Z}_{\delta_{\mathrm{F}}}$) tend to have very low values of $1 / T_{h \theta}$. Thus, the combination of vertical thrust and a coupled attitude numerator, $\left(Z_{W}-X_{u}\right)^{2}<4 X_{W} Z_{u}$, is seen to lead to unacceptably deficient configurations, e.g., $1 / T_{h \theta} \ll \omega_{\theta}$.

GENERIC FORMS OF THE EFFFCTIVE CONTROLIED ELEMERT FOR PATH CONTROL WITH THROTITE

GHNERRIC FORM	LIMITTING FACTORS FOR CLOSED LOOP CONTROL
GROUP I, II and III (BSL 2 is example) Closed loop root bosed on experimentally derived value of K_{d} (See Fig.31)	Guidance and Control Requirements - Inability to augment ω_{θ} to frequencies high enough to regulate against disturbances Pilot Centered Requirements - Lags occur at frequencies too low for practical lead equalization
GROUP IV and $\overline{\text { Z }}$ (AP 10 is example)	Guidance and Control Requirements - Poor low frequency response due to inability to close loop at frequencies well above ω_{θ}, e.g., cannot drive $1 / T_{h \theta}^{\prime}$ into $1 / T_{h \theta}$ - Poor response quality due to secondary mode at $1 / T_{h}{ }^{\prime}$. Desire closed loop systell that is rapid and well damped. These generic configurations result in primary response at ω_{e} and secondary droop response at $1 / T_{n}{ }^{\prime}$ Pilot Centered Requirements - Cannot equalize to a K / s without severely limiting the bandwidth

Conclusions:

- The limiting effects for path control which are due to aerodynamic and thrust inclination effects may be identified via the parameters $\omega_{\theta}, \zeta_{\theta}$, and $1 / T_{h \theta}$.
- The engine time constant is a direct limitation on the bandwidth of path control with throttles.
- Configurations where the effective controlled element has a mid-frequency zero slope are more prone towards having combined limiting effects. Note that this zero slope can be due to a very large difference between $1 / \mathbb{T}_{\mathrm{h}}$ and ω_{θ} or can arise from low path mode damping, ζ_{θ}.
- The data base for bandwidth limited configurations $\left(1 / \mathbb{T}_{\mathrm{h} \theta}=\omega_{\theta}\right)$ is fairly complete (for example, see Refs. 5, 8, 9). There are very little deta, however, for configurations where $1 / T_{h \theta} \ll \omega_{\theta}$. Future simulation and flight test experiments should concentrate on this area.
- Adequate piloted path control with throttle is highly dependent on the ability of the pilot to perceive sink rate (see $K_{\dot{d}}^{*}=0$ root loci in Table 9). This result has important implications for development of displays for final approach (head up displays, visual approach slope indicator lights, etc.)
B. ANALYSIS OF FLARE AND IANDING

The flare strategies observed during the simulation included the following:

- Attitude only
- Power only
- Attitude and power with attitude primary
- Attitude and power with power primary

There was little or no objection to the use of two controls in the flare. Upon reflection, this result is not surprising in that it is standard practice to use power in CIOL airplanes as an aid to gust regulation even though attitude is primary during the flare. The guidance and control and pilot-centered requirements for the landing task were therefore based on the use of two controls.

Analysis of the flare and landing was carried out under the assumption that the maneuver was performed by the pilot in a closed-loop regulatory way. The evidence upon which this assumption is based consists of strip chart records showing significant attitude and/or throttle regulation of a nature too complicated to be a precognitive open-loop input. Additionally, there was general agreement among the pilots that attempts to flare these configurations with a fixed open-loop strategy were not satisfactory. It therefore seemed pertinent to proceed with the analysis of the flare as a closed-loop tracking maneuver despite certain difficulties which arose

- There is no external command (such as a glide slope error, visual approach slope indicator lights, etc). The pilot must therefore internally generate the command structure as well as the feedbacks.
- It is not possible to experimentally measure closedloop behavior (by the use of describing function technique) because of the short duration of the maneuver and the lack of a precise definition of the input.

The development of the command and feedback structure used in the closedloop pilot/vehicle flare model in this study were based on the following observations, hypotheses, and assumptions:

- The pilot's primary objective in the flare was to reduce the sink rate to some acceptable (target) value at touchdown.
- There should be no abrupt changes in sink rate; that is, if most of the sink rate is eliminated early a "floater" results, and if most of the sink rate is eliminated just before touchdown frequent hard landings result. Thus, we hypothesized that a steady decrease in sink rate with altitude was representative of the pilot's internally generated command structure.
- The trajectories of sink rate vs. altitude for a number of flares in calm air with a reasonably good configuration (where the pilot's performance should have been representative of his command structure) tended to verify the above hypotheses, that is, the effective command for a closed-loop flare maneuver involved an essentially linear decrease in sink rate with altitude. An example of five consecutive calm

Figure 20. Phase Trajectories for Five Consecutive Flares No Turbulence - Configuration BSL2, Pilot 7
air flares with Configuration BSL2 (Pilot 7) is shown in Fig. 20. Note that a linear variation of h with h is the well known exponential flare which is frequently the basis of autoflare systems.

- Because STOL runways are short, touchdown precision is important. As is well known by experienced pilots, flare strategies that emphasize smooth touchdowns (grease jobs) tend to use up a lot of runway. Therefore, the proper technique for STOL landings most likely involves a reasonably high target sink rate (compared to CIOL) that will minimize the probability of an overflare and resulting float.

The above points may be quantified in terms of an assumed command structure on a phase plane of sink rate vs. altitude in Fig. 21 below. The flare law which derives directly from the phase plane in Fig. 21 is given as:

$$
\begin{equation*}
\dot{H}_{\mathrm{C}}=-\frac{1}{\mathrm{~T}_{\mathrm{F}}} \mathrm{H}+\dot{H}_{\mathrm{TD}} \tag{10}
\end{equation*}
$$

Figure 21. Assumed Command Structure for Closed Loop Flare

The slope of the internally generated command structure (\dot{H}_{C} vs. H) becomes the flare mode inverse time constant, $1 / T_{F}$. From the geometry in Fig. 21, T_{F} is seen to be dependent on the sink rate at flare initiation, HF, and flare height, ${ }^{\text {fr }}$.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{F}}}=\frac{\dot{\mathrm{H}}_{\mathrm{H}_{\mathrm{C}}}-\dot{\mathrm{H}}_{F}}{\mathrm{H}_{\mathrm{F}}} \tag{11}
\end{equation*}
$$

Representative values of flare height (between 30 and 50 ft), target touchdown sink rate (3 to $5 \mathrm{ft} / \mathrm{sec}$), and sink rate at flare initiation ($13 \mathrm{ft} / \mathrm{sec}$ for 6 deg glide path) yields "typical values" of T_{F} between 2 and 5 sec .

Once the flare is defined in closed-loop tracking terms, the pilotcentered and guidance and control requirements which arise from well developed models of human pilot behavior (see Refs. 9, 13, and 14) may be used to identify those airplane features which are unacceptable. Even if the above formulated model is not exactly correct, it seem intuitive that identification of features which result in poor closed-loop regulation of sink rate as a function of altitude should lead to a good quantification of unacceptable handling in the flare.

1. Guidance and Control Requirements for Flare

- Cormand following. The assumed command (Eq. 10) may be modeled as a closed loop system. Since H_{c} is a function of the dependent variable altitude, it appears as an outer loop. In block diagram form:

- Disturbance regulation. At low altitude the proximity of the ground precludes large vertical gusts. Therefore, the primary disturbance for the flare maneuver is horizontal wind shear.
- Stability. Repeatable flares require good closed-loop flight path stability to avoid large excursions in sink rate that result in unacceptable flare characteristics such as hard landings and overshoots.

2. Pilot-Centered Requirements for Flare

- Insensitivity to pilot response variations (desire broad region of K / s).
- Minimum pilot compensation. Ability to achieve a K / s effective controlled element with minimum equalization.
- Frequency senaration of controls. The primary control should have a high crossover frequency adequate to turn the corner on the flare. The crossover frequency of the secondary control loop must be well separated (occur at a lower frequency) from the primary control loop.
- Response quality. The closed-loop system response should be rapid and well darmed with minimum coupling between modes of motion. The pilot should be able to easily sort out the path mode response to a control input.

The primary control for the flare maneuver is usually pitch attitude, and its function is to provide the necessary control over sink rate. This implies a requirement for adequate frequency response to turn the corner on the flare and for adequate control authority to assure that the pitch attitudes required to arrest the sink rate are not excessive. The primary control must also provide the necessary regulation against sink rate excursions due to horizontal wind shear near touchdown. The level of wind.proofing required of the primary control depends on the quality of the secondary control. In cases where the sink rate response to pitch attitude is not adequate for flare, the primary control must revert to power or a direct-lift-type control device. Both pitch attitude and power are (alternatively) considered as primary controls in the following analyses.

The main requirement on the secondary control is that it complement the primary control, that is, the closure of the secondary control loop should improve the response in the primary loop. A cormon use of the seconcary control in the flare for CTOL, as well as STOL airplanes, is to provide regulation against large gusts or shears that are beyond the capability of the primary control. Another common use of the secondary control is to make up for deficiencies in the low-frequency region of the primary control response. As example would be the elimination of an unstable backside mode (due to negative $1 / \mathbb{T}_{h_{1}}$) or excessive speed bleedoff by using the throttle as a secondary control. For purposes of analysis, these strategies were quantified as low gain control of sink rate error with the secondary control. Use of the secondary control to regulate some other flight variable (speed, angle of attack, etc.) was ruled out by the pilots who said they were head up during the flare. It was specifically noted by some pilots that once in the flare airspeed control was no longer a consideration.

Formulation of the analytical pilot model for flare was complicated by the fact that the flare maneuver is actually a response to initial conditions. In order to interpret the flare in terms of transfer functions (which by definition have no initial conditions), the initial conditions had to be reinterpreted in terms of an equivalent input. The details of this calculation and block diagram algebra are given in Appendix B. The resulting block diagrams are given in Fig. 22.

a) Attitude Primary - Throttle Secondary

b) Throttle Primary - Attitude Secondary

Figure 22. Effective Closed Loop System for Flare (In terms of perturbation variables and with initial conditions reinterpreted as an input, see Appendix B)

3. Flare with Attitude OnIy

The approximate solution for the sink rate response of the closed loop pilot plus airplane system for an attitude-only flare (no secondary control) may be derived from Fig. 22a. Ignoring low frequency effects (e.g., assuming $1 / T_{h_{1}}=0$) the approximate solution for sink rate response in the flare is given as follows:

$$
\frac{\dot{h}}{\dot{H}_{F}} \doteq \underbrace{\underbrace{s\left(T_{F} s+1\right)}_{\begin{array}{c}
\text { Path Mode Response- } \\
\text { From Ideal Reparture }
\end{array}} \frac{1}{\left[\frac{s^{2}}{\omega_{\theta}^{\prime \prime 2}}+2 \frac{\xi_{\theta}^{\prime \prime}}{\omega_{\theta}^{\prime \prime}} s+1\right]}}_{\begin{array}{c}
\text { Effective } \\
\text { Flare } \\
\text { Command }
\end{array}}
$$

The details of the piloted loop closure are discussed later in this section as are the effects of nonzero $1 / \mathbb{T}_{h_{1}}$. The double prime superscription ω_{θ} and $?_{\theta}$ indicates that two loops (an inner $\dot{\mathrm{h}}$ loop and the outer "command loop") have been closed around the attitude-constrained airplane as shown in Fig. 22a. The first-order response term ($T_{F S}+1$) results from the outer (command) loop closure (should actualiy be $\mathbb{T}_{F}^{\prime \prime}$ but we are assuming $\mathbb{T}_{F}^{\prime \prime} \doteq \mathbb{T}_{F}$). It indicates that the assumed linear sink rate vs. altitude command is an exponential function in the time domain. The second-order "path mode response" is due to the fact that the airplane has dynamics which are characterized by the closed-loop frequency and damping ($\zeta_{\theta}^{\prime \prime}$ and $\omega_{\theta}^{\prime \prime}$). Thus, the quality of the flare (ability to follow the \dot{H} vs. H command) will depend directly on the pilot's ability to modify the closed-loop path mode frequency and damping to desirable levels.

The generic response characteristics of Eq. 12 (for an initial sink rate of $13 \mathrm{ft} / \mathrm{sec}$) are shown in.Fig. 23. The effect of the path mode is seen to cause an initial delay followed by oscillations if the closedloop damping, $\zeta_{\theta}^{\prime \prime}$, is low. From Fig. 23a the time history for $\omega_{\theta}^{\prime \prime}=5 / T_{F}$ sets an approximate lower boundary on path mode frequency in that it returns to the command sink rate in approximately one flare mode time constant.

a) Effect of Closed Loop Path Mode Frequency on Flore

b) Effect of Closed Loop Path Mode Damping Ratio on Flare

Figure 23. Generic Response Characteristics of Attitude Flare
(Solution to Eq. 12)

Likewise, from Fig. 23 b a logical lower bound in path mode damping, $\zeta_{\theta}^{\prime \prime}$, (to avoid undue reversals) is seen to be between 0.1 and 0.2 , or,

$$
\begin{equation*}
\zeta_{\theta}^{\prime \prime} \geq 0.15 \tag{13}
\end{equation*}
$$

Investigation of the detailed loop closure characteristics required to obtain these desired values of closed-loop path mode frequency and damping form the basis for prediction of pilot compensation and workload. From the block diagram in Fig. 22a and the approximate factors contained in Appendix B, an expression for the effective controlled element (pilot plus airplane) may be derived as follows. Assuming a high gain attitude loop closure $\left[\theta / \theta_{C}=\left(1 / T_{E S}+1\right)\right]$, the characteristic equation for the system in Fig. 22 a is:

$$
\begin{equation*}
1+\frac{K_{p_{h}} e^{-\tau s}\left(1+\frac{1}{T_{F} s}\right)_{N N_{E}}^{j}}{\left(T_{E} s+1\right) N_{\delta_{e}}^{e}} \tag{14}
\end{equation*}
$$

which is of the form:

$$
\begin{equation*}
1+Y_{p} Y_{c}=0 \tag{15}
\end{equation*}
$$

where $Y_{p} Y_{c}$ is defined as the effective controlled element of the system. Using the approximate factors in Appendix B:

$$
\begin{equation*}
Y_{p} Y_{c} \doteq \frac{K_{p_{h}} e^{-\tau s} Z_{\alpha}\left(s+\frac{1}{T_{h 1}}\right)\left(s+\frac{1}{T_{F}}\right)}{T_{E} s\left(s+\frac{1}{T_{E}}\right)\left(s^{2}+2 \zeta_{\theta} \omega_{\theta} s+\omega_{\theta}^{2}\right)} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\left(s+\frac{1}{T_{e_{1}}}\right)\left(s+\frac{1}{T_{\theta_{2}}}\right) \tag{17}
\end{equation*}
$$

The numerator zero, $1 / \mathrm{T}_{\mathrm{h}_{1}}$, defines whether the airplane is on the frontside or backside of the power-required curve ($1 / \mathrm{Th}_{1} \doteq-1 / 3 \mathrm{~d} y / \mathrm{dv}$ in $\mathrm{deg} / \mathrm{kt}$). T_{F} is the flare mode time constant, T_{E} is the attitude SAS time constant $\left(\mathrm{I}_{\mathrm{E}}=K_{\theta}^{\prime} / K_{\theta}\right)$, and $⿷_{\theta}$ is the path mode frequency. The detailed characteristics of the piloted loop closure are given in the system survey shown in Fig. 24. The pilot model used for these closures assumed no lead or lag equalization and a neuromuscular lag, τ, of 0.25 sec , e.g., $Y_{p}=K_{p} e^{-\tau s}$. A flare mode time constant of 5 sec was assumed. Note that the attitude SAS mode at $1 / T_{E}$ drives into the zero at $1 / T_{F}$ for low vaiues of pilot gain. Hence, the assumption that $1 / T_{F^{\prime}}^{\prime \prime}=1 / T_{F}$ in the approximation for the closed loop flare response (Eq. 12).

Comparison of the pilot-centered and guidance and control requirements (defined in Subsections V-B-1 and V-B-2) with the pilot/vehicle closure characteristics in Fig. 24 indicates that the ability to increase the closed-loop path mode frequency ($\omega_{\theta}^{\prime \prime}$) is limited by the $S A S, 1 / T_{E}$ (due to the $\mathrm{K} / \mathrm{s}^{2}$ slope of the frequency response at f.eequencies about $1 / \mathbb{I}_{E}$). Pilot equalization (lead in the \dot{h} loop) is impractical since it would require time constants greater than 1 sec to be of any value. (Iead equalization greater than 1 sec is unacceptable; for example, see Ref. 15). Finally, low basic values of path mode damping, ζ_{θ}, make it impossible to ar gment the closed-loop path mode frequency, $u_{0}^{\prime \prime}$, to the required values necessary to turn the corner on the flare ($\mathcal{L}_{\theta}^{\prime \prime}>5 / \mathrm{T}_{\mathrm{F}}$). This basic deficiency is apparent in Configuration AP1 (see Fig. 24b) where $\zeta_{\theta}^{\prime \prime}$ is 0.09 (less than the desired 0.15). The pilot rating for approach and landing with AP1 varied from 4 to 7 whereas the pilot ratings for AP2 $\left(\zeta_{9}^{\prime \prime}=0.15\right)$ were all 4's.

For SIOL configurations which operate far on the backside of the powerrequired surve, $1 / \mathrm{T}_{\mathrm{h} 1}$ will have a relatively large negative value. As show 1 in Fig. 24_{a} (for Configuration BSL1), this is manifested as a low-frequency flight path instability (the free s at the origin drives into the zero in the right half plane at $1 / T_{h 1}$) which is only aggravated by increased pilot gain. Airplanes with this or other deficiencies in the attitude flare characteristics exhibit a requirement for a secondary control (throttles,
spoilers, etc.). The next subsection covers the effect of throttle as a secondary control; however, these results may also be applied to other types of secondary controls with a reinterpretation of the engine lag, Te .

4. Fiare with Attitude Primary and Throttles Secondary

Consider the feedback of sink rate error to throttle as a low-gain secondary closure (Option A in Fig. 23a). The effect of this secondary closure on the closed-loop characteristic roots is obtained by factoring the characteristic equation as a function of $\mathrm{K}_{\mathrm{p}_{2}}$

$$
\begin{equation*}
\Delta^{\prime \prime \prime}=\Delta^{\prime \prime}+K_{p_{2}} \frac{\left(s+\frac{1}{T_{F}}\right)}{\left(s+\frac{1}{T_{e}}\right)} N_{\delta T T_{e}}^{\dot{\hbar} \theta} \tag{18}
\end{equation*}
$$

The migration of the characteristic routs as a function of the pilot's secondary control (throttle) gain is shown in the system survey in Fig. 25 below.

Figure 25. Use of Secondary Control to Stabilize Backside Mode Generic Configuration BSL 1

The effect of $K_{\mathrm{p}_{2}}$ on the numerator of $\dot{\mathrm{h}} / \mathrm{H}_{\mathrm{F}}$ is very small for reasonable values of $K_{p_{2}}$. Figure 25 allows us to quantify the effects of the secondary closure in terms of satisfying the pilot-centered and guidance and control requirenents as summarized below.

- The flight path instability resulting from the pilot's attitude closure (negative $1 / \mathbb{T}_{1}$) can be eliminated by low-gain secondary control activity (throttle). This satisfies the pilot-centered requirement for wide separation in crossover frequency between the primary and secondary control and, at the same time, satisfies the guidance and control requirement for stability.
- The value of the coupling numerator zero, $1 / \mathbb{T}_{h}$, determines the effectiveness of a secondary loop closure. In terms of basic airplane parameters (see Appendix B):

$$
\begin{equation*}
\frac{1}{T_{\mathrm{h} \theta}} \equiv-\mathrm{X}_{\mathrm{u}}+\mathrm{Z}_{\mathrm{u}}\left(\frac{X_{\delta T}}{\mathrm{Z}_{\delta T} T}\right) \tag{19}
\end{equation*}
$$

Airplanes with large thrust inclination angles (smail $X_{\delta T} / Z_{\delta T \mathrm{~T}}$) tend to have very low values of $1 / T_{h e}$. Thus, we would expect that a combination of large thrust inclination angle (low $1 / T_{h \theta}$) and operation way on the backside (large negative $1 / T_{h_{1}}$) would receive very poor pilot ratings due to the pilot's inability to improve $1 / \mathbb{T}_{h}$ with the secondary throttle control. That is, the pilot's inability to satisfy the pilotcentered requirements would be expected to result in very poor ratings.

5. Analytical Conclusions for Attitude Flare

The results of the above analysis of the attitude flare with throttle as a secondary control may be summarized as follows:

- The ability to satisfy the guidance and control and pilot-centered requirements for flare (e.g., obtain good pilot ratings) mar be quantified in terms of the equalization and pilot effort require \dot{u}_{11} to increase the closed-loop path mode frequency, ω_{θ}, to values greater than $5 / \mathrm{T}_{\mathrm{F}}$ (approximately $1 \mathrm{rad} / \mathrm{sec}$) with adequate closed-loop domping ($\zeta_{\theta}^{\prime \prime} \geq 0.15$).
- The parameters which affect the ability to improve the closed-J.oop path mode, ω_{θ}^{0}, are the flare mode time constant (T_{F}), the attitude SAS time constant ($\mathrm{T}_{\mathrm{E}}=\mathrm{K}_{\mathrm{j}} / \mathrm{K}_{\theta}$), and the attitude constrained path mode damping and frequency (ζ_{θ} and α_{θ}). The flare mode time constant is a function of the flare geometry, depending on the flare height and sink rate at the initiation of flare. Its value for STOL configurations on a 6 deg glide slope is generally on the order of 5 sec .
- Configurations which require a large amount of lead ($\mathrm{T}_{\mathrm{E}}=\mathrm{K}_{\dot{\theta}} / \mathrm{K}_{\theta}$) in the attitude stability augmentation system (due to lightly damped or unstable short-period characteristics) are characterized by degraded path mode response characteristics. This effect stems from the fact that the inner-loop lead associated with augmentation of the attitude mode becomes a lag in the outer loop. That is, a closure of the inner, attitude loop in Fig. 22a would result in a numerator zero occuring at $1 / T_{E}$; whereas closure of the outer, path mode loop (shown in Fig. 24) involves $1 / \mathbb{T}_{\mathrm{E}}$ as a pole or lag in the system. Thus, we see that there is some upper limit to the ratio of pitch rate/attitude feedback that can be used before significant degradation in the path response will occur.
- Low-gain secondary control with the throttle during the flare is very effective in minimizing the effect of large negative values of $1 / \mathrm{C}_{\mathrm{h} 1}$. Physically, this tends to minimize the tendency of configurations way on the backside to drop out at the end of the flare.
- The value of the throttle as a secondary control for attitude flares is dependent on the position of the couplirg numeratior zero, $i / \mathbb{T}_{h \theta}$. Low values of $1 / \mathbb{T}_{h \theta}$ tend to restrict the value of throttle as a secondery control. In fact, for some cases, throttle as a secondary control may actually degrade the response. Experimental evidence to support this conclusion was roted in the pilot commentary for Configuration AP6 (see Appendix A) which haid reasonably good flare characteristics with attitude alone. The pilots noted that the use of throttle (as a secondary control) in the flare tended to make chings much worse ($1 / T_{h}$) on AP6 was 0.05). Other configurations with similar (Iow) $1 / T_{h \theta}$ (AP1 and AP10), rut aiso with marginal. attitude flare characteristics (poor $\omega_{\theta}, \zeta_{\theta}$ location) received very poor ratings. This is attributed to the pilot's inability to improve the response with a secondary control in the presence of a marginal primary control.

Abstract

On Configuration AP10 the engine lag time constant was reduced from ?.5 sec to 0.5 sec to see if improved bandwidth would help. The resulting pilot commentary was "can see faster response of sink rate to throttle but it doesn't seem to help performance; therefore my pilot rating is unchanged (was a 6)." Thus, the experimental results tend to verify the importance of the effect of low $1 / T_{h \theta}$ on setting minimum acceptable boundaries for throttle as a secondary control. These problems arose out of an attempt to compensate for limited control power for flaring with attitude by using a step secondary throttle on Configurations AP1 and AP10. This is further discussed in Section V-B-8.

6. Fiare with Throttle as a Primary Control

Using the same technique as for attitude flare, the effective controlled element (pilot plus airplane) may be derived from the block diagram of the closed-loop flare maneuver in Fig. 22b. An approximate expression for the oepn-loop pilot plus airplane (effective controlled element) has been derived from Fig, 22 b and the approximate factora in Appendix B and is given as follows:

$$
\begin{equation*}
Y_{p} Y_{c} \doteq \frac{K_{p_{h}} e^{-\tau s_{\delta_{\delta_{T}}}}\left(s+\frac{1}{T_{\mathrm{F}}}\right)\left(s+\frac{1}{T_{h \theta}}\right)}{s\left(T_{e} s+1\right)\left(s^{2}+2 \zeta_{\theta} \omega_{\theta} s+\omega_{\theta}^{2}\right)} \tag{20}
\end{equation*}
$$

The form of this effective controlled element is identical to the effective controlled element for attitude flares and for glide slope tracking (see Eq. 9 in Section $\Psi-A)$. In fact, recognizing $\alpha \doteq h, 1 / T_{d \theta}=1 / T_{h \theta}$, the terms are identicel to the glide slope tracking $Y_{p} Y_{c}$ except for the zero ($s+1 / T_{F}$). It follows that the generic response plots and conclusions stated in Table 9 apply equally well to throttle flares and glide slope tracking, with K_{d} replacea by $1 / T_{F}$. This is a very important and intuitively satisfying result in that it indicates that problems with flight path control have a one-to-one correlation with flare and landing problems for configurations where power is primary for flare, e.g., serious degradations occur when $1 / T_{h \theta} \ll \omega_{\theta}$.

7. Flare with Throttle Primary and Attitude secondary

The ability of the pilot to improve the powered flare characteristics by closing a low-gain attitude loop has been investigated by considering the effect of this closure on the characteristic equation for the closed-loop power flare.

Putting this in root locus form for factoring and using the approximete factors in Appendix B

$$
1+\frac{\frac{K_{p_{2}}}{T_{E}}+\frac{1}{2}\left(s+\frac{1}{T_{h 1}}\right)\left(s+\frac{1}{T_{F}}\right)}{\left(s+\frac{1}{T_{h \theta}{ }^{\prime}}\right)\left(s+\frac{1}{T_{E}}\right)\left(s+\frac{1}{T_{F}^{\prime \prime}}\right)\left(s^{2}+2 \zeta_{\theta}^{\left.\prime \prime \omega_{\theta}^{\prime \prime} s+\omega_{\theta}^{\prime \prime 2}\right)}\right.}=0
$$

A system survey indicating the effect of the pilot's secondary (att,itude) loop closure on the characteristic roots (roots of $\Delta^{\prime \prime}$) is shown in Fig. 26.

The following conclusions can be drawn from Fig. 26

- No significant changes in any of the characteristic roots occur for "low gain" secondary attitude control.
- The secondary control gain must be increased to crossover frequencies near the closed loop path mode, wol, before any of t'ie roots are affected ("moderate gain" in Fig. 26).
- basei on the pilot centered requirement for separation of crossover frequencies for primary and secondary controls, attitude is not a good secondary control for flare.

Figure 26. Effect of Secondary Attitude Closure on Closed Loop Roots for Throttle Flare

8. Attitude Effectiveness for Flares

In Subsection V-B-3 attitude only flares were evaluated on the basis of dynamic response characteristics (e.g., closed loop path mode). An important factor that was not considered was the magnitude of pitch attitude required to achieve the flare maneuver. This may be determined from the following expression

$$
\begin{equation*}
\frac{\theta}{\dot{H}_{F}}=\left(\frac{\dot{b}}{\dot{H}_{F}}\right)\left(\frac{\theta}{\dot{h}}\right)=\frac{\dot{N}^{\prime \prime}}{\dot{H}_{F}^{\prime \prime}} \frac{N_{\delta_{e}}^{\theta}}{\Delta_{\dot{S}}^{e}} \tag{23}
\end{equation*}
$$

Substituting Eq. 12 for $\dot{\mathrm{h}} / \dot{H}_{F}$ and approximate factors in Appendix B for the θ and \dot{h} numerators

$$
\begin{equation*}
\frac{\theta}{\dot{H}_{F}} \doteq \frac{\frac{1}{T_{F}} \frac{\alpha_{a}^{\prime \prime}}{Z_{a}}}{\left(s+\frac{1}{T_{F}}\right)\left(s+\frac{1}{T_{h_{1}}}\right)} \frac{s^{2}+2 \zeta_{\theta} \omega_{\theta} s+\alpha_{\theta}^{2}}{s^{2}+2 \zeta_{\theta}^{\prime \prime \omega_{\theta}^{\prime \prime} s+\omega_{\theta}^{\prime \prime 2}}} \tag{24}
\end{equation*}
$$

The frequency response asymptotes of Eq. 24 are plotted in Fig. 27.

Figure 27. Asvmptotes of $\left|\theta / \mathrm{H}_{\mathrm{F}}\right|$

A technique commonly used for configurations with marginal Z_{α} was to bring in some power (throttle step) at the initiation of the flare. This is shown as Option B for the secondary control in Fig. 22a. The object was to obtain a decrease in the flight path angle and thereby minimize the requirements on pitch attitude in the flare. Since crossfeeds from the command input (feedforward) have no effect on the characteristic equation, the effect of this control stategy is apparent from analysis of the $\dot{\mathrm{h}} / \mathrm{H}_{\mathrm{F}}$ numerator. Making the usual tight attitude control assumption (K_{θ} large), the numerator is written as:

$$
\begin{align*}
& N{\underset{H}{H}}_{\dot{H}}^{\dot{H}}=Y_{\theta}\left[K_{p_{1}} e^{-\tau s} \frac{1}{T_{F} s} N_{\delta_{e}}^{\dot{h}}+K_{p_{2}} \frac{1}{T_{e^{s}}+1} N_{\delta T}^{\dot{h}} \dot{\delta}_{e}\right] \\
& =Y_{\theta}\left[K_{p_{1}} e^{-\tau s} \frac{1}{T_{F} s} Z_{\alpha}\left(s+\frac{1}{T_{h_{1}}}\right)+K_{p_{2}} Z_{\delta_{T}} \frac{s+\frac{1}{T_{h \theta}}}{T_{e} s+1}\right] \tag{25}\\
& \therefore Y_{\theta} K_{p_{1}} e^{-\tau s} \frac{1}{T_{F} s} Z_{\alpha}\left(s+\frac{1}{T_{h_{1}}}\right)\left[1+T_{F} \frac{K_{p_{2}} Z_{\delta_{T}} s\left(s+\frac{1}{T_{h \theta}}\right)}{K_{p_{1}} e^{-\tau s} z_{\alpha}\left(s+\frac{1}{T_{h_{1}}}\right)\left(T_{e} s+1\right)}\right]
\end{align*}
$$

The numerator zeros result from factoring Eq. 25 (with $K_{p_{2}} / K_{p_{1}}$ as the root locus gain) which is shown for a generic configuration with very low $1 / T_{h}$ (AP10) in Fig. 28.

Figure 28. Migration of \dot{h} / \dot{H}_{F} Numerator Zeros with
Secondary Control (Throttle) Gain, $K_{p_{2}}$

As would be expected, the magnitude of the pitch attitude required to flare depends on Z_{α}. The form of the closed loop transfer function for flare is

$$
\begin{equation*}
\frac{\dot{h}}{\left(\dot{T}_{F}\right)_{s t e p}}=\frac{\left(\dot{K}_{p_{1}} \frac{1}{T_{F}} Z_{\alpha}+K_{p_{2}} Z_{\delta_{T}}\right)\left(s+\frac{1}{T_{h_{1}^{\prime \prime \prime}}}\right)\left(s+\frac{1}{T_{h_{\theta}^{\prime \prime \prime}}}\right)}{\left(T_{e} s+1\right)\left(s+\frac{1}{T_{F}}\right)\left(s+\frac{1}{T_{h_{1}^{\prime \prime}}}\right)\left(s^{2}+2 t_{\theta}^{\prime \prime} \alpha_{\theta}^{\prime \prime} s+\omega_{\theta}^{\prime \prime 2}\right)} \tag{26}
\end{equation*}
$$

Where the triple primed numerator zeros indicate that three loops have been closed ($h, \dot{h} \rightarrow \delta e$, and $\dot{H} ; \delta T$), and the double primed denominator indicate that $H_{F} \rightarrow \delta_{T}$ does not affect the denominator.

Assuming near cancellation of the $1 / T_{h_{1}}$ roots, Table 10 shows some resulting asymptotic Bode sketches. These are to be interpreted not as the equivalent of frequency response measurements but as indicative of the system response to an initial (secondary) throttle step. The primary improvement is seen to be an overall increase in gain (gain is increased by $K_{p_{2}} Z_{\delta_{T}}$). If $1 / T_{h \theta}^{\prime \prime \prime} \ll \dot{\alpha}_{\theta}^{\prime \prime}$, this increase in gain is offset by a mid to

EFFECT OF THROTTLE STEP AS SECONDARY CONTROL

 IN CLOSED LOOP FLARE MANEUVER

- Basic response at $1 / \mathrm{T}_{\mathrm{F}}$ with "nuisance mode" at ω_{θ}
- Tendency to over flare depends on $\zeta_{\theta}^{\prime \prime}$

No Secondary Control

- Increased overall response, i.e., effective increase in control power
- Rapid initial response with mid-frequency delay proportional to $1 / T_{h \theta}^{\prime \prime \prime}-1 / T_{F}$
Step Throttle Secondary Control

$$
1 / T_{h \theta}=\omega_{\theta}
$$

(Represented by Configurations BSL1, 2, 2RLD in experiment)

Step Throttle as Secondary Control $1 / T_{h \theta} \ll \omega_{\theta}$
(Represented by Configurations AP1, 2, 6, 6 RID, 10)
low "frequency" droop which makes the aircraft appear to fall out at the end of the flare. This characteristic is the same as that which also caused the flight path control problems with power noted earlier (e.g., $1 / \mathbb{T}_{h \theta}^{\prime \prime} \ll \omega_{\theta}^{\prime \prime}$ for Configurations AP1 and AP10). It is now obviois why the pilots were unable to improve t : eir landing performance by using power as a secondary control on these configurations. Many pilots initially thought the problem was due to the large engine lag, but muns with T_{e} as low as 0.25 sec did not result in any rating improvement.

9. finst Reguiation

B. noted in the pilot-centered requirements, Section V-B-2, one of the functions of the primary control is to provide the necessary regulation against sink rate excursions due to horizontal wind shear near touchdown. The generic characteristics of the sink rate response to horizontal gusts of the closed-loop pilot plus airplane system with attitude or throttle as primary controls are shown in Fig. 29a and 29b, respectively.

$$
\frac{\dot{h}}{u_{\theta}}=-\frac{Z_{u} s^{2}\left(T_{E} s+1\right)}{T_{P}\left(s+\frac{1}{T_{n_{1}}^{\prime \prime}}\right)\left(s+\frac{1}{T_{p}}\right)\left(s^{2}+2 \zeta_{\theta}^{N} \omega_{\theta}^{\prime \prime} s+\omega_{\theta}^{\prime \prime 2}\right)}
$$

o) Allifude Only Flare

$\frac{h}{u_{\theta}}=-\frac{Z_{u} s^{3}\left(s+\frac{1}{T_{0}}\right)}{\left(s+\frac{1}{T_{\theta}^{\prime \prime}}\right)\left(s+\frac{1}{T_{n \theta}^{\prime \prime}}\right)\left(s+\frac{1}{T_{r}}\right)\left(s^{2}+2 \zeta_{\theta}^{\prime \prime} \omega_{\theta}^{\prime \prime} s+\omega_{\theta}^{\prime \prime 2}\right)}$
b) Throtle Only Flare

Figure 29. Generic Characteristics of Gust Response in Flare
The following conclusions may be drawn from Fig. 29:

- The sink rate response to a u gust at frequencies above the closed-loop path mode, ω \#月, is proportional to the stability derivative, Z_{u}, and is the same for either attitude or throttle flares
- The gust response of the closed-loop systell $\dot{\Sigma}$ attenuated at frequencies above and below the closed-loop path mode. The peak response (at $\omega_{8}^{\prime \prime}$) decreases with increasing will; this is another reason for wanting to maximize the closedloop path mode frequency, $\omega_{\theta}^{\prime \prime}$.
- Maximizing the coupling numerator zero, $1 / \mathbb{T}_{h \theta}$, will reduce the low frequency gust response (i.e., below $\omega_{\theta}^{\prime \prime}$)

As was noted in the simulator and flight test results, the pilot ratings for flare and landing were highly sensitive to the gust environment and tended to be especially sensitive to large horizontal shears. It is therefore very desirable to minimize the magnitude of the \dot{h} to u gust response shown generically in Fig. 29. These generic frequency response asymptotes indicate that the stability derivative z_{u} sets the magnitude of the \dot{h} to u gust response. For CIOL aircraft z_{u} is simply a function of the trim lift, e.g., from Ref. 12

$$
\begin{equation*}
z_{u} \equiv-\frac{\rho S U_{0}}{2 m}\left(C_{L}+C_{I_{u}}\right) \tag{27}
\end{equation*}
$$

For CTOL in subsonic flight, $C_{L_{1}}=0$ and

$$
\begin{equation*}
z_{u} \doteq-\frac{2 g}{U_{0}} \tag{28}
\end{equation*}
$$

However, for SHOL configurations, the variation of lift coefficient with speed may be significant $\left(C_{I_{\mu}} \neq 0\right)$, and for vectored thrust configurations a large portion of the vehicle weight may be supported directly or indirectly by the thrust. z_{u} for STCL configurations may be written as follows:

$$
\begin{equation*}
\mathrm{z}_{\mathrm{u}}=-\frac{2 \mathrm{~g}}{U_{0}}\left[1-\frac{\partial_{C_{L}}}{\partial_{\mathrm{C}_{\mu}}} \frac{\mathrm{C}_{\mu}}{\mathrm{C}_{\mathrm{L}}}\right] \tag{29}
\end{equation*}
$$

The efficiency of the powered lift concept is directly proportional to $\partial_{C_{L}} / \partial_{C_{\mu}}$. Thus, we would expect that highly efficient STOLs will have lower values of Z_{u} and therefore decreased gust sersitivity. (A typical number for an EBF is $\left.\left(\partial_{C_{L}} / \partial_{C_{\mu}}\right)\left(C_{\mu} / C_{L}\right)=0.4.\right)$

C. DISCUSSION OF KEY PARAMETERS

Certain key parameters have been identified as being of primary importance in assessment of minimally acceptable path control. These are summarized as follows:

$\omega_{\theta}^{\prime \prime}$ and $\zeta_{\theta}^{\prime \prime}$	Closed loop path mode frequency and damping
$1 / \mathrm{T}_{\mathrm{E}}$	Attitude SAS mode. Limits ability to obtain desired closed loop path mode for attitude flares
Z_{N}	Heave damping derivative
$\mathrm{Z}_{\mathrm{\alpha}}=\mathrm{U}_{0} \mathrm{Z}_{\mathrm{W}}$	Measure of control power for attitude flare
Z_{u}	Speed coupling derivative. Measure of horizontal gust sensitivity
$\mathrm{T}_{\mathrm{F}}=\mathrm{H}_{\mathrm{F}} /\left(\dot{H}_{\mathrm{T}} \mathrm{D}_{\mathrm{C}}-\dot{H}_{\mathrm{F}}\right)$	Flare mode time corstant. Defines minimum acceptable closed loop path mode frequency, e.g., $\omega_{\theta}^{\prime \prime} \geq 5 / T \mathrm{~F}$. Usually about 5 sec for STOL
$1 / T_{h_{1}}$	Backside parameter defines tendency to drop out at the end of an attitude flare $1 / \mathrm{T}_{\mathrm{h} 1}=-(1 / 3)(\mathrm{dy} / \mathrm{dV})$ in deg/kt. Sets requirement for secondary throttle control
$1 / T_{h} \theta$	Dominant numerator zero for flight path control with throttles. Low values limit usefulness of throttle as a primary or secondary control when attitude numerator is coupled
$1 / \mathrm{T}_{\mathrm{e}}$	Engine lag. Restricts ability to increase $\omega_{\theta}^{\prime \prime}$ to its minimum acceptable value

The ability to achieve good flight path control depends on satisfying the pilot centered and guidance and control requirements. The most dominant of the relationships between these requirements and the key parameters are defined below.

1. Guidance and Control Requirements

- Command following. Depends on adequate 1 losed loop path mode frequency $\omega_{\theta}^{\prime \prime}$. A tentative lower limit (pending more exhaustive testing) of $\omega_{\theta}^{\prime \prime} \geq 5 / T_{F}$ has been set for the flare, but no value
has yet been determined for glide slope tracking. It is suspected that the flare requirements are more stringent and therefore will also set the critical limits for wor final approach.
- Disturbance regulation. The level of sensitivity of a configuration to horizontal gusts (which are the critical input) depends on Zu . The ability to regulate against these gusts depends on $\omega_{\theta}^{\prime \prime}$.
- Stability. Satisfying the guidance and control requirements clearly depends on achieving some minimum value of $\omega_{\theta}^{\prime \prime}$ (tentatively set at $5 / T_{F}$. This, of course, presumes some minimum level of closed loop path mode damping, $\zeta_{\theta}^{\prime \prime}$. ($\zeta_{\theta}^{\prime \prime}$ minimum tentatively set at 0.15.)

2. Pilot Centered Requirements

- Minimum pilot compensation. Since closure of the path loop generally occurs at or below $1 \mathrm{rad} / \mathrm{sec}$, pilct lead equalization is generally not possible without degraded ratings. It follows that the effective controlled element must be equalized to a K / s via appropriate selection of feedbacks (usually path error and path error rate). Low values of $1 / T_{h \theta}\left(1 / \mathbb{T}_{h \theta} \ll \omega_{\theta}\right)$ and low values of ζ_{θ} tend to restrict or make it impossible for the pilots to equalize to $\mathrm{a} \mathrm{K} / \mathrm{s}$. A large engine lag, T_{e}, and/or attitude SAS mode lag, T_{E}, make it impossible to extend the region of K / s to allow the pilot to augment $a_{\theta}^{\prime \prime}$ to its minimum acceptable value.
- Frequency separation of controls. The ability to augment an attitude flare with low frequency throttle control is limited by low values of $1 / T_{h \theta}$. Attitude is not a good secondary control because it ${ }^{n}$ nes not improve the primary loop closure unless closed at path mode frequencies.
- Response quality. Configurations with $1 / T_{h \theta} \ll \omega_{\theta}$ tend to have very poor response quality for flight path control with throttles.

The pilot's ability to improve the path mode response is central to the issue of defining minimaliy acceptable path control. It therefore seems logical that pilot opinion should be sensitive to the path mode root locus, e.g., the root locus plot corresponding to $1+Y_{p} Y_{c}=0$. The generic characteristics of this locus for attitude and throttle as primary controls are shown in Fig. 30. Thas been assumed to be zero to allow a definition of tine asymptote of the path mode locus. If the ability to modify ω_{g} is indeed

a) Atritude Primary

$$
1+\frac{K_{p_{B}} e^{-r g} Z_{a}\left(s+\frac{1}{T_{m_{1}}}\right)\left(s+\frac{1}{T_{f}}\right)}{T_{E} s\left(s+\frac{1}{T_{E}}\right)\left(s^{2}+2 \zeta_{\theta} \omega_{\theta} s+\omega_{\theta}^{2}\right)}
$$

b) Throttle Primary
$1+\frac{K_{p h} e^{-\tau s} z_{\delta_{T}}\left(s+\frac{1}{T_{n \theta}}\right)\left(8+\frac{1}{T_{F}}\right)}{T_{\theta} s\left(s+\frac{1}{T_{\theta}}\right)\left(s^{2}+2 \zeta_{\theta} \omega_{\theta} s+\omega_{\theta}^{2}\right)}$

Figure 30. Generic Root Locus Characteristics ($\tau=0$) of $1+Y_{p} Y_{c}=0$
a true figure of merit, σ_{θ} and σ_{T} would certainly be a logical correlating parameters. They are intuitively desirable because they contain most of the key variables identified in the analysis and sumarized at the beginning of this section. The one key variable not accounted for by σ_{θ} or σ_{T} is the gust sensitivity Z_{u}. Clearly, the few generic conijgurations tested in this experiment do not form a large enough data base to test such hypotheses as these. However, it is not unreasonable to plot up the landing data (Task 2.1) on a grid of σ_{θ} vs. Z_{u}. (Z_{u} is picked as a measure of gust sensitivity on the basis of the $\dot{h} / \mathrm{u}_{\mathrm{g}}$ asymptote in Fig. 29 and this is done in Fig. 31.

As was stated in the introduction, the purpose of this study was to identify the key parameters and critical flight regimes and not to define boundaries. It is recommended that based on the results of this study all existing data should be gathered and analyzed to see if appropriate boundaries cen be drawn. It is expected that data where $1 / T_{h \theta} \ll \omega_{\theta}$ will be found to be lacking and will require future simulator experiments with some flight test baciup as discussed in Section IV.

Note: Number in circles refers to configuration

Fisure 31. One Possible Way of Using Key Parameters to Correlate Minimum Acceptable Path Control with Aircraft Configuration

Referring to Fig. 31, certain trends in the experimental results (pilot ratings) may be explained by the analysis.

- The low σ_{θ} for Configurations AP1 and AP10 indicates that the pilot had problems obtaining the necessary closed loop path mode bandwidth making flare with attitude unacceptable. $1 / \mathbb{T}_{\theta}$ was very low for both of these configurations ($1 / \mathbb{T}_{\text {h } \theta} \ll \omega_{\theta}$) which is indicative of flight path control problems with throttle. Therefore, neither throttle nor attitude was an acceptable primary control, and use of throttle as a secondary control was not a solution (low $1 / T_{h \theta}$). Hence, the unacceptable pilot ratings.
- The value of σ_{θ} for Configurations BSL1, BSL2, AP2, AP6, and AP6 RLD are all about the same ($\sigma_{\theta}=0.5$ to 0.55). From Fig. 31, it is seen that this value of σ_{θ} is acceptable for configurations with low gust sensitivity (z_{u} / T_{E}). However, as the gust sensitivity is increased to approximately the CIOL value ($\mathrm{Z}_{\mathrm{u}} \stackrel{-2 \mathrm{~g}}{=} / \mathrm{U}_{0}$), the pilot ratings begin to degrade into the unacceptable region. (Compare pilot ratings for BSLI and AP7 in Fig. 16 with and without turbulence.)

Because of the very large engine lag used on the configurations ($T_{e}=1.5 \mathrm{sec}$), there is little or no data for correlating throttle as a primary control. Further correlations will require analysis of presently available results from
other experiments and a carefully defined experiment to fill in the gaps in existing data. This will allow definition of quantitative relationships between the key parameters defined in this study and pilot opinion (especially in the region of minimum acceptable flying qualities). The results to date indicate that the pilot ratings tended to become minimally acceptable when:
a. The primary control was in itself marginal, and
b. Use of the secondary contrci did not improve the response to the primary control
c. The sensitivity to turbulence approached that of an equivalent CTOL ($\mathrm{Z}_{\mathrm{u}} \doteq-2 g / \mathrm{U}_{0}$) and/or σ_{θ} was in a marginal region

BECITON VI

CONCLUBIONS

As was discussed in the introduction, this program was carried out in phases - the pre-flight simulation phase, the flight test and post-flight simulation phase, and an analysis of results phase. Each of these phases and the conclusions drawt during each phase are discussed in the body of this report. The conclusions are sumarized below.

A. CONCLUSIONS FROM PRE-FLIGHI SIMILATION PHASE

- Major deficiencies in path control were found to be most apparent during short final and flare and landing. IFR glide slope tracking was not found to be critical for any of the configurations.
- Minimum acceptable pilot ratings correlated very well with closed-loop characteristics. Cases where the pilots were not able to equalize the effective controlled element to a K / s shape were rated as unacceptable. These configurations had a coupled attitude numerator and an essentially vertical thrust inclination angle so that $\omega_{\theta} \gg 1 / \mathrm{T}_{\mathrm{h} \theta}$.
- Flight-path/airspeed coupling was found to be undesirable by the pilots but not a dominant factor in the ratings (which were found to be more directly associated with ability to control flight path). Flight-path/airspeed coupling would, of course, be a limiting factor if it led to other problems such as regions of degraded path control or safety limits (such as stall).
- Increased turbulence levels ($\sigma_{u_{g}}=4.5 \mathrm{ft} / \mathrm{sec}$) significantly degraded the pilot opinion for the final approach and landing task.
- The addition of a flight director tended to improve the pilot ratings and performance. It did not, however, allow the pilots to decouple the path and speed responses for aircraft with significant path/speed coupling. The most significant effect of the flight director was on the lateral line up at breakout, and this resulted in drastically improved performance. Some pilots noted that while their performance wes significantly improved by the flight director, the workload was also correspondingly increased. This was due to the intense concentration required to keep three needles centered (glide slope, localizer, and throttle directors) while still maintaining some awareness of the status information.

B. CONGUSIONS FROM THE FLIGHT TEST AND

 POST-FLIGHT SIMUATION RESULTS- Agreement between flight and simulator was quite good as long as the environmental, task, and procedural variables were kept nearly identical. The pilot ratings were found to be very sensitive to these effects.
- During the pre-flight simulation it was noted by aany pilots that the turbulence model seemed to result in excessive flight path excursions which seemed unrealistically high and inconsistent with past (CTOL) experience. This was checked in flight by flying the Variable Stability NAVION with the simulator turbulence tape but retaining the basic NAVION dynamics. The evaluation pilot (who flies this airplane every day) described the landing task as typical of a day with 15-20 kt gusting to 25 kt wind and rated the baic NAVION a 4.5 in this situation. Hence, there is evidence that: (1) the simulated turbulence was not excessively large and (2) the simulator did not magnify the effect of turbulence.
- Consjerable difficulty was encountered in establishing the environmental and procedural variables for the simulator landing because of the credibility problem with the visual display. In many cases the pilots underestimated the validity of the display and rated optimistically with the idea that they could do better with improved visual cues. Once into the flight program, it was found that the improved visual cues were of little value in improving the landing workload or performance and, in fact, served to illustrate how bad things really were. This result points up a requirement to subject the evaluation pilots to same limited flight experience (say, one configuration) to obtain the proper orientation with respect to the environmental variables in each new simulation program.
- Relaxation of constraints on the touchdown sink rate appeared to reduce the pilot workload and improved tcuchdown precison. This conclusion is based on a comparison of the Phase I and II post-flight simulations where the landing was aborted whenever sink rate exceeded a nominal value in the Phase I part of the simulation. There was some disagreement between the two pilots on this phase of the program as to whether removing the abort criterion resulted in a reduction in workload. Therefore, more extensive testing is required (more pilots) to valldate this conciusion. As it stands now, however, it appears that minimum acceptable boundaries are dependent on the touchdown constraints (maxdmum allowable sink rate and runway length).

C. CONGLUSIONS FROM ANALYSIS PHASE

- Pilot opinion for flight path control on short final was degraded when:
- The system lags (airframe plus engine) combined to reduce the achievable bandwidth (closed-loop path mode frequency, $\omega_{\theta}^{\prime \prime}$) to unacceptably low values.
- The effective controlled element could not be equalized to a K / s response due to $1 / \mathrm{T}_{\mathrm{h} \theta} \ll \omega_{\theta}$ and/or low path mode damping, ? ${ }_{\theta}$.
- There was experimental evidence that the pilot's effective command structure in the flare was a linear decrease in sink rate with altitude, e.g., $\mathrm{H}_{\mathrm{C}}=-\left(1 / \mathrm{T}_{\mathrm{F}}\right) \mathrm{H}+\mathrm{K}$.
- The pilots commoniy used two controls during landings, especially in turbulence. This was not deemed undesirable as long as one control could be considered as primary (usually attitude) and the other as a secondary (usually throttle in this experiment). Thus, the analysis of he landing task was based on the premise that to achieve an acceptable landing airplane, the primary control must be adequate in itself or the response to the primary control must be improved by use of a secondary control.
- All of the tested airplanes had a very large engine lag. This made it desirable for the pilots to make attitude primary for landing.
- The pilot ratings for the landing task tended to degrade to unacceptable when:
- The primary control was in itself marginal, and
- Use of the secondary control did not improve the response to the primary control, and
-- The sensitivity to turbulence approached that of a CTOL ($Z_{\mu} \doteq-2 \mathrm{~B} / U_{0}$)

REFTERENCESS

1. Ashkenas, Irving L, and Samuel J. Craig, Multiloop Piloting Aspects of Longitudinal Approach Path Control, ICAS Paper No. 72-46, Sept. 1972.
2. Craig, Samuel J., Irving L. Ashkenas, and Robert K. Heffley, Pilıt Background and "ehicle Parameters Governing Control Technique in STOL Approach Situations, FAA-RD-72-69, June 1972.
3. Craig, Samuel J., and Anthony Campbell, Analysis of VIOL Handling Qualities Requirements, Part I: Longitudinal Hover and Transition, AFFDL-TR-67-179, Oct. 1968; Samuel J. Craig, Anthony Campbell, and Richard H. Klein, Part II: Lateral-Directional Hover and Transition, AFFDL-TR-67-179, Part II, Feb. 1970.
4. Franklin, James A., and Robert C. Innis, "Flight-Path and Airspeed Control for the SIOL Approach and Landing," SIOL Technology, NASA SP-320, Oct. 1972, pp. 181-198.
5. Heffley, Robert K., and Robert L. Stapleford, A STOL Airworthiness Investigation Using a Simulation of an Augmentor Wing Transport, Vol. I: Summary of Results and Airworthiness Implications, NASA TM-X-62, 395, FAA-RD-74-179-I, Mar. 1974; Heffley, Robert K., Robert L. Stapleford, Robert C. Rumold, and John M. Lehman, Vol. II: Simulation Data and Analysis, NASA IM-X.-Cr,396, FAA-RD-74-179-II, Oct. 1974 .
6. Stapleford, Robert L., Samuel J. Craig, and Jean A. Tennant, Measurement of Pilot Describing Functions in Single-Controller Multiloop Tasks, NASA CR-1238, Jan. 1969.
7. Stapleford, Robert L., Robert K. Heffley, and Robert C. Rumold, A STOL Airworthiness Investigation Using a Simulation of a Deflected Slipstream Transport, Vol. I: Summary of Results and Airworthiness Implications, NASA TM-X-62,392, FAA-RD-74-143-I, Oct. 1974; Stapleford, Robert L., Robert K. Heffley, John M. Lehman, and Wayne F. Jewell, Vol. II: Simulation Data and Analysis, NASA IM-X-62,393, FAA-RD-74-143-II, Oct. 1974; Heffley, Robert K., Wayne F. Jewell, Robert L. Stapleford, and Samuel J. Craig, Vol. III: Breguet 941S Simulation Model, NASA TM-X-62,394, FAA-RD-74-143-III, Oct. 1974.
8. Rumold, Robert C., Robert L. Siapleford, Robert K. Heffley, John M. Lehman, et al., A STOL Airworthiness Investigation Using Simulations of Representative STOL Aircraf't, Systems Technology, Inc., TR-1047-2, Dec. 1974.
9. Heffley, Robert K., John M. Lehman, Robert C. Rumold, Robert I. Stapleford, et al., A Simulator Evaluation of Tentative STOL Airworthiness Criteria, Vol. I: Simulation Results and Analysis, Systems Technology, Inc., TR-1047-3-I, June 1975; Heffley, Robert K., John M. Lehman, Robert L. Stapleford, Barry C. Scott, and Charles S. Hynes, Vol. II: Background Information, Systems Technology, Inc., TR-1047-3-II, June 1975.
10. Hoh, Roger H., Richard H. Klein, and Walter A. Johnson, Design of a Flight Director/Configuration Management System for Piloted STOI Approaches, NASA CR-114688, Sept. 1973.
11. McRuer, D. T., and E. S. Krendel, Mathematical Models of Human Pilot Behavior, AGARDograph No. 188, Jan. 1974.
12. McRuer, Duane, Irving Ashkenas, and Dunstan Graham, Aircraft Dynamics and Automatic Control, Princeton Univ. Press, Princeton, N. J., 1973.
13. McRuer, Duane, "The Development of Pilot-in-the-Loop Analysis," J. of Aircraft, Vol. 10, No. 9, Sept. 1973, pp. 515-524."
14. McRuer, Duane, and David H. Weir, "Theory of Manual Vehicular Control," Ergonomics, Vol. 12, No. 4, July 1969, pp. 599-633.
15. McRuer, Duane, Dunstan Graham, Ezra Krendel, and William Reisener, Jr., Human Pilct Dymamics in Compensatory Systems - Theory, Models, and Experiments with Controlled Element and Forcing Function Variations, AFFDL-TR-65-15, July 1965.

APPInNIX A
PIIOT RATINGS, COMNENTARY, AND BACKCROUND

Figure A-1. Summary of Preflight Simulation Pilot Ratings

TASK CODE
1.01 HS tracking (IFR) from 1500 ft to breakout at 300 ft -
no landing $4.5 \mathrm{ft} / \mathrm{sec}$ rms turbulence
1.1 High fast I.C. - 85 kt IAS and 350 ft above glide slope turbulence off
1.2 Low slow I.C. - 65 kt IAS and 350 ft below glide slope turbulence off
1.7 Turbulence off - change speed on glide slope $\pm 10 \mathrm{kt}$
2.0 Landing without turbulence; I.C. = 200 ft ; all VFR
2.1 Task 2.0 with $\sigma_{u_{g}}=4.5 \mathrm{ft} / \mathrm{sec}$
2.4 Task 2.1 with 10 kt crosswind from left
2.7 Task 2.1 with discrete shear - zero wind at 200 ft to a 10 kt headwind at 100 ft ($10 \mathrm{kt} / 100 \mathrm{ft}$)
3.0 Composite - Intercept LOC - intercept glide slope breakout at 300 ft - land - turbulence off
3.1 Task 3.0 with $\sigma_{u g}=4.5 \mathrm{ft} / \mathrm{sec}$
3.2 Task 3.1 with a steady 10 kt headwind
3.3 Task 3.1 with a steady 10 kt tailwind

TABLE A-2
COOPER HARPER RATINGS FOR FLARE AND LANDING FLIGHT PROGRAM

TLPBUEENCE AND SAS	CONFIGURATION BSL 1		CONFIGURATION AP1	
	PITOT 1	PIIOT 3	PHOT 1	PHOT 3
$\sigma_{u g}=0 \mathrm{ft} / \mathrm{sec}$ High Gain SAS Low Gain SAS	$\begin{gathered} 4-1 / 2 \\ 5 \end{gathered}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{gathered} 6-1 / 2 \\ 7 \end{gathered}$	$\begin{aligned} & 5-1 / 2 \\ & 6-1 / 2 \end{aligned}$
$\sigma_{u_{g}}=2.25 \mathrm{ft} / \mathrm{sec}$ High Gain SAS Low Gain SAS	$\begin{gathered} 5 \\ 6-1 / 2 \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	Did not fly enough	$\begin{gathered} 6-1 / 2 \\ 9 \end{gathered}$
$\sigma_{u_{\mathrm{g}}}=4.5 \mathrm{ft} / \mathrm{sec}$ High Gain SAS Low Gain SAS	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\left\lvert\, \begin{gathered} 6-1 / 2 \text { to } 10 \\ 7 \text { to } 10 \end{gathered}\right.$	in turbulence to rate	$\begin{aligned} & 10 \\ & 10 \end{aligned}$

table a-3
COOPER HARPEG RATITGS FOR FINAL APPROACH FLIGHT PROGRAM

IURBILENCE LBVEI Oug $_{\mathrm{g}} \mathrm{ft} / \mathrm{sec}$	CONFIGURATION BSL1		CONFIGURATION AP1	
	PILOT 1	PILOT 3	PIIOT 1	PIIOT 3
0	4	4	$5-1 / 2$	5
2.25	5	$5-1 / 2$	-	$6-1 / 2$
4.5	7	$8-1 / 2$ to $10 *$	-	9 to 10

Ratings did not vary with high and low gain SAS.
"This rating improves to a 6 with increased throttle control power (throttle was limited to tao\% about trim on Navion).

TABLE A-4
COOPER HARPER RATIIVGS FOR FLARE AND LANDIIVG POST FLIGHT SIMUATION-CONFIGURATION BSL 1

TURBULENCE LEVEL$\sigma_{u_{g}} f t / \mathrm{sec}$	PHASE	FLARE AND LANDING		FINAL APPROACH	
		PILOT 1	PILOT 3	PIHOT 1	PHOT 3
0	I	4-1/2	4	3	4
2.25		5-1/2	4 to $4-1 / 2$	4	5
4.5	1	7	5-1/2 to 10	5	7
0	II	3	4	3	4
2.25		3-1/2	4-1/2 to 5	4	5
4.5	1	5	6 to 10	5	7

The pilot commentaries obtained from the preflight simulation have been edited to put them in a usable form and are presented on the following pages.

This couflguration was flown by Pllots $1,2,6,7,8$, and 9.
PHOT 1
Thask 1.01
Gide slope traciing with this configuration is very straightforward using essentially constant attitude. Didn't notice any coupling effects that would cause any real problem. Speed control is straightforvard.

Task 1.1

Considerable amount of juggling between pitch attitude to control airapeed and throttle to control altitude and to try to get nailed dow on 75 kt on the glide slope. At this point you are down real close to the ruway so the glide slope is highly sensitive.
makk 1.2
Used full pover for recovery. The workload is fairly high but it appears to be more of a task problem than an airplane-oriented problem. The high fast and low slow initial conditions are quite large considering the nearness to touchdown.

Task 2.0

Seems like it would be fmpossible to get a touchdown with zero sink rate in this airplane using pitch attitude only. The sink rate respomse to an attitude change is quite low. Am using a combination of porer and attitude to make laadings. On the landings where power is primary, the timing is quite critical. If you get the power in too soon, you tend to float; whereas bringing the power in too late results in a fairly hard touchdow.

Tak 2.1
The major pilot compenation appears to be involved in moring when to use the throttle and how much throttle to edd.

Tak 3.0
This airplane does not require much compasation for the no turbulence case.
Tank 3.1
Mo differance between this couposite task and turbulence and the individual subtaaks.

PHOT 2

Tank 1.01
Vertical apeed reaponse to normal throttle motions is very low with a lot'of lag. Besic tachnique vas beckaide with pitch imputs to get an initial reaponse out of it. iried frontaide with zero results.

Tank 1.1

Uaing either froataide or seeckaide techaique, the aircraft has a very linited deacent capability. Alreraft performance in this task is not a function of pilot compeasation. Overell rating is a 7.

Taak 1.2

Respoase to pover was conaiderably battor than I anticipated.

Task 2.0 and 2.1

The poor vertical speed reaponse to thrust agravatos the problem and makes it easy to overcontrol. Put on too mich to correct for a 10 w condition and then don't get it off in time, and then you're high and in close. There doesn't seen to be any adequate way to compensate in the fiare unless you generate sowe type of throttie pitch mancuver. Controlling aink rate with power is difficult in turbulence.
TR-1035-3R-III

Tank 3.0
Generaily the same commentary as the subtask.
Task 3.1
Generally the same comment as for the subtasks.

PㅍT 6

Task 1.01

No problem tracking glide slope. Turbulence increases the worklond aittle.

Task 2.0 and 2.1

Flare and landing are quite difficult when using pitch aftitude only to flare. Resulted in hard sink rates and considerable touchdown dispersions. Also, bigh pitch attitude resulted in loss of vision of rumay. When usirg technique of increasing attitude slightly and increasing thrust to arrest sink rate, landing and flare performance was greatly improved. The effect of turbulence was to increase the workload only slightly. Wind shear near touchdom can cause dispersions in aink rate and touchdow distance. I have a tendency to puil off the power whem going long which results in the airplane dropping and landing hari.

Task 3.0 and 3.1
same coments as for individual subtaske.

PIITT 7

Task 2.0

Sink rate to pover reaponse ia very slugeish but hee edequato authority. Raquire very large attitude to flare. The rating is a $4-1 / 2$ because I have to use power. I chould be able to flare with attitude slone.

Tesk 2.1

Requires pewer to land in turbulence.
Task 1.01 with engine time constant $=0.5$
Mo noticeable difference in aink rete to throttle response. Howrver, alide slope tracking seems easier for soze reason. Back-to-beck comparison with engine leg of 0.5 sec and 1.5 sec showe no difference in this task.

Tesk 2.1 with $T_{e}=0.5$
No noticeable effect tue to mane leg.
Task 2.7 with $T_{1}=0.5$
Feel more confortable whith faster engine. Filot rating may inprove from 5 to $4-1 / 2$. I an using throttle and attitude in the 12are. Decreaeing the endine time conntant to 0.2 atill shows no difference.

PHOT 8

Task 1.1

Airspeed response to attitude seens sluggish. Hard to get stabilized on glide slope and airspeed.

Task 1.2

Same corment.

Task 1.7

Same comment.

Task 2.0

Attitude flare is not a problem. Flaring with power is a problem because the power response seems low.

Task 2.1

Tried both power and attitude flares. I like power flares better in turbulence.

Task 3.0

Am using conventional backside control, thet is, airspeed to attitude and flight path angle to throttle.

Task 3.1

Hardest job is elide slope tracking because of the lag in flight path angle to throttle. Airspeed to attitude is sluggish.

PHoT 9

Task 1.01
I have the impression of a longer throttle response than on most aircraft. Ny technique is to command clide alope with IVSI lecause of long angine lag. I know this will always bring me back to glide slope.

Tack 1.1

Speed is not a problem but gross glide slope error is difficult to make with this throttle. Have a tendency to overcorrect. Part of diffich"ty is tradeoff between speed and altitude initially.

Task 1.2

Easier to handle than Task 1.1. I an not as reluctant to add power as I am to reduce power. I am doing things in the right direction for safety.

Task 2.1

Am Aying clide slope to get into window for flare.

Task 2.7

Adequate performence not obtainable with madm pilot compensation. This is based on myability to know what to do with power.

COIPIGURATION ESTR

PHOT 1
Task 1.01
Glide slope tracking is straightforward.

Task 1.1 and 1.2

The off-nominal condition seems very severe. Considering this very drastic off-nominal condition, the airplane behaves very well.

Task 2.0
No problem getting into the touchdown zone. The airplane seems to have touchded down naturally at about 250-300 ft with this glide slope location.

Tesk 2.1

This configuration seems very sensitive to flave height. If I flare just a little too soon, I tend to land down in the 600 ft regions and if I flare at the correct height and plare too quickly, I also get dom to the 600 It region. So it seems to be very sensitive to the correct flare height, and because of the sensitivity of the airplane it degrades to a pilot rating of 4 . of course, the turbulence makes It more difficult to flare in a precise way. Adding a crosswind to the turbulence on BSLD doesn't really change the task very much. The best technique seens to be to slightly undershoot the glide slope maybe half a dot and let the airplane float down and settle into the touchdown zone. Doing this you can get consistent touchdown sink rates and poaition on the rumway. If you flare too soon or too rapidiy and the airplane starts floating, ard the touchdow is generally quite hard. Primary control for flaring the airplane is pitch attitude, using throttle oniy to counteract large gusta.

PHOT 2
Task 1.01
The short-term effect of attitude changes is greater in influencing verticel speed than airapeed. Besic technique was backside, but modified by extensive use of attitude for quick response, uaing column as a DLC for short-term response. Throttles for long-term vertical speed control. It seems to me to be unreasonable that idze power and aitch attitude of -10 deg doen't bring the plane any faster than simulated. Also, airspeed acceleration appears axcessive.

PHOT 6

Task 2.0
Preferred have tochnique is to start flare at 35 ft and leave powar alone.
Task 2.1
Tend to touch down lagger in turbulence. Hind to use full powar to arrest sink rate on one run.

PHOT 7

Task 1.1

I think the main coment is that it is a vory oxtrem offset and to make anfortable size correction you really don't have tims to get back on in, settio dom. Ny basic techaique is to get the spsed hack under control and then worry about llignt path. I like to do this because once I got the spead under control then I know what the power-to-flight-pach angle relationahip is, giving me one leas thiag to do when I intercept the alide slope. Hy rutinga for high rast and low slow are the ame as for straight glide slope tracking in turitulance. The situation is extreme, but the airplane does not change.

Task 1.2
The low slow is no different trow the straicht cilde slope trecking. I feel completaly comfortable all the time.

CONFIGURATION BSL2 (Concluded)

Task 2.0

Initially I bad some problems with attitude dyamics - a tendency to PIO a little bit, wích went away after three or four touchdowns. Looks like with the geometry situation here it is fairly easy to make soft touchdowns with attitude alone.

Task 2.1
The workioad increases quite a bit with turbulence. I am having quite a bit of problems with the turbulence levels, particularly during the final glide slope tracking and the flare. I have an additional coment on this flare and landing with turbulence. I gave it a 6 here, but in real-life situations that would come up a couple pilot ratings.

PHOT 8

Task 2.0
Flares with attitude are touchy to get into the touchdown zone. Flares with power are more precise, allowing me to get consistentiy soft touchdowns.

Task 2.1

Flares with attitude tend to float. Touchoown is hard after a float. The best technique is to use a little pitch after coming in with power. It is very difficult to recover if I get high ard fast in close.

Task 3.0 and 3.1
Couments are generally the same as for the subtasks.

PILOT 9

Task 1.01
...and sontrolling aink rate with power and airspeed with pitch attitude.

Task 1.1

W primary problen is aink rate to power. I need to get calibrated.

Task 1.2

No real special problem.

Task 2.0

Beat flare technique is pitch attitude. Power flares are not consistent. Wheh better control over touchdown point with pitch attitude.

Task 2.1
It aemen like we need a porar coumand. I can't do it precisely by eye.

Thek 2.7

Acceptable, but harder in genera. Has tendency to iloat because of last minute pover changes. This configuration has good contral of sink rate with attitude and is not critical on attitude except perhaps a tendency to flomet.

Task 3.1

The landing was controinated by trying to hit the window at 300 ft .

This configuration was flown by pilots, 1, 7, and 9.

PIIOT 1

Task 1.01
Airspeed response to pitch attitude seems sdequate. Sink rate to throttle response is a ilttle sluggish and bearly adequate.

Task 1.1

The task is the major problem in that there is not enough time to get stabilized after capturing glide slope.

Task 1.2
Same coament as on Task 1.1. The aircraft itself is a 3 for both tasks where the ratings apply more to the task than to the airplane itself.

Task 2.0

Requires too much pitch attitude change for pure attitude flare. Best technique is to use power to break initial sink rate and attitude to fine tume it.

Task 2.1
Requires moderate compensation on throttles to set up for flare.
Task 2.7
Tend to land long. Consiatentiy get into a low power, high sink rate condition and overcorrect with attitude and throttle near touchdown.

Task 3.1
Degradation with turbulence is due to higher workload on glide slope. Requires lead on sink rate to power.

PIIOT 7

Pilot 7 flew this configuration at 65 kt and therefore quite far on the backside.

Task 1.01

Low initial sink rate to throttle responae. Throttles seemed insensitive. Cood airspeed control.
Task 1.01 (doubled throttle sensitivity)
This throttle sensitivity is a lot better. Throttle sensitivity was the primary deficiency. Now Low $I_{\text {ar }}$ is a problem. (Pilot noted this later during landing evaluations.)

Task 1.1
Airspeed control easy with favorable flight path to airspeed coupling. Some problem. with sink rate to throttle response. Seems very sluggish and bas a major affect on wrating.

Task 1.7

This aircraft is reaily on the beckside, Takes a lot of power.

```
COMFIGIRATIDN BSTL RLD (Concluded)
```

Task 2.0
This conflguration has a very low Ia.

Task 2.1

The combination technique works pretty good. That is, I add power and fine twe the touchdown with pitch attitude.

Task 2.7
Use a step and pover. There is sufficient I_{a} to complete the flare.

PHOT 9

Task 1.01
slugesish sink rate to throtile response. No apperent coupling between alrspeed and throttie.

Taak 2.0
Flaring with attitude only.

Mask 2.1
Cood landing if I mat up at gare point. Hard landings if not set up. Poor sink rate to throttle reaponse is rasponsible for problems in getting set up. No real problems with this configuration.

rack 2.7

Uned a technique of vatching IVSI as a cue for large shears. FIring IVSI to throttle even in close. Taak is vary difflcult if not in windor at hare initiation, sink rate to throttie lag epyears large.

Tank 3.1

Using attitude to airspead and sink rate to throttle exclusively. Wy gilde slope smting is a 6 on the overall tank, because of the sluggiah throttle respone waich is more apparent during clide slope intarcept and the eamuing captura. Flare rating is a $4-1 / 2$ to a 5 because of a sensitivity of tice outcome to not hitting the rindow at breakout.

COARTGRATTION AP1

This conflguration was flom by Pilots $1,5,7,8$, and 9.

PIIOT 1

Tank 1.01

The turbulence level seems very low and elide slope tracking is not a problem. This configuration has very lor $C_{I_{a}}$, but this ia not a problem because altitude response to pover is adequate.

Task 1.1
The coordination required between pover and pitch attitude to capture and maintain the glide slope is very difficult.

Task 1.2

The low slow recovery is not as bef as the high fast; hovever, the pitch attitude and throttle required to recover seen excessively large.

Task 1.7

A very large pitch attitude is required to go from 75 to 85 kt . The speed response is extremely slow in going from 85 to 75 kt , requiring we to overdrive attitude to get the required speed. This results in my going off glide path. The main problen here is maintaining glide aiope while using large pitch attitudes to change apeed. The IVSI respoase to throttle soume very sluggish. This is the primary problem in this task.

Task 2.0

This configuration setat to be vary unforgiving to inftial errare in flare height. This is at least moderately objectionuble and perhaps vorse.

Task 2.1

The primary daficiency is a very sluagiah sink rate to throtile reaponse. The major problem with this configuration is the imbility to recovar from off-noninal vartioal position in time to sot up for landing on the ahort rumars. If I get hich er low at the initiativa of plare, the sink rete at touchdown is umally hard or the landing is long. The aink rate response to pitch attitude for this configuration seems very low. The throttio is not of meh help because of the very sluggish aink rate to power rasponse. Unless everything is perfect at the point of flare initiation, the chances of a good touchdown are very low with this configuration.

Task 3.0 and 3.1

Comentary conerally the sume as for the arbtagk.

PHOT 5

Task 2.1

The pilot rating is a 5 up to the threshold and an 8 for the flare and landing.

Tank 3.0

Trecking was eany once we vere on airapeed and clide alope and locelinor.

Task 3.1

 between elevator and alleroas but poor for throttle.

PHOT 7

Task 1.01

Ny technique is to fly constant attitude and let airspeed vary. If the airspeed variations are not too big and we don't end up getting too close to the margins, then there is no problem. The characteristics of this airplane are similar to the augnentor wing. I reaily don't think they're quite as bad as on the augmentor wing in the adverse coupling on speed and flight path, and on the augmentor wing we have adopted at least one technique of flying the airplane where you do flv essentialiy at constant attitude and let airspeed vary back and forth.

Task 1.1

The domside capability of this aircraft is inadequate to do the task. Even with the other configurations, if you recall, I felt that this was an unrealistic task. A ghy would go around rather than attempt this kind of correction. The workload is really not all that high. All you do is just pull the power off and sit there and wait for it to come down. I do feel the domside capability of this airplane is adequate. When you pull the power back to idle you can get on the order of $1200 \mathrm{ft} / \mathrm{min}$ rate of sink, which I think is adequate. I think on this kind of airplane with adverse flight-path/speed coupling a gug could get more comfortable with it if he flew an airplane that had that characteristic all the time.

Task 1.7

This is definitely a little bit of a tricky task in this airplane, because of the adverse speed and fight path coupling. I seem to have a little more trouble slowing down than I do speeding up. You almost have to know what the nominal attitude for the new speed should be.

Task 2.0

Smooth air flares with attitude rotation only are pretty marginal. You kind of have to use everything you've got just to barely make it. Flares with power and amooth air are an acceptable technique, but not necessarily acceptab.ie for normal operation.

Teak 2.1

The workload just gets too high trying to get the power set for your flare, particularly with some of these last minute flight path corrections where the power can be going up and dow. You really have to check the power very closely to make sure that as you're going into the flare you have enough power on to flare the airplane. It almost rsquires a visual check of the rpu indicators, which is at a vary inopportune tiae. Therefore, I would say it is a 7 or worse.

Task 3.1

We just completed a series of runs where you intercept and track and flare and land. I can't see any differences brought up by that tesk.

PIIOT 8

Task 1.01

This machine is very sluggish in response to power for filght path control. It looks like it's quite sensitive to pitch or speed. It's kind of a funny aituation where adding power you have to push over the nose to hold your speed up, and vice versa for reducing power. So it can be not too nice an airplene to fly. You have the feeling any displecement would be hard to handle, so I flew the clide slope very tight and it was no problect. Addition of turbulence increased the workloai only slightly.

Task 1.1
The bicgest task here is this gross attitude change from -11 deg up to 20 deg nose up.

Task 1.2

I just applied maximum power and starting undoing that borrible pitch attitude to where it's nose down and getting speed back. The task required between considerable and extenaive compensation.

Task 2.0
The landings in this-airplane are bad, bad, bad.
Task 2.1
I did not try porver fleres until I cambined with turbulence, and it seas to we that power flare worked out a ifttle bit better in turbulence than the conventional flare. But, any of them are real dicey to get a good sink rate and a good sim point on the runway. When you consider control of sink rate as part of the controllabilit.s, controllability is in question with this. So it's about a 7-1/2 pilot rating.

PITOT 9

Tagk 1.01
The compensation required for glide slope tracking may be dencribed as moderate to minimal.

Task 1.1

The high fast recovery is very bad. With power off, the aircraft does not sink and I can't get back on glide slope. The attitude goes to extremes.

Task 1.2

Better control. Reasonable performance, but conaiderable compersation.

Task 1.7

The attitude required to change apeed is too large.
Task 2.0
My rating was 5, maniy becase of inconsistencien in parrornance and touchdow sink rate and distance.
Tant. 2.1
Primary difficulty was the considerable las in the throttle, and, if you're offecting a change on glide path, the resulting chenge in aink rate late in the approech will give you reel problems. The aircraft's reaponse to pitch sesma meh reduced here in the flare, so that you've got to be pretty eich right on aink rute with the power aetting. That is what has caused me the dificulty in the pilot rating. There is a considerable las betwea change in throttle and airplane reaponse to that change. I've reconsidered the rating of 7 that I geve on these last rues, abd I vant to alip those to 8 beceuse considerable pilot compenation is raquired for coatrol in the sease that sidk rate at touchdown is fairly difficult to control.

Taak 3.1

Spoed control was not too difficult providing yen were willing to accept tha 3 or 4 kt that turbulence brought into it. You could eet to a trim attitude that vould fairly well bald a apeed. Again, aircraft reaponse to throtile inputs vas atill the Eajor deficiency. There is a coaldarable lag between the time you decide to aake a Midht path change and the time the chasge actually beadis. This tende to make you orarshoot the conditica you were looking for, and so you're constantly hunting with the throttle all the way throum the approach.

CONFIGURATION APZ

Configuration AP2 was flown by Pllots $1,2,6$, and 7 .

PILOT 1

Task 1.01
Sink rate response to throttle seems quite good. This task does not require much compensation. The indicated airspeed stayed at 75 kt with iftile or no corrections in attitude.

Task 1.1
Could not get adequate performance on indicated airspeed due to large speed/throttle coupling near idle power. Gide slope intercept and trecking was okay.

Task 1.2

Coupling on speed to throttle was not nearly as large at high power settings as it was at low power settings. I was able to get target speed and on glide slope without any real problems. Used a crossfeed of throttle to column for large power changes and used airspeed to attitude and sink rate to throttle for glide slope tracking.

Tagk 1.7
Airspeed response to attitude seened sluggish. Adverse coupling precludes precision control of airspeed, and airspeed response to throttle seems to swamp out the airspeed response to attitude. This is especially true if I get high on the glicie slope due to the increased coupling at low power settings.

Tagk 2.0

This configaration seems quite easy to iand without turbulence. The sink rate response to attitude is good.

Task 2.1

Am having some problems setting up the proper sink rete with power for flare initiation. The aink rate reaponse to power seems adequate for gilde slope tracking, but is too sluggish for the preciaion coatrol required as I come up to my flare point near touchdom.

Tank 3.1

For the IR portion of the approach, elide slope tracking in itself in not a problem. Control over indicated atrapeed is marginal, bectuse of the vory sluggish apeed to attitude rosponge and the adverse coupling between speed and power. Ny pilot rating of 4 reflects the fact that the speed variations do got interfere with wy ability to do the tafk. The primary problem in landing is settiug up for the flace with power in the prasence of these fairly large guat disturbances.

PIOT 2

2ask 1.01

Control over clide slope and locelizer in not a proble. Pllot rating for this task alone is 2 . The unpleasant deficiency for this confinuration in turbulence is speed control. Ny overall rating of clide slope tracking then with speed control is a 3 . Turbulence is not a bis thing in this task.

Task 1.1

Alrapeed control umbelievable for off-noninal nditions. Throttle range required excessive full throttle and idle. Wy airspeed was too high to land in an 1900 ft strip after recovery from the high fast condition. Glide slope control mas okny.

Jank 1.2
Airspead control agin ves the mor problem. Naver hed the chance to stoady out before landing.

Task 2.0
Flare using column only from about 100 ft Ack with nominal power set. I tended to conie into the flare on-speed to sliehtly fast.

Task 2.1
Recovery from turbulence effects coming intc the flere was difficult. It is easy to overcontrol with the throttles. I am using sink rete to attitude primarily for the actual hare. Hard landings result when I use throttles to flare.

Task 3.1

The airspeed/flight-path coupling is very botheraome. Working on glide slope control, keeping tabs on indicated airspeed. Since m ability to track the glide alope does not appear to be affected by the poor airspeed control, I san live with it. Technique for gilde slope tracking is primarily backsile, that is, aink rate to throttle and airapead to attitude with some attitude to sink rate. Airspeed control is by far the biggest problem. Extrume variations in atrapeed combine with high coupling and Cia response to make it a pretty triek configuration if departure from nounal conditions is too great.

ZOT 6
Task 1.01
Figint path response to throttle is fine. Cannot get deaired airapeed performance.
Tank 1.1
Pitch attitude weat up to 10 deg and the aircraft never mioved down. Ny rating of 6 is based on speed problens.

Task 1.2

Wy pilot rating of 7 is besed on a decrease of speed with power sadition. The speed went below 60 kt at one point.

Task 2.0

Flarine with pitch attitude only works out just sine.

Task 2.1

I get the best results flaring with attitude slone, Flaring with attitude and power resulte in a tendency to float and makes the aireraft sace very sensitive to changes in pitch attitude.

Takk 2.7

These vind ahears require the use of throtiles to arrest the aink rate. this reaulta in overcontrolliug and Moating. Definitely cannot une power in an effective my to help flave this coafiguration.

Task 3.0

Adverae coupling reaulte in cy always haviny to change pitoh attitude.
(Bote: Thia pillot is a Boolng teat pilot and required conaldereble mount of time to adjust his technique to bsckside contral. Durine his later ovaluatican of configurations with laree airspend/Rightpeth coupling, ne tepaled tc ispore adrapeed veriations, bolding constant attitude.)

CONFIGURATION AP2 (Concluded)

PROT 7
(Mote: Pilot 7 flew this configuration with the engine time constant set to 0.5 sec due to a miss-set constant in the computer program when changing configurations.)

Task 1.01
This configuration looks like AP10. Long as I don't worry about speed it's okay. Initial sink rate response to throttle is good. The long-term sink rate to throttle washes out. The pilot rating is a $4-1 / 2$ and would be a 4 with perfect airspeed control.

Task 1.1

Airspeed excursions are large but I don't care about airspeed in SIOL because it is not a measure of lift margin.

Task 1.2

The low slow recovery is not as critical as the high fast recovery.

Task 2.0

This configuration has a lot of I_{α}.

Task 2.1
Turbulence is not a problism, and getting set up for the flare is also not a problem with this configuration.

Task 2.7

Flare and touchdown are pretty easy. Have to have power set properly at flare initiation.

COMFICURATION AP6

This configuration was flown by Fllots $1,2,6$, and 7.

PHOT 1

Task 1.01
Glide slope tracking is not a problem. Precise control of airspeed is very difficult and hed problems in attempting to lower the airspeed from 85 kt to 75 kt . Primary task of glide slope tracking is quite straightforward and variations of speed do not seem to affect this task.

Trask 1.1

Very high pilot workioad. Have to constantly keep in mind that increase in power decreases the speed. I am assuming that the task here is to get both glide slope and airspeed under control.

Task 1.2

This task is easier than 1.1 , because it is easier to increase airspeed than to decrease airspeed.

Task 2.0

Sink rate response to attitude is very good. There seems to be a tradeoff between touchdow sini: rate and position. Mast not flare too late or hit very hard.

Te.sk 2.1

Seen to be getting same very large horizontal wind shears (u gusts got up to $12 \mathrm{ft} / \mathrm{sec}$ in 2 sec and stayed at $12 \mathrm{ft} / \mathrm{sec}$ for 6 sec just before touchdown). This configuration is a 4 to $\mathrm{a} / 4-1 / 2$ with low to moderste gusts. A severe sind shear such as I got on one run would have to be rated as a 7. However, I do not feel that it is fair to rate this configuration as low as a 7 for a very low probability wind shear case. In actual practice, this would be a go-around. If a go-around waa required for several approaches in a row, then the rating on this configuration would have to be lowered to a 7 in inis level of turbuience. However, the large shear that I clcountered seems to be a low probability case. Therefore, my rating of this airplane in turbulence is a $4-1 / 2$ and a 7 with the large shear.

Task 3.2 (Task 3.1 with heechrind)

The higher power required to track the glide slope in this headwind results in low airspeed. It is difficult to hold the glide slope and correct the airspeed to 75 kt . This problem is also true if you get low on the glide slope and need to correct back. My pilot rating, hovever, is unchanged from pure glide slope tracking, because the airspeed excursions do not seem to affect wy capabllity for tracking the gilde slope. Ny technique is to siaply note the airspeed variations but to ignore them in terms of control inputs.

PHOT 6

Task 1.01
Mast use backside technique. Throttle controls sink rate and has an adverse affect on airspeod. Airspeed must be controlled by pitch attitude but is very slow to respond. The effect of turbulence on the glide slope tracking is minimal, more perhapa of one Cooper-Happer rating degradation: The throttle in very effective to control sink rate. The only problem with this configuration was to maintain airspeed. Airspeed is very hard to manage and responde very slowly to corrective action. Airspeed control is unacceptable for airline use.

Task 2.0
Lendings with this configuration were very conventional. No major probiems as long as throttle was not used in the flare.

Task 2.1
Turbulence increased the pilot worklosd only slightly. My flare technique was conventionel. Began pitch increase at 50 ft and held attitude until touchdown. Since throttle controls sink rate, care must be made so as not to add or decrease thrust or aircraft floats or drops, respectiveiy. There were no problems in the flare and landing if thrust was not modulated excessively.

Task 3.1

All subtasks and components of this composite task were primarily downgraded due to lack of airspeed control. The airplane, in general, plies quite wall except for airspeed control.

PHOT 7

Task 1.01
My main objection to the airplane is the adverse coupling between speed and flight path. It's not real serious but it's predominant enough to be at least slightly objectionable. The amount of adverse coupling is not enough to be reaily bothersome; if you just let the airspeed vary, it works out pretty good.

Task 1.1

As with the other configurations, I think the task is a little bit extreme. Not realistic. It would be a go-around situation.

Task 1.2

The increase in workload is negligible due to the low-and-slow, and I really don't feel too uncomfortable with that. It's still a pretty good offset, but at least you don't have to content with the high sink rate and low altitude.

Tesk 2.1

As far as pilot ratings go and our workload, I think that smooth air is fairly reasonable and then it takes a big jump with turbulence.

Task 2.7

Crosminds result in no additicnal worklosd increase. The shears we looked at are bordering on unacceptable with the situation we have. A couple of times here with turbulence and/or shears I've overflared the airplatie to break a high rate of sink. Once you flair too high on this airplane with this nominal pitch attitude, you lose sight of the runway and then you pretty much lose it.

COTHIOURATION APG RLD

This task was flown by Pliots 1,7 , and 9.

PHOT 1

Task 1.01 (stall speed $=65 \mathrm{kt}$)
Adverse speed throttle coupling and lor stall margin combines to make a very dangerous situation. Got low on glide slope, added power and stalled. Hed to punch out to avert a crash. Pilot rating is 9. Large pitch attitudes are required to keep the indicated airapeed above stall with increased power.

Task 1.01 (stail speed $=65 \mathrm{kt}, C_{I_{\text {max }}}$ increased 10%)
A 5 kt reduction in stall speed makes a large difference in this aircraft. It requires a large attitude deviation to get the apeed to decrease from 65 kt to 60 kt , and therefore the stell protection is adequate in this aircraft.

Task 1.1
No control over airspeed with attitude and reducsd power. Cood sink rate to throtile authority but a bit sluggish. Adequate performance not attainable in speed (175, get 100).

Task 1.2

Easier to hold indicated airspeed st 75 kt then it was Task 1.1. Seem like airspeed coupling to throttle is more pronounced at low porer than at high pover. Kajor problem vas extremely high workioad and airspeed to attitude and sink rate to throttle due to the airspeed throttle coupling.

Task 1.7

Very slugeish airspoed to attitude response ageravated by airspeed to throttle effects. Control over indicated airspeed ia bareiy adequate and with modarate compensation.

Task 2.1
Good sink rate response with attitude flares. Lands like a convantional airplane.
Task 2.7
Can get desired performance in the prasence of shears. Moderate companstion of sink rate control with porar is required to set up the flare point. The sink rate reaponse to sttitude is aurficient to account for problems in setting up for the flare with pover.

PIOT 7

Task 1.0
Used this tack to try stalls in this configuration. Unable to prodree a stall with power off due to edverse airspeed power coupling. Inpossible to get low speeds with low power settings. Power on stall is a mush.

Task 1.01
Adverse coupling sems large. Pllot rating is a $4-1 / 2$ because alide slope tracking is adequate.

Task 1.1

I don't worry about indicated airspeed.
Task 1.2
Initiel responss to throttle too high and then waskes out.

Task 1.7

Using airspeed to throttle and aink rate to attitude. This aircraft has a better L_{a} than Airplane 10 , and therefore this tecknique worka better.

Task 2.0

Sink rate response to attitude and sink rate response to throttle are good. Poor visual cues keep me from consistently landing in the touchdown zone. Have a tendency to PIO on attitude at touchdow resulting in a higio vorkjoed.

Task 2.1 and 2.7
Same comments as for Task 2.0.
Task 3.1
Large I_{a} allows me to control sink rate at glide slope intercept and eliminate bellooning. Still having PIO problems on landing.

PHoT 9

Task 1.0
Do two stalls for familiarization. No problems.

Task 1.01

I don't like reverse speed path coupling. From a certification standpoint, it is unacceptable (a 7). However, it is a four on the Cooper Harper rating scale since the task is to track the giide slope, and the speed excursions do not seen to affect ay ability to track.

Task 1.1
Noderate compensation required to recapture glide slope. My technique is to ignore indicated airspeed for this task.

Task 1.2
Basic technique is airapeed to attitude and aink rate to power.
Task 1.7
guite a jugeing act betreen attitude and power since both affect apeed. It takes a loug time to find the correct attitude and power.

Tank 2.0

N17 (y landinge were soft and ahort. Sink rate respoase to attitude is good.

Task 2.1

Troding to use combinatica power and attitude and turbulence. The requirement for power costs onehaif of a rating point. As before, the flare tachnique is to bring in a amall amount of pover and fine ture with pitch attiturde.

Task 2.7
oood sink rate to power respoase. Eary to cope with wide shears. Use very small power changes.

CORFTGURATION APT

Conifguration AP7 wes flow by Pliots 1, 7, and 9. This configuration was flown only during the back to back comparisons between the FSAA simulator and the S-16 simulator. The following comments pertain to the S-16 simulator eveluations.

PIIOT 1

Task 1.01

This configuration seems to have reasonably good sink rate to power and airspeed to attitude response.

Task 1.1

Very limited down capability with power. Unable to get back on glide slope and reduce speed before breakout.

Task 1.2
No problem going up, just coming down.
Task 2.0
This configuration seems to have good I_{a} and is reasonably easy to 1 and with attitude.
Thak 2.1
The addition of turbulence affects this conflguration considerably. Having considerable problems getting reasonable performance and have ovolved a technique of using throttie to flair and fine tuning the touchaow with pitch attitude. Nust be very careful not to overcontrol with throttle. Easy to overcontrol with throttie because of the sluggish sink rate to throttie response.

Task 2.7

Easy to overcontrol with throttle with large shear. Tead to float. Can do ok but it requires moderate to considerable compensation. This task would be much easier if the runway was longer.

Tesk 3.1

Not able to get desired performance consistentily on landing. The more I fiy this configuration the leas I like it. Sink rate to attitude response is poor.

PHOT 9

Task 1.01

This configuration is a little slow on dow sink rate to throttle response. Slight adverse speed to throttle coupling.

Task 1.7

Hont on attitude and speed and fight path. Seces to be slover than nomal. Tend to ovarahoot with power due to lag especially on down.

Task 2.0

Requires just a 11 thle too much attitude to Rair. Would be a if the sink rate to attitude mas better. Power flares okey but I feel scme luck is invoived here. I rate the attitude flares a $3-1 / 2$ and the power flares at $4-1 / 2$.

Tagk 2.1

Am using large power changes because of sluggish sink rate to throttie reaponse. Ny techaique to flare is primarily attitude using power when required.

CONFIGURATION AP10

PHOT 1
Task 1.01
Sluggish airspeed to attitude response but this does not seen to effect the glide slope tracking. Sensitive sink rate to throttle but response is slow. Considerable compensation required to handle poor speed control arid sensitive throttle. Pilot rating would be much worse if speed control were a dominant part of the task. Pilot rating is a 5 and would be a $4-1 / 2$ for glide slope tracking oniy. Peducing the engine time constant to 0.5 results in very good sink rate to throttle response. Glide slope control is precise. Pilot rating is $3-1 / 2$ for glide slope control. Decreasing the engine time constant further to 0.2 results in still better sink rate to throttle response. While this further improved response is nice, I'm not able to use it, and therefore the pilot rating for glide slope tracking remains the same at $3-1 / 2$. Engine time constant of 0.5 is good enough.

Task 1.1 (engine time constant back to 1.5)
Very high sensitivity on magnitude of sink rate to throttle. Airspeed to attitude response is terrible. Airspeed to throttle coupling plus poor airspeed to attitude make task nearly impossible. At one point I got to 10 deg of pitch attitude and the airspeed was still 95 kt . I am hesitant to pull more porer because the indicated airspeed will increase even further. Ny pilot rating of 8 reflects a loss of control over airspeed. It should be noted that this task involves control of airspeed and glide slope tracking, and that is reflected in the rating.

Task 1.2

Better than the high-fast recovery but workload still very high. I am able to get adequate performance on capture, but it is difficult to stay on glide slope and speed after capture. Airspeed response to throttle is very slow with high authority. Requires much lead. Again, the pilot rating of 8 reflects a loss of control over airspeed.

Task 1.7

No control over indicated airspeed due to very high speed to throttle coupling and low speed to attitude response.

Task 2.0

Unable to stop sink rate with pitch attitude. Required technique is to break sink rate with powar and then tune the final touchdown with pitch attitude. This results in only barely adequate control over sink rate. Tried using attitude flrst and touchdown with throttle, but the sink rate to throttle response is too slow for this technique.

Task 2.1

Am using throttle first and then pitch attitude to fine tune touchdom. Adequate performance requires extensive lead and sink rate to throttle and sinis rate to attitude near touchdown. Control over touchdown position is poor as nearly all of yy attention is required to get reasonable sink rates. The sluggish sink rate to throttle makes it difficult to get set up. It's easy to overshoot with tarottle and float.

Task 2.1 (with engine time constant of 0.5 sec)
Can see faster response of sink rate to throttie, but it doesn't seem to help performance. Pilut rating is unchanged.

Task 3.0
IIS no sweat until last 500 ft , then same problems as on Task 2.0.

Task 3.1

Same problems as on individual parts. That is, (1) very sensitive but sluggish sink rate to throttle, (2) large adverse speed throttle coupling, (3) low airspeed to attitude response, (4) low sink rate to attitude response. My primary objection to this conflguration lies in the inability to control sink rate during the last several hundred feet of the approsch. The lack of control over airspeed seems to be a secondary problem in that it does not affect my primary complaint of sink rate control.

PHOT 7

Task 1.01
Ary effort to control airspeed is not practical. Technique is to hold pitch attitude and control flight path with throttle. No attempt is made to control airspeed. This does not anpear to affect my ability to track the glide slope with power. Compares with the augmentor wing but worse. Am confused by head wind because I can't figure out the power required. Don't like this aircraft period.

Task 1.1

Am having serious problems in completing the tack. The throttles are really supersensitive especially at the low rpm which is very nonlinear.

Task 1.2

I feal like I should rate the high-fast and the low-slow the same as the glide slope tracking and turbulence. Otherwise I'll be rating the task and not the airplane. The high-fast you ovviousiy can take the performance into consideration. It's a 10; as far as the worklaad goes during the high-fast or the low-slow, there was not too mich difference. There's a little bit extra work on the bigh-fast.

Task 1.7

The airspeed is so affected by power that it's corrupted, and it's very difficult to do. You almost have to know what attitude goes with that condition to get there in a reasonable length of time. I find that the only way that you can do this is to fiy attitude, and I didn't know what the attitude was for 85 kt so it took me awhile to find it. I think it's crumuy. The more you flew this ifiplane the better you get at it, because you know what those attitudes were. You'd mow if you had a tail wind you'd put a little bit in, so it's not unacceptable by any means but's sure not nice.

Task 2.0
Flaring with attitude is unacceptable. The trick is to add a couple of pcrcent power as you go into the flare and make the final touchdown with pitch attitude. In terws of pilot rating I guess wetre saying that adequate performance is hitting on the runway at a reasonable spot not necessarily in the touchdown zone. Considering you have an airplane with 1000 ft ground roll or something, you can float a little bit past the touchdom zone without hurting things.

Task 2.1

The main deficiencies are the requirement to use power and then the overall lack of $L_{t_{2}}$. The main problen with flight path control is that flight path angle washes out after a throttle input. This problem is especially noticeable as you approach the flare point and even during the flare.

Task 3.1

Have to make susall corrections or I get into trouble.

PHOT 8

Task 1.01
Attitude excursions not as extreme as for Configuration AP1, but indicated airspeed response is very slow. Could not get my target airspeed. Pilot rating of 4 is primarily because glide slope tracking is adequate.

Task 1.1

Got to +40 deg of pitch attitude and lost it. Have to be coatent with high speed until glide slope capture.

Tesk 1.2

Speed goes the wrong way with power addition.

```
CONFIGMRATION AP10 (Concluded)
```

Task 1.7
Giant pitch attitudes used to attain $\pm 10 \mathrm{kt}$ speeds, wind up at attitude of 30 deg. But would like to revise my statement on Task 1.01; the attitudes for this airplane are more severe than those for Configuration AP1. After several rans, I found I was able to get 75 kt with only +10 max pitch attitude. It was easy to get fooled into using very large attitudes because of very poor airspeed response to pitch attitude. The pilot rating would be a 10 if I got into the large attitude problem.

Task 2.0
Out of control in sink rate with attitude flares. Power flares not much better due to squirrely response of sink rate to power.

Task 2.1

Used power to flare. Tends to skip off. Second landing is a "boomer."

Task 3.1

Got low and slow. A bear to correct. Requires large attitude change. Have to be patient. Power flare only way to land it.

PHOT 9

Task 1.01
Initial control opposite that required for steady state. Very poor.

Task 1.1

Ho way to hold speed.
Task 1.2
Totally unacceptable. Tends to reduce the minimm control speed, i.e., loss of elevator effectivenesa. Pillot reting of 10 .

Tack 1.7
Large attitude chases with no speed changes. Very confusing.

Tesk 2.1

Uaing throttle prior to flare and pitch attitude for final touchdow. Seems very sensitive to throttle making it difficult to set up for flare. Extremely hard to get into proper flare "window."

Thek 3.1
Comments the asme as for the previous tegks.

FITOT BACKPROUND

A brief description of each of the subject pilot's experience relative to the present program is given belor.

PIIOT 1 - ROCER FDH (STI)

- Considerable experience as SIOL evaluation pilot. Most SIOL time has been in simulators with some experience in Variable Stability Navion.
- Extensive light aireraft experience.
- Flew in all phases of present experiment.

PHOT 2 - WHLIAM CASEY (DOUCHAS)

- Primarily invoived in checking out customers in DC-9.
- Served as Navy test pilot and was checked out in Harrier.
- Few in prefight simulation phase of experiment.

PHOT 3 - DAVID EHLIS (PRINCEION UNIVERSIIY)

- Project pilot on Variable Stability Nevion. Has considarable experience with eveluating 3TOL configurations on Navion and with high angle approachen in spoiler equipped light aircraft.
- Participeted in flight phase and postflight aimulation phase of experiment.

PHIOT 6 - IRVING DECKER (BOETIG)

- Primarily involved in production tent filght with CIOL aircraft.
- Has some simiator experience with the Boaing AMBT
- Participeted in prefiletht aimulation phase.

PINOT 7 - CORDON HARDY (RASA)

- NASA rescerch pilot with considereble experience in a vide variety of adreraft.

- Limited flight time in MASA Augentor Wing Jet Reacarch Mreraft and in Variable Stability Navion.
- Extensive light adreraft experience.
- Participated in proflight airalatico phase of experiment.

PIIOT BACKCROUND (Concluded)

PHOT 8 - RICHARD GOUGH (PAA)

- Involved in various PAA certification programs ranging from the $D C-10$ to a glider.
- Considerable experience as a STOL evaluation pilot on simulators.
- R and D subject in TIFS (Concorde).
- Participated in preflight simulation phase of experiment.

PINOT 9 - ROBERT KEMTEDY (FAA)

- Considerable experience as a STOL avaluation pflot both in flight and in the simulators.
- Served as evaluation pilot for Pissecki and Vertol in ducted fan and helicopters.
- Participated in preflight simulation phase of experiment.

APPBNDIX B

MARIUAL FLARE MODEL DEVELOFMENTI

ATITIUDE CONSTRAINED EQUATIONS

The assumptions and derivations for the governing equations for path control with attitude constrained are given in Volume II of this report. These equations are central to analysis of STOL path control and are repeated below for convenience.

Characteristic Equation

$$
\begin{align*}
\Delta=Y_{p_{\theta}} N_{\delta_{e}}^{\theta} & =\left[s^{2}+\left(-Z_{w}-X_{u}\right) s+\left(Z_{w} X_{u}-X_{W} Z_{u}\right)\right] \\
& =s^{2}+2 \zeta_{\theta} \omega_{\theta} s+\omega_{\theta}^{2} \tag{B-1}
\end{align*}
$$

$$
\left(s+1 / T_{\theta_{1}}\right)\left(s+1 / T_{\theta_{2}}\right)
$$

The latter form results if X_{W} is small or in general if $\left(Z_{W}-X_{u}\right)^{2}>4\left|X_{W} z_{u}\right|$ then:

$$
\begin{equation*}
\Delta \doteq\left(s-X_{U}\right)\left(s-Z_{W}\right) \tag{B-2}
\end{equation*}
$$

with $1 / T_{\theta_{1}} \doteq-X_{u}$ and $1 / T_{\theta_{2}}=-Z_{w}$.
Attitude Command Responses, assuming $X_{\delta_{e}}=Z_{\delta_{e}}=0$, are correspondingly given by:

$$
\begin{align*}
\frac{u}{\theta_{c}} & =\frac{1}{\Delta}\left(x_{\alpha}-g\right)\left(s+\frac{g z_{w}}{x_{\alpha}-g}\right) \\
& =\frac{1}{\Delta}\left(x_{\alpha}-g\right)\left(s+\frac{1}{T_{u_{1}}}\right) \tag{B-3}
\end{align*}
$$

where $i / T_{u_{1}}=g Z_{W} /\left(X_{\alpha}-g\right)$

$$
\begin{align*}
\frac{\dot{\mathrm{h}}}{\theta_{c}} & =\frac{z_{a}}{\Delta}\left[s-x_{u}+\frac{z_{u}}{z_{w}}\left(x_{w}-\frac{g}{U_{0}}\right)\right] \\
& =\frac{z_{\alpha}}{\Delta}\left(s+\frac{1}{T_{h_{1}}}\right) \tag{B-4}
\end{align*}
$$

where $1 / T_{h_{1}}=\left[-X_{u}+\left(Z_{u} / Z_{W}\right)\left(X_{W}-g / J_{0}\right)\right]$ (backside term)
Throttle Responses with $M_{\delta T}=0$ become:

$$
\begin{align*}
\frac{u}{\partial_{T}} & =\frac{X_{\delta T}}{\Delta}\left[s-z_{W}+X_{W}\left(\frac{Z_{\delta T}}{X_{\delta T}}\right)\right] \\
& =\frac{X_{\delta T}}{\Delta}\left(s+\frac{1}{T_{u \theta}}\right) \tag{B-5}
\end{align*}
$$

where $1 / \mathrm{T}_{\mathrm{u} \theta}=-\mathrm{Z}_{\mathrm{W}}+\mathrm{X}_{\mathrm{W}}\left(\mathrm{Z}_{\delta_{\mathrm{T}}} / \mathrm{X}_{\delta_{\mathrm{T}}}\right)$

$$
\begin{align*}
\frac{\dot{h}}{\delta_{T}} & =-\frac{z_{\delta T}}{\Delta}\left[s-X_{u}+z_{u}\left(\frac{x_{\delta T}}{Z_{\delta T}}\right)\right] \tag{B-6}\\
& =-\frac{z_{\delta T}}{\Delta}\left(s+\frac{1}{T_{h \theta}}\right)
\end{align*}
$$

where $1 / T_{h \theta}=-X_{u}+Z_{u}\left(X_{\delta_{T}} / Z_{\delta T}\right)$.

INTHRPRELATIOX OF FLARE AS A CLOSED LOOP
 TRACKIIG TASK TO PERTURBATION COORDITATMES

The flare is really a response to a given set of initial conditions (e.g., sink rate and flare altitude). Analysis of the flare as a closed loop tracking task is greatly facilitated by reinterpretation of these initial conditions as an input to the pilot plus vehicle system. The following analysis presents the details of how this is done.

Definitions

H Aircraft altitude above the ground
$\dot{H} \quad$ Aircraft sink rate with respect to the ground
$h_{p} \quad$ Perturbation altitude $=u \sin \gamma_{0}-W \cos \gamma_{0}+U_{0} \cos \theta_{0} \theta$. Has little physical significance for $\gamma \neq 0$. (Note that hp can be finite even if aircraft stays on original glide slope but changes speed)
$\dot{h}_{p} \quad$ Perturbation sink rate. Difference in sink rate from the initial sink rate at flare initiation
h Difference in altitude from flare height (initial condition, H_{F}) and present altitude, H. Is not the same as h_{p}
$\dot{h} \quad$ Aircraft sink rate with respect to ground $\dot{h}=\dot{H}$
The equations relating perturbation and inertial coordinates are:

$$
\begin{align*}
H & =H_{F}+h \tag{B-7}\\
\dot{h}_{p} & =\dot{H}-\dot{H}_{\mathrm{F}} \tag{B-8}\\
\mathrm{~h} & =\int_{0}^{t} \dot{H} d t \tag{B-9}\\
\dot{\mathrm{~h}} & =\dot{H} \tag{B-10}
\end{align*}
$$

These relationships are further illustrated in the following figure.

Figure B-1. Relationships Between Inertial and Perturbation Coordinates

The assumed flare law for the closed loop task (see text for justification) is given as

$$
\begin{equation*}
\dot{\mathrm{H}}+\frac{1}{\mathrm{~T}_{\mathrm{F}}} \mathrm{H}=\dot{\mathrm{H}}_{\mathrm{TD}}^{\mathrm{C}} \tag{B-11}
\end{equation*}
$$

This flare law is satisfied by developing a sink rate command signal

$$
\begin{equation*}
\dot{\mathrm{H}}_{\mathrm{c}}=\dot{\mathrm{H}}_{\mathrm{TD}}-\frac{1}{\mathrm{TF}} \mathrm{H} \tag{B12}
\end{equation*}
$$

The corresponding block diagram which represents the pilot-vehicle feedback structure to satisfy the flare law is shown in Fig. B-2.

The error signal is defined as

$$
\begin{align*}
\dot{\mathrm{H}}_{\epsilon} & =\dot{\mathrm{H}}_{\mathrm{C}}-\dot{\mathrm{H}} \\
& =\dot{H}_{\mathrm{HD}_{C}}-\frac{1}{T_{\mathrm{F}}}\left(\mathrm{H}_{\mathrm{F}}+\mathrm{h}\right)-\dot{\mathrm{H}} \tag{3-13}
\end{align*}
$$

The block diagram may be rewritten with the output of the airplane equations of motion in terms of perturbation variables as follows.

Figure B-a. Block Eiagram of Closed Loop Pilot and Vehicle System for Flare

Using block diagram algebra (for example, see Ref. 12), the input summing points involving the initial condition quantities (in fixed coordinates) can be moved to the $I(s)$ summer to form an effective single system command.

$$
\begin{align*}
I(s) & =s \mathcal{L}\left[\left(-\mathrm{H}_{\mathrm{F}}+\mathrm{T}_{\mathrm{F}} \dot{H}_{\mathrm{TD}}\right)\right]-\mathcal{L}\left(\dot{\mathrm{H}}_{\mathrm{F}}\right)-\mathrm{T}_{\mathrm{F}} \mathcal{L} \mathcal{L}\left(\dot{\mathrm{H}}_{\mathrm{F}}\right) \\
& =-\mathrm{T}_{\mathrm{F}}\left(\dot{\mathrm{H}}_{\mathrm{F}}+\frac{1}{\mathrm{~T}_{\mathrm{F}}} \mathrm{HF}-\dot{H}_{T D_{C}}\right)-\frac{\dot{\mathrm{H}_{F}}}{\mathrm{~s}} \tag{B-14}
\end{align*}
$$

If T_{F} is set to satisfy basic flare law (Eq. B-11) at $t=0$, e.g.,

$$
\begin{equation*}
\frac{1}{T_{F}}=\frac{\dot{H}_{T D_{C}}-\dot{H}_{F}}{H_{F}} \tag{B-15}
\end{equation*}
$$

then the first term in Eq. B- 14 is zero and

$$
\begin{equation*}
I(s)=-\frac{\dot{H}_{F}}{s} \tag{B-16}
\end{equation*}
$$

The physical interpretation of Eqs. B-15 and B-16 are

- $1 / T_{F}$ is equivalent to flare height and is internally generated by the pilot. If the pilot's judgment is correct, he will select a T_{F} according to Eq. B-15.
- The dynamics of the response of perturbation sink rate (\dot{h}_{p}) to a step input of magnitude -if in the block diagram of. Fig. B-3 is equivalent to the sink rate response (H) to the initial conditions H_{F} and H_{F} in in the block diagram in Fig. B-2

Thus, the perturbation solution should be interpreted such that the final value is zero, e.g., $\dot{H}=\dot{H}_{F}+\dot{h}_{p}$

APPEKDIX C

DFA DESCRIPTION

OBJECTIVE

The basic objective of the DFA tests was to determine how the pilots were performing the flight path control function. To define the describing function which we wished to measure, let us consider the pilot/aircraft model shown in Fig. C-1. For the moment we will ignore the inputs shown there (d_{c} and W_{g}).

In this model the pilot uses data from the glide slope and IVSI indicators to regulate flight path by means of the throttle, δ_{T}. When he perceives a glide slope error, he mentally generates a rate of climb bias ($\dot{\mathrm{h}}_{\mathrm{C}}$) and then tries to control to that rate.

The characteristic equation for the system shown in Fig. C-1 can be written as:

$$
\begin{align*}
1+\frac{Y_{\dot{h}} \dot{\mathrm{~N}}_{\underline{\delta} T}+Y_{d} Y_{\dot{h}} N_{\delta T}^{d}}{\Delta} & =0 \tag{C-1}\\
1+G_{F P} & =0 \tag{C-2}
\end{align*}
$$

It should be noted that the transfer functions used throughout this discussion do not refer to open-loop (bare airframe) transfer functions even though that notation is used for convenience. Rather the transfer functions are those with the SAS and any other manual (e.g., speed control) loops closed.

To study flight path control, we should measure the describing function, GFP, which is given by:

$$
\begin{equation*}
G_{F P}=\frac{Y_{\dot{h}}\left(N_{\delta T}^{\dot{h}}+Y_{d} N_{\delta T}^{d}\right)}{\Delta} \tag{c-3}
\end{equation*}
$$

Furthermore, since \dot{h} and \dot{d} are approximately equal (h is measured vertically and d is perpendicular to the trim flight path), $G_{F P}$ can be approximated by:

$$
\begin{equation*}
G_{F P} \doteqdot Y_{\hat{h}}\left(s+Y_{d}\right) \frac{N_{\delta T}^{d}}{\Delta} \tag{C-4}
\end{equation*}
$$

INPUT SELECTION

A number of possible inputs could be used to excite the pilot/aircraft system. Three specific ones will be considered here.

- Beam noise - d_{c} in Fig. $C-1$ but without the input to the IVSI.
- Vertical gust - wg_{g} in Fig. C-1.
- Pseudo gust - d_{c} in Fig. $\mathrm{C}-1$ with \dot{d}_{c} fed to the IVSI.

For beam noise, the closed-loop aircraft responses are:

$$
\begin{align*}
& \frac{d}{d_{c}}=\frac{-Y_{d} Y_{h} \cdot N_{\delta_{T}}^{d}}{\Delta+Y_{h} N_{\delta_{T}}^{h}+Y_{\dot{h}} Y_{d} N_{\delta_{T}}^{d}} \tag{c-5}\\
& \frac{d_{e}}{d_{c}}=1+\frac{d}{d_{c}}=\frac{\Delta+Y_{\dot{h}} N N_{\delta_{T}}^{\dot{h}}}{\Delta+Y_{\dot{h}} N N_{\delta_{T}}^{\dot{h}}+Y_{\dot{h}} Y_{d} N_{\delta_{T}}^{d}} \tag{C-5}
\end{align*}
$$

From these expressions we see that the desired describing function, \mathbb{G}_{FP}, can not be measured with this input.

For a vertical gust, the closed-loop response is:

$$
\begin{equation*}
\frac{d}{w_{g}}=\frac{N_{W_{g}}^{d}+Y_{h} \dot{N}_{W_{g}}^{d} \dot{\underline{D}}_{T}}{\Delta+Y_{h} \dot{N}^{\dot{h}} \delta_{T}+Y_{\dot{h}} Y_{d} N_{\delta_{T}}^{d}} \tag{c-6}
\end{equation*}
$$

Since $\dot{\mathbf{d}} \doteq \dot{\mathrm{h}}$, the coupling numerator term will be small and the response can be approximated by

$$
\begin{equation*}
\frac{d}{W_{g}} \doteq \frac{N_{W_{g}}^{d}}{\Delta+Y_{h} N_{\delta T}^{h}}+Y_{h} Y_{d} N_{\delta T}^{d} \quad=\frac{N_{W_{g}}^{d} / \Delta}{1+G_{F P}} \tag{c-7}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{F P} \doteq \frac{w_{g}}{d} \frac{N_{W_{g}}^{d}}{\Delta}-1 \tag{c-8}
\end{equation*}
$$

Therefore if a gust input is used, the data reduction routine must include the gust transfer function, $N_{W_{g}}^{d} / \Delta$, for that particular configuration. While we could calculate the gust transfer function for the airplane + SAS, there is no way to account for the effects of additional manual feedbacks, such as airspeed to pitch.

The third possibility, pseudo gust, is the one that was actually used. A vertical gust is approximated by adding d_{c} to the glide slope display, \dot{d}_{c} to the IVSI, and \ddot{d}_{c} to the cab vertical motion. In this case the closedloop responses are given by:

$$
\begin{aligned}
& \frac{d}{d_{c}}=\frac{-Y_{\dot{h}}\left(s+Y_{d}\right) N_{\delta_{T}}^{d}}{\Delta+Y_{\dot{h}} \mathbb{N}_{\delta_{T}}+Y_{d} Y_{\hat{h}} N_{\delta_{T}}^{d}} \\
& \pm \frac{-Y_{\mathrm{d}}\left(s+Y_{d}\right) N_{\delta_{T}}^{d}}{\Delta+Y_{d} N_{\delta_{T}}^{d}\left(s+Y_{d}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1+Y_{\dot{h}} \frac{\left(N \dot{\dot{g}_{T}}-N_{\sigma T}^{d}\right)}{\Delta}}{1+G_{F P}}
\end{aligned}
$$

or

$$
\begin{equation*}
G_{F P}=\frac{d_{c}}{d_{e}}\left[1+Y_{\dot{h}} \frac{\left(\dot{N}_{\delta_{T}}-\dot{N i}_{\delta_{T}}\right)}{\Delta}\right]-1 \tag{C-11}
\end{equation*}
$$

Since $\dot{\mathrm{h}} \doteq \dot{d}$, the numerator difference is small and can be neglected. This gives:

$$
\begin{equation*}
G_{F P} \doteq \frac{d_{c}}{d_{e}}-1 \tag{C-12}
\end{equation*}
$$

This is a convenient expression as it is independent of the aircraft dynamics and it is the one used in the data reduction routine.

INFOT SCALING AND SHEAPITG

The amplitudes of the input sine waves were selected to approximate vertical turbulence. Comparison of the closed-loop transfer functions given above shows this can be accomplished if,

$$
\begin{equation*}
d_{c}=\frac{N_{W_{g}}^{d}}{\Delta} w_{g} \tag{C-13}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{d}_{c}=\frac{N_{W_{g}}^{\dot{d}}}{\Delta} W_{g} \tag{C-14}
\end{equation*}
$$

To scale the input, it was assumed that

$$
\begin{equation*}
\frac{N_{W}^{W_{g}^{d}}}{\Delta}=\frac{.5}{s+.5} \tag{C-15}
\end{equation*}
$$

and that w_{g} has an rms level of $4 \mathrm{ft} / \mathrm{sec}$ and a power spectral shape of

$$
\begin{equation*}
\Phi_{W_{g}}=\frac{k_{1}}{\omega^{2}+.25} \tag{C-16}
\end{equation*}
$$

This gave an rms \dot{d}_{c} of $2.8 \mathrm{ft} / \mathrm{sec}$. To match this amplitude, the input components must satisfy the constraint:

$$
\begin{equation*}
(2.8)^{2}=\frac{1}{2} \sum_{i}\left(\omega_{1} A_{i}\right)^{2} \tag{C-17}
\end{equation*}
$$

To provide reasonable frequency shaping of the input, the d_{c} component amplitudes were varied with frequency as $\left(N_{W_{g}}^{d} / \Delta\right) w_{g}$ varies or

$$
\begin{equation*}
\omega_{i} A_{i}=\frac{k_{2}}{\omega_{i}^{2}+.25} \tag{C-18}
\end{equation*}
$$

where k_{2} is an arbitrary constant which was selected to match the rms \dot{d}_{c} of $2.8 \mathrm{ft} / \mathrm{sec}$.

The pilots considered the input a reasonable approximation of turbulence.

APPENDIX D
 PIIOT BRIEFFING AND QUESIIONAIRES

The briefing outline used to familiarize the pilots with the simulation scenario is given in Fig. D-1. Three questionnaires used as prompting notes for the test engineer are shown in Fig. D-2. Attempts to have the pilots fill out these questionnaires after the simulation period were abandoned early in the program. This was primarily because the pilots tended to confuse configurations and to forget key points that occurred during the runs.
A. General

1. Jet STOL transport aircraft
2. Weight $=150,000$ lbs
3. Approximately 150 passengers
4. Representative of the worst case configurations of flve smoI-type vehicles; Internally Blown Flap (IBF), Externally Blown Fiap (EBF), Vectored Thrust, Augmentor Wing, and Upper Surface Blowing (USB)
B. Series of tasks representing a precision instrument approach on a 6 deg glide slope
5. IIS tracking - consideration for evaluations
a. Glide path control
b. Airspeed control
c. Pilots indicate acceptable limits on glide slope and speed excursions. Consider normal ATC speed requests for separator and maximum allowable speed and glide path errors at decision height to achieve acceptable touchdown conditions on a STOL runway
C. Flare and Landing
6. Idealized situation - problem initialized with aircraft at target speed and on glide slope at 300 ft (decision height)
7. Fly aircraft to a VFR touchdown
8. Considerations for evaluations
a. Touchdown sink rate
b. Precision of Touchdown point -- ability to stop -- probability of landing short
c. Acceptable values for sink rate and touchdown position to be evaluated by pilot considering available runway to stop, passenger comfort, and landing gear etrength
d. Tradeoffs between the above (a and b)
e. Would an increased runway length have a significant bearing on your rating?
D. Composite task
9. Intercept final approach course and fly IIS to touchdown with winds and turbulence
10. Consider individual tasks (B and C) in light of the overall approach task
11. Rate the overall task and emphasize key issues that affect your rating (make comments)
E. Pilot ratings and commentary
12. Verbal to experimenter in simulator during runs
13. Summary into tape recorder after each series of runs
14. Written sumiary of each configuration using attached sheet.
\qquad DATE: \qquad RUN: \qquad

CONFIGURATION: \qquad
APPRQACH
Pilot Ratings: Calm Air \qquad ; In Turbulence \qquad

1. Evaluate the Δy capabilities of this configuration. Would it cause any operational problems?
2. How often did you hit the throttle stops?
3. Did the Δy limits affect the piloting technique for large corrections? If yes, describe.

FLARE AND LANDING
Pilot Ratings: Calm Air \qquad ; In Turbulence \qquad
4. What flare technique was used?

Did you add power?
5. Was there a problem in landing within the touchdown zone or arresting sink rate? Was there a tendency to land short? Long? Hard?
6. Was visibility over the nose a factor?
7. What were the major factors which influenced the above ratings?

```
Figure D-2b. Pilot Evaluation - Landing
```

PIIOT: \qquad DATE: \qquad RUN: \qquad

CONFIGURATION: \qquad

PILOT RATINGS: Calm Air
In Turbulence \qquad

1. Which of the following flare techniques did you try?
a. Pitch only, no thrust inputs.
b. Pitch primary, open loop thrust input.
c. Thrust only, no pitch change.
d. Thrust primary, open loop pitch change.
e. Other (describe) \qquad
2. Which technique did you finally select? Why?
3. Describe the technique used in as much detail as possible (e.g., altitude at which flare was initiated, magnitude of pitch and thrust changes, and primary cue for flare initiation).
4. Was there a problem in landing within the touchdown zone or arresting sink rate? Was there a tendency to land short? Long? Hard?
5. Was visibility over the nose a problem?
6. Did a tailwind significantly affect the task? If yes, describe how and rate task with and without tailwind.
7. What were the major factors which influenced the above ratings?

Figure D-2c. Pilot Evaluation - Speed Margin

PILOT: \qquad DAIE: \qquad RUN: \qquad
CONFIGURATION: \qquad
APPROACH
Pilot Ratings: Calm Air \qquad ; In Turbulence \qquad

1. Evaluate the safety margins in calm air and in turbulence.
2. What piloting technique was used in general?

Did it involve any control crossfeed, e.g., power to elevator?
3. What piloting technique was used to avoid exceeding the speed or angle of attack limits?
4. Was it difficult to avoid the limits?

Would it be difficult under operational conditions?
5. What were the major factors which influenced the above ratings?

FLARE AND LANDING
Pilot Ratings: Calm Air \qquad ; In Turbulence \qquad
6. What flare technique was used?

Did you add power?
7. Was there a problem in landing within the touchiown zone or arresting sink rate? Was there a tendency to land short? Long? Hard?
8. Was visibility over the nose a factor?
9. What were the major factors which influenced the above ratings?

APPENDIX E

A digital computer program was developed to aid in the designing of the various test configurations. This program trims the aircraft (based on power and velocity inputs) and calculates the derivatives necessary to factor the longitudinal and lateral-directional small perturbation equations of motion (e.g., $\partial C_{L} / \partial \alpha, \partial C_{L} / \partial C_{\mu}$, etc.).

Construction of trim drag polars, aircraft performance curves ($\gamma \mathrm{vs} \mathrm{V}$), and evaluation of various handling quality parameters are made relatively simple via this computer program. The following sections present this type of information for all the test configurations (aircraft) evaluated. All results are based on numeric ralues presented in various sections of this report.

Subjective descriptions of the origin and differences in the test configurations are also included. These are intended to give a brief insight into the ration \because used to arrive at these configurations.
A. DRAG POIARS

1. Untrinmed

Untrimed drag polars for all aircraft are shown in Figure E-1a. through m. These figures depict the blowing effects, C_{μ}, on the static lift and drag (that is, tail off and no ram drag included) for each test configuration.

2. Trimmed

Trimmed drag polars for flve aircraft are shown in Figure E-1z through e. Note that in addition to lines of constant blowing, lines of constant angle of attack are drawn on each drag polar. Three approach trim points are also shown. These are three typical approach flight conditions used throughout the simulation.

																					，					H2		H	\dagger			
																										H		＋	＋			
														IT						＋	$1+$			\pm	1	H：		17	1．			
																				Hi									＋	H7		
														1.4						＋								－	7	碞		
																				＋1t：	－		12	＋		1		1.	4	＋		
											，		7		茞					\＃	H		tr		苂				L	．		
					－						－	－		＋	＋！				＋		－		＋		7							
											4		7：	＋12\％	＋1：				＋		＋17		＋		129	CH：						－1．
				－	\＃						\％	\＃	H		＋					，	＋7		＋			W		\％		2－1		
			－		\＃				\％			H	，		1：＋	＋	＋			（1）						＋1，			－	＋		
				－					－											－												
				H					－											＋	1				＋				It	T＋		
																					4		$1+$									
				－																H	＋3t		1.	17	415				，	H		
				－										＋					，		\％		＋i＋		H	＋			17	，		
7	＋												＋			－	14		－ 5			－	15		＋	8		\＃1	H	＋		n
													，		＋		1		\＃1	：	奢	T 1	7t	F		71		\＃		\pm		
	\pm			－	＋						＋	7	\pm	\pm	＋	－	\％	＋	，	＋	［5	－ 7	＋	5	10，	＋1						
Hi			＋it	7	＋1		－					＋		＋	14	T		＋	1		－				1	4						
		$\underline{+}$		＋做								－			＋		－	＋	－	\square			［			in：		$:$	－			
		＋	＋	7									－			\bigcirc			＋7	＋${ }^{1}$	T		＋17					1				
													＋		杜	\pm			7	15			： 2		\pm							
		İ											1	＋1	＋	＋	1								\square							
－		＋											1	＋	H		1											i				$1 \times$
									，			1	！									7						I：				
＋	＋		1	\＃	＋				＋			d	＋				＋			－		1	＋10		＋	11.						
	＋17				F－			1	T		4	＋2		＋	\％	N	＋						＋	Et				T				
－	＋7）	，			＋	，			1－4	－		＋			－		\times	，	＋					\square			\％	B				
	＋	衝		T	＋				．					T		T1		－				＋						\pm				
＋	＋														＋				－			\％	Tt									
					＋		＋		＋		星			15			H5	2：	H				：						N			
4	＋4	1＋t．			F			＋	\％	＋	\square			－	$1+$		＋		＋										5			
\＃		－	\＃		＋17：					972								H17	F！		C：			＋1		4			¢			
	＋－＋	－	－		－		－												＋													
\＃		H＋t	＋	＋	1－1		F				＋	＋17		1	$11+$		4	7	H			π			1			H	4			
	\cdots	－					，	－							\bigcirc				＋					\square		7T						
\pm \＃	＋	\％			H		1				－		．	\％：		－	＋	H1	1	－	［ 41		＋			I．			4			
	－ 7	－					？	＋	－			＋		＋	IT		A	T	I		T：		＋	－				1	8			
4	－：7	－	＋1		＋	T		－7		X	1	P	，	－	1	．	H	＋	，		＋	＋	tit	T	119，	O		3	${ }^{\text {d }}$			
	＋＋				－			71：				－	＋：1	H1，			，		＋8	－	＋1	$4+4$		4	！${ }^{\text {！}}$				0			
－	H7\％				$\underline{+}$		＋	＋+1			－	1		－			＋		析			$\underline{+}$	H	$1 i+$	\because	${ }_{4}$			O_{1}			
	H				\＃＋		$1+$	＋						St	－	t	＋		＋		＋							11				
ETH：						\＃if	殏	＋1，	$!$					．			＋12		1！	1	1：	\square	［11			1：＋			60			
，＋1	＋							＋		P						1	\＃		＋	4	－	1	＋121	＋1：	T	T						
							4	17						＋		H	\pm		3010	＋17	1，	－ 1	＋	\％		4			ロ			
，							\because				！			141		－\ddagger ！	＋		－．		1：$!$											
					1		－	＋ 7	to	H：		1			＋14		H		－				＋						r			
					147	帱	＋1		t		S	H：	$1:$				\＃		TH．				\％						\pm			
						－	$+1+$	＋			7	T	＋	\％															볌			
TET							H	19	，	112	\％	1ti	＋4：	Fta	ait		4	17\％	H	H－1	8	1		．					$\stackrel{.}{ }$			
＋7	H							14		T1：	．\cdot	\％		H1．		Tir	H	1	－	：		＇ 1							＋			
	H2，			＋	4		＋	1	It	1	\％ 3			\％		H：	，	1	414		，		！						c			
	＋ 7		＋		17	11	＋：	＋	－					＋+		4：	\％		4	T：		fit	，						ρ			
，	1＋木折！				，	．	．				$1 \cdot$			1.			H1］		2t：													
	\bigcirc	1			17	T	tE：						7				P			\because.	\％					＋						
	\because	$1 \times$				1.									1		濐		［1：	H15	1								0			
	1－117：	＋	F．	！	\cdots								：		C		相			7． 1		4	F						$\stackrel{\rightharpoonup}{\circ}$			
	＋＋＋＋1：	［2．	$1!$								12	1				＋1：	5		4	E：	＋		．\cdot	\because	1				1			
\％	－	为												4			Lit		\％	－	－	＋1	，						［乐			
－7，	速	H1＋	1	L：	1			1：	7			C5		17	：	H	L	1	3：		． 11	［i：										
	！ $7+1$	1－			：				！！	17					，		T	！	析		，	：$: 1$							\％			
			＋T：		1		＋1							1－7			14					＋										
	\％tit	早		1		1	If			＋									1	＋				．	－				． 60			
＋															－		T												F_{4}			
5	＋	：		10			＋							1			＋		杖	\pm	\％	1										
\＃\＃	\％ 1						）	＋						T			T		\＃													
								1						N			［11		：		11	1		！								
	\bigcirc			\square		\＃	\＃										\％		T			．	＋									
\％	1： 4 ti		\because					\％			＋				C	！	\％	－	\％	．		， 11				0						
	＋t			：		7	T－	it									H1			\％	．											
	\％				，15												dit	\％	18	，	1											
	15				；	T：	H	＋		学							\％		T：	F			4									
1：017：							1				＋1：		Sti			（1）：	1		0													
AEP4：			1				i																									
\＃					＋1：												－					\cdots										
	：		H51		$1{ }^{1}$	＋1																								\cdots		
Titatit	＋\square^{+1}	＋1	國			\％	Tri	［1it	＋17															？！								
		＋																														
	㫛积：								18					N																		
Atrata																							－									
	＋12				17	tit			！				－																			
＋itat	，				\＃17				＋1；		1			ter									1＋5	1								
Et，					\％				－		：			＋${ }^{\text {a }}$								！	T：									
														－					4				＋									
nirdet	3that	1			\＃						$17+7$			51																		
											＋1．																					
IHETE．											＋																					
－ritir	－		［in											TH．										\square				：		＋		
	2id 4						71		＋5		㗽	17	L	H2	\square																	
											\＃＋：																					
－	H世䍖																															

K\$2 10×10 TO THE CENTIMETER 461512

促

HFE： 10×10 TO THE CENTIMETER 461512

7．											荊						F＋＋＋		
				\％	i＋			$\underline{1}$		H，					4	\bigcirc	4		
						基	－				＋						－		
																－			
					＋＋＋＋	C＋7＋	＋	TIT	－+	＋28	－						－		
＋				F	＋	居析	\＃\＃，	T	＋		＋+14								
＋7，－	＋			＋1＋				－	12：＋1t＋	4	－ 4	－							
4						－	Wat	17－7	－+			－							
＋＋－	－		\square		＋t＋	H7，	－	1－1	＋	－t－	，， 4	$\underline{1}$							
－	－ 1				＋	＋				1	＋				\％				
	－			＋		－		$\pm \pm 7$	＋1－7	＋1\％	－+		－		4				
？	14	－				Tt	4	74			1，	＋	1						
＋					＋	＋1－													
107	＋		\％		［＋4	－	it	\％	＋	F－3	＋	ryta			＋				
－	T＋	E			－	＋	T	＋ 41	－tat	－10		－1							
＋	－				－	＋	－	H－7				－							
－4 ${ }^{\text {a }}$	－	－	7		＋10	＋ 4	＋ 5	－1＋3	＋1701	＋		t\％			\％				
	01		t	\％	H	\％ 7	＋+3	E	直	＋				－					
						\rightarrow	H．	H．	＋	\pm									
＋	－	－		7	T＋1	\＃		2317	$17 \pm$			T		5			4		
\％	C			持	－			15				＋					ω		
									N＋										
							87	F－3									－		
						15		\square	1－1			L					\bigcirc		
					3－														
		－				T			N＋			二2			\pm				
	－						H13		in 3		4	4	．	－			n		
	＋					－	1	T	L：197	－		St			I		足		
Win	＋					47	＋15	T	－ 7			5		＋	T				
																	¢		
									CHTH	，	＋								
	些	\％		14	5	E	I	＋		E－P禹		3					은		
\cdots						，		＋	＋7t								匂		
1－7－					＋	4		\times	T－										
5	－			：	\％			T	－	．									
					T			T									\bigcirc		
动可		1			He	－	H	－	＋			＋			\cdots				
	T	4		15	T	1	15	2＋	\square		1.	\pm							
＋7＋				\％															
T				\checkmark	－	4		4	7t	1	1	5					0		
T	T					此		－5		Crt	$7:=$	T		．	－				
$\underline{1}+$	＋	－		\square	＋	1	54	－+5	13－1	A	$\mathrm{C}=$	3					\％		
－					N	\％	＋ 4			7 F	，	，							
				－		0	＋+	x	$1+5$							L	$\stackrel{\square}{8}$		
	\＃			－		7				\％							g		
																1			
								H	15								$\stackrel{+}{+}$		
－1tal									O－		4						5		
												4							
－						A													
				\％	＋	X		1				\％					E		
								T									荘		
												4							
＋								＋	1										
								X	O								巩		
					＋														
	＋														，				
：																			
					－														
＋持速				S	3														
－2t ${ }^{\text {at }}$		＋1			\＃	＋	5	菏									＋		
W－4－10＋	－	－it			W＋15	1	H2tir	＋\＃	－										
Tater		T				H	T＋	\＃+ ＋				＋			4				
							＋7？												
					－	H	D：	＋	－\％										
2；\square^{4}				淮校	＋＋	＋	＋	弗	叫烓							．			
										－		－	7	－					
					＋	＋7	＋	者＋	He	Bita		15					＋		

The trimmed C_{L} vs α curves are not shown because of the relatively small difference in the trimmed and untrimmed curves. The difference simply being the lift from the elevator. However, for the drag polar, in addition to the drag from the elevator, there is a large drag caused by ram effects. The result of this ram drag being a positive ΔC_{D} at various lift coefficients ($\mathrm{C}_{\mathrm{DAM}} \sim 1 / \mathrm{V}$).

B. PERFORMANCE CURVES

Flight path angle versus velocity for lines of constant power and , pitch attitude are shown in Figure E-3a through m for all aircraft tested. ${ }^{7}$ his information is useful for comparing the relative amount of control cross-coupling. This is, how much airspeed change is experienced when using the power to change flight path and holding constant attitude. Or, how much flight path change is experienced when using attitude to change airspeed at constant power. Stall margin and the relative amounts of "up and down" capability are also readily obtained from these plots.

C. DYNAMLCS

Dimensional stability derivatives and SAS on and off transfer functions for each test configuration are tabulated below for three approach flight conditions. This information is useful for ascertaining basic handling qualities data and conducting closed-loop analysis.

1. Longitudinal
a) Bare airframe dimensional stability derivatives are presented in Table E-1a through 1. Complete definitions of the symbols used can be found in NASA CR-2144.*
b) SAS on and off transfer functions are presented in Table E-2a through 1. Complete definitions of the symbols and notations used can be found in NASA CR-2144.* Note that the SAS on transfer functions include the engine dynamics $\left(1 / \tau_{2}=0.667\right)$.

[^2]

Figure E-3a. Performance Curve for BSL1

Figure E-3b. Performance Curve for BSL2

Figure E-3c. Performance Curve for BSL2 RLD

Figure E-3d. Performance Curve for AP1

Figure E-3e. Performance Curve for AP2

Figure E-3f. Performance Curve for AP3

Figure E-3g. Performance Curve for APS

Figure E-3h. Performance Curve for APb

Figure E-3i. Performance Curve for AP6 SR

Figure E-3j. Performance Curve for APG RLI

Figure E-3k. Performance Curve for AP7

Figure E-31. Performance Curve for AP10

Figure E-3m. Performance Curve for BSL30 or AP30, $30 \mathrm{deg} \delta_{f}$

TABLE E-1a

LONGITUDINAL STABILITY DERIVATIVES

Approach Configuration
Aircraft: BSL1

$V_{0}(k t)$	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	9.70	2.67	-2.70
$\delta_{T_{0}}(\%)$	48.3	44.1	44.7
$\mathrm{X}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 12990	-. 1007	-. 08167
$\mathrm{z}_{\mathbf{u}}^{*}(1 / \mathrm{sec})$	-. 4575	-. 421	-. 3817
$\mathrm{X}_{\mathrm{W}}(1 / \mathrm{sec})$. 10080	. 09787	. 09336
$z_{W}(1 / \mathrm{sec})$	-. 4108	-. 4266	-. 4551
$\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\tan ^{-1}\left[\begin{array}{l} -\mathrm{Z}_{\delta_{T}} \\ \mathrm{X}_{\delta_{T}} \end{array}\right] \quad \text { (deg) }$	67.0	61.0	55.5
$M_{u}^{*}(1 / \mathrm{sec}-\mathrm{f} t)$. 0002212	. 000262	. 0003528
$M_{w}(1 / \mathrm{sec}-\mathrm{ft})$. 0009134	. 0014009	. 0019533
$M_{W}(1 / f t)$	-. 0008847	-. 0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$\mathrm{z}_{\dot{\mathbf{W}}}(1 / 1)$. 02687	. 02687	. 02687
$\mathrm{Z}_{\mathrm{q}}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$	2.71	3.13	3.55
$M_{\delta_{e}}\left(1 / \sec ^{2}-\mathrm{rad}\right)$	-. 5378	-. 7020	-. 8730
$z_{\delta_{e}}\left(f t / \sec ^{2}-r a d\right)$	-2.785	-3.707	-4.762
$X_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)$. 06002	. 06757	. 07227
$z_{\delta T}\left(\mathrm{ft} / \sec ^{2}-\phi\right)$	-. 14119	-. 12212	-. 10509
$\mathrm{T}_{\delta T}\left(\mathrm{ft} / \mathrm{sec}^{2}-\chi\right)$. 1395	

TABLE E-Ib

LONGITUDINAL STABILITTY DERIVATIVES

 Approach ConfigurationAircraft: BSL2

$V_{0}(k t)$	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	7.5	2.4	-1.2
$\delta_{\mathrm{T}_{0}}(\%)$	48.1	44.1	44.8
$X_{u}^{*}(1 / \mathrm{sec})$	-. 1329	-. 1009	-. 08081
$z_{u}^{*}(1 / \mathrm{sec})$	-. 4641	-. 4212	-. 3785
$\mathrm{X}_{\mathrm{W}}(1 / \mathrm{sec})$. 04421	. 04799	. 04975
$z_{w}(1 / \mathrm{sec})$	-. 5222	-. 5554	-. 6012
$g / U_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\begin{aligned} & \tan ^{-1}\left[\frac{-z_{\delta_{T}}}{X_{\delta_{T}}}\right]_{u} \text { (deg) } \\ & M_{u}^{*}(1 / \text { sec }-f t) \end{aligned}$	64.6 .000260	60.8 .0002662	57.3 .0003227
$M_{W}(1 / \mathrm{sec}-\mathrm{ft})$. 001795	. 002270	. 002830
$M_{\dot{W}}(1 / \mathrm{F} t)$	-. .0008847	-. 0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$z_{\dot{w}}(1 / 1)$. 02687	. 02687	. 02687
$\mathrm{Z}_{\mathrm{q}}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$	2.71	3.13	3.55
$M_{\delta_{e}}\left(1 / \sec ^{2}-\mathrm{rad}\right)$	-. 5362	-. 7014	-. 8802
$z_{\delta_{e}}\left(\mathrm{ft} / \sec ^{2}-\mathrm{rad}\right)$	-2.785	-3.707	-4.762
$x_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)$. 06361	. 06788	. 07077
$z_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)$	-. 1341	-. 1213	-. 1101
TR-1035-3R-III	E-32		

TABLE E-1c

LONGITUDINAL STABILITY. DERIVATIVES
Approach Configuration
Aircraft: BSL2 RLD

$\mathrm{V}_{0}(k t)$	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	10.85	3.33	-1.08
$\delta_{\mathrm{T}_{0}}(\%)$	48.4	44.1	44.8
$\mathrm{X}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 13680	-. 10101	-. 08056
$Z_{u}^{*}(1 / \mathrm{sec})$	-. 4707	-. 4213	-. 3776
$\mathrm{X}_{\mathrm{W}}(1 / \mathrm{sec})$. 12973	. 08482	. 06276
$\mathrm{Z}_{\mathrm{W}}(1 / \mathrm{sec})$	-. 3539	-. 4602	-. 5575
$g / U_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\tan ^{-1}\left[\frac{-Z_{\delta_{T}}}{\mathrm{X}_{\delta_{T}}}\right] \quad \text { (deg) }$	61.7	60.7	57.7
$M_{u}^{*}(1 / \sec -f t)$. 0003079	. 0002641	. 0003163
$M_{W}(1 / s e c-f t)$. 0004869	. 0015855	. 002534
$M_{\dot{W}}(1 / f t)$	-. 0008847	-. 0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$\mathrm{Z}_{\mathbf{W}}(1 / 1)$. 02687	. 02687	.02687
$\mathrm{Z}_{\mathrm{q}}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$	2.71	3.13	3.55
$M_{\delta_{e}}^{2}\left(1 / \sec ^{2}-\mathrm{rad}\right)$	-. 5384	-. 7036	-. 8810
$z_{\delta_{e}}\left(f t / \sec ^{2}-r a d\right)$	-2.785	-3.707	-4.762
$X_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)$.06777	. 06799	. 07037
$z_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)$	-. 12599	-. 12102	-. 11142

TABLE E-1d
LONGITUDINAL STABILITTY DERIVATIVES Approach Configuration

Aircraft: AP1

V_{0} (kt)	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	21.2	1.87	-11.9
$\delta_{T_{0}}(\%)$	23.1	30.6	46.8
$\mathrm{X}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 06641	-. 06898	-. 07548
$\mathrm{z}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 4207	-. 3879	-. 3553
$\mathrm{X}_{\mathrm{W}}(1 / \mathrm{sec})$. 2356	. 2146	. 1967
$\mathrm{Z}_{\mathrm{W}}(1 / \mathrm{sec})$	-. 2405	-. 2601	-. 3029
$\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\tan ^{-1}\left[\frac{-Z_{\delta_{T}}}{X^{X_{T}}}\right] \text { (deg) }$	98.3	81.0	67.3
$M_{u}^{*}\left(1 /\right.$ sec $-\mathrm{fl}^{\text {t }}$)	-. .0002.612	-. .0001454	. 0002264
$M_{W}(1 / s e c-f t)$	-. 001517	-. .0003457	.000'7516
$M_{W}(1 / f t)$	-. .0008847	-. .0008847	-. .0008847
$\mathrm{M}_{\mathrm{q}}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$\mathrm{z}_{\dot{W}}(1 / 1)$.02687	. 02687	. 02687
z_{q} (ft/sec-rad)	2.71	3.13	3.55
$M_{\delta_{0}}\left(1 / \sec ^{2}-\mathrm{rad}\right)$	-. 5336	-. .6998	-. 8147
$z_{\delta_{0}}\left(f t / \sec ^{2}-\mathrm{rad}\right)$	-2.785	-3.707	-4.762
$x_{\delta_{T}}\left(f t / \sec ^{2}-\alpha\right)$	-. 05593	. 03862	. 05887
$z_{\delta_{T}}\left(f t / \sec ^{2}-x\right)$	-. 3826	-. 2437	-. 1410

TABLE E-1e

IONGITUDINAL STABILITY DERIVATIVES

 Approach Configuration Aircraft: AP2| $\mathrm{V}_{0}(k t)$ | 65 | 75 | 85 |
| :---: | :---: | :---: | :---: |
| γ_{0} (deg) | -7.4 | -6.0 | -4.6 |
| θ_{0} (deg) | 12.4 | 3.0 | -4.7 |
| $\delta_{T_{0}}\left(c_{\mu}\right)$ | 22.1 | 30.6 | 46.9 |
| $X_{u}^{*}(1 / \mathrm{sec})$ | -. 04478 | -. 04964 | -. 06058 |
| $z_{u}^{*}(1 / \mathrm{sec})$ | -. 3440 | -. 2695 | -. 1974 |
| $\mathrm{X}_{\mathrm{W}}(1 / \mathrm{sec})$ | . 1848 | . 1768 | . 1709 |
| $z_{w}(1 / \mathrm{sec})$ | -. 4367 | -. 4915 | -. 5719 |
| $\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$ | . 293 | . 252 | . 224 |
| $\tan ^{-1}\left[\frac{-z_{\delta_{T}}}{X_{\delta_{T}}}\right] \quad(\mathrm{deg})$ | 100.6 | 90.2 | 84.6 |
| $M_{u}^{*}\left(1 / \mathrm{sec}-\mathrm{f}^{\prime} \mathrm{t}\right)$ | -. 0006742 | -. 0006745 | -. 0006211 |
| $M_{W}(1 /$ sec-ft $)$ | -. 0004882 | . 0006596 | .001923 |
| $M_{W}(1 / f t)$ | -. 0008847 | -. 0008847 | -. 0008847 |
| $M_{q}(1 / \mathrm{sec})$ | -. 5279 | -. 6091 | -. 6903 |
| $\mathrm{Z}_{\mathbf{w}}(1 / 1)$ | . 02687 | . 02687 | . 02687 |
| $z_{q}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$ | 2.71 | 3.13 | 3.55 |
| $M_{\delta_{e}}\left(1 / \sec ^{2}-\mathrm{rad}\right)$ | -. 5388 | -.7027 | -. 3624 |
| $\mathrm{Z}_{\delta_{e}}\left(\mathrm{ft} / \mathrm{sec}^{2}-\mathrm{rad}\right)$ | -2.785 | -3.707 | -4.762 |
| $x_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)$ | -. 1105 | -. 001479 | . 03585 |
| $z_{\delta T}\left(\mathrm{ft} / \mathrm{sec}^{2}-8\right)$ | -. 5896 | -. 4886 | -. 3823 |
| M ${ }_{\text {St }}$ | | . 00142 | |
| TR-1035-3R-III | E-35 | | |

TABLE E-1f

LONGITUDINAL STABILITY DERIVATIVES Approach Configuration Aircraft: AP3

$\mathrm{V}_{0}(k t)$	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	11.02	. 85	-6.7
$\delta_{T_{0}}(\%)$	9.04	9.99	17.6
$\mathrm{X}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 07976	-. 06402	-. 05809
$\mathrm{z}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 5286	-. 4683	-. 4040
$X_{W}(1 / \mathrm{sec})$. 1956	. 1862	. 1788
$\mathrm{Z}_{\mathrm{W}}(1 / \mathrm{sec})$. 3811	-. 4163	-. 4733
$\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\tan ^{-1}\left[\begin{array}{l} -Z_{\delta_{T}} \\ \bar{X}_{\delta_{T}} \end{array}\right] \text { (deg) }$	85.4	73.7	62.8
$M_{u}^{*}(1 / \mathrm{sec}-\mathrm{ft})$	-. 000033	-. 000024	-. 0000134
$M_{W}(1 /$ sec-ft $)$	-. 001343	-. 0005369	. 0002624
$M_{\text {W }}(1 / f t)$	-. 0008847	-. .0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$z_{\dot{W}}(1 / 1)$. 02687	. 02687	. 02687
Z_{q} (ft/sec-rad)	2.71	3.13	3.55
$M_{\delta_{e}}\left(1 / \sec ^{2}-\mathrm{rad}\right)$	-. 5384	-. 6969	-. 8503
$z_{\delta_{e}}\left(\mathrm{ft} / \mathrm{sec}^{2}-\mathrm{rad}\right)$	-2.785	-3.707	-4.762
$x_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)$. 02.592	. 06915	. 09003
$\mathrm{Z}_{\delta_{T}}\left(\mathrm{ft} / \sec ^{2}-\mathrm{S}^{\prime}\right)$	-. 3225	-. 2368	-. 1753

TABLE E－1g
LONGITUDINAL STABILITY DERIVATIVES
Approach Configuration
Aircraft：AP5

v_{0}（kt）	65	75	85
γ_{0}（deg）	－7．4	－6．0	－4．6
θ_{0}（deg）	15.4	1.99	－9．1
$\delta_{T}{ }_{0}\left(\%_{0}\right)$		44.06	6.6
$\mathrm{X}_{\mathbf{u}}^{*}(1 / \mathrm{sec})$	－． 06661	－． 0760	－． 086%
$\mathrm{Z}_{\mathbf{u}}^{*}(1 / \mathrm{sec})$	－． 3488	－．354．	－． 3202
$\chi_{w}(1 / \mathrm{sec})$	． 2100	．200？	． 380
$\mathrm{Z}_{\mathrm{W}}(1 / \mathrm{sec})$	－． 2885	－． 301.9	－． 319
$\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$	． 293	． 252	． 224
$\tan ^{-1}\left[\frac{-Z_{\delta_{T}}}{\mathrm{X}_{\delta_{T}}}\right] \quad \text { (deg) }$	91.9	82.5	71.6
$M_{u}^{*}(1 / \mathrm{sec}-\mathrm{ft})$	－．0004340	－．000ごこ20	．000－808
$M_{w}(1 / \mathrm{sec}-\mathrm{ft})$	－．008221	． 000099	． 00 120e
$M_{\dot{W}}(1 / f t)$	－． 0008847	－． 0008847	－． 0008847
$M_{q}(1 / \mathrm{sec})$	－． 5279	－． 6091	－． 6903
$z_{\dot{w}}(1 / 1)$	． 02687	． 02687	． 02687
$z_{q}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$	2.71	3.13	3.55
$N_{\delta_{c}}\left(1 / \sec ^{2}-r a d\right)$	－． 5384	－． 7002	－． 8350
$\mathrm{z}_{\mathrm{S}}\left(\mathrm{ft} / \mathrm{sec}^{2} \cdot \mathrm{rad}\right)$	-2.185	－3．70\％	-4.762
$x_{\varepsilon_{T}}\left(f t / \sec ^{?}-\frac{\%}{p}\right)$	－． 01.18	．0：259	－rgie
$\mathrm{z}_{\delta_{T}}\left(\mathrm{ft} / \sec ^{2}-\frac{1}{j}\right)$	－． 5512	－． $21+i$	－． $1.59 i$
TR－1035－3R－III	E－		

LONGITUDINAL S'TABILITY DERIVATIVES

 Approach ConfigurationAircraft: AP6

$\mathrm{V}_{0}(\mathrm{kt})$	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	8.7	2.81	-3.05
$\delta_{T_{0}}(\%)$	36.1	$4 i_{\text {i }} .1$	61.7
$\mathrm{X}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 03935	-. 0.05080	-. 00488
$\mathrm{Z}_{\mathfrak{u}}^{*}(1 / \mathrm{sec})$	-. 2549	-. 2002	-. 1374
$\mathrm{X}_{\mathrm{W}}(1 / \mathrm{sec})$. 1588	. 1536	. 14.76
$z_{W}(1 / \mathrm{sec})$	-. 5030	-. 5468	-. 62.64
$g / U_{0}(1 / \mathrm{se})$. 293	. 252	. 224
$\tan ^{-l}\left[\frac{-Z_{\delta_{T}}}{X_{\delta_{T}}}\right] \text { (deg) }$	96.1	90.5	85.6
$M_{u}^{*}(1 / \mathrm{sec}-\mathrm{ft})$	-. 00100	-. .0008629	-. 000768
$M_{w}(1 / \mathrm{sec}-\mathrm{ft})$. 0004188	.001.236	. 0026441
$M_{\dot{W}}(1 / f t)$	-. 0008847	-. 0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$z_{\text {\% }}(1 / 1)$. 02687	. 02687	. 02687
$\mathrm{z}_{\mathrm{q}}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$	2.71	3.13	3.55
$M_{\delta_{e}}\left(1 / \sec ^{2}-r a d\right)$	-. 5372	-.7023	-. 871.2
$z_{\varepsilon_{e}}\left(\mathrm{ft} / \mathrm{sec}^{2}-\mathrm{rad}\right)$	-2.785	-3.707	-4.762
$X_{B_{T}}\left(f t / \sec ^{2}-\phi\right)$	-. 05288	-. 004081	. 0280
$z_{\delta_{T}}\left(r t / \sec ^{2}-\not-\sigma_{0}\right)$	-. 4915	-.438	-. 3605

LONGITUDINAL STABILITY DERIVATIVES

Approach Configuration
Aircraft: AP6 SR

\begin{tabular}{|c|c|c|c|}
\hline $\mathrm{v}_{0}(\mathrm{kt})$ \& 70 \& 75 \& 85

\hline $\gamma_{0}(\mathrm{deg})$ \& -7.4 \& -6.0 \& -4.6

\hline θ_{0} (deg) \& 2.14 \& -2.4 \& -8.17

\hline $\delta_{\text {T }}$ (\%) \& 33.8 \& 43.9 \& 61.6

\hline $\mathrm{X}_{\mathrm{u}}^{*}$ ($1 / \mathrm{sec}$) \& -. 05524 \& -. 05731 \& -. 07002

\hline $z_{u}^{*}(1 / \mathrm{sec})$ \& -. 2814 \& -. 2350 \& -. 17884

\hline $\mathrm{X}_{\mathrm{w}}(1 / \mathrm{sec})$ \& . 16238 \& . 15406 \& . 14790

\hline $z_{w}(1 / \mathrm{sec})$ \& -. 4919 \& -. 5460 \& -. 6262

\hline $\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$ \& . 272 \& . 252 \& .224

\hline $$
\tan ^{-1}\left[\frac{-z_{\delta_{T}}}{X_{\delta_{T}}}\right] \text { (deg) }
$$ \& 92.9 \& 89.2

0008200 \& | 83.8 |
| :--- |
| |
| 000646 |

\hline $M_{u}^{*}(1 / \mathrm{sec}-\mathrm{ft})$ \& -. 0008319 \& -. 0008200 \& -.0006436

\hline $\psi_{\text {I }}(1 / \mathrm{sec}-\mathrm{ft})$ \& . 0007820 \& . 0016082 \& . 002853

\hline $M_{\text {W }}(1 / f t)$ \& -. 0008847 \& -. 0008847 \& ..0008847

\hline $M_{q}(1 / \mathrm{sec})$ \& -. 5685 \& -. 6091 \& -. 6903

\hline $\mathrm{z}_{\mathbf{w}}(1 / 1)$ \& . 02687 \& . 02687 \& . 02687

\hline $\mathrm{z}_{\mathrm{q}}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$ \& 2.93 \& 3.13 \& 3.55

\hline $$
M_{B_{e}}^{2}\left(1 / \sec ^{2}-\mathrm{rad}\right)
$$ \& -. 6134 \& -. 6860 \& -. 8409

\hline $$
z_{\delta_{e}}\left(f t / \sec ^{2}-\mathrm{rad}\right)
$$ \& -3.230 \& -3.707 \& -4.762

\hline $$
x_{8_{T}}\left(f t / \sec ^{2}-x\right)
$$ \& -. 02257 \& . 005379 \& . 03410

\hline $$
z_{\delta_{T}}\left(f t / \sec ^{2}-\phi\right)
$$ \& -. 4520 \& -. 3904 \& -. 3125

\hline
\end{tabular}

TABLE E-1J

LONGITUDINAL STABILITY DERIVATIVES Approach Configuration

Aircraft: AP6 RLD

V_{0} (kt)	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	7.76	2.81	-3.05
$\delta_{T_{0}}(\$)$	38.8	44.1	61.7
$\mathrm{X}_{\mathbf{u}}^{*}(1 / \mathrm{sec})$	-. 04193	-. 05080	-. 06486
$\mathrm{Z}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 3788	-. 2002	-. 13744
$\mathrm{X}_{\mathrm{W}}(1 / \mathrm{sec})$. 14844	. 15358	. 14766
$\mathrm{z}_{\mathrm{W}}(1 / \mathrm{sec})$	-. 3376	-. 5467	-. 6263
$g / U_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\tan ^{-1}\left[\begin{array}{l}-Z_{\delta_{T}} \\ \overline{X_{\delta_{T}}}\end{array}\right]$ (deg)	99.2	90.5	85.6
$M_{u}^{*}(1 / \sec -\mathrm{ft})$	-. 0007695	-. 0008629	-. 0007630
$M_{W}(1 / s e c \cdot . f t)$. 0002945	. 0012356	. 002440
$M_{W}(1 / f t)$	-. $00088{ }^{1} 7$	-. 0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$z_{\dot{w}}(1 / 1)$. 02687	. 02687	. 02687
$\mathrm{Z}_{\mathrm{q}}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$	2.71	3.13	3.55
$M_{\delta_{e}}\left(1 / \sec ^{2}-r a d\right)$	-. 5364	-. 7023	-. 8712
$\mathrm{Z}_{\delta_{e}}\left(\mathrm{ft} / \sec ^{2}-\mathrm{rad}\right)$	-2.785	-3.707	-4.762
$x_{\delta_{T}}\left(f t / \sec ^{2}-\%\right)$	-.04642	-.004081	. 02800
$z_{\delta_{T}} \quad\left(f t / \sec ^{2}-\phi\right)$	-. 2868	-. 4388	-. 3605

LOWGITUDINAL STABILITY DERIVATIVES

Approach Configuration
Aircraft: AP7

$\nabla_{0}(k t)$	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	10.2	1.89	-4.6
$\delta_{\mathrm{T}_{0}}(\%)$	18.3	19.95	27.8
$\mathrm{X}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 08029	--.0719	- .06822.
$\mathrm{Z}_{\mathrm{u}}^{*}(1 / \mathrm{sec})$	-. 4681	-. 4253	-. 3130
$\mathrm{X}_{\mathrm{w}}(1 / \mathrm{sec})$. 1753	. 1676	. 1598
$\mathrm{Z}_{\mathrm{w}}(1 / \mathrm{sec})$	-. 4176	-. 4503	-. 5055
$\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\tan ^{-1}\left[\begin{array}{l} -z_{\varepsilon_{T}} \\ \bar{X}_{\delta_{T}} \end{array}\right] \text { (deg) }$	87.6	76.8	66.5
$M_{u}^{*}(1 / \sec -\mathrm{ft})$	-. 0001302	-. 000079	-. 000044
$M_{W}(1 / \mathrm{sec}-\mathrm{ft})$	-.001.0!	-. 000311.2	.00014987
$M_{\text {W }}(1 / f t)$	-. 0008847	-. 0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$z_{\dot{\mathbf{W}}}(1 / 1)$. 02687	. 02687	. 02687
$\mathrm{z}_{\mathrm{q}}(\mathrm{ft} / \mathrm{sec}-\mathrm{rad})$	2.71	3.13	3.55
${ }^{1} \delta_{e}\left(1 / \sec ^{2}-\mathrm{rad}\right)$	-. 5381	-. 6999	-. 8629
$z_{\delta_{e}}\left(f t / \sec ^{2}-r a d\right)$	-2.785	-3.707	-4.762
$x_{\varepsilon_{T}}\left(f t / \sec ^{2}-x\right)$.01431	. 05906	.08510
$z_{\delta_{T}}\left(\mathrm{ft} / \mathrm{sec}^{2}-\frac{\mathrm{F}}{5}\right)$	-. 5399	-. 2552	-. 1912

TABLIE E-11
LONGITUDITAL STABILITY DERIVATIVES Approach Configuration Aircraft: AP10

$V_{0}(k t)$	65	75	85
γ_{0} (deg)	-7.4	-6.0	-4.6
θ_{0} (deg)	23.4	4.56	-11.5
$\delta_{\text {T }}^{\text {O }}$ (\%)	23.4	30.7	46.8
$X_{u}^{*}(1 / \mathrm{sec})$	-. 03983	-. 05028	-. 06351
$z_{u}^{*}(1 / \mathrm{sec})$	-. 3200	-. 2732	-. 2284
$X_{w}(1 / \mathrm{sec})$. 2363	. 2145	. 19667
$Z_{w}(1 / \mathrm{sec})$	-. 2417	- . 2604	-. 3029
$\mathrm{g} / \mathrm{U}_{0}(1 / \mathrm{sec})$. 293	. 252	. 224
$\tan ^{-1}\left[\frac{\mathrm{z}_{\delta_{\mathrm{T}}}}{\mathrm{X}_{\delta_{T}}}\right] \quad \text { (deg) }$	100.9	90.0	83.1
$M_{u}^{*}(1 /$ sec -ft$)$	-. 0004227	-. 0006248	-. 00005580
$M_{W}(1 / s e c-f t)$	-. 0015950	-. .0004293	. 0007414
$M_{\text {W }}(1 / f t)$	-. 0008847	-. 0008847	-. 0008847
$M_{q}(1 / \mathrm{sec})$	-. 5279	-. 6091	-. 6903
$z_{\text {w }}(1 / 1)$. 02687	. 02687	. 02687
$z_{q}(f t / s e c-r a d)$	2.71	3.13	3.55
$M_{0}\left(1 / \sec ^{2}-r a d\right)$	-. 5303	-. 7065	- . 8173
$\mathrm{z}_{\delta_{e}}\left(\mathrm{ft} / \mathrm{sec}^{2}-\mathrm{rad}\right)$	-2.785	-3.707	-4.762
$x_{8_{T}}\left(f t / \sec ^{2}-\phi\right)$	-. 11771	-. .00017046	. 04050
$z_{\delta_{T}}\left(f t / \sec ^{2}-8\right)$	-.6132	-. 4800	-. 3358

TAJLE E-2a

comartudinal tmusren ructions
 (Approach Confliguration) Aisereft: bsit 1

tain conditiom

v_{0} (kt)	65	75	89
$\bigcirc{ }_{70}($ deg $)$	-7.4	-6.0	-4.6
$\mathrm{O}_{0}(\mathrm{deg})$	9.70	2.67	-2.70
$t_{0}(x)$	40.3	44.1	4.7
		DEMOMCMATOR	
Δ	(-.209)(.93)(.54; . 35]	$(-.145)(1.09)(1.03 .38]$	$(-.171)(2.26)(.46 ; .30]$
		BARE AIRFPNE FERTUREATION DTMWELS	
${ }^{\text {ma }}$	-.29(.65)(-38.)	-. $37(.73)(-36$.	-. $46(.83)(-35$.
${ }_{8}^{\text {\% }}$	-2.9(2.) [.23;.7]	-3.8(25.)(.187;.33]	-4.9(27.)(.165; -29]
${ }^{6}$	-.54 (.87\%.38]	-.70[.93;.30]	-.87(.23)(.34)
$\mathrm{x}_{\mathrm{s}_{\text {d }}{ }^{\text {d }} \text {, }}$	2.9(-.105)(-2.2)(3.6)	3.8(-.061)(-2.4)(3.9)	$4.9(-.030)(-2.7)(4.3)$
${ }_{5}$	2.8(-.059)(-2.3)(3.7)	3.8(-.032)(-2.5)(4.0)	4.9(-.0113)(-2.7)(4.4)
${ }^{\text {m }}$.060(93$)(-.182 ; .38)$.060(1.08)[-.236; .38]	.072(1.25)[-.321; .40]
${ }_{5}^{*}$	-. $245(.89)(.477 .292]$	-.225(1.16) [.40; .21]	-. $108(1.67)(.32 ; .22]$
${ }^{\frac{1}{3}}$	-.000098(.59)(1.67)	-. 00026 (.39$)(.84)$	-.00047(.37)(.62)
${ }_{8}^{\text {d }}$. $145($. .111)(.176)(.89)	.123(.158)(-.21)(2.12)	. $108(.134)(-.34)(2.39)$
${ }^{3}$. $236(-.234)(.21)(.89)$.218(.189)(-.23)(2.12)	.102(.153)(-.37)(2.40)
$x_{b}^{6} b_{t}^{y}$	-.0xe(.206)	-.047(.27)	-.063(.34)
$x_{b_{a}}^{u_{3}} \frac{d}{d}$	-.077(.33)	-.087(.34)	-.091(.35)
$x_{b_{i}}^{u}{ }_{\frac{d}{3}}$	-.172(-3.6)(4.8)	-.26(-3.4)(4.8)	-.33(-3.4)(4.9)

ATTITADE Loop closed Dnkucacs

TABLE E-2b
romarnomal tmyartan fricisoma
(Arpoweh configuration)
Alrematt: zel 2
EITM Comprition

V_{0} (x e)	63	75	85
$r_{0}\left(H_{0}\right)$	-7.4	-6.0	-4.t
$0_{0}(\cos)$	7.5	2.4	-1.2
$s_{I_{0}}(s)$	8.1	44.1	44.8
	mas ATOTNE remturation dmuacs		$(-.215)(1.440)[.477 ; .309]$
Δ		$(-.200)(1.266)[.2081 .308)$	
${ }_{6}^{8}$	14.30(.407)	18.0(.721)	$21.6($.820)
x_{0}^{*}	-2.86e(22.64) .2824 .970$]$	-3.810(24.55)(.287\%.387)	-4.893(27.21)(.164:.290]
\%	-.531(.193)(.409)	-.70(.249)(.588)	-.876(.219)(.599)
${ }_{3}^{1}$	2.66e(-.203)(-2.560)(3.977)	3.810(-.060)(-2.806)(4.412)	4.893(-.030)(-3.227)(4.869)
${ }_{4}^{2}$.006(2.15) $-.083 ; .409]$.060(1.273) $-.079 \%$.482)	.071(1.432) $-.082: .463]$
${ }^{4}$	-.230(.98)(.46et .207)	-. 228 (1.277) (.393; . 2097	. $.123(1.549)(.344 ; .2091$
${ }^{1}$	-.000181(.30)(2.080)	-.000e63(.887)(1.909)	-.000427(.243)(1.259)
${ }^{4}$.2807.289)(-.250)(2.083)	.128(.166)(-.500)(2.25)	.113(.239)(..657)(1.478)
$4{ }^{2} 18$. $0.084(.45 \mathrm{l})$	-.067(.699)	-.062(. 589)
$4{ }_{4}^{1}$	-.013(.35)	-.006(.31)	-.097(.38)
$m_{0,1}^{8}$	-.2en(-4.058)(3.2x)	-. $899(-4.016)(3.379)$	-. 3 (6)-4.079)(3.609)
Δ^{\prime}			(.67)(2.6)(0.3)(.72;.23)(.56;.55)
3			
4	-.00000(0.0)(.33)(2.1)(10.)	-.000279(0.)(.807)(1.509)(20.0)	-00080(0.0)(.26)(1.3)(10.1
4	.csen $\cdot 29)(8.0)(0.3)(.68 i .10)$.00X .280)(2.831)(8.50) (.4803.973)	.0TS(.26)(2.5)(8.3) [.22; . 66

suatec mevativas

TABLE E-2c

(Approach Coafleuration)
Alrarate: ESL 2 ILD

mRM Comititom

$v_{0}(\mathrm{kt})$	65	75	85
y_{0} (ces)	-7.4	-6.0	-4.6
$0_{0}(\sec)^{\prime}$	10.65	3.33	-1.08
$i_{r_{0}}(t)$	48.4	4.1	44.8
		D4004[3020	
Δ	(-.049)(.83)[.53;.33]	$(-.158)(1.23)[.50 ; .22]$	$(-.20)(1.38)[.47 i .31]$
${ }_{8}^{4}$	-. $57(.65)(-85$.	-. 32(.72)(-45.)	-. $31(.82)(-63$.
5_{6}^{60}	-2.9(22.)[.22].7]	-3.8(25.)(.188; .33)	-4.9(27.)[.184; .29]
8		-.70(.29)(.29)	. $.88(.135)(.54)$
${ }_{8}$	$2.9(-.207)(-1.92)(3.4)$	3.8(-.061)(-2.5)(4.1)	$4.9(-.030)(-3.1)(4.7)$
m_{6}	$2.0(-.060)(-2.0)(3.4)$	3.8(-.031)(-2.6)(4.1)	$4.9(-.0111)(-3.1)(4.8)$
${ }_{8}$.068(.62)[-.117; 32]	.068(1.13)[-.110; .39]	.070(1,38)[-.097; .45]
${ }_{8}$	-. 129 (1.01)(.42; .22)	-.124(1.17)[.40: .21]	-. $114(1.52$) [.34; .21]
${ }_{5}^{5}$	-.00021($72 ; .531$	-.00066(.35)(1.0)	-. $00041(.25)(1.14)$
	.129(-.0046)(.137)(.91)	.124(.160)(-.24)(1.15)	.114(.138)(-.42)(1.43)
\%	.220(-.042)(.165)(.92)	.117(.286)(-.26)(1.25)	.108(.157)(-.44)(1.43)
${ }_{8}^{6}$	-.036 (.520)	-.040(.33)	. .062(.49)
$H_{8}^{0} \frac{1}{2}$	-.060(.99)	-.006(.9n)	-.098(.33)
${ }_{8}^{18}$	-. $294(-3.1)(4.3)$	-. $26(-3.6)(4.9)$	-. $50(-3.9)(5.6)$

Artiver wop clowed pruages

	(.667)(2.1002)(0.299) [.733; 159)(.6573.523)	(.667)(2.946)(0.321)[.720;.231](.970;.941]
	.043 ${ }^{(.0096)(2.0739)(0.502)[.3263 ~ .843] ~}$.0469(.0923)(2.310)(0.326)[.4(0; .624]
$40^{0} 0-.00013 \%(0)(30).(.721 ; .350)$	-.000176(.0)(.780)(.9980)(10.)	-.000270(.0)(.296)(1.144)(10.)
	.0829(.180)(2.152)(8.327)[.5493.304)	.076)(.162)(2.448)(0.348)(.270; . 363)
	Esxix maverser	
	.173	.0038
$\left[y_{0}\right]_{0}$ (Lemat) 3.42	2.12	. 719
$\left[\frac{7}{3}\right]_{0}(\mathrm{me} / \mathrm{mel}) \quad-1.00$	-1.84	-2.72
$\left[\frac{2}{2}\right]_{0}(\mathrm{mess}) \cdot \mathrm{ot} 2$. 258	.208

TABLE E-2d
 (Apperech Configuration)

Atrerate: AF 1
tam comortion

TABLE E-2e

LOHGINDMAL TRANSEER FUKCTIONS
(Apprench Configuration) Alreraft: AP 2

TEIM COMDITIOM

TABLE E-2f
zevaindimal mucra ructrom
(aproech cenfigurtion)
alveratri AP 3
tank comition

TABLE E-2g
vomampoimal seangrya Fuactians (Aymoneh conriguration)

Areratit: AP 5
2nTM compition

65
-7.4
15. 4
36.4

[.677,.285)(.609; ,427] -. $687(1.006)(-6.641)$
-2.06e(21.72)(.256;.328]
2.063(-.035)(-1.703)(3.00)
-.024(7.165)(.824; .483)
-. $362(-2820)(.803 ; .806]$
.000935 .857] . Pl []
.521(.002)[.0443.434]
.00610(7.331)
-.1934.093)
0.33(09\%;6.982]

73	85
-6.0	-6.6
1.99	-9.1
4.06	61.6

$(-.114)(1.105)(.156 ; .296]$ -.896(1.809)(-5.722)
-4.993(29.03)(.192; .263]
-. 0320 ($.768 ; .500$]
$4.893(.049)(-2.219)(3.731)$
.053(2.096) [-.641; . 500]
$-.264(.931)(.650 ; .157)$
$-.0000604(.240)(3.939)$
$.16 \mathrm{k}(.255)(-.299)(1.056)$
-.0412(-.208)
..236(.291)
-.260(-2.718)(4.208)
aftituer loop creacd prawics

(.19) (.90)(.67)(1.6)(6.3)[.929.80]	$(.67)(1.00)(0.58)(.01 ; .26](.713 .58]$
-.0078(.17)(.63)(1.7)(6.0)(9.3)	.009 (-1.307)(1.899)(0.809)[.984; .298]
	.000574(0.)(20.0) $(.429 ; 259]$
St(062)(.20)(.67)(2.5)(0.3)	.169(.148)(1.790)(6.89\%)(.984;

$(.67)(2.1)(3.4)(.73 i .29](.56$. 44$]$.05s(-.14)(2.1)(8.6)(.59; . 331
$-.00006(0.0)(.24)(3.9)(10$.
$.12(.26)(2.0)(0.4)[.02 ; .30]$

TABLE E-2h
LomgTiprial tantran rutciois
(Avernat ceaflguration)
Asreraft: AP 6
sais comitizow

Atrivar soop ctoeto provice

$(07)(2.0)(0.3)(.73 .24)(.031 .53)$	(.67)(8.07$)(8.30)(.73 ; .23)(.81 .54)$
cons(0.0) (9.) [.9t].jn]	
	3e mancus

(.67)(2.3)(0.3)(.761.28) (.613.54]
.00000(0.0) (-.028)(-.15)(10.0)
.2F(.20)(2.1)(0.3)(.05i.8t)

TABLE E-2i
lomoitiodinl menssise puactions (Approsets coartigurution) Alreraft; Ap. 68 B
zan conditrons

$V_{0}(k t)$	70	75	85
\because : i ieg	-7.4	-6.0	-4.6
- (cta)	2.24	-2.45	-8.17
$t_{s_{0}}(s)$	33.8	43.9	61.6
		Dumanason	
4	$(-.166)(.98)[.60 ; .38]$	$(-20)(2.16)(.36 ; .34)$	$(-.22)(1.44)[.52 ; .31]$
-	-. $5 \mathrm{~s}(1.23)(-14.4)$	-.58(2.42)(-24.6)	-.72(1.87)(-12.9)
5	-3. $(23).[.250 .3 .27]$	-3.8(2h.) (.267i.24)	-4.9(26.)[.22;.198]
8	-.62(.21)(.36)	-. $68(.243)(.49)$	-. 84 (. 219$)(.61$)
1	3. \times - .0096) (-2.6)(3.9)	$3.8(.0143)(-2.9)(4.3)$	$4.9(.049)(-3.3)(4.8)$
${ }_{6}$	3. ${ }^{(0006 \text {)(-2.7)(4.0) }}$	3.8(.041)(-2.9)(4.3)	1.9(.066)(-3.3)(4.8)
-	-.02x .171$)(.75)(3.6)$. $003 \ln (-.000071)(2.03)(-21.2)$.034(-.34)(-.94)(2.35)
5	-.,4(-.33) .683 . 61)	-. $40(-.29)(.693 .41)$	-. $32(-.198)(.79 ; .61)$
	.00184 0.436 .50$]$.0013h(. 238 ;.24)	.0010(0.032$)(-.44)$
	.46(-.062)(.983 . 41)	.40(-.132)(.24)(.67)	. 2 (258$)(-.26)(1.0)$
4	.4*(-.063) $\cdot .94 ; .42)$. $40(-.124)(.26)(.65)$. $32(.174)(-.26)(.99)$
$5 \frac{1}{8}$.013\%(3.9)	-.0072(-11.2)	-.029(-.75)
$\operatorname{LS}_{6}^{1}$	-.Enf(old)	-. 28 (060)	-. 27 (.089)
$4 \frac{1}{4}$.OTV (20036.2)	-.000(-12.9)(24.2)	-.167(-3.1)(6.6)

ATrition toop closed denuctes

 $.0207(-.221)(2.53)(8.402)(.260 ; .26)$.00066 (0) (.0829) (-.440$)(10.1$.214(.223)(2.062)(0.289) $\left[.73 \mathrm{H}_{3} .238\right)$
$[8]_{4}(\operatorname{man} / \mathrm{n})$
[多] $]_{0}(\cos / \mathrm{n} 4) \quad-.203$ $\left.[\mathrm{y}]_{0}\right]_{8}(\mathrm{ce} / \mathrm{mac}) \quad-2.26$ $\left[\frac{2}{2}\right]_{0}(\mathrm{~m}+(3) \quad-.485$

$.0010 x(.0)(20).\left(.2 x_{i} .246\right)$
. 857.0006$)(.209)(.407)(2.797)(0.319)$

sexisc manetim

		TABLE E-2J (Appresch Conflguration) 	-
.		Fime compritom	.
$\nabla_{0}(\mathbf{k} t)$	63	75	83
$\%_{0}(\operatorname{deg})$	- -7.4	-6.0	-4.6
$v_{0}(t e g)$	7.76	2.81	-3.05
$s_{0}(1)$	58.8	4.1	61.7
		Demormuion	
Δ	$(-.233)(\cdot 77)[.553 \cdot 34]$		$[-.21)(1.40)(.56 ; .30]$
	.	buse ampane parmanatiom dranacs	
${ }_{8}^{\text {n }}$	-.42(.69)[-19.2)	-.59(1.41)(-15.1)	-.72(2.86)(-23.4)
${ }_{6}^{*}$	-2.9(22.) [.712; 33]	-3.8[25.)[.168; .22]	-4.9(27.)[.23; .174]
${ }_{5}^{+}$	-. 3 3 [.73:.27]	-.70(.419)(.50)	-.87(.101)(.62)
${ }_{6}$	$2.9(-.242)[-1.88)(3.3)$	3.8(.0140$)(-2.9)(4.3)$	$4.9(.049)(-3.3)(4.9)$
${ }_{8}^{6}$	2.8(-.093)(-1.91)(3.3)	3.8(.040) $[-3.0)(4.3)$	4.9(.066)(-3.4)(4.9)
${ }_{8}^{80}$	-.046(.23)[.983 .89]	-.0041 [.059) (.94)(17.3)	.028(-.195)(1.26)(-1.58)
${ }_{5}^{2}$	-.29(-.43)[.64;.42]	-.45(-.28)[.72; 41]	-. $57(-.21)(.77 ; .41]$
${ }_{5}$.00134[.44; 31]	.00164(.27;.26]	.00121(-.082)(-.149)
4	.29x-.271)[.07; .42]	.45(-.102)(.23$)(.61)$. $37(.257)(-.20)(.93)$
${ }_{8}$.30(-.14) $(.86 ; .43]$.45(-.092)(.27)(.60)	. $37(.172)(-.20)(.98)$
E_{8}^{0}	.089(2.50)	.0029 (17.9)	-.024(-1.33)
[8. ${ }_{8}^{0}$	-. $261(-.0176)$	-. 3 (0 (049)	-. $33(.075$)
$x_{8}^{x_{2}^{1}} \frac{1}{1}$.133(.160; 3.5]	.0159(043;25.7)	-. $237(-5.8)(7.3)$

arrivise loop closm dravacs

.296(-.000\%) $(.255)(.625)(1.579)(8.256)$

(.667)(2.32)(8.34)[.763;-122][.(14;-542] .0287(-1.470)(2.399)(8.325)[.\% $9 ; .247]$
$.000804(.0)(-.0820)(-.149)(10$.
.847(.201)(2.050)(8.317)[.848; 245]

(beaht)	. 983	-.042	-. 146
(tement	0740	- 2π	-. 927
(cas)	-.900	-3.03	-3.38
(xefs)	-. 902	-.719	-.944

TABLE E-2k
zoncitidimul mansirer fuictions (Approweh coars gurtetion)

Alreraft: ap 7
tain condition

$V_{0}(k t)$	65	75	85
$7_{0}($ deg $)$	-7.4	-6.0	-4.6
$7_{0}($ deg $)$	10.2	1.89	-4.6
$3_{0}(3)$	18.3		29.95

BARE AIRPRNE FERTURBATION DYNuTCS

Δ	[.324; .208] [.862;.583]
$\mathbb{x}_{s_{0}}^{u}$	-. $500 .(1.030)(-13.38)$
$\mathbf{X}_{B_{0}^{\prime}}^{\mathbf{M}}$	2.862(21.71)[.151; .369]
x_{8}°	-.536[.737. 3465
$x_{s_{0}}^{d}$	2.862(-.065)(-2.203)(3.543)
$u_{S_{T}}^{u}$.014(-4.020)[.745; -537]
$\mathrm{B}_{\mathrm{B}_{2}}^{\prime \prime}$	-. $349(-.155)[.877 ; .374]$
$\mathrm{w}_{S_{2}}^{z}$.000699(.198$)(.648)$
$\mathrm{m}_{\mathrm{g}_{\mathrm{I}}}^{\mathrm{d}}$.349(.033)(.767; .449]
$\tilde{B}_{B_{0}}^{2} b_{B_{2}}$	-.00766(-3.896)
$m_{B_{0}}^{+} \frac{d}{b_{\tau}}$	-.109(.100)
$m_{B_{8}}^{u} \frac{d}{T}$	-.041(-7.58)(8.78)

(.058)(.748)[.823; .275]	(-.061)(1.056) [.658; . 3151
-.639(1.325)(-11.73)	-.782(1.753)(-10.28)
-3.810(24.50) (.143; 3271	- $-.893(26.69)[.144 ; .287]$
-.697[.819\%.327]	-.859 [.950; .312]
3.810(-.014)(-2.516)(3.966)	4.593(.020)(-2.863)(4.428)
.060(.307)(-.512)(.655)	.003(1.019)[-.263; .107]
-.262(-.097)[.5e0; . 409]	-..196(-.044)(.416)(.454)
.000404[.880; .295]	. 0 c0286(-.171)(.214)
.262(.021)[.977; 444]	. $196(-.067)(.290)(.823)$
-.0415(-.281)	-.0714(.244)
-. 285 (.271)	-. $170(.230)$
-. $227(-3.744)(5.077)$	-.407(-3.383)(4.897)

atituve loop closed dmanacs

Δ^{\prime}	(.15)(.67)(.70)(1.6)(8.3)(.60;.35]	$(.24)(.32)(.67)(1.84)(8.39)[.76 ; .36]$	(.67)(z.1)(8.4) $.83 ; .19][.72 ; .47]$
${ }_{8}{ }^{\text {c }}$.0093(.24)(.71)(1.6)(-4.0)(8.3)	.040(.263)(-.342)(.453)(1.864)(8.313)	.05s(.099)(2.1)(84)(.65i. 3)
${ }^{\text {M }}$.00047(0.0)(.20)(.65)(10.)	.000323(0.)(10.0)[.880; .295]	.00019(0.0)(-.17)(.21)(10.0)
${ }_{8}$.23).72)(1.5)(8.3) [.98;.13]	. $275(.527)(1.750)(8.301)[.929 ; .178]$.23(.34)(1.9)(8.4)[.8C; . 24$]$

STLTIC PARUGEIERG

THPE B-2

Han

nitive woce ciosed manucs
 -. $0001314(.242)(.517)(1.846)(8.243)(620.93)$

coldx (.c)(-203)(.442)(20.)
$.220(-. \cos) \mathrm{X}(.166)(360)\left(1-217 \mathrm{X}^{8.29}\right)$
. $\operatorname{cos12(10)(10.)[.581;.317]}$
$.329(.0541)(.169)(.560)(1.716 ;(8.265)$
Smatic manemps
(.667)(1.959)(8.479)[.664; .173][.64L; .410] $.0270(-1.435)(1.951)(8.471)(.862 ; .273]$ $.00071(.0)(20).\left[.118 ; .2^{34}\right]$
$.230(.111)(2.830)(8.448)[.978 ; .2 \in 1]$

$\left[\frac{\partial y}{\partial y}\right]_{0}(\mathrm{dea} / \mathrm{ht}) \quad .0610$
$\left[\frac{\partial y}{\partial y}\right]_{S_{T}}(x / \operatorname{dez}) \quad-.706$
$\left[\frac{\partial \lambda}{\partial r}\right]_{0}(\mathrm{kt} / 5) \quad-1.22$
. .0167
.178
-1.11
-. 808
$-.381$
-1.51
$-.504$

2. Lateral-Directional

The lateral-directional dynamics are independent of airplane, and do not drastically change with flight conditions, as do the longitudinal dynamics. Therefore only one set of dynamics are presented here; those for the nominal approach.

All derivatives and transfer functions are in the stability axis.
a. Flight Condition

$$
\begin{array}{ll}
\mathbf{v}_{0}=75 \mathrm{kt} & \gamma_{0}=-6.0 \mathrm{deg} \\
\alpha_{0}=8.4 \mathrm{deg} & \mathrm{c}_{\mu_{0}}=1.39
\end{array}
$$

b. Primed Dimensional Derivatives

$$
\begin{aligned}
& Y_{\beta}=-9.452 \quad L_{\beta}^{\prime}=-.5755 \\
& N_{\beta}^{\prime}=.2920 \\
& L_{p}^{\prime}=-.6488 \quad N_{p}^{\prime}=-.2654 \quad L_{r}^{\prime}=1.1884 \quad N_{r}^{\prime}=-.10522 \\
& Y_{\delta_{a}}^{*}=0.0 \quad L_{\delta_{a}}^{\prime}=.19737 \quad N_{\delta_{a}}^{\prime}=.016710 \\
& Y_{\delta_{S p}}^{*}=0.0 \quad L_{\delta_{S p}}^{\prime}=.7776 \\
& N_{\delta_{s p}}^{\prime}=.06584 \\
& \mathrm{Y}_{\delta_{r}}^{*}=.02483 \\
& L_{\delta_{r}}^{\prime}=.02276 \\
& N_{\delta_{r}}^{\prime}=-.3091
\end{aligned}
$$

c. SAS Off Dymamics

$$
\begin{aligned}
& \Delta=(-.1038)(.825)[.0627 ; .860] \\
& N_{\delta_{a}}^{\beta}=-.01671(.1223)(-5.57) \\
& N_{\delta_{a}}^{p}=.1974(.0259)[.215 ; .591] \\
& N_{\delta_{a}}^{r}=.01671(.612)(-.723)(-2.30)
\end{aligned}
$$

$N_{\delta_{a}}^{\varphi}=.1956[.254 ; .601]$
$\stackrel{N_{\delta_{a}}{ }_{a}}{y_{a}}=.1579(.1223)(-5.57)$
$w_{\delta_{s p}}^{\beta}=-.0658(.1223)(-5.57)$
$\mathbb{N}_{\delta_{\text {sp }}}^{p}=.778(.0259)[.215 ; .591]$
$\mathrm{N}_{\delta_{\mathrm{sp}}}^{r}=.0658(.612)(-.723)(-2.30)$
$\mathrm{N}_{\delta_{\text {sp }}}^{\varphi}=.771[.254 ; .601]$
$\mathrm{N}_{\delta_{\mathrm{sp}}}^{\mathrm{N}_{\mathrm{y}}}=.622(.1223)(-5.57)$
$\mathbb{N}_{\delta_{r}}^{\beta}=.0248(-.271)(1.038)(12.44)$
$\mathbb{N}_{\delta_{r}}^{p}=.0228(.0250)(.468)(-17.08)$
$\mathrm{N}_{\delta_{r}}=-.309(.876)[-.1961 ; .400]$
$N_{\delta_{r}}^{p}=.0552(.499)(-6.91)$
$N_{\delta_{r}}^{a_{y}}=3.14[-.774 ; .520][.912 ; .855]$

d. SAS On Dynamics

Only the wheel numerators are shown below, since this is the only control required with a roll damper and turn coordination type stability augmentation system.

$$
\begin{aligned}
& \Delta=(.0326)(.379)(4.98)(5.60)[.394 ; 1.22] \\
& \mathrm{N}_{\delta_{W}}^{\beta}=1.106(.207)(.795)(-4.11)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{N}_{\delta_{W}}^{p}=-12.15(.0260)(.366)[.419 ; 1.21] \\
& N_{\delta_{W}}^{p}=-1.029(.341)(1.55)[-.666 ; 1.71] \\
& N_{\delta_{W}}^{p}=-12.04(.363)[.431 ; 1.22] \\
& N_{\delta_{W}}^{a}=9.83(.167)(.448)[-.092 ; 3.38]
\end{aligned}
$$

[^0]: *Glide slope width was $\pm 0.7 \mathrm{deg}$.

[^1]: "Configuration AP2 has the same dynamics as Configuration AP6 (which is shown in Fig. 1'b b, the only difference being that AP2 has $-2 \mathrm{deg} \delta_{\gamma}$ capability compared to -4 deg for AP6.

[^2]: *Heffley, Robert K., and Wayne F. Jewell, Aircraft Handling Qualities Data, NASA CR-2144, Dec. 1972.

