
ESD-TR-74-314 MTR-2677, Vol. 10

CVS

REMOTE-TERMINAL EMULATOR
(DESIGN VERIFICATION MODEL) — USER'S MANUAL

T. Suyemoto

FEBRUARY 1975

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR EORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project No. 572D

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-75-C-0001

fibfi^'^

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for
publication.

SSi /*•<.<. , .
s

L*l S'Ct
-^ / £&*-<••*-' h- '*^~->-C •

JAMES S. CAMERON, Maj, USAF MARVIN E. BROOKING
Project Engineer

FOR THE COMMANDER

Project Officer

()tA^^A IVc^lv)AOt>
ROBERT J. LATINA, Colonel, USAF
DirectofcJof ADPE Selection
Deputy for Command and Management Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PAGE (Whan Data Entarad)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER

ESD-TR-74-314
2. COVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

4 TITLE (and Subtitle)

REMOTE-TERMINAL EMULATOR (DESIGN
VERIFICATION MODEL) - USER'S MANUAL

S. TYPE OF REPORT 4 PERIOD COVERED

6 PERFORMING ORG. REPORT NUMBER

MTR-2677, Vol. 10
7. AUTHORfs)

T. Suyemoto

8. CONTRACT OR GRANT NUMBERCM

F19628-75-C-0001

9 PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208
Bedford, MA 01730

10. PROGRAM ELEMENT. PROJECT, T ASK
AREA a WORK UNIT NUMBERS

Project No. 572D

II. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
Hanscom Air Force Base, Bedford. MA 01731

12 REPORT DATE

February 1975
13 NUMBER OF PAGES

215
14 MONITORING AGENCY NAME » ADDRESSC/' dillorent Irom Controlling Ollice) IS. SECURITY CLASS, (ol this report)

UNCLASSIFIED
15a. DECL ASSIFlCATION DOWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (ol the abstract enlarad in Block 20, II dltlerent Irom Report)

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side it necessary and identify by block number)

DESIGN VERIFICATION MODEL
RE MOTE-TERMINAL EMULATOR

20 ABSTRACT (Continue on reverse side II necessary and identity by block number;

The Remote-Terminal Emulator is a minicomputer-based system which generates
message traffic for use in testing and evaluating large-scale, multi-terminal computer
systems. This series of reports will describe the two Design Verification Models
that were developed on Data General NOVA 800 minicomputers. This volume is a
user's manual which contains the information necessary to prepare and run the soft-
ware portions of the Remote-Terminal Emulator.

DD I JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteretl)

SECURITY CLASSIFICATION OF THIS PAOEflWian Data Knfr»d)

SECURITY CLASSIFICATION OF THIS PAGECWr ••. D»f» Entered)

PREFACE

The Remote-Terminal Emulator is a minicomputer-based system

which generates message traffic for use in testing and evaluating

large-scale, on-line computer systems. In real-time testing, it

emulates the actions of a collection of operators, terminals, and,

depending upon configuration, modems. In 1972 and early 1973, two

Design Verification Models (DVM) of the emulator were developed by

The MITRE Corporation under the sponsorship of the Air Force

Directorate of Automatic Data Processing Equipment Selection (MCS).

The fixed-site system, which is used primarily for program and scenario

development, is located at MITRE/Bedford and interfaces with the

computer system under test (SUT) through the switched telephone net-

work. The on-site system, which is used primarily for detailed

emulator test and evaluation, is representative of the equipment

planned for operational use in future computer procurements. This

system, which is moved to each SUT site, interfaces through cables

directly with the SUT's communication line adapters.

The primary hardware components of each of these systems are a

Data General NOVA 800 minicomputer, a fixed-head disk, a magnetic tape

unit, a control teletype, and an appropriate emulator/SUT interface

unit. Both DVM's have sufficient hardware to emulate up to 16 low-

speed interactive terminals. The on-site DVM also has hardware to

emulate eight additional terminals or terminal networks by the use of

high-speed synchronous line adapters and associated circuitry. The

primary software components that have been developed for this project

consist of the Macro Preprocessor, the Scenario Assembler, the Real-

Time Executive, the Scenario Interpreter and the Data Reduction

Program.

The common denominator of remote-terminal emulation is the

scenario, which is a program that controls the actions to be taken

by the emulator in emulating a given device and mix of devices. The

scenario defines the queries (system commands, input data, and

control characters) to be sent to the SUT, how SUT responses are to

be processed, and other details of the test to be conducted. The

Macro Preprocessor is a general purpose support program that provides

a basic macro capability to aid in scenario writing and which was

also used in emulator program development. In the scenario develop-

ment process, the Scenario Assembler is used to convert external

(symbolic) scenarios to internal (absolute) scenarios which are

tailored to a specific terminal type and to specific data communica-

tions control procedures. Both the Macro Preprocessor and the

Scenario Assembler run under the Data General Disk Operating System

(DOS). In real-time testing, internal scenarios are brought into

core from disk and are processed by the Scenario Interpreter which

runs under the Real-Time Executive. All messages sent to and

received from the SUT, as well as messages describing other actions

of the emulator, can be time-tagged and logged on magnetic tape.

Upon completion of the test, these data are processed in various

fashions by the Data Reduction program (which also runs under DOS)

to produce scenario trace data and various statistics on the

performance and utilization of both the emulator and the SUT.

This document is part of a series of reports which will describe

the design, implementation and use of the two Design Verification

Models. The titles of the reports in the series are as follows:

Volume Title

1 Introduction and Summary

2 Scenarios and Data Structures

3 Macro Preprocessor

4 Scenario Assembler

Volume Title

5 Scenario Interpreter

6 Real-Time Executive

7 Data Reduction Program

8 Hardware

9 Support Software

10 User's Manual

It is suggested that the reader become familiar with the emulator

concepts and terminology presented in Volume 1 preparatory to reading

other volumes in the series.

TABLE OF CONTENTS

age

LIST OF ILLUSTRATIONS

LIST OF TABLES

SECTION I

SECTION II

SECTION III

9

11

INTRODUCTION 12

DOS AND SUPPORT SOFTWARE 14

44 DOS 14

Loading DOS 14

Executing Under DOS 15

SUPPORT SOFTWARE 16

Utilities 16

File Management 18

Programming Aids 19

MACRO PROCESSOR 20

INTRODUCTION 20

PREPARATION AND USE OF MACROS 20

Macro Names 20

Macro Body 21

Macro Definition 21

Macro Call 21

Parameter Substitution 22

Label Generation 23

Character Set 25

Features 25

Special Characters 25

Quotes 25

Master Macro Directory 26

Notes and Restrictions 27

SYSTEM FLOW 28

TABLE OF CONTENTS (Continued)

Page

SECTION III (Cont.

SECTION IV

SECTION V

SECTION VI

OPERATING PROCEDURES 28

SSUB 28

Input File 31

Output File 31

MACDEF 31

Input File 32

Output File 32

Output Messages 32

SCENARIO ASSEMBLER 36

INTRODUCTION 36

SYSTEM FLOW 36

OPERATING PROCEDURES 38

Preparing Files 38

External Scenario 38

Program Files 40

Executing Assembler 40

OUTPUT 45

Internal Scenario 45

Optional Listings 46

Output Messages 48

EQUIPMENT TABLE 50

INTRODUCTION 50

GENERATION 50

REQUIREMENTS AND CONVENTIONS 51

FUNCTION 74

REAL-TIME EMULATOR SYSTEM

GENERATION 80

INTRODUCTION 80

SSUB 80

TABLE OF CONTENTS (Continued)

SECTION VI (Cont.)

SECTION VII

SECTION VIII

Page

ASM 81

RLDR 83

MKABS 83

Disk Requirements 85

REAL-TIME EMULATOR 87

INTRODUCTION 87

SYSTEM FLOW 87

OPERATING INSTRUCTIONS 87

Startup 89

Control TTY Inputs 90

Run ID 90

Commands 90

CANCEL Input 90

BREAK Output 91

Responses 91

Shutdown 91

ERROR MESSAGES 92

DEVICE STATUS 99

RING COUNTERS 101

RESPONSE HANDLING AND LOGGING 104

DIGITAL I/O 106

STORAGE REQUIREMENTS 113

MISCELLANEOUS NOTES 116

PANIC CODES AND ACTIONS 117

DATA REDUCTION PROGRAM 123

INTRODUCTION 123

SYSTEM FLOW 123

OPERATING PROCEDURES 125

Input Message 125

TABLE OF CONTENTS (Continued)

SECTION VIII (Cont.)

SECTION IX

REFERENCES

APPENDIX I

APPENDIX II

Page

Command Interpreter 126

Interactive Mode 126

Switch Mode 128

Summaries 131

Brief Summary 131

Detailed Summary 135

Listings 136

Octal Tape 136

Actual Times 137

Time Intervals 137

Relative Times 138

ERRORS 138

SAVING TEST DATA 140

Program Description 140

Input Message 141

Operation 141

Errors 143

EXECUTION TIMES 145

REAL-TIME INSTRUCTIONS 145

NON-REAL TIME PROGRAMS 159

SSUB 159

MACDEF 160

CVT 160

DATAR 161

MASTR 161

163

CONVERSION CODES FOR IBM 2741 164

SAMPLE LISTINGS FROM SCENARIO

ASSEMBLER

7

168

TABLE OF CONTENTS (Concluded)

Page

APPENDIX III LISTING OF EQUIP. RB 174

APPENDIX IV DATAR LISTINGS 188

APPENDIX V EXAMPLE OF TELETYPE LISTING FOR AN

EMULATION RUN 196

APPENDIX VI TIMING SAMPLES FOR NON-REAL TIME

PROGRAMS 198

LIST OF ILLUSTRATIONS

Figure Number Page

1 SSUB System Flow 29

2 MACDEF System Flow 30

3 System Flow of the Scenario Assembler 37

4 External Scenario Format 39

5 Equipment Table Macros 52

6 File EQ of Equipment Table (Macros not

Expanded) 56

7 Potion of File EQUIP of Equipment Table

(Macros Expanded) 60

8 Portion of File EQUIP.RB, Assembled

Equipment Table 65

9 ET Entries for DCM Devices for Lab System 69

10 ET Entries for Asynchronous Devices for

64-line Field Test System 70

11 ET Entries for Asynchronous Devices for

16-Line Field Test System 71

12 Equipment Table Hierarchy 75

13 Example of Device Communication Through

Scenarios 78

14 System Flow for Real-Time Emulator 88

15 State Transition Diagram 100

16 Ring Counter Changes 102

17 Digital I/O Connections 109

18 Normal Interface Rack Wiring for

Asynchronous Devices 110

19 Normal Asynchronous Correspondence 112

20 Macro Definitions for Digital I/O 112

21 HANDSHAKE Scenario 112

LIST OF ILLUSTRATIONS (Concluded)

Figure Number Page

22 Example of Panic Message 122

23 General System Flow of Data Reduction

Program 124

24 Interactive Tree Diagram for DATAR 129

25 Switch Tree Diagram for DATAR 132

26 Brief Summary Output Format 189

27 Detailed Summary Output Format 190

28 Histogram Output Format 191

29 Octal Tape Output Format 192

30 Actual Time Output Format 193

31 Time Interval Output Format 194

32 Relative Time Output Format 195

33 Fortran Cost Scenario with Macros

not Expanded 199

34 Scenarios for Fortran Cost Problem

with Macros Expanded 201

35 Macro Libraries for Fortran Cost

Problem 212

10

LIST OF TABLES

Table Number

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

XV

XVI

XVII

XVIII

XIX

XX

XXI

XXII

XXIII

Page

Common Utility Programs 17

Common File Management Commands 18

Output Messages for Macro Processor 33

Available Codes for Conversion 42

Available Codes for SOM/EOM 44

Output Messages for Scenario Assembler 49

Input File Names for Emulator System 82

Inputs to Relocatable Loader 84

Disk Requirements for Emulator System 86

Error Message Classes for Scenario

Interpreter 93

Error Messages for Scenario Interpreter 94

Core Storage Requirements for Scenario

Interpreter 114

Core Storage Requirements for Real-Time

Exec 115

RTOS Panic Codes 119

Interactive Requests and Responses for

DATAR 127

Option and Suboption Switches for DATAR 130

Record Type Switches 133

Switch Combinations and Valid Inputs 133

DATAR Error Message File (ERFILE) 139

MASTR Error Message File 144

Real-Time Scenario Instruction Execution

Times 146

Control Characters for IBM 2741 Terminal 165

Conversion Code Table used for IBM 2741

Terminal 166

11

SECTION I

INTRODUCTION

The Remote-Terminal Emulator consists of a combination of hard-

ware components and software packages designed to generate message

traffic for use in testing and evaluating on-line computer systems.

The hardware configurations for both the fixed-site and on-site systems

are discussed in Volume 8 of this series. This user's manual presents

the user information necessary to prepare and run the software portions

of the system. Included here are excerpts from previous volumes as

well as additional material required for running the Remote-Terminal

Emulator.

The common denominator of remote-terminal emulation is the

scenario, which is a program that controls the actions to be taken by

the emulator in emulating a given device or mix of devices. A scenario

is formed by a series of scenario instructions which determine the

queries to be sent to a SUT, how responses are to be handled, and the

various control functions of a test. The command is a special in-

struction which exerts gross control over emulator actions, and is

the only means by which the user can exert external control during an

emulation run. Both instructions and commands are described in de-

tail in Sections IV and V of Volume 2 of this series.

This paper is organized as a logical presentation of steps needed

for preparation, execution, and data reduction of an emulator run.

Section II describes both the NOVA Disk Operating System (DOS) as it

applies to the Emulator, as well as the system support software which

may be applicable in most phases of emulation. The macro processing

function is described in Section III and the assembly function is

presented in Section IV. These two functions prepare the scenario

for the real-time run. Sections V and VI respectively deal with

12

preparing the Equipment Table, and following this, building an emulator

system. The operating instructions and other information necessary

for execution of a real-time emulation run are presented in Section

VII. The final phase of an emulator run, data reduction, is discussed

in Section VIII. An example of the on-line teletype output for all

processing steps for a single emulation run is given in Appendix V.

Section IX contains timing information for both the real-time and

non-real time functions of the emulator.

13

SECTION II

DOS AND SUPPORT SOFTWARE

DOS

All of the non-real time programs included in the Emulator system

run under Revision 5 of Data General's Disk Operating System (DOS).

The support software described in Volume 9 of this series also operates

under control of DOS. A complete description of DOS can be found in

Reference 1. Under DOS a carriage return and a line feed are echoed

back when the RETURN key is depressed. In this document the symbolJ

is used to denote the depression of the RETURN key and the echo back

of both the carriage return and line feed.

Loading DOS

The DOS system can be loaded into core from tape, or, if it al-

ready exists on disk, it can be loaded from there. To load from tape,

the following sequence should be performed:

(1) Turn on CPU, disk, tape drive, and system teletype;

(2) Mount the system tape; press LOAD to advance tape

to ready position;

(3) Set panel data switches to 100022;

(4) Raise the RESET panel switch and then raise the PROGRAM

LOAD panel switch;

(5) The remainder of the process involves the following

activity on the system teletype. The underlined portion

is what is to be entered by the user. The non-underlined

portion is the response of the system.

14

FULL(0) OR PARTIAL(1)? 0

R

XFER MT0:1 SYS.SV

R

CHATR SYS.SV SP

1

R

INSTALL SYS.SV

R

LOAD/A MT0:2

J

il

FILE ALREADY EXISTS, FILE: SYS.DR

FILE ALREADY EXISTS, FILE: MAP.DR

R

To load DOS from disk the following sequence should be performed:

(1) Turn on CPU, disk, and TTY;

(2) Set panel data switches to 100020;

(3) Raise the RESET panel switch and then raise the PROGRAM

LOAD panel switch;

(4) The system will respond as follows:

DOS REV 05

Press the continue panel switch and DOS responds:

R

There is not enough disk space on the present NOVA to accommodate

the complete Disk Operating System plus the emulator system. There-

fore, to delete from disk all DOS files which are not essential to

preparing or executing an emulator run, the following command line

should be typed directly after loading DOS.

@REMAL@^

This frees space on the disk to allow for the emulator system and

scenarios, which can then be loaded.

Executing Under DOS

Programs which operate under control of DOS are executed in re-

sponse to a user input request entered at the system teletype. The

15

input message is called a command line and is processed by an execut-

able program called the Command Line Interpreter (CLI). The CLI

indicates to the user that it is ready to accept commands by typing

the ready message, RJ. The user enters a command by typing a line

and depressing the RETURN key. When execution of a program running

under DOS is completed, control is returned to the CLI.

When operating under DOS, depressing CTRL and A simultaneously

on the system teletype causes an immediate interrupt to the executing

program, regardless of the program status. This can be useful, for

instance, to discontinue a run when errors have been detected. The

word INT is typed by the CLI upon recognition of the CTRL-A break,

and control is returned to the CLI which then types R.

SUPPORT SOFTWARE

All support software programs operate under control of DOS. They

are described in detail in Volume 9 of this series. A brief presenta-

tion of operating instructions for the most commonly needed functions

is given here. This section does not include all available programs.

Utilities

The utilities transfer data from one DOS file to another. Note

that all peripheral devices are treated as files. Table I below shows

some methods for moving data. Where appropriate, filenames for peri-

pherals may be used for input or output files to the utility programs.

These names include:

$CDR card reader input

$TTI teletype keyboard input

$TTO teletype printer output

$LPT line printer output

16

Table I

Common Utility Programs

Operation CLI Input Message

Card to disk XFER/A $CDR filename.

LXFER $CDR filename

Tape to disk LOAD MT0:x [filenamel filename2..]

Disk to line printer PRINT filenamel • • • I

PRINTL filenamel ...J

Disk to tape DUMP MT(8:x filenamel ...j

The switch /A on the XFER command causes the data to be input from the

card reader ($CDR) as ASCII data with a carriage return inserted at

the end of the text on a card to denote an end of line. Without the

switch the input is transferred sequentially without alteration. The

LXFER program is MITRE generated and provides the capability to con-

vert Hollerith data to ASCII (the code of the NOVA), including control

characters and lower case. It also permits entry of any 8-bit value

via card input. A description of the program is given in Volume 9.

Both the LOAD and DUMP commands have an additional option, /V,

which causes the names of the files to be verified on the teletype.

Also in these commands MT0 signifies transport 0 of the tape drive,

and x designates which file on the tape is selected. The brackets

indicate optional information; if no filename is specified, all non-

permanent files are moved. The PRINT program lists the designated

file(s) on the line printer without either a title or line numbers,

17

and truncates a line after 80 characters. The PRINTL program, however,

lists the file(s) with both a title and line numbers, and prints lines

longer than 76 characters on successive lines without associating a

new line number.

File Management

Several DOS programs may be useful in handling files containing

scenarios or libraries. Table II shows some of the more common

commands.

Table II

Common File Management Commands

Operation CLI Input Message

Delete file(s) from directory
and free space

DELETE filenamel ...J

Change filename RENAME oldfilename newfilename /

APPEND newfilename filenamel ...) Concatenate copies of files
to produce a new file

List number of disk blocks in
use and number available

DISK,

List names, byte count, and
attributes of files in
directory

LIST [filenamel ...].

The specific command DELETE*.* deletes from disk all files which are

not permanent. The LIST command with no parameters causes a listing

of the byte count for each file on the teletype. In the option /L is

used, the listing is printed on the line printer. If the option /A

is used, all permanent files are also listed. If specific files are

designated, only those specified are listed.

18

Programming Aids

The two programs most often employed by an Emulator user are the

EDIT and OEDIT (octal edit) programs. The EDIT program is used to

build a new source file or edit an existing one. This program is

described in full in Reference 2. The octal editor is used to examine

and/or modify, in octal, any location in any disk. file. A complete

description of this program can be found in Reference 1.

19

SECTION III

MACRO PROCESSOR

INTRODUCTION

The basic function of a macro processor is text substitution,

where a name appearing in the source code is replaced by an associated

string of characters. A general purpose macro capability, including

a macro library generator (MACDEF) and a macro processor (SSUB) , was

developed on the NOVA 800. One of the main purposes of this software

is to facilitate scenario writing by (1) providing a one-to-many

statement capability and (2) allowing for substitution of parameter

values at the external scenario level. This permits the scenario

writer to include common pieces of code in different scenarios and

to change subscenario calls to in-line code, or vice-versa. Another

use for the macro capability is in writing code in NOVA Assembly

language, which is the means used for generating an emulator Equipment

Table.

Macros may be created and saved separately in a macro library

by using the MACDEF program; or they may be defined in the source

file itself during execution of SSUB. Both MACDEF and SSUB are

written in Extended ALGOL and operate in 24K core under control of

DOS. A description of the design and implementation of the Macro

Processor can be found in Volume 3 of this series of reports.

PREPARATION AND USE OF MACROS

The discussion of macros presented here applies to all macros

whether they are defined in a library, or directly in the source code.

Macro Names

Macro names are identifiers consisting of ten or less alpha-

numeric characters.
20

Macro Body

In its simplest form a macro body consists of a string of ASCII

characters to replace every occurrence of the macro name in the

source data. No extra spaces are inserted.

Macro Definition

A macro definition associates an identifier (the macro name)

with a string of text (the macro body). Format for a macro definition

is as follows:

MDEF macroname (number of arguments)

macro body

MEND

The literals MDEF and MEND are left-adjusted on separate lines (or

cards). The macro body consists of all characters beginning with

the next line after MDEF up to, but not including, the carriage

return before the MEND. If the macro has no arguments, the initial

line may be terminated after the macro name.

Macro Call

A macro call is any reference to a macro name in the source

file. Formats for a call are:

macroname (arg l.arg 2...) if the macro has arguments,

macroname if there are no arguments.

Arguments are separated by commas and enclosed in parentheses.

21

Example 1: Simple Substitution

Source Data: ALGOL Program

Macro Definition Source Code Output Code

MDEF DIGIT

((CHAR>=60R8) AND

(CHAR<=71R8))

MEND

IF DIGIT

THEN GO TO

EXIT;

IF ((CHAR>=60R8) AND

(CHAR<=71R8))

THEN GO TO

EXIT;

Parameter Substitution

Macro bodies may contain formal parameters which will be re-

placed by actual parameters (arguments) in a macro call. Up to 9

formal parameters can be used in a macro definition. Each formal

parameter is specified by a $ (dollar sign) followed by a digit n

where 0<n<10. When the macro name and its arguments are encountered

by SSUB in the source code, the first positional argument will be

substituted for the formal parameter $1; the second, for $2, etc.

Formal parameters may be passed as macro arguments.

Example 2: Use of Parameters

Source Data: NOVA Assembly

Macro Definition Source Code Output Code

MDEF LDI (2) LDI (3,50) JMP .+2;MLDI (R3,50)

JMP .+2;MLDI (R$l,$2) 50

$2 LDA 3,.-l

LDA $1,.-1

MEND

22

Macro calls may be nested within arguments and within macro bodies.

Example 3: Nested Macro Call in Macro Argument

Source Language: NOVA Assembly Language

Macro Definitions Source Code Output Code

MDEF LDI (2) LDI (3, DEC (50)) JMP .+2

JMP .+2 .RDX 10

$2 50

LDA $1,.-1 .RDX 8

MEND LDA 3..-1

MDEF DEC (1)

.RDX 10

$1

.RDX 8

MEND

Label Generation (The TAIL Function)

To insure that labels appearing within macro bodies will not be

multiply defined, a special function $T is provided. Each reference

to $T is replaced by a numeric value. This value is unique for each

macro call, but remains constant for all $T references within a macro

body. $T may be passed one level as a macro argument.

Example 4: Use of $T Function

Source Data: Scenario Assembly Code for Login Sequence

Macro Definitions Source Code Output Code

MDEF FINDLIT (1) ALLOCREGS 10 ALLOGREGS 10

L FL$T FINDLIT (6000) L FL3

R " QCESDM002 R "

S FL$T $1 FINDLIT (PASSWORD) S FL3 6000

MEND QXXXX QCESDM002

FINDLIT (SYSTEM?) L FL4

R "

23

Example 4: Use of $T Function (Concluded)

Source Data: Scenario Assembly Code for Login Sequence

Macro Definitions Source Code Output Code

S FL4 PASSWORD

QXXXX

L FL5

R "

S FL5 SYSTEM?

Example 5: Nested Macro Calls in Macro Body

Source Data; Scenario Assembly Code

Macro Definitions

MDEF FINDLIT (1)

L FL$T

R "

S FL$T $1

MEND

MDEF BACKUP

QB

REDY

MEND

MDEF REDY

FINDLIT (READY)

MEND

MDEF LIST

PRINT FILE

BACKUP

REDY

QPRINT;*

EOF

MEND

MDEF EOF

FINDLIT (FILE)
MEND

Source Code

LIST

Output Code

PRINT FILE

QB

L FL40

R "

S FL40 READY

QPRINT;*

L FL42

R "

S FL42 FILE

24

Character Set

Source input to both SSUB and MACDEF normally consists of ASCII

characters. The results of using non-ASCII characters are not de-

fined, although in the current version most values are processed

correctly. Two known exceptions are the eight-bit values 0 and 1,

which are used internally by SSUB and MACDEF and should never be

included in source code for either program.

Features

Special Characters

$ The dollar sign is used for three special

functions performed by SSUB. It is illegal

to use it otherwise in normal source data,

other than in a quote string.

$T specifies the TAIL function. $Q

specifies the quote function. $digit

is used to specify formal parameters.

1 A single quote delimits a string not

to be scanned by SSUB. The string is

passed with quotes.

() Parentheses are used to enclose arguments

in a macro call. Parentheses may appear

elsewhere in source data.

, Commas are used to separate macro arguments,

They may also appear elsewhere in source

data.

Quotes

When a string of characters is enclosed in single quotes, it is

passed on (including quotes) without being scanned.

25

$Q is a special macro function which can be used to pass a string

of characters including commas, leading blanks, etc., in macro argu-

ments. $Q is followed by a string delimited at the beginning and end

by a character selected by the user. Delimiter characters may be

any ASCII characters except those listed above in the special group

and the space character. The expansion of $Q is the string without

delimiters. The string itself will be scanned when it is substituted

for its corresponding formal parameters.

Example 6: $Q Function

Source Data: Scenario Assembly Code

Macro Definition Source Code Output Code

MDEF INSTR (1)

$1

MEND

INSTR ($Q*LDA 3,A*) LDA 3,A

Master Macro Directory

As part of its initialization, SSUB creates a master directory

which is effectively the sequential concatenation of all library

directories in left-to-right order as they appear in the DOS command

line. Later, if more definitions are encountered in the source file,

they are added to the master directory. During an SSUB run names

are never deleted, and no name duplication check is made. The directory

is ordered so that if duplicate macro names occur, the text of the

macro most recently added to the directory will be used.

26

Notes and Restrictions

1. Single quote strings are limited to 1000 characters,

2. In an SSUB run the total of all macros in the

libraries and all macros defined during the run

itself cannot exceed 160.

3. Each macro library is limited to 100 macros.

4. $Q is legal only in macro arguments.

5. The identifiers MDEF and MEND are reserved and

cannot be used as macro names, or appear in any

source data except in their normal use in macro

definitions.

6. The file name TSUB.MB is reserved.

7. The system error message "stack overflow" usually

indicates a recursion loop in macro substitution.

Example:

MDEF OR

COM 1, 1

AND 1, 2 ; PERFORMS LOGICAL OR

MEND

When the macro OR is called, infinite recursion will

occur because of the "OR" in the comment within the

macro body.

If an unsuccessful MACDEF run has been made, the .ML

file should be deleted before MACDEF is rerun with the

same name. Otherwise a new file is not created and the

new information is written over the old information. If

27

this occurs, and if the new file is to be smaller than

the old file, whatever has not been overwritten will re-

main at the end of the file.

SYSTEM FLOW

Overall system flows for SSUB and MACDEF are shown in Figure 1

and Figure 2, respectively. Operations taking place on the NOVA are

listed at the bottom of the figures with the required DOS commands.

OPERATING PROCEDURES

SSUB

SSUB is the actual macro processing program; it performs the macro

substitutions. Input to SSUB consists of a source file and up to

four macro libraries. SSUB copies the source file into an output

file. While copying, it scans the source data for macro definitions

and references to macro names (macro calls). When a macro name is

detected, the text of the specified macro is copied into the output

file replacing the macro name. Macros may have arguments which

modify the text of the macro as it is copied. For SSUB, modification

consists simply of replacing formal parameter references contained

in the macro body by actual parameters supplied as arguments.

To use the SSUB program the following steps should be performed:

1. Load the SSUB save file.

2. Create or load the source file.

3. Load any macro library files to be used.

4. Ready the line printer.

5. Enter the following command at the teletype:

SSUB input-file output-file library-namesj

28

PREPARE
SOURCE FILE

/*
SOURCE DECK

3. READ IN
SOURCE
DECK

'AS INPUTFILE/

SSUB.SV
INPUTFILE
libl. ML
Ii b 2 ML

OUTPUT FILE

2. LOAD
SSUB
PROGRAM

I. LOAD
MACRO
LIBRARIES

ERROR MESSAGES
AND LISTS OF
MACROS DEFINED

IN INPUT FILE.

LOAD MTO: X libl. ML lib2.ML 1. LOAD LIBRARY FILE

2. LOAD PROGRAM FILE LOAD MTO: X SSUB.SV,

3. LOAD INPUT FILE

4. EXECUTE SSUB SSUB INPUTFILE DUTHUTMLt HD1 I'bZj

UP TO 4 LIBRARIES ARE ALLOWED ALTHOUGH ONLY 2 ARE SHOWN ABOVE.

SSUB INPUTFILE OUTPUTFILE libl lib2

Figure I. SSUB SYSTEM FLOW

29

PREPARE
MACRO

DEFINITIONS

MACRO
DEFINITIONS

I, READ IN
MACRO

DEFINITION
DECK

LIBNAME

MACDEF. SV

3. EXECUTE
MACDEF

libname. ML

4. SAVE
LIBRARY ON

TAPE

1. LOAD MACDEF PROGRAM

2. LOAD MACRO DEFINITION DECK

3. EXECUTE MACDEF

4. SAVE MACRO LIBRARY

2. LOAD
MACOEF

PROGRAM
FILE

ERROR MESSAGES
AND LIST OF
DEFINED MACROS

LOAD MTO:X MACDEF.SV,

V XFER/A $CDR libname

MACDEF libname

DUMP MTO.x libname. ML

Figure 2. MACDEF SYSTEM FLOW

30

Do not include the .ML after library names. Up to four names may

be specified. All libraries must have been processed previously by

MACDEF. Error codes will be printed on the line printer. An R J

typed out by the CLI indicates that the program is completed.

Input File

The input file contains source data containing macro calls and

optionally macro definitions. It should be a normal ASCII file with

a legal DOS name. Read-protect attribute must be off.

Output File

File must be new, with a legal DOS file name.

MACDEF

MACDEF is a separate program used to generate macro libraries

for later use in SSUB runs. Input to the program is a file con-

taining definitions of commonly used macros. MACDEF produces a

file consisting of a library directory and the texts of all macro

bodies in the library. This library file is generally saved on

magnetic tape by the user for later use with the macro preprocessor

program.

To use the MACDEF program the following steps should be

performed:

1. Load the MACDEF save file.

2. Create a new file containing the definitions for all

macros to be included in the library. The name given

to this file is used to form the macro library name.

3. Ready the line printer.

4. Enter the following command at the teletype:

MACDEF library-name .)

31

The names of all defined macros and any error message

codes will be printed on the line printer. An Rj

typed out by the CLI indicates that the program is

finished.

5. To save the library on tape, dump the file created by

MACDEF. This file is named "library-name.ML".

6. If any errors are detected by MACDEF, the original file

should be corrected, the .ML file deleted, and the

program rerun.

Input File

The input file consists of up to 100 macro definitions. Extra

cards should not be placed between macro definitions. The file

should be a normal ASCII file with a legal DOS name. Read protect

attribute should be off.

Output File

The output file is created on disk by MACDEF. The name of this

file is the same as the input file with a .ML extension appended.

Output Message

Error messages from SSUB and MACDEF are output to the printer.

Error messages have the following format:

"LINE line-number ERROR NO. number"

where "line-number" identifies a line in the input file and "number"

identifies the type of error. In Table III errors related to macro

definitions are listed under MACDEF although they may also occur in

any SSUB run.

Error messages appearing on the teletype are DOS system messages

and are described in the DOS User's Manual.

32

Table III

Output Messages
For Macro Processor

SSUB Errors

Number Problems Program Action

7

8

9

10

11

12

13

14

15

Input file not specified or not a

legal DOS file.

Disk read error.

Output file already exists.

a. Disk write error.

b. Disk space exhausted.

End of source data while pro-

cessing quote string. Source

data may be the input file, a

macro parameter value, or a

macro body.

Quote string greater than 1000

characters.

Illegal use of $ in source data.

Illegal number of arguments in

macro call.

Illegal delimiter character

following $Q.

Preprocessor storage area

exceeded.

Exit from program.

Processing continues.

Exit from program.

Processing continues.

String is terminated.

If source is input

file, exit from

program. Otherwise

processing continues.

String terminated.

Processing continues.

Processing continues.

Macro call is ignored.

Processing continues.

Processing continues.

$Q ignored.

No more argument

values are accepted.

Processing continues

but other errors will

likely occur.

33

Table III (Continued)

Output Messages
For Macro Processor

SSUB Errors

Number Problems Program Action

16 Error in macro call argument Macro call is ignored.

a. No left parenthesis Processing continues.

when arguments expected.

b. End of input source

before all argument

values obtained.

17 Too many macros. Limit is 160. Program is terminated.

19 Library file could not be opened. Program terminates.

MACDEF Errors

Number Problems Program Action

7 Disk read error. Processing continues.

9 a. Disk write error.

b. Disk space exhausted.

Processing continues.

30 Number of arguments on MDEF line Macro is not defined.

not a digit. Scan to next MDEF line.

31 Illegal or missing macro on MDEF Macro is not defined.

line. Scan to next MDEF line.

32 "MDEF" not found where expected. Continues scan for

"MDEF".

33 Unexpected end of input file

a. While reading macro body. Macro is terminated as

b. Extra characters follow if MEND found.

final MEND line. Termination of program.

34

Table III (Concluded)
Output Messages

For Macro Processor

MACDEF Errors

Number Problems Program Action

34 Input file cannot be opened. Termination of program.

35 Attempt to put more than 100 Program terminates

macros in a library. as if end of file read.

MACDEF Informational Message

"MACRO name DEFINED"

35

SECTION IV

SCENARIO ASSEMBLER

INTRODUCTION

The Scenario Assembler program (CVT) converts external (symbolic)

scenarios into internal (absolute) scenarios which are tailored to a

specific terminal type and data communications control procedure.

This reduces the real-time work of the Scenario Interpreter in the

area of scenario processing. To further ease the burden of the

Scenario Interpreter, the Scenario Assembler performs character

conversions where appropriate and adds start-of-message/end-of-message

(SOM/EOM) sequences to queries to be sent to a system under test (SUT).

CVT runs under Data General's Disk Operating System (DOS) and its

operation must follow the conventions established by DOS. A complete

description of the design and implementation of the Scenario Assembler

can be found in Volume 4 of this series.

SYSTEM FLOW

The system flow of the assembly process is shown in Figure 3.

The external scenarios may be input to the system from a card deck,

from magnetic tape, or from the control teletype. The Scenario

Assembler program (CVT.SV) and its associated tables, DEVTAB and

SUTTAB, must be input from magnetic tape. The external scenarios,

the Assembler, and the tables must reside on disk before execution

is initiated. The symbol table is a temporary file written to disk

during execution of the Assembler and then deleted at the end of the

assembly. The listing on the line printer is also a temporary file

and can be relisted only by re-executing the Assembler. The internal

scenario is written to disk and can remain there or be written on

magnetic tape for further use.

36

.IS
FILE

WRITTEN
TO DISK

SYMBOL
TABLE

(TEMPORARY)

Figure 3 SYSTEM FLOW OF THE SCENARIO ASSEMBLER

37

OPERATING PROCEDURES

The Scenario Assembler operates with disk files only, and there-

fore all input files and the program save file itself must reside on

disk before execution can begin.

Preparing Files

External Scenario

An external scenario (ES) is a stream of characters containing

the scenario instructions to be assembled. The format of the ES is

shown in Figure 4. The Assembler processes the ES one instruction

at a time, interpreting a carriage return as the end of the instruction.

This means that a scenario instruction is not restricted in its length,

but must use a carriage return only as an instruction termination

character.

The first field of an instruction is the op-code field, which is

a single character defining the instruction type. The op-code must

always appear as the first character of an instruction with no pre-

ceding blanks. If the first character of an instruction is a blank,

the instruction is treated as a commend by the Assembler. Following

the op-code are 0 to 3 fields, depending upon the requirements of

the particular instruction type. These fields are separated by

one or more blanks except that a blank between the first field (op-

code) and the second field is optional. A detailed list of instruction

types and their descriptions may be found in Volume 2 of this series.

Scenarios which are to be assembled may be loaded to disk in

several ways, using the Command Line Interpreter (CLI) of the Disk

Operating System.

38

Length
in Bytes Description*

4-6 Allocate instruction to cause a set of Registers

to be allocated in core.

1

o-j

0-k

1

Instruction type or op code field.

From 0 to 3 fields (depending on instruction

type) which generates fixed length fields in

the internal scenario.

Either 0 or 1 variable length character string

field (depending on instruction type). May

include control characters.

Carriage return character which signals end of

a scenario instruction.

Above 4 fields are repeated for each instruction

in the scenario.

End of scenario signalled by end of DOS file.

*A11 character data

Figure 4. External Scenario Format

39

1. Load from tape to disk

LOAD MTO:x seen

2. Transfer from card reader to disk

XFER/A $CDR seen or LXFER $CDR seen

3. Created through the DOS Editor

4. Created as an output file of the Macro Preprocessor

SSUB x seen (lib)

The various DOS commands and programs are fully described in the

Data General Software Manuals (References 1 and 2). The Macro Pre-

processor is described in Volume 3 of this series.

Program Files

The Assembler program and its associated conversion tables

reside on tape as files, and they also must be read to disk. This

can be accomplished with the DOS command

LOAD MT0:x CVT.SV DEVTAB SUTTAB/

This loads the Assembler program save file (CVT.SV) as well as the

conversion table (DEVTAB) and start/end-of-message table (SUTTAB),

from file x of a magnetic tape mounted on the system tape drive

selected as transport 0.

Executing Assembler

The Assembler can be operated in either conversational or non-

conversational mode from the control teletype (TTY). In non-conversa-

tional mode, all input parameters are included in the initial call.

In conversational mode, the Assembler requests the input parameters

one at a time. To execute in non-conversational mode, type:

fe] CVT '.„ seen codel code2

40

where:

CVT is the name of the Assembler program

P is the optional partial print switch which

provides a printout of the ES only

N is the optional no-print switch

seen is the name of the external scenario to

be assembled

codel indicates the conversion method and conversion

subtable from DEVTAB to be used for string

conversions (see Table IV)

code2 indicates the SOM/EOM sequence subtable from

SUTTAB to be used (see Table V)

In both conversational and non-conversational modes, the

Assembler types the message:

TO CANCEL RUN, TYPE CONTROL-A

which indicates that the assembly process has begun. The Assembler

can be interrupted at any time during assembly by depressing the

Control and A characters simultaneously.

For conversational mode enter:

CVT [£]
and the Assembler responds with:

ENTER EXTERNAL SCENARIO NAME

When a valid external scenario name is entered, followed by a carriage

return, the program types:

ENTER CODE FOR CONVERSION

41

Table IV

Available Codes for Conversion

Code Comment

A one-to-one conversion to 8-bit zero-parity ASCII

where the leftmost bit is the parity bit and is

always set to zero.

A one-to-one conversion to 8-bit even-parity ASCII

where the leftmost bit is the parity bit and is set

to one only if it is necessary to make the total

number of bits in the byte even.

A one-to-several conversion to 7-bit 2741 EBCDIC

where the parity bit (odd parity) is the rightmost

bit, and a zero bit is added at the left to fill

the byte. (See Appendix I)

A one-to-one conversion to 8-bit one-parity ASCII

where the parity bit is the leftmost bit and is

always set to 1.

A one-to-several conversion to 7-bit 2741 EBCDIC

where the seven bits are in the reverse order of

those in use for code3 and a zero bit is added at

the left to fill the byte.

A one-to-several conversion to 7-bit 2741

Correspondence Code reversed for use on the field

test system. The parity bit is right most bit and

a zero bit is added at the left to fill the byte.

42

Table IV (Concluded)

Available Codes for Conversion

Code Comment

7 A one-to-several conversion to 7-bit 2741 Correspondence

Code for use in the fixed-site system. The parity bit

is the rightmost and a zero bit is added at the left to

fill the byte.

8 A one-to-one conversion to 8-bit odd parity ASCII where

the leftmost bit is the parity bit.

43

Table V

Available Codes for SOM/EOM

Code EOM SOM

1 158 = CR none

2 223g none

3 1768 - ~ none

4 1338 37g - CR © 268-©
5 215g « CR none

6 15g 12g - CR LF none

7 none none

8 1558 1748 - CR © 648=®

9 none 268 268 268 28

26D - SYN SYN o

SYN STX SYN

10 04 - EOT none

44

An integer, from Table IV, should be entered, followed by a carriage

return. The Assembler then asks:

ENTER CODE FOR END-OF-MESSAGE SEQUENCE

and a value from Table V should be entered. This completes the

conversational mode of input.

If an assembly error occurs, the number of the line which caused

it and the error message are printed on the teletype. This happens

regardless of the print option selected. At the end of the run, or

if Control-A is used, control is returned to the NOVA disk operating

system (DOS) and an "R" is typed.

OUTPUT

Output of the Assembler is an internal scenario written to

disk with the same name as the external scenario but with the exten-

sion .IS appended. If an internal scenario already exists for a

particular scenario, the old one is automatically deleted and a new

one is created for the new Assembly run. Other output of the Assembler

includes optional printed listings on the line printer and messages

printed to the teletype.

Internal Scenario

The internal scenario consists of 3 initial bytes of information,

followed by processed scenario instructions, and ended by a 2-byte

null word. The first information byte is an 8-bit error indicator,

each bit being set only if a specific error occurred during assembly.

The Scenario Interpreter will accept an internal scenario only if

its first byte is zero, i.e., no errors have occurred.

The second byte of the internal scenario identifies the equipment

type for which the scenario was assembled. It contains the conversion

parameters used to assemble the scenario and make it specific to a

45

given SUT and terminal. The first four bits are the conversion

code (first input parameter) and the second four bits are the SOM/EOM

code (second input parameter). If the internal scenario is completely

independent of any conversion parameters (i.e., no queries are sent

to or received from the SUT), the scenario is called universal, the

equipment type is set to zero, and the Scenario Interpreter will

accept it to run on any device because it has not been tailored for

a particular SUT or terminal.

The third byte indicates the number of registers to be allocated

for each use of this scenario. This number may vary from 3 to 127.

The Assembler determines this number, not from input parameters as

with byte two, but from an Assembler Directive instruction included

within the scenario itself, preferably the first instruction. This

instruction (op-code = a) should appear only once per scenario; if

the instruction is missing, byte three contains the default value

of 8.

The scenario instructions themselves follow these three initial

bytes. Each instruction begins with a 2-byte length field, giving

the length in bytes of the instruction, including the length field.

The 1-byte op-code field is next. Depending upon the particular

instruction requirements, there may follow 0 to 3 fixed length fields,

0 or 1 variable-length-string field, or no additional fields. The

instructions immediately follow one another, with no intervening

delimiters. The end of the internal scenario is signalled by a 2-

byte null word.

Optional Listings

When running the Scenario Assembler, three print options are

available for printing on a line printer.

46

1. full printing

2. partial printing

3. no printing

A sample output listing is given in Appendix II. Full printing is

selected when invoking the Assembler by typing CVT without either

the P or N options in either the conversational or non-conversational

mode. This produces first a listing of the external scenario. Each

line contains the external line number, the starting byte address of

the corresponding instruction in the internal scenario, and then up to

58 more characters of the instruction. If the instruction is longer

than 59 characters, it is truncated. Interspersed in this listing are

error messages listed beneath the instructions which caused them.

The listing of the internal scenario appears after the external

scenario. This begins with the printing of the error indicator,

equipment type, and the Register allocation bytes. Each instruction

of the ES is printed, followed by the corresponding internal scenario

instruction if one exists (assembler directives are never written in

the internal scenario). The internal scenario instruction Is printed,

2 bytes on a line, preceded by the byte address, in decimal, of the

first of the two bytes. Following the two bytes is the ASCII trans-

lation of the bytes with control characters printed as blanks. Two

bytes are always printed. Therefore, if the instruction has an odd

number of bytes, the first byte of the next instruction is printed

and is also repeated as the first byte of the next IS instruction.

The symbol table is printed after the internal scenario. Each

entry of the symbol table is represented by a line of print which

gives the length of the label, the label, the internal scenario byte

address associated with the label, and the line number of the external

scenario instruction which first referenced the label. Also printed

is the number of entries in the table. An example of the full print-

out is given in Appendix II.

47

The partial print option is selected by typing CVT/P in either

the conversational or non-conversational mode. This option produces

the listing of the external scenario as described above plus a

printout of the name, indicator byte, equipment byte, and Register

allocation byte of the internal scenario. The rest of the listing

of the internal scenario and the listing of the symbol table are

omitted.

The no-print option produces no listing to the line printer.

As in the case of the other two options, if any errors occur, the

error messages are printed on the teletype.

Output Messages

Messages are printed to the teletype for two reasons:

1. to request an input in conversational mode; and

2. to report an error.

Both types are self-explanatory. To correct errors in input para-

meters, input corrections must be typed in. For other messages,

no immediate action is needed, except when it may be desirable to

interrupt the assembly with a Control-A command. If assembly errors

occur, they need to be corrected in the external scenario, and the

external scenario needs to be reassembled. Otherwise, the error

indicator byte will not be zero, and the internal scenario will not

be accepted by the Scenario Interpreter. Table VI includes all

possible output messages. The error message designates the number

of the line which caused it, except for the LABEL UNDEFINED message

which indicates the line number of the first reference to the label.

48

Table VI

Output Messages
For Scenario Assembler

Messages Requiring Responses

TO CANCEL RUN, USE CONTROL-A.

ENTER EXTERNAL SCENARIO NAME.

SCENARIO NAME NOT FOUND, RE-ENTER OR CANCEL RUN.

ENTER CODE FOR CONVERSION.

CONVERSION CODE NOT IN TABLE. ENTER NEW CODE OR CANCEL
RUN.

ENTER CODE FOR END-OF-MESSAGE SEQUENCE.

END-OF-MESSAGE CODE NOT IN TABLE. ENTER NEW CODE OR
CANCEL RUN.

TABLE NOT FOUND. CANCEL RUN.

Messages Requiring No Responses

TOO MANY FIELDS.

LABEL IS UNDEFINED.

ALLOCATE IS TOO SMALL.

UNDEFINED OP CODE = .

LITERAL MISSING.

OUT-OF-RANGE NUMBER.

WARNING, SHOULD DOUBLE QUOTE BE TWO SINGLE QUOTES.

LABEL MULTIPLY DEFINED.

FIELD MISSING.

ILLEGAL FIELD.

49

SECTION V

EQUIPMENT TABLE

INTRODUCTION

The Equipment Table (ET) is not considered part of the Scenario

Interpreter, but is a separate entity to be created by the user to

reflect the characteristics of the equipment to be emulated. The

Equipment Table consists of a set of ET entries which describe the

SUT remote-terminal equipment to be emulated (as well as the control

TTY), and relate it to the emulator I/O ports. Each entry (25Q words o

long) describes one equipment component of the SUT. The format of an

ET entry is given in Table V of Volume 2 of this series.

GENERATION

The Equipment Table must be generated by the user to depict the

particular equipment configuration to be emulated. A source file

(EQUIP) of the ET is normally created and then assembled with the

NOVA assembler. The assembled file (EQUIP.RB) must be included when

generating an emulator system, as described in Section VI.

(The EQUIP file contains several items in addition to the ET.

The ET history record (ETREC), which is the second record written on

the log tape during a run, is a proper subset of EQUIP. The ET

itself is a proper subset of ETREC. The requirements and conventions

of EQUIP, ETREC, and ET will be clarified in the next subsection.)

The ET source file, EQUIP, is normally written in NOVA assembly

language, with each entry correctly formatted. This can be accomplished

by creating the file line by line as needed, or by using macros and

the macro processor to ease the burden of repetition. Most often

macros will be used. The macros used to create an Equipment Table

50

for the present field-test system (including digital I/O facilities)

are described in Figure 5.

An ET entry is generated by a sequence of four ordered macro

calls: either ETENTRY1, ETENTRY5, ETENTRY3, ETENTRY6 or ETENTRY1,

ETENTRY2, ETENTRY3, ETENTRY6. The only difference between the two

sequences is that the former (ETENTRY5) allows ETEOM to be specified

as a parameter whereas the latter (ETENTRY2) generates an ETEOM value

of E0M1. For ease of reading the assembly listing, the ETENTRY1 card

should start in column 1 and the others in column 10.*

An input file, EQ, for an Equipment Table with macros not yet

expanded is shown in Figure 6. The six macro definitions used to

create the EQUIP file from the EQ file appear at the beginning of the

EQ file. A seventh macro definition occurs later in lines 89-91 but is

is not essential to the proper formatting of the file. Figure 7 shows

a portion of the EQUIP file after execution of the macro processor.

In this form, the file is acceptable to the NOVA assembler. Figure 8

shows a portion of the ET after it has been assembled. Appendix III

contains a complete listing of EQUIP.RB, the assembled Equipment Table

file.

REQUIREMENTS AND CONVENTIONS

The following mandatory requirements must be met by EQUIP, ETREC,

and the ET. Line numbers referenced below are those of Figure 6.

1. The following (defined below) must be declared as entry

points (external/global variables) as shown at lines 44

to 48: E0000, E0, El, ETREC, ETEND, ETENT, E2, ETLEN.

*For the lab system (one with no digital I/O) , ETENTRY6 can be elimi-
nated and ETENTRY3 modified to generate zero values for words 22g -

51

MACRO
NAME PURPOSE PARAMETERS

ETENTRY1 Generates words 0-5
of ET entry.

$1

$2

$3

$4

$5

$6

= NOVA assembler label for ET
Entry

= ETRO. Should be initialized
to zero.

= first ASCII character of
ETYPE.

= second ASCII character of
ETYPE.

= ETID in decimal.

= CHILD. The NOVA assembler
label for some other ET
entry or zero.

$7 = LINK. The NOVA assembler
label for some other ET
entry or zero.

$8 = PARNT. The NOVA assembler
label for some other ET
entry or zero.

ETENTRY2 Generates words
6-17g of ET
entry with
help of ETENTRY4

$1 = ETRAT in octal.*

$2 = TERMT in octal.

$3 = STATI. Enter I or U.

$4 = PORTO in octal.

$5 = PORTI in octal.

$6 = SPRTO in octal.

$7 = SPRTI in octal.

*To enter a decimal value, follow it with a decimal point.

Figure 5. Equipment Table Macros

52

MACRO
NAME PURPOSE PARAMETERS

ETENTRY3 Generates words

20g - 21g of ET

entry

$1 = SUTAD in octal.

$2 = ETIND in octal. Bits 1, 2,
and 3 should be initialized
to zero, the others as desired.
Bit 0 must be set to 1 for the
control TTY.

$3 = BYTEL in octal.

$4 = PARTY in octal.

ETENTRY6 Generates words

22. - 24Q of ET o o

entry

$1 = CCC+1 in ETDID. Number of
digital inputs in decimal.

$2 = BSSSS in ETDID. First input
in octal.

$3 = DDDDDD in ETDID. Device number
in octal.

$4 = CCC+1 in ETDOD. Number of
digital outputs in decimal.

$5 = BSSSS in ETDOD. First output
in octal.

$6 = DDDDDD in ETDOD. Device number
in octal.

$7 = ETDOA.

Figure 5. Equipment Table Macros (Continued)

53

MACRO
NAME PURPOSE PARAMETERS

ETENTRY5 Generates words

6-17Q of ET entry o

with help of

ETENTRY4

$1 = ETRAT in octal*.

$2 = TERMT in octal.

$3 • STATI. Enter I or U.

$4 = PORTO in octal.

$5 = PORTI in octal.

$6 = SPRTO in octal.

$7 = SPRTI in octal.

$8 = ETEOM.

ETENTRY4 Generates words

14Q - 17„ when o o

called by

ETENTRY2 or

ETENTRY5

$1 = unused. Enter zero.

$2 = TERMT in octal.

$3 = STATI. Enter I or U.

$4 = PORTO in octal.

$5 - PORTI in octal.

$6 = SPRTO in octal.

$7 = SPRTI in octal.

* To enter a decimal value, follow it with a decimal point

Figure 5. Equipment Table Macros (Concluded)

54

The following labels must be used for particular ET entries

(although the user may also assign labels of his own choice to the

same entries):

2. The label E0000 must be used for the first ET entry which

must be the control TTY (see line 83).

3. The label E0 must be used for the ET entry for the control

TTY. Therefore, E0 is equivalent to E0000. See line 84;

the first parameter of the macro ETENTRY1 is the label E0.

A. The label El must be used for the ET entry for the single

asynchronous device in the lab system (see line 89).

5. The label E2 must be used for the ET entry for the first

asynchronous device in the field-test system and for the

first DCM device in the lab system. The Exec assumes that

the ET entries for the asynchronous devices in the 64-line

field-test system are ordered as shown in Figure 9 and that

those for the DCM in the lab system are ordered as shown

in Figure 10. (Figure 11 shows the ordering and device

numbers used for the 16-line field-test system which are

those of Figure 6, lines 96-159.)

ETREC must be defined so that:

6. It includes the entire ET, preceded by four words as shown

in Table XII of Volume 2 of this series (see lines 79-191).

EQUIP must include the following definitions:

7. ETEND must contain the length of an ET entry (see line 78).

8. ETLEN is equivalent to ETEND (see line 195).

9. ETENT must contain the number of ET entries (see line 194).

10. One or more EOM lists must be established as in lines 196-

225. An EOM list is of variable length, terminated by -1

55

SQ
1 ,TITL ETJT.P
2 Mje* ETtNT^n C8j
J in
4 13 lETRlfl

1 MVJ*ii! lo.*"$4 RETYPE
1 «3. >ETID
7 »i »C*iItO
1 *7 KI«
J 11 JPA^NT

IK M£NQ

u Mu£r eT£NT*Y2(7)
12 SI JEHAT
ia I ;truBP

i* ton ;ETEOM
15 a ;ETrtSP

16 s /ETPAD

17 e »RRTNG, "RING
18 E.T£\T«Y4U, .J,*.},$4,15,jo, 17)
19 «CNU
a Adif cTcNMr 4[J 'J
?.\ 0*i5o, , + 37 /ETI.GA, ETLGN
22 t2«23< S.+S3 >Tt«MT, 3TATI
23 »4*2S6.tfS JPQRTJ, PORTI
24 *6«23(>.07 J3PRT0, SPKT1
25 MEND
26 .1JEF cTtNI»r5C8)
27 *i >£r«AT
28 a IETQBP

29 »3 JETEUM

34 2 JETRSP

41 * >ETPAD

32 J JRRING. »RI*G
33 EfEM^f4C/»*2.S3,.1i4,15,»51 17)
34 HtNL)
33 MDtF CTENTI<Y314J

36 Jl*a36.*J28d JSUTAO, ETINO
37 »3«2J6.*|4 IBYTEL, PARITY
38 MENU
jy MOEF £TENT*Y6C7)
44 »l.-: 1*1B8*$2»>7**3 »eroio
41 »4.-l< >192*S5B7*1S lETDUD
42 *7 »ETOOA
43 MEND
44 .£•>! E^00,E4,E1, ETREC
45 .ENT ETEND
48 .ENT ETENT
4/ .EM E2
48 ,E*T ETlEN
49 .OuSR *»iei
3a .DuSR mn
31 .OyS* $•123
32 .DuS* T»124
33 .DJSR J»l25
34 .DUSn -•127
33 .OuSR £•109
39 .DuSR Z>132
37 .DllSR N>116
38 .CuS* 0»117
39 ,Ou9R »T1«133.
88 .OOSN BLW.
81 ,OuS«* BL2»e.
82 ,DL!» PT1»0

Figure 6. File EQ of Equipment Table (Macros not Expanded)

56

t*
53
06
97
96
59
7t
71
T»
7S
74
73
76
77
7B
TO

to
»l
•8
aj
s«
85
8c
87
ib
99
Ba
91
92
9J
94
93
96
97
9a
99
Hi
Ul
U2
103
104
135
106
14)7
108
U9
lie
ill
112
113
114
115
lt«
117
lib
ue
lie
ul
128
123
124
125

ETt.;.c;
ET*£C:

Ed* <? :
ETE <rnYi

t, « 6 » 01
ETENT"Y1

*iit> TTY
12741

E1E * T * Y J

.C<.5i

.C i. *i

. U j S «

.Cl.?-

.US*

• DUS*
,TXT">
tZKtt

t«' C"- b
«!">• ' .'

"n
.•1

PT2«\
b'QJLlNE' 3*16.*4
Hl284a«3«l«.*4
1312260»3*15.*4
IBM1B5J«5
,2<!0^«O
IBM2741I7
12741«3*1j,»4
ZA3Cl«l*l5,*l
ZiaC6»l«l"J.*6
EA3C2«2M6.+2
|»SCS«2«lS,»5

•t3H0k)
•"£
•t?000+4

/USED TO w^ITE El ON TAPE

f t«! i'.'. C f T, B, Z , 11»t)
r.TtvTPY5CH0..iASCb,I, 11, lk>. 0 , 0 , E0M2)
cTtMHt3C0#l,3. ,1)
tTfeMftT5(l,«,9,1,0,0,0)

(tl,f,C,S.14,d,t2,03
jTe' TRY 5(8114., EA3C2,1, 51 ,*>*, 1,1,EQMJ)
tT;* i"TM15.,1,8.,E)
» T f \ 1 » T O (1 , if , 0 , 1 , 0 , 0 , 0)

30

t*9
cT
tT
ET

ETCNTXYI (td
ET
ET

cT
ETENTKYICt4

tT
el
ET

EIENTKYICC«

ET
tT
ET

ETENTKYKtl
ET
tT
ET

ETtNTkYlCtl
tT
tT
tT

ETESTSY1 (i.\
tT
ET
tT

ETENTKYKEI
tT

; ,T,Y
f. T h Y 5
r I f T 3
>LT*Y6
«.T,v
MM5
MPY3
•JTPYS

•J , T , Y
*TPY2

f"TPY3
MPY6
»*>! ,
^PY2

MBY3
NTPY6
, i1» T ,
MI<Y2
M P Y 3
MPY6
«•# T,
•. THY 2
NTBY3
MM«
.",T,
cTMJ
• TP>3
MPY5
»B»T,
\TP>2

.1,0,
CRTi,
(38.,
(2,00
.2,2,
CRT 1,
(31.,
(2,02
,3,0,
CRT 1>
(32.,
(2,24
Y,4,0
(RT1,
(29.,
(2,06
Y,5,0
(RT1,
(33.,
(2,08
Y,6,0
(RT1,
(34.,
(2,10
Y,7,0
cm,
(35.,
(2,12
Y,e,a
(RTl,

53,3)
TTYJ3.T.4
3,3L1IPT1
.,71,4,00
E4,0)
TfYi3,I,4
0,9L1,PTI
.,71,4,04
t4A,0)
TTY33,I,4
0,8ll,PTl
.,71,4,08
,E13,0)
TTY33,I,4
0,BL1,PT1
.,71,4,12
,E14,0)
TTY33,I,4
0,BI.1,PT1
.,'1,4,16
,tl5,kt)
TTY33,I,4
0,9Ll,PTl
.,71,4,20
,E16,0)
TTY33,I,4
0,BL1,PT1
.,71,4,24
,E17,0)
TTY33,I,4

3.43,
J
, , 66,

3,42,
)
. , 66,

3,42,
)
., 66,

3,42,
3
. , 66,

3,42,
)
• . 66,

3,42,
)
.»66,

3,42,
)
., 66,

3,42,

1,1,E0M4)

DO60A)

2,2,1:015)

D066A)

3,3)

D066A)

4,4)

0G66A)

5,3)

D0868)

6,6)

30666)

7,7)

D066B)

8.,8.)

Figure 6. File EQ of Equipment Table (Macros not Expanded)
(continued)

57

186 fcTtMM3(36.,0,3t.l,PTl)
127 tTtMft«(a, l4.,71,4,26.,66,006ort)
128 FTPNT«Yl(tl7».,T,Y,»,B,cltJ»B)
120 C.UMM2(R11,UY33,I,43,44,1,1)

13& tTtMF»3(37.,e,8tl»PTn
131 tTf.vi(.irftC2l16.,71,4,U?.,67,006 7*J
132 ETtMt>rutu#u,T,r,ie,e,Ei»»0)
133 cTeMM?(RTl,TTY33,I,4S,44,?,2)
134 cTcr TRY3(3B.i0,8ll|PTi)
13B eTt MM*(2,18,,71,4,*4.,67,00674)
136 CTtMl«Ylltlki«i,1,Yill,2,E20,0)
137 tUf.1M?(RTl,TTY33,I,45,44,3,3)
131* tTtMM3(3S.,f,6l.l,PTl)
139 fcUMFYf(2,2tf.,71,4,08.,07,00674)
14? ETENTMJ tfc?i', .'•, 1 , Y,1?,0,E21,0)
141 tTtMM2(RTl,TTY33,I,45,44,4,4)
142 fcThMh'Y3(4B.,B,BLl,PU)
143 fcTtMMS(2,22.,71,4,l2.,o7,006 7A)
144 tTeNTKVKbai., ,T.Y,1J,&,622,8)
145 tTtf VM2(RT1,TTY.!3,T.,43,44,5,5)
146 e"Tt" lfci3C41.,a,3ilfPTl)
147 t.UMkY6(2,24.,7l,4,i6.,67,DUS7«)
14b F1£NTxYlfe2i'»»,T,Y,14,0,E23,0)
140 tTtMhY?(RTl,TTY33,I,4o,44,<5,6)
150 c.Tt.MM3(42,,?!,Bul,PTl)
151 eY*MRYf(2,26.,71,4,20.,67,OO67a)
152 ETENTrrYUfciC-..:»T,Y»i6»0»E84,0]
153 ETtf-TRY2CPTl,TTY33,1,43,44,7,7)
154 ETcMM3(43.,0,eil,PTl)
155 tTtMMe(2,2b.,7l,«,24.,b7,0uS7B)
156 FTF.MTrYlf£J«,i.,T,Y,16,0,E5,0)
157 feYtMM2(Ml,TTY33,I,43,44,e.,8.)
13* £TtMF.Y3(44.,0,8i.l,PTl)
158 cTtMM6(2,30.,71f4l28.,6 7,OO67B)
160 ETEcTKYKtS,* ,L,N,5,E6,0,0)
161 tTtNTRY2(24B8.,DUDLlNE,I,32,31,0,0)
162 tTtlvrBY3(43.,0,9L2,PT2)
163 tTtMPYPCl,0,0,1,0,0,?)
164 ETENT«Yl(fcf>,C,C,N,6,Ee,E7,E8)
165 EYfc MM? (240 0., IflM2848,I,32, 31,0,0}
166 tTtMPY3(it6,0,Bl2,PT2)
167 tT(.NTM6(l,e,B,l,0,0,e)
168 ETEMM1 CE7,e,C,N,7,Ell,0,E5)
169 ETtMM?(24Cib.,Ie«2646,U,32,31,tt,0)
170 feTtMFY3(860,0,Bu2»PTa)
171 ETtMM6(l,0,0, 1,0,0,0)
172FTENTMlCfcP,O,D,S,8,0,E9,E6)
173 fcTtNTHYJ(2400.,I6M2260,I,32,31,0,0)
174 tTtMfiY3C24e,0,Bi.2,PT2)
175 ETfcMRYflU, 0,0, 1,0,0,0)
176 ET£NTM1(E&,»,L,S,9,0,E10,E6)

177 EUMPY 2 (2400., 18*2268,1,32, 31,0,0)
178 tTfcMKY3(241,0,BL2,PT2)
179 £TtMT»Y6(l,0,0, 1,0,0,0)
180 ETE.NTHYl(tU,i,K,T,10,0,0,Eb)
181 tTfcNTM2(150.,IBM1053,U,32,a,0,0)
182 £TtMM3(242,0,Bl2,PT2)
183 cTfcMPYfld,0,0,1,8,0,0)
184 ETENTMKE11, J,C,3,11,0,E12,E7)
185 ETt MR Y2 (2408., IBM2260,11,32,31,0,0)
186 ETtNTRY3(244,0,aL2,PT2)
187 ETtMRYfld, 0,0,1, 0,0,0)
IBS ETEMMlCfcH,tf,D,S,12,0,8,E7)

Figure 6. File EQof Equipment Table (Macros not Expanded)
(continued)

58

ltfO
\9V
191
162
1*3
184
It)?
186
187
l8«
184
2ni3
301
22!
2oJ
244
2£i
i*t
2*7
24fl
248
210
211
212
213
214
ll«
216
217
218
219
22
221
222
223
224
225
226
227
228
220
230

L4YJ8I
Lfch
6TPwTl
tflcM
fcO" t»

to

:w''J'

to"**!

0 60*61

D06O4I
U0669!
0U67«:
UC674:

t» i>n2(24Kd.,l0Htf2oF,U«3gi Jl,etB)
fci> :*-»3(245,KrBu2,PT2J
r • •• r *• r 6 C1 , 14 , t, 1 , a, e. B)

it ib-EriPC?

.E'-i

Figure 6. File EQ of Equipment Table (Macros not Expanded)
(concluded)

59

CUUIP
1 ,TITL ECblP
3 .ENT F»)0(JBi»n,6l ,RT«ec
3 ,f«lT fcTFND
4 ,t..T tlLwT
3 .OT ti
6 ,t<T tlL.tN
7 .OMSK *• ie i
a , t'i J S r! lull
V ,C«d?>* S«12J
u .OlibK 1 = 124
n ,')OOK us 125

12 ,I>US>< r«l27
13 .UUbK' t*18S
14 ,Ou5i< £*!3i£
15 .UijSN N«l 16
10 a Li u S r< 0M17
17 .fniSK CM".39.
16 ,I>USM 6L1«7.
18 . 0 U S K rtl2«8.
213 ,nja« r»Tl»0
21 .illJSK HTgiN
22 ,'jujrl ji'0LlNE«3* 16,*4
2 j .^liSK IUh284d«3* lb.*4
24 , DUSK lb<i22»i*»3* IS. + 4
29 .HuSrl I&MlUb3«S
26 .OuSrt L>200tf •li
27 ,Ou3H IPM274i«/
2b .CjSrf I2741»3*l« . + 4
29 .DUSK ZAbCl»l*lo .•1
30 . uuSn £ASC6»l*lfi .•6
31 .DUSK LAbC2»2*ld .•2
32 .Ju3« EA3C5«2*lb .•5
33 .TXTM 5
34 .ZSEL
35 .Nrtl-it
38 ETEND! feOtHUi •toaee

37 tTHtC: 2 «f ? ? B • • "E /USED TO "RITE
3b E9*<JS-ti'kJ00*4
3* "M

40 .•1
41 E 0**101
42 £i\

43 14 FETR0
44 "C*S36.+"T JETYPE
45 4 . IdTIU
48 4 (CHILD
47 tl »L1NK
4b d jPAKNT
4U lid. rETH
5(0 * JETQBP
51 tOi? (ETEOM
52 hi IETRSP
53 If fETPAD
54 w »RRING,PRING
55 4«43e .•37 »ETLCA, ETLGN
38 ZASC6 »asfl,*i »TERMT, STATI
37 n»23o.*ia JPURTO, PORTI
36 e*256 .•0 JSPRTO, SPRT1
30 ««2S6 .•1B8 ISUTAD,
88 b. «2a8.*i HJYTtL, PARTY
61 ».•!• 182*0B7*(1 »CTDID
98 . !.-!• Iri2»eb7*0 IETU0U

FT ON TAPt

ETINO

Figure 7. Portion of File EQUIP of Equipment Table
(Macros Expanded)

60

83 «' ItTuOA
64 EOENDI
88 en
68 < lETRa
67 "0«?i6.*"S lETYPE
68 1'. /EUD
69 i PCHILO
r§ £2 ILINK
71 i »PAKNT
72 b 11« . lETRAT
73 it >ET<JflP
74 t0'\.-> »5T£0«
7b » »FT?SP

76 / ItiTPAO
77 »> fRRlNG.PRING
78 L«23'>.+37 IETLGA, ETLGN
7* fcASLrf^SO.*! »TERhT, STATI

ftU M«?56.*50 ;P0RT0, HOWTI

ft] 1*25->.*1 JSPRTO, SPRTI
82 i5.«25 j. • Abo »iUTAU, ETINO
fta *.*23*,*K IBYTEU. fARTY
64 1 ,-l*ld!»»«tJ7»i1 >ETniD

H3 1 .-••lu?*l"D7*B »ET000
66 ,' >ET')0A
87 £21
8s If IETR0
8S " r«?o«,*"Y JETYPE

90 A • ItTia

91 «.' ICHII.0
92 EJ »LXNK

93 « t PAKfJT
94 HTl ;ETRAT

95 «' »ETi3BP
96 IQtc fETEO*
97 * fETRSP
98 v ;ETPAO

99 It; jRRING.PRINf?

120 0*256.*37 lETUUA, ETLGN

101 I»74l*4»S6.*I ITERMT, STATI

1 -32 43*236.*42 >PURTO, PORTI
143 l*23o.*1 I3PRT0, SPRTI
104 j^.»as?.*0riB ;SUTAU, ETIND

103 t»Ll*«"56.*PTl J3YTEU, PARTY
106 i .-1 * i3i' + 00.tf7* 7i »ETOIO
107 A.-1*1*2*00,tf7* 36 rETOOO
108 00i}*A »ETDOA
109 ESI
1 1 PI 4 »ETR0

HI "T*23«.*"Y lETYPE
112 2. ItTIO
113 u »CHILU
114 t4 ILINK
US id JPAHNT
116 »Tl lETRAT

117 k. IETQBP
110 com lETEOM
119 a ;ETRSP
120 n lETPAD
121 u IRRlNG.PRlNG
122 •*^5S.*37 lETLGA, ETLGN
123 12741*236.•! ITERMT, STATI
124 4S«23fl.*42 IPORTO, PORTI
123 • 2*2S6.*2 I3PRT0, SPRTI

Figure 7. Portion of File EQUIP of Equipment Table

(Continued)

61

126 31.«*So.*0Bfl ISUTAQ, ETIND

127 bLl«i5).+PTl (6YTEL, PARTY

128 t.-l«l>i'*02.h7' • 71 ptTDID

12S 4.-l«ld?*04.fl7> • 65 JETDOD

1311 L'On«A rETDOA

Ul fc«l

132 / »ET«0

133 »W30.*"Y ;ETYHE

134 0. IETID

133 i> ICHILO

136 fc.44 ILINK

137 ,J ;P»WNT
136 «Tl fETRAT

139 n JETQBP

140 tU.H JETEOM

141 if' >EHSP

142 t. lETPAO

143 J ;RRIMG,PRI'1G

144 <,*ifiu . * ? 7 JETLGA, ETLGN

143 J27«l*2*6.*l »TERMT, STATI

146 •»3»i'36.+42 jPURTO, PCMTI

1«7 i*?.^o.*J >3P«T0» SPRTI

148 >2.«*!>'>.*0bt» ISUTAUi ETIND

14S &Ll*c5f).+PTl >9YTEL, PARTY
130 4.-) wi->2*04.«7 ••71 leTOIU

131 •*.-!• lo?*08.H7 • 65 JETOUU
132 i)0r>f H itTDOA

133 E««t
154 * IETR0

155 "T*?o6.+"y JETYPE

156 4. FETIO
137 11 ICHILU
138 Ll3 HIM
139 Kl IPAKNT

160 *Tl pETRAT

161 J »ET3bP
162 EOrtl ;ETEOH

163 o IETRSP
164 u PETPAO
165 0 ;RRING,PRING
166 ^•iS'j.+o? PETLGA, ETuGN
167 I274i»2'56i*I pTERMT, iTATI

168 43.?3«.+42 IPORTO, PORTI
169 «**.*< 6.*4 /SPRTO, SP*U
170 29.*J»56.*0B9 ISUTA0, EflNO
171 BU*25o.*PTl PRYTEL, PARTY
172 2.-i«ls2+06.b7 • 71 IETOIO
173 4.-l»ld2*l2.ti7 + 66 PET30D
174 QG60A PETOOA
173 E13J
176 * ;ETR0
177 "T»256.+"Y PETYPE
176 5. JET 10
179 0 PCHILD
160 cl4 ILINK
181 D ;PAKNT
162 RTl PETRAT
163 0 PETQBP
164 tOril PETEOM
IBS 0 /ETRSP
186 K lETPAD
167 Vj PRRING,PRI'NG

188 0*236.*37 fETlGA, ETLGN

Figure 7. Portion of File EQUIP of Equipment Table
(Continued)

62

367 BL2*23o,+PT2 »BTTEU, PARTY
908 1.-1*192+087+0 UTOXO
369 l.-l*H2+0B7t0 JET000
970 e IET00A

371 till
972 0 IETR0
373 "0*254.+"3 >ETYPE
374 11. >ETID
373 0 fOILD
370 £12 H.XNK
377 fc7 JPARNT
378 2400, IETRAT

370 u rETOBP
380 fcO'11 JETEOM
981 W IETR3P
982 U IETPAO
383 0 JRMING.PRING
984 0**'Jd.+J7 lETLGA, ETLGN
989 I«*22«0+230.+u ITERHT, 3TATI
980 J2*?36.+31 JPORTO, POKTI
387 H*^3<5.+«» J3PRT0, SPHTI
988 244*25o.+0B8 ISUTAO, ETIND
380 dL2*256.+PT2 J9YTEL, PARTY
5012 1.-) *lo ?f0d7*<i IETOIO
301 l.-l«l*2+0B7+0 >ETOOD
302 0 fETOOA
903 E12I
9W4 t >ETR0
909 "0*250.*"3 IETYPE
900 12. ;ETIO
907 0 JCHILD
908 a ILINK
900 t7 JPARNT
000 2*41. JETRAT
001 t IETQBP
082 eon fETEOM
003 0 JETRSP
004 * IETPAO
009 t |RRING,PHING
000 0*436.+37 IETIGA, ETwGN
007 19112200*250. *\i ITERHT, STATI
008 32*230,+31 ;PORTO, POHTI
000 0*230.+0 fSPRTO, 3PRTI
010 243*256.+0B8 ISUTAO, ETIND
011 dL2*2S0.+PT2 JBYTEU, PARTY
012 1.-1M82 + 0B7 + 0 >ETDID
013 l.-l*192*0B7+0 IETDOO
014 0 IETOOA
013 E0000I
010 LEN •E0END-E0000
317 ETENTl E0OO0-E0000/LEh 1
018 ETLtNl UEN

010 EOMH 37
020 -1
021 -1
322 -1
023 •1
024 -1
028 E0H2I 12
020 3
087 30

• 020 -1
020 ."1

Figur e 7. Portion of File EQUIP of Equipment Table

(Continued)

63

85

COM3!

E014I

EO"DI

D066AI
006691
0067*1
0067B:

c
&
4
.EMO

Figure 7. Portion of File EQUIP of Equipment Table
(Concluded)

64

0001 EQUIP

o0om
OJOI 11
000123
000124
000125
000127
000105
000132
000116
000117
00fc2o7
7IB0007

tfO*117
»aoll6

U0O064
000064
(f0O005
400006
WU00O7
000064
000021
01*0026
000042
000045
Old0005

00000'000025 ETENOl
00001'020105 ETRECl
004e2'001046
00003 '0001 10
00004'000005*

E00O0I
E0I

00006*000000
00006*041524
00007*000000
000110*000000
00011 '000032*
00012*000000
00013*000156
00014*000000
00015*001057*
40016*000000
00017*000000
00020*000000
00021'000037
O0022'013111
00023*004410
00024*000000
00025*000200

.TITL EQUIP

.ENT E0000,E0,E1,ETREC

.CNT ETEND

.ENT ETENT

.ENT E2

.ENT ETLEN

.DUSR *•10 1

.Du5h I.Ill

.OoSR S"123
,0'JSx T»124
.DUSK U"125
.OUSR H.127
.DUSR E"105
.DUSR Z" 132
.DUSR N«116
,OUS* Q»117
.OUSR RT11135.
.D'JSR BL1«7.
.OuSR B12*M.
.DUSR PT1«0
.OUSR PT2«N
.DUSR DDDLINE»J*l6.+4
.OUSR IBM284B»3*l6.+4
.DUSR IBM2260O*16,*4
.DUSR IBM1053«5
.DJSR 02000*6
.D'JSR IBM274W
.DUSR I2741«3*16.*4
.CUSR ZASCl»l*16.*l
.TUSR ZASC6»l«16.+6
.OUSR EASC2*2*16.+2
.DU3R EASC5»2*16.+5
.TXTM 5
.ZREL
.NREL
E0END-E0000
20000+"E
fc939W-E0000+4
"H
.•1

fUSEO TO WRITE ET ON TAPE

"C*256.*"T
0.
0
El
0
110.
0
E0H2
0
o
0
0*256.+37
ZASC6*256.*I
11*256.+10
0*256.+0
0*256.+1B8

IETR0
lETVPE
IETIO
»CHILU
ILINK

;PARNT
IETRAT

rETQBP
IETEQM

IETRSP
IETPAO
>RRING,PRING
lETLGA, ETLGN

ITERUT, STATI
IPORTO, PORTI

ISPRTO, 3PRTI
I3UTAQ, ETIND

Figure 8. Portion of File EQUIP.RB, Assembled Equipment

Table

65

0442 E'jUIP
42426 '4441 32 b,*296,+Z IBYTEL. PARTY
23227 »idO!ta0O0 1.-1*1B2*0B7*0 lETDID
42434'434444 l.-l*lB2*0b7*0 rETuoo
40431 »0040«je

E4Er.0I
Ell

4 lETDOA

24432 ' Z'.14000 0 IETR0
00033'042U3 "D*236.+"S IETYPE
40034 ' «90iae 1 6 14. IETIU
0B433'0/4002 0 ICHILD
4243b '404457 ' E2 ILINK
42437 '004242 0 IPARNT
2P4.M ' ^?4 155 0110. lETRAT
42241'424227 4 lETQBP
22442 ' 401065' torn IETECJM
02443'000000 0 lETRSP
4 4 4 4 £ ' t' /*;" 4'" / 0 IETPAD

44445 '41*4030 0 IRNING.PRING

44440 ' 404037 0*236.*37 lETLliA, ETLGN
44447 '421U1 EASC2*23b.*I ;TtRMT, STATI

40454'424434 51*256.•SB IPURTO, PORTI
00051 ' 42044 1 1*256.+1 ISPRTO, 3PHTI
04452 '4274(^(1 13.*25b.+0B3 I5UTA0, ETIND
44053'024145 8.*256.+E IBYTELi PARTY
44254'444242 l.-l*lB2*0b7*0 IETD10
20^55 ' 4?424"'1 1.-1*1B2+Ba7*0 JtTDOO
a^056'2040a,,|

F.2J
2 IfcTOOA

40tt57 '400000 0 IfcTRfl
44464 '4521 31 "T*256.VY IETYPE
24461 ' 00404 1 1. ItTID
44462 ' 444444 4 tCHlLO
00063'404104« E3 ILINK
42064 ' 444040 0 IPARNT
40465 '444247 RT1 lETRAT
40466 '4042S2 0 IETQBP
40467 '001073' E0M4 IETEUM
00470'404040 0 lETRSP
00071 '024002 0 IETPAD
00072 '000040 0 |RRING,PRING

02073'000037 0*236.^37 lETLliA, ETLGN
00074>032111 12741*256.^1 ITERMT, STATI
00075'021442 43*256. ^42 IPORTO, PORTI
42476 '444441 1*256.+ 1 ISPRTO, SPRTI
00077'017002 34.*25b.*et»8 ISUTAD, ETIND
02124 '443517 BL1*256.^PT1 IBYTEL, PAHTY

00101'020071 2.-l«lB2*B4.B7*7l ItTDIO
04102'000066 4.-l*lB2+B0.B7*66 IETOOD
00103'001107

£31
DObSA lETDOA

40124'400000 4 IETR0
00105'052131 "T*256.^"Y IETYPE
0010o'004002 2. FETID
001B7'000000 a ICHILO
00110)000131 L4 ILINK
00111'000000 0 IPARNT
44112 '434247 RT1 IETRAT
44113 '444441 0 IETOBP
03114'441 101 tOM3 IETEOM

Figure 8. Portion of File EQUIP.RB, Assembled Equipment

Table (Continued)

bb

een tuuip
01420
01031

01022
01023
01024
01029
01026
01027
01032
01031
01032
01033
01034
01035
01036
01037
01040
01041
01042
01043
01044
01045
0104b

01047
01050
01091
01092
01053
01094
01095
01096
01097
01060
01001
01062
01063
01064
01069
01466
01067
01070
01071
01072
01073
01074
01079
01076
01077
01100
01101
01102
01103
01104
01105
01106
01107

000040
000009

000040
042123
000014
000000
0000??
000651 '
404540
000000
401051 '
000000
000000
000*40
000037
032129
015031
&U000P
12240?
004116
0001*00
0 a ? ?• 0 ?
1000/0?

000025
'004032
1020025
'004037
'177777
'177777
'177777
'177777
'177777
'000012
'000009
'000030
'177777
'177777
'177777
'177777
'177777
'177777
'177777
'177777
'177777
'000037
'177777
'177777
'177777
•177777
'177777
'004037
'000043
'177777
'177777
'177777
'177777
'000000

E 12 t

F99991
UN
ETENT1
ETLENI
EC*U

E0*2J

E0M3J

EUH4I

E0W5J

0066At

1,-1*1B2*0B7*0
4

"0*256.•"S
12.
0
4
E7
2401*.
0
eowi
0
0
a
0*256,*37
18*2260*256.*U
32*256.«31
0*256.*0
245*256.*0B8
012*256.*PT2
1.-1*1B2*0B7*0
1,-1*1H2*087*0
0

•E0END-E0000
fc9999-E0000/LFN
IEN
37
-1
-1
-1
-1
-1
12
5
30
-1
-1
-1
-1
-1
-1
-1
-1
-1
37
-1
-1
-1
-1
-1
37
43
-1
-1
-1
-1
0

IETDOU
ItTOO*

IETR0
(ETYPE

»ETID
rCHlLO
ILlNK
JPARNT

IETRAT

>ETQaP
IETEOM
FETRSP
fETPAO
»RRING,PRING
JETLSA, ETLGN

fTERrtT, STATI
»PURTO, PORTI

JSPRTO, SPRTI
>SUTAD, ETIND

JBYTEL, PARTY
»ETOID

IETDOD
ICTOOA

Figure 8. Portion of File EQUIP.RB, Assembled Equipment
Table (Continued)

67

01912 EQUIP
0U10'00U0tf0 006631 0
01111'0&0000 0067*1 0
0U12'00tt0t? 0ti6?B I 0

.END

Figure 8. Portion of File EQUIP.RB, Assembled Equipment
Table (Concluded)

68

INTERFACE
ADAPTER

ASYNCHRONOUS
LINE ADAPTERS

Port Subport

Output Input Output Input

24 24 1 1

24 24 2 2

24 24 3 3

24 24 4 4

24 24 5 5

24 24 6 6

24 24 7 7

24 24 8. 8.

24 24 9. 9.

24 24 10. 10.

24 24 11. 11.

24 24 12. 12.

24 24 13. 13.

24 24 14. 14.

24 24 15. 15.

24 24 16. 16.

Figure 9. ET Entries for DCM Devices for Lab System

69

INTERFACE
ADAPTER

ASYNCHRONOUS
LINE ADAPTERS DIGITAL I/O

Inputs
(ETDID)

Outputs
(ETDOD)

Port Subport First
Input
(BSSSS)

Device
(DDDDDD)

First
Output
(BSSSS)

Device
(DDDDDD) Output Input Output Input

41 40 0 0 0 73 0 62

41 40 1 1 2 73 4 62

4.1 40 2 2 4 73 8. 62

41 40 3 3 6 73 12. 62

41 40 4 4 8. 73 16. 62

41 40 5 5 10. 73 20. 62

41 40 6 6 12. 73 24. 62

41 40 7 7 14. 73 28. 62

43 42 0 0 16. 73 0 63

43 42 1 1 18. 73 4 63

43 42 2 2 20. 73 8. 63

43 42 3 3 22. 73 12. 63

43 42 4 4 24. 73 16. 63

43 42 5 5 26. 73 20. 63

43 42 6 6 28. 73 24. 63

43 42 7 7 30. 73 28. 63

45 44 0-7 0-7 0-14. 74 0-28. 64

47 46 0-7 0-7 16.-30. 74 0-28. 65

51 50 0-7 0-7 0-14. 75 0-28. 66

53 52 0-7 0-7 16.-30. 75 0-28. 67

55 54 0-7 0-7 0-14. 76 0-28. 70

57 56 0-7 0-7 16.-30. 76 0-28. 71

Figure 10. ET Entries for Asynchronous Devices for 64-Line
Field-Test System

70

INTERFACE
ADAPTER

ASYNCHRONOUS
LINE ADAPTERS DIGITAL I/O

Inputs
(ETDID)

Outputs
(ETDOD)

Port Subf ort First
Input
(BSSSS)

Device
(DDDDDD)

First
Output
(BSSSS)

Device
(DDDDDD) Output Input Output Input

43 42 1 1 0 71 0 66

43 42 2 2 2 71 4 66

43 42 3 3 4 71 8. 66

43 42 4 4 6 71 12. 66

43 42 5 5 8. 71 16. 66

43 42 6 6 10. 71 20. 66

43 42 7 7 12. 71 24. 66

43 42 8 8 14. 71 28. 66

45 44 1 1 16. 71 0 67

45 44 2 2 18. 71 4 67

45 44 3 3 20. 71 8. 67

45 44 4 4 22. 71 12. 67

45 44 5 5 24. 71 16. 67

45 44 6 6 26. 71 20. 67

45 44 7 7 28. 71 24. 67

45 44 8 8 30. 71 28. 67

Figure 11. ET Entries for Asynchronous Devices for 16-Line
Field-Test System

71

{171111 octal). The lists are pointed to by ETEOM in each

ET entry. If no EOM checking is to be done, ETEOM must

point to a location containing -1. Figure 6 presently con-

tains duplicate lists (E0M1 and E0M4). The lists are longer

than needed so that additional EOM character codes can be

added octally if needed. The 30 words in lines 196-225 are

equivalent to the following seven words (except that the

order of list E0M5 is changed):

E0M5: 43

E0M1:

E0M4: 37

E0M3: -1

E0M2: 12

5

30

-1

11. One word of storage must be provided for each group of 16

contiguous digital outputs which are to be used in the test,

as shown in lines 226-229 as D066A, D066B, D067A, and D067B.

The words are pointed to by ETDOA in each ET entry which

uses digital outputs. The storage must be initialized to

zero.

A number of conventions were observed in generating the file in

Figure 6. The Macro Processor was used to perform certain substitutions

and the NOVA assembler pseudo-op .DUSR (see lines 49-74) was used to

perform others. The Macro Processor performs its substitutions prior

to the assembly. The differences can be seen between the file EQ and

the EQUIP (symbolic) portion of the assembly listing. The macro TTY33

defined at lines 93-95 of Figure 6 changes TTY33 in line 97, for

instance, to 12741. The pseudo-op .DUSR causes the substitution to

be made internally by the assembler. Therefore, the symbolic portion

72

of the assembly listing gives the symbol and the assembled code shows

the substituted value. For instance, on line 8 of page 1 of Figure 8,

the name I is assigned the value 1110. On line 56 of the same page, o
the I is shown in the symbolic code and the 111 is the rightmost

portion of the assembled value of 131110. o

The labels E3, E4, etc., (as well as E0, El, and E2) for each ET

entry are needed to provide values for the cross-reference fields

CHILD, LINK, and PARNT. A better tactic than using the arbitrary

labels, however, would be to use the device names for labels, to use

TY2 as a label rather than E3 at line 100 of Figure 6. The field

ETYPE should be used to group like devices and to distinguish unlike

devices, for instance: TT for TTY's, TY for IBM 2741's, CT for the

control TTY, DS for displays, LN for communications lines, CN for

multiplexor device-controllers, PT for printers, etc. Several

combinations should be used to distinguish displays with different

characteristics, for instance.

The label E0END (line 88) is used to define the end of entry E0

and in defining ETEND (line 78). The label E9999 (line 192) is used

to define the end of the last ET entry and in defining ETENT (line 194)

and the length of ETREC (line 80). The symbol LEN (line 193) has the

value of the length of an ET entry and is used in defining ETENT and

ETLEN.

The equivalences for A through W at lines 49-54 are provided for

use in giving values to the field STATI although only I and U should

normally be used for initial values. The equivalences for W through 0

at lines 54-58 are for use in defining parity type (PARTY). The

meanings are:

W = one (parity bit set to a constant 1)

E = even parity

Z = zero (parity bit set to a constant 0)

73

N = no parity bit

0 = odd parity

Only the values E and 0 are used by emulator programs.

The equivalences at lines 64-74 are used to define terminal type

(TERMT). Those at lines 67-69 are of the earlier, arbitrary type

which have not been updated.

The equivalences at lines 59-63 are used so that the fields ETRAT,

BYTEL and PARTY in the ET entries may be given symbolic values rather

than absolute values. Only the equivalence statement has to be changed

to assign a new value rather than changing each ET entry.

FUNCTION

Each Equipment Table entry defines one equipment component of the

SUT. In the simplest case, one ET entry is used to describe a point-

to-point communications channel, possibly a pair of modems, and the

single device attached to the channel. In a more complicated case,

one entry describes the channel (and possibly modems), one is used

to describe each controller or terminal (in a multipoint configuration),

and one is used to describe each device at each terminal.

In the latter case, cross references (CHILD, LINK, and PARNT) are

used to describe the hierarchical structure. As an example, the

hierarchical ET structure described in Figures 6 through 8 is shown

in Figure 12. Since each ET entry can reflect only one of each

relationship, the arrows and labels indicate which relationship is

expressed in the ET. Using this method of cross-referencing most

configurations of equipment can be easily described. The number of

levels and the number of entries at each level are limited only by

core memory.

74

CT0

| LINK

DS14

JLINK

TY1

| LINK

TY2

I LINK

TY3

| LINK

TY4

TY15

J LINK

TY16

\ LINK

LN5.
CHILD

PARNT
CN6

LINK

CN7

CHILD

CHILD

DS12

Figure 12. Equipment Table Hierarchy

75

Information in the Equipment Table is used by the Scenario

Interpreter and by the Exec and is available to a scenario by means

of certain scenario instruction types. The scenario may examine

information, or in limited cases, change information in an ET entry.

A scenario may access its own ET entry, or, through the relationships

described above, access the ET entry of a relative, a relative's

relative, and so on (in the direction of the arrows only). This

capability of a scenario becomes increasingly useful as the equipment

being emulated becomes increasingly complex.

The set of Registers of the current scenario associated with a

particular device is pointed to by the first word (ETR0) in the ET

entry for that device. The first word of an ET entry is pointed to

by the relationship pointers described above. Using instruction

types h and then g and p (as defined in Volume 2 Table XVII), a

scenario A running on device LN5 (as shown in Figure 12) can access

the ET entry and Registers of scenario B running on device CN6, and

then gain access to the ET entry and Registers of scenario C running

on DS8, and so on. An example of this method of communication among

devices is shown in the scenario segments in Figure 13.* In this case

LN5 running with scenario A establishes the linkage to DS8 running

with scenario C. Scenario A checks Register 9 of scenario C to

determine when DS8 is ready to send a query. When scenario A senses

that R9 = 1, it then performs a specified function (function 1) and

resets R9 to zero. This zero indicator is put into R9 of scenario C,

which senses the indicator and proceeds to send the query. Meanwhile

CN6 running with scenario B is engaged in performing function 2, which

may or may not be involved in communication with LN 5 or DS8.

* The scenario library SCENLIB, shown in Figure 35 in Appendix VI,
establishes the macros used in this example.

76

Also, using instruction type h, and then instruction types Y or n,

scenario A can examine the bit indicators (ETIND) of the ET entry of

device CN6 and then DS8, etc. There are other scenario instructions

which access the Equipment Table contents, and can be used in numerous

ways to enhance scenario abilities and efficiency. A complete pre-

sentation of scenario instructions is given in Volume 2, Table XVII.

The technique of utilizing the Equipment Table to examine or pass

information among devices can be useful, for example, when emulating

a polled network. Assume, for instance, that CN6 was a controller

and DS8 and DS9 were polled terminals. Then by making use of the cross

references in the Equipment Table, the scenario for CN6 could poll the

scenarios for DS8 and DS9 by examining indicator bytes or Registers to

determine which devices were active, ready to send, or ready to receive.

The individual terminal scenarios could send their queries and examine

responses when indicated by the controller scenario.

77

LN5 CN6 DS8
SCENARIO A SCENARIO B SCENARIO C

(SCA) (SCB) (SCC)

ALLOCREGS 15

C[START CN6 SCB C [START DS8 SCC ALLOCREGS 15

ETOREG 0 0 R10 function 2 A 12

R10 CONTAINS ADDRESS •
• ALLOCATE 12 BYTE QUERY

TO ET ENTRY OF SCA BUFFER

ETOREG R10 3 Rll 5 BUILD QUERY

Rll CONTAINS CHILD + 0 13 Rll

POINTER (WORD 3) OF PUT ASCII CR INTO Rll

R10 WHICH IS ADDRESS -1 Rll

OF ET ENTRY OF CN6 ADD CONTENTS OF Rll

ETOREG Rll 3 R12 TO QUERY BUFFER

R12 CONTAINS CHILD + 0 1 R9

POINTER OF Rll WHICH R9 SET TO 1 INDICATES

IS ADDRESS OF ET THAT QUERY IS READY

ENTRY OF DS8 L LABI

L LABI B CONT 0 R9

GTR 9 R12 R9 IF R9=0 THEN GO TO CONT

THE CONTENTS OF R9 D 1

OF SCC IS PUT INTO J LABI

R9 OF THIS SCENARIO OTHERWISE DELAY 1 SEC

B CONT 1 R9 AND JUMP TO LABI

IF R9=l THEN GO TO CONT L CONT

D 1 JUMP HERE WHEN R9 RESET

J LABI TO ZERO BY SCA

OTHERWISE, DELAY 1 SEC. 0

AND JUMP TO LABI SEND THE QUERY
•
•

Figure 13. Example of Device Communication Through Scenarios

78

LN5
SCENARIO A

(SCA)

CN6
SCENARIO B

(SCB)

DS8
SCENARIO C

(SCC)

L CONT

function 1

•

LDR 0 R9

R9 SET TO ZERO

PTR R9 9 R12

PUT CONTENTS OF CURRENT

R9 INTO R9 OF SET OF

REGISTERS POINTED TO

BY R12

(DS8)

Figure 13. Example of Device Communication
Through Scenarios (Concluded)

79

SECTION VI

REAL-TIME EMULATOR SYSTEM GENERATION

INTRODUCTION

The generation of the real-time emulator system is a four-step

process which can be represented as follows:

input SSUB source ASM .RB
files ** files *" files

RLDR MKABS
 • RTOS.SV »-SCINT.BN

EQUIP.RB

Exec
.RB
files

The four steps are execution of the Macro Processor (SSUB),

execution of the NOVA assembler (ASM), execution of the NOVA relocat-

able loader (RLDR), and execution of the DOS command MKABS. The first

two steps must be performed separately for each assembly module which

is to be changed (including the Equipment Table which is not considered

a part of the Scenario Interpreter). The last two steps must be

performed once each whenever one or more assembly modules (including

those of the Exec) have been changed. In creating the Executive from

the various source files, there is some flexibility available in

defining buffer sizes, storage requirements, and parity checking on

SUT terminals. These options are described in detail in Volume 6 of

this series in the User Information Section.

SSUB

For purposes of this discussion the general form of the command

to execute the Macro Processor is assumed to be:

SSUB input-file source-file macro-libraries

80

The input-file names, source-file names, and the macro libraries

needed for the Scenario Interpreter are given in Table VII. The

implementation uses of the Macro Processor are also discussed in

Section III.

To execute the Macro Processor, type on the control TTY;

SSUB II ININT RTOSLIB LIB LIBl,

or

SSUB EQ EQUIP,

where II and EQ are the input files; ININT and EQUIP are the output

files; RTOSLIB, LIB and LIBl are libraries; and» represents the

carriage-return key. The macro libraries must be in the form of the

output files produced by the macro library generator (MACDEF), the

file LIB.ML, for instance. Unlike the last three steps, the output

file (ININT or EQUIP, above) must be absent from the DOS file directory

before executing SSUB.

If one of the three macro libraries must be changed, it must be

read into the NOVA using LIB, for instance, as the input file name.

Typing

MACDEF LIBi

on the control TTY will execute the macro library generator which will

generate the macro library LIB.ML.

ASM

An output file from the Macro Processor (Source File) must next

be processed by the Data General assembler by typing, for instance:

ASM/L/X $LPT/L ININT;

The output file produced is a relocatable, binary file, ININT.RB in

this case. Because the switches /L/X and the line printer $LPT are

specified, an assembly listing including the source file and cross

reference list will be produced on the line printer.

81

TABLE VII

Input File Names for Emulator System

Input Source Macro
File File Library
Name Name Names

EQ EQUIP —

SI SCINT RTOSLIB, LIB, LIB1

CI CMINT RTOSLIB, LIB, LIB1

II ININT RTOSLIB, LIB, LIB1

FC FETCH RTOSLIB, LIB, LIB1

TP TESTP RTOSLIB, LIB, LIB1

SI SUBR1 RTOSLIB, LIB, LIB1

S2 SUBR2 RTOSLIB, LIB, LIB1

AF ALF RTOSLIB, LIB, LIB1

ERROR ERMSG RTOSLIB, LIB, LIB1

FTC FTCHG RTOSLIB, LIB, LIB1

DW DUMPW RTOSLIB, LIB, LIB1

DH DUMPH RTOSLIB, LIB, LIB1

IS ISCEN ~~"

82

RLDR

Table VIII lists the assembly modules needed by the Data General

relocatable loader to generate the real-time software for each of the

two versions of the emulator. The files used by RLDR are those with

the .RB suffixes. A list of the module names (excluding the suffix)

must be given to RLDR. These can be typed from the list in Table VIII,

if desired; however, the system tapes for each of the emulator

versions contain a file called LOADLIST which is a list of the file

names needed for each version. To execute RLDR, type on the control

TTY:

RLDR/Z MAP/L @L0ADLIST(3^

The output file produced by RLDR is in a form suitable for execution

under control of DOS. Although the real-time emulator cannot be

executed under DOS, the step is a necessary preliminary to producing

the required file. The output file is named RTOS.SV since RTOS is

the first file in the list in LOADLIST. Since MAP/L is specified the

core map produced by RLDR will be placed in a DOS disk file called

MAP. It can be listed by typing:

PRINT MAPy or PRINTL MAPJ

The MAP file should be saved on tape with the other files for future

reference. The file RTOS.SV should also be saved since octal patches,

if needed, can be made to it, with the MAP file for guidance. The

fourth step must then be performed with a new or patched RTOS.SV.

MKABS

The DOS command MKABS produces a file which can be executed

independently of DOS. The command is executed by typing:

MKABS/Z RTOS SCINT.BN INIT/S^

The octal equivalent of INIT (obtained from the MAP file) is the

83

TABLE VIII

Inputs to Relocatable Loader

Assembly Module
Name

Lab
System

Field-Test
System

o

w

*RTOS

*RTIN

LPT

MTA

TTYl

DCM

DCMT

ASYNC

SCMGT

PAGE

DSK

DMP

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

ET *EQUIP X X

S
ce

na
ri

o
In

te
rp

re
te

r

SCINT

CMINT

ININT

FETCH

TESTP

SUBRl

SUBR2

ALF

ERMSG

*FTCHG

DUMPW

DUMPH

ISCEN

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

* Different versions needed

84

value to be used in the command. MKABS uses RTOS.SV as the input file

and produces SCINT.BN as the output file. SCINT.BN is the real-time

emulator program, containing the Exec, the Equipment Table, and the

Scenario Interpreter. It may be executed, by means of the DOS program

EXEC, by typing:

EXEC SCINTj

A more convenient method of executing SCINT.BN, however, is discussed

under Operating Instructions for the Scenario Interpreter.

Disk Requirements

After a system is generated, it is not necessary to maintain all

the binary and source program files on disk. These files should be

saved on tape, and disk space freed to allow space for additional

macro libraries and scenarios. Table IX indicates the disk require-

ments of the files which should be retained on disk during emulator

operation.

85

Table IX

Disk Requirements for Emulator System

File
Size
Bytes/Pages Comments

DOS,etc 101221/210

MACDEF.SV 14976/30

SSUB.SV 20736/41

SCENLIB.ML 242/1

CVT.SV 31488/62

SUTTAB 384/1

DEVTAB 1792/4

RTOS.SV 32512/64

SCINT.BN 33514/66

P 30/1

C 3/1

LOADLIST* 130/1

DATAR.SV 29056/57

SUMRY.SV 27904/55

TLIST.SV 27264/54

CTABS 1664/4

ERFILE 420/1

TREL.SV 26240/52

MASTR.SV 17024/34

MAP 3752/8

NOTES 1926/4

FILECH.BN 4806/10

MTLIST.BN 3606/8

Total 380690/758

Includes basic support software after @REMAL@
has been executed. Includes SYS.DR, MAP.DR,
EDIT.SV,XFER.SV,SYS.LB,RLDR.SV,OEDIT.SV
PRINTL.SV,REMAL,BLDR.SV,EXEC.SV,ASM.SV

Macro Processor. See MTR 2677 Volume 3.

Macro Processor. See MTR 2677 Volume 3.

Lower-case scenario instruction op-codes. See
MTR 2677, Volume 2, Table XIV and related text.

Scenario Assembler. See MTR 2677, Volume 4.

Scenario Assembler. See MTR 2677, Volume 4.

Scenario Assembler. See MTR 2677, Volume 4.

Real-Time Emulator. See MTR 2677, Volumes 5 and 6

Real-Time Emulator. See MTR 2677, Volumes 5 and 6

Real-Time Emulator. See MTR 2677, Volumes 5 and 6

Real-Time Emulator. See MTR 2677, Volumes 5 and 6

Real-Time Emulator. See MTR 2677, Volumes 5 and 6

Data Reduction Program. See MTR 2677, Volume 7.

Data Reduction Program. See MTR 2677, Volume 7.

Data Reduction Program. See MTR 2677, Volume 7.

Data Reduction Program. See MTR 2677, Volume 7.

Data Reduction Program. See MTR 2677, Volume 7.

Data Reduction Program. See MTR 2677, Volume 7.

Data Reduction Program. See MTR 2677, Volume 7.

Core map of RTOS.SV and, thus, of SCINT.BN

Text description of system. Should be updated
when changes made in public or private copy.

Verifies file validity on disk. See Reference 3.

Physical tape dump for MT1. See Reference 4.

* When used, also need EQUIP.RB and .RB files for Scenario Interpreter and Exec.

86

SECTION VII

REAL-TIME EMULATOR

INTRODUCTION

The Scenario Interpreter is the real-time, emulator application

program which operates in conjunction with the Real-Time Exec, a multi-

tasking, application-oriented executive program. The Scenario

Interpreter executes commands used to exert gross control over the

run, executes scenarios which describe the actions to be taken in

emulating terminal and operator functions, and records real-time

events on a log tape. The Scenario Interpreter and the Real-Time

Exec perform all the functions of the real-time emulator run.

SYSTEM FLOW

As shown in Figure 14 the real-time emulator system as well as

the internal scenarios to be used must reside on disk before a run

can be initiated. The Scenario Interpreter program (running under

the Real-Time Executive) is then started by input from the control

teletype. Once the emulation has begun, the teletype may be used

for both output messages and input commands for the run. The events

of the emulation are recorded on the log tape during the run, and

this tape is used at the completion of the run for analytical purposes.

If any dumps of the emulator system are requested during the real-time

run, they will be printed on the line printer during the run.

OPERATING INSTRUCTIONS

External control over a real-time emulator run is exerted primarily

through the control TTY. The run is started under DOS conventions.

Once started, emulator conventions apply. In existing Equipment Tables,

the control TTY is defined as device CTO. Device CTO is made to look

87

Disk.
Emulator
Sys tem

Internal
cenarii

Input from
Control TTY

DUMPS
(if any)

Figure 14. System Flow for Real-Time Emulator

88

as much like other (emulated) devices as possible. CTO can be used

as an emulated device if desired although responses must be supplied

by the user, of course. Unlike other devices, CTO is operated in

echo-plex mode so that keystrokes will cause printing on the TTY.

Unlike DOS, the Exec does not echo back a carriage-return and a line

feed when the carriage return key is depressed. Therefore, the

symbolj is used to denote depression of the carriage-return key and

echo back of both carriage-return and line-feed under DOS. Under Exec

control, both keys must be depressed and they are represented below

by CR/LF. It is assumed that the list of EOM characters pointed to

by ETEOM in the ET entry for CTO includes LF (12g), CANCEL (30g), and

BREAK (5).

Startup

If not already mounted, a scratch tape is needed on tape drive 0.

The real-time run is most conveniently started by typing on the

control TTY:

This input causes DOS to treat the file P as a list of DOS commands.

The file P contains:

RELEASE MTO;

TYPE C;

EXEC SCINT;

This set of commands causes the contents of file C (containing WAITj)

to be typed on the control TTY. The log tape is then rewound if it

was left other than at the load point by a previous real-time run or

by an aborted Data Reduction run. While the tape is rewinding, the

real-time emulator program (SCINT.BN) is called and initialization is

begun. All further control TTY inputs must follow Exec conventions.

89

Control TTY Inputs

Run ID

After the word 'WAIT' is typed on CTO, the user must wait for the

message 'ENTER RUN ID' to be typed on CTO before taking any further

action. The user must then enter a character string, terminated by

CR/LF, which will be written on the log tape as the run identification.

The run identification consists of all characters typed up to but not

including the first control character (those with octal values less

than 40) or the first 20-n non-control characters. If an error is

made in entering the run ID, simultaneous depression of the control

and X keys (Control-X) will cancel the input and the user can start

again. Almost immediately after entry of the run ID, the emulator

will write the run ID and the other two history records on the log

tape in one burst and then type "READY" on CTO. The emulator is now

ready to accept commands so as to start emulation.

Commands

The emulator will remain in the idle state until a command is

entered from CTO or from another emulator module or until an (unsolicited)

response is received from the SUT, from CTO, or from another emulator

module. Even then, the emulator will return to the idle state until

one or more START commands are executed by the emulator. Commands are

described in Volume 2 of this series. Commands from CTO (or another

emulator module) must be preceded by an ASCII left-bracket character

(Control-K). With a single START command, the user can execute a control

scenario, if he desires, which can automatically START other devices

and execute other commands (by means of the type-C scenario instruction)

and any of the scenario instructions defined in Volume 2.

CANCEL Input

Any CTO input can be cancelled by depressing Control-X. The input

will not be logged, and CR/LF will be typed as an acknowledgement.

90

BREAK Output

If the first (or any odd) character of a CTO input message is a

BREAK character (input by depressing Control-E), the input is con-

sidered a BREAK input whose purpose is to BREAK or stop output on CTO

of error messages (see ERROR command) and the monitor output of

queries and responses (see MONITOR command). Error messages, queries,

and responses already queued for typing, will be typed, but no more

will be queued until another ERROR or MONITOR command causes them to

be queued again.

Responses

A CTO input not in any of the above classes is considered a

response. If no scenario is operating for CTO, they will be treated

as unsolicited. If a scenario is operating and is waiting for a

solicited response, the response will be processed immediately.

Otherwise, the response will be queued until the scenario requests

it or until the scenario terminates.

Shutdown

The real-time run is terminated by execution of a QUIT command

from CTO, another emulator module, or a scenario. If the run does

not terminate immediately, the emulator is so busy that the QUIT

command (which is purposely given the lowest possible priority) is

never executed because of a continuing string of higher priority

tasks. One or more devices must be STOPped for the QUIT command to

be executed. When the QUIT command ±s^ executed, two lines of

emulator statistics are typed on CTO and the NOVA halts. By depress-

ing Continue on the panel, DOS will be brought back in core and

executed. DOS will type 'DOS REV XX.' and it will halt. Depressing

Continue again will cause 'R' to be typed, and DOS is again in control.

If desired, the Data Reduction program can be executed for the run just

completed or any DOS function can be performed.

91

ERROR MESSAGES

The high-order digit of the printed error message number has been

used to classify the error messages generated by the Scenario Interpre-

ter as to seriousness. The most serious errors correspond to the

highest digit. The ten error message classes are given in Table X.

General comments are also included as to the kinds of errors

associated with each class and the system action following detection

of the error.

Table XI lists and explains all the error messages generated by

the Scenario Interpreter. Each three-digit number shown is a part

of the message. The message itself represents the only use in the

Scenario Interpreter of the three-digit numbers. Elsewhere, error

messages are referenced only by the two low-order digits, and the

table is in order based on these digits. The convention (6)40 has

been used to indicate the internal and external message numbers.

The table gives the meaning and cause of each error message as well

as the subroutines and modules which generate the message.

92

Table X

Error Message Classes for Scenario Interpreter

Class Meaning

Not used. Reserved for severe errors which would abort
real-time run.

System errors. Bring to attention of system programmer.
Action terminated for device and device made inactive.
(Same as if end of top-level scenario reached).

Relatively serious problem. May be system error or user
error. Action terminated as for class 8.

Relatively serious user error, probably in a scenario.
Action terminated as for class 8 unless able to proceed.

Error encountered in attempt to free a block of allocable
core memory. Probably a system error although improper
use of a type-F scenario instruction or previous improper
action with Registers could cause it. System attempts to
continue with emulation of device.

User error. Improper use of a command. Command not
executed. Action continues as for class 5.

Unable to execute command. May be a problem of synchroni-
zation between devices. Action continues as for class 5.

Unable to execute command. Erroneous command operator or
operand. Action continues as for class 5.

Usually an indication of an action taken although an error
may be present also.

Not an error. Indication of action taken.

93

Table XI

Error Messages for Scenario Interpreter

Message Meaning

800 STACK OVERFLOW System error. Attempt to PUSH a value into
stack portion of RS when stack full. (Sub-
routine POSH0, P0SH1, P0SH2, or POSH3).

801 STACK UNDERFLOW System error. Attempt to POP a value from
stack portion of RS when stack empty (Sub-
routine PUP0, PUP1, PUP2, or PUP3).

502 NO RS TO FREE System error. Attempt to free RS when STACK=0.
(Subroutine FRRS).

503 ILLEGAL FREE
ADDRESS

Probably a system error. Attempt to free RS
or buffer whose address not in allocable core.
(Subroutine FRRS or FRBF).

504 NO BUFFER TO FREE Probably a system error. Attempt to free a
non-existent buffer, i.e., pointer = 0
(Subroutine FRBF).

406 TOO FEW REGS FOR
SUBSCENARIO CALL

Register RGCAL not allocated in current set so
that execution of a SUB command is ruled to be
invalid. (Subroutines CMINT or ALRG).

507 NO REGS TO FREE The set of Registers pointed to may have been
freed previously or the contents of the
Register may have been altered erroneously by
a scenario. Otherwise, a system error. (Sub-
routine FRRG).

210 COMMAND NOT
IMPLEMENTED

Specified command (MOD or TRANSFER) has not
been implemented. (Subroutine CMINT).

211 INCORRECT COMMAND
OPERATOR

Erroneous command operator. (Subroutine CMINT).

312 EQUIPMENT
UNAVAILABLE

Attempt to START a device whose status is other
than »I' or 'S' . (Subroutine CMINT).

94

Table XI (Continued)

Error Messages for Scenario Interpreter

Message

613 OUT-OF-RANGE
REG #

114 DEVICE STOPPED

215 VALUE NEEDED FOR
COMMAND

216 UNKNOWN DEVICE
NAME IN COMMAND

217 INCORRECT
SCENARIO NAME

020 ACTION TAKEN

121 SUB COMMAND LEGAL
ONLY FROM SCENARIO

422 INVALID SUB-
SCENARIO COMMAND
REFERENCE

223 ONLY "ON" OR "OFF"
LEGAL

Meaning

Attempt to access Register not allocated in
current set (module FETCH) or in another set
(module ININT - type g or p scenario instruction).

End of top-level scenario reached by normal
operation or simulated due to serious error.
(Module FETCH).

Numeric (decimal) value missing from SCALE
command or numeric portion of equipment name
missing from MONITOR, RESTART, START, STATUS,
or STOP command. (Subroutine CMINT or FNENT).

Unable to find equipment name specified in
MONITOR, RESTART, START, STATUS, or STOP command
in Equipment Table. (Subroutine FNENT).

Unable to find scenario name specified in START
or SUB command in Scenario Directory (Sub-
routine CMINT).

Indicates successful execution of DUMP, ERROR,
MONITOR, RESTART, SCALE, START, STOP, or SUB
command (Subroutine CMINT).

No rational way to execute a SUB command from
one device for another since they operate
asynchronously (Subroutine CMINT).

Attempt to execute a SUB command with no scenario
specified when no uncompleted subscenario exists
for device (RGCAL = 0) or when Register RGCAL
does not point to a valid set of Registers
(C(RGR0) + RGR0). (Subroutine CMINT).

First operand of LOG command specifies 'ALL' and
second operand specifies neither
(Subroutine CMINT).

'ON' nor 'OFF'

95

Table XI (Continued)

Error Messages for Scenario Interpreter

Message

224 ONLY "A", "N", OR
"U" LEGAL

125 LOG ACTION COMPLETE

826 STATI INCORRECT

327 DEVICE INACTIVE OR
STOPPED

330 DEVICE NOT STOPPED

631 QUERY BUFFER
OVERFILL

Meaning

First operand of LOG command specifies 'THIS'
OR equipment name and second operand specifies
none of 'A1, 'N', or 'U'. (Subroutine CMINT).

LOG command has processed as much as it can of
the third operand. Each component of this
operand is processed separately and program
has reached illegal component or end of command.
Rather than attempting in an iterative program
to separate the cases of missing third operand,
error in nth component but first n-1 of them
were processed, or all components were correct,
a combination message is used which is intended
to cause the user to verify that there was no
error in the third operand. Note that for this
type of SUB command, the SUBSCENARIO form is
invalid and no character (such as a blank) may
follow 'SUB' in the command instruction or the
program will assume a scenario is specified.

System error. Instruction Interpreter attemp-
ting to emulate device whose status (STATI) is
neither 'A' nor »T'. (Module FETCH.)

Attempt to STOP a device whose status (STATI)
is 'T', 'S\ or 'U' (Subroutine CMINT.)

Attempt to RESTART a device whose STATUS (STATI)
is neither 'T* nor 'S' (Subroutine CMINT.)

Attempt to fill query buffer beyond end by
scenario instruction of type 5, \, or @. Note
that if an error message intervenes after
generation of query buffer,but before filling
it, the error message buffer will displace the
query buffer and the error message buffer will
then be filled by the instruction. (Module
ININT.)

96

Table XI (Continued)

Error Messages for Scenario Interpreter

Message

732 NO QUERY BUFFER TO
FILL

333 DEVICE STOPPED BY
TYPE-7 INSTR

634 OTHER REG SET DOES
NOT EXIST

035 TTY OUTPUT
SUPPRESSED

336 ASSEMBLY ERROR IN
SCEN

337 EQUIPMENT TYPE
MISMATCH

Meaning

This message will only appear if there is no
query buffer (or error message buffer)
associated with the device and a scenario
instruction of type 5, N,, or @ is executed.
This condition will only occur prior to
generation of the first buffer or following
execution of a type-E scenario instruction
and before generation of next query buffer or
of next error message buffer which is not the
result of a type-E instruction.

A RESTART command is not legal for the device
since it was STOPped by a type-7 scenario
instruction rather than by a STOP command so
that there is no current task which can be
RESTARTed. See Miscellaneous Notes section.
(Subroutine CMLNT).

Attempt to execute a scenario instruction of
type g or p when the other set of Registers
does not exist (pointer = 0). (Module ININT).

A BREAK input was recognized and executed.
(Module SCINT.)

First byte of internal scenario is non-zero.
Scenario needs to be reassembled after correc-
tion of errors before it will be acceptable for
use with START or SUB command. (Subroutine
CMINT) .

Scenario may not be used with specified device
(START command) or with current device (SUB
command) because scenario is not a universal
scenario and the second byte of the internal
scenario fails to match TERMT in the ET entry
for the device. (Subroutine CMINT).

97

Table XI (Concluded)

Error Messages for Scenario Interpreter

Message

6A0 BEHIND SCHEDULE

641 WAIT INSTR
IGNORED

Meaning

A type-W scenario instruction was executed
after the specified time had passed. The
amount of time by which the task is behind
schedule, in milliseconds, is contained in
the start transmission time fields of the
buffer. Processing continues for device.
(Module ININT.)

Type-W scenario instruction may not specify
a time in excess of approximately 4.62 hours
because of conversion problems. Instruction
ignored and processing continues for the
device. (Module ININT.)

98

DEVICE STATUS

Figure 15 shows all the valid state (STATI) transitions which

can occur for a device. These transitions occur as the following

functions are performed:

I—»A occurs when a START command is successfully executed

for the device.

A—»I occurs when the end of the top-level scenario (RGRET = 0

for the current set of Registers) is reached for the

device.

A—»T occurs when a STOP command is successfully executed for

the device.

A—»W occurs when a time delay type of scenario instruction

(type D, W, or d) is executed.

A—'S occurs for the current device when a type-7 scenario

instruction transfers control of the task to another

device.

W—»A occurs upon the expiration of a time delay caused by

execution of a scenario instruction of type D, W, or d.

W—»T occurs when a device is STOPped while executing a

scenario instruction of type D, W, or d.

S-*A occurs when a STOPped device is STARTed or RESTARTed

after the transition from T to S has taken place or

for the new device during execution of a type-7 scenario

instruction.

T-*S occurs for a STOPped device after completion of execution

of the current scenario instruction or upon receipt of

a response following execution of a scenario instruction

of type R or I

T-.A occurs when a RESTART command is executed for a STOPped

device before the T to S transition has taken place.

99

I <H *• T

U

Figure 15. State Transition Diagram

100

U device is unavailable and status cannot be changed by the

emulator (can only be changed in non-real-time by

reassembly of the ET or with the octal editor).

RING COUNTERS

There is a pair of ring counters in each ET entry (for each

emulated device). They are used to sequence number tasks of types 6

(unsolicited responses), 7 (solicited responses), and 8a (newly STARTed

devices), so that only one task of these types at a time (per device)

can proceed past a certain point in the Input Processor (types 6 and 7)

or the Instruction Interpreter (type 8a) so as to preserve reentrancy.

The ring counter RRING (the response ring counter) is used to count

and sequence number such tasks. The subroutine CHEKR is used to main-

tain RRING. CHEKR fetches RRING and uses it to sequence number the

task (by setting RSEQU), steps RRING, and stores the updated value.

CHEKR then compares RSEQU with PRING (the processing ring counter).

If they are equal, the task is allowed to proceed. Otherwise, the

task remains in CHEKR until PRING equals RSEQU. Thus, a queue of

such tasks is maintained for each device, when necessary, and the

tasks are released one at a time in the order in which they reached

CHEKR.

The processing ring counter (PRING) is maintained by the sub-

routine STEPR. STEPR is called when task types 6 (unsolicited

responses), 7b (type R or I scenario instruction executed), or 7c

(end top-level scenario) terminate and when certain tasks of type 8a

are generated (when a STOPped device is STARTed, the STOPped task

must first be terminated). The only function performed by STEPR is

to step PRING so that the next sequence numbered task may proceed.

These steps are shown in Figure 16 which is a modification of

the state diagram in Figure 15. In Figure 16, when a device is

STARTed, its status (STATI) changes from I to A. RRING is alsd

101

(R) RRING used and stepped by CHEKR

(?) PRING stepped by STEPR

Figure 16. Ring Counter Changes

102

stepped and the new task may be queued. When the end of a top-level

scenario is reached for a device, its status changes from A to I and

PRING is stepped.

If a STOPped device is STARTed (not RESTARTed), its status

changes from S to A. When the STOPped task is terminated, PRING is

stepped for the old task. RRING is then stepped for the new task

(which may be queued.)

The loop around the I status indicates no change in status but

the fact that if the device is inactive, receipt of an unsolicited

response first causes RRING to be stepped and then PRING. Unsolicited

responses are queued since a change in device status while the response

is queued may cause a change in the type of response. The final deter-

mination as to the type of response is made when the response leaves

the queue.

Similarly the loop around the A status indicates no change In

status but the execution of a scenario instruction of type R or I

which causes PRING to be stepped followed by a new task which steps

RRING. Had one or more responses already been queued for the device,

the stepping of PRING would allow the first of these to advance.

The discussion also indicates possible problems regarding use

of the type-7 scenario instruction. For a type-7 instruction to be

valid, the device to which control of the task is transferred must

be STOPped. Thus, for this new device there already exists a sus-

pended Scenario Interpreter task. If a task which has been generated

for one device is allowed to terminate for a second device, PRING

will not get stepped at the end of the task for the old device but

for the new device. Thus, since the ring counters provide for 256.„

sequence numbers, the old device would have to accumulate a total of

255 queued responses (which would tie up 255 Exec clock blocks)

before any further activity could occur for the old device. The new

103

device should be able to resume activity when a new task is generated

for it, but the original STOPped task would be destroyed without its

allocable core being freed when the task which executed the type-7

instruction terminated. The first problem is the more serious one,

of course, but the latter ties up system resources for the duration

of the run. Therefore, a task which is started for one device should

be terminated for the same device to avoid these problems.

RESPONSE HANDLING AND LOGGING

The determination of whether logging is enabled or not for a

particular device and a particular buffer type is made at the time

the buffer is allocated. Changing the setting of the logging

indicators, with the LOG command, has no affect on logging of buffers

which have already been allocated. In the present implementation, if

logging is enabled in a given case, a long buffer (one with a long

header) is allocated and all long buffers are logged. For all long

buffers, the log processing bit in BFIND is set at time of allocation.

For either long or short buffers, one of the other five processing

bits is set (based on buffer type) at time of allocation. When a

task is done with a buffer or when it needs the buffer pointer space

in the RS for a new buffer to be allocated, it resets the appropriate

processing bit and attempts to free the buffer. If all six processing

bits are reset, the free attempt is successful.

Unlike the other four types of buffers, response buffers are not

automatically logged in all cases. Every long response buffer must

be logged by one means or another or it will not be freed and the

space will not be available for reallocation during the rest of the

run. A separate response queue is maintained for each emulated

device so that only one main task can be active at a time to process

a single response. When a response and its associated task leave the

queue, the determination is made as to whether the response is

104

solicited (or unsolicited) depending essentially on whether the device

is active (or inactive). If the device is inactive when the response

leaves the queue, the response will be logged automatically as un-

solicited, if logging is enabled, and the task is terminated.

If the device is active at the time the response leaves the

queue, the response will be logged automatically as solicited if

Response Indicator 2 in ETIND is set and logging is enabled. The

indicator must be set by executing a scenario instruction of the form

= 2 prior to the time the response leaves the queue. A long response

buffer can also be logged by executing a type-8 scenario instruction,

which specifies whether the response is solicited or unsolicited. The

use of both techniques will cause the buffer to be logged two or more

times, once automatically and once for each type-8 instruction executed.

Since there is no apparent advantage in logging a response more than

once and the solicited response indicator (bit 0 in BFIND) is initially

reset, execution of a type-8 instruction to log a response as unsolici-

ted does not reset the solicited response indicator. Therefore, once

the indicator has been set by either means, any further type-8 instruc-

tions will cause logging as solicited regardless of the value of the

first operand.

When a device is active, all responses received will be queued

until one is requested by the scenario by means of executing a scenario

instruction of type R or I. When such an instruction is executed, the

main task for the device is terminated at the end of execution of that

instruction. Further execution of the scenario is done by the task

associated with the next queued response which starts execution with

the scenario instruction following the R or I instruction. If any

responses are queued for a device when the end of the top-level scenario

is reached or when a STOPped device is STARTed (not RESTARTed), the

responses will be logged automatically as unsolicited. In addition,

when either event occurs, all indicators in ETIND are reset except

105

for the Command Indicator and the Monitor Indicator. Therefore, if

responses are to be logged automatically as solicited, each scenario

STARTed (not RESTARTed or executed by a SUB command) must set Response

Indicator 2.

DIGITAL I/O

Digital I/O devices are installed on the field-test system but

not on the lab system. With the field-test system connected directly

to a SUT (without use of modems), the emulator must emulate the

actions of modems as well as devices and operators. For each device,

the SUT must believe it is communicating with the modem at its end of

a communications channel. To provide more direct and complete control

over the modem control lines (those not used for data transfer) than

that provided by most line adapters, the emulator uses digital input

devices to read the control signals set and reset by the SUT and

digital output devices to set and reset the control signals read by

the SUT.

The field-test system to be discussed is that containing 16

asynchronous communications channels and 8 synchronous channels. The

discussion is largely concerned with emulation of asynchronous devices,

with comments as to the extensions for synchronous devices.

The digital I/O design was done by Data General. The intended

software design had to be modified to interface with the hardware as

delivered.

A digital output device contains the capability of setting 32

digital outputs. Since a single NOVA instruction can set only 16.. _

outputs, the outputs associated with one device address are separated

into A and B groups. Since the outputs must be continuous rather than

momentary, a register is associated with each of the two groups of an

output device. Thus a NOVA digital output instruction loads either

the A or the B register and the SUT reads (senses) the bits in those

106

registers. Loading a register corresponds to the simultaneous setting

of some outputs to 1 and resetting of others to 0. Since Data General

provided no means of reading an output register, the emulator software

has to maintain a record of the status of each set of 16 outputs, in

the word pointed to by ETDOA. (Each such word contains the current

settings of outputs associated with 2 to 16 emulated devices, as

should be clear later.) When one or more digital outputs must be set

or reset for an emulated device, the software has to fetch the word

pointed to by ETDOA and either reset the appropriate bits by masking

or set them by ORing. The updated word then has to be stored back

in memory and loaded into the appropriate register.

The system contains four digital output devices with (octal)

addresses of 64, 65, 66, and 67. The outputs for a single digital

output device are numbered from 0 to 31 decimal (0 to 15 in the A

register, 16 to 31 in the B register). The system contains 128

digital outputs. Devices 64 and 65 are reserved for synchronous

emulation, and 66 and 67 are used for asynchronous emulation.

The digital input hardware is similar to that for digital output

but simpler. A digital input device allows reading (sensing) 32..

inputs. The inputs are grouped in A and B groups although a group

is simply a group of lines in the emulator hardware since, in this

case, the inputs read are in registers in the SUT. When one or more

digital inputs must be read and tested for an emulated device, the

appropriate digital input device and group (containing inputs

associated with 2 to 16 emulated devices) must be read, and the

appropriate inputs tested.

The system contains two digital input devices with (octal)

addresses of 70 and 71. The inputs for a single digital input device

are numbered from 0 to 31 decimal (0 to 15 in the A group, 16 to 31 in

the B group). The system contains 64 digital inputs. Device 70 is

reserved for synchronous emulation, and 71 is used for asynchronous

emulation.
107

Figure 17 shows the types of connections between the NOVA rack

and the SUT, by way of the interface rack. On the left are the

connection points, and on the right is shown the type of path connecting

each pair of adjacent points. The jumpers between the A and B barrier

strips are intended to be the primary means of changing configurations.

For asynchronous devices, there are 16 A barrier strips and 16 B strips,

one of each per device. Up to 10 separate connections can be made

from an A barrier strip to 10 or less of the 24 connection points on a

B barrier strip.

The relationships within the interface rack should be clarified

by Figure 18. A single cable carries all 32 inputs or outputs (both

A and B groups) of a single digital I/O device between the NOVA rack

and the interface rack. A single section of the interface rack

accommodates 16 emulated asynchronous devices. The normal wiring

needed for emulating Bell 103A modems is shown in the figure. Only

the digital I/O wiring is shown. For each emulated device, two

digital inputs and four digital outputs are shown although only one

of the inputs is used. Digital input device 71 is adequate for the

needs of all 16 emulated devices. Digital output devices 66 and 67

are needed to provide four outputs per emulated device. In the

diagram, the outputs are labeled from 0 through 3 and the inputs from

0 through 1. These are the addresses to be used by scenarios.

The purpose of the ETDID and ETDOD fields in an ET entry is to

describe the relationship between the fixed digital I/O addresses

used by scenarios (the same for all emulated devices) and the hardware

addresses which are different for each emulated device. ETDID and

ETDOD as well as the four types of digital I/O scenario instructions

allow up to eight digital inputs and eight digital outputs to be

associated with each emulated device. Since only one NOVA instruction

is used to read digital inputs or to set and reset digital outputs

and to conserve space in the ET, all the inputs (or outputs) for an

108

NOVA

IR

CONNECTION POINTS

device, A or B

NOVA connector

IR back connector

A Barrier Strip

B Barrier Strip

IR front connector

SUT SUT modem connector

IR - interface rack

PATH TYPES

hardwired

cable

one jumpered end

jumper

one jumpered end

cable

Figure 17. Digital I/O Connections

109

To Ocvlc* 71 (Inputs)

— Back Connsctors

To Dtvlcs 66(0ulpu1«! To Dsvlce 67 (Outputs)

C3(cT ~3l) Cl(o 31

0 I

Al

2
3 DO 0
« PQ t
3 DO 2
6 DO 3

i-> 7 PI g
8 PI 1

10

30 31

\1
0 123

Bl

4 RTS=CA
5 CTS'CB
6 DSR-CC

B CD-CF

12
13
14
15
16
17
18
19
20 DTR=CD
21
22 RI=CE
23
24
25

I 2 25

17 - TY1

l) C2(5

A16

10

B16

G I 2

3
28 29 30 31

25.

32 • TY16

Front C onnectors

Figure 18 NORMAL INTERFACE RACK WIRING FOR ASYNCHRONOUS DEVICES

110

emulated device must have the same digital I/O device address, be in

the same group (A or B), and be adjacent to one another.

ETDID and ETDOD have the same format (CCCBSSSSOODDDDDD in binary)

and specify the digital I/O device address (DDDDDD), the number of the

left-most input or output (BSSSS, where the value of the high-order (B)

bit separates the A group from the B group), and the number of con-

secutive inputs or outputs minus one (CCC). If ETDID (or ETDOD) is

zero, there are no inputs (or outputs) associated with the emulated

device. From Figure 18 it can be seen that:

for device TY1:

ETDID: CCC = 1, BSSSS - 0, DDDDDD = 71

ETDOD: CCC = 3, BSSSS • 0, DDDDDD - 66

for device TY2:

ETDID: CCC = 1, BSSSS - 2, DDDDDD = 71

ETDOD: CCC = 3, BSSSS = 4, DDDDDD = 66

for device TY16:

ETDID: CCC - 1, BSSSS = 30., DDDDDD = 71

ETDOD: CCC - 3, BSSSS = 28., DDDDDD = 67

where a decimal point following a number indicates a decimal number,

otherwise octal.

In Figure 18, the six digital input and output connections on an

A barrier strip are connected to six points on a B barrier strip which

in turn are connected to six pins on a front connector which is cabled

to the SUT. These correspondences are shown in Figure 19. The codes

are standard pin or signal codes. Figure 20 contains synonyms for the

five scenario instruction op-codes used for digital I/O as well as

correspondences between the digital I/O addresses used by a scenario

and the two-letter signal codes. These equivalences can be made by

use of the Macro Processor.

Ill

Scenario
I/O Address

DO-0

DO-1

DO-2

DO-3

DI-0

DI-1

Pin
Number

6

8

22

5

4

20

Code Function

CC Data Set Ready (DSR)

CF Carrier Detect (CD)

CE Ring Indicator (RI)

CB Clear to Send (CTS)

CA Request to Send (RTS)

CD Data Terminal Ready (DTR)

Figure 19, Normal Asynchronous Correspondence

DON > DON CE

DOF = • » L CDLOOP

BDN • 9 BDN CDON CD

BDF = q ADY 250

ADY = d J CDLOOP

CC = 0 L CDON

CF = 1 ADY 500

CE = 2 DON CC

CB = 3 DOF CE

CA = 0 ADY 4500

CD = 1 DON CB CF

Figure 20. Macro Definitions Figure 21. HANDSHAKE Scenario
for Digital I/O

112

Figure 21 contains the HANDSHAKE scenario which causes the

emulator to exchange the modem control signals necessary prior to

data transmission. The scenario first turns on (sets) the Ring

Indicator (CE). At the label CDLOOP, a branch is taken to the label

CDON if Data Terminal Ready (CD) is on. Otherwise, a 250-ms delay

is taken followed by a branch to CDLOOP to test CD again. When CD

has been turned on by the SUT (at CDON), a 500-ms delay is taken,

Data Set Ready (CC) is turned on, and Ring Indicator is turned back

off. A 4Js-second delay is then taken and Clear to Send (CB) and

Carrier Detect (CF) are both turned on.

In Figure 18, connection points 1, 2, 9, and 10 are not used for

digital I/O. Points 1 and 2 are received and transmitted data, and 9

and 10 are for clock signals for synchronous emulation. If more than

two digital inputs or four digital outputs are needed for an emulated

device or if secondary data transmission paths are needed, two A

barrier strips must be connected to the same B barrier strip. This

technique is necessary for synchronous emulation. From the stand-

point of digital I/O, two adjacent A barrier strips will have to be

used so that the digital inputs and digital outputs for the emulated

device form consecutive sets. ETDID can then be changed to describe

up to four inputs, and ETDOD can be changed to describe up to eight

outputs.

STORAGE REQUIREMENTS •

The core storage requirements for both the Scenario Interpreter

and the Real-Time Exec are presented in Tables XII and XIII respec-

tively. The data for the Real-Time Exec are based on the 64-line

field test system, while the information for the Scenario Interpreter

applies to both lab and field test systems.

113

Table XII

Core Storage Requirements for Scenario Interpreter

Assembly
Module

Program,
Words

417

Major Tables,
Words

Total,
Words

SCINT - 417

CMINT 668 - 668

ININT 996 64 1060

FETCH 464 64 528

TESTP 162 - 162

SUBR1 310 - 310

SUBR2 292 - 292

ALF 317 45 362

ERMSG 195 491 686

FTCHG 192* - 192*

DUMPW 171 - 171

DUMPH 185 - 185

ISCEN — 7 7

4369 671 5040

* For field test system

114

Table XIII

Core Storage Requirements for Real-Time Exec

Name Words

RTOS 2686

RTIN 672

MTA 758

LPT 98

SCMGT 442

PAGE 385

DSK 64

DMP 164

ASYNC 2916

TOTAL 8185

115

MISCELLANEOUS NOTES

(1) Assume devices A and B are both STARTed and then device B

is STOPped by a STOP command. Further assume that the scenario for

device A executes a type-7 scenario instruction to transfer control

to device B at time T and that the scenario for device B transfers

control back to A at time T'. An attempt to RESTART device A between

times T and T' is not legal since device A has no task associated

with it (its original task is associated with device B) even though

its status (STATI) is 'S'. Error message #33 is generated in this

case. Device B may not be RESTARTed during the interval since its

status is not 'S', although it may be RESTARTed after the STOP command

and prior to T, and after T'.

(2) The Scenario Directory is ordered the same as the DOS file

directory. (LIST/L *.IS^ will produce a list on the printer of

internal scenarios and their order in the DOS file directory.) By

design, the Scenario Interpreter will find the first entry in the

Scenario Directory whose n-character name matches the first n-charac-

ters of a scenario name in a command. Thus, if TEST precedes TESTA

in the directory, a command specifying TESTA will find TEST in the

directory. Similarily, M can prevent access to Ml, MATCH, etc.

Implementation was done in this manner since there is no guarantee

as to which of many characters may follow the last character of a

scenario name. In particular, a user may declare any ASCII character

as an EOM character, which would follow a scenario name.

To avoid problems of selection of an unintended scenario because

of such subset names, various techniques are available. No subsetting

will occur if all scenario names contain the same number of characters.

In particular, if all scenario names are ten characters or more in

length, no problems will occur because the DOS file directory contains

only the first ten characters of a file name. Another solution is to

end each scenario name with a character which is used nowhere else in

116

a scenario name (the ASCII $ sign appears a likely candidate). If

subset names occur, they will cause no problems if the longer names

precede the shorter ones in the DOS file directory. The final solution,

of course, is not to form scenario names by appending one or more

characters to previous scenario names.

(3) Commands entered at the control TTY must be preceded by a

left bracket (control-K):

[START DS14 Y

Command instructions punched in cards should be in the form:

CcSTART DS14 Y

The cents sign is the keypunch equivalent of the left bracket.

(In the case of the scenario instruction, the cents sign is not

needed for identification, but the first character in the literal is

skipped over.)

(4) Partial core dumps on the printer will result from:

a. use of the DUMP command

b. use of the Structure Dump (?) instruction

The dump routines used to implement these functions are not re-

entrant since interleaved usage by several tasks of the same printer

seems unuseful. The continuity of the dump is necessary to identify

the device (and scenario) causing it. The dump functions are for

diagnostic purposes and should be used with care to avoid reentrancy

violations.

PANIC CODES AND ACTIONS

If during the normal operation of the emulator, certain abnormal

conditions occur, the Real-Time Exec will abort the run. Before

aborting the run, however, the system saves the contents of accumula-

tors AC0-AC3 in locations 12, 13, 14, and 15, respectively, disables

117

interrupts, prints out a panic code on the control teletype, and

halts. The panic codes are described in Table XIV.

The user can obtain a full core dump of the system at this

point by depressing the "CONTINUE" switch on the NOVA console. If

only a partial dump is desired, the word count and starting address

of the desired area can be entered into accumulators 0 and 1,

respectively, before depressing the "CONTINUE" switch. When the

dump is completed, the system will automatically try to write the

magnetic tape buffers to tape, write an end-of-file on the tape and

then try to make a normal emulator exit, printing out the run

statistics. An example of a panic message and termination is given

in Figure 22.

The run statistics that are printed on the control teletype at

the end of an emulator run are: the maximum number of task control

blocks that were in use at any one time (TCB MAX XXX), the maximum

number of tasks that existed on the task pending queue at any one

time, the number of available core blocks that exist at exit time,

and the total number of core words available at exit.

118

Table XIV

RTOS Panic Codes

Error Code Meaning

1 System error. Two tasks are illegally trying to remove
core space from the free chain at the same time.

2 System error. Two tasks are illegally trying to
return core space to the free chain at the same time.

3 System error. A task issuing a .FREE supervisor call
has illegally given a block size of zero length.
Usually means the core chain or Scenario Interpreter
data structures are in error.

5 System error. A task issuing a .FREE supervisor call
has illegally tried to free a block with a starting
address the same as a block already in the free chain.
Usually means Scenario Interpreter data structures are
in error.

6 System error. A task issuing a .FREE supervisor call
has illegally tried to free a block which overlaps
the front part of a block already in the free chain.
Usually means core chain or Scenario Interpreter data
structures are in error.

7 System error. A task issuing a .FREE supervisor call
has illegally tried to free a block which overlaps
the end part of a block already in the free chain.
Usually means core chain or Scenario Interpreter data
structures are in error.

8 System error. A task exiting from either a .ALOC or
.FREE supervisor call has found the core chain busy
indicator illegally set.

9 System error. A task exiting from either a .ALOC or
.FREE supervisor call has found that the link word of
its TCB is illegally set. Usually means that the
queue stack is in error.

10 System error. A task issuing a .FORK supervisor call
has illegally given a value of zero for the new task's
stack address. Usually Scenario Interpreter error.

11 System error. A task issuing any supervisor call other
than .ALOC or .FREE has a zero value for its stack
address. Usually Scenario Interpreter error.

119

Table XIV (Continued)

RTOS Panic Codes

Error Code Meaning

12 System error. The number of clock blocks reserved at
system generation have been used up by tasks issuing
.WAIT supervisor calls. User is either trying to
emulate too many lines with space for clock blocks
or is running in loopback mode at a high baud rate.

13 Hardware error. An undefined device has caused an
interrupt. Location 14 (accumulator 2) contains the
device number of the offending device.

14 System error. A response having an odd number of
characters has been terminated without padding out
the right byte of the last word. Usually indicates
response handling logic is in error when adding a
new device to system.

15 System error. The word count in a query buffer is
greater than 32,768, which is outside the address
space of the NOVA 800. Usually means the Scenario
Interpreter data structures are in error.

17 System error. The interrupt dismissal routine was
called with an illegal interrupt data block address.
Usually means an executive error.

18 System error. The interrupt data block address was
equal to zero for a device that was trying to perform
an end of operation at the non-interrupt level
because the queue for the device was not available
at time of interrupt.

19 System error. The initial word count for the text
portion of a query buffer is equal to zero. Usually
means scenario is in error or Scenario Interpreter data
structures are in error.

20 System error. Lab system only. On exiting from the
DCM handler the bit time indicator had been reset
illegally. This panic condition was part of original
Data General software.

21 System error. Lab system only. The system was unable
to service all DCM lines in 5 bit times. Usually means
core chain became too long. Part of original Data
General software.

25 Hardware error. The magnetic tape controller indicated
an error when a status instruction was executed upon a

120

Table XIV (Concluded)

RTOS Panic Codes

Error Code Meaning

tape interrupt.. Location 12 (accumulator 0) contains
the status of the tape drive. The explanation of
the status is given in Reference 5.

26 System error. The magnetic tape handler received a
non-error interrupt and did not have a record of
having written a tape buffer. Usually means the
tape device unit control block has been destroyed.

27 Hardware error. In reading the magnetic tape status
before writing, either bit 1, 2, 3, or 5 has been
set indicating some type of tape unit trouble. From
experience panic code 25 usually occurs before this
condition.

28 System error. A task issuing a .FTCH supervisor call
has passed a scenario program counter which is larger
than the scenario itself. Usually means that the
internal scenario on disk has been destroyed or the
scenario management routine has an error.

29 Hardware error. The disk controller indicated an
error when a status instruction was executed upon a disk
interrupt. Location 12 (accumulator 0) contains the
status of the disk controller. The explanation of
the disk status is given in Reference 5.

Note: The above panic conditions were inserted during the debugging and
development phase of the emulator software. From experience the
only ones that a user may usually encounter are 12, 13, 21, and
25. Any of the others occurring usually means a new problem
uncovered and should be reported to the system programmers.

121

tpi
WAIT
ENTER RUN ID

1
READY

PANIC! ERROR C3DE*21
HIT CONTINUE FOR FULL C0RE DUMP

TCE MAX 000003 TPO MAX 000003
C0RE LINKS 000002 C0RE AVAIL 027363
D0S REV 05.

Figure 22. Example of Panic Message

122

SECTION VIII

DATA REDUCTION PROGRAM

INTRODUCTION

The Data Reduction program (DATAR) processes log tape data

gathered during an emulator test run. The program produces scenario

trace data and various statistics on the performance and utilization

of both the emulator and the SUT. A complete description of the

design and implementation of the program can be found in Volume 7 of

this series. DATAR runs under Data General Corporation's standard

Disk Operating System (DOS), Revision 5.

DATAR may be used to produce several kinds of summary and

detailed listings from the log tape, and thus it allows the user to

obtain a quick summary of activity during the run on an individual

basis or as an entire system. DATAR also gives detailed information

in the form of record-by-record listings that include information

such as readable real-time clock (RRTC) times, various timing

calculations, and the text message.

After the tape file is processed by DATAR, the user may save

the test data on master log tapes (to consolidate tapes or to put

similar runs on one tape). The master (or original) log tape may

be used for later analysis on the NOVA 800 or on a larger machine

with more sophisticated data reduction and analysis capabilities.

SYSTEM FLOW

Figure 23 depicts the system flow of DATAR programs. The log

tape, with data gathered from a single emulation run or a series of

runs, is mounted and readied on the system tape drive, transport 0,

prior to any user input requests. The log tape provides the input

to DATAR.

123

<
or o o
sr
Q-

z
o

o
Q
UJ

<
O

U.
O

o

UJ

>

<
UJ z
UJ
o

ro

3

u.

i
t

124

DATAR is called by entering an input message on the system tele-

type. There are two forms of input messages which result in two modes

of operation, interactive (conversational) or switch. The interactive

mode requires the user to specify input arguments by responding to a

series of interactive requests output by DATAR. The switch mode,

where a switch is the character / (slash) followed immediately by an

alphabetic character, uses switches to modify input groups and specify

input arguments.

On entry, the Command Interpreter (CI) residing in DATAR.SV is

loaded from disk and uses the input arguments to determine the type

of output to be produced. The user may obtain a brief summary, a

detailed summary, an octal tape listing, or a listing with actual

RRTC times, with time differences (intervals), or with relative times.

The output device, (line printer or teletype) is also determined from

the input message. DATAR output is printed at the specified device,

and error messages are output to the teletype and, if in use, the

line printer.

DATAR requires the conversion tables (CTABS) and the error

message file (ERFILE) to be disk resident for all types of output.

If an octal listing is desired, the CI begins printout on the out-

put device. However, if a summary or another type of listing is

desired, the CI saves some information on disk in two temporary files,

PAGEZERO and HBUF, and calls one of the save files (SUMRY.SV, TLIST.SV,

or TREL.SV) into execution to do the processing. Error messages are

directed to the teletype and the output device. Note that a CONTROL-A

interrupt stops all programs and returns to DOS without deleting the

temporary disk files, PAGEZERO and HBUF.

OPERATING PROCEDURES

Input Message

DATAR is called by entry of a user input request starting with

125

the program name DATAR. The two valid messages are:

1. DATAR [tfout-device]j

2. DATAR/ /J\ [/sub-options] [Kid] [^RECORDS/types]

[Vout-device] J

where tS indicates a space.

Both messages result in the disk iperating system (DOS) loading the

save file DATAR.SV and passing control to the CI portion of DATAR.

The ordering of the input groups is important and should be adhered

to as illustrated above.

Command Interpreter

The CI operates in two modes, interactive (conversational) and

switch. The interactive mode is invoked by message type 1 above.

The switch mode requires a more complex input message (type-2) but

minimal user interaction. Also, the switch mode is easier to enter

and is processed by the CI in less time.

Interactive Mode

The interactive mode operates in the following manner. DATAR

types an interactive request that includes all valid responses as

shown in Table XV. The user must reply with either the full word

response or the corresponding integer. Based upon the user response,

DATAR either types another request or determines that the required

input parameters have been obtained and passes control to processing.

A user reply of COMBINATION (or 7) to request number 5 or of COMBINATION

(or 8) to request 7 causes the CI to type requests 6 or 8, respectively.

In either case, a 1 to 5 or 6 digit integer must be entered using the

specified digits from the preceding request. Also, a user reply of

LIST to request 9 causes the CI to type a list of the numbers and

names of all devices defined in the Equipment Table. Following the

list, the CI reissues request 9. The user may respond with numbers

or names, but repetitions are ignored. A list of requested devices

126

Table XV

Interactive Requests and Responses for DATAR

Request
Number Text

1

2

3

4

5

10

11

ENTER SUT RUN NAME.

ENTER OPTION: BRIEF(l), DETAILED(2), ORLIST(3).

ENTER YES(l),OR NO(0) FOR PLOT.

ENTER SUB-OPTION: INTERVAL(l), SPECIFIC(2), ORDERED(3).

ENTER SUB-OPTION: INTERVAL(1), SPECIFIC(2), ORDERED(3),

ACTUAL(4), OCTAL(5), RELATIVE(6), OR COMBINATION(7).

ENTER COMBINATION AS 1 TO 5 DIGIT INTEGER USING 2 TO 6

ABOVE.

ENTER RECORD KEY: ALL(l), HISTORY(2), SCENARIO(3),

QUERY(4), RESPONSES), COMMAND(6), ERROR(7), OR

COMBINATION (8).

ENTER COMBINATION AS 1 TO 6 DIGIT INTEGER USING 2 TO 7

ABOVE.

ENTER DESIRED DEVICE NUMBERS OR NAMES SEPARATED BY

BLANKS OR LIST.

ENTER YES(l), OR NO(0), FOR START, STOP SPECIFICATION.

TO TERMINATE, ENTER END.

ENTER LOGICAL OR PHYSICAL RECORD START, STOP PRECEDED

BY L OR P.

127

is printed in the order defined by the Equipment Table. Figure 24

illustrates the various interactive paths to obtain the desired

output.

The output device to be used must be specified in the original

message. The optional input group, Out-device, has a value of $TTO

for the system teletype or $LPT for the system line printer (the

default output device).

Switch Mode

The message which invokes the switch mode is given in general

form by message type 2 above. One of the three switches (/B, /D, or /L)

must accompany the program name DATAR, otherwise the interactive mode

is entered. All switch letters were chosen to relate to the function

performed and to simplify mnemonic identification.
B

The input group DATAR/D [suboption(s)] allows various combinations

of option and suboptlon switches. One of the option switches B, D or

L is required; if more than one is given, precedence is given first

to B, then D. The option switches, listed in Table XVI, determine the

type of output to be generated: brief summary, detailed summary, or

listing.

The suboption switches are also listed in Table XVI. The sub-

option switches are meaningless for the B option. For option D, only

0, S, and P are meaningful.. For the L option, all are meaningful

except P. The suboption switches specify the type of data to be

included in the output option. They also determine if the data are to

be given sequentially or on an individual device basis. If the data

are to be given by device, the suboption switches tell DATAR whether

all or user specified devices are to be examined.

The optional input group ^d specifies the run identification.

It is the first n (1 < n < 20) characters of the run identification

given at the start of a real-time emulator run. If id is not given,

DATAR uses data from the first run on the tape.

128

z
o

* I °
« ~z £

o

i CM

en
IO . o >-<r
t- »o
V) _i<->
_l UJ

or
ml

m

_l UJQ.
< 0-5
K «3
O »-Q
O

9

s>

o"

o z
5 «2

fi >-

2J

5
* -I
_J UJ<

S3

o <
<

IO

Q
UJ ceo

r K UJ^:
UJ or, o
cc go
o

CM

o"
U. — o o —
o UJ>
UJ Q.UJ
0. C0Q

to

D
cr UJ
OO.

CO °2:
V UJt-

cc

S

O
z
cc
o

to
UJ >

CO
U. UJ

o2
_ico
Q.UJ

cc

CVJ

o"
UJ
_i

< \-
UJ
o

UJcc
->«

UJ 3
0(0

ro <r

IO

Q
UJ
CC

Is cc0
UJ —

UJ s>
Q Q-UJ
CC o°
o

151

(\J ~ o to
u r W
u. U-o
— o> u

So1 UJ
Q-
<n

cr
<
t-
<
0

H
cr
0
u.

UJ
_J 2 m <

cr
0

2 , , < uJ5 UJ
Q

CDu. >
< UJ
t-2o

UJ
UJ

O X m
CC400

cr

u-i-OT UJ
CC** >
S>< •- H
s — O
OCC -1 <
Z UJ < cr

CD? UJ

U
E

S
T

N
U

M

A
C

T

z

o "P> UJ Q UJ

CM

0)

CC CE >

OS
UJ IO ^

3
i^^ft. o> — (fl cc
O 2 O u.
UJ 0
Q.P CvJ

y\ u.
CUQ

cc
cc-^. .
UJCO£
C3 0.52
UJO z
1-0? zcc £
-®2
UJ UJ cc
X X
t- t- <

129

Table XVI

Option and Suboption Switches for DATAR

Switch Function

Options

/B

/D

/L

Suboptions

/s
/o

/p

/N

/I

/R

/T

Brief Summary

Detailed Summary

Listing

Examine only user specified devices

Examined all devices in order of E.T.

Histograms of Response Distributions

Name records for octal dump

Print time intervals rather than actual times

Print Relative times rather than actual times

Octal format tape dump

130

The optional input group RECOKDS/type(s) specifies the type(s)

of logical records to be included in the output. Valid switches are

given in Table XVII. Any combination of values is allowed. Omission

of this group implies all types. The B and D options ignore this

group.

The optional input group Out-device is defined above under in-

teractive mode.

The option and suboption switches may be combined as shown in

Table XVIII and Figure 25. Table XVIII presents all meaningful input

requests with a brief description of the output. (The optional input

groups are not listed.) Figure 25 also illustrates the meaningful

switch combinations.

Summaries

There are two types of summaries, brief and detailed. The brief

summary examines all records for all devices, listing error messages

and gathering general statistics. The detailed summary gives similar

statistics but does so by device. Note that the input group RECORDS

is meaningless since both summaries examine all types of records.

Brief Summary

The brief summary ignores suboption selections. The format of

the brief summary output is illustrated in Appendix IV, Figure 26.

The summary data in this figure is taken from the file with the run

identification of "RUN FT7". A list of all error messages with

associated device names precedes the summary data.

Various RRTC times are given in the following units: elapsed

time is expressed in seconds to the nearest 100,000 th, response

times in seconds to the nearest hundredth, total emulator CPU time

in tens of microseconds, and percent emulator CPU to the nearest

hundredth.

131

I ~l
'cuu'

XCOO

UJ
e>
<t
co
en
l±J

5

3
Q.
Z

UJ
o
o

I

X
o

CO

<
cc
UJ
z
UJ

(o O

Q. Z

- DC t-

CDO J

I

t-

cc

Ul 0-

z

<2 -

X
=>
D
r
s>

ij
r

o
UJ
tr

a
3
o
or
a
_i
<
z
o

E
o

OcO

_o

SUJ

_l

UJ^
Zir
- UJ

z
CO

tr
<

_l

to

UJ
K

i- <

tr

OCO
UJ UJ
Co
UJ -
Q>
CC UJ
OO

o
u.

UJ

UJ>

UJ S

2 <

o

_l

tr

cc
<
Si
a

<

UJ
UJ

> UJ

fc>
O UJ
zo

tr

_i
UJ <

<

X
o
1-

CO _i
_i

3
Z
* —1

UJ
CO

a

-1

<
U.
UJ
o

a

ujg

UJ 3

5<*

z
* (0

08
z

OO.

a. UJ
cc

S3
*> %.
3

a.

•—
U.

CO

>•
"-5 Ul<

CO

132

Table XVII

Record Type Switches

Logical Record Symbol Switch

HISTORY H /H

RESPONSE R /R

QUERY Q /Q
SCENARIO INSTRUCTION S /S

COMMAND C /C

ERROR E /E

Table XVIII

Switch Combinations and Valid Inputs

Input Message Action Taken

1. DATAR/B BRIEF summary of all data preceded by a list
of error messages.

2. DATAR/D [/P] or
DATAR/D/O [/P]

DETAILED summary for each active device in the
order established by the Equipment Table. A
plot of response times is available as an
option (/P).

3. DATAR/D/S [/P] Same as above except only those devices
specified by the user (upon request) are
examined.

4. DATAR/L/I LIST all records in sequence written. Include
transmission time intervals, processing (task)
time intervals, and response times.

5. DATAR/L/I/O Same as above except list separately for each
active device.

6. DATAR/L/I/S Same as above except devices must be specified
by user.

133

Table XVIII (Concluded)

Switch Combinations and Valid Inputs

Input Message Action Taken

7. DATAR/L

8. DATAR/L/O

9. DATAR/L/S

10. DATAR/L/R/O

11. DATAR/L/R/S or
DATAR/L/R

12. DATAR/L/T [/N]

13. DATAR/L/T/0 [/N]

14. DATAR/L/T/S [/N]

LIST all records in sequence written. Include
internal scenario address and actual clock
times for start transmission and start/end
task.

Same as above except list separately for each
active device.

Same as above except devices must be specified
by user.

LIST separately for each active device all
records in sequence written. Include internal
scenario address and start/end transmission
times relative to LOGON and test start time.

Same as above except devices must be specified
by user.

LIST all records in sequence written in octal
tape dump format. Naming of starting and
stopping logical (or physical) record numbers
is available as an option (/N).

Same as above except list separately for each
active device.

Same as above except devices must be specified
by user.

134

The logical and physical record counts are given by the counts

following the headings MESSAGES and RECORDS, respectively. The

headings UN-R and UNSOLICITED specify unsolicited responses. The

TERMINAL-MAX heading is used to name the terminal associated with

the maximum response. The asterisk (*) following a scenario

instruction type denotes a lower case character or a non-printable

special character.

Detailed Summary

The detailed summary allows a device specification suboption as

well as a special histogram output. The format of the detailed

summary is illustrated in Appendix IV Figure 27. A list of all

requested devices to be examined is printed prior to summary data,

and consists of either all devices defined in the Equipment Table or

only those devices specified by the user.

The name of the file used in Figure 27 is "RUN FT7". A detailed

summary is given for each active, requested device, and the name of

the device is given as a terminal identification. Unsolicited

responses are counted as record types. Also, the average and maximum

RRTC response times are given in seconds, to the nearest hundredth.

As in the brief summary, an asterisk (*) is used to identify non-

printable lower case and special characters which are used as scenario

instruction types.

If requested, a histogram of response distribution is printed

for each active device following the summary data. Figure 28,

Appendix IV illustrates the format of the histogram. As can be

seen, the name of the device is given at the top of each page and is

followed, on the first page, by a list of all quarter-second response

intervals which have a positive count and percentage. The count

gives the actual number of responses which fall within the specified

interval. The percentage is calculated by dividing the count by the

total number of responses. All responses less than 0.25 seconds are

135

included in the first interval, while all responses greater than 15.00

seconds are shown in the 15.00 second interval. If there are no

intervals with a positive count, then a histogram is not generated.

Following the summary data (and histogram if requested) for the

last active device, the program lists all requested devices which

were found to be inactive during the run.

Listings

There are basically four types of listings: octal tape, actual

times, time intervals, and relative times. All these suboptions allow

record selection based on device and/or record type. If the user

decides to obtain the listing by device, then all devices defined in

the Equipment Table must be requested or the desired device names

and/or numbers must be specified in response to the interactive

request number 9. A list of all requested devices will precede any

data and a list of requested but inactive devices will terminate

the listing.

The types of logical records to be listed may be selected by

using the RECORDS input group. In the switch mode, all records are

listed if the RECORDS group is omitted. The heading MESSAGE on each

listing page refers to the logical record number of the first non-

history record on the page.

Octal Tape

The octal tape dump listing is used to print the contents of

each logical record in octal byte format. The user may name the

starting and stopping logical (or physical) record number by using

the /N option. If starting and stopping numbers are given, the

program skips all logical (or physical) records up to the start. It

produces its octal output in logical record format and stops at the

given logical (or physical) record number. Figure 29 in Appendix IV

illustrates an octal tape listing output format. The user requested

136

that all devices in the Equipment Table be examined and named the

starting and stopping logical record numbers as 101 to 110.

As can be seen, the output for each active device gives the

range limits and device name prior to the data. After a range is

completed, the user may specify another range of limits or continue

to the next active device. Note that there may not be records within

the range associated with the given device (CT0 in Figure 29). The

character P represents the physical record boundary.

Actual Times

The actual time listing contains the actual RRTC start of trans-

mission and the start and end of task processing times. The values

are taken directly from the record and listed in tens of microseconds.

The actual time listing is the default suboption in the switch mode.

Figure 30 in Appendix IV illustrates the format of the actual time

listing.

As shown by the example in Figure 30, the user requests an

actual time listing of Query and Response records ordered sequentially

and output on the system teletype. The name of the run is "6-14

4:30 PM." For each record, the type of record is given followed by

transmission start, task start, and task end times. The heading SCEN

ADDR gives the location of the start of the scenario instruction

relative to the beginning of the scenario, if any.

Time Intervals

The time interval listing contains differences between the RRTC

times. This listing also calculates response times as the difference

between the start of transmission for a solicited Response and the

end of transmission from the preceding query associated with the same

device. Figure 31 in Appendix IV presents the format of the time

interval listing.

137

The example in Figure 31 shows a time interval listing of "RUN2"

in which the user chooses to specify the devices to be examined. For

each active device, the terminal identification is given, followed by

all the data associated with the particular device. For each record,

the record type is given as well as the difference between the end

and start of transmission time, the difference between the end and

start of task processing time, and the cumulative emulator CPU time,

all in tens of microseconds. The response times are given in seconds

to the nearest hundredth.

Relative Times

The relative time listings are by device with user specification

of devices being the default case. Figure 32 in Appendix IV illustrates

the format of a relative time listing.

In the example shown in Figure 32, the user requests that all

•devices defined in the Equipment Table be examined. Both the run-

start time and the user start time (UST) are given in tens of micro-

seconds. The run-start time is the start of transmission of the first

non-history record in the file. The UST is the start of transmission

of the first Query or solicited Response associated with the device.

A value of BELOW is given for UST if a Query or solicited Response

is not the first record type in the file for the particular device.

For each record, the record type is given in addition to the start

and end of transmission minus the UST, the start and end of trans-

mission minus the end of transmission time of the previous Query,

and the location of the scenario instruction (as SCEN ADDR) relative

to the beginning of the scenario, if any.

ERRORS

There are several error conditions recognized by the various

programs. Table XIX lists all error conditions and messages that may

138

Table XIX

DATAR Error Message File (ERFILE)

Number Message Cause or Corrective Action

1 Invalid option Submit valid option.

2 Invalid termination
option

Submit valid option.

3 Invalid sub-option or
key (record)

Submit valid option.

4 Invalid device
specification

Submit valid device name or bad
device address logged.

5 Disk file accessing
error (read/write)

Error from DOS, disk file may be
missing.

6 End-of-file (on tape) End of run.

7 Invalid tape
identification

Log tape file incorrectly logged.

8 Unrecognizable message
type

Bad record type logged.

9 Zero length record
found

Two successive records with zero
word length.

10 Illegal program call Overlay problem, maybe disk file is
missing.

11

12

Command instruction
missing
DISK SPACE exhausted

C-type record with null text.

Not enough disk for temporary files
or overlay.

13 Invalid device table
format

Equipment Table not second record in
file.

14 Tape read error Tape drive problems, may not be
mounted properly.

139

occur, during execution of DATAR.

The general format of the error message is:

RECORD m, WORD n: error message text

where m specifies the physical record that contains the erroneous

logical record and n specifies the first word of the logical record

relative to the start of the in-core buffer containing the record.

Many of the conditions allow the user to start over or submit another

choice. However, some (such as tape and disk errors) are unrecoverable.

The cause of error condition and/or corrective action for each error is

also given in Table XIX.

SAVING TEST DATA

After analyzing the test data with DATAR, the user may wish to

save the data for future analysis on the NOVA 800 or some larger

computer. A program (MASTR) has been written to transfer data from

a log tape to a master log tape (to consolidate tapes or to get

comparable runs on one tape). The master tape (or original tape)

may then be used as input to DATAR to analyze the run again or compare

a series of runs manually. In addition, more sophisticated statistical

methods may be employed to produce more meaningful statistics for

comparing and evaluating an SUT.

Program Description

In general, the MASTR program (written for a one tape drive sys-

tem) reads the data from the input log tape, temporarily stores it in

a file on disk, waits for the output (master) tape to be mounted,

writes the data from disk onto the tape as the last sequential file,

and terminates the file with two end-of-file (EOF) marks. If disk

storage is insufficient to complete the transfer in one pass, the

program continues through as many passes as necessary, each time

notifying the user that an additional pass is required. Obviously, a

140

multiple pass transfer requires input and output tapes to be mounted

and dismounted several times.

Input Message

MASTR requires two user supplied input parameters: a run

identification (used to locate the test run) and the amount of

available disk space (used as temporary storage). The two commands

that activate the tape transfer program are:

1. MASTR^

2. MASTR id ds •

(Although message 1 appears more concise, note that requests to supply

values for the input groups ijd and jis_ will be issued by the program.)

The first input group, id, specifies the first n (1 < n < 20) charac-

ters of the run identification as found in the Identification-History

record, the first logical record logged. The run identification,

which was entered at the start of emulation, is required to allow

access to different runs on multiple run tapes.

The second group, ds_, is the number of unused disk blocks avail-

able for temporary storage. The program uses ds-2 blocks to protect

the used portions of disk. The number of unused blocks is given by

the DOS command DISK. This number can be increased by deleting disk

files no longer in use. A good approximation for the number of blocks

required for a single pass transfer is the number of physical records

used for the run (obtained from the record count in a brief (/B) sum-

mary) plus five (two for the unused blocks and three for disk file

linkage words). This number must be multiplied by the ratio of

physical record size to disk block size, which presently is 1.

Operation

The MASTR program is called by one of the input messages described

above. It obtains the run identification and disk size from the input

message (#2), or as responses to the program commands ENTER RUN

141

IDENTIFICATION and ENTER AMOUNT DISK LEFT. The program then issues

the command:

MOUNT INPUT TAPE, STRIKE CARRIAGE RETURN

and waits for a carriage return. Upon receipt of the carriage return,

MASTR locates the first file (on the input tape) that contains the

specified run identification as the first n characters in the History-

Identification record.

The program uses the disk size and physical record size to cal-

culate the number of tape records that can be written in the temporary

disk file, MITCHTEMP. MASTR reads the tape until disk space is

exhausted or an EOF mark is encountered. If disk space is insuffi-

cient the message:

NOT ENOUGH DISK.

REMOUNT INPUT TAPE AFTER OUTPUT TAPE IS WRITTEN.

notifies the user that one or more additional passes are necessary

to complete the transfer. This implies remounting the input tape

after the first segment is transferred to the master tape.

After the disk file is written, MASTR issues the command:

MOUNT OUTPUT TAPE, STRIKE CARRIAGE RETURN

and waits for the carriage return. Upon receipt, the program locates

the double EOF mark on the master and writes all the data from the

disk file onto the output tape, overwriting the second EOF of the

preceding run. If an additional pass is necessary, the program

requests that the input tape be mounted and continues the loop until

the transfer is completed. Upon completion, the message:

LOG TAPE TRANSFER COMPLETE

is output and two EOF marks are written. The first EOF terminates the

file while the second indicates that the file is the last one on the

142

tape. Note that a tape intended to be a master must be initialized

by the DOS command INIT/F MT(8 prior to the transfer operation. The

command writes two EOF marks at the beginning of the tape.

The program does not check the run identification of each file

on the output file. Therefore, files may be written with duplicate

file names. However, only the first file with a duplicate file name

is accessible.

Errors

The MASTR program checks for various error conditions. If an

error exists, a message is output and the transfer terminates by

returning to DOS. Table XX lists the error conditions, messages, and

suggested corrective action. Remember that files on a master tape are

only as unique as the run identification given at the start of the

emulation test.

143

Table XX

MASTR Error Message File

ERROR MESSAGE ERROR CONDITION CORRECTIVE ACTION

1. NOT ENOUGH DISK Space too small for Delete some files
one physical tape and specify larger
record. number.

2. ERROR LOCATING Invalid run id, illeg- Check id, format,
INPUT FILE al format, tape read read errors by using

error. DATAR/B with and
without run id.

3. DISK ERROR Trouble writing/read- Ensure disk accessi-
ing file MITCHTEMP. bility. Try again.

4. INPUT TAPE READ Tape equipment or Check channel number
ERROR parity problem. unit ready, etc.

Otherwise, fatal
parity error.

5. OUTPUT TAPE WRITE Tape equipment or No double EOF or
ERROR parity problem. check channel number

unit ready, write
lockout, etc. Other-•
wise, fatal parity
error.

6. EOF WRITE ERROR Tape equipment or No double EOF or
parity problem. check channel number

unit ready, write
lockout, etc. Other-
wise, fatal parity
error.

7. ERROR LOCATING No second EOF, tape Check equipment,
OUTPUT FILE equipment or parity initialize tape if

problem. never done before.

144

SECTION IX

EXECUTION TIMES

REAL-TIME INSTRUCTIONS

Because of the variety of scenario instructions available to the

user, it may be possible in some instances to accomplish the same

task, using more than one method, or combination of scenario instructions.

In these cases, execution timing for scenario instructions may be a

consideration in determining maximum scenario efficiency.

Table XXI gives the current best estimates of real-time emulator

execution times. The times given represent the total cost (Scenario

Interpreter as well as Real-Time Exec execution time) in microseconds

of emulator CPU time for executing each function once. The functions

timed include two miscellaneous functions (logging and the receipt of

an unsolicited response) followed by the scenario instruction types

given in the same order as Table XVI of Volume 2 of this series followed

by the command types in alphabetical order.

The data were obtained by making a very large number of short runs

on the field-test emulator. In most cases, a run consisted of execut-

ing a single scenario for a single device. After performing its task,

the scenario executed a QUIT command. The data reduction brief summary

operation was used to obtain the CPU time.

The general technique used was to execute the desired function

1000 times in a loop, as in the case below of one of the scenarios used

to test the add instruction:

1 3 A 12

2 3 C [LOG ALL OFF ALL

3 22 1 1000 R9

4 28 L LOOP

145

Table XXI
Execution Times

Real-Time Scenario Instruction
(in microseconds)

Execution
Function Time Footnotes

Miscellaneous Functions

Logging 1778 + 6.6b

Receipt of
Unsolicited 2325 + 231r 10, 26
Response

Control Instructions

R 4397 + 477i 10, 26, 27

R" 3312 + 220r 10, 26, 27

Q 1721 + 255q 10, 26, 27

I 3845 + 440i 10, 26, 27

o 953 + 213q 26, 27

» 679 27

: 679 13, 27

C - 10, 14, 27

E 3137 + 54e 10, 15, 27

E 1333 10, 16, 27

D 1305 1, 3

W 1458 1, 3, 13

d 1236 1, 3

e 1136 5, 27

X 7490 7, 27

7 761 3

8 2703 1, 17, 27

146

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Execution
Function Time Footnotes

Arithmetic and Logical Instructions

+ 691 1, 27

- 691 1, 13, 27

* 768 1, 27

/ 788 1, 6, 27

& 708 3

Assembler Directive Instructions

L - 18

a - 18

blank - 18

t - 18

i - 18

Branch and Comparison Instructions

J 631 3

B 689 1, 2, 3, 13

U 689 1, 2, 3, 13

> 689 1, 2, 3, 13

< 689 1, 2, 3

G 689 1, 2, 3

H 689 1, 2, 3

M 657 + 39m 3, 19

S 677 + 39m + 48n 1, 9, 27

Y 719 2, 3

147

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Execution
Function Time Footnotes

Branch and Comparison Instructions (continued)

n 719 2, 3, 13

9 721 2, 3

q 722 2, 3, 13

K 682 3, 20

3 682 3, 4, 20

P 1016 + 43.5p 3

Core Memory Allocation Instructions

A 1361 3, 10

F 7858 10, 21, 27

Move Instructions

1 668 3

g 687 27

P 687 1, 27

5 621 + 43.6t 27

T 640 27

= 717 27

Z 715 13, 27

V 663 + 21.6c 13, 27

6 647 + 21.6c 27

\ 708 27

9 748 27

r 680 27

c 666 4, 27

h 684 27

148

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Execution
Function Time Footnotes

Diagnostic Instruction

? -

Commands

DUMP -

ERROR 3950

LOG 5355 12, 22

MONITOR 7204 12

QUIT 2060 23

RESTART 12,571 12, 24

SCALE 5046 25

START 14,540 8, 10, 11, 12

STATUS 4681 12

STOP 12,571 12, 24

SUB 7490 7, 10, 11

SUB 7858 10, 11, 21

149

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Nomenclature

b = length of MESBF (variable or text) portion of buffer to be logged,
in bytes

c = number of bytes for which longitudinal redundancy check (LRC)
byte is calculated

e = length of error message in type-E scenario instruction, in bytes

i = length of query and length of response, in bytes

m = number of bytes successfully matched

n = number of bytes unsuccessfully matched

p = number of bytes parity checked

q = length of query transmitted, in bytes (those up to, but not
including, the first NULL (zero) byte in a query buffer)

r = length of response received, in bytes

t = number of bytes transferred from (contained in) a type-5
scenario instruction to a query buffer

150

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Footnotes

(1) Add 6. 4 microseconds for each field of type 10 or 11 which
contains a Register number.

(2) Add 6. 4 microseconds if the branch is not taken.

(3) Add 14 microseconds if instruction starts at an even byte.

(4) Add 26. 8 microseconds if initial value of RGRPT points to an
odd byte.

(5) The time includes the time for the type-e instruction plus the
additional time for the following (executed) instruction over
what it would be if executed normally rather than by the ex-
ecute instruction. The normal execution time of the following
instruction is excluded. Increased time over most other in-
structions is spent in scenario management code in the Exec.
The type-e instruction causes two changes in the scenario
associated with the device. The time given includes the time
to free each core page when control passes to the other but no
time to read pages from disk since the core pages were not
overlaid. If one or both core pages were in use by other de-
vices, the freeing time would be less, but if all core pages
were in use, the type-e instruction could require disk reads
to be done.

(6) Execution time varies by 11.4 microseconds from minimum
to maximum, depending upon values used.

(7) Includes time to execute the SUB command with scenario speci-
fied and the type-X scenario instruction. Includes time to
allocate set of Registers but not the time to free them.

(8) Includes the time to start the scenario for the named device
and to terminate that scenario by execution of end-of-scenario.

(9) Add 13 microseconds if branch not taken. If substrings of the
instruction string occur in the response, the number of com-
parisons may be relatively large. For instance, if the response
ABCABACABABCABABACABABABC is searched for the string
ABABABA, then m = 27 and n = 19 and the execution time is
2642 microseconds.

151

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Footnotes

(10) Execution time will vary depending upon the number of blocks
in the free chain which have to be examined to find a large
enough block to allocate and/or to find the proper place in the
chain to place a freed block.

(11) Execution time will vary depending upon the number of
Scenario Directory entries which have to be examined before
the named one is found.

(12) Execution time will vary depending upon the number of Equip-
ment Table entries which have to be examined before the
named one is found, and this number may be different depend-
ing upon whether hierarchical equipment names are used in
the command or not.

(13) Time estimated based on measured time for a similar
instruction.

(14) Time varies widely with command type. The time to execute
the type-C instruction is included in the command execution
time, except for the QUIT command.

(15) Time with error-message logging enabled. Time includes
logging time.

(16) Time with error-message logging disabled.

(17) Includes time to log the response. If response logging is dis-
abled, the instruction is equivalent to a NOP.

(18) Assembler directives are not executed in real-time and are
not even included in the internal scenario.

(19) Add 24 microseconds if the branch is taken. If an m-character
compare is made, the first four characters match, but the fifth
one does not, the execution time should be 657 + 4 (39) + 24 = 837
microseconds.

(20) Add 10 microseconds if branch not taken.

(21) Includes time to execute the SUB command with scenario
specified and the type-F scenario instruction.

152

Footnotes

Table XXI (Concluded)
Real-Time Scenario Instruction Execution Times

(22) Time for LOG ALL OFF ALL

(23) Time through the time the record is logged. Certain termina-
tion activities are performed after logging.

(24) Includes time to execute RESTART of a named device and time
to execute STOP THIS for the named device.

(25) Time will vary depending upon number of digits in scale factor
to be converted. Conversion time is 31 microseconds per
decimal digit.

(26) Using an asynchronous line adapter at 10 characters per second.

(27) Add 12. 8 microseconds if instruction starts at an odd byte.

153

5 28

6 34

7 40

8 47

9 63

+ R9 34 Rll

+ R8 1 R8

U LOOP R9 R8

C [LOG ALL ON C

C [QUIT

Instruction 5 is the one being timed. Instructions 6 and 7 are for

loop control and instruction 3 controls the iteration count.

Instructions 2 and 8 turn logging off and then back on to capture

the final CPU time value. Such scenarios were run two or more times

each to check the degree of reproducibility.

A second, base scenario was then prepared, identical to the

above except that instruction 5 was eliminated. The second scenario

was then run two or more times, and the most representative CPU time

value was chosen for each of the two scenarios. The difference bet-

ween these values divided by the iteration count gives the function

execution time.

The contents of the two scenarios were varied depending upon the

function being timed. In the case of several of the commands, more

than one scenario had to be run concurrently. The iteration count

was reduced to 100 for the miscellaneous functions, for some of the

commands, and for the query instructions. In any case, an appropriate

base scenario was always constructed and run so that the difference in

CPU times would isolate the function or functions being timed (a few

of the functions cannot be executed multiple times independently of

other functions).

The measured results were given general reasonableness checks

and were also evaluated by comparing differences between measured

results for different functions (primarily the scenario instructions)

and differences obtained from NOVA instruction counts for the same

functions. No attempt was made to verify the absolute values given

154

in Table XXI because of the complexity of the emulator system. The

relative comparisons checked reasonably well, although certain

differences have not yet been explained. The data in Table XXI cannot

be regarded as precise. The presence of a zero in the units position

cannot be regarded as indicating low precision nor can the presence of

a decimal place be regarded as indicating high precision in all cases.

In the latter case, the increments given in the table proper for those

functions whose execution times vary with string length, the increments

given were obtained by computations on the measured results, although

these increments checked rather well in those cases in which instruction

counts were made. The increments given in the footnotes are generally

more precise since most of them are based on instruction counts

(assuming that the CPU clock is accurate).

The relative comparisons made for approximately 15 scenario

instruction types indicate precision varying from 0 to 35 microseconds.

No formal comparisons were made for the commands although it appears

possible that much larger discrepancies may be present. In particular,

from scanning the code for the LOG command and the MONITOR command, it

does not seem reasonable that the latter should require nearly 2 milli-

seconds more than the former. It should also be noted that a typical

command generally provides many more options than a typical instruction

and, therefore, will result in a much greater range of execution times.

It was not possible to time and report each option of each function.

In addition, as the footnotes show, a number of run-dependent factors

can significantly affect the timing results.

Several factors are present which would make it very costly to

attempt to resolve the discrepancies noted above. At least 700 runs

were made to obtain the current data. Most of these lasted several

seconds in real-time, but some lasted a minute or two. The results

had to be listed, recorded, and analyzed. Most of the scenarios were

run two or more times each since the results frequently showed some

155

variation in total emulator CPU time. It was felt that replicated

runs should agree within possibly 10 to 30 microseconds based on early

experience with the simpler instructions. In the case of some of the

commands and query instructions, the total variation was sometimes

200 or 300 microseconds. In the case of a common base scenario run a

number of times over a two-month period, the total variation was 3200

microseconds (for a 1^ second run - 0.2%). It seems likely that these

variations are the result of clock frequency variations, possibly the

result of temperature differences. The clocks involved were the CPU

clock, the Readable Real-Time Clock used for timing measurements, the

"Real-Time Clock" used for response timeouts and which places a con-

tinuous overhead on the DVM, and the line-adapter clocks in the case

of query instructions. In addition, it is known that the timing

characteristics of the magnetic tape drive have a rather coarse control,

and the tape drive had to be used in all runs to record at least the

first and last event of the run.

A cause of greater variation in execution times is the fact that

the NOVA computer has only very superficial byte-manipulation ability.

The Exec uses 12.8 microseconds more to fetch the two-byte scenario

instruction length field (for any instruction) from two adjacent words

(when the instruction starts at an odd byte) than when it starts at an

even byte. The Scenario Interpreter uses 26.8 microseconds more to

fetch a two-byte operand (contained in certain instructions) when the

instruction starts at an even byte than when it starts at an odd byte.

The effect of these differences is that to achieve the best results

one needs to examine the starting byte of each instruction in a scenario

(or at least those within the loop) and make adjustments in case of

differences between a base scenario and a timing scenario. One may

also need to modify both scenarios by adding one or more instructions

or changing their positions to cause cancellation of the even-odd

effects. The nature and magnitude of this problem were only realized

after a number of runs were made, instruction counts were made for

156

portions of certain instructions, and relative comparisons were made.

Making such even-odd corrections for a large number of scenarios would

be quite time consuming.

In the case of the START and SUB commands, the present implementa-

tion reads at least the first two bytes of the Scenario name from the

command for each Scenario Directory (SD) entry encountered. If 30

entries have to be compared and the scenario name starts at an odd

byte in the command, the execution time for the command is 800 micro-

seconds more than if the scenario name started at an even byte. (To

force the even byte case, an odd number of blanks must occur after

"START" and before the scenario name if the device name contains one

digit.) To control this situation, the length and content of the SD

as well as the location of the scenario name within a command must be

controlled.

In the case of commands which contain device names, a further

variation can arise. A total of 26.8 to 80.4 microseconds more will

be used if the device name or "THIS" starts at an odd byte in a

command. A total of 31 microseconds is used to convert each digit

(after the two initial characters) in a device name. The execution

time will further vary depending upon the number of Equipment Table

(ET) entries which have to be searched. The number of entries

searched will depend upon the ordering and linking of the ET entries

and whether or not hierarchical equipment names are used in commands.

If the above factors are handled properly, one may be able to

obtain relatively accurate results for the tests run. Certain

additional factors need to be considered before applying the results.

Of necessity, the tests were run under conditions whereby there was

little competition for resources within the emulator. As the number

of active, emulated devices increases, allocable core memory becomes

splintered and those functions which must allocate and/or free core

memory will use up more emulator CPU time. When a block is to be

157

freed, each link in the free chain which must be examined, uses up 7

microseconds of CPU time, and approximately the same amount of time is

needed during allocation. If an average of 25 links needs to be examined,

the cost is 175 microseconds for each allocate or free operation. Every

command executed requires the allocation of a command buffer, freeing

of the command buffer, and allocation of an error-message buffer for

the response to the command and may also require the freeing of a

previous error-message or query buffer. In addition, 6 or 7 instructions

(see footnote 10) and one of the miscellaneous functions allocate and/or

free core memory. There is no dynamic measure of the length of the free

chain, but the timing tests probably only caused a free chain of five

or ten links. Very little logging was done (from 2 to 6 records per

run), but each record logged requires one allocation and one free

operation (for a Register Stack).

Scenario management can also have a significant effect on individual

execution times. If an instruction spans a scenario page boundary, it

must be buffered and a new scenario page becomes the active page for

the device. The cost of the latter operation is in the vicinity of

200 microseconds. If the new page must be read from disk, the cost is

greater. When the number of active scenario pages in core approaches

the number of core pages allocated, a disk read may be required for

each scenario instruction fetched from a new page. The emulator is

designed to cope with this situation to handle peak loading problems.

If an emulator module operates in this mode more than a relatively

small fraction of the time, it is overloaded and its load should be

reduced.

The data given in Table XXI ignores the effect of any error

conditions. The only error messages allowed for are the normal

responses to commands.

The "Real-Time Clock", used for response timeouts, provides a

continuous overhead estimated at between 0.2% (2000 microseconds per

158

second of elapsed time) and 0.3%. The effect of this overhead has been

ignored in Table XXI in those cases in which emulator %CPU time was

near 100% since the effect on a 700-microsecond instruction is only 1

or 2 microseconds. In those cases in which the % CPU time was lower

(primarily some of the commands, the query instructions, the delay and

wait instructions, and the miscellaneous functions), the emulator CPU

times for the base scenario and the timing scenario were corrected for

this overhead based on elapsed time, generally using a conservative

0.2% factor. This overhead is present throughout the elapsed time of

a run, regardless of the amount of emulator activity.

NON-REAL TIME PROGRAMS

It is difficult to give anything but intelligent estimates as to

the running times of the non-real-time programs. This is because of

the many variables involved which determine execution times for each

of the programs. Presented here is a sample problem for each program,

with key characteristics defined, and approximate running times given.

The times are based on an average derived from several runs of each

program, and may vary within a 5 second range.

SSUB

The example shown in Appendix VI, Figure 33 shows a scenario called

34FORTN with macro calls not yet expanded. Figure 34 in Appendix VI

shows the same scenario, now called FORTN, with macros expanded. The

libraries which contain the macro definitions are given in Figure 35.

The table below summarizes the key characteristics pertinent to the

macro processing of this example. In this case, the macro processor

takes about 20 seconds to complete execution.

number of libraries 2

number of macros in libraries 16

length of file without macros
expanded 1172

159

length of file with macros
expanded 3956

number of macro substitutions 185

MACDEF

The program used to generate macro libraries is MACDEF. The

execution time of this program depends on characteristics summarized

in the table below for the example shown in Appendix VI, Figure 35,

the KAPLIB library.

number of definitions 3

length of input file 205

length of output file (.ML) 203

Execution time to create KAPLIB.ML from KAPLIB is 4 seconds.

CVT

The scenario assembler program may convert the FORTN scenario

(Figure 34) into an internal scenario by using any of its three print-

ing options. Average times for execution are 35 seconds for assembly

with no listings (CVT/N option), 55 seconds for assembly with partial

listings (CVT/P option), and 3 minutes 10 seconds for assembly with

complete listings (CVT option). These times, of course, reflect to

some degree, the speed of the printer. The table below summarizes the

key characteristics pertinent to the Assembly of the example.

label definitions 22

other label references 24

queries 25

arithmetic instructions 133

search instructions 22

commands 3

assembler directives 3

other instructions 159

Total instructions 391

length, in bytes, of internal scenario 2435

160

DATAR

The data reduction program processes the log tape written during

an emulation run and can produce many combinations of listings and

summaries. Execution times for all combinations are too cumbersome

to be presented here. The table below describes the key characteris-

tics pertinent to the data reduction of a log tape from a sample

emulation of the Fortran Cost scenarios presented in Figures 33-35.

number of physical records 43

number of logical records 376

number of internal scenarios in
directory 70

number of devices in ET 26

number of active devices 2

number of queries 123

number of responses 226

number of scenario instructions 1

number of lines of output for
relative-time listing 660

Using such a log tape, the data reduction program produces a brief

summary in 20 seconds and a relative-time listing for a single

emulated device in an average of A minutes. These times are for

processing of a file which is the first file on a log tape. If more

than one emulation file is on a tape (perhaps a tape created by the

MASTR program) the DATAR program rewinds to the beginning of tape and

re-searches for the correct run every time it begins a new device

listing for the run. This, of course, may consume considerably more

time.

MASTR

The execution time of the MASTR program depends on several

factors, as described in the table below:

161

number of physical records in run

disk space available

file number of MASTR tape

Also included in the complete execution time is the length of time it

takes the user to dismount the original log tape and mount the MASTR

tape, for as many times as is needed to complete the transfer. There-

fore it is unrealistic to give any meaningful timing estimates.

162

REFERENCES

1. Data General Corporation, Disk Operating System User's Manual,
093-000048-03, Southboro, Massachusetts, 1971.

2. Data General Corporation, NOVA Editing Routines, 093-000018-02,
Southboro, Massachusetts, 1971.

3. Data General Corporation, File Check Program, 093-000071-00,
Southboro, Massachusetts, 1971.

4. Data General Corporation, Tape Dump Program, 093-000059-01,
Southboro, Massachusetts, 1971.

5. Data General Corporation, How to Use the NOVA Computers,
Southboro, Massachusetts, 1971.

163

APPENDIX I

Conversion Codes for IBM 2741

Because some of the 2741 control characters do not have a

direct counterpart in the ASCII character set, an exact mapping was

not possible. Table XXII is a list of the 2741 control characters,

and their position in the ASCII table. This same mapping was used

in the 2741 conversion code tables used for the on-site model of the

emulator.

Table XXIII represents the conversion codes used by the Scenario

Assembler for 2741 EBCDIC odd parity code, with the parity bit as

the right-most bit. The "lab" conversion is used on the fixed-site

model of the Emulator when emulating an IBM 2741 terminal using

Data General's software driven data communications multiplexor. The

"field" conversion reverses the order of the bits, and is used on

the on-site model of the Emulator when emulating an IBM 2741 terminal

using Digital Computer Controls asynchronous line adapters.

164

Table XXII

Control Characters for IBM 2741 Terminal

2741 ASCII

Octal Character Octal Character

037

135

172

073

130

133

034

174

031

032

171

136

075

076

EOT = control D

BS = backspace

HT = horizontal tab

LF = line feed

RES = restore

NL = new line

UC = upper case

LC = lower case

PN = punch on

RS = reader stop

PF = punch off

IL = idle

EOB = end-of-block

PRE = prefix

004

010

011

012

014

015

016

017

022

023

024

026

027

033

EOT • end-of-transmission

BS • backspace

HT = horizontal tab

LF = line feed

FF = form feed

CR = carriage return

50 = shift out

51 = shift in

DC2 = device control 2

DC3 = device control 3

DC4 = device control 4

SYN = synchronous idle

ETB = end-of-block

ESC = escape

165

Table XXIII

Conversion Code Table used for IBM 2741 Terminal

2741* 2741 2741* 2741
ASCII ASCII LAB FIELD ASCII ASCII LAB FIELD

CHARACTER CODE CODE CODE CUARACTEB COPE CODE CODE

MIL 000 sp 040 U 001 100

soil 001 1 041 11 127 165

STX 002 II 042 H 026 064

ETX 003 f 043 r, 026 064

EOT 004 C 037 174 s 044 i. 127 165

ENQ 005 X 045 u 013 150

ACK 006 & 046 L 141 103

BEL 007 1 047 11 015 130

BS 010 C 135 135 (050 I! 023 144

in Oil C 172 0 57) 051 U 025 124

LF 012 C 073 156 * 052 U 020 004

VT 013 + 053 II 141 103

FF 014 C 130 015 » 054 L 067 166

OR 015 C 133 155 - 055 L 100 001

SO 016 C 034 034 . 056 1. 166 067

ST 017 C 174 037 / 057 I. 043 142

DLE 020 i 060 I. 025 124

DC1 021 I 061 L 002 040

DC2 022 C 031 114 2 062 L 004 020

DC3 023 C 032 054 3 063 L 007 160

DC4 024 C 171 117 4 064 I, 010 010

NAK 025 5 065 I. 013 150

SYN 026 C 136 075 6 066 1. 015 130

ETB 027 C 075 136 7 067 I. 016 070

CAN 030 8 070 L 020 004

EM 031 9 071 L 023 144

SUB 032 : 072 V 010 010

ESC 033 C 076 076
i 073 II 007 160

FS 034 < 074 u 004 020

CS 035 = 075 u 002 040

RS 036 > 076 II 016 070

VS 037 ? 077 11 043 14?

0 100 L 040 002

* C = control
u = upper case

L = lower case

166

Table XXIII

Conversion Code Table used for IBM 2741 Terminal (Concluded)

ASCII
CHARACTER

ASCII
CODE

2741
LAB
CODE

2741
FIELD
CODE

ASCII
CHARACTER

ASCTT
CODE

2741
Iv\B
CODE

2741
FTF1.D
CODE

A 101 11 142 043 .1 141 1. 142 043

n 102 11 144 023 1. 142 T. 144 023

c 103 II 147 163 c 143 1 147 163

n 104 U 150 013 el IV. 1 150 013

E 10r) U 153 153 e 145 1. 1 i3 153

F 106 u 155 133 f 146 1. 155 133

C 107 u 156 073 c 147 1 l',6 073

11 110 u 160 007 1. 150 1. 160 007

1 111 11 161 147 i 151 T, 163 147

J 112 1' 103 141 i 152 1 103 141

K 113 u 105 121 k 1 , i 1 10 , 12 1

I. 114 u 106 061 l 1 >4 L 106 061

M 115 u 111 111 m IV, 1 111 111

K 116 u 112 051 n 156 L 112 051

0 117 u 114 031 o 157 1 114 031

F 120 u 117 171 P 160 1. 1 1 l 171

Q 121 u 121 105 q 11,1 L 12 1 105

K 122 u 122 045 r 162 L 122 045

S 123 I' 045 122 s 163 1 045 122

T 124 u 046 062 t 164 1. 046 062

U 125 u 051 112 u 16:", 1, 051 112

V 126 u 052 052 V 166 1, 052 052

w 127 u 054 032 w 167 F 054 032

X 130 F 057 172 X 170 1. 057 172

Y 131 u 061 106 v 171 L 061 106

7. 132 u 062 046 z 172 F 062 046

[133 F 040 002 { HI

\ 134 u 166 067 1 174

] 135 } 175

• 136 u 067 166 ~ 176

• 137 F 100 001 DEL 177 1. 177 177

v 140

167

APPENDIX II

Sample Listings from Scenario Assembler

168

TEST

CONVERSION CODE • 1
ENi>OF-MbSSA(i£ CODE • 1

I 9 A 9
2 3 L FL3
3 3 R » 1

4 6 S PL3 CANOE
5 16 Q MITRE/EMULATE
6 33 L FL4
7 33 R 1 1

• 36 S FL4 LOGGED
9 47 A 6

10 52 • 13 0 R8
11 58 5 FILES
12 66 0 R8
13 70 0
14 73 L FL5
15 73 R 1 !
16 7o S FL5 »
17 83 Q REMOVE
18 92 L FL7
19 92 R l 1

2U 05 e FL7 «
2! mi Q BYE
22 l-!d L FL»
23 106 R 1 1
24 HI S FL3 ET
2b 118 c [QUIT

169

T£ST.IS INDICATOR vj
CONVERSION COOE • 1
END-OF-MESSAGE COOE.•

ALLOCATE 9

1 A

2 L FL3

3 R i i

0
122

4 S FL3 CANOE

6 ' a 12
e ' 123 e

10 * 3 1W3
12 ' 101 116
14 • l.!4 U:

S
C

AN
UE

& U MITRE/EMULATE

0 21
121 115

20 ' 111 124
22 I 122 1«5

57 195
115 125
114 lvil
124 1<J!>
13 Q

16 I
18 I

24 '
26 '
28 •
32 '
32 '

QM
IT
RE
/£
MU
LA
TE

6 L FL4

7 R "

b S

9 A

33 • 0 3
35 • 122 0 R

FL4 LOGGED

36 ' 0 13
36 ' 123 0 S
40 • 41 114 a
42 1 117 107 OG
44 • 107 103 GE
4b » 104 3 0

6

47 • 0 3
49 • 1*1 0 A
31 < 6 0

10 • 13 R8

170

52 • 0 6
54 • 53 15 •

56 ' 0 10

11 5 FILES

SB I 0 10
60 i 03 106 5F
62 • 111 114 II
64 ' 105 123 ES

12 0 R8

66 < 0 4
66 • 134 10

13 0

70 • 0 3
72 ' 117 0

14 L FL5

15 R

73
75

0
122

16 S FL5 N

78 i 123 0 S
60 ' 111 43 I»

17 Q REMOVE

62 I 0 12
64 « 121 122 QR
66 • 105 115 EM
66 ' 117 125 OV
00 < 105 15 E

16 I FL7

19 R II

02 I 0
04 • 122

3
0 R

20 8 FL7 »

05 1 0
07 ' 123
00 ' 134

6
0

43
S
00

21 0 BYE

101 * t
1U3 • 121
lw5'' KU

7
102
lu3

QB
YE

171

107 1 15 I

22 L FL3

23 R '•

iaa • a
lie • 124

3
a R

24 S FL8 £T

111 • 0
113 ' 123
115 ' 154
117 • 124

7
0

105
0

S
IE
T

25 C [QUIT

lie * o lo
i2kJ • \V.i 133
122 ' 121 125
124 > HI 124

Cl
QU
IT

172

SYMBOL TABLE
NUrtdE* OF ENTRIES

IS ES
LENGTH LABEL ADDRESS LINE NO.

9 FL3 3 2
3 F'.4 33 6
9 FL3 73 14
3 FL7 II II
3 FL» til 22

173

APPENDIX III

Listing of EQUIP.RB

174

•Ml EQUIP
,TITL COUIP
,tNT eaeaa.EH.Ei.ETHEC
,ENT ETENO
,ENT ETENT
,ENT E2
,ENT ETLEN

000101 ,OUSR A*101
000111 .OUSR I • 111
000123 ,OUSR 3*123
000134 .DUSK T-124
000139 ,OUSR U*123
000)2' ,0U9R W*127
000109 .OUSR E*109
000132 ,DUSR Z*132
000116 .DUSK N«l 16
000117 ,DUSR 0*117
000207 ,DU3R RT1*133, 1
000007 ,QUSR Bli*7,
000010 ,DUSR Bt.2'8,
000117 .DU3R PT1«0
000110 ,DU3R PT2*N
000004 .OUSR ODOLINEi i3* 16. *4
000064 .OUSR IBM2648I i3* 16, *4
000064 .OUSR IBH2260I I3*16,*4
aa0009 .OUSR IBH1093i IS
000006 .OUSR 02000*6
000007 .OUSR IBH2741I i?
000064 .OUSR 12741 -3- 16 .•4
000021 .OUSR ZASC1*1< '16 .•I
000026 ,DUSR ZASC6»1« '16 .•8
000042 • OUSR EASC2*2< '16 .•2
000049 .OUSR EA3C9*2« '16 ,•9
000009 ,TXTH

• ZREL
,NREl

9

000001000029 ETENO! EaEND-eaaaa
000011020109 ETRECl 20000«NE FUSED TO WRITE ET ON
000021001040 E9999>E0000+4
•••031000110 »H
•••04'000009*

E0000I
E0I

.•1

000091000000 0 IETR0
00006)041924 "C*2S6,^"T fETYPE
0M97'000000 0. JETIO
00010)000000 0 1CHILD
000111000032' El ILINK
00012'000000 0 IPARNT
000131000196 110. fETRAT
000141000000 0 rETOBP
00019I001097* E0M2 »ETEOH
000161000000 0 IETRSP
000171000000 a >ETPAO
00020*000000 0 ;RRING,PWINC
•••211000037 0*296, ,•37 •ETLGA, ETUGN
•••22iai9lU ZASC6< '236.+I ITERMT, 9TATI
000231004410 11*296,Oil IPORTOI PORTI
000241000000 0*296, ,•• ;SPRTO, SPRTI
000291000200 0*296, ,•166 ISUTAO, ETINO

175

(1002 EQUIP
00020*004132
000271000000
011090'000X01
000311000000

00032*000000
000331042123
00034*000010
000331000000
000301000037'
00037*000000
000401000159
00041*000000
000421001009*
00043*000000
00044*000000
00049*000000
00040*000037
00047I0211H
00000*024490
000311000401
00092*007400
00093*004109
00094*000000
00099*000000
00090*000000

00097 1000000
00000*052131
00001*000001
00002*000000
00003*000104*
00064*000000
00009*000207
00000*000000
000071001073*
000701000000
00071*000000
00072*000000
00073*000037
00074I0321U
00079*021442
00070*000401
00077*017000
00100*003917
00101*020071
00102*000000
00103*001107*

001041000000
00105*052131
00100*000002
00107*000000
00110*000131'
00111*000000
00112*000207
00113*000000
00114*001101*

fl.»250,*Z IBYTEL, PARTY
1,»1*IB2*0B7*0 IETDIO
1,-1*IB2*0B7*0 JfcTDOD
0 IETOOA

tUENDI
Ell

0 IETR0
"D*256,*«S IETYPE
14, IETID
0 •CHILD
E2 ILINK
0 IPARNT
0110, IETRAT
0 IET8BP
E0M3 •ETEOM
0 •ETR8P
0 fETPAO
0 |RRING,PRING
0.236.•3 7 lETLGA, ETLGN
EASC2«256,*l ITERMT, 3TATI
91*290,*50 IPORTO, PORTI
1*238,*1 I3PRT0, OPRTl
15,«256,*0B8 ISUTAD, ETIND
8,*256,*E IBYTEL, PARTY
1,-1*1B2*0B7*0 IETDIO
1,»1*1B2*0B7*0 IETDOU
0 lETDOA

E2l
0 IETR0
"7*256,*"Y IETYPE
1. IETID
0 •CHILD
E3 ILINK
0 IPARNT
RT1 IETRAT
0 •ETOBP
E0M4 IETEOM
0 IETRSP
0 IETPAO
0 |RRING,PRING
0*296.*37 lETLGA, ETLGN
12741*296,•! ITERMT, STATI
43*296,*42 IPORTO, PORTI
1*236,+ 1 ISPRTO, 3PRTX
30,«296,+0B8 IIUTAD, ETIND
BL1*296,*PT1 IBVTEL, PARTY
2,-l*lH2*00,B7« 71 IETDIO
4,«l*lB2«00,B7+66 (ETD00
OOOOA IETOOA

E3l
0 IETR0
"T*250,*''Y IETYPE
2, IETID
0 'CHILD

i E4 ILINK
0 IPARNT
RT1 IETRAT
0 IETQBP

i E0M5 IETEOM

176

0003 tQUIP
001191000004 0 fETRSP

001161000000 0 lETPAO

00117*000000 0 |RRING,PRIN8
•0130)000037 0*256,*37 IETIGA, ETLGN

001211032111 12741*296.*I ITERMT, STATI

0012H021442 43*236,*42 IPORTO, POHTI

00123)001002 2*258, *2 ISPRTO, SPRTI

00124(017400 31,*238,*0B8 ISUTAO, ETIND

00129(003517 BL1*296,*PT1 IBYTEL, PARTY
•01201021071 2,-i*lB2*02,B7*71 IETDIO

••127*062006 4,-l*lB2*04,B7+b6 lETDOD
•0130*001107* D066A lETDOA

E4I
001311000000 0 »ETR0
001321092131 «T*256,*»Y IETYPE
001331000003 3. IETIU
001341000000 0 ICHILD
001391000156* E4A IlINK

001361000000 0 fPARNT
00137)000207 RT1 IETRAT
001401000000 0 IETQBP
00141*001051' EOMl IETEOM
00142*000000 0 JETRSP
00143*000000 0 lETPAD
001441000000 0 |RRING,PHING
00145*000037 0*256,+37 IETUGA, ETLGN
00146*032111 12741*256,*I ITERMT, STATI
00147*021442 43*236.*42 IPORTO, PORT1
00150*001403 3*236,*3 ISPRTO, SPRTI
•0191*020000 32,*236,*0B8 ISUTAD, ETIND
•0152*003517 BU1*256,*PT1 IBYTEL, PARTY
00153*022071 2,-1*182+04,B7 • 71 IETDIO
00134*064066 4,-l*lB2*08.B7 • 66 lETDOD
00155*001107' 0066A IfcTOOA

E4AI
001561000000 0 IETR0
00157*052131 "T«256,*«Y IETYPE
00160*000004 4, IETIO
00161 1000000 0 ICHILD
00162*000203' E13 ILINK
0ll63'0fl0000 0 IPARNT
••164'0B«207 RT1 IETRAT
•01651000000 0 IETQBP
00166'a01051* EOMl IETEOM
001071000000 0 IETRSP
•01701000000 0 IETPAD
00171*000000 0 |RRING,PRINO
001721000037 0*236,*37 IETLGA, ETLGN
00173*032111 12741*236,*! ITERHT, STATI
00174*021442 43*236,442 IPORTO, PORTI
00175*002004 4*256,*4 ISPRTO, SPRTI
••176101040a 29,*236,*0B8 ISUTADI ETIND
0M177>B03917 Btl*256,+PT1 IBYTEL, PARTY
0020fl*023071 2,-l*lB2*06,B7*71 ICTDIO
•0201*006060 4,-l*lB2*12,B7*b6 IETDOD
00202'00U07* D066A lETDOA

E13I
••203*000000 0 IETR0
00204*052131 »T«256.*"Y IETYPE

177

0004 EQUIP
00209*000003 5. IETIO
09806)090100 0 /CHILD
902071090330' E14 (LINK

09210*000000 0 IPARNT
00211*000307 RT1 IETRAT

00212*000000 0 lETOBP
00219*001031* E0M1 IETCOH
00214*000000 0 lETRSP
09215*000000 0 IETPAO
00216*090000 0 IRRINGIPRINO

00217*000037 0*238,*37 IETLGA, ETLON
00220*092111 12741*296,+ 1 ITERHT, STATI
00221*021442 49*256,+ 42 IPORTO, PORTI
00222*002409 5*236,+ 3 ISPRTO, SPRTI
09223*020400 93,*256,*0B6 >SUTAD, ETIND
00224*003917 011*296,*PT1 IBYTEL, PARTY
00223*024071 2,-l*lB2+08,B7*71 lETDID
00226*070066 4,-l*lB2+16,B7*68 •ETDOD
00227*001110* 00666 IETDOA

E14I
00230*000000 0 IETR0
00231*052131 »T*296,*"Y IETYPE
00292*000006 6. IETIO
00233*000000 0 /CHILD
99234*000299* E15 ILINK
00239*000000 0 IPARNT
00236*000207 RT1 IETRAT
00237*000000 0 lETOBP
00240*091991' E0M1 IETEOM
00241*000000 0 IETRSP
00242*000000 0 IETPAD
00243*000000 0 »RRING,PRING
00244*000037 0*256,+37 IETLGA, ETLGN
00249*032111 12741*256,+1 ITERMT, STATI
00240*021442 4 3*256,+42 IPORTO, PORTI
00247*009006 6*256,*6 ISPRTO, 8PRTI
09230*021999 94,*296,*0B6 >SUTAD, ETIND
00251*003917 BH*296,*PT1 IBYTEL, PARTY
00252*029071 2,*1*1B2«10,B7*71 IETDID
00253*072066 4, «1*1B2*20,B7 + 66 IETDOD
00254*001110* D066B IETDOA

Etai
00255*000900 0 IETR0
99256*092191 "T*256,*"Y IETYPE
00297*000007 7. IETID
00260*000090 0 1CHILD
00261*000902* E16 (LINK
00262*000000 0 IPARNT
00269*000207 RT1 IETRAT
00264*000000 0 lETOBP
00265*001091* E0M1 IETEOM
00266*000000 0 IETRSP
00267*000000 0 IETPAO
00270*000000 0 |RRING,PRING
00271*000097 0*296,+37 IETLGA, ETLGN
00272*092111 12741*296,+ 1 ITERHT, 8TATI
00279*021442 43*238,+ 42 IPORTO, PORTI
00274*009407 7*296,*7 ISPRTO, SPRTI
00279*021400 39,*296,+0B6 ISUTAD, ETIND

178

0005 EQUIP
00276*003317
00277'02607l
00300*074066
•0901*001110'

00302*000000
90303)092131
003041000019
0030BI000000
003061000327'
00307*000000
09310*000307
003111000000
00312*091991'
00313*000990
00314*000000
00319*099990
00316*009937
003171032111
00320*021442
00321 '004010
09322*022099
90323*003317
00324*027071
00329*076066
00326*001110'

E10I

09327*009000
00330*092131
00331*099011
99332*999999
09333*909394'
09334*099900
00339*909207
903361099999
00337*001091'
99340*000000
00341*090900
99942'000000
90343*909937
99344*032111
•9349*022444
•0346*000401
••347*022400
00390*003917
00391*030971
00392*060067
00393*001111'

00394*000000
00399*092131
00396*000012
00397*000000
00300*000401*
••301'000000
00362*000207
00363)000000
••364*001091*
00369*000000

ei7i

Eiei

BLl*296,*PTl |BYTEL# PARTY
2,-l*lB2*12,B7*71 IET010
4,-lMB2*24,»7*66 lETOUD
DQ66B IETDOA

0 |ET»0
"T*296,*'*Y IETYPE
8i IETID
0 1 CHILD
E17 ILINK
0 IPARNT
RT1 IETRAT
0 IETQBP
E0M1 JETEOM
0 IETR8P
0 IETPAD
0 IRRINGIPKING

0*256,*37 lETLC*, ETLGN
12741*296,+1 ITERHT, 8TATI
43*296,*42 IPORTO, PORTI
8,»236,*8, iSPRTO, 8PRTI
36,*256,*0BB /SUTAD, ETIND
BL1*256,*PT1 IBYTEL, PARTY
2.-l*lB2*14,B7+71 •ETOIO
4,»1*1B2*28,B7 • 66 IET0OD
0066B IETDOA

0 JETRO
•T*290,*-»Y IETYPE
9, IETID
0 ICHILD
E18 ILINK
0 IPARNT
RT1 IETRAT
0 IETQBP
E0H1 lETEOM
• IITR8P
0 IETPAD
0 |RRING,PRING
0*236,*37 IETLGA, ETLGN
12741*296,tl ITERHT, STATI
49*296,«44 iPORTOr PORTI
1*296,*1 ISPRTO, 8PRTI
37,*296,*0B8 ISUTAD, ETIND
Btl*2B6,*PTl IBYTELI PARTY
21»l*iB2*16,B7*7l IETDIO
4,«1*1B2*00,B7*67 IETOOD
D067A IET0OA

0 IETR0
»T*296,*',Y IETYPE
10. IETID
0 ICHILO
E19 ILINK
0 IPARNT
RT1 IETRAT
• IETQBP
E0M1 lETEOM
0 IETR8P

179

0006 tOUIP
00366 1000000 a ItTPAO
003671000000 0 |RRING,PRING
00370 '000037 0*25b,*37 IETLGA, ETLGN
00371'P32111 12741*256,• ! ITERMT, STAT1
00372'022444 45*256,*44 IPORTO, PORTI
00373*001002 2*236,+ 2 ISPRTO, SPRTI
00374(023000 36,*256,*0B8 ISUTAO, ETINO
00375'003517 BL1*256,*PT1 IBYTEL, PARTY
00376*031071 2,-l*lB2*18,B7« • 71 IETOIO
00977(062067 4,-l*lB2*04,B7< • 67 lETDOU
004001001111' 0067A IETDOA

E19I
00401 1000000 0 IETR0
004021052131 "T*2S6,*"Y RETYPE
00403*000013 11. IETIO
004041000000 0 ICHILO
004051000426' E20 ILINK
004061000000 0 |PARNT
004071000207 RTl IETRAT
004101000000 0 IETOBP
00411 1001031 • EOMl IETEOM
004121000000 0 lETRSP
004131000000 0 IETPAO
004141000000 0 |RRING,PRING
004131000037 0*256,*37 IETLGA, ETLGN

004161032111 12741*236,*I ITERMT, STAT1
00417*022444 45*256,*44 IPORTO, PORTI
00420*001403 3*256,*3 ISPRTO, SPRTI
004211023400 39,*256,*0B8 ISUTAO, ETINO
00422)003517 BL1*256,*PTI IBYTEL, PARTY
004231032071 2,-1*182*20,67 •71 IETOIO
004241064067 4,-l«lB2*08,B7*67 lETDOO
004251001111" D067A IETDOA

E20I
004261000000 0 |ETR0
004271032131 "T*23e,*"Y IETYPE
004301000014 12. IETIO
004311000000 0 ICHILO
00432)000453* E21 ILINK
00433*000000 0 IPARNT
004341000207 RT1 IETRAT
00433*000000 0 IETQBP
00436*001051* E011 IETEOM
00437*000000 0 leTRSP
00440*000000 0 IETPAO
00441'000000 0 |RRING,PRINQ
00442*000037 0*236,«37 JETLGA, ETLBN
004431032111 12741*256,*I ITERMT. STATI
00444*022444 45*256,*44 IPORTO, PORTI
004431002004 4*256,*4 ISPRTO, SPRTI
00446*024000 40,«256,*0B8 ISUTAD. ETINO
00447*003317 BL1«256,*PTI IBYTEL. PARTY
00450*033071 2,-l*lB2*22,B7*71 IETOIO
00451*066067 4,-l*lB2*12,B7 • 67 IET0OO
00452*001111' 0067* IETDOA

E21I
00453*000000 0 IETR0
00454*052131 HT*256,*»Y IETYPE
00455*000015 13, IETID

180

1*007 EQUIP
00436'000000 0 ICMILO
004971000300) E22 /LINK
004601000000 0 IPARNT
00461(000207 RT1 IETRAT
00462)000000 0 lETQBP
0046JI00J03P E0M1 IETEOM
004641000000 0 IETRSP
004691000000 0 lETPAD
004661000000 0 |RRINGrPRING
004671000037 0*256,«37 IETLGA, ETLGN
004701032M1 12741*296.*I •TERM, 9TATI
004711022444 45*256,*44 IPORTO, PORTI
004721002409 5*236,«9 ISPRTO, 8PRTI
004731024400 4},*296,*0B8 ;SUTAD, ETIND
004741003317 BL1«296,*PT1 IBYTEL, PARTY
00475*034071 2,-1*182*24,B7*7l IETOIO
004701070097 4,-.l«tB2*16,87*67 IETDOO
004771001112' 00C79 lETOOA

E22I
003001000000 0 IETR0
005011052131 »T*259,*"Y IETYPE
005021000016 14, lETID
005031000000 0 ICMILD
0050410009291 E23 ILINK
009091000000 0 IPARNT
009061000207 RTl IETRAT
00907*000000 0 lETQBP
00910100103P E0M1 IETEOM
009111000000 0 IETRSP
009121000000 0 IETPAO
009131000000 0 |RRING,PRING
009141000037 0*236,*37 IETLGA, ETLGN
00915I032U1 12741*256,*I ITERMT, STATI
•00161022444 45*236,*44 IPORTO, PORTI
009171003006 6*256,*6 ISPRTO, SPRTI
009201029000 42,«258,*0B8 ISUTAO, ETIND
009211003917 BL1*296,*PT1 IBYTEL, PARTY
009221039071 2,-l*182*26,B/*7l IETOIO
009231072067 4,-t*lB2*20,87*67 IETOOD
00924I00U12* D067B IETOOA

E23I
009291000000 0 IETR0
009261092131 "T*256.*"Y IETYPE
009271000017 is. IETID
00930*000000 0 ICMILO
009311000992' E24 ILINK
00S32'000000 0 IPARNT
009331000207 RT1 IETRAT
00934)000000 0 IETQBP
009391001091' EOMl IETEOM
00936(000000 0 IETRSP
009371000000 0 IETPAO
00940)000000 0 |RRING,PRING
00941*000037 0*256, *i7 IETLGA, ETLGN
00942)032111 12741*296,• ! ITERMT, STATI
00943)022444 45*256,+ 44 IPORTO, PORTI
00944)003407 7*296,*7 ISPRTO, SPRTI
00949*029400 43,*256,+0B8 ISUTAO, ETIND
00946*003917 BCt*236,*PTl IBYTEL, PARTY

181

0008 EQUIP
00547*030071
00550'0740O7
00951'001112'

00952*000000
00993*092131
009941000020
00995*000000
00599*000577'
00597)000000
00960*000207
00961*000000
00562*001091 '
00963*000000
00964*000000
00965*000000
00966*000037
00967*032111
00570*022444
00571*004010
00572*026000
00573*003517
00574*037071
00979*076067
00976*001112'

00977*000000
00600*046110
00001*000009
00002*000024*
00«il'0i0000
00604*000000
00609*004940
00006*000000
00607*001091*
00010*000000
00011*000000
00012*000000
00013*000037
00014*032111
00019*015031
00616*000000
00617*025400
00620*004116
006211000000
00622*000000
00023*000000

00024*000000
00025*041510
00020*000000
00027*000070'
00030*000051'
00031*000577'
00632*004540
00033*000000
00034*001051'
00035*000000
000361000000

£241

E3:

E6:

2,-l«lB2+28,B7+71 IETDID
4,-l+lB2+24,B7*67 IETDUD
D067B IETDOA

0 IETR0
«T*256,+"Y IETYPC
16, IETIO
0 •CHILD
E5 ;LINK
0 IPARNT
RTi IETRAT
0 IETOBP
EOMl IETEOM
0 IETR3P
0 lETPAD
0 |RRING,PRING
0*256,+ 37 IETLGA, ETLGN
12741*250,+ 1 ITERMT, 8TATI
45*256,+44 IPORTQ, PORTI
8,*256,+8, ISPRTO, 3PRTI
44,*256,+0B8 ISUTAD, ETIND
BU + 250.+PT1 IBYTEl, PARTY
2,-l*lB2+30,B7+7l ;ETDIO
4,»l*lB2+28,B7+67 lETDOD
D067B IETDOA

0 IETR0
1*1*856,•"N IETYPE

5, IETID
E6 ICMIUD
0 IllNK
0 IPARNT
2400. IETRAT
0 IETOBP
Eoni IETEOM
0 IETR3P
0 lETPAD
0 |RRING,PRING
0*296,+37 IETLGA, ETUGN
DDDLINE*256,+I ITERNT, 3TATI
32*256,+31 IPORTO, PORTI
0 + 256, +0 J3PRT0, 3PRTI
43,*256,+0B8 fSUTAD, ETINO
BL2«256,+PT2 IBYTfcL. PARTY
l,-<l*lB2 + 0B7 + 0 lETOID
l,-l*lB2+0B7+0 lETDOO
0 IETDOA

0 IETR0
"C*256,+"N IETYPE

0. IETIO
E8 ICMILO
E7 ILINK
E5 IPARNT
2400, IETRAT

0 IETOBP
EOMl leTEOM
0 IETRSP
0 IETPAD

182

00(40 EQUIP
006371000000
000401000097
00641I0331U
00642)019031
006431000000
00644*047000
006491004116
00646*000000
006471000000
00690*000000

006911000000
00692)041916
00693)000007
006941000779'
006991000000
00096)0009771
006971004940
00660*000000
006611001091 '
000621000000
006631000000
00664*000000
00669*000037
00666*032129
00667*019031
00670*000000
00671 ' 124(900
00672*004116
00673*000000
00674*000000
00679*000000

00676*000000
00677*042123
00700*000010
00701*000000
00702*000723'
00709*000024*
00704*004940
00709*000000
00706*001091 *
00707*000000
00710*000000
00711*000000
00712*000037
00713*032111
00714*019031
00719*000000
00716*120000
00717*004110
00720*000000
10721*000000
00722*000000

00723*000000
00724*042123
00729*000011
00726*000000

E7I

E81

E9I

0 (WRING,PRIMG
0*256,*37 lETLGA, ETLGN
IBM2848*256,*I ITERHT, STATI
32*256.+31 |PORTO» PORTI
0*256,*0 ISPRTO, SPRTI
116*296,*0B8 ISUTAD, ETINO
BL2*296,+PT2 IBYTELI PARTY
1,-1*1B2*0B7*0 IETOIO
1,-1*1B2*0B7*0 IETOOD
0 IETDOA

0 IETR0
"C*296,*»N IETYPE
7, IETIO
Ell •CHILD
0 ILINK
E9 IPARNT
2400, IETRAT
0 IETQBP
E0M1 IETEOM
0 IETRSP
0 IETPAD
0 |RRING»PRING
0*296,*37 IETLCA, ETLGN
IBM2848«256,*U ITERMT, STATI
32*256.+31 IPORTO, PORTI
0*256,*0 ISPRTO, SPRTI
290*296,+ 0B8 fSUTAD, ETINO
BL2*256,+PT2 |BYTEl, PARTY
1,«1*1B2«0B7«0 lETOIO
1,-1*1B2*0U7*0 IETOOD
0 IETDOA

0 • ETR0
•»D*256,*"S IETYPE
•• IETIO
0 •CHILD
EO ILINK
E6 IPARNT
2400, IETRAT
0 IETOBP
E0M1 IETEOM
0 IETR9P
0 IETPAD
0 IRRINGIPRING

0*296,*37 lETLGA, ETLGN
XBH2260*29O,«I ITERMT, STATI
32*290,*31 IPORTO, PORTI
0*296,*0 ISPRTOi SPRTI
240*296,*0BB ISUTAD, ETIND
BL2*256,*PT2 IBYTELI PARTY
l,-l*182*0B7+0 lETDID
1,-1*1B2+0B7*0 IETOOD
0 IETDOA

0 IETR0
"0*296,••S IETYPE
». IETID
0 ICHILO

183

0010 EQUIP

0X787•eversd•
00730*000624'
007311004940
007321000000
007331001031'
00734)000000
00735*000000
00736*000000
00737(000037
00740)032111
00741'tfl303l
00742<000000
00743*120400
00744*00411*3
00749*000000
00746*000000
00747*000000

00730*000000
00731'090124
00792*000012
00753*000000
00794*000000
00795*000624'
00796*000226
00797*000000
00760*001091'
007011000000
00762*000000
00763*000000
00764*000037
00765*002929
00766*019000
00767*000000
00770*121000
00771*004119
00772*000000
00773*000000
00774*000000

00779*000000
00776*042123
00777*000013
01000*000000
01001*001022'
01002*000631'
01003*004940
01004*000000
01009*001091*
010061000000
01007*000000
01010*000000
01011*000037
01012*032129
01013*019031
01014*000000
01019*122000
01016*004116
01017*010000

tu:

Eli:

E10 ILINK
E6 IPARNT

2400, IETRAT

0 IETQBP
EOMl IETEOM

0 IETRSP
0 lETPAD
0 |RRING,PRING
0*296,*37 ItTLGA, ETLGN
IBM2260*256,+I ITERMT, STATI

32*256,*31 IPORTOi PORTI
0*296,*0 ISPRTOI 8PRTI
241*296,t0B6 ISUTAD, ETIND
Bl.2*256,*PT2 IBYTEL, PARTY
l,-l«lB2t0B7*0 IfcTDIO
1,-1*1B2*0U7*0 ItTDOO
0 lETDOA

0 IETR0
"P*256, + ,,T JETYPE

10. IETID
0 •CHILD

* ILINK
E6 JPARNT

150, IETRAT

0 IETQBP

EOMl IETEOM
0 IETRSP
0 lETPAD
0 |RRING|PRING
0*256,*37 (ETU5A, LTLCN

IBM103J*256,*U ITCRMT, STATI

32*236,»0 IPORTO, PORTI
0*256,*0 ISPRTO, 8PRTI
242*296,+0S8 ISUTAOi ETlNO
812*256,*PT2 IBYTEL, PARTY
1,»1*1B2+0B7*0 lETDID
1,-1*1B2*0B7*0 IETDOD
0 lETDOA

0 IETR0
"0*296,•HS RETYPE

ti. IETID
0 1 CHILD

112 ILINK
E7 IPARNT
2400, IETRAT

0 IETQBP
EOMl IETEOM

0 IETRSP

0 lETPAO
0 |RRINGrPRING
0*296,*37 lEUGA, ETUGN
IBH2260*296.*U JTERMT, STATI
32«25«, + 31 IPORTOi PORTI
0*256, *0 ISPRTO, SPRTI
244*256,*0B8 ISUTAD. ETIND
BL2*236,*PT2 IBYTEL, PARTY
1,-1*1B2*0B7*0 IETOID

184

0811 EQUIP
aia20>eaeeea 1,-1«1B2*0B7*0 fCTOOO
010211080000

E12I
0 IETDO*

010221000008 0 >ETR0
81023)042123 "0*296,•"S »ETYPE
01024)000014 12. IETID
aie20<aaeeaa 0 ICHILD
01026)0*0000 0 JLINK
aia27i0U06si' E7 IPARNT
01030)004340 2400, »ETRAT

0103P000000 0 IETQBP
010321001031' E0M1 IETEOM
01033)000000 0 IETR3P
01034)000008 ki IETPAD
81039)000000 0 IHHING.PRING
01036)000037 0*296,*37 lETLGA, ETLSN
aia37ia32t29 IBM2260*236,*U 1TERHT, STATI
81048(019031 32*256,•31 IPORTO, PORT1
018411000080 0*296,*0 ISPRTO, SPRTI
01042)122408 249*296, *0B8 I3UTAD, ETINO
018431804110 BL2«296,*PT2 IBYTEL. PARTY
010441000800 1,»1*1B2*0B7«0 ;ETDID
818491808000 1,-1*1B2+0B7*0 IfcTDOD
01046*000880

£99991
0 IETDOA

808829 LEN •E0ENQ-E0000
810471808032 ETENT: E9999-E0000/LEN
81890*000029 ETIENI LEN
010911000037 EOM1 I 37
01092U77777 •1
018931177777 -1
81894)177777 -1
01099)177777 •1
81896)177777 -1
81897)808012 E0M2I 12
81860)880089 9
010611000030 30
81062>177777 -1
01063)177777 -1
01064U77777 '1
01069)177777 E0H3I -1
01066)177777 •1
01067)177777 -1
01070)177777 •1
0107P177777 •1
01072H77777 -1
01073*000037 E0H4: 37
01074)177777 -1
01079>177777 -1
01876)177777 •t
01077)177777 •t
01100)177777 -1
01101)000037 E0H9I 37
01102)000043 43
01103)177777 •1
01104)177777 • 1
01109)177777 •1
01106)177777 -1
01107)000000 0066*1 0

185

0012 EQUIP
01 lit)'0000014 D066BI
01111 '000000 0067 M
01112*000000 0067BI

0
0
0
,EN0

186

0*19 EQUIP
D066A 0011071
D00S8 001110'
D067A 001111'
0067B 001118'
E0 000009'
E0000 000009'
E0END 000032'
El 000032*
E10 000790'
Ell 000779'
E12 001022'
E13 000203'
E14 000230'
E19 000299'
E18 000302'
Et7 000327'
E18 000394'
E1S 000401'
E2 000097 '
120 000426'
E21 000493'
£22 000900'
£23 000929'
E24 000992'
(3 000104'
E4 000131'
E4A 000196'
E5 000977'
EC 000624'
E7 000691•
EB 000676'
EO 000723'
E9099 001047'
EOM1 001091*
EOM2 001097*
EOM3 001069'
E0H4 001073*
E0H5 001101'
ETENO 000000'
ETENT 001047*
ETLEN 001090*
ETREC 000001'
LEN 000029

187

APPENDIX IV

DATAR Listings

188

USER IOTUT: DATAR/Bp

BRIEF SUM«AWY PF NUN FT/ PAGE

0E* tKHUN "ESS.Iitl

TY13 u2" »LTU"i TintN
TYlO 114 Otvllt STJ^»ED
TY1S ,)2< ACTION 1MEV
CTB *2,) »CTIC'(T»*t>.
TYlo J2'J ACTICv T**fcx
TYlo k)24 »CUUN TutN
TYlf> b*<* btHl'>0 SCiEOIJLt

bHitf SUWAHY OF HUM FT; PACE a

TCHM1SALSI J

tL*PStO TlHtl 29.79336 MESSAGES! 139 RECORQSl 14

CHARACTERS: TOTAL! 172 Rl 88 01 88 UN-Ri •

RECUND TYPES; hi 3 Si 118 01 5
Rl 9 Cl 7 El 8 UNSOLXCXTEOI •

TlntSl AVb RtSPi 0,06 HAX RESPl 30,62 TERHINAL»HAXI TY IS
PERCENT CPUI 1,89 TOTAL CPUI 96969

bCE*AhIU INSTMUCTIONS USEDI

81 481 291 23 II 311 4
• I 1CI 401 22 J I 21 01 a
R I 6xl 1 0*1 8 L*l 2 0*1 3
R*l 4

CO**ANUS ISSUED!

OUlT I 1 START I 3 SUB II
ENU-OF-FILE

Figure 26. Brief Summary Output Format

189

USLR INfLT: OATAB/D'SJ

ritvlCrs "t^in't'i 4*t 1

1 u«
J Ml
S TfJ

1» IT|»
1-4 L O

i'ti»iLtu s.i'.ii » Mill n; r»6t ?

fC«^|«*k l"r ii *»iL*i lu*i Ct-

«FXa*tiU H'lM »l J si •* Ul *
»i 4 bi J ci I uNsoucneei

Mr-til •<)• *»1»*l ,>i -**i -tSfi Vti*r

wutt l i »f*Hf t 7

uii.ti.iu :,I-»M' !>(• «L'< M; Pkit i

1t»'ih*t 1.1*1 It |f .T lHUt TT1S

HtLOMD Ttctsi «: J it /ft 31 1
m 4 tt a ci t uN&okiciTrui >

llhLkl • •(, MJ'I I. ,14 '»* "15^; J*,o^

»Ct •flu i..sThuLT m- i U»K< :

II *4 M I 1 F I I lit l«| i
C I V il I *»' J I lb U I 2 »» I i
||*| 1 L* I < '!•! J «- I 4

tn««ii*..o.s lk»ijtui

IT *<. i i i sna t i

utuuk" »•*..«*.*» II» uuh fir tubt 4

MtL'iHU 4*1*131 M| « it J4 Q| J
Ml V ri d t I 4 uhSUUICUCOl fl

Tl»f.»l *Vti "*tSPi ...17 "li wtS*l »,17

• I it * I "It I | I 3 C I I
Ut V J I ewt 4 • I 1 0*1 7

>U* t -4

J 1*1

ID L'O

Figure 27. Detailed Summary Output Format

190

MI '» •••

H-CC ' •"•l

rfl
fT 1 n
TU
TC
* J
'3
Tw * J
* ii *
13
ru M
TO
•:

M
It * '
Tc

JJ 1 '3

,L,,f 6» •»•»>•»' *>-. »S*Ci*'tl-t' » -- ''»!•

J'« •«

t< •• '

11 ll ia i» »•!»

• il«t,*H M-tl iltCI)

Figure 28. Histogram Output Format

191

USt» INPUT: D»tA»/L/T/0/llj

ocucii atuutmu tut i »««
1 CTt
2 DSU
J THIS
• mo

LOGICAL otClui i.-i To Hi*

TC«*I»»»LI CTo
0 (Nane far CTJ)

LOGIOL »tco«r'j HI TO ii*

TEHfINALI TT13

144
040 44
'71 49
*** 00* lo.'

103

l
242 402 04. ••;> .100 122 ouo 430 272 144 090 069 u 71 399 999 191
072 097 .-.'. .'0.' .72 3D, OO,. "i til >/i „! i 293 433 ITi III 239
.20 434 12, .-3'. 133 122 „ol 441 174 429 413 133 437 994

1 <>4(u** *«e 123 040 440 424 499 499 799 994 494 999 090
7 440 .'0.. 074 031 ,4> 444 494 444 432 293 933 474 999 239
4 102 .11

40 441 49)1 '24 >,•,- U3 ,,>. ,•?,. 49; 449 000 924 499 999 999 994
74 122 040 00* •''* 131 1H 404 •'*« 449 432 293 433 479 499 242

"44 007 040 00k 043 411 Hit 444
109

444 001 00. .123 4h0 123 044 440 499 944 444 999 994 999 999 499
0/3 244 .-,), to.- 070 33u ^** 400 o20 00o 432 263 433 970 999 231
094 003 194 ?.'-. 012 (pro

107
444 004 09>- OJJ 0t,» 121 .-.•<" 0bo 149 433 000 992 277 393 991 099
077 200 404 40* 3oo 104 049 444 •-.•.' 449 432 263 233 479 994 239
'29 ,)i 043 040 142 112 130 142 122 130 491 122 133 449 117 114
112 043 133 133 037 000

104
440 001 00o o34 .SO 123 090 990 099 000 949 994 099 900 090 900
o77 430 040 o02 3ol 103 40o 400 900 900 932 263 033 970 090 230
004 934 121 -'20 0)4 443 046 142 112 134 142 12] 139 401 122 133
043 117 114 112 »43 133 133 4374

LOtldL NtCOHUl 141 TO 110

Te0"I*ALI TY10

til
044 404 O0O 0*7 000 121 400 036 233 343 400 000 933 333 090 930
233 164 i,«4 00.1 434 127 <oo 000 040 000 o32 3t0 093 027 999 919
020 034 141 031 133 122 401 441 174 420 413 133 437 490

U2
044 041 041: 03w -.00 123 400 400 009 444 000 000 900 909 999 996
2J2 230 0*0 ooo 433 023 .14. 440 400 000 032 310 033 127 009 919
000 020 122 .120 034 121 131 133 122 061 401 174 029 013 133 0374

109
242 00* O0o va 440 122 440 464 130 311 440 062 336 007 000 062
330 000 440 o»2 337 143 ooo 400 400 040 432 314 033 027 090 030
0*9 034 043 040 142 112 U30 142 122 134 001 122 139 449 117 114
112 449 193 133 J37 000

110
04o 001 OOO 023 000 123 000 040 000 000 090 909 099 009 999 692
916 303 U0r 002 34o 070 440 400 409 040 092 310 099 927 090 930
000 009 07.- 041 014 004

F0LL0>1»C Ut«ICt9 441 I-H.T1.U Pltl

i 0914

ino-uF-MLt

Figure 29. Octal Tape Output Format

192

USER INSUT: DATAR/l MCORDS/Q/R STTO^

T IT-API UAL LIM r>» 6-1* 4i.1T:- t'FSiAGF 36 »AGF I

• Fr ll'Vi TAiK 1*5". 1CFN ifF^i-in npv
TY? . SIAt-T Mai 1 r,V|. •PCs NAfF in lf»T

,,
6r 5*4-3'' 6 if-::'-\ 61 f 3 4 37 IP F. P TYI f y

F 61 t 1 63" »M?',S3 AM?(<r-3 PZ B . f TYI (•Ok»439SOP L'SCU

N Yl'APS H.I53
MP«a FNTFF- LOGON

0 66 141"4 661 3P"? 69"F7F1 JS Fl.? TYI »L0AO\ 1 S"1?! 7 I.

{DESK) T(99) NA<
HAGUES)

F 6937672 (0TS6.6 *9?5f S6 S9 PL? TYI a
F 7-i55f9P 7?f 57H 7?rsoii <! F itP TYI ENTEF PASSlvOF-P FO

P 1S^?I7
K 7313*64 73757 IF 73759:>F • 9 F-.vp 1 Y 1
o 77IF"5« 7 7 ir--< 5 1145/1*3 1 2 MAIM SO ly-3 »X

K 7774l?3 7F17 5F-I 7 f: 17 7 9 ? n MAINTSO TY? • Ok
r 7411269 7FI 5PH 7P|Ai|3 P9 Pi-.P 1 Yl

00000000
xxxxxxxx

• 7S14J-?S 792P<"37 79?F?S" ?3 MAINTkO TY? 439P9P OSCUN YOA
K 79146^4 7 94P||5 704F3S5 T3 ;'o INISO TY? OS
0 791776R 7917711 797154* 117 Pi.? 1 Yl IPASSWORD
r. 7F424P3 7F 5f tr-o 7975IFS !•-;. [..£ TYI
h 7954761 P"14625 F'I"4S3S M MAINIkfl TY? IK.I
h *"I"3°I9" f'4bf 47 n46->56 1 22 Fv.2 1 Yl II

li Mil ?7" =151469 P-?51 6F" P3 MAtNTSO 1Y2 530?C»A
k SO ST 4?" S|?SF62 SIS»"7I in Pfc? TYI
R STSPI 13 SI4SIS4 PI4S364 23 MO INI SO TY? ENTF.fc LOGON
R SI 62311 S67S966 P676176 122 Fk2 TYI TS<1?17 LOGON IN

PROGRESS AT 16:
31|32 ON JUNE
14. 1973

0 P44SF14 P44SS67 P7P3646 3S MAINTSO TY? • LOGON TS(132P
M(CESK) T(99)

NACkARNF.R)

9S67966 prtstrir
9 = 5r/i93 |ii16?|9

l'l«fS"« II5P65'7

T USSF477 IP1T6613

9"?F431 1 3? r-t ? T Yl • LOGOFF
liiin<,4np 14' r..? TYI •
1 1SP67I6 1 4jS F V. ? 1YI P6K COPE USED

P>l TGETS

02 1P015 <*
1 DISK EXfPS

1 ?"r6s?p- I4«" n.2 TYI JOP LOG 73165594
95P1 ?.45 GP
U SETS 22.76 E
LAPSED SETS

K I?ll75r| IPAP6716 12626925 I 4r Tv.2

FNO-OF-FILE
P.

TYI TSO?l7 LOGGED 0
FF TSO AT 16132
IIP ON JUNE 14
, l"T3*

Figure 30. Actual Time Output Format

193

USER isrvr.

QOICtl rftJulSTto M| t

IUTAl/L/1/J «IN:J

l C10
1! Ttl
II r.:
I) D>9

nm -INTERVAL LIST or MA J •tSSiul 4 "il 1

TEs 1**1 U NltHCAtU*! ITU

• EC 1'lkJ '»s« C»U • ESK SCCs • 10
r>» Tt-t ':-t '1- T:-E •..-t HIT

- • 00 • THkl 1
H • CO ft »<e.E E
H HOD • TIKI 1
C S»S6»J "i l»tl«T C'l 111
I l*i lli a.e • 11 ICTUS TlKtH

> K ••« o-t • • ••
c fc 114 ;.£ [€••:• <f

I ft >?• J4S i-t ... «:•:-- TIRlN

> ft II4V CE Ct(»»0" f

C g »9 J-t (1T4»T T'2 SCI

I

1 >
1

l

1N«L 10

1.7

I
•44

• mi

3-1

I
•I 11

•!• ICUC

1
MAC 3

T ."IS

"" TtMZ Us: tF V

IjllMCII :•»! l(> IM

»IC lh*M 1 »5« CPU • ESK ICI<u»I9
TTI T.»-fc U-l •i- U»E sict TCIT

M •00 ft TIILI 1 • »uo ft TllLl I
h -00 ft TIILI 1
S * SflB SCI • • «•
• 1.701 If <o J SCI

• • ll»l »Cl B
1 • 196 SCI a
• ft 1J1 I t.li SCI
> ft Ma SCI i •. • ft Hi SCI •
• a**** 111 '.'• SCI la
l t 291 SCI > l«
t • 111 SCI 1
t 89119 •IS i »,M SCI IU» Q»
1 ft a;« SCI l)IUN C

I I 1 I I :
TIia-INTEIVAl LIST Of SCN2 MfSSlCC

TK'IN«L Iil-'HICHIO.i T»l

11 OKI 11

•IC llisj 'is. c •u «1S» »ct» • •10
TTK ll»t tl-t ' |l*| TIKI M«t HIT

N • 00 V TIlLf I
M • 00 • TIILI 1
N •CO • "III 1
I • 4*4 • 141
1 • •>•> O.J
1 • 1114 •
I t 111 •
I • III • *,*» SCI
I • •>• 1 1,

1 1 1 1 1 :
'OU.-i'C CL • 1CU *-t IklCTIftl • ICE 11

11 IS*
|»u-0'-"Ul

Figure 31. Time Interval Output Format

194

USE* INPUT: DATAH/L/H/Oj

OEVICtS •E0UC5TC0 ««« ' "St '

I CTI
a 03i4
s TTl
4 Tra
s TYJ --

* t HrS<iGE 4 *»Gfc 2

.,-... rtl »u» »T»kT Tlftl f.C79SJ
TCRHINIL !C•s':M:»T•-,•, CTe

USEH JT4BT Tl-il 3t.t- y tNB SCEN4410
•«EC 3T43T fcN3 elL g »00« N»»E U«T
TY* 4EL uST

• CO . TIBlE 1
H *00 * T»8Lf t
H KCO K T48LE 5
N . .,.<• 8.«»8« 8.3879 15T»»T TTl E02741
C ».»aJ« ••*'" < 6898 6.6334 !2a »CTIO«" T»«EN
I a.aass 9.6J5«
USE* ST4ST TIKEI »0NE

MM-EL4T.V. L»T 0. I "»SiGE « "6t <

flHIML IPMTlMCTiej. ,«• """ ,TW,T '*'" •••'»*
USE* ST19T TI-El 7.31431 »CEN«ie
*EC ST4KT ENO B(, li)DB „,,,, ,eiT

Tr* XL UST

"00 4 T»BLE 1
H MOO * T»BLE E
" "00 * T4BLE S
!! • „.i -3.am ».aae» a Eoa74i .LOGON TS*217 »toE
0 8.8888 a.»i»« |l(j T(9e) N,(BJl5Nt»

. i 1933 •»••••• ».0i4l 3 ED2741 04L0G0N TS4217 *C0
t -a.ass? s.aaJJ ls<, T(9B) N1(l(4SHe

•)
. » ...,, s 437a l.MM a.eaai si EG274i •
: !••! ! , ' ».24S6 9.aaaa n Eoa74i »E-.TE« »»SSWO«O FO»
» s.a«47 ia.3»»' Taaai7. iniiin

0OGOOOCO

.. A..A s.J!*' a.aaaa it icm\ 5 zi<<i>«>>
J li,4Zll W'tlA 9.3987 IB.eaSS 67 E02741 .PASSWORD
0 U.4138 }*•**?: .8.6123 8,4837 67 E02741 Q.PASSWORD
J 18.4122 \i'**i ,.»».S t.ltit 78 E0274I ,
• 13.2298 if'';*, 8.2388 12.7333 "2 EGa741 > TSaai7 LOGON IN
• ts.aear a3.7«ai f»0G-Ess »T laiaa

III I _ i I
FOLLOWINC DEVICES AJE

- DS14

* TY2
» m

t.s:i-o?-riLE

:-: IVE FACE a

Figure 32. Relative Time Output Format

195

APPENDIX V

Example of teletype on-line listing for preparation of a single

scenario, a real-time emulation, and a single data reduction listing.

196

XFER/A SCDR KAP
LOAD J.CDS* S1FI<E ANY KEY.
R

SSUH KAP TYPE SCENL1B
R

CVT TYPE 3 A

TO CANCEL RUN'j USE CONTf-OL-A

R

WAIT
ENTER RUN ID

TYPE
READY

CSTflRl TA32 TYPE
020 ACTION TAKE.*

TCB !*;AX nmnr,6 TPO VAX (JtfiFlOA
C0?*E LINXS P-SnrVM COSE AVAIL T27 554

DOS REV 05.

R

DATAR/L

ENO-OF-FILE

DATAR TEF.MINATED
F

197

APPENDIX VI

Timing Samples for Non-Real Time Programs

In Figure 34 where macros are expanded, lower case op-codes

and some special characters do not print. These instructions can

be referenced from Figure 33 in conjunction with the SCENLIB

library macro substitutions.

198

34F0HTN
I ALLJCi-.t-.i3 13
•, 1f \ i, v •; J •) 7 j

3 ETUKS6 Ky 9 Hit!
4 «•• HW IS TRANSMISSION HATE
5 LOR 3 kS
6 ••• W9 IS TYt'INB MATE
7 -K1B HO Hll
b •rtl.i Ky wi.l
0 TYPECll)
ie utuiTOrt.
II FINDC.)
12 TYHt(9)
13 UHJMATiP
14 FINDC.)
lb C13U3 C03T
lb TYPU13)
17 UCHtATt 111 IB
18 ULAOl
19 k< '
2H SLAtl2 *
21 EXtCJTL
22 *R9 •* 1 1 Rt2
23 /H12 KIM K12
24 LDH Knit) R9
25 *H9 R12 R12
26 AOY R12
27 EXtCUTi-.
26 JLAol
29 LLA62
30 SLAU1 ..
31 TYPE(6)
32 URUN,F
33 FINDC.)
34 TYPECla)
3? R^4K)ilo CONTINUE
36 TYPt(24)
37 R33tf = WRITf (6<10{IJ
36 TYPt('"2)
39 R39«n»l«l4 FORMAT (1HH ,3X< ^EOUlPlftNT £6»f3*/7x, «SUBSYSTtM l«,
40 TYr>t(ltf)
41 (JUST 240
42 FINDC.)
43 TYRt(l.l)
44 (JUST 334
4b FINUC.)
4b TYPfc(lvi)
47 OUST 42«9
48 FINDC.)
49 TYPfc(13)
50 USAVt»T£ST,0
bl FINDC.)
b2 ctsoi INFO
53 TYHt(lb)
b4 UCHtATt ldtf Id
55 LLAh3
5S R"
57 bLAS4 •
5(J fcXtCJTE
59 *R9 <ll Rl>
6SI /K12 K 1 «1 R12
61 ID* lki-,1 H9
t<2 • K 9 41-^ R 14

Figure 33. Fortran Cost Scenario With Macros riot Expanded

199

63 ADY A12
64 tXfcC'jTfc
65 JLArfJ
WO L«»'<"-*

67 S L i03 . .
6B TYPfcCl'/)
69 U S A V £ , I :i f- U , N I) S t Q
^^ Hi0(.,)
71 TYKfctUO
72 UtL/lT,TLST
7 3 FlN()(..)
7 4 TY;JCCJ)

75 QKiJN,F
/b FINDC.)
77 TYP£(12J
78 USAVE,TE5T,0
73 FX-JOC..J
84 trr'tdHJ
81 UEJIT, I'JFU,S

82 FHOC..J
83 rYHt(Jt>J
84 HH;':/i!l«J PTW WITH CONTROLLER
85 TWcCioJ
86 R49Uxi<3li).'iJ PROGRAMMING
87 TYPEC?)
BB ULI5T.A
89 FINOC.)
9W TYPtCM)
91 OSAVt»lNFC,0,N
92 rl:0(..)
93 TYPt(ln)
94 ULOIT.TEST
95 FI*OC.)
90 TYPtCfO
97 a«UN,F
98 FINOC.J
99 TYPE(b)
103 UBYfc.ilYE
1131 F1NO(COMMAND]
122 TYPEfiO
103 QLUUOUT.
104 KING(AT)
lab c csua OUFTIHI

Figure 33. Fortran Cost Scenario with Macros not Expanded (Concluded)

200

FOHTN
I 13

3 HW b KID
4 ••• K]t- IS TRANSMISSION H ATfe
5 3 |<9
t, .•. K9 IS TYPING HATE
7 -rtlyi HW htll
8 «rfli» H9 KID

13 R9 0 HID
II 3 H9
12 -KlU H9 K 1 1
13 *H3 Hit fit*'
14 <J H9
15 ««9 Ml HU
16 >HU K)U Kit!
17 IsHlfc HP
18 «HU KID KID
19 N 10
20 OtOITUH.
21 L IL12
22 H' •
23 S LL12 ..
24 Kl) H US'
25 H9 b KID
26 3 HP
27 -Kia H9 HU
28 *H9 K1U KID
29 9 K9
3B *H9 Ull «11
31 /Kll KiU KlW
32 100** H9
33 *K9 IUO H1W
34 HU)
35 Qf-OHHAT.F
36 L LL2D
37 KM
38 S LL2D ..
39 CISUu COST
40 Hid ti K'9
41 H9 b HU
42 3 i<9
43 -KID H9 HU
44 *H9 Kit' ftlH
45 13 H9
46 *K9 rill HU
47 /HU >?l<i H1B
48 ISUia H9
49 *H9 HU' KlU
513 HI 3
51 JCKtilt 1U ID
52 LUAbi
53 H"
54 SLAb2 =
55
56 »H9 HU H12
57 /K12 HID H12
58 l'jjy H9

3059 *H« HU H12
6^1 HU
61
62 JLAbl

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded

201

63 LLAbJ
64 SLAB1 ..
65 H>: w K9
56 wo * ., 1 i
67 3 R9
66 -MM PJ W 1 1
69 *K9 R1U RIO
7P» b H9
71 »H9 (Ml *11
72 /Nil KM Rio
73 10UC R9
74 *R9 :IK Ria
75 RIO
76 QRUN.H
77 L LLA9
78 R' '
79 S LL39 ..
8(9 RK U R9
81 H9 6 H lw
82 3 US
83 -Kiel «y Kll
84 *R9 RIO R10
85 19 ny
86 «R9 Kll Nil
87 /H11 RM RM
B8 MOO R9
89 *H9 RM 41.1
90 Kill
91 R240sl5 CONTINUE
92 RO 0 R9
93 K9 6 KM
94 3 R9
95 -RIO R9 Rll
96 *H9 R1U RIO
97 24 R9
98 «R9 Hit Rll
99 /Rll H 1*3 R10
100 MWO R«
101 *R9 RID R1H
102 Rid
103 H33U3 WRITE C6.1U0)
104 RU 0 R9
105 R9 6 RIB
106 3 K9
107 -RIO R9 Rll
10b «R9 H10 RK1
109 62 R9
110 *K* Rll Rll
111 /Rll RIO RIO
112 UJO R9
113 *R9 RIO H10
114 RIO
115 R390»1O4 FORMAT 11M0,3X,*EQUIRMENT C0STS*/7X,•SUBSYSTEM 1*,
lib RO 0 R9
117 R9 B RIO
110 3 R9
119 -Hid R9 Rll
120 *R9 RIO KM
121 10 H9
122 «R9 Rll Rll
123 /Rll RIO RIO
124 MUD KJ

y»fl ? J • H * H 1 i-l K 1 ••)

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

202

126 RU
127 uiisr 24u
12H L LL60
129 K' '
130 S LLu8 ..
131 R0 0 R9

132 *v 6 »u
133 4 R9
134 -Kin k9 -vl 1
135 • RV RU RU
136 10 Kb
137 «H9 «11 "ill
136 /Rll kin KU)
US U:)0 K9
14k) «R9 RU Kl,1
141 mo
142 UL15T 330
143 L LL/b
144 R1 '
145 S LL/6 ..
146 R0 0 U9
147 H9 6 Hit)
14d 3 H9
149 -Wltf R9 RU
150 *«y RIM RI»)
151 U R9
152 *R9 RU Rll
153 /kll kill R10
154 it! .-Ik.' R9
155 *R9 K1J RU
156 RIO
157 OLISf 424
15S L LL84
159 R' I
160 S LL64 ..
161 R0 0 R9
162 R9 6 R10
163 3 R9
164 -kin ky RU
165 • R9 R10 RU
166 13 R9
167 •R0 RU Rll
166 /Rll H10 R10
160 1000 R0
170 *R9 R10 RU
171 RU
172 QSAVt,TfcST,0
173 L LIJ2
174 R» I
175 5 LL92 ..
176 CtSUU INFO
177 R0 0 K9
178 R9 6 R10
179 3 R9
180 -kU R9 Rll
181 *k9 RU RU
162 15 R9
183 •R0 Rll Rll
184 /RU RU RU
185 1000 R9
186 *R9 RU R10
187 KI:I
inn IJCKtAlt l«J!-> U

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

203

IBS LL»b3
190 R"
191 SL4t)4 .
lM<
199 *ft» Rll R12
194 /K12 RIO *U>
193 U.JO H9
19b *R9 XU R12
197 RU
19d
199 JLAtiJ
2U0 UUA^-1
201 SLA'ii ..
2fl2 HO 0 K^
203 K9 o HIM
234 3 W9
205 -Kid R9 Rll
206 *K9 •» 1 ii K1J
207 17 K9
20<J *Ky Rll KU
209 /Rll RIO KIP
210 toiu wy
211 *(<'J Rid Rid
212 KM
213 USAV'r, iNf 0, :»05tQ
214 L LL111
215 R'•
216 S LL1U ..
217 KH a R9
21a K9 6 Kits
219 6 R9
220 -RIO R9 Rll
221 *K9 Rid RIO
222 1.' R9
223 *R9 Rll Rll
224 /Rll RIO RIO
220 lOOd XJ
220 *R9 iUa RIO
227 Rll
228 QtJir.TEST
229 L LL119
230 R' '
231 S LL119 ..
232 KO o HI
233 R9 6 RIO
234 i H'i
23b -klw R9 Rll
23b *W9 Kit) R1J
237 6 R9
230 »R9 ;v 1 1 Rll
239 /Rll KlU KM
240 l<Hu R9
241 *K9 RIB RIO
242 KM
243 UKUN.F
244 I LL127
245 H< '
246 S UL127 ..
247 Ko V R9
240 K9 0 RIO
249 o K9
230 -RIO R9 Rll

ft*"I'll *HH KM Kl i

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

204

232 12 R9
233 *K9 Hit till *
294 /Nil Rl« win
23d lkJou K9
25o *H0 ma ma
257 wia
25tt QS*Vc,TtST,0
259 L LL13S
26«i KM
261 S LL133 ..
282 Ka a w9
263 R9 b Wia
264 3 KB
263 -Win W9 mi
26b *H9 wu ma
267 12 WB
26d «Ki) mi mi
269 /KM wia ma '
270 laae K9
27i *K9 ma win
272 KM
273 UtUIT,lNrO,5
274 L LLH3
273 K'' •
27b S LL143 ..
277 KB a R3
278 K9 6 RIB
279 3 K9
2aa -ma R9 WH
26i *K9 ma ma
282 36 R9
283 *R9 Kll Rll
284 /Kll ma Win
285 iaaa K9
28b *KU wia mo
287 mo
288 Ri4t,:aaiat'J WITH CONT
289 wa a K9
29a K9 6 Kia
291 3 49
292 -Ria K9 Rll
293 «W9 Ria ma
294 26 R9
293 *K9 Kll Rll
296 /KII ma ma
297 iaja ^g
298 *K9 Ria Ria
299 K13
308 R49a*aaiaaa PROGRAMMING
301 KB a K9
302 K9 b R10
303 3 49
304 -Ria K9 Rll
303 *K9 ma wia
306 7 R9
307 *H9 411 Rll
3U6 /KII wia Ria
309 1000 KB
310 *wv RIM Ria
3U wia
312 ULIST.A
313 L UL166
314 Rt i

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

205

315 S Lll6t> ..
316 kU "I R9
317 XV 6 Nik)
310 3 N9
jiy -Nik) K9 NII
32k) *wy NU Rid
321 14 R9
322 *K9 Nil Nil
323 /nil Rid Rid
324 laad Kg
322 *H9 Slii Rid
32e Hia
327 uSAVE,1NF0,0,N
32b L LL174
329 R'I
33d S LL174 ..
331 Rd a N9
332 H9 b Rid
333 3 R9
334 -Rid N9 Nil
33b *H9 S1H Hid
33b 1/ H9
337 *R9 311 Rll
338 /Rll Kid Kilo
339 lOJa K9
343 *K9 Nit) Rid
341 Sid
342 UtOIT.TtST
343 L LtU2
344 K''
345 5 LL1B2 ..
34b Kd b R9
347 K9 b RIP
348 3 R9
349 -Kit) R9 Rll
35a *K9 Rid Kid
351 b K9
332 *K9 Rll Rll
353 /Rll Rid RIB
354 lddd K9
355 *R9 Rid Rl.)
35b K1J
357 QRUN.F
358 L '.LI 90
359 K"
360 3 LL19D ..
361 Rd d K9
362 R9 6 Kid
363 3 R9
364 -Kid K9 Kll
365 *K9 Rid RIO
36b 6 NB
367 *R9 Rll Rll
366 /Rll Rid Nit)
369 lddd R9
37k) *R9 Rid Rid
371 RlJ
372 QbYt.bYE
373 L LL198
374 K' •
37j a LL198 COiMAwU
37b *U W Ki
3/7 K9 b R.1H

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

206

^

378 9 SO
379 -IUU R9 Rll
jgii «k^ ^in nj«J
381 6 R9
382 *R9 HU Mil
393 /rill R10 Rlk>
3H4 r>i^a M9
365 «R9 R10 R10
38b rile
387 QLUGUUT.
33d L i.L2Bti
389 R< *
390 S LL2tft> AT
391 CISUd DUFT11U

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

207

COST
1 X
2 s: •i I'n
9 U>PKObUrtl1 C05T(OUTPUT,INF0,TAPE5»INF0,TAPt6»0UTPUT)
4 4i y Kt.
3 UC •••»PHObfcAM TO COMPUTE COST ESTIMATES *«**
0 39 9 Hi-
7 OlDMEhHION IM(2B)#U'(2l;),IP(8i(i)#I0(2aJ
8 10 y Kb
9 QlUU 75 :C0'JNT = 1,2
Id 9 J -fc
11 0>I8.JMl1«U
12 1/ y HH
13 U;wtAO CJ.O HUM*
14 10 9 I'D
lb QmUKrtAT t lb)
1G lb 9 Hn
17 Q.'OO b i^l.NUMM
IB IB y Kb
19 0;KtAO (5,1) 1M £ 1)
20 19 9 Kb
21 Ull&UMM«IMi:)+lSUMM
22 11 H l<n
23 QSfCONrif.'Ut
24 9 9 KM
25 0|I8UMM»te
26 17 9 Kb
27 Q/KEAO £ b, 1 j hUMN
2B lb 9 Kb
29 a;uu It-i !.«1,NUMN
30 IB 9 Kb
31 Q;KEA0 Cb,l) 1N(I)
32 18 9 PC
33 OnSUMNsIUCU + ISUhN
34 12 9 Pb
Ob UlOJCUNTINut
36 2H 9 Kb
37 Q; IE«8UI1»ISUMN*ISUMH
38 "J 9 ko
39 QIISUMP"^
4(1 17 9 Kb
41 U/Kt*0 (5,1) HUMP
42 lb 9 Kb"
43 Q;U0 15 I»1,NUMP
44 IB 9 Kb
43 Q/KEAO ct.n IPCD
46 19 9 Kb
47 0>XSUMHBIPCI)*1SUMP

48 11 9 Kb
49 QlblCUNlNUt
be 9 9 P6
51 UUSUhQsu
52 17 9 Kb
53 (j;KtAO (5,1) NUMU
54 lo y Kb
55 0/UO < k1 I*l,NUhU
56 IB y Kb
57 U/KtAO (5,1) I0C1)
5B 19 9 Ko
59 0; ISUM'Js lii tI)*IsUMU
6(1 12 9 Kb
M U2HKUNT1N0E
o2 27 y ho

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded

(Continued)

208

$9 QJ 1T0TAL»ICGISUM*ISUMP*ISUMQ
04 2W * ft
nh u; IF (in " IT ,F.'), i.0 t-n TO t.n
flIS 14 9 Kb
o7 0»WHITL),lUi/0
68 64 y Ko
60 BlMHIrliKHAT (1 Ho//bX,•PKELIMINARY COST tSTI*ATE*//1X,*SYSTEM *•)
70 Ik! 9 Kb
71 Q»GO TO Sb
72 17 y Kb
73 0S8MMITE Cb'.lBJ!)
74 32 0 no
75 QlUklFUrtHAT UHrt//lX, *SY'>TEM tt«)
76 ilb » *b
77 U55SMRITL C«J»1H4) 1SUMM,ISUMN,IEQSUM
/8 bb 9 K(J
79 01ia«»FUHrt»T (1MJ,3X,>E0UIP«ENT C0STS*/7X,'SUBSYSTEM 1*,
80 3b 9 NO
81 0 • SX,I8/7X,*SUBSY.STE* 2* , 5X, 18/ 19X , *TOT AL* , 2X, I ID)
82 34 9 ko
83 UHHITfe (6,lUh) ISUMP, ISUMQ, 1T0TAU
84 37 9 Ko
85 U10n;K0rtMAT C1H'-),3X,.*0EVEL0PMENT COSTS* , bX , 1ltf/4X , *0 & M*
86 44 9 W6
87 U •• COSTS*, llX,nk3//19X,«T0TAL*i2X,IlB)
88 12 9 «o
89 U75IC0NT1NUE
00 6 9 R6
91 QJSTJP
92 5 9 Kb
93 QJEND
94 i 9 Kb
95 u»

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded

(Continued)

209

INFO
1 X
2 29 9 Wti
3
4 29 9 R6
5 0001303
6 36 9 R5
7 QH01300
8 37 9 Kb
9 0001003
10 32 9 Ho

11 0031303

12 32 9 R6

13 U001030
14 38 9 Ki6

15 Q0W1U00
16 39 9 Hfl

17 Qlo01.JGIfl
18 4b 9 Rb

19 0001333
20 29 9 Kb
21 U00U002
22 22 y R6
23 000100(1
24 23 9 R6
25 Q331333
26 29 9 R6
27 0000005
28 23 9 Kb
29 0001303
36) 23 9 K6
31 Q001000
32 24 9 R6
33 Q001000
34 2b 9 Ho
35 Q001333
36 18 9 wo
37 033133 3
38 29 9 Kb
39 Q000304
40 33 9 R6
41 0001000
42 29 9 R6
43 0001333
44 34 9 Kb
45 Q001000
4b 28 9 K6
47 0001000
48 27 9 Kb
49 0000006
50 28 9 Kb
51 0001030
52 32 9 Kb
53 Q031333
54 32 9 H6
55 01001000
56 30 9 R6
57 0031333
bb 42 9 R6
59 O001JJ0
63 43 9 Kb
61 U00 1303
62 27 °. Ho

NU 1 cJL -; Vi LIST M

CPU WITH 24K MEM

FM DISC WITH CONTROLLER

MAG TAPE KITH CONTROLLER

WITH CONTROLLER

TTY WITH CONTROLLER

LINE PRINTER & CONTROLLER

lb ASYNCHRONOUS LINE ADAPT

1 HISREED ASYNCHRONOUS LINE ADAPT

NUMBER IN LIST N

16 MODEMS

MODEM RACK

NUMBER IN LIST P

ELEC ENGIN

MECH ENGIN

PROGRAMMING

DOCUMENTATION

T & E

NUMBER IN LIST 0

UPERATIONS PERSONNEL

SERVICE CONTRACT

TELEPHONE & DAA LEASE

TELEPHONE USAGE

NUM IN LIST M*

CPU WITH 8K MEM

WITH CONTROLLER

TTY WITH CONTROLLER

0 LJ-LINE DIG I/O

lb ASYNCHRONOUS LINE ADAPTERS

8 SYNCHRONOUS LINE AUAPTtKS

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

210

63 Q00«0M5 NUN IN LIST N*
64 2'J 9 W6
6b Uidu 1 idbtd 2 HiihtLU fiuutno
6b 24 w Rb
67 QUUiaiDCJ HOOtM CLOCK
68 17 9 R6
69 QkVJldBid RACK
70 33 9 Kb
71 0001 v)HU PANEL & SPECIAL CKTS
72 4b 9 K6
73 Q001000 MISPEED SYNCHRONOUS LINE ADAPTER
74 26 9 R6
75 Q00U0k>!) NUM IN LIST P*
76 2i 9 Kb
77 U001000 cLtC ENGIN
78 23 9 Kb
70 U001000 MECH ENGIN
B0 24 9 K6
61 Oiiol^e PROGRAMMING
82 2b 9 Rb
83 Q001000 DOCUMENTATION
84 16 9 H6
85 0001300 T & E
86 26 9 R6
87 Q000004 NUM IN LIST 0*
88 33 9 R6
89 Q301000 OPERATIONS PERSONNEL
90 29 9 R6
91 Q001300 SERVICE CONTRACT
92 35 9 Ro
93 301*1000 TELEPHONE & DATA LEASE
04 28 9 K6
05 QB01000 TELEPHONE USAGE
9b i 9 R6
07 a*

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Concluded)

211

Contents of SCEHLIB Macro Lihrary

Nane Value

AL10CREGS

HESPTOREG

ADY

EXECUTE

FREEBUPF

GTR

ETOREG

INPUTPARAM

LDR

BROFP

PTR

8DP

RANDGn

TTPEOOT

a

c

d

e

£

g

Figure 35. Macro Libraries for Fortran Cost Problem

212

KAPLXB
1 nuEF F1N0CI)
2 L LLST
3 H' I
4 S LLST SI
9 MENU
6 MDEF NUtV
7 1
d MENU
0 MDEf TYPE (1)
IB ETORE& Wi9 I) W9
11 ETORKG Rtf 6 Hia
12 LUK 3 KJ
13 -RIB R9 RU
14 *K.Q KID Rlid
13 LOK SI R9
11 «K9 Kl 1 "ill
17 /Rll Rl>' Kit)
IB LOR l"Ui4 R9
19 «R* HIV) RU
20 ADY Rlk)
21 MtNO

Figure 35. Macro Libraries for Fortran Cost Problem (Concluded)

213

