ENLISTED ROTATION MANAGEMENT: USERS GUIDE TO THE COMPUTERIZED EQUILIBRIUM FLOW MODEL

Norman I. Borgen
Jerry A. Segal
Robert P. Thorpe

AD0 P43-07X.C3

Reviewed by
M. F. Wiskoff, Ph.D., Associate Director Personnel Utilization

Approved by
E. M. Ramras, Deputy Technical Director Manpower and Personnel

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPL ETING FORM
REFORT NUMBER T. GOVT ACCESSION NO. TR $74-1$	3. Recipient's catalog number
4. TITLE (and Subtilte) ENLISTED ROTATION MANAGEMENT: USERS GUIDE TO THE COMPUTERIZED EQUILIBRIUM FLOW MODEL	5. TIPE OF REPORT \& PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER
7. $\operatorname{AUTHOR(s)}$ Norman I. Borgen Jerry A. Segal Robert P. Thorpe	8. CONTRACT OR GRANT NUMBER(s)
9. Performing organization name and adoress Navy Personnel Research \& Development Center San Diego, California 92152	10. PROGRAM ELEMENT PROJECT, TASK $\begin{aligned} & 63770 \mathrm{~N} \\ & \text { ADO P43-07X.C3 } \end{aligned}$
Navy Personnel Research \& Development Center San Diego, California 92152	$\begin{aligned} & \text { 12. REPOHT DATE } \\ & \text { September } 1973 \\ & \hline \text { 13. NJMEEA OF PAGES } \\ & 73 \\ & \hline \end{aligned}$
14. MONITORING AGENCY NAME \& ADORESS(if different from Controlling Office)	15. sECURITY CI. ASS. (ot this report) UNCLASSIFIED i5a. DECLASSIFICATION DOWNGRADING SCHEDULE

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTICN STATEMENT (of the abstract entered in Block 20, it different from Report)	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Computerized Management Tools	Organizational Equilibrium
Management Decision Bias	Personnel Rotation
Manpower Management	Policy Formulation
Navy Personnel	Simulation Model
Open System Model	

The planned periodic rotation of enlisted personnel between sea and shore assignments is a firmly established practice in the Navy. Managing rotation in an equitable and effective manner, however, continues to pose serious problems that are extremely difficult to resolve. Previously developed computer programs have successfully demonstrated the feasibility of generating quantitative data useful in rotation-related decisions.

20. ABSTRACT (Continued)

The computer model described in this report provides a highly flexible management tool that can be controlled by the user through selected data on three parameter cards and an input personnel data deck at any desired level of occupational grouping. Basic output consists of equilibrium tours that would support prescribed tours for each of three selected conditions. A secondary output presents summary tables of population aggregate characteristics to aid in broad policy testing and formal action. A variety of other problems may also be dealt with by manipulation of the input parameters.

Problem

The planned, periodic rotation of enlisted personnel between sea duty and shore duty assignments is a firmly established practice in the Navy. Rotation management objectives, however, are often constrained by conflicting policies that impose severe controls on certain resources. As a consequence, managing the rotation process in an equitable and effective manner continues to pose serious problems that are extremely difficult to isolate and resolve.

Background

For some time, the Navy Personnel Research and Development Center has been developing computer based tools and techniques for application in the Bureau of Naval Personnel (BUPERS) to help improve the management of enlisted rotation. This effort has resulted in a series of computerized models of the rotation process which have been used in BUPERS in various planning or policy testing applications. These models have successfully demonstrated not only the feasibility of computerizing portions of the rotation decision-making process, but also the improvement in management that could result from their use.

Approach

The primary emphasis has been on the development of models which would incorporate the major elements and characteristics of the sea/shore rotation process in such a way that their values and relationships could be measured, manipulated, and if possible, predicted. A previous report* described the conceptual framework of the "Equilibrium Flow Model" encompassing the basic variables and parameters governing the movements of personnel between the broad categories of sea duty and shore duty. This present report provides a detailed guide to the use of the computerized version of the Equilibrium Flow Model as a tool in the management of enlisted personnel.

Findings and Conclusions

Critical to the solution of rotation management problems is the requirement for appropriate quantitative data upon which to base decisions affecting the system. To help meet this need, the computerized model described in this report could be implemented by those managers who wish to emphasize quantitative methods as a basis for decisions and broad policy formulation.

The model is a highly flexible management tool that can be controlled for the most part through selected data on three parameter cards and an input data deck at any selected level of occupational grouping. A sampling of uses would include problems such as (1) determining prospective sea tours for proposed future shore tours; (2) effect upon number of rotation moves if shore tours are extended any specified number of months; (3) changes

[^0]required to number of shore billets if sea tours are shortened; and (4) the extent of the applicability of selected minimum and maximum sea tour limits across all rates to support broad policy formulation.

A basic output consists of equilibrium tours that would support prescribed tours in the complementary composite for each of three selected conditions: (1) current prescribed tours; (2) estimated actual tours; and (3) future desired prescribed tours.

A secondary output presents in summary tables the aggregate characteristics of the population processed in the basic phase for purposes of viewing the total group as an entity as an aid in broad policy testing and formulation.

Any management model is a tool and successful use presupposes considerable knowledge about the system being managed. The design of the Equilibrium Flow Model is based upon the quantification of rotation variables. The output will be entirely quantitative. The numerous qualitative aspects of rotation management must be introduced by the manager who seeks to influence, or otherwise control, the rotation system towards some identifiable goal.
Page
INTRODUCTION. 1
Purpose 1
Background 1
Approach. 1
ROTATION MANAGEMENT PROBLEMS 2
EQUILIBRIUM FLOW MODEL 2
Limitations and Assumptions 3
Structural Elements 3
Evaluative Criteria 4
DESCRIPTION OF THE COMPUTERIZED MODEL 7
Model Components. 7

1. Program Deck. 9
2. Parameter Cards 13
3. Management Data Input 17
Familiarization with the Model. 22
Peripheral Tasks Related to Model Use 31
Application of the Model 37
APPENDIX A Program Listing 41
APPENDIX B Glossary of Program Data Field Names 57
APPENDIX C Data Fields Location in Program. 67

FIGURES

Page

1. Arrangement of Computer Model Program and Data Deck. 8
2. Macro-level Flow Chart of Selected Major Components of the Rotation Management Model 10
3. Parameter Cards used with the Rotation Management Model. 14
4. Data Display Basic to Rotation Management for Time 1 18
5. Data Display Basic to Rotation Management for Time 2 19
6. Rotation Management Mode1 Data Input Cards for BMCM Rate 21
7. Display of Part 1 Rotation Management Model Output 22
8. Display of Part 2 Rotation Management Model Output 27

TABLES

Page

1. Display of Section 1, Part 2 Showing Details of Aggregated Monthly Personnel Moves for Various Situations. 26
2. Display of Section 2, Part 2 Model Printout 28
3. Display of Section 3, Part 2 Model Printout 30
4. Display of Section 4, Part 2 Model Printout 30
5. Derivation of a Moving Average Tour Index for Rotation Management. 32
6. Computing the Maximum Number of Personnel that may be Assigned to a 48 Month Prescribed Tour with the Remainder Allocated to 24 Month Tours, thus Conforming to the Equilibrium Tour Index 33
7. Equating a Tour Length Index with a Distribution of Tours of Varying Lengths. 35

MANAGEMENT OF ENLISTED PERSONNEL ROTATION:
 USERS GUIDE TO THE COMPUTERIZED
 EQUILIBRIUM FLOW MODEL

INTRODUCTION

Purpose

Among the many important functions of enlisted personnel management are those tasks related to personnel distribution, assignment, and rotation. Under the concept of centralized rating control, a relatively small number of managers in the Bureau of Naval Personnel must deal with an increasing number of details in the routine performance of their job. The magnitude of these tasks is such that increased utilization of automated information decision-making systems is essential if they are to be accomplished efficiently and effectively. To help meet this need in the area of personnel rotation management, a computerized model and its underlying concepts are described in this report with a view towards implementation by those managers who wish to emphasize quantitative methods as a basis for decisions and broad policy formulation. The quantitative nature of this model will readily lend itself to use in testing and evaluating a variety of policies and procedural options related to the management of personnel rotation.

Background

For some time, the Navy Personnel Research and Development Center has been developing computer based tools and techniques for application in the Bureau of Naval Personnel (BUPERS) to help improve the management of enlisted rotation. This effort has resulted in a series of computerized models of the rotation process which have been used in BUPERS in various planning or policy testing applications. These models have successfully demonstrated not only the feasibility of computerizing portions of the rotation decision-making process, but also the improvement in management that could result from their use.

Approach

The primary emphasis has been on the development of models which would incorporate the major elements and characteristics of the sea/shore rotation process in such a way that their values and relationships could be measured, manipulated, and, if possible, predicted. A previous report* described the conceptual framework of the "Equilibrium Flow Model" encompassing the basic variables and parameters governing the movements of personnel between the broad categories of sea duty and shore duty.

[^1]This present report provides a detailed guide to the use of the computerized version of the Equilibrium Flow Model as a tool in the management of enlisted personnel rotation.

ROTATION MANAGEMENT PROBLEMS

The problems associated with rotation management are numerous and complex. While planned periodic reassignment of personnel between sea and shore assignments is a firmly established practice, other pressing requirements often over-ride the rotation plans. Manifestations of rotation problems are typically referred to as: (1) excessive personnel turnover; (2) personnel instability; (3) personnel turbulence; (4) poor skill utilization; (5) skill deterioration; and (6) excessive costs associated with personnel movements, especially those related to permanent change of station (PCS).

One of the most common sources of rotation management problems lies in the area of planned tour completions. The ideal system would have virtually all personnel rotating on their planned rotation dates. One reason that this is not likely to happen is that there are many causes leading to losses of personnel from the population at relatively unpredictable times. The unanticipated loss of an individual typically requires a replacement that frequently must be met by prematurely terminating someone else's tour. This creates an additional vacancy that must be filled in a similar manner, and a chain effect is generated whereby a single loss may trigger dozens of personnel moves. Constant disruptions of this kind tend to generate conditions of personnel instability and morale-inhibiting uncertainty for those adversely affected. Resolution of this problem requires improved procedures for determining tour lengths realistically reflecting conditions that, can be expected to exist several years into the future.

One way to approach this problem is to seek quantitative means to divide the population into two aggregates relative to expected length of service. The aggregate with sufficient service expectancy to complete assigned tour cycles would comprise the rotatable population for management purposes, and the remainder would, in general, be excluded from the rotation system. Over time, the size of each group would be optimally determined and the magnitude of the unpredictable moves would approach the finite minimum that managers would always have to deal with.

The Equilibrium Flow Model is built upon this concept.

EQUILIBRIUM FLOW MODEL

Development of the computerized Equilibrium Flow Model has required a comprehensive determination of rotation system concepts and the quantification of many rotation variables. These objective measures will be presented in sections to follow to provide the underlying rationale for the structure of the model. The model will thus permit the manager to
objectively quantify some of the conditions that are represented as problem areas and establish, within the limitations and assumptions of the model, the extent to which personnel movement must continue.

Limitations and Assumptions

Personnel rotation is a subset of a more comprehensive assignment process and therefore deals primarily with only a portion of the personnel movements. The model will only generate the number of personnel moves necessary to sustain rotation in accordance with the parameters selected by the user. The actual number of personnel moves, on a month by month basis, may not be subject to precise determination, but in a generalized way, some sort of average number of movements that will reasonably represent the dynamics for longer time spans may be derived through observation of the ongoing system.

Model output may be considered to have limited value in determining absolute values of rotation variables. Its basic function is to support comparative analyses across successive model runs with varied parameters. Proportionate changes will then be of considerable assistance in evaluating the impact of varied parameters. Skill in model use will ultimately move the manager in the direction of a firmer quantitative control.

A number of implicit and explicit assumptions underly any type of model of a system. Among the more prominent underlying this model are:

1. That personnel rotation is a necessary element of career service.
2. That a management objective is related to achieving and maintaining a dynamic equilibrium between the two major duty composites, sea and shore.
3. That a desired equilibrium condition between these two duty composites can be quantitatively specified by the rotation manager.
4. That tour lengths in one duty composite can be specified and substantially adhered to in rotation management.
5. That tour lengths in the complementary duty composite are desired to maintain or move the system towards a specified equilibrium condition.

Structural Elements

A study of the rotation system has provided a structure suitable for modeling by selecting elements that reflect various quantitative dimensions of interest to the rotation manager. Basically, within the rotatable population are two groups of personnel: those assigned to sea duty and those assigned to shore duty. Since direction of rotation is somewhat arbitrary, the groups can be labeled Composites A and B, with initial assignment commencing with A and rotation direction from A to B. Sequential completion of tours in both composites would be referred to as a "rotation cycle" and the process repeated for career personnel with an assignment from B to A.

All assignments within the rotation system have predetermined lengths that are recorded by means of "tour completion dates." In the past, lengths of assignments have been estimated from analysis of historical data with the consequent disadvantage that conditions of the past tended to influence the system long after significant changes had occurred. For example, it was observed that tour lengths in each composite for career personnel were generally in the same ratio as sea to shore billets. This has been appropriate for populations with high continuance rates, but where populations experience considerable losses over time, as with the middle and lower level petty officers, the actual tour ratios would be subject to extensive variation from the billet ratios. Assuming that a dynamic equilibrium reflects the desired condition for personnel manning and rotation, it can only be established and maintained through determination of the real rotation ratio.

The real rotation ratio may be estimated by adjusting the size of the rotatable population either by subtracting out losses or quantitatively defining the continuance for each population subset. The model represented by this description provides measures of personnel continuance by means of specially derived rates referred to as "career factors." These are computed from length-of-service frequency distributions, converted to proportions of the total population, and arranged in a negative-accumulative curve so that at each selected time point the proportion of the population that can be expected to serve beyond those years or months of service is directly determined*.

Another of the basic elements in the structure of the rotation model is a representative tour length for Composite B in the rotation cycle. This is a prerequisite for computing an equilibrium tour for Composite A. The manager may either arbitrarily establish a Composite B tour, or he may accumulate data and estimate an average Composite B tour that reflects that part of the ongoing rotation system. The necessary measures may be accumulated by recording the number of personnel vacating (completing tours in) Composite B each month and the cumulative number of personnel occupying those billets. The cumulative number in billets divided bv the cumulative number vacating gives the tour length index.

Evaluative Criteria

The computerized equilibrium flow model has been programmed to generate appropriate tour length indices for interaction with prescribed tour length indices in each of two broad duty composites. Quantitative data reflecting the structure of the rotation system are employed in computations that simulate the complex interactions of billet ratios and diminishing population sizes over time so that the generated complementary

[^2]tour lengths will tend to support a predetermined equilibrium condition of personnel allocation. The model incorporates a requirement for representing future conditions of the system by the introduction of appropriate estimates. While forecasting future conditions has long been recognized as extremely difficult and prone to error, the model has been designed to capitalize on the value of current data as a base for projections. Carefully derived estimates of future conditions are used mainly to indicate the direction in which the manager should seek to influence the system. The degree of confidence the manager has in his projections is used to help determine the magnitude of the influence he should apply.

It is proper then to view the model as a specialized tool that will simulate a rotation system, reflecting the nature of the data employed in it. The degree of correspondence between the model of the system and the real (actual) rotation system ultimately has to be established by the user of the model. Validation of the model requires that this degree of correspondence be determined, and this can only be done through use of the model in real rotation management applications.

For this reason, evaluative criteria should be developed from sources independent of model output. One measure that will help serve this purpose can be obtained by monitoring the tour length assignment system to determine what proportion of rotated personnel actually complete their tours as originally assigned. For example: if 500 personnel were rotated in a specified time period, and it was determined that 300 of those personnel completed tours as originally assigned, the measure of tour assignment effectiveness is $300 / 500=60 \%$. On the other hand, 40% of the personnel would have had their tours modified for some reason related either to the needs of the Navy or a change in individual status.

This is not enough information, however, to determine whether 60% is the highest possible score, or even if it represents a satisfactory state. Repeated measures over time would give some clues as to whether or not this measure could be increased. The manager could assume that improved rotation management could increase this measure, and his management objective initially becomes one of "maximizing" the proportion of assigned tour completions for the rotatable population. Given an understanding of the effects of time in diminishing a population size, it would be logical to conclude that shorter tour lengths would lead to increased tour completions as assigned. For example: in the extreme case, tour lengths of one day would virtually assure that all personnel would complete their assigned tours. However, this solution would generate a high degree of personnel movements with its attendant costs and decreased skill utilization, and counter the desired condition of personnel stability. This adverse effect requires the establishment of arbitrarily determined minimum tour lengths. This means that there will of necessity always be a minimum of specifiable cost and amount of personnel movements associated with personnel rotation. The model will help the manager determine the minimum costs that would be necessary to support the ideal system generated by the rotation model. The difference between the costs and movements associated with the
ongoing rotation system, and the ideal system of the model provide the means to estimate the amount of savings and degree of improvement possible through improved rotation management. The model contributes to the resolution of this problem by generating equilibrium tour lengths necessary to support minimum prescribed tour lengths in a complementary composite. The equilibrium tour lengths are computed in accordance with established billet ratios and personnel continuance in the system.

Obviously, the first effects of implementing the decisions resulting from use of the model will not be available until many months have elapsed. Monitoring the tour assignment effectiveness criterion will indicate whether or not the system is moving in the direction of improvement. With the number and complexity of influences that impinge on the rotation system, the implemented tour lengths can only account for part of the change. If the increase in effectiveness is less than expected, but in the right direction, the manager can accelerate the change by increasing his confidence estimate of his forecast. If the assignment effectiveness actually decreases, the manager will have to reexamine his estimate of the future conditions that generated his future equilibrium tour.

The time frame for evaluating the effects of rotation management decisions suggests that many rotation managers will actually be checking tour assignment decisions made by their predecessors, and their own decisions will be checked years later by their successors. The need for uniform management continuity thus becomes apparent and a management model offers a practical means to help achieve this requirement.

The following sections of this report provide a detailed guide to the operation and application of the computerized Equilibrium Flow Model. Program listings and related documentation are included in the appendices.

The conceptual structure underlying the model design relates the rotation system elements in such a way that a portion of the system dynamics is simulated. Essentially, these elements are the billet ratios between the two broad duty composites, the dynamic characteristics of the force structure relative to personnel continuance, and a selection of policy prescribed and actual conditions related to tour lengths. Current data for input to the model are readily available to the rotation manager; projections of the appropriate input data for further conditions would have to be worked out prior to model use, however.

Model output consists of two parts*: Part 1 provides details at the rate level pertaining to rate identification, allowances or strengths in each of the two composites for each of two time periods, and obligated service requirements for rotation eligibility. In addition, there are four sets of tour lengths related to policy prescribed sea and shore tours, estimated actual tour lengths, and equilibrium tours for each of the prescribed conditions. This section may run from 15 to 20 pages of output, depending upon the number of rates or level of data aggregation used.

Part 2 presents a comprehensive summary of the cumulative data processed to produce Part 1. Aimed primarily at supporting comparative analysis and broad policy formulation, the data is aggregated so as to quantitatively reflect the rotation dynamics encompassed by Part 1 , and thus serve as a measure of the net effect of the total population set processed by the model.

In this section the components of the model are described in detail.

Model Components

The computerized Equilibrium Flow Model is basically a mathematical model that performs all the necessary computations supporting the management applications outlined in this report. The program for the model has been written in FORTRAN IV level G for the IBM $360 / 65$ computer system. Figure 1 illustrates the major segments of the model. Job Control Language (JCL) cards appropriate for the system appear ahead and immediately behind the program deck. An additional card appears at the end of the data to terminate program execution.

The program deck consists of approximately 550 cards, including comment cards. Approximately 30 variables subject to control by the model user are spaced out on three parameter cards. The time-bias design of the model requires two data input cards for each population subset. For example: the 558 enlisted rates would require 1116 data input cards, one half for Time period 1, and the remaining half for Time period 2. The data cards,

[^3]

Figure 1. Arrangement of Computer Model Program
and Data Deck
however, appear in pairs; that is, the card for BMCM Time 1 is followed immediately by data card for BMCM Time 2. Separator cards are used to separate groups such as ratings and produces a space between ratings in the Part 1 printout. If the user desires to add NEC (Navy Enlisted Classification) communities, additional data cards must be prepared in appropriate format, and in pairs. Aggregating data such as for rating populations would considerably reduce the size of the data deck, there being approximately 60 ratings requiring two cards for a data deck size of about 120 cards.

A detailed description of the program deck, parameter cards, and management data cards which comprise the model input appears in the following pages.

1. Program Deck.

Figure 2, provides a macro-level view of the flow through major program components. (1) The accumulation of data for Part 2 requires that many fields be set at zero. (2) Three parameter cards provide the manager with considerable detailed control over many of the quantitative aspects of the program. (3) Allowances, strengths, prescribed tour lengths, minimum and average lengths of service, and sets of career factors are read in from two data cards per population subset (such as rate), one card for each of two selected time periods. (4) Data for each population subset is computed and stored for the aggregate display in Part 2. (5) Data is printed out for each population subset until the last pair of data cards has been processed. (6) Part 2 of the model is then printed out to show the aggregate effects of all the individually computed data sets. This summary is designed to provide the rotation manager with sufficient relative data to enable him to make quantitative comparisons between situations represented by two or more sets of selected parameter values. While the level of generalization portrayed in Part 2 is highly abstract, the means by which it is generated insures that it is a proper representation of the combined effects of parameters as applied to individual populations that make up the entire set.

A complete program listing is provided in Appendix A. The rotation manager, however, need only have a general knowledge of the internal mechanics of the program. The following listing displays the major conceptual elements, and identifies the location of each in the program deck by means of Program Statement Identification (PSID) card numbers appearing at the extreme right.
 PROGFAM STATEMENT IDENTIFICATION
IPSIDI NWMEF AFFFAFINGIN PROGYAM (PSIO' NWMBEFAFFF
CAFD COLUMNS $77-6 O$

Figure 2. Macro-Level Flow Chart of Selected Major Components of the Rotation Management Model

1

Initialize data fields 30-215
Read parameter cards 219-405
Print output titles and column headings 510-550
Test for rotation direction
(parameter card) 553-555

Read data for SHORE to SEA rotation if selected 560-735

Print output column headings 740-825
Field definitions for data input 827-843

Read data for SEA to SHORE rotation if selected 844-905
Check for zero data 910-1080
Compute and store career factors for 144 months for two time periods1085-1300
Compute manning level percentages 1305-1317
Adjust composite tour length when in- dicated (parameter card 1, fields 5 through 8) 1320-1340
Composites A and B tour values are set 1345-1385
Select allowance or strength or equitable manning as a basis for tour computations (parameter card 1, field 1) 1390-1547
Adjust composite B population to per-centage shown (parameter card 1, field 9) 1550-1551Select user determined Composite B tourindex if available, otherwise use programalgorithm (parameter card 3, ACT SHR TOUR0 or 1)1556-1558
Algorithm for estimating actual Composite B tour length index 1560-1660

18	Compute monthly Composite B vacancy rate for each of three conditions	1665-1680
19	Select months service obligation for rotation eligibility	1685-1725
20	Compute personnel moves, rotatables, and accumulate totals	1730-1935
21	Compute equilibrium Composite A tour for prescribed Composite B tour as shown in Part 1 printout, columns 10 and 11	1980-2110
22	Compute Composite A tours for estimated actual Composite B tours as shown in printout Part 1 , columns 12 and 13	2115-2240
23	Compute Composite A tours for desired Composite B tours as shown in printout Part 1 , columns 14 and 15	2255-2365
24	Program check on parameter card 3, column selection for Minimum Tour (MINTR)/Maximum Tour (MAXTR). Only Composite A tours for columns $8,10,12$, or 14 may be used	2370-2455
25	Set A or B flag for tours above or below MINTR or MAXTR (parameter card 1, fields 3 and 4)	2460-2505
26	Accumulate personnel movement data and convert tour lengths to integer format for printing	2515-2635
27	Data fields for Part 1 printout. Print model data for rate (see Figure 7, page 22, for Part 1 display)	2640-2710
28	Print parameter card images	2715-2775
29	Print rotation summary page titles	2780-2850
30	Print rotation summary data Part 2. Personnel movements by pay grade for each condition	2855-2910

31 Print summary of rotation dynamics. Number of rates rotatable, above, within and below MINTR and MAXTR

32 Print aggregate summary of totals, non-rotatables, rotatables, number of personnel moves, and tour indices for TOTAL AGGREGATE and for Composites A and B

Print final parameter card images.

2915-2995

3000-3210

The Program Statement Identification (PSID) numbers have been utilized in columns 77 through 80 on each program card as a means of facilitating communications about the details of the program. The numbers, running from low to high in sequence, will permit the use of a card sorter to restore the appropriate card order, should the program deck be accidentally shuffled. Intervals between the PSID numbers permit changes and appropriate renumbering within a relatively small span of the established sequence. If program changes are contemplated, the user should refer to the complete program listing in Appendix A. An alphabetical listing of each data field name is provided in Appendix B. Should the user desire to trace through any of the computations, he may substitute data for the field names and perform the same calculation as done by the computer. If program changes are made, all data fields of those names affected must be located and checked to determine whether the desired change will be produced. Appendix C provides a table of data field names and PSID numbers showing where they occur in the program.
2. Parameter Cards.

Use of the computerized Equilibrium Flow Model requires that the rotation manager determine which values and modes are to be used for a specified run. Parameter value selection is partly determined by the reason for applying the model: i.e. to compute tours for implementation; to test the results of newly formulated policy; to ascertain the effects upon the rotation system of altering selected variables; to improve one's understanding of the rotation system; etc.

Prior to use of the model, decisions must therefore be made with regard to the following:
a. Select input data from current or past historical data and projected values to represent future expected conditions. Data from two selected time periods is required.
b. Select: (1) current allowances at some specified manning level; (2) current strengths as allocated; or (3) equitable manning of billets with current strengths.
c. Select direction of the initial rotation: SEA to SHORE or SHORE to SEA.
d. Select population aggregates: Rates, ratings, NEC's, etc. Punch data deck accordingly.
e. Establish method of determining obligated service requirements for rotation eligibility.
f. Establish the minimum and maximum tour lengths for the summary of rotation dynamics by rate.
g. Identify populations to be excluded from rotation: i.e. women, limited duty, special programs, humanitarian shore duty, etc.

Figure 3 illustrates the three parameter cards to be used with the computerized rotation management model. These cards produced the printouts illustrated in Figures 7 and 8 , pages 22 and 27 . The parameter card data fields are described on the following pages.

Figure 3. Parameter Cards Used with the Rotation Management Model

Field	Columns	Description
1.	1	Allowance/Strength selector for tour computations
		```1 = allowance 2 = strength 3 = strength allocated equitably to allowance```
2.	$3-4$	Selects direction of rotation:
		$\begin{aligned} & 12=\text { shore to sea, type duty } 1 \text { to } 2 \\ & 21=\text { sea to shore, type duty } 2 \text { to } 1 \end{aligned}$
3.	$6-7$	Lower limit for equilibrium tour summary in months (MINTR)
4.	9-10	Upper limit for equilibrium tour summary in months (MAXTR)
5.	12-13	Sea tour extension in months for Time 1
6.	15-16	Sea tour extension in months for Time 2
7.	18-19	Shore tour extension in months for Time 1
8.	21-22	Shore tour extension in months for Time 2
9.	39-41	ADJ COMP B $\qquad$ PCT: Provision to adjust Composite B allowance or strength up or down to regulate equilibrium tour in Composite $A$ and number of personnel moves
10.	71-73	MANNING LEVEL PCT = $\qquad$ : Provision to regulate obligated service months relative to manning level percent. Manning levels at or below specified percentage will use obligated service months specified on parameter card 2 ; manning levels above specified percent will utilize Composite B tour for service obligation for rotation eligibility

CARD 2
Field Columns
$1 . \quad 5-15$
2. $24-31$
3. $43-44$
through 49-50
9. $55-56$

61-62
$67-68$
73-74
79-80

Date of data used for Time 2

## Description

Date of data used for Time 1

Selected obligated service months for rotation eligibility for use with manning levels below that specified on parameter card 1 , field 10 for pay grades E-3 through E-9

Field	Columns	Description
1.	8-9	Column selector for Part 1 printout for purpose of identifying equilibrium tours above (A), below (B) or within the upper and lower tour limits (MINTR/MAXTR) specified on card 1 , fields 3 and 4 . Each rate is tallied in the program, flagged in Part 1 where appropriate, and printed out in summary form in Part 2.
2.	15	Mode of printout to be selected by user where:   $1=$ Part 1 printout only   $2=$ Parts 1 and 2 will be printed out   $3=$ Part 2 printout only
3.	30	Actual estimated shore tour (ACT SHR TOUR) selector for utilizing the managers estimate of actual   Composite $B$ lengths or the program algorithm described in Appenix C.   $0=$ Actual estimate of Composite $B$ tour is not available and user desires to utilize program algorithm   1 = Actual estimate of Composite $B$ tour is punched into card number 1 of each pair of data cards in columns 25 and 26. (Figure 6, page 21)
4.	38-62	Printout labels to identify user selection of allowance or strength data for computation of tours (parameter card 1, field 1); and additional printout labels for "above", "below" and blank space for equilibrium tours relative to MINTR and MAXTR, fields 3 and 4 of parameter card 1.
5.	$\begin{gathered} 63 \\ 66 \\ 68 \\ 70-71 \\ 73-74 \\ 76-77 \\ 79-80 \end{gathered}$	Average length-of-service years provided as a basic input to program algorithm described for field 3, column 30 above. These values are used for pay grades E-3 through E-9 respectively.

3. Management Data Input.

Figures 4 and 5 present displays of data basic to rotation management. Two data displays are provided to illustrate actual data used as model input for each of two selected time periods: December 1972 and December 1976. In practice the data may be selected as the latest current data for Time 1 and carefully derived estimates of future data for Time 2.

With reference to Figure 4, page 18, data of interest are displayed under column headings as follows:

Field
Description

1. Rate abbreviation
2. Rate code
3. Sea allowance for selected Time 1 and Time 2
4. Shore allowance for selected Time 1 and Time 2
5. Sea strength for selected Time 1 and Time 2
6. Shore strength for selected Time 1 and Time 2
7. Allowance for preferred sea duty type 5
8. Strength for preferred sea duty type 5
9. Prescribed sea tour length in months
10. Prescribed shore tour length in months
11. Average length of service in years

12A. Minimum length of service years for the pay grade
12B. Career factor for the year shown in Field 12A.
+1 through +7 Career factors for the year indicated: i.e., minimum length-of-service (LOS) from column 12A. plus the number of years indicated by column heading.

BIILETS ANC STRENGTHS BY SEA ANC SHERE CCNPCSITES
PRESCRIRES TCLRS，AVERAGE LENGTH－CF－SERVICE（YRS），NININUM LCS－IN－GRACE
and clnulative centinuatica frcbaeilities fer year
（BILLET ANC SIRENGTF DATA AS CF 12－2E－72）CATE＝B2
PREGRAM ELTSTR

－$\quad$ R A ABER	\EE	－AL	LCW－	SIREN	NCTH SHDEE	PREF． AL．W	SEA STR	TCUR	NCS． SHCRE	AV．LCS YEARS	MIN LCS	18	UMULATIV BASED ON	Ve CONTI	ISTkigul	PROHAB ICN FER	ILITIE	30，1372）	
（1）	（2）	（3）	（4）	（5）	（6）	$(7)$	（8）	（ 5$)$	（10）	（11）	（12A）	）（128）	（＋1）	（ +2 ）	$(+3)$	（＋4）	$(+5)$	$(+0)$	$1+7)$
Bren	01008	120	74	56	8 C	1	c	$4 \varepsilon$	24	25.6	13	C．9789	0.9785	C．9789	0.9648	C． 9648	0． 5577	C． 9437	C．SCES
fres	01005	196	140	$1 \leq 5$	134	4	$\varepsilon$	48	24	23.4	11	0.9939	0.9939	0.9969	0.3756	C．ces34	C．9255	C．S115	C．E7Eし
ENC	01031	828	703	8C5	75 C	$1 \varepsilon$	22	48	24	17.9	7	0.5937	0.5514	C．9885	0.9811	C．ctit	C． 9174	0．8585	C．7854
GN1	01002	1265	1091	1450	1042	33	37	¢ 6	24	13.1	4	0.5976	0.5961	0.9885	0.9652	C．5こう2．	C． $2 \in 42$	C． 7746	C．tec 2
BM2	01003	1974	¢82	1595	630	25	17	72	24	7.1	2	0.5973	0.9505	c． 6.6754	0．6085	C． 5173	C． 4188	C． 3768	C． 26 Cl
En3	01004	2633	251	2572	195	9	7	72	24	3.7	1	0.5984	0.5519	C． 7562	0.1273	C．0532	C．0714	C．0540	C．C33）
ENSA	01005	221	38	100	12	C	1	72	24	4.5	1	1．CCOO	0.9816	0.8773	0.3190	C． 2 CEG	C． 1779	$0.128 \%$	C．C7GE
GrCH	02004	30	33	23	3 C	3	5	42	24	23.4	13	0.9833	0.9833	C．983	C． 3833	C．S 53	C．SCCC	C． 8 CCC	C．75C0
GMCS	0200J	33	59	40	85	16	12	42	24	18.8	11	0.9864	0.9660	C．9116	0.8707	C．2＜31	C． 7551	0.6122	C．4762
CNC	02001	437	352	428	310	24	28	66	24	16.0	7	0.5986	0.9559	0.9917	0.9738	C． 97.55	6.8772	0.7891	0.6524
CN1	$02 C 02$	498	442	351	263	2 C	13	72	24	11.5	4	0.9887	0.9761	0.5509	0.8575	0.7545	C．ts？ 1	C． 54.37	0．4581
Cr2	02003	742	295	536	93	7	5	72	24	4.8	2	0.9627	0.8368	0．3427	0.2657	C．2151	0.17 C	C． 1 AS5	C． 1113
$6 \mathrm{NH}^{2}$	02004	1140	61	1 C 76	75	4	6	72	24	2.9	1	0.9645	0.7581	0.4952	0.6462	$0 . n 258$	C．C2SC	C．0．s54	C．C．C．45
CNSN	02005	230	14	EC2	45	1	3	72	24	1.6	1	0.7230	0.2664	C．0833	0.0141	C．OCE2	C．CCE2	c．coss	$0 . \mathrm{CC4} 7$
SNCM	02504	9	7	9	20	c	3	36	24	22.8	13	1.0000	0.9599	C．C95s	0.9688	C． 9275	C．Sce 3	C． 8125	C． 750 C
SNCS	02501	34	32	25	42	4	3	36	24	20.3	11	1．0000	1． 0.000	$0.97 \leqslant 5$	0.9647	C． 9529	0．917t	0．8しくこ	C．$(471$
SNC	02501	68	149	165	222	3	2	36	24	17.3	7	0.9553	0.5930	0．5SCb	0．5sce	C．9765	C． $5 \in 48$	0.5413	こ． 6857
SN1	02502	491	255	414	347	2	3	66	24	14.5	4	0.4588	0.9977	0．9554	$0.59 C 7$	C．SE37	C． 9628	C．9373	C． 8827
SN2	02503	774	226	477	256	c	C	72	24	7.4	2	0.5952	0.9513	0.6413	0.5851	C． 5523	0.4721	0.3655	c． 308 s
SM3	02504	1643	22	SCS	22	1	1	72	24	3.1	1	0.5523	0.8285	C．5424	0.0645	C．0424	C．C 337	c．027s	C．clss
SNSN	02505	452	5	451	4	C	C	72	24	1.7	1	0.7477	0.3135	0.1070	0.0122	C．CC46	C．CC4t	C．CC31	C．CO31
cscr	O3COA	22	47	22	39	$\varepsilon$	4	30	36	19.9	13	1．0000	0.9598	C．9855	0.9855	0.8261	C． 5757	0．478？	c．4203
cSCS	03001	72	77	t4	45	$\varepsilon$	13	48	36	17.7	11	0.9922	0.9922	C． 7688	0.5287	0.8125	C．6． 797	C． 5391	C． 351 t
CSC	C3001	349	320	$3 ¢ 4$	270	31	26	48	36	16.1	7	1．CCOO	0.5586	c． 59572	$0.59 C 2$	C． 9735	C． 5317	0.6591	0.7531
CS1	03002	927	667	618	498	18	11	48	36	12.5	4	0.9962	0.9516	0.9740	0.9435	0.8778	C．8CCe	C． 7244	C．627シ
CS2	$03 C 03$	1454	435	1168	157	5	5	42	24	4.6	2	0.9836	0.8345	C． 2596	C． 2140	C． 1724	C． 1322	C．CS19	C． 6717
CS3	03004	1794	112	2103	$t 6$	4	3	42	24	2.9	1	0.9960	0.8158	C． 4449	0.6352	C．0242	C．Clet	0.0139	C．COSS
CSSir	03035	1894	71	1201	¢8	C	C	42	24	1.6	1	C． 7932	0.2340	0.0606	0.0057	C．CC40	C．CC4C	C．CO2E	c．CO17
EWCH	C350A	0	10	c	2	C	c	36	24	16.5	13	1．CCOO	0.3999	0.5559	0．95s5	C．C	C． 0	C． 0	C．C
EWCS	0350 J	22	17	$\varepsilon$	5	C	1	42	24	16.5	11	1．CCOO	1.0000	1．CCCO	0．SCCC	C． 8 CCC	C．tcce	C． 3 CCC	C．2CCr
EWC	03501	226	97	£4	68	13	$t$	48	24	13.2	7	1．CCCC	0.9857	0.9429	0.8786	C． 7714	C．tyet	C． 5429	C．40ct
EWl	03502	271	124	144	101	7	11	52	24	9.7	4	1． CCO	0.9904	0.7164	0.7742	C． Ctst．	C．4823	C． 3923	c． 3023
EW2	03503	597	21	79	16	1	C	52	24	5.8	2	1．CSCO	0.9714	C．7524	0.5524	C．3E10	C．2571	c． 1427	C．0762
EH3	03554	509	0	182	1	C	C	54	24	2.2	1	$0.5) 56$	0.4667	0.2444	0.0311	C．CCES	C． C	C．C	C．C
Enstio	03505	けら	c	10	c	$c$	C	54	24	1.1	1	0.5500	0.0687	0.0	C． 0	C． 0	C． 0	C． 0	C．O

[^4]BILLETS AND STRENGTHS BY SEA ANE SHGRE CCMPCSITES
PRESCRIBEO TCURS，AVERAGE LENGTH－CF－SERVICS（YRS），MIAIMUN LCS－IN－GRACE
and cluvlative centinuaticn preearilities per year
（BILLET AND STRENGTH CATA IS CF 12－31－76）CATE $=86 \quad$ PRGGRAM BLTSTR

$-R^{-} A$	TE－	－A	号	St	R	Pre		ICUR	VOS．	AVOLCS	$\mu 1$		SEE					－	
ABBR	CCDE	SEA	SHCRE	SEA	SHCRE	AL W	Srit	SEA	Shore	YEARS	LCS		SEC CA	LCS EI	T＊Ibut	（A）FCR	Jusí．	，1972）	
（1）	（2）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	112	（1）2日）	（＋1）	（ +2 ）	$(+3)$	（ +4 ）	（ +5 ）	$(1,)^{\prime}$	（1＋7）
ENCM	0100 A	96	59	45	64	1	C	48	2.4	28.3	13	C． 5749	0.9789	Co97ey	0.5795	C． 9648	0.9648	U． 9577	． 9437
BMCS	OlCOJ	157	112	124	107	3	8	40	24	24．2	11	0.9579	0.9939	C．5939	0.9509	C． 3756	0.56 .34	0.9299	6． 4116
EMC	01001	662	562	644	600	14	19	48	24	18．4	7	c．SS54	0.9937	0.5914	C． 9285	C．9811	0.9616	J． 9174	＜．85，89
BMI	01002	1012	873	1160	834	26	30	$6 \in$	24	13.7	4	1．ccco	0.5596	0．5561	0.9895	C． 98.52	C． 9.72	U． 4642	3．7146
BM2	$01 \mathrm{C03}$	1579	786	12 t 8	504	20	14	72	24	6.8	2	0.8976	0． 0.8554	0.6115	6.5476	0．4．45t	0.376 ；	L． 2541	1．2342
RN3	01604	2106	201	2958	156	7	6	72	24	3.3	1	0.8986	0.8567	0.6806	0.1146	C．	C．C643	6．0．04ts	2.0305
BMSN	01005	177	30	80	10	0	1	72	24	4.1	1	C．9CCC	$0.8 \varepsilon 34$	0.7856	C．2\＆71	C．1と 77	C．16こl	0.1159	¢．0718
CNCM	02004	24	26	18	24	2	4	42	24	24.1	13	C． 9833	0.9833	0.9833	0.9833	©．s83．3	0．9333	O．SECC	$\therefore$－8coi
GMCS	02001	26	46	32	68	13	10	42	24	19.6	11	0.9532	0.9864	0．9660	0.9116	C．8767	$0.82{ }^{\text {c }} 31$	0.7551	3.6122
CNC	02001	350	282	342	248	15	22	66	24	16.5	7	1．CCCO	0.9586	0.9559	0.9917	C． 9738	0.9255	C．8772	¢． 7627
CN1	02002	398	354	213	210	16	10	72	24	12.1	4	0.9962	$0.9 E 87$	0.9761	C． 5.509	0.8579	0.7525	0.6531	¢． 5937
CM2	02003	594	236	429	t． 6	6	4	72	24	4.5	2	0.8664	0.7531	C． 3024	0.23 .51	0.1572	C． 1532	6.1259	C． 1207
QM3	02004	912	49	$8 \in 1$	63	3	5	72	24	2.5	1	0.868 C	0.6823	0.4453	0.6421	C．0269	0．c2¢1	0.0175	C． 6130
GRSN	02005	184	11	482	36	1	2	72	24	1.2	1	0.6507	0.2358	0.0750	0.0127	C．CC74	0.0074	c．0．053	． 0642
SHCM	O250A	7		7	16	0	2	36	24	23.5	13	1.0 cco	1．ccco	0．5s59	C．Sçs	C．SEE8	C． 5375	0.9063	2.8125
SHCS	c250J	27	26	20	34	3	2	36	24	21.1	11	1．ccos	1．CCCO	1．CCCO	0.9765	C．$¢$ ¢ 47	0.5525	0.9176	c．ecre
SMC	02501	54	129	132	178	2	2	36	24	17.8	7	0.9553	0.9953	0．9530	C－scet	C．SSct	0.476 .5	C． 9648	－．9415
SMI	02502	393	236	231	278	2	2	66	24	15.1	4	1． 0.000	0.9588	C．9977	0.9954	C．SSC7	6.5837	0.3628	C． 9373
SM2	02503	619	181	382	205	0	0	72	24	7.1	2	0.8557	0.85 t2	C． 5772	C． 5302	0.4971	0.4254	0.3505	J． 2779
SM3	02504	834	18	727	18	1	1	72	24	2.7	1	0.8531	0.7456	0.4882	0.0580	C．0322	0.6303	0．02b1	¢．0174
SNSN	02505	394	4	361	3	$1]$	0	$\gamma 2$	24	1.3	1	0.6729	0.2821	0.0963	0.0110	C．CO4 1	C．0．C41	0.0028	c．c．028
OSCM	O300A	18	38	18	31	8	3	36	36	20.6	13	1． $\operatorname{ccc} 0$	1．ccoc	c． 5559	0.9255	C，9855	0．92b）	0.5797	C．4783
CSCS	03 COJ	58	62	51	36	6	10	48	36	18.5	11	C．5922	0.9922	0.5522	13．9688	C．9297	0.8125	1.6797	$\therefore .5391$
OSC	03001	278	256	291	216	25	21	48	36	$16 . t$	7	1． 6000	1.0600	0．5986	0．5512．	C．9502	0.5735	¢． 9317	C．8591
CS1	$03 \mathrm{CO2}$	742	534	494	398	14	9	48	36	13.1	4	C．Scs2	0．5562	0.5916	0，974C	C．7435	0.8779	0.9008	6． 7244
OS2	03003	1163	348	934	126	4	7	42	24	4.3	2	0.8852	0.7510	0.2656	0，1926	0.1552	C．1170	0.0827	C． 0645
CS3	03004	1435	90	1692	53	3	2	42	24	2.5	1	0.8964	0.7342	0.4004	0.0353	0.2218	C．Ele7	0.0125	C．cess
CSSN	03005	1515	57	1025	46	0	C	42	24	1.2	1	0.7139	0.2106	0.0545	0，0051	c．cc36	C．C636	0.0025	c． 3025
EnCM	0350A	0	8	0	2	0	C	36	24	17.2	13	1．CCCO	1．cCCC	C．S5¢9	0.9599	C．GG59	0.0	0.0	$\because$
EWCS	0350 J	18	14	6	4	0	1	42	24	17.3	11	1．cceo	1．ccoo	1．c300	1．0600	C．96CC	0．EOC？	0.6300	$\therefore 363$
EWC	03501	181	78	67	54	10	5	48	24	13.7	7	1．CCCO	1．CCCC	0.9857	0.9424	0.8786	C． 7714	0.6786	－． 5424
EW1	03502	217	59	115	81	$t$	9	52	24	10.3	4	1．CCCO	1．ccoco	0.9904	c． 9164	5.7942	0.6656	0.4323	0.3923
EW2	03503	478	17	63	13	1	0	52	24	5.5	2	0．Scco	0． 2743	0.6772	0.4572	1． 3429	0.2314	0.1256	2． 2686
EW3	03504	407	0	146	1	0	c	54	24	1． 2	1	0． 8240	0.4200	0.2260	0.0260	0.6080	C．C．	0.0	C．
EWSN	03505	76	0	8	0	0	0	54	24	0.7	，	C．4550	O．CECC	C． 0	0.0	0.0	$\mathrm{Ci} . \mathrm{C}$	0.0	．

[^5]The data displayed in Figures 4 and 5 have been produced from conventional allowance/strength data available to the rotation manager in punched card form and separately produced 30-year career factor data developed by this Center from end fiscal year length-of-service frequency distributions. Duplicate copies of career factors punched cards are available for the years 1966 through 1972.

The program that produces the printout illustrated here simultaneously produces a punched card output for use in the equilibrium flow model. Figure 6 illustrates two sample model input data cards for BMCM, one for each time period dealt with in the model. In order to limit the input data to two cards, the number of career factors has been limited. The model program places the appropriate decimal points after reading the cards.

The data card format is as follows:

FIELD			
NO.	NO OF		
COLUMNS		$\quad$	COLUMN
:---			
1			


$\begin{aligned} & \text { FIELD } \\ & \text { NO. } \\ & \hline \end{aligned}$	NO OF COLUMNS	COLUMN MJine	DESCRIPTION
20	1	70	Pay Grade Designator 1-9
21	5	71-75	Rate Code: alpha/numeric
22	5	76.80	Rate Abbreviation



Figure 6. Rotation Management Model Data Input Cards for BMCM Rate

## Familiarization with the Model

In order for the model to serve effectively as a management tool, the manager must be thoroughly familiar with its basic structure. The model has been run with partial data as a means to illustrate the narrative description. The dual nature of the model requires two separate output displays: one designed for the "micro-level" of rotation management and the other designed for "macro-level" rotation policy testing and policy formulation.

Part 1, shown as Figure 7, is a multi-page output containing rotation data of primary interest to the rotation manager. The first title line identifies the model and the second line indicates the assumed rotation direction, sea to shore. The third line contains minimum and maximum equilibrium tour length indices for a selected data column as indicated for purposes of a data summary appearing in Part 2. Dates of the data utilized as input and column headings follow immediately below. Selected rotation management data appear in seventeen columns. At the conclusion of the data listing appear three parameter card images that were used to select or generate the data shown. Data rows and parameter cards are numbered to further facilitate description.

PART 1. PAGE 1
PRETC-TYPE EQUILIBRIUM TCUR CCNPUTATICAS
PROGRAM IF
SEA TC SHORE RCTATICN
MINIMUM TCUR CF 24 AND MAXIMUM TCUR CF 48 AFPLY TC CCLLNA 12



CARD
PARAMETER CARD INAGE

1. $22124480 \quad$ OCJ.COMP $81 C C P C T \quad$ PANAING LEVEL PCT $=99$
2. TIME $1=12-28-72$ TIME $2=12-28-76$ CBLSRV=E3-14 E4-14 ES-14 EG-14 ET-14 EB-14 ES-14
3. COLUFN 12 MOO 2 ACT SHR TCUR 0 ALLOWANCE STRENGTH A B 44812161920

Figure 7. Display of Part 1 Rotation Management Model Output

Before using the model, the manager will have to make a number of decisions relative to his interests in rotation data output. He will influence the model through the parameter cards illustrated below the rotation data. For example: he must decide whether he intends to use allowance, strength, or personnel strengths equitably allocated to allowance, and he must also decide which direction rotation is to be simulated. Parameter Card 1 first field shows a "2" which selects "on board strength" as the numbers to use for rotation. A " 1 " in this field would select ALIOWANCE, and a "3" would select EQUITABLE MANNING by strength. Accordingly, labels STRENGTH or ALLOWANCE will appear above columns 3 through 6 containing that data.

Rotation occurs between broad duty composites SEA (type duty 2) and SHORE (type duty 1). The sequence of these numbers on parameter Card 1 second field directs the selected rotation sequence, in this case: 21 directs SEA to SHORE ROTATION which appears as the second row of the title.

Reference to "tours" jn this section imply "tour indices", that is, the tours generated will not be directly implemented but will serve as a base figure to work out a distribution of implementable tour lengths. A later section will provide a methodology for this procedure.

The minimum/maximum tour length specifications are for the purpose of identifying the rates that will have prescribed or equilibrium tours below, within or above the manager-selected limits. The manager must also select the column of interest, which may be column $8,10,12$, or 14 . Tours shown in columns 9,11 , and 15 are specified by the manager and the tour in column 13 is an estimate of the actual tour either generated by an algorithm in the computer program, or provided by the manager as direct input. An alphabetic character will appear in the space between columns 15 and 16 indicating if the tour in the selected column is below (B) the minimum, or above (A) the maximum, tour specified above the column headings. Parameter Cards 1 and 3 contain input for the data described: Card 1 fields 3 and 4 contain the minimum and maximum tour limits; Card 3 contains the selection of column 12 as the column of interest; and a zero (0) indicates that the estimate of actual shore tour length (ACT SHR TOUR 0 ) was not provided so the program generated the estimated tours appearing in column 13. If the manager provides his own estimate of the actual shore tour, he should punch a "1" in place of the " 0 " and include the tours as part of the data input.

Each rate processed by the model is numbered in sequence ahead of the rate abbreviation in column 1 . The alpha numeric rate code appears in column 2. Columns 3 through 6 display the numbers of personnel for each broad duty composite, sea and shore, for each of two time periods.

The obligated service months for rotation eligibility appears in column 7 and will be equal to the values shown on the right half of parameter Card 2 or the prescribed tour in column 9 . Selection of one
or the other is governed by the manning level percentage shown in column 17, and control is exercised through parameter Card 1 right hand side where MANNING LEVEL PCT $=99$. For the example shown here, all rates with manning levels equal to or above $99 \%$ will use prescribed shore tour months for obligated service. To increase use of the 14 month value, the percentage in the parameter Card 1 field should be raised. For example: MANNING LEVEL PCT $=999$ will cause every rate to fall below the criterion and select obligated service from parameter Card 2. Conversely, lowering the percentage value will cause more rates to appear above the criterion, and the prescribed tour in column 9 will appear in column 7 as the obligated service required for rotation eligibility. Setting this percentage value to zero, for example, will direct the program to use column 9 prescribed tours for column 7 obligations throughout the run.

Selection of the percentage factor to use will depend upon how the manager views manning-level effect upon rotation availabilities. High manning levels suggest manpower sufficiency and longer service obligations may be both feasible and desirable. Low manning levels suggest manpower shortages, and in order to meet requirements the obligated service factor may have to be modified. The modified factors in parameter Card 2 are specifiable separately for each pay grade. The sample illustrated shows 14 months for each skill level.

A CYCLE CAREER FACTOR for each rate appears in column 16. This value may be used by the rotation manager to estimate the proportion of personnel that can be expected to serve beyond the number of months represented by the sum of the equilibrium tour of interest (columns 10,12 , or 14 ) and the obligated service required for rotation eligibility (column 7). This proportion is important in the case of many rates with rapid personnel turnover since it provides an indication of which rates may not have sufficient long-term personnel to support rotation. For example: The total BM3 population (columns 5 and 6) of 2315 plus 175 equals 2490 personnel for Time 2. The CYCLE CAREER FACTOR is used as follows: . $0859 \times 2490=214$ can be expected to accumulate sufficient time to complete the indicated tour cycle. While this number is sufficient to meet the 175 shore requirements shown, unexpected changes to the personnel or billet structure may create rotation problems. Utilizing data from this column, the manager may remain alerted to potential problem areas of this type.

The remaining elements of Part 1 are the tour months shown under the captions "BASIC MODEL" and "BIASED MODEL".

The Basic Model data relates to the policy prescribed tours for each duty composite (columns 8 and 9) and a revised Composite A equilibrium tour (column 10) that would support the prescribed Composite B tour (column 11). The differences between prescribed sea tours in column 8 and equilibrium tours in column 10 remain to be resolved by rotation managers.

A means to resolve the differences between established policy-prescribed tours and equilibrium tours is provided with the BIASED MODEL. The first step requires the rotation manager to ascertain his real, actual shore tour length for entry in column 13. The model will generate the appropriate equilibrium tour for column 12. This would estimate tours for the ongoing current situation, and provide a base for decisions aimed at influencing the system in a pre-determined direction. The pre-determined direction is provided by specifying future desired Composite B tour indices as data input to column 15. Simultaneously, strength and allowance estimates for some selected future date are also provided for columns 5 and 6, (see figure 7). The model will then generate equilibrium tours for column 14.

Given the validity of the data used to generate the current and future equilibrium tours, the objective is to implement tour lengths that will move the system from its current state to the future desired state. With the inevitable uncertainty that attaches to long range data projections, the manager is not likely to accept the column 14 tour as an absolute value ready for implementation. It is viewed, rather, as an indicator of the direction and the magnitude of a desirable change and a goal to be approached through a series of successive decisions over a considerable period of time. With periodic evaluations based on independent measures of the rotation system, the manager will not implement either tour shown in columns 12 and 14 , but will seek a third tour index that will be a more representative estimate of his confidence in the equilibrium tours provided by the model. This is referred to as BIAS. The manager considers all the relevant factors pertaining to the situation, then "biases" the column 12 equilibrium tour in the direction of the column 14 equilibrium tour by an amount that reflects his confidence in his data estimates that were used to generate the tours. For example: BMCM's appear to experience 32 month shore tours. The equilibrium sea tour is 22 months. Column 15 shows the objective is a 24 month actual shore tour which will be supported by a 17 month equilibrium tour (column 14). With an estimated $33 \%$ confidence in data projection, the tour to be implemented will be:

$$
22-(22-17) \times 1 / 3=22-1.7=20.3=20 \text { months }
$$

Whenever current or projected data change significantly, the model should be run again and the decision process repeated to yield new prescribed tour indices.

With final reference to Figure 7, the entire Boatswains Mate (BM) rating has been processed in lines 1 through 7. Line 8 illustrates a "non-rotatable" rate diagnostic which will appear whenever any one of the four duty composites in columns 3 through 6 have zero data. Reassignment of these personnel must be done outside the rotation system.

After completion of processing the input data, parameter card images are displayed as a means of identifying the output. A detailed description of the structure of the parameter cards appears separately under a description of the computer model program deck.

At this point the aggregation of data has also been completed and the program will print the single page Part 2 summary data described in the next section.

Figure 8 illustrates model output Part 2. There are four separate tabulations of aggregate data reflecting the net effects of the rate by rate data processing. The fifth section is a duplicate copy of the parameter Card images that may be used to match Parts 1 and 2 should they become separated.

Table 1 illustrates Section 1 , the aggregate monthly personnel rotation movement summary.

TABLE 1. Display of Section 1 Part 2 Showing Details of Aggregated Monthly Personnel Moves for Various Situations

PART 2.
SECTION 1. MCNTHLY PERSCNNEL ROTATION NOVEMENT SURMARY BASEO CN STRENGTH

ROK	E-3	E-4	E-S	E-6	E-7	E-8	E-9	TCTAL		
	C. 2	1.8	6.9	15.8	15.4	3.1	1.1	44.3	TIME 1=	12-28-72
2 COLUMN ------29	0.5	E. 1	26.2	43.4	31.2	5.6	3.3	118.5	TINE $1=$	12-28-72
3 CCLS ${ }^{--}$(8) AND 191	C. 7	9.9	33.2	59.2	46.6	8.7	4.5	162.7	TIME 1 $=$	12-28-72
4 CCLS: $(10)^{\circ}$ AND (11)	1.0	16.2	52.5	86.8	62.5	11.2	6.7	236.9	TIME 1=	12-28-72
5 CCLS. 1125 AND T13	2.1	18.3	78.9	63.6	37.2	7.0	$5 . \mathrm{C}$	212.2	TINE 1 $=$	12-28-72
6 COLS. 1141 AND (15)	0.9	14:6	47.2	78.2	56.2	10.0	6.0	213.3	TINE $2=$	12-28-76

The accumulated rotation moves for each paygrade appear in columns under paygrade designations. The rows are identified relative to tour indices in Part 1 for both the basic and the biased model. Row sums of moves appear under the total column heading, and the appropriate time period and date of data follow to the right.

PART 2.
section 1. menthly persennel rotation movenent surfary based cin sireneth


1 NUNBER CF ROTATAELE RATES = 7 CUT CF E RATES hITM 5 RATES AT CR EELON GG PERCERT NANAIAG LEVEL
2 FCR TCUR LENGTHS IN CCUUNN 12, 1 RATES IILL HAVE EGUIL TCLRS SHCRIER THAN 24 NCNTHS
$3-\ldots=1$ RATES WILL FAVE EQUIL TCURS LONGER THAN 48 HCNIHS
$4-\because=\cdots-\cdots$ RATES FAIL WITHIN PRESCRIDEC LIMITS


## CARD

SECTION 5. PARAMETER CARC IMAGE

1. $22124480 \quad$ ADJ.COMP 8 LCC FCT 0 OARANGLEVELPCT $=99$
2. TIME 1=12-28-72 TINE 2=12-29-76 CELSRV=E3-14 E4-14 E5-14 EE-14 ET-14 ER-14 i.9-14


Figure 8. Display of Part 2 Rotation Management Model Output

Data for rows 1 and 2 are separated because they represent the moves that would occur for prescribed sea and shore tours. An imbalance will typically be evident here where the tours are not representative of the real rotation ratio. These moves are combined in row 3 for direct comparability with data in the remaining rows that deal with three pairs of equilibrium-prescribed tour indices.

Since the model has been designed to assist the manager in improving rotation, the conditions represented by the data in rows 1 through 4 are mainly of analytical interest relative to current and past practice in rotation management. Data in rows 5 and 6 are designed to assist the manager in quantifying the current on-going actions and a projected desired state towards which he desires to move the system. The management objective is to stabilize actual tours for personnel in the direction of more uniformly prescribed tours that may be promulgated as rotation policy directives.

The movement matrix may also serve to estimate costs associated with rotation by multiplying the data cells of interest by the average cost of rotation moves. For example: Row 5 shows an estimated actual rotation movement rate of 212 per month. If the average rotation move costs $\$ 2000$, the total monthly cost is $212 \times 2000=\$ 414,000$ for the BM rating. When all the rotatable rates are run in the model, total rotation movement cost estimates can be readily determined.

Section 2 illustrated in Table 2 displays a summary of rotation dynamics by rate. The data source is Part 1 illustrated in Figure 7. Row 1 indicates that 7 out of 8 rates processed are "rotatable" in the sense that personnel are assigned to both composites. Zero data in either sea or shore composite is used to direct management attention to cases needing special attention, such as the EWCM illustrated with its diagnostic message.

TABLE 2. Display of Section 2, Part 2 Model Printout


Low manning levels are also a concern in rotation management so the number of rotatable rates with manning levels below that specified on parameter Card 1 will be indicated in row 1.

Having selected the Part 1 column of interest, the remaining rows will show the number of rates relative to the tour limits specified in fields 3 and 4 of parameter Card 1.

Data in row 2 may be used by the manager to determine the number of rates to be considered for exclusion from rotation due to insufficient personnel available to complete minimum tour cycles. The specific rates may be identified by examining the Part 1 output where these data rows are flagged by the letter "B" between columns 15 and 16.

Data in row 3 indicate the number of rates with tour lengths in excess of a desired maximum as specified on parameter Card 1. These rates are identified in Part 1 , by the letter " $A$ " appearing in the. row between columns 15 and 16 , and may call for special attention in connection with efforts to improve rotation for the so-called "deprived" rates.

Row 4 provides the number of rates for which the tour limits are appropriate and provide a comparative measure with the numbers in rows 3 and 4 to ascertain the extent of applicability of these tour limits. If in the total aggregate of all rotatable rates there is a disproportionate share of rates outside the limits, some sort of management action is indicated. For example: deleting those rates with tours below the minimum will remove them from rotation to the "wet-dry" concept of assignment to a given composite for the duration of obligated service. Those rates with tours greater than the maximum will require some adjustment to billet ratios to bring the tour lengths within the desired limits. Even without specific management action, Section 2 will provide a concise summary of aggregate policy testing relative to prescribed tour lengths for one of the duty composites. If a significant majority of the rates fall within the specified limits, the policy tours may be considered feasible.

Sections 3 and 4 are strength/allowance summaries at two levels of aggregation. Section 3 illustrated by Table 3 provides a macro-level picture of combined duty composites for all rotatable rates by showing the total numbers of personnel for each of four conditions. Rows 1 through 3 contain data for time period 1 and row 4 contains data for the projected time period 2.

Table 3. Display of Section 3, Part 2 Model Printout


Column 1 shows the total number of personnel comprising the rotatable rates processed by the model. Column 2 contains the number of non-rotatable personnel in preferred sea duty type 5. Column 3 quantifies the number of personnel that will not accumulate sufficient time in service to rotate in accordance with prescribed tour lengths. Column 4 shows the number that will exceed the prescribed tour lengths, and consequently, rotate. Column 5 moves per month are taken directly from Section 1 and divided into the rotatables in column 4 to generate the tour index months shown in column 6 .

Monitoring this tour index will provide the manager with a gross measure of rotation movement trends.

Section 4 is illustrated by Table 4 where the totals for each duty composite are separated for a macro-level view of rotation dynamics.

Table 4. Display of Section 4, Part 2 Model Printout.

	- C CMPCSITE A - - -					+--ccmposite		B--+
		NCN-	RCTA-	moves	IClR		moves/	TOUR
	TCTAL	RCT	table	PONTR	INCEX	ICTAL	MCNTH	INCEX
RCH	(7)	(8)	(9)	(16)	(11)	(12)	(13)	(14)
1	6723	4099.	2624.	44.3	59.2	2843	118.5	24.0
2	- -	2987.	3736.	118.5	31.5	---	118.5	24.0
3	6723	2781.	3942.	106.1	37.2	2843	106.1	26.8
4	6049	2635.	3414.	106.6	32.0	2558	106.6	24.0

Composite $B$ data comprise the total shown in column 12, and rotation moves from this composite are one half the total moves appearing in column 5, Section 3. The tour index (column 14) expresses the ratio of column 12 data divided by column 13 data.

Composite A data is more complex in that the total number in column 7 are separated into non-rotatables (column 8) and rotatables (column 9). Under equilibrium conditions the moves per month (column 10) match the Composite B moves (column 13). The tour index (column 11) is the ratio of rotatables (column 9) divided by moves per month (column 10). By specific management design the non-rotatables are all in Composite A and do not figure in the monthly rotation moves. This group, however, does participate in a variety of moves connected with training, operational requirements and separations.

Comparison of $A$ and $B$ tour indices provides quantitative estimates of rotation dynamics and facilitates detection of directional trends in the system over lengthy time periods.

The parameter card image in section 5 is identical to that described in Part 1 and is duplicated in Part 2 as a means to match parts should they become separated.

## Peripheral Tasks Related to Model Use

The Equilibrium Flow Model that has been the subject of extensive description throughout preceding pages of this report has been pictured as a relatively generalized model with primary value in the area of comparative analyses. Among its limitations it was mentioned that it may be considered to have limited value in determining absolute values of rotation variables. The gap between the generalized nature of the model-generated tour indices and the specific nature of implemented assigned tour lengths to personnel may be readily bridged by some relatively simple desk calculation procedures.

One of the first tasks to be accomplished is the establishment of representative average tour lengths for each rate assigned to duty in Composite B for that part of the model that simulates the ongoing rotation system. The average tour length that evolves may also be viewed as a tour index in that it represents a synthesis of many individuals completing tours of varying length.

The necessary measures may be accumulated by recording the number of personnel vacating (completing tours in) Composite B each month. The cumulative number in billets divided by the cunnlative number vacating gives the tour length index. Table 5 illustrates a procedure for deriving such data. The procedure can be carried on indefinitely, generating a moving average type of tour index.

Table 5. Derivation of a Moving Average Tour Index for Rotation Management

	M	O	N	T	H	S	
	1	2	3		4	5	$6 \ldots$
Cumulative Number   In Billets	300	650	945	1270	1630	2000	
Cumulative Number   Vacating	12	26	35	47	63	83	
Tour Length Index*	25.0	25.0	27.0	27.0	25.8	24.1	
*Tour Length Index $=$Cumulative number in billets divided by the   Cumulative number vacating							

A suitable generalization from the above table would be that the average monthly flow rate out of Composite $B$ due to tour completions was $83 / 6=13.8$ moves per month for an average $2000 / 6=333$ personnel yielding an average tour length of 24.1 months. This value should replace the algorithm generated tour in the model as soon as it is available.

1. Structuring the Decision Bias

The computerized equilibrium flow model has been programmed to generate appropriate equilibrium tour length indices for interaction with prescribed tour length indices in each of two broad duty composites. The model incorporates a requirement for representing future conditions of the system by the introduction of appropriate estimates. While forecasting future conditions has long been recognized as extremely difficult and prone to error, the model has been designed to capitalize on the value of current data as a base for projections. Carefully derived estimates of future conditions are used mainly to indicate the direction in which the manager should seek to influence the system. The degree of confidence the manager has in his projections is used to help determine the magnitude of the influence he should apply. A hypothetical example will be formulated to illustrate how the manager may use the model to implement a decision bias that will tend to influence the rotation system in a desired direction to a desired degree.

Assume the model has been run, and the manager has obtained the following equilibrium tour length indices. His task is to modify one of them so as to generate a tour index that will tend to drive the system towards the projected state represented by the future tour index.

Time 1 (current) equilibrium tour $=38$ months
Time 2 (future) equilibrium tour $=47$ months

With an estimated $33 \%$ confidence in data projections the tour index to be implemented will be:

$$
.33(47-38)+38=41 \text { months (Composite A) }
$$

The manager will assign tours that average 41 months for his population subset. This does not mean he will actually assign 41 months as tour lengths for all personnel, but the aggregates of assignments should generate a personnel flow rate equal to that for 41 month tours.
2. Converting a Tour Index to a Tour Distribution

Developing a practical distribution of feasible tour lengths equal to a policy tour index is a relatively simple procedure on a desk calculator. To illustrate this procedure, a 41 month policy tour index will be used to illustrate how a manager can fit it to actual conditions.

Assume that the manager must observe a 48 month prescribed tour for Composite A of 1640 personnel. The policy prescribed equilibrium tour indicates a 41 month tour index which reflects a monthly flow rate of 40.0 personnel. The manager's task is one of rotating as many of the 1640 personnel as possible at the 48 month tour. He will rotate the remainder at an arbitrarily selected minimum 24 month tour. Table 6 illustrates how to arrange the data in preparation for the necessary computation.

Table 6. Computing the Maximum Number of Personnel That May Be Assigned a 48 Month Prescribed Tour With the Remainder Allocated to 24 Month Tours thus conforming to the Equilibrium Tour Index

No. of Personne1		Tour Index or Tour Length	Monthly Flow Rate
Given	1640	41	40.0
Compute	1640 - x	48	$\frac{1640-x}{48}$
Compute	x	24	$\frac{x}{24}$

To complete the table it is necessary to solve for $x$ in terms of monthly flow rate:

$$
\begin{aligned}
& \frac{1640-x}{48}+\frac{x}{24}=40.0 \\
& \frac{48(1640-x)}{48}+\frac{48 x}{24}=40.0 \times 48 \\
& 1640-x+2 x
\end{aligned} \begin{aligned}
x & =1920 \\
x & =1920-1640 \\
1640-x & =1360
\end{aligned}
$$

Substituting the values into Table 6 format:

No. of Personnel	Tour Index or   Tour Length	Monthly Flow   Gate	
Given	1640	41	40.0
Computed	1360	48	28.3
Computed	280	24	11.7
Check	1640	41	40.0

Two general rules are applicable to this problem: (1) the arbitrarily selected minimum tour must be in the opposite direction from the tour index as the prescribed tour; and (2) the greater the difference between the prescribed tour and the arbitrarily selected minimum tour, the larger the number of personnel that can be rotated at the prescribed tour. For example: if the minimum tour could be 12 months, 1547 personnel would rotate at 48 months and 93 personnel would rotate at 12 months for the 41 month equilibrium tour index.

An additional consideration must be made in assigning tour lengths to personnel going to type duty 3 or 4 . Unaccompanied personnel receive shorter tour lengths than those accompanied by their dependents. Many billets have DOD prescribed tours that differ from Navy prescribed tours. The manager thus has to deal with a distribution of tour lengths rather than a single prescribed tour. The overall rotation still must meet equilibrium conditions represented by the tour index. The fewer different tour lengths applicable, the easier the rotation managers task, but it is a relatively simple theoretical task to accomodate any number of different tour lengths. A tabular method for accomodating three different prescribed tours for a composite will be presented.

For example: Assume that portions of personnel in this population are assigned to duty that requires 24,36 , and 48 month tour lengths. The aggregate consists of $1640 / 41=40$ personnel moves per month. Table 7 illustrates how to arrange the distribution given the number of 24,36 , and 48 month billets that must be filled so as to facilitate the necessary computation to follow.

Table 7. Equating a Tour Length Index with a Distribution of Tours of Varying Lengths

No. of Personnel	Tour Length	*Monthly Flow Rate
200	24	8.33
100	36	2.78
1,000	48	20.80
x	z	y
1,640	41	40.0
*Monthly Flow Rate $=$ number of personnel divided by tour length		

To complete the table, it is necessary to compute how many personnel ( $x$ ), at what tour length ( $z$ ), will yield the monthly personnel flow rate ( $y$ ). Use of simple arithmetic will yield the values of $x, y$, and $z$ as follows:
(1) $\mathrm{x}=1640-200-100-1000=340$
(2) $\mathrm{y}=40.00-8.33-2.78-20.80=8.09$
(3) $z=340 / 8.09=42.0$ months tour length

This tells the manager that for this aggregate he can assign the numbers of personnel shown for each of the predetermined prescribed tours, but to have the entire group rotating in accordance with the policy prescribed equilibrium tour he will have to tour 340 personnel at 42 months each.

These tour length assigments will become increasingly valid as the system moves towards equilibrium. However, nothing prevents the manager from modifying tour lengths to meet specific contingencies. If the system simulation improves, the number of tour modifications should decrease as the system approaches equilibrium. However, due to the inherent time lag and difficulties in forecasting future conditions, rotation equilibrium may never be actually established, or if established, can not be expected to remain for long. For this reason rotation management is viewed as an implemented decision process aimed at influencing or "driving" the rotation system in the direction of equilibrium.

Obviously, the first effects of implementing the decisions shown here would not be available until at least 24 months have elapsed, and the final effects not felt until 48 months have elapsed. Monitoring the tour assignment effectiveness criteria will indicate whether or not the system is moving in the direction of improvement.

The time frame for evaluating the effects of rotation management decisions relative to tour lengths suggests that many rotation managers will actually be checking tour assignment decisions made by their predecessors, and their own decisions will be checked years later by their successors. The need for uniform procedures and management continuity thus becomes apparent and a management model offers a practical means to help achieve this requirement.

## Application of the Model

The computerized equilibrium flow model has a potential for a variety of uses at many rotation management levels where quantitative support is desired for administrative decisions and broad policy formulation.

Part 1 of the model has been designed to provide rating managers with equilibrium tour indices applicable to rates, ratings and NEC communities. Converting tour indices to implementable tour lengths has been covered in the section of this report titled "Peripheral Tasks Related to Model Use".

Part 2 of the model is intended for those managers who deal with rotation at a higher level of personnel aggregation such as ratings, rating groups, DOD occupation groups, or the entire sea and shore composites. The summary data can be particularly useful in evaluating the effects of varied parameters such as tour extensions on total number of rotation moves and equilibrium tour length indices for any selected population aggregate. Comparative analyses of data from a series of model runs can be of considerable assistance in determining rotation policies applicable to a specified proportion of the total population.

Either or both parts of the model may be used by any rotation manager who wishes to improve his understanding of rotation dynamics. The extent to which model output may be implemented through administrative decision procedures is entirely left to the manager.

Data input is arranged on punched cards which are easy for the manager to change, duplicate, arrange in desired order and grouping, or delete data not wanted.

Model application more specific in nature can be determined by reviewing the data fields of the three parameter cards. (see also pages 15-16).

Card 1.

The model will utilize allowance, strength, or strength at equitable manning as indicated in field 1.

Direction of rotation may be either sea to shore or shore to sea.
The user must specify minimum and maximum tour constraints for the purpose of differentiating those rates below, within or above the tour lengths of immediate interest. This section can be an aid in ascertaining to what extent policy prescribed tour lengths may be applicable.

If it is desired to learn the effects of changing prescribed sea or shore tours, the number of months changed, can be specified for each time period for each composite. Entering the number of months desired extension
on the parameter card will have them added to the prescribed tours. Preceding the number with a minus sign will shorten the tours by that amount. The equilibriun tours and number of monthly personnel moves will reflect the net effect of the tour length change.

Many rates have shore personnel occupying billets, but the personnel may not be rotatable, i.e., women in uniform and perhaps some proposed civilian substitutions. Oace the manager has determined the proportion of non-rotatables to his total shore aggregate, he can specify the complementary percentage ( $100 \%$ minus non-rotatable percent) to be included in rotation. Should he desire to test the effects of increased shore billets to reduce sea tours, he can multiply his shore aggregate by a selected number greater than $100 \%$. A specified percentage change will alter the rotation moves by the same amount so the manager can test the effects of increasing or decreasing personnel moves by any selected percentage.

The user of the model also has some flexibility in selecting the obligated service requirements for rotation eligibility. The normal service obligation can be considered equal to the prescribed tour length the individual is rotating into. This is linked in the model to manning levels above that specified on the parameter card. Where the manning level is below that specified, the service obligation will be taken from the second parameter card. It is up to the manager to determine what this alternative value should be. Initially this value has been set at a minimum of 14 months. One or the other of these obligations will be used throughout the model run. A program change would be necessary to tailor obligated sexyice months to specific rates, and some corresponding value would then have to be added to one of the data input cards for each rate.

The prescribed shose tour plus its preceding equilibrium sea tour constitutes a rotation cycle for the rate. In practice, an obligated service requirement for rotation eligibility may replace the prescribed shore tour so that the retation cycle months may approximate the sea tour plus the service obligation. In either case, it is of interest in rotation management to know what proportion of personnel commencing a rotation cycle can be expected to complete it. The career factor for the cycle is printed in column 16 of Part 1 in the form of a four place decimal. For example, in Figure 7, line 5, BM2, column 16 shows 54\% (.6439) can be expected to complete a rotation cycle in Time 2 of 28 months (column 12) plus obligated service of 14 months (column 7) for a total rotation cycle of 40 months. Where the career factor approaches zero it is an indication that the rate might frequently have insufficient personnel to sustain rotation under time and might better be handled under the "wet/dry" concept of assigning personnel proportionately to sea or shore without opportunity for rotation. If this solution is not feasible, then a shorter rotation cycle may be prescfibed by reducing the shore tour whereby a larger proportion of personnel can be expected to serve throughout the cycle.

Card 2.
Card 2 provides means to specify the date of the input data for printing out in Parts 1 and 2. Alternate obligated service months for each pay grade appear across columns 43 through 80 for use when manning levels are below a specified level.

Card 3.
Part 1 displays equilibrium sea tours and prescribed shore tours for various situations of possible interest. The three columns that contain the equilibrium tours are 10,12 , and 14 . Equilibrium tours above or below the minimum and maximum tours specified on Card 1 are identified by a letter $A$ or $B$ as appropriate. In the aggregate, these are summarized in a brief table in Part 2. The manager must indicate here the data column of interest. This part of the model will show which rates will fall within the selected limits for policy considerations, and also show those rates above and below the limits that will be policy exceptions. The summary table (Section 2) can provide totals that can be converted to proportions to assess the extent to which the specified parameter will generate rotation tours suitable for policy generalizations.

Rate managers will primarily be interested in Part l output, but the Summary Tables in Part 2 can also be useful for comparative analyses.

Part 2 has been designed primarily for managers who are looking at the broad rotation picture with a view to formulating useful generalizations about rotation dynamics. However, they must be interested in knowing which rates distort the rotation picture and thus will want Part 1 for detailed reference.

As an economical option, the user can direct the model to print out either Part 1 or Part 2, or if he desires the complete output, he can so specify. It is difficult to establish that point where data quantity transits from insufficient to excessive, and is here left for the manager to determine. If he is dealing with rotation at the rate level, Part 1 is probably adequate since the total effect represented by the aggregate contributes nothing directly applicable. If, however, the manager is monitoring the broad aspects of rotation over several years, seeking repetitive cycles or distinct trends, only Part 2 is likely to be of value and the excess pages of Part 1 , will merely occupy shelf space.

This decision must be made by the user of the model. The options have been designed-in for use when desired and are described on page 16 under parameter field 2, mode of printout desired.

In conclusion, it can only be emphasized that any management model is a tool and successful use presupposes considerable knowledge about the system being managed. The design has basically been that of quantifying rotation variables. The output will be entirely quantitative. The numerous qualitative aspects of rotation management must be introduced by the manager who seeks to influence or otherwise control the rotation system toward some identifiable goal.

APPENDIX A

PROGRAM LISTING

## PROGRAM LISTING

















## APPENDIX B

GLOSSARY OF PROGRAM DATA FIELD NAMES

AAA	- Computed sea tour plus length-of-service obligation for rotation eligibility.
ABOVE	- Selects "flag" A from parameter card for equilibrium tours above specified MAXTR.
ADJ	- Percentage adjustment to composite B numbers where $100 \%$ results in no change, lower percentage figure reduces composite $B$ numbers and higher percentage figure increases composite B numbers.
AJSHR	- Amount to adjust shore tour for program algorithm that computes estimate of actual shore tour lengths.
AVIRx	- Denotes average tour lengths where position "x" contains a numerical identifier differentiating tour lengths contained within the program for printing summary tables in Part 2, Section 3.
BBB	- Career factor selected from appropriate table offset the specified six months to adjust mid-year data to end-of-year data.
BELOW	- Selects "flag" B from parameter card for equilibrium tours below specified MINTR.
CFn	- Career Factors for TIME 1.
CFACx	- Adjacent career factors selected from table for interpolating month values between yearly factors. Numerical identifiers in position x differentiate the selected factors.
CHECK	- Zero data check for allowance or strength, TIME 1.
CHK	- Zero data check for allowance or strength, TIME 2.
CMPSTR	- Computed equilibrium sea tour for TIME 1.
DATEx	- Stored labels for print-out showing dates of input data; " $x$ " values run from 1 through 8.
*Subscr numeri	" $n$ " indicates.a dimensioned array. Subscript "x" indicates a identifier to differentiate otherwise identical alpha-field names


DIFF	- Field identifier for direction of tour length difference between computed equilibrium tour and either MAXTR or MINTR; selects word ABOVE, EVEN or BELOW for later selection of $A$, $\underline{B}$ or (blank) to appear between columns 15 and 16 in Part 1 Printout.
ENTFAC	- Interpolated career factor for TIME 2.
EVEN	- Selects a blank space from parameter card for identifying equilibrium tours that fall within the specified MINTR and MAXTR .
EXPSRV	- Average length of service years expressed to one decimal place. (Derived from EXPSVI X 0.1)
EXPSVI	- Average length of service years multiplied by ten to eliminate decimal point for space conservation on data card.
FACINT	- Career factor interpolated for each month from annual factors.
FACMATn	- Career factor used in computing interpolated values for TIME 1.
FCn	- Career factors for TIME 2.
FCMTn	- Career factor used in computing interpolated values for TIME 2.
FNT12	- Total number of personnel at TIME 1
FNT22	- Total number of personnel at TIME 2.
FRCTI	- Interpolated career factor derived from FACINT.
FRCT5	- Interpolated career factor derived from ENTFAC.
GRD	- Enlisted grade (paygrade level).
HMVSI	- Personnel moves resulting from a prescribed sea tour and adjusted by the appropriate career factor.
HMVS2	- Personnel moves resulting from combined sea moves (HMVSI) and moves resulting from prescribed shore tour (SHVI).
ITEM	- Program "Do Loop" counter.
ITOT	- Career factor matrix cell location used in dimensioned array.
	- Program "Do Loop" counter.
JACT	- Field name for value punched in parameter card 3, column 30 to indicate whether or not estimate of actual shore tour length is provided as input data.

JPGRD
JSEA - Equilibrium sea tour for policy prescribed shore tour.
K

KCYC
KF - Career factor selector for rotation career cycle.
KOL - Data column selector for identifying equilibrium tours relative to the specified MINTR and MAXTR on parameter card 1.

KOLM - Field set equal to various equilibrium tours for integer format and logical branching tests within the program.

KOUNT - Career factor cell matrix location used in computing interpolated career factor values.

KPCT - Specified manning level percent located on parameter card l, columns 71-73.

KREV - Data field used to reverse rotation direction of model when a "I" appears in column 70 of the card used to separate rating groups in data input deck.

KROT - Navy duty type identifiers in columns 3 and 4 of parameter card 1 indicating direction of rotation by their arranged sequence. 21 = type duty 2 to type duty 1 for sea to shore rotation. Reversed rotation of shore to sea will be obtained by a "12".

KSEA - Equilibrium tour that will support the estimated actual prescribed tour in the complementary composite.

KSRVn - Average length-of-service years against which to compare individual rate lengths-of-service for computation of estimated actual personnel movement rates in program algorithm. Values for each paygrade appear in columns 63-80 on parameter card 3.

KTOURn - A dimensioned array for accumulation of computed equilibrium tours and prescribed complementary tours.

KTR - Counter for the number of equilibrium tours shorter than the specified MINTR on parameter card 1 . Total appears in Part 2, Section 2, Row 2.


PERSx		Data names for printout labels: ALLOWANCE and STRENGTH. Numerical identifiers in position "x" differentiate four PERSX names.
PFALI	-	Preferred type duty 5 allowance for TIME 1.
PFAL2	-	Preferred type duty 5 allowance for TIME 2.
PFSTl	-	Preferred type duty 5 strength for TIME 1.
PFST2	-	Preferred type duty 5 strength for TIME 2.
PMVxn		Accumulation of monthly personnel moves in a data array for each of four conditions differentiated by numbers in position "x".
PRCT	-	Specified manning level percent appearing on parameter card $I$ in columns 71-73.
PRJCF	-	Career factor selected from matrix for computing equilibrium sea tour.
PRJSB	-	Estimated number of sea billets or strength computed with career factor.
PROP	-	Proportion of personnel that can be expected to complete a rotation cycle.
PSEAB	-	Number of rotatable sea billets or strength as computed.
PSEAI	-	Prescribed sea tours for TIME 1.
PSEA2	-	Prescribed sea tours for TIME 2.
PSHRI	-	Prescribed shore tours for TIME 1.
PSHR2	-	Prescribed shore tours for TIME 2.
PSHR3	-	Estimated actual shore tour for TIME 1
RABBR	-	Rate abbreviation.
RATE	-	Rate abbreviation.
RCODE	-	Rate code.
ROTSBn	-	Number of rotatable sea billets or strengths accumulated in array for aggregate summary Part 2.


RSEAB		Number of rotatable sea billets or strengths.
SALWI	-	Sea allowance TIME 1.
SALW2	-	Sea allowance TIME 2.
SEA	-	Number of monthly moves resulting from prescribed sea tours.
SEACF		Career factor selected from appropriate cell matrix for use in computing rotatables.
SEAMVn		Number of monthly moves related to prescribed sea tours. Used to accumulate total moves in a dimensioned array.
SEAI		Number of months to add or subtract to sea tour length as indicated on parameter card 1, columns l2-13 for TIME 1.
SEA2		Number of months to add or subtract to sea tour length as indicated on parameter card 1 , columns 15-16 for TIME 2.
SHALI	-	Shore allowance for TIME 1.
SHAL2	-	Shore allowance for TIME 2.
SHORVn	-	Dimensioned array for accumulating number of shore vacancies due to tour completions.
SHRI	-	Number of months to add or subtract from shore tour length on parameter card l, columns 18-19 for TIME 1.
SHR2	-	Number of months to add or subtract from shore tour length on parameter card l, columns 2l-22 for TIME 2.
SHSTI	-	Shore strength for TIME 1.
SHST2	-	Shore strength for TIME 2.
SHVx		Accumulated shore vacancies due to tour completions for a variety of situations differentiated by index numbers in "x" position.
SOBL	-	Length of service obligation months for rotation eligibility.
SRVEXP	-	Service expectancy or average length of service for each rate.
SSTR1	-	Sea strength for TIME 1.
SSTR2	-	Sea strength for TIME 2.
STRCMP	-	Computed equilibrium sea tour length in months.


SUMx	- Accumulation of numbers of rotatables for each of four conditions differentiated by numbers in "x" position.
SVOBn	- Manager specified service obligation months for rotation eligibility appearing on parameter card 2 , coulmns 43-80 for each of pay grades 3 through 9 .
TITLX	- Selects labels ALLOWANCE or STRENGTH in accordance with parameter indicator on card l, column 1. TITLI and TITLL are required to print complete label.
TMMOS	- Selects career factor for number of months for program "do loops".
TNROTn	- Total number of non-rotatables for aggregate summary, used in a dimensioned array for each of four situations.
TOTS	- Accumulates total number at sea for aggregate summary in Part 2.
TOTSH	- Accumulates total number ashore for aggregate summary in Part 2.
TOTx	- Accumulates total number of personnel moves due to tour completions for aggregate summary in Part 2, for each of six situations.
TOTxx	- Accumulates total number of personnel moves due to tour completions for separate duty composites for aggregate summary in Part 2, for each of three situations.
TROTn	- Accumulates total number of rotatables in dimensioned array for each of four situations for aggregate summary in Part 2.
TRYRS	- Sets initial number of tour years to begin iteration process for computing equilibrium tour months.

DATA FIELD SUBSTITUTIONS AND DUPLICATIONS

AVSRVn	$=$	KSRVn		LVOBn	$=$	SVOBn	
ICHECK	$=$	CHECK		MSEA	$=$	PSEA2	
ICHK	$=$	CHK		MSEAI	$=$	SEAI	
JKOL	$=$	KOL		MSEA2	$=$	SEA2	
KADJ	$=$	ADJ		MSHR	$=$	PSHR2	
KOBL	$=$	SOBL		MSHRI	$=$	SHR2	
KSHR	$=$	PSHR3		MSHR2	=	SHR2	
KVOBn	$=$	SVOBn		N	$=$	JPGRD	
LPFDI	$=$	PFALI =	PFSTI	PSEA	=	PSEA2	
LPFD2	$=$	PFAL2 $=$	PFST2	PSHR	=	PSHR2	
LSEA	$=$	PSEA2		SEAN	=	SALW1	SSTR1
LSEAN	$=$	SALW1 =	SSTRI	SEAP	$=$	SPEA2	
LSEAT	$=$	SALW2 =	SSTR2	SEAT	$=$	SALW2	SSTR2
ISHR	$=$	PSHR2		SHRN	$=$	SHALI	SHST1
LSHRN	$=$	SHALI $=$	SHSTI	SHRP	$=$	PSEA2	
LSHRT	$=$	SHAL2 $=$	SHST2	SHRT	$=$	SHAL 2	SHST2
				TITLx	$=$	PERSX	

## APPENDIX C

data field locations in program

FIELi)

AAA $\quad 2020,2030,2075,2085,2150,2160,2205,2215,2290,2300,2345,2355$
AEOVE $230,470,2500,2760,3265$
AC. $J$
229, 231, 232,1552,1553
AJSHR 1580,1590.1600.1650
55, 350,1650
AVIK1
Avtra
Avir3
SVIRA
AVIRS
Aytrg
3010,3035
3015,3155
3020,3175
3025,3135
3030,3140

3045,3200
AVTRG 3050,3140
AVTR10 3055,3160
AVTRII 3060,3180
AVTRLZ 3065,3200
LEB $\quad 2025,2030,2080,2085,2155,2150,2210,2215,2295,2300,2350,2355$
BELCW $2308470,2760,3265$
CF $\quad 40,655,847,1100,1120,1145,1155$
CFAC1 1145,1165,1185,1205
CFAC2 1155,1165,1235,1255,1265,
CFAC5 1150,1175,1190,1210,
CFACG $1160,1175,1240,1260,1270$
CHECK 920, 925,
CHK
965, 970,
CMPSTK 2015,2020,2070,2075,2100
DAIE1 239, 450,2740,2855,2865,2875,2885,2895,3245
CATE2 239, 450,2740,2855,2865,2815,2885,2855,3245
DATE3 239, 450, 585, 765,2740,2855,2865,2875,2385,2895,3245
DATE4 239, 450, 585, 76582740,2855,2865,2875,2885,2895,3245
DATE5 239, 450,2740,2905,3245
DATE6 239, 450,2740,2905,3245
CATET 239, 450, 535, 765,2740,2905,3245
CATE8 239, 450, 585, 765,2740,2905,3245
CIFF $\quad 310,2470,2500,2650,2675,2660,2685$
EATFAC 1175,1180,1210,
EVEN $230,310,470,2660,2685,2760,3265$
EXPSRV 1090,1610,1624
EXPSV1 655, 347,1090
FACIHT $1165,1170,1205$
FACMAT 40,1185,1205,1235,1265,1300,1755,1765,2C05,2060,2135,2190,2392
FACHAT 2407,2422
FC $\quad 40,715,880,1130,1125,1150,1160$
FGHT $40,1190,1210,1240,1270,1295,2275,2330,2377$
FNTi2 1930,3050,3055,3060
FNT22 1935,3005
FRCT1 1170.1255
FRCT5 1180,1260
GRD 655, 847,1020,1040,2645,2670
HMVSI 1750,1755,1775,1780
HMVS2 1780,1810,1840
ICHECK 925,930
IClKK 970, 975
ITEM 1195,1205,1210
ITOT $1130,1185,1190,1200,1205,1210,1220,1235,1240,1245,1265,1270,12758$
ITOT $1290,1295,1.300$
」
JKOL 305
JPGRD 6558 665, 847, 852,1548,1575

## LOCATION BY PSID NUMBERS

JSEA
$K$
KADJ
KBOPS
KCYC
KF
KGBL 170,
KCL
KCLM
KOUNT
KPCT
KREV
KROT
KSEA
KSHR
KSRV
KTCUR
KTR
KVOB
L
LONG
LCOP
LPFCl
LPFD2
LSEA
LSEAN $\quad 940,925,1020,1040,1415,1505,1375,2345,2670$,
LSEAT 950 , $935,1020,1040,1425,1515,1880,2645,2670$
LSHR
LSHR 1380,2575,2605
SMRT
LSHRT
IVOB
$i$
MAXTR
MINTR
MOD
MSEA
:SEAl
MSEA2
MSHR
MSHR 1
YSHR2
HSRVI
isRV2
N
N
NEGNL
NMBR
NRATE
NREM
NSEA
NTI
NTI
NT2
PCNTI
PCNT
PCTI 1310.
PCT2
PERS1
PERS
PERS
PERS
$2100,2405,2400,2580$
510, 675, 453,1015,1055,2640,2690
231,430,2726,3230
229, 370, 430, 540, 915,1410,2726,2795,3225
2375,2377,2:991,2392,2406,2407,2421,24,22
1745,1755,1765
$1700,1715,2376,2391,2406,2421,2645,2670$
$260,305,470,570,750,2370,2385,2400,2415,2445,2760,2960,3265$
2375,2590,2405,2420,2450,2460,2490
$1135,1145,1150,1155,1160,1225$
315, 430,2126,2945,3230
65,410,2010
229, 430, 490, 495, 505, 555,1075,2700,2726,3225
2225,2390,2391,2590
1655,1653,2595
55, 285, 350, 475,2765,3270
$40,2570,2575,2580,2585,2570,2595,2600,2605,2650,2675$
70,2465,2925,2960
55, $355,1551,1690,1725$
85, 525, 640, 645, 820, 825
75,2495,2925,2975
$1140,1250,2050,2180,2320$
$1455,1545,1905$
1400,1546,1910
1370,2570
$945,990,1020,1040,1420,1510,1885,2645,2670$
$955,1000,1020,1040,1430,1520,1390,2645,2670$
55, 360, 455,2745,3250
520, 690, 695, 860, 365,1065
229, 430, 570, 750,2490,2726,2975,3225
229, 430, 570, 750,2726,2960,3225
250, 296, 470, 685, 355,1010,2630,2715,2760,3265
1350,2421
325, $430,2726,3225$
330, 430,2725,3225
1360,2585
335, 430,2725,3225
$340,430,880,2726,3225$
655, 847
715
$145,180,345,1548,2745,2765,2855,2865,2875,2885,2895,2905,3250$
3270
82,1550,2945
80, 730, 900,1020,1040,2645,2670,2645
90, 725, 845, 935, 930,2925,2945
2925,2990
2365,2375,2376,2600
$50,150,1875,1885,1895,1965,1930,2525,2530,2535,2610,2615,2620$
3000,3135,3135,3140,3175,3175,3130
$50,155,1820,1890,1900,1910,1935,2540,2625,3005,3195,3195,3200$ 1316,2650,2675
1317.

1310,1316,1480,1490,1549,1615,1624
1315,1317,1435,1455
35, 280, 375, 470,2760,3265
280, 380, 470,2760,3265
35, 280, 390, 470,2760,3265
280, 395, 470,2760,3265

FIELD

NAME
PFA! 1
PFALL 2
PFSTI
PFST2
prVI
PNV2
pNV3
prV4
PRCT
PRJCF
PRJSB
PROP
PSEA
PSEAB
pSEAI
PSEA2
PSHR
PSHR1
PSHR2
PSHR3
RAGBR
RATE
RCOCE
ROTSB
RSEAB
SALWl
SALiH2
SEA
SEACF
SEAMV
SEAN
SEAP 1365
SEAT 1445,1535,2280,2335
SEAL 229, 325,1325
SEA2 229, 330.1330
SHAL1 650, $846,920,940,1300,1490,1510,1530$
SHAL2 710, 880, 920, 555,1315,1520,1540
SHRN $1440,1530,1552,1665,16,70$
SHRP 1375,1580,1590,1500,1630,1695
SHRT $1450,1540,1553,1690$
SHORV 45,190,1805,2865
SHRI 229, 335,1.335
SHR2 229, 340,1340
SHSTL $650,845,965,990,1300,1420,1440$
SHST2 710, 880, 905,1CCO,1315,1430,1450,1495
SHV1 1665,1780,1785,1805,1835,2015,2070
SHV2 1670,1790,2145,2200
SHV3 16B0,1795,2285,2340
SHVS 1785,1815,1845
SHVE 1790.1820.1.850
SHV7 1795.182581855
SOBL $1695,1700,1710,1715,1745,2020,2075,2150,2205,2290,2345$
SRVEXP 1610,1624.1650
SSTR) $\quad 650,846,965,985,1310,1415,1435$
SSTR2 710, 830, 9659 995,1315,1425,1445
STRCMP 2145,2150,2200,2205,2225,2285,2290,2340,2345,2365
SUM1 2525,3010,3135
SUMZ $2530,3015,3155$
SUM3 $2535,3020,3175$
SUM4 $2540,3025,3175$
SVOE $\quad 50,240,355,360,1710,1725$

```
TITLI 35, 375, 390, 585, 765,2780,3070
YITL2 35, 340, 395, 585, 765,2780,3070
TMOS 2000,2005,2025,2045,2055,2060,2080,2130,2135,2155,2175,2185,2190
TMOS 2210,2270,2275,2295,2315,2325,2330,2350
TNROT 50,170,2610,2615,2620,2625,3035,3135,3155,3175,3175,3155,3195
TOTS 95,1830,2855,3030,3140
TOTSH 100,1835,2865,3050,3140
TCT1 105,1840,2075,3010,3135
TOT2 110,1845,1915,2885,3015,3155
TOT3 115,1850,1920,2855,3020,3175
rOT4 120,1855,1925,3025,3155
TOT5 3000,3135,3175
TOT6 3005,3145
TOT21 1915,3035,3055,3160
TOT31 1920,3040,3060,3180,3180
TCT42 1925,3045,3065,3200,3200
TROT 50,165,1770,2110,2240,2520,2525,2530,2535,2540,2610,2615,2620
TROT 2625,3030,3035,3040,3045,3140,3160,3180,3200
TRYRS 1980,199:,2000,2040,2045,2115,2125,2130,2170,2175
TRYRS 2255,2265,2270,2310,2315
```

Chief of Naval Operations (OP-01)(OP-987F)

$$
(0 P-099)
$$

$$
(O P-39)
$$

$$
(0 \mathrm{P}-964)
$$

Commandant of the Marine Corps, G-1 Division, Code A01M
Chief of Naval Education and Training (Code $\mathrm{N}-33$ )
Chief of Naval Material (MAT 03P)
Chief of Naval Personnel (Pers-11b)
(Pers-35)
(Pers-54) (10)
Chief of Naval Research (Code 458) ..... (2)
Superintendent, Naval Postgraduate School
Center for Naval Analyses
Office of the Assistant Secretary of the Navy(Manpower and Reserve Affairs)
Chief of Research and Development, U. S. Army
Army Research Institute for Behavioral and Social Sciences
Personnel Research Division, AFHRL, Lackland AFB
Personnel Managerent Development Office, OPO, U. S. ArmyHuman Factors Operations Research Laboratory, Bolling AFBScience and Technology Division, Library of CongressDefense Documentation Center (Attn: DDC-TC) (12)


[^0]:    *Borgen, N. I., Segal, J. A., and Thorpe, R. P., An Equilibrium Flow Model of the Navy's Enlisted Personnel Rotation Process, San Diego: Naval Personnel and Training Research Laboratory, August 1972 (SRR 73-3).

[^1]:    *Borgen, N. I., Segal, J. A., and Thorpe, R. P., An Equilibrium Flow Model of the Navy's Enlisted Personnel Rotation Process, San Diego: Naval Personnel and Training Research Laboratory, August 1972 (SRR 73-3).

[^2]:    *A comprehensive description of the theoretical derivation of career factors and the concepts and mathematics of rotation were provided in the previous report of the Equilibrium Flow Model (SRR 73-3).

[^3]:    *Parts 1 and 2 are shown in Figures 7 and 8 on pages 22 and 27.

[^4]:    Figure 4．Data Display Basic to Rotation Management for Time 1

[^5]:    Figure 5．Data Display Basic to Rotation Management for Time 2

