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FOREWORD 

The Meeting was held i.i onjei to clarify understanding of t .e basic physical structure 
of tuibulent shear flows such as boundary layers, jets and wakes, in non-reacting flows of 
gas.  Factors considered were the basic structure of "equilibrium" shear flows and the 
influence of compressibility, pressure gjadients, surface curvature, three-dimensional flows, 
noise, density and/or temperature gradients. 

Thirty-four papers were presented, four being invited from internationally known 
authors to present an overview of the field of turbulent shear flows.  Papers in Session 1 
present new information on the structureof the boundary layer.  Session IP covers 
theoretical treatments. Papers in Sessions IIFand'v are particularly concerned with new 
experimental boundary layer results, and in Session'IV with jets and wakes.   Papers in 
Session W cover a series of special areas in turbulent shear flows. 

By invitation of the British National Delegates to AGARD, the SpeciaUsts' Meeting 
recorded in this document was held at the Royal Zoological Society of London, during 
13-15 September 197\. 
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VARIATIONS O.V A THEME OF PSAKDT!, 

feter Brscishaw 
Departiijcnt of Aeronautics,  Imperial College, London 

SUMMARY 

Because Reynolds stieis  gradients art usually significant only in fairly chin shear layers, many of 
the complex turbulent flows that are iaporcant in engineering are recognizable as perturbations of Che 
classical chin shear layers co which Prandcl's approxinacion applies.  We distinguish (i) ir.teractirg 
shear layers (ii) shear layers perturbed by small extra rates of strain, which can nevertheless produce 
appreciable charges in the turbulence (iii) shear layer; perturbed by large extra rates of stiain. 
f."änples are (i) aerofoil bound ^v layers merging into a wake (ii) boundary layers on curved aattaces 
(iii)  reattaching shear layers.  In this pap^r we discuss the essencial phenomena that «ppear in these 
complex tuibulenc flews and show that they are not excessively numerous, so that a roderate prograssae :■( 
turbulence iseasuremeats should «nable calculation methods to be extended to a vide range af complex flows. 
A short discussion of the general types of calculation method suitable for complex flows is  includG'j. 

I. INTRODUCTION 

Prariut:)'s boiind.Tv layti apprcximation was first developed for two-dimenfional laminar boundary 
layers.  It has since '•w.t-.    ■ !-rd to flows that are three-dimensional, or turbulent, and to fre: shear 
layers: It! iw  trr.i or« cali it the "thin-shear-lay^r approximation".  It can be expzessed in several 
ways: in tJ^ j>r.-(!?at • ontext the essential feature of a thin shear layer is that the only stress gradients 
that affert Lin  mean motion are shear-stress gradients in Che direction nor:»*! Co tha plane of the layer. 
In  iamiuar flow this is just a mathematical simplification, since we know what Che neglected Strass 
gradients are - simply Che viscosity times Che appropriaCe race of strain.  In turbulent flow, where vs 
have no exacC expressions for Che seres? gradients, ic is a useful physical simplification to be able to 
neglect most of them.  Melville Junes' concept of the "streamlined aeroplane" was an aeroplane entirely 
covered by a Chin shear layer: real aeroplanes are near enough Co this ideal foi Che study of Chin shear 
layers Co have been popular and profitable.  Moreover, ic was net  possible, until tile advent of cocputers, 
to make more than very limited calculations of viscou« flows other than thin shear layers - th.'t is, flows 
described by the full Navier Stokes equations.  However, the importance of thin shear layers in research 
nork has perhaps exceeded their importance in real life. 

".ec-^ntly, numerical analysts have successfully attacked laminar flows other than thin shear layers 
(which i shall call "cemplex" laminar flows - see Fig. 1/ and have ruvned tneir attention to complax 
turbulent flows also.  Now tiie calculation of complex larpi.ncr flows is purely a numerical problem - which 
is not to say an easy problem - buc to calculate complex turbulent flows we need a great deal of üapi-.ical 
information about the behaviour of the Reynclds strecsee.  Not only nay sorras1, stress gradients become 
important, but the behaviour of the shear stresses is likely to be mere complicated then in  a thin shear 
layer.  Furthermore, extra rfltes of scrain (such as accelerations) which are imall compared to   he mean 
shear, and which would difreifore produce only small extra screasea in a laminar flow, may pyc'nc*  larga 
effects on turbulence; thus even wichir the thin-s'uear-layer spptoximation there are many flows whose 
turbulence structure raus*; he regarded as complex. 

Complex turbuisnt flows? like those shown in Fig. 1 are important: engineers want to calculate them, 
numerical analysts try to v-alculate them, but, for the mest part, basic research workers do not try to 
measure them (by a basic rusnarch wcSrker I nean someone who is trying to understand a general phenomenon 
rather than solve a particulai engineering problem).  There am of course exceptions, groups like Chose ac 
McGill', Queen Mary College and RuCgers2 which have long-sCanding programmes of research on the subjecC, 
and some individual workers referenced below.  In general, horsver, there is surprisingly little informa- 
tion on turbulence in complex flows that is of any real use in developing engineering calculation methods 
(which is surely the main justification for studying turbulence).  As a resulr. the development of 
prediction methods for complex turbulent flows ainounts to making bricks without straw.  What seems to be 
lacking is a point of view from which to study these flows experimtiitally: the point of view that I offer 
in this paper is that quite a wide range of complex flows can be explained in terms of only 3  f2w extra 
phenomena, and progress is more likely Co result from basic research on a small number of phenomena than 
from disconnected work on a large number of flows.  Furthermore, basic research is more likely tr produce 
results of practical use if it is broadly motivated by the needs of calculation methods than if the 
stimulus is pure scientific curiosity - though it would be a mistake to tivi .: research programme too 
closely to a particular calculation irethod.  Therefore, I want to discuss both the dominant phenomena of 
complex turbulant flows and the kind of empirical information one needs to calculate them: neither part of 
the discussion is exhaus ive, but I hope to convince at least some roaders that; progress can and should be 
made with complex flows of engineering importance. 

As my title implies, most of the complex turbulent flop's of engineering importance are not too 
different from Prandtl's thin shear layer.  Typical Reynolds stresses in a turbulent flow are of the order 
of 0.01 of a typical dynamic pressure, whereas typical static pressure differences are of the order of the 
dynamic pressure; therefore, Reynolds stress gradients will in general be negligible compared to longitu- 
dinal pressure gradients unless the typical transverse scale of the turbulent flow is small compared to a 
typical longitudinal scale.  We are therefore interested in shear layers that are perturbed, for instance 
by interaction with another shear layer or by accelerations imposed by the boundary conditions; the 
"extra phenomena" mentioned above are perturbations of various sorts.  A wide range of complex flows, 
steady or unsteady, can be classified as either 

(i) interacting shear layers 

(ii) perturbed shear layers itith  small extra rates of strain 

(iii) perturbed shear layers with large extra rates of strain or other strong perturbations. 

IM«^ 
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Fig. 1 nhovs  examples of each (mainly twu-dimensional, for east  of drawing).  Type (ill) alone 
necessarily dis.'-btys rile thin-shear-layer approximation although gone examples of type vi), such as flows 
along a streamase corner, may not fully obey it.  It i«, of course, important to recognize that these 
flows do differ significantly from »irple thin shear layers - in the past, theoreticians have tended to 
siiniciisc thu-se differences, for instance by assuming that a reattaching shear layer iraoiedlately obeys all 
the empirical formulae derived for t'ell-behaved boundary layers. 

Section 2 of the paper ii a brief outline of the type of calculation method needed for complex 
turbulent flows:  this shows that measurements of fairly complicated turbulence quantities are desirablu. 
Sections 3 to 5 are discussions of topics (i) to (iii) above.  In general I have included only references 
actually needed in the discussion, with a few pioneering pipwr« or recent reviews.  A "Bibliography of 
ccüiplex turbulent flows" containing about 600 >eferences, selected for their relative usefulness from a 
rather larger number, will be available - probably at a price - from the Aeronautics Department, Imperial 
College:  these references are mainly studies of particular engineering problem; without the sort of 
turbulence measurements that would contribute to a more general understanding of the subject, but they are 
the only available background to the kind of study that I an proposing. 

2.  CALOULATiON METHODS FOR COMPLEX TURBULENT FLOWS 

The assential problem is to find empirical expressions for the Reynolds stresses.  ^roni the 
iristantaneous Navier Stokes equations one can derive exact "transport" equations for the rate of change, 
along a mean streamlire, of any of the components of the Reynolds stress (Ref. 3, pp 25~26).  The right 
hand sides of these equations contain 

(i) "source" te-ns representing generation of Reynolds stress by the action of the mean rates of 
strain on the turbulence; 

(ii) "sink" tenns representing destruction of Reynolds stress, or exchans? h«^.';Si ess oLiress 
component and another, by the action of pressure fluctuations.  The Poisson equation for the pressure 
rontains the mean rates of strain and it has been shown (Ref. A) that they may affect these "sink" terms as 
well as the "soui-ce"' terms (i), though there is still some controversy about this; 

(iii) "sink" terms representing destruction of Reynolds stress by the action of viscosity after its 
transfer from large eddies to small; 

(iv) "transport" terms (expressible in divergence form) representing spatial transp:"'- by the 
action of velocity fluctuations, pressure fluctuations or (usually negligibly) viscosity. 

To make the equations soluble one must represent the terms (i) to (iv) by empirical functions of the 
Reynolds stresses LOT which equations are being considered: since the terms in the equations have 
dimensions (o* velocity3/length] some sort of length scale must be inserted, in addition to the velocity 
scales provided by the Reynolds stresses themselves.  Possible approaches are discussed ii the other 
invited lectures: it is worth making the general point that since these are equations for rate of change 
of Reynolds stress, teirporal rates of change (unsteady flow) can be accoamodated in the same way as spatial 
rates of change. 

In simple shear layerr, the only significant Reynolds stress gradients are 8(-püv)/3y and - in 
three-dimensional flow - 3(-pvB)/3y ; the only significant rates of strain are, correspondingly, 3U/3y 
and SW/3y ; the rates of change of Reynold) stress along a mean streamline are small; and the eddy 
length scale is closely related to the thickness of the shear layer.  Thtw some of the "transport" 
equations can be neglected altogether, and some of the terms in the remaining ones.neglected according to 
taste (even to the point of neglecting the transport '.erms and rate-of-change terms altogether and thus 
converting a differential equation for Reynolds stress into an algebraic formula of the "eddy viscosity" 
type). 

In complex turbulent flows some or all of these simplifications disappear: very roughly speaking, 
we expect shear-layer interactions to be dominated by transport terms, while In strongly-perturbed flows 
the rate of change of Reynolds stress will be large and, of course, more Reynolds stresses have Co be 
considered, especially in three-dimensional flows.  It is difficult to see how eddy viscosity concepts can 
be used even as a rough approximation except in very restricted cases, and one is faced with the problem of 
finding empirical representations of many terms in many equations, including equations for eddy length 
scales.  Some people hope that this can be done by trial-ai.J-error adjustment of a moderate number of 
"u-iiversal" constants or functions to optimise mean-flow predictions; whether or not this is true In 
principle It is certainly impossible to do it by using thin-shear-layer data alone because some of the 
ternis do not even appear in thin shear layers.  Both this approach, and the more reliable approach of 
deriving empirical functions from actual turbulence measurements, will remain futile until we have more 
experimental data, either to improve our knowledge of phenomena or to act as test cases.  It seems likely 
that we shall not in the near future devise a calculation method, based on a single set of empirical 
functions, capable of treating all of the complex turbulent flows in Fig. 1: almost certainly we shall 
have to use different empirical functions for different regions (strictly, for different phenomena). This 
is analogous to the finite-element techniques used in structural analysis, where it has been found more 
efficient to devise complicated elements, a few of which will cover the field, rather than tc use many 
simple elemc-'s and ignore regional peculiarities.  In structural analysis, where the equations are simple, 
this is a matter of economy; in turbulent flow it is likely to be a necessity. 

Up to the present, engineers concerned with complex flows have predicted them by using direct 
correlations (of the eddy viscosity type but not necessaiily so explicit) between the mean flow and the 
Reynolds stresses oi other turbulence quantities.  Th2 choice is between a single eddy viscosity formula 
to cover the whole flow or a more rational approach of applying different formulae in different regions: 
unfortunately the reliability of the results is not likely to increase with the number of formulae because 
it is difficult to establish the range of validity of a formula that is not based on a realistic physical 
model, unless one has a vast quantity of data.  The advantage of an approach based on the Reynolds-stress 
transport equations is that, since it is bassi on  an exact turbulence equation rather than a hypothetical 
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connection between turbulence and mean flow, it requires fewer different expeiimental cases to pr vide the 
empirical information, while the range of validity can be estimated, for the most part, by ejramitmion of 
the assumptions rathsr than exhaustive coraparisor.5 with experiment.  Against this, however, one req ire» 
more detailed information from each experiment. 

Having dismissed the eddy viscosity concept as <i ocans of calculating conplex turbulent ilojs  (and 
noting with satisfaction the crumbling of two of the remaining bastions of eddy  viscosity, at Los Alamos 
(Kef. 5) and the Mechanical Engineering Department of Imperial College (Ref. 6)) I must now excuse myself 
for using eddy viscosity in discussing the effect of smali extra strain rates on turbulent flow (section 4)! 
At present our experimental and theoretical knowledge of this subject relates mainly to self-preserving 
'lows, in which, purely for dimensional reasons, the eddy viscosity for the dominating shear stress ooeys 
simple rules and is therefore a suitable measure of changes in turbulence structure (it is for (he same 
reason that a simple eddy viscosity formula gives good results in thin ^near layers that are not too far 
from self-preservation).  I do not suggest that the apparent eddy viscosity is the same for all the 
Reynolds stresses in complex flows:  it is known (Refs. 7-9) that it is not even Che same for the two 
components of shaar stress in a thin or slender shear layer in three-dimensional flow. 

3.  INTERACTINC Sh£AR LAYERS 

In this section we suppose that the thin-shear-layer or slender-shear-luyer approximation applies 
throughout the flow, except for minor regions ("Navier Stokes regions") near trailing edges or other 
discontinuities in boundary conditions.  The inteiaction between two shear layers can be classified 
according to the relative orientation of the shear stresses in the two layers.  If the two shear stresses 
are in the same plane and in the same direction we call the smaller layer an "internal shear layer"; an 
example is the interne 1 boundary layer growing from a step change of surface roughness into a pre-existing 
boundary layer.  If t.ie two shear stresses are in planes inclined at an angle we have a "corner flow". 
If the two shear stresses are in the same plane but have opposite sign we have the most familiar form of 
interaction, found in a duct, plena jet, wake or wall jet. 

3.1 Internal shear layers 

The internal shear layer has been studied by many authors, generally however in its simplest mani- 
festation, the .'nternaJ. boundary layer following a roughness change.  If the internal boundary layer lies 
within the inner layer of the main boundary layer the flow depends on comparatively few variables, 
similarity can be invoked, and if the roughness change is not too large '„he turbulence is not too fur from 
local energy equilibrium.  Ref. 10 gives a good discussion.  In other cases, only waak interactions are 
amenable to treatment because a strong interaction produces what is in effect a single new shear layer 
which must be treated as such.  Eskinazi (Ref. 11) performed a pioneering experiment which has not been 
followed up. 

3.2 Corner and edge flows 

A flow along a streamwise corner can be more usefully regarded as an interaction because at large 
distances from the corner each shear layer is unaffected, except for any lateral component of velocity 
resulting from the displacement thickness of the other shear layer.  If the corner angle approaches 
180 deg. the interaction is again difficult to treat as such, but, since it is certain to be weak, rules 
developed for sharper corners may suffice.  External edges (angles significantly larger than 180 deg.) 
produce flows with some features in common with concave corners.  In all cases, Reytiolds stress gradients 
in the plane normal to the primary flow direction produce "secondary flows" of Prandtl's second kind, 
partly opposed by pressure gradients in the same plane.  The moct common cases of a 90 deg, corner and a 
360 deg. corner (i.e. a streamwise edge) have been studied experimentally hy  quite a large number of 
workers (Refs 12-16: see also the paper by Mojola and Young in these Proceedings). 

These secondary flows are of course quite weak (the maximum yaw an^le in a 90 deg. corner is about 
3 rieg.) and I feel that in many practical cases they are likely to be overwhelmed ljy  asymmetry of the flow 
about the bisector of t*!» corner (i' is really difficult to set up a symnetrical c-jrner flow). A typical 
corner boundary layer 11 w is that in the junction between an aerofoil (wir.g, curbomachi"«» blade) and the 
body (fuselage, hub) supporting it: when the body boundary layer meets the leading edf    he aerofoil 
longitudinal vorticity is generated and fed into the corner, and in general there will b-  ^ötic pressure 
difference between ti.-» aerofoil and the body so that even the external streamlines will not be parallel to 
the corner.  The flow round the tip of a turbomachine blade, moving relative to the outer casing, will be 
even more asymmetrical, and the flow round the tip of i wing will be complicated by spanwise flow.  It 
might be thought that duct f.ows are more likely to be symmetrical about the corner but this is strictly 
true only of a straight, squtve duct.  Surface shear stress measurements in rectangular ducts show 
appreciable asymmetry (e.g. Ref. 17).  Moreover, commercial ducts are often curved, or preceded by a bend, 
again leading to net longitudinal vorticity.  I feel that we need measurements on an asymmetrical corner 
flow to see whether the work on idealized corners is relevant.  Work on longitudinal vortices imbedded in 
plan:; boundary layers (Ref. 18) may be at least as useful. 

The maintunance of secondary flows of Prandtl's second kind, and the diffusion of extraneous longitu- 
dinal vorticity, both rest on delicate balances of Reynolds stress gradients:  for instance the main stress 
terms in the longitudinal vorticity equation (e.g. Ref. 16) are the second derivatives of the difference of 
two stresses.  It appears that rather accurate representations of the Reynolds stresses is needed if the 
vorticity is to be predicted, as it must be even if the practical interest is only in the streamwise 
velocity component.  Therefore corner and edge flows must be treated via separate equations for each 
stress:  local-equilibrium assumptions (mixing length, eddy viscosity) will be particularly inappropriate 
since turbulent transport of Reynolds stress in both the y and z directions will occur. 

3.3 Opposing she ': layers 

The simpl'.st kind of shüar-layer interaction is that between twe  layers with shears  of opposite sign, 
such as  the  two naives  of a wake  flow.       Because the Tiean shear changes  sign,  any shear-stress-bearing 
eddies that cross  the  line of zero mean shear i-enc to be damped out as  the rates of production of turbulent 
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energy or of »he»r ftres* (-pev i'J/iy    or ov^ >U/>v) becoc« negative (thj» i* i slightly loose «taceaent; 
one hat :o consider sversgss over the intruding eridies rather than conventi(ni*l average', but the 
quaiitAtivs conclusion is valid).  This neAns that the effect of the inter'-.ciion on the turbulence 
structure will pet extend very far either side of the line of zero aean shear.  Of course, the profiles of 
veloci'-y, shear stress, turbulent intensity and so on will be affected by »htt aaounts to a change in 
boundary condition.  Scae work we hav* done at laperial College shows that even in the inte/aiiion region 
the turbulence structure of each shear layer is not grossly altered, alooet as if the two turbulence fields 
«Mid be superposed-  This is consistent with the idea that spreading of turbulent flow is effected by 
the large ciJie«. carrying the saall-scalc eddies with then.  Near the U-se of xcro aeao s!;ear the large 
tddiei win arrive, nor« or less alternately, froik cither shear layer, Jfcpiacing fluid belonging to the 
other shear layer; a  true i.iteraction between the random vorticity fields of the two layers will occur 
only when a particularly inrense eddy frcn one side entrains weaker turbulence frca the other. 

Ihe practical v«lue of these observations is that interactions between oppositely-sheared layers con 
be predicted to good ^iiuraey by superposing calculations of shear stress for the separate shear layers 
\but of course using a coaaon velocity profile)-  Clearly this is possible only with calculation aethods 
that dc not relate the shear stress directly to the velocity profile but allow for turbulent transport of 
stiess fron elsewhere; if the flow is symetrical, the line of zero shear stress coincides with the line 
of zero nean shear,but in general the eddy viscosity (-üv)/Oü/3, ) becoaes in turn zero, negative and 
infinite.  Important sxataples of asysmetric&l inferectinns include the vake of a lifting aerofoil, the 
flow in an annular duct and the wall jet, but it is  necessary to realise that the interaction ncchanism is 
ouch the tiax iu  a syaaetrical flow bs  an asymsetrical one; syanetry just disguises the rsore strikin« 
results of the interaction.  More cooplicated multiple interactions o'cur on aerofoils with slotted flaps 
-ind in the rolling up of »panwise or longitudinal vortices. 

Our own calculation method has so far been prograsned only for a syetaetrical duct flow (Ref. 19) 
which requires relativtly little alteration to the basic boundary layer program, except that the shear 
layer thickness, which provides a length scale for the turbulence functions, is nov obtained (more logical- 
ly) freu the shear  stress profile rather than the velocity profile.  The a&ynetrical case requires nor« 
coBputieg but no mere empirical information; vie can calculate duct flows quite well enough using data 
obtained solely fron boundary layers.  Hanjalic (Ref. 6) has produced a acre elaborate calculation method 
using a differential equation for length scale; the sain point of this is to incorporate turbulent 
transport effects on the length scale but because the interaction region is airly thin this refinement 
may not be ceceasary except in extreme cases. 

A problea related zo  shear-lzyer interaction is the spread of a shear layer into a eon-turbulenl but 
rotational stream.  The problea appears exactly in this for« in the boundary layer on a body catryin; a 
curvsd detached shock wave, where it appears (Ref.20) that the rate of growth of the boundary layer con be 
conaiderobly increased. An internal siiear layer growing into a weaker extezaal shear layer may behave 
similarly but if the mean vorticity in the external layer is significant the fluctuating vorticity (i.e. tue 
turbulence) inay he  .ignificant also, at  least when the no shear layers have the same sign of mean shear. 

Of course the spreaüing of a turbulent stream into irrotational flow still takes place via a non- 
tui>ulent but rotational region, the viscous ei^cr wyer.  At low Reynolds numbers where the superlayer is 
thick it may be necessary to treat its interaction with the fully turbulent flow explicitly: apparently 
the turbulence structure in the whole intermittent region is affected. 

The true interaction of a turbulent shear layer with surface waves or internal waves has been little 
studied, in contrast with the popular ptoblem of th« effect of turbulence on wave.i.  If the wavelength is 
long cc-cared to a typical eddy size the flow can be treated as an unsteady tuibulant flow (the turbulence 
structure being the sane as in a steady flow if 3(-üv)/3t is fairly small comparsd to the rate of 
generation of -uv, v? 3U/3y), but if the wavelength is of the same order as the eddy size (as when the 
turbulence produces the waves) strong interaction is to be expected (<leC. 21).  It seems to be established 
that sound waves generated by turbulence do not affect the turbulence greatly, at least at non-hypersonic 
Mach numbers.  Paradoxically, shock-vave/boundary-layer interaction it better reg.rded as a perturbed 
flow than an interaction in the present sense, and we postpone discussion to the next section. 

4.  PERTURBED SHEAR LAYERS WXIH SMALL ESlkA RATES OF STRAIN 

Only recently has 't been realized how frequently small extra rates of strain (in different 
directions from the initial simple shear) can cause large differences in shear stress.  If one represents 
the effect on the eddy viscosity - jay - by a factor of the form 

C(extra rate of strain) 

W/iy 

the constant C if  commonly of order ±10.  This implies that the fractional changes in uv are of the 
order of 10 tines as large as the fractional change in the generation terms ((i< in  the list at the 
beginning of Section 2).  There is even evidence that shear stress can be incteMSKt. by an extra rate of 
strain 3W/3z (normal to the plane of the shear stress)!  If the "Poissou's ratio'' c. turbulent fluid is 
really of order 10 it is truly ein ganz besonder Saft.  We proceed to discuss the affects of various types 
of .-train rate separately; in all cases we suppose that the extra sfrair rates are snail enough for the 
letter of the t'oin-shear-layer approximaticr. to apply. 

.'■. ■ Kormal -tcele-a -.ion (rotation, surftce curvature or streamliir» curva' jre) 

In this cas-; t« extra rate-ot-«»tain component is 3V/Sx, oi U/R there R is the radius of 
curvature of a  me^n sireassllne in the x,y plane.  Direct expeviments and empirical adjustment of 
calculation methoi-U both suggest that the f.-actional change in apparent irivdng length, /(T/p)/(3U/9y), in 
a  curved flo" is -cughly -10(U/R)/(3a/3y) (B" 5 in the notation of Rei, ',2).  This is of the order of 
30.*/R in the oucr  layer of E boundary layer and produces significant e..-iects even on a moderately- 
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caabtred «erofoil.  In icpinging jets, wall iets on curved surface*, turbotuchtne blades or highly-curved 
or rotating ducts spectacular changes can be seen; cu.vature in a stabilizing sense (angular aoaentuB 
increasing outwards, as os the top surface of an aerofoil) can induce reverse transition, and desiabiliziog 
curva; ire can generate longitudinal vornex roils.  In all case« Che enects of curvature on the turbulent 
eddies far exceed the effect of the extra term, in the ssean-ootion equation r even the extra rate-of- 
strain ten» in the Reynolds-stress transport equations. 

There arc »till large gaps in ovr icncwledge, even at the empirical level:  tor instar.:« it seex« 
likely that curvature effect» in th» miter layer of a boundary layer will depend nore or. ir'.e.-.rated 
properties of the outer layer than oa the turbuleocr at the point considered, but vc have .*-■  -ata.  The 
problem is of the sate order of difficulty as the probier of buoyancy effects in meteorology ail more 

surements of turbulence structure would b* very valuable. 

One important general point is ch^t if snail values of 3V/3x have a large effect, we c*m» . issuae, 
as Townsend did, that the turbulence depends solely on the rate of strain hV/ix *  9U/3y and not on Thi 
vorticity iV/ix - ZH/iy.      In a thin shear layer the two are equal and opposite, but evidently snail 
differences between ti.e nuawrical values of the two appreciably change the turbulence structure.  This 
casts doubt on the ionediate relevance of experiments on irrotatiocal plane strain (Ref. 23) to the 
behaviour of shear layer turbu'encc. 

4.2 Lateral divergence or convergence 

There is evidence that here, too, Che effect on properties of the turbulence is of greater order 
than the ratc-of-strain ratio (2U/3c)/(3U/3y).  The rate of growth of a radial vail jet is about the sane 
as  that of a plane «nil jet which inplies that the entrainnent race or typical «' ?ar stress is about twice 
as lar^e although OW/£z)/(3U/3y,1 is roughly equal to d6/dx, about 0«1: zgain ehe fractional change in 
"eddy viscosity" is ten tines the rate-of-strain ratio. 

Keffer (Refs 24, 25} has reported large changes in a diverging wake hut negligible changes in a 
converging one: it appeared that large divergence greatly augmented the z-conponent vorticity of the 
larger eddies whereas the effect of contraction of spanwise vortex line* in ehe converging flow was snail 
conpared to other sources of vorticity fluctuation.  This implies that siaple linear formulae like that 
in the last section are not to be trusted for large cocal strains, just a* linear forou'ie for buoyancy 
effects break down at large Richardson number. 

it is probable chat divergence was ancng the miscellany of special influences affecting the waisced- 
body flow of Winter, Rotta and Ssith (Ref. 26): the increase in surface shear stress near the rear of ihe 
body in the subsonic tests is larger than expected due to pressure gradient alone. 

4.3 Longitudinal acceleration 

Tn cwo-disiepsional flow a longitudinal rate of strain JU/3x is acconpanied by an equal and opposite 
valu» of 3V/3y and it is difficult to say which is the first cause oi  any changes in turbulence structure. 
The change in the generation terms in the transport equation for uv is exactly zero and the change in 
the turbulent energy equation for u? + v^ + «J is small.  It is therefore not surprising that positive 
3U/3x has not so far been found to affect the turbulence structure until reverse transition occurs 
(probably due to sernndüry causes rather than the direct effect of 3lV3x on the turbulence).  I shall 
not discuss reverse cr^nsition because there are enough labourers in chat particular vineyard already. 

Pn longed application -i appreciable negative values of 3U/3x to a boundary layer produces 
sef-aration.  In separation fron the rear of  a body (as opposed to separation induced by a shock or a 
forward-facing step) the ratio of ?l'/3x ■-•r oV/3x (sic)  to 3U/3y is not necessarily large even tiiough 
the thin-shpsi—laye: «ipproxiniacion may be technically violated, but it is more convenient to discuss 
separation in Section 5. 

It is not certain how strongly turbulence is affected by moderate negative ratios of 3U/9x to 
3U/3y.  A ciM  film by Head of Cambridge clearly shows distortion of the eddies in a smoke-filled 
separating boundary layer, and Gartshore (Ref 27) has suggested that the fractional change in eddy 
viscosity is (once more) about -10(3U/3x)/(3U/3y).  Gartshore's result is based, in effect, on comparing 
tb growth rates of pairs of self-preserving flows md assuming that changes are all due to 3U/3x (or 
3V/3y).  However dubious this process may be, the results are certainly credible in view of the discussion 
in the last two sub-sections. 

Further work is needed to decide whether 3U/3x or 3V/3y is the first cause.  Since turbulent 
nixing is the result of the eruption of large eddies in the positivr y direction it is plausible that 
3V/3y should be the sensitive strain rate.  Obviously or.s cannot decide except by considering a range of 
flows with - say - the same value nf 3V/3y and different v lues of 3U/3x.  But this requires variatvons 
of 3W/3z whrch is known to produce effects of its own on thi turbulence  clearly a coherent 
programme of research work will be needed to give us even an ^jpirical understanH-'ng of the large effects 
of small extra strain rates. 

5.  PEKTliRBED SHEAR LAYERS WITH LARSE EXTRA RATES OF STRAIN OR OTHER STRONG PERTURBATIONS 

We aov turn to flows which are so strongly influenced by extra strain rates or other outside agencies 
that they violate the rhin-shear-liyer approxiniation of slow streamwise change so that normal-stress 
gradients, as well as shear stress gradients, affect the flow.  Not only does the need to preu.'ct the 
normal stresses complicate a calculation method but, if the phenomena mentioned in the last section are 
anything to go by, the behaviour of both the shear stresses and normal stresses will differ greatly from 
that in a thin shear layar,   it is unlikely that simple linear formulae like those of the last section 
will be valid for large rates of strain (in the atmosphere, for instance, the linear formulae for change of 
turbulence structure with buoyancy forces fail, and the extreme states are free convectioi. on the one hand 
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and ronpiete dvapiag  of turbulence on the other;. 

Strong pcrturbenon* of a «hear layer in the plane cf the wan shear (i.e. large values of SV/Jn 
or of iV/is  i -iV/iy)  jsually involve solid «urfeces and separation or teattachaent of the shear )<rcr: 
an exception is perturbation by a shock wave, considered separately.  We therefore concentra:e oa 
perturbations involving separation and/or reattachoent. 

5.1 Separation and reattachaent 

If separation is folloved quickly by reattachnenl, as in the How over a narr-w spanvise .avity. the 
shear layer is recognizable throughout as a (periurbed) boundary layer.  If separation or rcacar^ti^nt 
are permanent, as in the flow froa a nozzle or ehe iapingsaent of a jet, the shear layer changes «virtually 
to another species cf thin shear lay^r {respectively a nixing layer or a wall jet in these two e-taspJ««). 
The main classification of perturbations of an initially chin shear layer if  there/ore into those that. 
;;ause a cliange of species, called "overwhelming" perturbations by Bradsfaaw and Kong {Kef. 28) mod  :hose 
that do not.  Overwhelming perturbations do not necessarily involve acre spectacular violations of tte 
thin shear layer approxiaation than other types of perturbation but they d-> produce larger change«: in 
turbulence structure.  For isstan , flow over a narrow spanwise cavity or step can be treated i.%  a 
perturbation of the boundary layer, using the saoe inner-layer siailarity argiawnts as a change in surface 
roughness, jut peraaoent separation ac the lip of a nozzle can be so treated only in it« early stt.jes 
where the perturbation is confined to the inner layer.  Further downstreaa it is no longer prcfititble to 
regard the shear layer as a perturbed boundary layer; it is a perturbed aixing layer.  If the region 
where the flew is recognizably a perturbed boundary layer overlaps the region where it is recogaiz«»]y « 
perturbed nixing liyer, then we can use a technique analogous to that of astched exparstras to continue a 
calculation froa jne to the other, providing chat -t have rules for including perturbations in calci:la£ioes 
of each type of  shear layer.  Paradoxically, pertuioations which do not produce a change of '/peciis aay 
be more difficult to treat tnan overwhelming ones.  Consider the case of flow over a downscreaar-factag 
step of height h .  If h/j « 1 the perturbation of the boundary layer can be treated by a roufiiuiass 
analysis.  If h/< -v 1, the flow «t reattachaent is a boundary layer with it« inner layer - ac least - 
in the process of changing into the low-speed side of a aixing layer.  After reatcacha^nc. Cite flow 
nearest the surface starts to change back into a boundary layer so chat three sheer layers ~ outer bcadary 
layer, quasi-aixing-layer and inner quasi-bouodary-layer - are all interacting.  Bearing in aind the 
difficulties of dealing with interactions of shear layers wich Che saae si^a cf mean shear we can see that 
ehe resctached flaw, in which the shear layers are not ev-m well-developed, is highly intractable.  By 
contrast, if h/< » 1 the shear layer at reattachaent is recognizably a well-developed taxing layer, 
perhaps weakly perturbed by streamline curvature and re-encrainaent froa ehe recirculating flow region. 
There is at lease sooe hope of calculating Che inCeraccion between chis and Che inner boundary layer in a 
rational fa»hion. 

Separation does not necessarily involve such Urge extra races of strain as rcaccachaenc, and in 
peroanent separation froa a bluff body, the boundary layer thickness ac separation i* usually sull 
coapared with the size of the recirculating-flow region: therefore, Che encrainaenc of fluid fron Che 
recirculating flow (ehe key factor in ehe wake behaviour) will not be greatly affecCed by exCra scrain 
races near separation.  It remains to discuss whether the extra strain races influence Che curbule.-ce 
structure upstreaa of separation enough to affect the separation point.  Undoubtedly we must expect large 
effects  in the outet layer of the boundary layer; but in Che inner layer 3V/3Y    is large and V   is 
small so that OU/«x}/(3U/ay) - or any other rate-of-scrain racio - is «mall.  On Che other hand, the 
scress gradients in Che oucer layer are Coo small, coapared wich Che pressure gradient that induces 
separation, co have any appreciable effect  on the flow: therefore, only Che incer-layer turbulence aaccers 
and we have just seen that this is not likely co be affecced by extra scrain rates.  Therefore, perhaps 
surprisingly, bluff-body separation is not primarily a strongly-perturbed flow (for a fuller discussion, 
see Ref. 29). 

5.2 Splitting of a turbule.it flow 

Large changes must occur in turbulent flows which are split by contact ^ith a solid body.  The 
randoa vortex lines which are forced to wrap around the body are stretched out in Che screaa direction and 
it is not inmediately clear whether or noc ehe extra  turbulent energy thus created appears only very close 
to ehe solid surface.  The larger eddies split by the body probably tend to lose shear scress (if any) 
and turbulent energy.  The roost  important cases are Che flow round an obstacle, such as a turboaachine 
blade in a turbulent oncoming flow or a building in Che atmospheric boundary layer, the impingenent of a 
jet, and the reaccachroen: r£ a  shear layer, in which part of the mass flow is deflected upstream to supply 
the entrainaent from the s^parated-flow region.  The flow of an unsheared turbulence field round an 
obstacle hns been  studied theoretically by Hunt atvd experimentally by Seaman (both unpublished) in Che 
region near Che leading edge where classical rapid-distortion theory is expected to apply, but little 
seems to be known of Che flow further downstream.  Turbulence measurements near reattachaent have been 
made by Arie and Rouse (?:ef. 30), Tani et al. (Ref. 31), and others (for a  review, see Rcf. 38): among 
the curious features are the rapid decrease of uv along Che reaccaching streamline prior to reattachaent 
and the apparent decrease of turbulent length scale afcer reatcachmenc.  Thin-shear-layer calculation 
methods fail Co represenc Che flow accurately for a  long distance downstream of reaCCachment. 

5.3 Passage of turbulence through shock waves 

A normal shock wave produces a very large negative value of 3V/9x   for a very short time, wichouc 
significanc values or 3V/3y or SM/32 ; chus the density of a fluid element increases.  The compression 
does work against the Reynolds notmal scress -pii2 , increasing the turbulent energy per unit mass; the 
shear stress j^puv is increased both immediately via Che term püv 3L,/9x and eventually, following Che 
increase in vZ, via pv? iV/iy.      An oblique shock wave, which shears a fluid element as well as 
compressing it, causes a larger immediate change in -püv.  As far as I am aware, most of the work oa 
passage of turbulence through a shock wave relates Co Che emission of noise (a recent example is Ref. 32) 
rather Chan the affects on rhe Reynolds stresses and the phenomena mentioned above have been ignored in 
calculation metheds.  It is easy enough to include the extra terms in the Reynolds-stress transport 
equations but the actual change in Reynolds scress may be smaller Chan predicted because of Che effects of 
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th« ext.-a ratet of strain on tens  iavolvitig th* pr«*sure fluctuation, a» in the «uaWiia of CT-M  (t«f. 4) 
for a «t«p change in JL'/»y.  Alternatively the fractional change ia Se>iifl«U «trci» aigbt be l«rjer than 
predicted «olely froc the extra ten«, as sxest to be the case with pi plotted <tstt^ rates of strain 
(Section 4). 

6.  COKCtCSIOSS U!D SUGCESTIOSS FO» FUTUSE WD« 

In ssny coaplex turbulent flows, such a* those shown ia Fig. 1, the flow is recogQixably ■» 
perturbation cf one of the classical thin shear lovers to which Praadtl's appronastioa.applies.  Never- 
theless the '.hrce phenoama represented in Fig. 1, oasely 

(i) interaction between shear layers, 
(ii) significant changes in turbulence structure, due to («all extra rates of strain. 

(iii)  large changes in turbulence tcructurc and appearance of «ore significant stress gradients, 
due to largn ^ittra rates of strain, 

cannot be adequately treatnd br caiouUri'-s sithsJ; Uevc'csed for sUgiie thin shear layers.  7urther 
experinentai work it  needed before « can -i«vclop the aore refined calculation acthods required for coaplex 
turbulent flows.  It reeas probe» 1« ritir tu:  o.ily calculation Methods with a ««>rrh»Ailc rasg« öf vaiidiry 
are those base-i  «xplicicl? on ejq»irxcml ciossres of the c-^ci "traaspcrt" equations for Eeyaold* stress 
and turbulence length seal«.  Tiese catrul.iticn acthods arc supooacd to aodal turbulence pbeooaena 
without being too closely liufced to ^articu.ar flow configurations or boundary conditions: therefore, tfce 
kind of experiaental work indicated is a detailed study of rurbulencc quantities ia a few siu^ic flows 
exhibiting phenoaesa like (i) to Ciii), ab^ve, rather than a large nucber of uncoitoected aean-flow 
■easureaeats {with a fev bot wir; readinge thrown in) in aany different engineering situations, as in the 
past.  Briefly, since we ran now atteapt the developocnt of calculation aetbods whrcb arc orientcJ 
tovardc general phenoaeoa rather than particular hardware, we should do experiuents that arc phenoacnon- 
oriented rather tbsa hardware-oriented 

A personal chcice ai  th» aost iaporcscc tasks for exper.'.aeetcrs on the above three phenotna, 
representing three types if coss>lax tutfcitent flow, is 

(£) Study of turculent r.ransport of energy or Keynolds stress across a velocity extreaua or into 
another field of turbulence.  Conditional saapliag ("eddy chasing") is a powerful test for such ttudies. 

(ii) laproveaent of currect teirajiqves which crudely represent the effects of saall extra strain 
rates by auitiplying the eHdy viscosity by ,1 « 0(exera strain rate)/(3D/}y)] where 8 is a constant of 
order 10. 

(iii) Studies ai  toe effect cf extra stisin rates i'in the xy plane at least) which arc too Icrge 
for linear foreulae like the above tc be acceptable; ^tso, studies of bifurcation of iapinging shear 
layers.  Since ceparated fli>vs ars very easily disturbed by inserting protes, the Doppler (laser) 
aneooaeter say be preferable to the hot wire fn soae cases. 
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SUMMARY 

Experimental studies of the flow field near the wall in a turbulent boundary layer using hot wire probes 
an; reported.    Measurements of the product uv are studied using the technique of conditional sampling 
with a large digital computer to single out special events,  bursting,  when large contributions to turbaljnt 
energy and Reynolds stress occur.    The criteria used ♦o determine when the product uv is sampled are 
that the streamwise velocity at the edge of the sublayer has attained a certain value.    With this simple 
criteria we find that 60 percent of the contribution to uv is produced when the sublayer velocity is lower 
than the mean.    This result is true at both low,  R    = 4230,  and high,  R    - 38,000,  Reynolds number. 
With more strict sampling criteria,  that the filtered sublayer velocity at two »ide-by-side points is simul- 
taneously low and decreasing,  individual contributions to uv as large as 62 uv have been identified.    Addi- 
tional Tieasurementa using correlations between truncated u and v signals reveal thai thu largest contri- 
butions to Reynolds stress and turbulent energy occur when u < 0,  v > Ü   or during an intense burjting 
process and the remainder of the contributions occur during a less intense recovery process.    Thus, 
contributions to the turbulent production and Reynolds stress at a point near the wall are of relatively I 
large magnitude,  short j iration, and occur intermittently.    A rough measure of the intermittency factor 
for uv at a point near the vail is 0. 55 since 99 percent of the contribution to uv is made during only 55 
percent of the total time. I 

1.0   INTRODUCTION 

This paper is a report of an experimental study of the nature of the unsteady flow near the wall that 
is responsible for the Reynolds stress developed in the boundary layer on a smooth flat plate.    Information 
about the flow field in the region near the wall is cf great importance for a proper understanding of the 
structure of turbulence in the boundary layer.    Just outside the sublayer in the region 20 < y+ < 200   the 
Reynolds stress and the turbulent kinetic energy are a maximum.    Somewhat nearer the wall, y   ~   10, 
the production and dissipation of turbulent kinetic energy are a maximum.    Based upon local mean va'ues 
the turbulent kinetic energy is a maximum of roughly 20 percznt of the local mean kinetic energy at approx- 
imately y   - 15 end maintains a high value, greater than 60 percent of the maximum value all the way to 
the wall within the sublayer. 

in the past fifteen years,   there have been numerous studies of the turbulent flow field near the wall. 
We do not, have the space for a comprehensive review of all the literature and will confine our discussion 
*o the papers and results pertinent to the present investigation of the structure of the Reynolds stress 
The primary motivation for the present work on turbulent structure was provided by the studies of Kim, 
Kline ?• Reynolds {1}.   the work of Corino and Brodkey,   {2},   and by our interest in a model for the turbu- 
lent structure near the wall,   {3}. 

The recent studies by Kim,  et al. ,   {li,   show that the low speed fluid in the region near the wall oc- 
casionally erupts violently into the high speed outer region of the boundary layer.    Following Kim,  et al. 
this process is called bursting.    During the bursting process Kim et al.   measured (from the trajectories 
of small hydrogen bubbles) the rate of production of turbulent energy.    They concluded that "essentially 
all th'  turbulent production occurs during bursting periods in the   zone 0 < y    < 90, "   The burst-ng process, 
as described in {!],   began with a lifting motion of a streak or filament of low speed fluid within the sub- 
layer.    The streaks of low speed fluid were identified by filamentary concentrations of tracer particles 
introduced into the fluid very near the wall.    When the rising filament of low speed fluid reached a height 
in the range 8 < y+ < 12,  an oscillatory motion of marked fluid lines (streak lines) within the parcel was 
observed.    The oscillatory motions,  which were of various types,  appeared to be associated with a swir- 
ling motion of the fluid.    As the amplitude of the swirling motion of the rising fluid became larger,   the 
pattern "broke up" at a distance from the wall in the range 10 < y    < 40.    During the break-up prccess,  a 
significantly more random chaotic motion occurred in which inarked lines of fluid were obliterated owing 
to the sudden increase in turbulent mixing. 

The detailed observations of Kim,   et al.   were obtained by marking the fluid (water) passing over a 
slender wire normal and/or parallel to the wall.    A succession of current pulses passing fiom the water 
into the wire caused electrolysis of the water and subsequent deposition of the lines of small hydrogen 
bubbles in the water moving past the wire.    The motion of the lines of bubbles could be observed until the 
break-up process occurred.    In this way,   a significantly greater amount of qualitative information about 
the flow field near the wall was obtained than had ever been available before. 

Corino and Brodkey, {2},   used a high speed motion picture camera to photograph the trajectories of 
very small particles suspended in the flow.    The camera was TIT Minted on a traversing mechanism so that 
the motions within the convected flow structure responsible for the bursting phenomena could be kept in 
view as the pattern was swept downstream.    The observations of the bursting phenomena reported by 
Corino and Brodkey are in essential agreement with the observations reported by Kim,   et al.     Corino and 
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Brodkey observed the motion of all the fluid particles passing through the field of view of the camera. 
They were able to identify additional features of tht break-up process that could not be observed by mark- 
ing only the fluid element» that passed over the upstream bubble generating wire used by Kim,  et al. 

The sequence cf events before and after chaotic breakdown during the bursting process,  th%t Corino 
and Brodkey reported,   began with the formation of a low speed parcel of fluid near the wall,   0 < y+ < 30. 
The velocity of the low speed region was often as low as 50 percent of the local mean velocity with very 
tittle streamwise velocity gradient within the low speed region.    Aftt«- a low speed region had formed 
within the view of the camera,  the next step occurred,   called acceleration by Corino and Brodkey.    Dur- 
ing acceleration a much larger scale high speed parcel of fluid came into view and by "interaction" begsn 
to accelerate the fluid.    The high speed fluid often entered almost parallel to the wall or moving slightly 
downward toward »he wall.    Occasionally,  the high "peed fluid entered with larger vertical velocity,  20 
percent of the streamwise component,  and moved towards the wall at an angle of 5° to 15° 

At various times tht. entering high speed fluid appeared to occupy the same regiot. 'in the photograph 
as the low speed fluid.    The explanation is that the high speed region was within the field of viev but at a 
different spanwUe station to one side or the other of the low speed parcel of fluid.    It appears that the 
spanwise variation revealed by the above observation may he related to the observation of a streaky struc- 
ture of spanwise variation within the sublayer reported by Kline,  Reynolds,  Schraub Sc Runstadler,   (4). 
This is supported by the fact that the field ol view was of the right orde* cf magnitude a   2:   '8 to allow 

observation of a single transverse shear layer formed by adjacent high and low speed regions near the 
wall where the strsaks have a typical spanwise spacing of z+ - 100.    On the other hand,  one must be cau- 
tious because the Reynolds number of Corino and Brodkey'» flow was considerably higher than that of the 
flow studied by Kim,  et al.    Laufer,   {5},  has reported that as the Reynolds number increases,  the length 
scale of the spanwise variation within the sublayer is changed. 

Continuing with the description of the acceleration phase, if the high and low speed fluid met at the 
same spanwise station,  the interaction was often immediate and the low speed fluid above a particular y+ 

location wss accelerated and often a very sharp interface or shsar layer between accelerated and retarded 
fluid was formed.    If the high and low speed fluid were at different spanwise stations,  acceleration of the 
low speed fluid took a longer time and gradually the spanwise velocity variation began to disappear.    The 
next step in the process was called ejection by Corino and Brodkey.    During ejection one or more corre- 
lated (in time) or sometimes uncorrelated (in time) eruptions of low speed fluid occurred immediately or 
shortly after the start of the acceleration process.    The ejections of low speed fluid were of rather small 
scale,  the maximum dimension (streamwise length) of the field of view was only x    - 62.    Once ejection 
began,  the process proceeded rapidly to a fully developed stage during which a continuing ejection of low- 
speed fluid persisted for varying periods of time ar ' then gradually ceased.    The length scale of ejected 
fluid elements was small,  of the order of 7 < z    < ^ and 20 < x+ < 40.    Most of the ejections occurred at 
distances from the wall in the range 5 < /    < 15.    When the ejected low speed fluid encountered the inter- 
face between high and low speed fluid,  at the high shear layer,  a violent interaction occurred with intense 
abrupt,  and chaotic movements.    The entire interaction structure was of very small scale and destroyed 
the identity of individual fluid elements.    The intense interaction continued as more fluid was ejected. 
The end result was the creation of a relatively large scale region of turbulent motion reaching into the sub- 
layer as the violent interaction region spread out in all directions and disrupted the ejected fluid parcels. 

The ejection or bursting phase ended with the entry from upstream of fluid directed primarily in the 
stream direction with a velocity approximating the normal mean velocity profile.    The entering high speed 
fluid carried away the retarded fluid remaining from the ejection process and was called the sweep event 
by Corino and Brodkey. 

Both Corino and Brodkey and Kim,  et al.    agree that the bursting phenomena is an important process 
for turbulent energy production.    Corino and Brodkey conclude that:  "the results do indicate that the ejec- 
tions are very energetic and well correlated so as to be a major contributor to the Reynolds stress and 
thus the production of turbulent energy. "   Their rough estimates of the Reynolds stress contribution dur- 
ing bursting from a small sample of bursting events indicated that 70 percent of the Reynolds stress was 
produced during ejections. 

Using the above information as a background we have designed a number of experiments using hot 
wire  anemometers to make quantitative measurements of the flow field near the wall.    The experiments 
are designed to provide additional information about the turbulent velocity field that is difficult to obtain 
with flOAf vifiualization methods.    It should be noted that fluid velocity measurements at a given point in 
the flow cannot be made using photographs of bubble trajectories downstream of the bubble generating 
wire unless the bubbles happen to pass through the given point.    Also,  fluid velocity measurements at a 
given point in the flow cannot be made using the motion picture photographs of nurrerous small suspended 
particles unless the field of view can be made very small rolative to the flow field in question.    In Corino 
and Brodkey's photographs the depth of field was of the order z    =20 which is as large as the typical size 
of an ejected region of low speed fluid near the wall. 

The experiments that are discussed in the body of this report, consist primarily of various fluid velocity 
measurements near the wall that we have made at random times during the past few years.    The measure- 
ments show substantial agreement with the process of bursting as observed and described by Kim,  et al. 
and by Corino and Brodkey.    We are able to give quantitative support to the idea that the bursting process 
is important for the production of turbulent energy.    In addition,   the above flow visualization results for 
the bursting process;  the results of our present measurements and cf our previous pressure-velocity 
correlation measurements,   {6},   all agree with a simplified model that we have proposed,   Willmarth and 
Tu,   {i},  for the turbulent structure near the wall. 
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2. 0 EXPERLM£NTAL APPARATUS AND METHODS 

The experiments were conducted in a thick turbulent boundary layer devloped on the smooth floor of 
the 5x7 ft. low speed wind tunnel of the Department oi Aerospace Engineering at The University of Michi- 
gin.    Some, pertinent rharacteristios of this facility are discussed in (7) 

2. 1   Mean Boundary Layer Characteristics 

Most of the detailed measurements were done in a boundary layer with a thick sublayer that is pro- 
duced at low free stream speeds, U 2r 20 ft. /sec. Some measurements were also made at higher free 
ftream speeds, U ~ 200 ft. /sec. , in this case the sublayer is much thinner. Owing to the small scale 
of the bursting phenomena near the «all, we preferred to use the boundary layer with as large a sublayer 
thickness as possible but found that at very low speeds 5 < U < 10ft. /sec. , with natural transition, the 
turbulent boundary layer was not fully developed at the rearmost station, x = J5 ft. of the test section. 
The lowest possible speed was 20 ft /sec. 

Typical mean velocity profiles measured with an impact pressure tube and with a hot wire are dis- 
played in fig.   1 and Table 1 lists the pertinent parameters for the two fully developed flat plate boundary 
layers.    We emphasize here that artificial tripping and roughness were not used because we did not de- 
sire to introduce additional unnatural flow disturbances which might not die out before reaching the 
measurement station.    We believe that flow structure measurements and/or measurement« of fluctuating 
quantities are more sensitive to artificial upstream disturbances thsr. are measurements of mean quantities. 

Table 1 

PropertieB of the Actual and Ideal Turbulent Boundary Layer 
(as tabulated by Coles,   {13}) 

J 
00 

ft./sec. % 

6 
ft. 

6* 
ft. 

e 
ft. 6*/e u  /u 

T'    00 
R 

X 
Remarks 

19.7 4230 0.405 0.494 0.0363 1.365 .0386 ... Transition 
Location Not Known 

— 3800 —   — 1.383 .0387 2. Ixl0b Cole's ideal boundary layer 
204 38,000 0.42 0.041 0.0315 1.30 0.0326 3. 1x10' See I jferecce (31 
... 39,000 ...    j ... — 1.30 0.0318 3.2x10^ Cole's ideal boundary layer 

2. 2   Hot Wire Anemometer Probes 

The bulk of the measurements were made with hot wire anemometer probes of various types.    The 
measurements of streamwise velocity very near the wall were made with platinum wires of diameter 
1. 5x 10      in.    The wires were glued directly on the wall 0. 002 in.  liom the surface and were . 032 in. 
long for the high speed measurements.    The technique has been described by Tu and Willmarth,   {3}.    For 
low speed measurements the wires were soldered to the tips of needles protruding through the wall.    The 
dimensions of the wires used at low speeds were . 037 in.   from the wall with lengths cf 0. 10 in.   and 0. 045 
in.    These wires were made by etching the silver away from the platinura wire,  soldering the wire to one 
needle tip and letting it hang,  with a small weight on the »nd,  near the lower needle tip.    Then Uvs hanging 
wire was soldered to the lower needle tip.    The surface tension of the moltan solder wao very effective in 
pulling the wire onto the needle tip. 

The streamwise vorticity component was measured using a probe construction described by Kovasznay 
{8}.    The probe was constructed by Dr.   Bo Jang T» ir. 1968 utiipg /our i?x'.0' - in.  diameter iungsiea wires 
that were copper plated before soldering to Dje four needl«' probe.    Careful matching of the resistance ot 
the four wires using a process of individuaj etching of copper from inaividtml w'.riä» toade the probe inssn- 
sitive to velocity fluctuations of a scale iarg-r than ihe probe.    The etching process waa accomplished 
using a tiny bubble of copper sulfatc solution iusperided in a loop of thin platinum wire.    The wires wore 
matched so that the difference is the reaista.ice oi the fear wires was lese then three p&rcent of the r,jm- 
inal wire resistance.    The probe was calibrated using a specially constructed oscillating mechanism and 
gave a linear response to the imposed vorticity caused by rotating the probe about its sttcamwisc axis. 

.4 
The Reynolds stress was measured using the usual x wire configuration of 2 x 10      in,  diameter eop. 

per plated tungsten wires.    Each wire A-RS Äcldered on needles 0  07 in.   anarf at anfles uf ^ 45    to the 
flow.    The distance between the w-re cantor.* was 0  C< -n.   Jit? the wires were C. 03fi in.  long.    The wire 
resistance was approximately thrca uhms when cold and thft diftorence iii resistance between a pstir of 
wires was less than thr^.e percent of the norrinai wire resistance. 

2. 3   Hot Wire Ansmometcx Equipment 

The hot wire aign?.ls were processed using ootb ropctant current and constant temperature cquipir.tsjit. 
The electrical signals froi-n the vorticity probes, und the x wire probes were obtained when the wires w«re 
heated using constant current operation.    The signals were ampiified and companisated using techniques 
as described by Kovasznay,   ^8). 

In the case of the etj-eanvw'ise vorticity probe the four wires were connected in a Whaatstone bridge 
jonfiguration with a constant current supply across two arms of the bridge ana the input oi a differential 
amplifier across the other two arms.    In our system we used a Shipiro and Edwards amplifier end com- 
pensator which has one aide of the input grounded.    The conclanv currant supply was obtained from a pack 
of batteries isoJoited from ground. 

Each wire of the x wire prube wac separately heated at constant current and a separate channel of 
amplification and compensation was used for each wir«.    The wires, amplifier giün, and amount of 
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compensation in each channel were carefully matched so that they were identical within a few percent. 
Each wir;» was separately calibrated in a steady laminar flow at various velocities.    Ths calibrations 
differed by ler.s than three percent and obeyed King's law with good accuracy.    The wires were operated 
at an overhci'.ng ratio of one-half.    The time constant cf each wire was approximately 9. 5x 10'* sec. 
near the wall in the low speed boundary layer and 5x 10'* sec.  in the high speed boundary layer.    The 
abcve values represent the maximum amount of compensation necessary near the wall.    We carefully 
compared the gain and phase shift of each channel with compensation network operating over the entire 
frequency band,   I < f < 20, 000 Kz. ,  using a Lissajous figure displayed on matched x and y channels of a 
'Hewlett Packard oscilloscope.    The gain and phase shift did not differ by more than three percent over 
ths entire bandwidth. 

The streamwxse velocity signal at the edge   of the sublayer that was used for conditional sampling 
measurements was produced with a Miller constant temperature hot wire set or occasionally with a DISA 
Model 55 D05 constant temperature hot wire set.    The Miller hot wire set is based on a design reported 
by Kovasznay,  et al.   {9}.    We did not use linearizers for the hot wire signals from the wires in the sub- 
Isyer.    We know that some error in the signal u    is introduced on this account.    However,  the signal 
representing streamwise sublayer velocity,  u   .  was only used to determine the condition of the sublayer 
in the conditional sanipling measuiements.    The actual values of the vorticity and Reynolds stress in the 
sampled measure-men's are not affected. 

2. 4   Other Electronic Equipment 

The signals obtained from the hot wires were recorded on magnetic tape using a frequency modulated 
system installed in a three-channel Ampex Model FR-1100 tape reccrder.    W« also used a six-channel 
Ampex Model 300A reccrder with the same frequency modulated electronic system.    The analog data 
were stored on reels of magnetic tape and could be played back later at faster or slower speed. 

The initial data reduction was accomplished using an analog schime.    We constructed a small analog 
computer to compute the Reynolds stress from the signals produced by the two wires on the x probe.   The 
scheme is outlined in fig.  2.    The summing amplifier was a Fairchild ADO-25 and the multiplier was an 
Intronics Model M502 wide-band analog multiplier.    The analog computation was accuiate within one per- 
cent in amplitude and phase in the range 0 < f < 20, 000 Hz. 

The Reynolds stress signal from the multiplier was detected by a Princeton Applied Research Model 
TDH-9 Wave Form Eductor. Tha sampling cycle of the Wave Form Eductor was triggered by a signal 
derived from a comparitor and pulse shaping circuit made up from Fairchild 2N2422 and 2N3904 transis- 
tors. We gratefully acknowledge the assistance of Professor V. Kibens who showed us how to design the 
circuit. The circuit was designed to produce an output pulse when the iaput signal, the velocity at the sub- 
layer edge, reached a certain level (which could be adjusted) with either positive or negative slope. De- 
tails of the circuit are available by wr ting to the authors. The stored samples in the wave form eductor 
were plotted oat on a Mosley x-y plotter. 

Figure 3 is a sketch of the scheme for the conditional sampling.    The trigger level circuit produces 
a pulse which accuates a single sampling cycle of the wave form Eductor.    The wave form Eductor con- 
sists of a bank of 100 capacitors with appropriate switching transistors that sequentially store samples of 
the Reynolds stress signal,  uv.    Figure 3 is a simplified version of the actual procedure because the trig- 
g*i-iag signal in fig.  3 occurs too latedn the middle of the desired sample)   if the Reynolds stress signal 
uv is sent to the eductor at the same time as the triggering signal.    What was done to eliminate this prob- 
lem was to introduce a time advance equal to one-half the sampling time into the channel carrying the sig- 
nal, u   ,  representing the velocity at the wall.    This was accomplished with a movable playback head on 
the FK-1100 tape recorder. 

Numerous samples of Reynolds stress data were required to obtain stable average values.    We did 
completely reduco the data from a single high speed run.    However, it required a great desl of time and 
careful work owing to the long averaging time required by the wave form Eductor.    So much time was 
required for the single run (about two man-weeks of continuous running of the tape recorder) that the 
magnetic tape finally began to wear out.    If the data had been reduced without a tape recorder the wind 
tunnel run.iing charge would have been prohibitive.    Further details about the analog data reduction pro- 
cess are given in the next section where the actual experimental measurements are discussed. 

We were force    to find a better way to reduce the data.    We decided to use the large IBM 360/67 digi- 
tal computer at The University of Michigan.    To obtain efficient usage of the computer,  it was necessary 
to convert the analog data to digital form and record it on magnetic tape.    The only analog-to-digital con- 
verter available for our use was a Redcor Model 632 A/D Converter which was a part of a Control Data 
Corporation Model 160A digital computer which controlled a Control Data Corporation Model 164 digital 
magnetic tape system.    The A/D converter and multiplexer could operate with three or four-channel 
input at a rate of 1000 conversions per second for each channel.    This conversion rate was deemed ade- 
quate for a 100 Hz.   signal (i. e.,  one would have ten data points per cycle).    It was therefore necessary 
to reduce the speed of the magnetic tape recorder when playing back data.    The speed was reduced by a 
factor of eight by recording data at 60 in. /sec.  and playing it back at 7. 5 in. /sec.    In this way,  our digi- 
tized data were accurate to frequencies of the order of 1000 Hz.    Fortunately,  the signals from the hot 
wires in the low speed,  U      =20 ft. /sec. ,  boundary layer contain very little energy above 1000 Hz. 

After converting   he raw data to digital form,  the rest of the data reduction —including plotting in some 
cases—was done by the IBM 360/67 computer using simple FORTRAN programs. 

Further details of the data reduction are given later when the experiments are discussed.    We would 
like to point out at this time that digital data reduction for conditional sampling measurements has definite 
advantages over analog sampling methods using capacitor storage devices.    The advantage takes the form 
of flexibility in that various operations like comparison of signals,  integration over short intervals,  single 
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samples or sanplos of clipoed (i.e. ,  truncat« d signals),  bee very simple to program.    Also,  another j| 
very important advinta^e is that less raw data is required for digital conditional sampling measurements ^ 
because none of the data is lost or used to chaiB- up capacitors as in the wave form Eductor where each ;| 
capacitor star*.« out with »ero charge e.nd is provided with a finite 'leak" or time constant.    It turned 
out that the amount of raw data required to obtain stable averages of digital data was about one-twentieth 
the amount required using analog methods. 

3.0   EXPERIMENTAL MF^SUREMENTE | 

The measurements described below were made over a considerable time span.    FOT example, tha , 
velocity measurements «t the wall using a ladder array of hot wires were made in l?t8 by Dr.  Bo Jang a 
Tu in the high speed boundary layer AS well as the measurements of 0   ur   which were made at approxi- | 
mutely the same time.    During the last year,   1970, we made most of the measurements in the low speed I 
boundary layer. i 

3. 1   Measurements of tug Velocity in the Sublayer 

The instantar-äous streamwise velocity distribution in the sublayer was measured using four hot wires 1 
arranged in a "ladder" array as shown in fig.  4.    The hot wire array was constructed by Dr.   Bo j'ang Tu. | 
One w>U noti that the wires are rather long, being about z+ - ?65. when immersed in the sublayer of the j 
high speed boundary layer.    Note that the spanwise variation represented by the low speed wtreait» in the 
sublayer at low Reynolds number reported by Kline,  et al.,  {14}, had a spanwise separation of e    = 100. 

The data obtained from the wires is displayed in fig.  5.    The data shows that the largo scale stream- 
wise velocity fluctuations that occur in the sublayer can be thought of as a tim« varying mean shear. 
This indicates that the streamwise velocity above a given point on the wall can be represented approxi- f 
mately by the formula | 

u     = const,  y f(t) (!) < 
w | 

There are obviously transverse and vertical velocity fluctuations occurring also in and near the sub- 
layer; however,  these are of much smaller magnitude.    For example, the root-mean-square fluctuating 
velocity u' (here and elsewhere in this paper a prime denotes a root-mean-square value1 is about three 
times and six times as large as w' and v',  respectively at y'r = 10,  see Läufer,  {10}.    As one approaches | 
the wall, the ratio of w'/y and v'/y approach zero; howeve»-,  u'/y approaches a constant value.    This t 
means that the transverse velocity field from the atreamwise vorticity responsible for tho low speed 
streaks observed by Kline, et al.,  {1, 4},  in the suilayer must be considerably less energetic than the | 
streamwise velocity fluctuations.    The primary result of the above measuremerts of streamwise velocity | 
is that the large scale energetic fluctuating streamwise velocity in the sublayer y    < 5 varies linearly I 
with distance from the wall.    Therefore, a single wire at y    < 5 can be used to deduce the streamwise i 
fluctuating velocity field all the way to the wall.    Note that the above measurements were made at high | 
Reynolds number when the sublayer is very thin.    No one has yet shown that the stieaky structure in the | 
sublayer exists at high Reynolds number.    It is conjectured by the authors that the low speed streaks may 
not be very important for boundary layers at large Reynolds number because the ratio of sublayer thick- I 
ness to boundary layer thickness becomes very small.    For example,  in our tests,  the ratio is 3x10'"' at | 
R.  = 4230 but becomes 3 x 10'^ at R„ ~ 38, 000.    The turbulence is BO much more energetic at large | 
Reyaoldi number relative to viscous forces that it may continually disturb the sublayer, thus preventing 
low speed streak formation. 1 

3. 2   General Considerations about fee ConditionaUy Sampled Measurements of Reynolds Stress 

We were introduced to the concepts and methods of conditional sampling (using analog methods) by 
V.  Kibens.    See Kovasznay,  Kibens & Blackwelder,   {11},  for an explanation of various concepts and 
methods that they developed.    Our first conditionally sampled measurements of Reynolds stress were | 
made in the high speed boundary layer,  R    = 38, 000,  using analog methods and a wave form Eductor as - 
described in Section 2.    As explained in Section 2,  the data averaging process during the analog sampling 
measurements was very time-consuming.    These first measurements ware exploratory in nature,  but will 
be reported below (see Section 3. 2. 3).    We found that the measurements were possible but the spatial 
resolution of the flow field near the wall was poo» because the sublayer thickness was very small, y+ = 7. 5 
corresponded to y = 0. 002 in.    For this reason, we altered the experiment and used a lower stream 
speed (approximately 20 ft. /sec. ) to reduce the friction velocity and thus increase the sublayer thickness. 
Tne distance between test section entrance and measuring station was approximately 35 ft.    This gave a 
thick turbulent boundary layer of approx-tnately the same thickness as at high speed but with a much 
thicker sublayer,  at y+ = 7. 5,   y = 0. 019 in. ,   see also Table  1 and iig.   1. 

Another change in the experiment was the use of the large digital computer to perform the conditionally 
sampled measurements.    The details about the hardware have been discussed in Section 2.    The program 
for conditional sampling was simple in concept.    A block of digitized data from the velocity at the wall, 
u   ,   and from the velocity components at the two wires on the x probe,  u,    and u,   ,   (see fig.   2) was read 
into the computer memory from the magnetic tape     The computer than compared each digitized value of 
the velocity at the wall,  u   ,  with tho desired constant level of the velocity u    representing the sampling 
criteria.    This level is proportional to the trigger level,  labeled T. L. ,  on tne plots.    When the vilue u 
was equal to T. L.  u1 ,  within a certain small error,  the computer was told to store the product of the 
sum and difference of u.    and u      for each digitized data point in a certain time interval before and after 
the sampling criteria were met.    Actually,  the sampling procedure was simple.    The prcgram was re- 
quired to detect the change in sign of the difference,  u   /u'   - T. L.    Note also that the sign of the slope 
of u    can also be determined from the change in sign of the difference,  u   /u1   - T. L. ,  and this was also W CO' yjl ^ 

part of the sampling procedure. 
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The sampled data -A-ere digitized s.unpie» of the. product av where for two crossed wires at 90°,   »et 
fig.   Z. y 

uv . [..^ ^ u2n)/v2l(<a)n - u2(j)/s2] - {u!a -  u^>/2 (2) 

It should be noted that the product u\  represents only turbulent transport across a line y ^ const,   of 
striainwise morr.entun^ fluctuations.    Thus,  uv ts not the entire fluctuating atre«« csiiseci by firbulence 
on a surface,y = const,   because the mean strea/nwise nnomentuin is al»o transported by v fluctuations 
and the mean V velocity aiso transports iluctuutions ic strearnwise momentunn.    The true fluctuating 
stress is,   (U  * u)(V + v> - UV.    We are indebted to S.   Corrsin for reminding as of this fact.    In the 
boundary layer,  V = (ßTSi    6/Li so that the most important terms in the fluctuating stress arc Uv a,K> uv. 
We have not studied the term Uv in detail.    A few mea-uremer ts show that contributions from !his term 
are appreciable but the interpretation became quite complicated and a discussion of theso results will be 
included in a report ?t a later date.    For the present,  we will confine Dur discussion to the term uv which 
is the only term ultimately contributing to th« average of the fluctuating stress,   i.e. ,  the Reynolds s'res» 
- uv. 

Returning to the discussion of the   -^mputerized data reduction process,  we found that to avoid exces- 
sive computing time and expense it was nt     saary to read "he data from the tape into the computer as in- 
frequently as possible.    Therefore, the program wss dei-igred to perform the conditional sampling for 
all values of T. L.  and for both positive and negative slope of ->     :n one pass or reading of the taae.    Files 
were set up for storage of sampled data for each trigger le/el and slope.    After the program was run, 
the stored data was plotted in final form using a CalComp plotting system.    It was not feasible to use a 
printed digital output because the sh^er mass of data was too great for efficient comnrehensioii. 

Our first analog conditionally sampled Jata was obtained   using the full bandwidth of the sgnal.   i   . 
We found that numerous extraneo-ig samoles were obtained compared to conditionally sampled data 
tamed when high frequencies -.vere removed from the signal,  u We therefore conditionally sanple. 
the low speed contributions to the Reynolds stress us:ng both filtered and unfiltered u     signals      The a.ia- 
log filter was a low pass Butterwcrth filter of third order with half power point at 10 Hz.    Tre inter was 
constructed ubing an Applied Dynamics PB-64 Analog Computer.    The signal,   u   .  was filtu   id before the 
recorded anaJog data were digitized.    Since the analog data were played back from magnetic tape at 1/8 
the recording apeed before A/D conversion,  the filter half power point was actually 80 Hz.   ir. real time. 

3.2. J   Conditionally Sampled Measurements of Reynolds Stress at a Single Point near the Wall 

The plots of sampled data that we obtained are very numerous.    In order to conserve epace we show 
in fig.  6 only a few examples of plots of sampled Reynolds stress for the low speed boundary layer when 
the signal u    was filtered to remove high frequencies.    The hot wire producing the signal u    is located 
at a distance y = 0. 037 in. from the wall or y+ - 16. 2.    This location was chosen based on Corino and 
Brodkey's {2} observation that the approximate center of the low speed region near the wall was at >-+ - IS. 
The data of fig.  6 show sampled contributions to uv for various trigger levels,  u   /uJ    = ^_ 2. 15,  +1. 07, 
*_ 0. 54 aad 0.    The quantity uv was measured with the x wire located directly above the point where u 
was measured.    The center of the x wire was located at y = 0. 07 in.   oi y    = 30.    Again,   Co.-ino and 
Brodkey,   {2},   indicate that this is the approximate location of the region of violent interaction. 

In fii;.   6 the ordinate labeled Reynolds stress (uv) is the ratio of the average value of the samples of 
uv to the overall average value of uv, i.e., uv.    Thus, the ordinate is 

Reynolds stress (uv) = 1/N   2/  (uv)./iv = uv/uv (3) 
i-1 l 

In Eq.   (3) N is the number of stored samples that RcVa accumulated in each storage file when the data re- 
duction is compleie.    The abscissa of the plot»- in fig.   o labeled time (dimensionless; 's the dimensionless 
time tU    /6*, where time is zero at the beginning of the sample.    Note that the sampling criteria 
u   /u1    = T. !..  with negative slope occurs at the midpoint of the sampled data. 

Finally, one sr.ould note that in fig.  6.  see Eq.   ^3), the ratio uv/uv   should be one if the N samples 
are selected at random times or if the sampling criteria are unrelated^to the data that is being sampled. 
Accordingly,  it is clear that the large significant -ontributions to uv,  uv   ~ 5 uv,  are made with .''.   L. 
= - 2. 15 (see fig.  6a) at dimei?»ioniess time tU    j'i ♦ =7.0.    At T. L.   = 0, fig.  6d   the contribution is 

uv 2"   1. 4 uv   at the center of the interval.    For positive T. L. ,  the contribution to uv is somewhat less 
than one at the center of the sampling interval,   see figs.   6c,f, g. 

The data of fig.  6 are typical of ^11 the sampled data for uv that we have collected except that the data 
of fig.   6 show the largest values of uv because the sampling criteria have been improved by filterrng out 
high frequenc/ noise from the signal u   . 

We will now consider how  one   can obtain a quantitative assessment of the total contribution of uv to 
uv as a function of_T.   L,    The data of fig.   6 do not contaii enough information to assess the relative con- 
tribution made by uv at each T. L.    We need information iibout the frequency of occurrence,  or the rela- 
tive; number,  of samples obtained at each T. L.    This information can be obtained from the probability 
density of the signal u   .    A program was written to generate an indicator function (see Lumley,   (12), 
for a complete explanation)  «(»(T. L.; t) for many closely spaced value» of T. L.    Here the indicator func- 
tion is defined as 

(\       u   /u'    <T.L. 
«HT.L.jt)   =      ( w     w (4) 

0        u   /u'   >T.L. 
V. w      w ~ 

From time averages of the indicator function,   the probability distribution of u     was obtained.     By differ- 
entiation with respect to u   , 3    , the probability density of u   ,  was obtained and is shown in fig.   7.    The 



i-7 

probability density for a Gaus&iao diRtribution ss ilso ihown for r««erence ir. fig.   7 

With ihe data of fi^.  7 a; hand,  on* ein row obtain a qualitative rness-jre oMhe_contribulion to uv to 
jv  as a fynctior. of T  L.    This Treasure i» obtained by multiplying 'he value of uv/uv. at th« lime thf 
triggering criteria,   u   /u'    = T. 1,. .^vi-a« ^leUby the probability ci«n-iiy at that T. L.    The result is shewn 
ii. ng.   8.    The Ordinate in fig.   3.  iuv/uv   is 

.iuv/uv = uv/uv ßu (5) j 
W f 

Note ihat iiie integral. 
oc 

1/2   j    IfAuv/üv)    , * iiuv/ilv)^   ,       idil.L   )=! (t>; 
■' r -slop« + slope 

so thst the Ordinate in fig.   8 is a measure of the contributiori per unit T. L.   of sampled uv data to the 
value of üv.    The ordinate (5) for negative slope ^s not symmetric about the origin T. L.   - C and has a 
mJiximum value at T. L.  2:   - 0. 7      The dato for positive slope .s also shown in fig.   8 and is much more a 
ävmmttricai about th-" origin T. L.   = 0.    This indicates that greater contributions to Reynolds stress oc- 
cur when the velocity at the wall u     is less lhap the mean value anj decreasing      This result adds addi- 
tional information to what is known from the v.^ual studies of Kin.  et al.,   {I},  and Corino and Erodkey, 
{2j.    In the visual studies the velocity at the wall was not measur«d but it was determined in both (1) and 
{2) that u    was low during bursting.    Kim,  et al.   also state that the velocity profile was inflectional.     We 
can now add that from the present data the bursts occur when the velocity profile first becomes inflec- 
tioial,   i.e. ,  when the wall velocity is low and decreasing.    It will be recalled,  from the result of fig.   5, f 
that when the sublayer velocity decreases at a given poin! it also decreases at every paint in the sublayer 
above or below the given point,   the decrease being proportional to distance from the wall. 

Whon the slope of u     is positive,  a low value of u     is not related to unusually large contributions,at 
that time,to uv .    As a matter of fact,  the conditionally sampled data for positive slope (analogous to the 
data of fig.  6) she* that for T. L.   < 0 unusually large contributions to uv are made but at times prior to 
the time when u   /u'    = X. L.  with positive slope.    T'li» indicates that when a   /u'    = T. L.  with positive | 

w      w w      w I 
slope the b  rst occurred sarlier (when u   /u'    = T. L.   with negative slope) ana now when u     is increasing 
the bursting event iB over. -        - I 

Figure 9 shows the contributions to the Reynolds struss from samples of the signal uv that are ob- 
tained at various values, T L. , of the unfiltered velocity u , at the wall. The results of fig. 9 should 
be compared with those of fig.  8.    Note that in fig. 9 t.;* curve for negative slope is again unsymmetrical | 
about the origin T. L.   =0 but the difference between the curves for positive and negative slope is much 
smaller than in fig.   8.    This shows that the filie:cd signal,  u   ,   provides better criteria for the identifi- 
cation of samples of uv that contribute to the Reynolds stress when u    decreases.    We also should em- | 
phasize the feet that in the digital data red^ctior. program a sample of uv was taken whenever u   /u'    = 
T. L.    Therefore,  if u    had many rapid changes in value while a burst WAS occurring the signal u    might 
pass through the trigger level more than once during the burst.    This would cause the same burst in uv 
to be stored on top of itself but shifted in time.    Therefore,  the large contributions to uv would in effect 
be smeared out and reduced over the sampling interval. 

3.2. 2   Spatial Distribution and Decay of Sampled Reynolds Stress 

We have made conditionally sampled measurements of Reynolds stress at various distances from the 
wall when tha x wire is <tt various locations transverse and downstream from the u    wire which is located + w 
at the point y    = 16. 2.    The results of these measurements have not yet been fully analyzed.    However, 
we can state that the measurements show thai the largest contribution to uv from the sampled signal uv, 
occur when u    < 0 with negative slope and are confined to a narrow (in the spanwise direction) region 
near the wall and downstream of the u    wire.    The approximate dimensions of the narrow region are 
x < 2. 5 in. ,  y < C. 35 in.   and z < 0. 35Tn.   or x+ < 1110,  y+ < 154 and z+ < 154,    There is also evidence 
that the »panwisr extent of the region in which appreciable contributions to the sampled Reynold« stress 
occur increases in width downstream of the point whore u _ is measured.    For example,  no contribution, 
uv/uv - 1, was obtained at x = . 2 in. ,  y = , 07 in. ,  z = . Ot in  ,  but an appreciable contribution was ob- 
tained at x = . 5 in. ,  y = . 08 in. ,  z = 0. 1 in.    The anglo 6, between the stream direction and edge of the 
region of contributions to uv (i. e. , uv > uv) is therefore in the range 12° < 9 < 23. 5°.    The disturbance 
is also convected downstream.    An approximate convec'.ion velocity was measured from the change in the 
bcation (in time) of the maximum contribution from the conditional samples uv (for T. L.   < 0 with negative 
slop^ at a succession of points downstream of the point «Here u    was measured.    The convection velocity 
was approximately the local mean speed at the distance from the wail where uv was measured. 

3. 2. 3   Effect of Reynolds Number on Conditionally Sampled Reynolds Stress Measurement« 

We have not yet investigated in any detail the contributions to uv from sampled measurements of uv 
at high Reynolds number.    We have one set of measurements made at R    = 38,000 with analog data reduc- 
tion.    The signal u    was not filtered to remove extraneous high frequency signals.    Nevertheless,  appre- 
ciable contributions to uv were made near the wall when u > was negative and decreasing.    The measure- 
ments are in qualitative agreement with the results already described in Section 3.2. 1,  see fig.  9,  for a 
boundary layer at lower Reynolds number R.  = 4230,    The results of ehe low and high Reynolds number 
measurements at points downstream from the point where u    was measured are shown in fig,   10.    The 
ordinate in fig.   10 is 

<£uV^ > = 1/2 {(uV^)+ 8lope + (uv/^)    8lope]B (7) 

which is the average of the contribution from uvfor positive and negative slope.    As noted i.i Eq,   (6),  the 
area under each curve in fig.   10 should be unity.    From the similarity between these two lets of data .it 
widely different Reynolds number and points which correspond,  within a factor of 2. 5,   in wall variables 
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x*,   y" and z    we car. conclude that the burst phenorviena »nil occur wher. »     < 0 at h«gn R        Note thai 
froiri the area under each curve for T   L    < 0 *« can state that fcO percent of the Reynolds s*res* at the 
given daw.ietrear.-. locatic.is is produced when the upstream velocity near the wall is lower than the mean 
'.Ve add that for the data .n fig.   10 the ho; wire near the wall it located at y =    002 in.   or y    =75 for 
R^   = 5H. 000 and at y  -    019 m    or y'  - H   } for R     = 42JC      Tnu location is nearer the w»ll than fvr the 
data of fig.   8 and fig.   9. 

$. 2. *   Conditionally Sampled Reynolds Stress Measurements with an Improved Detection Scheme 

The use cf a lew pass filter for the signal u     resulted in improved detection of - .iitributiona to uv 
«Ve then realized that stil' greater improvement in our detection criteria might rest..1', if we used a crude 
s->anwise sp«tia! filter for the detector signal,  u To accomplish this,  we installed two hot wire» side 

+ W T 
by side at y = . 037 in.   or y    -  16   >.    The wire length was I   = . 04J in.   or t     - 20      Th= wires were soldered 
on the tips of three needles at the same rtreamwise station.    The center needle was common to both 
wires.    The f'istance between the center cf each wire wa» therefore I  - . 045 in.   or /     - 20.    This distance 
is approximately cne-fifth of the wavelength of the low speed streak structure observed in the sublayer 
by Kim,  ct al.,   {!). 

The sampling criteria that we used with the two velocity signals u      ,  and u from the wire« side 
by sice near the wall was bused on the idea that if a burst event occurred dire;: Jy above them,  both u 

Wi 
and u would be decreasing and less than the mean. In other words, the plane between the two wires 
that is'normal to the wall anri it parallel to the free stream would be a plane of symmetry for the burst 
event if u = u        when both decreased. 

W; Wi 

We digitized four channels of data obtained at U      =20 ft. /sec.  with the x wire slightly downstream 
from and centered between the \jires proauc>ig the s'gnals u       and u The x «ire was located at 
y =0.0? in.   from the wall (or y    = 50. 5) and was x = 0. 13 in. HOT X* = i78. 5) downstream from the wire« 
u       and u Upon examining the data,  v.-e could observe that there were a number of occasion« when, 
for'nepativ^T. L. ,  u      /u'       < T. L.  with negative slope at the same time that u      fa'       < T. L.  with 
negative slope.    However,   in many instances,  even when high frequencies were rtmovm from both u 
and u        (as deacribed in Section i. 2. I),  the two sijj.als did not both remain less than T. L.  for U'i       ' 
same    ^  length of time.    It was clear that some kind of an integral condition over time bad to be added 
to the sampling criteria.    This was accomplished by writing a computer program that summed all the 
digitized data values for u      and u       during the timi; ihat both signals were below a specified negative 
trigger level,  provided that'both signals simultaneously ('vithin a small error) fell below the speciiied 
trieeer level.    The sum of digitized data values for hoth u       and u       were then compared and if the sum» 

Wj Wj 
were both greater in magnitude than a specified va.ue.  aad if both the signals u       and u        »imultaneously 
(within a small error) rose above the spec.:f>ed trigger levsl,  a burst evejil was presumed to have occurred. 
In operation,  the program caused the computer to search the digitized data recorded on magnetic tape for 
special events meeting the above criteria.    As one might perhaps expect, events meeting the above cri- 
teria were not numerous.    In 13 seconds of data or 1. 05x 10J digitized data points we found only ten 
events mee'ing the above criteria. 

For each event the computer then plotted the signal uv.    In each case when T. L.  = -1 (i. e., u      = 
u        = - u'    ) and the slope of u    was negative, latke contributions to uv,  uv > 20 uv,  occurred at some 

w i w r w 
time within the sampling interval which included 300 digitized data points or was 0. 037 5 sec    in duration. 
In some samples a number of contributions occurred, each of the order of 10 to 20 uv.    In ether samples, 
single or double contributions occurred which were twice as large.    In one case,  two large contributions, 
uv ~ 60 uv,  occurred.    An example of a single large contribution to uv is shown in lig.   11.    The contribu- 
tion is uv = 62 üv   at the peak.    These results represent truly sizeable contributions to Reynolds stress 
during bursting events.    This is qualitatively in accord with results and conclusions of Kim,   et al. ,   {1}, 
and Corino and Brodkey,   (2).    However, neither {1} or {2} could accurately measure the magnitude of the 
contributions to uv during a burst,  but both investigators agreed that the bursting events were very ener- 
getic.    We have also applied the above specialized detection criteria to our data for positive T. L.   (T. L. 
= 1.0) with positive slope  in an attempt to observe the sweep event described by Corino and Brodkey,  {2} 
Recall from the introduction that the sweep was observed after the burst when higher speed fluid enters 
the field of view.    We found approximately 12 events meeting the detection criteria and in all these events 
appreciable contributions to uv occurred.    The signal uv was not as peaked as it was during bursting,  but 
appeared to be relatively constant and large,  uv ~ 7 uv,  for longer times than during bursting.    This was 
our first strong indication that not all the contributions to Reynolds stress near the wall are associated 
with outflow of low speed fluid.    Note that Kim,  et al.,   {1) state that essentially all the contribution» to_ 
uv occur during bursting.    Corino and Brodkey estimate that 70 percent of the average contribution to uv 
occurs during bursting. 

3. 3   Streamwise Vorlicity Measurements 

As mentioned earlier,  we have also made mearurements of streamwise vorticity fluctuations,  w ,  and 
found that the streamwise vorticity fluctuations near th, wall are correlated with the velocity,  u   ,   at the 
edge of the sublayer.    The measurements were made by Dr.   Bo Jang Tu and the senior author in 1968 in 
the high speed boundary layer.    The correlation between u     and UJ 

w 

=   u 
J    ID W 

W   X 

w    /u'    u' (8) 
X  '     W       X 

was found to be a maximum along a highly swept back line passing through the point on the wall where u 
is measured and proceeding downstream and away from the wall at an angle to the wall and to the stream 
of approximately 10°.     The maximum correlation coefficient that was measured was R = -0. 095. 

w x 
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Th< »rrangetr.ent of the vorticity probe for tht above n-ieaiurement s« «hown in fig.   ii.    The loeatien vf 
the probe when maxizr.^m negative correiatior, w»-' found is «hown in fig    !l where the distance» are 
x =  1.0 in.   (or x* -  IJSOj.   y = 0. i49 (or y*  = 185) and i = 0 ^0} /or z* = 250) relative to the upstream 
point where u    «as treasured r w 

We have measured the contributions to the correction R in lour quadrants of the u   , >.   plane. 
The results are displayed in f;g.   Ii.    Note that the bulk of the negative correlation occurs in the fourth 
quadrant u     < 0,  -    > 0.    Here the correlation in the first quadrant (for example,1 is simply given by Eij 
(8) but with a     > 0.  w    > 0 in the numerator only.    The quarter correlation was measured using an analog 
method It diode in th^ feedback loop of an operation amplifier;     The results of fig.   Il show that when 
u     < 0,  positive values cf -    are more likely than reg.itive values.    This suggests that the positive stream- 
wise vorticity- component may be associated with the burst phenomena which occurs when u     < 0 

To examine this possibility m more detail,  we made conditionally sampled meanueerr.ems of tu   for 
the above data.    The results cf the measurements show that when D     passes below a given negative value 
(with negative slope/ the sampled data for -    representing contributions to >.      =0 wete all positive when 
u     < 0.    The positive contributions were appreciable.    We can therefore conclude that during a burst 
event there is an appreciable antisymmetric pattern of strei«mwise vorticity present ip. the region near 
the wall on either side of the pom! where u     is measured     Note that the positive sign of the vorticity 
component, <.  ,  at the probe location shown in fig.   12 is consistent with upwelling of low speed fluid from 
the wall into uie outer flow downstream of the point where u    is measured. 

The sampled data for ~    representing contributions tc u     =0 -vhen n     > 0 with positive slope were 
ail negative.    This resuM n.«)- be consistent with the idea thst just before or during the sweep event (u 
increasing) high speed fluid approaches the wall in a jet-like flow with a pattern of downstream vorticity 
whose rotation is opposite to that of the bursting pattern.    Additional study of tins phenomena should be 
undertaken. 

3.4   Direct Observations and Measurements of the Signal uv and of the Reynold» Stress uv 

The flexibility and relative simplicity of digital computation methods were exploited in a study of thr. 
signal uv from the x hot wire probe. 

3. 4. 1   Nature of the Signal uv 

Figure 13 displays the signal uv as a function of time The signal was obtained from the x wire when 
it was located at a distance y = 0. 07 in. or y* - 30. 5 from the wall, in tb^ low speed boundary- layer, R. = 
4230. The signal very definitely con'ains large short duration negative spikes and much smaller positive 
contributions of considerably longer duration than tne negative spik.»s. For a considerable fraction of the 
time, the signal uv is approximately zero. This suggests that the signal, uv, from the region in the 
boundary layer where turbulent kinetic energy is a maximum is rather highly intermittent. 

3.4.2   Probability Density of uv 

We measured the probability density of uv, 6    ,  using the same computer program developed to find 
the probability density of u   ,  see Section 3. 2 and Eq.   (4).    The result is shown in fig.   14.    Note that for 
this unusual random signal the maximum value of B      occurs at zero but the mean value is looted at 
vr/uv * : atjwhich point 6     ~   l/fcp    ) Furthermore^ the probability density has a long "tail" for 
positive uv/uv and rapidly vanishing values of 0     for uv/uv < 0.    These features of the probability den- 
sity of uv are consistent with the behavior of uv as shown in fig.   13.    The peak in 6     at uv = 0 corresponds 
to the fact that uv is relatively quiescent or nearly zero much of the time.    The long "tail" of 0     for 
uv/uv > 0 is a result of the spiky nature of Reynolds stress contributions during bursting events. 

3. 4. 3 Four Quadrant Correlation Map of Contributions to uv 

To obtain a quantitative measure of the intermutency of the uv signal and to better understand the 
nature of contributions to uv from the karat and sweep processes, we have computed contributions to uv 
in four quadrants of the u-v plane.    Tjje measurements of uv were made with the x v/ire at a distance 
from the wall where y = 0. 07 in.  or y    = 30- 5.    The contributions of the correlation uv in each quadrant 
were computed for each pair of digitized data values for u and v.    The product uv was added to previous 
values of uv in each of four storage files depending upon the signs of u and v.    Also, a count of the num- 
ber of samples contained in each of the four storage locations was made.    From this data we computed 
the relative contributions to uv from each quadrant, the time spent by the signal av in each quadrant 
and the number of uninterrupted individual contributions to uv made by the signal uv in each quaarant. 
The individual contributions are called samples in fig.   15. 

Figure 15 is a copy of the computer printout of this data reduction procedure.    Note that the largest 
contribution to Reynolds stress,  uv/uv = 0. 805,  occurs in the fourth quadrant u < 0,  v > 0,  and this 
represents violent upwellings of low speed fluid.    There is,  however, also a large contribution (0.435) 
to Reynolds stress in the second quadrant where u > 0,  v < 0.    This contribution may be the result of the 
sweep event described by Corino and Brodkey, {2},  or can occur as a result of the swirling motion during 
a burst event that has often been observed by Kim, et al. ,  {1}.    In the swirling motion, high speed fluid 
must pf.ee the measuring station and enter the wall region.    However, during bursting        is lower than 
the mean and our data for eampled Reynolds stress in figs.   8,  9 and 10 all show that considerable con- 
tributions to Reynolds stress are made when u    is greater than the mean value     This indicates that the 
contribution to Reynolds stress in the second quadrant u > 0,  v < 0 is caused by the sweep ev snt and not 
during bursting.    This important conclusion will be discussed again below. 
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}.4. 4   Four Quadrani Co-r^iation Map» of the Contribution io uv Above a Certain Value of ^uv; 

Contribution!« to the cjrrelJtion uv wer» also measured in four quadrant« of the u-v plane when the 
signal    jv    was greater than & certain value of   uv    =• const.     The purf:~.«e of these measurements,  which 
were yasiiy done by i flight alterition of th.f computer program,  was to single out the lirge contributions 
i.o üv which uccur in •■■■    fourth quadrail .; ^ 0.  v > 0.    The progr?-rr) alteration consisted of the creation 
cf a fifth storage ioc    ;on into which a digitizer value of uv was thrown if for that sample    uvi   < const. 
The correlation contributions that remain in the u-v plane are contributions which occur in each quasä- 
rar.L outside of a central cross-thitched n.'gion bouT.'ed by four hyperbola? called the  "hole" shown in 
the si-ctch below. 

|uVJ = co"nst, 

»•w 

Hole 

Figure  16 shows * plot of the results of the measurements of contributions to uv with hyperbolic cen- 
tral region omitted for various values of the size of the "hole. "   From fig.   16,   it is clear that the con- 
tributions to uv from the fourth quadrant are larger than from any of the others.    Furthermore,  above 
the value (uv1   = 5!uv; essentially all the remaining contributions to uv come from the fourth quadrant. 
Also shown on fig.   16 is a curve representing the percentage of time that the signal uv remains in the 
hyperbolic "hole" juv!  < constant.    Clearly,  for a large fraction of the time juvl   is vtry small relative 
to shorter intervals of intense activity.    Roughly speaking,  the intermittency factor for uv (at y+ = 30. 5; 
is 0. 55 since 55 percent of the time the signal uv is in the "hole'^ yet during this time the contribution 
to üv that is made by the signal uv while in the   "hole" is small (uv/uv),,   ,   ,, = 0. 01.   The size of the "hole* 
for this estimate is     luv?  < 0  5 uv,   see fig.   16. "hole" 

4. 0   SUMMARY OF THE RESULTS OF THE MEASUREMENTS 

In UIAS section the results of the measurements will be discussed and a model for the flow structure 
of the bursting event that wag first presented in {3} will be discussed in light of the present measurements. 

4. 1    Discussion of Measurements 

The key to an understanding of the result» appears to us to be the fact that when u    becomes negative 
with negative slope,  a burst occurs which makes large contributions to Reynolds stress and production 
of turbulent energy.    The sampled Reynolds stress contributions uv like those of fig.  6 for  J     < 0 and 
negative slope are convected downstream with the local mean speed as our numerous measurements re- 
veal (these measurements are not yet in final form and are not included in this paper).    The region 
occupied by the burst event is long and narrow and appears to grow as it is convected downstream.    Fur- 
thermore,  when u     < 0 with negative slope,  sampled measurements of the streamwise component of 
voriicity were made.    The measurements showed that an anti-symmetric pattern (in the spanwise direc- 
tion   of streani'vise vorticity was present.    Thi.ä is strong evidence that appreciable vjrticity is present 
duriig the bursting event.    The sign of the vorticity is such that an upwelling v > 0 of fluid would be ex- 
pected when u    < 0 with negative slope and it is shown from the measurements that intense bursts do 
squi-t low speed fluid from the region near the wall upward into the higher speed outer flow. 

The spatial and temporal scale of the upward ejections of low speed fluid ts less than / ^-0. 5 in, ~ 
C* or t   ^ 250 for the low speed boundary layer.    Our earlier measurements,  {3} and (14),  of the corre- 
lation of the pressure field at the  vail with velocity components near the wall led us to propose,  in (3}, 
that ii swept back pattern of streamwise vorticity in the shape of a hairpin with legs pointing upstream 
could be responsible for the wall pressure disturbances. 

We now propose that the same model for the flow structure near the wall is also responsible for the 
intense bursting events that have been studied by Kim, et al. (1),  Corino and Brodkey,  {2},  and here 
with sampled measurements of uv.    Another reason 'or proposing the model of the hairpin shaped vor- 
ticity is that this configuration of vorticity appears to be the only way an intermittent, very intense small 
scale ejection of fluid could occur.    We recall that the onset of the ejection is very abrupt and believe 
that it must be the result of vortex stretching on at first a very small scale in the wall regii        Further- 
more,  it does not seem likely that anything other than an intense local convected pattern of vorticity 
could be renponsible for the highly intermittent signal uv,  see fig.   13, 

Numerous interesting questions rsmain to be investigated.    For example,  the question of the nature 
of the flow disturbance that initiates the bursting event is still in doubt.    Also, the na.ture of the chaotic 
.ateraction observed after the ejection process is well developed is not understood     Unfortunately, we 
do not have space here to survey a number of computational results from simplified models of possible 
flow structures near the wall.    We also would like to suggest that the localized flow structure during the 
bursting event is similar to the organized flow structure that occurs during the creation of a turbulent 
spot in the transition from laminar to turbulent flow.    The initial instability mechanism that initiates the 
first stages of the process leading to a concentrated localized flow structure during transition may not 
be the same as it is in the fully developed turbulent boundary layer.    However, we propose that the basic 
flow struciure and vorticity pattern that is developed at later stages and the results (creation of Reynolds 
stress and t.ubulence) are similar when intermittent and intense contributions to üv occur near the wall 
in the fully developed turbulent boundary layer. 
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Fig. 1    Mean velocity profiles (also see Table I) 
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Fig.2   Sketch of arrangement of hot wires for measurement of   i^  and uv 
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Fig.3    Sketch of conditional sampling method 
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Fiif.4    Downstream view of "ladder" array of four hot wires for sublayer velocity measurements 
1.5 x ICT* in. dia, platinum wires. 

At Station A-A: h, = 1.4 x KT3, h, = 5.5 x l(r^ h, = 8.8 x lO"3, h4 = 13.4 x 10-' in. 
At Station frB: h, = 0.4 x KT3. h, = 4.4 x 10"J, h3 = 7.9 x KT3. h, = 13.4 x KT3 in. 
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Fig. 5    Velocity fluctuations measured in sublayer using "ladder" array of Figure 4.   Miller hot wire 
anemometers with linearization were used for the« measurements 
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Fig.7    Ptobability density of uw   after passing the signal   uw   through a low pass Butterworth filter of third 
order with half power point at 80 Hz.  The velocity  uw   was measured at 

y+   =   16.2 and the stream speed was 19.7 ft/sec. 
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Fig. 14 Probability density of uv measured at y+ = 30 in low speed boundary layer. U«, = 19.7 ft/sec. 
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I 
REPARTiriOWS SPECTRALES DES fLUCTUATIOfcS THEWIOUES 

PAKS »WE COUCHE LIMITE TURB'JLENTE 

par 

I,. FULACHIER'et P. DUKAS"* 
Institut de Hecanique Statistique de la .urbulence 

Laboratolre Assucie au C.N.R.S. 
fniversltc de Proverxe, Marseille. 

RESUHE.- 

J>s -nectres des fluctuations de teaperature et les repartitions spectrales des cerrela- 
ticn.t temperature-"itesse or.t ete eesures dans la coucne liaite turbulente d'une plaque plane 
chauifee. üans les conditions de ces experiences, la teaperature s« coaporte COB»« un contaainant 
passif• 

La nethode du diagraa^e des fluctuations a ete eppliquee aux sign»ux flltres en frequence, 
notaaaent pour la deteraination des repartitions spectrales den  correlations. 

Ur.e coaparaison systcaatique des spectres des fluctuations de teaper'iture et de ceux des 
trois coaposantes de Vitesse eet presentee, depuis la lone interne jusqu'a \r.  frontier« de la 
couche liaite. On constate une forte analogic entre le spectre des f -ictuaHons themiques et 
celui forae per la soame Q f n] des spectres des trois cooposantfts de Vitesse pond^rees par leurs 
moyennes quadratlque«. Si on appliquait les forvules de turbulence Isotrope, ceci reviendrait ä 
adnettre une slailitude des fonctio.-s spectrales totales relatives aux fluctuations de teaperature 
et de Vitesse. Toutefois pres de la paroi (/"WlSl ie spectre ces fluctuations theraiques et celui 
de 1« coaposante longitudinals de Vitesse different assez peu car cette :oaposante est prepoodt- 
rante devant les deux autrcs, ce qui est «is en evidence par 1'estiaation de Q (n) qui deaeure en 
forte analogic »veC le spectre theraioue. 

Les equations de Mian des repartitions spectrales relatives ä la teaperature et 4 Q0"J 
sont donnees. Certair.es reaarques sont faites coapte-tenu des repartitions spectrales des teraes 
de production, qui different pour la temperature et Is vitesse, et des tem-es de dissipation par 
les effets moleculalres. 

SUMMARY.- 

The  teaperature fluctuation spectra and spectral distributions of teaperature-velocity 
correlations have been measured in a turbulent boundary layer on a heated flat plate. In experi- 
mental conditions temperature acts liire a passive contaainant. 

The method of fluctuation diagram has been use for frequency filtered signals especially 
in order to measure spectral distributions of correlations. 

A systematic comparison of thermal spectra and those of three components of velocity is 
presented from intt.-nal zone as far as the edge of boundary lever. It appears to be a strong ana- 
logy between thermal spectra and spectra equal to the sum Q (n ) of the spectra of the three 
velocity components, weighted by their mean square values. If one uses isotrop1c turbulence 
formula the above analogy would be equivalent to assume a similarity of total spectral function 
for temperature end velocity. However near the waliC/'tvt 5 ) thermal spectrum and longitudinal 
velocity spectrum are little different, because the value of this component is very large in ratio 
of the two others ; this result is explained by computation of Q (n) which remains in close 
analogy with thermal spectrum. 

Balance equations of spectral distributions concerning temperature and Q(n) ar» given. 
Some remarks are pointed taking in account spectral distributions of production terms, which differ 
for temperature and velocity, and molecular dissipation terms. 

1— UTRODUCTION 

Les resultats presentes ici concernent une partie des Etudes sur la structure des couches 
liraltes turbulentes subsoniques avec transfert thermique h  la paroi, qui sont poursuivies i 
1'I.M.S.T. (1, 2. 3, 4, 5, 6). Les ''carts entre la temperature®^ de la paroi et celle de l'air 0e 

extcrieu>r etant faibles, de l'ordre de 220C, le champ des vitesses n'est pratiquement pas modifie 
:iar 1 "echauffement. 

En ce qui concerne les grandeurs moyennes, les compsraisons portent sur la vitesse rela- 
tive longitudinals U/Ue  et les ecarts relatifs de temperature©!,-®/©,^!'indice e  etant 
relatif aux conditions a I'exterieur. En particulier lorsque les conditions aux frontieres sont 

* Attacrte de Re'ChsrShes aU C.N.H.iJ.  
»» Maltre de Recherches au C.N.R.S. 



senlilables l*s profils d« Vitesse et de teaperature sont analogues ( 7, 8 ). 
On rcraarque que l^s composantes noneale ä la parol \J    et transversale v^  , sont 

falbles ou nullej et ne jouent pas un rftle t'irect rtans la conparaisJii. Far centre lorsque 1'on 
consid*re ies tluctuatior.s turbulentes de temperature  |j*  et les compesantes Irogitudinale uV • 
normale v* er transversale W   de la Vitesse turbulente   g^ , on sait que les variances JJ" 
ne sont pas en qeier'? tres preponderar.tes devant les variances V'* et W'* - Or- constate 
d'allleurs que les spectres definis par TAYLOR de la cooposante lonqltudinale u'  et de la 
temperature 9'  sort en qer^ral differents dans la couche limite ( 8 ), dans un jet ' S ) ec 
dans un ecoulement cylindrique (10)• 

C'est pourquoi, nouc evons entrepris une etude detaillee des repartitions spectrales des 
fluctuations C?  temperature, des trois composantes de vltesse, ainsi que des correlations tenpera- 
ture-vitesse et vitesse-vitesse, dans une couche limite turbulente, oü ä notre connaissar.ee ces 
nesures n'ont pas ete ef'ectuees systematiquenent. 

Les theories spectrales developpees pour le cas des grands nonbres de Reynolds et concer~ 
nant les echclles petites vis a vis de cellos contenant l'energle, permettent de prevoir pour les 
vitesses les lois de decroissance des fonctiuns spectrales ä trois dimensions dans i'espace. On 
suppose la turbulence iocalement homogene et isotrope. En folt les resultats experiaentaux oontrent 
que les lois de decroissance spectrales ( 11 ) sont en general applicables afcne en turbulence 
an!   ope si le nombre de Reynolds ast fort, ainsi il en est de la loi en  k"9''»    112,   13, 14). 
En c   i concerne le champ de temperature, or. le considere comne passif et sous la dipendance du 
champ   Vitesse ; CORRSIN (15) notanment d»tinit pour les nonbres de Peclet eleves une zone 
d'equi.^jre de convection qui joue le rftle de la zone d'equillbre dynanique de KOLHOGOROV ( 11 ) 
lorsque le nombre de Reynolds est eleve ; 1'analyse dimensionnelle roontre que dans cette zone 
lj fonction spectrale ä trois dimensions de temperature est proportlonnelle a 6^ E~A/3  k - * 
6 etant la dissipation par viscosite de la turbulence de vitesse et G9   la dissipation par la 

conductivity  nsoleculalre des fluctuations turbulentes de temperature. Toutefois BATCKGLOR { 16 ) 
a montre que les zones d'inertie et de convection, oü les lois spectrales seralent en  |<~*^ 
ne sent d'etendue comparable que si le nombre de P'andlt est voisin de 1'unite, ce qui est d'allleurs 
le cas des presentes mesures. PLATE et ARYA ( 1' ) serablent avoir verifie dans une couche I'-nite 
a grand nombre de Reynolds, avec effet cie stratlfiration, la decroissance spectrale en ^<~9'^, 

pour la temperature. Ce plus, la loi de dtcroisser'C« Sf^cttiilt en k"4 «etablie par TCHEN pour 
les vitesses (18) lorsque le taux de production d^? turbulence est eleve, strait, vtrltiee experl- 
mentalement pour les temperatures par PLATE et Ak'.'A dans 1'«»xperience prtcttee, ainsi que por 
SREMHORST et BULLOCK dans un conduit cylindrique ( 10 ). 

En ce qui conceme les presents resultats, on s'est surttait attache a effectuer une 
coraparai^on entre lea energies spectrales des fluctuations de temperature et des fluctuations de 
vltesse. Cependant des considerations ont ete faites sur les lois de variation spectrale. Ainsi, 
nous avons compare le spectre de temperature Faa  (n) de TAYLOR, D etant la frequence, au 
spectre Q (n^definl par 1'expression : 

q7-1 Q (n) = u
5 Fuu In) + 7* Fw (n) + ^ Fww (n)    (1) 

q'2  = 11'*+ V* + W" Fuu  , Fvv  , Fww    spectres 

de TAYLOR des composantes 'J' , V' , W ' . En effet les equations conduisent ä faire une analogie 
entre le scalaire      S'S' 

et le produit scalaire :   "qT q!* = U'Uj -tV'Vo  + WW^ 

Les valeurs sont considerees en deux points de I'espace et du temps. En  un point fixe de I'espace, 
avec un decalage dans le temps t , on compare les autocorrelations dans le temps ; 

e'cne'Ct+t) et uHü^o+t) +v
,tOv,Cf+r) + wenw cuto 

ce qui conduit par transforriatian de Fourier aux spectres rgg^Jet Q (rt) precites. 

L'experience confirme 1' interftt du choix de Q(nJcomme critere de comparalson. 

2.- DISPOSITIP EXPERIMENTAL 

Les mesures ont ete effectuees au-dessus de la plaque plane chauffee dispor.ee dans le 
piancher de la soufflerle S.2 de 1'I.M.S.T. { 3 ). La longueur de la maquette est de 4850 mm, la 
larqeur de 5&0 mm. Deux cas d'experiences sont a distinguer. Dans le premier cas, le debut du 
chauffage etait a  3050 mm en aval de la transition a la turbulence , transition obtenue par un 
reglet. Dans le deuxieme cas, le chauffage ne debutait qu'a 250 mm en aval de la transition. 
Compte-tenu de la position de mesure habituelle sltuee a  une distance X •" 3690 mm de la transi- 
tion, la couche limite dynamlque est a  cette position entierement chauffee. Dans le premier cas 
la distance Xfl en aval du debut du chauffage etait habituellement de 640 mm et dans le deuxieme 
cas de 3440 ram. A la position X ■". 3690 mm, les conditions aerodynamlques sont les suivantes : 
vitesse exterieure \Je "12 m sec

-1 ; epaisseur de la couche limite ä\jAJ<, ^{g62 mm ; vltesse de 
frottement  V* = 0,46 m sec"1 ; coefficient de frottement  Cf    = 30.10"*. Les ecarts de tempe- 
rature entre la parol et l'air de la veine d'experiences sont  ®« - 9» % 22,'C. Dans le premier 
cas d'experience, le nombre de Stanton est St « 21.10" , dans le deuxieme cas St =  17.10" . 
Des mesures de contröle ont ete effectuees en dessous de la maquette a plaqus plane chauffee 
disposee dans la soufflerie S.l de l'I.M.S.T. ( 8 ). Les mesures de prof11 de Vitesse avec et 
sans chauffage sur Las deux maquettes, dans lesquelles la gravlte joue en sens oppose, montrent 
que les chauifages n'ent pratiquement pas d'effet, a la precision pres des mesures, sur les 



qraid^urs noyenr.es. 
Eii cc qui concerne i'arr^-ciü*'?« ^e »esare, .-.es ijis chauds crolts et croises en < ont 

ete utilises. Lc diamitre des flis, er. piatine rl.odi/-, ötait en qer.erül de i,5 LJ . Les ar.tao- 
m'.trei sor.t. ä intensity de courar.t -de chrtuffase constar.te { 19 ). La bände pausante dc ces 
appareils est de 1 Kz ä bOOO Hz   I i >db ). D'autres opparells ont ete utiises pour des cootrSlc-s, 
dont la bände passante est de  l.f. Hz a  b OOO  Hz (a 3 db). La gamse de fesore de 1'ar.alyseur 
spectral ' 14 > s'etend de 1 a t 000 Hz.  Les courbes de selectivite pour lea diverses frequences 
utilisees ont ete detenalnees avec precision ; la larcjeur de bar.de passante du filtr* est öca'.e 
a % % de la frequence d'accord. Toutefols, pour '.es frequences sup-rieures a environ 3 OOO Hz, la 
selectivite de ce cenre d'appereil est mal sdapt^c aux aesures des spectres de turbulence, qui 
decrcissent tr?s forte«ent lorsoue la frequence augirente. Par centre.aux frequences basses sor. 
fonctionnenent est satlsfaisant ( 14 ). 

L, constante de temps due a l'lnertie thernique des fils .-bauds est detep^inee per 1« 
iBothode des sianaux hautes frequences i 19 ). 

3— METHODE DE ME5URE DES REPARTITIONS o?ECTRiiLES EN PRESENCE DE FLUCTUATIONS PE VITESSE ET DE 
TEMPERATURE 

DCE roesures de U l , 9  ct  8 U' ont ete effectuees avec deux fils chauds paralleles, 
ou mis bout a  bout, afin de separer les variables U* et 0' . Les resultats ont ile  plus incertains 
que ceux obtenus avec un seui fil et la Methode du diagrann« de fluctuations (_!_)• 

Les repartitions spectrales de 0'*, U'*,*165 correlations Q* u»  et 0*v*  ont done ete 
inesurecs par la raethode des diagraaiires de fluctuations applique« aux signaux flltres en frequence 
( 6 ). 

Dans le cas d'un seul fil pcrpendicjlaire ä la vitessc moyenne, on a la relation ( 6 ) : 

le symbole ('A') '.ndique que le signal est obtenu a la sortie d'un filtre lineaire de largeur de 
bände A n ; ^•est le signal fluctuant aux bornes du fil chaud ; P = **/& "" •* es' ^e coeffi- 
cient de sensi^iiite a la Vitesse et /3 a la temperature. L* coefficient p est fonction du 
courant de chauffage du fil. Le diagraiwe oh^enu, qui est u.ie hyporhnl e dan» la representation 

E^SCÖ1)*  ^ ■0*6'  . solt un polr 
'uufnj, FaelrJ6*^ Feu(n)resPcctlvereent 

1  etx i)  clöises en X  (1) on a In rela 

fonction de   P     ,   donne le^ valeurs de       (uJSffi*)*       et U* Q*     .  solt un point conespondant a la 
frequence d'accord   n   pour  les  spectres pimfn). FaftOTl6*"  Fflu('^)resPcctl-ve,lsent  <c**   5'1»'- 

tion d'un  filtre lineeire  (   6  )   : „__^   

2 6'C/Vft)  -"        U1        9   U 
H'etant le coefficient de sensiblllte ä V . Le diagramme trace qui est une droite dans la 
representation 0* en fonction de r perraet done d'obtenir un point des spectresFiiw C','JetFaw (r>) 
correspondants aux correlations U'V'  et (jv*   • VJ 

La Figure G presente un exemple de mesures effectuee? a  une distance de lo paroi / = 7 an 
par la möthode precitee. Les grande-irs spectrales  F sont normees a  1'unite, et les grandeurs 
spectraies E aux valeurs des coefficients de correlation R correspondent. En abscisse sont 
portes les logarithmes des nombres d'onde k< =2Tfn/\Ji en ordonne^ les valeurs J^ F (k 1 
ou k E Ck )    > ^es conditions de normalisation sont done : 

/"V^ dtLog kj = 1       et /wk4E (kJdCLog kj =R CO 
Cette representation a i'avantage de mettre et evidence les zones spectrales qui renferment une 
energie notable, ei> considerant simpiement les alres. 

Dans le cas des spectrcsFgg  ■ ''MU  > EöU • ^ 6 V  les points correspondent aux 
mesures fältes par la methode des diagrammea. La courbe tracce pour Fuu  a ete obtenue en 
öcoulement isotherme, la concordance avec le-- resultats dedults des di.igramiTies est satisfaisante. 
Ceci confirme que le chauffage ne semble pas modifier le champ des vit>»sses fluctuantes. La 
courbe tracee pour FQQ  a ete obtenue avec unfil chaud tres peu chauffe ( I" A/0,009), apres 
correction de la contamination due surtout h    0*^  (Equa. 2); I'accord avec les points dedults 
des diagraiimes est aussi satlsfaisant, ce qui justifie 1'utilisation d'un fil peu chauffe pour la 
mesure des spectres de temperature. Notons que sur la Figure 8 les spectres FflQ etEeii  ont ^t® 
mesures dans le premier cas d'experience ( Xg * 640 mm ). Si on ne corrige pas les mesures faltes 
avec un fil peu chauffe (  P A/0,009) de Is contamination, les spectres ont la m&me forme mais 
sont decaU's vers les basser: frequtnees. A titre d'exemple dans le cas de la Fiyure 8, 1'energie 
non corriqee est en exc<s  de 16 % ä   k4 = 11 m-1 et en defaut de 19 * ä  k,, ■■ 1485 m"  , ce qui 
cqulvaut pratiquement *  un decalage d'ensemble du spectre non corrige de 20 % vers les bas nombres 
d'ondes. Toutefois pr'.s de la paroi ( /i/O, 5 mm) les spectre:- de 0' et de U* etant voisins 
(Fig. 1) les corrections sont negligeable^. 

Malgre I'utilisation de fil chaud de diametre fälble 2,5 p , dont la constante de temps 
reste inferieure is 0,40 millisec., une erreur dens la mesure de la constante de temps peut entral- 
ner une modification des spectres importante, nrircipalement pour les temperatures qui ont un 
spectre etendu aux frequences elevees. La determination des constantes de temps a done ete effec- 
tuee soiqneusement et nous estimor.s que 1'incertitude sur le valeur spectrale est a 1 000 Hz de 
l'ordre de 1 % et a 4 000 Hz de 13  %. 



i   titre  Cvxvssl* ".r.e rarti«-   i^s  (•esarei   srectrales  cftectu-es   !>  -iT.  distances  qui   s^-.t 
retr-'-ser.tatives  lies  di: f«'ren';«■:•   zores  c«-  ".»  couche   liTjite   r.or.t   - r'r^.'it-'^s  car.i   ^-s   fi^itrei   1   a  6. 
Cfi  ext-rrles  or.t  -t.-'   c.f.i: 13  tarsi   '.rz r>*£ures effectu.'-es   Ir.rsTi:-.-   1<- cöbut  du  c-.c'jf<a~e  cct 
volsir.  ce  la   t:-.-ns,t.lor-i  ".   ".a   turUilerice     ' XQ *    '   • ■^ -"   ••   u':;  roir.ls  cxpvriiwtaux  de FQQ 
r.e soi.t  ras  corri-r-'s  d'ejjets :    r.:-.ir;-i  d^ conta^ir.a* ior.   .'C:;.   iara~.   .).  L'ir.ttr?'.  C«T   lä  reprc- 
jer-.tatiori  >;til ir-'t-,   avtc  one   -c?-.ell     ;>:arith.-ique  er.  abr.ciisc,   a vtr  conaent^-?  paraorarhe   j>. 

L«i  spt-ctres   -:e   ter.r-'-ratur^   ^QQ       et   ler.   snectres   des  tro^s ccgi'o&ar.tts  dt-  vifsse 
por.dcr^es par   :eur   er.enie  relative  U'Vq11 Fuu' ^Vq**     ^VV   • W'i>/q;^  ^W W   GO: *'  doriP^s. 

Le  siectr*   Q  C^) calculi1  ^ar  la   forsule   (l)       ett   ir.diqu-»  tsT traits   tirets    courts,   le  spectre 
FuU tst;  ä,Jss5 i-untionne  e-.   tirets    :ir.s.  Pour chaque cas Je  ;icure,cn a dc-teriir.e,   en   faisar.t 

1"nypoth'se de Taylor,   les  longueurs suivantes  (ii;   : 
- 1* Icnvj-eur  ir.t.'-jrale   Lu C^TT/2    ^UU O1)    ?our  !e-  ?lxls '«tits    KA      ; 
- ler  lonqueurs t:e -Jisslpation r'-laii.es aux  trol.s conpoiantes  de  la vltesse 'par  ies 

relations: ^ ^ ^ ^ ^    ^   ^ j~ ^ F (o)   d n [6) 

On definit d'une frc-n  siallaire une lonqueur     AQ   t>our  la teai(. »rature   ;   Ag   ert   liee ä  Is 
dissipation de   5*     par la conduction coieculalre  (Cf.   Parac.    >.4.).  Nous avor.s defini auss:^^ 
ä partir de l'«quaUor.    (l)        : __   ._t       —x\-l       ~3 \-l        ^  V-1 f7l 

q'1 Aq   =0'^^,  + V'Av + ^A/,t Aw L/J 

Les valeurs Lu    ,   Ay   ,   AQ   et   A©     dor.r.ees ci-aprJ-s soot lues sur des courbes royenries 
trace'es ä  partir de 10 ä  13 positions de »esure.  Lcs valeurs de   Ao «■ or respondent  aux speccre» 
poo  non ccrriqes d'effets de coLtaBinatlon.  Le r.oebre d»  Reynolds      J^v= y U*Ai|/>Jst VOi!'in 

de 135 dans la region centrale de la couche lir.ite. 

La Figure i  presente les resultets a  la distance      Y    » 0,5 sn» de la parol,   le nonbre de 
«eynolds correspondant     y+ = V*y/^       -  15,5.  Les valeurs des autrei pars»?tres cont   Ly   =  12,6«*, 
AJ,'  2.^ B»

1
.      Ao  -  lt8 BB  ,    Ae   =  J.8 "»  .   la Vitesse  U      >   5.26 m sec"  .  Les spectres Fw 

et     Prt/yyn'öntV" 8tre raesure; a cstte position ä cause des dimensions du fil  en X:   les courbes 
tracees ont etp estinees avec une marge d'lncertitude faible,  car eile;  sont peu evoljtlves en 
nombre d'onde lor»que la distance   'f     varle.  Les valeurs de      (pt    et        v'1 ont »te deterwinees 
compte tenu des valeur-> proposees par KLEBANOFF  (   12   K  A cette position,  ou  la production de 
turbulence est proche de son naximum,   on constate que  Fug   differe assez peu ce   Fgg    .  «ais ie 
spectre    Q lk4)calcule en est encore plus voisin. . l . 

La Figure 2 pres^nte les resultats pour     y  =  2,5 mm  ,    y+ «   77  ,     I—j =  24,4 ne  ,  At» '2,1 
™»  .    XQ  »  1,5 mm  ,      Xo   -   1'■, m'',,     •     U     »   ?, JS «  sec-1.  Cette position est sit.'ee dens  la zone 
oil le profil de Vitesse est logarithmique.  Le  spectre Fyy   differe plus du  spectre de Fgig     qu ä 
la position     y     x  0,5 mm  ,  par centre le spectre Q    en reste voisin,   cecl  est  dC a ce quo  'is 
composantes v'    et   W*   ^rennent de I' importance vis a  vis de    U'  •  0« plus  il  appsralt dans le 
spectre    Fae    un palier acccntue que 1'on retrouve,   quoique moins accuse,  dans le spectre 
calcule Q 

La Figure  3 est relative a    y =  7 mm position correspondant encore ä  la zone de la  loi 
logarithmique de la Vitesse.  Les valeurr des parametres  sont    y*»  215,    Lg =   30,7 mm,    Au "  2'4 ""t 

AQ « It7 ">"  i      As =  1'4 l,,m  tvaleur corrigee 1,3 mm),     U  = 8,54 m/sec. Les m&nes rennrques 
peuvent 8tre faites que dans le cas de la figure 2. . y \ 

La Figure 4 correspond a    y =■  15 ram  ,        y"1"»  460,     l-y =  31,4 mm, Ag«  2,9 mm  ,  AQ «  2,2iBm, 
An« 1,7 ifin  (valeur corrigee 1,6 mm),   U   -  9,64 m/sec.  Cette position est  situee au debut de 

la zone dite de sillage. Le palier du spectre Fg©     a dispcru,   le spectre   Q     reste voisin de 
Föfi      •   -outefois  il  lui est  inferleur pour les newnbres d'onde eleves,   ce qui est mis en evidence 
ar les valeurs de   XQ 

et  A© • . i 
La Figure  5 presente les  resultat;; \      V =  30 mm pour      yT ^   930,      «-y •  31,4 rum, 

Ay-   3,8 mm,    AQ    •  2>7 mr,>   Ag     '   2'2 nim,    (J      '  10,94 m/sec.  Cette distance correspond a la 
zone de sillage,   I'intermittence est d'environ  98 %.  Les  spectres de    V '    et     W*   continuent de 
piendre de 1'importance relative  ;   le spectre Q    demeure voisin du spectre pga     et le spectre 
F    ,  est nettement decale vers  les grandes echelles. . » 
'-'" La Flaure 6 donne les resultets pour       y   ■=   50 mm,       y+=  1550 ,    l-g .  24,0 mm.  Ay«  4,8mm, 

AQ»  3,4 mm, Aft  =  3'0 """•   ^   =  11,90 rr  ^ec-1.  L" intermittence est  d'environ 45 %.  Les mSmes 
constatations peuvent fetre faites que pour la  figure  5. 

Etant donne que la ponderation des  spectres de vitesse est capitale dans le calcul  de Q   , 
la figure  7 presente  les ecarts  types  relatifs des  fluctuations  turbulentes de vitesse et de 
temperature dans la couche limite'.   II  semble que les rapports Vq%  (66>/Öy) Solent peu  variables, 

pour    y>0,5 mm,   restant voisin de-1,5. VS'1   tolfO>J 

5.-   DISCUSSIONS   DES   RESULTATS 

II  est necessaire pour  interpreter les resultats d'exppriences d'etablir les equations de 
bilan des repartitions spectra)es  au  sens de Taylor. 

par 

» HINZE (13) definit une longueur A'Q —\2   At 
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S.l. Cquatlor.s de bllan spectral. 

Les equations aux fluctuations, en r.otitior. tensorielle, pour les co«posantes de vitesse 
sor.fc ( 20 , H ) : 

dX, 

je, fAj 

(6) 

le sywbole [  )  Indlque une moyenne statlstlque, ^A.*      fluctuation des tensions moleculaIres. 
Pour la temperature, dans les conditions de crs experiences, 1'equation s'ecrit ! S ) 

09'   u^e' ^ v' ö0_- 
ör + 'öx7   'dx,-' 

dhV 
öXr       pCp dXy dX 

C9J 

h« represer.tant les fluctuations de la conduction molecul&lre. On pourrait obtenir les equations 
de bllan spectrol par transfomee dc Fourier des equations de bllan des correlations dans Ifc 
tesps (22). Au point de vue 
un flltre llneaire passlf 
Multiplions alors I'equation 

(   8 

e physique la  technique experiment ale estaleux  sulvle en considerant 
(21)  note'Jj    .  Appljguons cei Operateur "fj      aux equstijjrs (jgj   «t C9)    • 
on des vltes&es par ^      et cellä <»es  tewperatures par   Cr     .  On a 

Cecl cntralne que   ^5^^- *SL  ^ ^ = 0 

par 0' 

et de nfae 

Lea equations moy'wees relatives aux vitesser avec sonnatlon des indlce 
cowotc tenu de I'equation de continuity :               -TC— 

o( at  J  sont. 

00} 

(11) 

/ec «I X<   — 'i      ^ 1 "CJ*      vecteur de compos ante     VI 
Pour la  temcerature,   l'equtitlon  ü'ecrlt -ic mfee 

1 dxy        'ST;-   -ö3cr"   PCp   dXy 
Introdulsons alors les spectres et les co-spectres  (22)  supposes   contlnus 
Ideal et de largeur InflnlBent etrolte,An   ,  on a  :  

^Uq^QCrOAn    ,  ^J=^^Cn)An   ,"^^5=^^.5   (n) An , 
  —a^     äXy        öXr 
^f^v.p. TT^njAn   , ^^=^ D^MAn,  0^=9" FeeCn) An  , 

si ie flltre est 

,,Cn)An , f^.=e-^L^(nJAn.^.e^D^WAn, 
les equations s'ecrivent alors __  

(12) 

■öX7 ÖX, Cl3) 5XT"^vv"^r^p ' "TOT' IT" 
V»^^+F^e'^---^^i+^De,rCn)^ 
Si l'on Integre pour toutes les frequences de 0 ä l'lnfini, on retrouve blen les equations de 
bllan classlques; pour une frequence donnee les termes moyens habitnels sont a ponderer par les 
fonctlons spectrales, qui peuvent modifier les rapports de grandeur de ces termes. 

5.2. Valldlte de la comparaison proposee entre Q U^j et  '09 (.K|J 
II ressort des six examples presentes, alnsi que de cina autres mestires effectuees ä des 

positions intetmedialres et non donnees ici, que le spectre Q (_k,() est voisin du spectre 
FQO (jCj) • Neanmoins, aux nombres d'ondes eleves, 11 apparalt d'aprös la comparaison des valeurs 

de  X^jui sont superieures ä .\Q , et d'apres les figures 1 a 6 et 9, que Q renferme moins 
d'energie que FQQ • Cette difference se situe environ au dela des nombres d'ondel/J^«  , e'est 
ä aire lorsque la vlscoslte et la conductivlte se manifestent. Toutefois, ä la position y ■ 0,5nim, 
la concordance semblerait se verifier a tous les nombres d'ondes, mals les spectres des composantes 
Vet W' , dont 1'influence est determinante aux frequences eleveas, ayant ete estimes, rendent 

ce rssultat sujet a caution aux grands nombres d'ondes. 
Notons de plus que les points experlmentaux presentes poui: '99 ne sont pas ici corriges 

de la contamination due a la compooante U* i en fait cette correction amellorerait la comparaison 
effectuee entre Q  et pgg pour les nombres Inferieurs a  l/X 0 > et accentueralt legerement 
la difference aux nombres d'ondes plus eleves. ° 

Par ailleurs, les mesures qui ont ete effectuees dans le cas oil le chauffage est situe 
loin en aval do la transition ( Xo = 640 mm) montrent que les spectres FgQ  ne sublssart pas de 
modifications slgnlflcatives; les considerations precedentes sont done aussi valables. Cecl 
conflrme, m outre, que le champ fluctuant de temperature est blen sous la dependance du champ 
turbulent ae Vitesse. CORRSIN et UBER01 ( 9 ) dans un jet cyllndrlque chauffe etalent arrives ä la 
conclusion que les spectres a  trois dimensions de la vltesst et de la temperature, sur ?. "axe du jet, 
semblal^nt approxlmatlvement sernblables ("roughly alike"). Cette conclusion est en faveur d«; I'ln- 
troductlon de la fonction Q (k^) • En »ffet, en turbulence homogene et isotrope, on a : 

^WKP = /^[l-Mjdk  , ^FwCk,)4/
00lCk)f1+i<^dk   C14) 

JK    k W-J 1/k,    k   v    kz} 



E(kl fonction  spectrale a  trots dimensions  (   13  )   avec       T1 = 2  Z'00 EC»^. ^ ^      05) 
Fn c« i+^i concern«  la  temperature,   ondtflnit  de Kfcne   (13)   : 0   HH  _ /cop ft<)dk  (16) 

qul est e r^pprocher le cell« 
•EOOdk 

et on  a 

deduite 

.i conceme la temperature, onofefinit de mt^e 

la relation ^^e^ = /" IfiM dk 

de   LK) et (15)   pour   Q (kj      '    T*       q^ C18) 
66 et   ^-*   revlendrait,  en turbulence ^isotrope,   a supposer une slmill- 

(17) 

L'aralogie proposee entre ^Qd  et KJ   rewiendrait, en turbulence i-- 
tudi? entr«; lea foncttons spectrales a trois dimensions E (k) e* Ee(k^  • tout au nolns en ce 
qui concerne les nombres d'ondes Inferieurs h ^ /X« • Cctte hypothese avait 4te avancee en 1949 
par KOVASZNAY, UBEROI et CORRSIH ( 23 ) ; il ne semble pas qu'clle ait ete reprise pax la suite, 
car les mesures de HILLS, K1STLER, O'BRIEN et C0RR5IN ( 24 ) en aval d'une grille de turbulence chauf- 
fc-e tnoritreraient   plutftt qie les spectres Fiiii et p. 69 sont comparables. 

5.3. Repartitions spectrales des terraes de production et spectre de temperature. 
hi  figure 6 present« avec le mine systese de coordonnees que les figures 1 a 6, un exenple 

des co-spectres EAII  • EfiV  et Euv '&  *'* dlst«0^*  y • 7 BIB ( y+ » 215). Ces repartitions 
spectrales sont representatives pour la region centrale de la couche limite oü le profi). des 
vitesses est logarithmique. Les coefficients de correlation correspondants sont nettorent differ«nts 
pour la temperature et la vitesse : 

Reu^Eeu^^*0»65   > R9v^%^)dk^,60 , Ruv^uvCkJdk ^fO/O 
De plus, le» co-spectres tlgy ec Euy , qui interviei.r   dans les termes principaux de produc- 
tion (Eq'^s, 13) avec les simplifications habituelles P'    ■ couche limite.roontrent un decalage 
de Eftv  par raPPort * Euv  vers les nombres d'ondes   -es. Si I'on considere ie rapport des 
productions relatives correspondantes, a savoir : Q»t & v ö@/&y 2 2   0 7 

_ IF T?^ öivdy ^ Tv;     ' 
( rrf nonbre de Prandtl turbulent voisin de 0,8j pour y » 7 mm) on volt que globalement la 
production relative est nettement plus forte pour la temperature que pour la Vitesse, et ceci 
s'accentue tres fcrtement aux nombres d'or.de eleves. 

Dans les figures 2 et 3 on a vu que le spectre de rggpresentait un palier accentu^. 
Sur la Figure ß on constate que ce palier correspond au maximum de EflU  et ' une varl-ation 

en \fA      de FuU  ' Dans ce doi'aine de nombre d'onde le coefficient de correlation entrc Qs etu' 
est encore eleve. voisin de 0,8 dans le cas de cet exemple. D'une fa^on gfesrsle aux falbles 
nombres d'onde la temperature est en forte correlation avec la co.tiposante longltudli.^le de vitesse 
et aux nombres d'ondes plus eleves, de 1'ordre de 1/X.n • e" forte correlation avec la composante 
riorraale V' . La composante W , par suite de 1'homogeneite spatinle, n'lntervient pas dan» 1*8 
termes de production, par Cüitre eile Intervient notanment dans les termes moleculaires 
explicitement ou impllcitemer.t. 

ilque (echelles logarithmlquts),'gg , UU 
ix lols en k^-1 «t k^^   sont tracees 

La Figure 9 aonne, dans la representation class! 
et Q en fonction de k^  • Les pentes correspondant aux 
afin que I'on puisse, dans le cas de ces experiences, constater le donalne de'valldite de ces lols. 
La ioi de Tchen est mieux verlfiee pour Fitii  «»ua pour FQQ  par suite notamment du palier priclte 
(Cf. Fig. 2 et 3). 

5.4. Repartitions spectrales aux nombres d'onde eleves.     _    _      _. 
La Figure 9 notamment permet de comparer las deer«- issances der UU , IQQ et vJ aux valeurs 

elevees de k  , od I'on verifi« (Cf. Parag. 5.2.) que Q (k,) devient inferieur a FjgCkJ 
4 On admet que (16, 25), dans cette zone, 

le spectre Fgg n'est fonction que de la 
dissipation ae I'euergle clnetique 6, 
de la vlscosite cinematique •»)  , de la 
dissipation des fluctuations thermlques 
£g , et de la diffusivite o<  . 
A partlr des equations (13) , prises 
globalement pour toutes les frequences, 
on peut expliciter les termes correspon- 
dant aux effets moleculaires avec les 
hypotheses habituelles ( 13 ) : 

T'dxr EJC' 

ki R"1 

FIUURE 9 - SPECTRES DE VITESSE ET DE TEMPERATURE 
U'« 

nomog^ne isotrope ( 13 ) ä 

valeur  de 

£=15 i) 

K 
X 

J_e'^-e<ö WW\ c^lOSl    (20) 
pcb OX,- S5r,| sr,r öxrdx, 

i n 
Les termes I sont les termes de diffu- 

sion ; les termes II representent la dissi- 
pation des fluctuations de l'echellt 
turbulente a I'echelle moleculaire . On 
definit habituellement £ par le terme II 
de(l9) ce qui conduit en turbulence 

(dans notre cas Jk—sX  ) ou encore, avec la 

definie au paragraphs 4, en-'turbulence isotrope 

F,3^q*    (21) 



A partir du terme II de 1 •■•quation (20) ton ottient dt; nims pour la temperature, en turbuiance homo- 
gene et isotrope, par ur. calcul similair--- ä celui effectut- pour la vitefst ( 13 ; : 

Be = 3*ÖlL C22) 
As 

a 

 a 
En general il intervicnt un coefficient li     l   13p. 229 Equ. 3-203 ) ; mais icl 8Q    esf rft.latif 
a 9*i/2 et; non ^ S*1 et /vQ defini comma j^Q  ,  est egal äl/^J"  fois la longueur habituel- 
lement considert'e. GIBSON ( 25 ), s'appuyant sur des travaux de BATCHELCR ( 16 ), propose de 
rechercher les lois universelles en pcrtant pour un scalalre 1'expression adiraensionnel 1.e : 

gÜfJBaJsJjVPP   en fonction oe -L- J^L     (23) 

Quant aux vitesses, en considerant X» fonction  Vj/lK^Jon portt 1'expression : 

q1 Q . ><3 v en fonction de     —L (24) 
e L' 

k —  [-^.^est 1'Inverse de la longueur de K0LM0GOROV. 

Pour les spectres Q et 'QQ on est done conduit, d'apres ( 21, 22, "   <:4 ; c   , 
cctr.parer     Q ik) XQ       en fonction de k., ä  FßQ (kj ^g (p^J^«-    ..i function de -^J^ . 

Pour y+'  15,5 comme A <j#Ag ä la precision des mesures et que  »Pr « 0,855, 
les deux spectres Q et FQQ restent dans cette nouvelle representation encore tres voisine. 
A y+- 215 (   k5%< 8600 m-1) et y*  = 460 (  ks a;'400 m-1 ), ou FQQ    avaitpu *tre 
corrige de la contamination, le calcul montre un regroupement acceptable de Q et FQQ pour 
^^0,1 k« . dans la representation proposie. Toutefois, les mesures ayant ete faltes 

surtout en vue d'une etude detaillee des regions spectrales renfermant I'energie, les conclusions 
precedentes seraient ä verifier. Par ailleurs, a l'aide des expressions (2l)  et  (22), on a 
calculC- le rapport de la production de q'1  divise par la dissipation £   .i 1« production oe 
Q«1 divi;iee par la dissipation fg . soit : 

H Pr ^ >^ ev de/dy 
'      IFl^lrv? dXJ/dY 

A la precision pros des mesures pour  yv&2 le rapport  }-{reste tres voisin de 1  j plus pres 
de la paroi les resultats sont incertains. Ceci condulrait a  penser que, sauf peut 4tre au voisi- 
nage de la paroi, les temes de production et de dissipation sort d'importance relative comparable       ;; 
dans les equations de bilan de  n" et Q'1   . | 

| 

6.- CONCLUSION. 

Les mesures des spectres des trois coraposantes da la vitesse ont permis de calculer une 
fonction spectrale Q (k^) öoiit la repartition d'energie est pratiqaement la m8me que cclle du 
spectre des fluctuations de temperature Faa (k.) > lorsque les dissipations par effete moleculaires 
n'intervienner.t pas p.otablement. f 

La signification de Q (k^Ja ete precisee dans 1<introduction et dans le chapitre 5.1. qui 
donne les equations de bilan spectral de  Q (k ^ et de Faa  (k.) dans lesquelles interviennent 
comparstlveroent  0*^/2 f ^     0,t/2   • 

En faisant des hypotheses de turbulence homogene et isotropo, la comparalson n>ntre Q 
et Fgg  entratnerait une similitude des fonctions spectrales a trois dimensions, tout au moins 
pour les nc.Tibres d'onde les plus has, correspondant k  environ 80 % de l'energie dans les conditions 
de ces experiences. 

Dans la region d<? 3a couche limite ou les spectres de vitesse de la compoaante longitudi- 
nale varient selon une .'.ji en  k~  > les spectres Fgg  correspondants suivent cette loi sur 
un intervalle plus restraint ; ceci correspond a 1'influence des deux autrcs composantes dont 
I'effet devient preponderant lorsque  k^  augmente. La vÄriätion en k^"*  de FQö   correspond 
d'ailleurs ä la zone dv cc-speztve  F-,,  qui renferme le maximum d'energie. 

feu 
En ce qui concerne les ternes orincipaux de production de l'energie spectrale, le terme 

re?.etif a la temperature Ebbest nettement plus decale vers les nombres d'ondes plus eleves que 
celui relatif au cas des vlnesses Euv  * — 

II faut s'attendre done ä ce que les spectres FVJQ et Q  different tout au moins aux 
nombres d'ondes eleves. 

En effet, il apparalt qup, pour les grandes valeurs de k,,  , oour lesquelles les effets 
moleculaires sont importants, les spectres Fgo  ont une energie relative plus elevee que celle 
ccrrespondant a Q « II semble que I'on pourrait prendre en conpte les effets moleculaires par 
1'introduction de pararaetres de similitudes bases cur les  dissipations par la viscosite et la 
conductivity de (Tii/'}  et  Q'1/?  respectl vement, et 1c- norabre de Prandtl. 

Ainsi, dans le cas de ces experiences, on a etabli une .;orrespondance entre le spectre 
de temperature et celui forme a partir ues trois composantes de /itesse. 
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SUHHARY 

The intermittent structure in the outer region and the occurrence or intermittent bursts near the 
wall that have been observed by many Investigators «re Inspected in detail. The extent of these strjeture- 
is characterized by the existence of substantial strcaoifis« mnentuü defects that have beun (ierected by 
correlation techniques. These correlations suggest a connection between the now well-established burst- 
ing that occurs in thu «all region and the Intermittent bulges of turbulence that pratrtrde f "01" ':t<e outtr 
reaches of the turbulent boundary layer. A schease was found end presented which detected the :ufbuUn< 
bursts n«ar the wall. Conditional averaging showed that during the burst there wa< a substantial streiii^ 
wise acaentum defect followed by an extremely rapid acceleration. The ineasureoent.s suggest '.hat p^rho;* 
a local instability is the source of the break up of the wall flow. I 

IMTP.ODUCTION 
t 

In ecent years, the turbulent boundary layer has been the subject of several Intensive investiga- 
tions which have explored its detailed structure. These Investigations have utilized visual techniques, 
space-time cc.-re Ist ions, and more sophisticated and different types of averaging techniques. The main \ 
ertphes!» ot these studies has been to analyse the outer intermittent region and the intensive production 
region near the wall. 

in the outer region, Kapian and Laufer (Ref. !) used a digital computer to analyse hot-wire signals 
to form an intemi ttency function, l(tj, which distinguished between the turbulent and ncn-turbulent 
regions. Using conditional averaging, they were able to find the mean velocity defect in the turbulent 
bulges and ether statistics relating to  the shape of the bulges. Kovasznay. Kibens and BEackwelder (.tef. 
2) used analogojs analogue techniques and were able to conditionally average both the streanwlse and 
normal velocity components in this outer region. In addition they used space-time auto- and cross-corre- 
lations of u, v and I to ascertain the average structure of the large eddies in the outer flow field. 
The tangential Reynolds stress In the outer intermittent region was conditionally averaged In the turbu- 
I«r.t and non-turbulent regions by Blackwelder and Kovasznay (Ref. 3). All three of these studies have 
supported the hypothesis that entralnment of irroiational fluid Into the turbulent boundary layer occurs \ 
primarily :r,  :hc backsid- of the turbulent bulges. s: 

Using dve injection near the wall, Hama (see Ref. k)  observed the presence of streamwlse streaks In 
the sublayer. .."IF. et al. (Ref. 5) and Kim, Kline and Reynolds (Ref. 6) used a hydrogen bubble technique 
to explore this re,ion In more detail. They observed that the streaks break up near y* - 30 and eject 
parcels of low spetc inoo.entum away from the wall. Corino and Brodkey (Ref. 7} found this bursting pheno- 
menon in the buffer layer of a turbulent pipe flow by observing particle trajectories In another visuali- 
zation study. These Investigations found that the bursting phenomenon occurs at random and on the basis 
of some qualitative estimates suggested that It accounts foi a large percentage of the tu.bulent produc- 
tion. The recurrence of these events has commonly been called "internal intermittency" to distinguish It 
from the Intermittency of the outer turbulent-non-turbulent region. 

Another study In the sublayer was undertaken by Bakewel! and Lumley (Ref. 8) who obtained ccrrclatlcre 
in the sublayer and buffer layer of a turbulent pipe flow. By using the proper orthogonal decomposition 
theorem, their experimtnta! data revealed pairs of contrarotating eddies occurring at random. These 
eddies were alignea apprcxi-nately in the streamwlse direction suggesting that they are responsible for the 
streaks observed 'n the visualization studies. By analysing cross-correlations between the wall m-essure 
and all three velocity components, Willmarth and Tu (R»f, 9} suggested that the streamwlse vortex pair is 
produced by the stretching and distortion of a lateral vortex by the mean velocity gradient near the wall. 

torrison and Kronauer (Ref. !0^ analyzed d'^a from a turbulent pipe flow in the Tr^quency-wave number } 
space in order to obtain the spectral form of the existing structure. They obtained o simiInrity function 
which csllapsed their cross spectral data into a universal cross-spectrum at different. Reynoäds number 
from the buffer layer and logarithm region. The ability to collapse this data implies tt'i        similar type 
structure is also present In the logarithmic region but It is probably obscured by ;ha snail scale back- 
ground turbulence. 

in a study devoted to the bursting phenarjiion near thr wall, Narahari et al. (Sef.ll) have i'hown that 
the me.  frequency of the burse» scales with the outer flow variables instead of the inner variables and 
that the probability distributior of the time between the fatn'sts is log-normal. Laufer and Bad;! 
Narayanan (Ref. 12)aljo noted the scaling with the outer parameters and slv-'/od that the mean frequency of 
the Inner burst was of the same ordei- as the fnein frequency of the turbulent bulges In the outer inter- 
mittent region. 

All of these studies hava yielded quantitative data on the outer intermiitent region and havt estab- 
lished that there Is a recurring eddy struct-j-e near the wall. One mi^bi  ask if there Is an/ relationship | 
between these two structures. In particular It can be conjectured that the bursting phenomenon near tne 
wei. moves outward and Influences or ultimately forms the bulges in the outer region. Thus far, quantl- 
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t«t)ve Cala  supporting this hypothesis Is lacking, primer!ty i>ec«dsc it Is very difficult to detect the 
edly structure near the Mall and follow |r as It decays. The present study proposes a «cans of detecting 
these Inner bursts and gives quantitative dace on their structure. Also space-tiae correlations Indicate 
that the turbulent structure near the «wit car. influence the futer Intermittent region. 

OyjIPKOnr 

To obtain the space-tine correlations much of the basic electronic equipment ard the open ret-jrn 
wind tunnel described by Kovasznay, Kibens eno Blackwelder (Ref. 2) MBS used. The x eo-ordlctate was 
aligned with the free stream velocity, UQQ, y «as the coordinate perpendicular to the Mall and z Mas 
the spanwlse co-ordinate. The velocity fluctuations In the xty and z directions are u,v and H 

respectively. The boundary layer thickness,  £ , «as 10 an. and the corresponding Reynolds number based 
upon the monentura thickness was i^ 8/v " 2950. 

The conditional averages Mere taken In the wind tunnel described by Kaplan and Laufer (Ref. !) and 
the above co-ordinate system Mas used. The hot Mire data «ere recorded on a 14 channel FN Hewlett Packard 
tape recorder with a frequency response fro» D. C. to 20 fee. The data were analysed on an IBM 360/44 dig- 
ital computer. 

To obtain ell of the data, the inner probe protruded through the watt and the outer probe entered tht 
boundary layer from the free stream. For the R (0,V/,0,T') correlation map, a special x-prcbe was con- 
structed consliting of four needles projecting through the wal! onto which four jeweler's broaches were 
soldered. The jeweler's broaches extended 2.4 cm. upstreara fr;«i the needles. Tungsten wires of 3.8 mic- 
ron dlanset&r were spot welded onto the thin ends of the broaches. The final configuration was two 1.5 am. 
long wires forming the x-probe. 

SPACE-TIHE CORRELATIONS 

The studies aentioned In the Introduction have shown th«t the predominate streaowlse streaks lift 
upward from the wall and break up into parcels of turbulence orourd y* » 30. These parcels of fluid are 
swept outward from the wall along a mean trajectory. This general motion is indicated by the space-time 
correlation map of the streanulse velocity component shown 
are given bv 

Fia. I. Th«. lines of constant correlation 

Ruu(0,Y.0.T') 
"(vy©'1©«'^ "tv-V1* 

"(VWV u(,tc 
 il- 

constant (I) 

where ( ) denotes the position and time of the fixed probe location at *,/& - C.03 (y+ '  24) and ( } 
Is the position and time of the moveable probe. The nondlmensiona! co-ordinates are V ■ (yy )/ 6 and 
T1 - (i-to) Uoo/6 where U^, is the free stream velocity and 8 Is the boundary layer thickness. 

T.-3.0      -2.S      -t.0 -IS 

Figure 1. Space-time auco-c-orrelation map of u deep In the boundary layer, 
Ruu(0»Y.ü»T') at Yo/S " 0.03. Th:; 4 ished line gives the position 
of the maxiiiium correlation as a function of the time delay. 

Ideally one would v.ish to have a slreamwise separaiion between the two probes. Thtn the characteris- 
tics of the turbulence recorded at the upstream probe would be correlated with those uutained from the 
downstream probe at a fixed later time, T , corresponding to the spatial separation and the convection 
velocity. For experimental convenience, a variable time delay was used Instead of a streamwlse separation. 
if the turbulence were con/ected as a strictly ^frozen pattern" (Taylor's hypothesis) wlih a convection 
velocity, Uc , then the two methods would yield equivalent results. Since Taylor's hypothesis is only 
approximately valid in a turbulent boundary layer, the correlations obtained with a variable time delay 
are only qualitatively equivalent to those that would have been obtained with a variable streamwise spati- 
al separation. Corresponding to the variab'e time delay shown in Figs, i and 2, the free str««n velocity 
is fror, right ID left. 

The value of the correlation decreases with Increasing tempoial and spatial separation as expected. 
In Fig. 1 the ..laximum correlation at each fixed tiire delay (fixed streamwise spatial separation If Taylor's 
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hypothesis Is used) Is given tiy the dashed line. This line than defines an average trajectory of the 
turbulence *hlch |.«ssed the fixed probe at y* • 24. After allowing for the difference between the free 
stream veioc!.y usid in the normalization and the mean velocity at each y position, this trajectory 
agrees «fait« well  1th that reported by Kline et al. (Ref. 5). 

AcvJthcr significant feature of Fig. I is that there Is still I0X correlation beyond y/S * 0.5 
»hich is i'i fact a''eady In the outer Internltrent region. This suggests that the turbulence wfiich ori- 
ginates near the »«II raust ultimately effect tHe outer Intersil ttent flow field. 

The corresponding auto-correlation of tN: normal velocity cooponents Is shown In Flg. 2. Since the 
Individual wlras of the stationary probe at y* ■ 24 were located across a region of considerable ihaar, 
some error was probably Introduced Into the resulting v signal. This error was assured to be soall be- 
cause the u signal from this x-probe gave the sa--« u' Intensity and correlation patterns as a single 
wire at the saaie location aligned in the spanwise dlrect'on. Thus the v correlation data were accepted 
and presented since no acceptable means are presently available for correcting the errors caused by a 
shear on x-probes. 

'»»  v.., 

Flgjro 2 (above). Space-tire auto-correlation nap of v deep 
in the boundary layer, R  (O.Y.O.V; at y0/6 • 0.03. 

Figure 3 (to the right). Schematic of the turbulent signal, 
the V!TA averages Jnd the intern!ttency function. 

Id) 

It Is immediately evident from Fig. 2 that the extent of the correlation of the normal velocity compo- 
nent is much less than that of the streamwlse velocity component although the orientation of the patterns 
are similar, if these correlations do indeed represent the evolution of eddies ejected from near the wall 
then these eddies seem to be more easily identifiable by their characteristic ttraarawlse nomentum than by 
their outward motion. However, It must be realized that these correlations were taken continuously In 
time and no attempt was made to identify and Isolate the particular eddies; thus their structure remains 
unr^vealed. To proceed further In the study of the bursting phenonenon near the wall, some means of detec- 
ting these events had to be found. 

DETECTiON SCHEME AND DEFINITION OF THE CONDITIONAL AVERAGES 

While it Is relatively straightforward to decide on a criterion for the presence of turbulence in the 
outer portion of the turbulent boundary layer, the detection of the bursting phenomenon near the wall Is 
more difficult. Observations that were made led to the selection of a conditioned variance of the u 
velocity as a criterion for detection of the turbulent bursts. These observations were based on an inspec- 
tion of the slgnaU from a  pair of hot wires aligned In the spanwlsc direction and separated by a distance 
of y+ ■ 3.5- As these wires were traversed across the boundary layer it was observed that their differ- 
ence signal yielded almost no low frequency signals, which Is to be expected. However, when there was an 
exceptionally high fluctuation levet on a single u recording, the low frequency velocity fluctuation was 
always negative. 

Hence It was decided to usu a technique almost identical to that used by Kaplan ami Läufer (Ref. I). 
To explain and to briefly review this technicjue which has been called Variable Interval vime A/eroglng 
(VITA) In the past, the following definition Is Introduced 

"(y.t) - j 
t-T/2 

I.; u(y,s)ds (2) 

t-T/2 

where T Is the length of the averaging window, i.(y,t)  Is the unaveraged signal and 
VITA average as shown in Fig. 3* Obviously, for a stationary flow 

Lim u(y,t) " ü(y)  (Independent of t). 
7—oo 

where ü(y)  Is the conventiona'. mean velocity. 

u(y,t) is the 

(3) 

In this framework, the variance Is generalised to 

A ^    > 
varjj(y,t)j u'(y) u(y) CO 
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and  Is a positive definite quantity, thich  is tine dependent.    As    T    beciWies  large, 

^    f 1      ""2 ••      2 Lira var  lu(y,t)l   « u («)  - u(y) ,^ 
T —► 00 ' 

Ki-.::h eouals the near, square of the velocity fluctuation». 
A 

The var signal is interpreted as a measure of the fluctuations in a localized region and it scales 
with the conventsal variance. This variance Is heavily biased on fluctuations which are oonpleted In 
time T, so in a sense it is a measure only of the high frequency fluctuations, with 1/T representing 
a cut-off frequency. Hence the VITA process may be regarded as a process for selecting out a portion of 
the low frequency part of the spectrum, while var selects a positive definite measure of the high frequ- 
ency part of the spectrum. 

The internal InCermittency function l(y,t)  is defined by 

l(y,t) « H-fvar fu^.t)! - k  [u(y) - S(y| j (6) 

where H is the Heaviside function which is zero for negative argument and +1 for positive values, 
(u-u)2 's t'le mean s1uare of  the velocity fluctuations and k is a constant corresponding to a ist dis- 
criminator level. The intern:!ttency Function Is dependent on two parameters, T (the decision tine) and 
k (the decision level). 

The conditional average of a quantity Q.    is defined as 

<(l(y^ -  IKyV) Q(y,t) Ht (7) 

where the independent variable y denotes the position at which the sampling occurred and the subscript 
y* denotes the ?osition of the detector probe giving the l(y+,t) signal. In effect, the average is 
over an ensesnble of events determined by l{y+,t). 

The delayed conditional average was generated differently. The detector probe was used to generate 
a random sequence of delta functions located at t, where t. are the points In time at which *I > Q_ 
The signal probe was located at aiother position and its signal was avereged according to      •* 

<Q(x.r)) + -i^a(x, t.+r) (8) 

«here N is the number of samples and T is the time delay applied to the signal Q.(x,t). 

CONDITIONAL AVERAGES 

Initially the hot-wire was traversed across the boundary Nyer and the detection and sampling both 
occurred simultaneously at the same location, which Is Indicated by the notation {u(y)) . An example of 
tl<-  results of this type of averaging are shown In Flg. 4. The points ^uiiriar'ze two Reynolds numbers 
(2500 and 5500, based on momentum thickness), 3 sets of decision times vai°-/lng by a factor of two, and a 
set CM thresholds varying by a factor of two. It Is readily observed that there Is ^ substantial non- 
trivia! ev^rage when coiiditiunai sampling Is used. Furthermore, the conditional eversges were found to 
scale with the inner flow variables, u^ and y , and not with the outer variables. Kg, and S. 

The results and the peak magnitude of approximately Z7% of the local meai* velocity is not 
very surprising, considering that the result agrees with the observation that when the turbulent activity 
was high, the velocities were low. There seems to be quite a distinct and easily dettctsd relationship 
bejwrtn a measure of the local intensity, var, ana the local '-unsteao/11 mean velocity. Tl ese departures 
are a'I rv the order of the conventlal root mean square of the velocity and have to  be regarded as an 
intensely strong effect. 

There was a  trend that was evident as the decision time, T, and discriminator level, k, were 
changed.  Shorter times and higher discriminator levels generated stronger effects. The fact that the 
predominant defect strengthened with inspection of high frequencies and thresholds was consistent with 
the observations that changing these variables enabled us to "center" on the bursts. 

Each data point is based on a .set of approximately 100 samples detected during a 20 second run. The 
small number of samples required to yield such consistent rusulcs also gave an Indication that such a 
phenomencn is of basic irvportance to the dynamics of the buffer la^er and sublayer. While not shown In 
the figure, these defects wer? still detectable out to y+ of 500. 

For y+ less than 100 and k = 1.2, typical values of the internal intermittenc/ were 1% and the non- 
uimensional frequency i^- was approximately 0.10 . In the outer Intermittent region the frequency 
tj^- was approximately 0.6 at the half intermittencv level. These two different vaU-es are stll! not in- 
consistent with the Idea Mat the parcels of turbulence ejected from the buffer layer ,iiay ultimately form 
the bulges in the outer region. The Interface measurements Include many crossings encountered on the 
edges of the large bulges. The turbulent bursts near the wall have a smaller size than the interfaclal 
bulges and the present measuiements were able to center more directly on a burst by varying the threshold 
level, k. Thus one expects a higher frequency in the outer region than near the wäll. 

SM-ce the largest iffect in (u(y))   is observed at y+ » 15. another hot-wire was used as a 
staticrMry detector prcbt Jt y+ = 15, while the sampling probe was traversed above and below the fixed 
probe.  Vhe results are shown in Fig. 5 which is the ve'ocity profile when tfv burst occurred «t y* • 15. 
The conditional profil  shows that the defect region is confined near the wall and that there Is a local 
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Figure 4. Conditional average of the 
streamwlse velocity with 
triggering and averaging 
occurring at the s.-vne location. 

Figure 5- Conditions! average of the 
streamwlse velocity with the 
triggering at /•" - 15. 

excess of velocity for y+>30. When combined with the steady mean veloulty profile, the resultant velo" 
city distribution may have an Inflection point close to the wall which Is of Interest If some type o^ 
hydrodynaraic Instability Is Important in the generation of the bursts. 

OELAVED CONDITIONAL AVERAGES 

Since the above conditional velocity defect is so strong, then It should be possible to detect the 
bursts for a considerable time aft^r they are formed. Thus the sampling probe was placed one boundary 
layer thickness downstream of the detector probe woich was still located at y* » 15. The data were 
ensemble averaged according no £q. 6 and the results are shown on Fig. 6 AS a function of the time delay, 
T " Ur/S , and the location in the boundary layei , y. The ordinate is given by the spacing between 
the horlz'-intal lines which Is 2/3 "nns- ^he resu't* show that there is a detectable correlation of 
approximately 60% of the rws fluctuation. Several features were quite surprising however; first there 
was no descernlble relationship between the conditioned averages at various locations, I.e., the profiles 
at a fixed time delay had considerable scatter. This is not completely unexpected since there were few 
bursts detected and the signal probe was »far from the controlling event. What was disturbing is that 
these profiles Indicated a positive velocity perturbation, while all of the other measurements showed a 
negative perturbation. Since these positive values at lir/6   " I were not consistent with the momentum 
defects shown In the previous figures. It was decided to use a smaller spacing between the sampling and 
detector probes in order to understand how this momentum defect evolved Into a momentum excess. 

The results are shown in Fig. 7.for zero streamwlse separation between the two probes, TKt abscissa 
is the non-dinensional time delay, U T/ £ , and the ordinate Is given by the spacing between the hori- 
zontal lines which is now 4/3 U,. .. The results are quite dramatic.  Immediately prior to the occur- 
rence of a burst (negativ« 0x7 8 ) and during the detection there Is a defect of momentum at the lower 
values of y/S  as also seen In Fig. 5. However Immediately after the occurrence of the burst, there Is 
an extremely rar'd acceleration of the fluid at the sampling probe's location which persists for a sub- 
stantial period hereafter. Evidently this excess of momentum predominates downstream and was found in 
Fig. 6 near DT/5 * I. If these parcels of fluid maintain approximately the same momenturii as they 
move toward the outer intermittent region, they will be characterized by a momentum defect again because 
of the higher mean velocity in the outer regions. 

CONCLUSION 

Space-timo correlation of the streamwlse and normal velocity components taken «cross the boundary 
layer indicate that there is a definite outward motion of flulcJ from the buffer layer toward the inter- 



.22S 
AX'S 

-f- s 2500 

^00 
<u(y,T^-ü 

u"       .175 

.150 

.125 

100 ■furm.! 

' i"  ttr ■■ mmoKSm '* 

TW^»wm^OM^y- ■■t)MP^rf*r» ! 

'^^.M.■•^""■•■-.• 

..'^>-i> - 

.llll       « 

.075 _.,...•■•■■ 
i1"^""!—"-..j  ^..--f—.^■'i 1 f r~ 

-L5   -t.0    -0.5   0.0    0.5    LO     LS    2.0 
Ur 
8 

Figure 6. Cciditionä! ave-age of the streamwUe velocity. Detector 
probe is located at y* • 15 and sampling probe is AX'S 
downstream. 

/8      AX»0 
.279 

^(T.y^-u-20^ 

,140 

*ai- 
.105 

070 

.03E 

.02S 

my*  ^«.»airfaHi... 

I ■ in ■■ II       I *—r 

. ji Kim    i mm ^y 

••«.».«•..  .--. >y** 

u^e 
2500 

^lOlMI.H^wi.11 

..II'.K.. juAdtM^ 

r --x'^h-... ^.i..   i—n r—i n 

•L5   -LG   -0.s"o..p    0.5    L0    LS    2.0 
ur 
'8 

Figure 7. Conditional average of the streflmwls« velocity. Detector 
probe Is located at y+ » 15 and both the detec:or and 
sampling probes are at the same ^x position. 



w 
facial  region.    Th« 10% correljtlon beyond    y/g    - C.5    suggest» that the events occurring  tr  the buffer 
layer do influence the structure of tht outer lnt<-nlttent region. 

In order to examine the bursting pheromenon neai' the «.all,   I« «as obvious that data was needed of a 
more quantitative nature than that nhlch had been obtained previously.    Thus a scheme was developed and 
presented for detecting these turbu'ent bursts Ir. the buffer layer.    The instantaneous velocity profile at 
the time of bursting scaled with the inner flow variables and agreed with the qualitative dota of Kline et 
al.    (Sef. 5) and Corino and brodk^y    (Kef.  7).    The data showed that there is a strong monwntuia defect 
greater than    0.20 U    at    y* * IS during the bursting event.    However this velocity profile exists only 
monentarlty because innedlately after the bursting,  there Is a ätrony acceleration of the fluid in the 
region    y* > 15 to 100.    This accelerated fluid is still detectable at least on* boundary Uyer thickness 
downs treaoi. 
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SYMBOLS 
c* total skin friction coefficient. 

cifxl   correction function Eq (15) 

h; T; p entnalpy, temperatur-», prtssire 

H12; H32 for'n  Par8meter a]/*?' ^2^3 
I   I'    parameter Eq (30) 

6 

Pr 

external Mach number 

Mach parameter (< - l)/2 

Prandtl number 

V2 

Re    ;Re    Reynolds ni'mber --- 
".< ",*?     c"S 

U, V 

x, y 

radius of body jf revolution 
Eq (1) 

recovery factor 

velo.itief; respectively along 
and normal to body 

space coordinates respectively 
along and norma1 to body 

SUBSCRIPTS 

t       turbuie-it flow 

w      wall cendition 
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e     flow ^ndex Eq (1) 

error [%j 

v molecular viscosity 

i,C»n COLES scaling functions Eq (3) 

o'.s1, mudified scaling functions Eq (19) 
n 

n, ,x.C.boundary layer para ;ter Eq (26) 

,5     density 

T     shear stress 
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( )   transformed value (CP plane) 
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< > time mean value 
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!HTR0DOCTIOK 

The idea of relatin g A   variable property (VP) bounda ry layer to a constant property 
(CP) counterpart is not new. Or- firm physical grounds it h as first been developed for 
laminar boundary layers. The extension to turbulent flows. however, contains a certain 
elersent of arbitrariness, because of our incomplete knowledge of ttie turbulence mechanism 
in shear flows. Neverth«! eis all known prediction methods for compressible turbulent 
boundary layers are babod on such a transformation concept in the sencc that they need a 
functional correspondence oatween some characteristic ooun dary layer parameters for high 
and low zoecd  flow. This is mainly due to the existence of a substantical body of low 
speed experimental datd wh ich allows the formulation of qui te accurate semi-empirical 
theories for the CP case. (This aspect will be discussed ' ;! some detai 1 below.) 

The reader is referred to COLES [ l] for an excellent review of the early approaches to 
a compressibility transformation (CT) and to EC0N0M0S [2 for a comparison oiT the main 
hypotheses and the basic literature about CTs which has been published after the work of 
COLES. From these referen ces it is evident that at present the COLES-CROCCO [3] corn- 
pressibllity transformation is one of the most succesfull approaches to compressible 
turbulent boundary liyers fnd it is still 1r, a developing stage. 

This investigation shows that boundary layers with streamw ise pressure gradients can be 
calculated without applying the coir.monly used sublayerand substructure hypotheses which 
postulate the invariance cf a characteristic sublayer Reynolds number aqainst the trais- 
formation. 

DEVELOPMENT OF ANALYSIS + 

Prandtl's boundary layer equations describing the mean properties of steady two- 
dimensional and axisymmetric compressible turbulent flows can be expressed in coordinates 
normal and parallel to the body contour by: 
Conservation of mass 

4- (rS 
3X 

U) + c v) = 0 with E 
0 plane case 

1 axisymmetric case 
;i) 

Conservation of momentum 

3U ••u 3U 17 f<cV>iy ox       5y 

ano a suitable formulation for the energy equation. 

Supuosed a compressibility transformation of the COLES type [l]  exists then three inv 
tially unspecified scaling functions may be defined by: 

(x) (f)E •iM ■(x) 
dx —1 11 

[x) • D sy 

(2) 

(3) 

If this transformation represents the true mapping of one high speed flow field into its 
low speed equivalent and not only a mathematical manipulation then the corresponding con- 
stant property flow may be described by 

^ (r' 0u-> + fy (r^ö v) 3X 0 (1) 

- - 3U P  U "Ji + v 3X 
3U ■■i 3T 

37 
(5) 

with the immediate implications for the velocity urof ies and the pressure gradients of the 
two flows 

(6) 

o2 P« rdP . u?-   d  nn n>l 
r^i -A m + p6 ^ 37 (ln ö'J 

0 

According to CROCCO [i]     it is somewhat doubtful 
unique point to point capping of the two flows. No doubts, however, exist «bout the validity 
of the transformation if the integral equations for the whole bound?ry layer are transformed. 

whether CD! ES' rransformation can give a 

Only a brief outlinr of the transformation concept is presented ^ere. For more detailed 
derivations see Re^s  [l]  ,  [3!  ;  [4] 

With the bjundary layer thickness considered to be much smaller than the body radius i.e. 
both the lateral and longitudi al radii of curvature. 



The integral relations for momentum arid mechanical energy are; 
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tdu 

(8) 

(9) 
V"'« 

Applying the transformation (3) to  Eq (8) gives the following corresoondence betweei the 
skin friction in the physical and the transformed plane: 

0 
d Ino 

IT" I ^ -rirWr*^^ * 
i 

0«u< 
ff Ml P   0 

-)dyl (10) 

Furthermore from the definition of the suin friction coefficien*- follows, since Newtonian 
shear is assumed to apply at the vail: 

11« !* !i 
is  W  4 

(H) 

The relstions (7) (10) (11) *,jrn  the system of three equations which is required to deter- 
mine the scaling funct^ory ,? ,f- ,n . However, additional information is needed because 

1. Eq (7) l.ivclves both dp/oT, and dp/dx one of which ii unkown a pr.ori 

2. The evaluation of the integrals over the density profiles in Eq (10) requires s 
specification of ihe temperature field and 

3. Eq (11) serves as a determining equation for a only if the relative skin friction law 
tf/ff  is known. 

lEW'S [5]  investigated the behaviour of the velocity profile in the vicinity of the wall 
and found that the pressure gradients are linked by the following relationship 

!i _! d£ 
p.. T,. dx 

0i  {2 df T^S (12) 

which serves here to relate the pressure gradients of both flows and hence the velocitits 
at the edge of the boundary layer. 

Since the integral approach is used for the flow *ield it seemed somewhat contradictory to 
describe the thermodynamic behaviour by means rf a finite-difference solution of the energy 
equation. Therefore the following approximatio ! has been applied. 

THE 'nERMODYNAMIC BEHAVIOUR 

There are two well known exact solutions cf the energy equation which are, however, 
restricted both to rather specialised cases. The CROCCO-relationship between total enthal- 
py (h0) and velocity (u) which is valid fcr unit Prandtl number,zero pressure gradient, 
and isothermal wall 

h0   hw   .. 

^   7°    ( 
h. 

(13) 

and the particular integral of the energy ec.uat^on which is restricted to Prandtl number 
unity and zero heat transfer buch which is valid for arbitrary pressure gradients 

;i4) 

The lack o'' a closed-form solution of the energy equation for arbitrary external and wall 
conditions on be overcome by using an approximate procedure suggested by COHEN [6]  and 
WALZ [7]  . The idea consists of introducing a relationship for ho/h^ which contains 
equations (!3) and (14) and takes account of the effects of Prandtl number, pressjre gra- 
dient and variable wall temperature by extending the linear relationship in u to a polyno- 
mial o*' higher order in u  L8l  ; 

^+ (1 
n 
z 

j = l 
'J(X) 

(^)J (u 
u, -1)1 - 

:i 
(IB) 
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where c,, > are coefficients vanishing for Pr » 1, constant pressure and constant wall- 

temoerature. The addii.ional tsrni represents th? VAN DRIEST [9]  correctior where the 
recovery factor r accounts for snal! deviations froffl Pr = 1 . The unknown functions 
Cj. » reüuire further equations. 
The following possibilities have been suggested: 

1. The integral form of the total energy equation, WALZ [7] 

2. A modified Reynolds analogy containing rnonsentum and energy equation, COHEN [6j 

3. Ony O"- more compatibility conditions of the energy equatian, OIENEMANN [10]  , WALZ 
[7]  , CROCCO [3] . 

For a first approximation two compatibility conditions have been used to determine 
cl(x) and c2(x). 

Together w'th the perfect gas assumption this equation is necessary to relate the tempe- 
rature T and the density p to the velocity distribution as well as to the external and 
wall conditions. 

THE SKIN FRICTION LAW 

SPALDING and CHI [llj compared 491 zero pressure gradient experiaental ponts for 
supersonic friction and heat transfer measurt-raents with nineteen different theories. They 
found that the best results ere given by theories of SPALDING & CHI, VAN DRIEST, WILSON 
and KUTATELADSE * LEONTEV . The later derived from the Prandtl nixing length theory for 
the limiting case Re^ ■* - what they called the limiting relative law of friction [12] 

2 
1 ? 

lu r    (^4t/!JL)/2
d£-i (16) 

Supposed the shear stress distribution is independent of compressibility effects then the 
integral can be evaluated if the relation between density and velocity is known. Hence this 
formula can easily 'je expended to flows with streamwise pressure gradients. The great »d- 
vantage or this IKiting law is that it does not contain any empirical constants depen- 
ding on the mechanism of the turbulence. 

For zero transverse pressure gradient one finds 

h"^ {]7' 
hence Eq (15) may be used, together with the perfect gss assumption, to compute the re- 
lative skin friction from Eq (16). 

For the special case of zero streamwise pressure gradient follows 

cf     1  r    •  2(Te - V  + ^w * fy Tw ' Te i2 

=- = —  arc sin — rrrr^ - arc sin T r-r\-nr\ Cf       ^-1L [ml -   DT; +   (T*   -   O2]171 [4(T^  -   1)T*  +  {T;-^}2^ 

with    T+ = f-  .  Te
+  s  Ta

+
diabn.c (18) 

0 
■ ^r nonzero pressure and wall temperature gradient no closed solution car) be oötainsa. 
if.erefore the evaluation has been carried out numerically on the basis of Eqs (15) and {IS). 

THE TRANSFORMATION EQUATIONS 

The transfoxfiation equations still depend on tha density p and the viscosity 17 of 
the transformsd flow. Both quantities are unknown a priori. Therefore they are eliminated 
by rsdefining the scaling functions   

J   W /v Re- TT u 
0   =   ™-  0 5   » —1——   E,   =     irr-- r\     =—-■=-   i\ (19! 

U pu/yRe Up ' 
o. ^ eo       oe'     » X 0001 

Hence one finds after some conversions [4]  it CP flow is assumed in the transformed plane 
and if noimalized quantities with respect to free-stream condition at the starting point 
are introduced, i. e.   #   u      # ^ 

u6  = r      u '-  ß6/p"      "w =  V"-    ••• 
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!. The coupling reUtlo-iship fo" the tiqe  conditions of both CF «nd VP flow fro* Eq (12) 

4bt "i   1     1   dü4 

dRe3 

**   *      *      w  / in \ 

2. Three eqjit.ons for ihe redefined sc«l'.ig function 0'. C, r": I 
2.1 frna Eqs (17) end (12) I 

_     • I 
7 zfr-  * f t„i   ♦ sr =  1 " TV c^ ww —n— (21)        i 
" dRj  5 n dRex  H12 Rer  

l   »T " " 4  -' j 
2  [for definition of Tj, c see Eg (26)j 

2.2 fron Eq (10) _ | 

,   d Re,  r   H.» ♦ I  , r              H.,*l   h°   
Re4:  ,,,,,, ^ 

d Re;        H12 Hi2      K X 

2.3 fro« Eq (11) ^    . 
g-, —^.iyJ. With cf/cf fron  Eqs (15) snd (16).      (?«)       j 

•V'w c* : 
• i 

1 

Hence the probles has been shifted fro» tie coaputatior; of the coapressible turbulent high 
speed flow to the computation of the low v.eed CP case. Or in other words, given a low speed    I 
flow which is coapletely specified these r«VitlOnships car- be used to construct an equi- 
valent supersonic flew for a given Mach niü'. ;r and given external and wall conditions. 

THE CP CALCULATION METHOD 

The success of this calculation method based on a transfornation technique depends 
to a high degree upon a suita'^e constant property formulation. Since only the integral 
properties of the low speed fi^w are required for the present, an -ntegral calculation 
method is sufficient. In recent years the available procedures have been roviewd several 
tines, see e- g. ROTTA [13] and THOMPSON [14]  . For« the met extensive conpariso» 
at AFOSR-IFP Conference at Stanford [15] it is evident that t'ere are many procedures 
which lead to quite accurate predictions of the inconpressible two-dimensional turbulent 
boundary layer. One of these is the "integral dissipation" method of FELSCH, 6ER0PP and 
WALZ [16]  , which is used ii. a slightly modified version here I*] 
Eos (8) and (9) are written in the .-iinensionless variables Re-r , (T,, and Re-: 

Oo   Jc        X 

4*. «fl +?-"=-   * x] (24) 
!=       l      '     H,,       ' d Uij n12 

52 = J_    dir32    -r, v -  YiLll   + ^1 
dRe5      Re^    din ^     l l      *12 

J 
(25) 

where the following parameters were introduced: 

- ""iZ  Rer2  d ^ 
ffl ' IT" Wf~ dTTe 

5. Hi (26) 
rrE dfe 

-       - rf 
5    s  u« 2- 

cf 

The pressure gradient parameter u, is based on 7, instead of «2. For empirical information 
have bisn  used: 
1. The skin friction law of LUDWIEG £ TILLMANN in a modified version of FERNHOLZ [17] 

lf-    = 0.029 [o,07775 (4 - H^)2,2"1] 1 705 R'e/'268 (27) 

2. The form parameter coupling law of FERNHOLZ [17] 

Hl2    = 1 + 1,48 (2 •■ H^) + 104 (2 ""i^g)6,7 (28) 
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3. The la» for the diss'patior par»i»eter of TELSCH (18) 

d H32   . ,T.- f. ,^ "^ r51_0.134 _L ,7 Dl_-n.134ll -1 

d 

32-   = {T--0.134 r)rrer
0-134   -^ (T STe--0'134)] 

In »e- •-  '2      *•»,,     *2      J 
(29] 

_     H,, - i rf -1/2 
with    l,r   = _L1 (jl) 

(l3r   H,2  ^ 

T+ 1.36827796 - 6.05172363 (T ♦ 1,7)1/2 0,OST,., 5/3 
 ___^_^_______ i «.     * I    '" :«    .[ ! _ c   ij  {30) 

(I•T1,   -0,1215« 796(5-j*l.7 )I/2-0.0522220 5(^ + 1.7)--',20067 Ij^fTj+l,?)2 

which has been approximated by PETERS (private cccnunlcation). 

THE FIHAS. SYSTEM OF EQUATIONS AND THt STARTING CONDITIONS 

The above discussed set of equaticf- is conposed of five ordinary differential equa- 
tions (20) (21) (22) (24) (25) with the dependent variables Re^ , H32. u*. Re<. n' and 

««ith Re- as the independent variable. In addition four algebraic equations (23) (27) (?8) 
(30) r*ir e',  c , H,-. I'which represent the enpirical infor«ation have been used. The 

•olecular viscosity of air u h.,s befn computed by the KEYES (19]  fornuJa 

1.515 T1/2    j0-7 | k 

i *  1.221 

^ 

This set of equations is well defined provided the external, wall and initial conditions 
arc specified. 

EXTERNAL CONDITIONS. In connection with the perfect gas assunption and neql iqiblelateral 
pressure gradients, specification of total pressure p0. total temperature TO, and the 
external velocity distribution u,(Re ) suffice for the determinatioh of all external flow 
properties provided the external flow field 1s isentropic. 

WALL CONDITIONS. If the wall Umperdture distribution T (Re ) is given, the wait condi- 
tions are completely specified. Although the CRCCCO relation is valid for constant wall 
temperature only it has been shown that variable wall temperatures can be accounted for 
via a set of correction functions. 

INITIAL CONDITIONS. An investigation of the transformation relationships shows that they 
are neither explicitly dependent on Re nor on R.i— Accordingly the Initial value for Re 

Is arbitrary and rnay be assumed to be c' - Rij/Re = 1 From Eqs (IS) and (6) one finds 
aQ'   =n ' with cd known from Eq (23). The initial value of U" Is unity by definition. 

Finally Rij- and !?,- are related to Re, and H,- by the transformation [4]  , Hence the 

computation has been started with th? initial values for Re. and H.- of the particular 
high speed experiment of interest. 2 

COMPARISON OF THEORY WITH EXPERIMENT 

There are very few entirely reliable experiments for compressible turbulent boundary 
layers. In particular, there are no reliable experiments in prolonged adverse pressure 
gradient. A further complication is that in several sets cf data in strong favourable 
pressure gradient reverse transition occured presumably. And last not least there is a 
number of measurements with initially small Re, numbers, which seem to be still laminar 
or transitional  [20]  . z 

Hence a comparison between theory and experiment is rather difficult at present. 

Preliminary results rtave been obtained for the following experiments: 
HASTINGS & SAWYER [21] published local skin friction coefficients and boundary layer pro- 
files measured in ad-^batic flow on a flat plate at Mach numbers of about 5.0. A comoarison 
between theory and experiment is shown in Fig. I for momentum thickness Reynolds numbs«-, 
form parameter and skin friction coefficient^ The agreement is good and it can be expected 
that it becomes even better if the experiments had been performed at higher Reynolds numbers. 
FERNHOLZ [20] could show thjt the boundary layer at Ion values of x is still transitional, 
a fact which explains the hijii skin friction values given by the theory. 

LEE, YANTA & LEONAS [22] measured zero pressure gradient velocity and temperature profiler 
as well as skin friction coefficients on a flat cooled nozzle wall at M^ = 4. In Fig. 2 
momentum thickness Reynolds number, skin friction and form paraMieter are compared with 
theory. The theory predicts Re^, and cf  fairly well. Discrepancies at low values of x 

can again be explained by the transitional state of the boundary layer. [20] 
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Fig. 1 - Comparison between theory srKl raeas^rements of Ref. 21 
For momentum thickness Raynoldr number, form parameter 

and skin friction . (-j-| =  0, adiabatic wall) 

  o- p0 = 6.9063 k /cm2 

  a  p0 = 3.4531 kp/cm2  T0 = 313 0K 

  D  p0 = 1.7265 kp/cm2 



iS-8 

H*»3 

10 

6 

2 

0 

32-^-4 

U 

16   — 

Fig. 2 - Comparison between theory and measurements of Ref. 22 
Fcr momentum thickness K'ynolds number, skin friction 

and form parameter (-r|~ = 0, cooled wall) 

p0 kp/cm2 To oK 

0 1.032 429.5 

□ 5.278 433.9 

A 10.546 413.3 
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Nc expicnatfor. can be given for the discrepancy between aeacured 5».<l coaputed for» ^ar«- 
■eters. 
PASIUK, HASTINCi ft CHATHAH [23] have aeasured the developnen» of the 
rature prcfil«s on a fl*t plate in an expanding supersonic nozzle with 
of 2.0. rig. 3 shows the comparison with experiaentul values of «. and 
■easired}- The agreement between theory and experiuent is satisfactory. 
JOHES ft FELLER [24] presentsd tot««-temperature and total-pressure di 
red in the boundary layer on tnc wall of a straight cooled pipe with sr 
graJietit at fuur different locations. The free-streaa Nach nuii&er was s 
LlS. 4 show^ the theoretical prediction of displacenent thickness 6, cc- 
exf'erTiients for four different runs. Agreeaiert 1$ good. The variatlan o 
Is shown In Fig. 5. Five different computations have been performed, en 
/our different runs and one for the total range of Re where the first 
was used to conpute the initial value for K.. and Reä (dotted line). 
The overall agr-.>nent between theory and measurements is good but It co 
Hence from these relinlnary tests of the theory the concluiion can be 
and experiment bot« have to be improvad. 

veloci 
an cxi 

f «2 ^ 

ty and ttmpe- 
t Mach number 
has not been 

str-outions measu- 
Ä.} adverse pressure 
rproxi*6tely 5.0. 
»pared with tne 
f Re. with Re, 
e for e.iftt  of the 
scasyed profile 

uid still t>e better, 
drawn that theory 

^[mm] 

0.3   CU   0.5   as   0.7   0.8   09 

(^Inrtml 

0.3   0.4   0.5   0.6   07   0ß        0.9 

Fig. 3 - Comparison between theory and measurements 
of kef.   23. 
For displaceme.it thickness and raamantum 
thickness (favourable pressure gradient). 

o zero heat transfer 
a high heat transfer 
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fig.  4 - Comparison between theory and neasureaent; 
of Ref.  24. 
For displacement thickness 

p0 [kp/ci/] 

O       4.590       

O       8.058     -~ 
a      22.134       

a      40.316       

T0   [0K] 
— 457.1 

■-    462.8 

— 491.3 
— 50Ü.4 

16CXIQ6 

Fig. 5 - Comparison between theory and 
measurements of Ref. 24. 
For momentum thickness Reynolds 
number (small adverse pressure 
gradient, cooled wal1). 
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Equation (I9i which is the basic -elation derived in this paper, h valid only for negligibly small wall 
'.emperatire variations.  More specifical!y, it docs not account for variations with  x of the ratios 
(Tw/Te). (jiw/jie), and (Tiw/Te).  W.ien this is done, three extra terns are added to the basic relation. 
Equation (19). and the function G from Equation (17) breaks down into four separate pieces: 

1 
Go = f - rf3 <.y ; 

dy* . where (pw/p) =   I + |Ju* - yu*2 

G   = f5*-£- f*— _ _L ^!l 1* 1 d ♦  • 
2      'o  p» ["  dß     ppw dy* Zß j   y    ' 

f pf.du*        1    du* d*] 

Note that .he original function  G  -   (G, + /JG, + lyCj). The revised version of Equation (19) 
which accounts lor wall temperature variations is as follows: 

G-aaH-^B   /S)^^X(X^-^-^H^ =  RLV(I+B) + Te / dx*     V 

w;£«'-'u<*+ii? (£)[«=. ,rwn +T 
2R|.T,-/TC ^T->c'l   + 

r.T.'^'-Äfefe^^- 

Terms which are new or different ^om the printed paper are underlined.  By assuming a specific 
viscosity/temperature law, one could combine the two terms involving the derivatives of wall temperature 
and viscosity ratio. 

Having just discovered this omission of :ea>p2f3ture varia'dons, we have not yet e u'aated how 
significant the efect will be on our basic theory.  We are hopeful that the simplificahui,.; of our 
graphical theory (Eq. 24 and Fig. 2) will still be valid unless temperature gradients are very 'arge. 

In the meantime, one should be alert to the possibility thai our original method may be 
inaccurate for strongly varying wall or recovery temperature, 



20-1 
* 

1 

"A SIMPJLE ANALYSIS OF TWO-DIIäENSIONAL TURBULENT SKIN 
FRICTION WITH ARBITRARY WALL AND  FREESTREAM CONDITIONS" 

by 

Fraolt M.   White" 
and 

George H.   Chrittoph" 

Univeraity of Rhode Island,   Kingston,   Rhodi: Island,   USA 

SUMMARY 

A new approach is proposed for an appvoxi.rate analysis of the two-dimentional turbolen. 
iTundary U/er under a wid<; variety of arbitrary conditions-     The initial step is to discard entirely 
t) s celebrated Karman momenturn integral  relation and to ig.iore completely any consideration of 
ntegral thicknesses,   shape factors,   or moment relations.     The second step is to develop an effec- 

tive formula for the law-ol-the-wall which accounts for all of the different parameters considered. 
The final step is  to combine the wall law with the differential momentum equation into a  single 
first-order ordinary differential equation for the skin friction coefficient,   suitable for  computer o- 
graphical solution and,   in special cases,   closed form solutions. 

Examples are given covering combinations of eight different effects: pressure gradient,   heat 
transfer,   compressibility,   roughness,   wall transpiration,   transverse curvature,   longitvtdinul curva- 
ture,   and &queous polymer solutions.     The  results indicate that the new theory is not only the  sim- 
plest existing analysis of the turbulent boundary layer but also is apparently one of the most 
accurate. 

NOTATION 

English Symbols: 
a    =    speed of sound 
A     =    compressibility factor,   Eq.(2E; 
B    = transpiration factor,   = 2p   v   /(p U  CJ 

w w   Te   e   f 
C, = friction coefficient,   = 2T   /(p U  ) 

f w     e   e 
Cf    =    value of    C, for an impermeable wall 

c     =    specific heat at constant pressure 
P 

f*.   g*  = graphical functions,   Eq.(24),   Fig.2 
F,G,H  = functions defined by Eq.(17) 
F  ,   FD     = flat plate factors,   Eq.(29) 

h = •ranspiration parameter,   Eq.(32) 
k = thermal conductivity 
L = reference length 
M =     Mach number 
p s static pressure 
q = heat flux 
r = wall recovery factor   (»0.89) 
r     - transverse  radius  of curvature 
o 

r +  =     r  v*/ v o o        w 
R   =   longitudinal  radius  of curvature 
R    =    U i.;/v 

x e       e 
R     =    parameter defined by Eq.(19) 

R*    =    R   /(l/V)',  Eq.(23) 

static  absolute  temperature 
streamwise and normal velocities 

u/v* 
reestr 

reference velocity 

U      -   Ireestream velocity 
e 

V    =   u /u 
e   0 i v*    =    frict;on velocity,   = (T  /p   ) 

w    w 

v     = vail normal velocity (positive for blowing) 

v+    =      v   /v* 
w w 
v       =    polymer solution onset velocity 

v+0   = 
o 

x. y 
X*       = 

+ 

v /v* o 
streamwise and normal coordinate 
x/L 

=    yv*/ v 
w 

Greek Symbols: 

a s   pressure gradient parameter,   Eq.(3) 
P    =    heat transfer parameter,   Eq.(3) 
y   =    compressibility parameter,   Eq.(3) 
6 a  boundary layer thickness 

6+ =   6v*/' 
w 

e    a    wall roughneas height 
K   =   Karman's constant,   «0.4 i 
X  =   basic dependent variable, Eq.(19),  - (2/C.) 

p = density 
p. = viscosity 
v = kinematic viscosity 
9 = momentum thickness 
T = shear stress 
is = stream functio-,   Eq.(l3) 

Subscripts and Superscripts: 

( )       =    freestream 
e 

( )       =    wall 
w 

( ) =    ?.diabatic wall 
aw 

( ).        =   computed by an incompressible formula 

( )       =    derivative with  respect to    x* 

Professor  of  Mechanical and Ocean  Engineering. 

'Graduate  Research Assistant,   Department of xvlechanical Engineering and Applied Mechanics. 
3 
This work was supported by the U.S.  Air Force Flight Dynamics Laboratory (FDME)    Ohio. 
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I.    INTRODUCTION 

The fact tlt&t seven or more methods at the 1968 Stanford Conference {U wer«, judged »o be 
satisfactory in accuracy ha« caused a well deserved decline in publication of incompressible turbu- 
lent boundary layer analyses.     Interest has now  centered on the n*x' two most viable flow   cü.idiUons: 
a) the compressible turbulent boundary layer,   as  reviewer by Beckwith (2)- and b) turbulent flow 
with wall transpiration,   as  reviewed by Jeromin (3). 

For analysis  of compressible turbulent flow with,   say,   pressure gradient or wall blowing, 
there »re at least four different types of computational  schemec now in use: a) correlation tech- 
niques  based on limiting case theories  (4-8); b) methodr using the  Karman momentum integral  re- 
lation (9-12);  c) compressibility transformations  (3,13-15); end d) finite difference  ccmpMtations  (16- 
21).     The present falls  into an intriguing new category: an integral  relation ba^ed upon inner or 
"wall"  variables. 

The correla^on techniques are usually flat plate formulas,   mostly using reference temperature 
concepts,   which are extended,   hopefully,   to modest   irarlations in pressure  gradient or wall trans- 
piration.     But in fact "modest" means  very small indeed,   and these formula« are not usually relia- 
ble except for rough estimates.     Often they predict the wrong trend (26). 

The Karman integral methods are extensions  of the  low-speed methods  of  reference  1.     The 
high speed Karman  relation contains at  least three unknowns   - momentum thickness,   shape factor, 
and skin friction coefficient  - and two important parameters: the wall transpiration  rate and the 
longitudinal curvature.     Considerable empiricism is needed to obtain extra  relations foi   closure of 
Karman methods.     The  recent method of Alber and  Coats  (11) contains seven different auxiliary re- 
lations,   yet is  valid enly for adiabatic nontranspired flew.     The method of Thc-.ipaon (12;  requires 
an extensive set of wall blowing charts,   yet is  valid only for "moderate" pressure gradients.     The 
Karman method of Sasn-.an and Cresci (10) is  so complex that a  recent FORTRAN program for this 
me hod  (23) contains nearly one thousand instructions.-   yet wall transpiration is  not allowed.     Also, 
longitudinal curvature has  such a striking effect that most Karman methods are essentially invalid 
for  supersonic flow along curved walls(22,26). 

The  compressibility transformations are ol particular interest because of their analogy vith the 
well established  laminar flow transformations  (24).     The turbulent transformations are definitely 
valid for flat plate flow but become progressively inaccurate with increases in Ma.h number,   heal 
transfer,   or pressure gradient.     No current transformation is accurate in hypersonic flow under 
any conditions  (25)    but the inner law ured here  seems  valid at Mach numbers approaching fifty. 
Beckwith (2) criticizes turbulent transformations for several -easons, and the transformation theo- 
rists themselves (13) admit to discrepancies in their equations, which, incidentally, are quite com- 
plex,   even for integral methods. 

Finally,   finite difference  computations on a digital computer are now well established for com- 
pressible turbulent flows,   often including wall transpiration,   and a  few program listing: are availa- 
ble (16. 21).    A large  computer is a necessity,   with run times  of the  order of five ^.inutes for a given 
boundary layer.     The individual must of course be prepared to accept and use the  existing programs, 
which probably took years to construct.     The finite difference methods have the potential of handling 
arbitrarily difficult boundary conditions,   but their performance to date has  been  spotty,   as  seen for 
example in  Figure  5  of this paper.     Also,   longitudinal curvature has a profound effect on turbulu.nce 
structure,  so that, for example,  Bradshaw and  Ferriss  (21) frankly decline to compare their much 
admired   computations  with  flow  over  curved  surfaces. 

Since the  correlation   techniques are so limited,   there is presently no  compressible turbulent 
method which a person could sit down and use effectively with a piece of paper or a  small computer 
program.     It is  the purpose of this paper to present just such a  simple method, useful for a wide 
variety of parametric conditions.     There  seems  to be  some  serendipity involved,   for the new method, 
although  based  on a   single   simple  approximation,   appears  to  be  surprisingly accurate,   even  exceeding 
the authors'   own expectations. 

The  new  method has  also  spawned  certain  psychological problems.     It  is   so  simple  that  it  is 
difficult to  take  seriously.     It invites  instinctive  distaste by pointedly ignoring fifty years  of conven- 
tional approaches to turbulent boundary layer analysis.     Further,  if the approach _i£ taken seriously, 
it more  or  less  threatens  the  very existence of all other methods  in the literature.     In  short,   the 
proposed method is   controversial   -   revolutionary,   even   -  and  the  authors   sense  that its  acceptance, 
if any,  will probably  grow  from the user  end,    rather  than from  the   research end,   of the  turbulent 
boundary  layer analysis   spectrum. 

2.   THE  LAW-OF-THE-WALL WITH  EIGHT PARAMETERS 

Basic to the development of any approximate analysis of the boundarv layer is a detailed know- 
ledge of the velocity profile and its dependence upon flow parameters. We will consider eight differ- 
ent  parameters  in  this  paper,   all assumed to  be  known functions   of  streamwise  ciirection    x: 

1. Pressure  gradient:       dpe/dx 5.     Wall roughness height:       e 

2. Heat  transfer:       q,^     or     Tw 6.       Transverse  radius  of curvature:       r0 

3. CompresEibility:       Ae 7.     Longitudinal  radius  of curvature:    R 
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4.   Wall t    napirstion:       p   v 8.   Polymer solution onset velocity;       v 

Traditionally,   one plans tu use these parameter*,  in the Karman momentum integral  relation,   now 
celebrating  its  fiftieth anniversary.    For a  perfect gas.   we have: 

8 

dx       r„dx LLdx e P.IJI  ox    *     e f ■o"~ "e" ~ re"e   "~    0 
;1) 

2 3 
where  9 is the compressible momentum tiucknets. H = 6*/6   is the shape factor, and   C, = 2T   /^ U r f w    e   e ^ 
is the local skin friction coefficient.     The quantity   B  =   2p   v   /(p U  C.)   is the wall transpiration 

w w      e   «   f 
parameter and is  positive tor blowing.     Notice the seldom se^n lateral  pressure gradient term, 
which is usually a  correction for  longitudinal curvature.     This  effect,       ough usually neglected,   can 
be painfully large.     In the supersonic curved  ramp experiment of Sturek and Oanberg (26),   this 
term,   measured experimentally,   is even lavgtr than    (dO/dx) itself. | 

If we nondimensionaUze  our stream wise velocity profile with an ey« toward the Karman rela- | 
tion,   our eight parameters above would typically arrange themselves as follows: s 

Ü     -     £cn f   * i   d£e Iw He ÜLe .lo V» « ^fo    1 ;,, 
U    ~    fCn l   6   •    T    dx   '      Te   '     a.   "        v      '     I      •       P U     '      5   '     Ue   J    ' '   " I 

I 
irorr. which we could compute   9    and    H.     This provides one  of the two equations needed to close 

:he Karman  relation,   Eq.(l).     We are  left to search for a third relaiionfs),   hopefully an-i whic-- em- i 
ploys  good physics and accounts for a  goodly number of our eight parameters. I 

Now in fact analytic relations such ap  Eq.(2) t'o not abound in the literature-     Th.s lack of a | 
suitable profile expression led the writers to selec: an inner or ''wall'' law as an alternative approx- | 
i natiois.     The inner law is  scaled by the friction velocity   v*  = '•(Tw'Pw)   an^ studiously avoids any I 
one of outer parameters  such as    Ue,  9 ,  % ,  or   Te .    Thus the nondimensional inner law selected is | 
of the fallowing form: I 

H, t      ! yvt ^w     dpe ^wvw rv* vw € •. * v*rn 
vo   ■. 

v     = l    V '    'wv*   t*     '     Tw
kw7*   '     2c

D
Tw '      v*   *        V   '        "w   '   "" '      v« i  ' 

+ + + + + + 
OR:       u     -   frn (   y    , a , ß ,       y      ,      v     ,      e      ,      r      ,  — ,     v     ) ,    (3) 

where   r   is the recovery /actor,   assumed known («O.S?).     We have indicated three dashes ( ) in 
the place wherx a longitudinal  curvature parameter should appear.     This was an unexpected bonus: 
to the authort '  knou;,edge,   there is  no significant effect of longitudinal curvature  on the law-of-the- 
wall,   as  evider    from,   e.g   .   reference  26.      Thus  longitudinal  curvature is  a  non-issue  from the 
present point of view.     W« can and will compute skin friction  in supersonic turbulent flow over 
curved walls   (see  Figures  4 ;.nd  5-a). 

Most of the parameters  in Eq.(3) are obvious and well kr.own,   with the possible exception of 
ß   and   V ,   which were  sugyjsced oy writing thp  Crocco approximation in terms  of inuer variables: 

2 
Thus; T      «      Tw     '       Cj u      + C2 u 

becomes. T/Tw    *      ?    ''      *      '     +       Pu       "      ^ u+ '4' 

for a perfect gas with constant specific heats.     Wr,en -written in terms of stagnation temperature, 
the  Crocco law can be a  very poor approximation to air flow measurements,   as pointed ct by many 
investigators  (see  ref.   27).     However,   Eq.(4) is an excellent approximation to the  static  tempera- 
ture  distribution,   being matched directly to the actual wall heat flux and  recovery  factor.    We will 
use the  Crocco law in what follows,   but it is  not essential to the basic development. 

The effect of each of the seven parameters in Eq.(3) on the law-of-the-wall is sketched in 
Figure I, where each curve represents the specific effect and no other. We see that cold walls, 
adverpe gradients, blowing, and polymer solutions all tend to raise the inner law above tbe usual 
logarithmic profile, whereaT hot walls, favorable gradients, suction, compressibility, and convex 
transverse curvature all push the profile downward. As mentioned, longitudinal curvature has no 
significant effect, nor does concave transverse curvature (pipe flow, for example). The effect of 
favorable pressure  gradient,   as   sketched,   is  small but not always negligible. 

To derive a  simple  but adequate analytic  formula  for  Eq.(3),   we make  the usual  Couett»-flow 
approxiiT ation at the wall,   plus a  mixing length expression for turbulent shear.     The boundary layer 
momenuim eouatiot;   reduces to: 
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Figure  1.     PARAMETRIC EFFECTS ON THE INCOMPRESSIBLE LAW-OF-THE-WALL, 

du 
P    v     IT rw   w   dy 

d£e 
dx dy      H       y    ' dy '   dy J (5) 

We have neglected viscous  shear and will match our integrated  result to a point in the sublayer. 
It turns   out that an accurate formula for the  sublayer is not needed for any of ou' eight parameters 
except strong transverse curvature (ref. 28).    We may integrate  Eq.(5) once and aubstitute for    p 
from  Eq.(4).   rewriting the velocity gradient in terms  of inner variables: 

du1 

3? ^ (1 + Pu+ - V uM      (1 +   ay    +   v.    u  ) + constant (6) 

Although the  variables «-.re not separable unless  either pressure  gradient (a) or transpiration (v   ) 
vanishes,   Eq.(6) may readily be integrated numerically.     The initial value (u + ,y+) should be 
close to the  wall and consistent in the  limit with the  ordinary  low  speed  logarithmic  law: 

+     + i + 
u(y ,0,0,0.0,0,0,0)»      r^y     *■    b (K« 0.4, b» V5)      (7) 

The simplest possible initial value  is  the  point of apparent  no-slip: 

+ + 
u     =     0 at      y o 'o 

e"Kb      (   «0.1108 ) (8) 

We shall    adopt  Eq. (8) in all our   calculations,   although  Simpson  et al  (29)  suggest  that a  better 
match-point  for  wall blowing problems  is  obtained at  the  "two-layer"  intersection point  (uoiyo)   = 
(11.0,11.0).    Closed form  integrals  of Eq.(6) are possible  for two important  caecs,   the  first of 
which  is  when transpiration is   zero: 

u^y+.a,ß,v,0,0,0,0)   -  ^-L p +  Q sinlcp + ^[2(S-So) +&.(— I2-—)] } J , (9) 

where    cp = 8in'l[(2yu+ - ß)/Q]   .     Q   =  '</(ß2+4y)   ,        S   -V(i+ay+). 

This   is  a   cumbersome  formula  but  can  be  adapted  to  simple  expressions  in  the  new  theory.     The 
second  special  case  of Eq.(6)  is   for wall transpiration  only,   wifh no  other  effects  present: 

\ [ (1  + v+ u+)* -   1 ] 
V w 

w 

1 ,   + (10) 

This   is  Stevenson's   law-oi-the-wall  (30)  for  transpired incompressible  boundary  layers. 

Thi:   remaining  three  effects  in  Eq.(3)  may be  easily accounted  for  as   follows: 
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a) Wall roughnos isand  grains):       take       b    *    5,5   -     7>.(1 ^0.3 Ctf'/v   ) 

bt Polymer solutions ircf.   31):        ta»e   h   =   5.5    r   W *•;(v«.'v«) .  where   W    =   W(p    y       r     .      , 
o concentration 

c) Transverse curvature (ref.   32):    repla.e     y     by        Y =     r   t-,(l -   y*/r   ) . 
(11) 

All  three  of these  effects are  apparently valid  even  in  the  presence  of other  multiple  effects,   such 
as  heat  transfer and pressure  gradient.     Thus  it is  not out of the question to  consiocr  six or  seven 
effects  together  analytically,   although    data  is   lacking  for  comparison.     The  polyrier  solutions,  are 
liquids,   where   compressibility would  not be a  factor.     Alfio,   the  constant    0.3     in   E.^.'ll-a)  would 
need to he modified for  roughness  elements  other than  said grains 

3.   DERIVATION OF THE BASIC DIFFERENTIAL EQUATION 

The analysis which follows is a  generalization of the  incompressible flow method preserted in 
reference  33.     It is  desired to solve,   approximately,   the  boundary layer continuity and ipciventum 
equations  for  two-dimensional  compressible  'nrbulent  flow: 

a) r-(pu)     +       rHpv) 
flx dy 

3 
Ipv) = U 

(12) 
3u . cu dpe dT 

b) pu— +pv~ =-  -xe + — 
ox 5y dx cy 

The  energy equation is  not neeaed  because  of the use  of the  Crocco approximation,   Eq,(4).     The 
following three  steps  comp.'ett the analysis: 

l) We assume that our law-of-the-wall,   Eq.(3) or (6),   is  valid across the entire boundary layer 
at any local streamwise position.     The  chief source of error lies with'-retaxing" flowt, where a 
real boundary lnyer may "lag'' somewhat behind this Iccal-wall-law assumption. 

2) We resist the temptation to use the Karman relation,  Eq.(l).    This step requires soms co-urage. 
3) We substitute the wall-law directly into Eq.(i2-b) and xtegrate    with   respect  to    y+  acrots  the 

entire boundary layer.    This  gives the  desired tir'it-order differential equation,  Eq.(!.9). 

The vertical velocity may be elimicited by  the  stream function $ and the  law-of-the-wall: 

p v     =     -  r:    =      P...v. 
M ^ u+   dy+ 

OX W   w w    n       I   + P U+  - y 7+2 1 (ii) 

Now  combine  Eq8,(3),   (12-D) and (13),   ucing the  Bernoulii  relation tc rewrite the pressure gradi* ;£. 
The   result is: 

p   V*  U*  —»V'-U   )--«■-    —+(v*U   \     = p    TT     —e + _      __ (;4) 
ox ox   v    dyT e    e dx v      avT 

w w      ' 

Leaving y-derivetives untouched,   we  ca-ry out x-derivatives with the  chain  rule.     For brevity,   we 
account here  only i'or pressure  gradient,   heat transfer,   compressibility,   and transpiration effects: 

1.   -    äL*        +   *!*_   +   ML.   +    *L L.   +    Liw L.+ ,,5, 
ax   '    ax Sy+ ax aa       ax aa        ax ay        ax   av l   ' r w 

Combine  EqB.(14) and (15) and integrate the  entire  result with   respect to    y    (not   y)    from the wall 
( T = TW) to the freestream (y+  =  '.t,   T = 0).    The  result is: 

, dv* .2    da    „        L   _,   , dvw dv*     ,   vwUpV* U_  dUe        v* T 
:■*■ —  C       +       v*      -— H       +   F (v* -r-w- v     -  )    + —J*—s—   =   p    —e   —-e   .     W 

dx dx dx        ■      : i/w e   pw dx vw 

where the functions     F,   G,   and    H     result from the integration: 

F -   J5&-(u+|< - i|i+|i+
+)dy

+     ;      H =  J6 £(u+su+- A Min;   / 
n   P..,        avw      Mwäv+ ay+ i     pju   >&       ,., aaay+'   y 

(16) 

■w    tv^w ör o   Pw     *0     i-.v3aSy 

r   e-(u+2 UU+—++2vu>^-++ fiii.^+ - IM.Hü
T
)  dv+ 

i    PW
(U      pU   aß        y      3v   +  ^36  3yT      ^ay Äy+'   dy 

(17) 

Since evsry quantity in Eq. (16)  can be expressed in terms  of    v*    and known flow conditions   -  Ue, 
T   ,   vw , etc - it follows  that  Eq. (16)  is the desired result:    a  single differential equation for 
compu:ing    v*(x).     It is  convenient to non-dimensionalize everything with respect to reference 
values    U      and     L .      Define: 
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X   =    U/cy   ; x*   -    x/L        ; V   =    U.(x)/U      =     V{x*) (18) f c o 

In term»  of these variable«.   Eq.(16) become«: 

where    R,      =    (U  L/w_>(^ /fi   HT /T    *     and B    =    2p   v   /{p U CJ     =      X2vw/U  - L. o        e   ^e     w      e     w w  w    re   2   f w     e 

Equation (19) is in f'--*! form and similar to ttie incompressible relation of ref.   33,   except that 
now heat transfer,   ccmpressibility and transpiration are included with pressure gradient.     Each 
of the four functions  (F.G.H.*) varies with the five quantities  (X.a, ß,yp vw/Ue),   with    6    being 
cor. puted from the wall law,   Eq.'6),   and (F, G,H) frotn Eqs.(l7).     We have not yet correlated 
our computatic:is for all four parameters  «irrmltareoujly,   but we offer the following curve-fit 
expressions for no transpiration,  where    F    and    vw    vanish and: 

G   •»    8.0 (r^/.llOS)1'2 +   l.ZaH     ; H«    0. S 6+2[MTe/Tw)  - 0.4 a6 + ] (20) 

These are not particularly accurate  curve-fit«,   and the  graphical method of Section 4 i« more 
highly  recommended for general usage in impermeable wall cases.     The three parameters 
(a.ß.y) are computed as functions of    X   and   x*  by rewriting their definitions: 

a    =    >.3(1/V)'./RL    I       P   =    1TTr)^72 : y    =    «^/Te  ' ^   " W 

Separation occurs when the  coefficient of (dX/dx*) in Eq. (19) vanishes, which causes   Cf = 2/X    to 
approach zero.   Thus separation is explicit and does not  require any artificial correlation. 

4.    GRAPHICAL METHOD FOR IMPERMEABLE WALLS 

For impermeable walls  (vw  = F  = 0),   it turnia  out that the graphical scheme of ref.   33 ie 
still  valid,   if the  coefficients are scaled by the var» Driest (6) parameter    A  ,   defined as: 

» (^aw/Te -1) . Tav/ + Tw Taw . Tw r Taw+Tw     .^w, 
A   = .ia TTBT"  • where    a =   T 2 ;   b   =   ;    c   =[(-= >-4—]. 

sin '(-) + sin S-) Te Te Te Te c c 
(22) 

Numerical values  of    A    are  shown in Figure 2-a for  various  Mach numbers and wall temperatures. 
For any given local conditions,   the  "separation" frictiou coefficient,   X        ,   is approximated by: 

\na>;    " 3'7 A  ^Sin'11*'       ' where K*    = RL/(i/V)'. (23) 

On^  coinputes  the  value of (X/X_ax) and enters  Figure 2-b  (taken from  ref. 33) to obtain the two 
functions    f*    and    g*    for use in the following generalized approximation of   Eq.(19): 

dx* n  ,/  ,4 A
3 

With Figure 2 and Eq. (24),   an entire compressible boundary la/er can be hand computed in about 
twenty minutes,   or the procedure can be computerized by stuffing Figure 2 into the computer 
memory,   as was  recently done by two of our colleagues.   If (X/XJ^J^) is less than 0.4 or if R* is 
negative (favorable gradient),   Eq.(24) is unnecessary and one proceeds with the following "small 
pressure gradient" approximation: 

|L.       «       ~   RT   V exp( -0.48 X/A)   -    5.5V'/V (25) 
dx* ö       -^ 

All of the  computationf for impermeable walls  in the next section were performed using this hand 
computation rrtdhod.     Tabulated values  of   f*  and   g*  are given in reference 33.   One interesting 
note:  for supersonic  ''Ov,    *   is  typically greater than  one  (Fig.2-a),   which tends to reduce both 
the "pressure  gradient" ard the  "relaxation" terms  in the numerator of   Eq.(24).     Thus a  supersoic 
boundary layer is  resistan1   to   strong adverse pressure gradients.     In other words,   it will proba- 
bly not be necessary to hold a  "compr  ssible"  version of the r'568 Stanford Conference  (1). 

5.    COMPARISON OF THEORY AND EXPERIMENT 

There are several experiments  which consider two or more  of the  eight parameters  listed at 
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Figure 2.     FUNCTIONS NEEDED FOR THE GRAPHICAL ANALYSIS,   EQ.(24). 

the beginning of Section 2.     Let us  consider  some  of these in a brief resume  . 

5.       Compressible  Flow past an Impermeable  Flat Plate 

For this,   the most heavily analyzed problem   n the literature,   a - 0 and. if the wall is isother- 
mal, p and  y depend only upon  A. which is constant.   Equation (19) reduces to: 

dx* 
Uex/ve W^     J    G d\ 

where, in the limit asa=0, G=    8.0 exp( 0. 48 X / A ) . 

Combining Eqs. (26) and (27) and integrating,   we  obtain: 

C (flat plate)        «   0.455 / [A2toZ[ 0.06 R (u /n   )(T /T   )7A ] ) 
f 

(26) 

(27) 

(28) 

which ie an accurate formula over the entire  range of flat plate Mach numbers,   wall temperatures, 
and turbulent Reynolds numbers.     It also demonstrates  (once again) the existence of a flat plate 
compressibility transformation.     As  expressed in the generic notation of Spatding and Chi(5), we have: 

comp 
■i-c,, incomp ( R   Fp.) where we propose:   Fc = A aad   F«x = I ^ 'W*    (29) 

The    pai-ticular    Fc and     Fo    in Eq. (2V) differ significantly from ether theories in the literature. 
Table 1 compares Eq.(29) with live other theories,  selected because they are either very popular or 
very accurate or both.    The 427 adiabatic and 230 heat transfer points  constitute the most extensive 

Table 1.    COMPRESSIBLE FLAT PLATE SKIN FRICTION BY SIX THEORIES 

ADIABATIC:    427 Points i.EATFLUX:    230 Points 
METHOD: RMS Error 

Eckert (7)  12. 44 % 

Moore (36)  8. 87 

Sommer & Short (4)  9. 40 

Spalding and Chi (5)  7. 59 

Van Drieot II (6)  7. 55 

Equation (29)  7. 80 

ABS. Error 

9.06% ... 

6.54 

7. 77 

5.46 

5.46 

5.26      ... 

RMS Error ABS.  Error 

25.56 % 

13.08 

20.14 

16.94 

13.31 

11.28 

list  of flat plate data  ever  compiled,  most of which is tabulated in ref.  34, but some of which is new 
since that date,  e.g.  refs. £5 and 35.    We have computed both the RMS and mean absolute error: 

1     N   2     i 
RMS   Error   =     [ -     f   e     F 

NIi Mean Absolute Error 
N    ! 

(30) 

We prefer the latter criterion, for reasons which may be evident from Table 1. We feel that the 
RMS error has a tendency to accentuate bad data points. It would appear that the present theory 
is  the  most accurate  of all.  fiat plate analyses  in  existence.     It  is  also the  only one  of   the  six 
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theories in Table 1 v.-hich is readily apphcable to presfure gradient  effects. 

5.2   I-tcompressible Nontianspired   Flow with   Pressure  Gradient 

F. r  this   case.   Eq.(19i   reducea to  the  rre thod  of ref.   i3.      This   single parameter,   pressure 
grat'.!  nt.   w/,.,-5 the  subject of the   1968 Stanford  Conference   (I),   in which   wt- did  not  compete.     It  seenm 
that   '-ur  method  has   since  been  applied  to  the  Stanford dtta.     According  to a   letter   received from a 
proK'ssor at another university,   the  sixteen  students   in his   class,   as  a  homework problem,   each 
a^-'.ied  Fq. (24)  to  one  of the  sixteen  "mandatory" Stanford flows.     The   reader  may join us  in 
speculating as  to whether  Eo.(24)  fell  into  the upper,   middle:   or lower third.    It  is also interesting 
to speculate as to what alternate method  could have been assigned as a homework problem. 

5. 3   Compressible  Nontranspircd   Flow with   Favorable  Uradient 
Equation (25)  is   "ulid  for this  case and was  applied to two  relatively  strong favorable  gradient 

experiments  by  Brott  et al  (37), for  Mach 3. 7 to  Mach  5, and by  Pasiuk  et al  (38h  for Mach 1. 7 to 
Mach 3 acceleration.    The results are  shown in  Figure  3.     The  Brott flow was for a co!d wall, 
T   =0.82   T_ #,  wh:Te  the  Pasiuk  flow was  approximately adiabatic  walls.    Pasiuk did  not  measure 
tkin friction,   whi.:h ha» been estimated by overlap (21) and by momentum (39) considerations.     The 
theory is  in  good agreement,   as  are  the  finite  difference  computations   of  refs.   (21) and  (39)  for 
Pasiak'8  flow.      Favcvabie  gradients  are   really  not a   very  stern  test  for  a  computation method. 
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b) The  Experiment of Pasiuk et al (38). 

Figure 3.    COMPARISON OF THEORY AND EXPERIMENT FOR SUPERSONIC 
NONTRANSPIRED FLOW WITH FAVORABLE PRESSURE GRADIENT. 

5.4   Supersonic Advarge  Gradient  with  Longitudinal  Curvature 
The   experiment  of Sturek and  Danberg  (26)  generated an adverse  pressure  gradient by  com- 

pression along a  curved  r-Mip.     The average  ratio (fi/6) was about forty, wh-ch means, according to 
ref.  21,  rhat curvature  shoo'.a have  a  strong  effsct  on  turbulence  structure.    But,   as   seen  in  Fig.  4, 
the wall  law appears  insensitive  to  curvature,   and  Eq. (24)  is  in  good agreement with  the  measured 
skin friction,  especially  sir.ee  it  was  necessary  to  estimate  (1/V)  and (1/V)     from sketchy velocity 
data.    To our knowledge,  no other theory has yet been applied to this experiment. 
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Figure  4.    THE ADVERSE   PRESS!; HE  GRADIENT   EXPERIMENT  OF  STUREK  AND  DANBERG(26). 

5. 5   Supersotiic ' Relaxing"  Flows with Impenrieable Walls 
The  discrepancy  in  the  tlieoi '  for  "relaxing"  flows,   where  the  pressure  gradient  is   suddenly  re- 

moved,   was   noted  in   ref.   33  and  tends   to  vanish  at  supersonic   speeds.      Figure  5   compares   the 
theory  with  the  flow     of  Winter  et  il  (40).   which  deceler'tes from Mach 3.3 to 2.5,  and for the flow 
of Zwarts (unpublished,   reported in ref. Eli, which decelerates from Mach 4 to Mach 3.   Equation (24) is 
in good agreement with both experiments,  perhaps too good to be realistic.    The Winter experiment (40) 
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Figure 5.    THEORY AND EXPERIMENT FOR RELAXING SUPERSONIC BOUNDARY LAYERS. 

io rather controversial,  being complicated by both transverse nnd longitudinal curvature and possioly by 
relaminarization also.    Transverse cvrvature only »lightly influences Cf for Winter's flow but has. a 
strong effect on momentum thickness and shape factor - but this is of no concern to our methoc:.  The 
finite difference theory of Bradshaw and Ferriss (21), for which we have a very high regard,  shows an 
unexplained discrepancy for the flow of Zwarts (Figure 5-b). 

5.6   Flat Plate  Flow with Uniform Wall Transpiration 

For a flat plate with constant    vw , Ue, and   Tw, 0. = 0 and Eq.(l9) reduces to a quadrature: 

?X.G   -   FX (vv.-/Ue)(Tw/Te)* 
j   I 
0 1   +   ^  (Vw/Ue) 

) dX (31) 

By curve-fitting   G   and   F, we were able to obtain a closed form expression for the skin friction, which 
is usually expressed as a ratio of transpired to nontranspired flow: 

C,    =      (h/A)Z   C| CV      ^ (Te/TW)*R    ]   ,   where   h   =    |[(l + B)* - 1 ]. 1 lo   A        M^v 3C B 
(32) 

This is an extension oi Eq.(29) for nont/anspired flov and is  valid for either blowing  (h< 1,   B > 0) 
or suction (h>l,  -I < B < 0).    For incompressible flow, if we asrume   smooth   wall     flow and a one- 
seventh power law for the  skin friction,   we obtain the following simple approximations; 

INCOMPRESSIBLE 
PL\TE FLOW: 

Cf 
Cf   const 

«     h 
1.74 Cf 

Cf      const 
0      Rfl 

1.33 
(33) 

Equations (33) ar° in nearly perfect agreement with the recent data of Simpson et al (41) for both suction 
and blowing and also agree wirh the interesting  recent theory of Weber (15).    Equation (32) predicts 
only a slight compressibiiity effect, with (Cf/Cf  ) increasingly slowly with Mach number; this is   in 
rough agreement with experiment and with ref.  15 but quite contrary :o the conclusion of Jcromin (3). 
5.7   Flat Plate  Flow with  Var-iing and Discontinuous Wall  Blowing 

For incompressible  flat plati  flow wiih  variable  vw(x),   Eq.(19)   reduces  to: 

^-FXvJV^ '        RT(
1+

   ^V^e)   +    FX2^(vw/Ue) (34) 
V w     e' dx*1 

which  may  easily be   solved  by hand  or  otherwise  for  variable  cr  even discontinuous   changes  in vw. 
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a)   For  Continuously  Variable   Blowing  (41). b)   For  Discontin-.-.us   Blowing  (42). 

Figure   6.   COMPARISON  OF  EQ!34)  FOR  VARIABLE AND  DISCONTINUOUS  WALL   BLOWING. 
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Figure  6  shows  the  comparison Ci Eq. (34) with  experimenfal  'iata  for  both  variable  blowing  (41) and 
discortinuou» blowing '42).    The agreement is  good in all  esses.     Note that the theory predicts a 
discontinuous   change  in   Cf (or  k) in Fig.   6-b,  which is  approximatsd  by the  sharp drop in the data. 

5.8   Other  Cases:  Transverse  Curvature,   Polymer Additives,   and  Roughness 
Space dees  not permit an extensive discussion of other parametric  cases.     The  solution of Eq(19) 

for the  transverse  curvature effect on a  long  cylinder (using  Eq.ll-c) is  given in ref.   28,   and the 
analysis  for flat p'ate flow of ?. polymer  solution (using Eq.U-b) is  given in  ref.   43.     Finally,   we 
givo here,   without proof,   the  solution of Eqs. (19) and (U-a) for incompressible flat plate flow with 
uniform sa-*-.-grain roughness: 

R (rough plate)   =    1.75125 (1 +0.3e+) e"  [K X - 4KÄ. -6 - J^fp-C^-^^ vAare   E   =  Y 7" '    (35) 

This  formula,   which is  not a  curve-fit but  rather a  closed form  solution of the present theory,   is 
valid  for smooth wall,   intermediate,   or fully rough flows past a flat plate.    We have not yet made 
the calculttion for  compressible  rough-plate flow,   but an interesting Karman-type analysis  of 
compressible  rough-wall flows was  recently presentea by Chen (44). 

CONCLUSIONS 
I: has  been shown that a  single, rather  c-nde assumption - that the !«•/-of-the-wail (eq.3) is 

valid across  the entire bou idary layer - leads  to a  simple differential eqv^tion (EqJ9) for th«^ 
compressible turbulent boundary layer which predicts  remarkably accurate  akin friction values for 
a wide variety of parametric freestream and wall conditions.    With further extension and improve- 
rre nt,  it is postulated that this  method may someday supplant the  classic Karman integral approach. 
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AN EDDY 'ISCOSITY BAS?:D ON THE SECOND PRINCIPAI. 

INVAPIAMT OF THE DEFORMATION TENSOR 

Willi Schönauer 

Rechenzentxuii' der Universität Karlsruhe 

SUMMARY 

The aim of this paoei is to 'lerive equations £o- the tine mean values of incompressible 

turbulent flow. The stress tensor is considered to be a function of tha defo--mation 

tensor, "he assvunotion of spatial h^rnogenity and isotropy leads to an eddy viscosity 

iependlna at  the second orlnclpal invariant of the deformation tensor. The eddy 

viscosity function contains empirical noefficientd which must be determined from 

measurements of turbulent equilibrluiB tlows. Honequllibrium flows then are described 

by relaxation eqaations. For internal fluid meci.anics th« empirical coefficient!; of 

the viscosity function are determined from measurements of equilibrium pipe flow. 

Equations for the turbulent boundary layer are derived.  Similar solutions of these 

equations define equilibrium boundary layer flows. The empirical coefficients of the 

eddy viscosity function are determined for a flat plate flow. 

1. INTRODUCTION 

The laminar motion of a fluid is a macro motion which is superposed by the micro 

motion of the molecules. The transport of moirentum by the micro motion results in the 

laminar "iscc8i*:y of the fluid. When th* mean free path of the molecules is small in 

comparison tc the dimensions of the flow problem- the laminar viscosity is a function 

of the fluid and It is independent of the boundary conditions of the flow problem. 

The micro motion is described by the Boltzmann equation. The laminar viscosity and 

the equations for laminar flow can be derived from this equation in those cases, 

where an approximate solution Is possible. VJheti such a solution is not possible, for 

example in the case of a liquid, the equations for laminar flow may only be derived 

by phenomenological methods and the viscosity must be taken from measurements. 

Similarly the time mean values of incompressible turbulent flow are conöidez^d to be 

a macro motion which is superposed by the unsteady turbulent oscillations abo.it these 

mean values. The oaclll?.tlons are described by the unsteady Navier-Stokes equations 

and we may write down the equations for the mean values in terms of the oscillations 

and thus may define r turbulent or eddy viscosity.  But the solution of the Navior- 

Stokes equations being not possible until nowadays, this is useless for practical 

application. Most calculations of turbulent flow are based on Prandtl's mixing length 

concept, which is between an exact theory of the micro motion and a phenomenological 

approach.  In this paper we try to develop a phenomenological theory of the turbulent 

motion.  Consequently the eddy viscosity must be determined by measurements. 

2. THE EDDY VISCOSITY FUNCTION 

We postulate the conservation of mass and momentum for the time mean values of the flow. 

The balance of mass yields the continuity equation 

(2.1) V7»- 0. 
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We use a matrix notation and consider vectors as one column matrices or transposed as one 

row matrices. The velocity vector for the time mean value is 

i? TO   = (u,v,w) 

The nabla operator is 

7  =   , 9/3 »y i 
8/3S I 

(3/3y:,3/3y,3/3z) 

The result of (2.1) is a scalar. Therefore transposition of (2.1) yields «rv«0,thu8 

showing that in this notation the elements of V are directly applied to the elements 

to which they are connected by the ordinary multiplication. 

i he balance of momentum yields th; momentum equation (all quantities are lime mean values): 

(2.2) 0Vt +  oW'r)iP  - TV = 0   , 

with the density p and the stress tensor 

(2.3) 

-P+T XX 

xy 
rxz 

yx 

-P+T 
yy 

zx 

"P+T, 

The static pressure is p and T  is a stress acting in the y-direction on a surface 

with normal in x-direction. The problem ^s now tc find a constitutive equation rela- 

ting T to J«, that is a stress strain relation. The relative change per unit time of 

the length of an infinitesimal fluid elemeni is described by the deformation tensor 

(2.4) D   = 2(VV 

:?(W 

iVV Ku.+wJ 

?<vv 

i(VV 

It is assumed that the ciange of length is responsible for the stress in the fluid. 

Stokes used a linear r- latlon 

(2.5) -pK + BD , 

with ß=2ri  n=äynamic viscosity, E=unit matrix. 

This relation is accepted as constitutive equation for the laminar motion of a newtonian 

flulri.  Th->r»fore(2.5) cannot describe the behaviour of a turbulent motion. 

We r^iirc a momentum equation which is independent of the location of the origin and 

of t-he orientafIon o^  the coordinate system. Therefore we postulate spatial homogenity 

and is^trrsiay if >he  r.uld.  This is expressed by the relation (2.5), but SERRIN [12] 

shnwp.. ;'sai ' ..pe^ not ^e constant.  It may be a function of the principal Invariants 

ct ;-h-- nr forma-'or.  tensor. These are the coefficients h. of the characteristic equation 

f'r; ■/. 



29-3 

det(XE-r» » X-'-hj^-hjX-hj = 0. 

The calculation yields h.^O because of (2.1).  The first (and simplest) nonvanishing 

orincioal invariant is h?. For simple writing we use the expression 

(2.6)      h = 4h2 = 2(u^+v^+w^) + (uy+vx)
2 + (uz+wx)

2 + (vzfwy)
2 . 

The main id»?a of this naner is to use the constitutive equstion ; 

i 

(2.-»)      T = -pE + ?(h)r) . 

This stress strain relation is not linear. 

i 
The general theory cannot give further infonration about the function ß(h). We ass'ime ( 

a turbulent shear layer along a fixed wall. Then in the immediate vicinity of the vail 

the velocity goes to zero and the turbulent oscillations, which Tause the additional 

viscosity go to zero, too. "''herefore at the wall R must be equal to the laminar value 

2n.  In the center of a tube with circular cross section for axisymmetrlc turbulent I 

flow vanishes h, but nevertheless there is additional turbulent viscosity. These 

"boundary conditions" for ^(h) led to the relation 

(2.8)     P(h) - 2n* = 2n + 2p(»2)q(c0+c1h
s) , 

| 

thus defining an eddy visnosity n .  The equations (2.2),(2.4),(2.7),(2.8) then lead 

to momentum equations which we call generalized Navier-Stekes equations for the time 

mean values of a turbulent flow. 

| 

The four coefficients ^,3,0,0, must be determined by measurements. They are the 

result of the oscillations and therefore ar expression for a solution of the laminar 

flavier-Stokes equations.  Such a solution will depend on the Reynolds number and on the j 

boundary conditions of the flow problem.  Therefore the four coefficients will depend j 

on these oarameters too.  If the reference Reynolds number is properly defined, we may 

expect that the coefficients are the same for flows with similar boundary conditions. 

For the derivation of (2.~)   the fluifl was assumed to be Isotropie.  The turbulent flow 

in its micro structure is surely not Isotropie. This micro structure could only be 

described by a matrix R(h), Taking ftfh) as a skalar function, we take the mean value 

of the eddy viscosity matrix. The formation of the msan value is effected by the 

determination of the coefficientK from measurements.  The measurements must be done 

for eguilihrium flows, that is for flows with a "constant" turbulence structure. 

Nonequilibrlum flows then will be described by relaxation equations for the coefficients 

by means of a measured relaxation time. 

3. IVTERNAL FLUID MECHANICS 

The simplest flow which may be used for the determination of the coefficients is the 

axisymmetrlc flow in a tube with circular cross section. From the generalized Navier- 

Stokes equations, putting u=u(y,z), v=wH0, follows p =p =0.  We transform the resulting 

equation to cylindrical coordinates (x,y,z)—»(x,r).  With reference values for length L, 

velocity t! and kinematic viscosity v the following dimensionless quantities are defined 
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(3.1) 

* - £ ; ? - f ; P' -^i-    " - £ ; 

_   oy*  .  ^2s  R  ÜL c =   ;  c, "   vr— !    Re = — 
0    v      1     vL2s v 

Then from (2.8) ws get with u=u(r) 

(3,2) TT = * + ü2q(c +c üfs) . 
r 

Comparing (3.2) with Prandtl's mlxinq length theory, see SCHT.ICHTING [6j page 535, we find 

(3.2) to be a generalisation of the mixing length concept.  But (3.2) is the special case 

of a three di-nensional theory and we may expect that the coefficients taken from one 

dimensional experlncnts may be» generalized to t-wo or three dimensional flows. 

The differential equation for the flow in the tube is 

(3.3) Sep. =fl + u2q{c ^-Cjuf3)] (ü__-4ü_) + 
x  L r -1  rr r r 

+ 2qü2q"1 ü2(c +c ü2s) + 2sc1ü
2qüfSü__ . 

r 0   r f rr 

Taking L=^d=dlameter of the tube and tJ=u(0) the velocity in the center of the tube, the 

boundary conditions are 

(3.4) ü(0.5) ■ 0 ;  ü(0) *   1 ;  ü_(0) = 0 . 
r 

The aquations (3.3), (3.4) form a boundary value prt Jlem for u(r) ?.nd p_ . 
x 

The aetenr.lnation of the coefficients q,3,c ,c in (3.21 was done by comparing solutions 

of (3.3), (3.4) with measurements. The coefficients are altered until the numerical 

solution agrees with the measured values. Details are given in [?], [8]. The boundary 

conditions (3.4) beeing the same for all flows, the coefficients are functions of the 

Reynolds number alone.  In accordance with this conclusion, in (3.3) Re is the only 

parameter. From measurements of NIKURADSE [4] followed, that s is a constant and 

q,c ,c, depend linearly on Re in doubl" logarithmic scale. The Vc „üü then have been 

determined from measurements of LÄUFER f3j, which seem to be more accurate than the 

values of NIKURADSE.  In the range of 0.5=s=3 all values of s could be chosen. But 

once s is fixed, the othar coefficients are depending on the value of s. For s»l the 

followintr values were determined which may be linearly interpolated for other values 

of Re in double logarithmic scale: 

•3.5) 

Re q co Cl 

5-10* 7.8 1.8 1160 

S'lO5 10.3 78.3 15500 
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Plg.l. Measured values from LAUFER f3j 

and computed values for s-l and 3, 

Fig.2. Computed velocity and eddy 

viscosity profiles <for s-l. 

?lg. 1 shows the comparison of LÄUFER's msasurements with the computed values for 

s-l, corresoonding to the coefficients ('.5); further computed values tor s»3 are shown. 

In fig. 2 the coir.puted velocity {.rcriles for s«! are ihown together with the 

correspond:ng ratio of turbulent to laminar viscosity, equation (3.2). The dotted 

line for v /v in the lower fig, 2 clearly shows, that in the laminar sublayer th« 

coifiouted vslue of v is egual to J. 

If we want to use the coefficients determined from (3.5) for internal fluid dynamic 

problems other than circular cross section but constant reference Reynolds number, we 

may exoect to get the same values, If the Reynolds nuiibpr is based on the hydraulic 

diameter. This is the ratio of the wetted surface (in which the turbulence is initiated 

by the steeo wallgradlents) and the flov volume (in v.hlch the turbulent energy is 

dissipated),  if the reference Reynolds number changes, for example if the diameter in 

a tub» increases or decreases, the coefficients will not abruptly follow the change 

in the turbulence structure (this is the reason for the initi?ton length of pipe flow). 

This Is a relaxation process which may be described by relaxation equations for the 

coefficients. With a dimensionless relaxation time T (determined from measurements as 

a function of Re) for example the behaviour of c, wouid follow the equation 

(3.6) dcl . Cl eguil "c! •w - 
with cl  em,|i as given function of n» an^ with Cj as actual value;  d/dt is the total 

derivative along the streamlinf» where the maximum velocity occurs, whi^h is used as 

reff rence velocity.  Ev sucb a relaxation equation the whole history of the turbulent 

flow is riescrlbed In i natural way.  Some basic remarks for the treatment of com- 

pressible turbuleixr n.otion are given in f8j. 
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t.   THE Tt'RBULENT BOCJDARY LAYER 

From the two dimensional gencrftlutftd »'avier-Stokes equations we may try to derive 

equations for the turbulent boundary layer, fha laminar boundary layer transformation 

y •> y yRe , with Re-HL/v (fixed reference vaulues 0,1.,v) yields equations for the 

lamlncr sublayer only. Boundary layer equations which are valid in the laminar and 

turbulent oart of the boundary layer, result by a transformation which depends on the 

coefficient s und which is given below.  Wsinq the exoerience of former papers f9j, 

[lo], instead of (2.8) a generalized rektion for the eddy viscosity with dlnensionless 

coeffitrients c_,c, is used o * 

(4.1) rr- - i + n-Zr) f sA(irJ. 
The functions », « deoend on x/L;  h is the two dimensional form of (2.6) and P is a 

function of the variable «/«ir with * as the velocity at the outor edge of the 

boundary layer. F must obey the conditions F-K) for >0-»O and F-»l for***'. a 

We introduce the followino dimensionless quantities 

x • L •  y - L 
y .„^Ts+lT   -  u   -   ua f *e      ;  u «= rr ;  u. - — ; 

(4.2) 

- . v ReTT?Tr 

a  o 

V  = 0 ;  p = -Ay 

Then for Re-*» eliminating all termp which are small in comparison to other terms, we 

deduce from the two iinenslonal generalized Navier-StoVes equations and the continuity 

equation the following system of boundary layer equations, with r* as derivative of F 

to its argument: 

(4.3a) 

uu_ + vu_ *• ~p_ +> 
X     y    x 

V + nh l-h- * 
Re 

3__ 
S+l 

1   2s Jj 

"a  j 
+F'(^-) -2 

ua ua 

Re s+l 

2s  2a 
c„    , Ä ü-   1 

^s+1      ^a 

(4.3b) P.. - 0 < 
y 

(4.3c) u_ + v_ = 0 
x   y 

In (4.3a) there are terms with Re in the denominator.  These terms cannc1: be omitted in 

comparison to the other terms in the curved brackets: at the wall F»0 and the first term 

describes t'.-r. laminar sublayer;  at the outer edge iL-0 and the c -terms describe the 

turbulent viscosity at the outer edge, which may b« larger than the laminar viscosity. 

The ratio of the laminar sublayer to the turbulent zone is a function of the Reynolds 

number. Therefore logically Re must appear as parameter in (4.3a). 



outer edge of the boundary layer we define a function A(x), a boundary layer thickness 

6(x) and the Pohlhausen or similarity parameter Xlx)  by 

f r - -   - -< _   ■>-> 
(4.<)        A • ä.^' » 2 f ü.{£)dt:/ü.(x) ;   X - AÜ /ü. - «'ü. 

a i    a a 9  8        9 

With the following similarity variables 

(4.5)        Y - y/« ;  f (x,Y) « ü/üa ;  g(JcfY) - v^ 

and with the condition for inviscid f.'ow at the outside of the boundary layer 

(4.6^ ü.ü, - -D 
a a 5 

,*e yt    fro»   (4r3afc) 

{U.V. Aff_ + [(X-l)  Yf + g| fY + X(f2-i)  - 
x      '• J 

=lf?Sj|£YY-F,(f,f5[ x*Fm 
s+l 

\-+ <i+28» ^A] «YY - *'{t)t\ -V+ *A*\ -o •■ 
Re'' -Re8+1 J Re8+1 

(4.8) Af_ +   (X-l)   YfY +  Xf + gY » 0  . 

Because x does not appear explicitly in the transformed equations, in the laminar case 

this system contains similar solutions, if the only parameter X is constant.  In the 

turbulent equations additional parameters appear: the constants Re, s and the coefficients 

e ,Cj which may depend on x. The function F(f) is supposed to be a function of f with 

coefficients q^q,,... which may depend on x, too.  If all these coefficients are de- 

termir<ed as functions of X, then for X*constant we get similar solutions as solutions of 

the system (4.7), (4.fi) with f_ = 0. These solutions form a two parameter family with 

parameters X and Re. The condition X»constant implies for the outside velocity the 

wedge flow.  But t)is flow has no characteristic length and velocity. Therefore we choose 

as reference length Ii=l [cm] and as reference velocity U"u(L)[cm/sec]. For nonslmllar 

solutions L and ü are taken on the tangent wedga of the flow contour. With these 

prescrlotlons lor similar solutions the outside velocity is 

X 

(4-<»       5a slm = *   • 

The two parameter family of similar solutions are the boundary layers which we call 

equilibrium boundary layers. From these flows the coefficients in the eddy viscosity 

function (4.1) must be determined. This may be done by comparing numerical solutions 

of the similar boundary layer equations with measurements and changing the coefficients, 

until ctmputatlon and measurements agree sufficiently, see flOj. Only for the flat 

M. 

29-7 

In order to dT^eiinine the coefficients in (4.1) from measurements, we must use an equi- 

librium boundjry layer with constant turbulence structure. For example the flflt p^ate 

boundary layer is growing with x and seems to have not a constant structure. There is ^4 
the same problem In the laminar case. There we get a velocity profile independent of x '§ 
if we apoly a similarity transformation: the Falkner-Skan transformation. We apply this If 

transformation to the equations(4.3a,c). With the dimenslonless velocity u (x) at the I 

J 
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elate flow, X-O, nwaauremerts with sufficiently constant value of A exist, ztow the 

question «rises« are these nersured flat plate flows sinilax solutions?  For flat plate 

flow all profiles for f or ü or u ovsr y/^T,  measured along a flat plate for the saiae 

constant reference Reynolds number, must coincide into one profile. 

1 

1 

1 

m         IM 
.     U.V-        Ottl 
*    UM.      j.ir 
• KU             ITT 
• ¥.21      or 
a    u.n      or 
»    KM      or 

* 
B 
i 

* 

* 
8 

B 

4 
a 

■ 

• 

/ 

/ ■ . 

# 
i • 

*' * 
■ 

-A  

! 
*• * 

Uulii 

V 
0      (U 06 06 W 

Fig. 3. Velocity profiles measured by WIEGHARDT fl] on a flat plate, 

Re,^, => 2.2'104. 

In flT. 3 velocity profiles measured by WIEGHARDT [l] on a flat plate shew, that the 

profiles for small values cf x do not coincide. For large values of x the profiles 

nearly coincide and it seems that they tend to a similar profile. The nonsimilar 

profiles for small values of x may be interpreted as an initiation part of the boundary 

layer, in which the turbulence structure develops as in the initiation part of a 

turbulent pipe flow. Thi.? part of the measurements could be used to determine a 

relaxation time. 

Measurements of SCHUl/rri~GRtNOW fill show the same behavior as fig. 3. In fig. 4 

velocity profiles measured by SMITH and WALKER fl3] on a flat plate are shown.  Heru 

the profiles coincide only in the wall region. Nevertheless, with the same x-incre- 

ment, the distance between the velocity profiles dimini  »s.  In comparison to fig, 3 

we may conclude, that these measurements are still in    Initiation process and tend 

to a similar solution profile with increasing value of   These results are not in 
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contradiction neither with the law of the wall nor with the velocity de'eet law, see 

ROTTA fsj, fig.  13.3, »3.4. If.  the velocity profiles approach a similar profile, all 

oroflles u/u over lo<? (yiT/{vi)), with u as friction velocity and« from (4.4), will 

coincide for x larcce enough at the same values of Re und X,  but they will not coincide 

for dJ fferent values of Re and X. 

From measurements of KLEBAMOFF fa], which include values In the laminar sublayer, the 

coefficients of the eddy viscosity relation (4.1) with 

(4.10) F(^) F(f) F2q F'ff) - 2qf 2q-l 

have been determined.  In the solutions of (4.7), (4.8) with f 50 the coefficients have 

been altirsü, until the comouted values approached best the measured values, fig. 5. 

01? 

if-*-* 

i(K7)ncMt "w""^ 
■ :777Sw*M «.!lTi.i-3«l! 

■ •»n*«*« •■^■'■,0' 
..«Kxh» Hi _■}&*, 

^^ 

Fla. 4. Measurements of SMITH and WALKER [13], 

velocity profiles on a flat plate. 

In the laminar sublayer, the transi- 

tion regime and the inner part of 

the turbulent zone tha measured 

profile 1» well met by the com- 

puted values. But for values 

u/U>0.8 the agreement is not 

satisfactory. This part of the 

boundary layer is characterized by 

tha intennlttency. Here the eddy 

viscosity function (4.1), (4.10) 

furnishes ton large values. There- 

fore an additional factor In the 

Cj-term in (4.1) has been intro- 

iuc«d, but the computed profile 

did not coincide with the measure- 

mer.cs, for details see fio]. Now 

the research is continued with 

functionsF in (4.1) which are 

composed of two different functions. 

Y[i/)ch] 

Fig. 5. Comoarison of computed velocitv 

profile (+) with measurements of 

KLEBAWOFF [2j, Relcln"
(>. 7-JO3. 

The values in fig. 5 have been com- 

puted with the following coefficients 

(4.11)  s-l; c0 20; Cj-lO' q-10. 

The value c has only a week in- o      J 

fluence on the result. The Rey- 
3 nolds number is Re, ,-9.7-10 

I cm The 
values s, c,, q are the same as the 

values s, c,, q for pipe flow, inter- 

polated from (3.5) for Re-3.5.105. 

From this result we may conclude 

that the turbulence structure of 

the similar solution for llat 

plate flow at Keic™"^'"10 corres- 

ponds to that of pipe flow at 

Re-3.5'105. 

The main problem now Is to obtain 

measurements with an outside velo- 

city (4.9) with sufficiently con- 
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sfwst value of X and sufficiently large x, so thtt the volocity profiles approach the 

blrilar solution profile.  Such measuremrnts mv.at be furnished for different values 

of ^ICT,. Then the coefficients for the eddy viscosity function (4.1) for« the 

equitibrium values. Together with a relaxation time and with relaxation equations 

like n.fw, nonequllibrium boundary layurs may be computed from the system (4.7),(4.8) 
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EFFECTS OF STRONG AXIAL PRESSURE GRADIENTS ON TURB'-LENT BOUNDARY-JOfER FLOWS 
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I 
I 

SUMMRY 

The effects of strong axial pressure gradients on nonreacting turbulent boundary-layer flows through 
nozzles are presented. Both rocket and hypersonic aerodynamic wind-tunnel nozzles aie considered. Com- 
parisons are made between present predictions using a finite-difference method and previous integral 
methods used to predict compressible turbulent flows wit. pressure gradient and ball heat transfer. Both 
cooled and heated walls were studied, tiraparison with available experimental data on wall heat transfer 
and skin friction showed good agreement with present predictions. Van Driest and Reichardt's models were 
considered in a two-layer eddy viscosity model. Small differences in wall-measurable quantities were 
found between the two models. Under heated wall conditions (i.e. wall temperature greater than the 
adiabatic wall temperature), strong coupling effects were found between wall heating and axial pressure 
gradients. For cooled wail conditions, predictions of velocity and temperature profiles downstream of 
regions of strong favorable pressure gradients were in good agreement with limited experimental profile 
data. Limitations in the use of boundary-layer trans format?, ens for heated-wall flows are presented. 
This research, a portion of which is presented in this paper, led to the development of a computer pro- 
gran to predict nonreacting and equilibrium chemically reacting laminar and/or turbulent boundary-layer 
flows for internal (nozzle) and external two-dimensi-jnal and axisymmetric flow:. A fully documented com- 
puter program is available for interested users. 

= T*/T* f,  nondinensional tetsperature 

= local stagnation temperature, 'R 

= tangential and normal velocity, ft/ 
sec 

NOTATION 

A+ = damping constant T 

a* » reference length T 

C = PP/'(S v  ), density-viscosity product et 
ratio 

u 

c, - 1 - 1/Pr, constant for perfect gas u 

f 

g 

H* 

4 
M 

ref 

Pr 

Pr 

r* 

St St 

= 2TW/PU', skin-friction coefficient based u* 
on free-streae and edge conditions 

Cf /£VD 

= qw/puCHav^-Hj.), heat-transfer coef- 

ficient based on free-stream and 
eHge conditions 

= constant pressure specific heat 
ft2/(sec2-R) 

= u/ug or f, noraalized tangential velo- 
city component 

= stream function 

= H/Ke> stagnation enthalpy ratio 

= total enthalpy, ft^/sec^ 

=0.4 and 0.0168, constants in 
eddy-viscosity expression 

= tube length upstream initial probe, in. 

= Mach number 

ret ret 

~ 2 
•-, reference pressure,  lb/ft 

p*/p 
ref nondimensionalized pressure 

T* 
n-f 

= stagnation pressure behind a normal 
shock 

= pressure gradient parameter 

= c* u*/K*, Frandtl number of mixture 

= C*E* /et, turbulent Frandtl number 
Tl      R 

■ iC/^erteV 
= body radius, dimensional 

= qw/pu(H -H ), Stanton number based on 

free-stream and edge conditions 

= u*2 /c', 0R, reference temperature 

Jref 

w 

x,y 

+ 
y 

z 

B 

Y 

«, S 

.e0.c 

VD 

* 
ref 

1/2 
» 

1/2 

friction velocity, ft/sec 

friction velocity, ft/sec 

= U* 
cs 

= uVU*ref 

= transformed normal velocity 

= u */u* „ and v' 
ref /(uJe£eVD). nondiraen- 

sional fluctuating velocity com- 
ponents 

* v*/u* w' f 

= x*/a* and y*/(eVD a*), nondimensional 
distances along and normal to surface 

= y*u*/v* 

-  z*/a*, nondimensional axial distance 

= pressure gradient parameter 

= ratio of specific heats 

= boundary-layer and displacement 
thicknesses 

= inconiprt.ss\ble displacement thickness 

= inner, outer and local eddy vis- 
cosity, t^/h* 

=  eddy thermal conductivity, 
Ib/tsec-'R) 

1/2 
<  r/(P* r U* r a*)]' rer "ref ref J' = [v 

parameter 

= mcnientum thickness 

= viscosity, lb-sec/ft2 

" V*(TJef) 

Van Dyke 

V*/\l ref 

nondimensional 

kinematic viscosity 

pJeÄf' 
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« levy-l,ees variables Subscripts and Superscripts 

= density, slugs.-ft3 e, t.      • o;it«r edge and wall conditions 

T*C, „a* ref       « reference condition 

t        •   , nf.dimensional shear stress   , o      » free-stream and stagnation conditions 

''raf ref ( )'      « differentiation with respect to n 

t -  energy layer thickness, in. ( J»      = dincnsioral quantity 

1. INTRODUCTION 

The existing literature on numeric-U solutions of the laminar boundary-layer equations for two- 
dimensional and axisynunetric flc^vs is extensive. A recent review of the most commonly used techniques 
for solving the laminar bounda;  iayer eq-iations for noncquiiibttiun, equilibrium, and chemically non- 
reacting Tlows is given by Blo'.lm . (1). Kline ct al. [2] presented a similar review of the prediction 
methods used for the solution M the i!»cc w» »ssible turbulent boundary-layer '„-quations. Examples of 
recent solutions of the nonreacting turbulent boundary-layer equation:; ar«- tlic papers by Cebecj [3-5] and 
Pletcher [6j. 

The implicit finite-difference scheme of the Crank-Nicholson type has been developed extensively by 
Blottner [1,7,8] and by Davis [9-11] for a wide range of laminar viscous-layer flows. This method of 
solution has been c'famonstrated to be accurate and stable and does not require an excessive amount of com- 
puting time. This type of finite-difference .'-eherne was used by Harris [12] til solve the turbulent 
boundary-layer equations for nonreacting gases. Harris also considered mass transfer at the wall and the 
laminar-to-turbulent transitional regime. Cebeci et al. [3-5] used an implicit finite-difference scheme 
to obtain solutions 7*  the turbulent boundary-layer equations. Hottevcr, the numerical procedure used by 
Cebeci differed considerably from the Crank-Nicnolson type scheme. Pletcher used an explicit finite- 
difference calculation procedure based on the DuFort-Frankel scheme. The turbulent boundary-layer solu- 
tions of Cebeci ard Pletcher also considered only nonreacting gas chemistry. 

In the references cited above, the authors considered only external flows. Elliott, Bartz, and 
Silver [13] developed an integral method of solution for predicting turbulent boundary-layer flows in 
rocket nozzles. Boldman et al. [14] applied the method to predict turbulent flows in supersonic nozzles. 
Edenfield [IS] extended the method to predict turbulent flows in hypervelocity nozzlej in which the gas 
was considered to be in chemical equilibrium. 

For the lower Mach number perfect gas cases considered by Elliott, Bartz, and Silver and by Boldman 
et al., relatively good agreement between the predictions and the experimental data for the heat-transfer 
distribution was obtained. Edenfield found that the method did not predict the boundary-layer displaciS- 
ment thickness accurately downstream of the nozzle throat and ftilsd to converge for local Mach numbe-s 
of about 16. Thus, for hypersonic nozzle flows, a limit existed in the use of the integral method, other 
disadvantages of the integral method are the amc-jit of empirical data needed and the number of adjustable 
parameters which strongly influence the results of the predictions. 

As a result of th? excellent agreement between experiment and theory which has been obtained by 
Blottner and Davis for aminar boundary-layer flows of both reacting and nonreacting gases and by Harris 
for nonreacting turbulent flows using the Crank-N.'.cholson type implicit finite-difference sciieme, this 
method of solution was selected for the present investigation. The two-layer eddy viscosity model 
originally proposed by Cebeci for turbulent boundary-layer flows was used. Both laminar and turbulent 
flows of perfect gases and mixtures of perfect gases in chemical equilibrium were considered over flat 
plates, wedges, two-dimensional and axisymmetric blunt bodies, and in axisymmetric nozzles. Mass transfer 
was considered for ehe case where the injected gas was the same as that of the external flow. The primary 
emphasis has been to obtain solutions for high Mach number flows having strongly favorable pressure gradi- 
ents and highly cooled walls. 

Recently Back and Cuffel [16,17] measured velocity and temperature profiles tnrough turbulent, boundary 
layers at several locations in a nczzle with cooled and heated walls. Measurements were made at one 
location in the inlet section, four locations in the convergent section snd one locition in the divergent 
section of a Mach 3.6 nozzle. The ipstream end of the nozzle wao attached to a long circular tube which 
was cooled or heated to the same temperature level of the nozzle. Comparisons were made with the integral 
method of Elliott, Bartz and Silver [13]. These experimental and numerical data are compared with results 
from the present study. Predicted wall skin-friction and heat-transfer data and velocity, temperature and 
mass flax profiles are compared with the available experimental data. The effects of tube length and wall 
heating on the predictions are considered in some detaiK Limiting effects of wall heating on convergent 
numerical solutions are presented. 

The research presented here is discussed in more detail by Lewis, Anderson and Miner [18], and the 
computer program is described in detail including necessary instruction for its use by Miner, Anderson, and 
Lewis [19]. Transition models for laminar-to-turbulent flow are also described in the report on the com- 
puter program. Those interested in obtaining copies of the computer program and the two reports noted 
above should contact ine first author on this paper. 

2. ANALYSIS 

The equations of motion for laminar or turbulent flow of perfect gases and equilibrium gas mixtures 
were developed in Levy-Lees variable and expressed in the general parabolic form necessary for the implicit 
finite-difference solution procedure employed by Blottner [1]. 

Several turbulent eddy viscosity models were investigated and the effects of strongly favorable pres- 
sure gradients on the eddy viscosity models were considered.  In this section the governing equations and 
eddy viscosity models are given. 

2.1 Governing equations.--The governing equations for laminar or turbulent boundary-layer flow of an 
arbitrary gas in thermodynamic equilibrium or of a perfect gas are presented in transformed Levy-Lees 
variables. The rate of mass transfer at the wall boundary for porous walls is assumed small in comparison 
to the boundary-layer mass flow and normal gradients are negligible. The boundary-layer thickness is 
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and 

assuniiJ to be small m  comparison to the body radius of curvature aiid centrifugal forces are neglected. 

2.2   Turbulent boundary-layer equations in l.evy-Lees variab),ts. -The boundary-layer equations in 
physical varinbles were nondinensionaHzed as proposed by Van Dyke f20) as follows: 

x = x*/!*. y = y*/a*cVI). P = pVo^U*2. " * ^'K-  T * T'^ref ' rt^K2/cV-  u " u*/'l£' v '  v"/l,-EVD 

ii - u*,'v*  r = y*/u(T* ,) where E,^., = u*  1./p*U*a'. The resulting equations were transforaed using the ret       r^r       vu   ret « • » -i « 
I.evy-vees variables 

d? = p u u r J dx and d^ e pu rJ/(25} ' dy 

The resulting turbulent boundary-layer equations are: 

Continuity: 2C F + V ♦ F = 0 (2.1) 

Moaentum: 2C F F + V F* = 6 (pe/c - F2) ♦ (C(l * e*) F')' (2.2) 

Energy: 2i  Fg^ + Vg' = ^ (1 * c* Pr/PrJ *  [(C/Pr)(l'E*Pr/Prt)]' g' 

♦ u2/H (l-l/P^lC V*' *  CF'2 + CF"] * CFF' (l-l/Pr)' (2.3) 

2C where V =   2j 
p u u r J 

e e e w (2t)1/2 
, F = u/u and g = H/H (2.4a) 

uv + p'v' 
and at the stagnation point V =  (2.4b) 

[U*l)Peuedue/dx]
1/2 

The boundary conditions at the wall, r\ = 0,  and at the outer edge of the boundary-layer, n « n , 
for Eq. (2.i) - (2.4) are: e 

at n = 0: F = 0; ? = Hw/He = hw/He, V = V^ (2.5) 

and 

at n = n: F = 1; g = 1 (2.6) 
♦» 

2.3 Eddy viscosi'.v models.—The eddy viscosity, c , was evaluated using the concept of a two-layc 
+* ♦* 

eddy viscosity model consisting of an inner law, c.   ,  valid near the wail boundary and an outer law, e , 

for the remainder of the boundary Inver. This procedme has been employed successfully by a number of 
authors; for example, Cebeci, Sroiti. ind Mosinskis [4]. These authors use expressions for the inner eddy 
viscosity law which are based on Prandtl's mixing length concept stated as 

E+* = p* I*2  |9u*/3y*i (2.7) 

where i* is the mixing-length. In the present study of the turbulent boundary-layer equations, a 
number of expressions based on Eq. (2.7) have been useds and in addition to these models, an eddy 
viscosity based on the Boussinesq relation 

T* = w* (1+E+*/U*) 3u/3y (2.8) 

has been used. 

The eddy viscosity law based on "q. (2.7) have been derived by analogy with Van Driest's [19] 
proposal for the mixing length where he considered Stokes' flow for an infinite flat plate with periodic 
oscillations in the plane parallel to the plate, A number of recently proposed eddy viscosity models 
based on Van Driest's model are given below; 

Van Driest [21] c* = Xj (1 - exp [-X2(ff /2)
1/2])2|F'| (2.9) 

Cebeci, Smith and Mosinskis [4] e+ = X.{l-exp[-X,(|C<; /2-p u y/pdu /dx|)
1/2]}2|F'| (2.10) 

Absolute Value of the Pressure Gradient e! = X, {l-exp[-X-(C<:/2+p u y/p|du /dx|)
1/2]}2|Fi |       (2.11) 

oo 

Cebeci [5] £+ = Xj [1 - exp(-y+/A+)]2|F'j (2.12) 

where, as proposed by Cebeci [5], A+ = 26 [1 - 11.3 p*]-1'2  without mass transfer (2.13) 

.22221 k, y p u rJ 

and here X •= — ~~ ,    X =  « —_ (2.14) 
cVD , (20

1/-       26 „ (e^)1 

Reichardt [22] considered the incompressible continuity equation tm   -he fluctuating velocity com- 
ponents to demonstrate that ct varied with y*^ and presented an expression obtained by curve fitting 
experimental data of flow in pipes. Richardt's expression for the inner eddy viscosity is 

£+* = 0.4 M* {y*u*f/v* - 11 tanh [y*u*/(ll v*)]) (2.15) 

In transformed variables, Reichardt's law becomes 

et = 0.4 y ut/p - 4.4 tanh [y ut/(ll u)] (2.16a) 

where                              U,. = [Cf p/(2 c^)]1/2 (2.16b) 
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For wax! mass transfer, Crbeci [5] proposed 

E* - X, [I - exp (-//A*)2) |F'| 

whore A* » 26 f-(p+/v*)[exp(:i.8 ,*M] * exp(U.8 v*)]"1/2 

The Cl»ustr-Klebanoff outer law 

Eo " k2ue 
6k  Y/a# 

(2.17) 

(2.18) 

(2.19) 

was used wher-; 6*  is the two-dimensional incompressible boundary-' v.yer displacement thickness and y  is 
Klcbanoff's intermittancy factor. 

2.4 Numerical solution prs.:edure.--The conservation equations for lasdnar or turbulent flow were 
solved using en implicit finite-difforenoischeine employed J-.- Blottner [2] and Davis f9-ll} which requires 
that the governing equations be expressed in the general parabolic form 

P.203 W" + A.K' + A,K ♦ A- ♦ A,* »0 
where l« is ehe dependent variable F or g and the coefficients A. » A(4, n,  W, W). 

The governing equations were expressed ir.  the foira of Eq. (2,20) for a perfect gss or an equiiibriuis 
gas mixture as: 

Moment:»: F" + A.F' ♦ A,F * A. + A.F. = 0 
——  1     2    }   4 <i 

where ^ -. f . -1 . *- , ^ , .  ,F/Ao. A3 = 8 ^/Ao, ^  = -2tF/Ao 
A    0 o 

A = C for laminar flow, A = C(l+e ) for turbulent flow and where A = A /C. o o 00 

Energy: g" + A.g' + A2g + A3 + A4gc » 0 

A1 
C'   o  V where A, « =~ + •;— , A, = 0 

It-     T"    n i. 
A    0 

(2.21) 

(2.22) 

Ue f   1 1 
For a perfect gas A3 = FT ^ ' Prl FF1 

_CAC 

V        FF" ! 

Ä   ! 
0 — 

u2 C, e 1 and for an equilibrium gas A, = n  
J      n    -r e A o 

FF' ♦ F' FF" . A, 2SF/A„ 

for laminar flow 

and for turbulent flow 

again 

Ao = C/Pr 

Ao = C/(l+e+ Pr/Pr )/Pr 

A    = A /C and C,  = I -  lift. 
00 A 

Continuity: 

The continuity equation was compiited by tntyezoidal integration cf fhe expression 

fe 
v -' V    -  1       C2S Ff - F) dn 

after each iteration of the raoaepti!in anJ energ/ equations. 

3, RESULTS AND DISCUSSION 

Solutions of perfect gas turbulent flovs using different expressions fov lha inner eddy viscasity 
law are compared wi^h experimental data and/or other numerical solutions for cases where these östa were 
available. 

Tne nume'icaJ solutions prescr.ted assume fully develcpeJ turbulent flew; howevor, the boundary layer 
computer prograjn described by Miner, Aimerso;., s-d '^ewis [151 provides options for td'her an instantaneous 
or a continuous cransition from laminar tc turbulent flow. The continuous transition sicisl was based on 
the experimental /-esults of Owen f2.">] and is discussed in tne coapyter prcgrara usi^ manual [19]. 

i.\    f-erfect ga» i.oiutions for t.ia'buient flows over flat plates.--For flat-plate flows the inner eddy 
viscosity Taivs expressad by Eq, (?.&J - (2.J,2T~ire identical and are referred to as the Van Driest model. 
The inner eddy viscosity law given by Eq- (2.16) is referred to as the P.eichardt model, 

The r-.isulT.s of thR present nuaerical method of solution are compared with Coles [24] fcxperimental 
data and the solution of Dorraroe [25], 

Th? predicted skin-fric ion coefficients for the three cases are cojepared with the theory o.c 

Dorrsnce and Co-t^s' experiaentai data in Fig. i. The s^in friction predictions for Cases 20 and 26 are 
äi excellent agrstment vith b&tn the exporJuerital data and Oorrance's solutions. For casf 62, the 
present anthod of sol ition is in good agreement with the experireental data for Reynolds numbers greater 
than 3 x 10°, but for Reco = 1,7 x 10° the present nur.erlcal solution predicted a skin frirtion ceef- 
ficicnl whicti was approxiaately 15% lower than the experimental, value. The present raethou of sclation 
is in better agrr-'-sent with the experimental data for this case tnan the theory of Dorrnncs, 
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The above results are representative examples of turbulent flat-plate solutions, and in all cases 
considered thj numerical results were not significantly influenced by the choice of the inner eddy- 
viscosity law. however, the use cf the Reichardt inner law reduced the computing time. 

5.2 Turbulent tlow or perfect gases in axisymnetric nozzles.--The present method of solution has 
been used to solve four sxisynrietric nonles, and the results'are compared with the integral method cf 
solution developed by Elliott, Bartz, and Silver 113] and available experimental data. The inner edd> 
viscosity laws of Van Driest £q. (2.9), Cebeci and Smith Eq. (2.10), absolute value of the pressure 
gradient Bq.  (2.11), and Reichardt Eq. (2,16)  have been considered for the sample case given by Elliott, 
Bartz, and 5ilver. 

5.2.a Eiliott; Br.rt?, and Silver sample case.--The problem considered consisted of a 30' conical 
inlet section, a circular arc throat section with a 'hroat radius of 0.885 in. and a 15° conical 
divergent ssciim. 

The profiles of veiccity and temperature differed b;- less than 5%  for the solutions obtained using 
the uifferen'. viscosity laws. The boundary-layer parameters 6, S*, S,  cj-, etc. also agreed to within 
SI. If the inner law of Cebeci and Smith Eq. (2.10) were excluded in the comparison, the resulting 
solutions diHsred by  less than ?•%.    These results indicate that including the pressure gradient term in 
thi inner law had litti*  influence upon the eddy viscosity profiles and had essentially no influence upon 
the resulting solutions. 

As a result of the above, and the formulations of exyessions Eq. (2.10) and (2.11) for the inner 
law, these expressions were dropped from further consideration. The results which are discussed below 
were obtained using the Van liriest or Reichardt expressior for the inner eddy viscosity law. However, 
as in the previous cases, use of the Reichardt inner law resulted in a suNstantial reduction of the 
coiL-uter time required. Since the differences in these solutions were insi'Ji'.ificant, these data are 
shewi as a single curve. 

The hest-transfer coefficient predicted by the present numerical solutions is comppred in Fig. 2 
■ ith the results obtained by Elliott, Bartz, and  Silver using an integral method of solution. The 
solutions using the present numerical method and the iategr^l method differ up to 30%; however, it 
should be noted, tt.at the solutions using the integral method can be varied over a wide range by 
changing the aüsumptions for the nominal entrance conditions. Since the starting profiles for the 
present method were determined from the solution of the governing equations, direct comparison of the 
two methods was not possible; moreover, it is not clear what assumptions should be made for the initial 
conditions necessary for the integ-a) mftthod if experimental data were not available before the cal 
cuiations were made.    Because of the arbitrariness in the solutions using the integral method, the 
present finite-difference solutions are believed superior to the results from the integral method, 

3.2.b NASA-lewis -ocket nozzle l'lows.--This nozzle consisted of a 30-degree half-angle cenvergent 
section and a IS-degi-ee half-angls nozzle. In the calculations experimentally measured wall temperature 
and ; ressure distri> utior.s w -e used. 

Solutions to thij problem were obtained using the Van Driest Eq. (2.9) and the Reichardt Eq. (2.16) 
expressions for thf1 inner eddy viscosity laws, and as in the previously discussed Elliott, Bartz, and 
Silver .«ample case, the differences in the solutions were insignificant. However, the solution using the 
Van Driest inner law required more computing time than was necessary i'sing the Reichardt imier law. 

The predicted heat-transfer coefficient using the present method of solution is compared with the 
experitental data and the solutions obtained using the Elliott, Bartz, and Silver integral method in 
Fig. 3. The present method of solution is in excellent agreement with the experimental data in the 
throat region and downstreai". Differences of  up to 20% between the predicted and experimentally 
determined heat-transfer coefficient are noted in the subsonic region of the nozzle. The nearly dis- 
continuous change ii the experimental value of the heat-transfer coefficient at z = 1.97 was the result 
of the ijxperimen al temperature distribution in this region; also the experimental pressure data were 
not smooth in this region. For the present calculations, these data were smoothed in the r?2ion 
1.9 ^ z <  2.5. The integral method of solution is seen to reflect a strong dependence upon the assumed 
starting conditions. The two solutions presented using the integral method differed from each other by 
as much as 50%. 

3.2.C AEDC hotshot wind-tunnel nozzle.--The problem considered corresponds to the case referred to 
as "Hotshot 1" by Edenfield [15]. The nozzle geometry is shown in Fig. 4. The results presented assumed 
a one-dimensional expansion of equilibrium nitrogfin. The experimental wall enthalpy distribution was 
used as Hdenfield used in his calculations. The stagnation pressure and temperature were 11,500 psi and 
S400°R. 

Ece.ifield [15] considered the nozzle discussed in this section ror preliminary investigations lead- 
ing to the design of contoured nozzles fir hypersonic hotshot wind tunnels with H«, = 20. Edenfield used 
a numbe- of theories to predict the downstream boundary-layer displacement thickness, but the available 
methods rf prediction either failed to give a complete solution for the nozzle or the results were found 
to be unacceptable. Attempts to solve the problem using the Elliott, Bartz, and Silver [13] integral 
methoa friled at z/r* = 1350. Tl.-s fsi lure was attributed to the assumed power law total enthalpy pro- 
files usod in the integral method. All other attempts to predict the displacement thickness used the 
momentum equation only with the Crocco enthalpy distribation or correlation formulas. 

It should also be noted that the total length of the nozzle was given as 92.087 inches (see Eden- 
field [15]). Using a throat radius cf 0.055 inches results in a maximum value of z/r* of approximately 
1684. However, experimental pressure measurements werß givei for values of z/r* up to approximately 
1850. The pressure data employed upstream of z/r* » 100 corresponded to an isentropic expansion of 
equilibrium nitrogen based on geometric urea ra^io. The transition from the one-dimensiona; expansion 
pressure data to the experimental data is particularly noticeable in large scale plots of the boundary- 
layer thicknesses computed using the present method of solution for z/r* between 100 and 400. With 
reference to the above comments, it is not clear what conclusions should be made in the comparison of 
the predicted and experimental displacement thickness. However, the same conditions were used for all 
prediction methods and the results of the different solutions may be compared. 
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The heut-transfer rates are given in Fig. 5. The results presented for the Integral Method were 
obtained by solving both the noaent'a and energy integral equations with a power law for the velocii 
and total enthalpy profiles. The heat-tra-nsftr rates predicted by the integral method were fro« 30 to f0* 
lower than the rates predicted by the present retiiod. The results obtained with the integral aethod do 
not appear to be realistic, and as noted previously, the method failed at i/r* « 1350. The assuaed power 
law total enthalpy profiles together with the assumed velocity profiles in the integral method resulted in 
solutions which predicted large densiti«-- near the outer edge of the boundary layer in the downstrcaa 
region of the nozzle. The density profiler predicted by the integral method., the method of Enkenus and 
Maher [26] using th= Croc.cc enthalpy distribution, and the present method are shown in Fig. 6 for i/r* • 
984. As noted by Edenfield [15], pitot pressure neasurenents would have det.tted the presence of those 
peaks in density if they had osisted, but the measurements made indicated that such peaks did not exist. 
The density profile predicted with the »resent method showed a increase in density near the wall which 
is chamcterlstic of boundary layers o-er highly cooled walls. 

Fig. 7 shot.! 6*  predictions of the Elliott, Burtz, ind Silver method for both an assisted power 
law and the Crocco enthalpy distribution. For the latter, only the momentum equation was solved by 
the Integra] method. Two solutions are given corresponding to different skin-friction laws using the 
method of Enkenhus and Maher. The present two-dlnenslonal and asixymmetric solutions are in good 
agreement with the other solution procedures which used tne momentum equation only. Other than t'.M 
comments oade previously about the length of the nozzle and correspoding pressure distribution, it is 
not clear why the present predictions should be in good agreement with experimental data for i/r* up to 
1100 and overpredlct the displacement thickness by a factor of two at the nozzle exit. 

3.2^ Back and Cuffel's cool wall nozzle flow.«-.—Calculations were also made with the present 
method to compare with the experimental data of Back and Cuffel [16]. The experimental pressure and wall 
temperature distributitm.» were used in the calculations, and the nozzle calculation was preceded by an 
Inl^t tube (I/y « 60) the leading edge of which was assumed to be sharp and at the stagnation conditions. j 
The experimental nozzle was preceded by a rounded edge inlet tube, [/]• * 45. The present value of Lr was 
chosen to give the best match of the momentum thickness and the other boundary-layer parameters at probe 
0 (z « -2,14 inchesj. ' 

As will bo discussed below, the present method using the previously discussed two-layer eddy viscos- 
ity model predicted temperature profiles which were in less than satisfactory agreement with the experi- j 
mental data. Alternate calculations were made using the eddy viscosity law of Van Driest (1956) [21] 
throughout the entire boundary layer. An Lj > 45 was chosen to give the best match with the experi- 
mental value ->f 3 and acceptable agreement with thn other boundary-layer parameters at probe 0. Results 
of the calculations are presented using both the two-layer and the single-layer eddy viscosity models. 
As will be shown, some Improvement i-as obtained in the temperature profiles caused by the change In the 
eddy viscosity models, but some adverse effects were obtained with the single-layer model, especially in 
the calculated heat transfer, which were primarily because of the shorter length of inlet tube. 

The eddy viscosity profiles at probe 1 (z = 1.12 in.) are presented in Fig. £  For y less than 0,14        -, 
in., the values of e* did not differ by a plottable amount. For y greater than 0.14 Inches, the values 
of e* differed considerably. The two-layer model used the Clauser-Klebanoff outer law and e* tended to ■ 
0 as y * 6. The single-layer model used the Van Driest (1956) law throughout the boundary layer, and E* 
Increased to a peak at y/S  =0.75 and went to zero at y/ä = 1.4. The peak value of the single-layer i 
model was four times the peak value of the two-layer radel and occurred at a value of y greater than the 
boundary-layer thickness which was obtained with the two-layer model. Fven though the values of £ dif- 
fered by more than a factor of two, the values of 6* and 9 were nearly the same. The velocity profile i 
data Indicate £ is better predicted by the two-layer model than by the single-layer model of Van Driest,         } 
while the remaining boundary-layer parameters were in good agreement using both eddy viscosity luodels. 

Fig. 9 shows the nozzle contour with probe positions noted and the edge Mach number as given as in i 
[16]. In the present calculations, the experimental pressure distribution was used from which the experi- 
mental edge Mach number was obtained. Also given in Fig. 9 are the friction coefficient and Stanton ; 
number distributions for the experimental data [16], numerical results using the JPL method of Elliott, 
Hartz and Silver [13] as presented in [16], and numerical results from the present method using both 
eddy viscosity models. The predictions of the friction coefficient by the present method using the two 
models are in excellent agreement with each other from one inch upstream of the rozzle throat to the 
nozzle exit and in very good agreement In the region upstream of the throat. The differences in the 
present calculations from z = -2 to 8 inches w^re due primarily to the difference in the inlet tube            i 
length (kp = 60 with vho two-layer and Lx » 45 with the single-layer eddy vlscosit) müdel) and, as will 
be seen from the velocity profiles later, the differences exist only secondarily because of differencev 
iii the eddy viscosity models. The JPL method predicted a friction coefficient distribftion which was in 
good agreement with the experiirsntal data and the present predictions in the region of the inlet tube           | 
but in poor agreement throughout the nozzle. In fact, the Wl method predicted values for C-/2 which 
were less than 50% of the present or experimental rejults.                                           | 

Comparison of predicted and experimental Stanton number distributions are shown in Fig. 9. The { 
present results using the two-layer eddy viscosity model predicted well the Stanton number in the cor 
vergent portion of the nozzle but overpredicted the heat transfer in the divergent portion of the 
nozzle. The JPL predictions are in excellent agreement with the experimental date in the throat 
region but are low in the divergent portion of the nozzle and are even lower in the convergent section ? 
of the nozrle. Over-all, the results of the present method do not compare quite as well with the I 
experimental data as do the results of the JPL method. The present method with the single-layer eddy i 
viscosity model yields results which are about 15% higher thaii the results with the two-layer model. | 
At the inlet of the nozzle, the higher prediction is due primarily to the difference in tube length. j 
Other calculations, which have been made with the present method and results of which are not included | 
in this paper, indicate that differences in Lj have a more persistent effect on tV.e stanton-number 
distribution than on the skin-friction distrioution. Thus, the calculation with the shorter inlet | 
tube is expected to predict a higher Stanton number. I 

The justification for choosing different lj  can be seen in Fig. 10. The two calculations with the 
present method yield essentially identical results for the momentum thickness. The results for thj 
displacement thickness are slightly different in the inlet and the first part of the convergent portion 



of the nozzle out a:t nearly the saiee for the re-^iijer of tin nuzzle.  A coaparsson nit: the results of 
the JPL aethod and th»" ^xperincntaÄ data shoH- ver. good agr.-.£;nt except in the diverg.-r.t portior- of the 
ncziie. Another difft-r'-nce is that the .n'L mthad predicted  »ore pronounced peak in b^fh i  and '.'  at 
the end of the inlet ti-.De. Also, the -JPL ac hod t-id experira-.- tal data she- ■'  ncgitive ?ven as far 
downstreaa as probe 5, -.^eieas th^ present method clearly prtiicted a -osilive vali-e of ;* at probe S. 
The edge Mach number distnbutio;. 5ho«n in J-'ig. ^ «(uld require that the flow be positively displaced 
froa the wall toward the r.ozzle centerline frosr z = IS inches to the nozzle exit. 

Tho energy thickness distributior (Fig. ,0) predicted by the present octhod agrees ver)' well with 
hot'; th-- sxneriaentai data anJ the results of the JPi. octhot'. Again, the predictic-: with the shorter 
1.7 WCJ .rl'ghtly higher. 

The velocity profiles predicted by rr.-,' pre'snt aethod using the two-layer eddy viscosity mo^cl shown 
in rig. 11 arc in excellent agreeaent with t'  ^-xperiaental data even though the value oT 4 preJicted by 
the present Tiethod is smaller than the experiaental value.  It is interesting to note that the two-layer 
eddy viscosity model yielded a much be'.t«: prediction of the velocity ratio than did the single-layer 
model at probes 0, 1, and S, but at prices 2, '•>, and 4 the si/igle-laver eddy viscosity mode! gave a 
slightly better preJiction. 

The velocity profiles are also shown in t-ig, 12 in ;!w-of-the-i.all coordinates. The agreement 
between the present piedictions and the experimental data is very good except at probe 5. The present 
calcuiat ons show nuch lers difference than appeared in Fig. 11. The one exception is near the outer 
edge of >:he boundary layer at -iobe 0 where the differencs appears auch greater than in Fig. 11.  In the 
law-of-the-wall coordinates, the two-layer e»idv viscosity mcclel consistently provided better agreement 
with the experimental dat^ than did tne single-layer eddy viscosity model. The lack of agreemer.t between 
the present calculations and ths experimental data at probe S is particularly noteworthy.  In Fig. 11, 
the agreement was very good, yet in Fig. 12  the results from the present method were about IS* lower than 
the experimental data. As was shown in Fig. 9 at probe S, the value of the friction coefficient from 
the present calculations was -^fcout MS  greater than the experimental value. Thus, the value of u for 
the presert calculations is 15% greater than the experimental vaiuc, and therefore the curves ror u*fy+) 
fro« the present calculations are ISX  lower and 15% to the right of what the curves would be if the 
experimental ar.d present predictions of i^ were the same. Since velocity profiles in law-of-the-wall 
coordinates are sensitive to changes in the measured or calculated skin friction, considerable care 
nusi be exercised in conparing velocity profiles presented in law-of-the-wall coordinates. 

Temperature profiies are given in Figs. 13-1S. In Fig. 13 the temperature data are given in ehe 
form of the temperature difference ratio {Tt - TK3/(T0 - Tw). Fig. 14 presents the same data but using 
ehe ratio T/Te. The results of the present method using the single-layer eddy viscosity model agree 
better with the exp^riaental data near the wail and near the outer edge of the boundary layer while t'.e 
two-layer model results agree better with the experimental data from y/i  * 1 to y/^ = 3 or 4. 

While the temperature difference ratio of Fig. 13 i« convenient in that the data are bounded by 
zero and unity, this choice of coordinates obscures an effect shown in Fig. 14, 

At probe S the static temperature drops from the wall value to a value less than the edge value 
and remains below the edge value throughout the boundary layer. This effect occurs in both the 
experimental data and present prediction results. Further, the numerical results predicted a slight 
rise in teiipcraturf; near the wall before the temperature dropped. This effect was expected but did 
nc; appi... in Fig. 14 because it occurred so near the wall. 

The temperature profiles presented in law-of-the-wall variables in Fig. IS are not in as good agree- 
ment as the profiles in Fig. 13 and 14. In the law-of-the-wall variables, both T+ and y* are affected 
by cnanges in Of and, in addition, T+ is strongly affected by changes in the wall heat transfer. Thus, 
at probes 2-4, where the experimental ajid predicted values of skin friction and heat transfer are in good 
agreement, the velocity profiles in law-of-the-wall variables are in good agreement. At probe 0 the 
present method underpredicted the heat transfer and the experimental velocity profile was lower than the 
calculated profiles. At probe 5 the present method overpredicted the heat transfer and skin friction and 
calculated velocity profiles were lower than the experimental profile by an amount equal to the over- 
prediction of the heat transfer less the overprediction of the friction velocity. Also, the calculatod 
velocity profiles agree better in Fig. IS than in Fig. 13 and 14 except near the outer edge of the 
boundary layer where the difference was greate--. The caution advised in comparing velocity profiles in 
law-of-the-wall variables is more strongly advised when comparing temperature profiles in law-of-the-wall 
variables. 

Mass flux ratio profiles are shown in Fig. 16. The good agreement between the numerical results and 
th« experi.i^iital data is consistent with the agreement obtained for the velocity and temperature profiles 
except at pvobe 5. At this probe location in the divergent portion of the nozzle, the edge of the experi- 
ra-.Mt.-l boundary layer was at a value of y/9 = 37 which is well off the figure. The maximum value of 
y/'j =  20 shown in Fig. 16 corresponds to y/$ = 6.5 in Fig. 14, and so the mass flux profiles at probe 5 
i'.i-e censistent with the velocity and temperature profiies presented in Figs. 11 and 14. 

The present calculations discussed above were all made with F'rt = 0.9 = constant. Recent results of 
Simpson, Whitten, and Moffat [27] have strongly indicated that Prt should not be constant across the 
boundary layer. They suggest Prt = 0.95 - 0.45 (y/ä)2 in the outer portion of the boundary layer. 
Calculations were made with this variation in Prt and only small differences in the results occurred. 
The aost noticiable effect was in the temperature profiles in which the results with the two-layer eddy 
viscosity model were shifted slightly to the right. The agresment with the experimental data was only 
slightly improved, and the velocity profiles were unaffected. Since only small changes in the numerical 
results were obtained with the variable Prt, those results are not shown. 

If Prt were constant, the eddy conductivity would vary directly as the eddy viscosity; however, if 
Prt viries with y as given above, the values of the eddy conductivity would be greater than the values 
obtained with constant Pr^. Thus, changes in Prt affect the solutions of the energy equation directly 
but affect the solutions of the momentum equation only through the coupling of the equations. The effect 
of variations in Prt therefore appears primarily in the temperature profiles. 



The eddy CTnJwvtivity is also affected by changes in the cdäy  viscosity. Kith Pr, constant, ?he 
change in eddy Vi>c<,*itv using the sir.gle-layer »odei instead of the ti.o-l«yer model producer a like 
change in the edJy condjc i t ivi ty.  If the eddv conductivity used in nuaerical calculations of turbulent 
hounilary-Iayir flovss is obtained iroo c* and Prj, ihen changes in c*  appear to affect t* «ore than do 
changes in Prj. 

j.J.c Bac>. u!.d Cuffel's iicat-d wall nj;ile floors .--By lonerin^ the stagnation temperature and 
circulating heated hater tbro^g!' the coolant pasrag-s o. ehe ir.K-t and nozile, Back and Cuffel (.7] were 
able to obtain expcriitentdl cL.ta vith süghi wall heating (Tw/T0 = 1.1), Calculations xere aade with 
the present two-layi'i eddy vi^cciity «odel using the experinental pressure distribution and a constant 
hall tonperaturc. Three sets of predictions obtained with the present nethod are presented; Lj  « 60 
jd TK/Ty - i.l, LT = 20 and TK/T0 =1.1. an i Lj --  60 snd Tw = T3dw. 

I'istributio.is of 9, J* and Cf arc given in F;g. 17. The present predictions of 9 and «* (with 
^ s 60i agree ve.-»- well with the experioental data and the JPL results. As in the cool wall case, 
the JPL method predicted a sharper peak in 6 and i* at the end of the mist tube than did the present 
method. With L-j- = 20, the present method underpredicted 6 and 4* in the convergent section of the 
noi:le but, from the nozzle throat downstream, predicted essentially the saae distributicn of Ö and 
j* as yith bj- = 60. 

The piesent predictions of Cf are in good =!greeiient with the experiaentai data and with the JPL 
results in thr inlet and the diverge t section of the nozzls. The JPL oethod underpredicted Cf in the 
convergent section of the nozzle ar overpredicted Cf in the throat region. The present method with 
L7 = 60 and Tw/T0 = 1.1 did not give a converged solution beyond z •; 9.4 in., and the prediction of 
cf began to deteriorate at z = 8.5 inches. The proble« of obtaining predictions with wall heating and 
long inlet tubes is discussed in the next section. 

Velocity profiles are presented in Figs. 18 and IS. The agre^ssnt between the experieental results 
and the present predictions with Lj = 60 is very good for all -.'alucs of z. Kith Lj » 20 the present 
method underpredicted 9, and as shown in Fig. 18 the predicted velocity profiles are thus shifted to 
the right. This effect is most obvious at jrobe S but does appear at probes 2-4. Since the predicted 
boundary layer w?s correspondingly thinner at probes 0 and 1, the effect does not appear there. 

The present method with L-p = 20 overpredicted uT at probes 0 and 1 and thus the values of u* 
(Fij;. 19) are correspondingly smaller. Since the predicted boundary layer was also thinner, the 
maxiaum values of y* are soaller at probes 0 and 1. The other predicted velocity profiles agreed 
quite well with the experimental data in the law-of-ths-wall coordinates. 

3.2.f Coupling between tube length and wall heating.--Ir. the present calculations for tue heated 
wall case of Back and Cuffel [17], difficulties were encountered near the nozzle throat. With Lj. = 60 
and Tw/T0 » 1.1, the prediction of cf becan to deteriorate at z = 8.5 in. and the solution failed to 
converge at z = 9.4 in. Calculations with other values of Lj and TW/'T0 indicated that the failure 
was related in part to the very large values of the pressure gradient parameter ß in the throat r«gion. 
The value of ß is a function dp/ds and 5, and as LT is changed, 8 is changed. Changes in Tw/T0, with 
T0 constant, had little effect on ß but did affect the n-C coordinate transformation. Points at which 
solutions failed to converge together with pressure gradient distribution are shown in Fig, 20. The 
data points shown correspond to calculations aade and faired curves were drawn through these points. 
Calculations were also nade with lyj- = 45 and 30, and the corresponding data points lay between the 
curves for Lj = 60 and 20. 

Kith Tw/T0 = 2.5, failure occured at a point where ß was 1% of the peak throat value. The trend 
of the curve indicates that at sufficiently large values of Tw/T0, failure would occur almost as soon 
as any pressure gradient was encountered. 

The mechanism by which the amount of wall heating couples with the value of 4 (or ß) to limit the 
region in which solutions can be obtained is not clear!)- understood. However, the Levy-Lees transfor- 
mation is a similarity transformatinn f,-^ laminar flow and has been employed successfully by many 
investigators, particularly for flows over highly cooled walls. The transformation has in fact proved 
quite satisfactory for flows over insulated walls as shown above. The inclusion of the density in the 
transformation of the normal coordinate does indicate that the n-C coordinates are most useful in 
calculating flows over highly cooled walls. While other investigators may have encountered problems 
in using the Levy-Lees transformation, the authors believe this is ths first documentation of an 
apparent upper limit on the applicabili,^ of the Levy-Lees transformation when used in turbulent 
boundary-layer theory with strong favorable pressure gradients, 

4. CONCLUSIONS 

A method has been developed and tested to predict turbulent ooundary-layer flows of nonreacting 
and equilibrium chemically reacting gases through axisyimijetric nozzles with strongly favorable pressure 
gridients and with wall cooling and heating. Some significant results of this study were as follows: 

(i) For flat-plate flows, predictions using both the Van Driest and Reichardt inner eddy viscosity 
models, when used in a two-layer eddy viscosity model, gave identical results. The Reichardt law was 
found to be irore efficient in computing time. 

(ii) The present finite-difference predictions were in better agreement with available experimental 
wall heat-transfer and boundary-layer displacement data than integral methods for solving compressible 
turbulent boundary-layer flows in rocket nozzles and hypersonic aerodynamic wind-tunnel nozzles, 

(iii) Predictions of velocity and temperature profiles, wall heat transfer and skin friction, and 
integral boundary-layer thicknesses were in excellent to good agreement with available experimental data 
for rocket nozzle flows. 

(iv) Further refinements in eddy viscosity models and an independant expression for the eddy 
thermal conductivity are needed. 

(v) Under the boundary-layer transformations used in the theory, strong coupling effects were 
found between wall heating and strong favorable pressure gradients. An upper limit was determined 
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fcar the applicability of the Levy-Lees transfonatior. in calculation of boundary-1 aver flows over heated 
walls with favorable pressure gradients. 
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MACH NUMBER EFFECTS T.J TURBULENT FLOW 

(*) J.J.D. Dommgos 
Institute Superior Tecnico, l.isboa 1, Portugal 

Starting from-fundamental assunpt.^ons cf microscopic Thermodynamics and 
continuum mechanicr the existence of a velocity potential for the  flow of viscous fluids 
was prooved as a general property. The implication!! are discussed and the role of co.tipres- 
äibility as an esssenci.51 feature cf turbulence, either in subsonic or supersonic flows, 
is stressed. The apparently contradictory consequencj of zero vcrtlclty in flows which 
derive from a potential is clarified througf.h a discussion of concepts implicitly assumed 
in the usual definitions cf mean density, mean velocity and Thermodynamic equation of sta- 
te. 

Developing the b&sic assuapcions, the general partial differential equation 
for the velocity potential is deduced. It contains as 'particular cases the usual equations 
of inviscid fluid mechanics. The fundamental equation As a third-order, quasi-linear-par- 
tial differential equation. 

One of its approximations is a generalization to the three-dimensions cf 
Burger's equation, whose general solution is presented. The meaning of the approximation 
is discussed and its precise physical meaning stressed, it is shown, as a mathematical 
consequence, that pressure coupling decreases with increasing Mach number. Fcr H2>>2/(Y-1) 
which for air means H >:-2,25 the coupling practically disappears and the mathematical so- 
lution becomes exact. 

The results are applicable to general supersonic viscous flo.vs because the 
theory is concerned with instantaneous velocity fields, without separation into mean and 
tmbclent quantities. 

The solutions found are assimptotically exact solutions of the time dependent 
three dimensional Navier-Stokes equations for a viscous and compressible fluid which fol- 
lows a polytropic evolution P = Co'. 

NOMENCLATURE 

a - local velocity of sound 
C - constant in a polytropic evolution 
c - specific heat per unit mass at constant volume 

'l-f 
specific heat per unit mass at constant volume 

Y-l 
(see also formula 31) 

G - mass velocity 
i,j - running indices (i/j=l,2,3) 
M - local Mach number 
P - pressure 
t - time 
V - velocity i=G/o) 
V* - velocity of incompressible fluid (=G/p*) 
x.,x. - spacial coordinates 
S - arbitrary function of time; also constant 
Y = politropic exponent (usually Y=C /C ) 
e -constant p v 

$ - velocity potential 
X - constant 
p - specific mass per unit volume 
p*- conventional specific mass per unit volume in incompressible fluids 
w - vorticity associated with V. Also angular velocity 
w* - vorticity associated with V* 
¥ - external potential per unit mass 
v - kinematic viscosity 
9,6* - solutions of heat equation 
d 
dt = substantial derivative (following the motion) 

Obs: repeated indices always means summation on that index 

Alsc ' ^ -it -it vj 
= I (- 3x -)■ 

j 

v*) Professor of Mechanical Engineering, 
Division of Applied Thermodynamics 
Director, Nücleo de Estudos de Engenharia Mecänica 



30- 

INTRODUCTION 

Any 
ty as a £t 
vorticity 
vorticity 
incompress 
Movever, tu 
proach. Th 
dered one 
In doing s 
ning from 
the reward 
snce. 

theoretic? 
arting assa 
which is co 
is mostly a 
ibility and 
rbulence is 
is oaper is 
of the basi 
o, we are n 
first princ 
ing aspects 

1 work 
T;p K ' on. 
nsiaere 
conseq 
aortic 
yet an 
a firs 

c featu 
ot purs 
Dies, 
of cla 

concerned 
Bes: -ies, 

d a distl 
uence of 
ity ar 
unsolvP'J 

t atempt 
res of t^ 
uing cont 
in a diif 
rif;ing c 

wicn 
ail 

rit ive 
the a- 
h«; ba 

turbulence Invariably assumes incompressibili- 
known theories explain turbulence in termrf of 
feature of viscous fluids, probably because 

ierence condition on solid walls. In a sense^ 
sic stones of all known theories of turbulence. 

;rcfaler., which probably justifies a different ap- 
in such direction. In it, compressibility is conSJ" 
rr-;encc and vorticity a  matter of interpretation. 
ridiction with established ideas but logical reaso- 
<;rent wi-y. If contradiction energes, it has always 
o .cents and ideas accepted bv habitute and conveni- 

1.1. Fundamental backaround 

The problem of turbulence is largely a mathematical problem, which we try to soivs 
by physical reasoning based on experimentation, assuming validity of the basic equations 
Thii role of experimentation is to find acceptable simplifications, or to find new funda- 
mental equations if the known ones were unable to explain experimental f^cts. Presently, 
we can not reject the Navier-Stokes equations because they have not been solved, and by 
the same reason we do not know its range of validity. 

The mathematical difficulty is due to non-linearity and vectorial character of the 
momentum equations. However, because in laminar flows the equations can be simplified for 
one or two dimensions on the assumption of syametry.-because an order of magnitude argument 
allows the heuristic simplification of mcompressibility and turbulence apnears in subso- 
nic ("incompressible flows")flows, ws kept this simplification even knowing .hat, two di- 
mensional incompressible fluids do not allow turbulence.At the same time, we kept most of 
the assumptions and results from the theory of inviscid incompressible fluids, to the po- 
int of using it as the most basic practical standard to measure fluid velocities (through 
Pitot tubes, or equivalent'. 

Inviscid fluid theory, uncontroversly known to be Thermodynamically untenable, 
owes much of i'-s usefulness to the existence of a velocity potential which considerably 
.simplifies the mathematical treatment. If this is so, we can iustifiably ask why a mathe- 
matical theory for the flow of viscous fluids has not emerged based on such simplifying 
assumptions'! xnis theory would benefit from the inclusinn of viscous effects and the ma- 
thematical advantage of transforming the three momeritum equations into only ons scalar e- 
quation. The answer to this question, as long as we can interpret past work which discar- 
ded such an approach, is: 

a) The flow of an incompressible fluid which follows a velocity potential is also 
an exact solution of the Navier-Stokes equations with the property that viscous 
effects automatically cancel; besides, their differential equation beeing only 
of second order does not allow the non slip-condition combined with zero normal 
component of velocity at a solid wall. 

b) In turbulent flows, incompressibility and potential flow only gives rise to tur- 
bulent normal stresses on the Reynolds approximation, not shear stresses. 

Incompressible and incompressibility have been underlined in the above statements 
because both objections have their roots there. In fact, if the velocity field derives 
from a potential and the fluid is incompressible, the motion is completely defined by the 
equation of continuity (conservation of mass). However, if the restriction of incompressi- 
bility is remooved, both of the objections above desappear, as will be shown. 

Because of such obvious advantages in having a scalar equation instead of a vecto- 
rial one for general 3-D flows, we can ask it  the existence of a velocity potential for 
a viscous fluid is just an accident cr a general hiden fact. An answer to this question 
has been given elsewhere (l) . The main conclusion is based on the following hypoteses: 

- The fluid can be considered as an isolated, homogenous,Thermociynamic system. 

- The microscopic motion of elementary particules can be described by Newton's Me- 
chanics. 

- The typical assumptions of continuum theories are valid. 

With these hypotesis, we have shown that a velocity potential always exist LlJ • 

Because we are mainly concerned with turbulence, the abo"e assumptions seem to us 
much more basic than any others used until now in turbulence theories. They can give rise 
to different fundamental equations of motion or simplify the general Navier-Stokes equa- 
tions. 

Tho above conclusion (as any reasonincj based in Thermodynamics) rejects incompres- 
sibility as physically untenable. Besides,incompressibility and viscosity are contradicto- 
ry at a microscopic level,as we understand them. So, we reject incompressibility on the 
present approach not only on these physical arguments but specially for the mathematical 
simplification which it allows through the existence of a velocity potential. 



30-J 

The existence of a velority ootentiil can be accepted on the above basis or, as a 
fundamental axiom to accept or to rejejt on experimental evidence. 

By a velocity potential we riean that the -acroacopic velocity field (V) i5 the gra- 
dient of a scalar funcriu.i {:): 

V = •■-•ra-;: 

whsre • is .scr.e unspecified constant. 

The firpt logical consequence is that: 

. = -~ curl V = 0 

which noans. ^n identically zero vorticity field, or an irrotational flow. 

Of course, to reject vorcicity as non-existent In Jny viscous flows is probably too 
much ror anyo e concerned with turbulence. However, vorticity can be looked just as a ma-t- 
-ter i.c converienco in interpretation. 

In fact, the macroscopic velocity field is not a uniquely defined concept unions we 
define the density, because tie only quantity acessible for measurement is momentu:i or 
mass velocity. 

Let G be nass velocity, :* be the conventional density of an Incompressible fluid, 
V* its associated macroscopic velocity. We have 

C, --  :*  v* - cV 

If V = ■ qrad ; we have: 

curl ;>V) = 0 =curl {~|— V*) 

and by a vectorxal identii"^.vith/v meaning veccorial product): 

curl (-£- V*) =grad{-^-)AV* + -^- curl V* =0 
C 3 0 

u* _ _i_ curi v* =_L y*Agrai log   (-—-) 

which shows that the macroscopic velocity field V* has vorticity provided c is not cons- 
tant. 

The question was discussed elsewhere [2J in detail. It emerges that the existence 
of vorticity in viscous fluids can be considered a consequence of the assumption of incom- 
pressibility. 

The assumption of incompressibility devoids the pressure of its Thermodynamic mea- 
ning transforming it in a compatibility parameter between the momentum and the continuity 
equation. To our velocity potential is associated the Thermodynamic equation of state. So, 
both approaches are compatible and vorticity a matter of convenience. 

Remark that,in a fluid at rest, D*=P and that, for a given * ,■ the vorticity cai. be 
considered a measure of departure from incompressibility. 

1.2. - Outline of the mein contribution 

Because our interest (here) is turbulence, and because the basic assumptions of Na- 
vier-Stokes equations have not been rejected, our fundamental equations can be derived 
from them. As a first step, we will consider constant kinematic viscosity, and the general 
equation for the velocity potential of a viscous fluid with equation of state P^o* will 
be deduced. This equation is of third order, which allcvs the specification of the usual 
boundary conditions of non-s3ip and zero normal velocity on a solid boundary. The exact 
solution of this general equation is not known. However, one of its approximations is a 
3-D generalization of Burger's model. We feel this to be one of the first interesting re- 
sults because for the first time it is shown that the Burger's model has a precise physical 
meaning as an approximation to real turbulence. This gives a new interest to this widely 
studied equation in its one-dimensional version. This approximation gives support, as a 
mathematical consequence, to turbulence as a phenomena characterized by intermitency, a 
fact experimentally known but not explained by known theories. 

The effect of the mathematical approximation beeing to neglect the instabilizing ro- 
le of pressure coupling it does not account for production of turbulence energy. However, 
the oissipation mechanism is well described which as some important consequences in desa- 
greement with widely accepted assumptions. Giving physical support to the mathamatical 
study of the one-dimensional Burger's equation due to Saffman, we can plausibly accept 
its validity to the 3-D case in questioning the Kolmcgorof assumptions. If these results 
car be extrapolated to 3-D is yet an open question whose definite answer is only dependent 
of working t.'me, because the exact general solution will be shown. 

From the intermitency or "shock-wave" behaviour of turbulence, emerges the unnatural 
character of Fourier analysis in describing turbulence, and an insight is gained into the 
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why of ansuccssfull attempts to describe the turbulent field by truncated series or Inte- 
gral expansions. 

TaVing a less classical view of the equation it is si.avr. »hat the same type of 
awproximation has a particular solution of the damped travelling wave type -rh.-'.'-h pives 
the proper form to the usual one and two point correlation curves. 

2.   FUNDAMENTAL EQUATIONS 

- Assu-iing; 

The validity of the Navier-Stokes «quations in the form 

5Vi . ■,     a''i  r2«   i  3P   av n  ■     , ■, ,, /. -r— = v7'V. r' 5-- (i,3 = 1,2,3) ctt    3  .tx.      i   p  3XJ    ?x 

- A Thermodynämic equ.jtio;! of state P - CD' 

- A continuous velocity potential ■•■  such that V = grad $ 

- v,C, - physical constants 

The momentuir equati'';-s can bs wr'.ttf. n as: 

1)  I  _5^_ + £_^ 5_^_ _ „n? .11 i_  3F  __  Sf 
?t  5x.   5x.  3.<.3x.   '   5x.    0   3)C^    3x, 

i    j   3 i       1        i     1 

defining now: 

2) F = |"-f or, ifw 1     t =j?r**'% 

tion 1) can be put in the form 

3x. \ c-t    2   3x.  Jx. / 

and integnting in x. 

41 If+ "r-ä-4l;-^2*+F+^B(t) 
where S(t) is an arbitrary function of time (or a constant) to be detined. 

Equation 4) is the first fundamental equation which we will write in a nore com- 
pact form as 

5) "It- + -f- (-||-)2-vV2* = -F-T+f? 

where     . H  . j _ I     H       3» 

The second fundamental equation is the continuity equation 

3V, 
df 
dt    "     3x. 

j-a- log p = V'f 

where  d is the substanclal derivative. This equation is now written in tentis oi  F throu- 
dt 

gh relation (2): 

From (2) taking account that F >0 if r>l 

log F = log —i- + U - 1) log D 

or 

1   .   (jj-llF 
log p = -j-p log —^J- 

which transforms (6) into 

or, because  * - 1  is a constant 
CV 
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8) 
dt log F •( r-i3' 

Multiplying now (5) by -1, and taking the log of both members 

9i log -1—2.  + 1  (_4i„)J.v?s^J .6 = log F 
3 

Taking the substantial derivative of both members of (9), log F can be elimi- 
nated using (7!, resulting 

Taking into account that the substantial derivative of a Icgaritm follows 
the rules of the usual derivative, (10) can also be written as 

where, of course, it has been assumed that 

Equation (11) is the iundamentil equation for the velocity potential of a 
Viscous fJuld which follows i po}ytrcpic evolution of exponent if> 1. We chink that it is 
presented here for the first time. 

Before its usual simplJficatlons are discussed, we consider briefly the case 
of I«!, which corresponds to »n is'-thi nal evolution. 

If jf=l, F = C log p, v'nd the continuity equation becjflies 

13*  dF  _ „ r„t. 

and the fundamental equation for the velocity potential assumes the form: 

14) df HI+ ^-l^''-^+^ =C^ 
2.2     -  Particular cases 

To show how the fundamental, equations deduced contain the usual equations of 
inviscid fluid mechanics as particular cases, .'e briefly recall some of them. 

For an incompressible fluid, p=0l \,i   = 0, and equation (5) redaces to 

i +  i (.,|±_)2+ _£ + ^ = B 
t   2       ox p 

15) _H 
3 

If the flow is steady 

161 -i-'-e-' *-s- * • ■ s 

which are the usual Bernoulli equations, with 6 a constant to be found from a known value 
of the l.h.s. 

Usually, f is the gravity potential. 

Remark that ß is the same constant for all streamlines. 

For a compressible fluid, instead of we will have F, as usual. 

If the fluid is inviscid, v = 0, and 11) reduces to 

17)-it^ +-|-(-|4:)^S)-(Y-i)Hf|- + -i-(-|i,^-ß}^ 

The usual expression, however, uses generally as equation of state a lineari- 
zation of P =Cp and the final expression is formally analogous to (14) with v=0, having 
instead of C a different constant, say c*. Also, a different rearrangement of terms in 
(17) is usually presented which is get after expansion of 

d   a  1 a»   3 
dt _3t    3x.  3x 
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The acoustic pprcximation of (17) is 90t, linearizing P'-Co and neglecting 
convective terms: 

dt '  ?t 

SO: 

16) 

at2 

1.3 .-  The generalized Burger's equation 

-Let us assume 

19) 
3v -5~(-fj-)2-vV2«+y-6=e 

•^•th c an arbitrarily small constant. 

In this case, we get from (ID 

0 = -(Y-DeV* 

If £ = 0, (1?) would be a particular solution of (11), 1* (11) did not Implies 
c f 0  for its validity. However, on a first approximatior. we can possibly infer that the 
limit term of tlw solutions of 18) when E-»0 would, in a sense/be very near a particular 
solution of(11). This, of course, is only an heuristic justification. Its physical impli- 
cations are clearly seen from (5): They correspond to approximate P by e, and so to eliminate 
the coupling do to P and c. This approximation originates a generalization to 3-D of Bur- 
ger's equation. In fact with t = 0. 

20) M 
3t 

+ -r<-%>2-^ = E 

taking the derivative in x. and noting that 

= V, ax. 

we get 

21! 3Vi     3Vi 
2l} JT + VilT^ ^vi 

and for i=j=l 

(i»1.2,3) 

22) av 
at 

+ v av 
ax 

a^v 

3x2 

which is the equation proposed by Burger's as a mathematiral model for turbulence more 
than twenty years ago. This equation has been the subject of much recent work related to 
turbulence, as a mathematical model for studying properties of the Navler-Stokes equati- 
ons. 

The exact solution of (22) was found by Hopf {l}  and Cole fl wh0 show that the 
solution of (22) is related to the solution of the heat equation: 

through 

ae 

23) V 

a2e 

axJ 

2v a 
ax, log e 

However, (22) as always been consider »d as ma*:'^); viical model ilustrating some 
features of turbulenc». Probably t:oaüse Birgex''; pror,sej, not deduced it, a precise phy- 
sical mcanin'7 rega? Ung turbuluiice had not been cjfvvn previously to the equation. The na- 
me of "3urgiience" i.sed by Saffman ^51 (who CJUTU; . sole) in h4s study of the equation re- 
flects this feeling. T" >'? probably justifj.es why no Mtempt is known to generalize the 
model to V'). 

As can be shovn fQ » t1"'8 generalized equation (20) has the general solution 

24)     * = - 2v log (f 
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and 9  is a  solution of 

25) 40     .  vVJ9  . e9 
<>t 

which in itsel: is related to the solution of 

26) 36« 

by 

H  - v7 

27)   9 » 9* exp et 

So, tha value of e does not affect the value of V , and the matheinatical heuris- 
tic approximation appears with some support. 

3. APPROXIMATE SOLUTIONS 

3.1. General rewarlcs 

Retracing steps taken so far, equation (11)express mathematically the model which 
emerges from the basic assumptions and is compatible with the classical Navier-Stokes e- 
quations. It is a quasi-linear equation of third order. Equations of this type have not 
deserved, until now, any detailed study, regarding their properties and behaviour. So, for 
the time beeing, we can only state some genera.1 properties and guess the ethers. 

Regarding the behaviour, and extrapolating from linear equations, the behaviour 
•esms to be "intermediate* between classical parabolic and hyperbolic, as long as they 
allow solutions typical of both types according to the value of the coeficients. However, 
in the quasi-linear equation, the higher order derivatives have the form 

28) v _?±-  Üi 
j  3xj  3x[ 

with 3i»    3$    3$ having, generally speaking, positive or negative signs. So, we ex- 
3X, '  3xj ' "5x7 

pect the equation to have a behaviour typical of a mixed type, with the increased comple- 
xity of a change in type probably associated with the time, besides the space. 

Ir. what concerns boundary conditions its thl»-d order nature allows the soecifl- 
of a nor.-slip boundary condition 

cation ^besides the normal component of the velocity fiald in a solid boundary (in a way 
similar to the boundary-layer equations expressed in terms of stream function). Because 
the equation is of the second order in time a specification of $  and 3$ would also be 

necessary. 

If we could find exact solutions for ♦, we would get 0  and P from the continuity 
equation. The complexity of the equation prevents such hope for the near future (though 
a numerical solution seems presently at reach), so approximate solutions must be thought. 
Burger's model is one of such approximations. 

In order to master the consequences of approximations involved, we first remark 
that the third order derivatives are a consequence of the transport or convective terms 
in the continuity equation i.e.  „ 31oqp     3(|i    anip 

j  Sx^   '  Sxj *   Sxj 

Besides, the third order detivative is important for the specification of the 
non-slip condition in a solid wall. Like in the boundary-layer approximation we can possi- 
bly infer that, far from the wall, these terms can be neglected. The set of fundamental 
equations would then reduce to 

or 

30) _no2F = _(Y_1)V^ 

31) F = exp{ -(Y-1) I  V?(}.dt) 

and 

32) 
at 

!-vV2(j. + e= -exp{-(Y-l) I  720dt} M: 
which can be solved step 'ly stpp starting from c known value of $.  For this, we first re- 
duce(32) to the linear heit equation 
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through 

with 

•II v726-r66»H(x J'' 
at J 

33) * » -2vlog9 

34) H(x ) *  F(to,x ) 

The equation can aiso be solved by iteration. 

In this approximation, we stress, the coupling between equations is retained 
though disregarding the transport terms in the continuity equation. 

3,2. Mach number offects 

The fundamental equations can be expressed in a slightly different form If the 
local Mach number is explicitly taken Into account. This allows a straighfoward interpre- 
tation and an assimptotically exact solution for very high Mach numbers. 

Because we assumed P=CpY, the local velocity of sound is given by 

/4E_. /£>-. 35) a = S~~- ' /yCo' 

So, the local Mach number is, by definition 

/-?*:'' 3*1 „y p 

Taking into account (35), (36), and (2), F can be expressed as 

37) P =  1 -,'-i4-i' ■'■, '  (Y-DM2 • ax ' 

which introduced in the fundamental equation for a vitSiout body forces gives: 

38) 5|_ +( i + —i— /( a^^^v^^ . 
3t     2    (Y-DM2    3xj 

which is another exact form for ♦, the coupling with the continuity equation apoearlng now 
■ihrougth M. 

If 

39) M2>> 
Y - 1 

The equation is approximated by 

,0,-if--i-<-%'■-»'v. 
which is, again, the generalized Burger's equation. 

The above result is formally exact for M •♦ ». However, as long as variations in 
M do not affect to much the coeficient of  a»  2 in (38) (or if M can be approximated 

( 3x, ' 

by a known function of * the exact solution is known [6j)    we can probably infer that 
2 

M = --j.-  is the boundary where the structure of the flow begins to change due to the 

progressive uncoupling with the continuity equation through the pressure. 

For air, Y =1,4 so the "transition" Mach number would be around 

M = /S-^,23 

Though exact solutions for the initial value problem are known, the boundary va- 
lue problem must also be considered as the simultaneous solution of the continuity equa- 
tion. 

The last one can be solved by standard methods provided the velocity field is 
known. The boundary value problem is reduced to the problem of the heat equation with non- 
-linear boundary conditions. However, if solid walls are present, in the wall we can not 
have, obviously „ v  2  because M=0 and the third order derivatives must be taken into 

account, unless its effects can be expressed by suitable source terms or artificial boun- 
dary conditions. 
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Thou")! definite conclusions regarding this point can not be stated, it seems that 
the boundary region is the only source of turbulence. At least for very high Mach numbers, 
turbulence production due to mean flow gradients appears to be an artificial device of 
ths averaging proems. The previous analysis, we must stress, was concerned with the ins- 
tantaneous velocity field without any separation between mean and flutuatlng quantities. 
And the fact that quantitative estimates and assimptotically exact solutions were found 
starting from basic postulates is obviously an interesting and quite uncommon result... 

.'..?- Further results 

Once the physical basis of Burger's equation is known, all the mathematical studies 
already published gain a new value. These studies are all concerned with the equation 

41) 9V 
3t 

5V 

Sx2 

without any reference to a velocity potential. The general behaviour, of the one-dimensio- 
nal solution will not change, probably, when general 3D flows are considered. 

There are, in the literature, many results concerned with these behaviour and al- 
so some obviously wrong statements, Beeing out of scope to review them here we refer the 
basic works of Cole (4) and Saffman (5). Intermltency, inadequacies of Fourrier Analysis 
and the questioning of Koltnogorov assumptions are remarkably considered by Saffman though 
in the content of homogeneous turbulence. Cole (4) deals with the shock wave bthaviour 
and general mathematical properties. In fact, the equation has been used as a model in 
both contexts, an interesting fact of the present contribution beeing, we think, the uni- 
fying approach. 

Though in a stage of devellopment, we shall refer some further results. The gene- 
ralized version of the equation for which an exact solution was found, is: 

«)   31_+ f^,^,^ v^ 

withfan arbitrary function of f.Those contains, obviously, the Bürge:'s equation as the 
particular case f = 1/2, and will represent(38; if M can be expressed In t-stns of *, (2 
is eliminated by a straiathfoward transformation). 

The exact solution of 42) is related to the solution of 

43) ao 
at 

= yV9 

by the implicit relation givan by 

44) 9=4 f* exp{ —  f*  f(T)dT}dA 
/ ? 6 V  / A o 

as shown in (6), with A, 0i,, A „,arbitrary constants to be chooser.. 

Because thi' integrand in (44) is always positive, there is a one to one relation 
between 9 and $, ä:id because the initial value problem for 9 has only one solution it fol- 
lows that ij has also only one solution, whatever f ($), provided it 1« continuous. 

So, given an initial velocity field V?, the initial potential is given by 

45) ♦„ 

to which corresponds a e(x ,0) given by (44) 

The exact solution of 43) is then 

46) e=(8Tr^t)v.  J£c|9(x),xJ,x5,0)exp-{i;(x1-x1
,)2+(x2-xi)

2+(x,-x;)^4vt}dx/,dxi,dxi 

and * follows from (44), from which V.= a'  is found. 

The above results apply to the initial value problem. The boundary value problem 
fcr 6 is usually non-linear, if a non sero value is specified for V, or pV., except for 

some special fonri3 of f($). 

However, because any solution of (43) transforms into a solution of (42), a particu- 
larly interesting result is obtained for harmonic oscilation in the boundary or by distri- 
buted point sources. 

Because (43) admits the ooiution 

47) 9 = l+Ae"kxcos(wt-ax) 
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The corresponding one dinnensional velocity field is,   for the Burger'« equation 
-Sex 

iBl Vg 1   dB m      Ae  (a»tn(Mt-nx?-kcos(uit-ax)} 
i+AB dx       , . -kx  """ I 1+Ae  cosfut-ax) 

This expression shows that the energy spectrum of V has all the frequencies mul- 
tipies of üi/giving the familiar experimental shape. BesiiJ-s», the two-point correlation cur- 
ves have the usual form, as Is easily verified. 

We also notice that V is represented by .? superposition of damped travelling waves 
which gives the usual shape to the space-time correlations. In these respect, quantitative 
test is in progress with the extremely limited experimental data available. 

In a prospective line we must refer that to each frequency in (47) we associate an 
amplitude A . Besides, k and a, which are equal for (43) are taken in a coordinate 

system roooving with the mean velocity. Scarcity of filtered space time correlations preven- 
ts, for the time beeing, any reliable conclusion, though preliminary results are quite 
encouraging. 
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sraMun 

k  two-layer aodel of the three-dlnenslonal coofiressible rurbulei.t boundary layer Is developed which 
is applicable to flows with pressure gradient and surface aass transfer. The aodel is based on the small 
cross-flow approxiaatloo In which the spreading aetric is ieternined by the Jnvlscid streaallne pattern. 
A aodifled Mangier transformation is employed which permits transformation of the boundary layer equations 
to a two-dlaenslonal foca without transforming the turbulent stress or heat flux.  It turns out that the 
computational speed of the nethod Is rapid enough Co enable equation: for the inviscld stream deflection to 
be coupled with the present method for calculations of strong (supercritical) interactions, such as In the 
region downstreaa of Lhe critical point in reattacbing flows or in regions of strong blowing. 

Solution of the inner (wall) layer for the velocity, enthalpy, stress and heat flux is obtained using 
mixing length theory and the thin layer Couette acdel. This solution is obtained without using a coapres- 
ilbility transformation and leads to a generalized compressible law of th* wall with aass injection.  In 
the outer wake layer an integral moment aethod is used along with appropriate aatching conditions with the 
inner layer. 

Several solutions and experimental coaparlsons are presented.  In particular the effect of positive 
and negative pressure gradient* on the relative scale of the inner and outer layers is demonstrated as well 
as the effect on the stagnation enthalpy-velocity rels'iooship. Results are also presented foi relaxing 
flows where q and (2CH/Cr) initially are far fron their equilibrium values. 

f 

LIST OF SYMBOLS 

Symbols 

A, 

B 

B 

Symbols 

sonic velocity 

(I-Ö,,,) 

parameter in Crocco Integral for wall 
layer, Eq. (24) 

coefficients defined in Appendix 2 

parameter in Crocco integral for vail 
layer, Eq. (25) 

empirical "constant" in lew of the wall 

coefficients defined in Appendix 2 

akin friction coefficient, £q. (38), C. 

P 

2C,  .-, 

(ur/ue)
2 or (h./h^q 

Stanton number 

specific heat at constant pressure 

T 

q 

r(V) 

St 

U, T 

Ei coefficients defined in Appendix 2 U, T 

F Inverse turbulent Reynolds number In 
outer layar, Eq. (A8) U. V 

h static enthalpy 

h + h/h
w 

U 

H stagnation enthalpy 

H H/'He "r 

■i coefficients defined in Appendix 2 ymw 

h flux integrals In inner layer, Eqs. (30) 
and (33). (34) 

7+ 

y 

K empirical constant In law of the wall, 

K - 0.41 
s 

1 mixing length Sr 
L reference length in coordinane tians- 

tormation, Eq. (6) 
V 
9* 

M. Mach number at edge of boundary layer e 

mass flux in inner layer 

surface mass injection parameter PW N^Pe V 

exponent of velocity profiles in outtr 
layer, Eq. (35) 

static pressure 

moleculai Prandtl nuuber 

turbulent Pnndtl number 

heat flux 

spreading metric of inviscid streanllnes 
y+/(ur/ue) 

modified Staton number, Eq. (37) 

velocity components in physical coordinates 
T,7. respectively 

velocity components in transformed, "two- 
dimensional" coordinates z,y, respectively 

velocity components in transformed, constant 
de.islty coordinates X, Y , respectively 

U/Ue 
u/ur 

friction velocity, (fw/,ow)
1,2 

thickness of inner layer (match point) 

ratio of sp^ific heats 

thickness of outer layer in transformed, 
constant density coordinates X,Y 

thickness of boundary layer (two-dimensional) 

"incompressible" displacement thickness 

displacement thickness (two-dimensional) 

rnomr turn thickness (two-dimensional) 
exponent of stagnation enthalpy profiles 
In outer layer, Eq. (36) 



streaa function 

H-2 

S}Tit>cIs   (Cont'd) Syg-bois   (Concl'd) 
*»    ^» 
fit. o'      thickness and displacement  thickness in p density 

physical coordinates 
'     stress 

< turbulent eddy viscosity .      ,.    .  ,     ...   . ,   ,   _  ,,.. 
' ' ♦     dlaensionless nixing length function, Eq. (bb) 

7     normalized coordinate in cuter layer, 
Eq.   U9) v 

•> aouentua thickness  (two-diaecslona') —'— 

'"' moeentuB thickness  in p'.ysical e edge of boundary layer 
coordinates ■ at natch point ym 

(i     viscosity ^   i,     ....   . . ., .     -it o     stagnation conditions behind nomax shock 
i'     Kineaatic viscosity ,  ,       .     ., ,       ,   , , 

a     local stagnation conditions at edge of la-er 

( ""^r »     vail conditions 

am adiabatlc wall conditions 

1. INTRODIICTIO» 

Accurate pre'''ctlor. of turbulent boundary layers about reentry bodies Is of critical laportancs in 
calculating vlj.  friction and heat transfer, abse. tables (initial conditions for near wake calculations), 
cooBunlcatlon (guidance, and telemetry), and reentry aerodynaaics in general. Fecently, Interest in mineuv- 
ering and lifting teentry vehicles has placed added eaphasls on developing ■cthods tor predicting threr- 
dlaensional turbulent boundary layers over bodies at angls of attack and for predicting turbulent boundary 
laysr separation and reattecho^nt. Separation occurring on control surfaces and on the leeward side of 
bodies at angle of attack are problems of such interest, but are flows for which current theories are cither 
inccaplete or Inadequate.  For example, the wake-like model of turbulent separaCion and reattachoent^ has 
yet to be extended to three-dimensional flows, and the uvidel Itself is incapable of treating the important 
region downstream of the ctltical point in two-dimenaional roatlaching flows. 

This paper presents a p.ogress report on work being carried cut under Air Force (Space and Missile 
Systems Organization) Contract F0A701. The goal of this work is to produce a method which will yield wall 
condition,» and boundary layer profiles sufficiently ; ccurate for subsequent ralculariins of electron con- 
centration through a three-dimensional turbulent boundary layer, the work is aimed et computing flaw fields 
around arbitrary bodies at angle of attack, with particular emphasis on calculating boundary layers in 
strong positiv: and negative pressure gradients with surface mass injection. Entropy layer swallowing in 
regions dobnetream of a blunted nose is also being considered. 

A two-layer model has been developed for this purpose in which an analytical solution for the inner 
layer, based en a compressible law of the wall, is xatched uith a moocit integral method in the outer layer. 
Solution of the inner layer is obtained without the use of a compressibility travsfonut'on.  In the outer 
layer the explicit appearance of the density is removed fros the convective terms in the cooservacion equa- 
tions without transforming the turbulent stress and heat flux. 

The relative scale in inner and outer layers (location of the na".:h point y^) is computed as an integral 
property of the flow and depends on the upstream history of the lavev. At separation, for example, ..-hlch 
now can be predicted by the model if the pressure distribution is prescribed, Cf -«O, yj,/^ -• 0 and {u/ue)m -»0 so 
that the boundary layer is dominated by the outer layer (or dominated by the "wake component" in the termi- 
nology of Coles2). One of the unique features of the model is that the stability cf the system of ordinary 
differential equations ca.i be used to establish upper and lower bounds on the turbulent production Integral 

frdu in the outer layer. Stable solutions up to Mach 10 for a wide range of wall to free stream tempera- 
ture ratios show that compressibility has little effect on the properly normalized iareral stress profiles, 
confirming the results of Malse and McDonald.3 

The computational speed of the method is sufficiently rapid that the whole boundary layer flov field 
on bodies at angle of attack can be calculated (except, of course, the leeward side at large angles of 
attack).  It also appears that the computational speed is rapid enough to permit calculations of super- 
critical boundary layer-inviscid stream Interactions. 

The model is based on the small cross-flow approximation in which the boundary layer equations are 
solved along inviscid streamlines.  In this coordinate systeia the cross-flow component of velocity In the 
layer is uncoupled from the streamwise raomentum and energy equations and can be ignored as long as the ap- 
proximation is valid. For flow around bodies at angle of attack, inviscid streamline patterns and the 
spreading metric are computed by integrating the Inviscid ai-mentum equation normal rj inviscid streamlines 
on the body using either experimental or calculated inviscid pressure distributions. 

2. TURBULENT BOUNDARY LAYER MODEL 

2.1 Equations of Motion and Coordinate Systems 

If the boundary layer equations are written following inviscid streamlines and the cress flov 
In the boundary laytr normal to the local inviscid streamline direction can be assumed small, the 
mean flow equations are 

;> a       „ (i) 
—- (pur) *   ——  (p » t ) - 0 
tit ay 
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(2) 

(3) 

tfh«r« i ( t) is the ipreAding actric deteralned by the invlscld flow Jtreaillne gcoactry. Here, slucc the 
cross-flow coRponrat of velocity ts assuBed saall, the uncoupled crose-flow soneatua equation Is Ignored 
and -M «ssuae furthermore that the additional contributions to turbulent stress and hast flux resulting 
ftoa fluctuations In the cross flow velocity arc likewise saall. 

Thus, 

—S       -PUT (*) 

and 

(5) 

Clearly, for a body at large angle of atteck these stress and beat flux aodels will break down 
in a region on the leeward side because strong cress flows with additional contributions tc the 
Reynolds stress would have to be included along vith interaction wit'a the outer flow. 

The explicit appearance of the spreuilng metric in the equations of aotion can be elialnated by aeans 
of a toJlfled Mangier transforaation. Although it turns out that t(?) later appears In a constant of 
Integration in the coapressible law of t'-ie wall, th« transforaatlon is convenient since It Is possible to 
reaove t   froa the continuity equation without traoeforoing the stress or heat flux. Letting 

Jx 
(T) „ 
  dx sod dy 

r(x)  ._ 
_  dy v6) 

with 

-             „        a y       dr 
r         dx 

Eqs. (1)  through (3> becoae 

d(pu)            <>(pT) 

ax        *       By         •0 

S*                  du                dPt 

<5i                    3y                  it 

dH                  dH             a 
ou    T:—    +    p»    —-      «    -— 

ox                     dy             oy 
(q + ur ) 

(7) 

(8) 

(9) 

(10) 

where r and q are still defined by Eqs. (4; and (5). Solution of the inner layer is obtained directly 
using Eqs. (8) - (10) without further transforaatlon of the coordinates to remove the explicit appearance 
of the density. The reason for this is two fold. First, within the framework of the present model for the 
Isaer layer an analytic solution can be obtained without introducing a coapresslblllty traosforaatlon. 
Thus, no useful simplification would be provided by such a transformation. Second, Malse and McDonald-' 
have shown that a compressibility transformation leads to gensrally poor results for the turbulent stress 
distributxons across the boundary layer even for constant pressure, adiabstic flows. They also showed 
poor correlation of experimental velocity profiles using the transformation for constant pressure flows 
with heat transfer. More recently, Lewis et al.5 attempted to generalize Coles' transformation but they 
also found significant deviation between experimental velocity profiles and profiles predicted using the 
the transformaticn, especially in r.he wall layer. They showed that the discrepancy between profiles 
increased with increasing Mach number so that for flow on a flat plate at Mach 6, for example, a difference 
of 20 percent in velocity profiles cat: be expected. Although not all of this discrepancy should be attri- 
buted to the transformation, there appears to be little justification for unlng it in the wall layer 

particularly in flows with heat transfer and pressure gradient. 

In the outer wake-like layer, however, where we use an integral moment method, a simple compressibility 
transformation is used to remove the explicit appearance of the density from Eqs. (8) through (10). This 
can be accomplished without transforming the stress and heat flux by letting 

dx d* , dY -   dy 
(11) 
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so that Eqs. (8) through (10) beccae 

(13) 

1Ü   '°   a' <u) 
dX  * .e p0   ÖY 

(15) 

<iU rtV 

^r       .   0 
rtY 

if 
L'     

-JX 
♦   V     -   (H'He> L' 

L   ''" 
^H !         <J 

-»X 
..    V   -— 

^Y PT    ^V 
q ♦ ')r V 

Here r and q are still the physical stress and heat flux defined by Eqs. (A) and (5). hqs. (13) through 
(15) are used £j develop '.he Integral Buaent equations for the outer layer. 

With the equations of notion and proper coordinate systers developed for the innfH" and outer lay rs, we 
now proceed to the turbulence model used t' the two-layer model. 

2.2 Turbulence Model 

In order to develop a scheme for Integrating Eqs. (l)-(3), or their transformed co-jntdrparts Eqs. (8)- 
(10), it is necessary to have some knowledge either of the relationships between r, <j and the near, flow 
quantities p, a , H (provided Juch relationships exist) or have additional independent dlffei.intlal equations 
for - and <]. Several model equations'*,7 for the stress and heat flux based on the latter approach have been 
developed recently and, hopefully these will provide new Insight into the way the stress ;.nd heat flux re- 
spond Co changes in boundary condltiono as the flow proceeds downstream. To date, however, all these ap- 
proaches using differential equations for t  and v  have had to Invoke assumptions for closure of the unknown 
correlation tunctions which are either pure hyp^-hesis or whose phyGicil hrsis has only been demonstrated 
in Incompressible f'oc;. At moderate Mach n^jnb-srs, no/ever, say up to M, ~ 7 there is cr-.siderable ex- 
perlaental evldenc« that the turbulent boundary layer uu;v Se divided into an inner wall .ayer and an outer 
wake layer, as in  incoopressible flow. In the wall lay.'i the properly normalized experim'ncal velocity and 
enthalpy profiles have bean shown to be functions of the ;ocal wall stress, heat flux and injection rate 
and except for the streamwise variations of these quantities are oc.-e or less indzpendent f the upstream 
history of the layer.8,9 This is precisely the result predicted by mixing length theory an! the thin layer, 
Couette model, which leads to a compressiblf law of the wall and a C-rocco integral for the i-ner layar. 
For flows with surface mass injection Danberg and Squire have shown that this same model accurately pre- 
dicts the velocity distribution in the wall layer. In fact, the experimental evidence for the Van Iriest^0 

form of the law of the wall for M <- 0 and the Squire form of this law for M ^ 0 Is now so stron;; that the 
model equations for the turbulent stress either "reduce" to this law near the wjli or are matchtd to it. 

In this paper a first approximation for the velocity and enthalpy profiles in the Inner layer is used 
in which the laminar sublayer and transition layer Is neglected and the flow is assumed to be fully turbulent 
to the wall. Maise and McDonald have shown that in this region the mixing length varies linearly away from 
the surface, i.e. P ■ K ~ with K ■ 0.41, for Mach numbers up to about five. Thus, with the additional 
assumption that Pr, » 1 In the first approximation, the stress and heat flux in the inner layer are 

r = PK
272(^/^)2 (16> 

q- p K272 (^/^T) (dh/dy') (17) 

The error Incurred In computing Integral properties such as 0  and the wall stress by neglecting the sublayer 
is small, except, perhaps, in very strong negative pressure gradients. Second approximation profiles are 
subsequently computed which intlude the lemlnar contribution to the total stress and are not restricted to 

Pr = 1 or Pri = 1. 
t        L- 

The evaluation of the stress and heat flux in the outer layer is much mo.ce questionable, Biradshaw 
concluded, from his measurements in relaxing incompressible boundary layers, that the stress In the outer 
layer depends on the whole history of the layer and cannot be found from local mean flow properties as in 
equilibrium layers. Thus, according to Bradshaw and others, the use of an eddy viscosity or aixlng length 
theory in the outer layer of rapäly adjusting flows must be held suspect because for these flows there is 
no simple relationship between the turbulent stress and mean velocity gradient. If this is the case, then 
the relative scale oC the inner and outer layers, y*,,,. likewise cannot be determined from the locel velocity 
gradient, as is usually assumed in conventional finite difference methods,H»^ for example, but must be found 
from the whole history of the flow. In the present theory we have attempted to avoid using a simple local 
relation for determining y". By taking a higher moment of the mocentum equation, y* Is found as one of the 
integral properties of flow. 



6-5 

In the present two-layer model it turns out that a relation for the stress along the match poinc 
y   is  required along with a relation for the "production" integral in Khe  outer layer 

/' 
,)du 

The stress along th& match point is evaluated using an eddy viscosity normalized by the constant density 
displacement thickness, as was suggested by the calculations of Maise and McDonald. Thus along 7 i 

I 
where | 

<    =   F iL    S-'   ,    F   •   constain (19) 3 

Thus, while the evaluation of :m  Is subject to some of the objections of "localncss," ehe location of the 
match point T where ;m is  evaluated depends on the upstream history of the layer. i 

It turns out the two-layer model provn'   ■< upper and lower bound on the magnitude of the production 
integral.  If estimates for this integral ai    ^ which are too small or too large, integrations of the 
system of equations downstream develop instab.   is where tj,,,-.! for the former and n -«for the latter. 
Thus, we find that the production integral over me outer layer cannot be assumed negligibly small nor can 
it be evaluated using a constant eddy viscosity across the outer, as was suggested by Clauser.13 Both 
assumptions give unstable solutions, although the Clauser assumption is stable for Mach numbers below 
about 2.5. « 

i 
By evaluating the production integral as though the density were constant across the outer layer and 

by using a cubic variation of < between y^, and 3^ with (-«Oat the outer edge, stable solutions have been 
obtained up to Hach 10 for wall to free stream stagnation temperature ratios between 0.03 and 1.0, These 
results for the bounds on the production integral and the assumptions used to produce stable solutions | 
verify to some extent the results of Maise and McDonald who showed that comniessibility has little effect 
on the lateral stress profiles (when normalized by the wall stress) up to about Mach 5. A cubic variation 
of i   for ~BI

<'y <  °e    is also consistent with the f variations inferred by Maise and McDonald and Bradshaw.l* 
< 

3.  SOLUTION OF INNER LAYER AND MATCHING CONDITIONS | 

Experiments in compressible turbulent boundary layers with moderate pressure gradients and surface 
mass injection have shown that even tt hypersonic speeds there is an inner (wall) layer in which velocity | 
and temperature gradients normal to the surface are so large that terms involving x  derivatives in the 
conservation equations are generally negligible. The lateral extent of this inner layer y^ at any given 8 
point 7 is determined by previous history of the layer and by local condititns such as magnitude ai\d sif.n 
of the pressure gradient or strength of injection.  In large positive pressure gradients or with large 
blowing the extent of the inner layer may become vanlshingly small, while in negative pressure gradients 
"y   may approach the edge of the layer. 

With mixing length theory used to determine the stress and heat flux, and a thin layer Couette model 
of the flow near the wall, a generalized law of the wall for the velocity and enthalpy with surface mass 
injection is obtained.  These velocity and enthalpy profiles are then inserted back into the full continuity, 
momentum and energy equations, which arc Integrated away from the surface to give the stress, heat flux and 
mass flux at the outer edge of the inner layer. The velocity, enthalpy, stress, heat flux and mass flux at 
the edge of the wall layer can be obtained analytically, and these expressions, along with certain auxiliary 
relations for normal and streamwise derivatives of the velocity and enthalpy, are used for matching with the 
integral method in the outer layar. One of the key features of the present two layer model is that the in- 
tegral equations In the outer layer ultimately determine the lateral extent of the wall layer (or in Coles 
terminology the strength of the wake component); it it not specified implicitly in advance in terms of the 
eddy viscosity or mixing length as in most finite difference methods. 

With the possible exception of boundary layers in very strong pressure gradients we assume that a wall 
layer exists in which (  » K")/   and the velocity and enthalpy profiles are closely approximated by a Couette 
flow model. Neglecting the laminar sublayer (in the first approximation) and setting Pr - 1, the equations 
for the stress and heat flux obtained by integrating the momentum and energy equations away from the surface 
are 

,2-2  /^V (20) 

q(y> - qw - u r(7) + P<lrTw (H - H^) . p K2 ~2    (^r)  (-^r) (21) 

Dividing the second equation by tne first and integrating the result gives a Crocco integral, which is 
always valid in the inner layer only, independent of pressure gradient or surface mass injection. 

  (22) 
H/H^ = 1 + B (u/uc) 
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or 

where 

T/T ,2 h/i^ . 1 ♦ B ( o/'ue) - A^ (u/ue) 

A2 -- («e/(l +ne) j (Hj/H,) 

Substituting for p -^(h./h) in the expression^ for r(7) , defIning M«p.'v./p,% and Integrating 
edge of the laolnar sublayer to any point T'* • 7",/''» , vith (*7/~t   , gives 

f  ü ^.L^±\"'J..JI 

which can be written, after changing the limits of integration 

et 

',23) 

<24) 

(25) 

from the 

dv/lv)-^     j 
0        ((h/lvXl +Bf-A2f2)] 

         =    —    In    V       r     B 
1/2 K 

where B Is the empirical "constant" 

K     ',       w  ■ 

/<5 

0    Uh/O (1 +3 . 
1/2 

/\,)(l+3f-A
2f ■)] 

Whereas in incompressible flow B ~ 5 , the experiments of Danberg and Squire have demonstrated that B is a 
function of M and H^/H , which can ae approximated by the curve fits: 

0 < Me < 3.5 :   B/BM_0    -   1 - 0.6xlO3M (Ht/Wp12 

Mc  > 3.5   :  B/BK„0    .   I - 0.6 x 103 M 

with 

BM.0    -'+8 (1 -Hw/He).    B i0 

Defining* 

Cj    ■   (B- /B2   <• 4 A2 )/3A2 ,      C2    »    (B   +  y/B2  + 'iA2)/2A2 

Cj    3   Cf/M.      k2    ? (C2-Ci)/(Cj + Cj),    sin2S   a   (Cj - f )/(C2 - C, ) 

and since   f« 7+   =   6n~+   +   fn L/r 

the compressiblf   law of  the wall becomes 

1 1/2 

(J(0,k)- SF(flf = 0)lt)]  ,  -i- fn   [(Cf-)'/2 Re 
iv/he 

A^MCCj   + C2) 

— 6n   —   +   B 
K R 

where 

yco.K) a    I       
•'n (1- 

ds 

(1 - kz sin2 (?) 

(26) 

(27) 

•For lar^t blowing, sin   handle   «re redefined, i.e. k     a  (C^ + C2)/(C2 - Cj) *nd «in   ös  (C^ - ^)/r ^ + Ci) so tbiit k   i« always leai than one. 
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1/2 >ur/lW ■ «Cf''   Rej. 

Oy-l) 

M. r 

(28) 

(.29) 

For M 0,1  0 and the elliptic integrals '♦<«>) teduce to arcslc functions, acd the law of the wall is 
given by the Van Driest "generalized" velocity distribution.10 Evaluai.lag the law of the vail at ym  gives 
Che velocity zitic (u/Uf )m ■ Um  along the match point. Acr.aally, whet we require for Batching wit:', trie 
outer layer is the streaiawise derivative of (u/ue) , which is found by differentiating the law o'.  the wall. 

With the  velocity profll? given by the lau of the wall and the in-.halpy profile gi^vn by the tracco 
integral in tne inner layer, euct expressions for the stn-ss and heat flux at y     can be obtained by intc- 
greting the ■onentun and energy equations away froir th» surface, i.e.. 

,«|-,. 
dp        j I    ot       .-»u \ 

17 y-*  j [fu 17 ' px->7 ) dy 

dP           d  f" (** ^ 
77   !',"  '   d7 I pula-UgUy  •   i       pudy •   ~      *  pvyw 

and 

(q 
JH 

"irr 

—   j pu(u-Ula)dy        *j       pudy     -—     . | ---_ 1   p, r, ua 
d 

dx 

where the integral a in these expressions are evaluated using Eqs. (23) and (26). For example if 

r - / I     ay      »nd     h   '   i 
Pwu

e 

f- dy (30) 

then 

ur ur / 

K "w ,J
e -KB        /    "'        '.. "1' ' ',' f^)' 

^ 

''     Q 

which can be integrated repeatedly by parts if 

*    K(ue/ur),      7.  = «p (of(f) ; 

'At) t df 

0 (h/hj1^   [1 
1/2 

,       «(f)  - 

ij   -   v    '"'J] ■      li        (((- U„, )     tot Jj 

a(h/h 

(31) 



(32) 
s 

:he above Berits truncates with the tern 0(a~-)   for],, andOCo"') for J2 so thai* 

— ■'MCj1 :) ■ I .  3y apFroxloa». ing h h,( * i>m \  if- " f I and j(f) andfl • ^— A - (l  ♦ gr C,,)!!! '(f-1 

i truncates with the tern CKo-') for],, andOCo"') f: 

(33) 

-    Ö_\ (34) 

Tlie «xp-essicns for Jj and J? are th? key results for the evaluation of the stress, heat flux and mass 
n>ix in the inner layer. With J| and 1^ Siven by Eqs. (33) and (34) the evaluation of r  and (q • u r)  Is 
itral».htforwa-d (although somewhat lengthy) and the results arc given In Appendix 1, 

Solution of «all layer for the velocity, enthalpy stress and heat flux has been obtained an, ytically 
In terns of 'he ^Jvei; ssll  and edge conditions (Mj.H^/H  and M ); three "paraaeters" ifm,   Cf    and fj ), and 
Ivo eupiri."il "constants" (K and B). By natchlr.g this Liner solution with an integral aoaent eethcd for the 
outer layer the three "parameters' ym , Cf   and S« are determined. In addition to u/«^ , H/H , r  and q , 
"u 'ty  and -^H *■ are also atatched and the expressions are given in Appendix 1 along with certain other auxil- 
iary expressions (such an  dl," •'di,dMm--'dx , etc.) required for the matching. 

4.  MTCSEKT UniQUjC  METHOD FOR OUTER LAYER 

In order to determine the relative scale of the inner and outer layers,y^ , and the quantities r and 
q,,, , which are related to the quantities of Interest, namely Cf and S« , In the equations given in Appendix 1, 
a oo-fcent integral method is used in the outer layer.  In this la)er independent two-parameter families of 
protlles are chosen for u and H. The "free"' parameters of the profiles are determined implicitly by match- 
ing with relations obtained fur the Inner layer (law of the wall and Crocco Integral) for u and H and the 
lateral and streamuise derivatives of these quantities along the unknown natch point y .  The profiles 
selected are power-laws of the form 

U/l!e - 1 -d -Vm)(l - ■))". (35) 

H   --   H.%   -   l -Ü -%)<.'.- if .        m.O (36) 

so that very "full" profiles without overshoot are possible with u, K; >l . In order for a Crocco Integral 
to exist In the outer layer m rau&t equal n but in general this will not b» true. In fact, In terms of Che 
more conventional definitions 

CH ■ - ,, /(„, - He) Pe u. - ~_T^_ (37) 

f'f - 2rw.>v. u,.2'  2r.( (38) 

It is ea«;y to show, using Eq, (\  1-2) and the definition of H that a Crocco integral (m  n) exists in the 
outer layer only .-hen the Reynolds analogy holds, i.e., whenf... Cf'2    . 

In the above profile families 

«here f.   is  the thickness of the o..,>;r laver In the cransformed coordinate 

/aeP 

» f o ro 
Y-Yra    I    ——  dy {40) 

Tne nomentum integral, first vc.ic.icy  noneat and energy ince^rai for the outer layer are obtained b/ 
integrating tlie transforned conservation equatior.-i trom Yr V^ to V  •T -^ 

U-tsc   .ippr.n.m.iii.'n:. > :flj iJrniii .ii rc-^ulis lor live k-iJin(c tcr.-rt of DC sf'te!. a* tSr natt PIJTCSM >nv     .r  t and R, «no *rt u«»ed ^ete mctfly to simptify 
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Mooentuc  Inieijrai   - Outer  Layer 

-')•• i) 

•     dx d& d B 

_      /    I           d«   \                                        i         dH,.             /       «o \ 
" " L'   )              I    -   (E, - U-U)               -    /     I 

First Velocity )ioa>pt - Outer Layei 

dUB do di 2()—1) 

di '     di ^     dx 

1 da \ £ 

-■) 
«JM. 

-2 
L',2 »e Po 

Energy Integral - Outer Layer 

^a dr. dÄ dHm dm 
-SB,        •  ÄB4          •   Ei      ♦  ÖB,    -—    ♦ AS,   -r— 3    di 4     J« '    d« '     di ^    it 

-(>•!) 
\ 

''>-»     .. ,.    T:  .      ,.     T.   .       l        dm \ (*3) !(>-!) - _       /    I am   \ 

I'   ^ (-) " (44) 

According to the work of Malse and McDonald, there ir virtually no effect of compressibility on the 
no realized stress distribution, r/'a  , across the turbulent boundary layer. Thus, we can evaluate f/r,, as 
though the dr-slty Is constant. I.e., 

T" ' (r) {3V/9n)m 

< x (au/a^ (45) 

.Since , - 0 at the edge of the layer,, the lateral variatior. of < in the outer layer can be approximated oy 

,/,   1 -^ ^6) 
in       ' 

where, according to measurements by Sradshaw and the analysis of data for supersonic layers by Maise and 
McDonald, u has a valve around 2 or 3. On the basis of stability of solution» over a wide range of Mach 
numbers we tentatively select the value tu = 5 (see discussion in Sections 7  and 7). 

Finally, a relation for 'm  Is obtained in terms of the eddy viscosity and velocity gradient at the 
matchlr.J point >■ .  Following the suggestion of Herring and Mellor and the results of Maise and McDonald, 
Che seal? length fcr the eddy viscosity is the constant density displacement thickness 

A 
Sj* .  '   (i-u.'^My (47) 

■0 

-(1-c-2,(^ ir) '^-h-^~ -rr I W) 1 

whero the integral functions A , B; , Ej and i are given In Appendix 2.  tne equations for m/p0Vt   and the 
normalized stress and he?.t flux at yn, obtair.ed from the inner layer, are given in Appendix 1. The term J 
involving the integral of the turbulent stress across the outer layer in the velocity moment (called the 
turbulent production by Townsend) is 
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and 

f^V       f ~ 00,a (48) 

Then, since 

and (•i'u' «)■;„, is known *rc n the solution of the inner layer, the normalized stress along y is giver, by 

~7   f        F-CÖ;'/«)»'« 
a   'P, P0)

: >> •«»,) ■ r («) 
Po/ IH,,, • »,. (H^-U,,,2)! 

With the three integral equations for the outer layer, the above equation for 'm , and the Batching 
relations from the inner layer, the systea of ordinary differential equations can be integrated downstveaa. 
Since the sol-jtion of the inner layer Involves three "paraieeters" (Cj, St and y,,, > and the unknown in the 
cuter layer isä , these four quantities oust be specified at the initiel station in order to forn all other 
quantities (c,n, etc) and all the initial streasiwise derivatives. 

5.  INITIAi CONDITIONS AND INTEGRAL THICKNESSES 

Instead of having to specify y,,, and S  along with Cf and SJ at the initial station "x   0  , it is more 
convenient to specify " and l>e , the momentuo thickness and thickness of the layer. From the equations for 
I and }, in ths inner layer and the integral functions in the outer laytr one obtains the following: 

v- 1 

6t >„, * 'Po Ps"1 •'V  '    Kl-n^E, -n.tI2U (50) 

fmO-^m'ym     Cf''2)- 

'"ffl h
;
) K(hnl/ht,)

I/2 
(2Va-Ufl0-a/K2)Cfy    pj 

(51) 

■ (P0   Ps)(l ■me)     ;      ' ll, - i2 1« 

K^/h,)''2 

(52) 

Also, 

2 (y-l) , , r 
(p0 ps i (1 - mc ,        I (1 • m,.) E, - (i^ i; ~ ![ I 5 

/l-^m) ' <qhm'''c'''2 <Vm^'K) (53> 

~  .       ~     , ~ (54) 
(r'L) H..     B'   -   {<   L.i 6' .     'I      (t/L) " 

By specifyingC, . C^ , f>e   and " at the initial station ehe above expressions and matching conditions 
are used to calculate the remaining unknowns: y  , U , £ m, n, H . and B. 

6.  FINAL VELOCITY AND ENTHALPY PROFILES 

Since at hypersonic speeds the peak boundary layer temperature can occur well within the wall layer, 
accurate velocity i'-id enthalpy profiles near the wall are required.  In order to avoid the logarithmic 
singularity at the .surface given by the law of the wall the laminar sublayer and transition liyer are in- 
cluded in the determination of final profiles (as well as arbitrary laminar and turbulent Prandtl numbers) 
so that "iT 0  at ~«C . This is accomplished by including the laminar contribution to the total stress 
dnd htat flux in t'.ie expressions for •(T ) and s (7) in the wall layer and by using the Van Driest variation 
for the diraensionless mixing length * , i.e., 

~- , ,    , ~-   I (55) 



where 

6-ii 

* (i 
(56) 

For adlabatic flows wich st 0 , » i* a ron&canc and equals the Incompressible value a 25. For cold walls 
■.ri M > 0 the experimental velocity profile» cf Danherg and Squire (that Is the shift in the value ofl& in- 
dicate large variations in a. The determination of a  from  these expe-iaental profiles is discussed below. 

Introducing the normalized wall layer variables 

T'   u". 7, . h'  h, h^ .  v"   ",>''„ 

the differential equations  for~°  and   h' obtained from the equations  for the total stress and heat  flux 
becoise 

(vw/ur) 

(57) 

(58) 

with boundary conditions, y 

The differential equations for "u* and h* need only be solved at selected points in the flow field 
where accurate profiles near the wall including the sublayer are required. Since both boundary conditions 
for the two first order equations are known at the wall the solution does not require Iteration and is 
performed as an auxiliary calculation in the downstream integration of the two-layer equations. 

The asymptotic integral of the equation for H'   for ~ > > I is 

f IhM! .T.T/~r)l
1/2 

— pn7" * B 
K 

(59) 

which, for a given value of a and solution of the differential equations for ~* and h* , can be solved for 
B. By Iterating on an assumed value ot  a  and matching the computed B with the exptrimental values reported 
by Danberg and Squire the variation of a  with H,./He and M for various Mach numbers was obtained (see Fig- 
ure 1). 

7. COMPUTER RESULTS AND EXPERIMENTAL COMPARISONS 

By specifying Initial values for Sc , 6 , Cf   and Cj,, and also the unit stagnation Reynolds number, where 
for an isentroplc external flow with (i—T 

>-3 

' i, ) ' M, (I • m   ) 
2 ( )- I) 

Eqs. (73), (26), (50), (51), (A 1-1) and (A 1-2) are solved slm-jltaneously to give ail tht^ necessary start- 
ing condltlens. A set of nine nonlinear differential equations Is then Integrated to give the solution 
dowrstrearo of the initial station.  These differential equations are the momentun, first moment and energy 
equations for the outer layer, the equation for rm   from the inner layer, and equations obtained by differ- 
LMUiatlng tue felations for Üm, nm , m, n and B with respect to x. The method used to solve the system, 
wnlch is linear when solving for the derivatives, uses Gauss elimination wi/th partial pivoting, with an 
iterative routine to improve the solution.15 A comparison of this method of solving systems of linear 
equations with other techniques is given in Reference 16. 

For zero pressure gradient, nonadiabatic flows the average computing time on an IBM 360 machine is 
about 13 seconds for Rc„ to increase by a factor of 10'. This la approximately the computing tiite required 

by (inite difference netliocis to calculate a single station.^^ As of the date of completion of this paper 
(June 1971), coraputer runs have been made for adlabatic and cold walls (0.05<HW/Ke< 1 ) up to Mach 10, 
relaxing flows where C( and/or C^  are far frna their equillbriiim values initially, boundary layers in strong 
positive and negative pressure gradients and flow«? with a varying spreading metric. Comparisons have beet. 
lade with several of the experiir.entK for incompressible flows reported at the AFOSR-Stanford conference^ 
and results for (, and fi' compare quite well with most of these experiments.  For example, Figure 2 



siii-ws a (ompartson with one of the more interesting experirents — the relaxing flow frcff a positive pres- 
sure gradient reported by Bradshaw and Ferriss. MoBentuo balanr* (.cnsideratior.s sliow that tue first experl- 
aental value for " (at x • 4.4 ft.) is probably too saal'.  If the initial " had beer, taken to be about 
0.47S In. the theoretical curve would have Just about pass .-d through the five values of " measured iarther 
downstream. 

Figure 3 shows that Eqs, (57) and (58) yield quite accurate results for the velocity profile In the 
wall layer with surface mass injection, provided that empirical values of the additive constant B are avail- 
able. These results show that not only is the linear lav of the wall, (Eq. (59)), still in evidence with 
blowing but that the value of >•' where the profile deviates from a linear law can be represented reasonably 
well.  Here f(u' ) Is the Integral oil the left hand side of Eq. (59). 

The variation of the equilibriuT. flat plate cf( vlth Rr/( and M, is compared with several experiments 
in Figs. 4 and S. These results (with the exception of the experiments by Lee, et al) are for adlabatic 
flow, however, the theory predicts a relatively weak effect oi wall cooling on skin friction. At Mach ö 
and Rfrt -= 104, for example, ?f for H, He ■ 0.05 is only about 15 perceuc greater than the adlabatic value 
of c, . At these saae conditions the Reynolds number based on 6'   (or the cold wall la about one-third the 
value for an adlabatic wall. 

Figure 6 demonstrates the existence of an equilibrium <',f  variation with Re^ and the approach to this 
equilibriuQ variation If the initial Cj is coo large or too small. A similar type of relaxation for the 
heat transfer ?nd total enthalpy profile is shown in Figure 7.  For these solutions the initial ff was set 
equal to the equilibrium value but the initial value of the Reynolds analogy parameter 2CH/O «as set at 
values othsr then one. This resulted in an initial K versus u profile which was nonlinear in Che outer laver. 
The solutions shown in Figure 7 demonstrate the relaxation of the Reynolds analogy parameter back tc one, 
and the relaxation of ar Initially perturbed H versus u profile back to a linear Crocco integral io:  the 
who'e layer (see schematic inserts of profiles in Figure 7), Relaying flows of this sort have been measured 
on wind tunnel walls downstream of the nczzie  throat. 

Figure 8 shows results for Cf , G ,Vm,  snd the Reynolds analogy parameter for a boundary layer in a 
region where df'dx     0   followed by a region where ip'di ■■  0 . The edge Mach number decreases from 2.& to 
1.3 over the first SO inches and then increases to 2.6 again at i " 100 inches.  In each case the results 
are compared with a solution for M,. • constant » 2.6,  In the region of positive pressure gradient the wall 
layer thickness decreases but then increases as dp/dx ■; 0 . This behavior io reflected in the variation of 
L'm, which shows that near x  *  100 inches most of the velocity variation across t'.e boundary layer occurs in 
the wall layer. Thus, the two-layer model is seen to predict the kind of behavior hypothesized by Coles^ 
in his paper on the Law of the Wake. 

Figures 9 and 10 show comparisons of the theory with data for two-dimensiontl flows in negative pres- 
sure gradients at initial Mach numbers of 1.5 and 3.9, respectively, while Figure 11 shows a comparison with 
the method of Bradshaw for a flow in zero pressure gradient at Mach 3, followed by a legion of strong ad- 
verse pressure gradient. Both methods predict that the flow separates, i.e., & • 0. For the two-layer 
model the solution was stopped when Cf decreased to 2 x 10~5 at x ° 67.8 cm. In this region Üm - 3 and the 
layer was composed almost entirely of the outer layer, again deaonstrating the Und of behavior predicted 
by Coles. 

Co ,20 Comparison with data obtained by Lewis/U for a boundary layer in a positive and then negative pressure 
gradient is shown in Figure 12. The Mach numl :r •arjed fron 4 to 2.57 to 4.17 OVRT a distance of 34 inches. 
The experiments werfj performed with an outer hollow cylinder and an inner axleymmctric pressure generating 
body with the boundary layer data taken on the inner surface of the cylinder. The local decrease in 5* in 
the region of strong positive pressure gradient demonstrates the supercritical behavior of the turbulent 
boundary layer.^ The theoretical distribution for fl also shows a local decrease.  Both curves for S" and 
C are  compared with the predicted variations for zero pressure gradient. 

Figure 13 shows several solutions (various initial values of c^ ) for the experiments conducted by 
Mci-afferty and Barber,'1 which were performed on a two-dimensional curved compression ramp. The Mac' number 
decreased from i  to 1.8 in a distance of 3 inches, and the boundary layer was tripped upstream oi the ramp 
by normal injection. Thus, Cf initially was probably slightly less than the equilibrium value of 1,8 x 10"^. 
Figure 13 shows that for ?n initial Cf = 1.75 x 10-3 the flow remains attached (McLafferty and Barber re- 
ported that thi flew did not separate) but for an initial Cf ■ 1.5 x 10"3 the flow separates at x » 2.73 
inches.  In the latter case the strong pressure gradient did not permit relaxation back to the equilibrium 
Cf so that flow separation on the ramp could have been produced if the injection upstream of the ramp had 
been itronger. 

Comparison of the theory vith data taken on an axisyinrn?.tric curved compression ramp is shown in Fig- 
ures 14 and 15.  In this case the Mach number decreased fron 5,75 to 2.6 and the spreading metric increased 
by a factor of 1.7.  Figure 15 shows that Cf actually increases slightly due to thp. metric effect (the two- 
dimensional results show only a 40 percent decrtase in C[ at the trailing edge) and the layer does not even 
come close to separating.  Both theory and experiment show a substantial increase in the wall heating 
(Figure 15). 

Finally, comparisons with data on a waisted body of revolution at M^ • 1,4 and 2.4 are shown in Fig- 
ure  16 and 17 which indicate large effects produced by the spreading metric, particularly on the momentum 

thickness variations. 

Hopefully, results for flows with surface mass injection will be available at the time of the con- 
ference. 
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APPESDIX 1 

In addition to the law of the wsli for llm  and the Crocco integral for H^/H,, aatchln,} relations for 
(Ai/^y )„, and (BHJ'df }a arc  required to deterolne the exponents a and m of the pcw«r~iaw profllff <n the 
outer layer. These ate given below along with the expressions *pr rm ,   (<] + u r )„ and n the oaus flux in 
the inner layer. These expressions are applicable to a boundary layer growing into a rotational (variable 
entropy but constant stagnation temperature) invisicld flow. 

Fron contin-lty of (i9u/'<9y) at y : 

Y* 1 

c (1 +■.) 
Pi 

Fro« continuity of  (<?H/iJy) at y   : 
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Stress at y    (obtained by differentiating J2  and inserting result into relation for r^ : 
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Also, froa the definition of B 
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Differential equations for dUg/d^dl^/d» , ia/ix , im/Ax and (l/p0 üe ) (dm/di) ara also required a« 
part of the systea of equations to be solved along with the integral equations for the outer layer, and 
are obtained by differentiating the law of the wall, Crocco Integral, and Eqs. (A l-l), (A 1-2), (A 1-3) 
and (A 1- 8) respectively. 

APPENDIX 2 

Integral functions for integral mooent equations in outer layer: 

2«'     1 

2n + 1   n + 1 

»•       2 «• :2 

('o + l)
2   (2n + l)2 

-3 a'2    6««      2 
A, • 3   3n + l    2n + I    in 1 

A4 
3.'3      6a'2 

(3n + l)'!   (2n + l)'2    (n + I)2 

1 

m + 1    (m + n + 1) 

(1-Hm)      a'O-HJ 

(m + I)''     (n- + n + I j'' 

n-Hm) 
i (ra +n+ 1) 

-a'd-H,) 
B4  

(m +n + I)2 
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APPLICmOB V'SJ SCB3U iKEUORS aü L0B3l!göH IS EUÄÄ 

A i'ETUDE ISS OOOCI3E UKITSS TGSaiäÄTRS TSIDJKiaSIOKHKllBS 

par J. COUSKiS (•), C. «aUM) (•) tt B. KICm (••) 
OFFICE KAriONU. D'SJJJDBE ST DS fiSCHZSCSS ISCepATIALaS 

92 - CHinUOH - HfeASCE 

SlHiAET - 

Aü iojawved aixliolei^th sodcl, previously applied to tvo-diJWDSional flou, is hen «ztsndad to c~%r the 
tbree-dünnsion«! case, relyiog on the ossiaption that the turbileist shear stress acts in the saa» direc-tioo as 
the ladzsar. 

It is used to work out sixilar Mliriioss to the local equatiocs cf a turbulent bound«?? layer «1th snail 
cross-flow. In the general case of a coopressible fluid vitb arbtcrbiy pressure gradients, a digit&l rjutins 
enables the sets of traasrerre aid longitudinal boundary-l^yer profiles and the mil atln-friction oooraonenta 
to be daterolnsd as a fu&etion of two paraBeters expressing the influence cf pressure gradients* A tlow-by-blow 
cooparlson with available ezporiaental results shows a fair seasure of agieeaient. The ttodel aocordingly offers 
the requisite hypotheses on which to build an integral aethod of ccaputing thrse-dlBeusional turbulent boutdary 
layers. 

R,  noebre de fiaynolda 
(I« 

M 

6 Äpaisseur eonventloncelle : 64 = / fl ■   ^dy 

H-97i 

pw 
dy 

InUces 

wnmons « 

xyz directions longitudinaln, Rornalc et 
' ' transversale 

Tl distance rÄluite y/6 

U^w conposantöe de Is Vitesse 

üT Vitesse de frottaaent (Xp/PpV 
M norbre de Kseh 

p presslon statique 

P aasse rolumique 

Jl,£ viscosity lasdnaire et turbulente 

9,$ Boobres de PRANDTL laainaire et turbulant 

T frottaoent (T^+Tt) 

<|> flux de chalear {<}>i4-(J>t) 

Z longueur de melange 

F fonction correctrloe de sous-couche vlsqueuse 

CfxCfz coefficient de frottement locaux 

p0  angle limite 

Kj courburo des llgnes de courant erterieurea 

Kn courbure des lignes orthogonales 

1 - INTKODUCTION 

Le but de l'&ude entroprise eet d'obtenir now une couche limite turbulente trldiaensionnelle, des rensei- 
gnemented'ordre tWoriqiia, apportant sur les caract^ristlques de la couche Unite et sp4oialement stir le profl). 
des vitesses transversales des räsult&ts moins empi/iques qus ceuy dont 11 est g^nöralement fait usage dans 
l'analyse des experiences ou dans I'^tablisoeoent is u^thodes de colcul. 

Le  traitement dtabli pour cela est hau4 sur I'aztundlon au tridimensloonel d'un schema de longueur de 
ailaxg® d^ja utilise Itrgement dans le cas des couched liEites bld'oenslonnellea, et qui a conduit pour celles-ci 
h des rösultats coh^rants, bien confirm^s par l'expärience dans un large dooaine de conditions auz limitao 
(Röf. [1] et [2]). 

Cb schema, qui fournit une expression du frotteaent da-'s tout« la couche limite peut an princlpe ttre utl- 
lis^ daruj une resolution nujsöriqus des Equations locales de la couche limite mettant en oeuvre, par exetplo, une 
technique de differences finies avec das conditions aux Unites quelconques. Four aboutir plus sliiplemant k des 
r^sultats qui parmettent de Juger de fa?on systematique de l".rfluence des facteurs agissants, 11 a sunblö pre- 
ferable de recbercher au prealable des solutions de similituco localefen se plajaat dans des cas pour lesquels 
les dörivees longitudinales et transversales das profile de couche limite peuvent 6tre negligees. 

Ces solutions de similitude permettent de completer les families de profils longltudinauz etablies pou- le 
bidjjnensionnel, par des families de profils transversaux et de ddteralner 1'influence des gradierte de presslon 
qui s'exercent dans les deux directions sur les caracterlstiques de la couche limite et notamaent sur le frotte- 
ment de parol. 

e conditions i la fronti&re de la couche limite 

p conditions h la pared 

1 grandeurs laminalres 

t grandeurs turbulentes 

(*) Ingenieur de Recherche, Direction d'Aerodynamique 

(**) Chef de Division de Recherche, Direction d'Aerodjnwaique 



Dar-i ur r;.^ttoe general da cooido.infeez cuTTili^nes ort.logonalc-s lus eqiu^irasu locales de la couefce licite 
tridisassiotisalle s'icrtvert (roir pti execple 1« i-e'crenca [3i) : 

continuity                                            JL. * (hjPu^ 5 {Pv)*r_2_ Afh^w)" ™ Q                                                    (0 

qwwtlU de aouve^r.t                            H ^* v *y. +!i: ^.K.Jw* (Cw1] - -Lf.i  ÖP * ^T,^                       fj) 
suiWlt x                                                 h, Ox        6y    i h-; ö.t     *         ^   J "■  P     h, Ö.       Öy J                     K ' 

(5) 

(4/ 

■xiaDtiti ie oo^rezenl; £ ^»v  $W+.r^l Owl+ K,uJ_ K,uw   — If- -L  *P+*Ii^ 
suirant t t^ tx        by   [_h, öij P^-   fi, bz     6y' 

conservation de rinei^ia H-^ ^v *£-J £ S&l - - ^-fut, ♦fwTzl-A) 

i'axe y est norsal ä 1« parci sur laquelle se deveiorr-e la couch* lis-ite.h) et isg sent les ^lenents saivaal: 
lea aiea z et z. Kj et Kg, ccurbures g^odosiques des lignes x » cte et Z s cte, s'expriBent pai- les islstions < 

:c,-__L.   *i!t K,-_ JL ^-_ JL   ±   *£. 
~~ h^h',   ox ~" h,h, 6i "~ (Ju*   h» ox 

T   est le frotteoent total (T. ♦ Tj )f <f le ^■vx ie cfol^ur ( <P» T 'J't ^ ^ont ^es sipressions seront discuteee 
plus loin. »      f\ 

hj est l'enthalpie totale    (hj ch -f u *w j 

II est cooaode de cholsir ui; syateoe d'oxes UR i l'öcouieeent erterieur k la ooucne lioite, les lignes 
z «> ste ^tant alors forsakes par les lign«■ ■'« courto* de cet ('coulesent. Outre le fait que ce choix apport« une 
simplification des conditions am licites (W( » 0)p .1 pexhxt d'obtenlr une grand« srjplificaticn des equations 
elles-e&cas dans das cas 011 I'^coulscent transversal ainsi d'fial peut Stre consider^ coace fälble dersnt I'ecou- 
leoent longitudiml, 

lies tuxves relatifs k I'^coilenont transversal regroup^s entrs crochets dans les Equations (l), (2), (j) et 
{4) disparaissent lorsqu'est appliqui CG principe de prevalence. II est alors Evident, üücsaj il a 6t4 deoontre 
ä I'orxgine par EIGEELnHSiaitS [Hf. 4j que iss Ajuatior.^ longitudiiiales de ouantite de nouver«nt et tt'Energie 
ne contenant plus W   sont decouolees d: l't'quation de quantite de osuvenent transversale (a condition toutefois 
que   Tx   et $   aoient aussi inUpendar.ts de W/ ). Oette hypothese de faible icouleaent transversal et la «lapli- 
licatioc qu'slle apporte sont h la base du traitecent de sioilitule qu'on va effectuer. 

^ - SCKJ^l DE TÜRBUIÄKCE •- fR0TT3il?r ST PLinC D2 CiiAiCJR - 

Bappelons qu'un sch.Sma de longueur de celanee a ^te etabli et applique (ref. 1 it 2) dass le cas d'une 
couche liicite bidinensioni'.elle. Dana cc scnäoa, le tercr. turbulent du frottersnt es', eiprine par la fon^ule 
classique de Icngueur de u^lange dans la nartie extörieure de la couche lisiite. On a retenu pour cette long-ieur 
de melange la fonrJ.fi universelle? 

I^O85^(öfe I) (ovec k=c,4l) (5) 

Jajis le sous-ccache TiEqueuse, or. e, estiiie nece^-aire de tenix cor.pte du fait que le frottement turbulent n'est 
plus proportionnel a l'intensiti; de turbulence et on a introduit vmo fonction correctrice F pour traduire I'in- 
fluence de la visccsite sur le rrortement turbulent. L'ex-rension gcnarale du frottement total a etd mice ainsi 
sous Is forme 1 

r by iöyl oy 
ifaisant appel aux r&ultats do Van l'KiüT (ref. 5)» relatifs h la plaque plane incompressible, on a suapos^ que 
F d^pendait dans le caa general du rapiort du frottement turbulent; nu frottenent laminaire ; on a montre en fait 
(rtf. 2), que la loAction oorrtctrice s'«.xpriaut ögalement h. parti;.- du frottement total   T     et do la longueur 
de enlarge par la relation ! 

i-fTpf*!    fovec kso^l) (6) 
L   2tk\i J    '• ' 

Nulle h la paroi, la fonction correctrice tend vers 1 on ecoulenent plci.iemont turbulent. 

F = 1_ exp 

L'idde q\ii a permis d'^tendre le schema precedent au cas d'une couche limite tridiir.oiisionnelle, a ete 
d'adirettre qu'i.l existe une relation entre los directions du frottenent turbulent et du frottement laminaire. 
L'hypothese la plus simpls,, retenue ^gale.'.'ent pur NASH (r^f. 6), est de suppossr que oes directions sont confon- 
dues. Pour cela, il suffit que lee compesantes Tix et Tt, du frottement laminaire aoient dans le m8me rapport 
que les composantes Tt, et T^ du fiottoraent turbulent ; ceci implique que Ttj r-t  Xfj peuvent se mettre 
sous la forme t 

'* - ^ TT       lfz = C -— 
dy öy 

C apparaicsant comme une visoosite turbulontt commune aux deux directions. 

C devont de plus se ramener ä la force biditaens-ionnelle quand w = 0, on a etd conduit h choisir 
I'ezpreasion : 

e.PF1^)2.^/ e 
dont la fome est d'ailleurs comparable ä imo formule propos.le par PSiRY et JOUBERT (röf, 7). 
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It loiv. js'or drr noisrgc eat t&ujaurs do:i:i<5i r>ar ia forculw (5)  ; ?3 for<ticn correctrice a'errise toujou« 
en foncri: ; '•  T   ri  t    • or la foruule (6). 

dans 1c caa d'  r. #coai rent trar^versal faible los frottcients totaui dans les deux directions ae redui-sent 
ä : 

^w^'l^-v w 
T n     ÖW     nC-Zi2 ÖÜ 1  ÖW 

ö7I r/ (^ 
On voit que Tx r-6 depend pis de W r 

Ls flux de ch-Jeur, cnfin, t etfc «xprin^ dans I'hyoctheje d'u-i ncchre de FKAKDTL turbulent constart par s 

On a choisi dans les calc^ls efrectues jusqu'ici M   - 0,725 et    jf a 0,89. 

4 - SOUTIO.'S 32 SmUTJM - 

4.1. - Kypot.neses de aifflilltudo - 

Er. vue de det"Winer i partir du sci-^aa precedent des fatiillec de Drofils pour los Titess^ longitudinale 
et transTereale.et pour I'enthalpie daria le cas compressiola, on t'eac nlace dans des conditiona de sinilitude 
pour Jesquelles I33 dtrivees longitudinal es de ces profila peu-.'ent *tre neglijees et pour leDO.uelloo le systäne 
des equations (l), (2), (3) et (4) se reduit i un Systeme d'equations difftrentielles ordinaires. 

En ce qua concerr.:- d'abord 1'^coviletent lorvritudinalf on a d t quo l'hy.-50t!:ese d'un dciuleuent traravcrsal 
faible decouple seBC-quüticns de liquation transversale, et pcrmet, cosotc-tenu des ezcress .cais de Tx et (J) !Xs 
trailer \e problene COLSO DOUT un eooulooent bidi:isnsionnel. On rappellera qii'unt« solution usynptotique, valable 
pour un nocbre de SeiTiolds cendant vors 1'infini, a. .te iStablid (ref, 1 et 2) dans la rai du f Iaido incoopresai- 
ble. Basee sur I'observation eiDeriaentale de cjuciies li^ites d'equilihre, alle tottait en oouvxe une hypothfese 
de similitude qui portait sur i»,- profil des vitcsses deficitaires ( UC_UJ/UT   » fonction de  y/g     supposee 
independan.o de X     . 

Cetto foit:e de similitude eat beaucoup plu.; discutable dans le cas gpner-al ooapressible. On peut montrer 
d'autre pnrt qu'aux grands nonbres de iteynolds, eile est en fait identique a une similitude des u/u«? s puisque 
la d^i-ivtV suivfjnt  x    de Uf/Ug    tend v?rs 0. 

C'est done plu;; simplenent l'hjoothese de similitude locale,     ./U« = fonction de y/6   dont la d^rivöe 
3uivant  x    0st negligee, qui a et'i reteriue dans le present trai.'. jent. De la m&ne maniere une sinilitude locale 
a etä supposee applicable aux profils d'cr.thalpie totale, sous la forme    hi/hij= fonction de y/ö 

L'h/Dothcce de sijilitude ä faire pour 1'ecoulement transversal est a priori plus delicate ^tant donne que 
l'«quj}tioii transversale präsente la particularite de dependre non seulen:ont du gradient de pression op/03.   » 
nuds Ägalement, per K^ et Kg, de la geocetrle de la surface. Suivant une hypothese utilisde pour la couci,e linu.te 
laninaire (ref. 6), on a pose oue la vitesse transversale dtait la oroduit d'une fonction de  X    par une fonction 

®Cx)etarjt dcteminio a porteriori pour satisfaire k la similitude. 

4.2, - Solution et prcfils pour I'ecoulociart longitudinal - 

L'hyr.othese de siailitude :,ur les vitoasoc ot I'enthalpie totale reduite est done de la forme : 

u?      {&)      hi,    y {&J 
Avoc coo notations los for.-.ules (?) et (9) donnent pour le frotterent ct le flux do chalew les rel;.tions ; 

P<v} "     Ue Rs   P.    \(>)     J PtUchi4-\
y    r r   hiJU,  fRfp,  ftKSJ r J 

la dci-ivatlon do f ct g etant off otuüe par ra-jnort h Y/fo 

L'hy-'Othcso de cicilitude app,1.iquee air: equations (2) et (4), ecrites pour un ecoulemert tranovi r^al faible, 
conduit sim deux Equations differontioilos or;inaire3 

f t*. V- c'^Pv     P c» y  öö\   5 5u«/p e)2 ,\ I   v 
Ucuj; - 

r lpfUe-P^r 5   öTi   ü? öi'ip/      ) (1o) 

P?ue
ir   h,»~ P«u(,hJ~y U.u,,      Pa      6    65/ (11) 

Les derivees de f, g,   Tx   ot (^    sont  :jri-"02 var raru ort a y/g ;  s   est la longueur ourvlligne vraie 
( ds = h^dx )• 



I« rltos-c vcrMcale pv/pu   s'ezr.rjre a partir de 3.'equation de coatiiaiite (l). 

Uä conditions aui liiJ.tcs utiliseca pour rasoudre ce systtce 3ont lea conditianc clrt-^iques d'ari^rence & 
la piJOx et d'eroulor-er.t erlerieur sans ircttoDß.nt, i saToir ; 

en      ^ = 0    S      fr-O    cl-  f     g'-hp/hi« (tocpersture iffipos^e) 

oun"-        2£    üi  ?RK        (flux do chaleur iacoa^) 

er-     1=1   ;     f,-ifUxu,);9' = i(hi = hl,);  F,,= 3(T..o) 

En cc qu:. concomc les paracetrso, on co-era d'abord que :''n^, ffo(0) ou g'CO), et öS/öS q'-ii apparaissent 
i priori sent en fait des resultats de la solution pou que les coreiitions aux licites soient satiafaitea. 

Leu parnrctres indepondants d^terrörart la faoille des aolutioM sont ainsi les auivants t 

iionbre de Saynolds     Rj =   * J ;    noobre da Kach   Mg 

parfcstre de gradient de presaicn   3 = — ^*     > enthalziie ou flux de chaleur   _P o'.i (J)»» 
^« ÖS hit 

Un pro raine de resolution nuntrique du systene des equations (10) et (ll) a 6X6  Stabil, iprtc« auq-tel 11 
eat possible ie deternincr dans le cas general d'un fluide coopressible avec gradient de preasion, tcaperature 
de paroi at nonbre de Reynolds quelcouques, los profils de Vitesse et d'enthalpie, ainsi que lee coefficients 
de frottoment et de iiux d« chajeur ä la p;JOi. 

Un axemple de l'une des. faallles de profils a.nsi etablies est donne figure t, pour un cas de noobre de 
Kach a-:3ez ilovi,  avoc troniifert de ■ir.Llour (oa s'y e«t plac^ h un noobre de Heynolds assez grand prur qu'una 
solution reelleaent turbulente soit ol.:. •Tut), Una variation syatematique du paranetre Q a pemia de couvrir 
la gaime  complete des gradients de pracsion positifa, de la plaque plane ;. ^rofil de dtfcolieoent. C" actera 
Vinfluence essentielle de ce gradient de pressiorj sur la forme des profile de vitesao ut d'enthalpx«. Oi obser- 
vi-ra speciaier;ent la deforc, on conT'deriole da la courbe enthalpie-vite'sse (at en conaöiuence la variation du 
facteur d'analogie de Reyaolu Ch/Cf) poui laqi eile une relation lineaire toe'. - 4 res ^'in.deiiDent en defaut iha 
qut I'f.n a'ecarte du cas de la plaque clane. 

OP ionnera (r^f. 9) les rfcultsts obtenus lors J'une variation systömatique du notibre de Kach, de la tempe- 
rature tte p;>roi et du parametre de gradient de pression, en ce qw conceme les proiMls, le frotteneTi;, AC fia 
de chaleur et les ^paisseurs caracterxstlques de la couche lioite. 

4.3- - Solution et profils vour 1'ecouloment transversal - 

L'hypothese de staiilituüe sur la vitssse transversale est done a priori de la forme W/u^sOft-t'fy/O 
Cependart, pour claritlGi' la suite da I'expos^ on dira dec icaintenant que l'öquation transversale de similitvde 
6crite avec cette relation, fait apparaltro un parametre Ki6/Ä ; or celui-ci doit 8tre constant pour qu; la 
similitude soit roalisee, la valour de la constante etant d'ailleurs indifferente. On a ainsi 6t6 amene finale- 
ment k utilise!1 pour la sinili ude twjnversale un orofil rÄluit döfini par la formule : 

Avec cette relation, la formule (8) donne pour le frottenent transversal : 

L'hypothese de similitude appliquee h. 1'Equation (3)  4crite pour un öcouleoent transversal faibls, conduit 
k liquation diiförentielle ordinaire : 

(12) 

Les deriv^es de    \.   et Tr   sont prises par rapport h.  y/g   . la vitesse vert.icale pv/p.ue   s'exprirae A 
partir de 1'Equation de continuity. 

Les conditions aux limites sont encore diotees par la condition d'adherenoe k la paroi et par oelle d'une 
Vitesse transversale exterieure nulle : 

t'fO)-- t'tDrO 

a 
Pour des conditions R^M^jß et hp fixees la distrioution des vitesses longitudinales et des enthalpiet 

qui apparaissent dana 1'equation (12)    est dötermin^e par la solution des Equations longitudinales (l0) et (ll)« 
L'^qiation (12) est ainsi lineaire en t' et fait apparaltre un seul parametre aupplemeniaire representant I'in- 
fluence du gradient de pression transversal et iea courjures : 

_ö_  ÖKjö      ö   öu,_K a 
Kiö     ÖS ü«   ÖS 

Compte terju des expi'jssions dennees pour fy et Kg (section 2) le parametre de gradient da pression transver- 
sal peut encore s'^riro : 

E-5 -2-log|K26uch2l 
öS ' ' 

Un programne de resolution numerique de l'öquation (12) a 6ti  Stabil rt joir.t k oeloi qui permet de resoudre 
les Equations lonßitudirales, de fafon k obtenir ^galement les profils de vitesse transversaux ot le frottement 
correspondant, ceci pour des valeurs quslconquas des ciiiq paraoetres  ß, E,Rj,Mt  et hp (ou ({(p ). Appli- 
quö intonsivemont dans \me large gamme de oes parametres, il a conduit k tout un ensemble de r^sultats, dont un 
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vitesse ü 
Ue 

Fig. i - Exemp/e Je profr/s longitvdmoux 

(Mt^7,h^h„     0.17, Rs~ 5.10s). 

0.5 

F/g. 2 - Exemplr de profits fransvenaux 

fe'cou.'emenr   mcoiTipressifc/e 

/S- -0.0/5, /?s= 5J05). 

0 0.5 

vitesse transversale _^ J2l 
Ue52 
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exesple reprcsente figure 2 est rolatif a un 4couloaent iaconpreGsibl" dans un gi-adient da prossion lon.jitulinal 
P^^itif coders, 

U oet intÄrecsaJ'-t, an pratique de renplacer la variable t»-~j[-j par une variable dans iaquelle K2 6 
n'intervient plus, en faisant istonrenir ies Äpaisseurs de Jeplacenent long; tudinalo et transversale S« et 6j,. 
la viarable choisle cat ainsi t 

w ^th-tfHwfl/A'■'(*) 
On H obsenM que t' te?d vein 0 quand E   tend vers + 00   (öcouleoent transversal cul); par oontre 5Ü 2l 

tend vers un profil licite non mil. u* 631 

On resarque ^galscent que I'on peut aboutir, quand E dfcrolt, i des prof iIs dont le sens s'invfcrse dans la 
partie inl^rieure de la couche linite, phenocAne qui c?ut pöyslquement sa produiire le long d'une ligne de courant 
qua presente un point d'infieiion oil le gradj.ent de prossion transversal chsage de sigiie. 

5 - Ca-PAF^IiJOh DES i'SüPIlS A L'ßXP^aäMCa - 

5.1. - Mode de Conparaison - 

On se propose aaintenant.pour obtenir un prenicr contröle de la validity de la solution proposed« eajj-srer 
les rssultats auzquels eile contiuit ä ceux de l'eiperie-ice. Hotons bion qu'il ne s'agit pas de calculer 'a deve- 
lopoeiient de la couohe linite, mais de oontrfller que les profils experiraentcux sont bien reprcaentabies par ia 
faaolle des profils thdoriques. 

1 

La solution ^tant relative ä des couches lixoites semblabj.es, alors que 1 •'eip^rianoe ne I'est pas a priori., 
il est pröförabli pour la comparaison envisages de remplacer los pa.ranetre'j   ß   et   E, directement li^s aux 
propri^tfe de l'^souleneat extärieur, par des paraoetres de forme caract^risant les profils eux-ofces. 

Pour I'tcoulenent longitudinal, on a ohoisi alnsi comme paraaetre de coGparaison, le facleur de fonue 
U s ^1/9 n« -* mode ^e coiör-.raison consiste done a, dormer h.   Rj , H? , hp (ou4lp)  les valeurs ezparlmentales 
puis & rechercher la vale a- de 0   qui pennet d'obtenir dans la solution, le facteur de forme de I1experience 
k Iaquelle on se compare. 

Pour l'öcoulement transversal, on a choisi le parametre Ö^Fgß^^ö^   qu'e-r. peut fonner ä partir de la solu- 
tion ; on a en effet z 

^^/KfW/'M 
Le mode de comparaison consists alors, apres avoir ddtermin^ les profilfl longitudinaux, ä rechercher la 

valeur de E qui permet d'obtentr dans la solution le parametre Si <£ g|30 de 1'ezperiencu. 
01 

5.2, - Rfat!?aat8 de la comparaison - 

Une preoierii soaparaison, relative ä un ^couiament incompressible,a et^ effeotu^tä propos des experiences 
de EAST et HOXSi [röi'. ID]. Cos experiences avalent comport^ une determination detainee des profils de Vitesse 
longitudinaux et transversaux, pour la couche limite tridlmeosionnelle d'une plaque sur Iaquelle est pose un 
profil cylindxlque ,1 la technique deoilto precedemment a ete eppllquee de fa^on systematlque & oes i-esultats 
ezperlmentaux« 

Un excple typique de la comparaison des profils ti-ansversaux eat reprösente figure 3 1 11 est relatlf h. 
une serls de quatre profils (notes 430 - 428 - 426 - 424 dans la reference [l0]) montrant ua eooulanent transver- 
sale qui va en s^lntenslfiant & l'approcho de la ligne de separation. Apr&s avoir determine,comme 11 a Ite decrlt, 
les profils dew&i/ugöj, les vltesses transversales ont ete obtenues en prenant pour Ö^/Ö» les valeurs expertaen- 
talae Les profils sont donnes dans une representation "polaire" w(u) • Mise i part ui»e legfere incertitude sur 
ie nu'ila'in de w/u«, qui provient d'une Incertitude sur la valeur experimentale de Po » "^i8 l1^ correspond en 
fait k une tres faible distance y, 1'accord peut Stre oongidere comme satisfaisant. On soullgnera que cet aecorö 
demeare satisfaisant m8me lorsque w/u atteint des valeurs importantes, bien que 1'hypothfese d'un faible ecoule- 
ment transversal soit k la base du results! '.h;Clique. 

La seconde comparaison, relative ä ur 4'-oaiement compressible, a porte sur Is profils ezperlmentaux obtenus 
par HALL et MCKEMS [ref. Il] ä la paroi lattrale d'une tuy^ra,dormant lieu h. des lignes de courant qui presen- 
tent un point dinflexion ( Me = 1,92, paroi ^..batique). La figure 4 montre la comparaison des profils transver- 
saux aux stations notees B26, 328, B30, B32, 1)34, B35 dans In reference [il]. II est interessant d'observer no- 
tncnent la deformation et le ohtJigeiuent de eigne des profils aprfes le point d'infieiion ( oe oomportement est 
effectivement ludique par les profils deduits de la solution. 

6 - EPAISSBURS CARACTERISTIQUES ET raOTTEJlEWT - 

3ur un plan pratique, l'utilisation des solutions qui viennent d'etre presentees doit tendre vers la deteiv 
mination des caract^ristiquea principales de la otwche limite, telles que los epaisaeurs de deplsoement et de 
quantite de nouvement et les ooeTicients de fmttement longitudinaux et transversava:. 

A priori ces caracteristiques sont determinables dans le oaa general au moyen du prograwM etabli pour la 
resolution numerique des equations (10), (il) et (12} et dependent des oinr paramfetres enonces. II eat evident, 
que pour un usage pr«.  ue, 11 conVi?nt de cheroher ö rdduire, au moyen d'vne represertstion convenable, le nom- 
bre de ces parametres j 11 convient aussi de chercher k remplacer ß et E par des paramitres plus commodement 
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utiHstthleo, par ezesple dans une sethoie ir.tetT'tle, 

Scus pla^ast ossentiellenent pour so qul sudt iarm le cas du fluid« inconpreasible, les p«traDetres cont 
re-i'üitz k   0 , E et R5. On 73 chercher & utiliser les propridt& Stabiles ant^rieurenent par la solution asynpto- 
tique pour elizirrer I1 influence du nacbre de Heymldr. On v& voir appüraStre en a6me taape dej paraoetras qu.- 
recplacerorit KCEoder-er-t    0 et S. 

v.l. - Bcoul^ceat lor^ltu.-'ir.al - 

Kappelons encore quc dans le cas du fluids incocpressible, une solution tsyaptotiqua a perais d'etablir 
[r^f. 1 e: 2] la facille de.» profils de Vitesse deficitaires, independanca d. nocbre do Reynolds, sous la fomo 
{i^.u )/ut-.FJ(y/6^paraaitres a priori en fonction de(f4/Tp)clp/dS . On a de.i nontr^ [ref. t] qu'il etait 
coccode de recplacer en pratique c« dem.\er paracetre par le fact JUT de fonae du profil d^ficitaire {naraaAtra 
de CLAUSE) : ,    < /■<.». T      ^  >_.    /■     . /.\ 

G=l2/li av«c   Iz-/ F" dTi   et   Ii^ FdT) (5! = y/6) 

On a v^rifie enfir. que les solutions obtenads dans la ncovel.lo hypothese ie similitude U/uf =F {y/6}sont en 
tres bor. accord avec les relations d&lui'.es de la solution asysptotique ; celles-ci peuvent ?tre utilisees pour 
obtenir les illations qia. concement les ^paisseurs caract^ristiques et le coefficient de frotteaent. 

Designant yCfx/i par Y  » ^es ^paisseurs de deplaceoent et de quantity de mowecent sont alors donnöes 
par les fo'-railes : , 

- T Y    —    1 
"l1'   6+,'i-Glf 

La loi er-.rinar.t Is coefficient ds frotteoent s'ecrit 

} = ^lo3Röi + D*     (k = o,4i) 

Ij et 'J* sont des fenctions de C resultant de la solution asymptotique ; elles ont pu 8tre reoresentees [ref. l] 
oar des forrules qui sont rap; H-'ües section 6.3. 

6.2, - Senulg:ent trar^versal - 

^s la o&e maniere que pour 1'öcoulecent longitudinal, on a cherche i renplaoor le paraisetre E par un paru— 
oetre I plus consode et q-ii pennette d'eliiainer l'jjofliance du nombre de Reynolds pour des fonctions approprWes, 
Le choix de ce paracktre T a et^ ^galeaent dict^ par l'ötablissenent d'une solution asymptotique pour I'ecoule- 
oent transversal ; dans cette solution la variable deceurew/UgXtSqui est done une fonction de   y/6   ind^pen- 
dante de R§ . Les profils asynmtotiques ainai obtenus, nei'vent Stre psrao^tres oar leur integrale c'est-ä-Kiire 

T-r''«—^ 
? eat ainsi le paraoetre tmnsvaraal choisi pour renplacer E. 

On s'est Unite dans les representations qui suivent k utiliser les solutions dans la gacme (O < T <+00) 
des valeurs de T qui doixent des profile sans changement de aigne . T = 0 represente I'eoouieoent transversal 
rail,    T = + 00     peut representer un poiat d*inflexion. 

On a vürifiw oar des solutions Stabiles h differents nombres de Reynolds que la profil des vitesses transver- 
sales des^jre "res voisin du profil asymptotique, sauf a proximity de la paioi. En consequence, les öpaisseurs 
integrales cc; jot'ristiques de la couche iim-te pc-uveiit 8tre ecprimöej au Itcyen des r^sultats de la solution 
isynptoti-uij 

On doimera plus s;iecit,leE.er.t de-o;: illations, interessant les epai^seurs de deplaoe-ment et de quantity de 
nouveLier.t tran.veniales qu'. apparair;3er.c dans les equations globales de la couche iijr.ite. On trouve imiediatement 
ä :artir de la aolutior. ar.ymptotiqu« : 

9«       Gif        ^H-1 6,2 WZ y2     H 

/ Ftdi) 0 T 

l-p.s fonctions (|), et Vi -ont represontues figure 5. ObservonD qu'on aurait ^ = ((ij = 1 pow? u. prcfil lini- 
a-re w = C(u_Ue^      . Les fonctions s'ecartent en ftit asaez peu de l'unite spfecialement an grpdi.f.'jvt de yression 
:v;citi'.' ot lo:jque T tend vnrs 0 (ecoulement transveraal nul). Ces resultats rejoignent donn en pratique les 
obc-n'itions expcrinentaJ-es    aites par JOiCSTON [ref.  1.2]. 

La validite des rulations pi'ecedenton a ct4 acntrCl^c au moyen d'une comparoison aux rtsultats expörimsntaux 
d«,' iASi' ei HGEil (ref. 10) et de CUKPSTY et ISAD [ref. IjJ j la ficure 6 montre tdnsi un ban accord entro lea 
vtlcurs sosureos Jo   62/912   ot lc:- valours oalculdes, ^ ^t-int dötorminö en fonction da G et du T qui r^aultent 
dec vaiL-urr, exr)''rinc-r;ialc3 do   6f,Q'j,bi ,-*t IS      «A titre oomparatif on a dgalenent portt5 figure 6 Is ccoip»- 
raison du   Öj/Q^j experimental h celui nui resulterait d'un prefii de MAOKfi    W/u = ig ß0 (l - y/6 )2       [r^f.  H] 

L:  : robi.j.-o se prescnte do fa?cn plus delicate pour I'anglo Umite  ß0 qui dopend dvidenr.ent du enmporte- 
nent k v,rori:,.itü do la oaroi. 
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Solution asymplohque 

i / R6c\ NrRöb 

/ t \    x 
F'^Ue-UJ/U, 1/Ya        1/Tb 

Considerons ci-contr« I'sllure scb^izati- 
que des nrofilj t^P') obtemis pour 3 et T 
fills quänd Rj au^ecte Ters 1'inflni. Les 
solutions sontreTiX que leurs pertea k la porol 
convergont pratiquecent en un pcint de cooiw 
donneoa   1)14   et   (J>i   lesq>ielles sont fono- 
tions seuiesent   de C et ?,    On en deduit 
alors    iiMaÄliateoent que la loi pour I'ir^le 
liaite est de la force : 

fgßo.     -'{'iCG.T) 
M "   l-Jfl|)i(G,T) 

On pourra preferer utiliser pour la 
ccopa.aison ä l'exp^Tience ou dani une cithode 
integrale une relation pour tg ß0 64/61 ; 
celle-ci peut s'lcrire final.::e:.t  : 

0   e, GH 
Tr--ti (13) 

I4  H-1 

ovec CJ = -n- £f = 

C^et   Cj    sont done egaieEent deux fonctions ae G et T foumics p-ir les solutions asjTiptotiquGS. Des forou- 
les reprise:.._r.. les residrats obtcnus pour ces deux fonctions sont donr.ies section 6.3. 

La validity de cette relation pour I3 frotteaent transversal a e.^alecent ete cor.trfilee au noyen d'une cocpa- 
raisor. am resultats erpc-ricentaui des references [lOj et ['3]. la fijure 7 aontre -JUB los valeurs nesurs'es de 

3o sor't en bon accori avec celles qui resultant d'une application de la relation (13) utilisant les v;J.eurs 
expericentales ie   64 , Ö44 , Ox «^ X     .A titre cotiparatjf on a Ijaler.ent poite la comparnisor. du    0o   eiperi- 
ier.tal k celui qui rtsulterait de l'utilisation d'un prefil de ^5cP. ; I'acccrd est assez bon avec les experien- 
ces de SAT; et CUCSTY effectuees ä un nocbre de Reynolds    R^i1    de l'ordre do 5 000 ; le prefil de liAGER donne 
KSJ

-
 cor.ti-c ies   ß0 tres differcnts de ceux obtenus h •-•>. nocbro Reynolds   R«41 de l'ordre de 50 000 oar SÄST et 

HOXJi. 
La forcule que l'on propose, secble   one presenter l:avantage de tenir cunpte a'une influence iaportante du 

nosbrt; de Reynolds sur l'ar^le licite P0     . 

6,3. - Rovuo des resaitats cratigues - 
-.     — i 

En ivja-.C- on a vu cue les e-iaisseurs caracterLitiqjes de la couche lixiite et les coefficiontc do rrotter~.er.t 
oeuvar.t 8',n ox--,ri~cs en fli-ide ircocprecsible a partir des relations qui font intervenir des fonetloM r'a .Itant 
das solu'.icrj: as^-totiques. 

Pour l'ccouler.er.t loaTitudinal,  los epaisseurs oaraetcristiques et la loi de frottecient s'öcrivrrt  : 

1 
6 "l1, H = 

1-GY 
;      7 = "T l09 Rö,, + D* ( Y =l/CFx/2 

avec  / 
( *< = 0,<1 

On a nontre ccalcr.er.t [ref, 1j que T'entralnenent du fluide exterieur par la couche linite est do la fonr.e : 

d6 Va _ _ 

ds'ut"     ' 
Jy, J* et P sont der. fonctions de G (parametre de CLAUSJR) pour lesquelles peuvent 8tre utilisees les for- 

Dulos de r3.>rüs ;:.t.ition suivantes : 

I,    =   0,613 5 - (3,6 + 76,66 (l/O - 0,154)2^ '^ 

D*   =   2 S - 4,25 CPT   + 2,12    (pour G < 300) 

P   =     0,074 G - 1,0957/G 

Four l'tcoulor.ont triisvnrsal, les ranports d'epaisseurs caracterimiques, et J.B. loi de frotteL,^. _ ont 6t6 
Eises sous la fc:"..e  ; 

H-1 
Cz 

Wl , Vi . Ci»f Cz   ror.t des fonctions de G et de T =-(6i/ö)/K2Öchoi3i «Oiane paranetre transveraal et dor.t on 
oonsidire la variation dann la   ,a-i.i    0 <■ T •<■ + 00 . 
Los fonctions   (j>4   et   tyi   sont re-röser.tees fi.roi'e 5. 
Les fonot-ons  C4 et   gj   pouvont Strc represontees p:ir los fonnulco : 

1/C, = C-<I(-'S-1) + 0-<3 

£,= £/(- +1/1,) 

-<4= 20,6 I^/G* 

-<2=(C +Q3173/(2,21 +-0,423 e)<-D;856.10' 

-<3=(2;28G2-6;3 G)/2I* 

i.0V75c°tb) 
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? - coiicumo;; 

i'utilisation du scheaa oe lorv-jeur de melsngs rrcoose, dar5 la det'-iTjination d& solutions secblablcs, a 
:«rci3 d'etablir un eü~aDble de r<'-sul*at3 ralitiis am couches liiites turbulentes tridiaensicrjiclles, resulcats 
qui aettent or. luniere l'influence des factsars esser.tiels intonrr-iait dans le dövelonr«.ent de ccs couches lir.ites, 

Une cccpiraisor. satit-laisante de ess r.sultats tr-.-orijues h ioux ue 1'experience a -tt rJalis*5e, notaaienv 
en ce qui cwxeme le profil des vitesses transversales, II est ä notc-r cue les faoille.i ue profils detortines 
par 2os solutions secbljnt en fait susceptibles de repräser.ter correcto^cr.t l:s profils erT.erir.ent(iU.x, mfime uans 
des c.» oil l'€-coul-.^ct transversal ne peut plas 8tre censider^ coo-e faible devout I'ecouler.er.t lonjitudinai. 

itea loio pratiques pour les enaisseurs caracteristiques de la coucho liiit; ?t riur los doui coefficients 
i'i fr.'to.o.nt ont uu 6tre dwduitas des solutions etablics. alles font intervjrdr deui rara-.ütras representant 
l'inl".'.ucr;ce du gradiort de yression lor^itudirial et du gradient transversal ; elles or.t e,";alo:.cr.t l'avpn'.aje de 
teiir c«n-ts d'une iiuluence a.;r,rcciable iu nocbre de Reynolds sur l'aix-lo li-ite    ß0   ; dorj.ees ici pour le 
fluide iRCOBpreruible» lc-ur extension au cas car.pressible est en cours. 

On dispose er. fin de eortte de rc-sultat3 qui sanblent   -ouvoir .o.;-;ir los hj-oothesTS oaJsöror.tos et raison- 
nables sjuhaitces dans I'ttiblisso.-e.-.t i'une Methode integrale de caJcul dos couchc-s lir.itc:> tridineisiorxelles, 
üne teile cethode a en fait et   eise au poi.-vt et a dö.jä conduit a dec n-sultats rroLiottours dans difi'er.ntes 
aoplications. 

■JVB'^«'. fV' 2 

1.       KIOKJL 3. 
Ctta^jS C. 

Hypotheses on the cirvng length and aaplioation to the c^lculatior. of t:.a tiir ulent 
boundar.; laysr. - Cocputation of turbulent boundary layers 196ß. APOSn-lil1, Slt.rCSD 
Conference   - Vo'.u,te 1 - 1 ethods.Pi'edictions, Svaluatior. and Fla: structure, DP 195-207. 
3d. S.J. Ku;a, K.v. i:oiiKO\ii.", s. SO'/IJAH, I>.J. coc;:.iJU, (1966). 

2.       flJEi il. Aonlication i.'-ui scheca de lon,rueur de n-ilange a l'ötude des csuchos li.ites d'eqialibre. 

3.       Uii.J. Ihree-dinonsional lardnar ^ouncaij" layers. - Hiitjh Speed Asrod;."nanics ar.d Jet Propulsion 
Vol. IV - theory of la'-inar i". ows - oecrion C pp. 2lx-Wr - iid. ?.iC. I-JJCiC - Princeton 
iiew-Jersey (1964). 

4.        SlCr';'.Ii:i.UX.li"^ 3.A. La couche linite lamiriair« ä trois dir-unsions. - Publications 3oi-.r.ti; iquos et 
lachnisutä du Kir^störc de l'Air. - r.0 ii.T. 85 pp. 57-64 (1959/ 

5.     VA;. 'Mtiii'i u.a. 

6.        .IAüH J.F. 

On turbulent flow uear a wall - J.A.3,, Vol. 23, Itov,  (l95ö) 

The ■-■alculation of tliree-diasnsional turbulent boundary layers in incompressible flow. 
J. Fluid. Kesh. Vol. 37, Part. 4, pp. 625-&;2 (l9o9) 

7.        PiPuTi A. 2, 
joiaM P.I;. 

A three-dioensionel turbulent boxuidary layer. J. Fluid, i.ech,  Vol. 22, Par';, 2 
pp. 285-304 (1965) 

6.  fssi; U PAlJG Contribution ;■ I1etude de la couche lioito tridinensionnelle laoinaire compressible 
avec transfert de chalour, - These presentee ä la iaculte des Sciences de 1'Universitz 
de POITIias - n0 d'ordre 55 0965)." 

9.  ilX'JL H, 
ftUaiAkD C. 
cc;.":^ix J. 

Solutions da similitude oour les couches limites turbulentes bidir.-.onsiorJieiles en 
fluide oocp-essible avec gradient de pression. - La Recherche Aerospatiale, 
OIoRA - r.0 1971-5. 

10.     CAST L.F. 
K0X3;.' H.F. 

Iicw-Speed three diiLcmional iui-uulent ^"vndary layer data. Part.  1 - H.A.E. Technical 
Report 69 041  (1969). 

11.      KAU K.G. 
aiCiSIS H.3. 

Keasuroments in a three-dJcensional turbulent boundary layer in supersonic flow 
MC.   H»! n0 3537 (1968) 

12.     JOffliSl'Oi: J.P. On the three dimonsfonal turbulent   boundaiy layer generated by seccriLry flow. 
Journal of Basic Encineeriiig - Series D, Trauä, ASIffi - Vol. 82 pp. 233 (1960) 

13.  CUMSTY i,.A. 
IBAH V..ii. 

The calculation of three-dinensional turbulent boundary layers - Part, IV 
Cooparison of Keasuremenis with calculations on the real- of a swept wing. 
ARC C.P. n0 1077 (1970) 

14.  KAGtH A. Generalisation of boondary layer momentum integral equations to three-dimensional 
flows including those of rotating systems - NACA - Report 10u7 (1952). 



8-1 

A CtLCUUTIOH KBTHOD 
KP. THHSB-DUCaSIOHAL IICOUP'ffiSSIBLE TURBaiSTT 

BOUNDARY lATKHS 

P.   Sesselir.' and J.P.f.  Llndhout 
.National Aeroi^aca Laboratory NLR, Amsterdam, Betherlanda 

SmtHA^Y 

A ayatea 01' partial differential equations which can he used as a mathematical model for 
thrae-dlmtinsional Incompressible turbulent boundary layers la discussed. Certain mathenatlcal pro- 
perties of these equations are elucldcted. The equations have a finite domain of depeod<snce( this 
fact considerably simplifies the problem of calculating three-dimensional boundary layer flows. 

The aquations are solved numerically by means of a simple linear explicit finite difference 
scheme. The choice of an efflclcint difference scheme is guided ty two well-knowi' criteria for the 
stability of linear difference schames with oonatant coefficients. The method is not restricted to 
small cross flow, or to flows under infinite swept wing conditions. 

The method is used to calculate suverf.! experimental flows. The agreemect between the com- 
putational and the experimental results is found to bo encouraging, although there is room for im- 
provement . 

Computation times were found to be quite acceptable. 

1. IKTBODÜCTION 

As has been amply demonstrated at the 1968 Stanford Conference on Computation of Turbulent 
Boundary Layers (Ref. 1), the engineer who wishes to calculate a two-dimensional incomprasslble 
turbulent boundary layer has several mctbode of sufficient accuracy at his di&posal. Some aspects 
require further attention, such as the effect of straamllne curvature on the turbulence structure, 
but in most situations the remaining uncertainties do not seem to constitute a source of large In- 
accuracies. Because two-dlmenslot.al boundary Ityrers can now be calculated in a more or less satis- 
factory way, and because present-day computers possess sufficient uomputing capacity (as is shown 
by Refa. 2 and j and by the present paper), the time seems ripe for the development of methods to 
fulfill the practical need for three-dimensional turbulent boundary layer calculations on a routine 
basis. 

Boundary layer calculation methods may be divided into two classes: differential and integral 
methoda. Differential methods have the number of independent variables equal to the number of space 
dimensions, and enable the flow to be computed in detail. Integral methods have one Independent 
variable less, and do not permit to predict the flow in detail, but give certain funotionals of the 
solution, such as skin-friction and displacement thickness. In the two-dimensional case, there are 
differential as well as integral methods that give good results (Ref. l). Leaving out of considera- 
tion methods for flows with small crossflow or flows with variations in two space-directions only 
(quasi-three-dimensional flows), a three-dimensional differential method (Ref. 2) and a three-dimen- 
sional integral method (Ref. 3) were recently published. It is generally held that In two dimensions 
differential methods are much more computer time consuming than integral methods, but in our 
opinion it is likely that lurther numerical analysis will make it possible to Increase the efficiency 
of differential methods appreciably. At the present time It seems difficult.to say whether in three 
dimensions the difference in computing time between differential and integral methods will be appre- 
ciable or not. Generalizing integral methods from two dimensions to three seems to require more addi- 
tional empirical input than the extension of differential methods to three dimensions. At any rate, 
at the present stage of development of three-dimer.oional boundary layer calci'latlon methods a dis- 
cussion of advantages and disadvantages of integral ^s compared to differential methods seems pre- 
mature . 

The present paper presents a differential method, which, like the method of Nash (Ref. 2), 
is based on an extension to three dimensions of the two-dimensional Reynolds stress equation put 
forward by Bradshaw et al. (Ref. 4). No additional empirical input is necessary. The resulting equa- 
tion is different from the Reynolds stress equation employed by Nash, but Identical to the equation 
proposed by Bradshaw (Ref. 6). A numerical method for the sclutlon of the resulting equations Is 
described. The results are compared with several experiments, and with results obtained by Nash (Ref. 2) 
and, for quasi-three-dimensional flows, by Bradshaw (Ref. 6). 

2. A SEMI-EMPIRICAL REYNOLDS STRESS EQUATION 

For boundary layers on non-developable surfaces the equations have to be written down in curvi- 
linear co-ordinates. This can be done most conveniently with the aid of tensor notation. The reader 
not familiar with denser analysis may think of the equations as written in Cartesian co-ordinates by 
making no distinction between super- and subscripts, by interpreting the subscript ,J as Vox: and the 
metric tensoi gn as the Kronecker delta S^- , and by summing over indices that are repeated in a pro- 
duct. Cartesian fio-ordlnatsa can only be used for boundary layers on developable surfaoes. The nume- 
rical scheme and the computational results to be described later in this paper will be restricted to 
such surlajes. 

The co-ordliates T^  are chosen orthogonal and such that the surface to which the boundary layer 
is attached is given by xg ■ 0, aad that normals to this surface are given by x\ - x-j » 0, Hence, tg 
measures distance along normals to the surface. Apart from the preceding conditions, the co-ordinate 
■ystem doss not need to be precisely defined at this stage. It may or may not be a streamline-co-ordi- 
nate system. The x^-co-ordlnate la chosen roughly but not necessarily precisely parallel to the in- 
viscid streamlines at the edge of the boundary layer. Latin indicea will have range (1,2,3> > Qreqk 
indices have range {l,3}. 

In turbulent boundary layers the stress is dominated by the so-called Reynolds stress{ except 
very close to the wall the viscous stress is negligible. Prom the Navie^-Stolces equations the exact 
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equation fcr the  "eynolds stress follows in a straightfcrward way   (see e.g.  Hef.  7). This exact equa- 
■■..n shoulj   rj diatinÄuiehed froffi the semi-eapirical app: oxlaations which will be discussed here- 
xlter. The exact equation for the Raynolds stress - <u^aa'>takes  the follortr.g foj« in the bcundary 
tayer spprox'».jtion: 

^<lVu2>^ = ' <aau^ üiw'<u?lWu>'1'>.«4-<(^.2*^>(t) p>. (1) 

The s./mbol <•> aenotes an average.  Small letters denote turbulent fluctuations,  capitals averaged 
quantities. The tara at the left-handside represents advection of Reyaolds stress, the first term 
at the right represents production, the second dissipation and the third interaction betwce- rate of 
strain fluctuations and pressure fluctuations. The viscous dissipation term hbs been omitted because 
it is almost negligible. Sq.   (l) cannot be used as it stands, because of the  "closure-pribleB", which 
is at the heart of the difficulties connected vith the understanding of turbulent flowsi  Eq.   (1) 
contains unknown quantities <UaU-a> , CLAI^U^ , etc. These unknown quantities «ill be replaced by 
expressions involving only OjL-O^tjid y^ ^ means of semi-empiricftl assumptions. 

TOT the calculation of two-dimensional boundary layers, Bradshaw et al.   (Sef.  4) have with 
good results mad« use of the following approximation to Er.   (l)s 

where a, G and L are empirical functions, and L! ia the maximum of <U1u2> for a given value of x^. 
It is assumed that <u.|Ut>is negative throughout the boundary layer. The first tern at the right- 
handside of (2) ia an approximation of part of the production tern in (1), the second approximates 
the diffusion term and the third approximates the rate of strain-pressure interaction term and part 
of the production term. Because it tends to decrease - <LL,a?^the last term will henceforth be re- 
ferred to as the dissipation term. For a motivation of Eq,   (2/ the reader is referred to Hef. 4. 

For three-dimensional boundary layers, Eq.   (2) has to be replaced by two equations for tae 
two equations for the two relevant components <-aKut> of the Reynolds stress tensor. Slnoe turbu- 
lence is inherently s three-dimensional phenomenon, the stiucture of the turbulence in two-dimen- 
sional boundary layers does not differ in an essential way from the structure in three-dimensional 
boundary layers, so that Eq.  (2) may be taken as a point of departure for the derivation of a three- 
dimejislonal shear stress equation. 

One way to gentfdis«    (2) to three-dimensions is to interpret this equation as an equation for 
the magnitude of the two-dimensional vector <uKu.>.   (Of course, the Reynolds stress is a tensor, 
but in the boundary layer approximation it behaves like a two-dimensional vector). 'Jnfor'.unately, it 
is difficult to assign a direction to this vector. One is tempted to take the same direotion &.B used 
in the eddy-viscosity methods, i.e. 

<a,^>/<uiu4>- IV/^a (3) 

This approach ia followe by Nash (Kef. 2). However, experiments show that (3) does not always hold. 
Another approach is to gcnerrlize Eq. (2) to a vector equation, assigning directions to the various 
terms. This strategy has been followed by Bradshaw (Hef. 6), and will also be followed here. 

For a study of the prnasure-etrain rate interaction term it is useful to writ« down the equa- 
tion for the pressure fluctuation> 

The solution of this equation may be written as 

Here G is the Orson's function for the U.placa equation in the domain D, which is the boundary l^yer. 
In an infinite domeln, 0 would be equal to l^fc-ffcl/W ■ Tk8 pressure has been split up into two parts« 
pW is due to interaction between turbulence and mean flow, pW resultp from turbulence-turbulence 
interaction. 

First, it *ill be tried to assign a direction to ths preesure-strair. rate interaction tent In 
(1). For (rj-^u..    y   one finds 

B .      1 • 

The main contribution to the integral ooRes from eddies of which the length scale is the dissipation 
length parameter A as defined by Townsend (Ref. 7) P'47v*. For high enough Reynolds number I\ is much 
smaller than the scale of the energy containing eddies (i.e. the boundaiy layer thickness). This means 
that the eddies that dominate (6) are to a good apprcsication homogeneous. One then has 



8-3 

<^(x«)S ^)>=-^-<,Af^)^V>' (7) 

where for brevity the co-ordinate systeo haa been tssuiaod Cartesian,  so that  terns involving Christoffel 
symbols do not appear,  öunstitution of  (7) in  (6), .r-epeated partial integration and application of the 
boundary  lajrer approximation results in 

< f'i**)^ *('■*)> - z///< ^KM»» U.* ^«)1^(,£»'^)^Nö,1 ^b&w 

The integrals are Cauchy principal value integrals, '.-ith the reasonable assumption t^8* <uatli#)un(^»)> 
is parallel to <ru.a(X(()i^(i(xj{)> , the same is true for <^,'aÄ l> . The direction of <t/',us «,>  is not 
evident from (9). Because, as will be discussed shortly, there is evidence that part of the pressure- 
strain rate interaction term is in the direction of the velooit;; gradient, perhaps <^o<,''aä «■>  is 
parallel to LL n . ' 

He substi 
foliowin 

A detailed study of the pressure-strain rate interaction term has been made by Rotta (P.ef. 8] 
ititutes a Taylor-series for LM. (u^\    around tho point yjj. = xk and obtaines a result of the 
n* form: 'l ' 

.w t.   ..     alfr« (lo) 

If the coefficients a/^ and{'  could be estimated, (10) would give information about the direction 
of ^fa' u*_n> t but this does not seem eaey for the non-isotropic eddy-atructure of length scale X , 
so that WÄ will rely on (8) and (9), for guessing the direction of <'>'"'(a«o+U-iK)>  • ^^ 
<J'^''(lV4*airf )> So*** obtains by physical reasoning the following result 1 '   ' 

<^2,H)ii
+LV)> = (««kr) -O^up (n) 

The same reasoning- that was used to obtain Eq.8.   (6) and   (9) can be applied to Cfo^O-1*;?* ■«■«»)>     t 
one then finds this term to be parallel to a third-order moment of the velocity fluctuation. This 
result is not very useful. Assuming Eq.   (11) to be accurate, <1o<*^(i^ n+'J'o «) >      iß ta) s-i to be 
parallel to O^a.^. "■•*       '  ' 

According to the preceding discussion, the pressure-strain rate Interaction term is for a large 
ad- 
ln 

rate interaction term consists of two parts, one of which la parallel to<u^ua>, whereas the other 
equals 0.3 |<UjjU4>j(J*«. firadshaw notes that some support for this assumption Is provided by an exact 
solution for the asymptotic case of a large scale strain rate applied to a small scale Isotropie tur- 
bulence field derived by  Crow (Ref. 9). This point of view can be ocnoiliated with the results just 
obtained, if it is hypot/aslzed that <b^)u.^^> is parallel to (J^J- Because Hotta's study and the 
conclusion drawn here from Eq.  (8) are not rigorous, and because Crow's solution Is not strictly valid 
for boundary layers, therr? remains a considerable degree of uncertainty conoemlng the behaviour of 
the preafure-strain rate interaction term. 

Fortunately, for the assignment of a direction to the dissipation tens in (2} the knowledge 
that part of th9 pressure-ttrain rate interattlon term is parallel to the shear stress Is sufficient. 
The dissipation term in (2) must then be taker, parallel to the shear stress, because there can be no 
doubt    that the other term in  (2) which representc part of the pressure-strain rate interaction, 
namely the production term, is not parallel to the shear stress, but parallel to the velocity gradient 
(see Eq.  (l)). Hence, the dlasipation term in  (2} can bo genoralized to three dimensions as follows« 

Dissipation term »    <^aULoC>'l <aau^>l */'-' ^I2^ 

The diffusion  term in  (l) can also be transformed with the uao of Eq.   (5) and ty partial inte- 
gration. One obtains, in the boundary layer approximation, 

Ag-ain assuming ^^^^^JI)^ be parallel to <iJ^(x){ju/R()^)S /^'■'■x-Nis also found to be parallel to 
this vsctor. Similarly,    <«a'L<^> is found to be parallel w a thTrd order velocity fluctuation moment, 
which result cannot be usea, For want of a better assumption,  <t)'Ä'Uw> 1^ tal;en to be parallel to 
<l^Llj£>  , which may be expected  to dominate the dirfusion term anyway. Thus, one has the following 
generalisation of the diffusion term in  (2)« 

Diffusion term » - ^iß, <^^z>)^   •   ^ c wax | ^u,^ . ^ 
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The production tarn l.i (1) is obviously in tha diraotlon of U,, « . 
It is now poseibla to »rite down the follow^.ng thiee-dlnensionlA. gansralisstion of  (2), re- 

placing - <ty^t>tyr the aymboll^ « 

i^^i V^W^ITIVL , (is) 

where ^[^{X^X^ 

The aame shear stress equation has also been arrived at by Bradehaw (Eef. 6) by a different 
way of reasoning. Psrhapa the fact that different trains of thought lead to (15) la encouraging. 

3. DISCUSSION OP EQUATIONS AND BOUNDARY CONDITIONS 

Tha equations to be used here aa u mathematical model for three-dimensional turbulent boundary 
lasers aret 

5^u 'MO^tßX^-V^/i. > (17) 

U^O, (18) i 
ß ** [ 

where 9a • U U^^j^g • Eqa. (16) and (17) oay be combined such that the u.i!a»owns are differentiated 
in the same directifnf 

where^-pt^anrlf^-aMV^,, V^r4Aa|T|f R-^^^^j^^^ j 
^rom Sqs.   (id) and  (19) it la clear,  that the aquations are hyperbolic. There are three characteris- i 
tics. Eq.   (19) shows, that the bl-charactenatlcs which together form one characteristic are tangent i 
to the vector (ijT^U^/U,)   , and that the bi-cbaraoteristica of a second characteristic are tangent to 
the vector (iiTgtL^/Uj)   . Note that the orthogonal projections on the surface of these bi-oharaoteris- j 
tics coincide with the orthogonal projection of the velocity vector. The x- or tha z^erivative nay 
be eliminated from (18) with the use of  (19), which shows that normals to the surface are also bi- 1 
characteristics. ', 

It is of Interest to investigate what the region of influence of a given point la. The fore- j 
going hyperbolic system is not symmetric and the charaoteristics have points of contact!  therefore 
a general theory concerning existence, uniqueness and domain of dependence of solutions is not avail- 
able  (Ref.  10, pp. 618, 676). Coe possibility is that a perturbation applied to a solution in a given 
point P propagates along the bi-characteristics through P without spreading to other bl-oharactsris- 
tlofl  (Pig.  JUp)). Another possibility is that the perturbation spreads to all bl-chiiracteristics that 
contain a point or intersect a region where the perturbation la present| aa a consequence,  the in- 
fluence of a perturbation in P is present in the wedge which containa all bi-characteristios, or, 
equlvalently,  all velocity vectors through the normal on the body surface through F (see Fig.  1$). 
In the first case the region of influence of a given surface element is as depicted in Pig.  1(c), in 
tha second case as drawn in Pig.  l^i). In the second ease the domain of dependence is smaller, and is 
identical to  the domain of dependence for the 1hree-dlmenslonal laminar boundary layer equations,  as 
derived    heuristloally by Raetz   (Ref.  11). As long as it la ne'. known whioh of the two possibilities 
actually occurs it seems best to confine  the calculations to   wie smaller one of these two domains, 
because one con then be sure that the initial data completely define the solution in this domain, 
and because one saves computational effort.  Raetz'B influence principle may be formulated aa follows. 
Initial data given on an arbitiary surface S dsfine the solution completely in a finite domain of 
dependence, which is bounded by 3 and by surfaces generated by normals to the body-surface, whose 
Intersections with the body surfaoö are in eveiy point P tangent to the projection of that stream- 
line through the normal in P, whioh makes either the largest or the smallest angle with the undisturbed 
stream of all streamlines through th<i normal in P. Pig, 2 may be helpful in understanding this defini- 
tior. In Pig.  2,  tan ß ■= max UT/UI,  tan Y c min U-^/Ui- 

Intuitively, one expects the influence principle to be not just a property particular to the 
seiai-empirioal systeifl of equations adopted here, but to have wider aigiiificanse. Per, whether a bound- 
ary  layer be laminar or turbulent, one expects  transport of the proper«ios of tha flow to be due to 
two  effects only in the boundary layer approximation!   (i) convection •vith the flow,  and  (ii) diffusion 
perpendicular to  the surface. If this is admitted as fact,  the influence principle immediately follows. 

The influenre principle is of great pri.otioal importance.  Suppose for instance that one wishes 
to  calculate the  laminar boundary layer in a point P (Pig.  3) which la in the vicinity of a portion of 
the body for which boundary layer cfilculations are difficult to perform,  suoh as the wing-fuaelage 
junction, or a discontinuity due to a deflected control surface. According to the influence principle, 
the boundary layer in P can be calculated without computing t>-e flow in the more difficult r^iona, 
as long as these are outside the domain of dependence of P. Furthermore, in experimental investiga- 
tions the measurement of flow conditions in 5 given point P it only relevant if the flow la also 
measured in an upstream region of v/hich tha domain uf deincU'ca containa P. Otherwise,  the flow in 
P cannot be predicted by calculation .aethoda. 

The initial and boundary conditions will now be considered. In order for the problem to be 
well-posed as a Cauchy initial value problem, [I, and Tv should K jriven on a surface which is nowhere 



tarsgent to the characteristic directions. Assuming this Initial surface to be buiit up of nornalo to the 
body-surface, derivatives of U0 con be expressed in aerivatives m the initial surface with Eq,   (13). 
Then Eq..   (18) gives Uj on the initial surface, whereupon Eq.   (19) gives the derivatives of L'a aniTa, 
and the calculation can proceed. In contrast with laminar bo'indary  layers, no boundary condition ia 
to be applied at the cuter edge of the boundary layer, a point which has been overlooked vn\i\ now. 
The reason for this is, that near the outer edfjc , where |T|-*0, all bi-charaoterieticä point out- 

wards, so that the anknowra are completely defined by the equations, and the «jplication of boundary 
sonaition» result« in non-enst. ice of solutions, unless the boundary conditions are coraoatible with 
the equations, i.e. are such that they would also be satisfied by the solution if they wers not im- 
posed. This happens to be the case with the boundary conditions that are usually imposed on boundary 
layerii 

V^OCI^-S . V*0 aS X*-^00 (20) 

Near the wäll one bl-characterlstic points towards the wall, and two boundary conditions . ..VJ 
nteded here. Following Bradshaw et al. (Ref. 4), the law of the wall is Imposed at a suitable dls- 
tanca from the wall, rather than imposing the no-slip condition and incorporating the hard to calculate 
viscous sublayer in the computational region. At present, there is still .-ome uncertainty concerning 
the law of the wall In three dimansions. It seems best to assume, as Sradshaw (Hef. 6) and Kash 
(Ref. 7.)  also do, that in three dimansions the magnitudes of the velocity and shear stress vectors 
are related to each other in the sate way as in two dimensions. In the oa^.culatior.s reported here 
the la.w '»as used in both its i.4iiple foru« 

^|-(^A)(^^w)+A), (a) f«6 

with K = 0.4 and A = 2. and its extended form, as 'vritten down for example in !?ef. 6. ^ 
A seoond boundaiy conditior. is obtained by prescribing the direction of the shear .stress. In the re- 
gion where the lew of the wall is valid, mliing-length theory is a good approximation, so that the 
shear struss is in the direction of the velocity gradient. Numerical solutions of the equations with 
the method to be described shortly, showed that near the wall the velocity vector is almost parallel i 
to the velocity gradient. Hence the shear stress may just as well bb tafcen parallel to the velocity | 
vector, and this assumption has l>sen used, because it Is computationally more convenient. Hence ] 

WVüa (22) 

Further boundaiy oonditlons need not be applied. 

The CFL condition takes tte following form! 

AX, 6 ÄXaAXÄ »/max   I Ui ÄX,+ rtA**A        (23) 

Usually, T,^ is a small  quantity  (of the orier of 0.0^).  furthermore, for most boundary layers it is 
possible to chooiio the ij-axi* such that '■k/U) Is also c. small quantity over a large part of the flow. 
It turns out that the restriction placed on the  step-size by  (23) is not much more severe than the 
restriction imposed bv the requirement of accuracy. In order for a scheme to 1e accurate the step- 
size should be so  small that tbt variables change little over one step.  Provided one can show that 
(23) is also  sufficient for siab;lity,  there does not seem to be nrish reason to use more complicated 
difference schemes  (e.g. implioit or Wo-step schemes), that are not subject to   (23). 

A condition that la ubually sufficient for stability is tha Neumann stability condition. This 
condition says that, if  tha coefficients in the difference schorae are taken to be constant and lateral 
boundaries  (i.e.  the wall and the edge of the boundary la^er) are absent,  the amplitude of a htu'-.anio 
wave of arbitrary wave-length shovld not increase as it propagatas  chrough the computational grid. The 
Neumann condition is often more stringent  than the CPL condition. 

The difference scheme is oonstruoted as follows. Use is made of the differential equations in 
the form  (19) rather than  (16) and   (l?). AsGurae that the solution has been calculated in the X,«fAX, 
plane. A line ia drawn through B  (Fig.  4) parallel to one of the two characteristics ('i^»lUj/U,)     in 

A^. This line intersects the q:adrangle A-,A-,A.Ar in one of  the four triangles that make up the quad- 
rangle. The Xp- and x^-derivatives are now dlsoretized in  auch a way  that use is only made of the 
vertices of the triangle juat mei.tionci. 'i'his procedure Tor obtaining a difference approximation to 
quasi-linear hyperbolic aystema was  for the two-dimenaional case first proposed  by  Courant,  Isaacson 
and  Rees  (Ref.ij)    For Eq.   (19) one obtains! 

4. A FINITE DIFFERENCE SCEEMB ; 

In the region where 'he boundary layer is to be calculated a grid is constructed with nodes 
(X,«-tAX!,Xa

,,,,*AXx,Xa-nAXa ). After the solution has been found in grid-points in the plane*,»fAX, , 
it is calculated in the adjacent plane X," ({+l)AX, , hy means of a six-point one step explicit dif- s 
ference scheine,. In order to calculate .he solution in a typical point B in the plane X.«(f-H)AX, , use        j 
is made of the values of the solution in the points A^ Ar in the plane X,»f AX, (see Fig. 4). '' 
The numerical solution will only converge to Vue «xact solution as the computational grid is refined,        J 
if the difference scheme is consistent with the tfferential equations ard is stable. The 'Jcuratit- : 
Frledriohs-ievy (CPL) condition (Ref. 12) is noot-ssary for stability. The ÜFL condition says th.it 
for stability it is necessary that the characteristics through B intersect the plane X,.C{AX, within 
the quadrangle ApA^A.Ac. Because in Eq. (19) no derivatives of Up appear, it can be considered sepa- 
rately from Eq. t1')- Ths characteristics of (19) have the following direction: (l,f.,.Ü3/10 
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where Ä»Sgn.T,j j-'Sgn (u^/tj,) . It has been aesumed that the co-ordinates are Cartesian. After U|t 
andTj, have Wen found from (24), ani' discretised version of Eq. (16) results in an  ordinaiy difference 
equation for UgF for which the stability properties are easy to investigate. It turns out that for 
Eq.. (24) the Neumann condition is identical to the CPL condition (Eq. (23)). Hence, Eq. (24) is opti-- 
mum in the sense that the stability condition is as veak as possible. It is, noteworthy that this would 
not have been so if instead of (19) Sqs. (16) and (17) had been diecretir.ed, for instance such that 
the direction in whi,■;*'. an unknown is differentiated is taken into account analogous to the way in 
which tha direction ci" the characteristics is taken into account in (24). For the scheme obtained in 
this way, the Neumann condition was found to be much usore severe than (23). 

Eq. (24) contains tLe main body of the methcd. Special measuteo art necessary near the surface 
where the initial conriiticns ar? applied, and near the lateral boundaries of the computational region. 
In general, the initial .surface is not a plane xj = constant. The lateral boundaries can be defined 
arbitrarily. In oruor to ke,>p the oociputational work down to a minimum the lateral boundaries were 
made to coincide *ith the boundaries of the reeion of influence of thr initial surface; obviously, 
calculations outside tbi. -egion do not produce meaningful results. The ort'oogonal projection of the 
computational region typically looks like Pig. 5. In accord with tun  definition of thi influence 
principle, tan (J = max  -»/u, , tanT = min ^sAj,  . In order to treat cells that art not rectangular, 
the equations are transformed to non-orthogonal co-ordinates that coiaoide with the cell boundaries. 
As a result, along the lateral boundaries boundary conditions, which otherwise would have to b« guessed, 
ave not needed. The presence of lateral boundaries, which is not accounted for in the Neumann stability 
criterion, did no affect the stability of the calculations. 

5- COMPARISCffl V/ITH EKPEHIIffiST 

Four experiments have been selected to compare the present calculation method with; the results 
will be described successively. The computer program proved to be sufficiently flexible to accomodate 
the j...itial and boundary conditions for all test cases; no modifications in the program were necessary. 

5.1 Relaxing constant pressure flow (Fef. 5) 

The flow takes place over a flat plate under constant pressure, with three-dimensional Initial 
conditions (Fig. 6). The flow at the trailing edge of a 45° "infinite" swept wing furnishes the ini- 
tial profiles. As Fig. 6 shows, the initial profiles show almost no spanwiee variation. Fig. 7 gives 
at three stations angles of velocity, shear stress and velocity gradient. The scatter in the direc- 
tion of the velocity gradient is due to the fact, that the numerical evaluation of the velocity gra- 
dient is aone very crudely, namely by first order differencing. Fig. 8 gives velocity and shear stress 
profiles, and Fig. 3 the magnitude of the skin-friction. The agreement between calculations and ex- 
periment is satisfactory. There is also good agreement between the present calculations and the cal- 
culations by Bradshaw (Ref. 6). This reflects favourably upon the soundness of the present numerical 
i-.fithod. In Ref. 6 the same differential equations are solved as in the present paper, but with a more 
straightforward numerical technique, which uses the fact, that there are really only two independent 
variables in the present flow. A difference between the method of Ref. 6 and the present method is, 
that in Ref. 6 the law of the wall is employed in its extended form, i.e. assuming the shear stress 
magnitude to vary linearly in the wall region, whereas in the present calculatione the law of the 
wall is used in its simple form, with the shear stress assumed constant. However, in the flow under 
discussion the pressure is constant, so that the difference between the two laws of the wall should 
be slight. 

The calculation took 19 min., including compilation and printing, on a CDC-3300 computer.The 
number of grid-points in the x^-direction (perpendicular to the wall) varied between 2j and 30. In 
the x,-direct:i.on (perpendicular to the tunnel-axis) the number OJ. grid-points was maximally 30; it 
decreased during the course of the computation because the width of the computational region dttreased. 

5.2 Forward facing step under ,5° yaw (Hef. I4) 

In this flow there were large pressure variations in the direction perpendicular to the sur- 
face. In the calculation the surface pressure has .een used, therefore accuracy is to be expected 
only  in the lower third or 30 of the boundary layer. The computational region is shown in Pig. 10. 
In the calculation separation occurred appreciably '-loser to the step than in the experiment. This 
corresoends to the fact that the wall-cteamline angle is underestimated (Fig. 13)- The oaloulation 
by Bradshaw (Ref. 6) alsc underestimates the wall streamline angle, but to a lesser extent. The dif- 
ference between bradshaw's and the present calculation is probably due to the difference in  the law 
■jf the wall. Near the vail, ihe shear stress direction is predicted inaccurately by both methods. In 
Pig, 13, tt.« scatter .us the angle predicted by the present method is due to the fact that angles at 
different sp«iwise positions are presented. Because spanwise variations in initial and boundary con- 
ditions areabssnt, the scatter is a measure of the numerical truncation error of the present method. 
Figs. 11 (a) and (b) bhow, that the velocity magaitude is slightly overestimatnd, whereas the shear 
stress magnitude is predi.-.+ed correctly. The prediction of the velocity and shear stress directions 
;:,ear ths wall (Fij. 11 (c)) leaves something to be desired. The agreement with the calculations of 
Ref. 6 in- s^tisfaotoj v; the differences near the wall may be ascribed to the difference in the law 
of tha wall. The sidWriv.ion (Fig. 12) is slightly undereetiftated; again, improvement is to be ex- 
pf-cted freu tho use of thu extended law of the wall. 

TW; f,. .''..putation tim^ for- this case was 50 min. The number of grid-points in the X2-üirection 
■,.. '.'..•.'. t&Xw.mti 20  and 40; the number of grid-points in the x-j-direotion was maximally 30. 

;..„    Iri'iv,, te'' swept -.ving ooundary layer experiment (NLR, unpublished). 

At HtK. an experiment is in preparation in which a pressure distribution qualitaLively similar 
to tte piaeso-e distribution or. an "infinite" 35° swept wing is induced on a flat plate. Pig. 14 shows 
.*n oil;.low ;j.t8rn as observed daring an exploratory run; the pattern approximately represents the 
surface ctreamline. The region 0' influence of a surface segment parallel to the leading edge is de- 
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picted in Fig. T5, together with a surface streamline. .1wo calculations were aado, one with the nlmple >. 
and one with the extended law of the wall. Ideallj , the left-hand boundary should ocinoiie with this 4 
surfaco streamline. As in the previous ',eat-oa89, the crossflov; angle near the surface ia  undereati- -3 
nated, although the use of the extended law of the wall gives considerable improvement. | 

The calculation took 46 min. with the simple law of the wall and 37 min. with the extended la» J 
of the wall. The number of grid-points in the x~-direction varied between 20 and 40j in the x,-direo- 
ticn it «ras maximally 15. | 

■i 

5.4 Swept wing experiment by Cumpsty and Head  (Kef. 15) » 
o ^ 

This experiment concerns the boundar;' layer flow on a 61.1    swept v.lng. Two calculations were i 
made, both with the extended low of the wall but with different pressure distributions. One distribu- I 
tion  (distribution  (l)) was taken directly from the neasureaontsj  the pressure was assumed to vary 
linearly between the two chords where the pressure was measured. The second distributioi.  (distribution J 
(2)) is a tenth-degree polynomial fit to the(courteously  to us cuppliedjpressure distribution used by ■ 
Braoshaw (Ref, 6). K.g.  16 gives the resulting velocity distribution at the edge of the boundary layer 
at the locus where boundary layer measurements were made,  together with the jpressuro gradient for || 
Bradshav/'s distribution and the polynomial approximation in the region where  separation if fiedicted. | 
Pigs.  17 and  IS ohow that the agreement between the present calculation and  that of Fef. 6 is rpason- | 
ably close. The scatter in the present calculation is duo to spanvd.se variations.   Vitb distribution 
(2), which has no  spanwise variation, these should be absent. The scatter ia a measure of the trunca- | 
tion error of the difference scheme. The large difference between the present calculations displayed J 
in Fig. 18 shows, that relatively small pressure differences  (see Pig.  16) can have a large affoct nn 
three-dimensional boundary layers. Vhis fact has also been observed experimentallyj introduction of the 
traverse gear into  the flow caused the separation line to move appreciably in this experiment. The i'aot 
that Bradshaw'a oöloulation prediota separation earlier than the present calculation corresponds pro- 
bably to the fact that,  as shown in Pig.  16, Cradehaw's calculation has a steeper pressure gradient in 
the region where separation is predicted. Pig.  1« gives a comparison between the present inethod,  the 
method of Nash  (Ref.  2) and experiment. The difference between the directions of shear stress and volo- 
city gradient was found to be small, so that the present results should agree with those of Ifaahf this 
is indeed the cass. Agreement with experiment ia disappointing.  Nash obtained much better agreement 
(Pig. 19) by imposing an additional spanwise pressure gradient, equal to twice that formed by dividing 
the maximum difference in pressure between the two  spanwise measuring stations by  the distance  between 
then. Bradshaw also obtained better agreement with experiment than shown in the figures by corrwoting 
thu mixing length for streamline curvature. 

Both calculations took about 55 rain. The number of grid-points in the ij-direotion was majtimal- 
ly 51, in the x^-direction 27. 

6.    C0KCLUSI0K3 

A method has been presented with which it is possible to compute three-dimensional incompressible 
turbuleni boundary layers at reasonable cost. The method is not restricted to sniall-oross flows or 
"infinito" swept wing type flows, and is flexible enough to handle a variety of flow situations without 
modification. 

Agreement with experiment io satisfactory, but can be improved. To this end, as has also been 
noted in Ref.  2, more and better experiments are needed. The pressure should be measured aoourately 
and in many points, because small uncertainties in the pressure distribution or small deviationa in the 
flow fron a nominally  "quasi-three-diraenaional" state can have large effects. 
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SUMMARY 

Recent numerical studies carried out by the author and his colleagues in their 
attempt to develop an invariant model of turbulent shear flow are described. The results 
of comparing computations using a tentative model of such flows with experimental data 
for the axlally symmetric free Jet, the two-dimensional free shear layer, and the flat 
plate boundary layer are presented. The need for more carefully designed and documented 
free turbulent flow measurements is discussed In relation to the problem of selecting more 
refined models. Some observations arc also made concerning the application of double 
correlation closure schemes, of which the present method is one, to the computation of 
turbulent flows other than classical Incompressible shear layers. In particular, the 
possibility of more correct methods of calculating the behavior of chemically reacting 
turbulsnt flows Is examined. 

INTRODUCTION 

It is certainly true that there is novhlr.g new under the sun. The work in which my 
colleagues and I have been engaged for the past few years Is certainly no exception to 
this rule. We have been attempting, as have a number of other groups, to construct a 
model of turbulent shear flows based on a closure of fie equations of turbulent motion 
given by Reynolds (Ref. 1) almost a cer.tury ago. The method used to close the system of 
equations is a modeling of the appropriate terms in tne  equations for the seccnl-order 
correlations of fluctuating quantities. This general approach was discussed In 19^5 by 
Prandti and Wieghardt (Ref.2) and was pursued in some detail by Rotta (Ref. 3). Within 
the past few years, many investigators have turned their attention to such techniques. 

The motivation for our own attempt to construct a new model of turbulent rhear flows 
does not stem from a desire to calculate with greater accuracy or in more detail the 
characteristics of turbulent boundary layers or the classical free shear flows. The 
attempt is made because we wish to gpt some idea of the character of certain turbulent 
flows for which there is not sufficient empirical information available to permit the use 
of conventional computational techniques with any degree of confidence. The particular 
problems we were anxious to analyze were the decay of a turbulent vortex, the generation 
of turbulence by the atmosphere, and the dispersal of chemically active species in the 
earth's atmosphere. It has  been our hope that, if we could develop a sufficiently general 
second-order closure model of turbulent shear flows that could handle with one Invariant 
model the classical shear layer problems, we could then apply this model to the problems 
mentioned above. 

This paper is an effort to brlnp tc your attention some of the findings that have 
resulted from the detailed studies we have performed in our attempt to create an invariant 
model of turbulent shear flow. 

DESCRIPTION OF AN INVARIANT MODEL OF TURBULENT SHEAR LAYERS 

The equation for the time-independent mean velocity in an incompressible turbulent 
medium was given many years ago by Reynolds (Ref. 1). It is 

PüJ{;I,J = -p,i +(T"I - p<uJiuisL (1) 

In this paper, bars over a quantity or angular brackets around a qusuitlty Indicate 
average values of that quantity while primes indicate the Instantaneous fluctuation of 
the quantity from its mean value. The mean molecular stress TJ is given by 

T-}-g
JV(ü1A + ak>1) (2) 

The second-order correlation of the velocity fluctuations that appears in Eq (1) represents 
the transport of momentum by turbulent eddies and it  called the Reynolds stress. An 
equation for this second-order tensor was also given by Reynolds.  It is, for steady flow, 

PaJ<UiUk>.J = -P<'jJ'Uk>ai,J - P<uJ!ui>Vj " P<uJS,UK>,J " <UlP,>,K " <UkP,>,l 

+ <^UU + UK^  +  W^i^mn " ^^ui^u.^ (3) 

In the past. It has been ci »iternary to carry out investigations of turbulent shear 
flows by means of Eq (1). In tnese studies the unknown second-order velocity correla- 
tion terra was modeled in terns of the mea.i velocity sntl a length. Computations made in 
this manner form the vast balk of the literature on turbulent shear flow calculations to 
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the present time. The methods that are now in USP employing this type of modeling, 
having evolved over a period of many years, are exceedingly useful and enough empirical 
data have been amassed to enable one to calculate solutions to a wide Variety of 
engineering problems with-a great deal of confidence. There are, however, a number of 
problems facing engineers today which require the calculation of turbulent shear flows 
for whic{- there is no existing body of experimental data. Two flows t'htch ccme readily 
to mind are the generation of turbulence and turbulent transport correlations by the 
earth's at.s,r phere and the decay of a turbulent vortex. In the case of these two flows, 
we may ask ourselves the following questions:  "Is there not a somewhat nore basic method 
of computing turbulent transpor?: chenomena than t.'ie eddy viscosity or mixing length 
models presently in use?" "Can nov ,;uch a method permit us to generalize the experimental 
results that preöently exist so as to estimate the nature of turbulent flows that have not 
yet been investigated sxperiraentaily?" The answers to these two questions are not as 
straightforward as one would like. In answer to the question as to whether there Is a 
more basic method, the reply must be: Yes, but the real difficulty comes when one tries 
to establish Just how much more fundamental the proposed new method Is to be. If a new 
method Is truly more fundamental, then it will allow better estimates of unknown flows 
than can be made by older techniques. It is fair to say, at the present tiae, that there 
is considerable hope among those who practice the art of calculating turbulent shear flows 
that the new methods now being developed, of which the method to be describee' here is but 
one, take into account enough physics that is not contained in older models so that a 
technological advance can be made. It is as yet too ^arly in the history of these new 
methods to make any strong statement as to Just how much more powerful they are than the 
older methods. 

If one wishes to make use of both Eqs (1) and (3) in computing turbulent shear 
flows, the first step must be a choice of models for those terms in Eq (3) which are not 
expressed in terms of the mean velocity or the sscond-order velocity correlation. The 
terms which must be modeled are 

(1) the pressure-strain correlation in the tendency-towards-isotropy term, namely, 

<p,(ui,k+ uk,i» ; 

^P') ; 

(2) the third-order tensor In the velocity diffusion term, namely, ^u/u.'u/^ ; 

(3) the pressure velocity correlation In the pressure diffusion terms, namely. 

(4) the general viscous dissipation term 2ug!mK\x!    u' > . 

There are many ways In which a modeling of the above-noted terms may bs accomplished. 
We have tried, for our initial investigation, to take as simple a model as possible for 
each term. We have then attempted to determine by calculation the adequacy of the chosen 
model and the serisitlvlty of the calculated results to the particular choice of model. 

To date the following models havs been investigated to some extent. 

(1) For the tendency-towards-isotropy term, we choose, following Rotta (Ref. 3), 
the following model: 

where 

<P^i,R +  Uk,l)>   =   -^(<UlUk>   "«ikf) 

q2 = K = <umV>  = <u'2> + <v'2> - <«''> 

(4) 

(5) 

arid Ai   is a scalar length associated with the tendency towards isotropy and is to be 
identified. More complicated models of this terra have been discussed by Chou (Ref. b) 
and by Hanjall^ and Launder (Ref. 5). To date, we have had considerable success using 
the simple Rotta model given above and, in line with our philosophy of using the simplest 
possible model that will giv^ reliable results, we have confined the majority of our 
computational studies to the use of Eq (4). 

(2) For the velocity diffusion term, we must model ^uJu.'u/^ . The simplest covar- 

iant tensor of rank three that is symmetric in a.11  three indices that we can form out of 
the second-order correlations is 

<UiUJ>,K+<UJUk>l  +<UW>,J 

This expression has all the tensor and symmetry characteristics required of our model. To 
make it dimensionally correct,  the above expression must be multiplied by a scalar velo- 
city and a scalar length. The simplest scalar velocity we can form from the second-order 

correlations is/<Cu u')" = q so we model the tensor ^uJuIu/^ as 

<u|uju'> <u'u!V + <u'u'> . + <u'u'> 'i"J J"*',! 'W (6) 
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where Aj id a scalar length associated with velocity diffusion and Is also to be Identi- 
fied by matching experimental results. 

(3) The pressure velocity correlation sp'u^ In the pressure diffusion terra Is 
nodeled by analogy with the velocity diffusion term as 

<p'u'>.-(..V3q<u
m,a'>jm (7) 

In our work, in order to cut down the number of parameters In our turbulence model, we 
have cor.sidered only two special cases of Eq (7). We have considered the case A_ « /U 
and ths case where ^p'uO « 0 , I.e., the case A, » 0 . J   ' 

('•*)    We have conslNred two models for the expression g111"^ u.1 u,* 3 appearing In 
the viscous dissipation L-rm: 1' ' • 

<*' ^Ul.muk.n>=-T2^ W 
and 

^ ™<ui,nVn>-^ (9) 

In both thepe models, X Is a dissipative length scale. The argument for choosing the 
latter expression is that it is expected that the turbulence will be almost Isotropie in 
that part o^ the spectrum responsible for dissipation of turbulent kinetic energy. Thus, 
one would expect the dissipation to be almost Isotropie even if the turbulence itself Is 
not. Further, there Is experimental evidence that the loss of shear correlation oy 
viscous action is relatively much smaller than the loss of kinetic energy by viscous 
action  In our initial computations using Eq (9) as a model of dissipation, we experi- 
enced some difficulties In obtaining solutions. There was a tendency for solutions to 
develop with nesative values for the mean square velocities when thf- turbulence became 
very nonlsotropio. This tendency was overcome by the use of Eq (8) ^or the dissipation 
model. This model does not have a large effect on the development it  the shear correla- 
tions because the primary contribution to loss of shear rlth this model Is not the 
dissipation term but the tendency-towards-isotropy terra. Although the whole question of 
modi-llng the dissipation term is still under investigation, the work reported here was 
carx-ied out using Eq (8), for the reasons stated above. 

In the models giver: above, we would expect that the scalar lengths A^, A_, and A- 

would all be related to the local Integral scale of the turbulence. These lengths are, 
in turn, related to the local scale of the mean motion for the flows we shall investigate 
here, and we ira^e the assumption in the computations we will discuss presently that A,, 
A-, and A-j are all proportional to i;ome local characteristic length 6 .   of the 

mean motion under consideration. 

We will expect the length appearing in the dissipation model to be related to the 
microsca.e of the turbulence which, in turn, must be related to the integral scale via a 
Reynolds numher in such a way that prcducticn of turbulence is balanced to a large extent 
by dissipation. 

If the models we have Just discussed [Eqs (h.  and (6) - (6)] are substituted in the 
basic equation for the second-order velocity correlations [Eq (3)], the resulting equation, 
taken together with the momentum and continuity equations, makes a closed set (see 
Appendix A). When this set is reduced to boundary layer form, it is found to form a 
parabolic system (see .Appendix B). 

This set of equations will admit similarity solutions at high Reynolds numbers as 
well as permit calculations of turbulent flews near walls, if one makes the following 
choice of the relation between the length scales: 

Al = cl6char (10) 

A2 - c^ = C'6char (11) 

A3 = c3A1 = c-6char (12) 

and 

where 

X = A1/v
/a + b • ReA (I«) 

ReA, = PlAj/ji {Ik) 

For self-similar free turbulent flows, the structure given above is all that is 
needed to compute a turbulent shear layer or a free Jet,provided the five constants, c,, 
c-, c-, a , and b are given. To find these constants, we must resort to the comparison 

of calculated flow fields with experimental results. 



I'l W(* w'u«h tc- co.-iipuT.e a tjouiiilary layer flow, we must consldT an additional problem. 
Whan a vail   .s present In a shear flow, ve wish to apply the boundary condition at the 
wall thf.t 

<uiui>.-o ' 0 

where    Is nstdsured normal to tha sü^'/eae. In addition, there should be no diffusion of 
/ulUjp through the surface, re chat d-.u^'u^/Jz ■ 0 at z * 0  .    Thus, it Is reasonable 

to assume that near the «rail 

<u.u.> - Ailcz
1+1 (15) 

where A..  is a constant and »j Is a positive constant. But If there is no diffusion 

through the wall, then all that is diffused towards the wall by viscosity at z ■ € is 
dissipated in the region between r. '• e    and z » 0 . (It is easily verified that all 
other terms in the model equation for ^u/u/^ are neglible if € is small enough.) Thus, 

or,  using Eq (15), 

2 I  i-y-dz = (1 + T^)6,1 

Jo K* 

If this relation Is to hold for all € -» 0 , we must have 

X = oz (16) 

where 

a2 = 2/(1 + f^ri 

Thus, near a solid surface, we always assume, in applying our model, that Eq (16) holds 
In the region near the wall. 

It Is convenient to express this result in terms of . , . Near a wall, Eq il3) 
becomes 

Using Eq (16), we may writ- 

X = Aj/VT (17) 

A1 = avTz dS) 

Thus, for boundary layer flows, a is another number which r..ast be found from experi- 
mental results. 

In our first attempts to construct a model of turbulent shear flows (Refs. 6 and 7), 
the following assumptions were made to construct the simplest possible model of boundary 
layer flows: 

(1) It was assumed that all the large lambdas associated with inviscid modeling were 
equal, i.e.>A1=A2=Ao-A, 

(2) It was assumed that a was equal to one. 

(3) In the outer portion of a boundary layer, A was taken to be a constant c, 
times * go (* on ls the value of z for whlc.i ü is 99? of the free stream velocity;. 

This value was assumed to hold, independent of z , as the wall was approached, until A 
became equal to v^lT times z . For smaller values of z , A was taken equal to/T z . 

With these assumptions, the boundary layer forms of Eqs (1) and (3) with appropriate 
modeling (Appendix B) were solved with various choices for the parameters a , b , and c, 
= A /6 QQ to produce a developing turbulent boundary layer on a flat plate. It was 

determined at that time that the following choice of parameters 

o, = A/ö 99 - 0.06'! 

a = 2.5 (19) 

b = 0.125 

yielded a fair representation of a turbulent boundary layer. The mean velocity profile 
and the behavior of skin friction with Reynolds number were adequately represented. The 
distributions of the second-order correlations within the boundary layer were reasonable. 

The results of this original parameter search were used to compute a number of other 
turbulent flows in order to demonstrate the method (Refa. 8 and 9). 
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Before proceeding with further applications, It was co.isldered necessary that a more 
dc-allec; parameter search should be nade. In parti-ular, two free turbulent flows - the 
frve Je' and the free shear layer - should be calculated to determine the values of the 
par-wiete s e. 

"3 and that would best fit the experimental results for both 

flowt.  (The equations for the fr« shear layer are the same as those for the boundary 
layer given in Appendix B. The equations for the axiälly ryr-;etiic free jet arc given in 
Appendix C.) The value of c, bei.ig the ratio of to some arbicrarlly defined 

charasteristie length in each case i;- not an ir.farient  of the pr' lern and was to be chosen, 
with flxsd values of the other paramo: ters v to cbValn best result.- in each case. Once 
these studies were complete, the model would he used to compute turbulent boundary layer 
flows so that, by conparison with experimental results, values for ^ ancl a could be 
made for this flow. Hopefully, all flows c mid be described in a reasonable way by a 
single choice of the lasic model parameters 

'2 ' w3 
The values of loca3 A, determined from the values of c^ 
compared with the local magnitude of the integral scale L 

a , b , and (where appropriate) a. 

in each case were then to be 
in each case. If it was 

found that the value of c. represented a choice that amounted to 
A = const I, = ßL (20) 

then it would te assumed that a reasonahl" invariant model had been determined. 

THE SEARCH FOR NEW MODEL PARAMETERS 

Our search for a new model of turbulent shear layers began vith an attempt to describe 
the axlally symmetric free Jet with 'he original turbulence model obtained for a boundary 
layer flow. This model, as mention-J in the previous section, was one for which A. « A- = 
A-, = A . This choice leaves thret parameters to be determined. They are c, =^/öCh 
and the two constants a and b in the expression ' 'l 

X  = A/ /a + b . ReA 

T.^e method -.■f searching for values for these parameters was as follows. The equations for 
a free Jet «.re programmed so as to solve the system of equations for a free Jet developing 
in the axial direction. At an arbitrary initial station in tht axial direction, a mean 
velocity profile aüd profiles of the pertinent second-order correlations ivere' arbitrarily 
as.sumed. For a given choice of model parameters (in this case, a , b , and c, = A/r ,- , 

where rcj is the radius for which ü is one-half the centerllne value), the free Jet 
equations were solved for the development of the Jet downstream of the initial distribu- 
tions. In all cases, essentially self-similar solutions were obtained far downstream of 
the start of the calculation. If a set of parameters could be found so that the resulting 
self-similar flow agreed with experimental measurements with respect to the rate of 
spread, as well as with respect to mean velocity and correlation distributions, it would 
then be assumed that a reasonable turbulence model had been achieved. 

Actually, such calculations were carried out for both free Jets and two-dimensional 
free shear layers. With the single A model., it was found that no combination of para- 
meters a , b , and c, could produce an adequate description of either a free Jet or a 
free shear layer. In general, it was found that if the parameters were adjusted so as to 
give an adequate rate of spread of the mean profile (i.e., if the level of the turbulent 
shear cormlation was large enough) the spread of the correlations ^u.'u/^ by diffusion 
was always too large. This general result is illustrated in Figure 1 wnere it is seen 
that, if the general level cf the shear correlation "(u'w1^ were to match the experi- 
mental data of Wygnanski and Fiedler (Ref. 10) in the region of maximum shear, it is clear 
that far too long a tail of <u w'> at large r would result. This was a very general 
result for free shear flows and forces us to consider a more complicated model. 

The difficulty that was expe 
of too much diffusion relative to 
or the tendency towards isotropy. 
here, the diffusion lengths  Al 

effect of reducing the diffusion 
Figure 2. Here the rms value of 
been calculated for several choic 
self-similar free Jet. Note that 

times A ) are reduced, the amcun 
turbulence on the Jet centerllne 

r-ienced with the constant A model was the existence 
the rate of loss of correlationf., either by dissipation 
To correct this difficulty in the studies reported 

and A. were made smaller than A. . An idea of the 

lengths relative to ch? isotropj length can be seen from 
the longitudinal velocity fluctuation w' , that has 
es of model parameters, is plotted versus radius in a 
as the diffusion lengths A0 and (which are c- 

t of diffusion is obviously reduced and the levels of 
are appreciably increased. 

The effect of the choice of the scale of the isctropy length A^    can be seen from 
Figure 3- The distribution of longitudinal turbulence intensity is shown as a function 
of radius for two choices of A,  relative to the local value of r It is seen that 

the levels are mum lower for the smaller A. than for the larger value, This is what 
one might expect because of the Increased dissipation, as well as the increased loss of 
shear correlation by the tendency towards isotropy when the s-cale A, and, hence, X is 
made smaller. 

The effect of neglecting pressure diffusion can be seen in Figure 4; the longitudinal 
velocity fluctuations in a free jet are shown as a function of radial position for a 
given choice of model parameters a , b , c, , and c2 for two choices of c, . One 
choice is c, = c, and the second is c, = 0, i.e., neglect of pressure difraoion. It is 



B-6 

seen that for this choice of the other parameters, the effect of neglecting pressure 
diffusion is not lar^j. 

Having given some idea of how some of the various parameters entering the model for 
turbulent shear layers affect the solutions, we must now discuss the selection of an 
actual set of parameters. If one considers only a single type of shear flow that one 
wishes to model, say, the free Jet, it is possible to choose a whole spectrum of models 
which will give a good der.sription of the mean spread of the free Jet and the distribu- 
tion of, say, the longitudinal turbulent velocity field. To illustrate this point, ve 
may refer to Figure 5- Here we see that two profiles of longitudinal velocity fluctua- 
tion can be obtained with radically different choices of b and A^ . It is observed 
that if one chooses small b one must also choose a aaiall value of Ai relative to a 
characteristic scale of the Jet. What then is the basic difference between these two 
solutions? It is this. For the solution with small b and small ^n . the lalance of 
the production of turbulence is more by dissipation and less by diffusion than for the 
other case. Also, for the case of small b and small A , the solutions are more 
Isotropie on the .jet centerline than for the other case. 

The choice between the two models exhibited in Figure 5 must be made on the basis of 
the degree of diffusion and the do^ree of isotropy desired in the calculated result. This 
is a difficult decision to make: for existing experimental data do ncs agree as to how 
isotriplc free Jets are on their centerlines, as will oe seen presently. There is another 
way tnat one can decide between two different models. If one uses the same model to 
compute two uifferent turbulent flows having essentially different geometries, the model 
wh^.c;. giv?ü the best resv'.H  for both flows is, since we are seeking an invariant model, 
th1? one to choose. 

As mentioned previously, we have computed self-s'.Kilar solutions for a free shear 
lay^r as well as Tor an axially symmetric ivae  Jet. Actually a search for model para- 
iT.sters for each type «f flow was carried cut. As a result of these studies, it was 
detemined that, insofar as the parameter studies have proceeded at this point, the 
following model for free turbulent shear flows gave the best results: 

Also, the value 

a s 2,5 
b s 0.125 

? 
s 0.10 

3 ■ 0.10 

1 
s V6char 

(21) 

0.50 (22) 

was found best for both flow., although it was not part of the plan to have a common 
value of c. . As mentioned ibove, for the free Jet, 

6char = r.5 (23) 

The characteristic length for the free shear layer was taken äs 

char z.25 ' z.75 
(2H) 

which is the distsmoe normal to the flow in the shear layer from the point where the 
velocity is one-quarter.the external driving velocity to where it is three-quarters this 
velocity. 

In Figures 6 through 13, we show comparisons wJth experimental data of the velocity 
correlacion profiles computed for both a free Jet and a free shear layer, using the model 
parameters given above. The experimental results are taken from the work of Wygnanski 
and Fiedler (Refs. 10 and 11), Gibson (Ref. 12). and Doneldson, Snetleker, and Margolis 
(Ref, 13). 

Figures 6 and 7 show the longitudinal fluctuations in a free jet and free shear 
layer, rpspectlvely. The agreement between model calculations and experiment is good in 
both cases. ?or the free Jet in Figure 6, it would, perhaps, have been desirable to have 
a little more diffusion (larger A, and larger b) in the model in an attempt to reduce 
the cvershoot in ^w'w'^ near the centerline of the Jet. 

Figures 8 and 9 show distributions of normal fluctuations in both the free Jet and 
the Tree shear layer. Here we note the agreement with experimental data is not oo good. 
There appears to be a little too much diffusion for these cases. Also, note the very 
large discrepancy between measured normal fluctuations on the centerline as reported in 
three separate experiments. The data of Gibson show the components of turbulent velocity 
to be essentially Isotropie on the Jet centerline, while those of Wygnanski and ?iedler 
and Donaldson, Snedeker and Margolis do not. From the results shown in Figure 8, it 
would appear that if one were to desire more isotropy, one would wish to choose s, smaller 
value of A^ and, hence, a smaller value of b . This is opposite to the conclusion 
drawn from Figure 6. 

Figures 10 and 11 show the sidewise components of turbulence for the free Jet and 
free shear layer, respectively. The agreement between experiment and computed results is 
better for the Trea  jet than for the free shear layer. The reason for this behavior is 
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not known. 

In Figures 12 and 13, we show the shear correlations for the free Jet and the free 
shear layer. The agreement in both cases is fair. It should be  noted that the experi- 
mental- values of shear correlation from Ref. 10 have been shown as repor-ted (the open 
circles) In Figure 15 und also as corrected by us (the solid synbols) so as to agree 
with the measured rate of spread of the free shear la: er. A comparison of the measured 
shear and that Infarreri frosi ;he mean velocity profile was repcr-ed by Wygnanski and 
Fiedler but apparently wietr computations contained an error, iklao  ahown In Figure 13 Is 
the lev«?l of shear that may be inferred from the mean spread of ' s,e free shear layer 
3f.:dl?'-i by Tollmlen (Ref. 1*0 and Prandtl (Ref. 15) many years age. It is seen from the 
results presented in figures 12 and 13 that the model gives a fairly gooc1 representation 
of the shear in both the 'ree Jet and the free shear layer. 

A careful sturly of Figures 6 through 13 shows that It really is necessary to study 
further the problem of choice of modal parameters. Howevers before this Is done, it 
appears desirable 'o have at hand experimental data which one cv i'ely on to be truly 
repräsentative of the basic flow which Is being calculated. It is difficult to choose a 
more sophisticated model until tha question of the degree of isocropy on the centerllrs 
of a free Jet is settled. In addition, one sh/uld, at this point, determine if the model 
Just found for free shear layers can be used for a model of the outer regions of a 
boundary layer and give reasonable results. 

Before turnii.g to the problem of the turbulent boundary layer, it will be instruk- 
tive to find a relationship between the values of A-.    used in the free shear layer and 
the free Jst calculations and the general magnitude of the integral scales measured for 
such flows. In the computations that have been made, it has been as.sumed that ^i    is 
constant across a free Jet or a free shear layer at any given Icngltualnal position and, 
in nui^nltude. proportional to the local scale of the mean flow. It is well known that 
the Integral scales of such flows are, in general, proportional to ühe locsl mean scale: 
but V.e  actual value of the integral scale varies across the layer. 

."In Table 1, we present the values of integral scale within a free Jet, as reported 
ty Wy/jnanski and Fiedler. The integral scale tabulated is the longitudinal Integral 
scale- 

= <W7i77TJ    <w,(z1)w">2)> dUg - zi) (25) 

for the free Jet. 

Table 1. Integral Scales in a Free Jet after Wygnanski and Fiedler (Rsf. 10) 

Radial Position 

r/x 

0 

.05 

.10 

.15 

.20 

Also presented in Table 1 is the ratio of the computational scale A^ to the local 
integral scale L , Thus, a typical value for ihis ratio for the free Jet is 

A^L = 0.69 (26) 

For the free shear layer, similar results are given in Table 2. These experimental 
values are also due to Wygnanski and Fiedler. The longitudinal integral scale la, in 
this case, defined by 

Dimensionless Scale Scale Ratio 

L/r.5 
A1/L 

0.^8 1.12 

0.595 0.84 

0.726 0.69 

0.850 0.59 

0.855 0.58 

L = ^xr)/ <u'(xi)u'(x2)> d(x2 ^^ (27) 

Table 2. Integral Scales in a Free Shear Layer after Wygnanski and Fiedler (Ref. 11) 

Location In Jet 

Inner Region 

Center 

Outer Region 

Dimenf ionless Scales Scale Patio 

L/x L/(Z.25-Z.75) 
A1/L 

0.098 0.846 0.59 

0.103 0.883 0.57 

0.147 1.27 C.39 



• ► . . a . ie cf  A-/;. fcr a free s'frar layer appears tc oe approxinately 

• ,/L ' 0.55 (23) 

snea prevl ,url:.', ür.ere '  not. nuch polnr. in gclng further with jturiies cf 
prs"er.i r .2i-. uruii It r.a^ ceen ,..:plled to a boundary layer.  Note should be made at 

-..-.IJ ;.:!i.t, f r,wever, z:   ,t-er  rsctho-'j si  calculating turbulent shear flows - methods that 
are Jtriiar :; tr.e aetho.'j telr.»- Jj. cussed here. As nentioried before, the Uea behind 
: r.-' r-?:.'.oa :: r.st new.  It fallows x  tre^d siggested by Prandtl and Wieghardt (Bef. 2) and 
fallvt'S cl«.-ä(iy the renerai line of appr fC'r  taken by Rctta (Hef. 3)-  Since these two 

■an;, .r.ore -r less rlr.-iar studies have beer uridertakon.  Typical of 

( 
;:ä; : aw '■ r?:.".: 

■ '•:' ~0->:   ."Off 
a'.-cng Kith the 
•»a;; derived ty 

should be enh".. 
Integral scale 

i'es are these cf Olushxc 
■; ; F.e f. 15), Za'rfaIn 4 F 

-.-.ef, 16), Bradshaw, Terrlss i Atwell (hef, 17), 
.chett (F.ef. 19), and Seckwlth 5 Bushnell (Ref. 20), 

.Isat'-d these rseihcus do not assume a _ocal scale, as we have but carry 
icputatlonal r .er.e an equation for the required scale. Such an equation 
:ta (Hef.3) fron; the equation "i 
here Is no question but that, ir. 

the two-point correlation tersor 
t1^ future, the method presented here 

.•ed by ccupllnc the present set oi'  rcodel equations to an equation for the 
To dat^j however, we have avoided making this connection In order to 

study the cjiaracter of the model and its de&er.dence on the scale Aj withoui this 
dependence becor.lr.g inextricably nixed with the additional modeling that must be done In 
the equation that is used to compute a scale. 

Before proceeding further. It raust be demonstrated that, if the present model is 
applied to a boundary layer, useful results will be obtained for the rajne choice of model 
par.'jneters that has been made for fret tur'sulens. shear flows. 

APPLICATIOH OP MODEL TO BOUNDARY LAYERS 

If the rsodei of tur ulent shear flows Is to be applied to a boundary layer, the para- 
meters c, , c- , a and b are known. But, since the characteristic length xn a 

^   S 
boundary layer is arbitrary (as It Is in the free Jet and the free shear layer), we a.-e 
at licerty to choose ex . i.e., the ratio between A  and the characteristic length 
(which. In this case, we take equal to 6 gg , the thickness of the layer in which the 

velocity reaches 99%  of Its free streais value). 

Ai  dl2^i.r;sed in a previous section of this paper, one other parameter enters tne 
problem, namely, a , tne coefficient appearing in Eq (16).  We have, then. 

for - < z £ c-^ „g (av^a ) and 

A, = a\/az 

h -  clö.99 

(29) 

(30) 

for z > c,i_99/(av'a) 

With only these two parameters- a and cj to determine, the search Is not difficult, 
The model that has been found Is the following: 

= 2.5 
= 0.125 
» 0.1 
- 0.1 

» 0.7//a 

(31) 

0.15 
0.4A3 

The ability of this model of a turbulent shear layer to predict the known mean 
properties of turbulent boundary layers is shown in Figures \k  through 16. In Figure 1^, 
..f show the skin friction developed by our model as It proceeds from a disturbed laminar 
layer to a fully turbulent layer. Also shovtn are the laminar skin friction law and the 
turbulent law proposed by Coles (Ref. 21) which is a good fit to experlmenta.1. data. It 
is no great surprise that the general levels of skin friction we computed agree well 
with experimental findings inasmuch as the values of a ana cj were chosen to get these 
levels correct. Of more importance is the nearly exact following of the trend of skin 
friction with Reynolds number by the model computations. 

Figure 15 shows a comparison of the computed mean velocity profiles developed by the 
model in the vicinity of the wall and the well-known law of the wall as proposed by Colas 
(Kef. 21).  It may be seen that the law of the wall is not quite achieved by the present 
selection of model parameters. The results, however, are sufficiently accurate to be 
encouraging. 

In Figure 16 we compare the experimentally determined velocity defect law proposed 
by Coles (Ref. 21) with the results of our model computations.  It is seen that, once 
the turbulent boundary layer is well established, the: computational model gives a fairly 
good representation of the outer regions of the turbulent boundary layer. 
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Kith thrfse results in hand, we must now consider the relationship of the computa- 
tional scales used to the longitudinal Integral scales that are found IT the outer 
regions of turbulent boundary layers. For this purpose, we may u^e the measurements of 
Grant (Hef. 22). When the experimental correlations reported by Grant for y/4 « 0.66 • 
In a turbulent boundary layer are Integrated to give the longitudinal Integral Scale, one 
obtains L/6 -=0.3 .  Since for our calculations, 6 /b    n  =0.83, we find that o o  .9? 
L/6 „q » 0.25 .  Since the computational scale use-- -as A,/6 „„ • 0.15, we find that 

A^L^O.6 (32) 

This J.s a r\osz welcome result since it shows that, for all the turbulent flows we have 
investigated, the ratio of the proper computational sc?le to the longitudinal integral 
scale is approxlnately the same. 

SOME C0MrfE?ITS ON SECOND-ORDER MODELING TECHNIQUES 

The method of modeling turbulent shear flows which we have Just described was 
developed, as we have previously pointed out, in order to attempt calculations of turbu- 
lent flows other than the classical shear layers that we . discussed In the previous 
sections.  The author and his colleagues have applied the model to the calculation of the 
decay of a turbulent line vortex (Ref. 23), to the generation rT turbulence in the earth's 
atiiiosphere (Refs. 7 and 9), and to the dispersal of pollutants by the atmosphere (Ref. 
2'f). Since these computations were carried out with the original oversimplified constant 
A model discussed previously, one r.ust not take the numerical values obtained too 
seriously; nevertheless, these computations did give some most interesting results and 
insights.  Certainly the utility of the method was dsmonstrated and it appears that it, 
ar.cl others like it, should be carefully studied and refined in the next few years. The 
first order of business should be a continuance of ehe types of parameter studies that 
vve have Just described, for as large a spectrum of shear flows as can be reliably 
measured.  In this way, we would hope to develop a model with the broadest capability 
possible. 

It is here that one runs Into the difficulties that were touched upon previously in 
connection with tlie free Jet and the free shear layer.  It would be very helpful Indeed 
if the research commutd ty could agree on canonical free Jet and free shear layer experi- 
ments which could te performed by several investigators. The purpose of these experiments 
would be to strive for agreement between experimentalists as to what the characteristics 
of such flows were and to explain any discrepancies that might exist. Before very much 
refinement or turbulent snear flow models can be accomplished, it appears that we are 
going to have to have a more precise definition of what the models must predict. 

Assuming one had ideal experimental data w?.th which to work In developing a second- 
order correlation model of turbulent flow, there is still the question of whether one 
really need go to all the trouble entailed. There are some who insist that such a model 
will not accomplish enough more than can be obtained from older methods to justify the 
effort and expense of such calculations. The author disagrees with this viewpoint and 
believes that the problem of computing chemically reacting turbulent flows is a case In 
point.  For this reason, let us nrw turn to a brief discusjion, for zime  does not permit 
a complete treatment, of some of the problems that are involved in the computation of 
chemically active, turbulent flows. 

MODELING OF CHEMICALLY REACTING FLOWS 

For most computations of chemically reacting turbulent flows, it has been customary 
for engineers to proceed with the calculation according to the following scheme. First, 
the engineer develops by some method (mixing length, eddy diffusivity, or other method) 
equations for the time-averaged or mean values of the concei.trations of the reacting 
species of Interest (say, species a and ß ) at each point in the turbulent flow under 
consideration. He also obtains an equation for the mean value of the temperature that 
is expected at each point in this flow.  It is then customary, if the equations that 
generally govern the reaction between a and ß , are 

m- = -We (33) 

DC 

ÜT = "Wß (3it) 

to assume that valid equations for the time rates of change of the mean values of the 
mass fractions of a   and ß are 

DC 

UT^-Wß (35) 

DC 

!? We (3«) 
»Grant defined  60 as that height in the boundary layer where the velocity defect was 
equal to the friction velocity. 



1:. zr.eie  equations, Ca and  ~g art tr- t -e-averaced sass fractions of the twc species 

an-i k,     and K, are the ref.::..;n rates k,  ind V.?    evaluated at the rsean temperature 

i.e. , K. k, IT)  ar.d k- * h7(7} . 

Although equations such as (3v) «''d ;j5) ^.■'■r- used extensively at the present tlr-e, 
it is not difficult tc show that th.^y are lncori;jt wion reaction rates are fast and the 
scale of the turbulence- is large. T.ilr .Tiay be dr.^ e by ccnslderirg the proper forms of 
Hqc 133)  and (3^) when tney are avera.-r-j.  The we.l-known results are» 

^2 = -^(TJ, . •'c;c^)-'rc:!<4c;> - c/^O - ■^cp]        ?7) 
and 

„ ~* 

7o demonstrate the character of these equations, let us discuss them under the assumption 
that A," = k' = 0 .  Equations (37) and (3t;) then reduce to 

ana 
EC 
^ = -1^(0^ + (ceo) Cw) 
i^t       cv J "     Ct t^ / 

It is clear from these equations that, If one wishes to calculate the reaction of G with 
g  , it wli; be necessary '.o  have an equation for the second-order correlation ^C'Ci^ 

unless one can show that <'C^C4^« CaCg  for the particular flow In question.  The condi- 

tions required for ^CJCg)-« CaSj car: be derived in the following way. First, by 

following the method used by Reynolds for the derivation of the equation for the turbulent 
stress tensor, one finds the following equistion for the substantive derivative of the 
correlation <C;;C^>:»» 

DCC'Cp      /D(C'Cp\ ,.       _ .,      - 1, 

^^^ = (^"^Ihern " <U    ^.1  - <U    %,>Ca,J  " <"' CiS>./ 

+ ^.c^^ - a^c^c^  (41) 

where the term (IxCC^CJ^/Dt)^,   is the contribation of chemical kinetics alone to the 

substantive derivative of 'CC'C^ . This expression can be found from Eqs (33) and (31) 
and is 

(IXC lCiil^\ 

^^jenem =  M^fi + ¥CiCß>  + <C^>) 

-k2pa<C;Cß> + VCi2> + <C;2 Cß>)      w 

It is instructive to discuss tfv behavior of the correlation (c^Ci) for the case of 

turbulent reactions in the absence of any appreciably large gradients. In this case, 
Eq Cil) becomes 

D<C!Ci>  /D\C<C£>\ 

^ - [i^U - ^^.'^ "3' 

The second term on the right of Eq (13) is the destruction of the correlation < C'^ö^ 

by the action of molecular diffusion. In line with our previous work, we will model this 
term by means of a c'lffusion scale length X  so that Eq (ki)  becomes 

'For a discussion of these equations that is related to the present treatment, reference 
should be made to O'Brien (Ref. 25) which was published after this work on the modeling of 
chemically reacting turbulent flohs was started. 
»« 

For the purposes of this illustrative discussion, tue flow is treated as incompressible. 
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m 'L 
The  diffusion terr. in t.Mc equation ?c suüh t'iat -.C'Ci^ tendj to ^pp^oac" ze.-o with a 
characteristic tl-.e that Is a p 

Tdiff =\
2/2Jtr (US) 

•hat is the overall effect of the first te-ra on the right-hand side of Eq (W)?  The 
effect Is alfficilt tc see fron an i'ispectlon of Hq (•'2)> tuv we nay derive an expresjlcn 
for what this terr; aoconpllshes frox £qs C'9> and ('»O). First, multiply (39) by Cg and 
(JiO) by C  and then add the resulting equations. The result is '' 

This equation can be interpreted by saying that the effect of r.hr'atstry älcü'? is to drive 
C„Cp tc the negative of <C'Ci> (or ('C'C/) to the negative of C Co) with a charac- 

teristic tine 

Ch€3 klCß - VC 
(^7) 

_ Equation (^6) states that the reaction between a and ß will always stop, i.e., 
CQCt; + <C^CL> will becoKe zero, short of the exhaustion of a or ß unless a and ß are 

perfectly nilxed wherever they occur In the turbulent flow under consideration. The 
physical reason for this is that, in the absence of diffusion, if a and ß are not 
perfectly mired to start with, the final state of the gas in sny volume element will be 
a and products, e and products, a alone, or ß alone, but never any region containing 
both a and ß . It is easy to see that, no matter what the values taken on by Ca and 
Cß are as a function of time, if  Ca is never ncnzero when Co is nonzero and vice 
versa so that no reaction is possible, it is mathematically true that CaCa + <C'Ci>« C . 

,h"s, Eqs (39) and CtO) state that no reactions are possible as required by the physics 
of the proülen. 

An actual example may make the meaning of ^C'Cfp more clear. Consider that the 
flow of material by a given point is such that alternate blobs of a and ß pass the 
point. Let us suppose that half the time the flow is all a and half the time it is all 
ß . The resulting concentrations are sketched in Figure 17. If this pattern keeps 
repeating, the average values of C  and Ca     are obviously C * 1/2    and Co« 1/2 . 

Whenever the flow is all a, C =+1/2 and Cl =-1/2 . Whenever the flow is all ß , 
a p 

C! = -1/2 and C' = +1/2 . We find then that the average value of C'Cl  must be 
a p _ op 

<C,C'> « -1/^ . Since <CIC'> = -C 5„ , no reaction is possible according tc Eqs (39) 
a p a p     a P 

and ClO) and obviously no reaction should occur. 

We may now return to Eq (kH).    If, in this equation, the scale X   is small enough 
and the reaction rates are slow enough, the second term on the right-hand side of the 
equation will be dominant ar;d the flow w.tll be such that  ^^iCi^ is always almost zero. 

This means that molecular diffusion is always fast enough to keep the two species well 
mixed. On the other hand. If the reaction rates are very fast and X is very large, the 
first term on the right-hand side of Eq (44) will be dominant and <C'C'> will tend to 

be approximately equal to -C Cß and the two species will be poorly mixed. The rate of 

removal from the flow of a and ß by reaction will then not be governed by reaction 
rates but will be limited by molecular diffusion. To put these notions into quantitative 
form, let us consider the ratio of the two characteristic times 

chem 

and a contact index 

I = 
coce       CÄ 

We note that if N is much smaller than one, diffusion will be very rapid and the two__ 
species a and ß will be in Intiniate contact with each other. In this case <C'C^>/C Cß 

will be small and the contact index will approach one. If, on the other hand, N is 
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nach larger t!  ore. alxlng wili be poor and <C'CiN Kill approach -C C0 .  The 

contact Iniex wll] flier, approach zero.  In this cas3 the reaction will be dlffuslon- 
llxlted. 

In K?ny laioratory Vlws,  the dlsslpatlve or diffusive scale of turbulence Is very 
snail and "    1c, Indeed, small so that the neglect of <CC/"^ In the kinetic equations 

is perniss;.cle. Cr. the other hand If the laboratory experiment is Just Increased in 
size, holding all other paramefpr? ju;r. as velocity, temperature, etc., constant, one 
soon finds that the character c' one flow changes. This nay be seen by exaMilning the 
expression for the dimensionles;. quantity N in more detail. 

Le, us assume the diffusive scale of a turbulent flow is of the order of the dissl- 
pative ücale so that we may use the expression for X given in a previous section, 
namely, 

X = Aj/(a * bpqA1/n) f50) 

Substituting this expression Into Eq (^8) gives 

N 
Af k/'  - K0Ü 1 1 t-   2 a 
2^ a J bpqAj/u >51) 

For relatively high Reynolds nuwbers, this expression becomes 

A, N = ?b-^-f KCß * V-J (52) 
If an experiment is per.or^ied in the laboratory and a value of !« for this experiment 
is determined or estimated and is foand to be small compared to one, then we know that 
the diffusive mixing of the flow Is such that the species a and ß are in contact. The 
reaction rate of these species is then chemically controlled. Now if the apparatus Is 
Just scaled up in size, all other things being equal, N will increase linearly with 
size since the scale Ai increases linearly with the size of the apparatus. When the 
scale has been Increased sufficiently, so that N is no longer very small compared to 
one, the nature of the flow in the device must change, for the species Q and ß will no 
longer be in intimate contact at equivalent positions in the apparatus. 

The turbulent atmospheric boundary layer Is a good example of a flow in which it 
is essential to keep track of the correlation <C'Ci"> if one is to be able to make sense 

of the reaction of species which are introduced into the flow. To demonstrate this, we 
list in Table 3 some of the second-order reactions responsible for the production of 
photochemical smog. We have also listed In this table the reaction rate recoTunended for 
each reaction (Ref. 26) and an estimate of the number N for each reaction if it occurs 
In tne atmospheric boundary layer where a typical value for X is 1C centimeters. It is 
interesting tc note that it is, in general, those reactions listed in Table 3 for which 
N is greater than one that investigators have found to proceed more slowly than 
predicted by formulas such as Eqs (35) and (36) when the reaction rate determined from 
laboratory experiments is used. This dlfflculvy has led some investigators to search for 
other chemical reactions that might be considered which would explain this discrepancy. 

It certainly appears unwise to follow this cou";>e until such time as one has at least 
developed a viable scheme for properly oomputlns turbulent reacting flows. It is the 
author's opinion that an acceptable method of Computing such flows can be developed 
through the use of second-order correlation equations such as Eqs (41) and (42). Methods 
of modeling the third-order correlations that appear in these equations can be found that 
are similar to those used to stuily the generation of turbulence and turbulent transport 
that were discussed in previous sections of this paper. The development of a viable 
method for computing chemically reacting turbulent flows according to such a scheme is 
under active development by the author and his colleagues at the present time. It is 
important to note in this connection that it is essential in developing this general 
method to consider fluctuations in density and in the reaction rate constants when the 
chemical rate equations are considered. 

SUMMARY 

Recent numerical studies carried out by the author and his colleagues in their 
attempt to develop an invariant model of turbulent shear flow are described. The results 
of comparing computations using a tentative model of such flows with experimental data 
for the axlally symmetric free Jet, the two-dimensional free shear layer, and the flat 
plate boundary layer are presented. The need for more carefully designed and documented 
free turbulent flow measurements is discuased in relation to the problem of selecting more 
correlation closure schemes, of which the present method is one, to the computation of 
turbulent flows other than classical incompressible shear layers. In particular, the 
possibility of more correct methods of calculating the behavior of cnc-mically reacting 
turbulent flows is examined. 
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Tatle  3.    Sor,3 Second-Order Reactions Hesponslble for Photochemical Smcg  (Ref.  26) 

Seactlor; 

TO =  .".'O.   +  0 

^2 +   '3 ' :-3 + 

P 

::o + KC-, = !tc, + OK 

On  +  0,  ■  HC.   +  0.. 
3 1        c 

OH + CO = K + CO, 

"H 0   ♦ t;o « CH 0 + 'io 
it- it 

CTH-,0„  + HO *  C':ijO + J-'C0 2 3«; 2  3 2 

C-iijjOg -f ;;C  =  Cr' CHO + JJO2 

CK-,0  +  0,  =  HCHO  +  KOp 

-3"6       J      --3 2r'3i' 

3 &   3 2 1c 

C^Hg f Gj = CH30 + C2K30 

C,K, <• HC^ = CH,0 + CH,CHO 
3D    2    3     3 

CJH-JO + M » Cii, ♦ CO + M       1.7 ^ 10' 

k ippsi-sec) 
— 

3 3 * 10' 
u 

1 
Jr- 7 v 10" 

1.8 

5 

1 7 ^ 10" 

l.T 

-1 

C 0 «• 10" 

1.7 

1.7 

1.7 

1.7 

-2 

6 0 *  10' -1 

5 3 ' 10 -3 

i 7 ' 10 
,2 

A *  10 -2 

N 

0. 25 • 

5 j *■ lü"3 

1 1 »■ 103 

50. 0 

5 0 «- 102 

1 5 x 10
2 

5 0 x 10
2 

5 0 / 102 

5 0 < io2 

5 .0 x 102 

1 .8 x 
.•J 

10 

2. > 

5. 0 

10. 0 

50 „ 0 

•Those reactions for which .'J is small compared to one are those which can be 
treated using mean quantities in the basic equations of chemical change, i.e., 
correlations in fluctuating quantities may be neglected. 
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APPENDIX A.  CONSTANT DENSITY MODEL EQUATIONS FOR STEADY PLOW 

Continuity: 

-J a",  =  0 

Momentum: 

tPii. 

Stress tensor: 

Ki-^.L-^V., 

A, 

(A.l) 

(A.2) 

(A.3) 
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APPENDIX 3,  MODEL EiJUATIOJiS FOP A BOUNDARY LAYER 

We uss a Cartesian cocralnate systea (x.y.z) with the free streaa velocity In the 
x-dlrectlon and with z    as the coordinate normal tc the wall. The velocity components 
are denoted by (u,v,w). With the usual assuinptlons for g constant pressure boundary 
laye.-, E^s (A.l) through (A.3) become 

+ v/^V^.2^v2\ {Bll) 

.„I^^.J^^j      ,B5) 

Uz2 X2   j 
(B.6) 

APPENDIX C.  MODEL EQUATIONS FOR A FREE JET 

We use a cylindrical coordinate system (r,9,z) with the velocity components denoted 
by (u,v,w), respectively. The assumptions for a constant pressure boundary layer are 
again applied to Eqs (A.l) through (A,3), along with the assumption of axial symmetry, 
giving 

if + Mf.o (CD 

11^^>_ + s Ka^L . 5  r(3A  + 2A )q |^ll + ^ (3 l^u^i . 2 l^i^l] 
dr dz dr [_      2 3      ar J        r    I     3r' 5r / 

* rh\ A3^<u'u'>  ' <v'v'>) i      1      (<u'u'>   - <v'v'>) 

-^(^->-f)+{0-U:^ + F|^ 
i*. «u'u->  -^v'V>)  - ^iL'l 
r^ X^ 

(C.3) 
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(HA-  +  2A,)q 
«u'u'> -<v,v'>) - a_(<v.v^ . |) 

-|-(<..^.|),.(äf<^>l|^-^) CC.5, 

fcii * i ^ [^ <a...>]- li^^l <„...> 2q 5<u 

-^<»->*"(^*?l^-^-^)   '"' 
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A 8E-E7ALUA7I0II OF ZEBD PUSSTOE 
GRACIEKT COWRESSIBLE TUWULEKT tOOHOUB '■Ma MEASinKMEMTS 

Jtmtm S. Danbari* 
University of DnlaHsr«, Navark. Delaware 

siMuuor 

A aiab«r of cospresclble tarbuieot bouadary layer velocity and ceaperaturc profiles with zero pre*- 
aure gradient have been collected and prepared for cenputer analysis.    An assuaed equation for t.iese 
profiled has been chosen allowlnj four constants to be adjusted by a nonlinear least squares teciinlque 
to fit ite experiaental data.    Ths four constants are:    a velocity scale, boundary layer thlcknets, the 
constant of the seal-log region and the wake constant, n.    This equation is analogous to Cole's Incoapres- 
■ible law of the «all and wake but uses    a generalized velocity to account for coapressibility.    Me«sure- 
■ents fro» 45 adiabatic wall tests have been analyzed covering a Mach nuaber rang« fros 2 to 6 and a 
■eaentua thickness Reynolds nuaber range froa 2.3 X 10* to 7.5 Z 10s.    Of thrse profiles.  29 Included 
skin friction balance data which allowed direct evaluation of the universal constant of turbulence (aean 
value of k • .43) through comparison between the shear velocity and the profile velocity scale.    The 
constants of the seal-log mid the wake rtglon were fcund to be independent of Reynolds    and Kach ouabers- 
A alallar analysis was carried out for the Halted nuaber of total teaperature profiles. 

BOTAriOH 

C       " Profile constant associated with   seai-1jgarithaic region 

B   ■ Local total enthalpy • C Tt 

B^     • Characteristic total enthalpy scale for ehe theraal boundary Icyer 

e**   - Nondiaensional total enthalpy - i   / •£   dCH-B,,) 
H,   c    Pw 

T        ■ Teaperature 

u       ■ Local, aean velocity 

u,,     " Characteristic velocity scale for turbulent velocity profile 

u**   " Hondlaenaional velocity • ■=■   /    /fi   du 
us    o      P 

ur      " Shear velocity " /r^/f^, 

y   • Distance noraal to the surface 

a • Theraal diffusivity 

ß - (Tatf-Ttf)/(Tt6-Tu) 

&9 " Velocity boundary layer thickness 

A • Themal boundary layer thickness 

K ■ Ualveroal constant of turbulence (mixing length constant) 

V » Kirematic viscosity 

11 - Profile constant associated with the wake region 

0 • Denal'.y 

T ■ ?H;ar stress 

u • Wake function 

Subscripts 

aw ■ Adiabatic wall conditions 

s ' Characteristic scale 

t - Total 

w • Wall conditions 

6 • Edge of the boundary layer 

*Assoclsce Professor Department of Mechanical & Aerospace Engineering 
and Consultant U.S. Army Ballistic Research Laboratories, Aberdeen, Maryland - U. S. A. 
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1. IKTIIOm-CTIO» 

Most experiasccaJisC*  Investigating «cae aspect of coapresslble turbulent boundary  layers nave at- 
teapted to oeasure the dlttrlbutlon of aeac velocity and titaperatu;^ through the layer.    During the past 
20 year«,  a considerable nuaber of these profile oeasurzaents have b<i«n reported.     It would appear that 
a sufficienr. body of data Is new available to begin - -nore systcoatlc correlation approach with tb« ob- 
jective of trying to obtain aore quantitative Inforoation froa the boindary  la^er surveys  thcaselves, 
rather than aaking coaparison between theory and skin friction, heat  transfer or other surface data.    The 
appros-Jt of this study is an extension to coapresslble  flow of soae of the tests used by Coles and Hirst' 
to "classify aid criticize" the available IncoapresElble data for the AFOSR-IFP-Stanford Conference on 
Turbulent Boundary Layers. 

2. APPaOACH 

In order to exploit the above proposal,  the following approach was adopted: 

(A) A considerable waaple of the published coapresslble tuzbuleat boundary layer survey data 
was collected and stored on IBM cards.    The Ibltlal search turned up about ISO sero pressure gradi- 
ent profiles where tabulated data where available or graphical data cou'd be reasonably evaluated. 
These data cover a range of Mach nuabers froa 1.5 to 12 and aoaentua thickness Reynolds nuabers 
free 10- to 10^.    Only perfect gas cases were considered with air or nlt-ogen as Che test aedlua. 
The geoaetry of the test surfaces were aostly flat plates and nozzle walls where the pressure gradi- 
ent effects are expected to be saall.    The aaln results reported here will be concerned with adla- 
batic wall con'itions which liaits the range of Mach nuafcers to approxiaately 2 to 6. 

Obviously, act all of the surveys considered are equal in quality and part or   the evaluation 
procedure aust be concerned with deteralnation of internal coosistea^y and consistency between sur- 
veys.    It is alto evident where aore experlaental data are needed.    In general. It aay be concluded 
that .sone of the experlaenters used all the techniques available to thea - especially the investiga- 
tors who concern theaselves with skin friction balance oeasureaentc in zero pressure gradient sdla- 
batic wall boundary layers.    The «cat notable oalssicn of these investigators was teaperature pro- 
file seasureaents.    Tnus, their iapoitant aeasureaencs hove to be Interpreted using theory or cor- 
relations based on other teaperature aeasureaencs. 

(B) An analytical fraeework was assuaed in order to reduce the aaas of data points into a 
geable set of nuabers froa which to draw soa^ conclusions.    The equations chosen to represent  the 
velocity and teaperature distribution are not final recoanendatlons, but they do represent a first 
step,  to which modifications aay be introduced as required or alternative approaches adopted asd 
then tested against the available experlaental evidence.    The initial approach Is based on slailarity 
concepts as extensions of the law of the wall - the law of the wake suggested by Mlllikan^, Coles' 
snd aany others  for     in coapresslble turbulent boundary layera.   The procedure aakes Che following 
assumpclons: 

1) The effects of compressibility are accounted for by forming a reduced velocity 

(1) 

This assumption is quite arbitrary in ehe present context although it is consistent with the 
Prandtl mixing lengtii approach as applied to conpresblble flow by VanOrlest , "^oore^, Spaldlng 
and Chi6 among many ochers.  The assimpdon can be tested Co soae exCent by ttj .ng other alter- 
native assumptions. 

2) The boundary layer consists of two basic regions, a wall region and a wake or defecc region 
describable by functions of cwo essentially independent variables.  In Che wall region, 1C is 
assumed chat the velocity distribution can be described in term» of a velocity scale (us) and 
a length scale vu/us where ua is to be decermined from experimental velocity profile data.  In 
Che defect region, the same velocity scale is assumed to apply but a new length scale 6    charac- 
teristic of the CoCal boundary layer thickness is assuaed and, &    Is also Co be evaluated from 
experimental daCa. The specific definiclon of &    depends on Che assumed form of Che wake func- 
tion. 

3) The cwo regions of Che boundary layer are connecced by a region of overlap where formulas 
for both regions predicc the same velocicy dlscrlbucion. Milllkan^ has shown ChaC this implies 
that the velocity is a semi-logarichmic function of y in Che overlap region. 

ul - In (_JL_) + c 
"s      Vus 

(2) 

u^ - In C2-) + D 
us      ^ 

Note that the above semi-log equations are nearly identical wlc'.i Che usual Curbulenc boundary 
layer semi-log equations. The one difference Is ChaC the mixing length constant, K, does not 
appear and may be considered to have been absorbed into the velocicy scale, ua.  If u8 Is re- 
placed by u /K and C by KC + In«, Chen Che usi-al form of Chis relacion is recovered. The reason 
for this new definiclon of Che velocicy scale is because < and u cannoC be decermined independent- 
ly from experimental velocity profile data. Another reason for chosiFK this definiclon is ChaC 
it clearly brings ouc chat <2 is the slope of the non-dimensional velocity profile at y • 0; 
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-.at is, if toe w«ll length »CJIC is valid to y th«n: 

u'  - u^  f(usy/sw  ) 

MM assuaing Kevtoniao friction at the wall 

/n     .   .     Ail) -   uJf 
'   / r * o 

(0) 

with the result that 

^(o) O) 

Since the probe data is relatively poor near the wall la the lamiait  sub-layer. It 1* oeceasary 
tc use skin friction balance aeasureBtmts to obtain the relationship between u, and u_ and the 
ratio of us to it. provides a aethod of evaluating <■ 

The equation which is used to describe the coapresslble turbulent velocity profilr (neglecting 
the laminar sublayer) is obtained by analsgy with incoopresvible flow equation proposed by 
Coles. 

u 

where ap^'o^iitately 

a++' i' S ]/\>du 'ln ^+ Cu + 2nu ¥(r,6»)   (*) 
■'o 

w^j  ) - Bln2(~£-) v2 «- 
(5) 

thti, equfcUoR is assiaed valid except  In the Imainar sublayer and beyond the point where 

is 
dyM 

The 
ured 

four profile constants u • 6 , C and n are determined by a least squares fit to each 
velocity profile.     s  s  u     u 

3.  TEMPESATUK PROFILE 

Tie temperature distribution was calculated for many surveys where temperature measurements were not 
available by using a well known modification of the Crocco temperature-velocity relationship: 

where 

T - T 2 
=* =* ' ß 77 + a-3) (--  ) 
Tt5" Tw    u( ' 

8 " ('au " Tw>/(rta - Tw) 

(6) 

As has been noted by many Investigators, almost acy üxpr^sslon, similar to the above, gives adequate re- 
cults for low Mach number data un.dev ad^abatlc conditions. Across Bf,'-* of the layer, the total enthalpy 
is nearly constant In any case. However, for the high heat transfer cr high Mach number situation, •rhe 
devlafion of experimental data from the Crocc:> relationship is known to be significant. 

There appears to be a need to find better methods of correlating tenptrature profile data than the 
Crocco equation. In analogy to the above method of describing the velocity profile, two length scales 
(6|], dy/J Hs) and a total enthalpy scale (Hg) are introd-iced in an attempt to find a more suitable correl- 
ation formula. The resulting equation is: 

«"■i'^'-v-^ + C + 211 w 
H    H H 

(7) 

2 w where IIL, * sin"" y *■ 

Hs "  Characteristic enthalpy peal« 

A - Characteristic thermal boundary layer thickness 
(Not necessarily equal to the thickness of the thermal layer) 

The enthalpy scale and the thermal boundary layer thickness and the two profile constants (C, and II )  are 
obtained from each profile where temperature data are reported by the sane least squares method used for 
the velocity profile. 
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A related approach  for the incoaprcssiblc enthalpy profiles hce oeea explored by Alber ind Coats7  in 
a recent paper.    Their aaalys.     is based on a alxlog length analysis where It Is assuaed that II    is pro- 
portional  to the wall heat  transfer  rate and thus H( » 0 for the ajlabatlc case.     In the adlabatlc co*- 
presslble boundary layer there Is a characteristic entnalpy distribution which has many of the saae features 
erf wall and wake regions as  Cl>e velocity profile;  thus,  a  finite enthalpy ccale  can be dcflred which Is 
vailü over a significant  part of the eulhalpy distribution although it does not appear that  this sizllar- 
Ity can extend to the wall as seess to be the case for the velocity profiles. 

4. LEAST SQUARES KETHOD 

An initial  computer program was written to determine u  ,  i   ,  C    and il    for the velocity profile and 
the corresponding quantities for the temperalu'e profiles, where available, by an iteration procedure. 
The velocity profile equation  (4)  can be re-wrltten as: 

u'- a, In a2/ + a, + a,, sln<a2y (8) 

where a], «2, a,, and a* can be used to calculate the more neanlngtul profile quantities.    Since 5    (or 
a;) is contained wlthlu ehe transcendental function, it cannot be evaluated by the usual Methods and, 
therefore, its value was first estioeted end the other three constants determined in a straight-forward 
way.    The computer program calculated the standard deviation of the data points with respect to the re- 
sultant equation.    A nuaber of such calculations were required to bracket the minimum value of the stand- 
ard deviation to a predetermined degree of accuracy.    Later, a general weighted nonlinear least square 
fit sub-routine was obtained from the V. S. Naval Ordinance Laboratory which considerably shortened the 
iteration procedure with a higher degree of accuracy.    This program computes the four constants from four 
initial estimates by assuming small perturbations to the a's which allows the equation to be «spressed 
by the linear terms nf a Taylor expansion whereby an improved estimate of the a's is obtained to start 
a new iteration.    Again,  a prfedeterained test  is applied to terminate the calculation. 

There are two problems chat arise in the lease square  fitting procedure.     First,  the equation is 
quite nonlinear with a nuaber of "local" maximums and minimums.    This wse c particularly troublesome prob- 
lem with  the first technique used.     For example,  if 6    is overestimated,  «2  Is small and the best  fit 
equation tends toward the situation where the sine-squared term is eliminated.    Trial and error changes 
of the initial values of the constants usually corrected the dlffi :ulty which was detected by finding ab- 
surd valued for the a's or by Che poor fie obtained when the data were graphed. 

The second problem has to do with the a priori  unknown range of validity of the basic equation.    As 
already has been pointed out, the equation used here cannot be used to describe either the sublayer or 
the free stream.    Unfortunately, it is often difficult to identify the data points which should be exclud- 
ed froa the calcul^'on except by inspection of the plotted results.    Ultisacely, part of the problem can 
be eliminated by d«.  ignlng the form of the velocity profile which is valid across the entire boundary lay- 
er although there oay still be a need to exercise Judgment about those points effected by wall iaterference. 

5. DISCUSSION OF RESULTS 

Figures 1*' and 2 show representative non-dimensional velocity profiles of u++ versus ugy/v . The 
solid line drawn through the data is the best fit to equation 4. The standard deviation in U++ Is .077 
and .022, respectively, which can be interpreted as .6 and .25 percent of the free stream velocity. This 
shows that equation 4 describes the velocity data in the range where It has been applied to the same order 
of accuracy as that quoted for current pressure transducers. 

Figure 3 shows an example of the quality of the fit of the sin2 term for the wake function of Coles. 
As pointed out earlier, no data beyond y - 6S has been included in the fitting process. 

5.1. Velocity Scale 

As previously noted,  if the similarity of the velocity profile is valid to y • 0 then the velocity 
scale obtained from the boundary layer profile is related to the shear velocity through Newton's law.    This 
hypothesis  is tested by a comparison between us and uT where values of Oj have been obtained from skin fric- 
tion measurements  (references 8 to 11).    Figure 4 shows the result 4.n non-dimensional terms of Uj/u9 verms 
Uj/Uf.    The mean line throvgh the data has a slope of  .43 which is  in reasonable agreement with the most 
frequently quoted values of  .4 or  .41 for the universal constant, K. 

5.2. Profile Constants 

The computer evaluation of the constants  Cu and nu are given in Figure 5 including results from 45 
profiles obtained  from 12  investigators  (references 8 - 19).    The constants are plotted versus  the momentum 
thickness Reynolds number and no discemable trend is evident although there is considerable scatter in 
Che data about  the mean values  of Cu • 1.77 and nu -  .81.    Also,  there is no observable trend of Cu or 
nu with Mach number in the  range of 2 to 6 or with the geometry of the test surface (flat plate and nozzle 
wall data are  included). 

5.3. Total Temperature Profile 

Figure 6 ar.d 7 illustrate the ability of the assumed equation to fit the total enthalpy distribution 
for one adlabatlc wall case of Sturek    . The solid line thrrugh the data is best fit to equation 7 
with the data points at both extremes omitted which obviously do no; agree with the trend of the equation. 
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The vtkM function is «pproziuted by the sin2 ttrra equally as well as  In the  velocity case.    A nuaber of 
points beyond y • A fall on the coaputed line although theie is a region at  the outer edge of the profile 
where the transition to the constant  free streax t«aperature occurs that camct be Included.     Figure 6 
also shows a sharp departure froa eouatio? 7 that occurs near the vail for these adiabatic he»c transfer 
cases. 

5.4.  Teaperacure frofll« Constants 

Profile constants froa only ten teaperature surveys »t near adiabatic wall conditions have been tust* 
ea and eight are at essentially the saae conditions for the present purposes.    These prellalnary results 
can thus be suaaarlted in Che following ttble where the eight profiles of Sturekl? have been replaced by 
their average values. 

Teaperature Profile Constants 
froa Kest FiC to Equation 7 

Ref. M6 nH C^ Pr^/uJ ^ 

12 J.49        .686 -3.74 ,89 1.04 
14 5.92        .902 -   .62 ,56 .68 
19 3.5 .923 -5.32 .69 .83 

These results represent such a saall saaple that Che specific values should be considered highly pre- 
llalnary; however,  it is interesting ChaC  for Che adlabadc wall conditions, Hg is approxlaacely Che saae 
aa (ug/Pr,,)2 and chus^y/o^ % u^y/v,,,    Sone inlcial resulcs which Include Che effeccs of heat transfer 
show chac Ua is jtrongly aftecced b-/ the heac Transfer race and Increases with increasing bcac transfer. 
The relatively large negative values of Cg can be associated with the size of ehe Uieraal sublayer in which ] 
the total enthalpy diecribucion :.8 dominated by conditions at Che wall.    The chetaal sublayer is an order 
of aagnltude larger than Che uelcricv sublayer as can be soen by comparing Figures 1 and 6.    The wake con- 
scant Jig Is about the saae asgalt-ide as Che velocity parameter.    The thickness paraaecer A Is generally j 
saaller as olghC be expected althcug'. the Cocal thermal boundary layer may be up to twice as large as i i 
and therefore, larger than the velocity boundary layer. j 

6.     CONCLUSIONS I 
I 

A nuaber of velocity and r.enperature profile aeasureaencs for compressible (Mach nuaber 2 to 6)  tur- 
bulent boundary layers  (aoaentua thickness Reynolds nuabers - 2.3 X 10    o 7.5 X 10s) have been re-evaluaced j 
in ceras of siallarlcy concepts developed in incompressible flow.    The velocity (or enthalpy) profile 
equation with four adjxistatle constacts i\u been shown to adequately describe the velocity (or total en- 
Chalpy) wich a high degree of accurac;   except in Che subls. *-. and in a transition region near Che free 
screaa.    The velocity scale parameter  (u^  Is sh wn to be proportional to Che shear velocicy (uT) and Che (, 
constant of proportionality equals  .43 which 1? \n reasonable agreement with Che incompressible values. 
The profile constants Cu and Jlu have bean founc  to be Independenc of Reynolds number and Mach number al- 
though chere is considerable scatter IT» the data.    Preliminary daca has shown Chac the cocal temperature i 
profile can be .-«escribed in a procedure analogem. Co Chac used for Che velocicy profile and chac  Che en- 
thalpy scale is  approximately Che same order as  Che square of Che velocicy scale.    The  thermal sublayer                            ' 
for Che cases Investigated was found to be considerably larger Chac the velocity sublayer. 
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Figure 4.  Velocity Scale Parameter versus Sheer Velocity 
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sa:s BOKC.;*r uyai JEASUREKE-TS OK A FLAT PUTt AT VACH mmsss not: 2.5 re /».5 

D 5 »'»bcor1, H U Veior   and i. 3 Sa»y«ir 

This p«p«r reports an ezperioental in*estigatior. of the turbulent boundary layer on a large, themally 
insulated flat plat«, in which I'ach nunbftr and tottl temperature profiles and shear stress at the wall 
were ceasured. 

The oeasurcd velocity profiles are found to be in fairly good agreenent with a number of theoretical 
treataents.    Sinilarly, the measured skin-frJ:t,ion coefficients are fairly well predicted by flat-plate 
skin-friction law» 

The fors of the total teesperature profile close to the «all suggestd an increase in turbulent Prandtl 
nucber «a the wall is approached.    At all conditions, the wall tenperature «as found to be higher than 
would be expected in adlabatic flow conditions, whilst there was a substantial deficit of enthalpy flux 
within 'he boundary layer.    No satisfactory explanation for these conflicting observations has jet been 
found. 
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static temperature 
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friction velocity = ^r /pw 
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boundary layer momentum thickneas 

von Karman constant in law of wall 

surface shear stress 

v kinematic viscosity 

n       wake component 

Suffices 

e       edge of boundary layer 

w       wall 

1.  INTRODUCTION 

Ulis paper briefly reports some measurements of the turbulent boundiry layer en a li.rge, thermally insula- 
ted flat plate, made in the 3ft x 4ft supersonic wind tunnel at RAE Bedford. These measurements are an 
extension of the experiments of Hastings and Sawyer (1), and were mode as p^rt of a Joint research programme 
between RAE and DPVLR-AVA Söttingen. Complete results will be given i:i a later paper. 

Hie tests covered a range of Mach numbers from 2e5 tu 4.5, »nd a targe of Reynolds numbers based on boun- 
dary-layer momentum thickness froiu about 5 x 10* to 3^ x 10*. Sad.." friction mas measured using a floating- 
element balance, and velocity and temperature profiles across the boundary layer were measured using a 

a  -Tloyal Aircraft üstablishment, fedford, Englwid 

Deutsche Forschunßs-und Versuchsanstalt für Luft und Raumfahrt, Aerciynareische Verauchsanstalt Göttingen, 
deraany 



co-tir' i tat^l-tor.psra'..;re -.:\d pitct-presr-rc probe- dcvclope    it ..VA SOttirigen (J).    The teasurecer.ts are 
nor pirca hero sith sore rurrer.t theorier. 

iat Plate 

'.Tic flat plate that «as uaec for these tests has been described in detail by Haatincs and Saieyer (1).       t 
»»as about 0.9u (35iii; «ide ard about 1.3^ {65ir^ long, and tas provided nx^. 22 holes into Hhich plain or 
instrucer.ted plugs could be fitted, the latter carrying either the akin friction balances or the boundary- 
layer probe.    The plate spanr.ed the tunnel horizor.-cally with a gap of lirr between each side of the piste 
and the tunnel sidewall.    For the prerent tests, an attenpt uas oj4e to ndnicize heat trar^fer fay providing 
layers of heat insulation on the back surface of the plate, and between the plate and the cantilerera 
which supported it.    Another difference fror tlio experiaents of Hastings and Sanyer »as the use of a r->ugh- 
ness band to aove tTansition fornard towards the leading-ed^e of the pl^te.    The band consisted of E^llötiri. 
(sEsall glass spher-js) 0.2arx! (O.OlUn) in diaceter, distributed sparsely froo 2.%:TZ. (0.1in) to 5.08BJ: 
(0.2in) downstreaa of the leading-edge. 

2.2    Skin Friction Balances 

For the present tests the skin-friction balance of Hastings and Sawyer was replaced by a cooiaercially 
available balance, Kistler type 322c 102, having an elecent of dianeter S.fjzc.    Four specimens of this 
balance were tried, but results are presented only for those two which gave consistent and repeatablc read- 
ings.    The present aeasurc-.ents of skin friction are believed to be accurate to nithin 15J at the higher 
".eynolds numbers. 

2.i   Cocbined Probe for Temperatur   and Pitot Pressures 

Fig 1 sho¥:s the cocsbincd total tenpiTa^-uro and piici pressure probe used for the profile ceasurcr.ents;  the 
developcent of this probe has been t. -«cribed in dewil by Veier (J).    For the ceasurenicnts of total tempera- 
ture, a sr.all quantity of air was sue    ^ past the ehroc.el-aiunel thercocouple junction situated just within 
the pitot entry.    The pitot pressures warü reiorded by capsulo-weighbeac <-: noceters. 

2.4 Surface-Tenperaturc- !'QasureL.ent3 

"ne surface tecperatures were reoasured by chrooei-alunel surface theirocouplas, the second junctions of 
which were in a Zeraa constant-tecperiture reference box. These temperatures were in good agreenent with 
those derived froc the cold resistance of platinuc surface-hot-filcs installed to detect the beginning 
and end of the region of transition frca lar.inar to turbulent flow (4). 

2.5 .'ilnd Tunnel and Test Conditions 

At the tiae of the experi-.cits of H.stings and jawyur (l), the tunnel was equipped. v;ith a fixed wooden 
nozzle giving a 'iach r.unber of k.    This has now been replaced by a flexible nozzle, sud there have also 
ueen modificationa to the subsonic porticn of the tunnel circuit to inprove the steadiness of flow in the 
vrorking section (5). These codifications include the installation of vortex generators, to make the final 
subsonic diffuser run full, and of a hona;'coEb and additional screens in the settling chamber. 

In the present «cperiir.ents, skin-friction and profile osaaurerr.ents were made at distances of 368, 623, 876, 
1130 and 135^:1 from the leading-edge. The noninal l.'ach numbers and unit Reynolds nui.ibers of the tests 
are given in Table I. 

TABLi: I 

K       R/B x 10"-  

2.5 1.15 1.55 1.95 
2.8 1.15 1.65 1=35    -. -      _ 
5.0 1.15 1.55 1.95    - .      - 
3.5 - •  1.55 1.95 2.35 
4.0 - -      -      - 2.75 
4.5 - -      -      - -     3.05 

In the second phase of these experimentsi to be reported separately, boundary-layer measurements were made 
in the range of unit Rt-^nolds numbers do^n to 0.3 x 10'/c. 

3.  EiSUITS 

,>. 1 La« of the .Vail Representation of Velocity Profiles 

Tip,  2 shows some topical velocity proi'lles plotted senilogarithnically in 'law of the wall' eoorlinates 
which ara based on the fluid properties (p, •>) obtaining at the wall. It nay be seen that, at freeatream 
I'acV. nunber- of both 2.3 and 4.7, the p i'il?s have a well-define'i logarithaic region where we may write 

K. v%; 
Fig 3 ahov.a values of the von Kan.an constant K determined by the best straight-line fit to the inner 
rcfjior, of the profiles (y/6 < 0.15, u y/     > 40).    The value of K  shows no appreciabls dependence on Rey- 
nolds number, but increases significantly^with Vach number,  fror, about 0.48 at Ve = 2.5 to 0,60 at Me = i*. 
The va^uc suggested by Coles (6)  for incoEprezsible flow is O.i.1. 



2-5 

Aiso shown in Fi^ 3 i» the value of K  given by the correlation of .vinter and Gaudet (?). rgreeocat »ith 
the B«asurec«nts is quite good at Xe  = 2.3 and 3*'' but, at Ka = 4.5, fie correlation noticeably undercsti- 
nates x. The additive conataot B in the ICM  1« found to vary only slightly eith Kach nuaber, and the 
correlation of Mnter and Caudet is fouad to describe this variation fairly well. 

Fig U  shoes the oagnitude of Coles'« (6) wake coaponent n defined, as illustrated in Pig 2,  fron the ratio 
of the 'overshoot' of the velocity profile above the logarithaic line to the slope of this line: 

n    K Au 

T 

The values of f! obtained as shown in Fig 2 are sosmhat sensitive to the line fitted to the logarithnic 
part of the profile. They also depend on whether or not a probe displaceadnt correction is aade  to the 
profile. The points plotted in Figs 3 and 4 have been obtained froo the best log-line fitted to uncorrec- 
ted profile). The vertical bars in these figures indicate the uncertainly in fitting this log-line, plus 
the further uncertainty associated with a possible displacenent correction of 0.15 tines the probe dicueeter. 

At the higher Reynolds nuobers, n is seen to have approxLoately the sane value, 0.35, that Coles (6) found 
in incaapressible flow. The  tendency for 0 to decrease at lower Reynolds numbers, which is particularly 
noticeable at Ke = V.5, *as also observed both by Coles, for iccoopressible flow, and by Hastings and 
Sawyer at M8 = 4. This behaviour at low Reynolds nuaber in coapressibla flow has been discussed tenta- 
tively by Green (8) and will, it is hoped, be revealed more cocplttely by the second phase of the present 
experioents. 

Ifae onaoalous values of n in Fig 4, apparent, at the highest Reynolds numbers at K5 = 2.5, ore from the two 
reanrost stations on the plate, in a regxon where the boundary layer was perturbed frem its equilibriun, 
flat-plate, condition by oblique thock waves running across the plate. These waves were generated by air 
flowing through the gaps between the  edges of the plat'j and the tunnel sldewalls in the proxiaity of the 
plate leading-edge. (In later tests, these waves biv» been eliminated by fitting vertical fences along 
the edges of the plate). Besides perturbing the velocity profiles, these waves also caused appreciable 
flow convergence on the plate centre line, so that the twocüoensionol moaentua-integral equation did not 
apply. Outside this perturbed region, however, the twodiaensiomil «onent'in balance on the plate centre- 
line was satisfied to Kithin '0 to 15 percent. 

A final inference that has been made froo the results shown in Pig 4 is that, in the present «cperinent;- 
the boundary-layer trip has not had a significant effect on the character of the velocity profiles. 
Although Coles (7) showed that anacalous values of n could be found close to tripping devices, the agree- 
ment in the variation of n with Reynolds nuaber between the present masurenents and those made by Hastings 
and Sawyer, with transition free, suggests that even the profiles obtained closest to the roughness band 
were with a boundary layer in a state of equilibrium. Further information on this point will be obtained 
la the second phase of these experiments. 

3.2 Rotta's Velocity Profile Family 

Meier has described (9) a faxnily of theoretical velocity profiles due to J C Rotta whiib are based on the 
form of the Ian of the wall proposed by flotta (lO) for compressible flow, and on Coles's wake function. 
In adiabatlc flow at a given Mach number, the two free parameters of the family are the skin-friction 
coefficient and the Reynolds number based in  the boundary layer thickness. The values of these two para- 
meters which give the minlaum raa deviation between the theoretical and experimental velocity profiles may 
be found using a computer, 

A third paraaßter which may be varied during this iterative procedure is the probe displacement correction, 
which is assumed constant across the boundary layer. Fig 5a shows how the fit between theory and experi- 
ment is improved by making this displacement correction (for convenience, it is the theoretical profile, 
rather than tha experimental one which is displaced laterally in Fig 5a). For the example shown in Fig 5a, 
the effect of this correction is to reduce the theoretical value of the skin friction coefficient by 5^, 
although the corrected theoretical value remains appreciably higher than that measured by the skin-friction 
meter. 

Pig 5'J shovs how the displacement correction appears to be piüoarily a function of a^d/vf  (where d is the 
probe dianeter), with a small but significant variation with lig. (The negat.'ve sign denotes the convention 
of making the correction to the theoretical profile). By virtue of the way the correction is determined, 
so as to minimize the rms deviation between theory and experiment, its value is dominated by the points 
closest to the walJ. Hence the correlation ir. "law-of-the-wall" variables shown in Fig 5l> is to be expected, 
Fig 5b shows only the prc^e corrections derived for x  = 623nm, at which position there was very little 
scotter. The ot.' ar positions on the plate show clearly the variation with Urd/v_ bat, because of increased 
scatter, the variation with Ue  is less well defined. Despite the scatter almost all the probe corrections 
■♦"or 92 profiles ;,'all within the broken curves on Fig 5b. 

3.} yixing-len^th Analysis of Fenter and Stalrcaeh 

Allen suggested (n) a convenient and aocurato method of predicting the local skin-friction coefficient 
from a measured velocity profi.ln. For adiabacic flow, he found, that the miMt accurate version of the law 
of the wall in compressible fiov was that derived by Fenter and STcalnaoh (12) on the basis of von Ka.rman's 
mixing-length typothesis. Tiiia cethod has bean applied to the present results in the manner suggested by 
Allen; namely by using each point an the velocity profile in turn to deduce a value of Cf, and plotting 
these values of Cf against the con-e^ponding j-ositicn y of the pitot probe. Fig 6a shows typical predic- 
tions of Cf as a function of probe posit,or. at ;,;ach numbers Me = 2.5 and 4.5 and two values of R 6, at each 
Kach number, A curve such as that for W^  - 4.5, R 62 = ''^0 has two plateaux which apparently indicate two 
different levels of sldn-frictior. coeffii;ipnt (inner and cuter values). The inner value is a maximum and 
gives good agreement with the Cf ceasured by the skin-friction balance, The outer value is a niniium and 
its agrsoueot with ihe measured Cf is, in general, less satisfactory and varies consitlerably with both 



Vach nunber ixrA Rcyr^old« nucber.    This »uriation :.'; the predicted C- b«ti»i-en the inner and outer valued 
•cross the logarittuelc rti^on of the bounda?3' layer is iiost probably associtited Tith a departure fret the 
particular form of too lae of the wall proposed by Fenter and Stalaaeh.    The Yalües ol' siciit friction pre- 
dicted fron the inner plateau are compared with the dlr'eitly aeisured values, on a percentage baaia,  in 
fig 6b.    These results confira Allen's conclusions as to the usefulnas': of this oethod. 

3.4 Copparison with Flat Plate gelations 

In Pig 7, the prodietiois by the flat-plate skin-frictloa relations of Spalding ami Chi (13) and »'.Inier 
and Caudet (7) are oocpared with tl.) Ei-sureoent».    The soGpirisena are nada on a furcontage basis, ni+h 
the theoretical value of Cf detensiued »""roo tile neasured vilue of R fij-    ?it5 73 shows that, for the nethod 
of Scalding and Chi, the error et Jie higher R^rr.old» nuicbers is about *}£ at M, = 2.5, falling to -%'> et 
Ke = 4.5.    In addition, thia figure show»  ifcjt sJd.-» friction is appreciably undereatirited at the lower 
Reynolds nuubers and higti«? F'sch auabera; tHe error is as auch as 12$ at the lowest Reynolds r.uober at 
Jte = 4.5.    Soae of this underestlEate is .-".l&JSt ctx*taialy due to the failure cf th<s theoiy of Sp Udim, f.ni 
Chi to take account of the variition of the woi« t-o^ponenl; at lo« Reynolds number, iwich was diacuas'^U in 
Section 3.1 •    HJ« prediction ne Jiod of Winter and ,.*udet (7), illustrated in Jig 7b, app ars slightly more 
accurate vhan that of Spaiding a^.d CM,    At high Reymlds nuabers, the error given by tius ecthod is only 
about 1$ at lle = 2.5 J'alling to -2fi at k^ - 4.5.   However, like S)ial.lijig and Chi, .»intor and Caudet neglect 
tne variation of «ak» coaponent with Reyneiis nuaber and henr.«, et ITW Keyno'as r.iMber. ,  Che underestimation 
of skin friction again increases to about 12$ at Ke = 4.5.    (rhe aaasuretents by Vli.tnv and feaudet, which 
were made on tite sidewsll of the SAS 8ft x 8ft tunnal, did not, of course, extend down to siuYiciently low 
Reynolds nuabers for the decay of the -,>ate ocaponent to be ebserrod). 

3.5 Wall T—per«tures 

Despite the atteepto made to insulate the flat plate described in Section 2,1 above, the wall teaperatures 
were considerably higher than those based on a recovery factor r * 0,89 (r = Vpr), the value oooaonl^' 
associated with a turbulent boundary layttr (it}. The total taopfex'sture selected for these testa would 
have given Tw = 15% for r e 0.89 but, in fa-t» the wall tsoperatures vere generally shout 23% (Pig 8). 
The wall teaparatares varied from day to c-^- 6y about t 20C, but in nc apparent systematic aonner. The 
spanwise teaperature variation across the piste was net reasured but was believed to be small, 

3.6 Total Teaperature Profiles 

Souse typical measured total-teaperatur« distributions across the loundary layer are shown in Fig 9 in 
terns of the function ? where 

y   =    (Tt   -   Tw)/(Tt   -   Tw) 

and has values F = C at the nail and F = 1 in the freestreim. The profiles oeaaured at ]fe - 2.5 and 4.5 
at two Reynolds numbers are '.capered with the Crocoo relationahip (15) 

I 

and the .'/air relatiouhiv (l6) , 

*   = (Vue)
2, 

The Walt relationship is closer to the measured points than the Crocoo relationship, at least near the 
outer edge of the boundary layer, but neither relationship is in good agreesunt with the data. Their 
failure is particularly marked close to the wall where, in soae cases, total temperature increases aa the 
wall is approacned. 

Fig 9 suggests that this increase in total temperature ig the wall is approached is most in evidence at 
the higher Mach numbers. However, a survey of axl thi ;enperature profiles so far oeaaured suggests that 
the region of increasing total temperature is not restricted to high Mach numbers alone, but occurs at all 
Mach nuabers if the local value of 

uTy/vw 

becoaes less than 50« Meier and Rotta have shown (17) how a total t aiperature variation of this type in 
the wall region can be predicted if an increase in turbulent I-Tar.dtl number occurs for values of Ujy/v,, < 
50, Fig 9 shows a typical prediction taken from reference . ~'  of the temperüturti distribution for Ue =  3.0 1 
and Rß, = 10100, An increase in turbulent Prandtl nanber sioa/- the wall woulä s".an thi-t in this region the 
turbulent heat exchange decreases more rapidly thu    the turbaient momentum excharutf;. A similar variation 
in turbulent Pra«itl number is believed to occur a\, :bsonic speeds (18} elthough sthcr recent experiments 
have suggested that the Prandtl number first inoreas'.s (for values of Uj.y/v, < 200), reaches a peak at about j 
u^y/v- = 50 and then decreases as the wall is approached (l>),    l'-smperatnre measureir.ant veiy close to the 
wall is, cf course, exceedingly difficult and hence this particular ispojt of the i»»syltr should be regardett I 
with sore caution. 

Tho absence of a significant overshoot in the temperature distribution in the outer paxt of the boundary 
layer means that the total enthalpy defect in the layer 

o 

j   (p/pe) (Vue)  (1 - V^ ) o.y 

cannot be zero as it should be for a boundary layer on a themally insulated surface.    .Tn fact, the nett 
enthalpy defect in the boundary layer is considerable, particularly at the higher Mach numbers. 
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Aithoufih the ceasured entbalpy-uefect thicicnesaea show aooe scatter, it has been eatiaated, according to 
Reynold» aiviloty, that the wail would need to be aaintiined well belo« recoreiy tenperature - of order 20 C 
at He = 2.5, but substantially mor« at Ke = i*.5 - to achieve the neceasaiy heat transfer. In contrast, 
the ceasured «all teeperatures are a few degrees above the normal adiabatlc recovary tmperature. r.orocTar, 
calculations of heat transfer through the thermal insulation on the plate Indicate that the heat flux assoc- 
iated with the enthalpy defect could not be passed, either to the tunnel structure or to the flow over the 
back of the plate without appreciably higher driving temperature differences than are observed. It is not 
thought that the teaperature piobe la sufficiently inaccurate to be the cause of those diacrep^nciea; hence, 
the loss free the thernal energy balance cannot at present be explained. 

4.  CQNCUSIOKS 

The cain concluaiona may ba sueffiarired under three headings. 

(l) Velocity Profiles 

he velocity profiles plotted in the law of the «all coordinates show a significant increase in the value 
if the von Kanaan constant K as Vach nuaber Increases fix» K. s 2.5 to 4..5. This agrees fairly veil witt 
the correlation of »'inter and Saudet, although the latter to some extent underestimataa the increase In K 
above Ke = 3.5 (Fig 5). ^t the higher Vfich numbers, the decay of the wake ccaponsni n of the velocity pro- 
fixe at low Reynolds rucbers is fairly well defined (Fig U)  and is consistent with the observations of 
Hastings and Sawyer and Sreen. 

The aeasured velocity profiles can be fitted v<»ry closely to the family of theoretical velocity profiles 
pr^froaed by J C Rotta. Tne agreeoent is particularly good if e probe displaceaent correction, dependent 
pricarily upon utd/vw la Eaie (Fig 5)> 

The technique proposed by A'len for estlDatlng skin friction, using the ml ring-length formulation of the 
law of the wall developed bj- Fenter and Staloach, is found to be fairly act orste. 

(2) Skin Frictior. Pre<llction;i 

The flat-plate akin-frictioi   laws of Speilding and Chi and Ain'.er and Gaudet are in fairly good agreeoent 
with the ceisureicents but, at high Mach numbers and low Reynolds number«,  aignifioant deviations become 
apparent (Fig 7).    Sorae of t}\ese deviations are attributable to the neglect by these prediction methods of 
the decay of the aake coopone.it of the velocity profile p.t low R v^oliis number, 

(3) Temperature Profiles 

The rail tcEporatures ••.re higher than exjiected on an adiabatio surface (Fig 8), suggesting heat transfer 
from the vail  to the boundary layor. In contrast, the temperature profiles in the boundary layer show no 
aignific-.iit overshoot and imply heat flow from the bouniaiy layer t« the plate (Figs 9 and 10). The 
observed defect in enthalpy flux does not aeom attributable tc errors In temperature me&suremer.. by the 
probe. t(u appreciable heat flow cor. pass through the insulation from the plate to the tunnel structure or 
tc the stream past the back surface of the plate. 

These temperature aoasureir.ents present a paradox which will be the subject of further investigation. 
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Fig. 2    Typical velocity profiles 
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Fig.S   Pitot probe corrections 
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COWPARISO^P atOVEEM SOME hlOH RETKOLDS MWaEP TiSBULEJIT BOOVDARY UTER 
EXPERIMECTS /T >IAC!J H, AND VARIOUS RECENT CALCULATIOH PRCCEOORES 

by 

n.J.  Peak«  . G.  BrUounn   and J.M. Rcweskie' 

SUMKARf 

nie objective of these studies was to assess the Influence of stresatlse pressure 
gradients upon two-dlnensicnal compressible cutbulent boundary layers at high Reynolds 
nunbers. In the absence of 'end-Mall effects* and otftcts cf longitudinal curvature. 
Boundary layers recovering to equilibrium condltic.is k«re of special Interest. 

Measurements were mad* at a Mach nunbv-r of -! of pressure distribution, local skin 
friction and boundary-layer profiles along the inximil  surface of a parallel, circular 
cross-section duct where an axisysnetrie centre-bod; 'that could be extended into the 
duct) provided the means of Imposing an adverse pressure gradient upon the test flow. 
The Reynolds number based on the duct length of 33-Inches was alsost 50 mllllcn. 

Results from three experlmei.cs arc presented in this paper, r.nmely a near zero pres- 
sure gradient flow, an adverse pressure gradient case, and a flow relaxing downstream of 
a rten-Induced separation. These results are compared against the seven recent and re- 
?>«ctive calculation methods of Brads'naw/PerrlsT, Nash, Chan, Zwarts, Cebeci/Solth, 
.'$ad/?reen, and Stratford/Beavers, in terms 01 integral parameters, local skin friction 
oce'iMcients, and velocity profiles (where calculated). 

In general, the boundary layer predictions if all the methods were in reasonable 
ajreement with experiment. The outstandii g exe^i-ion was the discrepancy observed between 
ths calcul?.«*d and experimental skin friction reeults in the «Iverse pressure gradient 
flow, which has been attributed tentatively to tfet static piv^rare gradient across the 
boundary layer in the region of the streamwise pressure increase. 

LIST OP SYMBOLS 

APQ    Adverse pressure gri lent flow case 

C-     Local skin friction coefficient 

C      Specific heat at constant pressure 

Cpp    Preston tube pressure coefficient ■ 
(Pp - PE) 

rr qE 
dc Width of cobre probe head in direction of traverse normal to the wall 

dg Diameter of static hole 

D Preston tube diameter 

r,. Eddy viscosity 
6* •H Shape factor li. compressible flow ■ ^— ; also enthalpy 

•H, I.ntrainment shape parameter ■ —a  ■ w L „"" dy 

»fl Shape parameter ■ r | f" U " ^T ^ 

*H^2 .'ncompressible shape parameter, sometimes called velocity shape factor 

Jtl1 - fel * 
Jo   üii1 ' üiJ' dy 

k^, Thermal conductivity 

t, Mixing length 

L Olsalpatlon length 

M Mach number 

Pc Cobra probe pltot pressure 
P Local static pree-.ure 
P. Stagnation pressure 
Pp Preston tube pltot pressure 
PrT Turbulent Prandtl number 
q Dynamic pressure 

I 
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r Teryerature recovery factor »0.39 
R      Radius of  duct 
Rr Reynolds naaab^r based on 7reston tube dlaaseter ar.J local malnst^ean conditions 
fi,. Reynolds nuaber based on boundary-layer Boaentun thickness and local main- 

otreas» oontJltlons 
RPG Ring pressure gradient flo»» case 
7 Static temperature 
T0 Stagnation ttaperhture of Balnstrean 
T- Recovery t«mp->rature »t an adlsbatic wall (  r » ".89) 
u Velocity 
ufH Friction velocity ■ /T^/Oy 
X Distance along duct Kail, aeasured from cowl lip 

y Distance normal to duct viall 

ZPG Zero pressure gradient flow case 

Greek 

Y Intertnittency 

•6 Boundary-layer thickness 

•S« Displacement thickness " I (l - J^TJ"! dy 

A      Correction for cobra probe dispifto.jpent eflsct 

•8      Momentum thicknesr - I -Pj? Il - r- dy 
JQ   ^"E I   uEi 

v Absolute viscosity 

v Kinematic vlacoslty • p/p 
p Density 

T Shear stress 
9 Angle subtended at duct centre by arc length of ocwl 
$ Yaw angle of cobra probe head 

Subscripts 
C Compressible flow; cobra probe 
D Preston tube diameter 
E Local malnstrtam conditions at boundary-layer edge 
1 Incompressibla flow 

0 Stagnation 
P Preston tube 

R Recovery 
TW Wall shear stress 

W Wall 

Superscripts 

•      Quantities evaluated at an intermediate tenperature 
Fluctuating quantities in Section 2. 

NOTE: (!)  The factor (1 - i)  was Inserted into the integrands of the • terms when 
determining experimental values. 

(il) Additional symbols (not defined in the List), to be consistent with the seven 
calculation methods employed in this paper, are introduced and discussed in 
Section 2. 

1.0  INTRODUCTION 

The Proceedings1»2 of the Conference held at Stanford Ufilverslty in 1968 indlcatdd 
that many of the recent integral and differential calculation procedures for incompres- 
sible, two-dimensional, turbulent boundary layei-a can provide both rapid and reliable 
predictions of flows in arbitrary pressure gradients. This generality was restricted, 
nevertheless, to flows that did not Interact significantly with the mainstreamj or In 
other words, to those that were not close to separation. On the effects of compressibility, 
it was considered that additional data were required, especially for flows in adverse and 
relaxing pressure gradients, in preference to the expending of enormous effort on the 
proliferation of new theories - a state of saturation that has already occurred, of course, 
In the incompressible flow case. 

Prior to the Stanford meeting, an experiment to include adverse and relaxing pressure 
gradients had already been devised by NAE and McGill University to obtain some definitive 
mean flow results at Mach 4, under conditions of high Pieynolds number (Rg of 30,000). 
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i'he cooments at the Stanford »eetlng, tnerefore, provlc^d subEtai-.tlal pup-jor*. for the | 
present otjectli'es. Tfte er.perlment was then exparide-i In scope to provide a fraciewcrJ'. of        | 
i-esults froa thref different boundary liyer flows against whJch to test the tompressltie        % 
versions of soa» of the advocated nsethod? at Stanford, as weii as some other recent ca?-        '| 
cul&Mon techniques. The approaches choien Included the differential turbulent kinetic 
energy field me'.hods of Bradshaw3»*, fäash-, and Chan6»7, as well as the differential rr.ean 
field method 01 Cebeci/Smlth'.  These were supplemented oy the dlssioatlor Integral 
aethod of Zwarts', the entraipiaent Integral »ethod of Head/Green10»'^, and the nsorcentuiT; 
Integral method of 3trat ford/beavers!2.  From these attiisp.o. It wa• antlclpated that the 
inott premising methods might be revealed for potential application to other Important 
flow cases In aeronautical engineering. 

Despite the fact that many sets of coispresslble turbulent boundary layer data are 
available, mott have been measured In nominally zero pressure gradient, white those taken 
in flows with pressure gradient have often suffered from detrimental rig effects,  The 
consequence Is that few data-sets are of adequate quality to serve as a basis against 
which to compare the various calculation techniques.  In particular, there is a scarcity 
of aätisfactory measurements at high Reynolds munbeis either In strong adverse fbut with- 
out shock waves) or In relaxing pressure gradients, the latter flow type causing 
noteworthy embarrassment to most calculations. 

Experiments conducted In nominally two-dimensional configurations, where adverse 
pressure gradients» were applied remotely from the test surface, have been Influenced to a 
greater or lesser degree by 'end-wall effects'. The boundary-layer growth on the end ;? 
walls (unless this Is controlled) Induces a flow convergence both In the mainstream flow j 
and In the test boundary laysr (see Zwarts9, for instance). The difficulties with end- ' 
wall effects are aggravated in supersonic flow, where shcck-lnduced separations may also 
be Involved. Longitudinal curvature of the t^st surface itself has provided an alterna- 
tive means of generating an adverse pressure gradient13»''S15»50, but there, the changes 
In static pressure along a normal to the surface may be substantial enough to invalidate 
the usual assumption of consi.?nt static pressure across the boundary layer*, even for 
moderate pressure gradients at XOM Mach numbers. In the Mach 6 case of Rei'srence 15, for 
example, subsequent analysis17 showed that, across the boundary layer thickness, the 
static pressure changed along a normal to the urface by as much as 80 percent of the wall 
pressure, and demonstrated that the isobars in the boundary layer were close to the linear 
extensions of the Mach lines in the mainstream. Amongst other factors that may adversely 
affect the quality of a 'standard boundary layer experiment' are difficulties with trip- 
ping devices, the unknown influence of local turbulence on pitot tube readings,the effects 
due to probe size, shape and displacement, the effects of outer intermittency and the 
sensitivity of Integral thicknesses to the few data points near the wall. 

To eliminate the undesirable secondary flow effects from end walls, a test surface 
comprising the inner wall of a circular cross-section, parallel duct is an obvious choice. 
A larf! constant radius test eecticn should be provided so that there are no problems as 
a resu't of changing transverse curvature and rapidly thickening layers. A suitable ratio 
of test boundary-layer thickness to radius of curvature should be <0.1 for the effects of 
transverse curvature tc be negligible.  (In low speed flow18, the effect of transverse 
curvature on the index of the power law of the turbulent boundary layer, was shown to be 
insignlf^int for ratios of boundary layor thickness to radius of curvature of up to 3.) 
A prescr ed pressure field may then bs  generated conveniently by means of an axlsymmetric 
centre-b^dy located within the duct, the centre-body contour depending on the choice of 
supersonic or subsonic mainstream test conditions. Moreover, the pressure gradient con- 
ditions can be varied by altering the centre-body design without disturbing the instru- 
mentation a3ong the test surface, while the near zero pressure gradient case may be 
handled by retracting or removing the centre-body altogether. 

As an additional variable, the duct length can be changed by building it In sections; 
there IG then the provision to obtain an Initial boundary-la^er development under essen- 
tially zero pressure gradiert conditions before commencing any presoure rise, a feature 
assisting the input of initialising boundary values in the calculation methods. A suit- 
able length of wetted surface aay also be added downstream of any applied pressure rise 
to investigate boundary layers recovering to equilibrium conditions. 

With the centre-body removed, we may also study the difficult computational case of 
a boundary layer relaxing downstream of a local separation, inc'uoed, say, by a forward 
facing step (a shock/boundary-layer interaction flow configuration not unlike that inves- 
tigated by Ureen 1()»19) or we may meacure the three-dimensional boundary layer In the 
duct at angle of attack. The Installing of instrumentation Is facilitated by access to 
it from outside the rig; measurements of static and impact pressures at the wall, temper- 
atures, and viscous flow profiles of both mean and fluctuating quantities being clear 
choices for any experiments of the kind outlined In the present paper. 

The type of parallel duct dlcoussed above forms the basis, in fact, cf the test rig 
to be described in Section 3.  The duct was placed in a Mach h  mainstream in the NAE 5-ft 
x 5-ft wind tunnel to investigate three different boundary-layer flows under nominally 
two-dimensional conditions.  The tests were performed at a Reynolds number of almost 50 
million based on the 35-lnch wetted length of test surface and undisturbed Mach ^ stream 
conditions, while heat transfer to or from the flow was assumed negligible.  This assump- 
tion follows from the fact that with the tunnel open for rig servicing, the temperature 
of the test surface is that of the local ambient atmosphere.  During the short duration 
- 
longitudinal curvature also has a significant effect on the turbulence structure16. 
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tunn«l run, tru stream stagnation temperature Is a}so close to that of the local antolent \ 
atmosphere. Hi-nce, because of the large heat capacity of the test surface, the resulting        | 
decrease in ttali te^peratui-e 1» small, and tha wall is close to an adlabatic teaf>erature 
condition. 

The first teit  was a near zero pressure gradient flow; the second was concerned with 
an adverse pressure gradient, tlw initial Mach 4 mainstream diffusing to Mach 2, down- 
stream of which the boundary layer was permitted to relax at virtually constant pressure 
along a length of about 200 boundary-layer displacement thicknesseu; while the third 
Involved a boundary layer recovering: downstream of a stop-induced separation. The same 
physical length of nominally zero pressure gradier.*-- too-M.i&ry  layer was allowed to develop 
upstream of the pressure rise and upstream of the iri«f. 

This paper presides a description of the measurements made, and their comparisons 
with the »forementionad calculation metiioda; emphasis btilng placed on integral parameters, 
local skin friction coefficient and velocity profiles. 

2.0 PREDICTION OF THE COMPRESSIBLE, TURBULENT BOUNDARY LAYER 
IN ARBITRARY PRESSURE GRADTSNTS 

An unsophisticated interpretation of a turbulent boundary l^ver is that it consists 
of a free shear layer constrained by a solid wall. The wake-like character is evidenced 
by the ertralnment and intermittency phenomena, and by the sensitivity of the outer 
region of the boundary layer to pressure gradient and mainstream turbulence level. The 
wall constraint, on the other hand, reveals iv,self in the viscous, laminar suo-layer, and 
in the logarithmic part of the mear: velocity proflU . 

Two similarity laws have been demonstWited to characterise the overall development 
of a turbulent boundary layer - at l*jst, for flows in nominal equilibrium - called the 
•law of the wall* and the 'law of the wake-. Given that th^ Taw of th* wall applies 
(that is, there is a relationship »etween mean velocity tnd shea-ing stress velocity) 
then a convenient means of estimating the wall shearing stress is -"cvided. The law of 
the wake, on the ether hand, circumvents the necessity to stlvulat. the physlcr of the 
shear flow turbulence. References 1 and 2 hint that the inclusion cf •■he law of the wall 
or other equivalent data appears to be a trait of the successful incompressible prediction 
methods, and it will be noted in the following discussion that the explicit or implicit 
inclusion of the wall law is a feature of all the compressible flow calculation methods 
used herein. 

In the compressible, froulent boundary layer, the fluctuating velocity field pro- 
motes transport of momentum and heat across the mean flow streamlines. It is the explicit 
or Implicit description of this transport mechanism that constitutes the fundamental 
problem of calculating turbulant boundary layer development. For steady, two-dimensional 
turbulent boundary layer flow, the momentum and thermal energy equations contain «ssen- 
tially two unknowns; terms involving the time mean of the product of two fluctuating 
velocities, -u'v, known as «-he turbulent (or Reynolds) shear stress; and a term Involving 
the time mean of the product cf a fluctuating velocity and a fluctuating temperature, 
-v'T', (or sometimes expressed In terms of enthalpy -v'H"). The relationships (if any) 
between these fluctuating quantities and the mean velocity and mean temperature distribu- 
tions have never been strictly defined by experiments, reliance having been placed oki 
empirical correlations. As McDonald points out in his concise assessment of certain com- 
pressible turbulent boundary layer methods in Reference 20, the success or failure of 
proposed methods of prediction will thus be associated directly with the way the mean 
flow variables are related to the temperature correlation, v'T', along with the procedure 
for representing possible temperature effects on the relationship between the meen 
velocity field and turbulent shear stress term, -u'v'.  We shall attempt to illustrate in 
this r^sum^ of calculation methods used herein, how each of these correlations is de- 
scribed, and thoir possible advantages and shortcomings. 

In the numerical solution of the boundary layer partial differential equations, the 
mean field is usually related to the turbulent stress and temperature correlations in an 
explicit form. Such relationships, for instance, those of 'eddy viscosity' or 'mixing 
length', are used in a large number of the incompressible calculation procedures; but 
their limitations in the compressible flow case are unclear. As Bradshaw points out in 
Reference k,  the assumption that, the apparent eddy viscosity, et» ^n the  outer part of 
the boundary layer Is a constant multiple of the integral of velocity defect across the 
boundary layer (et being taken Independent, of the mean density profile end Mach number) 
may well be satisfactory for zero pressure gradient flow.  Yet In view of the paucity of 
reliable experimental data, there is no reason to presume that such a state applies in 
compressible flows with pressure gradient.  Bradshaw discusses further1* that even In 
inccr.ipresslble flow, large variations in dimensionless eddy viscosity (or mixing length) 
can occur In rapidly changing boundary layers; the latter are often encountered in com- 
pressible high speed flows and changes In density may affect the eddy viscosity or mixing 
length. We shall begin with commenting on those methods that do not utilise compressi- 
bility transformations, followed by those that do. 

2.1 The Differential Turbulent Kinetic Energy Field Method 
of Bradshaw/Ferrlss; and of Nash 

Prior to the publication in 1966 (by Bradshaw et al3) of a method to calculate 
boundary layer development utilising the turbulent kinetic energy equation, most proced- 
ures, as we have Infen-ed already, had relied upon the properties of the turbulence 



11-5 

isuch as entr^liwsnt or local shear stress proftle) to be related to tha local mean flew 
conditions. Yor ^xtnple.  In tue 'eßdy viscosl.y' or 'mixing lens^h' hypotheses, the 
asüUKp'.lon Is ma^e that the local shear stress In a boundary layer Is governed bj- the 
looa.1 vult/clny gradient of the me&n flow at that point. 

Bradshau et al3 trguecJ thac there was a much closer relationship between the shear 
stress profile and the turbulence structure than between the shear stress and the mean 
velccl'ty profile. On .e th« relations between the shear stress and the turbulence Inten- 
sity, dissipation, anil diffusion are known or are prescribed, the differential turbulent 
kinetic 6»iergy equation defining the rate of change of turbulent energy along a stream- 
line, can be converted Into an equation for the rate of change of turbulent £hear stress 
(In a twc-dlaenslcfial boundary layer). Ko assumption of the ah»ar stress with respect to 
the mean velocity gradient Is needed. The method of Bradshat« ev al3 relies exclusively 
on assustptlons concerning the turbulence structure that were mainly deduced from detailed 
measurements in constant pressure low-speed, turoulent boundary layers. By Invoking 
Morkovln's hypothesis't, that the turbulence structure is unaffected by con^resslblJ.ity 
when Mach number (end hence density) fluctuations arc small, the sane empirical functions 
as used in i~coinpi-es<iible flow3 can be adopted for the compressible flow case1*. Such a 
philosophy Aould appear more credible than the postulate that eddy viscosity relations 
between the shear stress and the mean flow are unaffected by compressibility. The mean 
flow *.s substantially altered by compressibility, especially In a longitudinal pressure 
gradient, but there is no Justification for implying that the shear stress If altered 
correspondingly. Having adopted Morkovln's hypothesis, no supplementary physical input 
is required apart from the compressible version of the universal law of the wall for the 
inner boundary condition {aj»d from which the wall shear stress is calculated). The tem- 
perature distribution across the boundary layer is prescribed by the Crooco relation 
(with a recovery f&ctor, r « O.89, consistent with an adiabatic wall): 

CpT + J ru2 - CpTw 

Entrainment (as a function of Mach number) is also required to scale the turbulent energy 
diffusion term, G. The mean continuity, momentum, and turbulent kinetic energy (shear 
stress) equations form a hyperbolic set whose solution is obtained by the method of 
characteristics. The distinctive feature of the method Is that no compressibility trans- 
formations are needed. It is clear furthennore, that no simple transformation will 
reduce the compressible flow equations to a corresponding incompre&slble form. 

Nash adopted tha  same physical reasoning as Bradshaw, to develop a three-dimensional 
method to calculate compressible turbulent layers5. With the.  third dimension removed, 
the method reduces essantially to Bradshaw's two-dimensional formulation, with but a few 
minor differences in the empirical input. Nash, however, elected to use a staggered-mesh, 
forward difference nu.nerlcal scheme to solve the boundary layer equations, rather than 
the cnaractärlstlcs* routine used by Bradshaw. 

2.2 Mixing-Length. Integral Turbulent Kinetic Energy Field Method of Chan 

Following the pioneering work of Bradshaw et al, and Nash, an additional contribution 
to the technique of using the turbulent energy equation has been that of Chan, whose 
incompressible formulatlor6 has recently been adapted to accoiuit for oompressxblllty7. 
In this method, and what may at first sight appear to be the antithesis of Bradshaw's 
proposals, the phenomenologlcal concept of mixing length is used.  It; is no longer corrt- 
lated directly with the mean flow field of the turbulent boundary layer, however, but is 
scaled (in the outer layer) from an Integral form of the turbulent kinetic energy equa- 
tion.  Hence the history of the turUulent state Is considered explicitly and the mixing 
length correlation is permitted to vary as the boundary layer develops.  Chan's method is 
thereby similar to the method of Bradshaw et al1*, except that In the use of an integral 
forra of the turbulent kinetic energy equation, the pressure-velocity diffusion process is 

eliminated {f    - dy H 0) and an assumption is made concerning the distribution of mixing 

length across the boundary layer. 

Utilising the implication from Korkuvin's hypothesis21, and the research of Maise 
and McDonald22, that compressibility will not significantly affect the character of the 
mixing length, the boundary layer is split into two regions: the laminar sub-layer and 
the exterior turbulent flow.  In the former, van Driest's laminar damping is assumed, so 
that the mixing length is given by: 

i  = O.la y [1 - exp(-|)] 

where       A = 26 M-E 
p lTmax' 

P I0-5 

For flows in zero or favourable pressure gradients, Tmax identifies the surface shear 
stress, whereas in adverse pressure gradient, Tmax occurs in the sub-layer, away from the 
wall. 

In the outer turbulent region, the turbulent shear stress term is related to the 
mixing length by: 

£;t-—..t-_ a.,    . fa..12 

D   3y     pyj 

while the turbulent kinetic energy and viscous dissipation are expressed in the form 
(see Reference 7): 
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^ » Jtq2 » 0.15 q2 i e tourer 
(-u'v')»•« 

Inserting these quantities Into the turbulent kinetic erergy equation, ani Integrating 
across the boundary layer, a functional relation Is obtained for the scaling of the mix- 
.'.ng length, l?.    The empirical Inputs for k and the distribution of the dissipation 
lengti. ^e» are taken from th«s incompressible flow formulation: 

*E 
T ■ -rtanh ILC77T ' TJ 

o.fti /1 

where 0.09  and 
'E 

tanh 

When the seeling of the mixing length at the boundary layer outer edge is evaluated from 
the integral turbulent kinetic energy equation, the loc.il stete of turbulence is then 
known corresponding with the flow development upstream. 

Once the turbulent state Is provided, the two-dimensional boundary layer equations 
of motion (continuity, x-momentum and x-enthalpy) ars transformed in terms of a stream 
function. In the enthalpy equation, the eddy condU3tlvlty: 

   k-, 8H 

CpCf 
where the turbulent Prandtl number, Pr^i • f  » 
thermally insulating. t 

The body surface is assumed to be 

The momeiitum equation is first of all linearised and both it and the thermal energy 
(enthalpy) equations are written into a finite difference form. The calculation is an 
iterative one: the nomentum equation is integrated assuming a distribution of total 
enthalpy to produce a velocity field. This in turn is used to solve the enthalpy equation 
and the  new total enthalpy distribution replaces the assumed one. The calculation is 
repeated until a criterion of convergence is satisfied. Details of the computation ssheme 
are to be found in Reference 7. 

2.3 Entrainment Integral Method of Head/Green 

The next calculation procedure that we wish to include is a recent development by 
Green'1 of his earlier entrainment method10, which used as Its starting point Head's 
entrainment method for incompressible flow2». We remember that Head's physically realistic 
and simple formulation predicted the rate at w:iich malnstream flow was entrained into the 
turbulent boundary layer. Green extended the basic assumptions of Head's method: namely, 
th:?t in high Mach number flows. Just as In thors at low Mach number, the entrainment is 
related directly to the velocity defect in the outer region of the boundary layer, being 
adequately defined by a form parameter of the vloeity profile: 

H, 5 - «• 
PEUE 

It should be sc essed that this integral method does not employ a transformation. Green 
Indicates in Rererence 10, In fact, that the compressibility transfc^atlons that he ex- 
amined therein Implied that the dimensionless entrainment rate, Hj, was invariant with 
Mach number in constant pressure boundary layers (which is not demonstrated in most 
experiments), and leads to the underestimating of boundary layer thickness at high Mach 
numbers, 

The procedure for a solution is outlined in Reference 11. The boundary layer param- 
eters are obtained by solving the momentum integral and entrainment equations simulta- 
neously, with step-by-step progression downstream. Auxiliary relations for local skin 
friction coefficient, Cp, and a shape parameter, H, are utilised, the latter being 
related to the usual shape factor H by; 

H (F + 1) -  1 

H, in turn, is explicitly related to Hj (see Figure 25).  The skin friction coefficient 
in an arbitrary pressure gradient is obtained from the incompressible skin friction law of 
Nash and Thompson coupled with the correlation211 of Spaldlng/Chi for flat plate skin 
friction (=Cpo), to yield the following aquation: 

f-  +0.5 5.8 O.Jt 0.9 

Cp and CF0 occur at the aame momentum thickness Reynolds number. 

2. li    Momentum Ini-egral Method of Stratf ord/fleavers 

To retain a sense of perspective from the greater or lesser complexities of the 
aforementioned and subsequent methods (to be explained), the straightforward nomentum 
integral correlation of Stratford and Beavers12 first published in 1959, has also been 
Included.  These a'ithors demonstrated that many of the momentum integral methods prior to 
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1^60 coui.d be expresned in the Tom: 

•3 - f (M) % Rj"b  . 

Mh.^re T Is an equivalent flat plate length defined by: 

T - P"1  j    PdX , 

and P • [M/(l + 0.2 M2)]* 
The equivalent distance 7 Is such that the actual boundary layer growth '.long the physi- 
cal yetted length, X, upon attaining a Kn2l mainstream Mach number M. is the sane as 
that which Mould occur over the distance f at a constant Mach number, .1. If it is 
assumed that there is no variation cf boundary layer thickness, 6, with Mach number, an 
accepted formula for incompressible flow may be used tc derive momentxai thickness, 6, and 
displacement thickness, 6«, using algebraic expressions for the ratios 6/Ä and &*/& 
arranged to fit values givsn by a one-seventh power law, say. For malnstrean Reynolds 
numbers of the order of 107, Stratford and Beavers proposed that: 

6 - 0,23 X Rj-0-1"7 I 

6 - 0.022 (1 + 0.1 M2)-0-7 X Rj"0,1667 

6» - 0.028 (1 + 0.8 M2)C•',', JfR^-0'1667 

for a thermally insulated wall. 

The ratio of compressible to incompressible skin friction coefficient at the same 
Reynolds number based on X, for flow on a flat plate, is giver by: 

g^-- a + o.i M|)-0-7 

and Cp. has been taken herein from a corivAatlon by Winter, Smith and Qaudet25 for 
InooKpresslble flat plate flow: 

CF   - 0.0198 R7-0-1305 

i <L 
Stratford anrt Benvers indicate that the equations above fcr 4 and 6* would be applicable 
only in mild or zero pressure gradients, while that for 6 could be used generally. In 
this metho'l, It is clear that no account is taken of the discrete turbulence structure of 
the boundary layer in a direct or an indirect way, and it might be expect»«! that for non- 
equil.lbrlun; 'oounäary layer flows, the method would yield poor results (see McDonald20). 

2.5 Differential Mean Field Method of Cebecl/Smith 

In the method of Cebeoi and Smith6, the algebraic details of which are somewhat com- 
plex, the continuity, momentum and thermal energy (enthalpy) equations are set down for 
two-dimensional flow, and the approach followed in which the turbulent boundary layer is 
regarded as a composite layer consisting of inner and outer regions. The two slml}.arity 
laws, the law of the wall and velocity defect law of tha wake, are assumed to be applic- 
able.  The Reynolds shear stress term is eliminated through the use of the eddy viscosity 
concept. An eddy viscosity is introduced in the inner region that is based on Prandtl's 
mixing length theory, with a modification to mixing length near the wall to account for 
the laminar sub-layer in the form suggested by van Driest (as In Chan's method). To ac- 
count for compressibility, the density is again assumed variable, and a more sophisticated 
expression for the damping term In the van Driest law is used to account for the heat 
transfer in the sub-layer: 

einner pKy [,. .4^ $ ||*| 
where A « 26 vw x   ^^ v ^s the mean value of v obtained from averaging over an arbi- 

trary distance, the sub-layer, for instance.  The shear stress at the wall is thereby 
defined. 

In the outer layer, the eddy viscosity is taken to depend upon the local density and 
intermlttency, y(y/S),  the latter function having been derived for Incompressible flow as: 

Y = J [1 - erf 5 (fr - 0.78)] 

The eddy-viscosity formula for the outer region is then: 

et     = pK2uE,6
,,Y ,    where K2 ■ 0.0168 . 

Pouter     fc 

It is noteworthy that y  does depend upon the longitudinal pressure gradient in practical 
flows (see Fiedler and Head26, for example), although such an effect is not included here. 
The inner and outer regions are matched at the y-station where etouter " elrner*  As in 

Chan's method, the product -pv'H' in the enthalpy equation is again llimlnatea by utilis- 
ing an eddy-conductlvlty concept and is introduced into the enthalpy equation by the 
definition of turbulent Prandtl number: 
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It IK tai'en ar unity, although (as the authors state8) there !s evidence to suggest that 
in the outer part of th»- boundary layer the turbulent Frandtl number approaches 2. 

The boundary layer equations are then solved by first of all transforming (according 
to the Probstein/niiot approach for laminar boundary layers) the physical co-oriinate 
eye ten-, tc remove the singularity at x » o and to stretch the co-ordinate normal to the 
flow. The laminar-type Levy-Lees transformation is then utilised to re-scale the boundary 
layer thickness to sn order comparable tc that of downstream distance. The fluid proper- 
ties of specific h?9t at constant pressure, absolute viscosity, thermal conductivity of 
the fluid and enthalpy are, for convenience, expressed as power law functions of tfhe 
local static temperature in the flow. 

The method used to solve the boundary 3•ver equations replaces the streamwise deriv- 
atives in both the momentum and thermal ene' ^y equations by finite differences. The 
momentum equation is solved in a linearised form, and the equations incegrated normal to 
the wall utilising an implicit finite diffe- nee technique coupled with an increasing 
grid mesh. 

2.6 The Dissipation Integral Method of Zwarts 

Swarts' approach5»^ is based on a Crocco/Coles type transformation that reduces the 
compressible equations to a corresponding Incompressible form. This enables the use of a 
reliable incompressible calculation procedure in solving the problem and Zwarts chose his 
own method for this puT'pose27. 

A two-layer rnoael cf the flow is adopted in the incompressible plane. The law of 
the wall is represented by the convenient expression given by Spalding in Reference 28 
which includes both the laminar sub-layer, buffer layer, and the logarithmic region. The 
shear stress distribution in the inner layer is obtained by Integrating the x-momentam 
equation employing the Spalding law of the wall and the continuity equation. The result- 
ing specification of simultaneous velocity and shear stress profiles provides a solution 
of the inner layer. 

In the outer region the velocity defect is expressed by a fourth order polynomial in 
(y/6), and a constant eddy viscosity is assumed across the region: 

Pouter * äilTS? = kpuE6 
f 

an expre&slon that was derived for boundary layers in nominal equilitrium. The constants 
in the polyio^'al are determined from the boundary conditions at both the mainstream and 
at the Junction with the inner region. Across tne Junction, tho continuity of shear 
streps, velocity and velocity gradient is necessary to prevent terms in the momentum 
equation from becoming too large in the blending region. (The remaining free parameter is 
determined from the integral kinetic energy equation.) The shear stress in the outer- 
region follows from Et;outer, and the defect equation. Having now specified simultaneous 
velocity and shear stress profiles, the outer region may be considered solved - but as 
Zwarts points out, with less conviction than the solution for the inner region, because 
of the controversy concerning the application of constant eddy viscosity when the flows 
are not in equilibrium. The constant, k, is normally assumed to be 0.018 (after Clauser23), 
but Zwarts has demonstrated that most velocity profiles measured in rigs immersfd in 
supersonic wind tunnel flows experience the effects of high mainstream turbulence levels, 
which tend to fill out the velocity profiles. 

Zwarts advocated an increase in k to compensate for high freestream turbulence levels 
at higher working section Mach numbers and k was set to 0.027 for the calculations pre- 
sented herein. (The reader is referred to a further dipcussion on tunnel turbulence levels 
in Section 4.4, wMch implies ^hat this velue of k was perhaps too high.) 

Coles has demonstrated that a correspondence between the inoompretsible and compres- 
sible continuity and x-momentum equations in two-dimensional flow can be "stablished if 
the following transformation fuiiction^ are introduced (where a, n and C an  as yet unde- 
termined) to transform tne stream function and to stretch the x and y variables: 

0(30--bryr- 
n(x) » J^ 

C(x) - rx-i 

The transformation of the velooitits then fellows directly. These are substituted in the 
transport terms J:" ehe compressible momentum equation. Assuming the mainstream flow to be 
isentropic tne momentum equation can be Integrated. Its evaluation at the wall gives an 
expression for the transformed wall shear stress, which applies for rough or smooth walls 
and covers cases with mass transfer normal to !;he wall. The further assumption of a smooth 
wall In the integrated momentum equation yields one relation between the above three 
transformation functions. Following Crocco, the thermal energy equation is used to obtain 
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a second relation between the transformation functions, assuming a Prandtl number of 
unity and no heat transfer at the wall. 

The  third transformation, o, was deduced by Zwarts via Coles "Jaw of corresponding 
stations", once Incompressible and compressible skin friction laws wore supplied.  For 
the incompressible flow, Spaldlng's wall If« was assumed while the compressible skin 
friction coefficient fcrm was assessed frcm compressible flat plate data. The equation 
derived for a presupposes a constant pressure and adlabatic flow, and is onlj strictly 
true for this special case. 

Zwarts* inconqjressible method is now combined with the transformation procedure to 
give a calculation method for two-dimensional coa?>ressible turbulent boundary layers In 
aiMtrary pressure gradient, assuming the wall temperature to be equal to the mainstream 
stagnation temperature. 

Numerically, once an external Mow velocity distribution is prescribed the solution 
in^.olves the simultaneous Integration of four first order differential equations to de- 
termine the boundary layer parameters in the incompressible plane. The various compres- 
sible parameters of interest may suosequently be obtained using the appropriate trans- 
formations. 

In closing this section, it is perhaps worth recapitulating that the methods of 
Zwarts and Cebecl/Smlth presuppose near equilibrium conditions locally in the flow, rely- 
ing upon explicit couplings aetween velocity gradient and shear otress. The methods of 
Bradshav/Perrlss, Nash, and Chan, on the other hand, do not Ignore the effects of 
turbulence history. 

3.0 APPARATUS AND TEST 

3.1 Wind Tunnel and Model Mounting 

The tests were conducted in the NAE 5-ft x 5-ft blowdown wind tunnel at a nominal 
mainstream Mach number of 4, with the alrstream stagnation pressure and temperature at 
l69 psla and 770F. During a typical run of 12 seconds, the Reynolds number based on the 
test boundary-layer length of about 3 feet was close to 50 million in the Mach 1 flow. 

The model was mounted on the strut pitching mechanism of the wind tunnel as shown on 
Figure 1. The roll gear was removed from the strut to shorten the moment-arm and thereby 
reduce the bending moment on the strut pitching linkage caused by the high loads during 
wind tunnel starting. The pitch system was looked so that the model was fixed at angles 
of incidence and yaw of 0° ± 10* with wind-off. 

3.2 Model 

The sectional drawing of the rig en Figure 2 illustrates Its resemblance to an in- 
ternal compression supersonic intake, whose internal geometry is composed of the long 
straight circular duct of 9-lnch diameter and the translating, axisymmetrlc centre-body. 
In the cases of the zero pressure gradient and step-induced separated flows, the centre- 
body was held at its fully retracted position, and as such the weak shock wave disturbance 
from the 1° semi-cone angle opike tip Just intersected the test boundary layer at the exit 
of the duct. The 'step' consisted of a ring of thickness 0.15 inch and width 0.5 inch, 
whose external diameter provided a close tolerance fit inside the duct. When used, the 
ring was locked to the «iuct wall such that the forward face of the ring was at X - 10 in. 
downstream of the sharp leading edge of the cowl. For the adverse pressure gradient flow, 
the centre-body was translated forward 21 Inches (from the retracted position) in 0.5 sea., 
once the starting of the flow had been monitored and established by a pressure sensor in 
the duct. Activation of the centre-body was effected by a pressurised, hydraulic ram 
system (see Figure 1). 

To yield the prescribed pressure distribution for the adverse pressure gradient flow, 
a method of characteristics was employed to design the centre-body contour, coupled with 
an assessment of the boundary-layer growth9 on the internal due-, surface and along the 
cer.r-i-'cody  Itself.  At the -xtended (design) position of the contre-body,tbe mainstream 
f] . along the test wall consisted of three regions of roughly equal length: those of the 
a ..' zero, adverse (M ■ h-*2':,  and recovering pressure fields.  An overall area compression 
ratio of about 5 was produced. 

3■3 Measurements and Instrumentation 

Measurements along the test vail  wei  made of static pressure, Preston tube pitot 
pressure, and wall temperature.  Pitot pressure profiles In the viscous flow and the maln- 
a-,ream pitot pressure and stagnation temperature were also recorded. 

Static pressure orifices of O.nlo-ii.rh diameter were spaced at 0.5-lnch intervals 
along the test surface at sixty-four streamwise stations.  The static holes wtre grouped 
in sets of ten along diagonal rays (see Table 1) to avoid downstream disturbance of the 
boundary-layer flow at a nearby measuring station resulting from the local three-dimen- 
sional separations about the Preston tabes.  In addition, at two axial stations, X « 11.75 
Inches and 21.75 Inches, extra static holes were positioned around the duct circumference 
to check for tv/o-dimensionallty of the pressure field. 

Preston tubes of 0.0l6-lncl' external dlai/eter (see Figure 3) were adapted by means of 
brass collars to fit the static orifices, and .vt-re sealed at each static hole by a small 
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quantity cf epoxy cement.    Preston tube pressures were collected from all of the static 
orifice positions,  ten at a time. 

Harnesses  of pneumatic tubing emanating from the seventy static orifice positions 
along the model test surface1,  conducted the surface pressures to a transducer/wafer switch 
asseiribly -.nounted on the outside of the  cowl and protected from the tunnel mainstream by a 
cover.    The transducer wafer unit consisted of seven 12-port wafer valves  and seven minia- 
ture unbonded strain-gauge pressure transducers.    Two equlspaced ports on each wafer 
served as   'homes', such that three pneumatic zeroes could be obtained for each cycle of the 
wafer rotor.   This is a necessary, procedure to establish signal detum levels during a 
tunnel run in order to correct for transducer transient and case pressure eff.:ts. 

Boundary-layer traverses  for pit.t pressure at six stations along the wall were ac- 
complished with a flattened,  three-tub-' yawmeter or  'cobra*  probe as shown on Figure k. 
The two outer tubes are  chamfered at ^5° to form a yawmeter while the centre tube  (0.026- 
inch wide by 0.01?-lnch high) measures pitot pressure.    The probe is  capable of translating 
at a preselected rate to a maximum extension of 0,8 inch in ten seconds.  As it traverses 
through the flow,  a yaw-servo system aligns the probe with the local mean flow direction, 
to determine any three-dimensionality of the boundary  layer.    A 0.5-inch diameter flat- 
ended steel cylinder- into which the probe stem is effectively keyed provides  the mechanism 
for yawing the probe.     In so doing a small discontinuity is produced by the  flat  at the 
duct wall that night  cause a tiny local  flow disturbance. 

An unshielded iron-constantan thermocouple,  of lead diameter 0.002 inch,was mounted 
above the pitot orifice of the cobra probe head,  to r.easure the variation of stagnation 
temperature through the boundary layer.  The thermocouple was  calibrated for recovery 
factor in an auxiliary experiment,  but equipment problems unfortunately prevented the use 
of the thermocouple during the present tests. 

The determination of wall temperature was achieved in the pressure gradient region in 
the upstream portion of the rig (see Table 1)  and was  found to be within ±50F of the local 
adlabatic wall recovery  temperature.  The measurement was made by setting a very thin plate 
into the wall surface, to which the same sise of unshielded thermocouple bead (as men- 
tioned above) was attached to the bottom surface of the plate.  These thin wall plates 
attain equilibrium conditions quickly, but data were taken throughout  the tunnel run to 
verify that  a plateau in temperature was indeed achieved. 

An additional thermocouple was mounted externally on the rig to measure the stagna- 
tion temperature of the mainstream. This was essentially similar in desi^i to that used 
on the cobra probe and was Intended to serve as a reference  level against which to com- 
pare  the output of the  cobra probe thermocouple. 

All of the electrical analogues of the pressure and temperature  signals were relayed 
to the Honeywell-Brown chart recorders of the 5-ft  * 5-ft tunnel  data system and digitised 
for further prooessinp;.    Analogue chart results were also gathered simultaneously during 
a tunnel run. 

k.O     .HESULTS 

The essential results of the three experiments are shown on Tlgures 5 to 25 in terms 
of the distribution of Mach number,the velocity profiles and integral parameters, and the 
distributions of local skin friction coefficient along the duct. (Some of these results 
have been presented earlier39 in a brief summary of the tests, but the comments and results 
herein supersede those of Reference 39-) To recapitulate, we remember that the three ex- 
periments were those in a near zero pressure gradient (ZPG),ari adverse and recovering 
pressure field (APG), and the flow following a step-induced separation (RPG). The three 
abbreviations in brackets will be used as a shorthand notation in the following discussion. 

Jl.l Accuracy 

The rms surface finish on the internal wall of the duct and the centre-body was close 
to 10 pinches with surface waviness better thsn 0.0002 inch per inch of surface. The 
maximum eocpntricity between the centre-body j->ntre-line and the duct was ±0.005 inch 
measured across  a duct diameter. 

The p:tot pressures collected .. h the cobra probe were accurate to within ±0.04 psia. 
The positioning and backlash errors in the probe potentiometers and gearbox were measured 
on a comparator, resulting in translation and yaw accuracies within ±0.0005 inch and 
±0.2° respectively. 

The flattened three-tube geometry of the cobra head probe results in a displacement 
correction that is slightly larger than that normally taken for circular pitot tubes30 in 
Incompressible flow. Young and Maas31, In some experiments with flattened tubes, made a 
tentative suggestion of an outward displacement correction of 0.2^ dp towards the region 
of higher velocity, where dc is the width of the probe face in the direction of traverse. 
This value has been accepted herein, for wall distances y >2dcf as Marson and Lilley

32 

provide some evidence that displacement errors are not affected significantly by compres- 
sibility. For distances closer to the wall than y= 2dc, the displacement error decreases 
co^tlnuousl:■ as the wall Is approached, and may be expressed conveniently in terms of a 
function of dc/y and uTdc/v, where the latter quantity when based en wall conditions 
varied between 10C and 500 in the present tests. An analogous repr: .lentation of Macmil- 
ian's total displacement effect for y/d^ ^2 was derived for the cobra probe, to include 
the above range of uTy/d(; as 
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^- - 0.21 - 0.01 [y - O.SJ 1.11 
No correcclons for the effect of turbulence on the pltot readings have been employed. 

Errors due to larjce static pressure holes (I.e. relative to the boundary-layer dis- 
placement thickness, 6')  can be Important In the reduction of boundary-layer profile 
measurements and when using surface Preston tubes to determine surface shear stress. 
Ralnblrd33 found that In subsonic and supersonic zero pressure gradient flows at high 
Reynolds numbers, large static orifices (where ds/ä^ " 10) gave pressure errors, AP, 
typically twenty times the value of the undisturbed surface shear stress.  In the present 
experiments, the parameter ds/^* was always si (except in the laminar boundary-layer 
region close to the duct leading edge), so that the influence of &$/$*  was not significant 
in the regions along the duct where there was turbulent flow. In fact the correlation of 
Franklin and Wallace31* for deep hcles has been adopted, but extended to compressible flow 
by inserting the local wall conditions of density and temperature. The following curve 
fit has been chosen to represent the correlation, namely: 

4£ - 3.71 h. - exp[-0.0021 (~^ - 95]jj 1.1.2 

except when uTWds/vw < 200, then, 

^ " SÖÖ [—57] + C-5 l-^  2ÖÖJ k'1-3 

The functional relationship in the above expression follows from the law of the wall and 
the assumption that the static pressure hole error will be a function of the velocity u 
at a distance y from the wall, which Is dependent on ds33. Hence, provided a law of the 
wall region exists in the adverse pressure gradient flow, we may argue that the hole 
error correction should be applicable there, as in the zero pressure gradient flow case, 
noting that local conditions at the wall should be used in the hole error formulae. 

The inaccuracies in measurement and repeatability indicate that the maximum errors 
in local Mach number and skin friction determination are 4M ■ ±0.02 and ACp ■ ±0.0001. 

The tunnel stagnation pressure is controlled typically to within ±0.1J of the mean 
stagnation pressure level during any given run, which is to within ±0.2 psl in the 
present tests. 

1.2 Mach Number Distributions Along the Duct 

Figure 5 displays the Mach number distributions along the duct for the three test 
flows determined as a function of corrected wall static pressure (for hole error) to 
stream stagnation pressure. Isentroplc flow through the duct was assumed in the zero 
pressure gradient (ZPG) and adverse pressure gradient (APG) casrs, but a calculation was 
made for the loss in stagnation pressure through the oblique shock waves existing upstream 
and downstrem of the ring, equal to about 30 percent of the  Ma"'- 't  mainstream stagnation 
pressure. The reflections of these shock waves are incident u^.n the test boundary layer 
In the RPO case near X«29 Inches where a noticeable sharp drop in Mach number occurs. 

With the centre-body extended for the APG flow, the adverse pressure gradient com- 
mences virtually at its design position after 11.75 inches of near zero pressure gradient 
flow. The centre-body pressure field then compresses the mainstream from Mach 1 to Mach 2 
along the following 10 Inches of duct, according to an initial cosine and subsequent expo- 
nen.lal function, that when plotted appears almost linear. A slightly favourable pressure 
gradient then materialises along the remainder of the duct. 

1.3 Tests for Two-Dimensie;nality of the Boundary Layers 

It was emphasised In Section 1 that one of the alms of the experiment was to produce 
a compressible turbulent boundary layer free fry.?,  end-wall constraints. 

Figures 6a and 6b .show some sample circumferential variations in Mach number at X ■ 
11.75 and 21.75 Inches downstream of the leading edge. Reference to Figure 5 indicates 
that the former station is upstream of the applied pressure field in the APG case,whereas 
the latter is In the Mach 2 region.  Examples from the three test flows are shown, plotted 
relative to the Mach number at the circumferential angle, $■ 50°. For many of" the runs, 
we note that the discrepancies around the periphery are contained within the maximum 
error band in Mach number measurement,AM «±0.02, although with the centre-body extended, 
there is a consistent trend in the sign of the variation at each station. We note further 
that with the ■■sentre-body retracted, the ZPG and RPG flows yield no real Improvement in 
circumferential Mach number distribution, the Imi 11cation being that the centre-body is 
situated concentrically within the duct. 

The cobra head yawmeter probe provided a second means of determining whether any 
^ross-flow was present in the test boundary layers.  Figures 7a and 7h show some typical 
yaw angle outputs as a function of distance from the duct wall, at the traverse stations 
corresponding to X-=16 62 and 31.62 inches - refer to Figure 5 again for these positions 
relative to the pressure "ise. The Initial angular setting on the surface is denoted by 
(|)«0o, but this does not üö^'ssarlly represent an absolute zero angle of yaw. It is more 
revealing to comparp the «-f.tai jaw movement in the boundary layer relative to the main- 
stream setting at the extremitleb of the profiles.  It will be seen that the skew angle 

• ■*'^*& :-rfaSa^^.^^s^ 
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registered by the probe for the zero pressure gradient tlow Is within the 'deadband' 
error of ±0.2° for the Instrument. Both the adverse pressure gradient and step-Induced 
pressure gradient flows Indicate a skewing In the Inner layer- of 1° to 1.5° relative to 
the mainstream direction. Such a small yaw Is deemeO acceptable, especially as it does 
not increase significantly between X ■ 16.62 and 31.62 Inches. 

A third method of checking for two-dlmenslonallty Is by means of oil dot flow 
visualisation, some examples of which are Illustrated on Figure 8. The strips of thin 
paper a'lhesl/e tape were placed In the duct along the axial direction beginning at the 
cowl leading edge, and oil dots applied before a tunnel run. Because of the low energy 
flow at the bise of the bounaary layer, the limiting streamlines are very receptive to 
changing direction as a result of transverse pressure gradients. A plot of the shear 
stress trajectories, therefore, is a sensitive indicator of three-dimensionality In the 
inner regions of thp viscous flow. The flow visualisation along more than half of the 
d -^t wall for the three test cases demonstrates no particular convergence or divergence; 
non-parallelism of the oil streaks with the tape edges Is due to the tape being slightly 
offset from a longitudinal surface generator. Additional tapeSj not shown, that adhered 
to the downstream region of the duct, demonstrated the same lack of skew. 

From this examination, we feel that three-dlmenslonalltles are small enough around 
the duct at a given axial station, to claim that nominal two-dimensional test conditions 
have been achieved, 

b.li    Transition Location 

As the Mach number of a supersonic mainstream increases. It becomes more and more 
difficult in wind tunnels to promote transition of a compressible laaiinar boundary layer 
by artificial means. This Is due to an Increasing stability of the laminar flow with 
Increase of Mach number, that is accentuated with cooling of the wall. A three-dimensional 
roughness element, to cause transition at a length Reynolds number of about one million 
at Mach k  (which would be close to the leading-edge of the cowl in the present experiment) 
would require a height about equal to the local boundary layer thickness. Now, the three- 
dimensional protuberance-type separations produced by each roughness element give rise to 
longitudinal vortices, whose effect would be unknown on enhancing the diffusion charac- 
teristics of the turbulent boundary layer. In addition, undesirable distortion of the 
mean boundary layer profiles would result. For these reasons. It was preferred to allow 
transition to develop naturally, when calculations through natural transition could then 
be attempted using the method of Cebecl and Smith8. 

The transition regions are indicated qualitatively by the reduction in oil streak 
lengths near the cowl leading-edge on Figure 8, and quantitatively on Figure 9, by the 
Preston tube measurements. The rreston tube correlations that determine skin friction 
coefficient (and which are listed in Section k.5)  cannot be accepted as accurate in lami- 
nar flow, of course, but the surface Impact tube is, notwithstanding, a useful Instrument 
to indicate the mean boundaries of the transition region. From these measurements, the 
transition region appears to commence at X • 2 Inches at the trough of the Cj? distributions 
(where R^ is 2.8 million); and to finish where the maximum in the Cp curve occurs, at 
X=6.5 inches (where Rx = 9 million). The oil dot flow visualisation supports this diag- 
nosis, although there Is some evidence of a changing transition position around the duct. 

At the hlgii unit Reynolds number of the present tests of about l.k  million per inch, 
an extrapolation of the results of Hastings and Sawyer35 collected on a flat plate model 
at Mach iJ, Indicates consistency with the Preston tube results quoted above. Hastings and 
Sawyer also made visible the transition regions by sublimation of azobenzene coatings, and 
concluded that the surface pitots indicated a broader transition region than did the sub- 
limation technique, although the sublimation patterns were certainly dependent on the time 
taken for their establishment. 

The length of the transition region is surprising, perhaps, for it implies a rela- 
tively low mainstream turbulence level at the tunnel centre-line. In an Intermittent blow- 
down facility not previously noted for its low turbulence content. The pressure fluctua- 
tions measured with flush-mounted microphones in the working-section wall at Mach 'l.36have 
been shown independent of those measured at the wall in the settling chamber. This result 
is attributable to the closure of the tunnel nozzle for Mach k  operation, the small throat 
size restricting the propagation downstream of most of the control valve noise. The major 
source of the sound field at the tunnel centre-line must therefore be the turbulent boun- 
dary layers on the tunnel walls. However, since the fluctuating pressure field external 
to the boundary layer Is swept downstream with a velocity of the same order as the main- 
stream37 the pressure fluctuations would travel along the local directions of the Mach 
waves. The implication here Is that the wall boundary layers not far downstreom of the 
tunnel throat are the only parts of the tunnel viscous flow that can radiate acousti J1 
disturbances to the tunnel centre-line in the vicinity of the rig (note that the duct it- 
self provides an effective shield for the test flow). The fluctuating pressure level 
calculated using Reference 37 would imply a turbulence level (velocity fluctuations) of 
less than 0.1 percent at the high unit Reynolds numbers of the present experiments, all of 
which would appear to be consistent with the measurements of Pate and Sohueler38. 

't.5 Local Skin Friction Measurements Compared with Calculations 

The experimental skin friction data obtained from the correlations described in 
Appendix 1 are listed in Tables 2, 3, and 1, and shown on Figure 9a, for the respective 
flow cases of ZPG, APG and RPG. For these three flows, the Tables and the Figure indicate 
that the values of Cp given by the Preston tube Hopkins/Keener T'-method and the Sigalla 
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T'-aiethod are nominally within ±5 percent cf each other. For the most part, the Fenter/ 
Stalmach corrslation yields consistently lower values, while the Hopkins/Keener Ty-method 
provides higher values. The Sommer/Short T'-Rg correlation \s  close to the 1" Preston 
tube correlations in the ZPG and RPG flows, and shows a general scattering of values about 
these Preston tube correlations In the A?G case. By comparison, Wilson's HQ method pro- 
duces the largest Cp values of all the correlatirns considered herein. 

From these cursory assessments, the bias has been to consider the Hopkins/Keener T'- 
method and the Sonuner/Short T'-Rg correlation as respective representatives of tha  Preston 
tube and velocity profile data. These are plotted on Figure 9b and compared against the 
various calculations described in Section 's. 

We note first of all that most of the Cp calculations ia  the ZPG flow are virtually 
Indistinguishable frctr. tht; measurements. (A 10 percent spread does appear because the 
computations with the methods of Zwarts and Cebecl/Smlth are somewhat abov--> the other- 
calculations due to higher Cp starting values.) The bottom igraph on Figure 9b illustrates 
that the reattached boundary layer downstream of the ring generated separation exhibits a 
rapid recovery to a near zero pressure gradient development. All of the calculations ex- 
cept Bradshaw's and Nash's indicate Cp values that are higher than the measurements be- 
cause of the difficulty in interpreting appropriate Cp starting conditions. In contra- 
distinction, the calculations in the APG flow do not agree in trend with the experiment 
(the one exception being the Stratford/Beavers' method). In the upstream region of the 
pressure rise, the experiment indicates an increase in Cp whereas the calculations show a 
decrease. Further downstream, the experimental values of Cp overshoot the values that one 
would observe in a constant pressure flow (Zwarts found the same phenomenon9) while the 
calculated skin friction coefficients approach the constant pressure boundary layer values 
from below. In addition, the experiment shows an unexpected hump in  the region of pres- 
sure rise preceding the entry to the flow relaxation at Mach 2. The hump, in fact,follows 
the trend of the Preston tube pressure coefficient, Cpp, rather than that of the Preston 
tuoe pressure Itself (see Figure 10), as a result of a sudden local increase' in the static 
pressure gradient. The bumpy character of the calculations employing the Xwarts and 
Cebecl/Smlth methods is due to the utilisation of a different smoothing routine on the 
experimental static pressure data. 

In view of the discrepancy between the calculations and the experimental APG results, 
which do we suspect as providing wrong information? 

In the APG experiment, there is encouraging consistency between the values of Cp 
calculated from the Preston tubes and from the velocity profiles. To support ^he argument 
that the Preston tube correlation may be applied, we refer to the limitations on Preston 
tube calibrations given by Patel',,, and Brown and Joubert148. Patel showed that In incom- 
pressible flow, a pressure-gradient parameter that measured the strength of the streamwlse 
pressure gradient as it affected the flow in the law of the wall region was ov/ut§, where 
o« p-Mdp/dx) „ Through the pressure rise region of the present experiment, this parametex", 
using either wall (or intermediate temperature) values for determining v, p and uty. Is 
no larger than about 0.003, In the same region where uTWD/v incroases to about 900. This 
value of ov/uT^ is clearly less than the value of 0.01 ascribed by Patel to yield a maxi- 
mum error of 3 percent on Preston tube correlations in adverse pressure gradient. Corre- 
spondingly, Patel stipulated that uTwD/v should te «200, however, and this value is 
exceeded. Nevertheless, Brown and Joubert1*8, again In incompressible flow, considered 
that in severe adverse pressure gradients, the parameter aD/utw was a better criterion on 
which to base the failure of Preston tube correlations, than was av/puxy. For the APG 
case, OD/UTW IS no greater than 1.2, whereas Brown and Joubert stipulate the first signs 
of failure of the correlations will only occur when oD/utw ^ I.'11. The errors in measured 
Cp should be less than one percent, according to these criteria. For the existence of a 
logarithmic region in the boundary layer (which is seen on Figure ll»). Brown and Joubert 
also suggested that av/utu < 0.05, which it certainly is in the APG case, being around 
0.003. Contrary to Patel's arbitrary limits on Reynolds number (uTwD/v), the extrapolation 
of the area beneath the one percent error line on Brown and Joubert's plot of av/uTfl 
versus uTWD/v, would allow an  almost infinite UTVID/V corresponding to av/u-tfj ■ 0.003. 
Finally, the specification of the O.Ol67-lnch diameter of the Preston tube was chosen to 
be within the permissible maximum and mlnlr-jn limits suggested by Hopkins and Keener1*0 

(and consistent with an adequate response time when coupled to the pneumatic measuring 
system). McDonald's work1*9 would additionally support the views expressed already that 
the pressure gradient is insufficiently adverse to affect seriously the character of the 
laminar sub-layer from its flat plate form, so that again, we would interpret that there 
is no violation of the universal law of the wall. 

So far, then, the conclusion of these assessments is that the Preston tube correla- 
tions are valid in the APG flow case. Bradshaw1* suggests that if the Preston tube corre- 
lations are believed, the large overshoot in skin friction witnessed in the relaxation 
from the adverse pressure gradient could occur "If the lifetime of the turbulent eddies 
were far longer In supersonic flow than in low-speed flow, but that none of our current 
physical ideas about turbulence support this". Having assessed the effects of streamwlse 
pressure gradient thoroughly, the remaining test is to query the effect of pressure 
gradient normal to the streamwlse flew direction. 

McDonald20 discussed that if the mainstream flow is of the simple-wave type, then to 
the usual boundary layer approximation 

(Hi. - - ^r ME 
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That Is, in any aupereonie flow with a  large strtamwiee pressure gradient,   (dp/dx)g, the 
pressure gradient normal to the wall will also he  large.     If a linear distribution ef 
static pressure with distance from the wall Is assumed to be given by equatlor. 1.5.1 for        i 
the present APG flow, the static pressure at the boundary layer edge during the stream- 
wise pressure rise becoises less than that at the wall. The recalculation of the skin 
friction coefficient of the Sommer/Short Rg-T' method results in a reduction from 0.00128 
to 0,00115 at the second profile static.i, and from 0.00149 to 0.00146 at tha  third station. 
Now the Preston tube correlations are based on mainstream values derived with reference 
to local wall static pressure that is assumed constant across the boundary layer. The 
effect of the normal pressure gradient then, is to Increase the Mach number at the bound- 
ary layer edge; reference to equation Al.10 will indicate that Cp will be thereby reduced. 
Thus we may contend that  the Preeton  tube  correlations are  valid for adverse pressure 
gradient flows of the  type  discussed herein,  provided the  true mainstream value? are used. 
To accomplish this, the local boundary layer thickness must be known along the whole 
wetted length of the surface. 

We now attempt to Justify the trends of the calculation procedures as being correct. 
Why, if no normal pressure gradient Is entered into the calculations do the computed Cp 
values compare (qualitatively, at least) with the measured Cp values that have taken ac- 
count of an assumed normal pressure gradient? When reference is made to the logarithmic 
velocity profiles on Figure 14 for the APG flow (see traverse T2 at X - 16.62-lncheB), the 
profile determined when the normal pressure gradient is assumed, is little different from 
the profile plotted, which was derived assuming constant static pressure across the 
boundary layer. This result Is not surprising because the only relevant Mach number in 
the inner layer law is that based on u-rw and speed of sound at the wall. The mainstream        j 
Mach number does not appear. Thus In the APG flow, the law of the wall region Is not > 
altered significantly in terms of mean velocity as a result of the normal pressure 
gradient and hence the skin friction calculated from assuming the properties of the Inner       I 
region will furnish the correct trends in the Cp distributions.  (The skin friction cal-        j 
culatlon in the Stratford/Beavers' method follows the trend of the Preston tube results j 
on Figure 9 - with no normal pressure gradient - because the correlation contains a Mach        j 
number function based on Mg.) | 

4.6 Mach Number and Velocity Profiles j 
i 

The Mach number profiles were calculated from the measured cobra probe pltot pres- j 
sures and the wall static pressures (corrected for hole error as outlined In Section 4.1) 
using the Rayleigh pltot relationship. As well as assuming the constancy of static pres- [ 
sure across the boundary layer, the Mach number distributions in the APG flow ease were 
also computed by utilising the linear reduction in static pressure across the boundary j 
layer that was implied by equation 4.5.1. The profiles at stations T2 and T3 In the 
pressure rise  are the most affected by normal pressure gradient. ' 

References 15 and 50 provide evidence that a parabolic distribution of static 
temperature across the boundary layer: 

T   T^ 

^  TE ITF.    1 kJ 
4.6,1 

agrees with the profiles for measured temperatures when the recovery factor is taken as 
0.89 (that Is, for zero heat flow). These quantities were used to reduce the present data 
Into density and velocity profiles, assuming the same respective static pressure condi- 
tions listed above. The profile data for the three boundary layer test cases are listed 
in Tables 5 to 7. 

Figures 11 and 12 present the experimental normalised Mach number and velocity pro- 
files at each traverse rtatlon for all of the three boundary layer experiments. The 
'roller-coaster' initial profiles measured In the ZPG and APG flows (both in nominal con- 
stant pressure regions; display some effects of the long transition length. The distor- 
tion of the initial profile in the RPG flow Is a result of its proximity to the system of 
compression waves near the line of flow re-attachment, downstream of'the ring. Severe 
static pressure gradients 'lormal to the wall would be expected there, so that the RPG 
Initial profile can only be nonsidered qualitative at best. The distortions introduced 
Into the boundary layer mean flow as it negotiates the abrupt changes caused by the ring 
shock/expansion wave cystem might be anticipated to decay slowly with distance downstream. 
Instead, the rapid destruction of the initial profile unevenness in the RPG (and ZPG) 
cases is attributable to the higher diffusion rate of the turbulent kinetic energy at Mach 
numbers near 4, than at the lower Mach numbers existlnc in the APG flow.  In the latter 
case, the character of the initial profile is carried downstream in the flow, along the 
remainder of the boundary layer wettec* length.  Such a phenomenon is consistent with a 
falling non-dimensional entralnment rate- as the Mach number reduces through the region of 
the pressure rise. 

Semi-logarithmic plots of the velocity profiles are drawn on Figures 13, 14 and 15 
and compared against Spalding's single formula for the law of the wall28.  If the linear 
range is taken to be 100< yu-tw/vw< 300, the profiles in the equilibrium ZPG and non- 
equilibrium RPG cases indicate reasonable agreement in slope with the wall law, their 
varying discrepancy in vertical displacement and slope from the wall law being caused 
perhaps by inaccuracies in the determination of uTW.  In the APG flow, the linearity 
boundaries on yuxw/^w roust be relaxed, for the pressure rise moves the profiles towards 
higher values of yu-tw/v^.  (In all of the above, the shearing stress velocity Is based on 
the density at an adlabatlc wall.) The third and fourth traverses of the APG flow demon- 
strate an Irreclaimable lack of similarity in the inner regions, but the large changes In 
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the slopes of the linear regions cannot be attributed to the normal pressure gradient. 
It will be remembered that In Section k.5, although the normal pressure gradient was seen 
to affect the skin friction coefficient, u-,w itself was not changed, because ME is not 
featured in the law of thfe well. A further point to note is that the traverses at the 
entry to the relaxation region (T'l and T5) in the APG flow case, show that the flow in 
proceeding towards equilibriuii overshoots the equilibrium gradient of the wall law to then 
recover subsequently by the time the fifth traverse station Is reached. 

Further insight into the experimental results of the three teat cases is provided by 
the velocity defect profiles on Figure 16. For purposes of reference, the correlation of 
Winter and Gaudet35 is plotted for constant pressure boundary layers at Mach 'I. As before, 
uty is based on the density at an adiabatlc wall and (for the defect profiles) 5 is taken 
at the distance from the wall where u/uj? » 0.995. An inspection of these profiles on 
Figure 16 suggests that wake similarity is not achieved in either the ZPG or APG flows 
until the boundary layer has travelled 20-lnches or more downstream. The lack of simi- 
larity of the upstream profiles is credited to the history effects of the long transition 
length. What is further revealing is the large velocity defect of the RPO flow profiles, 
recovery towards a constant pressura conditio» occurring only at the fifth traverse 
station. (The sixth station has been affected by the ring shock wave system reflecting 
from the centre-line that causes » significant shock/bounaar^ l?yer Interaction.) 

Figures 17 and 18 enable a comparison to be made between the experim<.rtal velocity 
profiles (plotted with respect to-the physical coordinate, y, normal to the Surface) and 
the turbulent energy calculation methods of Bradshaw/Perriss, Nash, and Chan; as well as 
the methods of Zwarts and Cebecl/Smith. The turbulent energy methods were initialised 
Just downstream of the leading-edge, with respectively Bradshaw's Mach k  shear stress and 
velocity profiles (in the methods of Bradshaw/Ferrlss and Nash), and in Chan's case, the 
shear stress profile was generated from Bradshaw's same velocity profile. The dummy start 
at the X» 1.5-inch station (which is located in the transition region of the physical flow 
field, of course) provided a long marching region of zero pressure gradient flow at Mach 1, 
before the pressure rise was applied in the APG case, to dampen any mismatching in input 
conditions. Bradshaw and Fenriss51 indicate that ÜO  boundary-layer thicknesses downstream 
of the start should be more than adequate, for most purposes of calculation, to remove the 
effects of initial perturbations, and in the present comparisons, approximately 50 
);/undary-layer ihlcknesses were used. 

The proximity of the first traverse station to the backward face of the ring in the 
RPG test case, resulted in the necessity of starting the calculation downstream of the 
step, at or near the first traverse station, Tl. A number of plausible shear stress pro- 
files, that included a maximum value of T away from the wall, was tried in the Bradshaw/ 
Ferrlss calculation, but all except zero pressure gradient type profiles (when input with 
the first measured velocity profile downstream of the ring) produced instabilities in the 
downstream integrations. Hence the starting conditions for the ring case were not physi- 
cally realistic in the Bradshaw/Ferrlss calculation; on the other hand, a realistic shear 
stress profile with tmSLX*1.5 rv vas found  to work in Nash's method. The outcome of the two 
calculations, however, are  little different. 

The starting conditions for these and the remaining methods are listed on Table 8. 

Figure 17 displays gratifying agreement between the calculated and experimental ZPG 
profiles, the turbulent energy and Cebecl/Smith methods indicating slightly fuller pro- 
files near the wall, while that of Zwarts is slightly less full than the experiment. The 
agreement between the Preston tube and corresponding cobra probe velocities is also satis- 
factory. The APG flow comparison is provided on Figure 18. Here we see that the inner 
regions of the experimental profiles are not predicted adequately by any of the methods, 
the profiles in the regions of pressure rise and recovery revealing a curious overshoot as 
though tending to behave in an accelerating flow. The differences between the APG vel- 
ocity profiles calculated by the turbulent kinetic energy methods of Bradshaw and Chan on 
the one hand, and Nash on the other, are also difficult to explain. In Nash's method, the 
dissipation length and the diffusion function differ by about 10 percent from the values 
given by Bradshaw and used by Chan. The other essential difference is in the mathematical 
treatments, and streamwise interpolation procedures, although Nash has done extensive 
tests (private communication) to prove his numerical accuracy.  (Note that the relatively 
small effect of the normal pressure gradient on the velocity profile shape is not included 
on these experimental profiles plotted on Figure 18, but reference to Figure 12 will indi- 
cate that the remarks above will still apply.) Because of the difficulty in the RPG case 
of providing the correct shear stress input, the profiles are predicted in trend as shown 
on Figure 19, but do not demonstrate quantitative agreement. 

^.7 Integral Parameters 

For incompressible turbulent boundary layers in arbitrary pressure gradients, the 
Stanford Proceedings dsmonstrated that most calculation methods when compared with experi- 
ment will determine the momentum thickness adequately, the displacement thickness satis- 
factorily, and the skin friction coefficient to (very often) only fair or poor accuracy. 
Clearly, the crucial test for the success or failure of a computation methua in compres- 
sible flow will still be the accurate prediction of the most sensitive and important 
parameter, Cp. As ;ve have noted In Section 4,5, in the APG flow, the calculations all 
agree qualitatively with one another, but that their discrepancy with experiment was 
attributed to the efrects of static pressure gradient normal to the wall. 

Now although the velocity profiles in the disturbed boundary layer flows indicate 
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differences between experiment and calculation (especially In ehe APG and RPG cases) the 
Integral parameters appear to yield closer agreement. 

The integral properties were calculated from the velocity and density profilee (see 
Tables 5 to 7), accounting for the radius of the duct, a procedure con^.-ibutlng to ths 
balancing of the momentum Integral equation (of which more later). The equations defining 
displacement thickness, «•, momentum thickness, 6, and so „n, are as for tKo-dlmensional 
flow with the factor (1 - y/R) Inserted into the integrands. The effect of (1 - y/H) 
upon the integral parameters is typically about 1 percent. 

The Integral parameters, 6*,  6 and shape factor, H, are plotted on Figures .^O, 21 
and 22 for the ZPG, APG and RP6 test cases. With increasing X, typical flat plate varia- 
tions of {• and 6 increasing, and H slightly decreasing, are seen for the ZPG flow 
(Figure 20) and the same feature is discerned on Figure 22 for the RPG flow. In '■'le ZPG 
flow, all calculation procedures provide good prediction, with the unsophlstloated 
Stratford/Beavers' method yielding answers as valid as the more physically sound methods 
of Bradshaw/Perriss and Green, for example. In the RPG case, the Stratford/Beavers' cal- 
culation again provides a good fit with the experimental results (Figure 22). The starting 
conditions for the RPG calculations are not all identical. It will be noted that re- 
adjustment of the Initial point would collapse the curves onto a single line. 

Figure 21 shows also that all calculation methods are useful in predicting Ä^ 8 and 
H for the APG flow. No appreciable Improvement with increase of method complexity appears 
obvious, so that one might conclude that the various models of the turbulence structure 
(where used) are all satisfactory - certainly, for the three test cases consilered here. 
On the other hand, we still observe good results with methods which do not coisidar the 
turbulence structure. Furthermore, the experimental points when compared with Green's 
functional relationship15 cf the transformed shape parameter, if, versus the entrairunent 
shape pararae£er4 Hj, (derived from flows relaxing downstream of shock/boundary laye? 
interactions) are seen to Indicate on Figure 25, a higher non-dimsnsional entralnment rate 
for a given H, Such discrepancies might be caused in part by the sensitivity of Hj and H 
to the values of the experimental points near the wall. Inaccuracies in determining the 
cobra probe Mach number through the effect of the higher turbulence levels near the wall 
on the cobra pitot tube readings are unknown in compressible flow. In addition, the dis- 
placement effect induced by the relatively large lateral di.iiension of the cobra profcr head 
with respect to its heignt, &s a result of the local three-diaenslonal protuberance type 
separation at the wall - see Referenres 52 and 53 - might perhaps not be well described 
by equations k.1.2  and 4.1.3. Notwithstanding, if these disf.r'parciea In Hj and H between 
experiment and calculation were true, then it would not appear to hamter too seriously the 
prediction with Green's method. 

As we have seen on Figure 21 for the A?G case, there is a »owlnatlng influence of the 
pressure gradient on t^s  compressible shape factor H, where the blgnifloant decrease 
through the pressure rise is well predicted by all of the seven calculation methods. The 
rapid return of H towards a flat plate constant pressure condition, in the Mach 2 relaxa- 
tion region (the Implication of which m-  note is also on the velocity defect profiles on 
Figure 16) is because the pressure gradient was apparently not fteep enough fcr a signifi- 
cant loss of local equilibrium to occur. Although the Bradshaw/Ferriss calculation 
Imposes a constraint on the development of the turbulence, concomitant with the assumptions 
in the method, if the calculated shear stress profiles are accepted as representative of 
the experimental flow, they disclose that a maxlnum is achieved in the profile equal to 
about 2.5 Ty at the traverse T3. This decays rapidly to almost zero pressur*» gradient 
form In the 6-inches between T3 and T5. Furthermore, the plotting of the incompressible 
velocity shape factor: 

H 12 r (> - itwr k (> - kh 4.7.1 

on Figure 24, confirms that the pressure gradient is relatively weak, for Hi? in incom- 
pressible flow and in strong adverse pressure gradients reaches values of 2.4 or more. 
Consistent with this idea are the 'full' or convex rather than 'hollow' velocity profiles 
that are obtained throughout the test flow. Nevertheless, the APG case may be viewed as 
a good test for compress.1 blllty (the density increasing by a factor of 8 through the 
pressure rise) without ehe imposition of strong shock waves. 

Winter50 noted that the incompressible or velocity shape parameter. Hi2, exerted a 
powerful influence on the skin friction coefficient in measurements on his waisted body 
model at Mach numbers up to 2,8. If this is so at Mach 4, a small change in H^ in going 
from the ZPG to the APG flow case produces a large and significant change in skin friction 
(Figure 9). 

Finally, Figure 23 shows the experimental distribution of momentum thickness Reynolds 
number along the test surface, based on local external flow quantities. We should note 
the decrease In Rg at the last traverse station of the APG flow. Here the boundary layers 
from the duct wall and the centre-body had coalesced, thereby restraining the growth of 
the test boundary layer. The corresponding decrease In 6* and 6 is indicated on Figure 21. 

4.8 Closure of the Integrated Momentum Equation 

McDonald noted that in some of the poorly predicted boundary layers examined in his 
paper In Refex-ence 20, the twc-'ilinenslonal von Karman momentum equation was sadly out-of- 
balance. He felt that the out-o."-balance was much larger than that which could be blamed 
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on three-dimensional effects and pondered whether the usual neglect of th= normal Reynolds 
stress terms In the von Karman equation was the contributing cause. The further possibil- 
ity remained that normal pressure gradient effects were significant, W« have noted | 
already the large changes in skin friction coefficient resulting from the Inclusion of a        | 
static pressure gradient across the boundary layer in the region of the pressure rise in        | 
the APG flow. We should like to consider this In further detail in relation to the 
closure of the momentum integral equation.                                             | 

If only the normal Reynolds stress terms are neglected, the momentum equation can be 
written in the form (see Reference 20): 

^'^h[v-M-J dX U
E 

dX        P
E    ,. c  -   o 

When the static pressure is constant across the boundary layer, P j* P(y), and the equation 
reduces to its well known form. At the boundary layer edge, 1 

d?F      du- ! 

d)r-pEuEd3r 1,•8•2 

Utilising this in the momentum equation ft.8.1, we obtain 

h (PE'455 - «• ^+ ax [PE6 - j"6^] " T n-8-3 

If we now choose to integrate between the limits of X = xsTART an(i X' we obtain: 

^EuEe)X " -V46>X,T - J^  
4,dP ^ [PE6 " fa]]       '  j!  0'5 PEUECPdX     '♦•8^ ST  VXST      L    J0  JXST  ^T 

In attempting to balance the momentum equation, the integral form is to be preferred over 
the differential form as the differentiation of experimental values leads to serious 
errors. We may set XST at the first traverse station, i.e. Xsx * 11.62-inches, and assess 
the balance with continuing progression dovmstream, from traverse station to traverse 
station. The calculated effects of the normal pressure gradient on e and d* as well as on 
Cp were  included in the APG case. The alternative is to calculate a momentum thickness bv 
inserting the remaining terms from the experimental measurements and to compare this cal- 
culated result with the measured. This was not done because 6 is generally Insensitive to 
large changes in other parameters. 

It was found that for the ZPG flow, the momentum integral equation indicated reason- 
able balance provided the skin friction coeff3.slent of Wilson was utilised, although the 
right hand side of equation 4.8.ft was consistently low by about 5 percent. 

In the, APG flow, no  agreeable balance was obtained until the normal pressure gradient 
terms were Included. The balance v?.*, 'air until the third profile at the entry of the 
recovery region was reached when ths left hand side of equation ft.8.ft became'-25 percent 
larger. In any event, tho left hand side- of the equation was again always higher tnan the 
right hand side, irrespective of the experimental Cp distribution assumed, and one must 
presumably attribute this to the omission of the longitudinal gradient of the Reynolds 
normal shear stress corvtribution. 

5.0  CONCLUSIONS 

Measurements have been made of three turbulent boundary-layer flows in a parallel 
duct, where the Initial mainstream Mach number was ft and the Reynolds number basM on the 
33-inch wetted surface was close to 50 million. 

The outcome was that: 

1. Nominal two-dimensional boundary layers were achieved. 

2. The seven compressible turbulent boundary layer calculation methods used were all 
more-or-less successful in predicting the Integral parameters of the zero pressure 
gradient, adverse pressure gradient, and recovering boundary-layer flows. Those 
methods that predicted mean velocity profiles did well in the zero pressure gradient 
flow, but not so well in the other two tes?ts. i'o improvement In prediction was noted 
with increase of sophistication cf the calculation method. 

3- The skin friction distributions calculated by the seven boundary-layer methods were 
elope to the Hopkins/Keener intermediate temperature correlation of the Preston tube 
results in the zero and recovering pressure fleldc. However, the calculated surface 
shear stress through the pressure rise In the adverse pressure gradient flow did not 
agree with the expeximent, the discrepancy being assigned tentatively to the effects 
of normal static pressure gradients. 

ft.  It Is hoped that the reasonable comparison obtained between the calculations and the 
experimental results is sufficiently comprehensive and of practical use to encourage 
workers in the field of compressible turbulent boundary layers to engage in further 
and more refined experiments. Particular emphasis should still be placed on flows in 
adverse pressure gradients, and on flows recovering to equilibrium after experiencing 
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local gross disturbances. As well as the mean iBettsur'jments accoKpllshed, attention f 
should be directed towards measuring the gradients of static pressure and stagnation { 
temperature across the boundary layer, and where feasible, the measurement of turbu- | 
lent shear stress. Such effort would seem more appropriate and useful than indulging ^ 
in more and more variations on a theme of calaulatlon'. | 
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APPENDIX 1.  LOCAL SKIN FRICTION CORRELATIONS 

Several of the existing functional equations for calibrating Preston tubes in com- 
pressible flow were used, and compared with correlations based on the momentum thlcKness 
Reynolds number derived from velocity profile data. 

In general, the compressible flow Preston tube data can be collapsed onto a relevant 
incompressible correlation: 

RD
1 

CP?i = f tRDl CFl] A1-1 

Ly writing: RD^ CpPc = f [Rp* CFc] , Al.2 

the subscripts 1 and C referring to incompressible and compressible flew, respectively, 
and w^ere 

RD* Cppc - 8 [(Pp-PE)D
2/HpcVp] Al.3 

and RD* CFc = 8 [TwD
2/l!Pcvg] Al.t 

Rß is the Reynolds number based on Preston tube diameter an-1 local conditions at the edge 
of the boundary layer, Cpp is the Preston tube pressure coefficient, and Cp is the local 
3*:ln  friction coefficient. The remaining terms are defined in the List of Symbols. 

The straightforward substitution of wall density and wall viscosity into the latter 
two equations did not satisfactorily collapse compressible flat plate Preston tube data 
onto, the incompressible correlation of Preston. Hopkins and Keener1*0 >',1 demonstrated, 
however, that the effects of compressibility could be accounted for successfully by re- 
placing the pressure difference (Fp - Pg) by the dynamic pressure determined from this 
pressure difference, coupled with the adopting of an intermediate temperature hypothesis. 
This proposes that one relation for surface shear stress may be found for both incompres- 
sible and compressible flows if the density and kinematic viscosity are calculated at 
temperature, T', a value between the wall and external stream static temperature. The 
form of T' given in Reference 42 by Sommer and Short has been used herein: 

= TE Fl + 0.035 K| + 0.45 fip - l]l Al.5 

where the wall temperature, Tyj, is considered to be that of an adlabatic wall with 
recovery factor, r = 0.89: 

Tw = TR = TE (1 + 0.178 M|) Al.6 

The resulting functional equation for compressible  flow,  in the form of equation Al.2, 
becomes: 

f2(T')RD(Mp/ME)?   =   f[f2(T')RpCF] Al.7 

where 

lvEY  p*        fT'  + 198.6mTEV 
IF]     PF  "   lTF + 198.6j   [W\ 

with T in  0R, 
uPD 

e.nd RD = v A1-9 

£ 

Mj. is the Mach number calculated from the local static pressure (assumec' constant 
across the boundary layer) and the Preston tube pressure, via the Rayleigh pitot equation. 
For consistency, the static hole error was still subtracted from the measured wall static 
pressure, although it Is realised that none of the Preston tube correlations to data have 
involvüd this correction. It is noteworthy that Hopkins and Keener found1*1 after their 
publication of Reference 40 that the equation for the law of the wall that is implied by 
the author's correlation factors did not agree adequately with measured velocity profiles. 
One reason for this discrepancy is probably due to the omission of the static hole error, 
or in other words, the Inappropriate scaling of the local static pressure hole with 
respect to the size of the Preston tube. Secondly, we should note that Preston's original 
callbratlor. in incompressible flow1*3 has been shown to be somewhat in error, and revised 
calibration curves have since been evolved - see the work of Patel'*'*, for example. 

) 
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Moreover,  Patel determined that the values of the constants appearing In the logarlthnic 
region of the law of the wall were In excellent agreeaievt with measured velocity distri- 
butions in the wall region of both pipe and boundary layer flows.    Hence the Hopkins/ 
Keener correlations can be criticised on the basis of their determination with respect 
to Preston's Incompressible flow calibration that was slightly in error. 

The following table sjummarises the Preston tube correlations used herein: 

METHOD 
CALIBRATION FACTORS 

EQUATION 

NUMBER log10[RgcCppc] m log10[RDcCpc] + Constant 

HOPKINS/KEENER, 
T',   (Ref.^0,Eq.4: lOg10[f2(T')R^(Mp/ME)

2] 1.^32 log10[f2(T
,)R2cp]+1.517 Al. 10 

HOPKINS/KEENER, 
rw, (Ref.i|0,Eq.9) lOg10[f2(Tw)R* Cpp] 1.162 log10[f2(Tw)R

2CF]+1.552 Al. 11 

SIOALLA, T', 
(Ref.15) log10[vE/v')RD(up/uE)]

2 1.1U5 log10[f2(T
,)R^Cp]+l.»l20 Al. 12 

FENTER/STALMACH 
(Re f..46) io*io[(v^RDsin [^ JK 1.118 log10[f2(T')^Cp]+1.568 Al.13 

Hopkins and Keener"0 did simplify their intermediate temperature formulation to one 
that was based on wall results by replacing T' by Tu, see equation Al.11.    Sigallal•5 also 
devised a reference temperature method where (Pp-PE) In equation Al.3 was replaced by 
0.5 p'uf, which thereby required the local static ferßperature to be determined as well as 
the Preston tube Mach number.    Finally, Fenter and Stalmach"6, who utilised Wilson's 
theory1*7 (see below) to develop a compressible law of the wall, applied this to obtain s 
Preston tube correlation in supersonic adiabatlc flow, which resulted in equation Al.13' 

Two methods,  those of Wilson'4' anc1 Soirnner/Eihort1*2 based on the momentum thickness 
Reynolds number of the boundary layer profiles were also used. 

Wilson's correlation is: 

lain"1  /S^]'2 

^ 

T 

^E [4.15 lcg10(Re Jj)  + 2.78]J 
Al.14 

where a-, E 

0.2 M' 

i + o.2 M; 
Al. 15 

In the Sommer/Short method1*2, the propartles of the flow such as density and viscosity 
are based on the reference temperature, T', see equation Al.5. The compressible equation 
for local skin friction in terms of Reynolds nuraber based on momentum thiokneis and the 
von Karman/Schoenherr Incompressible equation was derived as: 

B 17.076[logln(Rfl -JfO]2  + 25.112 login(Rfl W)  + 6-012 
Al.16 

siow,e v iow,e u' 

In all of the methods where the wall tempera^^e, Ty, is required, it is assumed to 
be given by equation Al.6, It should be emphaslt -d  at all of the above correlations 
were developed in nominally zero pressure gradient. .ra.ows, with the postulate that they 
should still be adequate In mild, arbitrary pressure gradients. Patel in Reference 44 
indicated the range of validity of Prestori tube calibrations in incompressible flow (since 
updated by Brown and Joubert1*8} where Patei concluded that provided a logarithmic region 
existed, the calibrations could be used. 
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TABLE 1:  LOCATTCNS OP SOHPACE STATIC PRESSURE ORIPICES 
AND 'COBRA* PROBE ORIFICE 

COWL 

(FRONT VIEW) 

COBRA PROBE 
UNIT 

DISTANCE FROM LEADING EDGE, X (Inches) 

» 
«1 
2 
8 
-€► 

a 
cs 
z 
< 

< 

40 0.25 8.25 12.25 16.25 20.25 24.75 28.75 

45 0.75 4.75 8.75 12.75 16.75 20.75 25.25 29.25 

bO 11.75 21.75 31.75 

55 1.25 5.25 9.25 13.25 17.25 21.25 25.75 29.75 

60 1.75 9.75 13.75 17.75 22.25 26.25 30.25 

65 2.25 5.75 10.25 14.25 18.25 22.75 26.75 30.75 

70 2.75 6.75 10.75 14.75 18.75 23.25 27.25 31.25 

75 3.25 7.25 11.25 15.25 15.25 23.75 27.75 32.25 

80 3.75 7.75 15.75 19.75 24.25 28.25 32.75 

140 11.75 21.75 

230 11.75 21.75 

320 11.75 21.75 

Distance to: 

0 11.62 16.62 20.62 22.62 26.6? 31.62 Cobra prooe f( 

0 16.75 Acliabatlc wal 
temperature pi 



11-23 

o 
►j 

z 
»I 

< 
K 
o 

o w 
CO 

o 

< 
W 
(C 
K 
O 
O 

z o 
M 
EH 
O 
M 
K 
ft. 
Ä 
i-l 

00 

3 
03 

S! 

E- 

(Li 
z 

< 

5-. « 
W 
K 
a 
e< 
■< 
K 
W 
a. 
£ 

Id 
< 
a 
Id 

-•CM 

0<! 
H 
CO   <• 

CC 
at* z  • <S 

ZK Ü 
WW < 

is J 
M< 

•«E-OC 

C0>l«8 
ZK 
MWZ 

o OSd 

'"SS 

•«ÜZ 
HHU 

«<K 
.8 030 < 
WQO 
EH<K 
Z K 
Ex] •• b] 

E->X 
CO H z&cc 
o    o 
MZfe 
HO 
<MQ 
.JE-W 

K W W 
o2a 
C-.SBä 

oo 
soo 
o 
K « W 
fe W W 

QMS 
Id U CO 
E-i « to 

s-s 
» a. 
o w 
j z o 
< H M 
O « EH a. < 
ft.OEH 
O X co 

g; 

o 
w 
CO 

ft. o 

3 

fa o 

o 

CO 
dB 
ft. 
ft. o 

CO 
■a 

3 

Q 

a. 
o 

EH 

W 
Q. 

ft] 
EH 

K 
o 

o 

^- 
m 
in 
n 

o 
EH 

00 

3 

W 

3t 
•a 
ft. 

a. 
<J 

a. 

o 

t-<nt^r<i 0!-it~t-no o\oi.ir .9 ■&■ cv&t~& i-i o\ r-yj UMf»-» JI-w mmcMfvirii-iiHOoo a>a>oo «»»oo 

ooooooooooooooooooocaooooooooooooooooooooo 
OOOOOoOOOOOOOOOOOOOOOCiOOOOOOOOOOOOOOOOOOOO 

oooooooooooooooooocooooooooooooooooooooooo 

(MfHrvi^'rioscMfHvoaj O\UJ«3 ni meooo e~u* W-* c\i oz m o OIUJ ryoovo occ (n^-ioo C-^T rH C^OOOD r~ 

r-iiTJT.:»- njio o»0OfH rviir« a- otr-tanr-iT'-T m<vr4<HrHooa ai<Mo»oooc«oc«-r~t-t~vovo>o vf> 
mo<X>t-t~-i^O»040^<rtrt(-trHrHr-IOOOOOOOOOOOOOiO\a.Ch<y'C7\0\OlCnCTiC7\a.(yiO> 
r^r-( i-li-ti-ii-lt-lr-ir^i-ti-ti-ii-IMi-it-lt-tr^fli-li-ii-l 

r-oooo o o^oa.t».o«ir»o^-a-.ST no t~cM t~(v ait-ir»-» cycvon-iooatoooot«-i^^vomm-sr•»■ a--^ 
oOf-it^UJ int—oo or« mma-a-^-^- mcncvuv rti-ii-(i-i»HrHiH(-i«HMooooooooooooo 
r-(iHOOOOOrtrHrHf-lf-<(-JrtrHHi-li-li-lHlr<tH»-(f-liHc-(i-trti-li-4HrH»-«rHrtcHrH«-IWrtrHrH 
ooooooooooooooooooooaraooooaoaoociooooaooooo 
ooooooooooooooooooaooooaoooooooooooaoooooo 
oooooooooooooooooocooooooooooooooooooooooo 
h-1—ir CM (Ti-sr airrir-<oiint-ioO'ivo<-<uic7i(\jaoirt.(Mr-ioiot ooo t--vo m^r ro CM CM r-) o o o\oo eo oo oo 
(\; «»Ktno int^OKM ^nl^^vo^-t--^ovo^olr>■3■•«• mnromcvcytwojCMtMCvcycMCMfMAirvjCMHrHf-irHrH 
CMr-iaOOOOi-lr-l<-lrHrtrH»HrHiH»HHr-lr<i-llHrtrt>HlHi-lrti-ii-I.HrHrHrH»-tWrHrirH<Hi-l(-1 
oaoooooooooooooooaoooooaoooooooooooooooooo 
oooooooooaoooooooooooooooo&oooaoooocoooooo 
ooooooooooooooooaooaooocaooooooooooooooooo 
fnm<na»t~t~-(\i mo^ri^oioctt^mcw OMVO ■» r« ^o oioio<o<x)r-[>»vovo loirioinj» «• mrocm 
if o t*. If» invo OOair-(i-li-«.-li-l.-(r-li-).HOOOOOOCTlCTiO»0»0>4<»a<aiO>0<0»0><J»CTl040lO'NO\0» 
rtrtOOOOOOrHrHrtrtjHrHfHHrHHHr-lr-li-lrtOOOOOOOOOOOOOOOOOOO 
oooooooooaoooooooooooaooooooooooooooaoaooo 
oooooooooooooooooooooooooooooooooooooooooo 
oooooooooooooooooooooooooooooooooooooooooo 

ooooooooooooaocoooaooooooooooooooooaoooooo 
b]|db]b]h]ft]b3b]b]b]b]b]b]b]|dft]|dli]ä(db]ftl(d|i]hlb]b]UlftIb]id(dtd[db]b3ft]b]b3b]blM 
t^CTifvi-ar tHi~mi-)ai.sroo-tiHr-(oivDOj o^in wo oioo^.t>-r-\ovßvo«nove\o«ji«!*o«JUMnJTfl,a- 
-=r fftvo-fl-a-ot-ONO rH-ic\i<\j<vrHfHrtoocJooo*CT.afio»cyi3s<yi<y«o>o>cna»o«o»c7»o\<rio.o»CA 
^^lrtr^l^r/r^r■H^^^:cv^M\lrtlf\l^^l™c^Itv^vlC\l<\lH^-^l-ll-l^^H^-v^^^^l-^H^-lHHl-^r<<^<H^^H^-^ 

OOOOOOOOOOOOTOOOOCOOOOOOOOOOOOOOOOO'JOOOOOO 

oaoooooa^oooaooooooooooooooooaoooooooooooo 
ft3UtdUWh]UM:dJMft3(dMMUftJU(4idWMWUftJWWbJh3iaftJftl(dMli]UiJWWWWW 
Oi-(oj(M(Mt\ic\ic>;(\!<MCj(\j(Mcuc\jcvi<\< »ninoonivifnnmncnnjrjca- ir»uMniri^'Cvo«>%oinir> 
nrom(n<n(nnMrofr)<nnrn(n«nMrorn<ncnrnr^(T)ponnoorjtn<nnc*ifororoMf'ip^ 
ojr«cvwwc\iwr«oic\)f\icviwcji\(»>it«<\i(\i<>jr«W(\it\jw<vc\i(V<\;ojojNfviojt\iwwpjtVf>i<\ic\i 

ooooooooooooooaooooooooooooooaoooaoooooooo 

o-sr CM rOCTiir»rHi~-a-oc« (nma-a-inr« CTVVDOOHVOCOH wairmentno cnr-r-iAinfOcM.-'ooox 
C\J mcOcyiOOHVO OVOOOOIOOC tWOOt-m-a- fnrOtMCVCUt-lrtHHHHrHOOOOOOOOOOJT» 
JTrurHoorHi^f\)<\)r«c\jfoi,'ic»icye\((\ifv"(\ic>ic\irvic\i(\ifuc\irij<\itvicvi(vic\ic\i<\jc\if\if\)pj<\ij\jwrt 

ooooaoooooooooooooooooooooooaooooooooooooo 
mvo t-oooooooooocs r-ooooaooooooooooooo cncnovcnaicncnoooHni tv enn^r AT«r4-»4-a-A- 

VOVOVOVOU3VOU>U>U>VOVOVOVOVOvCVOtCIVOVOVO\OVOVOVOVOVO\OVOU>VO\OVOVOVOKO<0VOVOVO\0VOVO 

m <n^- ^j^^JTJr^^^^a-a-a-ij-^-ja-a'a-JTJr.a-.a-jra-jra-JS-inifiiriifitnininiryiAinininin 

(\ir\j(\irjrycv(\ic^c\irvjrur«(Mtvrvicurufycyt\ie\iojc\i<\jc\iojrvicjfvif\irM«\jfy(\)Cvif\icvie\i«\ic\/tv(\i 

\o t-ooooooooeooooooooooooDooooooooooaocDoooocooococncnoxTiOimooo oooooooc 
t~-1~-f-1-1-c~ t--1--1-r-1-1-1~ t~ t^ i^ t-1~-N-1-1--c>-1^ i>-1~ c~ t—r-e-1~ t^oo oo oo co oo oo oo oo oo oo oo 
oooooooooooooooooaoooooooooooooooooooooorao 
oooooooooooooooooooooooooooooooooooooooooo 
ooooooooaooooooooooooooooooooooooooaoooooo 

ooooooaoaoaoooaooooooooooooooooooooaoooooo 
cvjoo P-I roP'VT ro n CM fvj CM (\j o n n enJ»-ar ^- muMAiAiovovo !>-oo air-i.MJa- ir\v3 t-oooooooooo t^c- 

OOrtr-ir-)>-lHfHHH>Hr-iHrHrHrH«HHHHi-(HHHr-l(Hr-IHH(M(\l(MCM(Mr<JCMrury(MtMf\lrv) 

iHpHrHrHHf-lrHrHrHHr-irHrHpHrtr-tHHi-IHr-liHi-lr-lrHHHHc-lr-'r-lrHi-lrtrHtHrHiHHHH»-! 

incrio t^-jr^r^rio t~oo [--[»-vovovo in^r enrt H o o atcTiooe-.fl- CM cMnovo CM ot—vö tna-fl- covo r- 

ooooot--t-.f-t»-t— [^r-^t~-t~-t—t—f-t^-f-t^^-f-t-vovDiovovovoirun irvr JTfncntnpoonmmrofo 
rHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
(M(M(MCMCMCMCM(MCM(M(M(MCMCMCMCMCM(M(M(MCMCMCMCMfVlCMCM<MfyfVtM(MA)CM(M(M(M<MCMtV(MtM 
CMajr\JC\IOaC\JCM(MCMC\JCVICMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM(M<MtMC\l(V(M(M(MCMC\JCM(M(Mf\lCM 

CMrHJJ-i-(OCy>OHcMCM<MCMHHrHO OlOOCO t-S-lOVOVO ma- fO H CT>VO CM 0>t^-J=r mcM H H rH H CJ fl 
IAJ» rnrnnocMrornrnp-tmfOcnrnrorocMtMCMtMfvjcMCvicMCNjCMCMfur-lr-ti-iooooooooooo 
o^c^^cJ^o^c^c^o^c^^dc7^o^cy\o^o^o^o>o^o^o^c^CT^o^o^ocy*o^o^o^o^o,»o^c^^o^o>o>o>l0^c7^o\o^o^(J^ 

oororom.nromrooofnootnoooomnrnmmcoromrncnpnrofnrop^Ofom 

incM ^nm(n^^\l--o■=^■ invovovovovo ir\.=»- (ntMCMpH>-iHHrHHHi-ir-(r-(r-irHi-4Hoooooooo 
(MHOOOOOr-liHHHr-)HrHHHHWHHHi-ti-(HHHHHi-IHHrHHp-tH>-Yr-(HHHHH 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

ooooooooooooooooooooooooooaoooaoooooöooooo 

t»-minocMori(Mocyiai<ric?<ooHcM rouivo r-c—oo oic^ocM-a-e—HVOMVOH tr»oo enn H .-i o o> t-- 
OOOH(MCM[M(MCMHHrH.-(C\l(M(MCMC\)(MeM<\J(M<M(MrvJ(rirOfn fOJ* 3- m U"HO VO VO VO t1- (~ t~ l~-VO «0 
iHCM(MtMC\l(Mf\)(MCM(M(Mr;f\ICMCM(MC\J(MCMfNJfMCMruCMCMfytM(MCMCMCM(M(M(MCMCMrgtM(M(M(MCM 
rHHr-IHrHrtiHi-IHHrHrHH.HrHr-!HrHHrtHi-IHi-lr-(rHHHrHHi-4r^^rHr<Hrtr-(r^rHHrH 

oinoirioiAomtr>omiriOinoinoir\oir»oirvoirvoir\oinoir\oir>oir\omoiAomoir\ 
O O iH H W l\J Mf»1-=r ü>UT^ l~l--U3U3 0\0\OOHi-tCMCM (nO^r^T inmvOVO t-^-»0O CTlC^O O r-l H 

r-iHHHrHHHHiHr-lr-(HHi-<i-lr^r-li-<Hr-|CM(MCMCM 



ii :« 

cc oo oo f-1—t—t^ ^ t—t^ »■-r—t-oo «o oo oo oo i—vo ■» •=»■ 
» oo OOO OOOOOOOOOOOOOOO OOS 
M t-lr-lr-K-ti-dHi-HiHi-tr-lrHr-ir-lrHi-li-lrHi-lr-ii-lr-tO 
CO  OOOOOOOOOOOOOOOOOOOOOO 

oooooooooooooooooooooo 

o 

Ü 

K 

o 

CO 
•n 

w 

^ 

T3 

3 

§ 
o 

Q 

ft. 

o 

w 
a. 

3 

OOOOOOOOOOOOOOOOOOOOOO 

VO-» J» <n<M CM r-lr-l iH (M CO ITl t-OO O rM POfMOO OKn^H 

mm<*i<n(McM(MfMtMfv>cMfM cvcnnprirnramooovo 
ooooooooooooooooaooo ovao 
<HrHrHrHfHrHi-(rH.Hr-)r<'HfHt-trHr-(i-|iHWrHOO 
OOOOOOOOOOOOOOOOOOOOOO 
OOOOOOOOOOOOOOOOOOOOOO 

oooooooooooooooooooooo 

t—t—vovo\ovoif»uMiMrMr>vovo t--r~t—C3 t«-vo vnom 
rHiHrH-lrH>Hr-!iHr-i<HHHr-lWf-lrHr-(ri<HiHiHO,l 
HiHi-lrHrHrHrHMfHi-ti-irti-ll-trHiHrMrtiH^HO 
OOOOOOOOOOOOOOOOOOOOOO 
ooooooooooooooacoooooo 

oooooooooooooooooooooo 

COrn CM (MrviCMCMiHrlr-ICXaCMCVCVCMCVi rr-.fOCM l-> OlO 
CTiCTlcyiO^ChOIO^CtO'lO^OIO'iOlOOIO^C^OlCyiOtOOOO 
oooooooooooooooooooooo 
oooooooooooooooooooooo 
oooooooooooooooooooooo 

oooooooooooooooooooooo 

(Oro rococo cornrocoporncororococopornnnC'Ororo 
oooooooooooooooooooooo 

CO CO CVJ r-l rS O O CTlOO 00 00 00 00 t-f» t-1-t-»0O O CO CO 
er» CT* CTI a\ (Ti (Tio^aocooococooocooooocoaooo ci oiO 
«-»i-trHrHrHrHrHrtiHrJHHrHiHiHi-I.HfHHr-t.-HM 

O O O O O O OO OOOOOOOOOOOOOO 

iniAin mmtnirnnirMnifurMnuMniri muMAirviAu> 
OOOOOOOOOOOOOOOOOOOOOO 

WbJKmWWli3WIdIdWr-;au]WUb3W(dU]fcJta 
irMninuv»-w•a'^ ro.vnocococ« CM (v w CMfomooo 
cococofococorocococoncococo'ococococicocoir» 
CMCMCMCMCMCMCMCMCMCMCMCMCMCMCyCMCMCMWfMCMCM 

oooooooooooooooooooooo 

oo t-~vo<o in CO CM COC0-WJT 
OICT^OCTt 

invo «J t—vo in o inoo 
cyi^cTicTio^otoiooin 
«Hi-IHrHrHr-tiHr-ti-t 

oooooooooooooooooooooo 

cococorueMi-iHrHoodCTioocooor--t— f-oo co d PO 

iniAmmininmintnm-^,-=Ta--3--=f-a--3-a,-=r in moo 
M3VOVOVOVC1VO^OV£>VOVOVOVO^O^OVOVO\OVDVOVOVOVÜ 
cococococncococococncococococococofococococo 

m m m m m m m.=r-a--a-a--a-.a-■a'a--o- na-a- mt~-M 

fUt\lCM(\iCMCMrU(\ICM<MCM(MrvjCMCM(MCMCMCMruC\;f"l 
C7lC^^<yt<T»<y^CT10^o^o^o^C7^CJ\o^o^o>o>o^dC^»o^dCT■ 

O O O O O Ol Oi O C^ CTl CTiOO CO oo co oo oo oo oo o CM iH 
oooooooooot~-h-t^t^r~t^^-t^t^t~-r-t-t-t»-oooooi 
oooooooooooooooooooooo 
oooooooooooooooooooooo 
oooooooooooooooooooooo 

oooooooooooooooooooooo 
vovo m-=r CO<M H cyioooo t—vo m-» forvit-iiHiTmcrim 

CMCM(MrU<\J(\ICMrHrHHrHHHl-trHrHrSH'HCMCOO> 
cococooonrococorooororococorococf:^!^^^^ 
■-l^lrHrHiHiHrtnH HiHrHrHrHrHrHi-;-', r-f-trHH 

OrH COVOCTMMa-OO iJ 'OVOOO iH^VDC^CMOtMi'VJ^rO 

co^r a--a-a- mmmvuvovovo ^-1—t—c^oo oc ^a- o in 
ooooooooooooooooooooora 
(MCMCMCMCMCMCMCMCMCMrycMCviCMfMrynjfvirgo. «Mr; 
(MC\iCMtM(MC\iajCMrycMCMCuCMryc\iCMiryc\i(M(\j<MCv 

■a- m c— OMH co moo oc\]romc—a\rHOTir\'a,oot^O'a' 
OOOOr4rHH<-)C\lryCMCM(MC\lCOCOCO<0(\IOCX3t— 
CriC^C^Cr(CTtO%O%0>ONO^ONCT> CT\'C7> CTtCT-iOCNC^O^OO t^- 

cnrocorococotocncocoforoonoocofococncocncocn 

o 

V   • 

Oik. 
D ' 
JO 
COO 

« 

to 

E-i 

3      ooaooo^o^o^o^o^cr^o^o^o^CT^C^a^0^alO^OO < 
=«       HfHrHrH.-JOOOOOOOOOOOOOOOHH H 
Cc<     aooooooooaoooooooooooo co 

(Lt  4*4 •••• (14 

<       oooooooooooooooooooooo 

inco o f-a-o t—CM awo roovo coo t—^rvo miHoo H < 
VOVOM3mmma-a-rOCO-''lCOCViCM(Mi-lrHrHrj\OOrH H 

3=       CMrg(MCMrM<M<MCMCMCM(MrjCM!J(MCMCM(M0J(\JCOm CO 
iX,  <•>•!••.■ PL, 

r-:rHHHHrHHrHHrHHH.-IHHHHrHHrHHH 

3 
< 

cooncoforo!ororoco<ococorococofomrocococo(o . 
omomomomomomomomomomom M 
  3 

CM rvj co ooa- a- m mvo us t— t~-oo co ON c^i o o rM H CM CM H 
CMCMCMOJCMCMCMCMCMCMtMrMCMCMCMCVJC-ICrirOfOfOrO 



II-:5 

z. 

< 

Ci IT' M -JO • - t~CO ^«W^^'^'T>fr>'^',"'<^fyfVl>-lrHrHiH<-tOOtriOi-l<\l(Nirr>lv><T>f,^on^jrnr<naJT 
H fHr-IOOOOO»-<r-trHfHrH»-*r-lr-l»-(<Hr-1rHrH»-lr-!r-liHi-l»-40rHfHf-*rHr-»iHr-i»-lrHr-(r-ti-*r-trHr-^ 
CO       OOCIOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOCOOOOO 

ooooooooooooooooooooooooooooocoooooooooocro 
o 

U3 
a *- 
o EH 

t-1 sc 

s X 

Ui Ph 
a. ■J 
£ P « 
H 12 

s U Ä 
o H 
J <s Ih 
1», 

Q 
o 

H Id 
z £ CO 
w K •s 
M U n. 
a t« < Z fe 
K M o 
a 

*M  ■• 

s 3^ w 
3 JQ ■o » 
w <Z » > 
w rj < ^ 
b4 w 3 
K CO   • 
a. (C 

QEH 
lu z   - <g 
£ «3 

DC EH Q 
u W<U « < Z «O 

wrd« 
z uru^i 
M 

u< 
co •«EHSE OK 
z tv, 
o COX« o 
M ZK 
H MUZ < 
J OL, OvJ » 

oo« EH 

«as 
o •     K 
o XiJIi. 

ÜJ (C 
2 <«J|X EH 
O saos 
H ä 
H <oz 
O EHMU 

WEH? HH 
K <M m 
ll. •a CQ O 

^1 
a. 

K KHK 
H UQO « EH<K 
w z    tc 

w -w w 
EH 

01 >H^J 
OQ 3. vj 

W EHä 
KJ CO H 
aj 2 3« K M < o    o o 3 
H M Z &< 

EHO o 
<HQ • 
►JEHU r~ 
W<EH m W 

i,n £ 

^äs II 
OKK 

oo o 
SO o EH » 
o o» 
OSKCO • A ft, 
fc W Id < O, 

zE M < 
Q W D to 
WWW (Li 
EH«CO 

>J >8 S 
Ol 3= 

a. 
3        OH m 
OCO Vf> 
JZU H 
< H H 
CJ « EH 1! 

tM «i, X 
äOEH O 
U S CO a. 

OOCOOOCCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
cy rH oj r^» »-I o t>j IH vo CJ «TWO IT. iHrycor^-xom^cvo O\VD -^ VO VO O O m-^" cvfyoiino-xr-ioxofMuvo 

»■'■»■»■■» fOOO O'.OO rH f\l^ ÜJ» MrH O^t^lA-» «M O CT\VC; rH0Ot\J^TJ\OJXi3-rHO\ir\rvirHt—ifrHrHfVl 
mooüp-f-r-CT\o\OrHMrHHi-ii-i>Hoooocoo\a>cr.oooooooooooooooot--i^e—t-Ao^ovovo^ 
r-t«H rHrHrtrHrH'Hr-llHi-«>H«Hr-l.—Ir-i 

\ooot^-oa\ooif^a\iAa\-s3'ia"mor^-c»it*-cMCT>inoou)o\c^-ruf\(r-4mONOOo-armj»t^trvfvi»-i^t^ 
oo rH c^vo mt^flo o cu m m^-^ ^- ■5rfn(*^cycvfH»-(I-<rKoo\a\c\0(-4e>iOi m-a- ^■^r^-^r^r-a--=r-=r 10 
r-lfHOOOOOrHrHjH»H»HiHtHi-lr-lrH»-lr-*fHrH^^»HOOO<-*f-i'HrHrHiHr-*iHiHiHr-lrHr-trH'H 
oocooooooooooooooooooooooooooooooooooooooo 
oooooooooooooooooooooooooooooooooooooooooo 
OOoOOOOOOOOOOOOOOOOOOOOOOOOOCOOCOOOOOOOOoO 
t*-r—«• r« o\£T o\ fi r-* o m o o ONSO »-imo>rjoorj\ovooo\ooo ONQO m\o irv-^1 t*-<MrHcvje^i-tt*--=j-cj 
cvj rococo irvc^o^ojmmvof—^^o\ovo m-a" ^o^cnr^fycvr-ioo^OrH mcn^- ^T^-^T^-.^ mmcy m-^ 
CMrHOOOOOiHi-lrHr-lrHHririi-lrHrirHrHrHrHr-trHi-tr-IOf-trHl-lrHrtlHt-IrHrHr-li-liHr-ii-lrH 
oooooooooooooooooooooooooooooooooooooooooo 
oooooooooooooooooooooooooooooooooooooooooo 
oooooooooooooooooooooooooooooooooooooooooo 
(nm<na\t--t-pj Ao.»t^T.CT>OM»-ir\cuc\ü-a,>-ir-t~-irvoo\t-ir>f\i-»oo ma) OJ coiricooo t^r-ü r-i 
J» O r~-UMr>VO0C ■;f\r-l<-lr-IHMrH<Hr-lr-(0000 Ol (Ti <^ <T>oo oo 0^0 >-( r-l CM CM m (»1 (" CO m <n oo^- ir\ 
«-1—•OOOOOOi-'tHrHrHr-liHrHi-IHiHrHrtr-IOOOOOCTOMrHiHr-lrtrH.-lrHrHrMrHrHrHiH 
OOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOGO 
oooooooooooooooooooooooooooooooooooooooooo 
oooooooooooooooooooooooooaoooooooooooooooo 
<^ rn in c^ rn x» ro ro ro on to (n ^ (n ro co m c^ rn oo en (n ro rn m ro rn co (n o^ en en r^ m 
oooooooooooooooooraoooooooooooooooooooooooo 

WMWWWWWWWWWWWWWWWWIiiWWWUJWWWWWWWWUWWWWWUlldWWu; 
i-.o\<VJ»f\iinir\cMO moo M (M ri awo on CMT» <n OMn ir\ ir\oo ONOO -a-oo^ii rH-a-fvjro moo IH oo envo m 
■3- owo-a--» mt—ijwH<-ir-ic\jcMrui-ir-irHoooo,.<Tio\0'-i mt—mcTvoo r-t^oü oo>Hru-=i-mt--ooCT\ 
C\lrHpH»HrHrHr-4r-IOJf\jrjCMr>J(\ltMC\IPJC\IOJ(\lr-*iH<-ICM<>jry(Mfntn-3 mVO t^-OM-lrHiMiHr-lfHi-HrH 

OOOOOOOÜOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

inmmmüMnmmmmmmminmmmmmmmmmmmmmmminmmmmmmmmmmmm 
oooooooooooooooooooooooooooooooooooooooooo 
WUWWWMWWWWWUUWVUJWWWWUMWWWWWWWMWWUJWUWUWMWWW 
oc\i<viro(nrocnriroc\i(nrvipri(nr-)inro<nrnrnfn(nrno>Hc\iJTiHOrH m\o nr-vooM-fm-a'OMHvo 
cnroroinrororomfncnpotn'nrnrotnt'irnrororornrriJT mvo» o r«-a-vo oo i-t rovoos .H envoro o o 
tMry(Mfvic\it\!(\jcM(Mf\i(Mf\irocMrurut\jc\)c\i(\i(Mr\j<\j(M(\jc\i<M (nmromma-a-a-J» mmmmvovo 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCJOOOOOO 

o-T <\i <•''OMTI >-i t---a- o (v rocto T CAOJ envooovo mrovo nji-t^rt—OiHrnrtoorHmcoooii-iocnCTx 
eg tnrncrico t-tvoovooocriooo cnoo t^-m^ oory r-i«Ho CT%a<oo I-I m o <\i >JD i^-o o in m<M CM tv moo 
irtv<-4ooi-lrHc\iC\jt\i(\ifn<ntn(\j<\j(M<McM<\((Mc\itMt\irHrHrHcyru<n(n<n ro^r a-^r^^-jj-^-^r-sr 

oooooooooooooooooooooooooooooooooooooooooo 
mvo c^oo co oo oo co co t^oooocoaooooooooooo oicr*cr. cr\mcj-=T mt^-cvi fM-=t cu o-=»-voco osmfvj «H\o\o 

^T-sT-=r^-^T-=r^r-=T^-^T-=T-^-=T-=r-=r-i=t-^-=T-^-=t^r^-=r\£)<o a-sr t^-rH mcy\rnao CM C^-CH movo H m-a- 
VOVOVOVOVOVOVC'VOVOVOO^OVOVOVOVOVOVOVOVOVOVOMDVOVO P—f-- h-oo ooooo^ooorHr-tcMrjmcnoo 
oo f> i rn rn rn ro r^j ro <n »n on rn oo ro on oo oo on en on m rn oo m (n rn on co on co rn (n rn ^ ^^-a--^ .^-^ 

cocoa--=riTiTa'-a-^r^-a-^-^g--=rjr^ra-.=ra-^rira'-=roo moo <T» t^vo \ot^c^-or-imvovooooovooj m 

CMCvjojrvjfMrMrucMCMO'fMfMfMfMCMCMrMCMfMrvcMtMfufM onona- mvo t~-a3 cm CM ro-a- mvooo CTvO o 
o^o^o^o^o^o^a^o^o^o^o^a^o^a^c^ <T^c^a,*o>c^o^o^o^o>o^o^o^c71a^o^o,lCI^o o o o o o o o t~i rH 
£ririrJTa-iT--T-=T.=rir-=r.a'a-a-^r=jpir^ir-r^rir-=3--3-a--=r-3-.a-.a--a--3'.3-miAmmmmmmmui 

t--t--oocoaocooooooocooocooo(naooococooo'jococn o>-=r >Hcy.P-fMLnomcT<c\j-=Tm<-ico(MrHmcom 
^ t~ t^ h-1^ t—t^ t^ t~ t-1^ r-r-r~ t^-r—r-1—r-[—t--1—t—oo a>o^r^ coa- t»-criM maa fMvoci-=romcooN 
ooooooooooooooooooooooooooMrHrHnHrHtMnjrviononroirmmmm 
oooooooooooooooooooooooooooooooooooooooooo 
ooooooooooooaooooooooooooooooooooooooooooo 

oooooooooooooooooooooooooooooooooooooooooo 
CMOO i-i 0OO1.3- moocM CM CM CM oocorooo^-=)'-T mm m\o oomLncMOOorHontMt^oHiHoovoomcoco 

OOMiHrli-lrHrHMMrHrHr-lrHHi-CHcHrHHrHrHrH-sr av=r -a-fHOCTiO^OOCTlOfMCMi-lfMVOC—Oim 
oo oo co co co co co ro oo m oo oo oo oo on oo oo (■-! ro co co oo oo co oo.=r mj3 t—t—oo cy>o CM oo^r mvo c^co o\ CT\ 
iHMrHrHiHHr^HrHHrHHHrHHr-lrHrHrHrHrHrHiH<HrHi-l<-lrHr-lrHr-4r-fC\JCMrMCMCMCMCMC\ICMCM 

moio t^-'^-^-a-vD r^-oo E^P-OVOVO m-^" COH -H O oico OSCM co^r oiP—moo^r a>coh-o cr»-=T m CM aico 

ooocot-p—t-c—t~t—P-f-t~-h-t~-P-c^-t~-^-r--h- (--VD voc—mrH.3-CMO>cooo[^ruHoocMomorHocM 
■HOOOOOOOOOOOOOOOOOOOOCO CT.0O ^^TCMONt^-a-HOOmrHOOmrHr-COtHO 
rUCMCMCMfMCMfMajCMCMCUtMCMOJCMroCMCMCMCMCMCMCMrHiMiHrMrHOOOOtTlOl 0\CO OO OO t^ C— t^- t^ 
CviCMrvirUCMCMrjCMCMCMC\ICMCMt\lCMt\JCM(\JI\ICMC\JCMCMCMCMCMCMtMCMCMniCMHrHrHr-(rHrHrHrHr-(pH 

CMrH-a-rHOONOrHCMCvJCvjCMHrHrHO a>CO OO f-C*-MD m OJ m m-=r mxX) r-l »-t-ST X- -=T COCO O \ö-3- OOOO Ol 
m-a- COlOCr.CMCOCOCOCOCOCOC^. COCr-iCOOJCMCMCMCVJCMCMVD t^OO CM OCO V£) CO CM (nOOM3U3COCO h-CD COrH 
cr> o> ON cs ch ON ai CTN ON o\ a\ CT\ a> oi ON cri ci o> o> c\ as o> CTNOO C^-ND m-a-cMr-ioas^-vom-a-cofvjf-Hooo 

oooocnoooooooocnonoococococococooooocococooocoonoooooocooncooocM CNJ CM CM CNJ CM CM CM CM CM CM 

tncMmooonmt^-oa-mvDvo\ovi?vom-=rnocMCMrHoor-inoino-i-;=rvovor-(c^'-=roootn-a,'>Or--(t*-a> 
CMrHOOOOOrHrHHrH^HrHrMrHrMrHHrHHr-(rHrHrirHrHOJ0n-3-SOC0rH00voa5rM00mr-0\i-t00 
OOOOOOOOOOOOOOOOOOaOOOOOOCNOOOOOHi-lrHrHCMCMCMCMOJOnCO 

oooooooooooooaaooooaooooooaaoooooooooooooo 

ONt^-r—rM-=r U\^T CM r-H O I-I r-l CM CM CO^r mvOOO OlONiHCMCMOt-lmr-ICO OOCCCO 0OrHCOSO0OiHcr<(Tl0OrH 
OOOrlCMCMCMCJCMCMCMCMCMtMCMCMCMCMCMCMCMCM OO CO^T H H ^T-^ rH (M OSVO ON mcO H ^ ^T t^- ON t^-GO 
r-:rMCMCM(JCMfMCMCM(MC\'CMCMCMCMCM0gCMCMCMCMCMCMC0m^i-!mOVOCv0HCM^rON-=rONC0^3-O>0nCr. 

1-lrHr-lrHrHrHrHrHHrHHrHHrHrHi-lrHrHHrHi-fi-trHHHi-KCMCMOn CH^T msO f-CO O rH OOSO CO O O 
r-t r-l H H H OJ CM 

coc'ioncnoncococooooncococooooocncocococooocococnoocooncocncoon.noococooocoonoococooo 
omomomommommoiAomomomomomomomomomomomomoir>om 

ooHHCMCMconoa-^Nmsor*-t^-'CJuiJöoiONooHHCM(;c',ico-=r^rmmsosor--r--coooasc7soaHrH 
Hr-HHrHrHHHrSrMHrHrHrHrHr-t^rH^HrHHCilCMCMCM 



11-26 

o 
M 
CO 

(I. 

3 

!M tnsr j»m imv (M I-H o ooo a^ r- o vo ^- <»> r-t o oo vo 
i/M/1 in UMf» iAif\ir><f>if>'!»^T'=»'■3'•a'■»•=»■» ■»■=r meo 
rt^ti-lr<rt<-tt-t<-tr-«i-<i-)<Hrti-lr1i-li-(<-(i-tr')«-'<H 
OOOOOOOOOOOOOOOOOOOOOO 
ooooooooocoooooooooooo 
OOOOOOOOOOOOOOOOOOOOOO 

OM-1 o OM^-VO'3' f« o <T>VOJI fitv) O) r-< a\vo oi at-^ao 
<\lfOrO<M(\l<MSMC«rjr-<>H<-(»M.-(iHHOOOa»0\00 
vavovovovovovovuvovovovovovovovavavovotnuMTt 

o 
K 

a; 

o 

w 
ft. 

Ü 

■o 
3= 

ID 
3 
c 

c 
o 

u 
m < 

o oj nncu r-( o o o\oo r-m^r (n(MaioflOvo-=rfvioi 
KO,*>vovovo»ovovo<r\ir\ir\ir>uMnioi/Mf\fl--3-Är-w<»i 
i-ll-<»HrHiHi-tr-t>-(<-<r-lrHr-fr-lrH'HiHlHl-(iHHlHrH 
OOOOOOOOOOOOOOOOOOOOOO 
OOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOO 

mi"-t~s--vovo m-» roc\i rH CT>OO t—^OVO^ CM ooo mm 
^TJTva-a'^-jr^JTJT.a-^mnmmoommcncMCMCM 
I-lrHrHr<rHrHr-t.-(i-IHiHi-lrHr-lrHrHrHrHrHrHrHrH 
OOOOOOOOOOOOOOOOOOOOOO 
OOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOO 

-=r vo vo 'O o vo xifl- en re CM o o cr.oo t—vo -a- ro in (j\ t— 
if\ifMrMfMnuMr\inmuMnirMn-=»,-3,.»iiJT-»-»c»im 
■HrHHr-lrHiHr-lf-lrHrHHiHiHi-lrHr-ir-lr-tfHiHrHrH 
OOOOOOOOOOOOOOOOOOOOOO 
OOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOO 

9    WU W W W W W W W W WId WM M WW W W W W(d 
>     «j- CM c*i JT -a-ja-sr-a-cvirjfHO crioo voincicMOO^t^m 

CTiOOOOOOOOOOOONONOMJ-.OM^ONCDOOOO 
«HCMCMCMCMCMfyCMCMfMCMCMHrHr-lr-lrHHrHrHrHi-l 

OOOOOOOOOOOOOOOOOOOOOO 

minmir>ir»ir»ir\ir\inir\mu"»ijr»ir\ir»inirimmir>ir\m 
OOOOOOOOOOOOOOOOOOOOOO 

WWttmWWWWWWtdldUWWWWWWKlWW 
Oi i-l CM fO-3- JTa-a-JJ-J3-iTJ3-C»^CMrHOaiOOCOCOO>rO 
OrHrHiHrHrHr-lr-irHrHHr-lrHr-lrHr-IOOOOOO 

OOOOOOOOOOOOOOOOOOOOOO 

njcM-»-3-CMOMACMOOmcDcMOOJ3-o«)OCMmif\ir>ro 
o in rt r H o o o OiCTicDoo t^-t~-r--\cvo irv^r mcM iH 
UMAITIU"   -Mn x\ m-=r •a'-a-ar ^^-a ■=>■ •=>• a--a-■a'-a--w ■» 

OOOOOOOOOOOOOOOOOOOOOO 

CM t--CTirH ciroij- irv^r-a-mrocMoi--u\CMCMCMOOo 

uMnirvvo\on)vovovovoM3VDvovoir\uMAir»ifMr>irMn 
rorocTicorororooornrnrnrnr»ic»imrorocnoof«irr)rn 
a-a-a-a-ia-iX-a-a-jrJT-a'ira-.a-a-^-ir-j-a-.a-Jr-a- 

OOOOOOOrHOOOOOOOOOOOOOO 
r-liHi-Hi-li-lrtHHrHrHrHiHi-lMr-li-iHrHrHrHr-llH 
iniAi/MAi/MntninirMnmiAtrvinirMrMninirMriirim 
rooo rH oninvo t~-oo ^^-vovcua- cMCDvoncMCMOOr-! 
OOrHr-trl^HrH^i-lr-liHr-lrHi-IOOOOOOOO 
VOVOVO^OVO\D\D\0^£>\OVOVOVOVO^OMDU>VOVO\D\£>VO 
OOOOOOOOOOOOOOOOOOOOOO 
OOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOO 

noocrioar-OM-icMi-t cr>o>oo ino noo ncM HOOOOOD 

t-aaco CT\C\cr\0 o o o\o\<T\o\oxo t^t-f-t~-vDvo\D 
<T>ONCrtCNCr»o>o o o <j>o\<j\o><T*crsO>Ci<FiO\CFiO\o> 
CMOJCMrg<Mf\/rnfn(riCMCMCMCMCMCMryC\IC\lCMCMCV!CM 

o\-=r oo a> onoo rHvoo-a-voHccorHococMvaao t^-vo 

vo nr-t (Tito f-c-vo r-c^t^-oo CTNO onirwo t^j~-oooooo 
o>a>o>QOfloaocococooocoooco o>o>o^o^o>ONO><7\a> 

HHrHiHrHrHHrHWiHrHHrHHfHiHHHrHi-IHH 

00 rHVD fno OM~-«3 t--tD0O OCVLT. O-a-OOOOCMtMCM 
o o ai c\ CT\OO a)cooooQoo<Dcr>CT>oc ooHrHHH 
oocno\a\moMTicr.criO>CTiCJNCT\oooooooo 

a. 
o 

a: 

w a. 

Ed 

w 
3 

CMCMHr-trHtHHr-iHHr ICMCMCMCMCMCMCMCM 

Ü w w s 
En 
b 

o 

we 
Ob 
D   • 
CJO 

K 

o 
W w 
\ 
EH ft. 

S    oo inf-co ^-vo■a■ cnrHoo inry o t^nnyj oj t-CM t~-rH < 
•B     ^r iniAir\ir\irMAirMn^3-.=,--a--3-rommcM oa r-i H o o M 
(i,     m m rn (io <n m ro ro rn oo en on rn rn rn rn rn ro oo rn rn rn w 

ix4              •    • •.*.  (Xt 
o       o o o o o o o o o o <r o o o o o o o o o o o 

iHcooo o\co POVD H cr\0OJ3-a' CMV^) o t^-vo t^-oooo ooo\ 
vo o lAL^r-rHvo o vo ontM crii-i cr»ona\vo mo CM onro < 

3:     onvo c^-oo CT>O o r-H o o o cr<a>t^M3a-oooooOfM CM CM H 
cu           W 

H rH rH H H CM CM CM CM (\J CM H rH H H H H H H H H H CU 
CMtMCMCMCMCMCMCMCJOJCMCMCMCMCMCMrvJCMCMCMCMCM 

oo cn ro on rn on ro rn ro on ro oo oo on oo rn oo oo oo m on oo 
o tno ir\0 mo ino mo ino cno ino ino mo uo M 
  2 

CM CM onond-ir min'jDua t~t--oooo o\c7\o o H H CM CM H 
(MCMCMrgtMCMOJCMCMCMCMfMCMCMOJCMOnOnOOOOOOOn 

« 



11-27 

H 
3 S3 
O. M 
Z tn 
M 

fe 
<o            o < 

M » 
H H 

>                3 

s 
J3 •r 

^H Ir. 

g X 
U 
U4 Ik. 
z:          o 
(d 
H g 
Id UJ p X < 
M Ix. 
O                   O 

» g 
o E t/J 
M Id o» 

b 
2 

ft. 
H H fc 
z O 
til • • 
M ••^T 
Q <21 < >J                 W 
cc. JO          TJ 3: 
a ? 

s HI                    3 
W   « 

D <c 
W, C5EH OT Z   > 
W <Id 
K K 
lb «» 

KEH O CT w< w        a ztco Z 
M wid<i: 
ce IdbiJ 

z td< 
M •»t<3 

a, 
cn 03 ►< •»            t. ) 
z 205 
o H W2 
H 
H ».OJ < OO«           c H 

J 

s -     RS 
OS K Jfo 
o UJ K 
o <<>H           E -♦ 

z 
SS J3 

Ü <OZ 
M EHMJd 
H 
t) ««H 
t-t »u m o id 
OS < a ^ KHK 

W P O 
z EH<K 
M Z      PC « Id ■• W w 
c/1 

S 
 B

Y
  

P
 

IT
H
 (

1)
 

H
O

LE
 I 

a ZÄQSK id 
y-i o     Oo       : 3 
03 H Z (i, < HO       O 
1H «:HiQ  • 

W «a; EH 00 td 
(C 1-1 Ü LO        S 

SSS« 
ü K K 

O O   O S 
EOO tn oB 
o Ix, 
tC K CO  ■" 
(i, W td <     0 -< 

z te H     < a 
Q W D W 
w W K a, 
^«EO 
<      Id i- Ä 
^ «0 CC    •      0 
3    &< o 
U tO        <M 
.4 Z O H 
< Hi M 
ObriE-'  II 

a, «s        >■ 1 
feOf   o 
o w w a. 

■« HOC-a- r-<o>COOOa>Cr\OxO»<T>0\OvC7\C\aiC\0\OOOOOa\0\0\OMJ\C7\C)CVi',n|«.rtCM>«<0.'^ia-tDOO 
OICMi-'.HrtCIOOOOOOOOOOOOOOMfHriiHrHOOOOOCHHHf-tfVIONOHlrtrHiHr-' 
f-tr^!-<fHrHrHrHr-lrHrtiHrHrtrir^<-lr^iHr-(rtiHrHrHrHrHi-(rHHrHrHHHj-«Hi-1riOfHHrHr-<rtiH 
ooooooooooooooooooooooooooooooooooooooooooo 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

ooooooooooooooooooooooooooooooooooooooooooc 
lAt^voao t^-a'oo« t^vrxc ifNror-ifycommr^?rir^o\fvrtfH\o^o t^-a\vovo ^«o ir\9^ n-sr mt~-oo O\<7N 

rHoo inru o <T\a>a}03a>OQeaooaoooccaoaoaooooocoo\o>a\aocoooCk<co<DO\o\0 curoovi><x>a\oro(n 
ooR0\a>0\oooocooscDa3aoaococooooo<X)aooc>coooa30ocooocoaoooaoaDcocoo\o\0\t~t~-t-t-ooooao 

<-4t^<\lr-t»-i^400\0'HrHr-(1HOrHrfiHi-I.Hi-)rgtMWt\)<Mr-trtt-)r1r-( rH «"JT f-r-tVOOiaOtMint-ntM 
Wrf^<OOOO0\OOOOOOOOOOOOOOOOOOO0OOOOOO»HHa>0\OOOrfrt 
HHr-4rHiHHr40'-lr-trHrt(-lrir-lfHf-l<-lp-if-(rHrHrHrHcHrtr-lt-(rHHlHHrti-lr1rtOOr<r-l.-HrHrt 
ooooooooooooooooooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooooooooooooooooooo 
oooooooooooooopoooooooocooooooooooooooooooo 
o\m^ oNfnocriONOOrHoooNOoooooi-ii-iwwtMooorHootMm^-roovHOMriairuosa« 
mmcyr-liHrHOOiHiHrtrHiHOiMrHrHiHrH^^rHr-lrH.H.-lr^iHrHrHr-lrHHrttMtMODONOOrHrHH 
r^r^^^i^Hr^r-*r^lHr^r^r^r^r^r^l-l^^l^l-^^^.^^-lr-l^^r-lr^r^^^•-l^^^^<^HHH^-IOO»^r^^-^p^r^ 
oooooooooooocoooooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooooooooooooooooooo 
^■sriHt—^rrotMCMonfnoommmmmmmro to JT ja-^ra-^mmmtotn mj» vof-f-tiriOrot-OM-ijriT 
O O O &\0\0\CT*&iO\0>i<y\&iO\0\0*0*iO\&\0*&\0\&iO)0\0\&\OSO\0\0\0\0\0\C*\0 oco CAo\o\o o o 
rtr-lrHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOrHi-IOOOOHHr-l 
OOOOOOOÜOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
ooooooooooooooooooooooooooooooooooooooooooo 

ooooooooooocooooooooooooooooooooooooooooooo 
u^!ru^inu>ir>inir\^ininu^u'\insninininu\in^inu%iniAin^ininioiriiAir»ir\u^inir\ir>^u>^inin 
ooocooooooooooooooooooooooooooooooooooooooo 
IdtdldblidldldtdldtdtdUltdtdtdldfdtdldtdtdtdtdtdtdtdtdldldtdldtdldldtdtdtdtdidfdldldtd 
f-HJ»VDOOtr>OfHrjryrrionirj-a-.a-^rjra-iT.iTCO(v)rnporornrofOcri ma- a- mvo tTiCMcno^i-toa-cn 
t-oooooo oo oo o\O^O^O^O^O^O^O^o^o^o^o^O^ONC^C^^CT^CT^CT^o^O^O^ ONCn^CT^ONt^^ON-sr a* -a- ^ a- 00 CO 
HHrHr-lrHHrSrHriH>-lrHrHHfH<HrHHrHiHrHi-lrHrHrHi-lr-fr-<iHfHrHHr-lHHHCUt\irytMtMfUCy 

ooooooooooooooooooooooooooooooooooooooooooo 

a-oovoja-moc^KjMHCMJa-romcvi nnfommnin'o t-vovo comm-a- cirac-CMOOrHirvocM-^-pit^i-icrv 
C\J r-i O O>00 OO t^ t-OO OOCOOOOOOOCDOOCOCOOOCOOOCOCOOOOOCOOOOOOOCOCOCDcr.O\H(MinCriOrHr-IO-irj 
OJCMCyi-lrtHHi-lrHrHiHiHrHrHrti-HrH^(HrHHi-IHi-<iHiHpHi-iHHHi-4rHH{\jru^rH<\l(Mt\|f\J(\. 

OOOOOOOOOOOOOOOOO" OOOOOOOOOOOOOOOOO JOOOOOOO 

r-o^tnt—oc\jvot^cricrirHcytnro(ncn<nrnpO!\jrHoooooNO>t7>OrHt\iJa,voe~-t~-ooo ONVO I-IOO in 

t-a\o\oorHi-irHrii-ii-ic\jfviajrut\jnirj<M<MtMCMoj(Mojnir-irtrH(vcMr\itMCM<\i fia- ina-a-a- ru cy 
VO\JO\O t^t-t^f-c^t^t—i^r-t^t~r-h-t^t—r-t--r- t^c~t^t—^r-r-t—i^t^h-t--t-r-i?-oooooooooooo(X> 

H invooo CNOCr-ic^rucyrommmmmmnmroronc^AjtMryrvjCMr^ mroroa-a- t-irivou> ma- o o 

nroromcoa-a-~a-a-a-a-a--a-a-iri3p-a-a-a-a-a-ira-a-a-a-a-a-a-a-^ra-a-a-a-i~^t^^h-i— t- 
ON(^0\ON(^t^C^t7iCy%ONCNChCTtcy»<T»t>iO>CTvCTit7>t7NO>0^0>0,iC7NC7>0\O^^ONQ\C7\0>C>Cr»a\(7\Cr»CT\ONO\tJ\ 
a-a-a-a-a-a-i3a--»a-a-a-a'a-a-^ra'a-a--a-iTa'.5ra--a-a,a'a-a'a-a'a-a-a-a,a-a-a'.sra-a-a-a- 

m c^-OMH oj ro ooa- mirMrwovovo t^ h-isDvisvovoKovovovovou? irMnmvov£»vo t*-t^co HoMoONt^rüf-t 
VOy3VOt-t~-f-t-t^^f-t^t^t^h-t~-t^r~t-t^i~t~t--Nt-t—t--t^-e~t-t~-t-C~-h-t-~^ODrMC\JC\lrHr-<iHH 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOHHHHHrHrH 
ooooooooooooooooooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooooooooooooooooooo 
t\iHo>mojONint^p>öocMuD^oHMOooo<x3voa'rocnrO(HHMoou\ooc\jvDoroa-ot--ooit--r-i 

co H iMa- ininvo t~-t--oooo(0 0o o- o> c» a> cr« cr» CT<OO oo oo co oo oo oo oo oo oo on oo ONOMS CMOO ü>OOOOVO com 
na-a-a-a-a,a-a^a-a-a'a-a-a-a-.=ra-a'a'a^a-a'a'a-a-a-a,a-a-a-a-.=Ta-a-Lr\irit--[^b-t--t^-t^t^ 
HHHrtr-li-I^IHrHHrHHrHrHrHHrHrSrHiHHiHHiHf-lrHHrHi-IHpHHrHHHHHHHHHi-lH 

VD«3 c-o invo cj\vooo t—H .-I CMOO mvooocooooo inovo t^-^-f-ooa" m—m^ra- ri o ir\vo e~-\D t^oo rt t-- 
ooointMcM~-inmc\jHHo osoo oo oo oo oo oo oo O^OOOOOHHHOO a>co f~vo cMnona-\r3CMy>o 
oo oo t-c-vou5\ou3vovou3U3 mmirMTMAiAUMninvovo^voiJD'.ovovovD inini/Mna- f-t-^-t—t^-oo en 
HHrHrHHHHrtrHHHi-tiHHi-IH'Hi-lr-IHrlHHiHi-IHrHr-lrHHHl-IHi-lrHHoaOOOOO 
t>jc\jojc\icMCNc\ie\ic\jr>jrvjc\injCMC\ic\iojc\irvjcviruc\Jc\jc\iryc\ic\lc\jfMCMC\iajc\iojCMC\jcMC\it\ic\ic\jc\ic\i 

ooirvmaxmrjHt—C\JVD<%J>X>HCOU5 t~-cooooooo c\j ina>a o om-a- ^oo^^~c\lvoooH^OHe\l^4^voo■a•^^^ 
a\a- HOO t—vo infnmrvjcviHrHoooooooHHr-Tjaji-icMojcxjr-lrHHO ONtJMr\t-vD>£) j^-ox^ia' 
t--C^-t^VDvrivo\Clvo\OVO>i)U3VO\Dy3VOVO^O\DVDVO^OVO\OVOVOVX)vOV£lvoy3VOU3 lAintAHHHHHCMCM 
mPommonromcncviromcnfncncnmmtTimoomoommootnporoco 

i—oooooo t--t—t-ODOOOOOOOD oo oo cno>ONO>criOiaDoüoooooocoa303oooo<K)o>cr>oo(Mt—ccimwJvoiAiA 
oooooooooooooooooooaooaaooooooooor-iHr-ir-ic\ic\ic\ir\if\)ca 
ooooooooooooooooooaoooooooooooooooooaoooooo 

ooooooooooooooooaooooaooooooooooooaoooooooo 
-T fnoocMoocoa-oninog mcooo CM o oo oo oo oo o moo ^t^-f-oc3ar-tMMfni--o f-oo o UMTMOOVO 
a'CMt^-rHa-vot—OrHcoooa- ininyavo UMAinirvma- mmrnmonoi mma' irwo t—o>ix)a-oc\o cy ^-t\i o> 
OHr-(c\ic\it%joo(^mf^'^fn(riooropnmmro<^m(nrooToomoci(rirnrnoocn<n<viroa' irvifMrvLTv^r 00f\i 

EC 
o 

o 

W tn 
O ft. 
D   • 

w o 

o 

l<H(HrHHHi-(i-lrHrHi-IHrHrHrHi l|-^^^r^Hr^^^r^Hr^^^r^^^r^^^HHH^^r^r^tM<Mr^JfMt\IOJe\l 

(Tifncr-.fomc'-icnonoommporoootnrntnc^romrarornmmrn^rarooocncvic^ 
iAoir\oirvomotAotfvomoJ^otfNomoinomoir, oinotAomomOtAoinoinomoiA 

H CM ru (o ma- a- ITVLA^O^D r-f-oooo o% üMJ o rH rf CM o.' mooa-a- ITUAVOUJ t^-r-oooo ONCTIOOHIHCMCM 
rHrHiHr-(^H.HrHMrHrHHH>Hr^i-HrHryfM'rMCM<Majr\lCMCMCMCMigWWCMCMe\JCM<NlfMf,OrO0nrr|fn(n 



11-23 

TABLE 5.1 

FLOW CASE:  ZPG - ZERO PRESSURE GRADIENT 

TRAVERSE Tl AT X - 11.62 INS.; (RUN HO. 9527) 

Stagnation Pressure,  PQ        - 168.9 PSIA 
Stagnation Temp   -ature, TQ ■ 537.0 0R 

LOCAL MAINSTREAM CONDITIONS 

ME - 3.926        ; 

PE ('PW) " 1-228 PSIA; 

6995 • 0.1566 IN. 

INTEGRAL QUANTITIES 

Displacement Thickness, 
Momentum Thickness, 
Momentum Thickness 
Reynolds Number 
Compressible Shape Factor, H  ■ 
Incompressible Velocity 
Shape Factor 
Shape Parameter, 
Entrainment Parameter, 

Ug ■ 2207.0 PT/SEC; PE - 0.00078 3LUQS/CU.FT. 

Tv, - 131-5 0R 

CF' WILSON 
CF' SOMMER/SHORT 

PROFILE DATA 

y-INS. M/Mg u/uE P/PE 

0.0090 0.3382 0.5661 0.3561 
0.0120 0.1125 0.6516 0.3970 
0.01'*9 0.1135 0.6873 0.1162 
0.0178 0.1685 0.7121 0.1328 
0.0211 0.1959 0.7375 0.1520 
0.02^13 0.5130 0.7526 0.1615 
0.0276 0.5301 0.7673 0.1778 
0.0301 0.5506 0.7836 0.1936 
0.0331 0.5661 0.7956 0.5061 
0.0363 0.5756 0.8027 0.5111 
0.0386 0.5896 0.8130 0.5260 
0.0125 0.5973 0.8181 0.5326 
0.0155 0.6031 0.8226 0.5378 
0.0183 0.6123 0.8288 0.5158 
0.0511 0.6226 0.8357 0.5550 
0.0538 0.6312 0.8132 0.5656 
0.0566 0.6169 0.8513 0.5771 
0.0598 0.6608 0.8598 0.5906 
0.0626 0.6771 0.8691 0.6061 
0.0658 0.6969 0.8806 0.6262 
0.0686 0.7136 0.8896 0.6131 
0.0713 0.7337 0.9000 0.6611 
0.0711 0.7520 0.9090 0.6812 
0.0778 0.7722 0.9185 0.7066 
0.0796 0.7855 0.9216 0.7217 
0.0833 0,8026 0.9321 0.7111 
0.0861 0.8113 0.9370 0.7552 
0.0888 0.8221 0.9102 0.7611 

5» 
e 

- 0.0602 IN. 
- 0,0C79 IN. 

^ • 0.1037«10» 

H - 7.615 

FT 

«1 

- 1.537 

- 1.365 
- 23.78 

- 0.00131 

- 0.00116 

y-INS. M/M. U/UE P/P. 

0.0916 0.8298 0.9133 0.7736 
0.0918 0.8319 0.9112 0.7763 
0.0980 0.8363 0.9159 0.7815 
0.1008 0.8128 0.9185 O.789I 
0.1010 0.8513 0.Q518 0.7999 
0.1063 0.3587 0.9516 0.8092 
0.1095 0.8671 0.9577 0.8197 
0.1155 0.8878 0.9651 0.8160 
0.1211 0.9019 0.9710 0.8681 
0.1270 0.9218 0.9766 0.8908 
0.1330 0.9383 0.9819 0.9131 
0.1385 0,9537 0.9866 0.9312 
O.llll 0.9669 0.9906 0.9526 
0.1505 O.97I3 0.9927 0.9631 
0.1565 0.9817 0.9919 0.9736 
0.1620 0.9882 0.9967 0.9829 
0.1680 0,9927 0.9980 0.9891 
0.1710 0,9911 0.9983 0.9911 
0.1791 0.9959 0.9988 0.9910 
0.1851 u,9968 0,9991 0.9953 
0.1906 0.9977 0.9993 0.9966 
0.1961 0.9986 0.9996 0.9979 
0.2025 0.9990 0.9997 0.9985 
0.2081 0.9990 0.9997 0.9985 
0.2115 0.9990 0.9997 0.9985 
0.2200 0,9990 0.9997 0.9985 
0.2260 0.9990 0.9997 3.9985 
0.2316 0.9999 0.9999 0.9998 
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FLOW CASE:     ZPO 

TRAVERS":    T2    AT 

TABLE 5.2 

^ERO PRESSURE GRADIENT 

 X » 16.62 INS.; (RUN NO. ^531) 

Stagnation Pressure, P0   » 
Stagnation Temperature, TQ ■ 

LOCAL MAINSTREAM CONDITIONS 

«E 
P 

6 

PE (.Pw) 

'3.909       ; 

1.257 P3IA; 

0.2160 IN. 

168.9 PSIA 
537.0 0R 

220 .6 FT/SECj 

132.1 0R 

0.00080 SLUGS/CÜ.FT. 

995 

INTEGRAL QUANTITIES 

Displacement Thickness, 
homentum Thickness, 
Momentum Thlcknesc 
Reynolds Numbe*- 
Compressible Shape Factor, H 
Incompressible Velocity   Hi 
Shape Factor _12 
Shape Parameter,        H 
Entrainment Parameter,    H, 

e 

CF' WILSON 

cp. SOMMER/SHORT 
PROFILE DATA 

y-INS M/Mg u/uE P/PE 

0.0090 0.33t7 0,5577 0,3601 
0.0125 0,3820 0,6159 0.3845 
0.0159 0.4184 0,6570 0,4055 
0.0183 0.4378 0.6775 0.4175 
0.0215 0.4584 0,6983 0.4308 
0.0239 0,4780 0.7172 0.4440 
0.0267 0.4875 0.7261 0.4506 
0.029'* 0.4991 0,7367 0.4589 
0.0322 0.5082 0.7448 0.U655 
0.0350 0.5189 0.7541 0.4734 
0.0373 0.5224 0.7571 0.4760 
0.0^05 0.5316 0.7648 0.4830 
0.0432 0.5401 0.771B 0.4896 
0.0455 0.5468 0.7773 0.4948 
0.0^88 0.5551 0.7839 0.5014 
0.0511 0.5633 0.79C2 0.5080 
0.0538 0.5697 0.7955 0.5133 
0.0566 O.3808 0.8035 0,5225 
0.0589 0.5886 0.8092 0.5291 
0.0621 0.5963 0.8147 0.5356 
0.064H 0.6084 0.8232 0.5461 
0.0676 0.620T 0.8316 0.5570 
0.0699 0.6280 0.8365 O.5636 
0,0727 0.6367 0.8421 0.5715 
0.0750 0.6480 0.8494 0,5820 
0.07-32 0.6592 O.6563 0.5925 
0.0805 0.6660 O.8605 O.5990 
0.0833 0,6728 0.8645 0,6056 
0.0856 0.6796 0.8685 0,6122 
0.0888 O.6863 0.8724 0.6187 
0.0911 0.6925 Ü.875S 0,6249 
0.09^ 0.7003 0.8803 0.6328 
0.0967 0.7081 0.8846 0.6407 
0.1003 0.7145 0.8880 0.6472 
0.1031 0.7234 0,8927 0.6564 

0,0853 IN. 
•> 0,0116 IN. 

- 0.1496«10» 

- 7.332 
- 1.454 

- 1,328 
» 18.49 

0.00126 

0.00110 

y-INS. M/Mj. u/u,. P/P* 

0.1059 0,7296 O.896O 0.6630 
0.1086 0,7383 0.9005 0.6722 
0.1118 0.7457 0.9042 0.6800 
0.1141 0.7542 0.9083 0.6892 
0.1174 0.7602 0.9113 0.6958 
0.1201 0.7673 0.9147 0.7036 
0.1257 0.7814 0.9212 0.7194 
0.1316 0.7975 0.9285 0.7377 
0.1367 0.8100 0.9339 0.7521 
0.1418 0.8267 0.9409 0.7718 
0.1468 0.8430 0.9475 0.7915 
0.1533 0.8587 0.9536 0.8108 
0.1593 0.8745 0.9596 0.8304 
0.1648 0.8889 0.9648 0.8487 
0.1703 0.8991 0.9684 0.8618 
0,1758 0.9101 0.9722 0.8763 
0,1818 0.9270 0.9778 0.8985 
0,1864 0.9367 0.9810 0.9116 
0,1915 0.9464 0.9841 0.9247 
0,1970 0.9583 0.9879 0.9418 
0,2016 0.9654 0.9899 0.9509 
0.2076 0.9745 0.9926 0.9637 
0.2131 0.9791 0.9940 0.9702 
0.2187 0.9844 0.9955 0.9777 
0.2237 O.9881 0.9966 0.9830 
0.2293 0.9909 0.9974 0.9859 
0.2352' 0.9927 0.9979 0.9895 
0.2408 0,9943 0.9984 0.9918 
0,2463 0.9961 0.9989 0.9944 
0,2518 0,9970 0.9991 0.9957 
0,2569 0.9980 0.9994 0.9970 
0,2629 0.9986 0.9996 0.9980 
0.2684 0,9986 0.9996 0.9980 
0.2734 0.9990 0.9997 0.9986 
0,2790 0,9990 0.9997 0.9986 
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TABLE 5.3 

FLOW CASE:  ZPfl - ZERO PRESSURE GRADIENT 

TRAVERSE T^ AT 
JL-^-jo.62 INS.; cmm NO. 

Stagnatici Pressure, P0 
Stagnation Temperature, T0 • 

LOCAL MAINSTREAM CQNDTTTnus 

M,    -  3.901 •     u_ . 

W= 

168.q psiA 
537.Ö eR 

-25311 

P"  («P„)  - 1.270  PSIA; 

r,E 
PE 
«g95 - 0.2615 IN. 

INTEGRAL QUANTITIES 

Displacement Thickness, 6* 
Momentum Thickness, 6 
Momentum Thickness B 
Reynolds Number 9 

Compressible Shape Factor, H 

H 

2203.5 FT/SEC; 

132.8 0R 
PE - 0.00080 CLUGS/CU.FT. 

Incompressible Velocity 
Shape Factor 
Shape Parameter, 
Entrainment Parameter, 

Cp, WILSON 

Cp, SOMMER/SHORT 

PROFILE DATA 

IT 
12 

y-INS 

0.0090 
0.0135 
0.0164 
0.0187 
0.0215 
0.0239 
0.0267 
0.0299 
0.0322 
0.0345 
0,0368 
0.0396 
o.oum 
0.01*1*2 
0,0465 
O.0407 
0.0525 
0.0548 
0.0580 
0.0607 
0.0635 
0,0663 
0,0681 
0,0713 
0,0732 
0,0759 
0.0792 
0,0615 
0,0838 
0,0865 
0,0893 
0.0916 
0.0944 
0.0971 
0.0994 
0.1054 
0.1114 
0.11,6q 

M/ME 

0.3239 
0,3632 
0.3957 
0.4126 
0,4348 
0.4517 
0,4724 
0.4898 
0.5011 
0,5103 
0,5247 
0,5312 
0.5399 
0,5462 
0.5509 
0,5559 
0,5609 
0.5658 
0.5691 
0,5756 
0,5820 
0,5914 
0,6038 
0,6099 
0,6205 
0,6245 
0.6334 
0,6421 
0.64f!t 
0,6521 
0.6577 
0 6633 
0,6661 
0,6703 
0.6758 
0.6853 
0.6943 
0,7062 

u/uE 

0.5407 
0.5906 
0.6289 
0.6479 
0.6716 
0.6889 
0.7093 
0.7257 
0.7360 
0.7442 
0.7566 
0.7621 
0.7693 
0.7745 
0.7782 
0.7322 
0.7361 
0.7900 
0.7925 
0.7974 
0.8022 
0.8092 
0.8180 
0.8223 
0,8295 
O.8323 
0,8381 
0,8438 
0,8466 
0,8502 
0,8537 
0,8572 
0.8588 
0.8614 
0.8646 
0,8702 
0,8754 
0,8821 

- 0.1006 If}. 
- 0.0141 IN. 

- O.^SS'lO» 

- 7.154 

- 1.427 

- 1.312 
- 13.92 

■ 0.001^3 

- 0.00107 

P/PE 

0,3587 
0.3781 
0.3957 
0,4055 
0,4190 
0.4297 
0.4434 
0.4554 
0,4634 
0.4701 
0,4807 
0.4857 
0.4924 
0.4973 
0.5009 
0,5049 
0.5089 
0.5129 
C.:ii56 
0.5209 
0.5262 
0.5341 
0.5448 
0.5501 
0.5594 
0.5630 
0.5709 
0.5'89 
O.5b.l0 
0.5862 
0.5935 
0,5988 
0,6014 
0.6054 
0,6107 
0.6200 
0,6289 
0,6408 

0, 
0. 
0, 
0, 
0, 
0. 
0. 

y-INS 

0.1220 
0.1275 
0.1330 
0.1376 
.1422 
.1468 
.1514 
.1574 
.1630 
.1680 
.1731 

0.1781 
0.1827 
0.1878 
0.1929 
0.1984 
0.2030 
0.2095 
0.2143 
0.2196 
0.2246 
0.2297 
0.2352 
0.2403 
0.2454 
0.2504 
0.2550 
0.2615 
0.2665 
0.2716 
0.2771 
0.2822 
0.2873 
0.2923 
0.2969 
0.3025 
0,3066 

M/ME 

0.7179 
0.7319 
0.7416 
0.7524 
0,7645 
0.7742 
0.7850 
0.7977 
0,8065 
0.8210 
0.8358 
0.8457 
0.8565 
0.8680 
0,8688 
0,8769 
0.8967 
0,9046 
0.9145 
0-9275 
0.9374 
0,9460 
0.9547 
0.9615 
0.9681 
0.9748 
0.9786 
0.9821 
0.984q 
0.9896 
0.9940 
.9949 
• 9965 

0.9972 
0.9961 
0.9990 
0.9999 

0. 
0. 

u/uE 

0.8885 
0.8959 
0,9009 
0.9063 
0.9122 
0.9168 
0.9223 
0.9276 
0.9315 
0.9377 
0.9439 
0.9478 
0.9521 
0.9565 
0.9568 
0.9599 
0.9671 
0.9699 
0.9733 
0.9777 
O.9809 
0.9837 
O.9865 
O.9886 
0.9906 
0.9926 
0.9937 
0,9948 
0.9956 
0.9970 
0.9982 
0.9985 
0.9990 
0.5992 
0,?994 
0.9997 
0.9999 

0, 
0. 
0, 

P/PE 

0.6527 
0.6673 
0,6775 
0.6' 1 
0.7 3 
0.71^9 
0.7261 
0.7394 
0.7496 
0.7664 
0.7840 

• 7959 
.8091 
• 8233 

0,8243 
0.8345 
0,8596 
0,8698 
0,8827 
0,8999 
0.9131 
0.9246 
0.9365 
0.9458 
0.9550 
0,9643 
0,9695 
0.9745 
0.9785 
0.9851 
0.9913 
0.9927 
0.9950 
0.9959 
0.9972 
0.9986 
0.9999 
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TABLE 5 A 

FLOW CASE; ZPG - ZERO PRESSURE ORADIEMT 

TRAVERSE    Tl    AT X    - 22.62 IMS. 5   (RUK NO.  95*0) 

Stagnation Pressure, PQ        - 168.9 PSIA 
Stagnation Temperature, TQ • 537.0 0R 

LOCAL MAIMSTREAM CONDITIONS 

Mg - 3.505        ;  u* - 2204.1 PT/SEC; 
PE - 0.00000 SLUQS/C'J.^. 

PE '■'^ 
1.263 PSIA; 

-"o.?900 I«. 

132.6 0R 

PROFILE DATA 

y-INS. 

0.0090 
0.0131» 
0.016M 
0.0193 
0.0228 
0.0257 
0.0298 
0.0321 
0.0355 
0.0378 
0.0413 
0.0tU2 
0.0476 
0.0511 
0,0534 
0.0568 
0.0597 
C.0626 
0.0660 
0.0695 
0.0724 
0.0758 
0.0781 

.0816 

.0845 

.0879 

.0908 
0.0942 
0.0971 
0.1000 
0.1040 
0.1063 
0.1098 
0.1127 
0.1161 
0.1184 
0.1224 
0.1259 
0.1288 
0.1351 

0, 
0. 
0. 
0. 

0, 
0. 
0. 
0, 
0. 

M/ME 

0.3522 
0.3877 
0.4147 
0.4260 
0.4450 
0.4586 
0.4719 
0.4790 
.4861 
,4967 
.5053 
5138 
.5191 

0.5261 
0.5347 
0.5397 
0.5481 
0.5563 
0.5628 
O.5693 
0.5788 
0.5897 
0.5973 
0.6079 
0.6168 
0.6284 
0.6342 
0.5413 
0.6483 
0.6525 
0.6563 
0.6597 
0.6652 
0.6689 
0.6743 
0.6823 
0.6850 
0.6515 
0.6968 
0.7084 

u/uE 

0.5799 
0.6226 
0.6529 
0.6652 
0.6849 
O.6986 
0.7115 
0.7183 
0.7249 
0.7346 
0.7423 
0.7497 
0.75^3 
0.7602 
0.767« 
0.7715 
0.7783 
0.7848 
0.7899 
0.7918 
0.8020 
0.8100 
0.8154 
0.8229 
0.8290 
0.8366 
0.8405 
0.8451 
0.8496 
0.8522 
0.8545 
0.8566 
0.8600 
0.8622 
0.8654 
0.8701 
0.8716 
0.8751 
0.8783 
0.8847 

6» 
6 

0995 
INTEGRAL QUANTITIES 

Diaplacement Thickness, 
Momentum Thickness, 
Momentum Thickness       R 
Reynolds Number 8 
Compressible Shape Factor, H 
Incompressible Velocity   -1 
Shape Factor 
S^.ape Parameter, 
Entralnment Parameter, 

CF, WILSON 

Cw, SOMMER/SHORT 

n12 
IT 
H, 

- 0.1129 IN- 
• 0.0156 IN. 

- 0.2017'10* 

- 7.226 

- i.396 

- 1.298 
- 17.60 

- 0.00119 

• 0.00103 

P/PE 

0.3687 
0.3877 
0.4033 
0.4101 
0.4220 
0.4309 
0.4398 
0.4447 
0.4496 
0.4572 
0.4634 
0.4696 
0.4735 
0.4788 
'J.4853 
0.4893 
0.4958 
0.5024 
0.5076 
0.5129 
0.3207 
0.5299 
0.5364 
0.5156 
0.5535 
0.5639 
0.5692 
0.5757 
0.5822 
0.5862 
0.5897 
0.5929 
0.5982 
0.6017 
0.6070 
0.6148 
0.6174 
0.6240 
0.62^2 
0.6410 

y-INS. 

0.1409 
0.1472 
0.1535 
0.1604 
0.1656 
0.1719 
0.1777 
0.1846 
0.1909 
0.1967 
0.2036 
0.2093 
0.2151 
0.2208 
0.2272 
0.2329 
0.2393 
0.^50 
0.rfl4 
0.2-533 
0.2M6 
0.2709 
0.2772 
0.2836 
0.289: 
0.295i 
0.3014 
0.3072 
0.3135 
0.3193 
0.3256 

0.3388 
0.3452 
0.3509 
0.3572 
0.3636 
0.3693 
0.3757 

M/ME 

0.7223 
0.7344 
0.7155 
0.7563 
0.7706 
0.7831 
0.7971 
0.8115 
0.8258 
0.8316 
0.8196 
0.8613 
0.8738 
0.8859 
0.8978 
0 9105 
0.9211 
0.9321 
0.9118 
0.9511 
0.9596 
0.9681 
0.9716 
0.9799 
0.9827 
0.9873 
0.9900 
0.9528 
0.9937 
0.9952 
0.9961 
0.9971 
0.9977 
0.9986 
0.99?" 
0.991. 
0.9995 
0.9995 
0.9999 

u/uE 

0.8922 
0.8985 
0.9011 
0,9091 
0.9162 
0.9221 
0.9283 
0.9315 
O.9I06 
0.9111 
0.9501 
0.9516 
0.9593 
0.9637 
0.9679 
0.9723 
0.9760 
0.9795 
0.9826 
0.9356 
0.9882 
0.9907 
0.9927 
0.9912 
0.9950 
0.9963 
0.9971 
0.9979 
0.9982 
0.9986 
0.9989 
0.9991 
0.9993 
0.9996 
0.9998 
0.9998 
0.9998 
0.9998 
0.9999 

P/PE 

0.6553 
0.6680 
0.6798 
0.6915 
0.7072 
0.7216 
0.7372 
0.7539 
0.7708 
0.7813 
0.7995 
0.8139 
0,8295 
0.8118 
0.8602 
0.8768 
0.8911 
0.9055 
0.9185 
0.9316 
0.9129 
0.9517 
0.9638 
0.9713 
0.9752 
0.9817 
0.9856 
0.9895 
0.9909 
0.9931 
0.9911 
0.9957 
0.9967 
0.9980 
0.9993 
0.9993 
0.9993 
0.9993 
0.9999 
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TABLE 5.5 

FLOW CASE:  ZPG - ZERO FRESSURS GRAD mr 

7flAVER3L T5 AT X - 26.62 WS.; (RUN NO. 9511) 

Stagnation Pressure, PQ   ■ l6B.^  ?SIA 
Stagnation Tonperature, TQ *  537.O "R 

LOCAL ^AiWSTREAM CONDITIONS 

\    •     3-922 ; 
F.   («Pw)   •  1,236  PSIA; 

6gg5  -  0.3283  IN. 

IHrEGRAL QUANTITIES 

Displacement Thlckn^s-:, 
r.-rcr.tUH Thickness, 
i^cmentum Thickness 
Reynolds Number 
Compressible Shape Factor, H 
Incompressible Velocity 
Shape Factor 
Shape Parameter, 
Er.trainment Parameter, 

C,,,  WILSON 

Ug «  2206,3 FT, SEC;     pE » 0.00079 SLUGS/CU.PT. 
131.8 0R 

Cp. SOMHER/SHORT 

PROPII.t DATA 

y-IKS. M/Mj. u/uE P/PE 

0.0090 0.3091 0,5281 0.3120 
0.0109 0.3596 0.5938 0,3666 
0.0116 0.3911 0.6316 0.3810 
0.0181 0,1119 0.6515 0.3959 
0.0211 0.1219 0.6686 0.1035 
0.0216 0,4138 0.6881 0.1153 
0.0281 0,1199 0,6913 0.1197 
0.0309 0,1578 0,7022 0.1250 
0.0350 0,1696 0,7136 0.1329 
0.0373 0,1329 0,7261 0.1121 
0.0113 0,1921 0,7316 0.1187 
0.0112 0,5007 0.7123 0.1519 
0.0176 0,5061 0,7171 0.1589 
0.0511 0,5111 0,7517 0.1628 
0.0539 0.5185 0.7577 0.1681 
0.0580 0.5236 0.7621 0.17^0 
0.0609 0.5305 0.7678 0.1772 
0,0613 0.5106 0.7761 0.1851 
0.0678 0.5189 0.7827 0.1917 
0.0712 0.5570 0.7891 0,1982 
0.0752 0.5650 0.7952 0.5018 
0.0781 0.5730 0.8012 0.5113 
0.0816 0.5838 0.8092 0.5205 
0.0815 0.5900 0.8136 0.5257 
0.0885 0.5976 0.8190 0.5323 
0.0911 0.6021 0.8221 0.5362 
0.0912 0.6065 0.8252 0.5101 
0.0983 0.6151 0.8312 0.5180 
Ü.1011 O.6183 0.8331 0.5506 
0,1052 0.6255 0.8379 0.5571 
0.1127 0.6311 0.8135 0.5650 
0.1190 0.6139 0.8I97 0.5711 
0.1259 0,6577 0.8582 0.5872 
0.1328 0.6662 0,8615 0.5973 
0.1397 0,6802 0.8715 0.6091 
0.1160 0,6891 0.8767 a,61^2 
0.1529 0,7010 0.8831 cfi'DC 
0.1593 0,7150 0.8906 0.6IU 

e 
-  0.1310  IN. 
» 0.0177 IN. 

Re -  0.2358-101 

H - 7,111 

H 
Hl 

- 1.387 

- 1.292 
- 16.10 

« 0.00111 

- 0.00099 

y-IHS. 

0,1667 
0,1731 
0.1791 
0,1863 
0.1926 
0.1990 
0.2070 
0.2139 
0.2197 
0.2260 
0.2318 
0.2381 
0.2150 
.2525 
.2588 
.2657 
.2778 

0.2790 
0.2853 
0.2922 
0.2991 
0.3051 
0.3121 
0.3187 
0.3256 
0.3331 
0.3391 
0.3163 
0.3532 
0.3595 
0.3659 
0.3722 
0.3791 
0.3860 
0.3921 
0.3987 
0.1050 

0. 
0. 
0. 
0. 

0.7216 
0.7369 
0.7190 
0.7609 
0.7723 
0.7819 
0.7985 
0.8097 
0,8226 
O.8366 
0.8162 
0.8581 
0.8685 
0.8795 
0.8901 
0.9021 
0.9103 
0.9230 
0.9327 
0,9111 
0.9521 
0,9608 
0.9680 
0,9726 
0,9791 
0.9836 
0.9873 
0.9909 
0.9927 
0,9915 
0,9963 
0.9970 
0.9980 
0.9987 
0.9991 
0.9991 
0.9998 

u/uE 

0.8956 
0.9019 
0.9078 
0.9135 
0.9188 
0.9215 
0.9305 
0.9352 
0.9106 
0.9162 
0.9199 
0.9515 
0.9583 
0.9623 
0.9661 
0.9703 
0.9729 
0.9771 
0.9802 
0.9838 
0.9863 
0.9888 
0.9909 
0.9923 
0.9911 
0.9951 
0.9961 
0.9975 
0.9980 
0.9985 

9989 
9991 
S991 
9996 
9993 
9998 

0,9999 

P/PE 

0.6515 
0.6675 
0.6806 
0.6937 
0.7061 
0,7207 
0.7361 
0.7l9l 
0.7617 
0.7817 
0.7931 
0.8082 
0.8212 
0.8352 
0.8192 
0.8619 
0.8753 
0.8923 
0.9053 
0.9210 
0.9321 
0.9111 
0.9512 
0.9607 
0.9698 
0.9763 
0,9816 
0.9868 
0.9891 
0.9920 
0.9916 
0.9956 
0.9971 
0.9981 
0.9990 
0.9990 
0.3996 
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PLOK CASE: 

'lülAVERSE    T6    AT 

TABLE 5.6 

ZfG  - ZERO PRESSURE GHAPIENT 

X » 31.62 IMS.; (RUN NO. 95*8) 

Stagnation Pressure.  P0        -  156.9 PSIA 
^^cienatlon Temperature, TQ » 537.0 0R 

ME " 3.90S 

LOCAL KAIHSTREAf' CONDITIONS 

uE » 2203.t FT/SEC; 

Tg » 132.5 0R 

995 ' " "'"'  "' 

INTEGRAL QUANTITIES 

PE (-Pw) 1.270 PSIA; 

» 0.3653 IN. 

PE - 0.00080 SLUCS/CU.PT. 

5« 
e 
R 

Displacement Thickness, 
Momentum Thickness, 
Momentum Thickness 
Reynolds Number "8 
Compressible Shape Factor, H 
Incompressible Velocity 
Shape Factor 
Shape Parameter, 
Entralnrosnt Parameter, 

CF, WILSON 

CF, SOMMt.</SH0RT 

PROFILE DATA 

y-INS. 

.0090 

.0103 

.01ÜO 

.0170 
0.0205 
0.0210 
0.0275 
0.030H 
O-OSH 
0,0367 
0.OlOl 
0.0436 
0.0470 
0.0505 
0.0534 
0.0563 
0.0597 
0.0637 
0.0660 
0.0706 
0.0735 
0.0770 
0.0804 
0.0833 
0.0868 
0.0902 
0.0937 
0.0965 
0.0994 
0.1029 
0.1063 
0.1092 
0.1127 
0.U61 
0.1196 
0.1270 
0.1339 
0.1403 
0.1460 

0, 
0. 
0. 
0. 
0, 

M/ME 

0,3321 
0,3601 
0.3795 
0.3899 
0.4019 
0.4155 
0.4254 
0.438/ 

.4459 

.4542 

.4633 

.4724 

.4819 
0.4884 
0.4995 
0.5058 
0.5104 
0.5166 
0.5271 
0,5316 
0.53.1 
0.5486 
0.5554 
0.5638 
0,5734 
0.5789 
0.5870 
0.5963 
0.6041 
0.6080 
0.6157 
0.6195 
0.6233 
0.6270 
0.6308 
0.6382 
0.6479 
0.6528 
0.6647 

u/uE 

0.5741 
0.6093 
0,6325 
0,6445 
0.6580 
0,6728 
0.6833 
0,6970 
0.7042 
0.7123 
0.7202 
0,7297 
0.7384 
0.7442 
0,75*1 
0.7594 
0.7634 
0.7685 
0,7772 
0,7807 
0.7851 
0.7941 
0.7992 
0,8054 
0.8125 
0.8163 
0.8220 
0.8284 
0..336 
0.8362 
0.8412 
ü.8436 
0.846U 
0,8484 
0,8507 
0.8552 
0.8611 
0.8639 
0.8708 

- 0.1446 IN. 
« 0.0160 IN. 

- 0.2971'105 

- 8.025 
H12  "  1-366 

H      « 1.276 
H, 17.17 

0.00104 

0.00090 

P/PE 

0,3347 
0,3491 
0,3599 
0,3658 
0.3730 
0,3813 
0.3875 
0.3961 
0.4008 
0.4064 
0.4120 
0,4191 
.4258 
.4305 
,4388 
.W35 
,4470 
.4517 
.4599 

0.4635 
0,4678 
0,4772 
0,4828 
0.4898 
0.4981 
0.5028 
0,5098 
Ü.5180 
0,5251 
0.5286 
0.5356 
0,5391 
O.5427 
0.5462 
0.5497 
0.5567 
0,5661 
0.5708 
0.5825 

y-INS. 

0.1541 
0,1598 
0,1667 
0,1725 
0,1794 
0.1857 
0.1926 
0.1996 
0.2059 
0.2128 
0.2191 
0.2255 
0.2318 
0.2381 
0,2444 
0,2519 
0,2588 
0,2652 
0.2721 
0,2784 
0,2847 
0.2922 
0,2980 
0,3049 
0,3112 
0.3170 
0.3233 
0,3360 
0.3371 
0,3440 
0.3503 
0.3567 
0.3630 
O.3688 
0.3757 
0.3808 
0.3872 
0.3941 
0.4004 

M/ME 

0. 
0, 
0, 
0. 
0. 
0, 
0. 

,6702 
,6807 
.6963 
.7074 
.7159 
.7257 
.7372 

0.7485 
0.7589 
0.7712 
0.7843 
0.7939 
0.8054 
0.8201 
0.8308 
0,8411 
0,8510 
0,8681 
0,8788 
0,8894 
0,9008 
0,9129 
0,9231 
0.9321 
0.9397 
0.9463 
0.9529 
0,9603 
0.9643 
0.968;.' 
0.9706 
0.9760 
0.9764 
0.9840 
0.9869 
0.9901 
0.9930 
0.9960 
0.9999 

u/uE 

0.8739 
0.8797 
0.8860 
0.6938 
0.8980 
0,9028 
0,9083 
0,9136 
0,9183 
0,9237 
0,9293 
0.9333 
0.9379 
0.9437 
0,9477 
0.9516 
0.9551 
0.9611 
0.9647 
0.9682 
0.9719 
0,9756 
0,9786 
0,9615 
.9837 
.9856 
.9874 
.9895 
.9906 
.9916 

0.9923 
0.9937 
0,9944 
0.9958 
0,9966 
0.9974 
0.9982 
0.9989 
0,9999 

0. 
0. 
0, 
0, 
0, 
0. 

P/PE 

0.5881 
0.5986 
0.6147 
0.6264 
0.6355 
0.6460 
0,6586 
0,6711 
0.6828 
0,6969 
0.7121 
0.7235 
0.7372 
C.7551 
0.7683 
0.7812 
0.7937 
0,8156 
0.8297 
0.8437 
0,8589 
0.8753 
0.8894 
0.9010 
0.9135 
0.9216 
0^9312 
0.9417 
0.9476 
0.9531 
0.9566 
0,9645 
0,9680 
0.9762 
0,9805 
0,9852 
0,9896 
0.9939 
0.9998 
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yUSW CASE; tPC.^ 

TRAVERSE  Tl  AT 

T.AK.E 6.1 

ADVESSE PRESSURE SRAPIENT 

X ^ 11.62  INS.;   (RUN NO.-=9527) 

Stagnation Pressure,  Po        '    -69.2 PSIA 
Stagnation Temperature,  TQ » 537.0 0P 

LOCAL MAINSTtgAM CONPITIOhG 

ME    -    3.926 ; 

PE  (-Fw)  - 1.231 PSIA;     TE .    131.5 oR 

«««. » 0.1522 IN, 

uE - 2206.9 FT/SEC; 

"E 
PE « 0.00079 SLUGS/CU.PT. 

995 
;WEQRAL QUANTITIES 

Displacement Thickness, S* 
Momentum Thickness, 6 
Momentum Thickness R 
Reynolds Number fi 
Compressible Shape Fdctor, H 
Incompressible Velocity „1 
Shape Factor _12 
Shape Parameter, H 
Entralnment Parameter, H, 

Cp,  WILSON 

Cp, SOMMER/SHORT 

PROFILE DATA 

y-INS. 

0.0090 
0.0135 
0.0168 
0.018? 
0.0220 
0.0253 
0.0276 
0.0308 
0.0331 
0.0363 
0,0391 
O.OD23 
0.04116 
0.0l7t 
0.0506 
0.0^3H 
0.0552 
O.OSB'* 
0.0607 
0.06^0 
0.0667 
0.0690 
0.0718 
0.0741 
0.0773 
o.oboi 
0.0819 
0.0851 
0.0874 

M/ME 

0.3253 
0.3813 
0.4285 
0.4732 
0.4978 
0.5281 
0.5418 
0.5596 
0.5753 
0.5894 
0.6002 
0.6047 
0.6103 
0.6222 
0.6377 
0.6518 
0.6623 
0.6786 
0,6959 
0.7178 
0.7350 
0,7521 
0.7677 
0,7876 
0,7999 
0.8098 
0,8184 
0,8248 
0,8295 

u/uE 

0.5486 
0.6185 
0.6707 
0.715? 
0.7384 
0.764G 
0.7758 
0.7899 
0.8018 
0.8121 
0.8197 
0.8229 
0.826? 
0.8347 
0.8448 
0.8537 
0,8601 
0.8697 
0.8755 
0.8913 
0.9002 
O.9087 
0.9161 
0.9252 
0.9306 
0.9348 
0.9384 
0.9410 
0.9429 

" 0.0577 IN. 
" 0.0075 IN. 

- 0.9820'10* 

- 7.671 

'  1-573 

- 1-383 
- 24,80 

- 0.00136 

- 0.00118 

03515 
0.3802 
0.4078 
0,4372 
0.4545 
0,4770 
0.4876 
0.5019 
0.5148 
0.526? 
0.5360 
0,5399 
0.5449 
0.5555 
0.5696 
0.5829 
0.5929 
0.608? 
0.6259 
0,6464 
0.6665 

6850 
7022 
7246 
73&6 
7503 

0.7605 
0.7681 
0,7737 

y-INS. 

0.0897 
0.0920 
0.0985 
0.1036 
C.1091 
0.1141 
0.1197 
0.1243 
0.1298 
0.1353 
.1399 
,1450 
.1510 
.1565 
,1620 

0.1676 
0.1726 
0,1781 
0.1832 
0,188? 
0.1938 
0.1998 
0,2048 
0.2108 
0.2159 
0.2210 
0.2256 
0.2306 
0,2357 

0, 
0, 
0, 
0, 
0, 

rt/ME 

0,831? 
0.8342 
0.8493 
0.8663 
0.8829 
0,8992 
0.9150 
0.9305 
0.9436 
0.9551 
0.9674 
0.9721 
0.9811 
0.9858 
0.9892 
0.9917 
0.9945 
0.9954 
0.9963 
0.9972 
0.9972 
0.9981 
0,9981 
0,9990 
0.9990 
0.9990 
0.9990 
0.9990 
0.9999 

u/uE 

0.9438 
0.9448 
0.9508 
0.9572 
0.9632 
0.96d9 
0.9743 
0.9793 
0.9635 
0.9870 
0.990? 
0.9920 
0.994? 
0.9960 
0.9970 
0.9977 
0.9984 
0.998? 
0.9989 
0.9992 
0.9992 
0.9994 
0.9994 
0.9997 
0.9997 
0.9997 
0.9997 
0.9997 
0,9999 

P/PE 

0.7763 
0.7794 
0.7978 
0.8189 
0.8401 
0.8612 
0.8819 
0.902? 
0.9204 
0.9363 
0,9534 
0.9600 
0.9729 
0.9795 
0.9844 
0.9880 
0.9919 
0.9933 
0.9946 
0,9959 
0.9959 
0.9972 
0.9972 
0.9985 
0.9985 
0.9985 
0.9985 
0.9985 
0.9999 
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TABLE 6.2.1 

FLOW CASE:     APG  - ADVERSE PRESSURE GRADIENT 

TRAVERSE    T2     AT X     -  16.62   INS   ;   (RUN  KO.-9533) 

Stagnation  Pressure,   PQ " 
Stagnation Temperature, TQ * 

LOCAL MAINSTREAM CONDITIONS 

(-Pw) 

2.901 ; 

5.371 PSIA; 

0.1511» IN. 

UE 

169.2 PSIA 
537.0 0R 

2011. ..• FT/SEC; 

20X3 0R 

0.00225  SLUGS/CU.FT. 

995 
INTEGRAL QUANTITIES 

Displacement Thickness, 6* 
Momentum Thickness, 6 
Momentum Thickness _ 
Reynolds Number fl 

Compressible Shape Factor, H 
Incompressible Velocity „1 
Shape Factor _12 
Shape Parameter, H 
Entralnment Parameter, H, 

0.0495 IK. 
0.0096 IN 
0.2271'10' 

5.137 

1.579 
1.U3 
26.36 

cr. WILSON X 0.00111 

cp. SOMMER/SHORT " 0.00128 

PROFILE DATA 

y-INS. M/ME U/UE P/PE y-IN5. M/ME u/uE P/PE 

0.0090 0.3695 0.5331 0.1801 0.1326 0.9756 0.9900 0.9709 
0.0130 O.J»563 0.6307 0.5233 :.138l 0.9815 0.9925 0.9779 
0.0168 0.itJ'4<3 0.6696 0.5151 0.1150 0.9815 0.9937 0.9811 
0.0201 0.5255 0.6995 0.5612 0.1510 0.9866 0.9916 0.9839 
0.0234 0.5191 0.7213 0.5795 0.1579 0.9888 0.9955 O.9866 
0.0267 0.5690 0.7390 0.5929 0.1613 0.9896 0.9958 0.9876 
0.0299 0.5857 0.7533 0.6015 0,1712 0.9910 0.9961 0.9892 
0.U331 0.6020 0.7668 0.6161 0.1777 0.9919 0.9967 0.9902 
0.0363 0.6165 0.7787 0.6268 0.1811 0.9926 0.9970 0.9911 
0.0396 0.6272 0.7872 0.6318 0.1910 0.9926 ü.9970 0.9911 
0.0J)28 0.63Q9 0.7970 0.6115 0.1975 0.9926 0.9970 0.9911 
0.0160 0.6525 0.8066 0,6512 0.2039 0.9932 0.9972 0.9918 
0.0il92 0.6661 0.8167 0.6650 0.2101 0,9932 0.9972 0.9918 
0.0520 0.6719 0.8231 0.6721 0.2168 0,9910 0.9975 0.9927 
0.0561 0.6878 0.8321 0.6828 0.2237 0.9910 0.9975 0.9927 
0.059^ 0.7100 0.8177 0.7011 0.2302 0,9917 0.9978 0.9936 
0.0621 0.7271 0.8593 0.7165 0.2366 0.9917 0.9978 0.9936 
0.0658 0.7152 0.8708 0.7323 0.2126 0.9951 0.9981 0.9911 
0.0690 0.7636 0.8822 0.7189 0.2190 0,9951 0.9961 0.9911 
0.0723 0.7821 0.8936 0.7665 0,2561 0,9961 0.9981 0.9953 
0.0759 0.7999 0.9038 0.7831 0,2621 0,9961 0.9981 0.9953 
0.0792 0.8223 0.9161 0,8050 0,2693 0.9961 0.9981 0.9953 
0.0819 0.8398 0.9259 0.8225 0.2762 0.9969 0.9987 0.9962 
0.0856 0.8553 0.9311 0.8383 0.2827 0.9976 0.9990 0.9971 
0.0925 0.8817 0.9189 0,8691 0.2886 0,9980 0.9992 0.9976 
0.0990 0.9091 0.9606 0,8955 0.2916 0,9980 0.9992 0,9976 
0.1059 0.9289 0.9698 0.9171 0.3020 0.9987 0.9991 0,9981 
0.1128 0.9168 0.9777 0.9376 C.3080 0.9991 0.9997 0.9992 
0.1192 0.9598 0.9833 0.9525 T^lH 1,0001 1.000Ü 1.0001 
0.1261 0.9651 0.9856 0.9586 
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FLOW CASE. ._. 
LTNEÄR-gfÄflC 

TABLE 6.2.2 

APO - ADVERSE PBSnSURE GRADIENT 
SADIEKT HCKMAL To wjgX  

TRAVERSE T2  AT X    -  16.62  INS. 

Stagnation Pressure,  PQ        • 169.2 PSIÄ 
Stagnation Temperature, TQ ■ 537.0 0R 

LOCAL MAINSTREAM CONDITIONS 

3.189 
PE (»'Py) - 1.1192 PSIA;    TE 

INTEGRAL QUANTITIES 

2079.5 PT/SEC; 
177.0 »R 

PE » 0.00213 SLÜGS/CU.FT. 

Displacement Thickness, 6* » 0.0185 IN, 
Homentiun Thickness, 6 » O.J173 IK. 
Momentum Thickness „ , - 57R,.lrii 
Reynolds Number Re " 0.2783*10 
Compressible Shape Factor, H - 1.5"3 
Incompressible Velocity „1 ..   -i- 
Shape Factor K12      i,:'t'i 

Shape Parameter, H » 1.15? 
Entralnment Parameter, H, ■ 23.76 

CF,  WILSON 
CF, SO^ER/SHORT 

PROFILE DATA 

0.0^123 

0.00115 

y-INS. 

0.0090 
0.0130 
0.0168 
0.0201 
0.0231 
0.0267 
0.0299 
0.0331 
0.0363 
0.0396 
0.0128 
0.0160 
0.0192 
0.0520 
0,0561 
0.0591 
.0621 
.0658 
.0690 
.0723 

0.0759 
0.0792 
0.0819 
0,0856 
0,0925 
0,0990 
0,1059 
0,1128 
0,1192 
0,1261 

0. 
0, 
0, 
0. 

M/ME 

0.3101 
0.1207 
0.1567 
0.1863 
0.5090 
0.5281 
0.5119 
0.5609 
0.5755 
C.5866 
0.5995 
0.6123 
0.6262 
0.6351 
0.6191 
0.6711 
0,6886 
0,7069 
0.7255 
0.7117 
0.7620 
0,7855 
0.8031 
0.8199 
0,8513 
0,8780 
0,9007 
0.9216 
0.9378 
0.9168 

u/uE 

0.5181 
O.6136 
0.6523 
0.6821 
0.7039 
0.7219 
0.7366 
0.7505 
0.7628 
0.7718 
0.7822 
0.7922 
.8027 
.8096 
• 8195 
.8350 
.8167 
.8586 
.8703 
.88lf 

0.0921 
0.9050 
0.9116 
0.9231 
0.9385 
0.9509 
0.9610 
0.9698 
0.9761 
0.9800 

0, 
0. 
0, 
0, 
0. 
0. 
0. 
0. 

o/pE 

0.5067 
0.5509 
0.5726 
0.5915 
0.6065 
0.6191 
O.6305 
0.6116 
0.6516 
0.6589 
0.6679 
0.6770 
0.6872 
0.6936 
0.7033 
0.7218 
0.7367 
0.7520 
0.7685 
0.7858 
0.6020 
0.8210 
0.8115 
0,8568 
0,8868 
0,9122 
0,9328 
0.9515 
0.9618 
0.9686 

0, 
0, 
0. 
0. 
0. 
0. 

y-INS, 

C.1326 
0.1381 
O.J.I50 
0.1510 
0.1579 
.1613 
.1712 
.1777 
,1811 
.1910 
• 1975 

0.2039 
0.2101 
0.2168 
0.2237 
0.2302 
0.2366 
0.2126 
0.2190 
J.2561 
0.2631 
0.2693 
0.2762 
0.2827 
0.2886 
0.2916 
0.3020 
0.3080 
0.3111 

0. 
0. 
0. 
0. 
0. 

M/Mg 

^.9607 
9698 
9768 
9825 
9888 
9897 

0.9910 
0.9919 
0.9926 
0.9926 
0.9926 
0.9932 
0.9932 
0.9939 
0.9939 
O.99I7 
0.9917 
0.9951 
0.9951 

9961 
9961 
9961 
9968 
9976 

0.9980 
0.9980 
0.9986 
0.9993 
1.0001 

u/uE 

0.9851 
0.9889 
0.9915 
0.9936 
0.9959 
0.9962 
0.9967 
0.9970 
0.9973 
0.9973 
0.9973 
0.9975 
0.9975 
0.9978 
0.9978 
0.9980 
0.9980 
0.9983 
0.9983 
0.9986 
0.9986 
0,9986 
0,9988 
0.9991 
0.9992 
0.9992 
0.9995 
0.9997 
1.0000 

P/PE 

0.9791 
0.9813 
0.9853 
0.9856 
0.9657 
0.9867 
O.9885 
0.9895 
0.9901 
0.9901 
0.9901 
0.9912 
0.9912 
0.9922 
0.9922 
0.9931 
0.9931 
0.9910 
0.9910 
0.9950 
0.9950 
0.9950 
0.9959 

9968 
9971 
9971 
9982 
9991 
0000 
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FLOW CASE: 

TRAVERSE    Tg     A 

TABLE  6.3.1 

APG  -  ADVERSE  PRESSURE GRADIENT 

■ 20.62 INS.j   (RUN NO.»9535) 

Stagnation Pressure,  P0        = igo 2 per. 
Stagnation Temperature, T0 - 537.0 4 

Mg - 2.075       ; 

PE (-Pw) - 19.217 PSIA; 
«395 ' 0.1501 IN. 

INTEGRAL QUANTITIES 

uF - 1727.5 PT/SEC; 
TE - 288.5 0R 

PE - 0.00560 SLUGS/CU.FT. 

Displacement Thickness, {• 
Moaentum Thickness, 6 
MoBentum Thickness _ 
Reynolds Number "e 
Compressible Shape Factor, H 

K32 
Incompressible Velocity 
Shape Factor 
Shape Parameter, 
Entralmaent Paraaeter, 

CF, WILSON 

CF,   SOMMER/SHORT 

H 

PROFILE DA^A 

y-INS. 

0.0090 
0.0125 
0.0161 
0.0197 
0.0225 
0.0262 
0.0290 
0.0327 
0.0363 
0.0396 
O.OI32 
0.0160 
0.0192 
0.0529 
0.0561 
0.0591 
0.0630 
O.O667 
0.0695 
0.0727 
0.0761 

M/Mg 

.17'.7 
• 5330 
.5851 
.6108 
.6328 
.6581 
.6776 
.6921 
• 7073 
.7231 
.7356 
.7123 
.7189 
• 7637 

0.7716 
0.7851 
0.7913' 
0.8065 
0.8159 
0.8202 
0.8295 

0. 
0. 
0. 
0. 
0, 
0, 
0. 
0, 
0. 
0. 
0. 
0, 
0, 
0. 

VuE 

0.5781 
0.6?75 
0.6679 
0.7118 
0.?318 
0.V513 
0.7709 
0.7932 
0.7^58 
0.8C87 
0.8138 
0.82 ill 
0.82S1 
O.8I09 
0.8193 
0.8575 
0.8611 
0.8732 
0.8301 
0.8832 
0.8899 

0.0380 IN. 
0.0117 IN. 

0.3911«10* 
3.231 

1.531 
* 1.153 
- 15.76 

■ 0.00158 
- 0.00119 

P/PE 

0.6711 
0.6988 
0.7233 
0.7362 
0.7178 
0.7616 
0.7721 
0.7808 
0.7897 
0.7992 
0.8069 
0.8111 
0.8152 
0.8216 
0.8317 
O.8388 
0.8117 
0.8529 
0.8593 
0.8623 
0.8687 

y-INS. 

0.0792 
0.0828 
0.0861 
0.0893 
0.0925 
0.0967 

.1036 

.1100 

.1171 

.1231 

.1303 

.1367 
O.II32 
0.1501 
0.1560 
0.1625 
0.1691 
0.1763 
0.1827 
0.1887 
0.1961 

0, 
0. 
0. 
0. 
0. 
0. 

M/ME 

0.8103 
0.8191 
0.8600 
0.8720 
0.8839 
0.8891 
0.9185 
0.9387 

• 9577 
.9720 
.9791 
.9862 
9890 
9918 
9939 
9960 
9967 

0.9980 
0.9987 
0.9991 
1.0001 

0, 
0, 
0. 
0, 
0, 
0. 

u/uE 

0.8976 
0.9010 
0.9113 
.9195 
.9276 
.9312 
.9503 
.9630 
.9718 

0.9835 
0.9877 
0.9919 
0.9935 
0.9952 
0.9961 
0.9976 
0.9980 
0.9988 
0.9992 
0.9996 
1.0000 

P/PE 

0.8763 
0.8828 
0.8901 
0.8992 
0.9079 
0.9120 
0.9312 
0.9500 
0.9651 
0.9768 
0.9826 
0.9881 
0.9907 
0.9931 
0.9918 
0.9966 
0.9971 
0.9983 
0.9989 
0.9995 
1.0001 
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7ASLE 6.3-2 

PLOW CASE:  APG - ADVERSE PRESSURE GRADIENT. ASSUMING 
LINEAR STATIC PRESSURE GRADIEWT NORMAL TO WALL 

TRAVERSE Tj AT X - 20.62 INS. 

Stagnation Fiessure,  PQ        ■ 169.2 PSIA 
Stagnation Temperature,  TQ •" 537.0 0R 

LOCAL MAINSTREAM CONDITIONS 

ME - 2.Ö75       ; uE - 1727.'« FT/SEC; 

P, CyPw) - iB.klb  PSIA; TE • 288.6 0R 
r
9g5 - f-.1185 IN, 

INTEGHAL QUANTITIES 

C.00535  SLUGS/CU.FT. 

DisplaceTient Thickness, 
Momentum Thickness, 
Momentum Thickness 
Reynolds Number 
Compressible Shape Factor, 
Incompressible Velocity 
Shape Factor 
-Shape Parameter, 
Er.tralnment Parameter, 

12 

CP= WILSON 

cF. S0MM2R/SH0RT 

PROFILE DATA 

y-IHS. M/ME U/Ug P/PE 

0.0090 0.4634 0.5707 0.6903 
0.0125 0.5205 0.6295 0.7150 
0.0164 0.5718 0.6795 0.7395 
0.0197 0.5973 0.703'* 0.7521 
0.0225 0.6192 0.7234 0.7634 
0.0262 0.6446 0.7460 0.7770 
0.0290 0.6637 0.7626 0.7875 
0.0327 0.6784 0.7751 0.7954 
0.0363 0.6937 0.7880 0.8039 
0.0396 0.709^ 0.8011 0,8131 
0.0'«32 0.7225 0.8114 0.8203 
0.0460 0.7294 0.8170 0.8241 
0.0492 0.7363 0.8225 0,8277 
0.0529 0.7514 0.8343 O.8367 
0.0561 0.7626 0.8429 0.8434 
0.059i» 0.7737 0.8513 0.8500 
0.0630 0.7829 0.8582 0.8554 
0.0667 0.7955 0.8675 0.8632 
0.0695 0.8052 0..8746 0.8693 
0.0727 0.8099 0.8780 0.8717 
0.0764 0.8196 0.8850 0.8776 

-  0.0375  IN. 
»  0.01^3 IN. 

■ O.M^'IO' 

* 3.055 

- 1.537 
• 1.460 
« 15.11 

0.00154 

0.00146 

y-INS. M/Mg U/Ug P/PE 

0.0792 0.8308 0.8929 0.8850 
0.0828 0.8403 0.8995 0.8909 
0.0861 0.8512 0.9071 0.8981 
0.0893 O.8636 0.9155 0.9065 
0.0925 0.8759 0.9237 0,9149 
0.0967 0.8820 0.9278 0.9183 
0.1036 0.9120 0.9472 0.9398 
0.1100 0.9331 0.9604 0.9548 
C.1174 0.9532 0.9726 0,9690 
0.1234 0.9685 0.9818 0.9796 
0.1303 0.9769 0.9867 0.9845 
0.1367 0,9851 0.9911 0.9893 
0.1432 0.9891 0.9937 0.9905 
0.1501 0.9918 0.9953 0.9929 
0.1560 0.9939 0.9965 0.9917 
0.1625 0.9960 0.9977 0.9965 
0.1694 0.9967 0.9981 0.9971 
0.1763 0.9981 0.9989 0.9983 
0,1827 0.9988 0.9993 0.9989 
0,1887 0.9994 0.9996 0.9995 
0,1961 1.0001 1.0000 1.0001 
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TABLE 6.^. 

FLOW CASE:  APG - ADVERSE FHESSURE GRADIENT 

TRAVERSE Tu    AT X ■ 22.62 INS.; (RUN NO.-95^1) 

Stagnation Pressure.  P0        ■  169.2 PS.TA 
Stagnation Teaiperature, T0 ■ 537.0 "R 

LOCAL MAINSTREAM CONDITIONS 

ME    =     2.000 ;     U, 
PE   ('PW)   "  21-635  P5IA;     TE 

5^95 = 0.22K2  IN. 

INTEGRAL QUANTITIES 

nispjaceincnt Thickness, 
Moment uns Thickness, 
Homentum Thickness 
Reynolds; Number 
Compressible Shape Factor, H 
Incompressible Velocity 
Shape Factor 
Shape Paraiwter, 
Entralnment Parameter, 

CF,  WILSON 

CF, SOMMER/ShORT 

PROFILE VATfi 

'E - 16^3.0 FT/SEC; 

» 298.«I 0R 
PE - 0.00609 SLÜGS/CU.FT. 

y-JKS. 

0.0090 
C.013t 
0.0158 
0.0193 
0.0228 
0.0257 
0.0292 
0.0321 
0.0355 
0.038'! 
0.0^19 
O.Ok53 
0.0188 
0.0523 
0.0563 
0.0597 
0.0626 
0.0660 
0.0695 
0.0729 
0.0758 
0.0793 
0.0827 
0.0P56 
0.0914 
0.0919 
0.0954 
0.0983 

M/ME 

0.5051 
0.5885 
0.6298 
0.6602 
0.69t6 
0.7165 
0.7219 
0.7307 
0.7395 
0.7446 
0.7498 
0.7566 
0.7616 
0.7650 
0.7683 
0.7732 
0.7798 
0.7863 
0.7928 
0.7960 
0.6023 
0.8087 
0.6134 
0.8196 
0.8258 
0.8380 
0.8455 
0.854i( 

u/uE 

0.6080 
0.68S7 
0.7277 
0.7547 
0.7842 
0.8023 
0.8067 
0.8139 
0.8^09 
0.8i50 
0.3291 
0.8344 
O.8383 
0.8409 
0.8435 
0.8473 
0.8524 
0.8573 
0.8622 
0,8646 
0.8693 
0.8740 
0.8775 
0,8820 
O.8865 
0.8952 
0.9006 
0.9068 

e 
Ü 
0 

.ourn* 

.0116 
IN. 
IN. 

R9 0 ■5351' 10s 

H 3 .030 

«12 l. .423 
H 
Hl 

1. 
11 

353 
'•31 

0. 00150 
0. 001112 

P/PE 

0.6899 
0.7279 
0.7489 
0.7652 
0.7846 
C.7975 
0.8007 
0.8060 
0.8113 
0.8145 
0.8177 
0.8220 
0.8252 
.8273 
.9294 

0.8326 
0.8369 
0.8411 
0.8453 
0.8475 
0.8517 
0.8559 
0.8591 
0.8633 
0.8676 
0.8760 
0.8813 
0.8876 

0, 
0. 

0. 
0. 
0. 
0. 
0. 
0, 
0. 

y-iws. 

0.1023 
0.1057 
0.1086 
0.1115 
0.1144 
.1224 
.1288 
.1357 
.1420 
.1489 
.1553 
.1616 

O.I685 
0.1748 
0.1806 
0.1875 
0.1932 
0.2001 
0.2065 
0.2128 
0.2191 
0.2255 
0.2318 
0.2381 
0.2439 
0.2514 
0.2583 
0.2646 
0.2703 
0.2772 
0.2836 

0, 
0, 
0. 
0. 
0. 
0. 
0. 
0, 

.8633 

.8720 

.8821 

.8949 

.9006 
■ 9159 
.9255 
.9323 

0.9377 
0.9404 
0.9444 
0.9470 
0.9550 
0.9616 
0.9668 
0.9694 
0.9759 
0.9797 
0.9823 
0.9836 
0.9874 
0.9925 
0.9938 
0.5951 
0.9951 
0.9963 
0.9976 
0.9976 
0.9989 
0.9989 
1.0001 

u/uE 

0.9130 
0.9190 
0.9259 
0.9344 
0.9382 
0.9482 
0.9544 
0.9587 
0.9621 
0.9638 
0.9663 
O.968C 
0.9729 
0.9770 
0.9802 
0.9817 
0.9857 
0.9880 
0.9895 
0.9903 
0.9926 
0.9956 
0.9963 
0.9971 
0.9971 
0.9978 
0.9985 
0.9985 
0.9993 
0.9993 
1.0000 

P/PE 

0.8939 
0.9003 
0.9076 
0.9171 
0.9213 
0.9329 
0.9402 
0.9455 
0.9497 
0.9518 
Ü.9549 
O.9570 
0.9633 
0.9686 
0.9728 
0.9749 
0.9801 
0.9833 
0.9854 
0.9864 
0.9896 
0.9938 
0.9948 
0.9959 
0.9959 
0.9969 
0.9979 
0.9979 
0.9990 
0.9990 
1.0000 
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FLOW CASE: 

TABLE 6.5 

APG - ADVERSE PRESSURE GRADIENT 

TRAVERSE T5  AT X    ■  26.62   INS.;   (RÜK «0.-95^3) 

Stagnation. Pressure,  FQ        " 169.2  PSIA 
Stagnation Temperature,  TQ ■  537.0  0R 

LOCAL MAINSTREAM CONDITIONS 

«E - 1.988 » uE -• 1687 .1 FT/SEC;  PE - 0.00617 SLÜGS/CU FT. 
PE (»Py) - 22 .035 PSIA; TE - 299 .S 0R 

«995 » 0.2137 IN. 

INTEGRAL QUANTITIES 

Displacement Thickness, 6*    - 0 .0178 IN. 
Homentian Thickness, « 0 .0166 IN. 
Komentuni Thickness 
Reynolds Nuaiber fe " 0 .5688- 10» 

Compressible Shape Factor, H  » 2 .873 
Inccmpresslbl e Velocity H1 - 1 .395 Shape Factor 

H12 ± 

Shape Paramet er. H  - 1 .332 
Entralnroent Parameter, Hl " 13.98 

cF, WILSON 0 .00151 
cF, SOMMER/SHORT c .00111 

PROFILE DATA 

y-INS. M/ME u/uE P/PE y-INS. H/ME u/uE P/PE 

Ö.0090 0.1817 0.5780 0.6915 0,1109 0.8711 0.9161 0.9010 
0.0128 0.6132 0.7072 0,7518 0.1111 0.8788 0.9215 0.9091 
0.0158 0.6571 0.7171 0.7711 ' 0.1178 0.8819 0.9236 0.9115 
0.0199 0.6813 0.7706 0.7881 0.1207 0.8879 0,9278 0.9158 
0.0231 0.7002 0.7812 0.7972 0.1217 0.8925 0.9309 0,9190 
0.0i:69 0.7157 0.7972 0.8059 0.1276 0.8955 0,9329 0,9211 
0.0309 0.7290 0.8081 0.8136 0.1315 0.8985 0,9350 0,9233 
0.0338 0.7101 0.8172 0,8201 0.1120 0.9011 0,9390 0.9276 
0.0373 0.7511 0.8261 0.3266 0.1178 0.9103 0,9130 0.9318 
0.0107 0.7565 0.8301 O.8298 0.1517 0,9133 0.9150 0.9310 
0.0112 0.7655 0.8375 0.8353 0.1616 0,9177 0.9179 0.9372 
0.0170 0.7725 0.8130 0.8396 0.1679 0.9250 0,9527 0.9125 
0.0199 0.7713 0,8111 0,810S 0.1737 0.9307 0,9565 0.9168 
0.0531 0.7760 0.8158 0,811'/ 0.1806 0.9379 0.9612 0.9521 
0.0563 0.7795 0.8185 0.8^39 0.1869 0.9150 0,9657 0.9571 
0.0603 0.7830 0.8512 0.8160 0.1926 0,9193 0.9685 0.9606 
0.0613 0.7899 0.8565 0.8501 0.1996 0.9519 0.9721 0,9619 
0.0672 0.7950 0.8601 0.8536 0.2070 0.9633 0.9773 0,9713 
0.0706 0.8001 0.8613 0.8568 0.2139 0.9671 0.9800 0.9715 
0.0717 0.8035 0.8669 0.8590 0.2203 0.9716 0.9825 0.9777 
0.0775 C.8085 0.8707 0.6622 0.2266 0.979Ö 0.9876 0.9811 
0.0810 0.8118 0.8732 0.8611 0.2329 0.9839 0.9902 0.9872 
0.0815 0.8185 0.8731 0.8687 0.2393 0.9880 0,9927 0,9901 
0.0879 0.8251 0.8850 0.8729 0.2156 0.9931 0,9959 0,9917 
0.0911 0.8299 0.8866 0.8762 0.2511 0.9917 0.9968 0.9958 
0.0918 0.8361 0.8913 0.8805 0.2588 0.9961 0.9976 0.9968 
0.0983 0.8112 0.8918 0.8837 0.2652 0.9971 0.9381 0.9979 
0.1011 0.8192 0.9006 0.8890 0.2715 0.9987 0.9992 0.9990 
0.1016 0.8555 0.9051 0.8933 0.2772 1.0001 1.0000 1.0000 
0.1075 0.8631 0.9107 0.8987 
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FLCV; CASE:  APO - ADVERSE PKES.^iIRJ. GRADIENI 

VRAVERCE X '31.62 INS.; (EON lJO.=95h9) 

Stagnation Pressure,   P.;. =  169.2 PSIA 
Stagpatlc-n Teraperatur-?^ T0 = 537.0 0R 

I.0CAL KAZ'JSTREAK CüKKITlCt.S 

.'•■;.. = 2.012        ;  uH = 1693.8 FT/SEC. 
FE   (=V'^  =  21-2?8  FSIA'     "u  =     29ü.8  0K 
aG.c = 0.25*3 I«. 

INTEGRAL QUAUTITIEg 

Ditjr la cement Thic'- _-ss, 6*    = 0 
KoisentuHi Thicknei_, 
Momentur: Thickness 
Reynolds i.'umfcer '9 

0.00600 SLÜG3/CU.FT. 

R 

Compressible Shape Factor, H 
Incoripressible Velocity 
Shape Factor 
Shape  Parameter, 
Entrainment  Parameter, 

'i1 

12 

"1 

OkMB IN. 
=  0.0161  IN. 

= 0J)978«105 

= 2.786 

= 1,393 

= 1.331 
=  15.61 

<v WILSON = t ).00156 

cF. SOHKER/SHORT = c 3.00119 

PROFILE DATA 

y-INS. M/HE u/uE D/PE y-INS. H/ME U/Ug P/PE 

0.0090 C.5233 0,6162 0.7210 0.1092 0,8776 0.9191 0,9116 
0.0128 0.5915 0,6829 0.7502 0.1155 0,8876 0.9261 0.9185 
0.0158 0,6227 0.7120 0.7617 0.1213 0.90;»! 0.9376 0,9298 
0.0193 0,6637 0.7190 0.7850 0.1270 0.9155 0.9153 0.9378 
0.0222 0.6863 0.7688 0.7967 0.1315 0,9251 0.9518 0,Q116 
0.0252 0.7081 0.7675 0,8081 0.1103 0,9315 0.9560 0.^191 
0.028,1 0.7250 ü.8017 0,8177 0.1166 0.9393 0.9613 0.9518 
0.0309 0.7391 0.8136 0,8258 0.1521 0,9393 0.9613 0,9518 
0.0350 0.7195 0.8218 0,8316 0.1581 0,9393 0.9613 0.9518 
0,0378 0,7611 0.8315 0,8385 0.1611 0.9393 0.9613 0,9518 
0.0407 Ü.765I 0.8316 0.8108 0,1708 0,9393 0.9613 0,9518 
0.0K36 0.7693 0.8377 0,8131 0.1760 0,9393 0.9613 0,951t8 
0.0165 0.7770 O.8I38 0.8177 0.1823 0,9125 0.9633 0.9570 
0,0193 0.7608 0.8169 0,8500 0.1860 0.9171 0.9661 0.9601 
0.0528 G.7881 0.8528 0,8516 0.1938 0.9502 0.9681 0.9627 
0.0557 0,7922 0.8558 0.8569 0.2007 0.9533 0.9701 0.9619 
0.0591 0,8016 0.8630 0.8626 0.2065 0.9580 0,973*1 0.9683 
0.0620 0,8053 0.8658 0.8619 0.2128 0.9626 0.9761 0.9717 
0.0655 0,8090 0.8686 0.8672 0,2185 0.9671 0.9793 0.9751 
0.0689 0,8108 C.87OO 0.8683 0,2243 0.9717 0,9822 0.9785 
0.0721 0,8115 0.8728 0.8706 0.2312 0.9762 0,9851 0.9819 
0.0752 0.8199 0.8769 0.6711 0,2358 0.9807 0.9880 0.9853 
0,0781 0,82 35 0.8797 0.8763 0.2416 0.9882 0,9926 0.9910 
0,0816 0.8271 0.8821 0.8786 0,2179 0.9912 0.9915 0,9932 
0,0815 0.8307 0,8850 0.8809 0.2512 0,9912 0,9915 0.9932 
0,0879 0,8361 0,8890 0.8813 0.2606 0.9927 0.9951 0.9913 
0,0902 0,8131 0.8912 0.8889 0.2663 0.9911 0.9963 0.9955 
0.0912 0,8502 0.8991 0.8931 0,2726 0.9956 0.9973 0.9966 
0.0971 0,8551 0,9031 0.8969 0.2781 C.9986 0.9991 0.998Q 
0,1031 0.8671 0.9118 0.9018 0,2812 1.0000 1,0000 1.0000 

-" ...,.!*..■■■■;-'■—"■WAK...;"- -■■'i;..; 
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FLOW CASE: 

TABLE  7.1 

RPG  -  RING   PRESSURE CRADIEf!T 

-mnwrs.i Tl X    *  11.62  INS.;   (RUN NO.-9526) 

Stagnation Pressure,  Pn        « 120.7 PS1A;   (Downstream of Ring) 
Stagnation Temperature',  T0 « 537.0 0R 

LOCAL MAINSTREAM CONDITIONS 

TF  = 

ME    =    3.783 ; 

PE  (=PW)  = 1.058 PSTA; 

i995 = 0.1936  IN. 

INTEGRAL QUANTITIES 

Displacement Thickness, 6* 
Momentum Thickness, 8 
Momentum Thickness R 
Reynolds Number 6 
Compressible Shape Factor, H 

uE = 2187.2 FT/SEC; 

Incompressible Velocity 
Shape Factor 
Shape Parameter, 
Entrainment Parameter, 

CF, WILSON 

C-, SOMMER/SHORT 

133.7 0R 

12 

"  0.0782 IN. 
= 0.011(1 IN. 
= O^itlt-lO" 

*  5.551 
= 1.431 

= 1.3^ 
» 8.750 

= 0.00161 

»  COOlll 

0.0006k  SLU3S/CU.FT. 

PROFILE DATA 

y-INS, 

0.0090 
0.0125 
0.01'(9 
0,0183 
0.0206 
0,0229 
0.0262 
0.0285 
0.0308 
0.0336 
0.0363 
0.0391 
0.01)11* 
0.01)1)6 
0.01)69 
0.01)97 
0.0525 
0.0552 
0.0575 
0.0598 
0.0630 
0.0653 
0.0681 
0.0709 
0.0736 
0.0759 
0.0787 

M/ME 

0.3951 
0.1)691) 
0.1)985 
0,5177 
0,5303 
0,5D19 
0,5560 
0.56D3 
0.5703 
0.5742 
0.581)9 
0.5875 
0.5901 
0.5927 
0.5927 
0.5960 
0.5960 
0.5979 
0.5979 
0.6005 
0.60 30 
0.6081 
0.6132 
0.6232 
0.6330 
0.6396 
0.61)61 

VuE 

0.5837 
O.66D3 

6930 
7111 
72?7 
7331 
71)51) 

0.7525 
0.7575 
0.7608 
0.7696 
0.7717 
0.7739 
0.7760 
0.7760 
0.7786 
0.7786 
0.7801 
0.7801 
0.7822 
0.781)2 
0.7882 
0.7921 
0.7997 
0.8070 
0.8119 
0.8167 

P/PE 

0,1)579 
0.D992 
0.5173 
0.5298 
0.5383 
0.51)63 
0.5563 
0.5622 
0.5666 
0.5695 
0.5771) 
0.579D 
0.5811) 
0.^833 
0.5833 
(•.5859 
0.5859 
0.5873 
0.5873 
0.5893 
0.5913 
0.5952 
0.5992 
0.6071 
0.6150 
0.6201 
0.6258 

y-INS. H/VL u/u,- P/P. 

0.G815 0.6513 0.8225 0,6327 
0.0838 0.6618 Ü.8278 0.6390 
0.0865 0.6701 0.8338 0.5163 
0.0893 0.6772 0,8385 0.65£3 
0.0920 0.6816 0.8131 0.6587 
0.0911 0.6935 0,8191 0.6666 
0.0971 0.7067 0,8579 0.6785 
0.0999 0.7132 0,8620 0.6811 
0.1051 0,7221 0,8678 0.6928 
0.1109 0-7356 0.8759 0.7052 
0.1160 0,7180 0.8833 0.7171 
0.1215 0.7617 0,8912 0.7303 
0,1266 0,7751 0.8988 0.7136 
0.1321 0.7869 0.9053 0.7551 
0.1376 0.8021 0.9136 0.7712 
0.1127 0.8170 0.9212 0.7861 
0.1173 0.6338 0.9297 0.8012 
0.1528 0.8181 0.9368 0.8199 
0.1583 0.8658 0.9151 0.6391 
0.1631 0.8811 0.9521 0.8563 
0.1689 0.9000 0.9605 0.8780 
0.1710 0.9169 0,9677 0.8977 
0.1786 0.9J35 0.9716 0.9171 
0.1811 0.C516 0.9830 0.9130 
0.1897 0.9705 0.9891 0.9627 
0.1913 0.9893 0.9961 0.9863 
0.1993 1.0001 1.0000 1.0000 
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FLOW CASE;  RFÜ - RING PRESSURE OHADIENT 

TRAVEhrE AT 16.62 IKS.; (R'JN NO.''9530) 

Stagnation Pressure,  P0        * 120.7 PSIA;   (Downstream of fling) 
Stagnation Temperatur»,  T0 • 537.0 0R 

i.0CAL MAINSTREAM CONDITIONS 

KE -    3.621 » Up.  =  2l6C ),9 PT/SEC;     pF - 0.00075 SL ÜGS/CÜ,FT. 

PE (=PW) - 1. 331 PSIA; T- =    118.3 0R 

699 
c » 0,316£ IN. 

INTEGRAL QUANTITIES 

Dls placement Thickness, 6»    = 0.1330 IN. 
Momentum Thlc kness. e 0.0197 IN, 
Momentum Thickness 
Reynolds Number 

R6    - 0.2197« 105 

Compressible Shape Factor,  H      = 6.752 
Incomoresslble Velocity H1      - H12  " 1.117 Shape Factor 
Shape Parameter, H 1.357 
Entralnment Parameter, Hl     " 10.93 

Op, WILSON = 0.00122 

CP. SOMMER/SHORT a 0.00108 

PROFILE DATA 

y-INS. M/ME u/uE P/PE 
y-INS, M/M,- u/uE P/PE 

0.0090 0.2868 0.1771 0,3612 0.1122 0,6570 0.8151 0.6011 
0.0111 0.328H 0.5333 0.3790 0.1182 0,6717 0.8511 0.6179 
0.0135 0.3501 0.5611 0,3891 0.1512 0,6816 0.8623 0.6301 
0.0173 0.3673 0.5823 0,3979 0.1597 0,6911 0,8682 0.6396 
0.0211 0.3811 0.6022 0,1066 0.1653 0.7011 0,5739 0.6190 
0.0229 0.3993 0.6199 O.I1I9 0.1712 0.7191 0.8825 0.6639 
0.0257 0.1071 0.6289 0.1195 0.1772 0.7338 0,8906 0.6788 
0.0285 0,1191 C.6'422 0.1261 0.1827 0.7113 0.8963 0.6896 
0,0317 0.H287 0.6523 0.1319 0.1887 0.7531 0-9O10 0,6990 
0.0315 0.1101 0.6613 0 1387 0,1952 C.7662 0.9076 0.7125 
0.0377 0.1167 0.6712 0.1H28 0,2007 0,7781 0.9137 0.7256 
0.0il05 0.1527 0,6773 0.1166 0,2058 0.7892 0.9189 0.7J71 
0.0^37 0.1613 0.6360 0.1521 0,2118 0.8011 0.9217 0.7509 
O.OMQ 0.1676 0.C923 0.1562 0.2173 0.8122 0.9297 0,763.1 
0.o4y2 0.-1760 0.7001 0.1616 0,2212 0.8255 0,9357 0.7783 
0.0525 0.1811 0.7083 0,1671 0,2293 0,8363 0.9^3 0.7931 
0.0552 0.1876 0.7116 0,'i691 0,2352 0,8510 0.9166 0.8079 
0.0575 0.1936 0.7172 0,'l735 0.2112 0,8615 0.9522 0,8211 
O,0607 0.1995 0.7227 0.1776 0.2172 0,8779 0.9576 0.8103 
0.06^0 0.5039 0.7268 0.1807 0.2527 0,8877 0.9611 0,8525 
0.0667 0.5097 0.7320 0.1816 0.2578 0,8986 0.9656 0,8659 
0.0695 0.5173 0.7388 0.1902 0.2617 0,9101 0.9700 0,8808 
0.0727 0.5211 n,7l21 0.1929 0.2707 0.9209 0.9738 0,8913 
0.0759 0.5267 0.,,170 0.1970 0.2762 0,9210 0.9767 0,9017 
0.0787 0.5359 0.7519 0.5038 0.2822 0.9363 0.9792 0,9111 
0.0815 0.5113 0,7595 0.5079 0.2886 0.9166 O.9828 0.9276 
0.08i(2 C.5185 0.7651 0.5133 0.2937 0.9588 O.9869 0.9138 
O.^Bjk 0.5573 0.7726 0.5201 0.2997 0,9t'26 0,9881 0.9188 
0,0902 0.5625 0,7769 0.5212 0.3052 0,9706 0,9907 0.9596 
0.0930 0.5677 0.7810 0.5282 0.3103 0 9765 0,9926 0.9677 
0.0957 0.5715 Ü.7863 0.5337 0.3167 0.9835 0.9918 0.9771 
0.0990 0.5800 0.7906 0.5381 0.3227 0.9371 0,9960 0.9822 
0.1017 0.5350 0.7911 0.5122 0.3278 0,9908 0,9971 0.9872 
0.1019 0.5916 0.7995 0.5176 0.3317 0,9927 0.9977 0.9899 
0.1072 0.5966 0.8031 0.5516 0.3397 0,9917 0.9983 0.9926 
0.1132 0.6063 0.8102 0.5598 0.3157 0.9966 0.9989 0.9953 
0.1192 0,6171 0.8182 0.5692 0.3513 0.9980 0.9991 0.9972 
0.1252 0.6283 0.8259 0.5787 0.3572 0.9990 0.9997 0,9986 
0.1307 0,6391 0.8332 0.5882 0.3628 1.0000 1.0000 0,9999 
0.1367 0,6196 0.8102 0.5977 • 
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FLOW CASE: 

TfiAVERSE T3 AT 

TABLE ?.3 

RPG - RiaG PRESSURE GRASIENT 

X « 20.62 INS.; (RUN NO.»9538) 

Stagnation Pressure, Pg   « 
Stagnation Temperature, Tg > 

LOCAL HAINSTBEAH CONDITIONS 

120.7 PSIA;   (Downstrea» of Ring) 
537.0 0R 

3.60« uE *  2158.8 FT/SEC, 
PE   '^h''  "  1-358 PSIA;     TE  '     li,9>0 

«995  «  O.mH  IN. 

INTEGRAL QUANTITIES 

Displacement Thickness, 6» 
Momentum Thickness, 6 
Momentum Thickness _ 
Reynolds Number ö 
Compressible Shape Factor, H 

PE - 0.00076 SLUGS/CÜ.FT. 

Incompressible Velocity 
Shape Factor 
Shape Parameter, 
Entralnment Parameter, 

Cp,  WILSON 

CF,   SOMKER/SHORT 

PROFILE DATA 

y-INS, 

C.0090 
0.0130 
0.0161) 
0.0192 
0.0225 
0.0257 
0,0285 
0.0317 
0.0350 
0.0382 
0.0419 
0.0ltK6 
0.01(78 
0.C511 
0.05113 
0.0575 
0.0612 
0.06K0 
0.0672 
0.070K 
0.0732 
0.076K 
0.0801 
0.0833 
0.0865 
0.0902 
0.093K 
0.0957 
0.099k 
0.1026 
0.1059 
0.1095 
0.11*3 
0.1165 
0.1229 
0.1293 
C.1353 
0,11(18 
0.11(73 
0.15K7 

M/M, u/uc 

0.3173 0.5153 
0.3603 0.5701 
0.3900 O.6056 
0.1I0K5 0.6222 
0.K191 0.6384 
0.K325 0.6528 
0,1(1(39 0.6648 
0.4565 0.6778 
0.4651 0.6864 
0.4756 0.6968 
0.4838 0.7047 
0.4919 0.7124 
0.4999 0.7198 
0.5077 0.7270 
0.5149 0.7335 
0.5225 0.7402 
0.5281 0.7452 
0.5337 0.7500 
0.5392 0.7547 
0.5446 0.7593 
0.5500 0.7638 
0.5536 0.7667 
0.56^4 0.7739 
0.5676 0.7781 
0.5779 0.7862 
O.5829 0.7901 
O.5858 0.7923 
0.5892 0.7949 
0.5954 0.7996 
0.5986 0.8020 
0.6047 0.8065 
0.6096 0.8100 
0,6128 0.8124 
0.6160 0.8147 
0.6250 0.8211 
0.6328 0.8265 
0.6390 0.8307 
0.6492 C.8376 
0.6552 0,8416 
0.6670 0.8493 

H 

0,1466  IN. 
0.0227 IN. 

0,2472'10s 

6.455 

1.387 

1.309 
10.65 

" 0.00121 

» 0.00107 

P/PE 

0.3792 
0.3993 
0.4147 
0.4226 
0.4309 
0.4388 
0.4457 
Ü.4535 
C.4590 
0.4658 
0.4713 
0.4767 
0.4822 
0.4876 
O.4927 
0.4981 
0.5022 
0.5C63 
0.5103 
0.5144 
0.5185 
0.5212 
0.5280 
0.5320 
0.5402 
0.5442 
0.5466 
0.5493 
0.5543 
0.5570 
0.5621 
0.5662 
0.5689 
0.5716 
0.5793 
0.5361 
0.5915 
0.6006 
0.6060 
0.6168 

y~INS. 

0.1606 
0.1671 
0.1740 
O.lBOO 
0-1869 
0.1929 
0.1993 
O.205B 
0.2122 
0.2187 
0.2246 
0.2316 
0.2380 
0.2431 
0.2500 
0.2569 
0.2629 
0.2693 
0.2758 
0.2822 
0.2882 
0.2942 
0.3002 
0.3057 
0.3130 
0.3195 
0.3259 
0.3324 
0.3388 
0.3453 
0.3513 
0.3582 
0.3642 
0.3701 
0-3770 
0.3835 
0.3899 
0.3964 
0.4J28 
0.4065 

M/Mg 

0.6758 
0.6855 
0.6968 
0.7076 
0.7185 
0.7253 
0.7333 
0.7479 
0.7540 
0.7656 
0.7720 
0.7820 
0.7932 
0.6026 
0.8135 
0.8243 
0.8349 
0.8465 
0.8568 
0.8659 
0.8745 
0.8861 
0.8946 
0.9044 
0.9137 
0,9223 
0,9296 
0,9390 
0.9483 
0.9565 
0.9624 
0.9704 
0.9749 
0.9796 
0.9824 
0.9873 
0.9900 
0.9947 
0.9973 
1.0000 

U/Uj. 

0.8S48 
0.8608 
0,8677 
0,8740 
0.8803 
0.8842 
0.8887 
0.89^5 
0.8998 
0.9058 
0,9090 
0.9141 
0.9195 
0.9240 
0.9291 
0.9340 
0.9387 
0.9438 
0.9482 
0.9519 
0.9555 
O.96OI 
0.9634 
0.9672 
0.9707 
0.9738 
0.9765 
0.9798 
0.9831 
0.9859 
0.9878 
0.9905 
0.9920 
0.9935 
0.9944 
0.9960 
0.9968 
0.0983 
0.9993 
1.0000 

0. 
0. 
0. 
0. 

P/PE 

0.6249 
0.6^0 
0.6448 
0.6553 
0.6661 
0.6728 
0.6809 
0.6956 
0,7021 
0.7143 
0.7210 
0.7318 
0.7440 
.7544 
.7665 
.7787 
.7908 

0,8043 
0,8164 
0.8272 
0.8376 
0.8517 
0.8621 
0,8742 
0,8860 
0.8968 
0.9062 
0.9181^ 
0.9305 
0.9413 
0,9490 
0.9598 
0.9658 
0.9721 
0.9758 
0.S825 
0.9862 
0.9926 
0.9963 
0.9999 



TABLE 7.1 

FLOW CA5E;  RPG - HIVO PRESSURE GRADIENT 

11-45 

TRAVERSE    Ti    AT X    g 2?.62  INS.;   (RUN NO.-9539) 

Stagnation Pressure,  PQ        " 120.7 PSIA;   (Downstream of Ring) 
Stagnation Teaiperature, T0 « 537.0 0R 

LOCAL MAINSTREAM CONDITIONS 

ME •    3.619 » uE *  2160.6 FT/SEC;     ör » 0.00076 SLI?22/Cy.FT . 

PE   ' -Pw) - 1 338 FSIA; T- «    118.1 0R 

6995 
" 0.111] l  IN. 

INTEGRAL QUANTITIES 

«»    - 0.1616 IN. Displacement Thl ikness, 
Momentum Thickness, e 0.0237 IN. 
Mome 
Reyn 

atum Thickness 
olds Number 

R6    • 0.281/' 10» 

Compressible Shape Factor, H 6.811 
Incompressible Velocity 
Shape factor 4- 1.370 

Shape Parameter, H       - 1.293 
Entrainifient Parameter, Hl     " 11.78 

cP. WILSON 0.00111 

cF. SOMMER/SHORT 0.00100 

PROFILE  DATA 

y-INS. K/ME u/uE P/PE y-INS. M/Mg ll/Ug P/PE 

0.0090 0.3181 0.5268 0.3650 0.1932 0.7031 0.8770 0.6127 
0.013*1 0.3615 0.5820 0.3858 0.2001 0.7120 0.8619 0.6515 
0.0170 0.3817 0.6097 0.3980 0.2076 0.7198 0.8863 0.6591 
5.0205 0.3993 0.6265 0.1061 0.2151 0.7300 0.8918 0.6700 
0.02^6 0.1156 0.6117 0.1155 0.2220 0.7398 0.8970 0.6801 
0.02715 0.1269 0.6569 0.1222 0.2289 0.7173 0.9009 0.6880 
0.0321 0.1381 Ö.6691 0.1292 0.2358 0.7560 0.9053 0.6972 
0.03=50 0.1511 0.6822 0.1372 0.2139 0.7658 0.9102 0.7077 
0.03BH 0.1635 0.6915 0.1152 0.2502 0.7773 0.9160 0.7209 
O.Qlic'H 0.1715 0.7021 0 1505 0.2577 0.7917 0.9226 0.7365 
0.0459 0.1791 0.7100 0.^56 0.2610 0.8001 0.9266 0.7161 
O.OJ<93 0,1986 0.7187 0.«621 0.2721 0.8108 0.S313 0.7579 
0.053^ 0.1957 0.7253 C.1670 0.2796 0.8200 0.9353 0.7681 
0.0563 0.5032 0.7321 0.1723 0.2865 0.8315 0.9103 0.7819 
0.0597 0.5121 0.7101 0.1789 0.2928 0.8126 0.9119 0.7951 
0.0637 0.5215 0.7183 0.1856 0.3011 0.8511 O.9I85 0.8056 
0.067B 0.5286 0.7511 0.1908 0.3078 0.8631 0.9532 0.8197 
0.0712 0.5326 0,7578 0.1939 0.3117 0.8695 0.9557 0.8276 
0.0752 0.5391 0,7633 0.1988 0.3210 0.8801 0.9598 0.8107 
0.0781 0.5113 0,76?6 0.5027 0.3296 0.8882 O.9629 0.8509 
0.0821 0.5515 0,7759 0.5107 0.5360 0.8991 0.9670 0.8619 
0,0856 0.5612 0,7812 0.5160 0.3131 0.908I 0.9702 0.8761 
0,0891 0.5678 0,7861 0.5212 0.3509 0.9165 0.9731 0.8869 
0.0925 0.^728 0,7903 0.5252 0.3581 0.9226 0,9752 O.89I8 
0,0965 0.5808 0.7961 0.5318 0.3653 0.9326 0.9787 0.9079 
0.1000 0.5888 0.8021 0.5381 0.3722 0.9135 0.9823 0.9221 
0.1029 0.5951 0.8071 0.5137 0.3785 0.9523 0.9852 0.9312 
C.106S 0.5983 0.8093 0.5163 0.3860 0.9591 0.9871 0.9131 
0.1111 0.6102 0.8179 0.5565 0.392J 0,9651 0.9891 0.9519 
0.1207 0.6155 0.8216 0.5610 0.1001 0.9826 0.9917 0.9755 
0.1282 0.6200 0.8217 0.5650 0.1073 0.9826 0.9917 0.9755 
0.1357 0.6290 0.8309 0.5729 0.1118 0.9B58 0.9957 0.9801 
0.1432 0.6107 0.8387 O.583I 0.1217 0.9901 0.9971 0.9865 
0.1506 0.6179 0.8131 0.59C0 0.1292 0.9937 0.9981 0.9911 
0.1570 0.6551 0.8180 0.59o6 0.136^ 0.9960 0.9938 0.9913 
0.161Ü P.K'2? 0.8525 0.6C3' O.lliO 0.9973 0.9592 0.9962 
0.1711* ■ ■.-■■ -3 0.8591 O-'i-^i" 0.1505 0.9981 0.9?95 0.9977 
0.1788 0.6029 0.8652 0.6230 0.1568 0.9998 0.9999 0.9997 
O.l^l 0,692'' 0.Ö7O8 Ü.6322 0.1619 1.0000 0.9999 0.9999 
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FLOW CASE:     RPG 

TABLE 7.5 

RING PRESSURE GRADIENT 

TRAVERSE T5 AT 26.62  INS.;   (RUN NO,-9515) 

Stagnation Pressure,  PQ        " 120.7 PSIA;   (Downstream of Ring) 
Stagflation Temperature, T0 « 537.0 8R 

LOCAL MAINSTREAM CONDITIONS 

«E 3.616 

PE  (-Pw)  « 1.3W PSIA; 

«995 « 0.n63 IN, 

INTEGRAL QUANTITIES 

uE » 2160.1 FT/SIC. 

Tr «     118.6  "R 

Displacement Thickness, 6« X 0.1117 IN. 
Momentum Thickness, e m 0.0220 IN. 
Momentum Thickness 
Reynolds Number 

R9 m 0.2620*10* 

Compressible Shape Factor, H St 6.579 
Incompressible Velocity 

H, A 1.323 Shape Facto- 
Shape Parameter, a * 1.218 
Entrainment Parameter, h m 13-52 

Cp, WILSON n C.00117 
C„, SOHMER/SHORT i 0.C0103 

PROFILE  DATA 

0.00076  SLUGS/CU.PT. 

y-INS, 

0.0U90 
0.0128 
0.0156 
0.0187 
0.0222 
0.0252 
0.0286 
0.0315 
0.0350 
0.0378 
O.OII3 
0.0153 
0.0176 
0.05H 
0.0539 
0.0568 
0.0603 
0.0637 
0.0666 
0,0706 
0.0735 
0.0770 
0.0798 
0.0827 
0.0862 
0.0891 
0.0925 
O.096C 
0.0988 
0.1023 
0.1016 
0.1115 
0.1178 
0.1236 
0.1305 
O.1368 
0.1^37 
0.1H95 
0,1561 
0,1621 
0.1685 
0.1718 
0.1811 
0,1869 

M/ME u/uc P/Pc 

0.3722 0.5929 0.3910 
0.3916 0.6192 C.1061 
0.1209 0.6185 0.1211 
0.1106 0.6691 0.1331 
0,1559 0.6851 0.1127 
0.1711 0.7030 0.1516 
0.1910 0.7191 0.1661 
0.5005 0.7278 0.1727 
0.5111 0.7371 0.1802 
0.5219 0.7170 0.1881 
0.5308 0.7516 0.1917 
0,5391 0.7616 0.5009 
0,5150 0,7665 0.5055 
0.5518 0.7721 0.5107 
0.5602 0.7788 0.5173 
0,5668 0.7811 0.5225 
0,5701 0.7867 0.5252 
0,5766 0.7917 0.5301 
0.5815 0.7951 0.5311 
0.5883 0.8005 0.5100 
0.5961 0.8063 0.5165 
0.6013 0.8123 0.5531 
0,6105 0.8167 0.5587 
0,6180 0.8220 0.5652 
0,6210 0.8262 0.5705 
O.6285 0.8292 0.5711 
0,6311 0.8332 0.5796 
0,6388 0,8361 0.5836 
0.6116 0,8100 0.5388 
0,6185 0,8125 0.5921 
0,6510 0,8111 0.5916 
0,6553 0,8169 0.5986 
0.6599 0,8198 0.6028 
0.6669 0,8512 0.6091 
0.6738 0,8585 0.6159 
0.6807 0,6627 0.6225 
0.6898 0,8682 0.6313 
0.6966 0,8721 0.6378 
0,7032 0,8759 0.6141 
0.7111 0,8801 0,6522 
0,7163 0,8833 0.6571 
n.7253 0,8883 0.6666 
0.7330 0.8921 O.67II 
0.7118 0.8971 0.6836 

y-INS. 

0.19J8 
0.2007 
0.2070 
0.2128 
0.2191 
0.2255 
0.2312 
0.2375 
0.2139 
0.2502 

2565 
2631 
270^ 
2767 
2821 
2893 

0.2951 
0.3011 
0.3078 
0,3111 
0,3201 
0,3262 
0,3336 
0.3391 
0.3163 
0.3521 
0.3590 
0.3653 
0.3711 
0.3771 
0.3837 
0.3900 
0.3961 
0.1027 
0.1090 
0.1118 
0.1211 
0.1275 
0.1338 
0.1101 
0.1159 
0.1523 
0.1597 
0.1660 

M/ME 

o.7ieu 
0.7555 
0.7588 
0.7658 
0.7766 
0.7861 
0.7932 
0.7990 
0.8060 
0.8110 
0.8208 
0.8298 
0.8381 
G.8I61 
c.8527 
C.8S13 
0.8699 
0.8731 
0.8805 
0.8868 
0.8938 
0.9011 
0.9062 
0.9111 
0.9236 
0,9287 
0,9336 
0.9116 
0.9181 
0.9513 
0.9620 
0.9659 
0.9707 
0.9752 
0 9790 
0.9823 
0.9871 
0.9897 
0.9923 
0.9939 
0.9973 
0.9989 
0.9991 
1.0000 

u/uE 

0.9001 
0.9012 
0,9059 
O.909J 
0.9117 
0,919;-' 
0.922c 
0.9253 
0.9281 
0.9320 
0.9351 
0.9390 
0.9126 
0.9158 
0.9185 
0.9520 
0.9555 
0.9567 
0.9596 
0.9620 
O.96I6 
0.9673 
0.9692 
0.9720 
0.9751 
0.9771 
0.9788 
0.9815 
0.9838 
0.9857 
0.9882 
0.9895 
0.9910 
0.9921 
0.9936 
0.9916 
0.9962 
0.9969 
0.9976 
0.9981 
0.9992 
0.9996 
0.9997 
0.9999 

P/PE 

0.6901 
0.6980 
0.7015 
0.7090 
0.7208 
0.73'.2 
o.'n-n 
0.7156 
0.753'. 
0.7626 
0.7701 
0.7809 
0.7910 
0.8001 
0.8080 
0.8181 
0.8288 
0.8328 
0.8119 
0.8197 
0.8585 
0.8677 
0.8712 
0.8813 
0.8966 
0.9032 
0.9097 
0.9201 
0.9293 
0.9371 
0.9176 
0.9528 
0.9593 
0.9655 
0.9707 
0.9752 
0.9823 
0.9855 
0.9891 
0,9911 
0.9962 
0.9985 
0,9987 
0,9999 
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TABLE 7.6 

FLOW CASE:  RPO - RiK5 PRESSURE GRADIEIJT 

TRAVEHSE T6 AT X    =« jl.e:? IMS.;  (RW NO.'95'i7) 

Stagnation Pressure,  PQ        ■  lc0,7 PSIA;   (Downstream of Rlrg) 
Stagnation Tenperature, TQ • 537.0 0R 

LOCAL MAINSTREAM CONDITIONS 

"E -    3.198 9 uE - 2081.5 FT/SEC;     o_ - 0,00116 SLUGS/Cb,FT. 
p
E 

("Pu)  - 2. 117 PSIA; TF -    176.3 0R 

«995 - 0.368: 1 IN. 

INTEGRAL QUANTITIES 

Displacement Thickness, «•    - 0.1269 IN, 
Momentum Thickness, e 0.0227 IN, 
Momentum Thickness 
Reynolds Number Re   ■ 0.3319' 10» 

Compressible Shape Factor,  H      ■ 5.580 
Incompressible Velocity 

HL « 1.393 Shape Factor 
Shape Tarameter, ff    - 1.315 
Entralnment Parameter, Hi   * 11.81 

cp. WILSON 0,00123 

cp. SOMMEH/SHORT 0,00110 

PROFILE DATA 

y-INS. H/ME u/uE (>/PE y-INS. M/Mj. u/uE P/PE 

0.0090 0.3368 0.516^ 0.1253 0.1611 0,7263 0.6719 0.6937 
0.0131 0.3368 0.5161 0.1253 0.1708 0.7370 0.8781 0.7039 
0.0175 0.1011 0.5977 0oi578 0,1771 0.7167 0.8811 0.7132 
0.0211 0.1319 0.6282 0.1727 0,1831 0.7563 0.8897 0.7225 
0.0210 0.1516 0.6522 0.1858 0.1903 0.7675 O.8960 0.7335 
0.0281 O.I76I 0.6711 0.1987 0.1978 0.7810 0.9035 0.7171 
0.0301 0,1885 0.6861 0.5065 0.2012 0.7891 0.9078 0.7551 
0.0338 0.5059 0.7031 0.5177 0.2111 0.8012 0.9112 0.7678 
0.0373 0,5121 0.7092 0.5220 0.2185 0,8125 0.9201 0.7797 
0.0101 0.5197 0.7160 0,5269 0.2255 0,8229 0.9251 0.7907 
0.0156 0.5307 0,7260 0,5311 0.2318 0.8532 0.9301 0.8017 
0.0165 0.5366 0.73.12 0,5381 0.2387 0.8^19 0.9361 O.S-'ll 
0.0505 0.5160 0.7395 0,5150 0.2150 0.8551 0.9111 0.6261 
0.0515 0.5520 0.7117 0,5193 0.2511 0,8638 0.9150 O.iVit 
0.0580 0,5591 0.7508 0,5511 0.2591 0,8713 0.9198 0. bk !2 
0.0611 0,5653 0.7561 0,5589 0.2657 0,8315 0.9513 0.8583 
0.0619 0,5711 0.7609 0,5632 0.2726 0,8918 0.9588 0,8707 
0.068? 0,5757 C.7617 0,5666 0,2796 0,9019 0.P632 0.8826 
0.0721 0,5815 0.7719 0,5732 0,2870 0,9150 C.9671 0.8911 
0,0758 0.5901 0.7761 0,5775 0.2939 0,9205 0.9697 0.9010 
0.0793 0.5978 0.7826 0.5331 0.3003 0,9^3 0.9736 0.9126 
0.0827 0,6055 0.7886 0.5891 0.3072 0.9370 0.9761 0.920Ö 
0.0856 0.6130 0.7911 0.5951 0.3135 0.9131 0.9789 0.9287 
0.0891 0,6226 0,8017 0.6030 0,3201 0,9189 0.9811 0.9355 
0.0925 0,6257 0.8010 O.6056 0.3279 0,9572 0.9812 0.9156 
0.0960 0,6330 0,8091 0.6115 0.3312 0,9633 0.9866 0,9532 
0.0991 0,6103 0.8117 0.6175 0,3117 0.9680 0.9883 0,9592 
0.1023 0,6501 0,8220 0.6260 0,3186 0.9767 0.9916 0,9702 
0.1057 0,6562 0.8261 0.6309 0,3555 0.9801 0.9928 0,9711 
0.1098 0.6601 0.8288 0.6313 0.3630 0.9832 0.9910 0,9781 
0.1127 0,6651 0.3323 0.6385 0,3693 0.9865 0,9952 0,9S2C 
0.1155 0,6690 0.8350 0.6119 0,3757 0.9897 0,9963 0,9866 
0.1190 0,6739 O.8383 0.6161 0,3811 0.9923 0,9972 0,9900 
0.1230 0.6768 0.8103 0.6187 0,3877 0.9936 0.9977 0.9917 
0.1270 0,6768 0.8103 0.6187 0.3952 0,9956 0,9981 0.9913 
0.1299 0,6826 0.8111 0.6538 0,1021 0.9969 0,9989 0.9959 
0.133,4 0.6855 0.8160 0.6563 0,1079 0.9982 0.9993 0.9976 
0.1371 0.6893 0.8185 0,6597 0,1151 0.9988 0.9995 0.9981 
0.1103 0.6910 0.8516 0,6610 0,1223 0.9988 0.9995 0.9981 
0.1113 0.7015 0.8565 0.6708 0,1292 0.9995 0.9998 0.9993 
0.1172 0.7052 0.8589 0,6712 0,1361 0.9995 0.9998 0,9993 
Ü.1512 0.7099 0.8618 0.6781 0,1130 0,9996 0.9998 0,9991 
0.1581 0.717? 0.3661 0.6852 0,1193 1,0001 1.0000 1,0000 
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TABUE 8:  INITIAL CONDITIONS FOR THE CALCULATION METHODS 

METHOD SPECIFIED INPUT ZERO PRESSURE ADVERSE PRESSURE 
GRADIENT FLOW GRADIENT FLOW 

1. BRADSHAW/ 
FERRISS 

Streanwise Pressure 
Distribution Experimental Experimental 

Calculation starts 
at x (insy. 1.25 1.25 
Initial Velocity 
Profile: 

Bradshaw's 
Mach «i * 

Bradshaw's 
Mach k  * 

Initial Shear 
Stress Pi-ofiie: 

Bradshaw's 
H&ch U  * 

Bradshaw's 
Mach »i * 

«o95 (m 
n0 -  g (per IW 
CF 

0.075 
7-10i 

0.100 
7-10» 

0.00120 0.00120 

2. NASH Streanwise Mach 
Number Distribution Experimental Experimental 

Calculation starts 
at X (INSJ: 0.03 0,03 

Initial Velocity 
Profile: 

Bradshaw's 
Mach H " 

Bradshaw's 
Mach 1 * 

Initial Shear 
Stress Profile: 

Bradshaw's 
Mach h  * 

Bradshaw's 
Mach U  » 

«995 (IJO 0.055 0.055 
«• (INJ 0.019 C.C19 
9  (INJ 0.0026 0.0026 
R0 §£ (per IN.) 7'10* 7-10» 
CP 0.00162 0.00162 

3. CHAN Streamwlse Mach 
Number Distribution Experimental Experimental 

Calculation starts 
at X (INS.): 1.62 1.62 

Initial Velocity 
Profile: 

Bradshaw's 
Mach H  * 

Bradshaw's 
Mach t * 

Ro " ^ (per m-) 7•10, 

l|. HEAD/GREEN $treamwlse Mach 
.Vumber Distribution 

Calculation starts 
at X (INSJ: 

Entralnment, A»«-«* 

9  (IN.) 
R9 

5. STRATFORD/ Streamwlse Mach 
BEAVERS  Number Distribution 

Calculation starts 
at X (INS.): 

6»   (IN.) 
6     (Hi. ) 

10.53 
0.100 
0.009 

10370 

11.53 
0.06^5 
0.0084 

7-10' 

Experimental        Experimental 

10.53 
0.100 

0.009 
9820 

Experimental   Experimental 

11.53 

0.0615 
0.0081 

RING PRESSURE 
GRADIENT FLOW 

Experimental 

10.59 
Experimental 
and Modified 

Flat Plate; and 
wlth Tmax at y>0 

0.223 
7*10* 
0.00120 

Experimental 

11.62 

Experimental 

Tmax at y>Q 

0.20 
0.086 

0.0112 

7•10, 

0.00095 

Expei-imental 

11.00 

Experimental 

7 «10* 

Experimental 

10.53 
0.115 
0.011 

8610 

Experimental 

11.53 
0.118 
0.0162 
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METHOD SPECIFIED INPUT ?ERO PRESSURE 
GRADIENT PLOW 

6.  CEBECI/SMITH Strearolse Velocity p.^.^..^., 
Dietrl&utlon Experlaental 

Calcjlatlon starts ,^aA1r%„ **„ 
at X  (INS.): Leading-Edge 

Transition Occurs      - __ 
at X (I»iS.): i-l}' 
RE " ^ (per lnch)  0-138«10T 

"E 
T^, 0R 

7. ZWARTS 

1.00 

128.2 

ADVERSE PRESSURE 
3RADI£NT FLOW 

Experloental 

Leading-Edge 

3.07 

0.138•10, 

4.00 
128.2 

Streamwlse Nach 
Number Distribution 

Calculation starts 
at X (INS.): U.9 
Rg (Incompressible) 0.151-10* 

H-, Energy Shape 
Factor 

V» - /?7C^ 
Clauser Constant, k 

u/uTu at Matching 
Point Between Inner 
and Outer Regions 

P« 

Experimental   Experimental 

4.9 
0.154«10* 

1.790 

21.51 
0.027 

18.17 

168.7 
298 0K 

1.790 

21.5* 
0.027 

18.17 

168.7 
298 0K 

RING PRESSURE 
GRADIENT FLOW 

Experimental 

Velocity Profile 
M-tched to Experi- 
mental at Tl by 
adding X - 650 INS. 

3.07 

O-lOl-lO' 

1,00 
128.2 

Experimental 

27.0 (stretched due 
to ring perturbation) 

o.iai'io» 

1.820 

25.69 
0.027 

22.13 

121.0 

298 0K 
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Fig. I    The parallel duct with centre-body extended, mounted in the NAE S x 5 ft wind tunnel 
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Fig 2   Section through parallel duct 
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Fig.3    Preston tube 
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Fig.5   Mach number distributions along duct 
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Fig.6a   Tests for flow two-dimensionality - Circumferential variation in Mach number at X=l 1.75 inches 
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Fig.6b   Tests for flow two-dimensionality - Circumferential variation in Mach number at X=21.75 inches 
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Fig.7a   Tests for flow two-dimensionality - Skew in boundary layers at traverse station T2 (X= 16.62 inches) 
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Fig. 7b   Tests for flow two-dimensionality - Skew in boundarj layers at traverse station T6 (X=31.62 inches) 
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Fig 9a    Distributions of skin friction coefficient along the dtict 
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Fig.9b   Distributions of skin friction coefficient along the duct 
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Fig. 12   Normalised experimental velocity profiles 
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Fig. 13    Experimental logarithmic velocity profiles:  zero pressure gradient 
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Fig. 14   Experimental logarithmic velocity profiles:  adverse pressure gradient 
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Fig. 15    Experimental logarithmic velocity profiles:   ring pressure gradient 
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Fig. 16   Experimental velocity defect profiles 
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Fig. 17   Zero pressure gradient experimental velocity profiles compared with calculations 
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11-65 

0.45 

0.40- 

0.35- 

030- 

y(in) 

025 

0.20 

0.15 

0.10- 

0.05 

0 

CALCULATIONS  BY METHODS  OF' 
 BRADSHAW xxxxwtCHAN     NASH 

 ZWARTS      CEBECI  8   SMITH 

OCOBRA PROBE 
♦ PRESTON TUBE 

Tl 
(11.62' 

Tl 
I L 
0     0.2    0.4 u_ 0.6    0.8      1.0 

"E 

Fig. 19   Ring pressure gradient experimental velocity profiles compared with calculations 
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Fig.20   Integral parameters for zero pressure gradient flow 
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Fig.21    Integral parameters for i.dverse prt.jare gradient flow 
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Fig.23   Experimental momentum thickness Reynolds number along the duct 
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THE STRUCTURE OF TURBULENCE IN SHEAR F/.OWS 

Leslie S. G. Kovaazeay 
The Johns HopStlns Univertity 

Biiltitnore. Maryland 21218 

Si'MMARY 

In the first part expeaimental results concerning the structure of shear flows are reviewed.    On one 
hand»  results obtained Ky flow visualization techniques have given inspiration for devising plausible models 
rather than have provided numerical data to toe compared with experiments.    On iht: otlitr hand,  hot-wire 
anemometer record«, especially by employing appropriate signal processing techniques have given 
quantitative data that can fee used for  direct       comparison with theoretical predictions but not as much 
detail of the instantaneous flow field.    In the second part theoretical pocsibilitie« are revicrtd and argu- 
ments are presented for favoring a model consisting of random "rprinkled", but deterministic flow struc- 
tures against models based on travelling waves.    Finally there i'i an outline of E suggesting for a possible 
form of mean flow predictions schemes. 

INTRODUCTION 

Although turhnlent shear flows are trchnologically more important :orms cf tjrbuieace than homoge- 
neous Isotropie turbulence, progress wan more modest due to their greater complexity.    They were of 
-ourse recognized rather ^arly as being difficult,  so basically two trends,or rather two attitudes were 
evident t nong the authors.   Those who were concerned more with the intrinsic nature of the turbulent 
fluctuation field, than with makit.g predictions of the shear stress and other transport properties, first 
attempted to extend to the shear flows the findings of the simpler homogeneous isotropic turbulence by 
relaxing only the condition of i^otropy but not the homogeneity.   This approach resulted first in the concept 
and later also in some experir. rntal realization of the so cabled homogeneous turbulent shear flow. 
Conceptually this is the simplest poss.'Me shear flow since it has the same statistical properties every- 
where in space.   The experimental rta.^zation of such a flow is not easy, but success was reported in 
Refs.  1. 2 and 3.   In a homogeneous shear flow experiment the scale of the turbulent fluctuating field is 
«'.nail compared to the overall dimensions of the mean flow, but on the other hand, in technological or 
geophysical situations such a flow would be comparatively rare.   The alternate approach to shear flows is 
more pragmatic and one may group the "phenomenological" or "semi-empirical" theories,as those 
concerned with "medium like behavior".   These efforts concentrate on predicting mean flow quantities such 
as the mepn velocity distribution- and Reynolds stress distribution by "closing" the governing equation», 
with seme ad-hoc, but (hopefully) physically plausible assumptions.   This pragmatic approach has a long 
history going back to Boussineso (Ref.  4) and the best known early contributions were made in the form of 
various mixing length theories.    Ihere is a current revival of this approach stimulated by the renewed 
demands of technology to stpply reliable prediction methods for technologically interesting shear flows 
'Ref.  5).    There are some conceptual difficulties in both approaches,    in the case of homogeneous shear 
flows but also in considering the "medium-like behavior" of general shear 'Iowa,one implicitly regards the 
turbulent flow as another fluid with its own laws represented by some, yet unknown,  constitutive equations. 
Such a picture of course would be more accurate in those regions of the fine' that are for away from the 
boundaries.    One boundary is the solid wall, where the turbulent flow must stccomodate itself to the wall 
through a viscous sublayer and the high velocity gradients associated with it.    The other boundary is the 
turbulent-non-turbulent interface where the turbulent flow with high vorticity accomodates to an essentially 
irrotational outer flow through a relatively thin layer (Corrsin's superlayer).    Most ideas about "medium- 
like behavior" imply that the postulated relationships are valid in the interior of turbulent flow away from 
these special regions.    Or. the other hand,  experiments reveal that the observed turbulent shear flows have 
turbulent structures with length scales as large or larger than the total thickness of the shear layer. 
Furthermore, experimental evidence accumulates indicating that intermittency, that is such a str.'-ing 
phenorrsanon at the turbulent-non-turbulent interface may be a more general phenomenon and it may L*. 

present everywhere in the turbulent flow, although obscured by the overlapping of different scales. 

The usual theoretical treatment of turbulent snear flows consists of taking moments of the Navier- 
Stokes equations and writing up transport equations for the turbulent energy or for the Reynolds stress. 
The proper terms then can be identified as generation,  convection, aiffusion and dissipation.    Usually at 
this point in the analysis it is recognised that thera are far more dependent variables then there are 
governing equations .hat can be derived from the Navier-Stokes equations.    Experiments,  at least in 
principle,   can supply the spatial distribution ami temporal development of each one of the separate terms 
and overall qualitative conclusions car be drawn for the particular flow in question,  but the actual solution 
of these equations is possible only after some very drastic assumptions are made to provide a "closure". 
The main difficultv seems to be the fact that the turbulent fluctuations in an inhomogeneous shear flow are 
of all spatial scales including very large ones that encompass the entire shear region.    Thie is the principal 
reason why the flow cannot be treated as some special turbulent fluid,  characterized by a single effective 
viscosity.    Speculations concerning predictability of mean flow properties were developed quite independently 
from the information obtained from experiments aimed to measure the fluctuating fields,  so the result is a 
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rcrtain fruit ration on bo>h «ides.    The "predictors" don't (eel that turbulence nic««ur«m«.nt» gave tbem 
iir.potant rnc-ph clues to improve their essentifiUy pragmatic approach, while those concerned with the 
turbulent fluctuations themselves regard the prediction methods «s still too crude and not entering into 
the h?an of the matter.    In Ref.  5 there is extensive discussion of this dilemma by authors representing 
ail ihac'cs of opinion 

In such a state ono must look to the new experimental da^a that became available r>r.ly in recent years 
and then try to interpret it in euch a manner that general conclusions ab-jut turbulsct shear« fltnre would 
be obtained.    Special attention is given here to two major types of novel experir-jcatal data.    One is the 
contribution of Kline,  Reynolds and others at Stanford trying to understand the genesis of turbulence near 
the wall just outside of the viscous sublayer (Ref. 6).    Tneir findings were based mainly on flow 
visualisation techniques and the results vrtTt giving inspiration to many others wot king in the field.    The 
other new experiments rely on using hot-wires but in a novel way, mainly by introducing new techniques in 
signal procciising,  such as couditional sampling and averaging and targe scale space-time correlations or 
alternately short term averaging, short term correlations.    These new efforts are carried out mainly in two 
groups, one at the Johns Hopkins University (Refs.   I,   15,   19) and the other one at the University of 
Southern California «Ref. 7).    in these novel approaches one attempts to capture av.rh salient features of 
the turbulent fluctuating field that would escape detection when using enly spectral analysis of the signals. 

REVIEW OF THE EXPERIMENTS 

A few groups hsvc made a serious effort to create a good approximation of a homogeneous shear flow 
in the laboratory (Ref». t ,Z, and 3). Essentially such a flow is created in a special wind tunnel in such a 
way that th« mean velo. itv gradient 

_     '    =   constant 

over a larg* area.    In addition turbulence is created so that its properties be constan* across the entire 
flow.    It was experimentally verified thai the mean square fluctuations are essen ially constant and the 
only important Reynolds stress was also constant acrosr the entire flow.   The m: in problem of creating 
such a flow is that somehow one must put different amounts of flow lesistance aloi g the different stream 
lines, since this drag producing structure is the one that alsc produces the turbulence,consequently the 
structure of turbulence may vary across the flow and this wouVl destroy the originally nought homogenity. 
By ingeneous design and continuing painstaking effort such flows were actually obtained, and it was hoped 
that they represent a simple but still ty\ ical form of shear flcrs/.   In the actual measurements two important 
complicating properties have emerged,   >ne is the encroachment on the flow by the wall boundary layers 
developing along on the tunnel walle.so .hat when traveling downstream the homogeneous "core" in the 
middle of the flow becs>me.j narrrvwer and narrower.    Nevertheless this only is a minor print because the 
use of a large cross-« ; ctiou wi.n> tutuwl could over come this.at least in principle.   The other and more 
fundamental difficulty >a t'.iat in the ce.-«tral core of the homogeneous shear flow the characteristic length 
scale of the turhnlance keeps increaein? as the fluid moves down stream.   This increase in length scale is 
not the result of the more rapid decay of sm^ll scale turbulence (as it is in a nearly Isotropie flow behind 
grids where the st.^all scale turbulence is dissipated faster than the large scale one) but is due to the actual 
generation of large scale motion.    The iengih scale ircrsase appears to be a phenomenon associated with a 
"reverse cascade" where turbulent energy la fed into the larger scale eddies if the large scale turbulence is 
deficient in energy level due to the pe.-uliar form of creating the flow.    As the length icale keeps increasing 
it is easy to see that finally it wiU raech the total width of the shear region.   This behavior in a way reduces 
the importance of hor ogeneous turbulent rfhear flow as a possible simple model for actual shear flows. 

Periodic excitation of a turbulent channel flow was reported in Ref.  8.    The idea that turbulent shear 
flows may be decomposed into travelling wave modes came in the wake of the success of a similar approach 
in laminar instability theories.    The work of Malkus (Ref,  9) has inspired mostly theoreticians but later the 
problem was restated and most extensively studied by Landahl (Ref.   10),   Ac.ording to his approach a tur- 
bulent flows may bc.or should be.decomposed into travelling wave modes that are the eigenfunction« of the 
small perturbation equations using the actual turbulent mean velocity pro'Ues.    The experiments reported 
in Ref.  8 were carried out In a fully developed turbulent channel flow and ihe flow was excited by a given 
frequency sine wave introduced by vibrating ribbon», a technique similar to the one ustd extensively in 
laminar flow instability and transition experiments.    Modern electronic techniques such as periodic 
sampling and averaging permitted the extraction oi the coherent periodic coimponent that in general is 
buried in the random noise type turbulent fluctuations.    The conclusions of the esperiment« were rather 
simple.    The excited modes propagate with a phase velocity that is lower than the maximum velocity in the 
channel.   All experimentally observed modes decay rapidly and the rate of the decay is roughly proportional 
to the frequency>or in other words the decay per oscillation (per one wave length travelled) is about constant 
irrespective of frequency.    The amplitude decreased to about 0.63 in one wave length travelled.    Whether or 
not the experin .nts confirm the wave guide type of theotio depends critically on the question what type cf 
effective vis     ^Uy one assumes across the channel when calculating the eigenfunctiona.    By acisunr'ng only 
the molecular viscosity the solutions are far from the observed ones.    On the other hand, the use of 
effective turbulent viscosity has an implied assumption and it is quite conceivable that only a frequency 
dependent and complex effective viscosity can do justice to this problem.    But ev<!n in that came there would 
remain a great deal of arbitrariness as far as a coinplex,  and frequency dependent turbulent viscosity is 
concerned and the dilemma is whether to introduce more and more arbitrary functions and arbitrary con- 
stants to fit the experiments or alternately accept a moderate discrepancy with experiments but use a more 
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simple and more plausible theory with very few arbitrary cocstants. 

Th« group 11 Stanford University (K'me. Reynolds and others, see Ref. 6) was concentra-r.^ on the 
exploration and quantitive assessment of the rather dramatic phenomena observed at.or near th» outer 
edge of the viscous sublayer,    ifofortwitely hot-wire anemometer records obtained in that region »re 
confusing so the   best J«ta is from tracer techniques (dye or hydrogen bubbles).   The typical event is a 
turbulent burst «here a fluid filament lifts up, away from the wall aad the new faster flow sweeps »way 
the local event.   When looking at the same phenomenon normal to the wall, one observes that in the wake 
of such a burst longitudinal vortices appear whose spacing is well aiscemible at least temporarily, but 
their actual iocatiot: of course wanders from event to event.   The whale concept of individual identifiable 
bursts introduces the idea of an intermittency in the generation of turbulence and the conjecture cxv> be 
made that the generation of turbulent energy as well as the contribution to the Reynolds stress all o;cur in 
"chunks" that are essentially random in occurance, but have ratlwr difinite forms.    The bursting races, 
though difficult to define quaBtitativelyc appear to depend strongly on the local mean velocity profile that 
in turn depends on the mean pressure gradient, consequently "relair.lnarization" would occur whenever the 
bursting rate would drop to zero.   Experimental evidence is abundant and the whole argument is 
qualitatively convincing (Res. 6',.   The picture that was suggested in Ref.  II consists 01 a random sequence 
of well defined bursts creating tr. intense activity carrying fluid outward, transporting a momentum defsct 
(retarded fluid) from the proximity of the wall and thus creating the r?gic;! of turbulence generation near 
the sublayer.    Further support to this picture is the fact that when using suction over a porous wall it 
requires only very small rate to remove the ictive region in order to suppress turbulent fluctuations.   The 
difficulty of designing a more quantitative expeiintents lies in the fact that even with a whole array of hot- 
wire anemometers it was cot possible yet to construct the appropriate "detector function" that would 
identify a particular bunt as it passes by the array of probes.    Experiments by present author and an 
associate,  (unpublished) were made in order to simulate such bursts by emitting small pulses from a small 
diameter hole in the wall (diameter smaller than the sublayer thickness).    Interestingly enough the 
trajectory of these bursts coincided with the observed trajectories given in Ref. 6, but the bursts them- 
selves decayed in the turbulent fl: w and did not result in an avalanche of turbulent activity during their out- 
ward journey. 

Quite independently Kaplan and Laufer (Ref. 7) have reported that a lateral spatial structure of the 
turbulent bursts can be observeJ by taking short-time correlations near the edge of the sublayer by using 
an array of transversely separated hot-wire probes.   This experiment reveals a temporary periodic 
structure in the transverse direction that disappears when taking long-time correlations since then.by 
averaging over many bursts the striking features are "washed out" by the superpositions of many independ- 
ent event). 

Intermittency appea" to be a universal phenomenon in turbulence but it was only in 1961 that 
Kolomogorov (Ref.   12)      st suggested that the small scale turbulence or in his wording the viscous dissi- 
pation is not a statistically homogeneous uniformly distributed scalar quantity even in locally isotropic 
turbalence, but must have a large scale "chunky" structure.    His suggestion amounts to a picture consisting 
of fine scale turbulence imbedded in a larger scale turbulent flow in a random fashion.    Thin new kind of 
internal intermittency may have a characteristic length scale of the "chunks" that is much larger than the 
fine scale turbulence itself.    Experimental evidence to verify this suggestion is scarce, but most recently 
Kuo (Fef.   13) has maie such measurements and indeed has found that this internal intermittency actually 
exists in homogeneous turbulence.    If this phenomenon is universal a turbulent shear flow may be visualized 
as consisting both of regions that have originated in a relatively high shear region and of more inactive 
"milder" types of regions.    One may visualize the actual state of affaire as a mixture of different scale 
turbulent flows that are coarsely mixed so different "chunks" of fluid have a different origin or alternately 
a different age.    This may be especially true in very high Reynolds number turbulent boundary layers, most 
typically in atmospheric boundary layers, where different fluid masses may have left the high shear region 
near the ground at different locations upstream so their "age" is different.    The actual ii termittency at the 
free stream edge is already well documented and it may be just a more dramatic form of this basic and rath- 
er univprs-l phenomenon but not an essentially different ore (see Ref.   11). 

The turbulent-non-turbulent interface was known for a rather long time but seldom was incorporated 
in the models that served to predict mean flow parameters in turbulent shear flows.    For an excellent flow 
visualization technique see Ref.   14.    The role of the interface is regarded sometime as an "active" surface 
through which the irrotational flow is ingested into the intensely rotational turbulent zone or alternately as a 
rather passive line of demarkation undulating fore and back around its mean position by responding to the 
large scale motion within the turbulent region.    In order to clarify some of the ideas about the interface, 
detailed measurements were carried out by Kovasznay,  Kibens and Blackwelder (Ref.   15) and a number of 
facts were conclusively established.    The key to these experiments was the method of conditional sampling 
and averaging as well as the extensive application of long time-lapse space-time correlation measurements 
presented in the form of space-time correlations maps,    A large portion of the findings is published in 
Ref.   15 so it is sufficient here just to reiterate some of the important conclusions.    It should be mentioned 
here,that by adapting the same measuring techniques intermittency and conditional average velocities were 
obtained in a turbulent shear layer (Ref.   16). 

The streamwite mean flow velocity at a given location (same distance   J/    from the wall) is different in 
the turbulent and in the non-turbulent regions and this difference can amount to as much as J% of the free 
stream velocity.    This fact alone indicates that the turbulent portion of the fluid was slowed down relative 
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to the cuter non-turbulent fluid, therefore, the non-turbuleit «ni essentially inviacid outer flow is ,?ridi);g" 
over the wavy interfscs thua creating a fluctuating potential flow.    Surprisingly Che r.m.s. turbulent 
velocity fluctuation Uvel shows no discontinuity across the interface.    From the conditionally samplcii situ 
averaged velocity fluctuations it is possible to reconstruct the instantaneous velocity field of a "typical 
interface bulge" shown in Fig.   1,    The presence ot *>:rge potential fluctuation» was first surprising but it 
i« easy to see that the vorticity fluctuations must indm-e velocity fluctuations mi a distance (Biot-Savart 
law) and vhe highly active turbulent motion must b« accompanied by an irrotational induced motion that 
represents a potential flow in the incomnrewible ca*e o<- alternately sound waves in the compressible case. 
The r.rn. s. vorticity fluctuatous appear to be discontinuouj at the interface although no direct measure- 
ments have been made on all three components of the instantaneous vorticity.    C-v.ditionall/ averaged 
Reynolds stress indicates an interesting behavior in the intermittent region shown in Fig.  2.    It is clear 
that the Reynolds stress is carried essentially by the turbulent regime and the irrotational outer fkw 
does not contribute to it. 

The method of measuring space-time correlations of turbulent flows was pioueered by Favre (Refs. 
17, and 18) and the results provided the first experimental indication as to what extent Taylor's hypothesis 
is valid.    Using the concept of wave guide type travelling wave modes it also supplied the different phase 
velocities (celerite in French in the original work).    For the present purpose it was adopted niainly to 
extract the large scale motion by using it in a novel Runner (Ref.  15).   First the space-time correlation 
measuremects were carried out for very large separations in space and in time in order to determine the 
charactertic life-time of the lz>rge eddies.   Surprisingly it was found that the large eddies have life-times 
so long that fluid particles would travel about ten boundary layers thicknesses with the free stieam velocity 
while the large eddies decay only by a factor of   /g, .    If the large scale eddies have such a Ions life-time 
then it was found to be profitable to map out the detailed space-time correlations and plot them in three 
dimensions using the separation coordinates    X,   Y,    Z,    T  and thus give a "signature" or rather a 
"portrait" of the large eddies.   The method i^ given as follows:   first place one hot-wire anemometer 
upstream at a fixed position in the flow then delay the signal obtained by a fixed time        i that is 
large compared to the (Eulerian) time scale of the turbulence.   Then place a second hot-wire probe scanning 
ic space around the down stream location where maximum correlation is expected, namely where a fluid 
lump leaving the upstream probe would arrive afte- travelling along the mean streamline for a time    f 
The constant correlation contours will outline the "lasting" features of the large scale eddies.    In actual 
experiment the role of the time delay    T      is interchanged with the streamwise coordinate separation 

iS.TC     for instrumental convenience, but the essential results are the same.    Non dimensional 
separation coordinates were used throughout  {see Ref.   15) 
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Figure 7.    Streamlines around "Blob" must result in "four leaf clover"   type I-w rorrslation 

pjtttern. 

Figure 8.    Space-time cross-cor relation of I and w at the i.alf intermittenc/ level, 

R      (0, 0, Z, T) at yo/6    = 0,8.    Note "four leaf clover" pattern as predicted. 
I w 0 
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where      Q     it the boundary layer thicknc*« and       V^j     is the free stream velocity.    The space-time 
correlation of the    u    and   v    velocity components are shewn in ~igi. 4, 5. and 6.    Fig.  4 show« the 

^j^rorrelation in three sections while figures 5 and 6 show the   /?vv   in two sections.    It is 
interesting '■> see that the distances where significant correlation occurs extend to dimensions that ar- 
of the .ame older as the boundary layer thickness and it can amount to several times the boundary layers 
thic'uies* in the «treamwise direction in case of      RUM,   t^>e corrctation of the «treamwise velocity 
component as ihown in Fig. 4.    The correlation pattern of the cross component (Figs.  5 and 6) is 
strikingly different and surprisingly enough the    ^ yv  correlations extends well beyond the turbulent 
boundary layer into the outside irrotationil flow.    The explanation is simple, the outside flow responds 
to the "massage" of the turbulent motion by a corresponding inviscio potential flow that represents a far 
field of a turbulent agitation inside the boundary layer. 

Correlations measurements were taken using the intermittency function JL   as one of the flow 
variables.   The intermittency function J^ is defined as    X    =   d        for non-turbulent and   J «  1 
for turbulent state.    Like any other fluctuating quantity it can be cross-correlated with any of the other 
fluctuating variables such as    u,    v,   -v   (see Ref.  IS).    Cross-correlation between X and   It    is 
negative and it shows that the turbulent fluid also corresponds to the slower moving fluid.   As the turbulent 
"bulges" or "blobs" move slower than the surrounding irrotational fluid the relative motion must be 
similar to that around a blunt body.    Fig. 7 shows the probable model.    The lateral component  w   must be 
alternately positive and negative as indicated on Fig. 7.    The cross correlations between land w   then can 
be predicted as consisting of four lobes of alternating signs giving the "four leaf clover" pattern.    Actual 
sneasurements are shown in Fig.  6 confirmed this prediction and gave increased confidence in the model 
proposed in Ref.   11. 

The lact has been known for some time that rapidly accelerated boundary layers become similar to 
laminar ones and the conjecture was made that there is some kind of "reverse transition" or "relamin- 
arizaticn".    In the context of Ref.  5 this phenomenon occurs when the supply of turbulent burst», there- 
fore the generation of turbulent energy,  near the sublayer ceasss and the turbulence in the outer part of 
the boundary layer decay« According to its proper time scale.    Experiments performed by Blackwelder 
and Kovasznay (Ref.   19) have shown that relaminarization is an unsuitable term because what really 
happens is a very slow decay of the existing turbulence and at the same tiro» a rapid acceleration of the 
mean flow so that the remaining turbulent energy and Reynolds stress both becomes small compared to the 
kinetic energy of the mean flow.    Nevertheless the fluctuations do not decay very much in abolute terms. 
Figures 9-12 show the typical results.    Fig. ? shows th>j shape of the duct used and the mean velocity »id 
pressure distributions along the »treamwise coordinate 76       ,   The boundary layer on the upper plane wall 
was under study.    Due to the rapid change oi crosi' section all data are displayed against the non-dimension- 
al stream funrtion "^^/y    instead of the coordinate   W 

N^ s {U(9)AS 
0 

so that a constant vulue     \l^* represents moving along the same mean streamline.    Fig.   10 shows the 
intermittency factor during acceleration.    Between stations       X   -   1050 cm. and    *C    =   1100 cm. the 
intermittency    f     is essentially negligible.    The new increaaing intermittency downstream is the result 
of the fact that the very high acceleration (high pressure gradient) can not be maintained indefinitely,  so 
as the flow is becoming parreUed again^the gradient will drop beiow the critical level and new turbulent 
boundary layer i» grown from near the wall and begins its new and independent existence.    Both the total 
kinetic energy and the Reynolds stress, when measured along the same stream line,  change only moderately 
in absolute terms if normalized with a fixed velocity    [J9    (there may be some increase very near the wall) 

(Fig.   11)  but they both rapidly decrease in terms of the local and therefore    accelerated mean velocity U^ 
(Fig.   12).  What is being meant is that the concept of relaminarissation is primarly due to "inflation" 
represented by the increase in t.»e mean flow so thai the essentially constant level of the kinetic energy 
end Reynolds stress represent smaller and smaller values in terms of the ever increasing mean velocity. 

It must be mentioned here thai the above argument was developed only for low Mach number flows 
where adequate measurements are available.    At high superstnic Mach numbers the picture may be different 
because at high Mach numbers a rapid expansion does not result in a significant increase in the mean velocity, 
rather in a decrease in ambient pressure and temperature and the key to the phenomenon must be the cutting 
off the supply of turbulent bursts near the wall due to the very full, and very convex velocity profiles and 
to a lesser degree due to the lateral expansion of the stream tubes.   More work is needed in this area 
because turbulent fluctuation measurements at high supersonic velocities are anything but easy and con- 
venient. 

The counterpart of space-time correlations are the wave number and frequency spectra and such data 
was reported in Ref.  20.    Although it is the exact counterpart of space-time correlation measurements it 
emphasizes spectral ducomposition and brings out significantly the propagation properties of the wave-like 
Fourier components.    On the other hand, the intermittent character of the flow is not brought out by Fourier 
analysis therefore, author does not find that particular representation very useful, except possibly for 
problems in sound generation by turbulence,where the coherent wave-like behavior is particularly important 
in assessing the far field of the generated sound. 
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DISC'SSION 

The d*ve,:opnitnt of useful concepts toward an. understanding of turbulent shear flow came from two 
directions.    One was the demand for explanation of overall mean flow properties and the other was the 
availability of detailed measurements of the turbulent velocity fluctuations. ^Jhe most simple and some- 
what naive plobai idea is that thw turbulent intensity tt' C   V,*' ♦ V • f VC' while it indicates 
the level   of ^..tivities so by extension also represencb a quantity roughly proportional to the Reynolds 
strets         nv              ■    The idea of the Reynolds stress being proportional to the total turbulent kinetic 
energy is especially appealing in "wall-turbulence" such as pipe or channel flow and in the turbulent 
boundary Uyer, where there is a constant replenishment ci the turbulent ~nerjty from the wall area.    It 
if less appealing in "free-turbulence" and isi the central reeion near the axis of symmetry of wakes, 
jets,  channel flows, etc. where the Reynolds stress must be zero, while the turbulent energy   O* 
is net.    If no oihe: statistical quantity is specified the turbulent energy alone leaves no clues about the 
magnitude of the dissipation, which further implies that there are no clues about the scale of turbulence. 
At that level of complexity the only options open are either to assume that the scale is uniform or that it 
is small compared to the total width of the flow.    Of course neither cannot be true in most turbulent 
shear flows,  since the scale is both varying and also it can become quite large.   At the next step one may 
df-fine      a single turbulent scale and at thst point there is a dilemma because one of the important scales, 
the dissipation scale or Taylor's microscale is difficult to obtain experimentally especially at high 
Reynolds numbe«-« ind even more so in high Mach number flows,  coniequently the estimation of the total 
viscous dissipation is rather questionable.    On the other hand, intergral scales appear tu be large and 
proportional to the overall dimensions of th« shear layer and relatively insensitive to the Reynolds number. 
So the integral scale reveals relatively little,  it only gives a warning that transport of momentum, maus 
and heat all occur at scales up to and including the total width of the layer.   The two types of scales are 
often related by a convenient argument, namely by invoking that at high Reynolds number there is an 
inertial rang- in the energy spectrum that is universal and that provides the transfer of energy from the 
large scale eddies to the dissipative small scale tadiea. 

A spectral Approach has been favored by many experimentalists probably mostly for the sin pie 
convenience of using commercially available tunable filters, wave analysers, etc., to process the output 
of a single hot-wire rather then to use spatially separated probes or arrays.    Conceptually, however, it is 
less than satisfactory in   inhomogeneous flows where Taylor's hypothesis in no longer an accurate guide. 

It ib inevitable that on the next level of sophistication (or at least of complexity} some kind ul two 
level model is necessary, mainly, to describe separately the large scale motion that is strongly non- 
isotropic and dominates the transport mechanism and a small scale motion that is responsible for viscous 
dissipation and hopefully it may be assumed as isotropic and homogeneous.   This idea of course is uol new, 
it was first suggested by Townsend in 1956 (Ref. 21).    The real question is of course what kind of picture 
to assume for the large scale motion.   And here several choices were explored.    The first choice is a'wave 
model and the most prominent exponent of this approach is Landahl (Ref.  10}.    It is evident from experi- 
ments that the general convection velocity of turbulent patterns is different from the local mean velocity 
or in other words Taylor's hypothesis is violated to some extent.    The large scale entities called "waves" 
or "bursts" all travel along the flow at some intermediate velocity different from the local one (see, e.g. 
i.ef.   18}.    The idea of solving a linarized Orr-Sommerfeld equation for a turbulent mean velocity 
distribution is very obvious and the largest scale modes can be calculated as eigenfunctions of such a 
problem.    The difficulty with this approach however is the following: the observed space-time correlations 
do not extend laterally, neither do they show any oscillating or periodic behavior.   As a result the actual 
experimentally observed phenomenon must be regarded as the    superposition of a large number of such 
harmonic components with varying   obliqueness or even as a continuous spectrum of them when calculating 
the dynamic behavior,     the non-linear interaction of those components must dominate the phenomenon, 
therefore it appears desirable to choose an alternate model that can represent the actual flew field either 
with fewer components or with less non-linear interaction. 

Another approach is the "proper eigenfunction" expansion of Lumley (Ref. 22}.    Here the flow is 
decomposed into eigenfunctions but these to be obtained from the orthonormal expansion of the correlation 
functions.    The theory contains several alternate options and it includes further possibilities given in details 
below. 

Randomly distributed but still deterministic structures appear to be an attractive representation of 
turbulent shear flows because they can incorporate mosi of the experimentally observed phenomena and 
they can still be tractable for prediction of mean flow properties.    The idea was   developed to a certain 
extent by Lumley himself (Ref.  2-;) and was further discassed by present author in Ref.  26.    The approach 
rests on Rice'» Iheorem (Ref. 23) broadly stating that a superposition of random distributed but identical 
shape model functions results in a new statistically stationary (homogeneous) function whose normalized 
double correlations rnd spectra are identical with those of the model function.    The suggestion here is that 
the bursts observed near the sublayer generate typical "deterministic" entities, or elementary flow patterns, 
whose development,  convection and decay through i.he shear layer would follow a single pattern,but their oc- 
curence in space and in time is random and in the first approximation statistically independent (e.g.  Poisson 
distribution).    These structures howe-'er, decay while transfering energy into finer scale turbulence and the 
entire flow ,;s permeated witn fine scale turbulence that maybe regarded as a new viscous medium and 
possibly can r» dealt with assuming a sirrple turbulent effective viscosity.   Such a model can accomodate 
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th« observed in'ftomofenieUy of Ute ahemr now*.   The experimental!" identifiabt«- tvr-tu .-securing «t the 
intermittent cuter edge n well •■ the internal intermirtency of ih* dissipation can be all properly 
included.    One must note however that decomposition into r*B&> nij occuring entities is net an 
orthonormal erp^nsion, consequently the non-linear inierp.ctiors must be dealt with in n different 
manner than customary in a spec. -«1 approach     (See Ref.  26).    In addition the miection arises by what 
process can one obtain explicitly ihts model function themkelves and here there is a definite dilemma. 
One approach would be, that by using Rice's theorem one could define model functions that yield the 
right space-time correlation and spectra leaving open the question of coarseness whether one has 
relatively rare events with high intensity or many small contributions cf low intensity or small 
contributions of low intensity resulting in a nearly Cauaian process.   Another approach is to follow 
Lnmley's procedure aa example is given in Ref. 25. 

From the point of view of predicting mean flow propertie- toe most important consequence of the 
different time scales and the different life-time of the eddies ic, that the past history of the ilow very 
strongly determines rhe local response of the turbulent fluid to the rate of deformation at that point. 
In another word local propertieo may not fully determine local responss except in the :ase of the quasi- 
homogeneous flow where conditions change so slowly in the flow direction that the evolution of the 
turbulence may be neglected.   The other particular case is where similaiity may be assumed, therefore 
all mechanisms are to remain similar and do not show explicity the transient nature.    An important 
consequence of the   above picture is that due to the role of large eddies a naive gradient diffusion miKiel 
for momentum transport must be inadequate or in another word calculating the transport of momentum 
as the product of an effective turbulent viscosity and the rate of strain oi the mean flow (or alternately 
similar quantities for other analogous transport quantities) must be naive since the large eddies will 
transport these quantities irrespective of the particular value of the mean flow gradients. 

In view of all these it appears preferable to express the transport properties in it integral form 
rather than in a differential form. E. g. for a steady two-dimensional shear flow of finite width 2 0 
streamwise component of the mean velocity        L/(,tt'i)    should be calculated as 

u^,)) • Uli') ♦£(fKhK;;'.{u^VJ-u>,J>'V 

the 

.«o 

NCM) S ^Ktw^-M*'01*' 
theory 
alone. 

where   [Jltty is the streamwise component of the mean velocity calculated from invincid 
If boundary layer assumption applies UIMV^*)    *' a ^unction of the streamwise coordinate X 

The quantity      V^ represents the transport activities of the turbulence and of course must be 
dependent in some way on the intergrated total turbulent energy.    In order to effect £ closure one must 
assume a mechanism of producing turbulent energy at the interfaces (at the wall and at the free stream) 
and conditioning its production according to the rate of bursts.   This is of course only a sketch but the 
logical steps involved would b.  the following:   turbulence exists upstream and is transported continuously 
downstream.    There is a decay of the targe scale eddies due to the activity of the finer scale turbulence 
that is responsible -/or its dissipation and this may be taken care by an effective turbulent vUcosity.   The 
large scale eddies in turn are generated by the turbulent bursts at the aolid boundaries or alternately by 
the general Rayleigh type instability in case of "free-turbulence" (wakes, and jets with inflection profiles). 
The turbulent energy is responsible for the transport model and therefore for the form of the function of 

Y^    which in turn redistributes the mean kinetic energy.   Such a theory would be  also far more 
practical for etep-by-step calculation by a computer since it is stated in a    integral form and not in a 
differential form.    Naturally a suitable function for tht bursting rates and a plausible expression for K 
must be obtained, so this is only a program not a full theory. 

(1)    Champagne,  F.  H. ,  Harris,  V. C, 
Corrsin, S. 
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SUMMARY 

Because the problem of the analysis of free turbulent Mixing is | 
complex, and some empiricism is always necessary to obtain a solution, 1 
there has been a proliferation of models for the turbulent shear stress. j 
All of these models will correlate experimental data well it: some i 
region of a particular flow, but not in others. None has been tested | 
over as broad a range of flow conditions as is possible.  In this 
study, a group of models for the turbulent shear stress, ranging from 
the classical Prandtl mixing length theory to the newly-developed 
kinetic energy models, are systematically confronted with a broad 
range of experimental data.  From this confrontation comes two sets 
of conclusions—>one detailing those models presently suitable for 
engineering use, and the second establishing the models which show 
promise of becoming more generally applicable with further development. 

LIST OF SYMBOLS 

aj - ratio of turbulent shear stress to turbulent kinetic energy, Eq (10) 
aj - constant in expression for dissipation of turbulent kinetic energy, Eq (21) 
b - width scale 
c - constant 
C - concentration of jet species 
H - total (mean flow) energy 
k - turbulent kinetic energy 
K. - constant in Alpinierl eddy viscosity expression, Eq (6) 
Kp - constant in Ferri eddy viscosity expression, Eq (5) 
Kp - constant in Prandtl eddy viscosity expression, Eq (4) 
Kg - constant in Schetz eddy viscosity expression, Eq (8) 
Kz - constant in Zakkay eddy viscosity expression, Eq (7) 
i -  mixing length 
I. - mixing length for turbulent kinetic energy 
L - function expressing radial variation of -r/pk, Eq (14) 
M - integral momentum increment, Eq (1) 
Pr - turbulent Prandtl number 
Prk - Prandtl number fur turbulent kinetic energy 
r - primary nozzle radius 
r",, - velocity half-width; r for which U - 1/2 (Ü + U ) 
r^g " mass-flux half width; r for which pU - 1/2 \pc  U° + po U0) 
Sc  ' - turbulent Schmidt number 
U,V - mean velocity components 
u,v - fluctuating velocity components 
x,y - cooruinate directions 
a. -  for plane flow = 0, for axisymmetrlc flow = 1 
fi* - axisymmetric flow displacement thickness 
e - kinematic eddy viscosity 
p - density 
T - turbulent shear stress 
Subscripts 

o    -■• outer-stream 
c    - centerline 
j    - primary jet 

PREFACE 

Free turbulent mixing can be defined as that class of turbulent flows in which there 
is no direct effect of solid boundaries on the development of the flow.  Plumes from 
exhaust stacks and the wakes of aerodynamic bodies both involve free turbulent mixing, as 
does the interaction of fuel and oxidizer in a combustor, or the interaction between the 
exhaust of a rocket and the surrounding atmosphere.  Clearly, the understanding of free 
turbulent mixing flows is basic to the understanding of the fluid mechanics of many 
different devices. 

In all free mixing problems the analytical difficulty is the same:  although the 
equations of motion for a free mixing flow can be formulated, if the flow is turbulent, 
these equations always contain more unknown terms than there are equations.  In particular. 
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tiie inomc-nmm equation contains an unknown correlation of the fluctuating velaclty compo- 
nents which behaves as a shear stress term—the Reynolds stress.  In order to solve the 
turbulent momentum c-auation, a model for the Reynolds stress must be used.  Evaluation of 
the model used requires experimental evidence. 

To provide this evidence, a considerable number of experimental investigations of 
fr»:c- turbulent mixing heve been carried out. These have included Investigations cf bcth 
the moan flow structure of such flows and their fine scale turbulent structure. At the 
same time a number of models for the turbulent shear stress have been developed, some of 
which are modifications and (jeneralizations of earlier models, and others which have 
attempted new approaches. Even to those working in the field, the number of experiments 
and models available presents a maze of often conflicting information. 

In order to evaluate the state of the art in this important area, I have- undertaken a 
critical review and evaluation of both the available experimental data and of the models 
that have been proposed for the turbulent shear stress in constant-pressure free mixing. 
The  study has been carried out in tw phases. In the first phase. I have critically 
examined all of the readily available free turbulent mixing data. From tbia review cf the 
experimental data I have drawn a body of significant, accurate and completely reported 
experiments. The second phase then involves a review of the available analytical models 
for the turbulent shear struss. From this I have selected several models which seem to me 
fo be significant. To evaluate the performance of these models, I have used each of them 
in a finite-difference scheme to calculate the particular flow condition represented by 
racn of the experiments selected in the first phase. By using a numerical scheme common to 
a'.l calculations, any program-dependence of the results Is removed from the comparison. The 
overriding consideration in this evaluation is how well a given model stands up to the 
challenge of comparison of its predictions with experiment throughout the entire range of 
the free turbulent flows considered. Those models for the turbulent shear stress that best 
meet this challenge are those which have the widest range of applicability and thus the 
greatest engineering usefulness. 

The material presented in this paper is a summary of a study carried out at the Arnold 
Engineering Development Center fA?DC). This study is reported in Reference 1 in far more 
detail than can be used here. In selecting the experiments and theoretical models to be 
considered, I have with some exceptions used only the most readily available papers and 
reports. With this limitation, the review of Hef. 1 is complete up through March 1970. 
Only limited reference is made to the Russian literature. This is because the requirements 
of this study eliminated all but the most detailed papers, and the Kusslan literature, at 
least as it is available in the United States, is seldom sufficiently oetailed to survive 
the elimination process. 

1.  REVIEW OF EXPERIMENfAL DATA 

The ultimate goal of this study was to provide a complete test of selccisd models for 
the turbulent shear stress over as broad a range of flow conditlou., as possible. Estab- 
lishing the appropriate experimental data tc use demands a certain sophistication, for not 
all experimental work is equally valuable, and unfortunately uot all is equally correct. 
Thus the first part of the study involved a critical review and evaluation of the available 
experimental Information. However, as the emphasis in this paper is on the confrontation 
of theoretical models for the turbulent shear stress with experimental data, the evaluation 
of the experimental data (which occupies more than 300 pages of Ref. 1) will not be con- 
sidered in detail herein. Instead, the method of evaluation and the experimental data 
selected will be described. 

Configurations ranging from the circular jet in still surroundings to supersonic w^-kes 
were considered in the evaluation of experimental data in Kef. 1.  In judging the accuracy 
of a given experiment, I have taken the primary criterion to be how well the data satisfy 
the requirement, valid for a constant-pressure free mixing flow, that the Integrated 
momentum increment at any axial station in a given flow be a constant, i.e., that 

M s / p U (U - U ) y ' dy = Constant (i) 
o        0 

where - = 0 for a plane (symmetric) flow and a «= 1 for an axisymmetrlc flow.  Since Eq (1) 
as written is valid only for symmetric flows, it was not used as a criterion for those few 
non-symmetric plane flows encountered. A second test, necessarily more subjective, is how 
well the results of a given experir.ient compare with those obtained in other experiments 
concerned with the same flow geometry. 

Many experiments satisfy Eq   (1)  reasonably well (M varying ±10% from its average value) 
anc1 if Eq (1) is satisfied two experiments concerned with the same flow geometry will 
generally agree well with one another. However, this does not mean that there is a fjjreat 
variety of experiments from which to choose for the purposes of a study such as this.  The 
reason for this regrettable state of affairs is the wide variation in the detail with which 
an experiment is reported; particularly in the extent of the detail available about the 
experimental initial conditions.  It is well known that many free mixing configurations 
eventually approach a "fully-developed" or "self-preserving" state; if "fully-developed" is 
deiined as the state existing when nondiraensional flow variables are functions of a local 
length scale and "self-preserving" as the state in which the local length scale is itself a 
function of axial distance, then "fully-developed'' conditions occur in general before "Self- 
preserving" ones. However, the spatial position at which such conditions occur depends 
entirely on the flow Initial conditior.ij  The length of the potential core region of jets is 
also entirely dependent on initial corditions such as mass- and momentum-flux ratio and 
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initial boundary layer thickn sscs.  if tue adequacy of a theoretical prediction of a free 
mixing flow is to le  properly assessed, the initial conditions of that flow must be well 
defined. 

The experiments selected for use In this study are listed in Table 1.  It will be 
noted that all but one of the .selected experiments, which include a circular Jet, coaxial 
jets with monentua, heat and nass transfer, a compressible circular jet, and a two- 
dimensional and an axisymmetric wake, include profiles of the turbulent shear stress, T. 
This allows known initial conditions to be used in assessing the kinetic energy model. 
However, in some cases these profiles were not known at x/V  = 0, and where this is the 
case the kinetic energy mooel calculations start at the axial location noted  Where 
necessary, the various transport coefficient ratios were taken from the experimental data. 
Thus, for Paulk3, ?r = 0.60; for Chriss5, Pr = 0.85, Sc = 0.85; and for Eggers^, Pr = 0.6C. 

Table i 

Characteristics of the Selected Experiments 

Investigator Rer. Type 

Circular 
Jet 

m/sec 

(M = 
0.031 

Uo'Uj 
Po"o 

Po", 

Re 

xlO"4 

Basis 
of Re u 

nitiül Profiles 
K     C     T Location 

Bradshaw. 
etal. 

-~ — 35.0 ÜJ.DJ X X x/0-2.0 

Paulk 3 Coaxial 
Jet 

125 
123.5 

0.371 
0.125 

0.417 
0.138 

10.9 
10.75 

ürDj X 

X 

X 

X 

X 

y. 

x/D-8.5 
x/D-6.8 

Forstall 4 Coaxial 
Jet 

68.5 
36.6 

0.20 
0.25 

0.217 
0.272 

2.98 
1.59 

urDi X x/D ■ 0 
x/D-0 

Chriss 5 Coaxial 
Jet 

1000 
976 
930 
733 
580 
946 
746 
595 

0.158 
0.227 
0.263 
0.333 
0.416 
0.218 
0.312 
0.400 

1.785 
2.57 
3.12 
4.16 
5.25 
1.61 
2.44 
3.33 

11.65 
11.30 
10 75 
8.48 
6.71 

10.95 
8.65 
6.89 

Ui-0J X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

x/D-5.4 
x/D'4.6 
x/D-4.6 
x/D-4.0 
x/D-4.8 
.</0-5.9 
x/D'5.3 
x/D-4.8 

Eggers 6 Circular 
Jet 

539 — — 2650 UJ-DJ X X X x/D-14.5 

Chevray and 
Kovasznay 

7 20 Wake 4" — ... 0.16 uj.%a X X x «0 

Chevray 8 Circular 
Wake 

27.5b ... — 275.0 Uo.D X X x -0 

a80 • momentum thickness at x-0. 
bU„ 

2.  THEORETICAL MODELS FOR THE TURBULENT SHEAR STRESS 

2.1 Locally-dependent theoretical models in constant density flow 

One of the best known formulations for the turbulent shear stress is the mixing length 
theory developed by Prandtl in 1925.  The development of this theory is described in detail 
in many texts, for example, Schlichting^; basically it is founded on the idea that turbulent 
eddies can be thought of as transferring momentum laterally in the flow.  With the condition 
that the eddies retain their identity as they travel a "mixing length" whereupon they mix 
instantaneously with other eddies, the mathematical statement of the mixing length theory 
becomes 

^ of (2) 

In a free mixing flow the mixing length 
mixing region width b, i.e., i = c • b. 

is ordinarily taken to be some fraction of the 

Exchange coefficient models can all be traced back to the original Boussinesq concept^ 
which is that the turbulent shear stress can be written in a manner analogous to the laminar 
shear stress, >vith the physical viscosity replaced by an effective exchange coefficient or 
eddy viscosity, t.  Thus for a turbulent flow 

?U 
(3) 

Of course, Eq (3) does no more than define e,   and some model for this parameter must still 
be developed.  The most commonly used eddy viscosity formulation for incompressible flow 
is the model proposed by Prandtl1^ in 1942, which may be written 

Kp b (H max - U min (4) 
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Here Kp is a constant, b a measure of the width of the mixing region, and Umax and umin the 

maximum and minimum values, respectively, of the axial component of the mean velocity at a 
given cross section. Note that in this formulation e is a function only of x. 

2.2 Locally dependent models in variable density flow 

liiere are fou:>* approaches that can be taken to the establishment of shear stress 
models in a variable density flow.  The direct approach is to attempt to develop a model by 
correlating variable-density flow experimental data.  Such an approach has been used by 
Ferri et al.*2, Alpinieri1^, and Zakkay et al.14 Another approach Is to attempt to derive 
a model in such a manner that the effects of density variation are included.  The displace- 
ment thickness model developed by Schetz15»16 falls into this class.  The third approach is 
to use an empirical correction factor to adjust an incompressible-flow eddy viscosity model 
when used in a compressible flow.  Examples of such correction factors and their use are 
given by Warren17, Donaldson and Gray18, and PeterslS.  Finally, the fourth approach is to 
attempt a transformation of the compressible-flow governing equations that will convert 
tnem to the appropriate constant-density form. The  transformed equations can then, in 
principle at least, be solved using an incompressible formulation for the eddy viscosity. 
Solutions obtained using such techniques have been described by Libby^O and Channapragada 
and Woolley21. 

The development of the eddy viscosity model proposed by Ferri and co-workers12 proceeds 
from the observaticn that the Prandtl eddy viscosity model predicts that no mixing takes 
plac« when the streams involved are of equal velocity, even if substantial temperature or 
density differences exist between the streams.  To resolve this difficulty they propose a 
simple adaptation of Eq (4), writing 

Pe = KF rl/2 |PoUo " PcUc| (5) 
III * ' 

where ri/o is the radial location at which oil = 1/2 (p„U, + o U ).  The recommended value 
of KF is 0?025. Ho o  HC c 

On the other hand, Alpinieri" experimentally established a flow for which p-U- - p0V0 
and observed that mixing still occurred, although £q (5) implies that no mixing will occur. 
Arguing that both the Prandtl (Eq 4) and Ferri models gave good results for some flows, 
Alpinierl reached the conclusion that the proper eddy viscosity formulation must contain a 
term which becomes important when pcUc = po^o*  Hiis i'es.sonlug and a correlation of his 
experimental results led Alpinierl to an equation of the form 

P6 " KA rl/2 Po (Uc + Uo/V (6> 
where Uj is the primary jet velocity and rjy2 the radius at which U " UQ + (Uc - U0)/2. 
Alpinierl recommended a value of KA = 0.025. 

Zakkay et al.  obtained an asymptotic form for the eddy viscosity through use of an 
asymptotic, linearized solution of the transformed governing equations.  Ttie transformation 
used was similar to that used by „,ibby20, with turbulent Prandtl and Lewis numbers both 
taken to be unity.  The resulting expression is 

£ = KZ rl/2 Uc {7) 

with Kg = 0.011. 

The eddy viscosity model proposed for a free-mixing flow by Schetz15'16 is considerably 
different from the preceding three models, in that it attempts to incorporate density 
variation in a somewhat more fundamental manner. Reasoning in analogy to the Clauser22 

model for a planar incompressible boundary layer, Schetz related the turbulent eddy 
viscosity to the displacement thickness of the turbulent mixing layer.  Thus 

Pe = KS (PoUo ^ 5r2)/ro (8) 

where 

^ Pouo5?2 - fö\povo - P
V

\
2
^ 

ay (9> 
and Kg tr = 0.018. Here, ro is the radius of the inner jet nozzle. 

2.3 History-dependent theoretical approaches 

In recent years several methods for the calculation of turbulent flows which attempt 
to include the history of the flow have been reported2^--^?, some of which have been applied 
to the computation of free turbulent flows.  The turbulent shear stress is obtained in all 
of these methods as the result of the solution of an additional transport equation (or 
equations).  Thus, in the method proposed by Nee and Kovasznay23 an equation describing the 
transport of the total turbulent viscosity n = e + v is devised and solved simultaneously 
with the momentum equation. 

More direct models for the turbulent shear stress which relate it to the turbulent 
kinetic energy in the flow have been used for free mixing calculations by Lee and Harsha24, 
Laster25, and Rodi and Spalding26.  Lee and Harsha and Laster both use the "linear" relation 
between shear and kinetic energy used also by Bradshaw et al.27, which may be written 

T = a, p k (10) 

where k = 1/2 (u'2 -t v'2 + w'2), while Rodi and Spalding use the eddy viscosity model 

T = c p k1/2 2k hV/hy (11) 
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in which c is a constant and ik is a kinetic-energy length scale which, in the method of 
Rodi and Spalding2^, is obtained from the solution of an additional transport equation for 
the quantity (l^k). 

From the correlation of a large quantity of experimental data, Harsha and Lee28 found 
that, in regions of strong shear, 

ai" M/pk -0-3 (12) 

However, as the shear stress can take on negative values while the kinetic energy is always 
positive, and goes to zero on a centerline while the kinetic energy does not, Eq (10) cannot 
adequately represent all regions of a free mixing flow. Fortunately, an adequate represen- 
tation Is easily obtained. 

If I write 

T - a, p k L(y) (13) 

where L(y) is a dlmensionless number which ranges from 0 at y - 0 to unity at some point in 
the flow, say the point where bV/dy  - (äU/äy),,««. cal1 " ymax» and divide Eq (13) by its 
value at y   (where L = 1), then 

L(y) T/Q k 
(r/p k) 

uv/k (14) 

'max 

The function L(y) can be obtained from experimental data, and Figure 1 shows the results. 
Also shown on Fig. 1 are curves representing the values of (öU/äy)/(äU/dy)-aX obtained from 
calculations for various flows.  It can be seen that the agreement is relatively good. 
Note finally that if I write L(y) ± (äU/9y)/läU/öyl 
shear stress is Included. 

max then the appropriate sign for the 

Thus  in this study I have used the "linear" kinetic energy model with 
T - 0.3 p k  (?U/W |öU/ay|nax 0 s y < ynax 

0.3 p k  OU/äy)/ |öU/öy|   y > y, max 

(15) 

(16) 

In regions of the flow in which 
used Eq (16) throughout. 

To obtain the 
turbulent kinetic 
energy 1 have used 
the paraoollc form of 
the turbulent kinetic 
energy equation as 
written by Patankar 
and Spalding29. 
Bradshaw, et al.27 

have shown that if a 
convective form of 
the diffusion term in 
the kinetic energy 
equation is used, then 
it and the momentum 
equation form a 
hyperbolic systtm 
which can be solved 
by the method of 
characteristics. 
Such an approach i< <.s 
been followed fcr a 
compressible free 
mixing flow by 
Laster^S. However, I 
have chosen the 
parabolic form (which 
implies gradient 
diffusion of turbulent 
kinetic energy) as 
gradient diffusion of 
mean flow energy, and 
mass seems to be 
reasonably well es- 
tablished for free 
mixing flows, and I 
can see no special 
reason, apart from 
mathematical elegance, 
for not assuming 
gradient diffusion of 
kinetic energy also. 
There is little 
experimental evidence 

the mixii'g layer does not have an axis of symmetry I have 

Sym 
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A 
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References for Data: Figure 1 

Wygnanski, I., and Fiedler, H. E.. J. Fluid Mech.. 38, 3, 1969, 
pp. 577-612 
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Bradbury, L. J. S., J. Fluid Atech.. 23, 1. 1965. pp. 31-64 
vjn d»r HeggeZijnen, B. G., Appl. Sei. Research. A. 7. 4. 
i958, pp. 250-276 
B,adshaw. P. etal.. J. FluidIVtech.. 19. 1964, pp. 591-624 
Chk'ray. R. J. Basic Engineering. Trans. ASME. 90 D. 2, 
Junt £968, pp. 275-284 
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regardicg the diffusion of turbulent kinetic energy; what little I have seen. e.g. Watt30, 
seeas to isply eradleot uiffusion but without «uch conviction. 

The theoretical models I have selected t« use for coeiparisca with experiaent are 
suaaarlzed in Table 2. For the Most part, tbt values oi the constant» seXeoted are thos« 
suKgested in the papers describing the Model. 

3.  THE NIM£RICAL TREAIWENT 

the  utudy described in this pap^r is concerned with a co«parlson of the predictions 
of vaiious models for the turbulent shear stress; It is nut concerned rlth t'ae dcvelojuoent 
of numerical techniques. Tlius all calculations were made with the same computer program, 
which is a extension of the technique developed by Patankar32 for the solutioc oz an 
arbitrary number of simultaneous parabolic partial differential equations.  With this 
pr—ram it was possible to make calculations using any of the eddy viscosity xcd«tls listed 
in Table 2, as well as the kinetic energy model using the parabolic iü**m of the turbulent 
kinetic energy equation. The system of equations used to describe every problem was 
formulated using the standard boundary layer assumptions; the equations themselves were 

continuity 

momen turn 

J. (pu) + ± ± (pV  ya) 
äx        ' " ya dy 

üi2 + pV^.JL J./pe v
a^\ 

^x    öy  ya öy V    öy / 

.„M^yiS.JLAI^raU/SL. xx ök+ (pr _ D^/UN]/ 
Z* >y     y" Ay /  pr   L^y     V prk        / hy Öyv2/J{ 

ction) 

\   Sc    Zv' 

ax by      ya oy LP^    ?y J V ay' 

total (menu  flow) energy 

speoies (for a two-gas mixture with no chemical reaction) 

'  äx 
and turbulent kinetic energy 

?* . ,, ?k _ 1 

^y ya ^y 

a2 , k 

a;, 

a») 

(19) 

(20) 

(21) 

The "turbulent kinetic energy Prandtl number", Pr^, was in all cases  ken to be 0.70, 
while the dissipation constant a, was set equal to 1.5. 

Table 2 

Theoretical Uodels for the Turbulent Shear Stress 

Expression for 
Model        Ref. Eddy Viscosity 

Expression for 
Turbulent 

Shear Stress 
Width Parameter Value of Constant 

Core     Regime II        Core      Regime II 

Ref. 
for 

Constant 

Mixing 9 
Length 

Pr.>ndtl 11     £-Kpl(Umax-Umin) 
Eddy 
Viscosity 

Schetz 15     pe-Ksn(p0U0ö;2)/r0 

"Unified 
Theory' a 

Fer.-i 12     pe •KFllp0U0-pcUcl 

Zakkay 14 e • KZ1UC 

Alpiniert       13     pe  ■ KAlp0(Uc + U^/Uj» 

Kinetic 24 
Energy 

9      ay'dy 

aln this study, mixing length usad for core. 
br1/2P U • r for which p IJ • (pcUc + p0U0)/2. 

T-P£^ 
dy 

T • pE du 
dy 

T • p£ p 
dy 

T ■ pe ^ 
dy 

T-peL" 
dy 

T «atptfiay) 1      dy 

1 • b      1 • 2r 1/2 

I ■ b      1 • 2r 1/2 

0.082       0.082 

0.007       0.011 

l'b/2    l-r1/2pUb   0.025       0.025 

l'b/2    l-rj/2 0.01)       0.011 

l'b/2    1 • r 1/2 0.025        0.025 

31 

I? 

15 

12 

14 

13 

Present 
Study 
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RESCLTS OF TAE  CONfT'OSTATIOK 

All of the Models listed in Table 2 were used to mmke  detailed calculations of all of 
the experiHftntal data listed in Table 1, for a total of 112 calculations.  These are all 
described i«v Ref. 1, along with soae additional calculations involving the use of the 
Donaldson and Crawls eddy viscosity correction aad the Libby20 coapresslbllltt traosforaa- 
tiun, which are tot included in this paper. In order to conserve space and tue patience 
of tiie reader, all of the calculations Made are not reported here; instead, the techi^.ques 
which performed best for each flow are described. 

CoMpai'isons of the various predictions made by the uodels tested were «ade using 
logarithmic plots of the centerline velocity decay. This Method was chosen because such 
plots display clearly not only the local agreeaaent (or lack of agreewent} of a calculation 
with the data, but also the trend this agreeaent shows with axial distance. Lateral 
velocity profiles at various axial stations were not used because all calculations produce 
■uch the saaw shape if suitably noraalized. Velocity data were chosen for the coapcrison 
because of their ready availability in the experiaental literature. 

As would perhaps be expected, there is no one locally-dependent theoretical wxtel for 
the turbulent shear stress capable of producing satisfactory predictions for the entire 
range of free turbulent florc considered. However, certain of these models do perform 
fairly adequately over a Halted range of experimental conditions.  The history-dependent 
turbulent kinetic energy approach has shown that it can produce reasonably accurate pre- 
dictions over the entire range of flows, given adequate knowledge of the Initial shear 
s tress. 

For the Incompressible Jet into still air, the best results are obtained using the 
locally-dependent model developed by Ferril2 (which is equivalent for this flow to the 
Prandtl eddy viscosity with a larger constant). The prediction of the kinetic energy 
theory is also reasonably good. These two aodels provide the best predictions for this 
/low, illustrated by Fig. 2. The experiment used to provide the initial conditions27 docs 

1.0 

0.8 

06 

0.4 

0.2 

0.1 

I 

■ ferri Eddy Viscosity, Kf-0.üS 
■ Kinetic Energy, aj • 0.3. ^ • 1.5 

10 
x/D 

fig. 2 Comparison of Best Predictions with Composite Data 
for Incompressible Jet-into-Still-Air 

not provide data far do»n- 
streaa. A coaposite of the 
downstreaa düta froa all of 
the acceptable Jet into still 
air experiments Is represented 
by the data band. It can be 
seen that the Ferri aodel 
predicts a relatively gradual 
transition region, but that 
beyond x/D » 10, l-e pro- 
diction follows the aean of 
the data. The kinetic energy 
theory, on the other hand, 
appears to overpredict both 
the velocity potential core 
length and the asymptotic 
rate of decay of centerline 
velocity. However, the 

80 100 kinetic energy theory provides 
the only reasonable prediction 
for the coapressible Jet into 
still air. Figure 3 shows 
this prediction as well as 
that for the Prandtl eddy 
viscosity model1!, which is 

one of tht best eddy viscosity predictions. Tha  kinetic energy calculation could not be 
started before x/D = 14.45, because of a lack of shear stress profiles before this point. 

The best predictions 
for the coaxial air-nir 
mixing data shown In Figs, 
4 and 5 are made by the 
kinetic energy theory and, 
depending on the axial 
distance desired, the 
Prandtl eddy viscosity 
model or the Ferri model. 
Taking the latter two first, 
it will be noted that for 
incompressible ilow the 
Ferri model is equivalent 
to the Prandtl model with a 
larger constant.  Since 
both models predict the 
same rate of axial decay of 
centerline velocity, and 
this predicted rate is 
smaller than the observed 
rate, both models tend to 
intersect the data.  Be- 
cause of its higher 

1.0 

0.8 

0.6 

0.4 

UC/Ui 

0.2 

0.1 

 Prandtl Eddy Viscosity, Kp • 0.007 - 0.011 
 Kinetic Energy, aj ■ 0.3, »2' li 

10 
x/D 

20 40      60   80 100 

Fig.  3    Comparison of Best Predictions with Data for the 
Compressible Jet-into-Still-Air.    Data from Eggers*», 
Mj  - 2.22 
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Curve Mode! Constants 

Kinetic Energy «i - 0.3, a« • 1.5 
Prmdtl&Wy Kp-0.0/7-0 Oil 
Viscosity 
SchstZ Ksw0 018 
Ferri Kf« 0.025 

constant, the Ferri model  predict» that 
ths velocity decay «ill begin earlier, 
and thus the point of  intersection will 
appear farther downstreaa. Hence, 
Figures 4 and 5 show that the Prandtl 
sodel provides the better prediction for 
x/D < 20. 

The kinetic energy theory does 
quite well for these data. For the 
Paulk3 data, the kinetic energy calcula- 
tions were begun dowostreas of the 
potential core using Measured shear stress 
profiles, while the calculations for the 
Forstall* data were begun at the nozzle 
exit using Measured boundary layer thick- 
nesses, 1/7 power law profiles, and the 
Prandtl eddy viscosity Model to evaluate 
the turbulent stiear stress. This approach 
is a simplified version of an approach to 
starting kinetic energy calculations using 
measured boundary layer velocity profiles 
and eddy viscosity profiles obtained by 
liaise and McDonalds, which is now in use. 
The latter approach has proved quite 
successful for free-Mixing flows which 
start froM turbulent boundary layers. 

For hydrogen-air Mixing, only two of 
the Models tested show the proper behav- 
ior: the kinetic energy theory and the 
Schetz cEisplaceHent thickness »odellS.ie. 
There are two features of the hydrogen-air 
data used here which Most turbulent shear 
stress Models could not predict: the 
decrease in velocity potential core length 
with increasing outer-stream-to-Jet Mass 

flux ratio, and the Increase u* »lope of the decay curve also observed with increase of 
this ratio.  Figures 6 and 7 illustrate the performance of the two recommended models. 
Botü of these models exhibit an increase in velocity decay curve slope with Increasing 
p0U0/pjUj, but it is not possible to determine whether these models will also predict a 
decrease in velocity potential core length as povo/pivj  increases, as the Schetz model as 
used here incorporated the mixing length model for the core region, and it was not possible 
to start the kinetic energy calculations at x/D ■ 0.  These figures do show that the level 
of agreement with the data is better for 

Fig. 4 

60 80100 

Comparison of Best Predictions with 
Coaxial Air-Air Nixing Data of Paulk3 

the kinetic energy theory than for the 
Schetz model.  Some error is inherent 
in using the Schetz model (as cotapared 
to tha kiaetic energy theory in predic- 
tion of centerline decay), but the be- 
havior of the Schetz model is such as 
to recommend it for further development. 

Both the two-dimensional and the 
axisymmetric wake data used show an 
early raplo rise of centerline velocity 
followed by a region in which the center- 
line velocity increases more gradually, 
eventually approaching an asymptote. 
Thus there are two points for comparison 
between theory and experiment for these 
flows.  The performance of the two best 
models for the axisymmetric wake is 
shown on Figure 8, while the comparison 
for the two-dimensional wake is shown 
on Fig. 9.  It can be seen from these 
figures that the kinetic energy model 
again performs quite well for both the 
initial and asymptotic portions.  For 
the axisymmetric wake, the Ferri 
vsrsionl2 of the Prandtl eddy viscosity 
model provides a good prediction, 
although i+ appears that the asymptotic 
trend of tl.xs model is to underpredict 
the centerline velocity, while the 
Zakkay modell4 provides a good predic- 
tion for the two-dimensional wake, 
including good agreement with the 
asymptotic trend of the data. 

Curve Model 

Kineik Energy 

Prandtl Eddy 
Viscosity 

Schetz 
Ferri 

aj-0.3, a2'1.5 

K     {0.007 
p   / 0.011 

Ksx-0.018 
Kf 0.025 

60 80 100 

Fig. 5 Comparison of Best Predictions with 
Coaxial Air-Air Mixing Data of 
Forstall4 
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 Kinetic Energy, Si- 0.3. a« • 1. 
 Schetz, Kjii« 0.018 

1.0 
0.8 
0.6 

i   ^i. 1—r 

\ 
\ 

U/lj-0.158   \ 

\ 

Uo/Uj • 0.227 \ 
UrUo ^[PoWj • z-57    \o 

1 2 4    6  8 10 
x/D 

Fig. 6    Coiiparison of Best Predictions 
«1th Coaxial Hydrogen-Air 
Mixing Data of ChrissS 

— Kintac Energy, »i' 0.3, *» • 1.5 
— Scheb. Ksir-0.018 

Fig.  7    Coaparison of Best Rredietlons 
with Coaxial Hydrogen-Air 
Mixing Data of Chriss5 

Kinetic Energy, a^ • 0.3, 32 • 1,5 
■ Ferri, Kf • 0.025 

0 2 4 6 8 10 12 14 16 18 20 
x/D 

Uc^j 0.5 

Fig. 8 Comparison of Best Predictions 
with Axisyametric Wake Data of 
Chevray8 

Fig. 9 Coaparison of Best Predictions 
with Two-Dl«ennional Wake Data 
of Chevray and Kovasznay' 

5.  CONCLUSIONS AND RECOMMENDATIONS 

5.1 Recommendations for turbulent shear stress models-present use 

There are two facets of a free mixing flow that a reliable model must be able to 
predict: the potential core length and the centerllne velocity decay. If Initial profiles 
of the turbulent shear stress are known or they can be reliably calculated, none of the 
locally-dependent methods considered in this study is nearly as powerful for the calculation 
of centerllne velocity decay as the turbulent kinetic energy method. The capabilities of 
this method warrant its use wherever possible; however, because of a lack of available 
initial condition data, the performance of the kinetic energy method in predicting the 
potential core remains undemonstrated. There are many flow phenomena for «saich turbulent 
shear stress profiles and/or levels are unknown and it must be recognxzea that for engi- 
neering purposes such will always be the case. For these flows locally-dependent models 
must be used; the user must recognize that significant errors can result in some cases. 
Table 3 lists the locally-dependent kinematic eddy viscosity models that are recowended 
from the results of this study. The numbers in the column labeled "observed error" should 



17-10 

Table 3 

RecoMMendations for the Use of Locally Dependent 
Turbulent Shear Stress Models 

Typed 
riow 

Rccomnttnited 
Model 

Form of 
Expression Constant 

Recommended 
Range 

Typical 
Observed Error 

This Study» 

JeHnto-Still 
Surroundings 

Ferri e-WWW 0.00 All 15% Low Tran- 
sition Region) 

Coaxial Air-Air Prandtl e-KpbW^-U^I 0.00?1, 0 < x/D < 20 2» High (x/D • 18) 

b'Zrm 0.011c 

Ferri e*^W2««niax-umin» 0.023 x/D > M «A High (x/D'56) 

Coaxial Hj-Air Schetz p6-Ks(p0U06r'2)/r0 0.018 All 40» Low (x/0'10.4) 

Axisymmttric 
Wake 

Ferri e-KFlß^ax-ümlo' 0.025 All Small 

20 Wake Zakkay tmhriiAi 0.011 All Small 

Compressible Prandll e-M'Umax-Umin' O-OOT6 20 < x/0 < 60 3» Low (x/D'15) 
Jet 5-2^2 0.0UC 30» High (x/D'60) 

aError in prediction of centerline velocity. 

^irst regime. 
"-Second regime. 

not be taken as the maximum error to be expected. Bather they represent typical maximum 
errors in centerline velocity predictions encountered in the course of this study; they 
should approximate the errors to be expected in general.  The most widely applicable 
model is the Ferri eddy viscosity model12 which formally reduces to the Prandtl11 model 
for an incompressible flow.  The Ferri model, however, does not work for the dissimilar 
gas case for which it was designed.  Note, also, that the Prandtl model is listed in 
Table 3 for the compressible jet into still air, although the error involved in its use 
Is very nearly prohibitive. 

5.2 Recommendations for turbulent shear stress models-further development 

Further attempts to modify the basic Prandtl eddy viscosity model or the mixing length 
theory to make them apply to more complex flows Is a fruitless avenue of attack. The 
results of the review on which this paper is based have shown that none of the modifications 
of the Prandtl eddy viscosity model, including the Donaldson and Gray compressibility 
correction!8 are capable of greatly altering the basic shape of the axial centerline veloc- 
ity decay curve, and the shape predicted by the Prandtl model and all of its derivatives is 
incorrect for complex (two-gas) flows. On the other hand, the displacement-thickness model 
proposed by Schetz is the only locally-dependent model to show the proper behavioral trends 
for hydrogen-air mixing.  Because of tiis,  its use should be investigated in other 
dissimilar-gas Hows.  Further work should be done In applying this model or a modification 
of it to coaxial sir.gle-gas flows, and further investigation of this model and its Implica- 
tions is recommended. 

Given some knowledge of the initial turbulent shear stress, the turbulent kinetic 
energy method is capable of providing better and more uniform predictions over a wider 
range of flows than any other model investigated. Because of this, it clearly holds the 
greatest promise for future development.  The most important area for future work is in 
establishing methods for the generation of the proper Initial conditions. Another area 
for further work involves the establishment of better models for the terms in the kinetic 
energy equation.  Ttie models and constants used in this study have been developed rather 
crudely—they seem to work well, but that does not mean that there is no room for improve- 
ment . 

It is somewhat disturbing that after all of the effort expended on research on free 
turbulent mixing, there is stilJ no reliable way to make engineering calculations of any 
but the most basic free turbulent flows.  In part thia situation is a result of the diffuse 
nature of free turbulence research, with many workers in many laboratories investigating 
different facets of the problem.  Seldom is their work widely reported, with the result 
that new workers i~i  the field all too often have to repeat all of the pievious mistakes in 
order to become aware of the deficiencies of the various models for the free turbulent shear 
stress.  Too many attempts are made—perhaps due more to necessity than to desire—to analyze 
complicated flov systems while simple ones are not understood.  Such analyses bury the 
turbulent siieai- stress models so deeply under assumptions for the other variables in the 
problem that when they fail, as they all ioo often do, their failure sheds no light on the 
turbulent shear stress model involvec*. 
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The study summarized here »as undertaken to establish the state of the art in free 
turbulent mixing.  This involve-:* a critical analysis of the available free turbulent mixing 
experiments and of the available models for the free turbulent shear stress. One result of 
this study is the establishment of limits withir. which various shear stress models may be 
used, although possibly with considerable error. But a potentially far more important 
result is the demonstration of the accuracy of the history-depsndent kinetic energy method. 
The methods of analysis whlci. take Into account the structure of the turbulent flow seem to 
offer the hope of escape from the blind alleys into which locally dependent models have led: 
methods which fail to take into account the fact that the flow is turbulent, and not laminar 
with some badly behaving viscosity, can never be made to agree with more than a small range 
of experiments. Clearly the time has come that methods of analysis of turbulent flow 
recognize that it is indeed turbulent. 
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JET TURBULENCE:   DISSIPATION RATE MEASUREMENTS AND CORRELATIONS 

by 

Carl A. Friehe, ' C. W. Van Atta2 and Carl H. Gibson3 

Department of Aerospace and Mechanical Engineering Sciences 
University of California, San Diego 

La Jolla, California   92037 

SUMMARY 

The rate of viscous dissipation in a turbulent jet is examined in some detail.   A correlation of 
the mean rate of dissipation on the center-line in terms of the orifice Reynolds number and a;ial position 
is established.   Measurements of the velocity and velocity derivative are described for a jet :-f orifice 
Reynolds number of   I. 2 x  10 .    The spectrum of the square of the velocity derivative was found to be 
similar to those obtained for atmospheric boundary layer flows at very large Reynolds number s when 
normalized with Kolmogoroff length and time scales.   Spectra of higher order moments of the velocity 
derivative are also presented and compared to Novikov's predictions of the power law subranges. 

1. INTRODUCTION 

The mean rate of viscous dissipation of turbulent kinetic energy per unit mass of f-uid,   (f),   is 
an important quantity in the energy budget for the turbulent jet.   it is also of importance in determining 
the fine scale structure of the turbulence.   In this paper the dissipation rate in a turbulent jet is   exam- 
ined in some detail.   First, a correlation of   (e)  in terms of the independent variables of the flow  is 
established.    From this and other well-known results for the self-preserving jet, relations for the vari- 
ations of the Taylor microscale and the Kolmogoroff length with Reynolds number ami axial distance are 
derived.   Secondly, experimental results of the fluctuations of the dissipation rate i;i a turbulent jet are 
presented and compared to similar measurements in atmospheric boundary layers. 

2. CORRELATIONS 

Landau and Lifshitz (1959) show by dimensional arguments that   <C>   is proportional to the cube 
of a characteristic velocity difference divided by a characteristic length, both representative of the mean 
flow.   Gibson, Chen ard Lin (1968) have used this meihod to correlate   (e )   for a sphere wake flow.    For 
the jet, on the center-line, we take the mean center-line velocity   V^    as t'ie characteriitic velocity 
and the mean width  w  as the characteristic length (see Fig.  1 for a sketch defining notation).    For the 
self-preserving jet, it is well known that   U    /U0 ^ (x/D - x0/D)       (where   x0/D   is the virtual origin) 
and   w - x,   which results in 

-y    =    c(5) (1) 
o 

where   c = a constant to be determined, and the virtual origin has been neglected.    Figure 2 shows a 
compilation of   <c>  data covering the range    20   «   x/D   s   70    and     104 < i'e0 < 5x   105 (Re0 =  U0D/V) 
plotted according to the above formula.    The data correlate fairly well, and a v*lte of   c = 48 is indicated. 
It should be noted that the measured values of   (c)   can be underestimated due to tie finite hot-wire 
length effect (Wyngaard,   1969),  but corrections for this effect have not been made to the data in Fig.  2. 

With the equation (1) and results for the self-preserving jet (Wygnanski anl Fiedler (1969)),  the 
Taylor microscale  Af = [(u2)/<(du/dx)^>]1'^   may be calculated,    (u   and   du/dx   ire the fluctuating 
sfreamwise velocity and its derivative,  respectively.)   Using   (u^) ,^/Uin = 0. 2',   Vtn/U0 = 5.4(x/D)' 
for x/D > x0/D,    and assuming local isotropy   (((du/dx)2; = <c)/15|/;,    the result is 

X,   =   0.88 (Re )"1/2x . (Z) i o 
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2 

Associate Professor 
3 

Associate Professor 



18-2 

3.4 x   10 
Vf   -   2.8 

for Re, 1 x 10 ,   whereat the x   lor a jet of  ., .0 

X   10"3x.   Similarly, the Kolmogoroff length 
Wygnantki and Fiedler experimentally foun<i  X_ 
predicted value according to  equation (2) is        X_ 
scale  JJ =  ft,3/vV>]      i    i»   tj =   (48 Re0-'j*1^4x.     Thui from the correlation of   <f>    and well-known 
result» for the basic properties of the turbulent jet,  certain features of the fine scale structure can be 
predicted. 

EXPERIMENTAL ARRANGEMENT 

The present measurements were made on the center-line of a jet at 
i   2.5 inches and the orifice Reynolds number   Re. = 1. 2   x    10 .   A 

x/D = 40.   The jet diameter 
D    was   2.5 inches and the orifice Reynolds number   Rea = 1. 2   x    lO3.   A linearized constant ane- 
mometer (Thermo-Systems, Inc.) was used with a   0. 00015 diameter   x   0. 050 inches long platinum- 
plated tungsten hot-wire.    The probe w&s aligned on the axis of the jet with a laser.   The linearized 
signal proportional to the velocity was low-pass filtered and differentiated with a Tektronix 3A8 
operational amplifier.   The velocity and velocity derivative signals wen recorded on an FM tape 
recorder.    On playback,  the signals were simultaneously digitized with a two channel 12 bit   analog to 
digital converter with low-pass filtering used to reduce aliasing effects.   Statistical and spectral analyses 
were performed on a CDC 3600 computer. 

4.     RESULTS 

4, 1    Statistics 

A summary of the statistical results is presented in Table 1.    The mean velocity ratio, 
and the streamwise intensity   <u2>I'z/Um   agree fairly well with the data of Wygnanski and Fiedler who 

VUm 

Table 1 

Re    = 120,000 Jet,   .-s/D = 40,  Centerline, o 

1. U /V       =   6.2,       <u?>x/2/U       =   0.25 
o     m m 

2. S   =   Skewness,       K   =  Kurtosis,   u    =   du/d^   =   -   ~   ~ 
U     dt 

m 

S    =0.09 u 
K   =   2.85 

u 

S.   =  -0.46 
u 

K. =   9.2 
u 

S,.,^.? Ki.,2! 16.5 

S ^   11 
(u) 

K     ,  ^ 215 

S     ,  a  40 
lil3 

K     ,   5=   3660 
lii3 

(ü) 
70 K     ,   *   7650 

reported 6,6 and 0.29,  respectively.    The velocity  u   was found to be vary nearly Gaussian with skew- 
ness   Su   =   0.09   and kurtosis   K     =   2.85.    (For a random variable   x {(x) = 0),  we use the definitions 
Sx   -   (x3>/;x2>3'2    and   Kx   -   <,x4>/<xZ>2 .)    The present data on the statistics of the velocity deriva- 
tive lend support to the predictions of Wyngaard and Tennekes (1970) about the variations of  S«    with 
K^,  and   S^   and   K^      with    R^   .    (R^f    is the "turbulence Reynolds number"   -   (u2)1^2 Xf/i/. )   They 
presented data for   Rw   =   200       (a laboratory mixing layer) and   Rw  >   2000   (atmospheric boundary 
layer).    The present 
las     -S 0.214   Ki3/8 

data at 
S,' 

R\,   = 540,    an intermediate value,  agrees fairly well with their formu 
=   0.15 R^ 3/16 1/2 

u    -   u.i,.-i   »>ü      ,    -VJ^   -   v,. . J n.^,"--    ana    ^  =   u. 14   K^J   ■ - .     There have been other 
predictions about the statistics of the velocity derivative:   Corrsin (1962) obtained   K^ ~ Rw      ■   Tennekes 
(1968) obtained   K^ ~ R^f    and Saffman (1970) found   K^ ~ Rw  and   S^  =   constant.    The present results, 
those of Kuo, and Wyngaard and Tennekes do not appear to confirm those predictions.   It should be noted 
that the formula of Wyngaard and Tennekes relating   K^   to   R\,  does not describe results at low      -  , 
Rxf (< 200).     Kuo (1970) measured   K^,   for   12 <   R^f  < 830,    and for   R^f  < 200.    found   IO ~ R^ '   . 
Kuo (1970) obtained   K^ = 10   for a jet of  R^   =   830,  slightly less than predicted by Wyngaard and 
Tennekes.    Kuo also investigated the effect     of low pass filtering on   K« :   in the present experiments, 
the velocity derivative was low pass filtered at a cutoff frequency equal to 0. 75 of the Kolmogoroff 
frequency.    From Kuo's results,  it can be estimated that   KA    for the cutoff frequency equal to the 
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Kolmogoroff frequency would be 10 for our experiment. 

4. 2      Velocity Spectra 

The cne-dimensiona' velocity and velocity derivative spectra,  normalized with Kolrnogoroff 
length and velocity scales, are presented in Fig.  3.    In that notation  ^u ÖMK) ::  ♦U(k)/K€' '  1/5/4), 
JOOMK' = k2*u*)J'!/4/(f >3/4,   and   kjK = kfi/S/ü))1-'4  where   <u2> = f50#u(k)dk, <(du/dx)2>=jo0»i5(k)dk 
and use has been made of  k = 2fff/Um.     The integral scale,    Ljt = ir#u(k-0)/(2(u2>)   was   10.5 cm 
and  Tj was   0,016 cm.     The spectra show the existence of an inertial subrange;   using the derivative 
spectrum as a sensitive test of this, one decade of    kj^      is indicated.     The one dimensional 
Kolrnogoroff constant   otj   = ♦^f)/(2»r Um(f>2 3k1/3)    is   0.56, a value intermediate between  0,48 
that his been reported from many measurements (Pond, et al.  (I966))and 0.7 (Gibson, Stegen, 
Williams (1970)), for a high    R^    atmospheric boundary layer.    The present value however, is 
subject to wire length corrections   ftwire/5)  = 8- 3)    (Wyngaard 1969), and it is estimated that the 
correct value is   0.5. 

4. 3      Di8sir>ation Rate Fluctuatione 

Recent evidence about the nature of the rate of dissipation in high Reynolds number atmospheric 
flows has shown that   (   is intermittent in the turbulent field.     (For a review, see Gibson, Stegen and 
McConnell (1970).)   Kolmogoroff's original similarity theory did not take this into account; for example, 
the spectrum of   f  in the inertial subrange is given by    ♦, ~  (f)* k   ~ (<)2 k from dimensional 
analysis.    (Or, alternatively    k#€ ~ (f>2   =  constant in the inertial subrange, according to the 
"cascade" model. )  Kolrnogoroff (1962) subsequently modified the original hypotheses, which Yaglom 
(1966) put in spectral form as  ♦j ~  k'1 + M,   where   ß =   a. constant to be determined.    The atmos- 
pheric measurements show  j» = 0.33   to   0.64   for the atmospheric boundary layer, and   jl =   0.85   for 
a low Reynolds number mixing layer (Wyngaard and Tennekes (1970) ).    It is desirable that similar 
measurements be made in large Reynolds number non-atmospheric flows,  such as a jet,  to determine 
the universal behavior, if any, of Kolmogoroff's modified theory (Stewart, Wilson and Burling (1970)). 
In addition to a determination of the constant  ß   at an "intermediate" Reynolds number, it is of interest 
to find out if the power spectra r'  ♦  ,    normalized with Kolrnogoroff length and time scales, collapse 
onto a universal curve.     Noting mat   JQ00 4^ (k) dk -   <(x - 6c>)2) ,   we write 

^IK1   = 
*f(k) 

(e2) 

(<f 
n((> 

Taking    €   =   15i/(u) 

V'lK'   =    V'W 
*,(k) 

K. u i n<(ü) > 
(3) 

obtained by Wyngaard and Tennekes (1970),   Hence we may define a subrange constant a,  by 
w (k,^)   =  ac ^IK"' + ''•    Figure 4 shows tile present tiata, the data of Wyngaard and Tennekes for the 
R"^f = 200 mixing layer, and the range of four spectra of Gibson, Stegen and McConnell (1970), 
plotted according to equation (3). They collapse onto a universal curve with a value of a = 0.5. For 
the jet data, approximately one decade of a power law subrange is obtained with ft = 0,5, in agreement 
with the atmospheric data of Gibson, Stegen and McConnell and Van Atta and Chen(1970). The low 
Reynolds number results of Wyngaard and Tennekes, while exhibiting about the same high wave number 
shape, do not dhow a ji = 0. 5 subrange, perhaps due to the absence of an inertial subrange. It should 
be noted that Stewart, Wilson and Burling (1970) obtained 11= 0. 35 in an atmospheric boundary layer; 
the reasons for the different values are not understood at the present time. 

Novikov (1965) considered spectra of higher moments of   u   and predicted power law subranges 
given by 

*        (k)  ~   k 
i. in 

-1 + (n-l)M 
n   =   2,  3, 4 ...  , (4) 

which for   n = 2   reduces to Yaglom's result.    By an analysis similar to thht for   •      (k),   we may 
(i)2 
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normfcliee the higher order spectra.   The results feu   B = 3  and  4  »re 

Idl-'    1K 

li!3 

S     ,  K. 
...2     a 

_iHi  

3/2 

- 1 <|fi|3>2 

and 

*    4"W 
(u) 

♦    4(k) 

(v.,).<^, 

The values for the skew ness aud kurtosis values of   |ü|,   u   and   (ü)     are given in Table I.    Figure 5 
shows the spectra of   #     -(k.jf)    and • j  Jkjjj).   The results do not follow Novikov's prediction; 
power law subranges      lul     do exist,       *u'     but the slopes are not given by equation (4).    If we take 
fl =  0,5,   the slope of the subrange for   ¥   IJ^IK'  would    ,save    bee,1    "'o.     and     that    for 

Gurvich       lul      and Zubkuvskii (1965) did report agreement with 4' # 4(l>:iK)    would be   +1/2.     Gurvich        l"l 
(u)   Novikov's formula for a transverse velocity derivative measured in an atmospheric boundary layer 

with a sonic anemometer of limited spatial resolution.   The present results do show a trend of the sub- 
range slope approaching zero (white noise) as    n    increases.   This result is not inconsistent with a 
model of the   |u|n    time series approaching a time series of random delta function for- large    n.     The 
large gradients in  u    are amplified as    n    increases, which results in the extremely large kurtosis 
values of    |ü|n     shown in Table 1 for    n - 2,  3, 4.    Portions cf the actual time aeries of    a      and 
\u)        are shown in Fig. 6. 

5.     CONCLUSIONS 

The mean rate of viscous dissipation   (e)    was found to be correlated by the method proposed by 
Landau and Lifshitz for a wide range of Reynolds numbers.    With the correlation of   (f >    and well-known 
results for the self-preserving jet, quantitative formulas for the Taylor microscale and the Kolmogoroff 
length were developed.    The above correlations may be useful in designing jet experiments and in 
modeling the rate of dissipation term in the full equations of motion. 

The turbulence measurements indicated the existence of an inertial subrange of about one decade 
in wave number.    The statistics of the velocity derivative were found to agree with the predictions of 
Wyngaard and Tennekes.    The local rate of viscous dissipation was found to be intermittent, as has 
been previously observed in high Reynolds number atmospheric flows.    The constant    ß     was found to 
be 0.5, and the normalized spectra of the dissipation rate for the jet, a mixing layer and the atmospheric 
boundary layer collapsed to a universal form at high wave numbers.   Spectra of higher order moments 
of the velocity derivative did not agree with Novikov's prediction of the subrange slopes. 
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Figur« 1.   Sketch of Axisymmetric Jet 
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"VELOCITY AND DENSITY MEASUREMENTS IN A FREE JET" 

by O.H. Wehraann*) 

Vereinigte Flugtechnische Werke-Fokkcr CabH. , ISreaen 

The fltctuating properties in » turbvle.it flcu are aue to convection, diffusion, production, 
dissipation and prec uie transport. Tc pcrfor« an energy balance, not only velocity teras have to t 
be aeasured but also '.he pressure or density coaponerts of the pressure transport tera. | 

Velocity fluctuation;, M •, be aeacured b, 'he «ell estarlished hot-wire technique! tn contrast to ', 
this, the local ao.isi n i <.nt of the denuity fluctuations presents a certain problea, esspecially j 
if the disturbance o< tue flow field by i density Measuring would have to be kept as saall as I 
possible. To obtain a local r -.sureaen'., a focussed laser beaa Msch-Zehnder interfer->aeter w&s | 
used. The flow uea^urcixents were aade for the flov field behind a 2,5 ca nozzle at a flow veloci- 
ty of 43 a/sec. The flow in the center of the nozrle at the exit plane was laaicar or aade turtM- ' 
lent by the insertion of a screen. The aeasureaents were aade for three flow paraaeters: 

(l) the velocity fluctuations u' in the flow direction U, (2) the density fluctuations^ and 
(3) the correlation u'<£* . Froa these aeasureaents, the pressure transport tern in the x  direction j 
could be calculated. f 

NOTATION 

A.B.C, D Constants 

E Density fluctuations tera (equ. 3) 

I Intensity 

k Havenuabsr of light 

1 Length 

N Nuabei* of shifted fringes 

P Pressure 

R Correlation coefficient 

r Radius 

ro Nozzle Radius 

Ü,V,H Velocity coaponents 

u'^' w' Fluctuating velocity coaponents 

X,Y,Z Ccordinates 

X Wavelength of light 

a Gladstone constant 

s Density 

r1 
Fluctuating den«'ty 

V Density cf standard atmosphere 

Vortex strength 

* Dr.-Ing., Head of Theoretical Aerodynamics Department 
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1. INTRODüCTIOS 

If one assumes  the validity of the Kavier Stokes ccquation to describe the fluctuating prupertie» 
i.i a turbulent flou than cuMplete eiperiaental proof of such an assuaption is still aissing because 
certain teras h»ve not been aeasurcd- For the case of a turbulent, unheated jet at subsonic veloci- 
ties, the siaplified equation would read as follouss 

Convtction 

' £{Ü (u-2* ¥'2* w^n    *  ^ aV ' L '(u** r^w'^j 

Diffusion 

•' [^ • ^^f • ^ -If ] • f [^ • i -ä"^'] 
Production Pressure   transport 

Dissipation 

In the past, the teras containing velocity components were aeasured by the well established hot- 
wire technique. But the teras related to the pressure transport can only be estiaated under the 
assuaption, that the equation itself is correct and that by perforaing an energy balance the nuae- 
rical value can be determined. Strictly speaking, such a Method is no proof of the theory fhatso- 
ever, because the "proof" is a priori given by the applied aethod« fl] 

Therefore, the need exists for a device to measure the density or pressure fluctuatiori in a local 
area of a turbulent flov to perform a real energy balance. Such a device was used in form of a 
focussed Mach-Zehnder interferometer, where the light source consists of a Helius üeon Laser. The 
characteristics of the equipment will be described later; by combining the hot-wire aethod with 
the interferometer method, velocity and density fluctuations could be measured and the correlation 
between the two flow pnrameters determined. 

"eneraliy , two types of flow behind a nozzle exist, depending of the conditions of the experimen- 
tal arrangement. These might be called the boundary conditions at the exit plane of the nozzle. - 
In the first case, the air approaching the nozzle flows out of a large reservoir and can be con- 
sidered laminar, in the second case, the air flow at the exit of the nozzle is already turbulent. 

Close to the nozzle, at distances of the erder/./!;: 0...10, the two flow fields will be coapleteXy 
different, but at large enough distances, the flow fields will become similar (similarity hy- 
pothesis). The present study was confined to measurements at short distances to study the two dif- 
ferent types of flow; also the only fluctuating velocity to be measured was the u' component. 

2, EXPERIMENTAL ARRANGEMENT 

The measurements were made under well controlled conditions. To ensure reliability of the hot-wire 
and interfero,net°r measurements, the air in '.he area of the experimental setup was kept under the 
following conditions: 
dust and particle f-ee by an electrostatic filter, temperature constant to + 0.5 F, and humidity 
a.t TO % + I %,  The speed of the airflow was kept constant to + 0,5 Jf by an electronic device; all 
line voltages were regulated to + 0.1 %,  The Constant Temperature hot-wire set was a DISA 55 DO 1 
type with lincarizer 55D10 and Correlator. RM3 measurements were made by two DISA 55 D 35 RMS me- 
ters. The electronical components of the interferometer were of own design. (Figure 1), 

RMS 

Htfr 

V3—"•© 
Amplifiir 

Corrttator 

I Dual   t»am scop* 

Fig. 1 Experimental arrangement 

J 
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A 1*' nozzle wait connected to *  settling chaaber; by insertion of screeotwith different «eah 
sizes inside the nozzle the flow at the eilt could be aade turbulent. The interferoaeter with the 
hot-wire probe together were fastened to a Movable platfora, which could be positioned in two 
coordinates (X and Y direction). In addition, the hot-wire could be aoved against the platfora it- 
self to change the spacing between the foca.'. point of the interferoaeter and the wire itself. This 
was accessary for calibration purposes and for correlation aeaaureaents. 

2.1. FOCUSSED LASER INTERFEROMETER 

Density aeasurcaentcs in general can be aade by the well-known Kach-Zehnder interferoaeter, where 
the influeace on the speed of light tiy  the changes in density can aeasured. To ensure a reliable 
accsurcaent, the other paraaeters such as nuaidity and teaperature have to be kept constant if 
one desires an uncoaplicatcd aethod. The advantage of such an instruaent is the fact, that no pro- 
be has to be inserted in the flow, the disadvantage can be seen in the fact, that the received 
signal is the integrated signal flung the path of light. A local inforaation can not be retrieved 
froa the aeasured signal. To overcoae this difficult/, a focussed laser beaa interferoaeter was 
built. Generally every Mach-Zehnder interferoaeter uses two light beans (or light rays) which in- 
terfere with each other. One of the beams (aeasuring beaa) passes through the aediua to be aeasu- 
red, whereas the other bean (reference beaa) is shielded. In ttie area of intersection of the two 
beaas, changes in the aeasuring beaa influence the location of 'h.- fringes. For a fixed point in 
the plane of intersection, an aaplitude aodulation occurs as a conctq-iente of the fringe aoveaent. 
The transfer functions arc: 

a) the output of the Hach-Zehnder interferoaeter 

ii61 is known, it follows: 

(1) 

(u) 
The change in density is therefore proportional to the change it the fringe position, 
b.) The intensity between two adjacent f.-ingesi 

rCL)=/4^-Cos2rk'4t.;- 9 si^ftKAL (z) 
The change in intersitv is therefore nonlinear for a linear phase or length change. These equa- 
tions are valid for each light ray of the light beaa. For a given systea it follows froa (1) 

For the case of the focussed bean, the beaa entering the test area is expanded by a lens »ystea 1 
(in the present case to 2" as coapared 'o 1/25" originally) and is focussed at the focal point, 
which is considered to be the aeasuring point. The beaa, after passing the focal point, expands 
again, and is refocussed by a second lens syctea 2 to interfere with the reference beaa.(Figure 2). 

Ltns system 1 

0*t*ctor 2 
Holographic 

L»n§ systtm 2    /»'<"• 

Signal 

Fig.  2 Focussed  laser  int^.-ferometer 



A sisplified exflanstion of the working principle it ma  follows: 

Each light ray travelling through the teat section is influenced by the different density changes 
along his path. 4t the focal point, the density changes influence each ray L/ the sase a-*ount. ao 
that each light .-ay contains a certain percentage of inforaation about the focal point. 

Dividing each ray in saall eicnents of constant length J L on night write (lb)t 

As~b AN 
For a given ray it follows: 

n-l 

where Jj; is the densil y change at the focal point 

Adding the »ignals of a rays together 

(.:>) 

' ^   n-i 

^^2^+^i ^2S^ (4) 

Jjj is the density fluctuation to be aeasured, which differs froa the received signal ^^ by the 
tera. This tera E depends of the correlation factor of the fluctuation eleaents and depents there- 
fore of the existing flow field; ist can be assuaed, that certain asplitudes and frequencies are 
cancelling each other because of phase differences. The aaplitude of the fluctuations at the focal 
point is amplified by the factor ■ and enhances the signal against the background of the signal E; 
with other words the ratio  fji / E is the signal to noise ratio. 

The signal beaa and the reference beas interfere on a plane, which is a glass plate containing the 
holographic picture of the test section without flow. (Stored beaa technique). The changes of the 
holographic picture by the signal beaa are aeasured by a photocell. A second photocell delivers a 
signal for the feedback eystea of the fringe stabilizer. 

Noraally, tJ.« ataeillty of the fringe pattern of the holographic piv -ire is influenced by changes 
in the interferoaeter, partially because of length changes in the interferoaeter due to tenperature 
changes or very saall change« in the frequency of the laser light. The autjaatic fringe^adjusting 
systea ooerates in the frequendy range froa 0 to 10 Hz and intensities of Ag*/^   -  10~5 could be 
aeasured. The adjustaent also defines the operating point of the systea at a location of 1/4 be- 
tween two adjacent fringe*. Here, the aodulation characteristics according to (2) can be conside- 
red linear for small aodulation aaplitudes. The stabilization is accoaplislied by the Modulator in 
the reference beaa. The error signal of the second photocell is aaplified and the modulator in- 
fluences, the phase of the beaa to reestablish the wave front pattern. 

To calibrate the instrument, an error signal was fed in the open loop of the feedback systea and 
the generated output voltage was aeasured. The operating point was checked on the scope. 

Since the connection between density j> end the pressurep in the adiabatic state is given by the 
law for a perfect gas, a calibration for the pressure fluctuation is easily accoaplinhed. 

A more detailed description is given under p] 
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3. ÜEASUREMEKTS 

The flow »eaaurravnts were nade behind a 1" nozzle ac a flow velocity of &3 a/aec. The flow in 
the center of the nozzle at the exit plane waa laainar or aade turbulent by th« inaertion of a 
.-screen. Three flow paraaetera: the velocity fluctuationa u' in the flow direction U, the density 
fluctuations «*     and the correlation u'j*'   were aeaaured. The preaaure transport tera in the X 
direction was calculated by the use of the conolation aeasureaents. 

To displiy the results of the aeasureaents in a aure risible and understandable way, the resulta 
were plotted in the fora of aape of the flow field for one of the three paraaetera. 

i'he lines in auch a aap represent the isofluctuations of the velocity, or the density, the iaocor~ 
relation and the isopresnure transport aeasureaents. Before an analysis is aade, a few reasrks a- 
bout the two different types of flow are necessary. The present investigation deals with the flow 
field close to the nozzle, where the characteristics of the two fiow types differ reaarkablyt both 
types have in coaaon, that the flow close to the nozzle is in soae kind of a transition stage and 
that the final stage of self preservation will be reached at a auch larger distance. Therefore, 
the aaplitiide of the turbulent fluctuations, their growth or decay and the spectral distribution 
will undergo changes as the fluid is aoving downstreaa« 

The laainar jet becoaes turbulent aainly by the instability of the free shear layer. Here, wave 
like disturbances in a certain frequency range grow in aaplitude to fora a vortexlike flow aove- 
aent. After further aaplification, the vortices diffuse in saaller eleaents, whose fluctuating 
coaponents are feeding the laainar core region of the jet. According to the general experience, 
the iaainar core ceases to exist after a distance of X/f, >fand the process of equalization con- 
tinues until soae kind of self preservation for the whole jet area occurs. Details of this type 
of flow were already reported. J3,4»5j 

The tu.'bulent jet in soae way ^presents the opposite type of flow. At the exit of the nozzle the 
turbulent fluctuations of the jet core interact with the free shear layer. Depending of the flow 
conditions, especiallK the contcur of the nozzle, the free shear layer at the ria of the nozzle 
■ight still be l^rinar. Whereas in the laainar case the free shear layer will becoae unstable by 
disturbances from  :U-   outcide area, the free shear layer of the turbulent Jet will be influenced 
by the turbulent ;)-<<~tuations of the core end by disturbances froa tue outside ares. Hence, at 
the exit of the noz/.le the turbulent fluctuAtiocs inside the Jet Interfere with the free shear 
layer. This way, two turbulent areas. Jet core and free shear layer, with different aaplification 
and distribution necb«nisR> are interacting with each other. Because of the spread of the total 
jet, both areas are growing in size with increasing downsteaa distance. At the intersectioiyflow 
adjustaenta in fora of energy transfer are necessary to accoaplish the unification of th« two dif- 
ferent turbulent -egiaes. Still, at a sufficiently large distance, th« distribution of the fluctu- 
ating quantities of the two jet types are sitallar. 

3.1. GRAPiflCAL REPRESENTATION AND ANALYSIS 

The contournaps represent nond.-.nensionalized quantities «•g'u'/ü, fViV *D<* "* ^ba rim  of t^e nozz- 
le  is located at x/r0 <■ 0 and y/ro > 1. Measureaents at distances x/ro saaller 2 could not be ob- 
tained because of the aechanical interference of the interferoaeter with the windtunnel systea. 

Laainar case 
Figure 3 shows the results of the u* aeasureaents. 

5 
Fig, 3 Isnvelocity fluctuations of the laainar jet 
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The- fluctuations in the free shear l.a/er occur at a distance Y/ro of 1.05. A» the starting point 
cf the Btasurenents X/ru • 2, the fluctuations in the free shear layer arc: already anpllfied to 
the saturation level, so that nc further increase in aaplitude is possible. The fluctuations there- 
fore sprcac' in a jet like aanncr into the core region and into the outside area of the free shear 
layer. 

Figure L  shows the corresponding, densit) acasurcBents 

♦ 

Fig. L  Isodensity fluctuations of the laainar jet 
The ■aziaua of the fluctuations is located at x/vo • 2 and y/ro - 0.9. In contra«»to the velocity 
fluctuations, the aap shows closed curves in the core region. Their intensity decreases with in- 
creasing distance, whereas the lines in the free shear layer region Y/ro <■ 0.8 to 1.2 reaain 
constant in aaplitude. The gradient4t/dr derived at the location where the lines close, has an 
inclination against the centerline of the flow field and points towards the ria of the nozzlt. 
The aaxieua of the density fluctuations does not coincide with the path lines of the vortices. 
Therefore the increase of the vortex strength with increasing downstreaa distance is due to an 
increase ir. vortex diaaeter and not to a local increase in density. 

Fig. 5 Isocorrelation of the lamina» jet 
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The v»^ue 0 of the correlation (Figure 5) i« » nearly straight line »t Y/ro ■ 1. Above that line, 
tovarda the center of the jet, the correlation i» negative indicating the extraction of »oBen.'ir« 
fro« the uenler to supply the fluctuation« in the free »hear layer. The largest value of the cor- 
relation oocu.-a at the location ^r  • J,8 and x/r • 2. 
The transport ter« is plotted in Figure 6. 

04 

OS 

i OS 
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»v. 
Unit: 10 -! 

T r -* 1— 
Fig. 6 Isopressure transport of the üwinar jet 

The aaxiiuia lie« again to the nozde at X/ro - 2, V/ro « 0.9. The lines indica» that the direction 
of transport is fro« the insxde region of the jet towards the region, where the free shear layer 
is developing. 

B. Turbulent case 
As aentimed before, the turbulent case can not be explained by s siaple aodel. A vortex-like pha- 
noaena does not exist, because oi the turbulent character of the core region. Still, the boundary 
layer ha« a turbulence enhancing character, but at a lower spatial aaplification (Figure 7). 

Fig. 7 laovelocity fluctuation of thfl turbulent jet 
Ihc relative n&A-iaua of the fluctuations again lies on the line Y/ro ■ 1, but the Intensity still 
increases with increasing downstreaa distance. Outside this area, the lines show a siailarity with 
the laminar <;ase and ^how a spread towards the center and the outside. For a given X/ro close to 
the nozzle, ti;e intensity of the fluctuations in the core region is auth larger, because the jet 
is already turfcoicnt. 

At a certain distance behind the nozzle, approximately X/ro " 3. the free shear layer turbulence 
starts to interact with the turbulence of the core region. In the free shear layer, the growth 
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per »nit length is larger because of the velocity gradient in the shear layer. In the certerline 
of the floi^ where the flou is already turbulent, the gain ra^e is auch srAller. At a certain di- 
stance, the turbulent characteristics of the two areas will equalize. Such an area is located at 
V/ro • 0.2  to 0.6 and X/r0  •: 6 to 10. 

Therefore the distribution of the density fluctuations shot«« quite different display (Figure 8}. 

Fig. 8 Isodensity fluctuations of the turbulent jet 

The naxiaua of the fluctuation« is reaoved from the neighbourhood of the nozzle to tha  inside 
area of the jet, where the flow adjustaent occurs. The location io at X/r0 r 6 to 10 and y/ro-0.5 
to 0.1, 

The intensity of the fluctuations in the free shear layer is saaller, indicating the saaller 
growth rate. 

I 

Fig.  9 Isocorrelation of the turbuient jet 
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Twice, the correlation reschea the value zero at Y/ro * 0.9 and Y/ro » 0.6. Betueen theae lines, 
the correlation changea the sign. 

The effect of the two flow regiaea is also represented in Figure 10. 
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Fig. 10 Isopressure transport oi  th« tui-bulent jet 
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SUMMARY 

Hot-wire measurements of mean velocity and normal turbulent stress in ths direction of 
flow are presented for the flow field generated by a plane jet reattaching to a flat 
plate adjacent to the jet nozzle. Measurements were made in longitudinal and lateral 
traverses of the curved iet flow and in the two wall jet flows, that emerge from the 
reattachment region, one in the downstream direction carrying all the mass flow issued 
from th«i nozzle as well as the mass flow, that has been entrained along the outer boun- 
dary of the curved jet, and another backward flowing wall jet, that returns the mass 
flow ertrained alor.'j the inner boundary of the curved jet to the separation bubble. 

MeasurwTienti. were made in two series for thirteen different positions of the adjacent 
plate thereby providing data for differing values of jet curvature and jet pathlengths. 

Integj. '1 methods were used or the experimental data in an attempt to evaluate the ef- 
fect of jet curvature on the entrainment along the external and internal boundaries of 
the curved jet. 

NOTATION 

h 

H 

I1'J2 

J 

K 
n 

Q 

% 

h 

8 

s 

nozzle width 

empirical constant in Sawyer's ex- 
pression for entrainment 

entrainment parameter 

wall offset 

h 
a 

velocity profile integral parameters 

momentum flux in jet flow 

characteristic width of jet flow 

coordinate in direction normal to s 

volume flow rate integral 

volume flow rate issuing from nozzle 

x,y 

radius of curvature of jet flow 

coordinate in direction along maximum 
velocity points of curved jet profiles 

velocity In direction x or s in jet 
flow 

jet velocity in nozzle 

maximum velocity in jet profile 

tangential component of normal tur- 
bulent stress 

coordinates 

x ,s  virtual origins of jet flows 

a wall angle of inclination 

n i^o o   o 

A -S 

<>! 

p fluid density 

or Görtier jet spread parameter 

Stabscripts 

E,I denotes external and internal boun- 
daries of curved jet flow 

R denotes reattachment point or region 

w denotes wall jet 

1. INTRODUCTION 

The experimsntal investigation reported here is part of a larger investigation of the 
plane jet reattachment phenomenon, which previously has been analysed and investigated 
by Pourque & Newman (1960), Sawyer (1960) and (1963), Dourque (1967), Perry (1967) and 
Boucher (1968), The flow field is shown in Figure 1. A plane jet of air, issuing from a 
slot nozzle, rejittaches to an adjacent, flat plate, thereby creating a region of recir- 
culating flow between the jet and the adjacent plate. In this separation bubble the sta- 
tic pressure is reduced compared to the ambient pressure. The reduced pressure causes 
the deflection of the jet towards the wall. The main aspect of this flow field te the 
curved jet, which is subject to a lateral pressure gradient, and, since the subpressure 
is not unif^^m, a longitudinal pressure gradient as well. 

t:.ww;to
!..w> 
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Figure 1. Scematic of nozzle and adjacent 
plate geometry, and approximate 
streamline pattern. 

The most obvious example of an application of such a flow field is in fluid amplifica- 
tion devices. The purpose of the abovementioned analyses has been the prediction of the 
subpressure in the recirculating region and the .ength of this region., data nescessary 
for the design of fluid amplifiers. 

The controversial point in the analyses of the jet reattachment phenomenon has been the 
inability of a simple integral analysis to predict the behaviour of the jet flow at lar- 
ge angles of inclination of the adjacent flat plate. Sawyer (1953) assiuaes an effect of 
curvature on the rates of entrainment of the two edges of the jet and obtains improved 
correlation between theory and experiment. Bsurque (1967) obtains very accurate predic- 
tions by using a hypothesis on the path of the dividing streamline, that diverts from 
the simple circular path assumption, and Perry (1967) obtains equally good predictions 
by assuming a base pressure different from the average separation bubble pressure. None 
of the authors presents experimental results, that make it possible to evaluate the dif- 
ferent and somewhat contradictory assumptions. 

Part of such experimental results are presented here. 

2. INTEGRAL EQUATIONS 

2.1 Basic analysis 

The results of classical analysis of plane, turbulent jet flows are used as basis for eva- 
luation of experimental results. Following Townsend (1956) the state of self-preservation 
is consistent with the cemditior r: 

(2.1.1) 

and 

(2.1.2) 

L, = constant x (x-x ) 

U = constant x (x-x ) -0.5 

It is well known, that a plane, turbulent jet closely follows these conditions a short di- 
stance downstream from the nozzle, although the state of self-preservation is not reached 
until about 50 nozzle widths downstream from the nozzle. This is connected with the fact, 
that the mean velocity profile approaches its similarity form much faster than the profi- 
les of turbulent stresses. 

Figure 2. Coordinate system and typical velocity profiles for plane 
free jet and wall jet in still surroundings. 
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Kh«>n a suitable mean velocity profile has been assuned the volume ».low rate Integral and        j 
BOBentu« flux integral can be expressed: | 

(2.1.3; Q ^  0 dy » U_ L  j f(n) di - U I- I. 
i_» l80J_e-, IB   O   1 

ana 
,+- ,*» 

(2.1.45 J -  pU'dy - oü' V   f2rr,) dn » pü' L I, 
I _m 

BC;_» »02 
where fir.) * g represents the mean velocity profile. 1 

The constarts: I, *      f(n) dri and I, » I f2(n) dn 

are velocity profile integral paraaeters. 

For the free, plane turbulent jet the total at^aentun flux per unit length is constant 
and equal to the noewmtua flux per unit length issuing from the nozzle, while the volu- 
BW flew rate integral increases with the distance fron the nozzle due to entralnmert. 
Using equations (2.1.1), (2.1.2) and (2.1.3) the total volume flow rate per unit length 
can be expressed as: 

(2.1.5) Q « constant * (x-x )0"5 

The voiiast flow rate per unit length, that emerges fron the nozzle, can be expressed as: 

(2.1.6) Q * U« a I« o   o   Q0 
where ?_ is a nozzle vcluase flow ra  coefficient. 

uc 

The total volunte flow rate, eguatioa (2.1.5), may be regcrded as composed of three com- 
ponents ! 

(2.1.7) Q^Q+Q.     ..+Q    .      ., w  wo  uentr«inad,i  "entrained,2 

The volume flow rates due to entralnment along the two edges of the jet along its path 
from the nozzle to the station in question grow with the distance from the nozzle and 
are, for a straight jet, equally large. 

2.2 Curved jet volume flow rate 

For a curved jet the total volume flow rate can not be expected to vary according to eq- 
uation (2.1.5) since eqvation (2.1.4), which is inherent in equation (2.1^5), must be mo- 
dified to include pressure forces, ^he lateral pressure gradient associated with the cur- 
vature of the jet introduces a pressure term in the momentum equation, and the condition, 
which for a straight jüt says, that the momentum flux integral Is constant along the path 
of the jet, must be modified to say, that the Integral of momentum flux and pressure for- 
ces across the jet prcfi:i is constant along the path of the jet. 

What is emphasized in this paper, however, is the volume flow rate integral, and here eq- 
uation (2.1.3) is valid, if experimental data for ü and L are used, and if an appropri- 
ate velocity profile is assumed. 

The equations of importance for the evaluation cf the volume flow rate in the curved jet 
fiowf are thus: 

(2.2.1) Ö = IL, L  I, m o i 
and 

(2.2.2) Q * Ö0 + Sj. + Öj 

which using equation (2.1.6) can be written in non-dimensional form: 

(2.2.3) § = 1 + <1E + «Jj. 

where now $E  and Qj may be different. 

As a measure of an eventual asymmetry in the entralnment rates on the external and inter- 
nal boundaries of the curved jet serves the rarain«ter! 

(2.2.4) *  " Ttr 

2.3 Wall   jist volume  flow rate 

The analytical treatment of wall jet flows is very similar to that given to free jet 
flows. The total volume flow rate in a wall jet can be expisssed: 

(2.3.1) öw -  \u  dy = üm Lo j^. n) dn - Um Lo  1^ 
no 
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whero fin)   is  an t>rroprlate function. 

2.4 V.-l'J«e :'lrv ■ite division 

At tr.c c-; »T^y or the reattachnent region the curved jet represent» a total volume flow 
rate, that  ur.in«? equation (2.2.3) can be expressed: 

(2.4.11 1 + ^E.R f «I,« 

The vclune flow ratee due to entralnment are unknown, while 4_ can be found using equa- 
tions (2.1.3) and (2,1.6) and experimental data for V    and L V a. o 

Q^QM»*^» 

In an incompressible flow field the volume flow rate» into and out of the reattachment 
region must be in balance. The same condition must be valid for the recirculating regi- 
on. Therefore the following non-dimensional equations can be established for the volume 
flow in the reattachment region shown on Figure ?: 

(2.4.2) 

(2.4.3) 

(2.4.4) 

(2.4.5) 

^1 » 4i,R 

^2 = 1 + 4E#R 

In establishing these equations a couple of simplification« have been used: 

a) That the curved jet has maintained its character as a free jet right tc the boun- 
dary of the reattachment region. 

b) That no entralnment takes place on the external boundary of the reattachment re- 
gion. 

The equations (2.4.2) tc (2.4,S} should with appropriate experimental data be able to pro- 
vide some information about the entralnment rates and the influence of jet curvature upon 
these. Buth with the underlying simplifications the equations car not be expected to be 
more than crude approximations. 

3, PRESENTATION OF EXPERIMENTAL DATA 

3.1 Review of experiments 

With reference to Figure 1 measurements were made in two series: 

Series 1:  o = 0 
H = 6, 10, 13.6, 18 and 22 

Series 2:  H = 10 
a = - 30.95, 21.80, - 11.31, 0, 11,31, 21,80, 30.95, 38.65 and 45.00 deg. 

Measurements were made with DISA hot-wirn equipment, A1J measureraenis were made with nozz- 
le width a = 3.0 mm. The nozzle velocity U was adjusted at about 52 ir./sec to give a nozz- 
le Reynolds' Number of 10*. Thus the nozzli velocity is low enough to snsure incompressi- 
bility and high enough to ensure a fully turbulent jet. 

To keep space requirements down only measurements of series 1 are presented in the graphs. 
Results of series 2 measurements have been included in Table 1 and in Figure 15, and are 
referred to in the text. 

The following groups of measurements were made: 

a)  Determination of the locus of maximua velocity of the curved jet from the nozzle 
to the reattachment region. Hereby a measure of the jet curvature was achieved. 
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b)  Longitudinal traverses of the curved jet along the locus of maximum velocity. For 
series 1 Figures 4 and 5 show the results in terms of maximum velocity decay and 
normal turbulent stress in the direction of flow as function of distance from the 
nozzle along the path. Straight jet data are included for comparison. 

^»«•t fit free J«1 data 

" i 
Figure 4. Variation of maximum velocity with jet path- 

length for curved jets. 

Oi-A. 

'    ••* 

Best fit free jet data _ 

Series 1: 
H-   6    © 

10    • 
13.6 A 

22    • 

20 30 
S 
a 

Figure 5. Variation of normal turbulent stress in the 
direction of flow at the point of maximum 
velocity with jet pathlength for curved jets. 
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c) Lateral traverse» of the curved jet at several stations of and nomal to the lo- 
cus of Mar.iaun velocity. Figure 6 shows typical lateral distributions of »can ve- 
locity and normal turbulent stress for series 1, H « IB, 12 nozzle widths down- 
stream from the nozzle. Prom these measurements Figure 7 was deducad, showing the 
variation of.  jet width L as function of s/a for all series 1 measurements. 

d) Longitudinal traverse: of the two wall jets flowing In opposite directions fro« 
the reattachment rcgi. n. Figures 6 and 9 show the maximum velocity variations a- 
lonr; the plate for series 1 mi-isurements. 

e) Lateral traverses of th* t'./o wall jets. Figure 10 shows typical mean velocity and 
normal turbulent stress dls^ibutions for series 1, H * 18, in the beckward flow- 
ing (left) and downstre;J flowing (v^ght) wall jets. From these measurements Fi- 
gures 11 and 12 were deduced, showing the variation of wall jet width L as func- 
tion of distance along the plate measured from the reattachment point. 

Figure 6. Examples of mean velccity and normal turbulent 
stress profiles for curved jets. 
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Figure 7.  Variation of characteristic jet width with jet 

pathlength for curved jets. 
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Figure S. Variation of teaxlnuni velocity with distance from re- 
attachment point for downstream flowing wall jets. 

Figure 9. Variation of maximum velocity with distance from re- 
sttachment point for backward flowing wall jets. 

Figure 10. Examples of mean velocity and normal turbulent stress profiles, for 
backward flowing (left) and downstream flowing (right) wall jfets. 
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Figure 11. Variation of characteristic jet width with distance 
from reattachment point for downstream flowing wall 
jets. 

Figure 12. Variation of characteristic jet width with distance 
from reattachment point for backward flowing wall 
jets- 
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3.i  Mean velocity and turbulent stres» profile« 

The «ean velocity profile of the curved jet shown on Figure €  is quite siiailar to the 
profile found in a straight jet. There are slight differences, that should be noted, how- 
ever: 

a) The mer.n  velocity profile is slightly asymcetric, the naxinuK velocity point is 
displaced from the mid-point of the line between the two half-naximum velocity 
points towards the internal boundary of the jet. Also, associated herewith, the 
mean velocity gradient is higher on the internal side than on the external side. 

b) The mean velocity does not approach zero on the internal side cf the jet. This is 
due to the fact, that in this region there is a high level of turbulence even whe- 
re the mean velocity is vanishing. Hot-wire measurements are not reliable under 
such conditions, and the mean velocity profile can be regarded as being in error 
in this region. 

The turbulent stress profile shown on Figure 6 is typical for the many profiles, that we- 
re measured. These profiles are asynraetrlc to a hlghei degree than the mean velocity pro- 
files and the following traits should be noted: 

c) The mlnimuni near the point of »axlmun velocity is displaced towards the external 
side of the jet. 

d) The two peaks in the regions of maximum shear are not equally wide, the peak on 
the externsl ziic  s£ the jet being wider. This is a general trait found in all 
measured turbulent stress ptcfiles. 

e) The peak values of the turbulent stress profile are slightly different. In this 
particular profile tl.e highest value is found on the external side of the jet, and 
this w?s ".he  caae for a majority of the profiles. In some profiles, however, the 
highest peak value was found on the internal side, but it was not possible to find 
a correlation between this variation and any relevant parameter. 

The mean velocity profiles of the wall jets shown on Figure 10 are very similar to that 
found in an ordinary wall jet. rhe only aspect of the profile in the downstream flowing 
wall jet, that must be noted, is that the layer between the wall a.id the maximum velocity 
point is thinner than found in an ordinary wall jet. This is due to the proximity of the 
reattachment region. 

The mean velocity profile of the backward flowing wall jet also has s relatively thin 
wall layer and the profile is slightly distorted, but the characteristic w^ll jot pro- 
file shape is very clear. 

The slight asymmetry of the curved jet mean velocity profile does not have a marked in- 
fluence on the constant I, in the volume flow rate integral, equation (2.1.3), but indi- 
cates different entrainment rates on the two sides of the jet. In the calculation of the 
curved jet volume flow rate development a value of I. ■ 2.10 has been used. For compari- 
son an exponential profile gives a value of 2.13 and the Gortler profile a value of 2.27, 
For the ordinary wall jet profile a value I,  = 1.31 seems appropriate, but in this work 
the deviations in the wall jet profiles and the unusual thinness of the wall layers have 
been accounted for. 

3.3 Spread rates 

The development of the curved jet characteristic width is shown on Figure 7, where all 
points tend to fall on a single curve. Most noteworthy results are, that the curved jetfi 
spread linearly and at an increased rate compared to the straight jet measurements. The 
curved jets in series 1 have a spread rate, that average at: 

L 
(3.3.1) -^ = D.186(f - 5.0} a a 

compared to the average for straight jets: 

(3.3.2) ^ = 0.1o5{| + 1.5} 

For the curved jets the characteristic width L has been found as half the distance be- 
tween the two half-maximurc velocity points. 

The curved jets in series 2 measurements also averaged at about the same spread rate as 
given in equation (3.3.1), but the virtual origins tended for large plate inclinations 
towards a point 6.5 nozzle widths downstream from the nozzle. 

In terms of the well known Görtier jet theory, where the spread rate is characterized by 
the spread parameter a, the curved jets average at a = 4.7, while the value for straight 
jets is a = 7.7. 

Figure 11 shows, that for the downstream flowing wail jets the spread rates approach the 
value found in an ordinary, established wall jet. Figure ll1 indicates a rather strong, 
but systematic variation cf the wall jet charscteristic width in the backward flowing 
wall jets. 
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3.4 Voluc« tlo* rate aavelopnentg 

Based on the experinental data presented above the volume flow rate developnents cf the 
curved jet as well as the «-.vo wall jets were calculated using equations (2.2.1) and 
(2.3.1). The results of these calculations are presented in Figures 13 ana 14 for seri- 
es 1 measurements. 

a — 

cL L 

Voditne flow ro\e, fr«e jel 

to 20 30 i 
Figure 13. Variation of total volume flow rate with jet 

pathlength for curved jets. 

Figure 14. Variation of volume flow rate with distance from reatfeachment point 
for backward flowing (left) and downstream flowing (right) wall jets. 

The volume flow rates of the three jet flows at the stations, where they enter respecti- 
vely leave the reattachment region, are estimated from Figures 13 and 14 and used in Tab- 
le 1. Also incluoed in Table 1 are similar results from series 2 measurements. Numbers in 
round brackets are not results based on measurements, but have been found using interpo- 
lation !n  the plots of series 2 measurements. Equations (2.4.2) to (2.4.5) are then used 
in Tablo 1 to provide data for Figure 15, which show entrairunent asymmetry parameter X as 
finction of the average value of L /R for each curved jet. In Figure 15 are included for 
comparison a set of curves suggested by Sawyer (1963) . The two values of Sawyer's parame- 
ter C are those, which Sawyer found to give best correlation between prediction and expe- 
rinent for the position of the reattachment point on a parallel, offset plate, C ■ 5.29 
(s^rieE 1), and an inclined plate, C = 7.87 (series 2). 

Colann 5 in Table 1 shows, that there is an excess volume flow rate in the two wall jet 
flows c.nibinod. The reason for this discrepancy probably is, that the curved jet does 
not cea«* to er.train fluid at the station, where the pressure rises at the boundary of 
the reat^achnent region. A study of the development cf the volume flow rate in the cur- 
ved jets has shown, that at the rate of increase of volume flow rate foun«? in Figure 13, 
tha curved jets will reach the combined volume flow rate of the two wall jets long before 
the station, where they hit the plate. The excess volume flow rate in column 5 is there- 
fore being regarded as due to difficulties in measuring the velocity profiles in a diti- 
torted curved jet at the boundary of the reattachment region. 
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Tabi'  1 

1 2 3 4 5 6 7 3 

H   or   O 4R *l ^2 W4R V1 I 
>  

Serie« I 

6 2.10 0.31 1.95 0.16 0.95 3.o6 0.05"    ■ 
10 2.79 0.51 2.38 0.10 1.38 2.70 0.074 

13.6 3.18 0.79 2.70 0.31 1.70 2.15 0.082 

18 3.74 1.28 3.02 0.56 2.02 1.57 0.091 

22 4.18 1.73 3.12 0.67 2.12 1.22 0.1)36 

Series 2 1 
-30.95 (2.24) 0.48 1.80 (0.04) 0.80 1.66 0-023 

-21.80 (2.34) C.48 1.95 (0.09) 0.95 1.98 0.042 

-11.31 (2.51) 0.48 2.10 (0.07) 1.10 2.29 0.061 

0 2.79 0.51 2.38 0.10 1.38 2.70 0.074 

11.31 (3.üi; 2.65 2.69 (0.13) 1.69 2.60 0.086 

21.80 (3.TO) 0.97 3.00 (0.27) 2.00 2.06 0.097 

30.95 4.IS 1.47 3.38 0*67 2.38 1.61 0.109 

38.65 4.70 2.06 4.02 1.38 3.02 1.47 0.112 

45.00 5.20 2.60 4.65 2.05 3.65 1.40 0.118 

3 - 

i r i r T 1 1 1 1 r 

:s«wy«r 

Serie» 1= Series 2: 
H-   6    « oc—30.95  • «- 21.60 ♦ 

10    • -21.60 • 30.95   * 
13.6 A -11.31   ■ 38.69   ♦ 
16     T 0        • 45.00   * 
12    • 11.31   a 

10 

Aft 
a is 

average 

Figure 15. Entrainment asymmetry parameter X versus average relative curvature 
for curved jets. Two curves representing theory of Sawyer (1963) are 
included for comparison. 
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4.  DISCUSSION 

The Beasurenents presented in Flgurra 4, S; 6 and ? show, that the curved reattachlng 
jet behaves in a way very similar to the ordinary straight jet, but that the spread rate 
and turbulence Intensity aie strongly increased. For the five sets of ateasurenents be- 
longing to series 1 there Is no clear variation, that must be attributed to the curva- 
ture of the jet. The spread rate in particular shows little variation from the average. 
The results of series 2 mrasuremen-cs lead to similar observations. 

The calculation of uie entrainment asynatetry parameter X  is presented in Table 1 and the 
results are shown on Figure 15.- In view of the very little variation in the overall be- 
haviour of the curved jets it is noteworthy, that X vary very strongly with the jet cur- 
vature. The variation does not follor the prediction by Sawyer (1963). The decrease of X 
with increasing curvature indicates, that the curvature is not the dominant factor in 
the interaction between the curved jet and its surroundings. The still, ambient fluid on 
the external side of the jet can hardly play an active part in the reattachaent phenome- 
non, rather the characteristics of the flow field are determined by the interaction be- 
tween the curved jet and the flow in the recirculating region. 

5. CONCLUSION 

Measurements in curved, reattachlng jets show, that the spread rate and turbulence in- 
tensity are increased about 75 % compared to straight jet data. 

A volume flow rate balance in the reattachment region ehow, that there is a marked dif- 
ference in the entrainment rates on the two sides of the jet. The entralnment asynanetry 
does not vary systematically with the jet curvature and vanish for large curvatures in 
contrast to what has been expected from theory. Although curvature may have some influ- 
ence on the entralnment of a curved, reattachlng jet, this influence is not as simple 
as suggested by Sawyer (1963). 
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THE EFFFCT OF DEKSITY DIFFERENCE ON THE TURBULENT MIXING LAYER* 

by 

Garry Brown and Anatol Ronhko 
California Institute of Technology 

Pasadena,  California 91109 

SUMMARY 

An experimental study has been made of the turbulent mixing layer between two 
streams of different gases, especially nitrogen and helium. This was made in a new flow 
apparatus, designed to produce good quality flow at pressures up to 10 atiaospheres with 
run times as low as 1 or 2 seconds. High-speed measurement techniques, including a novel 
density probe, were used. 

Shadowgraphs of the turbulent mixing layer reveal a large-scale structure rather 
similar to that in the late stages of instability development in a laminar free shear 
layer. This structure is s   aven in cases of uniform density. 

The similarity proper.. 4a  of the mixing layers are established from profiles of 
mean velocity and density, and from these the basic flow parameters are computed; spread- 
ing rate, dissipation rate, shear stress distribution.  It is found that a large density 
ratio (e.g., 7:1} in tae two streams does not have a great effect on the spreading rate; 
this contrasts with the large effect of Mach number on the turbulent spreading of a free 
shear layer at the edge of a supersonic flow. A brief analysis compares the effects of 
density nonuniformities in low speed flow and those due to compressibility at high Mach 
rymber. 

1.  INTRODUCTION 

The present work had its motivation from several problems in free turbulent mixing, 
in particular, problems connected with density nonuniformities. There has been remarkably 
little recent progress with this problem. One aspect is the question of the effect of Mach 
number on the spreading parameter a; probably the earliest attempt to find such a correla- 
tion was that by Korst and Tripp1 in 1957.  It has been generally agreed by most authors 
since then that the spreading rate decreases (a increases) with increasing Mach number, but 
quantitative agreement has been woefully lacking. There is even some qualitative disagree- 
ment. Regarding a blown-off boundary layer as a free shear layer, Fernandez and Zukoski2 

*ound that the spreading rate at M = 2.6 in adiübatic flow is greater than at M ■ 0; they 
do not actually state that conclusion, but it follows from their suggestion that entrainment 
rate is independent of Mach number. On the other hand, Alber and L9es3 suggest, on ehe 
basis of several experimental results in the literature, that the entrainment rate of free 
turbulent shear layers decreases rapidly with increasing Mach nuniber, varying in adiabatic 
flow as the square of the density ratio across the layer, consistent with decreasing spread- 
ing rate.  (The blown-off turbulent boundary layer should probably not be regarded as a free 
mixing layer.) 

The attempt to connect the shear layer parameters with density ratio has been central 
or implicit in practically every theoretical and experimental approach to the problem. The 
enthusiasm for this approach probably derives from the success that density transformations 
of the Howarth-Dorodnitsyn type have had in the case of attached boundary layers.  Implicit 
in the transformation methods, is that the effect of density nonuniformity is universal, 
whether it be due to compressibility, i.e., Mach-number dependence; or due to temperature 
variation, say at low Mach number; or due to variation in compositiri.i, as in the mixing 
betwetn different gases. However, there have been no serious attempts made to determine 
whether in fact the different cases of density nonuniformity are similar. The many experi- 
ments on coaxial, axisymmetric jets, which include examples with various combinations of 
different gas compositions or temperatures ac low speeds, have not clarified these problems. 
One reason, we believe, is that it is difficult to pose a scientifically simple problem in 
the case of axisymmetric flows with density nonuniformities.  In the regions of important 
nonuniformity, such flows generally do not have similarity properties. 

Oil the other hand, similarity arguments show that a turbulent mixing layer between 
two uniform flows having velocities U^, U2 and densities pp P2, respectively, will grow 
linearly in the x direction; the velocity profile U/U^ and density profile p/pi, as well 
as th° shear stress profile r/p^U2, will be functions of the similarity variable y/x and 
the parameters Uj/U-. and p2/pi.  It was for these reasons that we thought it important to 
study the plane mixxng layer between two gases of different densities at low Mach number, 
and undertook to overcome the difficult experimental problems associated with this 
configuration. 

*Work supported by the Office of Naval Research. 
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2.  APPARATUS 

The requirements which w« felt were iatportant were £8 follows:  (i) High Reynolds 
number, comparable to that in the Liepoann-Lavfer experiment; (ii) High density ratio, at 
least a value of 2. and preferably more, so tfcafc the dynamic effect of density uonuniform- 
ity could be exhibited, and values wouM be ccmparable to those in the supersonic caie at 
high M. 

To achieve a density change in air by heating one stream is for many reasons rather 
impractical. We therefore decided to achieve dir.isity differences by using different gases, 
in particular the combination of  nitrogen and helium which gives a density ratio of 7. He 
use bottled gases and do not recover them. To achieve high Reynolds nvabcr yet keep mass 
flow rates down to economical valaes. we deeded to design the apparatus for operation at 
high pressures.  (For a given Reynolds number, mass flow rate is inversely proportional to 
pressure.) This reasoning 1.?d to the-design of a new kind of short-cunning-tirie, high- 
pressure wind tunnel in which the test section can be pressurized to 10 atmospheres. Two 
gas streams each supplied from eight 200Q p.s.i. bottles are brought together at the exit 
of two 4 in. x 1 in. nozzles in the test section, anown in figure 1. This section ie 
enclosed by a cylinder which slides over and seals against the circular plates at. both ends 
of the section and the whole tank can then be pressurized. The upstream and downstream 
valves which control the flow rates and pressure in the tank were chosen partly on the basis 
of their time response. The resulting facility establishes steady flow in the test section 
in less than 300 milli-scconds with velocities up to 50 ft/sec. This means that experiments 
with flow durations of only 1 or 2 seconds are possible. The free stream turbulence level 
is between 0.1 and 0.5%. 

Operating at a pressure of 10 atmospheres, the Reynolds number is the same as in a 
facility with 40 in. x 10 in. nozzles operating at 1 atmosphere and the same velocity. 

SoM) i—Ewa> 

Fig. 1. 

Fig. 2. Density Probe 

Test section showing the tvo  nozzles, 
adjustable side walls and traversing 
probe. Glass end walls enclose the 
nozzles and test section.  Pressure 
cylinder in raised position visible 
in upper portion of picture. 

Besides being more economical of mass flow, the higher pressure is helpful for optical 
visualization and in general increases measurement sensitivity. Disadvantages are the 
smaller dimensions and higher frequencies of turbulent variations. 

Adjustable side walls which span the test section are used to adjust or reiaove 
pressure gradients in the flow.  Preliminary adjustments for minimum pressure gradient 
are made using two solid walls and then one wall is replaced by a 10% open slotted wall. 
This has proved very satisfactory. 

Measurements of the mixing region have been raade within the first six inches 
downstream of the splitter plate.  For a flow of 50 ft/sec at i0 atmospheres the momentum 
thickness of the boundary layer leaving the splitter plate, estimated using Thwaites" 
method, is .001".  (The thickness of the splitter plate at the end is approximately .002".) 
For a typical free shear layer entrainment rate of .035 the momentum thickness has bacome 
10 times this initial value V' downstream, a criterion sometimes quoted for simi?ari'-.y. 
The criterion quoted by Alber and Lees (x/a9j > 10) requires a distance of 120 tinws the 
initial momentum thickness for the attainment of a similarity profile (.12" in our cato), 
while the criterion given by Bradshaw4 recommends 1000 times the initial momentum thici;ness 
or 1" in our caoe. 
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3. MEASUREMEW TEafflIQUE 

To AMk« «easurcments in a turbulent flow of unknown roaposicion with high turbu- 
lent levels and frequencies and a flow duration tine of only a few seconds is a rather 
difficult requireaent. As a «ininua, nean density and velocity profiles must be obtained 
to establish the essential feature« of the mixintj region. The instrunents «ised tc obtain 
th^se were a fast electronic (Barocel) ma'tometer and pitct cube and a density probe r 
developed especially for this study, described in detail in reference S. f 

"Use density probe is sxetched in figure 2.  In operation the probe is attached 
to a vacua« punp and the wire maintained at some fixed temperature above its surroundings 
with the usual feedback bridge. With a vacuum punp of sufficient capacity (not rezy  large) 
the power required to keep the wire at this temperature depends only on the stagnation | 
properties of the gas being sampled.  If the sampled gas moves relative to the probe ther J 
to order M^ these properties have the same value if evaluated at static conditions as they | 
do at stagnation conditions. That £a, for small Mach nunber the output of the probe depends 1 
on the gas being sampled and not its velocity. The accuracy with which this is true depends | 
en the Mach mnfeer and essentially on the range of variations in molecular weight of th« | 
gas being sampled. In our case the difference in output between all nitrogen and all helium j 
ac 90 p.s.i. was 1.5 volts and sensitivity to velocity was less than 1% of this for veloc- i 
ities up to 60 ft/sec. | 

j 
In order to obtain a complete density and velocity profile in one run s  traversing 

gr«r was designed to  move the probes xn steps of .001 inch at the comnand of an input f 
'itage ^ulse train. The device, which incorporates a stepping motor, low friction ball 
screw and special electronic pulsing circuit, will traverse the probes at any rate up to J 
1 inch/second (1000 pulses/second) and so, by counting pulses, will give the position to j 
within .001" at any instant of time. An electronic coupler synchronizes this traversir.g 
aechaf.ism with a fast analog channel selector, an A/D converter and a digital incremental i 
tape recorder. The resulting system will step the probe .001". sample the voltage output | 
of the density probe, convert It to a digital number and write it on magnetic cape, switch I 
to the pitot tube output, fcra the conversion, write this r.umber on the tape, step the 
probe another .001", etc. /. cortputer then processes the tape. A complete traverse of 1*5" 
with a measurement every .G« !" of density and pitot pressure is made in a typical run tirae | 
of 3 seconds. J 

i 
4. FLOW STRUCTURE f 

1 
The most surprising result of this study was the very pronounced large structure        i 

which photograph» of the shear layer revealed (Figs. 3 and 4). To the authors' knowledge       f 

Fig. 3. Shadowgraph of n.ixing layer. Uj^l "  1'/'7' **  * const. 
Lower (high speed) stream is N»; upper (low speed) 
stream is a^r. 

these "tvo-diraensiona?." "big eddies" have not previously been observed, nor expected from 
the v^riovis correlation measurements that have been made in turbulent shear layers. These 
shadowgraphs were obtained using parallel light from a spark source with the photographic 
plate placed inside the pressure vessel, against the glass end-wall of the test section. 
That this structure is an essential feature of the plane shear layjr, and not forced by an 
oscillation of the central splitter plate, not produced by an upstream or downstream flow 
resonance, not changed by a trip-wire on the splitter plate (at some distance fro« the 
trip), not a three-dimensional spiral vortex, has been confirmed by many experiments. 

Figure 3 is the shear layer between two streams having s-ssentiaily the azure density 
fone is air, the o'.-.her nitrogen) and havirg a velocity rstio of 7:1 (figure 5, dir.c^ssed in 
section 5 shows the extent to which this uniform density shear layer grows linearly, in the 
mean). Figure 4 is the shear layer between nitrogen and helium, again with a vt-.-ocity ratio 
of 7:1 and with the helium on the low speed side. It may be of interest to note hare that 
for an "ar.^logous" supersonic mixing layer with the same density ratio, one stream wcu.d be 
at Mi =» 5.5 and the other at M, = 0.3 (assuming iidiabatic conditions). 
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Fig. 4.  Shadowgraph of mixing layer.  U./U- » 1/7; P^/Oi = i/7- 
IfOwer (high speed) stream is N.T upper (low Speed)stream 
is He. Upper wall is deflected to Maintain uniform 
pressure. 

The photographs posa many questions and suggest some interesting possibilities. 
The vavy structure ii reminiscent of the late stages of instability waves in laminar free 
shear layers (Michail« & Freymuth6), but here, the "instability" repeats itself continu- 
ously with increasing distance downstream. The idea of "laminar-like" instability behavior 
in turbulent flow is net new. For example, vortex shedding in turbulent flow persists to 
very high Reynolds number',- an analcgous phenomena is observed near the end of the potential 
core in jets°. Liejw.un9 at one time suggested the name "turbular fluid" for the fine scale 
turbulent motion in whicb the large scale instability develops. Of course, many of the con- 
temporary ideas about development of large scale structure fron instabilities in turbulent 
shear flow originate with Townsend^. But his picture of the large structures is somewhat 
different, emphasizing three-dimensional eddies (with vozticity axes parallel to the x-y 
plane), rather than what appears to be a nearly two-dimensional large structure in the 
photographs we have obtained. 

It is clear from the photographs that the scale of the instability structure in- 
creases downstream, probably linearly like the thickness of the layer. How the earlier, 
smaller structures are used up and replaced by larger ones is still to be studied, using 
high speed motion pictures, in'cermittency probes, etc. 

5.  RESULTS 

5 1 Uniform dens if 

For comparltion vi< t,  t  results of other investigators and to provide a reference 
experiment for the e.?periwe!v« . with two gases, measurements were made in the shear layer 
between streams of i: i cro-jar. at twe values of the velocity ratio, ls7 and 1:/T respectively. 
The maximum veloci v in each case was 35 ft/sec and the pressure was 7 atm. The multi« 
plexing and digital recording techniques described in section 3 made it possible to traverse 
a pitot tube and a hot vine s;'.de by side (V apart) so that any effect of the pitot tube's 
slower response tire or o£ the fact that the two probes average differently would be appar- 
ent.  In each case approximately eight traverses at distances from V to 4" downstream of 
the splitter plate were^made. For each run a traverse of IH"   (or less) produced some 1500 
measurements for each probe and a mean profils was found by fitting, in a least square 
sense, a high order polynomial (16 to 20) to all 1500 points.  Increasing the order beyond 
this produced no significant change in the resulting profiles. Figure 5a is a similarity 
plot from the smoothed pitot tube profiles for all 10 runs at the velocity ratio 1:7.  The 
origin of x for this plot was found by extrapolating a straight line through the energy 
thicknesses determined at each traverse.  This origin was .25" upstream of the splitter 
plate edge. Deviations on the low speed side are larger than on the high speed side, partly 
because the relative fluctuation level is much larger on the low speed side, partly because 
the pitot pressure is only 1% of its free stream value which makes for larger relative 
errors in measurement, and partly because the side^wall begins to introduce a pressure gra- 
dient as the shear layer encroaches.  A similar plot for the same runs from the smoothed hot 
wire proiile is virtually indistinguishable from this one.  Even less scatter was obtained 
for the velocity ratio of l:/7 (Fig. 5b). 
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A svunary of the essential parameters, i,  raaximusi shear stress, Tm, and energy 
dissipation rate. £, is presented in Table I (where AU = Uj - U^!. The maximum shear 
stress has beer, calculated using the relation 

T J W- 

o r 

(which defines the dividing stream line T; ) and the energy dissipation rate from 

• f j  oUCUj - U)(U - U2)dTi 

n * y/x. 

Table I. Shear layer parameters for unifonr. density. 

ü2^1 
•     0 

a                       T  /p(A'J)2                       E/p(fiU)3 
in 

11.3                            .0115                               .0078 
l:"- 12.8                            .0136                              .0085 
l:/7 18.7                            .0168                              .0105 

*From data of Licpmann & Läufer 

The parameter a,  which is inversely proportional to the spreading angle, has been 
determined by generalising the definition which Reichardt used at U- a 0- By definition 
a  ■ 1.32/AT| where An is the angular distance between two rays T\.  ana TI- defined by 

u (n1) - u2 = /ÖT? (Uj - U2)  and  u (TI2) - U2 = /TTT (l^ - ü2) 

These rays can be experimentally determined accurately; in the case U? = 0 and uniform 
density they are thn points at which the dynamic pressure is 10% and 90% respectively of 
its free stream value. The values of a  obtained from the above definition are very close 
to those obtained from the more elaborate least-square fitting of Görtier's solution to 
the experimental profiles. 

In addition to the comparison with Liepmann and taufer's data at tu = 0 we were 
able to compare our results with the measurements at various values of U2/ui by Miles and 
Shih , who kr.idly made available to us their original data from which we determined a 
using the formula above. Wiese results are shown in figure 6. Also included are two 
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points deterained irons data in reference i3. There is a systematic difference between the 
results of references 12 and 13. The differences may possibly be related to the free stream 
turbulent intensities (about 3% and 0.1% reepactively, cf. C.l - 0.5* in our case) or the 
shear layer width-to-lengti: «atio» (about O.S and 0.3 resp., cf. about 1.0 in our case). 

5.2 Variable density 

Three particular cases have been studied in which the density ratio was seven 
'^»lium on one side and nitrogen on the othfer).  In the first two cases the velocity ratio 
was 1i/'T", with helium on the high speed side in one case (oU2 the same in both stream«) 
and nitrogen on the high speed Sxde in the other.  (The latter would correspond to an 
"analogous" supersonic mixing layer with one stream at M^ a 5.9 and the other at Hj  ■ .84.) 
In the third case the velocity ratio was 1:7 with helium on the high spee<? side, that is oU 
the same in both streams. This is a particularly interesting situation rince it allows a 
sensitive comparison between simple eddy-viscosity theory and experiment. For example, if 
tha ratio of the sddy viscosity to eddy diffusivity (the Schmidt number) is 1 the theory 
predict- oU constant everywhere across the layer, a result which from experiment is far from 
true. 

Tn all cases the maximum velocity was 35 ft/sec and the avbient pressure seven atmo- 
spheres. The density probe and the pitot tube were mounted siäe  by sic's (V apart) and, as 
in the uniform density cace, the probes were traversed approximately 1%' across th. shear 
layer in 3 seconds and a measurement of the density and pitot pressure made every .001". 
An example of a density traverse is shown in figure 7 in which all 1500 loeasurements have 
been plotted.  It is inanediately apparent firstly that the density is nowhere greater than 

nnrKic r TV 
u u rJ J ; i T 

r .'NCMfS 

Fig. 7.  Single traverse with density probe (V./U,   = 1/7, Po/Di = 7^* 

nitrogen or less than helium, and secondly that the variation in density at any point is 
of the same order as the density difference between the two streams.  This is consistent 
with the large structure, evident in the shadowgraph, which one imagines can convect 
gas from one side of the layer to the other. 

From the measurement of density and pitot pressure at each step in the traverse 
the velocity at each step is obtained using the Bernoulli equation.  No attempt has been 
made to try an3 take account of the different response times of the density and pitot 
probes, nor of the fact that the probes are not at exactly the same point.  The excellent 
agreement between the hot-wire and pitot tube results for mean velocity in the uniform 
density case and the fact that the resulting velocity profiles for variable density are 
smooth and monotonically increasing (which intuitively one expects) lead us to believe 
that these different response times do not introduce serious errors. 
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The resulting similarity profiles for density and velocity for the two cases in 
which the velocity ratio is 1:/T are shown in figure 3, and a summary of the essential 
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Fig. 8a. Similarity profiles for density and velocity (üj/üj "1//7; P2/r('l  " 7'' 
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parameters, including those for the comparable uniform density cases is presented in 
Table II (where o » ^(e, + o-j)). At the time of writing only a few runs in each case 
had been processed so t^at the accuracy of these results is not quite as gocd as in 
the uniform density case. 

Table II. Effect of densi ty ratio on shear layer paramet 

D2/01 V2/Vl 

1:7 12.8 

T /oAU2 
111 

.0136 

E/oAU3 

1 .0C5S 
7:1 1:7 9 .0097 .0066 

1 l:/7 18.7 .0168 .0105 
7:1 1.-/7 If- .0093 .0072 

1:7 1:/T 23 .0106 .0064 

The effect of density ratio on the turbulent spreading cf a shear layer does not 
appear to be as great as had been bolieved. Comparing the last two cases, for which the 
density ratio varies by a factor of 49, the variation in spreading angle is only 1.5. 

On the other hc.nd, in the turbulent shear lay^r at the edge of an adiabatic 
supersonic flow, the spreading angle is observed to decrease (- increases) considerably 
with increasing Mach nuicber. This change is often attributed to the effect of the 
corresponding increase of the density ratio 0J/P2 * TJ/TJ.  In most experiments T2 i» 
equal to the stagnation temperature of the supersonic flow. In figure 9 the spreading 
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Fig. 9. Effect of density ratio on sprMding parameter.  Comparison of 
supersonic and incompressible cases. 

parameter in supersonic: flow, normalized with the Llet^ann-Laufer value, from the expsri- 
ments of Maydew and Reed14 and Sirieix and Solignac^ has been plotted against the density 
ratio. Also shown are noriualized values of the spreading angle from «at experiments o*", 
mixing between He and N, at values of PI/D2 = 7 and .1/7, respectively.  Thp values shown 
are estimates obtained Sy extrapolating fron, out "inite values of U,'0! to Uj/Ui = 0 
(Ü2 = 0 in tne supersonic experiments). From this figure it is clear t:hat density ratio 
alone does not explain the changes in spreading angle of a turbulent mixing layer at the 
edge or a supersonic flow. 
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6.  THEORY 
6.1  Equations 

An explanation for the ebsential difference between shear layers having the same 
velocity and density ratio but one supersonic and the other incompressible can be found 
in the equations which describe them. With the usual approximation that gradients in x 

are small compared with gradients in y and tnat values ofvu'    andVy'  are comparable, 
the continuity and momentum equations 

^T (DÜ) + S7 (oV + Ö7"' - 0 (1) 

^T (ou2) + &  (oüV + u D■v■ " " ^ (D
 
U
'
V
'
) (2) 

are the same for both flows. The essential difference arises from differences in the 
other equation to be satisfied, namely the energy equation in supersonic flows and the 
diffusion equation in incompressible flow. The diffusion equation for ehe i*-" component 
having n. molecules/unit volume is 

3n. n. 
-— + aiv(n.V) = div (o* grad -■=-) 
ot        *"- p 

2 
Summed over all i and noting that n is constant (to order M ) gives for a two-dimensional 
boundary layer flow 

ax  dy    ay\p ay/ y   ' 
For a turbulent shear layer the same reasons that lead one to postulate a large Reynolds 
stress  relative to the viscous stress also lead to the omission of the molecular diffu- 
sivity, and the diffusion Eq (41 becomes 

where U and V are^now the time averaged velocities.  (In passing one may note that the 
substitution of uV  for eV + pv in Eq (1), (2) and (5) leads to three equations whose 
form is identical with the corresponding laminar equations except that an eddy diffusivity 
and viscosity defined by 

p v     *T ay 

^T^ _       p. 
T ay 

replace the •■■»Oi.ec■.iier diffusivity and viscosity.) 

For a supu-sonic boundary layer the energy equation 

p öt Dt ^(äy) 571 ay) 

becomes, with the assumption of a perfect gas and tho substitution of continuity and the 
equation of state, 

_2_ 3£ + ^J±.  ,,„, + A. (DV) 1 . u *£ _ v *£ = JMS2  + 1. /k aT\ Y-i at    vijax lp"'    ay lpv'J    u ax    v ay    ^[Fyj     ay \k ay) 

Substitution of p = p + p' etc. sad ?.gain supposing a sufficiently large Reynolds number 
for mclecular viscosity '«nd conductivity to be negligible compared with their turbulent 
counterpart, leads to 

|y.  iV + 1/L ^vr + 1 v |E\= o (6) 
ax  sy  p\ay ^    Y  ay/ 

for steady flow.  (Gradients in / *iave been assumed large compared with gradients in xj 

p'u' of the same order as p'v''; f~ -  0; ^— v' ^~ of the same form but smaller than 

Jy  P  V    .) 

If the last two terms in Eq (6) are negligible, this equation becomes identical 
with the turbulent diffusion Eq (5).  Then, and only then, would there be no distinction 
between the various cases in which there is a density difference, due either to a difter- 
ence in molecular weights, heating effects, or high speed compressibility effects. 
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To assess the role of the last two tarms i,-, Eq (6) the following estimates can be 
made. 

6.2 Orders of magnitude estimates 

The orders of magnitude of the terms in tnc x momentum equation require that 

u'v" ~ aU6'J 

where a is a measure of the spreading angle (Ay/ix) for the layer.  It is reasonable to 
suppose that U'V" ~ u'v' (where by u' is meant the rms fluctuation level) and that 
u' ~ iU even in the case of compressible flow.  It follows that 

v" ~ aU 

(if it is assumed that v' ~ u' (~ iU) then a - iU/U, which is the usual incompressible 
result)• 

An estimate for V ap/ay can now be made since the y momentum Eq (3) relates 
ap/ay to v'.  Likewise, if it is supposed that p" is at least of the same order as the 
mean variation in static pressure then p'V ~ cv1- and the energy Eq (6) written as an 
order of magnitude equation is 

aAU > v + a3üM2 + va2M2 = 0 

Clearly, for small Mach number the last two terms are negligible and the energy Eq (6) 
reduces to the diffusion Eq (5). That is, the shear layer between gases having different 
molecular weights will be the same as that between a hot and cold gas with the same 
density and velocity ratio. 

However, it is clear that fcr Mach number sufficiently large, a must depend on 
M for the last two terms to remain of the same order as the first two. This dependence 
is evidently 

a ~ M (TT) 
This result coi-s qualitatively describe the experimental results which are  available 
(Fig. 9). The velocity v' now decreases with Mach number but so too does a so that the 
turbulent terms which have been neglected in deriving the equations are still negligible. 
(The basic assumption used, that u' ~ AU, implies an oscillation of the shear layer with 
an amplitude equal to some fraction of its thickness.  If the effect of high Mach number 
is to reduce this amplitude, then the dependsnee of a on M is ever, stronger.) 

7. COKCLUDIKG REMARKS 

We wish to draw attention particularly to two findings from these experiments on 
a plane turbulent mixing layer: 

(1) A large, wave-like, structure, which increases in scale with distance from 
the origin of the shear layer is an essential "eature of the uniform or variable density 
free shear layer at low Mach numbers. 

(2) We conclude that in subsonic flow a large density difference, whether arising 
from differences in molecular weight or temperature, has relatively small effect on the 
spreading of a turbulent mixing layer. The large effect that has been observed when one- 
stream is supersonic must be related more to Mach number than to density difference. Order 
of magnitude arguments about the turbulent terms in the equations of motion show that the 
pressure velocity correlations and the variation in mean static pressure are not negligible 
at high Mach number as transformation theories (e.g., of the Howarth-Dorodnitsyn type) 
usually suppose. 
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SUMMRY 

Tb« availability of reliable spatially-resolved aeas^rMents of the behavior of such wake variables 
as velocity. Mass density, teaperature, and charge density is of particular iaportance to the understanding 
and Modeling of turbulent hypersonic uakes. An experiaental prograa to obtain such data has been carried 
out at the Defence Research EstablishMnt Valcartier. The pretent paper pressnts representative data con- 
cerning the aean behavtor of velocity and density in the wakes of hypersonic spheres launched at Mach 13 
and a PJ) of 20 torr-inches. The variation with axial distance of tho velocity, density, and taaperature 
defects tad of the velocity and density wake radii are given and are coopared with other siailar data and 
with schlieren data obtained under the sane conditions. Data on tarbulent characteristics such as velocity 
fluctuations, ionization scale lengths and wake intenittency are also given. Finally, the total ■oaentua 
in the wake is estiaat^d fron the Measured velocity and aass density distributions. 

1. INTRODUCTION 

In recent ye»», a very considerable effort has been devoted to the study of the turbulent wakes 
generated by hyperswiv projectiles. Of particular iaportance to the understanding and ■odeling of such 
wakes is the availtkul.y ui reliable spatially-resolved Beasureaents of the behavior of such wake varia- 
bles as velocity, Ms» density, teaperature and electron density. Hie ballistic range facility peimits 
such aeasuranuats to be oade on the free wakes behind various aodels over a range of axial distance ex- 
tending froa « jrtv bo4y diaaeters to several thousands of body diaaeters. 

A prograa of experiaental investigatinn of the aean and fluctuating properties in turbulent wakes 
behind 1.0 inch md 2.7 inch diameter spheres aainly flown at about Nach 13.S is now being coapleted in 
the ballistic range facilities of the Defence Research Establishaent Valcartier (DREV). The prograa in- 
cludes the aeans to deteraine the spatially-resolved distributions of such wake variables as velocity, 
aass density, charge density, and teaperature. The sequential spark experiaent aakes use of a series of 
electrical discharges to aeasure the velocity distribution of the wake. The ionized path left by the 
discharge acts as a trace/ which is carried by the velocity of the wake. Transverse arrays of axial pairs 
of continuua ion probes are utilized to study the distribution of ionization. Correlation of the signals 
froa individual axirl pain can be used to deteraine a convection velocity. The am/ technique also 
provides da« on the distribution of scales across the wake and on wake interaittency. An electron be.n 
fluorescence probe is used to deteraine the distribution of aass density. The fluorescence induced at »ny 
point along the path of the electron beaa is proportional to the gus density at the point. Utader the as- 
suaption of an is*baric wake, the twperature can be inferred fioa the density. New and unique data on 
the wake of supersonic and hypersonic spheres have been generated with these techniques (1 to 5). 

The present paper concerns itself with the presentation of the results of a program of aeasureaents 
on sphere wakes using the above-Mentioned techniques under identical conditions of Mach number (M=<13) end 
corresponding values of pressure tiaes sphere diaaeter (PJ) = 20 torr-inches). Measureaents wiv.h the probe 
array and the electron beaa techniques have been arde on 2.7 inch diaaeter spheres at a pressure of 7.6 
ton, the aaxinua practical operating pressure of the electron beaa. Measureaents with the sequential spark 
technique have been aade on a saaller range facility using 0.S9 inch diaaeter spheres at a pressure of 35 
torr. A brief description is given of the experiaental techniques and of the Methods of recorüing and data 
reduction. Mean radial and axial characteristics of the velocity, »ass density and teaperature of the wake 
are presented and coapaxod with other data. The velocity and density  data also provids a aeasure of 
the dependence of wake growth on axial distance. These growth data are coapared with those aeasured with 
the schlieren technique under coaparable conditions. Additional inforaatlon is provided on the turbulent 
characteristics of the wake. The standard deviation of the data about the aean distribution is used as an 
estimate of the intensity of the turbulent fluctuations of the velocity and the muss density. The distri- 
bution of space scales in the wake is inferred fron the probe array signals. Prob« data or wake transition 
and interaittency are also presented  Finally, the aean distributions of velocity and aass density are 
used ♦.(' calculate the total raonentum in the wake. 

2. THE EXPERIMENTAL TECHNIQUES 

2.1 Elictrostatic Probe Array Technique 

Attempts to aeasure the turbulent propurt'es of hypersonic wakes using pairs of electrostatic 
probes have become widespread during the last few years (6,7,8,9), despite the vrell-known diffi.-.ilties 
encountered *n  interpreting the probe current. Some of the less controversial aspects of this woik have 
Involved the measurement of velocities in ths wake, using the well-known technique of a pair of probes, 
separated by a known distance, and inserted in the wake so that a line through their collecting eleaents 
would be parallel to the direction of the mean flow (4). Essentially, the upstream probe detects a signal 
representative of local fluctuations in the ionization pattern of a turbulent hypersonic wake; the down- 
stream probe detects essentially the same signal but lagged in time according to the distance of separation 
of the probes. The time lag can be determined by cross-correlation of the probe signals, and together with 
the known probe separation, used to determine the wake velocity. The velocity deteiained by such a pair cf 
probes should be labeled a convection velocity in order to possibly distinguish it from the mean local wake 
velocity at the same point in the wake(10). 
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The acst recent application of paired eltctresratic probes at 0R£V has involved the use of trans- 
verse arrays of eight probe pairs to survey the wake of hypersonic spheres (11). A typical survey array 
is shown in Figure I. The individual probe pairs are separated by wltiples of 1.2S inch or sose^hat less 
than a body radius for a 2.7 inch diaaeter sphere. The individual electrostatic probes are constructed by 
stripping the outer co-iductoi and insulator fro» aicro-coas to leave the central conductor exposed. Kiss 
is supplied by a cum.nt-'.o-voltage preaaplifier which drives the length of cable required to lead the sig- 
nals to the exterior of the range. The preaaplifiers are all housed in the wedge-shaped to« above the 
array as shown in Figure 1. The survey array station is located in a section of the ranee which has aeen 
lined wi'h a SMothly profiled fiberglas wedge treataent in order to cini'aize the effects of tbock re- 
flections. Further details of the experiaental equipiaent are given io a recent paper III), 

fron the exterior of the range, the signals are leC to a central recording station where the 
signals from pairs of probes are recorded on 35 ailUaeter fila via the use of double beaa oscilloscopes 
and Fastax cameras. Tiling aarks fro« a central tiaer are iaposrd every Millisecond on all flic traces 
by aeans of 2-aodulation of the oscilloscope beaas, and serve to synchronize all signals in tiae with 
respect to ail other signals and with respect to the position of the projectile. The pairs of signals 
froa various pairs of probes are digitalized by w coaputer-driven fila reader at a frequency of about 400 
kiloHertz. Each signal is divided into 0.S ailliset ond segaents, and each such segaent is cross-correlated 
with the corresponding signal segaent froa the othev probe of a given pair. Figure 2 illustrates a typical 
cioss-correlatlon curve obtained froa a pair of such signal sogaeats. The point of tangency between this 
curve and the envelope of the faaily of cross-correlation curves for all pof-lble separation distances 
jatween a pair of probes deteraines the appropriate tiae lag for travel it a given fluctuation in ioni- 
zatlon level froa one probe to the other of the probe pair. Of course, the intercept of the cross-corre- 
lation curve on the zero lag axis repnisents tne value of the space correlation for the probe separation 
eaployed (generally 0.14 diaaeter for i 2.7 inch sphere aodel). ^he tiae lags are used to infer velocity 
history as a ftmction of axial distance usinj the known separation distance; the radial position of the 
probe pair is detenined by projectile trajectory data. Scale history date is slailarly inferred, as well 
as interaittency data. 

2.2 The Sequential Spark Technique 

Hie use of sparks for the aeasureaent of thi  velocity distribution in flowfields is founded on 
the following three properties of the spark: the icr.ization of a narrow filaaent of gas, the strong eais- 
sion of light froa that filaaent and the persistence cf appreciable ionization for soae tiae after the 
spark, sflyjn a spark is aade across a flowfield (ftp exuaple, the wake of projectile] the ionized filaaent 
foiaed by this spark is displaced at the velocity of the tteutrals. Successive sparks aade at selected 
intervals retrace the displaced path of the first sj«rk due to the persistence of the ionization. The 
light eaitted by the sparks can be used to aake a photographic record of the successive positions of the 
ionized path. This record of the displaceaent can be used in conjunction with the tiae interval between 
the sparks to calculate the velocity distribution of the flowfield. Figure 3 shows the stereo photographs 
of four sequences of sparks aade in the wake of a one inch diaaeter aliiBinua sphere travelling at 14.500 
ft/s at an aabient pressure of 100 torr. These four sequences (fros left to right in each of the stereo 
photographs) were aade at axial distances of 500, 900, 1,500 and 2,750 body diaaeters with spark intervals 
of 35, 75, 120 and 175 aicroseconds respectively. 

The application of the sequential spark technique to the aeasurecsnt of the velocity in the wake 
of free flight projectiles in a ballistic range necessitated the use of relatively large electrode gaps 
(5 to 7 inches) to allow for the dispersion of the projectiles and to provide a reasonable coverage of the 
wake of one inch diaiieter spheres. These large gaps, in turn necessitated the use of very high voltage, 
short duration pulses in order to achieve rapid breakdown of the gap. Current-wise, the intensity of the 
sjark had to be sufficient for photography. Tiae-wise, the possibility of repeating the pulses at a 
Bi'iinua interval of * few aicroseconds was required. The equipoent which was de»igned produces 90 kv 
pulses having durationsof 0.8 microsecond with a .saxinum current of 20 aaperes available for the discharge. 
Pulses can be repeated at intervals froa 3 to 230 aicroseconds, the liaitation at higher tiae intervals 
coving from the persistence of the ionization produced by the sparks. The development of a technique for 
selecting ths spark position in an array of electrode pairs has permitted the production of auUipli: spark 
sequences on the saiu sphere firing as can be seen in Figure 3. This feature of the spark technique 
facilitated considerably the collection of statistically meaningful amounts of data required for the 
determination of the mean characteristics of th« turbulent wake of hypersonic spheres. 

Experimentation with the spark technique showed that the sparks did not jrvnerally pass through 
the center of the wake along straight lines .uvf taat: precise stereo recording and analysis of the sparks 
traces was necessary if spatially resolved nea.uresunnts of the wake velocity were to be obtained. The 
stereo system which has been used to ahotogiaph ths sparks consists of two cameras whose optical axes lie 
in the horizontal plane and intersect in the center c>f the range at the spark station. One cantsra looks 
downrange at 60 degrees from the flight axis, while the other looks in an uprange direction, also at 60 
degrees from the flight axis. Four plumb lines spaced at 8.5 inches and two catenary lines at 12 
incn spacing  are used as references for the precision stereo system. The catenary l.nes are also used 
as references for the f'tsK  X-ray photoattitude system of the range. The use of the same reference lines 
for the photoattitude aiw the spark station stereo systems permits the accurate positioning of the pro- 
jectile with respect to the spark traces. Siadows of the horizontal and ve^ HaJ reference lines can be 
clearly seen in the stereo photographs of FJi,nire 3. 

The data r<3Juction of the stereo piotographs is made or  a stereo projector assembly which repro- 
duces the geometry of the range stereo system. Alignment of the system is made fro« the shadows of the 
reference lines on the stereo photographs. Coordinates of numerous points of each spark traces are 
detsrminec! using standard photogrammetric techniques. The position of the projectile with respect to the 
spark traces is determined from the flash X-ray photoattitude system of the range with an accuracy better 
than 0.05 inch. Before s velocity of the wake can be calculated from the successive positions of the 
spark, it is necessary to make the assumption that the velocity in the z direction is uqu'l to zero. 
Once this assumption is made, the velocity components can be computed from the horizontal distance between 
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coaMCutiv* tfxk  trace* and from the tia« intervals bat«««» th« sparks. 

Figun» 4 shoMS :1M radial profiles cf axial and lateral velocities obtained fro» the spark sequence 
sees on t'vs left of tae stereo photesrapb» of Fipcre S.    Ibe notatloa V12 isdicates the velocity p-.Jfile 
coapitt^ 'torn the first a&d second spark« aac* V23 froo the secoai ted third sparks. Hi« Make velocity is 
aoxviizuC kith respect to the picjectiie velocity Va md the rtdiai disttaace R i« nonaiited to the sphere 
diiartor. Ute fraph on th« left show th« axial wait« volccity calculated froe the spark traces in the x y 
plane «bile the ffaph an the right gives the lateral velocity calculated fro« the spark traces in the y t 
plane, «Uerr x is the direction of flight, y  is th« transverse horizontal axisof the ran^e and z the »er 
tical one. A detailed description of Che sequential spark technique and of its application to be1 Ustit 
range ■easurcaeott is given in a recent paper (12). \ 

2.3 Electron Baa« Fluorescence Proii« « 

The electron bean fluorescence prob« has becc used extensively in low-density wind tunnsls s*d 
shock tubes to neaaure ideal gas density and tekperature (13) and has been extended in tue past few years 
to the stuCy of wakes generated in free-fligt: ballistic ranges (5,14,15,16). The fluorescenc« probe | 
relies on the fact that if a colliaated bean of energetic electrons is directed into a» air or a nitrogen 
(ras flow» a saall fraction of the electrons collides with the gas nolecules acJ excites than to a radiative 
state. The spontaneous «dssion appears as an intense fluorescence «tare the predoainent radiation is 
•nitted by th« second positive systM of the neutral nitrogen aolecul«, Nj (2*), «nd by the first negative 
systea of the singly ionized nitrogen nolecule. H»*  (1-). As the fluorescence is confined within the 
electron beaa diaaeter (a few ailliaeters), the intensity of the fluorescence at as? position a'ong the 
electron beaa will be dependent upon the nuab«r of gas aolecul«^, i.e. th« gas density. Thus aaasuraaent i 
of the fluorescence iateasity eaitted by a saall sogaent of the electron beaa vill provide an evaluation 
of the gas density in the saall voluae defined by the length of th« se^eat and the diaaeter of the beaa. 
At pressures below 1 tort, the (0.0) band «f the Nj* (1-) systea give« the strongest «aission of the Mi 
spectnia and its intensity is proportional to pressure. At higher pressures, th« radiation fro* this band 
starts to be quenched and the inteasity-pressui« curve reactas a plateau in the 5 torr region. The «aission 
froa the (0.0) band of the N, (2«) systea increases in relative intensity with pressure and quenching j 
effects occur only at higher pressures. Detailed studies of the excitation and «aission processes have ! 
been perfbraed by Hmtz (13) and Caaac (17). 

In aexofcallistic range applications, where operation of the technique at pressures as high us 10 
torr is necessary to achieve free streaa Reynolds auatwrs high enough to produce turbulent wakes, the 
*> (2*) (0.0) band is used because of its high intensity, its reduced sensitivity to quenching and its 
quasi-)inear variation with gas density.    In this application, the fluorescence probe has two in- j 
teresting features, naaely an adequate space resolution and iO aechanical Interference. Ttmu discrete 
point aeasureaents of density can be perforaed at any point ua the flowfield, «ven on the projectile flight 
path. 

The fluorescence probe instmaentation consists of an electron beaa generator and a twelve-channel 
fluorescence detector systea. A »cheaatic layout of the apparatus is shown in Figure 5. The electron 
beaa is produced outside the ballistic range tank and  is Litroduced inside through a water-cooled trip- 
le nozzle-skiaaer arrangeaant installed at the end of a long drift tube evacuated by a three-stage dif- j 
ferential-pupping systea. The ir..>*Tuaent is capable rf pxo&,t;iT.& a 100 Kv beaa of 1 to 2 RA current with 
a diaaeter of 2 MI when it enters i  test section at pressures v.  high as 10 torr. The detector set-up is 
nade of three separate optical systeas (Figur» S); each consisting of a single quartz lens and four slits 
defining four fields of view vn th« aisctrou l«Ga. A 12 stage photoaultiplier aeasures the intensity of 
the light collected fro« each fie.; j >f view within a spectral window detexaiaed by an interference filter 
centered at 337SA with i 5SA band»it h. The twelve fields of view aeasuring the f£usresmice intwsity at 
twelve positions alon, the electron beaa arc nach 1.2 MI wide and 12 an high. Figure 6 is a pnotograph of 
the inside installation of the test section slowing on th« right the SO inch-long eloctron-beaa drift tube 
with water-cooled exit -nozzles entering the ballistic range. Pacing the drift tube, there is a collector 
cup.The three optical systeas are shown at the top and wttoa. The photoaultiplier outputs are displayed 
on oscilloscope screen.» and photographed by high sneed 35 na caaeras giving a tine resolution of 4 aicro- 
seconds throughout a record length of 0.3 second. I 

The recorded signals are digitized and analyseo rising a high speed digital conputer. The analyti- 
cal schftse takes into account the departure froa linearity of the fluorescence intensity versus density 
curve and it corrects for the attenuation the electron beaa experiences as it traverses regions of non- 
uniform gas density. To achieve this attenuation correction, an iterative technique aakes use sinul- 
taneously of the information content of the twelve daw channels recorded on each firing. A more detailed 
description of the calibration and of the signal analysis is given in reference 16. 

3.0 «AN CHARACTERISTICS OF THE WAKE 

The data presented in'this paper are the results of a total of 34 firings cf spheres madeat Mach 
13 and it a P<a>0 of 20 torr-inches. Fifteen 2.7 inch diaaeter spheres were launched for the electrostatic 
probe array technique. As raentoned earlier, the array consisted of eight axial pairs of probes located 
close to the flight axis in a transverse configuration. For one third of the firings, the transverse 
array was located symmetrically with respect to the flight axis, ror the other firings, it was located to 
one side of the flight axis permitting a better coverage of the radial distribution. Eleven 0.59 inch 
diameter spheres were observed with the spark technique and radial profiles of velocity were aeasured at 
axial distances of 305, 715 and 1200 diameters behind the spheres. Finally eight 2.7 inch diaaeter spheres 
were observed by tht electron bean experiment with ten detectors located asynmetrically with respect to the 
flight axis along the electron beam. 

3.1 Velocity 

The wake velocity is obtained from the probe array technique by cross-correlating 0.5 millisecond 



»•fteHMof sirwlc £.■«■ uial pairs of prob«« (Wfurt 2).    Th« time l«f dotonlMd by th* polat« of Uai- 
geacy of tfe* «tr«ijht limt nth tk* eomlatiM cwrvM is vsod la cmjmctim with th« probe «pccinf 
(0140) ^o cslcaUt« • ««r«ttii=» volocitr-    T»« coortioatot of tkis volocltr —«surisot »• l/D. th« 
tmdUl distac« bot«*«» tbe KTOU tip mi UM flight axis md X/0, th« uisl distaac« in ^har« diaasr«-» 
oonospcMdiaf ta th« position o<: tha projsctil« at th» ceatar of tha 0.S aillisaMad sagawt of slgaals. 
Tha valaa nf B/0 is ««act for ail practical purposas md l/D is kaom «ithis IS diaaMars becaasa of tha 
ssa of 0.S aillisacM^d sa^eats     '-or «Kh pair of pnbas, aa axial charactazistic   of aafce valocity is 
dataiaiaad at a fixad radial distanca.   To obtaia a radial prof 11a of velocity «it a reasonable sHMber of 
data points, it is nacassarr to fv<wp tht data coverinf a band of axial dis.aac»       Sands of 30, 60 and 
100 diaanars have been used «ad hare shjun ccnaistaat results.    The lefital   pt-it-h is probably to us« 
a narrow bead «t scall axial distancas and a largar bend at large axial distastes     fjpir* 7 shot« s 
typical radial prafila of velcUty ■easured at an axial distance of 420 dienet«».    A hcnä of axial dis- 
tance of 60 diaaecers has bewi used in this case.    TTi« wake velocity (Vy) is normmiit^i ts ths prsfsctil« 
velocity acd the racial distaac« I to the spher« diaaater.   Study of a anabar of these radial profiiss J 
collected «itk the saqueatial spark and the probe array technique has mealed that the shape of the pro- 
file is «ell apprexiaated by faussiss curves.   Tha 5ull curve in Figur« 7 represents th« lew* «aaa square 
fit of s gmissias expression of the for«: | 

W*. - (VVJ «xp (-(R/r)1) j 

«here VQ/VU and r/9 are the psraacters of the fit. VQ/V. repres»ats the wake axis velocity and r/0 is a 
paraaater related to the velocity radius. The standard devictioc of tha data with resp«ct to the fitted =| 
curve (ox) is 0.013 or 0.236 when nonalized to the rake axis velocity. 1 

Velocity data fna the sequential spark experiaent cones cut directly in the feza of n n^ial 
profile aeasured at a predetensined axial distance in tha wake (Figure 4). By using the sane s&tti&gs on 
each firing, a saaple of radial profiles caa be collected at tha saae axial distance. Figure 9 shows a 
typical saaple of radial profiles aeasured at 305 diaaeten behind 0.59 inch diaaetar spheres. Hie Bill 
curve topraaaata the gamaian curve fitted through the data. The open circles give the aaan curve obtained 
ftoa the data. It can be sew that tha gaussian curve fits reasonably well. Tb« standard deviation of 
the data with respect to the fitted curve is 0.137 «hen nonalixed to the axis velocity. 

The least aean square fits of gaussian curves on the radial profiles of wake velocity yield two 
quantities, the axis velocity (Vp/V-j md the velocity profile radius (r/0), which are safficient to fkilly 
characterize the aean velocity distribution ia the turbulent core. Figure 9 shows the characteristics of 
axis velocity versus axial distance. Open circles represent the data collected with the electrostatic 
probe technique at » projectile velocity of 14,500 fps and at a P«D of 20 torr-inches. Open triangles 
represent the data collected with the spark technique under the saae conditions. Good igraeaent is 
observed between these two sets of data. Also given (full triangles) are data obcaisad with the spark 
technique at a fj) of 40 tozr-iaches; a slight dspandanca of wake velocity on PJ5 is apparent at saall 
axial distance (X/0 < 1000). The velocity decay fallows a power law of alnus uni' ' in the region froa 300 
to 1000 diaaeters. The 90% confidence intanral on the axis velocity is indicated. A restriction is placed 
on the level of confidence as the theory used to calculat« it (19) is exact for llneir regressions only, 
whic.'. is not the case for the gaussian curve. Ope« squares refer to aean wake velocities aeasured by Fox 
and Rurgaldier (19) using hot wire and cooled fila anoaoneters under conditions widely different fro»« those 
used with the probe array aid the spark techniques (V« » 6,000 fps and PJD - 380 torr-incht;). These data 
extend into the far wake where the asyaptotic -2/3 power la« decay is observed. Agreeaent of the ane- 
aoaeter data with the probe array and the spark data in the interaediate wake (X/D < 1000) is considered 
a pure coincidence dui to the opposing action of three different factors: the strong dependents o» Mach 
nuaber (3) tends to decrease the velocity ratio (V0Aa) aeasured by the «neaoatter technique; t>.* rsla- 
tively weaker dependence on P«D tends to increase it, while the off-axis effect tends to decrease it. 

Figure 10 shows the velocity radius data derived froa the least aean sqtsre fits of gaussian curves 
for the saae sets of probe array and spark data presented in Figure 9. Again p»be array and spark data 
show good agreeaent. The width of the velocity profiles secas to be independent if P„D and this obser- 
vation is corroborated by beasureaents aade at the saae Nach nuabtr and at a 9JD of 100 torr-inches with 
the spark technique (20). The data follow a 1/3 power law growth past 300 sphere diaaeters. Below 300 
diaaeters, the velocity radius seems to be constant. A siailar behavior is observed on aeasureaents aade 
at ^000 fps and 100 torr-inches with the spark technique (20). The velocity radius oata in Figure 10 are 
coapsred with data aeasured froa schlieren photographs of the turbulent wake. Despite the fact that the 
schli(-:ren data cover slaost an order of aagnitude of variation in Po>D, no PMD dependence can be detected. 
The 90% confidence level in the case of the schlieren data is an exact level which has been calculated with 
the^"distribution to correct for saapie size. The full line represents the 1/3 power law which has been 
fitted to the schlieren data. The schlieren radius is appreciably larger than the velocity radius at 
large axial distances. The two radii coincide at about 300 sphere diaaeters and below this point, the 
schlieren radius is smaller than the velocity radius. 

Comparisons of the wake axis velocity and of the velocity radius of Figures 9 and 10 measurt.i at 
Mach 13 and at a PJ) of 20 torr-inches shows good agreement between the probe array and the sequential 
spark techniques. However a better indication of this agrefuent is obtained from the comparison of the 
original velocity data. Figures 11 and 12 show comparisons of the raw velocity data collected with both 
techniques under the above mentioned conditions. Figure 11 shows the data aeasured at radial distances 
from 0.8 to 0.9 diameters and Figure 12. the data measured at radial distances from 1.6 to 1?7 diameters. 
In Figure 11, the spark data (full circles) shows slightly higher velocity than the probe ana> data (open 
circles) at small axial distances. The two techniques observe roughly the same scatter in the velocity. 
These two ^aphs illustrate the remarkable agreement of the two techniques. 

3.2  Density and Temperature 

The density distribution in the wakes of  hypersonic spheres is aeasured with the electron beam 
fluorescence probe technique as described earlier. The data were collected on eight firings of 2.7 inch 



spfce*«» laimcheJ »t a «ilccit/ of 14,SO) ft/s in » aitl«s*D utmoiphcrv «t 7.Ö rdrr (PJ> - 20 torr-lncJia») 
The data «twd' m to -icoo body diaaetars lu th« axial direction and cover« fro« -1.0 to ).S bedr (Uaaa- 
ten la the iradiel diractio« 

At each radial position, the dansit/ aeaswrad i* averafod over aa axial lenzt:« travoliad by X'A» 
projectile comapondinjr to a length of wake of aofresiutelv 1 body jianetar convocted by the araMritg 
statiMi.   The appropriats axial length it calculated fit« the center-iine rel^city ratio dttanin*.- by th« 
sequential sparks and b> the elactrostatic probes.   The Meaa density esiiaate thus obtained is plcrtcl for 
each radial position at & giver, »xial position as show in Figure 13.    On this radial distributürk.,    n 
Mü,tical expression ot the <oim 

i>n       H-AJ exp (-WD)'/*)    * A 

«K<<n A and B are paraaeters, is fitted by the least «ean seuare Method. The paraneter A corresponds to 
the en «r-line density ratio £*,/«,,, «tile the overall expression is uned to evaluate the radius of the 
wake by calculating the l.alt-width of the distribution at the i/e height  To coapare with the L.N.S. fit. 
the density ratio averaged every ten points has been caaputed. The error haw correspond to the scatter 
of the data about the average value. This data reduction procedure has been applied at every axial posi- 
tion fron SO to 3000 body disaeter*. Th« center-line density defect as obtained fro« the radial profiles 
is presen:«id ir. Figure 14. The density defect decreases very «lowly and does not achieve a constant decay 
rat« bstOre approxiaatcly 800-900 dieneters where a -2/3 power law is a good representation. The 90% 
confidence level noted on each point is ccaputad froa the L.M.S. fit n each radial profile. 

The wake radius variations with axial distance behind the hypersonic sphere have been evaluated 
acking use of the analytical expression fov the rr. ial profile fj» each axial position and are shown in 
Figure 15. The wake density radius if cjopared wt.ft the fitted schlieren radius curve already presented 
in Figure 10. Up to 200 oiaaetors, the der>ity »iius is larger than the schlieren radius. This 
observation suggests th»t the density profiles «vasare the inviscid wake radius until the viscous core has 
grown into the invisci-t la/er. Further than 200 diaseters, the wake radius defined by the density pro- 
files stays sMller ths/i the radius »»asured fro« the schlieren photographs. Caaparlson of these dat» 
with the wake radius data obtained fro« the velocity profiles Measured with the electrostatic probes sind 
with the sequential sparks (Figure 10).shows a very siailar behavior. One should also keep in mivd  that, 
when the wake radius exceeds 3.0 diuaeters, the radial density profiles are not well defined as there are 
no data further thui 3.5 dianeters fro« the wake axis. 

If one assuaes that the gases in the wake follow the perfect gas law and that the pressure hsfaiitd 
the aodel rapidly reaches an equilibria with the aMbient pressure (21). then the density Meaxurwents 
■ay be used to infer the ^i-persture distribution. Under these assunptions asd ignoring coapressiblUe/. 
the center-line teaperature defect has been inferred fro« the center-line density ratio and is shown in 
Figure 16. The teaperature begins its decay earlier behind the Model than does the density defect asd it 
is best reprerented by a -1 power law. A siailar behavior has been observed for the variation of the 
velocity defect, as shown in Figure 9. 

4.0 TVUBUIEWT CHARACTCRISTICS OF TOE WAKE 

The knowledge of the turbulent characteristics constitutes an iuportant requisite if good Modeling 
of the wake is to be achieved. The «bility of sone of the experiaental techniques to ».easure the turbu- 
lent chaiacteristics aay be question'»! because of inherent averaging in the Measuring processes. However, 
it is possible to obtain soae useful indications froa all experiaents. Short-corings of the techniques 
will be discussed as the data are presented. Sone discussion is given concerning the question as to 
whether the wake aeasured under th« present aabient conditions -:>. in fact, ftilly turbulent. With a free- 
streaa Reynolds nuaber of 2X10S ba'ied on body size, the transition of the wakv froa laainar to turbulent 
can be expected to occur at soae fjcial distance behind the sphere. Inforaation bearing on the transition 
and interaittency aspects of the wake flow is available froa the aeasureaents however, and provides a con- 
siderable aaount of insight into these topics. 

4.1 Velocity and Density Ploctuation.» 

Measurements of velocity with the prob« array and the spark technique,and of aass density with the 
»Jectrnn bean technique all «xhibit sone scatter of the dati as illustrated by the radial profiles of 
Figures 7, 8 and 13. Under the assumptions of ncraality and of unifora standard deviation across the radial 
profile, the standard deviation of the data with respect to the fitted radial profile can be used as an 
indication of the scatter provided the fitted curve follows the data reasonably well. Coaparison of the 
standard deviation about the fitted curve with "he so-called pure standard deviation aeasured about the 
mean profile for » large nuaber of radial fvaflits  shows consistent results and indicates that the lack of 
fit is not too important. Figure 17 shows the standard deviation of the data about the fitted radial 
profiles for the velocity and density data presented earlier. To facilitate coaparison between the ve- 
locity and density data, the standard deviation has been normalized to the axis velocity and to the axis 
density defect respectively. The 95t confidence levels calculated froa the x distribution are also 
given. All four sets of data show a weak trend of an increasing ratio of ras fluctuation level to aean 
level with increasing axial distance. Data measured by the spark technique at PJ> of 20and 40 torr-inches 
show identical levels of scatter. 

A marked difference in the absolute level of scat ter is observed between the three experiaental 
techniques. This difference is not unexpected in view of the different averaging in the measuring and 
the data reduction processes. Examination of these processes furnishes soae explanation of the observed 
difference in the level of fluctuations. The conflation over a segaent of signal of 0.5 aillisecond 
duration from axial pairs of electrostatic probes an be expected to give an average velocity representa- 
tive of the length of wake convected by the probes during the time of aeasureaent. Ulis aeasurenent aust 



aot b» r-«fuid hofciveri  WUü the well-»ftrajed ccsnvaction velocity ceasurts^uts th«t cas be sad« in a low 
spwxl jet,  for «*■?!•!.    Hake Beasurcaeats are trao'iciit »etfiuxattr.n.    Is aost tt^es. the probe tipm. 
f'rt.-UtJon is dcaiaateU by the acst str?a(ly ionized blob in the sefBeat of xifjii and for thi» r-Mion, 
the pt)b" v«lo:ity ettiaates ar« less avertged ana nore iastaataneous than eight be expected.    A »re 
basic vv of lt«kM| at the avetafing is ts «ü^-ne the quantities r.-quii>d ft.r Sh;i der end nation of 
velocity:    distance and tiae.    The tiae lag detenined by the correlation is dependent on the «ale« ve- 
locity «Al coosequetitly incroases «Ith axial distance.   The distance ovet »hich the vclscity is estiaat-ad 
i* •quj.l to the «cparation of the anal pair» of pr>bss.    This distance is 0.14 sphere diaaeter.    The 
velocity seasured U an avemge velocity along that distance.    The aeasu?««ent3 of velocity with the 
spark technique preseets a good analogy to the aeasureBcnts with »he probe array fechnique.    The irteT>-al 
between consecutive sparks is adjusted at each axial distance to obtain a displaceaeat of about half a 
body o.aaeter on the axi» of the wake aad a saaller displaceaent at the edge.    For purposes of comparison 
Mi»* the probe arr«v. a value of one quarter of a body diaitster can he used.    The volute of gas sera by 
the detectors in the electron bes» experiaent is dcteiaiand by the diaaeter of the beaa which varies fro« 
2 to 8 M along its useful length because of Couloab sprenling.    Perpendicular to the bua, the fi 'Id of 
vie« is Halted by a slit to 1.2 mt.   These diaensions are very saall cospared with the /»jectile diaaeter 
(2.7 inches) and consequently the   averaging should not be iaportant. Averaging ie this 
case eoaes froa the data recuction process     la explained earlier, estiaate« of density coaes froa ixial 
sagaeats of wakti varying in length between 1.0 and 2.4 sphere diaaeters.    As a concision, it can be said 
that soae of th* difference in thf level of fluctuations observed with the three techniques can be ex- 
plained in terns of the averaging produced by each experiment; the absolute level of fluctuations are 
higher than those aeasured here because of the cyeraging and the trend towards an increasing level of 
fluctuations with increasing axial distance is probably real. 

4.2 Transition 

For the launched conditions of aost of the 2.7 inch diaaeter spheres find to oi»t-in the present 
date (Mach 13 and 7.6 torr), the freestreaa Reynolds nuaber (per foot) is alaost 10*. Tho Reynolds nuniber 
based on sphere diaaeter is consequently aUat 2X10% and froa the data of Milson (22), the aor^tUzed 
transirion distance is about 7 disasters l«iiiii^ the projectile. The prograa firoa which the present results 
were derived was undertaken to provide the data on turbulent wakes which could be used for theoretical 
aodeliog. The state of the tur.ulence In the wake is thus of considerable iaportanc*. It is isserte^ in 
the literature on th« basis of r-hlierea stud. .« (22) that in general behind blunt bodies, transitisn 
occurs abruptly fit» straight •«ainar flow to ^at appears to be well-developed turbulence within a few 
body diaaeters. However »one observations aade on out 7.6 torr, 2.7 inch diaaeter sphere data lead us to 
express soae reservations regarding the character of the turbulence in the first two or three hundred body 
dimeters of wake behind such sphem. In the near wake (X/0 less '.ban 100 D),  signal detected Vy array; 
of electrostatic probes seeas deficient in higher frequency coaponmts; higher frequency coaponents aake 
their appearance in the axial distance region extending froa about 100 to 300 diaaeters (Figure 18). 
Exaaination of th« statistics of the turbulent interface or inte.aittency indicates that in the near wake 
the standard deviation of the front radius with respect to the aean radius is in fact larger at 7.6 torr 
than it is at higher pressures. The saae reaark can be aade regarding the size of scales at 7.6 torr and 
higher pressures. There is soae reason to believe that at P«D = 20 torr-ir.ches, the turbulent fluctuations 
in the near wake of a 2.7 inch diaaeter sphere as seen by ion probes reseabla soaething that on* aight 
wpect to detect in a quasi-laainar unstable flow. 

4.3 Inteiaittency 

If a probe, such as a hot wire, were iaaersed in a turbulent fluid, and the electrical signal froa 
the probe were found to contain bursts of randoa signal variation separated by periods of zero-fluctuation 
quiescent signal, then, provided the probe apparatus was not defective, the turbulent fluid would be said 
to be inteiaittent. Interaittency at a point in a turbulent fluid can be estiaated by coaparing the aver- 
age ratio of the tiae duration of turbulent signal to the total tiae. In « rurbulent wake as in a turbu- 
lent jet, inteixittency generally tends to unity on the axis of the flow v d fails toward zero as one coves 
away froa the axis towards the boundaries. 

THe intermit..ency of the wake of 2.7 diaaeter hypersonic spherns iinnchsd at 7.6 torr has been 
estiaated jrtm  the raw signal data of the survey array of electrostatic probes. Very siaply, the signal 
of each p:obe in an array data round, which corresponds to one value of R/D (nomalizcd radial distance) 
has been divided up into consecutive 0.5 millisecond segments, and the interaittency calculated for each 
segment. TKe/e is always a continuous overall decay in the charge density levels with increasing axial 
distance in the wake behind a hypersonic sphere; nevertheless, interaittency was estimated by designating 
relatively featureless segments of signal as being laminar, the other portions as turbulent, and sub- 
sequently calculating the percentage of turbulent fluid. The value of inteiaittency was attributed to the 
axial distance X/D pertaining to the middle of 0.5 millisecond segment being measured. Calculations of 
intermittency as a function of radial distance were thus prepared for each data round as a function of 
R/D and X/D. 

Mathematically, the intermittency factor r can b«. written as 

r (y) =-• prob [y « Y(t) < »] 

where y is a variable representing radial pw ition with respect to the wake and Y (t) the instan- 
teneous location of the front between turbulei.t and non-turbulent fluid.  If one assumes a gaussian 
distribution function for Y (t), the interirittency factor may be written as 

r (y) - 1 Ql - erf (R/0 - 6/0) '] 

fl   O/D 



IW 

where 

erf x  i /* «xp (-t1) il. 

and the two finable paraaete/s in this «spr«««i»n are 6/D, the noraalized cveraiee position of the turbu- 
lent interface and a/0, the standard deviation of the («ussian distribution. 

The above expression has been used to fit the intenittency data. The aean iatentittercy radius 
(nonalited to the projectile diaaetcr) a/0 darived tmm these fits is fbowi in Figure 19 by «-'i« open 
circles. The solid line is the Schlieren wake radius represented by (Mrx/O)1/» approprUv« to Mach 13. 
the inteiaittency wake radius is appsr^stly seen to also fiilow the (X/D)1/! law in the itsar wake, al- 
thoufh the aean interaittency radius is only about 2/3 el   h« «cilieren wake radius. 

The standard deviation descrying the distribution of the interface about the .-ean position 
estimated by the fits is given in Ftgure ».i, again by the open circles. Covparison with OREV data at 
higher pressure shows siallat benavior, although <j/0 is larger at low pressure. Also shown are data at 
approxiaately Hacc 14 obtained by Scbapker (23) and by Levenstcias and Kxuains (24) froa aeasureaents of 
wahe edge statistics oe schlieren photographJ. Hie Keymlds niadwr range is also very siailar to that 
«■ployed at OREV. It is apparent that the OREV survey array probe data is canf.'naistly higher than the 
other data. b> at least a Actor of 2. Nevertheless the trend of the data ii reasoiubly siailar. Since 
tne ion probe aaket a pcint Masuraaent while soae degree of integration aust be assigned to the schlieren 
wake radius ■eamrcnent«, the gap in the data coaparlson is at least in the right direction. 

4.4  Space Scales 

Scale data have been estiaated froa the ptin of ion probes constituting the indivic-jal «xiel pair 
eleaents in the sur/ey array. The distribution of scale data was found to be independent of ndius at any 
given axial distance behind the projectile. Accordingly the data is plotted as a function ot axial dis- 
tance in Figure Zl, showing the position of the quartile points, i.e. 504 of the scale data fails beti«ww 
the lower and upper quartile points. In the 7.6 torr scale data a maber of points have been reaoved at 
X/D value» n«ar 100 because they indicated scale» greater than one sphere dloaeter, and were considered 
to b« representative of laainar instabilitios rather than turbulence. 

Independent effort at OREV has indicated that the ion probe currant data at 7.6 torr is doainated 
by scalar quantities. Nevertheless the scale data estiaated froa the probe results fail» Hlow data 
aeasured at other laboratories. Fipire 21 alto shows contrast fluctuation scale data fit» scbllexcs 
aeasureaents at MIT (25) and P<J> of '.6 ton-inches and scale data froa aneaoaeter aeasureaents on »pheres 
at Mach 5 by Fox and Rungaldier at T V (19). The scale data froa the aneaoaeter indicated by the saall 
open squares lying closest to the ORE ' data is actually sensitive to velocity fluctuations, the other data 
representing scalar teaj^rature fluctuations lis* fitrther froa the curves. Generally it appears that OREV 
ion probe scale data lies below siailar data obtained at other laboratories. 

5.0  MÜTCNTUH DEFECT 

The aoaentuv defect or drag can be calculated at each axial station in the wake, using the radial 
distributions of vc-, .■Tity and density, froa the following expression: 

CflA . Ait /'" V £ (1-V ) R d(R) 
C1^     7 o V,, p.  V, 0  0 

where Co Is the drs? coefficient Which is assuaed to oe equal to 0.9 for hypersonic «oberes. This ex- 
pression has been evaluated using the fitted gMSSian curve on the radial profile of velocity and the 
fitted expression on the density profile at an axial distance of 320 diameters. Figure 22 shows curves 
of the velocity and the density profiles together with a curve of the integrand of the expression given 
above. The vertical dotted line Indicates tha position of the turbulent front Jeterained froa schlieren 
messurements (Figure 10). A value of 1.5 is obtained froa CQA/D2. This value is »are thsn  twice as large 
as the expected value of 0.7 for th« total aoaentua defect. This large discrepancy can be attributed, in 
large part, to the long tail of t'.e fitted gaussian function representing the radial profile of velocity. 
The velocity data used to fit the gaussian expression cover a radial distance froa 0 to about 2.5 diaaeters 
(Figure 8). Indications have been obtained on Measurements at 9000 ft/s. with the spark technique (20) 
that '.he gaussian curve does not fit at the edge of the turbulent wake because of the abrupt fall off of 
the velocity in the inviscid region. Furthermore, tne velocity data shown in Figure 8 are biased toward 
high velocity at large R/D because low velocity data have been neglected du« to the lack of resolution of 
the technique. For these reasons, the integrand curve In Fipire 22 is not realistic beyond F./D T 2.5 or 
3.U diameters and this curve should decay much sore abruptly to zero past that point. 

An attempt has been made to use the interaittency data of Figures 19 and 20 measured vith the probe 
array technique to obtain a more rapid fall-off of the gaussian curve at the edge of the wake. A least 
mean square fit of a modified gaussian: 

V/V, == (VV.) exp {-(R/r)2)- T    (R/D, 6/D, a/D) 

has been made on the velocity data of Figure 3 where r (R/D, 6/D, a/D)  is the intemittency factor. Values of 
2.1 for &/Ü  and of 0.84 for a/D have been used in the calculation. The result is shown in Figure 23. The 
fitted axis velocity remained about the same as in the previous fit and the profile radius (defined by 
(Vo/Vm)/e) decreased from 2.5 to 2.2D. Using this new expression for the velocity, a value of 0,9 has 
been obtained for CQA/D2. This value is considerably smaller than in Figure 22 but still higher than the 
expected value of 0.7. No attempt has been made to correct the density using the interaittency data. 
Such a correction would tend to increase the valut« of the integral. The value obtained for CoA/D2 is 
reasonable in view of the poor knowledge of the velocity distribution at the edge of the wake. 



IM 

Spaiinlly-rsiolved velocity distributions measured by the sequcniMl tpcrk technique and \rr  survey 
•mys of ion probe axial pairs are in excellent rgrecMnt under conditii.-..s of siailar Xach maber and 
equrl PJ) values. 

The velocity distribution 1» will fitted by gaussian expressions of the fora(Vb/V,}exp (-(R/r)1), 
except perhaps at tne edfes of the turbulent cor«. The axial paraaeter V0/V« decays Siowly until ckwt 
300 diaaeters behind the projectile; betweea iOO and tOOO diaaeteTS it appears to decay as the alnus iKity 
power of nonwlicsd axial distance (X/D). The velocity radius reaains relatively consteat ur.ll 300-400 
dieaeteis whet« >t equals the schlier«! radius. Thereafter it appears to be Increasing as tie 1/3 power 
of nonalized axial distance (X/D). 

The dansi'v profile data has been fitted reasonably well by aa analytical expression containing 
aaplitude end wid  paraaerrs. The axial density defect (fc, - P&)/0» Jacayt slowly until about SOC-900 
diaaeters. thereafter it decays with an apparent linus 2/3 pover law. The wake density radius is |ieater i 
than the schlieren radius until about 200 diaaeters behind the projectile, thereafter the density radius 
reaains saaller than the schlieren radius. Teaperature defect data on the wake axis derived froo density 
dat« by igricring cosquressioility appear to decay with a ainus unity power law, apparently tnm. the region 1 
of \/D of about 300, siailar to the behavior of axial veiscity. ' 

Velocity aad aass density fluctuation data have been estiaated assuaing uaiforaity of the «tandanl 
deviation across the wake with respect to the fitted aean profiles, and nomalixing by the appropriate veioc 
ity or density defect, ftsc-iuse of th« inherent averacin« in the aethods of analysis eaployed by the varAous 
experiaenc^l techniques, these nsults, which run between 10 and 20 percent for density and 20 and 30 per- 
cent for vtAOcit), probably «ndecestiaate the true rm*  fluctuation levels. Tlwre is an apparent tread 
towards iKr.xcasin: fluctuation levels between 100 and 1000 diaaeters of axial distance I/O, 

While transition shoulc cccur within about seven diaaeters froa the neck fox a 2.7 inch sphere 
wake .;* 7.6 ton, observation» w. ion probe signals indicate that the wake aay be less than fully tvrbu- 
lent cut to soaewhere between 100 and 300 diaaeters. Interaittency and scale data at 7.6 torr with these 
spheres apparently indicate higher standard deviation of the turbulence interface aad larger scale site* 
in the near wake than at higher aabient pressures. 

Interaittency data er lasted froa the signals froa individual probes ia the survey array of ion 
probes have been fitted with gaussian distribution functions. The resulting interaittency radius data 
appear to lie on a power law curve of about 2/3 of the schlieren wake radius. The standard deviation, 
normalized to the sphere diaaeter, describing the position of the interface is about twice u large as 
coaparable data froa schlieren wrke radius aeasureaents. | 

Space scale data froa pairs of ion probes decrease with axial distance X/D in th« region between 
100 and 1000 diaaeters behind the projectile, becoaing quite saall coapared to the schlieren radius. These 
data appear to lie well b-slow Mach 16 contrast fluctuation scale data tnd Mach S aneaoaster data. j 

An «ttewpt has been aade to use the aeasured velocity and density profile data to calculate aoaen- 
tmi  ir the wake. If the fitted distributions to the data are eaployed in the calculation, a v«lue of 
Cp&/9Z equal to 1.5, Of aore than twice the expected value of 0.7, is obtained. The reasons for the dis- j 
crepancy are related to the fact that the aajor contribution te the integrand in the integral expression 
for Co'coaes froc the regions oi ".he wake edge ,;here the distributions are ill-defined and where the 
gaussian di$;rib.jtion is a poor *it  to the data. When the velocity distribution was refitted with a 
gaussien distribution »edified by the interaittency function, an iaproved fit to the velocity data was 
obt^ineu and the value of Cj^/D2 vis estiaated at 0.9. 
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V.EASUREMENTS OF THE INSTANTANEOUS SPATIAL DISTRIBUTION OF A 
PASSIVE SCALAR IN AN AXISYMMETRIC TURBULENT WAKE 

by 

Arthur M.  Schneiderman 
Avco Everett Research Laboratory, Everett, Mas«. U.S.A.  02149 

SUMMARY 

The spatial mixing field in the turbulent wake of a longitudinally aligned truncated cylinder at a 
Mach number of 2, 5 and a Reynolds number of 10° (based on diameter) is observed experimei.tally using 
the laser planogram technique.    Tile instantaneous spatial distribution of a tracer material introduced 
at the model is characterized statistically by estimates of the probability density function, energy spectrum 
and autocovariance coefficient of the measured fluctuations.    W&ke axis measurements over the region 
from 138 to 182 body diameters yield turbulent concentration fluctuations of 25% and skewness and kurtosis 
of i0. 18 «nd +0. 16, respectively.   A centeriine intermittency of approximately 82% is observed.    A classi- 
cal turbulence spectrum with a well defined break from e flat to a   k"5/3 inertial subrange is found.    The 
autocovariance coefficient yields a macroscalc which is approximately half the transverse scale length. 
The wake boundary is observed to be substantially more contorted than had previously been suspected. 

NOTATION 

a characteristic response frequency 
P Kolmogoro/f constant 
€ turbulent eddy viscosity 
6 scattering angle 
K numerical factor for drag coefficient 
X wavelength of the light source 
X a Taylor microscale 
A integral scale 
ji viscosity 
v kinematic viscosity 
| la^ of the autocovariance coefficient 
pm free stream gas density 
p A# mass density of solid aluminum 
pc density of carrier gas in aerosol 

generator 
p mass density of paniculate matter 
a standard deviation of the concentration 

fluctuations 
a' standard deviation of the wake 

boundary 
6 phase angle between particle and fluid 

velocities 
X turbulent dissipation rate of a passive 

scalar 
or angular frequency 

A cross sectional area of the cylinder 
Aw local mean wake cross sectional area 
c mean tracer concentration 
Cn drag coefficient 
C(ke|) autocovariance coefficient 
d particle diameter 
D diameter of the cylinder 
•Ö- dilution factor 
D« lens diameter 
e laser planogram film exposure 
E energy of the light sheet 
F lens focal length/diameter 
f temporal frequency 
f lens focal length 
h height of the light sheet 
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1. INTRODUCTION 

The concentration field of a passive scalar material in a turbulent flow depends on both spatial and 
temporal coordinates.    In order to more fully understand scalar mixing mechanisms, it is necessary to 
measure thir dependence.    However, such a full specification of the flow field would clearly represent a 
monumental experimental task.    The majority of past turbulence measurements have involved a determina- 
tion of the temporal history at one or perhaps two discrete points in space.    From these temporal statis- 
tics, the characteristics of the spatial field are deduced using Taylor's hypothesis, either directly or with 
modification in the form of space-time correlations.    The -ise oi'these methods can be questioned in shear 
flows, especially when large scale turbulent structure is considered, since euch flows are in general both 
inhomogeneous and anisotropic. 

To obtain further insight into turbulent mixing, an instantaneous spatial mapping of a turbulent shear 
flow has been undertaken.    Previous techniques,  such as schlieren, shadowgraph, or interferometric 
studies integrated across the wake with a subsequent loss of spatial detail.    It is difficult, if not impossible, 
to extract convincing quantitative data from such measurements I and it will be shown that even qualitative 
conclusions about the nature of the wake boundary may be suspect. 

The pre«ent data are unique in that they are the result of direct measurement of the spatial mixing 
field and are not dominated by integration problems.    These data were obtained using the laser planogram 
technique which has been described elsewhere. ^   This technique, as applied to the wake of a longitudinally 
aligned cylinder, is shown schematically in Tig.   I.    A passive scalar particulate tracer is introduced into 
the model boundary layer where it essentially becomes uniformly >nixed, thus tagging each fluid element. 
The concentration of the tracer at some downstream position is,  therefore, a measure of the turbulent 
mixing field of the wake.    To detect the tracer distribution, a pulsed planar laser sheet is passed along the 
axii> ot the wake in the meridian plane, and the light scattered at 90° by the tracer particles is recorded 
photographically.    The resulting wake laser planogram i« scanned to yield digitized film density as a func- 
tion of position in the wake.   A preprocessing program applies various calibrations which convert these 
raw data to concentrations.    Standard digital techniques are then applied to determine several statistical 
properties of the turbulent concentration fluctuations. 

2. TURBULENT WAKE MIXING EXPERIMENT 

Figure 2 is a schematic drawing of th^ experimental configuration used in this study.    The essential 
components are a short duration wind tunnel, an aerosol generator to produce the tracer material, a pulsed 
light source, and a precision camera.    The experiment is instrumented to document various operating 
conditions. 

2. 1   The Short Duration Wind Tunnel 

The short duration wind tunnel is a modified Ludwitg tube'' which produces 30 x 10      seconds of 
steady flow through the test section at a Mach number of 2. 5 and a Reynolds number of 1. 5 x 10"/«" using 
300oK stagnation temperature clean air.    The model, in this case a 6. 3 mm diameter truncated cylinder, 
extends 45 cm upstream through the nozzle throat and is supported by streamlined supports in the subsonic 
portion of the nozzle.    In this way the effect of the turbulent wakes of the supports is minimized by the 
inviscid turbulent decay which occurs in the nozzle expansion.    In addition, the data are obtained in a plane 
normal to the plane of the supports. 

Photographic measurements of the model location indicate negligible model motion daring the run if 
proper initial alignment is maintained. 

The model extends into the 12. 7 cm square test section.    This test section contains 1. 3 m of con- 
tinuous windows on all four sides.    The windows are schlieren quality fused silica of excellent optical 
finish.    The test section is designed to hold the windows in such a way as to minimize distortion and window 
motion. 

The end of the cylinder produces a weak wave pattern which upon reflection from the square test 
section is further weakened by this defocusing effect.    The resulting density fluctuations are estimf.ted to 
be very small compared to the measured concentration fluctuations and so the effect of wall reflections is 
most likely negligible.    This has been confirmed by shadow photographs which indicate that only waves at 
the Mach angle are present in the test section flow. 

The dump system is used to ensure that the fina'. system pressure is below the test section design 
limit and also prevents reflected waves from reaching Che test section during the test time.    The initial 
pressure in the durr    system is chosen to minimize nozzle start up time and eliminate transients by match- 
ing the acoustic imj,       ice of the nozzle to that of the damp system. 

2. 2   The aerosol generator 

The overall requirements for a suitable tracer material have been described in reference 2,    In 
practice,  the most stringent requirement is that of filn; exposure.    It can be shown (see Appendix 1) that 
the mean exposure (energy/area) obtained in a laser planogram is given by 

16* I-     2     '   ^J L  h  J L(l+mr       F^ J 
(1) 

The first bracketed term represents tht Ught scattering characteristics of the aerosol with  n 
the mean number density of scattering centers.    The polarization components of the Mie scattered light, 

and i, (see,  for example,  reference 4), depend on the particle diameter, wavelength of the light source, '1 i, (see 
index of refraction of the scattering material and the scattering angle.    The second term characterizes the 
light source of wavelength   X   and pulse energy   E   which is assumed unpotarized.    The height of the light 
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•heet. h. also appears in thi* term.    The final term in Eq.   (1) characterize* the collection optic« where 
F   it the numerical F-rr.imber (focal length/lens diameter) and   m   if the «ystem magnification (image 1 
si7.e/objecl size). 4 

For a given light source, camera and film, the aerohol requirement« can be determined from the 
f)r«t term. i 

The tracer material used in the present study is generated by an exploding wire aerosol generator 
similar to that described by Kariori« and Fish. '   Approximately 7500 joules are dumped into an 0. I gm | 
strip of Kluminum in a ID liter chamber containing argon at STP.    This yield* an aluminum aerosol at a 

mass densit/ of particulate material,    p. = 8 )x gms/cm    (based on a measured 80% generation efficiency). -J 
x d' I Since    n —r— p..   = p  , where  p», is the density of a solid aluminum particle of diameter d, 

1 3    p„       i. +i, I 

The number density of particles in the wake can be related to the number density in the generator,   n0, | 
by defining a dilution factor,«A,  such that  n = i(Xn0.    The dilution is caused by the entrainment of free 
stream fluid ani can be estimai^d by noting that the mass flow of particulates,    nv», is conserved so that l 

j3 J3 ' I rd ird m i 
c I m   =   (cAn  ) p . , —7— V   A    = n     —7—   p . . — p       " ^-^ o'pA£    !> w   w       o      6      HAl   p 

c 

m c where  ——     is the volumetric flow rate of carrier gar in the aerosol generator (where4^= 1)   and   V 
c 

and Aw   are the local mean wake velocity and cross sectional area.    Thus, 

*a = m 

V  A -T' (3) 
W    W »c 

m 
It i« important to evaluate    —      at the aerosol generator condition« to eliminate the density reduction 

"c 
which occurs due to the expansion process between the generator and the injection holes. 

The results of combining Eq«.   (I),  (2) and (3) for the condition« of the present experiment are shown 
in Fig.   3.    Based on the film density of the laser planograms described below,  it is estimated that th>i actual 
exposure was    ~ 1. 5 x 10"3 erg«/cmz which yields a particle diameter of 0. 02/i.    This diameter i» iden- 
tical to the valie determined by Karioris and Fish' from electron micrograph« of collected particle». 

The frequency response,  defined by the ratio of the amplitudes of the particle velocity. Up, to fluctua- 
ting fluid velocity, u,, of such particles is given by (Appendix 2 ) 

u 1 

-*  =  —i-r '4' uf     [i +(f/a rp 

where   a    is the characteristic response frequency and   f  is the fluctuating frequency.    Using drag results 
by Millikan^   one finds that the tracer particles will follow 10 MHz velocity fluctuations to within 90%.    If 
one estimates the maximum possible Lagrangian temporal fluctuation frequency by using the Eulerian 
temporal frequency based on the RMS velocity fluctuation level and the Kolmogoroff wave number,  the re- 
sulting frequency is   2 MHz.    Thus,  even with this gross overestimate of the frequency, the particles 
easily track the turbulent fluctuations throughout the entire turbulent spectrum.    Note that the Lagrangian 
fluctuations are much weaker than the Eulerian fluctuations since their strength is related to the degree 
to which Taylor's Hypothesis tails. 

Estimates of agglomeration rates due to Brownian motion and enhancement effects from gradient 
induced diffusion indicate that the present aerosol is »table throughout its lifetime.    In addition, the laser 
energy density is low (10^ watts/cm^) so that it does not actively affect the aerosol.    Estimates of particle 
induced dissipation show it to be negligible.    The total particle-carrier mass flow is less than 1% of the 
boundary layer flow rats and therefore has a negligible effect on the integral wake properties.    The mole- 
cular Schmidt number of 2000 (based on a diffusivity given by the Einstein equation) ensures that diffusion 
errors in particle tagging will be minimal. 

The aluminum aerosol is prepared several minute« before use to allow it to reach a uniform state. 
Flow is then established into the model a few seconds before the run.    The aerosol is bled into the model 
boundary layer through a series of 100,   1/32" diameter holes distributed over a region of the model ex- 
tending 22 to 44 diameters upstream of the end of the cylinder.    The existence of symmetric injection has 
been verified from base region wake laser planograms. 

It is therefore concluded that the aerosol generator produces a detectable, passive scalar tracer of 
. 02ji diam.  at typically 2 x lO^/cm3 (based on p  ) in the wake and that these particle« accurately follow 
the fluctuating flow. 

2. 3   Pulsed light source 

The light source used for obtaining laser planograms is an AERL Model C100 pulsed nitrogen laser. 
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This laser operates »t 3371 R  with a power of 150 kw and a pulse time of 10*    sec (which provides photo- 
graphic shuttering for the system).    Its output is a 3 mm x 50 mm sheet which is directed along the wake 
axis by several mirrors and lenses.    The last mirror is placed within the test section.    The density fiele 
about this mirror produces negligible laser beam degradation.    The optical system reimages the laser 
input aperture at the observation station.    Beam divergence accounts lor a 15% variation in exposure over 
the field of view of the laser planogram and is corrected lor in the data processing.    The mean concentration 
ts obtained by replacing the laser source with a flashlamp system which produces a pulse of 2 x 10"^ sec. 
Thi» represents approximately 100 Euierian integral times so that it adequately yields the temporal mean. 

2.4   The precision camera 

An F/3,   ISO mm focal length quartz lens is used for photographing the 90    scattered light.    This 
lens has a measured resolution of better than 0. 5 mm at the magnification of 0. 12 used in obtaining the 
data.    The lens U held in a rugged 4x5 format camera.    Kodak 2485 High Speed Recording Film is used 
and gives an estimated sensitivity of 1. 5 x 10' ^ ergs/cm^ at   iD  above gross fog (film background). 

2. 5   Instrumentation 

For each run, the initial aerosol size and number density, test section static pressure, laser out- 
put energy and reference mean wake concentration were monitored and used to standardize the data. 

Tunnel operation was reproducible to better than   ± 10% based on test section static pressure 
measurements.    These variations are attributable to variation in diaphragm burst pressure.    The meas- 
ured test section static pressure was in agreement with calculated values at M = 2. 5.    Based on this agree- 
ment, the remaining free stream properties were taken as their theoretical values. 

3. DATA PROCESSING 

The digitized data obtained from microdensitoimter scans of the wake laser planogram are 
analyzed statistically by standard digital techniques. 7, 8   This section contains a brief summary of the 
procedures used.    The data are analyzed in two parts.    First a preprocessing program converts the film 
density to exposure and adjusts the data for experimental variations.    These data are then supplied to a 
statistics program which computes the parameters of interest. 

The preprocessing program uses a film sensitivity calibration curve which is generated for each 
individual laser planogram.    This calibration is accomplished by exposing an unused portion of the film a; 
various known intensities using the pulsed nitrogen laser.    This avoids color or exposure time effects oi 
film calibration.    A scan of this calibration region then permits generation of a conversion curve from 
film density to exnosure.    A similar preprocessing procedure is used in obtaining the mean concentratiou 
data irom the flashlamp photographs. 

After this calibration, the data are adjusted for the spatial variation in exposure due to measured 
laser sheet divergence and for run to run variations in laser energy and mean tracer concentration.    At 
this point, any prescribed deterministic trend is removed from the data.    For example, nonstationary 
variations in mean concentration (in the case of similar flow   "z"^/^ where   z   is the axiRl distance from 
the virtual wake origin) or systematic experimental errors involving off-axis lens distortion. 

It should be noted that standard techniques provide results which are directly interpretable only 
when the variable is statistically stationary.    To the order of the presently employed stochastic functions, 
this requires that the mean, variance and autocovariance coefficient be constant over the data length.    In 
general,  it is to be expected tUat if an/ or all of these quantities vary they will affect the results.    For 
example,  slow variations can lead to disvo^tion of the low frequency spectrum and inaccurate correlations 
at large lags.    These can lead to substaniial errors in the turbulent intensity,  Kolmogoroff constant, and 
integral scale for example.    Estimates or such errors based on the measured mean concentration indicate 
that they are negligible in the present case. 

The statiEtics program first uses the preprocersed data to determine the probability density 
function.    The sample is standardized to have zero mean and unit variance and the histogram computed 
along with the various relevant moments. 

The energy spectrum is estimated from the Fourier transform of the preprocessed data after 
removal of the numerical mean.     This transform is accomplished using the Cooley-Tukey Fast Fourier 
Transform Algorithm" in conjunction with a remote disc storage scheme. '"   The spectrum is then nor- 
malized by the measured variance.     This process is repeated for the individual realizations and the results 
a;-e ensemble averaged.     The autocovariance coefficient is computed from the inverse transform of the 
ensemble averaged spectrum.    The resulting data are computer plotted. 

4. EXPERIMENTAL RESULTS 

Figure 4 contains an ensemble of ten wake laser planograms obtained under the conditions described 
in Section Z. 

The qualitative behavior of the wake boundary is substantially more rugged than would be expected 
from sch'ieren or shadowgraph pictures of similar flows.    It is easy to see,  however,  how such detail 
could be lost when one views a two-dimensional projection of such a flow.    Previous laser planogram 
measur-irnents' obtained with larger tracer particles showed similar structure.     The mapping of the 
mean concentration fveld indicates that the radial concentration profile centerline concentration and wake 
size are self preserving over the region covered by the present data.    For such a wake,  the mean radial 
profile is a Gaussian with standard deviation or "transverse scale length",    L   given by 
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where   v^—A     is the model crag diameter,   Z-Z0   is the axial distance from the virtual wake origin,  and 
RT. a turbulence Reynolds number,  is a constant.    Tht value of Z^jVi ^0 *vi determined from a plot of 
l^vs Z by finding the    Z axis intercept of the best fit straight line through the data at laige    Z.   The value 
of   Rf   based on an estimate of   C^-j   is consistent with other reported values of 

12. 8",   12. 5      and 14. l'   .    It is therefore concluded that this coarse boundary behavior is consistent with 
typical turbulent wake flow. 

On axis scans were obtained fjr the ten wake laser planogiams of Fig.  4.    A   50/x x SOfi scanning 
slit was used with a sampling interval of 16fx.     This interval produced 2048 «imples in the available data 
length.    Hig> frequency filtering was accomplished by averaging readings at Z\i  steps in the  \i>\i  sampling 
interval,   thus preventing aliasing errors.    A set of typical film density »cans is phown in Fig.   5. 

Figures 6-9 are ensemble averaged estimates of the probability density function,  energy sper-.am 
and autocovariance coefficient obtained from the axis scans.    The data processing procedures were des- 
cribed in Section 3. 

4. 1   The probability density function (po.r) 

The histogram shown in Fig.   6 yields an estimate- for the pdf of the turbulent concentration fluctua- 
tions after extraction of the mean vclue, 'S.    The concentration is measured in units cf its standard devia- 
tion,   a.    The resulting turbulent intensity,    I = ■3- , was 0. 25. 

c 

Other properties of the pdf can be expressed as functions of its central moments,  M^.    Thus,  the 
skewness   S  s Mi/Za 

3   and the kurtosis,   K s j  (M4/a4-3).    Note that   MQ = 1, M. = 0, and   Mi =a2. 
For comparison purposes,    S = K = 9 for a Gaussian pdf.     The measured values of skewness and Kurtosis 
were   +0. 18 and +0, 16,  respectively. 

The intermittency factor was estimated directly from high contrast prints of the laser planograrns 
by finding the fraction of a Une drawn through the axis which lies within the wake boundary. This leads to 
a value of 82% on the wake axis. 

Qualitative conclusions regarding the implications of these results can be drawn by comparison of 
data for other turbulent flows. For example, Gibson'4 has studied ..he near (non-similar) sphere wak;. 
For his premixed wake (measuring a passive scalar), he obtains skewness and kurtosis values of +0. 31' 
and +. 975 at Z/D = 2. 17 and +0. 885 and +10. 2 at Z/D = 7. 5. He attributes the high kurtosis values at 
Z/D = 7. 5 to unmixed tracer material that has left the wake, probably upon injection. The lack yl high 
kurtosis values in the present case along with the lack of appearance of such regions in the laser piano- 
grams is consistent with this view. 1 

Demetriades      has observed a bimodal behavior to the pdf of electron density fluctuations in a i 
turbulent jet.    Hi« double-peaked histograms have skewness and kurtosis values as high as 7 and 25, { 
respectively, at short distances from the jet exit.    He attributes th<s p'^romenon to remnants of the jet 
transition.    No such indications of transition remnants appear in the present data.    Demetriades' data I 
at large distances appear more consistent with the present results. I 

i 

The present intermittency result, and the general qualitative bonavior of the wake boundary, j 
appear to ha in substantial disagreement with turbulent front structure deduced by Demetriades    .    In a [ 
very similar flow field he observed no vorticity free regions on the wake axis and concluded that his wake 
boundary "resemblfrs a straight cylinder with (a) rough surface".    He compared his results to those of f 
Gibson et al. *' anr Mwang and Baldwin1" who both observed subct&ruial centerline intermittency. j 
Demetriades presjnted arguments based on mode! shape to rationatijSfi thie discrepancy.    He pointed out a 
study by Gartshore1^ which concluded that the standard deviation of the wake boundary,   a',    is related to 
R-j- by  a/l> = 2. 97/^R j .    Also,  Behrens^ has suggested that   Rj   is . alated to body bluntness, varying ] 
from  * 1   for very blunt bodies to   ~ 10   for very slender shapes.    Jhws. Demetriades concludes that c'/L j 
is large for blunt bodies and small for slender ones and hence (.he wak»; boundary is rough for blunt bodies j 
and smooth for siender bodies.    The similarity in the flow conditions suggests that the present data should | 
be directly comparable to Demetriades results.    However, the present results ahow a centerline inter- l 
mittency and a strongly contorted boundary and are much more suggestive of the results of Gibson et al. 1 
and Hwang and Baldwin than those of Demetriades.    Of course,  one must recognize the possibility that l 

this discrepancy results froTi .\ fluid mechanical difference belwe n vorticity and a passive wake scalar. 
'.'his question requires further study. 

4. 2   The energy spectrum (PSD) 

The periodogram shown in Fig.   7 is an ensemble averaged estimate of the energy spectrum of cori- 
centration fluctuations.    The spectrum is chiracterized by 3 flat low frequency region which breaks at a 
wave number of 0. 12 mm" ' into a well defined   k" V3 mertial subrange.    This m asured energy contain- 
ing wave number, ke, along with the variance obtained from the pdf, a^,   were u-ed to normalize the 
data of Fig.   7.    Experimental errors begin to affect the measured spectrum at   k/Ke = 10.    At higher wave 
numbers the data are untrustworthy.    The Nyqu'st frequency^ corresponds to  kn/ke s 180 so that oüly 
points below   k/ke = 90 are shown. 

The Kolmogoroff wave number,    kj^   =  {e/v' ) '    was estimated by use of the dissipation rate 
e  =  keu'3. 'I   The kineraaUc viscosity was determined at the free stream temperature and pressure: the 
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.RMS velocity fluctuation level was baaed on intensity measurements by Oemetriades      under similar 
flow conditions.    Using the measured value of  ke, a valur of  kj^ ~ 100 mm"1 wu obtained.    This re- 
presents a ratio    *K     = 850  and corresponds to a turbulence Reynolds number. 

k e 

u'A,, /   k,. X2/3 j 
ReA s T-8 ? -^i kf )      -V'0- 

22 Uberoi and Freymuth      have shown that a turbulence Reynolds number of at least 100 is required for the 
existence of a well defined inertial subrange while a value of 360 should produce a   k'5/3   spectrum past 
k/ke - 100.    Thus, a well developed inertia! subrange is expected. 

23 Shown also in Fig.   7 is the von Karman interpolation formula      which has successfully charac- I 
terized energy spectra of most low speed incompressible turbulent flows (see, for example,  Ref.  22).    The 
present data are in reasonable agreement with this correlation.    The lowest wave number point, however, | 
is a factor of two above the expected vaiue.    In order to determine whether this point represents a turbu- | 
lent contribution to the spectrum, an estimate was made of any additive deterministic signal content.    The | 
local mean of the ten realizations was determined and smoothed using a smoothing function of 1% of the 
data length.    The resulting mean field estimate was subtracted from each realization and the spe.-^rum was 
computed.    This dropped the lowest frequency point by a factor of two and brought it in line with the re- 
maining point?.    Nc other qualitative effect on the spectrum was observed.    The low frequency adjusted 
data is also sliown in Fig.   7.    Because the unadjusted data may represent a real aerodynamic (albeit deter- | 
ministic) feature of the wake, it is shown as the primary data of this figure.    Similar improvement was noted i. 
in the autocovariance coefficient (see below).    This deterministic contribution to the signal i .ay be due to i 
either an aerodynamic artifact such as shock reflection, or vortex shedding (its frequency corresponds to ' 
a Strouhal number^* of ~ 0. 1 compared to an expected valued? of ~ 0. 2) or a systematic experimental 
error such as lens distortion..   It is not due to nonstationarity in the mean of the concentration,  since 
adjusting the data for a    Z"2'      mean concentration had negligible effect.    This is to be expected at this 
wake location since the mean varies less than 15% over the data length. , 

Several previous investigations {».. g. , Refs. 25 and 26) have yielded energy spectra possessing 
low wave number peaks.    Demetriades" has attributed such peaks In his data to remnants of the transition j 
from a laminar to turbulent wake.    The peaks become le^s pronounced with increasing axial distance. | 
Lewis and Behrens26 report similar low wave number peaks even at high Reynolds numbers with turbulent ; 
model boundary layers.    Their detailed base region flow field measurements lead them to conclude that I 
an inner laminar shear layer exists which forms an initial laminar core within   the wake.    When this core j 
undergoes transition a large ^cale (low wave number) structure is produced. | 

As can be seen from Fig.  7, no peak exists in the low wave number spectrum indicating the absence ] 
c( excess energetic large scale structures for wave numbers greater than 0. I ke.    This result may be j 
reconciled to Demetriades1 result by noting that the present model Reynolds number iu two orders of i 
magnitude larger.    The model boundary layer and near wake are both fully turbulent and no relaminariza- | 
tion is expected or observed. 1 

In comparing the present results to those of Lewis and Behrens,  it should be noted that the present 
model Reynolds number is one order of magnitude larger than theirs and the data were obtained at a j 
further downstream wake location. 

I 
The Kolmogoroff constant,   ß, for the inertial subrange of the one dimensional spectra of a passive 

scalar is defined by 
, .      -5/3 

(PSD) (O (-r)  sP (-T-) (6) K  '   '  v    ' K   l  k 

The dissipation rate, ^ ,  can be approximated by 

d V 

x--ir(o,="r  -r v (7) 

where Taylor's hypothesis has been used in the form    -yr—   = V      —r=-   and    a    ~ Z'    is assumed. 

Taking   r = 2/3, the value for a passive scalar in a self similar wake, one findf   ß = 0. 7 using Eqs.   (6) 
and (7). 

Gibson and Schwartz      have reported values of  ß = 0. 33 to 0. 44 and Grant      et al.  find   ß = 0. 31. 
More recently,  Gibson^S et al.  have reported measurements of  ß   in the atmospheric boundary layer of | 
1. 17 which compares more closely to the present data.    Gibson et al.  attribute the higher values of  ß   to | 
anisotropy and intermittency in their flow.    Their arguments can be used to infer that the large value of j 
ß obtained in the present case is indicative of wake anisotropy in addition to the observed intermittency. I 

4, 3   The autocovarianc« coefficient 

The autocovariance coefficient is obtained from the autocorrelation function by adjusting for the 
numerical mean and normalizing by the variance,   a". 

Figure 8 is an estimate of the autocovariance coefficient obtained from the energy spectrum.    The 
effect of the low wave number deterministic structure noted previously manifests itself in the f.iilure of 
the autocovariance to approach zero at large lags.    Using the previously described correction, the result- 
ing autocovariance oscillated randomly about zero (dashed curve in Fig.   8).    These remaining oscillations 

I 
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were (he result of the finite number of »ample» utied and truncation of the energy spectrum. 

The»» meandering^ 01 ths autocovariance at large lagt lead to large variation« in the computed 
integral scale«.    This effect i« shown in Fig.  8 where the partial integral scale obtained by integration up 
to a given lag is shown as a function of that lag.    A unique value of the integral scale does not occur. 

Comparison of the measured spectrum of Fig.  7 with the  von Karman interpolation formula sug- 
gests that it may provide a useful means of estimating the integral scale.    For such a spectrum 
keA  =  . 75.29   xhe assumption of a von Karman interpolation formula leads to an autocovariance coeffi- 
cient given by ,■ 

22/3 1/3 C<M'= rTI73)   (M'^VB'M' 

where   KI/J   i» a modified Bessel tunction of order   1/3   (Macdonald function).    In Fig.  9, this auto- 5 
covarianci coefficient is compared to an expanded plot of the data of Fig. 8.   Also shown in Fig. 9  is an 
exponential autocovariance coefficient adjusted for best fit through the short lag data.    This exponential } 
form yields a value of  keA   = 1. 1.    After adjusting the data tor deterministic trends, the exponential  'it ; 
yields   keA = 0. 9. t 

The poor fit of the von Karman autocovariance is probably due to deviations of the spectrum data • 
from the interpolation formula in the vicinity of  k/ke =1.    It i» felt that the exponential form, even i 
though It yields a physically unreasonable spectrum (i. e, , k  - inertial subrange), is an alternate means 
of estimating the macroscale in the present case.    Precedent for the use of exponential forms for the 
autocovariance have been described by Hinze. 30   jhe three values of A which follow from the different 
values of  keA    are   A =6.2,  7. 5 and 9.2 mm.    The measured transverse scale length (Cq.   5) had an 
average value of L -~ 11. 2 mm and varied by ± 5% over the data length.    Hence the present experiment j 
yields   A = (1/2 to 3/4) L within the experimental error. 

Demetriades'   '      has shown that for a large variety of low speed flows, the velocity macroscale j 
is equal to the transverse scale length while the temperature and density scales vary from 0. 5 L on axis 
to 1. 0 L near the wake edge.    The present data indicate that the spatially deduced macroscale of a passive 
scalar species behaves in a similar fashion to those of temperature and density. j 

The turbulent microscale, Xg. can be determined from the "osculating parabola" of the auto- | 
covariance coefficient.    It can easily be shown that for a von Karman interpolation formula spectrum, | 

/ke \ 2/3 2 k X    ^   ^ M TTi = 1"     'n t'ie pre'ent experiment.    The measured value shown in Fig.   9   is e   g \KKy 

k X    =0. 13, which is an order of magnitude larger than expected.    Also note that   X =  1 mm which is 
*   8 8 

a dimension of order of system resolution.    It is therefore likely that this measurement is dominated by 
experimental limitations and is not characteristic of the microscale. 

5.    SUMMARY AND CONCLUSIONS 

The instantaneous mixing field of an axisymmetric wake has been studied to yield its statistical 
properties.    Laser planograms indicate that the wake boundary is much coarser and more contorted than 
was previously expected. 

Ensemble averaged statistical properties of concentration fluctuations have been esthnatt d from 
centerline scans.    The probability density function is nearly Gaussian with a skewness of +0. 13 and a 
kurtosis of   +0. 16.    The intensity of the concentration fluctuations is 25%.    A non-unity (83%) csnterline 
intermittency was observed.    The small kurtosis values indicate the absence of transition remnant« or 
islands of unmixed fluid as have been observed by others. 

The measured energy spectrum is in qualitative agreement with the von Karman interpolation 
formula although the break point in the data appears mort distinct.    There appears to be no excess large 
scale, energetic structure present in the low wave number spectrum for wave numbers greater than 
0. 1 k .    The spectrum yields a value of ~ . 7 for the Kolmogoroff constant,  P,    which suggests possible 
anisotropy and/or intermittency effects. 

The autocovariance coefficient yields an integral scale equal to l/2 to 3/4 of the transverse scale 
length.    The present results are shovn to be in general agree/nent with several previous studies by 
other investigators.    In these other studies, the spatial properties are deduced from temporal measure- 
ments by invoking Taylor's hypothesis.    Since the present data are direct spatial measurements, the 
agreement .suggests tnat the use of Taylor's hypothesis in this case leads to consistent results. 
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APPENDIX I - L»»er Pianogram Expo.-.ut • 

Consider s planar light iheet of thickKnn»   t   (in tho   x  direction) which propagates in the   z   direc- % 
tion and lies in the yz pWte.   A lens located on tL*.  x  axis a distance   R   from the sheet images the   yz 
plane at distance   s   from the lens.    Let  S0   be the Ught energy scattered from an individual particle within | 
the sheet which is collected by the lens.   If n  is the number density of scatterers then the lens collects 
from an elemental volume   tdy  Cz  an energy of nt dx dy S0.    This energy ic imaged on an area   dx' dy' 'i 
of the film so that the film exposure, e,  (energy/area) is | 

nt  dx  dy  S « o e =  
dx'  dy I 

Defining the magnitification, m, by  dx' = mdx, dy' = mdy, 

I 
(9) | 

4 ' Now, it can be shown   that f 

So 

E |   (ij^) ^D2 

th       (f)' zit „z—    ~r <10' 

where   E  is the energy of ti-.e light sheet of thickness   t  and height  h,   ii and !£   are the polarization 
components of the scattered light4 and depend on the particle size index of refraction, the light wavelength, 
X , and the scattering angle,   6 , and  Dj    is the lens diameter.    It is assumed that   ij   and  ij   is approxi- 
mately constant for  e = 0  to  D«/R, i.e.  that   D|/R « 1. 

Combining (10) and  (9), 

=±H''.*]b $ (in 

Further simplification occurs by noting that  m = s/R and   7   =    n   + ~    where f  is the lens focal length. 

Thus   D./R =     r—-      •=-  where   Fs   f/D.    is the numerical F-number of the lens.    Finally 

^h"'^]^]^   ir] (12) 

The groupings of terms on the right indicates the contributions to the film exposure of the scattering pro- 
perties of the particles, the light source, and the collection optics respectively.    For a ^iven light source, 
the optimum aerosol properties (see for example Fig.   3) and collection optics can easily be determined. 
For example a faster lens (lower F) improves exposure substantially while demagnification below   m "'. 5 
produces small effect. 

APPENDIX 2 - Particle Frequency Response 

The tracking fidelity of the tracer particles can be estimated by considering the motion of a. 
single particle in a periodic flow field of angular frequency w.    Assume a flow velocity  u^   = Uf eJ'*'■• 
and a particle velocity  u     = u_ eJ''".    For particle Reynolds numbers less than unity, the drag on a 
particle is given by the Stokes Equation with the Cunningham correction for slip effects so that 

3;: fid (ttf-u ) 
3rag =  —  (13, 

1+   d 

where  ß   is the viscosity,   d  is the particle diameter,    f    is the mean free path and    x   is a numerical 
factor of order unity (but dependent on  £ and d).    If the particles density, Py^L,, 's lar8e compared to the 
gas density, then the drag force can be equated to the particle mass times its acceleration,    du^/dt, with 
fhp  rA«iilf. 

in u d (u,-u  ) e'' ird P •       '    id) t 
■ =PAT          JU>u   eJ 

l+KL PAL      6 P (14> 

d 

Thus, 

u 

uf K'j 
"I/T" (15) 
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where 

 2ti  1 

Note that the phase angle between the flow and particle velocity is      ^ = tan        — 
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»■•••e 
ISOkW 

LASER PIANOGRAM -V- 

Fig.   1      The laser planogram technique. 
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Fig.  2     Schematic of the experimental arrangement. 
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Fig.  3     Computed film exposure as a function of aerosol particle size. 
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WAKE LASER PLANOGPAMS 
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Fig    4     An ei   • >     e of wake laser planogram realizations. 
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Fig.   5     Typical centerline scans of wake lassr planograms. 
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Fig. 6    Ensemble average histogram of the con- 
centration fluctuations. 

Fig. 7     Euaemble averaged estimate of the 
«nergy spectrum. The adjusted points 
have keen corrected for Uetsrministic 
components. 
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Autocovariance coefficient determined 
from the spectrum of Fig.  7,    Also 
shown is the partial integral scale.   The 
daahed curves result from correcting 
the data for low frequency deterministic 
effects. 
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Fig.  9     Expanded plot of the autocovariance 
coefficients of Fig.  8   showing a com- 
parison of the data with two analytic 
forms. 
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RECENT ATTEMPTS TO DEVELOP A GENERALLY APPUCABLE 

CALCULATION METHOD FOR TURBULENT SHEAR FU)W LAYERS 

J. C.  Rotta ') 

Deutsche Forschungs- und Versuchsan'-talt 
für Luft- und Raumfahrt £. V. 

Aerodynamische Versuchsanstalt Götungen 

Bunsenstr. 10 
34    Göttingen 
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SUMMARY 

Calculation methods are discussed, which are based on the differentia.1, equations for the Reynolds stresses. 
The considerations restrict themselves to two-dimensional flew fields, for which the usual boundary layer 
approximations apoly. In many of the proposed methods of this kind, the equation for the kinetic fluctuation 
energy plays a central role. The transport equation for the Reynolds shear stress includes as special cases 
Pr&ndtl's eddy viscosity relation and Bradshaw's assumption of a constant ratio of shear stress to kinetic 
fluctuation energy. A differential equation for the intcgra- length scale is derr ed from Navier Stokes equa- 
tions, and the closure assumptions are given. It turns out that the simplified version of the length scale 
equation, used by some authors, is not capable of reproducing the characteristics of different kinds of 
flows. The main reason for this shortcoming is found in an oversimplification of the turbulence production 
term of the length scale equation. The arguments are illustrated by calculated results. 

al 
     2 

ratio    - uv/q 

b width of wake 

cd 
drag coefficient 

d diameter of cylinder 

L integral length scale, 
defined by Sq.( 21} 

h12' L12,n integral length scales, 
Eqs. (26) and (27) 

P mean static pressure 

P pressure fluctuation 

2 2      2^    2 = u   + v   + w    s u.u. 

R.. 
13 

two-point correlation 
function 

R(ik)j' Ri(kj) two-point triple correla- 
tion functions, Eq. (25) 

r vectorial distance of the 
points in space 

r 
y 

distance of the points in 
y-airection 

u,v mean velocity components 

U, V, w fluctuations of velocity 
components 

T 

x.y. z 

€ 

X 

V 

P 

Subscripts 

oo 

c 

i,j, k.., 

T 

M 

reference velocity,    u, = U     - U 
'       1      oo      c 

wall shear stress velocity,    u   - 1/T"~7P 

cartesian coordinates and cylindrical 
coordinates    (y • radius) 

dissipation, Eq. (2) 

v. Kärmdn constant,    x * 0. 4 

kinematic viscosity 

density, assumed is    p= 1 

free stream conditions 

centre of symmetrical i'lows 

notation of cartesian coordinates 
(i = 1, 2, 3 etc.) 

turbulent interaction 

mean flow interaction 

Overbars denote ensemble averages. 

1.  INTRODUCTION 

Despite the enormous progress in computer sciences and numerical mathematics, it is impracticable to 
produce general solutions of the ITavier Stokes equations, which are needed to attack the problem of turbu- 
lent fluid flow in a rigorous manner. Even if the mean motion is steady and plane or axisymmetric, the 
associated turbulent motion is three-dimensional and unsteady, A numerical approach to such flows of high 
Reynolds numbers is clearly out of the question at the present time. Therefore, the semi-empirical me- 
thods are the only resources available, to treat problems of technical importance with some degree of suc- 
cess. These semi-empirical methods are characterized by the fact that the random, unsteady, three-dimen- 

Dr. -Ing. E. h., Aerodynamics Department 
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sional motion of turbulence is described by statistical mean quantities. The statistical quantities arc re- 
lated to each other by a jet of differential equations. Empirical assumptions have to be introduced to 
establish such a set of differencial equations. 

The shortcomings of simple relations, like the eddy viscosity formula and the mixing length formula, are 
well known. Nevertheless; quits good results have been achieved in recent years.  The decisive disadvant- 
age of these relations is that their application to a particular flow pioblern requires ad hoc assumptions 
with regard to magnitude and distribution of eddy viscosity or mixing length. This circumstance prevents 
the formulation of a unified approach to turbulent flows. However, engineers need methods which are able 
to predict the main characteristics of a wide class of flows. 

Many attempts to Jevelop a generally applicable method have been made, beginning with the works of A. N. 
Kolmogorov (Ij and L. Prandtl (2j, which are based on the equation for the kinetic fluctuation energy. 
These methods have been formed in a heuristic manner. Subsequently, P. Y. Chou [3] and the present 
writer 14J started directly from differential equations for the Reynolds stress tensor, which are derived 
from Navier Stokes equations, and introduced certain closure assumptions to make these equations tract- 
able. This early work could not aquire any practical importance, since the numerical treatment of such 
complicated systems of differential equations was not feasible at that time. The interest in such methods 
has been revived, since modem high speed computers offer the possibility to numerically solve complicat- 
ed systems of partial differential equations. Reference is made to the work of B. J. Daly and F.H. Har- 
low [5], ToH. Gawain and J, W. Pritchett (6J, T. S. Lundgren [7], V.W, Nee and L. S. G. Kc- 
vasznay (8), andP.G. Saffman i9j. 

There is not yet evidence that any of the existing methods can successfully be applied to nearly all cases 
cf turbulent flow. Such a method can be developed only step by step. Therefore, it appears to be worth- 
while to restrict the consideration to two-dimensional incompressible flow fields, for which the usual bound- 
ary layer simplifications apply. Only one of the coordinates of the Reynolds stress tensor is important in 
such flows. This paper reports on calculations, which are based on the iransport equations for shear stress, 
fluctuation energy and length scale. Although these calculations are not yet completed, some important 
conclusions can already be drawn. 

2.  TRANSPORT EQUATIONS FOR SHEAR STRESS AND KINETIC FLUCTUATION ENERGY 

If the unsteady velocity components and the pressure are separated into mean and fluctuating parts, and 
then are inserted into the equations of motion, the equations for the mean velocities are obtained, in which 
the Reynolds stresses    - pu.u.    appear as unknown quantities, where cartesian tensor notation is used, 
and the overbar denotes ensemble averages. Additional equations for   u.u.    are derived from the Navier 
Stokes equations. These are given in the literature on turbulent flows [10,11,12) and need not be repeated 
here in their full form. A substantial simplification is achieved, if the considerations are restricted to 
high Reynolds number flows. In this case, not only the mean Stokes stresses are negligible, but also most 
of the viscous terms in the equations for    u.u. . The remaining viscous terms are of the type 
i/(3u./9x. )(3u./9x. ) . They can be expressed by a single scalar quantity,   € , if the concept of local iso- 
tropy is applied.  The idea behind this assumption is that, for high Reynolds numbers, the turbulent spectra 
extend over a very large range of wave numbers,  and that the contribution to    {9u./3x )(9u./3x. )    come 
mainly from the large wave number part of the spectra. Kolmogorov,   Heisenberg,   and v. Weiz- 
säcker have pointed out that the motion of the large wave components is statistically independent of the 
energy containing part of the spectra and assumes a universal, isotropic form.  The isotroplc tensor has 
the form 

/Bxx.    du. \2 

where    6..    is the unit tensor, and the summation convention for repeated indices is used,     c    equals the 
rate of dissipation per unit mass and time 

9u. /9u.      9u. , 

With the high Reynolds number assumptions and the familar boundary layer simplifications, the equations 
for the Reynolds shear stress,     - puv , and the kinetic fluctuation energy,    q^/2 , of plane and axisymme- 
tric flows read as follows, if the density is put    p = 1 : 

Reynolds shear stress 

,, 3uv J,, 3uv ,2 3U        , ?u _. 3v       3   , 2 
u-3r + v-^r + v 37*p(^+H,+ä3r(v +p)u = 0    • (3) 

Kinetic fluctuation energy 
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(4) 

j = 1       axisymmetric niesn flow 

j = 0      plane n)ean flow 

The equations for the mean motions are 

Continuity 

3x   ■ J      Oy 
(5) 

Momentum in x-direction 

3x        3y 

dP 
 oo 
dx 

J_   aty^uv) 
(p) 

Eqs. (3) to (6) are first order approximations. It may be noticed that Eq. (3) has the same form for plane 
and axiayrnmetric flows. 

The restriction to high Reynolds number flows seems to cause a severe limitation of the applicability at 
first sight The high Reynolds number approach does not apply to regions close to solid surfaces. This 
disadvantage appears to be not too serious, since here the flow can be described by a few local parame- 
ters. Effects of pressure gradient, addition or removal of fluid through the porous surface and other effects 
can be estimated with the aid of the mixing length relation. Nevertheless, it is desirable to have a better 
formalism, which holds also near solid surfaces. Moreover, one wishes to be able to predict the develop- 
ment of turbulent flow from the preceding lamiaar regime. Calculations performed by G. S. Glushko 
[13] and I.E. Beckwith and D.M. Bushnell [14] indicate, that this might be achieved with semiempi- 
rical methods. Thus, in the future, an extension of the validity over the whole range of Reynolds numbers 
is required. However, there are a number of important problems, which must be solved first. This fact 
justifies the restriction to high Reynolds number Hows at this moment. 

3.  CLOSURE ASSUMPTIONS 

In order to make Eqs. (3) to (6) determinate, closure assumptions have to be introduced for the dissipa- 
tion.   c , the pressure-shear velocity correlation term    p(9u/9y + 9v/9x), the kinetic energy diffusion 

2 2 (q /2 + p)v , and the shear diffusion    (v   + p)u . 

At high Reynolds numbers,  the process of viscous dissipation is governed by a continued energy transfer 
from big to small eddies,  such that the rate of dissipated energy is independent of viscosity. For this rea- 
son,   f    is expressed by the relation 

tfhj1^   . (7) 

where    L    is a length scale of the big eddies and    c    is a dimensior.less coefficient. This formula has 
been used by many authors. 

The pressure fluctuations can be expressed as a space integral of the velocity field.  They are separated 
into two parts. 

P 
=
 PT

+P
M (8) 

the one,     p— , being caused by interactions of velocity fluctuations.  The other part,     p^. , is produced 
by interaction of the mean velocity gradients with velocity fluctuations. The first part of the pressure- 
shear velocity correlation term may be determined from the previously [4] suggested relation. 

idu.      au.\ 

[%r + dx. j 
u.u. - q   6../3 

2k   gJJ UL 
P -5 

(9) 

which gives, if Eq. (7) is inserted. 

PT(^ + 3J) = -kP
C V^ (10) 

For the second part, a" integral expression can be derived from the Navier Stokes equations, which sug- 



gests as the simplest relaticn 

.fci    »v.       2 30 

Since only the kinetic fluctuation energy eouation is used instead of equations for each of the velocity fluc- 
tuation components,    u, v, w , ths value of   v*   in "Sq, (3) is to be expressed as a fraction of   q* . There- 
fore, the production term of Eq. (3) and the term of Eq. (11) are condensed into one expression. 

2 
2 0U ,9u     Öv. q    3U „„, 

V   F'PM^+^)=a
P2   ^      ' ll2) 

The turbulent energy diffusion is approximated by 

(q2/2+P)v = -kq^LÜ^       . (13) 

and a similar relation is used for the diffusion term of Eq. (3), 

(S+pfr'.k^'Lf/ZL^      . (14) 

These gradient diffusion models are used by many authors, but there is little justification from physical 
arguments. They are used for the lack of anything better. 

There are five coefficients, namely    c, k , a , k   , and   k ^ . In addition, the determination of the 
length scale,   L , which makes allowance for the space structure of turbulence, requires a fifth equation. 
The closure assumptions for this equation will bring in some more coefficients. The idea is to consider 
all these coefficients as universal constants, although they are not strictly universal in real turbulent 
flow fields. Only numerical calculations of flow cases will show, firstly, whether the system of equations 
is able to predict qualitatively the actual behavior of several shear flows, and secondly, how well the cal- 
culated results agree quantitatively with available data. It may be admitted, the indispensable require- 
ment that Eqs. (3) and (4) conform to the logarithmic velocity law in the layer of constant shear stress near 
a solid wall, imposes conditions on the choice of the coefficients and consequently reduces the number of 
the free coefficients. We will discuss the given e-iations a little further before we proceed with the treat- 
ment of the length scale equation. 

Two different assumptions for the shear stress have previously been used in connection with the kinetic 
fluctuation energy equation. The first was suggested by L. Prandtl [2], where the shear stress is de- 
termined from the eddy viscosity concept. 

^ = kVq2/2L~      . (15) 

A number of authors have applied this relation with their methods, 'i'be second essumption, which was 
applied by P. Bradshaw [15] to boundary layer calculations, pcr<iulates a constant ratio of shear stress 
to kinetic fluctuation energy, 

         ~2 
- uv = a.q . (16) 

These assumptions are replaced by the transport squation for shear stress, Eq. (3), for several reasons. 
Eq. (16) fails, when the shear stress changes its sign. The assumption made in Eq. (15) is not compatible 
with Eq. (3) in general cases. For example, in asymmetric shear flows, the shear stress,     - uv , and 
the velocity gradient,     9U/9y , change their signs at different poaitions. It is interesting to note that both 
Prandtl's eddy viscosity relation, Eq. (15), as well as Bradshaw's assumption of a constant ratio of shear 
stress to kinetic energy,  Eq. (16), are included in Eq. (3) as special cases.  This is shown as follows: 

1.     Neglect the terms of coav^ctive and diffusive transport (nearly homogeneous turbulent field). Then 
Eq. (3) reduces to 

This relation is identical with Eq. (15), if 

k c   n '        9y 
P 

k=i      . (18) 
P 

2.     Insert Eq. (16) in Eqs. (3) and (4).  Then Eqs. (3) and (4) are identical, if the following conditions are 
met 
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qr       q 
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(19) 

 . 2 
Under these condi'aons, Eq. (3) and Eq. (4) yield a constan  ratio of    - uv/q   . if the initial and bound- 
ary conditions permit this, as is the case for boundary layers. In other cases, e. g. wake flow, the 
two equation« have different solutions. 

The conditions, given by Bq. (19) can se- ve as a guide for selecting suitable values of the coefficients. In 
addition, it is mentioned that the isotropjic turbulence relations give    a   » 4'15 •» c. *67 . This value is 
nearly three times the valae of Eq. (19). p 

4, NUMERICAL SOLUTIONS FOR ASYMPTOTIC PLANE WAKE FLOW 

The equations were applied to the case of asymptotic plane wake flow at large distances,   x , downstream 
of a cylinder in a uniform stream of velocity,    U    . The axis of the cylinder is parallel to the z- coor- 
dinate. An implicit iterative  finite difference^cheme has been used to calculate the development of the 
flow, starting with given distributions of   U, q* , and   uv   at a certain plane   x = const. The length 
scalej   L . was assumed independent of   y : 

L 
T- = const 
D 

(?0) 

where   b    is the half width of the mean velocity defect distribution, at a point half way between the cen- 
tral velocity and free stream velocity. 

With increasing   x , the calculated distributions asymptpiicaUy approach the familar self-similar distri- 
butions, where the width of the wake spreads as   b ~ x1/2 . The calculation was continued until self- 
similarity was established. Naturally, the rate of spread depends on the assumed value of   L/b . Fig. 1 
shows the parameter   b/(xc ,d) '2    as a function of 
L/b , where   c .    is the <irag coefficient and   d 
the diameter of the cylinder. These calculations 
are based on values of ine coefficients in accord- 
ance with Eq. (19). The main outcome of these cal- 
culations is the strong influence of the coefficients 
of diffusion terms,    k   ~ k     . The curve for 
k   3 0. 6    has a maximum value   b/(xc .dr/2 = q '      a 
0. 208 . Thus the experimental value of 
b/(xc d)1/2 = 0. 25    [16] is not met with   k   =0.6, 
regardless of the value chosen for    L/b . l3 addi- 
tion, the line of mixing length theory is also indi- 
cated in Fig. 1. 

L/b The choice of   k      and also influences 
strongly the distributions of mean defect velocity, 
fluctuation energy and shear stress. This follows 
from F'g. 2, where the distributions are plotted in 
non-dimensional form as functions of    y/b . Cal- 
culations with three different values of   k      are q 
shown, where    L/b    is selected from Fig.  ' so as 

u^-u 

Fig. 1.  Asymptotic width of plane wake flow vers. 
L/b. Eqs. (3) to (6) 

Fig.  2.  Asymptotic distributions of plane wake flow. Eqs. (3) to (6) 
a) Mean velocity defect and Reynolds shear stress 
b) Kinetic fluctuation energy 
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to reproduce a value of    b/(xc d) '    = 0. 25 . For   k   » 0. 2    and    0. 4 , saddle shaped profiles of mean 
ve'flcity are obtained. The velocity profile for   1c   » ft 5    agrees perfectly with the relation, which was 
given byTownsend (12) as an approximation to the experimental distribution. As seen from Fig.   2b, 
•he calculated distributions of   <]2/(2u^)    are all substantially higher than the experimental results by 
Townsend. If Prandtl's eddy viscosity relation is used instead of Eq. (3), no «addle shaped mean velo- 
city distributions occur, and the magnitude of    it     has a minor effect. 

3. LENGTH SCALE EQUATION 

The given system of equations cannot be applied to general How cases, unless a ganeral relation for the 
length scale,   L , is available. Before a le.-igth scale equation can be derived »rotn the Navier Stokes equa- 
üon, the length scale has to be defined. The magnitude of  L , as used in the preceding equations, has the 
meaning of a length characteristic for the energy carrying eddies. Thus, in shear flows, for which the 
boundary layer simplifications apply, an integral scale, defined by 

<.2L 

-oo 

.(r )dr (21) 

appears to be an appropriate quantity, where 

R^d-y) ^u.Cx.y^u.foy+ r ,z) (22) 

is the two point correlation function. Fig. 3, and 

q   =u.(x.y,z) u.(x,y,z) = ^(0) (23) 

x.y. 

The factor 3/8 in Eq. (21) causes    L   to be identical with the well known 
lateral integral length scale in an isotropic turbulence field. If solid walls 
are present, the range of integration is limitted by the solid walL 

The following operations have to be made in order to derive the integral 
length scale equation: 

1.    Multiply the Navier Stokes equation of velocity component 
location   x, y, z    with the fluctuation component,   a. 

L. +u. 
i      i 

at point   x, 
at 

y + r , z    and take the average. 

Fig. 3. Definition of two- 
point correlation 
function and inte- 
gral length scale 

U. +u. 
i      i 

u. , at point 

With 
product, 

2. Multiply the Navier Stokes equation of velocity component 
at location x, y + r , z with the fluctuation component, 
x, y, z    and take the average. 

3. Add the equations of all three components and integrate along   r   . Again the 
high Reynolds number approach is used (local isotropy), boundary layer sim- 
plifications are introduced and only first order terms are retained. 

repealed application of the continuity equa'ion, the operations result in the following equation for the 
ict,    ^2/2 L :. 

i^u.ivü L)      3 
16 

R0.dr   + 21    y 
-oo 

y .-4 '»-Aw) y+r 12   y 

3 d    in o ».4.313 
T6    /    3^ (a(ik)i " Ri(ik)) dry + T6 J   ^ 

-co y 
^ /   (R(i2)i+pv + Vp,dry •= 0 (24) 

where 

Ri2= u{y)v(y + ry) 

R2i = u(y + V v(y' 

R{ik)j "^VV^ 

pv = p(y)v(y + r 

vp = p(y + r )v(3'7 

(25) 



Eoi ation (24) will be referred to as the lengll» scale equation.  The first two terms of Eq. (24) are the con- 
vc  -ion terms. The third term represents turbulent production, the fourth term ' acts as dissipation, and 
the last term stands for turbulent diffu'-'on transport. 

6. CLOSURE ASSUMPTIONS FOR THE LENGTH SCALE EQUATION 

Closure assumptions are required for the last three terms of Eq. (24). Most striking is the complicated 
form of the production term in contrast to the simple expression of the production term in the equation of 
kinetic fluctuation energy# Eq. (4). In particular, the value of   3U/9y   at position   y + r^    and thus the 

meat: velocity distribution of the whole plane,    x = const, enters the equation, it will be shown later that 
th's fact needs further attention. 

One way to treat the second integral is to expand    9U/8y   in a Taylor series with respect to   y   and 
define the following length scales: 

12 

12, n 

+ R0,) dr 
2       21'     y 

CO 

16uv J 
-co 

3 rR    rn.l 
16(n - 1)!^ J      12 y 

-U/n 

dr 

(26) 

(27) 

Then, the producton term of Eq. (24) is represented by the series 

_3_ 
16 k/ "ai ""V * i-vMf) ̂ y*] 7l 

UX12* VS12'"^^/ (28) 

This relation can be used in combination with the assumption that all the length scales are in constant 
ratio to    L . In case that a symmetric shape of   R. „    is assumed, the terms of even values of    n 
vanish. For numerical calculations, only one or two terms of the series can be retained.  According to 
measurements made by W. G. Rose [17] in a homogeneous shear flow, the ratio of the length scales is 

L 1.2 (23) 

The fourth term of Eq. (24) represents the transport of mechanical energy in wave number space. In ana- 
logy to Eq. (7) we put 

3      f 
-CO 

J_ 
dr. (*,;,; R.,,  J dr i(ki)      y (30) 

An estimation of the coefficient,    c    , is gained from a comparison with the decay law of kinetic fluctua- 
tion energy in a uniform stream behind a grid. Theoretical predictions, based on Birkhoff's and Loitsiar.- 
siki's invariant theory as well as on experimental data of recent experiments [18] correspond to a value of 
c,     between  0. 667   and  0, 8 . 

With respect to the flux of diffusion, the expression 

/ 
(R(i2)i+PV+Vp)(V-kqL (31) 

appears reasonable, where    k  .     and    a.     are two additional coefficients.  With this assumption we have 
q u J-i -r; . 

a flux of diffusion at constant L and one at constant q /^ At the frae boundaries (jet and wake flow, 
outer edge of boundary layers) the field quantities 3U/3y, uv, and q^ tend to zero, but L may be 
finite. Energy production and dissipation become small when compared with the convection and diffusion. 
These conditions cannot be satisfied simultaneously, unless 

1) This term is expressed in cartesian coordinates. 
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k   = k , 
q      qL (32) 

If Eq. (24) is applied to the fully turbulent part of the law of the wall, the convection terms vanish, but 
diffusive transport does not. The requirement that the length scale equation is compatible with the law of 
the wall provides an important relation between the coefficients of the length scale equation and the v. Kar- 
min constant,     x . That is, the value of   x    is determined, if * set of coefficients is assumed or, vice 
versa, a constraint is imposed on the choice 01 one of the coefficients, if a value of    x    (e. g.  = 0. 4) is 
prescribed. 

7. APPLICATION OF THE LENGTH SCALE Fx^TJATION WITH SIMPLIFIED PRODUCTION TERM 

The simplest assumption is to retain only the first tarm of the series of the production term of Eq. (23). 
The length scale equation in this version has been used by several authors (19, 20). In particular Rodi 
and Spaiding [19] have achieved interesting results for jet flew. We have applied the length scale equa- 
tion, in conjunction with Eqs. (3) to (6), to the plane wake flow. 

15 
MM Dittntution o* L- 

■ I TimM   ——5 Timt  -> -j 
—— 3 Tunis   —— JO Tims* 

105     2x/icdd)       107 

Fig.  4.   Development of mean center velocity gra- 
dient of plane wake flow Eqs. (3) to (6). 
Eq. (24) with production term, Eq. (28) 

c « 0. 164; a   = 0. 09; k    = 1; 
k   = k      = 0. 4; c    = 0. 8; a,   = 0. 5 

q       qr '     » L      L 

— / 2 ,       Zi,^ 2. 

The main results of these calculations are shown 
in Fig. 4, where the mean center velocity gradient, 
(x/u )dU /dx , is plotted versus the dimensionleas 
distance in mean flow direction,     2x/(c ,d) . Two 
groups of runs are shown. With the first group we 
adopted the law of the wall constraint    (x = 0. 4) . 
With the chosen coefficients, a value of    C = 0- W 
was obtained. With the second group of runs the 
constraint of the law of the wall was dropped and 
C = 1. 25    was assumed. The individual curves of 
each group differ in that the initial distribution of 
L    was multiplied by   3, 5,   and   10 ,  respectively. 
Jumps in the curves occur every time, when the 
number of mesh points is reduced by a factor    1/2 . 

It is seen that the curves of the first group decrease 
continuously for larger downstream distances. 
None of the curves approaches the state of self- 
similarity, characterized by    (x/u, )dU /dx = 0. 5 . 
At the same time, the ratios     q^/^u^)    and 
- uv/u.    decrease continuously. The curves of the 
second group, however, approach well the value of 
(x/uJdU /dx = 0. 5 . Thus self-similar distribu- 

are established, if the calculations are continued over tions of    fU     - UJ/uj.   - uv/u^,     and    q7(2up 
a sufficiently long time. 

Several variations have been tried, but it became evident that the actual bshavior of wake flow is not re- 
produced by the calculations if the simple form of the length scale equation is used in conjunction with the 
wall flow constraint. This is a very important finding which, in effect, disqualifies the simple form of the 
length scale equation as a generally applicable equation. 

8.  SOLUTIONS WITH TRANSPORT TERMS OMITTED 

The conclusion from the foregoing investigations is that the production term is over-simplified, if only 
the first term of the series. Eq. (28).  is retained.  This becomes clear also from the unsatisfactory tact 
that the solution of the law of the wall is dominated by the diffusion term. There is effectively no solution, 
if the diffusion term is neglected.  This situation changes if two terms of the production are retained. 

In this context, it is informative to study solutions of the eauations if the diffusion terms are neglected 
altogether. The relations become particularly simple for such flow cases, in which the convective trans- 
port terms are absent.  From Eq. (3) and (4) the following relations are obtained 

4vrj 
p' p 

^f-R'N^ 
.3/4 

— / 2 The first relation states thai the ratio of    - uv/q 
mixing length formula, if    c(k /a)3'4 = 1 . 

Combination of Eq. (4) and (24) yields 

(33) 

is constant everywhere. The second relation is the 
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where    £„ = (L.- -/L)   . This relation shows some resemblance to v. Kirmin:8 similarity theory. From 
the law öf the wall constraint we have 

—5  = 2x (35) 

Finaliy, Eqs. (33) and (34) can be combined to give 

1 J. IJ^R\- ,,2iMM.5 

y^   ^\    3y2/ r. 
(36) 

where n is the only empirical constant. The main difference of this relation from v. Kirrnän's relation 
is that it ie a differential equatio.i of third order, whereas v. Kirrnän's equation is of second order. Thus 
an additional boundary condition can be satisfied with Eq. (36). 

Eq. (30) has been applied zo three cases: 

1. Straight Couette flow, 

2. Flow strough a cylindrical pipe, 

3. Pressure flow through a channel of infinite width. 

In the case of straight Couette flow, an analytical solution can be given, which includes an elliptical inte- 
gral of the first kind, whereas in the cases of pipe and channel flow, Eq. (36) was numerically solved 
using a Runge-Kutta method.  The velocity distributions       dressed as the velocity defect, and the length 
scales are shown in Fig. 5. The length scale has a singularity at the center of pipe and channel, respect- 
ively. The differences between the axisymmetric and plane case are noteworthly. In Fig. 5a the experi- 
mental velocity distribution after Niku r ad s e [21] is also given. The velocity distributions are qualita- 
tively correct in all three cases, although the quantitative agreement with experiment is not as good as 
desired. 

L/R 

a 

il i 
■4- - 

-■-■ 
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1 vc-u VI ur(>-y/hl 
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'. ' .. 

4 \ 1 i / 
<u \ w L-O.iy y y 

2 
^ 

^ 
^ 

s 

,> 
^ ^ 

i    - i ^ 
b)    o Q2 0.4 0,6 y/h 

0.8 

L/h 

OA 

0.2 

1.0 

5.   Distributions of mean velocity (velocity defect law) and length scale of pipe and plane channel 
flow.  Diffusion terms omitted. 

a) Pipe flow      ;     R = radius of pipe 
b) Channel flow;     h = halt height of channel 

The purpose of this investigation is to show thar, the equations, with diffusion terms omitted,  give correct 
results, if proper assumotions for the production tenn of the length scale equation are used.  The diffusion 
terms are important to achieve better agreement with the actual flow, but their effect is not dominating. 

9.  REFINED ASSUMPTIONS FOR THE LENGTH SCALE EQUATION 

As the next step, we tried to include the two term expression of the length scale production term in wake 
flow calculations. However, numerical instability occurred with the finite difference method because of the 
third order derivative. Perhaps this instability can be overcome with a more refined method. This que- 
stion is left to be irvestigated.  For the present we escaped from the dilemma by using the following 
approach.  The correlation functions are approximated by 

r 
R 

12 
R 

21 i I   /     /r »6  . a 
64(VL)    +4 lWL;4,(ry/L)2-ll i(r/L)2Kr/L)4l (37) 
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for    - 2L 5 r   S 2L    and 
y 

R12 = R21 ' 0       for      i r  '- 2L (33) 

where    a    and    b    are two dimensionless quantities.  By defiiiition of Eq. (?.6) it follovs that 

,       12     9     2 3 u 

t-~   =7-7a + 35b (3S) 

The quantities    tt    and    b    are determined from Eq. (39) and the constraint of the law of the wall, if 
£. x    and the other coefficients are given. 

With these relations included in the length scale equation, Eq. (24), asymptotic self-similar distributions 
are produced. Results are shov/n in Fig. 6 and are compared with the results, based on a constant value 

0.400 

Asymptotic 

c = 0.164, 

strihutions of plane wake flow. Eqs. (3) to (6) 

0. 09,   k   = 1,   k   = k     = 0. 5 ,   k   = 1,   k   = k p p q       qr 
—— L    from Eqs, (24) and (37) 
——~ L/b = assumed 
a)  Mean velocity defect and Reynolds shear stress 
bj   Kinetic fluctuation energy and length scale 

= 1.18    was chosen to give a dimensionless width of    b/(xc .d)1'2 - 0. 25 . With 
regard to the equations for shear stress and kinetic fluctuation energy, the san:e coefficients are used as 
for the calculations shown in Fig.  2. The mean velocity distributions are slightly saddle shaped. Of course, 
the agreement with experimental data can easily be improved by modification of the coefficients. The main 
point was to show that, in this v;ay, different types of turbulent flow can be reproduced, at least qualita- 
tively, with the same set of coefficients. Fig.  6b shows that the kinetic fluctuation energy is lower as cal- 
culated with constant    L/b .  The calculated length scale varies only little over most part of the turbulent 
flow regime. 

of    L/b .  The value of    r 

10.  CONCLUDING REMARKS 

Striving for a unified approach to turbulent shear flow calculation, it appears reasonable to concentrate 
oneself first to two-dimensional layer fLows. A formalism has been discussed, in which the Reynolds shear 
stress is determined from the transport equations for fluctuation energy,  shear stress, and length scale. 
The transport equation for the shear stre^ra includes Prandtl's eddy viscosity relation and Bradshaw's con- 
cept of constant ratio of shear stress to fluctuation energy as special cases, depending on the choice of the 
empirical coefficients. 

No perceptibly better results could be achie ad with the shear stress transport equation than with the 
Prandtl eddy viscosity relation. It is believed, however, that th.3 advantages of the shear stress transport 
equation will come to light, when it is applied to other flow cases. 

The most important conclusion to be drawn from the present calculations is that the production term of the 
length scale equation deserves special attention. Realistic results for flows with free and solid boundaries 
canno; be obtained, if this term is oversimplified. 

Furthermore,  it was found that the turbulent diffusion terms strongly influence the rate of spread and the 
shape of mean velocity distribution of wake flow, whereas for Couette, pipe, and channel flow, the influence 
of diffusion is obviously weaker. Actually,  the gradient diffusion formulae give only a poor descripUon of 
the real processes. It is a disappointing fact that no use has been made, so far, of the available knowledge 
on the intermittent structure of turbulent flow near free boundaries. 

Much further work is left to be done. Calculations for many flows, such as free jets, boundtry layers etc., 
have to be performed and compared with experimental data. Numerous combinations of the coefficients and 
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modifications of the closure assumptions have to be tested. Not until then a final s-n of coefficiente can 
be fixed. The numerical procedures have to be i-nproved. There is some hope t'iet finally a method will 
be accomplished, which is capable cf reproducius a rather wida class of turhule'it flowb. 
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AN EXPERIMENTAL STUDlf OF THE 
COMPPJESSIBLE TURBULENT BOUNDARY LAYEK 

WITH AN ADVERSE PRESSURE GRADIENT 

Robert L.P. Voisinet* 
Roland E. Lee** 
Wiliiar. J. Yanta* 

I.'avai Ordnance Labcretory 
.iiite Oa);, Silver Spring, Maryland 20910 USA 

oUMMSRV 

TIIP results of a cictaileü experimental investigation of the compressiUie turbulent 
boundary layer in an aciverso-pressure-gr.idient regine are presented. The studies were 
conducteu on a fiat iiozzio srall for Macli nunbers between 4.1 and 4.9. at irsnentum thick- 
ness Reynolds niunbers fror- 5800 to 69,000 and a.  wäll-to-adiabati.c-wal\ ^enperature 
ratios of 1.0 and O.S. Ccmi-letc ano often redundant profile r.eaeuretrents were taken «'ith 
Pitot and static-pressure proles and conical equilibrium and tine-wire temperature probes. 
Vhe wall shear and surface heat transfer \;erc «eaaared directly witn a skin-friction 
balance and a heat-transfer gage. The effect of the adverse-pressurc-gradient flow en the 
boundary-layer flow structure, friction drag, and heat transfer, as compareu with zero- 
and favorable-yressure-gradient flow, is discussed.  A test srowing the effect of nozzle 
throat cooling on the downstream bcumiary layer is also reported. Thit threat cooling 
caused significant changes in the downstream temperr.turc profiles -.nd recovery factor 
with no effect on the local wall shear. 

DOTATION 

H - constant in equation 8 

C- - skin-friction coefficient 

h - compressible shape factor 6*/ö 

*C - Karman's constant 

M - Mach number 

P - pressure 

P - static pressure 

P., - Pitot pressure 

Pr - «"randtl number 

r - recovery factor 

Refl - momentum thickness Reynolds number 

St - Stanton number 

T - temperature 

u - velocity 

u 

X 

shear velocity = /T /p 

- u/uT 

- distance along plate from nozzle 
throat 

- distance normal to plate 

" uT y/vw 

pressure gradient parameter = 
(fc/t Jdl'/dx w 

ratio of spacific ncats 

boundary-layer thickness 

displacement thickness 

momentum thickness 

energy thickness 

total enthalpy thickness 

viscosity 

kinematic viscosity 

Coles' profile parameter 

density 

shear stress 

Coles' wake function 

Subscripts 

aw - adiabatir wall conditions 

e  - freestream conditions 

0 - tunnel supply conditions 

w  - wall conditions 

t  - stagnation conditions 

Superscripts 
1 - ideal properties calculated from 

F., P. and T 

1,  INTRODUCTION 

The prediction of compressible turbulent boundary-layer flows, being of an empirical 
nature, relies heavily on experimental data.  Therefore, it is understandable that there 
is a definite need for complete and/or redundant boundary-layer experimentation. Tho 
objective of the experimental boundary-layer investigation at the Naval Ordnance Laooratory 
(NOL) is to study the f-wo-dimensional compressible turbulent boundary-layer flow in a 
thorough, detailed, and systematic manner.  Since the boundary-layer behavior is influenced 
by many factors, the experimental approach is to carefully define and isolate eae;, factor, 
measv.re its effect, and correlate the results. The effects of moderate heat transfer and 

»Aerospace Engineer, Aerophysics Division 
♦Chief, Boundary Layer Group, Aerophysics Division 
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favorable pressure gradient on the turbulent boundary layer have bean  reported earlier^-'2. 
This papor describes J subsequent investigation into the effects of adverse pressure 
gradient on the conpressibie turbulent boundary-layer flow. 

2. LXPtRIKLNTAL SLTÜP AiJD TiST CONDITIONS 

The experiment was performed in the WOL Boundary Lay^r Channel shown in Figure 1. 
Tl:e two-airensional supersonic half-nozzle, the main component of the facility, has ior 
one wall a flat, plate, eight feet long and 12 inches wide, along which the boundary- 
layer measurements were wade. The opposite wall, a flexible contoured plate, was adjusted 
to produce a pressure gradient ^low over the flat test plate. This adjustment provided 
for an expansion of the flow to Mach 4.9 as in conventional nozzle designs followed by a 
deceleration xr  the form of a linear change with streamwise distance in the degree of 
pressure gradient, Vnis approach allowed for a smooth transition from the favorable to 
adverse-pressure-gradient regimes with no shock wave interference. Furthermore, since 
the pressure gradient was gerorated on a flat test plate, effects due to longitudinal 
curvature were eliminated. '..>e nozzle contour was computed by using the desired test 
plate pressure distribution in a method-of-characteristics computer program and correcting 
for the boundary-layer displacarvit thickness. A comparison of the prescribed and measured 
streamwise pressure distriLutior  is shown in Figure 2. 

Complete boundary-layer data were obtained at six locations along the flat test plate, 
at 37, 60, 70, 78, 84, and 90 irches from the nozzle throat. The 37-inch station was 
located in a favorable-pressure-gradient region while the reiuaining stations were located 
in varying degrees of adverse pressure gradient.  Tests were conlucted at tunnel supply 
pressuits between 1 and 10 atmospheres and supply temperatures of 605oR and 7620R. The 
wall temperature was maintained constant by cooling the test plate with water.  These con- 
ditions provided a range of Reynolds number per foot from 6X10^ to 7.5X10^ at wall-to- 
adiabatic-wall temperature ratios of 1.0 and 0.8.  Typical boundary-layer thicknesses 
ranged from 1.5 to 3.5 inches which allowed for detailed probing of the boundary layer, 
including the :;.ibiayer. 

3. IHSTHliHtWTATIOil  PulD PROBES 

Since the region near the wall of a supersonic turbulent boundary layer is of such 
importance to the analysis of flow structure, 
friction drag and heat transfer, the design 
of probes to accurately measure the flow 
parameters in this region is necessary. For 
this reason, probe development became an 
integral part of the testing program. 

Boundary-layer Pitot-pressure profiles 
• f-e obtained "sing a flattened Pitot probe 
with a rectangular 0.003 x 0.100-inch inlet. 
Due to the small size of the probe and its 
use nesr the wall, two phenomena, viscous 
flow interaction and probe-wall interference, 
were encountered. The small opening jf the 
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proue combined with the low ücnsity in the inner region of the boundary layer resulted 
in i»n inu-i^ed pressure neasurenent causeci by a  Knudsen number effect.  Since there were 
;.o data available in the slip flow regime for the prcbe geometry used, the viscous flow 
interaction correction to t.he I'itot pressure was determined by calibrating the probe in 
a  low density wind tunnel.  This viscous correction is shown in Figure 3 for Mach numbers 
between 0.1 and 0,4 and Reynolds numbers, based on probe inlet height, between 0.5 and 50.0 

'."lie second correction to the Picot-pressure data, probe-wall interference, was 
deterwined for the prcbe georetry used by relying on the shear balance data to provide 
the velocity gradient at tnc wail.  This correction (shown in Figure 4) was compiled from 
adiabaiic piofile data measured in zero, favorable, and adverse-pressure-gradient flows. 
The effects of both the viscous flow interaction and probe-wall interference corrections 
on a Mach number profile near the wall are shown in Figure 5. 

The stagnation teim,-eraturr through tho boundary layer was measured simultaneously 
with the Pitot pressure by using a double-prob« traveise. Redundant measurements were 
taken using two temperature probe contigcrations —a vonical equilibrium temperature 
probe^ and a fine-wire stagnation temperature probe^. The conical equilibrium temperature 
probe, a 10-degree platinum cone with a 0.050-inch-diameter base, provided excellent data 
through the outer part of the bounäary layer, however, its size limited its usefulness in 
probing the inner region.  For this inner region, the cone temperature was linearly 
extrapolated to the measured wall temperature. Kith the developmer.t cf the fine-wire 
stagnation temperature probe, temperature profile measurements were extended into this 
region near the wall. The fine wire probe consists of a fine wire (0.001-inch diameter, 
0.140-inch long) placeü normal to the flow with a chrome1-alumel thermocouple junction 
at its center.  The local stagnation tewperature was computed from the measured wire 
center and support temperatures and the corresponding measured Pito«- pressure with 
application of conventional empirical equations for predicting the heat exchange to and 
from the wire.  Using the local Mach number distribution, the local static temperature 
was evaluated. Figure 6 is an exampln of such a fine-wire temperature probe profile near 
the wail.  Shown for comparison is the temperature derivative at the wall computed from 
heüt-transfer measurements 

Skin friction and heat transfer, two parameters often deduced from profile measure- 
ments, were measured directly in these tests with a floating element ekin-friction 
balance manufactured by Kistler Instrument Corporation and a micro-foil heat-transfer gage 
purchased from the Rdf Corporation. 

An additional measurement needed for compressible adverse-pressure-gradient profile 
evaluations is the local static-pressure variation normal to the wall. This pressure 
variation is the result of the superposition of the non-uniform isentropic flow of the 
freestreaia onto the boundary layer. Three techniques were used in evaluating this static 
pressure variation through the boundary layer. First, the static pressure was calculated 
from a strictly isentropic method-of-char?cteristics nozzle flow computation. Input to 
this calculation included the experimental streamwise wall pressure distribution and thr> 
measured displacement thickness along the test plate. The second method was to measure 
the static pressure through the boundary layer directly using a 0.040-inch OD static 
pressure probe. The tip of the probe was a 10-degree cone and four static pressure 
orifices were located on the cylindrical tubing 20 probe diameters from the tip.  The 
probe data were corrected for flow angularity effects where the direction of the local 
streamlines was determined from the previously mentioned isentropic flow calculations. 
In the third approach the static pressure external to the boundary layer was calculated 
from isentropic flow equations using the ratio of local Pitot to tunnel supply pressure. 
A comparison of the data from these three methods is shown in Figure 7. Since the flat 
test plate is essentially a wall of symmetry to a conventional nozzle, the isobars are 
normal to the test plate at the wall and the static pressure variation becomes apparent 
only in the outer region of the boundary layer. For this reason, the static pressure 
profiles used for final analysis were determined by extrapolating the external static 
pressure from method three to the measured wall pressure while Keeping in mind the shape 
of tne profile as computed from methods one and two. 
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4,  DATA REDUCTION 

The incorpcration of the static-pressure variation into profile and integral parameter 
definitions is of importance since the determination of the boundary-layer thickness and 
boundary-layer flux deficits must be referenced to the so-called "ideal" flow properties6»'. 
These ideal properties, calculated from the local static pressure and the tunnel supply 
pressure and temperature, represent the inviscid flow if the boundary layer were not 
present. The modified integral parameter definitions used in this report are 

displacement thickness 

p wu w 

i     r6 
ir- / (P'u'-pu) dy (1) 
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isrmentun thickness 

 T   I   cudi'-u 
>     t.'     *   -1 u 
w     w 

)   dy (2) 

energy thickness 

'E 
1  r ,?.    2 

; ,ii (3) 

total enthalpy thickness 

i     r1   ht 
w w  *fc    t% 

ay {*) 

where the primed quantities refer to the ideal flow quantities and 6   is defined as the 
distance rrom the wall where u/u' = 0.995.  The modified integral thicknesses are 
referenced to the ideal properties at the wall because properties at the edge of the 
boundary layer are not constant.  Tito nodified definitions simplify to the classical 
definitions when the static pressure is constant through the boundary layer. 

5.  TWO-DIMENSIONALITY 

Analyses of boundary layer flows in a two-dimensional facility of this type are 
usually questioned as to the two-dimensionality of flaw. This question is intensified 
when an adverse pressure gradient is imposed. For this reason, two investigations icto 
two-dimensionality were made. First, an oil smear technique was used to obtain surface 
streamline traces on the flat test plate. A photograph of the results (shown in Figure 
6) indicates that although the surface streamlines converge at the side« of the plate, 
there is a central region, approximately six inches wide, where the surfaca streamlines 
are parallel. This is consistent with earlier investigations for a zero-pressure- 
gradient nozzle configuration where profiles taken three inches off centerline showed no 
influence of cross flow. 

The second cvnluation of twc-dimansionality was made using a streamwise niomentum 
balanre.  The classical von Karman momentum integral equation was considered first in the 
form 
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H.      du ,    C, 

i + ü; air f«+ 2- Me J = T ^ 

An evaluation of the terms in the equation points cut a momentum deficit of magnitude 
greater tli,T any expected experimentai error.  However, by modifying the equation to 
inc.l*Kle the effect of normal static-pressure variation in the form'' 

,   -  du ,    P    . /^(P  - P )       C, dv  ^  i e ,,. . -  u 2, .  o   a /  se   s,      f 

"o u 2 **} e e    o e 0eue    i 0 

we find that the added term in the equation is indeed of the magnitude necessary to com- 
pensate for th; momentum deficit. Figure 9 shows the relative agreement between the 
right and left hand sides of equations 5 and 6.  Good agreement is achieved when one con- 
siders the in-iccuracies encountered in differentiating experimental data. Thus, both 
evaluations indicate the flow to be two dimensional ac lea&t within the center six inches 
of the flow. 

6.  /ELOCtTY PROFI'ES 

Velocity profiles along the test plate changed considerably as the magnitude of the 
pressure gradient was varied. Typical velocity profiles (shown in Figure 10) depict 
these changes and point out the difficulty in assigning simple power-profile shapes to 
the advarse-pressure-gradient profiles. 

Correlations of the profile results in terms of the Law of the Wall and Law of the 
Wake are shown in Figure 11. For the cases presented, the shear velocity was computed 
from the sheai balance data and the density at the wall. Due to the complexity of the 
flow with static pressije variations, no attempt has been made to obtain a compressible 
transformation of the data.  The profile data were compared to the formulation of Coles^ 
i-! the form 

for y+<ll (7) 
■f 

u ^ y 

+ 
u = i 

K In + 
y +     B + t 

+ 
u = u 

u 
+ 

y    = 
y üT 

V 

I * (£-)     for y+> 11 (8) 

wnere 

Karman's constant K was assigned the value 0.40 and the value of B was determined from a 
best fit of the data in the logarithmic region. The definition of 6C was the value of y 
at which the slope of the velocity profile 3(u+)/3(lny+) near the edge of the boundary 
layer was equal to 1/K. By defining Coles'wake function,as suggested by Hinze10, 

C"   (¥-)   =  1 - COS (TT ¥-) (9) 
c c 

the H parameter was determined from the boundary condition at 6   , namely u(l) = 2. 

Experimentally determined values of B and n from adiabatic profiles are plotted versus 
momentum thickness Reynolds number in Figures 12 and 13. Values of B ranged f^om 4.7 tc 
G.2; however, this variation was difficult to interpret due to the combined effects of 
Mach number, pressure gradient; Reynolds number, and accuracy of TW. The dependence of 
n on Reg', showed a slight tendency for n to increase with increasing Reg'. Values of II 
showed a definite increase with increasing adverse pressure gradient. It is anticipated 
that further evaluation of the data in terms of a compressible transformation will result 
in a more complete correlation. 

7.  TEMPERATURE PROFILES AND UPSTREAM HISTORy EFFECTS 

Typical temperature-velocity correlations of the adiabatic-wall and moderate heat- 
transfer tests are shown in Figures 14 and 15 for the stations under investigation. Both 
fine-wire and conical-equilibrium temperature profiles are plotted for selected cases. 
Also shown for comparison with the data are the correlations of Crocco and Walz in the 
form 

Crocco relation 

T  _ T 

T  _ T \^i 
te    w     e 



Malz' relation 
T - T t w 
T  - T te w 

S- * ¥ *c
2   fr2'' e e 

ta V,' 
(11) 

where 
T _ r e (H^) S; • (^)fc)2 

Several trends in the adverse-pressure- 
yradient data can be observed. Genevally, 
the data showed better agreement with the 
formulation cf Walz than Crocco, a trend 
generally considered characteristic of 
nozzle-wall boundary-layer flows.  Further- 
öote, the agreement with Walz's formulation 
was better in the inner region of the 
boundary layer than the outer with an 
inflection in the profile occurring at 
approximately the edge of the sublayer. U'one 
of the profiles exhibited a total tempera- 
ture overshoot in the outer part of the 
boundary layer but rather a temperature 
deficit seemed to be indicated.  This trend, 
consistent with previously reported zero 
and favorable-pressure-gradient results 
will be considered later.  The effect of 
the adverse pressure gradient on the stag- 
nation temperature-velocity correlation was 
to shift the profile towards the Crocco 
relation. Although a part of this trend 
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may be attributed to temperature reiartation within the boundary layer, it is felt that 
the relative magnitude of this effect \s  small coitpared to the influence of tht pressure 
gradient. 

As noted by liushnell  et al, the temperature-velocity correlation applicable to 
nozzle-wall boundary layers differs considerably fron flat plate boundary layers.  This 
diffe.ence appears to be due to upstream hif.tory effects on the boundary layer; however, 
the relative contributions from pressure and temperature history are still uncier investi- 
gation.  For the tests reported here, a temperature deficit in the outer part of the 
boundary layer is seen especially for the case of moderate heat transfer.  For this con- 
dition, a wall-to-adiabatic-wall temperature ratio of 0.8 was maintained constant along 
the entire nozzle wall including the nozzle throat area.  This cooling of the plate at 
the throat appears to be the cause of the temperature deficit in the downstream boundary- 
layer profiles.  As an illustration of this effect. Figure 16 shows two locally adiabatic 
total-temperature profiles taken under different nozzle throat cooling conditions. It can 
be seen that although both profiles were locally adiabatic, cooling the nozzle throat 
region did indeed cause a temperature deficit in the outer part of the bounnary layer. 
For a truly adiabatic condition at the throat, it is expected that the profile would shift 
further, to the point of developing the expected overshoot in the outer portion oi  the 
boundary layer.  The effect of this temperature discrepancy on certain temperature- 
dependent integral parameters was significant as shown in Table 1.  A local recovery 
factor dependence on the throat cooling was discovered and will be discussed in the next 
section; however, no effect was noticed on the wall shear measured w^ch a skin-friction 
balance. 

Parameter 

(T/7 > 
aw' 

6 
6*' 
6'. 
ei; 

V 
H' 

Throat 

Mild Throat Cooling 

0.94 

2.43 
1.019 
0.0991 
0.179 

-0.0212 

10.27 

Severe Throat Cooling 

0.82 

2.72 
1.019 
0.124 
0.2245 

-  >635 

fc U 

Table 1. Effect of nozzle throat cooling on boundary-layer profile parameters 

8. KtAT TRAH3FEP HiD  SKIN FRICTION 

The adiabatic-vall condition for this series of tests was prescribed as the condition 
at which the local heat transfer is zero as iteasured with a heat transfer gage. At this 
condition the recovery factor was determined from the local Mach number and the wall and 
tunnel supply temperatures.  As mentioned previously, an effect on the recovery factor 
was noticed for the case of nozzle throat cooling.  Varying the amount of cooling in the 
nozzle throat region resulted in a significant change in the downstream recovery factor 
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as shown in  rigurc 17. Although a Reynolds number dependency is also indicated for this 
ccrrelation, no attempt was r.ade at this correction due to the limited amount of data 
avaiiaule. The cr.ange in recovery factor i: especially important to the determination of 
Stanton r.unber for the case of modernte heat transfer since Tw/Taw at the throat equals 
0.8 and the value of the downstream recovery factor becomes 0.81 rather than the conven- 
tional 0.89. A correlation of the moderate-heat-transfer data in tenr.s of Reynolds 
analogy for a constant recovery factor equal to 0.81 is shown in Figure 18.  The data 
indicate a Reynolds number effect which is most likely due to the previously mentioned 
recovery factor dapendence. Adverse pressure gradient effects are difficult to interpret 
due to this Reynolds nujnber dependency. 

The skin-friction coefficients obtained for the six stations under moderate heat- 
transfer conditions are shown plotted against momentum thickness Reynolds number in 
Figure 19. The data show the expected trend of decreasing skin-friction coefficient with 
adverse pressure gradient for a constant value of momentum thickness Reynolds number. 
Furthermore, the data could be correlated in terms of the pressure gradient parameter 
S^ä'/Xv dp/dx, the same parameter reported earlier for favorablo-pressure-gradient flows. 

9.   CONCLUSIÜN 

f-   ietailed experimental investigation of the compressible turbulent boundary layer 
in ai adverse-pressure-gradient regime was conducted in the NOL Boundary I-ayer Channel. 
The nozzle-wall boundary-layer flow was exposed to a range of pressure gradients at Mach 
numbers between 4.1 and 4.9 for both adiabatic-wall and moderate-heat-transfer conditioi.s. 
Complete and often redundant measurrements of the boundary layers were made with Pitot and 
static-pressure probes, conical equilibrium and fine-wire stagnation temperature probes, 
a shear balance and a heat-transfer gage. Analysis of the experiment has led to the 
following conclusions. 

a. A variable contour two-dimensional supersonic nozzle is well suited to adverse- 
pressure-gradient investigations since the flow remains shock-free and effects due 
to longitudinal curvature are eliminated. 

b. Two corrections to the Pitot-pressure data must be considered in the region near 
the wall of a compres. bie turbulent boundary layer due to the effects of viscous 
flow interaction and probe-wall interference. These corrections are presented for 
a rectangular-inlet Pitot-probe configuration. 

c. Experimental normal static-pressure profiles agree well with a strictly isentropic 
method-of-characteristics computation. 

d. The flow in the Boundary Layer Channel was shown to be two-dimensional at least 
within the center six inches of the test plate by surface streamline traces and a 
modified streamwise momentum balance which incorporated the static-pressure variation 
normal to the plate. 

e. Adverse-pressure-gradient velocity profile? correlate well with the Law of the Wall 
and Law of the Wake. 

f. Upstream temperature history causes a temperature deficit in the outer part of the 
downstream temperature profiles, a change in value of certain temperature-dependent 
integral parameters, and a change in the local recovery factor. 

g. The effect of the adverse pressure gradient on the temperature-velocity correlation 
is to accelerate the shift of the profile from the quadratic towards the linear 
relation. 

h.  The effect of the adverse pressure gradient on skin friction is to lower the value 
of Cf for a constant value of momentum thickness Reynolds number. 

i.  The skin friction coefficient and Stanton number correlate well with Reynolds Analogy 
when the appropriate recovery factor is used to compensate for the upstream tempera- 
ture history. 
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SlfflARY 

Experimental measurements of the profile characteristics of the supersonic turbulent boundary  layer 
in a region of moderate adverse pressure pradient along a two-dinensicnal  isentropic rirap model arc 
reported.    Tj-.e data are for a closely adiahatic wall.  Re.. ■   J.9 to 4,2 x 10J at a tunnel nozzle setting 
of H = 3.54.    Detailed surveys of impact piossure, static pressure ?.nd total temperature were made, and 
wall shear stress was measured using the Preston tube technique.     In addition to the mean profile data, 
fluctuation data were obtained using constant temperature hot-wire anemometry in the zero pressure 
gradient flow upstream of the ramp model and in the adverse pressure gradient flow along the ramp model. 

Turbulent boundary layer equations applicable to compressible flow over a surface with longitudinal 
curvature are analyzed.    Corrections for longitudinal curvature to the equation for conservation of 
streamwise noroenrum arc shown to be small and of the same order of magnitude as the contribution of the 
wall shear stress.    The data are shown to correlate in  law o*' the wall and velocity defect dimensionless 
coordinates using an integral compressibility transformation t^at follows directly from PranJtl's mixing 
length .'pproxiraation of the Reynolds'  stress.    Eddy viscosity ind mixing  length dist-ibutions for the zero 
pressure gradient boundary layer were determined directly from the experimental data and agree qualita- 
tively with previously published findings.    The measured value of skin  friction coefficient is 20 percent 
less for the flow over the ramp model than for the zero pressure gradient flow upstream. 
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friction velocity,   (T /p ) w   w 
1/2 

transformed dimensionless velocity, 
defined by Eq (10) 

streamwise distance 

distance normal to the local surface 

dimensionless distance norrr.ai to the 
local surface, u y/v 

'     -r     w 

law of the wall constant 

constant in Prandtl's mixing length 
relation t = K y 

temperature 

velocity in the streamwise direction 

velocity normal to the local surface 

curvature correction factor, 
1/C1 + </) 

boundary layer thickness 

boundary layer displacement thickness 

II 

Mach number t 

local radius of longitudinal curvature w 

momentum thickness Reynolds' number   6 

boundary layer velocity thickness 

boundary layer momentum thickness 

boundary layer energy thickness 

boundary layer enthalpy thickness 

inverse longitudinal curvature 

density 

shear stress 

Coles' wake parameter 

r     kinematic eddy viscosity 

Subscripts 

aw    adiabatic wall 

o     supply header condition 

t     local stagnation condition 

property evaluated at the wall 

property evaluated at y = 6 

reference condition, property evaluated 
external to the boundary layer 

Superscripts 

indicates "ideal" property, calculated using 
measured p, constant pt = p0 and Tt = Tt.^; 
also indicates fluctuation component 

(' )   time averaged quantity 

* Aerospace Engineer 
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1. JNTROIM/LTIOS 

Recent .ipplication of numerical techniques to obtain solutions to the boundary  layer equations has 
focused attention on the need for accur.Ue,  detailed mcasurenents of bounöan-  layer characte»-istic3.    The 
proposed numerical procedures for the compressible turbulent boundary layer cannot be properiy evaluated 
because data available are not sufficiently nccurat,, detailed or comprehensive. 

Data existing in the  literature for the supersonic turbulent boundary  layer in an adverse pressure 
gradient are particularly poor.    This is due to difficulty experienced in obtaining reliable teit  conditions 
and due to the fact that the measureraents reported have been incofnlete.    Measurements of wall sn. ar stress 
have not been reported for the configuration of this experinent and neasurenents of the static prtssure 
profile through the boundary layer have been either omitted or of insufficient det?il and accuracy. 
References  1 and 2 report measurements of the supersonic turbulent boundary Hyer characteristics along a 
surface with  longitudinal concave curvature. 

This experiment has been conducted with the objective of obtaining a good quality flow that could be 
measured accurately and would enablt a complete set of raeasurements to be taken in sufficient detail to 
reveal the physics cf the mean flow.    Beyond the experimental objective,  the intent is to use the data 
to further basic understanding of the supersonic turbulent boundary layer. 

2. THH EXPORIMENT 

2.1 Test Facility 

The experiment was performed in Supersonic Wind Tunnel No.  2 of the Ballistic Research Laboratories, 
Aberdeen Proving Ground, Maryland.    This is a continuous operating, asymmetric,  flexible nozzle research 
tunnel.    The test section sire is 6 x 6 indies and extends  for 22 inches beyond the nozzle exit.    The test 
section boundary 1 lyer is a fully developed turbulent boundary layer approximately one inch thi-k that has 
developed naturally along a smooth flat surface. 

2.2 Model 

An isentropic ramp model was ':sed tu create the region of adverse pressure gradient.    The model was 
designed to create a strearawise pressure gradient severe enough to measure accurately but not severe 
enough to cause the formation of a shock wave in the vicinity of the measuring stations.    The contour was 
calculated using Prandtl-Meyer turning angles.    No attempt was made to adjust the model contour for 
boundary layer growth. 

The front edge of the model had a thickness of 0.010-inch.    When mounted in the test section, the 
front edge was glued to the floor of the tunnel and lacquer putty used tc form a smooth transition from 
the tunnel floor to the surface of the model.    The model was instrumented with six 0.040-inch diameter 
static pressure holas drilled normal to the local surface at one inch intervals along the centerline.    In 
addition, eleven 0,02S-inch diameter static pressure taps were located off centerline at the  last three 
stations on the model.    The model and its' position relative to the nozzle exit is shown in Figure 1. 
Also shown is the location and desigüotion of the test stations and the wall thermocouple which  is 
positioned 0.050-inch below the test surface of the tunnel. 

WU.L 
THERMOCOUPLE 

STREAM DISTANCE 
FROM NOZZLE 
EXIT N MCHES 

8.0 

STATION  6    8   10 
MODEL 

Figure 1.    Location of Model and Test Station Identification 

,3    Procedure 

The profile surveys of impact pressure, static pressure and recovery temperature were made during 
separate test  rims since the survey mechanism could accommodate only one probe at a time.    The survey 
mechanism was designed to traverse the boundary layer at an angle perpendicular to the local surface.    'Tie 
tunnel was allowed to cone to equilibrium with the surrounding room conditions as  indicated by the wall 
temperature thermocouple before any data were taken.    The probes were positioned and data recorded 
manually.    Data was obtained for three values of tunnel total pressure at a tunnel  total temperature of 
SbO  R,    Tunnel total pressure variation was  less than t  .2S'i and the tunnel   total temperature was 
controlled within t  1°F or ±  .18%.    Assuming a wall recovery factor of 0.38, the ratio (Tw - Taw)/Taw ■--. 
0,021 shows  that the wall was closely adiabatic. 
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2.4 .'nstruraentation 

The inpact probe used hau a tip upenine th.it was 0.060 x O.SOS-indi with a  lip thickness anproxi- 
isately 0.001-inch.    The tütic wa.«  flnrrened in a manner that i'f;ah!e<5 ncasurcnents to t.e rvide »ithin 0.003- 
inch of the wall. 

Static pressure probes were constTUCU'd in tuo confiR:irations,  flat plate and cone-cylinder.    These 
proves arc shown in figure 2.    The flat plate probe was a 0.125-siich thick steel plate with a 20 degrer 
razor shar   leading edge.    Ten 0.04ü-inch dianieter holes sere located 1.125-;nchcs  fron the laadiag edge 
and spaced y. i25-inch apart.    The bottom edge of the probe was curved tc cr.ahle it  to seat  flus'n vi th  the 
podel surface.    This configuration wis considered desirable due to the angularity of the flow over the 
curved surface of the node!.    The cone-cylinder probe was constructed with a S.nSO-inch diaiseter cylindri- 
cal body.    The haif-ar.gle of the cone portion was 10 Jcgrecs.    Two static holes of 0.0135-inch diaiseter 
were located 10 diaaetcrs downstrcao of the start of the cylindrical portion and .". -iiaoeters upstream of 
the hend where the tube connects to tbe probe support. 

Ficriire 2.    Static Pressure I'robes 

The probe used to measure the total temperature through the boundfiry layer was of a wedge configura- 
tio1      It «as constructed of iexan plastic and had a O.OOS-inch diameter iron-constantan thtrmocouple 
located at the center of the wedge tip.    The  le^sd wires were placed in a groove machined along the front 
edge and sides of the plastic wedge and covered wlt'i epoxy cement.    Only the spot welded junction of the 
thermocouple was exposed to the flow.    The recovery factor .is a function of Mach number for ihis probe 
was established by a separate test. 

The side walls of the test facility are glass permitting observation of the flow fron the nozzle 
throat to the end of the test section.    Flow visualization has been obtained using single plate laser 
interferometry and schlieren photography.    Figure 3 shows a schlieren picture of the flow over the rairp 
model.    The weak shock formed at the leading edge of the ramp nodel is visible as is the turbid structure 
within the boundary layer and the irregular outer edge.    Also apparent  '.s the decreasing boundary layer 
thickness as the flow is compressed by the increasing static pressure. 

Figure 3.    Sdilieren of Flow Over the Ramp Model 

2.5    Two Dimensionalitv 

The two dimensionality of the flow is of great concern in a facility of the type used for these tests. 
This concern is  intensified when a pressure  gradient  is  imposed on the  flow.    Two tests were conducted in 
an effort to evaluate the departure from two dimensionality for the conditions of this tost;    [1}   oil  flow 
visualization and (2) wall pressure measurements off centcrline at the last three stations o-i the ramp 
model. 

\ picture showing the result of oil  flow development over the ramp model  is shown in Figure 4. 
Streamlines along the surface of the mode] near the centerlinc do not diverge appreciably; however,  con- 
siderable divergence of streamlines near the side walls does  take place.    Kail pressure measurements on a 
line normal to the centerlins at the last three stations on the ramti model established that a rcpion 
exists  in the  flow over the ramp model,  apprnximat.ely one inch  to either side o* the centerlinc,   in which 
the  lateral pressure gradient is  very close  to zero. 
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FiRure 4.    Oil  FK« Dcvelaptent 

.6    Boundarv Laver Profiles 

Prclininary profile calculations usiiiR uncorrected cone-cylinder static pre?sure data revealed a Mach 
nuMber (trc.itt-r tiiar; tin- tunnel nozzle setting hcyond the region of the boundary layer for the first 
station on the ranp no<Jel.    This  led to calculatin« the- static pressure froi» impact pressure .neasurements 
assureinR a constant total pressure equal to the tunnel total pressure.    The profile resultinj; froo this 
calcuiatloii is shokn in Figure ? alonp with corrected cone-cylinder and flat plate static pressure probe 
data.    Th'.- solid line represents : fairinR of what is felt to be the best data. 

emi.-. S»TC mtistm 
• C«K:-SHCMT cn-urac« STMIC nKSSUK racsc 
o rt«T ri.ui STATIC Mcssuac room 
\ c^- ■ «'tc 'KM aracT HüSSAE <istmcpt-pt 

«ST  SnTKWS 
!i7. »a  "»    ix 

Figure 5.    Static Pressure Profiles 

The profile calculations were performed on the BRL digita!  computer.    Tables of experimental measure- 
ments of impact prcssurCj static pressure and recovery temperature versus distance normal to the surface 
and recover)' factor versus Mach numbe" were introduced into the computation routine.    Calculations were 
performed at the value of y corresponding to each raeasurenent of impact pressure.    A three point inter- 
polation K,;s performcii to dctcmine tfc value of static pressure and recover)' temperature at rhc specified 
value of y.    The appropriate recover)' tactor was determined by interpolation after the Mach number was 
calculated fron the Rayloi^ii pitot formula.    Knowing Mach number, static pressure and total  teraneiature; 
values of velocity, static temperature and density were calculated using perfect gas relations.    Integral 
properties; of the boundary  'aver were calculated using a trapezoidal numerrca! integration routine. 
Examples of the profile data ars shown in Figure 6 plotted versus the distance normal to the local surface. 
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Plgure 6.    Examples of Mach Number, Temperature and Mass Flux Profilos 
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Hot It'in- 'I'.-surenor.ts 

'kMSuroxTts ucrc r-jüc usinc const.int  t<T.;vr.iturc  hot  ..ire ;»ieniwic*tr>' it Station S  in the :erf> rrc?- 
surc Gradient  r\a. anJ .il  ^'t.i'ions  H",   MS .in.!  il1'  in the  flow  over the  r.inn nodci.     A tungsten wirf 
coated with putinun of U.uOOJS-inc!! di.incUT ;inii ''.Oli'-indi  length lia^ used.    Figure 7 shows an rx-innic 
of the fluctuation data plotted   is the ratio of 'Jic  local  value of the ncasurcnent to an arbitran- refer- 
ence value.    Sufficient data hav; not !>cen a-ciiiuI «ted to properly oht.iin turbulence intensities.    This 
data is considered to he preliminary; however, a very intcrestinR trend is apparent.    As the flow  is com- 
pressed by the increasinj; static prtsstire and tin   hmmdan- layer thickness decreases, a pronounced peak 
appears  in the profile of the turhulcnl  flucTnations.     A imifom renion of low  fluctuatinp signal   is 
indicated beyond the edpc of the beundan-  lay.-r huth 'or the :ero pressure gradient and the adverse pres- 
sure gradient  flows. 

v e 
ec 

o000^o% 

„ o o c 0 ° oao 

21- 

00 

STA 
O 6 
A —117 
0-- lig 
O-    1:9 

tf, o 

C2 04 06        0« 
r, INCH 

10 I 2 

l-'igure 7.    Turbulent Fluctuation Data 

2.8   Skin Friction Measurements 

Kail shea»- stress has been measured using the Preston tube technique.    The tube used here fas 0,125- 
inch in diameter.    Tests have been conducted by various researchers for the purpose of evaluating the 
Preston tube as a means of measuring local skin friction.    These tests indicate that the Preston tube can 
be expected to yield measurements of wall shear stress within an accuracy i f i  15^ for the conditions of 
this experiment.    The value of wall shear stress was calculated using Eqjation (2b) of reference 3 since 
it was established from data obtained in a test facility sinilar to the one used for this experiment. 
Also, TH is calculated from measurements of wall properties so no uncertainty is introduced into the wall 
shear stress due to the determination of th« free stream conditions.    This is particularly desirable due 
to the uncertainty in defining the free stream conditions  for the flow over the ramp model. 

The skin friction data of this report are compared to the empirical correlation of Spaldlng and Chi 
and to other experimental measurements in Figure 8.    The skin friction data of this report are approxi- 
mately   8%  and 3Si low for the zero pressure gradient and adverse pressure gradient flow respectively 
compared to the correlation of Spalding and Chi.    The correlation of Spalding and Chi predicts a greater 
value of Cf in the region of adverse pressure gradient than in the region of ztro pressure gradient.    This 
is opposite to that indicated by the experimental data. 

OTHlS EKR-»/<l«'0 
Cp  ATHIS EX(>-«p/*l>0 

»THIS EXP-«p/d«»0 
("IOC».." ueFERENCE PWERTIESI 

• XISTLER U-iM 
PSTALIUCH lhS-4-37 
CMOOAE »HARXNESS M-Z 8 

Figure 8. Skin Friction Data Comparison 
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3.     V.Ai.YSI'i OF THH LXPERIW-MAL DATA 

3.1    liquations  of Consen :it ion of Mass  xn-i Momentun 

i>-.sideral>lc cxperiaental et-idcncc has been Riven in the fom of profiler- of the wear properties 
Mac1; mmber,  Rsss  flux,   terpcraturf)  sliisinj! distinct differences  in  the profile shape:- between the  zero 

rrtssure s^jdient and the adverse pressure »faltcnt  flows,    !t is obvious that  tie nounaary layer equations 
IN appücahlc to the flow o-,-er the ramp mode!   v.ist contain terms that  include the effects of the pressure 
pradient noiruil  to the nodcl surface,  press-ire gradient  in  the sriramtisc -Jfroc'icn   in^ the curvature of 
the surface. 

Tctervin5 has derived the conservation equations ir a for» applicable to the compressible turbulent 
boundary layer over a surface with both  longitudinal and transverse curvature.    The equations were derived 
by considering the continuity equation and the Vavier-Stokes equations in their most ecncral  form.    By 
considering a two-dlnensional steady mean flow over a surface with longitudinal curvature and rostrictin? 
K to be 0(1), the conservation equations car. be written as: 

Conservation of Mass 

(1) 

Conservation of Moraentuis 

h <""' ^ [d * KV)    (pv   »   I >'v T)l = 

+ (pv ♦ A') 3u 
3y 

1 
l*icy I ♦ a 

3y 

P    3 (72 
^2) 

K 

l+<cy 
pu2 a 

ay 

Bu —TT- „x 
^     -   PU  V   ) (2) 

(3) 

The actual physical scaling, 4/R, is approximately 0.02 for the flow over the raap model. The 
importance of including terms arising from the longitudinal curvature in Equations (1), (2) and (3) will 
now be examined by numerical intrgratior. using the tabulated profile data. 

3.2 Conservation of Mass 

Integrating Equation (1) in the y direction yields 

(1 ♦ Ky) (pv * pV) - -/   |- (pu) dy (4) (pv * PV) - J   L. 

Longitudinal curvature enters this calculation only as the factor (1+icy) which is approximately 0.9S 
at / = S for this experiment. Hence, the mass flux in the y direction at y - £ is increased approximately 
2% by longitudinal curvature over the integral of the partial derivative of the streanwtse mass flux. 

3.3 Conservation of Momentum Normal to the Surface 

Since the fluctuation terms in Equation (3) were not evaluated in this experiment, the equation for 
conservation of momentum in the y direction will be considered in the following form. 

< 2        3p ,., 

w7 pu -  ?7 w 

This equation can be written in integrated form as 

•/; 
piy) = pu 

+ {      -j— pu2dy (6) 

A typical static pressure profile obtained by numerical integration of Equation (5)  is shown in 
Figure 9 compared to the measured profile.    The bars indicate an uncertainty of i 2% about the measured 
value.    The trend indicated by both profiles is in agreement throughout the boundary layer.    The profiles 
agree within +0 and -2 percent within the boundary layer, but greater divergence is indicated beyond the 
edge of the boundary layer. 

3.4    Conservation of Strearowise Momentum 

Combining Equation (J) with Equation (2) and integrating across the boundary layer yields the 
following relation. 

1Z J        epu2dy - UJBJ   |jj        pudy    J     u    J        |j   (pu)  dy       p2,cdy 

•'0 •'0 

0 
(7) 

6 
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Figure 9.    Static Pressure Profile Calculated from Mean Profile Data 

The numerical integration of the first, secoiid and fourth terns on the LHS is easily accoinplished. 
The third term, however, requires knowledge of the quantity 3/3x (pu) as a function of position throuRh 
the boundary layer.    This quantity has been evaluated along li.ies of constant mass flux using a least 
squares technique.    An eximple showing the trend of the lines of constant mass flux is shown in Figure !0 
compared with the trend of the boundary layer thickness,    it is obvious that even thouch the boundary 
layer is becoming less thick, rass is being entrained within the boundary layer.    An example of the 
distribution of 3/ax (pu)  is shown in Figure  11. 
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Figure  10.    Lines of Constant Mass Flux 

A discriminating appraisal of the effect of including corrections for longitudinal curvature can be 
made by considering the balance of streamwise integrated momentum.    By making the substitutions 

[j ' j        ßpu2dy      ,      I2 = /        pud»      ,      Ij = /     u     / 

*   0 •'   0 J   o    LJ   { 
3X 

(ou)  dy e2«:dy 

J   0 

ßpdy 

into Equation (7) and integrating the resulting expression in the streamwise direction, the following 
relation for the streamwise integrated balance of momentum is obtained. 

/b «b — b ^b ^ b *b 
dIl -J        u«^dI2 -j        hd* *j       dI4 T       h^A& - -j      \d* (8) 

liquation (8) has been evaluated numcricnlly from station to station.    An example of this calculation 
is tabulated in Table 1, where the individual terms in Fquation  (81  arc nunbered consecutively s' »rting 
from the  left. 

Table I.    Streamwise !ntej>ratt>d Muracntnm fln.-in/ft"), Equation (8) 

Sta -T, UIS RMS 

117 0 0 0 0 0 0 0 
118 46.34 68.18 0.728 15.32 4.93 2.66 1.08 
119 71,21 115.16 1.453 25.83 11.57 5.10 2.26 
120 101.46 105.48 2.151 37.90 20.46 3.51 3.55 
121 144.43 232.45 2.812 53.07 24,99 7.15 4.99 
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Ttiv result  of t"-.1"-- <-nlriil.itions  is hest ev.-ilis.itod hy plotting the  UK of iquation  (8)  versus strea 
wj5<; position.    Tins  plot  is  5ho4.Ti  in  Tijuirc  12 coojiared to the RHS.     Also .<havr  for co*j>arisoR  is  the 
rcs'iit  obtained UIKMI sotting «: = 0.     (.'•e data .ippe.ir to be consistent through Station  119; however, an 
inconMstcnc.   is  indicated at Station   120.    Ko reason  foi   thif  iixscren.-incy has baen identified in  '.he 
jTöfi !c data. 
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Figure 11.    The Distribution of 3(pu)/3x 
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STREAMWISE POSITION, INCHES FROM NOZZLE EXIT 
figure  12.    Strearawise Integrated Momentum 

The agreement shown between the UIS and RHS of Equation (8)  is not impressive and, surprisingly 
enough, better agreement is achieved by disregarding the curvature correction entirely.    T^ie lack of 
agreement between the UIS and RHS of Equation (8) can be considered to be the effect of neglecting terms 
deemed negligible in the order of magnitude analysis.    Values of these neglected terms were also deter- 
mined by numerical integration.    One term was found to provide a significant contribution.    Rewriting 
Equation (8) including this term yields 

rb «b «b «b «b »\ 
dii -j   u6e5di

2 - A  h**- A  &i* -I  w* - -j 
*     a *    a *    a «'a 'a •*     J 

T   dX 
W 

(9) 

The agreement by the LHS of Equation  (9) with the integrated wall shear stress is also shown in 
Figure  12.    It is seen that the agreement has been improved and that the IHS of Equation (9) provides 
better agreement with the RHS than that obtained neglecting the curvature correction.    It should be 
emphasized that in evaluating the LHS of Equations  (8) and (9),  the difference is taken between very largo 
numbers to yield an answer ^hat is approximately ,3% of the largest term.    'Hiis implies that the experi- 
mental profiles must be extremely accurate to achieve good agreement.    Evaluation of the streamwise 
integrated momentum provides a very discriminating check on the experimental data and is a means for 
investigating the importance of individual terms in the equations of motion in addition to an order of 
magnitude analysis.    This procedure also provides a meaiis for quality comparison with other experimental data. 
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3.5    Uu of the Kail Analysis 

The following integral relaticn for a coi>pres$ibIe l.iw of the wall is obtained by applying Prandtl's 
nixing length approxiaation to the Reynold's stress and assumnj! that the Mixing length, 1 • K y. 

loge (y ) ♦ C (10) 

A coapirssiMe "law of the wall" and "law of the wake" c?« be formed using Equation (10) by substitu- 
ting values for K and C that have yielded good corrtlatioo of inconprcssiblc turbulent boundary layer 
data.    An expression lii.king the "wall law" and the "waVe law" is; the logaritlwic region of overlap can be 
wri tten as 

= 2.S log    fy ) * S.l ♦ 2 ' IT .   (y/S) (ID 

where u is Coles' wake function which can be approxinateu by a s 2 sin    (iry/2«) and H, Coles' wake para- 
neter, is to be determined.    Values of H have been determined fro« the expe rinental ilata by evaluating 
Equation (11) at y = 6.    The values obtained are shown plotted "ersus Mach nimber and ironentua thickness 
Reynolds nueaber in Figure 13. 
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Figure 13.    Values of H, Cole:!1 Wake Parameter 

The zero pressure gradient data saow a slight tendency for n to decrease with increasing Re9.    The 
data for dp/dx > 0 exhibit the trends of n decreasing with increasing M and decreasing with increasing Se^. 
The trend of n decreasing with increasii g M agrees with the trend indicated for the transformed variables 
of Baronti and Libby6 who considered data for dp/dx = 0.    However, the trend noted by Baronti and Libby of 
n increasing with increasing Reg is opposite tc that indicated by the adverse pressure gradient data of 
this report.    The change in value of il with M and Re- is insignificant compared to the change in value 
with the change in flow configuration.    Since I! is considered to be constant for an "equilibrium" turbulent 
boundary layir, the change in n along the ramp model (which is the same as the variation with M) can be 
considered to be a "relaxing" effect.    Representative values of n for dp/dx = 0 and dp/dx > 0 are 0.90 and 
2,10 respectively.    TTiese values are both high compared to the value of 0,55 which has been found to yield 
good correlation of incompressible zero pressure gradient data for sufficiently high values of Re , 

Examples of the correlation achieved Lising Equation (11) are shown in Figure 14,    The slope of the 
logarithmic line agrees well with the experimental data; however, the value of 5.1 is too high for dp/dx 
= 0 and too low for dp/dx > 0.    Values for this constant have been calculated by evaluating Equation (10) 
at y/6 «: 0.1.    The values obtained for C ai-e shown in Figure IS plotted versus M and Reg.    The data for 
dp/dx = 0 show no dependence on Ree.    The data for dp/dx > 0 tend to increase with increasing Reg and 
decreasing M.    Representative values of C for dp/dx = 0 and dp/dx > 0 are 4.7 and 6.1 respectively.    This 
represents a small correction to the value of u++.    The uncertainty in C can be accounted for by an 
uncertainty in the wall shear stress.    As an example, it was found that increasing the wall shear stress 
by 104 resulted in agreement with Equation (10) at y/« es 0.1 for a typical profile on the ramp model. 
This is comparable to the accuracy of the experimental determination of wall shpar stress using the 
Preston tube technique. 

A "wake law" can be formed using Equation (11) as 

2.5 ioge (y/s) + 2.s n (2 - ui) (12) 
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Figure 14. Compressible Law of the Wall Velocity Profiles 
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Figure 16.    Velocity Defect Data Correlation Figure 17.    Integral Properties of the Boundary Layer 
for the Flow Over the Rawp Model 

Figure 16 shows an example of the correlation achieved using Equation (12).    The agreement is 
considered to be very satisfactory. 

3.6    Integral Propertie;- for Flow With Significant Static Pressure Variation Normal to the Surface 

Conventional definitions of Hie integral properties of the boundary layer must be modified when con- 
sidering flows with significant static pressure variation through the boundary layer due to the lack of a 
free stream region with constant properties.    The n*ed to modify conventional definitions of the integral 
properties has been recognized by other researchers^, but no agreement as to the best interpietation has 
been reached. 

The integral properties are defined here by considering the flux deficit appearing within the boundary 
layer referenced to "ideal'' proptjrtic-s calculated using the experimentally determined static pressure pro- 
file.    The integral thicknesses are referenced to the ideal properties at the wall.    These definitions 
reducs to the classical definitions of the integral properties for the case of constant static pressure 
through the boundary layer.    The integral properties according to this interpretation are 

displacement thickness vC6*'= /     ^p'u/" pu^ dy 

J   0 
(13) 

rcomantum thickness 

energy thickness 

pj (u    - u) dy p'u'V = / Hw w / 
•'   0 

/" 
pu (u     - u ) dy 

0 

(14) 

CIS) 



velocity thicknesi u«*u s /        (u   " u) d>' 
J   0 

•.0.1! 

;IM 

enthalpy thickness c o'u'T'8'  » / p w w w Jl     / 
*    0 

C   P'l 
P 

(T - T') dy (17) 

whertr the ideal properties p', u , T', are calculated fro« the measuied stat c p  .ssurc profile assioiins 
constant total tepperature equal to the value in the free stream and constant total pressure equal tc the 
tunnel total pressure.    The integral properties according to this interpretaMcn  ire  -Uustrated in Figure 
17.   The profiles in Figure 17 were formed using the experimental data and acrui-af •■   represent the 
aeasured flux of the quantity indicated.    The definitions given above for j*'snd i'    .ie identical to those 
of McLafferty and Barber1.    The only difference is that McLafferty and Barber infen ul a static pressure 
profile froa neasureaents of tunnel total pressure, impact pressure and wall pressure while aeasured 
values of static pressure are used here.    An importaiu feature of this definition is that the intfjral 
thickness does not depend upon the value chosen for the boundary layer thickness since the ideal p-vnperties 
becoae ideneical to the actual properties near the edge of the boundary layer. 

The integral thicknesses were calculated in two ways for the adverse pressure gradient data:    (1) 
using the calculated "ideal" properties for reference as discussed above, anc [1; using msasured values of 
density and velot-ity at the position of maximum mass flux for the reference v«'.ue«.    The integral thick- 
nesses are collared in Figure 18.    The boundary layer thickness, *, is the po-it.on of maximum «ass flax 
for the adverse pressure gradient profiles and the position for u = .995 u       for the zero pressure 
gradient profiles. 

It is seen that d4*'/dx has a steeper slope than d6*/dx.    In contrast, the slope of de/dx is steeper 
than de'/dx.    The shape factor. H', changes considerably along the raap model while H changes but slightly. 
The velocity thickness is the only integral property that does not exhibit significai'-ly different behavior 
for the two methods of calculation.    These results indicate that calculation procedures employing integral 
relations can yield questionable results when regions of significant static pressur.« variation normal  to 
the surface are encountered. 
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Figure 18. Integral Thicknesses Versus 
Streamwise Pjsition 

Figure 19. Shear Stress Profile 

3.7 Eddy Viscosity and Mixing Length Distributions 

The distribution of eddy viscosity or nixing length is used as an input to computation schemes for 
predicting turbulent boundary layer development. In the absence of direct measurements of the shear stress 
distribution for the conpressible turbulent boundary layer with which to determine the eddy viscosity or 
mixing length distributions directly, Haise and McDonald^ reported a series of computations that involved 
a law of the wall velocity correlation and numerica] integration of the boundary layer equations. The 
results obtained by Maise and McDonald have been widely used and seemingly confirmed by the success of 
boundary layer computation procedures using these results. 

In order to calculate the eddy viscosity and mixing length distributions directly from mean profile 
data, it is necessary to calculate the distribution of the shear stress and the derivative du/dy. The 
shear stress distribution has been calculated using the relation 



IO-i; 

T(y) Tw  *     2?    J eii''dy - U / pud>' (18) 

where the substitution 
f 

26 

has been invoked.    The derivation of bquation (18) involve-; the casunptiai of similarity (which is net 
satisfied in a turbulent bcuidary layer).    Meier and Rotta^ used a siirilar iclation and give a discussion 
of the inaccuracies involved.    The result achieved using the profile data of this experiment is shown in 
Figure  19 coapared to the profile of reference 7,    The profiles are essentially identical out to y/i «t 0.6 
where an inflexion point occurs for the data of this experiment.    Also, the shear stress approaches zero 
asymptotically beyond y/6 =  1 in contrast to the profile reported in reference 7. 

The velocity derivative, du/dy, has been detennined directly from the mean profile data using a 
central difference technique.    Figure 20 shows examples of the result obtained for both dp/dx = 0 and for 
the flow over the ramp model.    These profiles reveal significant differences between the two flow situa- 
tions.    One indication is that the production of turbulence energy, which is proportional to du/dy, is 
greatei in the wake portion of the boundary layer for the flow over the ramp model than for the rero pres- 
sure gradient flow.    This agrees with the trend of the fluctuation data obtained. 
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Figure 21. Mixin? Length and Eddy Viscosity 
Distributions 

flic shear stress and velocity derivative distriiiutinns have been combined to calculate the eddy 
viscosity ami nixing  length distributions  according to the  folluwing relations. 

_ p   (du/dy)^j 

1/2 
(19) p  du/dy 

(20) 

These ilistributions arc shown in Figure 21.    The mixing length distribution shows excellent agreement 
wich the well accepted relation I ~ 0.4 y near the wall; but the  level of the plateau is significantly 
less  than tho value  reported in  reference  7 of 0,09.    The behavior beyond y/6  = 0.6  is questionable due to 
the tlecreasod accuracy for determining du/dy and the point of inflexion in the shear stress profile.    The 
distribution of eddy viscosity shews qualitative agreement with that of reference 7 although,   like the 
mixing  I'-'iigth,  the magnitude of the peak value and the behavior in the outer wake are different.    Although 
not  shown hero,  a Reynolds nunhcr dependence  for the mixing  length and eddy viscosity distributions 
greater than that  repotted in reference 7 were obtained in these calculations, 

1.     OiiJCLIISlüNS 

An experimental   investigation of the supersonic turbulent boundary layer in a region of moderate 
adverse prossure gradient created by a two-dirensional isentropic ramp model has been conducted at a Mach 
number e.C 3.,r>  for a cioseiy adiabatic wall.    Values of ■nomentum thickness  Reynolds number ranged from 
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t 
l.y to 4.2 x  10  .    All  the parameters needeJ to enable calculation of a con.-ilete set of mean profile 
cii.iracteristics have i>cen measured.    Analysis of the oxpcrirvntal data has  led to the following 
conclusions. 

(1) Corrections for longitudinal  curvature to the equation for conserva'ion of streasnwise momentura 
represent small corrections  to the individual terns involved; hut the corrections ar« of the same order of 
raagnitude as  the contribution of the wall shear stress. 

(2) ■n«; conservation of raomenum normal  to the surface is adequately represented by the balance of 
centrifufil  force by the normal pressure Rj-adicnt. 

(3) Tie int-gral compressibility transformation defined by Equation (10)  yields good correlation of 
the experimental data with the "law of the wall" and "law of the wake" written using values of "universal" 
constants that have given good correlation of incompressible turbulent boundary layer data, 

(4) The value of the skin friction coefficient for the flow over tne ramp model is 20 percent less 
t'.an that for the zero pressure gradient flow irmediately upstream of the ramp model. 

(5) The distribution cf the velocity derivative, du/dy,   through the supersonic turbulent boimdary 
layer for flow over the ramp node! is significantly unlike that for the zerc pressure gradient fiow. 

(6) The distributions of mixing length and eddy viscosity calculated from the experimental data ate 
similar in trend to that reported by Maise and McDonald; however,  the peak values reported here are 
significantly   less. 

(7) The prof;le of turbulent fluctuations exhibits the trend of becoming more peaked near the edge of 
^undary layer as the flw' develops over the raiup itodel.    This is in sharp contrast to the nearly 

ci    .ant profile observed in the zero pressure gradient flow. 

More details concerning the experiment are available in references  12 and 13. 
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Stollery 

SUMMARY 

The growth of a ccjpressible turbulent boundary layer over flat plate and compression corner models 
ha« been studied at a Mach r.imbcr of 9 in Che I^.c'Lai College No.2 Gun Tunnel.  Local Mach numbers 
between 3 and 9 were achieved so a flat plate by arying the incidence from 0 to 26.5°.  The local unit 
Reynold« nic&ers used veie between 1.5 * lO1' and 7 x 10s/cia.  The oeasurenents, which include pressure 
and hear, transfer rate distributions and pilot  pressure profiles across the boundary layer, extend the 
range of casting dsita and are used to test sense current prediction methods and to emphasise some features 
of lower Mach number flews.  Heat transfer rate distributions at Mach numbers of 3, 3 and 9 show an 
increasing discrepancy between ^^-»riment and theory as the Kach number rises, the data being higher than 
the prfedicred value but approaching it asymptotically with increasing moroentum thickness Reynolds nuaber 
(Reg).  The boundary layer profiles taken at Mach 9 grew fuller as Reg decreased; both ot these 
results are associated with the slow development of the wake component of the turbulent boundary layer 
profile at high Mach numbers. 

The effect of an adverse pressure gradient has been studied using a compression corner and it has 
been shown that large deflections are needed to separate the turbulent boundary layer am.' that the 
upstream influence 'f the corner and the effect of wall temperature arc small. 

LIST OF SYMBOLS 

Cf 

Cf 

Cp 

Fc 

H 

L 

M 

P 
I 

1 

Re 

St 

% 

skin friction coefficient 

Cf at start of interaction region (Eq A) 

pressure coefficient 

Spalding-Chi empirical functions (Ref.2) 

total enthalpy 

length of flat plate to the hinge line 

Mach Number 

pressure 

heat transfer rate to the surface 

Reynolds Number 

Stanton NuiAer, 4/p»u„ (Hr - H,,) 

u velocity 

x distance from the leading edge along the 
plate 

xt x to the transition point 

y distance normal to the surface 

a flap angle 

P energy thickness 

6 boundary layer thickness, y ar M « 0,99}^ 

fj, i  evaluated at hinge line 

6 momentum thickness 

p density 

SUBSCRIPTS 

reservoir 
freestream 
Eckert reference value 
edge of boundary layer 

i, INC incipient 
r adlabatic 
w     wall 

1. INTRODUCTION 

Most compressible turbulent boundary layer studies have been conducted at supersonic Mach Numbers so 
that beyond M-5 there is little data.  This is in part due to the rapid increase in transition Reynolds 
Number with Mach Number which makes 'long runs' of turbulent flow difficult to achieve in hypersonic wind 
tunnels.  However, the Imperial College No.2 Gun Tunnel, the design and performance of which are 
described in ref.l, was specifically built tc generate hypersonic, high Reynolds Number flows.  The 
present investigatioiis were undertaken to extend the range of existing data, to test some eueren, 
theoretical predictions over a wide range of Mach Nunbers and wall conditions- 

2. PUT PLATE BOUNDARY LAYER STUDIES 

Heat transfer rate distributions at Mach Numbers of 3, 5 and 9 were obtained over flat plates, with 
sharp leading edges, instrumented along the centre line with nhin film platinuuron-glass resistance 
thermometers.  Two models were used, one 12-7 cm wide and 30 cm long, and a larger one 17*7 cm wide 
and 76 cm long.  Local Mach Numbers of 3 and 5 were obtained in the same facility by inclining the 
shorter flat plate at 26>5° and 15° respectively to the Mach 9 test flow.  Turbulent compressible 
boundary layer behaviour at low Mach numbers is adequately predicted by theory so that the Mach 3 data 

This work was sponsored in part by the Ministry of Aviation Supply under Contract AT/2037/057. 
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could be used as 3 standard for coaparisor. with theory.  AC Hach ?  transitiur occurred very clos<-  to the 
leading edge and the raw data  (fig.l) coop^re well with the predi-.tions ot Spa.ding sni Chi (ref.l).      At 
Hach 5 transition moved dovwtrean, being closer to the leading edge at the higher unit Reynolds Nicaber 
test condition (fig.2). 

Mach 9 data were lAKJined froo the larger fiat place; results for three unit Reynolds Numbers under 
natural cransition conditions are shown in fig,.}.  To extend the turbulent Reynolds üunfcer range covered 
in tiit tests further Mach 9 data were obcained by tripping the fl-.* us.ng a row cf delta-shaped vortex 
generators  ) ess high ard 3 am    apart placed 1 en from the leading edge zt    30°  to the flow direction. 
For both the highest and lowest unit Reynolds Sunber tests the effect of the trip was to aove transiticn 
ur treaa, almost Co ehe trip position; this is clearly seen in fig.A.  To analyse the tripped data, the 
resulcs had to foe matched with the untripped data.  This was done by fitting the teat  transfer 
distributions as far downstream as possible, as indicated in figs. 3 i.nd 6,  thereby effectively 
'lengthening' the flat plate. 

The difficulty and inacciracy of defining a virtual origin for ; » turbulent boundary iayer was 
avoided by calculating the energy thickness r by numerical integration of the heat trarssfei rate 
distributions. 

Thus ,*! 
q(«)dr I 

Pe Ue^e-V 

For the Clipped flow r was assumed to be the same as for th.' •..itrippfd data at the matching point and 
then T determined by working upstream and downstream of this [.o.nt using fq (1;.  The monentua 
thickness was calculated from Che relacion 

Re^ 
(2) 

Rer 
e   "  ' ̂ StlTHr-Hy' 

where the Reynolds analogy factor (2St/Cf) was taken as 1-16 and Che recovery factor r as 0*9 
throughout. 

AM Che he«c transfer caCa are plotted against Reg in fig.3.  A comparison with data from ether 
sources is made in ref.3.  Jn fig.6 all our turbulent dat£ have been ronverted to equivalent incompres- 
sible values using the empirical Mach nunter dependence given by the theory of Spalding and Chi.  It is 
clear that the good agreement between this theory ard the experimental data at supersonic "ach Kumbers is 
not maintained under hypersonic conditions.  The high Mach Number data lie above the predicted values, 
the discrepancy being greacesc 4t low values of Rej.  This is probably relaced to the slew de/elopment 
of the waks compjucu n    in the  turbulent boundary layer velocity profile.  A siore detailed discussion 
of this point is given in ref.fc .here it is suggested that ac hypersonic speeds the fully developed or 
asymptotic profile will only be reached ac large values of Keg; for example ac a Mach Number of 6, Beg 
muse be in excess of 20,000 for adiabacic wall conditions.  The report indicates that for lower values 
of Ree the skin friction and htat transfer coefficients could exceed the Spalding-Chi values by as much 
as 15Z.  It is of interest to note that with reference to fig. 6 our Mach 9 heat transfer data are 13Z 
high just uiAmstream of transition.  However, at Mach 3 there is good agreement wicii theory and only 
slightly poorer agreement at Mach 3. 

Boundary layer pitot pressure profiles were measured at a Mach Number of 9 using a rake assembly 
74*2 cm from the leading edge of the large fl't plate;  the accuracy of data close to the wall was 
limited by probe size.  The resultant Mach Number profiles for three values of Reg (fig.7) are typically 
turbulent in shape and become fuller with decreasing Reg;  this effect is again attributed to the 
increasing strength of the wake component as Reg increases.  The differing shapes of the outer part of 
the boundary layer are clearly seen in the velocity profile plots of fig.8, obtained by assuming the 
Crocco linear temperature relation with a recovery factor of 0-9.  The magnitude of the weke component 
can be estimated from this figure by considering the ratio of the ovejshoot from Che log line to the slope 
of the log line.  Difficulty arises because of uncertainty in determining these quantities; however, for 
our data :he estimated value of rt increases from zero at Reg " 4000 to 0'05 at Reg » 16000; the 
latter result suggests that at Mach 9 under cold wall condition» Reg must be considerably in excess of 
16000 for a turbulent boundary layer tu be fully developed.  This is consistent with the suggestions made 
in ref.4. 

3.  COMPRESSIBLE TURBULENT BOUNDARY LAYERS IN A STRONG AOVERSE PRESSURE GRADIEKT 

The effect of a strong adverse pressure gradient was studied ac Mach 9 using a sharp flat p.'ar.e plus 
trailing edge flap instrumented for surface pressure measurements along ehe centre line.  The wall 
temperature could be varied within the range 2930K S Tw S 770°K and held to + 10°K over the model by 
means of an embedded electric heating eiement. 

The effect of increasing flap angle on the surface distribution is shown in fig.9, from which it is 
seen that large deflections are needed to separate the turbulent boundary lay^r.  Separation has bear, 
detected by looking for a 'knee' in the pressure distribution.  Judged in this way the flov at a ■ 30° 
is attached and there is an upstream influence of less than a single boundary layer thickness.  At higher 
angles a pressure plateau of increasing length rapidly develops, followed by a pressure overshoot which 
ircreasas as the flap angle is enlarged.  An incipient separation angle of 30° was obtained from a plot 

of separation length ahead of the hing? line against a. 
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The influence of wall teaf>er*ture an  incipient separation appears incll but adverse, i.e. heating 
the wall proaotes slightly earlier stpiration (fig.10).  In a well separated flow there is a similar 
effect - raising the wall teaperaturc «lightly increases the extent of t;.e separated region.  Fig. 11 
shows that the Reynolds uuofaei effect ••»c attached flow is negligible, however ra.'.iing the unit Reynolds 
nuafcer aarkedly increases the separated length of a well-separated flow. 

Fig. 12 shows our results added to a recent collection of incipient separation iii.» by Roshko and 
Thoake (ref.S).  The Reynolds nuafaer is based on S at the hinge line either as measured or as calculated 
from the formula 

<M34(I.-K ) 

'<■ —If,   ■ »> 
[^fel'-] 

taken from ref.9.  Our data show a much weaker dependence on Reynolds number than that shown by Kuehn's 
results, though both show <»£ decreasing with Re«.  Roshko and Thoake's results at a ouch higher Rej 
show the opposite trend; these differences may be associated with the slow development of the woke 
c3Ef>cnent of the turbulent boundary layer velocity profile. 

A successful empirical correlation of the pressure rise to incipient separation is shown in fig.13; 
this is discussed further in ref.3.  In all cases the value of Cf , the skin friction coefficient at 
the beginning of interaction has either been measured cr calculated from ruf.9, using the relation 

-       - 0-058 w 

r       i1/5r    fT     ) I0"65 

h-«J  Hfr1)*0-0**! 
The correlation of fig.13 is redrawn in fig.14 to show the behaviour cf a^ with N under adiabatic wall 
conditions at an effective Reynolds number of 4 x10s.  The pattern of the raw data scaled to these 
conditions is in sharp contrast to the prediction of Todisco and Reeves' eoment:an integral theory (ref.10). 

Incipient separation must basically depend on Mach Number, Reynolds Humber and wall temperature 
ratio.  The correlation of fig.13 adequately accounts for the effects of M and Tw/T0, but not for the 
diverse Reynold« Wuafcer trends of fig.12.  A recent analytis of incipient separation conditions for the 
hypersonic case (ref.ll) using theoretical boundary liyer profiles given by Green (ref.12) suggests how 
the Reynolds Ntnfcer reversal tread may be associated with the development of the wake component. 

4. CONCLUSION 

A Gun Tuynet has been used for turbulent boundary layer studies in the Mach Niodier range 3 to 9. 
There is an incroasicg discrepancy between measurements of heac transfer and the predictions of Spalding- 
Chi theory as the Mach Number is increased.  This is connected with the slow development of the wake 
component of tbf» turbulent boundary layer velocity profile as the Mach Number is increased.  At very high 
Mach Numbers '.t will be extremely difficult to achieve turbulent boundary layers which have reached their 
asymptotic beiaviour.  The effect of a strong adverse pressure gtadient an a compression corner has 
demonstrated the ectreme resistance to separation of the turbulent boundary layer. 
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AN KXPER1MEKIA1-   INVEST SCAT ION OK THE TURBULENT flOUNPASV lAYER A'^SG A STRtAMWBE CORNER 

by 0. 0. Mojola    and A. D. Young 
queen Mary College,  Univeriity of London. 

Mile End Road, London E.l. 

SIMKARY 

A selection of the results are presented of an extensive experimental investigation of steady 
incompressible turbulent boundary layer along a smooth 90-degree streawise coiner, formed by a pair of 
identical intersecting flat plates, with the freestreaa velocity directed parallel to the comerline. 

Oi-nailed explorations of the flow, wich and without external pressure gradients, included the 
determination of static pressure fields, t.,c mean velocities, wall shear stressee, and the components 
of the Reynolds (turbdent) stress tensor. 

A secondary flow towards the corner along the plane of synoetry and outwards from it close to the 
walls forming the corner is a vital and characteristic feature and is cleurly reflected in the mean and 
turbulence flow measurements.  In particular it aodifies the relations between the shear stress compo- 
nents  and turbulence energy and mean velocity distribution so as to make any simple extension of current 
methods of turbulent boundary layer prediction unlikely to be applicable in such a ilow. 

SOTAT ION 

n v     density and kinematic viscosity of the fluid 

x, y, z     a right-handed rectangular system of coordinates with origin at the comer leading edge, 
x along the cornerline and y, z parallel to the walls 

U, V, '.-'     mean velocity components in the x, y, z directions respectively 

u, v, w    the corresponding velocity i'!sictuations 

p, p       mean and fluctuating static pressure 
2 

Cp        pressure coefficient, (p-p c )/iP U  , 

o «., Uj Reynolds stress components 

rw local wall shear stress ^(i V^j or /*•(•* W**,^.,, 

Xwi" asymptotic value of Tw in an effectively two-dimensional bordering region far from the corner 

h% boundary layer thickness in tha plane of symmetry measured along the corner bisector 

^ boundary layer thickness in the 'two-dimensional' region well away from the corner 

U„ local freestream velocity just outside the boundary layer 

pref.'  ref.  reference pressure and velocity, respectively 

1.   INTRODUCTION 

A progranne of work is currently in progress at Queen Mary College, London, directed at investigating 
boundary layer flows inside streamwiss corners as part of the more general problem of the flow in wing- 
body juocciotlw.  Fart of this programme on laminar and transitional boundary Itiyer flow in a streamwise ; 
cornur aas already been reported by Zamir and Young f24 7.  Thsy found that even in zero pressure gradient        i 
there vere marked changes of velocity profile in the laminar boundary layer with distance downstream             i 
associated with the development of a secondary flow.  This secondary flow was towards the corner close to 
the plane surfaces forming the corner and oiitvards from the corner in the plane of symmetry.  This is in 
fact oopesite in sense to that demonstrated by various workers who have investigated turbulent flow in a 
streamvise corner, including the results reported here, and Zamir and Young showed by a flow visualisation 
technique the reversal in the direction of the secondary flow as the boundary layers passed through transi- 
tion from lamina-.- to turbulent.  This transition process occurred in the corner at a local Reynolds 
number Cin terms of the distance from the leading edge) of al-out 2 x 10 .  Zamir and Young noted that the 
extent of the Corner influence with the flow laminar was con;ined to about two boundary layer thicknesses 
from the corner, and that an adverse pressure gradient readily induced separation, whilst a favourable 
one tended to delay the process of transition but did not alter its character. 

The present paper reports briefly some results obtain«J vith the boundary layer flow turbulent. 
Most of the investigations of turbulent corner flows to d .a T1-22Jhave been concerned wiih fully 

* Research Assistant, Imperial College, ** Professor of Aeronautical Engineering, 
formerly Quetn Mary College. Queen Mary College 
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developed or developing ilows in closed or open conduits of non-circular section; here uc ire concerned 
with the basic case of a streacwise correr firi»«d by two elates at right angles to each other and of span 
limited only by the geometry of r.he wind fini.il in -»!uch ehe tests were made.  This inveüigation included 
Dcasurements of the war.  Tlow as well as of the turbulent v.'ocity c-japonents and Reynolds stresses for 
zero pressure gradient ard with an adverse streamuise pressure gradient. 

2-       EXPfiXMENTAL FACILITIES AND TECHNIQU'-S 

The ,.rogranroe has been carried out in a low spted closed-circuit wind tunnel with s  freestream 
turbulence level of about 0.03 per cent.  The corner oodel and traversing gear used were the same as those 
used by Zamir and Young and described in Re?.2^. 

Briefly, the corner model consisted of two identical smooth flat plates made of mild steel, fitted 
with 127 mm chord aerofoil-shaped leading edge units and wooden spanwise extensions, and joined to form a 
sharp 90-degree streamwije corner.  Each inteisecting surface had a total chord of 1.32 m and a span of 
0.61 m.  To obtain very good symmetry of flow variables about the bisecting plane, the model was synmet- 
risally mounted in the tunnel working, rection, as indicated in Fig.l. 

Im 

WIND TUNNEL 
WORKING SECTION 

Figure 1.  The Experimental Set-up (not to scale). 

The traversing gear had 2 micrometers for fine lateral adjustments (to within 0.025 mm) and rotary 
handles for coarse movement in the streamwise direction and slow yawing of the probe's vertical support 
about its axis. 

Two streamwise rows (at 0.089 m and 0.203 m from tbs corner) of 0.81 ma  diameter static pressure holes 
set in the surface of each steel place and additional static holes on a third corner plate (made out of 
perspex otherwise identical to the steel plates) allowed very detailed measurements of the wall static 
pressure field to be made, as close as 2.5 mm from the corner.  A 0.71 nm diameter static pressure tubt of 
conventional design was used to measure the static pressure variation across the corner boundary layer. 

Streanwise mean velocities were determined using both total head tubes and single normal hot wire 
probes;  the results obtained with the two instruments generally differed little. 

The Preston-tube technique was adopted in the form suggested by Patel [23] for the measurement of 
wall shear stresses.  A .otal head tube with outside and inside diameters of 1.19 ram and 0.84 mm v^s 
generally vised, but in a number of cases another tube with outside and inside diameters of 0.41 am and 
0.18 mm respectively wan also used to check for consistency of results obtained with tubes oi: different 
diameters and diameter ratios. 

.leasurements ofv .W, antl "iti were made usin-i nonl inearised constant temperature anemometers Type 
55A01 and Analog Correlatoi" Type 55D70, manufactured by DISA Electronics (Denmark).  The DBA line of 
prob&a was also used;  this included the miniature single and X-wire_Drobes for thejiefermination of U 
and u.1 , and the miniature X-probes for determining Vj /fj v\  W* UV, u W   and Vw     . 
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3. A PRELIMDAHY PROGSAMKE 

In a preliminary experimental progranans, exploratory measurements of a turbulent corner layer j 
developing naturally from an ir.jliai laminar flow in a nearly zero pressure gradient were aiade.  With 
a free strean. velocity o£ about 30 m/s and a turbulence level of 0.03 per cent, turbulent bursts  - -| 
appeared first at the coiner at iiboul 0.15 m from,the leading edge, corresponding ci>lye/Va, 5 x 10 , 
which is a little higher than the value of 2 x IC , reported by Zamir and Youngt 24] based on their 3 
rather more detailed measurements of the transition process in a comparable pressure field and fret | 
stream turbulence. I 

-. 
Although the flow in transverse planes V-Z plants) was partly laminar and partly turbulent over 

most of the chord, detailed measurements within the turbulent 'tongue' well downstream of the corner | 
transition point were foui.d to be very sinilar to the subsequent results obtained for the artificially | 
induced turbuljnt layers, which form the subject of the main programme. j 

i 
4. TUE MAIN PROGRAMME 1 

; 

4.1 Scope and design of ;he experiments. ;i 

Transition was artificially provoked by means of a 25.4 mm wide sandpaper scrip spanning the entire 
corner model.  The roughness height, including the strip thickness, was about 0.75niB; with its up- i 
stream edge 25.4 mm downstream of the corner leading edge, it was possible to realise away from the I 
corner, in constant pressure, an asymptotic two-dinsensionai layer growing as   x '  approximately. ) 

Very detailed studies of ehe corner region were conducted in two pressure fields (Fig. 2, a, b, c): 
one case of practically cons'■">t pressure obtained by simply setting the cornerline parallel to the free- i 
stream, and one case of an ad-.'jrse pressure gradient induced by means of a vertical V-shaped trailing- 
edge flap.  It should be observed that in the former case the wall static pressure is indeed practically 
constaut over much of the working surface;  in the latter case there are spanwise variations in pressure • 
reaching a maximum of about 6.2 per cent of Jc U  , at x » 1.165 m. i 

4.2 Static pressure within the boundary layer. 

In the case of practically uniform free stream pressure, the stat-ic pressure variation within the 
boundary layer in the corner was measured at a number of x-stations;  a typical pattern of ''sobars is 
indicated in Fig. 2d.  It can be seen that the general tendency is-for thj pressure to increase towards 
the outer edge of the boundary layer, the maximum value of A p/J JU  being about 0.01~0.03, which agrees j 
well with the findings of Leutheusser I 16] for rectangular ducts and of Bragg Ili) for the semi-infinite j 
corner boundary layer.  No correctioas have been applied to the present data for any possible effects of | 
transverse mean and fluctuating velocities an the static tube readiags. 

4.3 Mean velocities and the bourdgry layer growth. j 

K/l*** !>--8/(lU$/v)' 

so that if, as usual, <iKB  ^ A '  . then (jsoC * '   , indif-ating approximately a TO per cent reduction 
in growth rate is compared with two-dimensional flow.  This can be readily attributed to a thinning 
action due to thi> secondary flow into the corner.  Because of its premature separation in the adverse 
pressure field, the boundary layer near the corner thickens more rapidly than that far from tht; corner. 

4.4  Wall shear stresses. 

In the present work a major effort has been directed at establishing the full streamwise development 
of the 1/-field, thus providing a more comprehensible picture of the comer layer growth (longitudinal 
and trans\erse) than hitherto reported.  The corner region was mapped at x « 0.152, 0.228, 0.305, 0.381, 
0.458, 0.559, 0.660, 0.787, 0.940 and 1.091 m in the case of zero pressure gradient, and additionally at 
x. - 1.192 and 1.245 m in the adverse pressure field.   In the latter case, flow separation was found to 
occur first at the corner at x = 1.2- _; 0.02 m;  it then receded downstream with increasing spanwise 
distance from the cornerline. 

Typical iso-velocity contours are shown in Fig. 3a.  A noteworthy feature of thene results is the 
distortion of the contours near the corner as the result of a transverse circulatory motion now generally 
recognised as the 'secondary flow' of Prandtl's second kind [27j .  The measured magnitude and the 
direction of the secondary flow velocity vectors in zero pressure gradient are indicated in Fig. 3a by 
arrows drawn against a background of the U -contours.  As Prandtl had predicted nearly half a century 
ago, the secondary motion is such that there is a flow into the coiner roughly along the corner bisector, 
accompanied by an outflow from the corner along either wall.   1c is to be noted that although the 
secondiry flow vectors attain their maximum values (ä 3Z of LL for the case shown) near the corner 
bisector, they are not entirely confined to the corner vicinity but are still evident away from the 
comer, albeit in diminished strength.  The secondary flow field measured in these tests is generally 
similar, but not identical, to those reported for fully-developed and developing flows in square ducts; j 
this is not surprising although Hieve  are important differences between the flows.   In the adverse 
pressure field, the  secondary flow magnitude shows a general increase, reaching a maximum ov about j 
0.07 {J^    just 'jpstream of the corner separation point. 

I'nc boundary layer growth in the plane of symmetry in the corner ( is) is compared with the two- 
dimensional growth far from the corner ( j^»), with and wit'iout pressure gradients, in Fig. 3b.  With 
zero pressure gradient, it is found that J^/^decreases with x; an empirical correlation of the 
present data suggests 

Preston-tube measurements of the wall shear stresst s {Vw  ) with and without pressure gradients are 
presented in Fig. 3, c and d.   Frora a theoretical value of zero at the corner, the wall shear stress rises 
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sharply in zero pressure gradient tc a local maxiouji near the corner;  it then drops slightly and 
subsequently rises again slowly approaching its asymptotic tuo-dimen&ional value at a distance of about 
2 <i, from the corner.  The peculiar 'kiak' in an otherwise smooth distribution of Xm    reflect« a 
scouring action of the secondary flow on the wall region. 

In the adverse pressure gradient the wall stress field presents a «iU'Uar picture, but w» :h the 
added feature of rapidly diminishing stress and stress gradient nesr the corner.  At the con.er itself 
the «tress remains zero but the stress gradient is progressively reduced from a positive walu» to what 
can be interred as zero at the corner separation point, and a negative value further dovnstrtao.  Hence 
it can be inferred that 

is the criterion for the beginning of flow separation on the corner line. 

4.5  Turbulence measurements. 

A typical survey of the components of the Reynolds stress tensor in zero pressure gradient It 
presented in Figs. 4 a - f in the form ot contours. 

It is interesting to note that the turbulence field is far more distorted by the secondary flow 
than is theV -field.  This, how er, is not unexpected since whilst V and W are ccmpstable to 
u , v , w  they are at least one order of magnitude smaller than IT. 

As in two-dimensional boundary layerr., ae find that u* is greater tha*. both :• '   and wA . 
Not unexpectedly near thj y « 0 wall v* <; w*   while near the z * 0  wall the opposite is true. 

It is also to be noted that of the shear stresses (per unit density) v w  is generally the 
greatest in or near the plane of symmetry, and that in the half corner rc.-^on bounded i>y the corner bi- 
sector and the y • 0 wall u v  generally exceeds u w , the converse b«. in? .he case in the other 
half. 

The u1 stress has been measureJ very extensively;  thr measurements of the other stresses have been 
largely confined to the plane of symmetry.  Typical surveys in th«: plane of symmetry with and without 
pressure gradients are given in Fig. 5.  The stresses are nor d;.»cimilar i« .v;nitude from these found 
in a  two-dimensional boundary layer of similar history, but several distinctic.is can be made.  In the 
zero pressure gradient case, for example, we notlea that because of the constraining influence at  the 
co-ner geometry the point of maximum v' or w* is sni.fted well away from the corner while u' 
apparently attains its peak value daen inside the corner.  We also notice that in the outer layers the 
shear stresses are particularly influenced by the secondary flew, and hence may neither be eisply 
related to theaean velocity gradient via a constant eddy viscosity nor to q* by a constant factor, 
where q'   ■ u'-  + v* + vr*,  Since such relations provide the basis of current methods of turbulent 
boundary layer prediction methods, the corner flow is ui.likely to be successfully predicted by them and 
calls for a new approach. 

Except for the phenomenal rise in the value of v w  as the corner separation point is approached, 
the effects of an u-lverse pressure field on the turbulent fi^ld arc found to be generally similar to 
those observed in two-dimensional retarded layers. 

5.  CONCLl'SDHS AND CONCLUDING REMARKS 

We conclude that 

(i) Secondary flows arise spontaneously in a semi-infinite turbule.it corner layer; they are directed 
such that the layers with vanishing skin friction near the corner are re-energised through a 
continuous supply of higher energy fluid from the outer portion of the boundary layer moving towards 
the corner along the plane of symnecry and ou'wards from the corner close to the walls. 

(ii) The streamwise growth of the boundary lay.?r near the corner is somewhat reduced by the secondary 
motions;  in th? plane of symmetry in zero pressure gradient, for example, the boundary layer grows 
about 10Z  slower than its two-dimensional counterpart. 

(iii) Unlike the laminar boundary layer in a corner f24 7 the turbulent corner layer is relatively staole 
in zero or mild pressure gradients in spite of the zero shear stress along the corner itself.  Flow 
separation, when it does occur, ur.uei the influence of a strong adverse pressure gradient, is 
associated in the corner with the vanishing of the shear stress gradient. 

(iv) The turbulence field strongly reflects the secondary flow, and a simple extension of current 
prediction methods to the corner flow seems unlikely to be fruitful. 

(v) As evident in the wall shear stress distributions, the wall region of the corner layer settles 
down to its two-dimensional form mc  'apidly th/in the outer region, but on the whole the effects 
of the corner are largely confined ;  vithin approximately 3 — 4 boundary layer thicknesses from 
the corner. 
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COüCffi Ui-JE TLfESJJIiJfaä AVEC IKJSCnCW A U PABDI £'01 KE1E GiZ CO D'UH UZ BIBAUGSS. 

OWiSl JUMCXäL D'BTUnSS W XK tfCaaCBB iBa08PA.TI&IÜS (QTEKA) 

gf - CHirnJxM (Tnno«) 

saema 

in uqarowi aiii ■•«-Xsugth aodel is jippXied to the tbeorlcsl detcxeineticn of rariulent ircmulazy layer, vith 
transfer of fluid at the wall, aiw the result» «re coopared point by point witt available ezperiaental erLdonce. 

In the iasoapreasiule field, tneve ere first provided sooe f,olutijns to the local e^uixlous of an equ-Hibri«? 
bouudarv la/ex, to define the requisite set of velocity profiles aad aide friction '.a* for i,n air inj^otjon with 
pressure gradient. liext, the velocity arA noboectntloc profiles are woxlced cut for foreign £&$ Injected, lastly, 
the solutico la extended to oover the gen-ral case of a eoapreastble fluid, leading to a syrtetactio se> *   -osults 
for the effect of inj«)ctlca upon akiii-frietion aad heat transfer ehown as a function of Koch nuabvT and «all tes- 
persture. 

HCMTiaiS - 

l 

M 

P.P 
h,H 
T 

Cj 
Cp 

PAD 
£s 

P 
r 

Coordann^ee lonjituainale et nonsale him L) 

Loncueur de ■('lange ( L s I /6) 

Conposantes de la Vitesse 

Nonbre de f-acft 

IVessioc et i-sanr volvnique 

Enthalpie et Enthalpie totale 

Taasperature (h/C^) 

Concentration masaique p, / p 

Oialeur apäcifique T Cj Cp; 
Viscosite, conductibilit^, dltfusion 

Ilaobreg de KiAiröH, et de SCa.IDr 

Paraaetre d'injectioo PtoVi/ftu. 

Pacteur do recupdration/Hoij.hjj/^.h,] 

Prottenent, flux de clwleur, fla de 
diffusion, totaux. 

Cf     Coefficieat it frotteaait iXp/p^l} 

Ch    Coeffioitu.*: de flux de oialeur ^y^u^Hp-Hj] 

Cm   Coefficient de träniert da nasse per diffusion 

Konbre de Heynolde ^rr— 

Bpaiaseur de la couchs linito 

Kpaiaaeur» int^crale» 

6 
e.e« 

DIDICSS 

e 

P 

1 

2 

l 
t 

Äcoulemant ext^riour 

paroi 

gas injects 

ga« principal 

laninaire 
turbulent 

ad.     paroi ivUabatiqup. $KmO 

i - nwsoajcrio: 

he present travail eat oonsaoi'e & la determination th^orique et &. la oooparaioon h l'erp^rienoe de soluilons 
relatives k I'influsrce d'un tranafe.-t de fluide h la paroi, sur le d^veloppement d'une couctae linite turbulente. 
Ori y .-icDSid^ro le c&? de 1'injection repartie d'un gaz qul peut dtre le otae que celui de l'ecoulenent principal, 
ou un gaz Stranger, an abficence toutefois de reaction ciilmique. 

Le traltement est baa6 sur un schema am^llor^ de longueur de mdlange cxisc auquel une oxpreoaion du frotte- 
ment, du flux ^ chaleur st du flux de diffusion aont disponibles pour toute la ccuche lioite. Une rösolution nu- 
m^rique dea aqua Ions locales de couche limite est alnsi possible per 1c oas g&iöral de conditions aux lifiites 
quelconques ; on px-esentara e^fectivement 1'appllcation k  quelques oas expörimentain: d'une technique de calcul par 
differences finies. 

Au preala'ole, il a sembl^ utile de rechorcher des solutions particulibres, en se pla^ant dans des oas pour 
lesquels lea d^riv^es lonsitudinales des profila de oouehe limits peuveat Ätro äidligitB,  Ces solutions de timili- 
tude auront I'interSt de foumir un ensemble de reaultats grfice auxquels 1'influence des differents paramfetres 
intervenant dans le d^veloppement d'une couche limite turbulente aveo injection de fluide pourra fitre dotermlnea 
systematiqueraent, 

2 - UQUATIOUS GUliEiiALES - IKPOilfiBiSS IE BASE 

2.1 Eg^tj^ffls sMsaiss. 
Conaid^rant le oas g^nt'ral de I'^co-jlement plan d'un fluide coopresaible, aveo injection repartie d'un gae 

qui peut 8tre le mSme que oelul de VJooulement principal, ou un gaz ^tranaer nais sans rdaotion olilmiqua,(melange 
binaire), les equations locales de la couche limite aont les suivantos t 

Equation de continuity : 

Equation de quantity de mouvement : 

Equation da  I'lner^jLe : 

öPu, öPy _ n 
öx t öy ~ w 

pu^n + pv^ =^(uT-(tO 

(i) 

(2) 

(3) öxr    öy    öV 

Cea trois preraiöres equations s'appliquent aux oaracteristiquee moyennes du radlanee. Le frottoment et le flux 
de ohÄleur TRtjfTt «h AsAtfA^ seront disout^s plus loln. 

(») Ingenieur Gta/riaire, Direction d'/^rodynamique. 

(<♦) C!hef de Division de Reoherches, Direction d'A^rodynamique. 
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n faat leur joiadre liquation de ocnsemttics pour I'vne dc *.in bbpeoes en j!V.*eneo : «He a'icrii : 

l'indios i repreaentaßt soit le g&z injectc (i = l) soit ie gaz principal (l ■■- 2). fti eat le flux de diffusicn dc 
I'eppece consid^ree, QisQit-f-Oit 

ün utilisiera un scnfna aDÖliori- deii prßse.-it^ et appiiqu^ {vat. l), plufi aj^cxalesont oana le cas du dulde 
Incoopressible. 

1« terse de frotto::cr.t turtulfent est expriw? par la forsule classiqi>e do lon.'^Kur da oclange dans la partie 
eiWrieure ije la coach« linite. CTI a retenu la foiwuli 'jniveT.'elle : 

Dans la Eoua-coucho vioqueuse. I'eipression est corrl(7?e pour tenir anapte des effets de la viscosirö ,JVX la 
turbuler.ce. ü'ejraresaior  -üntT'ale du frotterent total est niao ainai aciS la fort» 

^dgUPFVIgig «, 
by \by\bY 

Faisant appel aux donaees de V^i.' iXUES?, rela'iv?') k la soua-'ouche vismieuse de plaque plane en incoDpreasi- 
ble, on a generalise la relation propoaee par eet euteur, en suppjsar.t qve pour le CUB jiacrtCs F dtait fonciior 
du rapport du frotteoent tiurbulcnt au frottcoa'-.t laninaire. On e nontrö qu'en fait, la fonctiun pou^ait Stro oipli- 
citee e-aleaient par rapport au frotteasent total par la relation 

[^("l'4] 
lont. 

•"^-^Liifew J (7) 

La fonction corrcotrice est nulle i la poroi j eile tord vers 1 rjuard 1'coouleaent devient pleineaen; turbu- 

On introduira pour clarifiar I'eoriture unc vlscositd turbulente C , definie, pour 8tre en accord avi-^ 1*ex- 
pression preoedente du frottCient turbulent, par £ =PF*l*lfiSi| . Le frotteaent» le flux de ohaleu;- et le flux 
de diffusion a'ecrivc:^ alors : 'w' 

^)$ > KH)£**'>-•")'MM)t   <»> 
S^ et St ßont leo noalres de P.iAHDüL, lamiraire et turbulent ; on a utilia^ dans lea applications präsentes 

S et St sent lea noobres de äCii'JOT. la'3/iiaire et turbulent j leurs voleurc aeront discutees lors de l'appli- 
oation au oas de i'lnjeotion d'un gaz etranger. 

3 - SOLWIOH P'ECJÜEiXKiS - HiJECTION D'AIK K: XSCCMPaESSmE 

3.1 Principe fffnöral. 

On a montre (rdf. l) qu'il est possible en fluide incoapreasible, et dans le cas de l'injeotion du nSae gaz 
que celui de l'öooulenent principal (injection d'alr), de dätenainsr des solutions asymptotiques (nombre de Reynolds 
tendant verd I'infiri) dans ie oas de oouchos limites d!dq\älibro. 

Le prinoipe dc- oe tr-'i cement dont on va rappeler lea prinoipaui rdaultats est essentielleusent le suivsmt t 
A grand nonbre de Reynolds on peut distinguer dans la oouche linite, une "region intorieure" dans laquelle ae 

manifestent les effets de la visoositd mais ou lea fomes d'inertie sent falbles devant les forces de frottenont, 
d'une'Wgion exterieure" dans laquelle les forces de frotlenent et d'inertie aont du m&ie ordre mais ou I'dooul»- 
ment est essentiellenont turbulent. 

On peut traiter adparement ces deux regions et obtenir,moyennant l'utilisation de variables appropriees,dos 
resultats independants du nonbre ds ReynoluB. 

Une proprir'-te inpertante est qu'il doit exister un recouvroaent des lois relatives aux deux regions. On a 
montre (nif. l) que oette oondition diotait d'une part lä  ohoii des variables c utiliser et permottait d'autro part 
d'etablir la loi pour 1c frottcment de paroi. 

3.? B^ftion Interieure ~ loi de pyefl. 

On oonsidere la rorlon suffisiimment proolie de la paroi pour que les forces d'inertie soiont faiblen devant 
les forces de frottenont visqueux nt turbulent ; il en est de nfime, si lo nonbro de Reynolds eat assez crand, de 
la force de pression. 

L'equation de qunntite de nouvenent prend ainni la forme trbs simplifiiSe : 

(^p^P^Sy   soif   T = Tp + pvpu 
Joi;,"nant I'^zprecsion (6) du frottexent total, en tenant ooiapte du fait que la longueur de melance demeure 

sensibleaent 1 = liy, on a siaplsnent h resoudre l'equation ; 

T    , t +   ÖU+ .^i 1+« |ÖU*|ÖU* fql 

La fonction oorrc ctrice etant alors    :     F= 1-exp 7(1fVPu+}     i 

u- u:»vp= ^ > y - v J U^-D ) (on a utilis«; les notations olasoioues 
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«fa profej-anoe d« reaolutlcn dee iqastiaaa pr^wfdentes « öttf ätobU et ^rpliqu^ pour diff^rastes vaJ«ur8 du 
pannbiit de transfert de fluid« Vp . H a peroia de ddteroincr I'lnfluance de 1'Injection (et de l'topiratlcm/ 
tur la üatributioc des vitesss« dvia la scus-cuuche vlaqueuEo et dana la resion turbulente de parol. 

Pour analyser JIUS aiseoent lea resultats et pour pp^paror Is d^flniti-jn dt la variable d^ficiteirs qu'cm 
devra sboiair pour la rd^ioB ezt^rlsure, 11 sonvient de rechercher la variable transfone« qul dam« i la loi 
de paroi unc foras losaritissique lorsque l'öcoulene'it devlent pleineoent turbulent (T|to> ?* l)   f* trouv» 
inpxsdiateaent qu'il faut faire inter/enir 

'^[(^t-] (to) 

variable dijk utilia^e or. fait par difffSrer.ts auteurs ct notaiaaent per LiDVE.^Oi/ (i^f. 2} dans l'anal^ee des 
experiences. 

Lea i^sultats etablis par la reeolutim de l'öquatioo 9 aont dona^a figure t sous la forme r (y ). On obj- 
?rve gue lea oourbes cbtenues aux differents Vp tendent TC» une partis ioearitimique qul depend rslativeoent 
peu dev£f opecxalcnent dans le cas de I'lnjection. On pouvra twivcnt h litre d'f.pprorlmt.ton, i«tonir avec ii>- 
jeotiop le loi turbulente de paroi is^eraöable : 

V*= -i log y* + ^25    (km 0.41) (11) 

Senvoyant k la reference 1 pour IfiS details du däveloppeaent, on rtppelera ioi les aspects prlncipect du 
:-3iteffliait effects poui- la röcion exterieure. 

La variable donnant k la loi de paroi une fomc logaritlioigue dtant V , la variable k utiliser poiur la 
region extcrieure est s 

tf-V» 
2U, ('^r-(»-$f] (12) 

Le traitaoem; concerns une couche lluite d'equilibre, pour laquelle» par definition, Ve - * eat une fan»- 
tian de II independantc da 1'abscissa ; on pose par consequent : 

V,-V*=F,(T)) ov«c tl=| 
La r^^ion etudiee est celle d'un ecouleoent turliulont etabli pour lequel s 

Introduisant ces hypotheaea dans l'equation de quantitä de oouvement, oelle-oi devlent une equation difä- 
rentielle ordinaire, dont la resolution va fournir le profil des vitesses defioitairca reoheroh^. On obtient 
ainal, pour un nonbare de fleynolds tendant vers I'infini : 

(L,F/,2),= 2ßFr,+ (r+2P)ir,F" 
(13) 

avffc ß s 
Uf dx 

BUe fait intervenir oomoe seul parametre, le paranetre de gradient do pression 0. 

totüa 4? Yit^sgg, ^e'fAc^flire- 
GrSee h l'utilisation de la variableV,-y*ot du paranetre ß transfonaes, l'equation (13) est strictement 

identique o oelle qu'on svait pu ötablir en (ref. l) pour une paroi inperEeable. Jiea profile de vitesse defici- 
taire etablis dans oe cas, sont done direoteaent utilisables avee injeotion pour la variable transfomee. Repr>- 
duits figure 2, ils pernettront, apres retour h la vitease pliysique u, de ddterminer l'influence combinöe de 
1'injection et du jradient de preesion cur le profit dea vitesr-JS dant-- une region axterieure qui oouvre, 3n fait, 
la plus grande partie de la coueiio limits. 

Cost egalement your la variable transfomee qu'est pirSsontee, fi;^ire 3, une coaparaisoji k I'exparienoe, 
destinee a oontröler que les profils experimentaux peuvent Stre effeotiveraa-it represontes par la faoille des pro- 
file theoriques et dans laquelle on a'sat place ä mSme valeur du factour de forno du profil deficitaire. Lea 
rusultats de IiICKLEV ct DAVIS (ref. 3) sent relatifs a une plaque plane ; ceux de «AC-QUAID (rdf. 4) portent BUT 
des ecoulerasnts avec .gradient de pression, positif et negatif. L1accord avoo la solution proposde cat satisfai- 
sant dans les trois cas. 

JYottenent de paroi. 

La relation pour le ooei'ficient da frottenent c'obtient en utiliaaivt le reoouvrone.it de la loi de paroi et 
de la loi deficitaire, toute-i deux do forme lo.-aritlmque dajis la re,,ion ea question. Pour la paroi ir.iperuöable on 
determine ainsi la foroule exprimant le coefficient de irotteiie.it, e.i fo.iotion du nombro de lieynolds de l'Syiaia- 
seur de deplar ^ent : 

/ 2 ^  1 .   r-, «  rN» 

(07; r7,09R9+D 

oü D est une fonction du parametre de Gradient de pression 0(ou de O) dont on a donne les valeurs ref, 1. 
On a rnontrö ref. 1 que la acno fomule s'applique avec injection, lorsqu'on utilise des L7randeur£i transfor- 

ueesCp. Ve, 6 : r _. 
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Cette representation a penais effectiveoent, pef. J, de regro^er las reeitiats experisanteux de frnttaaent 
de paroi avec injection sur la oaiirbe C^R/ ) de la plaq)\e plena iapera^able. 

Sur uii plan pratique, on cr«rciif> souvent k analyser les resuJ.tata «perioentaux en exsalnsnt le rapport 
cf/cfo, cfc dtant 1c- frottesent sana injection, au o&ae noßbre de Hayaolds Rj. Sh » trouve qu« cc rapport ctait 
dans la solution, peu sewible ä Is valeur dit noobre de fieynolJs. la figure 4 oontre CUB la solution rppi^aenkä 
dans I'enseoble assoi, correctcüent lea valeurs of/cfo <.e I'eiperience (it*. 5- C ^t 7/. 

4 - üOIOTIOKi .«, iiDittlitiaä LOCAUti. 

4.1 Pryn^pg g| eij^ttfflBS .jq^ ^e gfia ggaJM- 

Considersnt oaintenant le cas general d'un fluid'! coopressible, pouv&nt ooraporte.- 1'injection d'ua gaz «5traJ>" 
ser, I'rj.-pothece faitc precedacBsant d'uns coucbe liadte d'equilibre est beaucoup plus diocuteble. A grand nombre 
de He/nolds, eile revient da tontes fapoos & uoe sinilitude faite directeaent au?       u /gf . C'est plus siaplsment 
dana ce.te hypothese de aioilltude dire--.e qu'on va sa placer pour le cas ^neral. On i'appliqiwra ^Galeaent h 
I'enthaipie d'arr^t et ä la concentraiioc et l'on posei^a par consequent : 

ft=f,w ; ws9^ '* ^•ft7') 5 ^y/6 

Se chero/iant plus h di3ting\»r de.:< regions intärleure et eiterieure, T , ^ et Q sont doanes par leurs expres- 
sions cocplctes (8;, ou avec les aotations prdeödentes : 

T    - ^g» f» ! r*L'   P   f»* 
P»u|    Ry 

-0, 
Pv PeU^SRs     St        P*     ' 

P.M..% V^RT*^1-Pcr A9  FF HJ*^.   crls-f is;; 
L'hypotjiese de ainiiitude appliqude k l'dquation de quantite de mouvsuent, & l'equation d'energie et k. I'dqua- 

tion de conservation du gaz principal conduit aux trois Equations diff^rentielles ordinatses 

-ÄV=Jr P«u«/ VPtU." "■^f) 

(14) 

(15) 

(16) 

La derivation est effeotude par rapoort all. ia masse volumique est expriride au noyen de l'equation d'etat du 
melange, qul donne en eupposant que les deur composoits sont des .;raz parfaits : 

ha vitesse verticalo 
hb£^-&) (^"^ 
et.gv_ 

Rue 

manes molares 

s'expriment par l'öquation de continuite. 

i c^j') 

Les conditions aux liqites utilisees pour resoudre le systems sort d'abord les conditions olassiques d'adhtren- 
ce a la paroi et d'eooulenent extörieur sans frotteoeut dont les oaracterietiques sont donnees : 

«n T]BO : f'tiO    zt 
( 9*= hf>/He       (temp«rafur« impos«'«) 
| o« ^ + Cfi^Ct, j"g> =   z^ ^i Rj     (flux de chaleur impose j 

enTl=l .■f'si (u = u,) jg^lfHsHe) 3 ]'= i (C2 = l) j  F'^o (T = O) 

La condition relative h. la concentration k la paroi s'etbolit moins sinplement. On schenatise la paroi poreu- 
se par une ligae separant un cfite reservoir d'injeotion d'un o:He cooulenent. On doit conoevoir dans le cas eäneral, 
qu'une discontinuity a lieu au niveau de oette ligne pour la co.;. pntration d'une esp&oe i. Ecnvrnt la conservation 
de la masse de oette espeoe au niveau de la paroi, on obtient (en na^ligeant le flux de diffusiu.; du cftte reservoir); 

Qip'P^CCi^-C'pi 
1'indioe (+) etant relatif au oSz: eoouleaent, 1'indioe (-) au oöte resen'uir. 

Appliquant ceoi au gaz principal, on ootient avec les notations adoptees, la condition pour la concentration 
h la paroi ; 

Dane le cas d'injeotion d'un gaz etranger simple, on rdoet trea genüralement que le gaz principal ne traverse 
pas la paroi, soitCjb = 0. 

Six parani'tres independants determinant la fanille des soluti.ons du Systeme sont les auivants : 

Itoabre de ite.vnold3R;S»ft>45Mt Mombra de ilach }'B{  paramfetre de gradient de pressmen o du» ; Bntha.1pie ou flux 
de chaleur h»«■, (fy.: taux d'^lection^S/fa"«; concentration inicialeC»p_ .    ,t Utax 

Apparalssfit eLJ-al-nent ä priori d!/d», ainsi que les valeurs initiales fj^g'^j p ! oes quatre quantites cent en , 
fait des parametres pi'opros de la solution et se determinent, apres iteration, pour que les conditions aux linites 
soient satlsfaites. 

4.2 Application h l'in.1ection d'air en compressible (plauue plane). 

La teoimique pwoedente a ete appliquee dans le cas d'injeotion d'air dana 1'air, pour etendre au cas general 
du fluide oompressiulo h norabre de I-iach exterieur et temperature de paroi quelconques, lee resultats aoquis en in- 
conpressible, 

Le Systeme des equations a resoudre est celiu des equations de quantity de mouvement et d'energie (14) et (15) ; 
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la diffueion n'intervieDt evidonoent pas. J Ju» ^ 
On s'eai llnlt^ juaqu'ioi au oas de Xa plaq>v) plane, ]e tense on^-4*dlaparalsaant alora de liquation (14). 

Les parao^tres indöpendants ae riä-tuisont au noobre de Heynol-laR^, «u ncobre de Haoh Mf, & 1'entnalpie ou su flint 
de c'iale-ir h^cu^p, et ou taw d'injectloas P^Vp/jyu« | 

3n procranae de resolution dee Equations (H) et (13) a ^te etabli et appliquö systc-uatlqueoent i<<nii- deter- 
miner iea profile de vltesae et d'entfcaipie alnsi que le frotteoent et lo flux de chaleur de pa»!, k different«« 
valours de M,et dehpot pour dif lerents tauz d'inject ion. Or. a prls poux- lea nonbres do PfiAiltfOi laminaxre et tur- 
bulent P= 0,725 etft= 0,89. On e'est placö k un nombre le BeynoldB suffisamnsnt 6\avA  pour que la solution oor- 
respocde k ur. ^couleaont turbulent «Habli. 

Des exemples des resultats obtenus sont donnas ^"jre 5 » 
On y presents d'abord les prefils do vitease i .i = 7 et Tp/Tod= 0f5 pour differenta jaux d'nijectior. ; on j 

»rouve qua l'^ffet de 1'irjection eat conporable k  celui d'un gi'adient de pressioh positif ; il donne lieu h. une 
deformation du profil dans le sens d'uns aujpnectation sensible ds son paraobtre de fonae. I 

On domn egalcaent les profila tengieratupv-vitesse : I'observation k fajje est qu'ils sont trfes psu sensibles 
k I'effet d'injection. I 

On a consider^ le cas de la parol adiabatique,<^p■= 0, I'enthalple de paroi Hgjj ou le facteui' de recuperation 
devenant alors un paraaetro propre döterminö par la aoluticn. On obaerve que le facteur de rdcup^ration dösroit 
quand le taux d'injection augoente, deoroiasanee plus prononcee loraHuc le nonbre do fiaoh est plus &Tar.d. 

On a porte enfin h ä •= 2 et H=7 et pour plusieurs valeurs de T^/Ta<j , lea rapports Cf/CFo^Ch/Cht«111 coefflo?- 
ont de. flin; de chaleur k  ceux qu'on obtitnt au nSme Rj pour la pjux>i impermeable. Ii'lnjectlon donne liou h une 
climinution trcs dvldente du frotteaent et du flux de chaleur, I'effet augoentant nettement avec le noabre de Mach. 

4.3 ADT.xication k 1'in.iection d'un mz i  ranger (plague plane) 

La teclmiuun a ete appliqude dans lo cas de 1'injection d'un gaz etranger, en ae linitant encore, compte tenu 
du noabre de parauetree, au cas de la p'aque >lane Jn pi-o^raime n-j^rique de resolution des equations (14) (l^) 
et (l6) a. etc nis au point, (price auquel a ete en.reprise la determination de reaultats systematiques our les pro- 
file de viteasa et de concentration et sur le frofjement et le flux de chaleur. 

Au stade actuel, les resultats sont ac;uis pour un,? injection d'heiiaa et de gaz carboniqua en fluids incom- 
pressible. Pour un cas donne, les ^arac^trs-i sont alors siiapleiaent le noobre de Reynolds ot le taux d'injection. 

Pour la viscositetl, le doefficient de diffusion et 1c nombre de SCHUIZT S=^/PD , on a utilise les resul- 
tats etablis en application de la tfrSorie moieculalre des gaz par IlKSCHffiUEK, CUItfISS et BIItD (rsf. 8) pour lea 
coefficients de transport des gaz simples et ''.es melanges. La viaoosite et le noobre de üCHKIM, fonotion de la 
conoentrr.tion et du rapport des nasses molair ^ du gea injecte eu du gaz principal, varient dacs la couche limite. 

Le nombre de SCüUCi' turbulent a ete suppa^e constant, aa valeur etant choisie en fonetien des resultats ex- 
perimentaux obtenus pour les profile de concentrctlua. Pour 1'helium, les experiences de KElffliLL noon ont conduit 
k retenir oooiae valeur plaxisible Sj= 0,9. Pour le gaz oarboniquo on a utilise lu v^iieur provisoire St= 1. 

Quelques exemples des resultats obtenus pour une injection d'beiium sont donnes figure 6. 
On y moiiti« d'abord des profils typiques de conc-ntratioa etenaines k differents taux d'injection, C1 etan'; 

porte en fonction de u/u,; on observera 1'allure sensibleirent liiieaire des profil?? concentration-vitesse. En ce qui 
oonoeme les profils g/y, on dira seulement rue 1'injection d'heiium donne lieu a une deformetion du profil des 
vitesses plus sensible mais qualitativement comparable k x* defonBation apportee par 1'injection d'air. 

Le coef'ficient da frottementCf et le coefficient de transfert de masse per diffusion k la paroi Cm, ^ont 
pcrtes respectivement, selon une representation coutucdere, en fonotion du nombre de Reynolds R»et du nombre de 
Reynolds de I'dpaicoeur caracteristique des concentrations 9e(rappeloiis que Cmafti^/fvuaC4p >)- ^t'f*-^.^^) 
II est evident que 1'injection domne lieu k une diminution importante et comparable des deux coslxiolents. Pour 
juger de 1'influence de la valeur choisie pour le nombre de SCHKIDT turbulent, les calouls ont ete effectues ega- 
leaent avec StsO,75 » I'effet est relativement sensible. 

Une comparaison avec les resultats experimentaux de KENDALL (ref. 7) obtenus dans le cas de 1'injeotion d'un 
nilange Helium-Air a ete effectude. La concentration en helium 4tait trfes faible et les resultats concemant le 
coefficient de frottement ont pu 8tre assimiies a ceux d'une injection d'air figure 4. 

Une discusr.ion de la valeur du nombre de SCHMIBT turbulent a ete faite par KEIIBALL qui en a propose lui-mfce. 
une determination tout a fait plausible, basce sur 1'existence d'une loi de paroi pour les concentrations. On a 
pris les nombres de SCHIilDT turbule-nts ainsi proposes pour cheque experience dans 1'application de la solution aux 
conditions des dates experiences. 
La figure 6 donne la comparaison de trois des profils experimentaux de concentration d'heiium, aux profils theori- 
ques determines dans la mSme plage de nombres de Reynolds RBC ; 1'accord est effectivenent tout k fait satisfai- 
sant. Les courbes du coefficient de diffusion en fenction du nombre de Reynolds Rflc ne font e^alensnt apparaltre 
que des differences essez faibles entre le ocloul et 1'eiperience, 

La solution a dgalement ete appliquee de fagon systematique dans le cas d'une injection de gaz corbonique, dans 
1'hypothese provisoire d'un nombre de SCHHIKf turbulent egal k  I'unitd. Joints k ceux ^ui avaient aejk ete deter- 
mines pour I'injectior d'air et d'heiium, les resultats ont permis de mettre en evidence 1'influence eosentiello 
do la masse molajxe du gaz injecte. La figure 8 represente danü les trois cas, le rapport du Cf au Cf0 obtenu sans 
injection a m&ae valeur du nombre de Reynolds de l'epaisseur de quantite de mouveinent ; eile montre olaircaent que 
la diminution du coefficient de frottement est d'autant plus importante que la )iiasse molaire du gaz injecte est 
plus faible. 

5 - CALCUL PAH DimaMSS PINIES 

Les solutions semblables ont pour iateröt de foumir aisement des faailles do rdsiLLtats et do mettre ainsi en 
evidence 1'influanoe des prinoipaux facteurs agissant sur lei couche liraite dans lo cas do I'injootlon i o^ioc ont 
1'inconvenient de supposor des conditions aux limites qui ne sont e'videmnent pas to-ijours satisfaites et dont pour- 
ront s'ecarter notablenent les conditions de certaines experiences. Dans le oas d'exiatence da gradients de pression 
pai' exemple, ceux-oi donneront rareoent lieu a une couche limite d'equilibre ; de plus on observcra souvont une 
variation lon^-itudinale appreciable du taux d'injection. 

Li schema de longueur do mdlange foumissant jne expressi-ir. du frottement total pour toute la couche limite, 
il est possible de traiter numeriquement le problfeme general do conditions aux Tunites quelconquec, on c; trcprenant 
une resolution des equations locales completes do la couche limite ar. moyen, par exomple, d'une technique do diffe- 
rences finies. Une teile methods a dte mise au point et appliqude jusqu'ici poui; une injection d'air dans le can du 
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fluide inconpreaaible. 
tie pouvant entrer iei dans los d^tsil» do la technique nuo^rlque, on dtra seulcnent qu'ua sctaäaa iaplicite 

a ett utilise pour icrire  l'equstion de quantite de oMmaeni  sous la fonts d'une öquAtioo mac difförsscee. (to 
a choioi les vai-cables x et 1|«//6 . Id eiille suivant H Itant detezmln^e pour dooner lieu ä des valeurs ii^oa^ea 
de U/U« ; un noobre de points süffisant est oinsi toujouis obtenu pour la sous-couche risqueuae. Les calculs out 
t-te effectues h partir d'uie ststioa initiale ZQ en laquelle on a'eat fix4 le profil de vltesses, en J'occurwice 
le profil experioontai. 

La figure 9 aontre les rcsultats d'un tet calcul effectuS dans les conditions des experiences de tUC (JUilD (xitA 
et 9). II s'aeissait d'une etude de l'in^oction d'air dans un Icouleuent ccmportant une variation de la vitesse 
ozterieure, h  laquelle est liee une variation du taux d'injection V^/Uf Les cas I et II pr^sant^s ici oorrespoD- 
dent respectivece.'.t k des gradients de preeolon posit if et ne,-atif ; le cas d'une disooctinuite de^s esaleoeut 
ötö etudiö (paroi poreuse suivie d'une paroi sans injection, avec U« constant). 

On dcnrie, figure 9, les profils de vitesse calculus aux diffcrertes stations par la mSthode de difflrenees 
finies ; leur accord avec les profils ezpevuientauz est tout ä fait satisfaisant. L'övolution du coefficient de 
frotteaent est aussi rcpresentue tres correcteoent par le calcul. 

6 •• COKCUiSIOK. 

L'utilisation d'wi scbeoa anelior^ de longueur de aelange a permis d'obtenir des resultats theoriques oohi- 
rents air les couches linitfes turbulentea avec injection de fluide. 

£n fluiie incoopressible, la correction de sous-couche visqueusa que ccmporte le scbeiaa seanble rendre coqrte 
raisonnableiMnt du comportenent au voisinage de la paroi. La d^temication de solutions d'^quilibre pour la cousha 
limite ext^rieure a permis d'aboutir 4 des resultats systeoatiques jusquo li ineiistants, sur I'influence coobinie 
de 1'injection et du gradient de pression. 

En fluide compressible, la dfteminntion de solutions de similicudc locale, paraft susceptible de foumir les 
resultats systiioatiques dont on couhaite disposer quant h 1'effet d'injection aux diff^rents nombres de Mach et 
aux differentes tenpdratures de paroi. 

Dans le cas de 1'injection d'un gaz ^tren^er, la solution de &isiliturie peimet encore de detewdner des pro- 
fils de vitesso et de concentration qui seoblent en accord avec les experiences dispor-ibles. Ella confine 1'effet 
essentiel de la masse molai re du gas injectc sur le coefficient de frotteaent de paroi dont ells seoble foumir 
une estimation raiconnable. Les o^Des resultats sent ettendus pour le coefficient de transfert de chaleur, d'une 
application ac tucller.ent en cours de la technique de calcul au cas du fluide coopressible. 

La mise en ocuvre d'une technique de differences finies et son application en incoapreasdble & des cas de nan- 
similitude, conduit egalaoent h un accord avec I'wperience qui seoi.ie jvstiiier les hypotheses du schema utilise. 
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A SURVEY OF DATA FOR TURBULENT BOUNDARY LAYERS WITH MASS TRANSFER 

by 

Donald Coles 
Professor of Aeronautics, California institute of Technology 

Consultant, The RAND Corporation 

SUMMARY 

A critical survey is made of available experimental data on tuibulent boundary 
layers with mass transfer in the absence of complicating factors such as compressibility 
and pressure gradient. The attitudes and methods are similar to those in the survey 
paper, "The Young Person's Guide to the Data", Which was prepared for the 1968 Stanford 
conference on computation methods. 

Two approaches to the data show particular promise. The first is the mixing-length 
approach, which leads (as is well known) to a set of modified coordinates such tha< the 
classical similarity laws outside the sublayer se ;m to remain valid down to the latt 
detail, at least for moderate values of suction or blowing. The second approach is more 
original; it is an attempt to generalize the kind of analysis often used to develop 
similarity laws for free shear flows such as wakes or jets, while preserving intact an 
argument, originally due to Millikan, which extends these ideas to the case of boundary- 
layer flow. The essential step is definition of a characteristic velocity (qua friction 
velocity) in terms of a characteristic stress (qua wall stress) which occurs somewhere 
in the layer. A strong precedent fcr such a step can be found in the usual treatment of 
surface roughness. So far, the best choice for the characteristic stress seems to be 
some kind of average value for Che sublayer. 

THE METHOD OF THE MIXING LENGTH 

A. RATIONALE 

Elements of the method. It is not easy to describe precisely what is meant by the 
term mixing-length theory, since the theory has almost as many variations as it has 
adherents. In its simplest form, however, the theory has three main elements. The first, 
a- definition of mixing length, usually involves some analogy with the mean free path of 
the kinetic theory of gases. A leading variant is Prandtl's definition of 1925, 

,2,du/ 
(1) 

The second element is a statement about the relationship of i to some more acces- 
sible variable of the px'oblem. Here a leading variant is Prandtl's proposal of 1933, 
originally inspired by an examination of Nikuradse's measurements in pipe flow; 

i = ny 

in which the constant K is usually alleged to be universal. 

(2) 

The third element is an expression for T. For example, the crudest useful approxi- 
mation for flow near a wall is 

T = T. 

Note that the three equations (1) 
ture a logarithmic dependence of u on y. 

(3) 

(3) have been deliberately chosen to manufac- 

(V^ ? In y +  constant (4) 

Note also that the result (4) is typical of a pure mixing-length theory, in that it 
provides a description of one fragment of the mean flow, unconnacted with any description 
of adjacent fragments. As long as the ordinary fluid viscosity is ignored, no proper 
boundary conditions are available for evaluating the constant of integration in equation 
(4). The theory therefore has to be supplemented by dimensional arguments or by experi~ 
mental evidence or both.  For the case of a smooth wall, it is generally agreed that the 
variable y should be scaled on the viscous length v/(Tw/p)', not only in the viscous sub- 
layer but in the wall-dominated part of the fully turbulent .-egion as well. This being 
so, equation (4) can be transcribed as 

)35 - i ._ ^w^_ . (5) 

(t/p) 

i    y<Tw/p) 
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where c is  now dimensionless. o 

A private view. The mixins-length theory has an excellent track recrrd in dealing 
with effects of roughness and compressibility. These successes of the theory have not been 
achieved without pain, however. One major difficulty is the ambiguity already mentioned. 
For example, Prandtl in 1945 proposed replacing equation (1) by an equation T = o/.E^(3u/ay), 
where E is turbulent energy per unit mass, A laminar term might also be included either in 
(1) or in (2), perhaps in the manner of the well-known damping hypothesis suggested by 
Van Driest in 1956. An alternative form of (2), i  = K (au/Syj/O^u/äy*), was use'i by Karman 
as early as 1930, An additional degree of freedom appears in the analysis if the density o 
is not constant.  Finally, the approximation T = TW in (3) is clearly inaccurate in many 
situations and deserves on the face of it to be replaced by some better approximation, such 
as T = TW + y(dp/dx) for flow with pressure gradient or T = TW + DVWU for flow with mass 
transfer.  In fact, the advent of l^rge computers has allowed T to be specified via an 
eqvation for conservation of mean momentum in differential form. Unfortunately, as these 
variations and others have been explored, experience has shown that a more elaborate formula- 
tion does not automatically lead to a better result. 

My own attitude toward the mixing-length theory is that I view the basic hypotheses 
of the theory as essentially unprovable.  I am therefore not surprised that the arguments 
ussd in the literature sometimes have an almost theologic«! flavor. The mixing length, 
like the eddy viscosity, is simply not a real physical quantity, by which I mean a quantity 
capable of being evaluated experimentally by more than one method. The mean velocity u 
qualifies as a real quantity by this criterion, at least to the extent that any mean value 
in a turbulent flow can do so.  So does the turbulent shearing stress T, since it can be 
evaluated either (a) from its definition as a covariance - ou v' or (b) from the mean 
momentum equation as an apparent forca which is required to account for the observed accel- 
erations. The mixing length i,  on the other hand, can be evaluated in only one way, by 
using known functions u and T in the definition (1) or in some equivalent expression. 

B.  FLOW WITH MASS TRANSFER 

The law of the wall. The analytical literature of turbulent mass transfer includes by 
now numerous variations on the mixing-length theme.* However, my purpose in this paper is 
to examine experimental contributions to the subject, not analytical cnes.  I will therefore 
consider only the most popular formulation, which replaces (3) by 

T = T  + OV U (6) w w 

It follows that (4) is replaced by 

(Iw + v u)H  = i /„ _2_ 
vw ' p   'w--    a 

{— + v u)^ = - In y +  constant (7) 

where the constant may now depend on v as well as T . One form of equation (7), the j 
bilogarithmic law of Black and SarneckY, puts "constant" = -(l/H)/n(d) and retains u as 
dependent variable.  The result can be written 

"./»'     'V»'   2«     d 

Another form, the square-root law of Stevenson and others, retains lpg(y) as independent 
variable, introduces (arbitrarily) the viscous length scale V/(TW/P)^, and invokes the 
limit vw = 0 at the outset to obtain an equation for what I will call the pseudo-velocity 
profile, 

2(T/P)
JS
    DV u ^      ,  yd/p)3* 

— Ä  [(1+—SL.)  _ !] = i ,en  S  + c (9) 
v. Tw * 

In the discussion which follows, I want to test the suitability of equation (9) for 
describing effects of mass transfer in turbulent flow.  First, however, I want to point 
out some conceptual difficulties with this equation in two limiting cases. 

The asymptotic suction layer. Ltc the asymptotic suction layer be defined in general 
by the condition 3/3x = 0 and in particular by the condition d6/dx = 0. The momentum- 
integral equation for constant pressure , 

2 pv u       pu   j. 
_  w S = -L _ :_?_ dj (10) 

T T   dX w        w 

then yielr'"? =»n equivalent condition, - pv u = T ., having an obvious physical interpretation. W oo     W 

* This literature can be retraced with the aid of the recent survey article by Jeromin 
in Volume 10 of "Progress in Aeronautical Sciences", Pergamon, 1970. The 1958 paper by 
Black and Sarnecki and the first 1963 paper by Stevenson are especially informative. 
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The flow in question is extremely difficult to realize experimen*---lly, and may have to be 
approximated in practice by a turbulent boundary layer which is first allowed to grow and 
then is subjected to sufficiently strong suction so  that d9./dx is locally negative; see i 
especially Duttcn (1955). But 1 + ov.ü^/r    has the same sign as d9/dx. The combination 
1 + DV U/T . which is really TAW in disguise, according to equation (6) may therefore 
be negative in some reoion near the edge of the boundary layer, and the left side of the ? 
profile equation (9; will be imaginary.  I doubt that there is any attractive exit from 
this well-known dilemma within the limitations of mixing-length theory.  In any event, ; 
difficulties are almost inevitable in any application of formulae derived from equation (7) 
to flows with strona suction. 

The b?owoff condition.  The blowoff limit is defined by the boundary condition 
TW = 0. The difficulty here arises during an empirical passage from a wall law to a defect 
law. Given that the presence in the profile equation of a term representing the wake-like 
character of the outer flow is appropriate when v = 0 (Coles 1960), a tentative but plau- 
sible (and partially successful; see below) generalization of equation '9) is 

2{r/o)h                ov u h                  ,   y(T /o)55       ?TT   2 -T v I 
-fr r-a  + ^     -11=*^—^ -c+^sin2(^)      (11) 

«-here in principle the parameter n may depend on both v /u and v /(T /O) '. New consider 
the limit T = 0 in equation (11), assuming that the siH2 form o^the^ake term is pre- 
served in the limit. Discard the log term (including the constant c) on the ground that i 
it must be replaced in any event by a suitable sublayer approximation which will vanish 
for vanishing argument. Alternatively, note that the viscosity v should not enter into 
any description of the flow when TW = 0. Ir then follows that the limiting flow has no 
intrinsic scale and is necessarily conical (wedgical), with u/u,,, a function of y/5 only. 
Finally, apply an obvious boundary condition in the free stream to obtain fl/n = (u^/v )^. 
The desired limit is seen to be '  fe t 

I 

(^sin2^*) (12) I 
ce ; 

Now the momentum-integral equation for the blowoff condition is evidently i 

u   dx UJ, | 

i, 
with both sides independent of x,  I submit that the hypothetical flow described by the 
blowoff limit, equation (12), cannot differ very much from the flow in a plane mixing 
layer between a uniform stream and a fluid at rest. The numerical value of vw/u 
(or d9/dx) can therefore be estimated a priori to be approximately 0.035 (Liepraann and 
Laufer 1947).  I know of one experimental study, by Mugalev (1959), which includes 
data for a blowing rate of almost this magnitude for boundary-layer flow past a flat 
plate. Although the data are not completely reported, the one published mean-velocity 
profile with vw/u = 0.0293 shows the expected S-shape, close enough to a sin2 function, 
and the experimental value for the shape factor (displacement thickness/momentum thickness) 
is close to four, again the expected value.  The formula (12), on the other hand, requires 
a sin* variation for the mean velocity u, and a shape factor exceeding six. Consequently, 
1 expect equation (11), and by implication equation (9), to fail for flows with sufficiently 
strong blowing as well.  I have not tested the possibility that a different point of depar- 
ture for construction of a defect law, such as the formula (8) proposed by Black and 
Sarnecki, might eliminate this particular difficulty without introducing new  and unwelcome 
difficulties for other values of v . 

w 

The intercept.. c. The most important issue in connection with equation (9) is to 
establish the dependence of the dimensionless constant of integration c on the dimensionless 
ratio vv/(r /en.    Mickley and Davis (1957) and Black and Sarnecki (1958) reached quite 
opposite conclusions about c using the same Mickley-Davis blowing data, data which are now 
known to involve highly erroneous estimates of surface friction.  Stevenson (1963a), relying 
on his own blowing experirients on a body of revolution, concluded that the parameter c in 
equation (9), like the paramt.-ter H, is essentially unaffected by mass transfer. His figure 
2 reinforces this conclusion for the suction data considered by Black and Sarnecki as well. 
Simpson (1967) carried out extensive new measurements in flat-plate flows with both blowing 
and suction., and proposed £ different, condition; namely, that equation (9) always passes 
t-hrough the point U/(TW/D)T = y(rw/'p)Vv = K = 11, regardless of the value of vw. Here the 
parameter K represents the intersection of the log profile with a linear sublayer when 

y(V0,)s _ i     y(v/p),s 

v = 0; that is w 

(T../D) 

u - in  =  + c (14) 
K V O V 

= - jfn K K = ^ Jtn K + co (15) 

My favorite values K = 0.4; and c = 5.0 then require K = 10.fi05. 
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SimpsoTi's condition  implies  for c 
(T /oK v , 

c = c    + 2 —5 [ (1  + K ^r  - 11   - K (16) 
0 Vw (T  /o)H 

w 

As the blowing limit T = 0 is approached, this becomes 

c = co - K (17) 

and as the asymptotic suction limit is approached, 

c = co - 2 {^-)h  [(1 - K^V - 1] - K (18) 

where C, = 2T /ou  is the local friction coefficient.  Evidently Cp cannot exceed the i 
value 27K2. For this value of Cf, the ratio VW/(TW/O)^ takes its most negative value, 
-1/K, and c from equation (16) becomes 

c = = + K (19)       I o 
i 

Simpson's condition seems to me to be highly contrived. His reference point is \ 
not a fixed point in any attractive set of coordinates, and for vw ^ 0 is unrelated to j 
any in^rstction of the logarithmic profile formula (9) with a laminar sublayer formula 
modified to take mass transfer into account. It is a particularly awkward fact that no j 
intersection exists outside the limited range - 0.087 < vw/(Tw/pP < 0.400, although some 
of the data to be considered shortly do in fact fall outside this range. i 

Nevertheless, Simpson's version of the mixing-length formulation works like black 
magic, and Simpson's condition on c leads to a highly successful consolidation of blowing       3 
and suction data for small to moderate values of v.,. 1     r'  w 5 

Experimental data. The conclusion just stated is based on a fit of various data to 
the full profile equation (11), using equation (16) to compute the intercept c. The 
methods and even several of the programs are essentially the same as in my 1968 Stanford 
paper, except that the parameter v^/{TV/O)%  and the intercept c are now updated in each 
step of the iteration procedure. 1 

For Simpson's flows of conventional type; i.e., flows with constant or continuously 
varying v , local values of Cf  inferred from this fitting operation are compared in figure 
1 with Simpson's "best estimate". A discrepancy of about ten percent seems to be charac- 
teristic, even for v = 0. The quality of the proiMe fit is illustrated for stveral 
pseudo-velocity profiles in figure 2, which confirms that the effect of increasing vw on 
the parameter c is qualitatively the same as the effect of increasing surface roughness. 
Figure 2 also makes another points  the parameter 11, which measures the maximum departure 
of the profile from the log function near the free stream, is very nearly independent of        1 
y^,. This observation is not entirely new.  Several authors, particularly Stevenson (1963b),     \ 
have previously converted equation (11) to a defect law for the pseudo-velocity 
2(TW/P)^[(I + pvwu/T P - ll/vw and have noted the insensitivity of the result to variations 
in vw.  In view of the fact that the controversial intercept parameter c drops out during 
conversion to defect-law form, agreement on this point is hardly surprising. 

However, I can go a little further.  Figure 3a shows the parameter n plotted against 
R|j for Simpson's flows of conventional type. Also shown for reference is the trace of 
Wieghardt's measurements on a solid surface.  Note that Simpson's data faithfully reproduce 
the well-established decrease of n at low Reynolds numbers (cf. Coles 1962, appendix A; 
Simpson 1970), including the indication of a lower limit for turbulent flow at a Reynold.3 
number Ro of about 600.  For practical Purposes, the profile formula (11) in defect form 
therefore provides a representation in which effects of mass transfer are as difficult to 
detect as are effects of surface roughness. Even the slightly dirainished values of n for 
moderate Reynolds numbers in figure 3a can reasonably be interpreted as an effect of the 
relatively high free-stream turbulence level in Simpson's experiments. 

This picture is confirmed by data from other sources.  Figure 4 shows pseudo-velocity 
profiles, and figure 3b shows n against Rg, for the measurements with blowing by McQuaid 
(1966).  The last three profiles in figure 4, with ^/u» in the range 0.008 to 0.014,are 
from the series with v increasing at fixed x;  they show an appreciable rise in n. Conse- 
quently, I suggest that the maximum blowing rate for which the defect law is invariant in 
Simpson's formulation is roughly 0.010. 

Figures 5 and 3c show the same quantities for the measurements with blowing by 
Mickley and Davis (1957). Here the observed dacrease in n as ■•., increases would ordinarily 
be interpreted as an effect of a negative pressure gradient whicn was unfortunately present 
in the-se experimants. 

Finally, figure 6 shows several pseudo-velocity profiles from the measurements with 
small rates of suction by Favre et al. (1966) and one typical profile from the series of 
suction experiments by Tennekes (1964),  The strength of the wake component seems to be 
uniformly and abnormally small for Favre's flows, including the flow with v = 0, but 
abnornmlly large for Tennekes' flow.  In both cases the reason is unknown. 
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Epilogue.  On the experimental side, my opinion ip that neither the blowoff condition 
nor the asv-iptotic suction layer is adequately documented. The latter flow is especially 
difficult.  If a long run of solid surface is provided, to obtain a relatively thick 
boundary la/er, the relaxation to the asymptotic suction state may be very slow (because 
there is ar initial excess of turbulent energy at low wave numbers which may take a long 
time to disappear). On the other hand, if suction is applied very early, the Reynolds 
number will remain small and relaminarization may occur. This problem was recognized by 
Dutton, Tennekes, and other investigators, but definitive experiments are still needed. 

On the analytical side, there is strong evidence that the defect law associated with 
the pseudo-velocity profile (11) is insensitive to moderate values of suction and blowing, 
and that Simpson's condition on the intercept parameter c is realistic. It follows that 
the effect of mass transfer on the local friction law, on the shape factor, on the local 
shoaring-stress profile, and so on., are all under excellent engineering control. Because 
this conclusion is an empirical one, it is limited in several directions.  It should be 
accepted with caution outside the range (say) - 0.004 < Vy/u,, < 0.010 or for Reynolds 
numbers beyond the very limited range of the available data. With these reservations, I, 
view the results described so far as an unequivocal success for the mixing-length theory 
as an engineering tool. 

II.  THE METHOD OF CHARACTERISTIC SCALES 

A.  RATIONALE | 

Free shear flows. Similarity arguments are the traditional means of approach to 
the classical turbulent free shear flows, such as the symmetrical jet or wake, which 
incorporate single local scales for velocity and length. Moreover, this approach is * 
invariably supported by experiment when the experimental conditions are carefully enough I 
arranged, which is to say when scales associated with the environment or with initial 
conditions have dropped out of the picture. The key point is that a Galilean-invariant \ 
velocity scale, say v ■>, always defines itself operationally during normalization of the 
profile of mean velocity or of mean-velocity defect. Given that this is the only local i 
velocity scale in a free shear flow, it must also be the proper one for making the 
Reynolds stresses non-dimensional. Typical similarity assumptions are then of the form i 
u/u0 = f(y/5) and T/fcu^ = h(y/5), with one relationship between f and h provided by the 
momentum equation. The problem then reduces itself to (a) specifying one or the other ■ 
of these functions or (b) determining - usually by some quite explicit statement about 
the turbulent mixing mechanism - a second relationship betwean f and h. Confidence in 
the similarity principles just described is strong enough so that thert is usually no I 
hesitation in extending them to less classical free shear flows such as the wake in a J 
pressure gradient or the radial jet. 

Millikar.'s argument.  From the point of view of dimensional analysis and similarity. 
the essential feature of a frc? shear flow is that the fluid viscosity is not material. 
This is no longer the case if a wall is present,  and the extension of similarity prin- | 
ciples to boundary layers and other such flows has had a long and difficult history. i 
Unless the circumstances are quite exceptional, turbulent boundary layers are known to | 
involve two length scales. One is an overall scale, say 6J the other is a sublayer 
scale, say y , which ordinarily represents the influence of viscous damping near the 
wall or the influence of surface roughness. The name of the similarity game, however, 
is still the same; it is to determine the nature of these secies, in as much detail as I 
possible, by applying conservation laws and by invoking or inventing appropriate boundary        I 
conditions at the wall or elsewhere.  In this process it is usually assumed that the 
influence of external factors such as pressure gradient or mass transfer is to modify | 
the relationships among existing scales without introducing new ones. i 

\ 
The role of the two lengt.i scales in a normal boundary layer is epitomized by an 

argument dne originally to Millikan (1938).  Suppose that for a given flow the mean- 
velocity profile near the wall has the form of the law of the wall, | 

-*-*£(*-) (20) 
o    'o 

and that the profile outside the sublayer has the form of the defect law. 

= g[t) (21) uo   -5 

Either or both of these formulas may involve hidden parameters which depend on pressure 
gradient, mass-transfer rate, and so on. Any such parameter must clearly be (a) dimen- 
sionless and fb) constant throughout the flow, since the implicit dependence of u on x is 
supposed to be completely contained in the x-dependence of u,,, 5, u0 and y0. The hidden 
parameters can be and often are interpreted as criteria for equilibrium. 

Now suppose that these two representations have a common region of validity (with 
respect to the coordinate y).  In the common region, 
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u0 8y  y0  y0   \ 
(22) 

while at the same time 

u 
3u 
3y 

_ y ® G(h   =G(^^) (23) 

Provided that the ratio yo/6 is not an invariant of the flow, it follows that 
F = G = constant in the common region. Call this constant 1/K. Then 

JL=f(X) =il0g-Z.+ 
y. 

(24) 

where c is a second constant.  It is  an impo-tant property of this argument that \.he 
fluid viscosity does not appear explicitly. 

In principle, the two dimensionless constants x and c in equation (24) may depend 
on the hidden parameters in the orig'.nal similarity laws; and this dependence, if it is 
sufficiently strong, can presumably be detected experimentally. To do so, however, 
requires the coordinates u/u0 and y/y0 (i.e.. the scales u0 and y0) to be defined in 
advance. Discussions of this point therefore tend to be somewhat circular. 

The characteristic stress.  I believe that Millikan's reasoning is so simple and 
so elegant that it must also be in some sense correct. I will therefore attempt in this 
auction to adapt the esseritial ingredients of Millikan's demonstration to other specific 
ca.ies# preserving as far as possible the traditional simplicity of the similarity approach 
to free shear flows. However, it is important to keep in mind the empirical and accidental 
aspects of the situation in the case of boundary-layer flow. For example, if it were easy 
to measure T and difficult to measure u, instead of the other way around, the concept Of 
similarity would undoubtedly have evolved first for the quantities T/T or T/Tmax.  In 
any event, the preponderance of the evidence is that a similarity law like 

T/pu^ = h(y/&) (25) 

is an adequate approximation for an equilibrium flow past a solid wall; i.e., a flow for 
which the defect law applies. A non-trival case in point is uniform pipe or channel flow, 
for which T is known to be precisely linear in y/6 regardless cf the viscosity. Another 
case in point is t,ie continuously separatincj boundary layer, for which the concept of a 
sublayer is very nearly moot.  For a general boundary-layer flow the term "approximation" 
recognizes the fact that equation (25) for T and equation (21) for u are unlikely both 
to be rigorously correct, even outside the sublayer, because of their rather intricate 
connection through the non-linear equation of mean momentum. This point has been made 
before by Clauser and others, but in my opinion it is not central to what follows. 

Consider therefore the special case of flow in a pipe or char.nel or in a boundciry 
layer at constant pressure. For these flows there is particularly convincing evidence 
that the scale u0 which is appropriate for scaling the velocity defect u^,- u is also 
appropriate for scaling the stress T, just as in free shear flow. More precisely, the 
definition 

PU_ = T K o   w 
(26) 

seems to be a proper generalization of experience with free ......ir flows, with TW      2 
substituting for T   as the characteristic stress which is formally identified with pu . 
What is remarkablemIs that this conclusion holds for both smooth and rough walls if T^  
is interpreted simply as force per unit area. Viewed £ rim the free stream, the similarity 
laws do not depend on the nature of the surface constraint; they depend only on the 
velocity scale u^. associated with the characteristic stress level close to the wall, no 
matter how this stress is actually applied. Given an experimental mean-velocity profile 
outside the sublayer in the viscosity-independent defect form (21), and given also a stress 
distribution in the form (25), it might be virtually impossible to decide whether the 
surface in question is rough or smooth.  This observation is_ central to what follows. 

Example and synthesis.  To fix the ideas, let us develop the method of characteristi- 
scales for the case of a turbulent boundary layer on a smooth wall at  constant pressure. 

Since the no-slip 
behaves like 

The stress near the wall is then constant to a first approximation, 
condition requires r  - [i,  3u/3y + 0(y~), the mean-velocity profile b« 

— y + (27) 

This expression will have the form (20),and hence will be a suitable 
ingredient for Millikan's argument, ~onlv if T

wy0
/,U"Q 

= constant. There is no loss of 
generality in putting the constant in question equal 

for small enough y. 
int for Mill 
ity in putting question equal to one, whereupon 

(28) 
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nils condition, according to the terma of its derivation, ha« a broad charter; the only 
iapcrtant stipulation is that the mean flow close enough to the «mil be coi trcllad by 
viscosity.  Purthenaore, the fluid yiscoBitv has now been introduced in a natural way. 
through the boundary condition at the wall. But the plausible definition (26) and the 
similarity constraint (28) have completely determined the scales u and y : 

uo " ^v/0^ <29, 

yo - V/(T/O)
,J (30)       i 

To  SUM up: thj key elements of the method of characteristic scales can be stated 
heuristically in the form   , f 

(a) the cowbination ou . where u ie th~ natural scale for the mean-velocity defect, 
is identified with soise characteristic «tresc level near the wall (cf. the indifference of 
the defect law in the case of smooth and rough walls), and I 

(b) the laminair edition of the mean-velocity profile near the wall is expressed in | 
the form of a generaliied law cf the wall, u/u0 j* f(Y/Y0) (cf. the need to preserve the 
essential features of Millikan's argument). I 

B.  FLOW WITH MASS TRAHSFER 

The law of the wall. The nethod of characteristic scales requires the velocity 
scale u which appear.» in the defect law to be tied to some c.iaracteristic «ttress T 
through the definition oa2 « T0.  it also requires the elements of Hillikan'c argument, 
as outlined in equations (20) - (24), to be preserved throughout. Suppose therefore that 
equilibrium flows with mas» transfer are characterized by a law of the wall. 

:r--f(:f) OD 

and by a defect law 

u«   y o    Jo 

u - u 
-V—-<J^ (32) 

o 

which have scn-a common region of validity. In this region the profile must be logarithmic; 

JL.iinJL+c (33, 
o       'o 

When the scale y is eventually defined, the definition can presumably incorporate any 
constant factor which is required to adjust the parameter c0 to some standard value. 
Moreover, experience with roughness provides a persuasive precedent for talcing the 
constant x as invariant. I will therefore assume that both g and cQ are universal 
constants, independent of iiäsa tranpfer. when Y0 is properly defined". 

The sublayer.  Now suppose that uhe mean velocity is represented well enough in 
the sublayer by a straightforward geneisliz^tion of the linear profile equation (27), 

T       —-■ 
u = -*f- (e v - 1) (34) 

or 

pvw 

OV U  TV _y_ "wo vro 
T      Y    T    LL U 

and if in addition 

~= I   •   say (36) 

pv u 
—i!'— = constant = M , sav (37) 

Tw 

This representation of the profile will be consistent with the form (31) if T
wy0/M- w is 

a constant. 

The second condition (37) is apparently a requirement for equilibrium. 
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The stress at the intersection. T. and the intercept, c.  The problen i» to specify 
some characteristic stress T which then defines *,he velocity scale u ; o ••       o 

""o " To W 

Unless T0 = T , of course, infoncation will be required about the stress avav from the 
wall. To the lame approximation as in (34}, the local stress is given by 

T = T  + ov u   (exact if a/Sx = 0) (39) w    w 

The only distinguished point in the boundary layer > besides the wall .and the free streaa. 
is the intersection of the laminar «nd logarithaic curves. This intersection will play 
a prominent part in what follows. Let u » U, y = Y, T = T denote conditions at the inter- 
section.  Then equations (35), (33), and (39) imply 

M-£ - e  yo - 1 (40) 
o 

o      ■'o 

^- = 1 + M-S (42) 
w        o 

where "1 is defined by equation (37). 

The two transcendental equations (40) and (41) can obviously be solved once and for 
!\11 toFu/u and Y/vn  as functions of the mass-transfer parameter M = ov }X(/Jw'    T*16 
quantity T/T^ is also~lcnown from equation (42). With K = 0.41 and c = S.OTit is found 
that there is no solution for negative H(suction) if M < - .0665;  similarly, there is no 
solution for positive M (blowing) if M > 14.03. For values of M between the two limits, 
the curves (40) and (41) have cither two or thrs-s intersections, as indicated in figure 7. 
To avoid confusion about which intersection is wanted, M can be replaced *s independent 
variable by the combination M/(T/TW) ■ pv u^/T. This last parameter is of order unity for 
both special values of M; specifically, it is - 1.178 for suction and 1.059 for blowing. 

The equilibrium parameter M = Dvwuo/'Tw 
an<* t^e intersection parameters U/u0, Y/y 

and T/TW are plotted in figure 8 against the independent variable pvvu /T. When the 
abscissa is less than - 1.178, the intersection cited in the figure is not the one which 
is usually taken to define the edge of the sublayer; instead, it is the intersection of 
a suction plateau with the log profile.* When the abscissa is greater than 1.059, on the 
other hand, the intersection cited in the figure approaches the fixed point Y/y0

!,tü/u =0.136. 

One further preliminary observation belongs here.  Elimination of y0 from the loga- 
rithmic profile equation (33), using the normalization condition \i.\i0/y0 -  T,V, gives 

-    i     y*n r in — + c (43)       | 

i 
where 

uo X V 

c   = co 1 .„ °"°2 (44) 

The method of characteristic scales, like the method of the mixing length, will therefore 
also involve a displacement of the log profile in coordinates u/u0, Xn{yu0/v), very like 
the displacement associated with surface roughness. 

2 
The velocity scale, u .  It remains to chocse the characteristic stress T0 = pu0 

and thus to determine the local velocity scale u  (and incidentally the local length 
scale y = M-U /Tw'■ As usual' my technique will oe to fit measured mean-velocity profiles 
to a complete profile formula, including a wake component; 

£=iin^+c+iIl8ln2(H) (45) 

where c depends on u0 and T  through equation (44).  The parameter 11 in equation (45) is 

* This point is illustrated in figure 7 for the particular case M = - 0.05.  The normal 
intersection is at Y/y ~ 19, u/u -. 12, whereas the plateau intersection is at Y/y0 - 470, 
U/u0 ~ 20.  The implied generalization of the profile shape may not be entirely academic 
for flows undergoing relaminarization; cf. figure 8 (run 1-580) in the thesis by 
Tennekes (1964). 
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readily eliminated in favor of Hence if T were accurately known, the ed in favor of u0, 6, T . and u^.  Hence xi TV were accurately known, the 
d 5 could be determined oy forcing an optimum fit for the central part of parameters u0 arc 

the profile. However, I prefer to trcrt r as uj^ertain, especially for large blowing 
rates, and to tp«<- various hypothec». for T0 ■ ou| to see whether or not plausible values 
are obtained for C. m 2  T^OU.2. 

First, suppose that T « T  the stress at the wall.  Then c ■ c0, from equation (44), 
and the fitting operation is indlfferert to the value of vw for the profile.* 

Second, suppose that T0 " T, tlie (laminar) stress at the intersection of the sublayer 
profile and the logarithmic profile. Then the definitions (37) for M and (42) for T, 
together with the nonualizing condition (36), imply 

o«. u y 
1+^ 

o 
(1 

uouo 
(46) 

Since U/u is known as a function of M (cf. figure 8, where the abscissa pvvu /T should be 
interpreted temporarily as ^v'"«)» ''0 are "o^o^' v\/xio'  and c'  3n Cact' * * ^^o ^8 
temporarily equal to exp(MY/y0), according to equation °40), md therefore c » c0-(HA) (X^J. 

All of Simpson's data whi :h are acceptably close to turbulent equilibrium have been 
processed by the two alternative schemes just described. Values inferred fcr the local 
friction coefficient Cf are compared to Simpson's "best estimate" in figure 9. Except for 
the highest blowing rates, for which Simpson's estimate of Cf is quite uncertain, ^he 
discrepancies are clearly in opposite directions and of comparable magnitude 
mediate assumption, that T^ should be taken as the arithmetic mean of 

An inter- 
was there- Tw atMi £ 

fore tested also, with the ini»roved outcome shown in the figure. 

According to figure 9. the charactsristic-scale method is able to generate acceptable 
values for Cf when the characteristic stress T0 ■ pu£ has some value intermediate between 
T  and T, perhaps a little closer to TW. TO investigate this point, a few profiles from 
the work of Simpson and of Davis were processed further.  In each case, the value of C* 
obtained via Simpson's version of the mixing-length analysis (see Section I) was accepted 
as a correct.value; i.e., a satisfactory substitute for a direct measurement of C^. The 
parameter pu^ was then varied between TW and T to establish the particular value for pu* 
which would reproduce exactly this mixing-length Cf.    The results, in terms of a    . 
combination (pu^ - T )/(T - T ) which varies from zero when pu^ ■ T to unity when pu^ ■ 
are plotted against v Ai in figure 10, together with a scatter band corresponding to an 
uncertainty of + 0.0002 ?n Cf (roughly + 5 percent in Cf when V^/VQ  «0; J 50 percent in 
when vu/u, 0.5). 

T, 

Cf 

A new hypothesis. For a variety of reasons, I now want to propose an alternative 
hypothesis for the characteristic stress, 
mean in the sublayer; i.e. 

Let TQ be tentatively defined as an integral 

= DU 
,  Y 

o 
(47) 

I view this equation (47) as the central relationship in this paper, 
evaluating T as the laminar stress uäu/äy yields immediately 

The practice of 

ou. (48) 

or, after slight rearrangement. 

Yu 

uo   v 

The usual normalizing condition T = LLU /y then gives woo 

(49) 

(50) 

where the right-hand side is a known function of the equilibrium mass-transfer parameter M. 
So is 

V    (3V « T w _  w o _ „  w 
2" ' M   2 o   ouo puo 

(51) 

A curve can therefore be plotted in figure 10 to show the quantitative consequences of the 
integral-scale hypothesis (47).  Among these consequences ia  a shift of puj toward TW for 
the case of blowing, 33 desired.  The course of the curve is also consistent with the 
course of the data. 

* The sublayer profile given by equation (35) will obviously change position according 
to the value of the parameter M = ovw

u
c/'

rw' but ^^ portion of the profile is not normally 
involved in the fitting operation. 
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Experimtintal data. Typical profiles from the work of several authors (the same 
profiles presented earlier in figure 2 and figures 4-6 in terms of the mixing-length 
theory) are shown again in figures 11-14 after processing via the integral-scale hypoth- 
esis, equation (47). The quality of the fit is definitely inferior to that in the earlier 
figures.  In particular, there i«? a tendency for thn  data in the inner 10 to 3 5 percent of 
the profile to fall above the analytical curves for the case cf suction, ;"<; below the 
curves for the case of moderate blowing.  That the disorepanies may be partly of experi- 
mental origin is suggested by the fact that they are present in some of the data even for 
the case vw « 0.  However, if the measurements are accurate, it may be necessary to recon- 
sider the assumption that Kanaan's constant x is unaffected by mass transfer. Tennekes 
(1984) chose to go in this direction in analyzing his own suction data. 

To test the suitability of the equilibrium parameter M - 0Vwuo/Tw a8 a n,easur* of 
externally inpoced mass-transfer conditions, the profile parameter n is plotted against M 
in figure 3.5.  Because the test is a sensitive one, I have used only what I consider to be 
the best available data and have omitted profiles for which Rg is less than 3000, in order 
to reduce the scatter (cf. figure 3).  The result is encouraging; moreover, the figure 
demonstrates the advantages of working with finite vw (which is easily measured) rather 
than with finite dp/dx (which is not) in any attempt to generalize the concept of simi- 
larity. 

Finally, values of the local friction coefficient Cf inferred wsing the integral- 
scale hypothesis are compared in figures 16-18 with values of Cf inferred using Simpson's 
version of the itixing-length method.  Either method seems to be satisfactory for estimating 
surface friction, even for quite large blowing rates. However, one method or the other (or 
perhaps both) may not account properly for effects of Reynolds number; observe the dashed 
line in each of figures 16-18, which is a worst-case data trajectory for a flow with fairly 
strong constant blowing. There is also a suggestion that C, does not continue to decrease 
along the plate, btt actually increases in the region of theCrailinq edge. This effect may 
be an upstream influance of the rather traumatic change in surface boundary conditions 
which occurs at the end of the test surface. 

Epilogue.  I have several comments about experimental technique in future mass- 
transfer research of the kind considered here. Experience has shown that a thick porous 
surface is much to be preferred, because it minimizes effects of local static pressure 
variations on the local transfer rate.  Measurements for the case vw = 0 should be part 
of any test program. I am obliged to complain again that hot-wire anemometers are not used 
as often as they should bs for mean-flow measurements.  Finally, I hope that blowing rates 
as large as v^vm  = 0.05 will eventually be investigated, to clarify the nature of the 
hypothetical blowoff condition at constant pressure. 

I do not want to leave an impression that the idea of using a characteristic stress 
evaluated away from the wall to define a characteristic velocity sc^le in flows with mass 
transfer is entirely original.  For the case of moderate blowing, for example, Mickley 
and Smith (1963) have proposed the use of the maximum shearing stress, which occurs rela- 
tively near the wall.  However, their proposal breaks down for flows with suction, whereas 
the present proposal does not.  In fact, the most attractive feature of the integral-scale 
hypothesis as formulated here is its generality.  As long as T = udu/dy is takeu as a valid 
approximation in the sublayer, equations (48), (49), and (50) will hold independently of the 
particular conditions which determine the actual intersection of the sublayer and logarith- 
mic profile curves.  There is therefore a clear prospect that the method of ciaracteristic 
scales can be developed into a vehicle for studying combined effects of mass -.-.ransfer, 
pressure gradient, and even lateral curvature. 
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Figure 1.  Data of Simpson (1967). 
Abscissa, Cf{EXP), is Simpson's 
"best estimate"of local friction 
coefficient. Ordinate, C*(MIX), 
is obtained by fit of eacn profile 
to equations (11) and (16). 

Figure 2.  Data of Simpson (1967). 
Typical profiles fitted to equations 
(11) and (16). Ordinate, U+, is 
pseudo-velocity given by left side 
of equation (11).  Numbers are 
values of v /u^ for each profile. 
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Figure 3.  (a) Data of Simpson ;1967). (b) data 
of McQuaid (1966). (c) Data of Mickley and Davis 
(1957). The strength of the wake component as a 
function cf local Reynolds number. Jagged line 
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Figure 4,  Data of McQuaid (1966), 
Notation as in' figure 2. 
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Figure 5. Da*:a of Mickley and 
Davis (1957). Notation as in 
figure 2. 
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Figure 7.  Intersections of the 
logarithmic curve, equation (33), 
with the laminar sublayer curve, 
equation (35). 

Figure 6.  Data of Tennekes (1964, 
top profile) and of Favre et al. 
(1966). Notation as in figure 2. 
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Figure 8. Conditions at the edge of the sublayer (solution of equa- 
tions (40) and (41)), interpreted using equations (42) and (37). 
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Figure 9. Data of Simpson (1967). 
Abscissa, Cf(EXP), is Simpson's 
"best estimate" of local friction 
coefficient. Ordinate, C£(CSC), is 
obtained by fit of each profile to 
equation (45), using three defini- _ 
tions for characteristic stress DU 
as noted. 
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Figure 10. Test of best assumption for characteristic stress 
puo*. Data points show values of pu0

2 which reproduce Cf 
obtained by mixing-length method (i.e., Cf(MIX) in figure 1). 
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Figure 11. Data of Simpson (1967). 
Typical profiles fitted to eopiation 
(45), using equations (50} and (44). 
Numbers are values of v /u^ Cor 
each profile.        " 
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Figure 12. Data of McQuaid (1966), 
Notation as in figure 11. 
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Figure 13. Data of Mickley and 
Davis (1957). Notation as in 
figure 11. 
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Figure 14. Data of Tennekes (1964; 
top profile) and of Favre et al. 
(1966). Notation as in figure 11. 
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Figure 15. Test of relationship 
between profile shape parameter n 
and external parameter M. 
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Figure 16.  Data of Simpson (1967). 
Abscissa, C^ClNT). is obtained by 
fit of each profile to equations 
{4i), (50) and (44), with integral 
definition for pu02. Ordinate, 
Cf(MIX), is same as in figure 1. 
Dashed line is trace of data for 
flow 121266 (v/u^ 0-0094)- 
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Figure 17.  Data of McQuaid (1966). 
Notation as in figure 16. Dashed 
line is trace of data for flow with 
u  = 150 fps (v /u  * 0.0079). 

Figure 18.  Data of Mickley 
and Davis (1957).  Notation 
as in figure 16. Dashed 
line is trace of datf for 
flow C-10-20 (v /u  = 0.0095). 
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SUMMARY 

Stabilization of turbulent boundary layer type flows by the action of Corlolls forces 
engendered by system rotation is studied. Experiments on fully-developed, two-dimensional 
flow in a long, straight channel that was rotated about an axis perpendicular to the plane 
of mean shear are reviewed to demonstrate the prl-olple effects of stabilization. In 
particular, the delay of transition to turbulenc- on the stabilized side of the channel 
to high Reynolds number (ü^h/v) as the rotation number ([n|hArm) is increased is demon- 
strated. A simple method, that utilizes the eddy Heynolas number criterion of Bradshaw, 
is employed to show that rotation Induced suppreasion of transition may be predicted for 
the channel flow case. The applicability of the predictive method to boundary layer type 
fr.ows is indicated. 

NOTATION 

—2 Cf    - wall shear stress coefficient in channel flow, 2Tw/pum    p 
Cf5 - wall shear stress coefficient in boundary layer flow, 2Tw/pü 
D - channel half width, h/2 
h - channel width 
L - dissipation length scale, see Eq (7) 
ü - mixing length, see Eq W 
m - a parameter, see Eq (15b) 
R - eddy Reynolds number, see Eq (?) 
Re - channel Reynolds number, V^h/v 
Re5 - boundary layer Reynolds number, TO/v 
Ri - gradient Richardson number, see Eq (1) 
Ro - channel rotation number, |0|h/trm 
R05 - boundary layer rotation number, 2|fi|6/ü 
S - "low speed" limit of Richardson number, -2iy{bu/dy) 
So - reference value of S, the ratio S/So = i/£0 
u,v,w - components of velocity along x,y,zj (~)  is time mean value; { )' fluctuating part 
Ej,, - area averaged, thee  luean velocity for two-dimensional channel flow 
uT - wall shear velocity, yTw/p 
Ü - boundary layer free-stream velocity 
x,y,z - cartesian coordinates fixed in rotating system 

ß - a parameter, see Eqns (5) and (6) 
5 - boundary layer thickness 
T\ - dimensionless y coordinate, y/D 
* - Karman's "constant", -0.4 
T - total fluid shear stress, [M.(3a/dy) - p(irrvT)], viscous plus Reynolds stress 
TW - wall shear stress 
fi - angular velocity of system relative to inertial space, oriented along z axis in 

this paper 

( )0  - subscript to denote conditions evaluated at zero-rotation (Cl = 0) with all other 
parameters fixed 

1.  INTRODUCTION 

There are many free and bound shear flows where non-conservative centrifugal or buoy- 
ancy forces act in the mean flow plane sind are also perpendicular to the mean velocity 
(or streamlines). A boundary layer on a curved wall is simple example of such a flow. 
The non-conservative, normal body forces may cause significant changes in the occurrence, 
structure and production of turbulence. If these non-conservative body forces are of 
sufficient magnitude and "stabilizing", i.e. characterized by popitive Richardson numberE, 
turbulence may be completely suppressed a.J:  relatively high Reynolds number. Shear layers, 
with stable density stratification in a gravity field are commonly cited illustrations of 
this effect. 

The boundary layers on the blades of radial flow, centrifugal compressor and pump 
impellers have Corlolls forces that act perpendicular to the mean velocity. These shear 
flows are closely related to flows with centrifugal body forces [7]. There have been enough 
observations [Ref's. 1 to 6] on boundary layers in steadily rotating systems to strongly 
suggest that the Corlolls forces that arise here contribute to stabilization of suction 
surface boundary layers and destabllization of pressure surface layers. For example, if a 
centrifugal impeller blade boundary layer is turbulent, the principal effecto of stabili- 
zation on the suction surface are reduced Reynolds stress, wall shear stress, eddy vis- 
cosity and mixing length. For high rotational speeds the Corlolls forces can become large 
enough to totally suppress transition from laminar to turbulent flow. These effects are 
important to centrifugal impeller design as they may, among other things, severely limit 
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the pressure recovery (diffusion) that can be ppplled to suction surface boundary layers 
without causing flow reparation. 

Figures 1 and 2 illustrate and define t.Te particular type of problem under investiga- 
tionj (l) the two-dimensional turbulent boundary layer in time-mean-steady flow relative 
to a steadj.'y rotating surface, and (ii) fully-developed, two-dimensional turbulent flow 
between steaUly rotating, parallel channel walls. The axis of system rotation is per- 
pendicular to the plane of the mean flow as Illustrated.  Positive rotational velocity, 
fl > 0, is defined to be counterclockwise with respect to the stroamwise, x , coordinate 
ar:d the normal, y , coordinate. With positive rotation a fluid particle is subject to a 
negative streamwise component of Coriolis acceleration. -3^ , and a positive normal 
component, +2nu . 

anu 

Coriolii 
Accelerations 

T*r7 

A^ly"/""'7' 

Fig. 

//r 'VZ/V/yV/V 

Two-dimensional boundary layer on 
rotating surface. Layer unstable 
with    n > 0,  as shown. 

i t —t--=A i* ^  
unstooie 

_L (2) 

Fig. 2  Fully-developed, two-dimensional, 
rotating channel flow. 

An appropriate measure of the relative local stability of a shear layer flow subject 
to a non-conservative body force is the gradient Richardson number [7] which for the case 
of .rotating, straight shear layers is defined by 

Ki - 2n •(f-^/d) -^ ;) (i) 

The parameter S , the limiting value of Ri that results when rotation effects become very 
small, may be loosely ^interpreted as the ratio of the mean, local Coriolis body force, 
-2!'2il , to a quantity, u(öü/öy)j proportional to the inertia forces in the flow relative to 
the rotating system. The flow tends to be "stabilized" by rotation In regions where Rl Is 
positive and "destabilized" where Ri is negative. Namely, fluid particles perturbed in a 
direction perpendicular to the mean flow feel a net restoring force if Ri > 0, but if 
Ri < 0 the unbalanced part of the Coriolis force will tend to accelerate the disturbed 
particle away from its Initial position. One sees from Eq (l) that neutrally stable 
layers (Ri = 0) exist when (a) \i  «= 0, vhe zero-rotation condition, or (b) (3u/äy)-2n = 0 , 
the absolute mean vorticity is zero. For example, neutrally stable layers commonly occur 
in the free-stream (or inviscid) flew regions in centrifugal compressor impellers that draw 
fluid from an atmosphere at rest even though the blade surface boundary layers, where the 
absolute vorticity cannot be zeri, are not neutrally stable. 

In Fig 2 the stable and unstable regions (or sides) of the channel flow case are 
shown in conjunction with the mean velocity and shear stress profiles. Although the shear 
stress profile is necessarily linear for fully-developed flow [2], neither it nor the mean 
velocity profile are symmetric about the channel centerline, y=D-h/2 , unless the flow is 
totally lapiinar, or fi=0 .  In the case of clockwise rotation, fi < 0 , the stable and un- 
stable regions would be interchanged in Fig 2, and the velocity and stress profiles would 
be reversed with respect to the centerline. 

For boundary layers. Fig 1, the global effects of rotation mav be expressed through 
a parameter, the rotation number, Rog =2|fi|5/U. The rotation numVer for channel flow is 
Ro = |fl|h/Trm.  In either case the rotation number represents the r^r.io of Coriolis forces 
to inertial forces., and it is the inverse of a Rossby number whose value (1/Ro > 5) is 
large for the work described here. 

In Section 2 some experiments on the channel flow case will be discussed to illustrate 
the effects of rotation on turbulent flow structure and transition to turbulence. Follow- 
ing this, in Section 3> a simple transition theory will be presented that makes use of the 
idea that the local eddy Reynolds munber introduced by Brad?haw [8] must, at sone point of 
the mean velocity profile, equal or exceed a critical value of 3°' (* ~ 0.4 is the Karman 
constant) in order that turbulent flow be self-maintaining. 

2.  THE ROTATING CHANNEL EXPERIMENTS 

In this section I shall be discussing some aspects of the experiments carried out by 
Halleen and Johnston [1] together with gome more recent results obtained in the same rotat- 
ing channel apparatus. 

The channel itself is 59 .inches long, 11 inches in span along the direction of the 
axis of rotation, ant", has a nominal width of h » 1.5^ Inches. Water can be pumped 
through the channel at measured rates of flow, and it can be driven about its spanwise 
axis at any rotational speed from 1/4 rpm up to nearly 20 rpm. The experiments were con- 
ducted in the region of the channel located at x = 45 to 52 inches from inlet and at the 



.6-3 

central plane, 5 1/2 + 2 Inches up from an end wall.  In this region the mean flow was 
found to be very close to fully-develcped ano two-dimensional, i.e. nearly free of sec- 
ondary flow effects generated on the end walls. The distarice from inlet to test region, 
x/h ~ iO,   is rather short for the development of a complete state of fully-developed 
flow. However, the inlet design (abrupt contraction) assured rapid streamwlse development 
of the side wall boundary layers and provided a strong level of disturbaxice that promoted 
transition at minimum Reynolds number. 

Flow visualizatioi. studies, mean velocity profile measurements, and wall shear stress 
determinations by Preston tubes, log-law cross plot and direct profile slope at the wall 
were carried out for a variety of conditions that covered a range of 3.6 x 103 < Re < 
3.7 x ICn and 0 < Ro < 0.21.  Only a few of the most pertinent results will be discussed 
here and primary emphasis will be placed on the conditions that existed at, or near, the 
stabilized side of the flow -where gradient Richardson numbers were positive. 

Visualization of the wall layers war; accomplished by two techniques. The ''irst uti- 
lized the very slow injection of dye-colored water through very narrow (O.OCj inch wide) 
slots cut spanwise across the 11 inch high channel walls. The second, and more recently 
developed, method is the hydrogen-hubble technique [9],  In the application of the lattsr 
method the bubble generating wire (-.001 inch diain. platinum) was placed along the span- 
wise direction, normal to u and rarallsl to the axis of rotation. The wire couüd be 
traversed out to any distance y from the wail. With the development of good lighting 
techniques and extreme water clarity, good l6 mm motion picture films were recently pro- 
duced of the wall-lsyer flow structures by D. K. Lezius (PhD candidate). 

The principle visual results were quite revealing. First, with no system rotation 
and for Re > 3000 the wall-layers* exhibited the now well known structural character- | 
istics of turbulent boundary layerr>, the spanwise streaky structure and the streak lift- 
ing and breaK up phenomena discussed by Kline, et. al. [10]. With channel rotation, ■' 
the structures observed in the stabilized side of the flow differed from the case of | 
zero-rotation and from ehe structures seen on the destabilized side. On the stable side 
(Ri > O) the flow progressed from a fully turbulent state to totally laminar flow when 
Ro was increased at fixed Reynolds numbe1". However, on the unstable side (Ri < 0) the 
flow always remained fully turbulent, and, superimposed on this turbulent flow, a pattern 
of la^-ge scale, longitudinal, contra-rotating vortices began to appear at higher Ro » 
values. The latter phenomena is discussed briefly by Halleen and Johnston [1] and 
Johnston [2] and is the subject of current work by Lezius. These large scale vortex 
effects seen on the unstable side of the channel will not be pursued here since our mam 
concern is with the stable side flow conditions. 

Figure 3 is a series of photographs of hydrogen-bubble time lines generated with the 
wire held deep in the wall-layer on the stable side. Each picture illustrates the struc- 
ture in the plane of the wall for progressively higher values of Ro at a fixec value of 
Re ~ I.38 x 10 . At Ro = 0, and in the other pictures, the irregular spanwise array of 
low speed streaks is evlder^ (see Fig ICa of Kline, et. al. [10] for comparison). As Ro 
Increases the streak structure persists over the whole spanwise field until, at a crit- 
ical value of Ro, patches of plane laminar flow start to occur between turbulent regions. 
Laminar flow is indicated in those areas of the picture (Ro = 0.126) where tir.e lines 
proceed downstream, in parallel arrays. At high rotational speeds, the stable wall flow 
appeared to be laminar with the  intermittont appearance of highly damued patches, or 
spots, of turbulence. Finally, at Po roughly 1.5 times its critical "ilue when laminar 
regions wert first observed, the stable si^.e wall-layers became completely steady and 
laminar. The turbulent spots observed In the final phases of the transition process are 
reminiscent of the "Emmons spot" structure observed in natural boundary layer transition. 
However, one cannot draw this analogy too closely since the spots observed here decay in 
size as they move downstream rather than grow as do the "Emmons" spots. 

The; first definite appearance of laminar regions as Ro is  Increased was found to be 
Reynolds number dependent. Two types of points representing t;-" results by the two visual 
techniques r.re shown in Fig k.    The crosses connected by the dc.=hod lines denote two 
scenes in our films between which transition has occurred. The round points on Fig h 
indicate the condition when laminar arras were first detected visually in tht dye studies 
[l] of tue stable side sublayers. A transition line might be drawn through these points 
to indicate that only for Ro values belo'.j the line can a fully turbulent stt/te be main- 
tained. An attempt to predict this transition line, the lines in Fig 4, is outlined in 
the following section.  Before proceeding to that analysis it is useful to present a few 
more experimental results that (l) oonfirir. the visual evidence and (ii) are useful in 
the analysis to follow. 

Mean velocity p^ ;riles In law of the wail coordinates on the stable s. , of the chan- 
nel aro presented in Fig 5 and 6 for two Reynolds numbers. At Re = 3.5 x IO1* , Fig Si 
all profiles were obtained in the iurbulent flow regime at Ro values below the transition 
value estimated from Pig h to  be ~0.10 at this Reynolds number. However, in Pig 5, where 
Re is lower, the flow should be transitional or laminar for Re ^ 0.10. Therefore it is 
not surprising that the profiles in Fig 5 at Ro = 0.117, 0.166 and 0.210 have a laminar 
shape compared to the other profiles in Fig 5 and the profiles in Fig 6 which approach 

* 
Here the term wall-layer? refers to those regions commonly referred to as larpinar sub- 
layers, buffer layers e,nd Inner parts of Jie fully-turbulent layers, see [10], 



0.20 r 

0.!5 - 

Ro 

O.IOh 

0.05 - 

2.5  S-OxlO4 

r'a) * = O.ii,  m = 1.0 

Ro = 0.036 

o.20r 

0,15 - 

Ro 

O.iO 

0.05 

(b) ß =6.0, m = 1.0 

Ro -- 0.081 

0.20 r 

0.15 

5 Rp 

O.IOh 

0.05 

3.0x10" 

»v« 
■*i*m>*g*i*$* 

Fifii 

•AX*""?0?'* 

0.126 

(c) ß = 6.0, A = O.K 

Transition in rotating channel flow. 
Circles - dye injection observations 
[1]: • observer stationary,© observer 
rotating. Crosses - film scenes using 
bubbles.; upper croas definitely laminar 
or transitional, lower cross flow defi- 
nitely turbulent. Solid lines theory. 

Fig. _3      Wall layer flow structure by pulsed bubble wire at yu_/v = 2 set parallel to 
z   (axis  of rotation).    Wire  located along left hand ertge  of photos.     Flow 
Re = I.38 x 104.    F-      ■films by 0.  K.   Lezius. 

1 



a characteristic turbulerit shapf:  such as  the  rotating turbulent  law of the wall 
{Tr/ut)  =  (l/*i)/n(yut/v)   <■ E - 3(2%/ut) suggested by Bradshaw [7]. 
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At zero-rotation,  the wall shear stress coefficient in the two-dimensional flow 
(central)   region of our channel was found   [1]  to fit the simple relationship 

cfo = 2Twc/PI? = 0-0706  Re"1/4 (2) 

to better than + 7% over the range 1.15 x IO14 i Re ^ 3.52 x 104. The air flow data of 
McMillan and Johnston [11] in a channel of 10:1 aspect ratio and the data of Kussaln and 
Fsynolds [12] in a W-.l  channel, as well as older data covering the same range of Reynolds 
numbers, fit Eq (2) to the same limits cf uncertainty. The low Reynolds number data of 
Patel and Head [13] agree with Eq (2) from the lower limit of turbulent flow. Re ~ 2 x 
10-, up to 4 x 103. 

When the channel [1] war. in rotation, the measured wall shear stress on the stable 
side was lower, and the stress on the unstable side higher, than the zero-rotation stress 
at the same Re. At low Ro values, the ratio of wall-shear velocity, u-- , to its zero- 
rotation value, uT0 , at the same Reynolds number may be estimated by the data fit 

V(VTwo) = VU
TO = l t  ^ Ro (3) 

The negative sign refers tc the stable-side wall-stres 
the flow is fully turbulent. Once transition occurs, 
predicted by Kq (3). On the unstable side, where the 
that the wall shear ratio was independent of Reynolds 
to a critical Roj above the critical Ro U^/U^Q tended 
increased. The reasons for this behavior are not yet 
may be associated with the onset of the large-scale, 1 
tioned in the discussion of the vi-ual results. 

s, and the result applies only when 
uT/u_0 drops well below the value 
positive sign applies, it appeared 
number as Implied by Eq (3) only up 
to approach a constant value as Ro 
understood, but leveling of uT/uTo 
ongitudlnal vortex structure men- 

The final experimental results to be presented are the profiles of mixing length, 
defined by 

^ - (r/p)l/2/\*ü/dy\ w 
i    was deduced from the measured velocity profile slopes and measured wall shear stresses, 
The profile of 1  was assumed to be linear. Fig 2, because fully-developed flow was as- 
sumed. 

Figure 7a displays i0 versus y for zero-rotation. The flow was not quite fully- 
developed, as assumed, because near the center of tne channel (y > 0.04 ft) ic is seen to 
depend on distance, x/h , from the channel inlet. The ratio of I  to i0 , itt zero-rota- 
tion value at the same y , is plotted versus gradient Richardson number in Figs 7b and 7c. 
These data, when compared to the solid lines, appear to follow the trends of the simple 
"Monin-Cboukhov" formulae suggested by Bradshaw [71. For the stable side. Fig 7b, the 
"Monin-Oboukhov" formula is 
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Richardson number on unstable 
side.  Lines represent Eq (6). 

3.  A CRITERION FOR THE MAINTENANCE OF BOUND TURBULENT SHEAR FLOW 

The desirability of a predictive theoiy that permits the calculation of the effects 
of Coriolis, or other body forces, on the final transition to, and reverse transition 
from, a fully turbulent state is obvious. The problem may bs approached from the laminar 
side by methods cf linear stability theory (see [2] and [ll]) but this approach has not 
been too successful thus far because of the complex non-linear effects that are essential 
to the actual transition process.  It is probably better, to work backwards, e.g. by 
systematic increase of Ro from a turbulent state, and ask the question: how high, at a 
given Reynolds number, may Ro become before a stabilized layer is no longer able to pro- 
duce new turbulence energy and stress as fast as these quantities are destroyed by vis- 
cosity? That is, what are the conditions for self-maintenance of the fully turbulent 
state? The data presented in Fig ;i answer this question for rotating channel flow over 
a limited range of Reynolds number. This section advances a procedure for prediction, 
and hence extrapolation, of these results. 

An elementary criterion for the necessary conditions for maintenance of a bound 
turbulent shear flow where Reynolds stress production is mostly in the wall-layers was 
given recently by Bradshaw [8] in connection with his attempt to generalize various pre- 
vious proposals concerning criteria for reverse transition (also called relaminarization 
or lamlnarizatlon) in turbulent boundary layers. Very simply stated the criterion says 
that fully turbulent flow cannot be maintained once there exists no region, or point, in 
the layer where the dynamics of the energy carrying fraction of turbulence is independent 
of laminar viscosity.  In quantitative terms he reduced this idea to the statement tnat 
when the maximum value of the eday Reynolds number is less than 30 *, where * « 0.4 is 
Karman's constant, turbulent shear flow cannot maintain Itself and tends toward a laminar 
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state.    EtJdy Reynolds nua&er R Is defined in terms of the local total shear stress T 
and h,  the local dissipation length scale,  i.e. 

R ^ (T/P)
1/2

 Vv (7) 

wher.3 L = (T/P)"" /(the rate of dissipation of turbulence energy). 

5.i Application to Rotating Boundary Layers 

This criterion is applicable to turbulent boundary layers since R attains its ir.ax- 
inuB value in the wall-layer regions where local rates of turbulence production are high 
and necrly equal to local dissipation retes.  Production and dissipation are large cow- 
pared to rates of diffusion and convection of turbulence energy and stress in the wall 
layers. For these conditions, the single length scale L is an appropriate scale factor 
for the energy containing eddies. Hence a critical magnitude of a single Reynolds number, 
R, that represenis the ratio of turbulence scale inertia forces to the vlscou« forces 
tending to dissipate turbulence should be appropriate to denote the condition of self 
maintaining turbulence. 

Near the wall in a boundary layer L equals the mixing length. Up to y/6 =0.2, 
L - i = ^(^/^Q) where i0 = Ay is the approximate zero-rotation variation of mixing length 
with distance r:cm the wall, and 5 is the boundary layer thickness.  In tne outer parts 
of the layer (y/5 > 0.2) L becomes close to cons'ant, and then decreases to zero near 
y/5 = 1 (Bradahaw, Ferris and Atwell [lb]).    For zero and moderate streanwise pressure 
gradient T = T^ out to y/6 =0.2, and T decreases to zero at y/ö = 1. Thus the maximum 
value of eddy Reynolds number occurs close to y/6 =0.2 and it is approximated by 

«max = 0-2*V^72 3e6(i/i0)y/5 = ^ (8)        j 

where C^E is the wall shew stress coefficient and Res is the Reynolds number based on 6 
and  free stream velocity, IT . 

For zero-rotation i/ic = 1. For steady state rotation where Ri > 0 (stabilized flow), ;, 
Eq (5) provides a rough approximation for i . If we consider only the case of small rote- \ 
tion effects, Ri - S, Eq (5) simplifii-3 ^o \ 

l/i0 « 1 - ßS = 1 - ß So(i/i0) = l - ß So (9)        } 

So = -2ß iVUf where the definitions of S and I  are combined and the assumption T = TW 

is emplpyea. l,/ZQ  is now evaluated from Eq (9) at y/6 = 0.2 using the assumption I 
i0 = Ay. j 

f^V/e = o.2 =i -o'2*ß RO6 v^r ^       I 
When Eq (10) is substituted into (8) and R_„ set equal to 30A, the result below is 

obtained: aax 

l > 
0.2 ß A Rn5|  = 150 (11) 

Eq (ll) expresses the overall conditions required to maintain a fully turbulent boundary 
layer with zeroj or small, free stream pressure gradient on a slowly rotating surface 
where rotation is stabilizing, i.e. Ri > 0. There are no data that permit one to verify 
this result directly. However we see that it yields the qualitatively expected results. 
That is, for a given Reynolds number the effect of increased boundary layer rotation 
number, Ros, is to drive a turbulent layer toward a laminar state if Cf5 decreases or stays 
constant at fixed Ree. The increase of cf5 with increase of Rog on a stable side layer is 
not expected. 

All current data sources on rotating turbulent boundary layers [4,5,6] violate at 
least one of the assumptions of the theory. More important however, none of the investi- 
gators made any systematic attempt to observe the conditions of Coriolis force induced 
reverse transition. Thus, even if improvements were made in the simple result above, 
Eq (ll), it could not be checked directly. However, Kalleen and Johnston [1] carried out 
the necessary observations, Fig 4, for fully-developed channel flow, and therefore these 
data are used to check the utility of the reverse transition criterion. 

3■2 Application to Rotating Channel Flow 

For channel flow, as in the previous analysis, we must provide estimates for x and L 
In order to compute the eddy Reynolds number which is now written as 

/¥0 W Re 
2~.  - ... , 
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wher;  ?e   is  t'r.e   channel wiith Reynclas number ani CfC is  the  zerc-rctaticn »all  shear 
stress cceffi:ient  fcr ?hannf.l flew that  is  to be calculated using Eq  (i). 

The   linear shear stress  profile l"cr fully-i^velopei chanrici flow is 

The  dlTiensio.iless   ^IsvarjC-e  H = y/D  is  measured frcm   -he  stable  side   (Q < 0  In this case 
using the nctaticn of Fig ^)  where the stable aid^  wall stress, TW  ,   is  taken tc be 
pesitivfc   in ccr.p-driscn tc the unstable side wall stress,  TWU,  which  is  a negative nuciber. 
The  values  cf Tv;s  and T.^^ in this analysis  are obtained fron the empirical  results given 
in F.q   (?)  which  is  rewritten for our purposes  in the  forms 

Tws/Vwo =   ^   -   ^   *°)' (I**) 

and Tvn/^wo '"^  + ^^ Rc^ ^-t5 

Again the  dissipation length is  öet equal  tc the mixing length  in the  turbulent 
wall-layer regions,   and  it  is  assumed that 

VD = VD = *n       (fcr c < T - nO (15a) 

Lc/r> = -to (fcr 1 > a) (15b) 

The peak values of R will, because T decreases as ^ increases, occur at T ^ m. The cut- 
off parameter m at which L0 levels out is, fcr  the tiae being, not specified, but values 
of m < 0.2, the value used for boundary layers are not to be expected. The maximum pos- 
sible value of m is 1.0 which fixes the maximum value of L0 at the channel centeriine, 
1=1; this is a plyrsically unrealistic case, but as will be shown the one which tends 
tc give the best results. 

The effect cf rotation on L is  again calculated for ihe stable side by use of Eq 
(3) and the assumption (I/L0)^ {^/^0)- The Richardson number, Ri, is computed frcm 
Eq (l) where the value of ehe parameter S is obtained by use of definitions for S and 
£,  see Notation and Eq (4), and by defining a para-neter So ^ S(-60/i), so 

So = . —£ :,  -^  (16) 

Thie parameter So, v:hlch may be computed directly once Re, Ro, ß, * and m are specified, 
permits S to be obtained from Eq (5) pu'; in the form 

S(l + ß S(S + 1)) = So (17) 

This cubic equation is solved for S to obtain Ri and L/L0 =  S/So. 

The method and equations given above were used tc calculate profiles of R versus 
TJ for given values of:  Re and Ro «md various assumed values of ß, * and m. Then the 
maximum, or peak, values of eddy Reynolds number were coirpared to the critical value 
30*..  If Rp.y fell below this limit the flow was judged to be transitional or laminar 
and incapable' of maintaining a fully-turbulent state. 

The calculated transition lines are compared to the full range of channel flow 
experiments in Fig ha.  for ß = 0*, 2, 4, 6 and 8 with k  = 0.4 and ra = 1.0. The regions 
below the lines are supposed to be turbulent and regions above are laminar or transi- 
tional. The most likely value of ß = 6, see Fig 7b, permits u^od agreement with the 
data, but it could be argued that any ß in the range 4 to 8 is equally valid. With ß 
= 6 and m - 1, * was varied by ~ + 10^ to give the curves shown on Fig 4b. The exact 
value of the Kp.rman constant does not appear to be vital to the analysis. Finally, 
the eifects of ra, the cut-off ratio for the mixing length distribution is examined in 
Fig 4c. Here the transition line is most sensitive to m at low- and zero-rotation and 
nher only when m drops below C.3. Hence use of ß = 6, * = 0.4 and m = 1 in this simple 
theory produces very reasonable results for existing rotating channel flow data on final 
transition to turbulence. 

f  
The effect noted at ß = 0 is entirely due to the shear stress assumptions, Eq (14).  If 
"fws = Tw = two ahd ß ~ 6 a curve very close to ß = 0 in Fir 4a is generated. This in- 
dicates the importance of proper calculation of effects of Ro on both T and i. 
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The principal purpose of this pap.er has Deen to deccnst.rate the existence of a little 
kncwn ph^noaenon - the stabillzatlcn of fully-turbulent shear-lsyer flow by Corlcllr bo3y 
forces caused by systen rctatlori. 

Charj.el flow experiments )iave shewn that Coriclis forces on the stabilized side of 
the channel, where the gradient Richardson number is positive, cause a reduction in 
Reynolds shear stress and sixing length. Visual exaciination of the wall I'syer flow 
structure revealed that fully-turbulent flow cannot be sustained at high valuss of the 
rotation number, Ro, even when Reynolds numbers are as much as an order of magnitude 
higher than transition values at zero-rotation. 

We hoped that the eddy Reynolds number criterion, which gives a condition required 
fi-r 2 self-maintaining turbulent shear layer, could be applied to rotating flow with 
foriolis stabiiization. The criterion was applied to the turbulent boundary layer case, 
but lack of -uffie lent data precluded a direct check of the results. Application of 
the criterion t" the prediction of the experimental transition limits In the case of 
channel flow **£  quite successful when carried cut at fixed values of the constants 

* and m) i^ei in the calculation. 
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SUMMARY 
The development jf a turbulent boundary layer on a flat plate has been experi- 

•entally investigated in the orasence of an external turbulent flow generated by grids. 

With reference to a turbulent boundary layer evolving in an undisturbed flow 
the following rasults hay« been observed when the external turbulence level i» increasing: 

- the boundary layer grows »ore rapidly ; 
- the wall shear stress is higher ; 
- in the outer region of the layer the »ean velocity profile becomes 

flatter and the law of the wake is modified. In the same region the 
turbulent levels are increased ; 

- the turbulent shear stress and the turbulent kinetic energy production 
become larger. 

Various integral length scales of the external turbulent flow have also been 
used. A discerrablc effect has been observed on the integral scales of the boundary layer 
only. 

A rearrangement of the external iaotropic turbulence, due to the straining 
process of the mean existing/gradient in the boundary layer is tentatively proposed, 

velocity/ 

RESUME 

Le dtveloppenent c'une couche liaite turbulente sur plaque plane, sans gradient 
de pression, en presence d'un icoulement ext^rieur turbulent est <tudi<. 

Per rapport k  une couche liaite turbulente non perturbta, loraque l'intenaitö 
de le turbulence ext(§rieure augnente on observe : 

- I'^paissinssment plus rapids da la couche, 
- 1'augmentation du coefficient da frotteaent ft la paroi, 
- I'aplatissenent das profile da vitesses aoyennes dans la zone da aillage 

at la modification da la loi da aillage qui a'infldchit. Oi.na la mtme 
zone lea velours efficoces des fluctuations de vitesses aont accrues, 

- 1'augmentation dans la partie externe de la couche des tensions turbulentes 
et de la production d'tnergie turbulente, 

- l'accroissrnent des Schelle» integrales de turbulence. 

Oiff^rentes ichelles int*gralas ont 6ti  aussi utilisÄes pour l'gcoulenent extft- 
rieur. II a ttt  seulement observ6 un effet percsptibla sur los £chelles integrales de la 
couche limite. 

Une restrueturation de la turbulence ext*rioure isotrope par la gradient de 
vitessa moyenne de la couch; limite, conduisant 4 l'apparxtion de tensions turbulentes 
suppiementaires. snmble pouvoir bxpliquer Ira  r«»ultats expÄrimentaux obtanus. 

MAIN NOTATIONS USED 

OXi.    : axis ( Xi in the flow direction,  UL     : fluctuating velocity components 
Xz normal to the plate) in external flow. 

Xi •   distance from the leeding edge    Vf ; friction velocity. 
of the plate. R^    . Reyrold8 numbet  bMed on j  (JÜL) 

A       : thickness of the boundary layer   _        , ■     *   ■   j. ■ **■   • V  ° 
U(iJ) « 0 991J? ^V     : 8'<ln friction coefficient. 

UL     . __.„ .,.i««ät„ ,„»„„..„*» ;„ *K_   9     '  coefficient of kineaatic viscosity. ■-      ; mean velocity compo.tents in the ' 
X: directions.                  Lii,2 : transverse integral length scale 

Ui.      ! fluctuating velocity components.    o 
( U-! fluctuation), 

rv       rTi^"l1/2                      ^-n z : tranavarso integral length scale 
Ut-     • U «JL J in external flow ( U,  fluctuation). 
U.ll»    '•   velocity correlation at a point. #r    ..     *  ^- r       ±     r-       .» "1"« J (for other notations refer to Fig. 1) 
U°      i mean velocity in external flow. 

1. INTRODUCTION 

In a number of practical situations, boundary layers evolve in presence cf an 
external stream exhibitiny large unsteady velocity variationa. This manifests itself 
either es pulsations at fixed frequencies, or as random disturbances. The former occurs 
in case of airfoils belonging to the downstream stages of a multistage turboaachinery, 
the later to planes having to cope with turbulent atmosphsrea. 



Tne present investigation is focused on the basic problem of 8 boundary layer 
on a smooth plane vail, without »can pressure gradient, but with turbulence in the exter- 
nal streaa. 5UGAWARA, 5AT0, KOMATSU ana OSAKA (19S3), then K_INE, LISIN and WAITMAN (I960) 
hawe abready observed that high levels of free stream turbulence increase the thickness 
of the boundary layer, create fuller velocity profiles and alter the values of the longi- 
tudinal velocity fluctuations. Similar investigations done by KOKODA (1957) on the beha- 
viour of a turbulent w ike into a turbulent flow revealed an increase in the lateral 
spreading of the wake and the intensity of turbulence. 

Both these investigations are related to the foundaaeental question ne&ixnq 
with the behaviour of two adjacent isotropic turbulences, as pointed cut by CORHSIN and 
KISTLER (955) and tentatively tested oulby TOWWSEND (1956) and MGBBS (1968). Both inten- 
sity and scale of the external turbulence ara therefore essential parameters which cust 
be oealt with. The boundary laysr case nay be more avantageous  than the wake case because 
in absence uf external perturbations the turbulent level in tha outer part if low. Another 
fundamental question arises fron the mean velocity gradient and its subsequent mass 

entrainment process. An anisotropic external turbulence could therefore act differently 
from an isotropic one. The Reynols stresses existing in the external turbulence, mainly 
— O  UiU»       > can also become a relevant parameter of the problem, both in positive 
and negative values. 

In the present investigation we have limited our scope to the effect of a 
closely approaching isotropy  external turbulence generated by grids. Various configura- 
tions have been made in order to control independently the intensity and the scale of the 
external turbulence. 

2. EXPERIMENTAL SET UP 

2.^. Fluid mechanical apparatus 

The wind tunnel is of thtj open return type. Air is driven by a blower placed 
upstream. The settling chamber is equipped with dust filters. The test section, 2,5 m 
long, has a cross section of about 0,5 x 0,5 m2 (Fig. t). 

Immediately upstream of the test section is the turbulence - promoting section. 
Biplane grids with square mashes are used. Their rods (horizontal and vertical, respecti- 
vely) are round or rectangular, and a choice can be made about tha spacing between the 
rods planes (Fig. 1). The solidity of the grids lies between 0,30 end 0,42. Tht grid can 
be located at varying distancss from the leading edge of the test plate. 

The flat plate is horizontal, 2 m long, 0.5 a wide and C'.O'B m thick. It is 
made of hard and polished wood. It rests upon an independant base by means of four strut«, 
and a mass loaded suspension which has a 2 Hz natural frequency. The Isading edge of the 
plate is a slightly asymmetric wedge with a rounded nose (fig. 1), An adjustable flap 
is located at the downstream end of the test section. It is used in experiments on laminar 
boundary layers to set the position of the stagnation point and it is actually horizontal. 

Z.2. Measurino equipment and procedure 

All date wsra taken with platinum wire, 5 £/ in diameter, connected to a DISA 
55 D0I constant temperature unit. A single wire set normal to the mean flow is ussu for 
axial velocity measurements. Transverse components of the velocity »are obtained by 
means of a X - meter • Sensitivities to Ui   ar,d  Uz  fluctuations are determined di- 
rect.y from the empirical curves of voltage versua velocity and angle. For X meters, 
weighted differences or sums of the output signsls are performed by means of Burr-Brown 
operational amplifiers. The distance from the wires to the plate is optically determined, 
within an accuracy of 0.02 mm. 

Transverse integral scales  L-n,2    are obtained from the curves giving the 
two-points velocity correlation. The band width of the electronic circuitry is 5 Hz-20 KHz. 

Wall-shear stress measurements are performed by means of a Praaton tube (outer 
diameter 4 mm). 

3. EXPERIMENTAL CONDITIONS 

3.1. External flow 

All measurements are taken at a mean speed  Ui   cf 10 m/eec. Ths top wall of 
the test section is set slightly divergent in such way that no measurable axial mean 
velocity gradient occurs. 

Wi'-.iout grid in the tunnel the turbulence level  U^ / U1       is about 0.3 % 
on the tunnel axis. 

In the first part of .he investigation we established, at a givan cross section 
X,  , a turbulence of 6 different levels and appro.eimotively of the same integral length 

scale. To achieve our ascend sim all the grids had equal meshes and were placed at ths 
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sjne distance c  upstream from the leading edge cf the plate. To attain the various levels., 
the geometry of the rods and the apecinc; of the two planes of rods were modified. Fig. 2 
shows the obtained characteristics. 

In the second part we adjusted, at e giver, cross section   Xi « approximately 
the same turbulence level and two diffsrent integral lancjth scales. Therefore we used 
gride whose meshes were different. However each grid is set at the same number of meshes 
upstream fro» the cross section Xi  • f"or more systematic tests this kind of experiment 
was repeated at four different turbulence levels (Fig. 3). 

3.2. Boundary layer 

Because of the plete being rather short, the turbulent boundary layer is simply 
obtained by allowing the separation to occur at the "try beginning of the plate. 

.vithout exterral turbulence, ws have verified that the existing main characte- 
ristics ( U,  » Qi i Ui  •  »J, Us )   of  this boundary layer show self-precerved prüf iles 
for X-, >  50 cm. Also a satisfactory two-dimensionality was identified, and at the 
downstream end of the plats the useful width war, down to 25 cm. The boundary Isyer ' the pi« 
Reynolds number üiü / Y is about 20 000. 

For the different external flow condit*"»"», the virtual origins of the boundary 
layer are about 25 ^ 5 en upstream of the leading edge. 

i.   EFFECTS OF THE EXTERNAL TLPBL'LENCC LEVEL 

4.1. Thickness rate 

Fig. 4 illustrates the strong 4£i:rease of the thickness rate of the boundary 
l^yer with the external turbulence level Uf / Ui'     . For instance the ratio of the 
thickness rat38[(dJ/dXi)ig^dtJ/dXi)uf*o] "itjj ando withou-t the grid creating the external 
turbulence, con reach about 1.5 for  '  Uf/ U° = 5 ^ at  Xi  » 0,5 m. In these results 
the accuracy is limited to + 4 £ because of the difficulty to locate the boundary layer 
edge. 

4.2. Wall shear strese 

At a given boundary layer Reynolds number Uio/v1 , we observe a syste- 
natic increase cf the friction factor Cf  with Uf/U? (Fig. 5). For instance, 
the range 0,0037 to 0,0044 is covered when     Üf/U? varies from 0,3 %  to  5 %. 
A + 4 £ accuracy is expected on thsse results . 

4.3. Ween velocity profiles 

The effect of U}*/Ui      on the dimensionless representations of Ui/Ui 
versus  Xz/jT      is shown in Fiq. 6, Xi  being kept constant. We can observe that at 
a same  Xz/d      the value of OvUf      noticeably increases with   IJ?/U? 
To provide on order of magnitude of this effect the power law Ui/U^ s= ( Xz/SV{^j 
can be used. Then the exponent m  is found to increase from 5.3 to 3.2 when  U^/U° 
varies from 0,3 to 5 £ (Fig. 7). Another result is the lack of self preservation in the 
mean velocity profiles at different  Xi  > For a given grid creating the external turbu- 
lence. 

In the law of thj^wall representation Ui/U-f       versus  XzH XzU(VV 
(Fig. 8) the investigated  UiVU? levels inflect the curves beyond  X2=300 
and do not seem to affect the profile for   Xz   <      300. In the defect law repretentation 
(Lfi—Ui)/Uf     versus  Xi/J     this result appears more clearly (Fig, 9). 

4.4. Turbulence level in the boundary layer 

In the outer part of the boundary layer the turbulence levels U,/ U,   are 
strongly increased by the external turbuleice (Fig. 10). But in the proximit^of the wall 
they rgmain almost unaltered. Analogous results ere also obtained on the   Ü;/ LL| 
and  U3/ Ui    values, for the outer part of th» boundary layer. 

4.5. Reynolds stress 

The  ütUe/U-f      profiles are likewise altered (Fig. 11), mainly in the 
outer region 0.B < Xx/S    < ,  1.2. There, in spite of the nearly iso^jopic state of the 
external turbulence, U,!^/Up       increases by about 150 %  when   Lfi/U"     varies 
from 0.3 to 5 4./Subsequently the main term of the turbulent kinetic enargy production 

Ui Liz   dt Ui/ U3 is increased despite the decrease present in "OUy/öXz« 

4.6. Integral lenoth scales 

The distribution of   I—11,2/«   across the boundary layer does not seem to 
depend upon the external turbulent fields which have different Ibvels and a fixed integral 



21A 

scale (Fig. '2, curve li. However thp obtained distribution is different from the one 
corresponding to the boundary layer evolving in a> olmost perturbations free external 
flow (Fig. ;2,   curve 11). 

5. EFFECT Or THE EXTERNAL INTEGRAL LENGTH SCALE 

Cue to the scattering of the experimental results, no relationship between 
the estsblishRj integral length scales of the external flow and the mean velocity profiles 
could be discerned. These orcfiles have been plotted in the three different ways as men- 
tioned in section IV. Likewise no definije effect has been obsi "vcd neither for the tur- 
bulence levels (both tj,/ LK      and   Uy U^     ) nor for the wall shear strass, 
despite a slight increase cf the boundary layer thickneas rate with the external integral 
scale. 

Cn th« other hand the integral sc les   1—11,2     in the outer part of the 
boundary layer (Fig. 13) are strongly depe  ing on the torresponding scales of the exter- 
nal flow. 

6. CONCLUSION 

The above experimental results snow tha* a boundary layer is affected by an 
external quasi isjtropic turbulence, this turbulence being more efficient, by its level 
than by its integral length scale. 

One of the most Si.-jnificant result seems to be the increase of the Reynolds 
stress —yO L'-U2  with  U?/ Uf . Actually a tentative interpretation (proposed by one 
of us, J.M.) could be based on the fact that an initially Isotropie turbulence, submitted 
to a mean shear, later becomes anisotropic. (CRAYA 1958, ROSE 1966, CHAMPAGNE, HARRIS 
and CORRSIN 1970). Particularly the Reynolds stress —JSUiUy   which appears depends on 
the initial turbulence level and on the straining process, !n our investigation an ex- 
ternal "blob" of Isotropie turbulence may acquire a —/C UiUj>   stress after its entrain- 
tnent into the boundary layer, because of the mean velocity gradient existing there. As 
a consequence the distinct defect velocity profiles of Fig. 9 can be brought together 
(Fig. 14) by using the representation 

?=*fi 
where the quantity  0< .U° which takes into account the rearrangement of the external 
turbulence Kits been substracted from the friction velocity 

To enlarge this work some additional experimental investigations are possible : 

(i) - an analysis of the turbülent kineti-. energy balance with a special focus 
on the convective tarnTJ IA(UJ>-U|+CÖ/DX(J    ioe the turbulent motion. 

(ii) - a detection of the boundary layer edge, anu by means of a conditional 
sampiing system (KCVASZNAY, KIBEN5 end BLACKWELDER, 1970» obtain properties 
of the only turbulence of the boundary layer. 

(iii) - an extension of tn» experiments tows'ds higher turbulence levels, 
probably obtained by means of "biowinc" grids (MATHIEU et ALCARAZ, 1965). 

(IV i) - finally, the investigation of an additional uniform mepn shuar in 
the txternal flow, this shsar being "fiivorable" or "adverse" to the one 
existing in P boundary layer. 
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CAPTIONS FDR THE FIGURES 

1. Sketch of wind-tunnel test section. 

2. Turbulence levels and integral length scales generated by grids of fixed mesh. 

3. Turbulence levels and integral length sceles generated by gridB of different meshes. 

4. Thickness rate of the boundary layer versus \J°/iJ° 

5. Friction factor  Cf  versus Rj  , for different  Üf/UT 

6. Kean velocity profiles. 

7. Power law coefficient m versus US/UT 

8. Logarithm representation of mean velocity profiles. 

9. Defect law representation of mean velocity profiles. 

10. Turbulence level profiles (longitudinal component) 

11. Reynolds stress profiles 

12. Transverse integral length scale profiles for different   Uf/U., and fixed M, 

13. Transverse integral length scale profiles for different M  and fixed U,c/'-'1 

14. Rescaling of the defect velocity profiles. 
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SOÄ HEASUREfCNTS OF THE DISTOKIION OF TORBULENCE 
APPROACHIMG A TWO-DIMENSIONAL  BODY 

P.U. Bc«raan* 
Aeronautics Depc,  Itsperial College 

London S.W.7. 

- C"  « 

where t'     is the time at Che beginning oi  the distortion and Lx is the integral scale of the longitudi- 
nal component of turbulence, say.  For the flow past a body 

t' .fe) 

where U0 ic free stream velocity ana D is a typical body dimension.  This leads to the tiiird condition 
that 

^1 T 

0 « ' X 

Uo Ü 

Using these three assumptions Hunt treated the problem of initially isotropic turbulence convected past a 
circular cylinder.  Although the theory of Hunt will not be used directly tha interpretation of the 
experimental results presented in this paper draws heavily on the basic ideas underlying this theory. 

The flow was investigated along the stagnation streamline approaching a two-dimensional flat plate 
placed normal to the flow.  The strain field along this line is described by the tensor 

oaj 
31K 

3XJ 

r W 
Sx' o . 0 

0  . 
8U 

" Sx' 
0 

1 o . o , 0 

and the turbulence is only subjected to plane strain.  Experimental work on uniform plane strain has been 
carried out by several investigators, including Townsend [3] and Tucker and Reynolds [4], in suitably 
shaped distorting ducts.  These experiments are unsatisfactory in the sense that the condition 
/07U « Ix/D (where D is some duct dimension) is not met.  Tucker and Reynolds, however, have made 
suitable allowance for visco 1 decay in the analysis of their results.  In some respects the external flow 
around bodies is more suited to a rapid distortion treatment although there are regions of the flou, 
especially very close to the stagnation point, where the conditions of the theory are not satisfied. 
Along the stagnation streamline there '= some balance between the distortion created by the modification 
to the vorticity field by the mean flow, which will increase ni*, and the effect of the boundary 

formerly of National Physical Laboratory, Teddington, Middlesex, England. 

SUMMARY 

This paper describes an experivcntal study of the distortion of grid generated turbulence ss it 
approaches the stagnation region of a two-dimensional body.  When Lx/D » 1, where Lx is tti  scale of 
turbulecce and D is a typical body dimension, along the mean stagnation sti'eaaline /uZ attenuates like 
the mean flow.  Whereas if Lx/0 « 1 the turbulence is distorted b> the mean flow field and /P will 
anplify due tu vortex stretching.   .hen Lx/D • 0(!) there is f^ynd to be a coabination 01 these effects 
with atteauation of energy at low wsvenuabers and amplification at hiy> wavenuabers.  Measureronts of the 
pres«"«-e fluctuations at the stagnation point show that at low wavenuabers the level of ehe pressure 
fli'Ct-a. !"«• can be predicted by assuming the turbulence to be irrotational. 

1.  INTRODUCTION 

When a body is placed in a turbulent shear flow, for example a building in the Earth's boundary 
layer, there will be some complex interaction between the mean flow field around the body and the approach- 
ing stream turbulence.  This interaction will influence. Che relationship between upstreac velocity •; 
fluctuations and the resulting pressure fluctuations on the body surface.  The aim of the research ; 
described in this paper was to study experimentally thz  passage of grid generated turbulence as it 
approaches the stagnation region of a cwo-dimcnsioial body.  Although this is a simpler problem than that 
posed above, it retains the iaportant feature of turbulence distortion.                                    | 

* 
Hunt [l] has formulated a thecry, based on the rapid distortion theory of Batch«lor and Proudnan [2],        ' 

to analyse Che disCortion of turbulence in a flow sweeping past a body.  The principal assianption made in 
the theory is that, in Che time it takes for t*« turbulence to be swept past the body, the changes in the 
Dean flew around the body and the effects of its boundaries distort the turbulence far more than its own 
internal viscous and non-linear inertisl forces.  The turbulence will be distorted by the stretching and I 
rotating of vortex line filaments as they are convected past the body.  The assumpt'ons nude in rapid 
distorting theory are firscly that the mean flow is irrotational and secondly that /52/U « 1  (where /Q^ 
is the root mean square value of the longitudinal component of the velocity fluctuations end U is mean 
velocity), so that the dominant contribution to the distortion comes from changes in the mean flow and not 
from the turbulence itself.  The neglect of viscous effects is justified if the distortion takes place in 
such a short time that the viscous decay of energy is verv small.  Batchelor and Proudm£n [2] suggested 
the criterion 
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condition, chat there cun  be no velocity noraal to the ^ody surface, which vill reduce rSi. 

The pheooaenoo of increated turbulence ahead of stagnation was first noted by Fiercy [5j in aiose 
aeasureaents ahead of an aerofoil in a wind tunnei with r  hifh background turbulence level.  Work has 
been canied out by Sutera, Naeder and Kestin (6] and by Sutera [7] en thi role of vorticity aaplificatioe 
in stagnation flow.  They have exaadned theoretically a siiq-le fons of spanalty varying, sinusoidal 
psttera of vorticity, favourably orientated to produce stretching, approaching a stagnation point.  They 
find a neutral scale length for which a^ilification by stretching is exactly halsr.ced by viscous 
dissipation.  This theory has been extended by Sadeh, Sutera and Maeder {3, 9] to the outer flew field 
for a siailar font oC vorticity distribution.  Their theory does not, however, «llow for the iaportant 
effect cf the upstreas influence of the condition chat there car. be no vzlocicy noraal to the surface. 
Their theory is only valic, therefore, at very high wavenuafaen.  They coapare their theory with soae 
measureaeats in a turbulent flow approaching e plate where Lx/D « 1. 

The experiments described in this paper were aade in the rtmge where the scale of turbaUsct is of 
the saae order a« the i*ize of the body.  In addition to the investigation of the turbulent velocity field, 
aeasureaents of pressure fluctuations at the stagnation point are presented.  Marshall {10} has completed 
a siailar prograsne of aeasureaents on the turöulenc flow approaching a disk noraal tc the flow.  The 
general features of the flow are siodlar Co those found in the two-diaenaional case. 

2.  EXPEK1HENTAL ARSANGEMEHT 

The experiaents wer« conducted at the Ksrional itiysical Laboratory in a wind tunnel with a    3 ft. 
(0.91 B) by    3 ft   by    15 ft (4.57 a)  long working section.      The tunnel is of the closed-return type and 
has a free scream turbulence level of better than 0.071 end a oaxiaua speed of about    ISO ft/sec. 
HigM^urbulent flow was generated by the installation of squama nesh grids at the beginning of the working 
section.      Details of the grids, which were constructed of bars of rectangular cross-section, are given in 
table 1. 

Table 1 

1— 
Grid 

Mesh size, H 
CBB 

b*r size, b 
ri«s 

Dictance to   - 
stagnation point, - 

n 

A 3-81 0-98 70-4 

S 7'62 1-28 35-1 

C 15-22 3-U 17-6 

D 22-83 3-77 11-7 

Tht wind tunnel was equipped with a fine pitch fan designed tc operate unstalled with a high solidity grid 
in the working section. 

The body used was a flat plate spanning the tunnel and mounted normal no the '.lev.      The prime 
interest was the distortion of the approaching turbulence and in order to remove any unsteadiness in the 
flow, generated by vortex shedding in the wake of tne plate, it was decided to iill in the wake ciong the 
theoretical free streamlines.  The profile shape of the reeulting body was designed according to 
Roshko's [11] notched hodograph method.  Details of the design of the model are given ic the appendix. 
The model cross-section is shown in figure 1 and the size of the equivalent flat plate, 9, is 2.54 c*i. 
The model side faces become parallel in a distance of just less than D and remain parallel for 100. 
The body is terminated in a 6D streaclined tail fairing.  Surface oil flow patter-i showed there to be 
a region of separated flew situated towards the end of the curved portion of the 'free streamline'.  Trip 
wires were fitted at about 0.5D from the 'edges' of the plate and they reiroved the unwanted sepaiations. 

Turbulence measurements were made with EISA constant-temperature linearised hot-wire anemometers. 
A traverse gear was embedded in the model and either normal wire or X-wire probes could be traversed out 
along the mean stagnation streamline.  The hot-wire probe came out of the model through an air-tight seal. 
In addition to the velocity measurements, fluctuating pressure measurements on Che stagnation line were 
made using a J in Brtlel and Kjaer microphone.  The microphone was connected to the surface hole by 
about 1,3 cms of 2 mm probe tubing.  The frequency response of the microphone and probe tube was 
checked against a standard Briiel and Kjaer microphone.  Some damping had to be added to the probe Cube Co 
suppress the lowest resonant frequency and wich damping Che frequency response was accepcably flac Co 
2 kHz.  At low freouencies the level of power spectral densities was raised to allow for Che fall in 
response at frequencies less than about 20 Hz.  Fluctuating velocity and pressure signals were recorded 
on a tape recorder for later digitization and analysis on a computer. 

EXPERIMENTAL RESULTS 

3.1 Flow behind the turbulence producing grids 

The turbulence structure behind the four grids was investigated on the centre line of :he working 
faction, in the absence of the model, at a distance from the grids corresponding to the distance Co the 
stagnation point.  The measurements of the intensity of the three components of the turbulence together 
wich Che integral scale of Che along wind componenc, Lx> are presented in table 2.  The measurements were 
made at a wind speed of about 18 m/ser and values of the gt- i  Reynolds number, Km» based on mesh size, 
are given in the table.  In accordance with the results of other investigators, the turbulence components 
normal to the me»n wind direction were found to be smaller than the along wind components.  The values of 
scale were estimated from power spectral density measurements, assuming Taylor's hypothesis to hold. 
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The scale produced by Che sealler nesh grid, grid C, is largur tt*.  Eh£'. produced by grid D.  This is 
because scale increases vith distance from a grid and the measuring ^t?i.ion was covparatively nearer to 
grid D. 

Spectra seasuieincncs were made of the  'u'  component of turbulence for the flew behind each of 
the grids.  Figure 2 shows the spectra plotted in a nomaliked fern.  The [ower spectral density, F(n), 
is plotted in the non-dimensional forn {F(n)Uo)/(2*Lxn?) • eu against the frequency p-i-aiaeter 

(2«nLx}/Uo * n, where n is frequency.  The results are shown compared with the spectrum calculated 
from von Kincin's interpolfticn formula (see Hinze [121).  This spectruo has the forn 

9u ' (2/»)[l ♦ 1*8 J5
2
]
-
*''  and gives a  good representation of the experimental results. 

3.2 Velocity mcasurcBents ahead of the body 

3.2.1 Mean velocity 

The fii.T laeasurements were made in smooth flew and the meen "eloci-.y profile along the stagnation 
streamline is shown in figure 3.  The hot wire was traversed out to just over 4 plate widths ahead of the 
model.  Within a distance of 0.1D from the surface the  hot wir» results were subject to a number of 
errors, the most serious of which was that the seal at the stagnation point could not be held when the wire 
was very close to the surfrce.  Also the presence of the wire may have moved the stagnation point 
slightly.  Either of these effects could hive caused the small increase in velocity very close to  the 
surface.  As a check on the measuring technique the velocity distribution was compared with chat 
predicted by Roshko's [11] hodograph method.  Details of the computation of the velocity field are given 
in Che appendix.  The predicted profile is also shown in figure 3 and Che agreement with experiment is 
seen to b« good.  In turbulent flow the mean velocity profile was measured in the flow behind each of the 
four grids and shaved good agreement with the smooth flow result.  Hiemenz's solution for Che boundary 
layer at the stagnation point gives a thickness of just over 0.01D.  All the measurements, therefore, 
were made well outside the region directly affected by viscosity. 

3.2.2 Fluctuating velocities 

Although not strictly part of this investigation, :urbu 
made in smooth flow ahead of the body and showed a number of 
the turbulence level based on local velocity might gradually 
there were several locpl regions of increased turbulence leve 
high as 1J, which appear to have been caused by the presence 
situated in a region of strong adverse pressure gradient and 
on the flow.  If the wire was moved slightly off Che stagnac 
Measurtments in curbulent flow, on the other hand, showed no 
probe. 

lence measurements wich a normal wire »ere 
unusual features.  Ic is to be expecCed that 
rise as the model is approached.  However, 
1 along the stagnation streamline, one as 
of the hot wire in the flow.  The wire is 
it may well have had some disturbing effect 
ion streamline Che disCurbance disappeared, 
evidence of any inCerterence by the hoc-wire 

The intensity of all three components of turbulence were measured ahead of the body along the 
stagnation streamline.  It is difficult to inCerpret their meaning if they are simply plotted as a 
variation of local turbulence intensity because the changes, in intensity are dominated by the changes in 
the mean velocity.  Instead the local root mean square value of the turbulence component has been 
divided by its value recorded at x/D - 4.25.  Figure 4 shows the variation of /Ö?//a£    ahead of 
stagnation for the four values of scale tested.  The two smaller scales show an ampli;'icdt.ion of energy 
whereas the two larger scales she*,)  a continuous attenuation.  At the surface, of course, the value of 
/Ö^/ZuJ must drop to zero.  There will be some natural decay of turbulence between x/D • 4.25 and zero. 
Without the model in position the turbulence was found to decay by only about 2 Co 3% in Chis discance and 
no attempt has been made to correct the results. 

Very neai' the stagnation point the hot wire can only give a rough indication of the level of the 
fluctuating velocities because of the very high local turbulence intensities.  The hot-wire output was 
linearised but further errors are likely to arise at high levels of turbulence due to the non-linear yaw 
response.  Table 3 shows the highest values of local ir.t:ensity recorded and in all cases this occurred at 
x/D - 0.1.   Grid A showed a nearly ninefold increase in the value of intensity. 

The other component of turbulence in the plane containing the cross-section of the model,  t^/*^? , 
is shown in figure 5.  The third component /cß/vw*   , which is in a direction parallel to the stagnation 
line along the model, is plotted in figure 6.  While ßß/Sv%    shows generally an opposite effect to 
/üZ/Zu? ,  »^2/>^| shows only amplification.  Near the surface viscous effects will reduce these 

comoonents to zero. 
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TabU 3 

Grid 
Maxiaum Aaplificatioo 

of intensity 

A 

B 

C 

D 

o<:8 

0-21 

0-32 

0-M 

8'6 

7.43 

5.60 

5-31 

3.2.3 Ptwer «pectr«! density Meiuretat» of the longic.tdinal SSSE2SSBI 

For each grid power spectral densities of the longitudinal component of turbulence were cospated at 
x/D • 3.025, 0.624 and 0.183   The spectra measured at x/D - 3.025 shoved no significant variation fron 
those measured in the tbsene» of the aodel.  The spectra neasured at z/D - 0.624 and 0.183 are shown in 
figures 7 and 8 respectively.  Spectra are shown plotted as  (F(n)U0)/(2TLx ÜQ) " 8U against 
(2*rLx)/U0 • n and the area beneath each spectrum is ü2/ü|, i.e. the square of the ratio shown in 
figure 4.  As a compariyon with the upstreaai spectra the curve obtained from the von Kinuin interpolation 
formula is also shown. 

Figure 7 sho»s that the power at low wavenunbers begins to decrease (or remain constant, grid A) ind 
the largest attenuation occjrs for the flaw wnich had the largest scale, grid C.  At higher vavenuai>«rs 
the turbulence from all grids shows an increase in power.  In figure 8 the apparent shift of energy frcn 
low wavenuube.-s to higher wavenuober» is more marked although at high wavenuabers the effects of viscous 
decay are mor* obvious.  It is interesting to note  that for grid A, the smallest scale, the turbulence 
amplified evtn at '.ow wavenuobers. 

3.3 Measurements of pressure fluctuations at the stagnation point 

For each «£ Lbe grids power spectral density measurements oC the fluctuating pressure were aade and 
the spectra for grids A and C, irepresenting the smallest and largest values of Lx/D examined, are shown 
in figures 9 and 10.  The power spectral density of the pressure, F(p)(n), is presented in the non- 

»J-xßf S|U0) 
t. •'ff3. 

»p. The r.o.s. value of the fluctuating component of the dioentional form  (F(p)(n))/(2wL 
pressure at the stagnation point, /pz, was measured for each of the grids.  The results are shown 
plotted in figure 11 against the scale pcrameter D/L».  The fluctuating pressure is presented in the 
ncn-dlmensional form t/f^/(pV0 /a^)    and the reason for this choice of parameter is left to the discussion. 
TIsa values of ^ were calculated from the spectra after they had been corrected for the effects of the 
variations in the frequency response of the transducer. 

4.  DISCUSSION OF RESULTS 

The modification of the turbulence by the body ii fundamentally different in the two extremt cases 
where L» » D and Lx « D. 

4.1 Lv » n 

When Lx x o the flow approximates to a slow, quasi-steady variation of the direction and magnitude 
of the mean velocity.  Hunt treats the flow around a circular cylinder and assumes the flow is inviscid 
and that ^UQ ■ /"/J - i^}? " 'iU0  where t is small.  In the x direction the flow is similar to 
that caused by a slow variation of the longitudinal velocity and as Che body is approached the fluctuating 
velocity will attenuate like the mean velocity. 

and 

"o + u0 - 
U + u 

"o U 

0 

"o 
- 

U 

/5| 
- Ü 

Üo 
(1) 

In the y direction the effect of v0 will be to alter the incidencu of the flow and it can easily be 
shown by potential flow theory that, along the stagnation streamline 

,  Ü 2^2 
(2) 

Un 

The component in the z direction is unaffectea by the presence of the body and 
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A) 

For a flai plate in potential flow there is no change in /v2 along lit  stagnation streamline 
although it vould be unrealistic to use this result since in the real flew thsre is itparation at (he 
edges.  For the free strtfaoline model it is assumed tnat, for simplicity, at least way from ehe 
stagnation point itse'I, the flow is similar to that approaching a circular cylinder.  This is a very 
idealised picture since if the scale of turbulence is infinite the v fluctuation will induce an alter- 
nating circulation on tha body.  For the nodel used in these experiments the length of the body was 
nearly an order of magnitude longer than the largest scale of turbulence and it sea» reasonable, therefore, 
to treat the croplete flow as inviscid and neglect the effect of any Kutta condition at the traiücg edge. 
Equations (1), (2) and (3) are shown plotted in figures 6, 3 and 6 respectively. 

4.2 U « D 

If Lx « D the dijrortion of ehe turbule.ice along the stagnation streamline approximates to that 
caused by uniform plane. s:rain and the result!) -jf Batchelor and Proudsun [2] can be used directly.  The i 
rapid distortion theory of Batchelor and Proudoan predicts an amplification of i^ end &*    and a» 
attenuation of /v^.  Their results are a'*    shown plotted ir. figures 4, 5 and 6. 

A.3 L, - 0(D) ; 

The expsrimentai results are sei^. to fall between the two limiting curves with .'esults for scalier < 
scales generally tending towards the Lx/D ■♦ 0 curve.  Thv loggest aoplifiration of energy occurs for | 
the w conponent although there is no ra:e of strain in this diisction.  Clearly close tc the body the 
}f)cal  intensity is rising tc such a high value thst the assumptions made In rapid distortion theory cennot 
hold and the non-linear teru; in the vorticity equation will no longer be neglig-.ble. ! 

Although vortex stretching auplifies rv?,    close no  the surface the effect of the wall on small ; 
scale eddies will be similar to its effect on large» scale eddies further away from the stagnation point, 
i.e. it attenuates the fluctuations   The turbulence is thus affected on the one hand by vortex stretching 
and rotation and on the other by the simple blocking cf the flow by the body.  At intenseaiate scale sizes 
it can be expected that lot wavenumbers will exhibit some of the features of Lx » D flows while high 
wavenumbers will be dominated by vortex stretching.  This idea is well supported by the spectra measure- j 
ments of the u component which show a large shift of energy to higher wavenumbers as the stagnation 
point is approached. I 

4.4 Pressure fluctuations i 
I 

If Lx » D it  is possible to treat the velocity fluctuatious in the vicinity of the plate as 
irrotaticnal and to «pply the unsteady version if Bernoulli's equation | 

i't2 *   I - Jt   **   -   Kt) (4) 1 
I 

where q is the total velo.ity, 4 is velocity potential, B is the body force potential and F(t)  is 
constant throughout the flow at any instant of time.  It can be shown hat v and w produce no | 
significant contribution to the fluctuating pressure at the stagnation toinc and the problem reduces to 
that of a flat plate ir a flow of varying longitudinal velocity U(t).  The velocit;' potential for a flat 
plate normal to a stream is   i 

4(t) - U(t) /x2 + D2/4 I 

and B . *dU(t) j 

Substituting in Eq (4)   \ 
iu(t)2 + J . mi  /X2 + 02/4 + x fV    - F(t) (5) j 

Away from the plate Eq (5) reduces to 
2   P^o JU(t)5 + -—^ - F(t) (6) 

where P(t)0 is the pressute far from the plate.  Batchelor [13] shows that in isotropic turbulence the 
fluctuating component oi  the static pressure is small and he obtains the relation 

_J^_ - 0.58 -^ 
PU0/G|      

uo 

The maximum value of  ^PQ/CP U0 »ü%)     is     3,7 -• 10"2 which occurs in the flow behind grid D.  Since it 
can be shown that, at the stagnation point, /jF2/(p U0 i^u2)  is of order unity neglecting the upstream 
fijetuating static pressure will introduce little error.  Substituting Eq (6) in (3) and neglecting second 
order tenna the relation for the fluctuating pressure at the stagnation point becomes 

,(uouo+ f jr) (7) 

Assuming that the record of the pressure fluctuations forms part of an infinite stationary random 
process it ii possible to rewrite Eq (7) in terms of the power spectral densities of the pressure and the 
upstream velocity 
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*nn)vl [l ♦   i [ipl] (8) F(p)(n) 

Expressing    F(n)    in the noc-diiensional fom given earlier (by dividing by    (^»Ljt'JJ>/10))    Eq  (8) becoeei 

2«pz 

then 

2,p2uoLxü2 2,LX=J   [ *   l    tfe  '    V J 

•P ••.['•! fen 
If O/Lz —► 0, dp '  eu and the pressure and velocity spectra, non-diuensionalised as above, should be 
identical.  The spectra of pressure and velocity are shown coopared in figuns 9 and 10 and it can be teen 
that they agree closely at low wavenuabers whereas at higher wavenuatien the pressure spectra fall away 
below the velocity spectra rather Chan show nn increase according to Eq (9).  At each scale size examined 
there was a definite brtak point where the pressure spectrun diverged fron the velocity spectrum and with 
increasing values of Ls/D the break point raoved to higher wavenuabers.  At high waven^otrers the pressure 
spectra fell off at about 1.75 times as fast as the velocity spectra.  These results, therefore, show that 
the assumption that the velocity fluctuations can be treated as irrotational fails before any acceleration 
effects are felt.  The attenuation of the pressure spectra is a direr.t result of the rotational nature of 
the turbulence and the accompanying distoitiou of the vorticity field. 

If Lx/D ■ <» then 9p • 6U and /ff2 "pü0*ü§  or fy-c.m.a. '  2Mi|/Ü0.  The meaturements of ffi 
are shewn non-dimensionalised by pÜ0Ai

2 in figure 11 and it is to be expected that <^2/(p Ü0if^|) -  1 
at D/Lg • 0,  The results indicate that even when D/Lx - 1 the pressure fluctuations are still between 
60 and 701 of  p)l0<^.  These findings are important when it conies to predicting the fluctuating loads 
induced on bodies in turbulent flow. 

5. COKCLUSIONS 

When Lx/D »la quas -steady type of approach can be used and, along the mean stagnation stream- 
line. «'22 will attenuate lik«; the mean flow.  Whereas if Lx/D « 1 the turbulence is distorted by the 
mean ilinr  field and /&    will amplify due to vortex stretching.  In the experiments described here 
i-> ' 0(1)  and there is found to be a ccmbination of these effects with attenuation of energy at low wave' 
nusibers and amplification at high wavenunbers.  The other components of turbulence are found to behave in 
a consistent manner with the component parallel to the stagnation line on the body, which experiences no 
mean rate of strain, showing only amplification.  Measurements of the pressure fluctuations at the 
stagnation point show that at low wavenunbers the level of pressure fluctuations can be predicted by 
assuming zhe  turbulence to be irrotational.  At higher wavenumbers the effect of the distorting field of 
the body is found to reduce the level of the pressure fluctuations. 
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APPENDIX 

Free »treialine model 

The profile shape of the flat plate model was designed according to Roshko's [11] notched hodograph 
aethod.  His method requires a value to be assigned to the base pressure coefficient (Cp)b-  for  this 
oodel  (Cp)b vas chosen to be -i thus making k ■ /2 where (Cp)b - 1 - k2 and k is the ratio of 
the velocity along the free screamline near separation to the free stream  velocity.  Roshko's method maps 
the flat plate and its wake on to the positive half of the real axis of the complex w plane with the 
stagnation point at the origin.  The free streamline model co-ordinates are given by 

Xm 

^—^ pwöTT) - iog(^ + /r="i)1 

1k~ [2*1 •'wU2-«2)  + a ten  « IJ1-*] 
for 

where 

1    S   w    S    a-1 

k2 + 1 a   *   ^T 
The width of the flat p     s given by 

k2 + i r«    2 
— [2 + ;• 

i^rr 1 + a tan -Mr] 
Beyond w - a2 the body is parallel sided with thickness 

k2 H WH 
The resulting profile shape is shown in figure 1. 

Using the hodograph method it is possible to calculate the velocity profile along the stagnation 
streamline 

where 

U    2k2 f f 1    1 W2  f 1   J1/2!"1 

x - ^-^ j /w(l+w)  + log (/T+w + /v) 

*    — /w(ä2 + w) + a log 
a 

/P ■» w + »^ "I a    J 
and     0 * w « » 

The velocity profile is plotted in figure 3. 

X.U 

y^ 

z.w 

[—25 cms—A 
-43 cms. 

FIG. 1    FLAT   PLATE   FREE-STREAMLINE    MODEL. 
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APPENDIX   A 

DISCUSSIONS 

following the presentation of papers at the 
AG ARD Fluid Dynamics Panel Specialists1 Meeting on 

TURBULENT SHEAR FLOWS 

September 197! 

London. England 

This Appendix contain; the discussions which fo'iowed the presentation 
of the papers at the Specialists' Meeting on "Tu.buient Shear Rows" 
held at the Royal Zoological Society of London, England on 13-15 
September 1971. 

These discussions are transcribed from forms completed by the authors 
and questioners during the meeting and are keyed (by reference number) 
to the papers contained in this Conference P'oceedings. 

Le present Appendice est un recueii des discussions qui ont suivi la 
presentation des exposes a l'occasion de la Reunion des Experts tenue i 
a la Sociele Zoologique Royale de Londres, Angleterre, du 13 au 15 j 
Septembre 1971 et consacree au theme "Turbulent Shear Flows". I 

j 

Le texte de ces discussions a ete transcrit ä jiartir de fiches remplies a j 
cet effet par les auteurs et par ceux ayant desire poser des questions. j 
Les discussions sent numerotees suivant les numeros de refereiice des I 
exposes. I 



Al 

Discus->con of Piper C 
"Variations on a Theme of Prandt!" 

presented by P.Bradshaw 

L.S.G.Kovasznay:   I have enjoyed Mr Bradshaw's Paper very much and ! wish only to emphasize one poi/tl.  In 
compressible flows or alternatively in healed turbulent flows, there is a strong fluctuation of temperature or 
entropy:   correspondingly there is a large "buoyancy" effect that is r. very strong source of new turbulence 
generation 

P.Br^jsfuw:   Professor kovasznay's comment is a very pertinent one.  I hope that Morkovin's hypothesis {of the 
effective "incompress/bilify" of turbulence with Mach number fluctuations much less than unity) will keep us out 
of trouble in many cises:   for instance it seems that the dear old mixing length formula, as re-iicenjed by 
Morkovm for  M < .'i . gives good results in the inner layer t'f compressible boundary layers.  As I mentioned in 
the paper, strong compression or rarefaction may produce targe effects on turbulence jus' like other strain rates: 
it may be this that produces the rather targe differences between catcu'ation methods and the measurements of 
Peake et al present.-d at this meeting. 

A.D.Young:   1 would like to refer to a major point in Mr Bradshaw's lecture, namely ihat future experimentation 
should concentrate on the kind of data particularly needed by current calculation methods.  Are there any comments 
on this point? 

P.Bradshaw:   I would not like to be any more specific than in the lecture:   the general need is for more information 
about the exact transport equations for Reynolds siress;  we know much less uhnut them than about the turbulent 
energy equalicn.   Most of all "ne would like measurements of the pressure-strain terms that govern the tendency to 
isotropy but. even in the atmosphere, pressure fluctuation measurements within the flow are not very reliable, as 
measurements in smalKscale flow in the laboratory are extremely difficult.   Perhaps the best advice one can give to 
experimenters is that they should bear in mind that the practical use of turbulence studies is to help engineers to 
predict turbu'ent flows. 

DJ.Peake:   (n your presentation, the complexities of three-dimensional turbulent boundary layers were not 
especially enphasized in your remarks on "interacting flows".  Would you please care to comment further on the * 
importanre of three-dimensionalities'' s 

P.Bradshaw:   As I am sure Mr Peake would agree, even true boundary layers (such as those far from a wing root or f 
tip) are a difficult problem in three-dimensional flow, although one can get quite a long way by logical extension of | 
"two-dime isiona! ideas".   In three-dimensional inteiactions, the turbulence is usually strongly influenced by stream- | 
wise vüfticity, whether produced by the inviscid secondary-flow mechanism or by the turbulence itself.  We don't i 
know muth about what happens to turbulence when it is rotated about the flow direction.  Since three-dimensional ; 
distortions and interactions are so important, we should encourage Mr Peake and his colleagues (and other workers) 
to investigate them further;   the NAE flow-visualization work has already been very helpful in giving an overview 
of three- limensional shear layers in real life. I 

I 
C. du P.Donakison:   I would like to point out that an experiment that is easy to perform and is very useful to one | 
who tries to construct models of turbulent shear flow is the dispersal of a passive scalar in any turbulent flow.  The 
dispersion of a passive scalar does not in any way effect the primary flow yet the way it is dispersed by any 
turbulent flow yields information that can be extremely useful to one who tries to construct analytical models. 

i 

P.Bradshaw,   1 agree with Dr du P.Donaldson that passive scalar transport can illuminate one's :deas of momentum 
transport (is well as being important in its own right!). j 

W.Schönauer:   The structure of the turbulent motion is mostly a nonequilibrium structujj and by this fact many 
effects are superposed and the v/hole history affects the observed flows.   I think we should go on with small step.i 
and one of tlie first steps should le the study of equilibrium flows and to search for the definition of such equili- ] 
briuiti conditions.  Then we should study the transit on from one equilibrium flow to the other and go by this 
procedure to the nonequilibrium flows.   In this -vay we can separate the different effects and may treat them by 
theorv. I 

I 
P.Bradshaw:   I agree entirely with Dr Schönauer that equilibrium (i.e. self-preserving) flows are the simples' basis 
for studies of the different effects that control turbulence.   In particular measurements of interactions and the 
effects of extra strain rates ar*1 much easier if the basic flow is an equilibrium one.   However it seems that, to a 1 
good approximation, the turbulence is usually in internal equilibrium-   even in nonequilibrium flows, structuial 
parameters such as anisotropy ratios are almost universal.  Therefore we may not need to investigate turbulence in i 
situations of meap-fbvv equilibrium, but the experimental work will always be simpler in such situations because 
lewer readings are needed, » 

i 

1 
I 
I 



A. 

W.W.Willmarth:   I think future cxpcnintnul work in turbulence ought to be aimed at gaining an understanding of 
turbulent structure in simple (lows in an effort to understand how the outer flow controls the generation of turbu- 
lence.   For example, in a boundary layer near the wall, how is turbulent energy production controlled by pressure 
gradient or by polymer additives.   Kova>zn»y's sampling techniques may be very useful in this respect.   If under- 
standing of turbulent structure is obtained, the computerized calculation of more complicated turbulent flows can 
then proceed more rapidly 

P.Bradshaw:   I agree entirely. 

J.J.n.Domingos: Don't you think that between the "inaccessible peak" of the Navier Stokes equations and the 
computational methods you referred to. which are for mean steady flov/s, there exists s promising alternative in 
the numerical computation of unsteady flows where you only need an apparent viscosity (or equivalent) to teke 
account of the motion at scales smaller than the numerical mesh0 

P.Bradshaw:   Professor Domingos' point is a very good one, and I have been hoping that calculations like those of 
Deardoff (see the Boeing Symposium issue of J. Fluid Mech) will soon use a fine enough mesh to give useful 
estimates of unmeasurable quantities (such as the elusive pressure fluctuation).  Given Illiac IV and money, results 
of direct use in calculation methods should appear in a year or two. 

Dht-'>ssion of Paper 3 
".StruUure of inc Reynolds Stress Near the Wall" 

presented by W.W.Willmarth 

J.M.Wallace, Jr:   I want to point out that Wallace. Eckelman. and Brodkey have measured the four quadrant 
contributions to the  u v   Reynolds stress term in MPI für Strömungsforschung Bericht 119, and are qualitatively 
in asreement with those of Professor Wilimarth.   We also measured scales and found that the two positive contri- 
butors aK much larger in scale than the two negative contributors. 

W.W.Willmarth:   I believe the lower Reynolds number of your experiments may cause ?ome quantitative difference 
in the four quadrant coistributions to  u'v' .   Your observation that the negative contributions to  u'v' were of 
smaller scale than the positive ones is further evidence of the small scale of the bursting and sweep processes. 

C.H.Gibson:   Would you comment on the degree of convergence of your statistical parameters, especially since you 
emphasize the intcrmiltency of the Reynolds stresses, and intermittency will increase the required sample sizes? 
The "four quadrant diagram" appears to be equivalent to estimating a joint probability distribution function with 
a four box joint histogram.   Was this technique used to obtain convergence of your statistic with a limitec' sample 
size, or is there some other advantage of the "four quadrant diagram" over a joint histogram with better 
resolution'' 

W.W.Willmarth:   I believe that the size of the samples used for the sampled Reynolds stress data of Figure 6 is 
adequate for Figure 6 b, c, d, e and the data become less accurate for extreme values of T.L. Figure 6 a, f, g,   In 
regard to the effect of intermittency on required sample size, the data for extreme negative values of T.L. are 
affected as indicated by the time variation of uv/üv   when only 38 samples were obtained at T.L.   =   ~2.15u^ 
(see Fig. 6 a). 

The same comments apply to the data shown in the "four quadrant diagram".   In the end, one's optimum 
statistical accuracy is set by the use one intends for the data.   We have not analysed our accuracy in detail but I 
believe our data is accurate enough to show that large bursts contribute generously to the Reynolds stress.  The 
average (in some as yet undefined sense) of a burst is an interesting question for further investigation. 

Discussion ot Paper 4 
"Spectral Distribution« of Tnermal Fluctuations in a Turbulent Boundary Layer" 

presented by L.Fulachier 

C.A.Fi'ehe:   I would like to ask:   I.   How was the teir.oerature measured?     2.   What svas the spatial separation 
between »he temperature and velocity probes, in terms of the wave number  k, . shown on the slides of the 
Various spcilr ? 
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LFulachier: 

1. I^s lluclujtions de temperature ont ete mosurecs par Id mtthode des diagrammcv de fluctuations de Morkovin- 
Kovasznay appliquee par F.Verotlct (voir reference \ ( ?ux ecouiements subsonkjues (confert page 4-")•   Les 
spectres de temperature ont ete obleisus en appliquant cette methode aux fignaux filtaS en frequence. 
Cependant. etünt donne le longueur et la difficulte de ce genre de mesure, certains spectres dc temperat'jre ont 
ete mesures avec un fil chaud unique pur chauffe et corriges de la contamination dm a la fluctuaticn öe 
vitesse  u'  tconfert page 4-3».   En fait, sur les figures I ä 6 les points experimentaux des spectres de tei.tpera- 
ture presenies n'ont pas ete corriges.   IA correction amelion; la comparaison des spectres  Fgg   ei Q . 

2. Les spectres de 0'. u et O'u c>nt ete mesures avec un seul HI chaud (voir reponse I). En ce qui conceme 
les spectres de v' . w' , el les cospectres de uV et tfv' nous avons utilise deux fiJs chauds croises en X et 
la methode des diagra.mmcs de fluctuations (confert page 4-3). La distance entrc les deux fils ^tait de 0,4 mm 
ce qui correspond a un nombre d'ondc de 2500 nT1. 

Discussion of Paper 5 
"Intermittent Structures in Boundaiy Layers" 

pre-, nted by R.E.Kaplan 

L.S.G.Kovasznay:   I would like to comment on your last slide.  Can you interpret your data in the light of Corino 
and Brodkey's terminology concerning the "sweep" of slow fluid' 

R.E.Kaplan:  Our results are in accord with the descriptions of Corino and Brodkey.  In fact, they show in some 
greater quantitative detail the suddenness and the scope of their "sweep".  We also show that this "sweep" is 
preceded by an "inflexional" velocity profile and can detennine this profile quantitatively. 

R.E.Kaplan:   The measurements of v'  and Reynolds stresses will be done in the near future. 

C. du P.Donaldson: I am unfamiliar with a diagram such as your last slide. From your talk 1 taice it 'hat this 
in some way represents the time history of a distuibance which arises at the wail. Am 1 mistaken? If it does 
represent a record of a disturbance, should not the disturbance propagate downstream? 

R.E.Kaplan:   The last slide represents positions displacef! nortnaläy from the surface.  A strikirg feature is that the 
acceleration and the preceding deceleration expenence a very sm.'*! finie delay as one proceeds outward from the 
wall.  Of course, one should realize that the displacement of eacii face is very small complied to distances 
downstream. 

C. du P.Donaldson:   I still do not understand.   A disturL .ncc originating at the wall sli.uk' propagate downstream. 
Perhaps what 1 see is the record of a disturbance that has moved in'o the area from upstream. 

R.E.Kaplan:   The accelerated regions for l.irge  y/5  and negative delay times are more a reflection of the velocity 
profile indicated in slide 5 than the accelerated velocity following zero time for the lower two curves of the slide 
(Fig  7l.   To repeat, we believe tint these measurements show the foimation first of a velocity profile, followed 
for small values of y/5   by a rapid accderation of the flow.   The local fluctuation level is highest immediately 
hdon: liie acceleration, and the acceleration occurs so rapidly that on the scales of structures even in the sublayer, 
ii appears io be discontinuous. 

W.W.Wülmarth:   I wish to suggest that, in trying to compare your data (for example that of Figs. 6 and 7) to 
spatial models or flow visualization pictures, one might obtain a first approximation to the actual ilow field at one 
instant in time by assuming that the data you obtain in Figures o and 7 is produced by a flow pattern that is 
convected past your hot wire array with unchanging configuration. 

R.E.Kaplan:   Our measurements shed no light on whether the suggestion is a valid first approximation.  Since we 
present only  u   perturbations, that would suggest that   u(x) resembles Figure 7.   But there is strong evidence 
that the vertical velocities are quite small, hence continuity will be violated unless there is a corresponding strong 
flow in the crosswist direction.  We expect to resolve this point in the near future. i 

i 
! 

J.M.Wallace:   1 want to ask ii Professor Kaplan has measured  v'(t) velocities simultaneously with lus observation 
of the deceleration and rapid acceleration of the  u'(t) velocity. j 
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W.W.WUJmirth;   In your results of Figure 7 a sudden jump (in time) of the streamwise velocity occurs near the 
wall at  y/6   ~  0.025. 0.035 and 0.070.  I believe this represents the psisage of a shear layer between 
y/6  =  0.035 and 0.Ü70 . The shear layer would have beneath it a low speed fluid parcel which will ihen 
erup! in the manner described by Corino and Brodkey. 

R.E.Kaplan:   That is at acceptable interpretation which more measurements cm verify. 

W.Schonauer:   In isotropic turbulence, there is only "downwards cascading":   the transformation of turbulence 
energy from large eddies to small eddies.  But the large eddies must be created somehow b, an "upwards cascading" 
and this can only take place in the presence of a shear layer.   It seems to m* that the intermittency and the 
turbulence bursts in the region between sublayer and turbulent layer are the sources for th« upwards cascading. 
The turbulence energy created here then diffuses outwards and is then destroyed by the downwards cascading. 
In this sense 1 want to give an interpretation of the hydraulic diameter dh -  it is proportional to the ratio of 
the flow volume to the wetted surface (the zone of downwards cascading to the zone of upwards cascading).  And 
many flows with the same dj.  show identically the same behaviour, so the structure and the mechanism of 
cascading must be the same in such flows. 

Discussion oi Paper 19 
"An Integral Method for Approximate Calculation of Compressible Turbulent 

Boundary Layers with Streamwire Pressure Gradient" 
presented by H.J.Küster 

R.L.P.Voisinet:  I wish to make a comment concerning the comparison of your theory to the  H,,   data of Lee, 
Yanta and Leonas.  The discrepancy in the correlation appears to be due to an upstream cooüng effect on the 
nozzle wall boundary layer flow,  upstream cooling affects downstream temperature profiles which in turn affect 
Hu .  Refer to Paper No. 9 for an illustration of this effect. 

H.J.Kuster;  Thank you for your comment. 

I think you may be right. 

Indeed history effects are only accounted for in the velocity field by means of the FELSCH-dissipation law. 
An additionai correction for temperature history effects seems to be necessary now. 

Discussion of Paper 29 
"An Eddy Viscosity Based on the Second Principal Invariant 

of the IMormatio;, Tensor" 
presented by W.Schonauer 

OO.Mojola: \ 

1. In your Equation 2.7 you have uniquel' related the stress tensor to the rate of deformation tensor via an eddy 
viscosity.   But it is known that the stress does not necessarily vanish where the rate of deformation vanishes, 
What is your comment on this? 

2. May ! i:-k whether your tyj.« of analysis is valid for general complex flows in which there is considerable 
ti,T!; Ijg between the rate of stress tensor and the rate of deformation tensor? 

W.Schonauer: 

1. There is no stress Li ray model, if there is no rate of strain, but it will surely be possible to change the 
constitutive eqiaticr, auch that it is valid for sue!; extreme cases, too.  I think that we should at first try to 
handle the simplest cases and then ameliorate the stress strain relation, if we then know its limitations.   I 
believe the assumption of isotropy to be the mo>t sever: restriction, out he-r, too, we must at first see how 
fsr the simple relation describes the physical moicl before we give up isotropy and get thort coefficients, 
which depend on th." choice of the coordinate sysiem. 

2. The answer is the same as to question 1:   we could provide for these effects especially with relaxation equations, 
but at first we should handle the simplest cases. 
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Disiussion of Paper 21 
'Cfftcts ol Suoiig Axial Pressure Gradients on Turbulent 

Boundary Layer Flows'" 
presented by C.H.Lewis 

D.J.Peake: 

1. What are 'he essential differences between your two-layer calculation method and the (Douglas) method of 
Cebeci and Smith? 

2. Why does the density profile for the AEDC Hotshot Nozzle Flow deviate sharply (as y/ö -» 0 ) from the 
other calculations shown on your Figure 6 in the written version of your paper? 

C-H.Lewis: 

1. The fluid mechanical model is essentially identical to Cebeci and Smith if one uses their eddy viscosity law. 
The numerical method is different and the application, such «s testing for convergsnee is unlike theirs.  Also 
the method is easily extended to an arbitrary number of parabolic partial differential equations. 

2. The small step size normal to the wall used in the present calculations permitted a detailed density profile to 
be computed near this highly cooled wall.  The integral method results did not permit such to occur. 

J.L.St60cry.'   Have similar calculatio-.s been made for the case of strong ativerse pressure gradients an-J, if so, are 
your conclusions mcdified in any way? 

C.H.Lewis:   Yes, similar calculations have been made for adverse pressure gradients. Comparisons were wad. v-ith 
experimental skin friction, velocity and total temperature profile distributions. The measurements were made on a 
flat plate with various curved ramps above the plait used to generate th? adverse pressure gradient fields.  We found 
good agreement with the data tor "moderately" adverse pressure gradients: that is, for conditions not too near 
separation.  The wall shear stress was measured with a floating-element gags- and should be. a good test of the 
numerical results.  In general, the method seems adequate without modificaiion, if one usits the eddy viscosity 
laws with the pressure gradient term included. 

P.A.übby:  Could you tell us why you think the failure of your numerical analysis for cases of heated walls and 
favourable pressure gradient was due to the density transformation of the normal coordinate Nther than, as I 
would guess off-hand, to a failure of the models for eddy-viscosity or Frandtl number? After all, if the flow were 
laminar, I presune you could compute these cases in terms of your transformed normal coordinate. 

C.H.Lewis:  The failure may be caused by the eddy viscosity models since we did not invt.sitgate laminar solutions 
for these heated wall conditions.  We will investigate this suggestion since we did several numerical experiments 
such as varying the step sizes and convergence tests without significantly affecting the results 

A.D.Young:   Am ( right in thinking that you assumed the pressure as constant along a normal to the nozzle wall 
and if so, might not this account for the breakdown of the method that you encountered? 

C.H.Lewis:  We did assume that dp/dy  =  0 , consistent with boundary-layer theory, in all calculathi/s.  I do not 
think this could cause the failure of the numerical calculations.  We did several numerical experiments such as 
varying the step sizes in both x and y directions without affecting the results.  Wi did not include higher order 
boundary-layer effects such as longitudinal or transverse curvature and so we are unable to comment on their 
effects. 

Discussion of Paper 30 
'Mach Number Effects in Turbulent Flows" 

preseiited by J.J.D.Domingos 

W.Schönaucr:   Does yc r "fundamental equation" reduce to the Navier Stokes equations for the case of an atomic 
gas?  1 believe that all generalizations of flow equations should do this, because this is one of the rare cases where 
we neeö net make a phenomenological theory, but have a consistent theory from the micro motion (molecular 
motion described by the Boltzmann eqLitinn) to the laminar (macro) motion. 
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i.J.D.Oomingos:   1 think you are referriRg to a dilute monai^mic gas (Maxwell gas) because only in this asymptotic 
ease has a complete deduction been made of the macroscopic equations starting from microscopic assumptions, 
although the usual point of view is to consider the microscopic approach as valid because it agrees with ihe 
phenomenological theory . . .  May i point out that no such theory exists for dense gases or liquids"  And also 
that it is questionable whether classical microscopic theories apply to turbulent flows? 

Regarding now the contents of) our question, it makes not much sensi- :f you read, even quickly, my paper, 
in fact what I called the fundamental equation (I should have said a first order approximation) started from the 
Navier Stokes equations after the existence of a velocity potential had been proved. 

Probably, a confusion arose in your mind because my reasoning was quite unfamiliar.   We have not take- 
either a pure phenomological approach nor a pure microscopic one.   instead we have combined both,  if both 
theo/ies are consistent, as generally agreed, my approach is correct and simplifies considerably the continuum 
theories because it reduces the number of possible forms for the constitutive equations (see references in the 
paper).  If my approach proves to be wrong, the two classical lines of thought (microscopic-continuum) are 
inconsistent:   this would be in itself an important result.   To summarise:   microscopic concepts were only used 
to prove that a velocity potential exists. Once this is proved, we proceed in the usual way of continuum mechanics, 
through the postuiation of constitutive relations. These are simpler, in their most general form, than the classical 
ones because they only involve tensors of zero order (scalars), not higher, because the constitutive equation concerns 
scalars instead of tensors of higher order. 

Discussion of Paper 6 
"A Two-Layer Model for High Speed, Thiee-Dimensional Turbulent Boundary Layers 

and Supercritical Boundary Layer-Inviscid Flow Interactions" 
presented by B.L.Reeves 

LC.Squire:   You say tiie flow only relaxes to equilibrium values if C[0  is not too small or too large.  Can you 
say more about this? 

B.L.Reeves.  As stated in the paper on page 6-12 and -is we have shown in Figures 2 and 6, the flow always 
relaxes back to the equilibrium Cf versus Rsß  variation if the initial value of the skin friction ( Cf0 ) lies above 
or belov the equilibriul curve. 

I think, perhaps, you have confused these results for relaxing flows with remarks made earlier in the paper 
concerning the "threshold" levels (upper and lower) of the turbulence production integral over the outer layer 
and the stability of the system of equations. The tacit assumption contained in this flow model is that the inner 
and outer layers are more or lets distinct at any given station, but that as ihe flow proceeds downstream they are 
free to interact with one another.   By treating the turbulent boundary layer as an inner and outer layer interaction 
problem, the results are expected to reveal certain consequences of that interaction which do not appear explicitly 
in other methods.  Among these is the result that if in a flow the iwo-layer structure is maintained, that is, the 
wall layer does not swallow the outer layer or the outer layer does not swallow the inner on;, the integral of the 
turbulence production over the outer layer has rather narrow bounds. 

In other words, the production integral must be evaluated rather accurately or the interaction of the two 
iayers will become unstable as the system is integrated downstream. 

Consequently, the. interaction between the inner and outer layers can be used to estimate, quite closely, the 
production integral in the outer layer.  Such results would be quite useful because this integral has buried in il 
such effects as intermittency and long "memory" of large eddie 

Discussion of Paper V 
"Application d'un Schema Ameliore de Longueur de Melange ä l'Etude des Couches 

Limites Turbulentes Tri-Dimensionnelles" 
presented by J.Cousteix 

D.J.Peake:   ho your calculated  Cf values compare well with the experimental  Cf  values measured by East and 
Hoxey, in their protuberance experiment? 
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J.Cousteix:   La comparaison des ß0   se fait comme suit:   a partir des valeurs cxperimenJales de  H  et   Rg     on 
determine  Cfx   par la loi logarithmique Cfx   (H, R^^ ).  On obteint a!ors la valeur de 

H - I 
Hv/C^72 

Ensuite on a besoin des valeurs experimentales de  Sj   ct   Kj   pour former T .  On peut alors calculer  tg /?„   ä 
partir de ia foncticn de  C|X , G  et  T . 

Dans ces conditions, I'accord pour Cfx   et  tg ß0   a ete satisfaisant. 

Discussion of Paper 8 
A Calculation Meihod ior Tiuee-Dimensional Incompressible 

Turbultnt Bourn',.   ' Layers" 
presented Ky P.Wesseling 

J.PJohiatza:   Recent results obtained at Stanford Umiverjty by Wheeler and Johnston (report MD-30, Thermo- 
«cientv; Division, Mechanical Engineering Department) are in agreement with the primary results of this paper.  Of 
particv-fa? significance is the importance of accurate knowledge of free stream pressure gradients. 

P.Wesselinjä;:   I am glad to hear this.  The agreement between your results and ours is encouraging. 

D.J.Peakc:   Are you satisfied that the limiting streamlines (see your Figure 15 in the written paper) from the MLR 
experiment were not influenced by "end-wall" effects? 

P.Wesseling:  Yes.  No correction was applied to the pressure distribution; the pressure distribution used in the 
calculation was taken directly from the measurements. Great care was taken in the experiment to elininate "end- 
wall" effects. One of the measures which was taken was the use of curved side-walls. The absence of spanwise 
variations was thoroughly checked by means of pressure measurements and oil-flow pictures - see Figure 14. This 
expf iment was a preliminary exercise for an experiment with a similar but larger model, to be carried out at NLR 
by Messrs B. van den Berg and A.EIsenaar in the near future. 

Discussion of Paper B 
"Calculation of Turbulent Shear Flows for Atmospheric and Vortex Motions" 

presented by C. du P.Donaldson 

LS.G.Kovasznay:   I have two questions.   Firstly, were the comparisons with experiments computed assuming 
similarity solutions? 

Secondly, what do you do in the presence of solid walls? 

C. da P,Donaldson: 

I.     No.  The comparisons were made using a forward marching procedure.  The computation; were carried far 
enough so thit the flows were essentially similar.   The viscous terms were retained in the e.j ".ations. 

1     In a previous paper on the boundary layer we have tried to treat the presence of a solid suriace by the 
inclusion of a boundary condition, on  A, , derived from the nature of the model equations near the wall. 
At present, I believe it is not clear just how much complexity must be built into any model near a surface. 
Hopefully, we may be able to retain a very simple mode! that will be adequate. 

C.H.Gibson: Regarding the question of whether or not free jets are Isotropie on the c^nterline, 1 would like to 
comment that our recent measurements of the skewness of the streamwise derivative of temperature on the axis 
of a heated jet give values of about minus one;  clearly not zero as required by isotropy. 

It would seem fortuitous for the lar?e scale structure of the velocity field to be Isotropie if the small scale 
structure of a convected scalar field is not. 
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C. du P.Doiialds<.!i:   Goo^'    I am glad Jo hear that your experiments tend to support non-istHropy on ihs jet 
centre hne.   It would be very difficult to get a good invariant mode! if one were required to produce centre-line 
isotropy for the case of :he axiaily symmetric free jet. 

P A.Libby:   [ have two comments as follows: 

1. 1 am somewhat discouraged to learn that you now believe it necesrary to alter your original formulation 
which involves three parameters,   A ,  a  and  b ,  to incorporate three length scales,  A, ,  Aj ,  A- , 
so that we now face the need to select five parameters.   In view of the paucity of high quality data :;vcn 
with crucial, basic flows, I am afraid we shall not be able to select rationally these five parameters,   i wonder 
whether we should accept some inaccuracies in these few basic flows in compensation for simplicity ind 
hopefully generality. 

2. I have been usiwg your original formulation on the two-dimensional mixing layer.  AUiough I have gotten 
some solutions of limited accuracy, my present point is that your p'uj^  modeling is not even in qualitative 
agreement with the recent measurements of Spencer and Jones.  However I find that a modelling 
p'uj,  «  — e u, uVuf   is rt least qualitatively correct but then I need another parameter! 

C. du P.Donaldson: 

1. it was only with great reluctance that 1 abandoned the use of a single capital  A .   It was, however, absolutely 
necessary.   I am still hopeful that only four parameters will prove adequate (that is taking Aj   =  A, ) but 
only time and comparison with experimental data can answer this question 

2. (No conm^nt was made on this part of the question.) 

B.E.Launder:  There is quite a lot of experimental evidence which indicates that the approx.niation of the pressure- 
strain correlation used here is not generally adequate in flows where there are appreciable mean rates of strain.  For 
example, it leads to incorrect predictions of the relative stress levels in the plane homogeneous shear layer of 
Champagne, Harno and Corssin (1970) (an interesting flow, this, because convective and diffusive transports are 
very small).  What seems to be needed, in addition to Rotta's "return-to-isotropy ' proposal adopted by Dr Donaldson 
are terms involving products of the Reynolds stresses, and the mean rate of rtrain Rotta's early werk (1951) 

dus 
shows that such a form is suggested by the exact equation for  p —  .   It may be of interest to mention that 

OX: 

specific proposals of this type have recently been proposed and tested by Reynolds (1970) and by Launder and 
Hanjalic (1971). 
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C. du P.Donüldson:   I agree with Dr Launder's remarks completely,   1 am well aware of the shortcomings of the 
tendency to isotropy model and have given some thoughts to alternative models, but as yet have not tried comput- 
ations with any of these. 



A-9 
i 

HmmioB of Fafxr i 
"A Re-ev«!u«tioii of Zero Prenure Gndient Compressible Turtju«ent | 

flomdary Layer Measaremenu" 
presented by J.E.ßtnbetg | 

F.M.White:   is there any systemtk. effect of Mach number on the wske constant  *u ?  I would expect »u   to 
decrease with  Mj .  (Hypersonic data by Fkxc (adiabaix) and by Kemp (habt transfer) show that «„  approaches 
zero). 

J.EDanbnrg:  Plots have been prepared arailar to those shown in Figure 5 of the paper wivh Mach number as the 
variable instead of Reynolds number and there wa; no systematic variation with Mach number. This was cor-finncd 
by statistic«] analysis whkh indicated no significant correlation with Reynold« numbei or Mach number.  One point 
to consider is that the use of a reduced velocity as a compressibdity transformation has an effect on the cugniRKfe 
of the wake constant, as compared with the wake constant calculated without this tiansforroation. 

DfecaaBoo of Paper 2 
"Some BounJary Layers Measurements on a Flat Plate ?t Mach Numbers from 

2.5 to 4.5" 
presented by D.G.Mabey 

DJ.Peake:   Do you know the turbulence level in the settling chamber or free stream and could they have influenced 
these measurements? 

D.CMsbey:  We know the turbulence level in the settling chamber was very low u'/u s  0.5% and thus unlikely 
to influent the measurements.  This level in the settling chamber was achieved by extensrre modificatioiis to the 
tunnel and corresponding reductions in flow fluctuations were obtained in the working section.  These modifications, 
and the corresponding .^bulence measurements are tülly described in Reference 5. 

J.P.Hartzuiker:   Does the roughness band alter the velocity profiles? 

D.GJMabey:   Apparently not, because at least -c  M  =  4.0 ,  our values of wake component (transition fixed) 
agree quite well with those obtained by Hastings and Sawyer (transition free) at the s-jne Reynolds nu:nbet!> based 
on boundary layer momentum thickness. 

S.M.^ogdonoff:   Your plots showed some considerable variation of wall recovery factor at high Mach number - large 
increases at the most downstream station.  Might this be some indication that the boundary layer is not completely 
turbulent (equilibrium) and this may be due to the transition strip you used? 

D.G.Mabey:  The state of the boundary layer was r onitored during the fjsts by surface hot films (Ref. 4).  The 
character of the hot film signal, even at the forward station, the highest Mach number and the lowest unit Reynolds 
number, was laminar.  All the velocity profiles measured were turbulent in character and 1 think it unlikely that 
"non-equilibrium" flow could be responsible for the high temperatures at the end of the plate. 

R.K.Lobb:   What recovery factor correction did you apply to Or Meier'i temperature probe, inrticularty near the 
wall? 

D.G.Mabey;  The recovery factor of the total temperature probe was assumed to be a unique function of the mass 
flow through it, as for other probes of this type (Meier, Ref. 3).  Typical recovery factors were 0.99 in the free 
stream and 0.96 close to the wall.  The relatio/iship between recovery factor and mass flow was determined from 
tests in the free stream, varying the mass flow by varying the unit Reynolds number at constant Mach number 
with the orifice used for the boundary layer traverses.  The free stream total temperature was measured with a 
much larger Meier probe.  The free stream total temperature was uniform across the working section and within 
0.5oC of the settling chamber total temperature.  The settling chamber total temperature was also uniform to about 
0.5oC over a large area. 

The most serious uncertainty is thus introduced by the assumption that the free stream calibration was 
applicable throughout the boundary layer. 
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Uuwmimotrwpettl 
"Comp»ri«oM bet«ccn •tame ffijh ReynoUb NurobcT Turbulent Boundary Layer 

Experunents and Variow Rennt Calculation Procedures at Mscb 4" 
pfcxntcd by D.J.Pnks 

&M.Botdoaoff:   First, a question of dariflcation; did you say thit the Mach number went up and the pressure 
went down for the advene preaure gradient case? 

DJJteafce:  I referred to the possibility of the existence of a small static pressure gradient norms! to the test wall 
in the region of the streaniwiK preuure increase (that is, roughly between  X  -   ! 2 an ' ~ . inches ).  The particular 
boundary byer traverses under ditcusnon were at  X  =   16.62 and X  =  20.62 inches .  We postulated that 
because of the slightly concave displacement surface (and hence because of the nature of the additional compression 
disturbances generated there), in addition to the reflections of the incoming waves (k-ym the regior. of the test wall), 
that there was the possibility of a normal pressure gradient existing nidi that the static pressure reduced marginally 
with increasing dhoance from the wall towards the boundary layrr edge. Such behaviour had indeed been measured 
by Michel (see ONER A Publication No. If.2 (1961), for instance) in experraents with a concave test wall.  If such a 
reducing static pressure across the boundary layer were admissible, then the new found boundary layer edge 
conditions yield skin friction coefficients fro.a Av Preston tube correlations that are in lint with the predictions, 
from the variaus boundary layer calculation methods.  I dor.'t wish to place too much emphasis on this conjecture, 
for as we pointed out, we did not measure the static prenure distribution across the boundary layer to prov; or 
disprove such a hypothesis.  It is. moreover, the reason for the stressing of the word "tentative" in Conclusion No.3 
in the written text. 

S.M.Bogdoaoff:  I don'? believe that this can be true physically. Hie incoming compression waves affect the outer 
edge of the boundary layer first, resulting in higher pressures and lower Mach numbers than indicated by the 
surface pressure.  For about 4-5 boundary layer thicknesses, the wall static pressure is less than the pressure at the 
outer edge- This physical picture (method of characteiistics) makes it almost impossible to directly compare surveys 
normal to the wall with the theoretical predictions. 

DJ.Peake:  What you say about the incoming compression waves in the initial region of streamwise advene pressure 
gradient is true, but at the pofetions in the flow that are under discussion (that is, at the second and third experi- 
mental boundary layr traverses) the outgoing waves from the test boundary iayer should be stronger than the 
incoming waves, leading to the hypothesis advanced above. 

J.E.Green:  Taking Professor Bogdonoffs comment a little further, the region in which only incoming waves cross 
the boundary layer will be of limited extent, say 46 at M = 4 . Theie will then be a region of similar extent 
through which the leading wave, reflected at the wall, traverses out through the boundary layer. Thus there will 
be a region of extent roughly  86 ,  in which the incoming wave system predominates, pressure is higher at th: 
edge of the boundary layer than at the wall, and the bo'indary layer approximation  5p/3y -  0 is not tco well 
satisfied.  Downstream of this region, incoming and outgoing wave systems will cross each othei and the pressure 
difference across the boundary layer will be rather closer to zero. Given this flow structure, it is interesting that 
the discrepancies between the skin-friction predictions of the finite difference methods and the measurements of 
the surface tube starts some distance downstream of the onset of the adverse pressure gradient. 

Following this comment, could I ask what static pressure was assumed in reducing the data tc obtain the 
velocity profiles which you have presented? 

D.J.Peake:   Yes, the pressure difference that we have assumed across the boundary layer during the streamwise 
pressure rise, is small. 

Answering your last point, the experimental velocity profiles displayed on the figures were calculated assuming 
a constant static pressure across the boundary layer equal to the value at the wall.  For plotting purposes, however, 
if one views Tables 6.2.! and 6.2.2 for traverse  T2  with and without an assumed normal pressure gradient, cne 
will note that the plot would show a discernible but quite small difference for the effect of normal pressure gradient 
on the veloc^y profile. 

The discrepancy between the theoretical skin-friction results and the Preston tube measurements (rssuming 

dP 
constant static pressure across the boundary layer, equal to pw ) begins where the value of —   , having reached 

its maximum value, then begins to decrease (i.e. at X = 14 inches). Where this occurs, the Preston tube pressure 
itself, P» , still continues to increase at its former rate, however, thereby leading to a sudden reversal in behaviour 
of the experimental  Cp   distribution (that is based on Preston tube pressure coefficient - see Figure 10). 

C.H.Lewis:   Experiments and calculations have recently been made at  M  =  2.4  for similar adverse pressure 
gradient turbulent boundary layer flows in which normal static pressure profiles were measured.  Small normal 
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static pressure gradients were r.<ea$ured.  Calculations assuming z-.u nonnaf pressure padirnU and using the "will'' 
conditions showed food afrcement viih measwvd skiR-frictio.   velocity ani total temperature profiles or «dvene 
pmsure gradients not njar separatum. | 

I 
OJJtealu:  One will note fro.n Kig ue 9a in U» witten paper that the sxperunental Cp  values obtained during the I 
streamwiae pressure increase, either by means of an intermediate temperature hypothesis, or by using an adiabatk I 
wall temper»nirc, both yield the samr trend in expnunenlal resu'ts.  In this case, therefore, the use of wa!! values 
would not seem to improve the companion Hetween ex|«riment and calculation. 

I 

Ditcuaioa of Fapcr D 
'Tne Structure of Turbulence in Shear Flows" 

presented by LS.G.Kovssznay 

P.O.A.LDavin:   Dt Fisher, one of my colleagues at Southampton, has similar convincing evidence of determmktic 
structure in the circular jet.  Does Professor Kovasznay feel that tiie high velocity peaks, i.e. those noted by 
Professor Kaplan yesterday, are traces of high velocity fluid drawn in from outside the boundary layer? The high 
velocity peaks we have observed in the jet flow appear to be induced high velocity fluid 'vO'-> the core of the jet. 

J.M.Wallace, Jr:  Would you comment on the simüsnty between the "bursting" phenomena and the transition 
phenoinena? 

LS.G.Kovasznay:   It is difficult to relate the laminar instability to the bursting because the outer flow is highly 
turbulent and it can "drive" the events in the sublayer. 

W.Schönauer  I am very glad to see your re&ilts because they help my arguments that the turbulent motion should 
be described by equilibrium flows and relaxation times for transition from one equilibrium to another,  it is well 
known from random motion that if the scale of the random motion is of the same order as the macro motion 
scale, then the random motion has a large memory (it reacts very slowly to changing tht macroscopic conditions) 
and relaxation plays en important role. Th» example of the acceleration in tne pi^e if here a good example.  If 
we defcribe the turbulence structure in dimnnsionless coefficients, these coefficients do not change in a short 
acceleration part (even if there are very strong changes in the flow conditions); this is well shown by your 
experiment. 

J.A.B.WDL;:   In the question of the energy content of the large eddies, (you claimed that extrapolating back the 
tail of the velocity space-time correlation to the origin gave a large-scale contribution of about 0.5 of the total 
energy) I think thit some boundary-layer experiments of Peter Bradshaw's gave value-, of at least Q.2S for the 
large-eddy contribution. 

Secondly, if you acsume that ih? bulges in the outer motion cause the sublayer bursts, how do you reconcile 
this with the classical separation of the boundary layer into independent inner and outer layers? 

L.S.G.Kovasznay:  The separation into inner and outer layers is a concept that originated from mean flow measure- 
ments, not from fluctuations.   The fluctuations do not scale with distance from the wall and local mean velocity, 
even in the so-calle.1 'ogarithmic region.  The "feed-back" mechanism has not been clarified, but it must be through 
the pressure fluctuations that cause a response in the viscous sublayer. 

R.£.KronaueT:   Near the end of your talk you suggested that spectral methods were to be avoided.  The picture of 
randomly occurring spatially organized events is as equally well represented in wave number variables as in terms 
of correlations, and much of the data you have shown here, such as the exponential Hecay or the correlation plots 
with positive and negative regimes, are more efficiently presented in spectral terms, 

L.S.G.Kovasznay:   ! believe it is a civil right of anyone to Fourier transform any data he wishes.  It is a matter of 
taste. 
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DHCOBOB of Paper IS 
"Vekwcy and Deimty Mcawremests in a Fret Jet" 

-^reseated by O.H.Wchnnann 

W.W.WUfanartli:  This »ppem to be the first workable scheme for rocaauring naal* pre:«ure fluciatiors «ritliout 
disturbing the fio* when ibe fluctuations are known to be iacntrepk.  Ha s you estimated tbs apiai tu iH»ise 
ratio for your measurements in which the sensitivity is 4S^ *   SO"5 ? Also, in your measurements havw you 
considered the influence of the size of the region in which density fluctuations are correlated on the strength of 
the sipnal from the deeector? 

O.H.Wefannanr:  'Chi signal to noise ratio depends on the noise level of the laser to be ussd (plasma insUhüi::-s. 
hum ap-i random frequency variations). Tu reduce the hum, die laser was operated with a separate stabilized high 
voikge pr-wcr supply. The noise level was reduced by an additional R.F. unit to reduce plasma i!<s1«bH>i^i.  The 
spatial resolution of the sigtial depends on the correlaUon of the lluctiMtions in the area of the focal point  A 
general analysis will be given in the paper (Ref. 2i under preparation. 

P.O.A.LUavies:   An alternative system is laser Schlieren which is simpler and cheaper to set up but suffe.-s from 
the disadvantage that one integrates along the beam.  Though crossed beams help here on« still has an interpretation 
proMeir. M^ .ofwague at Southampton, Dr Fisher, his measurements of fluctuating density gradients we must 
compare with the measurements reported here. 

).E.Green: Could you say what the spatial resolution of your technique is, pcrticulariy along the bMs axis? 

O.H.Wehnaan..   The resolution is approximately of the order of 1 mm. 

M.A.S.Roas:  H'a- the laser used in continuous running or intermittent? 

O.H.Wchnnanrr.  The laser was operated in a continuous mode. 

Diacnaöon of Paper 16 
"An Experimental Investigation of Curved Two-Dimensional Turbulent Jets" 

presented by C.Schwartzbacb 

LS.G Kovasznay;   Did you try to vent the recirculating region in order to control the position of the stagnation 
point? 

C.Schwartzbach: The influence on the reattachment point position due to venting the recirculating region was 
investigated by blowing secondary air through distributed perforations of the wall. Qualitatively the result was 
that the reattachment poim moves downstream as the secondary volume flow increases. The secondary volume 
flow rate needed to prevent reattachment is of about the same size as the nozzle volume flow rate. 

C. du P.Donaldson:   May I ask how the reattachment point wis determined? 

CSchwartzbach:  The reattachment point was located by tra- ersing a hot wire probe along and very close to the 
wall.  The probe signal cannot be interpreted very close to the reattachment point, but the mean velocity variations 
at some distance from the reattachment point can sasily be linked together, and thereby give the location of the 
point of zero mean velocity, which is the reattachment point. 

Discussion of Paper 23 
"The Effect of Density Non-Unifcrmity on the Turbulent Mixing Layer' 

presented by G.Brown 

R.C.Maydew:   How did you determine the effective starting *ength,  XO ? 

G.Brown:   We determined the origin by calculating on a prof:?e integral at each  X and then, on a plot of the 
value of the integral against   X ,   we extrapolate a straight line through the points back to the origin. 
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J.L.Stcöery:   What was ihe ihickne« of :he spi>ti.cr plate in terms of t te bouadiry hyer tnkknes! on either stf -. 
and *as the geonvtry varied in wy way" I 

G.Brown:  The thickness ot the splitter plate at the traihng edge s about 0.002" and the momenum thickness of 
the boundary layer at this edgt a a'HM.-t 0.001" at high presure and typical values of velocity or. the high speed ,; 
si>}e    For the measurrments the geometry was not virieu but we did take some shadowgraph pictures with a trip 
wire it ihe trailing edge and this did not noticeably things the features nf the lar^e stmcttirc some distance down- | 
stream of the trp. 

H.E.FietBer:   1 should like to ieport ov some obsei^ations I made in a similar ttovf configuration i.e. 3 two- 
dimensional shear layer between a heated stream of air and the ambient fluid at mt: 

i.    The temperature behaviour as a function of time exhibits a very distinct saw-tooth on wlihh small scale 
turbulent fluctuations arc superimposed.  This is indirect evidence of the large sc-Je you observed! 

2.    The mean temperature profile shows a distinct tendency towards hr-ing a small "platform" approximately in 
the half velocity plane, which again points towards e large scale transport mechanism. 

Question:   Have such profiies also been observed by the author? 

G.Browr>:   Yes we do find density profiles which have a gentle bump on the low density side in cases where the 
low density is on the high speed side.  This is most noticeafc); for the results that we have in which eu  is the 
same in both streams.  I think it is consistent with the large stitxturr. 

D.K.^fcius:   In the later scenes of your film the flow appeared, at 'cast to me, to consist of spirals rolling UT 

How csn you be sure that ihe flow is trvly two-dimensions! under these conditions of high slvtar7 

G.Brown:  The correlation bet'veen tue outputs of two hot wires 2" apart and 2" downstream where the layer is 
only W" thick is, I think, evidence that the structure is not that of spirals roUing up.   Looking at the film frame by 
frame gives one a stronger impression of a "two-dimensional" flow. The film is a shadowgraph so that the result 
is an integration of variations along the light path.  Since this path is 4" through the layer it is hard to see how 
one would see a spiral if the layer were a series of spirals.  Some experiments on the two-dimennonaiity of the 
flow are being done at present. 

P.A.Libby:   To get my thinking straight, could I ask if I am to understand that the turbulent structures in boundary 
layers and shear layers, both of which are two-dimensional in the mean, are entirely different, three-dimendonal in 
the former and two-dimensional in the latter? 

G.Brown:   Yes.  Boundary layer experiments indicate that the motion near the wall is highly correlated in the stream 
direction and no doubt this gives the boundary layer its three-dimensional character.  The free shear layer has no 
si'ch wall region, the mean velocity profile is unstable except at Reynolds numbers of order 1 and I flunk it not 
unreasonable to expect a different large-scale structure.  That this is the case is perhaps evident from the fact that 
the enttainment rate non-dimensiona<ized by, say, the turbulence energy is much greater for free shear layers than 
for boundary layers. 

LS.G.Kovasznay: The difference between a ree shear layer and a wall layer is great. In the case of a free shear 
layer there is always inviscid instability due to the inflection in the profile, while in boundary layers one must go 
to much higher Reynolds numbers before bursts will occur. 

P.O.A.L.Davies:   (Commems to Professor P.A.Libby)  If one has a jet with a lamina/ initial condition one finds a 
good circumferential coherence.  In the turbulent jet, the boundary layer disturbances provide a spacially incoherent 
initial condition at the jet lip and circumferential coherence is lost.  Again some 25 years ago in experiments on a 
two-dimensional water jet when the boundary layer was laminar, I had a shear layer that developed two-dimensional 
instabilities.  With a turbulent boundary layer this coherence was largely lost. 

J.E.Green:   Do you have any difficulty reconciling, in your own mind, the clearly intermittent flow structure, where 
the rotational and irrotational flows are separated by a thin boundary and the diffusivity in the irrotational flow 
is presumably negligible, with the much greater spread of the density profile compared with that of the velocity 
profile ? 

G.Brown:   Yes, to some extent 1 do.   I have no explanation except the qualitative notion that it is easy to deceler- 
ate helium.   1 guess by your question you expect the turbulent Schmidt number to be near 1, but I don't know 
what is the basis for expectiiig that.   We find a Schmidt number of 0,3 gives a reasonable agreement with the 
measured profiles. 
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DaciMBion of Piper 14 
"Mcasuiements of the iMUntoneout Spatisl Distribution of i Passive Scalar 

h an Axisymmetric Turbulent Wake" 
{Resented by A.M.Sdineiderman 

C A.Friehe:   How was the value of  ^  determined in the «Scalation of ß ? 

A.M 5 "weidennaw:  Tbe method used is described in the text of the paper.  Essentially. I used Taylor's Hypothesis 

to approximate   — (a2) in terms of a pow.r law form for a'   versus z .  1 chrw: the exponent rm the basis of the 
dt 

mean flow data. 

Discussion of Papv A 
"Recent Attempts to Develop a Generally Applicable Calculation Method 

for Turbulent Shear Row Layers" 
presented by J.C.Rotia 

P.Bradshaw:   I would U/e to congratulate Dr Rot^a both on his lecture and on the 20Ui anniversary of the public- 
ation of his Zeitschrift für Physik papers, on which we still rely so much. 

1 have one comment and one question. 

Dr Rotia mentioned that the assumption we made for boundary layers, that shear stress is proportional to 
turbulent energy, is not suitable for flows in which the shear stress changes sign.  This viewpoitit seems to be 
winning some acceptance.  We did not make it clear enough in the original paper that this is simply &n approximation 
to experimental data in boundary layers.  In other flows one would use some other empirical relation between shear 
stress and energy.  Calculations have already been made in ducts (as mentioned in my paper at this meeting) and in 
jets and wakes.  ! apologize to Dr Rotta for using his casual remark as an excuse for setting the record straight. 

Has Dr Rotta made any calculations in a duct taking account of turbulent transport ("diffusion") of length 
scale? 

J.C.Rotta;   For plane channel flow, some calcuL ions have been made using a collocation method to solve the 
ordinary differential equations.  The results agree better with experiments than the solutions with the diffusion 
terms neglected.  But a different set of coefficients was used for these early calculations.  Tha collocation method 
was not used any longer. 

B.ELaunder:  Our experience at Imperial College with the length scale equation conforms with Dr Rotta's remarks 
concerning the variation of L near a wall:   namely, that one does not predict a length scale which increases 
linearly with distance from the wall unless one introduces an extra generation-like term.  We have found, however, 
that the difficulty is circumvented through the use of a transport equation for e ,  the energy dissipation rate (in 
the manner of Chou, Davidov and Harlow and his colleagues at the Los Alamos Scientific Laboratories). 

Our view is that the differences in behaviour of thece two equations are traceable to the diffusion terms in the 
respective equations;  for, while the diffusion term is not the dominant one, it is nonetheless of significance in the 
length-scale-determining equation near a wall.  Current modelling practices usually entail the approximation of the 
diffusion process by a gradient-type closure.   It turns out, however, as one of those unpalatable facts of life that 
the length scale (on q2 L ) just does not diffuse at a rate proportional to its spatial gradient.   It was precisely for 
this reason that Ng and Spalding (1970) had to add empirically an extra term to their q2 L equation to secure 
a linearly increasing length scale in near-wall shearflows. 

In contrast, in one equation for the transport of energy-dissipation rate a gradient hypothesis for the diffusion 
of e  kads, without further tampering with the equation, to satisfactory predictions of the length scale (which 
may be taken as  q3 /e ) in plane flows both near to and remote from walls.   A recent paper by Dr Hanjalic and 
me has provided some theoretical support for representing the rate of diffusion of dissipation by a gradient flux 
approximation, at any rate for the boundary-layer flows which are here in question. 

References 

Ng, K-H. and Spalding, D.W. "Prediction of 2-Dimensioiial boundary layers on smooth walls with a 2-equation model 
of turbulence" Imperial College, Mech. Eng. Dept Rep. BL/TN/A/25, January 1970. 
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rianjalic. K. »id Launder, B.£. "A Reynold; strns imMkl of turbulence and its application to atymmetric 
boundaiy Lycrs" Imperial College Meek En?. Dcpt Rep. TM/TN/A/8.   March 1971. 

I 
J.CRotta:    ibe recent wo-fc of Dt Launder. Professor Spalding and otht-: members of this group of Imperial 
College provides a great amount of valuable experience,   further investigations will ccrtaip-y benefit by this 
work,   it was interesting to leant that 'he experiences of these Investigators with tit: length scale equation i 
conform to my own findings, although differtnt wjys have been tried to overcome the difficulties. 

L.S.G Komznay:   Your theory is asymptotic in Reynolds number    Does this mean that it cannot show 
depender» of rrsuits on Reynolds number? j 

A-Rotta:   Theory predicts no Reynolds number effect for free shear How cases.   For flows with solid boundaries 
a Reynolds number effect appears ss a consequence of matching the solution with the law of the wall. 1 

i i 

K.Genten:   You mentioned the fact that the constant   a.   was too small to fit the experiments properly.   Since 
you have five different constants to be adjusted, how can you be sure that just the constant   a-   is responsible 
for certain discrepancies betueen theory and experiment? 

I.A.Rotta:   To answer this question, it may be kept in mind that ÜK !JW of the wall constraint requires the 
coefficient of the dissipatire term of the shear stress equation,   k- ,   to be proportional to   a. .   Consequently, 
with a small value,   a«   -   0.09 ,   both terms, production and (fissipation, arc weak.   Since mean velocity 
gradient and shear stress have opposite signs in the central region, when saddle shaped profiles occur, the shear 
stress production and dissipation have the same sign.   They are balanced mainly by tiie shear stress convection. 
On the other hand, with a high value of  a.   (and   k- ), the dissipative term is strong and is compensated br 
a strong production of apposite sign.   Thus, mean velocity gradient and shear stress have the same sign every- 
where,    he shear convection has only a weak effect in this case.   Calculations based on a value of a.   =   0.25 
indicate no saddle shaped mean velocity profiles, even though the diffusion coefficients,   kq   and   kqT ,   are 
varied in a wide range. 

Discussion of Paper 9 
"An Experimental Study of the Compressible Turbulent Boundary layer 

with an Adverse Pressure Gradient" 
presented by R.P.L.Voisinet 

J.EGreen:   Diu you make any checKs on the streamwise integral balances of momentum and heat transfer? 
And, if so, are you able to identify the source of the appreciable energy defect which you have measured in 
your "adiabatic'' boundary layer? 

R.P.L.Vcisinet:   A streamwise momentum balance was made and is discussed in the report, however, an energy 
balance was not made.   The energy defect in the adiabatic data appears to be due to the fact that the "adiabatic" 
condition could not be maintained precisely in the throat region.   And, as was pointed out in the paper, slight 
variations in the wail temperature at the throat cause large variations in the downstream temperature profiles. 

T  — T U 
F.M.White:   For the plots of    —~ -^   versus   —■    ,   is   Tfg   the measured value?   If so, is it varying 

Me " iw Ue 

downstream from the throat and a function of nozzle cooling?   If so, there is nothing anomalous about your 
plots, since the "lost heat" is merely being convected across the outer layer by the vertical velocity component. 
In general, I believe there is little to be gained of a fundamental character from such   Tt   plots.   Both Crocco 
and Walz are wrong for fundamental physical reasons, e.g. Pr   #   1 ,   so we get nothing but confusion and 
arguments from displaying the data in this manner. 

My persona! thanks for announcing tc the world that nozzle cooling has no effect on the skin-friction, 
since this is one of the basic assumptions of my little theory, 

R.P.L.Voisinet:   The value of  1^   is a locally measured property of the flow and was not observed to change 
with streamwise distance or throat cooling. 
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Discussion of Piper 10 
"The Supersonic Turbulent Boundary Laye: in Adverse Pressure Gradient - 

Experiment and Data Analysis" 
presented by W.B.StMrck 

AD.Youn;   With regard to the diftkulty of determining integral quantities due to the ambiguity in defining the 
boundary iayer edge, have you considered doing the integration along the uobars, or lines coinciding with the 
isobars near the boundary layer edge? in that case there should be no ambiguity. 

W.B.Sfcrek:  No attempt lias been made to evaluate the integral thicknesses along isobars; however, isobars have 
been plotted for the flew over the ramp model. These isobars deviated sufficiently from simple straight line 
exter «ions of Mach lines from the outer How to discourage the r use as a path of integration. 

I.S.'Donaldson:  How confident is the author that a transverse measurement of static pressure is ? measure of 
two-dimensionality of the flow? 

H'.B.Sturek: I don't consider the transverse static pressure measurements to indicate absolute two-dimensionality, 
but rather to provide an indication of the magnitude of the departure from two-dimensionality for the conditions 
of this test. 

J.EGreen:   In your slide on fluctuating quantities, is the scaling quantity  e0   btsed on a Iocs 1 or a reference 
quantity; i.e. does the slide indicate an absolute or only a relative increase in the fluctuatior levels in the adverse 
pressure gradient? 

W.B.Sturek:  The reference value was 0.005 Volt and was the same for all data points shown. 

Discussion of Paper 31 
"Turbulent Boundary Layers at Supersonic and Hypersonic Speeds" 

presented by G.T.Coleman 

R.N.Cox:   Figure 14 of your paper draws an important conclusion that the flap angle in for separation levels out 
as the Mach number increases.  There must be some doubt about the two-dimensionality of the experiments as the 
plate has a small aspect ratio, the boundary layer is thick, and much of the flap even lies within the tip vortex 
region.  How sure are you that this leveling out does really occur? 

G.T.Coleman:  The data on Figure 14 represent a "slice" through the data of Figure 12 at a Reynolds number of 
4 x 106 - this was chosen because '.t included a lot of data especially our new data scaled to the condition. 
However a similar cross-section taken at a higher Reynolds number has shown a similar tread. 

J.LStollery:   (Comments only) To add to Mr Coleman's reply, we are of course aware that no experiment is 
absolutely two-dimensional.  We would however expect that «j  reached a level since, at a flap angle of 46°, the, 
oblique shock will detach and form a normal one. 

LC.Squire:  In your paper you deduce values of Rg   via a Reynolds analogy.  How do these values agree with 
those found from your traverse? 

G.T.Coleman:  We have not done this, as yet.  However, it will be carried out but it should be remembered that 
an assumed temperature distribution was used in the derivation of the velocity profiles. 

Discussion of Paper 12 
"An Experimental Investigation of the Turbulent Boundary Layer 

Along a Streamwise Corner" 
presented by A.D.Young 

S.M.Bogdonoff:   I was most interested in the secondary flow phenomena you described,  is it possible to answer 
the question as to whether the secondary flow is due purely to the laminar character or is it possible that it is due 
to geometry or physical set up? 

fi 
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/..D.Young:   I do not ihink that the srconUary flow observed in the laminar case is just a peculunty of our 
experiments, although I accept the possibility.  It was evident in a wide range of circumstances and pressure I 
distributions.  However. I think that the question remains as tc whether i* is an essential feature of laminar flow, 
or whether it is a manifestation of instability and is therefore nresumabiy dependent on Reynoldr numbe.-. We 
were not able to get down tc a low enough Reynolds number to see any essential change in the development of 
the secondary flow; nevertheless, i am inclined to favour the instability hypothesis because of the way Jie mean 
flew velocity profiles change with distance downstream from the leading edge. 

i 
Prof. K.Gersten:  How does the work reported compare jvith results obtained by Rubin ei al.? | 

I 
A.D.Young:   I recall seeing a paper a l>w yean ago by Rubin and his colleagues setting out the analysis and I 
resulting equations for the laminar flow in a corner, and the paper indicated that work was proceeding on some > 
solutions of those equations.  I have not, however, seen any -tsults of such calculations as yet and so I cannot say | 
ho* they compare with our measurements.  Perhaps Mr Mojola may have more up-to-c'aie information on Rubin's 
work. 

R.H.Korkegi:  It may be well to point out that the Brooklyn Polytechnic team have developed two analyses: 

{I)   One by Bloom and co-workers on the corner boundary layer at low speeds and later 

(2)   A merged layer analysis by Rubin which holds for relatively low Reynolds numbers and, I believe, high 
Mach numbers, and represents the (low fields ail the way from the wall to the shock wave. 

Dr Gersten was alluding to ^he former study, 1 believe. 

O.O.MojoIa:  The work of Rubin and his co-workers has been published in a recent issue of the Quarterly of Applied 
Mathematics.  Their recent work indicates a secondary flow which is directed inwards along the walls and outwards 
roughly along the comer bijertor.   But as far as I can make out, their calculated contours of the streamwise mean 
velocity do not reflect the experimental observed (Zamir and Young, 1970, Ref. 24) distortion of the streamwise 
velocity. 

P.Bradshaw:  Were the static pressure measurements corrected for the effect of turbulence on the probe? 

O.O.MojoIa:  The answer is NO; because we don't know HOW! 

Discussion of Paper 24 
"Etude d'une Couche Limite Turbulente Avec Injection a la Paroi d'un Meme 

Gaz ou d'un Gaz Etranger" 
presented by R.Michel 

H.McDonald.   Do you have any comment on the fact that some people, for instance Abeci et al., find it necessary 
to include an effect of blowing on the damping constant  A   in order to improve the agreement between theory 
and experiment'' 

R.Michel:   Notre hypothese fondamentaie est oue la correction de la longueur de melange proposee par Van Driest 
est valable dans le cas general a condition de retenir comine parametre d'ir.fluence le rapport  rt/re  du frottement 
turbulent ou frottement iaminaire.  Dans ie cas de 1'injeetion, ceci conduit quand on exprime la correction en 
ibnetion de  y+ ,  ä prendre pour la  "damping constant" 

A+  =   26(1+ v* u+ r'n   . 

La modification nous apparait done comme logiquement necessaire; i) nous semble interessant d'avoir pu la faire 
apparaitre par le seal concept d'influence de  rt/re   valable tres generalement. 
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DiscusMon of Paper 25 
"A Survey of Data for Turbulent Boundary Layers with Mass Transfer" 

presented by D.Coks 

F.M.Whiie:   ft Stevenson's law is used to prepare curves simlar to your Figure 2. what discrepancies occur, e g. are 
the slopes (K)  variable or the wake heights erratic, as in your Figure 11?   Is Simpson's kw "imtrensefy" better, 
"much" better, "somewhat" better, or "slightly" better? 

LC.Squire:   I have done a similar anaiy-'s for Simpson's and McQuaid's data bu? I get a different result in that I 
support Steve.ison's proposal for the law of *he wail.  This !-i basically due to the differences in skin-friction results, 
I have re-analysed Simpson's data and get different skin-friction values so that his profiles agree with Stevenson's 
law. 

D.Coles:  (Answers to both F.M.White and LC.Squire) In all of my data processing so far, three different analyses 
have been carried out in parallel.  Two of these are discussed at length in my paper.  The third is a mixing-length 
analysis ba^ed on Stevenson's condition for the intercept in tne logarithmic formula.   I have not studied the results 
very carefully, because I consider the values obtained for Cf to be mr.ch too low {for moderate or large blowing) 
compared to values recommended by the experin.enters   The latter should of course be verified, and I have not yet 
done so.  At the moment, I consider Simpson's l?,w to be "much" better than Stevenson'».  An exchange of 
information seems to he ir order. 

Discussion of Paper 26 
"The Suppression of Shear layer Turbulence with Mass Transfer" 

printed by J.P.Johnston 

P.Bradshaw: In Figures 7b and 7c the effect of increasing rotation number at given Richardson number is apparently 
to reduce the mixing length. Granted that this is stretching the data rather far the trend seems fairly well established. 
Have you any comments on this rather surprising trend? 

J.PJohnston:  The trend noted is clear in Figure 7b, but not in Figure /c. If one iccepts the accuracy of the data 
to be better than ± 10%, the data at  Ro  =  0.056  in Figure 7c is not consistent with the idea of a reduction of 
mixing length as suggested.  However, if the trend is indeed real, it suggests that the parameter ß is itself a function 
of rotation number.  No specific claims are currently made for the absolute accuracy of the data, but it is felt that 
the trend at least of Figure 7b is real and deserves some comments.  First, on the stable side of the channel, the 
flow will become laminar at sufficiently high  Ro .  When laminar, the mixing length ratio for the condition of our 
experiments will be of the order of 0.1 and it will be independent of Richardson number.  The transition rotation 
number for Re  = 3.5 x 10"   is close to Ro - 0.2 ,  roughly twice the maximum rotation number of the data 
in Figur; 7b.  Since the transition process is not sudden, it appears logical that as  Ro approaches the magnitude 
necessary for transition ba ;k to laminar flow, the mixing length ratio should reflect the apparent fact that the real 
flow may be intermitiently laminar and turbulent as transition spots sweep by a fixed point.  At this time, I am 
not prepared to quar.tify this point however. 

B.E.Lauuder:   In order to calculate the mixing-length distributions in your flow you would have had to calculate 
the shear stress distribution across the channel.  Could you mention briefly how you determined this, please? 

J.P.Johnston:   [Dr Johnston replied to the effect that the flow wai considered fully developed and the wall stresses 
were found by way of Pieston tube.] 

B.E.Launder:   Would it be fair to say that, by using surface impact devices to determine the surface stress, you have 
used a device which relies, for its accuracy, on the universality of the mixing length near the wall, in order to 
measure non-universal features in the mixing-length profile? 

J.P.Johnston:   As pointed out, the flow was close to fully-developed and thus the shear stiess distribution was 
linear.   Its absolute value could hence be determined by measurement of the wall shear stress.  The Preston tube 
was used only when the wall-layer flow was turbulent.   In the original study. Reference 1, experiments were 
conducted to determine tne effects of rotation and tube diameter,   d ,  on the Preston tube results in terms of the 
parameter f2d2/V .  No effects were noted.  Our limited study was conducted to confirm the results of earlier 
work (Hill and Moon. M.I.T., Gas Turbine Lab. Rept No. 69, June 1962) in which  no7/v  was varied by an order 
of magnitude at fixed   Re and   Ro ,  without effect on the wall shear indicated by the tubes. 



A-19 

Dccusion of Paper 27 
"Developpcmeni d'une Couche Limite Turbulente dans un Ecoulement 

Exterieur Turbulent" 
presented by G.Chamay 

LS.G.Kovasziuy: 
i 

1. Les auieurs doivent etre feiicites pour cette contrioution interessan'e.   J'aimcrais poser leü questions suivames: 
Quelle est U definition cxacte de l'epaisseur de la couche 'unite?   Comment est-elle definie? j 

i 

2. Est-ce que les tensions de Reynolds etaient nulles a l'epaisseur y   =   6  ou resiaient-elles ..c va'eurs finie» dans 
le cas de pre turbulence forte? 

7 

G.Chamay: 

i 
!.     Pour une secüon droiie, l'epaisseur de la couche limit; est egale ä la distance entre la paroi et le point oil la 

vitesse moyenne attein: 99% de la vltesse exterieurc.   A cause de I'incertitude qui existc sur la determination 
de cette distance, chacune des epaisseurs rapportee ici est en fait une moyenne des resultats obtenus lors de \ 
plusieur essais. I 

2.     Les mesures comparatives que nous avons effectuees montrent que pour  y   =  6 .  les tensions dc Reynolds 
ne sont pas nulles ct ce d'autant moins que le niveau de turbulence exierieur est plus eleve.  A partir des seuls 
resultats presentes ici, il est difficile de faire le point des differcnts phenomenes qui contribuent a I'accroissement 
de ces tensions de Reynolds, car aucun echantillonnage n'a ete encore utilise. 

W.Schonauer:   In my paper (Ref. No. 29)! gave boundary layer equations, which contain a term  c0 .  This term 
is responsible for the eddy viscosity at the edge of the boundary layer,   if in the outside motion there is turbulence, 
the value ot   c0   increases and this causes a flattening of the velocity profile at the outer edge (the boundary layer | 
is enlarged) and an increase of the friction coefficient.  This c0   term does not appear, when in the Prandtl boundary 
layer equations an eddy viscosity is introduced instead of the laminar viscosity.   But this term just dominates the flow | 
at the outer edge of the boundary layer, and explains theoretically the effects which you found by your measure- 
ments. 

G.Chsrnay:   Votre article se rattachc au concept du coeff-cient de viscosite.   Nous pensons que les phenomenes qui 
se passent au bord de la couche limite perturbee sont, dans leur mecanisme, beaucoup plus complexes. 

J.M.R.Graham:   1 recently measured the turbulent energy balance in a boundary layei in a similar situation and 
Tound that the turbulence diffusion (obtained by difference) was largely suppressed in the outer region of the 
boundary layer.  This I assume to be due to entrainment of the freestream turbulence into the boundary layer in 
the "gaps" between the large eddies.  This inward diffusion of turbulence opposes, in the mean, the outward 
diffusion of boundary layer turbulence in the large eddies of the boundary layer. 

G.Chamay:   Oui, vos resultats paraissent bien corroborer notre opinion sur l'origine des modifications observees a 
savoir qu'elles ne sont probabiement pas dues n une augmentation du processus diffusif de I'lnterieur vers I'exterieur 
de la couche limite. 

Discussion of Paper 28 
"Some Measurements of the Distortion of Turbulence Approachmg 

a Two-Dimensional Body" 
presented by P.W.Bearman 

R.N.Cox-   Your argument that filling the wake by a free streamline body wouki < oid pressure fluctuations coming 
from downstream of the body presumably only applies to the case of Lx/D  «   '..  For  l^/D »   1 . would one 
not expect such fluctuations due to variation of the equivalent free streamlines, lift effects etc? Did you measure 
pressure fluctuations on the body surface? 

P.W.Bearman:   Professor Cox is right to point out that when   Lx/D «   1   the v-component of turbulence could 
induce circulation changes about the complete body.   The cross-section of the mode! looks somewhat like a blunt- 
nosed aerofoil section,  f owever the length of the body was nearly an order of magnitude greater than the largest 
scale of turbulence, and it should be valid to treat the complete flow as inviscid and neglect the effect of any Kutta 
■ ondition at the trailing edge.   When stating the condition   Lx  »  D  this should be accompanied by the further 
condition   Lx   «  c ,  where  c   is the model chord.  The measurements of pressure fluctuations at the stagnation 
point suggested that these were related directly to the approaching turbulence. 
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MEETING SUMMARY SESSION 

j 
Professor Bogdonoff f 

| 
The next two speakers will be Dr Küchemann from England and Prof. Libby | 
from the U.S.   My instructions to them were to tell us what they thought 
was important or what they thought was not important, or tell us something 
about the scale of confusion that reigned in the last three Jays.   This was a | 
most difficult assignment to make, but I thought it might be appropriate in 
this field of turbulence to end off perhaps still in a very turbulent state. ' 

_ 
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MEETING SUMMARY SESSION 

Dr Küchemann: 

Mr Chairman, Ladies and Gentlemen, I can tell you what the specification was in my case.  I am the outsider, 
someone who is really not concerned either with preparing this meeting nor with the work that is being done in 
this field.  I look at it as someone who knows nothing about it, and I can promise you that 1 shall lesve you 
confused.   I should also say that I did get permission from the Chairman to say outrageous things.  Now, as to 
my impression. I must say that I am quite impressed by what I heard.  So impressed, in fact, that I am almost flat, 
almost two-dimensional.  Seriously, as an outsider, who hears about what is going on only occasionally, mainly at 
such conferences, one is really impressed how alive the subject is and how much progress is really made.  Things 
are moving, there is no doubt about it, but, on the other hand, ! would also say that the end is not yet in sight. 
That is the impression that 1 got.   1 also think that there was a very iargs proportion of very substantial contri- 
butions, really solid papers, and that progress was reported both on the theoretical side and in experiments.   By 
theory, 1 mean methods for calculating things as well as numerical methods using computational aids.  It is really 
amazing what can now be done in both fields.  Another impression I got was that the emphasis in recent years in 
the work reported here was to Arm up on the fundamentals.  I: seems that many people want to get down to it 
and find out more about the fundamentals.  Now, that had several consequences.  One,! think, was that people 
did tend to concentrate on two-dimensional flows.  This was rather in contrast to Bradshaw's introduction, where 
he showed us "complex flows" and "awkward cases".  Actually, very little of that did come up at the meeting. 
There were very few papers concerned with any of these more complex flows, and very little on three-dimensional 
flows.   A'so, whereas previously in order to be respectable you had to prove that your method would predict 
separatk.i, there was almost utter silence about the phenomenon of separation at this meeting.   Nobody seemed 
to want to know about that.  ! think that, in this respect, there was very little progress to report on, and I think s 
in ail the cases that Bradshaw mentioned, which are quite important cases from the practical point of view, we 
are really a very long way behind.  I think we find it all very difficult even to visualize what the large-scale 
structure of these flows really is.   in this respect we are poor.  Another possible consequence of concentrating on 
the fundamentals was the apparent emphasis on flows where an equilibrium structure had been achieved.  This was 
described in various ways;   self-similar flows, self-preserving flows, and some people talked about relaxed flows.   I'm 
not sure what the professionals mean by that, but it conjiires up visions in my mind of a tired boundary layer coming 
home after a hectic day. putting its feet up and just burbling along a little.  If you look at it from the practical point 
of view, then we are a very long way away from these rather select boundary layers.  Just to mention one typical j 
case some of us are concerned with, the flow over a supercritical wing.  There, the boundary layer comes out of a 
very confusing transition process, it hardly knows what instability criteria it should obey.   Then it is subjected to 
incoming compression waves because people want shockless compressions.  These waves must affect at least the 
turbulence structure in the outer part of the boundary layer, I would have thought.  After that, we put a strong 1 
Shockwave on it. which usually comes so suddenly that it has to separate.   When, luckily, it will re-attach, it has to 
settle down to some other kind of turbulence structure.   But we hardly leave it        time for a rest and subject it 
to the strongest possible adverse pressure gradient, nearly up to the point of sepai.   <r..  Then we bend the whole 
thing round near the trailing edge and let it join up with another lot which had an entirely different history.   In the 
process, there is still some circulation left in the near wake, and ail the time the poor boundary layer is kicked 
sideways, this way and that way, on these three-dimensional wings.  This is not a relaxed life, and these are the 
boundary layers some of us are really interested in.   . hat is what I mean by saying that we have a long way to go. 

For this reason, I got a bit frightened by the apparent complexity of what has been described here, even hi 
the simple case of two-dimensional flows.   The theories get very complex, and the experimental methods get equally 
complex.   In the theory, 1 think we seen, to gst up to 9 differential equations.  On the experimental side, 1 got the 
impression that even the conditional samplers find it difficult to understand each other.   How can one then predict 
practical situations'.'  The only comfort there was expressed by M: Peake with some undisguised glee, when he said 
that he found no increase in accuracy or prediction with the complexity of method.   Even the simple methods 
gave adequate answers, in his opinion.   This was not resolved during the meeting.  Whei. he said it, ther-i was very 
little reaction.   I thought there would be some outbursts, but nothing much happened. 
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There is another matter which to my mind was not resolved M the meeting.   Bradshaw suggested that future 
experiments should concentrate on measuring quantities that appear in the calculation, and Young, as the Chairman, 
then questioned this, and also asked whether Bradshaw's statement that the theory was now realistic enough could 
be accepted.   But there was no answer to these questions.  These are important points, and it is rather a pity that 
we did not discuss thern further.   If you ask me, I an inclined to answer No to Professor Young's questions.   For 
one thing, I have the feeling our theories are not yet tealistic enough.   It may well be that at least some of the 
bars over every term will liave to come off before we get a theory which is physically realistic.  To explain what 
I mean by that, I'd like to introduce two more variations on a theme of Prandtl.   Bradshaw started with it, so 1 
might as well end the meeting with it.  The first variation is a sort of adagio in 6/8 time:   waves in a supersonic 
flow with a compressible boundary layer underneath.  This was some work that Prandtl made me do over 30 years 
ago.   He wanted to know what are the interactions between these waves and the compressible boundary layer.  It 
is a problem that is still with us.  Well, at that time I had to take account of the pressure field and vary the 
pressure right into the boundary layer.   I had to take rotation into account, as there was shear in the boundary 
layer, but I was allowed to leave the whole flow inviscid.   t treated an inviscid boundary layer and actually got 
some answers about the interaction.   Maybe, we could play this variation again sometime and include the pressure 
Held induced by whatever disturbances wc have and in some place«; even leave viscosity out.   I'm not sure whether 
Professor Domingos would approve of this. 

My second variation comes from Prandtl's paper of 1904, the one we ail live on and play tunes on.  There are 
actually only a couple of pages on boundary layer theory in that paper, the rest is concerned with flow separations 
and its consequences, especially with free shear layers.  These he regarded to be surfaces of discontinuity, and what 
he conjectured then was actually demonstrated to us at this meeting by Or Brown in a paper by Brown and Roshko. 
I think that was one of the highlights of the meeting.  A really beautifully carried-out and thought-out experiment, 
where one could see whaf was going on.  I have a feeling that the main features of that flow can probably he 
explained by a mod;! of an inviscid flow involving only surfaces of discontinuity.   I do not think that this is a 
stability problem.  There are vortex cores present all the time.   We have an array of vortex cores growing in time 
as they move, which fits well with the observations.   It is a regular array of double-branched vortex cores which 
a'e swept downstream.  They induce a certain far field and that, in the first place, can explain the gradual transition 
from one velocity level to another.  The near field, if you happen to go through one of the cores, will explain for 
you the velocity jumps.  This may be worth working out in more detail.   It would be a model which involves no 
shear stress, no eddy viscosity, none of that; only large lumps of vorticity tumbling along.  If there is anything in 
that model, one thing that it would demonstrate is that whatever one observes depends very much on how one 
observes it.  An instantaneous, infinitely fast, traverse would pick up the features I just described.  A slow traverse 
would show something quite different.  Of course, it must be very difficult then to make any sense of it at all and 
to analyse such results.  That is what I mean:   if you put bars over what you measure, you might in fa;t obscure 
what is a perfectly regular motion.  This kind of model. I think, is getting fairly close to Kovasznay's notion of 
large-scale organized motion inside the boundary layer.   With the presence of a wall, it must be more complicated, 
and that is why he said organized motion but "occurring at random".   What I described would be perfectly regular, 
no randomness in it at all. 

Altogether, I think we are now catching sight of some of the real physical occurrences.   That was one of the 
outcomes of this meeting, one of the impressions I got.  We are getting to grips with physical reality, and 1 really 
am hopeful that the enormous improvements in the experimental techniques will help us to see better what is 
going on.   We had some most impressive reports on experimental work;  Kovasznay himself, Willmarth, Wehrmann, 
Kaplan and Laufer are looking into what is going on.  So there is some real hope for the future, and I can only say, 
carry on, please, we might get there one day.  Or perhaps, I should address this to our masters and ask them, please 
let us go on. 

Professor Paul A.Libby: 

Mr Chairman, Ladies and Gentlemen.  When Professor Bogdonoff called rttt a few wef;ks ago and asked me to 
make some remarks at the close of this meeting, 1 quickly said yes.  That is an example of a pnenomenon which 
perhaps others of you have experienced, namely, if you are invited to do something two weeks ahead, then that is 
infinite, you forget about saying no, and you just go ahead and say yes.  That is in fact what I aid, but as this 
moment approached, I became more and more uneasy about presenting an Olympian view of this meeting.   Perhaps 
that is due to the fact that I do not want to think of myself as old enough to put forth Olympian views.   So what 
I can do is give you some personal impressions, for what thwy may be worth, of this meeting and what we heard. 

I think if is perhaps convenient to divide just roughly the papers up into those which concern predictive 
methods and those which provide sj.pflrimental data.   Then further, of course, the predictive methods can be 
divided into the more or less classical methods involving eddy-viscosity and mixing length concepts, that is those 
methods which close the equations we have to deal with at the very first level.   I must say, as an academic person, 
it is very discouraging to find how well those methods do, even for relatively complicated flows.   We had several 
papers involving three-dimensionality, we had integial methods doing very complicated flows with re-attachment 
and things of that sort, and by and large, they predict very well many of the things that an engineer wants to know, 
like skin-friction and heat transfer. 
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However, these methods do have their troubles.   If you try to apply them to a slot flow, i «hink you will get 
into difficulty.   You will get into difficulty in general when things are changing relatively rapidly with   x , that is. 
still slowly enough with   x , so that we can think in terms of a boundary layer theory, but changing relatively 
rapidly wiüi  x  as tar as the turbulence is concerned.   In addition, there k always, it seems to me, a large class 
oi' problems where we may want to know more than just skin-friction and mean velocity profile.  There are 
probletns where we want to know what the turbulent kinetic energy is for example.   Dr Donaldson pointed out 
the very interesting »act that, if we want to treat in a more serious way, chemically reacting turbulent flows, we 
are going to have »o do something J   )Ut those second and third order correlations, which we have been disregarding, 
not because we knew that they were negligible, but because we did not know what to do with them.   For these 
reasDns, it seems to me the second group of predictive methods that we heard about, that is ttn,yi wt^ca involve 
closure at a lower level, are certainly worthy of great attention.   They are in Tiy view rather exciting.   I must say, 
however, tfcat as somebody who has been working very close to the Donaldson mode , in fact, simply applying 
Donaldson's modelling to a very simple flow, namely the two-dimensional mixing flow, I am somewhat discouraged. 
I certainly wa'. not further encouraged by Professor !lotta's talk this morning.   It seems to me that when we start 
worrying about selecting 5, 8 or 9 parameters, even though some of them may be constrained by things that we 
know, as Professor Rotta told us this morning, we will soon run into the fact that the amount of high quality 
data available to make that selection forms a zero set. 

I have had the discouraging experience recently of taking what I thought to be perfectly reliable data on 
two-dimensional mixing flow, not being able to predict anything very well, and then deciding to back off somewhat 
in what I was trying to do.   I took the view fhat the mean velocity profile is well-known and is given by an 
elementary function.   From that you can compute the shear, that is, you make a prediction about what the shear 
must be.   I did that and compared it with the so-cilled measured shear.  It was off by a f.-ctor of l.S!  Now, it is 
too difficult to ask a predictive method to be applied to that sort of situation.  Certainly, you are not going to be 
able to predict 5 or 8 parameters from data of that quality.   Furthermore, if you dD somehow or other rationalize 
the selection of that many parameters in these new methods for simple flows, i am afraid we are not going to have 
any confidence that those parameters are invariant when we go to a more complex flow.   If you wanted to predict, 
as Dr Donaldson said, the two-dimensional mixing problem just to get the mean velocity profile, you certainly 
would not use these methods, but these methods had better be able to predict thai flow a priori, or else you 
certainly are not going to make predictions with confider.ee in some of the more exotic flows that we are really 
interested in.   As to the experimental data, it seems to me that they can be also divided into two sets;  those which 
involve mean flow measurements in more or less practical flows, not of the complexity that Dr Küchemann 
described to us, but they are high speed, with mass transfer, with pressure gradient, approaching separation, etc., f 
and, of course, the more detailed measurements involving conditioned sampling, hot wire anemometry and the like. 

.i 

With respect to the former flows, 1 was very' impressed and pleased, I must say, that several research workers 
actually compared their data with a variety of predictive methods.   I think that is very important, because one of 
the things I have found disturbing over the years is the following;   there are many predictive methods, the literature 
is cluttered with them, but they never compare, or make a prediction about the same flow.   You know. Researcher 
A compares with one set of data, and Researcher B, who has t different method, compares with another set of 
data.   I defy anyone, without a lot of work, to make an assessment of which of those predictive methods has 
some general applicability. 

A few years aog, I tried to convince the NASA Fluid Mechanics Advisory Committee that in ^he case of 
turbulent compressible boundary layers, it should select a few model situations with the notion that a Committee 
of that sort would be able to impose a moral obligation on the various generators of predictive methods to 
calculate those model flows, so that you and I can tell how well they do on those particular flows.  Wei!, they 
thought that it was a great idea, but they told me to go home and arrange it.   I must say that that was not what 
I had in mind. 

We realize now that the great contribution of the Stanford meeting was that it took a particular class of 
turbulent Hows and did just as 1 have indicated should be done for other flows, namely, they set up some model 
cases i.nd people who had methods were asked to compare their predictions for those flows.   That, of course, was 
very illuminating.   I can guarantee that sometime in the future somebody will do just that for the compressible 
turbulent boundary layer.   I can also guarantee that when it is done, the predictions will simply scatter all over 
the map for a few iterations, and then some pan.meters will be adjusted and things will perhaps settle down. 

With respect to the s-cond dass of experimental data, that is those concerned with spectra and conditioned 
sampling, these certainly are useful in elucidating cur notions of turbulence.   I wjuld like to remind you of that 
charming observation of Professor Kuvasznay, in which he divided the turbulent community into those who had 
predictive methods without much turbulence, and those with turbulent experimental data who did not wish to 
predict anything.   There is perhaps a third set, which Dr Kurhemann really suggested, namely, those engineers 
who have to make a prediction about skin-friction or heat transfer.   They do not care about either one of the 
former groups of people. 

1 do have the definite impression, it may be wrong, that spectral data and conditioned sampling have had 
almost zero impact on predictive im thods.   Accordingly I was pleased to see that Professor Kovasznay at least 



indicated in the la: ( paragraph or his paper, that he is thinking along the lines of how some of our notions or 
turbulent shear flows, which come from conditioned sampling, would fit into a predictive method. 

Considering the fact that this is an AGARD meeting, I want 10 remind you that <t has been six years since we 
had a meeting cf this sort.   The last one was in !965 in Naples, I believe.   If ! would compare where we stand now 
with what I recall of that meeting, 1 have the impression that the predictive methods have definitely improved in 
power and generality.  The catalogue cf mean flow data that we have at our disposal has expanded.  Our funda- 
mental notions of turbulence seem to have improved.   But I also want to tell you that I have the impression that 
we are sort of fighting our way into a thicket, and that it will be a long time before we come out the other side, 
if at all.   That, of course, reminds me of the distinguished scientist who was quoted as saying that when he faced 
the good Lord on Judgement Day, he was going to ask him to explain two matters, namely, the fundamental 
meaning of quantum mechanics and secondly, the nature of turbulence. 

in closing, I think we all must thank the Program Committee for arranging this excellent meeting and must 
urge them in five or six years from now to have a corresponding meeting,   i think we must also thank our United 
Kingdom colleagues for their tine hospitality in this wonderful city.   Finally, wc must all go home and do some 
more work on turbulent shear flows. 
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A SELECTION OF 
AGARD PUBLICATIONS l* RECENT YEARS 

CATEGORY I - PUBLISHED BY TECHNIVISION SERVICES AND 
PURCHASABLE FROM BOOKSELLERS OR FROM:- 

Technical Press Ltd Hans Heinrich Petersen 
112 Westbourne Grove Postfach 265 
London W.2 Borsteier Chausee 85 
England 2000 Hamburg 61 

West Germany 

Circa Publications Inc. Diffusione Edizioni Anglo-Americaine 
415 Fifth Avenue Via Lima 
Pelham 00198 Rome 
New York 10803, USA Italy 

1969 

AGARDograph 120        Supersonic turbo-jei propulsion systems and components 
Edited by J.Chauvin, August 1969. 

1970 

AGARDograph 115        Wind effects on launch vehicles 
By E.D.Geissler, February 1970. 

AGARDograph 130        Measurement techniques in heat transfer 
By E.R.G.Eckert and R.J.Goldstein, November 1970. 

Conference New experimental techniques in propulsion and energetics research 
Proceedings 38 Edited by D.Andrews and J.Surugue, October 1970. 

1965 

CATEGORY II - NOT ON COMMERCIAL SALE - FOR | 
AVAILABILITY SEE BACK COVER I I 

Report 514 The production of intense shear layers by vortex stretching and convection 
By J.T.Stuart, May 1965,   (Report prepared for the AGARD Specialists' Meetin)! on 
"Recent developments in boundary layer reäeareh", May 1965.) 

AGARDograph 91 The theory of high speed guns 
By A.E.Seigel, May 1965. 

ACiARDograph 97 Recent developments in boundary layer research 
(in four parts) AGARD Specialists' Meeting, Naples, May 1965. 
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AOARr^ograph 102 

AGARDogiapli 103 

L'upersonic inlets 
By lone DV.Faro. May 1965. 

Aerodynamics of power plant installation 
AGARD Specialists' Meeting, Tullahoma, October 1965. 

1966 

Report 525 

Report 526 

Report 539 

Report 542 

Report 548 

Report 550 

Report 551 

AGARDograph 109 

AGARDograph 112 

AGARDograph 113 

Conference 
Proceedinos 4 
(two parts and one 
supplement) 

Conference 
Proceedings 10 

Conference 
Proceedings 12 
(in two parts) 

The pilot probe in low-density hypersonic flow 
By S.A.Schaaf, January 1966. 

Laminar incompressible leading and trailing edge flows and the near wake rear stagnation 
point 
By Sheldon Weinbaum, May 1966. 

Changes in the flow at the base of a bluff body due to a disturbance in its wake 
By R.Hawkins and E.G.Trevett, May 1966. 

Transonic stability of fin and drag stabilized projectiles 
By B.Cheers, May 1966. 

Separated flows 
(Round Table Discussion), Edited by J.J.Ginoux, May 1966. 

A new special solution to the complete problem of the internal ballistics of guns 
By C.K.Thomhill, 1966. 

A review of some recent progress in understanding catastrophic yaw 
By J.D.Nicoiaides, 1966. 

Subsonic wind tunnel wall corrections 
By Gardner, Acum and Maskell, 1966. 

Molecular beams for rarefied gasdynamic research 
By J.B.French. 1966. 

Freeflight testing in high speed wind tunnels 
By B.Dayman, Jr, 1966. 

Separated flows 
Specialists' Meeting, Rhode-Saint-Genesi; (VKI), May 1966. 

The fluid dynamic aspects of ballistics 
Specialists' Meeting, Mr.lhouse, September 1966. 

Recent advances in aerothermochemistry 
7th AGARD Colloquium sponsored by PEP and FDP, Oslo, May 1966. 

1967 

Report 558 

Advisory Report 13 

AGARDograph 98 

AGARDograph 117 

Experimental methods in wind tunnels and vrster tunnels, with special emphasis on the 
hot-wire anemometer 
By K.Wieghardt and .'.Kux, 1967. 

Aspects of V/STOL aircraft development 
(This report consists of three papers presented during the joint session of the AGARD 
FDP ar.d FMP held in Göttingen, September 1967.) 

Graphical methods in aerothermodynamics 
By O.Lutz and G.Stoffers, November 1967. 

Behaviour of supercritical nozzles under three-dimensional oscillatory conditions 
By L.Croceo and W.A.Sirignano, 1967. 
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AGARDograph 119 

AGARDjgraph !2I 

AGARDogfuph 124 

Conference 
Proceedings 19 
(in two parts) 

Conference 
Proceedings 22 

Conference 
Proceedings 22 

Thermo-molecular pressure effects in tubes and at orifices 
By M.Kinslow and G.D.Amey, Jr, 1967. 

Techniques for measurement of dynamic stability derivatives in ground test facilities 
£/ C.J.iciiueler, L.K.Ward and A.E.Hodapp, Jr, 1967. 

Nonequilibrium effects in supersonic-nozzle flows 
By J.Gordon Hall and C.E.Treanor, 1967. 

Fluid physics, of hypersonic wakes 
Specialists' Meeting, Fort Collins, Colorado, May 1967. 

Fluid dynamics of rotor and fan supported aircraft at subsonic speeds 
Specialists* Meeting, Göttingen, September 1967. 

As above - with supplement 
S 4 

1968 

AGARDograph 132 

Conference 
Proceedings 30 

Conference 
Proceedings 30 Suppl. 

Conference 
Proceedings 35 

Conference 
Proceedings 35 Suppl. 

1969 

Advisory Report 17 

ACARDogrsph 134 

AGARDograph 135 

AGARDograph 137 
(in two parts) 

Conference 
Proceedings 42 

Ccnlcrence 
Proceedings 48 

The electron beam fluorescence technique 
By E.P.Muntz, 1968. 

Hypersonic boundary layers and flow fields 
Specialists' Meeting, London, May 1968 

Supplement to the above. 

Transonic aerodynamics 
Specialists' Meeting, Paris, September 1968. 

Supplement to the above. 

Technical Evaluation Report on AGARD Specialists' Meeting on Transonic aerodynamics 
By D. Küchemann, April 1969. 

A portfolio of stability characteristics of incompressible boundary layers 
By H.J.Obremski, M.V.Morkovin and M.Landahl, 1969. 

Fluidic controls systems for aerospace propulsion 
Edited by R.J.Reilly, September 1969. 

Tables of inviscid supersonic flow about circular cones at incidence   7   =   1,4 
By D.J.Jones, November 1969. 

Aircraft engine noise and sonic boom 
Joint Meeting of the Fluid Dynamics and Propulsion and Energetics Panels, held in 
Sain'-Louis, France, May 1969. 

The aerodynamics of atmospheric shear flow 
Specialists' Meeting, Munich, September 1969. 

1970 

Report 575 Test cases for numerical methods in transonic flows 
By R.C.Lock, 19/0. 

Advisory Report 22       Aircraft engine noise and sonic boom* 
By W.R.Sears.   (Technical Evaluation Report on AGARD FDP and PEP Joint Meeting 
on "Aircraft engine noise and sonic boom".)   January 1970. 

*See also Advisory Report 26 by J.O.Powers and M.Pianko, June 1970.   AR26 has the same title as AR22 but was produ;ed by 
the Propulsion and Energetics Panel of AGARD and deals primaiily with engine noise. 
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Advisory Report 24 

Advisory Report 30 

AGARDograph 138 

AGARDograph 144 

AGARDograph 145 

AGARDograph 146 

AGARDOb-aph 147 

Conference 
Proceedings 60 

Conference 
Proceedings 62 

Conference 
Proceedings 65 

Conference 
Proceedings 71 

The aerodynamics of atmospheric shear flows 
By J.E.Cermak and B.W.Marschner, May 1970.   (Technical Evaluation Report on AGARD 
Specialists' Meeting on "The aerodynamics of atmospheric shear flows".) 

Blood circulation and respiratory flow 
By J.F.Gross and K.Gersten. December 1970.   (Technical Evaluation Report on AGARD 
Specialists' Meeting on the above subject.) 

Ballistic range technology 
By T.N.Canning, November 1970. 

Engineering analysis of non-Newtonian fluids 
By D.C.Bogue and J.L.White, July 1970. 

Wind tunnel pressure measurement techniques 
By D.S.Bynum, R.L.Ledford and W.E.Smotherman, December 1970. 

The numerical solution of partial differential equations governing convection 
By H.Lomax, P.Kutler and F.B.Fuller, November 1970. 

Non-reacting and chemically reacting viscous flows over a hypcrboloid at hypersonic 
condition 
Edited by C.H.Lewis.   (M.Van Dyke, J.C.Adams, F.G.Blottner, A.M.O.Smith, R.T.Davis 
and G.L.Keltner were contributors.)   November 1970. 

Numerical methods for viscous flows 
By R.C.Lock, November 1970.   (Abstracts of papers presented at a Seminar held by the 
FDP of AGARD at the NPL, Teddington, UK, 18-21 September 1967.) 

Preliminary design aspects of military aircraft 
March 1970, AGARD Flight Mechanics Panel Meeting held in The Hague, The Netherlands, 
September 1969. 

Fluid dynamics of blood circulation and respiratory flow 
Specialists' Meeting, Naples, May 1970. 

Aerodynamic interference 
Specialists' Meeting, Silver Spring, Maryland, USA, September 1970. 

1971 

Report 588 

Advisory Report 34 

Advisory Report 35 

Advisory Reoort 36 

Advisory Report 37 

Conference 
Proceedings 83 

Aerodynamic testing at high Reynolds numbers and transonic speeds 
By D.Küchenann, 1971. 

Aerodynamic interference 
By D.J.Peake, May 1971.   (Technical Evaluation Report of the Specialists' Meeting on 
"Aerodynamic interference", September 1970.) 

Report of the high Reynolds number wind tunnel study group of the Fluid Dynamics 
Panel 
April 1971 

Report of the AGARD Ad Hoc Committee on Engine-airplare interference and wall 
corrections in transonic wind tunnel tests 
Edited by A.Ferri, F.Jaarsma and R.Monti, August 1971. 

Facilities and techniques for aerodynamic testing at transonic speeds and high Reynolds 
number 
By R.C.Pankhurst, October 1971.   (Technical Evaluation Report on Specialists' Meeting 
held in Göttingen, Germcny, April 1971. 

Faciliiies and techniques for aetodynamic testing at transonic speeds and high Reynolds 
number 
August 1971.   Specialists' Meeting held in Göttingen, Germany, April 1971. 
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Conference 
Proceedings 91 

Conference 
Proceedings 93 

AGARDograph 137 
(third volume) 

AGARDograph 15i 

AGARDograph 156 

Inlets and nozzles for aerospace engines 
December 1971.  Meeting held in Sandefjord, Norway, September 1971. 

Turbulent shear flows 

January 1972.  Specialists' Meeting held in London, England, September 1971. 

Tables of inviscid supersonic flow about circular cones at incidence, 7 =   1.4 
Part III, by D.J.Jones, December 1971. 

Ablation 
By H.Hurwicz, K.M.Kratsch and J.E.Rogan, 1972. 

Planar inviscid transonic airfoil theory 
By H.Yoshihara. February 1972. 
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