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ABSTRACT

A comparative study is made of various methods for computing the free
vibration modes and natural frequencies of thin plates with clamped and rota-
tional supports and cylindrical curvature. The methods include closed form

analytical, digital computer, nomographic, and graphical computations. Based

on the results, preferred methods of computation are recommended. These

methods-Option 2-are of particular value in extending previously formulated

digital computer programs for obtaining the vibroacoustic response to turbu-

lence excitation of a plate. Computer results for a particular case provide a

comparison of the effect of clamped-clamped and simply supported boundaries

on the vibratory response of a plate subject to turbulence excitation.

ADMINISTRATIVE INFORMATION

This study was conducted at the Naval Ship Research and Development Center (NSRDC)

and supported by the Naval Ships Systems Commafd (NAVSHIPS) Code 0311. Funding was

provided by NAVSHIPS 0311 under Subprojects S-F1453 21 06 and R00303, Task 15326.

INTRODUCTION

Reference 1" documents four available computer programs for determining the vibratory

response and associated acoustic radiation of a finite rectangular plate to fully developed

turbulence excitation. Reference 2 treats a modification of these computations to include the

effects of pressure pickup dimensions and boundary layer thickness (Option 1). These pro-
grams include the response of simple and clamped plates in air and in water. Several compu-

tational frameworks are provided which can be modified and extended through additional re-
I.

search to furnish more accurate programs capable of meeting naval needs in an increasingly

realistic manner. The chief objective of the original study was Eo furnish a base for future

development.

Reference 1 contains vibroacoustic solutions for all programs using simply supported

plate boundaries and for the following programs using clamped plate boundaries:

,;C: 1. Boeing Pzogram I (Maestrello)

2. Boeing Program I - Finite Element (Jacobs and Lagerquist)

3. Electric Boat Program (Izzo et al.)

Boeing Program I uses the Warburton method for computing the modes and natural fre-

quencies; it may not be adequately accurate for square plates or preferable with respect to

accuracy, computer running time, computer cost, and ease of computation etc. compared to

*References are listed on page 149.



other methods of computation. The finite element method of Boeing Program II yields results

whose accuracy decreases with mode number. Finally, the particular aspect of the Electric

Boat Program which deals with the normal modes and frequencies of clamped plates is con-

sidered proprietary by General Dynamics Corporation; hence although their numerical results

for a particular clamped plate computation are accessible, the associated program is not

available to NSRDC. Nor are other programs for obtaining the response of clamped-clamped

plates presently available at NSRDC. Thus, there is a need for evaluating methods for ob-

taining the normal modes and natural frequencies of clamped plates in order (1) to select a

method or methods which are relatively accurate, simple to apply, and inexpensive to run on

a computer (if necessary) and (2) to extend the applicability of those programs in Reference 1

which are presently limited to the case of simply supported boundaries.

Accordingly, the present report presents a modification (Option 2) of any of the pro-

grams of Reference 1 for continuous thin plates. The modification is an attempt to incorpo-

rate into the programs accurate methods for computing the normal modes and natural frequen-

cies of plates with clamped and rotational supports. A method is also presented for including

the effects of clamped thin plates with cylindrical curvature in the modified programs. The

selected methods for the clamped-clamped finite rectangular plate are based on a comparison

of experimeutal results to results -f closed form analytical, digital computer, nomographic,

and graphical computations.

The following titles identify the methods treated in the comparative study and their

location in the report; notations relevant to each method are also included in the Appendixes.

Appendix A - Warburton Method

Appendix B - Young Method

Appendix C - Ballentine-Plumblee Method

Appendix D - Greenspon Method

Appendix E - White Method

Appendix F - Crocker Method

Appendix G - Sun Method

Appendix H - Claassen-Thorne Method

The corresponding computer programs and flow charts are given in Appendix I.

For the convenience of the reader, the Appendixes include an adequate amount of

mathematical development underlying these methods. An understanding of the development

will assist the reader to appreciate the merits and shortcomings of a particular method and to

compare and apply the various methods. Relevant figures and tables are adapted from the

basic references.

In addition to the references, a bibliography of other pertinent published papers is

given for background information.
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k DISCUSSION
All of the computer programs in Reference 1 include a treatment for determining the

vibroacoustic response for simply supported plates subject to turbulence excitation. How-
ever, both theory and experiment suggest that when properly interpreted, these programs can

also be used directly to obtain the response for clamped plates. The interpretation is based

on the following considerations.

As discussed in Appendix C of Reference 1, Izzo compared the computed sound pres-

sure level for a clamped-clamped plate with that of a simply supported plate. The compari-
son suggests that a simplified and realistic approach to the investigation of plates with

4- nonsimple supports would be to calculate the modal frequencies considering the true
k. (clamped-clamped) end conditions but to use the mode shapes considering the end conditions

to be simple supports. This approach requires much less ccmputation and its results are in
very good agreement with those of the exact approach (clamped-clamped frequencies and mode

shapes).

Snowdon 3 lends further theoretical confirmation to these findings. He discusses the
first few modes of a clamped-clamped beam* harmonically driven at its miopoint. When this

beam vibrates in its first four resonant and first four antiresonant modes, its displacement

curves are closely similar in appearance to those of a simply supported beam. At the ends
of the clamped-clamped beam, however, the slope as well as the displacement of the beam is
constrained to zero. The results for the simply supported and clamped-clamped beams differ
principally in the frequencies at which the resonant and antiresonant modes of beem vibration

occur.

Other investigators have found that nodal lines on plates may be equivalent to simple
supports, i.e., a plate with any boundary conditions oscillating in one of its higher modes
thus behaves virtually like a slightly smaller plate on simple supports. Moreover, the effect

of boundary conditions on the natural frequencies of a plate diminishes with increasing fre-

quency (or rode number); see Figure 1.

Recent measurements made by Smith et al. 4 or, the fundamental and higher modes of

vibration of clamped stiffened plates show that the different clamp arrangements used did not

Pffect the mode shapes but did affect the frequencies.
Thus to obtain a reasonable approximation to the vibroac.ustic response for a clamped

plate, we need merely determine the frequencies for the freely vibrating clamped plate and in-
sert these predetermined eigenvalues as input dat, t the appropriate programs of Reference 1.

-./-,.In view of the above, we seek to devise option.l methods (including programs) for de-

termining the frequencies of freely vibrating clamped plat.-s. The establishment of accurate

methods of calculation of the frequencies for all modes requires comparing the theoretical
frequencies as computed by various methods to the experimental frequencies and using the

*The modes for a plate are usually treated in terms of products of the modes for a beam (see Appendixes A-G).

3



SIMPLY SUPPORTED
SIMPLY SUPPORTED

SITPLEUSU DCLAMPED

Figure 1 - Examples of Mode Shapes

NOTE. The analysis in Reference 5 suggests that a clamped edge panel has approximately the same transverse

vibrational behavior as a simply supported panel whose orthogonal dimensions and bending wavelengths are smaller
1.0S 1.05

by the ratios - a+nd~ = +0*, respectively;, nn are node numbers (number of half wavelengths in

the plate in the x- and y-coordinate directions). Here, m =n. Thus, e. and can be termed, "bending wavelength

I

a
equivalency factors." The physical significance of these ratios is clear from the figure whoee s tne
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rcsmi s of ths conpar-3n to select the best methods. The modes which are intrinsically

,s ,cia1ed with the freq-encies car also be computed using the methods or programs recom-

i"nded; the modes may be of value to users interested in making modal comparisons and in

applying the results presented here to other problems.

CALCULATION AND RESULTS

Table 1 compares computed and experimental results obtained for the natural frequen-

cies of a cla.ped-cla2.ped steel plate. The methods and programs used in the computations

are respectively described in Appendixes A-H and Appendix I.

The freiuencies- versus mode numbers given in Table la for each method are plotted

as Figare Ss. The frequencies versus method given in Table lb for each mode number are

ploted as Figure 2b. Experi=entl results cited by Izzo are also included in Table la.

Figre 3 compares the effect of clamped-clamped and simply supported boundaries on

S- the vibratory response of a plate subject to turbulence excitation. The results were obtained

b- csig the Warbon methEd for computing the natural frequencies of clamped-clamped

- plates (see Appendixes A and P and the average of the natural frequencies obtained from
" " cb) and from Warburtons

t2 siple freqaency expession a= = Ca

4 method for si=ply supported plates in the Maestrello program for vibatory response. Note

t tbe coapapter program for the Warburton method given in Appendix 1, yields results for

bech the cl-ped-c02ped and the simply supported plates (see pages 97 and 103).

zTable 2 s -m rizes key features associated %ith the basic references. Some of these

features c-ceed those investig.ated in this paper. They may, however, be of interest to users

and investigators who wish to extend the work of the present study.

EVALUATION

A com-parison of the computed natural frequencies obtained by several methods (see

Table I and Figures 2a and 2b) shows that all of these methods yield frequency results which

are in good agreement with each other. Hence on purely theoretical grounds, any method can

be used if the percentage deviation (obtained from the results of Table 1) between the mini-

MuM (or maximum)" frequency value and the value computed by the specific method is accept-

able for a particular mode.

However, a comparison of the computed and ezperimental natural frequencies given in

Table la and Figures 2a and 2b as well as an appreciation of the significant features involved

in carrying out a computation lead to a preference for the Warburton method. Using Izzo's ex-

perimental results as a standard the data in the table and figures show that for the modes

treated, the maximum error attributable to the Warburton method is less than 3.0 percent for

,The de.ation tro the num or maximum is taken according to which one produces the greater deviation
for a particular odal frequency.

5
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in (Expenmeawl) H~ot WO&-mt~ Y-"** Plumble GreAspoa U1.it Crocke, Sao Thorne,

3' 51 96 579 - 51.0 577.4 381.1 596.6 - 577.0

1.2 13D7 1439 1AD2 - 1394 1402 1395 1433 - 1396

13 2498 26 w- 2636 2647 264 2484 26Z36

2, 1 833 904 912.8 - 907.2 923 902.1 941.0 - 923.3

2Z 2 1567 173D 1714 - 1703 1714 1741 1730 - 1717

2,3 2747 3010 2954 -w 2937 2962 3009 - 3943

3, 1 1351 1443 1474 .- 1465 1473 1500 15D2 - 1499

3,2 MW0 2223 2241 - 2229 2240 2276 2387 - 2259

3,3 - 3M8 3461 - 3449 3460 3462 3525 - -

4,1 2D47 2186 2247 - 2237 2245 - 2273 - 2290

4,2 264 2939 2966 2 969 3965 - 303D - 3022

Results obtained from Reference 11. Wilbyfs experimental results were found to lie between the simply saupported ad fully fixed
edge conditions in this reference. Hence, comparison between .rmory and experiment is of limited value.

-Not computed for this plate but computed for plate in Table Ia.

t See third footnote to Table I.

"Se lost footnote to Table Ia lzzo-Wlhy).j

Table lb - Computed Natural Frecriencies for Plate 2 (Wilby) veith
Dimensions 4.0 x 2.75 x 0.015 Inches (see Appendix 1)

Wilby- llentine. Claassao-tt
~ Exermeta) Heoruon* Wauburton Youn- VAmbe Greso tet jCrocker Sun- hre

1. 1 1038 925 935.1 - 935.2 934.6 935.8 954.9 - 935

1,2 2495 2409 2433n 2439 2432 2465 2464 - 2434

2, 1 1265 1215 1214 - 1211 1214 1236 1249 - 1211

Z 2 2742 2689 2708 - 2706 2709 2781 2756 - 2704

3,1 1723 1727 1711 - 1704 1711 1731 1751 - 1703

3, 2 3140 3165 3174 - 3173 3175 3332 323D 3168

4, 1 2403 2L56 2423 - 2411 2423 - 2465 - 2409

5, 1 3321 3302 3341 j 3322 3341 - 3382 --

*See first footnote to Table lb.

**Nat computed for this plate bet computed for plate in Table Ia.
t~ee third footnote to Table Ia.

ttSee last footnote to Table Ia (Izzo-Wilby)

Table Ic - Computed Natural Frequencies for Plate 3 (Wilby) with
Dimensions 4.0 X 2.0 x 0.015 Inches (see Appendix 1)

Preceding page blank
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all modes. Thus it is acceptably accurate for many (probably most) applications. In addition,

the Warburton program is relatively easy to run on a computer and requires little running time

per mode (1.1 minutes for 50 modal frequencies on the IBM 7090); this makes for a relatively

inexpensive computation for each frequency.

The error of 3 percent may be exceeded for square plates (see Appendix A), and hence

an alternative method of computation may be desirable for this case.

If a computer is not available, calculation of the natural frequencies for a finite rec-

tangular clamped-clamped plate can be performed manually by any of several methods present-

ed, using closed form analytical or nomographic or graphical computations (see Appendixes

A-F, Appendix H, and Table 2).

The frequencies of clamped-clamped thin plates with cylindrical curvature can be ob-

tained by use of the Ballentine-Plumblee method.

The frequencies of thin plates with clamped and rotational supports can be obtained

by use of the White method (Appendix E) or by an extension of the Greenspon method (Appen-

dix D) givan in Reference 12.

Figure 3 shows that at the convection velocities considered, the value of the modal

mean square displacement for any mode of clamped plates subject to turbulence excitation is

less than the corresponding value for simply supported plates. The difference in the plate

response corresponding to the two boundary conditions increases with convection velocity for

any mode, but the difference is relatively constant at higher convection velocities in the

region of maximum response.

The nature of the curves in Figure 3 suggests that at low convection velocities (UC -

300 ftisec), the difference between the response of a clamped-clamped and a simply supported

plate is significantly greater for the lov'er mode (m, n = 5,1) than for the higher mode (m, n=

7, 1). It appears from this result that the statement previously made, namely, that the effect

of the boundary conditions on the natural frequencies of a plate diminishes with increasing

frequency (or mode number), can be extended to include a diminishing influence of boundaries

on the higher mode response to turbulence at low convection velocities. For very low conve(-

tion velocities, the trend of the curves suggests that the concept is also applicable to the

lowest modes.

The magnitude of the curves indicates that the contribution of the higher mode to the

total response is not negligible for either boundary condition, i.e., the contribution of the

(7, 1) mode to the total response is of the same order of magnitude as that of the (5, 1) mode
for a given boundary condition. Thus, determination of the total response requires that the

computations include the contribution of the several modes of vibration deemed to be
significant.

12
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CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on the results of the

present investigation.

1. For computing the vibroacoustic response I of thin clamped-clamped rectangular

plates, the modes and natural frequencies are adequately represented when the modal frequen-

cies are calculated by considering the true (clamped-clamped) end conditions but using the

mode shapes considering the end conditions to be simple supports.
2. For a thin, finite, rectangular clamped-clamped plate, the Warburton method of compu-

tation (including computer program) of the natural frequencies is acceptably accurate. For

this reason as well as for its relative simplicity, short running time, and inexpensiveness in

computer application, it is preferred to the other computer methods.

3. If a computer is unavailable, any of the manual methods of computation presented in

Appendixes A-F and H can be used. The results shown in Table la indicate the degree of 4

accuracy to be expected from a particular method. Moreover, as shown in the tables and dis-

cussed in the Appendixes, because of the limited data available, certain methods are appli-

_. cable for only a limited range of mode numbers.

4. For clamped thin plates with cylindrical curvature, the Ballentine-Plumblee method

(Appendix C) should be used to obtain the natural frequencies.

F' 5. For thin rectangular plates with clamped and rotational supports, the White method
(Appendix E) or the extension of the Greenspon method (Appendix D) given in Reference 12

should be used to obtain the natural frequencies.

6. The effect of the boundary conditions on the natural frequencies of a plate and on the

response of a plate subject to turbulence excitation at low convection velocities diminishes

with increasing frequency (or mode number).
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APPENDIX A

NOTAT.ON THE WARBURTON METHOD

~NOTATION

A Amplitude A

a, b Length and width of sides of rectangular plate along

z- and y-directions respectively

c, k Ratios in expression for displacement

E Young's modulus

Frequency, modal frequency

GZ, Ux, J Functions of m in frequency expression

GX H , Jy Functions of n in frequency expression

9 Acceleration due to gravity -;

Thickness of plate

im, n Mode numbers in z- and y-directions, respectively

T Kinetic energy

t Time

U Potential or strain energy

W Waveform defined by Equation (A2) or amplitude of
displacement w, i.e., w = W sin wt

w Transverse displacement of a point on the plate

,,. , y Coordinate distances in plane of plate

Y1 Factors in amplitude expression defining modal pattern 4

0, Functions of x and y, respectively, defining waveform

A A Nondimensional frequency factor defined by Equation (A8)

P Weight per unit volume of plate

a Poisson's ratio

(I) Circular frequency, equal to 217f f

Preceding page blank



DESCRIPTION

Using thir piate hecc-, Warburton 1 3 derived an approximate frequency formulation for

211 modes of vibmtion ky applying the Rayleigh method and by assuming that the waveforms

of U.are.-sely vibrating rectangular plates and beams are similar. For a fully clamped

plaie- the wareform is ass -ed to be the product of the characteristic functions (discussed

below) for two bea=s with fixed ends. The plates are assumed to be isotropic, elastic, free

frov- applied lo-ds, and with a thickness that is both uniform and small compared to the

wa-ele .nh. The frequency is expressed in terms of boundary conditions, the modal pattern,

the dimemsioms of the plate. and :he constants of the material. Because of the imposition of

adftionai constraints on the system required by the Rayleigh method, the resulting frequen-

cies a higer than a gie n a exact analysis. To use this method, the modal pat-

tems czst consist of lines approximately parallel to the sides of the plate. This require-

vvant is --alisfied foc cliatped rectangular plates, and the errors are small. The exceptions

and their effect om frequency associated with some modes of square plates are discussed in

Reference lZ.

DERIVATION

Tie eocmgeneous equation for a freely vibrating thin plate is 14

r a-w 614w 12 p(1 - o,2) C2W
2 =0 (Al)

.A aX23Y2 a.Y4 E9Ah2  dt2

The solution of Equation (Al) is assumed to have the form of a product of separable

solutians.

tr(z,y, t = I sin ct = A 8(1) 6(y) sin ct (A)

(The zaotion in each mode is wjz,y, 1) W, . sin c=,.t = Amn O(Z) q5) sin wrn. .where

the actual A. may be obtained from measurements.) Here O(z), (y), the characteristic

beam functions or mode shapes which satisfy the boundary conditions for plates with fixed
aw 3w

edges (w= =0 atz=0, aand w= , =0 at y= 0, b) are assumed as follows (m and n

are node numbers and correspond to m - 1 and n - 1 modes respectively; see footnote at end
of this Appendix).

(z) =Cos - + k cosh y - ) ;= m 2,4,6 (A3a)

O(z) = sin y' - + k-sinh y" 2); m = 3, 5, 7 (A3b)

16



Yi

sin y

2 Y
where* k - and tan - + tanh = 0 in Equation (A3a)

Y 2 2
sinh -

and k'- - -, and tan - tah 0 in Equation (A3b).

sinh 
y

The corresponding expressions for S6(y) are obtained by substituting y, b, e, and c for z, a,

y, and k, respectively.

For a rectangular plate, the potential and kinetic energies are respectively given by 1 5

a= b A 2 2 122 d2W 2dW2
[ + + 2 + 2(1-a)]

Ij00 12(_a2)LC3 2/ k&2Ja. yIXI

(A3c)

ra b 1pd\2
T= - -1.-i drdy (A4)

og

and the maximum values of these quantities are

Umx= - T +(LV +! 2
2 12(1 -2) J: J: [(0W) 2( ~ ?y

ta021j \21
+ 2(1 -a) dzdy (A5)r" \axoy / J

2fa b

Ta= 0 f I W2 dX dy (A6)

:"Y Y Y
*The equation tan -+ tanh 2 - 0 is transcendental and may be solved by plotting - tanh -f and tan

and looking for the series of intersections. Then m = 1 corresponds to the value of y for the first intersection,
m = 3 for the second, etc.

17
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1

Equating T and U as reqrired by the Rayleigh method, we have

Ua
02 max (A7)a

Jh f. W2 ddy

By the Rayleigh principle, if a suitable waveform W = A O(x) 0(y) is assumed and

approximately satisfies the boundary conditions, the resulting frequency value is slightly

higher than the true value because the assumption of an incorrect waveform is equivalent to

the introduction of constraints in the system.

Substituting the expressions for the characteristic beam functions 0. and 95Y given by

Equations (A3a) zad (Ali,) which satisfy the boundary conditions for the clamped plate, into

Equations (A2) and (A), the following expression for the approximate frequency is obtained

f / r4 Eh2 g (A8)

V4,-,2pa4 12(1 _ a2)

where (A9) G J]

whe A2 = +  - Hx H + (1 - a) " (A9)

Here coefficients G, G ,1 H ,, and Jr depend on the modal pattern and boundary

conditions.* Values of these coefficients are

1.056 for m = I
m - 1/2 form =2,3,4...

11.056 for n = 1

'--n - 1/2 for n =2, 3,4...
S=1.248 for m = 1

(i - 1/2)2 1 - 1/2) for m = 2, 3, 4,

( 1.248 for n = 1
HY =J = S( - 1/ 2)2  

- 2 for n = 2, 3, 4,...
HyJ (I- /) (n - 1/2) 7

*In Reference 13, m refers to the number of nodes along the plate length and hence to m - I modes. In the
present paper, however, m refers to the mode number. The letter notation is more common and is consistent with
the notation used by Maestrello and other investigators. This definition for MI is now reflected in the numerical
values of m used in computing the coefficients GX, Hx, Ix whereas the values m used previcusiy (Equations
(A3a) and (A3b)) correspcnd to the Warburton definition in Reference 13. A similar situation holds for n.

18



Hence for a given m, n mode and - ratio, we obtain the appropriate value of the co-

2efficients for use in determining n2 from Equation (A9). For a given ratio a/b, the corre-

sponding approximate frequency is found from Equation (A8) to be

1/2 (A 10)
a2  4 8 p ou

For mode numbers inn, An Am and f- a f and w c 2- f.. The corresponding mode
shape is then fme = Amn Om () On (Y)"

19
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APPENDIX B

THE YOUNG METHOD

NOTATION

Amn Coefficient used in series representation of deflection

a. 6 Length and width of plate along z- and ydirections, 
I

respectively

,.Vin Coefficients

Bending stiffness of a plate equal to Eh3112(1 -,u2)

;.E Modulus of elasticity

Hmi' k Definite integrals

/ Frequency

H Poisson's ratio

L h Thickness of plate

i, k
m, n
p q Positive integers

" Length of beam

• V Elastic strain energy of bending of a plate
tW Lateral deflection of plate

Xm Function of z alone

Xz, y Rectangular coordinates

Yn Function of y alone

_ at Parameter in expressions for 9,

n Kronecker delta

Parameter in expressions for 5,

21
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ACharacteristic value equal to C.2Pa

D

p Poisson's ratio

p Mass density of plate material

6r Charateristic function of a vibrating b)eam-

Angular frequency equal to 2=f

22
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DESCRIPTION

Young 16 uses the Ritz method to obtain approximate solutions for the frequencies and

modes of vibration of thin, homogeneous plates of uniform thickness; the frequencies calcu-
lated by the Ritz procedure are always higher than the exact values. To represent the plate

deflection, Young treats combinations of the characteristic functions which define the normal
modes of vibration for a uniform beam. He computes and tabulates values of ths-a runctions
as well as associated integals and derivatives of the functions. Wif care !id of these tables,

I . the user can set up and solve the necessary equations wit!; reasonable efforL A simple iter-
ation procedure is used to solve the equations.

DERIVATION

The maximum potential and kinetic energies for a harmonically vibrating uniform plateI are, respectively (see Appendix A),

/ a 2 A2 +a 2 a2W a2W Ids 2
+- 2p - +2(1- ) ddy

2 a aX2 ay2 dzdy

(Bla)

[T =hw .jJWo2 d.?dy (Blb)

N. -
P Equating these expmssions, we obtain

02 = 2 (112)
ph ff W2 ddy

The Ritz method consists of assuming the deflection w(z, y) as a linear series of

"admissible" functions and adjusting the coefficients in the series so as to minimize Equa-

Vtion (B2). For rectangular plates with edges parallel to the z- and y-axes, Young represents
, w by the following approximate series:

p q
X(), ) Y. S A (BS)

m=1 n=1 a

Each function Xm Yn must be admissible, i.e., it must satisfy the so-called arfifical bound-
ary conditions which are the prescribed values for the deflection and for the slope. It need

23



not satisfy any natural boundary conditions which require that second or third derivatives or

combinations thereof vanish at the bo-mdary. Satisfaction of these latter conditions, if pos-

sible, is desirable however in accrwAance with practical consideration of the rate of

.onvergence.

Substituting for w (z,y) in 1Rquation (B2) using Equation (3) and minimizing the

right-hand side by taking the partiil derivative with respect to each coefficient A.. and

equating to zero, we obtain a set oi" -inear homogeneous equations in the urknown A.. each

of which Ires the form

S- -OffW 2 dzdy 0 (B4)
aAik 2 aAik

where Ajk is any one of the coefficients A... The natural frequercies c,, C32 ie determined

from the condition that the determinant of the system must vsnish.

For a claxped-clauped bean, the infinite set of characteristic functions is given by

t =cosh COS - inh -sin .... r=1,2,3..... (B5)

0 5_-:S. t

(The method for determining the set of characteristic functions which define the normal modes

is given in References 15 and 17.)

The numerical values of ar and t r for each set of functions is given in Table 3, Ref-

erence 8 tabulates values of these functions to five decimal places at intervals of the
z

argument T = 0.02.

The function q5, given by Equation (B5) satisfies both the boundary (i.e., end) condi-
dEOr

tions for the clamped-clamped beam 6, = . = 0 at z = 0, f and the differential equation for

d4 O, e Or
the beam - = - . Also any set of functions q5, and 0'S are orthogonal for

dX4 14

0 < i.e.,

f , dx = E (forr=s) 6
= 0 (for r + s) (B)

The second derivatives of the functions of the set are also orthogonal and satisfy the

relations

24



:--d - = (for r )}

V - 0 (for r+ s)

Numerical values of E4 are given in Table 3. In addition to the integrals defined by Equa-
tions (B6) and (B1), the Ritz method also requires evaluation of the integrals

f d2 6 5J .- and dr
o =dz2  dz d

Table 4 gives the values of these integrals computed by Young.
: The characteristic functions are those that are used for X. and Y. in Equation (131).

Consider a rectangular plate bounded by the lines z = 0, x = a y = 0, y = b. When the func-
tion is used for X., we take E = a; if used for Y., we take f = b and replace z by y. Appro-

priate changes of the subscripts r and s to either a and i or to n and k are to be made in the

set of functions.
It is convenient to introduce the following notation:

rb d2 Xd
2 X

kn= a Xi  dz, E=i =a X dz (BS)

b d 2 dX dXdY

-- Since the appropriate q -functions are to be used fat Xrn and Yn, the numerical value of these
: integrals can be obtained directly from the data given in Table 4.

-!; From Equations (Bla) and (83) and the orthogonality relations (Equations (B6) and
~(87)), the set of Equations (84) can be reduced to the form

p q

F , b - mnl A n = - (811)

m=1 n=l

25
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TABLE 3

Values of a and E_

Type of t 4

Bear 
r

Clamp.-- 1 0.9825 0222 4.730 408 500.564
Clam;ed 2 1.0007 7731 7.8532 046 3 803.537

3 0.9999 6645 10.9956 078 14 617.630

4 1.0000 0145 14.1371655 39943.799

5 0.9999 9994 17.2787 596 89 135.407

6 1.0000 0000 1 20.4203 522 173 881.316

r>6 1.0 (2r+ 1):;/2

TABLE 4

Integrals of Characteristic Functions of Clamped-Clamped Beam

f d , d6a

Values of f d

1 2 3 4 5 6

1 12.30262 0 - 9.73D79 0 - 7.61544 0

2 0 46.05012 0 - 17.12892 i - 15.19457

3 - 9.73079 0 98.90480 0 - 24.34987 0

4 0 -17.12892 0 171.58566 0 - 31.27645

5 - 7.61544 0 -24.34987 0 263.99798 0

6 0 -1519457 0 - 31.27645 0 376.15008

d2 60  e dqSr da
NOTE: 95,' - - I dx

0 dx dx

2(



where

.6 =1 for mn =ik
=0 for mn +ik

and ~i~f
aa

C I U)I p- [E. Fk + Ei. F k'132(3)±Cmn bbie mf

which is valid for mn VI ik. For mn = i4, the coefficient is

b a3  a 01
t(ik) ~ + k42 L- E1 - +2(1iK (34
ik = a k b ii Fkk T1~- kk

InEquation (1314), -i is to be tknfrom the daain Table b crepnig to theB14)ci

that represents X, whereas k is to be taken from data for the 0function that represents

7- There will be one equation of the type (13il) for each of the p. q combinations of ikt

F. In general,* an iterative procedure"8 is used to find the characteristic values of A from the

condition that the determinant of this system of equations must vanish. Results for a

clamped square plate are given in Reference 16.

44

*A manual computation can be performed for systems with no more than three or four equations.
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APPENDIX C

THE BALLENTINE-PLUMBLEE METHOD

NOTATION

[: A Simple panel aspect ratio; ratio of arc length to straight
edge length .%

a Midplane radius of simple panel

b Panel arc length

E Young's modulus for isotropic material

h Simple panel thickness

f Panel length (for simple and sandwich panel)

I q, Generalized coordinate

T Kinetic energy

t Length to thickness ratio for simple panel

U Strain energy

Umn Generalized coordinate

U0  Strain energy density

u Midplane displacement in x-direction

Vm Generalized coordinate

v Midplane displacement in y-direction

w Midplane displacement in radial, z-direction

Xm (a) Mode shape for x-coordinate

x Shell midplane coordinate

Yn(Y) Mode shape for y-coordinate

y iaell midplane coordinate, y aa

Z. Shell midplane coordinate through thickness

am;:Constait appearing in clamped mode function

29

Preceding page blank



'Constant appearing in mode function

Constant appearing in mode function

Strain

8= Constant appearing in clamped mode function

A -Nondimensional frequency

Poisson's ratio for isotropia material

P 3Mass density

Stress

9 Angle which defines wylindrical coordinatey
(generalized coordinate)

0 Circular frequency

I I Row matrix

I I Column matrix

I I Rectangular matrix

1 -j Diagonal mrtrix

30
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DESCRIPTION

Ballentine 19 uses the Rayleigh-Ritz energy method for finding the frequencies and

normal modes of a cylindrically curved panel with clamped edge conditions'; the results in-
i clude those for the flat plate. For clamped edges, inexact mode functions which satisfy only

the geometric boundary but not the differential equations are used. The analysis assumes
that the material is linearly elastic and orthotropic and that the panel thickness is much less

than the major panel dimensions, i.e., the elasticity theory of thin shells is applicable. Only
the main analytical steps and chief results are discussed here. The reader interested in

studying the associated details of matrix manipulation is referred to Reference 19.

tDERIVATION

The total strain energy U of the curved plate (Figure 4) obtained by integrating the

strain energy density U0 over the volume of the plate

is

h

be 2

U=f f fUdz d.Tdy (Cl1)
0o 0  h

wheret ~1
U0  2 Ic I fi l (C2)

o is expressed in terms of strain ei and :hen the strain in terms of displacements which are

Arepresented by

IM X X) Y. (Y)

1
v = - Vmn Xm(T) Yn'(y) (C3)

Yn

W = 1 W, Wmn Xc) Yn (Y)

*Results for simply supported conditions are al.co presented in this reference.

31



32, w

Figure 4 - Curved Panel Coordinate System
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which can be expressed in matrix form. The boundary conditions for a curved plate with

clamped edges are

W(0, y) = w(, y) = w(z, 0) = w(X, b) = 0

w (0, y) = w.(, y) = wr (z, 0) = w7 (, b)= 0 (C4)

V(0, Y/) = V(M y) = V(--, 0) = V(X, b) = 0
U(O, y) = U(e, y) = U(x, 0) = U(X, Y) = 0

The assumed mode shapes for a plate with clamped edges are

X.(x) = Cosh 8.x - Cos 8. x - er (Sinh 8. z - sin 8. z)%

Yn (y) = Cosh y. y - Cos y. y - On (Sinh y y - sin y. y)

where

Cosh 8. f - cos 6in
: in Sinh 8,n f - sin timj

C Cosh 1nb - cos b
= Sinh yb -sin yb

and 6. and y. are determined from

r CoshP, cos = 1

Cosh yb cos vb =1

The kinetic energy of the vibrating plate obtained by integrating the product of mass
and one-half velocity squared over the volume of the plate is

T f f f (2 + 2 + ;02) do dy dX (C7)
2[ 0 0

where , v, can be expressed in matrix form using Equation (C3).

U and T are now substituted in the Lagrange equation of motion to obtain an equation

for the natural modes of vibration which can be written in the form

¢ ? g -0)2  O [ J I r} = 0(C S )

where the terms in the [K] and [J] matrices are given in Reference 19. This equation can be

solved for the modal frequencies.
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Reference 19 indicates that inasmuch as the integrals of X' X, X" X, and X X"

(which were used in deriving the terms in [K] [A1) for clamped edge conditions are nonzero

when p V m then the analysis does not display the desired orthogonality between the modes.

However, a numerical analysis for one of the test panels used in the reference program

showed insignificant differences when compared to a numerical analysis which assumed

orthogonality. A complete investigation of the effects of including this nonorthogonality

relationship has not been evaluated because of computer time requirements. Finally a simpli-

fication of considerable interest to the orthotropic curved panel frequency analysis occurs,

provided the modal integrations are taken to be orthogonal and the material is isotropic. In

this case the modes are uncoupled, and assuming that

h2
- < < 1 (C9)

a
2

we find that the determinant of the coefficients is

6 [G] X2 [L] (0

I Eh3  [G (

[J] =_ b[L]

and

A2 - pE3b(I_ V2) 2

Eh2

where the terms in [G] and [L] are given in Reference 19. Equation (C10) can be solved for

the modal frequencies.
b

If a =c (flat plate, =- 0), then the 3 x3 matrix is reduced to a 2x 2 matrix and one
a

equation in terms of "A2 in the 3, 3 position. The equation resulting from the 3, 3 element

yields the flat plate flexural modes, whereas the 2 x 2 matrix gives the in-plane or longitu-

dinal vibration modes.

Some important simplifications can be made in the frequency theory if the angle which

the panel subtends is small. For angles 0 less than 0.2 radians, the frequency of flexural

vibration can be approximated by the following equation when all edges are clamped:

25.2 41.7 t2 
( 2

A2 =41.7 A + 2 + 4 + - ; <0.2radians (CII)
A A3  A

b b
where A=-, 0=-, and t=.

a
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F
It follows from the foregoing equations that the ratio of the curved panel frequency to that of

the infinite panel for the 1, 1 mode of vibration is

2(011) -1+ C (AtS5) 2

A4 + 0.61A 2 + 1

where the theoretical value of C is 0.024 for clamped edges.

The frequency analysis for isotropic curved panels with no coupled modes, Equation

(C10), has been programmed in Fortran language for solution on the iBM 360/91 at the

Applied Physics Laboratory of Johns Hopkins University. The equations are nondimension-

alized in terms of three independent variables A, 0, t and the dependent variable which is

nondimensional frequency. Calculation of the frequency for clamped plates was made over

the following range of variables:

0 b

0 < < €-3.14
a

20- - = t -< 1000

0.5- =A<2.0

For particular values of aspect ratio A, nondimensional frequency is plotted for six

modes and six values of length-to-thickness ratio. Figures 5 to 9 give clamped edge frequen-

cies.* Once nondimensional frequency is found, the actual frequency can be determined from

the nomogram shown in Figure 10.

As an example, the natural frequencies of a clamped, curved panel calculated in Refer-

ence 19 are presented. The panel dimensions are

Radius a = 100 in.

Arc length b = 10 in.

Length, f = 20 in.

Thickness A = 0.05 in.

The nondimensional ratios are:

A = 0.5

= 0.1
t = 400

*Similar results are presented in Reference 19 for simply supported edges.
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Mode Number

Straight Curved Subtended
Code Edge, m Edge, n Code Angle, ~

c I 1 1 0 J60

d 1 2 2 0.05 f6

e 1 3 3 0.1 C
f 2 1 4 0.2 g6

9 2 2 5 1.0
h 3 1 6 3.14

is
e_5
cs

1000 'dS
CS

400

i4
e4
c4
M4
d4
g4

g3
C3 e3 J3

'ftdo .2

f2
d2 j

2

e2
c2

40 J

el

10

10 40 100 400 1000

LENGTH TO THICKNESS RATIO, 1/h

Figure 5 - Nondimensional Frequency Solutions, Clamped Edges, A =0.50
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Mode Number

Straight Curved Subtended
Code Edge, m Edge, n Code Anigle, 9(

c 1 1 1 0 e
d 1 2 2 0.05 c6

e 1 3 3 0.1 d6

f 2 1 4 0.2Vh 3__ 1 6 3.14

E js
.5I.1000 :Si

4W0

j4
e4
c

4

2 J3
e3
c3

IIJU f3 g3
d3

pg2

d2

10-

10 40 100 400 1000
LENGTH TO THICKNESS RATIO, 1/h

Figure 6 - Nondimensional Frequency Solutions, Clamped Edges, A =0.67
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Mode Number

Straight Curved Subtended
Code Edge, m Edge, n Cod e Angle, id

C I 1 1 0
d 1 2 2 0.05 *

e1 3 3 0. 1 c6

f 2 1 4 0.2 d

g 2 2 5 1.0 g

h 3 1 6 3.14

1000 i
CS

f 0s
dS
ZS

400

J4
.4
C

4

H4
.d4

g4

J3
100 c3

c3
d3

C
3

J2

40 &J

f1

dl el

10 c

10 40 100 400 1000

LENGTH TO THICKNESS RATIO, 11/h

Figure 7' - Nondimensional Frequency Solutions, Clamped Edges, A 1.00
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Mode Number

Straight Curved Subtended

Code Edge, m Edge, n Code Angle, ~
C 1 11 0
d 1 2 2 0.05
e 1 3 3 0.1 C~6
f 2 1 4 0.2 f6

g 2 2 5 1.0 d

h 3 1 6 3.14

S

d5

g5d

U 400

100
j3
e3
f3

f2

10 00"c2

I ~ ~~~~ 2 II

10 40 100 400 1000

LENGTH TO TI'ICKNESS RATIO, 1/h

Figure 8 - Nondimensional Frequency Solutions, Clamped Edges, A =1.50
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Mode Number

Straight Curved Subtended
Code Edge,m Edge, n Code Angle, ~

C1i 1 0 j6

d 1 2 2 0.05 C6

e 13 3 f. 6

f 2 1 4 0.2 d

g 2 2 5 1.0 &6

h 3 1 6 3.14

10001 e________ __ ____

C5

fs

j4

1004

404

d4

10 &4

I I II I I 3

10~~~e 4010f0 10

440



Z1)I3H HI kADN3nb3SH

C

o 0

t to

* I-
LU 0.

M C9

0z I
* 0

4.41



Table 5 shows values of A for the different combinations of mode number. These values were
taken from Figure 5 for A = 0.50. The frequencies converted through the use of the nomogram
are also displayed in Table 5. I

TABLE 5

Natural Frequencies for Sample Problem

m n A f

1 1 51 300

1 2 65 382

1 3 101 594

2 1 54 318

2 2 71 418

3 1  61  359

-2



APPENDIX D

THE GREENSPON METHOD

if NOTATION

AP Area of plate

k a Width of plate

b Length of plate

b/a Aspect ratio

Eli3

D Plate modulus =

,1~E12(l _ V 2 )

dA Differential element of area

E Modulus of elasticity of plate material

h Thickness of plate

in Distance in direction normal to boundary of a flat plate of
arbitrary shape (has dimensions of length); n lies in plane
of plate

Pr Circular frequency of rth mode of vibration

pii  Circular frequency of ij th mode of vibration

Sq A function of time such that w = w. q. satisfies the homo-
;;_ O2w

geneous plate equation DV4 w + ph - =0

a-Distance in Jirection of bound-y, of a flat plate of arbitrary

shape (has dimensions of length)

t Time variable

w Lateral deflection

'wr  Deflection function in rth mode of vibration

Xi, }1  Normal mode functions for the modes of vibration of a beam

ai. aj Factors defining modes of v'ibration of a beam

Frequency numbers of the modes of vibration of a beam.

'4!



P Poisson's ratio

P Mass per unit volume of plate material

V4  
Differential operator + 9 . 4 a 4

a_4 - - - + in
a 2  ;y 4Irectangular coordinates

OwaSlope 
of plate boundary

r
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DESCRIPTION -

Using the general theory of small vibrations of plates, Greenspon 7 " 12, 20 presents a

method for calculating the frequency and deflection response of a clamped rectangular plate.*

The calculation is based on a knowledge of the normal modes of vibrations which are approxi-

mated by the product of two beam functions (or characteristic functions) identical to that

used by Young (see Appendix B).

DERIVATION

The homogeneous equation for a freely vibrating thin plate is given by 7 , 12, 20

DV 4 w + ph 2 0 (D1)
at 2

For a clamped boundary

ow =0alongs
. (D 2)

=w - 0 along s
On

The deflection of the plate is taken to be the sum of the normal modes.

00

r= 1

Substitution of Equation (D2) into Equation (DI) yields

D d 2 qr4- "7 W gW =0 (D4)
ph r=1 rw=q I dr2

Integration of the product of Equation (A3) and one of the normal mode functions wm

over the plate area 1 gives

D I r I---'I- -2

D 
d2 [r=1 d1tot q dA+ tor r I dA =0 (D5)

p p

'Results for isotropic plates are gi-en in Reference 7 and for othotropic (i.e., stiffened) plates in Refercnces
12 and 20.
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As shown in Reference 12, the first term in this equation which contains integrals of

the form f wm V
4 wr dA is zero if r lm and the second term in this equation which contains

integrals of the form f w. wr dA is also zero if r A m and the plate is clamped. Thus if the
Amp

plate is vibrating freely in one of its modes w=wr sin Prt, Equation (D5) can be written

S W mV4 Wr dA = p2 win w rdA (D6)

AP A

and since the integrals have a value only for r=m, the circular frequency of the rnth mode of

vibration is

P, L U 2 - a (D7)
lap A m

To calculate the frequency and deflection response, the normal modes of the clamped

plate are approximated by the product of two beam (or characteristic) functions, i.e.,

wm = X. Y', which depend on the boundary conditions of the plate." (For the first mode

i = 1, 1 1; for the second mode i = 1, j 2 , etc.) (For the clamped plate, the values of Xi
and Y- used by Greenspon are identical to those used by Young; see Appendix B.)

Piz fOi Xs 13i x

Xi =cosh- -cos - - a. sinh - -sin
a a a a

Y. =cosh " cs b i inh L -sin

b 6 / bL

Substituting the value of wM = X. Y. into Equation (D7) using Equation (D8), we find
i I

(see page 30 of Reference 12 for details).

4 2 f0 ,b X. X" f- . y._ d

) 2ffbX y dz dy

w o jo xP;0 0

00

d2 X d2 y.
where X -  and Y."=

dx2  I dy 2

*The product of the bea functions is not an exact expression ior the =odes of a cla=ped plate beczuse it
ge-erally does not satisfy the plate eqration.
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The values of 6 and a as well as the integrals f X Xdn, fa Xi dx and the values0 o0

of X i and X" which are contained in References 8, 9, and 16 were used by Greenspon 7 to

compute Table 6.

For purposes of the present report, the final expression for the deflection response

derived in References 7, 12, and 2) is omitted here.

Following e similar proce.ure, Reference 12 presents a frequency equation for a

fluid-loaded, cross-stiffened plate, i.e., orthotropic plate. It also gives the procedure for

determining the orthotropic constants and other data. The beam functions Xi .are written

for a beam with rotational constraint which includes simply supported and clamped

constraints. Thus Equation (D9) is a special case of the more general frequency equation

given in this reference.

TABLE 6

Function Values for a Clamped-Clamped Beam

(Here a or b is the length of the beam, and the origin x = 0 is located at one end.

The tabulations will remain valid if Xi is replaced by Y.)

b y o 1," 1 = ;1b2dy Point at Which fb dy
f Y ordy Value o this Value of 0

iofj t3, Poinmat Which a2

So X, Occurs X 6 f d
0 13- 0

a O Occurs a

1 0.9825 4.730 - 12.3026 1 1.5982 z-=O.5a 2 X=O 0.8309

2 1.0008 7.8532 - 46.0501 1 0 z 0.5a 2 X=0 0

3 1.0000 10.9936 - 98.9048 1 -1.4060 X=0.5a 2 z=O 0.3638

5 1.0000 17.2788 -263.9980 1 1.4146 .r -0.S 2 X=O 0.2315
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APPENDIX E

THE WHITE METHOD

NOTATION

a Beam width

amn, ars Coefficients used in series representation of deflection

am, a A constant which determines the amplitude of response
for the m th and ntth modes respectively of a beam; beam
nondimensional frequency parameters

b Beam length

Ci  Rotational spring stiffness per unit length along the ith
edge

In Quantity defined by Equation (E16)

Eh
3

D Plate bending stiffness equal to E1 =
12(1 - 2 )

E Young's modulus of elasticity

g Gravity accele.-ation

h Plate thickness

I Moment of inertia of cross section of the beam about
the neutral axis

Ji Mass moment of inertia per unit length along the ith
edge

UP Plate mass

m, n and Mode numbers, i.e., number of elastic half-waves parallel
r, s to the x- and y-axes, respectively

mi -Edge mass per unit of length along the ith edge

T Kinetic energy

2T
T Equal to - defined by Equation (E7)

2 m

V Potential energy
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2Vb 3

V Equal to -V ; defined by Equation (Eli)

W (X, y) Plate deflection

X, y Rectangular coordinates

am, a, Beam nondimensional frequency parameters

amn Plate nondimensional frequency parameters

anO, anL Nondimensional frequency parameters for the nth mode
of a symmetrically constrained beam which has springs
of stiffness Co and CL, respectively, at both ends of
the beam

M n Defined by Equation (E17)

0( Y) , Oky) Beam mode shapes (functions of y only)

A, Amn Nondimensional plate frequency parameters defined by
Equations (E13) and (E19), respectively

Plate mass per unit of area

v Poisson's ratio

Nondimensional rotational stiffness parameter

p Mass density

( , n(y), O(y) Beam mode shapes (functions of z or y only)

9M (X, y) Plate mode shape, approximately equal to Om(?) O(y)

OI, obn  Beam functions defined by Equation (E19)

co, comn Circular frequency and circular resonance frequency
of plate, respectively

Designates a nondimensional integral
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DESCRIPTION

Using the Rayleigh-Ritz technique, White 2 ' derives a set of simultaneous algebraic

equations for computing the resonance frequencies and modes of a rectangular flat plate hav-

ing a uniform distribution of elastic and inertial edge fixities. These fixities are equivalent

to a uniform dCstribution of independent masses, translational springs, and rotational springs

along each edge of the plate; the various edges of the plate can have equal or different elas-

tic constcaints and inertial loadings. The only coupling between the individual masses along

an edge is the coupling provided by the deflection of the plate. Certain integrals of products

of beam mode shapes and derivatives of these mode shapes are expanded in terms of modal

displacements and derivatives of these displacements at the ends of the beam. These inte-

grals are used to develop expressions for plate frequencies. All effects of rotary inertia and

shear deformation of the beam are neglected.
K, Once the masses and springs along the four edges of the plate are known, the frequen-

cies and modes can be numericaily evaluated. Solutions of the simultaneous set of algebraic

equations can be obtained by iteration using standard digital computer techniques.
Reference 21 treats the special case in which the edges of the plate are translation-

ally fixed, elastically constrained in rotation by a uniform distribution of rotational springs,

and not loaded by edge masses. In this special case, each edge of the plate can have a fix-

a ity arbitrarily between a pinned and clamped support and the four edges can have different
elastic constraints. The special case is further specialized in the present report to treat

r only the completely clamped case. Although exact solutions of the corresponding set of si-

multaneous frequency equations require an iteration of the Ritz type, it was found that rea-

sonably accurate estimates of the plate resonance frequencies c-n be obtained by using a

single term from the appropriate equation in the set. The resulting approximate frequency

equation is given as well as nomographs for quick computation of these frequencies.* The

White method as applied to the completely clamped plate follows.

DERIVATION

The partial differential equation which defines the undamped resonant vibration of a

thin, uniform rectangular plate is

S2 + - f 2 W(x,y) 0 (El)
L- 4" dx2 ay2  9y4

Using the Rayleigh-Ritz technique, the approximate solution W(x, y) of Equation (El) is ex-
pressed as a doubly infinite series of products of normalized uniform beam modes.

*The nomographs yield results for thf. special case cited above which includes the clamped plate.
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IV(.,y)= A 0 m(X) 0"(Y) (E2)
m=1 n=1

where the mode shapes 95a(z) and 0n(y) are associated with the mode shapes of uniform

beams having end fixities which are the same as the corresponding edges of the plate; the

particular form of these beam modes for particular boundary conditions can be obtained from

Reference 21. These forms are not required for the present analysis.

The kinetic energy T of Lha clamped plate is*

(o2

SPhffbW2 (x, y) dx dy (E3)
2 0 0

Substituting Equation (E2) into Equation (E3), we obtain

1 2T " I2nr amn ars M . on Os (E4)
2 mnrs

From the condition of orthogonality of beam modes

60n 0s =0 ifn V s
___(E5)

7 01- =0 if m :/ r

writing

T = 2 M T (E6)

we have

a an ars TmSr OZ Os (E7)
mA,r, S,

The integral expression for the potential energy V of a flat rectangular clamped plate
is**

*Assuming no edge masses, all Mi = 0 in Reference 21. With no mass moments of inertia at the boundaries,

all Ii = 0 in Reference 21.

*For the clamped plate, we assume infinite stiffness in the translational and rotational springs along the

edges of the plate so that no potential energy is associated with these springs. The spring energies are, how-
ever, included in the potential energy term in Reference 21.
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ab
V= ~ [W,, +WY2 +2zW Wf +2 W21 dxdy

0 0

or (E8)

a b dW a bW

00 0

Substituting Equation (E2) in Equation (E8), we get

D a 4--D a a, , ¢n47 o,z oS + 'km€ 'Iro-o2-

2 mnrs mn F. L+a/

+ rnl'Or OnO"+ O (E9)

+ - (I-v) " am.ars[bOnO' s- O"Or On OS ]
ab mnrs

This equation can be simplifiea by use of the integral relationships between Om Or- ,
0 0 T. -r and On Os, 0s ., ' given by Equation (42) of Reference 21. The steps

S involve a lengthy integration by parts. The resulting expression for the potential energy

F becomes.

D a
V=- - - (E1O)

2 b3

where

Va, 1 as 4) 0k~i3 J +a 0
:" V = m 'ars 

n n r ., [ . mr Or On 0O. + a n n OS C

+ I amn ars [0m Or On O' + Om Or" 7OOs]
mnrs(a In

t5 + a a[ 2(1 - )(, ( )

a b

O- r) On Os - (On Os) O'" r' (Ell)
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Applying the Rayleigh-Ritz method, we set T = V and minimize the plate frequency a)

with respect to each of the coefficients ars. It follows from Equations (E6), (E7), (El0),

and (Ell) that

AT = V (E12)

where the resonance frequency and A are related by the equation

1/1 (E 13)

0X
Minimizing the frequency o with respect to ars implies that - 0 and hence

aT avA = - (E14)
oars Oars

Performing this operation gives the final result

F r . [C' s -A8rsa = 0 (E15)
m=1 n=1 In n m

where, noting that the beam modes 0., Or, On, and 0, are equal to zero at the plate bound-

aries,

MAn a mIn+ I Om Or On Os

(E16)

+ - "r [ r" . O o" + Cm €Or O 0

and

arS = .m r ns (E17)

and where (see Equation 42 of Reference 17)

0m r =0 if md r
(E18)

0n Os = 0 if n s

Equation (E15) represents a set of linear simultaneous equations in amn where there

is one equation for each combination of r and s.
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All the exoressions necessary to evaluate the derivatives and integrals of mode shape

appearing in Equations (E), (Ell), (E16), and (EI) have beea developed in Reference 21

and are also used in Appendix F. Hence the quantities C-,, and B_". can be numerically

evaluated for a clamped plate. Solution of the set of Equations (E15) can be obtained by

iteration using standard digital techniques. These methods are briefly discussed in Refer-

ences 16, 21, and 22 for certain special cases.
In Reference 21 numerical evaluation of Equation (E15) showed that accurate estimates

of the plate frequencies can be obtained by using a single term from the appropriate equation

out of the set of Equations (E15). To obtain the approximate frequency equation, set rs mn

in Equation (E15) and equate to zero the coefficient of are giving

= (AIn) 2 [D/(phb 4)12

where

mn =(b/a )4 aI + an + 2(b/a)2 m .

(E19)

On = Ozn / Tm

Actually Equation (E19) and the quantity Pm (or 0.) was numerically evaluated for the

beam having translationally fixed ends and rotational spring ends. Thus Equation (E19) is

the approximate solution to an equation somewhat more comprehensive than Equation (E15),

given by Equations (66) in Reference 21. For a clamped plat-, the rotational spring has infi-

nite stiffness. The results are presented in Figures 11-13 for the first three beam modes.

Thus approximate frequencies can be obtained for the first nine modes of the plate for any

aspect ratio b/a by using the above equation an-d the data presented in Figures 11-13 for

'm (and 0.) and Figures 14-16 for am (and an). For symmetric edge fixity in which oppo-

site edges are equally constrained, the numerical results obtained agree within 2 or 3 percent
V with those computed in Reference 22 using a 36-term series. The approximation is increas-
t ingly more accurate the smaller the plate aspect ratio and has the greatest error for the square

plate, particularly in the fourth and fifth modes when equally constrained on all four edges.

Approximate mode shapes 0mn(X, y) -m(x) 0. (y), locations of peak deflections, locations

of node lines, etc. can be obtained tom the data presented in Figures 19-53 of Reference 21.

A nomograph constructed by White is presented in the present report to aid in evaluating the

approximate resonance frequencies of the plate, Equation (E19), corresponding to the first

nine modes for any aspect ratio b/a. The opposite edges can have equal or different elastic

constraints. Note that graphical techniques can account.for only the most significant term or

terms in a mathematical solution which may involve a large number of terms.
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Figure 17 presents nomographs developed by Dr. White for nine modes of a rectangular

plate. These permit the graphical computation of resonance frequencies of a plate of arbi- I
trary aspect ratio when the four edges of the plate are translationally fixed but elastically

restrained against. rotation. The compliances of the rotational supports are assumed to be

uniform along each edge, but the compliances may be different for all four edges. The

clamped plate is represented by rotational springs of infi,,ite stiffness along all edges. Each

nomograph contains a sample calculation which is indicated by arrows and which is tabulated

on the nomograph. Note that it is necessary to transfer numerical values from certain scales

- to other scales; these transfers are indicated by arrows at the bottom of each nomograph. If
A

opposite edges of the plate have different rotational elastic constraints, the 1 and a 1 scales

should be used instead of the e scales. Values of a are obtained from Figure 14 for unsym-

metric edge fixit"es. In the nomographs VA., is replaced by am,, . Symbols used in the I
nomographs correspond to tho3e used in Reference 21.
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Figure 17 - Nomograph for Plate Nondimensional Frequency Parameters
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APPENDIX F

THE CROCKER METHOD

NOTATION

A Modal constant

a Panel length in x-iirection

B Modal constant

b Panel width in y-direction

C Modal constant

D Modal constant; also equal to El =

12(1- V2 )

E Young's modulus

e Base of natural logarithms = 2.718

[4 Normalized rth mode shape of panel

h Panel thickness

I Second moment of area of cross section a.-out neutral
axis through its centroid

f Length of equivalent beam

m M~Mode number in x-direction

n Mode number in y-direction

R Freque.ncy parameter

X Modal function of x or y

lxI Maximum value of X

X, y Distance measured along and perpendicular to the
undeflected equivalent beam, respectively

- Frequency parameter

A, 8 Small quantities

}i A Frequency parameter -
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p Density of material

a- Poisson's ratio

Normalized mode shape

Resonant freque-ey parameter

Circular frequency

Subscripts

m,n Refer to mth and n th modes, respectively

n Refers to direction normal to certain direction

r Refers to rth mode

x Refers to x-direction

y Refers to y-direction
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DESCRIPTION

Crocker23 preseats an analysis for computing the normal modes and frequencies of a

uniform flat panel with fully fixed edge conditions. The method involves an approximate

solution of the freqt.jncy equations.

DERIVATION

The mode shapes of a clamped-clamped panel are approximately

XiX~n(z) Xny) r
f,( O =IX=x~lI~nj~l Ix~ IX [Am cosh Urn + B= sinh Urn

+ C COS am + D= sin a.
a ma]

[A. cosh. B. sin "

+ Cn CO o + D . sin h or,b b

where the quantities in brackets or Xr., X. represent the mode shapes of vibrating uniform

[ beams lying along the z- and y-axes, respectively, and IXmi and IX.1 are their respective

values. Applying the boundary conditions for a clamped-clamped plate, i.e., for either

ax =O, o
XorX., X= {=Oat y=

Then

A= -Cr B= -Dand (F2)0= Acosh a+Bsinha +Ccos a+Dsina

0 = Asinh a+Bcosha -Csina+Dcosa

Equations (F2) may be solved in order to obtain the frequency equations for a clamped-

0c.amped plate:

cosha'r cos am l
(F3)

cosh n cosa =1
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Solution of Frequency Equations

The solution of Equations (F3) may be shown to be of the form:

a. -(2m 1) - A: m 1,2, 3. (F4)

where A-.O as mvioo. Now

coa Csh (2w L2cosh(A+2mn (n+ 1) .1 sinh A

- sinii (2m -I) 2j [cosh A +- 5mb Al (F5)

and from Equation (F4)

COSa,,= [sin (2m•+ 1)-2 sin A, [since cos (2m f)- =0]

=- (-l)m sin A 
(F6)

Thus from Equations (F3), (F5), and (F6):

(cosh A + inh A) sin A = (-  )
sinh (2m + 1)

But A 0. Thus for small values of A,

coshA= [eAe+ - +A 2 + -A+&2 A2I2 2 2 +

(F8)

2inh A _ 2 -A1  + 1 +A+ I l+A+ - =A (F9)2 2 22

sin A= A (Flo)

Thus substituting Equations (F8), (F9), and (F1) into Equation (F7) gives:

S-2(m + 1) 1)
sinh (2m + 1) - -

2
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and neglecting terms of order greater than A, then:

-(2=- ) -~~~A = 2 e-1= -: (F12)

Using Equations (F4) and (F12), values of a1 to ao were calculated in Reference 23 and
are presented in Table 7. It was found that for the higher frequency parameters, the value of
A became negligible and Equation (F4) was sufficiently accurate. For example. A6 = - 43C
x 10-10 and was thus negligible. Equations (F3) may also be solved by assuming a solutioi
such as Equation (F4) with A = 0 and using the Newton method to refine the original approxi-
mate solution.

Determination of the Modal Constants

t'f Arbitrarily putting one of the modal constants = 1, the other modal constats may
be determined from Equations (F2).
ThusB=-D=-_landA sinha -cosha +.4sina cos a=O.

cosh a- os a
A= (F13). = sinh a,, sin a.

But using Equations (F5) and (F9),

e (2m +1).

cosh al= sinh a.

Thus:

Cos a

sinh a. - cos am sinh a.
S sinh a sin am sin a m

1 +
sinh am

A oso0  sna
sinh a " sinham-

(sin a, + COs am)
sinh a m
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TABLE 7

Parameters for a Clamped-Clamped Mode Shape

Resonamt MaximumFrequency Pra ter Frequency Prameter Displocment Coefficlt
orn O*@D u or~ix~ 1  A.orA.S orlor

1 4.73004 12302 1.61628 1.017804
2 7.85320 46.050 1.50605 0.999224

3 10.99560 98.905 L51259 L000034
4 14.1372D 171.590 1.51228 0.999998552
5 17.27880 264.1376 1.5125 1.0000000627

6 2D.420352 376.1092 1.5125 0.99999999729
7 23.561945 506.8633 1.5125 1.00O0000001175
8 26.703537 659.404 1.5125 0.999999999491

9 29.845130 830.7431 1.5125 1.000000000000220
10 32.986722 -5125 0.9946

Note The =odaI coeffi iets c - A, ad B -- = - L More simfec fipes are
giren ub--e tbey are req3-ed for acc_--ate cal colatios.
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But from Equation (F6)

cosa= =. - 1)sin A

and from Equation (F4)

sin a= =sin (2m 1) - cos ; ince cos 1.i-11 -C=0 =(-1 = os A
2S

Thus
p{

i[-114 - cos A- 1 - sin Al

sin a

A 1- 1- [cos A - sin A]

sinh a=

-(2= 1) "
fi- =-C --- 11 - -A l- - (F14)

Thus using Equation (F14), values of A= and C= were calculated for ma= 1 through 10; see

Table 7 !
I,

Determination of Resonant Frequency Parameters

E 3

From Equations (E19) of Appendix E with AJ -,.= and D El= ,the
12(1 _92)

undamped resonant circular frequency of the mn th mode of the plate is:

A E
(Fi5)

where

P.=. M .a + + 2( M d, n (FI61)

a was derived above in this appendix and values are given in Table 7. Also the following

relations were derived in Reference 21 and used in Appendix E.

(Fit)
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II

where

= - (A=+ B.) sinh a. - A= e os 0. !+sina .-

Ix= -B=) cosh a - A - sin a. + coS.an

= -, .,

a2x

6 '" =AI= Z.-% 4 B=) sinh a, - A 4  o , sin a=-

.'M CosaT
.is-" -x=] (Alm+B.) cosh a.- T A. - =  sin a.- -os a-_

(FIB)

and where

zero

1 1[= [BV 1 -
_

- 2
. .. + = -- A2-. -LD

00-1 0 21X1 2
(F19)

zero zero

-o; = + .4 ._ -I [A 2 - 2 C2 +D2

(F20)

The terms shown zero in Equations (F19) and (F20) are zero due to the boundary conditions

6= 0 at z = 0 and z = f for a clamped-ciamped mode.

Substitutng Equations (F19) and (F20) into Equation (F17) and utilizing Equations

(F18) gives, after simplification,

I= [ [(A= -B.i) cosh am + A e - sin a.)- cos m( .[(A m + B.)sinh am

+ A(e- +coscS)-sina.]+-2A (1-B=)I-a2 B2-A 2 C2+D21/

A2-B -" C  +D (F21)

Equation (F21) was evaluated for m = 1 through 9; the values are presented in Table 7.
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Value of Position of Maximum Displacement for Each Mode

In order to simplify the computer program for the response of a clamped-clamped panel,

it, was necessary to determine the maximum vlue X denoted IX.I , for each mode. In fact,

the simplest and most accurate method found was to calculate the mode shape:

X(z)= [-A csh a. - B sinha.-- C. cosa.- D. sin-
a a a a j

by means of a computer. The computer program written by Crocker is given in Figure 18.

Both numerical values and computer plots were obtained for m = 1 through 10, and the computer

plots are given in Figures 19-23. In this manner, both values of IXj and X. for z = a/2

were obtained. Since the whole mode shape was calculated, the response of any point of the

panel could be computed by using the appropriate values of X. (z) and X. (y). It is interesting
to notice that Figures 19-23 indicate that the maximum displacement IX.1 does not occur at
the center of the span except for the first mode, but two maxima IX.I occur for the higher

modes, one nearest to each support- The other maxima are found to be slightly smaller, to be
of approximately constant value for the higher modes, and to lie between positions of the
maxima IX=l-An approximate method is given below for determining the value and position of the

maximum displacement IX1. for the higher modes. Although approximate, IXJ calculated by
this method is seen to be only 0.66 percent smaller than when calculated by the more exact

computer program.

The mode shape as given by Equation (F2"2) 'nay be rewritten:

X- =(A_+ B.) sinha - . (e Xcos - +sin - (F23)

but for a maximum or minimum value of X.:

f -am
am dXam a am X

- =O=(A B.)cosh . +sin + cos
a/ a z a-

(F24)

r- Since for the higher modes:

A+Bm1 } (F25)
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C fc* CLA tCN" L( * r S4C

OINTAION A4p,.LN& ~.I*CA=1O2ONCZX 1.--2-90

Al i1.C 1"s

AL -I 00w0)

Al 51 1.1.

AL01A :1i-l 11

AZ-h 1O3 .S.0 2

LP4AI 1.74.55220

A.INAII.I(.337J

12-.7;C-

Il1.2.3C1-C

H3O0..k.

C NETA 0363

C DRW IC 1-AS LN141

0; SO 1..9

CALL PLOTCX.12.Zi

CALL PLOTCO.2 7 2i

C0 TOM TICN L O .AI

00E S ,) 1. .

CALL PUL.I)
CALL POC2V2

CALL 5N~I*~~~*.N5005

CALL ISA. U*IlUOU..j
CALL yN4-8.OS.aA-Su.i

CALL 5TI9a1.c5,I.3 ,u ag...

I C.S N 1EEPF(AL'NAI N INK I.CPIALiNAC A l.l 112.

C-AC N i*COSF( ALF.4At M 2.1)

S04 CONTINUE

P~L-A..

CO To SOr

SO& CONTINUE

0TO 1O

Figure 18 - Program to Calculate and Plot Clamped-Clamped Mode Shapes

This program is not the one used at NSRDC to obtain the ',eqluencies.
The NSRDC program is given in Appendix 1.
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it is seen by inspection of Equation (F24) that the first maximum will occur at-

Xix 3

a 4
at .. 4 . + 8 (F26)

where 8 is a small number.

Thus making the approximations then cosh 8 1 and cos 8 1,

z 37 3vcosh -. =cosh -+Ssinh 4

- a =(-)e m a =(1 - 8) e " F7
(F2-7)

x -1
sin am (1-)

z -1a ¢ i+2

Cosa. -(a 1+8

Then substituting Equations (F27) into Equation (F 24):

33 - Am
3v 3t IT 41

(Am+Bm) cosh T + 8 (Am +B.) sinh 4 - (1-8) Am e + -=(1) 7= (1+8) C

and thus
-3 IT

317 (1_ m) _

-(Am + B.) cosh - + A . e 4+
8 = (F28)

-3 iT

(Am + Bm) sinh 7 +A m e -(1 ,Am)I/F2
m4

Using the approximations in Equations (F25), Equation (F28) reduces to:

3= _e-3 _/4 0.0948

e-377/4 T2 0.0948 - 1.4142

0.0948
8= -= 0.0719

1.3194
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Again using the approximations of Equations (F25) and (F27), Equation (F23) reduces to:

x X

IX-e cosa - - + sina -
a a

-32

+ -(1+8) -2 (1-8)

= (0.9281) (0.0948)+ r2

0.688 + 1.414

IXm= 1.502 (F29)

The position of this first maximum will be located at:

EM = - +0.071 (F30)
a (4

The value of IXmI obtained by the above approximate method and presented in Equation (F29)

compares well with the computed values (presented in Figures 19-23) and, in fact, is only

about 0.66 percent smaller. The position of the maximum displacement as given by Equation

(F30) is also in good agreement.
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APPENDIX G

THE SUN METHOD

NOTATION

[A] Symmetric square matrix or order n %hose elements are
defined by Equation (G14b)

A .Coefficient in equation for displacement surface function

Amn Coefficient in equation for displacement surface function

a Length of rectangular plate

[B] Symmetric real matrix defined by Equation (B15)

b Width of rectangular plate

[C] Symmetric square matrices of order n whose elements are
defined by Equation (G14a)

Eh3
D Flexural rigidity of plate equal to

12(1- a 2)

F Function satisfying the boundary condition for clamped plate

G, G Polynomial in equation for displacement surface function

g Acceleration due to gravity

h Plate thickness

L, L' Defined by Equations (G15a) and (G18), respectively

M, n Mode numbers

P Equal to R-=

p, pi Circular natural frequency; Pi = Y- =  where
ii = 1 , 2 )' ^ i

R Equal to-
a

T Kinetic energy

t Time

85
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V Potential energy

W, Wt  Surface displacement function of plate in direction perpen-
dicular to plate; subscript i indicates a time derivative

z YX, Y Equal to - and -, respectively

a a

1XI Column matrix containing elements of X where X = L'6.

z, y Vlariables in cartesian coordinate system

a Exponent

PExponent

yA Plate mass per unit of surface area where y is the weight

g per unit volume of plate

2 2 a2

V2  Equal to - + -
az2 ay

84i Kronecker delta

i A, Equal to -

o Poisson's ratio

(D, of Transverse displacement of plate in free vibration;
subscript t signified a time derivative

|VI {I} Column matrix of Al, A2 . . . . . . A i ...... A n defining
the eigenvector of the specific natural mode concerned, i.e.,
nodal pattern of i th vibration mode

ca Eigenvalue defined by cai = / ¢
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DESCRIPTION

S& 2 4 presents a ,rethod for computing the normal modes and frequencies for a clamped

thin rectangular plate undergoing transverse vibrations. Vertical shear and rotary inertia

effects are ignored. The method uses the Raleigh-Ritz procedure, but the deflection of the

plate is represented by a series of polynomials rather than the product of bea normal mode

functions-

DERIVATION

The transverse displacement for a freely vibmting thin plate is

It(Z..,L) = W( Cos , (Gi)

The potential energy of the plate is

IfII -
V = f dV = '0f (412+ y2 2a 4- 1 2 (1- ) 10 dzdy (G2)

The kinetic energy of the plate is

rT- f dz dy (G3)

Substituting Equation (G1) into (G2) and (G3) and setting cosine and sine values equal

to 1 in Equations (G2) and (3), respectively, the maximum potential and kinetic energies are

D ( V 2  j-) 2 _ ) [ g , H " d .
azX 2- ff- XX 77 - X7 y(4

FT~a yh p JW 2 d_- dy (G5)

Equating Equations (G4) and (G5) as required by the Rayleigh principle

V
2 2g _ ia_ (G6)

yh ffJV 2 dx dy

Now there is a class of plate geometries governed by the equation

a b

S



Equation (G-2) includes the approximated rectangle. Dividing through Equation (Gi) by a and

letting X = z1, Y = y/a, R = b/a, P -R-P, the resultant normalized equation replacing

Equation (MT) is
xa .,P= 1  (GS)

Then to determine the natwal frequency p of the clamped rectangular plate in terms of

a, 6, and P, let the displacement surface function be expressed as

W(XT,p ,)=F(XY,P,a, P) 1 1 A X= Y=
-M=0 ==O

= F(X, Y,P, a,3) (A 0 0 AIo-X-AoI Y-A IXY -.. (G9)

=F 1- A Gi

i= 1

where for a clamped plate

F = (I _ Xa _ PYi )2  (GIO)

satisfies the requirement W = = W=O along the boundaries.

Following the Rayleigh-Ritz procedure, the As in Equation (G9) have values obtained

from a minimization of Equation (G4).

(V[JJt2 r92 - 2 (1 - Y)W W 2  d. dY (Gil)

xz7 i gD J(G)
i= 1,2.... n

For the clamped plate, satisfaction of the natural boundary conditions 2 5
* (also see Appendix

B) reduces Equation (Gil) to the simpler form

2 ) -P 2  1 d..dyJ 0 (G12)
cl~i RD gD

i= 1,2,... n

*There are no natural boundary conditions for the clamped plate and therefore they need not be satisfied.
However, as discussed in Appendix B, practical consideration of the rate of convergence makes such satisfaction

desirable.
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V
Substituting Equation (G9) wity5 F = (1 - X 0 - PYfP) into the above equation, a

matrix equation results as

1C} |,! - w2 [A) I.J l = 0 (G13)

fwhere IAI and [Cl are square matrices of order n whose elements are respectively defined as
-l1

I R(- -X
C(L-) = f V ' (F64) v2 (FG) dXdY (Gl4a)

0 0

A(I, J) = (FG 1 ) (F-) dXdY (Gl4b)

where F =(I - X - P P).

Matrices {C) and [A .are therefore symmetric square matrices with all real number

elements.

The column matrix 16l of A, A2 ........ Ail . .---- A defines the eigenvector of the1specific natural mode concerned and, in turn, yields the modal patterns of the corresponding
vibration mode.

The eigenvalues of Equation (G13) are a2 = p2 (yh/gD) where p is the natural

frequency.

In order to reduce Equation (G13) to standard matrix pencil, 26 let C LL' A1/1,22

and X =L'6- Equation (G13) then becomes

L-' A(L') - X X (G15a)

or [B] IXI = AMIXi (G15b)

r where [B] is symmetric and real and thus IX I is orthogonal with respect to each natural mode,

Ez that is27

where is Kronecker delta. Tne natural frequencies can then be expressed as

I 9I: i 1F- , 2.. n G7
[r A

and the corresponding eigenvectors I i I can then be obtained through the following trans-

formation:

= (L ,) IXVi (G18)

L The modal pattern of the ith vibration mode is given by 1 Oil.
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To achieve a good approximation to the fundamental and higher mode frequencies, Sun

used an xy (or XY) polynomial consisting of 21 terms. The computational methods include

both a beta function evaluation and a Gaussian quadrature integration technique.* The latter

has no restriction as to the values of a and J3 but requires approximately twice the computa-

tional time of the former. The method of reduction (i.e., iteration) is used to find the

eigenvalues and the corresponding eigenvectors are obtained from Equation (Gl5b).

Polynomial exp!essions for the fundamental and higher modes as well as other details

relevant to the computatio.-a methods are given in Reference 24. The reference also

includes computed results which were carried out on an IBM 7094.

*Whea a and j values are less than or equal to 1.5, the beta function is not properly defined. Hence, a
numerical integration using the Gaussian quadrature r ile of order 64 was used in the range below a = = L6.
A Gaussian quadrature double integration formula is given in Appendix B of Reference 24.
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APPENDIX H

THE CLAASSEN-THORNE METHOD

NOTATION

a Plate length lying along x-axis

amn Coefficient o' doubly-infinite Fourier series defined by
Equation (H6) j

b Plate width lying along y-axis
6m, fn,

dmin, Coefficients of Fourier series defined by Equation (H)
cM=, 9n, 

'

Cmiem, in

E Young's modulus

f Frequency

A Half-thickness

a
2

K Equal to - K1
If 2

K' Equal to K
k2

3 p(1 - -2) (2 /)2
K1  Equal to -±('

a
k Equal to -I kc Equal to

m, n Harmonic order for sine waves along x and y, respectively;
see Equation (H5)

t Time

W (X, Y) Amplitude

X, Y Rectangular coordinates

xy Equal to - X and Y, respectivcya "
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1, or Poisson's ratio

p Mass density of plate

Phase angle
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DESCRIPTION

Classen-TLorne 1 ° present a Fourier series method for computing the frequencies

and todes of free transverse vibrations of thin, rectangular, isotropic, fully clamped plates.*
Ca~n-es ar ggven for determining the first ten frequencies and their modal patterns as a

function of the aspect ratio.

DERIVATION

The governing differential equation for sinusoidal free vibrations of a thin rectangular
iotropic plate is1

e4,r a4w a4W 31_:2) a2w o

+ 2 a + (H 1)
iaX 4  aX2 ay2  0},4  Eh 2 a2

For sinusoidal vibrations, w(X, i, t) = I'(X, Y) sin (2-, ft + 6) Equation (11) becomes

8X4  aX 2 ay2  aX 2 ay 2

where gI 3p(i- 2 )(2 f) 2

For a clamped plate th-. boundary conditions are(

w (x, Y) =0}

where the subscript n denotes the normal derivative.

The origin of the rectangular coordinate system is taken at one corner of the plate,

with one side of length a lying along the X-axis and the other of width b along the Y-axis.

Thus. Equation (H1) is valid for 0 < X < a and 0 < Y < b.

77 17 a
It is useful to transform the coordinate system. Let x - X, y = - Y, I =k and

ab

K - K1. Then Equation (H1) becomes
i72

- 41V 4W 4w 0 < x < /

+ 2k 2  -+ =K 2V, (H4)
-X

4  da 2 dY2 dy 4 0 < y < 77

*The frequencies and modes are also computed for plates with two edges clamped and two edges free.
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A solution for W is assumed to be in the form of a doubly infinite Fourier series

o < -- <
IV (x, y) = Y Y a sin nx sin my, (H5)Ma n 0 <Y?<7"

where Y denotes ,. and Y. denotes Y.
rms M = I nn =

Further Fourier series that are assumed to exist for 0 < x < 7 or 0 < y < (i.e., the

boundary conditions) are:

W(F,y) = bm sin my W(0,y) = 5 cm sin my
m M

IF 1 f(z sinmr W(x, 0)= I g. sinnz
/1 n

(H6)
W x(77,y)= dr sin my :, y) = Y em sin my

M 7n
IF /7I1.sn 2 I

Wy (X, i)~ = n sin n Wy(z, 0) = i. sin nx

a2 W
where W = -,etc.az2

The authors apply an available technique to Equations (115) and (H6) to obtain formulas
for the higher derivatives and cross derivatives of the Fourier series. These results are then

used to obtain a solution for each amn of Equation (115) in terms of the coefficients in Equa-
tion (H6). Higher derivatives and cross derivatives required by Equation (14) are then ob-
tained from Equation (115) using the solution obtained for each a mn. Moreover, since the de-

flection on all edges and corners is zero for the case of a clamped-clamped plate,

bm =O =f = gn = IW (0, 0) = W (i, 0) = W(0, r) = W (w,n') = 0. Also the normal de.-ivatives at all
four edges are zero so chat IFy (z, 0) = WY (z, 17) = W (0, y) = W_ (17, y) = 0. Finally, applying to
Equation (H4) these boundary conditions as well as the higher derivatives and cross deriva-

tives previously obtained, an infinite set of homogeneous equations is obtained. The authors

then present a method for the approximate determination of K satisfying these equations.
1

For the completely clamped plate, Ks are graphed only for 0 < k < 1. Setting k'= -

K( 1
and K' = - , a value of K can be found for k> 1 by locating the value of K for I and multi-

k2

plying by -2. Appendix I gives the method for determining the frequency from these quantities
as well as a sample computation.

The frequency and mode data computed in Reference 10 are presented there in both tab-

ular and graphical form. Interpretation of the results are given as well as computer times in-

volved ;n obtaining the results. A copy of this reference is available in the computer files
associated with this investigation at the Computation and Mfathematics Department.
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APPENDIX I

COMPUTER PROGRAMS

Appendixes A-H have presented several methods for computing the natural frequencies

of vibration of clamped-clamped plates. The corresponding computer programs including flow

charts are given here; computer program decks are now available at the Computation and

Mathematics Department of NSRDC. Table 1 gives the results of these programs for particular

plate input data representing the plate geometry and mass-elastic properties. Figures 2 and 3
i.,ce plots of the data in Table la only. Thus, the first set of results shown in Table la con-
tains the computed frequencies for a plate with geometry and properties identical to those

used by Izzo (Electric Boat)'; experimental results cited by Izzo are also included. The
second and third sets of results shown in Tables lb and 1c, respectively, are the computed

and experimentally* obtained frequencies for two plates used by Wilby. 1 1 The corresponding
input data for the three sets of results are:

Plate 1 Plate 2 Plate 3
Data (Izzo-Electric Boat) (Wilby) (Wilby)

Dimension in x-direction 2.0 ft 4.0 in. 4.0 in.
Dimension in y-direction 2.33 ft 2.75 in. 2.0 in.

Plate thickness h 0.0313 ft 0.015 in. 0.015 in.

Young's modulus E 4.175 x 109 lb/ft2  33.7 x 106 lb/in.2  31.0 x 106 lb/in. 2

Poisson's ratio a 0.33 0.3 0.3

Weight density p. 466.56 lb/ft3  0.27 lb/in.3  0.27 lb/in. 3

Gravitational constant g 32.2 ft/sec2 386.4 in./sec2 386.4 in./sec2

Five sets of computer programs and one manual method of computation are presented.

Their designations and the computers used in making the calculation are:

1. WCGFRE on the IBM 7090 of NSRDC: This program includes the merhods of Warburton
(Appendix A), Crocker (Appendix F), and Greenspon (Appendix D). Figure 24 presents a flow

chart of this program.

2. WHITE on the IBM 7090: This program treats the conversion of the White numographic
values (Appendix E) to dimensional frequencies. Figure 25 presents a flow chart of this

program.

*The measured frequencies were obtained by Wilby in Reference 11.
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3. PLFREQ on the IBM 360/91 of the Applied Physics Laboratory, Johns Hopkins

University: This program treats the Ballentine-Plumblee method (Appendix C). Figure 26

presents a flow chart of the program.

4. SUNFRE on the IBM 360/91: This program treats the Sun method (Appendix G).

Figure 27 presents a flow chart of this program.

5. YNGFRE on the IBM 360/91: This program treats the Young method (Appendix B).

Figure 29 presents a flow chart of this program.

6. Claassen-Thorne manual method of computation.

In all computations, the frequency f (in hertz) is obtained as the product of the fre-

quency parameter Amn (or am,) and a factor. For particulac computations, the factors are:

Air E
Warburton: " / -

it 4p.(1a 2 )

AE
Crocker. 2 Cb2  2 (1- 2 )

E
Greenspon: h

2 m (1-a 2 )

Plumblee: a)3~iG) 'Pm e3b -a_2) 2

Y oung: 2" ' 2 Pm b a( l _o2 )

White:
2na 2  12 pm (1 o2)

Sun:
2wa 2  12y(1E- 

2 )

iih r E

Claassen-Thorne: 
-

2a 2  3Pm(1_0 2 )

NOTE: The user submits w-4ight density p. which is converted by the program to mass

Pw
density Pm where Pm= - .

g
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WCGFRE (see Table 8 and Figure 24)

This combined program yields separate solutions corresponding to the Warburton,

Crocker, and Greenspon methods. The program card IOPT contains data input to the program

which permit the user to compute the natural frequency for either one or all of these methods,

i.e., IOPT = 1 - Warburton method, IOPT = 2 - Crocker method, IOPT = 3 -- Greenspon method,
IOPT = 4 - all of these methods.

Warburton1 3 treats the frequency parameter subscripts m,n as the number of nodal

points along the plate length and width, respectively; see Appendix A. However, most other

authors treat m,n as the mode numbers along these dimensions (or define it for the opposite

dimensions). Thus (m = 2, n = 3)Wmbuon means the 1, 2 mode containing 2 nodes along z and

3 along y whereas (m = 2, n = 3)Othe means the 2,3 mode containing either 3 nodes along z
and 4 along y or 4 nodes along z and 3 along y depending on the definition of m,n with re-

spect to the x, y coordinates. To avoid confusion and for compatibility with most investi-

gators, the program assigns the modal (not nodal) meaning to m,n for all computations.

WCGFRE Restrictions

For IOPT = 3, M < 5, N -< 5. That is, the Greenspon option computes the frequencies

for M < 5 and N -< 5. However, for this option, if the user requires higher modes he may change

the Greenspon subroutine to read in the values of the integrals discussed in Appendix D.t The integrals are given in References 7, 8, and 9.
The simply-supported frequencies may be computed by the Warburton method. In

this case, the value of SPEC must be 1.0. Clamped frequencies are computed with any

value of SPEC not equal to 1.0.

Units
All length units are shown in feet. However, if al, length data are converted to inches,

this is acceptable to the program, and is actually preferable in the case of a very small plate

because of simpler handling and greater accuracy.
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TABLE 8

Ptogram Listing for WCGFRE Computer Program

CO'4M'ENT *** PROGRAM V!CGFRF ww**~#.~*
COM4MON 1MNqA98vH9F9SI'A9RHb0,PT*G

C
C M - IMODES IN X DIRECTIOP
C N - Y!OnFS IN Y PIRECTIOX
C A - LENGTH INl X nIRFCTInN
C 8 - LENGTH IN Y nIRECTION
C H - PLATE THICKNFSS
C F - YOUJNGS MODULUS
C SIGMA - POISSONS RATIO
C RHO - PLATE DENSITY
C G - ACCELERATION DUE TO GRAV!TY
C

P1=3*1415977
REAn(592) JOPT, NCASF
00 500 L=1.ICASE
REAn(592) M4 tN
REAr)(593) AR.H
READ(594) E9SIGMA9RHO 96

2 FORMAT(2151
3 FORMAT(3F1?e63

4 FORMATCE16.893F12*61
RHO=RHO/G
GO TO (10,20,30,1n), TOPT

10 CALL P~ARS
IF(TOPT*LF.1) GO TO 500

20 CALL CROCK
IFtIOPT*LE.2) GO TO 500

30 CALL GREEN
500 CONTINUE

STOP
FND

SIBFTC WARBER
SUSROIJTINE WARR
REAL LAMRDAJXJYKKP
DIMENSION OMFGA(2n,10)
DIMENSION FREO(2591A)t GX(10hHX(100),JX(1O0),GY(10O),HY(1OO),

1 JY(100)
COMMON MNl,A9S#H9F9SIGMA#RHO9PIfG
REAn(599979) SPEC

9979 FORM.AT(F1O.0)
A2=A*A
82=R*B
A4=A2*A2
B4=B2*B2
MP1=M+1
NP1=N+l
IF(SPFCeEQ. 1.0) GO TO 510

Jx(1)=16

GYM16
HYM(101
JY( 1 =1.
GX(2 )1. 506
HX( 2)=. 248
JX(2)=1.248
GY( 23=1.506
llY(2)=1,248

JY(2)=1.248
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TABLE 8 (Continued)

D0 100 M1=3It'Pl
GX(Ml)=FLOAT(01 )-&5
HX(Ml)=( CPLOAT(t41)-.5)**2)*(leo.2./f(FLOATIMI)-.5)*P)

100 c-ONTI NU E
DO 150 N1=39hPl
GYtN1 )=FLOAT(NI )-@5
HJY(Nl)=( (FLOAT(fII-e)**2ZI*.2./C cLOAT(Nl)-.5)*PlI

150 :: =HYNl):: .

550 COT N

GY(N1I) =FLOATWJ) - 10

HY(MI3 = GY(nl1)**2
550 JY(141) = HYI.91)r590 WI~62^)i99~rM#H
20 FORMAT1tI1,3H A=PF7*2*,3H B=*F742t3H KEF7s4saH E=9Flls4#7H SIGMA=,

I F7e295H RHO=*Ell&4)
WRITE(6919)

19 FORMAT(1/23Xs 22H WARSURT)N FREOLJEUCIFS)
1 =I
00 400 N2=2,NP1
N21=N2-1
i4R!TE(6*21)N21121 FORMATCH N=912)
WRITE(6i221

22 FORMArc9XIi{#15X.6HLAMFRPA,16X,5H FRF0I
DO 300 .122,MPI
121=P2-l

I *A4),B4+(2.*A2/n2)*(SIGMA*HX(M2)*HY(N2)+;.-SIGMA)*JX(M2)*JYCN2))

LAMqDA=S0RT( XLAMS0)
FREQCA?,N2)=((LAMBDA*H*Pl)/A2)*SORT(F /(48**R~IO*C1.-SIGMtA**2)))
WRITE(6,23)MI2! LAMF3DAFPFO(M?,M2)

23 FORMIATI5X,15,5XEl5.8,5XEl5.8)IOMEGA(M2*N2) =2. * Pf '7P.F0(N29N2)
WRITE(6,30) Ol4FGACM2,N2), ~
'WRITEC8,00i 0MFGA(M2sN2)* 1w

30 FORMAT(F10*4965X9t5)
1W 1 W +1I

300 CONTINUE
400 CONTINuE

RETURN
END
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TABLE 8 (Continued)

SIBFTC CRCKER
SUBROUTINE CROCK
DIMENSION FREQ(20910)
COMMON M9NABK.E*SIG-MA9RHO9PIG
REAL LAMBDA
bIRITE(694)A9B9HESIGMA*RHO

4 FORMAT(1H1,3H A:,-F7e293H B=9F7o2,3H IHz9F7.493H EzE11.497H SIGMA=,
1 F7*2*5H RHOz.F7s2)
WR ITEC 6919)

19 FORMAT(//23X,20H CROCKER FREQUENCIES)
DO 40 J-19H
GAMN=(2**FLOAT(J)d-1.)*PI/2*
AN=(COSH(GAMN)-COS(GAMN) )/(SINH(GAMN).SIN(GAMN))
WRITE(6913)J

13 FORMATf3H N=912)
WRITE(6914)

14 FORMAT(9X,1HM,15X,6HLAMBDA,16X,5H FREWI
ZIN(CGAMN/2.*( C(AN-i. )*COSH(GAHN)+AN*(-EXP(-GAMN)-SIN(GAMN))

2 SIN(GAMN) )+4.*AN)-2.*GAM14**2),2.*AN*AN

D0 30 1=10M

GAMM=(2**FLOAT(I) +1@)*PI/2&
AM=(COSK(GAMM)-COS(GAMM) )/(SINH(GAMM)-SIN(GAMM))
ZIM=(GAMM/2.*( C(AM-1.)*COSH(GAMM)+AM*(-EXP-GAM4)-SIN(GA4M))

FREQ( I J)=SQRT(LAMBDA*E/ (12.*RHO*(l.-SIGMA*F*2) ))*H/B**2
FREOC I J)=FREO( I J)/(2**PI)
WRITE(6v7) IsLAMBDAFREO( IJ)

7 FORMAT(5X9I595X#E15s895XEl5*8)
30 CONTINUE
40 CONTINUE
50 CONTINUE

RETURN
END

SIBFTC GRNSP
SUBROUTINE GREEN
DIMENSION FREQ(5.5) ,P(5) .X(5) eY(5) .XSQC5) .YSQ(5)
COMMON MNABH9E#SIGMARHO#PIG
PC1)=4*73
PC21=7*8532
P(3)=10s9956
P(4)=l4. 1372
P(5)=17#2788
XC 1)=-12.3026/A
X(2) =-46 .0501/A
XC 3)=-98*9048/A
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£ TABLE 8 (Continued)f. X(4)=-171*2560/A
XC 5)=-263s9980/A
Ytl)=-12*3026/B
Y(2)=-46*0501/B
Y(3)=-98*9048/B
Y(4) =-l7ls2560/B1 1 1=5

t B4=B**4
H3=H**3
WRITEf698)ABHvE9SIGMARH0

8 FORMAT(lHli3H A,9F7.2,3H B=9F7*23H H-=F7*493H E,9El1.4,7H SIGMA=.
1 F7*295H RH-O=,F7*2)
D=E*H3/(12.*(le-SIGMA**2))
F=SQRT(D/(RHO*H))
IF (M *GTo 5) M=5

IF(N *GT* 5) N=5
WRITE(6919)

19 FORMAT(//23X,22H GREENSPON FREQUENCIES)
DO 20 J=1,N
WRITE(694) J

kI 4 FORMAT(///3H N=912,V

DO 10 11M

FREQ(IsJ)=FREQ(I-*t);;2.*PI)

WRITE(696) IFREQ(I#J)

C ONMTNUE #X9l58
1CONTINUE

RETURN
END
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READ
IOPT

NCASE
DO 500 1 =1, NCASE

READ
M, N, A, B, H

E, SIGMA
RHO, G

WRITE LAMBDA, FREQ WIELMDFE
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n
F.. In put Desrtription

The input diescription is as follows.

Cax Pogam heryDescription Units Format
IsNo. Sym'bol Symbol _____________ ____

gz1 IOPT OPTION for methods: 15
1 - Warburton only;A
2 -Cocker only;A
3 - Greenspon only;

[~ 4- all methods 1

1 NCASE Number of plates to compute 1

2 M m Number of modes in x- 15
_ _ ~direction_ __

2 N n Number of modes in y- 15
direction

3Aa Plate dimensions, x~- ft F12.6

B6 Plate dimensions, y- ft F12.6
__ ___ direction_ _

3 H h Plate thickness ft F12.6
' 4 E E Young's modulus lb/ft2  E 16.8

4 SIGMA a or v Poisson's ratio F12.6

1'4 RHO PWeight density of plate lb/ft3  F12.6

4 G g Gravitational constant ft/sec 2  F12.6

5 SPEC OPTION for Warburton F10.0
simply-supported frequencies.

C. ~Used : ifIO0PT =1 or =4;

SPEC - 1.0 means simply.

Cards 2-4 are repeated NCASE number of times.

Output Description

The input data and results are labelled and prnted out for each plate (or each value of

NCASE). The first printout is Waiburton, followed by Crocker, and finally Greenspon. The

mode numbers (m,n), nondimensional frequency A, and final frequency f (in hertz) are given.
A sample problem using all subroutines to compute 25 modes each for two plates took a

total of 1.1 minutes on the 7090.

WHITE (see Table 9 and Figure 25)

White has provided a set of nomographs that permit manual computation of the frequency

parameters am VT= X-7 for the first nine modes. A short subroutine handles the conversion
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TABLE 9

Program Listing for WHITE Computer Program

DIMENSION FREQ(20.7) ,ALPHA(20,7)
PIR3*1415927
WRITE(692)

2 FORMAT(19281H WHITE FRFOtJENCIFS)
RFAfl15,2) NCASE

.2 FORMAT(15)
4 FOR)4AT(215)
5FORMAT(4F2*6
S FORMAr~LE16o892F1226)
FORMATC//3H A-tF8*3*3H 8x9F8*393H Hw#F8*3#9H F=9E11e4s7H SIGMA=#
1 F7*295H RHOwtF8e3)

9 FORMAT(9XIHM,15X,6HALPHA *16X#5H FRFO)
8 FORMAT(3H Nut-12)

In FORMAT(5X9I595X9E15*895X9EI5*B)
Mg 3
N S
00 40 LwI9NCASE
RFAO(5.) ((ALPHA(1.J),I123)*Jn1,3)

3 FORMAT(3FIPW6
RFAfn(5*5) A#R9H #G
READ(596) F9SIGMA9RHO
WRITF(697) A.R#H9E*SIGMARHO
A4 z A**4

P4sS*~*4

D=E*HS/(22.**(2-SIGMA**2))
F=.S0RT( (t*)/(RHO*H*A4))
00 10 N2=29N
WR!TF'(698) N2
WRITF(6,99
n0 20 M2u2.MI FRFO(M2,N2)=ALf'HA(M2,N2 )*F/t7.#P!)
WRrTE(69101 Ht2ALPHA #FRFO(M2tN2)

20 CONTINUF
30 CONTINUE0
40 CONTINUF

STOP
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I

START

NCHASE
READ

L 1,
DO 40 L =1, NCASE

ALPHA (M,N)

A, B, G, H, E
SIGMA, 

RHO

COMPUTE
ALPHA (M, N)

FREQUENCYM,
N

WRITE
ALPHA (M, N)

FREQUENCYM,N/

40 CONTINUE

STOP

Figure 25 - Flo;% Chart for IIHITE. Computer Program for Converting Nomograph
Frequency Parameters a .,. to Frequencies m,.

T'h printed output includes FREQ0J,A). Howere. the value 2- .5- FRFQ (S, \) =ay be used
as the input OIEGA tiI,.) to S bp-gra: A in Appendix B of Referetnce 1.
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of these frequercy parameters to hertz using a formula given by White (Appendix E). The
b

nomographs are read for various aspect ratios - < 1. Thus the user must make adjustments
b a

for the case - > 1, e.g., interchanging m and n. The nomographs are applicable to nine
a

combinations of m = 1, 2, 3 and n = 1, 2, 3.

Input Description

The input description is as follows.

Card Program Theory
No. Symbol Symbol Description Units Format

I NCASE Number of plates 15

(There are NCASE sets of remaining cards.)

2-4 (ALPHA) (I,J), a...?,. Model frequency 3F12.6
(I = 1, 3), par-,meter, found
(J= 1, 3) from nomographs

A a Dimension, x-direction ft F12.6

5 B b Dimension, y-direction ft F12.6

5 H h Plate thickness ft F12.6
5 G g Gravitational constant ft/sec 2  F12.6

6 E E Young's modulus lb/ft2  E16.8

6 SIGMA Poisson's ratio F12.6

6 RHO PW Plate weight density lb/ft3  F12.6

Output Description

Both ALPHA and FREQ (fr,.) are given according to mode. The 7090 computer time

is about 30 seconds.

PLFREQ (see Table 10 and Figure 26)

PLFREQ is a computer program developed by Plumbiee 28 and Ballentine 1 9 to yield

the natural frequencies of vibration of either a simply supported or clamped thin plate, flat or

curved. The origina- program was in nondimensional form. However, for the comparison pur-

poses of this report, the program was modified so that additional input in units permitted the

frequency to also be computed in hertz.

The mathemaical subroutines needed from the IBM SHARE library are EIGEN, LOC,

and MLNV. The sample problems for 36 modes were run on the IBM 360/91 and took 18 sec-

onds per plate.
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TABLE 10

Program Listing for PLFREQ Computer Prograna

REAL BETAL(20),M1(20,20),M2(20,2O),R(27),MLNU

DOUBLE PRECISION L(378),VECTOR(729),VEC(27),XX
DOUBLE PRECISION FR(5)

READ(5,415) RHOAL,B,GE
415 FORMAT(4F12.6,E16.8)

READ(5,1)THETA,TL,AtNU

READ(5,2)MiNNqM.V,LLiLBOUND
1 FORMAT(4E10.4)
2 FORMAT(512)
WRITE(6,15)THETATL ,A,NUf15 FORM4AT(4XTHETA=',gF1O.4,'TL=-',F1O.*4,'A'1,F1O. 4,'NU=',F1O.4)
W-.RITE(6,16)MM,NN,MV,LL,LBOUND

1FORMATC4X,'MM=%112,'NN=',12,'MV=,IZ,LL='I2,'L3OUND=',12)
16R( 1)=LBOUr4D
CALL BETA(MM,NNRBETALjM2,Ml)
IF(MM-NN) 41,41,4241 :::;::N
GO TO 43

43 WRITE(6,46)
DO 44 !=1,KK
WRITE(6,48) (MI(IJ),J=1,KK)

44 CONTINUE
VIRITE(6,47)
DO 45 I=1,KK

* WRITE(6,48) (M2(iJ),J=1,KK)
45 CONTINUE
46 FORtAT(1H1,4X,'MATRIX MI(I,J)',//)
47 FORMAT(1H1,4X,IMATRIX M2(I,JP$,//)
48 FORMATM1X9E12.5)

MN=MM*NN
MN5=3*MN
P=1
GO TO 11
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TABLE 10 (Continued)

1~0 P=P+1
11 CALL SUBSCP(P,MNNNLL,PPS,T)

Q=P

G0 TO 13I

13 CALL SUBSCP(Q,MN,NN,LLtQQMvN)
CALL LOC(P,Q,PQMN5,MN5,I)
GO TO (1Ol,102113),PO

101 GO TO fl0l3,1012,1013),QQ
1011 Li PQ)=A*BETAL(M)**3*f41(S,M)*M1(T,N)/BETAL(S)+( 1.-NU)*M2(S,M)

1*M2(TN)/(BETAL(M)*BETAL( S)*2.*A)
IF(P-Q) 12tiOlll,12

10111 R(P)=M2(S141'*41(T,N)/(BETAL(S)*BETAL(M))
GO TO 12

1012 L(PQ)=(l.+NU)*M2(SM)142(TN)/C BETAL( S)*BETAL(N)*2.O)
GO TO 12

1013 L(PQ) = -NU*THETAM2(SM)*M1(T,N)/BEIAL( S)
IF(3*MM*NN-Q)10,10112

102 QQO=QQ-1
GO TO (1022,1023),QQQ

1022 L(Q=ISM*ITN:,BTLil***I+HT*2(2*-LA$*)
I /(A*BETAL(T))+il.-NU)*A*i42(SM)*M2(TN)*(1Z.+( (THETA/A/TL)**2/3.0)
2 )/(2.*BETAL(T)*8ETAL(N))
IFI P-Q) 12, 10222,12

10222 R(P)=M1(SM)*M2:T,N)/(BETAL(T)*BETAL(N))
GO TO 12

1023 L(PQ)=THETA*M.1(S,M)*M2(T,N)/A*BETAL(T))+THETAM2(S,M)*M2(TN)
1*-U/(12.*A: TL*TLBETAL(N))+THETA*i(S,1)*.I(TN)*BETAL(N)**4/12.
2/T*LA**EA()+I-U*P AM(I)M(I)(.AT*L
3/BETA L(T)
IF(MN5-0)1O, 10,12

103 L(Q=HT*2M SM*l(t)AA-ISM*EA()**ITN
1/(12.*TL*TL)+M1(S,M,)*M1lTif *BETAL(N)**4I(12.*TL*TL*A**3)+
2M2( S,M)*M2(TIN)/ (6.*TL*TL*A)
IF(P-Q) 1033,10333, 1033
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TABLE 10 (Continued)

10333 RiP)=M1(S,M)*M1(T,N)
1033 IF(MN5-Q) 10341034il.2
1034 IF(MN5-P)100,100,10
100 DO 110 I=1,14N5
110 R(I)=SQRT(R(I))

DO 120 !=1,MN5
DO 120 J=I,14N5

P- CALL LOC(IJ.,IJ,MN5vMN5,1)
L(IJ)=L(IJ)/(R(I *R(J))

120 CONTINUE
DFACT=1.

140 DNORM=1.
DO 150 1=1,MN5
CALL LOC(I,I,II,MN5,MN5,1t)
DNORM=DNORM*L (Il) /DFAC's
IF(ONORM-l.D+70)145,155,155

145 IF(ONORM-1.D--70)160,160,150
150 CONTINUE

GO TO 165
155 DFACT=10.*DFACT

GO TO 140
160 DFACT =0.1*DFACT

GO TO 140
165 DNORM=(ABS(DNORM) )**(1/MN5)

DO 170 I1lYMN5
DO 170 J=I,MN5
CALL LOC(I,JtIJMN5,MN5,1)

170 L(IJ)=L(IJ)/(DNORM*DFACT)
DO 125 I=1,MN5
DO 125 J=1,MN5
CALL LOC{IJ,1KiMN5,MN5,0)
CALL LOC(IJtIJMN5,MN5,1)

125 VECTOR(IK)=L(IJ)
MN52=MN5*MN5
CALL MINV(VECTORMN5,XX,LMLR)
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TABLE 10 (Continued)

W2 ITE(61130) XX
130 FORtIAT('O','THE DETERMINANT IS', E12.5)

DO 135 I=1,MN5
DO 135 J=I,MN5
CALL LOC(I,JIJ,MN5,MN5,1)
CALL LOC(IJjIKMN5,MN5,O)

135 LlIJ)=VECTOR(IK)
CALL EIGEN(LVEZTORMN5,MV)

20 FORMAT('1',8Xi'OIMENSIONLESS FREQUENJ'ES ARE NORMALIZED'?
1 2X,'EIGENVECTORSI)
WRITE(6v20)

21 FORi4AT(33X,'FORI)
WRITE(6721)

22 FORMAT(21X,'A CYLINDRICALLY CURVED PANEL')
WRITE(C6,22)

23 FORI4AT(32X,'WITH')
WRITE16,23)
GO TO (241,242),LBOUND

241 WRITE(6,24)
24 FORMAT(28XCLAMPED EDGES')

GO TO 251
242 t-RITE(6,245)
245 FORMAT(23X, 'SIMPLY SUPPORTED EDGES')
251 WRITE(6,25)

25 FORttAT('0',29X,' ****~*****')
26 FORMAT( '0' 19'xt'NONDIMENSIONAL INPUT PARAMETERS')

WRITE (6,26)
27 FORMAT11O','SBTENDED ANGLE=' F7.4t1OXASPECT RATIO=f,F7.4)

WRITEC6,27)THETA,A
28 FORMAT('0', 'LENGTH/SKIN THICKNESS=' ,F7.2)

WRITE(6,28) TL
WRITE(6,29) NU

29 FORMAT(1O','POISSONS RATIO=1,F4.3)
32 FORMAT('0','NUMBER OF SERIES TERMS ALONG STRAIGHT 6DGE=1,1i,

!',ALONG CURVED EDGE=',I1)
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TABLE 10 (Continued)

WRITE (6,32 )MMNkl
33 FORMAT('0',29X, '-:*****--*- , 17X 'C'OMPUTED FREQUENCIES AND',

1'MDDE SHAPES$)
WRIT E(6,33)
00 180 1=1,MN5
CALL LOC(I,IIItMN5,MN5,1)
IF(L(IM)80,180,179

179 L(I)=O.159154*SQRT(DNORM*DFACT)/DSQRT(L(II))
180 CONTINUE

1:1=1
GO TO 51

50 11=11+1
51 MI=5*CII-1)+1

NI=5*I I
IF(tMN-4) 520,520,523

520 GO TO (521,521,522,523),MN
522 GO TO (521,5311521),II
523 IF(II-1)521,521,533
532 FORMAT( 11'/////////)
533 WRITE(6,532)

GO TO 521
53 FORMAT('1)

531 WRITE(6,53)
52 FORMAT('O','FREQUENCY=',5(1XE11.4))

521 WRITE(6152) (L(I),I=MI,NI)
j =1
DO 5521 I = MI,NI
FR(J) = L(I)'* SQRT((E*G)/(RHO*AL*B*(1.-NU**2)))

5521 J = J + 1
WRITE(6,5522) (FR(I),I = 1,5)

5522 FORMAT(1OX,5(1XE11.4))
54 FORMAT('0','GEN COORD',3X,5(2X,'MODE SHAPE'))

WRITE (6,54)
Q= 1
GO TO 61



TABLE 10 (Continued)

60 Q=Q+l
61 CALL SUBSCP(Q,MNNNLLQQ,MN)

GO TO (7 llO,7 210,7310),QQ
7110 DO 711 I=MINI

CALL LOC(Q,I,QI,MN5,MN5,0)
711 VEC(I)=VECTOR(QI)

GO TO 60
7210 DO 721 I=MI,NI

CALL LOC(QIQI,14N5,MN5,o)
721 VEC(I)=VECTOR(QI)

GSO TO 60
7310 DO 731 I=MI,NI

CALL LOC(Q,I,QIMN5,MN5,O)
731 VEC(I)=VECTOR(QI)

WRITE(6,73)M,N,(VEC(I),I=t4I,Nl)
IF (MN5-Q)76t76,60

76 IF(MN5-NI)77,77,50
77 WRITE(6,53)
80 CONTINUE

IF(LL-4) 3,74,74
71 FORMAT(2X,IU(Sl11,e,I,,)I,4X,

5 (IXEll.4 ))
72 FORMAT(2X, 'V( ',Ii,', 1,111)1 ,4X,5( 1X,E11.4) )
73 FORMAT(2X,tW(S,I1,1,,,II,1)1,4X,5(1X,EIl.4))
74 CONTINUE

APL=SQRT(41.7*-A+25.2/A+41.7/A**3+(TL*THETA)**
2/A)

WRITE(6,78) APL
78 FORMAT(E11.4)

STO P
END
SUBROUTINE BETA(MNA,B,G,H)
DIMENSION All ),B(1 ),G(20,20),H-(20,2o)
IF(M-N) 1,1,20

1 KK=2*-N
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TABLE 10 (Continued)

GO TO 2
20 KK=2--M
2 IF(A(1)-1.5)9,9,10
9 DO 5 I=5,KK

3 j()= .
B(1 =(2*1I+1)*1.5707963

GO TO 5
A(1)=.9825022158
A(2)=1 .000777311

A(3)=1.99965601

B(4)=14.1371655
B(5)=17.2787596
CONTINUE
DO 8 11I,KK

DO 8 J1I,KKI IF(I-J)7,6,7
6 G( I J)=A(I )'-B(I )*(A(I )-B(I )-2.O)
H(I,J)=1.0
GO TO 8

7 G( I,J)=-4.-B (I) *::2*B(J )-*:2*(A(I )-B(1 )-A(J)*-B(J) )*
1 (1 .i-- *(I+J) )/(B( )~*4-B(J)*4)

H{J,J)=O.O
8 CONTINUE

RETURN
10 DO 11 I1,tKK

BC I)=I*3.1415927
DO 11 J1,?KK
IF( I-J) 12, 13,12

12 G(IJ)=O.O
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TABLE 10 (Continued)

1H( IJ)=O.O
GO TO 11

1G(I,J)=BM*
H( I,J)=1.0

Ill CONTINUE
RETURN
END
SUBROUTINE SUBSCP(NRtrMN ,NN ,KKNPJ,K)

N((NR-1)/MN)+1
II=( I-1)/NN

1 J=2*II+1

RETURN
2 J=2*II+2

K=2-*I-2*II- NN -1
RETURN

3 J=2*II1+1
K=2* -"1 2II*NN
RETURN

4 J=2*II+2
K=2*Il-2*II1-NN
RETURN
END
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Input Description

The input description is as follows.

Card Program Theory i
No. Symbol Symbol Description Units Format

1 RHO Pw Plate weight density F12.6

1 AL a er f Panel length ft F12.6
1 B b Panel arc length ft F12.6
1 G g Gravitational constant ft/sec2  F12.6
1 E E Young's modulus lb/ft2  E16.8

For each value of LL, there is a set of the following cards:

b
2 THETA 0 Subtended angle . (0 for flat plate) E10.4

2 TL If curved panel, R= panel midplane E10.4
radius, ratio of panel length to
thickness

b- f Aspect ratio E10.4

2 NU v Poisson's ratio E10.4

3 MM ?m Modes, x-direction 12
3 NN n Modes, y-direction 12
3 MV 0 eigenvalues and eigenvectors 12

1 eigenvalue only
3 LL 1 odd-odd modes 12

2 even-odd
3 odd-even
4 even-even

3 LBOUND 1 clamped edges 12
2 simply supported edges

Output Description

The frequencies are printed out in ascending order for each set of subscripts (odd-odd,
even-odd, odd-even, even-even). The nondimensional frequency is given first, with frequency
in hertz on the next line. The generalized coordinates and mode shapes are also given in the
same column as the frequencies they represent.

SUNFRE (see Table 11 and Figure 27)

SUNFRE is a computer program developed by Sun 24 to obtain the natural frequencies
of vibration of a class of thin plates, including such special cases as the circle, square, and
rectangle.
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TABLE 11

Program Listing for SUNFRE Computer Program

C FREQUENCIES OF GENERAL PLATE By RITZ METHOD
DOUBLE PRECISIOn X-IA(2121}tXMB21213XMC219213,XI(483,YI(

4 8) 0010
DOUBLE FkECISIGN WI(48},HOR(21),VER(21,AREA462},AREAU(62) 0020
DOUBLE PRECISION AREAV(462),XWW(462) 30
DIMENSIOU XPC213, YP(21) 40
DOUBLE PRECISION XU(21,21)tXMD(21,21)tA(21),B(21,C21 0050
DOUBLE PRECISION VALbIGAdSDPCONVAF.PLTDtEIGENS 0060
DOUBLE PRECISION VXP(21),VYP(21) 70
O'COMMON XMA, XMB, XMC9 XI, YI, WI, HORv VER* AREA, AREAU, AREAV, 0080

1 XtfWWPB ALPHABETAtRATIONKNROWXPYPA1B9,Wl4 0090
2 SWITCH, VXP, VYP 100
READ (5, 999 ) NKv (XI(I)s I= 1, NK ) (WII), I = 19 NK 3 0110

999 FORMAT(IO / (4E20.10)) 120
DO 2 I =1, NK 130

2 YI(I) = XI(1I 140
SWITCH = 0. 150

10 READ (5, 1000) ALPHA, BETA, RATIO, MODE, NOIT, NP, LIMIT, CONV 0160
1000 FORMAT ( 3F5929 4159 F107 3 0170

LAST z O i80
C MODE = 1 X, Y TAKE EVEN POWER 0190
C MODE = 2 Xt Y TAKE ODD POWER 0200
C MODE = 3 X TAKE EVEN POWER, Y TAKE ODD POWER 0210
C MODE = 4 Y TAKE EVEN POWER, X TAKE ODD POWER 0220
C NOIT = NUMBER OF EIGENVALUES DESIRED 0230
C NP = 0 NO POINTS FOR NODAL LINES 0240
C NP = 20 20 POINTS FOR NODAL LINES PLOT 0250
C LIMIT 800 (RECO,MLNDED) CYCLES OF ITERATION 0260
C CONV = 0.00001 IS RECOMMENDED 0270

CALL XPYP (XPYP9NROWMODE) 0280
WRITE (69105U) ALPHA# BETA* RATIO, NROWP MODE 0290

1050 FORMAT(/ 2Xt 7HALPHA =9 F6.2t8H BETA =9 F6.2*9H RATIO =9 F6-29 0300
1 4X9 25HNO° OF TERMS IN X AND Y 914, 8H MODE , 13 3 0310
WRITE (691052) ((XP(I)t YP(I)t I = 1 NROW 3 0320

1052 FORMAT C 7(2H (t F3eO, F3-O 2H) 3 3 0330
P =1. I/ (RATIO ** BETA 3 U34u
AM1 = ALPHA - 1 350
Bill = BETA - 1. 360
CALL DUBINT 370
ICCT = 1 380
DO 12 I = 1, NROW 390
DO 12 J = 1 9 NROW 400
XMC(I#J) = AREA(ICCT) 410
XMC(J,1) = AREA(ICCT) 420

12 ICCT = ICCT + 1 430
DO 13 I z 19 NROW 440

13 WRITE (69 1054) (XMC(I*J}t J = 1 NROW 3 0450
1054 FORMAT (//(1X, 3D25.16 33 460

DO 14 1 1 NROW 470
DO 14 J = I, NROW 480
XMA{Itj = AREA(ICCT) 490
XMA(J9I: = AREA!ICCT) 500

14 ICCT = ICCT + 1 510
DO 15 1 = 19 NROW 520

15 WRITE (6# 1054) (XMA(IJ)o J = I NROW 3 0530
IF ( NROW - 1 ) 169 169 18 540

16 AMPLTD a XMC(11)/ XMA(11l 550
EIGENS DSORT( AMPLTD) 560
WRITE (69 1060) EIGENS 570

1060 FORMAT (// 3X9 15HEIGEN VALUE = D25.16 // 0580
GO TO 10 590
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TABLE 11 (Continued)

IS CALL SMTRX (XMC* XF&A9 NROW'9 XM59 XU )0590
WRITE (69 1070) ((Xl4B(IlJ)t J is NROW )t I - I NROW ) 0600

DO 20 1 - It HROW 610

DO 20 J = It NROW 620

XMB(I.J) - (XMB(1lJ) + XMB(J*I))/2- 0630

20 XMB-JtI) a XMB(IqJ) 640

WRITE (6. 1070) ((XMB(I*Jlt J - lt NROW)v I = 1. NROW 3 0650

1070 FORMAT (lX. 5D25&16 ) 660

CALL EIGEN ( XMB. NROW9 NOIT. At XrD9 LIMIT. CONV. TELL. NUMCYC ) 0670

C A - COLUMN MATRIX OF EIGENVALUES 0680

C XMD - SQUARE MATRIX OF CALCULATED EIGENVECTORS FOR MATRIX PENCIL 0690

WRITE 169 1072) TELL. CONV. LIMIT 9 NUMCYC 0700

1072 FORMAT(/ 2X,6HTELL =9 F5*2. 3X. 20HCONVERGENCE FACTOR = 9 FlOo8v 0710

1 3X 15HLIMITED CYCLE = 1 15 / 3X. 19HNUMUER OF CYCLE 0720

2 * 16 3 730

IF ( TELL 1 10. 10. 30 740

30 CONTINUE 750

DO 40 I = It NOIT 760

40 All) =DSORT { 1. / AMl)) * 4.0 0770

WRITE (69 1076) (A(I) I = 1. NOIT 1 0780

1076 FORMAT (lX. 16HEIGENVALUES ARE 9 I (5D25.16) 3 0790

DO 44 I = 1 NOIT 800

44 WRITE (6. 1078) It CXMD(I.L)t L 
= It NROW 3 0810

1078 FORMAT (3X. 13. 31HTH EIGENVECTORS FROM ITERATION /( 5D25*16 )) 0820

NM1 = NOIT - 1 830

DO 48 I = It NM1 840

IPi = I + 1 850

DO 48 J = IP11 NOIT 860

VAL =0. 870

DO 46 K m1. NROW 880

46 VAL = VAL + XMD(I#K) * XMD(J#K) 0890

48 WRITE (6. )80) Is Jo VAL 900

1080 FORMAT ( 3X9 14 9 25HTH EIGENVECTORS MULTIPY 9149 25HTH EI6EN V 0910

lECTORS EQUAL TO , D25.16 3 0920

DO 70 I = it NOIT 930

52 DO 53 J = 1. NROW 940

53 C(J) = XMD(ItJ ) 950

CALL TRAVEC ( XUt C. B. NROW ) 960

C B - ORIGINAL COLUMN MATRIX 970

BIG = O 980

DO 56 J I 1t NROW 990

ABSB DABS(B(J) 3 looc

IF ( BIG - ABSB ) 549 56. 56 1010

54 BIG = ABSB 1020

56 CONTINUE 1030

DO 60 J a 1 NROW 1040

60 B(J) a B(J) / BIG 1050

WRITE (6. 1090) It A(1)t CBCJ)t J = 1t NROW 3 1060

1090 FORMAT C 2X9 12o 15HTH EIGEN VALUE * D25.16 IC /5D25916 )} 1070

IF ( NP 669 70. 66 1080

66 CALL PLNODE ( NP ) 1090

70 CONTINUE 1100

LAST a LAST+ 1 1110

100 IF ( LAST - 1 ) 10. 300, 300 1120

300 CONTINUE 1130

STOP 1140
END 1150

SUBROUTINE XPYP (XP, YP9 NROW. MODE ) 1160
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I TABLE 11 (Continued)

DIMENSION XP(21)*YP(21) 1170
READ(591000) NROW 1180

1000 FORMAT MO1) 1190
Do 1110 11 19MODE 1200

1110 READ(591100) (xP(I)qYP(I)J, I = 1NROW) 1210
1100 FORMAT (16F5e2) 1220

RETURN 2230
END 1240

SUBROUTINE DUB114T 1250
DOUBLE PRECISION XMA(21,21),XI4B(21,21hgXMC(21921).XI(48).YI(48) 1260
DOUBLE PRECISION WI(48),110RC21),VERCZX),AREA(462).AREAUC462) 1270
DOUBLE PRECISION AREAVC4622 .XWW(462) 1260
DIMENSION XP(21). YPC21) 1290

DOUBLE PRECISION HXX(21),HYC21)vHXY(21),B)2I* 1300
DOUBLE PRECISION B00,WII.UIrVIDU.DV,9jIJ.YPS.YMS.YUP.YVMeYVP 1310
DOUBLE PRECISION YVMXWIJP 1320
COMMON XMA, XMbs XMC* X19 YI* WI. HOR. VER. AREA. AREAUt AREAV9 1330

1 XWW.P,13,ALPH-ABETARATIONKNROWXP*YPAM1,BM1 1340
SMI = 667 1350
NO NROW*(MROW,+ 1) 1360
BOO is1 / BETA 1370
DO 1 K=19NO 1380
AREAUCK) = 0. 1390
AREAVCK) =0. 140

1 AREAWK = Os 1410
DO 20 I-19NK 1420
WRITE C6. 1000) 1 1430

1000 FORMAT Us3X 31- =9 13 )1440
WII = WIMl 1450
VI = 005*C10+XI(I)) 1460
VI = 005*C1.-XICI)) 1470
DUV RATIO*(1.-uI**ALPHA)**B0Q) 1480
DV = RATIO*((1.-Vl**ALPHA)**BOQ) 1490I-DO 14 J=1iK 1500

ItWIJ = WIC.)) 1510
YPS = 005*(1.+YICJ)) 1520
YMS = 005*(1.-YI(J)) 1530
YUP =DU*YPS 1540
YVM = DV*YMS 1550
YVP = DV*YPS 1560
VVM = DV*YMS 1570
CALL ALL CUI#YUP, HXX9 HYY, HXY )1580
IC = 1 1590
DO 4 KJ1.9NROW 1600
DO 4 KI=KJ9NROW 1610
XWWC IC) =HOR(K)) * HOR(KI) -SMi (HYYCKI) *HXXCKJ) 1620F1 + HXX(KI) * HYY(KJ) - 2s HXY(KI) *HXY(KJ) )1630

t~IC = IC+i 1640
DO 5 KJ 1= ItROW 1650
DO 5 K! a KJ9NROW 1660
XWW(IC) a VERIK)) * VER(KI) 1670

5 Ic =IC+1 1680
CALL ALL C VIt YUM9 HXX, HYY9 HXY )1690
IC x 1 1700
DO 6 KJ=1#NROW 1710
DO 6 KI=KJNROW 17204
XWIJ WI.) * (XWWC IC) + HOR(KI) *HOR(KJ) - 1730V1 SMi J HYY(K) HXX(K!) + HXXCKJ) *HYY(KI) -2.* HXY(KI) * 1740
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2 HVK)I11750
AREAUCIC) AREAUCIC)+XWIJ 1760

6 IC= IC+1 1770
DO 7 KJ = 1. NROW 1780
DO 7 K! z KJ# NROW 1790
xwIj = WIJ (XWWIIC) + VER(KII*VER(KJ)) 1800
AREAU(!C) =AREAU(IC)4-XWIJ 1810

7 IC= IC+1 1820
CALL ALL f VIs YVP9 HXXv H'tY. HXY 31830
IC = 1 1840
DO 8 KJwl#NROW 1850

DO 8 KI=KJ,NROW 2860
xww~(IC) = HOR(KJ) * HOR(KI) -SM1 (HYY(KJ) HXXCIKI) 1870
1 + HXX(KJ) * HYYCKI) - 2. HXY(KI) * HXY(KJ) 11880

8 IC = IC+1 1890
DO 9 KJ = 1t NROW 19uo
DO 9 K! z KJq NROW 1910
XWCIC) = VER(KI) * VER(KJ) 1920

9 IC 2IC+1 1930
CALL ALL ( VI9 YVM. HXXs HYY9 HXY 11940
IC z1 1950
DO 10 KJ=l,NROW 1960
DO 10 KI=KJgNROW 1970
XWIJ wIJ * (XWWIC) + IK0R(KI) *HCR(KJ) - 1980
1 SMI* HYY(KJ) * HXXCKI) + HXX(KJ) * HYYCKI) -2.* HXYCKI) * 1990
2 HXYCKJI ) ) 2000
AREAVCIC) =AREAVCIC)+XWIJ 2010

10 IC = IC+1 2020
DO 11 KJ It NROW 2030
DO 11 K! KJ. t4ROW 2040
XWIJ = WIJ *( XWW(IC) + VERCKI)*VER(KJ)) 2050
AREAV(IC) AREAVCICk-XWIJ 2060

11 IC = IC+1 2070
14 CONTINUE 2080

DO 16 K=1,NO 2090
AREACK) = AREACK),WII*(DU*AREAUCK)+DV*AREAV(K))/2# 2100
AREAUCK) = 0. 2110

16 AREAVWK z 0. 2120
20 CONTINUE 2130

D0 30 K=1,MO 2140
30 AREACK) = 5*AREACK) 2150

RETURN 2160
END 2170

SUBROUTINE ALL ( Xt Y9 HXX, HYYt HXY 32180
DOUBLE PRECISION XMAC21,21).XMB(21921),XMCC'21,21).X1C48).Y1C48) 2190
DOUBLE PRECISION W1C48),HORC21),VERC21),AREA(462)hAREAUC462) 2200
DOUBLE PRECISION AREAV(462) .XWW(462) 2210
DIM4ENSION XP(21)t YP(21) 2220
DIMENSION NXP(21), NYP(21) 223b

DOUBLE PRECISION HXXC21)vHYYC2I)9HXYC21ltB)21* 2240
DOUBLE PRECISION XYtFoFXtFYPFXXoFYY#FXY 2250
DOUBLE PRECISION DFXIPYJP.G.GX.GY.GXXGYV.GXY.DGPAI.AJ 2260
COMMON XM1A, XMB, XMC# X19 VI, WI9 HOR, VER9 AREA* AREAU, AREAV9 2270

1 XWWP,8,ALPHABETARATlONKNROWXPYPAM1,BM1 2280
C ****************************~***** 2290

CALL VECTOR CXYFFXFYFXXFYYFXYALPHABETAPAMIBM1 1 2300
C ********************************* 2310

DF FXX +FYY 2320
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DO 20 KK Is1 NR01W 233G
NXP(KK) XP(KK) 2340
NYPIKK) YP(KK) 35

=P X **NXP(KK) 2360
GY AJ*G/Y 2320

GXX (AI GX / ,X 243C
GYY =(AJ I 2*) GY / Y 2443
GXY AJ*GX /Y 2450
DG GXX +GYY 246u

HOR(KK) G * DF + F * DG + 2o*(FX*GX + FY*GY )2470
HOR(IKK2 = HOR(KK2*100'CG0uGs 248u

VER(KK) = F * G 24%,
VER(KK) VERCKKJ*10000000000o 2500
HXX(KK) =FXX*G + F*GXX + 2**FX*GX 2510
HXX(KK) = HXX(KK)*10000000000* 2520
HYY(KK) = FYY*G +- F*GYY + 2o*FY*GY 2530
HYY(KK) HYY(KK2*10000000000* 2540

HXY(KK) = FXY*G + F*GXY + FX*GY + FY*GX 2550

HXY(KK) =HXY(KK2*100OO.'0OOOOO. 2560
20 CONTIMUE 257C

RETURN 258t;
END 259v.

SUBROUTINE VECTOR(XYF.FXFY.FAXFYYFXYALP1A.o-TA. PgAM1,13N1 2 2600
DOUBLE PRECISION XgYgFtFXtFYtFXXtFYYoFXY 2610

DOUBLE PRECISION~ XA*PYOFRj9FfZ2,DXDYqP 2 62C
NALPH- = IFIX(ALPHA) 2630
NL3UrA = IFIXCbETA) 2640
XA =X**NALPH 2A50
PYB z P *Y**NBETA 2660
FRI le. XA - PYE3 267u
FR2 = FRI,* FRI 2680
F = FR2 269U
DX = -ALPHA *XA /X 2700
DY = - ETA *PYB /Y 2710
FX = 2e*FR * DX 272U
FYx 2*IFFR * DY 273U.
FXY = 2. * DX * DY 2740
FXX = 2. * FRI.*DX * AMI/ X + 2*DX DX 2750
FYY-= 2. * FR * DY *8.11 / Y + 2. * DY DY 2760
RETURN 2770
END 2780 :

SUbROUTINE SMTRX( A, C, No Eq XU 22790
C TOTASOM(-2) NOB==2 2800

DOUBLE PRECISION A 21.21),C(21,212,XLC2l,2l2,XUCi212,)D(21921) 281U
DOUBLE PRECISION E(21921) 282'J
CALL SMTRX1(Aq XL,- Xljt N 2830
CA!.L SMATRX2 (XLqC, Do N 22840
CALL SMTRX3 CXU9 Do Et N 23504
RETURN 2860
END 287u

SUBROUTINE SM.'TRX1C At XL. XU, N 228

121



TABLE 11 (Continued)

C TO FIND L AND L9 TO STORE IN XL AND XU 2890
DOUBLE PRECISION A(21,21)9XL(21q21)XU(21,21) 2900
DOUBLE PRECISIOj S 2910
DO 5 I = 19 N 2920
DO 5 J = 1 N 2930
XU (U9J) = 0. 2940

-5 XL (IJ) = 0. 2950
XU(1,1) = DSORT(A(1912) 2960
XL(191) = XU(1913 2970
DO 15 IC = 29 N 2980
XU(1, IC) = A(I. IC)/ XU(191) 2990

15 XL(IC91) = XU(191C) 3000
DO 100 1 = 29 N 3%j10
IPI 'I + 1 3125
ImI = I - 1 3%;3t
S =O 3 40
DO 20 K t liM1 3Z;50

20 S S + XU{KoI) * XU(KvI) 3060
XU(I.I) = DSQRT(A(Iol) - S ) 3070
XL(II = XU(II) 3u80
IF ( I - N ) 23, 1009 100 3090

23 DO 30 J = IPl# N 3100
S = 0. 3110
DO 25 K = 1 IM1 3120

25 S = S + XU(Kol) * XU(K#J) 3130
XU(IJ) = (A(IJ) - S)/XUCItl) 3140

30 X"(JtI) = XU(19J) 3150
100 CONTINUE 3160

RETURN 317C
END 3180
SUBROUTINE SMTRX2 (XL# C, Do N 2 3190

C TRANSFORM TO (L)-IC AMD STORE IN D 32."'
DOUBLE PRECISION XL(21.21),C(21,21)9D(21,21) 321.

DOUBLE PRECISION S 322,
uv 2 A -' 9 V; 323Z
utiL) i - LI.&1I 6. 9.14
vO luu =. r 3250
IMi 1I-i 326u
DO 100 J 1, N 327b
S O. 3280

DO 10 K 19 IMl 329t.
10 S = S + XL(I#K) D O(KtJ) 33C0

100 D(IJ) c (C(IJ) - S ) / XL(I#I) 3310
RETURN 3320
END 3330

SUBROUTINE SMTRX3 (XU9 Do Ev N 334u
C TRANSFORM TO (L)-1C(L)-1 AND STORE IN E 3350

DOUBLE PRECISIOI XU(21s21)tD(21921)9E(21*21) 3360
DOUBLE PRECISION S 3370
DO 5 I 1. N 3380

5 E(I1) D(It1) / XU(].I) 3390
DO 100 J 2. N 3400
JMl w J - 1 3410
DO O 1 1) N 3420
S =0 3430
DO 10 K 1. JM1 344v

10 S = S + E(IK) * XU(KtJi 3450
100 E(IJ) a (D(IJ) - S / XU(JJ) 3460
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TAL 1(otne)-
14

C UIN TH MTHD O RDU TABLE 35(C2tnud

ROETURECSO A(12)ASE(1tETR291t(1#(12) 3370

SUBOTE EIOGE RANKROOTANSF9CERvETRLMT vETLL 340
1IF N c ). 350

C WUINGTE METHO OF REUTIN 3520

20 ORMAE PRCIIO A(12)ANWR23,ETR132,C1)Y2, 3530
OUL P=tRCSN GETTYRIFCN 3540

1F z(tj= o 3500
0 24 11.O T 3610

WRITE (69 200) IUCC DIF330
200 FORAT 4X 13* 5X) 2*1 X 3580

3 O J=ItNRANK 3590j
1 (IJ)=. 360

DOU4MCYCO AN 3610
2 NUMCY=UMC+A1#)YIK 3620

GREAT DASZI)3700

INDEX=I 3710
IF( I-NRANK)59898 3720

5K=1+1 3730
DO 7JKNA 3740
TRY = DABS(Z(J)) 3750
IF(6REAT-TRY)697*7 3760

6 CGREAT=TRY 3770
I NDEX=J 3780

7 C0NTINUE 3790
8 DIFFO.0 38t..

GREAT=ZC INDEX) 38lu

DO 9 J=IIJRANK 3820
ZCJ)=ZCJ)/GREAT 3830
01DFF DI0FF + DABSCZ(J) -Y(ItJ)) 3840
DO 10 J=ItNRAMK 3850

10 Y(IqJ)=Z(j) 3860
IF(DIFF-CONVER)11911#2 3870

11 ANSWER(I )=GREAT 3880
GREAT=ZC.) 3890
DO 12 JmINRANK 39G0
Z(J)=Z(J)/GREAT 3910

12 YCIJ)cZ(J) 3920
IF(I-NROOT)13915915 3930

13 L=1+l 3940
DO 14 J=L#NRANK 3950
DO 14 K=LNRANK 3960

14 A(J*K)=ACJ*K)-ZCJ) *A( I K) 3970
15 IF(1-1)20#20916 39801
16 DO 19 J=29I 3990

L=-J+l 4000

M=L+l 4010
R=0s 4020
DO 17 K=M#NRANK 4030

17 R=R+A(LK)*Z(K) 4040
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TABLE 11 (Continued)

R=R/(ANSWER(I)-ANSWER(L)) 4050
Z(L)=lo 4060
DO 18 KfMiNRANK 4070

18 Z(K)=Y(L#K)+Z(K)/R 4080
19 CONTINUE 4090
20 GREAT = DAS(Z(1)) 4100

INDEX=1 4110
DO 22 J=2NRANK 4120
TRY = DABS(Z(J)) 4130
IF(GREAT-TRY)21922922 4140

21 GREAT=TRY 4150
INDEX=J 4160

22 CONTINUE 4170
GREAT=ZCINDEX) 4180
DO 23 J=1NRANK 4190

23 VECTORfIJ)mZ(J)/GREAT 4200
24 CONTINUE 4210

TELLflo 4220
RETURN 4230

25 TELL-1. 4240
RETURN 425U
END 4260

SUBROUTINE TRAVEC (XU# Xs PHIt NRO4 ) 4270
DOUBLE PRECISION XU(21f2I}vX(219PIHI(21) 4280
DOUBLE PRECISION SUf! 4290
N = NROW 4300
N.41 = N - 1 4310
PHI(N) = X(N) / XU(IJN) 4320
DO 100 I = 1, NMI 4330
J = N - 1 4340
SUH = 0. 4350

DO 80 K = Js NM1 4360
KP1 = K + 1 4370

80 SUH = SUM + XUCJ# KP1) * PHICKP1) 4380
100 PHI(J) = (X(J) - SUM )/XU(JtJ) 4390

RETURN 4400
END 4410

SUBROUTINE PLNODE (NP) 4420
DOUBLE PRECISION XMA(21,21)XMB(21,21),XMC(21,2lhXI(48)oYI(48) 4430
DOUBLE PRECISION WI(48)3,lOR(21),vtR(21)ARLA(4bZ)AR Au(462) 444U
DOUBLE PRECISION AREAV(46Z) XptW(462) 445C,
DIMENSION XP(21)9 YP(21) 4460
DOUBLE PRECISION B(21)pVXP(21}tVYP(21)pR(50) 4470
DOUBLE PRECISION VsXNPvERRORSTEPsP 4480
COMMON XMA, XMb, XMC# Xi, YI, Vi9 1OR, VCR* AREAt AREAU9 AREAV, 4490

1 XWWPBALPHA bETARATIONKNROtiXPYPiAi *iil, 4500
2 SWITCH, VXP9 VYP 4510
ERROR - 0.0001 4520
STEP 0.05 4530
SWITCH 1, 4540
XNP x NP 4550
DO 501 = 1. NP 4560
Al = I - 1 4570
V a AI / XNP 4580
IF ( V ) 209 109 20 459010 DO 18 IX = 19 NROW 4600
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TABLE 11 (Continued)

IF CXPCIX) ) 16. 14. 16 4610
14 VXP(IX) = 1. 4620

GO TO 18 4630
16 VXPCIX) = O* .4640
18 CONTINUE 4650

GO TO 28 4660
20 DO 26 IX = 19 NROW 4670 I

IF ( XP(IX) ) 249 22. 24 4680 -1
22 VXP(IX) = 1. 4690

GO TO 26 4700
24 VXP(IX) = V ** XP(IX) 4710
26 CONTINUE 4720
28 CALL REGSUN ( O.t 1.. STEP* R, NR9 ERROR ) 4730

IF ( NR ) 509 509 44 4740
44 WRITE (69 1400) V. (R(J)g J = 1. NR ) 4750

1400 FORMAT ( lXv 3HX =9 F6.3t 2Xi 3bY = 19t-6.3 /(1'1Xivrb.1JI 4760
50 CONTINUE 477C

SWITCH = 3o 4783
DO 80 I = 1 NP 4790
Al = 1- 1 4800
V = AI /XNP 4810
IF ( V ) 60t 529 60 4820

52 DO 58 IY = 19 NROW 483u t
IF ( YP(IY) ) 569 549 56 4840

54 VYP(IY) = 1. 4850
GO TO 58 4860

56 VYP(IY) = O 4870
58 CONTINUE 4880

GO TO 68 4890
60 DO 66 IY = 19 NROW 4900

IF ( YP(IY) ) 64# 62t 64 4910
62 VYP(IY) = 1. 4920

GO TO 66 493U
64 VYP(IY) = V ** YP(IY) 4940
66 CONTINUE 4950
A8 CALL REGSUN C 0.9 1. STEP# R, NR, ERROR 4960

IF ( NR ) 809 80. 74 4970
74 WRITE (69 1600) V. (R(J). J = 19 NR ) 4980

1600 FORMAT ( lX9 3HY =9 F6.3. 2Xs 3HX =. 19F6.3 /(13X,19F6.3)) 4990
80 CONTINUE 5000

RETURN 5010
ENID 5-)'20

SUBROUTINE REGSUN ( A, bt H, R, Ng ERROR ) 5,30
C TO FIND ALL ROOTS OF EIGENVECTOR 5-43

DOUBLE PRECISION R(50)#ERROR#XLXRYLYRqXI9HtYI 5U50
N =0 5t6J
XL uA 5L;70

4 YL = FUNCT(XL) 5,80
IF ( DABS(YL) - O,1D-1U ) 10, lug 2u 5U90

10 N = N + 1 51(
R(N) = XL 5110
XL a XL + H 5120
IF ( XL - B ) 49 49 16 5130

16 RETURN 514U
20 XR = XL + H 5150 15IF (XR -B ) 22t 229 16 516U

22 YR = FUNCT(XR) 5170
IF C DABS(YR) - 0.10-10 ) 30, 30, 24 51bO
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TABLE 11 (Continued)

24 IF ( YR*YL ) 40t 30. 60 5190
30 N a N + 1 5200

R(N) x XR 5210
XL a XR + H 5220
IF ( XL - B ) 4, 4# 16 5230

40 XI x ( XR + XL )12* 5240

IF ( XI - XL - ERROR) 469 46. 48 5250
46 N a N + 1 5260

R(N) A XI 5273
XL x XI + H 5280
GO TO 4 5290

48 YI s FUNCT(XI) 53c0
IF ( DABS(YI) - 0.1D10 ) 469 46, 50 5310

50 IF C YL*YI ) 529 469 54 5320
52 XR" x XI 5330

GO TO 40 5340
54 XL a XI 5350

GO TO 40 5360
60 XL a XR 5370

YL v YR 5380
GO TO 20 539-1
END 54uO

FUNCTION FuNCT(O) 5410
DOUBLE PRECISION XMA(21,21)sXHu(21,21),XMC(21921)*XI(48),YI(48) 5420
DOUBLE PRECIION WI(48),hOR(21),VER(21),AREA(462),AREAU(462) 543L
DOUBLE PRECISION AREAV(462 .Xv:1;(462) 544.
DIMENSION XP(21)t YP(21) 5453
DIMENSION NXP(21)ttNYP(21) 546J
DOUBLE PRECISION 3(21),VXPC21),VYP(21) 5470
DOUBLE PRECISION 0. SUMQYPOXPFU;ICTP 54bO
COMMON XMAt XMU, Xl Ct XI, Y1, til, hORt V-R AREAp iREAU* AREAV9 5490
1 XWWPBALPHA bETAATION", *hRO ,XP YPA,., b. ,1 5503
2 SWITCH. VXP. VYP 5510
DO 500 I = I*NROW
NYP(I YP(I) 5520
NXP(I) c XPMI) 5530

500 CONTINUE
IF ( SVTTCH - 2. ) 2. 20. 20 5540

2 SUM - Ow 5550
DO 10 1 = 1 NROW 5560
IF ( YP(I) ) 49 3t 4 5570

3 OYP • 1. 5580
GO TO 10 5590

4 IF (0) 6* 59 6 5600
5 OYP = 0. 5610
GO TO 10 5620

6 QYP a 0 **NYP(I) 5630
10 SUM x SUM + B(I) * VXP(I) * OYP .5640

FUNCT z SUM 5650
RETURN 5660

20 SUM = 0. 5670
DO 30 1 = It NROW 5680
IF ( XP(I) ) 249 23v 24 5690

23 OXP = 1. 5700
GO TO 30 5710

24 IF (0) 26, 25. 26 5720
25 OXP = 0. 5730

GO TO 30 5740

26 OXP = 0 **NXP(I) 5750
30 SUM a SUM + B(1) * OXP * VYP(I) 5760

FUNCT x SUM 5770
RETURN 5780
END 5790
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Figure 27 - Flow Chart for SUNFRE, Computer Program for Computing Natural
Frequencies of a Plate by Sun Method
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Vi
The principle used to solve for the natural frequencies is the Rayleigh-Ritz method.

The plate geometry is defined by

F(X, Y, P, a, j9) =(-X -P )
z2

where X=-,
a I

121
Y ,

R
a

P = R- ,

a = = 10,
a is the dimension ir. z-direction, and

b is the dimension in y-direction for a rectangle with clamped boundaries.

In the computer program, the Rayleigh-Ritz procedure uses a 21-term polynomial in X

and Y to express the displacement W (Equation (G9)). The integrals of the Rayleigh-Ritz

equations are then solved by a 64-order Gaussian quadrature technique. Finally, the eigen-

values of Equation (G13) are solved by an iterative method of reduction.

The computer program solves for one set Gf frequencies at a time. Four sets of poly-

nomials completely define the plate: even-even, odd-odd, even-odd, odd-even. Manual plotting -

of the nodal points for the first quadrant yields the modes shapes from which the modal num-

bers may be assigned to the frequencies. I
The eigenvalues resulting from the computer program are actually the dimensionless

frequencies (note: w V 2;rf in this program)

Wu a 2 ip 2. (II)

where the Pmn represent the natural frequencies. Thus, the program eigenvalues must beEP

modified manually to yield frequencies in hertz. Letting Pmn 2rfmn and D

Equation (11) becomes

cm, n E (2

In addition to the eigenvalues, the program computes the points for the nodal lines to

be plotted to give the mode shapes.

A sample problem for eight modes with 32-order Gaussian quadrature required 30 min-

utes on the IBM 7090.
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input Description

The input data are in dimensionless form. Their description is as follows.

Theory
Program Symbol Symbol Description Format

N
NK (card 1) The value - where N is the order of 1102

Gaussian quadrature

Beginning on card 2, start the XI array and end with WI array; last card of this set is

_ _ _ _ __ card +( 4) _

(1 7/
XI Gaussian arguments; NK elements; 4 to a 4D20.10

card

WI Gaussian weights; NK elements; 4 to a card 4D20.10
2NK k

Next 8 elements are on the (2+ 7- card

ALPHA1 a Exponent of plate geometry equation: F5.2
ALPHA = 10 for rectangle

BETA 1 Exponent of plate geometry equation: F5.2
BETA = 10 for rectangle

RATIO R Aspect ratio b/a, where b is dimension in y- F5.2
direction and a is dimension in x-direction

MODE The number of sets of modes desired. 15
If MODE =

1 X, Y are even powered: odd-odd modes
2 X, Y are odd powered: even-even modes
3 X even, Y odd: odd-even modes
4 X odd, Y even: even-odd modes

NOIT Number of eigenvalues desired 15
NP Number of nodal points desired: 15

NP = 0 means no points
NP = 20 means 20 points

for nodal line plot

LIMIT Number of iterations in eigenvalue solution; 15
suggested limit is 800

CONV Convergence criterion: suggested value F10.7
0.00001

NROW card 3 + LNK Number of polynomials in X and Y 110

XP (1), YP (I) Powers of terms of X - Y polynomial; 16F5.2
NROW* 2 note that there must be as many sets as the

next cards value of MODE indicates but that the prr-

for MODE number of gram solves for only one set at a time
times o
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Sample input data corresponding to the above description are shown below:

-16 i
O.9972638618494815600.9856115115452683303.96476225558750643.0934906075937739683
0.8963211557660521200.849367613732569970079448379596796240U0O7321821187402896S3
0*6630442669302152000.577157572407623200 50689990893222939'0 .42135127613.'635 &0
033186860228212764CO.2392873622521370700.14447196158279649:0.E3-7665587738310
0o0070186100094700900 o0162743947309056700.02539206530926205".Z3427386291 30211.30
0.0428356980222266800.0509980592623761700 058684093478535540.C65-2222277656 164 G
0.07234579410684850C0.0761938957870703000.C6331192422694575L.,087652C93034403S10
0.0911738786957638800.093439908004560.3.956387200792748560.09650851472700
10.0 10.0 1.167 4 8 20 800 O.OCOCOOI

0.0 0.0 2.0 0.0 4.0 0.0 6.0 0.0 8.0 0.0 10.0 0.0 0.1 2.0 2.0 2.0 a4 21

4.0 2.0 6.0 2.0 8.0 2.0 0.0 4.0 2.0 4.0 4.0 4.0 6.0 4.0 0.0 6.0 0i:

2.0 6.0 4.0 6.0- 0.0 8.0 2.0 8.0 C.C 10.0 Lae,
1. 1 5. 1- 5 1 . 9. 1- 1 1. 1- 1. 3. 3. 3. ;
5o 3. 7. 3. 9. 3. 1. 5. 3. 5. 5. 5. 7. 5. 1. 7,

0. 1. 2. 1. 4. 1. 6. 1. 8. 1. 10. 1. Vo 3. 2. 3. -
4. 3. 6- 3. 8. 3. 0. 5. 2. 5. 4. 5. 6. 5& C. 7.

2. 7. 4. 7. 0- 9. 2. 9. 0. 11. J
1.0 0.0 1.0 2.0 1.0 4.0 1.0 6.0 1.0 8.0 1.0 10.0 3.0 0.0 3.0 2.3
3.0 4 0 3.0 6.0 3.0 8.0 5.0 0.0 5.0 2.0 5.0 4.0 5.0 6.0 7.0 0.0 -
7.0 2.0 7.0 4-0 9-0 0.0 9.0 2.0 11-0 0.0

Output Description

The program yields the eigenvalues and eigenvectors, with nodal points for the first

qieadrant and many intermediate results. Unless the user is particularly interested in a pro-
gramming analysis, he will use the first page of output and then skip to the eigenvahue

-1

section.
On the first page are some of the input data, such as a, )9, RATIO, MODE, which are :

labelled accordingly. The index I is printed to indicate the step of Gaussian quadrature. An

underflow message from the system may occur; the program corrects for small numbers in the
i underflow in subroutine ALL.

The next several pages have five elements to a row and are the following matrices:

~1. (?-matrix of Equation (G14a)

• 2. A-matrix of Equation (G14b)
3. B-matrix of Equation (G15b)
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The output then indicates which eigenvalue is being solved for and the number of

iterations needed. The variable TELL indicates convergence: TELL = I means con"ergence

but TELL = - I means no convergence. The convergence limit and the number of times the

iterations are performed are also printed. The eigenvalues are printed in ascending order,

followed by the eigenvectors. The results of the orthogonality check are shown.

Finally for a given eigenvalue the nodal points for the first quadrant are printed out.

Figure 28 shows, by way of a particular example, how the mode shapes and corresponding

frequencies are matched. The eigenvalues (called EIGENVALUE in the output data) obtained

directly as output from the computer program are multiplied by the frequency factor for

SUNFRE given in Appendix I. This process yields the natural frequencies which are tabu-

lated in Table L

Thus for a particular eigenvalue (e.g., EIGENVALUE = 337.0694), a corresponding

natural frequency can be computed (f = 2179.078 for this case). The corresponding mode

number can be determined by plotting wave shape data available from the computer program.

These data are plotted in the first quadrant (Figure 28a) and then projected into all four

quadrants (Figure 28b). From the latter figure, the mode number is evidently (m, n) = (5,2).

YNGFRE (see Table 12 and Figure 29)

T-;o steps are needed to find the natural frequencies of vibrations by the Young

method. The first, YOUNG, provides preliminary data. The second, YEIGN, computes the

eigenvalues and converts them to the natural frequencies. Since the results of YOUNG could

be used as input for other eigenvalue programs, YOUNG was made more general than YEIGN.

YOUNG

YOUNG is a computer program which calculates the members of the C-array of the

eigensystem, Equation (Bl):

p q
I (0 ik _,8 )A 0 ,

m=1 n=1 mn Mn m&

n=lform=i and n=c

m n=0forx !i or nik

For the computer program, i =1, p; k = 1, q; and p, q 5 10.

The program YOUNG uses its subroutine YINTGR to compute numerical results of

Young's closed form solutions of the Rayleigh-Ritz integrals of a clamped beam. Next

YINTGR constructs the arrays necessary for the computation of the C-matrix:
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Figure 28 - Procedure for Determining Plate Mode Numbers for a Particular Frequency I
The sample illustrates a modal plot for the (5, 2) mode corresponding to f 2179.078.
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TABLE 12I
Prograyp Listing for YNGFRE Computer Program

Table 12a - YOUNG
STRFYC YOUNG

DIMENSION Et1O.1O),F(10.10),HiIO,10),K(20,20),EPSt1O)oCt10,10)
REAL K
RFAD15,11 M#N

1 FORMAT(215)
REAV15921) A#8

It FORMATCF12*63
PI a 914199
CALL YINTGR(M#N9EPS9E
WRITE1695) CEPS(I)PI 1#lM)

5 FORMAT(6WE16.A0
SIGMA v.33
AINA**S

WRtTE(6*31O) As'
310 FORMAT(SX92F12#6)

WRITE(69920) M#N
S20 FORMAT(SX92I5)

NY1 N/2
NY2 a N/2 1
DO 4 1819M
00 5 Jw1#N
H(la0) a E11,J)
K(IJ) -E(I#J)
£(I#J) * -E(I*J)
F(I#J) *E(IaJ)

I CONTINUE
4 CONTINUE

DO 400 *0

00 200 MXUI#M
D0 100 NYBION
IFtMX&NE&I) GO TO 8
!F(NY*EO*J) GO TO 6

a CtMXNY~uSIGMA*A/S#(EIMX~aI**F(JNY)4F(IMX)*F(NYaJ))
I +2.*(l.-S!614A)*A9R*H( IMX)*K(JaNY)
GO TO 7

6 CONTINUE
C(MXaNY)38/A*EPSII)**4*AS/R3*EPS(J)**4,2.*SIGMA*A/B*E(II)*F(J9J)
1+2e*(1.-SIGMA)A/R*H iaIl)'K(JaJ)
'CONTINUE

100 CONTINUE
KOUNT.KOUNT+1

COMMENT KOUNT WAS USED FOR ENDPUNCHING**** NOW IT USED ONLY
C**~*IN THE CASF N IS A MULTIPLE OF 2*

IFIM-(M/5*5)) 2009250#240
240 !F(M-(M/3*31) 20qo210#220
220 IFIM-(M/2*21) 2Ofl,222,2
210 WRITEe6#20) ( C(MX#Ny)t NY w1oN)

WRTE18#20) ( C(MX#NY)9 NY asNI
GO TO 200

222 WRtTE(6922) I C(MX#NY)# NY ul#NYl), KOUJNT
WRITE6922) I C(MX#NY)# NY *NY29N) a KOUNT
WRITE489221 ( C(MXsNY)# NY 019NYI~t KOUNT
WRITE(8922) ( C(MXoNY)# NY zNY2.N)o KOUNT
G1 TO 200

250 WRZTE6#24) t CIMX$NY)o NY wlaNYl)
WR!TEI6o24) ( C(MX#NY)# NY uNY2#N)
WRITE(8#241 ( C(MX#NY)* NY ul#NYI)
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TABLE 12a (Continued)j

WRITE189241 I C(UNYY1 my AWY21.N)
200 COMITJINE
400 CONTIIkJ 1X.4

24 F0RMAU5EI6s89IX*)

230 STOP
EMD

SIRFTC TINTM
SURROUTINE YIkTGR(MN#PS9Al
DIVENStON ALP(Z019EMS1O),A(010O
PT a 3014159
ALM() - 0.98250726
ALPE23m 1@0007mgi
ALPM3 - 0*9996645
ALP145 u 1.000145
ALP151 - 0.99994

A*(6 14.*160

EPS(5) s 1727890
EPSIS) 20.47355720

00S 109 1 mr 7.NWI
AJ94 a 42765

10EPS(s) a 1(02eO875 .0PI6n

00 25 L a 19%
jKL - K L

IFIKaNPeL) M TO 40
ACKuL) a ALPCKI*EPSK*(ALPK).EPS(K)-2.n)

2*I1.4f-1.I*#(KL M) / (EPStKl*c4 - EPS(LOW4
S5 CONTINUE

25 E(650 ((A(KMoKIE)tKM a 1M)#KN wluN)

50 FORWATI2X#5EI6&ft)
RETuRN
END
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Table l1b - YEIGN

PROGRAM YEIGN( INPUTOUTPUTTAPE5sINPUT*TAPE6=OUTPUT)
DIMENSICH B(64964),RTR(64),RTI(64),U(64964),1Ii(64),IXZ(64),

A X1(643,X2(643,X3(643,X4(64,XX(6464)XX(6i,64),
B XX3(64964),EVLRAD(64).EVTRAD(64f64) .X5(64).X6(641,
C X7(64),X8(64),X9(64),XlO(4)X1Itb-Z)
DOUBLE PRECISION BDP(64.64) ,RTR.l4P(64),RTIIMPC64),XIM4P(64,64).

A DPX1(64)tDPX2C04)
(.OMM-ENT AS OF 11/20/70 LIM4 MUST BE A MULTIPLE OF 3949 OR 5

READ(5,1101 LIMLUP
110 FORMAT(2110)

N aLIM *2
READ(591151 CONST

115 FORMATtE16*8)
DCONS = OBLE(CONST)
WRITE(6#3)

3 FORI4AT(1H1)
WRITE(691)LI?4.N

1 FORMAT(2I11O
IF(MOD(L114,3)*EQO0) GO TO 410
IF(MOD(LIMv5i.EQ.O) GO TO 420
READ(5.91) ((BC IAJA) ,JA=1,N),IA=1,N)

91 FOR?4ATC4E16*81
GO TO 99

410 READ(5994) ((BC IA9JA) .JA=1vN) IA-1,N)
94 FORMAT(3E1698)

GO TO 99

420 READC594301((B(IAJA)sJA=1,d,#IA=1,N)
430 FORMAT( 5E16o8)
99 IRITE(694)((B(ZAJA),JA=1,N),IA=1,N)

DO 10 I1,N
DO 10 J=1,N

10 BDP(19J)=B(ItJ)
4 FORMAT( 1X96E18*8)
CALL VARAH1(bNRTRRTlU,64,IX1,1X2,X1,X2,X3,X4.XX1,XXZXX3)
WRITEC693)
WRITE(6,5) (IRTR(I),RTIC I),I=1,N)

5 FORMAT( I592E17*8)
WRITE(693)
DO 9 J=19K

6 FORMAT(//15/C6E20*8))

DO 11 K a19LUP
CALL VARAH-2(BDPN2.**(-95)RTRRTIURTRIMPRTIIMPEVLRAD.XIMPv
1 EVTRAD,.TRU~.. 64,IX1,X1,X2,X3,X4,X~iX6,X7,X8.X9,
2 X1OtX11,DPX1,UPX2,XX1,XX29XX3)t
3 RETURNSC97)
DO 12 I1,N
RTRC I )RTRIMP( I)
RTICI )=RTIIMP( I)
DO 12 J1,f4

12 U(IJ)=XIMP(IJ)
11 CONTINUE

WRITE(6#3)
92 DO 14 Im1#N

IF (RTRIMPCI).GE.1*O D-12) GO TO 13
DPX1(1)*-1.0 DO
GO TO 14

13 DPX1(I) aDCONS *DSORT(RTRIMPCI))
14 CONTINUE
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TABLE 12b (Continued)

WRITE(69250)
250 FORMAT(1H1,5X9*THE FOLLOWING IS INTENDED AS A GUIDE IN INTERPRETIN

1G THE OUTPUT.*/ 5X,* THE SUBSCRIPT PRINTED WITH THE EIGENVALUES AN
2D FREQUENCIES ON THE LAST PAGE*/SX9*IS THE SUBSCRIPT OF AbS LAMBDA
3( ) IN ThE MAIN SECTION OF OUTPUT- EACH EIGENVALUE IS PRINTEDP*/
45X**FOLLOWED IMMEDIATELY BY ITS EIGENVECTOR*THE SECOND SUBSCRIPT
5 OF THE EIGENVECTOR COMPONENTS AGREE*/5X,9*WITH THE SUBSCRIPT OF
6LAMBDA*)
WRITE(6#240)

240 FORMAT(5X)*WHEN READING EIGENVECTORS9LOOK FOR THAT COMPONENT*/
1*WHOSE VALUE = 1.0 *THE FIRST SUBSCRIPT OF THIS COMPONENT*/
2 5Xq*INDICATES THE MODE NUMBER OF THE FREQUENCY**/
3 5X,9*INTERPRETATION SCHEME BELOW WITH MoN BEING THE MODE NUMBER*/

4 6X9*JA*912Xt*M*,7X**N*)
KOUIJT = 1
DO 210 KM = IOLIM
DO 202 KN = 19LIM
WRITE(6,310) KOUNTvKM9KN

31u FORMAT(SX#I4,1OX9I4.SX9I4)
KOUNT a KOUNT + 1

202 CONTINUE
210 CONTINUE

WRITE(69260)
260 FORMAT(5X9*THUS BY LOOKING AT THE EIGENVECTOR OF EACH LAMBDA*/5X#

I*USER MAY ASSIGN MODAL NUMBERS TO THE FREQUENCIES BELOW*)
WRITE(69120)

120 FORMAT(6X. *EIGENVALUES AND CORRESPONDING FREQUENCIES *
WRITE(6915) {I9RTRIMP(I)9DPXI)vI = 19N)

15 FORMAT(16D25-16#5X9D25*16)
STOP

97 WRITE16998)

98 FORMAT(SX#* PROGRAM ABORTS UNNATURALLY *

RTRIMP(I )RTR(I)
RTIINP(II=RTI(I)
GO TO 92
END
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Figure _29 - Flow Chart for YNGFRE, Computer Program for Computing j
Natural Frequencies of a Plate by Young Method

STARTJ

-I

NCALL YINTGR
coMP'U E

TEGRAL VALUEy

ARRAYS FROM iNITIALIZEHK,, INRAYSO ALP ANDH, K EF ARAYSEPS ARRAYS

DO 300 1 1, NMSDO 400 I 1, M
DO 200 MX = 1, M SOLVE CLOSED
DO 100 NY = 1, N FORM INTEGRALS,

COMPUTE C IyJ STORE ANSWERS
MX, NY IN A-ARRAY

100 CONTINUE
WRITE AND PUNCH

MX, NY RETURN

200 CONTINUE
300 CONTINUE
400 CONTINUE

ST O P 
,

Figure 29a - YOUNG
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a

C(i&) [ F4(a a Same as

Cfik 7 + = -[EkF + 2pEi Fk + 2 0 y - Hl i K kk (B14)for m/i or ad!k

for u= i and a=k

Fifially the main program computes the C-matrix. These data are punched out on

cards for use in a program for solving the eigensystem.

Only two cards are needed for YOUNG:

Card Symbol Description Format

1 M Number of terms in z-direction, M - 10 215

N Number of terms in y-direction, N S 10;
If output of YOUNG is to be used with
YEIGN, M=N

2 A Length in z-direction 2F12.6

B Length in y-direction

The printed output consists of the arra of integral values E(1, J), five elements to a

row. Then comes the EPS-array (values of e i ), again five elements to a row. A, B, M, N are

printed next. Finally the array C',MX. NY is both printed and punched on cards. There are

N/2 elements per card, (or N/3 if N is a multiple of three) with the order cycling first through

NY = 1,N, then SIX = 1,M, nextJ = 1,N, and finally I = 1,M.

For C: 8 , YOUNG required 2 minutes on the IBM 7090.

YEIGN Step

YEIGN is a computer program for the CDC 6600 which uses the eigensystem programs

VARAHI and VARAH2. The latter two NSRDC programs are FORTRAN IV adaptations of

algorithms of J. M. Varah. 2 9

VARAH1 computes an initial approximate eigensystem. The eigenvalues are computed

using the QR method of Francis 3 0 after the system is reduced to Hessenberg form.* The

eigervectors are found by the inverse iteration method of Wielandt.* Finally VARAH2 refines

*See Reference 33. 14
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and bounds the appcoximate eigen3ystem as suggested by Wilkinson. 3 1, 3 2 For further infor-

mation about both the mathematical processes and the programs, complete with listings, see

Reference 33.

Because the CDC 6600 has a 60-bit word, the high degree of accuracy needed in the

inverse iteration might not be achieved on smaller word computers. Also, the largest problem

tested was a 64 x 64 matrix, which took 6.85 minutes.

The problem to be solved is Equation (Bli). However, the double summation is treated
as a single summation for use in YEIGEN. ThJ problem becomes

N
I. (B(A, JA) - AOAJA = 0, JA = 1,N

JA=l

where N = (LIM)2 (LIM is the number of terms p of Equation (Bli); p must equal q for
YEIGN);

I is the identity matrix to which the Kronecker delta reduces;

A is the single dimensional matrix replacing An;

B is the matrix of two dimensions replacing the C-matrix;

JA is the subscript replacing a and n, cycling through n first, then w; and

IA is the subscript replacing i and k, cycling through k first, then i.

An example of the transition from Cik to B(IA,JA) is shown below, with LIM =3;

IC" = B(1, 1) C12 = B (1-, 1) C22 = B(5, 1) C,3 = B (9, 1)
C" = B (, 2) C12 = B(2., 2.) -
C 1 = B(1, 3) : 3= B(5, 9) C33 = B(9, 9)

011 = B(1, 4) C 1 = B(2, 9) C23 = B(6, 9)

C11-= B(1, 5) '= B(3, 1) 1

C" =B(1,9) C--B(4' 9) C2 =B(81)!

A (JA) associates with m, iz in a similar manner. The vector A4 does have two sub-

scripts for computer storage purposes; however, the printed output of the eigenvectors has

two subscripts with the first of these referring to JA. The eigenvector yields the frequency
modal number (in, ) from the JA-value of the eigenvector component whose amplitude is equal

to 1.0. The subscripts JA are related to their respective (in, n) values in the final section of

the printout.
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YEIGN produces many pages of output. The user should look first at the last few

pages of the output for the eigenvalues and corresponding natural frequencies and for the

eigenvector subscript scheme. Then the user shorld go to the main body of the output to

locate eaca eigenvalue, followed immediately by its eigenvector. Now, from the component

with the value of LO, he can assign the frequency a modal number, as directed above.

A sample output for each eigenvalue of YEIGN is given in Table 13. The eigenvalue

and vector components are given with their error bounds. In the given case, the frequency

has modal number (3, 4).

The data cards needed for YEIG are as follows:

Card Symbol Description Format

1 LI Limit on summation of Equation (B11) 2110

Note: N = (LWI) 2 is number of eigenvalues

LUP Number of iterations for refiring eigen-
system. For engineering purposes LUP
= 1 yields adequate frequencies _

2 CONST Value of E16.8
2va 2  y(1-or2)

FREQUENCY = CONST * EIGENVALUE

3 B(LA, JA) C-array of Equations (B13) and (B14), with 4E16.8
JA changing most rapidly; that is
(JA =1, N) for each IA value, (IA= 1, N)
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TABLE 13

Sample Output DWAa for Each Eigenvalue of YEIGNI
AM (LAMDAM4H7D4MMOM07142I5) .LE .170619SE-16
ABS( A( it a) - C 0. )3 *LEe *Q?Q26537g-20
ABSC X( 2' 4) - I .599%n7?**30O5Q3l-O) I .LE. .77RR4QAOF-2@
Ads( At 3' *1 - t 0. 3) I Lte w9O7A0iAn5E-2Q
ADS( X( 49 41 - 1 -.7Z1MA46f37816?79D-01) ) *LE. .7E6q4&ij3E-0
ADS( At S' 43 - ( 00 ) ) *LE. .2376SS5E19V
ADS( At 6' 43 - C -.669Q48a07S781R31D-@2) ) *LE* .6))19409E-20
ADS( At 79 4) - ( 0. ) 3 aLE* .6050t449E-20
ADS( X( B. 41 - 9 -.1724742043731114D-02) 3 .LE. .17499727E-20
ADS( At 9.0 a) - 1 0. 1 1 eLE* o39AS0989E-20
AD$( At 10' 4) - C so ) 3 *LEe. 90)19974E-21
ADS( Xg 11. 43)- ( 00 ) 3 3.LEe v42278342E-2O

AbS( A( 12' 4) - ( 0. 3 3 .LE. .1a?2i RP3C-20
ADS( C 139 4) . 3 1 .LE. *Rfiv,79qiE-20

ADS(X( 49 4 0.) 3 eLE. *10A1'2PF-20
ADS( A( 15' a) -O.. - 3.-) ALE. .1043a'7E-2O

ADS( A( 16' 4) - Ce 0. I *LE. .293S3291E-71
AUS( XC 179 4) _- Do0 3 J..LE..# 70'39!,91E-20
ADSt IC 16' a C-.8416ga0033gLEe .52992i'E-20
ADS( X( .19' - ) - (A0. e ..).LEe. *I 160316SE-19
LUSt At POO 4) - C *100g00090SSOO0oOSO1 3A*E. *1165s3756E-70
AbSg Ag 21' 4) - .( 0. - .3 eLE. . .5N01661E-20
AUSC A't 229 4) - C .4294535170725042D-01) e LEe *241S493BE-20
AbSg At 23' 43 - C G0* --- - - ).L . .2'.a6'!214E-2.
A15j,g CX 24' a) , F .13912645S146&62720-01) 1 9LE. .10056934Z-20

AtSS( P 5 43 0.-- - W3...LEe- 9795SUCIE-20.
AVSt-( Ag2. a ,33*E. *7735'137E-20
AdsC At( 279 a) C 0. 3_-.-LE* _ OJ844866E-19
MISC A( 2B' A) -£0. 1 *LE. o17627156E-20
.Ass( X( Z9' 4) . --- -- 0. -.- ) )-.*LE&...o3uI3
ADSt AtK 30' 43- C 0. ) A E. .67036259E-21
AbSg At 319 4) - C 0. 3 * @LE..77401j43E-21

AVSt X( 321P 41 - tO. 0 3 .LL. o29003447E-21
AdsS(( Xf33 4 - ( 0.....)-*LE._.*.3409S718E-20

-.0855598962q20Oe33*LE* 0975111OF-20
AdS( A( 359 4) 0 _. __*F- -~JJ.L...5249042E-20

A"$( Ag 37' 43 1 C* ). .) LEv .*3ofl2952E-2O

ADS( A( 40' 4) - C -.4S424440991411300-03) 3 *LE. *8fi7R69Z3F-?1

ADS( AI 419 4) - C -0.. 1 A_ 3 ,~ -.LE... 93697-2
AtiS i X O 43 4- C 0.2097143156 ) * LEO .7000732!E-21
AUSt X( 519. 4) - CO. e3 3 -at: .17a36602-20
AfSC Ag sa. 41 ( g .15.1693,1o0 I I 64a7*2OE-21
ADS( t Ag 5? 4) ( Ce 14?088001-1 3 spLEe. *9795nE-20

MISCAg 5' 4 - C0. 33 AE. .3223593E-21
AdSt XC 479 4) - e C .10-,*49250-3 LE& .205007f1E-Zl

~.US XC 7. 4 - C0. 33 LE.' .123936-21
LUSt A( 499 4) 0. 3 3 *LE. o 795E2

0- *3935974EW-21.
AtSC- Ag5' 4 LE'. *oR00bSQ9E-21
ADSt X( S09 4) - C 0.J)Ae*1330E2

AbSt Ag 51' 4) - C 0. )______ 3 LE@.98634534E-21

AS( gX( 52' 4) - C 0. ) ) oLE. .3257?A7 7 E-21
ADS( Ag 569 4) - t -.510044208-3 1 .LE9 .26400Q6E-21
,.s( XC647.4) - C 0.------------ 1 ) LEe .61239E6-21
AUI hstbe the58 e4e)au rerset th frqunc wit m oda 2umber9(3,4)

Notic tha the 4eto cop- n AB0. )X0 4))9 has ouned alu of1.0ti.% XC09 4 I e)*E D4SE2
AdaX-1 )-(0 -L*..310~F2

A isS -- X 16 2i'--'f -7 (LE.*72S767E-2



I
Cluasw,.Thom mainal method of Co mutation

Claassen and Thorne1 give an exact analysis of the problem of sinusoidal free vibra-

tions of a thin rectangular isotropic plate. For comparison with the results of the present

report, the frequency parameter K1 was modified manully to frequency f using the formulas

shown below. The results are shown in Table 1.

For -5 1, the corresponding value K. is obtained from a table in Reference 10.

Then:*

k! 2,+jzr E

For > 1, V' < 1, and K '= K l k s th at  = K  Z' p= (_):

Sample Problem

Given:

a= 2 ft- = 2.33 ft, (half thickness) 0.0313 ft,2

E = 4175 x 106 lWft2 , p, = 46656 lb/ft2 , o = 0.33,

I - o"2 = 0.8911, g = 32.2 ft/sec2

Then: a
= 0.858

b

The corresponding value of K i is obtained from Table H of Reference 10 by interpolation of

values of K1 (designated K in the reference) corresponding to k = 0.84 and k = 0.86 given in

the table. The result for the 1, 1 mode* is K1 = 3.184789. Then

= K aE (3.184789) (63.8047) = 203.204
Lpa 3 (1 - J

*The table and therefore interpolation of tabulated volues yield different values of K1 for different modes,
Le., K1 is unique for a particular mode.
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