

DEPARTMENT OF THE NAVY NAYAL SHIP RESEARCH AND DEVELOPMENT CENTER

WASHINGTON, D. C. 20034

COMPUTER PROGRAMS FOR PLATE VIBRATION INCLUDING
 THE EFFECTS OF CLAMPED aND ROTATIONAL BOUNDARIES AND CYLINDRICAL CURVATURE
 - OPTION 2

by

Ralph C. Leibowitz
and
Dolores R. Wallace

TABLE OF CONTENTS

Page
ABSTRACT 1
ADMINISTRATIVE INFOR:ATION 1
INTRODUCTION 1
DISCUSSION 3
CALCULATION AND RESULTS 5
EVALUATION 5
CONCLUSIONS AND RECOMMENDATIONS 13
ACKNOWLEDGMENTS. 13
APPENDIX A - THE WARBURTON METHOD 15
APPENDIX B - THE YOUNG METHOD. 21
APPENDIX C - THE BALLENTINE-PLUMBLEE METHOD 29
APPENDIX D - THE GREENSPON METHOD 43
APPENDIX E - THE WHITE METHOD 49
APPENDIX F - THE CROCKER METHOD 69
APPENDIX G - THE SUN METHOD 85
APPENDIX H - THE CLAASSEN-THORNE METHOD 91
APPENDIX I - COMPUTER PROGRAMS 95
REFERENCES 149
BIBLIOGRAPHY 152

LIST OF FIGURES

Page
Figure 1 - Examples of Mode Shapes 4
Figure 2 - Comparison of Theoretical and Experimental Natural Frequencies. 8
Figure 3 - Modal Mean Square Plate Displacement for Clamped-Clamped and Simply Supporied Aluminum Plate 10
Figure 4 - Curved Panel Coordinate System 32
Figure 5 - Nondimensional Frequency Solutions, Clamped Edges, $A=0.50$ 36
Figure 6 -- Nondimensional Frequency Solutions, Clamped Edges, $A=0.67$ 37
Figure 7 - Nondimensional Frequency Solutions, Clamped Edges, $A=1.00$ 38
Figure 8 - Nondimensional Frequency Solutions, Clamped Edges, $A=1.50$ 39
Figure 9 - Nondimensional Frequency Solutions, Clamped Edges, $A=2.00$ 40
Figure 10 - Nomogram for Converting Nendimensional Frequency to Actual Frequency 41
Figure 11 - Parameter ψ_{1} versus α_{10} and $\alpha_{1 L}$, First Mode 56
Figure 12 - Parameter ψ_{2} versus α_{20} and $\alpha_{2 L}$, Second Mode 56
Figure 13 - Parameter ψ_{3} versus α_{30} and $a_{3 L}$, Third Mode 57
Figure 14 - Frequency Parameter α_{1} versus $\alpha_{1 \varrho}$ and $\alpha_{1 L}$, First Mode 57
Figure 15 - Frequency Parameter α_{2} versus α_{20} and $\alpha_{2 L}$, Second Mode 58
Figure 16 - Frequency Parameter α_{3} versus α_{30} and $^{d} \alpha_{j L}$, Third Mode 58
Figure 17 - Nomograph for Plate Nondimensional Frequency Parameters 60
Figure 18 - Program to Calculate and Plot Clamped-Clamped Mode Shepes 78
Figure 19 - Mode Shapes for a Clamped-Clamped Beam, First and Second Modes 79
Figure 20 - Mode Shapes for a Clamped-Clamped Beam, Third and Fourth Modes 79
Page
Figure 21 - Mode Shapes for a Clamped-Ciamped Beam, Fifth and Sixth Modes 50
Figure 22 - Mode Shapes for a Clamped-Clamped Beam, Seventh and Eighth Modes 80
Figure 23 - Mode Shapes for a Clamped-Clamped Beam, Ninth and Tenth Modes 81
Figure 24 - Flow Chart for WCGFRE, Computer Program for Computing Natural Frequencies of a Plate by Warburton, Crocker, and Greersppon Methods 102
Figure 25 - Flow Chart for White Computer Program for Converting Nomograph Frequency Parameters $\boldsymbol{\alpha}_{m, n}$ to Frequencies $f_{m, n}$ 105
Figure 26 - Flow Chart for PLFREQ, Computer Program for Computing Natural Frequencies of a Plate by Ballentine-Plumblee Method 115
Figure 27 - Flow Chart for SUNFRE, Computer Program for Computing Natural Frequencies of a Plate by Sun Method 127
Figure 28 - Procedure for Determining Plate Mode Numbers for a Particular Frequency 137
Figure 29 - Flow Chart for YNGFRE, Computer Program for Computing Natural Frequencies of a Plate by Young Method 142
LIST OF TABLES
Table 1 - Comparison of Natural Frequencies Computed by Various Methods for a Clamped-Clamped Steel Plate 6
Table 2 - Summary of Key Features of Basic References. 11
Table 3 - Values of $\boldsymbol{\alpha}_{\boldsymbol{r}}$ and $\boldsymbol{\epsilon}_{\boldsymbol{r}}$ 26
Table 4 - Integrals of Characteristic Functions of Clamped-Clarnped Beam 26
Table 5 - Natural Frequencies for Sample Problem 42
Table 6 - Function Values for a Clamped-Clamped Beam. 47
Table ï - Parameters for a Clamped-Clamped Mode Shape 74
Table 8 - Program Listing for WCGFRE Computer Program 98
Page
Table 7 - Program Listing for WHITE Computer Program 104
Table 10 - Program Listing for PLFREQ Computer Program 107
Table 11 - Program Listing for SUNFRE Computer Program 117
Table 12 - Program Listing for YNGFRE Computer Program 138
Table 13 - Sample Output Data for Each Eigenvalue of YEIGN 147

Abstract

A comparative study is made of various methods for computing the free vibration modes and natural frequencies of thin plates with clamped and rotational supports and cylindrical curvature. The methods include closed form analytical, digital computer, nomographic, and graphical computations. Based on the results, preferred methods of computation are recommended. These methods-Option 2-are of particular value in extending previously formulated digital computer programs for obtaining the vibroacoustic response to turbulence excitation of a plate. Computer results for a particular case provide a comparison of the effect of clamped-clamped and simply supported boundaries on the vibratory response of a plate subject to turbulence excitation.

Abstract

ADMINISTRATIVE INFORMATION This study was conducted at the Naval Ship Research and Development Center (NSRDC) and supported by the Naval Ships Systems Commaiu (NAVSHIPS) Code 0311. Funding was provided by NAVSHIPS 0311 under Subprojects S-F1453 2106 and R00303, Task 15326.

INTRODUCTION

Reference 1^{*} documents four available computer programs for determining the vibratory response and associated acoustic radiation of a finite rectangular plate to fully developed turbulence excitation. Reference 2 treats a modification of these computations to include the effects of pressure pickup dimensions and boundary layer thickness (Option 1). These programs include the response of simple and clamped plates in air and in water. Several computational frameworks are provided which can be modified and extended through additional research to furnish more accurate programs capable of meeting naval needs i_{1} an increasingly realistic manner. The chief objective of the original study was to furnish a base for future development.

Reference 1 contains vibroacoustic solutions for all programs using simply supported plate boundaries and for the following programs using clamped plate bcundaries:

1. Boeing Piogram I (Maestrello)
2. Boeing Program II - Finite Element (Jacobs and Lagerquist)
3. Electric Boat Program (Izzo et al.)

Boeing Program I uses the Warburton method for computing the modes and natural frequencies; it may not be adequately accurate for square plates or pieferable with respect to accuracy, computer running time, computer cost, and ease of computation etc. compared to

[^0]other methods of computation. The finite element method of Boeing Program II yields results whose accuracy decreases with mode number. Finally, the particular aspect of the Electric Boat Program which deals with the normal modes and frequencies of clamped plates is considered proprietary by General Dynamics Corporation; hence althorgh their numerical results for a particular clamped plate computation are accessible, the associated program is not available to NSRDC. Nor are other programs for obtaining the response of clamped-clamped plates presently available at NSRDC. Thus, there is a need for evaluating methods for obtaining the normal modes and natural frequencies of clamped plates in order (1) to select a method or methods which are relatively accurate, simple to apply, and inexpensive to run on a computer (if necessary) and (2) to extend the applicability of those programs in Reference 1 which are presently limited to the case of simply supported boundaries.

Accordingly, the present report presents a modification (Option 2) of any of the programs of Reference 1 for continuous thin plates. The modification is an attempt to incorporaie into the programs accurate methoris for computing the normal modes and natural frequencies of plates with clamped and rotational supports. A method is also presented fcr including the effects of clamped thin plates with cylindrical curvature in the modified programs. The selected methods for the clamped-clamped finite rectangular plate are based on a comparison of experimental results to results of closed form analyticol, sigital computer, nomographic, and graphical computations.

The following titles identify the methods treated in the comparative study and their location in the report; notations relevant to each method are also included in the Appendixes.

Appendix A - Warburton Method
Appendix B - Young Method
Appendix C - Ballentine-Flumblee Method
Appendix D - Greenspon Method
Appendix E - White Method
Appendix F - Crocker Method
Appendix G - Sun Method
Appendix H - Claassen-Thorne Method
The corresponding computer programs and flow charts are given in Appendix I.
For the convenience of the reader, the Appendixes include an adequate amount of mathematical development underlying these methods. An understanding of the development will assist the reader to appreciate the merits and shortcomings of a particular method and to compare and apply the various methods. Relevant figures and tables are adapted from the basic references.

In addition to the references, a bibliography of other pertinent published papers is given for background information.

DISCUSSION

All of the computer programs in Reference 1 include a treatment for determining the vibroacoustic response for simply supported plates subject to turbulence excitation. However, both theory and experiment suggest that when properly interpreted, these programs can also be used directly to obtain the response for clamped plates. The interpretation is based on the following considerations.

As discussed in Appendix C of Reference 1, Izzo compared the computed sound pressure level for a clamped-clamped plate with that of a simply supported plate. The comparison suggests that a simplified and realistic approach to the investigation of plates with nonsimple supports would be to calculate the modal frequencies considering the true (clamped-clamped) end conditions but to use the mode shapes considering the end conditions to be simple supports. This approach requires much less computation and its results are in very good agreement with those of the exact approach (clamped-clamped frequencies and mode shapes).

Snovidon ${ }^{3}$ lends further theoretical confirmation to these findings. He discusses the first few modes of a clamped-clamped beam* harmonically driven at its miopoint. When this beam vibrates in its first four resonant and first four antiresonant modes, its displacement curves are closely similar in appearance to those of a simply supported beam. At the ends of the clamped-clamped beam, however, the slope as well as the displacement of the beam is constrained to zero. The results for the simply supported and clamped-clamped beams differ principally in the frequencies at which the resonant and antiresonant modes of beam vibration occur.

Other investigators have found that nodal lines on plates may be equivalent to simple supports, i.e., a plate with any boundary conditions oscillating in one of its higher modes thus behaves virtually like a slightly smaller plate on simple supports. Moreover, the effect of boundary conditions on the natural frequencies of a plate diminishes with increasing frequency (or rode number); see Figure 1.

Recent measurements made by Smith et al. ${ }^{4}$ on the fundamental and higher modes of vibration of clamped stiffened plates show that the different clamp arrangements used did not $2^{\text {f fect }}$ the mode shapes but did affect the frequencies.

Thus to obtain a reasonable approximation to the vibroacsustic response for a clamped plate, we need merely determine the frequencies for the freely vibrating c amped plate and insert these predetermined eigenvalues as input dat ${ }_{\star} t$ the appropriate programs of Reference 1.

In view of the above, we seek to devise optional methods (including programs) for determining the frequencies of freely vibrating clamped plates. The establishment of accurate methods of calculation of the frequencies for all modes requires comparing the theoretical frequencies as computed by various methods to the experimental frequencies and using the

[^1]SIMPLY SUPPORTED

$$
m=5
$$

Figure 1 - Examples of Mode Shapes
NOTE. The analysis in Reference 5 suggests that a clamped edge pancl has approximately the same transverse vibrationai behavior as a simply supported panel whose orthogonal dimensions and bending wavelengths are smaller by the ratios $\xi_{m}=\frac{1.05}{1+0.5_{m}}$ and $\xi_{n}=\frac{1.05}{1+0.5_{n}}$ respectively; m, n are node numbers (number of half wavelengths in the plate in the x - and y-coordinate directions). Here, $m=n$. Thus, ξ_{m} and ξ_{n} can be termed, "bending wavelength equivalency factors." The physical significance of these ratios is clear from the figure where $\frac{a}{a}=\xi_{m}$.
realts of this comparion to select the best methods. The modes which are intrinsically 2 sisciated with the fregaencies car also be computed using the methods or programs recomEneaded; the modes axy be of value to users interested in making modal comparisons and in xpphying the resplts preseried here to other problems.

CALCULATION AND RESULTS

Table 1 compares compated and experimental results obtained for the natural frequencies of 2 clamped-clanped steel p!ete. The methods and programs used in the computations wre respective!y described in Appendixes A-H and Appendix I.

The fregaeacies versus mode numbers given in Table 1a for each method are plotted 2s Figare E. The frequencies versus method given in Table 1 b for each mode number are ploised es Figere 2b. Bxpericiental results cited by Izzo are also included in Table 1a.

Figure 3 cospares the effect of clamped-clamped and simply supported boundaries on tibe ribratory response of a plate subject to turbulence excitation. The results were obtained by wing the Warbatoa methed for computing the natural frequencies of clamped-clamped plater (see Apperdixes A and 1 , ard the average of the natural frequencies obtained from the simple frequency expession $\omega_{m a}=\kappa c_{t}\left[\left(\frac{12 \pi}{a}\right)^{2} \div\left(\frac{n \pi}{b}\right)^{2}\right]$ and from Warburtons metzod for simply supported plates in the Maestrello program for vibratory response. Note Whas wee conpater prograse ior the Harburton method given in Appendix I, yields resuits for Botion the clamped-clasiped and she simply supported plates (see pages 97 and 103).

Table 2 sumparizes key features associated uith the basic references. Some of these festures exceed those investigated in tinis paper. They may, however, be of interest to users and investigators who wish to extend the work of the present study.

evaluation

A comparison of the cospputed natural frequencies obtained by several methods (see Table 1 and Figures 2a and 2 b) shows that all of these methods yield frequency results which are in good agreement with each other. Hence on puraly theoretical grounds, any method can be used if the percentage deviation (obtained from the results of Table 1) between the mininum (or maximum)* frequency value and the value computed by the specific method is acceptable for a particular mode.

However, a comparison of the computed and experimental natural frequencies given in Table 12 and Figures $2 a$ and $2 b$ as well as an appreciation of the significant features involved in carrying out a computation lead to a preference for the Warburton method. Using Izzo's experimental results as a standiard the data in the table and figures show that for the modes treated, the maximuin error attributable to the Warburton method is less than 3.0 percent for

[^2]Comparison of Natural Frequencies Computed by Various Methods for a Clamped－Clamped Steel Plate

		\％		증	1	1	1	$\stackrel{\circ}{\text { ¢ }}$	®ั̇	－	1	1	1	1	$\stackrel{\circ}{\text { ¢ }}$	－	1	1	1
5	๕ู	$\stackrel{\stackrel{\rightharpoonup}{\dot{N}}}{\substack{0}}$	$\stackrel{y}{3}$	$\stackrel{\sim}{\text { ® }}$	을	$\stackrel{\text { \％}}{\sim}$	픛	$\underset{~ M}{3}$	$\stackrel{?}{0}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\stackrel{1}{0}}$	铋	$\bar{\square}$	器	\cdot		®i̊	\％	：	1
－	$\stackrel{\text { İ }}{\underset{\sim}{2}}$	$\underset{\sim}{\tilde{E}}$	ت犬	路	$\stackrel{\infty}{2}$	\％	$\stackrel{\sim}{\sim}$	－	$\overline{\dot{\delta}}$	ત્ં	좇	念	$\underset{\sim}{\check{\sim}}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\overline{\bar{m}}}{ }$	\％	²	\％	듣
$\stackrel{+}{\square}$	$\stackrel{\aleph}{\circ}$	芯	N	1	1	1	1	\％	$\stackrel{\circ}{0}$		1	1	1	1		äd	$\stackrel{\sim}{\sim}$	1	－
	$\stackrel{\text { ¢ }}{\substack{\text { ® }}}$	～ํㅜㄹ	$\frac{\mathrm{m}}{3}$	1	1	1	1	－	$\stackrel{\square}{\bar{\circ}}$	$\underset{\infty}{\infty}$	，	1	1	：	㑟	¢	욖	1	，
	®̃	－	令	$\stackrel{\text { 응 }}{ }$	§	$\stackrel{9}{8}$	1	彥	\％	－	䱲	$\stackrel{\text { \％}}{\square}$	シ	1	$\stackrel{\sim}{\sim}$	玉̊ํ．	$\stackrel{\sim}{\sim}$	\％	¢
¢	$\stackrel{\cong}{\substack{\mathrm{m}}}$	$\underset{\sim}{\sim}$	$\stackrel{\infty}{8}$	吕	\％	\＆	$\frac{m}{n}$	$\stackrel{\circ}{\square}$	$\stackrel{\stackrel{3}{3}}{ }$	$\underset{\underset{\sim}{i}}{ }$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\cong}{2}$	骨	$\frac{\infty}{\mathcal{R}}$	$\stackrel{\infty}{\stackrel{\circ}{ \pm}}$	ஃㅇㅀㅇ	．	은	谷
－	$\stackrel{\circ}{\AA}$	－	$\stackrel{\Im}{\hat{3}}$	픙	咅	吕	운	\％	$\stackrel{\Im}{\square}$	－	프제	$\stackrel{\text { ® }}{ }$	－	，	¢ ¢ ¢	¢	글	률	资
				\square		\square	（	$\frac{8}{8}$			$\left(\begin{array}{c} 1 \\ \frac{2}{2} \end{array}\right.$	$\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right.$		$\left[\begin{array}{r} 1 \\ \overbrace{\sim}^{\circ} \\ \hline \end{array}\right.$	\square		를	${ }^{2}$	
$\stackrel{\rightharpoonup}{*}$	－	$\stackrel{-}{\sim}$	$\stackrel{-}{\sim}$	\pm	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{-}$	\approx	$\bar{\sim}$	$\stackrel{\sim}{n}$	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\sim}$	$\stackrel{\rightharpoonup}{\mathrm{i}}$	$\stackrel{-}{\text { m }}$	$\stackrel{\sim}{m}$	$\stackrel{m}{m}$	$\stackrel{\rightharpoonup}{\text { m }}$	\cdots

Table 1a－Computed Natural Frequencies for Plate 1 （Izzo－Electric Boat）with
Dimensions $2.0 \times 2.33 \times 0.0313$ Feet（see Appendix I）

m, n	Wils; (Experimental)	Hearmon*	Warburton	Young**	BollentinePluablee	Greeaspon	White ${ }^{\text {t }}$	Crocker	Son**	$\begin{gathered} \text { Clooscement } \\ \text { Therpe } \end{gathered}$
1,1	541	586	57.9	-	581.0	57.4	581.1	98.6	-	577.0
1.2	137	1439	102	-	1394	1002	1395	1133	-	1398
1,3	248	2\%	207	-	236	267	2646	264	-	2638
2,1	833	904	9128	-	907.2	9123	9021	941.0	-	923.3
2, 2	1567	1730	1714	-	1703	1714	1741	1759	-	1717
2,3	274	3010	2954	-	237	295	2962	3009	-	296
3, 1	1351	143	1474	-	1665	1473	1500	1502	-	1499
3,2	2085	228	241	-	220	200	2276	287	-	2259
3,3	-	3488	3461	-	349	3460	362	3525	-	-
4,1	2107	2286	274	-	2237	2245	-	223	-	230
4.2	2646	2939	288	-	2669	2885	-	3030	-	302

-Results obtoined from Relerence 11. Wiby's experimental results were found to lie be:ween the simply supportad ond folly fixed edge conditions in this reference. Hence, comparison between ireory ond experiment is of linited volue.
${ }^{* *}$ Not computed for this plote but computed for plote in Toble Ia.
${ }^{\dagger}$ See third foomote so Table la.
${ }^{1 t}$ See last foomote to Table Io (Izzo- Wilby).

Table 1b - Computed Natural Frequencies for Plate 2 (Wiiby) with Dimensions $4.6 \times 2.75 \times 0.615$ Inches (see Appendix 1)

$\boldsymbol{\pi}, \boldsymbol{n}$	Wilby* (Experimentel)	Hearmon*	Werburton	Youn3**	Bollentine Pluablee	Greenspon	Waite ${ }^{\dagger}$	Crocker	Sun**	ClocssenThorne
1, 1	1058	925	935.1	-	935.2	934.6	935.8	954.8	-	935
1, 2	2495	2409	2433	-	2439	2432	2435	2464	-	2434
2, 1	1265	1215	1214	-	1211	1214	1236	1249	-	1211
2, 2	2742	2589	2708	-	2706	2709	2781	2756	-	2704
3,1	1723	1727	1711	-	1704	1711	1731	1751	-	1703
3, 2	3140	3165	3174	-	3173	3175	3332	3230	-	3168
4,1	2403	2456	2423	-	2411	2423	-	2465	-	2409
5,1	3321	3392	3341	-	3322	3341	-	3382	-	-

*See first fostnote to Table lb.
**Not computed for this plate but computed for plate in Table la
${ }^{\dagger}$ See third foomote to Toble lo.
${ }^{\dagger t}{ }^{\text {Seee }}$ last footnote to Toble la (Iz20- Willby)

Table 1c - Computed Natural Frequencies for Plate 3 (Wilby) with Dimensions $4.0 \times 2.0 \times 0.015$ Inches (see Appendix I)
Figure 2 - Comparison of Theoretical and Experimontal Natural Froguencias

[^3]

$U_{c}(E T / S E O$	$0(S E Q$
300	145×19^{3}
40	10×10^{-3}
500	0.7×10^{3}

Figure 3 - Modal Mean Square Plate Displacement for Clamped-Clamped and Simply Supported Aluminum Plate
The computer program converts $\left(\frac{\text { Weight }}{\text { Area }}\right)^{2}$ to $\left(\frac{\text { Mass }}{\text { Area }}\right)^{2}$
i.e. $x^{2}=\frac{0.36}{g^{2}}\left(\frac{1 b-\mathrm{sec}^{2}}{\mathrm{ft}^{3}}\right)^{2}$

TABLE 2
Summary of Key Features of Basic References

	$1 \text { Inex }$	边	mined		+m		"-8)		-	
	4omea 4	0	mox	 -mia - 4 Amonaras. 4. 1 m-	$\left\|\begin{array}{l} x-2 x \\ 5 x-\infty \end{array}\right\|$	 		$\cos +2 \times 2 x$		2
xem	4 mmata	\%	\sin	 $1 \times \cos$ 2 Mmهmone I. 1 E. coderomer	Rocoth			cenved		23
sumer	A $-2 . c$	\%		 - thatid - Whe orwhe.		in side monditur 2 Candetas		$\frac{x \cos x}{e_{0} \sin x}$		20
5	400408	$\begin{aligned} & 7 \\ & 0 \\ & x \end{aligned}$	(oxing	 onemula mesue 1 sellubom trex aried etherion 	Moser	 2 Condens. 2 minnurimunan ont and			Cumbernan bede Nin pur ty Gmome	
Wrap	4 man - E	21	$\begin{aligned} & \text { morys } \\ & \text { Finse } \end{aligned}$	 1. minostice 	$x+\infty$	 	 	Steremets.	med monernere ine ans Nocen	C-
Code	Anenter	7		 1. : memoct pixk a Tiren elmaber Hedrovi	x_{5}	2 Saxy wemed ofri. 2 Omperimetetor.		cosenex of	sera be semp new winem as Eblume	
S_{m}	Amenta 6	2		 lomenem m", \|hecturnt 				Comandend	ECony apmes exprowlo och idadit Cmesen ouf metred en metren	4. 5
	Ameena B	0	Fover	chast fomer sern peoco lust homentiden.	10xamber					2

erences

all modes. Thus it is acceptably accurate for many (probably most) applications. In addition, the Warburton program is relatively easy to run on a computer and requires little running time per mode ($\mathbf{1 . 1}$ minutes for $\mathbf{5 0}$ modal frequencies on the IBM 7090); this makes for a relatively inexpensive computation for each frequency.

The error of 3 percent may be exceeded for square plates (see Appendix A), and hence an alternative method of computation may be desirable for this case.

If a computer is not available, calculation of the natural frequencies for a finite rectangular clamped-clamped plate can be performed manually by any of several methods presented, using closed form analytical or nomographic or graphical computations (see Appendixes A-F, Appendix H, and Taole 2).

The frequencies of clamped-clamped thin plates with cylindrical curvature can be obtained by use of the Ballentine-Plumblee method.

The frequencies of thin plates with clamped and rotational supports can be obtained by use of the White method (Appendix E) or by an extension of the Greenspon method (Appendix D) givén in Reference 12.

Figure 3 shows chat at the convection velocities considered, the value of the modal mean square displacement for any mode of clamped plates subject to turbulence excitation is less than the corresponding value for simply supported plates. The difference in the plate response corresponding to the two boundary conditions increases with convection velocity for any mode, but, the difference is relatively constant at higher convection velocities in the region of maximum response.

The nature of the curves in Figure 3 suggests that at low convection velocitics ($U_{c} \leq$ $300 \mathrm{fl} \mathrm{s}^{\mathrm{s} e c}$), the difference between the response of a clamped-clamped and a simply supperted plate is significantly greater for the lower mode ($m, n=\mathbf{5}, 1$) than for the higher mode ($m, n=$ 7, 1). It appears from this result that the statement previously made, namely, that the effeci of the boundary conditions on the =atural frequencies of a plate diminishes with increasing frequency (or mode number), can be extended to include a diminishing influence of boundaries on the higher mode response to turbulence at low convection velocities. For very low convection velosities, the trend of the curves suggests that the concept is also applicable to the lowest modes.

The magnitude of the curves indicates that the contribution of the higher mode to the total response is not negligible for either boundary condition, i.e., the contribution of the $(7,1)$ mode to the total response is of the same order of magnitude as that of the $(5,1)$ mode for a given boundary condition. Thus, determination of the total response requires that the computations include the contribution of the several modes of vibration deemed to be signińcesnt.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on the results of the present investigation.

1. For computing the vibroacoustic response ${ }^{1}$ of thin clamped-clamped rectangular plates, the modes and natural frequencies are adequately represented when the modal frequencies are calculated by considering the true (clamped-clamped) end conditions but using the mode shapes considering the end conditions to be simple supports.
2. For a thin, finite, rectangular clamped-clamped plate, the Warburton method of computation (including computer program) of the natural frequencies is acceptably accurate. For this reason as well as for its relative simplicity, short running time, and inexpensiveness in computer application, it is preferred to the other computer methods.
3. If a computer is unavailable, any of the manual methods of computation presented in Appendixes $A-F$ and H can be used. The results shown in Table la indicate the degree of accuracy to be expected from a particular method. Moreover, as shown in the tables and discussed in the Appendixes, because of the limited data available, certain methods are applicable for only a limited range of mode numbers.
4. For clamped thin plates with cylindrical curvature, the Ballentine-Plumblee method (Appendix C) should be used to obtain the natural frequencies.
5. For thin rectangular plates with clamped and rotational supports, the White method (Appendix E) or the extension of the Greenspon method (Appendix D) given in Reference 12 should be used to obtain the natural frequencies.
6. The effect of the boundary conditions on the natural frequencies of a plate and on the response of a plate subject to turbulence excitation at low convection velocities diminishes with increasing frequency (or mode number).

ACKNOWLEDGMENTS

The authors acknowledge the assistance of various individuals who contributed to the successful completion of this project: Mr. G. J. Franz, Mr. G. Gleissner, and Dr. E. Cuthill for supervisory aid and encouragement; Mr. D. Gignac for mathematical assistance on the Young program; Dr. H. E. Plumblee, Jr. of Lockheed-Georgia Company, Dr. R. W. White of Wyle Labs, and Dr. B. C. S. Sun of the University of Illinois and Mr. N. DeCapua of the Newark College of Engineering, for assistance with their respective programs. Dr. Sun and Mr. DeCapua also performed some computations for the authors on their computer using, the Sun program.

APPENDIX A

THE WARBURTON METHOD

NOTATION

A	Amplitude
a, b	Length and width of sides of rectanguiar plate along x - and y-directions respectively
c, k	Ratios in expression for displacement
E	Young's modulus
$f, f_{m n}$	Frequency, modal frequency
G_{x}, H_{x}, J_{x}	Functions of m in frequency expression
G_{y}, H_{y}, J_{y}	Functions of n in frequency expression
g	Acceleration due to gravity
h	Thickness of plate
m, n	Mode numbers in x - and y-directions, respectively
T	Kinetic energy
t	Time
U	Potential or strain energy
W	Waveform defined by Equation (A2) or amplitude of displacement w, i.e., $w=W \sin w t$
w	Transverse displacement of a point on the plate
x, y	Coordinate distances in plane of plate
γ, ϵ	Factors in amplitude expression defining modal pattern
θ, ϕ	Functions of x and y, respectively, defining waveform
λ	Nondimensional frequency factor defined by Equation (A8)
ρ	Weight per unit volume of plate
σ	Poisson's ratio
ω	Circular frequency, equal to $2 \pi f$

15
Preceding page blank

DESCRIPTION

Usiag thin piave theory, farburton ${ }^{13}$ derived an approximate frequency formulation for 2ll wodes of ribratioa by applying the Rayleigh method and by essuming that the waveforms of trenstersely vibrasing rectanguler plates and beams are similar. For a fully clamped pleae, tie wrefore is wssand to be the product of the characteristic functions (discussed below) for swo beses with fixed ends. The plates are assumed to be isotropic, elastic, free fron applied lozds, and with a thickness that is both uniform and small compared to the wruelength. Tte frequeacy is expressed in terms of boundary conditions, the modal pattern, sEe dinemsions of the plate, and the coastants of the material. Because of the imposition of sdeditionsl cossuraidts on the systea required by the Rayleigh method, the resulting frequencies zre bigier tean tionse givea by an exact analysis. To use this method, the modal patterms mast consisi of lines approximately parallel to the sides oi the plate. This requiremeot is sabisfied for clesped reciangular plates, and the errors are small. The exceptions mad $\begin{gathered}\text { beir effect on frequency essociated with some modes of square plates are discussed in }\end{gathered}$ Reíeremee 13.

DERIVATION

Tre komogeneoas equerica for a freely vibrating thin plate is ${ }^{14}$

$$
\begin{equation*}
\frac{\partial^{4} \varepsilon}{\partial z^{4}}=2 \frac{\partial^{4} \varepsilon}{\partial z^{2} \partial y^{2}} \div \frac{\partial^{4} v}{\partial y^{4}} \div \frac{i 2 \rho\left(1-\sigma^{2}\right)}{E g h^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0 \tag{A1}
\end{equation*}
$$

TEe solation of Equation (A1) is assumed to have the form of a product of separable soiations.

$$
\begin{equation*}
x(x, y, t)=F \sin \omega t=A \theta(x) \dot{\rho}(y) \sin \omega t \tag{A2}
\end{equation*}
$$

(The wotion in each mode is $w_{m n}(x, y, t)=H_{m n} \sin \omega_{m n} t=A_{m n} \theta_{m}(x) \phi_{n}(y) \sin \omega_{m n} t$ where the aciual $A_{z z}$ may be obtained from measurements.) Here $\theta(x), \phi(y)$, the characteristic beam functions or mode shapes whick satisfy the boundary conditions for plates with fixed edges ($x=\frac{\partial w}{\partial z}=0$ at $x=0, a$ and $w=\frac{\partial w}{\partial y}=0$ at $y=0, b$) are assumed as follows (m and n are node numbers and correspond to $m-1$ and $n-1$ modes respectively; see footnote at end of this Appendix).

$$
\begin{align*}
& \partial(x)=\cos \gamma\left(\frac{x}{a}-\frac{1}{2}\right) \div k \cosh \gamma\left(\frac{x}{a}-\frac{1}{2}\right) ; m=2,4,6 \tag{A3a}\\
& \theta(x)=\sin \gamma^{\prime}\left(\frac{x}{a}-\frac{1}{2}\right)+k^{\prime} \cdot \sinh \gamma^{\prime}\left(\frac{x}{a}-\frac{1}{2}\right) ; m=3,5,7 \tag{A3b}
\end{align*}
$$

where* $k=\frac{\sin \frac{\gamma}{2}}{\sinh \frac{\gamma}{2}}$ and $\tan \frac{\gamma}{2}+\tanh \frac{\gamma}{2}=0$ in Equation (A3a)
and $\quad k^{\prime}=-\frac{\sin \frac{y^{\prime}}{2}}{\sinh \frac{\gamma^{\prime}}{2}}$ and $\tan \frac{\gamma^{\prime}}{2}-\tanh \frac{\gamma^{\prime}}{2}=0$ in Equation (A3b).
The corresponding expressions for $\phi(y)$ are obtained by substituting y, b, ϵ, and c for x, a, γ, and k, respectively.

For a rectangular plate, the potential and kinetic energies are respectively given by ${ }^{15}$

$$
\begin{gather*}
U=\int_{0}^{a} \int_{0}^{b} \frac{E \hbar_{2}^{3}}{12\left(1-\sigma^{2}\right)}\left[\left(\frac{\partial^{2} w}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} w}{\partial y^{2}}\right)^{2}+2 \sigma \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}+2(1-\sigma)\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}\right] d x d y \tag{A3c}\\
T=\int_{0}^{a} \int_{0}^{b} \frac{1}{2} \frac{\rho h}{g}\left(\frac{\partial w}{\partial t}\right)^{2} d x d y \tag{A4}
\end{gather*}
$$

and the maximum values of these quantities are

$$
\begin{align*}
& U_{\max }=\frac{1}{2} \cdot \frac{E h^{3}}{12\left(1-\sigma^{2}\right)} \int_{0}^{a} \int_{0}^{b}\left[\left(\frac{\partial^{2} W}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} W}{\partial y^{2}}\right)^{2}+2 \sigma \frac{\partial^{2} W}{\partial x^{2}} \frac{\partial^{2} W}{\partial y^{2}}\right. \\
&\left.+2(1-\sigma)\left(\frac{\partial^{2} W}{\partial x \partial y}\right)^{2}\right] d w d y \tag{A5}\\
& T_{\max }=\frac{1}{2} \frac{\rho h \omega^{2}}{g} \int_{0}^{a} \int_{0}^{b} W^{2} d x d y \tag{A6}
\end{align*}
$$

[^4]Equating $T_{\max }$ and $U_{\max }$ as reqrired by the Rayieigh method, we have

$$
\begin{equation*}
\dot{w}^{2}=\frac{U_{\max }}{\frac{\rho h}{2 g} \int_{0}^{a} \int_{0}^{3} W^{2} d x d y} \tag{A7}
\end{equation*}
$$

By the Kayleigh principle, if a suitable waveform $W=A \theta(x) \phi(y)$ is assumed and approximately satisfies the boundary conditions, the resulting frequency value is slightly higher than the true value because the assumpion of an incorrect waveform is equivalent to the introduction of constraints in the system.

Substituting the expressions for the characteristic beam functions θ_{x} and ϕ_{y} given by Equations (A3a) and (A3b; which satisfy the boundary conditions for the clamped plate, into Equations (A2) and (A7), the following expression for the approximate frequency is obtained

$$
\begin{equation*}
f=\sqrt{\frac{\pi^{4} E h^{2} g}{4 \pi^{2} \rho a^{4} 12\left(1-c^{2}\right)}} \tag{A8}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda^{2}=G_{x}^{4}+G_{y}^{4} \frac{a^{4}}{b^{4}}+\frac{2 a^{2}}{b^{2}}\left[\sigma H_{x} H_{y}+(1-\sigma) J_{x} J_{y}\right] \tag{A9}
\end{equation*}
$$

Here coefficients $G_{x}, G_{y}, F_{x}, H_{y}$, and J_{y} depend on the modal pattern and boundary conditions.* Values of these coefficients are

$$
\begin{gathered}
G_{x}= \begin{cases}1.056 & \text { for } m=1 \\
m-1 / 2 & \text { for } m=2,3,4 \ldots\end{cases} \\
G_{y}= \begin{cases}1.056 & \text { for } n=1 \\
n-1 / 2 & \text { for } n=2,3,4 \ldots\end{cases} \\
H_{z}=J_{x}= \begin{cases}1.248 & \text { for } m=1 \\
(m-1 / 2)^{2}\left[1-\frac{2}{(m-1 / 2) \pi}\right] & \text { for } m=2,3,4, \ldots\end{cases} \\
H_{y}=J_{y}= \begin{cases}1.248 & \text { for } n=1 \\
(n-1 / 2)^{2}\left[1-\frac{2}{(n-1 / 2) \pi}\right] & \text { for } n=2,3,4, \ldots\end{cases}
\end{gathered}
$$

*In Reference $13, m$ refers to the number of nodes along the plate length and hence to $m-1$ modes. In the present paper, however, m refers to the mede number. The letter notation is more common and is consistent with the notation used by Maestrello and other investigators. This definition for η is now reflected in the numerical values of m used in computing the coefficients G_{x}, H_{x}, J_{x} whereas the values io: m used previcusiy (Equations (A3a) and (A3B)) correspend to the Warburton definition in Reference 13. A similar situation holds for n.

Hence for a given m, n mode and $\frac{a}{b}$ ratio, we obtain the appropriate value of the coefficients for use in determining i^{2} from Equation (A9). For a given ratio a / b, the corresponding approximate frequency is found from Equation (A8) to be

$$
\begin{equation*}
f=\frac{\lambda h \pi}{a^{2}}\left[\frac{E g}{48 \rho\left(1-\sigma^{2}\right)}\right]^{1 / 2} \tag{A10}
\end{equation*}
$$

For mode numbers $m n, \lambda \equiv \lambda_{m n}$ and $f \equiv f_{m n}$ and $\omega \equiv \omega_{m n} \equiv 2 \pi f_{m n}$. The corresponding mode shape is then $W_{m n}=A_{m n} \theta_{m}(x) \phi_{n}(y)$.

APPENDIX B

THE YOUNG METHOD

NOTATION

$A_{m n}$	Coefficient used in series representation of deflection
a, b	Length and width of plate along x - and y-directions, respectively
$c_{m n}^{(i k)}$	Coefficients
D	Bending stiffness of a plate equal to $E h^{3} / 12\left(1-\mu^{2}\right)$
E	Modulus of elasticity
$\left.\begin{array}{ll} E_{m i}, & F_{k n} \\ H_{i m}, & K_{k n} \end{array}\right\}$	Definite integrals
f	Frequency
H	Poisson's ratio
h	Thickness of plate
$\begin{aligned} & i, k \\ & m, n \end{aligned}$	
p, q	Positive integers
r, 8	
1	Length of beam
V	Elastic strain energy of bending of a plate
w	Lateral deflection of plate
X_{m}	Function of x alone
x, y	Rectangular coordinates
Y_{n}	Function of y alone
$\boldsymbol{\alpha}_{\boldsymbol{r}}$	Parameter in expressions for $\phi_{\boldsymbol{r}}$
$\delta_{m n}$	Kronecker delta
ϵ_{r}	Parameter in expressions for $\phi_{\boldsymbol{r}}$
	21
	Preceding page blank

λ
Characteristic value equal to $\frac{\omega^{2} \rho h a^{3} b}{D}$
Poisson's ratio
$\rho \quad$ Mass density of plate material
$\%_{r} \quad$ Characteristic function of a vibrating beam
ω
Angular frequency equal to $2 \pi f$

DESCRIPTION

Young ${ }^{16}$ uses the Ritz method to obtain approximate solutions for the frequencies and modes of vibration of thin, homogeneous plates of uniform thickness; the frequencies calcuiated by the Bitz procedure are always higher than the exact values. To represent the plate deflection, Yonng trests combinations of the characteristic functions which define the normal modes of vibration for a uniform bean. He computes and tabulates values of thase functions as well as associated integrais and derivatives of the functions. Wifa une aid of these tables, the user can set up and solve the necessary equations wit上 reasonable effort. A simple iteration procedure is used to solve the equations.

DERIVATION

The maximam potential and kinetic energies for a harmonically vibrating uniform plate are, respectively (see Appendix A),

$$
\begin{equation*}
V=\frac{D}{2} \iint\left[\left(\frac{\partial^{2} w}{\partial x^{4}}\right)^{2}+\left(\frac{\partial^{2} w}{\partial y^{2}}\right)^{2}+2 \mu \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} s o}{\partial y^{2}}+2(1-\mu)\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}\right] d x d y \tag{B18}
\end{equation*}
$$

$$
\begin{equation*}
T=\frac{p h v^{2}}{2} \iint v^{2} d x d y \tag{B1b}
\end{equation*}
$$

Equating these expreissions, we obtain

$$
\begin{equation*}
\omega^{2}=\frac{2}{\rho h} \frac{V}{\iint w^{2} d x d y} \tag{B2}
\end{equation*}
$$

The Ritz method consists of assuming the deflection $w(x, y)$ as a linear series of "admissible" functions and adjusting the coefficients in the series so as to minimize Equation (B2). For rectangular plates with edges parallel to the x - and y-axes, Young represents wh the following approximate series:

$$
\begin{equation*}
w(x, y)=\sum_{m=1}^{p} \sum_{n=1}^{q} A_{m n} X_{m}^{(x)} Y_{n}^{(y)} \tag{B3}
\end{equation*}
$$

Each function $X_{m} Y_{n}$ must be admissible, i.e., it must satisfy the so-called artificial boundary conditions which are the prescribed values for the deflection and for the slope. It need
not satisfy any natural toundary conditions which require that second or third derivatives or combinations thereof vanish at the boindary. Satisfaction of these latter conditions, if possible, is desirable however in accradance with practical consideration of the rate of sonvergence.

Substitating for $w(x, y)$ in I?quation (B2) using Equation (B3) and minimizing the righ:-hand side by taking the partinl derivative with respect to each coefficient $\mathcal{A}_{\text {man }}$ and equating to zero, we obtain a set oi inear homogeneous equations in the axknown $\boldsymbol{k}_{\text {man }}$ each of which lias the form

$$
\begin{equation*}
\frac{\partial V}{\partial A_{i k}}-\frac{\sigma^{2} p h}{2} \frac{\partial}{\partial A_{i k}} \iint w^{2} d x d y=0 \tag{B4}
\end{equation*}
$$

where $A_{i k}$ is any one of the coefficients $A_{m n}$. The natural frequancies ω_{1}, ω_{2} are determined from the condition that the determinant of the system must rsnish.

For a clamped-clanped bear, the infinite set of elaracterisicic functions is given by

$$
\begin{equation*}
\dot{o}_{r}=\cosh \frac{\epsilon_{r} x}{\ell}-\cos \frac{\epsilon_{r} x}{\ell}-\alpha_{r}\left(\sinh \frac{\epsilon_{r} x}{\ell}-\sin \frac{\epsilon_{r} x}{2}\right) \ldots t=1,2,3 \ldots, \tag{B5}
\end{equation*}
$$

(The method for determining the set of characteristic functions which define the normal modes is given in References 15 and 17.)

The numerical values of α_{r} and ϵ_{r} for each set of functions is given in Table 3. Reference 8 tabulates values of these functions to five decimal places at intervals of the argument $\frac{x}{\ell}=0.02$.

The function ϕ_{r} given by Equation (B5̄) satisfies both the boundary (i.e., end) conditions for the clamped-clamped beam $\phi_{r}=\frac{d \phi_{r}}{d x}=0$ at $x=0, \ell$ and the differential equation for the beam $\frac{d^{4} \phi_{r}}{d x^{4}}=\frac{\epsilon_{r} \phi_{r}}{\ell^{4}}$. Also any set of functions ϕ_{r} and ϕ_{S} are orthogonel for $0 \leq x \leq$ \& , i.e.,

$$
\left.\begin{array}{rlr}
\int_{0}^{\ell} \phi_{r} \phi_{s} d x & =\ell & (\text { for } r=s) \tag{B6}\\
& =0 & (\text { for } r \neq s)
\end{array}\right\}
$$

The second derivatives of the functions of the set are also orthogonal and satisfy the relations

$$
\left.\begin{array}{rl}
\int_{0}^{\ell} \frac{d^{2} o_{s}}{d x^{2}} \frac{d^{2} o_{s}}{d x^{2}} d x & =\frac{\epsilon_{r}^{4}}{\ell^{3}} \quad(\text { for } r=s) \tag{BT}\\
& =0 \quad(\text { for } I \neq s)
\end{array}\right\}
$$

Numerical values of ϵ_{r}^{4} are given in Table 3. In addition to the integrals defined by Equations (B6) and (B7), the Ritz method also requires evaluation of the integrals

$$
\int_{0}^{\ell} \dot{o}_{5} \frac{d^{2} \dot{o}_{s}}{d z^{2}} d x \text { and } \int_{0}^{\ell} \frac{d \dot{o}_{s}}{d x} \frac{d \dot{o}_{s}}{d x} d x
$$

Table 4 gives the values of these integrals computed by Young.
The characteristic functions are those that are used for X_{z} and Y_{E} in Equation (B3). Consider a rectangular plate bounded by the lines $z=0, z=a, y=0, y=b$. When the function is used for X_{m}, we tak $\mathcal{\ell}=\sigma_{j}$ if used for Y_{z}, we take $\mathcal{\ell}=\delta$ and replace x by y. Appiopriate changes of the subscripts r and s to either m and i or to n and k are to be made in the set of functions.

It is convenient to introduce the following notation:

$$
\begin{align*}
& E_{i m}=a \int_{0}^{a} X_{i} \frac{d^{2} X_{m}}{d x^{2}} d x, \quad E_{m i}=a \int_{0}^{c} X_{m} \frac{d^{2} X_{i}}{d x^{2}} d x \tag{B8}\\
& F_{k n}=b \int_{0}^{b} Y_{k} \frac{d^{2} Y_{n}}{d y^{2}} d y, \quad F_{i k}=b \int_{0}^{b} Y_{n} \frac{d^{2} Y_{k}}{d y^{2}} d y \tag{B9}\\
& H_{i m}=a \int_{0}^{b} \frac{d X_{i}}{d x} \frac{d X_{m}}{d x} d \approx, \quad K_{k n}=b \int_{0}^{b} \frac{d Y_{k}}{d y} \frac{d Y_{n}}{d y} d y \tag{B10}
\end{align*}
$$

Since the appropriate ϕ-functions are to be used for X_{m} and Y_{n}, the numerical value of these integrals can be obtained directly from the data given in Table 4.

From Equations (B1a) and (B3) and the orthogonality relations (Equations (B6) and (B7)), the set of Equations (B4) can be reduced to the form

$$
\begin{equation*}
\sum_{m=1}^{p} \sum_{n=1}^{q}\left[C_{m n}^{(i k)}-\lambda \delta_{m n}\right] A_{m n}=0 \tag{B11}
\end{equation*}
$$

TABLE 3
Values of α_{r} and ϵ_{F}

Type of Bean	r	α_{r}	ϵ_{r}	ϵ_{r}^{4}
Clamped	1	0.98250222	4.7300408	500.564
Clamped	2	1.00077731	7.8532046	3803.537
	3	0.99996645	10.9956078	14617.630
	4	1.00000145	14.1371655	39943.799
	5	0.99599994	17.7787596	89135.407
	6	1.00000000	20.4203522	173881.316
	$r>6$	1.0	$(2 r+1): / 2$	

TABLE 4
Integrals of Characteristic Functions of Clamped-Clamped Beam
Values of $\ell \int_{0}^{\ell} \frac{d \dot{\varphi}_{r}}{d x} \frac{d \dot{o}_{a}}{d x} d x$

a 1 2 3 4 5 6 1 1230262 0 -9.73079 0 -7.61544 0 2 0 46.05012 0 -17.12892 0 -15.19457 3 -9.73079 0 98.90480 0 -24.34987 0 4 0 -17.12892 0 171.58566 0 -31.27645 5 -7.61544 0 -24.34987 0 263.99798 0 6 0 -15.19457 0 -31.27645 0 376.15008 NOTE: $\int_{0}^{l} \phi_{r} \frac{d^{2} \phi_{a}}{d x^{2}} d x=-\int_{0}^{l} \frac{d \phi_{r}}{d x} \frac{d \phi_{a}}{d x} d x$

where

$$
\begin{equation*}
\lambda=\frac{\omega^{2} \rho h a^{3} b}{D} \tag{B12}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
\delta_{m n} & =1 \quad \text { for } m n=i k \\
& =0 \quad \text { for } m n \neq i k
\end{array}\right\}
$$

and

$$
\begin{equation*}
C_{m n}^{(i k)}=\mu \frac{a}{b}\left[E_{m i} F_{k n}+E_{i m} F_{n k}\right]+2(1-\mu) \frac{a}{b} H_{i m} K_{k n} \tag{B13}
\end{equation*}
$$

which is valid for $m n \neq i k$. For $m n=i k$, the coefficient is

$$
\begin{equation*}
C_{i k}^{(i k)}=\frac{b}{a} \epsilon_{i}^{4}+\frac{a^{3}}{b^{3}} \epsilon_{k}^{4}+2 \mu \frac{a}{\dot{b}} E_{i i} F_{k k}+2(1-\mu) \frac{a}{3} H_{i i} K_{k k} \tag{B14}
\end{equation*}
$$

In Equation (B14), ${ }_{i}$ is to be taken from the data in Table 3 corresponding to the ϕ-function that represents X_{m}, whereas ϵ_{k} is to be taken from data for the ϕ-function that represents Y_{n}.

There will be one equation of the type (B11) for each of the $p \cdot q$ combinations of $i k$. In general, ${ }^{*}$ an iterative procedure ${ }^{18}$ is used to find the characteristic values of λ from the condition that the determinant of this system of equations must vanish. Results for a clamped square plate are given in Reference 16.

[^5]
APPENDIX C

the gallentine-plumblee method

NOTATION

A	Simple panel aspect ratio; ratic of arc length to straight edge length
a	Midplane radius of simple panel
b	Panel arc length
E	Young's modulus for isotropic material
h	Simple panel thickness
1	Panel length (for simple and sandwich panel)
q_{T}	Generalized coordinate
T	Kinetic energy
t	Length to thickness ratio for simple panel
U	Strain energy
$U_{m n}$	Generalized coordinate
U_{0}	Strain energy density
u	Midplane displacement in x-direction
$V_{m n}$	Generalized coordinate
v	Midplane displacement in y-direction
w	Midplane displacement in radial, z-direction
$X_{m}(x)$	Mode shape for x-coordinate
x	Shell midplane coordinate
$Y_{n}(y)$	Mode shape for y-coordinate
y	Cuell midplane coordinate, $y=a \phi$
2	Shell midplane coordinate through thickness
$\boldsymbol{\alpha}_{m}$	Constant appearing in clamped mode function

$\beta_{\text {za }}$	Constant appearing in mode function
r	Constant appearing in mode function
ϵ_{i}	Strein
${ }^{\theta}=$	Constant appearing in clamped mode function
λ	Nondimensicnal frequency
ν	Poisson's ratio for isotropis material
ρ	Mess density
σ_{i}	Stress
$\stackrel{\square}{9}$	Angle which defines sylindrical coordinate y (generalized coordinate)
ω	Circular frequency
11	Row matrix
11	Column matrix
[]	Rectangular matrix
1J	Diagonal mrtrix

DESCRIPTION

Ballentine ${ }^{19}$ uses the Rayleigh-Ritz energy method for finding the frequencies and normal modes of a cylindrically curved panel with clamped edge conditions*; the results include those for the flat plate. For clamped edges, inexact mode functions which satisfy only the geometric boundary but not the differential equations are used. The analysis assumes that the material is linearly elastic and orthotropic and that the panel thickness is much less than the major panel dimensions, i.e., the elasticity theory of thin shells is applicable. Only the main analytical steps and chief results are discussed here. The reader interested in studying the associated details of matrix manipulation is referred to Reference 19.

derivation

The total strain energy U of the curved plate (Figure 4) obtained by integrating the strain energy density U_{0} over the volume of the plate
is

$$
\begin{equation*}
U=\int_{0}^{b} \int_{0}^{\ell} \int_{-\frac{h}{2}}^{\dot{+}} U_{0} d z d x d y \tag{C1}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{0}=\frac{1}{2}\left\{\sigma_{i}\right\rfloor\left\{\epsilon_{i}\right\} \tag{C2}
\end{equation*}
$$

σ_{i} is expressed in terms of strain ϵ_{i} and hen the strain in terms of displacements which are represented by

$$
\begin{align*}
& u=\Sigma \Sigma \frac{1}{\beta_{m}} U_{m n} X_{m}^{\prime}(x) Y_{n}(y) \\
& v=\Sigma \Sigma \frac{1}{\gamma_{n}} V_{m n} X_{m}(x) Y_{n}^{\prime}(y) \tag{C3}\\
& w=\Sigma \Sigma W_{m n} X_{m}(x) Y_{n}(y)
\end{align*}
$$

[^6]

Figure 4 - Curved Panel Coordinate System
which can be expressed in matrix form. The boundary conditions for a curved plate with clamped edges are

$$
\left.\begin{array}{l}
w(0, y)=w(\ell, y)=w(x, 0)=w(x, b)=0 \tag{C4}\\
w_{x}(0, y)=w_{x}(\ell, y)=w_{y}(x, 0)=w_{y}(x, b)=0 \\
v(0, y)=v(\ell, y)=v(x, 0)=v(x, b)=0 \\
u(0, y)=u(\ell, y)=u(x, 0)=u(x, b)=0
\end{array}\right\}
$$

The assumed mode shapes for a plate with clamped edges are

$$
\left.\begin{array}{l}
X_{m}(x)=\operatorname{Cosh} \beta_{m} x-\operatorname{Cos} \beta_{m} x-\alpha_{m}\left(\operatorname{Sinh} \beta_{m} x-\sin \beta_{m} x\right) \\
Y_{n}(y)=\operatorname{Cosh} \gamma_{n} y-\operatorname{Cos} \gamma_{n} y-\theta_{n}\left(\operatorname{Sinh} \gamma_{n} y \sim \sin \gamma_{n} y\right) \tag{5}
\end{array}\right\}
$$

where

$$
\begin{aligned}
\alpha_{m} & =\frac{\operatorname{Cosh} \beta_{m}^{\ell}-\cos \beta_{m}^{\ell}}{\operatorname{Sinh} \beta_{m} \ell-\sin \beta_{m}^{\ell}} \\
\theta_{n} & =\frac{\operatorname{Cosh} \gamma_{n} b-\cos \gamma_{n} b}{\operatorname{Sinh} \gamma_{n} b-\sin \gamma_{n} b}
\end{aligned}
$$

and β_{m} and γ_{n} are determined from

$$
\left.\begin{array}{l}
\operatorname{Cosh} \beta_{n i} \ell \cos \beta_{m} \ell=1 \tag{C6}\\
\operatorname{Cosh} \gamma_{n} b \cos v_{n} b=1
\end{array}\right\}
$$

The kinetic energy of the vibrating plate obtained by integrating the product of mass and one-half velocity squared over the volume of the plate is

$$
\begin{equation*}
T=\frac{\rho}{2} \int_{0}^{b} \int_{0}^{\ell} \int_{-\frac{h}{2}}^{\frac{h}{2}}\left(\dot{u}^{2}+\dot{v}^{2}+\dot{w}^{2}\right) d z d y d x \tag{C7}
\end{equation*}
$$

where $\dot{u}, \dot{v}, \dot{w}$ can be expressed in matrix form using Equation (C3).
U and T are now substituted in the Lagrange equation of motion to obtain an equation for the natural modes of vibration which can be written in the form

$$
\begin{equation*}
\left[[K]-\omega^{2} \rho h[J]\right]\left\{q_{r}\right\}=0 \tag{C8}
\end{equation*}
$$

where the terms in the $[K]$ and $[J]$ matrices are given in Reference 19. This equation can be solved for the modal frequencies.

Reference 19 indicates that inasmuch as the integrals of $X_{p}^{\prime} X_{m}^{\prime}, X_{p}^{\prime \prime} X_{m}$ and $X_{p} X_{m}^{\prime \prime}$ (which were used in detiving the terms in $[K][J]$) for clamped edge conditions are nonzero when $p \neq m$ then the analysis does not display the desired orthogonality between the modes. However, a numerical analysis for one of the test panels used in the reference program showed insignificant differences when compared to a numerical analysis which assumed orthogonality. A complete investigation of the effects of including this nonorthogonality relationship has not been evaluated because of computer time requirements. Finally a simplification of considerable interest to the orthotropic curved panel frequency analysis occurs, provided the modal integrations are taken to be orthogonal and the material is isotropic. In this case the modes are uncoupled, and assuming that

$$
\begin{equation*}
\frac{h^{2}}{a^{2}} \ll 1 \tag{C9}
\end{equation*}
$$

we find that the determinant of the coefficients is

$$
\left.\begin{array}{l}
\left|[G]-\lambda^{2}[L]\right|=0 \tag{C10}\\
{[K]=\frac{E h^{3}}{\ell^{2}\left(1-\nu^{2}\right)}[G]} \\
{[J]=\ell b[L]} \\
\lambda^{2}=\frac{\rho \ell^{3} b\left(1-\nu^{2}\right)}{E \hbar^{2}} \omega^{2}
\end{array}\right\}
$$

and
where the terms in [G] and [L] are given in Reference 19. Equation (C10) can be solved for the modal frequencies.

If $a=\infty$ (flat plate, $\phi=\frac{b}{a}=0$), then the 3×3 matrix is reduced to a 2×2 matrix and one equation in terms of i^{2} in the 3,3 position. The equation resulting from the 3,3 element yields the flat plate flexural modes, whereas the 2×2 matrix gives the in-plane or longitudinal vibration modes.

Some important simplifications can be made in the frequency theory if the angle which the panel subtends is small. For angles ϕ less than 0.2 radians, the frequency of flexural vibration can be approximated by the following equation when all edges are clamped:

$$
\begin{equation*}
\lambda^{2}=41.7 A+\frac{25.2}{A}+\frac{41.7}{A^{3}}+\frac{t^{2} \phi^{2}}{A} ; \phi<0.2 \text { radians } \tag{C11}
\end{equation*}
$$

where $A=\frac{b}{\ell}, \phi=\frac{b}{a}$, and $t=\frac{\ell}{h}$.

It follows from the foregoing equations that the ratio of the curved panel frequency to that of the infinite panel for the 1,1 mode of vibration is

$$
\left(\frac{\omega_{11 c}}{\omega_{11 \infty}}\right)^{2}=1+\frac{C(A t \rho)^{2}}{A^{4}+C .61 A^{2}+1}
$$

where the theoretical value of C is 0.024 for clamped edges.
The frequency analysis for isotropic curved panels with no coupled modes, Equation (C10), has been programmed in Fortran language for solution on the iBM 360/91 at the Applied Physics Laboratory of Johns Hopkins University. The equations are nondimensionalized in terms of three independent variables A, ϕ, t and the dependent variable which is nondimensional frequency. Calculation of the frequency for clamped plaite was made over the following range of variables:

$$
\begin{gathered}
0 \leq \frac{b}{a}=\phi \leq 3.14 \\
20 \leq \frac{\ell}{h}=t \leq 1000 \\
0.5 \leq \frac{b}{\ell}=A \leq 2.0
\end{gathered}
$$

For particular values of aspect ratio A, nondimensional frequency is plotted for six modes and six values of length-to-thickness ratio. Figures 5 to 9 give clamped edge frequencies.* Once nondimensional frequency is found, the actual frequency can be determined irom the nomogram shown in Figure 10.

As an example, the natural frequencies of a clamped, curved panel calculated in Reference 19 are presented. The panel dimensions are

Radius $a=100 \mathrm{in}$.
Arc length $b=10 \mathrm{in}$.
Length, $\ell=20 \mathrm{in}$.
Thickness $h=0.05 \mathrm{in}$.
The nondimensional ratios are:

$$
\begin{aligned}
A & =0.5 \\
\phi & =0.1 \\
t & =400
\end{aligned}
$$

[^7]

Figure 5 - Nondimensional Frequency Solutions, Clamped Edges, $A=0.50$

Figure 6 - Nondimensional Frequency Solutions, Clamped Edges, $A=0.67$

Figure 7 - Nondimensional Frequency Solutions, Clamped Edges, $A=1.00$

Figure 8 - Nondimensional Frequency Soiutions, Clamped Edges, $A=1.50$

Figure 9 - Nondimensional Frequency Solutions, Clamped Edges, $A=2.00$
Z1У3H NI גJNEnOヨ8.

응

Table 5 shows values of λ for the different combinations of mode number. These values were taken from Figure 5 for $A=0.50$. The frequencies converted through the use of the nomogram are also displayed in Table $\mathbf{5}$.

TABLE 5

Natural Frequencies for Sample Problem

m	n	λ	f
1	1	51	300
1	2	65	382
1	3	101	594
2	1	54	318
2	2	71	418
3	1	61	359

APPENDIX D

THE GREENSPON METHOD

NOTATION

A_{P}
a
\dot{j}
b / a
D
dA
E
h
n
p_{r}
$p_{i j}$
q_{m}
s
t
w
${ }^{2}$
X_{i}, Y_{j}
$\alpha_{i} \cdot \alpha_{j}$
β_{i}, β_{j}

> Area of plate
> Width of plate
> Length of plate
> Aspect ratio

Plate modulus $=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}$
Differential elemert of area
Modulas of elasticity of plate material
Thickness of plate
Distance in direction normal to boundary of a flat plate of arbitrary shape (has dimensions of length); n lies in plane of plate

Circular frequency of r th mode of vibration
Circular fiequericy of $i j$ th mode of vibration
A function of time such that $w=w_{m} q_{m}$ satisfies the homogeneous plate equation $D \nabla^{4} w \div \rho h \frac{\partial^{2} w}{\partial i^{2}}=0$

Distance in Jirection of boundaty of a flat plate of arbitrary shape (has dimensions of length)

Time variable
Lateral deflection
Deflection function in rth mode of vibration

ν	Poisson's ratio
ρ	Mass per unit volume of plate material
∇^{4}	Differential operator $\left(\frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right)$ in
	rectangular coordinates
$\frac{\partial w}{r}$	Slope of plate boundary

DESCRIPTION

Using the general theory of small vibrations of plates, Greenspon $7,12,20$ presents a method for calculating the frequency and deflection response of a clamped rectangular plate.* The calculation is based on a knowledge of the normal modes of vibrations which are approximated by the product of two beam functions (or characteristic functions) identical to that used by Young (see Appendix B).

DERIVATION

The homogeneous equation for a freely vibrating thin plate is given by ${ }^{7,12,20}$

$$
\begin{equation*}
D \nabla^{4} w+\rho h \frac{\partial^{2} w}{\partial t^{2}}=0 \tag{D1}
\end{equation*}
$$

For a clamped boundary

$$
\begin{align*}
w & =0 \text { along } s \\
\frac{\partial w}{\partial n} & =0 \text { along } s \tag{D2}
\end{align*}
$$

The deflection of the plate is taken to be the sum of the normal modes.

$$
\begin{equation*}
w(x, y, t)=\sum_{r=1}^{\infty} w_{r}(x, y) q(t) \tag{D3}
\end{equation*}
$$

Suhstitution of Equation (D2) into Equation (D1) yields

$$
\begin{equation*}
\frac{D}{\rho h} \nabla^{4} \sum_{r=1}^{\infty} w_{r} q_{r} \div \sum_{r=1}^{\infty} w_{r} \frac{d^{2} G_{r}}{d t^{2}}=0 \tag{D4}
\end{equation*}
$$

Integration of the product of Equation (A3) and one of the normal mode functions w_{m} over the plate area 4 sives

$$
\begin{equation*}
\frac{D}{\rho h} \int_{A_{p}} w_{m}\left[\nabla^{4} \sum_{r=1}^{\infty} w_{r} q_{r}\right] d A+\int_{A_{p}} w_{m}\left[\sum_{r=1}^{\infty} w_{r} \frac{d^{2} q_{r}}{d t^{2}}\right] d A=0 \tag{D5}
\end{equation*}
$$

[^8]As shown in Reference 12, the first term in this equation which contains integrals of the form $\int w_{m} \nabla^{4} w_{r} d A$ is zero if $r \neq m$ and the second term in this equation which contairs integrals of the form $\int_{A_{p}} w_{m} w_{r} d A$ is also zero if $r \neq m$ and the plate is clamped. Thus if the plate is vibrating freely in one of its modes $w=w_{r} \sin p_{r} t$, Equation (D5) can be written

$$
\begin{equation*}
\frac{D}{\rho h} \int_{A_{p}} w_{m} \nabla^{4} w_{r} d A=p_{r}^{2} \int_{A_{p}} w_{m} w_{r} d A \tag{D6}
\end{equation*}
$$

and since the integrals have a value only for $r=m$, the circular frequency of the m th mode of vibration is

$$
\begin{equation*}
F_{m}=\sqrt{\frac{D}{\rho h}}\left[\sqrt{\frac{\int_{A_{p}} w_{m} v^{4} w_{m} d A}{\int_{A_{p}} w_{m}^{2} d A}}\right] \tag{D7}
\end{equation*}
$$

To calculate the frequency and deflection response, the normal modes of the clamped plate are approximated by the product of two beam (or characteristic) functions, i.e., $w_{m}=X_{i} Y_{j}$, which depend on the boundary conditions of the plate.: (For the first mode $i=1, j=1$; for the second mode $i=1, j=2$, etc.) (For the clamped plate, the values of X_{i} and Y_{j} used by Greenspon are identical to those used by Young; see Appendix B.)

$$
\begin{align*}
& X_{i}=\cosh \frac{\beta_{i} x}{a}-\cos \frac{\beta_{i} x}{a}-\alpha_{i}\left(\sinh \frac{\beta_{i} x}{a}-\sin \frac{\beta_{i} x}{a}\right) \\
& Y_{j}=\cosh \frac{\beta_{j} y}{b}-\cos \frac{\beta_{j} y}{b}-\alpha_{j}\left(\sinh \frac{\beta_{j} y}{b}-\sin \frac{\beta_{j} y}{b}\right) \tag{D8}
\end{align*}
$$

Substituting the value of $w_{m}=X_{i} Y_{j}$ into Equation (D7) using Equation (D8), we find (see page 30 of Reference 12 for details).

$$
\begin{equation*}
p_{i j}=\sqrt{\frac{D}{\rho h}} \sqrt{\frac{\left(\beta_{i}\right)^{4}}{a^{4}}+\frac{\left(\beta_{j}\right)^{4}}{b^{4}}+\frac{2 \int_{0}^{a} \int_{0}^{b} X_{i} X_{j}^{\prime \prime} Y_{j} Y_{j}^{\prime \prime} d x d y}{\int_{0}^{a} \int_{0}^{b} X_{i}^{2} Y_{j}^{2} d x d y}} \tag{DS}
\end{equation*}
$$

where $X_{i}^{\prime \prime}=\frac{d^{2} X_{i}}{d x^{2}}$ and $Y_{j}^{\prime \prime}=\frac{d^{2} Y_{j}}{d y^{2}}$.

[^9]The values of β and a as well as the integrals $\int_{0}^{a} X_{i} X_{i}^{\prime \prime} d x, \int_{0}^{a} X_{i}^{2} d x$ and the values of X_{i} and $X_{i}^{\prime \prime}$ which are contained in References 8,9 , and 16 were used by Greenspon ${ }^{7}$ to compute Table 6.

For purposes of the present report, the final expression for the deflection response derived in References 7, 12, and 23 is omitted here.

Following e similar procedure, Reference 12 presents a frequency equation for a fluid-loaded, cruss-stiffened plate, i.e., orthotiopic plate. It also gives the procedure for determining the orthotropic constants and other data. The beam functions $X_{i} Y_{j}$ are writter for a beam with rotational constraint which includes simply supported and clamped constraints. Thus Equation (D9) is a special case of the more general frequency equation given in this reference.

TABLE 6
Function Values for a Clamped-Clamped Beam
(Here a or b is the length of the beam, and the origin $x=0$ is located at one end. The tabulations will remain valid if X_{i} is replaced by Y_{j}.)

ior j	${ }_{*},{ }^{\circ}{ }_{j}$	β_{i}, β_{j}	$\begin{aligned} & b \int_{0}^{b} Y_{1} Y_{1}^{\prime \prime} d y \stackrel{o r}{=} \\ & a \int_{0}^{a} X_{1} X_{1}^{\prime \prime} d x \end{aligned}$	$\begin{aligned} & \frac{\int_{0}^{b} Y_{i}^{2} d y}{b} \stackrel{\text { or }}{=} \\ & \frac{\int_{0}^{c} X_{i}^{2} d x}{a} \end{aligned}$	Value of X_{1}	Pount at which this Value of X_{1} Occurs	Value of $\frac{a^{2}}{\beta_{t}^{2}} x_{i}^{\prime \prime}$	Point ot Which this Value of $\frac{a^{2}}{\beta_{t}^{2}} X_{t}^{\prime \prime}$ Occurs	$\begin{aligned} & \frac{\int_{0}^{b} Y_{1} d y}{b} \stackrel{\text { or }}{=} \\ & \frac{\int_{0}^{a} X_{t} d x}{a} \end{aligned}$
1	0.9825	4.7300	- 12.3026	1	1.5882	$x=0.5 a$	2	$x=0$	0.8309
2	1.0008	7.8532	- 46.0501	1	0	$x=0.5 a$	2	$x=0$	0
3	1.0000	10.9956	- 98.9048	1	-1.4060	$x=0.5 a$	2	$x=0$	0.3638
5	1.0000	17.2788	-263.9980	i	1.4146	$y=0.50$	2	$\boldsymbol{r}=0$	0.2315

APPENDIX E

THE WHITE METHOD

NOTATION

a	Beam width
$a_{m n}, a_{r s}$	Coefficients used in series representation of deflection
a_{m}, a_{n}	A constant which determines the amplitude of response for the m th and nth modes respectively of a beam; beam nondimensional frequency parameters
b	Beam length
C_{i}	Rotational spring stiffness per unit length along the i th edge
$C_{m n}^{r s}$	Quantity defined by Equation (E16)
D	Plate bending stiffness equal to $E I=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}$
E	Young's modulus of elasticity
g	Gravity acceleration
h	Plate thickness
I	Moment of inertia of cross section of the beam about the neutral axis
J_{i}	Mass moment of inertia per unit length along the i th edge
M_{p}	Plate mass
$\begin{gathered} m, n \text { and } \\ \tau, s \end{gathered}$	Mode numbers, i.e., number of elastic half-waves parallel to the x - and y-axes, respectively
m_{i}	Edge mass per unit of length along the i th edge
T	Kinetic energy
\bar{T}	Equal to $\frac{2 T}{\omega^{2} H_{p}}$; defined by Equation (E7)
V	Potential energy

\bar{V}	Equal to $\frac{2 V b^{3}}{D a}$; defined by Equation (E11)
$W(x, y)$	Plate deflection
x, y	Rectangular coordinates
$\alpha_{m}, \boldsymbol{\alpha}_{n}$	Beam nondimensional frequency parameters
$\alpha_{m n}$	Plate nondimensional frequency parameters
$\alpha_{n 0}, \alpha_{n L}$	Nondimensional frequency parameters for the nth mode of a symmetrically constrained beam which has springs of stiffness C_{0} and C_{L}, respectively, at both ends of the beam
$\delta_{m n}^{r s}$	Defined by Equation (E17)
$\theta_{n}^{(y)}, \theta_{s}^{(y)}$	Beam mode shapes (functions of y only)
$\lambda, \lambda_{m n}$	Nondimensional plate frequency parameters defined by Equations (E13) and (E19), respectively
μ	Plate mass per unit of area
ν	Poisson's ratio
ξ_{i}	Nondimensional rotational stiffness parameter
ρ	Mass density
$\phi_{m}(x), \phi_{r}(x), \theta_{n}(y), \theta_{s}(y)$	Beam mode shapes (functions of x or y only)
$\phi_{m n}(x, y)$	Plate mode shape, approximately equal to $\phi_{m}(x) \theta_{n}(y)$
ψ_{m}, ψ_{n}	Beam functions defined by Equation (E19)
$\omega, \omega_{m n}$	Circular frequency and circular resonance frequency of plate, respectively
-	Designates a nondimensional integral

DESCRIPTION

Using the Rayleigh-Ritz technique, White ${ }^{21}$ derives a set of simultaneous algebraic equations for computing the resonance frequencies and modes of a rectangular flat plate having a uniform distribution of elastic and inertial edge fixities. These fixities are equivalent to a uniform $¢$ 'stribution of independent masses, translational springs, and rotational springs along each edge of the plate; the various edges of the plate can have equal or different elastic constcaints and inertial loadings. The only coupling between the individual masses along an edge is the coupling provided by the deflection of the plate. Certain integrals of products of beam mode shapes and derivatives of these mode shapes are expanded in terms of modal displacements and derivatives of these displacements at the ends of the beam. These integrals are used to develop expressions for plate frequencies. All effects of rotary inertia and shear deformation of the beam are neglected.

Once the masses and springs along the four edges of the plate are known, the frequencies and modes can be numericaily evaluated. Solutions of the simultaneous set of algebraic equations can be obtained by iteration using standard digital computer techniques.

Reference 21 treats the special case in which the edges of the plate are translationally fixed, elastically constrained in rotation by a uniform distribution of rotational springs, and not loaded by edge masses. In this special case, each edge of the plate can have a fixity arbitrarily between a pinned and clamped support and the four edges can have different elastic constraints. The special case is further specialized in the present report to treat only the completely clamped case. Although exact solutions of the corresponding set of simultaneous frequency equations require an iteration of the Ritz type, it was found that reasonably accurate estimates of the plate resonance frequencies $c \leadsto n$ be obtained by using a single term from the appropriate equation in the set. The resulting approximate frequency equation is given as well as nomographs for quick computation of these frequencies.* The White method as applied to the completely clamped plate follows.

DERIVATION

The partial differential equation which defines the undamped resonant vibration of a thin, uniform rectangular plate is

$$
\begin{equation*}
\left[\frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}} \omega^{2} \frac{\rho h}{D}\right] W(x, y)=0 \tag{E1}
\end{equation*}
$$

Using the Rayleigh-Ritz technique, the approximate solution $W(x, y)$ of Equation (E1) is expressecं as a doubly infinite series of products of normalized uniform beam modes.

[^10]\[

$$
\begin{equation*}
W(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \phi_{m}(x) \theta_{n}(y) \tag{E2}
\end{equation*}
$$

\]

where the mode shapes $\phi_{m}(x)$ and $\theta_{n}(y)$ are associated with the mode shapes of uniform beams having end fixities which are the same as the corresponding edges of the plate; the particular form of these beam modes for particular boundary conditions can be obtained from Reference 21. These forms are not required for the present analysis.

The kinetic energy T of the clamped plate is*

$$
\begin{equation*}
T=\frac{\omega^{2}}{2} \rho h \int_{0}^{a} \int_{0}^{b} W^{2}(x, y) d x d y \tag{E3}
\end{equation*}
$$

Substituting Equation (E2) into Equation (E3), we obtain

$$
\begin{equation*}
T=\frac{1}{2} \omega^{2} \sum_{m n r s} a_{m n} a_{r s} M_{p} \overline{\phi_{m} \phi_{r}} \overline{\theta_{n} \theta_{s}} \tag{E4}
\end{equation*}
$$

From the condition of orthogonality of beam modes

$$
\begin{array}{ll}
\overline{\theta_{n} \theta_{s}}=0 & \text { if } n \neq s \\
\overline{\phi_{m} \phi_{r}}=0 & \text { if } m \neq r \tag{E5}
\end{array}
$$

writing

$$
\begin{equation*}
T=\frac{1}{2} \omega^{2} M_{p} \bar{T} \tag{E6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\bar{T}=\underset{m, n, r, s,}{ } a_{m n} a_{r s} \overline{\phi_{m} \phi_{r}} \overline{\theta_{n} \theta_{s}} \tag{E7}
\end{equation*}
$$

The integral expression for the potential energy V of a flat rectangular clamped plate is**

[^11]\[

$$
\begin{equation*}
\bar{V}=\frac{D}{2} \int_{0}^{a} \int_{0}^{b}\left[W_{x x}^{2}+W_{y y}^{2}+2 \nu W_{x x} W_{y y}+2(1-\nu) W_{x y}^{2}\right] d x d y \tag{E8}
\end{equation*}
$$

\]

or

$$
V=\frac{D}{2} \int_{0}^{a} \int_{0}^{b}\left[W_{x x}+W_{y y}\right]^{2} d x d y ;(1-\nu) D \int_{0}^{a} \int_{0}^{b}\left[W_{x y}^{2}-W_{x x} W_{y y}\right] d x d y
$$

Substituting Equation (E'2) in Equation (E8), we get

$$
\begin{align*}
V=\frac{D}{2} \frac{a}{b^{3}} \sum_{m n r s} a_{m n} a_{r s} & {\left[\left(\frac{b}{a}\right)^{4} \overline{\phi_{m}^{\prime \prime} \phi_{r}^{\prime \prime}} \overline{\theta_{n} \theta_{s}}+\overline{\phi_{m} \phi_{r}} \overline{\theta_{n}^{\prime \prime} \theta_{s}^{\prime \prime}}\right.} \\
& \left.\left.+\left(\frac{b}{a}\right)^{2} \overline{\left\{\phi_{m}^{\prime \prime} \phi_{r}\right.} \overline{\theta_{n} \theta_{s}^{\prime \prime}}+\overline{\phi_{m} \phi_{r}^{\prime \prime}} \overline{\theta_{n}^{\prime \prime} \theta_{s}}\right\}\right] \tag{E9}\\
& +\frac{D}{a b}(1-\nu) \sum_{m n r s} a_{m n} a_{r s}\left[\overline{\phi_{m}^{\prime} \phi_{r}^{\prime}} \overline{\theta_{n}^{\prime} \theta_{s}^{\prime}}-\overline{\phi_{m}^{\prime \prime} \phi_{r}} \overline{\theta_{n} \theta_{s}^{\prime \prime}}\right]
\end{align*}
$$

This equation can be simplified by use of the integral relationships between $\overline{\phi_{m} \phi_{r}}$, $\overline{\phi_{m}^{\prime \prime} \phi_{r}^{\prime \prime}, \overline{\phi_{m}^{\prime} \phi_{r}^{\prime}} \text { and } \overline{\theta_{n} \theta_{s}}, \overline{\theta_{n}^{\prime \prime} \theta_{s}^{\prime \prime}}, \overline{\theta_{n}^{\prime} \theta_{s}^{\prime}} \text { given by Equation (42) of Reference 21. The steps }}$ involve a lengthy integration by parts. The resulting expression for the potential energy becomes.

$$
\begin{equation*}
V=\frac{D}{2} \frac{a}{b^{3}} \bar{V} \tag{E10}
\end{equation*}
$$

where

$$
\begin{align*}
\bar{V}= & \sum_{m n r s} a_{m n} a_{r s}\left[\alpha_{m}^{4}\left(\frac{b}{a}\right)^{4} \overline{\phi_{m} \phi_{r}} \overline{\theta_{n} \theta_{s}}+\alpha_{n}^{4} \overline{\theta_{n} \theta_{s}} \overline{\phi_{m} \phi_{r}}\right] \\
& +\sum_{m n r s} a_{m n} a_{r s}\left(\frac{b}{a}\right)^{2}\left[\overline{\phi_{m}^{\prime \prime} \phi_{r}} \overline{\theta_{n} \theta_{s}^{\prime \prime}}+\overline{\phi_{m} \phi_{r}^{\prime \prime}} \overline{\theta_{n}^{\prime \prime} \theta_{s}}\right] \\
& +\sum_{m n r s} a_{m n} a_{r s}\{2(1-\nu)\}\left(\frac{b}{a}\right)^{2}\left[\left(\phi_{m}^{\prime} \phi_{r}\right)_{0}^{a}\left(\theta_{n} \theta_{s}^{\prime}\right)_{0}^{b}\right. \\
& \left.-\left(\phi_{m}^{\prime} \phi_{r}\right)_{0}^{a} \overline{\theta_{n} \theta_{s}^{\prime \prime}}-\left(\theta_{n} \theta_{s}^{\prime}\right)_{0}^{b} \overline{\phi_{m}^{\prime \prime} \phi_{r}}\right] \tag{Ei1}
\end{align*}
$$

Applying the Rayleigh-Bitz method, we set $T=V$ and minimize the plate frequency ω with respect to each of the coefficients $a_{r s}$. It follows from Equations (E6), (E7), (E10), and (E11) that

$$
\begin{equation*}
\lambda \bar{T}=\bar{V} \tag{E12}
\end{equation*}
$$

where the resonance frequency and λ are related by the equation

$$
\begin{equation*}
\omega=\sqrt{\lambda} \sqrt{\frac{D}{\rho h b^{4}}} \tag{E13}
\end{equation*}
$$

Minimizing the frequency ω with respect to $a_{r s}$ implies that $\frac{\partial \lambda}{\partial a_{r s}}=0$ and hence

$$
\begin{equation*}
\lambda \frac{\partial \bar{T}}{\partial a_{r s}}=\frac{\partial \bar{V}}{\partial a_{r s}} \tag{E14}
\end{equation*}
$$

Performing this operation gives the final result

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[C_{m n}^{r s}-\lambda \delta_{m n}^{r s}\right] a_{m n}=0 \tag{E15}
\end{equation*}
$$

where, noting that the beam modes $\phi_{m}, \phi_{r}, \theta_{n}$, and θ_{s} are equal to zero at the plate boundaries,

$$
\begin{align*}
C_{m n}^{r s}= & {\left[\left(\frac{b}{a}\right)^{4} \alpha_{m}^{4}+a_{n}^{4}\right] \overline{\phi_{m} \phi_{r}} \overline{\theta_{n} \theta_{s}} } \\
& +\left(\frac{b}{a}\right)^{2}\left[\overline{\phi_{m}^{\prime \prime} \phi_{r}} \overline{\theta_{n} \theta_{s}^{\prime \prime}}+\overline{\phi_{m} \phi_{r}^{\prime \prime \prime}} \overline{\theta_{n}^{\prime \prime} \theta_{s}}\right] \tag{E16}
\end{align*}
$$

and

$$
\begin{equation*}
\delta_{m n}^{r s}=\overline{\phi_{m} \phi_{r}} \overline{\theta_{n} \theta_{s}} \tag{17}
\end{equation*}
$$

and where (see Equation 42 of Reference 17)

$$
\begin{array}{ll}
\overline{\phi_{m} \phi_{r}}=0 & \text { if } n \neq r \\
\overline{\theta_{n} \theta_{s}}=0 & \text { if } n \neq s \tag{E18}
\end{array}
$$

Equation (E15) represents a set of linear simultaneous equations in $a_{m n}$ where there is one equation for each combination of r and s.

All the expressions necessary to evaluate the derivatives and integrals of mode shape appearing in Equations (ET), (E11), (E16), and (E17) have been developed in Reference 21 and are also used in Appendix F. Hence the quantities $C_{m n}^{r s}$ and $\delta_{m n}^{r s}$ can is numerically evaluated for a clamped plate. Solation of the set of Equations (E15) can be obtained by iteration using standard digital techaiques. These methods are briefly discussed in References 16, 21, and 22 for certain special cases.

In Reference 21 numerical evaluation of Equation (E15) showed that accurate estimates of the plate frequencies can be obtained by using a single term from the appropriate equation out of the set of Equations (E15). To obtain the approximate frequency equation, set $r s=m n$ in Equation (E15) and equate to zero the coefficient of $a_{m n}$ giving

$$
\omega_{m n}=\left(\lambda_{m n}\right)^{\frac{1}{2}}\left[D /\left(\rho \hbar b^{4}\right)\right]^{\frac{1}{2}}
$$

where

$$
\begin{gather*}
\lambda_{m n}=(b / a)^{4} \alpha_{m}^{4}+\alpha_{n}^{4}+2(b / a)^{2} \psi_{m} \psi_{n} \\
\psi_{m}=\overline{\phi_{m}^{\prime \prime} \phi_{m}} / \overline{\phi_{m}^{2}} \tag{E19}\\
\psi_{n}=\overline{\theta_{n}^{\prime \prime} \cdot \theta_{n}} / \overline{\theta_{n}^{2}}
\end{gather*}
$$

Actually Equation (E19) and the quantity ψ_{m} (or ψ_{n}) was numericaily evaluated for the beam having translationally fixed ends and rotational spring ends. Thus Equation (E19) is the approximate solution to an equation somewhat more comprehensive than Equation (E15), given by Equations (66) in Reference 21. For a clamped plate, the rotational spring has infinite stiffness. The results are presented in Figures $11-13$ for the first three beam modes. Thus approximate frequencies can be obtained for the first nine modes of the plate for any aspect ratio b / a by using the above equation and the data presented in Figures 11-13 for $\psi_{m}\left(\right.$ and $\left.\psi_{n}\right)$ and Figures $14-16$ for $\boldsymbol{\alpha}_{m}$ (and α_{n}). For symmetric edge fixity in which opposite edges are equally constrained, the numerical results obtained agree within 2 or 3 percent with those computed in Reference 22 using a 36 -term series. The approximation is increasingly more accurate the smaller the plate aspect ratio and has the greatest error for the square plate, particularly in the fourth and fifth modes when equally constrained on all four edges. Approximate mode shapes $\phi_{m n}(x, y) \approx \phi_{m}(x) \theta_{n}(y)$, locations of peak deflections, locations of node lines, etc. can be obtained from the data presented in Figures 19-53 of Reference 21. A nomograph constructed by White is presented in the present report to aid in evaluating the approximate resonance frequencies of the plate, Equation (E19), corresponding to the first nine modes for any aspect ratio b / a. The opposite edges can have equal or different elastic constraints. Note that graphical techniques can account.for only the most significant term or terms in a mathematical solution which may involve a large number of terms.

Figure 11 - Parameter ψ_{1} versus α_{10} and $\alpha_{1 L}$: First Mode

Figure 12 - Parameter ψ_{2} versus α_{20} and $\alpha_{2 L}$. Second Mode

Figure 13 - Parameter ψ_{3}. versus α_{30} and $c_{3 L}$. Third Mode

Figure 14 - Frequency Parameter α_{1} versus α_{10} and $\alpha_{1 L}$. First Mode

Figure 15 - Frequency Parameter α_{2} versus; $\boldsymbol{\alpha}_{20}$ and $\alpha_{2 L}$, Second Mode

Figure 16 - Frequency Parameter $\boldsymbol{\alpha}_{3}$ versus $\boldsymbol{\alpha}_{30}$ and $\boldsymbol{\alpha}_{3 L}$, Third Mode

Figure 17 presents nomographs developed by Dr. White for nine modes of a rectangular plate. These permit the graphical computation of resonance irequencies of a plate of arbitrary aspect ratio when the four edges of the plate are translationally fixed but elastically restrained against rotation. The compliances of the rotational supports are assumed to be uniform along each edge, but the compliances may be different for all four edges. The clamped plate is represented by rotational springs of infinite stiffness along all edges. Each nomograph contains a sample calculation which is indicated by arrows and which is tabulated on the nomograph. Note that it is necessary to transfer numerical values from certain scales to other scales; these transfers are indicated by arrows at the bottom of each nomograph. If opposite edges of the plate have different rotational elastic constraints, the ψ_{1} and $\boldsymbol{\alpha}_{1}$ scales should be used instead of the ξ scales. Values of $\boldsymbol{\alpha}_{1}$ are obtained from Figure 14 for unsymmetric edge fixit:es. In the nomographs $\sqrt{\lambda_{m n}}$ is replaced by $\boldsymbol{\alpha}_{m n}$. Symbols used in the nomographs correspond to those used in Reference 21.

Figure 17 - Nomograph for Plate Nondimensional Frequency Parameters

Figure 17a - Nomograph for Plate Nondimensional Frequency Parameter a 11

Figure 17 b - Nomograph for Plate Nondımensional Frequency Parameter \boldsymbol{a}_{12}

Figure 17 c - Nomograph for Plate Nondimensional Frequency Parameter $\boldsymbol{\alpha}_{13}$

4

Figure 17d - Nomograph for Plate Nondimensional Frequency Parameter $\boldsymbol{\alpha}_{21}$

Figure 17e - Nomograph for Plate Nondimensional Frequency Parameter $\boldsymbol{\alpha}_{22}$

Figure 17 f - Nomograph for Plate Nondimensional Frequency Parameter $\boldsymbol{\alpha}_{\mathbf{2}}$:

A

Figure 17 g - Nomograph for Plate Neadimensional Frequency Parameter \boldsymbol{C}_{31}

A

Figure 17 h - Nomograph for Plate Nondimensional Frequency Parameter \mathbf{a}_{32}

Figure 171 - Nomograph for Plate Nondimensional Frequency Parameter $\boldsymbol{\alpha}_{33}$

APPENDIX F THE CROCKER METHOD

NOTATION

A
a
B
b
c

D
E
e
f_{r}
h
I
ℓ
m
n
R
X
$|X|$
x, y
\propto
Δ, δ
λ

Modal constant
Panel length in τ-direction
Modal constant
Panel width in y-direction
Modal constant
Modal constant; also equal to $E I=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}$
Young's modulus
Base of natural logarithms $=2.718$
Normalized r th mode shape of panel
Panel thickness
Second moment of area of cross section ai out neutral axis through its centroid

Length of equivalent beam
Mode number in x-direction
Mede number in y-direction
Frequoncy parameter
Modal function of x or y
Maximum value of X
Distance measured along and perpendicular to the undeflected equivalent beam, respectively

Frequency parameter
Small quantities
Frequency parameter

ρ	Density of material
$\boldsymbol{\sigma} \cdot$	Poisson's ratio
ϕ	Normalized mode shape
$\boldsymbol{\psi}$	Resonant freque-cy parameter
ω	Circular frequency

Subscripts

m, n	Refer to m th and nth modes, respectively
n	Refers to direction normal to certain direction
r	Refers to r th mode
\boldsymbol{r}	Refers to x-direction
y	Refers to y-direction

DESCRIPTION

Crocker ${ }^{23}$ preseats an analysis for computing the normal modes and frequencies of a uniform flat panel with fally fixed edge conditions. The method involves an approximate solution of the froqi $\lrcorner n c y$ equations.

DERIVATION

The mode shapes of a clamped-clamped panel are approximately

$$
\begin{align*}
f_{i}(x, y)=\frac{\left.X_{m}(x) X_{n} i y\right)}{\left|X_{m}(x)\right|\left|X_{n}(y)\right|}=\frac{1}{\left|X_{m}\right|\left|X_{n}\right|} & {\left[A_{m} \cosh \alpha_{m} \frac{x}{a}+B_{m} \sinh \alpha_{m} \frac{z}{a}\right.} \\
& \left.+C_{m} \cos \alpha_{m} \frac{x}{a} \div D_{m} \sin \alpha_{m} \frac{z}{a}\right] \\
& {\left[A_{n} \cosh \alpha_{n} \frac{y}{b} \div B_{n} \sinh \alpha_{n} \frac{y}{b}\right.} \\
& \left.\div C_{n} \cos \alpha_{n} \frac{y}{b}+D_{n} \sin \alpha_{n} \frac{y}{\hat{b}}\right] \tag{Fi}
\end{align*}
$$

where the quantities in brackets or X_{m}, X_{n} represent the mode shapes of vibrating unifcrm beams lying along the x - and y-axes, respectively, and $\left|X_{m}\right|$ and $\left|X_{n}\right|$ are their respective values. Applying the boundary conditions for a clamped-clamped plate, i.e., for either X_{m} or $X_{n}, X=\frac{\partial X}{\partial x}=0$ at $\begin{cases}x=0, & y=0 \\ x=a, & y=b\end{cases}$

Then
and

$$
\begin{align*}
& A=-C \\
& B=-D \\
& 0=A \cosh \alpha+B \sinh \alpha+C \cos \alpha+D \sin \alpha \tag{F2}\\
& 0=A \sinh \alpha+B \cosh \alpha-C \sin \alpha+D \cos \alpha
\end{align*}
$$

Equations (F2) may be solved in order to obtain the frequency equations for a clampedc’amped plate:

$$
\begin{align*}
& \cosh \alpha_{i n} \cos \alpha_{m}=1 \\
& \cosh \alpha_{n} \cos \alpha_{n}=1 \tag{F3}
\end{align*}
$$

Solution of Frequency Equations

The solution of Equations ('r'3) may be shown to be of the form:

$$
\begin{equation*}
\alpha_{m}=(2 m \div 1) \cdot \frac{z}{2} \div \Delta ; m=1,2,3 \ldots, \infty \tag{F4}
\end{equation*}
$$

where $\Delta \rightarrow 0$ as $m \rightarrow \infty$. Now

$$
\begin{align*}
\cosh \alpha_{m b} & =\left[\cosh (2 m \div 1) \cdot \frac{\pi}{2}\right] \cosh \Delta \div\left[\sinh (2 n \div 1) \cdot \frac{\pi}{2}\right] \sinh \Delta \\
& =\left[\sinh (2 m \div 1) \cdot \frac{\pi}{2}\right][\cosh \Delta \div \sinh \Delta] \tag{5}
\end{align*}
$$

and from Equation (F4)

$$
\begin{align*}
\cos \alpha_{m} & =-\left[\sin (2 m+1) \cdot \frac{\pi}{2}\right] \sin \Delta, \quad\left[\text { since } \cos (2 m \div 1) \cdot \frac{\pi}{2}=0\right] \\
& =-(-1)^{m} \sin \Delta \tag{F6}
\end{align*}
$$

Thus from Equations (F3), (F5), and (F6):

$$
\begin{equation*}
(\cosh \Delta+\sinh \Delta) \sin \Delta=\frac{-(-1)^{m}}{\sinh (2 m+1) \frac{\pi}{2}} \tag{F7}
\end{equation*}
$$

But $\Delta \approx 0$. Thus for small values of Δ,

$$
\begin{equation*}
\cosh \Delta=\frac{1}{2}\left[e^{\Delta}+e^{-\Delta}\right]=\frac{1}{2}\left[1 \div \Delta \div \frac{\Delta^{2}}{2}+1-\Delta \div \frac{\Delta^{2}}{2}\right]=\left[1 \div \frac{\Delta^{2}}{2}\right] \tag{F8}
\end{equation*}
$$

$$
\begin{align*}
\sinh \Delta=\frac{1}{2}\left[e^{\Delta}-e^{-\Delta}\right]= & \frac{1}{2}\left[1+\Delta+\frac{\Delta^{2}}{2}-1+\Delta \div \frac{\Delta^{2}}{2}\right]=\Delta \tag{F9}\\
& \sin \Delta \approx \Delta \tag{F10}
\end{align*}
$$

Thus substituting Equations (F8), (F9), and (F10) into Equation (F7) gives:

$$
\begin{equation*}
\left(1+\Delta+\frac{\Delta^{2}}{2}\right) \Delta=\frac{(-1)^{n}}{\sinh (2 m+1) \cdot \frac{\pi}{2}} \approx 2(-1)^{m} e^{-2(m+1) \frac{\pi}{2}} \tag{F11}
\end{equation*}
$$

and neglecting terms of order greater than Δ, then:

$$
\Delta=2(-1)^{=\div 1} \cdot e^{-(2 m \div 1) \cdot \frac{\bar{\pi}}{2}}
$$

(F12)
Using Equations ($F 4$) and ($F 12$), values of α_{1} to α_{10} were calculated in Reference 23 and are presented in Table $\mathbf{7}$. It was found that for the higher frequency parameters, the value of Δ became negligible and Equation (Fij) was sufficiently accurate. For example, $\Delta_{6}=-1.43 f$ $\times 10^{-10}$ and was thus negligible. Equations (F3) may also be solved by assuming a solutio such as Equation (F4) with $\Delta=0$ and using the Siewton method to refine the original approximate solution.

Determination of the Modal Constonts

Arbitrarily putting one of the modal constants $D_{m}=1$, the other modai constants may be determined from Equations (F 2).
Thus $B \doteq-D=-1$ and $A_{z} \sinh \alpha_{z}-\cosh \alpha_{E} \div A_{E} \sin \alpha_{E} \div \cos \alpha_{=}=0$.

$$
\begin{equation*}
A_{m}=\frac{\cosh \alpha_{m}-\cos \alpha_{m}}{\sinh \alpha_{m} \div \sin \alpha_{m}} \tag{F13}
\end{equation*}
$$

But using Equations (F5) and (F9),

$$
\cosh \alpha_{m}=\frac{e}{}_{(2 m \div 1) \frac{\pi}{2}}=\sinh \alpha_{m}
$$

Thus:

$$
\begin{aligned}
& A_{m}=\frac{\sinh \alpha_{m}-\cos \alpha_{m}}{\sinh \alpha_{m} \div \sin \alpha_{m}}=\frac{1-\frac{\cos \alpha_{m}}{\sinh \alpha_{m}}}{1 \div \frac{\sin \alpha_{m}}{\sinh \alpha_{m}}} \\
& A_{m} \approx\left(1-\frac{\cos \alpha_{m}}{\sinh \alpha_{m}}\right) \cdot\left(1-\frac{\sin \alpha_{m}}{\sinh \alpha_{m}}\right) \\
& A_{m} \approx 1-\frac{\left(\sin \alpha_{m}+\cos \alpha_{m}\right)}{\sinh \alpha_{m}}
\end{aligned}
$$

TABLE 7
Parameters for a Clamped-Clamped Mode Shape

morn	Frequency Porcmeter $\alpha_{=}{ }^{0 ; \alpha_{z}}$	$\begin{gathered} \text { Resonont } \\ \text { Frequency Parameter } \\ \psi_{m u x} \text { or } 甘_{z z} \end{gathered}$	Maximen Displocement \mathbf{X}_{m} or \mathbf{N}_{z}	Modol Coefficient $A_{m} \text { or } A_{n}$
1	4.73004	12302	1.61628	1.017804
2	7.85320	46.050	1.50805	0.999224
3	10.99560	98.905	1.51297	1.000034
4	14.13720	171.570	1.5128	0.999998552
5	17.27880	2641376	1.5125	1.0000000621
6	20.403552	376.1092	1.5125	0.99999999729
7	23.561945	506.8633	1.5125	1.0000000001175
8	26.703537	659.4048	1.5125	0.99999999999491
9	29.845130	830.743!	1.5125	1.000000000000220
10	32986722	-	1.5125	0.99999999999999046

 giren were ties are required for accurate calculations.

But from Equation ($\mathbf{F} \mathbf{6}$)

$$
\cos \alpha_{m}=-(-1)^{m} \sin \Delta
$$

and froa Equation (Fi)

$$
\sin \alpha_{=}=\left[\sin (2 \pi \div 1) \cdot \frac{\bar{Z}}{\underline{2}}\right] \cos \Delta ; \quad\left[\text { since } \cos \left(\sum_{n} \div 1\right)-\frac{\overline{3}}{9}=0\right]=(-1)^{m} \cos \Delta
$$

Thas

$$
\begin{align*}
& A_{m}=1-\frac{\left[(-1)^{m} \cdot \cos \Delta-(-1)^{m} \cdot \sin \Delta\right]}{\sin \alpha_{m}} \\
& A_{m}=1-\frac{(-1)^{m} \cdot[\cos \Delta-\sin \Delta]}{\sinh \alpha_{m}} \\
& A_{m}=-C_{m}=1-(-1)^{m} \cdot[1-\Delta] \cdot 2 e^{-(2 m \div 1) \frac{\overline{7}}{2}} \tag{F14}
\end{align*}
$$

Thus using Equation (F14), values of $A_{=}$and C_{m} were calculated for $w=1$ through 10 ; see Taiole $\overline{7}$

Detemination of Resonant Frequency Parameters

From Equations (E19) of Appendix E with $\lambda_{m a} \rightarrow R_{E=E}$ and $D=E I=\frac{E h^{3}}{12\left(1-\sigma^{2}\right)}$, the undamped resonant circular frequency of the an th mode of the plate is:

$$
\begin{equation*}
\omega_{m n}=\sqrt{R_{m E}} \frac{\hbar}{b^{2}} \sqrt{\frac{E}{12 \rho\left(1-\sigma^{2} j\right.}} \tag{F15}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{m i n}=\left(\frac{b}{a}\right)^{4} \cdot \alpha_{n}^{4} \div \alpha_{n}^{4}+2\left(\frac{b}{a}\right)^{2} \cdot \psi_{m} \psi_{n} \tag{F16}
\end{equation*}
$$

α_{m} was derived above in this appendix and values are given in Table 7 . Also the following relations were derived in Reference 21 and used in Appendix E.

$$
\begin{equation*}
\psi_{m}=\frac{\overline{\phi_{m}^{\prime} \delta_{m}}}{\overline{\phi_{m}^{2}}} \tag{F17}
\end{equation*}
$$

where

$$
\begin{aligned}
& \dot{o}_{m}=\frac{1}{\left|X_{m i}\right|}\left[\left(A_{m} \div B_{x}\right) \sinh \alpha_{m} \cdot \frac{z}{\ell} \div A_{m}\left(e^{-\alpha_{m i n} \frac{x}{\ell}}-\cos \alpha_{m} \cdot \frac{z}{\ell}\right) \div \sin \alpha_{z} \cdot \frac{z}{\ell}\right] \\
& \delta_{m i}^{\prime}=\frac{\alpha_{x}}{\left|X_{m}\right|}\left[\left(A_{m} \div B_{z}\right) \cosh \alpha_{m} \cdot \frac{x}{\ell} \div A_{z i}\left(-e^{-\alpha_{m} \frac{x}{\ell}} \div \sin \alpha_{x}-\frac{x}{\ell}\right) \div \cos \alpha_{m}-\frac{x}{\ell}\right]
\end{aligned}
$$

and where

The terms shown zero in Equations (F19) and (F20) are zero due to the boundary conditions $\dot{o}_{z}=\dot{\varphi}_{z}^{\prime}=0$ at $x=0$ and $x=\mathcal{f}$ for a clamped-ciamped mode.

Substitut.ng Equations (F19) and (F20) into Equation (F17) and utilizing Equations
(F18) gives, after simplification,

$$
\begin{align*}
\ddots_{m}= & \left\{\frac { \alpha _ { m } } { 2 } \left\{[(A _ { m } + B _ { m }) \operatorname { c o s h } \alpha _ { m } \div A (- e ^ { - \alpha _ { m } } - \operatorname { s i n } \alpha _ { m }) - \operatorname { c o s } \alpha _ { m }] \left[\left(A_{m} \div B_{m}\right) \sinh \alpha_{m}\right.\right.\right. \\
\div & \left.\left.\left.A_{m}\left(e^{-\alpha_{m}}+\cos \alpha_{m}\right)-\sin \alpha_{m}\right] \div 2 A_{m}\left(1-B_{m}\right)\right\}-\alpha_{m}^{2}\left[B_{m}^{2}-A_{m}^{2}+C_{m}^{2}+D_{m}^{2}\right]\right\} / \\
& {\left[A_{m}^{2}-B_{m}^{2} \div C_{m}^{2} \div D_{m}^{2}\right] } \tag{F21}
\end{align*}
$$

Equation (F21) was evaluated for $m=1$ through 9 ; the values are presented in Table 7.

Yalue of Position of Maximum Displacement for Each Mode

In order to simplify the computer program for the response of a clamped-clamped panel, it was necessary to determine the maximum value $X_{z=}$, denoted $\left|X_{m}\right|$, for each mode. In fact, the simplest and most accurate method founci was to calculate the mode shape:

$$
\begin{equation*}
X_{m}(x)=\left[A_{m} \cosh \alpha_{m} \cdot \frac{\tilde{z}}{a} \div B_{m} \sinh \alpha_{m} \cdot \frac{x}{a} \div C_{m} \cos \alpha_{m} \cdot \frac{x}{a} \div D_{m} \sin \alpha_{m} \cdot \frac{x}{a}\right] \tag{F2Q}
\end{equation*}
$$

by means of a computer. The computer program written by Crocker is given in Figure 18. Both numerical values and computer plots were obtained for $m=1$ through 10 , and the computer plots are given in Figures 19-23. In this manner, both values of $\left[X_{m} \mid\right.$ and X_{m} for $x=a / 2$ were obtained. Since the whole mode shape was calculated, the response of any point of the panel could be computed by using the appropriate values of $X_{m}(z)$ and $X_{n}(y)$. It is interesting to notice that Figures $19-23$ indicate that the maximum displacement $\left|X_{m}\right|$ does not occur at the center of the span except for the first mode, but two maxima $\left|x_{m}\right|$ occur for the higher modes, one nesrest to each support. The other maxima are found to be slightly smaller, to be of approximately constant value fer the higher modes, and to lie between positions of the maxima $\left|X_{n=}\right|$.

An approximate method is given below for determining the value and position of the maximum displacement $\left|X_{m}\right|$ for the higher modes. Aithough approximate, $\left|X_{n g}\right|$ calculated by this method is seen to be only 0.66 percent smaller than when calculated by the more exact computer program.

The mode shape as given by Equation (F22) nay be rewritten:

$$
\begin{equation*}
X_{=}=\left(A_{m} \div B_{m}\right) \sinh \alpha_{m} \cdot \frac{x}{a} \div A_{m}\left(e^{-\alpha_{m} x}-\cos \frac{\alpha_{m} x}{a}\right) \div \sin \frac{\alpha_{m z} x}{a} \tag{F23}
\end{equation*}
$$

but for a maximum or minimum value of X_{m} :

$$
\begin{equation*}
\frac{\alpha_{m}}{a}\left(\frac{d X_{m}}{d x}\right)=0=\left(A_{m} \div B_{m}\right) \cosh \frac{\alpha_{m}^{x}}{a} \div A_{m}\left(-e^{\frac{-\alpha_{m} x}{a}} \div \sin \frac{\alpha_{m}^{x}}{a}\right) \div \cos \frac{\alpha_{m}^{x}}{a} \tag{F24}
\end{equation*}
$$

Since for the higher modes:

$$
\left.\begin{array}{rl}
A_{m} \div B_{m} & =0 \tag{F25}\\
A_{m} & =1
\end{array}\right\}
$$

Figure 18 - Program to Calculate and Plot Clamped-Clamped Mode Shapes

[^12]

Figure 19 - Mode Shapes for a Clamped-Clamped Beam, First and Second Modes

Figure 20 - Mode Shapes for a Clamped-Clamped Beam, Third and Fourth Modes

Figese 21 - 3toie Shapes for a Clamped-Clamped Beam, Fî̂ih and Sixth Modes

Figu a 22 - Mode Shapes for a Clamped-Clamped Beam, Seventh and Eighth Modes

Figure 23 - Mode Shapes for a Clamped-Clamped Beam, Ninth and Tenth Modes
it is seen by inspection of Equation (F24) that the first maximum will occur at:

$$
\begin{equation*}
\alpha_{m} \cdot \frac{x}{a}=\frac{3}{4} \pi+\delta \tag{F26}
\end{equation*}
$$

where δ is a small number.
Thus making the approximations then $\cosh \delta=1$ and $\cos \delta \approx i$,

$$
\begin{array}{r}
\cosh \alpha_{m} \cdot \frac{x}{a} \approx \cosh \frac{3 \pi}{4}+\delta \sinh \frac{3 \pi}{4} \\
e^{-\alpha_{m} \frac{z}{a}} \approx(1-\delta) e^{\frac{-3 \pi}{4}} \tag{F27}\\
\sin \alpha_{m} \cdot \frac{x}{a} \approx \frac{-1}{\sqrt{2}}(1-\delta) \\
\cos \alpha_{m} \cdot \frac{x}{a}=\frac{-1}{\sqrt{2}}(1+\delta j
\end{array}
$$

Then substituting Equations (F27) into Equation (F24):

$$
\left(A_{m}+B_{m}\right) \cosh \frac{3 \pi}{4}+\delta\left(A_{m}+B_{m}\right) \sinh \frac{3 \pi}{4}-(1-\delta) A_{m} e^{\frac{-3 \pi}{4}}+\frac{A_{m}}{\sqrt{2}}(1-\delta)-\frac{1}{\sqrt{2}}(1+\delta)=\mathrm{C}
$$

and thus

$$
\begin{equation*}
\delta=\frac{-\left(A_{m}+B_{m}\right) \cosh \frac{3 \pi}{4}+A_{m} e^{\frac{-3 \pi}{4}}+\left(1-A_{m}\right) / \sqrt{2}}{\left(A_{m}+B_{m}\right) \sinh \frac{3 \pi}{4}+A_{m} e^{\frac{-3 \pi}{4}}-\left(1+A_{m}\right) / \sqrt{2}} \tag{F28}
\end{equation*}
$$

Using the approximations in Equations (F25), Equation (F28) reduces to:

$$
\begin{aligned}
& \delta \approx \frac{e^{-3 \pi / 4}}{e^{-3 \pi / 4}-\sqrt{2}}=\frac{0.0948}{0.0948-1.4142} \\
& \delta \approx \frac{0.0948}{1.3194}=0.0719
\end{aligned}
$$

Again using the approximations of Equations (F25) and (F27), Equation (F23) reduces to:

$$
\begin{align*}
\left|X_{m}\right| & =e^{-\alpha_{m} \cdot \frac{x}{a}}-\cos \alpha_{m} \cdot \frac{x}{a}+\sin \alpha_{m} \cdot \frac{x}{a} \\
& =(1-\delta) e^{-\frac{-3 \pi}{4}}+\frac{1}{\sqrt{2}}(1+\delta) \div \frac{1}{\sqrt{2}}(1-\delta) \\
& =(0.9281)(0.0948)+\sqrt{2} \\
& =0.688+1 . \dot{8} 14 \\
\left|X_{m}\right| & =1.502 \tag{F29}
\end{align*}
$$

The position of this first maximum will be located at:

$$
\begin{equation*}
\frac{x}{a}=\alpha_{m}\left(\frac{3 \pi}{4}+0.0719\right) \tag{F30}
\end{equation*}
$$

The value of $\left|X_{m}\right|$ obtained by the above approximate method and presented in Equation (F29) compares well with the computed vaiues (presented in Figures 19-23) and, in fact, is only about 0.66 percent smaller. The position of the maximum displacement as given by Equation (F30) is also in good agreement.

APPENDIX G

THE SUN METHOD

NOTATION

[A]	Symmetric square matrix or order n whose elements are delined by Equation (G14b)
A_{i}	Coefficient in equation for displacement surface function
$A_{m n}$	Coefficient in equation for displacement surface function
a	Length of rectangular plate
[B]	Symmetric real matrix defined by Equation (Bī)
b	Width of rectangular plate
[C]	Symmetric square matrices of order n whose elements are defined by Equation (G14a)
D	Flexural rigidity of plate equal to $\frac{E h^{3}}{12\left(1-\sigma^{2}\right)}$
F	Function satisfying the boundary condition for clamped plate
G^{i}, G^{\prime}	Polynomial in equation for displacement surface function
g	Acceleration due to gravity
h	Plate thickness
L, L^{\prime}	Defined by Equations (G15a) and (G18), respectively
m, n	Mode numbers
P	Equal to $R^{-\beta}=\left(\frac{b}{a}\right)^{-\beta}$
p, p_{i}	
R	Equal to $\frac{b}{a}$
T	Kinetic energy
t	Time

V	Potential energy
$\mathrm{F}, \mathrm{HF}_{\boldsymbol{z}}$	Surface displacement function of plate in direction perpendicular to plate; subscript t indicates a time derivative
X, Y	Equal to $\frac{x}{a}$ and $\frac{y}{a}$, respectively
$\{X\}$	Column matrix containing elements of X where $X=L$
x, y	Variables in cartesian coordinate system
a	Exponent
β	Exponent
$\frac{\gamma h}{g}$	Plate mass per unit of surface area where y is the weight per unit solume of plate
∇^{2}	Equal to $\frac{\partial^{2}}{\partial x^{2}} \div \frac{\partial^{2}}{\partial y^{2}}$
$\delta_{i j}$	Lironecker delta
λ	Equal to $\frac{1}{\omega^{2}}$
o	Poisson's ratio
Φ, Φ_{τ}	Transverse displacement of plate in free vibration; subscript t signified a time derivative
$\{\underline{\}}\}\left\{u_{i}\right\}$	Column matrix of $A_{i}, A_{2} \ldots \ldots A_{i} \ldots \ldots . A_{n}$ defining the eigenvector of the specific natural mode concemed, i.e., nodal pattern of i th vibration mode
ω	Eigenvalue defined by $\omega=p \sqrt{\frac{v \hat{h}}{g D}}$

DESCRIPTION

San ${ }^{24}$ presents a method for compnting the nomal modes and irequencies for a clemped thin rectangular plate undergoing transverse vibrations. Vertical shear and rotary inertia effects are ignored. The method uses the Rayleigh-Ritz procedare, bat the deflection of the plate is represented by a series of polymomials rather than the product of beam nomal mode functions.

DERIVATION

The transverse displacement for a freely vibrating thin plate is

$$
\begin{equation*}
\Phi(x, y, t)=F^{\prime}(x, y) \cos \bar{F} t \tag{G1}
\end{equation*}
$$

The potential energy of the plate is

$$
\begin{equation*}
V=\iiint d V=\frac{D}{2} \iint\left(\Phi_{I x}^{2} \div \Phi_{y Y}^{2} \div 2 \sigma \Phi_{I Y} \Phi_{y Y} \div 2(1-\sigma) \Phi_{I y}^{2}\right) d z d y \tag{G2}
\end{equation*}
$$

The kinetic energy of the plate is

$$
\begin{equation*}
T=\frac{y^{h}}{2 g} \iint \Phi_{z}^{2} d x d y \tag{G3}
\end{equation*}
$$

Substituting Equation (Gi) into (G2) and (G3) and setting cosine and sine values equal to 1 in Equations (G2) and (G3), respectively, the maximum potential and kinetic energies are

$$
\begin{gather*}
V_{m a x}=\frac{D}{2} \iint\left\{\left[\left(\nabla^{2} H\right)^{2}-2(1-\sigma)\left[W_{x x} W_{y y}-H_{z y}^{2}\right] \backslash d x d y\right.\right. \tag{G4}\\
T_{m a x}=\frac{\gamma h}{2 g} p^{2} \iint H^{2} d x d y \tag{G5}
\end{gather*}
$$

Equating Equations (G4) and (G5) as required by the Rayleigh principle

$$
\begin{equation*}
p^{2}=\frac{2 g}{y h} \frac{V_{\operatorname{nax}}}{\iint \Gamma^{2} d x d y} \tag{G6}
\end{equation*}
$$

Now there is a class of plate geometries governed by the equation

$$
\begin{equation*}
\left|\frac{x}{a}\right|^{\alpha}+\left|\frac{y}{b}\right|^{\beta}=1 \tag{G7}
\end{equation*}
$$

Equation (GI) inclades the approxinated rectangle. Dividing through Equation (GI) by c and letting $X=z / a, Y=y / a, R=b / a, P=P^{-\beta}$, the resultant normalized equation replacing Equation (Gi) is

$$
\begin{equation*}
x^{\alpha} \div P Y^{\beta}=1 \tag{G5}
\end{equation*}
$$

Then to deternine the natural frequency p of the clamped rectangular plate in terms of α, β, and P, let the displacement surface junction be expressed as

$$
\begin{align*}
F(X, Y, P, \alpha, \beta) & =F(X, Y, P, \alpha, \beta) \sum_{i=0}^{\infty} \sum_{m=0}^{\infty} A_{=\pi \infty} X^{2} Y \bar{Z} \\
& =F(X, Y, P, \alpha, \beta)\left(A_{00} \div A_{10} X \div A_{01} Y \div A_{11} X Y \div \ldots\right. \tag{G9}\\
& =F \sum_{i=1}^{\infty} A_{i} G^{\bar{i}}
\end{align*}
$$

where for a clamped plate

$$
\begin{equation*}
F=\left(1-X^{\alpha}-P Y^{\beta}\right)^{2} \tag{G10}
\end{equation*}
$$

satisfies the requirement $\frac{\partial F^{\prime}}{\partial X}=\frac{\partial V^{\prime}}{\partial Y^{\prime}}=; F^{\prime}=0$ along the boundaries.
Following the Rayleigin-Ritz procedure, the A_{i}^{\prime} 's in Equation ($G 9$) have values obtained from a minimization of Equation (G4).

$$
\begin{array}{r}
\frac{\partial}{\partial A_{i}}\left[\iint\left(V^{2} H\right)^{2}-2(1-\sigma)\left[H_{z=} H_{Y F}-H_{x y}^{2}\right]-\frac{p^{2} y h}{g D} H^{2}\right\} d i d Y \tag{G11}\\
i=1,2, \ldots n
\end{array}
$$

For the clamped plate, satisfaction of the natural boundary conditions ${ }^{25 *}$ (also see Appendix B) reduces Equation (G11) to the simpler form

$$
\begin{array}{r}
\left.\frac{\partial}{\partial A_{i}}\left[\iiint\left(\nabla^{2} W^{\prime}\right)^{2}-\frac{p^{2} \gamma h}{g D} W^{2}\right\} d X d Y\right]=0 \tag{G12}\\
i=1,2, \ldots n
\end{array}
$$

[^13]Sabstituting Equation (G9) wits $=\left(1-X^{\alpha}-P Y^{\beta}\right)^{2}$ into the above equetion, a matrix equation results as

$$
\begin{equation*}
[C]\{\dot{v}\}-\omega^{2}[s]\{y\}=0 \tag{G13}
\end{equation*}
$$

where $[A]$ and $[C]$ are square matrices of order n whose elements are respectuvely deñned as

$$
\begin{align*}
& C(I, J)=\int_{0}^{1} \int_{0}^{R\left(1-x^{\alpha}\right)^{\frac{1}{\beta}}} \hat{v}^{2}\left(F C^{J}\right) v^{2}\left(F G^{J}\right) d X d Y \tag{G1£a}\\
& A(I, J)=\int_{0}^{1} \int_{0}^{R\left(1-x^{\alpha} y^{\frac{1}{\beta}}\right.}\left(F G^{J}\right)\left(F G^{J}\right) d I d Y \tag{G1+b}
\end{align*}
$$

where $F=\left(1-x^{\alpha}-P y^{\beta}\right)^{2}$.
Matrices $[C]$ and $[A]$ are therefore symmetric square matrices with all real number elements.

The column matrix $\{\cup \in\}$ of $A_{1}, A_{2} \ldots \ldots A_{i} \ldots \ldots A_{5}$ defines the eigenvector of the specific natural mode concemed and, in ium, yields the modal patterns of the corresponding vibration mode.

The eigenvalues of Equation (Gi3) are $\omega^{2}=p^{2}\left(y / h^{\prime} g D\right)$ where p is the natural frequeac!:

In order to reduce Equation (G13) to standard matrix pencil, ${ }^{26}$ let $C=L L^{\circ} ; \lambda=1 / \omega^{2}$, and $X=L^{\prime} \dot{U}$. Equation (G13) then becomes

$$
\begin{align*}
& L^{-1} A\left(L^{\prime}\right)^{-i} X=\lambda X \tag{G15a}\\
& \text { or }[B]\{X\}=\lambda\{X ; \tag{G15b}
\end{align*}
$$

where $\{B]$ is symmetric and real and thus $\{X\}$ is orthogonal with respect to each natural mode, that is ${ }^{27}$

$$
\begin{equation*}
x_{i}^{\prime} X_{j}=\delta_{i j} \tag{G16}
\end{equation*}
$$

where $\delta_{i j}$ is Kronecker delta. The natural frequencies can then be expressed as

$$
\begin{equation*}
p_{i}=\sqrt{\frac{1}{\lambda_{i}}} \sqrt{\frac{g D}{\gamma h}}, \quad i=1,2 \ldots, n \tag{G17}
\end{equation*}
$$

and the corresponding eigenvectors $\left\{\psi_{i}\right\}$ can then be obtained through the following transformation:

$$
\begin{equation*}
\left\{\varphi_{i}^{\prime}\right\}=\left(L^{\prime}\right)^{-1}\left\{X_{i}\right\} \tag{G18}
\end{equation*}
$$

The modal pattern of the i th vibration mode is given by $\left\{\psi_{i}\right\}$.

To achieve a good approximation to the fundamental and higher mode frequencies, Sun used an xy (or $X Y$) polynomial consisting of 21 terms. The computational methods include both a beta function evaluation and a Gaussian quadrature integration technique.* The latter has no restriction as to the values of α and β but requires approximately twice the computational time of the former. The method of reduction (i.e., iteration) is used no find the eigenvalues and the corresponding eigenvectors are obtained from Equation (G15b). Polynomial exprassions for the fundamental and higher modes as well as ocher detaits relevant to the computatiozal methods are given in Reference 24. The reference also includes computed results which were carried out on an IBM 7094.

[^14]
APPENDIX H

THE CLAASSEN-THORNE METHOD

NOTATION

a
$a_{m n}$
b
b_{m}, f_{n},
d_{m}, h_{n},
c_{m}, g_{n}.
e_{m}, i_{n}
E
f
h
K
K^{*}
K_{1}
\grave{i}
k^{\prime}
m, n
t
$W(X, Y)$
X, Y
x, y

Plate length lying along x-axis
Coefficient of doubly-infinite Fourier series defined by Equation (H6)
Plate width lying along y-axis

Coefficients of Fourier series defined by Equation (Hi)

Young's modulus
Frequency
Half-thickness
Equal to $\frac{a^{2}}{\pi^{2}} K_{1}$
Equal to $\frac{K}{k^{2}}$
Equal to $\sqrt{\frac{3 \rho\left(1-\nu^{2}\right)(2 \pi f)^{2}}{E \hbar^{2}}}$
Equal to $\frac{a}{b}$
Equal to $\frac{1}{k}$
Harmonic order for sine waves along x and y, respectively; see Equation (H5)

Time
Amplitude
Rectangular coordinates
Equal to $\frac{\pi}{a} X$ and $\frac{\pi}{b} Y$, respectivcly

ν, σ	Poisson's ratio
ρ	Mass density of plate
ϕ	Phase angle

DESCRIPTION

Clessen-Tborne ${ }^{10}$ present a Fourier series method for computing the frequencies and sodes of free transverse vibrations of thin, rectangular, isotropic, fully clamped plates.* Carres are given for determining the first ten frequencies and their modal patterns as a fonction of the aspect ratio.

DERIVATION

The goveming differential equation for sinusoidal free vibrations of a thin rectangular isotropic plate is

$$
\begin{equation*}
\frac{\partial^{4} t}{\partial X^{4}} \div 2 \frac{\partial^{4} w}{\partial X^{2} \partial Y^{2}} \div \frac{\partial^{4} w}{\partial Y^{4}}=-\frac{3 \rho\left(1-v^{2}\right)}{E h^{2}} \frac{\partial^{2} w}{\partial t^{2}} \tag{Hi}
\end{equation*}
$$

For sinusoidal vibrations, $v\left(X, i^{\prime}, t\right)=W(X, Y) \sin (2 \pi i t+\dot{\varphi})$ Equation (H1) becomes

$$
\begin{equation*}
\frac{\partial^{4} W}{\partial X^{4}} \div 2 \frac{\partial^{4} W}{\partial X^{2} \partial Y^{2}} \div \frac{\partial^{4} W}{\partial X^{2} \partial Y^{2}}=K_{\underline{1}}^{2} W \tag{H2}
\end{equation*}
$$

where $K_{i}^{2}=\frac{3 \rho\left(1-\nu^{2}\right)(2 \pi f)^{2}}{E h^{2}}$.
For a clamped plate tr \geqslant boundary conditions are

$$
\left.\begin{array}{l}
W(X, Y)=0 \tag{H3}\\
W_{n}(X, Y)=0
\end{array}\right\}
$$

where the subscript n denotes the normal derivative.
The origin of the rectangular coordinate system is taken at one corner of the plate, with one side of length a lying along the X-axis and the other of width b along the Y-axis. Thus, Equation (H1) is valid for $0<X<a$ and $0<Y<b$.

It is useful to tiansform the coordinate system. Let $x=\frac{\pi}{a} X, y=\frac{\pi}{b} Y, k=\frac{a}{b}$, and $K=\frac{a^{2}}{\pi^{2}} K_{1}$. Then Equation (H1) becomes

$$
\frac{\partial^{4} W}{\partial x^{4}}+2 k^{2} \frac{\partial^{4} W}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} W}{\partial y^{4}}=K^{2} W, \quad \begin{array}{ll}
& 0<x<\pi \tag{H4}\\
& 0<y<\pi
\end{array}
$$

[^15]A solution for $\$$ is assumed to be in the form of a doubly infinite Fourier series

$$
W(x, y)=\sum_{m} \sum_{n} a_{m n} \sin n x \sin m y, \quad 0<x<\pi \quad \begin{array}{ll}
& 0<y<\pi \tag{H5}
\end{array}
$$

where $\sum_{r:}$ denotes $\sum_{m=1}^{\infty}$ and \sum_{n} denotes $\sum_{n=1}^{\infty}$.
Further Fourier sesies that are assumed to exist for $0<x<\pi$ or $0<y<\pi$ (i.e., the boundary conditions) are:

$$
\begin{array}{rlrl}
W(\pi, y) & =\sum_{m} b_{m} \sin m y & W(0, y) & =\sum_{m} c_{m} \sin m y \\
W(x, \pi) & =\sum_{n} f_{n} \sin n x & W(x, 0) & =\sum_{n} g_{n} \sin n x \\
W_{x x}(\pi, y) & =\sum_{m} d_{m} \sin m y & \left.W_{x x} \cdot 0, y\right) & =\sum_{m} e_{m} \sin m y \tag{H6}\\
W_{y y}(x, \pi) & =\sum_{n} h_{n} \sin n x & W_{y y}(x, 0) & =\sum_{n} i_{n} \sin n x
\end{array}
$$

where $W_{x x}=\frac{\partial^{2} W}{\partial x^{2}}$, etc.
The authors apply an available tezhnique to Equations (H5) and (H6) to obtain formulas for the higher derivatives and cross derivatives of the Fourier series. These results are then used to obtain a solution for each $a_{m n}$ of Equation (H5) in terms of the coefficients in Equation (H6). Higher derivatives and cross derivatives required by Equation (H4) are then obtained from Equation (H5) using the solution obtained for each $a_{m n}$. Moreover, since the deflection on all edges and corners is zero for the case of a clamped-clamped plate, $b_{m}=c_{m}=f_{n}=g_{n}=W(0,0)=W(\pi, 0)=W(0, \pi)=W(\pi, \pi)=0$. Also the normal dexivatives at all four edges are zero so chat $W_{y}(x, 0)=W_{y}(x, \pi)=W_{x}(0, y)=W_{x}(\pi, y)=0$. Finally, applying to Equation (H4) these boundary conditions as well as the higher derivatives and cross derivatives previously obtained, an infinite set of homogeneous equations is obtained. The authors then present a method for the approximate determination of K satisfying these equations.

For the completely clamped plate, K^{\prime} 's are graphed only for $0<t<1$. Setting $k^{\prime}=\frac{1}{k}$ and $K^{\prime}=\frac{K}{k^{2}}$, a value of K can be found for $k>1$ by locating the value of K for $\frac{1}{k}$ and multiplying by k^{2}. Appendix I gives the method for determining the frequency from these quantities as well as a sample computation.

The frequency and mode data computed in Reference 10 are presented there in both tabular and graphical form. Interpretation of the results are given as well as computer times involved in obtaining the results. A copy of this reference is available in the computer files associated with this investigation at the Computation and Mathematics Department.

APPENDIX I

COMPUTER PROGRAMS

Appendixes A-H have presented several methods for computing the natural frequencies of vibration of clamped-clamped plates. The corresponding computer programs including flow charts are given here; computer program decks are now available at the Computation and Mathematics Department of NSRDC. Table 1 gives the results of these programs for particular plate input data representing the plate geometry and mass-elastic properties. Figures 2 and 3 are plots of the data in Table 1a only. Thus, the first set of results shown in Table 1a contains the computed frequencies for a plate with geometry and properties identical to those used by Izzo (Electric Boat) ${ }^{1}$; experimental results cited by Izzo are also included. The second and third sets of results shown in Tables $1 b$ and 1 c , respectively, are the computed and experimentally* obtained frequencies for two plates used by Wilby. ${ }^{11}$ The corresponding input data for the three sets of results are:

Data	Plate 1 (Izzo-Electric Boct)		Plate 2 (Wilby)		Plate 3 (Wilby)	
Dimension in x-direction	2.0	f	4.0	in.	4.0	in.
Dimension in y-direction	2.33	ft	2.75	in.	2.0	in.
Plate thickness h	0.0313	ft	0.015	in.	0.015	in.
Young's modulus E	4.175	$\mathrm{lb} / \mathrm{ff}^{2}$	33.7	$\times 10^{6} \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$	31.0	$\times 10^{6} \mathrm{lb} / \mathrm{in} .{ }^{2}$
Poisson's ratio σ	0.33		0.3		0.3	
Weight density ρ_{w}	466.56	$\mathrm{lb} / \mathrm{ft}^{3}$	0.27	16/in. ${ }^{3}$	0.27	$\mathrm{lb} / \mathrm{in} .{ }^{3}$
Gravitational constant g	32.2	$\mathrm{ft} / \mathrm{sec}^{2}$	386.4	$\mathrm{in} . / \mathrm{sec}^{2}$	386.4	$\mathrm{in} . / \mathrm{sec}^{2}$

Five sets of computer programs and one manual method of computation are presented. Their designations and the computers used in making the calculation are:

1. WCGFRE on the IBM 7090 of NSRDC: This program includes the methodis of Warburton (Appendix A), Crocker (Appendix F), and Greenspon (Appendix D). Figure 24 presents a flow chart of this program.
2. WHITE on the IBM 7090: This program treats the conversion of the White numographic values (Appendix E) to dimensional frequencies. Figure 25 presents a flow chart of this program.

[^16]3. PLFREQ on the IBM 360/91 of the Applied Physics Laboratory, Johns Hopkins University: This program treats the Ballentine-Plumblee method (Appendix C). Figure 26 presents a flow chart of the program.
4. SUNFRE on the IBM 360/91: This program treats the Sun method (Appendix G). Figure 27 presents a flow chart of this program.
5. YNGFRE on the IBM 360/91: This program treats the Young method (Appendix B). Figure 29 presents a flow chart of this program.
6. Claassen-Thorne manual method of computation.

In all computations, the frequency f (in hertz) is obtained as the product of the frequency parameter $\lambda_{m, n}$ (or $\boldsymbol{\alpha}_{m, n}$) and a factor. For particular computations, the factors are:

$$
\begin{aligned}
& \text { Warburton: } \\
& \text { Crocker: } \quad \frac{h}{2 \pi b^{2}} \sqrt{\frac{E}{12 \rho_{m}\left(1-\sigma^{2}\right)}} \\
& \text { Greenspon: } \\
& h \sqrt{\frac{E}{12 \rho_{m}\left(1-\sigma^{2}\right)}} \\
& \text { Plumblee: } \quad \sqrt{\frac{E}{\rho_{m} \ell^{3} b\left(1-\sigma^{2}\right)}}\left(\begin{array}{l}
\ell=a \\
\rho_{2}= \\
\rho_{m}
\end{array}\right) \\
& \text { Young: } \\
& \frac{h}{2 \pi} \sqrt{\frac{E}{12 \rho_{m} b^{3} a\left(1-\sigma^{2}\right)}} \\
& \text { White: } \\
& \frac{h}{2 \pi a^{2}} \sqrt{\frac{E}{12 \rho_{m}\left(1-\sigma^{2}\right)}} \\
& \text { Sun: } \\
& \frac{h}{2 \pi a^{2}} \sqrt{\frac{E}{12 \gamma\left(1-\sigma^{2}\right)}} \\
& \text { Claassen-Thorne: } \frac{k^{2} h \pi}{2 a^{2}} \sqrt{\frac{E}{3 \rho_{m}\left(1-\sigma^{2}\right)}}
\end{aligned}
$$

NOTE: The user submits w ight density ρ_{w} which is converted by the program to mass density ρ_{m} where $\rho_{m}=\frac{\rho_{w}}{g}$.

WCGFRE (see Table 8 and Figure 24)

This combined program yields separate solutions corresponding to the Warburton, Crocker, and Greenspon methods. The program card IOPT contains dsta input to the program which permit the user to compute the natural frequency for either one or all of these methods, i.e., IOPT $=1 \rightarrow$ Harburton method, IOPT $=2 \rightarrow$ Crocker method, IOPT $=3 \rightarrow$ Greenspon method, IOPT $=4 \rightarrow$ all of these methods.

Warburton ${ }^{13}$ treats the frequency parameter subscripts m, n as the number of nodal points along the plate length and width, respectively; see Appendix A. However, most other authors treat m, n as the mode numbers along these dimensions (or define it for the opposite dimensions). Thus ($m=2, n=3)_{\text {warburton }}$ means the 1,2 mode containing 2 nodes along x and 3 along y whereas ($m=2, n=3$) Others means the 2,3 mode containing either 3 nodes along x and 4 along y or 4 nodes along x and 3 along y depending on the definition of $m_{2} \pi$ with respect to the x, y coordinates. To avoid confusion and for compatibility with most investigators, the program assigns the modal (not nodal) meaning to m, n for all computations.

WCGFRE Restrictions

For IOPT $=3, M \leq 5, N \leq 5$. That is, the Greenspon option computes the frequencies for $M \leq 5$ and $N \leq 5$. However, for this option, if the user requires higher modes he may change the Greenspon subroutine to read in the values of the integrals discussed in Appendix D. The integrals are given in References 7, 8, and 9.

The simply-supported frequencies may be computed by the Warburton method. In this case, the value of SPEC must be 1.0. Clamped frequencies are computed with any value of SPEC not equal to 1.0 .

Units

All length units are shown in feet. However, if all length data are converted to inches, this is acceptable to the program, and is actually preferable in the case of a very small plate because of simpler handling and greater accuracy.

TABLE 8
Prograin Listing for HCGFRE Computer Program


```
COMMON N,N,N&R,H,F,SIGMA,RHO,PItG
```



```
    A - LENGTH IH X OIPFCTION
    H - PlATE THICKNFSS
    E - YOUNGS MODILUS
    SIGMA - POISSOHS RATIO
    RHO - PLATE DENSITY
    G - ACCELERATION DUE TO GRAVITY
```



```
        PI=3.14:5977
        REAN(5,2) IOPT, NCASF
        DO 500 L=1,PCASE.
        RFAD(5.2) M EN
        READ(5,3) A, R,H
        READ(5,4) E,SIGMA,RHO OG
        FORNAT(215)
        3 FORMAT(3F12.6)
        4 FORMAT(E16.8,3F12.6)
    RHO=RHO/G
    GO TO {10,20,30,10), IOPT
    10
    CALL HARB
    IF(IOPT.LE.I) GO TO 50N
    O CALL CROCX
    {F(IOPT.LE.2) GO TO 5nO
    30
    CALL GRFEN
    5 0 0
        CONTINUE
        STOP
    FNn
SIRFTC HAPBER
    SIJGROIITINE UARA
    REAL LABMRAA;JX,JY,K,KP
        DIMENSION OMFGA(20,1O)
        DIMENSION FREQ(25,10), GX(1001gHX(100),JX(100)gGY(100),HY(100):
        1 JY(100)
        COMMON M,M,A,R,H,F,SIGMA,RHO,PI;G
        RFAD(5,9979) SPF.C
    9979 FORMAT(F10.O)
        A2 = A*A
        B2=8*B
        A4=A2*A2
        B4=82*B2
        MP1=M+1
        NP1=N+1
        IF(SPECeEO. 1.0) GO TO 510
        GX(1)=1.
        HX(1)=1.
        jx(1)=1.
        GY(1)=1.
        HY(1)=1.
        JY(1)=1.
        GX(2)=1.506
        HX(2)=1.248
        JX(2)=1.248
        GY(2)=1.506
        HY(2)=1.248
        JY(2)=1.248
```


TABLE 8 (Continued)

```
        00 100 Ml=3pmP1
        GX(M1)=FLOAT(M1)-05
        HX(M1)={(FLOAT(M1)-.5)**2)*(1.-2./(|FLOAT(M1)-.5)*PI))
        JX(M1) =HX(M1)
    1 0 0
    DO 150 N1=3,NP1
    GY(NI)=FLOAT(N1)-.5
    HY(N1)=((FLOAT(R1)-.5)**2)*(10-2./((FLONT(N1)--5)*PI))
    JY(NI)=HY(NI)
150 CONTINUE
    G0 TO 590
DO 500 Ml = 1,NP]
    GX(SHI) = FLOAT(NI) - 1.0
    HX(MI)=GX(M1) **?
500 JX(M1) = HX(081)
    DO 550 N1 = 1,NP1
    GY(Nl) = FLOAT(Nll-1.0
    HY(NI) = GY(HI)**2
    550 IY(NI) = GYiNI)
590 URITE(\sigma,20;AzRgH,E,SIGMA,PHO
```



```
        1 F7.2,5H RHO=,E11.4)
    MPITE(6,19)
19 FORMAT(I/23X, 22H WARPURTON FRFOUFRNCIFS)
IH=1
00 400 N2=2,NP1
N21=N2-1
HRITEI6,21)N21
21 FORMAT(3H N=,12)
4RITE(6,22)
22 FORMAT19X,1HM,15X,6HLAMPDA,16X,5H FRFOI
DO 300 :A2=2,MP1
M21=M2-1
XLAMSO=GX(M2)*GX(M2)*GX(M2)*GX(M2) +{GY(N2)*GY(N2)*GY(N2)*GY(NZ)
1 *A4)/B4+(2.*A2/B2)*(SIGMA*HX(M2)*HY(N2)+(1.-SIGMA)*JX(M2)*JY(N2))
LAMPDA =SORT (XLAMSA)
FREO(M2,N2)=({LAMRDA*H*PI)/A2)*SORTIF /(48.*RHN*(1.mSIGMA**2)S)
HRITE(G,23IM2I,LABMBNA,FRFO(MP,ND)
23 FORMAT(5X,15,5X,F15.8,5X,F15.8)
OMEGA(M2,N2) = 2. * PI * F-PFO(M2,N2)
WRITE(6,30) DHFGA(M2,N2), IH
HRITE(8,3@) OMFGA(M2,N2), IW
30 FORMAT(F10.4,65X,15)
    lw = 1w + 1
300 CONTINUF
400 CONTINUE
    RETURN
    FEND
```

TABLE 8 (Continued)

```
SIBFTC CRCKER
            SUBROUTINE CROCK
            DIMENSIO:A FREO(20,10)
            COHMON M,N,A;B,H,E;SIGMA,RHO,PI,G
            REAL LAMBDA
            MRITE(6;4)A,B,H,E,SIGMA,RHO
            4 FORMAT(1H1,3H A=,F7.2,3H B=,F7.2,3H H=,F7.4,3H E=,E11.4,7H SIGMA=,
    1 F7.2,5H RHO=,F7.21
    KRITE(6:19)
19 FORMAT(//23X,2OH CROCKER FREQUENCIEES)
    DO 40 J=1gN
    GAMN=(2.*FLOAT(J)*1.)*PI/2.
    AN=(COSH(GAMN)-COS{GAMN) )/(SINH(GAMN)+SIN(GAMN))
    WRITE(6,13)J
    13 FORMAT(3H N=,12)
        YRITE(6,14)
    1 4
    ZIN=(GAMN/2.*({(AN-1\bullet)*COSH(GAMN)+AN*(-EXP(-GAMN)-SIN(GAMN))
    1 - COS(GAMN))*((AN-10)*SINH(GAMN)+AN*(EXP(-GAMN)+COS(GAKN))-
    2 SIN(GAMN)I+4**AN)-2.#GAMN**2),2.*AN*AN
    DO 30 I =1 %M
    GAMM=(2**FLOAT(I) +1*)*P1/2.
    AM=(COSH(GAMM)-COS(GAMM)]/(SINH(GAMM)-SIN(GAMM))
    ZIM=(GAMM/2**(((AM-10)*COSH(GAMM)+AM*(-EXP(-GAMM)-SIN(GAMM))
    2 -COS(GAMM))*((AM-10)*SINH(GAMM)+AM*(EXP(-GAMM)+COS(GAMM))-
    2 SIN(GAMM):+40*AM)-Ze #GAMM#*2!/2.*AM*AM
        LAMBDA=(B*GAMM/A)**4+GAMN**4+2.*ZIM*ZIN*iBin;**2
        FREQ(I,J)=SQRT(LAMBDA*E/(12**RHO*(10-SIGMA**2)))*H/B**2
        FREQ(I,J)=FREQ(I,J)/(2**PI)
        WRITE(6,7)I,LAMBDA,FREQ(I,J)
        7 FORMAT(5X,15,5X,E15.8,5X;E15.8)
    30 CONTINUE
    4O CONTINUE
    50 CONTINUE
        RETURN
    END
SIBFTC GRNSP
    SubROUTINE GREEN
    DIMENSION FREQ(5,5),P(5),X(5),Y(5),XSQ(5),YSQ(5)
    COMMON M,N,A,B,H,E,SIGMA,RHO,PI,G
    P(1)=4.73
    P(2) =7.8532
    P(3)=10.9956
    P(4)=14.1372
    P(5)=17.2788
    x(1)=-12.3026/A
    X(2)=-46.0501/A
    x(3)=-98.9048/A
```


TABLE 8 (Continued)

```
    x(4) =-171.2560/A
    X(5) =-263.9980/A
    Y(1) =-12.3026/B
    Y(2)=-46.0501/B
    Y(3)=-98.9048/B
    Y(4)=-171.2560/B
    Y(5) =-263.9980/B
    OO ! I=1.5
    XSO(1)=A
    YSQ(I)=B
1 CONTINUE
    A4=A**4
    84=8**4
    H3=H**3
    WRITE(6,8)A,B,H,E,SIGMA,RHO
8 FORMAT(1H1,3H A=,F7.2,3H B=,F7.2,3H H=,F7.4,3H E=,E11.4.7H SIGMA=,
i F7.2,5H RHO=,F7.2)
    D=E*H3/(12.*(1.-SIGMA**2))
    F=SQRT(D/(RHO*H))
    IF (M,GT. 5) M=5
    IF(N .GT. 5) N=5
    WRITE(6,19)
19 FORMAT(//23X,22H GREENSPON FREQUENCIES)
    DO 20 J=1,N
    WRITE(6,4) 」
4 FORMAT(///3H N=,I2)
    WRITE(6,5)
5 FORMAT(9X,1HM,15%,5H FREQ)
    DO 10 1=1,M
    FREQ(I,J)=F*SQRf((P(I)**4/A4)+(P(J)**4/B4)+(20*X(I)*Y(J))/
    1 (XSGiI:*YSQ(J)I)
    FREQ(I,J)=FREQ(I&ji,'2.*PII
    WRITE(6,6) I,FREQ(I,J)
    FORMAT(5X,15,5X,E15.8)
10 CONTINUE
20 CONTINUE
30 CONTINUE
    RETURN
    END
```


Figure 24 - Flow Chart for WCGFRE, Computer Program for Computing Natural Frequencies of a Plate by Warburton, Crocker, and Greenspon Methods

The printed output of the program contains FREQ ($1, N$). However the value FREQ $(M, N) \times 2 \pi$ may be used as the input OMEGA (N, N) to Subprogram A in Appendix B of Reference 1.

Input Des:ription

The input ciescription is as follows.

Card :	Program Symbol	Theory Symbol	Description	Units	Format
1	10PT		OPTION for methods: 1 - Karburton only; 2 - Cocker only; 3 - Greenspon only; 4 - all methods		15
1	NCASE		Number of plates to compute frequencies for		15
2	M	m	Number of modes in x direction		15
2	N	\boldsymbol{n}	Number of modes in y direction		15
2	A	a	Plate dimensions, x direction	$f t$	F12.6
$?$	B	b	Plate dimensions, y direction	ft	F12.6
3	H	h	Plate thickness	ft	F12.6
4	E	E	Young's modulus	$\mathrm{lb} / \mathrm{ft}^{2}$	E16.8
4	SIGMA	σ or ν	Poisson's ratio		F12.6
4	RHO	$\boldsymbol{P}_{\boldsymbol{w}}$	Weight density of plate	$1 \mathrm{~b} / \mathrm{ft}^{3}$	F12.6
4	G	g	Gravitational constant	$\mathrm{ft} / \mathrm{sec}^{2}$	F12.6
5	SPEC		OPTION for Warburton simply-supported frequencies. Used : if IOPT = 1 or $=4$; SPEC $=1.0$ means simplysupported case.		F10.0
Cards 2-4 are repeated NCASE number of times.					

Output Description

The input data and results are labelled and printed out for each plate (or each value of NCASE). The first printout is Wabburton, followed by Crocker, and finally Greenspon. The mode numbers (m, n), nondimensional frequency λ, and final frequency f (in hertz) are given.

A sampie problem using all subroutines to compute 25 modes each for two plates iook a total of 1.1 minutes on the 7090 .

WHITE (see Table 9 and Figure 25)
White has provided a set of nomographs that permit manual computation of the frequency parameters $\boldsymbol{\alpha}_{m n}=\sqrt{\lambda_{m, n}}$ for the first nine modes. A short subroutine handles the conversion

TABLE 9
Program Listing for WHITE Computer Program

```
        DIMENSION FREQ(20.7),ALPHA(20.7)
        PI=3.1415927
        WRITE(6.1)
    1 FORMAT(1H!,18H WHITE FRFQUENCIFS)
        RFAD(5,2) NCASE
    2 FORMAT(15)
    4 \text { FORMAT(215)}
    ; FORMAT(4F12.6)
    5 FORMAT(E16.8.2F1206)
```



```
        1 F7.2.5H RHO=0F8.31
    9 FORMAT(9X,1HM, 15X:6HALPHA 1 16X,5H FREO)
    8 FORMAT(3H N=g.12)
10 FORMAT(5X,I5,5X,E15.8,5X,E15.8)
    N=3
    N=3
    DO 40 L=I NCASE
        RFAD(5,3) ((ALPHA(T,J):I=1:3):J=1:3)
    3 FORMAT (3F17.6)
    RFAN(5.5) A,RgH &S
    READ(5:6) F,SIGMA,RHO
    WRITE(6,7) A&R&H&EgSIGMA|RHO
    A4 = A**4
    R4=R**4
    H3=H**3
    D=E*H3/(12.*(1.-SIGMA**2))
    F=S\capRT((n*G)/(RHO*H*A4))
    00 30 N2=19N
    WRITF(6,8) N2
    WR!TF(6,9)
    NO 20 M2=1:M
    FRFQ(M2,N2)=ALPHA(M2,N2)*F/(2**P1)
    WRITE(6,10) M2,ALPHA PFRFO(M2,N2.I
    20 CONTINUE
    30 CONTINUE
    40 EONTINUF
    STOP
    END
```


Figure 25-Flon Chart for WHITE. Computer Program for Converting Vomograph Frequency Parameters $\boldsymbol{\alpha}_{m, n}$ to Frequencies: $i_{m, n}$
 as the mpu: OUEGA (J, N) to S.bprograe A in Appendix 3 of Refe:ence ?.
of these frequercy parameters to hertz using a formula given by White (Appendix E). The nomographs are read for various aspect ratios $\frac{b}{a}<1$. Thus the user must make adjustments for ihe case $\frac{b}{a}>1$, e.g., interchanging m and n. The nomographs are applicable to nine combinations of $m=1,2,3$ and $n=1,2,3$.

Input Description
The input description is as follows.

Card No.	Program Symbol	Theory Symbol	Description	Units	Format
1	NCASE		Number of plates		15
(There are NCASE sets of remaining cards.)					
2-4	$\begin{aligned} & \text { (ALPHA) }(\mathrm{I}, \mathrm{~J}), \\ & (\mathrm{I}=1,3), \\ & (\mathrm{J}=1,3) \end{aligned}$	$\alpha_{i=, n}$	Model frequency parsmeter, found from nomographs		3 F 12.6
5	A	a	Dimension, x-direction	ft	F12.6
5	B	b	Dimension, y-direction	ft	F12.6
5	H	h	Plate thickness	ft	F12.6
5	G	g	Gravitational constant	$\mathrm{ft} / \mathrm{sec}^{2}$	F12.6
6	E	E	Young's modulus	$\mathrm{lb} / \mathrm{ft}^{2}$	E16.8
6	SIGMA	σ	Poisson's ratio		F12.6
6	RHO	ρ_{w}	Plate weight density	$\mathrm{lb} / \mathrm{ft}^{3}$	F12.6

Output Description

Both ALPHA and FREQ ($f_{m, n}$) are given according to mode. The 7090 computer time is about 30 seconds.

PLFREQ (see Table 10 and Figure 20)

PLFREQ is a computer program developed by Plumblee ${ }^{28}$ and Ballentine ${ }^{19}$ to yield the natural frequencies of vibration of either a simpiy supported or clamped thin plate, flat or rurved. The orizinel program vas in nondimensional form. However, for the comparison purposes of this report, the program was modified so that auditional input. in units permitted the frequency to also be computed in hertz.

The mathematical subroutines needed from the IBli SHARE library are EIGEN, LOC, and MiNV. The sample problems for 36 modes rere run on the IBM $360 / 91$ and took 18 seconds per elate.

TABLE 10
Program Listing for PLFREQ Computer Prograni

```
    REAL BETAL(20),M1(20,20),M2(20,20),F(27),ML,NU
        DOUBLE PRECISION L(378),VECTOR(729),VEC(278,XX
        DOUBLE PRECISION FR(5)
        INTEGER LR(45),LM(45),P,Q,PP,QQ,QQQ,S,T,PQ,QI
        READ(5,415) RHO,AL,B,G,E
415 FORMAT (4F12.6,E16.8)
    3 READ(5,1)THETA,TL,A,NU
        READ (5,2) RIM,NN,HV,LL, LBOUND
    1 FORMAT(4E10.4)
    2 FORHAT(512)
        WRITE(6,15)THETA,TL,A,NU
    15 FORMAT (4X,'THETA=3,F10.4,'TL=',F10.4,'A=',F10.4,'NU=',FF10.4)
    {:RITE(6,16)MM,NN,IMV,LL,LBOUND
    16 FORMAT (4X,'MM=:,I2,'NN=',I2,'MV=',I2,'LLL=',I2,'LBOUND=',I2)
        R(1)=LBOUND
        CALL BETA(NM,NN,R,BETAL,M2,M1)
        IF(MM-NN) 41,41,42
    41 KK=2%NN
        GO TO 43
    42 KK=2*NH1
    43 URITE (6,46)
        DO 44 I=1,KK
        WRITE(6,48) (Ml(I,J),J=1,KK)
    44 CONT INUE
        WRITE(6,47)
        DO 45 I=1,KK
        HRITE(6,48) (M2(I,J),J=1,KK)
    45 CONTINUE
    46 FORMAT(1H1,4X,'MATRIX Ml(I,J)',//)
    47 FORMAT(IHI,4X,'MATRIX M2(I,J)',//)
    4 8 \text { FGRMAT(5X,9E12.5)}
        MN=MM*NN
        MN5=3%NN
        P=1
        GG TO 11
```


TABLE 10 (Continued)

```
    lü P=P+1
    11 CALL SUBSCP(P,NN,NN,LL,PP,S,T)
        Q=P
        G0 TO 13
        12 Q=Q+1
        13 CALL SUBSCP(Q,AN,NN,LL,QQ,M&N)
        CALL LOC(P,Q,PQ,MN5,MN5,1)
        GO TO (101,102,1(3),PD
    101 GO TO (101],1012,1013),QQ
101i L(PQ)=A*BETAL(M)**3*M1iS,M)*Al(T,N)/BETAL(S)+(1.-NU!*M2(S,N)
    1* &2(T,N)/(BETAL(隹*BETAL(S)*2.*A)
        IF(P-Q) 12,10111,12
10111R(P)=M2(S,M)*H1(T,N)/(BETAL(S)*BETAL(M))
    GO TO 12
    1012L(PQ)=(1.+NU)*H2(S,H)*M2(T,N)/(BETAL(S)*BETAL(N)*2.0)
        GO TO 12
1013 L(PQ) = -NU*THETA:M2(S,M)*HI(T,N)/BETAL(S)
        IF(3*MFi=NN-Q)iO,10,12
        i02 QQQ=QQ-1
        GO TO (1022,1023),QQQ
1022L(PQ)=M1(S,M)*M1(T,N)*BETAL (i!)**3*11.+THETA**2/(12.*(TL*A)***2))
    1 ((A*BETAL(T))+(1,-NU)*A*N2(S,H)*:12(T,N)*(1.+((THETA/A/TL)**2/3.0)
    2)/(2.*BETAL(T)*BETAL(N))
        IF(P-Q)12,10222,12
10Z22 R(P)=M1(S,M)*H2:T,N)/(BETAL(T)*BETAL(N))
        GO TO 12
    1023L(PQ)=THETA*HL(S,M)*M2(T,N)/(A*BETAL(T))+THETA*MZ(S,M)*M2(T,N)
        1*NU/(12.*A*TL*TL\becauseBETAL(N))+THETA**il(S,H)*M1(T,N)*BETAL(N)**4/12.
        2/(TL*TL#A**3*SETAL(T))+(1.-NU)*TH\subsetTA*H12(S,H)*M2(T,N)/(6.*A*TL*TL)
        3/BETAL(T)
        IF(MN5-Q)10,10,12
    103L(FQ)=THETA**2*M1(S,M)*N1(T,N)/A+A*HM{S,M)*BETAL (M)**4*MM1(T,N)
        1/(12.*TL*TL)+P1(S,N)*M1(T,1* #BETAL(N)**4/(12.*TL*TL*A** 3)+
        2M2(S,M)*H2(T,N)/(6.#TL*TL*A)
        IF(P-Q)1033,10333,1033
```


TARLE 10 (Continued)

```
10333 R(P)=Ml(S,M)*Ml(T,N)
    1033 IF(NN5-Q) 1034,1034,12
    1034 IF(MN5-P) 100,100,10
    100 00 110 I=1,MNS
    110 R(I)=SQRT(R(I))
        DO 120 I= 1, H1N5
        DO }120\textrm{J}=\textrm{I},MN
        CALL LOC(I,J,IJ,MN5,MN5,1)
        L(IJ)=L(IJ)/(R{I)*R(J))
    120 CONT INUE
    DFACT=1.
    140 DNORK=1.
    OO 150 I=1,MN5
    CALL LOC (I,I,II,MN5,MN5,I)
    DNORM=DNORM*L(II)/DFACT
        IF(ONORM-1.D+701145,155,155
    145 IF(DNORM-1.D-70)160,160,150
    150 CONT INUE
    GO TO 165
    155 DFACT=10.*DFACT
    GO TO 140
    160 DFACT =0.1%DFACT
    GO TO 140
    165 ONORH=(ABS(DNORM))}=*(1/MN5
        DO 170 I=1.MN5
        OO 170 J=I,MN5
        CALL LOC{I,J,IJ,MN5,MFN5,I)
    170 L{IJ)=L(IJ)/(DNORN*DFACT)
    OO 125 I= , MN5
    OO 125 J=1,MN5
        CALL LOC(I,J,IK,MN5,MN5,0)
        CALL LOC(I,J,IJ,MN5,MN5,I)
    125 VECTOR(IK)=L(IJ)
    MN52=MN5%MN5
    CALL MINV(VECTOR,MN5,XX,LM,LR)
```


TABLE 10 (Continued)

H^{n}.ITE(6,130) XX
130 FORHAT('0','THE DETERMINANT IS', El2.53
DO $135 \mathrm{I}=1$, MNS
DO $135 \mathrm{~J}=1$, MNS
CALL LOC(I,J,IJ,MNS,MNS,1)
CALL LOC(I,J,IK,MN5,MN5,0)
135 L!IJ)=VECTOR(IK)
CALL EIGEN(L,VEこTOR,MNS,MV)
20 FORMATI'I',8X,'DIMENSIONLESS FREQUENEIES ARE NORMALIZED',
1 2X,'EIGENVECTORS')
HRITE(G,20)
21 FORMAT(33X, ${ }^{2}$ FOR') WRITE 6,21)
22 FORMAT(21X,'A CYLINDRICALLY CURVED PANEL') HRITE(6,22)
23 FORHAT(32X,'WITH') VRITE(6,23) GO TO (241,242),L3OUNO
241 WRITE(6,24)
24 FORMAT(28X,'CLAMPED EDGES') GO TO 251
242 WRITE 6,245$)$
245 FORHAT (23X,'SIHPLY SUPPORTED EDGES')
251 WRITE $(6,25)$

26 FORMAT('0',19K', 'NONDIMENSIONAL INPUT PARAMETERS') WRITE(6,26)
27 FORMAT: 0^{2}, : SUBTENDED ANGLE=: F7.4, 10 X, 'ASPECT RATIO $=1, F 7.4$) WRITE(6,27)THETA,A
28 FORMATI'0:', LENGTH/SKIN THICKNESS=',F7.2)
WRITE $(6,28)$ TL WRITE(6,29) NU
29 FORMAT('0','POISSONS RATIO=',F4.3)
32 FORMATI'D', 'NUMBER OF SERIES TERMS ALONG STRAIGHT EDGE: : IJ.: !',ALONG CURVED EDGE=',I1)

TABLE 10 (Continued)

```
        HRITE(6,32)MM,NN
```



```
    1'MODE SHAPES:)
        WRITE(6,33)
        00 180 I=1,MN5
        CALL LOC(I,I,11,MN5,MN5,1)
        IF(L(II))180,180,179
179 L(I)=0.159154*SQRT(ONORM*DFACT)/DSQRT(L(II))
180 CONTINUE
        II=1
        GO TO 5l
    50 11=1I+1
    51 MI=5*(II-1)+1
        NI=5^II
        IF(MN-4)520,520,523
    5?0 GO TO (521,521,522,523),MN
5`2 GO TC (521,531,521),11
523 IF(II-1)521,521,533
532 FORMAT('1'//////////)
533 WRITE(6,532)
    GO TO 521
    53 FORMAT('1')
531 WRITE (6,53)
    52 FORMAT('0','FREQUENCY=',5(1X,E11.4))
521 WRITE(6,52) (L(I),I=MI,NI)
    J = 1
    00 5521 I = MI,NI
    FR(J)=L(I)* SQRT((E*G)/(RHO%AL*B*(1.-NU**2)I)
5521 J = J + 1
    WRITE(6,5522) (FR(I),1 = 1,5)
5522 FORMAT(10X,5(1X,Ell.4))
    54 FORMAT('0','GEN COORD',3X,5(2X,'MODE SHAPE'))
        URITE(6,54)
        Q=1
        GO TO }6
```


TABLE 10 (Continued)

$60 \mathrm{Q}=\mathrm{Q}+1$
61 CALL SUBSCP (Q,MN,NN,LL,QQ,M,N) GO TO (7110,7210,7310), QQ
7110 DO $711 \mathrm{I}=\mathrm{MI}, \mathrm{NI}$
CALL LOC(Q,I,QI,MN5,MN5,0)
$711 \operatorname{VEC}(I)=\operatorname{VECTOR}(Q I)$ WRITE(6,71)M,N,(VEC(I),I=MI,NI) GO TO 60
7210 DO $721 \mathrm{I}=\mathrm{MI}, \mathrm{NI}$
CALL LOC(Q,I,QI, AN5,MN5,0)
$721 \operatorname{VEC}(I)=V E C T O R(Q I)$ HRITE(6,72$) M, N,(\operatorname{VEC}(I), I=M I, N I)$ GO TO 60
7310 DO $731 \mathrm{I}=\mathrm{MI}, \mathrm{NI}$
CALL LOC (Q,I,QI,MN5,MN5,0)
$731 \operatorname{VEC}(I)=V E C T O R(Q I)$ WRITE(i), 73)M,N,(VEC(I), I=MI,NI) IF (RNS $\operatorname{li}-\mathrm{Q}) 76,76,60$
76 IF (MNS-NI) 77,77,50
$77 \operatorname{URITE}(6,53)$
80 CONT INUE IF(LL-4) 3,74,74

72 FORHAT $(2 X, 1 V(1,11,1, ', 11,1) ', 4 X, 5(1 X, E 11.4)\}$
73 FORMAT(2X,'W(', 11,',', I1,')',4X,5(1X,E11.4))
74 CONTINUE $A P L=S Q R T(41.7 * A+25.2 / A+41.7 / A * * 3+(T L \div T H E T A) * 2 / A)$ HRITE(6,78) APL
78 FORMAT(E11.4) STOP END SUBROUTINE BETA($M, N, A, B, G, H)$ DIMENSION A(1), B(1),G(20,20), $H(20,20)$ IF (M-N)I,1,20
$1 K K \approx 2 \div N$

TABLE 10 (Continued)

```
    GO TO 2
20 KK=2%M
    2 IF(A(1)-1.5iG,9,10
    9 DO 5 I=5,KK
        IF(I-5)4,4,3
    3 A(I) =1.0
    B(I)=(2*I+1)*1.5707963
    GOTO 5
    4 A(1)=.9825022158
    A(2)=1.000777311
    A(3)=.9999664501
    A(4)=1.00000145
    A(5)=.9999999373
    B(1)=4.7300408
    B(2)=7.8532046
    B(3)=10.9956078
    B(4)=14.1371655
    B(5)=17.2787596
5 CONTINUE
    DO }8\textrm{I}=1,\textrm{KK
    DO 8 J=l,KK
    IF(I-J)7,6,7
    6G(I,J)=A(I)*B(I)*(A(I)*B(I)-2.0)
    H(I,J)=1.0
    GO TO 8
    7G(I,J)=-4.*B(I)**2*B(J)**2*(A(I)*B(I)-A(J)*B(J))*
    l(1.+(-1.)**(I+J))/(B(I)**4-B(J)**4)
    H(I,J)=0.0
    8 \text { CONTINUE}
    RETURN
10 00 11 I=1,KK
    B(I) = I *3.1415927
    DO ll J=1,KK
        IF(I-J)12,13,12
12 G(I,J)=0.0
```

TABLE 10 (Continued)

```
    H(I,J)=0.0
    G0 TO 11
13G(I,J)=B(I)**2
H(I,J)=1.0
12 CGNTINUE
RETURN
ENO
SUBROUTINE SUBSCP(NR,AN,NN,KK,NP,J,K)
NP=((NR-1)/MN)+1
I=NR-(NP-1)*FIN
II=(I-I)/NN
GO TO (1,2,3,4),KK
l J=2*II+1
K=2*I-2*II %NN-1
RETURN
2 J=2*II+2
K=2*I-2*II*NN-1
RETURN
3 J=2%II +1
    K=2*I-2*II*NN
    RETURN
4 J=2*II +2
    K=2*I-2*II*NN
    RETURN
    END
```


Input Description

The input description is as follows.

Card No.	Program Symbol	Theory Symbol	Description	Units	Format
1	RHO	ρ_{w}	Plate weight density		F12.6
1	AL	$a \mathrm{rrl}$	Panel length	ft	F12.6
1	B	b	Panel arc length	ft	F12.6
1	G	g	Gravitational constant	$\mathrm{ft} / \mathrm{sec}^{2}$	F12.6
1	E	E	Young's modulus	$\mathrm{lb} / \mathrm{ft}^{2}$	E16.8
For each value of LL, there is a set of the following cards:					
2	THETA	6	Subtended angle $\frac{b}{R}$ (0 for fl at plate)		E10.4
2	TL	$\frac{\ell}{h}$	If curved panel, $R=$ panel midplane radius, ratio of panel length to thickness		E10.4
2	A	$\frac{b}{2}$	Aspect ratio		E10.4
2	NU	ν	Poisson's ratio		E10.4
3	MM	m	Modes, x-direction		12
3	NN	n	Modes, y-direction		12
3	MV		0 eigenvalues and eigenvectors 1 eigenvalue only		12
3	LL		1 odd-odd modes 2 even-odd 3 odd-even 4 even-even		12
3	LBOUND		1 clamped edges 2 simply supported edges		12

Output Description

The frequencies are printed out in ascending order for each set of subscripts (odd-odd, even-odd, odd-even, even-even). The nondimensional frequency is given first, with frequency in hertz on the next line. The generalized coordinates and mode shapes are also given in the same column as the frequencies they represent.

SUNFRE (see Table II and Figure 27)

SUNFRE is a computer program developed by Sun^{24} to obtain the natural frequencies of vibration of a class of thin plates, including such special cases as the circle, square, and rectangle.

TABLE 11
Program Listing for SLiNFizE Computer Program

C	Fricuencies of general plate by ritz heithod	
		0010
		0020
	DOUBLE PRECISION AREAV(462) , X Wk(462)	30
	DIAERSION XP(21), YP(21)	40
	DOUELE PRECISIOK XU(21,21), XMD $(21,21), A(21), B(21), C(21)$	0050
	DOUELE PRECISIOR VAL,	0060
	DCUBLE PRECISIC: VXP(21),VYP(21)	70
	COMMON XHA, XMB, XMC, XI, YI, WI, HOR, VER, AREA, AREAU, AREAV,	0080
		0090
	2 SHITCH, VXP, VYP	100
	READ (5, 999) NK, (XIII), I= 1, NK) (WI(I), I = is NK)	0110
999	FORİAT (I10 / (4E20.10))	120
	DO $21=1$, NK	130
2	YI(I) $=$ XIII)	140
	SHITCH $=00$	150
10	READ (5, 1000) ALPHA, BETA, RATIO, MODE, NOIT, NP, LIMIT, CONV	0160
1000	FORMAT (3F5.2, 415, Fi0.7)	0170
	LAST $=0$	180
C	HODE $=1 \mathrm{X}, \mathrm{Y}$ TAKE EVEN POWER	0190
C	MODE $=2 \mathrm{X}, \mathrm{Y}$ TAKE ODD POWER	0200
C	MODE $=3 \times$ TAKE EVEN POWER, γ TAKE ODD POWER	0210
C	MODE $=4 \mathrm{Y}$ TAKE EVEN POWER, X TAKE ODD POWER	0220
C	MOIT = NUMBER OF EIGENVALUES DESIRED	0230
C	NP $=0$ NO PGINTS FOR NODAL LINES	0240
C	NP $=2020$ POINTS FOR NODAL LINES PLOT	0250
C	LIMIT = 800 (RECOMMENDED) CYCLES OF ITERRATIEN	0260
C	CONY $=0.00001$ IS RECOMMENDED	0270
	CALL XPYP (XP, YP, NROW, MODE)	0280
	WRITE (6,105U) ALPHA, BETA, RATIO, NROW, MODE	0290
1050	FORIIAT (/ $2 \mathrm{X}, \mathrm{7HIALPHA}=, \mathrm{F} 6.2,8 \mathrm{H}$ BETA $=$, F6.2.9H KATIO $=$, FÓ-2,	0300
	14 X , 25HNO. OF TERMS IN X AND $Y=114,8 \mathrm{CH}$ MODE $=$, 13 ,	0310
		0320
1052	FORMAT ($7(2 \mathrm{H}$ (, F3.0, F3.0, 2H)) ,	0330
	$\bigcirc \quad=10$ (RATIO ** EETA)	U340
	AHI $=$ ALPHA -1.	350
	Bll $=$ EETA - 1.	360
	CALL DUBINT	370
	ICCT $=1$	380
	DO $12 \mathrm{I}=1$. NROW	390
	CO $12 \mathrm{~J}=\mathrm{I}$, NROW	400
	XMC(I,J) = AREA (ICCT)	410
	XMC(J,I) $=$ AREA (ICCT)	420
12	ICCT $=\mathrm{LCCT}+1$	430
	DO $13 \mathrm{I}=1$, NROW	440
13	WRITE (6, 1054) (XIMC(I,J), J = 1, NROW)	0450
1054	FORMAT (//(1x, jD25.16 1)	460
	DO $141=1$, NROW	470
	DO 14 J ' $=$ I, NROW	480
	XMAII, $=$ AREA (ICCT)	490
	XMA!J,I: $=$ AREA:ICCT)	500
14	ICCT $=$ ICCT + 1	510
	DO $151=1$, NROW	520
15	WRITE (6, 1054) (XMA(1, J), J = 1, NROW)	0530
	IF (NROW - 1 1 16, 26,18	540
16	AMPLTD $=$ XMC(1,1)/ XMA(1,1)	550
	EIGENS = DSQRT (AMPLTD)	560
	URITE (6, 1060) EIGENS	570
1060	FIRMAT 1// 3X, 15HEIGEN VALUE = $025.16 / / 1$	0580
	GO TO 10 (${ }^{\text {a }}$	590

TABLE 11 (Continued)

18 CALL SKTRX (XMC, XHif, IROH, XHB, XU)
WRITE (69 1070) ($(X H B i I, J), ~ J=1, N R O N 1, I=1, N R O H)$
DO $201=1 \%$ MROH
DO 20 J = I, NROH
$X A B(I, J)=(X 4 B(I, J)+X M B(J, I)) / 2$.
20 XMB $(J, I)=X M B(I ; J)$
甘RITE (6, 1070) (! XMB(I,J): J $=1, ~ N R O K), ~ I=1$ (NROW)
1070 FORHAT (1X, 5D25:16)
CALL EIGEN (XMB, NROW, NOIT, A, XHD, LIMIT, CONV, TELL, HUNCYC
A - COLUNN MATRIX OF EIGENVALUES
C
C
C XHD - SQUARE HATRIX OF CALCULATED EIGENVECTORS FOR MATRIX PENCIL
WRITE 16,10721 TELL, CONV, LIMIT , NUMCYC
1072 FORMATI/ $2 \mathrm{X}, 6 \mathrm{HTELL}=, F 5.2,3 \mathrm{X}, 20 \mathrm{HCONVERGENCE} \mathrm{FACTOR} \mathrm{=}$. FIU.8,
1 3X, 15HLIMITED CYCLE $=$, $15 / 3 \mathrm{X}, 19$ HNUMUER OF CYCLE $=$
2 , 16 ,
IF (TELL) 10, 10, 30
0590
0600
0600
610
610
620
0630
640
0650
660
0670
0680
0690
0700
0710
0720
男
30 CONTIHUE
DO 40 I $=1$, NOIT
$=$ DSORT ($1 \cdot 1 \mathrm{~A}(1)$ * 400
WRITE (6, 1076) (A(I), I = I, NOIT) 0780
1076 FORHAT (1X, 16HEIGENVALUES ARE , / (5025.16), 0790
$0044 \mathrm{I}=1$, NOIT
44 WRITE (6, 1078) I. (XMD (I,L), L $=1$, NRCW)
860
1078 FORMAT ($3 \mathrm{X}, \mathrm{I} 3$, 31HTH EIGENVECTORS FROM ITERATION /(5025.26)) 0820
NMI $=$ NOIT $-1 \quad 830$
$0048 \mathrm{I}=1, \mathrm{NMI}$ 1
$\begin{array}{lll}1 P 1 & =I+1 & 850\end{array}$
DO $48 \mathrm{~J}=\mathrm{IPI}, \mathrm{NOIT} \quad 860$
VAL $=0$. 870
DO $46 \mathrm{~K}=1$, NROW 880
$46 \mathrm{VAL}=\mathrm{VAL}+\mathrm{XMD}(I, K) * X M D(J, K)$
48 WRITE (6,3580) I; J, VAL
1080 FORMAT $13 \times, 14$, 25HTH EIGENVECTORS MULTIPY ,14, 25HTH EIGEN V 0910
JECTORS EQUA: TO 025.16 , 0920
- 25 16 930
52 DO $53 \mathrm{~J}=1$, NROW 940
53 Cl (J) $=\mathrm{XMD}(1, J)$
53 (IJ) $=$ XMD(I,J)
CALL TRAVEC (XU, C, B, NROW) 960
C 8- ORIGINAL COLUMN MATRIX
BIG $=0$.
970
980
DO $56 \mathrm{~J}=1$, NROW 990
ABSB = DABS (B(J)) 100 C
IF (BIG - ABSB) $54,56,56$ 1010
54 BIG $=$ ABSB $\quad 1020$
54 BIG = ABSB
56 CONTINUE
DO $60 \mathrm{~J}=1$ NROW 1040
$60 \mathrm{~B}(\mathrm{~J})=8(\mathrm{~J}) / \mathrm{BIG}$ (J)
WRITE (6, 1090) I, $A(1), i B(J), J=1$, NROW) 1060
1090 FORMAT (2 X . $12,15 \mathrm{HTH}$ EIGEN VALUE \quad D25.16/(/5025.16) 11070
IF (NP) 66
IF (NP) $66,70,66$
66 CALL PLNODE (NP) 1 (190
70 CONTINUE
LAST $=$ LAST +1 1110
$\begin{array}{ll}100 \text { IF (LAST - } 1 \text {) } 10,300,300 & 1120 \\ 300 \text { CONTINUE } & 1130\end{array}$
300 CONT INUE 1130
STOP 1240
END 2150
SUBROUTINE XPYP (XP, YP, NROW, MODE) 1160

TABLE 11 (Continued)

```
    DIMENSION XP(21):YP(21) 1170
    READ(5,1000) NROW 1180
1000 EORMAT {I10\
    DO 11110 II= 1,MODE
1110 READ(5,1100) ((XP(I),YP(I)), I = I,NROW)
1100 FORMAT (16F5.2)
    RETURN
    END
    SUBROUTINE DUEINT
    DOUBLE PRECISION XHA(21,21),XPAB(21,21),XMC(21,21),XI(48),YI(48)
    DOUBLE PRECISION WI(48),HOR(21);VER(2i),AREA(462),AREAU(462)
    DOUBLE PRECISION AREAV(462), XWW(462)
    OINENSION XP(21), YP(21)
        DOUBLE FRECISION HXX(21),HYY(21),HXY(21),B)21*
    COUBLE PRECISION BOQ,WII,UIrIII,DU,DV,:IJ,YPS;YMS;YUP,YUM&YVP
    DOUBLE PRECISION YV&&,XwIJ,P
    COMMON XMA, X:IE, XMC, XI, YI, WI, HOR, VER, AREA, AREAU, AREAV,
    1 XHH,P,B,ALPHA,BETA&RATIO,NK,NROW&XP,YP,AMI &BM1
        SR&1 = .667
    NO = NROH*(NROU + 1)
    BOQ = 1. ! BETA 1370
    DO 1 K=1,NO
    AREAU(K) = 00
    AREAV(K) = 00
    1 AREA (K) = 0.
    DO 20 I= 1,NK
    WRITE ( 6, 1000) I
1000 FORMAT ( 3X; 3HI =, 13 )
    WII = UI(I)
    UI = 0.5*(1.0+X1(1))
    =0.5*(1.-XI(I))
    = RATIO*((1. -UI**ALPHA)**BOQ)
    DV = RATIO*((I.-VI**ALPHA)**BOQ)
    DO 14 J=1 &NK
    WIJ = WI(J)
    YPS = 0.5*(1.0+YI(J))
    YPS = 0.5*(1.*+YI(J))
    YUP = DU*YPS
    YUM = DU*YMS
    YVP = OV*YPS
    YVM = DV*YMS
    CALL ALL (UI,YUP, HXX, HYY, HXY, 
    IC = 1
    DO 4 KJ=1,NROW
    DO 4 KI=KJ,NRCW
    XNW(IC) = HOR(KJ) * HOR(KI) - SMI * (HYY(KI) * HXX(XJ)
    1 + HXX(KI) * HYY(KJ) - 2. * HXY(KI) * HXY(KJ) ), 1630
4IC = IC+1
    DO 5 KJ = 1, NROW
    DO 5 Kl = KJ,NRO!
    XWUIKI = KJ,NROY * VER = 1660
    XWW(IC) = VER(KJ) * VER(KI)
5 IC = IC+1 1680
CALL ALL ( UI, YUM, HXX, HYY, HXY )
    IC =1
    1690
    IC = 1
    DO 6 KJ=1,NROW 1710
    DO 6 KI=KJ,NROW 1720
    XWIJ = WIJ * (XWW(IC) + HOR(KI) * HOR(KJ) - 1730
1 SM1 * ( HYY(KJ) * HXX(KI) + HXX(KJ) * HYY(KI) - 2. * HXY(KI) * 1740
```

TABLE 11 (Continued)
 1750AREAU(IC) $=\operatorname{AREAU}(I C)+X \div I J$
6 IC $=\mathrm{IC}+1$1770
DO $7 \mathrm{KJ}=1$, NROW 1780
DO $7 \mathrm{KI}=\mathrm{KJ}$; NROW 1790
XHIJ $=$ WIJ * (XWWIIC) $+\operatorname{VER}(K I) * V E R(K J))$ 1800
AREAU(IC) $=$ AREAU(IC) $+\times$ WIJ 2810
\rightarrow IC = ict1820
CALL ALL (VI: YVP, HXX, HIY: HXY) 1830
$1 \mathrm{C}=1$1840
DO 8 KJ=? NROW1850
DO 8 KI=KJ, NROW
2860

1870
1 + HXX(KJ) * HYY(KI) - 2* * HXY(KI) * HXY(KJ))
$8 I C=I C+1$
1880
DO $9 \mathrm{KJ}=1$, NROW
1890
890
DO 9 KI = KJ, NRO!
1900
XWW(IC) $=\operatorname{VER}(K I) * \operatorname{VER}(K J) \quad 1920$
1910
$9 \mathrm{IC}=1 \mathrm{C}+1$
1920
CALL ALL (VI, YVils HXX, HYY, HXY)
$1 C=1$
DO $10 \mathrm{KJ}=1$,NROH
1940
1950
DO $10 \mathrm{KI}=\mathrm{KJ}, \mathrm{NROH}$
XVIIJ $=$ HIJ * (Xbli(IC) + HOR(KI) * HCR(KJ) -
1 SM1 * (HYY(KJ) * HXX(KI) + HXX(KJ) * HYY(KI) - 2. * HXY(KI) * 1990
2 HXY(KJ;)
1960
10 IC $=I C+1$
2020
IC $=1 \mathrm{C+1}$
DO $11 \mathrm{KJ}=1$, NRO:
DO $11 \mathrm{KI}=\mathrm{KJ}, \mathrm{HRO}$
XWIJ = : GIJ * (XHW(IC) + VER(KI)*VER(KJ))
$\operatorname{AREAV}(I C)=\operatorname{AREAV}(I C)+X H I J$
11 IC = IC+1
14 CONTINUE
DO $16 K=1$, HO
$\operatorname{AREA}(K)=A R E A(K)+W I I *(D U * A R E A U(K)+D V * A R E A V(K)) / 2$.
$\operatorname{AREA}(K)=\operatorname{AREA}(K)+W I I *(D U * A R E A U(K)+D V * A R E A V(K)) / 2$.
$\operatorname{AREAU}(K)=0$.
$16 \operatorname{AREAV}(K)=0$.
20 CONTINUE
DO $30 \mathrm{~K}=1$, NO
(
RETURN 2160
$\begin{array}{ll}\text { RETURN } & 2160 \\ \text { END } & 2170\end{array}$
SUBROUTINE AILL (X, Y, HXX, HYY, HXY)
SUBROUTINE AIL
DOUBLE PRECISION XMA
X
2180
DOUBLE PRECISIOH WI(48),HOR(21),VER(21),AREA(462),AREAU(462) 2200
DOUBLE PRECISION AREAV(462) © XHW(462)
DI:AENSION XP(21), YP(21)
2210
DIMENSION NXP(2i), NYP(21)
DOUBLE PRECISION $\operatorname{HXX}(21), H Y Y(21), H X Y(21), B) 21 *$
$\begin{aligned} & \text { DIMENSION NXP(21), NYP(21) } 2230 \\ & \text { DOUBLE PRECISION HXX(21), HYY(21), HXY(21), B)21* } 2240\end{aligned}$
2220
2230
DOUBLE PRECISION X,Y,F,FX,FY,FXX,FYY,FXY
DOUBLE PRECISION DF,XIP,YJP,G,GX,GY,GXX,GYY,GXY,DG,P,AI,AJ
COMMON XMA, XMB, XMC, XI, YI, WI, HOR, VER, AREA, AREAU, AR
2250
2260
COMMON XMA, XMB, XMC, XI, YI, WI, HOR; VER, AREA, AREAU, AREAY,
1 XHH,P,B,ALPHA,SETA,RATIO,NK,NROW,XP,YP,AMI,BMI
2270
2270
C

CALL VECTOR ($X, Y, F, F X, F Y, F X X, F Y Y, F X Y, A L P H A, B E T A, P, A M 1, B M 1$)
2280
2290

$D F \quad=F X X+F Y Y$
2300
2320

TABLE 11 (Continued)

TABLE 11 (Continued)

C TG FIND L AND L', TO STORE IN XL AND XU 2890
DOURLE PRECISION A(21,21)9XL(21,21)9XU(21,21) 2960
DOUBLE PPECISIOH S 2910
DO 5 I = 1, A
DO $5 \mathrm{~J}=1$, i
XU $(1, J)=0$. 2940
$-5 \mathrm{XL}(I, J)=0$.
$\begin{array}{ll}X U(1,1)=\text { DSQRT(AlI.I) } & 2960\end{array}$
2970
DO 15 IC $=2, \mathrm{~N} \quad 2980$
$X U(1, I C)=A(1, I C) / X U(1,1) \quad 2990$
$15 \mathrm{XL}(I C, I)=X U(1, I C) \quad 3000$
DG $100 I=2 \neq \mathrm{N} \quad 3010$
$I P I=I+i$
$\begin{array}{ll}1 N 1 & =1-1 \\ 3036\end{array}$
$\mathrm{S}=0_{0}$
DO $20 K=1, i M 1$
$20 \mathrm{~s}=\mathrm{s}+\mathrm{XU}(\mathrm{K}, I) * X U(K, I)$
$\operatorname{XU}(I, I)=\operatorname{DSGRT}(A(I, I)-S$
$X L(I, I)=X U(I, I)$
IF (I - N) 23, 100, 100
23 DO $30 \mathrm{~J}=1 \mathrm{PI}$. N
$S=0$.
DO $25 \mathrm{~K}=1$, IMI
S $=S+X U(K, I)$ * XU(K,J)
$X U(I, J)=(A(I, J)-S) / X U(I, I) \quad 3140$
$30 X_{L}(J, I)=X U(I, J) \quad 3150$
100 CONTINUE 3160
RETURN
END
SUBROUTINE SMTRX2 (XL, C, D, N)
TRANSFORM TO (L)-IC AND STORE IN D
DOUBLE PRECISION XL(21,21),C(21,21),D(21,21)
DOUBLE PRECISION S
vu $\% 1=1$, :

UO IUU $1=20$ A 3250
IM1 $=1$ - 1 3260
$00100 \mathrm{~J}=1, \mathrm{~N} \quad 32 \%$
$S \quad=0$ 。
DO $10 \mathrm{~K}=1$, IM 1
3280
$10 \mathrm{~S}=5+X L(I, K) * D(K, J) \quad 33 C 0$
$100 \mathrm{D}(I, J)=(C(I, J)-S) / X L(I, I)$
RETURN 3320
END 3330
SUBROUTINE SMTRX3 (XU, D, E, N) 3340
TRANSFORM TO (L)-1C(L')-1 AND STORE IN E 3350
DOUBLE PRECISION XU(21,21),D(21,21),E(21,21) 3360
DOUBLE PRECISION S 3370
DO 5 I $=1, N$
$\sqrt{2}$
$00100 \mathrm{~J}=2, \mathrm{~N}$
JMI $=J-1$
DO $1001=1 \% N$

$10 S=S+E(I, K) * X U(K, J$,

- 3450
$100 \mathrm{E}(1, \mathrm{~J})=(\mathrm{D}(\mathrm{I}, \mathrm{J})-\mathrm{S}) / \mathrm{XU}(\mathrm{J}, \mathrm{J}) \quad 3460$

TABLE 11 (Continued)

TABLE 11 (Continued)

```
    R=R/(ANSHER(I)-ANS:EER(L))
    2(L)=1.
    DO 18 K=M,NRANK
Z(K)=Y(L,K)+Z(K)/R
CONTINUE
GREAT = DAES(ZIII)
    INDEX=1
    DO 22 J=2 NNRAIK
    TRY = DABS(Z(1))
    IF(GREAT-TRY)21,22,22
21 GREAT=TRY
    INDEX=J
22
    CONTINUE
    GREAT=2(1NDEX)
    DO 23 J=1,NRANK
23 VECTOR(I;J)=2(J)/GREAT
24 CONTINUE
    TELL=1*
    RETURN
25
    TELL=-1.
    RETURN
    END
    SUBROUTINE TRAVEC (XU, X, PHI, NRO:* )
    4270
    DOUBLE PRECISION XU(21,21),X(21),PHI{21)}428
    DOUBLE PRECISION SUP: 4290
    N = NROW
    NM1 = N-1
    PHI(N) = X(N) / XU(N,N)
    DO 100 I = 1% NH1
    \ =N N-I 
    Sur: =0. 
    00 80 K = J,N:N1 4350
    KP1 =K+2 4 4 4 4, 40
80 SUH4 = SU& + XU(J, KP1) * PHI(KP1) 4380
100 PHI(\) = (X(J) - SU: )/XU(J.J) 4390
    RETURN 4400
    END 4410
    SUBROUTINE PLNODE (NP)
    DOUBLE PRECISION XMA(21,211,XME(21,21),XMC(21,21):XI(48),YI(48)}443
    DOUBLE PRECISION WI(48);iICR(21)*VER(21);AREA(462),AREAU(462)}444
    DOURLE PRECISION AREAV(462),X6H(462)
    OIMENSION XP(21), YP(21)
    DOUBLE PRECISION B(21),VXP(21),VYP(21)PR(50)
    DOUBLE PRECISION V,XNP,ERROR,STEP,P
    COMMON XMA, XMB, XMC, XI, YI, wi, HOR, VÏR, AREA, LREAU, AREȦV,
    1 XWW,P&B,ALPHA, UETA,RATIO,NK,NROI;XP,YP,AMI &BLII,
    2 SWITCH, VXP, VYP
        ERROR = 0.0001
        STEP =0.05
        SWITCH = 1.
    XNP = NP
    DO 501=1=NP
        =1-1
        - AI / xn:P
    IF (v) 20, 10, 20
1000 18 IX = 1. NROW
```

4050
4050
4060
4080
4070
4070
4080
4090
4090
41 Co
4110
4120
4130
4130
4140
4150
4160
4160
4170
4180
4290
4200
4210
4220
4230
4240
4250
4260

4270
4280
4290
4300
4310
4320
4330
4340
4350
4350
4370
4380
4390
4400
4410

4420
4430 4440°
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4550
4560
4570
4580
00018 IX $=1$. NROW

TABLE 11 (Continued)

```
        IF (XP(IX) ) 16, 14, 16
        14VXP(IX)=1.
    GO TO 18
    6 VXP(IX) = 0.
    8 CONTINUE
    GO TO 28
    20 DO 26 IX = 1, NROH
    IF (XP(IX); 24, 22, 24
    VXP(IX) = 1.
    GO TO 26
    V VXP(IX) = V ** XP(IX)
    26 CONTINUE
    8 CALL REGSUN ( 0.9 I.. STEP, R, iRR, ERROR )
    IF ( NR ) 50, 50, 44
    4 WRITE (S, 1400) V, (R(J), J=1,NR)
1400 FORMAT ( 1X, 3HX =, F6.3, 2X, 3i:Y =, 1Yr-6.3 /(13X,19r6.3)1
    50 CONTINUE
    SWITCH=30
    SWITCH = 30 NP
    AI = I - 1
    V = AI & XNP
    IF \ V | 60, 52,60
    52 DO 58 IY = 1. NROM
    IF ! YP(IY): 56, 54,56
    54 VYP(IY) = 1.
        GO TO 58
    56 VYP(IY) = 0.
    5 CONTINUE
        GO TO 68
    60 DO 66 IY = 1, NROW
    IF ( YP(IY) ) 64, 62.64
    62 VYP(IY) = 1.
    GO TO 66
    64 VYP(IY) = V ** YP(IY)
    6 6 \text { CONTINUE}
    G8 CALL REGSUN ( 0.g l.. STEP, R, NR, ERROR )
    IF ( NR ) 80, 80, 74
74 WRITE (6, 1600) V, (R(J), J = I,NR ) 4980
1600 FORMAT ( }1\textrm{X},3HY=,F6.3, 2X, 3HX =, 19F6.3/(13X,19F6.3)
80 CONTINUE
            RETURN
END
SUBROUTINE REGSUN ( A, B, H, R, N, ERROR 1 
SUBROUTINE REGSUN ( A, B, H, R, N, ERROR ) 
C DOUBLE PRECISION R(50)IEERROR,XL,XR,YL,YR,XI,H,YI 5
            N = = =
            4YL = FUNCT(XL)
            IF (DABS(YL)-0.1D-10 ) 10. 1u, 20
        10N =N+1
    R(N)}=\X
    R(N)=XL
    IF (XL-B ) 4, 4, 16
    16 RETURN
    20 XR = XL + H
    IF ( XR - 8 ) 22, 22, 16
    22 YR = FUNCT(XR) 5170
        IF (DABS(YR) - 0.10-10 ) 30. 3u゙, 24
            4610
            4620
            4630
            4640
            4640
            4650
            4660
            4670
            4680
            4690
                    4700
                            4710
4710
4720
4730
4740
4 7 5 0
4760
4770
4780
4790
4800
4800
4810
4 8 2 0
4830
840
4840
4850
4860
4870
880
4 8 8 0
4 8 9 0
4900
4 9 1 0
4 9 2 0
4 9 3 0
940
4 9 4 0
4940
4 9 6 0
4 9 7 0
4970
4 9 8 0
4 9 9 0
5000
5010
5.,20
    N =O
    5050
5480
5u70
5u80
5u90
5100
5100
5120
5130
5130
5160
5170
```

TABLE 11 (Continued)

26 QXP $=Q * * N X P(I)$	5750	
30	SUM $=S U M+B(I) *$ QXP *VYP(I)	5760
FUNCT $=S U M$	5770	
RETURN	5780	
END	5790	

Figure 27 - Flow Chart for SUMFRE, Computer Program for Computing Natural Frequencies of a Plate by Sun Method

Figure 27a

Figure 27b

Figure 27c

Figure 27d

Figure 27e

The principle used to solve for the natural frequencies is the Rayleigh-Ritz method. The plate geometry is defined by

$$
F(X, Y, P, \propto, \beta)=\left(1-X^{\omega}-P Y{ }^{\alpha}\right)^{2}
$$

where $X=\frac{x}{a}$,
$Y=\frac{y}{b}$,
$R=\frac{b}{a}$,
$P=R^{-B}$,
$\alpha=\beta=10$,
a is the dimension in x-direction, and
b is the dimension in y-direction for a rectangle with clamped boundaries.
In the computer program, the Rayleigh-Ritz procedure uses a 21 -term polynomial in X and Y to express the displacement F^{\prime} (Equation (G9)). The integrals of the Rayleigh-Ritz equations are then solved by a 64 -order Gaussian quadrature technique. Finally, the eigenvalues of Equation (G13) are solved by an iterative method of reduction.

The computer program solves for one set of frequencies at a time. Four sets of polynomials completely define the plate: even-even, odd-odd, even-odd, odd-even. Manual plotting of the nodal points for the first quadrant yields the modes shapes from which the modal numbers may be assigned to the frequencies.

The eigenvalues resulting from the computer program are actually the dimensionless frequencies (note: $\omega \neq 2 \pi f$ in this program)

$$
\begin{equation*}
\omega_{m, n}=a^{2} \sqrt{p_{m, n}^{2}\left(\frac{\gamma h}{g D}\right)} \tag{I1}
\end{equation*}
$$

where the $\boldsymbol{p}_{m, n}$ represent the natural frequencies. Thus, the program eigenvalues must be modified manually to yield frequencies in hertz. Letting $p_{m n}=2 \pi f_{m n}$ and $D=\frac{E h^{3}}{12\left(1-\sigma^{2}\right)}$, Equation (I1) becomes

$$
\begin{equation*}
f_{m, n}=\frac{\omega_{m, n} h}{2 \pi a^{2}} \sqrt{\frac{E}{12 \gamma\left(1-\sigma^{2}\right)}} \tag{I2}
\end{equation*}
$$

In addition to the eigenvalues, the program computes the points for the nodal lines to be plotted to give the mode shapes.

A sample problem for eight modes with 32 -order Gaussian quadrature required 30 min utes on the IBM 7090.

Input Description
The input data are in dimensionless form. Their description is as follows.

Program Symbol	Theory Symbol	Description	Format
NK (card 1)		The value $\frac{N}{2}$ where N is the order of Gaussian quadrature	110
Beginning on card 2, start the XI array and end with WI array; last card of this set is$\text { card }\left(1+\frac{N K}{2}\right)$			
XI		Gaussian arguments; NK elements; 4 to a card	4D20.10
WI		Gaussian weights; NK elements; 4 to a card	4D20.10
Next 8 elements are on the $\left(2+\frac{N K}{2}\right)$ card			
ALPHA	\cdots	Exponent of plate geometry equation: ALPHA = 10 for rectangle	F5. 2
BETA	β	Exponent of plate geometry equation: BETA $=10$ for rectangle	F5. 2
RATIO	\boldsymbol{R}	Aspect ratio b / a, where b is dimension in y direction and a is dimension in x-direction	F5.2
MODE		The number of sets of modes desired. If $\mathrm{MODE}=$ $1 \mathrm{X}, \mathrm{Y}$ are even powered: odd-odd modes $2 \mathrm{X}, \mathrm{Y}$ are odd powered: even-even modes $3 X$ even, Y odd: odd-even modes $4 X$ odd, Y even: even-odd modes	15
NOIT		Number of eigenvalues desired	15
NP		Number of nodal points desired: NP =0 means no points $\mathrm{NP}=20$ means 20 points for nodal line plot	I5
LIMIT		Number of iterations in eigenvalue solution; suggested limit is 800	15
CONV		Convergence criterion: suggested value 0.00001	F10.7
NROW . (card $3+\frac{\mathrm{NK}}{2}$)		Number of polynomials in \mathbf{X} and \mathbf{Y}	110
$\begin{gathered} \mathrm{XP}(\mathrm{I}), \mathrm{YP}(\mathrm{I}) \\ \left(\text { next } \frac{\mathrm{NROW} * 2}{16}\right. \text { cards } \\ \text { for MODE number of }) \\ \text { times } \end{gathered}$		Powers of terms of X • Y polynomial; note that there must be as many sets as the value of MODE indicates but that the prrgram solves for only one set at a time	16F5.2

Sample input data corresponding to the above description are shown below:

\begin{abstract}
-16
$0.9972638618494815600 .98561151154526833 C J .95476225558750464360 .934956075937739580$ G. $8963211557660521200.8493676137325699700 \cdot 7944837959679424000.732182118740289630$ 0.6630442669302152000 .5977157572407623200 . 5c629990893222939JJ.421351276131635340 0.3318686022821276400 .2392873622521370700 -14447196158279644:0.048397655587738310 0.0070186100094700960 .01627439473090567 CO.0253920653092620520.こ34273862913021439 $0.0428358990222266800 \cdot 0509980592623761700$ •05868409347853554J0•C6592222277656184C
 0.0911738736957658800 .0934443490308045602 .0956387200792748560 .095540088514727350

Output Description

The program yields the eigenvalues and eigenvectors, with nodal points for the first quadrant and many intermediate results. Unless the user is particularly interested in a programming analysis, he will use the first page of output and then skip to the eigenvalue section.

On the first page are some of the input data, such as α, β, RATIO, MODE, which are labelled accordingly. The index I is printed to indicate the step of Gaussian quadrature. An underflow message from the system may occur; the program corrects for small numbers in the underflow in subroutine ALL.

The next several pages have five elements to a row and are the following matrices:

1. C-matrix of Equation (G14a)
2. A-matrix of Equation (G14b)
3. E-matrix of Equation (G15b)

The output then indicates which eigenvalue is baing solved for and the number of iterations needed. The variable TELL indicates convergence: TELL = 1 means con'ergence but TELL = -1 means no convergence. The convergence limit and the number of times the iterations are performed are also printed. The eigenvalues are printed in ascending order, followed by the eigenvectors. The results of the orthogonality check are shown.

Finally for a given eigenvalue the nodal points for the first quadrant are printed out. Figure 28 shows, by way of a particular example, how the mode shapes and corresponding frequencies are matched. The eigenvalues (called EIGENVALUE in the output data) obtained directly as output from the computer program are multiplied by the frequency factor for SUNFRE given in Appendix I. This process yields the natural frequencies which are tabulated in Table 1.

Thus for a particular eigenvalue (e.g., EIGENVALUE = 337.0694), a corresponding natural frequency can be compited ($f=2179.078$ for this case). The corresponding mode number can be determined by plotting wave shape data available from the computer program. These data are plotted in the first quadrant (Figure 28a) and then projected into all four quadrants (Figure 28b). From the latter figure, the mode number is evidently ($m, n)=(5,2)$.

YNGFRE (see Table 12 and Figure 29)

Trio steps are needed to find the natural frequencies of vibrations by the Young method. The first, YOUNG, provides preliminary data. The second, YEIGN, computes the eigenvalues and converts them to the natural frequencies. Since the results of YOUNG could be used as input for other eigenvalue programs, YOUNG was made more general than YEIGN.

YOUNG

YOUNG is a computer program which calculates the members of the C-array of the eigensystem, Equation (B11):

$$
\begin{gathered}
\sum_{m=1}^{p} \sum_{n=1}^{q}\left(C_{m n}^{i k}-\lambda \delta_{m n}\right) A_{m n}=0, \\
\delta_{m n}=1 \text { for } m=i \text { and } n=k \\
\delta_{m n}=0 \text { for } m \neq i \text { or } n \neq k
\end{gathered}
$$

For the computer program, $i=1, p ; k=1, q ;$ and $p, q \leq 10$.
The program YOUNG uses its subroutine YINTGR to compute numerical results of Young's closed form solutions of the Rayleigh-Ritz integrals of a clamped beam. Next YINTGR constructs the arrays necessary for the computation of the C-matrix:

Figure 28b
Figure 28 - Procedure for Determining Plate Mode Numbers for a Particular Frequency The sample illustrates a modal plot for the $(5,2)$ mode corresponding to $f=2179.078$.

TABLE 12
Program Listing for YNGFRE Coraputer Program
Table 12a - YOUNG

```
SIBFTC YOUNG
        DIMENSION E(10,10),F(10,10),H(10,10) & K(10,10),EPS(10),C(10,10)
        REAL K
        RFAD(5,1) MoM
        1 FORMAT(215)
        READ(5,11) ADB
    11 FORMAT(2F1206
        PI =3.14159
        CALL YINTGR(MON,EPPSOE:
        WRITE(6.5) (EPS(TI,I : 1,M)
    5 FORMAT(6X05F16.8)
        SIGMA =.33
        A3=A**3
        83=年#?
        WRITE(6,310) A,O
    310 FORMAT(5X,2F12.6)
        WR1TE(6,320) MON
    32n FORMAT(5X.?:5)
        NH1 = N/2
        NY2 = N/2 + 1
        DO 4 Im1,M
        DO 3 J=1ON
        H(1,J)=E(1,J)
        K(I,J)=E(1,J)
        E(IgJ)= - E{{&J)
        F(I;J)= E\I;J)
        3 CONTINUE
        4 Continue
            kOUNT=O
            00400 1=1/m
            OO 300 J=1&N
            00 200 MX=1gM
            DO 100 MY=ION
            IFIMXONE.I) GO TO:
            IF{NY.EO.J) GO TO 6
    * C{MX-NY)=SIGMA*A/B#(EIMX,INMF(J,NY)+F(IOMX)*F(NY,J))
            1+20*(10-SIGMA)*A/M*H(I,MX)*K(J,NY)
            G0 TO ?
        6 \text { continue}
            C(MX*NY)=B/A*EPS(I)**4+A3/B3*EPS(J)**4+20*SIGMA*A/B*E(! |1)*F(J.J)
            1+20*(1,-SIGMA)*A/B*H(I,I)*K(J&J)
            - continue
    ICO CONTINUE
            KOUNT=KOUNT+1
COMMENT KOUNT WAS USED FOR ENDPUNCHING#**" NOW IT USED ONLY
C*****IN THE CASE N IS A MULTIPLE OF 20 ********
            (F(M-(M/5*5)) 20n,2500240
    240 IF(M-(M/3*3)) 200,210*220
    220 1F(M-(M/2*2)) 20n*2220230
    210 WRITE(6.20) (C(MX;NY): NY ={,N)
        WRITE(8&20) (C(MXONYI: NY =INN:
        GO TO 200
    2 2 2
        WRITE(6,22) (C (MX,NY): NY =1,NYY): KOUNT
        WRITE(s,22) (C (MX NY), NY =NY2,N), KOUNT
        WRITE{8,22) (C(MX:NY): NY =1,NY1), KOUNT
        WRITE(8022) (C(MXONY): NY =NY2ONI, KOUNT
        G9 90)200
    250 WR!TE{6.24) & C(MXONY): NY =1:NYI}
    W员TE(6,24) ( (e(MX,NY): NY =NY2,N)
    WRITE(8024) (C(MXPNY): NY =IONYI)
```

```
4
TABLE 12a (Continued)
    MRITE(8.24) (C(MX,NY), NY *YY2&N)
    200 cortimut
    300 COMTIMUE
    400 COMTIMSE
        EMDFILE 
        FOMMAT(3E16.8)
    22 FOM,NAT(4E1608,12X.14)
    FORWhT(SE16.8)
    230 STOO
    ExO
SIRETC YIMTE*
    SNPROUSTINE YINTGR(N,NHEPS;A)
        DIMENSIOW ALP(10),EPS(10)PA(10.10)
        PI = 3.14159
        ALP(1) = 0.98250726
        ALP{2}= 1000077731
    AlP(3) = 0.59996845
        ALP(4) = 1000000145
        ALP(5)=0009999994
        A(P(6)}=12
        gPs(1) = 4073004080
        EPS(2) = 7.8532046n
        EPS(3) = 10099560780
        EPS(4) = 1401371655n
        EPS(5)=1702787596n
        EPS(6) = 20.4235572
        DO 10 J=7m
        ALP(J)}=18
        AS = J
10 EPS(J)=((2.0*AJ + 1.0)*P1)/2.0
    DO 23 K = 10M
    DO 35L=10N
    KL = % + L
    IF(kJMEAL) CN TO 40
    A(K;L) = ALP(K) #EPS(K)*(ALP(K)*EPS(K)-2.0)
    60 T0 35
    40 A(X,L) = ((4.0*EPS(L)**2*FPSiK)**2)*(ALF(L)*FPSIL)
    1 -ALP(K)-EPS(K))
    2*(1.0&-10)**(KL |!) / (EPS(K)*KG - EPS(L)**4)
35 COMTIMuE
25 CONTIMJE
    WRITEIG050) ((A(KM,KN)OKM = 1,M)ORN =1,N)
    FORMAT(2X.5E160%)
    RETURM
    END
```

PROGRAM YEIGN(INPUT,OUTPUT,TAPE5=INPUT\&TAPE6=OUTPUT)

A
A
B
C X1 (64) \& $\times 2(64), X 3(64), X 4(64 ;, X X 1(64,54), X X 2(64,64)$: XX3(64,64),EVLRAD(64) •EVTRAD $(64,64), X 5(64), X 6(64)$, X7(64) $\times 8(64), \times 9(64), \times 10(64), \times 11(6 \div)$
 A DPX1(64),DPX2(\$4i
COM:IENT AS OF 11/20/70 LIM NUST BE A MUL:IPLE OF 304, OR 5
READ (5,110) LIMgLUP
110 FORMAT (2110)
$N=L I M * * 2$
READ (5.115) CONST
115
DCONS = DBLE(CONST)
WRITE 6.3)
3 FORMAT(1HI)
WRITE (6:I)LIMsN
1 FORMAT 2 III:
IF(MOD(LIH,3).EQ.O) GO TO 410
IF (K,OD(LIM. 5 I EEQ.O) GO TO 420
READ(5,91)((B) IA\&JA), JA=I,N),IA=1,N)
91
FORMAT (4E16.8)
GO TO 99
$410 \operatorname{READ}(5,94)((B(I A, J A), J A=1, N), I A=1, N 1$
94 FORMAT(3E16.8)
GO TO 99
$420 \operatorname{REAC}(5,430)((B)(I A ; J A), J A=1, A), I A=1, N)$
430 FORMAT(5E16.8)
99 URITE(6,4)((B(IA,JA),JA=1,N),IA=1,N)
CO $10 \mathrm{I}=1 \mathrm{~g} \mathrm{~N}$
DO $10 \mathrm{~J}=1 \mathrm{~g} \mathrm{~N}$
$10 \operatorname{BDP}(I, j)=8(I ; J)$
4 FORMAT (1X,6E18.8)

WRITE (6.3)
WRITE(6,5)(1,RTR(I),RTI(1),Iz1,N)
5 FORMAT(15,2E17.8)
WRITE(6,3)
DO $9 \mathrm{~J}=1$ © N
WRITE $(6,6).),(U(1, J), 1=1, N)$
6 FORMAT (//15/(6E20.8))
9 CONTINUE
DO $11 \mathrm{~K}=1$ IRUP
 1 EVTRAD, 1 TRUE* $\quad 64, I \times 1 ; \times 1 ; \times 2, \times 3, \times 4, \times 5, \times 6, \times 7, \times 8, \times 9$,
$2 \quad \times 10, \times 11$, DP 2 1, UP $\times 2, \times \times 1, \times \times 2, \times \times 3)$,
3 RETURNS (97)
DO $12 \mathrm{I}=1 \mathrm{~N}$
$\operatorname{RTR}(I)=R \operatorname{RIMP}(I)$
RTI(I) $=$ RTIIMP(I)
DO $12 \mathrm{~J}=1$ N
12 U(1, J)=XIMP(I,J)
11 CONTINUE
WRITE(6,3)
92 DO $14 \mathrm{I}=1 \mathrm{~g} \mathrm{~N}$
IF (RTRIMP(I).GE\&I.O D-12) GO TO 13
OPXI(I) =-1.0 00
GO TO 14
13 DPXI(I) = DCONS * DSQRT(RTRIMP(I))
14 CONTINUE

TABLE 12b (Continued)

WRITEI6,250)
250 FORMAT(1H1,5X,*THE FOLLOWING IS INTENDED AS A GUIDE IN INTERPRETIN IG THE OUTPUT.*/ 5X,* THE SUBSCRIPT PKINTED WFTH THE EIGENVALUES AN 2D FREQuENCIES ON THE LAST PAGE*/5X9*IS THE SUBSCRIPT OF AbS LAMBDA 3() IN THE MAIN SECTION OF OUTPUT-- EACH EIGENVALUE IS PRINTED:*/ 45X**FOLLOWED IMifEDIATELY BY ITS EIGENVECTOR•THE SECOND SUESCRIPT 5 OF THE EIGENVECTOR COMPONENTS AGREE*/5X,*WITH THE SUBSCRIPY OF GLAMGCA*)
URITE(6*240)
240 FORMATI5X)*LHEL READING EIGENVECTORS:LOOK FOR THAT COMPONENT*/ 1*HHOSE VALJE $=1.0$-THE FIRST SUBSCRIPT OF THIS COMPONENT*/
2 5X,*INDICATES THE MODE NUMBER OF THE FREQUENCY**/
3 5X,*INTERPRETATION SCHEME BELOW WITH MoN BEING THE MODE NUMGER*/ 46 X ,*JA*912K**M**7X,*N*)
KOUNT $=1$
DO $210 \mathrm{KM}=1, \mathrm{LIM}$ DO $202 \mathrm{KN}=1, \mathrm{LIM}$ WRITE(6,310) KOUNT,KM,KN
31U FORMAT ($5 \mathrm{X}, 14$,10X.14,5X,14) KOUNT = KOUNT + 1
202 CONTINUE
210 CONTINUE HRITE(6,260)
260 FORMAT(5X,*THUS BY LOOKING AT THE EIGENVECTOR OF EACH LAMBDA*/5X, 1*USER MAY ASSIGN HODAL NUHBERS TO THE FREQUENCIES BELOW*) WRITE(6,1zO)
120 FORMAT($6 X$, *EIGENVALUES AND CORRESPONDING FREQUENCIES *) URITE(6,15) (I,RTRIMP(I),DPXI(I),I = 1,N)
15 FORMAT(16,D25.16,5X,D25.16) STOP
97 HRITE: 6,98)
98 FORMAT(5X.* PROGRAM ABORTS UNNATURALLY *)
RTRIMP(I)=RTR(I)
$\operatorname{RTIIMP}(1)=\operatorname{RTI}(1)$
GO TO 92
END

Figure 29 - Flow Chart for YNGFRE, Computer Program for Compating Natural Frequencies of a Plate by Young Method

Figure 29a - YOUNG

Figure 29b - YEIGN

$$
\begin{align*}
C_{\pi k}^{(i k)}=\mu \frac{a}{b}\left[E_{m i} F_{i n}+E_{i m} F_{n k}\right]+2(1-\mu) \frac{a}{b} H_{i m} K_{k n} \quad \begin{array}{c}
\text { Same as } \\
\text { (B13) }
\end{array} \\
\text { for } m \neq i \text { or } \pi \neq k \\
C^{(i k)}{ }_{i k}=\frac{b}{a} \epsilon_{i}^{4}+\frac{a^{3}}{b^{3}} \epsilon_{i k}^{4}+2 \mu \frac{c}{b} E_{i i} F_{i k}+2(1-\mu) \frac{a}{b} H_{i \bar{i}} K_{k k} \quad \begin{array}{l}
\text { Same as } \\
\text { (B14) }
\end{array} \tag{B14}\\
\text { for } m=i \text { and } n=k
\end{align*}
$$

Finally the main program computes the C-matrix. These data are punched out on cards for use in a program for solving the eigensystem.

Only two cards are needed for YOUNG:

Card	Symbol	Description	Format
1	M	Number of terms in x-direction, $\mathrm{M} \leq 10$ Number of terms in y-direction, $\mathrm{N} \leq 10 ;$ If outpnt of YOUNG is to be used with YEIGN, $\mathrm{M}=\mathrm{N}$	215
2	N	Length in x-direction Length in y-direction	2F12.6

The printed output consists of the arra: of integral values $E(I, J)$, five elements to a row. Then comes the EPS-array (values of ϵ_{i}), again five elements to a row. A, B, M, N are printed next. Finally the array $C_{M}^{I}, J, N Y$ is both printed and punched on cards. There are $N / 2$ elements per card, (or $N / 3$ if N is a multiple of three) with the order cycling first through $N Y=1, N$, then $M X=1, M$, next $J=1, N$, and finally $I=1, M$.

For $C_{8,8}^{8,8}$, YOUNG required 2 minutes on the IBM 7090.

YEIGN Step

YEIGN is a computer program for the CDC 6600 which uses the eigensystem programs VARAH1 and VARAH2. The latter two NSRDC programs are FORTRAN IV adaptations of algorithms of J. M. Varah. ${ }^{29}$

VARAH1 computes an initial approximate eigensystem. The eigenvalues are computed using the $Q R$ method of Francis ${ }^{30}$ after the system is reduced to Hessenberg form.* The eigenvectors are found by the inverse iteration method of Wielandt.*. Finally VARAH2 refines

[^17]and bounds the approximate eigensystem as suggested by Wilkinson. ${ }^{31,32 \text { For further infor- }- \text { in }}$ mation about both the mathematical processes and the programs, complete with listings, see Reference 33.

Because the CDC 6600 has a 60 -bit word, the high degree of accuracy needed in the inverse iteration might not be achieved on smaller word computers. Also, the largest problem tested was a 64×64 matrix, which took 6.85 minutes.

The problem to be solved is Equatioa (B11). However, the double summation is treated as a single summation for use in YEIGEN. Tb problem becomes

$$
\sum_{J A=1}^{N}(B(I A, J A)-\lambda I) A_{J A}=0, \quad J A=1, N
$$

where $N=(L I W)^{\mathbf{2}}$ (LIW is the number of tems p of Equation (B11); p must equal q for YEIGN);
I is the identity matrix to which the Kronecker delta reduces;
A is the single dirensional matrix replacing $A_{m n}$;
B is the matrix of two dimensions replacing the C-matrix;
$J A$ is the subscript replacing $\geqslant 2$ and n, cycling through n first, then m; and
$I A$ is the subscript replacing i and k, cycling through k first, then i.
An example of the transition from $C_{m n}^{i k}$ to $B(I A, J A)$ is shown below, with $L I M=3$;

$$
\begin{array}{cccc}
C_{11}^{11}=B(1,1) & C_{11}^{12}=B(4,1) & C_{11}^{22}=B(5,1) & C_{11}^{33}=B(9,1) \\
C_{12}^{11}=B(1,2) & C_{12}^{12}=B(2,2) & \vdots & \vdots \\
C_{13}^{11}=B(1,3) & \vdots & C_{33}^{22}=B(5,9) & C_{33}^{33}=B(9,9) \\
C_{21}^{11}=B(1,4) & C_{33}^{12}=B(2,9) & C_{11}^{23}=B(6,9) & \\
C_{22}^{11}=B(1,5) & C_{11}^{13}=B(3,1) & \vdots \\
C_{23}^{11}=B(1,6) & \vdots & C_{11}^{31}=B(7,1) \\
C_{31}^{11}=B(1,7) & C_{33}^{13}=B(3,9) & \vdots \\
C_{32}^{11}=B(1,8) & C_{11}^{21}=B(4,1) & C_{11}^{32}=B(8,1) \\
& \vdots & \vdots \\
C_{33}^{11}=B(1,9) & C_{33}^{21}=B(4,9) & C_{11}^{32}=B(8,1)
\end{array}
$$

$A(J A)$ associates with m, n in a similar manner. The vector A does have two subscripts for computer storage purposes; however, the printed output of the eigenvectors has two subscripts with the first of these referring to $J A$. The eigenvector yields the frequency modal number (m, n) from the $J A$-value of the eigenvector component whose amplitude is equal to 1.0. The subscripis $J A$ are related to their respective (n, n) values in the final section of the printout.

YEIGN produces many pages of ortput. The aser shoold look first at the last few pages of the outpat ior the eigenvalues and corresponding natural frequencies and for the eigenvector subscript scheme. Then the user shorly go to the main body of the outpat io locate eaci eigenvalue, followed immediately by its eigenvector. Now, from the component with the value of 1.0 , he can assign the frequency a modal number, as directed above.

A sample output for each eigenvalue of YEIGN is giver in Table 13. The eigenvalue and vector components are given with their error bounds. In the given case, the frequency has modal number (3,4).

The data cards needed for YEIGN are as follows:

Card	Symbol	Description	Format
1	LIM LUP	Limit on summation of Equation (311) Note: $\mathrm{N}=(\mathrm{LIM})^{2}$ is number of eigenvalues Number of iterations for refining eigensystem. For engineering purposes LUP $=1$ yields adequate frequencies	2110
2	CONST	$\begin{aligned} & \text { Value of } \frac{\hbar}{2 \pi a^{2}} \sqrt{\frac{E}{\pi 2 y\left(1-\sigma^{2}\right)}} \\ & \text { FREQUENCY }=\text { CONST } * \sqrt{\text { EIGENVALUE }} \end{aligned}$	E16.8
3	B(IA, JA)	C-array of Equations (B13) and (B14), with JA changing most rapidly; that is ($\mathrm{JA}=1, \mathrm{~N}$) for each IA walue, ($\mathrm{IA}=1, \mathrm{~N}$)	4E16.8

TABLE 13
Sanple Outpat Data for Each Eigenvalue of YEIGN

In this table, the eigenvalue represents the frequency with modal number (3, 4).
Notice that the vector component ABS ($\mathrm{X}(20,4)$) has bounded value of 1.0 .

Cleassen-Thorne Manual Method of Computation

Classen and Thorne ${ }^{10}$ give an exact analysis of the problem of sinusoidal free vibrations of a thin rectangular isotropic plate. For comparison with the results of the present report, the frequency parameter K_{1} was modified manually to frequency f using the formulas shown below. The results are shown in Table 1.

For $\frac{a}{b}=k \leq 1$, the corresponding value K_{1} is obtained from a table in Reference 10. Then:*

$$
\begin{gathered}
f=K_{i} \frac{\pi \hbar}{2 a^{2}} \sqrt{\frac{E}{3 P_{m}\left(1-\sigma^{2}\right)}} \\
\text { For } \frac{a}{b}>1, K^{\prime}=\frac{1}{k}<1 \text {, and } K_{1}^{\prime}=K_{1} / k^{2} \text { so that } f=K_{1} \frac{k^{2} h \pi}{2 a^{2}} \sqrt{\frac{E}{3 \rho_{m}\left(1-\sigma^{2}\right)}}
\end{gathered}
$$

Somple Probiem

Given:

$$
\begin{aligned}
& a=2 \mathrm{ft} ; z=2.33 \mathrm{ft}, \hbar \text { (half thickness) }=\frac{0.0313}{2} \mathrm{ft} \\
& E=4175 \times 10^{6} \mathrm{lb} / \mathrm{ft}^{2}, \rho_{w}=466.56 \mathrm{lb} / \mathrm{ft}^{2}, \sigma=0.33 \\
& 1-\sigma^{2}=0.8911, g=32.2 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

Then:

$$
k=\frac{a}{b}=0.858
$$

The corresponding value of K_{1} is obtained from Table II of Reference 10 by intepolation of values of K_{1} (designeted K in the reference) corresponding to $k=0.84$ and $k=0.86$ given in the table. The result for the 1,1 mode ${ }^{*}$ is $K_{1}=3.184789$. Then

$$
f_{11}=K_{1}\left[\frac{h \pi}{2 a^{2}} \sqrt{\frac{E}{3 \rho_{m}\left(1-\sigma^{2}\right)}}\right]=(3.184789)(63.8047)=203.204
$$

[^18]
REFERENCES

1. Leibowitz, R. C. and Wallace, D. R., "Engineering Guide and Computer Programs for Determining Turbulence-Induced Vibration and Radiation of Plates," NSRDC Report 2976 (Jan 1970).
2. Leibowitz, R. C. and Wallace, F. R., "Computer Program for Correction of Boundary Layer Pressure Fluctuations for Hydrophone Size and Boundary Layer Thickness Effects Option 1," NSRDC Report 2976A (Sep 1970).
3. Snowdon, J. C., "Vibration and Shock in Damped Mechanical Systems," John Wiley and Sons, inc., Chapter 8 (1968).
4. Smith, G. A. et al., "Experimental and Analytical Study of Vibrating, Stiffened, Rectangular Plates Subjected to In-Plane Loading," JASA, Vol. 48, No. 3, Part 2 (1970).
5. Szechenyi, Edmond, "An Approximate Method for the Determination of the Natural Frequencies of Single and Stiffened Panel Structures," Sound and Vib. Technical Report 23 (Mar 1970).
6. Izzo, A. J. et al., "Sound Radiated from Turbulence-Excited Finite Plates with Arbitrary Boundary Conditions," General Dynamics/Electric Boat Division Report U411-67-045 (22 Aug 1967); also Underweter Acoustics, Vol. 18, No. 1 (Jan 1968).
7. Greenspon, J. E., "Stresses and Deflections in Flat Rectangular Plates under Dynamic Lateral Loads Based on Linear Theory," David Taylor Model Basin Report 774 (Apr 1955).
8. Young, D. and Felgar, R. P., "Table of Characteristic Functions Representing the Normal Modes of Vibration of a Beam," Engineering Research Series, No. 44, University of Texas, Austin, Texas, (1 Jul 1949).
9. Felgar, R. P., "Formulas for Integrals Containing Characteristic Functions of a Vibrating Beam," University of Texas Circular 14 (1950).
10. Claassen, R. and Thorne, C., "Transverse Vibrations of Thin Rectangular Isotropic Plates," NAVWEFS Repory 7016, NOTSTP 2379 (1960).
11. Wilby, John F., "The Response of Simple Panels to Turbulent Boundary Excitation," Technical Report AFFDL-TR-67-70 (Oct 1967).
12. Leibowitz, R, C. and Greenspon, J. E., "A Method for Predicting the Plate-Hull Girder Response of a Ship Incident to Slam," David Taylor Model Basin Report 1706 (1)ct 1964).
13. Warburton, G. B., "The Vibration of Rectangular Plates," Proc. Instn. of Mech. Engre, London, Vol. 168, p. 371 (1954).
14. Love, A. E. H., "Mathematical Theory of Elasticity," Fourth Edition, Cambridge University Press (1927).
15. Timoshenko, S., "Vibration Problems in Enginerring," Third Edition, D. Van Nostrand Co., Inc. (1955).
16. Young, D., "Vibration of Rectangular Plates by the Ritz Method," J. Appl. Meci., p. 448 (Dec 1950).
17. Lord Rayleigh, "Theory of Sound," Second American Edition, Dover Publications, New York, N. Y. (1945).
18. Ritz, W., "Thecrie der Transversalschwingungeneiner quadratischen Platten mit freien Randern,' Annelen der Physik, Vierte Folge, Vol. 28, pp. 737-786 (1909)
19. Ballentine, J. R. et al., "Sonic Fatigue in Combined Environment," Wright-Patterson Air Force Base Technical Report AFFDL-TR-66-7 (May 1967).
20. Greenspon, J. E., "An Approximate Method for Obtaining the Frequencies, Deflections and Stresses in Sandwich and Cross-Stiffened Rectangular Plates,' J. G. Engineering Research Associates Technical Report 1 for David Taylor Model Basin Contract Nonr-3123(00) X (Jul 1960).
21. White, R. W., "Vibration Characteristics of Beams and Plates Mounted on Elastic and Inertial Supports," Wyle Labs Report 64-2 (11 Aug 1964).
22. Carnichael, T. E., "The Vibration of Rectangular Plate with Edges Elastically Restrained against Rotation," Quart. J. Mech. and Appl. Math., Vol. XII, Part 1 (1959).
23. Crocker, M. J., "Theoretical and Experimental Response of Panels to Traveling Sonic Boom and Blast Waves," Wyle Labs - Research Staff, Report WR 66-2 under Contract NAS8-5384 (Mar 1966).
24. Sun, B. C., "Transverse Vibration of a Class of Plates with Clamped, Simply Supported or Free Boundary," PhD Thesis, Department of Theoretical and Applied Mechanics, University of Illinois (Aug 1967).
25. Langhaar, H. L., 'Energy Methods in Applied Mechanics," John Wiley and S.Sons, Inc., New York, pp. 92-100 and 159-170 (1962).
26. Bishop, R. E. D. et al., "The Matrix Analysis of Vibration," Cambridge University Press, London, Chapter 8 (1965).
27. Frazer, R. A. et al., "Elementary Matrices," Cambridge University Press, pp. 70, 259, and 299-300 (1963).
28. Plumblee, Harry E., Jr., "Transverse Vibration Analysis of a Curved Sandwich Panel," Lockheed-Georgia Company ER-9208 (May 1960).
29. Vareh, J. M., "The Computation of Bcands for the Inveriant Subspaces of a General Marix Opersior," Cosprater Science Department, Stanford University Technicel Report CS66 (35 Mxy 1967); 路so available thrcugh the Clearinghouse for Federal Scientific ard Technical Inforentica, Departarent of Comerce, as Document AD652921.

Sis. Praxcic J. G. F., "The QR Transformation, A Unitary Analogue to the LR

象․ Willieson, J. H., "The Algebraic Eigenvalue Problem," Clarendon Press, Oxford, Eagland (1965).
32. Wilhinson, J. H., "Calculation of Eigensystems of Matrices," Chapter 3 of "Aumerical Analysis: An Introduction," J. Walsh, editor, Thompson Book Company, Westington, D. C. (1967).
33. Gignac, D., "VARAH1 and VARAH2: Two Eigensystem Programs for General Real Matrices," NSRDC Repori 3549 (in preparation).

BIBLIOGRAPHY

1. Leissa, A. W., "Vi'ration of Plates," NASA SP-160 (1969).
2. Egle, D. M., "The Influence of Changing End Conditions on the Resonant Response of Beams and Plates," School of Aerospace and Mechanical Engineering, The University of Oklahoma, prepared for NASA under NASA Research Grant NG37-003-041 (Feb 1970).
3. Henry, F. D. and Egle, D. M., "The Effect of an Elastic Edge Restraint on the Forced Vibration of a Rectangular Plate," presented at the Fifth Southeastern Conference on Theoretical and Applied Mecianics, Rayleigh-Durham, N. C. (16-17 Apr 1970).
4. Ungar, E. E., "Free Oscillations of Edge Connected Simply Supported Plate Systems: Transactions of the ASME, pp. 434-440 (Nov 1961); also Bolt Beranek and Newman Report 721 (11 Jan 1960).
5. Fahy, F. J., "Vibration of Containing Structures by Sound in the Contained Fluid," ISVR Technical Report 11, University of Southampton (Nov 1968).
6. Maddox, N. R., "Curved Panel Frequency Analysis with Elastic Boundaries," Aerospace Sciences Lab, Lockheed-Georgia Company ER-9872 (Jul 1968).
7. Maddox, N. R. et al., "Frequency Analysis of Cylindrically Curved Panel with Clamped and Elastic Boundaries," J. Sound Vib., Vol. 12, No. 2, pp. 225-249 (Jun 1970).
8. Worley, W. J. and Wang, H-C., "Geometrical and Inertial Properties of a Class of Thin Shells of Revolution," prepared for NASA under Grant NsG-434 by Department of Theoretical and Applied Mechanics, University of Illinois (Sep 1964).
9. Worley, W. J. and Wang, H-C., "Geometrical and Inertial Properties of a Class of Thin Shells of a General Type," prepared for NASA under Grant NsG-434 by Department of Theoretical and Applied Mechanics, University of Illinois (Aug 1965).
10. Stern et al., "A Method for Determining an Optimum Shape of a Class of Thin Shells of Revolution,' prepared for NASA under Grant NGR 14-005-011 by Department of Theoretical and Applied Mechanics, University of Illinois (Jan 1966).
11. Nang, H-C. and Worley, W. J., "Tables of Natural Frequencies and Nodes for Transverse Vibration of Tapered Beams," prepared for NASA under Grant NsG 434/14-05-010 by Department of Theoretical and Applied Mechanics, University of Illinois (Apr 1966).
12. Moriarty, T. F. and Worley, W. J., "Conformal Napping of the Interior of a Unit Circle onto the Interior of a Class of Smooth Curves," prepared for NASA under Grant NsG 434/14-005-010 by Department of Theoretical and Applied Mechanics, University of Illinois (May 1969).
13. Petit, M. and Nath, J. M. Deb., "Vibration Analysis of Singly Curved Rectangular Plates," J. Sound Vib., Vol. 13, No. 4, pp. $485-497$ (1971).
14. ORIGINATING ACTIVITY (Corporate Author)
Naval Ship Research And Development Center
Washington, D.C. 20034 ROTATIONAL BOUNDARIES AND CYLINDRICAL CURVATURE - OPTION 2

4. Descriptive notes (Type of rupori ene inclusive dates Final Report	
6. REPORT OATE January 1971	To. TOYAL NO. OF PAGES Tb. NO. OF REFS 160 33
3. CONTRACT OR GRANT NO. b. PRoJect no. S-F1453 2106 and R00303 Task 15326	90. ORIGINATOR'S REPORT IUUMEER(S) 2976B sb. OTHER REPORT NOLSI (Any other numbers that may be asslyned this report)
	only; Test arrerluation Deembor 1970 N yal or Syste S Guman nif 911.$]$
11. SUPPLEMENTARY NOTES	12. Sponsoring military activity Nava! Ship Systems Command SHIPS 037
${ }^{N}$ A comparative study is vibration modes and natural freq tional supports and cylindrical analytical, digital computer, no on the results, preferred method methods-Option 2-are of partic digital computer programs for ob lence excitation of a plate. Com comparison of the effect of clam on the vibratory response of a p	rious methods for computing the free f thin plates with clamped and rotaThe methods include closed form and graphical computations. Based utation are recommended. These in extending previously formulated e vibroacoustic response to turbuults for a particular nase provide a ped and simply supported boundaries ct to turbulence excitation. (
DD ${ }_{\text {in }}^{\text {inov }}$ (SORM 1473 (PAGE 1)	UNCLASSIFIED
S/N 0101.807.6801	Security Classification

UNCLASSIFIED

Security Classification

[^0]: *References are listed on page 149 .

[^1]: *The modes for a plate are usually treated in terms of products of the modes for a beam (see Appendixes A-G).

[^2]: FThe deviation from the minimus or maximum is takea according to which one produces the greater deviation for a particular modal frequency.

[^3]:

[^4]: *The equation $\tan \frac{\gamma}{2}+\tanh \frac{\gamma}{2}=0$ is transcendental and may be solved by plotting $-\tanh \frac{\gamma}{2}$ and $\tan \frac{\gamma}{2}$ and looking for the series of intersections. Then $m=1$ corresponds to the value of y for the first intersection, $m=3$ for the second, etc.

[^5]: *A manual computation can be performed for systems with no more than three or four equations.

[^6]: *Results for simply supported conditions are alse presented in this reference.

[^7]: *Similar results are presented in Reference 19 for simply supported edges.

[^8]: *Results for : sotropic plates are given ia Refereace 7 and for otiontropia (i.e., stiffened) plates in References 12 and 20.

[^9]: The product of the bean functions is not an exact expression io: tie nodes of a clamped pla:e bacause it generally does not satisfy the plate equation.

[^10]: *The nomographs yield results for the special case cited above which includes the clamped plate.

[^11]: *Assuming no edge masses, all $M_{i}=0$ in Reference 21. With no mass moments of inertia at the boundaries, all $J_{i}=0$ in Reference 21.
 **For the clamped plate, we assume infinite stiffiness in the translational and rotational springs along the edges of the plate so that no potential energy is associated with these springs. The spring energies are, however, included in the potential energy term in Reference 21.

[^12]: This program is not the one used at NSRDC to obtain the requencies. The NSRDC program is given in Appendix I.

[^13]: *There are no natural boundary conditions for the clamped plate and therefore they need not be satisfied. However, as ciscussed in Appendix B, practical consideration of the rate of convergence makes such satisfaction desirable.

[^14]: *When α and β values are less than or equal to 1.5 , the beta function is not properly defined. Hence, a numerical integration using the Gaussian quadrature rale of order 64 was used in the range below $c=\beta=1.6$. A Gaussian quadrature double integration formula is given in Appendix B of Reference 24.

[^15]: *The frequencies and modes are also computed for plates with two edges clamped and two edges free.

[^16]: *The measured frequencies were obtained by Wilby in Reference 11.

[^17]: *See Reference 33.

[^18]: *The table and therefore interpolation of tabulated values yield different values of K_{1} for different modes, i.e., K_{1} is unique for a particular mode.

