AFML-TR-67-121
PART III
AD0709885

OFFICIAL FILE COPY evaluation of molecular weight FROM EQUILIBRIUM SEDIMENTATION

PART III. MOLECULAR WEIGHT DISTRIBUTIONS FROM EQUILIBRIUM SEDIMENTATION-DIFFUSION DATA
 VIA LINEAR PROGRAMMING

ROBERT R. JURICK
DONALD R. WIFE
matatiahu gehatia

TECHNICAL REPORT AFML-TR-67-121, PART III

MAY 1970

This document has been approved for public release and sale; its distribution is unlimited.

AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Coples of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

EVALUATION OF MOLECULAR WEIGHT FROM EQUILIBRIUM SEDIMENTATION

PART III. MOLECULAR WEIGHT DISTRIBUTIONS FROM EQUILIBRIUM SEDIMENTATION-DIFFUSION DATA
 VIA LINEAR PROGRAMMING

ROBERT R. JURICK
DONALD R. WIFF
matatiahu gehatia

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This report was prepared by the Polymer Branch of the Nonmetallic Materials Division. The work was initiated under Project No. 7342, "Fundamental Research on Macromolecular Materials and Lubrication Phenomena. " Task No. 734203, "Fundamental Principles Determining the Behavior of Macromolecules," with Dr. M. T. Gehatia acting as task scientist. Coauthors are Mr. R. R. Jurick, ASD Computer Science Center (ASVC), and Dr. D. R. Whf, Research Institute, University of Dayton. The work was administered under the direction of the Air Force Materials Laboratory, Directorate of Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

The report covers research conducted from September 1968 to August 1969. The manuscript was released by the authors in October 1969 for publication as a technical report.

This technical report has been reviewed and is approved.

$$
\begin{aligned}
& \text { Lieuain E. Gabo } \\
& \text { WILLIAM E. GIBBS } \\
& \text { Chief, Polymer Branch } \\
& \text { Nonmetallic Materials Division } \\
& \text { Air Force Materials Laboratory }
\end{aligned}
$$

AFML-TR-67-121 PART III

Abstract

Within the past decade easy access to high speed digital computers has renewed interest in deriving molecular weight distributions from sedimentationdiffusion equilibrium data. One of the computational schemes which appears most promising is the Simplex Method of linear programming. The purpose of this work was to investigate the advantages and limitations of this approach.

It was found that, even though inferring a molecular weight distribution from sedimentation-diffusion equilibrium data is mathematically an ill-posed problem, the method of linear programming yields qualitatively a good molecular weight distribution. Also, the method proved satisfactory for the case when sedimentation equilibrium data was acquired from only a single angular velocity.

TABLE OF CONTENTS
SECTION PAGE
I INTRODUCTION 1
II THEORY 3
III VARIABLE FACTORS OF COMPUTATION AND THEIR INFLUENCE ON RESULTING MWD 9
A. Formulation of Computer Problem 9
B. Distributions Studied 11
IV DESCRIPTION OF COMPUTER PROGRAM 14
A. Flow Diagram 14
B. Description of Variables 15
C. IN 1 Routine 16
D. IN 2 Routine 17
E. LP Solver 18
F. Plot Routine 20
V CONCLUSION 21
APPENDIX: Listing of Computer Program 25
REFERENCES 53

ILLUSTRATIONS

FIGURE

PAGE

$$
\begin{aligned}
& \text { 1. Resulting MWD Using Ten Sets of Molecular Weights } \\
& \text { and } g=3.0 \text { (Compare with Figures 2-4) }
\end{aligned}
$$

2. Resulting MWD Using Ten Sets of Molecular Weights
and $g=4.0$ (Compare with Figures 1, 3, and 4) 57
3. Resulting MWD Using Twenty Sets of Molecular Weights and $g=3.5$ (Compare with Figures 1, 2, and 4) 59
4. Resulting MWD Using Twenty Sets of Molecular Weights and $\mathrm{g}=2.5$ (Compare with Figures 1-3) 61
5. The Effect of Decreasing the MWR on the MWD 63
6. The Effect of Decreasing the MWR and the Number of Molecular Weight Sets on the MWD 64
7. The Effect of Further Decreasing the Number of Molecular Weight Sets 65
8. The Effect of Using More Experimental Data on the MWD 67
9. A Typical Curve of Concentration Gradient from One Angular Velocity 68

TABLES

TABLE

I. Exponents of Elements in the Matrix Presented to LP Solver Routine Using Equation 9 23
II. Exponents of Elements in the Matrix Presented to LP Solver Routine Using Equation 20 23

SECTION I

INTRODUCTION

The relationship describing sedimentation-diffusion equilibrium of an ideal polydisperse solution in an ultracentrifuge can be given by a Fredholm integral equation of the first kind (Reference 1). Since no rigorous solution of this integral is known, there have been many attempts to solve it by approximation (References 2, 3). These efforts mainly involved use of Fourier transforms or Laplace transforms by assuming an approximate functional expression for the experimental concentration gradient along the ultracentrifugal cell, or by expanding the molecular weight distribution (MWD) into a polynomial of assumed functions.

The main weakness has been that some parts of the calculated distribution would be negative. Physically, of course, we know that the MWD for any molecular weight must always be positive or zero. Recently Lee (Reference 4) carried out an investigation of the Fredholm integral equation and found that mathematically it is an "ill-posed" problem. In trying to infer a MWD from experimental measurements of concentration gradients small errors can lead to an unacceptable MWD. Therefore, we compromised in trying to determine only an "overall" shape of the MWD without being specific to individual points, i. e., we allowed certain fluctuations of the curve to be present and ignored fine structure.

To generalize a theoretical analysis, let us accept that the MWD can be slightly negative for some molecular weight values. Since we chose to ignore the point-by-point functional form of the MWD, the next logical step would be to subdivide the MWD into narrow (not infinitesimal) but finite molecular weight strips. This would result in approximations of MWD by rectangles of finite width and would lead naturally to the use of matrices. This has been done (Reference 5) but unfortunately the matrices are "ill-conditioned" or nearly singular.

Scholte (Reference 6 and 7) in 1968, still using matrices, applied the scheme of linear programming to infer a MWD from experimental measurements of concentration gradients at various angular velocities. The main

AFML-TR-67-121
PART III
advantage to this approach is that values of the MWD are forced to be greater than or equal to zero and "slack variables" are introduced to account for experimental error. Scholte evaluated the MWD at ten molecular weights, then shifted to ten other molecular weights in a prescribed manner, continuing until, finally, there were four such sets. Since each set represented an individual solution, one quarter of the, sum of the four sets also represented a solution. By doing this, Scholte obtained good agreement between his assumed and calculated molecular weight distributions.

There are, however, three reasons why Scholte's scheme cannot be blindly applied to other systems. These are: (1) Scholte dealt with a molecular weight range of 5×10^{4} to 10^{6}; by comparison, in many cases of synthetic polymers the range is much narrower, e.g., 0 to 10^{5}. (2) Scholte used five or more angular velocities, each requiring several days for equilibrium. There are, however, cases when equilibrium at each velocity requires a much longer time (Reference 8). Therefore, it is important to have a scheme which would produce a MWD from data taken at one velocity. (3) Since our interest was in a different molecular weight range and we were using experimental data from only one angular velocity, the effects of experimental error on the calculated MWD had to be investigated.

A computer program using Scholte's ideas was independently coded and a different linear programming (LP) solving routine was employed. The new program reliability was verified by reproducing Scholte's published results. Then application of the new program to new specific needs stated above were investigated. A brief description of linear programming theory follows.

SECTION II

THEORY

In the brief discussion which follows, all theorems and definitions are given without proof or examples. All material on linear programming was taken from other works (References 9, 10, and 11).

Definition 1. A simplex is an n-dimensional convex polyhedron having exactly $n+1$ vertices. The boundary of the simplex contains simplical faces of dimension i where $i<n$. The number of such faces of dimension is $\binom{n+1}{i+1}$ where $\binom{n}{m}=n!/ m!(n-m)!$. A simplex in zero dimension is a point, in 1dimension a line, in 2-dimension a triangle, in 3-dimension a tetrahedron, etc. The equation of a simplex with unit intercept is $X_{i} \geq 0$ and $\sum_{i} X_{i}=1$.

Definition 2. A subset C of E_{n} (n-dimensional Euclidean Space) is a convex set if and only if for all pairs of points \underline{V}_{1} and \underline{V}_{2} in C any convex combination

$$
\begin{equation*}
\underline{v}=\beta_{1} v_{1}+\beta_{2} v_{2} \tag{1}
\end{equation*}
$$

is also in C, where β_{i} are scalars, $\beta_{i} \geq 0$, and $\sum_{i} \beta_{i}=1$.
Definition 3. A point \underline{V} in a convex set C is called an extreme point if \underline{V} cannot be expressed as a convex combination of any other two distinct points in C. That is, if we denote the convex set of solutions to the linear programming problem by K and if K is a convex polygon, then K is the convex hull of the extreme points of K. Therefore, every feasible solution in K can be represented as a convex combination of the extreme feasible solutions in K.

Theorem 1. The set of all feasible solutions to the linear programming problem is a convex set.

In general, the linear programming problem can be described as follows: Given is a convex set defined by a set of linear constraints in E_{n}. From all the points belonging to the convex set, we wish to determine a subset of points (which will contain either one or many points) for which a linear objective function is optimized.

Usually we are confronted with a set of simultaneous equations

where $n>m$. For simplicity let m equal n; let A be the matrix, $\left\{a_{i j}\right\}$, $(i=$ $1,2,3, \cdots m$ and $j=1,2,3 \cdots-m) ; X$ the vector $\left[X_{j}\right], j=1,2,3 \cdots-m$ and \underline{b} the vector $\left\{b_{i}\right\}, i=1,2,3-\cdots, m$. Then Equation 2 can be written in the form

$$
\begin{equation*}
\mathrm{Ax}=\underline{\mathrm{b}} \tag{3}
\end{equation*}
$$

Since A is a square matrix and assumed nonsingular, the solution vector is expressed as

$$
\begin{equation*}
\underline{x}=A^{-1} \underline{b} \tag{4}
\end{equation*}
$$

A simple computational scheme is the complete elimination method of Jordan and Gauss which has a finite number of steps or iterations. In just m iterations the procedure multiplies the system (Equation 2) by A^{-1} to obtain Equation 4. This is the standard matrix problem which is assumed familiar to the reader.

Now, in linear programming the problem is reversed. Instead of having an "over-determined" system as indicated by Equation 2, we have an "underdetermined" system (i. $e_{0}, \mathrm{n}<\mathrm{m}$) subject to other constraints. That is, we wish to find a vector $\left\{x_{i}\right\}, i=1,2,3, \cdots-m$ which minimizes the linear form (i. e., the objective function)

$$
\begin{equation*}
\mathrm{C}_{1} \mathrm{x}_{1}+\mathrm{C}_{2} \mathrm{x}_{2}+\mathrm{C}_{3} \mathrm{x}_{3}+\cdots-+\mathrm{C}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}} \tag{5}
\end{equation*}
$$

subject to linear constraints

$$
\begin{equation*}
x_{j} \geq o, j=1,2,3, \cdots, m \tag{6}
\end{equation*}
$$

and the set of equations given by Equation 2 but with $\mathrm{n}<\mathrm{m}$.

For large n and m it would be an impossible task to evaluate all possible solutions and select one that minimizes the objective function. A computational
scheme is desired which converges to a minimum solution. The Simplex Method, devised by Dantzig (Reference 11) is such a scheme. In Reference 11 the equation $\sum X_{i}$ is used as a constraint. The procedure finds an extreme point and determines whether it is the minimum. If it is not, the procedure finds a neighboring extreme point whose corresponding value of the objective function is less than or equal to the preceding value. In a finite number of such steps (usually between n and 2 n), a minimizing feasible solution is found. The Simplex Method makes it possible to discover whether the problem has any finite minimizing solutions or no feasible solutions at all.

Consideration is now given to how this can be related to the problem at hand, namely, molecular weight determination via sedimentation-diffusion equilibrium. The equation describing sedimentation-diffusion equilibrium for a heterogeneous system is given (from Reference 1) by

$$
\begin{equation*}
-\frac{1}{C^{0}} \frac{d C}{d \xi}=\int_{0}^{\infty} \frac{\lambda^{2} M^{2} e^{-\lambda M} F(M)}{1-e^{-\lambda M}} d M \tag{7}
\end{equation*}
$$

where,

$$
\begin{equation*}
\int_{0}^{\infty} F(M) d M=1 \tag{8}
\end{equation*}
$$

In the above equations C° is the concentration of the original solution, C is the equilibrium concentration at radial distance r, M is the molecular weight, $F(M)$ is the frequency function of molecular weight, $\xi=\left(r_{b}{ }^{2}-r^{2}\right) /\left(r_{b}{ }^{2}-r_{m}{ }^{2}\right)$ with r_{m} the radial distance from the center of rotation to the meniscus, and r_{b} the radial distance from the center of rotation to the bottom of the cell. Also, $\lambda=(1-\mathrm{v} \rho) \omega^{2}\left(\mathrm{r}_{\mathrm{b}}{ }^{2}-\mathrm{r}_{\mathrm{m}}{ }^{2}\right) / 2 R T$, where v is the partial specific volume of the dissolved substance, ρ is the density of the solution, ω is the angular velocity in radian per second, R is the gas constant, and T the absolute temperature.

Rewriting Equations 7 and 8 for the discrete case (Dirac δ-functions) one obtains

$$
\begin{equation*}
u\left(\lambda_{i} \xi_{n}\right)=\sum_{m} \frac{\lambda_{i}^{2} M_{m}^{2} e^{-\lambda_{i} M_{m} \xi_{n}}}{1-e^{-\lambda_{i} M_{m}}} f_{m} \tag{9}
\end{equation*}
$$

and,

$$
\begin{equation*}
\sum_{m} f_{m}=1 \tag{10}
\end{equation*}
$$

where

$$
u\left(\lambda_{i}, \xi_{n}\right)=-\frac{1}{c^{\circ}}\left(\frac{d c}{d \xi_{n}}\right)_{i} \text { and } f_{m}
$$

is the weight fraction of molecules of a given molecular weight M_{m} in the original sample. Recall that the $U\left(\lambda_{i}, \xi_{n}\right)$ and ξ_{n} are the experimentally measured quantities with λ_{i} being the product of a constant (determined from auxiliary measurements) and the square of the angular speed of the rotor.

For convenience of notation let

$$
\begin{equation*}
k_{l n}=\frac{\lambda_{i}^{2} M_{m}^{2} e^{-\lambda_{i} M_{m} \xi_{n}}}{1-e^{-\lambda_{i} M_{m}}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{l}=u\left(\lambda_{i}, \xi_{n}\right) \tag{12}
\end{equation*}
$$

where for each $i, n=1,2, \cdots-N ; i=1,2,---I ; m=1,2,--M$; and $\ell=1,2,-\cdots$, L with $\mathrm{L}=\mathrm{IN}$ and $\mathrm{L}>\mathrm{M}$.

Thus Equation 9 becomes

$$
\begin{equation*}
u_{l}=\sum_{m} k_{\ell m}{ }^{f} \tag{13}
\end{equation*}
$$

Since the quantities of U_{l} are experimentally measured, they will in all probability be greater than or less than their true precise value (i.e., there exists experimental error). Although this physical fact is accepted, experimentally Equation 13 does not hold true. This is especially apparent when we investigate the $\operatorname{matrix}\left\{K_{\ell m}\right\}$ and find it ill-conditioned. In essence, the matrix $\left\{K_{\ell m}\right\}^{-1}$ acts as an "amplifier" for any error which might exist in the set $\left\{U_{\ell}\right\}$.

If we grant that an error in U_{l} exists, Equation 13 becomes

$$
\begin{equation*}
u_{\ell}=\sum_{m} k_{\ell m}{ }^{f} m+\epsilon_{\ell} \tag{14}
\end{equation*}
$$

where ϵ_{ℓ} is the experimental error in U_{ℓ}. Since the application of linear programming necessitates that all x_{i} (see Equation 1) are positive or zero, we must account for error's being positive or negative. It is the inclusion of error that now enables us to go from an "over determined" system to an "under determined" system. The linear programming procedure is now applicable. In particular, you will recall that a modified Simplex Method can be used.

Recapitulating, we now obtain the formulation of the linear programming scheme as used to determine the MWD from sedimentation-diffusion equilibrium. We wish to find the set $\left\{f_{m}\right\}, m=1,2,---Q$, which minimizes the linear form (i.e., the objective function)

$$
\begin{equation*}
\sum_{\ell=1}^{L}\left(\delta_{\ell}+\beta_{\ell}\right) \tag{15}
\end{equation*}
$$

subject to the linear constraints

$$
\left.\begin{array}{l}
f_{m} \geq 0, \quad m=1,2,3, \cdots 0 \\
\delta_{\ell} \geq 0 \tag{16}\\
\beta_{\ell} \geq 0
\end{array}\right\}, \ell=1,2,3, \cdots L
$$

and

$$
\begin{align*}
& K_{11}^{f}+K_{12} f_{2}+\cdots+K_{1 Q} f_{Q}+\delta_{1}-\beta_{1}+0+0+\cdots+0+0=U_{1} \\
& K_{21} f_{1}+K_{22} f_{2}+\cdots+K_{2 Q^{\prime} Q}+0+0+\delta_{2}-\beta_{2}+\cdots+0+0=U_{2} \\
& \vdots \tag{17}\\
& K_{L 1}^{f}+K_{L 2}^{f}+\cdots+K_{L Q} f_{Q}+0+0+0+0+\cdots+\delta_{L}-\beta_{L}=U_{L}
\end{align*}
$$

where $L>Q^{* *}$. Let the set $\left\{x_{i}\right\}, i=1,2,3, \ldots, Q+2 L$ be composed of f_{m} values for $i=1,2,3,--Q$, and alternately δ_{ℓ} and β_{ℓ} for $i=Q+1, Q+2, \cdots$, $Q+2 L$; where all $X_{i} \geq 0$. Also let the $L x(Q+2 L)$ matrix P be represented by

[^0]Then, in matrix notation the problem is formulated by

$$
\begin{equation*}
P \underline{X}=\underline{U} \tag{19}
\end{equation*}
$$

The next section will describe the application of this method.

SECTION III

VARIABLE FACTORS IN COMPUTATION AND THEIR INFLUENCE ON RESULTING MWD

A. FORMULATION OF COMPUTER PROBLEM

The objective of this section is to present the results which three variable factors investigated have on a MWD. Since the actual programming involved a slight modification of Equation 9, a listing and discussion of the variable factors investigated will be preceded by a discussion of the actual equation programmed.

The programmed equation is given by

$$
\begin{equation*}
u\left(\lambda_{k} \xi_{i}\right)=\sum_{n} \frac{\lambda_{k}^{2} M_{n}^{2} e^{-\lambda_{k} M_{n} \xi_{i} F\left(M_{n}\right) \Delta M_{n}}}{1-e^{-\lambda_{k} M_{n}}} \tag{20}
\end{equation*}
$$

Here all quantities have the same meaning as in Equation 7 and 9. However, we must remember that, since λ is proportional to the square of the angular velocity, the index k indicates the various velocities at which equilibrium was achieved. For each velocity there exists a set of ξ-values, i. e., for each λ_{k} there is a corresponding set $\left\{\xi_{i}\right\}$. If there are data from five velocities and for each velocity there corresponds five ξ - values, this would imply twentyfive U-values. It is imperative that the molecular weight range being investigated incorporate all molecular weights present in the solution sample being centrifugated. Since Equation 9 and 20 deal with discrete molecular weights, some procedure must be employed to span the entire molecular weight range (MWR). Following the idea of Scholte (References 6 and 7), a multiplicative factor (g-factor) has been introduced. Therefore, starting with the first molecular weight M_{1}, the other molecular weights in a given sampled set could be generated. Knowing, a priori, the MWR we can now calculate the gfactor and the number $\left(\mathrm{N}_{\mathbf{Q}}\right)$ of molecular weights needed to span the MWR. (The g-factor is later used as a variable parameter related to the error in the experimental concentration gradients. However, the value of g must be at least large enough to ensure the actual MWR present in a given experiment

AFML-TR-67-121

PART III

is spanned. A convenient technique for finding the MWR is given in Reference 8). The molecular weights sampled will be

$$
\begin{equation*}
m_{n}=m_{1} g^{n-1} \tag{21}
\end{equation*}
$$

where $n=1,2,3, \cdots, N_{Q}$. This enables one to divide the MWR into non-overlapping subranges. Each subrange span is denoted by

$$
\begin{equation*}
\Delta M_{n}=M_{n}-M_{n-1} \tag{22}
\end{equation*}
$$

where M_{0} is assumed zero. By employing the averaging technique of Scholte (Reference 7), after solving Equation 20 for one set of molecular weights, a new set of molecular weights is selected in a prescribed manner. The new set is shifted relative to the previous set by a multiplicative factor $\mathrm{g}^{1 / \mathrm{N}}$, where N is the number of desired molecular weight sets. That is, if the number of the set is labeled by the index n and the molecular weights within a set by j, then

$$
\begin{equation*}
M_{j, n}=M_{1 n} g^{j-1} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta M_{j n}=\left(g^{1 / 2} g^{-1 / 2}\right) M_{j n} \tag{24}
\end{equation*}
$$

where $j=1,2,3, \cdots, N Q ; n=1,2,3, \cdots, N ;$ and $M_{0, n}=O$.
The concentration of molecular weights in a given subrange is simply the weight fraction (f_{m}) multiplied by the initial solution concentration ($\mathrm{C}_{\mathrm{m}}^{\circ}=\mathrm{C}^{\circ} \mathrm{f}_{\mathrm{m}}$). When Scholte (Reference 7) presents his final results they are in the form MF(M) versus M. In this work a modified system $F(M)$ versus M has been calculated (Equation 20), since one usually has less qualitative feeling for MF(M) than for $F(M)$.

Now, it is possible to list the variable parameters investigated in this work. They are as follows:

1. The effect that varying the g-factor (i. e., the span of the molecular weight subrange) has on the resulting MWD; and also the effect when the number of sets of molecular weights sampled was varied.

AFML-TR-67-121

PART III

2. How the resulting MWD is affected by varying the number of elements in the sets $\left\{\xi_{i}\right\}$ and $\left\{\lambda_{k}\right\}$.
3. Whether the introduction of error into idealized U -values affects the resulting MWD. This includes normal random error and weighted random error.

The results of each will be discussed successively in the following section.

B. DISTRIBUTIONS STUDIED

The g-factor is related to the experimental error in the U-values (Reference 7). Figures 1 through 4 show the effect of varying the g-factor and the number of sets of molecular weights. In each case the solid-line curve is the assumed distribution from which U-values were calculated. For all curves, seven velocities were used and with each velocity five ξ-values. The squared angular velocities were $4.1693 \times 10^{5}, 5.8370 \times 10^{5}, 8.1718 \times 10^{5}, 11.4406 \times$ $10^{5}, 16.0168 \times 10^{5}, 22.4235 \times 10^{5}$, and $31.3929 \times 10^{5} \mathrm{rad}^{2} / \mathrm{sec}^{2}$ with $\xi=0$, $1 / 4,12,3 / 4$, and 1 for each case. Therefore, thirty-five U-values were used for these calculations.

As previously mentioned, we must always be sure that the MWR is wide enough to incorporate all molecular weights present in the sample. To study the effect of range size on the MWD, all parameters in Figure 4 were held constant except the value for MWR; which was brought closer to the MWR of the assumed distribution. As shown in Figure 5, structure begins to appear when the highest molecular weight sampled was not far beyond the actual highest molecular weight present. Figure 5 represents a calculation involving twenty molecular weight sets. When the number of molecular weight sets was decreased from twenty to ten (Figure 6) then five (F igure 7), there was no appreciable change except that, naturally, the calculated points were spaced farther apart.

What would be the effect if the number of ξ-values associated with each velocity was increased? As previously mentioned, five $\boldsymbol{\xi}$-values have been used per velocity for Figures 1 through 7. Figure 8 shows the results with all
parameters of Figure 6 held constant except that, now, nine ξ-values were used. The nine ξ-values were so chosen that $\xi=0$ to 1 with $\Delta \xi=1 / 8$. From the study of this assumed distribution it appears that using five ξ-values, sampling twenty sets of molecular weights, and using a g-factor ≈ 2.0 seemed to have produced the optimum desired results, i. e. , the calculated MWD agreeing best with the assumed MWD. If the g-factor became too small the result was noise, that is, the accuracy of the U-values did not warrant such precision, or the matrix in the LP solver routine became singular.

At this stage a normal Gaussian distribution with a MWR of 0 to 120,000 was investigated. Once again the g-factor was varied. The lowest g-value used was 1.15 and the highest 4.0. The former resulted in an erratic MWD and the latter resulted in a curve which went exponentially to zero at high molecular weights. The best g -value for this specific case was $\mathrm{g}=1.8$. In general, a satisfactory technique was to start with a low value of g. Then as the value of g was increased the erratic behavior of the MWD disappeared. At the g-value where the erratic results seemed to disappear, that value was established as the appropriate one. Then the maximum reliable "fine structure" for a given set of experimental U-values was attained.

Using this assumed normal distribution (its functional form) the MWR was shifted to investigate the reliability of the method for various molecular weight ranges. One range tried was from 0 to 12,000 and another from 10^{5} to 10^{6}. In each case the results were satisfactory, considering that in all cases g was kept constant ($\mathrm{g}=1.8$).

As previously mentioned, the U-values used resulted from seven assumed velocities ranging from about 6,000 to $50,000 \mathrm{RPM}$. It would be advantageous if the experimental U's were obtained from an equilibrium sedimentationdiffusion experiment at only one angular velocity. To check this, the normal Gaussian distribution, MWR from 0 to 120,000 , was approximated (holding all other variables constant) by deleting all U-values associated with various angular velocities. All combinations of the velocities were tried. By using only the lowest angular velocity ($6,166 \mathrm{RPM}$), the computer program produced a MWD which "fit" the assumed MWD as well as the case where all seven angular velocities were used. In fact, all single velocity cases resulted in

AFML-TR-67-121
PART III
a reasonable MWD. Therefore, we would conclude that an acceptable MWD could be obtained from an equilibrium sedimentation-diffusion experiment at one angular velocity, at least with a MWR of 0 to 120,000 .

The third area of investigation involved use of the normal Gaussian MWD ($0<\mathrm{M}<120,000$) U-values from one angular velocity ($6,166 \mathrm{RPM}$) and at $\xi=0,1 / 4,1 / 2,3 / 4$, and 1 to find the effect that error in the U-values would have on the calculated MWD. Error (1, 2, 5, 10, and 20%, respectively) was introduced by aid of a random error generator. For each magnitude of error, five calculations were employed to vitiate any wrong conclusions that one error distribution might have on the final MWD. For each case (1 to 20%) when the error was normally distributed (dotted line Figure 9) the calculated MWD agreed with the assumed MWD. Naturally the 1% error case gave the best "fit" to the assumed MWD, but even for the 20% error case the calculated MWD was not unacceptable. When the error introduced in the U-values was such as to be weighted (dashed curves Figure 9), the calculated MWD was entirely different from the expected normal MWD. This phenomenon substantiates the findings of Lee (Reference 5) and Tikhonov and Glasko (Reference 12).

SECTION IV
DESCRIPTION OF COMPUTER PROGRAM
FLOW DIAGRAM

AFML-TR-67-121
PART III

DESCRIPTION OF VARIABLES

$a_{i_{j}} \quad-$ entry in matrix for LP problem
b - largest x value
$b_{i} \quad$ - right-hand side of LP problem
$\mathrm{C}^{\circ} \quad$ - initial concentration of solution
$\mathrm{C}^{\circ} \quad$ - initial concentration of solution whose molecular weight is $\frac{\mathrm{h}}{\mathrm{n}}$
$f_{n} \quad-$ weight fraction of molecular weight M_{n}
$\mathrm{F}_{\mathbf{j}, \mathrm{n}} \quad$ - results of LP solution, frequency list for mol. wt. of $\mathrm{M}_{\mathbf{j}, \mathrm{n}}$
g - M multiplier
$h_{n} \quad-\quad$ input test array which is a function of molecular weight (References 5 and 8)
$\mathrm{H}=\frac{2 \mathrm{RT}}{1-\mathrm{v} \rho}$
m \quad - smallest x value
$M_{n} \quad$ - molecular weight array associated with input test array
$M_{j, n} \quad$ - molecular weight matrix of values used in LP solution
$\mathrm{N} \quad$ - number of LP sets to try
$N_{h} \quad$ - number of input h values
$\mathrm{N} \quad$ - number of M values to use for use LP solution
$\mathrm{N}_{\omega} \quad$ - number of input ω^{2} values
$\mathrm{N}_{\mathrm{x}} \quad-$ number of input x values
$U_{k, l}=-\frac{1}{C^{\circ}} \frac{d c}{d \xi}$
$x_{\ell} \quad-\quad$ array of distances squared from center of rotation
$\lambda k \quad-$ function of $\omega^{2} k$
$\Delta h \quad$ - constant difference between values of h_{n} array
$\Delta M_{j, n}$ - difference between successive j values of $M_{j, n}$ matrix
$\xi_{\ell_{2}} \quad-$ function of x_{ℓ}
$\omega^{2} \quad$ - square of the angular velocity

AFML-TR-67-121
PART III

IN 1 ROUTINE

Input: $\quad N_{\omega} N_{x}, h_{1}, \Delta h, N_{n}, H, C^{\circ}, \omega_{k}^{2} \quad \operatorname{array}$, where $k=1,--, N_{\omega}$ $\begin{array}{cc}\mathrm{X}_{\mathrm{j}} & \text { array, where } \boldsymbol{\ell}=1, \cdots, \mathrm{~N}_{\mathrm{x}} \\ \mathrm{C}_{\mathrm{n}}^{\circ} & \text { array, where } \mathrm{n}=1, \cdots, \mathrm{~N}_{\mathrm{h}}\end{array}$

1. $h_{n+1}=h_{n}+\Delta h$ for $n=1, \cdots,\left(N_{h}-1\right)$
2. $m=x_{1}$
$b=x_{N_{x}}$
$\lambda k=(b-m) \cdot H \cdot \omega_{k}{ }^{2}$ for $k=1, \cdots, N_{\omega}$
3. $\xi_{\ell}=\frac{b-x_{1}}{b-m}$ for $\ell=1, \cdots, N_{x}$
4. $M_{n}=\frac{h_{n}}{H}$ for $n=1, \cdots, N_{h}$

$$
f_{n}=\frac{C^{\circ}{ }_{n}}{C^{\circ}}
$$

5. $U_{k, \ell}=\sum_{n=1}^{N_{h}} \frac{\left(\lambda_{k} M_{n}\right)^{2} e^{-\lambda_{k} M_{n} \xi_{\ell}}}{1-e^{-\lambda_{k} M_{n}}} f_{n}$
for $k=1, \cdots, N_{\omega}$ and $\ell=1, \cdots, N_{X}$
6. Write out ω^{2} array, ξ array, and U matrix
7. Call LP SOLVER

AFML-TR-67-121
PART III
IN 2 ROUTINE
Input: $\quad N_{\omega}, N_{x}, H, C^{\circ}, \omega_{k}{ }^{2}$ array where $k=1,---, N_{\omega}$ $\mathrm{x}_{\ell} \quad$ array where $\ell=1, \cdots, \mathrm{~N}_{\mathrm{x}}$ $\left(\frac{d C}{d x}\right)_{k l}{\underset{l}{l=1,-\cdots, N_{x}}}_{\text {matrix where } k-1, \cdots, N_{\omega}}$ and

1. $m=x_{1}$

$$
\mathrm{b}=\mathrm{x}_{\mathrm{n}_{\mathrm{x}}}
$$

2. $\lambda k=(b-m) H \omega_{k}^{2}$ for $k=1, \cdots, N_{\omega}$
3. $\xi_{\boldsymbol{l}}=\frac{b-x_{\boldsymbol{l}}}{b-m}$ for $\boldsymbol{\ell}=1,-\cdots, N_{x}$
4. $\mathrm{U}_{\mathrm{k}, \ell}=\frac{\mathrm{b}-\mathrm{m}}{\mathrm{C}^{\circ}}\left(\frac{\mathrm{dc}}{\mathrm{dx}}\right)_{\mathrm{k}, \ell} \quad$ for $\mathrm{k}=1, \cdots, \mathrm{~N}_{\omega}$ and $\ell=1, \cdots-N_{X}$
5. Write out ω^{2} array, ξ array, and U matrix
6. Call LP SOLVER

AFML-TR-67-121
PART III

LP SOLVER

1. Input from IN 1: $\quad \mathrm{N}_{\omega}, \mathrm{N}_{\mathrm{x}}, \lambda$ array, ξ array, and U matrix
2. Input from cards: $M_{1,1}, g, N_{M}, N$, HEADING
3. Write out input from cards
4. $\mathrm{N}_{\text {row }} \mathrm{N}_{\omega}: \mathrm{N}_{\mathrm{x}}$

$$
\begin{aligned}
& N_{\text {col }}=N_{M}+2 N_{\text {row }} \\
& n=1
\end{aligned}
$$

5. Calculate the following matrix entries

$$
\begin{gathered}
a_{i_{j}}=1 \text { for } i=1,-\cdots, N_{\text {row }} \text { and } j=N_{M}+1, N_{\text {col }-1,2} \\
a_{i_{j}}=1 \text { for } i=1,-\cdots, N_{\text {row }} \text { and } j=N_{M}+1, N_{\text {col, } 2} \\
a_{i_{j}}=\frac{\left.\left(\lambda_{k} M_{j, n}\right)^{2} e^{-\lambda_{k} M_{j, n}} \xi_{\ell}\right)}{1-e^{-\lambda_{k} M_{j, n}}} \Delta M_{j, n} \\
\text { for } i=1,-\cdots, N_{\text {row }} \text { and } j=1,-\cdots, N_{M} \\
\text { where } k=\left[\frac{i-1}{N_{x}}\right]+1 \\
\ell=i(k-1) \cdot N_{x} \\
M_{j, n}=M_{1, n} \cdot g^{j-1}
\end{gathered}
$$

and

$$
\Delta M_{j, n}=\left(g^{1 / 2}-g^{-1 / 2}\right) M_{j, n}
$$

6. Calculate the following right-hand sides $b_{i}=U_{k, \ell}$. where i, k, and ℓ are defined as in step 5.
7. Calculate the following objective coeffcients

$$
\begin{aligned}
& C_{j}=0 \text { for } j=1,--, N_{M} \\
& C_{j}=1 \text { for } j=N_{M}+1,---N_{c o l}
\end{aligned}
$$

AFML-TR-67-121
PART III
LP SOLVER
8. Write out the determinants of:
$\left[a_{i_{j}}\right]$ for $i=1,---N_{M}$ and $j=1,-\cdots, N_{M}$
$\left[a_{i_{j}}\right]$ for $i=N_{M}+1,---2 \cdot N_{M}$
$\left[a_{i}\right]$ for all sets of N_{M} rows less than $N_{\text {row }}$
9. Write out matrix $\left[a_{i_{j}}\right]$ for $i=1, \cdots, N_{\text {row }}$ and $j=1,-\cdots, N_{M}$ in exponent
form.
10. Call LP solver and store solutions in $\mathrm{F}_{\mathrm{j}, \mathrm{n}}$ array.
11. Write out input RHS
computer RHS using solution difference of RHS'S absolute value of relative differences of RHS average absolute relative difference
12. $\mathrm{n}-\mathrm{n}+1$
$M_{1, n} \leftarrow\left(M_{1, n-1}\right) g^{1 / N}$
13. Return to step 5 until n exceeds N
14. Write out $\mathrm{F}_{\mathrm{j}, \mathrm{n}}$ matrix
15. Call PLOT routine

AFML-TR-67-121
PART III

PLOT ROUTINE

1. Input from LP SOLVER: HEADING, N, N_{m}, F, and M matrices
2. Input from IN 1 (if used): $\Delta h, H, N_{n} f$, and M arrays
3. $\Delta \mathrm{M}=\frac{\Delta \mathrm{h}}{\mathrm{H}}$
4. Write out heading
5. Label vertical axis $\operatorname{F}(\mathrm{M})$
6. Label horizontal axis M
7. $\operatorname{Plot} \frac{f_{n}}{\Delta M}$ versus M_{n} for $n=1,--N_{h}$
8. Plot $F_{j, n}$ versus $M_{j, n}$ for $n=1,---N$ and $j=1,---N_{M}$
9. STOP

SECTION V

CONCLUSION

To date, the linear programming method seems to be one of the most promising schemes for obtaining the molecular weight distribution from sedimentation-diffusion equilibrium data. There are five main features of this investigation which are worthy of mention.

1. The linear programming method has been found to give acceptable results for the case of experimental data obtained at one angular velocity.
2. It was found that if a normal random error of the experimental gradient curve was about 20% the linear programming method produced a MWD with satisfactory precision. However, if the experimental error was weighted, i. e., the concentration gradient curve was distorted from the true curve, a 1 or 2% error led to an absurd molecular weight distribution. This agrees with the findings of Lee (Reference 5), Tikhonov and Glasko (Reference 12), and Tikhonov (References 13 and 14).
3. This investigation did not involve any modification of the LP solver routine. The LP solver limitations were manifested by spurious points sometimes appearing in the determined molecular weight distribution. In general, the linear programming method presents only an overall molecular weight structure. Therefore, when twenty sets of molecular weights were sampled, it was obvious when one point was completely illogical.
4. A great improvement was achieved by solving for $F(M)$ directly (Equation 20), rather than via f_{m} (Equation 9). In the former case the matrix presented to the LP solver routine was not so ill-conditioned (Tables I and II).
5. The following test was made after each call of the LP solver routine. By having the calculated MWD, the computer program could calculate new U-values ($\mathrm{U}_{\text {calc }}$). The difference between $U_{\exp }$ and $U_{\text {calc }}$ was then printed. Also, the absolute relative differences, the averaged absolute relative error for one set of molecular weights, and the averaged absolute relative error averaged over all molecular weight sets were printed. In general, a good "fit" between the assumed MWD and the derived MWD showed low values for

AFML-TR-67-121 PART III
all the above error analyses; however, the converse was not always found to hold true. At present much effort is being focused on determination of a procedure for obtaining a one-to-one correspondence between the error analysis criteria and the "fit" of the derived MWD.

TABLE I
EXPONENTS OF ELEMENTS IN THE MATRIX PRESENTED TO LP SOLVER ROUTINE USING EQUATION $9 *$

-2	-1	-1	-1	0	0	0	0	0	0
-2	-1	-1	-1	0	0	0	0	0	0
-2	-1	-1	-1	0	0	0	0	0	0
-2	-1	-1	-1	0	0	0	0	0	0
-2	-1	-1	-1	0	0	0	0	0	1
-1	-1	0	0	0	0	0	0	-2	-5
-1	-1	0	0	0	0	0	0	-1	-3
-1	-1	0	0	0	0	0	0	0	-1
-1	-1	0	0	0	0	0	0	0	0
-1	-1	0	0	0	0	0	1	1	2

* Value of determinant $=-0.3932972 \mathrm{E}-31$

TABLE II
EXPONENTS OF ELEMENTS IN THE MATRIX PRESENTED TO
LP SOLVER ROUTINE USING EQUATION 20**

1	1	2	3	3	4	4	5	5	5
1	1	2	3	3	4	4	5	5	5
1	1	2	3	3	4	4	5	6	6
1	1	2	3	3	4	5	5	6	6
1	1	2	3	3	4	5	5	6	7
1	2	3	3	4	4	4	4	3	0
1	2	3	3	4	4	5	5	4	2
1	2	3	3	4	4	5	5	5	4
1	2	3	3	4	5	5	6	6	6
1	2	3	3	4	5	5	6	7	8

AFML-TR-67-121
PART III

APPENDIX

LISTING OF COMPUTER PROGRAM

```
ETAFTC EXER. NFRK
C}\mathrm{ MAIN PROGRAM FXFCITIVE CONTROL
C INITIALIZE PLOTTING ROUTINFS
        INITIALIZF PLOT COUNT
        DETERMINE SEQUENCE OF SUBROUTINES CALLED
        TERMINATE PLOTTING BEFORE EXITING
        WRITE HEADING AND PLOT COUNT
        COMMON /PLTR/ PDATA(438), IPLTS, HEAD(12)
        COMMON /PRTCTL/ WRITE
        LOGICAL WRITE
        1PLTS = 0
        CALL PLOTS ( PDATA, 438)
        1 READ (5,500) HEAD
        WRITE (6,600) HEAD
        CALL IN1 I $900 )
        IF ( WRITE) WRITE (6,600) HEAD
        CALL LPS ($900)
        CALL PLOTR
        GO TO 1
    900 WRITE (6,601) IPLTS
        call plote
        gTOD
    5nn FORMAT (1246 )
    6On FORMAT ( 1H1, 12A6 / ( IX, 12AG) )
601 FORMAT ( 1H0, 12, 17H PLOT(S) COMPLETE)
        END
```

 FXFC. 001
 EXEC. 002
 EXFC. 003
 EXEC. 004
 EXEC. 005
 EXEC. 006
 EXEC. 007
 EXEC.008
 EXEC. 009
 EXEC. 010
 EXEC. 011
 EXEC. 012
 EXEC. 013
 EXEC. 014
 EXEC. 015
 EXEC. 016
 EXEC. 017
 EXEC. 018
 EXEC. 019
 EXEC. 020
 EXEC. 021
 EXEC. 022
 EXEC. 023
 EXEC. 024
 EXEC. 025
 rxer.n26
 EXEC. 027
 EXEC.028
 EXEC. 029
 EXEC. 030
 AFML-TR-67-121
PART III

AFML-TR-67-121
PART III

ATRETC RDR		
c	$\times 15 \mathrm{R}$	* ${ }^{2}$
C		
	COMMON /BLOCKR/ X(20)	
	nata	$\mathrm{X} / 36.54831 .2$,
	x	39.3583n8,
	x	42.772363,
	x	46.838556 ,
	x	4R.417651,
	x	50.012759,
	x	14*0. /
	END	

BDR. 0001
BDR.0002
BDR. 0003
BDR. 0004
BDR. 0005
PDR. 0006
RDR. 0007
BDR. OOOR
BDR. 0009
BDR.001n
BDR. 0011
BDR. 0012
BDR. 0013

AFML-TR-67-121
PART III

```
STBFTC BD. DECK
r}\mathrm{ r. RLOCK DATA SURPROGRAM FOR 32 CO VALUFS AND }7\mathrm{ W2 VALUFS
r
    RLOCK DATA
r
        COMMON /RLOCKW/ W2(20)
        COMMON /BLOCKC/ CO(160)
        DATA W2
        1/416930.0, 583702.0, 817182.8, 1144056., 1601678., 2242349.,
        23139289., 13*0.
r
    DATA CO
    1/.91324\cap\capE-3,.304414\capE-2,.63077\capOF-2,.1^53272F-1,. . 1497716E-1
    2,.2051750F-1,.2538812F-1, .3031964E-1,.3494672E-1, . 3975646F-1
    3..4383562E-1, .4706240E-1,.4968036E-1,.5144506F-1,.52968N4E-1
    4,.5382040F-1,.5467188F-1,.5467276F-1,.5419570F-1,.5333334E-1
    5,.5144596E-1,.4858448E-1,.4407914E-1, . 3835616E-1, . 3117200E-1
    6,.2496194F-1,.196\cap426E-1,.1503806E-1, .112^244E-1, . 74277^กE-2
    7..4322599E-2,.8140020E-4, 128*0./
    FND
```

80.00001 ED.00002 ED.0nOn3 5n.nのnO4 BD.00005 BD. nnone BD. 00007 BD. 00008 BD.00009 BD. 00010 BD. 00011 BD. 00012 BD. 00013 PD. 00014 BD.00015 BD. $0 \cap 016$ ED.00017 BD.0nก18 BD.00n 19 en.onn2n 2D.00021 BD. 00022

क IRMAP	RANO.	100, DECK	RAND. 001
*		GENERATES UNIFORM RANOOM NUMBERS	RAND. 002
*		R=FLRAN(Y), Y DUMMY GIVES RFAL NUMBER	RAND. 003
*		CALL SAVF(Z) GIVFS LAST OCTAL VALIF	RAND. 004
*		CALL VALUE (7) GIVFS STARTING OCTAL VALUE	RAND. 005
	FNTRY	FLRAN	RAND. 006
	FNTRY	SAVE	RAND. 007
	FNTRY	VALUE	RAND. 008
FLRAN	LDQ	RANDOM	RAND. 009
	MPY	GENERA	RAND. 010
	STO	RANDOM	RAND. 011
	CLA	AAA	RAND. 012
	LGL	78	RAND. 013
	FAn	AAA	RANO. 014
	TRA	1,4	RAND. 015
valif	CLA*	3,4	RAND. 016
	CTO	RANDOM	RAND. 017
	tpa	1.4	PANT. 118
SAVE	CLA	RANDOM	RAND. 019
	STO*	3,4	RAND. 020
	TRA	1,4	RAND. 021
PANDOM	OCT	343277244615	RAND. 022
AAA	OCT	172000000100	RAND. 023
CENERA	nct	343277244615	RAND. 024
	enn		RAND. 025

```
q, TRFTC PLOTR. NFCK
    GIIRROUTINF PLOTR
    COMMON SCH(4), SCF(4)
    COMMON /PLTR/ PDATA(438), IPLTS, HEAD(12)
    COMMON /BINP1/ DH, H,NC,F(162), CM(162), SKIP2
    COMMON /BLPS/ N, NM, BF(1090), BM(1000), K
    COMMON /BIN2/ USEIN2
    DATA HTITLE /1HM/, FTITLE /4HF(M)/
    LOGICAL SKIP2
    IMGICAL USEINZ
    TF (SKIP? ) RFTURN
    IF ( NIOT. LICEIN2, GO TO 7
    CCH(1) = RM(1)
    SrH(2) = BM(K)
    Bn TO ?
7 nM = DH/H
    nO 5 I = 1,NC
    5 F(I) = F(I)/DM
    SCH(1) = AMIN1( CM(1), BM(1) )
    SCH(2) = AMAX11 CM(NC), BM(K))
R SCF(1) = O.
    SCF(2)=0.
    IF (USEIN2 ) GOTO 15
    n\cap 1n Y = 1,NIr
1\cap SCF(2)= AMAX11 SCF(2),F(I) )
1E n\cap on i = 1,k
2n ¢CF(2) = AMAXI\ SCF(2), BF(I),
    CALL STALF (SCH, 15., 2, 1, 10.)
    CALL SCALE (SCF, 10., 2, 1, 10.)
    IF ( USEIN2 ) GO TO 25
    CM(NC+1) = SCH(3)
    CM(Nr+2) = SrH(4)
    F(Nr+1) = SrF(2)
    F(NIr+2)=SCF(4)
25 RMA(K+1) = SCH(3)
    RM(K+2)=SCH(4)
    Qr(k+1)=srF(3)
    RF(K+2) = SCF(4)
    CALL PLOT (5., -11., -2,
    CALL PLOT ( O., .5, -3)
    CALL AXIS ( 0., 0., HTITLE, -1, 16., 0., SCH(3), SCH(4), 10. )
    CALL AXIS (0., 0., FTITLE, 4, 10.,90., SCF(3), SCF(4), 10. )
    CALL SYMBOL ( 1.9.9.5,.25, HEAD, 0., 72)
    IF ( NOT. USEIN2 ) CALL LINE (CM, F,NC, 1, 0, 0 )
    CALL LINE ( RM, BF, K, 1, 1, 1 )
    CALL PLOT (15., 0., -3)
    IPLTS = IPLTS + 1
    QFTURN
    EN!!
```

PLOTR. 01
PLOTR. 02
PLOTR. 03
PLOTR. 04
PLOTR. 05
PLOTR. 06
PLOTR. 07
PLOTR. 08
PLOTR. 09
PLOTR. 10
PLOTR. 11
PLOTR. 12
PLOTR. 13
PLOTR. 14
PLOTR. 15
PLOTR. 16
PLOTR. 17
PLOTR. 18
PLOTR. 19
PLOTR. 20
PLOTR. 21
PLOTR. 22
PLOTR. 23
PLOTR. 24
PLOTR. 25
PLOTR. 26
PLOTR. 27
PLOTR. 28
PLOTR. 29
PLOTR. 30
PLOTR. 31
PLOTR. 32
PLOTR. 33
PLOTR. 34
PLOTR. 35
PLOTR. 36
PLOTR. 37
PLOTR. 38
PLOTR. 39
PLOTR. 40
PLOTR. 41
PLOTR. 42
PLOTR. 43
PLOTR. 44
PLOTR. 45
PLOTR. 46
PLOTR. 47
PLOTR. 48
PLOTR. 49

```
&IRFTC ORNER. DFCK
    SUBROUTINE ORDER ( X,Y,NM,N, K)
    COMMON /PRTCTL/ WRITE
    DIMENSION X(1), Y(1)
    LOGICAL WRITF
    J=0
    \cap\cap 1\cap LN = 1,*
    N2O=(LN-1) % %O
    I=N2N+1
    J=J+1
    X(J) = X(L)
    Y(J)=Y(L)
    DO 1\cap1=2,NM
    L=N2O + I
    J=J + 1
    X(J)= X(L)
    I\capY(J)=Y(!)
    k=J
    On TFST = N.
    nn an 1 =?,y
    IF (X(I-1) LF. X(1), GO TO 30
    XC= X(1-1)
    YG = Y(I-1)
    X(I-1)=X(1)
    Y(I-1)=Y(I)
    X(1) = XS
    Y(1)=YS
    TFST = 1.
    3n CONTINUF
    IF ( (TEST *FQ. O.) OR. (J.EQ. 2) ) GOTO 40
    J = J - 1
    60 TO 2n
    40 IF (WRITE ). WRITF (6,600) (1, X(1), Y(1), 1=1,K*)
        OETHPA
    6\capO FORMAT (1H1, 15x, 1HM, 19X, 1HF/f 1H/
    X END
```

```
    END
ORDER. 01
ORDER. 02
ORDER. 03
ORDER. 04
ORDER. 05
ORDER. 06
ORDER. 07
ORDER. 08
ORDFR. 09
ORDER. 10
ORDER. 11
ORDER. 12
ORDER. 13
ORDER. 14
ORDER. 15
ORDER. 16
ORDER. 17
ORDER. 18
ORDER. 19
ORDFR. 20
ORDER. 21
ORDER. 22
ORDER. 23
ORDER. 24
ORDER. 25
ORDER. 26
ORDER. 27
ORDER. 28
ORDER. 29
ORDER. 30
ORDER. 31
ORDER. 32
ORDER. 33
ORNFP. 34
ORDER. 35
ORDER. 36
ORDER. 37
```

```
$IBFTC DETA. DECK
    SUBROUTINE DETA & A, B, NM, NROW )
        COMMON /PRTCTL/ WRITE
        DIMENSION A (51,12O), R(NM,NM)
        LOGICAL WRITF
        IF (WRTTF) WRITF (6,6\cap\cap)
        J=1
    1\cap DO 2\cap I = 1,NM
    DO 20 K = 1,NM
    JI=J + I
    20R(I,K)=A(JI,K)
    D = DET (B,NM)
    IF (WRITE) WRITF (6,601) J, D
    J=J+NM
    IF ( (J+NM-1) .GT. NROW) RETURN
    GO TO 1O
    6ON FORMAT (13HODETERMINANTS )
    6\cap1 FORMAT ( 3X, 14, E19.7)
    FNn
```

DETA. 001
DETA. 002
DETA. 003
DETA. 004
DETA. 005
DFTA. 006
DETA.On?
DETA. 008
DETA. 000°
DETA.010
DETA.O11
DETA.O12
DETA. 013
DETA.O14
DETA.O15
DETA.016
DETA. 017
DETA. 018
DFTA. 019

```
$IBFTC DLETE DECK NLETEOOL
    SUBROUTINE DLETE (IRHS, NROW, NRPI, NCOL, NM, * ) DLETEOO2
    COMMON JRHST100) DLETEOO3
    COMMON /BIN1/NW, NX: XL(2)1, Z(20), U(20,20) DLETEOO4
    COMMON/DLT/ NWW, NXX DLETEOO5
    COMMON /PRTCTL/ WRITE
    LOGICAL WRITF
    KRHS = ? * TRUS
    IF i KRHS ,GT. 100 , GO TO 9nN
    RFAD (5,500) (JRHS(1),I=1,KRHS)
    IF (WRITE, WRITE (6,601) IRHS, (JRHSIII,I=1,KRHS)
    DO 10 I = 1,KRHS,2
    K=JRHS(I)
    L = JRHS(1+1)
        10 U(K,L) = 0.
        NWW = NW
    1=0
    \cap\cap 3nK=1,NW
    USUM = n.
    O\cap 2\cap L = 1,NX
    2n USUM = USUM + UIK,L)
    IF (USUM *EQ. O.) GO TO 28
    I=1 +1
    OO 25 J = 1,NX
    25 U(I,J)=U(K.J)
    XL(1)= XL(K)
    G0 TO 30
    28 NWW = NWW- 1
    3n CONTINUE
    NXX = NX
    J=0
    \cap\cap दn L = 1,MX
    USUM = O.
    n\cap 4n K = 1,NWW
    40 USUM = USUM + UIK,L)
    IF (USUM *O. O.) GO TO 48
    J=J + 1
    DO 45 1 = 1.NWW
    45U(I,J)=U(1,L)
        Z(J)=Z(L)
    60 T0 50
    48 NXX = NXX - 1
    5n CONTINIIE
    NROW = NXX * NWW
    NRP1 = NROW + 1
    NCOL = NM + (2*NROW)
    IF (.NOT. WRITF) RFTURN
    WRITE (6.602) NWW, NXX
    OO 6% 1 = 1,NWW
    60 WRITE (6,603) I, (U(I,J),J=1,NXX)
    RETURN
OnO WRITE (6,60n) TRHS
    RETURN 1
500 FORMAT (27( 211.1X) )
6OO FORMAT ( 45HCNIMBER OF U MATRIX DELETIONS GREATER THAN 5O /
    x 7HOIRHS = 14)
6O1 FORMAT 1HA, I3, 41H ELEMENTS OF MATRIX -U- HAVE BEEN DELETED /
    X 33(2X.211))
6O2 FORMAT ( 2OHAU MATRIX (ADJUSTEDI, 110, 5H ROWS, 16, 8H COLUMNS)
603 FORMAT ( 4HOROW, 14, 1X, 6E20.7 / (9X, 6E20.7) )
    FNO
    COMMON JRHS(100)
    DLETE006
    DLETEO07
    DLFTFOOB
    DLETEOO9
    DLETEO10
    DLETEO11
    DLETEO12
    DLETEO13
    DLETEO14
    DLETE015
    DLETE016
    DLETEO17
    DLETF018
    DLETEO19
    DLETFO20
    DLETEO21
    DLETEO22
    DLETE023
    DLETE024
    DLETEO25
    DLETE026
    DLETE027
    DLETE028
    DLETEO29
    DLETEO30
    DLETEO31
    DLETE032
    DLETEO33
    DLETF034
    DLETEO35
    DLETE036
    DLETE037
    DLETE038
    DLETE039
    DLETE040
    DLETE041
    DLETE042
    DLETFO43
    DLETE044
    DLETEO45
    DLETE046
    DLETE047
    DLETE048
    DLETE049
    DLETE050
    DLETE051
    DLFTEO52
    DLETEO53
    OLETEO54
    OLETEO55
    DLETE056
DLETE057
DLETE058
DLETEO59
DLETEO60
DLETE061
```

```
$IBFTC LPS. DECK LPS.0001
        SIIBROUTINE LPS (*)
        COMMON IE(20), E(51,51), X(51), P(51), Y(51), JH(51),
    X KR(120), KOUT(7), ERR(8)
        COMMON /PIN1/ NW, NX, XL(20), Z(20), U(20,20)
        COMMON /RLPS/ N, NM, RF(20,50), BM(20,50), K
        COMMON/DLT/ NWW, NXX
        IOMMON /FRTCTL/ URTTF
        DIMENSION A(51,120), B(51), INFIX(8), TOL(4), BA(400)
        DIMFNSION ARR(50), BS(51)
        LOGICAL WRITE
        DATA NMAX/50/, NMMAX/20/, NCOLMX/120/, NROWMX/50/
    NAME LIST /LP/ XMII, G, NM, N, IRHS,PERT
    PERT = 0.
    TPHS = O
    RFAN (5,LP)
    IF (WRITF ) WRITF (6,6nC) XMI1,G, NM,N
    IF (N.GT. NMAX ) GO TO 900
    IF (NM GT. NMMAX) OO TO 904
    NPON = NW * NX
    IF ( NROW -GT. NROWMX ) GO TO OO2
    NCOL = NM + (2*NROW)
    IF (NCOL •GT. NCOLMX ) GO TO 901
    NRP1 = NROW + 1
    NWW = NW
    NXX=NX
        IF (IRHS *GT. O)
    X CALL ILETE (IRHS, NROW, NRP1, NCOL, NM, $903 )
2\cap n\cap 3\cap I = 1,NRP1
    \capO 3\cap J = 1,NCOL
3n A(I,J)= %.
    OO 25 I = 1,NMMAX
    A\cap 25 J = 1,NMAX
35 BF(I,J)=0.
    INFIX(1)=4
    INFIX(2)=NCOL
    INFIX(3) = 51
    INFIX(4)=NRP1
    TNFIX(5) = 2
    INFIX(6)=1
    INFIX(7)=500
    TNFTX(8)=2n
    T\capL(1)=1.F-7
    T\capL(2)=1.F-7
    TOL(3)=1.F-5
    TOL(4)=1.E-10
    DRM = O.
    R(1) = 0.
    DO 50 I = 1,NROW
    IN=(I-I)/NXX
    K =TN+1
    L=I-(IN*NXX)
    R(I+1)= ll(K,L)
    IF (DFRT ©GT. (. ) B(I+1)=B(I+1)*(I. +2.*PERT*(FLRAN(X)-. 5))
F\capRC(I+1)=B(I+I)
    IN= N
    GORTG = SORT(G)
    GMG = SQRTG - (1./ SQRTG) LPS.0058
    XN = 1./FLOAT(N) LPS.0059
    RM(1,1)= XM11
    NROWS = NROW
```

LPS. 0001
LPS. 0002
LPS. 0003
LPS. 0004
LPS. 0005
LPS. 0006
LPS. 0007
LPS. 0008
LPS. 0009
LPS. 0010
LPS. 0011
LPS.0012
LPS. 0013
LPS. 0014
LPS.0015
LPS.0016
LPS.0017
LPS. 0018
LPS. 0019
LPS.0020
LPS.0021
LPS. 0022
LPS. 0023
LPS. 0024
LPS. 0025
LPS. 0026
LPS. 0027
LPS. 0028
LPS. 0029
LPS. 0030
LPS. 0031
LPS. 0032
LPS.0033
LPS. 0034
LPS. 0035
LPS. 0036
LPS. 0037
LPS. 0038
LPS. 0039
LPS. 0040
LPS. 0041
LPS. 0042
LPS. 0043
LPS. 0044
LPS. 0045
LPS. 0046
LPS. 0047
LPS. 0048
LPS. 0049
LPS. 0050
LPS. 0051
LPS. 0052
LPS.0053
LPS. 0054
LPS. 0055
LPS. 0056
LPS. 0057
LPS. 0058
LPS. 0059
LPS. 0060
LPS. 0061

```
    55 IF (WRITE, WRITE (6,612) LN, N LPS.0062
    NROW = NROWS LPS.0063
    NRP1 = NROW + }
    DO 60 J = 1,NM
    RM(J,LN) = RM(1,LN)* G**(J-1)
    NRM = GMG * PM(J,LN)
    00601 = 1,NROW
    IN=(I-1)/NXX
    K=IN+1
    L=I- (IN*NXX)
    XLKM = XL(K) * BM (J,LN)
    XNUMM = XLKM**2 * EXP( -XLKM * Z(L))
    DENOM= 1. - EXP( -XLKM)
60 A(I+1,J) = (XNUM / DENOM) * OBM [PS.0075
    1!=1
    nO 64 I = 2,NRP1
    R(1) = PSII)
    IF(R|I) FQ. O.) GOTO 64
    II = 1I + 1
    B(11) = B(1)
    no 62 J = 1,NM
62 A(11,J)=A(1,J)
6 4 \text { TONTINHF}
    NRP1 = II
    NROW = NRP1 - 1
    INFIX(4) = NRPI
    J = NM
    DO 68 I = 2,NRP1
    J=J+1
    A(J,J)=1.0
    A(1,J)=1.0
    J = J + I
    A(1,J) = 1.0
6% A(I,J) = -1.0
    CALL DETA (A, BA, NM, NROW)
    IF ( WRITE) WRITE (6,601) (M,M=1,30)
    DO 80 1 = 2,NRP1
    0070 J = 1,NM
    IF(J)= -99
70 IF (A(I,J) NF.O.) IF(J)=ALOG1O(A(I,J))
    IF, (WRITF', WRITF (6,6n2) IM1, (IF(J),J=1,NM)
BN TF' = WRITF', WRITF (6,6n2) IM1, IIF(J),J=1,NM) LPG,NIOS
    CALL SIMPLX ( INFIX, A, B, TOL, PRM, KOUT, ERR, JH, X, P, Y,KR,E )LPS.0104
    IF ( WRITE) WRITE (6,603)
    DO 90 J = 1,NRP1
    MX = JH(J)
90 IF ( (MX *GT. O) .AND. (MX.LE. NM), BF(MX,LN)=X(J)
    ARR(LN) = 0.
    OO 110 I = ?,NRPI
    ar = n.
    no 10n J = 1, Nam
1\capO AC= RC + AF (J,LN) *A(I,J)
    an = P(I) ~ PC
    AR = ABS( Bn)/B(1)
    IF (WRITE, WRITF (6,604) B(I): BC, BD, AR
110 ABR(LN) = ABR(LN) + AR
    ARR(LN) = ARR(LN) / FLOAT( NROW )
    IF ( NOT WRITF) GO TO 115
    WOITE (6,605) ABR(LN)
    WRITE (6,606) LN, (BF(M,LN),M=1,NM)
    WRITF (6,610)
    LPS.0064
    LPS.0065
    LPS.0066
    LPS.0066
    LPS.0068
    LPS.0069
    L(KM (LN*NXX)
    LPS.0070
    LPS.0071
    LPS.0072
    LPS.0073
    LPS.0074
    LPS.0075
    LPS.0077
    LPS.0078
    LPS.0n79
    LPS.0080
    LPS.0081
    LPS.0082
    LPS.0083
    LPS.0084
    LPS.0085
    LPS.0086
    LPS.0087
    LPS.0088
    LPS.0089
    LPS.0000
    LPS.0091
    LPS.0092
    LPS.0093
    LPS.0094
    LPS.0095
    LPS.0096
    LPS.0097
    LPS.0098
    LPS.0099
    LPS.0100
    LPS.0101
    LPS,NIN?
    LPS.0105
    LPS.0106
    ARR(LN) = O.
    LPS.0107
    LPS.0108
    LPS.0109
    LPS.0110
    LPS.01111
    LPS.0112
    LPS.O113
    LPS.01114
    LPS.0115
    ARP(LN) = ARP(LN) + AR
    LPS.0116
    LPS.0117
    LPS.01118
    IF ( NOT. WRITF, GO TO 115
    LPS.0119
LPS.0120
    LPS.0121
    LPS.0121
```

```
115LN=LN+1
    TE ( LNM,GT. N , &の TO ION
    QM(T,LN) = QM(1,LN-1) * G**XN
    OOTC55
120 IF ( WRITE ) WRITE (6,610)
    WRTTF (6,615)
    ARBAVG = 0.
    DO 130 I = 1,N
    ARRAVF = ARRAVG + ARR(1)
130 WRITF (6,614) I, ABR(I), (BF(M,I),M=1,NM)
    ARQAVC = ARQAVR/FLOAT(N )
    WRITE (6,613) ARRAVG
    CALL OROER ( QM, RF,NM,N,K )
    RFTURN
Onn wRTTF (6,6\cap7) N
    RFTURN I
901 WRITE (6,608) NCOL
    RETURN 1
902 WRITE (6,609) NROW
OC2 RFTIIRN I
9\cap4 WRITE (6,611) NM
    RFTIJRN 1
600 FORMAT 1 33HAFIRST MOLECULAR WEIGHT = E16.7 / LPS.0145
    X 33H MOLECULAR WEIGHT MULTIPLIER LP E16.7, LPS.0146
    X 33H NUMBER OF MOLECULAR WT. VALUES = 18 , %PS.0147
    X 33H NUMBER OF LP SETS FOR SOLUTION = I8, LPS.0148
G\cap! FORMAT (1HA, 57X, 14HA MATRIX (LOG) / 1HO, 6OX. 7HCOLUMNS / LPS.O149
    X 5H ROWS, 3014/1H )
5\cap2 FORMAT (1X, J3, 1X, 30T4 / (5X, 3014 ) ) LPS.0151
503 FORMAT ( 1H1, 7X, 9HINPUT RHS, 7X, 12HCOMPUTED RHS, 6X, LPS.0152
    X 14HRHS DIFFERFNCE, 4X, 16HARS RFL DIFF RHS / 1H ILPS.0153
6\cap4 FORMAT ( 1X, 4E18.7 )
605 FORNAT ( 34HOAVERAGE RELATIVE DIFFERENCE RHS = E16.7) LPS.O155
    LPS.0154
606 FORMAT ( 9HOSOLUTION, I4, 7X, 7E16.7 / (20X, 7E16.7) ) LPS.0156
607 FORMAT ( }4HON=14, 42H IS GREATER THAN DIMENSION FOR NO. OF SETSILPS.O157
6\capR FORMAT ( 56HONIIMRFR OF COLUMNS FOR -A- MATRIX GRFATFR THAN DIMENSILPS.OI58
    X\capN / TH\capNROW = 14, LPS.O159
GOG FORMAT ( 5ЗHOMIMMFFR OF ROWS FOR -A- MATRIX GRFATFR THAN DIMENSION LPS.OIGO
    X / 7HOROW = I4 , LPS.0161
61\cap F\capRMAT (1H), LPS.O162
611 FORMAT ( SHONM = I4, 59H I S GREATER THAN DTMENSION FOR NUMBER OF SLPS.OL63
    XOLIITIONS PER SFT,
612 FORMAT ( 1HO, 57X, 3HSET I 3, 3H OF I 3)
613 FORMAT ( IHO / 20X, 38HTHE AVERAGE REL. DIFF. FOR ALL SETS IS LPS.OI 166
614 FORMAT ( IHN, I4, E22.7, 9X, 6E16.7 / (36X, 6E16.7) ) LPS.0168
    LPS.0167
615 FORMAT (6HO SFT,6X,15HAVG. RFL. ERROR,12X,11HSOLUTIONS.,82(1H*) LPS.0169
    X / 1H ) LPS.0170
    FAIN LPS.OI71
```

```
&TPFTS IN1. DECK
        SUBROUTINE IN1 & * )
        COMMON /BLOCKR/ x(20)
        COMMON /BLOCKC/ CO(160)
        COMMON /RLOCKW/ W2(2n)
        COMMON /EIN1/ NW, NX, XL(20), Z(20), U(20,20)
        COMMON /BIN2/ USEIN2
        COMMON /RINP1/ DH, H, NC, F(162), HO1162), SKIP2
        COMMON /PRTCTL/ WRITE
    NATA NXMAX/20/% NHMAX/160/N:NWMAX/20/
        LOGICAL WRITE, SKIDI, SKT>2
        LOCICAL UISFINL
        NAMF LIST /INPI/ NW,NX, HI, DH,NH, H, CZ, XI; DX,
        X IST, LST, LAST, WRITE, SKIPI, SKIP2, USEIN2
    WRITE = FALSE.
    SKIP1 = FALSE.
    CKIDO = FALCF.
    |SFIN2 =FALSF.
    ACT = ?
    DFAN (5, (ND1)
    IF &AST FO. O | RFTURN 1
    IF (SKIP1) GOTO 75
    IF (NX GT. NXMAX ) GO TO 900
    IF (NH.GT. NHMAX ) GO TO 901
    IF (ND ,GT. NWMAX ) GO TO 902
    IF (USEIN2, CALL IN2 ( $85)
    NC = LST - IST + 1
    IF (NT GT. NHMAX , GO TO 903
    IF (X1 .LE. O.) GO TO 5
    x(1)= x1
    nO 1\capL = 2,NX
    1\cap X(L)=X1 + FLOAT(L-1) * DX
    5 H\cap(1)=H1
    H\cap(1)=H1
    n\cap 20 N = 2.NH
20 H\cap(N)=H1 + FLOAT(N-1) * DH
    nO 30 I = 1,NC
    IC = I + IST - 1
    F(I)=CO(IC)/CZ
30 Hn(1) = HO(1C)/H
    A = X (NX)
    QMM = R - X1
    \cap\cap 4\cap K = 1,N4
4\cap XI(K)= RMM * H*W2(K)
    ก\cap EO L = 1,NX
E\cap 7(L)={R - X|L|)/ RMM
    DO 7^ K = 1,NW
    DO 7n L = 1,NX
    U(K,L|=0.
    DC 70 N = 1,NC
    XLM = XI_(K) * HO(N)
    XNUM = XLN**2 * EXP( -XLM*Z(L) )
    \capFNOM= 1.-EXP(-XLM )
7n |(K,L)=U(K,L) + (XNUM/DENOM, * F(N)
75 JF { NOT. WRITF ) GO TO R5
    WWITE (6,601) NW, (W?(K), K=1,NW)
    MPITF (6,6n2) NX, (Z(L),l=1,NX)
IN1. 0001
IN1.0002
IN1.0003
IN1. 0004
IN1. 0005
IN1. 0006
IN1.0007
IN1. 0008
IN1. 0000
1N1.0010
IN1.0011
1N1.0012
IN1.0013
IN1.0014
IN1.0015
IN1.0016
IN1.0017
IN1.0018
IN1. 0019
IN1. 0020
1N1.0021
1N1.0022
1N1.0023
IN1. 0024
IN1.0025
IN1. 0026
IN1.0027
IN1.0028
IN1. 0029
IN1.0030
IN1. 0031
IN1.0032
IN1. 0033
IN1. 0034
IN1. 0035
IN1.0036
INI. 0037
INI. 0038
IN1.0039
IN1. 0040
IN1.0041
IN1. 0042
IN1. 0043
IN1. 0044
IN1. 0045
IN1.0046
IN1. 0047
1N1.0048
IN1. 0049
IN1.0050
IN1.0051
IN1.0052
IN1. 0053
IN1. 0054
IN1. 0055
1N1.0056
IN1. 0057
IN1.0058
[N1. 0059
1N1.0060
IN1.0061
```


PART III

```
        WRITE (6,603) NW, NX INl.0062
        DO 80 K = 1,NW IN1.0063
    80 WRITE (6,604) K, (U(K,L),L=1,NX) IN1.0064
    85 RFTURN (
    IN1.0065
900 WRITE (6,605) NX
        STOP
901 WRITE (6,606) NH
        STOP
902 WRITE (6,607) NW
    STOP
0\cap3 WRITF (6,60%) NC
    STOP
601 FORMAT ( 1HA, I4, 40H VALUES OF ANGULAR VELOCITY SQUARED - W2 /
    1H / (9X, 6E20.7 ) )
ONTION OF DISTANCE SQUARED F
    XROM CENTER OF ROTATION - Z / 1H / ( 9X, 6E20.7 ) )
603 FORMAT ( 9HOU MATRIX, I1O, 5H ROWS, I6, 8H COLUMNS )
604 FORMAT ( 4HOROW, I4, 1X, 6E20.7, / ( 9X, 6E20.7 ) )
605 FORMAT ( 5HONX = I4, 33H IS GREATER THAN DIMENSION FOR X. )
606 FORMAT ( 5HONH = I4, 33H IS GRFATFR THAN DIMFNSION FOR H. ,
507 FORMAT ( 5HONW = I4, 37H IS GREAIER IHAN DIMENSION FOR OMEGA. ) INI.OO82
698 FORMAT ( 5HONC = I4, 41H IS GREATER THAN DIMENSION FOR SFLECTFN HIIN1.0083
    END
    IN1.0084
```

```
$IRFTC IN2. DECK IN2.0001
    SUBROUTINE IN2 (*)
                SCRATCH STORAGF
    COMMON DCDX(20,20)
    DIMENSION DNDR(20,20)
r
    LOGICAL WRITE
r
    COMMON /BIN1 / NW,NR, XL(20), Z(20); U(20.20)
    COMMON /BLOCKW/ W2(20)
    COMMON /BLOCKR/ x(20)
    COMMON /PRTCTL/WRITE
    DATA NRMAX/20/* NWMAX/20/
    NAME LIST /INP2/ NW* NR,H* CO, RI, OR, DCDN* DNDR. W2
    DFAD (5,1NP2)
C
        IF (NR GT. NPMAX) ,OO TO OnN
        IF (NW .GT. NWMAX ) GO TO 901
    DO 10 L = 1,NR
    IF I R1 .LE. 0. 1 GO TO 5
        X(L)=(R1 + FLOAT(L-1) * DR )**2
r
        5DO 10 K = 1.NW
        10 DCDX(K,L) = 1.0/SORT(X(L)) * DCDN * DNDR(K,L)
r
        XM = X(1)
        O= X(NO)
r
        OO 20 K = 1. NW
        20 XL(K)=(B-XM)*H*W2(K)
        n0 30 L = 1.NR
        30Z(L)=(B-X(L))/(B-XM)
r
        DO 40 L= 1,NR
        DO 40 k = 1,NW
        4\cap U(K,L) =((B-XM) / (O) * DCDX(K,L)
            IF ( NOT. WRITF) GOTO 60
r
        WRITF (6.601) NW, (W2(K),K=1,NW)
        WRITE (6.602) NR, ( Z(L),L=1,NR)
        WRITE (6,603) NU: NR
        DO 50 K = 1,NW
        5 WRITE (6,604) K, (U(K,L),L=1,NR)
C
        RETURN 1
        WRITE (6.605) NR, NRMAX
        STOD
    On1 WRITF (6.606) NW, NWMAX
        ST\capD
r
    601 FORMAT (1HA, 14; 4OH VALUES OF ANGULAR VELOCITY SQUARED - W2 /
        X 1H / (9X.6E20.7) )
        8
    602 FORMAT ( 1HO, 14, 71H VALUES OF THE FUNCTION OF DISTANCE SQUARED FIN2.OOGO
        XROM CENTER OF ROTATION - L / 1H / (9X, 6E20.7) )
                            IN2.0061
```

```
603 FORMAT ( 9HOU MATRIX, IIO, 5H ROWS, 16, 8H COLUMNS )
IN2.0062
604 FORMAT ( 4 HOROW, \(14,1 X, 6 E 20.7 /(9 X, 6 E 20.7)\) )
IN2.0063
605 FORMAT ( 5 HONR \(=I 4,33 H\) IS GREATER THAN DIMENSION FOR X(, I 2, 2H).)IN2.0064
606 FORMAT ( 5 HONW \(=14,33 H\) IS GREATER THAN DIMENSION FOR W(, I2,2H). IIN2.0065
IN2. 0066
FNIN
1N2.0067
```



```
C D=D*B(NPR,I) DET.0062
C D=D*B(NPR,I) DET.0062
KCT=KCT+(NPR-I)
C KCT=KCT+(NPR-I)
C FLIMINATE REMAINING ELFMENTS IN I-TH SUB-COLUMN
r
        KTO=NN
        KEPOM=NN
        DO O\cap K=I,NN
        IF (KFROM-NPR) 70,80,70
    70 RLE=-B(KFROM,I)
        DO 75 J=I,NN
    75 B(KTO,J)=B(KFROM,J)+RLE*PIV(J)
        KTO=KTO-1
    80 KFROM=KFROM-1
    OO CONTINUE
r
C IF TOTAL NO. OF ROW INTERCHANGES WAS ODD, THEN
r ~ N F G A T F ~ T H F ~ P R O N U C T ~ O F ~ T H F ~ P I V O T ~ F L E M F N T S ~
```



```
    O5 IF (KCT *NE. 2*(KCT/2) ) 
        DET=D
        RETURN
C}\mathrm{ C GIVE ERROR MESSAGE FOR INCORRECT VALUE OF N
C AND RETURN TO SYSTEM VIA FXEM
C
    1\cap\cap WRITE (6,10\capO) NN
        CALL FXEM
        RETIIRN
r
10\capO FORMAT ( }3HON=,I12,30H IS INCORRECT FOR FUNCTION DET
    FNO
C D=D*B(NPR,I) DET.0062
```

DET. 0064
DET. 0065
DET. 0066
DET. 0067
DET.0068
DET.0069
DET. 0070
DET.0071
DET. 0072
DET. 0073
DET.0074
DET. 0075
DET. 0076
DET. 0077
DET. 0078
DET.0079
DET.0080
DET. 0081
DET. 0082
DET. 0083
DET.0084
DET. 0085
DET. 0086
DET. 0087
DET. 0088
DET.0089
DET. 0090
DET.0091
DET. 0092
DET. 0093
DET.0094

```
$IBFTC MSUB DECK MSUB.001
CMSUBJ VERSION 1 OF RS MSUB
    SUBROUTINE SIMPLX (INFIX,A,B,TOL,PRM,KOUT,ERR,JH,X,P,Y,KB,E)
C
    DIMENSION INFIX(8),A(1),E(1),TOL(4),KOUT(7),ERR(8),JH(1),X(1),
    1 P(1),Y(1),KB(1),F(1),ZZ(3), IOFIX(16), TFRR(8)
C
    FQUIVALENCE (INFLAG,IOFIX(1) ), (N, IOFIX(2)),
    1 (ME,IOFIX(3)), (M,IOFIX(4)), (MF,IOFIX(5)),
    2 (MC, IOFIX(6) ), ( NCUI, IOFIX(7) ), ( NVER, IOFIx(8) ),
    3 (K, IOFIX(9) ), (IIER, IOFIx(lu) ), IINvC, IOFI^\11) ),
    4 (NUMVR, IOFIX(12) ), (NuMPv, IOFIA!13) ),
    5 (INFS, IOFIX(14), , ( JT, IOFIX(15)),( LA , IOFIX(16) ),
    6 (ZZ(1),TPIV), (ZZ(2),TZERO),(ZZ(3),TCOS1)
C
C MOVE INPUTS ... ZERO OUTPUTS
    DO 1340 I= 1, 8
        TERR(I) = 0.0
        IOFIX(I+8)=0
    1340 IOFIX(I) = INFIX(I)
        LA = 0
        DO 1308 I = 1 , 3
    1308 ZZ(I)= TOL(I)
    TCOST = - ABS (TCOST)
    PMIX = PRM
    M2 = M**2
    INFS = 1
C CHECK FOR ILLEGAL INPUT
    IF (N) 1304, 1304, 1371
    1371 IF (M - MF ) 1304, 1304, 1372
    1372 IF (MF - MC) 1304, 1304, 1373
    1373 IF ( MC ) 1304, 1304, 1374
    1374 IF (ME - M) 1304, 1375, 1375
    1375 IF( MOD (INFLAG, 4) - 1 ) 1400, 1320, 100
c
C NEW 1 STARTS PHASE C IE
C*****SUBROUTINE NEW (M,N, JH, KB, A, B, MF, ME)
C
                INITIATE
    1400 DO 1401 1 = 1, M
    1401 JH(1) = 0
C
                    INSTALL SINGLETONS
        KT = 0
            DO 1402 J=1:N
        KB(J)=0
        M M = K T + M F
        LL = KT + M
c
                            TALLY ENTRIES IN CONSTRAINTS
        KQ = 0
        DO 1403 L = MM , LL
        IF (A(L)) 1404, 1403, 1404
    1404 KQ = KQ+1
        LQ=L
    1403 CONTINUE
C CHECK WHETHER J IS CANDIDATE
        IF (KO - 1) 1402, 1405, 1402
    1405 IA = LQ- KT
        IF ( JH(IA) ) 1402, 1406, 1402
    1406 IF (A(LQ)*B(IA)) 1402, 1407, 1407
                                J IS CANDIDATE. INSTALL
MSUB.002
MSUB.003
MSUB.004
MSUB.005
MSUB.006
MSUB.007
MSUB.008
MSUB.009
MSUE.010
MSUB.011
Moub.012
MSUB.013
MSUB.014
MSUB.015
MSUB.016
MSUB.017
MSUB.018
MSUE.019
MSUB.020
MSUB.021
MSUB.022
MSUB.023
MSUB.024
MSUB.025
MSUB.026
MSUB.027
MSUB.028
MSUB.029
MSUB.030
MSUB.031
MSUB.032
MSUB.033
MSUB.034
MSUB.035
MSUB.036
MSUB.037
MSUB.038
MSUB.039
MSUB.040
MSUE.041
MSUB.042
MSUB.043
MSUB.044
MSUB.044
MSUB.046
MSUB.047
MSUB.048
MSUB.049
MSUB.050
MSUB.051
MSUB.052
MSUB.053
MSUB.054
MSUE.055
MSUB.056
MSUB.057
```

 1407 JH(IA)= J
 1402 KT = KT + ME
 r
C**FND OF NFW
r
r
1320 CONTINUE
c
C VER 1 FORMS INVERSE FROM KB
C*****SUBROUTINE VER (A, B, JH, X, E, KB, Y, IOFIX, TPIV, M2)
C
C INITIATE
1100 ASSIGN 1102 TO KPIV
ASSIGN 1114 TO KJMY
IF (LA) 1121, 1121, 1122
1121 INVC = 0
1122 NUMVR = NUMVR +1
DO 1101 I = 1, M2
1101 E(I)=0.
MM=1
DO 1113 I = 1, M
F(MM) =1.0
X(I) = B(I)
1113 MM = MM + M + 1
DO 1110 I = MF, M
IF (JH(I)) 1111, 1110, 1111
1111 JH(I) = 12345
1110 CONTINUE
INFS = 1
FORM INVERSE
On 110> JT=1,N
IF (KB(JT)) 600, 1102 , 600
C 600 CALL JMY (JT, A, E,M, Y)
C CHOOSE PIVOT
1114 TY = 0.
DO 1104 I = MF, M
IF (JH(I) - 12345) 1104, 1105, 1104
1105 IF(ABS (Y(I)) - TY) 1104, 1104, 1106
1106 IR = I
TY = ABS (Y(I))
1104 CONTINUE
C. TEST PIVOT
IF (TY - TPIV) 1107, 1108, 1108
C BAD PIVOT, ROW IR, COLUMN JT
1107 KB(JT)=0
GO TO 1102
C PIVOT
1108 JH(IR) = JT
KB(JT) = IR
GO TO 900
C 900 (ALL PIV (IR, Y, M, E, Z, X)
1102 CONTINUE
RESET ARTIFICIALS
DO 1109 I = 1, M
IF (JH(I) - 12345) 1109, 1112, 1109
1112 JH(I) = O
1109 CONTINUE
R**FNO OF VFR
C

```

MSUB. 062
MSUB. 063
MSUB.064
MSUB. 065
MSUB.066
MSUB. 067
MSUB. 068
MSUB. 069
MSUB. 070 MSUB. 071 MSUB.072 MSUB. 073 MSUB.074 MSUB. 075 MSUB. 076 MSUB. 077 MSUB. 078 MSUB.079 MSUB. 080 MSUB. 081 MSUB. 082 MSUB. 083 MSUB. 084 MSUB. 085 MSUB.086 MSUB. 087 MSUB. 088 MSUB.089 MSUB. 090 MSUB.091 MSUB. 092 MSUB. 093 MSUB.094 MSUB. 095 MSUB. 096 MSUB. 097 MSUB. 098 MSUB. 099 MSUB. 100 MSUB. 101 MSUB. 102 MSUB. 103 MSUB. 104 MSUB. 105 MSUB. 106 MSUB. 107 MSUE. 108 MSUB. 109 MSUB. 110 MSUB. 111 MSUB. 112 MSUB. 113 MSUB. 114 MSUB. 115
MSUB. 116 MSUB. 117 MSUB. 118 MSUE. 119 MSUB. 120 MSUB. 121 MSUB. 122
```

100	ASSIGN	705	TO	NDEL
ASSIGN	1000	TO	KJMY	
ASSIGN	221	TO	KPIV	

C
C
C XCK 1 X CHECKER
C*****SUBROUTINE XCK (M* MF* JH* X, TZERO, JIN)
C
C. RESET X AND CHECK FOR INFEASIBILITIES
NEG = 0
OO 1201 1 = MF,M
IF (ABS (XIT) - TZERO) 1202.1203.1203
1202 x(1)=0.0
GO TO 1201
1203 IF (X(I)) 1208. 1201, 1205
1205 IF (JHII) (1201, 1206.1201
1208 NEG = 1
1206 J1N = 1
1201 CONTINUE
C**END OF XCK
C
C
C CHECK CHANGE OF PHASE. GO BACK TO INVERT IF GONE INFEAS.
IF IINFS - JIN, 1320, 500, 200
C SECOME FEASIBLE
200 1NFS = 0
201 PMIX = 0.0
r
C GET 1 GET PRTCES
C*****SUBPOUTINE GET (M, MC, MF, JH, X, P, E, INFS, PMLX I
C
500 MM = MC
C PRIMAL PRICES
502 D0 503 J = 1,M
P(J) = E(MM)
503 MM =MM +M
IF (INFS, 501, 599,501
C COMPOSITF PRICES
501 nO 504 J = 1.M
5\cap4 P(J)=P(J)* PMIX
DO 505 I = MF. M
MM = I
IF (x(1) 506,507,507
506 D0 508 J = 1,M
P(J)=P(J) +E(MM)
508 MM =MM +M
6O TO 505
507 IF (JH(1)) 505, 509,505
500 n0 51? J = 1,M
P(J)=P(J) - E(MM)
51? MM = MM +M
505 CONTINUE
C
599 CONTINUE
C**END OF GET
C
C
CMIN MIN D-J. SELECTS COLUMN TO ENIER BASIS

```

MSUB. 123
MSUB. 124
MSUB. 125
MSUB. 126
MSUE. 127
MSUR. 128
MSUB. 129
MSUE. 130
MSUB. 131
MSUB. 132
MSUB. 133
MSUB. 134
MSUB. 135
MSUB. 136
MSUB. 137
MSUB. 138
MSUB. 139
MSUB. 140
MSUB. 141
MSUB. 142
MSUB. 143 MSUB. 144 MSUB. 145 MSUB. 146 MSUB. 147 MSUB. 148 MSUB. 149 MSUB. 150
MSUB. 151
MSUB. 152
MSUB. 153
MSUB. 154
MSUB. 155
MSUB. 156
MSUB. 157
MSUE. 158
MSUB. 159
MSUB. 160
MSUE. 161
MSUB. 162
MSUB. 163
MSUE. 164
MSUB. 165
MSUB. 166
MSUB. 167
MSUE. 168
MSUB. 169
MSUB. 170
MSUB. 171
MSUB. 172
MSUB. 173
MSUB. 174
MSUE. 175
MSUB. 176
MSUB. 177
MSUB. 178
MSUE. 179
MSUB. 180
MSUB. 181
MSUB. 182
MSUB. 183
```

C*****SUOिROUTINE MIN (JT,N,M, A,P, KB, ME, ICOSI)
r
700 JT = 0
BB}=TCOS
r
701 DO 702 JM = 1,N
C
703 IF (KB(JM)) 702, 300,702
C 300 CALL DEL (JM, DT, M, A, P)
705 IF (DT - BB) 708,702,702
708 BB = DT
7 0 2 ~ C O N T I N U E
r
C**END OF MIN
r
IF (JT) 203, 203,600
C. ALL COSTS NON-NEGATIVE.. K = 3 OR }
203 K=3+INFS
GO TO 257
C NORMAL CYCLE
C. JMY 1 J MULTIPLY. BASIS INVERSE * COLUMN JT
C*****SUBROUTINE JMY (JT, A, E,M, Y, ME)
r
600 DO 610 I=],M
61n Y(I) =?.
LD = JT*ME - ME
LL=0
DO 605 I= 1,M
LP=LP + 1
IF (A(LP)) 601,602,601
601 DO 606 J = 1,M
LL=LL + 1
606Y(J)=Y(J)+A(LP)*E(LL)
GO TO 605
602 LL = LL + M
605 CONTINUE
r
699 GO TO KJMY, (1000, 1114, 1392,
r**END OF JMY
r
C ROW 1 RO'N SELECTION--COMPOSITE
C*****SUBROUTINE RON (IR, M, MF, JH, X, Y, IPIV I
C
C AMONG EQS. WITH X=O, FIND MAX ABS(Y) AMONG ARTIFICIALS, OR, IF NONE,
r.GFT VAX POSITIVF Y(I) AMONG REALS.
1000 IR = 0
n\Delta=n.n
IA=0
OO 1050 I = MF, M
IF (X(I)) 1050, 1041, 1050
1041 YI = ABS (Y(I))
IF (YI - TPIV) l050, l050, 1042
1042 IF (JH(I)) 1043, 1044, 1043
1043 IF (IA) 1050, 1048, 1050
1048 IF (Y(I)) 1050, 105C, l045
1044 IF (IA) 1045, 1046, 1045
1045 IF (YI - AA) 1050, 1050, 1047
1045 IA = 1

```

MSUB. 184 MSUB. 185 MSUB. 186 MSUB. 187 MSUB. 188 MSUB. 189 MSUB. 190 MSUB. 191 MSUB. 192 MSUB. 193 MSUB. 194 MSUB. 195 MSUB. 196 MSUB. 197 MSUB. 198 MSUB. 199 MSUB. 200 MSUB. 201 MSUB. 202 MSUB. 203 MSUB. 204 MSUB. 205 MSUB. 206 MSUB. 207 MSUB. 208 MSUB. 209 MSUB. 210 MSUB. 211 MSUB. 212 MSUB. 213 MSUB. 214 MSUB. 215 MSUB. 216 MSUB. 217
MSUE. 218
MSUB. 219
MSUB. 220
MSUB. 221
MSUB. 222
MSUB. 223
MSUB. 224
MSUB. 225
MSUB. 226
MSUB. 227
MSUB. 228
MSUB. 229
MSUB. 230
MSUB. 231
MSUB. 232
MSUB. 233
MSUB. 234
MSUB. 235
MSUB. 236
MSUB. 237
MSUB. 238
MSUE. 239
MSUB. 240
MSUẼ. 241
MSUB. 242
MSUB. 243
MSUB. 244
```

 1047 4A }=10Y
 1050 CONTINUE
 IF (IR)1099,1001,1099
 1001 AA = 1.0E+20
 FIND MIN. PIVOT AMONG POSITIVE EQUATIONS
 DO 1010 IT = MF , M
 IF (Y(IT) - TPIV) 1010, 1010, 1002
 1002 IF (XIIT), 1010, 1010, 1003
 1003 XY = X(IT) / Y(IT)
 IF (XY - AA) 1004, 1005, 1010
 1005 IF (JH(IT)) 1010, 1004, 1010
 10\cap4 AA = XY
 IR = IT
 1010 CONTINUE
 IF (NEG) 1016, 1099, 1016
 C FIND PIVOT AMONG NEGATIVE EQUATIONS, IN WHICH X/Y IS LESS THAN THE
C MINIMUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST AOSF(Y)
1016 BB = - TPIV
DO 1030 I = MF , M
IF (XII) 1012, 1030, 1030
1012 IF (Y(I) - BB) 1022, 1030, 1030
1022 IF (Y(1) * AA - X(1) , 1024, 1024, 1030
1\cap24 8B = Y(1)
IR=1
1030 CONTINUE
1099 CONTINUE
C**END OF ROW
C
TEST PIVOT
206 IF(IR) 207. 207, 210
C
207k=5
257 1F (PMIX) 201, 400, 201
C ITERATION LIMIT FOR CUT OFF
210 IF (1TFR -NCUT) 900, 160, 160
r
r
C PIV 1 PIVOT. PIVOTS ON GIVEN ROW
C*****SUBROUTINE PIV (IR, Y,M, E, X, NUMPV, TECOL)
C LEAVE TRANSFORMED COLUMN IN Y(I)
C
900 NUMPV = NUMPV + I
YI = -Y(IR)
Y(IR) = -1.
LL=0
r
903 no 904 L = IR,M2, M
IF (F(L), 905, 914, 905
914 LL = LL +N
G0 T0 904
905 XY = E(L) / YI
E(L)=0.
D0 906 I = 1,M
LL=LL+1
9C6 E(LL) = E(LL) +XY* Y(1)
904 CONTINUE
c
TRANSFORM X
XY = X(IR) / YI
X(IR) = 0.
DO 908 1 = 1,M

```

MSUB. 245
MSUB. 246
MSUB. 247
MSUB. 248
MSUB. 249
MSUB. 250
MSUB. 251
MSUB. 252
MSUB. 253
MSUB. 254
MSUB. 255
MSUB. 256
MSUB. 257
MSUB. 258
MSUB. 259
MSUB. 260
MSUB. 261
MSUB. 262
MSUB. 263
MSUB. 264
MSUE. 265
MSUB. 266
MSUB. 267
MSUB. 268
MSUB. 269
MSUB. 270
MSUB. 271
MSUB. 272
MSUB. 273
MSUB. 274
MSUB. 275
MSUB. 276
MSUB. 277
MSUB. 278
MSUB. 279
MSUB. 280
MSUB. 281
MSUB. 282
MSUB. 283
MSUB. 284
MSUB. 285
MSUB. 286
MSUB. 287
MSUB. 288
MSUB. 289
MSUB. 290
MSUB. 291
MSUB. 292
MSUB. 293
MSUB. 294
MSUB. 295
MSUB. 296
MSUB. 297
MSUB. 298
MSUB. 299
MSUB. 300
MSUB. 301
MSUB. 302
MSUB. 303
MSUB. 304
MSUB. 305
```

 908 X(I) = X(I) +XY* Y(I)
 Y(IR) = -YI
 C
999 GO TO KPIV, (221, 1102)
C**END OF PIV
r
221 IA = JH(IR)
IF (IA) 213, 213, 214
214 KR(IA)= = n
713 KB(JT)=IR
JH(IR) = JT
LA = 0
ITER = ITER +1
INVC = INVC +1
C IF IINVC - NVER , 1200, 1320,1200
C
160 K = 6
r
C
C ERR 1 ERROR CHECK. COMPARES AX WITH B, PA WITH ZERO
C*****SUBROUTINE ERR (M, A, B, TERR, JH, X, P, Y, ME, LA)
c
C STORE AX-B AT Y
400 ASSIGN 410 TO NDEL
DO 401 I = 1, M
401 Y(I) =-B(I)
DO 402 I = 1, M
JA = JH(I)
IF (JA) 403, 402,403
403 IA =ME* (JA-1)
DO 405 IT = 1, M
IA = IA + I
IF(A(IA)) 415, 405,415
415 Y(IT) =Y(IT) +X(I) * A(IA)
4 0 5 ~ C O N T I N U E ~
4 0 2 ~ C O N T I N U E
C
DO 481 I = 1, M
YI = Y(I)
IF (JH(I)) 472, 471, 472
471 YI = YI + X(I)
472 TERR(LA+1) = TERR(LA+1) + ABS (YI)
IF (ABS (TERR(LA+2))-ABS (YI)) 482, 481,481
482 TFRR(LA+2)= YI
481 CONTINUE
C
DO411 I = 1,M
JM = JH(I)
IF (JM) 300, 411, 300
C 300 CALL DEL (JM, DT, M, A, P)
410 TERR(LA+3) = TERR(LA +3) + ABS (DT)
IF (ABS (TERR(LA+4)) - ABS (DT)) 413, 411, 411
413 TERR(LA+4) = DT
4 1 1 ~ C O N T I N U E
C**END OF ERR
C
C
IF (LA) 193, 191, 193
191 LA = 4
FIND SUM AND MAXIMUM OF ERRORS
1200
CUT OFF ... TOO MANY ITERATIONS
STORE P TIMES BASIS AT DT

```

MSUB. 306
MSUB. 307
MSUB. 308
MSUB. 309
MSUB. 310
MSUB. 311
MSUB. 312
MSUB. 313
MSUB. 314
MSUB. 315
MSUB. 316
MSUB. 317
MSUB. 318
MSUB. 319
MSUB. 320
MSUB. 321
MSUB. 322
MSUB. 323
MSUB. 324
MSUB. 325
MSUB. 326
MSUB. 327
MSUB. 328
MSUB. 329
MSUB. 330
MSUB. 331
MSUB. 332
MSUB. 333
MSUB. 334
MSUB. 335
MSUB. 336
MSUB. 337
MSUB. 338
MSUB. 339
MSUB. 340
MSUB. 341
MSUB. 342
MSUB. 343
MSUB. 344
MSUB. 345
MSUB. 346
MSUB. 347
MSUB. 348
MSUB. 349
MSUB. 350
MSUB. 351
MSUB. 352
MSUB. 353
MSUB. 354
MSUB. 355
MSUB. 356
MSUB. 357
MSUB. 358
MSUB. 359
MSUB. 360
MSUB. 361
MSUB. 362
MSUB. 363
MSUB. 364
MSUB. 365
MSUB. 366
```

 IF IINFLAG - 4, 1320, 193, 193
 193 IF (K-5) 1392, 194, 1392
 194 ASSIGN 1392 TO KJMY
 GO TO 600
 C 600 CALL JMY (. * * * 1
C GO TO 1392
1304 K = 7
C SET EXIT VALUES
1392 00 1709 I= 1.8
1309 ERR(I) = TERR(1)
n0 1329 I = 1,7
1329 KOUT(I) = IOFIX(1+8)
RETURN
C DEL DELTA-JAY. PRICES OUT ONE MATRIX COLUMN
C*****SUBROUTINE DEL (JM, DT,M, A, P,ME)
C
300 DT =0.
LL = (JMM-1) *ME
301 DO 303 MM = 1.M
LL = LL + 1
IF (AI LL)| 304, 303, 304
304 DT = DT + P(MM) * A (LL)
303 CONTINUE
C
399 GO TO NDEL , (410,705)
C**END OF DEL
c
END

```

MSUB. 367
MSUB. 368
MSUB. 369 MSUB. 370 MSUB. 371 MSUB. 372 MSUB. 373 MSUB. 374 MSUB. 375 MSUB. 376 MSUB. 377 MSUB. 378 MSUB. 379 MSUE. 380 MSUB. 381 MSUB. 382 MSUB. 383 MSUB. 384 MSUB. 385 MSUB. 386 MSUB. 387 MSUB. 388 MSUB. 389 MSUB. 390 MSUB. 391 MSUB. 392 MSUB. 393 MSUB. 394 MSUB. 395 MSUB. 396

\section*{REFERENCES}
1. H. Fujita, "Mathematical Theory of Sedimentation Analysis, Academic Press, New York, 1962.
2. T. H. Donnelly, J. Phys. Chem., 70, 1862 (1966).
3. E. T. Adams, Jr., "Molecular Weights and Molecular-Weight Distributions from Sedimentation-Equilibrium Experiments," p. 84, "Characterization of Macromolecular Structure, " Publication 1573 National Academy of Sciences, Washington, D. C., 1968.
4. D. A. Lee, (private communication), to be published.
5. M. Gehatia, AFML-TR-67-121, Pt. I.
6. Th. G. Scholte, J. of Polymer Sci., A-2, 6, 91-109 (1968).
7. Th. G. Scholte, J. of Polymer Sci., A-2, 6, 111-127 (1968).
8. M. Gehatia and D. R. Wiff, AFML-TR-67-121, Pt. II.
9. S. I. Gass, "Linear Programming Methods and Applications," 2nd Ed., McGraw-Hill Company, New York, 1964.
10. A. Charnes, W. W. Cooper, and A. Henderson, "Introduction to Linear Programming, " John Wiley \& Sons, Inc. , New York, 1953.
11. G. B. Dantzig, "Maximization of a Linear Function of Variables Subject to Linear Inequalities," Chap. XXI, T. C. Koopman (ed.), "Activity Analysis of Production and Allocation, "Cowles Commission Monograph 13, John Wiley \& Sons, Inc. , New York, 1951.
12. A. N. Tikhonov and V. B. Glasko, USSR Computational Mathematics and Mathematical Physics, 4, 1 (1964).
13. A. N. Tikhonov, Dokl. Akad. Nauk SSSR, 151, 3, 501-504 (1963).
14. A. N. Tikhonov, Dokl. Akad. Nauk. SSSR, 153, 1, 49-52 (1963).

AFML-TR-67-121
PART III
\(\stackrel{\Gamma}{0}\)


Figure 1. Resulting MWD Using Ten Sets of Molecular Weights a


Ten Sets of Molecular Weights and \(\mathrm{g}=3.0\), (Compare with Figures 2-4)
```

AFML-TR-67-121
PART III

```


Figure 2. Resulting MWD Using Ten Sets of Molecular Weights and g =

iets of Molecular Weights and \(g=4.0\), (Compare with Figures 1, 3, and 4)

AFML-TR-67-121
PART III


Figure 3. Resulting MWD Using Twenty Sets of Molecular Weights and \(\mathbf{g}=\mathbf{3 . 5}\), (Co.

znty Sets of Molecular Weights and \(g=3.5\), (Compare with Figures 1, 2, and 4)

AFML-TR-67-121 PART III


Figure 4. Resulting MWD Using Twenty Sets of Molecular \(\\)



Figure 5. The Effect of Decreasing the MWR on the MWD

AFML-TR-67-121
PART III


Figure 6. The Effect of Decreasing the MWR and the Number of Molecular Weight Sets on the MWD

AFML-TR-67-121
PART III


Figure 7. The Effect of Further Decreasing \(t\)


AFML-TR-67-121
PART III


Figure 8. The Effect of Using More Experimental Data on the MWD


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{KEY WORDS}} & \multicolumn{2}{|l|}{LINK 4} & \multicolumn{2}{|l|}{Link} & \multicolumn{2}{|c|}{Link C} \\
\hline & & ROLE & W T & ROLE & WT & ROLE & \({ }_{\text {w }}\) T \\
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Ultracentrifugation \\
Equilibrium Sedimentation \\
Polydispersity \\
Linear Programming \\
Molecular Weight Distribution \\
Simplex Method
\end{tabular}} & & & & & & \\
\hline
\end{tabular}```


[^0]:    **This is not an absolutely necessary condition. When one velocity was used the situation arose where $\mathrm{L}<\mathrm{Q}$.

