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SUMN A ¥

Part I of this AGARDograph establishes the equations of motion for an
aircraft which has a rigid structure, taking into account additional

relationships introduced into the standard equations as a result of
operational conditions. It also discusses the bases for calculating the
general equations of motion for an aircraft with a non-rigid structure.

The characteristics of the motion defined by these equations are
easily studied by means of analogue calculations.

Part II deals with the principles of analogue calculation, while
Part AI is concerned with the application of such calculations to the

solution of certain problems relating to the mechcnics of an aircraft.

A number of questions concerned with the following are discussed in
turn: the motion of aircraft with a rigid structure; the behaviour of
aircraft with a non-rigid structure; the response of aircraft fitted
with an automatic pilot; the calculation of landing trajectories.

Part IV illustrates a particular problem: the automatic holding of an
approach trajectory. The author shows how analogue calculations make it
possible to study in detail the action of numerous parameters, and to
choose, from among possible solutions, those which are worth adopting.
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SONNAIRE

LaL premi~re partie de l'Agardographie htablit lea dquations du
inouvement de V avion 'a structure inde'formable, en tenant coinpte de
relations suppli'mentaires que lea conditions dlutiliaation ajoutent aux
4quations clasaiques; elle indiQue aussi lea bases aur lesquelles lea
equations ge'n~rales du mouvement de l1'avion 'a structure ddformable,
peuvent 9tre 4tablies.

Lea propriete's du niouvement define par ces 4quations peuvent 6tre
etudi~ese fac~ilement par le calcul analogique.

La seconde partie expose lea principes du calcul analogique, tandis
que la troisi'eme partie eat consacr'e 'a l1'application de ce calcul ka la
solution d' un certain nomnbre de probl'emes de m~canique de l avion.

De nombreux probl~mes relatifa au mouvement d' avions 'a structure
rigide. au comportement d'avions Ia structure non rigide, ka la re'ponse
de l'avion niuni d'un pilote automatique, 'a la re'alisation de trajectoires
d'atterrisaage, sont 6tudigs successivement.

LUa quatri~me partie traite, k titre d' exemple, d un probl'eme particu-
11cr: la tenue automatique d'une trajectoire d'approche. 11 eat montrg
comment le calcul analogique permet de' tudier en d~tall l1'action de
nombreux parame~tresaet pernet de choisir, parmi lea sokutions poasibles.
celles qui me'ritent d'eStre retenues.
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3f2b1



CONTENTS

PART I

THE PROBLEMS OF AIRCRAFT MOTION

Page
CHAPTER 1 - KINEMATICS OF THE AEROPLANE

by F.C. Hans

1.1 Reference Trihedrals 1

1.2 Relative Position of Two Trihedrals 3
1.3 Position and Motion of the Aeroplane in Space 6
1.4 Trihedrals Depending on Velocity 7

1.5 Motions of the Atmosphere Itself 9
1.6 Angles of Attack and Side-Slip 10

CHAPTER 2 - DYNAMICS OF THE AEROPLANE WITH A RIGID STRUCTURE
by F.C. Hans

2.1 Structural Deformation and Configuration of
the Aeroplane 11

2.2 External Actions 12
2.2.1 Gravity Force 12
2.2.2 Aerodynamic Forces 13
2.2.3 Gyroscopic Effects 17

2.3 General Equations of Motion of an Aeroplane 18
2.4 Control Surfaces 20
2.5 Velocity and Load Disturbances 21
2.6 Equations of Motion Following a Steady State 23

CHAPTER 3 - TRANSFORMATION AND SOLUTION OF THE EQUATIONS OF
MOTION OF A RIGID AEROPLANE

by F.C. Hais

3.1 Non-Dimensional Expression of the Disturbance
Velocities 25

3.1.1 Linear and Angular Velocities 25
3.1.2 Angles of Attack and Side-Slip 25
3.1.3 Linear Velocities Expressed as a Function

of Angles 25

3.1.4 Motion of the Surrounding Air 27
3.2 Determination of Increments AX,.Y ..... AN

in the Linear Case 27

3.3 System of Equations Written in a Non-Dimensional
Form 31

3.4 Integration of Linear Systems 36

3.5 Transformation Formulae 39

iv



Page

3.6 Further Relations 40

3.7 Block-Diagrans 42
3.8 Laplace Transformation and Transfer Functions 43

3.8.1 Definition of the Transformation 43
3.8.2 Transformation Properties 43
3.8.3 Definition of the Transfer Function 45
3.8.4 Properties of the Transfer Functions 46
3.8.5 Block Splitting 47

3.9 Non-Stationary Effects 47
3.10 Non-Linearity of Aerodynamic Forces. in

Relation to Variables 49
3.11 Usefulness of Analogue Computers 50
3.12 The Establishing of Transformation Formulae 51

CHAPTER 4 DYNAMICS CF THE NON-RIGID AEROPLANE
by J. Czinczenheim

4.1 Generalized Coordinates 56

4.2 Equatioids of Motion 57

4.2.1 Jetermination of Forces and MomenfF 58
4.2.1.1 Inertia Forces 58
4.2.1.2 Gravity Forces 61
4.2.1.3 Elastic Forces 62
4.2.1.4 Damping Forces 62
4.2.1.5 Aerodynamic Forces 62

4.2.2 General Form of the Equations of Motion 65
4.3 Study of Some Particular Cases 67

4.3.1 Motion of a Rigid Aeroplane with a
Movable Control (Free or Attached by

Springs or Servo-Controlled) 67

4.3.2 Motion of a Rigid Aeroplane Controlled
by an Accelerometer 70

4.3.3 Stability of an Aeroplane with a
Flexible Fuselage 72

4.3.4 Study of the Influence of Deformations
in Arbitrary Modes 73

4.4 Functional Diagram Corresponding to a Non-Rigid

Aeroplane 74

List of Figures for Part I 75

PART 1I

THE ANALOGUE COMPUTER

CHAPTER 5 - PRINCIPLES OF ANALOGUE COMPUTATION
by L. Moulin

5.1 Introduction 85

V



Page

5.2 High-Gain Amplifier Capabilities 86
5.3 Elementary Operation 88

5.3.1 Sign Inversion 88
5.3.2 Multiplication by a Constant Factor 88

5.3.3 Integration 91
5.3.4 Summation 92

5.4 Operational Limitations 93

CHAPTER 6 SOLUTION OF LINEAR SYSTEMS OF EQUATIONS
by L. Moulin

i.1 Homogeneous Systems Without Second Member 94
6.2 Modifications of the Set-Up 96
6.3 Initial Conditions 97
6.4 Non-Homogeneous Equations 98

6.5 Choice of the Set-Up, 98

CHAPTER 7 NON-LINEAR FUNCTION GENERATION
by L. Moulin

7.1 Multipliers 100

7.1.1 Servo-Multipliers 100
7.1.2 Division 101
7.1.3 Electroniq Multiplier 102

7.1.4 Note 104
7.2 Generation of Non-Linear Functions 104

7.2.1 Non-Linear Potentiometers 104
7.2.2 Cathode Ray Tube 105

7.2.3 Servo-Potentiometers 105
7.2.4 Conducting Ink 106
7.2.5 Taped Potentiometer 106

7.2.6 Diode Generators 106
7.2.7 Non-Linear Fun'tions of Two Variables 109

CHAPTER 8 SPECIAL FEATURES OF ANALOGUE COMPUTATION
by L. Moulin

8.1 Set-Up of Transfer Functions 110
8.2 Operational Restrictions 11i

List of Figures for Part II 113

vi



PART III

THE USE OF ANALOGUE COMPUTERS

CHAPTER 9 - PROBLEMS OF KINEMATICS Page

by F.C. Hans and L. Moulin

9.1 Introduction 121
9.2 Solution of the Main Problems Using

the Euler Angles 121
9.2.1 First Problem 121

9.3 Solution of the Problems Using Direction
Cosines 125
9.3.1 First Problem 125
9.3.2 Second Problem 126

CHAPTER 10 MOTION OF AN AEROPLANE WITH RIGID STRUCTURE
by J. Czinczenheim and F.C. Haus

10.1 Linear Problems 127
10.1.1 Longitudinal Motion 128

10.1.1.1 Linearized Equations of
the Longitudinal Motion 128

10.1.1.2 Wiling Diagram 130
10.1.1.3 Examples 130

10.1.2 Lateral Motion 134
10.1.2.1 Linearized Equations of

Lateral Motion 134
10.1.2.2 Setting-Up Scheme 135
10.1.2.3 Examples 135

10.1.3 The Permanent Motion Considered as a
Helical Motion (Linear Equations) 136

10.2 Non-Linear Problems 138
10.2.1 Inertia Coupling 138

10.2.1.1 History 138
10.2.1.2 Equation of Problems In-

volving Inertia Coupling
Terms 139

10.2.1.3 Application of Analogue
Computerg 141

10.2.2 Aerodynamic Non-Linearities 144
10.2.2.1 Approximation by a Polynomial 144
10.2.2.2 Use of Function Generators 144
10.2.2.3 Non-Linearity Combinations 146

10.2.3 Non-Stationary Aerodynamic Actions 151
10.2.3.1 Constant Delay in the

Appearance of an Aero-
dynamic Effect 151

10.2.3.2 Non-Stationary Aerodynamic
Effects 153

vii



Page
CHAPTER 11 NOTION OF A NON-RIGID AIRCRAFT

by J. Czinczenheim

11.1 Supplementary Degrees of Freedom
Their Representation on the Computer 156

11.2 Some Particular Cases 156
11.2.1 Combination of a Gust with the

First Mode of Wing Bending 156
11.2.1.1 Equations of Motion 157
11.2.1.2 Passing to the Transforms 159
11.2.1.3 Results 160

11.2.2 Influence of Wing Torsional Rigidity
on Aileron Effectiveness 160
11.2.2.1 Equations of Motion 160
11.2.2.2 Set-Up 162
11.2.2.3 Discussion of the Results 162
11.2.2.4 Other Problems 163

CHAPTER 12 - THE ACTION OF THE CONTROLS
by P.C. Haus

12.1 Effort Applied by the Pilot 164
12.2 Different Types of Controls 164

12.2.1 Reversible Manual Control 164
12.2.2 Reversible Controls Using Tabs 166
12.2.3 Irreversible Control by Hydraulic

Jack Without Direct Connection
Between Stick and Control Surface 167

12.2.4 Manual Control Assisted by
Hydraulic Jacks 167

12.2.5 Electrical Servo-Controls 168
12.3 Generators of 'Artificial Feel' 168
12.4 Imperfections of the Controls 170
12.5 Response of the Aircraft to a Force

Exerted by the Pilot. Case of Reversible
Controls 170

12.6 Use of Analogue Computer. Study of the
Longitudinal Motion of an Aircraft
Flying Stick-Free 172

12.7 Transfer Functions of Positioning
Servo-Mechanisms 176
12.7.1 Existence of a Transfer Function 176
12.7.2 Control by Means of a Jack 177
12.7.3 Control by an Electric Motor 178
12.7.4 Miscellaneous Cases 181

12.8 Response of the Aircraft to Pilot Action
in the Case of Servo-Controls 181

12.9 Use of the Analogue Computer 183
12.9.1 Different Ways of Investigation 183

viii



Page

12.9.2 Use of the Computer Alone 184
12.9.3 Determination of an Optimum

Artificial-Feel Generator 185

CHAPTER 13 - AUTOMATIC CONTROL
by F.C. Haus

13.1 Artificial Stability 188
13.2 Analogue Study for the Schematic Case 191
13.3 The Physical Action of Various Elementary

Control Equations 192
13.3.1 Longitudinal Motion 193
13.3.2 Lateral Motion 194

13.4 Actual Realization 196
13.4.1 Positioning Servo-Controls 197
13.4.2 Control Involving an Integration 199

13.5 Analogue Study of Real Cas'ýs 200
13.5.1 Phase Advance 200
13.5.2 Filtration 202
13.5.3 Progressive Attenuation of the

Signals 202
13.5.4 Progressive Attenuation of the

Feed-Back 202
13.6 ,Application 203

13.6.1 Longitudinal Motion 203
13.6.1.1 Aircraft with Dynamic

Characteristics Defined by
Linear Equations (Linear
Control Equations) 203

13.6.1.2 Aircraft with Non-Linear
Aerodynamic Characteristics 205

13.6.2 Lateral Motion 206
13.6.3 Non-Linear Automatic Pilotage 207

13.7 Partial Simulation 207
13.8 The Use of the Manual Control when an

Automatic Pilot is in Action 208
13.8.1 Classification 209

13.8.2 Controls in Parallel 210
13.8.3 Differential Control 212
13.8.4 Control Without Direct Connection

Between the Pilot and the Control
Surface 213

13.8.5 The Practical Consequences of the
Large Nusber of Alternative
Arrangements 214

13.9 Response of the Aircraft to the Action of
the Human Pilot 215
13.9.1 The Influence of the Type of Auto-

matic Pilot Used 215

ix



Page

13.9.2 Block Diagrams 216
13.9.3 Study by the Analogue Computer 216

13.9.3.1 High-Speed Aircraft 216
13.9.3.2 Low-Speed Aircraft 219

13.10 Guidance Following an Alignment 219
13.10.1 Principle 219
13.10.2 Properties of the Trajectories 220
13.10.3 Guidance Along an Approach Trajectory 221
13.10.4 Applications 221

13.11 Automatic Control of Flare-Out 224
13.11.1 Statement of the Problem 224
13.11.2 Effect of Error Signal 226
13.11.3 Tests on the Computer 228
13.11.4 Other Problems 231

13.12 Aeroplane Equipped with a Gust Damper 232

List of Figures for Part III 236

PART IV

A CASE OF AEROPLANE GUIDANCE, AS AN
EXAMPLE OF ANALOGUE COMPUTER UTILIZATION

CHAPTER 14 - GENERAL DISCUSSION
by P.C. Haus

14.1 The Purpose of this Investigation 325
14.2 Problem of the Approach Path 325
14.3 Basic Considerations of the Investigation 326
14.4 Methods Used in the Investigation 327

CHAPTER 15 - EQUATIONS OF MOTION OF THE AEROPLANE
by F.C. Haus

15.1 Notation System 328
15.2 Equations of Motion 329
15.3 Input and Output Signals 330

15.3.1 Longitudinal Motion 330
15.3.2 Lateral Motion 331

15.4 Mechanical and Aerodynamic Characteristics
of the Aeroplane under Consideration 332

x



Page

CHAPTER 16 o AUTOMATIC GUIDANCE
by F.C. Hans

16.1 The Control Equations 335
- 16.1.1 Longitudinal Motion 335

16.1.2 Lateral Motion 335

16.2 Criticism of these Equations 336

16.3 Irregularities in the Signals 338

16.4 General Remarks on the Notion 339

CHAPTER 17 - LATERAL BEHAVIOUR OF THE AEROPLANE
by F.C. Hans

17.1 Stability with Controls Fixed 342
17.2 Response to a Step Function 343
17.3 Frequency Response 343

17.4 Different Degrees of Stability 343
17.5 First Degree Stability 344
17.6 Second Degree Stability 345
17.7 Combination of Two Error Signals 346
17.8 Third Degree Stability 347

17.9 More Complex Conditions for Obtaining
Third Degree Stability 348

17.10 Continuous Variation of A. 349

CHAPTER 18 GUIDANCE IN THE LOCALIZER PLANE

by P.C. Hans

18.1 Contents of this Chapter 351

18.2 Control Subject to Three Error Signals 351

18.3 Detailed Discussion of Certain Combinations 353
18.4 Initial Displacement of 41 355

18.5 Effect of a Side Gust 356

18.6 Comparison with American Research 357

CHAPTER 19 REMARKS ON THE LATERAL MOTION
by F.C. Hans

19.1 Effect of Time in Control Movement 360
19.2 Motion with Variable Gain of y 360

19.3 Distortion Effects 361
19.4 Effect of B. 362
19.5 Semi-Automatic Control 363
19.6 Final Remarks 364

xi



Page

CHAPTER 20 LONGITUDINAL BEHAVIOUR OF TIlE AEROPLANE
by F.C. Haus

20.1 Stability with Controls Fixed 365
20.2 Response to a Step Function 365
20.3 Frequency Response 366
20.4 Different Degrees of Stability 366
20.5 Stability with no Account Taken of Altitude 366
20.6 Second Degree of Stability 368
20.7 The Long-Period Oscillation 369
20.8 Damping by a Term Se = Ale 369
20.9 Other Possibilities of Damping 370

CHAPTER 21 MAINTENANCE OF THE GLIDE PATH
by F.C. Haus

21.1 Contents of this Chapter 372
21.2 Basic Conditions 373
21.3 More Complex Conditions 373
21.4 Power Control 374
21.5 Superposition of the Effects of B3 and B. 376
21.6 Combinations Investigated for Other Initial

Deflections 379
21.7 Initial Condition to (or Entering the

Glide Path) 380
21.8 The Gust ua 382
21.9 The Gust w. 38S

CHAPTER 22 REMARKS ON THE LONGITUDINAL MOTION
P.C. Hans

22.1 Progressive Variation of the Gain in
A. or B 385

22.2 Integral Control 385
22.3 Improving the Damping 386
22.4 The Use of an Accelerometer 388
22.5 Use of the Air-Speed Indicator 388
22.6 More Elaborate Cases 391
22.7 Comparison with Caroll and Tyler Tests 392
22.8 Final Remarks 393

List of Figures for Part IV 394

REFERENCES 549

DISTRIBUTION

xii



NOTATION

a speed of sound

a acceleration minus acceleration of gravity (= j-g)

a time constant

b span

b0. bi, b 2  coefficients forming part of CH

c wing chord

d distance or length

di aeroelastic distortion of mode i (4.1)

g acceleration of gravity

h height

h height of centre, of vertical tail surface

hA, hs heights defined in 13.11.1

h a generalized coordinate - in particular, the generalized coordinate
characterizing fuselage bending (4.3.3)

h as a subscript, a particular value of k (4)

i(ix, iy, iZ) symbolic expression for radius of inertia (3.3)

i(ix.i li Z) moments of inertia of a control surface (4.3.1)

i number of degrees of freedom or modes of deformation (4.1)

j true acceleration of centre of gravity

k number of points considered (4)

l,m,n direction cosines

1(lH,/V) distance between tail surfaces and centre of gravity

half chord (= % c) (4.2.1.5)

condensed symbol, used in 11.2.1.1

1' elevator chord

xiii



m total mass of aircraft

mk mass of point Pk (4.2.1.1)

m flow of oil (12.7.2)

mf mass of a control surface

n load factor

nk normal at point Pk (4.2.1.5)

p,q.r increments of components of angular velocity

pi.,r increments of components of angular velocity (non-dimensional)

p local pressure (4.2.1.5)

a generalized coordinate (4.1)

r(rx, r d, rz) radius of inertia

s Laplr.ce variable

s general expression of a displacement (4.2.1.5)

t time

aerodynamic time (non-dimensional)

u,v,w components of velocity increments

u,;,w components of velocity increments (non-dimensional)

UaVaWa components of velocity of the atmosphere

x,y.z projections of a distance on to the three axes

x.y.z aerodynamic axes (1.4)

XvYv, zv velocity axes (1.4)

xfyf,zf axes fixed to the hinge of a control surface (4.3.1)

xc,Yc,Zc coordinates of C with respect to G (4.3.1)

x general expression for an input signal

y general expression for an output signal

xiv
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} lproportionality factors in a control equation
B

C ICX, Cy 'Cz

coefficients of aerodynamic reactions with respect to body axes

tx*.CyolCz* coefficients of aerodynamic reactions with respect to aerodynamic

It,.Cm,C n* axes

CD drag coefficients

CL lift coefficients

CH hinge moment coefficient

CI1 CIX CIy inertia coefficients (3.3)

SCIz' Clz

C aerodynamical resultant moment

C capacity (Part II)

D drag

D distance between origin of axes and transmitter (Part V)

IDI modulus of an amplitude (3.1.2.d)

E modulus of elasticity

F resultant aerodynamic force

F force applied to stick by pilot

F0  dry friction

F(t) response to a step input

F(s) Laplace transform of response F(t)

G centre of gravity of aeroplane

G weight of plane (Part IV)

G modulus of elasticity (4.3.4)

G(s) general expression of a transfer function

xv



H hinge moment

He elevator hinge moment

H(t) response to a pulse input

H(s) Laplace transform of response H(t)

I I~xIy moments and products of inertiaLIz. Izx

J moment of inertia of a control surface

L,M,N components of aerodynamic moment

Lr, Mr, Nr moments of a rigid surface (4.2.1.1)

LdMd,Nd moments produced by the distortion (4.2.1.1)

Lu .... Nr derivatives of the moments with respect to a velocity

L lift

LH lift of horizontal tailplane

L distance between origin of axes and transmitter

L self induction (12.7.3)

Z Laplace transform

Z-1 inverse Iaplace Lransform

M Mach number

M generalized mass (4.2.1.3)

Mh generalized mass for deformation mode h

M mass of the aircraft (4.2 and 11.2.1)

kinetic momentum

Simoment about control column articulation

M1p moment exerted by pilot about the articulation

Mf'ftr moments exerted by artificial feel generator about the articulation

N normal force

xvi



Nv normal force on vertical tail surface

0 origin of earth axes

P,Q,R angular velocities about three axes

Pk 'point k (4.2)

Po,k point k of the rigid aeroplane (4.2)

Q moment exerted by propulsion system

Qc coefficient of moment Q

Qh generalized force corresponding to the generalized coordinate h
(4.2.1.1)

Q wing bending moment (11.2.1)

R electrical resistance (Part II)

Re input resistance (Part II)

Rc feedback resistance (Part II)

R(w) general expression of a frequency response (Part IV)

S wing area

SH horizontal tail-plane area

Sv vertical tail-plane area

S? elevator area

1 conventional surface defining screw

T thrust

Tc thrust coefficient

T kinetic energy (4.2.1.1)

T period

T% time necessary t obtain an amplitude reduced to one-half

,V velocity

V0  velocity at time t = 0

xvii



Va velocity of surrounding atmosphere

Vr relative velocity

Vs projection of velocity on plane of symmetry

U,U,W projections of the velocity

V voltage (Part II)

Ve input voltage (Part iI)

Vs output voltage (Part II)

W virtual work (4.2.1.1)

W power (Part V)

X,Y,Z aircraft axes

X,YZ projections of a vector

X,Y,Z projections of a force F on the axes

Xr' Yr, Zr projections of force F for a rigid, aeroplane

XdYdZd projections of force due to frame distortion

Z impedance (Part II)

Ze input impedance (Part II)

Z c feedback impedance (Part II)

1(t) unit function

T(t) Dirac function or pulse

a angle of attack

a increment in angle of attack

ar angle of attack with respect to relative wind

a p real angle of attack of wing profile
0 10.2.3.1 and 13.12

ae angle of attack of tail plane

a. angle of attack of horizontal tail (12.2)

a variation of angle of attack due to a gust (= w /Vo) (13.12)

xviii



angle of side-slip

increase in angle of side-slip

Ar angle of side-slip with respect to relative wind

y angle of path

S symbol of a variation (4.2.1.1)

S displacement or deflection

aileron deflection

elevator deflection

Sr rudder deflection

Sf flap deflection

St tab deflection

8s control column displacement

•S engine control displacement

E error signal or error

e airflow deflection

X accelerometer deflection (4.3.2)

K root of the characteristic equation

K condensed symbol, used in 11.2.1.1

aircraft density

symbolic representation of a variable (4.2.2)

p specific mass of air

0' strength of a signal (Ch.12 and 13)

O'k elementary area around point Pk (4.2.1.5)

o aerodynamic or dimensionless time unit

6ii 77i. Ccomponents of a distortion d, (4.2.1.1)

damping coefficient

xix



angle between chord and principal axis of inertia

angle of tail-setting relative to wing chord

slope of glide path

X dihedral angle between two planes

rotation angles (called Euler angles)

general expression of an angular frequency

CO frequency using the aerodynamic time as time unit (Part IV)

ln frequency of undamped oscillation

F servo-motor torque (12.7.3)

F acceleration at a point (4.2.1)

r,,rl 2condensed symbols used in 11.2.1

rotation angles (called Euler angles)

airscrew pitch angle (11.2.2.3)

Wagner and Kissner time functions

NOs),O(s) Laplace transforms of the preceding functions

resultant angular velocity

angular frequency of deformation mode h (4.2.1.3)
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PART I THE PROBLEMS OF AIRCRAFT MOTION

CHAPTER 1

KINEMATICS OF THE AEROPLANE

F. C. Haus*

1.1 REFERENCE TRIHEDRALS

Several different trihedrals are necessary to study the motion of an aeroplane.
These trihedrals can be:

(A) Completely attached to the aeroplane (dynamic)

(B) Attached to the ground (geodetic)

(C) Partially attached tc the aeroplane

(D) Attached to the trajectory and to the aeroplane.

(A) Dynamic Trihedrals

We define a dynamic trihedral as any system of axes invariably attached to the
aeroplane, and represent it, in a general way, by GXYZ

Let G be the centre of gravity of the aeroplane. This point is the origin of the
axes drawn along by the combined translational and rotational motions of the aeroplane.

All aeroplanes have a plane of symmetry. We shall find it convenient to position
the axes OX and GZ in the plane of symmetry, placing axis OX along a particular

direction of the aeroplane.

The trihedral will be clockwise, and the directions of the axes positive, as
follows:

GX forwards

GY to the right (see Fig. 2)

GZ downwards.

We must find a suitable direction along which to place the axis OX . We may choose
among the following.

*Professor, Universities of Gand and Liege, Belgium
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(1) Direction of a principal axis of inertia;

(2) Direction of the wing chord. (This chord can be, at choice, the geometrical
chord of the wing or the chord of no-lift);

(3) Projection V. on the plane of symmetry, of the velocity attained at a pre-
determined instant t = 0 , the axis so defined remaining attached to the
aeroplane, whatever may be the future evolutions of the latter;

We thus obtain three different trihedrals; all. however, having the same axis OY

The first trihedral depends on the mass distribution of the aeroplane. This is the
inertia trihedral; it results in the greatest simplification in the writing of the
equations of motion of the aeroplane, which contain no product of inertia.

The second trihedral is determined by the external configuration of the aeroplane
(we call it the chord trihedral). Its use generally entails the introduction into the
equations of the product of inertia. This trihedral is determined once and for all;
the moments and product of inertia are invariable.

The third trihedral is determined by the intial conditions of flight. Its location
on the aeroplane, and consequently the values of the moments and products of inertia,
will depend on these initial flight conditions and may thus vary from one problem to
another. This trihedral will be referred to by the expression: trihedral of initial
conditions.

The angles included between the axes GX corresponding to the three definitions
given above are as follows (see Fig.1):

0- angle between direction V90  and the chord;

- angle between the chord and the axis of inertia.

We shall begin by using the chord trihedral, but from Section 3.1 onwards we shall
refer the motion of the aeroplane to the trihedral of initial conditions, because of
simplifications which will be introduced at that time.

The axes of the dynamic trihedral, whichever definition of the latter is used, are
called 'body axes'.

(B) Trihedral Attached to the Ground, or Geodetic Trihedral

Let 0 be the position of an observer on the ground.

This point is the origin of a system of axes OX'Y'Z' attached to the ground.
Axis OZ' will be positive when directed vertically downwards. Axes OX' and OY0
may be chosen arbitrarily, provided they are attached to the ground and the trihedral
is clockwise. The trihedral so defined is the geodetic trihedral (see Fig.2).
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(C) Trihedrals Partially Attached to the Aeroplane

It will be useful, for a better understanding of the problem, to define trihedrals
whose origins are attached to the aeroplane but for which the directions of the axes
are invariable. We shall use two trihedrals of this type. Both have the centre of
gravity as origin.

(a) Geoparallel trihedral GX'YIZ'

This trihedral is defined by the axes GX', GY', GZ', which remain always
parallel to the axes fixed to the ground.

(b) Trihedral of initial position GXoYoZo

This trihedral is defined by axes GXo, GY0, GZo, which remain always parallel
to the directions which the body axes had at the instant t = 0 .

The trihedrals so described, attached to the centre of gravity, are drawn along by
the translational motions of the aeroplane, but not by its rotational motions.

(D) Trihedrals Dependent on the Aeroplane's Trajectory

These trihedrals will be defined in Section 1.4.

1.2 RELATIVE POSITION OF TWO TRIHEDRALS

Consider any two trihedrals OXoYoZo, OXIYIZ 1 having the same origin.

The relative orientation of two trihedrals may be ddfined in two different ways:

(a) By the direction cosines of the three axes of one trihedral in relation to the
other;

(b) By a series of rotations bringing one trihedral into coincidence with the
other.

We will now examine these two methods of approach.

(a) Direction cosines

Consider a unit vector along each of the axes OX0, Y0, OZ0 and let:

ill mi, ni be the projections on OX1, OY1, OZi of unit vector along OX0

12- m2, n 2 be the projections of unit vector along OYo

3, mi3, n3 bu the projections of unit vector along OZ0

These 9 quantities constitute the direction cosines of the trihedral OXoYoZ0 in
relation to the trihedral OX Y1Z, .
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Let:

X0, YO, Z. be the projections of a vector on the first trihedral

X1 Y1, Z, be the projections of the same vector on the second trihedral.

The direction cosines enable us to write the following matrix equations which
constitute the transformation formulae:Fxl Fin i]i Fl

1 n2 n3 j0

and conversely:

[] = * 2 n]2 B1 (1.2)

-z0- 3 m 3 n3-z1

(a-i) Derivatives of direction cosines

When trihedral 0 is fixed and trihedral 1 is in motion with angular velocity fl
the direction cosines 1 ....... a3 will vary.

If for instance P, Q, R are the projections of Q on axes OX1 , 0Y1, (Z1, the
derivatives with respect to time of the direction cosines will be given by 9 relations,
the first 3 of which are as follows:

!I = MIR 1 nlQ

ii = n1P" -11R (1.3)

nl = LIQ -m1 P

(b) Rotations

Let us first examine the case of two trihedrals 0XoYoZo, OX1Y1Z1, motionless and
independent, but with the same origin 0. We can bring the trihedral OXoYoZo into
coincidence w-th trihedral OX1Y1Z1 by 3 successive rotations (Pig.3).

Several systems of rotation may be used. The most convenient one for the study of

the motion of an aeroplane is as follows:

A rotation b about M0., bringing OX, on to OX, and DY0 on to OY,

A rotation 9 about 0Yi, bringing OX, on to OX1 and 00 on to OZ,

A rotation cp about OX1, bringing OY, on to OY1 and OZ, on to OZ,.
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Correlation between rotations and direction cosines can easily be established.
Direction cosines are expressed in terms of the angles c, 9, p in the following
table (Table I):

TABLE I

Direction Cosines

Projection of unit vector along

on
OX0  OYo Oo

0 0

11 cos cos9 12 = sino cosO 13 = -sin 9  OX1

M , co o/ sin O sin y m2 = sing/ sin9  sinq =

- sino cosp + coo cosyp

ni cowo sin9 cosw n 2 = sino sine cos9f n coso cosqf Oz

+ sinWk cosy - coo/ siny no

(b-i) Continuous rotation

If trihedral 1 is subjected to a rotation of angular velocity Q we may stop

this trihedral in a series of instants tn, tn+i ....... and determine, for each of
its positions, the rotations 0.' 9, y which bring trihedral 0 on to the particular
position of trihedral 1, without paying any attention to intermediate positions of the
latter.

The angles -, 9, p are functions of the.instantaneous position of trihedral 1;

they are thus functions of time.

One can establish the kinematic relations between the components P, Q, R of the

angular velocity 0 of the rotation which brings the trihedral from position 0 to
position 1, and the derivatives of the angles /, 9, q with respect to time.

Thus we have:

P - - sinO
dt dt

dO
Q -cosy + -- cosO siny (1.4)

dt dt

diP d9
R = -- coso co" _ -- sinco

dt dt

or the inverse relations:
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d _ sin9
-- = P + (Q sin + R cosy)dt cos 9

d&
dt- Q cosp - R sinp (1.5)
dt

dt cos_ (Q sincp + R cosW)

A rotation T = ± /2 brings the axis OX into coincidence with ME0 and introduces
cosO = 0 into the previous formulae. This constitutes a singularity.

If the description of a motion actually performed is represented by the rotation
described previously and leads to 9 = ± 7/2 , the rotation system chosen must be dis-
carded and another system chosen.

1.3 POSITION AND NOTION OF THE AEROPLANE IN SPACE

The position of the aeroplane in space is determined at any instant t by six
elements which are functions of time:

(a) The three coordinates xg, yg. zg of its centre of gravity, with respect to
the geodetic trih 1ral OX'Y'Z';

(b) The three angles T, 0, 0 defining the magnitude of the rotations one must
carry out in the order indicated above to bring the geoparallel trihedral to
the position occupied at the instant t by the dynamic trihedral attached to
the aeroplane. These angles, therefore, determine the position of the aero-
plane at any moment with respect to the geoparallel trihedral.

The position of the dynamic trihedral at instant t = 0 defines the initial
trihedral OXoYoZQ. Let T'o @o, 4O be the angles defini'ng the position of that
trihedral with respect to the geoparallel trihedral.

If we want to det'ermine the successive positions of the aeroplane with respect to
the initial trihedral, we shall use angles ý, 9, y. These angles are not at all
equal to the differences F - 70', 0 - 0o, ý - 4o' This is easy to see when we
consider the particular case of an aeroplane the initial position GXoYoZo of which is
any position, and the angular motion a rotational velocity Q about the vertical
(Fig.4).

The angles defining the position of the dynamic trihedral with respect to the geo-
parallel trihedral are:

at instant t = O: T'o, 00o o

at instant t = dt: 'Y, 0, c.

We have, therefore:
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S- To = ffdt

@ " 00 = 0

0 -to = 0

The rotations c,�,q. which express the same displacement, are the projections
of the vector Qdt on the axes GZo, GYi, GZ; these three projections are generally
different from zero.

The motion of the aeroplane at any instant is determined by two vectorial

quantities:

(a) The velocity V of its centre of gravity

(b) The angular velocity 0 about the instantaneous axis of rotation.

An observer placed on the aeroplane will define the motion by the projections of
V and Q on the dynamic axes.

Let U. U, W be the projections of V

P, Q, - be the projections of £.

The quantities

V V V

Pb Qc Pb

2V 2V _2V

are non-dimensional expressions of these components.

A motionless observer, that is to say an observer on the ground, will
define the motion by the projections of V and Q on the geodetic (or geoparallel)
axes.

Let u', U1, • 1)2 be the projections of V on axes OX', OY', OZ'

P1, Qr, R' be the projections of 0 .

The table of direction cosines (Table I) enables us to proceed from the projections
on the dynamic trihedral to the projections on the geodetic trihedral, knowing the
instantaneous values of T, @, 4.

1.4 TRIHEDRALS DEPENDING ON VELOCITY

The two following trihedrals depend both on the velocity vector and on certain
elements of the aeroplane (see Fig.5):
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(A) Velocity Trihedral, Represented by GXvYvZv -,
Axis Gxv is directed along velocity vector.

Axis Gzv will be the perpendicular to Gx,, contained in the plane of symmetry and
directed downwards. It will thus be the intersection of the plane of symmetry with
the plane perpendicular to Gxv at G .

Axis Gy. will be perpendicular to the above two axes and will be directed towards
the right.

(B) Aerodynamic 7Trihedral, Represented by Gxyz

Let Vs be the projection of the velocity on the plane of symmetry.

Axis Gx will be directed along this projection.

Axis Gz will be the axis perpendicular to the above axis, contained in the plane of
symmetry and directed downwards.

Axis Gy will be normal to the plane of symmetry and directed towards the right.

This trihedral will here be called the aerodynamic trihedral.

Trihedrals GxvyvZv and Gxyz have the common axis Gz. Therefore a simple rotation
about axis Gz is sufficient to go from one to the other. Let us call P the rotation
in a positive direction necessary to bring trihedral Gxyz into coincidence with
trihedral GxvyvZv. The angle 8 is the angle of side-slip.

The aerodynamic trihedral Gxyz and the dynamic trihedral also have a common axis
Oy, whichever definition is chosen for the trihedral.

We can always bring the trihedral Gxyz into coincidence with trihedral GXYZ by a
rotation about axis Oy. Let a be this rotation when the dynamic trihedral GXYZ is
the chord trihedral. The angle a. is the angle of attack.

Combining rotations P and a. it is possible to bring the velocity trihedral
GxvYvZv into coincidence with the dynamic chord trihedral GXYZ. A rotation -4
brings GxvyvZv on to Gxyz; a rotation a brings Gxyz on to GXYZ.

Two rotations are sufficient to obtain this result because the velocity trihedral
and the dynamic trihedral are not completely independent. Direction cosines for the
axes Gxv, Gyp, Gzv with respect to the chord trihedral are given in Table II.

The projections of the velocity on the dynamic axes are:

V cosa. cos 1
= V sin4O (1.6)

= V sina cos8 J
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TABLE II

Direction Cosines

Oxv QYv Oiv in relation to

cosa. co0 - coms sir48 sit Gxox

sija coq# 0 Gy

sing& sito sine sirsI cosi. Gz

Knowing V, a and A is equivalent to knowing the three projections U, U, •.

Note

The angle a0, defined in Section 1.1. is nothing but the angle of attack at the

instant t = 0.

Let a be the angle defined by axes Ox and OX of the trihedral of initial condi-
tions. Then

a = a - o0

a represents the increase in angle of attack during a manoeuvre.

The position of the velocity trihedral will be defined with respect to the tri-
hedral of initial position by means of a table similar to Table II, with a replaced
by a..

1.5 hWTIONS OF THE ATMOSPHERE ITSELF

The velocity V considered up to now is the aeroplane's absolute velocity. The
atmosphere in which the aeroplane manoeuvres, however. may have its ovn motions. I

Let the vector V. represent the air velocity at a point in the atmosphere.

In the most simple case, the vectors Va acting at all points of a space large

enough to contain the entire aeroplane are supposed to be equipollent.

The aeroplane will then be surrounded by a mass of air having the same true air
velocity. The relative velocity of the aeroplane with respect to the ambient air will
be Vr V - Va. The projections of Vr and Va will be respectively:

Ur, Ur, Wr and Ua. Ua• Wa on the dynamic axes

I)4, Ur, 1• and Ua, V1, W1 on the geoparallel axes.
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A less regular distribution of air velocities can be imagined. If the true air
velocity varies from one point to another close to the aeroplane, the derivatives
aUa/.x ..... .a/ýZ will no longer be zero (x, y, z here being the distances to the
centre of gravity, measured in a direction parallel to the body axes), An unequal
distribution of Wa along the span or the length corresponding to Z A/Jy 0 0 or

ws/Bix 0 subjects the aeroplane to rolling or pitching moments, The following
analysis does not anticipate the advent of such components and is limited to the case
of equipollent vectors Va.

Note

A more general survey which supposes the derivatives Aa/3y, a/•x ... not
to be zero but of constant value in the whole space occupied by the aeroplane, is
possible. Such a distribution of atmospheric motions is equivalent to the appearance
of a rotational component P or Qa of that motion. An uneven distribution of
U. along the span, giving ýU/By 7 0, would be equivalent to a rotational component
Ra of that motion. The introduction of such components in our study does not seem
necessary.

1.6 ANGLES OF ATTACK AND SIDE-SLIP

If we tie a trihedral GXvrYvrZvr to the relative velocity Vr as we did when we
defined the trihedral Gxyz with respect to the absolute velocity, and if we carry out
the same reasoning as in Section 1.4, we shall be able to define the body axes with
respect to the trihedral GXvryvrZvr by means of two angles which we shall now call
Pr and cr (see Fig. 6).

These angles are the real angles of side-slip and attack, whereas the angles A8 and
G defined previously are only apparent angles of side-slip and attack.

The aerodynamic reactions exerted on an aeroplane depend on real angles of side-
slip and attack, and not on the apparent angles. Real angles and apparent angles
coincide when the atmosphere does not have motion of its own; no distinction is to be

--made in this case.

On the other hand, when the atmosphere has its own cotions (especially if these
are variable) one must make the distinction between the two series of *anles.

Note. Stability axes are frequently referred to in the literature, but the definition
of these axes varies with different authors. Most define stability axes as the kind
of body axes determined by the trihedral of initial conditions, Others call stability
axes those which are defined by the aerodynamic trihedral. For this reason, we do
not use the expression 'stability axes' here.



CHAPTER 2

DYNAMICS OF THE AEROPLANE WITH A RIGID STRUCTURE

P. C. Haus

We make a distinction between the non-rigid aeroplane that can be deformed under the
action of exterior forces, and the aeroplane with a rigid structure which cannot be
deformed by such forces. Chapter 4 is concerned with non-rigid structures. Chapters
2 and 3 deal with the rigid aeroplane.

2.1 STRUCTURAL DEFORMATION AND CONFIGURATION
OF THE AEROPLANE

Two preliminary remarks must be made:

(a) Control surfaces

The aeroplane with a rigid structure has movable control surfaces. The displacement
of these surfaces will not be considered here as a deformation of the structure of the
aeroplane, but as a change in its configuration.

The position of the 3 main controls will be defined by the following deflection
angles:

Se position of the elevator

sa position of the ailerons

Sr position of the rudder

As a particular case of the deformation Se' we have the displacement of the
horizontal part of the tail unit when it is entirely movable.

Positive directions are:

For Se rotation causing increase of the angle of attack

Sa displacement of the right aileron downwards

Sr rotation in the direction of positive R

Displacements 8e' 6a, Sr of the control surfaces are produced by pilot action,
human or automatic.

Besides these principal deformations, there are several others, corresponding to
the displacement of various auxiliary surfaces: flaps, spoilers, etc. These displace-
ments will be defined, as we proceed, by appropriate symbols.

11
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(b) Masses in rotational motion

We shall write in Section 2.3 the equations of motion of the aeroplane considering
it as made up of an assemblage of fixed masses. But the aeroplane is a Rystem
possessing moving interior masses, namely the rotors of the turbo-reactors and the
propellers. Under the action of the velocities and accelerations of the centre of gravity,
these moving masses will exert reaction forces on the structure of the aeroplane.

These reactions have been studied theoretically a number of times by Duncan and
others1 . They can be converted to gyrostatic actions as long as the propellers have
at least three blades.

The equations of motion of the aeroplane, written for a system of fixed masses, may
be used, provided that the gyrostatic actions be considered as external forces trans-
mitted through the engine or turbo-prop mounting.

2.2 EXTERNAL ACTIONS

External forces and moments acting on the aeroplane are essentially:

gravity

aerodynamic forces exerted by the ambient medium.

We must, in accordance with the above remarks, add the gyroscopic effects.

2.2. 1 Gravity Force

Let m be the mass of the aeroplane.

Gravity exerts a force mg, always applied at the centre of gravity and directed
vertically. Its components along geoparallel axes are thus: 0, 0, mg (Fig.7).

Its components along the dynamic axes,

(mg)x, (mg)y0 (mg),

can be obtained from the following general expressions:

(mg)x = - mg sin@ 1
(mg)y = + mg coo@ siniD (2.1)

(mg)z = + mg cos@ cosj

in which angles 0 and 4P determine, at any instant, the position of the body axes
with respect to the geoparallel axes. These expressions are useful only if quantities
® and 4' are given explicitly, which is not always the case. The position of the
dynamic trihedral may be defined by rotations ., 0, cp from an initial trihedral
GX0YoZo different from the geoparallel trihedral, and itself defined by 3 angles 'O,



13

0 .o" We must then perform a double transformation to find the projections of the
gravity force on the dynamic axes.

A first projection of vector 0, 0, mg on trihedral GX0YoZo gives:

mgXO - mg sin@,

mggyO + mg cos0 o sint° (2.2)

ZO = + mg cose 0 cos 0  J
Applying the direction cosines table, each of these quantities supplies 3 components

on trihedral GXYZ.

Thus we have the following:

mgX = - mg sineo cosO coO/

+ ag sinto cos08 cosO sino

- mg cos§o cos@0 sine

mgy = - mg sineo (-coseo sinb + sinqy sinO cos/)

+ mg sin~o coseo (cosco cow/ + sinrp sine sin•) (2.3)

+ mg cos§o coseo (siny cosO)

-gz mg sin@o (sincp snai + coswp sin9 coo/)

+ mg sin~o cosno (-sinip coo! + cosy sin& siny/i)

+ mg cosoo cose) (cosO cosy)

When the angles /, 0, yp are small, these expressions can be linearized.

Assuming sines of /, 6, yp equal to the angles 0, 9, yp, and cosines equal
to unity, and neglecting sine products, the projections become:

mgX = mg[-ain@° + (sint° com08) 0 - (cos°0 cose0 )88 1
mgy = mg[sint° cose0 + (sin@e) / + (cosa° cose0 )W)] (2.4)

mgz = mg[coslo coso0 - (sinlo coseo) /- (sineo)) J
2. 2.2 Aerodynamic Forces

Forces exerted by the ambient medium may be divided as follows:
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(A) Aerodynamic forces and moments exerted by the ambient medium on the outer
surfaces of the aeroplane;

(B) Forces and moments exerted by the ambient medium or by fluids acting upon the
propulsive parts of the aeroplane.

Forces (A), which act upon the outer surface of the aeroplane, can always be reduced
to a resultant force F and a moment C.

Forces (B) are exerted by the propellers, the fixed or moving turbine blades, and
the inside walls of the nozzles; they are finally transmitted to the structure of the
aeroplane.

These forces comprise a thrust T and a moment Q. In the'case of a jet-propelled
aeroplane, we may consider these two categories of efforts as being produced by:

the outside flow

the inside flow.

The projections of the sum (F + T) on the dynamic axes are represented by X, Y, Z.

The projections of the sum (C + Q) will be represented by L, M, N.

These components are expressed as functions of the relative velocity by non-
dimensional factors CX ..... Cn (incorrectly called coefficients):

X = CX S %pV2  L = C1 b S pV2  1

Y = Cy S %pV2  M = C. c S %PV2  (2.5)

Z = CZ S %pV2 N = Cn b S %pV2

in whieh S is the wing area

b is the wing span

c is the wing chord

p is the specific density of the air.

A distinction must be made between steady motion, quasi-stationary motion, and variable
motion.

Aerodynamic forces depend, in the case of steady motion, on values (supposed
constant) of a certain number of variables. These are listed below.

In quasi-stationary motion, it can be assumed that the aerodynamic forces are, at
any moment, completely defined by the values of the same variables and their deriva-
tives at the instant under consideration.
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Variable motion is that in which we cannot determine the aerodynamic forces at a
chosen Instant, without allowing for previous history.

The following Is concerned with steady flow. Quasi-stationary and variable flows
will be studied in Sections 8.2 and 3.9. The analysis of forces and moments leads us

to study separately the different aerodynamic forces:

(A) Outside Flow

Let us represent by CXa ..... Cna that part of the coefficients C. Cn due
to outside flow.

The factors Cxa ..... Cna depend on:

(a) The real incidence and side-slip angles ar and or , themselves functions of the

components , U, W, •a ' a

(b) The angular velocities, generally expressed by non-dimensional factors

(c) The Mach number M

(d) The outside configuration of the aeroplane, defined by various deformations

(e) The action exert'd by the propulsive unit on the external flow.

(B) Inside FLow

The reaction forces of the engine unit comprise:

(1) The alteration of factors Ca. Cna due to the action of the propulsion
system on the outside flow, referred to in (e) above;

(2) The effects produced directly by the propulsive units, which can be reduced to
a force T and a couple Q.

The direct and indirect effects of the motor-propulsion unit depend on the variables
which define the functioning of the motor-propulsion system.

In the case of a motor-propulsion unit equipped with a variable-pitch propeller
(constant speed propeller), the pilot has two controls by which he can alter:

the admission pressure of the gas

the revolutions per minute.

In the case of a jet-propulsion system, the pilot controls the fuel flow by regulating
the pump output. When large variations in fuel flow are foreseen (afterburning) the
nozzle outlet section of the diffuser must be variable. Finally, variations in velocity
sometimes need modifications of the inlet section of the jet.



In most of the problems relative to the dynamics of the aeroplane, we can charac-

terize the reactions of a motor-propulsion unit by a single variable which defines
the power symbolically. We shall call this variable S. . It constitutes a
degree of freedom for the pilot.

Physically, 8. will represent the manifold pressure in the case of a piston
engine, or the output of the injection pump in the case of a jet engine.

In order to take into account the reactions produced by the outside flow, in the
general expressions given above, the force T and moment Q will have to be defined
by factors T. and Qc so that:

T = TC %pV2  (2.6)

Q = Q A1 pV2

in which A and I represent a surface and length conventionally defined.

The projections

(TcdxO (TO)y, (Tc)z

(kc)x (Qc)Y, (c)z

of previous factors wili have to be added to the factors representing the effect of
outside flow in order to obtain the factors defining the total aerodynamic reaction:

+ =T~ C + (Qc)x I b
Cx = Cx,a (T A = Cia + sT

Cy = Cy,a + (Tc)y7  Cm = C,,a + (Q cy (2.7)

Cz = Cz a+ (T Cn = Cn,a + (Qc)z

The use of coefficients T, and Q, leads to certain difficulties in practice.
Quantities T and Q vary little with velocity. Their representation, as a function
of the square of the velocity, introduces factors Tc and Qc which will vary greatly
with speed.

In the theoretical study, we shall nevertheless still make use of the overall aero-
dynamic forces X, Y, Z, L, M, N and of corresponding coefficients, in order to reduce
the number of terms appearing in the formulae. This does not mean that we shall not,
in the examples considered, deal separately with forces due to inside and outside flow.

Note

When no confusion is possible between total forces and forces due to outside flow,
we shall discontinue using the subscript a for the latter.

Particular Cases

It is possible to design controls producing moments about the 3 axes by using
compressed jets, acting on a lever arm in such a way that the reactions produced by
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these jets exert moments. The fluid used is taken from the interior flow. The
momonts exerted will depend on the nozzle output and will vary little with the speed
of the aeroplane. These jet controls are interesting for vertical take-off aeroplanes.

The case of jet controls is not foreseen, either in this study or in the examples
considered. It could easily be considered, however.

2.2.3 groscopic Effects

Gyroscopic couples, considered, by virtue of what has already been said, as
exterior actions, will be expressed as follows:

Let I be the moment of inertia of the gyroscope

w its angular velocity of rotation

•'~x, ' %z, %its projections on the dynamic axes.

Under the action of the rotation D, with components P, Q, Rt applied to the
whole aeroplane, the gyroscope exerts a reaction couple Q which can be written in
vectorial notation as follows:

4g= I ZZAf (2.8)

The components of this reaction couple are:

Lg = I (y) R - wQ) 1
Mg = I (W, P - %o R) (2.9)

Ng = I (cox Q -c -P)

These expressions become simpler when the axis of rotation of the gyroscope is parallel
to the plane of symmetry of the aeroplane.

In that case, if X is the angle between the axis of the gyroscope and the axis
OX, we have:

S= Coc (o.1

WY 0 (2.1-)

C - a)sinxJ

and the components of the gyroscopic couple become:

Lg = IaQstuink

Mg = I w (-P slnk -R cosk) (2.11)

Ng = I W Q cosa
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2.3 GENERAL EQUATIONS OF MOTION OF AN AEROPLANE

Let us now proceed to the equations of motion with reference to the body axes.

The mass m and the moments of inertia are assumed constant. Let I., Iy, Iz
be the moments of inertia about the dynamic axes, and Iz the product of inertia
about the axes OX and GZ. The products of inertia Ixy and Iyz are zero, the
plane XGZ being a plane of symmetry.

The equations of motion of the aeroplane can be written in vectorial form as
follows, i being the kinetic momentum:

dr AV -. - - +mg 1
mdV

m d + QA F +T + m

(2.12)

dt

For the dynamic axes, the equations of motion may be written in the algebraic form:

+(_+Q W, RV)= X + (mg)

+ RI - P) = Y + (mg)y

+ Pu - 7- Z + (Mg)7

(2.13)
dP dR

Ix - - Izx - + (Iz - y) QR Izx IQ = L + Ls

dQ
I - + (Ix - Iz) PR + Izx (p2 -R 2 ) = M + ME

dR dP
IZ - Id + (Iy - x) PQ + IzxQR = N + N

The product of inertia Izx becomes zero if we choose the inertia trihedral as the
system of dynamic axes. The projections of the gravity force are given by Equation (2.4)
as a function of the variables '/, 6, cp and initial conditions T00 40 .

The gyroscopic couples are given by Equation (2.11) as a function of P, Q, R. The
forces and aerodynamic moments are functions (considered as known) of the variables
U. U, W, P, Q, R and their derivatives, and, also, of the other above-mentioned para-
meters. These parameters, which we consider as excitations or inputs, are:

The positions of the control surfaces: Se, Sal 6r



19

The working characteristics of the motor-propulsion units determined by the
engine controls, 8.

The dragging velocities Ua, Ua, W. of the ambient medium.

The kinematic relations (Eqn. (1.5)) give rise to 3 more equations, relating deriva-
tives of the angles yp, 0, 0 to the angular velocities. We thus obtain a system
of 9 equations with 9 variables, the integration of which is possible when the
excitatlons are known as functions of time.

Note

(1) Permanent moveme$ts

The expression for gravity projections as a function of angles T, e, 4 shows
that the only displacement for which these projections remain constant is a helical
displacement about a vertical axis (V variable, @ and I constant). This displaement
constitutes therefore the only possible permanent movement.

Circular flying at constant altitudes, straight and level or inclined flying, con-
stitute degenerated cases of this movement.

(2) Accelerations and loading factors

Let us call j1 , Jy, Jz the acceleration components of the centre of gravity.
Then

d•.
Jx d- + - QW- RU

dt

Jy = -- + PU - eW (2.14)
dt

Jz = dW+ OU- Qt
dt

The following quantities, viz.

ax = J x gX 1
ay = JY- gY, (2.15a)

az = Jz - gz

equal to the acceleration minus the gravity force, may be considered as generalized
accelerations; they may be measured by accelerometers. Taken with opposite sign, they
represent an apparent gravity force in the direction of the axes.

The quantity
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n a! = cos@ cosO +q- (2.15b)

constitutes the loading factor of the wings. It is equal to I in straight and level
flight.

Any quantity An = n-i > 0 indicates an overload. It is useful to recall
here the acceleration components at a point distinct from the centre of gravity.

Let x, y, z be the coordinates of point P, measured from the centre of gravity.
Components JPx, JPy, JPz of the acceleration at point P will be given by 3 formulae
of which only the third is given here:

dp dq
=J+ -y x + p(rx - pz) - q(qz - ry)J~z z +t dt

The acceleration components, minus the apparent gravity, will be, at point P

apx = JPx - gX

apy = jpy - gy

aPz = JPz - gz

2.4 CONTROL SURFACES

The deflections of the control surfaces come into the previous equations by their
influence on the aerodynamic forces and moments X ..... N. In the most general case,
the aerodynamic forces and moments depend on the angles of deflection and their
successive derivatives.

A rigorous theory should take into account the effect of the displacement of the
control surfaces on the terms of inertia.

The theory explained by M. Czinczenheim, in Section 4.3.1, takes this effect into
account; terms in S are added to Equations (2.13), but this effect is of little
importance and is always neglected.

If positions Se' Sa' sr of the 3 control surfaces actually constitute excitations
of the aeroplane's motion, these parameters are, nevertheless, not variables of which
the magnitude is given explicitly at each moment.

Even in the simplest case of a control corresponding to the scheme in Figure 113,
where the position be of the control surface is connected with the position S. of the
control column, the pilot takes little notice of the position of the stick and is
interested in nothing but the force F he must exert on it.

The positionof the control surface is a result of an equilibrium between the
different moments applied around the hinge. This is expressed in the last group of
terms in Equation 4.45, where we have represented:
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the moment Hr transmitted by the control gear

the aerodynamic hinge moment H equal to H8
8 + H11 + H18

and, depending consequently on the position of the control surface,

the inertia reactions of the control surface.

Free control flying appears as a particular case, in which the moment Hr transmitted
by the control gear is zero.

These remarks are made here to show that the system will have to be completed by
equations defining the deflections 8el Sal ar in relation to the variables which

determine them.

These equations will take particular forms depending on the practical means
adopted: e.g., direct controls, servo-controls, having or not an artificial feel
device.

2.5 VELOCITY AND LOAD DISTURBANCES

It is best to change variables every time the evolution studied has a permanent
motion as starting point at instant t = 0, and to adopt new variables called pertur-
bation variables.

(A) Disturbance Velocities

Consider a steady motion determined by:

Constant values of linear and angular velocities, which we shall call u0 , Vol

wO, pO qO, ro;

Fixed positions of control surfaces, which we shall conventionally take as origin
of displacements Se0 Sal Sr;

Constant values of 8 and t, which we shall write as n . and to.

We have:

S2 
+ 2

V 0 0 0 0

This steady motion takes place at instant t = 0.

Any action of the pilot on the controls, any atmospheric disturbance, any irregu-
larity of the propulsive unit occurring at t > 0, will modify the motion. The aeroplane
will describe a trajectory defined by velocities

u0 + U P = +p 1
vo + v Q = qo + q (2,16)

= w0 +w R = r +r
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The Increments

U, V, W

p. q, r

are called perturbation velocities.

(B) Aerodynamic Forces

Any aerodynamic action X ..... N will be considered as made up of the sum of the
action at instant t = 0 and of an increment. We write:

X = Xo + AX

N = No + AN

Forces at instant t = 0 and increments will be expressed in terms of velocity V.
by:

X = X0 + AX = (Cxo + ACX) S %PV2

S....................................... I (2.17)

N = No + AN = (CNo + ACN) S b /pV}2

Factors AC., ACy ......... cN are functions of:

(a) the characteristics of the initial steady motion

(b) the instantaneous values of:

U v W

Vo Vo V0(2.18)

S=Pb A qc , rb
S- . q =-, r
2V 2V 2V

(c) the derivatives of the preceding quantities

(d) the excitations communicated to the aeroplane, including the control movements
and atmospheric disturbances.

(C) Orientation of the Aeroplane

The position of the dynamic trihedral is determined, in the initial conditions, by
the angles 00 and to, and in every one of the successive positions by 3 rotations
P, 9, q) to be operated from XoYoZo.
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The projections of gravity will be subjected to increments which are functions of

0p. 0, P.

2.6 EQUATIONS OF MOTION FOLLOWING A STEADY STATE

The steady state defined above is realized at instant t = 0. and satisfies the
following equations:

"(qoWo - rove) = Xo + (mg1 o)

m(rOu0 - Powo) = Yo + (mgyo)

m(povo - qoUo) = Zo + (mgzo)

(2.19)

(IZ - IY) qoro - Izx QODo = Lo - 1W qo sink

(Ix - Iz) roPo + Izx(p0 - ro) = So + I&(Po sink - ro cook)

(Iy - Ix) p0 q0 + Izx qor0 = No + IW qo cosak

The ensuing motion produced by a known excitation or Input (pilot's order, atmos-
pheric disturbance) satisfies the general Equations (2.13) in which we replace:

each variable, such as U, by uo + u

aerodynamic forces, such as X, by X0 +AX

and in which we introduce the projections of the gravity forces, defined by Equations
(2.4), in their linearized form.

Let us subtract Equation (2.19) for the steady state from the modified Equations (2.
In expressions such as:

(QW - qoWo) = [(qo + q)(WO + w) - qowo]

= qow + woq + qw

we neglect the product qw of the perturbation velocities.

We are left with the following system:

,[d u+ (qow + woq)- (rov + Vr = AX + mg[(sinl0o COsOo)o - (coso cOSo 0 )0]

+ d (roU÷ +Uor) -(pow + o) cs0cSo

+d + p)1  = Ay + mg[-(sinlo_.~ (cOo)• c.o.stn0 ocO)Ldt

ME- + (r v + vpr) - (pou + wP)] AZ + mg[-(sin.I'0  + (cos9 o -(si().0]

Ldt 0 0 0j

(2.20)



24

(2.20)
do dr

x -1 - Is3 7 + (Iz - Iy)(qor + qro) - 1zx(qop + pOq) AL - Iwq sink ,

dq
dI y- + (II - 13 )(rop + por) + Iz,(2pop - 0ror) = AM +I w(-pban-r m,)

dr dp
Is j - Iz d + (I y - Ix)(poq + q0 p) + I,,(qor + roq) = AN +Iw q cok J

in which the exterior actions represented by their increments A must still be written
in relation to the perturbation velocities and the excitations.

The system of equations is linear inasmuch an the expression of the exterior forces
in relation to disturbances is itself linear.

The kinematic equations will be written by replacing, in the set of Rquations (1.5),
quantities P, Q. R by (po + p), (qO + q), (r. + r).

Assuming sines and tangents of y and 0 equal to the angles themselves, and
cosines equal to unity, we get:

dcpdt = (po + p) + (ro + r)9
dt

dt (q + q) - (r° + r)(p (2.21)
dt

dt (r + r) - (q0 + q)cp

dt 0

Linearization will lead finally to the neglecting of terms in rO, ry, and qy.

The motion of the aeroplane is thus defined by a system of 9 equations relating
the variables:

U, V, w

p, q, r



CHAPTER 3

TRANSFORMATION AND SOLUTION OF THE EQUATIONS OF
NOTION OF A RIGID AEROPLANE

F. C. Haus

The object of this chapter is:

(1) To transform the system of equations developed in Chapter 2, in order to
introduce non-dimensional quantities;

(2) To find out the extent to which the linearization is compatible with fact.

3.1 NON-DIMENSIONAL EXPRESSION OF THE PERTURBATION
VELOCITIES

3.1.1 Linear and Angular Velocities

The quantities u , v , w , p , , , defined by formulae (2.18), are the
non-dimensiunal perturbation velocities.

3.1.2 Angles of Attack and Side-Slip

The angles of attack and side-slip will be the sum of their values at instant
t = 0, plus increments a and •8

.= a. +a a
a (3.1)

+ ý JoI
We intend to consider the increments a and 8 as fundamental variables.

3.1.3 Linear Velocities Expressed as a Function of Angles

Let us write

V = V -) (3.2)

and introduce (3.1) and (3.2) in expressions (1.6). We find the projections U , ,
Sto be:

Uu0 + u ~ +- cos (a. + a) Cos(680 + 8)1

25
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= vo + v = vo(l + )sinn(a60 +, I

w = ,+~ 0(~ AV-) &in (a.o + a,) oos(/30 + /f JVo/

Let us develop these expressions assuming that the perturbations of eagles a and
remain mail (stna = a , cosa = 1) and that the products of the perturbations may

be neglected.

We get: U° = V° coso° cOsA°

Vo = V° siiA 0  (3.3)

W0 = V0 ina,0 coaA0

u oL- cO-o cooo- - a ama,- 83 sinB0 cos%]

v = siAS3  + '6 06 (3.4)

W = -o[ý 8 0B sina, + a, cosaoC0 0 - /3 sizO 8
0

The most general initial conditions will be represented by angles a 0 and 1o
different from zero.

Angle ao0 depends on the choice of axis OX. a0 will always be reduced to zero
if the third rather than the second dynamic trihedral is chosen.

Angle 1o , on the contrary, cannot be reduced to zero if there is initial side-
slip, but it is unusual to study an evolution with such an initial condition.

When ao =/3 0 = 0, we have:

u AV
0.0

A V o

v - = /3 (3.5)
Vo

A w
wu - =a.

V0
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3.1.4 Notion of the Surrounding Air

We always assume the surrounding air to be motionless at instant t = 0 . Dragging
velocities are then disturbances, and we can represent their projections on the
dynamic axes by ua , Va , wa.

When such air velocities appear, aerodynamic forces are determined by the relative
velocity

Vr = V° + -o ) (3.6)

and by the real angles of attack and side-slip atr and Ar•

The perturbations of relative velocity, of real angle of attack and of real angle
of side-slip may, when the chord axes are used and infinitesimals of higher order
can be neglected, be written as follows:

Ur = -u-

a = - = a -- + wo (3.7)
V0  

0 V0

8r= orU 3 - /3-
V0

If we use the third dynamic trihedral, the term ao(ua/Vo) disappears in the second
equation.

3.2 DETERMINATION OF INCREMENTS AX, AT .......... AN
IN TIlE LINEAR CASE

We must know the expression for increments AC. ,^ACy^, ACz , ACt , AC5 ,
ACn as a function of the variables G , a, /, p , q , r , of their derivatives
and of Mach number.

Linearization consists in assuming that the variables act independently, their
results being simply added together, and that any action is proportional to the vari-
able concerned. We shall use linearization whenever possible

(a) Effect of perturbations = 0V0

The general relation:

AX = X - X0  + ( x1  u SpVo2 (1 +) 2 -c IC SPv2

(C 10 BE 0X SI
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enables us to write, neglecting the square of the disturbance:

Ax (2 Co + s%8

A = (2c~o+ J(3.8)
The derivative aC./X is repreebatative of the Mach number.

If we consider the velocity of sound, a , as constmat, we have:

a1C C V (3.9)

a.luG Z1 a

(b) Effect of perturbations a. A. -. i, F

We shall have partial increments AC,

AC, = ZxaZa

(3. 10)
...................

Ac. = B' r

(C) Notation

Derivatives of coefficients are represented vjy a condensed notation:

xuu 1

I = C also CzZ
7--8 = 1v Q x Q

Cx = alsoC
ma o xCa o w me-y r c.

Sometimes the C is omitted and one writes merely: xu, Xp I etc.
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(d) @k.iai-stationary flow

When the assumption of the linearity of the phenomena is acceptable, harmonic (or
sinusoidal) flows are well amenable to calculation. Let us study the consequences of
a harmonic variation of the variable a on coefficient such as Co.

Let:

ao be the value about which a varies

A the amplitude of the variation of a

CMo the magnitude of C, for a = ao

w the frequency.

The excitation is:

a = ao + A sinot (3.11)

Any harmonic excitation enables us to define two components of the aerodynamic
reaction considered:

an in-phase component

an out-of-phase component.

If the physical phenomenon producing the moment M can be represented by linear
differential equations, the increment AC, will be a function of time:

Aclt) = C*(t) - C,0

= AIDI sin(at + qp)

= AIDI (cosyp sin±t + sincp cosct) (3.12)

in which IDI is a modulus

A IDI cosy defines the in-phase component

A IDI siny defines the out-of-phase component.

Components in phase and out of phase of the various aerodynamic factors may be
calculated by theoretical methods. Certain results have been obtained experimentally.

Figures 8 and 9, taken from an NACA T. N. 3, give an example of modulus
IDI and of the phase angle eo corresponding to the moment and lift coefficients, as
a function w .

A quasi-stationary motion is a sufficiently slow motion to allow the instantaneous
magnitude of an aerodynamic force to be expressed as a function of the instantaneous
values and of the derivatives of the variables.



30

In this case, we shall write:

AC, = C a + C Ce & (3.13)
*a 2V 'a

in which - CM =

The factor c/2V is used to make the quantity C., non-dimensional.

Identifying expressions (3.12) and (3.13) for a slow phenomenon, that is to say
writing w = 0 explicitly and taking values of Ce= and Cma corresponding to zero
frequency, we have:

C,= IDI lim(cosyp)wo 1
C 2V0 IDIlim(sn-p) (3.14)

The expression for the aerodynamic actions in a quasi-stationary flow is thus
related to the properties of the frequency response of these actions when the system
is subjected to a harmonic input.

(e) Sperposition of effects

The linearization of the increment AC, , in relation to variables U , a ,

p, q , r and their derivatives, leads to:

AC. = [(2C.0 + Cmu) G + C +. /3+ C + j + CO ] (3.15a)

for the action of variables,

and AC, i -+Ca+ C04 +C -+CM + iL (3.15b)
2VOLC u V0  & i dt qdt 'dtJr

for the action of derivatives.

The terms Cu and Ced include the effect of Mach number variation.

Note

Factors c/2V0  introduced to maintain the coefficients Cx. , Cy, ... Cz. ...

C', in their non-dimensional form must be replaced by b/2Vo in the case of

coefficients of lateral forces or moments Y , L , N.

(f) Action of control surfaces

The action of the control surfaces will also be calculated independently of other
disturbances. It may be represented by coefficients such as:
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'Cx 6CZ CaC0~ so-•' C8,e = -e Cne = 0

or

ACx = CX8e 0 e

A C , = C 'se 0 s

We can make allowance for the effect of speed of deflection by using appropriate
coefficients. o

(g) Action of atmospheric disturbances

When the atmosphere is subjected to variable dragging motion, the increments
ACx ...... ACn do not depend on the variables G , a , g defining the increments
of absolute velocity, but on the quantities ur - ar ' Br defined in Section 3.1.4.

The use of Or , a" o 8r in the expressions defining the applied forces and moments
introduces explicitly, in the equations, excitations (or inputs) consisting of ambient
velocity disturbances.

Note (i)

When we consider the action of the variables p , Pr, to be introduced in
moments acting in the plane of symmetry, the sign of the reactions must be independent
of the sign of 8 , p . r . If, for instance, a side-slip to the right produces a
nose-down motion, a side-slip to the left will have the same effect; it will not cause
a nose-up movement of the aeroplane.

We must therefore admit that the disturbances 6 , , , to be introduced in
the expresaions of actions AX . 6Z , AM , will be the absolute values of the dis-
turbances, the sign of the derivatives aCXI/,- ....... being defined in consequence.

We could also use the squares of the disturbances: A22 , p 2 , r 2 
, and the deriva-

tives with respect to the squares, but the equations would then lose their linear
character.

Note (ii)

In fact, theoretical calculations and wind tunnel experiments generally lead to a
definition of exterior forces and moments in the aerodynamic axes or in the wind
axes. The determination of the coefficients with respect to the body axes will
require the use of transformation formulae.

3.3 SYSTEM OF EQUATIONS WRITTEN IN A
NON-DINENSIONAL FORE

The first 3 equations of system (2.20) had the dimensions of a force (Ax, AY, AZ);
the last 3 had the dimensions of a moment (AL, AM, AN).
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We shall write these equations in such a way that they will all be non-dimensional,
the terms representing aerodynamic forces and moments being reduced to coefficients
ACZ ... ACn , the development of which has been defined above. Simultaneously, we
shall replace variables u, v, w by variables u, a, A3.

The writing of dimensionless equations requires a certain number of conventions:

(a) Definition of aeroplane density- fs and aerodynamic
time unit 7"

Put:

m /• = •(3.16)
pSC

'Uc
= m(3.17)

V0

The density of the aeroplane, /A , is non-dimensional. The aerodynamic time unit r
has the dimensions of time.

(b) Representation of moments and products of inertia

The moments and products of inertia are represented, either by coefficients, or by
ratios.

The use of inertia coefficients having dimensions of time squared is convenient.

We can- take:

CpJbV=%p Sb V2

IzCIz = I

%pSbV2
(3.18)

Izx
CZI %'pSbV2

%p SC Vo2

We can also use non-dimensional ratios of lengths.

Given: Ix = m rx2

x

Iy = mr2

Iz = m rz2
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Then:

41 4r'x - I

-y - y - y (3.19)
J;T2 02

-41 4r 2

Z nb 2  b2

and in the same way:

41ZiI=
Zx -mb2

(c) Gyroscopic couples

Gyroscopic couples may be written in a non-dimensional form:

C1 = + 2 1w sin,

%q pSbc V.

2 Iw sink
C" ½ %pSbcV0 (3.20)

C' - 2 lo cosX
C" r %pSbcV

0

C l +2 lw cosa
nq p Sbc V0

These ratios can be compared to aerodynamic coefficients of coupling. The effect of
gyroscopic couples will be represented, in the equations, by these factors.

The principal aim of dimensionless equations is to introduce the variables G , a
3. We must thus replace uo I v o I wo , u . v . w in system (2.20) by their values

expressed in (3.3) and (3.4) as functions of the initial values Vo , ao . 0o and the
variables G, a, ,.

We give below the 6 equations written for the particular case where ao0 = 0 and

0o = 0. It is easy to re-establish the terms in ao0 and 0o , if necessary by
reworking the calculation.

Let us mention finally that the systems indicated below are written in linear form,
by cancelling the products of the disturbances. This stmplification is not valid in
all cases. In Section 10.2 we shall come upon problems where it is necessary to
introduce these products.
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If w take the non-dimensional quantities U , a , and the dimensional quantities
p , q , r , as variables, the equations of motion may be written in the following form:

2r 7-+ 2r(qoa - ro8) = CIC + [(sino cosne) •'- (coast COeo)s@
dt Vo 0

2r 40 0. - p~a) =AC, + n-((sineod) + #ru+rV + (cost~ coso.)cp

da rg
2r - + 2,(p 8 - q-G - q) = Ac. + L[-(.into CO80o) c (el.o)Ol

dt Vo

dp dr c
Clx CI5  t + s -!C, (qor + roq) - C1z (qop + p0 q) =

' b (3.21)

:A% + q C V

dq b[ 1 b
Cz i + ; C1 " CI (rC P + por) + C -zz (2p°P - 2ror)

I~~~c dt q i3 pr~ +~ C; r r
b b

dr dp -c ly- czz1 (poq + qop) + c jzz (qor + roq)dr dp F
CI - C1 zz - + 1- 1'dt ldt b

c

A C. + C4q I q
Q2V

To these 6 equations are added the 3 kinematic equations 2.21. If we use the 6
non-dimensional variables G , a ^ , q , r , the equations of motion take the
following form:

df F V g
2r~~ ~ ~ ~ +[(0ja C ^,]=Acx+2 sinto cs, costoCSO)o

27- + -- [T 0 -IF 0 o AC, + -g[(sineo) 0 + (costo cos6o)cf]it 0 Vo

(3.22)
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dt cLb b

ijr -i r - + 2 s - 72 (qo + roq) - 2• !2 i (qop + Poq)
'dt dt C Yi lb 2  O c zx

AC* + C1 Q.

di: dAo~ 2 * * V * *

t Y" --r + 2Tr fix " tz] (Fo6 + P^o?) + 27r -cil tZ(2OPD " 2r )=

c +,c' c

A ACn + C" u

nq

but the reduced angular velocities must be introduced in the kinematic expressions:

2v 2v
d" + - + 2.l-rO -b +

S7' + 2) (P2V 2vo

-dt = c "r°• c (3.23)

dt ctc Yj 1 c

mg +Co +pSV2  = 0

we obtain easily: 2rg
V-- = "-Co

The group of factors 2'rg/Vo appears in front of all terms representing a
gravity effect. It may be replaced by the lift coefficient CL equal in

other respects to -C2 0.0

(2) The group of factors 2rVo/c can be replaced by 2•. , in front of terms repres-
enting centrifugal forces, in the completely non-dimensional system.
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(3) Writing £ = t/'r , we define a non-dimensional time £ , the unit of which is 'r

seconds.

The time derivative becomes

d d d7- = - - -

dt d(t/'r) dt

The factor r , by which every derivative is multiplied, vanishes if we use
non-dimensional time as the variable of integration.

If we change the time variable in this way, we must also change it in the kinematic
equations, after multiplying both sides by r.

Substitution of real time for aerodynamic tine is not convenient for problems dealt
with by an analogue computer, when certain real elements are introduced into the
system (for example: the human pilot).

Note

Aeroplane density is sometimes defined by the ratio m/ApSc . The corresponding
aerodynamic time is then pc/Vo and will also be called r.

3.4 INTEGRATION OF LINEAR SYSTEMS

The aerodynamic coefficients and other characteristics of the aeroplane, assumed
to be rigid, being known, the previous equations enable us to predict the motion of
the aeroplane as a result of:

An initial disturbance affecting one or more of the variables i , v . w , p
q , r , (p 8,

An input or excitation produced by a modification in the dragging velocities of
the ambient air;

An excitation produced by the controls;

An excitation produced by a modification, ordered or not, of the power output of
the motor-propulsion unit.

Well-known methods exist for the integration of a linear differential system. It
is not our purpose to study these methods here. They generally lead to tedious calcu-
lations, in spite of the simplicity of the theory on which their determination is
based. Nevertheless we should like to mention a few fundamental concepts.

(1) Equations wiihout a second member

When the variables we consider as excitations or inputs, viz.

U I V* I ,Wa
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remain zero, the system of equations is said to be homogeneous or without second
member.

Values of output variables remaining zero:

U, V, W

p. q, r

c•, 9, U'

satisfy the system.

If one or more of these variables undergo an initial perturbation the cause of
which may remain unknown, then at a given instant which we shall take as time origin,
all variables start to vary.

This variation is described by the integral of the differential system without
second member, from initial conditions represented by foreseen perturbations.

(2) Equations with second member

Equations are said to be with a second member when the input variables do not remain
constantly zero, and are known functions of time.

We may consider the case of only one non-zero input variable, because we are able

to add together solutions corresponding to several excitations.

An input or excitation variable can be:

(a) a particular function of time, called a step unit

(') a particular function of time, called an impulse unit

(c) any function of time

(d) a harmonic function of time.

(a) Step unit

The input variable x is the product x.l(t) in which the fundtion 1(t) has the
property of possessing a numerical value equal to:

0 for any value of t < 0

1 for any value of t > O.
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The function l(t) in said to be a step unit function.

The system'a response to the function l(t) is the Indiclal response.

(b) Impul•e unit

Let U(t) be a function which can be derived, and whose value Increases from 0 to
I during an interval of time At decreasing gradually.

Its derivative .(t) , initially zero, reaches during this interval of time a
maximum value of I/At ; this maximum increases gradually.

By definition we have:

A(t) dt = 1,- 4. (3.24)

In the limit. UMt) tends to the discontinuous function 1(t) and function AMt)
becomes infinity for t = 0 and zero for any other value.

The improper function defined by this property and that of having an integral equal
to unity, is known by the name of unit impulse or Dirac function. We shall call It

The response to the impulse function is called impulse response.

(c) Any function of (t)

Consider an excitation x = f(t) , in which f(t) Is any function.

The response to any input can be determined as a function 6f the indicial response
or of the impulse response, by Duhamel' s integral.

Let P(t) be the indicial response

H(t) be the impulse response

y(t) the response asked for.

Duhamel's formulae, as is easy to prove by expressing the excitation as a series of
steps or impulses (see Pigs. 10(a) and (b)), can be written:/t

y(t) = f(o) P(t) + ffI(r) F'(t-r) d7r (3.25)

Y(t) = ff(T) H(t-r) dr (3.26)
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or:

It

y(t) f(o) F(t) + ff(t-,r) P(r) dc (3.27)

y(t) = ff(t-r) H(r) dr (3.28)

(d) Harmonic function

An excitation x = a sin wt produces firstly a transient motion. Then, when the
transient motion has vanished, a harmonic motion takes place, where all the variables
of the system are sinusoidal functions of time, with angular frequency equal to that
of the excitation.

The amplitude of each response, and its phase angle in relation to the excitation,
are functions of the frequency of the excitation.

The stationary response so defined is the frequency response. Its calculation is
always very simple.

3.5 TRANSFORMATION FORMULAE

Theoretical or experimental data available often define the aerodynamic reactions
produced by the exterior flow by means of their projections on the aerodynamic axes
Oxyz or even in the wind axes.

The positive projections of forces and moments along the aerodynamic axes should
logically be defined by appropriate symbols. We could, for instance, use the following
notations:

CZ0 CyO C3*

CI. Co. Cn.

with the restriction that Co. = C. and Cy. = Cy .

Angular velocities in the aerodynamic system being expressed by components p.
q" , r* in the aer6dynamic axes, derivatives of coefficients with respect to angular
velocities will be expressed by derivatives such as C .*., C. *. etc. A derivative
such as CI.r expresses the derivation of the moment about the axis Ox with
respect to angular velocities about axis Gz ; whereas the derivative Cir
expresses the same quantities in relation to the dynamic axes GX and GZ

The use of transformation formulae is necessary when it is desired to introduce
known quantities, defined in aerodynamic axes, in the equations written for the body
axes. A general layout of these formulae is given in Section 3.12. The use of wind
axes would involve more elaborate formulae.
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We should point out here a difficulty resulting from a universally adopted conven-
tion:

The projections of aerodynamic forces exerted by the exterior flow In the direc-
tions Ox and Gz are considered positive when they point in the negative direc-
tion of the axes. These projections are the drag and lift; In British notation,
these are defined by the symbols CD aC Cý .

Transformation formulae, which enable us to find the components of the forces In
relation to the dynamic axes, are expressed as a function of the angle a = a.0 + a.

In the light of the foregoing remark, the transformation formulae for the forces
become:

Ca= C. +AC = (CL + ACL) sin(a. + a) - (CD +ACD) cos(a.0 + a))
0 0 0

(3.2=9)

C s Co + ACs 0(C +ACL) cos(ao +a) - (CD +ACD) sin(ao + ().2

When the dynamic axes considered are the axes corresponding to a.0  0 . we get:

C0= -COAcz = CL a - AIC
C° " CD0  t C(3.30)

Cz = CL UCs = -C

In French notation, drag and lift are represented by C, and Cz . These
coefficients thus indicate forces acting in the negative direction of the correspond-
ing dynamic axes; the use of such notations may lead to some confusion.

Moments Ci. and C3. are, on the contrary, considered positive along the positive

direction of axes 0. and 0.

Transformation formulae are thus written with the following signs:

C1  = - Cn. sins +C 1 0 cs We&

Co = +Cn. Cosa + Ci. sin J
These expressions may be developed for the purpose of obtaining equilibrium values and
Increments.

3.6 FURTHER RELATIONS

In the general case, the system of:

6 equations of motion

and 3 kinematic equations

must be completed by further relations.
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Besides the transformation formulae defined in the preceding section. necessary
because the expressions for aerodynamic reactions we must introduce in the calculations
are not defined in the body axes, the use of further relations may be necessary when
one studies:

(a) the effect of known atmospheric perturbations

(b) the action of controls

(c) the effect of changes in altitude.

(a) Influence of known atmospheric perturbations

Atmospheric perturbations, when known, are expressed in terms of the components
ut , vt , wl of the atmospheric motions, in the geoparallel axes.

The projection of these excitations on the dynamic axes depends on the aeroplane's
motion, in other words on the result looked for. We must therefore add to the system
of equations the transformation formulae which enable us to calculate us , va , we

in terms of the given quantities u? , v1 , w.

!n the most general case, this leads to finding the projections ua , vi , wl

on the initial axes by means of constant angles Oo , 00 , to . then to determining
the variation of each of these projections on the dynamic axes by means of angles

, 9 , • , functions of the aeroplane's response.

(b) Influence of controls

The study of the aeroplane's motion produced by the deflection angles 8e . 8 a
Sr can be made when these angles are defined as functions of time.

Por an aeroplane flown by a pilot, any relation 8 = f(t) expresses the fact that
the aeroplane is subjected to an input applied by the pilot in accordance with a
known law and constitutes an equation describing the pilot's action.

The integration of the system to which we have added the preceding relation is
possible and will describe the trajectory followed. But the pilot's decision does not
necessarily define, straight away, a deflection.

The decision is presented in the form of a control displacement 8e or a force P
applied to the control.

It is well known that the pilot has a better feel for force than for displacement.

The independent variable, subjected to the pilot's will, is, in fact, the force he
exerts.

If it is desired to calculate the response of the aeroplane to a given force exerted

by the pilot, the complete relationship between the displacements of the controls amid
this force must be known.
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Servo-mechanims and artificial-feel devices can produce control deflections which
are not related in a simple way to the force P . An equation defining the deflections
in relation to the force P applied by the pilot, will have to be written.

- .. I

Any equation relating the control deflections to the excitations acting upon the
control system, may be called a control equation.

For an aeroplane having reversible controls, the control equation in the control-
free case is nothing other than the hinge balance condition.

For an aeroplane equipped with an automatic pilot, these equations will describe
the general behaviour of the error detectors and of the servo-mechanisms.

(c) Altitude effect

If the evolution comprises changes in altitude, these changes are determined by the
following relation:

-zt - z0 = f(- V sinO + V sint cos@ + W cost sine) dt (3.32)

The specific mass and temperature of the air will vary according to the laws defining
the atmosphere.

Variations in specific mass will modify the factor 7.

Variations in temperature will modify the velocity of sound, a , that is to say
the Mach number M corresponding to the speed V

Netmark has shown6 that this effect is negligible if differences in altitude result
from the oscillations of the aeroplane about a horizontal trajectory. The effect may
become considerable, however, if the trajectory is not horizontal.

3.7 BLOCK-DIAGRAMS

The relationship between the different variables entering into a problem and the
part that these variables play in the whole of a phenomenon, are clarified by the lay-
out of a block-diagram.

A block-diagram is built up of a succession of rectangles joined by lines. The
rectangles represent the elements of the chain; the lines represent the variables which
comand the action or are a result of the action of each element. They are the input
or output variables.

Figure 136 is the block-diagram for a system which will be studied in detail in
Section 12.9.
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3.8 LAPLACE TRANSFORMATION AND TRANSFER FUNCTIONS

3.8.1 Definition of the Transformation

The Laplace transformation is an operation which makes a function qf(s) of a com-
plex variable a correspond to any function f(t) of a real variable t.

The function p(s) is related to the function f(t) by the following relation,
called a Laplace transformation:

s)= f st f(t) dt (3.33)

which exists only if the integral is convergent.

Also, the function f(t) is related to the function r(s) by the inverse relation

f(t) .fe.t cf(s) ds (3.34)

called Cauchy's relation.

In the latter, the symbol •"st q(s) do indicates an integral extended to a
J-®

line of the complex plane, varying from -cci to 4ci The connection between the
functions f(t) and p(s) may be written in several ways. The following expressions
are often used:

(p(s) = Zf(t) (3.35)

f(t) = £_ 1p(s) (3.36)

which mean (p(s) is the Laplace transform or 'image' of f(t)

f(t) is the 'original' of y(s)

3.8.2 Transformation Properties

By application of the fundamental expression (3.33) transforms of many functions
can be worked out. We will mention only the results of interest to the unit step
1(t) and the impulse function 4(t) :

1
z l(t) = -(3.37)

2 4(t) = 1 (3.38)

Additive properties can be applied to Laplace transforms:
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£(fI(t) + f2(t)] = Ef1 (t) + £f 2 (t) = yp(s) + qi2(s) (3.39)

whence results the possibility of multiplying a function f(t) by a numerical factor:

J£[n f(t)] = nff(t) = n y(s) (3.40)

Derivative and integral transforms of function f(t) are respectively:

rdf/t~jl
- (s- f(o) (3.41)

f(t) d ( P(s) (3.42)

Changing the origin of variable t leads to:

Z f(t - t 1 ) dt = e p(s) (3.43)

The compound (or convolution) product transform appears in a simple form.

Let

fI(t) and f 2 (t) be two functions of variable t

Ti(s) and cp2 (s) their transforms.

The integral

f i(r) f 2 (t - r) dr (3.44)

from which T disappears and which is a function only of t , is the compound pro-

duct of the functions fI and f. . The transform of this product is:

£Z f,(r) f 2 (t - ') dtr = (P ) Y2(a) (3.45)

Applying the Laplace transformation to the linear differential equation systems
is the basis of the modern integration methods of these systems (Heaviside's Method).
It also leads to a very important concept, viz. that of transfer functions.

Subsequently, when we wish to express the Laplace transform of a time function
such as u(t) . v(t) ..... or x(t) , y(t) , we shall use the notation u(s) , v(s)
.... x(s) , y(s) without looking for the corresponding Greek letter. In fact, simply
expressing the fact that the variable u , v being dealt with is a function of s
is sufficient to indicate we are concerned with a Laplace transform.



45

3.8.3 Defimitiom of the Transfer Function

Let us consider a mechanical or electrical system, subjected to an input variable
x . which is magnified to an output variable y .

The two variables are functions of time, x(t) and y(t) . en these two variables
have Laplace transforms x(s) and y(s) , the transfer function of the system is, by
definition, the ratio y(s)/x(s) .

The transfer function will be represented by 0(s) in what follows.

An aeroplane is a system subjected to several independent input variables (8S, ws
for example). It produces several output variables (G. a., for example) which can
be considered independently of each other.

Let m = number of inputs

n = number of outputs.

When linearization is acceptable, the n outputs are related to the m inputs by
a set of n differential equations.

The aLtion of each of the input variables (the m-l others being zero) can be cal-
culated separately. The input being considered, which will be denoted by x , will
activate the n outputs, but we can eliminate n-l outputs by successive derivations
of these equations and isolate the nth output, called y . We obtain a differential
equation

d~y dy didi
So ý'i + ... + - + a - dt As d-m + + + Aox (3.46)

in which we replace the time independent variables y(t) and x(t) and all their
successive derivatives by their Images y(s) and x(s)

Successive application of the following formulae:

= s Y(s) - Yo (3.47)
dt

dt' = sis y(s) _ y0]- (3.48)

shows that when initial values of y and its derivatives are zero, the Laplace
transform of the equation becomes:

(Boon +... +al +BO) Y(s) = (Assm + ... + Ala + Ao) x(s) (3.49)

and the aeroplane's transfer function:
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SY(s) Amsm + .. + Ala + AO (.0

U(s) _1 0(3.50)

X(s) Boash + .,+ B is + BO

The transfer function of a mechanical system represented by linear equation in
always an expression of the type given above.

The transfer function concept is not exclusive to linear systems. Non-linear
equi~tions will lead to transfer functions inasmuch as they possess a Laplace transform.

that is to say as far as the integral defined by (3.33) converges.

The transfer function concept, however, does not cover all the cases and may not be

unduly extended.

Let us consider an electrical system, called quadripole in a general way. When

subjected to an input signal comprising a voltage V,. and an intensity 1 , it
magnifies this signal to a voltage V. and an intensity i . The two elements,
voltage and intensity, forming either the input or the output signal, are not independ-
ent of each other. The behaviour of such a system Is characterized by a transfer
matrix relating the two elements of the output to the two elements of the input.

It is not our aim here to study the properties of the transfer matrices.

Electrical systems may be represented by transfer functions when it is not necessary
to consider the two components, voltage and intensity, of the input or output signals.
The behaviour of tLe filter, referred to in Section 13.5.2. Is represented by a trans-
fer function on the supposition that the filter is followed by an infinite resistance.

A system transforming an electrical signal into a mechanical displacement may be
represented by a transfer function in certain simple cases.

3.8.4 Properties of the Transfer Functions

(a) When a mechanical or electrical system possesses only one input and one output,
it is characterized by a single transfer function.

When such a system has m independent inputs and n independent outputs, each
output/input ratio defines a transfer function. The number of these Is thus equal to
the product of the inputs by the outputs.

(b) Transfer functions of first and second order systems, such as, for instance,

B! -+ Boy = Aox (3.51)

d2y dy dx

!L + B + Bo = A -+ Ax (3.52)2 dt 2  I dt 0 
1 dt

depend on a reduced number of parameters and their properties are well known.
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(c) The transfer function of a linear system possesses a particular physical

meaning when the variable a is merely imaginary. In that case, we have:

8 = icW

Replacing a by iw in O(s), we get an expression G(ic) which defines the
response of the system in terms of frequency, for instance the response of the system
to a harmonic excitation x = simot.

(d) The splitting of a system in block-diagrams combines itself, fortunately, with
the representation of the effect of each elementary block-diagram by the transfer
functions.

The transfer function 6f a number of blocks, placed in series, and commanding
each other directly, is equal to the product of the elementary tr-nsfer functions if
the downward blocks do not react on those preceding them. It must however be under-
stood that the transfer functions do not multiply mutually, in a general way.

(e) Let us mention lastly that the inverse of a system's transfer function is
sometimes called the impedance of the system, by analogy with electrical phenomena.
By the same analogy, the transfer function is called admittance.

3.8.5 Block Splitting

It is sometimes possible to replace a block having a transfer function of a high
order by a series of interlinked blocks each having a first or second order transfer
function.

Vedrov; Romanov and Surmnas have shown that this was the case for total transfer
functions, defining respectively the longitudinal and the transverse motions of the
aeroplane.

The block characteristic of the aeroplane's longitudinal notion (Pig.ll), compris-
ing an input 8S and a series of outputs, gives rise, for each output, to a transfer
function which is of 4th order in a, V , , and of 5th order In z . This block
Is equivalent to a series of elementary blocks, each characterized by a transfer of
1st or 2nd order, articulated as indicated in Figure 12. It is important, neverthe-
less, to notice that the set-up supposes that the input Be influences the moment
C. but does not influence the lift CL , which is a great simplification.

A separation of the same kind is presented by the same authors for the transfer
function defining the lateral movement.

3.9 NON-STATIONARY EFFECTS

The variation of the lift or any other aerodynamic action constitutes a non-
stationary effect if, having a linear relation in steady flow

CL = CL a + CLo (3.53)0i
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a sudden increase Aa does not immediately produce the increment ACCL corresponding
to the linear relation, but produces a lift which varies with time, thus:

ACL(t) = CL, 0(t) Aa (3.54)

1(t) being a function which tends more or less rapidly towards unity as time
increases.

The product C, 0(t) is the indicial response. If the incidence a , instead of
varying in steps, varies continuously as a function of time, as a(t) , the lift at
instant t will be given by Duhamel's integral:

CL(t) = CLa [ (7-) [ O(t-r) d] (3.55)

an expression to which should be added:

t&CL(t) = CLt 0(t) Aao

if the incidence underwent, also, a sudden and finite increase Aa 0  at time zero.

It is clear that in these conditions the lift is not defined at a given instant.
subsequent to t = 0 , by the angle of attack a and its derivative a realized at
the instant t under consideration, but that it depends on the complete variation
history of the angle of attack.

Time histories of a , different when t < t1  but becoming identical after t
will not produce equal lifts for t > t, (Fig.13).

The variation of CL with a can be defined as follows by using Laplace trans-

forms.

Let CL(S) and a(s) be the transforms of CL(t) and a(t)

In the same manner, let O(s) be the transform of 0(t)

Relation (3.55) will be written:

CL(S) = CLd s a(s) O(s) (3.56)

Wing action, transforming the angle of attack a to a lift force represented by
the coefficient CL , can be characterized by a transfer function which will be:

CL(s)_

a(s) CLL s a(s) = G(s) (3.57)

The corresponding indicial output will be:

I
CL(s)i = G(s) - = CL. ?(s) (3.58)
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3.10 NON-LINEARITY OF AERODYNAMIC FORCES, IN
RELATION TO VARIABLES

The linearity hypothesis existing in the steady state between the forces and aero-
dynamic moments, and the variables by which they are produced, nearly always cees
to be valid when aerodynamic phenomena do not conform to a simple theoretical scheme.
The advent of flow separation, the formation of shock waves, the interference of
shock waves with the boundary layer, always destroy linearity. The advent of such
phenomena is. also, always marked by a behaviour of the aeroplane very different from
that suggested by calculations from linear expressions of the reactions.

:he complete study of the aeroplane motion includes the rbsolution of two successive

problems:

(a) Knowing the fluid flow, to determine the reactions exerted on the aeroplane:

(b) Given these reactions, to compute the motion of the aeroplane.

The present treatment is limited to the study of the second problem. In this

limited treatment, we assume that the expression for the reactions is known for steady
and quasi-steady flows, but that it may deviate from the linearity laws, making the
approximations given in Sections 3.1 and 3.2 invalid.

In fact, we may introduce non-linearities in the formulae giving the increaoe in
force AX ...... AN by using 2nd degree terms of series expansion.

This gives, for an aerodynamic factor such as C. varying non-linearly with the
variable a =o + a.

AC,= Ca(s) - Cm(Oo) = dC- a+- C *... (3.5a)
da 2 dal

It often happens that an aerodynamic factor is a non-linear function of 2 variables.
Figures 14a and 14b represent a factor C , a non-linear function of variables a
and M , One can express the increment 1C. corresponding to increments

aL = a - ao

AM = M - Mo

by:

AC C,(e,M) - Cm(ao,Mo)

= a-- + !-C AM +-- I • Z 2 2+ _ AM + 1ZL (amU)
aM 2 _a2 -aZM 2 M+2

Some factors may depend on 3 variables. This is the case for C. which, in fact,

depends on a , M .
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Ouch a case would be difficult to study as a whole. We obtain convenient expressions
when limiting the possible combinations by admitting that C. varies always linearly
with A . It is then sufficient to write that derivative Cn6 is a non-linear
function of variables a and M . This simplification leadr necessarily to Cn - 0
when A = 0 , which, in fact, is always true.

The introduction of squares and products of disturbances no longer allows the
resolution of systems by the classical integration methods of linear systems.

3.11 USEFULNESS OF ANALOGUE COMPUTERS

Bearing in mind all the foregoing, we say that the system of equations of motion
for the aeroplane:

(a) Must frequently be accompanied by supplementary equations

(b) Offers terms difficult to handle when we wish to take into account non-stationary
effects

(c) Does not always present itself in a linear form.

Systems so formed become almost unmanageable; their integration cannot be undertaken
by usual mathematical means unless they are completely linearized, and calculations
become tedious when the order of the system exceeds the 4th.

An arbitrary uncoupling in longitudinal and lateral motions enables us to reduce the
order of the system.

The uncoupled motion theory, using 4th order linear systems, is absolutely
classical.

This theory will not be presented here again. It is a useful method, but does not
permit easy determination of the motion of the aeroplane when this motion comprises
both longitudinal and lateral movements. It is not applicable in cases (b) and (c)
mentioned above.

It is far from impossible that purely mathematical research will lead to new methods
allowing the integration of the equations in the previous cases.

It seems nevertheless certain that the use of analogue computers is a practical way
of resolving all problems connected with aeroplane motion.

The integration of high-order linear equations is straightforward and the solution
of problems depending on equations not entirely linear is possible in many cases.

Function generators permit the introduction into the calculation of non-linear
variation of aerodynamic factors without having to call upon series expansions.
Systems to be resolved may comprise a higher and higher number of non-linearities,
as the equipment used becomes more important.
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DuL to l property that will be discuued later, it is possible to introduce
the equations Into the woriuter in revios of Laplace transforms. Thist p s a valuable
property for the study of nonststionary phenodena, tbecause of the simple struoture
of equations when written an transferee.

When equations are written as transformu, transfer functions appear rmedsately.
Simple set-ups often enable us to simulate the transfer functions corresphndng a o
different blocks. This justifies the idea of splitting the schtem into elementaryc
blocks.g

Lastlyh the part played by the adalogue computer is not necessarily limited to the
resolution of the equations written previously. We can Imagine that part of the aero-
plane's behaviour is directly simulated and that the result of this simulation.

appearing as c voltage, is used by the computer to detmmane the final result.

3.12 THE ESTABLISING OF TRANSFORMATION FORC ULAS

Consider, in a general way, a system GX Y Z1z and a system GX2 Y2Z having a common
axis GY.

Let 77 be the angle necessary in order to bring the first system into coincidence
with the second (Fig. 15).

The aerodynamic coefficients in the two systems are related as follows:

C2= cos087 C• sin,-/

CZ2 C1008717+ C 1  sin77

C1 2 = C1 I co" - Cn5 sir7

C y 2 = C a l

C = cosC7 + C s sinij

Angulo-r velocities are related thus:

p1 cos77 - r sin77

(12= 1 - a

q2 = q1

r2 = p, sin77 + r, cos77
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Derivativs with respect to & and q of the coeffic involved In the

longitudinal motion are obtained immediately:

C , = C o - CZ1.4 silo

CS2,0  : CZ.a 00877 - Cs;.9 sirn7

C = CsL coso'n + C IL fsim7

Cs2.4 = C SO cos7 + C 1,Q sin77

cot. CL = CMl1. C

c,. = C,,.

CM & = &e1
2'

Cm 2 4=C.4

Amongst the derivatives involved in the lateral motion, those with respect to j6
and $ are obtained in a similar way:

CY,.- CY11,

C1 . = Cl, cos , sin

C 1 , 2 = C 1 ,8 cos7 - Cn V sin??

Cn 2,0 = CO 18  cos71 + Cl, sinl7

Cn, 2A = Cn, co071 + C , sin7
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but derivatives with respect to p2  and r 2 are more complex:

Cy2.p 2 = Cyo.p s C0871 - Cy,.r! sin77

CY2. r2 = Cyl. P sl + CyVl rI COS71

2' 7= C- C -Clr + C n 5  sin7, cos77 + Car sin 2
7

C 2. p 2 1.10Cn1 r)

C12. r2 = C os.r! ICs27 + I V rI - CnVp ! stn? cos77 - Cni.p, sin277l2 2 1. 1  ' (C1  f ) sln7 C57

U 22c 7os27 + (Cir - Cni) sin77 cosi7 - C1I. r, sin

Ca2 r 2 =
0Cn1 .r 1 cos

2 
71 + Ir + C 5 ,p) sinrv cos'77 + C1Ip 1Isin

2 
2

In the problem studied here, we suppose that system (1) is the aerodynamic system,
and that system (2) is the system attached to the aeroplane. We shall also define
here the system attached to the aeroplane as being that where axis OX coincides with
the projection of the velocity at time t = 0 . At this instant coefficients and
derivatives in both systems are necessarily equal.

After a time dt , axis OX makes an angle a with Oxv . The preceding formulae
are applicable, the angle 77 being nothing other than a , but we must take into
account the fact that aerodynamic derivatives expressed in system (1) may vary them-
selves due to the increase a of the angle of attack.

The aerodynamic coefficients and their derivatives at an angle of attack (ao + a),
in the aerodynamic system, are supposed known. They are expressed as functions of
their values at angle ao by expressions such as:

(C1 ) + aC /.) + Y 2( )

(C'P)O = ('CP')aO + a ( P C 10

The derivatives of the coefficients in relation to dynamic axes GXYZ at variable
incidence a , may be written in terms of successive derivatives of coefficients at
constant incidence a 0  in the axes Gxyz in the following way:

Cxa (C1  - C / )0 + (a C1 . 2 - Y Cz2.. C2.)

C1  = (C) + a 1 -e C1 )
aa 0
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1q (C4 ) a(c1-.~ - CZ-q).0

C = 66 + c.. +1 j c* - Z + C ie5 1 ~5 1a ~ a /a 0 .2 aL)G0

C3i = (c.)d + ac. ao + CIOa1 .)

Czq =(Cz-q)ao + a(z4L+ C1.%)&

Co. = (,.).0 + a(, CEaL)aLO

C = ýma)a0o + a(CR,),L

C o = (C \O CO+ a( Y C) L

CA= ýy 0 + a (C,')ý

CP = yo)c + a y, L- ( Cy r*aCo

= ~y)a0  + a(C~ - Cyre)ao

Cyr = (Yro a0o + Yo /C

Cz0 = (C I -S) CO +a 1  a i C u ) L

CA= ~IsA)a +a~ 1 a ý 4 - Cneh)aLo

CP = a0*D) L + a 1 r - Cnspg).a

C1  +i~ +a(C CIO - Cner)a

C n8 = @ " B ) CLO + a (C . ., C + C ie 8) . 0

C A = ý n 0 + a(C.., sh -

=n. + a(cn. p. - C I-. - Cn Or.) .

5 n r (C n oe ) .0 + a (C o o - C I O r o - Cn -r*) .,
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Finally, the derivatives, with respect to a control deflection, will be:

C1 3 = (C IO$.) + a(c., "C s 3 ).)

()= +.

. (c o•.).- a•).(5  0.'c1.)

S = (C .) .+ a(C so + c )

ms = (c , /.) + ..a (cO,) ,

n s = ( c 3 .) .0 + a C . - C O 3 L

Note

We will calculate, as an example, the derivative CZL . The definition of CZL

gives

CZL= I~[c 3' -C (CZ)]
a C LO0

(c.) 0 = cos. + o) . sina -

.. + a..) Zo2() +

NO)LO+a (CI.) .0+ a CLO. +

Since cosa = 1 % a2

Then

-a )aO0 2t ( Z*C2 a "0

+[(c•. -)o + a(C.' .o] o C.1. • .

ýZ )o+ (C..). + {½V C2-. 2 V2~ CZ. + CX1.]



CHAPTER 4

DYNAMICS OF TOE NON-RIGID AEROPLANE

J. Czinczenheimn

The aim in previous chapters was the study of the motion of the aeroplane con-
sidered as rigid. With the increase in size and speeds of aeroplanes, and also with
the paring down of their structure, deformations under the action of aerodynamic and
inertia loads can no longer be always neglected. These deformations, by altering the
loads, also alter the aeroplane's notion and create thus a coupling between the
elastic deformations and the dynamics of the aeroplane.

In order to study the notion of such a system resulting from the aerodynamic and
inertia forces considered previously, it is necessary to add elastic forces (and
eventually structural or artificial damping forces). Local profile deformations and
plastic deformations will. however, not be dealt with here.

The whole of these forces condition not only the flight dynamics of the aeroplafe.
but also its vibration qualities (free vibrations, forced vibrations and flutter) and
its structural stability (divergence). These various phenomena amy be studied either
simultaneously, accepting the resulting complexity, or individually, their separation
being somewhat difficult.

4.1 IENERALIZED COORDINATES

An aeroplane that can be deformed possesses an infinite number of degrees of freedom.
a rigorous study of which would lead to partial differential equations. The solution
of such system of equations would meet with great difficulties. It is preferable to
look for approximate solutions by means of simplifications reducing the problem to one
having a finite number of degrees of freedom. The method to be described here in the
one most frequently used. Other methods exist, but their field of application is
more limited.

The motion of the deformable aeroplane can be defined by superimposing, on the
motion of a rigid aeroplane, as reference, the displacements corresponding to the
deformations. If, at instant t . P 0 is any point of the rigid reference aeroplane
and P the corresponding point of the non-rigid aeroplane, the deformation will be
defined by the vector

d(Poft) = POP (4.1)

To reduce the problem to a finite number if degrees of freedom, we make the approx-
imate hypothesis that the deformation vector may be represented by an expression such
as

d(P0 ,t) = di(Po) qi(t) (4.2)

Inge'nieur en Chef a la Societi des Ateliers d'Aviation Louis Briguet
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•i(P 0 ) being vectors independent of time, and called modes of deformation, dependent
only on the point considered, and qi(t) functions of time, called generalized
coordinates.

In fact, if we take a sufficiently large number of arbitrary modes (checking.
nevertheless, the conditions at the limits of actual deformation), the deformation of
the structure will be obtained with as great an accuracy as we wish. In order to
define the motion of the aeroplane, weneed only determine the generalized coordinates.

In the most general case, the problem thus leads to n degrees of freedom in
addition to those of the rigid aeroplane.

Expression (4.2) for the deformation of the aeroplane constitutes the basis of the
semi-rigid representation. We could determine the connecting forceq to be introduced
in order that the actual structure should really be deformed according to relation
(4.2). If the connecting forces so determined are small in relation to exterior
loads, the approximation for the deformation of the structure can be considered
satisfactory.

In practice, arbitrary modes are not chosen, but modes approaching the actual
deformations.

In order to limit ourselves to deformations which can exert an influence on the
dynamics of flight of the aeroplane (and at the same time exclude phenomena such as
flutter, which can be dealt with in a similar way), we may note that the notions met
with in the dynamics of flight have frequencies of the order of I or 2 cycles/sec
maximum (except for the engines) whereas the normal modes of vibration of the aeroplane
generally have higher frequencies. Deformation modes having an influence on the
general motion of the aeroplane will thus be the normal modes of low frequency, mostly
the fundamental modes of the wings, fuselage, tail unit, and sometimes the next mode.
Thece modes and the parameters which follow are generally available for computation,
having been previously determined from vibration calculations.

Except where otherwise stated, degrees of freedom chosen to represent the deforma-
tions will thus be the normal modes of vibration,

4.2 EQUATIONS OF NOTION

The semi-rigid representation would enable us to obtain the equations of notion by
Lagrange's equations. However, to define the motion of the aeroplane by this method
we should have to use position parameters instead of the usual velocity parameters.
To overcome this difficulty, Lagrange's equations will only be used to determine the
equations relative to the generalized coordinates of deformation, whereas the equations
of the motion of the centre of gravity and about the centre of gravity will be obtained
by writing down that the resultant of the exterior forces is in equilibrium with the
inertia forces and that the resultant moment of the exterior forces balances the inertia
forces.
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4. 2. 1 Determination of Forces and Moments

4.2.1.1 Inertia Forces

Let xok- Yok, Zok be the coordinates of any point Pok of the reference aero-
plale, (o(xokyokZk), 7?i(xokoYokZok), •l(Xokyokzok) the components of the mode

1(Pok) .The expression of the absolute velocity of point Pk' homologue of Pok
will be given by:

7Pk =v~k + • (o,k) 41(t)(4)

Ve being the dragging velocity of P

Components of VPk will be

u QZo - ryok + 1(qi - rTil)qi + XiAi.
Ok ii

vo + rxok - PZok + 7(re, - ptj)qj + t 71?14 (4.4)
'0 1

"wo + Pyok - qXOk + Z(P'i - q~i)ql + 7-ti

The expression of absolute acceleration rPk approximated to the second order is:

Ed (4.5)
U" k- rk + l(Xokyokzok) 41(t)

the components of which are:

600 + 4z A - iyok + 7-(xok,yok.zok) 41(t)

VO + rxok - bZok + 71(XokyokZok) 41 (t) (4.6)

0 1

WG + byok - 4xok + 1(ok'Yok'zok) d1 (t)

Let us recall that coordinates xok,0ykZ0 k are those of a point Pok of the rigid
aeroplane of reference, in a system of axes attached to the reference aeroplane of
which the centre of gravity is Go .

The equilibrium of the resultant of the exterior forces and the forces of inertia
will thus be written

Xmkkk = F (4.7)

and the equilibrium of the resultant moment of the exterior forces and the inertia
forces is expressed by

I
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Mk(1Pk A (4.8)
kk

Vectorial equations lead to the six following equations:

10 + i[ Nk e1(Xok-Yok'Zok)] 41 = Xr + AXd

M(#G + V r) + Ij nk 771(xok-Yok-zok)] 4i = r + Ayd (4.9)

0 0 V fq) + mk ti('Yok-kZk)] qi Zr + AZd

Ix I osor ik mk(elYok" 771zok) 4 = Lr +ALd

• Z~ink( "10k'] = M

I mk(7oizok - Clxok) i + AMd (4.10)

Io 1 o+ Ek(Xiok - eiYok) 41 = Nr +A Nd

These equations, laid down in the frame of linearization, are different from those

of the rigid aeroplane in the following ways:

(a) in the first members, to the forces and moment of inertia forces of the rigid
aeroplane must be added terms of inertia couplings due to the deformations;

(b) 'in the second members, to the forces and moments Xr, Y. Zr.Lr, Nr Mr of
the rigid aeroplane, must be added forces and moments AXd, LYd, LZ 4, ALd4

AMd, ANd due to the deformations.

To these equations must be added equations relative to generalized coordinates Qk
which will be obtained by Lagrange's method.

The kinetic energy of the system is

2T = mk Vk'
k

Imk F+ -(Qti - rq1 ) q1 + .2 +k FL 1  1 1

+ [63 + XQ~ -~ i c + 7-71j42 +

+ [ +Q1~i + Ci ] 2}
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with:

a U 0 + qzok - ryok

'8 vo° + rxOk - PZ~k (4.12)
:" + P~ok " q~ok I

Y WOo

Approximating to the second order we get

BT 7 mkVo ( rIV) (4.13)
4h) k

1~k [1 +Z~ y0  +i-]x + (4.14)

a + ok Zzok + 17

+ [-" o + 'r Ok " XOk ,•+ , i1"h}

dt - 7 m 00 + 4zok i'Yok + 4 e4I h +
dt\ h/ BQh k IL 1 d

+ + iXok - •zok + rVo + 7-7714 1 + (4.15)
1 

1°

+ ,o+ ,O - 4'Ok + QVo + ,•,•] ,}

If the virtual work of the forces acting is written in the form SW = 7h Qh SQh +

terms independent of S the equation of motion relative to the coordinate qb will
be

'k mkfJ00 + 4z ok - ryok + leid eh + a+ rV 0 + ix ok + )z ok + Ti1ii 7k +

+ [WO - QVo + Pyok - Qxok + Q} (4.16)

The quantity Qh appearing in the second member is the generalized force to be

calculated for every generalized coordinate.

Equations (4.9). (4. 10) and (4.16), with initial conditions, determine the motion
entirely. It remains to explain the right hand side of these equations.
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It is important to notice that up to now we have not made use of the hypothesis
that modes T., are normal modes. Equations (4.9), (4.10) and (4.16) thus remain
valid for any modes, but can be simplified in the case of normal modes.

4.2.1.2 Gravity Force.

(a) The resultant of gravity forces Is given by the same expressions as for the
rigid aeroplane The gravity components in axes attached to the aeroplane of refer-
ence will therefore be:

-Mg sino - Mg cogo 0 1
Mg sn 09 + Mg csOng y (4.17)

Mgc ongo - Mg sin9o 0

This is the same an given by Equation (2.4) when to = 0

(b) The resultant moment of the gravity forces about the centre of gravity Is zero.
If we neglect the movement of the centre of gravity with respect to that of the rigid
aeroplane, gravity forces do not come into the moment equations.

The motion of the aeroplane not being referred to its own centre of gravity, but
to the point 00 . which Is the centre of gravity of the rigid aeroplane, we may
account for the corrective terms, generally small, by means of the expressions

g cons 0  m )

-gsnoQ-O 1 I- og ,-O I4 (4.18)

g sinS0 tE Mk % Ql

(C) The contribution of the gravity force to the generalized forces Is obtained by
calculating the virtual work:

SW = gm7sk zk (4.19)
k

Szk being the projection of the virtual displacement of Pk along the vertical. If
al, /'8. Y, are the direction cosines of the vertical line related to GXYZ

SW 2: Xm [al + Scz , Sq1 +y YJ I C, 1 +

+ terms independent of Sq1  (4.20)

and the component relative to qk will be

Qg g I ak (a1eh + 7)6 + yl~h) (4.21)
k
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with

a, = "sinS0  - co°o0 0

=1 = sinS0 to + cos*0 ce (4.22)

V1  = co° 0  - sin80  J
4.2.1.3 Elastic Forces

The contribution of the elastic forces can be calculated in several ways. The
main advantage of using normal modes of vibration is the simplicity of the expression
for the work of the elastic forces, due to the absence of elastic couplings (and also of
inertia coupling). The resultant and resultant moment of these forces are zero. If
the normal modes used have an impulse fý and a generalized mass Mb defined by

h- =yMk (ek + 72k + • 2 k0 o the contribution of elastic forces to the relative

generalized force of coordinate qk will be

(Q! = Q + qk)

Where qko is the value of the generalized coordinate at equilibrium

qk the variation with respect to equilibrium.

Vibration calculations as well as ground measurements give at one and the same time

fkand Mk•

4.2.1.4 Damping Forces

In some problems it is necessary to take into account damping forces of several
types (other than the aserodynamic forced). We might be led to introduce a damper in
a command circuit, or to make allowance for the damping of the structure or of a
servo-command, or of several types of friction, etc. The corresponding terms must
always be evaluated In each case in an appropriate way.

4.2.1.5 Aerodynamic Forces

The aerodynamic forces to be used in the study of a non-rigid aeroplane may be
quasi-stationary forces or non-stationary forces more or less complete. Frequencies
appearing with structure deformations are generally higher than those corresponding
to the motion of a rigid aeroplane. For equal speeds, the reduced frequency WI/V
(I = half-chord of mean profile) is thus higher in the case of the deformable aeroplarie.
As long as the value of this reduced frequency is sufficiently small (less than 0.05
for instance) we may limit ourselves to the use of quasi-stationary forces (but even
then difficulties may arise).

On the other hand, when the reduced frequency is higher, or in the presence of
rapid movements due to gusts for instance, the use of quasi-stationary forces is not
always justified and must be thoroughly discussed. In such cases, non-stationary
forces may be used, which at the expense of some difficulties lead to valid results.
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Thus. in the calculation of aerodynamic forces, depending on the circumstances

considered, we my• use one of the following approximate methods:

(1) Quasi-stationary forces, taking into account spring forces and damping forces.
The influence of elongation is evaluated as in steady motion.

(2) To the previous forces, we may add terms due to accelerations, which my be
calculated by means of the non-steady two-dimensional flow theory, neglecting
the effect of wake due to the variations of the circulation.

(3) Non-stationary two-dimensional harmonic forces, their expression being
assumed valid in slightly damped or amplified movements. Aspect ratio

corrections may be applied to the results for two-dimensional flows.

(4) Non-stationary harmonic forces for finite aspect ratios.

(5) Non-stationary forces for any type of motion, two-dimensional or otherwise.
Their expressions contain integrals representative of the influence of past

motion (due to wake).

In classical flight dynamics, approximation (1) or (2) is used; nevertheless, more
severe approximations have been made in some cases.

In order to illustrate the complexity of the calculations met with in the case of
non-steady forces, an example will be considered later (see Section 11.2.1). Propul-
sive forces may usually be treated like pressures, or may be considered separately:
this is also true for tangential forces.

In cases (1). (2), (3) and (4). the pressure at any point of a supporting surface

can be expressed as a difference Ap = Plower side - Pupper side' thus:

A P = Do Puu + Pvv + Pww + PpP + PqQ + Prr +

+ p6i + p+j + p ** + p.p + p.4 + pi. +

+ IPqq + P4•I + Pit&) (4.93)

where p 0  is the difference in pressure at equilibrium

while p\ is the derivative Bt.p/BX arising in Equation (4.29).

DO. pu. pv, etc. are functions of the point considered (and eventually of tibp
frequency).

From expression (4.23) we infer the resultant, the resultant moment and the

generalized force.

Let %k' uk. Yfnk' be the direction cosines of the normal ik directed from th

lower side towards the upper side, Aak an element of surface enclosing Pk ' and

ask the virtual displacement of Pk • The components of this displacement are
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Szk = 2: fj Sqj + terms independent of Sqj

By = Zi7 8q + " 3 SqJ (4.24)

Zk = 7- C3qj + " ' sqj

The resultant of the aerodynamic forces will be:

F AD n (4.25)k

The resultant moment will be:

IaO~k A P'k k (4.26)k

The virtual work of the aerodynamic forces can be written:

Sw = k p =k AD kk (4.27)

The analytic expressions of previous quantities are:

X = Xo + Xu + Xvv + Xww + Xpp + Xqq + Xrr +

+ q1 + Xq 1ij + x 4') (4.28)

Y, Z, L, M, N will be defined in the same way, by substitution of the symbol concerned.

In each of the equations, the derivatives X.. Xv .... NQ will be given by:

XX = 2p,\•nk Aak (X = o,u,v,w, 1 ,,,p,qr, , *l.q4,q.1.i4 1 )

k

(4.29)
Lk =  'P (ok nk - Zok/3nk) &k

k

Mk = Y- PX (ZOknk - Xokynk) /•k
k

NX= Y-I, (xok/3,k - Yoknk) A~k
k

The virtual work will be

8W Qh 8qh (4.30)
h
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with

%Q %o + Qhuu + % v + Q w . ..... (4.28 bis)

and, in a general way

k k Wank eh + 9nk 71 + 7nuk Ch Aok (4.29 bis)

The equilibrium of the aeroplane is determined by the equations obtained by cancelling

the perturbation terms in the different equations. We thus obtain:

-Mg sineo + X0 +• XQlqo = 0

YO + Yq 1Qo = 0

Mg COSe0 + Z0 + Z Zqqio = 0

L 0 + i•Lqiqio = 0 (431(4.31)

Mo + M qiqio = 0

No+ I Nqiqio = 0

g m k(-h siio + Ch COSSo) - Mhfhlqb0 + +o 0 %,/ Q = o0 (4.32)
k 0 0 i ~

These equations are the fundamentals of static aeroelasticity.

In the dynamic equations of motion, constant terms cancel out and there remain

only the perturbation terms.

4.2.2 General Form of the Equations of Notion

It is now possible to write the equations of motion explicitly by combining the

previous results. In order to obtain them in a condensed form, let us put:

m = dm = M oi

k f!
Smk Ci = fi dm = M-,(

k P

1k mk(YoJk - ZAkNl) = (yotl - z,0 l) dm = kx

'kmk(Z~k~i " Xok~i) = f(z°•i - x°•i) dm = k L (4.33a)
k k~okg -x~i)= fYj
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Illk(Xok17i " YOkel) Ionl - y0og) dm ksi (4.3a)
k+

(4.33b)

Mj (fifi + 71j71j I Cj~j) dii 0 j
(This is the orthognal relation of normal modes).

Xx =JPV% d7

LX = Jp,(y~y. - z..) dr (4.34a)

MX = i zoan -

NX fp 4080- yG%~) ck'

jk =f(dha + %.+ rh. 67- (4. 34b)

and making use of the symbolic notation

XAP = XuU + Xvv + Xww + Xpp + Xqq + Xrr +

k (Xqjq + Xi4+ + Xi)

+ xui + X* + y +X + x 4b + X4 , + ' V(4,35)

with Yp, Zjz, Lop, M~p, N;. Qh A p having a similar meaning.

Under these conditions, the equations of motion became:0 ]
M(iao + I ei~i + g COS90 .0) - XIIL

M(voO + Vor + I 7°iji - g sineo.y - g cos8o.cO) = Ylp (4.36)
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M(*-o Voq + I top + g sin" o.9e = Z,, (4.36)

0pI t+x 0i -

+ MIklLL
I oi-l ,+ Zlkr1 = M I
Izoi" - Ixzob + 7- kzlil = NdLi

0o ~00 1 i

M[ebuG + NO(, + rV.) + - qV0,+ k1ý + + k +

- Mgj-t coso.O + 71?1(sine 0 + coso .,,) - C sineo. ] -

-Mhflhq + Qb (4.37)

These equations are the fundamentals of dynamic aeroelasticity.

If modes T1j should happen not to be normal modes, terms I'M, di must be added

in the last equation. and the expression of the work of the elastic forces eventually

modified. For further details see Section 4.3.4.

4.3 STUDY OF SOME PARTICULAR CASES

From the general equations (4.36) and (4.37) we may infer the equations of motion
corresponding to particular caues which appear frequently in practice. Let us
consider as an example the following cases.

4.3.1 Notion of a Rigid Aeroplane with a Movable Control
(Free or Attached by Springs or Servo-Controlled)

In order to study the general case where the control hinge may have any direction,
let us consider the trihedral of origin C attached to the control Cxf, yf.zf , axis
Czf coinciding with the hinge, the coordinates of C being xc. Ye. zc, those of
the centre of gravity of the control with respect to Cxf.yfzf being xfyfzf and
the direction cosines of the axes of the trihedral Cxf~yf,zf with respect to the
reference trihedral being

ay o V 1y (4.38)

ae Oa YgeJ

We may apply the general theory of Section 4.2.
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We must still introduce the quantities st = mass of the control surface, and Is,
lzs, ia - inertia moments and products of the surface:

ixz fxfzf dm (4.39)

= = fyfzf dm

In these conditions the coupling terms of the equations of motion will be given by:

o0 = mf(a7xf - a1Yf) 1
3M70 = MDf(/3YXf - 8 1Yf) (4.40)

Mý° = Mf(y 7 Xf - V1Yf)

k1 = mf[c(VyXf " -yYf) - Zc(IyXf - 8xYf) + ai z - a1i 5z - aiyz 1
ky = m[%z(ayXf - azYf) - Xc('IXf - Y1Yf) + Aziz - Axi's - 3y i75  (4.41)

= mf[x c (/,3xf - /31Yf) - Yc(oixf - a1Yf) + Y.i. - Yi 1 z - ayiyz

Mh = is (4.42)

We thus have all the inertia terms.

The aerodynamic forces can be obtained from those which act upon the rigid aeroplane

by adding to them the components of the resultant and the resultant moment due to the
deflection of the control surfaces.

The generalized force is given by:

QX = fp (tlyxf - O.yf)a% + (/ 3yXf - 3.Yf),8 + (Yyxf - cbyf)yn] d7 (4.43)

To give a simple interpretation of these results, let us suppose that axis xf is

situated in the chord plane of the control surface. The perpendicular will then be
directed along axis yf and we shall have:

Q= fP?(ayxf - axyf)ay + (/,Byy - 831yf)gy + (Yyxf - y~yf)yy] do- (4.43bis)
k~x Jp

which is the hinge moment of the aerodynamic forces referred to the control surface.

The equations of motion of the aeroplane with movable control surface will there-
fore be:
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M(0Q +gcoseo B) +M60 + Xr +X88 +X +X18

U(v0  +Vor- -gssino - gcoseof)+M7pi = Yr +Ys 8 +Yi +y

M(* G -Voq +gsfn0o 6 ) +M tog = Zr +Z 38 +Zit +ZIo (4.44)

110 - ixo1 o i + kx8 = Lr + L86 + Lig + Li

IyoJ + ky = Ur + M a8 + Oib + MIS

• t+ks = Nr+NS -Nit +NIS

,•elo, + .o ° + V0 r) +..to .Vo)] + kzb + ky4 + kst + 1.+

-Mg[~ cosso0  + 7P f(ainO. q/j + co5o~ c) - to sin 0 e0] 1 l 8 +

+ Hr + H38 + Hig + H18 (4.45)

These general equations, once particularized, can be applied to the treatment of

several problems such as:

(a) Snaking (the movable control surface is the rudder or eventually the aileron);

(b) Porpoising (when the movable control surface is the elevator);

(c) The study of the stability of a servo-controlled aeroplane with artificial
feel in the control circuit (mass balance, spring tab, damper. etc.). In
this case there is no aerodynamic force In the last equation, which is useful
then to determine the motion of the rod system;

(d) The stabilization of manually controlled aeroplanes by mans of mass balances
and spring tabs in the control circuit.

Note

(c) The equation of motion of the control surface contains, as particular cases,
equations given by B.Ztkin in his excellent book Dynamics of Flibht'
(Equations 4.8.13 for the elevator. 4.9.4 for the rudder and 4.10.8 for the
aileron) 2 .

As an example, we shall give particulars for the control equation in th case of Am
elevator with no sweep-back (1ig.4.5.6 of the book mentioned).

Since the zt axis must constitute the hinge, following adopted conventionms, we bave

the following table:

= -1 = 0 = 0
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0 0 V1

as = o ,3, - , = o

Xf = Yt = 0 Zf 0

x - ye = 0 zc 0

Making use of the definitions of the different quantities entering into the equation
we find successively:

M f0 0 M f = 0 M = mfe

k = izs = 0 ky mf I* + i z kz 0

by symmetry.

Under these conditions the equation of motion becomes:

mfe~o°- + (refie + i )q + itz = H

an equation identical to Equation 4.8.13 of the book mentioned previously, with the
following relations between the symbols:

ts 10I

rote M me1e

O -Voq = acz

mfI + i = "Pex

The hinge moment of the aerodynamic forces due to pilot action and elasticity is

H He + Pe

The term in PR of Equation 4.8.13, being of second order, does not appear in the
general equation.

4.3.2 Notion of a Rigid Aeroplane Controlled by
an Accelerometer

When an aeroplane is equipped with an accelerometer giving steering orders pro-
portional to detected accelerations, we may consider that the equations of motion of
the centre of gravity and of the motion about the centre of gravity are alteree only
by aerodynamic forces and moments due to control deflections. The study of the motion
shows, in fact, that the accelerometer does not give orders proportional to the
accelerations but that there remain parasitic terms which it is important to know.
The general theory of Section 4.2 can be applied very simply.

I
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Let za, yet za be the coordinates of the mass of the accelerometer In its
equilibrium position referred to the centre of gravity of the aeroplane; a , , y
the direction cosines of the direction of its motion; X its linear displacement
from Its equilibrium position, relative to the aeroplane.

The deformation may be defined by:

"h, 01
h Qh A31 for the accelerometer' mass 0 for other points of the

aeroplane
*Y 0

We have thus: --

77 =A,8

= V1

and q =

M fo m_ ,,1

M 77 =081 (4.4ft)

M to= m. J

kx = (Y&Y1 - zd 1)m, 1
ky = (za' - xayl)m, (4.46b)

kz = (x.,81 - yia)m J
Mb = ma (4.47)

The equation of motion of the accelerometer will be:

ma[iuai0 + •1(V 0 + Vo.r) 1+Y 0 - Voq)+ (YaY 1 - zal)+

+ (z,- x&yd) + (x+a - Yal) + M

M .9g[-a 1 cose@ 0 +/h,(sineo p + cos@o y) - y1 sinO0 9] -O m ) (.4.*

It is obvious that the reading of the accelerometer, X , Is only cormnt w .
rectilinear motion, under the condition that accelerations should be slom. b
other cases, the accelerometer readings will be altered by gravity term, 1W te
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error in position as well as by the inertia effect of the mass of the accelerometer.

The previous equation, together with the equations of motion of the aeroplane,
enable us to study the stability of the aeroplane when subjected to accelerations
(tangential. normal or a combination). Simpler mes will be studied later.

4.3.3 Stability of -n Aeroplane with a Flexible Fuselage

The flexibility of the fuselage may have considerable influence on the dynamic
stability, and even on the static stability. (Por example, in the case of bombers
with very long fuselages).

Because of symmetry, vertical flexibility influences only the longitudinal motion.

If we call t(x) the component, along O0z , of the deformation mode of the
fuselage, h the corresponding generalized coordinate, other components being zero,
it follows, from symmetry, by the general method given in Section 4.2 that

M 70 = 0 (4.49a)

Mto = fdm

kx = fyo tdm =..0

ky = x0 t dm (4.49b)

kZ = 0

M = f t2 dm (4.50)

As far as the aerodynamic forces are concerned we find:

o 0 8n 0 /n

XX • 0 but can be written X•X

Y= 0

Z,= f p• dcr, resultant of pressure forces

Lk= 0

M, = -f p•xdo

NX= f0~~f p• do
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The four equations of longitudinal motion will be (neglecting aerodynamic forces
due to accelerations):

S+ £000.0 6) = Xr + Xbh+X

(W. + sgingo - V0 q) + (ftdm)i = Zr +Zlh +Z•if (4.51)

IY4 - (fx 0o dm)h = Ur + Mhh + %ih

o - QVo) - @Xot.> +

= ig(-C° Bing0  ) - Mhs h + Qr + Qbh + (4.52)

The expression for aerodynamic forces due to fuselage bending can be obtained from
the characteristics of the tail unit.

The discussion relative to the influence of fuselage flexibility follows fro, the
previous equations. The characteristic equation is one of 6th degree. It Is easier
to study the problem on an analogue comrpiter, which given the answer directly. In
particular it Is possible to determine the stiffness required for the dynamic stability
to be acceptable.

4.3.4 Study of the Imfluemce of Deformations in Arbitrary Modes

The use of normal modes Is not always essential and In some cases It may be
Interesting to use arbitrary modes. The equations of forces and moments remain then
unchanged and only the equation of the generalized force is modified.

The orthogonality relation

Nib1' f~eh + 71% + C dm = 0 (4.53)

being no longer satisfied, coupling terms appear under the form

- Ihdii instead of ih 4hI

In the same way, elastic terms will take the form

" 1ahl Qi instead of Mhfqh

If, for instance, the deformation of the structure results from the combination of
bending with torsion, the work done by the elastic forces will be

W -2y 2 +fl.Jf ds (4.54)
2JL\~s+
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If we put:

y = c1(x)q1  + c,(x)q1  . ..... + on(z)+

e - d,(x)q,÷1 + dg(x)qn÷ .+ ..... . d.(x)qn+t

we deduce

ah - • h i q i

with

Sl = fEI chc"dx for O< 14 n

Sh = fGJ dh dhd dx for n < i.,<2n

The resolution of the problem in arbitrary modes is quite straightforward, except
that the number of terms is idcreased in the last equation. Nevertheless, the choice
of adequate modes is more delicate, and the number of elastic degrees of freedom is
more Important than the strict minimum. This might have the result of complicating
the calculations which the adoption of normal modes can generally avoid.

4.4 FUNCTIONAL DIAGRAM CORRESPONDING TO A NON-RIGID
AEROPLANE

Comparison between the equations of notion with those of the rigid aeroplane sbows
that from the point of view of the block diagram of the rigid aeroplane we can take
the rigid aeroplane as a basis, but this must be completed by:

(a) As many extra equations as there are generalized coordinates;

(b) In each equation aerodynamic and inertia coupling terms are added and in the
equation of generalized forces extra elastic terms and eventually damping
terms are added.

Examples will be dealt with in Chapter 11 showing practical applications of the
above theory.
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PART II . THE ANALOGUE COMPUTER

L.Moulin"

C NAPTE9R 5

PRINCIPLES OF ANALOGUE COMPUTATION

5. 1 INTRODUCTION

The fundamental principle of analogue computation is to substitute for the study
of a given physical phenomenon, the study of another phenomenon called the support of
the analogy, the analysis of which is easier than that of the former.

It is necessary that, at any time, a well defined agreement shall exist between
the parameters and the variables of both phenomena, in such a way that the results
deduced from the analysis of the second phenomenon may be applied to the first one;
the support of this analogy will therefore be such as to be governed by equations
similar to those describing the phenomenon which is under consideration.

Many problems of dynamics have been solved using electrical analogue networks,
both phenomena being then connected by the well-known electro-mechanical analogy.
The electrical analogue network can be set up from the mechanical sketch, a mass
corresponding either to a capacitance or to an inductance, a mechanical resistance to
an electrical one, and a mechanical stiffness either to an inductance or to a capaci-
tance, according to the type of analogy which is used. In the first case, the current
represents a force and the voltage a velocity, while in the second one the voltage
is related to a force and the current to a velocity.

The application of such a principle leads to the design of an electrical network a
an analogue to a given mechanical system, by physical rather than mathematical reason-
ing; the design of such a circuit can thus be quite difficult.

On the other hand, the analogy principle can be applied, starting directly from
the equations of the problem, forgetting the detailed correspondence between the
elements of the system. In order to do sc, the equations of the phenomenon are
written down, displaying all the elementary mathematical operations to be performed,
or connecting the different variables by suitable transfer functions; the analogue
set-up can then be obtained by the use of calculation blocks which are able to perform
the required elementary operations or to provide between output and input the tranafer
functions which are needed for the solution of the problem.

Such blocks are made of electrical elements and are connected in such a way that
they constitute a general electrical circuit, the equations of which are similar to
those of the system to be analyzed.

This method is particularly useful when the problem is to find out the history of
any amount of variables, in terms of the time.

Ingenieur Civil Electricien Micanicien, T.C.E.A.
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Any variable is then represented by an electrical voltage, and for each of then
the value of the analogue voltage will be in agreement.

The time history of the solution is thus immediately obtained by direct recording
of the electrical voltages.

The only objection to the use of an analogue computer lies in its somewhat limited
accuracy.

Sometimes it is useful, when dealing with the mathematics of a problem having time
as the independent variable, to work with the Laplace transform of the functions
instead of the real functions themselves. The equations which are then obtained
connect the Images of the functions through transfer functions. Calculation blocks
having the same transfer functions can be built up and connected together according
to the information obtained from the transformed equations.

One of the interesting properties of the analogue computer is that it is not
necessary to carry out the inverse transformation, for the direct calculation gives
the solution of the original system of equations as a function of time.

The construction of independent calculation blocks, performing a given elementary
operation or having a given transfer function, has only been made possible becamse
of the availability of high-gain d.c. amplifiers. Such amplifiers are the fundamental
components of an analogue computer.

The main objection to the use of analogue computers is their limited accuracy.
The accuracy does not depend only on the quality of the components, but also on the
care of the operator in presenting the system of equations to be solved in a form
which will result in least error. Under normal conditions, the accuracy of an analogue
computer may be expected to be of the order of 1 or 2%.

5.2 HIGH-GAIN AMPLIFIER CAPABILITIES

The elementary operations to be performed in order to solve a system of differential

equations are:

inversion of sign

multiplication of a variable by a constant factor

addition of two or more variables

integration of a variable.

These operations are sufficient for the solution of a linear system. If the system
is not linear, it must also be possible to compute the products of variables. Further-
more, if one of the equations of the problem is given as an experimental curve, it
must be possible to introduce this curve into the computer by means of a generator of

non-linear functions of one or more variables.



87

The d.c. amplifier, fitted with suitable input and feedback impedances, Is able to
perform the four elementary operations Just listed which are necessary to the solution
of a system of linear differential equations. For non-linear operations, it is necessary
to turn to the use of photoelectric, electro-mechanical or electronic devices.

The calculation blocks using the high-gain d.c. amplifiers for the solution of
linear problems will be analyzed first: then several non-linear set-ups will be
described.

Consider a d.c. amplifier, the gain of which is equal to -A (Pig.17), connected
to an input impedance Z. and a feedback impedance Z. . The input and output
voltages are respectively Ve and V. with respect to a zero level which is the same
for all the computing elements. In the following sections it is to be understood
that all voltages are given with respect to this reference.

Assuming that the amplifier grid current is'zero, Kirchhoff's law applied to the
nodal point N gives

Ie = c (5.1)

or e _ V o V_ (5.2)
Ze Zc

together with VS = -A V (5.3)

Prom these equations, the relation between the input and output voltages can be
computed. Eliminating V , we obtain the following steps:

Vs Vs
V* + l -- + V

A A"•
Ze Zc(5.4)

Vs Z 1
and (5.5)

In the particular case where the assumption is made that the gain of the amplifier is
infinitely high, the last equation reduces to

V - LC (5.6)

Ve Ze

In practice, the amplifier gain should be high enough to insure the validity of
Equation (5.6) with sufficient accuracy; the values of the gain generally used in
analogue computing technique vary between 50,000 and 500,000.



The error between the approximate value of the ratio V./Vo (&Q.5.6) and the actual
value given by Eq.(5.5), expressed an a relative error with respect to the actual
value. Is gien in terms of the values of the input and feedback impedances and of the
actual gain, by

_ z (5.7)

1+A 1 Ze/

It is seen that if Z Z 9 , the gain has to be higher than 2 x 103 in order to
have an error smaller than 10 . On the other hand, the error due to the finite value
of the pin of the amplifier is more important, for a given value of the gain. if the
ratio Z./Z is greater, that is if the amplification factor of the output voltage
is greater. Equation (5.6) shows that, using a high-gain amplifier, wired as in
Figure 17, it is possible to achieve between output and input voltages a transfer
function Z 0 /Z, which can be reduced to a constant coefficient, and also that the
sign of the output voltage is inverted.

5.3 ELIIENTAR¥ OPERATION

The use of various types of input impedances and counter-reactions will make it
possible to perform the different elementary operations mentioned in 5.2.

5.3.1 Siga Inversion

According to Equation (5.6), it is obvious that if

- 1 (5.8)

ze

a single sign inversion is obtained, for Equation (5.6) reduces to

Va = "Ve (5.9)

In order to satisfy Equation (5.8). the input and feedback impedances must be
similar and have the same values. Since the accuracy of the computation depends
directly on the accuracy with which Equation (5.8) is satisfied, it is obvious that
the nature of the impedances will be chosen so as to provide the best possible
calibration; therefore resistances are used. The sketch of the wiring for the
operational amplifier used as L sign inverter is given in Figure 18 while its conven-
tional or symbolic representation, used to draw the general sketch of interconnections,
or block diagram, is given in Figure 19.

5.3.2 Multiplication by a Constant Factor

The multiplication of a variable by a constant factor c is obtained with a set-up
similar to that shown in Figure 18; to insure the accuracy, the impedances are again
resistancest, but with different values, so as to satisfy, from Equation (5.6). the
relation



V = - C (5.10)% _ Zo_ Rev. - - "-c~o

The corresponding circuit is given in Figure 20 with the symbolic represontation in
Figure 21: usually, the value of the coefficient is repirduced inside the symbolic
triangle.

However, the use of single resistances Is of little practical value, because in
order to multiply by a factor which Is not a whole number, both resistances have to
be adjusted by combination with other accurate resistances. In series or in parallel.
This considerably complicates the preparatory work necessary for the solution of a
given problem.

A sore flexible device uses variable resistors inst6ad of fixed ones; but here also
the work of preparation Is transferred partly into the previous calculations of the
setting of the resistances, partly in the setting itself, which Is usually made with

Wheatstone bridge, by comperison with a calibrated reference resistance. A variant
of this process is Illustrated in Figure 22; the two resistances Ro and Re form
part of a potentiometer, having a connection from the wiper to the input of the d.c.
amplifier. The accurate setting of the ratio R i/R Is, however, critical.

The most widely used method, particularly in the large computing units, involves a
potentiometer, the extreme points of which are respectively connected to the variable
which has to be multiplied and to the zero reference of the computer; the sliding
contact is wired to the input Impedance of the d.c. amplifier (Fig.23).

If R is the total resistance of the potentiometer and c the value of the

resistance between the zero reference and the slider, we have the relation

Ve = cV (5.11)

and from Equation (5.6)

v. !g -c !2v (5.12)Re Re

Equation (5.12) shows that the values of the input and feedback resistances may be
definitely fixed in order to give a multiplication factor like 1, 5 or 10. Any value
of c between 0 and I can then be obtained from the potentiometer. The value of the
ratio Rc/Re may generally not exceed 10, for the reasons given in Section 5.2; such
a set-up thus gives the possibility of multiplying a variable by a constant factor
extending from 0 to 10, or of dividing by a number which is included, theoretically,
between 0. 1 and infinity, and practically between 0. 1 and 103 or 10* according to the
position of the last significant number which can be read on the potentiometer dial.

The setting of the coefficient is often achieved by connecting the potentiometer
between a stabilized reference voltage, usually 100 volts, and the zero reference of
the computer. The voltage read between the wiper and the same zero reference is equal
to 100 c when the adequate setting is completed.
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The symbolic representation of the potentiometer Is given in Figure 25.

It in also reliable to achieve the sottwns by comparison with a calibrated potentio-
meter o Illustrated In connm 2. Both potnntiometors ae fed with an reference
voltae, the absolute value of r hich is no p onger of imtortwnce. The referencepotentiometer B is previously not at a convenient value and then the potentiometer

A Is adjusted till the Indicator connected between the wipers giieva szero reading.

The use of potentiometers as desoribid above Introduces a further source of error
In the calculations; assuming Indeed that the gain of the d.c. amplifier in infinite
or at least very high, Equation (5.3) shows that we may write an a good approximation

V = - !, 'V 0

It follows that to connect the potentiometer to the input impedance of the amplfier
In equivalent to adding a resistance In parallel on its lower part (Fig. 27); such a
combination gives

Ve-V +!,+% 0 (5.13)
(I -OR~ ca Re

or

cR Re T1 - c)R] (1 - c)R

and finally

V* c
-. = (5.14)
V 1 + c(l -C)3/e

whereas the following

VA! = c (5.15)V-1

would have been expected.

In such a situation, the voltage which is picked up by the sliding contact is no
longer representative of the reading on the dial of the potentiometer; the error
introduced by the input impedance of the amplifier, which is usually called the loading
error, can be evaluated by subtracting Equation (5.15) from Equation (5.14):

c

c

C

1 + c(l - c)R/Re
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Rc c(1 - C) ie (5.16)

The relative error will be maller If the ratio A/R Is smailer. Since the value
of the input impedance is generally equal to 1 megohn, the maximum value of the total
resistance of the potentiometer mey not exceed 100.000 oams; the vast widely used
values vary between 10.000 and 100,000 ohm.

The error to the loading of the potentiometers can be eliminated In two different
ways, either by calculation or by suitable setting technique. The error can be computed
beforehand from Equation (5.16) and the reading which corresponds to the correct
setting altered accordingly, but this requires prior calculations and reduces the
simplicity of the operation.

The most elegant way to eliminate the loading error Is to set the potentiometer when
It is already connected to the load. Such a condition is illustrated in Figures 28 and
29, which correspond respectively to Figures 24 and 26. This method Is thus used when
the general Interconnection Is wired, provided it is possible to avoid the computation
to run when this Is achieved. The operational amplifiers are fitted, therefore, with
a suitable restraining device which will be described later on.

5.3.3 Integration

In order to obtain an output voltage equal to the time integral of the Input voltage,
using an operational amplifier circuit similar to that of Figure 17, we must have

V5 = IVs dt

1
or V6 - Ve (5.17)

Referring to Figure 17. If the input impedance is a resistance R , and If the feed-
back impedance Zc is a capacitance C , we obtain, substituting in Equatlon (5.6),

I--C
Vs _ "_ - 1 (5.18)
VO R sR C

which is equivalent to Equation (5.17). The amplification factor is now equal to
I/RC . As for the operational amplifiers used to multiply by a constant factor, the
capacitance located in the feedback loop will be given a fixed value, while the input
resistance will be such as to provide an amplification factor of 1.5 or 10.

The multiplication by any coefficient will again be obtained with a potentiometer
in fiont of the input impedance of the operational amplifier. This can be slightly
simplified by using an input resistance having a value in accordance with the
integrating capacitance; in order to save the accuracy of the Integration, it Is
better to avoid any modification of the value of the feedback capacitance.
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The circuitry of an integrator is sketched in Figure 30 and its corresponding
symbol in Figure 31; the value of the constant factor a multiplying the input
voltage is usually reproduced in front of the input connection.

Prom a theoretical point of view. the differentiation can also be performed with
an operational amplifier. We have only to change over the impedances used for the
integration to obtain the sketch of Figure 32 with the equation

Vs R

Ve 1/8C

or VS ROsVe (5.19)

The amplification factor is then equal to RC . But the differentiation is always

hard to perform accurately by physical mseas, using for instance pneumatic or mechanical

techniques, and troubles are also encountered with the operational amplifier. Such a
device, as shown in Figure 32, Is never used in analogue computation, since the
amplification of the noise produced by the operation is such that sufficient accuracy
cannot be obtained. It is necessary, in order to overcome the difficulty, either to
re-write the formulation of the problem in order to avoid any differentiation, or to
perform an approximate differentiation, introducing a tinm lag in the differentiating
circuit.

5.3.4 Smation

All the elementary operations can be performed, not only on one single variable.
but also on the sum of several variables.

Consider (Fig.33) the enlargement of the basic circuit of the operational amplifier.
still involving a feedback impedance Z. and n input voltages V. ... Ve n
connected to a common input of the d.c. amplifier through n input 61medance"
Ze., ... Ze'n . Prom Equation (5.3)

V & 0V

A

and then, from Kirchhoff'a law.

V V:2*1- = -5(5.20)

we find

Vs = -Zc I Ve i (5.21)
Ze. i

The input impedances are always resistances of integer values, eventually preceded
by potentiometers which give a multiplication factor a, . If the feedback impedance



in a resistance. the circuit will live the sun of n variables, each of them being
multiplied by Its own coefficient, and if the feedback impedance is a capacitance, the
time Integral of that sm will be obtained. The number of input terminals of the
operational aplifiers used in analogue computing technique vary. ac rdig to the
Importance of the facility, from I to 10. Usually, the gain of each Input channel Is
a fixed quantity, and either all the channels have the ame gain or a given amount
of them have a gain of unity. other ones a in of 5 or 10. In Figures 34 and 35 respectively
are drawn the symbols representing a sumator-integrator and a single summeator.

5.4 OPERATIONAL LIMITATIONS

Most of the analogue computers are fed with a 100 volt stabilized d.c. voltage.
The d.c. amplifiers are designed to behave linearly in a voltage range extending in
absolute value from 0 to 100 volts. If this upper limit is exceeded the response of
the amplifier is no longer linear, and saturation appears. Thus, none of the voltages
used for the computation may be, at any time, greater than 100 volts.

On the other hand, it is possible that, in the inner circuitry of a d.c. amplifier,
changes of voltages occur with time, producing an additional and undesirable output
voltage. Such a trouble inherent in d.c. amplifiers Is called drift.

The additional output voltages due to the drift introduce a source of errors in the
computation, and these can become very large, especially if the outputs have to be
integrated later.

The largest analogue computers use d.c. amplifiers with automatic balance of the
drift; anyway, it is important to kiow what are the limitations introduced by the
computing equipment itself, and to keep them in mind when preparing the equations of
the problem for analogue solution.



(
CHAPTER 6

SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

6.1 HOMOGENEOUS SYSTEMS WITHOUT SECOND MEMBER

Consider the simple system of equations

d'x dxa I + ad2 + a 3x + awy :0

a•J dt

bd2+b !L-+b +b~y = 0ldt-- 2 dr

The variables x and y have to be replaced by voltages X and Y which are
related to the variables by the equations

X = ax 1
(6.2)

Y = /3y J

where a and 8 are the scale factors.

The real time t and the time r of the computer are connected by the relation

t = kT (6.3)

where k is the time scale factor.

The physical nature of the problem to be solved gives rough indications about the
choice of the scale factors. They have to be such that the voltages do not exceed
100 volts when the variables reach their maximum reasonably expected value. On the
other hand, to insure accuracy, it is not desirable to perform the calculations on
voltages which lie in the vicinity of zero.

The choice of the time scale provides an opportunity to slow down or speed up the
resolution. If k is less than unity, the solution will be slowed down; if k is
greater than unity, the behaviour of the system is accelerated. We have

d d ld

dt dkr k dT
(6.4)

dn dn 1 dn
and - -

dtn d(kT)n kn d7Tn

It is generally desirable to speed up the resolution of a problem.
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Since the pin of a d.c. amplifier to finite, this introduces a slight error In

each operational element; since the complete set-up involves integrators, most of

these errors are intejrated and the final accuracy obtained will be imprOved by
shorter duration of the computation. Furthermore, if the drift of the amplifiers Is
not automatically btlanced during the time they work, a second source of error
develops with time. Both considerations thus lead to the conclusion that a result
will be more accurate If it is obtained in a shorter run of the computer.

But the speeding-up process has, on the other hand, Its own drawback. Since the
time scale is then greater than unity, the coefficients of the time derivatives
could be considerably reduced by the scaling, leading to the setting of the potentio-
meters at such low values that the systematic error of the potbntiometer reading may
no longer be considered as negligible; even for larger time factors it might be
impossible to set up the coefficients. On one hand, it is thus desirable to speed up
the solution but, on the other hand, the process is limited by ability and accuracy
requirements, such that conditions of compromise have to be selected.

When choosing the time scale, it is also necessary to take into account the fre-
quencies of variation of the different quantities, and they are not always easily

evaluated a priori, except in very simple cases, It is indeed important that the
highest frequency of the solution be less than the maximum frequency of the recording
equipment and also - this is a. more severe limitation - of the electro-mechanical
devices used to deal with the non-linear operations.

Transforming the equations of the problem into X, Y, r relations, we have:

a ld'X 1 dX a a

a k2 dT 2  a k dt a

b 1d 2X b ldY b- +-+ --- = 0
k 2 dr 2  /k dt a a

or, simplifying,

d 2X dX
Al + 2 - + A3X + AlY = 0

(6.5)
d 2Y dY

B1 +B 2 +B3Y+ BX =

Using the principles stated in Chapter 5, the block diagram actually obtained is
drawn in Figure 36.

If the physical system, which is described by Equation (6.5), is stable, the
analogue electrical system will stay at rest if X = Y = 0 , but will give the
solutions X = f 1 (r) and Y = f2 (T) if one or more initial conditions X0 , Y0;
(dX/d'r) 0. (dY/dr) 0 are applied and are different from zero.
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The proper way to introduce the initial conditions in the computer is discussed In
Section 6.3.

6.2 NODIFICATIONS OF TIE SET-UP

It is obvious that the set-up shown in Figure 36 may only be used when all the
channels of the computer have a gain equal to unity, if the following conditions are
satisfied:

A1  and B1  > 1

AA,A3 . BA .B. B3,B1 < 1

If amplification factors of 10 are available, these conditions become

A1  and B1 > e0.1

A2 . . . . . . B4 < 10

When these conditions are not satisfied, the difficulty can be overcome by using other
configurations.

(a) Equation (6.5) can be respectively divided by the coefficient of the time
derivative of highest order. The potentiometers 1/Al and 1/81 are suppressed in
doing so. The conditions to be satisfied are then:

A2  A3  A* < 1 or 10

B2  B3  B < 1 or 10

B1 B1 B1

according to the available gains. However, if a set of solutions is expected for
different values of the coefficients A, and BS , the block diagram of Figure 36
proves to be the most useful since the modification of the value of A1 , for instance,
requires only one potentiometer to be reset, whereas in the other cases a&l the
potentiometers representing AV,AVA 2 have also to be reset.

(b) Another way of wiring the problem is to insert a potentiometer in the feedback
loop of a summator. When the coefficient A is less than unity. it is impossible
to obtain, from A1(d

2X/dr 2) , the value d 2X/dr 2 through a potentiometer, since the
coefficient I/A1  is greater than unity. On the other hand, when dividing the
coefficients A2,A3 ... by At as was done in the previous section, one night obtain
a result which is also greater than unity. The value d2X/drT2  can however be obtained
by wiring a potentiometer, which is set at the value A1 , in the feedback loop of the
operational amplifier. This means that one terminal of the feedback resistance Rc
is connected to the zero reference through the potentiometer, and that a voltage equal
to the At fraction of the voltage existing at that terminal of the resistance is
fed to the nodal point N (Fig.37). The theory of the sunmator shows indeed that,
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when the electric current flowing to N is reduced by a given ratio due to the
presence of the resistance R. , the output voltage V. is multiplied by the same
ratio.

Introducing now a potentiometer in the loop is not favourable to the accuracy,
since this is equivalent to multiplying the pin by a factor A1 , and In fact this
reduces the pin since A, < 1. The use of such a process should, therefore, be
avoided when the coefficients A, are too small.

(c) When the values of the coefficients A, ..... B. are such that It is impossible
to use satisfactorily one of the processes just mentioned, we should then have to
change the first scaling In such a way that the maximum or minimum coefficients are
corrected to values which are more convenient.

Note

The block diagrams shown as examples in various chapters of Part III will be
simplified and consist only of the outputs and inputs of each integration loop. The
connections between the output of a loop and the inputs of the summatora will
generally be omitted.

The surmator will be symbolized by a triangle; the feedback loop which is located
inside the triangle is thus omitted.

The diagrams will be established as in condition (a), all the coefficients being
divided by the coefficient of the time derivative of highest order (coefficients A1
and i, in the example considered above).

It will always be possible to substitute for the block diagram represented, another
one using separate potentiometers to introduce the coefficients, which have to be
located either in the inner feedback loop or at the input, according to whether those
coefficients are less or greater than unity.

6.3 INITIAL CONDITIONS

In order to solve a system of differential equations, the initial values of the
different variables must be introduced into the integrators, before running the
computation, in such a way that the integrations start from the appropriate level
when the computer is switched on. Two different processes are used:

Ist Method

The capacitances of the integrators are previously loaded with a voltage corres-
ponding to the initial condition, so that when the integration is started the output
voltage of the integrator is equal to that condition, but it is then necessary to
be able to restrain the computation during the previous loading operation.

2nd Method

A constant voltage representing the initial value is introduced, at the initia-
tion of the computation, in a summator where it is added to the output voltage of
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the integrator. This method involves an additional operational amplifier for each
initial condition.

The first method is generally to be preferred, and each integrator is fitted with
a system of relay switches energized from a master switch at the control panel.

When setting the initial conditions, the input impedance is grounded (Pig.38) and
the capacitance is loaded through a variable resistance from a reference voltage C
In computing the configuration, the input Impedance is again connected to the d.c.
amplifier (Fig.39) and the loading connection is grounded.

The system is designed so that the computation can be stopped at any time. holding
the instantaneous values of the voltages, which can thus be measured more accurately
if desired. In order to hold the instantaneous values when the run is stopped, the
input impedance is grounded again while the loading loop is kept in the same position
(Fig. 40).

6.4 NON-HOMOGENEOUS EQUATIONS

Non-homogeneous equations involve a second member which represents one or several
excitation functions of the time. These excitations are also represented by electrical
variables for which scaling factors have also to be defined. The system (6.5) has been
re-written, with the assumption that an excitation function Z is present:

d1X dX 1
A - +AA -+A.AX+A Y = A ZI d' 2  2~. d I

(6.6)

d2y dY
1 dr 2  2 d+B 3 5

The analogue set-up differs from the preceding one; voltages -AZ and -BZ
have now to be introduced respectively as input of the first summator of each Integra-
tion loop. The Z voltages Wa•, have any possible shape in terms of time, the unit
function being only a particular case. The generation of voltages representing
excitations varying with time may be obtained from external devices. It is pointed
out that, in principle, any variable excitation could be generated from the appropriate
displacement of the sliding contact of a potentiometer.

6.5 CHOICE OF THE SET-UP

Several different set-ups can often be used for the solution of a given problem.
They generally differ both from the point of view of accuracy of the final result and
of probability of saturation of the amplifiers. It might be useful to compare, for
the different possible configurations, the risk of saturation and the accuracy of the
solution. This can be illustrated as follows:

(a) If one integrator and one phase inverter have to be connected in cascade, it
is more convenient to locate the integrator upstream, in order to avoid the
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errors introduced by the phase inverter being magnified by the integration
process:

(b) If the number of terms to La added in larger than the number of input channels
of a simamtor, it in necessary to use at least two sumators in parallel.
Then care has to be taken to avoid sending all positive voltages to the one
summator and all negative voltages to the other one, otherwise the risk of
saturating both summators is largely increased: in order to decrease it. nega-
tive and positive voltages should be equally distributed to the two sumators.

Although these remarks follow from simple straightforward reasoning, a more careful
study Is necessary if it is desired to compare the merits and drawbacks of several
alternative set-ups.



CHAPTER 7

NON-LINEAR FUNCTION GENERATION

A system of non-linear differential equations can be solved with an analogue com-
puter, provided a calculation block is available delivering an output voltage which
varies according to the shape of the non-linear functions which are involved in the
equations.

Such blocks are actually available, which enable the following operations to be

performed:

(a) the-product of two variables

(b) the division of one variable by another

(c) the generation of any relation between two variables (or more) which is given
by a curve (without algebraic expression).

7.1 MULTIPLIERS

7.1.1 Servo-Maltipliers

One of the first elaborate devices to be used to multiply, two-variables was com-
posed of an electro-mechanical system, involving servo-driven potentiometers. The
servo-motor itself (Pig.41) is actuated by the output voltage of a differential ampli-
fier, and moves the wiper of a potentiometer which is fed by the reference voltages
of the computer. The voltage picked up by the wiper is sent to the differential
amplifier together with the variable voltage V , in such a way that the motor shifts
the wiper until it reaches a geometrical position of equilibrium which is directly
related to the input voltage V . For any positive value of V , this position is
the V/1Oth part of the distance between the neutral point of the potentiometer and
the +100 terminal. If the wiper of a second similar potentiometer is fixed on the
shaft of the servo-motor (Pig.42), this one will also be geometrically located at a
distance equivalent to V/1O0 . If, now, the terminals of the second potentiometer
are connected to the variable voltages ±X , the voltage at the wiper will be equal
to the V/bOOth part of the voltage X , that is VX/lO0 .

Several potentiometers (very often five) are usually fixed on the servo-multiplier
shaft. Such a device is then able to deliver the product of four different variables
by a fifth one.

The use of the servo-multiplier is limited mainly by the fact that an accurate
positioning of the sliding contacts can only be achieved when the servo-motor is
actuated by slowly varying voltages, the maximum frequency belng usually less than a
few cycles per second. This is the reason why, in analogue multiplication technique,
the variable having the slowest variations must be chosen to drive the servo-multiplier.

100
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The error due to the loading of the multiplying potentiometers mset he faced, as
well as in the case when using the potentiometers to multiply a variable by a constant
coefficient. If the wiper of a potentiometer is wired to the input impedance of an

operational amplifier, this is equivalent (Pig.43) to connecting an additional resis-
tance in parallel in the potentiometer. In such conditions, the geometrical distance
between the neutral point and the feeding terminal is no longer representative of the
'electrical' distance between these two points, the value of the latter being sensi-
tive to the amount of additional resistance in parallel: the voltage Y at the sliding
contact of the potentiometer is then no longer equal to the product of the two
variables.

This error can be eliminated if the control potentiometer itself is loaded by the
sane amount. The actual location of the wipers will then differ from the V/lOth
part of the geometrical distance between the neutral point and the terminal, but will
be equal to the V/1Oth pirt of the 'electrical' distance between these points. The
wiper of the multiplying potentiometer will then pick up a voltage which Is again pro-
portional to the product of the variables (Pig.44).

When several multiplying potentiometers however, fixed on the same shaft, are used
simultaneously, there is the implication. in order to compensate the loading error in
the same way, that all of them are connected to equal input impedances. If not, the
compensating load applied to the corntrol potenttometer will only be able to eliminate
the loading error of certain multiplying potentiometers; if the number of operational
amplifiers of the computer is not srfficient, then reluctantly we must resort to the
less satisfactory technique of loading the control potentiometer to the same amount
as is most widely used in the multiplying potentiometers.

If sufficient amplifiers are used, it is then possible to eliminate completely the
loading error by inserting an insulating amplifier between the wipers of the multiply-
ing potentiometers and the input impedances to which they are connected: the insula-
ting amplifier used is a single-phase inverter. The control potentiometer may then
be loaded with the value of the input impedance of the insulating amplifiers.

7. 1. 2 Divisiom

The operation of division looks to be easily capable of being performed with the
sue set-up, by now feeding the control potentiometer with the variables tX and the
multiplying potentiometers with reference voltages ±A. The voltage at the wiper of
the latter should then be equal to VA/X .

However, the variations of the variable X have an effect upon the gain of the
control loop of the servo-motor, spoiling its accuracy. To cope with this difficulty,
the gain of the loop must be automatically controlled and kept nearly constant what-
ever may be the value of the voltage feeding the control potentiometer.

Such a device is not very often used, and the division is usually performed an a
solution of an implicit equation. Several configurations can be used to satisfy such
an equation, and the one which is the most often described in the specialized liters-

ture has been reproduced here.
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If the variable x has to be divided by the variable y , within a constant factor
C , the solution will be a voltage such as

w -C-
y

This leads to the solution of the implicit equation

• + !y = 0 (7.1)
C

The corresponding block diagram is illustrated in Figure 45.

The dividing variables have to be positive and have variations slow enough not to

exceed the frequency capabilities of the servo-motor. Furthermore, the values of y

must be significantly larger than zero in order to avoid the saturation of the amplifier.

There is no universal agreement on the symbols to be used for representing servo-

multipliers, or, in fact, other non-linear devices.

7.1.3 Electronic Multiplier

The principle of the electronic multiplier is based on amplitude and frequency

modulation of a rectangular wave in such a way that the mean value is made proportional

to the required product of two variables.

Consider (Fig.46) a given variable x . the value of which is equal to X during

the time T1  and zero during the time T 2 , defining a rectangular wave having an

amplitude X and a period T, + T2 , with a mean value computed during one period

equal to

XT 1

TI + T 2

If the wave amplitude is proportional to the variable x , and if the time intervals

T, and T 2 are such that the ratio T 1/(T 1 + T2 ) is made proportional to a second

variable y , the mean value obtained by suitable filtering of the rectangular wave

will be proportional to the product of the variables x and y .

The electronic set-up used to generate the time intervals T1 and T 2 is illustrated

in Figure 47. A multivibrator with two stable positions is the basic component; when
the input voltage is equal to E1 , the multivibrator switches to the first stable

position and the output voltage is equal to a given constant; when the input voltage

becomes equal to another given value E. , the output voltage, which then corresponds

to the second stable position, is continuously equal to zero. The multivibrator con-

trols an electronic switch, which conducts only when it is energized by any output of

the multivibrator different from zero. The multivibrator is fed from the output of a

summation integrator having as inputs the product of a varying voltage X by a con-

stant coefficient 6 , and a reference voltage V which is multiplied by a coefficient

a when flowing through the electronic switch.
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If at the starting point the input voltage of the multivibrator is considered to
be equal to E1 , the output voltage has then a constant level different from zero,
and the electronic switch closes. The input of the integrator is then

AX - dV

This voltage is Integrated until it reaches the value E. ; since the analogue Integra-
tion inverts the signs, E. will be reached only If the following conditions are
satisfied:

x- v < 0

or /8X < dV

The values of a and A must thus be chosen accordingly. The level E. is reached
within a time Ti such that

KJ(13X - aV)dt = El - Es (7.2)

Since It is assumed that the waves have ideal rectangular shapes, which means that the
commutations are carried out so quickly that one may consider that the voltages keep
a constant level during a period, the variables X and Y are then handled as con-
stants in Equation 7.2 and we obtain:

= E -  l (73)
K(aV -fiX)

When this time interval has elapsed, the voltage level E. is reached, the output of
the multivibrator falls down to zero. and the electronic switch opens. The remaining
input of the integrator is then equal to AX , and by virtue of integration will
decrease until the value E1 is reached again. The actual period of integration T.
is given by

K 8Xdt = Its -K (7.4)

and. by similar reasoning, the following result is obtained:

T Es - El
2- -KX (7.5)

Combining Equations 7.3 and 7.5, we have

- (7.6)

T1 + T2  aV

I
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We conclude from this that a rectangular wave can be obtained from the modulation of
a voltage y by means of an electronic switch controlled by a bistable multivibrator,
provided the variation of y is such that the voltage may be assumed constant during
the period T, .

When the rectangular wave is filtered (Pig.48), the output voltage of the filter is
equal to the mean value

y TZ
T i + T 1

or,by virtue of Equation 7.6,

y/xY
C V

The coefficients involved in this formula, as well as the reference voltage V . are
usually arranged so that the output of the filter is equal to - XY/100

7.1.4 Note

The devices which are used to multiply two variables, among which the most widely
used have just been described, have been designed with the object of enlarging the
capabilities of the analogue computer, but they do not have a great deal to do with
the fundamental analogue principle itself, Furthermore, such devices do not give
the same accuracy as can be obtained with digital computers, and the benefits of the
analogue computation are not altered if the multiplications are performed outside the
computer, provided the solution can be obtained sufficiently fast, so that it can be
immediately fed back into the analogue computer. The actual trend, leading to the
improvement of the accuracy of such non-linear computations, is to perform them on
fast digital computers; the voltages are first coded into digits, and the digital
results of the multiplication or division are translated again in continuous voltages,
suitable for the continuation of the analogue process.

7.2 GENERATION OF NON-LINEAR FUNCTIONS

Numerous systems are actually available for feeding into an analogue computer any
non-linear function of one or several variables. The most important among them are
described in the following sections.

7.2. 1 Non-Linear Potentiemeters

Thase potentiometers are fed by reference voltages, and their wiring is arranged
so that the wiper, forced into correct position by a control variable, picks up a
voltage which is proportional to the value of the non-linear function required.

The non-linearity can be produced by several configurations: by usi.S resistance
wires, wound on a card of constant width, the distance between two consecutive wind-
ings being varied in accordance with the non-linear function; or by winding a resist-
ance wire of constant cross-sectional area on to a card of variable width, the interv.,al
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between consecutive windings being now kept constant; or by using wires of variable
cross-sectional area, the other characteristics remaining at a constant value. Such
potentiometers are mainly used to generate trigonometric functions, and are involved

in calculation blocks capable of transforming rectangular coordinates into polar

coordinates and vice versa.

When dealing with any type of non-linear function, greater flexibility is generally

sought, because one should not contemplate having to construct a special potentio-
meter for each particular function.

7.2.2 Cathode Ray Tube

This device (Fig.49) consists mainly of a cathode ray tube, coupled with a photo-
cell. An opaque mask having the shape of the function f(x) of the variable x
in rectangular coordinates, is cemented on to the screen of the cathode ray tube.
The voltage representative of the variable x controls the horizontal deflection

plates of the tube. The vertical deflection is controlled by an external voltage V
flowing first through a d.c. amplifier; the voltage V Is conditioned to give an
upward deflection to the electron beam. When this upward deflected electron beam
overshoots the top of the mask, it acts on the photocell which sends, through the

d.c. anplifier, a correcting voltage to the vertical deflection plates. this voltage
tends to deflect the electron beam back into a downward direction.

A feedback system is made up in doing so. forcing the electron beam to follow the
opaque border of the mask. The voltage acting on the vertical deflection plates of
this closed loop system is then proportional to the value f(x) of the non-linear

function. Several drawbacks are inherent in such a generator; first, the accuracy is
not very satisfactory; furthermore, the machining of the masks represents a rather
lengthy preliminary work; finally, the function to be generated must have a simple

and smooth shape, because it is not easy to take many details into account, due to
the small area which is required for the mask.

7.2.3 Servo-Potc-tiometers

The principle of these generators is taken from the design of electro-mechanical
servo-multipliers. The control system itself is similar: an electric motor, now
driving a drum, is forced to take a geometrical position directly related to a control
variable (Fig.50). A conducting curve, made of a folded copper bar, representing the

function f(x) to be introduced into the computer is cemented on to the drum. The
conducting curve has a point of contact with a linear potentiometer which is connected
at the terminals to reference voltages; the contact acts just as a wiper. The volt-
age, proportional to the value of f(x) , which corresponds to a given angular posi-

tion of the drum, is then picked up by the conducting curve. The capability of the
device is in fact a little larger, since a product of the form yf(x) can be directly
obtained if the positive and negative values of the voltage y are substituted for

the reference voltages, in a similar fashion as was done for the multiplying type of

potentiometer.

The frequency limitation of such generators is the same as that of the servo-
multipliers. A loading compensation has also to be added to the control potentiometer,
so that the geometrical rotation of the drum shall be in agreement with the electrical
one.
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The preliminary work of machining the conducting curve is rather lengthy, and the
proper fastening is a delicate job; furthermore, if the sue curve is frequently
used, its mechanical properties are found to be rapidly spoiled.

7.2.4 Conducting Ink

In order to avoid this latter drawback, due to the mechanical contact between the
conducting curve and the linear potentiometer, the use of a conducting ink, which is
energized by a high frequency current, has been developed. A stylus, which is made
sensitive to the magnetic field expanding from the energized line, is forced to follow
the curve, mechanically driving the wiper of a linear potentiometer connected to
referencd voltages; the voltage at the wiper is again proportional to the value of
the actual function.

7.2.5 Taped Potentiometer

The preceding set-ups are expected to reproduce the true shape of the function which
is generated. Both generators which are now being described are, on the other hand,
based on an approximate representation of the function; the plot is divided into a
given number of intervals, within which the curve must be accurately compared to
straight lines. Feeding a linear potentiometer at intermediate points with voltages
which are proportional to the value of the function at that point (FPig.51), it is
possible to pick up anywhere the approximate value of the function, by means of a
sliding contact which is controlled by the variable itself. The intermediate feeders
are made of auxiliary potentiometers, connected to reference voltages.

It is necessary that the curvature of the curve be everywhere so small that the
comparison to straight portions shall be accurately valid at any point. It must indeed be
pointed out that the locations of the intermediate break points are usually definitely
fixed at equal distances from one another.

When setting the problem, the auxiliary potentiometers are adjusted in cascade;
but, for instance, when the value f(xo) has been calibrated, the setting of the next
value f(x1 ) reacts on the first one, and so on; so that, in fact, the setting of a
taped potentiometer is an iterative process. Some analogue computers, however, are
provided with auxiliary components which make it possible to carry out a straight-
forward setting.

7.2.6 Diode Generators

The diode generator has the advantage that it provides a simple way of varying the
length of the intervals inside which the cuive is compared to a straight line. This
generator is basically built with diodes, the ideal characteristic line of which is
reproduced in Figure 52.

When the applied voltage is less than E. . the diode does not conduct; it switches
to conducting properties when the voltage reaches the level E. . The voltage E.
may be either positive or negative, and the slope of the characteristic depends on the
value of the resistance inserted in the diode circuit. The generator involves a set
of diodes which is organized in such a way that, at the end of a straight portion of
the curve, a further diode starts to conduct; the slope of its characteristic is
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determined so that, adding its effect to those of the other conducting diodes, the
actual slope of the following straight portion is accurately achieved; the location
of the break points may be adjusted as desired.

However, the curves which can be generated must match the requirement that the
slopes of the successive straight portions increase continuously, since it is
impossible to obtain a negative slope frim a diode circuit. If this condition is not
fulfilled, two different curves must be generated separately and afterwards sub-
tracted, in order to give finally the suitable shape.

Diodes are very often used in more simple circuits than those used for the genera-
tion of arbitrary functions, in order to simulate elementary discontinuous functions,
which are usually encountered in the study of the details of control mechanisms.
Among these functions, the simulation of absolute values, thresholds, stops, dry
friction and hysteresis will be briefly described.

Consider first a potentiometer of total resistance R (Fig.53) with terminals
respectively connected to voltages V and E having opposite signs; the position of
the wiper divides the resistance into two parts, (1 - a) and (a) respectively, and
the voltage at the wiper becomes equal to zero when the setting coefficient a
satisfies the equation

Ivi
a - iE + Ivi

(1) Absolute value

The curve showing the output voltage V. in terms of the input voltage V. is
drawn in Figure 54a and its simulation is obtained from the circuit which is sketched
in Figure 54b. The two portions of the curve can be defined by:

Vs = -KVe -0 < Ve 4 0

Vs = +KVe 0 VN<OD

In the first case, the diode which is directly connected to the output amplifier
conducts, while in the second one the circuit including the intermediate amplifier
is operating. The value of the coefficient K may be varied as desired by setting
the gain of the amplifiers accordingly.

(2) 7Threshold

The basic relationships for such a system can be written, if the slopes of the
characteristics are both equal to K (Fig.55a), as:

Vs = K(V1 - Ve) -O < V e 4 VI

Vs = 0 V1 4 Ve<V2

"Vs = K(Ve - V2 ) V2 N< Ve < +O
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The simulation is obtained from the circuit shown in Figure 55b.

If Ve < VI , the voltage at station A is positive and the upper diode does not
conduct while, since the voltage at station B is also positive, the lower diode does
conduct. When V1 < Ve < V . the voltages at A and B are respectively positive
and negative, andnot one of the diodes conducts; the input of the amplifier is thus
equal to zero, as well as the output. If Ve > V2 , the situation is inverted with
respect to the first case.

(3) Stops

The simulation of a stop corresponds to the function which Is illustrated in
Figure 56a, and is described by the following relations:

Vs = V1 -00 < Ve 4 v I/K

Vs = KVe VI/K 4 Ve 0< V2/K

Vs = V2  V2/K4 Ve < O

The corresponding circuit is shown In Figure 56b.

The input and feedback resistances of the d.c. amplifiers are such as to provide a

gain K . When V 4 V5  V2 ,the voltage at A is positive, and negative at B,
so that no diode is active and the amplifier works as a single multiplier. But as
soon as Vs reaches the level V2 , the voltage at B becomes positive and the lower
diode starts conducting; its action is equivalent to the addition of an impedance,
which is practically equal to zero, in parallel on the d.c. amplifier, the gain of
which drops down to zero. From thereon, the output voltage Va remains constant. It
must be noted that in such conditions the feedback impedance Is, in fact, equal to a
portion of the resistance of the potentiometer, plus the internal resistance of the
diode. A residual gain will thus continue to exist and the slopes of the character-
istics will be slightly different from zero.

The same result can be obtained with a similar circuit, which does not involve the

d.c. amplifier (Fig.56c).

(4) Dry friction

In the most general case where the tilting does not occur at the origin but for a

given value E of the input voltage (dotted line in Figure 57a), the corresponding
equations are

Vs = V2  .co<V 4E

Vs = V1  E 4 V<00

where V is again the unrestricted value of the output voltage. When E = 0 , the
solution is directly derived, as a particular case, from the last section, where the
coefficient K is made infinitely large. The circuitry is accordingly modified by
suppressing the feedback resistance of the d.c. amplifier; the way of reasoning is
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identical. The shift of the origin is achieved by the addition of a constant voltage
at the input of the amplifier (Pig.57b).

(5) Hysteresis

A hysteresis cycle as illustrated in Pigure M8a, having an amplitude E , is simu-
lated with the circuit of Pigure 58b. If we assume that the initial value of V. is
zero, none of the diodes acts as a conductor and the output voltage V. is equal to
zero. The segment OA is thus followed until V. reaches the value %9 . The lower
diode then starts conducting and the behaviour of the circuit is similar to that of a
simple time lag generator: the time constant is small, in accordance with the low
values of the resistances involved, and also because the value of the capacitance used
can be made small; this time constant may thus be usually neglected, so that the
straight portion AB is obtained. When point B is reached, that is when the volt-
age V* starts decreasing, the difference between V* and V* becomes smaller than
%E and the diode does not conduct any more; the output Vs remains constant until
the difference takes the value -A at point C : the other diode starts conducting
at that time; and the process goes on.

7.2.7 Non-Linear Functions of Two Variables

Several types of generators have been designed, but since they are still somewhat
in the prototype stage, by which is meant that they are not yet extensively included
as the basic equipment of an analogue computer, they will not be described here.

Their use will increase the accuracy of the solution of those problems which
involve non-linear functions of two variables, since, without them, approximate rep-
resentations have to be used.

i



CHAPTER 8

SPECIAL FEATURES OF ANALOGUE COMPUTATION

8.1 SET-UP OF TRANSFER FUNCTIONS

The previous sections have shown how an analogue computer is able to solve systems
of differential equations which are written in an explicit form in terms of time.

When the analysis of a physical system is carried out using Laplace's transformation,

the equations are obtained in terms of the variable s , and a direct representation
of these equations on an analogue computer is sought. It is easy to see that, when
talking about differential equations, both the original equations and the transformed
equations lead to the same analogue diagram. A differential equation of nth order
transforms into a polynomia) of nth degree in s ; if the polynomial is then solved
for the term of highest power in s , the second member has to be integrated in
succession until the function of s itself is obtained. The analogue set-up which
is obtained is entirely similar to that which one would derive from the original
equations.

In fact, when a differential equation is simulated on an analogue computer, the
electric circuit resulting from the interconnection of elementary calculation blocks,
which is achieved by simple reasoning on a mathematical formulation, forms by itself
a physical system having a general transfer function equal to that which is described
by the equation.

Therefore, a differential equation can be solved by first finding out what is the
corresponding transfer function, and then wiring a circuit having the same general
transfer function.

The design of a circuit having a given transfer function is a simple problem of
electrical engineering consisting of suitable combinations of impedances, which can
be worked out without any reference to a differential equation. When considering
this aspect of the question, it happens that the circuit which is found by this method
is different from that which is obtained from the analogue representation of a
differential equation corresponding to the same transfer function. Two different
methods are thus available for constructing an electrical circuit to represent a
given transfer function.

Consider as an example the transfer function corresponding to the introduction of a
time constant T , which can be defined as

Vs K
__- K81

Ve 1 + Ts

This formula can be re-written as a differential equation:

Vs = (Vs +KV (8.2)
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from which the circuit illustrated in Figure 59 is immediately derived.

The sam transfer function can also be achieved by a suitable arrangement of
input and feedback impedances of a d.c. amplifier. The transfer function of the
circuit which Is shown in Figure 60a can be easily computed as

Vs R 1
Re- LC (8.3)Ve Re 1 + Ts

The symbolic representation of this circuit is given in Figure 60b.

The first method shows an easy way to represent very rapidly any given transfer
function, while the second one requires impedance calculations; this drawback can be
somewhat alleviated, since tables giving the drawings of several circuits with their
transfer function have been published.

In the very simple case just described, both diagrams are similar, but usually the
method start•tag from the differential equation requires a larger number of operational
amplifiers. This can be very easily checked, since a second order transfer function
such P.a

O(s) = S2 + as + b

corresponds to a circuit involving only one amplifier, while the circuit derived from
the differential equation requires two.

8.2 OPERATIONAL RESTRICTIONS

The purpose of the preceding argument was to explain the basic principles of the
analogue computer, and to show that such a method of calculation is useful for handling
differential systems which are too complicated to be solved by usual analytical methods.

The third part of this Agardograph is devoted to its applications to the main
problems which are encountered in the study of the flight of an aeroplane.

However, all the practical details necessary for the correct performance of the
calculations have not so far been mentioned. There are certain operational restric-
tions on the computer as well; amongst these the most important are:

To chedk the block diagram and the connections before starting the computation;

To check from time to time the accuracy of the results;

To avoid any saturation;

To keep the drift of the amplifiers at a low level.

These checks are almost a matter of practice, so these points will not be detailed
here; it will however be pointed out that we have to distinguish between ordinary and
stabilized amplifiers, as far as the last point is concerned.
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The d.c. raplifiers are subject to drift, an error voltage due to the unbalance
of the amplifier perturbing the normal output voltage. The origins of the drift are:
small changes of the supply voltage with time, variations of the filament voltages.
modifications of internal resistances or tube characteristics. The value of the drift
can be reduced if the constancy of the characteristics of those elements is improved,
but it cannot be entirely eliminated. The presence of the drift decreases the accuracy
of the computation and requires frequent balancing of the amplifiers.

The drift is considerably reduced withstabilized amplifiers; such amplifiers
involve an auxiliary circuit which provides a continuous balance according to the
following principle. The grid voltage of the input of the amplifier must be equal to
zero; if an error voltage appears at that point, it is sent to an auxiliary circuit
where it is modulated by a synchronous vibrator. The alternative signal which is
produced in this way is then amplified by an a.c. amplifier, and demodulated by the
same synchronous vibrator; this s'nds a d.c. signal back. This voltage is then
reintroduced at the input of the d.c. amplifier in such a way that it brings the grid
voltage back to zero (Fig.61). The demodulation is worked out in phase with the
modulation so that, if the error voltage is inverted, the output voltage of the
demodulator is also inverted. Such a device, which has been designed to give auto-
matic balance of the drift of a d.c. amplifier, results in a further advantage: for
low frequencies, it increases the overall gain of the amplifier since the gain of the
a.c. amplifier used in the balancing circuit is added to the gain of the d.c. amplifier
itself; the accuracy of low-frequency computations is thus considerably increased.

However, when a stabilized amplifier is saturated, the capacitances of the balancing
circuit are loaded and a certain time elapses before they are discharged; after
saturation has occurred, a given recovery time interval is necessary before the compu-
tation can be started again.
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PART III - THE USE OF ANALOGUE COMPUTERS

CHAPTER 9

PROBLEMS OF KINEMATICS

F.C.Haus and L.Moulin

9.1 INTRODUCTION

The application of the analogue computer to the solution of the main problems
related to the kinematics of aircraft motion will be studied in this chapter. These
problems are as follows:

(a) Knowing the three angulp- velocity components P,QR of the aircraft, related

to the body axes, to ca&culate the coordinates defining the orientation of
the aeroplane in relation to the ground, or geoparallel, axes.

(b) Knowing the three components of a moving vector related to the ground axes,

and also the motion of the aeroplane, to calculate the projections of this
vector on the aircraft body axes.

The position of the moving axes in relation to the ground axes can be determined
by two sets of coordinates; either by the angles . 80, y, called the Euler angles,
or by the direction cosines of the system of moving axes relative to the ground axes.
These give two different solutions to each problem.

9.2 SOLUTION OF THE MAIN PROBLEMS USING THE EULER ANGLES

9.2.1 First Problem

The rotations f 8, i are related to the aeroplane angular velocities P,Q,R by
Equations (1.5), which are repeated here for convenience:

= p+ sinO 1
0= Q coscp - R sing (9.1)

= sinc+ cos'p

case Cosa

The problemiconsists of the integration of this set of equations. We have to make

use of resolvers, or devices generating the trigonometric functions of a known angle.

Such a device, whose principle has been explained in Section 7.2.1, is similar to
a servo-multiplier: a servo-motor will produce an angular displacement proportional

to the applied voltage. The shaft carries two brushes placed at exactly 90 degrees,
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and containing a potentiometer like that shown in Figure 62. The resistance in each
900 sector varies sinusoidally, so that the brush A making an angle 9 with the
neutral line collects a voltage proportional to the sine of this angle.

This device permits multiplication by a constant factor K. The upper and lowest
points of the potentiometer must be of opposite sign. As the voltage K may vary
within very large limits, the control mechanism must be fitted with an automatic gain
stabilizer in order to limit the errors of the result.

The. resolvers are symbolically represented as indicated in Figure 63, the inverter
being included in the symbolic representation. The variable that commands the angular
displacement of the shaft is, in this case, the angle 9 .

The components P. Q, R are functions of time obtained by the integration of the
flight equations; the Euler angles will be other functions of time, resulting from
the integration of the set of Equations (9. 1). They are obtained with the set-up
represented in Figure 64. The dotted lines represent connections that would ordin-
arily be included in the symbolical representation but they have been reproduced here
for clearness.

The last of Equations (9.1) presents a singularity when 9 = ± 90o . The proposed
method of calculation is only applicable when the aircraft motion involves values of
0 = ±900 . The singularity produced by 9 = ±900 can be avoided by the choice of a
different sequence of rotations, but will always affect the rotation to be applied in
the second place.

If we use three rotations occurring in the order 4 5 ', 9f, Equations (1.4) and
(1.5) will be replaced by:

P -= d I cos cosy sinco'

dt dt

d9' dp'
Q - + - siny' (9.2)

dt dt

R = dyIsin9' + ý OT OO

dy'
-= P cos9' + R sinG'

dt

d9' do/
-= Q - sinp'(

dt dt

dsinO cos9r
- -R +R -

dt cosT I cosy,'

The values of the rotations /' I pT, 9' differ slightly from the values of the
angles 0, cp, 9 Just defined.
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If we use three rotations occurring in the order 9". /". we will get the
equations:

=dcp" d9"
P + !fl sio"

dt dt

d,9"
Q = COWJ" coscy" + - siny" (9.4)

dt dt

R coscp" - d cos4" siny"
dt dt

S= P - sino" df

dt dt

d1" 1
dt ow (Q cosyp" - R sincp") (9.5)

- Q sino" + R cosyo"
dt

Here again, the numerical values of 9", 0/", cp" will differ from the sets 01, 01, Co'
or 0 , 0. y.

The singularity occurs every time the second rotation reaches the values ±900. If
it is certain that the amplitude of one of the three angles will never reach ±900, we
may always apply the method just indicated, choosing the order of rotations in such
a way that this particular angle will be the second. This requires rewriting all the
equations in terms of the Euler angles.

If we are not certain that we can avoid an angle of 900 in the second rotation, we
may use the process incorporated in the Tridac computer and described by S.J.Gait6.
This process consists of dividing the second rotation into two parts, i.e. in util-
izing four rotations instead of three.

In the case of the sequence 9", i", cp", the rotations will take place respec-
tively around:

an initial axis OY0

an intermediate axis OZi

a final axis OX1

The rotation /" will be prevented from becoming equal to 900 by adding a prel-
iminary rotation around OZ0 . :This supplementary and redundant rotation will
occur at an angular velocity d0,/dt which may have a constant value and must be chosen
in order to prevent 0" from becoming equal to 900. Figure 65 shows the correspond-
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ing displacements. As a consequence of the supplementary rotation, the rotations
0" and 0" will be executed around the intermediate axes OYo0 i and O . The
equations which relate the angular velocities P, Q, R to the derivatives of the
angles become:

d•" d" do"P - sinb" - + coso sin9'

dt dt dt

dO" 1 f
d" _ - (Q coS'T - R sinp") + d- sinO" sin/" (9.6)dt cos4"' dt

- - Q siny + R cosT d- a cose
dt dt

By an appropriate choice of the rotation 0." and the angular velocity dk,"/dt it
will always be possible to avoid the appearance of a singularity in the equations.

9.2.2 Second Problem

The Euler angles being known, we wish to find the components, on the moving axes,
of a vector whose components on the ground axes are known.

Theoretically, the response is given by the matrix Equation (1.1), where the terms
of the transformation matrix are written as a function of the Euler angles, as given
in Table I.

It is, nevertheless, preferable to proceed by progressive steps in the development
of the set-up, considering each rotation successively.

Let

X0, Y0, Z0  be the projections of vector V on the axis OX0YoZo

X1, Y1. Z, be the projections of vector V on the axis OXYZ1

X , Y , Z be the projections of vector V on the intermediate axes.

The three successive rotations described in Sectionz 1.2.b will correspond to the
following three matrix equations:

X coO/ sin 0 Xo

Y = -sino cost/ 0 YO

Zo 0 0 1 Z0
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X1 cos0 0 -sinO X

y 0 1 0 y

z sinO 0 cosj Zo

X1 1 0 0 x

Y 1 0 coscp sinp y

Z1 0 -sincp cosy Z

Each of these equations corresponds to a set

X = X 0 cosO Yo sino

Y = -X0 sino + Yo cos/i

zo = z0

X, = x coso - Z. sinO

y = y

Z = X sin8 + Zo coso

X,= X

Y, Y cosy + Z snl

Z1 -Y siny + Z coscp

The three sections Indicated a. b, c in Figure 66 describe the set-up that will
produce the solution on an analogue computer.

9.3 SOLUTION OF THE PROBLEMS USING DIRECTION COSINES

9.3.1 First Problem

The equations (1.3), rewritten here:

ii= mR - niQ

ilj = nip" liR

hi = /Q "mP

with i = 1, 2, 3, must be integrated, using the angular velocities as inputs, and
the initial values (li)o , (ýi)o . (hi) 0 as integration constants.
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This operation requires the use of multipliers. We will represent the servo-
multiplier schematically by the symbol given in Figure 67.

The set-up which produces the integration of the equations will be utilized three
times, in order to obtain the nine directipn cosines.

When the multipliers produce the product of one variable, such as P, with several
others, such as n1. n2, n3, the six multipliers corresponding to the scheme of
Figure 68, combined with nine integrators, will permit the calculation of the nine
direction cosines.

9.3.2 Second Problem

When the direction cosines are known, the projections of a vector on the body axes
OXYZ1 will be obtained as functions of the projections of the same vector on the
axes OXoYoZ 0, by Formula 1.1, rewritten here:

X = LIX + 12Yo + 13Zo

Y = mIX0 + m2Y0 + m 3Z0

Z = niX0 + n2Y0 + n 3Z0

The set-up for the calculation is represented in Figure 69.

Remark

The direction cosine method does not present the inconvenience associated with a
possible discontinuity as is the case with the Euler angle method. On the other hand.
when one considers the results of a calculation, the Euler angles have a clear physi-
cal significance, which is not the case with the direction cosines.

The two methods require different analogue computer equipment and the complete
solution of any problem requires a different number of operational amplifiers accord-
ing to the method chosen. The choice between the two methods will, in practical cases,
nearly always be influenced by the equipment available.



CHAPTE•t 10

NOTION OF AN AEROPLANE WITH RIGID STRUCTURE

J.Czinczenheim and F.C.Haus

10.1 LINEAR PROBLEMS

(A) Introduction

In Upite of the earlier works of Joukovsky and Lanchester, the first analytical
study of the linear equations representing the motion of an aeroplane is credited to
G.H.Bryan (1911).

Since then the dynamic stability equations of rectilinear steady motion, applied
to both longitudinal and lateral disturbances, have been analysed systematically.

The analytical theory has brought out the nature of the unsteady motions:

(a) Long-and short-period oscillations in longitudinal motion;

(b) Oscillatory Dutch roll and aperiodic phenomenon in lateral motion.

However, difficulties in measuring certain aerodynamic derivatives and the dynamic
behaviour of aeroplanes generally satisfactory when their static stability was ensured,
have for a long time relegated the dynamic studies to the background, and one has been
restricted to a qualitative check of dynamic stability using Routh's criterion; no one
has ever gone beyond the determination of the roots of the system's characteristic
equation.

The situation has changed in the last fifteen years. Increases in speed and alti-
tude, the development of automatic pilots, the great variety in shape of modern air-
craft and their tendency to instability, and finally the appearance of special vehicles
such as VTOL, STOL, and space vehicles, have brought with them a need for elabor
dynamic studies, while improvements in measuring techniques and in the calculati
aerodynamic derivatives have provided the neQessary input data.

Research in these directions has been readily promoted, firstly by the introduction
of operational methods, then by the-use of analogue computing machines.

The tasks accomplished with the help of these computers does not present a very
general character and constitute studies of particular cases.

The speed with which the equations of motion can be resolved by computing machines
enables us, nevertheless, by progressively varying the data, to discover how the solu-
tions vary.

The accumulation of results, coupled with a careful examination of the wiring dia-
gram, may to a certain extent replace an analytical discussion of the equations.
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(B) Field of Application

In what follows, the equations of motion will be written in their usual form, as a
function of the time variable t , and will be fed into the computer in this form.

The computer enables a study to be made of the resulting motion, starting from a
steady motion regime:

(1) By an initial disturbance of one or more of the variables of the motion, the

controls remaining locked;

(2) By an input due to control displacement, of which the evolutions are known;

(3) By an input due to surrounding air movements, the controls being locked;

(4) By any combination of the above inputs.

(C) Study of Disturbances Produced in a Rectilinear Motion

The steady motion considered is a rectilinear one, during which the inclination
4o=0.

The attitude 00 $ 0 , but is sufficiently small for us to assume that coseo = 1

and sino = 90o

10.1.1 Longitudinal Notion

1O.1.1.1 Linearized Equations of the Longitudinal Motion

The system is reduced to:

2d- = AC + 08
2d-t Cz°

da27- - A.2rq 6 C + CZo6O0
dt

(10.1)

dO

dt -

In order to bring forward the lift and drag coefficients, let us replace Cz , AC
and AC by the quantities CLo , ACL and ACD . The part of the increments ACL

ACD , 1Cm depending on the variables q , a , q , a will be developed as indicated
previously. We shall only retain the important terms of this development. The part
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of the increments depending on input will be represented by (ACL)l - (ACD)i
(ACE) i "

Under these conditions, the system becomes:

2di+(2CDO+ CDU)G+ (CD. -CLO)a 4CDq c q + CL9O = ADi
da c

2- -dr + (2 o ÷ + C u)' + (CL . + CD , -aq CDo O -(A,% •,•rdt CQ2

(10.2)
dq c c

dO

dt

Let us recall that the quantities CD I CL and C. include the influence of the
propellers (see Fig.70):

CD = CDa - CT.x 1

CL = CL,, - CT ., ( .
£ (10.3)

d
C = Ci,, + CT j

and that in steady flow

mg si n"o
CD 0  = psv2

0

mg cosy0  (10.4)
CL0  + p SV2

0

C = 0

The angle of the initial slope, yo , is identical to 00 when the choice of axes is
such that a0 = 0
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10.1.1.2 Wiring Diagram

The solution of the 4th order linear differential system written above. is obtained
by following a classical set-up, represented by Figure 71. Initial disturbances of
variables 6fi , Aa , AB will be introduced by charging the integrator condensers.

Inputs will be introduced by altering voltages representing (ACD)i, (ACL)i,
(ACN)i. These tensions may vary with respect to time in an arbitrary way (step,
ramp function).

10.1.1.3 Examples

(a) Solution of a system of equations without second member for n initial condi-
tion

The system of equations has been set up with numerical values corresponding to an
aeroplane of the DC-6 type. Inputs (ACD)i, (A CL)i, (ACa)i are zero. Initial
conditions 00 and ao have been introduced by charging the corresponding integrator
condenser. These conditions were first introduced separately, then simultaneously.

Outputs are given in Figures 72, 73 and 74. The output for the initial condition
00 belongs entirely to the slow or phugoid oscillation.

The output to initial condition 0. enables us to find, at the beginning of the
curves a , 9 and q , the short-period oscillation. After this has vanished, the
long-period oscillation remains.

The output to equal initial conditions 00 and a0 is exactly the sum of the
output to these two initial conditions acting separately.

(b) Response of the aeroplane to a step deflection of the elevator

In this case,

(6 CD) i = 0

(~~CL) a = kCLhS Le 
(10.5)S e

(A ,= :& 8

where Sh represents the area of the tailplane

CLh represents its lift coefficient.

Figure 75 represents the output of the same aeroplane to a positive step-deflection
Se (nose-down motion).

In the diagram of a and q the part belonging to the rapid oscillation is easily
found.
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The aeroplane tends to a nose-down position in flight, corresponding to final

values of:

-3.22 -2.865 + 12.62

The lay-out of this diagram is absolutely classical. Another example is shown in
Part IV. Figure 280 represents the indicial response to a deflection in the nose-up
direction. On this diagram, time is represented in aerodynamic time, the unit of
which is equal to 7.05 seconds. One of the curves indicates the changes in level z

(c) Effect of the slope of the trajectory on stability

An aeroplane may fly at the same speed, that is to say at the same lift coefficient
CL0 , on trajectories of different slope yo , by the use of different powers. The
stability of such motions is not the same.

The term -CDO in the second equation can be written +(CLosinry)O . This term
always destabilizes the long-period oscillation.

The stability of the aeroplane dealt with in previous examples has been studied

for a slope angle Yo = 300 . The diagrams refer respectively to the initial conditions:

e0 = 0.10 radian (Fig.76)

a0 = 0.10 radian (Fig.77)

and to the step-deflection Se = 0.10 radian (Fig. 78)

The phugoid oscillation is unstable.

The angle yo = 300 , quite large, has been chosen in order to obtain a striking
example, but decrease in stability already appears for much smaller angles yo .

To bring an aeroplane on to a climbing trajectory requires the use of extra power.

Because of this, the aerodynamic derivatives can be altered. The derivative Co.
has a less negative value at high power than at low power. This is another reason

for the destabilization of the motion.

The unfavourable effect due to the inclination of the trajectory may be important
in STOL aircraft.

(d) Gust influence

An elementary method enabling us to study the effect of gusts consists in introducing
the effect of atmospheric velocity disturbances ua and wa by writing:

-(AC 0 )1  (2C 0 + CDU) + (CD. - CLO)ý 1
(10.6)
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-QA*CL)i =(2CL0 + CL)&+ (CL. + CDO)A (10.6)

The analogue set-up is immediate. Voltages representing inputs ua/V and Wa/V
multiplied by the adequate factor, are introduced by means of supplementary inputs on
the adding units (see Fig.79).

The input is a time function, determined in the problem that we are prepared to
solve. We may, in particular, take a step function. In that case, the effect is the
same as if we took initial conditions

U = a. and - wa
V V

In Part IV, Figures 325 and 330 represent the result of positive gusts ua and
wa (i.e. rear gusts and downward gusts) studied in this way. Here again unit r
on the time scale is equal to 7.05 seconds. This way of computing is very crude and
does not take into account:

(a) Transient effects;

(b) The fact that the gust wa is not exerted at the same time on the wings and
the tail unit.

Transitory actions are due to Kassner and Wagner effects. We shall see, in Section
11.2.1, how to take them into account.

The fact that the wings and tail unit are not subjected to the action of the gust
wa simultaneously leads us:

(1) To express the aerodynamic action exerted on the wings and that exerted on the
tail unit separately;

(2) To introduce a delay equal to 1/V0 seconds in the action of the gust on the
tail unit.

An analogue computer output of the action of the gust wa on an aeroplane, taking
this delay into account, is indicated in Section 13.12.

(e) Response of a fast aeroplane to a step-deflection of the
elevator (supersensitivity of elevator)

Previous examples have emphasised the long-period oscillation. In fact, the rapid
oscillation is generally the more important one. It is easy to demonstrate certain
consequences of the rapid oscillation by the use of the analogue computer.

In the transonic region, with increasing Mach number, a given manoeuvre of the
elevator results in greater and greater transient overshoots of the load factor. This
overshooting renders piloting unpleasant and reduces precision.
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This phenomenon can be studied quantitatively on the analogue computer by varying
the parameters of the problem, such as Mach number, altitude, and position of the
centre of gravity.

The increase in Mach number reduces the static margin and the damping. These
effects alter the coefficients CO, and Ca . and bring with it. at a given altitude, a
reduction of the period and of the damping of rapid longitudinal oscillations. The
load factor to which the aeroplane is subjected in the manoeuvre receives an increment

1
= - V0 (q - &) (10.7)

and will be given by another adding unit (see Fig. 80).

Figure 81 represents the load factor at different Mach numbers for a step deflection
of the elevator. It appears that the period decreases and the overshoot increases.

Figure 82 shows the variation of dynamic overshoot as a function of Mach number.

(f) Direct determination of the amoeuvring load on the tail plane

The manoeuvring load constitutes an important factor in the design calculations of
the fuselage and tail structure. It may be calculated directly by adding to the
scheme set-up for the equations of motion, the scheme (Fig.83) corresponding to the
following formula:

16" [1 del + H dO +de IH da ee
ANH = %pV28H{Lal I - a +ii d- d + a (10.8)

IVH dt da V0 dt CLe,

We have studied a manoeuvre during which we have applied a rapid triangular deflec-
tion with the maximum speed that the control allows, during increments of time At

Figure 84 represents the load on the tailplane for a deflection time of 0.135
second.

Figure 85 represents the loading factor of the whole aeroplane for increasing
deflection times. A time equal to 0.135 second brings the wing loading factor to
An=8 .

Critical conditions of the manoeuvring load are obtained by scanning in altitude
and Mach number.

(g) The outgoing of airbrake

The airbrake introduces an additional drag ACD accompanied by a moment AC,
The results are represented in Figure 86 for an aeroplane flying at M = 0.95

We have assumed that:

ACD = 0.05
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AC = 0

ACM = -0.03. 0, +0.03

We can appreciate the aeroplane's sensibility to the moment induced by the airbrake.
Outputs in load factors are rapid and would be difficult to cancel out with the ele-
vator. In this calc.'lation, the output of the simulated airbrake was not instantaneous
but lasted for one sacond.

Airbrakes causing a nose-up pitch are more effective than those causing no moment
at all.

10. 1.2 Lateral Notion

10.1.2.1 Linearized Equations of Lateral Motion

Equations 1.3.3.b, describing the lateral motion from an initial rectilinear motion
of slope y. = 00 and lateral inclination 00 zero, simplify to:

2r + 2rr ACy + - [sine0  + (P]
dt V0

dp dr
S= ACl (10.9)

dr dp
CIz dr " CIz dp = ACn

mdt ZZ dt a

Let us develop AC-, ACL ACn in relation to the disturbances of p, r. and A
and represent by (AdY) 1, (AC I ), (ACR) 1  tho; actions due to the input being consid-
ered; we get:

2,r - Cy7 B - Cyp, - ( r - - r - C • /3- CLo b-

- CL• 0 eo (Cy) L

dp dr bp br b X (10.10. a)

- dt~ -C~ Cp* Cir -V - CIA - A3 (bC)
0t P0V V 2V0

dr dp bp br b
CIz C "Cn0 CnP 2V0 Cnr 2Co - CA 2o)i

and, with •0, P, 9 small, dy

dt
(10. 10.b)



186

(W (10. 10.b)
dt

The equations in this form are convenient for studying the stability of Mmll
motions but become incorrect when it is desired to study the response to a control
displacement of an aeroplane flying under a slope y ý 0 . The difficulty arises from
the approximation introduced for the component of the gravity force along the Y-auis.
In the general case, the exact value of this component is the value mg. liven by
formula (2.4). If the angles 9 and V remain small, without 0 necessarily being
small, the relations

p= , q= , r=

remain valid to the second order, but the gravity term must be corrected by replacing
the quantity

CLo(eo0 + Yp)

by

CLO (0o sin + T)

under the hypothesis of an initial motion with zero bank.

10.1.2.2 Setting-Up Scheme

The system is of 5th order when the initial slope y0 = 00 is different from sero.
It is reduced to 4th order when 00 = 0.

Figure 87 represents the set-up for the lateral problem. Orders are introduced in
(ACy)i, (AC/) 1 , (ACn)i either in step form, or slope function, etc.

Initial conditions are introduced by charging the integrator condensers living
A p, r, f. 41i

10.1.2.3 Examples

(a) Response to a step input of the ailerons or the rudder

Inputs (ACy)i, (AC/)i, (ACn)i are written as functions of the control displace-
ment, as in the case of longitudinal motion.

Figures 209 and 210 represent the indicial response of an aeroplane in a landing
configuration.

(b) Influence of Mach number and altitude on the dynamic
stability (frequency and damping)

Checking of the damping qualities of a prototype in all its flight conditions plays
an important part in the study of the aeroplane. Several damping criteria have been
established in order to assess flight handling. One of these criteria utillued these
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past years required a damping time function of the period. To assess the aeroplane
according to this criterion, it was sufficient to solve the characteristic equation
without seeking for the aeroplane's response. Nevertheless, application of the previous
criterion to several aeroplanes has shown that the simple consideration of the damping
as a function of the period is not sufficient. Actually, the necessary damping is
expressed in relation to the parameter ((p//8 x I/V) . The verification of this condi-
tion requires the knowledge of the amplitude of the variables qf, 8 , which involves
the determination of the aeroplane's response to external disturbance.

Figure 88 shows this condition applied to a transonic aeroplane.

(c) Study of the effectiveness of lateral control at low speed

With many aeroplanes, difficulties of lateral control have arisen near the stall.
In some cases the loss of efficiency was a result of wing tip stall and decrease in
aileron efficiency at high incidence.

In other cases, in particular on aeroplanes with swept back wings, a considerable
loss, if not the total loss, of efficiency has been recorded even when no flow
separation occurred. This difficulty can be explained by the modification of the
nature of the aeroplane's response to aileron action as the speed decreases pro-
gressively.

Aerodynamic derivatives of highly swept back wing and short span aeroplanes undergo
important variations with the lift coefficient. Figure 89 is a typical example of the
variation of the principal aerodynamic derivatives with lift coefficient. The increase
in the derivative Cl, with lift, together with a possible decrease in Cnn in the
same conditions, leads to a slightly damped dutch roll. Although at low lifts these
oscillations disturb the roll velocity due to aileron action little, they appear at
high lifts with great intensity (Fig.90). This phenomenon may lead to an inversion of
lateral inclination when associated with inverse yaw.

10.1.3 The Permanent Notion Considered as a Helical Notion (Linear Equations)

The most general trajectory that can be followed in steady motion consists of a
helix with vertical axis along which the aeroplane flies at constant speed.

The slope of the trajectory, yo , is equal to the attitude 00 of the aeroplane
when the body axes are chosen corresponding to a 0 = 0 . The components of the vector
rotation Q are:

Po = -0) sin@0

Q0 = f0 cos@o sini°0  (10.11)

Ro = 0f cos®o cos 0p J
Let us re-write the equations with the following substitutions:

Replacing the ACz's and the ACx's by ACL and ACD;
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Representing inputs by (ACD)i .......... (A C)i;

Taking into account gyroscopic effects (terms in C');

Expanding the aerodynamic coefficients in relation to the variables.

We must, as far as the knowledge of the numerical values permits it, introduce the
derivatives of:

Cx. Cz, C* (or CD, CL, and C.)

with respect to A, p, r; and the derivatives of Cy, C1 , C. with respect to G, a,
q.

These derivatives, generally not well known, do not appear in the equations written
below, but they should be added if known and if it were discovered that they presented
noteworthy values:

dt + q°d - ro8 + Mo (sinlo coseo 41- cos~o cos@o 1 + (2CDo + CD0  ^
Lt 0V 0 J

C
+ (CD,. CLo)a+ + CD -Q (ACD)i

q2VO

27-F, + r - poet + rou - -o (sin@° + coso° coso°op - CyP'8- CYP bo p-

r-cos ( -Cy)b b B =(€)
-Cyr 2Vr, 2V0

" q +Po - qoU^ + - (sin@,in +sin0 o cos@o ) ]+ (2CL 0 - CLOG +

+CL, + C CLq - q - (ACL)i
0) Q2V

0

CI* L " Cz + Ci " C 1 ) (qor + r 0 q) - Clxz(q°p + p0 q) - Cl•/3 -
b b b

- 2V / r - Cir - - C bq = (Act),/P 2V0 2Vo 2Vo(O

-(10. 12)
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dq b b r (10.12)
C zx -- cI "c (por + r oP) + CIzm-b (2pop - 2r or) - C(G1 -

c c
Cs'a - Cmq -• Q " Cm. - a - C0p V Cnrr = (6Cs)I

2VO 2V0  Cr

Cis dr d. +! Cy - CI) (Poq + qop) + Clxz(qor + roq) -

dt -lz dt (b ~ qy) C 1 (

bp b b n b Cqq Cn)I

If we study separately the disturbances of the variables G, a, q and those of
the variables g, p, q , we uncouple the movements: in this case, the evolution of
the disturbances affecting the longitudinal motion is defined by equations 1, 3, 5,
in which we assume that /A = p = r = 0 , whereas the evolution of the disturbances
affecting the lateral motion is defined by equations 2, 4, 6, in which we have,
furthermore, that G = a = q = 0 .

We can thus study usefully the horizontal turn, in which we have @0 = 0

A complete study of the real motion in a helical trajectory is not compatible with
the hypothesis of the uncoupling of the motions. We must then study simultaneously
the six equations of motion (plus the 3 kinematic equations) and note that:

(a) Terms such as the product (CI, - Ci Z)(por + r 0p), appearing in the 5th equation,
introduce an inertia coupling between the longitudinal and the lateral motions.

(b) Derivatives of the aerodynamic forces of one group, in relation to the velo-
cities of the other, are no longer zero and produce an aerodynamic coupling.

10.2 NON-LINEAR PROBLEMS

The main non-linearities in problems dealing with the dynamics of the aeroplane are
those due to inertia coupling, to variation of aerodynamic coefficients, and to non-
stationary effects.

10.2.1 Inertia Coupling

10.2.1.1 History

For more than thirty years dynamics of flight has been studied by means of
linearized equations.

So far as non-linear systems have been concerned, mathematical means as well as
the possibilities of calculating machines were extremely restricted. Also, the few
comparisons made between the results of linear calculation and of flight tests seemed
to show that the study of the linear case was sufficient. But as early as 1945, a
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re-examination of the validity of linearization was made, and in 1948 Phillips27

introduced inertia coupling terms in what is now a classical study on the stability
of an aeroplane in uniform rolling motion.

The taking into account of non-linear coupling terms was necessary as a result of
the P-100 accidents, which demonstrated that the fin and rudder loads calculated by
means of linear equations were incorrect. As a consequence of these accidents, the
complete equations of flight dynamics were submitted to a careful study in order to
determine which terms should be retained and which neglected. The numerous studies
undertaken with this aim required the utilization of digital or analogue computers,
the non-linearity of the problem making a quantitative analytical study impossible.

The principal reasons for the growing importance of the coupling terms are:

(a) Mass distribution

Ten years ago, the rolling moments of inertia were of the same order of magnitude
as the pitching moments of inertia, whereas today the rolling moment of inertia has
become smaller.

(b) Weathercock stability

On aeroplanes in which the fuselage tends to become larger and larger, weathercock
stability is difficult to ensure. This is particularly true in supersonic flight.
The instability of the fuselage being independent of Mach number as a first approxima-
tion, stabilization due to the fin, proportional to the gradient of the transverse
force, decreases as the Mach number increases in supersonic flight. It follows that
the coefficient Cn8 of weathercock stability decreases as M increases and finally
becomes zero.

Furthermore, at high incidence, separation occurs on long fuselages and on low
aspect ratio wings, leading generally to a decrease in CnS (creating also an aero-
dynamic non-linearity).

(c) Controllability

Due to servo-controls, the angular velocities about the three axes have notably
increased. The same is true for the terms of coupling proportional to the product
of two angular velocities.

(d) Inclination of the principal axis of inertia

The inclination of the rolling's principal axis of inertia introduces terms of
coupling through the product of inertia.

10.2.1.2 Equation of Problems Involving Inertia Coupling Terms

(a) The linearized systems, written under different forms in (2.20), (3.21) and
(3.32), are not precise enough. Terms comprising the products of variables must be
kept and the analogue computer must have multipliers.
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(b) Inertia coupling produces high angular velocities and significantly increases
angles of incidence and side-slip.

The aircraft's security will be put in danger by the increase of load on the tail
unit produced by the angular velocities and the angles a and /3

It is therefore better to determine the tail loads at once. These can be obtained
by means of the following formulae:

= . + + ! )} + (10.13)
ad V da V e

Cf (½ [(phy + r+ v de) ISV V d/3 V r(10.14)

which complete the system equations.

(c) In the expression for aerodynamic forces, derivatives of forces of one group
in relation to the velocities of the other will be introduced every time these
derivatives present an adequate numerical value.

Aerodynamic derivatives will be considered in this Section as constants. This is
not always a sufficiently good approximation. We shall see later on how more complex
aerodynamic factors are introduced.

(d) If calculations or experiments leading to the knowledge of derivatives have
determined this in relation to the aerodynamic axes (attached to the relative wind),
the derivatives with respect to the dynamic axes must be determined by using the
formulae given in Section 3.12.

It is clear that simplifications must be adopted. The most usual are the following:

(i) One is limited to a study of the motion obtained from a rectilinear motion.
We thus take po = q0 = ro = 0.

(ii) Coupling being due to rapid manoeuvres, we may assume (and verify a posteriori)
that the critical phase occurs at the beginning of the motion during which the velocity
cannot change to any significant extent. We may then neglect the equation obtained
by the projection of forces on the X-axis and consider V = constant. (This is not
Justif~able when the aerodynamic derivatives undergo rapid variations with Mach number,
in troinsonic flight for instance).

(iii) Terms due to gravity are neglected.

The previous simplification has already made the action of gravity disappear in
the equilibrium of forces in the direction of OX. The new hypothesis consists in
making them disappear also in the equilibrium of forces GY and GZ.

this simplification avoids the calculation of the angles 0, 0, cf by the integra-
tion of kinematic equations, and the introduction of these terms in the, equations of
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motion. This last operation would require generators of trigonometric functions when
the angles become large.

These conventions lead us and other experimenters to reduce the system to:

2Tr-+27(r -pa) = AC
dt

da
27' +2r(p/3- q) ACz

dp C dr + c 1c

ci Idr • - i rq -Cx 2 1 pq AC= (10.15)

dq b[ b 22b
ci d + c - Cjipr + C - = ACp 2+ Cr- r

dr dp r cZ ACn + Cnr 2

CIz d - CIx L + f C, - CI pq + Clzxqr = n + C' q

Expressions ACy . . . . . . . . . . ACn have to be developed along the lines indicated
above.

Terms corresponding to the deflection of the control surfaces can be introduced.
either by step signals, ramp signals, etc. , or by means of a potentiometer producing
voltages varying as the experimenter wishes.

10.2.1.3 Application of Analogue Computers

(a) Coupling in a rolling pull-out

Figure 91 represents a wiring diagram for a relatively simple case, namely, one
where the derivatives of a group of aerodynamic coefficients with respect to the
linear and angular velocities of the other group are zero, and where the remaining
derivatives are constant.

Figure 92 represents a wiring diagram for the manoeuvring load on the tail unit.

Let us determine the maximum load on the fin resulting from an aileron deflection
during a rolling pull-out (flight with a load factor n > 1) .

The flight conditions during which this load is a maximum cannot be foreseen
a priori. It is therefore necessary to vary the Mach number and altitude to find the
critical conditions.
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Furthermore, the problem not being a linear one, it is necessary to consider the
load factors between the minimum and maximum for the aircraft. The maximum load
depends on the type of manoeuvre, particularly oft the order in which the roll-pitch
or pitch-roll manoeuvre is carried out, on the speed of the manoeuvre and the time
elapsed between the initiation of control deflections.

Figure 93 represents the results for a transonic aeroplane, obtained during the
research of critical conditions for the fin load. The flight speed considered was
500 kts.

The aeroplane, flying under variable load factors n , has been submitted to an
aileron deflection corresponding to the maximum of the force furnished by the servo-
control. The diagrams show the side-slip angle 8 and the three components p , q
r . of the angular velocity.

(b) Divergence

As was pointed out in Section 10.2.1.1. coupling manifests itself with intensity
in supersonic flight. The drawbacks to it appear either under the form of excessive
fin loads, or under the form of incorrect flight qualities (divergence, oscillatory
roll, self-roll), Figure 94 shows a case of slow divergence with heavy load factors
becoming very rapid under the influence of the coupling.

(C) Investigation into the influence of the different parameters

The complexity of coupling phenomena and the non-linearities which produce them do
not permit general rules to be deduced or the influence of such or such a parameter
to be foreseen in a precise way. We are only trying here to enumerate a few conclu-
sions enabling some order to be got out of the results, conclusions which can, as a
whole, be considered as valid for current high-speed aeroplanes.

(c.i) Influence of mass distribution

The dominant inertia coupling factor is the term [(c/b)CI - C, ]pq and we have
shown, in the introduction, the numerous reasons which tended to increase it: thin
wings of short span, a long fuselage heavily loaded.

With a positive pitch velocity, that is to say, with a load factor greater than
unity, this term induces a side-slip pulling the nose of the aeroplane towards the
outside of the turn. This side-slip tends to restrain the aeroplane's rotation when
the equivalent dihedral is positive. With a negative pitch velocity (load factor
smaller than unity), this side-slip effect is reversed and the rolling velocity finds
itself increased.

(c.ii) Influence of weathercock stability CnA

With a positive load factor, an increase in weathercock stability decreases the
side-slip, thus reducing the coupling effects. This is not always so with a negative
load factor.
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(c. iii) Influence of C1,

If Cl• decreases, it is generally stated that side-slip under a positive load
factor increases at high speed, so that the importance of the coupling phenomenon tends
to increase. On the other hand, with a negative load factor, the decrease of CZ•
tends to reduce the coupling.

(c.iv) Influence of yawing moment due to a;leron deflection

The inverse yaw, corresponding generally to classical ailerons, is unfavourable to
positive load factors, favourable to negative load factors. For a configuration with
a spoiler - where the yaw induced is generally direct - the situation is reversed.

(c.v) Influence of dampers

The increase of the longitudinal damping coefficient tends to reduce side-slip,
thus reducing the influence of coupling phenomena. The increase of lateral damping
has little influence and depends on the incidence. There is little to be expected
from the use of a yaw damper for the purpose of reducing coupling effects.

(c.vi) Influence of inclination of principal roll axis of inertia

The inclination in the dive direction of the principal roll axis of inertia is
generally unfavourable, increasing the coupling phenomenon.

(c.vii) Influence of flight parameters

For a given aeroplane, there exist an average speed and altitude for which the load
on the fin goes through a maximum.

The side-slip due to coupling tends to increase with altitude, since the importance
of the aerodynamic terms is reduced in comparison with that of the inertia terms; but
the decrease of indicated airspeed, or of dynamic pressure, with altitude, compensates
this effect so far as the load on the fin is concerned.

Conversely, side-slip due to coupling tends to decrease when the indicated airspeed
increases (effects of losses in directional stability, with Mach number having been
put aside), but the load on the tail fin increases with dynamic pressure.

(c.viii) Influence of the manoeuvre

Coupling phenomena appear during a pitch-roll evolution, but because of the non-
linearity of the phenomenon, the results depend on the type of manoeuvre carried out,
on the way the controls are deflected, and on the whole history of the motion.

This is why generally a rough aileron displacement under a load factor does not
lead to the same results as an elevator action during a roll. It may be noted also
that a simple roll may lead to more important side-slip after a few turns than during
the first one. Finally, some divergences may appear which depend on the roughness
of the control surface movements.



144

10.2.2 Aerodynamic 4om-Linearities

The problem consists in the calculation of the aeroplane's motion when aerodynamic
actions cannot be represented by linear expressions.

10.2.2.1 Approximation by a Polynomial

A coefficient function of a single variable can often be approximated by a polynomial
composed of the first two terms of its series (see Section 3.10). We may have:

A CCm = Cma + •m• 2a
2  (3.58)

with CV. 2 having a constant value. A multiplier is necessary to calculate the square
of a

A coefficient function of two variables, like C, as a function of a and /,
can be expressed easily in the analogue computer in some particular cases, for
instance when the function C, has the shape represented in Figure 95. In such a
case, the two second derivatives a 2C1/Za 2 and a

2C1 /2p 2 are zero, and the second
derivative a 2C,/'aa/3 is a constant.

The increase AC, when passing from a point 1 (ao,/30) to a point 2 (ao+a, ý0+A
is given by:

AC1 I (C 1'8.p'+ (C I a +C1  / 1.6

In order to calculate the second term, we again need R multiplier.

A control action Cl for instance, depends sometimes in the same way on the
incidence; the increase AC, produced by the ailerons may be expressed by:

ACI = (C.) 8  + (C1 '),a + ( )Sa c. (10.17)

When /3o0 = sa. = 0 , (C/a)Bo = (C/a)s & = 0.

Such functions are often met in the representation of aerodynamic actions coming
into problems of inertia couplings, where incidence changes are great.

When a coefficient function of two variables varies in a more complex way, we try
to make use of the development indicated in Section 3.10. The carrying out of this
development involves three multipliers.

10.2.2.2 Use of Function Generators

When a coefficient function of a simple variable cannot be approximated by a poly-
nomial, the use of a function generator always enables us to calculate the function.

Continuous and non-continuous functions may be approximated as indicated in Section
7.3.6 by diode function generators, supplying non-continuous lines which differ
slightly from the exact curve. Furthermore, it is possible to provide these function



145

generators with supplementary devices which create progressive links between the
segments.

A great deal of work has been done in these conditions and we mention here two
publications relative to the effect of aerodynamic non-linearities.

(a) Discontinuous function

In a theoretical work the N.A.C.A. has studied the rapid motion of an aeroplane
about its centre of gravity, defined by the system

da •9
-27-- + 2r - = CLSS

dt • CL a

(10.18)
d1O c dO c

C -y T-! - CE - - C(a) - C.o a = C'38
dt 2VO dt 2V

in which the functions C (a) and CL(a) are non-lineare.

Theoretically calculated results have been compared with results obtained on an
analogue computer where the functions C,(a) and CL(a) , represented by a series of
segments, were obtained by diodes.

In one of the cases studied, C, varies with a as indicated in Figure 96.

For a < -20 Cm = -3

-20 < a < +20 CuC = +1.5

+20 < a Cma = -3

and CLL is constant.

In the zone -20 < a < +20 , the stability condition of the rapid oscillation,

!CM < - 1(10.19)

B 8a B q2,u

is not satisfied for values attained by the aerodynamic derivatives

S= +3 and !-CM -20.43

The aeroplane possesses no stable equilibrium position in this zone. On the other
hand, the manoeuvre controlled by an increase /•e bringing the equilibrium position
from a = +40 to a = -40 . leads to stable curves presenting a minimum of anomalies
(Fig.97), because the aeroplane remains only a limited time in the zone where the
incidence is between -2o and +20.
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The analogue computer has shown that this aeroplane can be put into sustained
oscillations when it is equipped-with an automatic pilot sensitive to attitude (see
Section 13.6.7.2).

(b) Continuous function

M.Foody (Short Brothers) has studied the effect of a function C,(a) having the
shape represented in Figure 98, in a comunication at an analogue computing meeting 9 .

Complete equations (including those representing equilibrium along OX) have been
set up, but the term Cm(a) , that is to say part of ACm due to variations of attack
angles introduced in the adding unit calculating dq/dt , was given by a diode
function generator, producing a non-continuous line slightly different from the
original curve.

If the aeroplane is brought into balance at an incidence an for which the curve
CV(a) has a horizontal tangent, it is experienced that the applying of a positive
deflection, thus bringing the aeroplane to smaller angles of incidence, gives a stable
output, whereas a negative deflection causes the aeroplane to diverge (Fig.99).

If one examines the effect of a small deflection applied to an equilibrium position
for an angle of incidence smaller than am , at a point on the curve where C.(a)
has not yet become rectilinear, we obtain the usual evolution of the aeroplane, but
the diagrams are different inasmuch as the sign of Se is different, contrary to the
linear case, where the diagrams are symmetrical (Fig.100).

The cases of non-linearities mentioned above are elementary ones. The analogue
computer permits the repetition of real phenomena, such as the pitch-up corresponding
to a Cs(a) function as in Figure 14.

10.2.2.3 Non-Linearity Combinations

10.2.2.3.1 Longitudinal motion of a short-take-off aeroplane. The stability and
control of slow-speed aeroplanes give rise to particular problems due to the non-
linearity of the equations of motion.

In the case of an aeroplane where the propeller slip stream influence on the wing
plays an important part in the formation of lift, the aerodynamic reactions may no
longer be expressed as linear functions of the variables a , u , q and the control
deflection Se.

It is necessary to consider the propeller pitch ( as a new variable. This pitch
itself depends on the manifold pressure Sm and the speed V ; it is determined by
the 4th equation of the set given below.

The effect of the slip-stream will be expressed by terms including . On the
other hand, non-linearities coming into the formation of the aerodynamic efforts
must be taken into account.

In a particular case, the system was the following:
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+ a u -ba + d 10- 14ý + A u2 + BIa 2 + HLlU 0

&+ a 2u + b 2 a- c2 q + d 29 + e 2 0+ H2au + A2 u 2  k 2 8e

i- au + b3a + c 3q + es3 + A u 2 + H3au - L3aiD MPu4 + NM 2  ka3e (10.20)

= = q.

(Note: the signs are chosen i so as to keep the coefficients themselves positive).
Besides this, there was a maximum in the term b 2 a , corresponding to a maximum value
of the lift coefficient, and a sharp change in inclination of the. C. versus a curve,
for a given value of ac"

The term B1 a
2 is due to the curvature of the polar; the terms A1u2, A2u 2 , A 3u2

are due to the fact that we have not neglected the term u 2 compared with the term

2uou , in view of the low value that u 0 may reach.

In evolutions at constant power:

= a~u

which enables the system to be simplified.

It is obvious that the resolution of the system requires the use of:

Multipliers giving six products or squares of variables;

A voltage limiting device on the term b2a;

Anextrainput b 3 (a - ac) coming into action at incidence a. , in order to
produce at that moment an increase of Ca= .

A wiring diagram is shown in Figure 101. As the load factor n is one of the quan-

tities of which we wish to know the evolution, we must calculate first:

n = u0( 6L)
g

The diagrams in Figures 102 and 103 represent the response to a step deflection
e of 20 in the nose-up direction, for a take-off and a cruising configuration

respectively. It is well known that the phugoid period is related to the speed. In
the case of flight study at take-off speed, a phugoid of a particularly small period
appears (of the order of 5 or 6 seconds). The pilot could be embarrassed by this
phugoid if he wished to carry out a steady flight at take-off speed but does not
encounter this possible difficulty if he accelerates rapidly, which is normal after
take-off. In cruising flight, the phugoid period is greater. The input considered,

viz. 20 of deflection, is relatively much more effective at cruising speed than at
take-off speed. This explains why the variation in amplitude of 0 and u is
greater.
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Improvements have been brought about in these trajectories by the use of automatic
controls (see Section 13.9.3.2). The set-up permits the study of the effect of engine
power variations, Sw ; no result of such experiment is indicated here.

10.2.2.3.2 Spin simulation. Motion in a spin comprises both the types of non-linearities

which we have been considering:

Inertia coupling due to the importance of rotational velocities;

Non-linearity of aerodynamic coefficients due to high incidences and rates of
rotation.

The sourcQ of the aerodynamic data to be used in these calculations is the roll
balance which permits the measurement of the six coefficients Cx. C to be
taken while the aeroplane is rolling about an axis parallel to the wind, at a rate of
rotation

fnb

2V

with f22 p2 + Q2 + R2

The motion of the aeroplane in a spin is necessarily defined by the equations of the
set (2.13), which we rewrite here introducing gravity defined by the direction cosines
of the vertical, and assuming that the products of inertia are zero:

"m + QW - RV - gl = Cx S PV2

Ldt g 31

" [dV+ RU - PW - gm 3]= C. SjhPv2

"mf[d- +PV- QU- gn3] = CzS2pV
2

(10.21)
dP

I x + [I -i] = C SbpV2

dQ

Iy Q+ [Ix - Iz]RP = C. S•/pV 2

dR
Iz d-+ [Iy - Ix]PQ = Cn SbpV2

The N.A.C.A. tried to resolve these equations by means of an analogue computer in
order to study the recovery of a completely established spin. With this aim, work
was done with the above system of equations not transformed by linearization10 .
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The method used included several simplifying hypotheses. It appears interesting
or us to examine here the conditions in which the problem may be approached.

The spin studied, supposed right-handed, was a stationary motion for known values
f the variables:

S= 46 degrees

= - 3.4 degrees

u0  = 149.5 ft/sec = 45.6 m/sec

vo = 12.97 ft/sec = 3.96 m/sec

w0 = 155 ft/sec = 47.45 m/sec

V0  = 216 ft/sec = 66 m/sec

P0  = 1.508 rad/sec

Qo = 0.0152 rad/sec

Ro = 1.5610 rad/sec

= V2 + Q2+ R2

@o = - 44 degrees

(o = + 0.56 degree

rhe following deflections secured equilibrium:

Se = - 200 (nose-up)

Sa = + 140 (ailerons opposite to the spin)

-r = - 300 (ailerons with the spin)

%erodynamic measurements, obtained on a roll balance whose velocity of rotation was
o0 = 0b/2V0 were available. For this velocity of rotation factors C1 , Cz , Cm

were known in an interval of incidences extending from a = 0 to a = 700 . It was
assumed that these factors were independent of side-slip.

On the other hand, Cy , C1 , C. were measured in the same interval of incidence;
it is stated that these results were dependent both on incidence and on side-slip.

Although the factors C. ..... C. depend on the three elementary rotations P
R and necessarily vary with them; these variations have not been taken into

account, and the path of spin recovery was calculated by introducing the Cx1s .....
.'s determined experimentally for only one rotational velocity.
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On the other hand, the factor V2 appearing in the expression for the forces and
aerodynamic moaeuts was supposed constant and equal to V2

0 .

The Integration of the equations was carried out taking account of the evolution
of the gravity projections. For this purpose, direction cosines were determined by
integration of the following equations:

nI : mo+ fi 3 dt ]

3 = 3,0 + f3 dt (10.22)

n3 =n, 0 + fi, dt

with

13.0 = -sInO

m3,0 = + sin0° cos°50  (10.23)

n3,o = + cosO0 c 0800

and

13 = 3r - nq

i3 = n p - lr (10.24)

h3 3q -l m 3p

The angles of incidence a and / have been obtained from the following relations:

W
tna = -

U

V
tn = -

U

The report published gives no indication of the apparatus used in order to express
C .C . in terms of a and 6 .

The wiring of the analogue computer being consistent with the set of equations
indicated above, the computer was at rest for the initial values.

Voltages representing either:

Moments of roll or yaw, or

A force exerted along the thrust line,

have been applied and the response observed.
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The motions obtained are indicated in the Reference. We shall limit ourselves
here to considering the evolution due to the application of a yawing moment

Acn = -0.01 opposed to the spin. This evolution describes recovery from a spin and
is shown in Figure 104.

We must mention this work here because it very clearly defines the limits of
analogue computing.

If measurements of Cx ..... Cn , by means of the roll balance, corresponding to
angular velocities wv different from a had been available, one should have calcu-
lated the variable wv and expressed certain aerodynamic factors as functions of the
quantities a , / and co.

These calculations were discarded in the work mentioned above. The possibility of
simulating a spin more accurately exists, but it depends on what means are available,
and more precisely on the possibility of simulating functions of three or more
variables.

10.2.3 Non-Stationary Aerodynamic Actions

When taking non-stationary actions into account, the aerodynamic coefficients
multiplying a , & , etc., become also functions of the variable t . The most
important cases to consider are:

A constant delay in the appearance of an aerodynamic effect;

A delay represented by the function of KUssner and Wagner.

10.2.3.1 Constant Delay in the Appearance of an
Aerodynamic Effect

The example described below represents a problem different from those we have dealt
with up to now. Having obtained, by flight tests, a given result, the analogue com-
puter was set to work to try and discover the magnitude of a coefficient, or the slope
of a function which, placed in the equations, reproduces in the computer the curve
obtained experimentally.

Flight tests of an aeroplane flying at an incidence ao considerably greater than
the angle of maximum lift had enabled the Cornell Aeronautical Laboratory to study,
in 1949, the indicial response of an aeroplane for step displacements Se I in both
directions 11, 2

Outputs in a , 9 and acceleration n = 1 + V•/g were measured during these tests.
The corresponding curves are shown in Figures 106 and 107. Later, it was found
impossible to reproduce, by calculation, the diagrams obtained during flight; the
true curve ý was always delayed in relation to the calculated curve.

This suggested that the effects produced on the wing by a variable incidence
a(t) were in fact produced by a fictitious incidence a,(t) related to a by the
relation

a,(t) = a(t - a)
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in which a defines a constant delay.

In order to prove this hypothesis on the analogue computer, the factor C. had to
be split up Into two parts representing respectively the part due to the wing and that
due to the tail, and the quantity C*&a replaced by (CN)paI + (C*,)ea . Further-
more the following terms were also replaced:

CL CL by CL La,

C.ci by C,

and the function a.(t) simulated.

The equations of motion of the aeroplane about its centre of gravity were repres-
ented by the system:

27y= 27r(0- C CL a,+ CLSe 1
(10. 25)

Cy (Cmja, + (C.,,*a + aq C q + Coa a 6l C.ese
yp2V 2V

Amongst the different possible ways of defining a function a 1  delayed in relation
to a the following relation was chosen:

a.
a, +!a- = --a- a (10.26)

1 21 2

The set-up on the analogue computer representing the system is shown in Figure
105. 1%

The results have led to closer agreement between the curve of Y calculated by
taking this delay into account and the experimental curve (see Figures 106 and 107).

The reasons which gave rise to the use of the previous relation between a and
a,1 result from the following:

The function a1 (t) = a(t - a)

can be developed:

a
2

a (t) = a(t) - aA(t) + - 6&(t)
1 2

while the equivalent relation al(t + a) = a(t)

gives 2

al(t) + aal(t) + - &1(t) = a(t)
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Approximating to the development to the first term gives respectively:

a, = a-A
C1

al +~ a& a

Depending on the expression used, errors are either in one direction or the other, but
they cancel out partially when the average is used:

a a
a'I + 61 = -a- (10.27)

A study of the error due to this approximation appears in the Reference.

10.2.3.2 Non-Stationary Aerodynamic Effects

Non-stationary effects which go together with the appearance of lift at incidences
less than the incidence corresponding to maximum lift, are defined by Wagner and
Kissner functions.

Wagner's function defines the variation of an aerofoil's lift in relation to time
for a step unit variation a of angle of attack. Kfissner' s function defines the
variation of an aerofoil's lift as a function of time for a step unit gust wa.

Let: iD(t) and Y(t) be these functions.

The lift produced by a step unit input of a or wa is therefore a function of
time:

CL(t) = 2 (t) a (10.28)

CL(t) = V 'a T(t) wa (10.29)

where factors 4'(t) and T(t) may be represented approximately.

O(t) = 0.5 + 0.165(1 - eat) + 0.335(1 - e-bt) (10.30)

W(t) = 0.5(1 - e-ct) + 0.5(1 - e dt) (10.31)

2V0
witn a = 0.0455 x

c

b = 0.3 x 211O
c2Vo

c = 0.13 x-V
c
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d = 2Vo
c

The lift produced at any instant by a variation of incidence a(t) or by a gust
wa(t) , varying with time, is given by Duhamel's integral:

CLEt) [f- E (t - T) dr + a(o) 0(t (10.32)

CL(t) = o F rt 1 (10.33)

V' = 1 £1 * (7- T(t - 7-) dr + w (o) t(1.3
O afo aLao

These expressions can be written in a more simple form when we change to Laplace
transforms.

The transforms of the function 0 and 7 are:

[(s) = .5 + 0.165 + 0.335 (10.34)
s+a

T(s) [0. 5  c + 0.5 _ (10.35)

The transforms of Equations (10.32) and (10.33) become:

? CL
CL(S) -s- s a(s) i(s) (10.36)

CL(S) =Z

CL(S) s 2a 8 wa(s) T(s) (10.37)

The corresponding transfer function will be:

( L(s) - [.5 + 0.165 .335 (10.38)1ls -;-(a-) zs +a a+b

2() - +
CL(s) Vo . -s+c 0. -d (10.39)
Wa(s) VO Za L0 s+c s d]

Computer elements having these transfer functions will simulate Equations (10.32) and
(10.33).

Transient effects which accompany the determination of lift are of very short
duration. They are important only if their own periods of motion are very small.
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This is not the case when the motion of the rigid aeroplane is studied, but it may
occur if we take into account elastic deformations.

Wagner' s and Kussner' s functions come into the phenomena bringing structural
deformations into the action; a problem making use of these functions is studied in
Section 11.2.



C HA P T E R

NOTION OF A NON-RIGID AIRCRAFT

J.Czinczenheim

11.1 SUPPLEMENTARY DEGREES OF FREEDOM.
THEIR REPRESENTATION ON THE COMPUTER

As was established in Section 1.4.2, the motion of a non-rigid aircraft is deter-
mined by adding to the degrees of freedom for the rigid aeroplane, supplementary
degrees of freedom, depending on the modes of deformation and the generalized coordin-
ates. The choice of the supplementary degrees of freedom will be determined by the
physical nature of the problem to be solved, and must be made carefully. It may
happen that, after a first study, new degrees of freedom may have to be added in order
to improve the precision.

The set-up of the computer for this problem will be made as in the case of a rigid
aeroplane. Every equation defining a generalized coordinate involves the presence of
a loop, whose entries are the generalized coordinates, their derivatives, and other
variables that exert, by coupling, an action on the generalized coordinates.

11.2 SOME PARTICULAR CASES

11.2.1 Combination of a Gust with the First node
of Wing Bending

It is desired to find the aircraft motion for gusts of different shape, and to pre-
dict the maximum load factor. In the example to be considered the aircraft is fitted
with wing tip tanks, and it is required to study the influence of these tanks on the
wing deforration, under the action of a gust.

The gust chosen is defined by the vertical velocity wa of the ambient air; it is
represented by an isosceles triangle, the base of which is proportional to the dura-
tion of the gust, and whose height is the maximum velocity of the gust.

Such a gust produces principally a vertical translation of the whole aircraft and
a bending of the wing. It can be assumed that motion in pitch and higher order wing
deformations are negligible.

The degrees of freedom used will be the vertical velocity wao of the centre of
gravity, and the fundamental mode of wing bending, characterized by a mode ýf(y) and
a generalized coordinate qf(t) .

It is assumed that the aircraft responses are so fast that it is necessary to take
account of non-stationary effects.
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tion of the gust, and whose height is the maximum velocity of the gust.

Such a gust produces principally a vertical translation of the whole aircraft and
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1i.2.1.1 Equations of Motion

The equations of motion are obtained by applying (4.34) and (4.36). They are:

M(*0 + qf) = Zj (11.1)

M°o + M(4f + f)2qf) (11.2)

M .being the mass of the aeroplane and m the generalized mass (= fC 2 di)

If the deformation mode used is the free symmetrical wing bending mode,

MCf' dm =0

and the two degrees of freedom are not inertially coupled.

The aerodynamic forces are defined by:

Zi = ZWOwG0 + Zqfqf + Za (11.3)

Qi = Q0woo + Qqfqf + Q (11.4)

where:

Za = force produced by gust 5 = bending moment produced by gust

Zq = fPQf d-i % = fpqft d-

= d = fpwi do-

S&= f a~ St O = fa t

These quantities will be determined as functions of the angle of attack. The variation
of angle of attack during the time interval r , 7-d'r on an element of wing spandy is + of

d~r

Vo

The corresponding reaction dZ at time t will be:

dZ = C[vMc dy+ |eTr) -' (11.5)

0 V dc L -.A d- O(t -r
and, taking into account the angle of attack variations between times 0 and t



158

dZ = :PV oc dy '-a (r) + W fr O(t - r) dr (11.6)

Integrating over the whole wing, we have

Zw + ZqfQ f = %PVoS -z J () ( + Pzf(7r O(t - T) dr (11.7)

where

ftc (11.8)

S

By similar reasoning, we obtain ot[
Q W + Qq f(f = %PVoS -• - rI (7-) + r 2 Qf(r 0(t - r) d -r (11.9)

where

F 2 = it (11.10)

The force Za and the bending moment Q, produced by the gust are expressed as
follows:

Za = S !V -- j a(r) T(t - T) dtr (11.11)

d~ t

= ½pVoS - P *"C,5 r) T(t - r) d' - (11.12)

Combining the preceding results, we may write:

= t *Io (Tr) + rF0f(r)] (t - - ") d -r + f a (,r) T(t - r) d7- (11.13)

i(df + 2fqf) = ItI + IF24f(T)] •(t - T) dr + I a(T) T(t - T-)dT (11.14)
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where

2M
- M (11.15)

dC

m
and l 1 (11.16)dCs

M1.2.1.2 Passing to the Transforms

Let us now write the same equations using the Laplace transformation. Let

wa(s) be the Laplace transform of wa(t)

W~o0(S) "( 0 M Wot

qf(s) " " " " qf(t)

((s) " " " (t)
1Y(s) "t ft " " " (t)

Let us put

Wao(s) +FIsqf(s) = A1 (s) (11.17)

We (S) + F 2sqf(s) = A2 (s) (11.18)

The preceding equations will be written:

XSwo,(s) = s(s) 0(s) + swa(s) V(s) (11.19)

1 j52qf (s) + fl)2qf(s)] = sA2 (s) 0(s) + swX(s) V(s) (11.20)

The functions O(s) and T(s) are known (formulae 10.34 and 10.35) and one has
to solve two equations relating the gust velocity input wa(s) and the two outputs:
wing tip deflection qf(s) , and centre of gravity displacement speed wo0(s) , both
inputs and outputs being expressed as Laplace transforms:

skWao(s) = A1(s .5 + 0.165 + 0.335 +

+ wa(s) 0.5 + 0.5 (11.21)
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1 2q(8) + 2q(s A2 (s).5 + 0.15- + 0.335 +

+ w (a) .5 - + 0.5 (11.22)

The given data (mass and wing flexibility) are Included in the parameters X , I , fl.

The patching diagram (described in Fig. 108) permits the resolution of these equa-
tions. It should be recalled that the computing element, represented in Figure 60a,
gives the transfer function a/(s + a) when 1/a = RC

As a result of the properties of analogue computer elements simulating a transfer
function, any input simulating a time variation of the gust velocity will produce
outputs corresponding to the time variation of the input.

11.2.1.3 Results

Figure 109 represents a record obtained in a particular case. During the study of
the problem, the variables were the aeroplane mass, the weight of the tip tanks, and
the duration of the gust. More than a hundred combinations were tested in order to
find the critical cases.

For each aeroplane weight, a set of curves has been established giving the total
deflection at the wing tip for different tank weights and gust durations. Figure 110
shows such a set.

11.2.2 Influence of Wing Torsional Rigidity on Aileron
Effectiveness

The loss of aileron effectiveness due to torsional deformation of the wing is a
well known phenomenon. Until now its study generally involved only the static aspect
of the problem. With thin and relatively heavy wings, the dynamic phenomenon assumes
some importance in rapid manoeuvres where inertia reactions may alter the initial
response produced by a sudden aileron deflection.

11.2.2.1 Equations of Motion

The wing deflection will be represented by two generalized coordinates. The first
describes the torsional fundamental mode and is a good approximation at the beginning
of the manoeuvre when the inertia forces are predominant. The second describes the
wing static deformation under the action of the aerodynamic forces produced by the
aileron deflection, and gives a satisfactory approximation for a steady motion in roll.
The combination of the two deforw'tions gives satisfactory precision in the study of
the whole manoeuvre.

The degrees of freedom considered will be:

(1) For the airframe motion, the angular velocity in roll, p

(2) For the wing deformation, the fundamental antisymmetric torsion mode
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ýt(x,y) = -t(y) (x - X')

with generalized coordinate qt and the static deformation produced by the
action of the aerodynamic forces due to aileron deflection:

t'(xy) = -0,(y) (x - X,)

with generalized coordinate q.

By application of the general method (described in Section 4.2) we obtain the
equations:

IxP + kxtQt + kxqss

=Lpp + + LQsI + Ltt+ + L

kxto + mttdt + mtsds

= + t -(a, t + at - a.,)q +
p (Qt t q ( qs

+ Qt*t z + Qt 5sls + Qt 8 a9 (11.23)

kx8P + mstdt + mss

= QspP + sqt - a 2,1)qt + (Qqs - a2 2)qs +

+ + % 4 8 .+ QSSa a

The coefficients of these equations have the following values:

kxt J .o~t dm = OtYo(X - Xe) - dy

k J = Yo~s dm =-fyo(X -xe)-dy

JY (11.24)

mtt= f• dm = f (x XXe)2 dml

mts = mst = fstOtS(x Xe) 2 dm

ss= dM = f Xe) 2 d.

The quantities a,1 , a1, = a21 , a 2 2 are the coefficients obtained from the virtual
work of the elastic forces:
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S= "/Pp~o do"
Lp =11 y0CO

Lqt = -fPqty. dor

LSa = -fpraaY d'7

Qtp = "/pvtt &r = fPpot(XXe) )d7 = fdY~tfPp(xg.xe)dx

Qtqt = "fPqtt dor = fPqt~t(X-Xe)dir = fdY~tfPqt(xK-xe)dx

QtQs = "f/ps.t dCr = fPQsOt(X-Xe)dcr = fdYi9tfPqs (X Xe)dx

Qt a = -fps& t Ck" = fpsaOt(X-xe)&I = fdYttfPSa(xg-xe)dx

Qsp -f~pps d7 =fPpot(x-xe6&r = fcIY~fPv(xs-xe)dx

Qs t= ' fP o-=fPqtt(X-Xe)do = fdy9afP qt("xe)dx

Q% =-fPqa sC = fPqOt(x-Xe)dO = fci.Yfpq,( xxe)dx

Qa 1= Jf~a~s C1 fPB&Ot(x-xe)db- = jd.y6,f aJ (xa..xe)dx

11.2.2.2 Set-Up

Figure 111 represents the set-up of an analogue computer for the preceding equations.

The calculations may be generalized and would permit the finding of the set-up

representing the aeroelastic effects in the more general case, either for longitudinal

or for lateral motion. The capacity of the computer may, nevertheless, limit theoretical

possibilities.

11.2.2.3 Discussion of the Results

The results obtained with the analogue computer show the inertial effects during

the non-steady phase of the motion, and the loss of aileron efficiency during the

steady phase.

For an unswept wing, which is the only case covered by the preceding equations, it

is found that the non-steady phase depends on the respective positions of the centre

of torsion, the centre of gravity, and the secondary focus.
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Figure 112 represents a recorded example of a response to aileron deflection.

11.2.2.4 Other Problems

The general method described in Section 4.2.2 is applicable in numerous cases.
Only the most important ones are mentioned here:

(a) Influence of fuselage flexibility on the elevator or rudder control;

(b) Influence of torsional rigidity of the tail plane on the stability;

(c) Influence of the location of the servo-mechanism sensors on the stabilization
of a non-rigid aeroplane;

(d) Alteration of the aerodynamic loads due to structural deformations.

I



CHAPTER 12

THE ACTION OF THE CONTROLS

F. C. Haus

12.1 EFFORT APPLIED BY THE PILOT

In Chapter 10 we carried out the calculation of the motion of an aircraft when the
deflection Se is known as a function of time.

However, the control variable for the pilot is not the displacement of the control
device, but the force F exerted on it and the problem of most practical interest in
the case of manual control is the calculation of the motions of the aircraft, knowing
the applied force.

To solve this latter problem, it is necessary to determine the displacement
produced by a force F , for which we must know the mechanical behaviour of the con-
trol mechanism.

In many modern control systems, the command given by the pilot is applied by
intermediate servo-mechanisms. Often, an automatic pilot acts on the controls at the
same time as the human pilot.

Numerous different systems are possible. They behave very differently and an
analogue computer can usefully be employed to predict the results given by the actual
device.

12.2 DIFFERENT TYPES OF CONTROLS

A brief description of a certain number of control methods will be given here.

12.2.1 Reversible Manual Control

Let S. be the displacement of the stick, positive when the displacement is
forward.

The control is replaced schematically by a lever for which

Se = 8d-a2 (12.1)

The hinge moment He produced by the action of the aerodynamic forces on the eleva-
tor is positive when it tends to lower the trailing edge of the control surface.

This hinge-moment He (Fig.113) produces a moment 'e about the pivot of the stick:

164
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h'e = He d 2 (12.2)
d3

positive when it tends to displace the stick forward.

Let 1•t be the moment applied by the pilot:

hV = F d, (12.3)

where F is the force exerted on the stick by the pilot. F is positive when the
pilot pushes on the stick.

The condition of balance

S+he = 0 (12.4)

shows that when He is positive the pilot must exert a negative force. He must pull
the stick to balance a positive hinge-moment.

The moment H* is described by a moment coefficient:

He = CHeS• •pV 2  (12.5)

where S' is the area of the moving part of the control surface and I is its
chord length.

In the static condition, CH e is a function of the incidence ah of the tailplane
with deflection 8e and of the tab setting St . We can often linearize the function

in the form:

CHe = b0 + blah + b2 e + b3at (12.6)

where ah represents the true angle of attack of the tail. This angle is itself
given by:

ql
ah = a - e + +-- (12.7)

V0

where e is the downwash angle due to the wings and 6 is the tail setting relative
to the wing chordline.

We can write:

dE
C= 0 d a (12.8)

da

a ( = - + () Eo) + -q1 (12.9)
dt Vo0
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and, as the sum (6 - c0) is constant, we can incorporate the product b1 (e - E0)
into b. .

The expression then becomes:

CHe b0 + bI [ -(l ) + + bb2s + b3 t (12.10)

In the dynamic condition, CHe depends on the derivatives of the variables. In
the transonic region, CHe varies non-linearly with Mach number, and the simple
relation given above ceases to be of use.

In the most simple control, the tab-setting St remains constant during the course
of a manoeuvre. The tab is used only to reduce the effort of the pilot in steady
flight.

For a perfect control, the angular displacement of the stick, 5s 1 is proportional
to Se - but the force F is not proportional to Se ; it depends necessarily on the
parameters ab and V.

Classical methods of calculation exist for determining the forces F which it is
necessary to apply in the steady state, to maintain the aircraft in level flight at
different speeds, or along a curved flight path under various normal accelerations n

However, secondary mechanical effects are superimposed on the aerodynamic effects.
These are:

(a) The action of the accelerations on all the masses forming the control mechanism.
The accelerations produce moments about the pivots of the system;

(b) Friction in the controls;

(c) Elasticity in the controls;

(d) The presence of backlash.

12.2.2 Reversible Controls Using Tabs

This control includes a device which adjusts the tab-setting 8 relative to the
position S of the elevator, in such a way that the quantity bait would partially
balance the effect of the term b2se . In principle, such a control, shown in
Figure 114, does not differ essentially from a simple reversible control.

There exist further types of control using tabs to reduce the stick force, such as:

(1) A free elevator, in which the adjustment of the tab setting by the pilot alone
determines the position of the elevator;

(2) An elevator connected to the levers by springs, combining the above two cases.
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The characteristics of these particular systems have often been analysed, and we
would need to deviate from our prograsme to deal with them here.

12.2.3 Irreversible Control by Hydraulic Jack Without Direct
Connection Between Stick and Control Surface

We wish to produce a deflection Se of the elevator, proportional to the displace-
ment of the stick. This latter is connected only to the control valve of a hydraulic
Jack or servo-motor. Any displacement S. of the stick and of this control valve,
above a certain value, admits the fluid in the Jack on to the face of a piston.

A feed-back device sensitive to the displacement 8 of the control returns the
valve to the neutral position, when the displacement I reaches a given value.

In the schematic diagram (Pig. 115), the displacement of the stick advances the
pivot A to A'. This movement brings B to BI and opens the control valve.
The piston is displaced, in its turn. producing the deflection Se , but causing,
further, the displacement of point C . This. point C , moving to C' , returns
B' to B , thus cutting off the supply of fluid and stopping the motion of the
piston.

We can proportion the control sucb that the force on the piston is considerably
greater than the hinge moment. In these conditions, the final position of the ele-
vator becomes independent of the hinge moment.

The response will, nevertheless, lag behind the command. It will be defined by a
transfer function:

So(S)
G(s) (12.11)

8o(s)

The control is irreversible. The pilot exerts only sufficient force to overcome the
friction in the control valve. This force is constant and does not depend on the
position taken up by the elevator. It disappears as soon as the movement is stopped,
so that the stick force in steady flight is zero, no matter what the deflection of
the elevator may be.

It is necessary to build in a device providing 'artificial feel' in order to
simulate the handling characteristics of an aircraft using manual control.

12.2.4 Manual Control Assisted by Hydraulic Jacks

Types 1 and 3 just described constitute extreme cases. We can use an intermediate
type of assisted control, where the effort producing the deflection of a control
surface is supplied partly by the Jack and partly by the direct action of the pilot.

We impose, as in the preceding two cases, the condition that the deflection S.

be proportional to the stick displacement S.

The schematic representation in Figure 116 shows that the displacement of the
stick produces directly a deflection Se,i of the elevator equal to a fraction of
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the required deflection, but produces at the same time a movement of the control
valve of the servo-booster. This is put in motion, and increases the elevator
deflection. When the required deflection Be is reached, the control valve is
closed and the mechanism stops, but the force in the lever EP , balancing the hinge
moment, is transmitted only in part to the rod AD and to the pilot's hand.

12.2.5 Electrical Servo-Controls

A control using an electric motor can produce a deflection 8 proportional to a
signal.

This signal may be related either to the stick displacement s or to the stick
force F . Well known transfer functions will relate the displacement to the signal.

12.3 GENERATORS OF 'ARTIFICIAL FEEL'

The controls often incorporate a device to provide artificial feel. Such apparatus
is essential in cases 2 and 5, and is often used in cases 1 and 3. It is also
necessary in the majority of manual pilot/auto-pilot combinations, which we shall
study later.

Let us briefly describe the principle of artificial-feel devices. The forces can
be functions of control deflection (cases a, b and c) or of the response of the air-
craft (cases d and e).

The first cases give rise to the following possibilities:

(a) Reaction pi-oportional to the stick deflection S

The scheme in Figure 117 clearly shows the principle. An angular displacement
a. of the stick in the positive sense (nose down) causes a displacement s of point
N . The spring, in being stretched, exerts a tension R = kes determined by the
elastic modulus ke , assumed positive. This tension R produces a moment about the
pivot of the stick:

If= Kiss (12.12)

The condition of equilibrium:

h p + If = 0 (12.13)

shows that F will be positive. The pilot must push on the stick to produce a dis-
placement Ss > 0 .

(b) Reaction proportional to the displacement but a function also of V2

In moving the pivot P by a servo-mechanism sensitive to V2 
, the ratio d6 /ds

becomes a function of V2 .
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(c) Reaction proportional to rate of stick displacement-

The force Is provided by a damping device (see Fig.118). We now have

d~s
K d' (12.14)

22 dt

with K2 < 0

Note

The action of the simple device defined in (a) gives a response proportional to

Arrangements giving a reaction which is a function of the displacement S. but
not proportional to it, are possible (Fig.119).

Generators of an artificial-feel which is a function of the response of the air-
craft work as indicated below.

The moment produced about the stick hinge will be designated by h r when they
depend on the aircraft responses. One encounters the following cases.

(d) Reaction a function of the load factor

The device shown in Figure 120 consists of a mass m , or bob weight, at point P
subject to a generalized acceleration. This mass produces a moment

R= - dmapzd (12.15)

with d7 considered positive when the bob weight is behind the stick.

The general expression for ap, is given in Section 2.3. The quantity a p z  is
equal to -ý " gz plus the complementary terms depending on the coordinates of'point
P , and functions of the angular velocities and accelerations. Among these terms,
the term -xq' is most important.

When point P is coincident with the centre of gravity, the moment hr, can be
expressed as a function of the normal acceleration n

-mgd n = K'n (12.16)

The sign of the moment changes with the sign of d 7 . The coefficient KI is nega-
tive when d7 has the direction shown in Figure 120.

(e) Artificial-feel proportional to the angular acceleration

The apparatus represented by Figure 121 consists of bob weights disposed symmetric-
ally about the centre of gravity, exerting a moment independent of the acceleration
az of the centre of gravity, but depending on the angular acceleration :
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7d0d1 d2 = 
K 4 

(12.17)•',2 dq2

The coefficient K2 is positive when the levers d. are orientated as shown in Figure
121 and negative when orientated in the opposite sense.

12.4 IMPERFECTIONS OF THE CONTROLS

The control mechanisms are affected by the following imperfections:

(a) Inertia forces

The physical components of the controls frequently introduce loads which exert a
similar effect to that produced intentionally by balance weights. There is no justi-
fication for treating these moments separately. The concept of resisting moments can

be generalized. In the following, the moments represent not only moments applied
about the stick axis by balance weights introduced intentionally, but also those due
to control imperfections.

(b) Friction

Often, the pilot does not produce any displacement until he exerts, in one direc-
tion or the other, a force F0 (corresponding to a moment ho about the pivot of
the stick). Dry friction is the cause of this phenomenon, and we can represent this
schematically by a constant opposing force which arises as soon as the out-of-balance
external forces produce a displacement.

(c) Elasticity

Elasticity combines with friction to interfere with the kinematic link which
exists between S. and Se

If a friction force F0  exists in the neighbourhood of a control surface, the
force F and the deflection S. will serve only to deform the linkage, without
moving the control, so long as F < F0 (see Figure 122).

(d) Backlash

Backlash is only mentioned here in passing.

12.5 RESPONSE OF THE AIRCRAFT TO A FORCE EXERTED BY THE
PILOT. CASE OF REVERSIBLE CONTROLS

We suppose that in controlling the action which he exerts on the aircraft by a
force F applied to the stick, the pilot is not influenced in that action by the
position *S of the stick.

In the case considered, the elevator undergoes a deflection Se related to the
displacement S of the stick by linkage geometry. But the conditions are such that
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there exists no unequivocal relation between Be and P . The displacement depends
not only on the force, but on other factors also. The response of an aircraft to
the excitations to which it is subjected is determined as a function of the deflec-
tion 8e , by the system of equations already studied in Section 10.1. It is
necessary now to add the equations determining the deflection Be as a function of
the force P.

To this end, we must write the equation of equilibrium of the moments about the
control hinge-line. This equation was given in Section 4.3.1 for the general case.
We shall assume now that the elevator is statically balanced, thus simplifying the
expression (Pig. 123).

Let J be the moment of inertia of the elevator.

Referring the moments exerted by the balance weights to the elevator hinge, we
have:

dt2 dt d2

where

hf )' If +If 2 IKiss +K28s (12.19)

Mr hr + tr K'n + K' (12.20)
Sr 1 2.}

He jb= + b --_+- + b2&0 + b Sr l'pS(V0 +AV) 2  (12.21)

The moments opposed to pilot action vary according to the design of the mechanism,
and do not necessarily depend on all the variables considered. The hinge moment
depends on the variables a , q , Be ' and (V0 + AV) 2 . The dry friction force
varies according to the sign of the rate of displacement as indicated above.

The calculation of the deflection cannot be made independently of the system of
equations representing the motion of the aircraft, since it depends on certain out-
put variables from that system.

We can calculate Be analytically as a function of F only if we neglect all
the effects which render the equations non-linear. Thus we consider the following
simplifications:

(1) In the expression He , we neglect AV2  and the products of AV with the
other variables;

(2) We write Be = 8•(d 2/d 3 ) ' that is to say, we neglect the deformations;

(3) We suppose that If is proportional to Ss , that is we study only the case
of artificial feel having linear characteristics;
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(4) We must replace the friction force F0 by a viscous resistance.

The equations for the aircraft together with that for the controls determine a 6th
order system which presents a new natural frequency, corresponding to the displacement
Be . This frequency Is much higher than that of the oscillatory motions of the air-
craft.

The problem contains a case of special importance, viz., the case where F is

zero. This is the case of an aircraft flying 'stick free'.

The use of an analogue computer to solve the system of equations permits, on the
contrary, the introduction of the non-linear effects. The most important is the
friction force, which can easily be simulated by diode circuits.

Note

The moments hr produced by the feel device are functions of the response of the
aircraft. They act about the stick pivot, in the same way as the moments applied by
the pilot. They can help to improve the stability of an aircraft flying stick-free,
if they act in the right sense.

12.6 USE OF ANALOGUE COMPUTER. STUDY OF THE LONGITUDINAL
NOTION OF AN AIRCRAFT FLYING STICK-FREE

The equation

e89•t + j Ld = Sl•PV°2 " + b2+e + dtj

dt2  dt n~I\ t v dt 5
+ (F- F) -L3 +()%(12.22)
d fr'

2 d2

must be added to the system defining the motion of the aircraft. The moments Mf
and hr produced by the artificial feel generators will be expressed as functions of
the variables concerned.

Figure 124 represents the wiring diagram for the case where the motion of the air-
craft is represented by Equations (10.1), which become numerically*

dýU + 0.014 - 0.039a + 0.08850 = 0

dt

dt + 0.175G + 0.77a - q = -0.07088e (12.23)

*This is the aircraft wherefrom the locked control behaviour has been calculated (Section
10.1.1.3). Its static margin is given by Cý. = -0.74.
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dq f (12.23)q + 0.0293 + 2.21a + 1.82q = -6.048s (

dt - I
dOI
dt -Q = 0

where the control system corresponds to the following numerical values:

S IIPVol - 2 x 10'J

L de - 0.60

: = 0.174

Vo

d1d3 = 0.175
d2

b2 = 0.15

hf = 0 (no artificial feel depending on displacement of the stick)

tr = K(q - 6) (artificial feel depending on the acceleration sus-
tained by the aircraft at its centre of gravity).

We have studied the case of viscous damping, without friction, corresponding to:
b4 = -0.0025 . F0 = 0 , and, conversely, the case of friction without viscous damp-
ing, in which we have:

b =0 Fo ý 0 (to be defined later).

Different numerical values have been assigned to the coefficient b, . The scheme
permits the solution of the following problems:

(1) Investigation of the influence of the numerical value of b,
on the stick-free stability

This is the problem of stick-free flight, when F = 0 . We consider the case of

viscous damping. There is no artificial feel.

Equation (12.22) finally becomes:

d'S dq dS- + -- + 5 _e + 3008e - 348bq -1200b, = 0 (12.24)
dt dt dt

tThe numerical value of I/V 0 has been raised to 0.174, in order to take account of the down-

wash time lag.
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We know that when b, and b2 are of the same sign. the static margin stick-fixed
is greater than that stick-free.

On the contrary, if b, and b2 are of opposite sign, the static margin stick-
free is greater than that stick-fixed.

Figure 125 shows the time-variation of the variables a. 0 B , q 0 and 8 subse-

quent to an initial perturbation /Aa = = 0.10 radian, for b, respectively equal
to:

+ 0.0833

+ 0.04165

0

- 0.04165

- 0.0833

(2) Investigation of the response of an aircraft to the same initial
conditions, but with a friction force

The moment proportional to d e/dt is replaced by a moment whose sign depends on
dSe/dt but whose value remains constant. We have then fixed this value at that which
the viscous damping would produce when dSe/dt = 0.1 rad/sec. This consists of
replacing the term 5d6e/dt by a term

F0 dId 3 = ±0.5 sec-2 .
J d2

the ± sign being that of the derivative dSe/dt . We have further studied the case

of a friction force having twice this magnitude.

The circuit used for this analogue computation is shown in Figure 124.

The tests were made for the same initial perturbation 6a =/68 = 0.10 rad. The
result is shown in Figure 126 uniquely for the two values b, = +0.0416 and
b, = -0.0416.

(3) Investigation of the response of an aircraft fitted with a
generator of artificial feel proportional to the load factor

The case considered involves viscous damping and stick free (F = F0 = 0)

The moment produced about the stick pivot by the generator of artificial feel was:

r = K(q - 6.) (12.25)
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The corresponding moment about the elevator hinge-line was represented by:

- mr = K(q - a)
d2 J

and the test was made with the value of K respectively equal to 0 and +50 sec° .

The original scheme was completed by the circuits having to introduce a term in
(q - 6) into the equation in d28e/dt2 .

The initial condition is the same as in the preceding cases. The result is shown
for the values of b1 equal to +0.0416 and -0.0416 (Fig.127).

(4) Investigation of the influence of a generator of artificial feel
in the case of zero static margin

The aircraft was supposed to present a zero static margin with stick fixed; we
have then taken Cm. - 0 instead of Cml = -0.74.

The coefficient of the term in a in the equation in dq/dt has become zero.

Stick free, the static margin falls further when b, is negative.

The analogue computer shows that the effect of the generator on artificial feel is
clearly stabilizing.

Figure 128 shows the response of the aircraft to a perturbation La -0 = 0. 1 rad
for the case b, = -0.0416 with three values of K:0, +50 and +100 sec" 1,

(5) Response of the aircraft to a hinge moment applied suddenly

The system defined by the equation characterizing the first problem was subject to
an initial condition

did
F0  d

The response is shown in Figure 129 for the cases

b = 0.0416 bi = -0.0416

for a force F. characterized by a given value of

dtd

12 - -5 sec-2

J

The initial condition consisted in introducing into the integrator XI, an initial
voltage of 50 volts through a resistance of 100 KQ.
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Note

(1) Order of agnitude of the forces

The presentation Just made does not allow of an immediate realization of the magni-
tude of the forces brought into play.

In the kilogram-metre-second system, the moment of inertia of the elevator has
dimensions PLT" 2 .

If the dimensions of the aircraft are such that the numerical value of J in these
units is 1 kg m sec , the friction envisaged corresponds to a moment of 0.5 and
1 kgm about the hinge-line, that is to say, a frictional force measured at the stick
of 0.5/0.415 and 1/0.715, or 0.7 and 1.4 kg.

The feel generator exerts about the hinge-line of the elevator, under the action
of an incremental load factor An = 1 , a moment:

d3

d 4.4 kgm for K = 50 sec"
2

= 8.8 kgm for K = 100 sec" 1

The moment applied in problem 5 corresponded to a couple on the hinge of 5 kgm,
that is a force on the stick of 7 kgs.

(2) Note on the computer

The calucations described in the present example have been effected with very small
equipment, using equations which had not undergone any preliminary change of scale.
This explains the use of occasionally unusual ratios between the input resistances and
the feed-back resistances. We think, however, that they are effective in demonstra-
ting the results that can be obtained at very low cost.

12.7 TRANSFER FUNCTIONS OF POSITIONING SERVO-MECHANISMS

12.7.1 Existence of a Transfer Function

The determination of an aircraft response, the controls of which are actuated by
servo-mechanisms, can only be done if we know the transfer function of the servo-
mechanism.

The scope of this study will be limited to positioning servo-mechanisms, which
resolve the following problem: to produce a control surfaco deflection 8 that is
always proportional to an input x , i.e., 8 = Ax .

A servo-mechanism can only achieve this programme in an imperfect way. The servo-
mechanism is characterized by a transfer function

1 5(s)
U(s) = A x(s) (12.26)
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not equal to unity. This transfer function varies according to the characteristics
of the servo-mechanism and must be reproduced by the analogue computer. We shall
examine two main cases:

Case 1. The order or input x is the displacement 8S of the control column, or
of a mechanical part linked to the column. The servo-motor is a Jack. The control
deflection Be is proportional to the piston displacement.

Case 2. The input x is an electric voltage. The servo-motor is an electric
motor. The control deflection Be is proportional to the angular displacement of the
motor. The voltage, which acts as the input, may be proportional either to a stick
displacement 8* , or to the force P exerted by the pilot.

In both cases, the design of a positioning servo-mechanism involves the use of a
feed-back device.

One must, at any time, subtract the control deflection angle, divided by A , from
the input x . This gives a signal

o, = k - (12.27)

where k is k simple proportionality factor. It is this signal a which actuates
the servo-motor.

12.7.2 Control by Means of a Jack

Let us look again at Figure 115. The input x is nothing but the displacement
AA'; the signal o* is the displacement B'I of the slide valve; and the feed-back
quantity S/A is the displacement CC' . The lengths of the rods are such that the
control valve comes again to its initial position (a-- 0) when the piston displace-
ment has produced the required control deflection.

The analysis of the motion shows:

(1) That a minimum slide valve displacement is necessary before the admittance
ports are uncovered - there is a threshold;

(2) The piston displacement will be proportional to the oil flow into the
cylinder;

(3) The oil pressure action on the piston depends on the pressure loss through
the cylinder ports; the pressure loss is a function of the port area and the
oil flow m ;

(4) The rotational equilibrium conditions of the control allow us to find the
angular acceleration, resulting from the action of the pressure exerted on
the piston and the opposite aerodynamic hinge moment.

The analysis is somewhat complicated. When it is possible to perform it, the
behaviour of the servo-mechanism will be characterized by a relation
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m f(o) (12.28)

relating the oil flow to the valve position.

As the displacement speed of the piston and the control surface is proportional to
m , we obtain finally:

8 k1fm dt (12.29)

and it becomes possible to simulate the transfer function

I(s)

with the set-up indicated in Figure 130, once the function m f(c) is known. This
set-up comprises a function generator simulating m = f(cr) and an integrator.

In the particular case when

Is = k2a (12.30)

we see immediately that

8 = k k 2 fodt = k2k x (12.31)

or, in symbolical writing,

(sl+k~kl\1 1

+)s = klk 2 -x(s) (12.32)

1
S(s) = A x(s) (12.33)A

1+--s
k1k 2

These relations define a first order transfer function which can be simulated by a
block using only one amplifier.

12.7.3 Control by an Electric Motor

The input x gives a signal a which appears to be an electrical voltage E
This signal can be amplified. Let us write:

The voltage E is applied to the armature of a d.c. motor with independent excita-
tion, producing a constant induction field.
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Let r be the torque exerted by the motor

Z the impedance of the armature (= R + sL)

0 the angular velocity of the motor

k2i the counter electromotive force.

The torque is proportional to the intensivity of the armature current

Let k. be the reduction ratio of the transmission between the motor and the control
surface:

dS
- = k

dt

and in be the inertia moment of the motor. Then the rotation equation of the con-
trol surface will be

d 28 1 d'S = l ,d' +J4l + J a -k z x- + He (12.35)

k7 dt 2  Z A A kidtk

If we make the following simplifications:

(a) writing He = k5 s . with k < 0 , because it defines a resisting moment, and

neglecting the effect of the outputs q and a on the hinge moment.

(b) neglecting JX,

(c) neglecting the armature self induction, by writing Z = R , we obtain:

+I J.d 28 + k + k = (12.38)
k4R dt AR 5 R

The equation can be written in symbolic way:
2|

(S2 + 2ýwns + 4)S(s) k A x(s) (12.37)

1.ARkI
klk 3

or

S(s) 1 A x(s) (12.38)s2 + 2ws+ k

k 1k3
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with

k is

1
J +.-Jm

kk3k 
(12.39)

AR

k4

We know that • is the relative damping and the frequency of the undamped
system. When a steady state (a = 0) is reached, we will find:

S =KAx

1
with K =

1 ARk5klk3

There will, therefore, be a static error

AS = (1 - K)Ax

between the desired deflection

= Ax

and the deflection actually obtained.

This static error can only be eliminated by one of the following processes:

(a) Suppression of the resisting moment, proportional to the control surface, which
means k. = 0 ;

(b) Modification of the scheme by making use of a term depending on the integral

of the error.

The theory of servo-mechanisms yields a complete theory on these solutions.

Note

(a) The case described is the most simple electric servo-control. If the motor is an
a.c. two-phase one, the transfer function will always be of third order.

(b) The transfer function will also be of third order in the case of the d.c. motor,
if the armature self-induction L is not neglected.
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12.7.4 Miscellemesus Cases

Besides the two main cases just studied, we can find combinations where the input
x is a voltage, or the servo-motor unit is a jack.

In this case, servo-valves, the scheme of which will be presented later (Section
13.4.1) will fulfill this function.

One could also use the electric signal to activate an electric motor of very low
power, which should only displace the slide valve of the Jack.

The determination of the transfer function for all possible arrangements would
exceed the scope of this paper, in the same way as a survey of the cases where the
representation of a servo-mechanism by a transfer function becomes inadequate and
requires the use of a transfer matrix.

12.8 RESPONSE OF THE AIRCRAFT TO PILOT ACTION IN THE
CASE OF SERVO-CONTROLS

The servo-motor transforms the signals given by the pilot into a ccntrol surface
displacement. This introduces the alteration defined by the transfer function. The
pilot signal may be either the force F exerted on the stick or the stick displace-
ment.

When the input is so clearly indicated, it will be easy to find the aircraft response.
But the input given by the pilot is not always transferred to the servo-mechanism in
its original form. It may be altered by the action of the artificial-feel generator.
when the latter is activated by the aircraft response.

In more intricate arrangements, the human pilot orders are combined with orders
coming from the error detectors belonging to the automatic pilot. The behaviour of
such devices will be considered in Sections 13.8 and 13.9.

The use of servo-controls not connected with an auto-pilot is becoming uncommon
and we will only comment shortly on this case.

.(a) Control surface deflection proportional to pilot effort

The effort exerted by the pilot on the stick is measured by a grip lynamometer.
The electric signal produced by this device is the input acting on the servo-motor
(Pigs. 132 and 133). One has only to add the equation

Se(S) = K G(s) P(s) (1-2.40)

where G(s) is the servo-control transfer function, to the equations of motion. This
provides us with a system of equations relating the input F to the output variables
u , a , q , e in the case of the longitudinal motion. When one admits that the pilot
is able to exert the required force on the stick, independently of the stick displace-
ment s. 1 it seems useless to allow a stick displacement. The control column could
be replaced by a fixed dynamometer.
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Such an arrangement is, however, quite exceptional and has, to our knowledge, only
been used for test purposes' 3.

Pilots report that manual control with a fixed stick is possible but not so agree-
able as control with a moving stick. This fact throws some doubt on the hypothesis
that a pilot Is able to control the force exerted when there is no displacement of
the stick. The normal response of the pilot has its origin in training with controls
where the control surface deflections are proportional to the stick displacements and,
therefore, it seem that the normal response of the pilot is to exert an effort and
to displace the stick simultaneously, the variable that the pilot can best appreciate
being nevertheless the force rather than the displacesent.

(b) Control surface deflection as a function of the stick displacement

In an elementary Jack servo-control, an described in Section 12.2.3, the control
deflection 8, is related to the stick displacement So by the transfer function
G(s) defined in Section 12.7.2.

The response of the aircraft produced by a stick displacement will be obtained in

a straightforward way by adding the relation

80(s) = G(s) 85(s) (12.41)

to the general equations of motion of the aeroplane.

But one may wish to dotermine the aircraft response when a given force is exerted
on the stick. The phenomenon must then be analyzed in two phases:

(1) Determination of the input to the Jack, which means 'the displacement ok point
A produced by a force acting on the stick;

(2) Knowing this displacement, we consider the transfer function of the Jack as in
the previous case.

The first point involves consideration of the equilibrium condition of the system
comprising the stick, the artificial feel generators, and the slide valve (Pigs. 134
and 135). The use of artificial feel generators is unavoidable in this case.

The displacement of the slide valve involves dry friction. The moment of this
friction force around the pivot of the stick will be represented here by N d

Let I be the moment of inertia of the control column and of the mechanical parts
linked to it. The equilibrium condition will be:

d 2 8I d2-A Pdl +•f 1 r+, (12.42)

Due to the direct linkage between the stick and the valve, the valve displacement
will be proportional to 8o
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It seen at first sight that the moment of inertia I may be neglected in the
preceding equation.

When K1f 1K

the stick displacement, and also the valve d'-splacement, will be proportional to the
force P , but when the artificial control forces depend on the aircraft response
1 0 , or on the speed of the displacements f - K28s , there is no proportionality
between the effort and the displacement.

As a first approximation, making 8s = &s = 0 . we find that the variable b is
proportional to the sum of the moments exerted by the pilot and by the response of the
aircraft.

The linkage between the valve and the control column will produce an elevator

deflection 8. proportional to PdI + 1r

12.9 USE OF THE ANALOGUE COMPUTER

12.9.1 Different Ways of Investigatiem

The analogue computer can be of great use for determining the behaviour of an air-
craft subjected to the control of a human pilot. Two different methods of investigation
are possible:

Method I

This method of investigation makes use of a flight simulator. The flight simula-
to is an aggregate where the aircraft behaviour is calculated by an analogue computer,
while the control system behaviour is reproduced mechanically.

The stick and the pedals are like they are in an aircraft; they develop and oppose
the same forces when they are displaced.

The two parts, computer and mechanical control system, are connected together.
The displacement of the controls introduces into the computer voltages corresponding
to the control displacements. The output voltages, produced by the computer and
representing the response of the aircraft, must act on the control mechanism and
develop control forces equal to those existing in the actual aircraft. These voltages
act also on measuring intruments identical to ordinary flight instruments. In some
cases they actuate a projector which can provide the experimenter with visual
impressions similar to those that the actual pilot would experience.

The flight simulator permits the study of the aircraft motion by placing the
experimenter in conditions similar to those which the pilot encounters in flight but,
nevertheless, in an imperfect way due to the difficulty of reproducing the accelera-
tions acting on the pilot.

The results obtained with a flight simulator depend to some extent on the behaviour
of the experimenter himself.
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Only an analogue computer is used. There are no mechanical controls. The equations
governing the controls are solved by the computer. The pilot's orders are simulated
by voltages corresponding to the independent inputs F or Be . The experimenter
does not feel the stick or pedal reactions and it is not necessary to perform the same
movements as the actual pilot.

12.9.2 Use of the Comuter Alone

As usual, the equations describing the operation of the controls and those defining
the aircraft motions are represented on the computer.

The drawing of a block diagram makes the analysis of the system far easier. Figure
136 represents the block diagram of a servo-control using a Jack, with the following
forces exerted on the stick:

Pilot force F! (the input);

Dry friction, corresponding to the valve friction;

Artificial control moment ray proportional to the stick deplacment;

Artificial control moment 1r proportional to the normal acceleration at a
point P different from the centre of gravity.

The first block represents the transformation of the force F into a displacement
Be 8 which will be the input acting on the Jack. The response of the Jack will be
governed by a transfer function which has to be simulated. It is shown in the most
general case that this simulation involves the use of a function generator m = f(o)
followed by a7 integrator.

The deflection Be is the output of the Jack, and energizes the block representing
the aircraft, the response of which was studied in Chapter 10.

As the equations defining the behaviour of the different parts of the system are
resolved in separate loops on the analogue computer, It is possible to study easily
the influence of the various factors which exert an influence on the transformation
of the pilot force F into the displacement 8s . In particular, we may investigate
the effect of:

A change in the characteristics of the Jack;

A change in the point P , where the bob weight producing the moment 1r is
located.

The first investigation involves alterations of the function m = f(o,) . The
second investigation involves alteration of the factor multiplying the term in ci
This will occur in the block in which the acceleration an is calculated.

Monroe has shown"' that the displacement of the bob weight location P will con-

siderably affect the aircraft response.
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12.9.3 Determinatiom of an Optimum Artificial-Peel Gmerator

Let us consider a given aircraft. The behaviour of this aircraft is known and
determined by its equations of motion. The aircraft includes a servo-control system
whose transfer function is known, and should be fitted with an artificial control
force generator. We wish to optimize the characteristics of this device.

The choice of the optimum feel generator may depend on the manoeuvre that will be
performed, and the problem can only be solved when this manoeuvre is well defined.
Moreover. the fulfilment of the manoeuvre involves the intervention of a human pilot
whose behaviour may vary from one individual to another.

(a) Use of the simulator

The classical solution of such a problem requires the use of a flight simulator.
The simulator must calculate the control force that would be produced by the artificial
force generator under consideration and apply this force to the controls which are

actuated by the experimenter.

The comparison of the responses (and of the pilot's reports) obtained with differ-
ent artificial feels will allow us to grade the proposed devices. This method of
study presents two difficulties:

(1) The responses of the flight simulator will depend on the experimenter' s
training as a pilot. For equal mechanical conditions they will vary from one
pilot to another;

(2) The mechanical device that would exert at any time the force calculated by the
computer is not an easy thing to build.

(b) Using the computer only

The problem can be studied using a computer alone. In this case the experimenter
must be replaced by a computing element, reproducing the transfer function of a good
(or medium) human pilot. This process has been followed by the N.A.S.A1 s.

A well defined manoeuvre has been chosen - the pursuit of another aeroplane that
is trying to escape. The pilot's aim will be to hold the pursued aeroplane in the
centre of his gunsight. submitting his own aircraft to movements in 6 and 0 accord-
ing to the displacement observed in the sight.

We will deal only with the movement in the longitudinal plane. The error observed

by the pilot is the difference

Et = 0- 01 (12.43)

between the attitude 6 and the inclination with the horizon, 01 , of the straight

line joining the two aeroplanes.

The transfer function for the pilot is the function relating the force P to the
error:
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F(s) = 0(s) el(s) (12.44)

The most simple response of a human being to a visual signal will fnclude a constant

delay time t, and a time constant t 2  producing the transfer function

e-s
a (a) + (12.45)

It seems, however, that the response of the human being will depend on the deriva-
tive of the error. Moreover, the force exerted by the pilot is probably not complete-
ly independent of the stick position 8S . A better description of the pilot's
behaviour will certainly be obtained when it is supposed that, for the same error
signal, the force exerted, P, depends also on the error derivative and the stick
position.

The Report referred to does not Indicate all the details of the transfer function
actually used.

The Input acting on the servo-mechanisms is the sum J + Jr + n f

The block diagram describing the system is represented in Figure 137; one of the
elementary blocks represents the transfer function G(s) of the pilot and it is
clear that the moment d•Pd becomes a function of C * , , while the moments
Sand X exerted by the artificial feel generators are functions of s' , S ,

n . The problem consists in finding, by trial and error, the best functions r and

The tests were made by determining the indicial response of the whole system
(pilot + aeroplane), to step variations of 0, applied while the aeroplane was
assumed to be flying in various conditions of:

static margin (or Cý. derivative),

speed,

altitude.

In general, for every type of feel generator the response of the system varied
according to the assumed flight conditions and were acceptable only in a small range
of speed, altitude or static margin.

A feel generator producing:

hr = 0 If = k18s

has given the results indicated in Figure 138 for a series of tests with the speed
and altitude constant, and the static margin variable. The curves show that the
results are strongly dependent on this parameter.
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The use of an artificial-feel generator producing control moments lL depmmdent
on a% , q , 4 has produced responses whicb were nearly constant througout a wide
range of speeds, altitudes and static margins. These responses are reproduced In
Figure 139 and the corresponding feel generator is considered the optimum.

As the classical feel generators produce control moments which are functions only
of a% and t , the optimum generator should be activated by signals produced by a
rate gyro.



CHAPTER 13

AUTOMATIC CONTROL

P.C. Haus

13.1 ARTIFICIAL STABILITY

The dynamic characteristics of an aircraft can be completely modified if the con-
trol surfaces are actuated as a function of the error in one or several variables with
respect to the initial values.

The block diagram in Figure 140 represents an aircraft whose altitude is controlled
as a function of the error in attitude.

When the attitude 0 . measured by an appropriate device, differs from the imposed

attitude 60 . a comparator produces a signal

e = 61 -8 0(13.1)

which is considered in servo-mechanism theory as the error. This error will produce
an elevator deflection 8e by the working of a servo-mechanism.

The relationship between the deflection Be and the error signal e constitutes
the control equation. This equation can be represented by the transfer function

80(s) = G(s) 6(s) (13.2)

The most simple conceivable relationship between S. and e is a relationship of

proportionality, viz.,

= AE (13.3)

where Be and e are functions of the time variable t

We generally take 60 for the zero point of the.scale in 6 . The preceding
equation then becomes

so = -A0 (13.4)

When the aeroplane undergoes a nose-up displacement, a nose-down moment must be
applied. The control deflection Se will be positive and this entails a negative value
for the constant A .

The negative sign may be considered as an inconveniece arising from the sign con-
vention governing the control deflections. To avoid this inconvenience, we could
consider an error ef defined in the converse way, thus:

0= - 01 (13.5)
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allowing us to write

e= A(O - 01) (13.6)

becoming

Ae= (13.7)

for 0= 0 and leading directly to a positive coefficient A

We can use variables other than 9 to actuate the control surfaces.

In a general manner, the equations which relate the deflections S., 8 . or
the throttle position 8B to the changes in the variables

ar Ar ^r

p q r

to functions of these changes such as their derivatives, their integrals, or to the
coponents of the generalized acceleration

du
a1  = d,+ (qw - rv) + g sinO

dt

dv
ay = - + (ru - pw) - g sin• cosO (13.6)

dt

dw
a3 = - +(pv- qu) -gcospoos8

dt

are control equations.

The movements executed by the aircraft under the effect of the control equations
will be obtained by writing into the equations of.motion the aerodynamic control forces
and moments (AC.)i ..... (ACn)i as a function of the errors in the variables. These
excitations will depend on (he aerodynamic effects of the control surfaces and the
control equations.

These equations must take into account the real properties of the servo-mechanisms.
Whenever possible the functioning of the servo-mechanism is defined by means of linear
relationships.

When the chosen control equations exert a favourable effect, it can be said that
the aircraft has been given artificial stability.

An extended choice can be made among the variables from which the errors are used.
Certain variables can be utilized to actuate two different controls, and the number
of possible combinations is very great.
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It is useful to know the influence of the different control equations on the motion
of the aircraft.

The hypothesis of proportionality permits the study of the physical action of the
theoretical control equations, without the action being masked by the real behaviour
of the servo-mochanlmu. It permits the establishment of an idealized theory on
artificial stability which predicts the effect of the different control equations.

A theoretical study of artificial stability can be made by studying the following
system of equations:

(a) By the classical analytical methods of solving linear systems;

(b) By the method of analysis used in the theory of servo-mechanisms (polar
representation of the frequency responses, Nyquist's criterion);

(c) By the root locus method which constitutes a compromise between methods (a)

and (b);

(d) In a limited fashion, by the method of rotating vectors;

(e) By analogue calculus.

The classical method of solving the differential equations has furnished (between
1925 and 1939) the first concepts on artificial stability. Its field of application
is limited to the cases where the displacement of the control surfaces is proportional
to the perturbations and the information gained from this method of approach results
more from the solution of systems each corresponding to a particular case, than from
the discussion of a general solution.

If the solution of the characteristic equation furnishes, without too much diffi-
culty, the length of the periods and the damping of the modes proper of the artifici-
ally stabilized aircraft, the calculations become very long when one wants to deter-
mine the movements corresponding to given perturbations, and the accumulation of
numerous results entails considerable work.

The methods used in the theory of servo-mechanisms permit a preview of the pro-
perties of the systems under control, without any previous resolution of the character-
istic equation. They furnish numerous indications of aircraft behaviour when the
control equations are relatively simple.

It is not our aim here to make comparisons between the different methods of
approach to the problem; therefore we shall pass directly to the study, by the use of
analogue computers, of an articicially stabilized aircraft.

The use of the analogue computer does not lend itself to a general theory, but it
permits an increase in the amount of data by progressively modifying the parameters,
and thus furnishes a group of solutions defining the phenomenon in an adequately
practical manner. Moreover, the study with the analogue computer makes it possible
to simulate the real action of the control mechanisms even when it is not linear.
With the other methods, this is not possible.
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13.2 ANALOGUE STUDY FOR TIE SCHEMATIC CASE

We shall study longitudinal motion and lateral motion separately.

We will suppose that the control equations are proportionality relations between

the deflection of the control surface and the divergence from the preset variable
(e.g. e1).

The deflections, being supposed proportional to the divergence, will give expressions
of the following type:

For the longitudinal notion:

e = A,8 +A, +Ar G+ ..... +A,+... + A +...
BB + } (13.9)

S = + 8+ r + B3 ^+ . +,+... +B.+.

For the lateral motion:

a A IA ++Arr+AO.+ ........ S.......I(13.1I0)

r - 1 + B + By3P+ ........

within each case the coefficients A1 . A2 .... B1. B2 ..... dependent on the sensi-

tivity chosen for the control.

The principal aerodynamic actions produced by the deflections are defined by the
following derivatives, for which It is necessary to know the value in each case:

'aC - 3m

B 'aC acm
I•C 3C UC

2 Z8 a

for longitudinal motion, and

a C

r z r r

for lateral motion.

It may be noted that automatic control of the engines is rarely used.

The analogue representation will be very easy. Let us examine the longitudinal
motion. The equation for moment equilibrium becomes:
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.dq c c

dt 2V2V 0

- (A10 + A2a + A3^ + ... + A ... (13.11)

and is a linear equation with constant coefficients.

A supplementary entry into the computer is necessary because of the introduction
of the term (ZC/!18e)A19 (Pig.141).

The other entries already exist, and it suffices to replace the coefficient CN,

by r., + (.CN/Ze)A2 , etc.

The same modifications are carried out in the equations for lift and drag.

By introducing into the integrator some initial perturbations represented by the
initial values of the variables a 0 . ... . the computer immediately gives the

return movement so that it is possible to determine the best methods of control for
improving the return and producing artificial stability.

An important remark

The preceding equations are only applicable to the study of motion in a steady
atmosphere.

In a disturbed atmosphere, it is necessary to make the distinction between the
real angle of attack or side-slip and the apparent angle.

If it is required to obtain the response to an atmospheric perturbation, it is
necessary to introduce the excitation produced by this perturbation.

Finally, if we are studying a control equation containing the angles a and /3
it will be necessary to specify whether the perturbation detectors are sensitive to
the errors in the real angles ar and /3r determined by the position of the rela-
tive velocity vector, or the apparent angles a and 8 determined by the position
of the true velocity vector. Some comments on these points will be found in Part IV.

13.3 THE PHYSICAL ACTION OF VARIOUS ELEMENTARY
CONTROL EQUATIONS

All control equations which make the angle of deflection depend on only one variable
are known as 'elementary control laws'.

It Is easy to verify from the analogue computer that the effect of different ele-
mentary laws is as follows:-
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13.3. 1 Longitudinal Notion

The action of the elevator is always defined by "Cu/B8e < 0

Variable 0

The positive coefficient A, makes the aircraft return to a constant attitude.
It assures stability of position (or of attitude). The term in 9 placed in the
first member becomes - (6Cn/ZS,)Ae and is positive.

It was established by Klemin. Perrer and Wittner, before the analogue computer was
ever used, that this term strongly increases the damping of a phugoid, but that it
diminishes th.e damping of a rapid oscillationto. Tests with the analogue computer
have always confirmed this.

Variable a

A positive factor A2 has the effect of making, in an artificial manner, the C64
of the aircraft more negative.

Control as a function of a makes it possible to compensate for an instability
due to a negative static margin (that is to say. C.• > 0).

Applied to an aircraft having sufficient static margin, this type of control always
diminishes the period of a rapid oscillation. It acts weakly on a slow oscillation
in the sense that it diminishes the damping.

This type of automatic pilot, which was recommended many years ago. is no longer
used, because of the difficulty in measuring the perturbations of the angle of attack.

Variable u/Vo = U

If It is desired to make the aircraft dive when the speed u decreases, it is
necessary to make A3 < 0 . This intervention diminishes the period and the damping

of the phugoid oscillation.

Variable 6 = q

The control equation

80 = Asq

increases the damping of the rapid oscillation for A. positive, but opposes the
execution of commanded manoeuvres.

Variable VV

The control equation Be = A7 (U/Vo) . with A7 < 0 , strongly damps the slow

oscillation.

Variable load factor n

The load factor n is related to the generalized acceleration, thus:
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n 194 th o g (13.12)

g 9

It can also be expressed as a function of the variation in the trajectory angle y
(when 0 and 0 are zero):

+V dy 1+v
g dt 9

The Increase in the load factor is a consequence of an Increase in lift, that is

to say. an excessive angle of attack. Prom this we can expect that the controlfunction including the load factor n , realizing a law 8* A.,(n - 1) with A

positive, will improve the motion belonging to the rapid oscillation when the static
margin is insufficient. It can be stated that this is true (see Section 13. 6. 1. 1).

It Is possible to consider the control function of (n - 1) as a control consist-
ing of two components proportional respectively to q and to -& . The first
increases the damping of the rapid oscillation in a straightforward manner. The
second also will influence the rapid oscillation, but it will act as a control in a
with L phase lag of 7r/2

Variable ii =

The control equation 8e = An.i acts as a modification in the moment of inertia of
the aircraft. A factor A. < 0 artificially produces a decrease in this moment, and
In consequence diminishes the period of the rapid oscillation.

Variable Be = A4z

With the sign convention adopted, an error in the altitude z is measured on an
axis directed downwards. A control equation

8s = Alz

will be favourable for the maintenance of the altitude when A. is negative. The use
of such a control equation is disastrous on the damping of the slow oscillation
(see Section 20.6).

13.3.2 Lateral Notion

Each control surface exercises two effects: a princJpal effect defined by

'a C l B C n-- and
'a a -a Sr

and a secondary effect defined by

2f and B
'r a S



The principal effect always corresponds to

ZC Zn

-1 < 0 and .A < 0

The sign of the secondary effects is not fixed in an invariable manner. However, we
generally have >CI/Z•r ' 0 because the vertical tail unit is always situated above
the axis CO .

Except for special precautions in the design of the ailerons we also have
Zcn/98. > 0 , which is an unfavourable characteristic and must be diminished.

Each of the interesting variables in lateral stability can be utilized to actuate
either the ailerons or the rudder. Thus there are many possible combinations.

Again, the effect of certain elementary control laws may depend on the characteris-
tics of the aircraft. Here we shall indicate only the effect of the most important
combinations.

Variable cp

Actuating the ailerons with A3 > 0 is a mode of control which allows the wings to
be brought back quickly to the horizontal, but does not assure course stability.

Actuating the rudder with B3 > 0 , the response is favourable or unfavourable, in
the same aircraft, according on the value of the coefficient B3 .

Variable 0

Actuating the ailerons with A1 > 0 . this control renders the aircraft unstable in
the case dealt with in Part IV, but the result may be different if the aircraft can
be represented by another transfer function.

Actuating the rudder with B1 > 0 , the control equation Sr = B141 completely
alters the behaviour of the aircraft and produces course stability. The motion of the
aircraft allows two different oscillations of which an example is studied in Part IV.

Variable A

The action on the aL'-erons. SL = AW? , with A2 > 0 , is identical to making
Ci more negative, that is to say, to an increase in the dihedral of the wing. It
diminishes the tendancy to spiral instability, but can aggravate the oscillation
known as Dutch roll.

The action of the rudder, 8, = BrS , with B2 < 0 , is identical to making Cnp
more positive, that is to say, to an increase in weathercock stability. This mode of
control would be able to cope with side-slip, but the rudder deflection proportional
to A diminishes the damping of the Dutch roll and increases the tendency to snacking.
Also it tends to favour spiral instability.
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Variable p =

The aileron deflection given by 8a = A.0 with A. > 0 inoreases
When flying at the angle of attack of normal flight, this damping is I
an aircraft having classic configuration and must not be augmented.

The deflection of the rudder. 8 r = B7(0 with B7 > 0 , will advanc

Is dipping; the calculation shows that such an effect is not important

Variable r =

The deflection of the rudder 8r = B5 r with B. positive, melior
damping coefficient and effectively contributes to the damping of the
a turning manoeuvre the effect is nevertheless harmful, as the movemen
then opposes the turn.

Variable a = jy - gy

The following balance of forces:

mJy = y+m g

shows us that the measured acceleration ay = Jy - gy is proportional
verse aerodynamic force Y

In the absence of a rudder deflection this force can be due only to
slin, caused by

The measurement of the transverse acceleration made at the centre c
serve as a slip detecting device and the control as a function of the
acceleration will give results resembling those furnished by the contz
of the side-slip.

Variables i and

As in the case of the longitudinal motion, the use of control signs
of second derivatives of the position angles has the same effect as tI
on the moments of inertia.

13.4 ACTUAL REALIZATION

The controls may be:

(a) simple positioning controls

(b) controls requiring an integration.



197

13.4.1 Positiuning Servo-Controls

In nimerous oses, the device producing the artificial stability reduces to a
positioning servo-amecanim whose object is to displace the control surface to a
position 8 determined by an error signal

8 = AE?

This error signal may be a composite signal formed by the sum of several error signals,
viz.

-(A 1 6 + A3 G+ A54) (13.15)

In Section 12,7. we studied the operation of some systems permitting the determina-
tion of the position of a control surface as a function of an input of order x .
The transfer functions so found remain valid when the input is an error signal e.

The arrangement utilized always consists of a feed-back signal S/A which must be
subtracted from the error signal eC in order to produce the variable

k I ke- 8) (13.16)

which characterisee either the position of the slide valve of the Jack or the voltage
fed to the armature of the electric motor.

This subtraction can be made in a more refined manner than that described by
Figure 115. hcr example. if only one error signal is utilized, It is possible to
perform the subtraction

A

by making the reaction act on the instrument which measures the error signal. The
well known schoe of the Sperry A3, truly the ancestor of the attitude course holding
automatic pilots, is a typical example of this mode of operation: the feed-back acts
on the sero of the error detector (Fig. 142).

The thoory of servo-mechanisms shows that one is often interested in using a com-
pounded signal, formed by the error in the variable one wishes to stabilize plus its
derivative, The feed-back signal must only interest the variable to be stabilized;
the signal representing the derivative will be naturally annulled *',en an tquilibrium
state is established.

The use of a signal proportional to the integral of an error, frequently encountered
in automation, is more rare in aircraft control problems,

The error signals furnished by the instruments detecting the perturbations possess
very little energy and must be amplified. This amplification, as in the case of the
eventual combination of several different signals, is made easier when the signals
are presented in the form of electrical voltages.



198

Control by means of a hydraulic jack

When a jack is used as the motor, it is necessary to transform the electrical sig-
nal into a displacement of the distributor, and this can be done by using a servo-valve.

Two schemes for servo-valves are indicated. One (Pig. 143) is an on-or-off device;
the other (Pig. 144) acts in a more progressive manner. They ensure the proportionality
between the deflection and the error signal e' with the same restrictions as those we
have given for the mechanically controlled jack. Their transfer function can be simu-
lated as indicated in Section 12.7.

By means of a preliminary evaluation of the effect of a given control equation, it
is often found sufficient to use a transfer function of first order.

The control equation, incorporating the characteristics of the jack, contains a
time constant a

dSe
so +a. - Ale (13.17)

dt

It becomes, in symbolical writing,

Se(s)[l + as) A10(s) (13.18)

and determines a transfer function

1
0(s) - (13.19)

1 + as

If we wish to introduce into the control equation the error in 0 and its deriva-
tive, we get:

S +a - A = + 1+As Al(O + b6) (13.20)C dt

This becomes:

FI+ be]
8 (s) = A. -- 0(s) (13.21)e I.1 + Rasj

Control by an electric motor

The transfer function defined in Section 12.7 is valid when the order x is any
compound signal ef , provided that the assumptions made in 12.7 remain valid.

The deflection is related to the error signal by:

8(s) = G(s)[ kk Ax(s) (13.22)

[1+ AR
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with G(s) = -2 (13.23)
s6 + 20ns + (13.23)

The simplest cases are those where the error signal is a function of a single
variable, or of a variable and its derivative.

When we want to obtain

so = A1 9 + A56 A=(O + be) (13.24)

the servo-mechanism gives, in reality,

b*(s) = G(s) (1 + bi) L A 1  Al O(s) (13.25)

13.4.2 Control Involving am Integration

Let us examine a completely different method. An electric motor, with Independant
excitations, is fed with a voltage proportional to this error signal el , and actuates
the distributor of a jack control by displacing the point A (Fig.145).

The Jack includes a feed back device ensuring the proportionality between the dis-
placement of the piston and that of point A .

If the resisting couple is zero, the speed of rotation of the motor is proportional
to the voltage as soon as the steady regime is attained. This can be obtained if the
moment of Inertia J. is small. Consequently, the speed of displacement of the
piston is proportional to the error:

dS
_ = ke

dt

One gets, indirectly, a positioning servo-motor for the variable 6 , if the
signal e? is proportional to the derivative 6 , for we then have:

= k As6 (13.26)

ae k As5 + C (13.27)

The constant of integration is zero if there is no initial error.

In practice, the resisting couple is not zero, because of friction in the distribu-
tor. Moreover, the displacement of the piston is related to the displacement of the
point A by the transfer function of the jack. The result indicated above is only
valid to a first approximation.
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The equations that determine more precisely the deflection of the control surface
as a function of the signal may be established easily, taking account of the preceding
discussion.

13.5 ANALOGUE STUDY OF REAL CASES

It has been assumed until now that the error of a variable was detected instantly,
and that the control mechanism alone was responsible for the delay.

If the analysis is carried further, it is established that the sensor may also
produce a delay. The measuring instrument used as an error detector necessarily has
a time constant, but generally the delay introduced by the sensor is significantly
less than the delay introduced by the servo-control and the transfer function of the
sensor may be incorporated in that of the servo-mechanism. Nevertheless. two cases
require deeper study:

(a) When one utilizes a composite signal, formed of the sum of several elementary
signals furnished by measuring instruments having very different time constants;

(b) When one utilizes an error signal whose detection introduces, by its very
principle, a time constant that is relatively important.

With these reservations, one establishes that the analogue computer permits the study
of artificial stabilization in conditions that approach very nearly those of the real
case. The composite signal of the type

1
C? (A16 + Aa + A3 . ..... ) (13.28)

A

may be calculated from the output of the network representing the aeroplane; an
analogue representation of the servo-mechanism's transfer function may be introduced
between this composite error signal and the voltage representing the control deflec-
tions.

The transformation of the error signal into an electrical signal, normally achieved
in all modern automatic pilots, opens the door to all the manipulations (one may say
sophistications) of signals that it is possible to make, by means of correcting loops,
on electrical signals. These manipulations are easy to simulate on the analogue
computer. Some of them will be examined here.

13.5.1 Phase Advance

Application of the theory of servo-mechanisms to the aeroplane shows that the
aeroplane returns more easily to the imposed trim 0, when the command 8 that is
given to it possesses a phase advance over the error el = 0 - .l , to be corrected.
The addition of a signal proportional to the derivative produces this phase advance.

The recourse to signals represented by electrical voltages permits one to obtain
the composite signal
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= A10+A 5

simply by the detection of the error 9 by a position gyroscope, without it becoming
necessary to measure the signal 9 by a rate gyro. In principle, it is sufficient
to derive the signal . . and to add to the original signal the derivative 9 ,
multiplying 9 and 0 by the coefficients A1 and AS , respectively. The result-
ing signal:

AG0 +A0 = (13.29)

has, with regard to 9 . a phase advance that is a function of the frequency Co
considered, and is equal to:

tn-1 A.

A1

The exact derivation of a variable may be made only by an active network, similar
to that considered in Section 5.3.3. Such a network gives noise and the output must
be filtered; this action alters the transfer function.

For an automatic pilot, one is generally satisfied to use passive networks whose
purpose is not to achieve the exact derivation, but only to obtain a signal with a
phase advance approaching the correct result.

For example, the network described in Figure 146 relates the input signal 9
(voltage E,) to the output signal (voltage E2) by a transfer function

I (i+ abs•

G(s) = 1~ J1 b (13.30)
b +s

where b I + R,
R2

a - Ri x R2 c
R1 + R2

Such a correction loop is often placed in the aeroplane between the error signal
furnished by the detector and the input to the servo-motor.

The deflection 8 and the error 8 are then related by the products of the trans-
fer functions of the loop and of the servo-mechanisms.

In the case of a servo-motor defined by a transfer function of the second order,
the product of the transfer function will involve terms of the 3rd order in the
denominator.

This would not be the case if the correction loop had only a derived signal added
to the initial signal.
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When one considers only low frequencies the 3rd order term in the denominator may
be neglected in the calculation of the effect of such a device.

13.5.2 Filtration

It may be necessary to filter the signals in order to eliminate high-frequency
oscillations caused, for example, by lack of precision of the detectors. A filter
loop composed only of passive elements is represented in Figure 147.

The transfer function is

E2 1
G(s) 1 (13.31)

El I + as

with a = RC.

This is the simplest filter one can imagine. Its action is based'on the time
constant it involves.

13.5.3 Progressive Attenuation of the Signals

The progressive attenuation, or the suppression of the signal e with time, will
require the subtraction from E of a quantity [1/(A + as)]e The transfer function
is then:

(1 1 ) as

G(s) = s (13.32)1 + as + +as

Since the control equations

Se = A5s

Sr = As5

are favourable for the damping of transient perturbations, but have a harmful effect
upon the execution of controlled manoeuvres, one sometimes introduces into the control
equation a factor as/(l+as) in order to produce the progressive decay of the response.

13.5.4 Progressive Attenuation of the Feed-Back

In some cases one reduces the feed-back signal with time. To understand the purpose
of such an operation, one must remember that the effect of the feed-back signal is to
make the response of the servo-mechanism proportional to the excitation, and that this
purpose is effectively accomplished when the transfer function is unity.

The attenuation of the feed-back signal is the same as a progressive increase of
the response to signals of long duration, but it has no effect when the excitation is
of short duration. Such a solution has been used in the scheme referred to in Section
13.9.1.
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13.6 APPLICATION

A considerable number of problems dealing with automatic control have been carried
out on the analogue computer. Their resu]ts are rarely published, however, because
they generally deal with specific cases. Nevertheless, we cite below some examples
of response calculations by the resolution on an analogue computer, of systems formed
by the combination of the equations of motion of the aircraft and the control equations.

13.6.1 Longitudinal Movement

13.6.1.1 Aircraft with Dynamic Characteristics Defined by
Linear Equations (Linear Control Equations)

(A) Control as a function of the error in the attitude condition 0

In Figure 148 we indicate the control set-up for the automatic control of the air-
craft whose behaviour with locked control has been studied in Section 10.1.1.3.

The consecutive movements for an initial error in the variable 0 have been calcu-
lated for the following control equations:

(a) se(s) = G(s) A1 0(s)

with the transfer function of the mechanism G(s) equal to unity and 4 different
values of A1 equal to 0.02, 0.05, 0.10, 0.20 (see Pigs.149a and b).

(b) The same equation but with

1
G(s) -

1 + as

The time constant introduced, a , had a considerable value: a 5 seconds (see Figs.
50a and b).

(c) (s) = G(s)[AIO(s) + A5q(s)]

with the transfer function equal to unity, the same values of A, but only one value
of As , viz.. A, = 1 (see Figs. 151a and b).

(d) The same equation as in case (c), but again with

1U(s)- 1 + as

and a = 5 (see Figs.152a and b).

The evolution of the variables u , a, , q , (q-&) and Se have been recorded
and reproduced in the figures mentioned above. The variable (q-A) defines the load
factor n:
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V
n = 1 +--(q - I) 1 + l1.3(q - (13.12)

g

In the 4 cases, the initial condition has been introduced by charging the condenser
in the integrator: j = q dt . In cases (a) and (c), the switch 2 was always
closed.

The voltage corresponding to the initial condition, applied to 6 at an instant
t < 0 before the start of the calculation, was also applied to S. A100 . The

beginning of the calculation was commanded by the simultaneous opening of the 4
switches 31 at t = 0

The registration of S. gives the diagram represented by the continuous line, but
the phenomenon corresponds physically to that which would be produced if the voltage
00 were applied suddenly at the instant t = 0 . The voltage Se would have to pass
instantaneously from 0 to Se following tbM interrupted line added to the recorded
diagram.

In cases (b) and (d), the element producing the time constant a plays an important
role when the calculation starts: the switch 32 is synchronized with the switches

3, but shuts when they open; the diagram represented by the continuous line then
describes the real evolution of the voltage representing the deflection.

Comparison of the diagrams of case (a) with the response of the aircraft flying
with blocked controls, for the same perturbation (Fig.72), brings into existence a
progressive amelioration in the damping of the slow oscillation. A positive initial
error 6 instantaneously entails a positive deflection Se which increases the tail
lift and produces a nose-down moment. This increase in tail lift manifests itself for
all values of A1 by the appearance of a positive load factor n and an initial
decrease of the incidence. As might be expected, the effects are proportionately
greater as A1 is increased.

A part of the initial response belongs to the short-period oscillation; this move-
ment is proportionately more marked as the coupling coefficient A1 is increased.

The speed of recording has been chosen with a view to allowing a good registration
of the long-period oscillations, but it harms the examination of the rapid oscillation.

Comparison of the diagrams for case (b) with those for case (a) shows the effect of
the time constant a ; this has been chosen particularly high in order to emphasize the
difference between the results.

The application of a slower deflection produces some vlstble effects in the curves.

Comparison of diagrams (c) with diagrams (a) shows the effect of adding into the
control equation a component 8e = A5q where A is constant. The period of the
slow oscillation is increased. The importance of movements depending on the short-
period oscillation diminishes.

Finally, in the diagrams (d), the time constant cuts the peak of the curves rep-
resenting the deflection; this again produces a decrease in the effects of the short-
period oscillation,
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(B) Control as a function of acreleration

The aircraft studied above represented a value of Cm. = -0.72 . We have supposed
the static margin to be lowered, the Cm. derivative becoming respectively:

Cem = 0 and C = + 0.167

We have analysed the action of an automatic pilot sensitive to the acceleration:

V
8e = An-•(q "i) K(q -&) (13.33)

The beginning of the response succeeding to a perturbation At = AG = 0.1 radian
is indicated in Figure 153 for the aircraft with C. = 0 and in Figure 154 for the
aircraft with Cm, = +0.167 .

The registered variables are a , c , 0 and Se with a control equation consist-
ing of a transfer function G(s) = 1 and the values of k indicated below:

k = 0 (blocked control)

k 0.10 sec

k 0.25 sec

k 0.50 sec

k = 1.00 sec.

We notice that this kind of control clearly diminishes the instability of the motion.

13.6.1.2 Aircraft with Non-Linear Aerodynamic Characteristics

The NACA study for aircraft with non-linear characteristics 8 has been extended to
the case of an aircraft for which C. varies as indicated in Figure 96. The short-
period oscillation was studied with an automatic pilot sensitive either to the angle-
of-attack error and giving 8 = A2 ( - aij) or to the attitude error giving
Se = Ai(a " 61) . In both cases, A, =A 2 = +1 , and Cm/e = -1.045.

The artificial stability (0Cm/_Se)(dSe/doi) caused by the first control equation.
produces a total dCm/d5e equal to

-Cm + Cm dSe

a+ 'se da

which, being equal to 0.465, remains in excess of the limit of instability in the
range -20 to +20. Nevertheless, when the assigned value of cL1 indicated at the
automatic pilot, is carried suddenly from 00 to 10. there is a sudden change in C.
equal to
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Ba +•ce d-.

or ACM . 045
or 5c 7 - for ai -1 ° and a = 00

The curve giving C, as a function of a is represented by the interrupted charac-
teristic shown in Figure 96. It shows that the equilibrium position is displaced and
is found at a = 2.50, that is to say in a range where the stability is assured.
Figure 155 indicates the evolution produced by Aai = 10

When the second control equation is used, the application of i 0 does not
modify Cm, but introduces a disturbing moment

em d~eAmr - 5e da 8-I

The analogue computer makes a sustained oscillation appear. Figure 156 represents
the oscillation produced by 0i = 0.70 .

The appearance of this sustained oscillation due to the action of a position stabil-
izer on an aircraft which is unstable due to non-linear aerodynamics, constitutes a
danger which, by using an analogue computer, we can examine in advance.

13.6.2 Lateral Notion

(1) The effect of elementary control equations

Results of calculation, for some elementary control equations utilizing error sig-
nals in 0 and 0 , are given in Sections 17.5 and 17.6.

(2) Amelioration of the characteristics of the aircraft F 86E

Among the studies for which results have been published is a research report by
Porter 1 7 relating to the artificial stabilization of the lateral movement of the
F 86E.

The tests covered extended combinations in speed and altitude. The original report
contains an indication of the values of the aerodynamic coefficients corresponding to the
different cases studied.

Different control equations are proposed; their efficiency is estimated by the
effect which they exert on an arbitrarily chosen input, in this case an input in the
form of a pulse applied to the ailerons. We have extracted from the report the figures
relating to the aircraft flying at a Mach number of 0.8 at 10,000 ft. and at a Mach
number of 0.6 at 35,000 ft. The angle of attack in the second case exceeds the angle
of attack corresponding to the first case by 10.20 (Fig.157).

The principal axis of inertia OX is directed between the velocity vectors corres-
ponding to the two flight conditions. This means that it is directed beneath the
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velocity vector in the first case and above it in the second case.

The aircraft has been excited by an aileron deflection S. and the response has
been calculated for three different manoeuvres of the rudder corresponding to:

Sr = 0 (locked rudder: Figs.158 and 161)

Sr = G(s)[O.O65ay + 0.3*] (Figs. 159 and 162)

r= G(s) s20a + 0.25 i tFgs.160 and 163).

The transfer function G(s) , relating the combined error signal to the deflection
ar - was a transfer function of 2nd order:

G(s). = (13.34)S2 +2COnS +2

+ 2t.

for which the damping term • was 0.7 and the frequency without damping, con , was
20 rad/sec.

The unpiloted aircraft presents, at the altitude indicated, a slightly damped
oscillation which we want to eliminate.

By consequence of the position of the principal axis of inertia, the response in
side-slip presents a first peak, in one sense or another, following the angle of attack
of the aircraft. The two control equations proposed suppress the oscillation but the
first does not lead to a sufficiently rapid disappearance of the side-slip. The
second succeeds in doing this.

13.6.3 Non-Linear Automatic Pilotage

In principle, all pilots using a Jack as prime mover are non-linear, but the approx-
imation indicated in 12.7.2. which consists of utilizing a transfer function of first
order, makes the equation defining the phenomenon linear.

The study of the control of the aircraft by linear relations suggests that in cer-
tain cases some essentially non-linear on-off elements could be used with success.

The simulation of such mechanisms is not studied here. but it is possible by
utilizing the non-linear computing elements described in Chapter 2.

The use of elements using diodes permits the introduction of thresholds, the con-
sideration of controls whose deflection is limited by a stop, and the use of on-off
controls. Generally speaking, it permits the reproduction of the control equations
corresponding to highly non-linear servo-mechanisms.

13.7 PARTIAL SIMULATION

The juxtaposition of an analogue computer integrating the equations of the aircraft,
and a simulated cockpit containing a control column, pedals, etc., on which the human
pilot acts, gives rise to some varied combinations which are known as flight simulators.
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Similarly, the juxtaposition of an analogue computer representing the aircraft and
of a mobile table subjected to movements reproducing the variables: p , q * r , 7 *

0 , 0 gives rise to some combinations permitting the study of an automatically
piloted aircraft, by utilizing some elements of the real automatic control systems.

A mobile table, suspended by means of a universal joint, can be made to occupy at

all instants the position 7 * 9 . 0 corresponding to that of the aircraft, if one
realizes the necessary links between the motors controlling the 3 axes of the mobile

table, and the output voltages p . q , r of the computer representing the aircraft.

By placing the position error detectors or the angular velocity sensors on such a

table, it is possible to put into action all the apparatus of automatic control.

Again, it appears possible to make the servo-motors act on axes subjected to
opposing moments, which should equal the valucs of the control hinge moments.

By measuring the angular displacements of the axes representing the control hinges,

transforming the 8's thus measured to electrical voltages and re-injecting these
voltages into the analogue computer, one can simulate the flight of an automatically

piloted aircraft without having to simulate the components constituting the automatic
pilot by their transfer function. The possibilities outlined here have been applied
in some particularly well equipped laboratories.

It is important to note that the realization of such arrangements gives rise to

some very delicate problems, the study of which goes beyond the scope of this paper.
Note that it is necessary for the response of the table to be governed by transfer

functions very little different from unity for fear of introducing experimental errors
which can be greater than the errors eliminated by utilizing the components of the
automatic pilot itself in place of computer elements.

The existence of a mobile table, created by makers of gyroscopes and used for the

calibration of these instruments, has contributed to the realization of the equipment
mentioned here.

13.8 THE USE OF THE MANUAL CONTROL WHEN AN
AUTOMATIC PILOT IS IN ACTION

13.8.1 Classification

The human pilot must always be able to impose his will on the aircraft, even when

the control surfaces are under the action of the automatic pilot. The human pilot

must literally pilot through the automatic pilot.

Because of .,iis it is necessary to combine the action of both the human and the
automatic pilots. We will suppose here that the automatic pilot involves a jack, the
valve of which is displaced as a function of the error signals received.

Following the relative disposition of the manual control and the automatic control,
we are able to achieve three types of control:
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(1) Controls in parallel

(2) Controls in series or differential

(3) Controls without direct connection between the pilot and the control surface.

These controls are characterized as follows.

(1) Controls in parallel

The control stick (or the pedals) are tied to the control surfaces by the usual
linkages, but a hydraulic jack acting directly on the control surfaces is mounted in
parallel with the control stick. This Jack is commanded automatically as a function

of the error signals (Fig.164). The pilot is aware of the action of the automatic

mechanism because he sees the control stick and the pedals moving in front of him.

The pilot is not able to act directly on the control surfaces when the automatic
pilot is functioning, because of the irreversibility of the Jack; he must act
indirectly in commanding the displacement of the Jack, through the automatic pilot.

The pilot can, of course, take direct control by putting the Jack out of service
(disengage or connect together both sides of the piston).

We must always remember that if the control is made by a reversible element (an

electric motor, for example), instead of by a Jack, the pilot has the possibility of

opposing the action of the automatic pilot by exerting a greater effort than the
servo-motor.

Controls in parallel are the first which have been used. The different types are

differentiated one from another by the manner in which the pilot is able to act on
the servo-control.

(2) Differential or series control

The control surface is subjected to 2 commands: a deflection command 8, produced
by the displacement 8. of the manual control of the usual type, and a deflection
command 82 produced by the Jack actuated by the automatic pilot.

These two commands are combined by means of an adding device, and produce the real

deflection

Se = 81 + 82 (13.35)

There exist several different methods of obtaining the algebraic sum of 2 displace-
ments:

(a) Hklf the algebraic sum of two angular displacements can be obtained by a well
known piece of apparatus: the differential. This is why the control described
here may be called 'control by differential' or more simply, differential

control.
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(b) The same result can be obtained by inserting the Jack in the control linkage,
that is to say by placing the controls in series. A command is then trans-
mitted by a variation in the length of the linkage (Fig.165).

In principle, the Jack must displace tho control surface and not the control stick.
This result will be obtained only if the pilot opposes the displacement of the control
stick by exerting a reaction. The pilot is then aware of the functioning of the servo-
mechanism by the reaction he must apply in order to keep the control stick stationary.
There is never a fixed relation between the position 8s of the control stick and
the displacement Be of the control surface.

(c) In a perfect differential control the displacement 82 would be added to 81,
unknown to the pilot. In principle a simple means of adding the two actions 8, and

82 without interference would consist of splitting the control surface into two
independent parts, and applying a command to each part. This procedure is hardly used,
as a displacement of the control stick in the inverse sense cannot cancel a command 82
The command S2 leads to a deflection actually applied and the pilot can only cancel
its effect by applying an opposing deflection 8, on the part of the control surface
which he controls himself. It is clear that such a combination is unfavourable from
the aerodynamic point of view.

We shall see later that the differential control can be completed by an action
exerted by the pilot on the servo-control. In this case, the displacement 8s of the
stick produces not only the deflection Bs imposed by the actual linkage but also
actuates the Jack in view of producing a deflection 82 to complete the action of
81 •

(3) Control without direct connection between the control
stick and the control surfaces

The pilot cannot directly control the displacement of the control surface. He can
only control the valve of the Jack concurrently with the automatic pilot.

Let us examine in more detail these three types of control, looking for, in particu-
lar, the methods by which the human pilot uses the automatic pilot to execute his
orders.

13.8.2 Controls in Parallel

This method is the oldest and is only used with position automatic pilots. These
autopilots fix the orientation of the aircraft in space by stabilizing the three
angular coordinates T , 0 , 0 . The pilot imposes on the mechanism, by regulating
the auto-pilot, the values of 'P, 01 , 0, that must be maintained throughout the
flight. These values are the inputs.

He then puts the aircraft i.n the required attitude by means of the normal manual
controls and puts the automatic pilot in action when the error between the actual
situation and the required situation is zero or insignificant. Once the automatic
pilot is working the pilot no longer acts on the controls; he sees them moving in
front of him. Such a procedure is known as 'autopilotage'.
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The obligation of placing the aircraft in the exact orientation corresponding to
the required values of 1i , 91 - 01 at the moment of switching to the automatic
pilot is no longer required in modern equipment, if auxiliary units known as syn-
chronizers are used. These devices act on the values of the reference variable,
making them equal to those experienced by the aircraft during the time that the auto-
matic pilot is not in service. One thus avoids the violent changes that would be
produced by a difference between the actual values and the required values at the
moment of the change in control.

The regulating devices are, in principle, cursor buttons, the displacements of
which modify the input values of ' , 1 .* . Any change in the input values whilst
in flight produces error signals and consequently control deflections, the effect of
which is to produce transitory movements by which the aircraft passes from the old to
the new, required value. With appropriate dispositions (for example, lag producing
devices), it is possible to impose on the aircraft sufficiently progressive and
damped movements for control by the manipulation of buttons to be realized in practice.
Commands given in this manner are able to affect pitch, roll and yaw.

The two buttons controlling the pitch and the roll have been combined to form a
control with two degrees of freedom, resembling the control stick. This control is
sometimes called 'side stick'.

Artificial-feel moments, which produce a reaction in the pilot's hand, have even
been applied on this auxiliary stick. This system, largely used around 1945, is
tending to disappear, as it possesses certain drawbacks. One of these is the differ-
ence in action between the auxiliary stick and the main control stick.

The displacement Be, of the auxiliary stick changes the input value 19 and
produces a deflection S. proportional to the difference 9 - 0, , while the dis-
placement 8s of the main stick produces a deflection proportional to S.

The responses of the aircraft are different. The displacement of the auxiliary
stick produces, after a brief delay, a response in attitude, while the displacement of
the main stick produces in the first few seconds following its movement, a response
in rate of pitch.

The commands given to the automatic pilot need not come from the cursor buttons
or the auxiliary stick. It is possible to act on the automatic mechanism by an action
exerted on the control stick itself. It is sufficient to measure, using an ad hoc
dynamometer, the force exerted by the pilot on the control stick, and to send the
signal thus produced to the automatic pilot.

The operation that consists of controlling the automatic pilot in an analogous
manner to that of the pilot using direct control, is called the manoeuvre demand'.

In the schematic representation of Figure 166, the effort F applied by the pilot
to the normal control is measured by a pick-up and transformed into a signal x pro-
portional to F ( x assumed positive when the pilot pushes the control stick forward).
This signal is added algebraically to the error signals in attitude and rate of pitch
produced by the attitude-holding automatic pilot.
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The servo-motor produces, because of the classical feed-back coupling, a deflec-
tion

Be = G(s)[kx + A18 + Asq]

and all that happens is that the attitude input, insti ad of being Oi = 0 , becomes
01 = -(k/A 1 )x . As soon as the pilot ceases to apply the effort F on the control
stick, the required value is 01 = 0 again and the aircraft returns to its original
position.

Such a response from the aircraft is not generally considered satisfactory. It
would be preferable if the aircraft, having been brought to the attitude 81 by the
effort P , would remain there without it being necessary to continue to apply the
effort F . This can be made possible by employing a supplementary device; as soon
as the pilot acts on the stick, an integrator of the angular speed q is put into
action and this changes the input by adding a quantity equal to fq dt to the
required value 0.

13.8.3 Differential Control

With the differential control arrangement, an attitude automatic pilot can be
controlled by the action of the human pilot on the control stick, due to a signal x
proportional to the displacement of the stick (Fig.167). The displacement 8s of
the control stick produces the direct displacement of the control.

81 = kass

and in addition, a signal x = k 2s , which is added to that produced by the error
detectors actuating the servo-control. The sum of these signals actuates the servo-
control and produces

82 = G(s)[A1 9 + A5q + kZs88 (13.36)

so that the total displacement of the control becomes

Be = 81 +8 2 = k8s + G(s)[A1 9 + A5 q + k 28s] (13.37)

Let us imagine that it is required to make the aircraft climb; we then apply
8 < 0 . As long as the aircraft has not responded (9 = q = 0) , the deflection

ae corresponds to an amplified displacement of the control stick. As soon as the
aircraft responds, the signals 0 and q > 0 annul the effect of the signal k 2 8
and the deflection diminishes.

It is easy to show that when the stick undergoes a step displacement 8S the
final equilibrium condition of the aircraft will be a trajectory of constant slope if
the automatic pilot contains an element sensitive to the attitude 0 , but that it
leads to a constant angular velocity q if the automatic pilot only contains an
element sensitive to q , and does nut possess an element sensitive to the attitude 0 .

Although it is possible to use the differential control with an automatic position
pilot, this type of arrangement is used principally with automatic pilots having a
limited authority.
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An automatic pilot with limited authority is not sensitive to the variables of
position I , 0 , 0 but only to their derivatives, or to the accelerations. It con-
tributes to the artificial stabilization of the aircraft by improving the damping or
the static margin, but always leaves to the human pilot the charge of choosing the
flight conditions by the action of the usual controls.

13.8.4 Control Without Direct Comnection Betweem the Pilot
and the Control Surface

These devices are the most recent. The safety in functioning of servo-control is
now improved in a manner such that the devices without direct connection tend to
completely supplant the arrangements described previously.

A large number of different arrangements are possible. Let us examine, then, those
which have a Jack as the controlling motor. We will suppose that the Jack involves
an internal feed-back whereby the position of the attack point A determines the
control deflection. We can classify the possible arrangements as follows:

(1) The human pilot acts directly on the distributor; the error detector of the
automatic pilot doing the same by different means.

(2) The human pilot does not act directly on the distributor: he acts indirectly
upon it by producing a signal which is added to the error signals produced by
the automatic pilot.

As a typical arrangement of the first case let us look at that indicated in
Figure 168.

The control stick is tied directly to the slide valve of the Jack. Thus the pilot
directly displaces the distributor, but the action of the automatic pilot is also
added. This can be achieved if the automatic pilot varies the length of the linkage
by which the pilot controls the slide valve.

Thus we again find the series control arrangement, but in this case the two piloting
actions are additive and displace the distributor of t.e Jack instead of the control
surfaces directly.

Here also, the automatic pilot should displace the valve and not the control stick.
The pilot must keep the stick stationary, unless we insert a greater friction force
between the control stick and the variable-length linkage than that which is produced
by the displacement of the distributor.

Figure 169 illustrates another arrangement also consisting of a direct connection
between the control stick and the distributor, but utilizing an operating motor in
parallel with the pilot. The action of the motor is represented schematically by a
rack and a pinion.

The action exerted by the pilot is measured by a pick-up which produces a signal
x . The electric motor iG controlled by the sum of the error signals furnished by
the automatic pilot, and some signal proportional to the effort exerted by the pilot.
A device for disengaging the electric motor can be provided, so that the pilot can
act directly on the distributor himself.
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In the second type of control, there is no connection between the control stick
and the valve of the Jack (see Fig.170). The pilot acts on the valve only by alter-
ing the signals coming from the error detector. He produces this alteration by adding
a signal 8s proportional to the displacement of the control stick or proportional
to the force P applied to it.

The resulting signal can actuate either a servo-valve or an electric motor g~.ving
a deflection proportional to the total signal, or a control producing a deflection
sreed proportional to the total signal, analogous to that described in Section 13.4.2.

The different arrangements indicated above can be completed by the addition of
feel generators to the control stick.

13.8.5 The Practical Consequemces of the Large Number of
Alternative Arrangements

Automatic pilots can respond to different programmes. It is necessary to distinguish
between:

Artificial stabilization or autostability

Autopilotage

Manoeuvre demand.

The realization of these different programmes entails a different choice of error
signals, to which the automatic pilot will be sensitive.

The study of the resulting trajectories, after an initial disturbance of an air-
craft controlled only by an automatic pilot, has been dealt with in Sections 13.3 and
13.4.

The study of the response of an aircraft to the action of a human pilot will be
dealt with in Section 13.9.

The arrangements permitting the human pilot to pilot the aircraft concurrently with
an automatic pilot, and often through the automatic control device, are very numerous.
The solutions differ:

(a) By the relative arrangement of the manual control and the automatic control
(Section 13.8.1);

(b) In the mechanical dispositions, which make it possible to build servo-controls
producing displacements or speeds of displacement;

(c) In the devices producing artificial feel.

The response to any action of the pilot depends upon the choice of the variables
whose divergence actuates the automatic pilot, and on the mechanical arrangement
adopted to Introduce his action in the control circuit.
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Note

The descriptions given in this section deal with longitudinal control. The same
means of coupling human action and autopilot response can be adopted for the control
of the ailerons and the rudder.

13.9 RESPONSE OF THE AIRCRAFT TO THE ACTION OF
THE HUMAN PILOT

13.9.1 The Influence of the Type of Automatic Pilot Used

Because of the large number of possible solutions, it has become normal, before
constructing an aircraft prototype, to verify by means of a computer if the combination
control system/automatic pilot/aircraft that it is proposed to use, will give correct
responses.

We will examine here only the case of control without direct connection between
the control link and the control surfaces.

In the case of piloting through an automatic pilot, the signal sent by the human
pilot is added to the error signals.

A command in a step form will produce an alteration in the required value (input)
of the reference variable to which the autopilot is sensitive, and the response of
the aircraft will differ according to the choice of this reference. Flight tests
show that such differences in behaviour, which can be easily predicted by the analogue
computer, really exist.

Flight tests carried out by N.A.S A.1 8 ,19 have shown that when a signal coming

from the aatopilot modifies

the value of the required attitude ,

the value of the required angular velocity q

the value of the normal acceleration (or load factor n ),

the responsesof the aircraft are different.

The three diagrams of Figure 171 correspond to a step displacement 8s of the
control stick. The order S. produces different displacements Be of the control
surface. The evolution of the following variables:

attitude 9 ,

angular velocity q ,

acceleration (or load factor n ),

is entirely different in the first case than in either of the second or third cases.
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Moreover, the production of a step displacement S of the control column requires
different stick forces F according to the type of artificial feel device.

Figure 172 shows the results obtained with a spring device producing:

•f=k18s

or a damper producing

f = k 2bIL

in the case of the automatic pilot controlling the attitude angle .

The report quoted above also contains the results concerning the contro. of the
ailerons by the intermediary of an autopilot sensitive to either the angle of bank p
or the angular velocity in roll p

13.9.2 Block Diagrams

The drawing of a block diagram always helps in the understanding of the aeroplane
response, and its analysis by means of an analogue computer.

In the flight tests referred to above, the signal was the displacement S. of the
control column, and not the force P . The block diagram is thus relatively simple
(Fig. 173). It must be noted, however, that the control used in the flight tests
described involved an attenuation of the feed-back signal. This is a case where the
set-up given in Section 3.5.5.4 has been used.

The block diagram in Figure 174 represents schematically a system in which the
excitation is a force F applied to the control column. It differs from those
studied in Chapter 12 by the presence of an automatic pilot.

13.9.3 Study by the Analogue Computer

When the block diagram of the system has been drawn, it is always possible to study
the response of the system to an arbitrary excitation F or S

There are certainly a great number of test results which have not been published.
We may refer to the following, obtained by Mr. Czinzenheim:

13.9.3.1 High-Speed Aircraft

The study of the manual control of an aircraft fitted with an autopilot according
to the following arrangements was carried out. The control surface is actuated by a
jack, of which the slide valve is displaced by the action of an electric motor. This
motor runs at a speed proportional to a compounded signal x , of which the component
parts are:

A signal x, = KF proportional to the effort exerted by the pilot on the control
stick and measured by a grip dynamometer;
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A signal x 2 coming from the automatic pilot.

It is easy to see that the control involves an integration. In supposing that the

transfer functions are equal to unity, we get:

dS*
dt - 1l 2

(13.38)

and e f(xI + x 2 )dt

There were two possible set-ups, according to whether or not the control stick is
linked to the slide valve.

The first set-up (Pig. 169) uses the control in parallel; the stick displacement
• is proportional to the displacement of the control surface, but the pilot cannot

directly produce these displacements by an action exerted on the control stick, due
to the irreversibility of the system. He produces these displacements only in an
indirect manner, the system being activated by the electric motor which is put in
action by the signal x, .

In the second set-up, there is no connection between the stick and the slide valve
of the Jack, but the stick, if not lockedmust act against an artificial feel device
in the absence of which the pilot would not be able to exert the force F (Fig.170).

Different hypotheses have been advanced on the type of automatic pilot.

1st case

The variables whose divergence actuate the :,utomatic pilot are:

The angular velocity q , measured by a rate gyro;

The angular accleration j . obtained by differentiating the preceding variable;

The velocity error U^

In this case. we get:

dd dd&
__t K K +K2 + K - K U (13.39)
dt ' dt 3dTtF

2nd case

The reference variables are:

d1 1 dw
The acceleration V

dt V0 dt

Its derivative
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The velocity error UG

The control equation becomes

KIP- ++KV ( w dL Vo Kw (13.40)

dt dt Vo dt} dt\dt Vo dt

We may note that, when k, = 0 , the two control equations immediately define the
stick force per g .

In a steady state, we have:

Ang = VdO

0 dt

Writing dS =0, we have
dt

P K2 g- = -! - in the first case

6n K1 Vo

6 K2 .- In the second case
An K1

The simulation has been made by representing the aircraft by a 4th order linear
system, describing both the rapid oscillation and the phugoid. The aerodynamic
derivatives are assumed to be independent of the Mach number.

The wiring diagram is independent of the variant adopted for the realization of
the results, since tle input P is assumed to be independent of the position of the
control stick.

The coefficients K have been made to vary until a suitable response has been
obtained. Plight tests have shown that the values considered as satisfactory were an
excellent approximation to the flight values.

The response to a step effort P isgiven (Pigs.175 and 176) for the first control
equation, with the following coefficients:

K1 = 0.00175 rad/sec/kg

K2 = 0.5

K3 = 0.05 sec

K" = 0 or -0.000175 rad/m.

The results of the flight tests have not only confirmed the analogue calculations
qualitatively, but have shown that the pre-determination of the adjustments (that is
to say, the values of the coefficients KV.K2 ,K 3) was possible. The values considered



219

an satisfactory from the point of view of the response of the computer constitute an
excellent first approximation to the flight values.

13.9.3.2 Low-Speed Aircraft

The low-speed aircraft which is dealt with in Section 10.2.2.3.1 has been supposed
provided with an automatic pilot using a control equation of the type

Be = As,+ A76

The response to the input excitation (displacement of the control stick in steps) is
represented in Figures 177 and 178, and constitutes an improvement of the responses
represented in Figures 102 and 103,

13.1O GUIDANCE FOLLOWING AN ALIGNMENT

13.10.1 Principle

The automatic guidance of an aeroplane following a given alignment is possible if
we can produce error signals proportional to the projections cf the shortest distance
separating the aeroplane from the imposed alignment and utilize these signals for the
command of the controls with the purpose of cancelling this distance.

Given a coordinate system OXgYgZg fixed to the imposed alignment, such that:

oxg is taken in the direction of the alignment

OYg is taken horizontal and directed to the right

ONZ is taken directed downward

the distance from the alignment to the aeroplane will be defined by:

y - projection on the axis OY1

z - projection on the axis OZ (see Fig. 179).

The flight conditions of the aeroplane on the imposed trajectory determine the
constant motion, the departure from which is represented by linearized variables.

The origin of the angles 0 coincides with the imposed direction. The inclination
with regard to the horizontal of the imposed alignment is 70

Separating the study of the longitudinal motions and the transverse motions, we
may write:

dz
- = - Vo(Y - Y0) = Vo(Ca - 9) (13.41)
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dy
-- = + Vo( + A) (13.42)dt

The errors z and y are therefore determined by integrals of the perturbations
a. '. 3, :

z = V4o(a - 6)dt + zo (13.43)

y = Vof(4 + 6)dt + yo (13.44)

The aeroplane will be linked to the desired trajectory if the longitudinal controls
are activated as a function of the error z , and the lateral controls as a function
of the error y . In certain cases, to avoid permanent errors, we also use the sig-
nals proportional to fz dt and fy dt

The control equations are written in the case of unit transfer functions:

Be = A18 + A2 3 + A36 + A•Z + ......

St = BI.O + B2a" + B3u + B '1z . ......

SOL = A10 + A20 + AO• + a~y . ......

Be = B 10 + BS/ + B39 + B~y + ......

The order of the system of equations of motion is increased by unity by these con-
trol equations. As a matter of fact, in the most simple linear case, the excitations
(ACx)1 I..... (ACn)i are functions of the variables z or y . For this reason it
is necessary to add Equation (13.41) to the differential system for the longitudinal
motion and Equation (13.42) to the system for the lateral motion.

The longitudinal motion is defined by a system of differential equations of the 5th
order, the lateral system by a system of equations of the 6th order.

13. 10.2 Properties of the Trajectories

The properties of the trajectories determined by the control equations, including
terms in y or in z can be predicted by the theory of servo-mechanisms. They can
be studied in some fashion experimentally by resolving the system on the analogue
computer. In both cases one may see that the terms of control in z or in y are
clearly destabilizing.

One of the duties given to modern automatic pilots acting on the longitudinal motion
often consists of maintaining a constant altitude. In this case, the error z will
be furnished by a barometric reference: the difference between the ambient static
pressure and an imposed static pressure.

The introduction of such an error signal into an automatic pilot tends to produce
long-period oscillations, and must be compensated for by a sufficiently strong action
of the error signals exerting a stabilizing influence. The user of the analogue
computer is in a position to avoid considerable groping in the determination of the
respective gains which will affect the different error signals.
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13.10.3 Guidance Along an Approach Trajectory

The achieving of an automatic landing approach is a particular case of guidance on
a given alignment. The error signals in z or in y can be obtained aboard the
aeroplane or on the ground. There are therefore two systems differing essentially in
principle. The ILS equipment is a receiver that permits obtaining the error signals
aboard the aircraft. These signals are introduced into the automatic pilot by the
approach coupler.

The AUCA is a radar that references, in relation to the ground, the position of
the aeroplane, and determines its polar coordinates. These polar coordinates permit
the calculation of the errors z and y whose values must be transmitted to the
aeroplane. The AGCA is therefore a development of the GCA that constitutes a non-
automatic system where the error signals consist of verbal indications given by radio-
telephone.

The approach path is characterized by the following particulars:

(1) It is descending and makes an angle of 2.50 with the horizontal;

(2) The aeroplane is moving at constant speed;

(3) It is hoped to realize a speed of the order of 120 knots or 60 m/sec, as closely
as the characteristics of the aeroplane permit.

This speed may correspond to a point of the polar defining the second flight r~gimeo.

The 11S is characterized by the following particulars:

(1) The sensitivity of the system varies during the descent. Error signals of the
same amplitude or intensity received by the aeroplane do not correspond to equal
errors in z or y ;

(2) The height guidance furnished by I. must be stopped at about 200 to 300 feet
above the ground.

The AGCA is in an experimental state. The different operations to be effected each
introduce a delay, and the total of these delays corresponds to a relatively important
time constant.

13. 10.4 Applications

(a) Approach made in the first rigine* of flight

A complete study of approach guidance is reproduced in Part IV. This study makes
apparent a large number of peculiarities of the motion, and is presented as an example
of the possibilities of analogue calculation in the prediction of aircraft behaviour.
It comprises the study of the longitudinal motion and those transverse motions of a
motor engined aeroplane in the approach configuration.

$First r6gime is defined as a flight with normal attitude control. Second r~gime is defined
as a flight with control reversal, the power required exceeding the available power.
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The motion studied is a flight at a speed of 60 m/sec, corresponding to the value
of the lift coefficient:

CL = 1.145

for which CD/CL is a minimum.

The approach is thus made at an angle of attack smaller than that of minimum
CD/(CL3/2).

The aeroplane is equipped with constant-speed propellors. The effective power at
constant throttle is assumed to be independent of the speed, so that the thrust T
increases as the speed decreases. The operation of the elevator is normal and the
aeroplane is in the first r4gime of flight.

The study of the motion performed immediately reveals the instability caused by the
term Auz and the corrective effect of the terms in AO , Asi and A7u .

In practice, the same automatic pilot controls the aeroplane in cruise and during
approach. In cruise, the control equation includes the terms AO and A.ý . It is
normal that one tries to utilize the same terms in the control during the approach.

We have insisted throughout on the effectiveness of the term A in the stabiliza-
tion of the motion, and we have based our investigation on the use of this term.

If we consider solutions different from those that are used in practice, the result
will not exclude the use of the terms A16 provided that E4 indicates clearly the
error:

with regard to the attitude 0a corresponding to the approach flight and not to the
attitude Oc of cruise flight.

The study of the longitudinal motion has shown that it will be advantageous to
make the engine power vary as a function of certain error signals.

The study of the lateral motion made us choose control equations which were similar
to those An practical use.

The work described in another Chapter shows the ease with which the actual
mechanism of the phenomenon is made understandable by the use of the analogue computer.

(b) Approach made in the second regime of flight

The jet aeroplane receives a constant thrust from its turbojet engines. If we
examine the equilibrium condition

T - D = 0 (13.45)
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for the trajectories covered at different incidences, we find that the effect of the
elevator is reversed at all incidences greater than that corresponding to minimum
thrust. The second rigime beiins earlier, and the imposed flight speed corresponding
to a dangerous approach for a jet aircraft is strongly dependent on wing loading.

The equations of motion of the aeroplane may be linearized. The turbojet propul-
sion introduces

dT ddv -. (TcpSV2) = 0 (13.46)

B T 2T
That is to say:• + = = 0'aV V

and the response of the aeroplane may be determined in the same manner as in the case
of the first rdgime.

Some response of the absolute speed V and the sinking velocity w' due to a
step function input to the deflection Se and the thrust T have been obtained by
Bismut and Bouttes for a modern fighter simulation and published in an AGARD Report 20 .

These responses are indicated in Figures 180 and 181. At the speed of 130 m/sec
the aeroplane is in the first r~gime, while at 65 m/sec it is in the second rigime.
In the latter case the tail-up motion of the elevator produces a descending flight
path.

As a consequence of this inversion it is very difficult to maintain a fixed
alignment.

During the work conducted at O.N.E.R.A., Bismut and Bouttes adopted the following
scheme:

The landing is assumed to be made under manual control. A human pilot receives the
error signals sent out from the computer, either in a visual form (ILS), or in the
form of oral signals given by an assistant simulating the radio operator (GCA). The
pilot also has available the visual signals giving the divergence of the speed, and
introduces into the computer the electrical signals representing the deflection Se
and the throttle setting S. by a stick and a throttle of the conventional types.
The control equations

=e(S) = A Gi(s) z(s) (13.4'7)

SM(s) = B3 G2(s) - (13.48)
Vo

depend on the transfer function of the human operator and of the possibility of dis-
placing the two controls simultaneously.
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The simulation of a manoeuvre necessarily gives results which will depend on the
experimenter's training as a pilot.

In one series of tests, the pilot was asked to follow a given alignment using only
the elevator. The aeroplane was submitted to the action of a gust. Invariably, the
pilot produced a divergent motion (Fig. 182).

In another series of tests, the pilot was asked to maintain the speed of the
imposed trajectory at all times, utilizing the two controls to this end.

For the same tests without external excitation to simulate gust loading, the tra-
jectories shown in Figure 183 have been obtained.

For identical conditions, but supposing automatic control of the turbojets:

u
sm = B 3

V 0

and limiting the pilot's task to control of the stick, the results indicated in
Figure 184 were obtained. In this last test, the value of B was chosen such that
a speed reduction of 1 m/sec produced a thrust increase of 160 kgs.

It is, however, noteworthy that in the second test the pilot was able to give all
his attention to the signal z(s) . It is possible, therefore, that his transfer
function was better than in the preceding test.

The studies cited here bring to light:

(1) The difficulty of maintaining alignment when flying at high angle of attack;

(2) The favourable action produced by coupling the thrust to the speed.

A recent NASA publication 2 1 relating to some flight tes~s of the approach manoeuvre
made with automatic control of the thrust has confirmed these conclusions.

13.11 AUTOMATIC CONTROL OF FLARE-OUT

13.11.1 Statement of the Problem

The problem of flare-out is the following: the aeroplane is following the approach
trajectory and performs a straight descent at constant speed VA corresponding to a
rate of descent of 2.60 to 2.80 m/sec.

We represent the height above the ground by h (Fig.185). Having reached a point
A , at height hA , the pilot must effect the flare-out in an effort to reduce the
rate of descent to a value between 0.30 and 0.50 m/sec at h = 0 , when the aeroplane
touches the ground. For a tricycle landing gear, the trim at this time must be such
that the rear wheels touch the ground first.
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During this manoeuvre the vertical acceleration must remain moderate. A strong X
acceleration would require a strong augmentation of the lift, which is not permissible
because of the danger of stalling. The speed of the aeroplane diminishes equally.
This is a favourable result, but the reduction of V does not constitute the principal
object of the operation.

Many studies have been effected with the aim of providing automatic control of
flare-out. The analogue computer has played a large role in these studies.

The researchers working at Wright Field define the law of ideal descent, starting
from a point A, by a differential equation relating h and t

dh
(h + h + n - = 0 (13.49)

dt

Possible numerical values for hs and n are determined by the following examples:

(a) Normal case at Wright Field

The descent speed on the approach path is 2.60 m/sec. It is desired to commence
flare-out at h0 = 9.20 m , and to touch the ground with a vertical velocity of
0.30 m/sec. The equation of the trajectory may be verified for:

dh
- = - 2.60 m/sec with h = 9.20 m
dt

dh
and for - = 0.30 m/sec with h = 0dt

which gives:

n = 4 sec and he = + 1.20 m

(b) Another possible case

The initial speed is 2.80 m/sec. The manoeuvre is begun at h = 20 m, and a
vertical speed of 0.40 m/sec is desired at the ground. These requirements give:

n = 8.33 sec and he = 1.66 m

The curve h(t) defined by the preceding differential equation is exponential.
The quantity hs is the distance between the asymptote to flight path and the ground.
Transforming the time and the distance by:

x =fV dt (13.50)

we obtain the trajectory:

h = f(x) (13.51)
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which differs slightly from the curve h f(t) because of the relatively weak speed
variations.

Achievement of automatic flare-out is possible only if the aeroplane receives the
information of the height h over the ground. All the techniques of achieving an
automatic flare-out are based on the existence of a precision altimeter, furnishing
in a continuous fashion the aforementioned information. Such altimeters, utilizing
ground reflection of electromagnetic waves, actually exist.

The derivation of the signal h , or the direct measure of the descent speed by
any other means, permits one to obtain a compound signal

dh
Ch = (h + he) + n - (13.52)dt

where n has an arbitrarily imposed numerical value.

The problem of the automatic flare-out consists of finding some control equations
defining the required elevator deflection Se and eventually the throttle setting

S. that will cause the aeroplane to describe a trajeetory with characteristics close
to those of the ideal trajectory. These contro. equations will be functions of the
signal ch and such additional signals as prove necessary.

The chosen control relations must be able to correct the effects of possible hori-
zontal and vertical gusts. The essential point is that the aeroplane shall, at the
moment of contact with the ground, possess a vertical speed differing only slightly
from the imposed speed. It is desirable, besides, that the horizontal distance
between the point of contact and the point A' undergoes only moderate variations.

The block diagram defining the behaviour of the aeroplane is represented in
Figure 186.

The altitude h , resulting from the motion of the aeroplane, must be measured by
an altimeter. The measurement is re-introduced in a computing machine that forms the
signal:

Either by continuous derivation of the signal h (Case a)

Or by measurement of the velocity dh/dt by means of a special instrument (Case b).

The additional inputs to the block representing the automatic pilot indicate that
this device may be aided by signals other than eh '

,qeveral researchers: Porter 2 2 , McCallum2 3, Merriam2
4. Markusen, McLane, and

Pomeroy 25 have proposed control equations that are based on the theory of servo-
mechanisms, and have utilized the analogue computer to determine the exact character-
istics of the corresponding trajectories.

13.11.2 Effect of Error Signal

The signal Eh is positive when the aeroplane is higher than it ought to be,
taking account of the sinking speed it actually possesses. Considered in this aspect,
it defines an error of altitude.
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The signal may also be considered as defining an error of descent speed with regard
to the speed corresponding to the true altitude. The vertical demanded speed hc
being equal to -(h + hd)/n , we have:

1 dh dh 1
dt - hc = -+- (h + hs) (13.53)n dt dt n

The signal eh is generally produced from the signal h by an instrument called the
flare-out computer, which executes the derivation and calculation of the sum

dh
(h + h3 ) + n -S dt

Introducing this signal into a servo-mechanism with a transfer function KG(s) , where
K is a numerical coefficient > 0 , we will have:

8 = K G(s) eh(s) (13.54)

In the particular case where G(s) = 1 , we may pass to the time-dependent equation
and will obtain:

dh
e K(h + hs) + Kn - (13.55)e S dt

Such an equation will direct the aeroplane towards the asymptote h = -hs if the
final motion is a horizontal flight dh/dt = 0 realizable with the thrust used for
the descent.

In Part IV (Section 21.2) we describe the behaviour of an aeroplane subject to a
control relation:

8e = A z + Aei with z = -h

where the coefficients A and A. are related by:

0.946
Ae =- x 7.05 A4 = 2.65 A42.54

The calculation is made for one initial condition in z , and one final trajectory
having the same slope as the initial trajectory (Fig.299 and Fig.300). We have
obtained an oscillatory trajectory.

In the problem studied here, it is clear that the trajectory determined by the
integration of the equations of motion and the equations of control, for the initial
conditions, viz.

dh
- = 2.6 m/sec
dt

h = 9.20 m
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will be far from the trajectory defined by eh = 0

The trajectory, straight to begin with, can only be curved it an input ch acti-

vates S. , but this can only happen when e. is no longer Mro.

A propeller-driven aeroplane descending at an angle of attack less than that

corresponding to minimum power and controlled according to Equation (13.55) generally
presents an oscillatory trajectory.

If the descending part of the oscillation occurs at the moment of contact with the
ground, the instantaneous vertical speed may be absolutely prohibitive (Fig.187).

The trajectory of a jet aeroplane descending at an angle of attack equal to or
greater than that corresponding to the maximum (L/D) ratio Will be still worse.

13.11.3 Tests on the Computer

The block diagram corresponding to the simulation of the flare-out is presented
in Figure 188.

The variables 0 and a represent the deflections measured from the values
corresponding to a constant descent prior to reaching point A.

All the following calculations are based on a transfer function for the mechanism
between the signal and the deflection given by the expression

0.0743 a + 0.28
G(s) = 0.00611 82 + 0.0224 s + 1

The signal eh . obtained on the real aeroplane by direct wmasurement and deriva-
tion of the altitude, is calculated from the output signals of the circuits represent-
ing the aeroplane.

The true descent speed calculated by the above method is equal to (dh/dt)A +
, 1

V(6 - a) , and will be compared to the imposed descent speed: hfi -(h + he)
n

1[hA + fh dt + he] . The error ch will be
n

1
n-Eh = h - he (13.53)
n

The trajectory obtained by a control equation of the form

Se(s) = K G(s) Eh(s) (13.54)

will never be satisfactory. Thus, to obtain a stabilizing signal, it is important to

send other stabilizing signals to the automatic pilot.

The authors of the various works have considered principally the signals 8 and
9. They have studied the consequence of this additional information by the theory
of servo-mechanisms, and have achieved the simulation of these methods of control.
They have not utilized the control of the motors.
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Porter has simulated the behaviour of a C-54 aircraft (military version of the
DC-4),

MacCallum has considered the behaviour of the B-47,

Markusen has studied the DC-3,

Merriam has studied three different cases:

C-47 (military version of the DC-3, a two motored transport).

B-47 (turbojet bomber),

F-80 (turbojet fighter).

The most simple form of airborne.equipment involves the utilization of the normal
type of automatic pilot, sensitive to 9 and 0 . The error eh is added to the
input 9 or to the inputs 8 and 9 , following the scheme indicated in Figure 189.

This conception of the control of the flare-out presents the inconvenience that
the term in 9 (in reality the difference 0 - @A) represents the difference with
regard to the approach trajectory, and tends to return the aeroplane to this trajec-
tory when it is actually desired to deviate from it.

Figure 190 (due to Porter) shows the trajectory for a gain such that an error
Eh/n of one foot/second produces the same effect as an error LO of 0.25 degree.

Figure 191 (due to MacCallum) shows the trajectory for a gain of 0.4 in e./n

In the two cases, the action of the signal is insufficient to produce flare-out.
Both authors have improved the trajectories by comparable processes.

Porter used the following procedure:

(a) Increasing the gain from 0.25 to 0.70 or even 1.0 but simultaneously increasing
the component A 5 . A supplementary circuit is used to render this increase
more important than in the normal automatic pilot (Fig.192).

(b) Modification of the term in 9A increasing progressively the reference trim
by a quantity:

A@ = c - (13.56)

so that the term A19 becomes:

A[@ (@A + 6Y8)] (13.57)

Figure 193 gives the trajectory obtained for C 3.75 .

MacCallum operated as follows:
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(a) Either by suppressing the term A1O produced by the automatic pilot, and
increasing the gain of the damping term A.6 (Fig.194);

(b) Or by maintaining the term A10 at the normal value produced by the automatic
pilot, and increasing considerably (25 times) the damping term A5e , and the
gain corresponding to the error signal Eh (Fig.195);

(c) Or by applying a small gain to the signal Eh , and adding a term proportional
to the integral of the error such that this integral is always less than a
given maximum value (Fig. 196).

Generally speaking, the above modifications to the control equation improve the
flare-out.

MacCallum completed his tests by studying the effect of a vertical gust. He chose
a gust, either ascending or descending, of the order of 2.22 m/sec. The gust was
applied 1.5 seconds after the flare-out was initiated, and had a duration of 1 second.
Figures 194, 195 and 196 present the trajectories obtained by MacCallum for the three
Cases (a), (b), (c) with and without the gust.

It is seen that the control laws chosen do not produce the desired flare-out when
the gust described above is applied. The question is not considered as to whether
or not the arbitrarily chosen gust corresponds to a perturbation to which an aero-
plane in close proximity to the ground will actually be exposed.

The principle of the set-up used by Porter is shown in Figure 197.

The manner in which the given initial conditions must be introduced should be
noted. The aeroplane is following a trajectory of slope

Y (OA + 0) - (aA - ) (13.58)

corresponding to

dh

dt V[(eA -CLA)+(O-a)] (13.59)

This descent speed will be formed by the computer by means of a term

VA(eA - aA) = d(d)A

which is introduced externally, and by a term

VA(8 - a)

which will be provided by the set of equations for the aeroplane.

To obtain h
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h hA + dt

it is necessary to introduce the altitude hA

There are, therefore, two items, (dh/dt)A and hA , which must be introduced into
the computer. These items are the initial conditions.

13.11.4 Other Problems

In a more recent work, Merriam considered the case of a flare-out initiated at
high altitude. This permits one to increase n , and thus increases the stabilizing
effect of the term dh/dt relative to the term in h .

Pursuing the analysis further, Merriam introduced the actual characteristics of
the-altimeter and computer.

In the first of the above schemes, the values of h and dh/dt resulting from the
calculation of the trajectory are utilized in the formation of the signal.

In reality, the value of h is known only by measurement. The electronic altimeter
furnishes the altitude, but with a noise level such that it must be lowered by filtra-
tion of the signal.

Moreover, the measured altitude is related to the true altitude by the transfer
function

1
ho(s) = h(s) (13.60)

As the derivation of the signal is imperfect, a second time constant is introduced,
viz.

dh. a
h*(s) (13,61)dt 1+ 7- s

The signal eh furnished by the computer must be calculated taking account of the
time constants produced by the measuring equipment.

Markusen has also considered the real properties of the equipment in the publica-
tion given above.

Both authors studied the effect of gusts. In addition, Markusen considered the
transverse problem, which has not been considered here.

In the case of a transverse wind, the aeroplane flies with a crab angle, with res-
pect to the ground. Shortly before touching the ground the pilot must produce a rotation
about the axis OZ , in order to suppress this crab angle.
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13.12 AEROPLANE EQUIPPED WITH A GUST DAMPER

The results of an interesting analogue study of a gust damper, made by R.W. Bouchert
and C.C. Kraft, have been published by the N.A.C.A.26

The gust damper is formed by a servo-mechanism controlling the wing flaps, and
following the indication of a wind vane located ahead cf the wing. This wind vane, in
following the direction of the local flow, will experience a rotation 8 . This posi-
tion will indicate the aerodynamic angle of incidence of the aeroplane (Fig. 198).

The equations of motion for a short-period oscillation of the aeroplare may be
written by separating the aerodynamic forces exerted on the wing from those exerted
on the tail surface.

Let:

cp = the true or aerodynamic angle of attack of the wings

ae = the true or aerodynamic angle of attack of the tail surface

a = the apparent angle of attack of the wing

a. = the theoretical increase of the angle of attack due to a gust (= -wa/Vo)
(wa is < 0 for an ascending gust)

Sf = the deflectior of the flaps

Se = the deflection of the elevator.

The aerodynamic coefficients corresponding to the wing or the tail surface are denoted
by subscripts p or e , respectively.

The equations of motion are:

-7d _ da 5 +C.) (alfeS + (Cz~e)e 8' (13.62)

d29
cY dt = (Coa)p ap + (Cm8 f)p 8f + (Cm-)e 0e + (C 8 )e 5e (13.63)

The study is limited to strong gusts, applied as a step function.

The gust produces an increase of angle of attack at the moment the specified ele-
ment of the aeroplane enters the ascending gust. This increase is applied to the wind
vane, the wing, and the tail surface, respectively, at times to , t, and t 2 .

These increases will be designated by:

ag,to ag,tI agt2
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The true angle of attack of the wings is given by:

ap = a + ag. t (13.64)

The true angle of attack of the tail surfaces is defined by:

a * = a- a) Las, 8) + 10 (13.65)•e=ct-+ 0'91t2 ag, t, ) f)

The terms marked with an asterisk are affected by the delayed arrival of the deflection
e at the tail surface.

From the math" possible methods of expressing the delay. N.A.C.A. chose the
operator

1

1 + I's

The final expression for ie is written:

1 + , a + + 0 (13.66)
a6e =L a-o-- 1 + l's + agtg't 1 1 + I's 6f 1 + l's

By eliminating ap and a. between Equations (13.62), (13.63), (13.64) and (13.66),
we would obtain two differential equations between the usual variables (a , 0) and
the excitations (agt 1 . agt 2, 8f and SO) . These equations are not written here,
since the analogue resolution of the problem is simplified by the display of Equations
(13.62), (13.63). (13.64) and (13.66) where the variables a. and a. are retained.

We may study the behaviour of an aeroplane not equipped with a gust alleviator. In
this case Sf = 0 .

It is simple to obtained the effect of a step deflection Se • The results given
by the analogue computer are presented in Figure 199 for the case Se > 0 , where
Se is made to excite the motion.

The acceleration is calculated by the formula:

(dO da\

iZ dt/ (13.67)
qzt0•-- dt/

and is positive when it is directed in the positive sense of the axis, i.e.. downward.

The diagram gives the classical result if we study only the motion about the centre
of gravity. If we want to determine the effects of a gust, the response to an excita-
tion ag must be calculated.

The effect of a step function excitation ag is obtained by applying this excita-
tion to the different terms at the corresponding times ti and t 2 . The response is
indicated in Figure 200.
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We see that the aeroplane is undergoing an acceleration J. in the top figure.
The plot of 9 shows how the aeroplane tends to rise when only the wing Is affected
by the gust. The growth of 9 is terminated at time t 2 , when the tail surface
reaches the gust. When the non-steady motion is terminated, the acceleration of the
aeroplane is again zero. The apparent angle of attack differs by the amount -ag
which gives a true variation of the angle of incidence S• equal to zero.

When the aeroplane is equipped with a gust damper, the deflection Bf of the flaps
is controlled as a function of a signal E by a servo-mechanism having a transfer
function of second order:

2

2o E(s) (13.68)

To begin with, the aeroplane is equipped with a wind vane that gives the relative

alignment of the air stream in the form of a signal:

8v = a + dg~t° - Ino (13.69)

where 1n is the distance from the wind vane to the centre of gravity.

The signal E is the sum of three terms:

The first is Ki 8V

The second is a signal from the elevator control, and is required to permit the
pilot to fly at different values of CL . It is equal to -KK28, .

The third signal (not present in all the cases studied) is proportional to the
integral of the deflection Sf. It decreases progressively to produce the progressive
elimination of the deflection Sf , and is equal to AKc /s f.

1
Thus: E = Kisv - K1 K2se - Kc I Sf (13.70)

Eliminating Sv and E between Equations (13.68), (13.69) and (13.70), we obtain the
equation for the behaviour of the flap in the form of a relation (13.71) between
Sf , *, a , and the excitations Se and ag,t0:

f(sf + ( 2 n + + q. + sB(K11a 2)- 2 (K2o•)

= 5,to(Kco 12) - ne(KiK24n) (13.71)

The response of the aeroplane to the excitations Se and ag is thus determined.
The step function excitation ag must always be divided into three equal terms,
applied at the times to , t, and t2 .

The original report studied these responses for a series of different cases.
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The response to S. and a. (step functions) are represented in Figures 201 and
202 for a simple case, characterized by a rapid response of the flap servo-motor, and
Kc--0 .

The response to S. indicates that this is only an insensitive variation of the
incidence. The flaps are raised, resulting in a reduction of lift and a downward
acceleration n , which corresponds to an angular velocity of descent.

The response to a gust ag shows that at t. the flaps begin to deflect upward.
As a result, the aeroplane experiences a downward acceleration and dives slightly.
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Fig. 130 Simulation of a servo control using a Jack

Fig.131 Principle of the electric position servo control

F

Fig. 132 Generation of a signal proportional to pilot effort
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Fig. 134 Control when stick displacement is the input
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Pig. 141 Alteration of computer set-up when
automatic control is used

Fig. 142 Feed-back acting on error sensor
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Pig. 143 Electric servo valve
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Pig. 144 Electric servo valve

Fig. 145 Control involving an integration
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Pig. 179 Actual position of an aircraft with respect to a prescribed path
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Fig. 189 Automatic flare-out control; block diagram



317

h \ h

10 , 10 _ _ _ _

2 2-

0 *-1 t 8c 0 (C

-2 2 b 1-5 -2 0 256 1

-' -8

h M/se¢ h M I sec
-3 -3-2 -2

0 t (See) 0 t_ _ .0
20 b . • 7. 5

b I| j
PO 6

I tlec)

0~- 0ý 0 b

-i m -I ____

-2 __-2 _

AV AV
2mlsec M / sec

2 2I

0 05 25 b 5 0 256 I 5 7.5

-1 _ 1 _

-2 190 -2 o riSne
Pi.10 1iuaino lr-u _i_191 Siulaio of _flr-ou



318

h10 M 0m ••

0 1 t ( d 0 t(S C)

-3 -

-2 "._i-2

_ _ itsec) e _ _ _ I

0 .
2

_2 -2_-2 -2

tg19 S Iimc) ' a folar e-

2 n/,5____ ___ ,_ 2, 0rn5 7

I __ _ _ _ _ _ I1 _ _ _ _ _ _ _

-2 ____ 2_______ ___ __

, i. 9 Siuato of alr-u i.13 Smuaino lr-u



319

I0 to 10,-

4 4

2 2 2o
t(0OC) 0 1 tt )€ t(Sec)

-2 -2 0 2.1 -2 0 25

-6 -6 -
0--00

.3 ._ 33T __'

a Lw¢ 0 t. K) o t See)

.2 2 2

0 0 __ 0 - (SVL )
A0 36 5 0 2.5 5 0 X6 5

-2 0 2.5 5

I I 1

0 20 14 o 2 ac a u st (S )
00 2. 5 1

Fig. 194 Simulation of a f1ljxe-out; action of a gust



320

to ~ to 1

22 2

-2 -

0 2.1 1 0 115 1 0 2.51

-~ mic-3 -3 rns

-2 _ _2

0 2b 1 0 2.5 5 0 2.51
38 -* 308 0_

2 2 2-

a-.--.C 0 -(C ______

0 25 1 0 2.1 5 0 23

_ I r/sec ]........j t(SOc )

-2

0 2,Sa

0 a t(sec) t(MOC)

Pig. 195 Simulation of a flare-out; action of a gust



321

rnrn_\__h

12 1 2

-2 2 2
10

-22

2t t(S )

3 -

.2 2 .2

o u-__o_ ____ .4

0 25 1 0 2PS 0 2.6 1 7.S

0 It( 
,O•

-I .. 2 \ _ _

.2.

0 2.5 2

0. 2.1

01 l tt e) 0 ,

0 Z6 VS

Fig. 196 Simulation of a flare-out; action of a gust



322

- h

LA

Pig. 197 Simulation of an automatic flare-out and control; block diagram

Fig. 198 Aircraft fitted with gust alleviating device
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PART IV - A CASE OF AEROPLANE GUIDANCE, AS AN
EXAMPLE OF ANALOGUE COMPUTER UTILIZATION

F. C.Haus

CHAPTER 14

GENERAL DISCUSSION

14.1 THE PURPOSE OF THIS INVESTIGATION

Because of the ability to repeat tests, following a logical pattern, the analogue
computer allows us to study the actual mechanism of a phenomenon and to investigate

the action of different factors.

The present Part considers, in some detail, the problem of guiding an aeroplane
during the approach stage of its landing.

The study reveals a large number of characteristics of the motion and is presented
as an example of the possibilities offered by the analogue computer technique in the
study of aircraft behaviour.

14.2 PROBLEM OF THE APPROACH PATH

The ideal approach path is provided by the intersection of the vertical plane
passing through the axis of the runway and a plane perpendicular to it having a fixed
slope with respect to the horizontal.

The vertical plane is the plane of the 'localizer' and the inclined plane is the
plane of the 'glide path' making an angle C with the horizontal (Fig.203).

The intersection of the two planes cuts the runway at the ideal point of contact,
i.e. the 'touch-down point'.

We shall consider here the problem of automatic guidance of the aeroplane to this
point.

The position of the aeroplane during its approach will be defined with respect to
a system of axes OX Y Z fixed relative to the ground, the origin being located on
the intersection of t fhe ocalizer and glide path planes at a distance D from the
touch-down point. (This system of axes is different from the system B described in
Section 1.1).

The axis OXg lies along the line of intersection of the two planes, the axis
OYg is horizontal and directed towards the pilot's right, and the axis OZ is per-
pendicular to these two axes and directed downwards.

The position of the aeroplane during the approach will be determined by the three
coordinates x, y, z , in which
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y represents distance from the localizer plane

z represents distance from the glide-path plane.

14.3 BASIC CONSIDERATIONS OF THE INVESTIGATION
(1) Differences between the real and ideal approach paths are assumed to be small,

so as to allow us to:

(a) Consider the longitudinal and lateral movements separately

(b) Simplify the kinematic relations defining the trajectory.

The longitudinal motion will be studied as if the aeroplane were moving in the localizer
plane and the lateral motion as if the aeroplane were moving in the glide-path plane.

(2) In each of the investigations, we will use the equations of motion with res-
pect to axes GXYZ fixed to the aeroplane. This coordinate system is fixed in the
conventional way, and the usual sign system used for the forces X , Y , Z , the
moments L , M , N , and the velocities u , v , w , p . q , r .

(3) The motion of the aeroplane following the ideal approach path in steady air
is a well-defined steady-state motion.

The transient motion which the aeroplane describes when subjected to an initial
disturbance is defined by a set of linear equations. In these equations the variables
will be the deviations from the values for steady motion in still air.

(4) The aeroplane is fitted with four controls. Two of these (the elevator con-
trol and the engine throttle) govern the longitudinal motion; their displacements are
represented by Se and ., " The other two (ailerons and rudder) govern the lateral
motion and their displacements are represented by Sa and Sr "

With the usual sign convention, positive displacement of Se SIa and Sr produce
negative moments, while SM is positive when the displacement of the throttle lever
increases the power.

With constant-speed propellers we can say, to a first approximation, that the
power is proportional to the throttle opening.

Let W be the power supplied during a manoeuvre and Wo the power supplied for
trimmed motion in still air. Then S. is defined as follows:

SM=W - W0
W0

(5) The displacement of the aeroplane will be investigated taking account of air
movements in the surrounding atmosphere. The component velocities of the air along
the axes GX , GY , GZ will be defined by ua , va , wa
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Notte

It would have been more logical to define the components of velocity of the atmos-
phere with respect to ground axes like OX OY . OZg , rather than to aeroplane
axes, but the equations would be more complicatek,

14.4 METHODS USED IN THE INVESTIGATION

Research into the problem of aeroplane control has been carried out with an
analogue computer, using the aerodynamic characteristics of an existing aeroplane.

The necessary data come partly from wind tunnel investigation, and partly from 4
simple evaluations.

The analogue computer work was done on several different occasions. It was started
in September 1954 and it was possible, thanks to F.N.R.S.*, to use a computer which
was temporarily installed in the industrial electronics laboratory of the University
of Brussels.

The results obtained induced the Derveaux laboratories of Paris to place at our
disposal, on three different occasions, a DJinn computer which permitted us to obtain
the majority of the diagrams presented in this report. The last tests were made
again at the University of Brussels.

The following presentation follows the reasoning we made at the time in order to
find the best control equations.

Some time before our tests were completed we discovered that similar work had been
carried out by R.E. Carroll and C.M. Tyler at the Bell Aircraft Corporation for the
U.S.A.F. 28

The report published by these researchers takes account of a great number of sig-
nificant combinations; it recommends certain combinations of control equations but
it is not possible to follow completely the successive tests on which these
recommendations are based.

This report came into our possession in time for us to compare the control
equations recommended by the American experimenters with our own, for the case of
lateral motion. However, we were not able to make a similar comparison for the case
of longitudinal motion, for reasons which will be seen later.

*Ponds National de la Recherche Scientifique
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CHAPTER 15

EQUATIONS OF MOTION OF THE AEROPLANE

15.1 NOTATION SYSTEM

The equations of motion of the aeroplane have been written using the following
variables:

Independent variable t

The time t is replaced by the aerodynamic time .

In the longitudinal motion, we define the specific mass as

2m= - (15.1)
pSc

The unit of aerodynamic time r is equal to Ac/V 0 seconds.

In the lateral motion, we define the specific mass as

2m=• - (15.2)
pSb

The unit of aerodynamic time 7 is equal to /'b/V 0 seconds and is the same as for
the longitudinal motion.

We shall call Vr the displacement of the aeroplane per unit of aerodynamic time.

Then we have:

V• = V ) = ( (15.3)

and, for the steady state:

V0o, = pc = M'b (15.4)

Dependent variables

The variables used are:

u w vU - ax = - '8 -

Vo V0  Vo
(15.5)

pb qc rb
p q - r

2V0  V0  2V0
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15.2 EQUATIONS OF NOTION

The longitudinal equations of motion are written taking the axes fixed to the
chord:

dG
d--" CxU - Cxa- (Ciq - Po)i + CL COo e

-CZ 8*8. + C1868. - (C10 - cLOCZ) 'a - C, _W

V0 V0
Uaiu -q•

d "- C + Cz8  e -Z(c+ A .) ÷ •^ + 
Csi o 0

-C. 8 sm + Cz 8 se - (Cza - a0Cz.) La - Cz. -Wa (56
M eV 0  V0

/j_•c )2 dq Cu xý CQ+C

ÜInES B mee - (Cou - aoCM• u C.a. V O

dO

The displacement of the aeroplane is given by:

dq
- , " (a - 9) = 0

(15.7)
dxd-• V 0°.(l + G) = 0

The equation in z is the linearized form of the following equation:

dz
wd' - Vhs 0 ( +G)(l + G ) = 0

which is more exact, and has been used because it was possible to introduce products
of variables in the computer.
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The equations of lateral motion are written taking axes fixed to the principal
axes of inertia:

d - - + r•' -Zp)]U - Er (a.'a + CL Coapo cOSBo0

- Y~Saa + C78 r 8 r - C••V

v

C3s8 S8 + CnSrSr -Cr8 '

2 (15.8)

dcp

d-x- C•'6 Cr0

d•- •'•= 0

The displacement of the aeroplane in the glide path is given by

S- V0 (15.9)

15.3 INPUT AND OUTPUT SIGNALS

In all that follows, the equations are written in a general form.

15.3.1 Longitudinal Motion

uu, .i

__ + al 1 a+bs +c 1• + d1 hS~ + kSe + (a 1 -aZb1 ),-7-+ b 1 -,
1Vofo vo ' (15.10)
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S+ RA + b2a"+ c + d = h + k e + (a a b) -o + b- ((15.10)

Vo

Q + •t U + b a + cQ^ h-"8 + k 8e + (a - 0°b3) '+ bU -

V V

L9 0

+ b5a +dO = 0

x +a 6  y,,

+ a 6 V0,,r

15.3.2 Lateral Notion

S+ a•I+ bz +c 2 + d~cp =h•a + kt8r + a•oi~
v

+a + hpb3  + c3  -- h3S + k Si + a (15.11)

+ +a a

+ cb116 0

S+a,,3 +e6e. = 0

The smbol indicates a derivative with respect to aerodynamic time .

The control settings Be I so I Sa 1 8 r and the velocity components ua a v wa
of the ambiant air, constitute the input signals, from which the aeroplane produces
12 output variables, viz.

cp 9

x y z
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These variables can be considered as the generalized coordinates of the aeroplane.

The input signals are of two different types: the wind velocity components ua
va I wa are random in nature.

The control displacements Se . 8s I ,a I Sr are caused by the pilot and hence
they can be predetermined. In the case of an automatic pilot, they are defined by
the control equations.

15.4 MECHANICAL AND AERODYNAMIC CHARACTERISTICS
OF THE AEROPLANE UNDER CONSIDERATION

The characteristics of the aeroplane were:

Total weight (G) 48,000 kg

Wing area 185.70 m2

Wing span (b) 42.95 m

Chord (c) 4.31 m

Distance of tail-plane from
centre of gravity 15.50 m

Radius of inertia: r. 5.48 m

ry 4.90 m

rz 7.34 m

The coefficients of lift and drag, CL and CD , are given in Figure 204, together
with the ratios CD/CL and CD/CL3/2

The flight conditions under consideration are for a speed of V0 = 60 m/sec,
corresponding to a lift coefficient of 1.15.

Hence it can be seen that the angle of attack corresponds to the minimum value of
CD/CL and this value is equal to 0.0914. This angle of attack, however, is less
than that corresponding to the minimum value of CD/CL3/2 . Since the aeroplane is
equipped with a constant-speed propeller, the useful power, corresponding to a constant
value of 8M I is constant and independent of the velocity of the aircraft.

The useful power supplied by the engines during the approach is known.

Let G be the weight of the aeroplane. The slope of the approach path is 2.50 or
0.0436 radian. To maintain these conditions a thrust of (0.0914 - 0.0436) G = 0.0478
G is required. The useful power to be supplied is then:
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0.0478 0 Vo Kg m/sec.

The aeroplane flies under constant power and at an angle of attack smaller than
that corresponding to minimum necessary power; all decrease in speed results in an
increase of available power.

The following property comes out of the equations: any decrease in speed produces
an increase in the propelling force, whilst a corresponding increase in angle of
attack does not change the ratio CD/CL ; this retains its minimum value because of
the-assumption of linearization.

The following numerical values have been used:

A = 97.5 C " 1.15 .o 70 = 0.122 rad

r_
- 1.135 Vo, = 424 7r 7.04 sec

c

Cxu = -0.091 Cx, = +1.34 CxQ = 0 Cxsm = +0.0635 CxSe = 0

CZu = -1.773 Cz. = -5.19 Cz. = 0 CZ3m -0.10 Cz = -0.403

Cau = +0.11 Cm( = -0.90 Cmq = -8.750 Cmas = +0.0202 CSe= -1.375

Co. = -2.020

The factor Cx; incorporates the effect of variations of speed on the propelling
force of the propeller.

Lateral Motion

A' = 9.82 C1, = 1.15 (a. + ) = 40 = 0.07 rad

2r 2  2ryb_ - 0.0327 -1 - 0.0585 Vor = -424

Cy' = -0.756 Cyp = +0.174 Cyr = +0.170 CyS = 0 Cysr = +0.20

Cip = -0.0755 Cip = -0.550 Cir = +0.304 C1 3a = -0.1 CIr = +0.01

an,8 = +0.03 Cap = -0.092 Cnr = -0.118 CSa= 0 Cn8r = -0.10

With these values, the coefficients in the equations to be solved are given in the
following table:
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Longitudinal motion

a b c d h k a-aob

1 +0.091 -1.34 +11.9 +1.15 +0.0635 0 +0.2544

2 +1.773 +5.19 -97.5 +0.0908 -0.10 -0.403 +1.141

3 -0.085 +0.697 +8.45 0 +0.0156 -1.065 -0.170

4 -97.5

5 -424 +424

6 -424

Lateral notion

a b c d e h k

1 +0.756 -1.55 +19.47 -1.15 0 0 +0.20

2 +2.32 +16.9 - 9.45 0 0 -3.07 +0. 307

3 -0.516 +1.58 + 2.03 0 0 0 -1.725

4 -19.64 0

5 -19.64 0

6 -424 -424



CHAPTER 16

AUTOMATIC GUIDANCE

16.1 THE CONTROL EQUATIONS

Any relationship for determining the magnitude of the movement of a control as a
function nf the deviation of one or more variables from those corresponding to the

required trajectory, constitutes a control equation.

We will try to find the control equations consistent with the aeroplane flying
along the line of intersection of the localizer and glide-path planes.

We will suppose that it is possible to have a servo-mechanism which will satisfy

the relationships between the deviations and the control settings.

16.1.1 Longitudinal Notion

+8A 2 a + ,0 A3 - u., AAZ +

(16.1)

As•+ A V •oA

+ w...6 + A6 a + Vo/+A76+A~ ,zd

"-80 + B2 (-+ ) + " +

A (16.2)

+ B558 + B- -. + a + B 7 + Bsi"+B f dt
V0 V0 +0 00f 0

It can be seen that the term in A2 depends on the geometric or aerodynamic angle

of attack; the term in A6  depends on the derivative of the term in A 2 ; the term
in A3  depends on the relative velocity; the term in A7 depends on the derivative
of the absolute velocity.

16.1.2 Lateral Motion

+8a = A0 +- A2(2 V)+ A 3 Y+A +1

(16.3)

+ A^, + A, a + A7r + A J (
3 V3

335



336

+ = + B

(16.4)

+ B'ý + B +B0 e

16.2 CRITICISM OF THESE EQUATIONS

The simplified forms of the control equations are subject to the following
objections:

(1) The assumption of proportionality between control movements and deviations
never corresponds to reality;

(2) The method of measuring the error in z or y provided by ILS equipment does
not provide us with a quantity which is always proportional to the deviation
of z or y.

We can deal with the first objection by supplying the computer with information
about the real properties of the servo-mechanisms.

We can progressively approach the real properties of the system in the following
way:

(a) As a first step we represent the operation of the servo-mechanism by an equation
of first order, of the type

Se = A10r (16.5)

where

a = + Or 0 (16.6)
dt

giving, for a step in 8 ,

8 = AO(l( e-t/a) (16.7)e

or, in a general way,

1
e(s) = A 8(s) (16.8)e1 1 + as

This introduces a time constant a in the control equation.

(b) As we saw earlier, we can also represent the operation of the servo-mechanism
by an equation of second order. Nevertheless, we use only the first approach
in a certain number of cases where we introduce the time constant a
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The second objection arises from the characteristics of the transmissions from the
ILS units.

The ideal guidance system would provide planes of constant signal parallel to the
localizer and glide-path planes.

In this case the receiver on board the aircraft would provide a signal of strength
proportional to the distance y separating the aircraft from the plane of the
localizer and another signal of strength proportional to the distance z separating
the aircraft from the glide-path plane, whatever might be the distance D - x from
the aircraft to the touch-down point.

This ideal guidance cannot be realized in practice, the real case always being
different. The ILS transmitter provides a system of planes of equal signal strength
and the strength of the signal for each point is proportional to the dihedral angle
X between the plane of reference (glide-path or localizer) and the signal plane
passing through the aircraft centre of gravity (Fig.205).

These equi-signal planes determine, by intersection with the glide-path and local-
izer planes, a system of equi-signal lines.

The intensity of the received signal is proportional to the angle X , provided
this angle is sufficiently small (X < 2.500 or X < 0.0436 rad).

The received signal amounts to a certain number n micro-amperes. We have, for
example, n = 150 micro-amperes for X = 0.0436 rad:

tgX = 0.0436 _- = kn (16.9)
\50/

The transmitter producing the glide-path signals is situated on the side of the
landing field close to the touch-down point, at a distance D from the origin of
coordinates.

The distance z is related to the received signal by the relationship

z = (D - x)tgX = (D - x)kn (16.10)

The same angle X , i.e. the same received signal, corresponds to the distance z
becoming proportionately smaller and smaller as x increases, i.e. as the transmitter
is approached.

If it is desired to evaluate the linear deviation z from the signal n , everything
will occur as if the sensibility of the receiver is increased in the proportion

D D
or (16.11)

D - x D - Vt

as the aircraft approaches the transmitter.
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The simulation of the flight along the glide path requires a mechanical device
performing. the operation

A4 A~o -

(16.12)

A,,o and B4,0  representing the coefficients at time t = 0 and distance D

Differentiating the equality

1
n - Z

k(D - Vt)

we have

dn 1 dz z
- -+ V (16.13)

dt k(D - Vt) dt k(D - Vt) 2

The derivative of z is only proportional to the derivative of the signal n
when the aircraft is on the correct flight axis. This point is important if we wish
to achieve automatic control using the terms Asi or B8i .

The localizer signal obeys analogue laws. The deviation y is related to the
received signal n by the relationship

y = (L - x)tgX = (L - x)kn

but the distance L is always greater than D . The transmitter situated at the
vertex of the angle X is placed at the end of the landing strip furthest from the
approaching aircraft, whilst the transmitter for the glide path is situated at the
end nearest the aircraft.

There is, as before, an apparent increase in the sensitivity of the receiver in
the ratio

L

L - Vt

16.3 IRREGULARITIES IN THE SIGNALS

Irregularities can exist in the lines of equal signal strength, causing these to
become deformed from their ideal straight form (Fig.206).

In such a case it may happen that the guidance system gives an error signal when
the aircraft actually lies exactly on the correct flight path.
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Unless a second landing system is installed, such as the OCA or the AGCA . the
pilot, whether human or automatic, cannot differentiate between an error signal nA
corresponding to a deviation of the aeroplane with respect to the required path and a
signal nB corresponding to an error of the signal-zero line (Fig.207).

It is not possible to prevent false orders from being given by signals such as
n. . The only thing that can be hoped for is that the aircraft will not respond
fully to these signals if they are of sufficiently short duration.

If the duration of these false signals becomes appreciable, it must be rccepted
that the aeroplane will try to follow the signal n = 0 and describe an inexact
trajectory, but means must be used to prevent the aeroplane from amplifying the dis-
tortion of the equi-signal line n = 0 .

16.4 GENERAL REMARKS ON THE NOTION

The question as to what values to give to the coefficients A, ......... Be is

helped if we know:

(a) The behaviour of the aeroplane flying with controls fixed;

(b) The characteristics of artificial stability corresponding to the principal
modes of elementary control, i.e. the effect of the coefficients Al ........ Be
taken singly.

(a) Behaviour of the aeroplane in flight with controls fixed

The controls-fixed flight corresponds to zero values of all the coefficients
A,...Be . In still air (i.e. dua/dt = dva/dt = dwa/dt = 0) , the characteristics of
flight for fixed controls are completely defined by the matrix of coefficients of the
first members of the equations:

al bi ci di

a 2  b 2  c 2  d 2

a 3  b 3  c 3  d 3

ak bi c4  d4

Much work has been done to determine these characteristics, knowing the matrix or
the characteristic equation of the corresponding differential system. We can, in
particular, calculate by analytical methods the response to a step unit affecting each
of the inputs.

(b) Elementary artificial stability

The theory of servo-mechanisms gives methods of analysis which are useful in the
study of elementary artificial stability.
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The Nyquist criterion connects the artificial stability to the frequency response
of the aircraft produced by the harmonic displacement of a control.

Before studying the application of this relationship, we should notice that the
positive control settings Se I Sa I Sr produce negative displacements e , y, .
To retain the relationship in its usual form we can state that the control settings
"se ' "Sa - "&r produce positive angular displacements.

As an example, we will consider the effect of the rudder movement, -Sr on the
heading ý .

Let ' be the course, or heading, of the aeroplane

be the required course.

The difference, e = -" is the error, furnished by a signal from an
appropriate instrument.

The servo-control and the aeroplane form a loop system (Fig.208). The aeroplane
constitutes system No.2 and the servo-control system No.1.

The input into the aeroplane is the control setting -Sr ; the output is the course
angle ý .

The behaviour of the aeroplane can be defined by the frequency response of the
output , to a sinusoidal input signal -Sr .

Let R(co) be the frequency response. Any value of R(w) corresponding to a
particular value of c has a modulus IR(w) I and an out-of-phase angle q .

The response R(&) is given in cartesian coordinates in Figure 221. It can also
be represented in polar coordinates and then provides a plot called admittance polar
locus.

The servo-mechanism transforms an input signal, which is the error E , into an
output signal, viz., the displacement -Sr of the control.

The frequency response of a servo-mechanism reduces to a simple numerical coefficient
B1 = -8r/E when the mechanism produces, without phase-shift, a control displacement
which is proportional to the error signal.

Isolating the part of the system between A and B we have a system formed of two
parts, 1 and 2, placed in an open loop.

The frequency response of the open loop system is the product of the frequency
response of each of the two systems. The response of the open loop is then B1R(W)

Nyquist' s theorem relates the stability of the closed loop system to the frequency
response of the open loop system.
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Whether the closed loop system is stable or not depends on the position of the

point x = -1 , y = 0 with respect to the admittance polar diagram.

Each time the polar locus of B1R(w) is made to pass through the point -1 due

to variation of the characteristics of the system, the closed loop system passes from

a condition of instability to stability or vice versa.

If there is a particular value of the frequency wn for which the function R(w)

has a phase shift 4 of 1800. the point B1R(P)" of the polar curve correspond-

ing to this frequency wn will pass through the point -1, 0 when B1 = 1/IR(o5n).

Hence this value of B, will be critical.

The complete statement of Nyquist's theorem allows us to determine on which side

of the locus the point -1 should come for the system to be stable. It is sufficient
here to show that from the frequency response diagrams we can predetermine the
existence of critical values in the coefficients of the control equations and calcu-
late their values.

,During calculations on basic artificial stability modes using an analogue computer,
we have on several occasions passed from stable to unstable conditions by the varia-
tion of a control coefficient A or B . In each case, we ascertained that the
critical value of this coefficient was the inverse of the frequency response modulus,
for the frequency at which the out-of-phase angle was ±1800.

(c) Generalized artificial stability

The root locus method can help us to predict the behaviour of artificially stabilized
aeroplanes. Nevertheless, servo-mechanism theory does not give us a simple method of
studying aircraft motions when the control equations are more complicated, particularly
when the control settings depend on the errors of several variables.

The analogue computer cannot give us a general theory of aircraft artificial
stability, but it provides the solution of stability problems in any particular case
and allows us to solve these problems in a more or less experimental way.

Note

The angular frequency w used later on expresses the frequency response in radians
per unit of aerodynamic time T .



CHAPTER 17

LATERAL BEHAVIOUR OF THE AEROPLANE

17.1 STABILITY WITH CONTROLS FIXED

The characteristic equation of the system is:

a, + bi c1  d1 0

a2 b2 + X c 2  0 0

a3 b3 c 3 + 0 0 = 0 (17.la)

0 b4 0 K 0

0 0 cs 0

and can be written:

K(K4 + K3X3 
+ K2 X

2 + KIK + Ko) 0 (17.1b)

By inspection, one of the roots X is zero. This comes from the fact that no
exterior action on the aeroplane depends on i . The motion of the aeroplane is
independent of its course or heading.

Neglecting the solution K = 0 , we see that the characteristic equation becomes
an equation of fourth degree.

Substituting numerical values we see that the condition for spiral stability, viz.

K0  = b~d1 (a 2c 3 - a 3c 2 ) > 0 (17.2)

is not satisfied, since we have:

(a 2c3 - a 3c2) = 0.0088 - 0.0091 0.•.03

and b~dl > 0

The roots of the equation are:

S= - 16.2

X = + 1.75 ± 4.161

K = + 0.0139

The first real root defines an aperiodic motion in roll, strongly damped. The
pair of complex roots defines the oscillatory motion, called the 'Dutch roll'. The
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second real root defines the spiral motion, which is slightly unst,%ble in this case.
All deviations double at the end of:

In 2 0.692
- units of time

0.0139 0.0139

17.2 RESOONSE TO A STEP FUNCTION

The-motion of the aeroplane following a control setting S a or Sr depends on
the flight characteristics with controls fixed.

We have determined the response to a step function for -S = 0.002 and -Sr =

0.02 radian by the Heaviside method of numerical calculation and by analogue
calculation. The results show good agreement and are given in Figures 209 and 210.

The step response to a sudden excitation of va = 0.1 V0  (sharp lateral gust) has
also been calculated by the Heaviside method and is given in Figure 258.

17.3 FREQUENCY RESPONSE

We have calculated the frequency response of 6 variables: 8 , , ., i , y
for sinusoidal excitations "8a and -Sr " These responses are shown in Figures 211
to 222. These diagrams show the actions caused by control movements "8a and -Sr "

At first sight, the comparison of each of the responses produced by the two
excitations -8a and -Sr does not give any indication of essential differences in
the moduli, the differences being greater in the phases.

"This seems to suggest that the two control movements are, to a slight extent.
interchangeable, if we are satisfied with approximate control. However, we shall see
that a choice has to be made between them if accurate control following a predetermined
programme is required.

17.4 DIFFERENT DEGREES OF STABILITY

We will investigate the following control problems:

(1) The stabilization of a motion dependent on a 4th degree characteristic regard-
less of the aeroplane's course;

(2) The stabilization of the course direction as determined by the 5th order
differential system;

(3) The control of the aircraft along a path fixed in position and direction,
using a 6th order differential system.

For the first case, the stability obtained will return the aircraft, which is dis-
placed from a steady flight path, to a new steady flight path, the course of which
will be different from the former.
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The stability for the second case ensures maintenance of the course direction, but
the new trajectory will differ in position from the former.

The stability for the 3rd case brings the aircraft back to its initial trajectory
in direction and position.

Whilst natural stability with an indeterminate final course can often be obtained
by a convenient choice of the aerodynamic coefficients, stability in Cases (2) and
(3) is only obtainable with a piloted aeroplane, i.e. an aeroplane in which the con-
trols are moved in accordance with the errors of some generalized coordinates.

17.5 FIRST DEGREE STABILITY

First degree stability can be obtained by giving the aircraft appropriate aero-
dynamic characteristics. For our example it is sufficient to multiply a 2 or c3
by 1.034 or to divide a3 or c 2 by 1.034.

First degree artificial stability can also be obtained by automatic control. A
control equation +Sr = B4/ with the condition B5 > 0 is realized by using a yaw
dam~per, which, in fact, increases the coefficient c3 .

Control characterized by the factors A2 and B2 is possible and can lead to
stability when A2 > 0 or B2 > 0 . It does nothing but change the terms a 2 or
a3 of the determinant (17.1) and presents the same possibilities as the modification
of the aerodynamic characteristics of the aeroplane by configuration changes.

Control based on the angle of side-slip should only be used in exceptional circum-
stances since the detection of side-slip angle is difficult.

Control according to the relationship: Sa = A3 , - with A, > 0 , has the same
effect as. the action of a human pilot who displaces the ailerons to correct a banking
error he perceives by visual aids.

Figures 223a and 223c show the motion of the aircraft when, at time t = 0 , the
automatic pilot is suddenly put into service for an initial condition Yo = -0.06.
The values of A3 are respectively 0.5 and 2.

The initial displacement yo becomes zero, but the aeroplane does not return
to its original course and the deviation y from the trajectory at time t = 0
increases continually.

The control for B3 > 0 is characterized by the pilot turning the rudder propor-
tionally to the bank angle. Figures 223c and 223d represent the motion of the air-
craft under control conditions defined by:

B3 = 0.5

B3 = 1



345 f
It can be seen that for B3 = 0.5 the aircraft can return to linear flight without

bank, while for B3 = 1 the aircraft is unstable.

This result is in agreement with the indications given by the frequency response
(f of the aircraft, produced by an excitation Sr . In effect, at the frequency
S= 5.2, the modulus cp/(-8r) is 1.4 and the out-of-phase angle is ±180o. The
critical value of the coefficient B is then

1
B3 = - = 0.715

1.4

which is compatible with t0e results obtained on the computer.

Note

Control for A3 or B3 is obtained by putting terms d 2 and d3 in place of
the zeros in the determinant (17.1).

17.6 SECOND DEGREE STABILITY

Directional stability can only be introduced by adding terms e 2 and e3  in the
determinant. These terms will be obtained by pilot action producing:

+ 8 = A10

+ 8 = Bjý

This control equation leads to a characteristic equation of the 5th degree.

The introduction of a term Al > 0 makes the system completely unstable in our
particular case.

The control characterized by B1 > 0 , on the contrary, leads to stability as soon
as B1 has a sufficiently large value. The resulting stability includes directional
stability.

The characteristic equation of the 5th degree has been solved and has two pairs of
complex roots and one real root. The numerical values are as follows:

Short oscillation Spiral motion or
BI Real root or Dutch roll long oscillation

(K) (W) (X)

0 -16.2 -1.75 ± 4.161 +0.0139 and 9

0.2 -16.207 -1.71 ± 4.82i -0.026 ± 0.9i

0.5 -16.246 -1.62 ± 5.781 -0.103 ± 1.191

1 -16.304 -1.53 ± 7.1i -0.1735 ± 1.54i

2 -16.399 -1.42 ± 9.21 -0.2425 ± 1.541
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The roots correspond to oscillations for which the damping time to half amplitude
T% and the period T , expressed in units of aerodynamic time, are:

Short oscillation Long oscillation
B1

% T T% T

0.2 0.403 1.31 26.8 7.00

0.5 0.426 1.085 6.9 5.28

1 0.45 0.885 4 4.55

2 0.485 0.684 2.85 4.13

Using the analogue computer we find for the differential system the curves /()
given in Figure 224 for an initial deviation 00 = 0.008. These diagrams also show
the two oscillations corresponding to two pairs of complex roots.

For small values of the gain B1 , the long-period oscillation, which is only
slightly damped, predominates.

When the gain B1 increases, a short-period oscillation develops progressively and
is much more quickly damped. For B1 = 5 the long-period oscillation has nearly
disappeared.

There is agreement between the characteristics of the oscillations given by the
diagrams and the results of calculation.

The plot of the admittance locus agrees with the results given by the analogue
computer. The polar diagrams of the admittance locus for 41 produced by -". and
-Sr are given in Figure 225.

At the frequency o) = 0.65 , the response to the excitation -Sr has a modulus of
8 and an out-of-phase angle of 1800.

The intersection will be brought back to the point -1 by a control factor
B1 = 1+ 8 = 0.125 . At this point the stability of the aeroplane will be neutral.

This conclusion agrees with results given by the analogue computer, which shows
that there is instability for B1 = 0 and stability for B1 = 0.20.

On the other hand, the impedance locus of 0 produced by -8a will remain on the
same side of -1 , whatever may be the positive value of A, by which the modulus is
multiplied.

Since there is instability for A, = 0 , there will also be instability for all
positive values of A,

17.7 COMBINATION OF TWO ERROR SIGNALS

We will examine here the basic control conditions for the second stability case.
The results are presented graphically in Figure 226.
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(a) The combination A1 + B1

The stability caused by the control B1 can counterbalance the instability caused
by A1 , if A1 is sufficiently small.

The combination A1 = 1 and B1 = 1 is stable;

The combination A1 = 2 and B1 = 1 is unstable. The curves a and c show the
changes in / for this case.

For control conditions A, = -2 and B1 = 1 , with the aileron control crossed.
the simulator shows that there is stability (curve b ), but the aeroplane is less
stable than if it were piloted by B1 alone.

(b) The combination A3 + BI

For A the aeroplane is strongly stabilized for the first control case.

If a control B1 is added for directional stability, a very stable motion is
obtained. Curve d shows the effect of a deviation 0 = 0.08 on an aircraft con-
trolled by A 3 = 1 and B, = 1

(c) The combination A3 + A1

The stabilizing effect of A3  is such that it permits the utilization of ailerons
to correct a heading error, without having to use the rudder control.

However, the motion becomes very oscillatory and even unstable if A1 is too large.
Curves e , f , g show the motion following a deviation 00 for the three combina-
tions:

A = 4 A, 2

A3  4 A1  3

A 3 4 A, =4

17.8 THIRD DEGREE STABILITY

Position stabilization necessitates the detection of the displacement y and its
introduction into the control conditions by the terms in A. or B' .

However, these terms when used alone always lead to instability; hence we must
investigate their effect in combination with a stabilizing term. For this purpose we
have chosen the term B1 .

The trajectories y = f(f) following an initial displacement y0 = 50 m , * 0 = 0
are given in Figure 227 for the following combinations:
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B1 =4 B1  2

A,, = 0.44 x 10. j
A" = 0.88 x 10"1 Group a Group b

At = 1.75 x 10°'

B 4 = 0.44 X 10-3

B1 = 0.88 x I0-3 Group c Group d

B• = 1.75 x

The components A and B. tend to produce an oscillatory motion. The component
B1 damps this oscillation to some extent.

The aeroplane is more rapidly brought back to its correct approach path (y = 0)
when the displacement y is used to control the ailerons (i.e. control conditions
for A 4 ), than when it is used to control the rudder (i.e. control condition B. ),
but the trajectories are more difficult to stabilize in the first case.

For B4 = 1.75 x 10-3 and B1 = 2 , the motion was so unstable as to be impossible
to record.

17.9 MORE COMPLEX CONDITIONS FOR OBTAINING THIRD
DEGREE STABILITY

As the control factor A3 has a strong stabilizing effect, we will introduce it
in any control equation intended to perform 3rd degree stabilization.

A component A3 = 1 can modify things in such a way that it is possible to have
much larger values of A without leading to instability.

The curves shown in Figure 228(a) give the trajectories y = f(r) for the combina-
tions:

B1 =2

A3 =1

0.88 x 10-3

A = 11.75 x 10"
12.64 x 10-3

Tests have shown that numerous combinations of the variables Bx, , A3y , Ay are
possible and permit an aeroplane displaced by yo from the correct approach path to
return to this path.
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A second group of possible combinations occurs. This is a group where the second
case of stabilization is obtained by the action of AO + A3T and the position main-
tained by A4y

Because of the destabilizing action of A4ik , the component Asp must be larger
than in the previous case and A3 was found to be equal to 3 or 4.

On the other hand, the gain of the loop for A• must be higher in order to bring
the aeroplane back on to the correct-approach path.

It is possible to obtain trajectories which are close to those defined in the
previous case. The combinations:

A1 =3

A3 4

2.62 X 10-3

AL 15.25 X 10-3

7.87 x 10-3

give the trajectories presented in Figure 228(b), where A. is the variable element.
In the combination Ai, , A3cp , Ay , the increase in the term A. produces a long-
period oscillation. Further increase in A. would lead to instability.

However, the term A, can act as a stabilizing element against A. when A3 is
sufficiently great to eliminate the instability of the oscillation of smaller period
that would be caused by Al in the absence of A3 .

The trajectories of Figure 228(c), where A1 is the variable element, establish
this fact.

17.10 CONTINUOUS VARIATION OF A4

We will now consider how the convergence of the equi-signal lines to the trans-
mitter modifies the trajectories.

Consider the aeroplane at time • = 0 , in position A (see Fig.229), at a dis-
tance of 6.345 m from the transmitter, and let it be at position B . distance 2.125 m
from the transmitter, at time £ = 10

During the flight from A to B , the convergence of the equi-signal increases the
gain, A4 , of the automatic pilot.

The initial value of the gain is multiplied by an increasing factor, the final
value of which, at B , is 3.

Tests have been made to study this variable gain by using a potentiometer which
introduced a continuously variable A, into the circuit.
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Trajectories for constant gain are given in Figures 228(a) and (b); they correspond
to values of A. in the ratios 1:2:3.

On each of these diagrams the records obtained for variable gain A, have been

plotted (dashed line). This value of gain has its smallest value at time £ = 0
and a value of three times this at time E = 10 .

The trajectory for variable gain separates progressively from the trajectory for
the minimum constant gain and converges to the axis without crossing it, as is thecase for maximum constant gain (Fig.229).

These tests indicate that it is possible to use an increased gain at the end of
the approach path, but we have to satisfy the important condition that the increase
of gain, due to the convergence, cannot lead, at the period just before touch-down,
to instability. However, progressive variation of the gain allows us to approach
this limit more closely than if the increased gain existed from the start of the
approach.

This fact reduces the problems imposed by the convergence of the equi-signal lines.

It has only been possible to study all the variables of trajectories with variable
gain in a few cases; these will be discussed in Section 19.2.

Nevertheless, a detailed study of many different trajectories for constant gain
gives indications which permit us to make a judicious choice between the different
possible combinations of available error signals.
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C CHAPTER 18

GUIDANCE IN THE LOCALIZER PLANE

18.1 CONTENTS OF THIS CHAPTER

The present chapter is devoted to the study of the combinations A, ..... Bn. to
provide convenient localizer characteristics.

In the whole of the discussion, the factors A. , Bk , A and B. are assumed
constant, which means that the sensitivity of the displacement detector is independent
of distance.

We will compare the combinations for three types of different initial conditions,
acting independently:

Yo = - 50 m

0b0 = 0.08 rad

va = 0.1 V0

The initial condition y0 # 0 , all other variables being zero, corresponds to
the following practical case: The aeroplane is flying normally ( = CP = p = r = 0)
on a course parallel to the runway direction but at a distance y0 o 0 from the axis
of the correct approach path. At the time t 0 , the servo-mechanism is put into
service.

The initial condition 'o • 0 , all other variables being zero, corresponds to the
automatic pilot being put into service at a moment when the aeroplane is on the axis
of the correct approach path (y0 = 0) , but where its trajectory cuts this axis at
an angle '0 •

The initial condition va = 0, all other variables being zero, corresponds to a
cross-wind developing when the aeroplane is following the correct approach path under
the control of the automatic pilot.

For each case the motion is described by the 6 variables y , s , S r 'P 8a

18.2 CONTROL SUBJECT TO THREE ERROR SIGNALS

We will limit ourselves in this chapter to combinations where the y displacement
error signal acts only on the ailerons. In all cases we have:

A 0

B4 0

except in the case of the coupling of the two controls.
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In Chapter 17 we saw that two types of 3-error combinations are of interest.
These are:

B1  A3 A4

A1  A3  A4

We will group together, as systematically as possible, the results of the tests

calculated on the computer.

The initial condition y0 = -50 m was used to make a first selection of the
combinations tried; the action of satisfactory combinations was then examined for
conditions •0 = 0.08 and va = 0.1 V0

A first group of combinations corresponds to the following control conditions:

Case A1 A3 A• x 10 3  B Figure No.

a 0 1.5 3.50 2 230

b 0 1 1.75 2 231

c 3 4 5.25 0 232

d 3 3 3.50 0 239

Examination of these results shows that Cases a and b (using B1 ) and Cases c and
d (using A,) lead to very different characteristics, although the projections of the
trajectories on the ground are similar.

In the first two cases the rudder displacement (Sr = +B1,) counteracts important
variations in the course or heading, but does not prevent a strong side-slip to the
right. In fact, in the equation

y = fVo( + 83) dt (18.1)

the effect of g is preponderant.

The aeroplane is displaced laterally in side-slipping to the right. The control
displacements 8 a and 8r are in the opposite sense; they correspond to what a
pilot would do if he wanted to move the aeroplane laterally by side-slipping.

In the last two cases, the correction determined from the directional deviation
is applied to the ailerons; the aeroplane does not hold to its original course so
closely and is allowed to turn in order to realize the desired transverse displace-
ment.

However, this turn, following a bank, must be obtained without recourse to the
rudder, and hence will always be accompanied by side-slip. Records show that this
side-slip is oscillatory.
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The part produced by the term in 0 is predominant in the formation of y . The
effect of /3. is practically zero, because of the oscillatory nature of the side-slip.

The occurrence of inverse yaw at the beginning of the motion should be noted:
this delays the decrease of the initial error.

Manoeuvres of types a and b are completely different from those of types c
and d

It is inadvisable to side-slip an aeroplane in conditions of no visibility. This
again restrfcts the field of study and forces us to limit the investigation to condi-
tions which are derived from types c and d

18.3 DETAILED DISCUSSION OF CERTAIN COMBINATIONS

We will modify the conditions for combinations c and d . The following table
gives the control coefficients used and refers to the Figures describing the motion.

Control Conditions Derived from Case c

Case Fig.No. A1 A3  A4 xlO0 A, x103  S B1  S3 84 x 10 3

c 232 3 4 5.25

e 234 - 4 5.25 7.08

f 235 3 4 5.25 -2

g 236 3 4 5.25 0.798 1.064 1.40

h 233 3 4 5.25 10.051

Case e is a variant of case c, where the component A1  is replaced by the
component Ae.

Now

I = V(
AI AV00~ +A

and the control term Ay is equivalent to the superposition of conditions

I
AVP = A2/3

Case e corresponds to As = 7.08 X 10-3 X

424 = 3.



354

The replacement of A, by A. adds, in fact, an effect A2 > 0 , which is ana-

logous to an increase in dihedral; it slightly modifies the trajectory.

The use of A, or A. corresponds to two very different physical conditions.

In the first case, we must know the direction of the landing strip and measure the
angular deviation between the landing strip and the aeroplane. This is done by using
a directional gyro, an instrument which is accurate, but whose use will lead to compli-
cations if there is a cross-wind, and this necessitates a correction due to drift.

In the second case, the derivative of the distance y must be computed. Differen-
tial analysers are not very precise and they amplify all the irregularities of the
quantity to be derived, notably the noise, which is a serious inconvenience, but the
reference y can be used without correction in the case of a cross-wind.

The complete elimination of side-slip would be an improvement. One may try to
attain this result by proper use of the rudder. This leads to other changes in the
control equation. Two methods of aileron control may be envisaged:

Case f. Adding rudder movement as a function of side-slip.

Sr = B29 with B2 < 0 , corresponding to an increase of weathercock stability.

Case g. Linking the rudder to the ailerons in order to obtain a rudder deflection
which should be a definite fraction of the aileron deflection.

Tests have shown that Case f results in the formation of strong oscillations of
short period and is inadvisable. The conditions of Case g have been tested for differ-
ent proportionality coefficients, one of which, viz. Sr = 0.266 Sa ' will be consid-
ered here. This corresponds to values of B1 , B3 and B4 of 0.266 Al , 0.266 A3 ,
and 0.266 Al , respectively.

These control conditions are very good; the side-slip is reduced and the opposing
yaw is suppressed.

For Case h, a light damping of the yaw is set up by moving the rudder control
in proportion to the angular velocity of the yaw.

This action does not in any way decrease the initial side-slip or the inverse yaw,
but clearly reduces the oscillations.

The trajectories are less irregular than for the fundamental Case c. A greater
effect would probably be obtained by using larger values of A. . Further modifica-
tions of Case c (see Figs. 237 and 238) will be discussed in Section 19.4.

A second group of modifications to be considered here consists of variants of
Case d. These are given in the following table:
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Case Fig.No. Al A3 Al x 101 Ax0 3  B1  B3  B* x 105  Be x 10-s

d 239 3- 3 3.5 - - -

1 240 - 3 3.5 7.08 - - -

J 241 3 3 3.5 - 0.804 0.804 0.93 -

k 242 - 3 3.5 7.08 - 0.804 0.93 1.88

Because we use a factor A. which is smaller than in the preceding cases the time
necessary to reach the axis y = 0 is always greater.

Case i differs from Case d by the substitution of A for A, ; Case j differs
from Case d by the introduction of a rudder movement, which is given by

Sr = 0.2668a

Finally, Case k allows both the two preceding modifications to be made: substitu-
tion of A for A and linkage between rudder and aileron controls.

Figure 242 shows that such conditions nearly eliminate the side-slip.

18.4 INITIAL DISPLACEMENT OF

In order to facilitate reference to the Figures. the numbers of the Figures giving t]
behaviour of the system for three different initial conditions appear in the table
below:

Perturbation
Case

YO Iko va

Controls fixed - 258

a 230 246 -

b 231 247 -

c 232 248 259

h 233 249 260

e 234 250 261

f 235 251 262

g 236 252 263

d 239 253 264

i 240 254 265

241 255 266

k 242 256 267
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The initial displacement O0 $ 0 , all other variables being zero, corresponds to
the case where the automatic pilot is put into service at the moment when the aero-
plane, flying on a straight course, cuts the required course direction at an angle

"J0.

We have investigated the effect of a displacement 410 = 0.08 in a certain number
of the preceding cases. The aeroplane makes a small angle with the localizer axis
and to the right of it, and finally is made to fly along the axis following the course
"00.

In all cases, the aeroplane starts to move away from the axis ( y increases to
the right), but is brought back as a consequence of the effect of the displacement
y on the controls.

The Figures are self-explanatory.

18.5 EFFECT OF A SIDE GUST

Let~us suppose that the aeroplane suddenly meets a transverse gust of intensity
Va = 0.1V0 , directed towards the right, and that it remains in this condition.

The case has been considered for an aeroplane with controls fixed and for a certain
number of control conditions.

The diagrams of 8 give the true or aerodynamic side-slip (/ - va/VO) if the
0-axis is taken as reference. If an axis passing through 0.10 is taken as reference
then the curves give the apparent side-slip.

For controls fixed, the gust va produces, at time • = 0 , a side-slip towards
the left of /3 = -0. 10 , which has three effects:

(a) The aeroplane tends to face the relative wind by a rotation in yaw.
This means d'P/dt < 0 ;

(b) The aeroplane tends to roll to the right: dp/dt < 0

(c) The aeroplane tends to be carried by the cross-wind towards the right, thus
reducing the aerodynamic side-slip.

These initial motions, together with the resultant motion, are represented in
Figure 254. The results have been calculated by Heaviside's method.

The purpose of the control is to bring the aeroplane on to the axis OX after a
given time. The ideal final conditions are:

-0.10 and /3 +0. 10

all other variables being zero and the controls being in a neutral position.

This means that the aeroplane would fly 'crabwise' with respect to the ground, but
without side-slip relative to the air and without bank.
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It is clear that any control equation where 0 appears leads to a residual error
in y . Calculations using the analogue computer confirm this. The residual error
y can be easily calculated as a function of the speed v. . using simple algebraic
equations.

Where y and / act on the same control, we obtain finally:

A 1= + Aj -- 0

The action of the directional error tending to lift the right wing is counterbalanced
by the distance error, which tends to lift the left wing.

In its final state the aeroplane has neither side-slip nor bank and is displaced
parallel to the correct approach path by a distance y = -(A /A•) • .

When y and / are not applied to the same control, the final path is also a
straight line but there can be side-slip 3 , bank yo and permanent settings of the
controls. These conditions were considered undesirable and hence the case was not
investigated further.

We can avoid the appearance of the residual error y by replacing the detection
of the heading error 0 by that of the derivative y

For these conditions no signal is produced as soon as a trajectory parallel to the
correct approach path is obtained, whatever may be the course of the aeroplane and
its distance from the axis.

The control dependent on y can then act without opposition until the aeroplane
is flying on the required axis.

All calculations on the computer confirm this. When Ai45 is replaced by Aa,
the aeroplane is brought back quickly to the axis.

18.6 COMPARISON WITH AMERICAN RESEARCHI

We had reached the present stage in our investigations when American work on this
subject came to our notice (see Section 14.4).

We have stated that their optimum control conditions were appreciably more compli-

cated than ours, the last of ours being considered the most satisfactory.

Although the work of Carroll and Tyler was for the control of aeroplanes of a
different type from that considered by us, we have studied the conditions recommended
by these authors. The basic data are given below:
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Ailerons Rudder

A3 = 2 B2 = -2

A 4 x 10
3 = 7.18 B6 = 0.28

As x 103 = 7.08 Sr = 0.50 8&

A7 X 103 = 3.57 (i.e. values of B3 , B4. Be
and B7 are half of the cor-
responding A values)

These conditions constitute Case 1.

The response to the perturbation y0 , I Va is shown in Figures 243, 257, 268
respectively.

The responses to displacement yo and 00 are a little more rapid than those for
our case (case k). but the response to the gust va is the same.

We tried to find the reason for the existence of the additional factors contained
in the control conditions.

To do this we started with the American values of A3 - A. and A. and added the
other components one by one (Case 1± in the following table).

Rudder Figure No. for
Case A3 A4 x 10 3 A X10 3 A7 x 10 3  aileron B2  B6

coupling Yo T o Va

1 2 7.18 7.08 3.57 0.50 -2 -0.28 243 257 268

11 2 7.18 7.08 - 0 - - 244 269

12 2 7.18 7.08 3.57 0 - - 245 270

13 2 7.18 7.08 3.57 0.50 - - 271

13 2 7.18 7.08 3.57 0.50 -2 - 272

1, 2 7.18 7.08 3.57 0.50 - -0.28 273

The starting condition, case 1,, gives a rapid response to an error in yo , but
large oscillations because of the high value of A.

The addition of a term in A7 corresponds to an increase of damping in roll and
changes practically nothing: this fact is not surprising since the damping term
aCL/6p is generally sufficient when the stalling conditions are not reached.
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The effect of the coupling 8r = 0.508 9 is favourable and will not be discussed:5

further.

The introduction of the term in B2 causes a rapid oscillation (see Fig.267),
which is undesirable and confirms the result obtained previously.

The factor Bj strongly damps the molion. as is seen in Figure 273. It is clear
that B . in the conditions proposed by the American investigators, cancels the dis-
turbing effect of BA and makes the use of this signal acceptable. (Curves 272
behave as curves 268 for the particular conditions recommended).

Reference to the work of Carroll and Tayler has been made to show the great variety
of possible control conditions.

Only with an analogue computer can the study of these problems be made.

Note

Case I necessitates the detection of six variables, whilst Case k requires only
three. The response to the initial condition va is exactly the same in both cases;
the response to the two other initial conditions is a little better in Case 1 than in
Case k.

We do not intend to discuss here whether the small improvement obtained justifies
the necessity of measuring three extra variables.



CHAPTER 19

REMARKS ON THE LATERAL MOTION

19.1 EFFECT OF TIME IN CONTROL MOVEMENT

The assumption of proportionality between the detected displacement and the con-
trol setting does not take account of. the actual behaviour of the control system.
The response to a sudden displacement y. cannot cause a control movement S. = A~y
to occur instantaneously. The control move must be progressive and depends on the
characteristics of the mechanisms utilized.

The results already obtained give a good indication of the phenomena produced, but
do not give exact values of the development of the variables.

In order to get an idea of this control time delay, we have considered several
cases where the action of the displacement y has been slowed down.

The most simple case is given by the first order relationship already defined.
We assume:

+AyY(l - et/a)

where the time constant, a , has been taken equal to 3 seconds, i.e. 3/7.05 = 0.425

unit of non-dimensional time.

19.2 MOTION WITH VARIABLE GAIN OF y

We have done a certain number of tests with continuous variation of the gain of
the receiver on the displacement y , all the variables being recorded. The follow-
ing notation has been used (see Fig.274):

A , position of aeroplane at time £ = 0

F , transmitter

B , point half way between A and E

E . end of landing strip nearest to approaching aeroplane.

The distance L between A and F , is taken as 10,000 meters. The distance
EF is 2500 meters. Hence the gain increases from 1 to 2 between A and B and
from I to 4 between A and E

We have considered Cases a and c, modified as follows to become Cases a' and cf.

(1) The value of A4 at position A is half that for the corresponding case of

constant gain, but the values of A , A3 and B1  are unchanged.

360
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A4
Al A 3 variable I

Case a' at }A. 1.75 }
B 0 1.5 3.50 2
C 7.00

Case c' at A 2.62 }B 3' 5.25 • 0

C 19.50

(2) We have introduced the time constant into the control term A4y . The two
causes which reduce the effectiveness of the readjustment to an error (i.e. reduction
by half of A and the time constant) have been introduced simultaneously, resulting
in the reactions of the aeroplane being slower than for Cases a and c .

We have, therefore, i;,vestigated the response to the initial condition y0 = 100 m
in order to compare the diagrams.

The same scale as for the preceding diagrams has been used in Figures 275 and 276.
The peaks in the Ss-curve have been suppressed; the trajectories have the same funda-
mental characteristics as in the preceding cases.

Case a' (Fig.275) results in a trajectory having little variation in course and
having lateral displacement due to side-slip. This side-slip to the right is caused
by the rudder being moved to the left and the ailerons inclining the aeroplane to the
right.

Case c' (Fig.276) leads to an appreciable change of course, in the required direc-
tion, but there is also an oscillatory side-slip.

19.3 DISTORTION EFFECTS

The effect of irregularities in the beam field generated by the localizer has been
studied.

We have arbitrarily chosen the following conditions. A deviation of 0.250 starting
at C , 1500 m before the touch-down point, which is continued for 480 m, up to D.

After the point D , i.e. 1020 m before touch-down, the normal beam is re-established
(Fig.277(a)).

This irregularity exceeds the distortions generally encountered in practice and for
purposes of comparison we have reproduced in Figure 277(b) a typical deflection dia-
gram for the localizer beam at San Francisco Airport as it was in 1952 (Ref.30).

The distance CM is covered by the aeroplane in 8 seconds, i.e. 1.2 units of non-
dimensional time.
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These results have been incorporated in the preceding problem.

In the zone CD , the gain in z is larger than for the normal cases a and c,
but is far from having a value corresponding to instability.

Figures 278 and 279 show the trajectories and the characteristics of the different
variables for the controlled aeroplane in cases a; and c'.

One cannot expect the receiver to discern between erroneous and exact signals; the
guidance system can do nothing but tend to guide the aeroplane to the zero signal
axis. However, this process is slow, the aeroplane deviates from its trajectory at
C , continues to diverge from the axis after the point D in spite of the fact that
the zero signal line is returned to the correct landing strip axis, causing the aero-
plane to receive a strong recall signal. The duration of the erroneous signal (8
seconds) is such that the aeroplane follows a trajectory which amplifies the distor-
tion of the zero signal line.

The different types of control possible may be classified according to the perturba-
tion considered. A perturbation of the beam may be considered as a new form of
excitation.

It would be of interest to define a type of perturbation of the beam and compare
the effect of the different control conditions for this excitation. The aeroplane
must necessarily react to the error signal produced by the deviation of the zero
signal line, but it should be arranged that the amplifications of this signal be as
small as possible.

19.4 EFFECT OF B8

The effect of B on the control was not considered at the beginning of Chapter
18; the results of the two tests given below explain why it was not considered.

We introduced B. = 1.4 x 10- into Case c to have the condition of Case m:

A1 = 3 A3 = 4 A4 = 5.25 x 10- 3  B, = 1.4 x 10"s

and have applied the initial condition y0 = -50 .

The results given in Figure 237 show that there occurs a change of heading in the
required direction which is much larger than for the preceding cases but the effect
of changes in heading on the lateral displacement is cancelled o" by an opposing
side-slip of considerable magnitude. Hence we see that the introduction of B4y is
undesirable.

The excellent conditions of Case g included a term in B4y of the same value,
but there were also terms in Bl/ and B3P

We have established that the initial deflection of the rudder for both Cases g and
m is of the same sign and the same order of magnitude, but it is too prolonged for
Case m. For Case g, the effect of the terms in B, and 83 is to stop the positive
rudder displacement after a very short time.
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To summarize, it can be stated that the term B. is undesirable when employed

alone, but is favourable when used in conjunction with B1 and B3

We also considered a case for B, = -1.4 x 10-3 added to the conditions of Case c.
The result is just as bad: strong side-slip, tending to bring the aeroplane back to
the correct approach path, is produced, but is opposed by a change of heading in the
wrong direction (Pig.238).

19.5 SEMI-AUTOMATIC CONTROL

There are instruments for aeroplanes which will perform the addition of signals:

AI0 + A3Co + Aky = D

giving a direct indication of D to the pilot.

The most well known instrument of this type is the Sperry Zero Reader. A vertical
pointer moves in front of a graduated scale, giving a deviation proportional to D
It is possible to measure on actual instruments the respective values of A 1 , A ,
A4 , which are incorporated in Zero Readers in use.

An instrument, calibrated by the maker for a twin-engined aeroplane, has been
analysed on the ground. It was found that a deflection of the pointer of 10 nun
corresponded to any of the following displacements, applied independently: I

dqP = 120

S= 100

dX = -1.40

X being the angle at the apex of the equi-signal lines.

At a distance of 10 km from the radio transmitter, this angle corresponded to a
displacement dy = -244 m . Hence we have:

r io1 r121
A L5.J = A3[- = A x244

The coefficients of the control equation were in the ratio

A3 = 0.834

A1

A• x 10 3

0 .= .715
Al

while the conditions utilized by us for Case c' corresponded to
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A3 = 1.33
Al

A4, x 101
- 0. 875

A1

One can imagine that the pilot should be able to move the aileron controls in pro-
portion to the reading D .

The pilot, then, constitutes the servo-mechanism of the above system. A semi-
automatic control subject to the above conditions should be possible if the pilot
could move his controls in proportion to the reading D , which is somewhat doubtful.

However, the technique of using the instrument is different from this and is based
on the fact that the aeroplane, displaced from its correct approach path, returns to
it tangentially if the reading D is kept at zero during this motion.

The control setting S. = f(f) for this manoeuvre is not indicated by the instru-
ment, which serves only to tell the pilot when the condition D = 0 is not satisfied,
i.e. the technique to find the correct value of S. = f(t) relies more or less on
tentative control movements performed by the pilot.

However, the sign of the correction to be applied is indicated in any case by the
sign of D $ 0 , i.e. by the sense of displacement of the pointer of the instrument.

19.6 FINAL REMARKS

The analogue computer permits us to make a very precise study of the phenomena of

lateral control.

The analysis has shown that many points are worth studying. The introduction of
real behaviour of servo-mechanisms opens up the field for a new series of researches.

One conclusion which has already been stated, but which will be mentioned again,
is that the replacing of AI by a has been shown to have many advantages, when we
take account of the cross-wind va

In a very careful practical study of automatic approach Mercer 2 9 arrived at an
opposite conclusion. He stated that control relying on q/ signals was better than
the one using i signals.

This contradiction appears to us to result from the following facts:

(a) Tests were made at airports where the beam suffered from many irregularities;

(b) Construction of equipment using the A. signal being more difficult because
of the necessity of performing a derivation. Nevertheless, recent American
equipment uses the A,* factor. This leads us to believe that the difficul-
ties encountered by Mercer in his practical tests have been overcome.



CHAPTER 20

LONGITUDINAL BEHAVIOUR OF THE AEROPLANE

20.1 STABILITY WITH CONTROLS FIXED

The characteristic equation of the system is:

a , + )• bI c l d I

a 2  b2 + c 2 d2

a 3  b 3  c3 +X 0

0 0 c +-

i.e. X4 + K3 K3 + K22 + KXk + Ko = 0 (20.1)

This equation has been studied extensively. It has normally two pairs of complex

roots which define:

(i) A rapid oscillation, very damped, about the centre of gravity;

(ii) A slow oscillation (sometimes called the phugoid motion), slightly damped.

For the numerical values used in this study, the roots are:

K = -0.095 ± 1.2821

K = -6.77 ± 8.1951

The corresponding periods, T , and the times of half amplitude, T% . are:

6.28 6.28
T = - 0.9 T = = 4.905

6.77 1.282

.692 0.692
- -= 0.0845 T½ - = 7.28

T .195 0.095

20.2 RESPONSE TO A STEP FUNCTION

The motion of the aeroplane following an elevator control setting Se or a throttle
manoeuvre 8t has been determined on a computer. The responses produced for:

Se = -0.016

am = 0.20
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have been investigated on the analogue computer and are given in Figures 280 and 281.
The curves clearly show the existence of the phugoid oscillation, which affects
principally the variables 0 , z and v .

Figure 281 shows that the increase of thrust produces, at the outset, an accelera-
tion of the aeroplane, as well as a nose-up pitching motion. This pitching stops
the acceleration rapidly and causes the aeroplane to decelerate.

The responses to sharp gusts:

Ue = 0.125 Vo

we = 0.020 Vo

have been determined and are given in Figures 325 and 330.

20.3 FREQUENCY RESPONSE

The frequency responses of the variables a , , 9 , , z have been calculated
and are given in Figures 282 to 291. The angle y = 9 - a is the inclination of the
trajectory with respect to the desired direction.

20.4 DIFFERENT DEGREES OF STABILITY

The calculations we have made do not take account of the decrease in density of
the atmosphere with increasing altitude.

Under these conditions, the characteristic equation of the 4th degree determines
the longitudinal stability, but does not include any term representing the altitude.

The addition of one of Equations (16.1) or (16.2) to the equations of the system
(15.10) only permits stabilization of the aeroplane at altitude if one of the controls
is made dependent on the error signal in z .

20.5 STABILITY WITH NO ACCOUNT TAKEN OF ALTITUDE

The longitudinal stability for controls fixed is a theoretical concept which does
not correspond to the practical consideration of an aeroplane fitted with reversible
controls. For this type of aeroplane the controls-free stability is the most
important consideration.

The behaviour of a controls-free aeroplane can be considered as the behaviour of
a controlled plane, where the setting of the elevator assumes, at any time, a value
such that its hinge moment is zero, account being taken of the aerodynamic forces,
the acceleration and the gravity forces.

However, it has been found that controls-free stability is never sufficient to
control the aeroplane in atmosphere which has slight perturbations.
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Many automatic devices have been made. Let us recall the well known properties
of the artificial stability produced by a basic type of automatic pilot utilizing
the error signals in e , a. , . q . We will consider these separately:

(a) Error signal in 0

The most simple of the devices is the control condition

+ Se = A16

where the control setting is governed by the attitude error 0

Control by A1 necessitates including in the characteristic determinant a term in
d3 proportional to -(OCm/lSe)(d~e/dO) or proportional to

Such a term does not increase the total available damping. The total available
damping is, in effect, equal to the sum of the roots, i.e. equal to -k 3 or +(a, +
b2 + C3 + d).

The introduction of the term d. can only modify the distribution of a constant
-k3 between the real parts of the two roots.

It is well known that control by A, considerably improves the damping of the
phugoid, but the increase of the real part of the root representing the phugoid is
lost by the root representing the rapid oscillation.

(b) Error signal in a

The control in terms of A2 characterized by +Se = Aja (A2 > 0) only produces
an increase in the static stability c8Cm/a.

An excess of static stability decreases the damping of the phugoid, but this effect
is negligible for moderate increase of stability.

(c) Error signal u

Control as a function of u , which causes the plane to dive when u decreases in
order to maintain the velocity, is defined by: +be = A 3 , for A< 0

It is inadvisable to use this control equation alone as it strongly reduces the
damping of the phugoid.

(d) Error signal in q (or 9)

The control +Se = A . increases the term c of the determinant and also
increases the total available damping.

This increase of damping is utilized much more for the rapid oscillation than for
the phugoid oscillation.
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20.6 SECOND DEGREE OF STABILITY

The maintenance of a constant altitude z constitutes a supplementary requirement
and involves using an error signal in z .

This signal can act on the elevator control (A,'< 0) or the power control

(B4 < 0)

Figure 292 shows the motion of the aeroplane following initial conditions

z0 =50 m (downwards)

0= a = 8o = 0

under the action of a control So = A4z

The computer has shown that for A,, -0.28 x 10-3 the aeroplane is brought back
very slowly to the altitude z = 0 by a sustained oscillatory motion.

For IAJ < 0.28 x 10-3 the change in altitude is slower, but the oscillations
are damped.

For 1A41 > 0.28 x 10-" the change in altitude is more rapid, but the oscillations

increase and the motion is unstable.

The behaviour of the aeroplane under the effect of a change in power is similar.

Figure 293 shows the trajectory produced by B, = -4.52 x 10-3 . The oscillatory
motion is almost undamped; the gain of altitude is very slow. Sualler or larger
values of B. produce the same effect as changes in A.

Hence we see that control as a function of altitude alone is not satisfactory; it
leads to instability as soon as the gain of the control signal passes a limit which
is too weak for practical purposes.

The admittance loci of z , produced by -8. or +8, , allows us to verify this
property. These show that when z is out of phase by ±1800 the corresponding moduli
are respectively equal to 3500 and 200. The critical values of A. and B. must be
the inverse of these moduli.

The values A, = -0.28 x 10-3 and B. = -4.52 x 10-3 have been found by approx-
imate experiments and are not the exact critical values.

It can be seen that the value of B. corresponding to Figure 293 is a little too
small; the oscillation is slightly damped. In these conditions, the values

1 1
A - and B = -

3500 200

give satisfactory correlation.
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20.7 THE LONG-PERIOD OSCILLATION

Figures 280 and 281 show that the period of the phugoid is equal to 57 . Figures
292 and 293 show that the period of the long-period oscillation, produced by control
as a function of the displacement in altitude, is 4.25T .

We do not want to discuss here the characteristics common to this oscillation and
the phugoid, but there is a difference which can be seen immediately.

The phugoid oscillation is not important in the case of manual control, or in
automatic control in the first stabilization program (except for control in A 30
whilst the long-period oscillation produced by A~z controls is important and becomes
easily unstable. Its study cannot be neglected. Many serious errors have resulted
from introducing the error signal in z into the automatic pilot without sufficient
study of the problems involved.

The use of z as a control reference is only possible if we introduce into the
control equations terms to damp the oscillations.

To do this, we must superimpose on to the signals Se = A z , signals which are
out of phase by 900 (or about 900) with respect to them. These signals will be
supplied by the detection of the displacements of variables which are, to a considerable
extent, in quadrature with the variable z . The variables 0 , i and 6/V0  satisfy
this requirement; 0 lags and i , 6/Vo lead on Se

20.8 DAMPING BY A TERM Se Ale

The addition in the control equation of a term A16 (or BRe ) with Al > 0
effectively damps the oscillation.

In Figure 294 the original results recorded are presented; these describe the
trajectories following an initial displacement zo . The records correspond to the
following cases:

a A4 = -0.14 x 10-3 stable

b AU = -0.28 x 10-3 undamped; case of Figure 292

c A4 = -0.42 X 10-3 unstable

d A4 = -0.42 X 10-3 undamped, stabilized by A, = +0.028

e A4 = -0.42 x 10-3 undamped, stabilized by B1 = +0.48

We have attempted to bring the unstable oscillation (Case c) to the condition of a
simple undamped oscillation. This was done by adding a term A, = +0.028 or
Bi = +0.48 .

Later, (Fig.299), an example of control for a higher gain is given, i.e. A.
-2.54 X 10-3 , stabilized by A, = +0.406. Analogue results (not given here) have
been obtained for the case of altitude control by the term in B.
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20.9 OTHER POSSIBILITIES OF DAMPING

We have investigated the damping effect of terms in A.G , Aei and A7('/Vo)
on the pure phugoid, not excited by the signals A. or B. < 0

We have reconsidered the calculation of the trajectory following an elevator dis-
placement 8e of the control (Fig.280) and have added successively control comumnds
which are functions of the variables.

Be = A 5 where A. = +0.093 (Fig.295)

e = A8* where A. = -0.946 x 10-3 (Fig.296)

se = A,(U/Vo) where A, = -0.64 (Fig.297)

The control by A. results in an increase in the damping in pitch but the great-
est effect is on the rapid oscillation; the improvement in the phugoid is small.

On the contrary, controls by A7 and A. are very effective from the point of

view of the damping of the phugoid. Two characteristics can be pointed out:

(i) The effect of the control for A. is related to the term in A, . We have:

. = V,(a -0)

Asi = -ABVrG + aevr

The control in A8 i is then equivalent to the simultaneous use of a control in
0 and a where:

A10 = -aVo

A2 a = +AeVa

A8  is chosen to be -0.946 x 10-3 . The control conditions can be considered as
being:

A1 = +0.946 x 10-3 x Vr = +0.4

A2 = -0.946 x 10-3 x V.r = -0.4

acting simultaneously.

(ii) The use of the control condition A7 causes practical problems which will be
discussed later on.

It can be mentioned here that the effect of the signals in A, and A7 decreases
if the signals are applied with a time lag.

(a) We have applied a time constant to the signal A7 equal to half a unit of
aerodynamic time and obtained the curves shown in Figure 298, which shows much less
damping than those in Figure 297.
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(b) During our tests we used two control equations containing A. differing only
by a time constant applied to A. (Pigs.309 and 310).

The trajectory defined with the time constant, in Pigure 310, is less damped than
that in Figure 309.



CHAPTER 21

MAINTENANCE OF THE GLIDE PATH

21.1 CONTENTS OF THIS CHAPTER

This chapter is devoted to the investigations of combinations of A1 , An , B1 ,
Bn , which lead to satisfactory holding of the required trajectory making an angle
of -2.50 (-0.0436 rad) with the horizontal.

We will compare these combinations for four types of initial conditions, acting
independently:

zo = 50 m

to = +2.50 (or 0.0436 rad)

us = 0.125Vo

wa = O.02Vo

These conditions correspond to the following cases:

(a) An aeroplane fyling parallel to. but 50 m below, the glide path, at the moment
when the automatic pilot is put into action;

(b) An aeroplane flying horizontally, where the automatic pilot is put into action
at the moment when it cuts the glide path;

(c) An aeroplane following the glide path with the automatic pilot in action but
encountering a tail gust at time r = 0 ;

(d) An aeroplane following the glide path with the automatic pilot in action, but
subjected to a down gust at time r = 0 .

We recorded the values of the variables a , V ,. z * S .

The analogue computer was not set up to measure y (the slope of the trajectory)
nor n = V(dy/dt) , the normal acceleration.

The curve a = 9 - . has, nevertheless, been calculated and plotted. It is
indicated by dotted lines.

It was considered too inaccurate to obtain the normal accelerations by deriving
the curve of .

In all our calculations we have assumed A and B. constant along the trajectory.

372
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21.2 BASIC CONDITIONS

To find more rapid changes in altitude than in the preceding chapter, we have
taken a value of A. = -2.54 x 10-3 and have tried to stabilize the motion by using
a control setting which is a function of 8 or i.

We have successively combined the control setting Az indicated above with:

A16 = 0.4068 (Fig.299)

Asi = -0.946 x I0-3i (Fig.300)

The introduction of A8 = -0.946 x 10-3i is equivalent to the use of A10 + A2a
with:

A, = -AeV 0o. = +0.406

A2 = +A8V0o, = -0.406

Comparing the Figures, we can see that the curves for z and - differ only slightly,
but the curves for 8 and a have appreciable differences.

The term A2 = -0.406 decreases the static stability.

The amplitude of the changes in a and 0 is bigger when this destabilizing term
is introduced.

The analogue computer shows us that if a term in A z or B 4 z of sufficient
magnitude is used to produce the desired change in altitude in a short enough time,
the terms in A 8 or Asi can hardly stabilize the motion in a suitable manner.

The control conditions where the term in A or B. is stabilized by a term in
A, acting alone have not furnished us with any satisfactory results and hence are
not included in this report. Other conditions must be investigated.

21.3 MORE COMPLEX CONDITIONS

The analogue computer shows us that the use of A7 (6/Vo) results in strong damping
of the phugoid without affecting the changes in altitude z as much as the terms
A, and A8 .

All control conditions considered from now on will contain a term in A7

After a number of tentative efforts we established the condition (Case a):

+8e = Az + A 5  + A7 >

where A4 = -2.52 x 10-3

As = +13.7 x 10-3

A7 = -0.64
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The control equation gives the trajectory shown in Figure 301. It is curious to
note that the aeroplane gains 42 metres in altitude in the first 2 units of time,
after which it only climbs very slowly.

This objectionable characteristic is removed by the addition in the control conditions
of a term in A3 , viz.

A3 = +0.24

the action of which is to pitch the aeroplane up when the speed is less than it
should be. The control equation then becomes

+Se = A3 ( + Az +A 7 + A56

where A3 = +0.24

A4 = -2.52 X 10-
3

A5 = +13.7 X I0-3

A7 = -0.64

and will be completely studied (it will be called Case b).

The motion for an initial displacement of z = +50 m is shown in Figure 302.

The correct altitude is regained in 1.6 units of time, i.e. 11 seconds, bat the
aeroplane is slowed down by the amount At = -0.14 . The work done in the change of
height is 50 G kilogram-metres, where G represents the weight of the aeroplane.
The energy liberated by the loss in speed is:

10a
-V2[1 (1 ^)

2 ]
2g

G
- x 3600 (1 - 0.74) = 47.7 G kilogram-metres

2 x 9.81

The increase of incidence during this interval of time reduces the power necessary
for level flight. From the curve of CD/CL3/2 given in Figure 204 we can see that
the corresponding reduction of work is 2.3 G kilogram-metres.

21.4 POWER CONTROL

It is useful to alter the power when a change in altitude is wanted. Two methods
of control are possible: control by change in the relative velocity (u - u./V) or
directly by the displacement of altitude z
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For the system where the velocity change controls the power, we chose the follow-
ing conditions (Case c):

S= z + A 6 +A7(f/Vo)
4 5

where A4 -= -2.52 x 10-3

A5 = 13.7 x 10"'

A7 = -0.64

B3 = 3.72

The elevator control is exactly the same as for Case a, but a power control term S.
is added.

Figure 303 shows the effect of an initial displacement z0 . This displacement
causes the elevator to give the aeroplane a pitching-up moment, resulting in a decelera-
tion which brings the power control into action. These conditions (Case c) do not
alter the maximum velocity and incidence changes which were found in Case a, but the
recovery of altitude is more rapid and these changes have a shorter duration.

For the control conditions where the displacement z controls the power directly,

we chose the following combination (Case d):

+Se = As5 + AI(f/Vo)

-8, = B'4z

where A5 = +0.093

A7 = --0.64

B . -0.042

The elevator is only acted on by terms which contribute to the damping. The con-
trol effects for these conditions are shown in Figure 304.

The motion has changes of velocity and incidence which are much smaller than for
the preceding case, but the aeroplane only approaches the desired flight path
asymptotically. The displacements of the elevator are very small.

Before going further, let us investigate what happens when the aeroplane is at a
considerable distance from the transmitter.

The terms A. and B. are smaller, but the other coefficients of the control
equations retain their values.
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Let us reduce the value of A. to one-sixth of its value to form cases which we
will call a' . b' . c' (see the following table).

By reducing B. to one-sixth of its value in Case d we have Case d'. The damping
terms become too large and reduce the rapidity of response. Figures 305, 306 and
307 show the motion corresponding to an initial condition z 0 = 50 m

Case A3 AI x 103  A5 x 10 3  A? B3 B x 103  -Pig.No.

a -2.52 13.7 -0.64 301

b 0.24 -2.52 13.7 -0.64 302

bf 0.24 -0.42 13.7 -0.64 305

c -2.52 13.7 -0.64 3.72 303

c' -0.42 13.7 -0.64 3.72 306

d 93 -0.64 - 42 304

d? 93 -0.64 - 7 307

21.5 SUPERPOSITION OF THE EFFECTS OF B3  AND B4

The control of power by B3 and B. results in different effects and we have
investigated whether or not the addition of these terms produces favourable results.

However. we must increase the damping and to do this we decided to make use of the
3 stabilizing components A.6 , A,(A/V 0 ) , As. . The control conditions are then
(Case e):

S = AzA3Se Az + A7(6/V + Aq8

-SM B3 ( a 1 +B~zVo/

where A4 = -2.52 x 10-3 B3 +3.72

A5 = +0.093 B4 -42 x 10- 3

A7 = -0.64

As = -0.946 x 10-3

Figure 308 shows the motion following an initial condition z 0 = 50 m

A very rapid recovery of altitude is obtained, but the aeroplane goes slightly
above the intended flight path before regaining it.
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The increase of incidence at the start of the motion is relatively high, the
decrease of velocity small.

The numerical values of the damping terms were guessed at. Once a convenient
"chi6ice of conditions had been found, we did not further investigate the division of
the damping contribution between the 3 damping terms and hence we reduced the numbers
of cases to be considered. Perhaps the values chosen are not the best.

We could also have used AYe (or B1O) , but we did not consider this variable
since its introduction into the control equation may contribute to the formation of a
static error in the final equilibrium conditions for initial perturbances to be con-
sidered later.

Case e has been taken as the starting point for a series of modifications defined
in the following table:

Case A x 10 3 As x 10 3  A7 Aa x 10 3  B3  B4 x 10 3 Fig.No.

e -2.52 93 -0.64 -0.946 3.72 -42 308

f -2.52 93 -0.64 -0.946 3.72'(x) -42(x) 309

g -2.52 93 -0.64 -0.946(x) 3.72(x) -42(x) 310

g1 -0.42 93 -0.64 -0.946(x) 3.72(x) - 7(x) 311

h (A2 = +4) -2.52 93 -0.64 -0.946(x) 3.72(x) -42(x) 312

i (A1 = -0.74) -2.52 93 -0.64 -0.946(x) 3.72(x) -42(x) 313

j (with term -2.52 93 -0.64 -0.946(x) 3.72(x) -42(x) 314
in

j' Aqfzdt) -0.42 93 -0.64 -0.946(x) 3.72(x) - 7(x) 315

(x) indicates a time constant in the term.

We are very close to a critical case, as far as damping is concerned, and certain
modifications make the conditions unsuitable. The following remarks can be made
about these modifications:

(1) Introduction of a time constant in the terms Bz and B3 (a - ua/VO)

For a first study of the problem we have assumed linear conditions, assuming that
at the moment of detection of the displacement z0 there is an instantaneous motion
of the controls.

This assumption cannot be realized in practice and all calculations should be made
taking account of the real properties of the control mechanisms and at least, a time
constant should be introduced.
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The results obtained up to the present do not correspond to cases which are possible
in practice. Nevertheless, they allow us to explain the various effects of the
different components in the control conditions.

The greatest objection to the assumption is in the case of the power control, where,
according to Figure 308, the power is increased by 210% in zero time, which is clearly

impossible.

To investigate the effect of a more progressive control we have introduced a time
constant of 1 unit of aerodynamic time in the term 8m • This corresponds to

1 -[B 3 (11-La )+ B'Z]

in symbolic representation.

Figure 229 shows that there is a time lag in the development of power and that the
increased power is maintained for too long a time. The climb is less rapid and the
aeroplane overshoots the reference altitude by a considerable amount. The intro-
duction of a delayed term B. tends to diminish the oscillation present in Case e.

(2) Introduction of a time constant for the term A.

The measurement of i can be made from the rate-of-climb indicator, which is an
instrument having a considerable time lag. To take account of this fact, we have
added to the damping term in A. a time constant equal to Vr . The control condi-

tions then become:

86 = A +Az + A + A7(/Vo) + A1 0 Aso=A 4 5 70 1+0.5s

The introduction of this time constant reduces the damping.

This case (Case g) is defined in the last table and the response to an initial
condition of z0 = 50 m is given in Figure 310. It can be seen that there is an
oscillation.

(3) Reduction of the terms AO and B4

We form Case g' by reducing the terms A and B4 , which are included in Case g,
to one-sixth of their respective values. The response to a displacement z0 = 50 m
is much slower but is no longer oscillatory.

(4) Addition of a term in A2

We have considered the effect of the increase in static stability corresponding to
a term A2 > 0 , the term being introduced in Case g .

For a value of A2 = 4 , corresponding to an appreciable increase in static stabil-
ity produced by a setting of the elevator proportional to the deviation of a , the
motion becomes quite oscillatory.
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Figure 312 (compare with 310) gives the motion following a displacement zo

(5) A destabilizing term in A,

For reasons which will be discussed in the following chapter, we have considered
a Case i, derived from Case g by the addition of a destabilizing term A18 = -0.740
The motion is clearly oscillatory.

(6) Integral term in z

In the following chapter we will give reasons which justify the introduction of
an integral term in z and the resulting inconveniences.

21.6 COMBINATIONS INVESTIGATED FOR OTHER INITIAL
DEFLECTIONS

Some of the preceding cases have been studied with other initial displacements.
The following table gives the Figure numbers corresponding to these various conditions.

Initial error in

Case z0 t Ue wa

Locked controls - - 325 330

Case b. 302 316 326 331

bf 305 320 - -

c 303 317 327 332

cl 306 321 - -

d 304 318 328 333

di 307 322 - -

g 310 319 329 334

gr 311 323 - -

j 314 - - -

it 315 324 - -



380

21.7 INITIAL CONDITION to (OR ENTERING THE GLIDE PATH)

During approach, the aeroplane, flying horizontally, encounters the axis of the
glide path. At the moment of this intersection, the aeroplane is required to change
its trajectory and to follow the glide path, which is inclined at -2.50 to the hori-
zontal.

In the horizontal flight, before the intersection with the glide path, the aero-
plane must ignore the inclined axes.

Manual or automatic control, using error signals of altitude h , assures level
flight. When the aeroplane reaches the glide path, the distance z , measured from
the glide path, must become the essential control factor.

The receiver of the z-signal must be switched on at this moment. The aeroplane,
flying horizontally, will rise too high if it maintains its straight trajectory after
crossing the glide path, and an error signal in z , becoming more and more negative,
will be received.

In our calculations, the order given to the servo-mechanism by the chief pilot will
be simulated by the introduction of t0 in the equation:

i= V'a-

where to = +2.50 = +0.0436 rad.

This means that the axis forming the origin of the z-variable is rotated downwards
about to = +2.50 .

The 6 and y values, given by the computer, indicate nevertheless the displace-
ments of attitude and trajectory with respect to the original reference lines.

Let us examine the results obtained with the control equations which we considered.

The term A z is going to put the aeroplane into a dive, resulting in an increase
of velocity and a steeper trajectory.

The power available is too great for this new trajectory.

In Case b, when the throttle control is not changed, the excess of power must be
compensated for by less economical flight conditions, resulting in greater speed and
smaller incidence, the increase of speed being considerable (Fig.316).

If a term B3  (Case c) is included in the control conditions, the increase of
speed will decrease the available power and hence the increase of speed will not be
so great (Fig.317).

For Case d, i.e. where we have the control term B z acting on the throttle, the
error in z leads also to a decrease in power (Fig.318).
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In all these cases, the aeroplane tends to move to a position of equilibrium above
the glide path, and flies faster at a smaller incidence along a trajectory parallel
to the glide path, the final value of -y being equal to -0.0436 rad or -2.50.

The aeroplane is displaced 11 to 12 metres above the glide path in Cases b and c,
and 16 metres above it in Case d. The numerical value of B, is too small to have a
great effect; however, it does limit any excess of velocity.

Case g (Fig.319), which entails a combination of different effects, gives a smaller
final error in z . However, the control conditions adopted do not give sufficient
decrease in power and hence an increase in velocity is still necessary to absorb the
excess power. All the control equations lead to a static error.

The cases where the gain of A. or B. is one-sixth of their preceding values
result in final errors in z which are 6 times larger; hence they will not suitably
guide the aeroplane along the glide path (Figs.320 to 323).

In an actual approach, because of the increase of the gain in A,, and B. during
the descent, the static error in z will not be the same at the end as at the
beginning of the descent. The final error in z will correspond to the larger gains
realized there. However, we must consider that the response of the automatic pilot
to an order to change the gradient of its flight path is not satisfactory for the
control conditions studied here.

Note

(1) Let W0 be the necessary power for horizontal flight

WC be the necessary power for flight along a descending trajectory.

In supposing that, in the two assumptions, the curves of CL and CD as a function
of a are the same, we find, in the case considered:

W = 0.522 Wo

The coefficients B define the changes in power in the form of a fraction 8M of
the power W .

If we want to represent this change as a fraction of the power in horizontal flight,
these changes will be fractions 8 of the power W0 , where m' = 0.522 6m

(2) We did not use, in the control equation, terms proportional to an error in 0
or in 7.

The reason is that the final trim position along the glide path results in values
of 0 and y/ other than those corresponding to the horizontal path.

Using 0-control without changing the reference or zero value at the entrance of
the glide path would increase the static error in z
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(3) At the moment of intersection with the glide path, an action of the pilot is
necessary to change the control settings, and to put into action the sensors of error
Z.

This unavoidable action could be also used in the following ways:

(a) By changing the zero value of 0 , which would provide the opportunity to
use the stabilizing term A 10 in the control equation;

(b) By operating the thrust control to produce the necessary reduction of Sm
without having to rely on the action of the terms B and B

(4) Another way to suppress the static error in z would be to introduce an
integral term AQfz dt in the control equation.

The action of such a term could overcome the unfavourable effect of A,

21.8 THE GUST ua

The aeroplane, flying in a descending path of slope 2.50, receives a gust ua
from the rear. We will assume that this gust occurs suddenly and that it has a magni-
tude of 0.125 Vo .

The calculation has been made for a gust ua acting parallel to the axis OX of
the aeroplane, and not for a horizontal gust. This case Is somewhat artificial,
since the direction of the gust, instead of being constant, changes with the direction
of the aeroplane,

A gust acting parallel to the aeroplane chord can be divided into two components
uag and wag related to the horizontal and vertical axes: these components would
be:

Uag = +0.125V0 cos(4.5° + 0)

Wag = -0.125V0 sin(4.50 + 0)

In Figures 325 and following, the diagram of u agrees with the absolute velocity
when read with respect to the origin and give the relative velocity (G - ua/V0 ) if
read with respect to the broken line.

The gust produces transient effects, which we can study for the case of an aero-
plane with locked controls (Fig.325). The tail gust decreases the relative velocity
of the aeroplane and causes it to dive. This results in a series of oscillations
which resemble the phugoid, but which are, in fact, a little different because of the
introduction of the excitation wag *

The component w.g , which is a function of 0, has an important effect on the
aeroplane altitude; it tends to deviate the aeroplane upwards from the initial path
with increasing time.
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The diagram of a gives the apparent angle of attack. The real angle of attack

ar = L - a + ao
Vo Vo

is larger than the apparent angle of attack a by the amount ao(ua/Vo) = 0.0153 rad.
The final value of the real angle of attack about which the aeroplane oscillates is 0°.

The state of affairs is changed when the aeroplane is controlled by the servo-
mechanism we studied earlier.

In Case b (Fig.326), the initial decrease in altitude due to insufficient velocity
is unimportant. The automatic pilot raises the nose of the aeroplane and the incidence
increases. This pitch-up control changes during the motion and becomes a pitch-down
control.

Because of the added velocity ua the slope of the flight path would become smaller
than the required slope if the pilot did not intervene. The aeroplane can fly again
in a steady state along a trajectory with the correct slope if there is a decrease in
power. If the control conditions do not include a power control, the excess of power
must be absorbed by the aeroplane flying faster.

The automatic pilot for Case b can only cause this to happen if it receives a sig-
nal in z , i.e. if the aeroplane is above the correct approach path. With the con-
trol conditions adopted, this residual displacement z is quite small.

In Case c (Fig.327). any increase in the relative velocity produces a decrease in
the power and vice-versa.

As a result of these power variations, the establishment of the final conditions
necessitates a smaller increase of velocity.

In Case d (Fig.328), the aeroplane loses height at the beginning of the motion.
The control -8t = Bz supplies temporary, supplementary power, but changes sign when
the displacement z changes sign.

The decrease in power for the final conditions is necessarily related to the dis-
tance z , i.e. to the height of the aeroplane above the correct flight path.

Case g (Fig. 329) has the two effects B3 and B. with a time constant included.

in Cuses bl, c', d'. g' (sensitivity of the control in z being one-sixth its
normal value) we have similar effects, but the residual displacements in z are 6
times as large. The figures have not been reproduced in this report.

21.9 THE GUST wa

We have investigated the effect of a gust normal to the axis OX and directed
downwards. The gust is assumed to occur suddenly and has a magnitude
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wa = 0.02 VO I i.e. 1.2 m/sec

The transient effects of the gust on the aeroplane, flying with locked controls,
are shown in Figure 330. On this and the following figures the curve a gives the
angle between the axis OX and the absolute velocity if it is read with respect to
the abscissa: if it is read with respect to the broken line the curve gives the aero-
dynamic angle of attack (a - ws/V0

The curve of y = 8 - a represents the slope of the trajectory with respect to
the correct approach path.

The angle of incidence being reduced by the gust, the aeroplane, when flying with
locked controls, pitches up slightly because of static stability. However, the aero-
plane is involved in a downward motion and diverges steadily from the correct approach
path. The amplitude of the oscillations which accompany this motion is small.

The aeroplane maintains a course close to the correct approach path for the control
conditions which we have studied.

In Case b we have established (Pig.331) that the aeroplane does not pitch up due to
the effect of the gust: the first reaction of the auto-pilot is to put the aeroplane
into a nose-down attitude, but this motion, due to the term A7 (i/V 0 ) does not last
and rapidly changes its sense because of the intervention of the term in A.z ,

The angle of incidence of the aeroplane increases, its velocity decreases and the
excess of power made available by this effect opposes the action of the wind velocity.
The aeroplane then flies along a trajectory parallel to the correct approach path,
but is always lower.

In Case c (Fig.332), extra power is produced in proportion to the reduction in
velocity of the aeroplane. A decrease of velocity is necessary, but is less than in
the previous case. The motion of the elevator is similar.

In Case d (Fig.333), the power is produced in proportion to the displacement z
until the excess power so produced cancels the effect of the downward wind. The
elevator has very little effect, it being used only at the start of the motion to
control the nose-down attitude.

Case g (Fig.334), showing the two effects on 8. with a time constant, does not
have any peculiarity. It leads to a minimum displacement in z , which is normal.

Cases b', cl, d' and g' for small gain in the displacement z have been investi-
gated, but the results are not given in this report, since they have the same
characteristics.

The aeroplane does not fly so close to the correct approach path, but moves away
from it, the final error in distance being six times as great.

Note

The component in A7(0/V 0 ), common to the control equations studied, produces an
unexpected effect; this is due to the slight nose-down attitude which can be seen in
the diagrams.



CHAPTER 22

REMARKS ON THE LONGITUDINAL NOTION

22.1 PROGRESSIVE VARIATION OF THE GAIN IN
A4  OR B4

We have not made tests with progressive variation in the gain, in the case of
longitudinal motion, as we did in the case of lateral motion. The set-up for this
purpose was prepared but not used.

We considered it more useful to collect together the information necessarý to
having an idea of the phenomena, considering only simple cases with constant coeffi-
cients, than to simulate completely real cases with variable coefficients.

To have an idea where the instability regions are is very useful, for the conse-
quences of an increase in gain of the ILS receiver is more serious for longitudinal
motion than for lateral motion.

The glide-path transmitter is, in effect, placed at the entry of the landing strip,
at the touch-down point, whilst the localizer transmitter is placed at the exit end
of the landing strip.

Hence the gain of the receiver tends to infinity at the touch-down point. The
aeroplane must, therefore, cease to use this signal before touch-down, whereas the
localizer signal can be used right up to touch-down.

This is not an irremediable drawback, for in the present flight technique the
pilot has to see the landing-strip approach lights at about 200 feet or 60 metres
above the ground, and has to pilot manually from th.t point.

Considering that the aeroplane is flying at an altitude of about 360 metres before
entering the glide path, the gain is going to vary from 1 to 6 between the beginning
of the descending flighL and the point where the pilot must resume manual control.
This explains why we have considered cases where the gain varied in such a manner.

The minimum requirements will be: (1) enough stability for the high-gain case, in
order to secure some margin of safety if the auto-pilot is switched off later than
foreseen, and (2) sufficient effectiveness for the low-gain case.

The proposed control equations do not give an adequate effectiveness in the latter
case; this shows the difficulty of the problems and the utility of devices which
reduce the gain in proportion to the time elapsed from the moment of entry into the
glide path. These devices are incorporated in certain existing automatic pilots.

22.2 INTEGRAL CONTROL

The static error z is unavoidable in cases with initial conditions to , ua
wa
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Theoretically, it exists also for an initial condition in z0 , but becomes
infinitely small and can be neglected in that case.

It can be suppressed by a control component proportional to the integral of z

The general theory of control explains this fact, and give the effect of such a
component.

We have investigated two cases, introducing the integral of z to be added to
Case g:

+ = +A, + A A + A 9 - O. 00192fz dta~~ ~~ = 1Z+A ap

which becomes Case J.

For Case g' we have:

+8 = +Az + Ale + A + + Asi - O.O0032f. df
V0  iT ap

which becomes Case j'.

The response to an initial displacement z. is shown in Figures 314 and 315.

When the initial condition in a displacement zo . the introduction of an integral
control term is far from being favourable. The aeroplane crosses the correct approach
path several times and residual oscillations with very long periods occur.

It can be shown easily that the integral control condition suppresses the static
error z following an initial perturbation of C . ua or wa . These errors are
corrected: the aeroplane is brought back to fly along the correct approach path, but
the process is very slow. The aeroplane establishes itself in a r~gime imposed by the
equilibrium conditions.

We will indicate the response to an initial displacement C in Case j' (Fig.324)
which can be compared with the response to the same displacement in Case g' (Fig.323).

Without integral control conditions, the aeroplane flies at 35 metres above the
correct approach path; for an increase of speed of +0.095 and a reduction of power
so = -0.60 . With integral control conditions, the aeroplane will be made to fly along
the correct approach path, but with an excess speed of +0.130 and a reduction of power
of SM = -0.38 .

22.3 IMPROVING THE DAMPING

The variables which produce damping when their errors are introduced in the control
equation are 0, 9, i/Vo , .
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The term A10 has not been proposed because it contributes to the building up of a
static error at entry to the glide path, unless an adjustment is made in the setting
of the zero value for 0

This drawback can nevertheless be suppressed if we use integral control.

The term A 0 damps the short-period oscillation but has only little effect on
the long-period oscillation.

The use of terms Asi and A7 (6/Vo) is subject to drawbacks that will be discussed
later.

The determination of the variables i and 6/Vo raises certain problems and it
is necessary to investigate the physical reality to which these variables correspond.

Variable i

Two methods are available for measuring .:

(a) We may obtain the derivative of z directly, but this suffers from the dis-
advantage that all irregularities affecting z are amplified.

(b) The derivative . can be computed in the following way: let h be the alti-
tude of the aeroplane, measured positive upwards, and t the slope of the
correct approach path, measured positive downwards. Then we have:

The measurement of li is given by the rate-of-climb indicator and permits us
to obtain ., knowing V, and t .

This is an indirect measurement and is affected by the unavoidable time lag in
the rate-of-climb indicator.

Variable ý/Vo

In our equations, fi/Vo is a measure of the absolute acceleration.

The classical type of accelerometer is sensitive to absolute acceleration and to
the attitude of the aeroplane. A longitudinal accelerometer measures the value of

du
-d + g sin8

dt

which, expressed non-dimensionally, is in our case:

6 + 7.05 g sinm

Let us call the reading of the accelprometer R . This reading is related to the true
acceleration 6/V 0 by:
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= - + kO
Vo

and for our case:

7.05 g 7.05 x 9.81k = - 1.15
V0  60

We can at this point envisage three different solutions:

(a) By utilizing the error of the variable i/Vo defined above, measuring the
variable R , introducing the correction k and obtaining:

- = R -kG
V0

0 being measured by a position gyroscope.

(b) By accepting control of the aeroplane using A7R instead of A 7 (u/V 0)

(c) By trying to derive u/V 0  from measurements of the air speed.

Each solution has its drawbacks: the first obviously leads to mechanical complica-
tion; the second is unsound; the third alters the principle of the control.

We will investigate these conditions in the following sections.

22.4 THE USE OF AN ACCELEROMETER

The horizontal accelerometer reading gives us: =/Vo + kO . If we use A 7
instead of A7 (6/Vo) , we add a term A, k A7 in the control equation.

The value of A1 is: A1 = -1.15 A7  -0.74 .

This has been done for Case g, which, with this addition, becomes Case i.

A term in A1 , with a negative coefficient, adversely affects the stability to a
considerable extent. A calculation made for an initial displacement Z0  gives us
the result shown in Figure 313.

The motion is definitely oscillatory, which shows us that control depending on the
value of R taken from a horizontal accelerometer is unsuitable.

The third solution will be studied in some detail.

22.5 USE OF THE AIR-SPEED INDICATOR

If the derivative of the air-speed indicator reading can be obtained exactly, we
can replace A7 (u/V 0) in the control equation by A7((6-U1 )/V0
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As long as there is no variation in u. , the response will be the same as when
the absolute acceleration 6/V 0 is used, but the response to a gust u. will be
different.

During a motion following a sharp-edged gust u. , the relative and absolute velo-
cities vary according to the curves 1 and 2 in Figure 335. At any instant t # 0 ,
the two derivatives are the same, but at time t = 0 the relative velocity changes
abruptly by u./Vo . Its derivative changes in the form of a pulse:

= - 4(t) I
Vo Vo Vo

where 4(t) is the Dirac function.

The pulse in ua/V is introduced into the automatic pilot by:

and produces theoretically a pulse in the control setting:

+•e(t) = -A7 (t) -a

If the derivation of (ua/VO) were performed correctly, and if all the servo-
mechanisms functioned without inertia, the aeroplane would be subjected to an impulsive
pitching moment corresponding to a pulse in the control setting

Se(E) = (-0.64)(-0.125)4(t) = 0.084(t)

The theoretical effect of this impulsive control setting can be determined on the
simulator.

The output variables a G G , 0 produced by a pulse are the derivatives of the
same output variables when the excitation is a step function having the same input
value.

Consequently, it is sufficient to determine the derivatives doL/dt , dv/dt , d&/dt
for a step displacement of the control equal to (Be) = +0.08 . This has been done
for the control conditions of Cases b, c and d, by recording voltages in the computer
corresponding to these derivatives. The results are all very much alike and only one
of them has been reproduced in this report (Fig.336).

The impulsive control setting produces important peaks in the a and e diagrams.
It causes first pitch-down and then pitch-up of the aeroplane. A nose gust (us < 0)
would produce opposite effects.

The response of the aeroplane to a gust u. could be obtained when the automatic
pilot is sensitive to ( 6 - ia)/Vo instead of to u/Vo , by adding the correction
defined above to the response calculated for a signal in u/V 0
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The impulse is a purely theoretical idea, but it has some practical significance,
for the response to the impulse allows us, by calculation or by simple graphical
construction, to calculate the response to an action of the same type, acting for a
finite interval of time.

The transfer functions of the different components affecting the controls, air-
speed indicator, servo-motor, and the imperfect derivative network will, however,
transform the response.

The quantity 8,(t) resulting from the impulse in the relative velocity will lose
its discontinuous form and become a slower motion, of which the action in the motion
of the aeroplane can be established after the impulsive response.

Such an operation considerably decreases the importance of the peaks in the dia-
grams of a and 0 , but the result of the calculation will deperd entirely on the
assumptions made about the characteristics of the control components.

Some additional tests have been made in this way. In the tests already described,
the voltage representing i/V0 was measured in the loop, after summing the terms
-al . -b a , etc., but before integration. This voltage multiplied by A, was then
introduced in the summation, giving +8e •

Another set-up has been prepared: the voltage representing (G - ua/V) was obtained
by integration of f(i/V0)d• and summation with -ua/V ; its derivative was calculated
by a derivator network.

The derivative was deliberately chosen to be imperfect; the imperfection resulted
in the introduction of a time constant a inthe resulting derivative of (G - ua/V0 ) .

Tests with a step unit disturbance in ua/Vo were made for Case g. The replace-
ment of A~sG by A,[s/(l+a)(G-ua/V0)] introduced also a time constant a in the

term A7(6/V 0 ) and reduced its stabilizing action.

We made the calculation for various values of the time constant a: 0.05, 0.10,
0.20, 0.50 . We give, in Figures 337 and 338, the results for the values a = 0.05
and a = 0.20 . The curves may be compared with those of the true Case g given in
Figure 329. There is still a peak in Se at the beginning of the response. There
are corresponding peaks in a , 0 and G . They are of the same sign as those pre-
dicted theoretically and represented in Figure 336, but are smaller, due to the
imperfect derivation.

The loss of the stabilizing effect of AT(6/V 0 ) due to the time constant affecting
this term is clearly seen. It is still greater for the case a = 0.50 , which is not
reproduced here.

The peaks will, of course, be reduced if the sharpness of the gust decreases and
will be reduced a second time if we take account of the real inertia characteristics
of the servo-mechanism.

The effects of replacing A,(6/Vo) by .A7(f"•a/VO) lead nevertheless to unfavour-
able characteristics, as any time lag, or time constant corresponding to the derivation,
which is incorporated to eliminate the initial peaks produced by 6a/VO , will decrease
the stabilizing effect of A7
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Note

It must be remembered that the time constants already existing in Case g, i.e.

a = 0.5 acting on A8i

a = 1 acting on (,83(6/V 0 ) + B84 )

are maintained and added to the time constant affecting A7

22.6 MORE ELABORATE CASES

The tests analyzed in this report were intended to show clearly the effect of the
most important terms entering into the control equations.

The control equations were kept relatively simple. Other tests, with more intri-
cate control laws, have been made.

The question of how to mix the stabilizing terms in order to improve the aircraft
motion remains open. As A7( -6a)/V0 has some drawbacks, we tried to keep A7 small
and to use AO to increase stability. This is possible when the static error in z
is suppressed by an integrating term.

We calculated the responses to the 4 initial conditions, for such combinations.
The results of one of them are given in Figures 339 to 342 as an example of the results
that can be obtained.

The control coefficients were:

A, = 1 A3 = 0.4 A4 = -4 x 10.3  As = 0.16 X 10-3

A7 = -0.5 As = 2 x 10- 3  A9 = 0.5 x 10-3

B3 = 8 B, = 50 x 10-3

This control equation reduces the drawbacks of the integrating term Ajfz d,
although, during the response to a displacement z 0 , the distance z exceeds its
final value by 207o of the initial error (Fig.339).

The static error in z is zero after 4 units of time when simulating the entrance
in the glide path (Fig.340). The final value of v is 0.08, due to an insufficient
decrease in thrust.

A final value v = 0 could nevertheless be obtained. To do this, an integral term
B10fv d• , with B,0 > 0 , should be added to the thrust control. This opens the way
to new and still more elaborate control equations.

The introduction of BJv dt into the control equation will produce an oscillation
of very long period. We ascertained that it was possible to effect reasonable damping
of this oscillation by a strong increase in the term B3 (v - ua/VO) but a long time
will be necessary to cancel the static errors.
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A control equation using the same terms A as those of the preceding combination,
and using:

B3 = 20 B4 = 50 x 10- 3  B10  = 1

gave the results which are described in Figures 343 to 346.

During the response to zo , the displacement z exceeds its final value by more
than 30% (Fig.343).

While entering the glide path, the static error in z disappears only after 8
time units; the error in v vanishes also, but only after 16 time units. Although
there is no static error in v , the final value of a is quite different from the
initial one (Fig.344).

This results from the reduction of St , as account is taken in the aerodynamic
aircraft characteristics of the variation of the lift coefficient with a. .

The response to a front gust ua (Fig.345) leads in 10 time units to an absolute
speed equal to (v + ua/Vo) , which means the cancellation of any static error in speed.

The initial peaks of the responses, produced by AT(6a/Vo) , still present, are
reduced.

The response to the gust wa does not need any comment (Fig.346).

22.7 COMPARISON WITH CAROLL AND TYLER TESTS

There is no similarity between the control conditions considered by us and those
recommended by Caroll and Tyler.

We have tolerated slow motions and made systematic efforts to keep the values of
the control coefficients as small as possible.

Caroll and Tyler required a quick return to the correct flight path after disturb-
ance but accepted relatively higher values of the control coefficients.

They arrived at control equations of the type

S=Ax + A~a + A) z + AAz
+e 5 as•

"= B3(V - L)+ B•z + Bei

having a time constant in the term in Ai .
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The set-up used in our calculations would not have permitted us to introduce, into
the computer, values of the coefficients A, ..... Bn as high as those used by Caroll
and Tyler, without changing the scales and the whole set-up.

The time at our disposal did not allow us to do this. We did not, therefore, try
to find out why their control equations differed from those which gave us good results.

22.8 FINAL REMARKS

The study of longitudinal control clearly shows the possibilities of analysis
offered by the analogue computer.

The test results given are not for the purpose of formally recommending a particu-
lar type of control condition. Their purpose is to show that the effects of the
choice of control coefficients can be completely foreseen and computed by an analogue
computer.
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