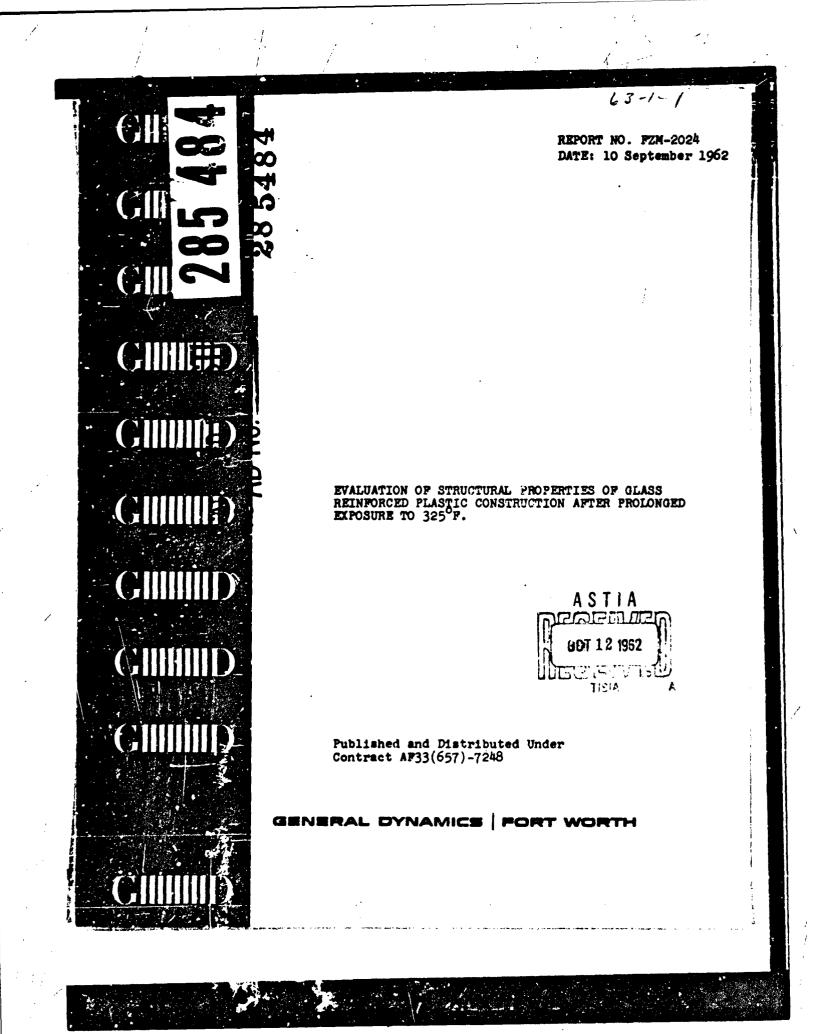


•••

Reproduced . by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA



Best Available Copy

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or othervise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

200 30 TO 5091

MOCEL

_ FWP - 1999A - 7-36

TITLE

EVALUATION OF STRUCTURAL PROPERTIES OF GLASS REINFORCED PLASTIC CONSTRUCTION AFTER PROLONGED EXPOSURE TO 325°F

> Approved by: <u>ACWiling</u> J. E. R. Collinsworth Senior Design. Group Engineer

CONVAIR A DIVISION OF GENERAL DYNAMICS COMPONATION (PORT WORTH)

	1	
	FZM-2024	
MOON		
DATE 13	January 1961	

1. INTRODUCTION

The elevated temperatures encountered in long range supersonic aircraft have created a need for high temperature resistant glass reinforced plastic construction which will provide the required strength, light weight, and radar transparency. The objective of this program was to determine the effect of prolonged exposure to 325°F on various reinforced plastic material combinations.

2. APPROACH

The present materials used on the B-58 were known to have useful properties at temperatures up to 300°F for short periods of time. However, little if any data was available on their properties at 325°F after prolonged exposure. Since time and funds were not available for an extensive development program for new acterials and some of the present B-58 materials appeared capable of operating under this condition, it was decided to evaluate B-58 materials only. The present production processing techniques such as curing agents, finish of glass reinforcements, fabrication methods and curing cycles were used. In the case where the material is used by a sub-contractor of B-58 parts, the vendor's processes were used.

Two test requests were written to initiate the fabrication and testing of panels. F-9684 was issued for G.R.P. faced sandwich construction and F-9636 was issued for solid laminate G.R.P. construction.

Materials Tested.

Phenolic - Conolon 506 FMS0031 CLASS VI * Epoxy Epon 828 FMS0031 CLASS IV ** Modified Polyester - Laminac 4232 FMS0031 CLASS II***

3. FABRICATION - MATERIALS AND PROCESSES

3.1 SANDWICH CONSTRUCTION

Two (2) resin systems were evaluated. Phenolic and Epoxy Panel fabrication details were as follows:

*Room	Temperature val	ue	*	**	***
	Compression	KSI	35	48	30
	Tensile	KSI	40	47	35
	flexual	KSI	50	65	48

96PT. 4 - PRP-1387-9-86

CONV	AIR	EPORT NO. FZM-2024
A DIVISION OF GAMEAL D (PORT W	numice coeforation ORTH)	CAR 13 January 19
3.1.1	Phenolic Glass Reinforced Flastic Construction	Faced Sandwich
	(Representative of the General St sandwich construction on the B-58	
3.1.1.1	Construction and Materials	
	One (1) panel size $.560^{\circ} \neq .015^{\circ}$: fabricated as follows:	x 38.0" x 38.0" was
	A. Faces were composed of 3 plie style Conolon 506 preimpregna per specification FMS-0031 'B	ted glass cloth
	B. Core was a 5.5 lb/cu.ft. nomination fabric reinforced plastic homogeneous for Specification FMS-0013 (B)	eycomb core material
	C. Faces were bonded to the core Specification FMS-0015-1.**	using adhesive per
3.1.1.2	Processing	
	A single stage lay-up was used an as follows:	d the panel cured
	a. Cure cycle under vacuum press of Hg.	ure of 26" <u>1</u> 3"
	3/4 hour at 200°F <u>/</u> 10°F	
	1/2 hour at 250°F <u>/</u> 10°F	
	1/2 hour at 275°F <u>f</u> 10°F	
	b. Post cure cycle with no vacuu	
	1/2 hour at 300°F <u>f</u> 10°F	
, i	2 hours at 350°F 🛃 10°F	
3.1.1.3	The completed panel war painted us FMS-0003 and paint per FMS-0004.	sing prime per
•	3 hex cell configuration. Room te compression 700 psi core shea core shear W 210 psi	sperature values; r L 360 psi
** 1	typical epoxy-phenolic resin adhesi	TC,
• •	,	·
		1
55		· · · · · · · · · · · · · · · · · · ·

• .

.

1

1.

. ... *.*.

and the second second of the second second

	DIVERON OF GRANAL PINA JOINT WORT	A I R Nes complation Tel	AGE 3 ABFORT NO. F214-2024 MODE DATE 13 January 1961
	3.1.2	Epoxy Glass Reinforced Plastic F Construction (Simulating radome	aced Sandwich construction)
	3.1.2.1	Construction and Materials - Two .602 4 .010 x 38.0 x 38.0 we follows:	(2) panel size re fabricated as
		 a. Faces were composed of 5 pli style Volan "A" finish glass Epon 828 resin and 13 phr MP Faces were finished to a thi \$\overline{1}\$.005" with a cured resin c They met the requirements of FMS-0031B Class IV. 	fabric with D curing agent ckness of .045 ontent of 34% <u>f</u> 3%.
		b. Core was a 4.75 lb/cu.ft. no glass fabric reinforced plas material per Specification F spliced and vented as requir	tic honeycomb core MS-0013 (B) Type II*
, ,		c. Parent resin as outlined abo the faces to the core.	ve was used to bond
	3.1.2.2	Processing - A three stage lay-u	p was used as follows:
		a. 1st stage - Both faces were out at 150°F. The cure unde of 26″ £ 3″ of Hg was as fol	r vacuum pressure
•		3/4 hour at 200°F <u>/</u> 5°F	
		$1/2$ hour at $250^{\circ}F \neq 5^{\circ}F$	
		1 hour at $300^{\circ}F \neq 5^{\circ}F$	
		b. 2nd stage - One face was na the core under vacuum press	rent resin bonded to ure of 26" <u>/</u> 3" of Hg.
		2 hours at $150^{\circ}F \neq 5^{\circ}F$	
		$3/4$ hours at $200^{\circ}F \pm 5^{\circ}F$	
		1/ \odot hour at 250°F \neq 5°F	
	2	1 hour at $300^{\circ}F \neq 5^{\circ}F$	
	*_3	hex cell configuration. Room to Compression 535 psi shear L	nperature values. 310 psi shear W 190 psi

C O	N V of general stread	A I R MICS CONFORMITION THI)	MOR 4 MORT NO. F214-2024 MORE 13 January 1961
		c. 3rd Stage - The remaining face was bonded to the core under the same the 2nd stage.	
		d. The completed panels were post car vacuum as follows:	ed without
		$1/2$ hour at 200°F $\frac{1}{2}$ 10°F	
1000 C		1 hour at $300^{\circ}F \neq 10^{\circ}F$	1 89 - 10 - 14
		4 hours at $350^{\circ}F \neq 10^{\circ}F$	
	3.2	Solid Laminate Construction	
•		Three (3) resin systems were evaluated Epoxy, and Modified Polyester. Pamel details were as follows:	. Phenolic, fabrication
	3.2.1	Phenolic Glass Keinforced Plastic Lami	nate Construction
		(Representative of the general structu laminated construction on the B-58)	ral non-electrical
•	3.2.1.1	Construction and Materials - One (1) p \pm .010" x 38.0" x 38.0" was fabricated was composed of 12 plies of number 181 506 preimpregnated glass cloth per See FMS-0031 (B) Class VI.	. This panel style Conclon
•	3.2.1.2	Processing - A single stage lay-up was panel cured as follows:	used and the
•		a. Cure cycle under vacuum pressure of	f 26" 🛓 3" of Hg.
		3/4 hour at 200°F <u>/</u> 10°F	
		1/2 hour at 250°F <u>f</u> 10°F	
		1/2 hour at 275°F <u>/</u> 10°F	
		b. Post cure cycle with no vacuum	:
		$1/2$ hour at $300^{\circ}F \neq 10^{\circ}F$	5
		2 hours at $350^{\circ}F \neq 10^{\circ}F$	
	м,		1
			. :
DEPT. 6 - P	WP-1387-3-86		

C	ONV SION OF GENERAL DYNAMIC (FORT WORTH)	CONFORATION	PAGE 5 REPORT NO. FZM-2024 MODEL DATE 13 January 1961
	3.2.1.3	The completed panel was FMS-0003 and paint per H	painted using prime per AS-3004.**
	3.2.2		Plastic Laminate Construc- te and antenna construction
	3.2.2.1	.170 <u>f</u> .005 x 38.0 x These manels were compo- plies of number 181 styl	sed of approximately 17 le Garan finish glass in and 15 phr RP-7A curing
	3.2.2.2	Processing - À three sta cured às follows:	age lay-up was used and
		nated with resin, ru	plies of cloth wore impreg- ubbed out and cured under 26″ <u>f</u> 3″ Ho as follows;
		1/2 hour at 150 ^o f <u>/</u>	20F
		1 hour at 200°F <u>/</u> 5°	5F
		1/2 hour at 250°F <u>f</u>	5°r
			plies were added to the 1st the same processing method.
		the 2nd stage lay-up	aining plies were added to b as necessary to meet the nt using the same processing the lst stage.
		U. The completed panel as follows:	was post carea without vacuum
		1/2 hour at 250°F	£ 10°F
		1 hour at 300°F <u>4</u>	10°F
		4 hours at 350° F	10°F
	s 3.2.3	Nodified Polyester Glas: Construction - (Dimulat: tion on the B-58).	s Weinforden Flastic Laminate ing the search radome construc+
I.		 Typical Epoxy Primer Typical Epoxy Paint. 	

ł,

	C	0 1						6 ONT NO. F2M-2024	
	A DIVIN	U U U 0 10 100 1)	In MAL DY	NAMICS (DRTH)	COPORATION		MO	13 January 1961	
			3.2.3.	ï	183" <u>/</u> .005 These panels blies of num with Laminac	n and Material 5″ x 38.0″ x 38 s were composed mber 181 style c 4232 resin ar content was 38	.0" were fab: l of annroxim Garan finish d 2 phr ATC o	ricated. ately 16 glass cloth	
•			3.2.3.		rocessing - ured as fol	- A three stage llows:	lay-up was u	used and	
				đ	impregna under va 180°F <u>/</u>	ge - Seven (7) ated with resir acuum pressura SOF for & hour sel ply.)	of $26^{\circ} \neq 3^{\circ}$ H	and cured Ig at	
				E	lst stag	ge - Seven (7) ge using the sa was used for	me processing		
				C	the 2nd ness req	ge - The remain stage as neces puirement using as for the 1st	the same pro	the thick-	
; ;				ם	. The comp vacuum a	bleted panel wa is follows:	s post cured	without	
ţ					12 h	nours at 200°F	£ 5°F		
						ours at 225°F			
						ours at 250°F	_		
						ours at 275°F			
						nours at 300°F	_		
						ours at 325 ^o F			
					76 N	lours at 550°F	2 5 1		
					•				
		•							

~

/

The second second second second

ĥ

,

	N OF GENERAL DYNA				REPORT MCDEL	7 No FZM-2024 3 January 1961
	(PORT WOR	1N;				
	4.0	TES	FTING			
1 1 1 1	4.1	MEC	HANICAL TEST	TING		
	4.1.1		sting was acc ntal condition		er the followin	g enviran -
		c. d. e.	At 325°F af At 325°F af At 325°F af At 325°F af	ter 200 hours ter 1000 hours perature after	exposure to 325 exposure to 32 exposure to 3	5 ⁹ F 25 ⁰ F Dosure to 325 ⁰ F
	4.1.2	The	following m	echanical test	s were conduct	ed.
	4.1.2.1				ed sandwich con	
		a.	Column comm per Specifi	ression specin cation FZS-4-(nens - prepared 271 (Å) Type XI	and tested I.*
		b.	Pi Tension Specificati	specinens - pr on FZS-4-071 (repared and tes (A) Type III**	ted per
		C.	Load - Jefl tested per	ection (P/Δ) Figure 1 and 7	Beams - prepar Table I.	ed and
		d.	phenolic fa hours. The	ced sandwich c	were run on e constructions f re prepared and 2.	or 3000
•	4.1.2.2	Gla	iss Reinforce	d Plastic Soli	d Laminate Con	struction
		a.	Tensile pe fication LP	cimens - prepa -406b Method 1	ared and tested 011 Type 1.	per Speci-
		b.	Specific .ti	specimens - p on LP-406b Met ecimens(with f	repared and ter hod 1021.1 usin lared ends).	sted per ng Convair
		с.	Flexure spec ficatio: LP	cimens - prepa -406b Method 1	red and tested 031.1	per Speci-
	•	*See *See	Supplerinta: Supplerinta:	ry Sheet S-l ry Sheet S-2,		
			;			
			, , ,			
DEPT. 4	- FWP-1387-8-84		•	, 		
L	۰.		· ·	лй.	<i>minum</i>	

	C 0	NV	AIR	рисе 8 автокт но FZM-2024
	A DIVISION	OF GENERAL DYNA (PORT WOR	NICS COMPORATION [if]	CAR 13 January 1961
	a and the second s	4.2	PHYSICAL TESTING	
		4.2.1	The following physical tests were the glass reinforced plastic solid faces of the sandwich panels.	
			 a. Specific gravity per Specifics Method 5011. b. Resin content per Specification c. Hardness test using a Barcol I GYZ-934-1. 	a LP-406b Method 7061.
		4.2.2	The physcial tests were performed after the following exposures:	at room temperature
			 a. Prior to exposure to 325°F b. After 200 hours at 325°F c. After 1000 hours at 325°F d. After 3000 hours at 325°F 	
i		4.3	Electrical Tests	
			Identical panels using the Epoxy resin systems were fabricated for electrical tests were run at room test panels had been exposed to 32 The panels were tested for dielect tangent, transmission and I.P.D. a	electrical tests. The temperature after the 5°F for 3000 hours. ric constant, loss
!		4.4	Exposure and Tests at Temperature	
			Room temperature and short time ex- test specimens were removed from t ing sections of the panels were ex- closely controlled oven. All open wich panels were sealed with Mylar posure. At the end of each time p were removed and inspected. Suffi- the required test specimens was re- panels were re-sealed and returned continued exposure.	he panels and remain- posed to 325°F in a edges of the sand- tape during the ex- eriod the panels cient material for moved; and the
	•	I		
	DEPT, 4 - F	'¥P-1387-9-84		: .

.

CONVAIR A DIVISION OF COMMAN DYNAMICS COMPON-COM (DORT WORTH) MOR 9 MORT NO. FZM-2024 MORE 13 January 1961

5.0 TEST RESULTS AND DISCUSSION

5.1 TEST RESULTS

The mechanical and physical test results are summarized in Tables II and III and detailed in Tables IV through Table XXII.

5.2 DISCUSSION

When reinforced plastic materials are exposed to elevated temperatures, two reactions simultaneously take place. One reaction is the additional curing of the resin which increases the mechanical strength of the material. The other reaction is oxidation which causes a deterioration of the resin which results in a decrease in mechanical strength.

Epoxy and Modified Polyester laminates are practically non-porous and only the outer surfaces are primarily affected by oxidation. Phenolic laminates are noted for their porosity and exposure to high temperature for an extended period of time creates a serious oxidation problem. The effect of oxidation of phenolic material can be reduced by painting the surfaces or by impregnating the porous laminate with a high temperature material.

The Phenolic panels (solid and sandwich) were painted in an effort to reduce the effect of oxidation but the panels were substantially affected by oxidation during the long exposure to 325°F.

The low specific gravity of the solid laminate phenolic part (1.57) is another indication that it was more porous than the Epoxy laminate (1.86) or the modified polyester laminate (1.89).

The mechanical values for the Epoxy sandwich panel were lower than a typical Epoxy sandwich panel. This apparently was caused by the low bond strength of the parent resin. The panel tested had an ultimate tension value of 1057 pounds, while a typical panel should have a value of 1300 pounds.

The test results showed that there was a definite increase in strength of all materials as the exposure time at 325°F was increased from 1/2 to 200 hours. This increase can be attributed to the additional curing of each type of resin with a minimum effect of oxidation.

DEPT, 6 - PWP-1307-3-66

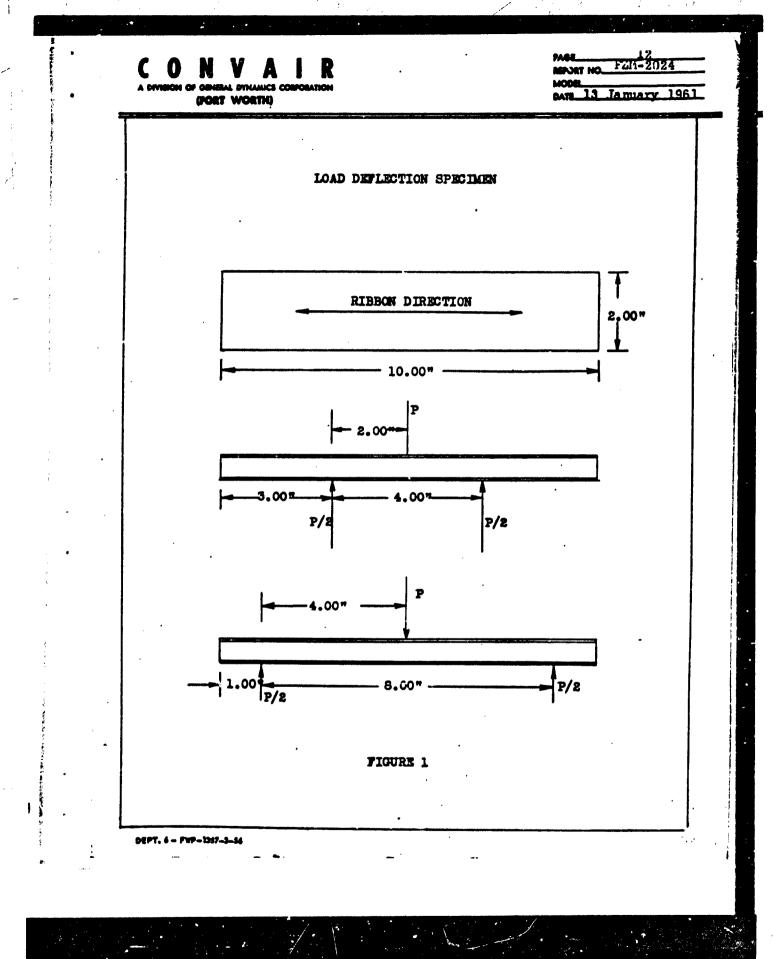
At some point between 200 and 1000 hours exposure, the effect of oxidation began to overtake the effect of curing and resulted in a decrease of mechanical properties of the solid and sandwich phenolic parts. During this same period of exposure the encyy material increased in strength and the modified polyester, leveled off with slight increases in some properties and some decreases in otherse

January

Between 1000 and 3000 hours expositive at 325°F the Phenolic material continued to deteriorate at a more repid rate. The croxy material reached its make sometime state the croxy material reached its started to decrease in mechanical strength. The Hodified Polyester material continued to show a small increase in mechanical properties during the entire exposure time from 1000 to 3000 hours.

6.0 CONCLUSIONS

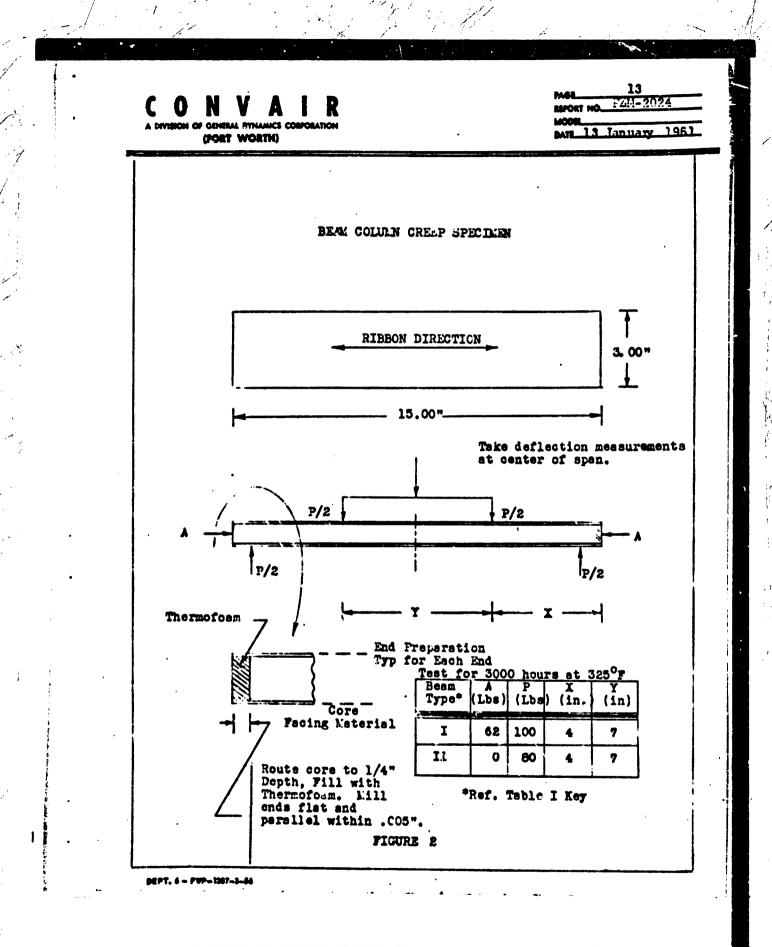
(PORT WORTH)

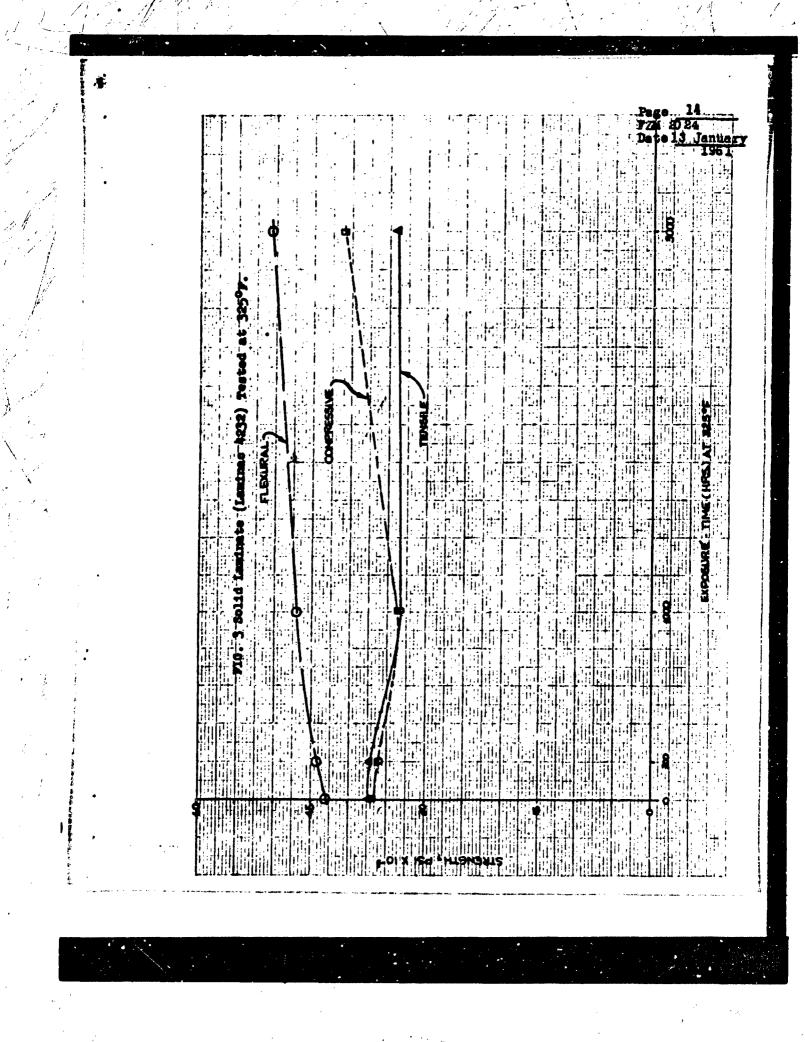

These test results show that all three resin systems tested can satisfactorily operate at 325° F for 1000 hours. It can also be concluded that the present design allowable based on acceptance values for 300° F for 1/2 hour exposure are realistic for 1000 hours exposure at 325° F without reductions.

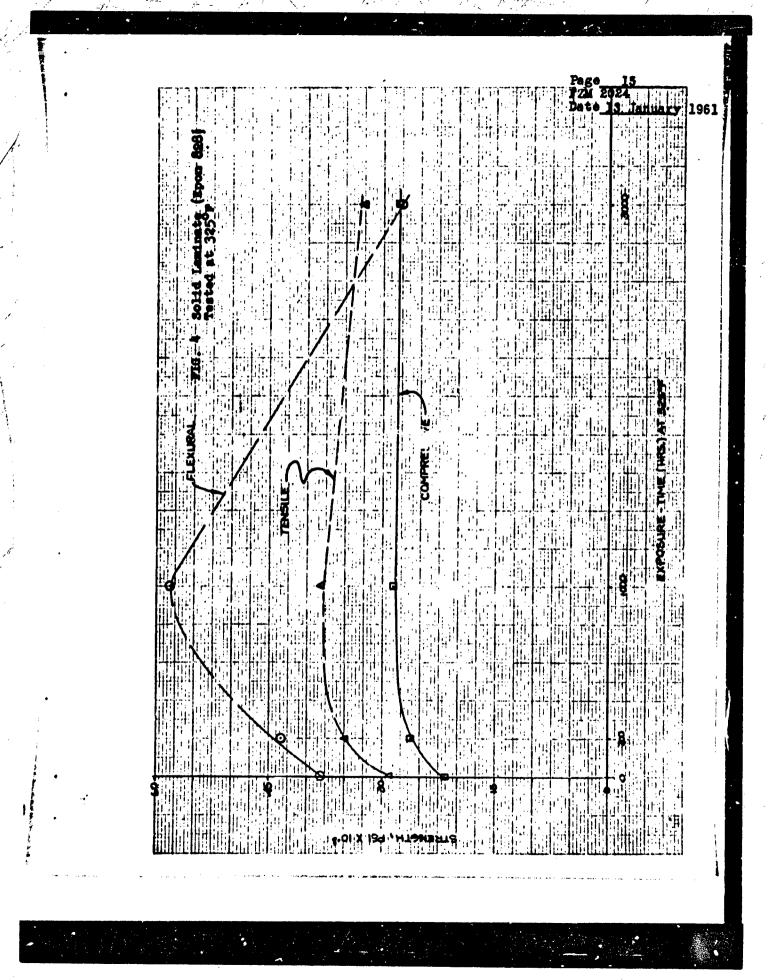
Based on this data Modified Polyester annears to be the best result for applications where the material is exposed to 325°r for 3000 hours. During this 3000 hours period of exposure at 325°F the mechanical properties remained almost constant which would indicate that Modified Polyester material useable life is greater than 3000 hours. See Figure 3.

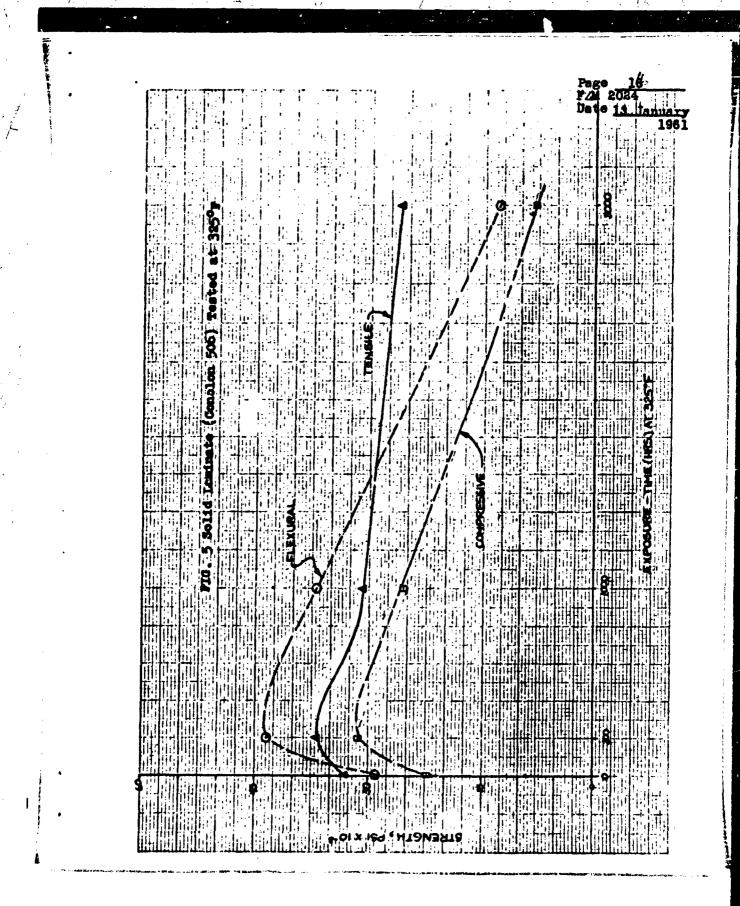
Although the mechanical properties of Proxy resin began to decrease sometime between 1000 hours and 3000 hours they were still within a practical range after 3000 hours exposure. See Figures 4 and 6.

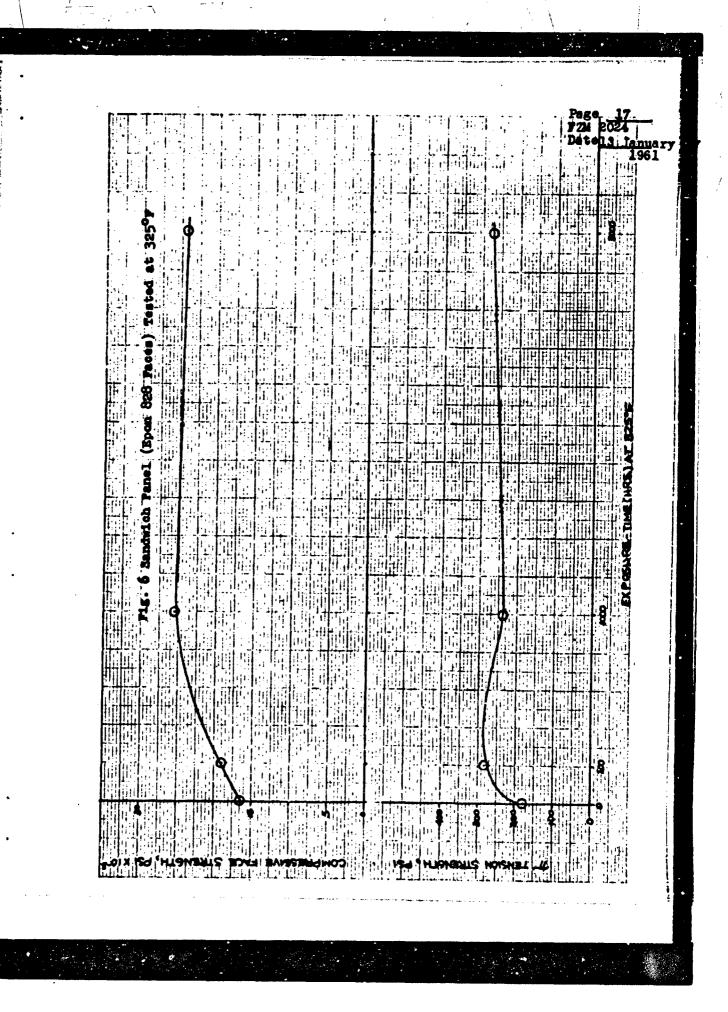
Phenolic material was definitely affected by the long exposure at 325° r and its mechanical properties after 3000 hours exposure were unsatisfactory. See Figures 5 and 7.

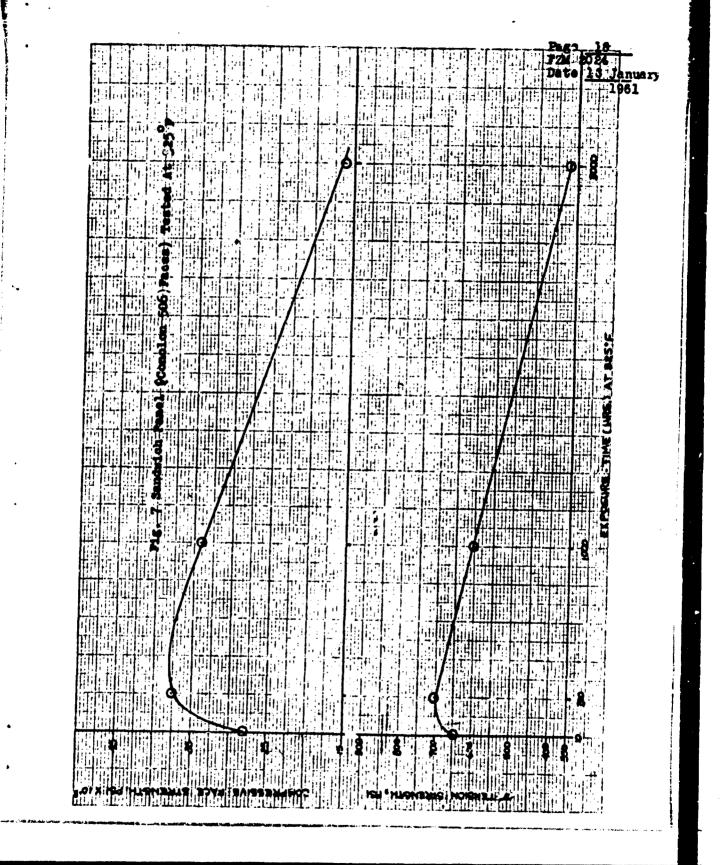

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	.			····					. •				- 1						- 1.
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>			* .		•							•						51)	
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>																			
And the set of the se	i i į	•	ſ	Δ	N	V	A	1	P						PAGE.	TNOF		· · · · ·	
 The electrical properties of the Epoxy and Modified Polyaster Issinates were estisfactory for all prediction purposes after 3000 hours espoare at 325%. The dielectric constant and loss tengent properties of the Modified Polyaster Issinates were within the requester of the Modified Polyaster Issinates were within the requester of the Modified Polyaster Issinates were within the requester of the Modified Polyaster Issinates were within the requester of the Modified Polyaster Issinates were within the requester of the Modified Polyaster Issinates were within the requester of the Modified Polyaster Issinates issinates in the second polyaster issinates increased the creep rate decreased. The second requester the increased the creep rate decreased. The second report the spointers for the Modified Polyaster (Lamines 4532) and Epoxy (Epon 628) are the best resin system currently being used at Conveir for print Polyaster (Lamines 4532) and Epoxy (Epon 628) are polyaster is a 135% for 3000 hours. Actori HNDATIONS Actori HNDATIONS Actori He second Polyaster (Lamines 4532) and Epoxy (Epon 628) are the best resin system currentily being used at Conveir for print of Polyaster resin prints in the following a law of the Modified Polyaster resin resing system with the second hours. Actori HNDATIONS Actori HNDATIONS Actori Hours he second hours at 325% the Collowing and the second polyaster resing system second hours. Actori Hours he second hours at 325% the Collowing and the second polyaster resing system and the second polyaster resing reside for the second polyaster resing system and the second polyaster resing system and the second polyaster resing system and the second poly polyaster resing system and the second poly the collowing at the second polyaster resing system and the second poly the collowing at the second polyaster resing system at the second poly polyaster resing system at the second poly polyaster resing syste	•		A DIVIS	90N 07	BW Gener		ipa NCS (i	l Owor	NTION						MODE	L			- 3
 Polyester laminates were satisfactory for all provided purposes after 3000 hours exposure at 325%. The dislettic constant and loss tongent properties at 6,5 kK0 of the epoxy laminate were within the requirements of 753-0031 B. The loss tangent properties of the idditied folyester laminate was within the the specification value but the dislectric constant value was just outside of specification requirements. See Table XUI. The Sboxy and Phenolic laminated faced sandwich specimes had overy similar free otheracteristics when exposed at 325%. The listical creep rate (laring spoare from 2 hours to 2000 hours) was approximately .00022 links per hour. As the actionary of the interest of the steps rate decreases of the steps rate decreases of the steps rate of a second the steps rate of the second steps o		-			(PORT	WOR	FM)								BATE.	13 18		1301	-
 This continues to decrease during the entire 3000 hour exposure the specimens never stopped creeping. See Tables X and XI. 7.0 RECOLLENDATIONS Lodified Polyester (Laminas 4232) and Epoxy (Epon 828) are the best resin systems currently being used at Conveir for e:plications at 325° for 3000 hours. Although these raterials will do a satisfactory job, they have the following disadvantages; Kodified Polyester resin presents a fabrication problem because of excessive flow during eure; the strength of Epoxy (Epon 828) drops off rather sharply above 325°. Therefore, in order to improve the reinforced plastic materials for long time duration at 322° F the following editional work is recommended. 1. New available epoxy raterials should be tested. These raterials have higher heat distortion points than Epon 828 tested in this program. 2. A rethod should be developed to impregnate a kodified Polyester resin to reduce the effect of exidetion. 3. A raterial and mathod should be developed to impregnate Fhenolic parts to reduce the effect of exidetion.	- 曹操 豊きを見られ 雪子を見たる イオ・ション・ショー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					Pol pur el of FL: Pol but if: The had 32: hou As	tyes the 5-00 lyes t the lest b the lest o F. irs the srag	ter es a ic o 31 ep 31 e 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 o	lamin ofter : constant oxy lan oxy lan lamin lamin nelect: require and Pi dimila- is ini- ison hor cosure recp ra	ates 3000 nt a: mina • lo ate ric reme heno r or tial urs) tim	were hours hours it wer bas tan was wi consta mts. lic la "ecp ch was a e incr betwee	satis expo s ten e wit gent thin nt va See T minat rate pprox esaed n 200	facto sure gent hin t prope the t lue w able ed fa- crist (dur inste the thour	ry fo st 3: prope he reprises he sp as ju XXII. cod s los w ing e ly .0 creeps a and	r all 25°F. ortics of t occifi st ou andwi chen e xposu 0022 0 rate 3000	prao The c at & menta he Mo catio taide ch ap xpose re fr inche decr hour	tical li- .5 KK(of dified n value of sp ecimen d at s per essed, s was	hour.	
 hodified Polyester (Lamines 4232) and Epoxy (Epon 828) are the best resin systems currently being used at Convair for a: plications at 325°F for 3000 hours. Although these raterials will do a satisfactory job, they have the following disadvantages; kodified Polyester resin presents a fabrication problem because of excessive flow during eure; the strength of Epoxy (Epon 828) drops off rather sharply above 325°F. Therefore, in order to improve the reinforced plastic raterials for long time duration at 325°F the following edditional work is recommended. New available epoxy raterials should be tested. These raterials have higher heat distortion points than Epon 828 tested in this program. A rathod should be developed to preimpregnet a loodified Polyester resin to reduce fabrication problems. A material and mathod should be developed to impregnate Fhenolic parts to reduce the effect of oxidation. 	: :				7.0	apj rat ezj X e	orox: cosu: osu: nd l	irst onti re t XI.	ely .(nues (he spo	00-20) to d ecim	l inch coreas	es pe e dur	r hou ing t	r. A he en	lthou tire	gh th 3000	e cree hour		
 the best resin systems currently being used at Convair for e:plications at 325°F for 3000 hours. Although these raterials will do a satisfactory job, they have the following disadvantages; Kodified Polyester resin presents a fabrication problem because of excessive flow during eure; the strength of Epoxy (Epon 828) drops off rather sharply above 325°F. Therefore, in order to improve the reinforced plastic raterials for long time durotion at 325°F the following additional work is recommended. 1. New swilable epoxy raterials should be tested. These raterials have higher heat distortion points than Epon 828 tested in this program. 2. A rethod should be developed to preimpregnete a Lodified Polyester resin to reduce fabrication problems. 3. A material and method should be developed to impregnate Fhenolic parts to reduce the effect of oxidation. 																			
 have the following disadvantages; Kodified Polyester resin presents a fabrication problem because of excessive flow during eure; the strength of Epoxy (Epon 828) drops off rather sharply above 325°F. Therefore, in order to improve the reinforced plastic materials for long time duration at 322°F the following edditional work is recommended. New available epoxy materials should be tested. These materials have higher heat distortion points than Epon 828 tested in this program. A method should be developed to preinpregnets a Lodified Polyester resin to reduce fabrication problems. A material and method should be developed to impregnate Fhenolic parts to reduce the effect of oxidation. 						the	bei	st r	esin :	syst	ens cu	rrent.	ly be:	ing u	oxy (. sed a	Epon t Con	828) d vair 1	lor	
 Enterials for long time duration at 325°F the following siditional work is recommended. 1. New swallable epoxy materials should be tested. These materials have higher heat distortion points than Epon 828 tested in this program. 2. A method should be developed to preimpregnets a Lodified Polyester resin to reduce fabrication problems. 3. A material and method should be developed to impregnets Fhenolic parts to reduce the effect of oxidation. 	•					han pre dur	e ti sent ing	te f Le e Gur	ollow: fabri e: the	ing d loat: s st:	disadvi ion pro rength	oblem of E	es; Ka becau	odifi use o	ed Po	lyest sasiv	er res e flow	ňn	
FACHOILG Parts to reduce the effect of oxidation.						_ E8 (2.	nal New The tha Lod pro	for lo work avail se rat n Epon ethod ified blens,	in in lable terin n 821 show Poly	time du recomm e epox als ha 8 test uld be yester	urati ended y rat ve hi, ed in deve resi	on at erial: gher 1 this loped n to 1	325 s sho heat prog to p reduc	F the uld b disto ram. reimp e fab	foll e tes rtion regne ricat	owing ted. point te e ion		
							3.	A n Fhe	aterii nolie	l an Dar	nd met) ts to :	hod al	hould the	be d	evelo	ped t	o impr	regnat	
0 EPT, 8 - 740-1017-8-44		•						•								UAIU		•	
0 EPT, 8 - 700-1017-8-44	•										•				• •				
	i i i		DEPT.	. 8 - 7 7	P= 1367-	3-66								•	•		•		




i


.


.



CONVAIR A DIVISION OF GENERAL DITULIANCE COMPOSATION (PORT WORTH)

DEPT. 4 - PVP-1367

....

-	19
REPORT	19 NO_F2M-2024
MODEL.	
BATE	13 January 196

TABLE I

BEARING PLATE WIDTHS lst SPAN lst* LOAD HEAD TRAVEL RATES 2nd MATERIAL TEST TEMP SPAN (Ins) (Ins) (Lbs) ENDS CENTER SPAN 8" SPAN . (Ins) (In/Min) (Ins) (In/Min) Conolon 506 R.T. 4.0 8.0 300 0.50 1.00 0.04 0.08 Epon 828 R.T. 8.0 4.0 300 0.75 1.50 0.04 0.08 Conclon 506 325°F 4.0 8.0 300 0.50 1.00 0.04 80.0 325°F Epon 828 8.0 4.0 150 1.00 1.50 0.04 0.08

LOAD-DEFLECTION (P/A) BEAM TEST PROCEDURE

* The Epon 828 sandwich was loaded to this value on the 8 in. span and then failed on the 4 in. span.

The Conclon 506 sandwich was loaded to this value on the 4 in. span and then failed on the 8 in. span. CONVERSE OF GENERAL DYNAMICS CORPORATION (FORT WORTH)

TABLE II

1

ź

N ...

325°F 24.2 28.8 3000 Hrs 232 43.3 36.9 30.1 1.65 166 * Z 325⁹F 25.5 1000 Hrs. 30.1 1.65 237 . G.R.P. PACED SAND'AICH - SUAURIZED TEST RESULTS EPON 828 325°P 18.9 29.5 33.6 1.89 200 Hrs. 282 325°F 16.4 1/2 Hr. 177 ; 1 . 3.0.8 34.2 1.81 336 ۰ Ł Z 325°F 16.3 20.5 3000 Hrs. 370 15.1 41.4 460 2 : PHENOLIC (CONOLON 506) 325°F 1000 Hrs. 34.0 27.2 602 325°F Not Tested Not Tested 37.7 22.8 703 100 Hrs. 325°F 28.1 16.8 1/2 Hr. 646 38.0 22.3 873 Ľ 뉦 Compression Face Strength K31 Exposure at Test Teap. Pi Tension Strength PSI Temp. Reain Content, Percent Specific Gravity Shear Modulus, ESI Column Test Ĩ2 -11

2.00

20 ONT NO_FZU-2024

.

۱. ۱

13 January 1961

Data questionable due to deflection curres.

3000 Hours at 325°F, then tested at R.T.

* :

<u>_</u> ...

•.

21 7462 REPORT NO_F 4.-2024 MODEL 13 January 1961 DATE.

Ke

- - IN V A I R A BIVISION OF GENERAL SYNAMICS COMPORATION (FORT WORTH)

•

1

.

•

Internet and the second of th											Ħ									
TERF NEMOLICA (CONDUCAT (CONDUCAT Sch) REALT (EVAN LAG) REALT (EVAN			:							Vent - 1								•		
Terrer rene. R.: LVT Reve R.: LVT Reve R.: LVT Reve R.: LVT Reve Reve <th< th=""><th></th><th>1911</th><th></th><th></th><th>001000</th><th></th><th></th><th></th><th>Ä</th><th>0431) XX</th><th></th><th></th><th></th><th></th><th>ICON</th><th>PIED R</th><th>TEELS</th><th></th><th></th><th>12(2)</th></th<>		1911			001000				Ä	0431) XX					ICON	PIED R	TEELS			12(2)
Trouting Britishing A.r. 1.57 U.2 Res 200 Barlook Les Event 1.57 Even 1.57			R. T.	_	4.52	2559	R.T.	255	R.T.	to SX	1250	200		40527	R.T.	4-522	325.0	د کرکا کرک		-
		Internal						81		12.1	200 200 200	0001	0000	2000			8.5	1250		
Matrixed Matrixed		l	1.1				4.2	13.2	2.4	26.2	1.1.1	1.8	9.2	2.12	5.12	17.1	2	47.0	2.4	L
Financial Integration Ji-1 Ji-2 M-1 Ji-10		. 6		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8.2	2.33	1.75		3.05	2.13	2.60	2.93	3.06	1.75	5.2	2.91	2.4	2.70	tore	77
Nomental Price Talono J.54 Z.56 J.17 J.12 L.98 Z.15 Z.16 J.11 J.12 L.99 J.16 J.51 J.16 J.51 J.50 J.50 J.51 J.51 <t< td=""><th></th><td>TIDELT STORATS ISI</td><td>425</td><td>2.42</td><td>2.4</td><td></td><td>X.0</td><td>1.8</td><td>3</td><td>28.9</td><td></td><td>9.9 ,</td><td>45.5</td><td>2.5</td><td>40.4</td><td>37.2</td><td>3.2</td><td></td><td>2.8</td><td>• ज्र</td></t<>		TIDELT STORATS ISI	425	2.42	2.4		X .0	1.8	3	28.9		9.9 ,	45.5	2.5	40.4	37.2	3.2		2.8	• ज्र
Community Z1A		P-01 X 10-0	L _	2.58		3.13	1.3	26-7	2.7	2.46	2.72	2.97	3-42	2.67	2.6	3.16	13-6	8	*	2.76
Contriguing 2.44 3.43 3.43 1.45 2.73 2.44 3.40 1.45 2.74 3.40 1.45 2.74 2.44 3.40 1.59 3.41 2.71 Notematic 2.44 3.45 3.45 3.45 3.45 3.45 3.46 3.40 1.53 3.45 3.46 3.40 1.59 3.45 3.45 Notematic 2.845 28.5 30.5 38.1 31.4 31.0 31.2 2.46 3.40 1.59 34.5 Notematic 2.845 30.5 38.1 31.5 31.6 31.6 31.6 31.6 34.5 34.5 Constraint S 284.5 31.5 31.6 1.16 34.4 34.5 34.5 Constraint S 284.5 1.53 1.53 1.46 1.16 34.5 34.5 Notematic 1.53 1.53 1.54 1.55 1.46 1.16 34.5 34.5 Notematic <td< td=""><th></th><td>COUNTY OF</td><td>L</td><td>2.)</td><td>1.4</td><td>8.5</td><td>7.370</td><td>8.02*</td><td>45.8</td><td>2.6</td><td>24.2</td><td>20.6</td><td>02.2</td><td>27.5</td><td>19.6</td><td>1.1</td><td>36.0</td><td>4.15</td><td>52.7</td><td>41.0</td></td<>		COUNTY OF	L	2.)	1 .4	8.5	7.370	8.02*	45.8	2.6	24.2	20.6	02.2	27.5	19.6	1.1	36.0	4.15	52.7	41.0
Amount S 28.5 28.5 28.5 28.4 28.5 28.1 28.5 28.5 28.5 Contraint S 28.5 1.53 1.53 1.53 1.53 1.54 28.5 AlWEITT 1.56 1.55 1.53 1.53 1.54 19.5 1.66 ALIGORIA International 77.8 1.65 1.64 19.3 1.66 ALIGORIA International 77.8 1.65 1.64 19.3 ALIGORIA International 77.8 1.65 1.64 19.3		COUPERSION ROUTINS		5	Ĩ	2.7	2.3	3.50	3.6	1.35	Stra	2.03	3.52	2.66	3.60	1.59	¥	2	<u>8</u> .5	8.
1.54 1.53 1.54 1.65 1.04 1.02 1.69 15.1 1.06 ibr Tunton • Mallace	-	Conter &		1	2.5	2.0	28.7	ł	3.5	1	11	23.0	¥.2	1	4-66	1	2.52	285	3.5	1
in rues • In Pulures		THE PAGE		1	57	4.1	6	1	1.86	1	1.65	F I	1.82	1	1.09	1	1.91	1.86	1.85	1
		BARCOL- EARDERS	/ • =	11 T. 11	e				8.17						82.3			-		
	-		,		Patien 1	,				•										
		: 1	٠					•								•	•	tanja./		
		ņ.																•	•	

PEPT, 6 - FWP-1967

şê.

man with a

.....

l ŀ .

•	C				A I Indunics compone DRTH)	R		· ·	M		(-2024 Mary 1961
			COLPRESSION TESTS	CORECENTS	Face Failure Face Failure Face Failure	Face Failure Face Failure Face Failure	Face Failure Face Failure Face Failure	Face Failure Face Failure Face Failure	Face Failure Face Failure Face Failure	Face Failure Face Failure Face Failure	
)	•		NUN700 -	ULTINATE FACE STRENGTH	(Pa1) 39,600 37,400 36,900 38,000	29,000 28,700 26,500 28,100	41,600 37,400 37,000 37,000	34,000 33,900 34,000 34,000	15,400 17,200 12,700 15,100	002,11 17, 11 012,11 012,11	
		VI S	SAND'ATCH	ULT	(Lbs) 2450 2310 2280	1795 1775 1740	2595 2400 2220	2140 2135 3140	920 1050 760	1235 1030 675	·
	:	TABLE	SO6) FACED	FACE TH ICK	(Ins) 030 030 030	.030 .030 .030	030	030 030 030	.030 .030 .030	.030 .030 .030	
	••		NOTON	HIQIK.	(Ins) 1.03 1.03 1.03	1.03	1.04 1.07 1.09	1.05 1.05 1.05	1.00	1.00	
		•	PHENOLIC (CC	EXPOSURE	rr Rr	1/2 Hr @ 325°F 1/2 Hr @ 325°F 1/2 Hr @ 325°F	200 Hr 3 325°F 200 Hr 3 325°F 200 Hr & 325°F 200 Hr & 325°F	1000 Hr & 325 ⁰ F 1000 Hr & 325 ⁰ F 1000 Hr & 325 ⁰ F	3000 Hr & 325°F 5000 Hr & 325°F 3000 Hr & 325°F	3000 Hr @ 325 ⁰ F 3000 Hr @ 325 ⁰ F 3000 Hr @ 325 ⁰ F	
				TEST TESP	222	325°F 325°F 325°F	325°F 325°F 325°F	325°F 325°F 325°F	222	444 000 000 000 000 000 00 00 00 00 00 0	
	• • •• •			SPECIMEN	440.0 L	6 4 8 Are .	8 8 8 9 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ave 10		16 17 18 Åve.	

N V A I R GENERAL DYNAMICS COMPORATION (PORT WORTH) 0

23 PAGE FZH-2024 REPORT NO. January 1961 DATE

	P1)	DRT WO	кти) 				DA	
		COMENTS	Face Failure Face Failure Bond Failure	Face Failure Face Failure Face Failure	Face Failure Face Failure Face Failure	Face Failure Face Failure Face Failure	Bond Failure Bond Failure Bond Failure	Bond Failure Bond Failure Bond Failure
	SSION TEST	ULTIMATE FACE STRESS (Psi)	34,400 43,000 14,900 30,800	20,600 12,200 16,500 16,400	19,100 19,500 18,300 18,900	23,400 28,400 24,700 25,500	45,600 49,400 35,400 43,370	18,800 34,100 29,800 24,200
	COLUMN COMPRESSION	ULT. LOAD (Lbs)	3400 4250 1470	2040 1205 1630	1920 1970 1825	2410 2835 2490	4420 4800 3400	1820 33 10 2860
Λ 3	1707 -	FACE THICK (Ins)	.048 .048 .048	. 348 . 048 . 048	.048 .048 .048	.048 .048 .048	.048 .048 .048	045 643 648
TABLE	SANDUICH	NIDTH	1.03 1.03 1.03	1.03 1.03 1.03	1.05 1.05 1.04	1.07 1.04 1.05	1.01 1.02 1.00	1.01 1.01 1.00
	EPON 828 FACED SI	EXPOSURE	RT RT	1/2 Hr @ 325 ⁰ F 1/2 Hr @ 325 ⁰ F 1/2 Hr & 325 ⁰ F	200 Hrs & 325 ^o F 200 Hrs & 325 ^o F 200 Hrs & 325 ^o F	1000 Hrs & 325°F 1000 Hrs & 325°F 1000 Hrs & 325°F	3000 Hrs & 325°F 3000 Hrs & 325°F 3000 Hrs & 325°F	3000 Hrs @ 325°F 3000 Hrs @ 325°F 3000 Hrs @ 325°F
• 	x 1 -	TEST TEMP	***	325°F 325°F 325°F	325°F 325°F 325°P	325°F 325°F 325°F	777 7	3250P 3250P 3250P
	-	SPECIMEN	40.0F	Å 6 4 2 Å 7 6	7 8 12 Åve.	9 10 11/ Åve.	13 14 15 Ave.	16 17 18 Åve.

PHP-1367-3-86 DEPT

 $\{ a \}$

w B.

A D7						•	•	BEPORT NO. MODUL BATE	FUN-2024 January 19
		~	چېچې د کې چې د کې	مەرد، م ەررىم	ond and Failure	2 - 53 			an a
NOTENTI TA -	CONTRANTS		Bond Fallure Bond Fallure Bond Fallure	Bond Failure Bond Failure Bond Failure	Bond Failure to Bond Failure Combination Bond Laminate	Bond Fallure Bond Fallure Bond Fallure	Bord Fallure Bond Fallure Bond Fallure	Bond Failure Bond Failure Bond Failure	
FALED CANDALCH	ULT STRENGTH	(Pai)	847 891 882 873	619 737 737 646	677 678 759 759 703	542 542 501 602	460	357 357 413 370	
8	ULT.	{ऽव्रा)	2660 2800 2770	1925 5 1825 5 2315 5	2130 22 2110 22 2390 2	18305) 22655 1575	1315 1440 1595	1065 1120 1295	
	AREA	(2 ^{su} I)	3.14 3.14 3.14	3.14 3.14	3.14 3.14 3.14	3.14 3.14 3.14 3.14	3.14 3.14 3.14	3.14 3.14 3.14 3.14	
	EXPOSURE		R.T. R.T. R.T.	1/2 Hr @ 325 ⁰ F 1/2 Hr @ 325 ⁰ F 1/2 Hr @ 325 ⁰ F	200 Hrs @ 325 ⁰ F 200 Hrs @ 325 ⁰ F 200 Hrs @ 325 ³ F	1000 Hrs & 325 [°] F 1000 Hrs & 325 [°] F 1000 Hrs & 325 [°] F	3000 Hrs & 325 ^o F 3000 Hrs & 325 ^o F 3000 Hrs & 325 ^o F	3000 Hrs & 325 [°] P 3000 Hrs @ 325 [°] P 3000 Hrs @ 325 [°] F	
	TEST	•		325°F 325°F 325°F	325 ⁰ F 3250F 3250F	325°F 325°F 325°F		325 F 3250F 3250F 3250F	
•	SPECIMEN NO.		Are.				114	16 17 18 Ave	אש גיג

.

C O A 84738004 01	GENERAL DYNAM		-			MO	NT NO Falli-
TEST	cord ients	Parent Resin Bond Failure Parent Resin Bond Failure Premature Failure	Parent Resin Bond Failure Parent Mesin Bond Failure Parent Resin Bond Failure	Parent Resin Bond Failure Parent Resin Bond Failure Parent Resin Bond Failure	Parent Resin Bond Failure Parent Resin Bond Failure Parent Resin Bond Failure	Parent Resin Bond Failure Parent Resin Bond Failure	Parent Resin Bond Failure Parent Resin Bond Failure Parent Resin Bond Failure
PI TENSION	ULT. STRENGTH (Psi)	342 331 336	178 145 208 177	350 240 257 282	297 204 211 237	417 366 391	270 314 261 282
н •	ULT. LOAD (Lbs)	1075 1040	560 455 655	1100 755 810	935 640 665	1310 1145	, 845 985 820
TABLE VI FACED SAID:/ICH	AREA (Ins ²)	3.14 3.14 3.14	3.14 3.14	3.14 3.14 3.14 3.14	3.14 3.14 3.14	3.14 3.14	3.14 3.14 3.14
EPON 828 FAC	EXPOSURE	មួតមុំ សូលីឆ្នាំ	1/2 Hr & 325°F 1/2 Hr & 325°F 1/2 Hr & 325°F	200 Hr & 325°F 200 Hr & 325°F 200 Hr & 325°F	1000 Hrs © 325°F 1000 Hrs © 325°F 1000 Hrs © 325°F	3000 Hrs & 325 ⁰ F 3000 Hrs @ 325 ⁰ F	3000 Hrs & 325 ^o F 3000 Hrs & 325 ^o F 3000 Hrs & 325 ^o F
	TEST TUR		325 °P 325 °P 325 °P	325 ^o F 325 ^o F 325 ^o F	3250P 3250P 3250P	E E	325°F 325°F 525°F
	SPECTIVEN	Asser.	4040 4040	A.0	10 11 12 Ave.	13 14 Åve.	15 16 17 Åve.

DEPT. 6 - PWP-1307-9-86

CONVAIR A BYVINON OF GENERAL PYNAMICS CORPORTION (PORT WORTH)

1

:

1

26 PAGE 26 REPORT NO. 12-2024 MODEL BATE 13 January 1961

1

			•••	•			TILA STATA	Ħ				
					Ele Ø		204) PACED SAUNTE - 7/5	SAUNTCH				•
	EB'			M		ig i			(127/1411) ¹ (2)/2)	(12/21) (17/21)	CORE SERVE MODULIE	TITE PAUME
HANAS	में जे में 		કંકક	388	888	223	e 192	1	2,470	2001	(121) 22,095 22,025 22,025	Paring Pallura Paring Autor
nineğ	<u>kkk</u>	1/2 10 - 1/2/2	333	555 	889	298	exes	11.1 4	2,000 1,940 2,110	10,750 9,520 9,340	R 22.52	Pasting Pathure Pasting Pathure Pasting Pathure
	222	200 hr e 325°r	5,5,5	1.4.4 8.88 8.88	200	X88		4.4.4.X 12.2.2.2	2,200	2002	22.22 22.22 2.22 2.22 2.22 2.22 2.22 2	Paoing Pailare Paoing Pailare Paoing Pailare
anni	333	4,521 = 141 007	3.5.5. 5.5.5.	알羊리 나누네	228	353	भ्रह्म	1000	888	200 200 200 200 200 200 200 200 200 200	88888	Pacing Pailure Pacing Pailure Pacing Pailure
алаў	uue	4.97 • m 1 800		588	200	202 202	52 55	14.55 N	800	888 888 888	1414 0000 0000 0000 0000 0000	Pacing Pailure Pacing Pailure Pacing Pailure
477 <u>2</u>				858	999 388	X and the second			2,000	200	88888 8888 8888 8888 8888 8888 8888 8888	Paoling Pailure Paoling Pailure Paoling Pailure

A - PVP-1007

is **Bond feilure** Bond Pallur-Pallar PATLUR ß 12 E test. L'en t in state reat 8889 404 475 22.22 1220 1352 H 183 388 111 11 899 200 N-10 N-10 188 222 **№**-PAGE ANDREE **** 3232 えいれる in interpreting the slope of the load · salaulation questionable 83**.** ริสิติด 2328 ars: 2282 igi metr (mos (a)) 838 828 <u>3</u>r 888 82E <u> 233</u> 333 333 33 100 333 333 100 222 -----822 1.... **36** 7-**8**5 100 858 <u>-</u> 22 223 333 223 100. Ite e J.C. 1. 000 7000 mm e 325"7 DUTTALITY 1000 i ----ន្ទដ <u> អភ្</u>វ 2321

P'AL-2024

January 1961

Ð

Å

WCL CO

V

(PORT WORTH)

R

- FVP-1147-1

	17 W	DRTN)		RFOR														-			13 J	anuary	1
			ł	3	101	512	LI.	127	1390	129	8	161-			7		ļ	6					
			F		8	82	170	न	100	3	2074 2	1011					1200	3	0	3			
			-		-095			87.	182	Ŗ		1001			1		9 8	•					
			F		8	200	167	611	100 1522	Ŗ	N.	1					23 24						
			-	R	ŝ	416		611.		Ŗ	ž.	17 17 .17			1		1						
			8		8	83	Ā	110	1120 1201	3	202	E.			1		r F	1	19				
		2	2			20	5	Į	中	8	10,50	5			1		1.		5				
				भा	5	N.		٩ž				7			1		Į.		8				
	•	124	2	191	5	8	101.		į٤	ŝ		1			1		ir change in definetion of 13 and 22 from 2 bours to 200 hours o .017 or .0176-106 a .00021 in.	1	11700 Pool 9				
	- OCCURE CERTS		~			21				٩l	빏	<u>.</u>			1		ĥ						
			-	8		152		2411	Sar far-	ļ	3 S	.134					4 N	-	8				
•	5		•	E.		8			<u>p</u>	!		ŗ											
	1 (96)	H ange		3		섥			E.		is.	7		ļ		÷.	5		9Co-		5		
	T THE (CONCENT SOL) 1			2.1				Г	F	-	Т	F.		2				•	*	•			
		1.	4	1 1	1	1		Ľ		1	Ľ			•	3000 Ers.	• •	2 hours and 200	5 1	Ē	-			
						a Y	1		211	222	997.	2		2	8				200 Even	an between 200 bears			
	Ľ.	-	+	33		+			-	+	_	-+-			ż			1. A N 2.	7				
		23		• •	1			970	277	Ň	14		961- 767-		200 litre.	33				100	ollo.		
		13		88	5	13	.110	8	55	2	5		81- 1		;			ļ		ÍI	199		
			T		Γ	Т		Τ				Т			4	a e	The Con	in definett		ter L	I		
				, E	Į	3	T	ş	F F	181	- IN-		ý.			11	45	1		4	l		
			Ť,	R 2		1			ಕರ				40			Deflection Deflection		Ì		}			
		8	Ŧ	2.8	161	37.	507-	4	55	â	4	272	19			 - 2	42. 66	ੇ ਹ	•	5 2			
			1	??				H		-Ling		į		t						-	-		
••••			,	: 2		2		7	:2		52		4 2				• • •						

1 1

ļ

4

·____

	W GRAL DI	MAN	A 13													AEPORT MODEL		71-2		
(POI		DRTI														BATE	<u>13</u> J	anus	ry 1	961
					•	5		R	7	000	2									
			1 1	-+		\$1 1	112 Q			-	-									
				퀴			696 720	 1.2	20 192 1 195	22102	0(· 10									
				3		-263 -269	672 69	[[S 20	00[· 10[· 10[·									
			1 1		256 . 253. 242. 622.		64.8 6	5.162.	11 00 11	11 27 10	. 306 . 3									
					228	-22	576 6	2. [12.	1394 14	2594 2006 2690 2714	• 306 • 3					ł				
			{ }		2		5:2		370 1		. 305		•							
			1. 1	-	22		81	31.	1	501 2	304					ter bour				
			2.50 a 100a.5	ᅱ	2		100	201	124 124 1320 1370	0012	. 3 <u>0</u>					(4,5 ½ 196 = .00022 indues per hour = .027 ϟ 2500 = .000096 indues per				
				~	និត			300	त्र	2151 2 278 2 26 21 98	õ					.00022 Instea				
		13 12	DEFLECTION 0	-	2,22	.233	8	£	1176	208	EOL . EOE.					- 000 - 000				
		- 000300			196	212.	336	268	2511	515	ĩœ.					196 · 7 + 21				
				ä	5 8	90.	212	992.	1080	<u>ج</u> اء	ġ.	· •				. 4 720 196	•			
۰.		(928)			2.62 23.62	29.61	240	204	1000	-	T			~	120*					
		Porr (Rhof		_	10022/6012									 210-		te 200 heure = :s te 3000 Hourr				
			15 Z	COR/TER	2112	2670	26		ž	C [10(1000 Ers	g.	bours.	00 hours					
			Notes and the second se	1	33	3	192	Apprex. Sours Bon .282	912	22		2		2 bours to 200 bours	te 3000	2 hours 200 Eau				
;			}	-		ومناوب			\vdash	23.62	+	200 Ere		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	200 hours					
			33		8 8	8	3	Palled For. 96 .201	88	<u></u>	8.	8		8	ŝ		•			
					33	5	3) 50 1 1 1 1	170	2.2	8		5.5	2	2	inella Inella			,	
			_	+			F	111	H	t	+			mge in Deflection fro	is befreetien fro	ef Change in Define of Change in Define				
			Hay	\downarrow	8.4	8	177		078		Ŝ.		at los	1240 4	Grad a					
			*		33	8							Deflection	;; •	-	¥ ¥				
		۰ ۰				•	i		E				P		. j .	11				
·· .			FR	_[- 1	2		4 2 2		1	F									
DEPT. 4 - PWP-134	17 -3-6 4															••••				

- 1

i

CONVAIR R

(FORT WORTH)

/

.

101 30 REPORT NO. FULL-2024

5

J

MOOR 13 January 1961

}

DAT WOI	RTK)				047L	13 January
COLI : ENTS	Not Test-					
(ISJ g-Ut) SITINDOGI			2.75 3.57 3.379 3.379	4.10	2.10 2.04 1.84 1.99	1.85 1.97 1.94 1.92
P/A.	308,000 177,000 230,000	187, JCO 148, 000 190, 000	169,000 218,000 231,000	267,000 171,000 170,000	139,000 137,000 122,000	122,000 129,000 129,000
ULT STRENGTH KSI	rov: 4		35.7 38.5 36.7 36.7	29.6 31.9 31.1	26.0 26.5 25.4 26.0	26.6 24.5 27.3 26.1
ULT. LOAD LBS.	2355 2590 2630	2265 2250 2245	2220 2340 2275	1930 2080 2050	1750 1775 1680	175C 1600 1815
HIDIN IN.	485 484 485 483	.483 .484 .485	• 493 • 495 • 495	.513 .506 .508	.510 .511 .509	.503 .502 .503
THICK IN.	.136 .141 .141 .140	140 141 141	.125 .123 .124	.127 .129 .130	.132 .131 .130	.131
EXPOSURE	HHHH 2022	1/2 Hr & 325 ⁰ F	200 Hr e 325 °F	1000Нг д 325⁹г	3 000Hr 4 3259	3000 Hr e 325 h
TEST TELP.	HHHH MMMMM	325°F 325°F 325°F	325 ⁰ F 325 ⁰ F 325 ⁰ F	325°P 325°P 325°P	EIEIEI a'aiaiai	325°F 325°F 325°F
SPECIMEN NUMBER	1 2 4 Are -	Ave. دور	9 11 ••••	A113	15 176 Ave.	18 20 74 .
	TELP. EXPOSURE THICK MULT. ULT. ULT P/A HOULUS CONTENTS TELP. EXPOSURE THICK MULH LOAD STRENGTH P/A HOULUS CONTENTS	TEST EXPOSUZE THICK MLT ULT ULT P/A INDULUS CONT TEUP. EXPOSUZE THICK MLD ULT ULT P/A INDULUS CONT R.T. R.T. R.T. 1M. IM. LBS. KSI P/A INDULUS CONT R.T. R.T. .136 .485 2355 35.7 308,000 4.67 1.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.50 2.51 2.51 2.51 2.51 2.55 2.51 2.50 2.60 2.60 2.60 2.60 2.60 2.50 2.55 2.51 2.51 2.55 2.51 2.55 <	TEST EXPOSUZE THICK MDTH ULT ULT P/A NDDULUS CORTENTS R.T. E.T. IN. INDULUS CORTENTS R.T. E.T. .136 .485 2355 35.7 308,000 4.67 INT7,000 2.60 177,000 2.60 177,000 2.60 Not Test. R.T. R.T. .141 .485 2590 38.5 230,000 4.67 Not Test. R.T. R.T. .141 .485 2590 38.5 230,000 2.60 Not Test. R.T. R.T. .140 .483 2.255 33.5 2.10 000 2.60 3250F 11/2 Hr .484 2250 33.0 1.48,000 2.178 .141 3250F 33.0 148,000 2.18 0.00 2.178	TEST TEST ULT ULT </td <td>TEST EXPOSURE THICK WIDTH ULT. ULT. ULT. ULT. ULT. COULUS COULUS</td> <td>TEST TEST THOR WILT ULT ULT ULT P/A IDDULUS CORTENTIS R.T. R.T. R.T. IN. IN.</td>	TEST EXPOSURE THICK WIDTH ULT. ULT. ULT. ULT. ULT. COULUS COULUS	TEST TEST THOR WILT ULT ULT ULT P/A IDDULUS CORTENTIS R.T. R.T. R.T. IN. IN.

14-2

DEPT. 6 - PVP-1367-3-66

1

TABLE XII

	N V GEHERAL D (PORT W	YNAMICS CORPORAT	R			PAG REPC MOC DATI	NT NO FZM-	
	(154 g-01) Southoom	2.72 2.71 2.75 2.75	1.98 2.62 2.46	2.73 2.92 2.72	2.66 3.27 2.98 2.97	3.48 3.41 3.42 3.42	2.76 2.64 2.67 2.67	
ILE TEST	P/A.	112,275 116,279 112,782 115,562	165,000 220,000 232, 000	221,000 239,000 202,000	217,000 267,000 244,300	286,000 277,000 276,000	223,000 214,000 214,000	
XIII 1 828 - TENSILE	ULT. STRENGTH KSI	42.1 42.9 45.0 44.3	29.4 27.5 29.8 28.9	36.1 34.3 34.0 34.8	36.8 39.6 37.7 38.0	43.7 45.7 47.1 45.5	34.9 30.6 32.5	
- EPON	ULT. LOAD LBS.	3480 3595 3735 3945	2460 2310 2495	2925 2805 2755	3005 3230 3020	3580 3715 3875	2825 2480 2610	
NATE	WIDTH IN.	.504 .517 .506 .509	.510 .516 .517	• 498 • 495 • 495	.501 .501 .503	.506 .511 .538	• 509 • 507 • 508	
DALI ULAD	THICK. IN.	.164 .162 .164 .164	.164 .163 .162	.163 .164 .164	.163 .163 .163	.162 .159 .162	.159 .160 .161	
	EXPOSURE		1/2 Hr & 325 ⁰ F	200 Hr s & 3 25 ⁹ F	1000 Hrs & 325 F	3000Hrs @ 325 ⁰ F	3000Hrs & 325 ⁰ F	
	TEST TEAP		32 5°F	325°F 325°F 325°F 325°F	325°P 325°F 325°F	M M M M	325°F 325°F 325°F	
r .	SPECINEN NUMBER	-1994	805 F		11 12 12 12 12 12	15 17 Åve.	18 20 Ave.	

N V A I R of general distances composation (port worth) 0 Ľ ICH

,

32 REPORT NO. 2024 -1

1.00

MODEL DATE_ January 1961 13

μ.			1	1	r	<u> </u>	r T
	(19-01)	2.65 2.61 2.61 2.65 66 2.73	2.89 3.21 3.40 3.16	4.03 3.03 3.51 3.51	2.84 3.01 3.14 3.00	3.12 3.47 3.34 3.34	2.73 2.75 2.80 2.76
TEST	•₽/Å.	123, 355 123, 762 123, 153 128, 645	270,000 299,000 317,000	373,000 322,000 279,000	266,000 284,000 298,000	276,000 313,000 301,000	254.000 252,000 257,000
- TEISILE	U.T. S. 721/CTH	28.6 39.05 39.05 50.05 50 50 50 50 50 50 50 50 50 50 50 50 5	36.7 38.3 36.6 37.2	35.6 37.5 38.4 37.2	34.0 32.0 34.0 33.3	38.2 38.2 36.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	34.0 34.5 33.4 34.0
LANTNAC 4232	ULT.	3565 3955 4025 3675	3430 3585 3400	3310 3480 3530	3190 3030 3220	2995 3450 3445	3170 3160 3060
- LAUTNA	HIDTH III.	505 506 509 512	- 505 - 504 - 508	.497 .499 .500	.507 .506 .507	.497 .498 .504	. 506 . 504 . 498
HINNTE -	THICK II.	.183 .185 .186 .184	.185 .186 .183	.187 .186 .184	.185 .187 .187	.178 .181 .179	.184 .182 .184
SOLID LAUINTE	EXPOSURE	ж.т. 8.т. 7.	1/2 Hr & 325 ⁰ F 1/2 Hr & 325 ⁰ F 1/2 Hr & 325 ⁰ F	2 00 Hrs & 325 [°] F 2 00 Hrs & 325 [°] F 2 00 Hrs & 325 [°] F	1000 Hrs (1000 Hrs @ 1000 Hrs @	30 00 Hrs & 325 ⁰ F 3 000 Hrs & 325 ⁰ F 30 00 Hrs & 325 ⁰ F	3000 Hrs & 325^oF 3000 Hrs & 325^oF 3000 Hrs & 325^oF
	TEP.	HHHH MAIAIAI	325°F 325°F 325°F	325°F 325°F 325°F 325°F	325°F 325°F 325°F 325°F	EI EI EI MAN	325°F 325°F 325°F
	SPECIAEN		200 P	9 11 Ave.	1111 .	15 17 Åve.	18 20 Are.

.

PWP - 1147

24

TABLE XIV

ţ

CENERAL OTHANICS CORPORTION (PORT WORTH) C 0

33 PAGE REPORT NO_______ 13 January 1961 DATE

			-				
	CONTENTS	Not tested		No curve		End Failure End Failure End Pailure	Enc Failure End Failure End Failure
ICN TEST	(154 9-01) WODULUS	2.71 2.50 2.86 2.65	2.88 3.96 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.0	3.27 3.62 3.45	2.67 2.56 3.14 2.79	2.44 2.05 2.27 2.25	2.62 2.58 2.58
COLPRESSION	P/A	192,000 180,000 202,000	205,000 202,000 240,000	202,000 225,000	172,000 169,000 169,000	156,000 133,000 147,000	164,000 167,000
LON 506) -	ULT. STRENGTH KSI	26.9 28.8 28.4	23.5 21.2 22.3 22.3	30.0 30.3 31.5 31.5	25.5 22.1 28.9 25.5	7.84 6.62 7.64 7.37	6.18 9.25 6.64 8.02
(CONOTON	THOM SHI	30010	1665 1500 1590	1850 1880 2005	1640 1455 1555	500 430 495	525 580 4 30
PHENOLIC	NI HIJIM	511 511	.504 .503 .506	•486 •489 •489	4 99 4 99 4 97	499 504 502	. 505 . 505 . 4 98
•	THICK	.140 .142 .142	.141 .141 .141	.127 .127 .123	.129 .152 .129	.128 .129 .129	.127 .128 .130
SOLID LAHINATE	EXPOSURE	R.Т. R.Т. F. Т.	1/2 Hr @ 325 [°] F 1/2 Hr & 325 [°] F 1/2 Hr & 325 [°] F	200 Hrs & 325 ⁶ F 200 Hrs & 325 ⁶ F 200 Hrs & 325 ⁶ F	1000 Hrs & 325 ⁰ F 1000 Hrs & 325 ⁰ F 1000 Hrs & 325 ⁰ F	3000 Hrs 4 325 ⁰ 3000 Hrs 4 325 ⁰ 3000 Hrs 2325 ⁰ F	3000 Hrs @ 325⁰F 3000 Hrs @325⁰F 3000 Hrs @325⁰F
	TEAP	ANAA HEHE	325°F 325°F 325°F	325 ⁰ F 325 ⁰ F 325 ⁰ F	325°F 325°F 325°F	E E E E	325 °F 325 °F 325 °F
	SPECIMEN	-1994×	A 16.5	9 10 Ave	12 14 47.	15 166 17	18 19 Åve,

...

- 949-11**0**

ł

TABLE XV

ľ -

• •	9 0	ENERAL DITH	ANICS CORPOR	R			Pag Rep MO Bat	ORT NO.	4-2024 Mary 1961
		CONFIENTS	· · · · · · · · · · · · · · · · · · ·				End Pail- ure		
		(10-6PSI)	3.67 3.54 3.62	1.32	4444	3.07 2.77 2.65 2.83	640 538 538	2.53 2.73 2.66	
	24	₩I/#	298,000 294,000 301,000	118,000 107,000 109,000	114,000 115,000 1.8,000	227,000 227,000 219,000	289,000 301,000 284,000	210,000 227,000 225,000	
	COMPRESSION TEST	ULT. STRENGTH KSI	45.6 43.7 48.2 45.8			30.7 30.7 28.0 28.6	66.0 57 .3 63.4 52.2	26.6 29.5 26.5 27.5	
		ULT LOAD LBS.	3695 3620 3990	1810 1725 1790	2070 2060 2160	2530 2295 2230	5440 4725 5260	2210 2445 2205	
TABL	- 828 -	WIDTH HIGH.	.507 .510 .508	.509 .508 .507	.486 .493 .498	.500 .497 .500	.503 .503 .505	.506 .506 .507	
	5 	THICK IN.	.160 .163 .163	.161 .162 .162	.163 .164 .164	.165 .165 .165	.164	.164 .164 .164	
SOLTD I LUTUAN		EXPOSITE	5.1. 2.1. 2.1.	1/2 Hr @ 325 ⁰ F	200 Hrs & 325 ⁰ F	Hrs e 325°	3000 Hree 325 F	3000 Hrs & 325°F	·
		TEAP	R.T. R.T.	325°F 325°F 325°F	325°F 325°F 325°F 325°F	325 °P 325 °P 325 °P	88 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	325°F 325°F 325°F	
		SPECINEN NUNGER	1 3 Åve.	5 6 Åve.	9 10 Ave.	12 14 14	15 16 Å ve.	18 19 Ave .	

1987-9-66

٠

λ,

2

Ę

i

ł ļ

Į

•

1

.....

R V Å 0 N C A DIVISION OF GENERAL DYNAMICS COMORATION (FORT WORTH)

35 PAGE. Full-2024 REPORT NO.

DATE 13 January 1961

. .

لغارجهم وح

	(FORT WO			•			
	(ISd 9-01) SMTMODM	3.70 3.46 3.63 3.60	1.55 1.55 1.67 1.59	3.20 3.46 3.48 3.48 3.48	2.80 2.51 3.03 2.78	3.24 3.30 3.29 3.29	3.02 3.04 3.00 3.00
	PIA.	342,000 313,000 325,000	136,030 139,000 150,000	295,000 301,000 309,000	260,000 236,000 278,000	298,000 375,000 301,000	278,000 269,000 258,000
	- COMPRESSION ULT. STRENGTH	49.6 52.4 47.5 49.8	40.4 33.3 38.4 37.4	32.0 38.8 37.1 36.0	30.6 34.0 33.5 33.4	55.8 51.0 51.3 52.7	42.0 44.4 36.7 41.0
	ULT. ULT. LBS.	4580 4745 4260	3545 2995 3440	2955 3495 3290	2840 3195 3265	5135 4715 4620	3870 3935 3205
TABLE AVII	WIDTH IN.	494 497 495	498 496 498	. 493 . 492 . 488	• 501 • 498 • 496	• 503 • 502 • 502	• 505 • 494 • 493
	THECK IN.	.187 .182 .181	.182 .181 .180	.187 .183 .182	.185 .189 .185	.183 .184 .179	.182 .179 .178
	BOLLD	R.T. R.T. R.T.	1/2 Hr @ 325 ⁰ F 1/2 Hr @ 325 ⁰ F 1/2 Hr & 325 ⁰ F	200 Hrs & 325 ⁰ F 200 Hrs & 325 ⁰ F 200 Hrs & 325 ⁰ F	1000 Hrs & 325 [°] F 1000 Hrs & 325 [°] F 1000 Hrs & 325 [°] F	3000 Hrs © 325°F 3000 Hrs & 325°F 3000 Hrs @ 325°F	3000 Hrs & 325°F 3000 Hrs & 325°F 3000 Hrs & 325°F
	TEST TEAP.	5 X M	325°F 325°F 325°F	325°F 325°F 325°F	225°F 325°F 325°F	R. T. R. T. R. T.	3250F 3250F 3250F
	SPECTMEN NUMBER		Ave.	9 10 11 Åve.	12 13 14 Ave.	15 16 17	18 19 20 Ave.

.

.

DEFT. 6 - PWP-1247-3-86

N V A I R

.

TABLE XVIII

-2024 REPORT NO. MODEL January 1961

7461

a second concerna-

36

	(FORT WO	ORTH)				DATE	13 Janu	
FLEXURAL TEST	ie4 9-01 Sultugon	2.23 2.14 2.19	2.09 2.02 1.99 2.03	2.54 2.72 2.50 2.59	2.39 2.35 2.35 2.33	No 1.68 1.83 1.75	1.61 1.61 1.67 1.63	
I	P/∆.	3007 3053 2985	2759 2857 2759	2198 2339 2312	1940 1905 1980	 1330 1460	1290 1230 1310	
PHENOLIC (CCNOLON 506)	ULT STRENGTH KSI	32. 5 33. 2 32. 9 32. 9	30.9 27.9 28.0 28.9	44 l 41.4 44.8 43.4	37.7 36.9 35.9 36.8	16.8 15.3 16.5 16.4	12.6 12.4 14.7 13.2	
OFIC (C	ULT LOAD LBG.	209 217 216	196 185 183	206 192 209	15 6 160 158	70 66 69	52 51.5 61	
E - PHE	NIDTH.	.985 .987 .939	.986 .985 .98 4	906 902 905	.749 .749 .744	•751, •758 •758	.732 .731 .731	
SOLID LAUGNATE -	THICK IN.	.140 .141 .141	.139 .142 .141	.124 .124 .127	.129 .132 .133	.129 .129 .129	.130 .130 .129	
OLLIOS .	EXPOSURE	к.т. к.т. к.т.	1/2 Hr & 325 ⁰ F	200 Hrs.@ 325 [°] F	1000 Hrs & 325 ^o F	3000 Hrs & 325°F	3000 Hrs @ 325°F	
	TEST TEIP.		3250F 3250F 3250F	325 oF 325 oF 325 oF	325°F 325°F 325°F	R.T. R.T. R.T.	325 °F 325 °F 325 °F	
	SPLCINEN NUMBER	1 3 Åve.	5 6 Ave.	8 9 Åve.	11 12 13 Åye	14 15 16 Ave.	17 18 19 Åve.	

1

1

•

O R

RAL DYNAMICS CORPORATION (FORT WORTH)

37 1468 F41-2024 AFPORT NO. MODEL lanuar 96 BATE

1

-	~ ~ ~ ~ ~ ~ ~							
		SITINUON	3.12 3.12 3.11 2.91 2.91		• • • • •	0000	2.79 3.22 3.22 3.78	1.57 2.17 1.50 1.75
	FLEXURAL TEST	₽/Å	5780 5882 5952 5494	4040 4000 3960	5556 5479 5195	5000 5000 4760	3440 5000 5000	2560 3450 2500
- EPON 828 -	•	ULT ULT STRENGTH	69.7 68.9 64.58 64.58 64.58	36.9 41.6 35.8 38.1	**	55.1 55.1 56.1 58.1	76.1 66.6 65.0 69.2	29.5 25.3 27.2 27.2
	ZPON 82	LI ON OL	539 533 484 499	285 322 272	394 373 353	375 438 378	488 433 421	198 171 182
		HIGIN	.873 .872 .872 .872 .872	.872 .872 .872	998 997 997	-748 -752 -752	.757 .757 .758	-758 -758 -758
	SOLID LANINATE	THICK IN.	.163 .163 .164 .164	.163 .163 .162	.163 .159 .161	.165 .166 .164	.159 .160 .160	.163 .161 .164
•	IIIOS	EXPOSURE	ж. н. н. н. н.	1/2 Hr @ 325°F	203 Hrs @ 325 ⁰ F	1000 Hrs & 325°F	3000 lirs e 325°F	3000 Hrs & 325 ⁰ F
		TEST TEMP.	A A A A A A A A A A A A A A A A A A A	325°F 325°F 325°F 325°F	325°F 325°F 325°F 325°F	325°F 325°F 325°F	H H H H	325°F 325°F 325°F
		SPECIMEN	A#2081	6 8 8.	9 10 11 Åve.	12 13 14	15 16 Å ye .	18 19 20 Åye.
	- Pyp	- 13873(H6					· · · · · · · · · · · · · · · · · · ·

TABLE XIX

Ł

		w of gener	V A I			
•	·	ISA 9-01 SULUCA	3.32 3.51 3.00 3.13 3.24	3.02 2.70 2.95 2.96 2.91	2.58 2.72 2.62 2.64	2.66 2.77 Temp Over- ran to 3350P

TABLE XX

1 ۱

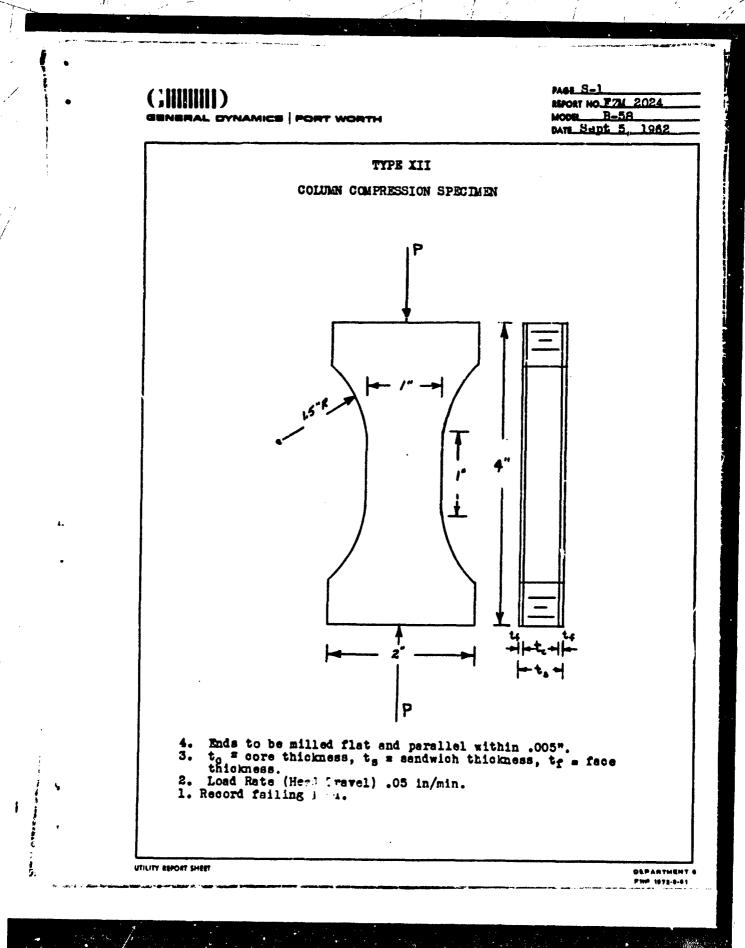
SOLID LANIMATE - LANIMAC 4232 - FLEXURAL TEST

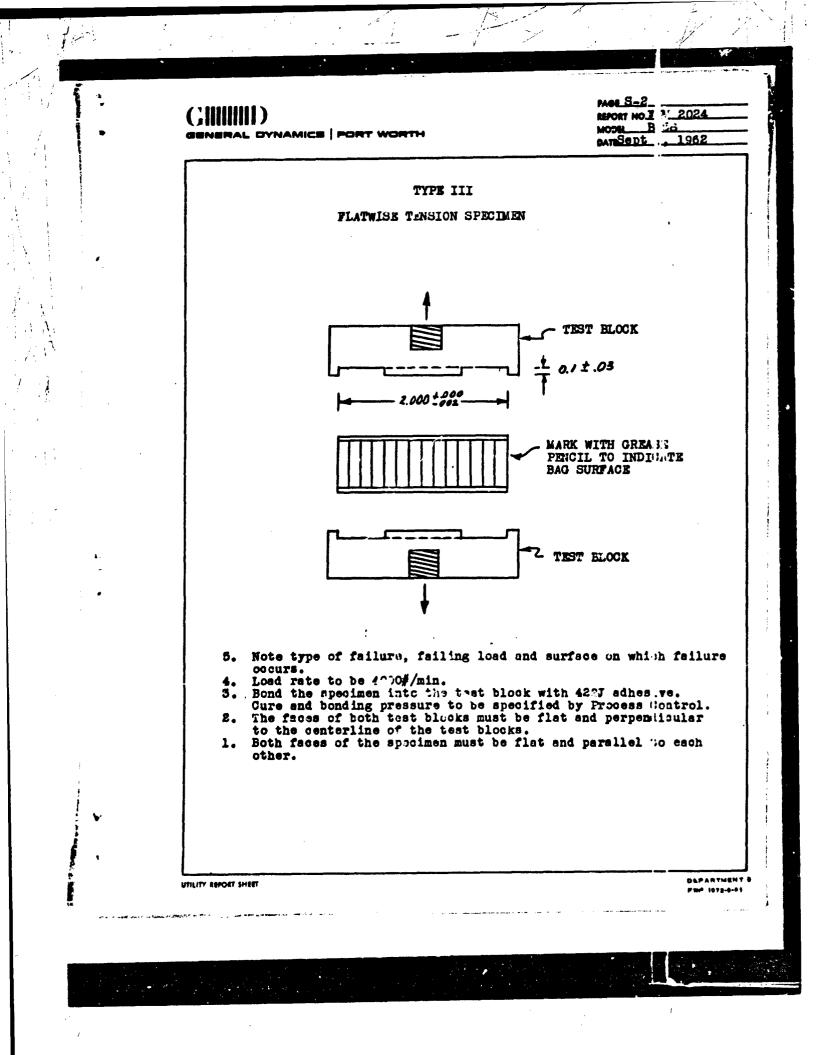
- FWP-1387-	3-56 ×				•	•
SPECTIEN NUMBER	1 2 3 4 Ave.	5 6 Ave.	9 10 Ave.	511 1 1	15 16 17 Åvå.	18 19 2 0
TEST TEIP.	R.T. R.T.	325°F 325°F 325°F 325°F	325 ⁰ F 3250F 3250F	325 ⁰ F 3250F 325 0 F	8.T. 8.T.	325°F 325°F 325°F 325°F
EXPCGURE	R.T. R.T. R.T.	1/2 Hr & 325°F 1/2 Hr & 325°F 1/2 Hr & 325°F 1/2 Hr @ 325°F	200 Hrs & 325 ^o F 200 Hrs & 325 ^o F 200 Hrs & 325 ^o F	1000 Hrs & 325°F 1000 Hrs & 325°F 1000 Hrs & 325°F	3000 Hrs & 325 F 3000 Hrs & 325 P 3000 Hrs & 325 P	3000 Hrs & 325°F 3000 Hrs & 325°F 3000 Hrs & 325°F
THICK	.179 .178 .184 .182	.183 .182 .170 .178	.184 .181 .185	.185 .182 .182	.180 .180 .180	.179 .178 .177
NI HLQIJ.	.871 .872 .875 .875	.873 .870 .870 .874 .874	.996 .990 .963	.747 .750 .748	-740 -740 -740	.739 .739 .739
THO IS	580 512 543 543	415 413 413 387	492 477 491	452 357 380	428 460 471	394 394 394
ULT STRENGTH KSI	62.4 56.6 54.0 57.9	42.6 42.6 44.7 43.1	43.8 44.1 44.7 44.2	53.2 53.2 44.5		50.5 51.1 50.3
₽/Δ #/IN.	3333 8621 8197 8197	8081 7080 7273 7273	8000 8000 7843	6230 5550 6667	6250 6670 6670	5700 5130 5130
isd 9-01 Snjudot	3.32 3.51 3.00 3.13	3.02 2.95 2.95 2.91 2.91	2.58 2.58 2.62 2.64	2.77 Te		2.35 2.46 2.45 2.42

REPORT NO MOSEL DATE 13

ĥ

January 1961 13


: *	A DI	VISION	07 CR (PC	AT V	VORTI	r				F					DAI DAI	L	າແມ	cy 1	1 39
				3000 HR	5.6	1.51	1.82	1.85		1.85									
						28.7	34.2	37.3		30.1									
·				8 1000 HR	3.6.	1.54	1.84	1.88		1.82									
,			S 20	E 3	R.C.	30.45	33.8	38.5		33.6									
		H	PHYSICAL TEST RESULTS AVERAGES	200 HR	R.C. S.G.	1.53	1.85	1.91		1.89									
• ,		TABLE XX	ST RESU	AFTE.	к. С.)	28.5	33.4	38.5		33.6	<i></i>			**					
			ICAL TE	CURE		1.58	1.86	1.89		1.81	•				,				
			SNHd	AFTER	R.C. (5.)	28.5	33.5	38.4		34.2									
				BARCOL HA.2DNESS		8	77.8	82.3				-							
				MATERIAL	Solid Leminate	(Conolon 506)	Zpon. 828	Laminac 4232	Epon 828 Sandwich	Stine	•		ч. •		·.			·	
	DEP	T. 6 -	Pup-1	107-3-		<u></u>		-			•	7 8 4							


. 77

		Olistant	N GUMER (FORT	LOSS REOUTRETEITS FIS-0031 A V A TANGENT DIELECTIC LOSS CONSTANT TANGENT (2001)		4.3 0.025		.02390*	.02292**	245 4.6 0.020	249	247 *	11		7461_ 16/0414	These values determined for	unbonded specimen	* These results	therefore not includ-	ed in average.
	TABLE XOLI	LES - DIELECTRIC CONSTANT	TANGENT AT 8.5 KK	DIELECTRIC LO	4.46 .02077	4.55 .02620	4.46 .02473	4.49 * 02	4.60 ** .02	4.51 .01245	4.49 .01249	4.50* .01247	1.54 .00744	1.47 .00683	1.37 .00916	1.46 .00781	1.51 00677	1.50 .00671	1.47 .00603	
•		ELECTRICAL PROPERTIES	AND LOSS T	3NDSOAX3	3000 Hrs at	2	*		3000 Hrs at	*	ŧ		R.T.	R. 7.	R.T.		3000 Hrs at	4 027	8	
•	· · ·	ELEC		TEST TELP.	R.T.				R.T.				R.T.	R.T.	R.T.		R.T.			
				SPEC.	-	~	•	Ave.		•	•	Ave.	-	•	•	Åve		~	J Ave.	•
•				SPECIAEN DESCRIPTION	Solid Laminate Laminac +232				Solid Laminate Epon 828				Sandwich Fron 220	Faces			Sandwich Epon 828	Faces		

1:

-)

