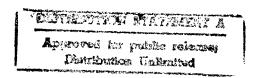
LIMITED ENERGY STUDIES

HOLSTON ARMY AMMUNITION PLANT KINGPORT, TENNESSEE

Prepared for

U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT MOBILE, ALABAMA 36628


Under

CONTRACT DACA 01-91-D-0032 DELIVERY ORDER 0002 & 0003 EMC No. 3102-002

DTIC QUALITY INSPECTED 2

August 1992

By

E M C ENGINEERS, INC. 1950 Spectrum Circle, Suite B-312 Marietta, Georgia 30067 404/952-3697

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakef**z**eld

Librarian Engineering

This report has been prepared at the request of the client, and the observations, conclusions, and recommendations contained herein constitute the opinions of E M C Engineers, Inc. In preparing this report, EMC has relied on some information supplied by the client, the client's employees, and others which we gratefully acknowledge. Because no warranties were given with this source of information, E M C Engineers, Inc. cannot make certification or give assurances except as explicitly defined in this report.

TABLE OF CONTENTS

<u>Section</u>	<u>P</u>	age
List of Ta		riii X
EXECUT	IVE SUMMARY E	S-1
	1.1 Authority for Study 1 1.2 Purpose of Study 1 1.3 Scope of Work 1 1.4 Approach 1 1.4.1 Previous Studies 1 1.4.2 Field Survey 1 1.4.3 Baseline Energy 1 1.4.4 Evaluate Specific ECOs 1	-1 -1 -1 -2 -2 -3 -3 -4
	1.5 Construction Cost Estimates	
2.0	BASELINE ENERGY ANALYSIS 2	!-1
	2.2.1 Electricity	2-1 2-2 2-3 2-3 2-4 2-4
	3.1Introduction33.2Area-B Central Heating Plant Performance33.2.1Boiler Description33.2.2Boiler Performance33.2.3Central Heating Plant Performance33.3Area-A Central Heating Plant Performance3	3-2 3-2 3-3 3-7 3-12 3-13
	3.3.3 Central Heating Plant Performance	3-16

TABLE OF CONTENTS (Continued)

Section			<u>Page</u>
4.0	COGI	ENERATION	 4-1
	4.1	ECO Concept	
	4.2	Previous Studies	
		4.2.1 HDC Engineering Report E88-0007	
		4.2.2 Kinney EEAP Report	
	4.3	Evaluation Approach	
		4.3.1 Existing Cogeneration System	 4-4
		4.3.2 Proposed Cogeneration System	 4-4
	4.4	Base Case Steam and Electric Load	
		4.4.1 Historical Steam Usage	 4-5
		4.4.2 Electrical Loads	
		4.4.3 Energy Costs	 4-10
	4.5	Steam Distribution System Simulation	
		4.5.1 Steam Distribution System Simulation	
		4.5.2 Steam Pressure Requirements	
		4.5.3 Peak Space Heating Steam Demand	
		4.5.4 Peak Process Load	
		4.5.5 Simulation Results	 4-14
		4.5.6 PRVs	 4-14
		4.5.7 Steam Traps	 4-14
	4.6	Cogeneration System Alternatives	 4-15
		4.6.1 Steam Flow	
		4.6.2 Electric Generator	 4-15
		4.6.3 Cogenertaion Model	 4-16
•	•	4.6.4 Results of Analysis	
	4.7	Conceptual Design	 4-18
		4.7.1 Steam Turbine-Generator Layout	 4-18
		4.7.2 Steam Turbine-Generator Plant Schematic	 4-19
		4.7.3 Core Equipment Selection	 4-21
		4.7.4 Interface with Existing Equipment	
		4.7.5 Power Factor Correction	 4-23
	4.8	Life Cycle Cost Analysis	 4-24
		4.8.1 Construction Cost	 4-24
		4.8.2 Energy Savings	 4-25
		4.8.3 Operating and Maintenance Costs	 4-25
		4.8.4 Electric Demand Savings	 4-25
		4.8.5 Life Cycle Cost Analysis Results	 4-26
	4.9	Recommendations	 4-26

TABLE OF CONTENTS (Continued)

			<u>Page</u>
ENER	GY COI	NSERVATION OPPORTUNITIES	5-1
5.1	Area-B	Vacuum Pump	5-1
	5.1.1	Description	5-1
	5.1.2	Existing Condition	5-1
	5.1.3	ECO Modification	5-1
	5.1.4		5-2
	5.1.5		5-2
	5.1.6		
	5.1.7		
5.2	Area-B		
			5-4
	5.2.2	Existing Condition	5-4
	_	ECO Modification	5-4
	_		
			5-8
5.3	-		5-9
	5.3.1	Description	5-9
	5.3.2	Existing Condition	5-9
	5.3.3	ECO Modification	5-10
	5.3.4	Analysis	5-10
	5.3.5	Construction Cost	5-10
	5.3.6	Life Cycle Cost Analysis	5-11
	5.3.7		
5.4	Area-B		
	5.4.1	Description	5-12
•	5.4.2	Existing Condition	5-12
	5.4.3	ECO Modification	5-12
	5.4.4	Analysis	5-13
	5.4.5	Construction Cost	5-14
	5.4.6	Life Cycle Cost Analysis	5-14
•	5.4.7	Recommendations	5-14
5.5	Area-B	Condensate Collection	5-15
	5.5.1	Description	5-15
	5.5.2	Existing Condition	5-15
	5.5.3	ECO Modification	5-15
	5.5.4	Analysis	5-15
	5.5.5	Recommendations	5-16
	5.15.25.3	5.1 Area-B 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.2 Area-B 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 Area-B 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.4 Area-B 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.5 Area-B 5.5.1 5.5.2 5.5.3 5.5.4	5.1.1 Description 5.1.2 Existing Condition 5.1.3 ECO Modification 5.1.4 Analysis 5.1.5 Construction Cost 5.1.6 Life Cycle Cost Analysis 5.1.7 Recommendations 5.2 Area-B Intermediate Steam Pressure Header 5.2.1 Description 5.2.2 Existing Condition 5.2.3 ECO Modification 5.2.4 Analysis 5.2.5 Construction Cost 5.2.6 Life Cycle Cost Analysis 5.2.7 Recommendations 5.3 Area-B Combustion Air Preheaters 5.3.1 Description 5.3.2 Existing Condition 5.3.3 ECO Modification 5.3.4 Analysis 5.3.5 Construction Cost 5.3.6 Life Cycle Cost Analysis 5.3.7 Recommendations 5.4 Area-B Blowdown Heat Exchanger 5.4.1 Description 5.4.2 Existing Condition 5.4.3

TABLE OF CONTENTS (Continued)

<u>Section</u>			<u>Page</u>
	5.6	Area-A Vacuum Pump 5.6.1 Description 5.6.2 Existing Condition 5.6.3 ECO Modification 5.6.4 Analysis 5.6.5 Construction Cost 5.6.6 Life Cycle Analysis 5.6.7 Recommendations	5-17 5-17 5-17 5-17 5-18 5-18
·	5.7	Area-A Electric DA Pump 5.7.1 Description 5.7.2 Existing Condition 5.7.3 ECO Modification 5.7.4 Analysis 5.7.5 Construction Cost 5.7.6 Life Cycle Cost Analysis	5-19 5-19 5-19 5-19 5-19 5-20
	5.8	5.8.4 Analysis	5-21 5-21 5-21 5-22 5-23 5-23
	5.9	Areas-A and B Inlet Air Dampers 5.9.1 Description 5.9.2 Existing Condition 5.9.3 ECO Modification 5.9.4 Analysis	5-24 5-24 5-24 5-25 5-27 5-28
6.0			6-1
	6.1		6-1
	6.2	Total Energy Savings	6-2

TABLE OF CONTENTS (Concluded)

LIST OF APPENDICES

Α	Scope of Work, Conference Notes, and Confirmation Notices
В	Base Energy Analysis
C	Cogeneration Analysis
D	Vacuum Pumps Analysis
E	Intermediate Steam Pressure Header Analysis
F	Area-B Air Preheater Analysis
G	Area-B Blowdown Heat Exchanger Analysis
H	Area-B Condensate Collection Analysis
I	Area-A Electric DA Pump Analysis
J	Area-A Air Preheater Analysis
K	Inlet Air Damper Analysis

LIST OF TABLES

<u>Table</u>		<u>Page</u>
ES-1 ES-2 ES-3	Energy Usage and Cost	ES-8
2-1 2-2	Unit Energy Costs	2-5 2-5
3-1 3-2	Area-B Boilers	
4-1 4-2 4-3 4-4	Area-B Base Case Cogeneration Energy Costs Area-B Process Steam Loads Steam Turbine-Generator Estimates Results	4-13 4-22
6-1 6-2	Recommended ECOs	

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
2-1 2-2 2-3	HAAP Historical Electricity Usage	2-2
3-1 3-2 3-3 3-4 3-5 3-6	Mass and Energy Flow Flue Gas Oxygen Area-B Boiler Efficiency Low Pressure Steam Header Balance Distribution of CHP Steam Flow at Area-B Area-A Boiler Efficiency	3-5 3-8 3-11 3-13
4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10	Area-B Steam Distribution System Schematic Area-B Historical Steam Production Area-B Space Heating Loads Area-B Base Case Steam Load Area-B Hourly Electric Demand Area-B Hourly Steam Production Cogeneration System Optimization Steam Turbine-Generator Plant Site System Piping Schematic Electrical Distribution System Tie-In	4-6 4-7 4-8 4-9 4-13 4-18 4-19 4-20
5-1 5-2 5-3 5-4 5-5 5-6	Intermediate Pressure Steam Header Combustion Air Preheaters Blowdown Heat Exchanger Air Preheaters Inlet Air Dampers Calculated Combustion Air Temperature Results	5-9 5-13 5-22 5-25

LIST OF ABBREVIATIONS

Btu - British thermal unit
CHP - central heating plant

CO₂ - carbon dioxide

DA - deaerator

ECIP - Energy Conservation Investment Program

ECO - Energy Conservation Opportunity

F - Fahrenheit
ft - foot, feet
FW - feedwater

gpm - gallons per minute

HAAP - Holston Army Ammunition Plant

hp - horsepower

hr - hour(s) in. - inch(es)

I²R - power loss

kBtu - British thermal units (thousand)

kV - kilovolts, one thousand volts

kVA - kilovolt-ampere, one thousand volt-ampere

kVAR - kilovolt ampere-reactive, one thousand volt-ampere reactive

kW - kilowatt, one thousand watts

kWh - kilowatt-hour, one thousand watthours

lbm - pounds mass LCC - Life Cycle Cost

LCCID - Life Cycle Cost in Design

MBH - Btu per hour (million)

MBtu - British thermal units (million)

MCM - cicular mills (thousand)

O₂ - oxygen

ppm - parts per million

PRV - pressure reducing valve

psia - pounds per square inch, absolute

psig - pounds per square inch, gauge

QRIP - Quick Recovery Investment Program
 rpm - revolutions per minute
 SIOH - supervision, inspection, and overhead
 SIR - Savings-to-Investment Ratio: total life cycle benefits divided by the investment cost.

SOW - Scope of Work

V - volts

EXECUTIVE SUMMARY

INTRODUCTION

This study was conducted and this report prepared under Contract No. DACA 01-91-D-0032, Delivery Orders 2 and 3, issued by the U.S. Army Engineer District, Mobile on 9 September 1991. The purpose of this study was to determine the economic feasibility of the following specific energy conservation opportunities (ECOs) associated with the central heating plants at the Holston Army Ammunition Plant (HAAP):

- Area-B Cogeneration
- Area-B Vacuum Pump
- Area-B Intermediate Pressure Steam Header
- Area-B Combustion Air Preheaters
- Area-B Blowdown Heat Exchanger
- Area-B Condensate Collection
- Area-A Vacuum Pump
- Area-A Electric DA Pump
- Area-A Air Preheater
- Area-A and B Inlet Air Dampers

METHOD OF ANALYSIS

The method of analysis was as follows:

- A field survey was conducted to collect data for the analysis.
- Historical energy use data was collected and used to establish present energy usage and costs.
- An energy and mass balance was performed for each central heating plant using a computer boiler model developed for the project.
- Energy savings for each ECO was calculated using the computer boiler model or separate analysis as appropriate.
- Construction cost estimates were prepared for each ECO.
- A life cycle cost analysis was performed for each ECO using the latest version of the computer program, Life Cycle Cost In Design, (LCCID).
- This report was prepared, combining the two delivery orders into a single report.

PLANT DATA

Holston Army Ammunition Plant, located in Kingsport, Tennessee, is divided into two areas, each served by a central heating plant (CHP):

- Area-A is used for the concentration of weak acetic acid into glacial acetic acid and for the production of acetic anhydride. The CHP provides 400 psig steam for the processes.
- Area-B is used to make explosives on 10 separate production lines. The CHP provides 300 psig steam for the processes and for a significant space heating load.

ENERGY CONSUMPTION

Energy usage and cost is summarized in table ES-1 below.

TABLE ES-1 ENERGY USAGE AND COST

Energy Source	Annual Usage	Equivalent Energy Usage (MBtu)	Unit Energy Cost (\$/MBtu)	Annual Energy Cost (\$)
ELECTRICITY Area-A Area-B	11,008,500 kWh 1,478 kW 58,753,500 kWh 8,268 kW	37,572 200,526	4.67 9.50** 4.67 9.50**	175,461 168,492 936,456 942,552
Subtotal	69,762,000 kWh	238,098		2,222,961
COAL Area-A Area-B	42,853 tons 74,086 tons	1,208,454 2,089,225	1.25 1.25	1,510,568 2,611,531*
Subtotal	116,939 tons	3,297,680		4,122,100*
TOTAL		3,535,778		6,345,061*

^{*} Includes cost for anthracite coal which previously was supplied to HAAP free of charge.

^{**} Monthly demand charges (\$/kW).

ENERGY CONSERVATION ANALYSIS

Area-B Cogeneration

This ECO evaluates installing a topping turbine and electric generator for Area-B. Steam is currently distributed from the CHP to Area-B at 300 psig. A new steam turbine-generator would accept steam at 300 psig, exhaust it to the steam distribution system at 110 psig, and generate about 800 kW.

Analysis of the cogeneration system proceeded as follows:

- (1) Determine the amount of steam available for cogeneration. Building 334 requires process steam at 300 psig. In addition, 300 psig steam is required by the existing cogeneration system in Building B-6. Steam use by these two buildings is not available for cogeneration.
- (2) Determine the minimum cogeneration back pressure required to meet peak steam demands under existing operating conditions. The cogeneration system defined by the SOW was based on the concept that the steam piping system, having been sized for full mobilization, could be operated at a lower pressure during peacetime. However, the administration and shop area steam piping are sized for existing demand and require high main pressures to meet peak space heating loads. This problem may be overcome by modifying the steam distribution system with the addition of a new six-inch steam line from the production area to the administration area.
- (3) Optimize the cogeneration system for the best life cycle savings. This step required selecting the optimal steam turbine-generator equipment and size. The optimal system was one which supplied the base steam load.

Life cycle cost analysis was performed the following results:

Investment Cost	\$829,000
First year energy cost savings	\$95,957
SIR	2.4

There is an existing 400 kW steam turbine-generator in Building B-6. This existing sysm is only two years old, but inoperable due to a control problem. The existing steam turbine-generator should be repaired. The energy cost savings of the repaired generator would pay for the repairs within one month.

Area-B Vacuum Pump

This ECO consists of replacing the steam jet vacuum system on the Area-B ash handling system with a vacuum pump system.

Analysis indicated that a vacuum blower system is more cost effective than a liquid ring vacuum pump system. Under this ECO, the existing steam jet vacuum system would be replaced with a 50 hp vacuum blower system. Once the existing system is removed, the vacuum blower system may be installed in the same area as the steam jet vacuum system and air washer were located. The vacuum blower system would increase maintenance costs, but this would be more than offset by the annual energy savings.

Investment Cost	\$34,900
First year energy cost savings	\$10,119
SIR	4.1

The Area-B vacuum blower system is recommended for implementation.

Area-B Intermediate Pressure Steam Header

This ECO evaluates increasing the back pressure of the existing steam turbines used to drive the draft fans in the CHP and using the exhaust steam to heat feedwater. The back pressure of the draft fan turbines is currently 5 psig. It is proposed to raise the back pressure and use the higher temperature exhaust steam to increase the feedwater temperature to the economizer.

Under this ECO, a feedwater preheater would be installed between the DA heater and the boilers upstream of the economizers. The back pressure on each draft fan turbine would be increased and the steam exhaust routed to the new feedwater heater via an intermediate pressure steam header.

Investment Cost	\$352,000
First year energy cost savings	\$90,605
SIR	4.1

The Area-B intermediate pressure steam header is recommended for implementation.

Area-B Combustion Air Preheaters

This ECO evaluates installing a combustion air preheater on the Area-B boilers.

Under existing conditions combustion air is supplied to the boilers at an average of 56°F. The exhaust air leaving the economizer is 387°F. The minimum temperature to prevent corrosion in the flue is 280°F. This allows for a possible temperature difference of 107°F which could be used to increase the temperature of the combustion air.

Due to space limitations, the ECO modification is to install a run around heat recovery loop with a heat recovery coil located on the exit of the precipitator and a preheat coil located downstream of the forced draft fan.

In order to prevent corrosion in the flue, this system would be limited to 30% effectiveness. This would provide a combustion air temperature of 154°F. Boiler efficiency would be increased from 72% to 76%.

Investment Cost	\$218,500
First year energy cost savings	\$154,000
SIR	11.3

The Area-B combustion air preheater is recommended for implementation.

Area-B Blowdown Heat Exchanger

This ECO evaluates installing a heat exchanger to recover heat from the continuous blowdown of Area-B boilers.

Continuous blowdown from the boilers is currently piped to a flash tank which recovers flash steam for the deaerating (DA) heater. Blowdown liquid is piped to a floor drain. The blowdown rate was measured at 2.5% of the boiler steam production.

This ECO would be to install a heat exchanger to recover heat from the blowdown liquid exiting the flash tank. The heat exchanger would be installed in the make-up water line between the DA pump and the DA heater. Blowdown liquid from the flash tank would be piped to the shell side of the heat exchanger. The blowdown heat exchanger would add about 3°F to the make-up water temperature.

Investment Cost	\$26,000
First year energy cost savings	\$3,200
SIR	1.8

The Area-B blowdown heat exchanger is recommended for implementation.

Area-B Condensate Collection

This ECO evaluates installing a condensate collection system for condensate generated within the Area-B CHP.

Due to possible explosive contamination, no condensate is returned from Area-B to the CHP. However, condensate generated within the CHP could be returned. CHP condensate is routed to the waste treatment system via floor drains.

Under this ECO, condensate would be collected and pumped to the make-up water tank. Condensate receivers would be placed at each steam trap likely to produce significant condensate. Pumps within the condensate receivers would pump the condensate to the make-up water tank via a new piping system.

At average operating conditions, the amount of condensate generated within the CHP is 175 lbm/hr. The condensate would provide 0.2°F of make-up water heating.

A condensate collection system is not economically feasible. Condensate generation is small and simple economic payback is in excess of 25 years. The Area-B condensate collection system is not recommended.

Area-A Vacuum Pump

This ECO consists of replacing the steam jet vacuum system on the Area-A ash handling system with a vacuum pump system.

A vacuum blower system was found to be more cost-effective than a liquid ring vacuum pump system. Under this ECO the existing steam jet vacuum system would be replaced with a 50 hp vacuum blower system. Once the existing system is removed, the vacuum blower system may be installed in the same area as where the steam jet vacuum system and air washer were located. The vacuum blower system would increase maintenance costs, but this would be more than offset by the annual energy savings.

Investment Cost	\$34,900
First year energy cost savings	\$6,900
SIR	2.9

The Area-A vacuum blower system is recommended for implementation.

Area-A Electric DA Pump

This ECO evaluates installing a small auxiliary electric DA pump to bypass the existing large electric DA pump during normal operation.

The DA system uses a 100 hp electric pump to convey water from the makeup water tank to the DA heater. This 100 hp pump is sized for mobilization capacity. At average operating conditions the pump is operating at about 20% of rated capacity. The pump curve indicates that the pump is operating at a 40% efficiency as opposed to an 85% design efficiency.

Under this ECO, the 100 hp pump would remain, but be taken off line and a new 15 hp pump sized for present peak operating conditions would be installed and operated, thereby producing an energy savings due to both increased efficiency and smaller pump size.

Investment Cost	\$21,400
First year energy cost savings	\$4,329
SIR	4.2

The Area-A electric DA pump is recommended for implementation.

Area-A Air Preheater

This ECO evaluates the use of excess 5 psig steam to preheat the combustion air for the Area-A boilers.

Currently, excess 5 psig steam is vented to the atmosphere. The ECO modification is to place a steam preheater coil in the combustion air duct, downstream of the forced draft fan on each of the four boilers.

At average operating conditions, the steam preheat coil would raise the combustion air temperature from 56°F to 136°F and produce an approximate 3% increase in the central plant efficiency.

Investment Cost	\$78 ,7 00
First year energy cost savings	\$142,350
SIR	28.9

The Area-A air preheater is recommended for implementation.

Inlet Air Dampers

This ECO evaluates installing manually controlled inlet air dampers in the roof openings over the boilers. These dampers would be used to restrict the openings in the winter so that the warmer air from the upper level of the boiler plant would be pulled down by the forced draft fans. Higher temperature combustion air would result in higher boiler efficiency. This ECO applies to both Area-A and Area-B CHPs.

Operable dampers would be placed on each of the roof openings. During winter operation, only dampers above operating boilers would be opened; dampers over cold boilers would be closed. Air entering the CHP would then flow down over the hot boilers using boiler surface heat loss to preheat combustion air.

The average combustion air temperature is presently 56°F. It is estimated that average combustion air temperatures could be raised to 76°F. Raising the average combustion air temperature results in an average boiler efficiency increase from 71.5% to 73.3% in the Area-B CHP and a similar increase at Area-A.

Investment Cost		\$96 <i>,</i> 700
First year energy cost savings		\$53,655
SIR	4	8.9

Inlet air dampers are recommended for implementation.

RECOMMENDATIONS

Table ES-2 below summarizes the life cycle cost analyses for the recommended ECOs listed in order of economic benefit.

TABLE ES-2 RECOMMENDED ECOs

Energy Conservation Opportunity	Annual Electric Savings (MBtu)	Annual Coal Savings (MBtu)	Annual Energy Cost Savings (\$)	Annual Electric Demand Savings (\$)	Annual Maint. Cost Savings (\$)	Invest- ment Cost (\$)	SIR	Simple Payback (yrs)
Area-A Air Preheaters	0	113,900	142,350	0	(1,000)	78,700	28.9	0.6
Area-B Air Preheater	(10)	123,240	154,000	0	(1,000)	218,500	11.3	1.4
Inlet Air Dampers	0	42,924	53,655	0	(400)	96,700	8.9	1.8
Area-A Electric DA Pump	927	0	4,329	3,534	(400)	21,400	4.2	2.9
Area-B Steam Header	0	72,484	90,605	0	(400)	352,000	4.1	3.9
Area-B Vacuum Pump	(194)	8,820	10,119	O'	(1,300)	34,900	4.1	4.0
Area-B Cogeneration	24,304	(14,045)	95,957	92,682	(6,400)	829,000	2.4	4.6
Area-A Vacuum Pump	(97)	5,883	6,901	0	(650)	34,900	2.9	5.6
Area-B Blowdown Heat Exchanger	0	2,556	3,195	0	(400)	26,100	1.8	9.3
TOTAL SAVINGS	33,902	355,762	602,997	130,416	(58,326)	1,698,200		
PERCENT SAVINGS	14.2	10.8	11.5	11.7				
NEW ENERGY USAGE	204,186	2,941,918	4,631,020	980,628				
PRESENT ENERGY USAGE	238,098	3,297,680	5,234,017	1,111,044				

TOTAL ENERGY SAVINGS

The summary of energy use and cost before and after implementation of all ECOs recommended in this report is shown in Table ES-3 below.

TABLE ES-3
TOTAL ENERGY SAVINGS

	Annual Electric Energy (MBtu)	Annual Electric Demand (\$)	Annual Coal Energy (MBtu)	Total Annual Energy* (\$)
BEFORE	238,098	1,111,044	3,297,680	6,345,061
AFTER	213,165	1,014,828	2,941,918	5,687,734
SAVINGS	24,933	96,126	355,762	653,327

^{*}Includes energy and electric demand charges.

SECTION 1.0

INTRODUCTION

1.1 AUTHORITY FOR STUDY

This study was conducted and this report prepared under Contract No. DACA 01-91-D-0032, Delivery Orders 2 and 3, issued by the U.S. Army Engineer District, Mobile on 9 September 1991. Delivery Order 2 is for evaluation of identified boiler ECOs, and Delivery Order 3 is for evaluation of a cogeneration ECO.

1.2 PURPOSE OF STUDY

The purpose of this study is to determine the economic feasibility of specific energy conservation opportunities (ECOs) at the central heating plants in Area-A and Area-B of the Holston Army Ammunition Plant (HAAP):

- Area-B Cogeneration
- Area-B Vacuum Pumps
- Area-B Intermediate Pressure Steam Header
- Area-B Combustion Air Preheaters
- Area-B Blowdown Heat Exchanger
- Area-B Condensate Collection
- Area-A Vacuum Pump
- Area-A Electric DA Pump
- Area-A Air Preheater
- Area-A and B Inlet Air Dampers

1.3 SCOPE OF WORK

The Scope of Work requires evaluating the technical and economic feasibility of the following specific ECOs:

- Install a nominal 150,000 lbm/hr topping steam turbine-generator for the Area-B central heating plant (CHP). The existing steam distribution system supplies 300 psig steam through approximately 36,000 feet of pipe to production buildings throughout the site. A back-pressure turbine would throttle the pressure down from 300 to 150 psig while generating significant amounts of electricity.
- Replace the steam jets on the bag houses of the ash handling systems at the Areas A and B CHPs with a vacuum pump system.
- Increase the back pressure on auxiliary equipment turbine drives and use exhaust steam for pre-heating boiler feedwater upstream of the economizer at the Area-B CHP.

- Install air pre-heaters to recover heat from the flue gas and use for preheating combustion air in the Area-B CHP.
- Install a blowdown heat exchanger to recover blowdown thermal energy in the Area-B CHP.
- Install a condensate return system for condensate generated within the Area-B CHP.
- Install small electric pumps in the Area-A CHP to be used during times of low demand instead of operating the large electric pumps.
- Install steam combustion air preheaters in the Area-A CHP.
- Install operable dampers to recover heat from ceiling of the CHPs for Areas-A and B.

The following work was required under the Scope of Work:

- Review the the parts of the previous energy studies which apply to the specific ECOs.
- Perform a site survey to obtain necessary data to evaluate the applicable ECOs.
- Evaluate the selected ECOs to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance.
- Provide all data, assumptions, and calculations showing how each ECO was evaluated. Prepare a LCC summary sheet for each ECO and include as part of the supporting data.
- Prepare a comprehensive report fully documenting the work accomplished. Submit an interim report for review. Complete the final report after review comments have been resolved.
- Conduct a formal presentation of the interim submittal to installation, command, and other government personnel.

The Scope of Work, dated 9 September 1991, is included in Appendix A along with applicable confirmation notices.

1.4 APPROACH

1.4.1 Previous Studies

HAAP has a number of study reports dating back to 1942. EMC was provided copies of these reports and also a copy of the Facilities Appraisal Manual. These reports provided steam load data for process heating requirements, space heating requirements, and steam pipe heat loss. These data were used in this study to size the Area-B cogeneration system.

1.4.2 Field Survey

The field survey was conducted during October 1991.

HAAP personnel were helpful in providing information and data. Plans and data on the plant were well organized and maintained in files and on microfilm in the engineering section at HAAP. Plans were obtained for the steam distribution system and for applicable parts of the CHPs.

Data was not available for process energy loads. This data was necessary to determine the adequacy of the steam distribution system to operate at lower steam pressure. Data on energy usage for processes and the amount of material processed was collected from previous studies and used to estimate process energy loads.

The Area-A CHP was surveyed to obtain data for analysis of possible ECOs. The Area-A CHP is well instrumented and operational readings were obtained from the existing instrumentation.

The Area-B CHP was surveyed to obtain data for analysis of possible ECOs. Measurements were made of temperatures at various points in the system and a flue gas analysis conducted. Boiler blowdown rate was also measured. Most of the ECOs are associated with the Area-B CHP.

Operating production buildings in Area-B were surveyed to determine required steam pressures and to obtain data on existing pressure reducing valves (PRVs). Production personnel provided an explanation of the processes. The cogeneration ECO is dependant on the ability of the production area to operate on lower pressure steam and the capacity of the existing PRVs and piping. Measurements were also made of heat loss from selected sizes of distribution piping.

During the survey a number of potential ECOs for future studies were identified.

1.4.3 Baseline Energy

Proper evaluation of most of the ECOs requires a knowledge of mass and energy flows through the CHPs. To evaluate the cogeneration ECO, the steam loads served by the Area-B CHP are also required. The baseline energy determination includes analyzing the efficiency of the boilers, quantifying auxiliary steam usage for each piece of equipment, determining entering and leaving steam temperatures and pressures, and developing an energy flow diagram for each of the CHPs.

1.4.4 Evaluate Specific ECOs

Each ECO was evaluated individually. The approach to the analysis of each specific ECO is discussed in the relevant section. The cogeneration ECO is discussed in Section 4.0 and the boiler ECOs are discussed in Section 5.0.

1.4.5 Prepare Report

The report for the project covers the two delivery orders. The organization of the report follows the requirements of the SOW for both delivery orders. The Executive Summary follows the Executive Summary Guideline in Annex B of the SOW.

1.5 INVESTMENT COST ESTIMATES

The following sources and assumptions were used in developing cost estimates:

- Equipment and materials costs and manhours were estimated from experience, and using Means 1992 Mechanical Cost Data. Estimates of major equipment costs were obtained from manufacturers and suppliers.
- Labor costs were also taken from Means 1992 Mechanical Cost Data and corrected for the region. The city cost index for the Tri-Cities region is 66.9%. Labor costs are indicated in the following table:

LABOR CATEGORY	LABOR COST (\$/manhour)
Steam Fitter	\$16.89
Sheet Metal Worker	\$16.45
Electrician	\$16.19
Skilled Labor	\$14.86
General Labor	\$12.86

Cost estimates were performed in accordance with Army TM5-800-2, Cost Estimates, Military Construction.

1.6 LIFE CYCLE COST ANALYSES

Life cycle cost analyses were performed using the latest version of the computer program, Life Cycle Cost In Design, (LCCID). The "Energy Conservation Investment Program (ECIP) Guidance" and a letter from CEHSC-FU-M, dated 28 June 1991 were the basis for the life cycle cost analysis.

The LCCID computer program calculates the discounted savings-to-investment ratio (SIR) and simple payback period based on a present worth analysis of the construction cost, projected energy savings, unit energy costs, and other costs associated with the project over the economic life of the project. Other costs include electric demand costs, maintenance costs, and salvage values.

SECTION 2.0

BASELINE ENERGY ANALYSIS

The purpose of this section is to:

- Develop the baseline energy usage from historical data.
- Develop energy costs.

Backup computations and data are contained in Appendix B.

2.1 HISTORICAL ENERGY CONSUMPTION

2.1.1 Electricity

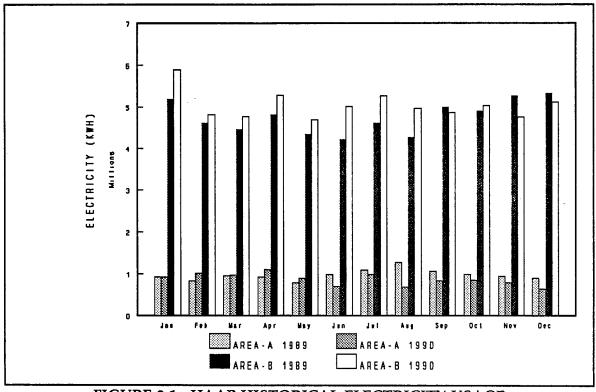


FIGURE 2-1. HAAP HISTORICAL ELECTRICITY USAGE

Electricity usage for the last two calendar years is presented in Figure 2-1 above. As can be seen, Area-B uses about five times as much electricity as Area-A. Combined monthly usage for the two areas averages about 5.8 million kWh, varying from 4.0 to 6.2 million kWh.

The combined electric demand for Area-A and B for the last two calendar years is presented in Figure 2-2 below. Demand data for the individual areas was not available. As can be seen, electric demand varies little on a monthly basis.

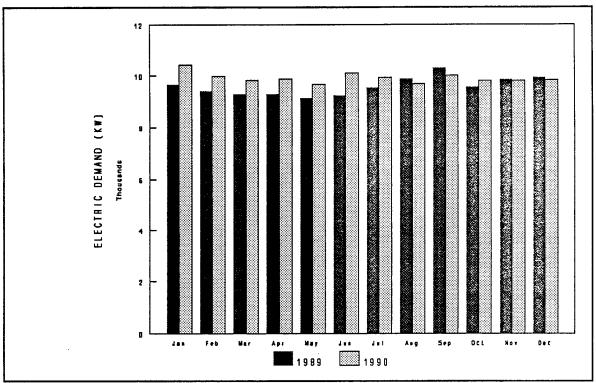


FIGURE 2-2. HAAP HISTORICAL ELECTRICITY DEMAND

2.1.2 <u>Coal</u>

Coal usage for the last two calendar years is presented in Figure 2-3 page 2-3. As can be seen, Area-B uses about twice as much coal as Area-A. Coal usage at Area-A is fairly constant throughout the year with most of the steam going to process loads. Area-B uses more coal during the heating season due to significant space heating loads.

Historical energy consumption data is contained in Appendix B along with metered boiler steam production data. There is a 2 to 4% variation in coal consumption between accounting and utility coal records. Accounting records were selected for use in the analysis because the weight per rail car was considered more accurate than the number of scoops loaded into the coal hoppers at the CHPs.

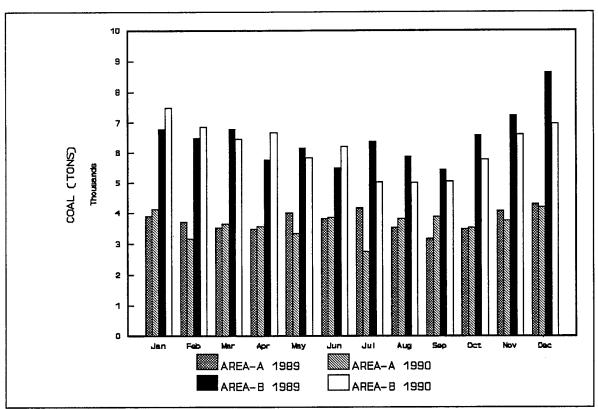


FIGURE 2-3. HAAP HISTORICAL COAL USAGE

2.2 ENERGY COSTS

2.2.1 <u>Electricity</u>

Electricity is provided to HAAP by the Kingsport Power Company by contract. Electricity billings contain the following elements:

- The monthly billing demand rate is \$9.64/kW for the peak demand occurring in the billing period.
- The energy unit price is \$0.01852/kWh for the billing period.
- The monthly service charge is \$1192.
- The fuel adjustment rate is used to adjust the energy charge based on the cost of fuel to Kingsport Power. The fuel adjustment rate varies by month, but has averaged \$0.0024265/kWh deduction over the last two years.
- A 1.5% discount on the total bill is applied for prompt payment.

Applying the average fuel adjustment rate and the 1.5% discount, the resulting incremental electrical demand and average electrical energy charges are \$9.50/kW and \$0.0159/kWh,

respectively. Incremental electrical demand and average electrical energy costs do not include monthly service charges which would not be affected by ECO energy savings.

Dividing the energy charge of \$0.0159/kWh by 0.003413 MBtu/kWh gives an average energy cost of \$4.67/MBtu.

2.2.2 <u>Coal</u>

Both Area-A and Area-B central heating plants are fired with bituminous coal. A coal gasifier at Area-A also uses bituminous coal. The higher heating value averages about 14,100 Btus per lbm according to laboratory analysis. Present cost of purchased bituminous coal is \$35.20 per ton. Anthracite coal has been also used at Area-B for the last two years. HAAP was not charged for anthracite coal which comprised about 14% of the total coal consumed. HAAP has no plans to use anthracite coal in the future. The energy cost of bituminous coal is \$1.25/MBtu.

2.2.3 Steam

Coal is used to generate steam in the CHPs. At Area-A an annual average of 932 million pounds of steam was metered exiting the boilers over the last two years at an annual average coal cost of \$1,507,680. The resulting energy cost of steam generated by the boilers is \$1.62 per thousand pounds of steam. The boilers generate 400 psig, 575°F steam from 228°F feedwater, a change in enthalpy of 1094 Btu/lbm. The resulting energy cost of steam is \$1.48/MBtu.

At Area-B an annual average of 1,418 million pounds of steam were metered exiting the boilers over the last two years at an average coal cost of \$2,256,500. About 14% of coal consumption at Area-B was anthracite coal for which HAAP was not charged. (In the future anthracite will not be used and additional bituminous coal will need to be purchased.) If HAAP had been charged for all the coal used, the resulting energy cost of steam generated by the boilers would have been \$1.82/Mbtu of steam. The boilers generate 300 psig, 525°F steam from 228°F feedwater, which is an enthalpy change of 1074 Btu/lbm. The resulting energy cost of steam is \$1.69/MBtu.

2.2.4 Energy Cost Summary

Table 2-1 below summarizes the unit energy costs at HAAP.

TABLE 2-1 UNIT ENERGY COSTS

Energy Source	Unit Cost	Conversion	Energy Cost
Coal	\$35.20/ton	14,100 Btu/lbm	\$1.25/MBtu
Area-A Steam	\$1.62/1000 lbm	1094 Btu/lbm	\$1.48/MBtu
Area-B Steam	\$1.82/1000 lbm	1074 Btu/lbm	\$1.69/MBtu
Electricity Energy Demand	\$0.01595/kWh \$9.50/kW/month	3413 Btu/kWh	\$4.67/MBtu

Annual energy costs at HAAP are summarized in Table 2-2 below.

TABLE 2-2 ANNUAL ENERGY COSTS

Energy Source	Annual Usage	Equivalent Energy Usage (MBtu)	Unit Energy Cost (\$/MBtu)	Annual Energy Cost (\$)
ELECTRICITY Area-A Area-B	11,008,500 kWh 1,478 kW 58,753,500 kWh 8,268 kW	37,572 200,526	4.67 9.50** 4.67 9.50**	175,461 168,492 936,456 942,552
Subtotal	69,762,000 kWh	238,098		2,222,961
COAL Area-A Area-B	42,853 tons 74,086 tons	1,208,454 2,089,225	1.25 1.25	1,510,568 2,611,531*
Subtotal	116,939 tons	3,297,680		4,122,100*
TOTAL		3,535,778		6,345,061*

^{*} Includes cost for anthracite coal which previously was supplied to HAAP free of charge.

^{**} Monthly demand charges (\$/kW).

SECTION 3.0

CENTRAL HEATING PLANT PERFORMANCE

3.1 INTRODUCTION

This study evaluates ECOs for the Area-A and B CHPs. Evaluation of these ECOs requires a detailed knowledge of the mass and energy flows through each CHP. Mass and energy flows through the boilers and CHP are indicated schematically in Figure 3-1 below.

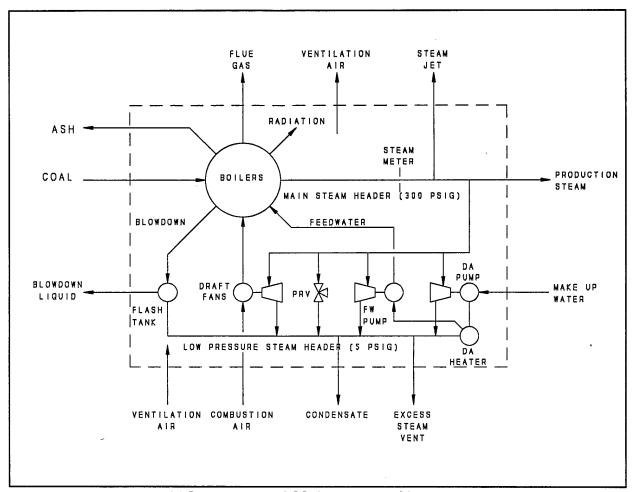


FIGURE 3-1. MASS AND ENERGY FLOW

The approach taken by this study was to develop a computer boiler model which quantifies mass and energy flow for each component shown in Figure 3-1. Performance of individual boilers and the CHPs as a whole may be determined by finding the mass and energy flow of each component entering or leaving the individual boilers, or the CHP as a whole.

The mass and energy balance for the boilers was performed by calculating energy and mass flows of each stream entering or leaving the boilers. Streams leaving each boiler are steam,

flue gas, ash, blowdown water, and heat loss from the boiler skin. In general, the methods presented in the 1989 ASHRAE Fundamentals Handbook, Chapter 15, were used in calculating boiler performance.

In this section, baseline boiler and CHP performance is determined at average operating conditions. Average operating conditions were established based on the average hourly steam production and the average hourly coal usage for calendar years 1989 and 1990.

For the ECO analysis in Section 5.0, the boiler models for Areas-A and B are modified to simulate each ECO modification and to compute annual coal usage with the ECO modification. The difference in coal usage between the baseline model and the modified ECO model is the coal energy saved by the ECO modification.

Most ECOs considered by this study result in a shift in boiler or CHP efficiency and a decrease in coal usage. The computer boiler model provides a quick and accurate assessment of each ECO and its effect on boiler performance.

3.2 AREA-B CENTRAL HEATING PLANT PERFORMANCE

3.2.1 <u>Boiler Description</u>

The boilers in the Area-B CHP were constructed in 1942 and much of the equipment in the CHP is 50 years old. The CHP contains six boilers, four stoker-fired coal and two pulverized coal-fired boilers. Three additional natural gas boilers are housed in an adjacent building. Only the four stoker-fired boilers are operational. The four stoker-fired boilers were all built by Babcock and Wilcox Company and have traveling grate stokers built by Detroit Stoker Company. Table 3-1 on page 3-3 summarizes the characteristics of the nine boilers.

TABLE 3-1 AREA-B BOILERS

Boiler Number	Boiler Type	Maximum Comfortable Firing Rate* (lbm/hr)	Manufacturers Specified Firing Rate (lbm/hr)
1	Stoker Coal	120,000	160,000
2	Stoker Coal	100,000	160,000
3	Stoker Coal	100,000	150,000
4	Stoker Coal	120,000	160,000
5	Pulverized Coal/Oil	150,000	190,000
6	Pulverized Coal/Oil	150,000	190,000
7	Natural Gas	100,000	150,000
8	Natural Gas	100,000	150,000
9	Natural Gas	100,000	150,000

^{*}Maximum comfortable firing rate is maximum rate at which operating personnel operate the boiler without additional manpower.

3.2.2 **Boiler Performance**

3.2.2.1 Steam Production

Steam produced by each boiler is continuously measured by a steam meter coupled to a pen chart and totalizer. Total steam production is recorded daily and summed for the monthly usage reports. The average hourly steam production for the last two calendar years was 161,872 lbm/hr which is the average operating condition. In 1990, averages in each month varied from 120,000 to 180,000 lbm/hr. Steam usage varies little on a weekly basis. On an hourly basis, there is about a 20% variation from the average over a day. Steam loads are generally supplied by two boilers. Occasionally during cold weather, a third boiler is required.

Peak steam demand at Area-B is estimated at 241,300 lbm/hr based on an outdoor temperature of 9°F and a 20% diversity on the process steam demands. Peak steam demand was calculated in Section 4.0 as part of the cogeneration analysis.

3.2.2.2 Coal Consumption

The amount of coal consumed per pound of steam produced was calculated by dividing the metered steam production by the amount of coal purchased over a two year period. An average of 9.57 pounds of steam was produced for each pound of coal burned over the last two years. Laboratory analysis indicates that energy content of the coals used is 14,100 Btu/lbm.

3.2.2.3 Combustion Air

The amount of combustion air used for the boilers was determined from a boiler efficiency test on Boiler No. 1 and discussions with operating personnel. Flue gas measurements downstream of the precipitators results in readings of 10.5% O_2 , and 169 ppm CO, at a 375° F flue gas temperature. The boiler was operating at 80,000 lbm/hr at the time. The boiler plant operators indicate that boilers are typically operated between 8% and 13% O_2 depending on the load. The higher loads allow more efficient operation. Air flow control is set by the operators based on the appearance of the flame. Using data from both Areas-A and B, a curve relating O_2 to percent boiler loading was developed. The curve is shown in Figure 3-2 on the following page. At the average operating condition of 81,000 lbm/hr steam load per boiler, the computer boiler model calculated O_2 at 10.6% and the resulting excess air at 102%. Excess air is the volume of air flowing through the boilers beyond the volume of air required for combustion. At 102% excess air, the volume of air flowing through the boilers is approximately twice that required for combustion.

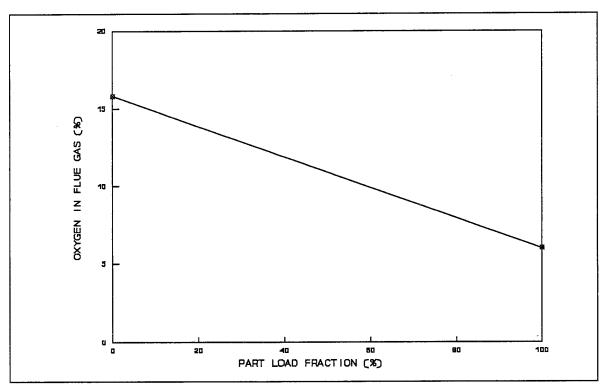


FIGURE 3-2. FLUE GAS OXYGEN

3.2.2.4 Dry Flue Gas Loss

Flue gas losses may be divided into two parts; dry flue loss and flue humidity loss (flue humidity loss is discussed in §3.2.2.5). Dry flue loss is the sensible energy carried away by the air flowing through the boiler. Dry flue loss (Q_{DF}) is calculated as follows:

$$Q_{DF} = (m_2 C p_2 T_2) - (m_1 C p_1 T_1).$$

where,

m₂ = the dry mass flow rate of combustion products leaving the boiler and is equal to the dry mass of combustion air entering the boiler plus the dry mass of the combustion products,

 Cp_2 = the specific heat of combustion products assumed to be 0.248,

 T_2 = the flue gas temperature measured at 375°F,

m₁ = the dry mass flow rate of combustion air entering the boiler determined from the measured oxygen content in the flue gas and the theoretical air required for stoichiometric combustion,

 Cp_1 = the specific heat of combustion air which is 0.240, and

 T_1 = the entering combustion air temperature.

At average operating conditions, the computer boiler model calculated dry flue gas loss at 13.4% of the fuel input to the boiler.

3.2.2.5 Flue Humidity Loss

Flue humidity loss is the water vapor added to the flue gas by the products of combustion, plus the additional heat loss due to water vapor in combustion air. Flue humidity loss is dependant on the amount of hydrogen in the coal and the flue gas temperature. Hydrogen content in the coal was estimated at 5% which is typical for coal in the region. At the average operating condition, flue humidity loss was determined to be 3.9% of the fuel input to the boiler.

3.2.2.6 Feedwater

Boiler feedwater is heated to 228°F in the deaerating (DA) heater prior to entering the boiler. The feedwater rate is equal to the boiler steam production rate plus the blowdown flow rate.

3.2.2.7 Blowdown

The boilers are equipped with continuous top blowdown systems which discharge into a common flash tank. Flash steam is routed into the low pressure header for deaerating heating and the condensate is sent to waste treatment. The top blowdown rate was measured by partially draining the flash tank and then measuring the time required for it to refill. With the boilers operating at 167,000 lbm/hr, the blowdown rate was measured at 4,111 lbm/hr or about 2.5% of the steam rate. The blowdown rate is manually controlled and was assumed to remain at 2.5% of the steam rate over the normal boiler operating range. Bottom blowdown is performed intermittently and consumes a negligible amount of energy. At average operating conditions, blowdown energy loss is 0.7% of the fuel input to the boiler.

3.2.2.8 Radiation

Radiation is radiant and convective heat loss from the surface of the boiler. Radiation is typically 1 to 2% of peak boiler capacity and remains constant over the firing range. Radiation was assumed to be 1% of peak boiler capacity. The resulting radiation loss is 1.65 Mbh. Radiation loss does not vary with the steam production rate of the boiler, but remains constant. At average operating conditions, radiation loss is 1.4% of the fuel input to the boiler.

3.2.2.9 Combustion Loss

The remaining losses from the boiler were assumed to be unburned carbon in the ash and were termed combustion loss. Combustion loss was calculated by subtracting calculated losses from the total loss in the computer boiler model. Most of the ash from the boilers is

likely has a high carbon content. Bottom ash is gray and likely contains little carbon although there are pieces of coal in it which fall off the grate. At average operating conditions, combustion losses were estimated to be 8.1% of the fuel input and were based on the measured fuel input less the measured steam output and other boiler losses.

3.2.2.10 Economizer

Boilers are equipped with economizers which use hot flue gas exiting the boiler to pre-heat boiler feedwater. At average operating conditions, hot flue gas at 480°F is used to raise feedwater temperature from 228°F to 283°F. For the boiler analysis presented in this report, the economizer is considered part of the boiler. Thus the energy savings provided by the economizer are a part of the boiler efficiency determination.

3.2.2.11 Boiler Efficiency

Figure 3-3 on page 3-8 summarizes boiler performance of Area-B boilers at average operating conditions. As can be seen, energy output from the boiler in the form of steam is 72.5% of the fuel input; which is by definition the boiler efficiency. Dry flue loss and combustion loss are 13.4% and 8.1% of the fuel input, respectively. The remaining 6.0% is blowdown, radiation, and flue humidity loss.

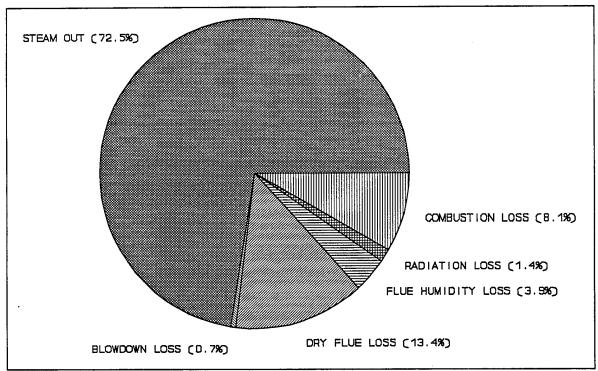


FIGURE 3-3. AREA-B BOILER EFFICIENCY

3.2.3 Central Heating Plant Performance

The Area-B CHP uses a portion of the steam produced by the boilers to drive pumps and fans associated with the boilers, for deaerating boiler feed water, and for ash transport. This section describes CHP auxiliary equipment and characterizes mass and energy flows through the CHP. These flows are presented schematically in Figure 3-1 on page 3-1.

3.2.3.1 Draft Fans

Each boiler has a forced draft and induced draft fan on the ground floor. Both fans are driven by a steam turbine off a common shaft. New turbines were installed in 1980 as part of a project to install electrostatic precipitators. It was reported in the 1983 EEAP report, prepared for the HAAP by A.M. Kinney, Inc., that the induced draft fans have a capacity less than the boilers and, therefore, limit the performance of the boilers to slightly below that specified by the manufacturer. The draft fan steam turbines have the following characteristics:

Manufacturer: Skinner Engine Company

Horsepower: 550

Steam rate: 21.6 lbm/hr/hp

The steam demand of the draft fan steam turbines was calculated as follows:

- Air flow rates at the rated boiler peak steam production was calculated using the computer boiler model.
- The draft fan steam turbine was assumed to be fully loaded at 550 hp at the rated boiler peak steam production.
- The part load draft fan power required was calculated using a typical inlet vane performance curve and the 550 hp peak horsepower.
- The peak steam rate of the draft fan steam turbine was provided by the manufacture.
- Using the standard turbine characteristic of 60% steam rate at 50% part load, the steam rate at the part load condition was calculated.
- The steam demand of the steam turbine is then the part load steam rate times the part load fan power required.

3.2.3.2 Deaerator (DA) Pump

A common DA pump serves all of the boilers. The DA pump is rated at 1750 gpm at a head of 185 feet. The primary DA pump is powered by a steam turbine installed in 1966. An electric DA pump is installed in parallel as a standby pump. The DA pump steam turbine has the following characteristics:

Manufacture: General Electric
Model: DP-25
Serial Number: 123274
Horsepower: 80
Steam rate: 60.7 lbm/hr/hp
Inlet Pressure: 275 psig
Inlet Temperature: 525°F
Exhaust Pressure: 25 psig
RPM: 1750

Steam demand for the DA pump steam turbine was calculated following the same procedure used for the fan turbines in §3.2.3.1, except that the pump efficiency curve was used in place of the inlet vane curve.

At average operating conditions, the DA pump is quite inefficient. The DA pump is designed to operate at 1750 gpm, but the average flow rate through the pump is 282 gpm. The resulting pump efficiency is approximately 40%.

3.2.3.3 Feedwater (FW) Pumps

Four feedwater pumps serve the boilers. The feedwater pumps are driven by steam turbines. One feedwater pump has the capacity to serve two boilers. The feedwater pump steam turbines have the following characteristics:

FW Pump Number: .	1 through 3	FW Pump Number: 4
Manufacturer:	General Electric	Manufacturer: Terry Dresser Rand
Model:	DP-20	Model: DO-292
Serial Number:	61592	Serial Number: 42788A
Horsepower:	265	Horsepower: 135
Steam rate:	35.5 lbm/hr/hp	Steam rate: 33.4 lbm/hr/hp
Inlet Pressure:	275 psig	Inlet Pressure: 300 psig
Inlet Temperature:	525°F	Inlet Temperature: 525°F
Exhaust Pressure:	25 psig	Exhaust Pressure: 25 psig
RPM:	3550	RPM: 3600

Feedwater pump No. 4 is normally used because it is sized closer to current CHP steam production rates than FW pumps 1-3. Steam demand for the feedwater pump steam turbine was calculated following the same procedure used for the DA pump turbines in §3.2.3.2. A pump curve could not be located for this pump. A pump efficiency of 70% was assumed based on performance of a similar pump operating at the same part load condition.

3.2.3.4 Blowdown Flash Tank

Flash steam from boiler blowdown water is captured in the flash tank and routed to the DA heater. About 21% of the blowdown water is flashed into steam. Blowdown liquid is discharged into to the wastewater system.

3.2.3.5 Deaerating (DA) Heater

In the DA heater, low pressure (5 psig) steam is used to heat and deaerate boiler feedwater. Since no condensate is returned to the boiler plant, all of the boiler feedwater must be heated from ambient temperatures to 228°F, which is a significant heating load. Since boiler make-up water is drawn from the river, stored in a reservoir, and then in an outdoor tank; make-up water temperature was assumed to be equal to ambient air temperature. The annual average ambient air temperature at HAAP is 56°F. The average ground temperature in Tennessee is 60°F which is the source of the water in the river. However, surface water temperatures typically follow average ambient air temperatures. The low pressure steam condenses in the DA heater and contributes about 15% of the mass of water exiting the heater.

3.2.3.6 Low Pressure Steam Header

The low pressure (5 psig) steam header is fed by the exhaust from the turbines driving the draft fans, feedwater pump, and DA pump, and from the blowdown flash tank. The only user of low pressure steam is the DA heater. If insufficient steam is available for the DA heater, additional 300 psig steam is fed to the low pressure steam header through a pressure reducing station. If excess steam is present in the low pressure steam header, it is vented to the atmosphere.

Figure 3-4 below shows the steam balance in the low pressure steam header calculated for each month of the year. At low steam demand during the summer, excess steam is present due to part load inefficiency of the pumps, fans, and turbines. At high steam demand during the winter, the low pressure steam header is fed additional steam from the 300 psig main. Steam venting from the CHP is a visible energy loss, but its magnitude is small relative to the annual CHP steam production.

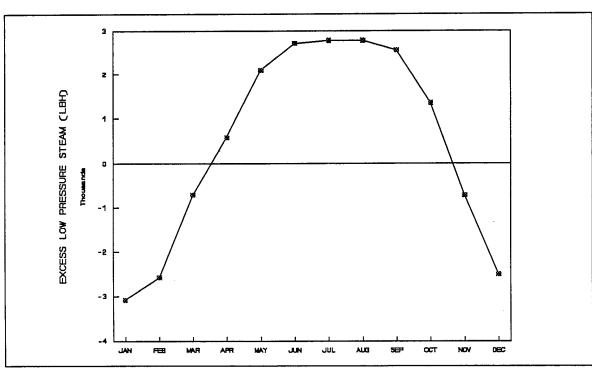


FIGURE 3-4. LOW PRESSURE STEAM HEADER BALANCE

3.2.3.7 Steam Traps

Steam traps on the low pressure steam header and at the steam turbines used to drive the draft fans, DA pump and feedwater pumps, remove condensate and discharge it into the wastewater drain system. The amount of condensate generated by each component was estimated as follows:

- Turbines driving the draft fans have exiting steam quality of 99.1%, according to the manufacturer. The resulting condensate generation at average boiler operating conditions with two draft fan turbines operating is a total of 175 lbm/hr.
- Turbines driving the DA pump discharge superheated steam with no condensate generation.
- Turbines driving the feedwater pumps discharge superheated steam with no condensate generation.
- The high pressure (300 psig) steam header contains superheated steam with no condensate generation from pipe heat loss.
- The low pressure (5 psig) steam header also likely contains steam which is slightly superheated. The DA pump and feedwater pump turbines discharge superheated steam into the low pressure steam header. Little or no condensate generation is expected.

Considering energy and mass flow through the plant, condensate losses are insignificant.

3.2.3.8 Steam Jet

A steam jet vacuum system is used to move fly ash from the cyclone and precipitators to a collection bin. On the average, the steam jet operates 4 hours per day. During operation the steam jet cycles on and off as various valves and dump gates are cycled. The steam jet runs about 75% of the time during operating cycles reducing actual running time to 3 hours per day. During operation the steam jet is estimated to use 7,455 lbm/hr of 300 psig steam. Operating only 3 hours per day, the daily average is 932 lbm/hr.

3.2.3.9 Central Heating Plant Efficiency

The distribution of steam flow in the Area-B CHP is presented graphically in Figure 3-5 on page 3-13. Approximately 83.5% of the steam produced by the boilers is sent to the distribution system. The remaining 16.5% is used within the CHP. The largest steam load within the CHP is the draft fan steam turbines which consume 11.9% of the steam generated.

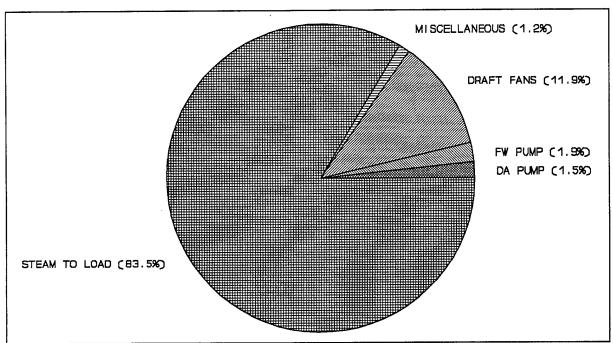


FIGURE 3-5. DISTRIBUTION OF CHP STEAM FLOW AT AREA-B

Most of the steam used by the CHP is not lost, but is first used in steam turbines driving the draft fans, feedwater pump, and DA pump, and then to heat boiler feedwater in the DA heater. Not only is most of the energy in the steam recovered, the mass is also recovered and recirculated through the boilers via the DA heater. At average operating conditions, turbine steam usage and DA heater steam load are closely matched.

The Area-B CHP efficiency at average operating conditions was calculated by the computer boiler model to be 70.5%. CHP efficiency is defined as the energy production of the CHP divided by the coal energy consumed. The energy production of the CHP is the energy leaving the CHP in the form of steam delivered to the steam distribution system less the energy entering the CHP in the make-up water. Energy losses from the CHP include all of the boiler losses with the exception of the flash steam recovered in the blowdown flash tank. The remaining CHP losses are the steam jets used for ash transport, excess steam vented from the low pressure steam header, condensate loss, and heat loss from pipes and equipment.

3.3 AREA-A CENTRAL HEATING PLANT PERFORMANCE

The boilers, support equipment, and layout at the Area-A CHP is almost identical to the Area-B CHP with the following notable exceptions:

- The Area-A CHP generates steam at 400 psig.
- Condensate from Area-A process loads is returned to the CHP.

• The Area-A CHP DA pump is powered by an electric motor rather than a steam turbine.

3.3.1 Boiler Description

The boilers in the Area-A CHP were constructed in 1943 and much of the equipment in the CHP is nearly 50 years old. The CHP contains seven boilers, six stoker-fired coal and one pulverized coal-fired boiler. The six stoker-fired boilers were built by Springfield Boiler Company and Hoffman Combustion Engineering Company. Table 3-2 below summarizes the characteristics of the seven boilers.

TABLE 3-2 AREA-A BOILERS

Boiler Number	Boiler Type	Maximum Comfortable Firing Rate* (lbm/hr)	Manufacturers Specified Firing Rate (lbm/hr)
1	Stoker Coal	100,000	130,000
2	Stoker Coal	100,000	130,000
3	Stoker Coal	100,000	130,000
4	Stoker Coal	100,000	130,000
5	Stoker Coal	100,000	190,000
6	Stoker Coal	150,000	130,000
7	Pulverized Coal	190,000	170,000

^{*}Maximum comfortable firing rate is maximum rate at which operating personnel will operate the boilers without additional manpower.

3.3.2 Boiler Performance

3.3.2.1 Steam Production

Steam produced by each boiler is continuously measured by a steam meter coupled to a pen chart and electronic data system. Total steam production is recorded daily and summed for the monthly usage reports. The average hourly steam production for the last two calendar years was 106,300 lbm/hr, which is the average operating condition. In 1990, averages in each month varied from 82,000 to 136,000 lbm/hr. Steam usage varies little on a weekly basis. Steam loads are generally supplied by two boilers.

Peak steam demand at Area-A is estimated at 162,700 lbm/hr based on a 20% diversity factor applied to the peak month over the last two years.

3.3.2.2 Coal Consumption

The amount of coal consumed per pound of steam produced was calculated by dividing the metered steam production by the amount of coal purchased over a two year period. An average of 10.7 pounds of steam was produced for each pound of coal burned over the last two years. Laboratory analysis indicates that energy content of the coal used is 14,100 Btu/lbm.

3.3.2.3 Combustion Air

The Area-A boilers are equipped with an electronic control and instrumentation system including O_2 trim. The O_2 trim air flow control is set by the operators based on the appearance of the flame. Boiler logs indicate that both the Area-A and Area-B boilers operate with approximately the same amount of excess air. Both Area-A and Area-B boilers have been retrofitted with identical overfire air systems to improve combustion efficiency. The curve relating oxygen content in the flue gas to part load developed for Area-B boilers was based on data from both Areas-A and B, and was also used for the Area-A boilers.

3.3.2.4 Dry Flue Gas Loss

Dry flue gas loss was determined as described in the Area-B boiler analysis in §3.2.2.4. At average operating conditions, the computer boiler model calculated dry flue gas loss at 15.2% of the fuel input to the boiler.

3.3.2.5 Flue Humidity Loss

Flue humidity loss was based on the Hydrogen content in the fuel as described in the Area-B analysis. At average operating conditions, the computer boiler model calculated flue humidity loss at 3.9% of the fuel input to the boiler.

3.3.2.6 Feedwater

Boiler feedwater is heated to approximately 228°F in the DA heater prior to entering the boiler. Unlike Area-B, which does not return condensate to the CHP, Area-A returns about 60% of the condensate. The result is the amount of low pressure steam required for the DA heater is significantly lower than for Area-B.

3.3.2.7 Blowdown

The blowdown rate for the Area-A CHP was assumed to be the same as that measured at Area-B. The feedwater treatment system at both Areas-A and B are the same design; the same blowdown rates will likely be required. At average operating conditions, the computer boiler model calculated blowdown energy loss at 0.8% of the fuel input to the boiler.

3.3.2.8 Radiation

Boiler radiation was also assumed to be the same for boilers in both Areas A and B at 1.65 MBh. The boilers in both Areas-A and B are the same size and construction. At average operating conditions, the computer boiler model calculated radiation loss at 2.2% of the fuel input to the boiler.

3.3.2.9 Combustion Loss

A major difference in the Area-A and Area-B CHPs is the combustion losses which is unburned carbon in the ash. Area-B disposes of almost twice as much fly ash per ton of coal burned as Area-A. Combustion losses for Area-A were estimated to be zero based on the measured fuel input less the measured steam output and other boiler losses. Combustion losses appear to account for the bulk of the difference in performance of the two CHPs.

3.3.2.10 Economizer

Measurements and observations in the field indicate that the economizers at each CHP are performing approximately the same.

3.3.2.11 Boiler Efficiency

Figure 3-6 on page 3-16 summarizes boiler performance of Area-A boilers calculated by the computer boiler model at average operating conditions. As can be seen, energy output from the boiler in the form of steam is 77.9% of the fuel input; which is by definition the boiler efficiency. Dry flue loss and flue humidity loss are 15.2% and 3.9% of the fuel input, respectively. The remaining 3.0% is blowdown, radiation, and combustion loss.

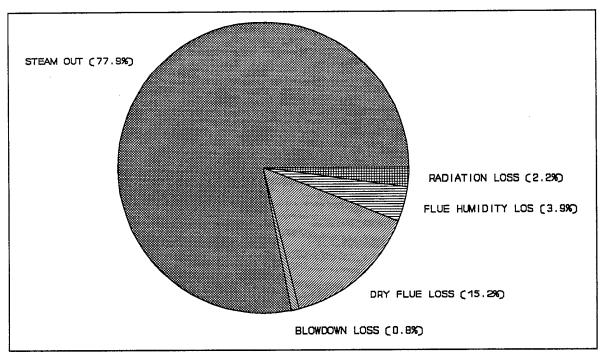


FIGURE 3-6. AREA-A BOILER EFFICIENCY

3.3.3 Central Heating Plant Performance

The CHP uses a portion of the steam produced by the boilers to drive pumps and fans associated with the boilers, and for ash transport. This section describes CHP auxiliary equipment and characterizes mass and energy flows through the CHP.

3.3.3.1 Steam Turbines

Each boiler has a forced draft and induced draft fan on the ground floor. Both fans are driven by a steam turbine off a common shaft. The feedwater pumps are also driven by steam turbines. Turbine steam rates were determined by correcting the Area-B steam rates for the higher pressure at Area-A.

3.3.3.2 Blowdown Flash Tank

Flash steam from boiler blowdown is captured in the flash tank and routed to the DA heater. Approximately 24% of the blowdown water is flashed to steam. Blowdown liquid is discharged into the wastewater system.

3.3.3.3 Deaerating (DA) Heaters

In the DA heaters, low pressure (5 psig) steam is used to heat and deaerate boiler feedwater. Since approximately 60% of the condensate is returned to the boiler plant, DA heating requires

much less steam than Area-B. The low pressure steam condenses in the DA heater and contributes about 15% of the mass of water exiting the heater.

3.3.3.4 Low Pressure Steam Header

The low pressure (5 psig) steam header is fed by the exhaust from the turbines driving the draft fans and feedwater pump. The blowdown flash tank also contributes low pressure steam to the header. The only user of low pressure steam is the DA heater. If insufficient steam is available for the DA heater, additional 400 psig steam is fed to the low pressure header through a pressure reduction station. If excess steam is present in the header, it is vented to the atmosphere. Analysis indicates that at average operating conditions 8,607 lbm/hr of excess steam is vented.

3.3.3.5 Steam Traps

Analysis of the Area-B CHP indicates that condensate generation within the CHP is insignificant. This also is true for the Area-A CHP.

3.3.3.6 Steam Jet

A steam jet vacuum system is used to move fly ash from the cyclone and precipitators to a collection bin. On the average, the steam jet operates 2 hours per day. During operation the steam jet cycles on and off as various valves and dump gates are cycled. The steam jet runs about 75% of the time during operating cycle reducing actual running time to 1.5 hours per day. During operation the steam jet is estimated to use 7,455 lbm/hr of 300 psig steam. Operating only 1.5 hours per day, the daily average is 466 lbm/hr.

3.3.3.7 Central Heating Plant Efficiency

The Area-A CHP efficiency at average operating conditions was calculated by the model to be 70.3%. CHP efficiency is defined as the energy production of the CHP divided by the coal energy consumed. The energy production of the CHP is the energy leaving the CHP in the form of steam delivered to the steam distribution system less the energy entering the CHP in the make-up water. Energy losses from the CHP include all of the boiler losses with the exception of the flash steam recovered in the blowdown flash tank. The remaining CHP losses are the steam jets used for ash transport, excess steam vented from the low pressure steam header, condensate loss, and heat loss from pipes and equipment.

SECTION 4.0

COGENERATION

4.1 ECO CONCEPT

Steam is currently distributed from the CHP to Area-B for space heating and process loads at 300 psig and 525°F. This ECO consists of installing a steam turbine-generator for Area-B. A new steam turbine-generator would accept steam at 300 psig, generate a portion of the electricity required by Area-B, and exhaust the steam to the distribution system at a lower pressure for space heating and process loads.

The system would use a back-pressure steam turbine to reduce steam pressure from the 300 psig produced by the boilers to the pressure required for space heating and process loads. Electricity generated would be fed back into the Area-B grid for use on site.

Steam from the proposed steam turbine-generator would serve all of Area-B with reduced pressure steam, with the exception of Buildings B-6 and 334 which require 300 psig steam (see Figure 4-1 on page 4-3). These buildings would continue to be supplied with 300 psig steam through a takeoff upstream of the proposed steam turbine-generator. A line to bypass 300 psig steam around the turbine would be required to supply steam during mobilization.

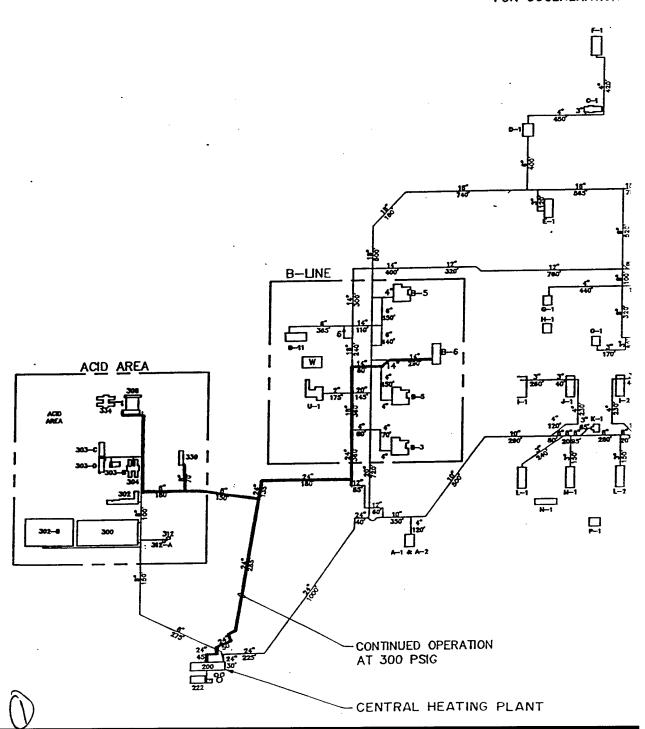
The recommended location for the steam turbine-generator is adjacent to the Area-B CHP on the north side between the two major steam distribution mains serving Area-B.

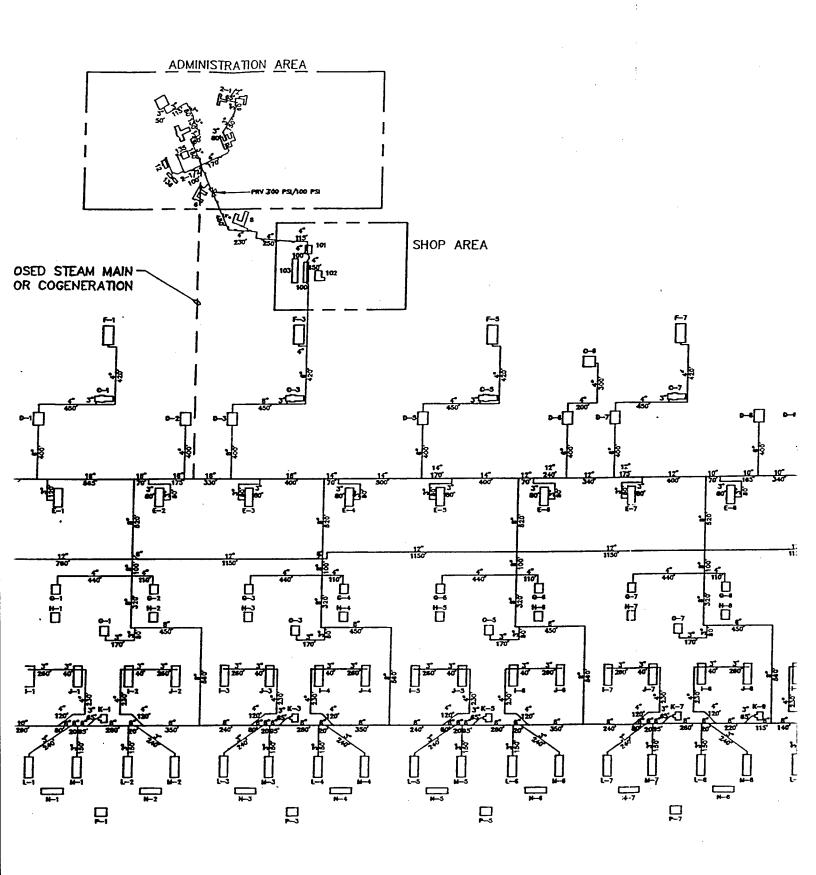
4.2 PREVIOUS STUDIES

4.2.1 HDC Engineering Report E88-0007, Cogeneration of Steam & Electricity at HAAP Using No. 5 Boiler, Building 200, Area B

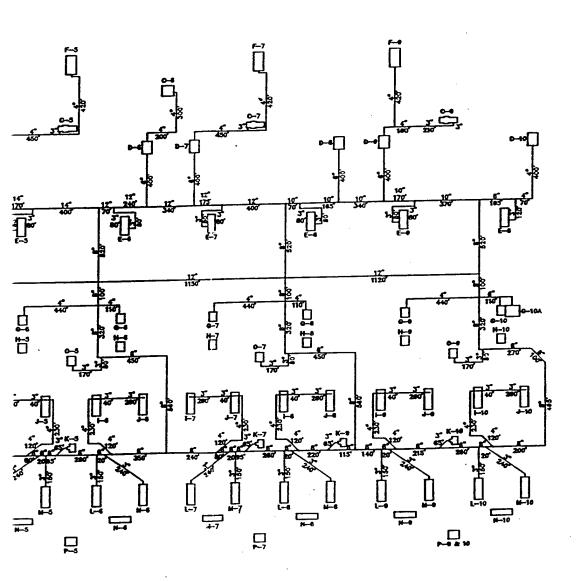
A brief study was performed in 1988 by HDC to evaluate the possible use of a steam turbine-generator in conjunction with reactivation of the No. 5 Boiler. The No. 5 Boiler is a pulverized-coal boiler capable of operating at 500 psig. The existing operational stoker-coal boilers are limited to 300 psig operation. This study addressed the concept of adding a steam turbine-generator which would reduce steam from 500 to 300 psig. The exit pressure at 300 psig is the same steam distribution pressure now used at Area-B.

The results of that study indicated that cogeneration was an economically attractive alternative to present stoker-fired boiler operation. The economics were based on projected savings in fuel purchase costs with lower grade coal, savings in coal consumption due to 5-10% higher boiler efficiency, and savings in cost for electricity. Annual energy cost savings were estimated at \$673,183. Investment costs were estimated at \$1,350,000, but did not include the \$5,200,000 required for reactivation of the No. 5 Boiler.


4.2.2 Kinney EEAP Report


The 1983 EEAP report prepared for the HAAP by A.M. Kinney, Inc. included an analysis of cogeneration options. This study examined the use of steam turbines to reduce steam pressure from the existing 300 psig in the distribution piping to 30 psig which is the end use steam pressure in most cases. Four different options were examined, three of which required installation of low pressure steam distribution systems or conversion of high pressure distribution systems. Economic analysis was performed on the two most promising options:

- A small 405 kW steam turbine-generator located in Building B-6 which served the existing low pressure distribution system for the other Area-B buildings. Annual energy cost savings were estimated at \$94,800. Investment costs were estimated at \$175,000.
- A large 2,105 kW steam turbine-generator located in Building B-6 which served both the existing low pressure distribution system for the B-line buildings and the remainder of the production area. In addition to the turbine-generator, about 7,000 feet of new steam piping would be required. Annual energy cost savings were estimated at \$489,800. Investment costs were estimated at \$1,342,000.


Based on this study a 400 kW steam turbine-generator was installed in Building B-6.

PROPOSED STEAM MAIN-FOR COGENERATION

4.3 EVALUATION APPROACH

4.3.1 Existing Cogeneration System

There is an existing 400 kW steam turbine-generator in Building B-6 which is only two years old, but is inoperable. Discussions with maintenance personnel indicate that they have not had time to trouble-shoot the problem, but believe there is a control problem. Discussions with turbine manufacturers indicate that the problem is likely that the speed control needs adjusting, a procedure which should be performed annually.

Not knowing the exact problem, repair costs are difficult to quantify. Repair costs are estimated at \$5,000 based on a 5 day field visit by the turbine manufacturer, including \$1000 for parts.

Upon completion of repairs, the annual energy cost savings are estimated to be \$41,887 with a resulting simple payback of about one month. Considering the economic benefit, the steam turbine should be repaired immediately with O&M funds.

The analysis of the proposed steam turbine-generator assumes that 300 psig steam will continue to be supplied to the existing steam turbine-generator in Building B-6.

4.3.2 Proposed Cogeneration System

Evaluation of the cogeneration ECO proceeded as follows:

- 1. A base case steam load was developed using historical steam production records, weather data, and steam distribution system heat loss calculations. The base case steam load is the steam load which the steam turbine-generator system must supply. The base case electrical loads and base case energy costs were also developed.
- 2. The steam distribution system was simulated to determine the minimum steam pressure at which the steam distribution system could operate and still meet all building steam pressure requirements. The turbine back pressure of the steam turbine-generator system is set by the minimum steam pressure of the steam distribution system. A flow and pressure drop model of the steam distribution system was developed which required the following inputs:
 - Steam distribution system geometry.
 - Steam pressure requirements for each building.
 - Peak space heating and process steam demand for each building.

The capacities of PRVs and steam traps at the lower pressures were also investigated.

- 3. Two options for turbine back pressure were identified:
 - A 175 psig option which requires no modification of the existing steam distribution system.

- A 110 psig option which requires the addition of a new steam line to serve the administration area.
- 4. The performance of the cogeneration system was then calculated to determine the consumption of coal in the CHP, and the amount of electricity generated for the two options. A simplified economic analysis was performed for the two options. Based on the results of the analysis, the 110 psig option was selected for further detailed evaluation.
- 5. A conceptual design of the 110 psig option was completed in order to determine the construction of the cogeneration system.
- 6. Finally, system construction costs were estimated and a Life Cycle Cost Analysis performed.

4.4 BASE CASE STEAM AND ELECTRIC LOADS

4.4.1 Historical Steam Usage

Monthly metered steam usage over the last two years at Area-B is indicated in Figure 4-2 on page 4-6. Steam usage is fairly consistent from year to year, but varies monthly in response to space heating loads. Analysis of the CHP indicates that an average of 16.5% of the steam metered at the boilers is used within the CHP. The remaining steam usage may be divided up into three categories

- Steam distribution system heat loss.
- Space heating loads.
- Process loads.

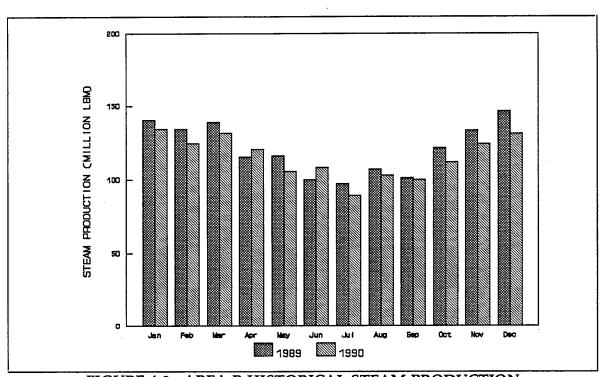


FIGURE 4-2. AREA-B HISTORICAL STEAM PRODUCTION

4.4.1.1 Steam Distribution System Heat Loss

Steam is distributed to Area-B facilities through a steam distribution system almost 40,000 feet in length. Heat losses from the steam distribution system were determined in a 1983 EEAP report prepared for the HAAP by A.M. Kinney, Inc. (referred to as the Kinney EEAP Report) at 10.6 MBtu/hr. Surface temperatures of the outer insulation casing were measured during the field survey. The casing temperature on a 24 inch pipe was measured at 105°F with the ambient air temperature at 56°F. Using the steam temperature of 525°F and the projected heat loss from the Kinney EEAP Report, an equivalent surface temperature was calculated. This analysis verified that the data in the Kinney EEAP Report was approximately correct.

The total heat loss from the steam distribution system was divided by the difference between the steam temperature and average ambient temperature to obtain a steam distribution system heat loss coefficient of 22,662 Btuh/°F.

Steam trap steam losses from the steam distribution system were assumed to be negligible. Condensate generation in the steam distribution system is minimal due to the superheated steam from the CHP.

4.4.1.2 Process Loads

Process loads were estimated to be the average of the summer steam demands of Area-B less the pipe losses. Space heating demands were assumed to be zero in the summer. Process loads are constant throughout the year and were calculated at 77,027,000 pounds of steam per month, or an average of 106,982 lbm/hr.

4.4.1.3 Space Heating Loads

Monthly space heating loads were computed by subtracting in-plant steam use, steam distribution system heat loss, and process loads from the metered steam usage. A space heat coefficient was calculated by dividing the total space heating loads over the last two years by the base 65°F heating degree days for the period. The resulting space heat coefficient is 1,865,000 Btuh/°F. The space heat load is then the space heat coefficient times the degree days for the period. Figure 4-3 below compares the space heating loads from the metered data to the space heating loads calculated by the degree day model over the first two years. As can be seen, the degree day model closely predicts space heating loads.

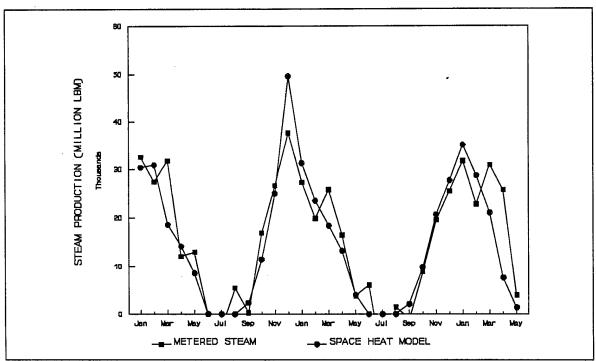


FIGURE 4-3. AREA-B SPACE HEATING LOADS

4.4.1.4 Base Case Steam Loads

With steam distribution system heat loss, process loads, and space heating loads quantified, a base case steam load on the Area-B CHP can be defined. It is essentially a monthly steam load for a statistical weather year based on constant process loads and on space and pipe steam loads which vary with ambient air temperature. A plot of the base case steam load is shown in Figure 4-4 below. The base case steam load is comprised of the following:

- Steam distribution system heat loss is the steam distribution system heat loss coefficient (22,622 Btuh/°F) times the difference between the steam distribution temperature (currently 525°F) and the average monthly ambient temperature. (Refer to §4.4.1.1)
- Process loads of 106,982 lbm/hr of 300 psig/525°F steam. (Refer to §4.4.1.2)
- Space heating load is the space heat coefficient (1,865,000 Btuh/°F) times the degree days in the month. (Refer to §4.4.1.3)

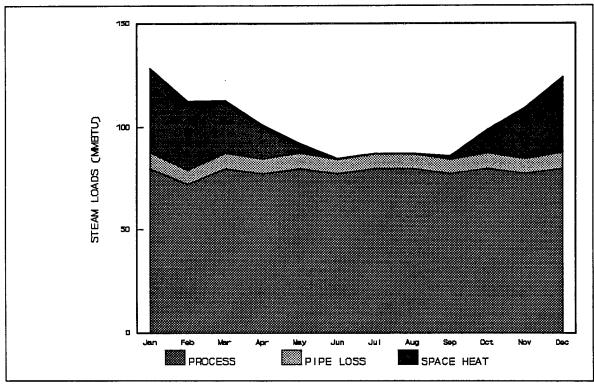


FIGURE 4-4. AREA-B BASE CASE STEAM LOAD

Figure 4-4 above illustrates the base case model. The steam distribution system heat losses and process loads stay fairly constant throughout the year, while the space heating load is zero in summer and peaks in January.

4.4.2 Base Case Electrical Loads

Typical hourly electric demands are shown in Figure 4-5 below. The graph shows that the demand varies by day of the week. Discussions with HAAP personnel indicate that demand variation is the result of operating schedules of various electrical equipment, mostly large motors. It was also indicated that all weeks throughout the year follow the same electrical profile. The steam turbine-generator would generate approximately 800 kW of electrical power, which would be relatively constant throughout the year. The 800 kW generated is far below the minimum electric demand of 5,000 kW, so no power would be sold to the utility company.

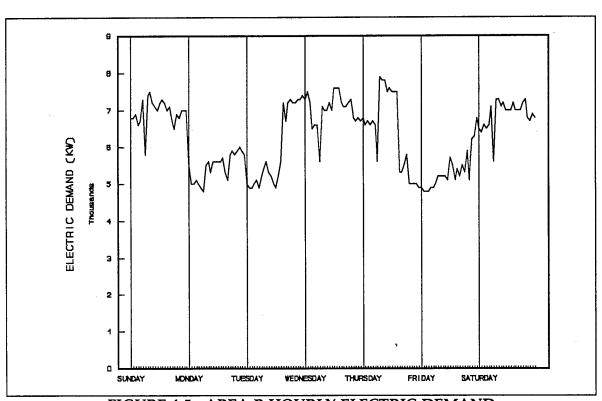


FIGURE 4-5. AREA-B HOURLY ELECTRIC DEMAND

4.4.3 Base Case Energy Costs

Using the incremental energy costs developed in Section 2.0 and the base case energy usage developed above, the base case energy costs were determined and are summarized in Table 4-1 below.

TABLE 4-1
AREA-B BASE CASE COGENERATION ENERGY COSTS

Energy Source	Unit Energy Cost	Base Case Energy Usage	Energy Cost	
Coal	\$1.25/MBtu	2,086,488 MBtu	\$2,608,110	
Electricity	\$0.01585/kWh \$9.50/kW	58,753,486 kWh 8,268 kW	\$936,456 \$942,552	
Total			\$4,487,118	

These are the costs against which the cogeneration ECO was evaluated.

4.5 STEAM DISTRIBUTION SYSTEM SIMULATION

The minimum steam turbine back pressure was determined by simulating the steam distribution system as follows:

- Define the steam distribution system geometry and construct a complete model.
- Determine the minimum steam pressure requirements for each building.
- Determine the peak space heating and process loads.

The existing steam distribution system is supplied steam at a pressure of 300 psig. In a cogeneration system, this high pressure would be used to drive a steam turbine-generator set. The steam would exit the turbine at the turbine back pressure. The lower pressure steam would be delivered through the steam distribution system to space heating and process loads.

The amount of steam which can be supplied through a steam distribution system is proportional to the density of the steam, which is proportional to the steam pressure. For instance, a steam distribution system operating at 300 psig will supply 2.5 times the steam of a system operating at 100 psig. Determination of the minimum steam distribution system pressure requires knowing the peak steam demand, the distribution of peak steam demand, and the ability of the steam distribution system to deliver steam to each building at the required pressure.

4.5.1 Steam Distribution System Geometry

The "Pipe Network Simulation Analysis Computer Program" (NETWK) was used to simulate the steam distribution system. The program calculates steam flow rate and pressure for designated system components. The program uses the mass and energy conservation laws, and assumes the sum of pressure drops around a loop is equal to zero. The program performs a matrix solution of the system equations using the Newton-Raphson iteration technique to ensure quick convergence.

Nodes are assigned to critical points throughout the system. These critical points include tees, changes in pipe diameter, and points where steam is removed from the system for space heating or process loads. Each branch of pipe is also given a number. The lengths and diameters of the pipes are also input into the program.

A flow model was developed for Area-B using the NETWK program. The existing steam distribution system was modeled as a series of nodes and branches which identified the geometry of the system. The central heating plant was modeled as a 300 psig reservoir. Space heating and process steam demands were assigned to appropriate nodes. The steam turbine-generator for this ECO was located at node 1 near the CHP.

4.5.2 Steam Pressure Requirements

For space heating and most process use within Area-B, steam pressure is reduced to 30 psig by pressure reducing valves (PRV) upstream of the application. Requirements for higher pressure steam include:

- Building B-6 has a 400 kW steam turbine-generator requiring 300 psig steam. Low
 pressure steam from the turbine exhaust provides energy for the remaining B-line
 buildings. This steam turbine-generator is currently inoperable and a PRV provides
 steam for the remaining B-line buildings.
- The acid area has a cracking column in Building-334 which requires 300 psig steam.
- Steam jet vacuum systems in process buildings throughout Area-B require 100 psig steam.
- Steam engine stirrers in the M buildings are operated on 300 psig steam. It has been
 determined that 100 psig steam can likely be used to operate these engines. These
 engines should be tested to verify operation at 100 psig prior to construction of a
 cogeneration system.
- The administration area is served by a PRV station which reduces steam pressure to 100 psig. Secondary PRVs at each building in the administration area reduce steam pressure to 30 psig.

Based on the above requirements, a pressure of 100 psig was determined to be the minimum pressure supplied to most production buildings. Buildings 334 and B-6 require 300 psig steam. For this ECO, the steam distribution system would be divided into two steam

distribution systems, one operating at 300 psig and the other at the new turbine-generator back pressure. The existing steam distribution system would be configured using existing valves to segregate 300 psig and 100 psig distribution. Figure 4-1 on page 4-3 indicates the portion of the steam distribution system to be operated at 300 psig.

4.5.3 Peak Space Heating Load

Historical space heating energy usage resulted in a space heating coefficient of 1,865,000 Btuh/°F for all of Area-B. At an outdoor design temperature of 9°F, the peak heating load is 104.4 MBH. A total of 101,600 lbm/hr of 300 psig steam is required to meet the 104.4 MBH peak heating load.

The Kinney EEAP Report indicated a peak heating load of 30.0 MBH. The heating load, based on historical data, is 3.5 times that predicted by the Kinney EEAP Report. The Kinney Report did not include ventilation or infiltration loads and may have missed buildings which are still being heated. The approach taken by this study was to use the Kinney EEAP Report data to apportion the historical peak heating demand to individual buildings. This was accomplished by multiplying the EEAP peak heating load by the 3.5 correction factor.

4.5.4 Peak Process Load

The process steam usage and loads were not included in the Kinney EEAP Report. A previous study entitled, "Methods for Conservation of Energy at Holston Army Ammunition Plant" (DACA09-78-C-3000) by Dupont, presents theoretical figures on process energy requirements (by chemical analysis). The report includes information on many of the buildings, or at least on building types throughout the system. It was assumed that if the process is the same for two buildings, then the process load is also the same. Theoretical process loads were found for each type of process building. Theoretical process loads were calculated at 85,849 lbm/hr based on this theoretical data.

The historical process load is 106,982 lbm/hr based on historical data (see §4.4.1.2 for details). Dividing the historical process load by the theoretical process load gives a ratio of 1.25. The difference is likely due to heat loss from the uninsulated jacketed tanks, leaking steam traps, and other heat loss within the process building. The historical process load was used to correct the theoretical process loads by multiplying the theoretical process load from each building by the 1.25 ratio.

There is some diversity in process load. Figure 4-6 on the following page indicates hourly steam production during a period of minimal space heating load. The hourly peak steam load varies by up to $\pm 10\%$ of the average steam load. To ensure sufficient steam through the system, the process load for each building was multiplied by 1.2. Table 4-2 on page 4-13 summarizes the process loads. The resulting peak process steam demand is 128,380 lbm/hr.

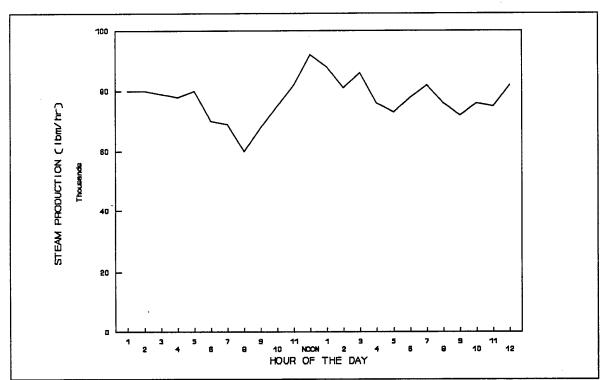


FIGURE 4-6. AREA-B HOURLY STEAM PRODUCTION

TABLE 4-2 AREA-B PROCESS STEAM LOADS

Building	No. of Buildings	Theoretical Steam Load (lbm/hr)	Peak Steam Load (lbm/hr)
302	1	17,775	26,663
334	1	19,970	29,9 55
B-6	1	18,000	27,000
D's	2	1,223	1,835
E's	3	544	816
G's	5	5,205	7,808

4.5.5 Simulation Results

Simulation of the steam distribution system resulted in two options for turbine back pressure:

- The 175 psig Option. The lowest turbine back pressure was determined to be 175 psig for the existing system. This pressure is necessary to distribute steam to satisfy demands and pressure requirements throughout the system. The limiting factor is the steam line serving the shop and administration areas. A six inch pipe serves the shop area with a four inch extension serving the administration area. With 175 psig steam exiting from the cogeneration steam turbine, steam pressure would be maintained at a minimum of 165 psig throughout the process area, but would drop to 30 psig by the time it reached the administration area.
- The 110 psig Option. The existing steam distribution system would be modified by running a new six inch steam line from the production area to the administration area, as indicated in Figure 4-1 on page 4-3. With this new line, a steam turbine back pressure of 110 psig would be required to supply a minimum of 100 psig to the process area and to provide 30 psig to the administration area.

4.5.6 **PRVs**

The steam distribution system serves PRVs at each building or process. At lower steam main pressures the PRVs have less capacity.

Nameplate data on the PRV's at active production buildings were taken during the field study. Analysis and manufacturer's data indicate that a reduction of steam main pressure from 300 psig to 110 psig will result in a capacity reduction to about 45% of that at 300 psig.

The average process loads for each building were compared to the capacity of the valve operating at 110 psig. In all cases for which data was available, the capacity of the PRV at 110 psig is at least five times the average load. Most of the process steam is used for adding heat to processes which are fairly steady loads. Peak steam loads are not likely to exceed five times the average load.

The process steam jet vacuum systems would likely have higher peak to average ratios at 110 psig due to more intermittent operation. The steam jets require 100 psig steam and PRV capacity is affected more significantly than the process heating loads (30 psig). Existing 100 psig systems could be converted to 110 psig by bypassing existing PRVs.

4.5.7 Steam Traps

The purpose of the steam traps is to take condensate, air, and carbon dioxide out of the steam equipment and piping as fast as they accumulate. Most of the steam traps are downstream of the PRVs on equipment and would not be affected by the change in steam main pressure. There are a few steam traps on the steam distribution system which would be affected. When the pressure is lowered, the steam traps suffer a 45% capacity reduction similar to the PRV's.

Because of the superheat in the steam from the CHP, little condensate is generated in the steam distribution system. Condensate generation in the steam piping is minimal at about 1500 lbm/hr for the entire system. Under these superheat conditions the existing steam traps are adequate.

A cogeneration turbine operating with a back pressure of 110 psig would provide steam superheated to about 400°F. Under this condition condensate generation would be less than at 300 psig. Therefore, existing steam traps are adequate.

4.6 COGENERATION SYSTEM PERFORMANCE

This section details the calculation of energy savings and a simplified economic analysis of the two steam turbine back pressure options. The purpose is to select the optimal option for conceptual design and life cycle cost analysis.

4.6.1 Steam Flow

Based on the preceding analysis, steam flow available for the steam turbine-generator for this ECO includes all of the steam load at Area-B with the exception of the following two buildings:

- Building B-6 has a 400 kW steam turbine-generator requiring 300 psig steam. The average process steam load is estimated at 22,500 lbm/hr.
- Building-334 a has a cracking column which requires 300 psig steam. The average process steam load is estimated at 24,962 lbm/hr.

Unfortunately, these two buildings account for approximately 47,462 lbm/hr or 44% of the average process steam load. The resulting average steam load available for cogeneration is approximately 92,142 lbm/hr for the year with monthly averages ranging from 70,000 lbm/hr to 125,000 lbm/hr. (See Appendix C-5 for a monthly tabulation.)

4.6.2 Electric Generator

There are two types of electric generators available, synchronous and induction. The basic difference between the two is in the exciter. The synchronous generator has an exciter which produces the magnetizing field in the generator. The induction generator does not have an exciter, but draws its excitation from the bus. The synchronous generator was chosen over an induction generator because:

- The synchronous generator can operate by itself. If commercial power is lost the induction generator cannot operate, but the synchronous will continue to generate power without interruption.
- The synchronous generator can improve the plant power factor by operating in a manner which allows it to carry a reactive load. This improves the power factor. The

induction generator tends to lower the overall power factor, because it takes its excitation from the power line.

Electric generators in the desired size range can be purchased with generating voltages up to 13,800 volts. There is a 13,800 to 480 volt transformer adjacent to the proposed cogeneration site which provides two options for generator voltage:

- Generation at 13,800 volts allows direct tie in to the 13,800 volt plant distribution grid.
- Generation at 480 volts requires power to be back-fed through the transformer to the plant distribution grid.

Vendor quotes indicate an additional cost of about \$50,000 for a 13,800 volt generator over that of a 480 volt generator. For the desired size range, a 13,800 volt generator must be custom built. Considering the additional cost of the 13,800 volt generator, the 480 volt generator was selected.

4.6.3 Cogeneration Model

In optimizing the cogeneration system the goal was to size the system with the lowest simple payback. A cogeneration model was developed which calculated annual energy savings, capital costs, and simple payback for the two cogeneration system alternatives identified. Essential elements of the cogeneration model include the following.

- Monthly space heating steam loads were calculated based on degree days and the space heating coefficient developed from historical steam usage data.
- Average process steam loads were calculated based on historical steam usage data. Process demands which must operate at 300 psig were calculated in §4.6.1.
- Steam distribution system heat loss was calculated based on steam temperature, average ambient temperature, and the pipe loss coefficient developed from the Kinney EEAP Report. Pipe heat loss does not remove steam from the system, but does remove energy which is accounted for as a steam load.
- Monthly average steam load available for cogeneration is the total steam load less that required for 300 psig processes. Steam used for cogeneration is limited by either the turbine size or the steam load.
- Electricity generated was calculated based on the steam rates provided by steam turbine-generator suppliers. Part load performance was calculated based on the standard turbine characteristic of 60% steam at 50% load. Full time operation was assumed. At optimal sizing, cogenerated electricity is less than 10% of the historical electric demand.
- Steam load on the CHP is the sum of the cogeneration steam, the desuperheater steam, and the 300 psig process steam.

- Boiler steam load is the sum of the CHP external load and the CHP in-plant steam use. Monthly coal usage was calculated based on the boiler efficiency and the boiler steam load.
- Monthly coal, electric usage, and electric demand costs were then calculated and totaled for the year. Annual energy cost savings are the calculated energy costs less the annual cost with no cogeneration.
- Estimated investment costs for the different sized cogeneration systems were based on steam turbine-generator package price quotes from vendors plus estimated costs for additional equipment, piping, electrical switchgear, and a small utility building. An 0.7 exponential scaling factor was used to modify costs for different sized systems. Past experience has shown that an 0.7 economy of scale factor is appropriate for cogeneration systems. Costs for steam distribution system modifications for the administration area were calculated separately. Estimated cost for running a six inch steam main to the administration area was \$134,000.
- Simple payback in years is the investment cost divided by the annual energy cost savings.

4.6.4 Results of Analysis

Figure 4-7 on the following page shows the simple payback calculated by the cogeneration model for the two turbine back pressure options. This figure indicates that the 110 psig option has the best payback and that the optimal turbine should be sized near 60,000 lbm/hr.

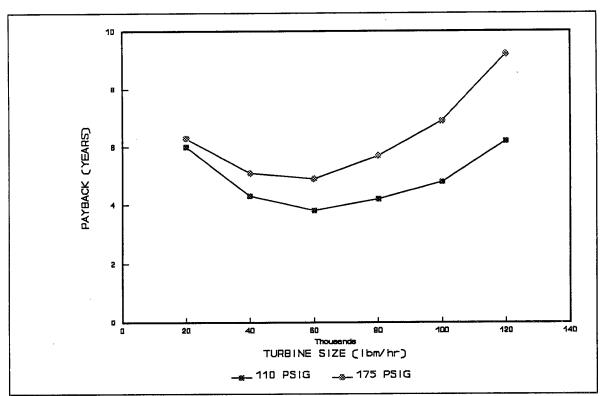


FIGURE 4-7. COGENERATION SYSTEM OPTIMIZATION

Based on the above anlaysis, a steam turbine-generator operating with a back pressure of 110 psig was selected for the conceptual design and Life Cycle Cost analysis.

4.7 CONCEPTUAL DESIGN

4.7.1 Steam Turbine-Generator Layout

The site proposed for the steam turbine-generator is the area between transformer stations on the North side of the Area-B CHP, and between the railroad tracks and the existing 14-inch steam line (see Figure 4-8 on the following page). This location is near the 16-inch steam line that is to be the tie-in point for the 300 psig steam and the delivery point for the 110 psig steam. The steam turbine-generator can be bypassed during mobilization by operating three valves.

The steam turbine-generator would be installed on a concrete housekeeping pad on the concrete slab of a 30-foot by 12-foot pre-engineered steel building. The building would also house the piping, valving, steam traps, pressure-reducing station, de-superheater, and the electrical switchgear.

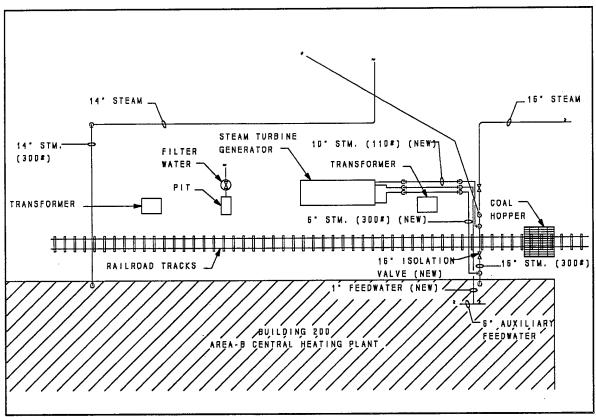


FIGURE 4-8. STEAM TURBINE-GENERATOR PLANT SITE

4.7.2 Steam Turbine-Generator Plant Schematic

Peak steam load from process and space heating loads (see §4.6.1), less 300 psig process steam demand, is approximately 125,000 lbm/hr. Approximately 65,000 lbm/hr of steam would be used for cogeneration. The balance of the steam required must bypass the steam turbine and be reduced in pressure and temperature by a pressure-reducing station and de-superheater. The desuperheater reduces steam distribution system temperature and heat loss, thus conserving energy.

Figure 4-9 on page 4-19 is a one-line steam piping schematic of the steam turbine-generator plant.

Because the heating demand varies from its maximum in the winter to zero in the summer, the bypass pressure reducing (PRV) station must be sized for the variation; 70,000 lbm/hr to 125,000 lbm/hr. A dual-valve PRV station is proposed. The amount of condensate formed in the steam-turbine-generator plant is expected to be small because of superheat remaining in the steam. Therefore, the condensate will be expelled to the drain and not returned to the CHP.

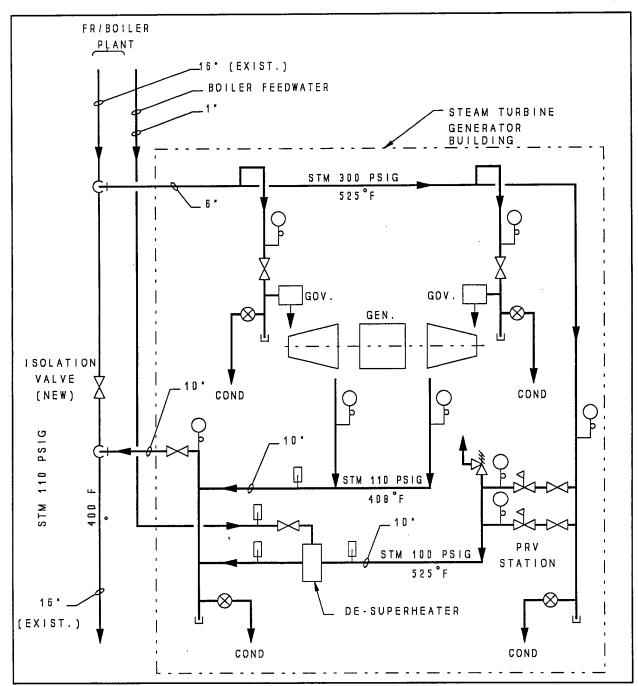


FIGURE 4-9. SYSTEM PIPING SCHEMATIC

The steam turbine-generator would be a back-pressure type taking steam at 300 psig and exhausting it at 110 psig. The steam temperature is reduced from 525°F to 408°F due to expansion of the steam through the turbine. The exhaust steam is still superheated approximately 80°F above saturation temperature. This is desirable because it limits the amount of condensate formed during transmission and assures proper pressure at the point of use.

4.7.3 Core Equipment Selection

Quotes for steam turbine-generator sets were requested from five manufacturers. Preassembled systems including turbine, auxiliary systems, generator, controls, and electrical switchgear were specified. Installation essentially consists of running steam pipes and electrical conductors to the unit. Quotes were requested for turbines operating with back pressures of 110 psig and 175 psig with generator options at 480 and 13,800 volts.

Core equipment for life cycle cost analysis was selected on the basis of simple payback analysis of manufacturer's estimates plus additional costs. Total cogeneration system costs included the following elements:

- Steam turbine-generator set costs including freight, installation, and start up.
- Support system costs including steam piping and accessories, and a structure in which to house the system.
- Electrical costs including feeders and additional switchgear, and electrical service to the new structure.
- Costs for additional steam pipes to the administration area.

Annual energy cost savings were calculated for each vendor steam turbine-generator estimate using the cogeneration model. A summary of the economics of each alternative are presented in Table 4-3 on the following page.

The total investment cost was divided by the annual energy cost savings to calculate simple payback. Maintenance costs were not included, but electric demand savings were included. Based on the least simple payback of 3.9 years, the Coppus-Ewing steam turbine-generator operating with a 110 psig back pressure was selected for life cycle cost analysis.

TABLE 4-3 STEAM TURBINE-GENERATOR ESTIMATES

MANUFACTURER	POWER OUTPUT (KW)	STEAM FLOW (lbm/hr)	STEAM PIPING PRESS (PSIG)	TOTAL INVESTMENT COST (\$)	ANNUAL COST SAVINGS (\$)	SIMPLE PAYBACK (YRS)
COPPUS-EWING	813	67,700	110	\$524,505	\$134,488	3.9
DRESSER-RAND	750	65,000	110	\$499,925	\$128,186	3.9
DRESSER-RAND	1,150	80,000	110	\$838,925	\$164,495	5.1
COPPUS-EWING	813	67,700	110	\$616,265	\$136,948	4.5
DRESSER-RAND	750	65,000	110	\$577,925	\$128,428	4.5
DRESSER-RAND	420	65,000	175	\$349,200	\$68,471	5.1
DRESSER-RAND	400	65,000	175	\$366,200	\$65,393	5.6
DRESSER-RAND	420	65,000	175	\$419,200	\$68,721	6.1
DRESSER-RAND	400	65,000	175	\$444,200	\$65,324	6.8

4.7.4 Interface with Existing Equipment

4.7.4.1 Mechanical Interfaces

Major mechanical interfaces required are the tie-ins to the 16-inch steam main after it exits the CHP near the east end, and the tie-in to the auxiliary feedwater line inside the Area-B CHP near the front end of Boiler No. 1.

Tie-ins would require shutting down necessary lines and would require coordination with plant operating schedules.

There appears to be a flanged connection in the 16 inch main approximately where the line passes over the railroad tracks. This is probably the best location for the new valve isolating the 300 psig portion of the main from the 110 psig portion. The tie-in for the 6-inch supply line to the Cogeneration Plant should be made between the new isolation valve and the wall of the Area-B CHP. The 10-inch output line from the Cogeneration Plant would be tied into the 16-inch main downstream, between the new isolation valve and the existing branch line.

The 1-inch tie-in to the 6-inch auxiliary boiler feedwater line would be made in approximate alignment with where the 16-inch main exits the Area-B CHP wall, so that the 1-inch line projected to be required could be run parallel to and supported with the 16-inch main to a point near the 10-inch tie-in to the main and from there to the steam turbine-generator plant building, and its connection point to the de-superheater.

4.7.4.2 Electrical Interfaces

Electrical switchgear provided by the steam turbine-generator set manufacturer should be specified with controls for voltage regulation, reactive power output and automatic synchronization. The equipment should also include complete generator and bus metering and all protective relays necessary for connection to the utility.

Kingsport Power has established requirements for interconnection of cogeneration facilities to systems which they serve. These safeguard personnel and equipment and insure reliable operation of the cogenerator with the utility system. It is anticipated the controls and protection installed with this system would fully satisfy the interconnection requirements of the utility company.

The electrical distribution system connection for the cogeneration facility would be made at the low voltage side of CHP Substation No. 1, which is a 1500 kVA pad mounted transformer. Figure 4-10 on page 4-24 is a one line diagram of the proposed tie-in. This tie-in would require installation of a new 2000A main bus switchboard at the transformer secondary. The switchboard would have two 1200A switches; One would be connected to existing cables which feed the steam plant switchgear. The second switch would connect to a new feeder from the Cogeneration facility. This feeder would have two parallel sets of three 750 MCM cables each, sized to carry the full capacity of the 800 kW generator (962A at 480V). A bus duct may be more cost effective than the large conductors. Installation of this switch would meet requirements for a lockable disconnect at the tie-in point which is accessible to utility company personnel. Making the connection to the 480V system at this location would enable the cogeneration facility to share steam plant electrical loads with the 1500 kVA substation. If the electrical load at the substation drops below the full capacity of the 800 kW generator, then surplus power can be fed back into the 13.8 kV distribution system through the 1500 kVA transformer.

Electrical loads in the new steam turbine-generator building would be served by a 208/120 lighting panel fed by a 7.5 kVA 3-phase transformer tapped off the 480V generator switchgear (see Figure 4-10 on page 4-24). Projected loads in the facility include lighting and receptacles, ventilation, sump pump and turbine-generator support systems.

4.7.5 Power Factor Correction

The power factor of the plant distribution system is now approximately 0.94, which is much higher than the minimum value of 0.80 required by the utility company in order to avoid penalties assessed for low power factor. The 800 kW synchronous generator has the capability of supplying leading kVARs to the system should that be necessary. However, there would be no cost benefits resulting from elimination of penalties assessed by the utility company. Improvement in plant power factor would yield some decrease in I²R losses in the plant distribution system resulting from reduction in reactive power carried by the system.

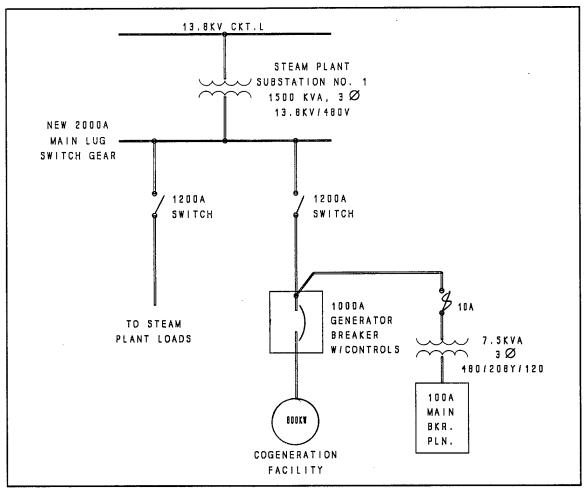


FIGURE 4-10. ELECTRICAL DISTRIBUTION SYSTEM TIE-IN

4.8 LIFE CYCLE COST ANALYSIS

4.8.1 Construction Cost

Construction costs were estimated as follows:

- Cost of the steam turbine-generator set was from vendor quotes for a package complete with controls and most of the electrical switchgear.
- Cost of the steam turbine-generator support equipment, piping, and a pre-engineered building was estimated based on the conceptual design.
- Costs for additional distribution steam piping to the administration area was estimated.
- The cost of additional necessary electrical switchgear was also estimated.

The LCCID program adds design and SIOH (Supervision, Inspection, and Overhead incurred by the Government) costs to the construction cost to obtain the investment cost.

4.8.2 Energy Savings

Energy savings were calculated using data from the cogeneration model. Annual coal savings was calculated using the cogeneration model to first obtain energy usage at current average operating conditions. The cogeneration model was then changed to simulate operation with the proposed cogeneration system and calculated the new energy usage. The difference is energy saved. The resulting electric energy savings is 9,749,780 kWh. Coal usage is calculated to increase by 14,045 MBtu. The total annual energy cost savings is \$137,843. The existing cogeneration system in Building B-6 was assumed to be base loaded at 300 kW.

4.8.3 Operating and Maintenance Costs

The cogeneration system is fully automated with electronic controls and should impose little additional maintenance costs on the facility. The following maintenance costs are anticipated:

- Routine maintenance labor for the steam turbine-generator is estimated at 8 hour per month for an annual cost of \$2,400.
- The turbine manufacturer should inspect and tune the turbines annually. Cost of this service is \$500 per day plus expenses. Assuming four days including travel time plus \$2000 in expenses, the annual cost is \$4,000.

The total maintenance costs are then \$6,400 annually.

4.8.4 Electric Demand Savings

Since Area-B will consume all electricity the steam turbine-generator is capable of producing, electric demand savings is equal to the average power output of the steam turbine-generator. Based on a 813 kW system, the annual electric demand savings is \$92,682.

4.8.5 <u>Life Cycle Cost Analysis Results</u>

The annual energy savings and estimated construction costs were entered into the LCCID program with the following results.

TABLE 4-4 RESULTS

Annual Electricity Savings (MBtu)	24,307
Annual Coal Savings (MBtu)	-14,045
Total Annual Energy Cost Savings	\$95,957
Annual Maintenance Costs	\$6,400
Electric Demand Cost Savings	\$92,682
Investment Cost	\$829,000
SIR	2.4
Simple Payback	4.6

4.9 RECOMMENDATIONS

The new steam turbine-generator is recommended as an ECIP project.

Repair of the existing turbine-generator in Building B-6 is recommended as an O&M project.

SECTION 5.0

ENERGY CONSERVATION OPPORTUNITIES

This section presents the analysis for the following energy conservation opportunities.

- Area-B Vacuum Pump
- Area-B Intermediate Pressure Steam Header
- Area-B Combustion Air Preheaters
- Area-B Blowdown Heat Exchanger
- Area-B Condensate Collection
- Area-A Vacuum Pump
- Area-A Electric DA Pump
- Area-A Air Preheater
- Area-A and Area-B Inlet Air Dampers

5.1 AREA-B VACUUM PUMP

5.1.1 <u>Description</u>

This ECO consists of replacing the steam jet vacuum system on the Area-B ash handling system with a vacuum pump system.

5.1.2 Existing Condition

The existing vacuum system consists of an orifice plate steam jet with six, 5/16 in. holes. The steam is supplied to the orifice plate by a 2 in. steam line at 300 psi. The system is currently operated four hours per day with the steam on 75% of the time. The average hourly steam usage is approximately 7,500 lbm/hr, which yields a daily average of 22,500 lbm/day.

5.1.3 **ECO Modification**

Analysis indicated that a vacuum blower system is more cost effective than a liquid ring vacuum pump system. Under this ECO, the existing steam jet vacuum system would be replaced with a 50 hp vacuum blower system. Once the existing system is removed, the vacuum blower system would be installed in the same area where the steam jet vacuum system and air washer are presently located. Ash transport piping would be adapted to the vacuum blower system, and electrical service brought to the motor. A line filter should be placed upstream of the vacuum blower to protect it from any leakage and/or rupture of the bag house filters. A differential pressure switch should be installed across the line filter to indicate when the filters need to be changed out due to plugging from normal usage. In the case of a bag rupture, the differential pressure switch would shut off the vacuum blower when the filters become plugged and sound an annunciator alarm indicating that an

emergency has occurred. The vacuum blower system would increase maintenance costs, but these would be offset by the annual energy savings.

5.1.4 Analysis

The existing steam jet vacuum system at the Area-A CHP uses approximately 22,500 lbm/hr of 300 psig steam (see Section 3.2.3.8). Two replacement options were evaluated:

- A vacuum blower system with a 50 hp electric motor. Vendor quotes resulted in an estimated cost of \$12,968 for the unit.
- A liquid ring vacuum pump system with a 100 hp motor. Vendor quotes resulted in an estimated cost of \$39,810 for the unit.

The liquid ring vacuum pump system was ruled out due to an initial cost of three times that of the vacuum blower system. The liquid ring vacuum pump system would also have a higher installation and maintenance cost due to the need of providing and maintaining liquid for the system.

The replacement of the steam jet vacuum system with the vacuum blower system would require approximately a two day shutdown of the fly ash removal system. The new vacuum blower system would be equipped with filters which must be replaced every 200 operating hours. Maintenance costs for filter replacement were estimated at \$1,300 annually.

The vacuum blower system eliminates steam usage for the existing steam jet but results in additional electricity usage for the vacuum blower motor.

Annual coal savings are estimated at 8,820 MBtu. Additional electricity usage by the vacuum blower system was estimated at 56,721 kWh for an equivalent annual electric energy usage increase of 194 Mbtu.

5.1.5 Construction Cost

Construction cost of the vacuum blower system, including piping modification, electrical service, and associated equipment, was estimated at \$31,300. The LCCID program adds design and SIOH (Supervision, Inspection, and Overhead incurred by the Government) costs to the construction cost to obtain the investment cost.

5.1.6 <u>Life Cycle Cost Analysis</u>

The annual energy savings, estimated construction costs, and maintenance costs were entered into the LCCID program with the following results.

Annual Electric Energy Savings (MBtu)	-194
Annual Coal Savings (MBtu)	8,820
Total Annual Energy Cost Savings	\$10,119
Annual Maintenance Costs	\$1,300
Electric Demand Cost Savings	0
Investment Cost	\$34,868
SIR	4.1
Simple Payback	4.0

Supporting calculations, construction cost estimates, and life cycle cost analysis are contained in Appendix D.

5.1.7 Recommendations

Implement.

5.2 AREA-B INTERMEDIATE PRESSURE STEAM HEADER

5.2.1 Description

This ECO evaluates increasing the back pressure of the existing draft fan steam turbines in the Area-B CHP from low pressure to medium pressure, and using the exhaust steam to heat feedwater. The back pressure from the draft fan steam turbines is currently 5 psig which limits feedwater heating to 228°F. Under this ECO, the back pressure would be increased to about 75 psig and the higher temperature (320°F) exhaust steam used to heat feedwater to a higher temperature. The proposed feedwater heat exchanger would be installed upstream of the economizer.

5.2.2 Existing Condition

With the existing system, steam is exhausted to the low pressure steam header by the steam turbines used to drive the draft fans, feedwater pumps, and DA pump. The DA heater uses steam from the low pressure steam header to heat feedwater. The available low pressure steam exceeds the steam requirements of the DA heater when the boilers are operating at less than about 45% of capacity. Excess low pressure steam is vented to the atmosphere. The amount of low pressure steam vented was calculated with the Area-B computer boiler model for each month. Low pressure steam venting ranges from zero in the winter months to a peak of approximately 2,300 lbm/hr in the summer.

5.2.3 ECO Modification

For this ECO, a feedwater preheater would be installed upstream of the economizers between the DA heater and the boilers. The feedwater preheater would use steam from an intermediate pressure steam header supplied by the draft fan steam turbine exhaust. Figure 5-1 on the following page illustrates this ECO.

The use of low pressure steam for heating boiler feedwater is limited by the steam temperature in the low pressure steam header. The low pressure steam is currently used in the DA heater to heat boiler feedwater to 228°F. Heating of feedwater above 228°F requires higher temperature steam and corresponding higher pressures.

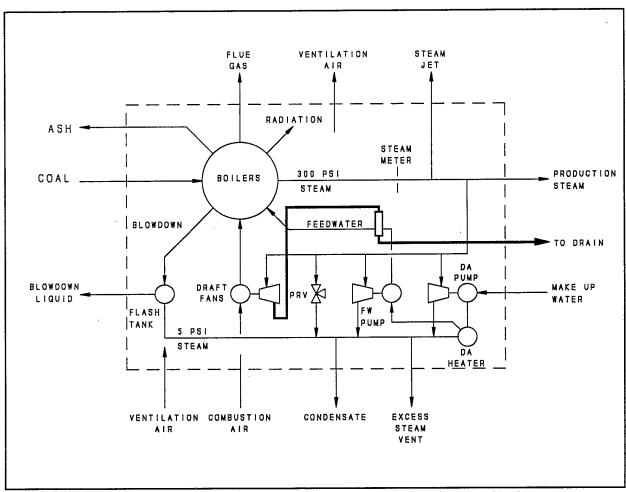


FIGURE 5-1. INTERMEDIATE PRESSURE STEAM HEADER

There are two options for obtaining higher temperature steam for feedwater heating:

- Option 1. The pressure and temperature in the existing low pressure steam header could be increased. This would result in higher back pressures for all of the steam turbines in the CHP. Back pressures for each steam turbine are limited by the design pressure of the exhaust casing. The exhaust casings on the draft fan steam turbines are currently rated for 75 psig, although the manufacturer indicates that they could likely be retested for 125 psig. The manufacturer of the DA pump steam turbines indicates that 25 psig is the maximum. The blowdown flash tank which also feeds the low pressure header is also likely limited to 25 psig. Based on the pressure limitations of existing equipment, raising the pressure of the existing low pressure steam header is not recommended.
- Option 2. The back pressure on each draft fan steam turbine could be increased and the steam exhaust routed to the new feedwater heater via an intermediate pressure steam header. The portion of the low pressure steam header collecting the exhaust

steam from the draft fan steam turbines would be converted to an intermediate pressure steam header. The steam turbines serving the feedwater and DA pumps, and the blowdown flash tank would not be modified. Excess steam from the intermediate pressure steam header would be piped to the low pressure steam header through a PRV station.

Option 2 is recommended because it does not require modification of existing steam turbines serving the feedwater and DA pumps, and the flash tank.

5.2.4 Analysis

The draft fan steam turbines operating with a back pressure of 5 psig will provide 550 hp with a steam rate of 21.6 lbm/hp-hr. The exhaust casing rating is 75 psig. With higher back pressures, the steam turbines must be renozzled to maintain 550 hp. The existing draft fan steam turbines with new nozzles operating with a back pressure of 75 psig will provide 550 hp with a steam rate of 45.5 lbm/hp-hr according to the manufacturer. The manufacturer indicates that the existing exhaust casing could be hydro tested for 125 psig. The draft fan steam turbines with new nozzles operating with a back pressure of 125 psig would provide 550 hp with a steam rate of 92.7 lbm/hp-hr.

The Area-B computer boiler model was modified to simulate a feedwater heater receiving steam from the draft fan steam turbines. A separate calculation was made for each month of the year and the results summed for the year. The results of the analysis are:

Back Pressure (psig)	Steam Temperature (°F)	Fan Turbine Steam Rate (lbm/hp-hr)	Annual Coal Usage (MBtu)	Annual Coal Savings (MBtu)
5	228	21.6	2,155,572	0
50	298	38.7	2,095,722	59,850
75	320	45.5	2,083,088	72,484
125	353	92.7	2,397,027	-241,455

Analysis indicated minimum annual fuel usage with a back pressure of 75 psig. Increasing steam turbine back pressure beyond 75 psig would increase venting of low pressure steam. Operating the draft fan steam turbines at a higher back pressure would generate additional low pressure steam at a rate greater than can be used for feedwater heating. However, boiler efficiency improvements offset the additional steam required to drive the draft fan steam turbines. The result is a net energy savings.

The following modifications would be necessary for this ECO:

- The nozzles in the draft fan steam turbines must be replaced for operation at a 75 psig back pressure. The relief valve and control valve at each draft fan steam turbine must also be replaced.
- A new 300 psig steam supply line to each draft fan steam turbine must also be installed. The higher back pressure nearly doubles the turbine steam required. The existing 4 inch steam supply line must be replaced with a 6 inch steam supply line.
- The feedwater heater must be installed and piped to the feedwater header and the new intermediate pressure steam header.
- A pressure reducing station must be installed to route excess intermediate pressure steam to the low pressure steam header.
- Condensate from the feedwater heater would be piped to a floor drain. Alternatively, condensate could be sparged back into the feedwater with the addition of a pumped condensate return system.

Annual coal savings were estimated at 72,484 Mbtu by the computer boiler model.

5.2.5 Construction Cost

A vendor quote was obtained for the new feedwater heater. Costs for renozzling the draft fan steam turbines were obtained from the manufacturer. The construction costs include costs for the extensive piping modification within the CHP.

Construction cost was estimated at \$315,652. The LCCID program adds design and SIOH costs to the construction cost to obtain the investment cost.

5.2.6 <u>Life Cycle Cost Analysis</u>

The annual energy savings and estimated construction costs were entered into the LCCID program with the following results:

Annual Electric Energy Savings (MBtu)	0
Annual Coal Savings (MBtu)	72,484
Total Annual Energy Cost Savings	\$90,605
Annual Maintenance Costs	\$400
Electric Demand Cost Savings	0
Investment Cost	\$351,952
SIR	4.1
Simple Payback	3.9

Supporting calculations, construction cost estimates, and the life cycle cost analysis are contained in Appendix E.

5.2.7 Recommendations

Implement Option-2 with a turbine back pressure of 75 psig..

5.3 AREA-B COMBUSTION AIR PREHEATERS

5.3.1 Description

This ECO consists of installing combustion air preheaters on the Area-B boilers with heat recovery coils downstream of the existing electrostatic precipitators and preheat coils in the combustion air duct downstream of the forced draft fan. Figure 5-2 below illustrates the proposed ECO.

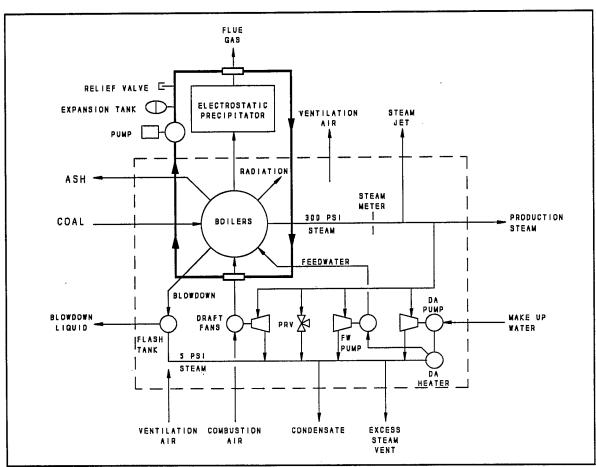


FIGURE 5-2. COMBUSTION AIR PREHEATERS

5.3.2 Existing Condition

Under average operating conditions there is 41,818 cfm of combustion air being supplied to each boiler at 56°F. There is 43,606 cfm of exhaust air leaving the economizer at 387°F. The lowest temperature of the flue gas to prevent formation of sulphuric acid is 280°F based on the amount of sulfur in the coal. This allows for a possible temperature differential of 107°F which could be utilized to increase the temperature of the combustion air.

5.3.3 ECO Modification

The ECO modification would be to install a run-around heat recovery loop with the heat recovery coil located on the exit of the electrostatic precipitator and the preheat coil located at 45 degrees in the junction of the forced draft duct and the supply air header. The heat recovery and preheat coils for each boiler would be piped into a heat recovery loop using 3 inch Schedule 80 steel pipe. The loop would include a 100 gpm pump, expansion tank, and relief valve. The pump and expansion tank would be located next to the induced draft fan, and the make-up water would come from the boiler feed water lines located on the wall behind the fans.

5.3.4 Analysis

The Area-B computer boiler model was modified to simulate combustion air preheaters which use heat from the flue gas to preheat combustion air. The computer boiler model indicated that in order to maintain 280°F flue gas temperature, this system can only be 30% effective. This produces a combustion air temperature of 154°F.

One problem with installing this system would be the increased static pressure on both the forced draft and induced draft fans. However, the increased combustion air temperature would result in reduced airflow rates at equivalent steam production. With the air preheater, required flow of the two fans are 39,410 and 41,092 cfm respectively, which is a 4.1% reduction in airflow rate. This reduced flow would decrease static pressure drop in the system by approximately 5.6 in. w.g. Actual static pressure drop across the proposed air preheater is 5.0 in. w.g.

Annual coal savings was calculated using the computer boiler model to first obtain coal usage at current average operating conditions. The computer boiler model was then changed to simulate operation with air preheaters which calculated the new coal usage. The difference is the coal energy saved.

Annual coal savings were estimated at 124,400 Mbtu.

5.3.5 Construction Cost

Vendor quotes were obtained for the coils used in the run-around heat recovery system, which comprises the air preheater. Additional costs for a pump, expansion tank, piping, and electrical service for the pump were also included.

Construction cost was estimated at \$42,794 per boiler or a total of \$195,947 for four boilers. The LCCID program adds design and SIOH costs to the construction cost to obtain the investment cost.

5.3.6 <u>Life Cycle Cost Analysis</u>

The annual energy savings and estimated construction costs were entered into the LCCID program with the following results:

Annual Electricity Savings (MBtu)	-10
Total Coal Savings (MBtu)	123,240
Total Annual Energy Cost Savings	154,017
Annual Maintenance Costs	\$1,000
Electric Demand Cost Savings	0
Investment Cost	\$218,482
SIR	11.3
Simple Payback	1.4

Supporting calculations, construction cost estimates, and the life cycle cost analysis are contained in Appendix F.

5.3.7 Recommendations

Implement.

5.4 AREA-B BLOWDOWN HEAT EXCHANGER

5.4.1 <u>Description</u>

This ECO consists of installing a heat exchanger to recover heat from the continuous blowdown on the Area-B boilers.

5.4.2 Existing Condition

Continuous blowdown from the boilers is piped to a flash tank which recovers flash steam for DA water heating. Blowdown liquid is piped to a floor drain. The blowdown rate was measured at 2.5% of the boiler steam production and averages 3,982 lbm/hr. (See Section 3.2.2.7 for discussion of the blowdown rate measurements.)

5.4.3 **Proposed Modification**

Under this ECO, a heat exchanger would be installed to recover heat from the blowdown liquid exiting the flash tank. The heat exchanger would be installed in the make-up boiler water line between the DA pump and the DA heater. Blowdown liquid from the flash tank would be piped to the shell side of the heat exchanger. Blowdown liquid exiting the heat exchanger would be piped to a floor drain. The heat exchanger would be installed on the operating floor level. Figure 5-3 on the following page illustrates this proposed ECO.

The heat exchanger should be sized for 600 gpm on the make-up water side and 15 gpm on the blowdown liquid side. The heat exchanger should have an effectiveness of 80% or be capable of exchanging 1.0 MBH of energy when operating between 56°F and 228°F. A heat exchanger bypass should be provided for use during mobilization.

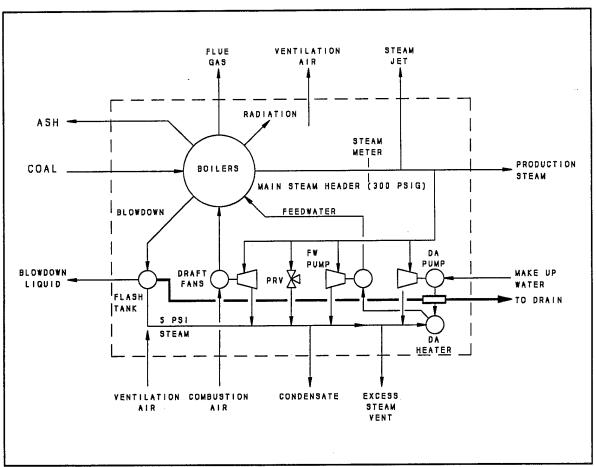


FIGURE 5-3. BLOWDOWN HEAT EXCHANGER

5.4.4 Analysis

The Area-B computer boiler model was modified to include the blowdown heat exchanger. The blowdown heat exchanger will add about 3.4°F to the make-up water temperature at average operating conditions.

The savings from the blowdown heat exchanger would be limited by the production and venting of excess low pressure steam. During the summer when excess low pressure steam is normally vented, energy savings from the blowdown heat exchanger would be offset by additional excess low pressure steam venting.

Annual coal savings was calculated using the computer boiler model to first obtain coal usage at current average operating conditions. The computer boiler model was then changed to simulate operation with the blowdown heat exchanger which calculated the new coal usage. The difference is the coal energy saved.

The annual coal savings were estimated at 2,556 MBtu.

5.4.5 Construction Cost

A vendor quote was obtained for the blowdown heat exchanger. Additional costs for the piping associated with the blowdown heat exchanger was included in the cost estimate.

The construction cost is estimated at \$23,370. The LCCID program adds design and SIOH costs to the construction cost to obtain the investment cost.

5.4.6 <u>Life Cycle Cost Analysis</u>

The annual energy savings and estimated construction costs were entered into the LCCID program with the following results.

Annual Electricity Savings (MBtu)	0
Total Coal Savings (MBtu)	2,556
Total Annual Energy Cost Savings	\$3,195
Annual Maintenance Costs	\$400
Electric Demand Cost Savings	0
Investment Cost	\$26,058
SIR	1.8
Simple Payback	9.3

Supporting calculations, construction cost estimates, and the life cycle cost analysis are contained in Appendix G.

5.4.7 Recommendations

Implement.

5.5 AREA-B CONDENSATE COLLECTION

5.5.1 Description

This ECO consists of installing a condensate collection system for condensate generated within the Area-B CHP.

5.5.2 Existing Condition

Due to possible explosive contamination, no condensate is returned from Area-B to the CHP. However, condensate generated within the CHP could be returned. Steam traps are located on the following components:

- Draft fan steam turbines
- DA pump steam turbines
- Feedwater pump steam turbines
- High pressure (300 psig) steam header
- Low pressure (5 psig) steam header

Condensate is currently routed to the wastewater treatment system via floor drains.

5.5.3 ECO Modification

Under this ECO, condensate would be collected and pumped to the make-up water tank. Condensate receivers would be placed at each steam trap likely to produce significant condensate. Pumps within the condensate receivers would pump the condensate to the make-up water tank via a new piping system.

5.5.4 Analysis

At average operating conditions, the amount of condensate generated by each component is as follows:

- Draft fan steam turbines have an exiting steam quality of 99.1% (0.9% of the steam entering the turbine is condensed). The resulting condensate generation is 175 lbm/hr for operation of two turbines.
- DA pump steam turbines exhaust superheated steam with no condensate generation.
- Feedwater pump steam turbines exhaust superheated steam with no condensate generation.
- High pressure (300 psig) steam header contains superheated steam with no condensate generation from pipe heat loss.

 Low pressure (5 psig) steam header also likely contains steam which is slightly superheated. The DA and feedwater pump steam turbines exhaust superheated steam into the header. Little or no condensate generation is expected.

Total condensate generation within the CHP is 175 lbm/hr. The condensate temperature from a vented condensate receiver would be a maximum of 200°F by the time it reaches the make-up water tank. Average make-up water flow is estimated at 143,463 lbm/hr at a temperature of 56°F. The combined temperature of the condensate and make-up water is calculated to be 56.2°F. In other words, the condensate will provide 0.2°F of make-up water heating. During periods of excess 5 psig steam venting, condensate heat recovered would be offset by additional steam venting.

Condensate recovery is estimated to save an average of 25,200 Btuh or 221 MBtu annually. At a steam cost of \$1.77/MBtu, annual energy cost savings is \$391. The installed cost of a single condensate receiver is \$1,260. Installation of four condensate receivers, electrical service and a condensate piping system will result in a simple economic payback exceeding 25 years.

Backup data is contained in Appendix H.

5.5.5 Recommendations

A condensate collection system is not economically feasible.

5.6 AREA-A VACUUM PUMP

5.6.1 Description

This ECO consists of replacing the steam jet on the Area-A ash handling system with a vacuum pump system.

5.6.2 Existing Condition

The existing vacuum system consists of an orifice plate steam jet with six, 5/16 in. holes. The steam is currently supplied to the orifice plate by a 2 in. steam line at 400 psi. The system is currently operated two hours per day with the steam on 75% of the time. The average hourly steam usage is approximately 9,800 lbm/hr, which yields a daily average of 14,700 lbm/day.

5.6.3 ECO Modification

Analysis indicated that a vacuum blower system is more cost effective than a vacuum pump system. Under this ECO, the existing steam jet vacuum system would be replaced with a 50 hp vacuum blower system. Once the existing system is removed, the vacuum blower system would be installed in the same area where the steam jet vacuum system and air washer are presently located. Ash transport piping would be adapted to the vacuum blower system, and electrical service brought to the motor. A line filter should be placed upstream of the vacuum blower to protect it from any leakage and/or rupture of the bag house filters. A differential pressure switch should be installed across the line filter to indicate when the filters need to be replaced due to plugging from normal usage. In the case of a bag rupture, the differential pressure switch would shut off the vacuum blower when the filters become plugged and sound an annunciator alarm indicating that an emergency has occurred. The vacuum blower system would increase maintenance costs, but these would be offset by the annual energy savings.

5.6.4 Analysis

The existing steam jet vacuum system at the Area-A CHP uses approximately 14,700 lbm/hr of 400 psig steam (see Section 3.3.3.6). Two replacement options were evaluated:

- A vacuum blower system with a 50 hp electric motor. Vendor quotes resulted in a \$12,968 cost for the unit.
- A liquid ring vacuum pump system with a 100 hp motor. Vendor quotes resulted in a \$39,810 cost for the unit.

The liquid ring vacuum pump system was ruled out due to an initial cost of three times that of the vacuum blower system. The liquid ring vacuum pump system would also have a higher installation and maintenance cost due to the need of providing and maintaining a liquid for the system.

The replacement of the steam jet vacuum system with the vacuum blower system would require approximately a two day shutdown of the fly ash removal system. The new vacuum blower system would be equipped with filters which must be replaced every 200 operating hours. Maintenance costs for filter replacement was estimated at \$650 annually.

The vacuum blower system eliminates steam usage for the existing steam jet but results in additional electricity usage for the vacuum blower motor.

Annual coal savings are estimated at 5,883 Mbtu based on elimination of the steam jet vacuum system. Additional electricity usage by the vacuum blower system is estimated at 28,360 kWh for an equivalent annual electric energy usage increase of 97 MBtu.

5.6.5 Construction Cost

Construction cost was estimated at \$31,300. The LCCID program adds design and SIOH (Supervision, Inspection, and Overhead incurred by the Government) costs to the construction cost to obtain the investment cost.

5.6.6 Life Cycle Cost Analysis

The annual energy savings, estimated construction costs, and maintenance costs were entered into the LCCID program with the following results.

Annual Electric Energy Savings (MBtu)	-97
Total Coal Savings (MBtu)	5,883
Total Annual Cost Savings	\$6,901
Annual Maintenance Costs	\$650.
Electric Demand Cost Savings	0
Investment Cost	\$34,900
SIR	2.9
Simple Payback	5.6

Supporting calculations, construction cost estimates, and life cycle cost analysis are contained in Appendix D.

5.6.7 Recommendations

Implement.

5.7 AREA-A ELECTRIC DA PUMP

5.7.1 Description

This ECO evaluates installing a small auxiliary DA pump to bypass the large existing DA pump during normal operation.

5.7.2 Existing Condition

A 100 hp electric DA pump is used to convey water from the makeup water tank to the DA heater. This 100 hp DA pump is sized for mobilization capacity. Under average operating conditions the DA pump runs at about 20% capacity. The DA pump curve indicates that the DA pump is operating at a 40% efficiency as opposed to 85% when fully loaded.

5.7.3 ECO Modification

Under this ECO, the 100 hp DA pump would remain but be taken off line. A new 15 hp auxiliary DA pump sized for current peak operating conditions would be piped into the system as a bypass to the larger DA pump. Peak steam demand at current operating conditions is estimated at 162,700 lbm/hr with a resulting feedwater flow rate of 325 gpm. The modification would allow for the smaller, more efficient auxiliary DA pump to be operated throughout the year, thereby producing an energy savings due to both increased efficiency and smaller pump size.

5.7.4 Analysis

The 100 hp DA pump was originally sized for a mobilization capacity of 1750 gpm at 185 ft. of head. Under current operating conditions the isolation valve on the DA pump discharge is open only a fraction of a turn, thereby causing the pump to operate at an average capacity of approximately 200 gpm. At these conditions the DA pump is operating at a 30% efficiency, with a measured power consumption of 43.4 kW.

The 100 hp DA pump would be bypassed by a 350 gpm auxiliary DA pump operating at 100 ft of head. This auxiliary DA pump would have an average power consumption of 12.4 kW. The auxiliary pump would provide sufficient flow for the Area-A boilers throughout the year.

The new auxiliary DA pump could be located between the draft fan steam turbine and the back wall of the Area-A CHP near the motor starters. This auxiliary DA pump would have an isolation valve so that it can be isolated from the system, and a bypass loop to prevent deadheading. The installation of the new auxiliary DA pump would require that the existing system be shut down for approximately 8 hours so that the suction line could be tied into existing pipe. One possible way to install this line, without shutting down the boilers, would be to pick a low production time and use the emergency river water as make up water for the DA heaters. The discharge line could then be tied in without shutting down the system by using the steam DA pump during the tie in period.

Electric energy savings would be the difference in power consumption of the existing 100 hp DA pump and the new 15 hp auxiliary DA pump which draws 31 kW. The DA pump operates 8760 hours per year.

The annual electricity savings were estimated at 271,560 kWh for an equivalent annual electric energy savings of 927 MBtu.

5.7.5 Construction Cost

Construction cost estimates include the cost of the new 15 hp DA pump, associated piping, and electric service for the DA pump.

The construction cost was estimated at \$19,179. The LCCID program adds design and SIOH costs to the construction cost to obtain the investment cost.

5.7.6 <u>Life Cycle Cost Analysis</u>

The annual energy savings and estimated construction costs were entered into the LCCID program with the following results.

Annual Electricity Savings (MBtu)	927		
Total Coal Savings (MBtu) 0			
Total Annual Energy Cost Savings	\$4,329		
Annual Maintenance Costs	\$400		
Electric Demand Cost Savings	\$3,534		
Investment Cost	\$21,400		
SIR	4.2		
Simple Payback	2.9		

Calculations and other backup material are included in Appendix I.

5.7.7 Recommendations

Implement.

5.8 AREA-A AIR PREHEATERS

5.8.1 <u>Description</u>

This ECO evaluates the use of excess low pressure (5 psig) steam to preheat the combustion air for the Area-A boilers.

5.8.2 Existing Condition

Under current operating conditions, two boilers are operational at any one time, with a rotation occurring among four boilers total. At average operating conditions there is an excess of 7,439 lbm/hr of low pressure steam being ventilated to the atmosphere. Each boiler is currently using 32,126 cfm of combustion air at 56°F and consuming 76 MBtuh of coal, for a total consumption of 152 MBtuh.

5.8.3 ECO Modification

This ECO is to place a steam coil in the combustion air duct, downstream of the forced draft fan of each of the four boilers. Figure 5-4 illustrates the proposed ECO. The best location for this coil would be where the combustion air duct from the forced draft fan joins into the supply air header for the boiler. At this location the coil could be inserted at 45° for a maximum coil size of 60×94 inches. The steam for the coil would come from the low pressure steam header located on the wall behind the draft fans. The steam line serving the coil would contain only a shut off valve and no modulating control valve. The condensate from the coil would be piped through a steam trap and then to the drain, common with that of the draft fan steam turbine.

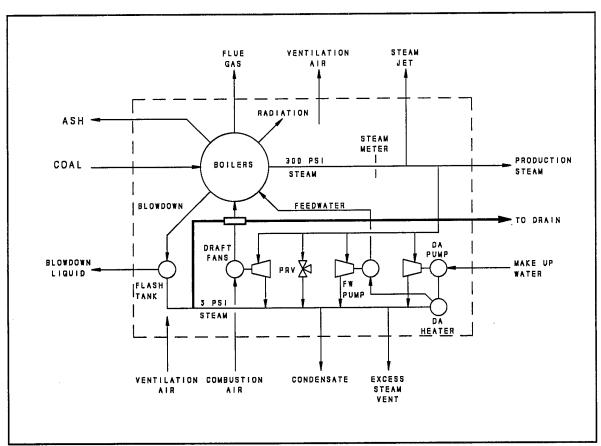


FIGURE 5-4. AIR PREHEATERS

5.8.4 Analysis

The insertion of a steam coil into the combustion air duct would increase the static pressure on the forced draft fan. The forced draft fan is currently operating at maximum speed, so speed cannot be increased to accommodate the increase in static pressure. Replacing the forced draft fan and associated steam turbine would be expensive. However, with careful design the static pressure limitations can be avoided.

To minimize the static pressure increase, a single row steam coil was selected which had a 0.22 inch water column static pressure drop. This coil would produce an average combustion air temperature of 136°F with a coil effectiveness of 46%. Currently, the average combustion air temperatures are 56°F.

The Area-A computer boiler model was modified to simulate the air preheater. Inputting the above coil parameters into the computer boiler model resulted in a 7% increase in boiler efficiency. The increase in boiler efficiency resulted in a decrease in required combustion air flow from 32,125 to 29,430 cfm at average operating conditions. The estimated decrease in static pressure at the lower combustion air flow is about 5.0 inches water column. Therefore, the air preheater would actually decrease the static pressure requirements on the fans for equivalent steam production.

The computer boiler model calculates low pressure (5 psig) steam requirements for the air preheater to be 3,930 lbm/hr at average operating conditions. Excess low pressure steam venting at average operating conditions was calculated to be 7,439 lbm/hr. Thus, excess low pressure steam is available in sufficient quantities to supply the air preheater.

Annual coal savings was calculated using the computer boiler model to first obtain coal usage at current average operating conditions. The computer boiler model was then changed to simulate operation with air preheaters which calculated the new coal usage. The difference equals coal energy saved.

The annual coal savings are estimated at 113,880 Mbtu.

5.8.5 <u>Construction Cost</u>

The construction cost estimate included the costs of steam coils and associated piping for four boilers. The construction cost was estimated at \$70,605. The LCCID program adds design and SIOH costs to the construction cost to obtain the investment cost.

5.8.6 <u>Life Cycle Cost Analysis</u>

The annual energy savings and estimated construction costs were entered into the LCCID program with the following results.

Annual Electricity Savings (MBtu)	0		
Annual Coal Savings (MBtu) 113,900			
Total Annual Energy Cost Savings	\$142,350		
Annual Maintenance Costs	\$1,000		
Electric Demand Cost Savings	0		
Investment Cost	\$78,7 00		
SIR	28.9		
Simple Payback	0.6		

Supporting calculations, construction cost estimates, and the life cycle cost analysis are contained in Appendix J.

5.8.7 Recommendations

Implement.

5.9 AREAS-A AND B INLET AIR DAMPERS

5.9.1 Description

This ECO consists of installing manually controlled inlet air dampers in the roof openings over the boilers. These dampers would be used to restrict the openings in the winter so that the warmer air from the upper level of the boiler plant would be pulled down by the forced draft fans. Higher temperature combustion air would result, and this would result in higher boiler efficiency. The dampers would be left open for ventilation in the summer. This ECO applies to both Area-A and Area-B central heating plants (CHP).

5.9.2 Existing Condition

Both CHPs have roof openings above each boiler. Each roof opening is roughly 8 by 12 feet. There are presently no dampers for controlling air flow through these openings.

Each of the CHPs are normally operated with two boilers. The remaining boilers are left idle. The draft fan on each boiler draws combustion air from the lowest level in the CHP. The boilers are located on the levels above, so the lowest level receives little heat gain from the boiler. Combustion and ventilation air enter the CHP primarily through the roof openings and the truck door on the lowest level. The truck door is closed in the winter, but left open in the summer for ventilation. With all roof openings open, most of the combustion air enters the CHP through the openings above the cold boilers where it drops to the lowest level without picking up any heat and is drawn into the forced draft fan. The buoyant force of the air above the hot boilers causes flow out through the roof openings rather than in. The result of this arrangement is that heat loss from the boilers is lost through the roof openings and combustion air temperature is essentially the same as the ambient temperature.

5.9.3 **ECO Modification**

Under this ECO, operable dampers would be installed in each of the roof openings. During winter operation, only dampers above operating boilers would be opened; dampers over cold boilers would be closed. Air entering the CHP would then flow down over the hot boilers using boiler heat loss to preheat combustion air. Figure 5-5 on the following page illustrates this proposed ECO. During the summer, this strategy would likely result in room air temperatures in the CHP in excess of 120°F which would be too hot for the operating personnel. During warm weather additional dampers would be opened to prevent overheating.

The operable dampers for each roof opening would consist of operable louvers equipped with pneumatic operators and a pneumatic open/close switch on the firing floor for each roof opening.

Each roof opening would require an 8×12 ft damper. The dampers would likely be fabricated in 4×12 ft modules. Two pneumatic operators per roof opening were assumed.

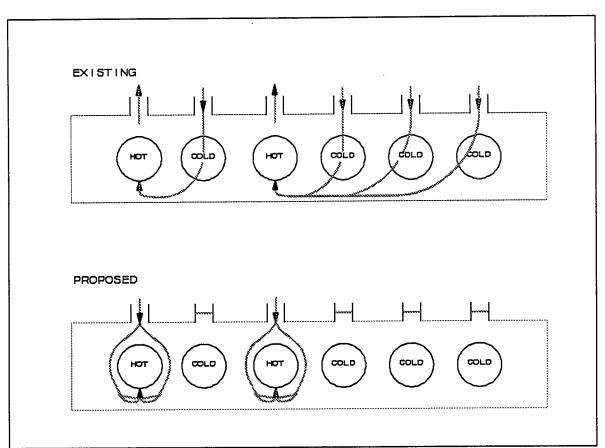


FIGURE 5-5. INLET AIR DAMPERS

5.9.4 Analysis

Heat loss from boilers is typically 1% to 2% of peak boiler capacity. Using the full boiler capacity of 161,800 lbm/hr and assuming 1% heat loss, the resulting heat loss from each boiler is 1.65 MBH. Heat loss from two boilers is 3.29 MBH.

During the field survey the Area-B CHP was operating near the annual average rate of steam production. Ambient temperature and the temperature on the lowest level was 60°F. Room temperature on the firing floor was about 70°F and temperatures on the upper levels near the operating boilers were 90°F. From this data, it was concluded that at the existing condition, combustion air temperature is approximately equal to ambient temperature. It was also concluded that room temperature on the firing floor was the weighted average of the air temperature of the lowest level and the air temperature on the upper levels.

Using the 3.29 MBH figure and the 30°F differential observed from the lowest to the highest level, the flow past each boiler is calculated to be 51,000 cfm. The air flow velocity through each roof opening is then 531 fpm which is a reasonable number for free convection.

Using the data and assumptions developed above and average monthly ambient temperatures; monthly combustion air, room, and exhaust temperatures were predicted and averaged. The average combustion temperature was the same as the average ambient temperature at 56°F. Room temperatures on the firing floor ranged from 45° to 85°F with the average at 66°F. Exhaust temperatures averaged 86°F.

The Areas-A and B computer boiler model was then modified to reflect the proposed modifications. Air entering the CHP was assumed to be restricted to only that necessary for combustion. It was assumed that all dampers would be closed except for those above each boiler. The result is that most of the air used for combustion would be drawn down past the hot boilers picking up the radiation heat.

Calculating the average combustion air flow for each month and assuming constant boiler heat loss; monthly combustion air and room temperatures were predicted and averaged. Room temperatures on the firing floor were assumed to be equal to the combustion air temperature. Combustion air temperatures ranged from 64° to 118°F with the average at 92°F.

Year round operation of the system with dampers open only over the operating boilers results in high temperatures in the CHP during the summer. Average room temperature in July was 118°F. To prevent overheating, dampers over cold boilers must be modulated to maintain acceptable room temperatures in the CHP. It was assumed that dampers would be modulated to control room temperatures at 80°F. The resulting combustion air temperatures ranged from 64° to 80°F with the average at 76°F. Room temperatures ranged from 64° to 85°F. Figure 5-6 on the following page is a graphical representation of the results of the calculations.

The new average annual combustion air temperature was input to the computer boiler model and average annual performance computed. Raising the average combustion air temperature from 56° to 76°F in the Area-B CHP resulted in an average boiler efficiency increase from 71.5% to 73.3%. This efficiency increase is close to the rule of thumb prediction of a 1% efficiency improvement for every 40°F increase in combustion air temperature.

The efficiency improvement results in a reduction in coal usage at Area-B of 25,404 MBtu annually. Applying the same analysis to Area-A results in a reduction in coal usage of 17,500 MBtu annually. Total savings for both Areas-A and B is 42,924 MBtu.

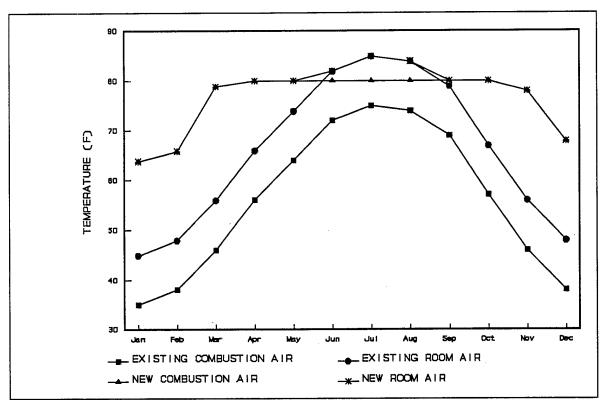


FIGURE 5-6. CALCULATED COMBUSTION AIR TEMPERATURE RESULTS

5.9.5 Construction Cost

Construction costs were estimated based on the installation of 12×8 ft operable louvers in each roof opening with two pneumatic operators per louver. Operable louvers rather than dampers were selected due to their heavier construction. Construction cost estimates included the cost of running pneumatic tubing to the pneumatic operators and operating switches on the firing floor.

The construction cost was estimated at \$86,720. The LCCID program adds design and SIOH costs to the construction cost to obtain the investment cost.

5.9.6 Life Cycle Cost Analysis

The annual energy savings and estimated construction costs were entered into the LCCID program with the following results.

Annual Electricity Savings (MBtu)	0		
Annual Coal Savings (MBtu) 42,92			
Total Annual Energy Cost Savings	\$53,655		
Annual Maintenance Costs	\$400		
Electric Demand Cost Savings	0		
Investment Cost	\$96,700		
SIR	8.9		
Simple Payback	1.8		

Supporting calculations, construction cost estimates, and the life cycle cost analysis are contained in Appendix K.

5.9.7 Recommendations

Implement.

SECTION 6.0

SUMMARY AND RECOMMENDATIONS

6.1 RECOMMENDATIONS

Table 6-1 presents the results of the life cycle cost analysis for the recommended ECOs (listed in order of economic benefit). The only ECO analyzed under this study which is not recommended is the Area-B Condensate Collection ECO.

TABLE 6-1 RECOMMENDED ECOS

Energy Conservation Opportunity	Annual Electric Savings (MBtu)	Annual Coal Savings (MBtu)	Annual Energy Cost Savings (\$)	Annual Electric Demand Savings , (\$)	Annual Maint. Cost Savings (\$)	Invest- ment Cost (\$)	SIR	Simple Payback (yrs)
Area-A Air Preheaters	0	113,900	142,350	0	(1,000)	78,700	28.9	0.6
Area-B Air Preheater	(10)	123,240	154,000	0	(1,000)	218,500	11.3	1.4
Inlet Air Dampers	0	42,924	53,655	0	(400)	96,700	8.9	1.8
Area-A Electric DA Pump	927	0	4,329	3,534	(400)	21,400	4.2	2.9
Area-B Steam Header	0	72,484	90,605	0	(400)	352,000	4.1	3.9
Area-B Vacuum Pump	(194)	8,820	10,119	0	(1,300)	34,900	4.1	4.0
Area-B Cogeneration	24,307	(14,045)	95,957	92,682	(6,400)	927,000	2.4	4.6
Area-A Vacuum Pump	(97)	5,883	6,901	0	(650)	34,900	2.9	5.6
Area-B Blowdown Heat Exchanger	.0	2,556	3,195	0	(400)	26,100	1.8	9.3
TOTAL SAVINGS	33,902	355,762	602,997	130,416	(58,326)	1,698,200		
PERCENT SAVINGS	14.2	10.8	11.5	11.7				
NEW ENERGY USAGE	204,186	2,941,918	4,631,020	980,628				
PRESENT ENERGY USAGE	238,098	3,297,680	5,234,017	1,111,044				

6.2 TOTAL ENERGY SAVINGS

The summary of energy use and cost before and after implementation of all ECOs recommended in this report is shown in Table 6-2 below.

TABLE 6-2 TOTAL ENERGY SAVINGS

·	Annual Electric Energy (MBtu)	Annual Electric Demand (\$)	Annual Coal Energy (MBtu)	Total Annual Energy* (\$)
BEFORE	238,098	1,111,044	3,297,680	6,345,061
AFTER	213,165	1,014,828	2,941,918	5,687,734
SAVINGS	24,933	96,216	355,762	653,327

^{*}Includes energy and electric demand charges.

APPENDIX A SCOPE OF WORK AND CONFIRMATION NOTICES

CESAM-EN-CC

APPENDIX "A"

SCOPE OF WORK

FOR

LIMITED ENERGY STUDIES

ΑT

HOLSTON ARMY AMMUNITION PLANT, TENNESSEE

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

* Revisions are underlined.

SCOPE OF WORK' FOR LIMITED ENERGY STUDIES AT HOLSTON ARMY AMMUNITION PLANT, TENNESSEE

TABLE OF CONTENTS

- 1. BRIEF DESCRIPTION OF WORK
- 2. GENERAL
- 3. PROJECT MANAGEMENT
- 4. SERVICES AND MATERIALS
- 5. DETAILED SCOPE OF WORK
- 6. WORK TO BE ACCOMPLISHED
 - 6.1 Review Previous Studies
 - 6.2 Perform a Limited Site Survey
 - 6.3 Evaluate Selected ECOs
 - 6.4 Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK
- B EXECUTIVE SUMMARY GUIDELINE

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.1 Review the previously completed energy study for the applicable system covered by this study.
- 1.2 Perform a site survey of specific buildings or areas sufficient to collect all data required to evaluate the specific energy conservation opportunities (ECOs) included in this study.
- 1.3 Evaluate specific ECOs to determine their energy savings potential and economic feasibility.
- 1.4 Prepare a comprehensive report to document all work performed, the results and all recommendations. A separate report shall be prepared for each increment of work awarded from among the ECOs in ANNEX A, DETAILED SCOPE OF WORK.

2. GENERAL

- 2.1 This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in Annex A, DETAILED SCOPE OF WORK.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the buildings, systems or ECOs listed in the detailed scope of work, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in the report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECC.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from CEHSC-FU, dated 25 April 1988 and the latest revision from CEHSC-FU establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.

- 2.6 The following definitions apply to terms used in this scope of work:
- 2.6.1 "Contracting Officer", "Contracting Officer's Representative", or Government's Representative" refer to the contracting office of the Mobile District, U. S. Army Corps of Engineers.
- 2.6.2 "Installation Commander", or "Installation Representative" refer to the military commander of Holston Army Ammunition Plant.
- 2.6.3 "Plant Manager", Operating Contractor", or "Operating Contractor's Representative" refer to the Holston Defense Corporation, which operates Holston Army Ammunition Plant under contract to the U.S. Army.

3. PROJECT MANAGEMENT

3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.

3.2 <u>Installation Assistance</u>.

- a. The Installation Commander will designate an individual to coordinate between the AE and the Holston Defense Corporation. This individual will be the Installation Representative, and all correspondence with Holston Army Ammunition Plant will be addressed to his attention.
- b. The Plant Manager will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the Operating Contractor's Representative.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 Meetings. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be

required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the resentation and review conferences.

3.5 <u>Site Visits</u>, <u>Inspections</u>, <u>and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

- 3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or his designated representative(s) participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the conract number and modification number, if applicable. The AE shall brward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.
- 3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Plant Manager before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance. Separate entry and exit interviews will be held for each increment of work awarded from among the ECOs in ANNEX A, DETAILED SCOPE OF WORK.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:
 - a. Schedules.
 - Names of energy analysts who will be conducting the site survey.
 - c. Proposed working hours.
 - d. Support requirements from Holston Defense Corporation (HDC).

- 3.7.2 Exit. The exit interview shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also seek input and advice from the Plant Manager.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), plant, labor, supervision and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. <u>DETAILED SCOPE OF WORK</u>. The Detailed Scope of Work is contained in Annex A.

6. WORK TO BE ACCOMPLISHED.

- 6.1 Review Previous Studies. Review the previous energy study which applies to the specific system covered by this study. This review will acquaint the AE with the work that has been performed previously and may supply some of the information needed to develop the ECOs in this study.
- 6.2 Perform a Limited Site Survey. For each increment awarded, the AE shall obtain all necessary data to evaluate the applicable ECOs or projects by conducting a site survey. However, the AE is encouraged to use any data that may have been documented in a previous study. The AE shall document his site survey on forms developed for the survey, or standard forms, and submit these comieted forms as part of the report. All test and/or measurement uipment shall be properly calibrated prior to its use.
- 6.3 Evaluate Selected ECOs. For each increment awarded, the AE shall analyze the applicable ECOs from Annex A. These ECOs shall be analyzed in detail to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall show how all numbers in the ECO were figured and shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.
- 6.4 <u>Submittals</u>, <u>Presentations and Reviews</u>. The work accomplished for each <u>delivery order</u> awarded shall be fully documented by a comprehensive report. The report shall have a table of contents and shall be indexed. Tabs and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other

Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During e presentation, the personnel in attendance shall be given ample portunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to the Plant Manager, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.

- 6.4.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:
- a.All ECOs which the AE has considered and eliminated without mal analysis shall be grouped into one listing with reasons and astifications for their elimination.
- b.All ECOs which were analysed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. These lists may be subdivided by building or area as appropriate for the study.

The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

6.4.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods

used, and sources of information. The report shall integrate all aspects of the study. The lists of ECOs specified in paragraph 6.4.1 shall also be included. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:

- a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
 - c. Appendices to include as a minimum:
 - 1) Energy cost development and backup data
 - 2) Detailed calculations
 - 3) Cost estimates
 - 4) Computer printouts (where applicable)
 - 5) Scope of Work

ANNEX A

DETAILED SCOPE OF WORK

- 1. All of the facilities to be studied in this contract are located at Holston Army Ammunition Plant (HSAAP) in Kingsport, Tennessee. Holston Army Ammunition Plant is a government-owned, contractor-operated (GOCO) facility. The operating contractor is the Holston Defense Corporation (HDC). Some of the facilities are located in Area A and some in Area B; Area A and Area B are separated by approximately five miles. For reasons of safety and security, access to both areas is controlled. Temporary passes will be required for both personnel and vehicle access.
 - a. Three weeks notice should be given by the AE prior to any visit. This time will be needed to make the necessary arrangements for the visit.
 - b. The AE should submit a list of the equipment and instruments they plan to use prior to their arrival. Because of the nature of HSAAP operations, safety regulations prohibit and restrict the use of some equipment on the installation. Having a list of the equipment to be used beforehand, HSAAP will be better prepared at the entrance interview to address the regulations pertaining to the equipment to be used. This will also facilitate coordination of the inspection and permitting of the equipment.
- 2. The AE shall provide all necessary effort, services, and materials required to accomplish the work specified.
- 3. The following persons have been designated as points of contact and liaison for all work required under this contract. Mr. Scott Shelton shall be the Installation Representative, and Mr. J. L. Bouchillon shall be the Operating Contractor's Representative.
- 4. The work in this annex is divided into increments. Depending upon the availability of funds and the customer's priorities, all or any combination of these increments may be awarded as the base contract. If all of the increments cannot be awarded initially, subsequent increments may be awarded as modifications to the contract when funds become available.
- 5. Completion Schedule: The completion schedule for each increment awarded under this scope of work will be negotiated prior to the award, but the completion date for any increment shall not be later than 270 days after Notice-to-Proceed for that increment.
- 6. The Energy Conservation Opportunities to be analyzed in this study are listed below:

- a. Increment A Area B Cogeneration: Investigate the feasibility of installing a nominal 150,000 pph topping turbine and generator for Area B. The normal operating load for the Area B steam plant varies from 150,000 to 200,000 pph; the full capacity of the plant is 400,000 pph. Steam is distributed at 300 psig and 525F. All but three users reduce the pressure to 100 psig. During mobilization, 300 psig is required for the plantwide distribution system; but a lower pressure (120 to 150 psig) could be used during normal operation. Adjustment and/or replacement of existing pressure reducing stations and traps would have to be included in the analysis. A new turbine and generator could accept steam at 300 psig. exhaust it to the distribution system at 150 psig, and generate a significant portion of the electricity required by Area B. Also required would be a new building to house the turbine and generator, electrical switchgear, a 300 psig takeoff upstream of the turbine for the users that require it, and a line to bypass 300 psig steam around the turbine during mobilization. Holston Defense Corporation has previously studied cogeneration at Area B, but the details differed from those of the current proposal. The AE will be provided a copy of the report, E88-0007, for his information.
- b. Increment B Area B Vacuum Pump: Study the technical and economic feasibility of replacing the existing steam jet on the bag house of the ash-handling system at Area B with a vacuum pump.
- c. Increment C Area B Intermediate Steam Pressure Header: Investigate the technical and economic feasibility of increasing the exhaust pressure of the existing turbine drives for each boiler and using the exhaust steam to heat feedwater. Each boiler uses a Skinner single-stage turbine to drive a forced-draft and an induced-draft fan on a common shaft. The inlet pressure is 300 psig, and the exhaust pressure is approximately 5 psig. It is proposed to raise the exhaust pressure to a level to be determined by the study (50 psig has been suggested), and to use the exhaust steam to increase the feedwater temperature to the economizer.
- d. Increment D <u>Area B Air Preheaters</u>: Investigate the technical and economic feasibility of installing tubular air preheaters on the four Area B boilers downstream of the existing economizers. It is believed that the temperature of the flue gasses leaving the economizer currently are on the order of 500F (measurements would have to be made to verify the actual temperature at different loads). The minimum permissible temperature entering the electrostatic precipitator is <u>280F</u>. Therefore there is a possible temperature differential of <u>220F</u> which could be utilized to increase the temperature of the under-fire combustion air.
- e. Increment E Area B Boiler Plant Modifications: Study the technical and economic feasibility of the following:

- 1) <u>Blowdown Heat Exchanger:</u> Install a heat exchanger to recover heat from the continuous blowdown.
- 2) <u>Condensate Collection:</u> Due to possible explosives contamination, no condensate is returned from Area B to the boiler plant. However, not even the condensate produced in the boiler plant is returned. Install a condensate return system for the boiler plant only.
- 3) <u>Instrumentation and Operations:</u> Determine the savings that could be achieved by the installation, repair, or replacement of simple instruments such as thermometers, pressure gages, and draft gages. Also consider the initiation of a boiler plant data sheet.
- f) Increment F Area A Vacuum Pump: Investigate the technical and economic feasibility of replacing the existing steam jet on the bag house of the ash-handling system at Area A with a vacuum pump.
- g) Increment G Area A Pumps: Many of the electrically operated pumps at the Area A boiler plant are sized for mobilization capacity, but they normally operate at a much lower capacity. Investigate the technical and economic feasibilty of installing small auxiliary pumps to bypass larger pumps during normal operation.
- h) Increment H Area A Cooling Water: Filtered river water is used for cooling stokers and other equipment at the Area A steam plant. Although this water is not contaminated by the cooling process, it is currently piped to the industrial waste sump and then pumped approximately five miles to the industrial waste treatment plant. Investigate the technical and economic feasibility of rerouting this cooling water to the storm sewer.
 - i) Increment I Area A Preheater: At the Area A steam plant, excess 5# steam is periodically vented to atmosphere. Investigate the technical and economic feasibility of using this steam to preheat combustion air.
 - j) Increment J <u>Area A & Area B Common ECOs</u>: Investigate the following energy conservation opportunities for both Area A and Area B:
 - dampers in the roof openings over the boilers. These dampers would be used to restrict the openings in the winter so that the warmer air from the upper level of the boiler plant would be pulled down by the forced draft fans. They would have to be left open for ventilation during the summer.

- 2) <u>Coal Feed Rate Monitoring:</u> Currently there is no accurate way to determine the heat rate (1b steam produced per 1b coal fired) for an individual boiler. The existing coal handling system includes a belt scale which, at best, can provide a rough estimate of the quantity of coal delivered to the plant. Investigate the technical and economic feasibility of installing coal feed rate measuring devices on the chutes feeding the stokers or on the stokers themselves (each boiler is fed by six stokers). The signals from these devices would be integrated with the signal from the steam flow meter to provide the desired output.
- 7. Government-furnished information. The following documents will be furnished to the AE:
 - a. Holston Defense Corporation Engineering Report ER88-0007, dated 11 July 1988, subject: Cogeneration of Steam and Electricity at HSAAP Using No. 5 Boiler, Bldg 200, Area B.
 - b. U.S. Army Corps of Engineers, Architectural and Engineering Instructions - Design Criteria, 14 July 1989.
 - c. Energy Conservation Investment Program (ECIP) Guidance, dated 25 April 1988 and revision dated 15 June 1989.
 - d. TM5-785, Engineering Weather Data (applicable portions).
 - e. TM5-800-2, Cost Estimates, Military Construction.
 - f. AR 5-4, Change 1, Department of the Army Productivity Improvement Program.
 - g. AR 420-49, Heating, Energy Selection and Fuel Storage, Distribution, and Dispensing Systems.
 - h. Tri-Service Military Construction Program (MCP) Index, dated 28 February 1991.
- 8. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278. Latest revision is Level 62. AE advised to use this version.
- 9. Direct Distribution of Submittals. The AE shall make direct distribution of correspondence, minutes, report submittals, and responses to comments as indicated by the following schedule:

AGENCY

EXECUTIVE SUMMARIES REPORTS

FIELD NOTES CORRESPONDENCE

Commander Holston Army Ammunition Plant ATTN: SMCHO-EN (Mr Shelton) Kingsport, TN 37660-9982	3	3	1**	-
Commander U S AMC Installation and Service Activity ATTN: AMXEN-B (Mr Badtram) Rock Island, IL, 61299 - 7190	1	1	-	_
Commander U. S. Army Corps of Engineers ATTN: CEMP - ET (Mr Torabi) 20 Massachusetts Avenue NW Washington, DC, 20314 - 1000	1*	-	_ ^	_
Commander USAED, South Atlantic ATTN: CESAD-EN-TE (Mr <u>Baggette</u>) 77 Forsyth Street, SW Atlanta, GA 30335 - 6801	1	1	-	•
Commander USAED, Mobile ATTN: CESAM-EN-CC (Battaglia) PO Box 2288 Mobile, AL 36628-0001	2	2	1**	2
Commander U. S. Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr Keath) New Cumberland Army Depot New Cumberland, PA, 17070 - 5007	1*	·_	_	_

- * Receives final report only.
- ** Field Notes submitted in final form at interim submittal.

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, BTU
Fuel Oil - GALS, Dollars, BTU
Natural Gas - THERMS, Dollars, BTU
Propane - GALS, Dollars, BTU
Other - QTY, Dollars, BTU

- 4. Energy Conservation Analysis.
 - o ECOs Investigated. *
 - o ECOs Recommended. *
 - o ECOs Rejected. (Provide economics or reasons)
 - o Operational or Policy Change Recommendations.
- * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- Energy and Cost Savings.
 - o Total Potential Energy and Cost Savings.
 - o Percentage of Energy Conserved.
 - Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

CONFIRMATION NOTICE

Confirmation No. 1

EMC #3102.001

DATE:

5 August 1991

PROJECT:

LIMITED ENERGY STUDY

HOLSTON ARMY AMMUNITION PLANT

CONTRACT NO. DACA01-91-D-0032

NOTES

PREPARED BY:

Carl E. Lundstrom E M C Engineers, Inc.

DATE OF

CONFERENCE:

30 July 1991

PLACE OF

CONFERENCE:

Holston Army Ammunition Plant (HSAAP)

Main Administration Building

SUBJECT:

To discuss the requirements of the Scope of Work, provide

clarification, and develop delivery orders for IDT contract.

ATTENDEES:

Anthony W. Battaglia, Corps of Engineers, Mobile, (205) 690-2618

Dennis Jones, EMC Engineers, Inc., (303) 988-2951

Carl E. Lundstrom, E M C Engineers, Inc., (404) 952-3697

Scott Shelton, SMCHO-EN, (615) 247-9111 x 3791

Willard Williams, Resident Engineer, Mobile, (615) 247-9111 x 3850 Jerry Bouchillon, Holston Defense Corp., (615) 247-9111 x 3471

The following is a summary of the items discussed, the comments made, and the decisions made during the Conference:

- Mr. Battaglia provided EMC with the following documents in regard to the 1. project:
 - NISTIR 85-3273-5, Energy Prices and Discount Factors
 - Holston Defense Corporation Engineering Report, ER88-0007
 - TM5-785, Weather Data
 - AR5-4, Change 1, Productivity Improvement Program
 - AR420-49, Heating, Energy Selection and Fuel Storage, Distribution, and Dispensing Systems

- MCP Index, 28 Feb. 91
- ECIP Guidance, 28 June 1991
- Architectural and Engineering Instructions, 14 July 1989
- 2. Mr. Lundstrom agreed to check EMC's office materials to see if they had copies of:
 - TM5-800-2, Cost Estimates Military Construction, June 1985
- 3. Mr. Battaglia explained using the latest version of LCCID Version 62 program would be required. He recommended EMC contact the Blast support office for the program.
- 4. Mr. Battaglia made some comments regarding the general scope of the project:
- 5. Mr. Bouchillon, Holston Defense Corp.(HDC), made the following comment regarding the issue and concerns of HSAAP:
 - There are restrictions at HSAAP; no cameras, radios, glass, and especially no matches.
 - If EMC wants pictures or videos, the facility photographer can take photos or videos.
 - HSAAP must have two weeks' prior notice for site visits, to get persons into their security system.
 - EMC should bring a list of test equipment to the safety briefing for approval.
 - EMC needs to coordinate the site visit with Bob Bausell, Area B, and Roy Wood, Area A.
 - The engineers working for EMC must have a safety briefing before working in the plant restricted areas.
 - The engineers working for EMC must have a security badge at all times.
 - An HDC or government employee must escort the engineers working for EMC at all times, for security and safety reasons.
- 6. Questions regarding the general Scope of Work, dated December 1990, were discussed:
- 6.1 Paragraph 2.3:

Question: Please review the intent of this paragraph, regarding:

- All methods of energy conservation.

– O & M improvements.

Answer: If EMC identifies an improvement, EMC can pursue these as they deem reasonable, but the Government will not require EMC to

Page 2 of 6

evaluate more than the ECOs identified in the Scope of Work.

6.2 Paragraph 2.4:

Question: Please review the intent of this paragraph, regarding:

Energy sources.

- Building, system, and ECO.

Answer: EMC is not to consider alternative fuels as a possible ECO.

6.3 Paragraph 3.7 Interviews:

Question: Would you like EMC to conduct entry and exit interviews for each

increment - delivery order?

Answer: EMC should have an entry and exit interview every time they're at

the plant for a survey. EMC should expect the facility commander

to be included in the briefing.

6.4 Paragraph 6.2 Survey:

Question: Are there specific tests or measurements the Government wants

performed?

Answer: EMC should take whatever tests are necessary to support the

analysis. There are no special tests the Government would request

or require specifically.

6.5 Paragraph 6.4 Presentations:

Question: Please review the paragraph sections regarding presentations. Is it

intended there be a presentation at the interim stage for each delivery order? Is there any presentation after the final submittal?

Answer: There should be a presentation at the interim stage for each delivery

order. No presentations are required at the final submittals.

6. General:

Question: There is no synergistic analysis of combinations of ECOs evaluated.

Is there a plan to make an increment for looking at the

combinations of individually recommended ECOs?

Answer: No.

Question: Please review the level of detail required, and types of items to be

addressed in the "Operational or Policy Change Recommendations"

(see Annex B).

Answer:

EMC should include brief description of operational recommendations, but is not required to produce SOPs, diagrams or drawings, or perform analysis.

7. Questions regarding the Annex A portion of the Scope of Work, dated December 1990, were discussed:

7.1 Annex A, increment A.:

Ouestion:

How does this study differ from the previous study?

Answer:

The other study included renovation of existing boilers and other

special considerations.

Question:

What utility restrictions or incentives are there for this project?

Answer:

EMC needs to investigate this with the utility.

Question:

Does the Army want to sell excess power to the utility, or can the

Army consume all power produced?

Answer:

It is believed the Army will consume all the power.

7.2 Annex A, increment B.:

Question:

Is there an operational problem with the existing jet?

Answer:

No, it is a big energy waste. HSAAP has converted many of the

existing steam jet vacuum systems to vacuum pumps in other

buildings.

7.3 Annex A, increment C.:

No questions. The general concept of the project was discussed.

7.4 Annex A, increment D.:

No questions. The general concept of the project was discussed. Locations, ducting, and temperatures will be looked at carefully.

7.5 Annex A, increment E.:

Question:

Is blowdown automatic or manual?

Answer:

Manual, continuous.

Ouestion:

What type controls do they have?

Answer:

Area B plant has original 1940's vintage controls. Area A plant has

new oxygen trim controls.

7.6 Annex A, increment F.:

See item 7.2, Annex A, increment B.

7.7 Annex A, increment G.

No questions. The general concept of the project was discussed.

7.8 Annex A, increment H.:

Comment by Mr. Lundstrom:

To properly evaluate the technical feasibility of this ECO will involve environmental evaluation of such items as allowable water temperature discharge, ground water, surface drainage, permitting by NPDES, and so forth. The environmental evaluation could be significant cost.

Answer by Mr. Battaglia:

It was agreed the environmental issues must be addressed.

7.9 Annex A, increment I.:

No questions. The general concept of the project was discussed.

7.10 Annex A, increment J.:

No questions. The general concept of the project was discussed.

8. The formal meeting at HSAAP administration offices was completed by 11:30 a.m. In the afternoon the group visited with Bob Bausell regarding ECOs related to Area B boiler plant. The group then visited the Area B boiler plant.

While in the plant, Mr. Lundstrom brought up the question of locations to take readings (temperatures, stack emissions, and so forth) with Mr. Battaglia and Mr. Bausell. Mr. Lundstrom asked if there were existing holes or test ports to use. Mr. Lundstrom expressed his concern that if he had to drill new holes there may be asbestos, and EMC did not want to have to be concerned with asbestos removal. It was agreed EMC would not have to accomplish any asbestos removal for this project.

9. After the plant tour, the group went through the ECO increments and grouped them in the following order for evaluation:

No. 1 - Increments B and F

No. 2 – Increment A

No. 3 - Increments C, D, E1, and E2

No. 4 - Increments G, I, and J1

No. 5 – Increment H

No. 6 – Increments E3 and J2.

It was agreed that Increments C, D, E1, and E2 are strongly interrelated and should be analyzed as a group.

Carl E. Lundstrom, P.E.

E M C Engineers, Inc.

Remote Office Manager, Atlanta

CONFIRMATION NOTICE

Confirmation No. 2

EMC #3102.002 and .003

DATE:

27 SEPTEMBER 1991

Anthony Battaglia

Mobile District, Corps of Engineers

(205) 690–2618

PROJECT:

LIMITED ENERGY STUDY

HOLSTON ARMY AMMUNITION PLANT

CONTRACT NO. DACA01-91-D-0032

Delivery Order 0002 and 0003

NOTES

PREPARED BY:

Carl E. Lundstrom

E M C Engineers, Inc.

SUBJECT:

To discuss the requirements of the Scope of Work and provide

clarification for IDT contract.

The following is a summary of the items discussed, the comments made, and the decisions made during the telephone conversation on 26 September 1991 between Anthony W. Battaglia, Corps of Engineers, Mobile, and Carl E. Lundstrom, E M C Engineers, Inc.

- Mr. Lundstrom asked if the submittal date for the Interim Submittal for Delivery 1. Orders 2 and 3, could be 31 January 1991. Mr. Battaglia thought that was a satisfactory date for the Interim Submittal.
- Mr. Lundstrom asked if the submittals for Delivery Orders 2 and 3 could be 2. prepared in one report to be provided to the government. Mr. Battaglia agreed this was a satisfactory approach.

Page 2 27 September 1991 Confirmation Notice No. 2

3. Mr. Battaglia reminded Mr. Lundstrom about the review conference after the Interim Submittal for the cogeneration study. Mr. Lundstrom explained that EMC will present all the findings of the Interim Submittal at the review conference.

Carl E. Lundstrom, P.E.

Project Manager

If any portion of this confirmation notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions and conclusions, and status outlined in this confirmation notice are correct.

CONFIRMATION NOTICE

Confirmation No. 3

EMC #3102.002

DATE:

14 October 1991

PROJECT:

Limited Energy Studies - Holston Army Ammunition Plant

CONTRACT No: DACA01-91-D-0032 Delivery Orders 2 & 3

NOTICE

Dennis Jones PREPARED BY:

SUBJECT:

Field Survey

The field survey for the limited energy studies was conducted from 7 through 11 October 1991 by Carl Lundstrom, Dennis Jones, and Jim Edwards of EMC Engineers, Inc.

The field survey went very smoothly. Carl Lundstrom and Dennis Jones had previously visited the site in July and were able to develop a detailed list of required data prior to this trip. Personnel were helpful in providing information and data. Plans and data on the plant are well organized and maintained in files and on microfilm in the engineering section at HAAP. Plans were obtained for the steam distribution system and for applicable parts of the central steam plants. Key people contacted included:

Scott Shelton - SMCHO-EN x3791 Jerry Bouchillon - Energy Cordinator x3471 Roy Wood - Chief of Area A Utilities x8812 O.B. Wigley - Area B Maintenance Supervisor x3529 Max Noe - Area A Maintenace Supervisor x8858 Shelby Jones - Senior Electrical Engineer x3483 Sonny Hall

The one area where data collection was difficult was process energy loads. This data is necessary to determine the adequacy of the steam distribution system to operate at lower steam pressure. HAAP lacks organized data on the energy usage for their chemical processes. We obtained data on theoretical energy usage for processes and the amount of material processed, and will use this information to estimate process energy demand and loads.

The Area-B central steam plant was extensively surveyed to obtain data for analysis of possible ECMs and cogeneration. Measurements were made of temperature at various points in the system and a flue gas analysis conducted. Boiler blowdown rate was also measured.

Operating production buildings in Area B were surveyed to determine required steam pressures and to obtain data on existing PRV valves. Production personnel provided an explanation of the processes. The cogeneration ECM is highly dependant on the ability of the production area to operate on lower pressure steam and the capacity of the existing PRVs and piping. Measurements were also made of heat loss from selected sizes of distribution piping.

CONFIRMATION NOTICE 14 October 1991 Page 2

The Area A central steam plant was surveyed to obtain data for analysis of possible ECMs. The Area A plant is well instrumented and operational readings were obtained from the existing instrumentation.

HAAP has a number of studies ranging back to 1942. They have loaned EMC copies of these studies and also a copy of their Facilities Appraisal Manual.

During the survey a number of potential ECMs for future studies were identified.

Action Required: None

Copies to:

Tony Battaglia Scott Shelton

Jerry Bouchillon

If any portion of this confirmation notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions and conclusions, and status outlined in this confirmation notice are correct.

CONFIRMATION NOTICE

Confirmation No.: 4

DATE:

24 June 1992

EMC #3102-002

PROJECT:

Limited Energy Studies - Holston Army Ammunition Plant

CONTRACT No.: DACA01-91-D-0032 Delivery Orders 2 & 3

NOTICE

Dennis Jones

PREPARED BY:

EMC Engineers, Inc.

SUBJECT:

Review Conference for the Interim Submittal

ATTENDEES:

Scott Shelton, SMCHO-EN, 615-247-9111, x3791 Jerry Bouchillon, HDC Engineering, 615-247-9111 Anthony W. Battaglia, COE Mobile, 205-690-2618 Dennis Jones, EMC Engineers, Inc., 303-988-2951

The following is a summary of the review comments and the resolution to those comments.

Jerry Bouchillon, Energy Coordinator

Summary:

This was an excellent report. The conciseness of the presentation in a detailed, yet readable form is outstanding. Particularly valuable is the boiler simulation computer software which is used extensively. Assumptions are realistic and conservative.

Five of the eight Engineering Conservation Opportunities (ECOs) are being submitted to the Army as FY95 ECIP Proposals. They are essentially being submitted as presented in the Report. The other 3 ECOs do not fit ECIP funding guidelines or for some other reason are held back for other funding.

Technical Comments:

Paragraph 5.3.2: How do you know or what is your documentation for "the 1. required temperature for the precipitators to function properly is 280°F"?

> The required temperature of 280°F was provided by Bob Bausel, the Area B Central Plant Manager. The location of the heat recovery coil will be changed. The heat recovery coil will be located downstream of the precipitators to prevent any problem with precipitator operation. The report will be modified to reflect this change. EMC will use the chemical analysis of the coal to determine the temperature at which sulpheric acid will condense out of the flue gas. If it differs from the 280°F temperature, the report will be modified appropriately.

pages A-10, A-11, Detailed Scope of Work, e.g., it appears the following scopes of work were not studies: Area B Boiler Plant Instrumentation and Operations, Area A Cooling Water, Area A & B, Coal Feed Rate Monitoring. Were these an oversight or a scheduled deletion from the LES?

The ECOs mentioned in the above comment were not included in this contract. These were a scheduled deletion from the Statement of Work.

No action required.

8. Tab C, Page C-3 & C-4: The enthalpy change of 1028 BTU/lb is questioned. It was derived from the difference between the enthalpy of superheated vapor (1271 BTU/1bm 300 psig and 525°F) and presumably the enthalpy of saturated liquid at 230°F or 5 psig. It appears the Hr = 243 BTU/1bm is in error and should be 198 BTU/1bm. Request verification.

The 230°F temperature in the spreadsheet is not correct. It should read 30 psig. 30 psig is the pressure at which liquid condensate is expelled from the process and space heating steam traps. The enthalpy change of 1,028 BTU/lb. is correct. This is the available heat between the superheated steam at 300 psig and 525°F and the liquid condensate expelled at 30 psig. The report will be corrected.

9. Tab C, Pages C-98, C-101, and C-102: The annual maintenance costs indicated, Page C-98, do not appear to have been included in the cost analysis for Cogeneration - Option 1 and 2. Request verification.

The life cycle costing was performed with the Life Cycle Cost in Design program, commonly called LCCID. LCCID does not print out or display directly, maintenance costs or electric demand savings. Annual maintenance costs and electric demand savings are lumped together into the annual recurring non-energy costs as printed out in the program. For Option 1, the annual demand savings was \$92,682. The annual maintenance cost was \$52,776. Subtracting the annual maintenance cost from the annual demand savings, the result is \$39,906 which is what you see printed out in the program on Page C-101. EMC has verified that the annual maintenance costs have been included for both options 1 and 2.

LCCID is a very difficult program to use and also to check for errors. In fact, since this project, EMC has reprogrammed LCCID into a Lotus spreadsheet which prints out a form that looks the same as the LCCID program. The Lotus spreadsheet is much easier to use than the LCCID program. For this report EMC will add another line to the LCCID spreadsheet and separate and display both annual electrical demand savings and annual maintenance costs.

10. Tab E, Page E-16: Annual maintenance costs appear to not have been included in the cost analysis for feedwater pre-heater. Request verification.

Maintenance costs were not included for the feedwater preheater for two reasons: 1) The maintenance costs on a feedwater preheater is minimal and is insignificant compared to the energy savings produced by the feedwater heater; and 2) maintenance procedures would be performed inhouse and there would likely be no increase cost to the government. Maintenance costs on a feedwater preheater would be about 16 hours a year. EMC will add these maintenance costs to the life cycle costing and also will add maintenance costs for the other ECOs for which maintenance costs were considered negligible.

L.P. Covert

11. Paragraph 4.7.4.2: Suggest the use of bus duct in lieu of large conductors for the 100 Amp feeder.

I believe the reviewer was talking about the 1000 Amp feeder. A bus duct is a viable option to the large conductors. We believe the costs would be about the same. This is something that the designer should look at when the system is designed. EMC will add a statement to the report that mentions that a bus duct may possibly be used in lieu of the large conductors.

Hulen Shaw

General: A very good study.

12. Area B Cogeneration: A maintenance contract could be less expensive in lieu of hiring a full-time maintenance person.

A maintenance contract for the cogeneration turbines would probably be less expensive than hiring a full-time maintenance person. We assumed a full-time maintenance person for two reasons: 1) We wanted to make sure this project had enough funding in the O&M area to keep the cogeneration system operating. The existing cogeneration system is not operational due to lack of O&M funding; and 2) we wanted to provide justification for adding another maintenance person. EMC feels that the installation could benefit from additional maintenance personnel. A maintenance contract will be mentioned in the report as an alternative to hiring a full-time maintenance person.

13. Combustion Air Preheaters: The temperature at which sulfur in the flue gas parcipitates must be considered when lowering flue gas temperature.

See comment 1.

A. Battaglia

14. Table ES-3 and Table 6-2: The before and after figures for Annual Energy \$\\$ are not consistent with the annual energy cost shown in Table ES-1 on page ES-2.

On Table ES-3, the annual energy dollar savings are incorrect. The correct number is \$6,462,600. Table ES-1 does not include electric demand charges. That is the difference between Tables ES-1 and ES-3. EMC will add demand costs to Tables ES-1, ES-2, and ES-3.

On Table ES-1, rows will be added for demand costs under both Area A and Area B Electricity Costs. On Table ES-2, a column will be added for electric demand costs. On Table ES-3, a column will also be added for electric demand costs. The tables in Section 6 summary will be modified similarly. The above modifications should clear up the discrepancies and confusion with electric demand costs.

15. Table 2-1, Unit Energy Costs: The asterisk in the lower right hand box of the table appears to be misplaced. Should apply to Area B steam, not to electrical energy cost.

The report will be corrected.

16. Paragraph 3.1, last line: Correct spelling of "effect".

The report will be corrected.

17. Section 3.2.2.1, Steam Production: Average steam production is stated; please also mention the peak production expected under current operating conditions and how that relates to the "design" values used in some of the calculations.

Peak steam production expected under current operating conditions for both areas A & B will be presented in this section.

18. Page 3-5: In defining m_z be sure to specify that this is the <u>dry</u> mass of flue gas.

The report will be clarified to indicate that we are referring to the dry mass of flue gas.

19. Section 3.2.2.5, Flue Humidity Loss: Water vapor from combustion of hydrogen in the coal is mentioned; but water vapor contributed by the combustion air should also be included.

The report will be clarified to indicate that humidity in the combustion air is also part of this calculation.

20. Page 3-7: Flow schematic is incorrectly referenced as Fig 3-2 on page 3-5. Please correct.

The flow schematic should reference Figure 3-1 on page 3-1. The report will be corrected.

21. Figure 4.1: The PRV shown in the Administration Area is labeled "PRV 400/100 PSI"; shouldn't that be 300/100 PSI?

The PRV at the Administration Area is mislabelled. It should read, "300/100 PSI". The report will be corrected.

22. Section 4.3.1.2: Delete the word "million" after 77,027,000.

The word "million" should not be there. The report will be corrected.

23. Section 4.3.1.3: When discussing space heating loads, the base temperature for the heating degree days should be noted.

The base temperature for the heating degree days is $65^{\circ}F$. The text will be modified to include a reference to the base temperature.

24. Page 4-5: Last definition: Space heat coefficient should have units of BTUH/°F.

The space heating coefficient will be corrected to indicate the proper units.

25. Figure 4-4: I would expect the piping heat loss to be greater in winter than in summer since the Delta-T would be greater, i.e., the dark band on the graph would be "skinnier" in June, July, and August than in December, January, and February. Please explain why it appears to be the same thickness throughout the year.

The plots of piping heat loss was derived from the spreadsheet on Page C-5. Referring to Page C-5, notice that the distribution losses are slightly greater in the winter time due to colder ambient temperatures. Pipe heat loss is driven by the temperature difference between the steam in the pipe at 525°F and ambient temperatures. The difference between the steam temperature and ambient temperature varies from 490°F to 450°F. There is only a 10% variation in the heat loss between the warmest and coldest month. This 10% variation is in the graph, but it is difficult to see.

No action required.

26. Page 4-6: Delete redundant word "generated" from the last sentence.

The report will be corrected and the word "generated" will be deleted.

27. Table 4-1: Correct errors in Electricity Energy Cost and Total Energy Cost.

On Table 4-1, the Electricity Energy Cost is consistent with the Energy Cost in Table ES-1 and that is the correct figure. The coal energy cost is slightly different from the baseline model developed in Section 4.0 due to use of a degree day space heat model.

No action required.

28. Section 4.6.4: In discussing steam that bypasses the turbine, it could be stated that the steam bypassing the turbine would be treated by a PRV and a desuperheater to match the condition of the steam leaving the turbine; and that this steam would still be superheated at the lower pressure, i.e., still dry.

Section 4.6.4 will be expanded to more clearly explain the PRV and superheater and its effect on the steam delivered on the distribution system using the suggestions in the above comment.

29. Page 4-18, 4-19, & 4-21: Resolve conflict regarding size of tie-in to existing boiler feedwater line. Figure 4-8 and Section 4.7.4.1 have it as a 1-inch line; but Figure 4-9 shows a 2-inch line.

The correct size of the tie in to the existing boiler feedwater line is 1". Figure 4-9 will be corrected to indicate a 1" feedwater tie in.

30. The last paragraph of Section 4.7.4.2 refers to Figure 4-8 on page 4-18; appears it should be Figure 4-10 on page 4-23.

Report will be corrected.

31. Page 4-24: Correct Option 1 Total Construction Cost should be \$749,500.

Referring to Page C-98, the repair costs on the existing turbine should be \$5,000 rather than the \$6,000 in the text. The result is a total construction cost of \$748,500. Report will be corrected accordingly.

32. Section 5.2, Area B Intermediate Pressure Steam Header: Please include a piping schematic of the recommended system in this section.

A piping schematic of the recommended system will be added to the report. The piping schematic will be a modification of Figure 3-1 showing the position of the recommended system.

33. Section 5.3, Area B Combustion Air Preheaters: Please include a discussion of the piping requirements for the run-around loop. The temperature of the water in the loop will be above the boiling point, equivalent to about 30 to 50 psig; so a relief valve would be required. Also include a piping schematic in Section 5.3.

A discussion of the piping requirements for the run around loop will be added to the discussion. A piping schematic will also be added showing the piping and all the major components. A pressure release valve will be included to the schematic and also included in the cost estimate. The life cycle cost will be recomputed.

34. Section 5.3.5, Life Cycle Cost Analysis: The annual electricity savings should be negative rather than zero due to operation of the pump in the run-around loop.

Electricity costs for operation of the pump on the run around loop will be added to the life cycle cost analysis. Also, the section number 5.3.5 will be corrected. The new section number should be 5.3.6.

35. Section 5.6.2: This section states that 300 psig steam is supplied to Area A steam jet orifice plate. Area A CHP produces 400 psig steam. Is the 400 psig steam reduced to 300 psig for this purpose? Please clarify.

At Area A, 400 lb. steam is used directly for the steam jet orifice plate. The steam flow through the steam jet orifice plate was incorrectly assumed to be the same at Area A as it was at Area B.

The steam rate at Area A should be greater than Area B. EMC will recalculate the steam rate for Area A and correct the report and analysis accordingly.

36. Page 5-15: 3rd paragraph, last line: Annual electric usage increase should be 97 MBTU rather than 194.

Report will be corrected.

37. Section 5.7, Area A Electric DA Pump: In the discussion of the new bypass pump, it is not clear if it would be sized for average current operating conditions. Please clarify.

The pump is sized for peak current operating conditions. The report will be clarified to indicate this. The peak operating flow requirements will be stated.

38. Appendix D: Correct spelling of "Areas" on title sheet.

The report will be corrected.

39. Page G-1: State reason for sizing heat exchanger for 1100 GPM makeup and 25 GPM blowdown, i.e., large enough to handle peak (mobilization) capacity?

It makes more sense to size the heat exchanger for the peak current usage rather than mobilization. EMC will resize this heat exchanger and correct the analysis accordingly. The design will include a bypass for full mobilization operation.

40. Page G-3: Why is there no data on the B&G submittal sheet?

EMC will resize this heat exchanger and submit a submittal sheet with data on it and will include the correct data sheet in the final report.

Dennis Jones

If any portion of this confirmation notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions and conclusions, and status outlined in this confirmation notice is correct.

DEJ/smn(12)

APPENDIX B

BASE ENERGY ANALYSIS

Historical Energy Use Data	B-1
Energy Cost Development	B-4
Area-B CHP Performance Calculations	B-6
Area-A CHP Performance Calculations	B-28
Current Peak Steam Use Calculations	B- 35

EMC ENGINE	ERS, INC.		
PROJ. #	PROJECT.		
SHEET NO	OF_	2.7	
CALCULATED E	BY D/	ATE	
CHECKED BY_	DA	TE	12
SUBJECT			

ACCOUNTING DEPARTMENT COAL USAGE DATA UTILITIES DEPARTMENT COAL USAGE DATA

TABULATION OF DATA PROVIDED BY HAAP

			ı							
	AREA-B		AREA-B	AREA-B	A-PEA-A	AREA-A	_ AREA−₿	AREA-B	_ AREA−B	AREA-A
	BITUMINUS	ANTHRACITE	TOTAL	COST	BITUMINUS	COST	BITUMINUS	ANTHRACITE	TOTAL	BITUMING
	(tons)	(tons)	(tons)	€	(tons)	€£	(tons)	(tons)	(tons)	(tons)
Jan 89	808'9	0	808'9	238,544	3,899	136,622	808'9	0	6,808	3,899
Feb 89	6,516	0	6,516	230,292	3,722	131,530	6,516	0	6,516	3,722
Mar 89		0	6,319	223,487	3,207	113,682	6,793	0	6,793	3,524
Apr 89		0	4,859	167,965	2,860	98,883	5,785	0	5,785	3,481
_		0	6,174	213,276	4,012	138,595	6,174	0	6,174	4,012
m 89		0	5,512	191,507	3,803	132,120	5,512	0	5,512	3,814
Jul 89		0	3,709	128,822	2,401	83,384	6,377	0	6,377	4,180
Aug 89		831	5,671	164,775	3,398	115,702	5,048	831	5,879	3,537
		1,040	5,516	152,882	3,179	108,571	4,480	1,040	5,520	3,180
		1,405	602'9	177,473	3,483	119,082	5,189	1,405	6,594	3,482
		3240	8,863	190,703	4,368	137,961	5,623	1,620	7,243	4,067
		545	8,636	274,156	4 292	145,417	160'8	545	8,636	4,291
		1,635	7,482	196,266	4,140	138,970	5,847	1,635	7,482	4,139
		1,485	6,859	181,644	3,176	107,343	5,375	1,485	6,860	3,176
Mar 90		820	6,773	204,193	3,647	125,728	5,545	923	6,468	3,646
.pr	4,752	1,615	6,367	166,905	3,362	118,092	5,052	1,615	6,667	3,562
May 90		1,560	5,013	123,686	26,72	100,001	4276	1,560	5,836	3,341
		1,665	6,249	167,468	3,884	141,893	4,542	1,665	6,207	3,855
<u>Jul</u>	3,722	1,305	5,027	136,113	2,751	100,613	3,722	1,305	5,027	2,751
		230	5,015	165,109	3,827	140,887	4,485	230	5,015	3,826
		220	5,046	167,279	3,884	144,508	4,496	220	5,046	3,883
Oct 30		645	5,784	189,340	3,538	130,332	5,140	645	5,785	3,537
		855	6,651	216,778	3,746	140,102	962'5	825	6,621	3,745
Dec 30		208	6,613	244,354	4,334	165,326	6,182	790	6,972	4,185
		685	7,536	265,583	4,467	173,152	6,851	685	7,536	5,503
Feb 91		099	6,490	221,372	3,608	137,006	5,830	099	6,490	4,550
Mar 91	86,938	689	7,527	260,875	3,798	144,884	6,838	775	7,613	4,573
Apr 91	6,488	200	7,188	247,989	3,886	148,518	6,488	200	7,188	4 585
May 91		440	5,762	203,977	4,040	154,833	5,322	725	6,047	4,975
Jun 91	4,470	230	4,700	171,562	3,074	117,972				
Jul 91	7,987	435	8,422	290,516	4,228	153,777				
Aug 91	4,740	1,180	5,920	176,759	4,035	150,461				
8	68231	7.061	75 292	2 353 882	42 624	1 461 549	72.396	5 441	77 837	45 189
8		12,903	72,879	2,159,135	43,081	1,553,810	60,458	13,528	73,986	43,646
Ä		0 000	74 006	002000	610 0,		111 11 22 20 20	The state of the s		

EMC ENGINE	ERS,	INC.	_		_
PROJ. #	_ PRO	NECT	311	- 10	Ξ.
SHEET NO	3	_OF_	35	_	
CALCULATED	BY_	<u> </u>	ATE_		
CHECKED BY		DA	TE		
SUBJECT =			710 -		

ACCOUNTING DEPARTMENT ELECTRICITY USAGE DATA UTILITIES DEPARTMENT STEAM PRODUCTION DATA

TABULATION OF DATA PROVIDED BY HAAP

		TOTAL ELECTRICITY		AREA-A ELECTRICITY	П	AREA-B ELECTRICITY		STEAM PRODUCTION	JCTION
		TOTAL	TOTAL	AREA-A	AREA-A	AREALB	AREA-B	AREA-A	AREA-E
		(18	1000KWH]	(KWH)		EWS.	(RW)	MMLBM	
Jan		9,648	6,120	928,000	1,463	5,192,000	8,185	823	1402
Feb		9,408	5,448	826,000	1,427	4,622,000	7,981	9.67	134.1
Mar		9,288	5,424	955,000	1,408	4,469,000	7,880	74.8	139.2
Apr		9,288	5,736	929,000	1,408	4,807,000	7,880	75.5	115.5
May		9,144	5,136	295,000	1,387	4,341,000	7,757	813	116.4
- Lu		9,240	5,208	981,000	1,401	4 227,000	7,839	802	1002
곡	88	9,528	5,712	1,091,000	1,445	4,621,000	8,083	71.1	97.3
Ang		9,864	5,544	1,268,000	1,496	4,276,000	898'8	74.1	1072
Sep		10,296	090'9	1,068,000	1,561	4,992,000	8,735	7.07	101.1
ŏ		9,552	5,904	991,000	1,448	4,913,000	8,104	75.7	121.3
Š		9,864	6,198	934,000	1,496	5,264,000	8,368	84.6	133.1
Dec		9666	6,216	892,000	1,507	5,324,000	8,429	7.67	146.5
Jan		10,416	6,816	917,000	1,579	5,899,000	8,837	85.5	134.0
Feb		9,984	5,820	1,010,000	1,514	4,810,000	8,470	66.8	124.4
Маг		9,816	5,736	000'296	1,488	4,769,000	8,328	78.1	131.5
Apr		9,864	96,39	1,109,000	1,496	5,287,000	8968	75.4	120.5
May		9,648	5,580	894,000	1,463	4,686,000	8,185	73.4	105.5
되		10,104	5,706	691,000	1,532	5,015,000	8,572	81.6	108.5
3		9,912	6,246	978,000	1,503	5,268,000	8,409	59.1	9.68
Aug		9,672	5,646	000'989	1,467	4,960,000	8,205	83.3	103.1
Sep		966'6	5,688	830,000	1,516	4,858,000	8,480	772	100.1
ő		9,804	5,880	852,000	1,487	5,028,000	8,317	78.0	111.8
ž		9,804	5,544	784,000	1,487	4,760,000	8,317	877	124.1
8		9,816	2,760	641,000	1,488	5,119,000	8,328	97.6	1312
Jan		10,266	6288	616,000	1,557	5,672,000	8,709	808	140.0
Feb		10,800	960'9	648,000	1,638	5,448,000	9,162	73.6	129.3
Mar	9	10,392	6,120	651,000	1,576	5,469,000	8,816	9.62	139.0
Apr	6	10,530	5,745	949,000	1,597	4,796,000	8,933	0.67	131.7
Мау	6	10,944	5,448	762,000	1,659	4,686,000	9,285	848	106.9
Ę	6								
3		-							
And	91								

1384	934	8,401	60,459,000	1,502	10,359,000	90
1,452	828	8,134	57,048,000	1,454	000,869,11	20

E - 1

DATA TAKKATUS EDVATIONS

A:A13: {LR} [W3] 'Jan A:B13: (LR) [W3] 89 A:C13: {Page LR} 6808 A:D13: {LR} 0 A:E13: (LR) +C13+D13 A:F13: {LR} 238544 A:G13: {LR} 3899 A:H13: {LR} 136622 A:113: {LR} 6808 A:J13: {LR} 0 A:K13: (LR) +I13+J13 A:L13: {LR} 3899 A:M13: {MPage LR} 9648 A:N13: {LR} 6120 A:013: {LR} 928000 A:P13: {LR} +\$0\$13/(\$0\$13+\$Q\$13)*M13 A:Q13: (LR) 5192000 A:R13: (LR) +M13-P13 A:S13: {LR} (F1) 82.265 A:T13: {LR} (F1) 140.234 A:U13: {LR} (P2) +J13/K13 A:V13: {LR} 1353 A:W13: {LR} (F3) +V13/K13 4:X13: {LR} (F2) +T13*1000000/K13/2000 :Y13: {MPage LR} 42 :213: {LR} 698 A:AA13: {LR} 140234 A:AB13: {LR} +AA13*\$INB A:AC13: {LR} +\$UA*(\$TSTM-Y13)*24*30/\$DH/1000 A:AD13: (LR) +AA13-AB13-AC13 A:AE13: {LR} +\$PROC A:AF13: (LR) (,0) +AD13-\$PROC

A:AG13: {LR} +\$BLC*24*Z13/\$DH/1000 A:AH13: {LR} (P1) (AF13-AG13)/AA13

EMC ENGINEERS, INC.	
PROJ. # PROJECT	_
SHEET NO OF	
CALCULATED BY DATE	
CHECKED BY DATE 1/30/9	7_
SUBJECT	

EMC ENGINEERS, INC. PROJ. #_ **ENERGY COSTS** PROJECT **ELECTRICITY** SHEET NO. OF Demand $9.64/kW \times 0.985 =$ CALCULATED BY ____ DATE \$9.50/kW Discount CHECKED BY____ DATE SUBJECT Usage $(\$0.01852 - \$0.0024265) \times 0.985 =$ \$0.01585/kWh Fuel Adjustment Average 1990 \$2,266,947 \$0.0320/kWh 70,818,000 kWh **Energy Cost** \$0.0320 kWh \$9.38/ _MBtu 0.003413 MMBtu **COAL** Cost \$35.20/ton (Price Obtained from Accounting Dept.) 14,100 Btu/lbm (Laboratory Analysis) **Energy Cost** \$35.20 lbm \$1.25/ .MBtu Ton 0.014100 MMBtu 2000 lbm **STEAM** Area A Steam (1000 lbm) Coal (\$) Avg. 89/90 932,000 \$1,507,680 » \$1.62/1000 lbm steam Steam 400 psig, 575°F 1290 Btu/lbm h Condensate 5 psig liquid 196 Btu/lbm h dh 1094 Btu/lbm \$1.62 lbm 10⁶ Btu \$1.48/ .MBtu 1000 lbm 1094 Btu MBtu Area B Steam (1000 lbm) Avg. Coal (\$) 89/90 1,418,200 \$2,256,500 **Bituminous** 66,391 tons 86% Anthracite 9,485 tons 14% (Assume Same Energy Content as Bituminous) Total 75,876 tons If Anthracite were purchased, cost would be 75,876 =1.14 times the actual cost 66,391

> \$2,256,500 x 1.14 \$1.82/1000 lbm steam 1,418,000 (1,000 lbm) Steam 300 psig, 525°F 1270 Btu/lbm h Condensate 5 psig, 228°F h 196 Btu/lbm dh 1075 Btu/lbm = lbm 10⁶ Btu \$1.69/. MBtu 1075 Btu 1000 lbm A MBtu

UTILITY BILL CALCULATION (ELECTRICITY)

THIS BILLING IS FOR september, 1991

LLING DEMAND RATE IS \$ 9.64
ETERED KWH RATE IS \$.01852
SERVICE CHARGE IS \$ 1192.00
) DISCOUNT RATE IS \$.015 9816 BILLING DEMAND IS 5904000) METERED KWH IS **\$** ,0015966 FUEL ADJUSTMENT RATE IS \$ 94626.24 BILLING DEMAND 9816 (X) 9.64 109342.10) 5904000 METERED KWH (X) .01852 = 1192.00 SERVICE CHARGE \$ 205160.30 FUEL ADJUSTMENT RATE .0015966 (X) %5904000.00 - 9426.33 METERED KWH = \$ 195734.00 TOTAL BEFORE DISCOUNT - 2936.01) DISCOUNT IS .015 (X) TOTAL **\$ 192798.00**) THE TOTAL DUE IS) IF THIS RUN DOES NOT EQUAL THE INVOICE PLEASE SEE BARBARA KISER.

> PROJ. #____ PROJECT 3102-002 SHEET NO. ___ S OF ___ 3S

SUBJECT /

CHECKED BY DATE 1/15/91
CHECKED BY DATE 1/28/97

B-5


)

EMC ENGINEERS, INC.

PROJ. #____ PROJECT 3/02-002

SHEET NO. ____ OF ___ 3 \$___

CALCULATED BY ____ DATE _____
CHECKED BY ____ DATE ____
SUBJECT ____

BOILERS.WK3

HEATING VALUE OF COAL	>H	14100.00	BTU/LBM	COAL ANALYSIS
THEORETICAL COMBUSTION AIR	THEO	11.00	LBM/LBM	LBH AIR/LBH COAL FROM ASHRAE FUNDAMENTALS
MIXED WATER TEMP	RETURN	56.00	IL.	LBH OF 5 PSI STEAM CONDENSED PER LBH OF MAKE UP
LATENT HEAT (5 PSI)	PSI5	960.00	BTU/LBM	STEAM TABLES
ECONOMOZER AIR TEMP IN	ΤĒΙ	480	u.	MEASURED
ECONOMIZER UA	ECON	25000.00	BTUH/F	AREA-A ECONOMIZER ANALYSIS
BLOWDOWN RATE	BLOW	2.46%	*	MEASURED
STEAM ENTHALPY	SH	1271.00	BTU/LBM	300 PSI, 626 F
LIQUID ENTHALPY	물	388	BTU/LBM	300 PSI, SATURATED
LOW PRES STEAM ENTHALPY	HSLP	1,157	BTU/LBM	6 PSIG, SAT
DA HEATER LIQUID ENTHALPY	HLDA	198	BTU/LBM	228 F, SAT
AMBIENT TEMPERATURE	Ţ	82	ıL	WEATHER DATA
COMBUSTION LOSSES	SSOT	8.10%	*	ASSUMED
RADIATION LOSSES PER BOILER	RAD	1.65	MMBH	ASSUMED
DESIGN FAN HORSEPOWER	FANH	550	윺	DESIGN DATA
DESIGN FAN CFM	FANCEM	52,500	CFIX	DESIGN DATA
FAN STEAM RATE	FANSTM	21.60	LBH/HP	TURBINE MANUFACTURER
DA PUMP DESIGN HORSEPOWER	DAHP	80	£	DESIGN DATA
DA PUMP DESIGN FLOW	DAGPM	1,750	GPM	DESIGN DATA
DA PUMP STEAM RATE	DASTM	54.8	LBH/HP	TURBINE MANUFACTURER
FW PUMP DESIGN HORSEPOWER	FWHP	135	맢	DESIGN DATA
FW PUMP DESIGN FLOW	FWGPM	460	GPM	DESIGN DATA
FW PUMP STEAM RATE	FWSTM	33.4	LBH/HP	TURBINE MANUFACTURER
BLOWDOWN FLASH STEAM	FLASH	21.10%	*	CALCULATED
FW PUMP HEAD	FWHEAD	200	F	CALCULATED
VACUUM STEAM JET RATE	JET	932	HBT	CALCULATED
INTERMEDIATE HEADER PRESSUF	Ī	ιΩ	PSIG	
INTERMEDIATE HEADER TEMP	Ī	228	ட	
PRE-HEATER EFFECTIVENESS	蒀	0.80		
PRE-HEATER LATENT HEAT	Ī	96	BTU.LBM	
LOW PRESSURE STEAM TEMP	LPT	228	ш	

PUMP	£	P.CM.	POWER	£	84	333	107	103	94	87	78	74	74	74	75	83	94	103
FEEDWATER PUMP	¥	PCMP	FLOW	<u>(</u> (0.00)	333	1,317	422	409	371	343	307	294	293	293	298	328	372	AOB
			STEAM	3	2,472	3,826	2,616	2,472	2,472	2,472	2,301	2,301	2,301	2,301	2,301	2,472	2,472	2 472
	Š	3	POWER	£	96	29	40	96	96	36	32	32	32	32	32	36	36	36
DAPUMPS	P			8€	282	1,117	358	347	315	291	261	249	248	248	252	278	315	346
	LEAVING	MAKEUR	TEMP	E	228	228	228	228	228	228	228	228	228	228	228	228	228	228
GHEATER	l		WATER	$\overline{}$	140,670	556,108	178,167	172,698	156,838	145,067	129,842	124,237	123,618	123,638	125,695	138,342	157,007	172 136
DEAERATING HEATER		5 PS	STEAM	(LBM/HR)	25,203	969'66	31,922	30,942	28,100	25,991	23,263	22,259	22,148	22,152	22,520	24,786	28,130	30 R41
	LEAVING	MAKEU	TENE	€	95	95	99	29	95	93	58	95	29	99	28	29	95	5
OVERY	HEAT	TRANSFER		(BTCE)	o	0	0	0	0	0	0	0	0	0	0	ō	0	c
THEAT RECOVERY	HEAT	EXCHANG	EFH		00:00	0.0	00.0	00.0	0.00	0.00	00:00	00:0	00.0	00:0	00:0	00:0	00:0	2
BLOWDOWN	BLOW	NA DOM N		(LBM/HR)	3,142	12,422	3,980	3,858	3,503	3,240	2,900	2,775	2,761	2,762	2,808	3,090	3,507	3 845
	TOTAL	FEED	WATEH	(LBM/HR)	165,873	655,744	210,089	203,640	184,938	171,058	153,105	146,496	145,766	145,790	148,216	163,128	185,137	202 977
			ONLINE		2	4	2	2	2	Ø	2	N	2	2	2	2	2	٥
	BOILER	STEAM	FLON		161,891	640,000	205,045	198,751	180,498	166,951	149,429	142,979	142,266	142,289	144,657	159,212	180,692	198 104
		STEAM	œ	(LBM/HR)	0	539,432	0	0	(O)	0	<u>0</u>	0	<u>(</u>)	0	0	0	0	9
	Ŧ	STEAN	DEMAND	(LBM/HR)	135,200		172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	168 331
	NUMBER	PO	DAYS		90	30	31	28	31	93	31	90	31	31	99	31	ဆ	5
			CONDITION		BASECASE	DESIGN	JAN	FEB	MAR	APR	MAY	NOS	Inr	AUG	SEP	OCT	NON NON	CaC

AREA-B BASELINE COMPUTER BOILER MODEL

EMC ENGINEERS, INC. PROJ. # PROJECT
SHEET NOOFST
CALCULATED BY DATEI/2 + I/2
CHECKED BY DATE 1/3/32
SUBJECT

ART LOADSTEAM OU BLOWDOW DRY FLUE IFLUE HUMIRADIATION COMBUSTION LOSS	8.10%	8.10%
DIATION CON	1.38%	0.74%
UE HUMIRA	3.89%	3.89%
Y FLUE IFLI	13.44%	9.43%
PMDOWDR!	0.67%	0.71%
EAM OU BLO	72.52%	77.12%
PART LOADST	BASECASE	DESIGN

GPIV	HEAD	EFF	료	P.H	%HP
0	218	8	0	8	Š
5	218	16%	34	2%	34%
8	218	27%	4	10%	41%
900	217	36%	46	15%	45%
90	217	44%	8	20%	50%
000	215	55%	29	30%	29%
900	214	63%	69	40%	9689
000	211	70% 20%	92	50%	76%
1,200	500	75%	84	9609	84%
1,400	202	80%	88	70%	88%
1,600	193	84%	93	80%	85%
1,800	184	86%	4	%0 6	828
2,000	173	878	5	100%	100%
2,400	145	85%	501	120%	103%
2,800	8	74%	98	140%	898

	ORY	FLE	8801	MBH	16	21	9	82	1	9	15	12	1	15	12	19	12	18
	BLOW	NAMOD	sson	(MBHI)	-	2	-	-	-			-	-	-	-	-	-	-
		STEAM	PODUCE	(MBH)	87	171	110	108	26	68	6	11/	76	76	77	85	26	106
			<u>a</u> <u>2</u>	(MBH)	16	32	21	8	18	17	15	4	4	14	15	18	18	50
		STEAM	50	MBH	103	203	130	128	115	106	95	16	8	8	85	101	115	126
	COMBUST	AH		(LBM/HA)	188,181	232,093	204,715	202,603	195,938	190,398	182,337	179,077	178,706	178.718	179,942	186.973	196.013	202,381
		EXCESS	AH AH		102%	34%	77%	81%	91%	%66	110%	115%	116%	115%	114%	104%	%06	81%
NOMIZER		ESTMT	OXYGEN		10.60%	5.33%	9.16%	9.37%	9.88%	10.43%	11.02%	11.23%	11.26%	11.25%	11.18%	10.69%	9.82%	9.39%
BOILER INCLUDING ECONOMIZER	BOILEH	FEE	WATEH	(LBM/HP)	82,937	163,936	105,044	101,820	92,469	85,529	76.553	73,248	72,883	72,895	74,108	81,564	92,569	101,489
BOILER INC		STEAM	5	(LBM/HR)	80,945	160,000	102,522	99,375	90,249	83,476	74,715	71,489	71,133	71,145	72,329	909'62	90,346	99,052
	FUUE	3	8	E	386	398	391	390	388	386	384	383	383	383	383	385	388	390
PEHEAER	PAG	FEAT	<u> </u>	E	99	99	99	28	26	22	29	56	99	26	56	26	26	56
4		ENERGY	CXCHANG	(BTUH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMBUSTION AIR	HEAT	XCHANG	T EFF EXCHANC		00:00	0.00	00:00	00:0	0.00	00:00	00.0	0.00	0.00	00:00	00.00	0.00	00'0	00:00
0	LEAVING	¥	TEMP	9	228	228	228	228	228	228	228	228	228	228	228	228	228	228
-HEATER	30.7	DEMAND		(LBM/HR)	<u>©</u>	0	(o)	0	0	(o)	(0)	(O)	0	0	0	(0)	0	0
STEAM PRE-HEATER	HEAL	HANSTEH	STEAN	(BTUH)	<u>2</u>	0	(o)	0	0	<u>(</u>	(6)	6)	6	69	(6)	(8)	0	0
S	<u>.</u>	- 5	SIEAN	(LBM/HB)	3,149	9,787	3,748	3,661	3,408	3,219	2,976	2,887	2,877	2,877	2,910	3,112	3,410	3,652
1							JAN	9	MAR	APR	MAY	Š	3	A KG	SEP	8	Q Q	
					BASECASE	DESIGN												

BOILERS.WK3 DA PUMP FW PUMP DRAFT FANMISCELLA NSTEAM TO LOAD	3,149 19,298 1,772 135,200
DAPUMP FW	2,472
BOILER5.WK3	

AREA-B BASELINE COMPUTER BOILER MODEL

EMC ENGINE	ERS,	INC.			
PRO J . #	PRO	JECT.	10	<i>37</i>	
SHEET NO	.>	_OF_			
CALCULATED	BY	D	ATE_	1.	10.
CHECKED BY_	·	EDA	TE_	1/3	و در
SUBJECT					

TING PLA	TOTAL	ביבות	STEAM	(LBM/HR)	25,759	63,605	28,151	27,698	26,768	26,039	24,874	24,492	24,449	24,450	24,592	25,608	26,778	27,666
CENTRAL HEATING PL	BLOW		FLASH	(LBM/HPI)	840	3,322	1,064	1,032	937	198	922	742	738	739	751	826	938	1,028
۲		Ę	STEAM	(LBM/HR)	9,649	11,668	10,361	10,267	9,976	9,741	9,411	9,281	9,266	9,267	9,315	6,599	9,979	10.257
		145 5	Ŧ		421	238	462	457	440	426	407	400	399	399	402	418	440	456
			DRAF	(SCFM)	43,606	54,900	47,707	47,176	45,515	44,150	42,183	41,393	41,304	41,307	41,603	43,311	45,534	47.120
DRAFT FANS			ORAFI	(SCFW	41,818	51,576	45,492	45,023	43,542	42,311	40,519	39,795	39,712	39,715	39,987	41,549	43,559	44.974
-		3	WATER	E	283	259	273	275	278	282	287	289	289	289	289	284	278	275
		፭ ፭	AH	E	386	398	391	390	388	386	384	383	383	383	383	385	388	390
			# <u></u>		0.37	0.33	0.36	0.36	0.36	0.37	0.38	0.38	0.39	0.38	0.38	0.38	0.36	0.36
			Ē		0.53	0.45	0.49	0.49	0.51	0.52	0.55	0.56	0.56	0.56	0.56	0.53	0.51	0.49
ECONOMIZER		A ACIT	EFF RATIO		0.57	0.36	0.49	0.50	0.53	0.56	09:0	19.0	0.61	0.61	0.61	0.57	0.53	0.50
-		BOILER	EFF		72.5%	77.1%	74.2%	74.0%	73.3%	72.7%	72.0%	71.7%	71.6%	71.6%	71.7%	72.4%	73.3%	73.9%
	FUG	3	FLOX	(LBM/HP)	196,229	247,052	214,682	212,292	204,817	198,673	189,824	186,271	185,867	185,880	187,212	194,900	204,902	212 041
	9,000			(LBM/HR)	1	,	10,491	10,199		8,710	7,880	L	7,539	ட	7,653	8,345	9,356	10.169
	i	3	Z	(MBH)	119	222	148	144	132	123	111	107	106	106	108	118	132	143
		COMBUSI	LOSSES	(MBF)	10	18	12	12	11	10	6	6	6	6	6	10	=	15
			FSO1	(MBH)	2	2	2	2	2	8	2	2	2	2	2	2	2	~
			SSOT	(MBH)	5	6	9	9	5	5	4	4	4	4	4	2	5	9
1			CONDITION		BASECASE	DESIGN	JAN	FEB	MAH	APR	MAY	NOS	חת	AUG	SEP	DCI	NON	DFC

B**-**9

EMC ENGIN	EERS,	INC.			_
PROJ. #	_ PRO	JECT,	30	<u> </u>	75 ?
SHEET NO.	17	OF	33	-	
CALCULATED	BY	<u> </u>	ATE_	1/:	3-27
CHECKED BY		<u>⊆</u> DA	TE_	1.	م دی'
SUBJECT					

	EXCESS		VEN VEN	0.642	0000	0000	0.000	0000	0.056	1.864	2.583	2.662	2.660	2.397	0.951	0000	0000	
	1000	TECOMON	7 EB	19	72	24	23	21	8	18	17	11	11	17	19	21	23	
	•	5	7 E	41	118			44	42	40	38	38	38	39	41	44	46	
			J. H	1	-	 -	-	-	-	-	-	-	-	-	-	-	-	
		בן בי		70.5%		72.5%	72.3%	71.6%	71.0%	96.3%	969.69%	68.5%	68.5%	68.8%	70.2%	71.6%	72.3%	
		FNEHGT	A8F	168	672	215	208	189	174	154	146	146	146	148	165	189	207	
			¥¥ EBE		13	4	4	4	9	6	6	6	6	9	9	4	4	
			3 E		989	219		193	178	157	149	149	149	151	169	193	211	
	MONTHLY	3	¥B∏ WB∏	172,004	639,420	220,114	193,273	196,108	176,856	165,336	153,755	158,165	158,189	155,383	175,079	189,966	213,349	2 155 572
	ū	3	¥8E	238.9	888.1	295.9	287.6	263.6	245.6	222.2	213.5	212.6	212.6	215.8	235.3	263.8	286.8	
	STEAM	7 ((LBM/HP)	135,200	539,432	172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	166,331	
1				1	15.71%	16.02%	Ė		16.16%	17.27%		17.84%	17.84%	17.64%	16.67%	16.08%	16.04%	
			(LBM/HR)	26,691	100,568	32,854	31,874	29,032	26,971	25,806	25,424	25,381	25,382	25,524		29,	31,773	
			(BM/HP)	0	36,031	3,770	3,244	1,333	0	0	0	0	o	0	0	1,353	3,175	
- 1:	EXCESS:	100	2000	555	0	0	0	0	48	1,611	2,233	2,301	2,299	2,072	822	0	0	
_ [:	L Park	CTEAN	(LBM/HR)	555	(36,031)	(3,770)	(3,244)	(1,333)	48	1,611	2,233	2,301	2,299	2,072	822	(1,353)	(3,175)	
N,		MOIT	<u> </u>	ASE	_	JAN	FEB	MAR	APH	MAY	N N	חל	AUG	SEP	8	S S	DEG	
		MOITIONO	5	BASECASE	DESIGN													

E 2007 : 10000 - 12276 - 0015

```
EMC ENGINEERS, INC.
                                               PROJ. #____ PROJECT 2/2/
A:A38: {LRTB} [W15] 'BASECASE
                                               SHEET NO. 11 OF_
                                               CALCULATED BY DATE //
A:B38: {Page LRTB} 30
                                               CHECKED BY OF DATE
A:C38: {LRTB} 135200
A:D38: {LRTB} +BI38-C38
                                               SUBJECT____
A:E38: {LRTB} +C38+BG38
A:F38: {LRTB} 2
A:G38: {LRTB} +E38*(1+$BLOW)
A:H38: {LRTB} +E38*$BLOW*(1-$FLASH)
A:I38: {LRTB} (F2) 0
A:J38: {LRTB} +I38*H38*($LPT-$RETURN)
A:K38: {LRTB} +$RETURN+J38/M38
A:L38: {LRTB} +M38*(($LPT-K38)/$PSI5)
A:M38: {LRTB} +G38-L38
A:N38: {LRTB} (M38*K38+L38*$PSI5+L38*$LPT)/G38
A:038: {LRTB} +M38/8.3/60
A:P38: {LRTB} (,0) @VLOOKUP(O38/$DAGPM,$PUMPHP,1)*$DAHP
A:Q38: {LRTB} +$DAHP*$DASTM*(0.8*P38/$DAHP+0.2)
A:R38: {LRTB} +G38/8.3/60
A:S38: {LRTB} (,0) +R38*$FWHEAD/3960/0.7
A:T38: {Page LRTB} +$FWHP*$FWSTM*(0.8*S38/$FWHP+0.2)
A:U38: {LRTB} @IF($IHE>0,@MIN($IHE*R38*500*($IHT-N38),BA38*F38*$IHH),0)
A:V38: {LRTB} +U38/$IHH
A:W38: {LRTB} (,0) +N38+U38/R38/500
A:X38: {LRTB} (F2) 0
A:Y38: {LRTB} +X38*(AV38-$TA)*AF38*0.24
A:Z38: {LRTB} +$TA+Y38/AF38/0.24
A:AA38: {LRTB} +AV38-Y38/AQ38/0.248
A:AB38: {LRTB} +E38/F38
A:AC38: {LRTB} +G38/F38
A:AD38: {LRTB} (P2) (16-AB38*66.7/1000000)/100
A:AE38: {LRTB} (PO) +AD38/(0.21-AD38)
A:AF38: {LRTB} +AP38*$THEO*(1+AE38)
A:AG38: {LRTB} +AB38*$HS/1000000
A:AH38: {LRTB} +AC38*(W38-32)/1000000
A:AI38: {LRTB} +AG38-AH38
A:AJ38: {LRTB} +$BLOW*AB38*$HL/1000000
A:AK38: {LRTB} 0.248*(AV38-Z38)*AQ38/1000000
A:AL38: {Page LRTB} +AP38*549/1000000
A:AM38: {LRTB} +$RAD
A:AN38: {LRTB} +$LOSS*AO38
A:AO38: {LRTB} +AG38-AH38+AJ38+AK38+AL38+AN38+AM38
A:AP38: {LRTB} +AO38*1000000/$HHV
A:AQ38: {LRTB} +AF38+0.95*AP38
A:AR38: {LRTB} (P1) (AG38-AH38)/AO38
A:AS38: {LRTB} (F2) +AQ38*0.24/AC38
A:AT38: {LRTB} (F2) +$ECON/AQ38/0.24
A:AU38: {LRTB} (F2) (1-@EXP(-AT38*(1-AS38)))/(1-AS38*@EXP(-AT38*(1-AS38)))
A:AV38: {LRTB} +$TEI-AU38*($TEI-W38)
A:AW38: {LRTB} +W38+AQ38*0.248*($TEI-AV38)/AC38
A:AX38: {LRTB} +AF38/0.075/60
A:AY38: {LRTB} +AQ38/0.075/60
A:AZ38: {LRTB} +$FANHP*(0.62*(AX38/$FANCFM)^2+0.04*AX38/$FANCFM+0.34)
A:BA38: {LRTB} +$FANSTM*$FANHP*(0.8*AZ38/$FANHP+0.2)
A:BB38: {LRTB} [W10] +E38*$BLOW*$FLASH
A:BC38: {LRTB} +Q38+T38+BA38*F38-V38+BB38
```

A:BD38: {Page LRTB} [W10] +BC38-L38

EMC ENGINE	ERS, II	NC.				
PROJ. #	PROJE	СТ	25			
SHEET NO	<u>/2</u> (OF 3				
CALCULATED		_ DATE	7.		2	_
CHECKED BY_	72	DATE_	, 2 ₃ ,	, -	1	_
SUBJECT						-

```
A:BE38: {LRTB} @IF(BD38>0,BD38,0)
A:BF38: {LRTB} @IF(BD38<0,-BD38,0)
A:BG38: {LRTB} +BC38+BF38+$JET
A:BH38: {LRTB} (P2) +BG38/E38
A:BI38: {LRTB} [W10] +AB38*F38-BG38
A:BJ38: {LRTB} (F1) +AO38*F38
A:BK38: {LRTB} +BJ38*B38*24
A:BL38: {LRTB} +BJ38*$HS/1000000
A:BM38: {LRTB} +BI38*$HS/1000000
A:BM38: {LRTB} +BL38-BM38
A:BO38: {LRTB} +BL38-BM38
A:BO38: {LRTB} (P1) (BL38-BM38)/BJ38
A:BP38: {LRTB} +$JET*$HS/1000000
A:BQ38: {LRTB} (AK38+AL38)*F38
A:BR38: {LRTB} +AN38*F38
A:BS38: {LRTB} +AN38*F38
```

AREA-B BOILER PERFORMANCE

EMC ENGINE	EERS, INC.	
PROJ. #	PROJECT	·
SHEET NO.		
CALCULATED	BYDATE	
CHECKED BY	DATE	<u> </u>
SUBJECT	7	

Steam Production:

Annual Steam Production = 1.418×10^9 lbm/yr from steam meters.

Average Hourly Steam Rate =
$$\frac{1.418 \times 10^9}{8760}$$
 = 161,872 lbm/hr.

Coal Consumption:

89/90 Average

= 74,086 tons/yr from accounting data.

 $= 1.482 \times 10^8$ lbm/yr.

Evaporation rate

= $1.418 \times 10^9 / 1.482 \times 10^8 = 9.57$ lbm steam/lbm coal

Hourly Fuel Rate =
$$\frac{1.482 \times 10^8 \, lbm/yr \times 14{,}110 \, Btu/lbm}{8760 \, hrs/yr \times 10^6 \, Btu/MBtu} = 239 \, MBH$$
.

Coal Energy Content:

Laboratory Analysis	<u>Date</u>	<u>Btu/lbm</u>
,	7 /10/ 91	14,166
	7/18/91	14,220
	8/06/91	14,023
	8/08/91	13,947
	10/04/91	14,192

Average 14,110 Btu/lbm.

Branch Code	41	
Lab. No	161694	
Date Rec'd	8-6-91	
Date Sampled		
Sampled By	Yourselves	

Holston Defense Corporation West Stone Drive Kingsport, TN 37660

ATTENTION: Ralph T. Smith

S	STANDARD	LABORATO	ORIES, <u>I</u>

EMC ENGI	VEERS, INC.		
PROJ. #	PROJECT	2	25.5
SHEET NO.	/5 OF '	19 00	
CALCULATE	D'BY X	ÀTC	
CHECKED B	YDA	TE	
SUBJECT		1 - 1 - 1	-22

SAMPLE IDENTIFICATION _

Sample # 25 - CPT - A
Contract No. 161000700200
Tons 2160.2
Coal Steam 2" X 0
Name of Contractor NA
Car Nos. and Initials SOU

Car Nos. and Initials SOU 360020,78293,75332,76980,76860, BLE 66061, N&W 6890,144963,4205,11715,9277,93640,138767,168846,118194,14616,1450 9029,7642,69318,9023,9665,116375,92449, USAX 58005

9 1991

11.	% Moisture % Volatile % Fixed Carbon B.T.U./LB: % Sulfur
As Rec'd.	2.25 5.22 XXXX XXXX 14023 0.73
Dry Basis	XXXX XXXX 14346 0.75
M-A-Free	15155

NOTE: XXXX INDICATES ANALYSIS WAS NOT PERFORMED

FOR YOUR PROTECTION THIS DOCUMENT HAS BEEN PRINTED ON CONTROLLED PAPER STOCK. NOT VALID IF ALTERED.

Respectfully Submitted,

Jimmy F. Watkins

COMBUSTION AIR ANALYSIS

The amount of combustion air supplied to the boilers varies with steam production. The following table summarizes data collected during the field survey:

Steam Rate (lbm/hr)	Oxygen in Flue Gas (%)	Flue Gas Temperature (°F)	Data Source
100,000	8.0	-	Conversation with Area-A operators
96,000	10.5	375	Measured at Area-B
42,300	13.5	378	Observed at Area-A
39,900	12.6	389	Observed at Area-A
30,000	14.0	-	Conversation with Area-A operators

Fitting a linear curve to the above data resulted in the following relation:

$$\% O_2 = 16 - 6.67 \times PLR$$
,

where PLR is the fraction of full capacity at which the boiler is operating.

EMC ENGINE	eers, in	VC.			
PROJ. #	_ PROJE	CT_	3/7	/	
SHEET NO	c)F	7	_	
CALCULATED	BY	_ D/	TE	. /	,
CHECKED BY		DAT	ΓΕ		/ <u></u>
SUBJECT					

AREA-B IN-PLANT STEAM USE

EMC ENGINEERS, INC.
PROJ. #____ PROJECT_____
SHEET NO. ____ OF___
CALCULATED BY ____ DATE___
CHECKED BY ____ DATE___
SUBJECT____

Blowdown:

Controlled by manual valve set according to boiler water analysis. Boiler water at 300 psig is sent to the flash tank which is maintained at 5 psig.

Saturated liquid at 5 psig

h = 196 Btu/lbmh = 960 Btu/lbm

Saturated vapor at 5 psig Saturated liquid at 300 psig

h = 390 Btu/lbmh = 399 Btu/lbm

Energy released to steam is

 $= 399 - 196 = 203 \text{ Btu/lbm}^{\circ}\text{F}.$

% flashed to steam

= 203/960 = 21.1%

or

100 - 21.1% = 78.9% remains liquid

Blowdown rate measurements:

56" ID tank rose 9" in 13.8 minutes

Tank Volume =
$$\left(\frac{56}{12}\right)^2 x \frac{\pi}{4} x \frac{9}{12} = 12.8 \text{ ft}^3$$
.

Saturated liquid specific volume @25 psig = $0.01715 \text{ ft}^3/\text{lbm}$.

Blowdown liquid mass flow =
$$\frac{12.8 ft^3 \, lbm \, x \, 60 \, min/hr}{0.01715 ft^3 \, x \, 78.9\% \, x \, 13.8 \, min} = 4111 \, lbm/hr.$$

During the test the boilers were producing 167,000 lbm/hr. The blowdown rate is 4111/167,000 = 2.46%.

Area-B Steam Jet

Steam jet operates 4 hr/day 75% of the time. Discharge is through (6) 5/16" orifices. A = 0.0767 in². Napiers equation is (marks 7th Edition, pp. 4-64):

$$m=\frac{Ap}{70},$$

where

m = mass flow (lbm/sec),

 $A = flow area (in^2), and$

p = pressure (psi).

Thus,

$$m = \frac{0.0767 in^2 x \, 315 \, lb/in^2}{70} = 0.345 \, lbm/sec \, x \, 3600 = 1243 \, lbm/hr \, .$$

6 holes = 7,455 lbm/hr.

Area-A Steam Jet:

$$m = \frac{0.0767 in^2 x 415 lb/in^2 x 3600}{70} = 1637 lbm/hr,$$

6 holes = 9822 lbm/hr.

EMC ENGINE	EERS, INC.	
PROJ. #	_ PROJECT	<u> ヨルミール こ</u>
SHEET NO	<u> 1 →</u> OF _	<u> </u>
CALCULATED	BY D	ATE <u>///23/23</u>
CHECKED BY	DA	TE //=
SUBJECT		

COMMBUSTION ANALYSIS

ASHRAE 1989 Fundamentals, Chapter 5

E:	JINEE	RS, II	VC.		
PROJ. #_	{	PROJE	CT_	· . ·	
SHEET	10	<u> </u>	F	7.3	
CALCUL	ATED BY		_DAT	E	
CHECKE	D BY	9:	DATE	<u> </u>	 -,
CHD IEC.	7		_		

Coal Composition:

5%	0
5%	Н
81.4%	C
1.4%	N
0.7%	S
5.8%	Ash

Theoretical Air:

 $W_a = 0.0144 x (8C + 24H + 3S - 30) = 11.0 lbm air/lbm fuel.$

Heat Loss in Water Vapor in Combustion Products:

 $9 H_2 x lbm Fuel (h_{hg} - h_{ft a})$,

where

 H_2 = % hydrogen by weight,

 h_{tg} = enthalpy of SH steam at flue gas temp to 1 psia, and

 $h_{\text{ft-a}}$ = enthalpy of saturated H_2O at inlet air temperature.

 $9 \times 0.05(1242 - 22) = 549 Btu/lbm Coal$.

Heat Loss in Water Vapor in the Combustion Air:

$$m (h_{tg} - h_{gta}) = 0.76 Btu/lbm Coal,$$

where

m 54° F average DB; 50° F MC WB = 0.0067 lbm/lbm,

 $h_{tg} = 1199 \text{ Btu/lbm, and}$

 $h_{gta} = 1085 \text{ Btu/lbm}.$

Dry Flue Gas Loss:

$$q_2 = w_g C_{pg} (t_g - t_a) .$$

DEAERATING HEATER

Use of surface water from river, reservoir, and outdoor tank results in inlet water temperatures of 56°F which is average ambient temperature.

DA heater heats water to 228°F with 5 psig saturated steam which has latent heat of 960 Btu/lbm.

Mass balance is

$$\dot{m}_F = \dot{m}_M + \dot{m}_S,$$

where

 \dot{m}_F = feedwater flow rate (lbm/hr),

 \dot{m}_{M} = makeup water flow rate (lbm/hr), and

 \dot{m}_S = steam flow rate (lbm/hr).

Energy balance is

$$\dot{m}_M t_m + \dot{m}_S (960 + t_S) + \dot{m}_F t_S$$
,

where

 t_m = makeup water temperature (56°F), and

 t_s = steam temperature (228°F).

Combining equations and solving:

$$\dot{m}_S + \frac{(\dot{m}_M (t_s - t_m))}{960}.$$

EMC ENGINE	ERS, I	INC.		
PROJ. #	PROJ		-	,
SHEET NO	7	OF	T =1	
CALCULATED E	3Y	DAT	E	. ,
CHECKED BY_		DATE		, -
SUBJECT		_		

FORCED AND INDUCED DRAFT FANS

Turbine:

Skinner S-28-3 550 HP 300 psig in 525°F in 4200 rpm Steam rate 21.6 lbh/HP

EMC ENGIN			_	•
PROJ. #	_ PRC	JECT,		
SHEET NO			<u> </u>	-
CALCULATED	BY	<u> </u>	ATE	17 1 11
CHECKED BY	<u> </u>	DA	TE	<u> </u>
SUBJECT	C.			

Boilers are designed for 160,000 lbh/hr.

$$Air Flow = \frac{160,000 \, lbm/hr \, x \, 10.3 \, lbm \, Air \, x \, 134\%}{9.35 \, lbm \, Steam \, lbm \, Coal}$$

- = 237,300 lbm/hr,
- = 52,700 cfm.

Original Fan Curves (Design Flow = 160,000 lbh)

Forced draft

= 13.6" SP @ 53,000 cfm 175 hp

Induced draft = 8.3" SP @ 53,000 cfm 120 hp

295 hp

When new turbines were added along with precipitators, the induced draft resistance increased. The new turbines were sized at 550 hp.

$$Fan\ Power = P_F = P_{FD}\ F_F$$
,

where

 $P_{FD} = 550 \text{ hp, and}$

 F_F = fan characteristic (see figure on following page).

Steam Turbines:

Willan's line: Turbine part load performance is linear with turbines requiring 100% steam at 100% load and 60% steam at 50% load.

The following equation represents the William's line:

$$F_T = 0.8 \times PLR + 0.2 ,$$

EMC ENGINEERS, INC.
PROJ. #_____ PROJECT _____
SHEET NO. ____ OF ____
CALCULATED BY ____ DATE ____
CHECKED BY ____ DATE ____
SUBJECT ____

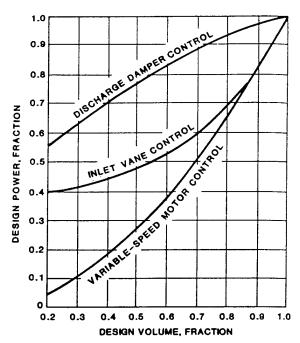
where

 F_T = fraction of full load steam, and

PLR = part load ratio.

1989 Fundamentals Handbook

Fan Power


$$P_F = P_{FD} F_F .$$

where

 P_F = power required by fans,

 P_{FD} = power required by fans at full load, and

 F_F = design power fraction.

Inlet vane control results in the following equation:

$$F_F = X^2 - 0.45X + 0.45,$$

Fig. 7 Fan Power Versus Volume Characteristics

where X is the fraction of design airflow.

Thus,

Steam Rate = $21.6 \, lbh/hp \, [0.2 + 0.8 \, x \, F_F] \, x \, 550 \, hp$.

DH TURBINE DIVISION

Erie, Pennsylvania 16512

MECHANICAL DRIVE STEAM TURBINES

	ADDRESS P.O.	DRAWER 1	2007	, Fa	Co.	Wer	w, 7	EKA5	76
D EOIHSITH	ADDRESS <u>P.o.</u> ON NO	BELKMA	ب	623	5-48	3 - 1	7		
	NG AND STEAM INFORMA								
FRAME SIZE	- NO. NOZZLES (See Bil	3800 30200 for Dimensions)	5-28-2						
APPROXIMA			2190						
LOAD RATIN	NG HP - MIN.		550						
INLET STEAM	M PRESSURE PSIG		300						
INLET STEAM	M TEMPERATURE FO		5250						
EXHAUST ST	TEAM PRESSURE PSIG	lac Inches Hig.	5			-			
RPM			42.00						
HAND VALVE	E "X"		OPEN						
HAND VALVE	E "Y"	*	OPEN						
ITEM NO.	ALEA "B" BOR	er */							
SECO DEAN HILL SI	ERIAL NO.		75 ST						
MATERIAL C	LASS		27						
			1		†	†			
	From Governor End) WGS. PER DAC	A0L - 75-8-00	CCW		VISIO	<u>02</u>	THE		2 8
Flexibility mu Minimum pip	ust be provided in all connoces sizes recommended for	GENERAL INFO ections to prevent transshort, direct runs of	RMATIC ssmission pipe to s	N of exce team co	ssive stra	ins to tu	rbine.		
Flexibility mu Minimum pip Dowel holes in	ust be provided in all connocesizes recommended for n turbine feet should be re-	GENERAL INFO ections to prevent trans of short, direct runs of amed and dowels fitted	RMATIC smission pipe to s	N of exce team co nal alig	essive stra	iins to tu is are san	rbine. ne size as	the conn	ections.
Flexibility mu Minimum pip Dowel holes in ALL TURBINE	ust be provided in all connoces sizes recommended for	GENERAL INFO ections to prevent trans of short, direct runs of amed and dowels fitted	RMATIC smission pipe to s	N of exce team co nal alig	essive stra	iins to tu is are san	rbine. ne size as	the conn	ections.
Flexibility mu Minimum pip Dowel holes in ALL TURBINE INTERCHANG Connect shaft valve. They Connect whee	ust be provided in all connotes sizes recommended for a turbine feet should be restricted. S MAY HAVE EXHAUST O	short, direct runs of amed and dowels fitted CONNECTION ON EITH leak-off drains to at common line of not 1	RMATIC smission pipe to s d after fi HER SIDE	N of exce team co nal alig OF TU e, sewe	essive stranding on bilger (1/2) ir condense	LOCATION without nich diamer, independent	rbine. ne size as ON MAY back-preeter for sendent of	EE CHAN essure on thort, dire	ections. GED BY shut-off ct runs.
Flexibility mu Minimum pip Dowel holes in ALL TURBINE INTERCHANG Connect shaft valve. They Connect whee and with a shu	ust be provided in all connotes sizes recommended for in turbine feet should be restricted by the state of th	short, direct runs of amed and dowels fitted CONNECTION ON EITH leak-off drains to at common line of not largins to sewer, bilge, or	RMATIC smission pipe to s d after fi HER SIDE	N of exce team co nal alig OF TU e, sewe	essive stranding on the condense on the conden	LOCATION without nich diamer, independent	rbine. ne size as ON MAY back-preeter for sendent of	BE CHAN essure on a	ections. GED BY shut-off ct runs. piping,
Flexibility mu Minimum pip Dowel holes in ALL TURBINE INTERCHANG Connect shaft valve. They Connect whee and with a shu Customer to cl	ust be provided in all connoces sizes recommended for in turbine feet should be read to the standard of the st	GENERAL INFO ections to prevent trans of short, direct runs of amed and dowels fitted CONNECTION ON EITH leak-off drains to at common line of not largins to sewer, bilge, or armation.	RMATIC smission pipe to s d after <u>fi</u> HER SIDE mosphere ess than open hot	N of exce team co nal alig OF TU s, sewe one-hal well or	essive stra connection ment. RBINE. on bilge f (1/2) ir condense EMC PRO	LOCATION without inch diamer, independent of ENGIN J. #	rbine. ne size as ON MAY back-preeter for sendent of EERS, I PROJE	EE CHAN essure on thort, dire	ections. GED BY shut-off ct runs. piping,
Flexibility mu Minimum pip Dowel holes in ALL TURBINE INTERCHANG Connect shaft valve. They Connect whee and with a shu Customer to cl	ust be provided in all connotes sizes recommended for in turbine feet should be read to the size of the should be read to the size of the	short, direct runs of amed and dowels fitted CONNECTION ON EITH leak-off drains to at common line of not largins to sewer, bilge, or mation.	RMATIC smission pipe to s d after <u>fi</u> HER SIDE mosphere ess than open hot	N of exce team co nal alig OF TU s, sewe one-hal well or	essive stranding of the control of t	LOCATION without inch diamer, independent of ENGIN J. #	back-preter for sendent of PROJECT	BE CHAN essure on a hort, dire all other NC. ECT DATE	ections. GED BY shut-off ct runs. piping,
Flexibility mu Minimum pip Dowel holes in ALL TURBINE INTERCHANG Connect shaft valve. They Connect whee and with a shu Customer to cl	ust be provided in all connocestics recommended for in turbine feet should be read to the standard of the stan	GENERAL INFO ections to prevent trans of short, direct runs of amed and dowels fitted CONNECTION ON EITH leak-off drains to at common line of not largins to sewer, bilge, or mation.	RMATIC smission pipe to s d after fi HER SIDE	N of exce team co nal alig OF TU e, sewe one-hal well or	essive stranding of the condense of the conden	LOCATION IN THE PROPERTY OF TH	back-preter for sendent of PROJECT	BE CHAN essure on all other NC. ECT DATE DATE	ections. GED BY shut-off ct runs. piping,
Flexibility mu Minimum pip Dowel holes in ALL TURBINE INTERCHANG Connect shaft valve. They Connect whee and with a shu Customer to cl Trico oiler for THE PURCHAS A rigid and sul	ust be provided in all connocessives recommended for in turbine feet should be read to the standard of the sta	GENERAL INFO ections to prevent trans of short, direct runs of amed and dowels fitted CONNECTION ON EITH leak-off drains to at common line of not ligains to sewer, bilge, or armation. COLLOWING:	RMATIC smission pipe to s d after <u>fi</u> HER SIDE mosphere ess than open hot	N of excellent of excellent of excellent of the excellent of the excellent of excellent of the excellent of e	essive stranding of the condense of the conden	LOCATION WITHOUT THE WITHOUT THE WITHOUT THE PROPERTY OF THE P	back-preter for sendent of PROJECT OF STATES O	BE CHAN essure on a hort, dire all other NC. ECT DF DATE DATE	GED BY shut-off ct runs. piping,

DA HEATER PUMP

Design conditions = 1750 gpm @ 185 ft H (see curve on following page)

 $\eta = 86\%$.

$$hp = \frac{1750 \times 185}{3960 \times 0.86} = 95 hp.$$

1750 gpm = 871,500 lbm/hr water (6 boilers).

DA pump conditions = 321 gpm @ 221 ft H η =36%. Control is by throttling.

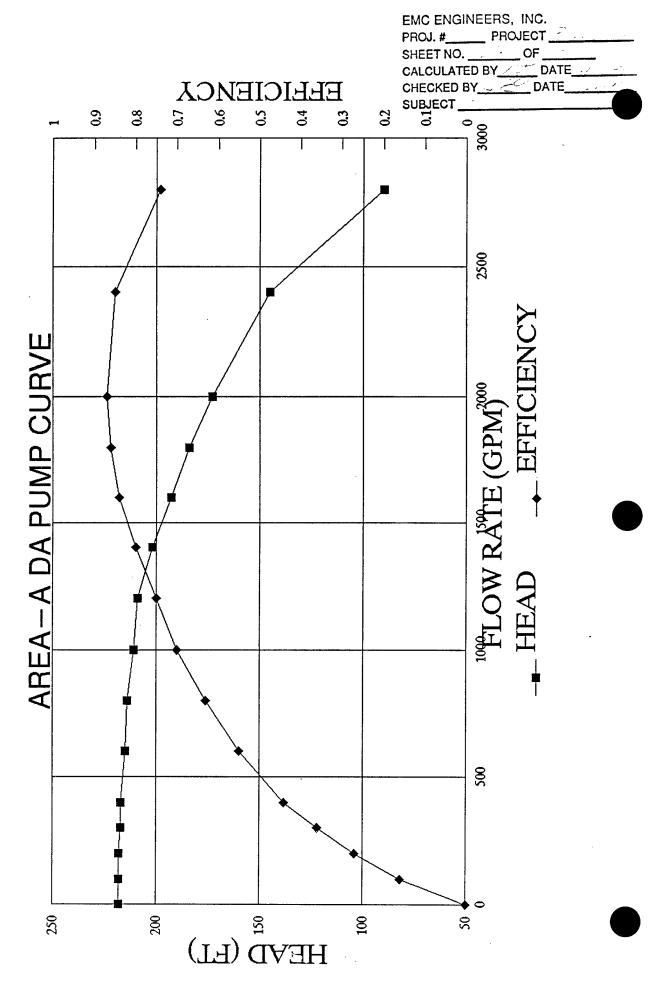
$$hp = \frac{321 \times 221}{2960 \times 0.36} = 50 \ hp.$$

Steam turbine steam rates follow a linear curve which passes through 60% steam rate at 50% part load. The resulting relationship is:

$$PLSR = SR(0.2 + 0.8 x PLR),$$

where

PLSR = part load steam rate,


SR = full load steam rate, and

PLR = part load ratio.

Calculation Procedure: (in boiler model)

- (1) For a given flow rate.
- (2) Pick pump efficiency from pump curve.
- 3) Calculate pump horsepower.
- 4) Calculate turbine steam demand from the following equation:

Steam Demand =
$$60.7 \ lbh/hp [0.2 + 0.8 \left(\frac{Pump \ hp}{80 \ hp}\right)] \times 80 \ hp$$
.

CHECKED BY DATE 1/21, 22

EMC ENGINEERS, INC.

SUBJECT____

PROJ. #_____ PROJECT _______ OF _____ OF _____ DATE

and the second

Navy & Small Steam Turbine - General Elactric Company - 166 Boulder Orive, Fitchburg, MA 01420 - 508 343-1000

December 6, 1991

EMC Engineers 2750 South Wadsworth Blvd. C-200 Denver, Colorado 80227-3493

Attn: Dennis Jones

Subject: Turbines S/N 123274 & 61592

Gentlemen:

Let me first apologize for having taken so long to get back to you. Retrieving the records on these units proved to be more of a task than first thought.

The following is the steam rate information for both turbines.

DA

1. Turbine 123274

This machine is currently designed with steam conditions of 275PSIG - 525 F - 5PSIG/25PSIG with a load of 80HP at 1750RPM. The steam rate @ 5PSIG back pressure is 54.8 LB/HP HR and the steam rate @ 25 PSIG back pressure is 60.7 LB/HP HR.

HEATER PUMP

It is estimated that the steam rates @ 50PSIG back pressure would be 82 LB/HP HR with a load of 60HP at 1750 RPM and @75 PSIG back pressure the steam rate would be 121 LB/HP HR with a load of 40HP at 1750RPM.

2. Turbine 61592

FEEDWATER PURCES

This turbine is currently designed with steam conditions of 275PSIG - 470 F - 5PSIG/25PSIG with a load of 265HP at 3550RPM. The steam rates @ 5PSIG/25 PSIG back pressure are 35.5 LB/48 LB/HP HR respectively.

It is estimated that the steam rates for this turbine @ 50PSIG back pressure 65 LB/HP HR with a load of 140HP at 3550RPM and @ 75PSIG exhaust pressure a steam rate of 102 LB/HP HR with a load of 90HP at 3550RPM.

Both machine <u>are</u> limited to 75PSIG exhaust pressure - however new nozzle plates and valves will be required.

If you have need of additional information relative to these units please contact this office at your convenience.

Robert S. Pridham

RSP/jh

FEEDWATER PUMPS

DA tank bottom:

1257 ft elev.

FW pumps:

1205 ft

Inlet press: Exit press:

 $(1257 - 1205) + 5 \text{ psig } \times 2.3 = 63.5 \text{ ft}$

300 psig x 2.3

= 690 ft

= 527 ft

Design flow = 162,000 lbh / 8.3 lb / 60 min/hr = 325 gpm.

Pump
$$hp = \frac{325 \times 700}{3960 \times \eta} = 82 hp$$
.

 $\eta = 0.70.$

Steam Turbine:

Turbine No.	Manufacturer	Model No.	Serial No.	Steam Rate (lbm/hr/hp)	Rated Horsepower (hp)
1-3	GE	DS-120	61592	35.5	265
4	Dresser Rand	DO-292	V24059	33.4	135

Turbine #4 is generally used since its horsepower more closely matches the load.

Calculation Procedure:

Pump
$$hp = gpm \ x \ 700 \ / \ 3960 \ x \ 0.70.$$

Steam Use = 33.4 lbh/hp x
$$\left[0.2 + 0.8 \left(\frac{Pump \, hp}{135 \, hp} \right) \right] x \, 135 \, hp$$
.

EMC ENGINEERS, INC.
PROJ. # PROJECT 3 5 SHEET NO. 26 OF 35 CALCULATED BY DATE CHECKED BY DATE 1/2 SUBJECT

CONDENSATE

Condensate Sources

EMC ENGINEERS, INC. PROJ. #____ PROJECT____ SHEET NO. ____ OF____ CALCULATED BY ____ DATE____ CHECKED BY ____ DATE_____ SUBJECT____

Turbines:

Entering conditions: 300 psig, 525°F, h, = 1271 Btu/lbm.

 $h_2 = h_1 - w,$

w = 2545 (Btu/hr/hp) / SR (lbm/hp/hr), where SR is steam rate,

 $h_2 = 1271 - 2545 / SR,$

@ 5 psig ≈ 20 psia

 $h_f = 196 \text{ and } h_g = 1156$

Quality (X):

$$X = \frac{h_2 - 196}{1156 - 196}.$$

Turbine	Avg. Steam Demand (lbm/hr)	Steam Rate (lbm/hr/hp)	h ₂ (Btu/lbm)	Х	Condensate Generated (lbm/hr)
Fans	19,426	21.6	1,153	0.991	175
DA pump	2,472	54.8	29	SH*	0
FW pump	3,149	33.4	1,195	SH*	0

^{*}superheated

Superheated exhaust from pump turbines will offset pipe loss condensate generation. Remaining condensate is from fan turbines.

At 175 lbm/hr,

$$Q = 175 lbm/hrx (200 - 56)^{\circ}Fx 1 Btu/lbm^{\circ}F = 25,176 Btuh$$
.

200°F = condensate temperature at make-up tank.

AREA-A CHP ANALYSIS

Area-A CHP is the same as Area-B except steam is generated at 400 psig to 575°F. The same turbines (i.e., DA pump, feedwater pump and fans) exhaust into 5 psig header which serves the DA heater.

Steam Energy Contents:

400 psig

575°F steam h_s=1291Btu/lbm

 h_f =248 Btu/lbm

Turbine Steam Rates:

	<u>Area-B</u>	<u>Area-A</u>
p_1	300 psig	400 psig
T_1	525°F	575°F
h_1	1271 Btu/lbm	1291 Btu/lbm
s_1	1.579 Btu/lbm/°F	1.570 Btu/lbm/°F
p_2	5 psig	5 psig
h_{2s}	1051 Btu/lbm	1045 Btu/lbm
$TSR = 2545/h_1 - h_{2s}$	11.6 lbm/hr/hp	10.3 lbm/hr/hp

At 400 psig the steam rate is 92% of the steam rate at 300 psig.

Steam Rates:

	Area-B (lbm/hr/hp)	Area-A (lbm/hr/hp)
Fans	21.6	19.2
DA pumps	54.8	0
FW pumps	33.4	30.8

EMC ENGINE	ERS,	INC.			
PROJ. #	PRO	JECT_	<u>- 1,</u>		
SHEET NO	27	OF_	<u> </u>	-	
CALCULATED	BY	D/	TE		,
CHECKED BY	\mathcal{Q}	DA	ΓΕ		<i>,</i> -
SUBJECT					

Blowdown Flash Steam

400 psig water into 5 psig tank.

 $h_F = 428$, saturated liquid at 400 psig, $h_F = 196$, saturated liquid at 5 psig, and

 $h_g = 1156$ saturated steam at 5 psig.

EMC ENGINEERS, INC.
PROJ. #_____ PROJECT_____
SHEET NO. ____ OF ____
CALCULATED BY ____ DATE____
CHECKED BY ____ DATE____
SUBJECT____

Percent flashed to steam = 24.2%:

428 = (1 - X) x 196 + X x 1156,

X = 0.242.

Average Steam Flow: (Average 89-90)

 $\frac{931,000,000 \, lbm/yr}{8760} = 106,300 \, lbm/hr \, .$

Condensate Tank:

60% of condensate returned to plant.

Assume 180°F return temperature:60%

56°F makeup water:

40%

Result:

130°F feedwater to DA heater

Feedwater Pump:

Head = 1000 ft.

DA Pump:

Electric - no steam.

Historical Coal Usage:

42,853 tons (avg. 89 and 90)

- $x = 2000 = 85.7 \times 10^6 \text{ lbm}$
- @ $14,100 \text{ Btu/lbm} = 1.208 \times 10^6 \text{ MMBtu}$
- \div 8760 = 138.0 MBH average fuel rate, or 70.0 MBH per boiler.

Fly Ash (1990):

4 004
1,384
11,320
19,847
9.3
72,879
0.272

Area-B produces about twice the fly ash of Area-A.

EMC ENGIN	EERS, INC.	
PROJ. #	_ PROJECT	<u> </u>
SHEET NO	<u> </u>	3
CALCULATED		DATE /-//2 2
CHECKED BY		ATE <u> //b2-95</u>
SUBJECT		

AREA-A COMPUTER BOILER MODEL - BASELINE

BOILER - A.WK3

HEATING VALUE OF COAL	AHH	14100.00	BTU/LBM	COAL ANALYSIS
THEORETICAL COMBUSTION AR	THEO	11.00	LB M/LB M	IBH AR/IBH COAL FROM ASHRAE FUNDAMENTALS
MIXED WATER TEMP	RETURN	130.00	щ	LBH OF 5 PSI STEAM CONDENSED PER LBH OF MAKE UP
LATENT HEAT (5 PSI)	PSI5	960.00	BTU/LBM	STEAM TABLES
ECONOMOZER AIR TEMP IN	TEI	480	LL	MEASURED
ECONOMIZER UA	ECON	25000.00	B TUH/F	AREA-A ECONOMIZER ANALYSIS
BLOWDOWNRATE	BLOW	2.46%	æ	MEASURED
STEAM ENTHALPY	HS	1291.00	BTU/LBM	300 PSI, 525 F
LIQUID ENTHALPY	ᇁ	428	BTU/LBM	300 PSI, SATURATED
LOW PRES STEAM ENTHALPY	HSLP	1,157	BTU/LB.M	5 PSIG, SAT
DA HEATER LIQUID ENTHALPY	HLDA	196	BTU/LBM	228 F, SAT
AMBIENT TEMPERATURE	¥ ⊥	56	ш	WEATHER DATA
COMBUSTION LOSSES	ross	%00.0	*	ASSUMED
RADIATION LOSSES PER BOILER	RAD	1.65	MBH	ASSUMED
DESIGN FAN HORSEPOWER	FANHP	550	맢	DESIGN DATA
DESIGN FAN OFM	FANCEM	52,500	გ ¥	DESIGN DATA
FAN STEAM RATE	FANSTM	19.20 t	19.20 LB M/HP/HR	TURBINE MANUFACTURER
DA PUMP DESIGN HORSEPOWER	DAHP	80	ድ	DESIGN DATA
DA PUMP DESIGN FLOW	DAGPM	1,750	GPM	DESIGN DATA
DA PUMP STEAM RATE	DASTM	0.0	0.0 LB M/HP/HR	TURBINE MANUFACTURER
FW PUMP DESIGN HORSEPOWER	FWHP	135	皇	DESIGN DATA
FW PUMP DESIGN FLOW	FWGPM	460	GPM	DESIGN DATA
FW PUMP STEAM RATE	FWSTM	30.8	30.8 LB M/HP/HR	TURBINE MANUFACTURER
BLOWDOWN FLASH STEAM	FLASH	24.20%	×	CALCULATED
FW PUMP HEAD	FWHEAD	1,000	Ħ	CALCULATED
VACUUM STEAM JET RATE	JET	444	LB M/HR	CALCULATED
INTERMEDIATE HEADER PRESSUR	Ŧ	2	PSIG	
INTERMEDIATE HEADER TEMP	Ħ	228	ıL	
PRE-HEATER EFFECTIVENESS	里	0.00		
PRE-HEATER LATENT HEAT	Ξ	960	BTU/LBM	
LOW PRESSURE STEAM TEMP	LPT	228	L	

FEEDWATER PUMP	DA FW PUMF PUMF PU STEAM FLOW POW (IBM/HF) (GPM) (0 224	67 0 1,317 475
DAPUMPS	P F (0	228 203 :	228 1,195
DEAERATING HEATER	5 PS MAKE UP NAKE UP STEAM WATER TEMP		60,740 595,004 2;
	FER MAKE UP TEMP TOH) (F)	130	0 130 6
LOWDOWN HEAT RECOVERY	BLOW HEAT DOWN EXCHANG TRAN	2,031 0.00	11,934 0.00
<u>018</u>	DILERS FEED ON LINE WATER (LB M/HR) (L	2 111,600	4 655,744
	AM STEAM BOUCE FLOW C	0 108,921	16 640,000
	STEAN STE DEMAND BALAN (LBM/HR (LBM/)	90,700	578,81
	NUMBER OF DAY	30	30
l	CONDITION	BASELINE	DESIGN

EMC ENGIN	EERS	, INC.		
PROJ. #	_ PRO	DJECT	515-1	ノ <u> </u>
SHEET NO	31	_ OF _	30	
CALCULATED	BY <u>/</u>	D	ATE <u>-//-</u> -	
CHECKED BY		DA	TE	
SUBJECT				

AREA-A COMPUTER BOILER MODEL - BASELINE

PART LOADSTEAM OU BLOWDOWDRY FLUE IFLUE HUMIRADIATION COMB USTION LOSS BASECASE 77.94% 0.75% 15.25% 3.89% 2.17% 0.00% DESIGN 85.20% 0.62% 9.28% 3.89% 0.81% 0.00%

	GPIV	HEAD	EFF	皇	2	%HP
	o	218	%	0	%	%0
	100	218	16%	34	5%	34%
	500	218	27%	4	10%	41%
	300	217	36%	48	15%	45%
	400	217	44%	20	20%	20%
•	900	215	55%	29	30%	29%
	800	214	63%	69	40%	%89
	1,000	211	%0 2	76	20%	76%
	1,200	508	75%	84	%09	84%
	1,400	202	80%	68	70%	868
	1,600	193	84%	93	80%	95%
	1,800	184	86%	46	%06	828
	2,000	173	87%	90	100%	100%
	2,400	145	85%	103	120%	103%
	2,800	90	74%	98	140%	86%

	FLUE	12	19
	3 2 10 2		\perp
İ	NAMO NAMO MONA	Clair	
	FDW STEAM DO IN PRODUCE L	201	174
	MOR W H	11	32
	₹ 5 £	5	207
	PERCENT COMBUST C EXCESS AR STE SN AFF FLOW C IRM/HB IM	44 564	214,018
	S = 5) 	2
	PERCE EXCEE A	1436	34%
PIOMIZER	ESTMTE	12 37	5.33
LDING EC	BOILER FEED WATER	55.800	163,936
BOILER INCLUDING ECONOMIZER	STEAN OUT	54.460	160,000
	STEAN USAGE (LBM/HR	0	0
			9
	PRE HEAT EXIT (F)	56	56
PEHEATER	G ENERGY FF EXCHANG	0	0
<u>STEAM AIR</u> PREH	HEAT XCHANG	0.00	0.00
S	LEAWNG FWE TEMP	228	228
HEATER	STEAM DEMAND (LB M/HR	0	0
STEAM PRE – HEATE	FW HEAT SEM UMF TRANSFER DE EAM (BTUH (LB	0	0
S	FW PUMFT STEAM (LBM/HR	2,824	12,536
1		-	H
	CONDITION	BASELINE	DESIGN

EMC ENGIN	EERS, INC.	
PROJ. #	_ PROJECT	
SHEET NO	<u> 32</u> of_	
CALCULATED) BYD	ATE <u> 1/39 25.</u>
CHECKED BY	′	TE
SUBJECT		

AREA-A COMPUTER BOILER MODEL - BASELINE
BOILER-AWK3 DAPUMP FW PUMP FANS MISCELLANSTEAM TO LOAD
0 2,824 14,305 1,092 90,700

							Ē	ECONOMIZER	e				DRAFTFANS	s		0	ENTRAL HE	ATING PLA
CONDITION	FUEL HUMIDITY LOSS	RADIATION LOSS	COMBUST	E. C.	COAL	GAS FLOW FLOW	BOILER	CAPACITY	NATC	EFF	EXT AR	EXIT WATER	FORCED DRAFT	INDUCED DRAFT	TOTAL	FAN	BLOW TOTAL DOWN LO PRES FLASH STEAM	TOTAL LO PRES STEAN
BASELINE	E 3	MB T	O O	(mam)	5,402	149,697	77.9%	0.64	0.70	0.44	369	302	· .		328	7,152	648	17,777
DESIGN	8	2	0	205	14,520	227,811	82.2%	0.33	0.46	0.35	392	258	1		487	9,589	3,810	54,701

EMC ENGIN	EERS, PRO	INC. WECT	10 -	323
OUEET NO	2 7	OF	~ ~	
CALCULATE	D BY <u>. </u>	D	ATE <u>//-</u>	<u> </u>
-CHECKED B	Y	DA	TE	
SHRJECT				

EXCESS	STEAM	VEN	(MBH	8.607	0.000
	COMBUST	LOSS	(MBH)	0	0
1000	FLUBCOA	FSO1	(MBH)	29	108
		ᄪ		-	-
A 1.150000000	Ę.	EFF		70.3%	84.1%
CHE	ENERGY	ADDED	(MBH)	107	689
MAKE	3	៊	(MBH)	1	58
STEAM	2	LOAD	(MBH)	117	747
MONTHLY	FUEL	ž	(MBH)	109,690	589,622
	FUEL		(MBH)	152.3	818.9
STEAM	Þ	LOAD	(LB M/HR	90,700	578,816
TOTAL	IN PLANT	STEAM	(LBM/HR	16.73%	9.56%
TOTAL	IN PLANT	STEAM	(LBM/HR	18,221	61,184
	PA	STEAM	(LBM/HR)	0	6,039
EXCESS	LO PRES	VENT	(LBM/HR	7,439	0
EXCESS	LO PRES	STEAM	(LBM/HB)	7,439	(6:039)
	7; 1: -285	NOILION		SELINE	ESIGN

EMC ENGIN	EERS,	INC.	
PROJ. #	_ PRC	NECT.	
SHEET NO	3-	_OF_	75
CALCULATE	BY	D.	ATE /
CHECKED BY	′ <u></u>	<u>`</u> DA	TE
SUBJECT			

PEAK STEAM DEMAND

Area-B:

Peak space heat @ $9^{\circ}F = 104.4 \text{ MBH} = 101,600 \text{ lbm/hr}$

Average process load = 106,982 lbm/hr

Peak process load = 128,380 lbm/hr (120% diversity factor)

Peak pipe loss = $22,622 \text{ Btu/hr}^{\circ}\text{F} (525^{\circ}\text{F} - 9^{\circ}\text{F}) = 11.67 \text{ MBH}$

@ 1028 Btu/lbm = 11,352 lbm/hr

Total peak Area-B steam demand = 241,332 lbm/hr.

Area-A:

Assume peak steam demand is 120% of peak monthly average.

December 1990 99.6 million pounds of steam produced

<u>x120%</u> diversity factory

 $117.2 \div 720 \text{ hrs} = 167,700 \text{ lbm/hr}.$

APPENDIX C

COGENERATION ANALYSIS

Steam Pipe Heat Loss
Base Energy Model Development
Base Case Energy Model C-5
Average and Peak Load Summary
EEAP Space Heat Data C-7
Process Load Calculations C-12
Summary of Steam Demands of Buildings C-29
Pipe Model Geometry C-30
210 psia Steam Flow Model
125 psia Steam Flow Model with Pipe to Admin Area C-41
PRV Analysis C-51
Cogeneration Optimization Model Inputs C-56
Cogeneration Optimization with 110 psig Backpressure C-57
Cogeneration Optimization with 175 psig Backpressure C-59
Cogeneration Plant Conceptual Mechanical Design
Cogeneration Quote Request
Cogeneration Vendor Quotes
Cogeneration Quote Summary and Analysis
Cogeneration Plant Conceptual Electrical Design C-87
Cogeneration Cost Estimates
Life Cycle Cost Input Data
Energy Savings Calculation
LCCID Output

STEAM PIPE HEAT LOSS

Existing heat loss for Area-B is estimated at 10.6 MMBtu/hr. The Kinney EEAP determined the steam temperature at 525°F, and the outside air temperature at 56°F.

Heat loss from insulated pipe is presented as:

$$\frac{Q}{L} = \frac{2\pi k \Delta t}{\ln(r_o/r_i) + k/h_o r_o}.$$

Calculated heat loss from the Kinney EEAP is

24" dia 3" insulation = 469.2 Btu/hr/ft.

Backing out *k* gives

$$\frac{Q}{L} \ln \left(\frac{r_o}{r_I}\right) = k = 0.036 Btu/hrft^\circ F \times 12 m/ft = 0.43 Btu/in/hrft^{2\circ} F.$$

ASHRAE data pipe insulation is set at $300^{\circ}F = 0.45$ Btu/in hr ft²°F.

Therefore, calculated k matches published value.

The heat loss on the pipe measured 105°F with 60°F ambient still air. Thus, heat loss from the pipe is:

$$\frac{469.2 \, Btu | ft \, hr}{\pi \frac{30}{12} ft} = 59.7 \, Btu | hr ft^2.$$

The calculated coefficient is h = 1.33 Btu/hrft²°F, which is a reasonable number. Therefore, it may be concluded that the Kinney EEAP data is accurate.

The steam pipe heat loss coefficient for Area-B is:

$$\frac{10,628,370 Btu/hr}{(525-56)^{\circ}F} = 22,662 Btu/hr^{\circ}F.$$

EMC ENGINE	ERS, INC	}.
PROJ. #	_ PROJECT	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>
SHEET NO	OF	<u>. 'J </u>
CALCULATED	BY1	DATE
CHECKED BY	D	ATE
SUBJECT		

detailed data

EXISTING HEAT LOSS

organization:

The exis	sting conditions	are as follow	ws:	
Pip Siz IPS	e Length	Insulation Thickness Inches	Heat Btu/Hr/ Ft	LossBtu/Hr
24	4150	3	469.2	1,947,180
20	900	3	399.5	359,550
18	4300	3	364.6	1,567,780
14	2600	3	294.6	765,960
12	2550	3	263.9	672,945
10	1350	3	230.0	310,500
8	9260	3 °	190.9	1,767,734
6	3200	2-1/2	183.5	-587,200
. 4	10730	2-1/2	138.7	1,488,251
3	9350	2-1/2	124.2	1,161,270
TOTAL	39,390			10,628,370

STEAM PIPING CONDENSATE GENERATION

Existing

Pipe loss =

10.6 MBH

Avg. steam demand =

138,283 lbm/hr x 1028 Btu/lbm = 142 MBH

300 psig, $525^{\circ}F =$

300 psig, saturated

h = 1271 Btu/lbm

h = 1203 Btu/lbm

 $\Delta h = 68 \text{ Btu/lbm}$

 $68 \text{ Btu/lbm} \times 138,283 \text{ lbm/hr} = 9,403,000 \text{ Btuh} = 9.4 \text{ MBH}.$

Condensate amount =

10.6 - 9.4 = 1.2 MBH.

Therefore, most heat loss will be absorbed by reduction of superheat.

300 psig latent heat

 $h_{fg} = 803 \text{ Btu/lbm}$ $h_f = 399$

Condensate generated = $\frac{1,200,000 Btuh}{(1203-399) Btullb}$ = 1492 lbm/hr.

EMC ENGINEERS, INC. PROJ. #____ PROJECT ___ SHEET NO. _____ OF ____ CALCULATED BY_____ DATE____ CHECKED BY_____ DATE____ SUBJECT _____

Ĕ
ă
z
2
占
Ž
Q
ᇤ
Σ
М
ST
Σ
윤
Ï
딦
6
頁
읍
٦
哑
0
Ž
뜅
Š
ž
•

SPACE LOAD COEF	BLC	BLC 1,865,000 USED TO BALANCE SYSTEM
PROCESS STEAM	PROC	77,027 AVERAGE SUMMER STEAM DELIVERED
ENTHALPY CHANGE	ᆷ	1,028 HG=1271 (300 PSIG, 525 F STEAM) HF=243 (30 PSIG SAT LIQUID
IN PLANT STEAM - B	NB NB	16% FROM BOILER ANALYSIS
STEAM TEMP	TSTM	525

	WEATHER		AREA-B BASE ENERGY ANALYSIS	E ENERGY AN	ALYSIS					
	AMBIENT	DEGREE	METERED	IN PLANT	DSTRE	PROCESS	PROCESS	PROCESS SPACE HEAT	DEGREE DAY	MODEL
	TEMP	DAYS	STEAM	STEAM	SSOT	& SPACE	STEAN	STEAM	STEAM	MATCH
	(F)		(1000LBM)	(1000LBM)	(1000LBM)	(1000LBM)	(1000LBM)	(1000LBM)	(1000LBM)	
		869	140,234	22,998	7,653	109,583	77,027	32,556	30,392	1.5%
	9	709	134,104	21,993	7,684	104,427	77,027	27,400	30,870	-2.6%
Mar 89		428	139,156	22,822	7,510	108,824	77,027	31,798	18,635	9.5%
		325	115,466	18,936	7,447	89,083	77,027	12,056	14,151	-1.8%
		198	116,416	19,092	7,368	89,956	77,027	12,930	8,621	3.7%
		_	100,156	16,426	7,177	76,553	77,027	(474)	4	-0.5%
		0	97,286	15,955	7,130	74,201	77,027	(2,825)	0	-2.9%
		0	107,224	17,585	7,162	82,478	77,027	5,451	0	5.1%
		22	101,149	16,588	7,241	77,320	77,027	293	2,395	-2.1%
	9	262	121,296	19,893	7,415	93,988	77,027	16,962	11,408	4.6%
		275	133,138	21,835	7,589	103,714	77,027	26,687	25,036	12%
		1,139	146,538	24,032	7,875	114,631	77,027	37,605	49,593	-82%
		718	133,970	21,971	7,653	104,346	77,027	27,319	31,262	-2.9%
		540	124,446	20,409	7,130	206'96	77,027	19,880	23,512	-2.9%
		423	131,516	21,569	7,146	102,802	77,027	25,775	18,418	2.6%
		303	120,496	19,761	7,225	93,510	77,027	16,483	13,193	2.7%
		66	105,546	17,310	7,399	80,837	77,027	3,811	4,049	-0.2%
		0	108,456	17,787	7,542	83,127	77,027	6,101	0	2.6%
		0	89,614	14,697	7,621	67,296	77,027	(9,730)	0	-10.9%
	66	0	103,116	16,911	2,700	78,505	77,027	1,478	0	1.4%
		84	100,064	16,410	699'2	75,985	77,027	(1,042)	2,090	-3.1%
8 0 0 0	64	225	111,766	18,330	7,542	85,895	77,027	8,868	6,797	-0.8%
		474	124,070	20,347	7,177	96,545	77,027	19,518	20,638	%6:0-
		929	131,240	21,523	7,209	102,508	77,027	25,481	27,692	-1.7%
Jan 91	0	908	140,030	22,965	8,318	108,747	77,027	31,720	35,094	-2.4%
		629	129,326	21,209	8,318	99,798	77,027	22,772	28,693	-4.6%
		483	139,018	22,799	8,318	106,701	72,027	30,874	21,030	7.1%
		175	131,682	21,596	7,368	102,719	77,027	25,692	7,620	13.7%
_		32	106,856	17,524	8,318	81,013	77,027	3,987	1,393	2.4%
_										
Aug 91										
l a	56	1 300	4 450 469	000 455	00000		000,000	200		7000
3 8		080	501,254,1	500,100	00760		924,320	200,437	191,144	0.0%
3]:	/6	3,460	1,384,300	227,025	89,013		924,320	143,942	150,651	-0.5%
Ā		3,925	1,418,232	232,590	89,132	0	924,320	172,190	170,898	0.1%

EMC ENGINEERS, INC. PROJ. #_____ PROJECT_

SUBJECT____

EMC ENGIN	EERS, INC.
PROJ. #	PROJECT 3/02-202
SHEET NO.	5 OF 17.2
CALCUI ATED	BV / 3/2 DATE / 1-1
CHECKED BY	DATEDATE
SUBJECT	

DISTRIBUTION LOSS COEF
PROCESS DEMAND
300 PSIG DEMAND
300 PSIG ENERGY CONTENT
EXIT STEAM ENERGY CONTENT
IN PLANT STEAM

LBM/HR LBM/HR BTU/LBM BTU/LBM

1,865,000 22,622 106,982 47,462

PROC PROC300

DHNOW

SPACE LOAD COEF

TURBINE STEAM RATE TURBINE SIZE

83 LBM/KW/HR 0 LBM/HR

ASR SIZE

TSTM

1,028 1,028 16% 525

> DHNEW INB

\$/MBTU \$/KW \$/KWH

1.2500 9.5000 0.0159

COAL\$ KW\$ KWH\$

72.00%

BOILEFF

STEAM TEMP

TURBINE	(LBM/HR)	0	0	0	0	0	0	0	0	0	0	0	0	0
AVG	<u></u>	7,454	7,018	6,208	7,010	290'9	6,418	6,646	6,207	6,840	6,681	6,961	7,018	6,711
ELECTRIC DEMAND	§	9,235	8,926	8,793	8,815	8,650	8,904	8,948	8,992	9,340	8,909	9,045	9,092	8,971
ELECTRIC USAGE	(KWH)	5,545,500	4,716,000	4,619,000	5,047,000	4,513,500	4,621,000	4,944,500	4,618,000	4,925,000	4,970,500	5,012,000	5,221,500	92,142 58,753,500
COGEN	(LBM/HR)	124,729	119,415	104,004	92,518	76,161	70,093	69,423	69,445	71,671	85,210	104,168	118,869	92,142
STEAM	(LBM/HR)	172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	166,331	139,604
DSTRB LOSS	(LBM/HR)	10,783	10,717	10,541	10,321	10,145	696'6	6)903	9,925	10,035	10,299	10,541	10,717	10,324
HEATING LOAD	(LBM/HR)	54,426	49,178	33,943	22,678	6,496	605	0	0	2,117	15,391	34,107	48,632	22,298
300 psig PROCESS	(LBM/HR)	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462
LOW PRES	(LBM/HR)	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520
AMBIENT TEMP	Ē	35	38	46	99	64	72	75	74	69	25	46	38	56
DEGREE DAYS		930	759	280	375	111	10	0	0	35	263	264	831	4,458
		31	88	9	30	3	ဓ္က	31	31	30	3	8	3	
200000000000000000000000000000000000000						_	- Lin						Dec	≠

AVERAGE STEAM USAGE AND PEAK DEMAND SUMMARY

PREVIOUS STUDIES

Kinney EEAP

Space Heat Peak Demand = 29,167 lbm/hr Active Buildings Only, Skin Loss Only

Pipe Heat Loss = 22,622 Btu/hr/°F = UA

EMC ENGINE	EERS,	INC.				
PROJ. #	_ PRO	JECT	- /			-
SHEET NO.	6	OF_	- 0	29.		
CALCULATED	BY_	D.	ATE	14	ر	•
CHECKED BY						
SUBJECT			-			

DuPont Theoretical Process Analysis

Average Process Steam Usage = 63,542 MBtu/month

 $\frac{63,542 \times 10^6 \text{ Btu}}{\text{month}} = \frac{61,811,000 \text{ lbm/month}}{\text{bm}}$

BASE ENERGY MODEL DEVELOPMENT

- 1) Tabluated metered boiler steam production from 89 and 90
- 2) Deducted CHP in plant steam usage (16% of metered)
- 3) Deducted pipe heat loss

- 4) Remaining steam flow is process and space heat
- 5) Average summer usage assumed to be all process = 77,027,000 lbm/month
- 6) Deduct process from total steam to get space heat steam
- 7) Space load coefficient calcualted using degree days

BLC = <u>Steam</u> = <u>172,190,000 lbm 1028 Btu day</u> = 1,865,000 <u>Btu</u> DD 3925°F days lbm 24 hrs hr°F

8) For base model, use long-term historical degree days and ambient temperatures

DISTRIBUTION OF STEAM DEMAND

Space Heat Steam Per Building

Base Distribution on EEAP Data

Using Correction Factor = $\frac{172,190,000 \text{ lbm}}{8760 \text{ hrs}}$ = 3.48

Process Steam Per Building

Base Distribution on DuPont Study

Average Correction Factor = <u>77.027,000 lbm month</u> = 1.25 61.811.000 month lbm

Diversity Correction Factor (See Hourly Steam Profile) = 1.20

Censumed Moto Vol 1 P. 34.19 Annual Energ! 0. 643.9 674.2 9.409 895.2 5.69.9 273.9 4,247.8 1,239.8 8,405.8 294 203.7 BUILDING DATA SHEET PAGE 4 OF 12 WOUL REMARKS 8 7 PART 15 7.09 4 o in いっか 5.0 2.04 7.0 2.0 - (CONTINUED) BUILDING DATA SHEETS 243,985 32,550 30,660 40,250 48,800 86,530 48,260 12,480 1,200 60,23 39,520 12,690 720 778,000 37,690 28,290 28,91 ANNUAL USAGE ΚWH @ DATE 1/2 9/5 40.8 9 8.9 60.B 12.2 49.2 10.0 24.7 23.1 124.8 28 DEMAND 30.1 38.1 87. 328. I (8) **≩** EMC ENGINEERS, INC. PROJECT LIGHTING P. 31.3 28.7 LOAD 49.7 38.0 23.7 14.9 17.4 40.4 13.9 310.0 43.0 71.0 5.2 17.7 (S) **₹** 48.5 17.3 14.5 4. ١. CHECKED BY 3 CALCULATED BY. CONNECT LOAD (S) 31.3 ₹ 17.4 17.4 76.0 99.6 116.4 9 469.2 60.1 61.5 43.0 35.3 33.0 166.4 54.4 9.9 46.4 623.4 i SHEET NO. SUBJECT FUEL (8) STEAM 825,644 1600 GAI STEAM STEAM STEAM ELECT HECT ELECT SLECT ELECT ELECT ELECT ELECT DOMESTIC HOT WATER CAPACITY 60 GPM 100 GAL GAL 26 GAL 52 GAL 52 GAL 50 GAL TABLE 1 · 401,369 50 GAL 554,425 50 GAL 403,532 50 GAL 524,654 60 GAL 2 446,700 2119,662 336,445 321,330 2325,452 618,649 129,092 132,600 145,500 1546,414 4194,515 1089,409 19,474 PEAK TRANS. LOAD **SSO**7 Dels _8-25-82 Date 8-16-82 140,620 864,512 GAIN F11e Ne. 0259.1 Sheet No. (8) į ļ i 1 Checked by JAG Cunputed by ADP HOT WATER STEAM ELECT STEAM STEAM STEAM FUEL STEAM ন্তি 110 OIL HEATING U.II. £ U.H. & CONVECT U.H. CONTECT U.H. 6 CONVECT CONVECT FORCED AIR CONVECT CONVECT CONVECT SYSTEM FORCED FORCED FORCED (8) 금 U.H. U.H. AIR U.E. AIR A. M. KINNEY, INC. 1351 SYSTEM CAPACITY CONSTITUTO ENGINEERS GINGINATE, ORIO 325,000 **©** in use 10/91 COOLING CENTRAL D.X. AREA "B" CHILLED A.C. WINDOW A.C. WINDOW N.C. WINDOW N.C. WINDOW N.C. WINDOW WINDOW A,C. WINDOW A.C. MOGNIM INST. AND
ELECTRIC SHOP
' RECEIVING"
STORAGE WAREHOUSE CHARD HEADQUARTERS CORPS OF ENGINEERS SERVICE BUILDING LABORATORY ANNEX SERVICE STATION Location KINGSPORL, TENNESSEE SOLVENT STORAGE ADMINISTRATION GENERAL STORES CARPENTER SHOP CHANGE HOUSE MACHINE AND METAL SHOP NAME (o)LABORATORY SUBSTATION FIRE HALL TRAINING Subject BUILDING DATA I.AUNDRY MEDICAL LA LIDISTON AAP COLUMN NO'S. 108 BLOG. 105 101 100 9 106 102 104 Ξ 8 Š. 12 20 56 80 7 6

VO1 1, P.34 Annual Heating Eneray M8tu 257.0 751.8 1,318.3 BUILDING DATA SHEET PAGE 6 OF 12 P. WARIO CREMARKS STORAGE PART 9 2,13 d o No K 7 5,885 5,885 144,320 44,410 17,370 4.980 870,200 13,675 5,885 183,810 36,500 34,165 88,400 3,100 253,525 126,310 3,300 348,910 5,885 3,755 43,990 3,285 SUBJECT (CONTINUED) BUILDING DATA SHEET'S ANNUAL USAGE K⊗H 795.3 9 30.0 279.0 102.4 28.0 38.4 138.8 7.0 59.3 DEMAND 38.0 76.5 25.B 43.0 320.2 23.7 25.5 18.2 25,5 25.5 31.3 25.5 DATE DATE ₹ **PROJECT** R LIGHTING 23.8 LOAD 5.5 5.5 5.5 34.8 27.5 34.7 19.0 22.5 11.2 40.4 98.5 8.3 36.0 31.6 74.3 17.0 5.5 3.5 ₹ 85.1 5.1 25.4 Ø CZE SULATED BY CHILCKED BY CONNECT 420.0 LOAD 27.3 7.8 42.7 33.4 85.0 28.7 47.9 62.3 20.3 64.2 28.3 28.3 28.3 34.8 883.7 (8) 42.3 35.1 Š 348.8 113.8 26.3 173.5 SHEET NO. **₹** PROJ. #_ FUEL STEAM ELEC. LEC. ELEC. ELEC. LEC. ELEC. DOMESTIC HOT WATER TEC SLEC LEC FLEC ELEC CAPACITY 6 GAL 32 GAL 20 GAL 6 GAL 52 GAL 20 CAL 550 GAL 82 GAL 182 GAL 27 GPM 32 GAL 52 GAL 24 TABLE 1 (23) (1 62,728 177,953 240,907 133,654 282,370 54,225 657,824 PEAK TRANS. LOAD 375,172 308,814 75,600 236,553 131,111 449,805 507,570 926,38 89,026 LOSS 128,448 438,647 PROC. Date _ 8/25/82 Dois_8/16/82 FILE NO 02591 Sheet No ... 127,481 GAIN 156,037 429,891 (8) 78,756 Checked by JAG. propare Computed by ADP FUEL STEAM (<u>2</u>) STEAM STEAM STEAM GAS STEAM ELEC STEAM ELEC. STEAM STEAM STEAM STEAM STEAM S'FEAM ELEC. STEAM ELEC ELEC. GAS HEATING UNIT ITIS U.II. U.H. CONVECT SYSTEM CONVECT FAN COLI CONV. FORCES AIR FORCES AIR, UH FORCE'S AIR U.H. CONV. U.H. C (8) U.H. U.H. Ü.E. U.II. u. . U.II. U.H. u.= ! A. M. KINNEY, INC. CONSULTING ENGINEERS SYSTEM CAPACITY 120,000 462,000 120,000 480,000 170,000 **(E)** COOLING 1 CENTRAL D.X. WINDOW A.C. CENTRAL CENTRAL D.X. CENTRAL. CENTRAL D.X. WINDOW A.C. WINDOW A.C. **(B)** AREA "B" D.X. S & M OFFICE QUANSET DECONTAMINATION BDG BATTERY CHARG'G STA SHOP CHEMICAL FEED BLDG. FILTER TRIM'T PLNT HATTERY CHG'G STA. BATTERY CHG'G STA. BATTERY CHG'G STA. CLOCK STA. BUTLER PRODUCTION OFFICE PAINT & LUBE STG. DATA PROCESSING AUTO PAINT SHOP COMPRESSED AIR I D. atlon KINGSPORT, TENN. GUARD STATION SHOP & OFFICE NAME CHANGE HOUSE FILTER PLANT LACQUER PREP Subject BUILDING DATA (7)STEAM PLANT INCINERATOR HOLSTON AAP CAFETERIA HEXAMINE COLUMN NO'S. BLDG. 116 225 119 135 150 216 219 220 224 230 231 Jul 110 110 127 136 151 155 157 200 203 226 229 Ŏ. 156

EMC ENGINEERS, INC.

C-8

BUILDING DATA SHEET PAGE 8 OF 12 REMARKS 8 7 - PART 32,135 13,105 8,735 1,000 403,625 107.0 169.525 7,834,00 5,620 15,185 52,935 32,135 169,525 6,290 185,286 80,900 236,65 201,700 136,300 402,380 (CONTINUED) BUILDING DATA SHEETS K≪H ANNUA USAGE G 334) (8) 320.3 1,143.2 36.1 8.9 55.6 55.6 107.0 22.7 91.6 DEMAND 140.1 10.9 26.3 620.9 BUILDIA 15.1 26.9 618.6 120 111.0 **Š** ¥ (8) DATE DATE PROJECT. EMC ENGINEERS, INC. LIGHTING CLUDED 1 18,3 4 13.5 6.5 12.9 7 32.6 29.3 11.7 LOAD 7.1 14.7 9.5 8.0 2.0 28.1 6.3 6.1 11.7 12.2 (2) ¥ CALCULATED BY CONNECT ΞĮ, LOAD 776.2 101.8 34.2 61.8 61.8 774.3 150.7 150.7 CHECKED BY. 42.3 12.1 16.8 12.1 29.5 25.2 10.1 350.0 200.0 138.0 (8) ,269.3 **≩** SHEET NO. SUBJECT PROJ. # (8) FUEL ELECT. ELECT. STEAM ELEC. ELEC ELEC DOMESTIC HOT WATER : 1 CAPACITY 120 GAL GAL 50 GAL 60 GPM 32 GAL 30 GAL <u>8</u> ı 25 i i 1 1 TABLE 1 489,573 296,833 331,095 90,300 359,150 372,680 736,568 59,624 372,680 PEAK TRANS. LOAD 44,683 372,215 293,930 45,098 201,961 597,686 32,858 383,603 383,603 1055 44,445 46,340 (3) Daile 8/25/82 Doi: 8/16/82 Sheer No 127,400 249,774 GAIN (3) ŀ 1 ŀ 1 ł Checked by JAG FIL No. 02591 Computed by ADP ELECT. ELECT. FUEL STEAM STEAM (<u>2</u>) ELEC STEAM STEAM STEAM STEAM STEAM ELECT STEAM STEAM STEAM STEAM STEAM STEAM STEAM ELEC. ELEC. HEATING FCD AIR U.H. 6 FCD AIR CONV 6 FCD AIR CONTECT U.H. E CONV. U.H. E U.H. 6 CON'7. SYSTEM CAPACITY SYSTEM U.H. CONY. CON'7. CON.7 U.II. 8 U.H U.H. U.H. A. M. KINNEY, INC. CONSULTING ENGINEERS 229,200 100,000 **@** COOLING i 1 1 CENTRAL D.X. A.C. CENTRAL D.X. WINDOW A.C. AREA "B" WINDOW A.C. WINDOW WINDOW **e** A.C. ; i AMMONIA OXIDATION PI CONT. HOUSE FOR 334 LACQ. PREP. 503/4 MAGNESIUM NITRATE HEAVY EQUIP. SHOP HEXAMINE SOLUTION MAINTENANCE SHOP HAAP QUALITY ASSURANCE OFFICE PRIMARY RECOVERY SLUDGE ACID AREA OFFICE AMMONIA RECOVERY PRIMARY RECOVERY SLUDGE ROADS & GROUNDS BUILDING IND. WASTE PUMP IND. WASTE PUMP STA. ||1 WASTE TREATMENT OFFICE CHANGE HOUSE NITRIC ACID Location KINGSPORT, TENN. REPAIR SHOP 6 OFFICE & LAB NAME (2) Subject BUILDING DATA PUMP HOUSE LA LIDESTON AAR. STA. 12 COLUMN NO'S. 302151 302B 556 634 232 234 235 BLDG. 15 321 328 335 339 580 9 322 334 Š 1 CS Ξ

C-9

PAGE 10 OF 12 BUILDING DATA SHEET REMARKS (8) TABLE 1 - (CONTINUED) BUILDING DATA SHEETS - PART 147,875 159,700 208,500 93,770 93,770 143,830 147,875 147,875 159,700 159,700 159,700 424,910 236,658 201,700 220,158 93,770 93,770 93,770 162,800 133,311 201,700 176,300 164,60 163,20 USAGE 183,40 ANNUAL **KWH** 38.7 192.0 269.0 43.1 23.3 DEMAND 229.9 229.9 229.9 229.9 111.0 122.6 111.0 24.9 221.3 269.0 269.0 150.0 99.4 26.2 99.4 99.4 25.2 31.0 99. 99. 0 8 DATE DATE EMC ENGINEERS, INC. PROJECT P LIGHTING 15.0 7.3 17.5 15.0 17.6 20.8 20.8 24.4 18.2 LOAD 13.5 19.3 19.3 43.0 21.8 20.6 7.3 7.3 7.3 19.3 13.4 13.4 13.4 13.4 47.9 <u>(2)</u> ₹ 0 CALCULATED BY CONNECT 267.6 47.9 43.0 40.4 336.3 287.4 287.4 287.4 287.4 153.3 138.8 187.5 32.8 38.7 336.3 124.2 124.2 124.2 LOAD 138.8 (8) CHIECKED BY. 240. **≩** SHEET NO. _ SUBJECT PROJ. #_ FUEL S'FEAM STEAM DOMESTIC HOT WATER ij CAPACITY 60 GPM 60 GPM **2**4 ŧ 1 į ŀ -Į ï 1 1 į ŧ i. ; 297,955 412,945 412,945 301,485 301,485 301,485 PEAK TRANS LOAD 199,458 301,485 199,458 199,458 199,458 199,458 301,485 LOSS (3) PROC. Date 8/25/82 Date 8/16/82 GAIN Sheet No. (8) 1 1 i 1 FIL No 02591 Checked by JAG. Computed by ADR FUEL (Z) CONVECT STEAM STEAM STEAM STEAM STEAM STEAM STEAM STEAM S'FEAM STEAM CONVECT STEAM STEAM STEAM STEAM HEATING U.H. C CONVECT U.H. 6 CONVECT U.II. 6 CONVECT U.H. & U.H. 6 CONVECT CONVECT CONVECT CONVECT CONVECT CONVECT CONVECT CONVECT FAN CL CONVECT CONVECT CONVECT CONVECT CONVECT CONVECT FAN CL CONVECT FAN CL CONVECT FAN CL CONVECT SYSTEM (8) A. M. KINNEY, INC. CONSULTING ENGINEERS OF CONSULTING ENGINEERS SYSTEM CAPACITY **@** COOLING ţ 1 ŀ į i 1 • † í WINDOW A.C. WINDOW A.C. **(B)** i 1 1 AREA "B" ļ ! FILTER & WEIGHING Lucation KINGSPORT, TENN. Subject BUILDING DATA INCORPORATION INCORPORATION INCORPORATION INCORPORATION INCOMPORATION NAME CHANGE HOUSE CHANGE HOUSE PURIFICATION PURIFICATION PURIFICATION PURIFICATION PURIFICATION (a)PILOT PLANT NITRATION NITRATION NITHATION WASHING WASHING WASHING WASHING HOLSTON AAP COLUMN NO'S. BLDG. Ŏ. D3 E6 99 C6 05 D6 E3 3 . F5 65 = H5 Ε3 Ξ G G 5 14 9 13 I 4 9 I 5 .J 4 Ξ

Č-10

BUILDING DATA SHEET PAGE 12 OF 12 REMARKS 8 TABLE 1 - (CONTINUED) BUILDING DATA SHEETS - PART (23) (24) (25) (26) (27) (29) (29) 4,265 100,100 420,400 40,100 1,555 132,200 35,3 191,200 235,460 194,800 198,900 191,200 100,100 31.3 180,320 27.6 136,300 191,200 191,200 234,800 236,200 236,200 ANNUAL 24.2 129,800 USAGE ΚWH 27.0 35.3 29.6 11.5 35,3 42.0 42.1 39.3 28.1 53.2 42.1 DEMAND DATE DATE EMC ENGINEERS, INC. **PROJECT** OF LIGHTING 7.5 12.8 12.8 8.2 15.0 18.2 12.4 11.5 LOAD 18.2 18.2 18.2 18.2 10.2 59.1 18.2 17.6 12.1 **₹** CALCULATED BY. CONNECT CHITCKED BY LOAD 39.1 34.5 39.2 39.5 46.2 46.8 46,8 32.9 30.0 12.8 12.8 2.9 8.5 30.2 39.2 46.2 43.7 31.2 59.1 5.9 **₹** SHEET NO. SUBJECT FUEL STEAM STEAM STEAM DOMESTIC HOT WATER ELEC CAPACITY 40 GAL 60 GPM 40 GAL 30 GAL 301,485 76,085 76,085 PEAK TRANS LOAD 301,485 301,485 301,485 301,485 301,485 182,701 503,540 29,690 47,846 130,875 114,340 301,485 301,485 257,280 257,280 182,701 LOSS Doi: 8/16/82 Dail 8/25/82 GAIN Sheet No (8) FILE No. 02591 Checked by JAG Computed by ADP STEAM STEAM STEAM STEAM STEAM STEAM FUEL STEAM STEAM STEAM STEAM STEAH STEAM STEAM STEAM STEAM STEAM STEAM STEAM STEAM (S) HEATING CONVECT FAN COIL CONV3CT FAN 201 CONV3CT FAN 201 CONVECT FAN 2011 CONVECT FAN 2011 CONVECT FAN 2011 CONVECT FAN COL CONVECT FAN COL FAN COL CONV 3CT FAN COI SYSTEM CONV3CT CONVECT (8) U.H. Ü.≡ A. M. KINNEY, INC. CONDUCTING ENGINEERS GINGHWATL ORIO AREA "B" SYSTEM CAPACITY 48,000 **@** COOLING 1 ! ļ ŧ -CENTRAL D.X. WINDOW A.C. 9 1 PACKAGING BUILDING PACKAGING BUILDING PACKAGING BUILDING PACKAGING BUILDING BOX RECONDITION Location _KINGSPORT ._ TENN ._ INCORPORATION SHOP & OFFICE INCORPORATION INCORPORATION INCORPORATION INCORPORATION INCORPORATION INCORPORATION INCORPORATION NAME CHANGE HOUSE TNT OPENING (S) THY OPENING Subject BUILDING DATA ANALYTICAL ANAL.YTICAL Job HOLSTON AAP OFFICE COLUMN NO'S. 5 BLD6. 2 7 9И Ž 2 9 ξ K5 2 1.4 1.6 Σ Σ. S 8 0.5 2 2 Yl 3

FOR FINDING PROCESS LOADS

Assume: Similar buildings produce Similar Loads.

EMC ENGINE	ERS,	INC.		
PROJ. #	_ PRO	JECT		
SHEET NO				
CALCULATED	BY	A DATE_	:	
CHECKED BY_		DATE		
SUBJECT				

For G-buildings:

The G-buildings produce

14.4 batches/day x 30 days/mo = 432 batches/mo.

The total process energy added = 8,918,000 Btu/batch.

For one month:

8,918,000 Btu/batch x 432 batches/mo = 3,852,580,000 Btu/mo.

Therefore, the G-buildings process is 3,852,580,000 Btu/mo.

The amount removed is:

$$8,380,000 \times 432 = 3,620,160,000 \text{ Btu/mo}.$$

To put this in the units of lb/hr,

Added:

$$\frac{3,852,580,000\ Btu}{month} \times \frac{1\ month}{3\ days} \times \frac{1\ day}{24\ hr} \times \frac{1\ lb}{1028\ Btu} = 5205.06\ lb/hr\ .$$

Removed:

$$\frac{3,620,160,000 \ Btu}{1 \ month} \times \frac{1 \ month}{30 \ days} \times \frac{1 \ day}{24 \ hr} \times \frac{1 \ lb}{1028 \ Btu} = 4891.05 \ lb/hr \ .$$

EMC ENGINEERS, INC. PROJECT = OF _____ PROJ. #____SHEET NO. _ SHEET NO. ______ OF _____ DATE ______ DATE CHECKED BY_ SUBJECT One batch (850# EKX, 5070# water, 26,000# acetone) Kingsport, Tennessee Sparged steam becomes process water. 382 gpm for 8 hours. Heat loss to surroundings Heat loss to surroundings. Product from E-Building. Imbalance: Negligible Product to H-Building. Decant from still. Contr. Conv. She11 HEAT LOST HOLSTON ARMY AMMUNITION PLANT
PROCESS ENERGY INVENTORY

THE RECRESSILIZATION AND COATING, BUILDING G-6 523 432 93 3,054 TABLE 18 Gal. HEAT REMOVED Decant 173 8,380 533 7,165 509 3,370 547 2,247 6,179 흠 38 lb. Steam Source 38 1b. Steam 8,918 20 6,235 2,070 Technical Report No. HDC-39-77 Holston Defense Corporation Total Process Energy EQUIPMENT OR STREAM Condenser 1. Dissolver Stream 3 Equipment: 2. St111 3.

FACILITY APPRAISAL PRODUCT: CLASS I HMX CODE: 6805

LB/MO Actual	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	92632	183334		347369 BUILDING CAPACITY	
LB/HR ACTUAL A				387		
BA/DAY ACTUAL				10.83	_	
ñ.			. 95	.95	.90	
LB/HR SCHD		136.0	269.2	403.8	538.3	
BA/DAY SCHD		3.8	7.6	11.4	15.2	
I.I.		เก	C)	ហ	01	
I RW		.005	.005	.005	.005	-
CYCLE		375	375	375	375	
BATCH SI7E		820	820	850	820	
MAN PWR		دما	m	m	*	
UNITS	•		7	m	4	
PROCESS/ Equipment	RECRYST.	HAI	HAI	HAI	HA1	
BLD6.				805		
PROD	HMX	CLASS 1	CLASS 1	CLASS 1	CLASS 1	

* AVERAGE CYCLE TIME WAS CALCULATED USING DATA FROM 605, 606, AND 607.

NOTES:

CYCLE TIME IS COUNTED FROM START OF DISSOLVER CHARGE THRU DECANTING.

BUILDING G-5 IS EQUIPPED WITH ONLY THREE (3) DISSOLVERS, AT A RATE REQUIRING FOUR SYSTEMS ADDITIONAL LOST TIME IS INCURRED DUE TO THE SHARING OF A DISSOLVER.

O IF H-5 IS DECANTING, ONE STILL WILL BE REQUIRED TO PROCESS DECANT WATER.

Data Source: Batches remorked due to screen pot failure 430 Data Source: Random batches from 6-5, 6-6, and 6-7. and alpha from 6-5, 6-6, and 6-7. 240 ž. COUNT PROGRAM STATISTICS 89.6 25.4 SPC AVG. STD.DEV. 848 375 1, CYCLE TIME . ATTRIBUTE 3. BA.WT.

VIELD = Average batch weight divided by standard weight.

94.8

I. S YIELD:

EMC ENGINEERS, INC.

CULATED BY

SHEET NO.

SUBJECT

CHECKED BY

PROJECT

.-- .

OF

DATE

DATE

REVIEW DATE:

APPROVAL:

ATTACHMENT 1

FACILITY APPRAISAL PRODUCT: COMP A-3, TYPE II C CODE: 007

				,
CAP/ Rate	BLDG CAP Equip rate Equip rate	BLDG CAP Eduip Rate Equip Rate	BLDG CAP Equip rate	BLDG CAP Equip rate
LB/MD ACTUAL	3735447 1592299 1245149	3735447 1592299 1245149	1355015	2710030 <u>.</u> 1355015
LB/HR Actual	5210 2221 1737	5210 2221 1737	1890	3780 1890
BA/DAY ACTUAL	25.21 11.84 8.40	25.21 11.84 8.40	9.14	18.29
ᅜ	.864 .864	864 864 864	.864 .864	.864
LB/HR SCHD	6032 2571 2011	6032 2571 2011	2188 2188	4376
BA/DAY SCHD	29.2 13.7 9.7	29.2 13.7 9.7	10.6	21.2
7 []	5,0 5,0	μ.υ.υ. ο ο ο	5.0	, o
Z RW	10.0	10.0	10.0	10.0
CYCLE TIME	49.3 105.0 148.0	49.3 105.0 148.0	136.0	68.0 136.0
BATCH 51ZE	4960 4500 4960 76	4960 4500 4960 76	4960 4960	4960
MAN	ιn	io .	, m	ы
. 65 E0	וים ליו ניו	- Бе	.	~
PROCESS/ Equipment	COATING DISSOLVER STILL MELT POT	COATING DISSOLVER STILL MELT POT	DEWATER VAC.SYSTEM	DEWATER Vac.system
BL DG.	603 603 603	604 604 604	H03 H03	H04 H04
PRODUCT	COMP A-3,11	COMP A-3,11	COMP A-3,11	COMP A-3,11
				C-15

SHE	C ENG DJ. # EET NO LCULAT ECKED): [ED B)F	TE_	
spi	BJECT					
		, ,			sheets).	product 80 used
		MAX.	215	305 215	(batch	s a new to only Hill be
		MIN.	52	8 9 8	records	ype II is limited of 10 X ulated.
	,	COUNT	49	90	and 1989 production records (batch sheets)	10.0 Since Composition A-3, Type II is a new prodi and production has been limited to only 80 batches, a rework value of 10 % will be used until more data is accumulated.
	STATISTICS	AVG. STD.DEV.	31.6	32.2	and 1989 p	Compositi roduction es, a rew more data
•		AV6.	# 105.47, 3		988	10.0 Since and p batch until
	:	ATTRIBUTE	1. CYCLE TIME DISSOLVER:	STILL:	Data Source: 1	2. % RW 10.0 Data Source: Since Composition A-3, Type II is a new product and production has been limited to only 80 batches, a rework value of 10 % will be used until agre data is accumulated.
	; :			•		

WIEN DATE: 11/20/89

TIME REQUIRED TO TRANSPORT NUTSCHES TO DRYING BUILDING IS NOT INCLUDED.

CONP A-3, TYPE II DEWATERING :

COATING CAPABILITIES LIMITED BY ONLY 3 STILLS (5, 7, AND 8) EQUIPPED WITH MELT POTS.

ONE COMP A-3 BATCH IS PROCESSED FOR EACH MELT POT (MGCL2) BATCH.

COMP A-3, TYPE II COATING :

NOTES:

OVALI F. PLLEN

C-15

FOR BUILDING 334

Total	process	energy	added:
-------	---------	--------	--------

 $20,529,000 \text{ Btu/hr} \times 24 \text{ hr/day} \times 30 \text{ day/mo} = 14,780.9 \text{ MBtu/mo}.$

In lb/hr:

 $20,529,000 \text{ Btu/hr} \times 1 \text{ lb/}1028 \text{ Btu} = 19,969.8 \text{ lb/hr}.$

Total process energy removed:

 $20,077,000 \text{ Btu/hr} \times 24 \text{ hr/day} \times 30 \text{ day/mo} = 14,455.4 \text{ MBtu/mo}.$

In lb/hr,

 $120,077,000 \text{ Btu/hr} \times 1 \text{ lb/}1028/\text{Btu} = 19,530.2 \text{ lb/hr}.$

EMC ENGINE	ERS,	INC.		
PROJ. #	PRO	JECT	3/12-	J
SHEET NO	7.6	OF_	107	
CALCULATED	BY_	D.	ATE -	
CHECKED BY_		DA	TE	
SUBJECT				

Technical Report No. HDC-39-77

HOLSTON ARKY AMMUNITION PLANT PROCESS ENERGY INVENTORY NITRIC AGID CONCENTRATION, BUILDING 334

						F S	PROJ. SHEE	# T NC JLA KED	F D/	RS, INC PROJEC OF OF	T	
	Comments	*Radiation and convection losses from shell.	**Equivalent hourly loss of exothermic	Same cooling water as used at condensers.	These streams add or remove sensible heat from the boundary of the process system.	Imbalance = 2%	300 psig steam reduced via PRV to 100 psig.	300 psig steam reduced wis PRV to 150 psig	172 HP operate continuouely.		Kingsport, Tennessee.	
	Mode	R&C#		R&C								
Heat Lost	Source	She11		She 11								
Hos	1000 Btu/hr	67		794								
	Gal/ min.			329 73 1,793			÷ :					
Hoor Domostod	Source		GF.	CW Effluent CW 1			! !			TABLE 31		
o n	1000 Btu/hr		35** CW	3,623 10,865 146 3,589 406	111 56 403	20,077	!					
	1b/hr	6,399				10,659	166	236				
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Source	300 ps1g Steam 300 ps1g	Steam	Influent			100 ps1g	Steam 150 ps1g	Elec.			
,	1000 Btu/hr	5,151		11,659	289	20,529	198	282	438			
	Equipment or Stream	Equipment: Base heater heat exchanger Evaporator heat exchanger	Mg(NO ₃) ₂ mix tank	Strip Condenser Distillation Column Absorption column Product condensers Cascade cooler	Process Streams: 23 Product to storage 21 Weak HNO3 recovered 24 Strip condensate 2 Weak HNO3 feed	Total Process Heat	Other Energy: Absorption column steam	jet Evaporator steam jet	Electric motors		Holston Defense Corporation	

FOR THE D-BUILDINGS

Total process energy added:

616,000 Btu/batch 419 batch/day \Rightarrow 1,470 batch/mo.

616,000 Btu/batch x 1470 batch/mo = 905.52 MBtu/mo.

In lb/hr,

 $905.52 \text{ MBtu/mo} \times 1 \text{ mo/30 days} \times 1 \text{ day/24 hr} \times 1 \text{ lb/1028 Btu} = 1,223 \text{ lb/hr}.$

Total process energy removed:

637,000 Btu/batch x 1470 batch/mo = 936.39 MBtu/mo.

In lb/hr,

936.39 MBtu/mo x 1 mo/30 day x 1 day/24 hr x 1 lb/1028 Btu = 1265.12 lb/hr.

EMC ENGINE	ERS,	INC.		
PROJ. #	PRO	JECT 差	102 -	
SHEET NO	15	OF		
CALCULATED I	3Y	DAT	ΓΕ <u></u>	1 2 -
CHECKED BY_		DATE	=	
SUBJECT				

EMC ENGINEERS, INC. PROJECT PROJ. # 102 OF SHEET NO. DATE CULATED BY CHECKED BY DATE SUBJECT Acetic Anhydride - Water Reaction. Heat required to maintain 100°C for 4-hours. Bru/hr. to maintain 140°F inside for 500' length to E-Building. Kingsport, Tennessee Heated in summer only; cooled in winter due to heated boxway. Radiation and Convection from Shell. 1175K atu per hour peak load (331K) Btu per hour average load).

Rear of Reaction absorbed by feed.

S4K Btu per hour from two N-Barchee Heat required to heat up heel. Basis: 1 Nitrator Batch Imbalance = 3X REC Mode She11 Heat Lost Source HOLSTON ARMY AMMUNITION PLANT PROCESS ENERGY INVENTORY PROCESS ENERGY INVENTORY BUILDING D-6 3 1000 Btu TABLE 14 42 93 97 17.85 P.W. 핆 Heat Removed 119 34 3 Ch.W. 85 424 Ch.W. Source F.W. 230 637 154 1000 Btu 359 176 33 3.2 2.9 19 Reaction 30 ps18 Steam 30 ps1g Reaction Reaction Steam 30 ps18 Reaction Heat Added 30 ps18 30 psig Steam Steam 1000 Btu Source 10,470 16.0 9.3 8.1 13.0 30.6 333 919 119 85 56 17.85 163 57 31 3.0 Dilution Liquor to Simmer TK. Product Slurry to E-Bids. Chem. 503/504 Heat Exchanger Chem. 501/521 Heat Exchanger Refrigeration Unit Total Process Energy Chem. 501/521 Feed Chem. 503/504 Feed Technical Report HDC-39-77 Equipment or Stream Boxway Reating Chem. 509 Feed Other Energy: Age Tank Simmer Tank Nitrator Streams: Chem. Equipment: -59-

Bolston Defense Corporation

ATTACHMENT 1

FACILITY APPRAISAL PRODUCT: CRUDE RDX CODE: 6300

					·.		EMC EN	GINEERS	, INC. DJECT <u>-</u>	(<u>)) - X.</u>	<u>4</u>
							SHEET N		_OF	23	
							CALCULA		DAT DATE		
			•				CHECKE!		DATE		
										•	
		T E	11.	31E	ATE ATE	Ω Π	ш	# P	121 122 123	البا 1- دار	ш Б.
	CAP/ RATE	E 8	<u>کو</u> م	P CAI	مَّة مـ	P 28	EQUIP RATE	25 a.	EQUIP RATE	47 a	EQUIP RATE
	A &	BLDG CAP Equip rate	EQUIP RATE	BLDG CAP Equip rate	EQUIP RATE	A BLDG CAP EQUIP RATE		BLDG CAP Equip Rate	EOOJ	BLDG CAP Equip Rate	EON
			•		2	•		•			-9
	LB/MO Actual	5420520 2710260	2710260	3407184 1703592	1703592	4643249 2321624	2321624	4345450 2388040	1957410	5034392	2517196
				•	13	46.		236	5	23.00	. 22
	LB/HR actual	7560	3780	4752 2376	2376	6476 3238	3238	6061 3331	2730	7021 3511	3511
	2 K	~ m		- ·		- 9 M	М .	~ M		- M	r,
	DAY	45	. 96	92	42	4B 24	24	40.	69	22	19
	BA/DAY Actual	37.92 18.96	18.96	23.83	11.92	32,48 16,24	16.24	30.40 16.71	13.69	35.22 17.61	17.61
			_				_	0.0		0.0	
	R	.900	.900	.900	.900	.900	.900	.910	.910	900.	. 900
					*						
	LB/HR SCHD	8400 4200	4200	5280 2640	2640	7195 3598	3598	999 3860	3000	7802 3901	3901
	2 2	& ₩	ू वे	15 St	77	HH	F7	3 8	਼ਲ	F 55	m
	Α Ω		- ·.	R3 C4	. 2	· = 0	0	ं • पा च	0	- 9	-9
	BA/DAY Schd	42.1	21.1	26.5 13.2	13.2	36.1	18.0	£ 81 4. 4.	15.0	39,1 19.6	19.6
				•				:			¥
	- 17	10.0	10.0	10.0	10.0	10.0 10.0	10.0	9.0	9.0	10.0	10.0
3	~		-		. —			i			
,		÷									
į					. :	٠				•	
3	ш	62 4	47	e 00	œ	o~ oo	03	: 	~	, 00 <0	- 0
	CYCLE TIME	34.2 68.4	4 . 89	54.4 108.8	108.8	39.9	79.8	43.1	95.7	36.8 73.6	73.6
				á							
	BATCH Size.	4785 4785	4785	4785 4785	4785	4785 4785	4785	4785	4785	4785 4785	4785
	ш и,	.	. ,		4	~ ~	•	4 4	•	44	•
	MAN PER	143		123	•	6 5		m		לייז	
				•							
			_								_
	8 E	Ţ		,		•					
	·						. •			-	
	S/ ENT	NO I	R 2	N - :	F 2	NO 1.	R 2 R	10N	IN 2	N 1 2	R 2 (R)
	PROCESS/ Equipment	NITRATION REACTOR 1	(/OB/MIN) REACTOR 2 (70#/MIN)	NITRATION REACTOR 1	(44#/MIN) REACTOR 2 (44#/MIN)	NITRATION Reactor 1	(60#/MIN) REACTOR 2 (60#/MIN)	NITRATION REACTOR 1	(61#/AIN) REACTOR 2 (50#/MIN)	NITRATION REACTOR 1	REACTOR 2 (65#/MIN)
		E E	. B. C.	Z # :	2 2 2		6 A 6	RE SE	S # Q	S S	9 2 3
	BL 06.	100	. 100	D02	002	D03	003	007 007	200	, 008 008	8 800
	ಷ		- -			-					_
	LT	RDX		RDX		XOF		×a		Xe.	
	PRODUCT	CRUDE RDX		CRUDE RDX		CRUDE ROX		CRUDE RDX		CRUDE ROX	
	۵_	ដ	•			.		25		Ĕ	
						· · · · · · · · · · · · · · · · · · ·					

₹ C-20 ,

ATTACHMENT, 2

PRODUCT: HMX CRUDE FACILITY APPRAISAL 0089 CODE:

CAP/RATE	BLDG. CAP LRR. RATE LBR. RATE EQUIP. RAT
LB/HO ACTURL	1002565 796897 373580 501252
LB/HR ACTUAL	1398 1111 521 699
BA/DAY ACTUAL	49.35 39.23 18.39
3. F	90.3 71.8 57.3 90.3
LB/HR SCHD	1548 1548 774 774
EA/DAY SCHD	54.65 54.65 27.32 27.32
7, LT	9.7 28.2 32.7 9.7
7. RW	
CYCLE TIME	26.35 26.35 52.70 52.70
BATCH SIZE	089 089 089 089
N G	4 10 10
UNITS	. 5. 5. ± m
PROCESS/ Equiphent	NITRATION NITRATION NITRATION
RL 06.	.0-5 0-5 0-5
PROD	HAX CRUDE HAX CRUDE HAX CRUDE HAX CRUDE

KATE

65.02 MAX. DATA SOURCE: BUILDING D-5 BATCHES (10/1 - 10/17/89) 50.02 Ë. STD. DEV. COUNT 394 1.92 STATISTICS: (CYCLE TIME) AVERAGE 57.2

BURING 90-BAY SHUTDOWNS, BOILOUT OF NITRATORS AND AGE TANKS, ROUTINE FACILITIES. WHICH INCLUDES THE EXTRA TIME REQUIRED FOR THIS FACILITY 7 LT IS BASED ON HISTORICAL INFORMATION RELATED TO AVAILABILITY OF

HE BATCH SIZE ASSUMED IS THEORETICAL BASED ON OPERATIONS TO DATE.

CALIBRATION OF EQUIPMENT, NON-ROUTINE MAINTENANCE, AND EQUIPMENT FAILURES. HEDICAL CHECKS. TRAINING. ACCIDENTS. RECEIVING CHEMICALS AT BUILDING C-5. AND INVENTORY MONITORING IS INCLUDED FOR OPERATION OF TWD NITRATORS WITH ADDITIONAL LOST TIME FOR MISCELLANEOUS EMPLOYEE CONSTRAINTS SUCH AS

<u>ス</u>ニ REVIEW DATE:

IHREE PEOPLE ANÓ ONE NITRATOR WITH INO PEOPLE.

APPROYAL:

EMC ENGINEERS,

SHEET NO.

SUBJECT

BATCHES FOR THE TWO-OPERATOR/THREE-NITRATOR SITUATION. FOUR OPERATORS CAN

DPERATE BOTH NITRATORS FULL TIME WITH VIRTUALLY NO RESTRICTIONS.

NITRATOR MAY BE OPERATED. THIS RESTRICTION IS REFLECTED IN THE SCHEDULED

HITRATORS FULL TINE. WHEN ONLY TWO OPERATORS ARE PRESENT, ONLY ONE

HREE OPERATORS ARE REQUIRED DURING STAULTANEOUS OPERATION OF TWO

THE OPERATION REQUIRES TWO OPERATORS MINIMUM DURING OPERATION OF THE

NOTES:

NITRATOR. THUS, THREE OPERATORS ARE REQUIRED TO KEEP ONE NITRATOR

DPERATIONAL FULL TIME.

BUILDING 302-B

Total process energy added = 18,273,000 Btu/hr.

 $18,273,000 \text{ Btu/hr} \times 24 \text{ hr/day} \times 30 \text{ day/mo} = 13,156.6 \text{ MMBtu/mo}.$

In lb/hr,

 $18,273,000 \text{ Btu/hr} \times 1 \text{ lb/}1028 \text{ Btu} = 17,775.3 \text{ lb/hr}.$

Total process energy removed = 18,645,000 Btu/hr.

 $18,645,000 \text{ Btu/hr} \times 24 \text{ hr/day} \times 30 \text{ day/mo} = 13,424.4 \text{ MBtu/mo}.$

In lb/hr,

 $18,645,000 \text{ Btu/hr} \times 1 \text{ lb/}1028 \text{ Btu} = 18,137 \text{ lb/hr}.$

EMC ENGINEERS, INC.	
PROJ. # PROJECT 💆 🖰 👢 – 🚶	
SHEET NO OF	
CALCULATED BY DATE	
CHECKED BY DATE	
SUBJECT	

Technical Report No. HDC-39-77

HOLSTON ARMY AMMUNITION PLANT PROCESS ENERGY INVENTORY NITRIC ACID MANUFACTURING, BUILDING 302-B

	-			•								EN PR	IC E1 OJ. #		EERS, PRO	INC. JECT =	
									*					NO.		_OF_ <u>#</u>	<u> </u>
												CA	LCUI	ATE	D BY	DATE	Ē
			ė				ne						ECK		Υ	DATE	
			ctio	-		cal	urb1					SL	BJE	CT			
	- -	Comments	Basis: 45 TPD production.			Mechanical & electrical losses	318.8 hp-hr/hr 75% turbine efficiency.	, ,	rounds per nour.	,	•			Imbalance = 2%	Kingsport, Tennessee		
	1	Rate	.2 gpm			Me	. 31	•	i.				6147 1b/br	g .	.		
	1		•			ě	#						∞ ∓.				
	Heat Lost	Source				Machine	Exhaust Gas	•					61X Ac1d				
		Btu/hr	4.69		. •	307	09						112.5				
	. Pa	Gal/min		77.5		329		16,556*	15,450*	581	581			or Lost			
	Heat Removed	Source		R.W.		R.W.		Adr	Tail Ges	R.W.	R.W.			18,645 Removed or Lost	. *		
	He	1000 Btu/hr		1,740		3,400	•	2,100	1,440	7,963	1,453		ŀ	3,645	•		
	1			-				••	<u>.</u>	:			ļ	Ä	TABLE 28		
	red	Recipient		Product	Gas Product Gas		Air			; ;					ŢĀBĻ		
	ecove	io.		Ammonta			e _		•	:	÷			-	•		
	Heat Recovered	Donor		¥	Air	•	Tail Gas			:			•				r
1	, -	Btu/hr		563	2100		1082						•		•		
		1b/hr	694				•	•		17,644	1.256		•	overed			
	Heat Added	Source	Steam	Reaction		Elect.				Reaction 17,644	Reaction	Feed		18,273 Added or Recovered			
	- 1	1000 Btu/hr	631.9	6280		1536			•	4733	1331	,		18,273 A	g		
		Equipment	Ammonia Vaporizer	Converter		PRE-Compressor	XRD-Compressor	Air Preheater	Tail Gas Heater	Cascade Cooler	Absorption Tower		Bleacher	Total Process Energy	Holston Defense Corporation		-
								-11	1						•		

FOR E-BUILDINGS

Total process energy = 559,000 Btu/hr.

 $559,000 \text{ Btu/hr} \times 24 \text{ hr/day} \times 30 \text{ day/mo} = 402,480,000 \text{ Btu/mo}.$

In lb/hr,

 $559,000 \text{ Btu/hr} \times 1 \text{ lb/}1028 \text{ Btu} = 543,774 \text{ lb/hr}.$

EMC ENGINEERS, INC.

PROJ. # PROJECT SHEET NO. 24 OF CALCULATED BY CHECKED BY DATE SUBJECT

EMC ENGIN	EERS,	INC.		
PROJ. #	_ PRO	JECT		
SHEET NO				
CALCULATED			ATE	
CHECKED BY		DA	TE	
SUBJECT				

HOLSTON ARMY AMMUNITION PLANT PROCESS ENERGY INVENTORY EXPLOSIVES WASHING, BUILDING E-6

		Energy		
Equipment	1000 Btu/hr	Source	Average Hourly Rate	Comments
Mix tank agitators	29.57 (8.66 kJ/s)	Elect.	8.6 kW	Seven agitators @ 20 hp (14.9 kW) each run, 2 hours per day.
Pumps	66.67 (19.5 kJ/s)	Elect.	19.5 kW	Seven pumps @ 15 hp (11 kW) each run, 6 hours per day.
Vacuum jets	559 (163.7 kJ/s)	100 psig Steam (690 kPa)	470 lb/hr (59.2 g/s)	Two of four vacuum jets run continuously.

EMC ENGINEERS, INC. **PROJECT** 26 OF <u>70 D</u> SHEET NO. DATE CALCULATED BY___ DATE CHECKED BY SUBJECT

EDUIP RATE

BLD6 CAP

2883456 480576

4022 670

930

4324

3.7

7.0

64.9 389.2

BLDG CAP EQUIP RATE

3065175 510863

4275 713

21.95

950

4500 750

23.2

BLDG CAP Equip rate

BLDG CAP EQUIP RATE

4753710 4753710 2949738 729055 491623 3455582 575930 487430 463554 4374327 LB/MO Actual 6630 6630 4820 803 680 647 6101 1017 LB/HR Actual 4114 34.04 34.04 BA/DAY Actuál 24.74 4.12 6.98 3.32 31, 32 5, 22 21.12 .870 .870 850 945 945 945 880 놄 7800 LB/HR SCHD 5100 850 719 684 7013 4675 40.0 36.0 BA/DAY SCHD 7.4 15.0 15.0 13.0 13.0 ស ស ស ស 12.0 12.0 <u>__</u> 7. RW

> 330.0 195.0 410.0

EDUTP RATE EQUIP RATE

BLDG CAP

BLDG CAP EQUIP RATE

60.0 360.0

CRUDE RDX

PRODUCT

CRUDE RDX

CAP/ Rate

4675 BATCH 4675 4675 2338 4675 1675 1675 4675 PAR PAR 8 B FILTER/WASH BELTFILTER FILTER/WASH FILTER/WASH FILTER/WASH F1LTER/WASH FILTER/WASH WASH TANK MASH TANK NO FA RATE WASH TANK WASH TANK WASH TANK AASH TANK WASH TANK EDUIPMENT PROCESS/ E10 E10 E08 E09 BL DG. E02 E02 E03 E03 E03 E07 E01 CRUDE RDX Rebular CRUDE RDX CRUDE ROX CRUDE RDX CRUDE RDX

C-26,

40.0

36.0 36.0

FACILITY APPRAISAL PRODUCT: CRUDE RDX

6300

C00E:

CYCLE TIME

Ş

占

FACILITIES APPRAISAL BY PRODUCT

								PR	OJ. #	BLDG CAPE LBR RATE COULP RATE	JECT																																
								SHI	EET NO	BLDG CARAGE LBR RATE AB CAL	_OF <u>/0 >~</u>																																
		ш		ŢĒ		ᄖ		CAI	ECKED LCULA	TED BY	DATE																																
		BLDG CAP LBR RATE LBR RATE EQUIP RATE		BLDG CAP EQUIP RATE		BLDG CAP EQUIP RATE		-Stil	BJECT	A H H B	DATE																																
	CAP/ RATE	BLDG CAP LBR RATE LBR RATE EQUIP RA		BLDG CAP EQUIP RA		BLDG CAP EQUIP RA		JIP JIP		0 2 2 1																																	
	A R	BLC LBR LBF EQU		BLC		BLC		EOL		81.0 1.88 1.89 601																																	
				တ တ		М V		4 03		1000																																	
74	LB/MO ACT	375469 250292 125146 125146		189228 31518		199057 25363		252294 31518		574137 375469 215279 71759																																	
	LB A	2222		3 6		19		3.55		27																																	
PAGE	~																																										
4	LB/HR ACT	523 349 174 174		263		277 35		351 43		800 523 300 100																																	
	LB A	n to to to to		Ci		Ci		M		១៦២-																																	
		MATT		மு		4 0		**		A) en O ku	·																																
	B/D ACTUAL	73.93 49.29 24.64 24.64		7.45		7.84		9.94		28.26 18.48 10.60 3.53																																	
	ACT	2499		17 🗖		1,4		4. ₩		28 7 7																																	
	78	88 89 89 89		69 69		98 98		69 69		922																																	
	LB/HR SCHD	588 392 196 196		382 63		28 3 36		509 63		326 326 103																																	
	LB/HI SCHD	-				• • •		-,																																			
	_	2886		80		22		90		2624																																	
	B/D SCHD	83.07 55.38 27.69 27.69		10.80		8.00 1.02		14.40		30.72 20.09 11.52 3.84																																	
4TCH 6800	a 0	១២៧៧						-		ыкн																																	
HMX:CRUDE-BATCH PRODUCT CODE - 6800	L1 X			31		01.00		31		၁ တ တ ထ	NABLE AT6 CAPABILITY, WOULD BE IGHER RATE WITH NERS ASSISTANCE PROVISIONS NG WITH A SINGLE																																
<u>-</u> H			A "LONE" THIS MADE TO NG, OR PROVIDE A "LONE					,			HAT NIE																																
SKUI	Z W Z		CREATES A "LONE AK TIMES, THIS TONS ARE MADE TO OCCURRING, OR (E.G., PROVIDE AID OF A "LONE								STIONABLE AT BO D-6 CAPABILITY, AID WOULD BE A HIGHER RATE WITH SLEANERS ASSISTANCE SS), PROVISIONS ILDING WITH A SINGL																																
X			CREATES NK TIMES NNS ARE OCCURRI (E.G.,								AT PAB D BR RA ASS VIS VIS REL																																
HGD	IME	17.3 26.0 52.0 52.0	EAT TI S A CCCU E.C	133.3 800.0		0.0		100.0		0000 0000	BLE CA COUL HER RS PRO IME																																
g.	-	មមស្ស	E E E E E E E E E E E E E E E E E E E	13		199		000		37	ONA D-6 D W HIG ANE ING																																
	I	0000	VEL. BR VIS VIS TH	0.0		0.0	ភ្	0.0	9	0000	STI VG AI CLE ES) ILD																																
	BATCH Size	170 170 170 170	FT STAFFING LEVY RING MEALS AND BELE UNLESS PROVIOR SITUATION FFEMS INHERENT IN D BREAK OR USE	FT STAFFING LEV RING MEALS AND BLE UNLESS PROV TOR SITUATION F EMS INHERENT IN D BREAK OR USE	FT STAFFING LEVELING MEALS AND BLE UNLESS PROVICE SITUATION FEMS INHERENT IN BREAK OR USE	FT STAFFING LEVELING MEALS AND BLE UNLESS PROVICE SITUATION FEMS INHERENT IN BEAK OR USE	FFT STAFFING LEVING MEALS AND WALE UNLESS PROVITOR SITUATION FEMS INHERENT IN BREAK OR USE	IFT STAFFING LEGING LEGING MEALS AND SALE UNLESS PROGRANDS STUATION FURMS INHERENT IND BREAK OR USE	IFT STAFFING LEVING MEALS AND VBLE UNLESS PROVITOR SITUATION FUERS INHERENT IN BREAK OR USE	IRING MEALS AND ABLE UNLESS PROFICE STUDING PROFICE STUDING STUDING FOR STUDING FOR THE STUDIG	IFT STAFFING LEY JRING MEALS AND ABLE UNLESS PROV NTOR SITUATION F LEMS INHERENT IN 4D BREAK OR USE	IFT STAFFING LEVING MEALS AND ABLE UNLESS PROVITOR SITUATION FIEMS INHERENT IN BREAK OR USE	IFT STAFFING LEVING MEALS AND ABLE UNLESS PROVICE SITUATION FOR SITUATION FOR INHERENT IN BREAK OR USE	IFT STAFFING LEVING MEALS AND ABLE UNLESS PROVICE SITUATION FEMS INHERENT IN BREAK OR USE	IFT STAFFING LEVINING MEALS AND ABLE UNLESS PROVITOR SITUATION FURMS INHERENT IN BREAK OR USE	IFT STAFFING LEV BRING MEALS AND ABLE UNLESS PROV ATOR SITUATION F LEMS INHERENT IN AD BREAK OR USE	IFT STAFFING LEVING MEALS AND ABLE UNLESS PROVIDED STORE STINATION FOR STAND AND BREAK OR USE	IFT STAFFING LEI BRING MEALS AND ABLE UNLESS PRO- TOR SITUATION B LEMS INHERENT II 1D BREAK OR USE	FT STAFFING LEGENTING MEALS AND BRIE UNLESS PROGRETOR SITUATION FEMS INHERENT IN BREAK OR USE	FT STAFFING LEGENTING MEALS AND ABLE UNLESS PROGRESS PROGRESS PROGRESS IT STRUGTION FOR STRUGTENT IN THE STRUGT IN	FT STAFFING LEVELING MEALS AND BLE UNLESS PROVITOR SITUATION FEMS INHERENT IN BREAK OR USE	FT STAFFING LEIRING MEND MELE UNLESS PROFITOR SITUATION FEMS INHERENT IN BREAK OR USE	IFT STAFFING LEGING LEGING MEALS AND ABLE UNLESS PROGUTOR SITUATION FOR INHERENT IN BREAK OR USE	IFT STAFFING LEVING MEALS AND ABLE UNLESS PROVIDED STUDING STUDING FOR THE STUDING FOR THE STUDING BREAK OR USE	IFT STAFFING LEVELING MEALS AND VALLE UNLESS PROVITOR SITUATION FURMS INHERENT IND BREAK OR USE	IFT STAFFING LEVING MEALS AND ABLE UNLESS PROVITOR SITUATION FUERS INHERENT IN BREAK OR USE	IFT STAFFING LEVING MEALS AND PARLE UNLESS PROVITOR SITUATION FOR STAND FOR THE PARLE OR USE	IFT STAFFING LE JRING MEALS AND ABLE UNLESS PRO ATOR SITUATION LEMS INHERENT I AD BREAK OR USE	IFT STAFFING LE JRING MEALS AND ABLE UNLESS PRO ATOR SITUATION I LEMS INHERENT II ND BREAK OR USE	IFT STAFFING LE JRING MEALS AND ABLE UNLESS PRO ATOR SITUATION I LEMS INHERENT II AD BREAK OR USE	A TWO OPERATOR PER SHIFT STAFFING LEVEL CREATES A "LONE OPERATOR" SITUATION DURING MEALS AND BREAK TIMES. THIS SITUATION IS UNACCEPTABLE UNLESS PROVISIONS ARE MADE TO PREVENT THE LONE OPERATOR SITUATION FROM OCCURRING, OR TO ALLEVIATE THE PROBLEMS INHERENT IN IT (E.G., PROVIDS RELIEF DURING MEALS AND BREAK OR USE THE AID OF A "LONE OPERATOR" DEVICE).	IFT STAFFING LEVING MEALS AND ABLE UNLESS PROVATOR SITUATION FURMS INHERENT IN TO BREAK OR USE	AND AND PROC TON F USE USE	850 850		850 850	۵ ج	850 850	<u> </u>	680 680 680 680	APL APL APL NE TTI		
	8 8																																			'R.D.		F.		SS (STILL)			
	MAN Pur	4 W G																															N			9		Ω.	€ +	HENDES QUESTIONABLE AT HAN BUILDING D-6 CAPABI ADDITIONAL AID WOULD BE UILDING AT A HIGHER RAT 6., LINE CLEANERS ASSIT ACTIVITIES). PROVISI KATE THE BUILDING WITH A MEAL AND BREAK TIME REL			
																																	IFT STAING MEING MENING MENING MENING MENING SITEMS IN TO BREAK	TET STAI JRING ME ABLE UNI ATOR SI LEMS INI AD BREAK	FT STAF RING ME BLE UNI TOR SIT EMS INI ID BREAK		6 D6.	. 0	FOR HMX RECEIVED FROM D-5		IVE		BECOMES QUESTIONABLE THAN BUILDING D-6 CAL ADDITIONAL AID WOULL BUILDING AT A HIGHER IE.G., LINE CLEANERS ECT ACTIVITIES). PRO ERATE THE BUILDING WI MEAL AND BREAK TIME
	ED C	W → W																																		•			ECE	ಯ	ECE	ಖ	-6 0. HE 1RE 0PE
	⊢		SHI DU PIA ERA OBL		MATERIAL RECEIVED FROM		×		THIS RATE IS FOR HMX RECEIVED FROM D-6.		STAFFING IN BUILDING E-6 BECOMES QUESTIONABLE AT PRODUCTION RATES GREATER THAN BUILDING D-6 CAPABILITY, WHICH IS 375,470 LBS/MO. ADDITIONAL AID WOULD BE NECESSARY TO OPERATE THE BUILDING AT A HIGHER RATE WITH TWO OPERATORS PER SHIFT (E.G., LINE CLEANERS ASSISTANCE IN NORMAL AND PEAK INDIRECT ACTIVITIES). PROVISIONS WOULD RE NECESSARY TO OPERATE THE BUILDING WITH A SINGLOPERATOR PER SHIFT (E.G., MEAL AND BREAK TIME RELIEF																																
	PROCESS OR EQUIPMENT		CCEL COPI OPI PRI	+	Ē	-	Ī	-	ΞΞ	T - T	GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI																																
	JIP		A TWO OPERATOR PER OPERATOR" SITUATION SITUACE SITUATION IS UNACCEPREVENT THE LONE OPTO ALLEVIATE THE PRELIEF DURING MEALS OPERATOR" DEVICE).	WASHING HMX-BATCH WASH TANKS	E	WASHING HMX-BATCH WASH TANKS	7.0R	WASHING HMX-BATCH WASH TANKS	OR	WASHING HMX-BATCH WASHING HMX-BATCH WASHING HMX-BATCH WASH TANKS	STAFFING IN BUILDIN PRODUCTION RATES GR WHICH IS 375,470 LB NECESSARY TO OPERAT TWO OPERATORS PER E IN NORMAL AND PEAK WOULD RE NECESSARY																																
	EOI		TOUR LEGISTON	/B)		-18	181	(B	တ္	8	R S S S S S S S S S S S S S S S S S S S																																
	OR OR	Z	ERATION I	E S	R	Ę¥ KS		ξã	iri 	통통 호	NON YEAR																																
	93	7110 7110 7110	07 110 110 100 100	NG TAN	I⊬I	NG TAN	RATE	NG TAN	RAI	N N N N N N N N N N N N N N N N N N N	ING CTI SAR SAR SAR SAR REA TOR																																
	DCE	NITRATION NITRATION NITRATION	TWO ERAN EVE ERAN ERAN	WASHING HM WASH TANKS	TER	WASHING HM WASH TANKS	THIS	WASHING HM WASH TANKS	IS	WASHING HM WASHING HM WASHING HM	STAFFING PRODUCTIC WHICH IS TWO OPERA IN NORMAL WOULD RE																																
	9. 3.	ZZZZ	A 000 071 100 07	E E	S A	E A	Ŧ	3 Z	Ξ	3333	PR WE TW TW OP																																
	90	43 44 44 44 44 44	40 40 40 40 40 40 40 40 40 40 40 40 40	**	v.	in in	io	10.10	10	v1 v1 v1 v2	માં આ માં આ માં આ માં આ																																
	BL.DG	006 006 006 006	006 006 006 006 006 006	E04	E04	E05	E05	E05 E05	EOS	E06 E06 E06 E06	E06 E06 E06 E06 E06 E06																																
•	_	in in in in		lo so		* .*		×+ .~		in in in in																																	
	DATE REVISED	6/20/85 6/20/85 6/20/85 6/20/85		6/18/75 ,6/17/85		4/74		4/74		6/20/85 6/20/85 6/20/85 6/20/85																																	
	DATE	%%% %%% %%%		717		7 /9		7 /9		7777																																	
	i .	2020	•	2,2,0	-27	₹ 0 €		, v va		₽ ₽₽₽																																	

PRODUCT: HMX CRUDE FACILITY APRAISAL

ATTACHMENT 2

CODE:

		PROCESS/		Z E	BATCH	CYCLE	,	-	BA/DAY	
PROD	BL DG.	EOUIPMENT	UNITS	PWR	311E	TINE	:: R¥	% LT	GHDS.	SCHO
HMY PRIDE	1 1 1		, ,	۲,	007	. O		0	0	
10010	נ		n	?	200	00.10		1.01	00.07	
HNX CRUDE	£-9		സ	7	089	51.08	•	6 6	19.00	538
HMX CRUDE	E-6	MASH TANKS	EA		989	408.60		6.9	3,50	
					•	٠				
NOTES:										
						•				
TUE PADABLE	TTV OF	THE TO STRUCKE THE WE TANKED STREET OF STREET, OF STREET, AND STRE		1000	10 T	NATION OF THE	ויוד			,

BLDG. CAP. LBR. RATE

512507 64063

715 485 89

90.1 90.1

25.23 17.12

EQUIP. RATE

CAP/RATE

LB/MD Actual

LB/HR ACTUAL

BA/DAY ACTUAL

ӄ

CYCLE TIMES ARE BASED ON HISTORICAL DATA FOR BUILDING D-5 HMX ONLY AND INCLUDE THE FILTRATION, MASHING, RESLURRYING, TRANSFERRING, AND HARM MASHING OF THE CLOTH IN PREPARATION FOR THE NEXT BATCH.

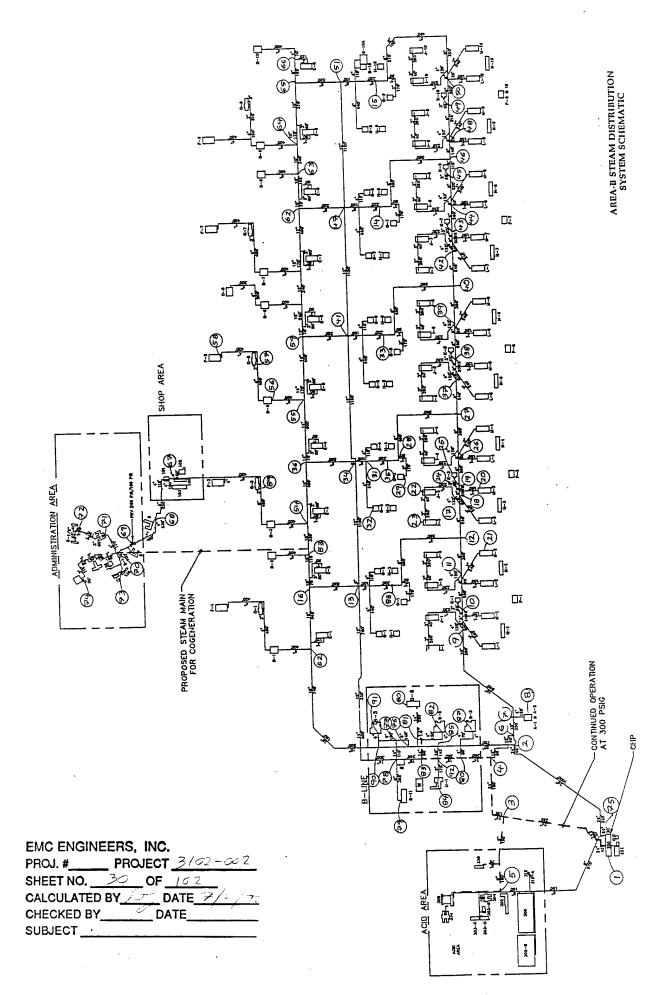
FACILITIES. WHICH INCLUDES TIME LOST OURING NITRATOR BOILOUTS. NON-ROUTINE ZLT IS BASED ON HISTORICAL INFORMATION RELATED TO THE AVAILABILITY OF THE MAINTENANCE OF EQUIPMENT. FILTER CLOTH CHANGES. LINE CLEANING. AND EQUIPMENT AND UTILITY FAILURES.

AVERAGE STD. DEV. COUNT MIN. MA 408.60 43.56 1314 540 279	TATISTICS:	STATISTICS: (CYCLE TIME)	(<u>u</u>			
43,56 1314 540			STD. DEV.	COUNT	NIN.	HAX.
	• .	408.60	43.56	1314	540	279
				٠	,	

REVIEW DATE:

APPROVAL:

EMC ENGINEERS, INC


CALCULATED BY

PROJECT

BLDG	PEAK SPACE	PEAK SPACE	CORRECT SPACE	THEORETICAL PROCESS	PROCESS	PROCESS	PEAK PROCESS	TOTAL STEAM	POINT OF
NO	HEAT	STEAM	STEAM	LOAD	STEAM	STEAM	STEAM	STEAM	USE
a first faast	(BTUH) 401,369	(LBM/HR) 390	(LBM/HR) 1,359	(MBtu/month)	(LBM/HR)	(LBM/HR)	(LBM/HR)	(LBM/HR) 1,427	(NODE) 6
4	554,425	539 393	1,877 1,366					1,971 1,434	61 61
6 8	403,532 618,649	602	2,094					2,199	6
8A	129,092	126	437					459	6
8D 12	19,474 145,000	19 141	66 491					69 515	64
26	1,546,414	1,504	5,235	ĺ				5,497	6
100 101	4,194,515 1,089,409	4,080 1,060	14,199 3,688					14,909 3,872	6
102	2,119,662	2,062	7,176				1.	7,534	6:
103 104	2,325,452 446,700	2,262 435	7,872 1,512		1			8,266 1,588	6:
105	336,445	327	1,139	į				1,196	6
106	825,644	803 313	2,795 1,088					2,935 1,142	6:
108 110	321,330 282,370	275	956					1,004	6
116	375,172	365	1,270					1,334 457	6
118 127	128,448 131,111	125 128	435 444					466	6
135	177,953	173	602					633	6
136 150	133,654 240,907	130 234	452 816					475 856	6
151	449,805	438	1,523					1,599	6
156 157	507,570 62,728	494 61	1,718 212	}				1,804 223	6
231	85,976	84	291		}			306	٠ .
302B 302Bl	PROCESS 44,683	43	151	13,157	17,775	22,219	26,663	27,996 159	
315	489,573	476	1,657					1,740	!
321 322	372,215 331,095	362 322	1,260 1,121					1,323 1,177	
328	90,300	88	306					321	!
334	PROCESS	100	604	14,781	19,970	24,962	29,955	31,453 718	
339 556	201,961 597,686	196 581	684 2,023					2,124	
580	359,150	349	1,216	,				1,277	;
A 81	32,858 383,603	32 373	111 1,299					117 1,364	33
3	383,603	373	1,299					1,364	80
66 C3	PROCESS 372,680	363	1,262	13,323	18,000	22,500	27,000	28,350 1,325	80
C5	372,680	363	1,262					1,325	5
C6 D3	297,955 PROCESS	290	1,009	906	1,223	1,529	1,835	1,059 1,927	60
D5	PROCESS			906	1,223	1,529	1,835	1,927	50
E3 E4	PROCESS PROCESS			402 402	544 544	680 680	816 816	856 856	5-
E6	PROCESS			402	544	680	816	856	59
F3 F5	412,945 412,945	402 402	1,398 1,398		ł			1,468 1,468	67 50
G3	PROCESS	702	1,000	3,853	5,205	6,506	7,808	8,198	33
G4 G5	PROCESS PROCESS			3,853 3,853	5,205 5,205	6,506 6,506	7,808 7,808	8,198 8,198	30
G6	PROCESS			3,853	5,205	6,506	7,808	8,198	33
G7	PROCESS	404	075	3,853	5,205	6,506	7,808	8,198	14
H1 H3	199,458 199,458	194 194	675 675					709 709	84
H4	199,458	194	675		[709	3.
H5 H6	199,458 199,458	194 194	675 675					709 709	3:
13	301,485	293	1,021					1,072	23
14 16	301,485 301,485	293 293	1,021 1,021		Í			1,072 1,072	39
JЗ	301,485	293	1,021					1,072	22
J4 J5	301,485 301,485	293 293	1,021 1,021					1,072 1,072	37
К3	130,875	127	443					465	25
K5 L3	114,340 301,485	111 293	387 1,021					406 1,072	36 2.
L4	301,485	293	1,021					1,072	26
L6 M3	301,485 301,485	293 293	1,021 1,021					1,072 1,072	39
M4	301,485	293	1,021					1,072	26
M5 M6	301,485	293	1,021		1			1,072	36
M6 N3	301,485 182,701	293 178	1,021 618					1,072 649	39
N4	257,280	250	871					914	20
N5 6	182,701 257,280	178 250	618 871					649 914	39
D 3	76,085	74	258					270	20
O5 P3	76,085 503,540	74 490	258 1,705]				270 1,790	20
R3	29,690	29	101					196	20
W1	47,846	47	162					170	10

14000 made (849)	TOTAL
	STEAM
NODES	LOAD
	(LBM/HP)
1	306
5	68,287
10	170
14	8,198
20	3,887
21	1,072
22	1,072
23	1,072
25	465
26	5,471
30	8,198
32	8,315
33	17,814
35	1,418
36	856
37	1,072
38	2,127
39	4,129
54	856
56	1,927
57	1,325
58	1,468
59	856
60	1,059
67	51,760
68	2,727
69	10,844
80	31,077
88 89	709
89	3,252 241,788
	241,700

EMC ENGINEERS, INC.
PROJ. # PROJECT 2/02 CCZ
SHEET NO. 20 OF 7/07
CALCULATED BY DATE //02/92
CHECKED BY DATE

			1					
	ON AREA							
		FLOWS ARE M	ULTIPLIE	D BY	.00	03		
OPIPES		100						
NODES		91					EMC ENGINEERS, INC.	
	E PUMPS						PROJ. # PROJECT	
	ER PUMI						SHEET NO. 3/ OF 162	
	RVOIRS R LOSSES	1 5 0					CALCULATED BY V DATE 19/3	
PRVS	LOSSE	0					CHECKED BY 05 DATE 1/54	-, 2
NOZZI	ÆS	Ö					SUBJECT	
	VALVE	Ö						
	PRES. V	-						
	HEAD DI							
	FIED P							
DEMAN	IDS AT 1	PUMP OR RES	. NODES	NOT A	L. FOR	PUME	OR RES. 1 AT NODE	1
A D.	. (085 WAS GIV	EN. WIL	L BE	SET TO	0.		
		OF INFLOW						
		PIPES & T	HEIR ELE	V. AR	E			
	80640.0							
	100 N8=							
		r. FLOW PIP						
1	2	.000	- 2		95 102			
2	3 5	.000 18.984	-1 -103	91	102			
1	6	.000	-103 -3	4	-102			
5	7	.000	-4		6			
6	8	.000	- 5		•			
7	9	.000	- 6	. 7				
8	10	.047	- 7	8				
9	11	.000	-8	9				
10	12	.000	- 9	10	12			
11	13	.000	-11		96			
12	14	2.279	-44	45				
13	15	.000	- 50					
14	16	.000	- 31	79	-80			
15	17	.000	-12	14	15			
16 17	18	.000	13	-15	16			
18	19 20	.000 1.081	-16 -19	17	19			
19	21	.298	- 13					
20	22	.298	- 14	20				
21	23	.298	-20					
22	24	.000	-17	18	21			
23	25	.129	-18					
24	26	1.521	-21	22				
25	27	.000	-22	23	32			
26	28	.000	- 23	24	25			
27	29	.000	-24					
28	30	2.279	- 27					
29	31	.000	-26	27	28	29		
	32	2.312	-28					
31	33	4.952	- 36	37				
32	34	.000	- 29	30	66	- 96		
33	35	.394	- 25	26 67	_ (0			
34	36	.238	-30	67	-68			

C-31

35 36	37 38	.298 .591	-32 -33	33 34		
37	39	1.148	- 34	35		
38	40	.000	- 35	36	38	
39	41	.000	-37	39	-65	- 66
40	42	.000	- 38	40		
41	43	.000	-40	41		
42	44	.000	-41	42		
43	45	.000	-42	43		
44	46	.000	-43	44	46	
45	47	.000	-45	-47	-64	65
46 47	48	.000	-46	48		
48	49 50	.000	-48 -49	49 50		
49	51	.000	-49 -51	52	64	
50	52	.000	80	- 83	04	
. 51	53	.000	78	- 79		
52	54	.238	68	69	-78	
53	55	.000	60	61	- 67	
54	56	.536	-61	62		
55	57	.368	- 62	63		
56	58	.408	-63			
57	59	.238	- 39	59	-60	
58	60	.294	58	- 59	-	
59	61	.000	57	-58		
60	62	.000	47	56	− 57	
61	63	.000	55 54	- 56		
62 63	64 65	.000	54 - 52	-55	E 4	
64	66	.000	- 53	53	-54	
65	67	14.389	-70	71		
66	68	.758	- 71	72		
67	69	.399	-72	73		
68	70	.000	- 73	74	76	77
69	71	1.528	-74	75		
70	72	.945	- 75			
71	73	.451	- 76			
72	74	1.528	- 77			
73	75	.000	1	2	-101	103
74	76	.000	-88			
75 76	77 78	.000	85 - 86	87	88	
77	76 79	.000	- 85			
78	80	8.639	- 89			
79	81	.000	89	-92		
80	82	.000	-99			
81	83	.000	86	-90	92	
82	84	.000	- 93			
83	85	.000	-91	93	-94	99
84	86	.000	90	-97		
85	87	.000	-82			
86	88	.197	-10	11		
87	89	.904	- 69	70	~~	
88 89	90 91	.000	83 -84	84	-87	91
)O	91	.000	-84 82	0.4	O.E	
				94 EQUA	-95 T.S	68.968
		LULIO AND	TUDDITACTIVE	TÄON	-10	00.700

ITERATION= 1 SUM= .442E+02
ITERATION= 2 SUM= .146E+02

EMC ENGINEERS, INC.

PROJ. #_____ PROJECT 3/02 - 02 2 SHEET NO. ____ OF ____ OF

CALCULATED BY DATE
CHECKED BY DATE
SUBJECT

```
ITERATION= 3 SUM= .623E+01
ITERATION= 4 SUM= .203E+01
ITERATION= 5 SUM= .182E+00
ITERATION= 6 SUM= .177E-02

TS OF SOLUTION ARE
METERS - inch
LENGTH - feet
HEADS - feet
ELEVATIONS - feet
PRESSURES - (psi)
```

EMC ENGINEERS, INC.
PROJ. #_____ PROJECT ______
SHEET NO. _____ OF _____
CALCULATED BY _____ DATE
CHECKED BY _____ DATE
SUBJECT _____

FLOWRATES - (wt/s)
DARCY-WEISBACH FORMULA USED FOR COMPUTING HEAD LOSS
1PIPE DATA

 PI	 PE	NOD	 ES						HEAD	HLOSS
	0.	FROM	TO	LENGTH	DIAM	COEF	FLOW RATE	VELOCITY		
	1	75	3	688.	24.0	.000150	20.78	17.64	15.01	21.83
	2	75	2	1315.	24.0	.000150	29.20	24.79	54.76	41.64
*	3	6	2	50.	10.0	.000150	5.44	26.59	6.57	131.33
	4	6	7	.350.	10.0	.000150	6.70	32.78	68.52	195.77
	5	7	8	120.	4.0	.000150	.00	.00	.00	.00
	6	7	9	890.	1,0~0	.000150	6.70	32.78	174.23	195.77
	7	9	10		8.0	.000150	6.70	51.22	116.63	598.12
	8	10	11	280.	8.0	.000150	6.66	50.86	165.20	590.01
	9	11	12	370.	8 . 0	.000150	6.66	50.86	218.30	590.01
	10	12	88	1170.	8.0	.000150	1.67		49.94	42.68
	11	88	13	260.	8.0	.000150	1.47	11.26	8.78	33.75
_	12	12	17	240.	8.0	.000150	4.99	38.09	81.22	338.43
	13	18	21	240.	3 - 0	.000150	.30	16.19	50.80	211.67
	14	17	22	3.90.	4.0	.000150	.60	18.21	73.29	187.91
	15	17	18	80.	8.0	.000150	4.39	33.54	21.22	265.23
	16	18	19	20.	8.0	.000150	4.09	31.26	4.64	231.91
	17	19	24	95.	80	.000150	3.01	23.00	12.29	129.42
	18	24	25	65.	3.0	.000150	.13	7.02	2.92	44.85
	19	19	20	·	3~0	.000150	1.08	58.70	368.76	
	20	22	23	260.	3,40	.000150	.30	16.19	55.03	211.67
	21	24	26	280.	8.0	.000150	2.88	22.02	33.35	119.09
	22	26	27	370.	8.40	.000150	1.36	10.40	10.76	29.08
*	23	28	27	1010.	8.0	.000150	.39	2.99	2.94	2.91
	24	28	29	250.	3.0	.000150	.00	.00	.00	.00
*	25	35	28	160.	8.0	.000150	.39	2.99	.47	2.91
*	26	31	35	160.	8.0	.000150	.79	6.00	1.68	10.48
	27	31	30	110.	4.0	.000150	2.28	69.64	268.30	
	28	31	32	440.	4.0	.000150	2.31		1103.10	
*	29	34	31	100.	8.0	.000150	5.38	41.07	39.11	391.09
*	30	36	34	520.	8.0	.000150	2.67	20.39	53.54	102.96
*	31	16	13	520.	8.0	.000150	3.94	30.06	111.94	215.27
	32	27	37	240.	8.0	.000150	1.75	13.39	11.19	46.64
	33	37	38	195.	8.0	.000150	1.45	11.11	6.42	32.91
	34	38	39	280.	<u>8</u> ∡′0	.000150	.86	6.59	3.49	12.47
*	35	40	39	370.	0 سر8	.000150	.28	2.18	.60	1.63
	36	40	33	1170.	8.0	.000150	.82	6.25	13.24	11.32
*	37	41	33	260.	8.0	.000150	4.13	31.58	61.48	236.45
*	38	42	40	240.	8,.0	.000150	1.10	8.43	4.72	19.6 8
	89	59	41	520.	8.0	.000150	2.15	16.40	35.51	68.28
2	40	43	42	195.	8.0	.000150	1.10	8.43	3.84	19 .68
*	41	44	43	280.	8.0	.000150	1.10	8.43	5.51	19.68
*	42	45	44	240.	8.0	.000150	1.10	8.43	4.72	19.68
*	43	46	45	115.	8.0	.000150	1.10	8.43	2.26	19.68

									<u>~</u>	
*	44	14	46	1170.	8.0	.000150	.25	1.93	1.53	1.31
*	45	47	14	260.	8.0	.000150	2.53	19.34	24.23	93.19
*	46	48	46	140.	8.0	.000150				
••							.85	6.50	1.70	12.16
	47	62	47	520.	8.0	.000150	1.53	11.70		36.2
	48	49	48	235.	8.0	.000150	.85	6.50	2.86	12.1
<u>.</u> .	PE I	DATA								
PI	PE	NOD	ES						HEAD	HLOSS
N	o.	FROM	TO	LENGTH	DIAM	COEF	FLOW RATE	VELOCITY		
							1 100 10710			71000
*	49	50	49	260.	8.0	.000150	.85	6 FO	2 16	10.16
*	50	15	50	1245.	8.0	.000150		6.50	3.16	12.16
*	51	51					.85	6.50	15.14	12.16
*			15		8.0	.000150	.85	6.50	3.16	12.16
*	52	65	51	520.	8.0	.000150	1.14	8.68	10.80	20.78
	53	65	66	195.	8.0	.000150	.00	.00	.00	.00
	54	64	65	540.	10.0	.000150	1.14	5.56	3.77	6.99
	55	63	64	340.	10.0	.000150	1.14	5.56	2.38	6.99
	56	62	63	235.	10.0	.000150	1.14	5.56	1.64	6.99
	57	61	62	575.	12.0	.000150	2.67			
	58	60	61	340.	12.0				8.04	13.98
	59				طهون	.000150	2.67		4.75	13.98
		59	60	310.	12:0	.000150	2.96			17.00
	60	55	59	570.	14.0	.000150	5.35	13.34	13.73	24.09
	61	55	56	400.	6.0	.000150	1.31	17.82	44.76	111.90
	62	56	57	450.	4.0	.000150	.78			309.57
	63	57	58	420.	4.0	.000150	.41			92.40
	64	51	47	1120.	12.0	.000150	.29	.97	.26	
*	65	41	47	1150.	12.0	.000150	.71		1 41	.23
	66	34	41	1150.	12.0	.000150			1.41	1.23
	67	36	55	570.	14.0		2.70			
	68	54	36	400.	14.0	.000150	6.66			36.42
	69	54			18.0	.000150	9.57		8.35	20.8
			89	850.	8.0	.000150	20.90		4666.05	
	70	89	67	1025.	_60	.000150	20.00		2448.072	
	71	67	68	595.	4.0	.000150	5.61		8443.011	
	72	68	69	480.	4.0	.000150	4.85	148.23	5118.931	0664.43
	73	69	70	100.	4.0	.000150	4.45	136.05	901.16	9011.57
	74	70	71	170.	4.0	.000150	2.47	75.56	485.81	2857.69
	75	71	72	290.	3.0	.000150	.94	51.32	550.03	
	76	70	73	100.	2.5	.000150	.45	35.30	114.78	
	77	70	74	585.	3.0	.000150	1.53		2816.25	
	78	53	54	330.	18.0	.000150	30.71	46.34	63.49	
	79	16	53	245.	18.0	.000150	30.71			192.38
	80	52	16	565.	18:0	.000150		46.34	47.13	192.38
	82	93	87	50.	4.0		34.64	52.27	137.17	242.77
	83	90	52	1420.	18.0	.000150	.00	.00	.00	.00
	84	90	91			.000150	34.64	52.27	344.74	242.77
	85	77	79	50.	4.0	.000150	.00	.00	.00	.00
	86			475,	6.0	.000150	.00	.00	.00	.00
*		83	78	240.	18.0	.000150	.00	.00	.00	.00
^	87	90	77	150.	6.0	.000150	.00	.00	.00	۰00
	88	77	76	140.	6.0	.000150	.00	.00	.00	.00
	89	81	80	290.	14.0	.000150	8.64	21.55	17.28	59.58
	90	86	83	360.	20.0	.000150	8.64	10.56	3.70	10.27
*	91	85	90	685.	20.0	.000150	34.64	42.34	98.09	143.20
	92	83	81	80.	14.0	.000150	8.64	21.55	4.77	59.58
	93	85	84	175.	2.0	.000150	.00	.00		
	94	93	85	360.	20.0	.000150			.00	,00
	95	2	93	360.	20.0		34.64	42.34	51.55	143.2
	96	13	34			.000150	34.64	42.34	51.55	143.2
	90 97			1150.	12.0	.000150	5.41	18.37	60.57	52.67
		3	86	360 .	24.0	.000150	8.64	7.33	1.51	4.20
	99	85	82	50.	4.0	.000150	.00	.00	.00	.00
	101	1	75	45.	24.0	.000150	68.97	58.54	9.76	216.87

C-34

NO.	NODES FROM TO				FLOW RATE	VELOCITY		/1000
102 103	3 75	6 13	5. 12.0	.000150 .000150	12.14	41.23 145.03 23	33.18	245.77
1NODE	DATA: 						_	
NODE		EMAND				HGI		
NO.	(wt/s)	vol/s	ELEV	HEAD	PRESSUR	E ELE		
1				80640.00		80640.00		
2				80575.48		80575.48		
3	.000	.00 50.62	0.	80615.23				
5	18,984	50.62	0.	78245.25				
6	1.000		0.	80582.05 80513.54				
7 8	.000	.00		80513.54				
9	.000			80339.30				
10	.047		0.	80222.67				
11	.000	.00		80057.47				
12	.000			79839.16				
13	.000			79780.44				
14	2.279	6.08	0.	79677.77				
15	.000		0.	79699.09)	
16	.000	.00	0.	79892.38	208.05	79892.38	}	
17	.000	.00		79757.94				
_18	.000	.00		79736.72				
9	.000			79732.08			and the second s	
2 0	1.081			79363.32				
21	.298	.79		79685.91				
22	.298	.79		79684.65				
23	.298	.79		79629.62				
24 25	.000 .129			79719.78 79716.87				
25 26	1.521	4.06		79686.44				
27	.000	.00			207.32			
28	.000			79678.61				
29	.000	.00	0.	79678.61	207.50			
30	2.279	6.08	0.	79412.46	206.80			
31	.000	.00	0.	79680.76	207.50			
32	2.312	6.16	0.	78577.66	204.63	78577.66		
33	4.952	13.21	0.	79641.93	207.40		1	
34	~. 000	.00	0.	79719.87	207.60		•	
35	.394	1.05	0.	79679.08	207.50			
36	.238	.63	0.	79773.41	207.74			
37	.298	.79	0.	79664.47	207.46			
38	.591	1.58	0.	79658.06	207.44			
39	1.148	3.06	0.	79654.57	207.43			
40	.000	.00	0.	79655.17	207.44			
41	.000	.00	0.	79703.41	207.56			
42 43	.000	.00	0. 0.	79659.90 79663.73	207.45 207.46			
43	.000	.00	0.	79669.24	207.46			
5	.000	.00	0.	79673.97	207.47			
46	.000	.00	0.	79676.23	207.48			
47	.000	.00	0.	79701.99	207.56			
48	.000	.00	0.	79677.94	207.49			
49	.000	.00	0.	79680.78	207.50			
				C-35				-

1NODE DATA:

NODE	DEMAND					HGL
NO.	(wt/s)	vol/s	ELEV	HEAD	PRESSURE	ELEV
50	.000	.00	0.	79683.95	207.51	79683.95
51	.000	.00	0.	79702.25	207.56	79702.25
52	.000	.00	0.	80029.54	208.41	80029.54
53	.000	.00	0.	79845.24	207.93	79845.24
54	.238	. 63	o.	79781.76	207.76	79781.76
55	.000	.00	0.	79752.65	207.69	79752.65
56	.536	1.43	0.	79707.89	207.57	79707.89
57	.368	.98	0.	79568.59	207.21	79568.59
58	.408	1.09	0.	79529.78	207.11	79529.78
59	.238	.63	0.	79738.91	207.65	79738.91
60	.294	.79	0.	79733.64	207.64	79733.64
61	.000	.00	0.	79728.88	207.63	79728.88
62	.000	.00	0.	79720.85	207.61	79720.85
63	.000	.00	0.	79719.21	207.60	79719.21
64	.000	.00	0.	79716.84	207.60	79716.84
65	.000	.00	0.	79713.05	207.59	79713.05
66	ر000.	.00	0.	79713.05	207.59	79713.05
67	14.389	38.37	0.	52667.64	137.16	52667.64
68	.758	2.02	0.	44224.63	115.17	44224.63
69	.399	1.06	0.	39105.70	101.84	39105.70
70	.000	.00	0.	38204.55	99.49	38204.55
71	1.528	4.08	0.	37718.74	98.23	37718.74
72	.945	2.52	0.	37168.70	96.79	37168.70
73	.451	1.20	0.	38089.77	99.19	38089.77
74	1.528	4.08	o.	35388.30	92.16	35388.30
75	.000	.00	0.	80630.24	209.97	80630.24
76	.000	.00	0.	80374.28	209.31	80374.28
77	.000	.00	0.	80374.28	209.31	80374.28
78	.000	.00	0.	80610.02	209.92	80610.02
79	.009	.00	0.	80374.28	209.31	80374.28
80	8.639	23.04	0.	80587.98	209.86	80587.98
81	.000	.00	0.	80605.26	209.91	80605.26
82	.000	.00	0.	80472.38	209.56	80472.38
83	.000	.00	0.	80610.02	209.92	80610.02
84	.000	.00	0.	80472.38	209.56	80472.38
85	.000	.00	0.	80472.38	209.56	80472.38
86	.000	.00	0.	80613.72	209.93	80613.72
87	.000	.00	0.	80523.93	209.70	80523.93
88	.197	.53	0.	79789.23	207.78	79789.23
89	. 9,04	2.41	0.	75115.71	195.61	75115.71
90	.∕Ó00	.00	0.	80374.28	209.31	80374.28
91	.000	.00	0.	80374.28		80374.28
93	.000	.00	0.	80523.93	209.70	80523.93

HOLSTON AREA B

PECIF NFLOW= 5,NPGPM= 5,NPRRES=1,GAMMA=0.375,VISC=5.088E-006,NODESP=1,PEAKF=.000278 \$END

	EART- PES	000	12/6 \$END		
1	75	3	687.5	24.00	0.00015
2	75	2	1315.0	24.00	0.00015
3	2	6	50.0	10.00	0.00015
4	6	7	350.0	10.00	0.00015
5	7	8	120.0	4.00	0.00015
6	7	9	890.0	10.00	0.00015
7	9	10	195.0	8.00	0.00015
8	10	11	280.0	8.00	0.00015
9	11	12	370.0	8.00	0.00015
10	12	88	1170.0	8.00	0.00015
11	88	13	260.0	8.00	0.00015
12	12	17	240.0	8.00	0.00015
13	18	21	240.0	3.00	0.00015
14	17	22	390.0	4.00	0.00015
15	17	18	80.0	8.00	0.00015
16	18	19	20.0	8.00	0.00015
17	19	24	95.0	8.00	0.00015
18	24	25	65.0	3.00	0.00015
19	19	20	150.0	3.00	0.00015
20	22	23	260.0	3.00	0.00015
21	_ 24	26	280.0	8.00	0.00015
2	26	27	370.0	8.00	0.00015
2	27	28	1010.0	8.00	0.00015
24	28	29	250.0	3.00	0.00015
25	28	35	160.0	8.00	0.00015
26	35	31	160.0	8.00	0.00015
27	31	30	110.0	4.00	0.00015
28	31	32	440.0	4.00	0.00015
		34			
29	31		100.0	8.00	0.00015
30	34	36	520.0	8.00	0.00015
31	13	16	520.0	8.00	0.00015
32	27	37	240.0	8.00	0.00015
33	37	38	195.0	8.00	0.00015
34	38	39	280.0	8.00	0.00015
35	39	40	370.0	8.00	0.00015
36	40	33	1170.0	8.00	0.00015
37	33	41	260.0	8.00	0.00015
38	40	42	240.0	8.00	0.00015
39	41	59	520.0	8.00	0.00015
40	42	43	195.0	8.00	0.00015
41	43	44	280.0	8.00	0.00015
42	44	45	240.0	8.00	0.00015
43	45	46	115.0	8.00	0.00015
44	46	14	1170.0	8.00	0.00015
45	14	47	260.0	8.00	0.00015
46			140.0	8.00	0.00015
	46	48			
47	62	47	520.0	8.00	0.00015
4	48	49	235.0	8.00	0.00015
4.5	49	50	260.0	8.00	0.00015
50	50	15	1245.0	8.00	0.00015
51	15	51	260.0	8.00	0.00015
52	51	65	520.0	8.00	0.00015

EMC ENGINEERS, INC.									
PROJ. #	PRO	JECT	3/02-07						
SHEET NO ?									
CALCULATED E			ATE						
CHECKED BY_		DA	TE						
SUBJECT									

EMC ENGINE	ERS, INC.	
PROJ. #	PROJECT EVENUE	
SHEET NO	ラナ OF /jpラ	
CALCULATED E		
CHECKED BY_	DATE	
SUBJECT		

```
13 .0
            0.0
14 8198.
            0.0
15 .0 0.0
     .0
           0.0
     0
          0.0
    .0
         0.0
         0.0
19
    .0
20 3887.0
            0.0
21 1072.0
            0.0
22 1072.0
           0.0
23
   1072.0
            0.0
24
     .0 0.0
25
    465.0 0.0
    5471.
26
            0.0
27
    .0
         0.0
28
    .0
         0.0
29
    .0
         0.0
    8198.0
30
             0.0
    .0
        0.0
31
32
    8315.0
             0.0
   17814.
33
            0.0
34
   .0
       0.0
   1418.0 0.0
35
36
     856.
            0.0
37
    1072.0 0.0
     2127.0 0.0
38
39
    4129.0
             0.0
40
    .0
         0.0
    0
        0.0
41
     lο
         0.0
    .0
         0.0
4
    .0
         0.0
44
    .0
45
         0.0
46
    .0
         0.0
47
   .0
        0.0
48
    .0
         0.0
49
         0.0
    .0
50
    .0
         0.0
51
    .0
         0.0
    .0
52
         0.0
    .0
53
         0.0
54
    856.0
55
    .0 0.0
56
    1927.0
             0.0
57
     1325.0
              0.0
58
     1468.0
              0.0
59
     856.0
             0.0
    1059.0
60
             0.0
61
    0.0 0.0
     .0
62
        0.0
63
    .0
         0.0
    .0
64
         0.0
    .0
65
         0.0
66
    .0
         0.0
67
    51760.0
             0.0
     2727.0
              0.0
69
     1434.0
              0.0
70
     .0 0.0
71
     5497.0
              0.0
```

72

3398.0

0.0

EMC ENGINEER	S, INC.
PROJ. # PF	ROJECT
SHEET NO.	OF 10>
CALCULATED BY_	DATE
CHECKED BY	DATE
SUBJECT	

```
1623.0
74
     5497.0
             0.0
     .0 0.0
75
76
    .0
        0.0
7
    .0
        0.0
7.
    .0
        0.0
79
     .0 0.0
80
     31077.0
              0.0
     .0 0.0
81
82
     .0
        0.0
     .0 0.0
83
     .0 0.0
84
85
     .0 0.0
86
    .0 0.0
87
    .0 0.0
88 709.0 0.0
    3252.0 0.0
89
90
    .0 0.0
   .0 0.0
91
   .0 0.0
93
RESER
1 210
RUN
```

73

EMC ENGINEERS, INC.
PROJ. #PROJECT 3/00 - 20.0
SHEET NO. 45 OF 10 M
CALCULATED SYDATE
CHECKED BYDATE
CHRICCT

		1					:		
ST	ON AREA	A B		•			. '		
		FLOWS ARE M	ULTIPLIE	D BY	.00	003			
OPIPES		101							
							EMC ENGIN	EERS, INC.	
	E PUMPS							PROJECT <u>3/6/1-1/</u>	
	ER PUM						SHEET NO	4. 05 / A	
RESER		1						4/ OF 102	
	LOSSES						GALCULA EL	BYDATE	
	LOSSE						CHECKED 11	DATE	
PRVS	na	0 0 <i>F</i>					SUBJECT		
	ES		1		.				
	VALVE		100 -	250	FLON	MODE	=		
	PRES. Y		WITH	PIPE	= -0	AN	MN ARE	A	
	HEAD DI								
	FIED PI					The second of th			_
							OR RES.	1 AT NODE	1
A D.		085 WAS GIV				0.			
TO GI	VE EST	OF INFLOW	SET NPE	RCT=1					
RES. (1	NOZZLE	PIPES & T	HEIR ELE	V. AR	E				
101 8	32758.	5							
N9= :	101 N8=	= 90							
OJUNCT	ION EXT	r. FLOW PIP	ES AT JU	NCTIO	N				
1	2	.000	-2	3	95				
2	3	.000	-1	97	102				
_ 3	5	18.984	-103						
	6 7	.000	-3	4	-102				
5	7	.000							
6	8	.000			_				
7	9	.000							
8		.047	_7	8					
9		.000							
10	12	.000			12				
11		.000			96				
		2.279			90				
12									
13		.000							
14	16		-31		-80	104			
15	17	.000	-12		15				
16	18	.000	13	-15	16				
17	1.9	.000	-16	17	19				
18	20	1.081	- 19						
19	21	.298	-13						
20	22	.298	-14	20					
21	23	.298	-20						
22	24	.000	-17	18	21				
23	25	.129	-18						
24	26	1.521	-21	22					
25	27	.000	-22	23	32				
26	28	.000	-23	24	25				
27	29	.000	-24						
28	30	2.279	-27						
29	31	.000	- 26	27	28	29			
	32	2.312	-28	٠,	20	ر ہے			
51	33	4.952	-26 -36	37					
32	33 34	.000			66	-06			
32			-29 25	30	66	- 96			
	35 36	.394	- 25	26					
34	36	.238	-30	67	-68				

	*										
35											
36									_		
37								EMC ENGIN	EERS,	INC.	
38					38			PROJ. #	_ PRO	JECT <u> </u>	~~~ _
39					- 65	-66		SHEET NO			
±0								CALCULATED			
41								CHECKED BY		DATE	
42				42				SUBJECT			
43											
44					46						
45					-64	65					
46		.000									
47		.000							•		
48		.000									
49		.000			64						
50		.000									
51		.000									
52		.238		69							
53		.000			-67						
54		.536									
55		.368		63							
56		.408									
57		.238			-60						
58		.294									
59		.000		-58							
60		.000		56	- 57						
61		.000		- 56							
62		.000		- 55							
63		.000		53	- 54						_
54 35		.000		= -							
66		14.389 .758		71							
67		.399		72							
68		.000		73 74	76	77	104				
69		1.528		74 75	76	//	-104				
70		.945		75							
71		.451									
72		1.528	- 77								
73		.000		2	-101	103					
74		.000		2	-101	103					
75		.000		87	88						
76		.000		0,	00						
. 77		.000									
78		8.639	-89								
79	81	.000		-92							
80	82	.000									
81	83	.000		-90	92						
82	84	.000	- 93								
83	85	.000		93	-94	99					
84	86	.000	90	-97	- •						
85	87	.000	-82	* *							
86	88	.197		11							
87	89	.904	-69	70							
88	90	.000	83	84	-87	91					
89	91	.000	-84								
۰,0	93	.000	82	94	- 95						
MO" T	FROM	PUMPS AND	RESERVOIRS	EQUA	LS	68.968					

ITERATION= 1 SUM= .458E+02 ITERATION= 2 SUM= .151E+02

```
ITERATION= 3 SUM= .920E+01
ITERATION= 4 SUM= .329E+01
ITERATION= 5 SUM= .561E+00
ITERATION= 6 SUM= .123E-01
RATION= 7 SUM= .659E-05
                                                                         EMC ENGINEERS, INC.
                                                                         PROJ. #_____ PROJECT 3/22 - 000
                                                                         SHEET NO. OF
                                                                         CALCULATED BY_____DATE____
 TS OF SOLUTION ARE
                                                                         CHECKED BY_____ DATE____
                                                                         SUBJECT____
DIAMETERS - inch
```

LENGTH - feet HEADS - feet

ELEVATIONS - feet PRESSURES - (psi) FLOWRATES - (wt/s)

DARCY-WEISBACH FORMULA USED FOR COMPUTING HEAD LOSS 1PIPE DATA

PII	PE	NOD FROM	ES TO	LENGTH	DIAM	COEF	FLOW RATE	VELOCITY	HEAD LOSS	
							THOW RATE			71000
	1	75	3		24.0	.000150	20.79	38.03	88.95	129.38
	2	75	2		24.0	.000150	29.19	53.41	318.34	242.08
*	3	6	2		10.0	.000150	5.58	58.80	40.38	
	4	6	7		10.0	.000150	6.57	69.23	382.01	
	5	7	8	120.	4.0	.000150	.00	.00	.00	.00
	6	7	9	890.	10.0	.000150	6.57	69.23	971.39	
	7	9	10	195.	8.0	.000150	6.57	108.17	632.47	
	8	10	11	280.	8.0	.000150	6.52	107.39	896.06	
	9	11	12	370.	8.0	.000150	6.52		1184.08	
	10	12	88	1170.	8.0	.000150	1.63	26.82	292.68	250.15
	11	88	13	260.	8.0	.000150	1.43	23.58	51.45	197.89
	12	12	17	240.	8.0	.000150	4.89	80.57	450.93	
	13	18	21	240.	3.0	.000150	.30	34.89	313.88	
	14	17	22	390.	4.0	.000150	.60	39.25	446.81	
	15	17	18	80.	8.0	.000150	4.30	70.76	118.26	
	16	18	19	20.	8.0	.000150	4.00	65.85		1294.79
	17	19	24	95.	8.0	.000150	2.92	48.06	68.94	725. 73
	18	24	25	65.		.000150	.13	15.13	18.92	291.08
	19	19	20	150.	3.0	.000150	1.08		2075.891	
	20	22	23	260.	3.0	.000150	.30	34.89	340.04	
	21	24	26	280.	8.0	.000150	2.79	45.93	187.01	667.90
	22	26	27	370.	8.0	.000150	1.27	20.89	58.79	158.88
*	23	28	27	1010.	8.0	.000150	.43	7.03	22.59	22.37
	24	28	29	250.	3.0	.000150	.00	.00	.00	.00
*	25	35	28	.160.	8.0	.000150	.43	7.03	3.58	22.37
*	26	31	35	160.	8.0	.000150	.82	13.52	11.58	72.36
	27	31	30	110.	4.0	.000150	2.28		1486.581	
	28	31	32	440.	4.0	.000150	2.31		6105.471	
*	29	34	31	100.	8.0	.000150	5.41	89.10	226.35	
*	30	36	34	520.	8.0	.000150	2.96	48.80	388.09	746.32
*	31	16	13	520.	8.0	.000150	3.47	57.05	517.10	994.43
	32	27	37	240.	8.0	.000150	1.70	27.92	64.59	269.11
	33	37	38	195.	8.0	.000150	1.40	23.02	36.93	189.40
	34	38	39	280.	8.0	.000150	.81	13.28	19.61	70.04
*	35	40	39	370.	8.0	.000150	.34	5.62	5.55	14.99
	36	40	33	1170.	8.0	.000150	.76		73.15	62.52
*	37	41	33	260.	8.0	.000150	4.19	69.07	367.57	
	88	42	40	240.	8.0	.000150	1.10	18.09	29.37	122.38
	39	59	41	520.	8.0	.000150	2.31	38.04	245.99	473.06
*	40	43	42	195.	8.0	.000150	1.10	18.09	23.86	122.38
*	41	44	43	280.	8.0	.000150	1.10	18.09	34.27	122.38
*	42	45	44	240.	8.0	.000150	1.10	18.09	29.37	122.38

C-43

*	43	46	45	115.	8.0	.000150	1.10	18.09	14.07	122.38
*	44	14	46		8.0	.000150	.26	4.32	10.99	9.39
*		47	14	260.	8.0	.000150	2.54	41.84	146.40	563.08
*		48	46	140.	8.0	.000150	.84	13.77	10.46	74.
	47	62	47		8.0	.000150	1.62	26.75	129.46	248.97
1 D T	48 DF 1	49 DATA	48	235.	8.0	.000150	.84	13.77	17.56	74.74
PI	PΕ	NOD	ES						HEAD	HLOSS
N	0.	FROM	TO	LENGTH	DIAM	COEF	FLOW RATE	VELOCITY		
	40									
*	49 50	50 15	49 50	260. 1245.	8.0 8.0	.000150 .000150	.84	13.77		74.74
*	51	51	15	260.	8.0	.000150	.84 .84	13.77 13.77	93.05 19.43	74.74 74.74
*	52	65	51	520.	8.0	.000150	1.19	19.55	73.28	140.91
	53	65	66	195.	8.0	.000150	.00	.00	.00	.00
	54	64	65	540.	10.0	.000150	1.19	12.51		48.11
	55	63	64	340.	10.0	.000150	1.19	12.51		48.11
	56	62	63	235.	10.0	.000150	1.19	12.51		48.11
	57	61	62	575.	12.0	.000150	2.81	20.58	54.80	95.30
	58	60	61	340.	12.0	.000150	2.81	20.58	32.40	95.30
	59	59	60	310.	12.0	.000150	3.11	22.73	35.41	114.23
	60	55	59	570.	14.0	.000150	5.66	30.40	92.21	161.77
	61	55	56	400.	6.0	.000150	1.31	38.41	271.18	677.95
	62	56	57	450.	4.0	.000150	.78	51.14	834.81	
	63	57	58	420.	4.0	.000150	.41	26.88	242.11	
*	64 65	51	47	1120.	12.0	.000150	.35	2.57	2.55	2.27
^	66	41 34	47 41	1150. 1150.	12.0	.000150	. 57	4.14	6.08	5.29
	67	36	55	570.	12.0 14.0	.000150 .000150	2.45	17.92	85.26	
	68	54	36	400.	18.0	.000150	6.97 10.17		135.14	237.0
	69	54	89	850.	8.0	.000150	12.97	33.07	56.12 9827.181	140.31
	70	89	67		6.0	.000150	12.06		2994.124	
*	71	68	67	595.	4.0	.000150	2.33		8367.861	
*	72	69	68	480.	4.0	.000150	3.09		1435.672	
*	73	70	69			.000150	3.49		2993.082	
	74	70	71	170.	4.0	.000150	2.47		2675.111	
	75	71	72	290.	3.0	.000150	.94		3128.911	
	76	70	73	100.	2.5	.000150	.45		673.54	
	77	70	74	585.	3.0	.000150	1.53		5431.032	
	78	53	54	330.	18.0	.000150	23.37	76.01	214.93	651.30
	79	16	53	245.	18.0	.000150	23.37	76.01	159.57	
	80 82	52 93	16	565.	18.0	.000150	34.78	113.10	770.78	
	83	90	87 52	50. 1420.	4.0 18.0	.000150	.00	.00	.00	.00
	84	90	91	50.	4.0	.000150 .000150	34.78		1937.19	
	85	77	79	475.	6.0	.000150	.00	.00	.00	۰00
	86	83	78	240.	18.0	.000150	.00 .00	.00 .00	.00	.00
*	87	90	77	150.	6.0	.000150	.00	.00	.00 .00	.00
	88	77	76	140.	6.0	.000150	.00	.00	.00	.00 .00
	89	81	80	290.	14.0	.000150	8.64	46.45	102.07	351.98
	90	86	83	360.	20.0	.000150	8.64	22.76	22.50	62.49
*	91	85	90	685.	20.0	.000150	34.78	91.61	558.08	814.72
	92	83	81	80.	14.0	.000150	8.64	46.45	28.16	351.92
	93	85	84	175.	2.0	.000150	.00	.00	.00	
	94	93	85	360.	20.0	.000150	34.78	91.61	293.30	814.72
	95	2	93	360.	20.0	.000150	34.78	91.61	293.30	814.72
	96	13	34	1150.	12.0	.000150	4.90	35.84	301.61	262.27
	97	3	86	360.	24.0	.000150	8.64	15.80	9.32	25.89
	99	85	82	50.	4.0	.000150	.00	.00	.00	.00

101 1 75 45. 24.0 .000150 68.97 126.17 53.91 1198.0	101	1	75	45.	24.0	.000150	68.97	126.17	53.91	1198.03
---	-----	---	----	-----	------	---------	-------	--------	-------	---------

PIPE	NODES		•		·			HEAD	HLOSS
	FROM T	0	LENGTH	DIAM	COEF	FLOW RATE	VELOCITY	LOSS	/1000
102	3	 6	135.	12.0	.000150	12.15	88.91 18	9.00 14	100.03
103		5			.000150		312.551247		
104					.000150	7.94			
1NODE	DATA:								
NODE	. ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	EMAN	ים				HGL		
NO.	(wt/s)		vol/s	ELEV	HEAD	PRESSUE			
1	-68.968		396.37		82758.63		82758.63		
2	.000		.00		82386.38		82386.38		
3	.000	_	.00	0.	82615.76		82615.76		
5	18.984			0.	70225.42	84.86			
6	.000			0.	82426.76		82426.76		
7	.000			0.	82044.75		82044.75		
8	.000			0.	82044.75		82044.75		
9	.000		.00	0. 0.	81073.36		81073.36		
10	.047		.27		80440.89	97.20			
11	.000		.00	0.	79544.83	96.12			
12	.000		.00	0.	78360.75 78016.63	94.69 94.27			
13 14			.00 13.10	0.	77477.27	93.62			
15	.000		.00	0.	77606.79	93.77			
<u>15</u>	.000		.00	0.	78533.73	94.89			
O	.000		.00	0.	77909.81	94.14			
18	.000		.00	0.	77791.55	94.00			
19	.000		.00	0.	77765.66	93.97			
20	1.081			0.	75689.77	91.46			
21	.298			0.	77477.67	93.62			
22	.298			0.	77463.00	93.60			
23	.298		1.71	0.	77122.96				
24	.000		.00	0.	77696.71	93.88	77696.71		
25	.129		.74	0.	77677.79	93.86	77677.79		
26	1.521				77509.70	93.66			
27	.000			0.	77450.93	93.59			
28	.000		.00	0.	77473.52	93.61			
29	.000		.00	0.	77473.52	93.61			
30	2.279		13.10	0.	76002.09	91.84			
31	.000		.00	0.	77488.67	93.63			
32	2.312		13.28	0.	71383.20	86.25			
33	4.952		28.46	0.	77262.19	93.36			
34	.000		.00	0.	77715.02	93.91			
35 36	.394		2.27	0.	77477.09	93.62			
37	.238 .298		1.37 1.71	0. 0.	78103.10 77386.34	94.37 93.51			
38	.591		3.40	0.	77349.40	93.46			
39	1.148		6.60	0.	77329.79	93.44			
40	.000		.00	0.	77335.34	93.45			
41	.000		.00	0.	77629.76	93.80			
12	.000		.00	0.	77364.71	93.48			
	.000		.00	0.	77388.58	93.51			
44	.000		.00	0.	77422.84	93.55			
45	.000		.00	0.	77452.21	93.59			
46	.000		.00	0.	77466.28	93.61			
47	.000		.00	0.	77623.67	93.80			
					C45				
					U-			•	

48 49 1NODE	.000 .000 DATA:	.00	0. 0.	77476.74 77494.31	93.62 93.64	77476.74 77494.31
DE O.	DEN (wt/s)	MAND vol/s	ELEV	HEAD	PRESSURE	HGL ELEV
50	.000	.00	0.	77513.74	93.66	77513.74
51	.000	.00	Ο.	77626.22	93.80	77626.22
52	.000	.00	ο.	79304.51	95.83	79304.51
53	.000	.00	0.	78374.16	94.70	78374.16
54	.238	1.37	0.	78159.23	94.44	78159.23
55	.000	.00	0.	77967.96	94.21	77967.96
56	.536	3.08	Ο.	77696.78	93.88	77696.78
57	.368	2.12	0.	76861.97	92.87	76861.97
58	.408	2.35	0.	76619.86	92.58	76619.86
59	.238	1.37	0.	77875.75	94.10	77875.75
60	.294	1.69	0.	77840.34	94.06	77840.34
61	.000	.00	0.	77807.94	94.02	77807.94
62	.000	.00	0.	77753.13	93.95	77753.13
63	.000	.00	0.	77741.83	93.94	77741.83
64	.000	.00	0.	77725.47	93.92	77725.47
65	.000	.00	0.	77699.49	93.89	77699.49
66	.000	.00	0.	77699.49	93.89	77699.49
67	14.389	82.70	0.	25337.92	30.62	25337.92
68	.758	4.36	0.	33705.78	40.73	33705.78
69	.399	2.29	0.	45141.45	54.55	45141.45
70	.000	.00	0.	48134.53	58.16	48134.53
71	1.528	8.78	0.	45459.42	54.93	45459.42
72	.945	5.43	0.	42330.51	51.15	42330.51
73	.451	2.59	0.	47460.99	57.35	47460.99
74	1.528	8.78	0.	32703.50	39.52	32703.50
75	.000	.00	0.	82704.71	99.93	82704.71
76	.000	.00	0.	81241.70	98.17	81241.70
77	.000	.00	0.	81241.70	98.17	81241.70
78	.000	.00	0.	82583.94	99.79	82583.94
79	.000	.00	0.	81241.70	98.17	81241.70
80	8.639	49.65	Ο.	82453.71	99.63	82453.71
81	.000	.00		82555.78	99.75	82555.78
82	000	.00	ο.	81799.78	98.84	81799.78
83	.000	.00	0.	82583.94	99.79	82583.94
84	.000	.00		81799.78	98.84	81799.78
85	.000	.00	Ο.	81799.78	98.84	81799.78
86	.000	.00	Ο.	82606.44	99.82	82606.44
87	.000	.00		82093.08	99.20	82093.08
88	.197	1.13		78068.07	94.33	78068.07
89	.904	5.20		68332.05	82.57	68332.05
90	.000	.00		81241.70	98.17	81241.70
91	.000	.00		81241.70		81241.70
93	.000	.00	•	82093.08	99.20	82093.08

HOLSTON AREA B

PECIF NFLOW= 5, NPGPM= 5, NPRRES=1, GAMMA=0.174, VISC=6.578E-005, NODESP=1, PEAKF=.000278 SEND

		=.000	278 \$END		
PI	PES				
1	75	3	687.5	24.00	0.00015
2	75	2	1315.0	24.00	0.00015
3	2	6	50.0	10.00	0.00015
4	6	7	350.0	10.00	0.00015
5	7	8	120.0	4.00	0.00015
	7	9			0.00015
6			890.0	10.00	
7	9	10	195.0	8.00	0.00015
8	10	11	280.0	8.00	0.00015
9	11	12	370.0	8.00	0.00015
10	12	88	1170.0	8.00	0.00015
11	88	13	260.0	8.00	0.00015
12	12	17	240.0	8.00	0.00015
13	18	21	240.0	3.00	0.00015
14	17	22	390.0	4.00	0.00015
15	17	18	80.0	8.00	0.00015
16	18	19	20.0	8.00	0.00015
17	19	24	95.0	8.00	0.00015
18	24	25	65.0	3.00	0.00015
19	19	20	150.0	3.00	0.00015
20	22	23	260.0	3.00	0.00015
21	24	26	280.0	8.00	0.00015
27	6	27	370.0	8.00	0.00015
1	27	28	1010.0	8.00	0.00015
24	28	29	250.0	3.00	0.00015
25	28	35	160.0	8.00	0.00015
26	35	31	160.0	8.00	0.00015
27	31	30			0.00015
28	31	32	110.0 440.0	4.00 4.00	0.00015
29	31	34	100.0	8.00	0.00015
30	34	36	520.0	8.00	
31		16			0.00015
32	13		520.0	8.00	0.00015
	27	37	240.0	8.00	0.00015
33	37	38	195.0	8.00	0.00015
34	38	39	280.0	8.00	0.00015
35	39	40	370.0	8.00	0.00015
36	40	33	1170.0	8.00	0.00015
37	33	41	260.0	8.00	0.00015
38	40	42	240.0	8.00	0.00015
39	41	59	520.0	8.00	0.00015
40	42	43	195.0	8.00	0.00015
41	43	44	280.0	8.00	0.00015
42	44	45	240.0	8.00	0.00015
43	45	46	115.0	8.00	0.00015
44	46	14	1170.0	8.00	0.00015
45	14	47	260.0	8.00	0.00015
46	46	48	140.0	8.00	0.00015
47	62	47	520.0	8.00	0.00015
1	8	49	235.0	8.00	0.00015
4_	49	50	260.0	8.00	0.00015
50	50	15	1245.0	8.00	0.00015
51	15	51	260.0	8.00	0.00015
52	51	65	520.0	8.00	0.00015

```
53
     65
          66
                195.0
                           8.00
                                    0.00015
54
     64
          65
                540.0
                          10.00
                                    0.00015
55
     63
          64
                340.0
                          10.00
                                    0.00015
56
     62
          63
                235.0
                          10.00
                                    0.00015
     61
          62
                575.0
                          12.00
                                    0.00015
٤
     60
          61
                340.0
                          12.00
                                    0.00015
59
     59
          60
                310.0
                          12.00
                                    0.00015
60
     55
          59
                          14.00
                570.0
                                    0.00015
61
     55
          56
                400.0
                           6.00
                                    0.00015
62
     56
          57
                450.0
                           4.00
                                    0.00015
63
     57
          58
                420.0
                           4.00
                                    0.00015
64
     51
          47
               1120.0
                          12.00
                                    0.00015
65
     47
          41
               1150.0
                          12.00
                                    0.00015
66
     34
          41
               1150.0
                          12.00
                                    0.00015
67
     36
          55
                570.0
                          14.00
                                    0.00015
68
     54
          36
                400.0
                          18.00
                                    0.00015
69
     54
          89
                850.0
                           8.00
                                    0.00015
70
     89
          67
               1025.0
                           6.00
                                    0.00015
71
     67
          68
                595.0
                           4.00
                                    0.00015
72
     68
          69
                480.0
                           4.00
                                    0.00015
73
     69
          70
                100.0
                           4.00
                                    0.00015
74
     70
         71
                170.0
                           4.00
                                    0.00015
75
     71
         72
                290.0
                           3.00
                                    0.00015
76
     70
          73
                100.0
                           2.50
                                    0.00015
77
     70
         74
                585.0
                           3.00
                                    0.00015
78
     53
          54
                330.0
                          18.00
                                    0.00015
79
     16
         53
                245.0
                          18.00
                                    0.00015
80
     52
         16
                565.0
                          18.00
                                    0.00015
82
     93
         87
                50.0
                          4.00
                                  0.00015
გა
    90
         52
              1420.0
                          18.00
                                   0.00015
    90
         91
                 50.0
                           4.00
                                   0.00015
85
    77
         79
                475.0
                           6.00
                                   0.00015
86
    83
         78
                240.0
                          18.00
                                   0.00015
87
    77
         90
                150.0
                           6.00
                                   0.00015
88
    77
         76
                140.0
                           6.00
                                   0.00015
89
    81
         80
                290.0
                          14.00
                                   0.00015
90
    86
         83
                360.0
                         20.00
                                   0.00015
91
    90
         85
                685.0
                         20.00
                                   0.00015
92
    83
         81
                 80.0
                         14.00
                                   0.00015
93
    85
         84
                175.0
                           2.00
                                   0.00015
94
    93
         85
                360.0
                         20.00
                                   0.00015
95
    2
         93
                360.0
                         20.00
                                   0.00015
96
    13
         34
              1150.0
                         12.00
                                   0.00015
         86
97
      3
                360.0
                         24.00
                                   0.00015
99
    85
         82
                50.0
                        4.00
                                 0.00015
101
       1
          75
                  45.0
                           24.00
                                    0.00015
       3
102
           6
                 135.0
                           12.0
                                   0.00015
103
      75
           5
                 525.0
                           8.0
                                   0.00015
104
      16 70
                 1600.0
                           6.0
                                   0.00015
NODES
1
   306.
          0.0
2
   .0
              0.0
3
   .0
          0.0
5
   68287. 0.0
6
   .0
              0.0
    0
              0.0
ઠ
   .0
             0.0
9
   .0
        0.0
10 170.
              0.0
11 .0
          0.0
```

PROJ. #_____ PROJECT ______ SHEET NO. ____ OF ____ OATE ____ CHECKED BY _____ DATE ____ SUBJECT _____

```
12 .0 0.0
13 .0 0.0
14 8198. 0.0
15_0 0.0
    .0 0.0
    .0
       0.0
18
   .0
      0.0
   .0
      0.0
19
20 3887.0 0.0
21 1072.0 0.0
22 1072.0 0.0
23 1072.0 0.0
   .0 0.0
24
  465.0 0.0
25
26 5471. 0.0
27 .0 0.0
28 .0 0.0
29 .0 0.0
30 8198.0 0.0
31 .0 0.0
32
   8315.0 0.0
33 17814. 0.0
34 .0 0.0
35 1418.0 0.0
   856. 0.0
36
37
   1072.0 0.0
38
   2127.0 0.0
39
  4129.0 0.0
   .0 0.0
40
    0.0
   . 0
      0.0
43
    .0
       0.0
44
   .0
      0.0
45
   .0
      0.0
46
   .0
      0.0
47 .0
      0.0
48
   .0
      0.0
49
  .0
      0.0
  .0
50
      0.0
   .0
51
      0.0
  .0
52
      0.0
53
  .0
       0.0
54
  856.0
55
   .0 0.0
56
  1927.0 0.0
57
   1325.0 0.0
58
   1468.0 0.0
   856.0 0.0
59
60
   1059.0 0.0
61
   0.0 0.0
   .0 0.0
62
63
   .0 0.0
64
   .0 0.0
   .0
65
       0.0
   .0 0.0
    1760.0 0.0
6u`
    2727.0
           0.0
69
    1434.0
           0.0
    .0 0.0
70
71
    5497.0 0.0
```

```
72
     3398.0
              0.0
73
     1623.0
               0.0
74
     5497.0
              0.0
     .0
         0.0
75
         0.0
     .0
    .0
         0.0
78
    .0
         0.0
         0.0
79
     .0
     31077.0
80
                0.0
81
     .0
          0.0
82
     .0
          0.0
83
     .0
          0.0
     .0
84
          0.0
     .0
85
          0.0
86
    .0
        0.0
87 .0 0.0
88 709.0 0.0
     3252.0 0.0
89
90
    .0 0.0
    .0 0.0
91
93
    .0
        0.0
RESER
1 100
```

RUN

EMC ENGINE	ERS, INC.
PROJ. #	PROJECT
SHEET NO.	OF 10 >
CALCULATED E	BYDATE
CHECKED BY	DATE_
SUBJECT	

PRV FLOW CALCULATION

$$C_{v} = \frac{w}{500\sqrt{G\Delta p}}.$$

$$w = 500 C_{\nu} \sqrt{G \Delta p}.$$

where

$$\frac{p}{315 \text{ psia}}$$
 $\frac{G}{1.47 \text{ ft}^3/\text{lbm}}$ $\frac{110}{4.05}$

EMC ENGINEERS, INC.

PROJ. #_____ PROJECT ___/___

SHEET NO. ____ OF ______

CALCULATED BY ____ DATE _____

CHECKED BY ____ DATE _____

SUBJECT _____

PRVSTAT.WK3

LOCATION, PRESSURE SETTING, MANUFACUTRE, MODEL NUMBER, CV, AND % OPEN AT TIME OF FIELD SURVEY. FLOW RATES AT THE EXISTING 300 PSIG AND AT THE NEW 100 PSIG ARE CALCULATED BASED ON CV. ALSO INCLUDED IS THE AVERAGE FLOW THROUGH THE PRV BASED ON HISTORICAL DATA INCLUDED HERE IS INFORMATION ON PRV'S. THE INFORMATION INCLUDES

SUBJECT			
ED ON CV.	•	ż	

OF /८ः DATE

CALCULATED BY CHECKED BY

SHEET NO.

DATE

EMC ENGINEERS, INC.

PERCENT	OPEN		25		62.5	CLOSED		25	100	CLOSED			12.5	12.5		31.2	6.25						12.5			CIORD
PART PER	COMPANY AND ID		0.60 ITT 500HC33COACK-A41AFD6AB	FISHER CONTROL H-111	0.60 ITT	0.60 ITT CLO	0.60 KECKLEY-AA	FISHER	0.60 JAMESBURY	FISHER GOVANER CO SIZE 70 CLO	CASHCO 1000HP-15	0.60 JORDON	0.60 CASHCO	0.60 CASHCO	VICH-2M2CBOA	FOXBOROUGH-STABLIFLO	0.60 HAMMEL DAHL INC	FISHER	CASHCO-1000LP-15	KECKLEY TYPE AA	0.60 CASHCO MODEL 964	CASHCO	ITI	0.60 KECKLEY - AA	0.60 KECKLEY - AA	O KO CASHCO
FLOW AT FLOW	100 PSI RATIO	.B/HR 100/300	63,637 0.0		63,637 0.0	43,581 0.0	2,580 0.0		11,196 0.0			2,231 0.0		3,794 0.0			19,920				11,885 0.0			6,672 0.0	756 0.0	10 941
FLOW AT F	300PSI 1	JB/HR L	105,628		105,628	72,339	4,282		18,584			3,704	6,298	6,298			33,064				19,727			11,075	1,255	18,160
AVERAGE	FLOW	LB/HR	7,808		7,808	7,808		7,808		7,808					1,835		1,835		235		816				235	816
SIZE OF	VALVE	INCHES	3		3	2.5	1	2.5	0.75	1.5		0.75	0.75	0.75	7		1.5	4		1.5	1.5	1.5	1.5	1.5	0.5	1.5
CV			125		125	80	5.8		22.38			4.4	7	7			37				22			15	1.7	22
OUTPUT	1 OR 2) PRESSURE	PSI	38	25	38		100	47	47		15	40	3	3	30		7	15	100	95	5	110	70	100	100	20
VALVE	(1 OR 2)		1	2		_	2		2	_	2	3	-	_		2	-	2	_	7	3	4	-	2		2
BUILDING VALVE OUTPUT	NUMBER		G3	G3	G4 ·	GS	GS	95 C	95	G7	G7	G7	M3	M6	D3	D3	DS	DS	E3	E3	E3	E3	E4	E4	E6	E6

" of Hinle

A:A11: (Page DUTCH10 LR) 'G3

A:B11: (DUTCH10 R) [W6] 1

A:C11: (DUTCH10 R) 38

A:D11: (DUTCH10 R) [W6] 125

A:E11: (DUTCH10 R) 3

A:F11: (DUTCH10 R) (,0) 7808

A:G11: (DUTCH10 R) (,0) 500*\$D11*(1/1.47/62.4*(300-\$C11))^0.5

A:H11: (DUTCH10 R) (,0) 500*\$D11*(1/4.05/62.4*(300-\$C11))^0.5

A:I11: (DUTCH10 R) (F2) aIF(G11>0,H11/G11,0)

A:J11: (DUTCH10) 'ITT 500HC33COACK-A41AFD6AB

A:M11: (DUTCH10 LR) 25

EMC ENGINE		
PROJ. #	PROJECT_	3/02 = 2002
SHEET NO5		<u> 100</u>
CALCULATED E	3Y DA	TE
CHECKED BY_	DATE	<u> </u>
SUBJECT		

	D3 INFORMATION 30 Ib steam STABILFLO VI series 5/16 open 2" valve FOXBOROUGH process is steady 1:25" stroke Clear/CV = 60% using 30 – 40% of plant Continuous 2 simmer tanks 80 and 100 C process Actuator P110CH-J4 Valve VICH-2M2CBOA
PROCESS	
	D5 INFORMATION HMX BATCH 500HHC32EAEXK-JK251 1.5 inch 7-18psi 7/16 inch stroke 1/16 open Type 655-ED Cv=3A 15 psi Relief 2420 lb/hr Most BCDGS operating at 50% Capacity (4) Simmer tanks (2) Operating Batch 100C 2hrs twice Tanks not insulated
PROCESS PROCESS	
PROCESS	
PROCESS	Little steam use HTX — Acedic Acid (used little once every 5 days) Filter Washer 90C (Used once week for 1 hr) Space heat 1st valve — CASHCO, Ellsworth, KS Type 1000LP – 15 PLK Water Head CAASCO STORO 562' CASHCO 1.5 inch 1.5 inch 1.5 inch 1/8 – 1/4 open POUHP – 15 Model 964 CV=22 110 psi out 5 – 15 psi PILOT 28psi KECKLEY STROKE KECKLEY STROKE Type 4days) KECKLEY STROKE Type AA 1st valve type AA set 95 psi Type 1000LP – 15 CASHCO 1.5 inch 1.00 HP – 15 Model 964 10 – 40 psi range CV=22 110 psi out 5 – 15 psi PILOT 300 psi in
7,100290 1	
	### E4 INFORMATION PRV = 70 psi
PROCESS	
PROCESS 412,945 412,945 412,945 PROCESS	E6 similar to E3 KECKLY 1/2* Type AA 100psi — 2nd one on other side 3rd on ACSO CHAGCO 1.5 inch HW Tank MORE 964 50 psi Cv=22 Closed

		G3 INFOR			2nd valve	
			38 psi steam ITT CONOFLO size 3 500LHC33COAC	:K-A41AFD6AB	Fisher Control h 25-75 psi	ı-111
			300psig 1/4 open All Patch			
) PF	OCESS]					90(<u>)</u>
		G4 INFOR	MATION 38 psi ITT 3 inch T=425 F in 5/8 open			
	ROCESS	G5 INFOR	MATION ITT 2.5 Inch CLOSED Or=80	2nd PRV KECKLEY 1 inch 100pal	- M	
	ROCESS (GE INFOR	MATION 2.5° FISHER 25% open Type G87? 47 psi	2nd valve 3/4* JAMEI Wide op en	Losson or techniques (Co.)	
	OCESS	G7 INFOR		110-15ps	Opsi-15psi	
)			Little one Jordon 3/4* Model 60 Cy = 4/4 40 psi	Disolver (A 58C STILLS 38 psi spar live steem	ger	
1 3 4 4 5 6 6 3 4 5 3 5 5 3 4 5 3 5 5 3 4 5 3 5 5 3 5 5 3 5 5 5 5	199,458 199,458 199,458 199,458 199,458 301,485 301,485 301,485 301,485 130,875 114,340 301,485 301,485 301,485					
		M3 INFO		ngines operating same as M. * :::		
3 14 15	301,485 301,485 301,485		<u> </u>			
		M6 INFO	35 psi 3/4° CASHCO Type 964 3-15psi CV = 7 1/8 open Dryers in M-BI	kettle mixe in alf Mr bi dgs But steam still to c	dgs	9
M6 N3 N6 O3 O5 P3 R3 W1	301,485 182,701 257,280 182,701 257,280 76,085 76,085 503,540 29,690 47,846					

EMC ENGINE	ERS,	INC.			
PROJ. #	PRO	JECT	30	1.50	
SHEET NO	, e.,	_ OF _	100	<u>}</u>	
CALCULATED	BY	CK D	ATE.	1	
CHECKED BY_		DA	TE		
SUBJECT					

COGEN SIZE OPTIMIZATION (Model Inputs)

110 PSIG OPTION

EMC ENGINEERS, INC. PROJ. #____ PROJECT_ SHEET NO. ____OF ___

CALCULATED BY DATE DATE

SUBJECT ____

T/G Cost

813 kW

\$227,600

Support System Cost

146,802

Electric Equipment Cost

30,000

\$404,400

Added Piping to Distribution Area \$133,894

@ 67,700 lbm/hr »

1270 Btu/lbm h_1

(300 psig, 525°F)

Turbine Work = w

3413 Btu

=45.5 Btu kWh

kWh 83.3 lbm x 0.9

83.3 lbm/hr/kW

lbm

1224 Btu/lbm $h_1 - w =$ h_2

110 psig » 430°F Superheated

d h Now = 1270 - 242 (30 psig, SAT) = 1028 Btu/lbm

d h New = 1224 - 242 = 982 Btu/lbm

175 PSIG OPTION

420 kW @ 65,000 lbh 155 lbm/hr/kW

T/G Cost

\$186,000

Support System Cost

146,802 30,000

Electric Equipment Cost

\$362,800

1270 Btu/lbm h_1

24.5 <u>Btu</u> 3413 Btu kWh kWh 155 lbm x 0.9 lbm

 $h_2 = 1270 - 25 =$ 1245

 $T = 450^{\circ}F$, Superheated @ 175 psig,

d h New = 1245 - 242 = 1003 Btu/lbm

COGENERATION ANALYSIS WITH 110 PSIG BACKPRESSURE

EMC ENGINE	ERS, INC.	_
PROJ. #	PROJECT	3/02-00 2
SHEET NO	<u>ဴ -</u> of _	
CALCULATED		
CHECKED BY_	DA	TE <u>(/%/∞2</u>
SUBJECT		

300 PSIG DEMAND 300 PSIG ENERGY CONTENT EXIT STEAM ENERGY CONTENT IN PLANT STEAM

TURBINE STEAM RATE TURBINE SIZE

83 LBM/KW/HR ,000 LBM/HR

ASR SIZE

120,000 72.00%

1,028 982 16% 430

NB

TSTM

STEAM TEMP

DISTRIBUTION LOSS COEF

SPACE LOAD COEF

PROCESS DEMAND

LBM/HR LBM/HR BTU/LBM BTU/LBM

1,865,000 22,622 106,982 47,462

BLC UA PROC PROC300 DHNOW DHNEW

\$/KW	\$/KWH	
9.5000	0.0159	
KW\$	KWH\$	

\$/MBTU

1.2500

COAL\$

BOILEFF

TURBINE		(LBM/HR)	120,000	120,000	106,687	94,664	77,540	71,188	70,486	20,509	72,840	87,013	106,859	120,000	1,117,787
AVG	DEMAND	S S	7,454	7,018	6,208	7,010	290'9	6,418	6,646	6,207	6,840	6,681	6,961	7,018	6,711
ELECTRIC	DEMAND	§	9,235	8,926	8,793	8,815	8,650	8,904	8,948	8,992	9,340	606'8	9,045	9,092	8,971
ELECTRIC	USAGE	H N N	5,545,500	4,716,000	4,619,000	5,047,000	4,513,500	4,621,000	4,944,500	4,618,000	4,925,000	4,970,500	5,012,000	5,221,500	58,753,500
COGEN	STEAM	(LBM/HR)	128,383	122,820	106,687	94,664	77,540	71,188	70,486	500,00	72,840	87,013	106,859	122,249	94,270
STEAM	DEMAND	(LBM/HR)	175,845	170,282	154,149	142,126	125,002	118,650	117,948	117,971	120,302	134,475	154,321	169,711	141,732
DSTRB	SSOT	(LBM/HR)	660'6	060,6	8,846	8,616	8,431	8,247	8,178	8,201	8,316	8,593	8,846	000'6	8,620
HEATING	LOAD	(LBM/HR)	926'99	51,481	35,533	23,740	008'9	633	0	0	2,216	16,112	35,705	50,910	23,342
300 pslg	PROCESS	(LBM/HR)	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462
LOW PRES	PROCESS	(LBM/HR)	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308
AMBIENT	TEMP	Œ	35	38	46	26	64	72	75	74	69	22	46	38	99
DEGREE	DAYS		930	759	280	375	111	10	0	0	35	263	564	831	4,458
			31	88	31	8	3	9	3	3	9	3	8	3	
	5.	7	Jan	Feb	Mar	Apr	May	, LI	2	Aug	Sep	ö	N ₀	Dec	¥

COGENERATION ANALYSIS WITH 110 PSIG BACKPRESSURE

EMC ENGINEERS, INC. CALCULATED BY DATE 1/2/22
CHECKED BY DATE 1/2/22
SUBJECT 120,000 4,395,395 180,718 737,601 4.1 100,000 4,380,408 195,705 665,267 3.4 80,000 4,378,030 198,083 588,423 3.0 60,000 4,405,104 171,009 505,519 3.0 40,000 4,449,075 127,038 413,690 3.3 20,000 4,493,046 83,067 306,128 3.7 4,576,113 120,000 4,395,395 180,718 737,601 4.1 TURBINE SIZE (LBM/HR)
ANNUAL ENERGY COST
ENERGY COST SAVINGS
CAPITAL COST
SIMPLE PAYBACK ECONOMIC ANALYSIS BASE ENERGY COST

	POWER	DESUPER	SHP.	IN PLANT	BOILER	BOILER	COAL	DEMAND	DEMAND ELECTRICI	COAL	DEMAND	KWH	ELECTRIC	TOTAL
	PRODUCE	STEAM IN	DEMAND	STEAM	STEAM	STEAM	USAGE	BLLED	PURCHASE	PURCHASE PURCHASE	CHARGES	CHARGES	CHARGES	CHARGES
	(KW)	(LBM/HR)	(LBM/HR)	(LBM/HR)	(LBM/HR)	(MBTU)	(MBTU)	KW.	€WH WH	(8)	(\$)	\$	€	€
Jan	1,441	800'8	175,470	34,422	209,892	160,532	222,962	7,795	4,473,711	\$278,702	\$74,049	\$70,908	\$146,132	\$424,834
Feb	1,441	2,694	170,156	33,380	203,536	140,606	195,286	7,485	3,747,933	\$244,107	\$71,111	\$59,405	\$131,690	\$375,797
Mar	1,113	0	154,149	30,240	184,389	141,027	195,870	7,680	3,790,855	\$244,838	\$72,962	\$60,085	\$134,222	\$379,060
Apr	853	0	142,126	27,881	170,071	125,832	174,767	7,962	4,432,631	\$218,459	\$75,641	\$70,257	\$147,072	\$365,530
May	542	0	125,002	24,522	149,524	114,361	158,834	8,108	4,110,105	\$198,543	\$77,022	\$65,145	\$143,341	\$341,884
L L	444	0	118,650	23,276	141,926	105,048	145,900	8,459	4,301,026	\$182,375	\$80,364	\$68,171	\$149,710	\$332,085
70	434	0	117,948	23,138	141,086	107,907	149,871	8,514	4,621,468	\$187,339	\$80,881	\$73,250	\$155,306	\$342,645
Ang	435	0	117,971	23,143	141,114	107,928	149,901	8,558	4,294,720	\$187,376	\$81,298	\$68,071	\$150,543	\$337,919
Sep	469	0	120,302	23,600	143,902	106,510	147,931	8,871	4,587,376	\$184,914	\$84,277	\$72,710	\$158,161	\$343,075
Oct	902	0	134,475	26,380	160,856	•	170,871	8,204	4,445,424	\$213,589	\$77,934	\$70,460	\$149,568	\$363,158
Š	1,117	0	154,321	30,273	184,594	136,629	189,763	7,928	4,207,722	\$237,204	\$75,312	\$66,692	\$143,179	\$380,383
Dec	1,441	2,148	169,610	33,273	202,883	155,171	215,516	7,651	4,149,711	\$269,395	\$72,685	\$65,773	\$139,632	\$409,027
⊁			141,682	27,794	169,476	1,524,580	2,117,472		51,162,684	2,646,840	923,537	810,929	1,748,555	4,395,395

C-58

PROJ. #_	PROJECT	345 as
SHEET NO	OF	107
CHECKED BA	DAT DAT	
SUBJECT		

300 PSIG DEMAND 300 PSIG ENERGY CONTENT EXIT STEAM ENERGY CONTENT IN PLANT STEAM

BTU/LBM BTU/LBM

LBM/HR LBM/HR

1,865,000 22,622 106,982 47,462 1,028 1,003

PROC300 DHNOW

PROC

TURBINE STEAM RATE TURBINE SIZE

155 LBM/KW/HR 120,000 BTU/LBM 72.00%

450

NB NB TSTM ASR SIZE

DHNEW

\$/MBTU \$/KW \$/KWH

1.2500 9.5000 0.0159

COAL\$
KW\$
KWH\$

BOILEFF

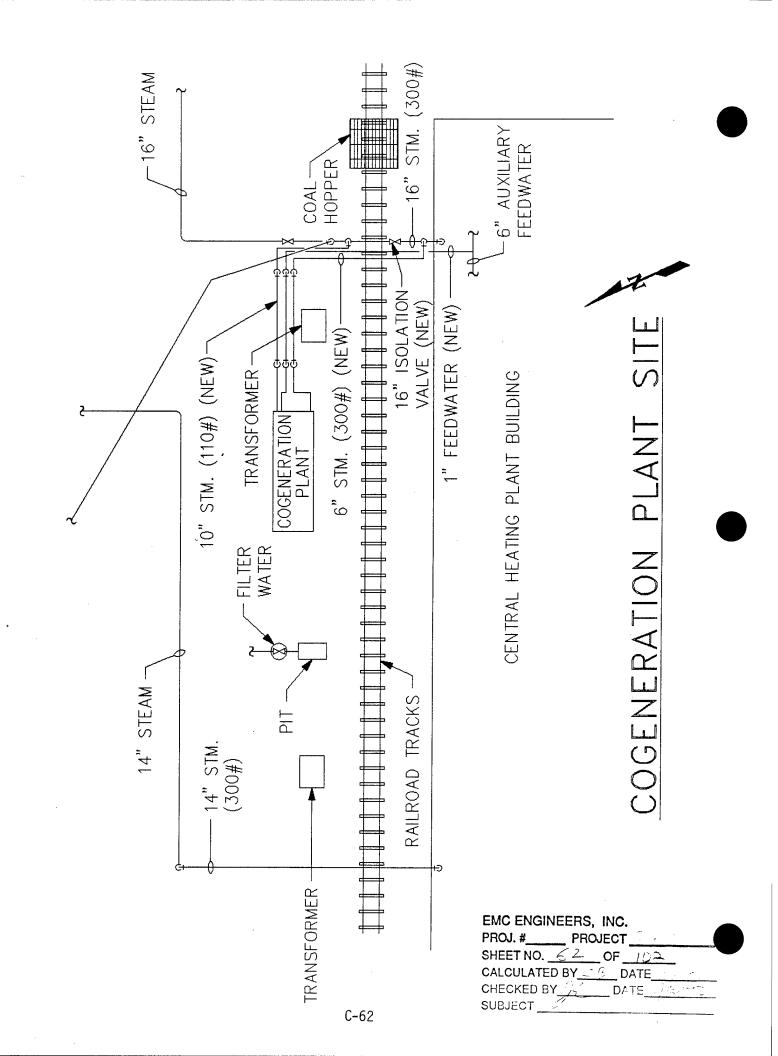
STEAM TEMP

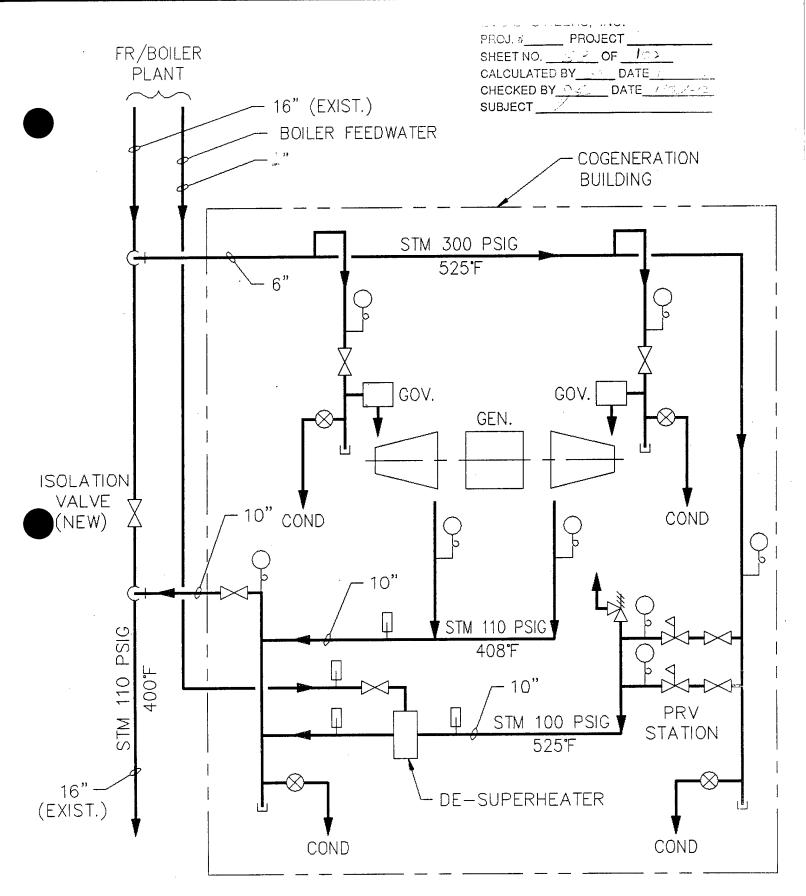
DISTRIBUTION LOSS COEF PROCESS DEMAND

SPACE LOAD COEF

	STEAM	(LBM/HR)	120,000	120,000	104,905	93,133	16,367	70,149	69,461	69,484	71,766	85,642	105,073	120,000	1,105,980
AVG	DEMAND	(KW)	7,454	7,018	6,208	7,010	290'9	6,418	6,646	6,207	6,840	6,681	6,961	7,018	6,711
ELECTRIC	DEMAND	(KW)	9,235	8,926	8,793	8,815	8,650	8,904	8,948	8,992	9,340	8,909	9,045	9,092	8,971
	USAGE	(KWH)	5,545,500	4,716,000	4,619,000	5,047,000	4,513,500	4,621,000	4,944,500	4,618,000	4,925,000	4,970,500	5,012,000	5,221,500	58,753,500
COGEN	STEAM	(LBM/HR)	126,146	120,700	104,905	93,133	76,367	70,149	69,461	69,484	71,766	85,642	105,073	120,140	92,747
STEAM	DEMAND	(LBM/HR)	173,608	168,162	152,367	140,595	123,829	117,611	116,923	116,946	119,228	133,104	152,535	167,602	140,209
DSTRB	SSOT	(LBM/HR)	098'6	9,292	9,112	988'8	8,706	8,526	8,458	8,480	8,593	8,864	9,112	9,292	8,890
HEATING	LOAD	(LBM/HR)	55,783	50,404	34,789	23,243	6,658	620	0	0	2,169	15,775	34,957	49,844	22,853
300 psig	PROCESS	(LBM/HR)	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462
OW PRES	PROCESS	(LBM/HR)	61,004	61,004	61,004	61,004	61,004	61,004	61,004	61,004	61,004	61,004	61,004	61,004	61,004
AMBIENTI	TEMP	Œ	35	88	46	20	\$	72	75	74	69	25	46	88	26
DEGREE	DAYS		930	759	280	375	111	10	0	0	35	263	264	831	4,458
			31	28	34	႙	ऋ	೫	31	34	ස	ऋ	8	रू	
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	۲۲
		C.	-5					<u>·</u>							

COGENERATION ANALYSIS WITH 175 PSIG BACKPRESSURE


EMC ENGINEERS, INC. PROJ. # PROJECT
120,000 4,471,615 104,498 557,256 5.3
100,000 4,463,088 113,025 490,487 4.3
80,000 4,461,409 114,704 419,557 3.7
60,000 4,474,660 101,453 343,031 3.4
40,000 4,498,189 77,924 258,268 3.3
20,000 4,521,718 54,395 158,982 2.9
0 4,545,248 30,865 1 0.0
4,576,113 120,000 4,471,615 4,545,248 4,521, 104,498 30,865 54,5 557,256 1 158,5
ECONOMIC ANALYSIS BASE ENERGY COST TURBINE SIZE (LBH) ANNUAL ENERGY COST ENERGY COST ENERGY COST SAVINGS CAPITAL COST SIMPLE PAYBACK


POWER DESUPER CHANUE STEAM STE
POWER DESUPER
POWER DESUPER
POWER DESUPER
POWER DESUPER CHIP IN PLANT BOILER BOILER COAL DEMAND ELECTRIC COAL RVW (LBM/HR) (LB
POWER DESUPER CHP IN PLANT BOILER STEAM BOILER STEAM COAL DEMAND STEAM STEAM STEAM STEAM STEAM STEAM STEAM BOILER STEAM BOILER STEAM STEAM BOILER STEAM STEAM BOILER STEAM STE
POWER DESUPER CHP IN PLANT BOILER BOILER COAL D PRODUCE STEAM IN DEMANID STEAM STEAM USAGE 774 5,997 173,459 34,028 201,487 158,692 220,406 774 683 168,145 32,985 201,130 138,944 192,977 576 0 152,367 29,890 182,257 139,396 193,605 442 0 140,595 27,581 168,176 124,477 172,884 281 0 123,829 24,292 148,121 113,288 157,344 231 0 117,611 23,072 140,683 104,128 144,622 225 0 116,923 22,937 139,886 106,990 148,598 225 0 116,928 22,942 139,888 106,990 148,598 243 0 116,928 23,389 142,617 105,590 578 0
POWER DESUPER CHP IN PLANT BOILER BOILER
POWER DESUPER CHP IN PLANT BOILER
POWER DESUPER CHP IN PLANT
POWER DESUPER CHP IN CHP IN (KW) (LBM/HR) (LBM/H
POWER DESUPER (KW) (LBM/HR) (I 774 5,997 774 683 576 0 442 0 281 0 231 0 225 0 225 0 226 0 243 0 578 0
POWER DES PRODUCE STE (KW) (LB 774 774 576 442 281 281 281 281 281 281 281 281 281 28
04 PROD
Jan Feb Mar Apr May Jul Aug Sep Ood Nov Tr

A:A21: {LRT} [W5] 'Jan A:B21: (Page LRT) [W3] 31 A:C21: {LRT} 930 A:D21: (LRT) 35 A:E21: (LRT) (\$PROC-\$PROC300)*\$DHNOW/\$DHNEW A:F21: (LRT) +\$PROC300 A:G21: {LRT} +\$BLC*C21/B21/\$DHNEW A:H21: (LRT) +\$UA*(\$TSTM-D21)/\$DHNEW A:121: {LRT} @SUM(E21..H21) A:J21: (LRT) +I21-F21 A:K21: (LRT) 5545500 A:L21: (LRT) 9235.23183594095289 A:M21: {LRT} +K21/B21/24 A:N21: {LRT} @MIN(\$SIZE,J21) A:021: {MPage LRT} +N21/\$ASR*(1.18*N21/\$SIZE-0.18) A:P21: {LRT} (J21-N21)*\$DHNEW/\$DHNOW A:Q21: {LRT} +\$PROC300+(N21+P21) A:R21: {LRT} +\$INB*S21 A:S21: {LRT} +Q21/(1-\$INB) A:T21: {LRT} +S21*24*B21*\$DHNOW/1000000 A:U21: {LRT} +T21/\$BOILEFF A:V21: (LRT) +L21-021 A:W21: {LRT} +K21-021*24*B21 X21: {LRT} (CO) +U21*\$COAL\$ 21: {LRT} (CO) +V21*\$KW\$ T:221: {LRT} (CO) +W21*\$KWH\$ A:AA21: {LRT} (CO) +Y21+Z21+1192*0.985 A:AB21: (LRT) (CO) +X21+AA21 A:AC21: {MPage LRT} (F1) +\$PROC*\$B21*24/1000000 A:AD21: {LRT} (F1) +H21*\$B21*24/1000000

A:AE21: (LRT)·(F1) +G21*\$B21*24/1000000 A:AF21: (LRT) (F1) @SUM(AC21..AE21)

EMC ENGINEERS, INC. PROJ. # PROJECT	
011555110	
CALCULATED BY DATE	
CHECKED BY DATE 1/3:/43 SUBJECT	_
SUBJECT	_

STEAM PIPING SCHEMATIC NO SCALE

BOILER FEEDWATER REQUIRED FOR DESUPERHEATER

Feedwater temperature

 $= 230^{\circ} F (IN)$

408°F (OUT)

 $\Delta t = 178^{\circ} F$

Feedwater pressure (assume) = 325 psig

Steam temperature

= 525°F (IN)

408°F (OUT)

 $\Delta t = 117^{\circ} F$

Steam flow rate

 \approx 90,000 lb/hr

Energy Released From: Α.

Steam @ 110 psig, $525^{\circ}F$ $h \cong 1289 \text{ Btu/lb}$

to

Steam @ 110 psig, 408°F

 $h \cong 1228 \text{ Btu/lb}$

61 Btu/lb

@ $90,000 \text{ lb/hr} \times 61 \text{ Btu/lb} = 5,490,000 \text{ Btu/hr}.$

B. **Energy Absorbed From:**

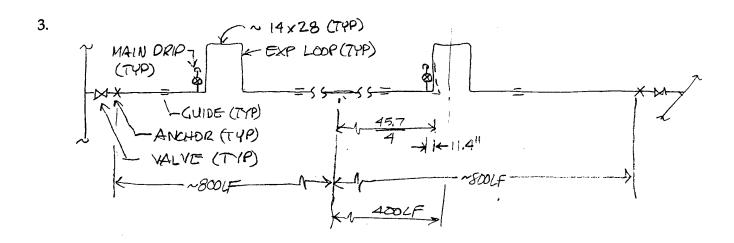
Water @ 325 psig, 230°F $h \cong 207 \text{ Btu/lb}$

to

Steam @ 110 psig, $408^{\circ}F$ $h \cong 1255 \text{ Btu/lb } / -1048 \text{ Btu/lb}$

 $\frac{5,490,000 Btu/hr}{1048 Btu/lb} \approx 5240 lb water/hr converted to steam.$

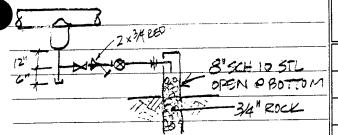
 $\frac{5240 \, lb/hr}{8.33 \, lb/gal \, x \, 60 \, min/hr} \approx 10.5 \, gpm \, (feedwater flow \, rate) \, .$


Use 1" Schedule 80 steel pipe at 5.2 psi/100 LF head loss (@ 70°F).

EMC ENGINEERS, INC. PROJ. #____ PROJECT ____ SHEET NO. _____OF ____ CALCULATED BY CO. DATE // CHECKED BY_____ DATE___ SUBJECT_____

DESIGN STEAM LINE TO ADMINISTRATION AREA

- 1. Approximately 1600 LF or 6" pipe carrying steam at 300 psig (417°F).
- 2. Thermal expansion (T.E.) of carbon steel pipe at 417 °F: (70°F base).


T.E. = 2.86"/100 LF x 16 = 45.7".

Pipe:

Valves
Anchors
Glides
Supports
Traps
Pipe-saddles
Insulation & jacketing
Piers

DRIP & TRAP ASSEMBLY

Description	Units	Mat'l. (\$)	Labor (hrs)
2" Sch 80 stl pipe	2 LF	7	2.5
2" W/N flg. CL300	1 EA	15.44	0.889
2" tee	1 EA	21	1.455
3/4" El	2 EA	3	1.142
2" gate valve (flg) CL 300	2 EA	615	1.081
3/4" trap TD (CL600)	1 EA	490	0.8
8" Sch 10 Pipe	4 LF	80	8
3/4" Union	1 EA	6	0.615
3/4" Sch 80 Stl Pipe	5 LF	6	1.0
		1240	17.5

PIPE ANCHOR ASSEMBLY

			Mat'l.(\$)	<u> Labor (\$)</u>
<u>}</u>	3 2	ST 3.5 x 10 x 12" long	10	6
بــــــــــــــــــــــــــــــــــــ	m	8" Sch. 40 pipe	12	9
,		2-1/2" Steel plates	30	57
	The state of the s	w/3/4" dia. hole on	•	
		4 " sq in bottom plate		
	•	Concrete pier (Est. 2 cy avg.	each)	
<u> </u>	47	5/8" anchor bolts (4" sq. on o	center) 180	150
			232	222
•	,			

PIPF SUPPORT ASSEMBLY 16' O.C. 112 Req'd.

	Mat'l. (\$)	<u>Labor (\$)</u>
——————————————————————————————————————	12 20	4 5
1/2" steel plate with 5/8" b Top & anchor bolts botton		41
< Pier 1-1/2 cy	53 105	<u>30</u> 80

20 3000 4000 3000 3000

EMC ENGINEERS, INC.
PROJ. # PROJECT
SHEET NO. OF DATE
OTHER CALCULATED BY DATE
OTHER CHECKED BY DATE

HOLSTON ARMY AMMUNITION PLANT CHECKED BY DATE KINGSPORT, TENNESSEE

COGENERATION FEASIBILITY STUDY

Steam is presently generated at 315 psia in the central heating plant and distributed to the process buildings. At existing steam demand levels, the existing steam distribution system may be operated at a lower pressure; at 190 psia as is or at 125 psia with some modifications. EMC Engineers is performing a feasibility study to generate electricity with the pressure differential between 315 psia and the lower pressure. Preliminary analysis indicates an economic payback for a cogeneration system at about 2 years. We expect to be contracted to design the cogeneration system in 1992. We require quotes on cogeneration packages for both back pressures for the feasibility study. Packages should include the following:

Steam Turbine

Inlet conditions - 315 psia, 525°F

Flow rate - 80,000 LBH

Exit Conditions - 190 psia and 125 psia (2 systems)

Type - single or multistage (most economical)

Electronic steam control system

Dual electronic and mechanical overspeed trip mechanisms

Speed reduction gears (if necessary)

Package lubrication system including lube oil reservoir, filters, coolers, and pumps.

Insulation and jacketing

Electric Generator

High efficiency synchronous generator 13,800 volts at 60 Hz

Prewired Electrical Switchgear

Circuit breaker (13.8 KV) including operator mechanism and undervoltage release.

Utility grade protective relays

- Over/under voltage
- Over/under frequency
- Reverse power

Stator overtemperature trip

Pilot lights for operating and trip status

Ammeter, voltmeter, and kW/kWh meter

Electronic digital tachometer

Control power transformer

Synchronous panels

- Auto synchronization
- Generator and bus metering
- Voltage regulator and VAR controller

Package

Baseplate Standard testing Installation drawing

We would also like a separate quote on available maintenance contracts.

DATE: ____

TRANSMITTED TO: ___

FRY EQUIPMENT CO., INC.

2600 W. 2ND AVENUE SUITE 7 DENVER, COLORADO 80219 PHONE 303-922-8442

FAX: (303) 922-8445

EMC ENGIN	EERS,	INC.		
PROJ. #	_ PRO	JECT	7 72	. ,
SHEET NO	37	OF	102	
CALCULATED			ATE //	
CHECKED BY	ميعو ()	UV.	TE 1/2	100

ATTENTION: FROM: LOW GROUNDS

SUBJECT: Holston ARMY

9 JAN 92

This Transmission Consists of _____ Pages Including This Page.

- D QUOTE FOR EWING "BP" TURBINE # 287,580 → 813 KW @ 67,710 165/HR
- 2) previous RUDTE FOR EWING BP" TURBINE + 329/ # 173 500, 528 K.W. @ 54,000 165/HR
- (3) previous QUOTE FOR MURRAY MULTI-STAGE 3/2/KI TURBINE, \$500,000, 1600 KW @ 100,000 lbs/Hn

FRY EQUIPMENT COMPANY, INC. - 5-

2600 WEST 2ND AVENUE SUITE 7 DENVER, COLORADO 80219 PHONE 303-922-8442 FAX 303-922-8445

P	R	0	P	0	S	A)
---	---	---	---	---	---	---	---

REPLY TO: FRY EQUIPMENT COMPANY, INC.

No. 7363

Page 1 Of 1

TO: EMC Engineers

JOB: Holston Army Munitions Department

2750 S. Wadsworth Blvd.

LOCATION: Tennessee

Denver, CO 80236

Attn: Mr. Chet Butler P.E.

DATE:

January 9, 1992

WE ARE PLEASED TO QUOTE ON EQUIPMENT AS FOLLOWS:

(1) Coppus Steam Turbine Generator, Ewing Model "BP", capacity of 813 KW when utilizing 67,710 lbs./hr. (maximum flow that the single stage turbine will pass - unable to pass 80,000 lbs./hr.). Based on 300 psig (525° F.), 110 psig exhaust, 3800 RPM turbine speed. System includes a Coppus RLHA-24 single stage turbine, Woodward 505 electronic governor, electronic pressure sensor, speed reduction gear, 480 volt synchronons generator, baseplate, two Rexnord spacer couplings, switchgear designed for parallel operation with the local utility - complete piping design engineering.

BUDGET PRICE: \$227,580.00

Add Alternate "A" 13,800 volt generator from Kato Engineering, Add: \$91,760.00 for generator and associated switchgear, and accessories.

SUBMITTED BY

FRY EQUIPMENT COMPANY, IN

MS DELIVERY WEIGHT

Net 30 Days 16-20 Weeks 6500 lbs.

FOB

South Deerfield, MA

Louis N. Grounds Sales Engineer

C-70

FRY EQUIPMENT COMPANY, INC.

2600 WEST 2ND AVENUE SUITE 7 DENVER, COLORADO 80219 PHONE 303-922-8442 FAX 303-922-8445

PROPOSAL

REPLY TO:	FRY	EQUIPMENT	CO.,	INC.
-----------	-----	-----------	------	------

No.____7348

Page 1 Of 1

TO: EMC ENGINEERS

JOB: Holston Army Munitions Depot

2750 S. Wadsworth Blvd.

Denver, CO 80236 LOCATION:

LOCATION: Tennessee

ATTN: Mr. Dennis Jones, P.E.

DATE:

December 6, 1991

WE ARE PLEASED TO QUOTE ON EQUIPMENT AS FOLLOWS:

(1) Steam Turbine Generation, Coppus-Ewing Model "BP", capacity of 528 KW when utilizing 54,000 lbs/hr of steam flow at 525 deg. F thru a pressure drop of 300 psig to 125 psig.

Coppus RLHA-24 Single Stage Turbine, electronic steam controls, safety controls, 480 volt, 3600 RPM direct drive synchronous generator, standard pre-wired switchgear designed for parallel operation with the local utility. Steam piping engineering.

BUDGET PRICE: \$173,500.00 Net F.O.B.

Add:

Start-up service, \$500.00/day, engineer highly recommended but not mandatory.

FRY EQUIPMENT CO., INC.

Graduated payment schedule or municipal lease 14-18 weeks ARO

4900 lbs.

FOB South Dearfield, MA

C-71

Louis N. Grounds Sales Engineer

SUBMITTED BY

DELIVERY

TURBOMACHINERY CORPORATION

BURLINGTON, IOWA 52501 . TELEPHONE (319) 753-5431 . TELEY 357325

al John Popek

FAX NUMBER 319-752-1616

TELEFAX MESSAGE
try Equipment
TO Denver, Cobrado ATTN: Wayne Fry
TELEFAX NUMBER DATE: No.J. 14. 1991
SUBJECT: EMC Engineers
SHEET of INCLUDING THIS OLUMN
SIGNED John Graham Murray Ref: G13034
I gave this "off the cuff" information to:
Mr. Dennis Jones
EMC Engineers
5 130 South Walter yet Rived
Colored a comme
Phone 303 - 988 - 2951
303 - 988 - 295 j
Turbice France 1410 130
Steam Conditions 300 PS16 - 525°F - 120 PS16
Kw Froduced 100,000 10/142 - 120,000 #
Turbile / Generator RPM 1600
Stead Rate
Inlet/Exhaust Size 62.5 18/KU/HM
Geor S.F.
Garator 41621/301/1011
Ship ment Estimated Dans
Ship ment As wks Estimated Price \$500,000
· · · · · · · · · · · · · · · · · · ·
2 Fill war in January generator, buseplate, a switchgen
1. Price includes turbine gear, generator, buseplate, & switchegen 2. Final user is and Army Ammunitions plant in Tennessec.
S. Waren on I Marian

3. Please send MURRAY LITERATURE to Mr. Jones.

FRY EQUIPMENT COMPANY, INC.

2600 WEST 2ND AVENUE SUITE 7 DENVER, COLORADO 80219 PHONE 303-922-8442 FAX 303-922-8445

PROPOSAL

No.	7363	

REPLY TO: FRY EQUIPMENT COMPANY, INC.

Page 1 Of 1

EMC Engineers

JOB: Holston Army Munitions Department

2750 S. Wadsworth Blvd.

LOCATION:

Denver, CO 80236

Tennessee

Attn: Mr. Chet Butler P.E.

DATE:

January 9, 1992

WE ARE PLEASED TO QUOTE ON EQUIPMENT AS FOLLOWS:

Attn: GLENN BEARD P.E.

Coppus Steam Turbine Generator, Ewing Model "BP", capacity of 813 KW when utilizing 67,710 lbs./hr. (maximum flow that the single stage turbine will pass - unable to pass 80,000 lbs./hr.). Based on 300 psig (525° F.), 110 psig exhaust, 3800 PPM turbine speed. System includes a Coppus RLHA-24 single stage turbine, Woodward 505 electronic governor, electronic pressure sensor, speed reduction gear, 480 volt synchronons generator, baseplate, two Rexnord couplings, switchgear designed for parallel operation with the local utility - complete piping design engineering.

BUDGET PRICE: \$227,580.00

Add Alternate "A"

13,800 volt generator from Kato Engineering, Add: \$91,760.00 for generator and associated switchgear, and accessories.

Add Alterate B' 4160 volt generatur complete with Associated switchger, (step up transformer-by others) add: 24,370° to base price. New total price:\$ 251,950 00

SUBMITTED BY

FRY EQUIPMENT COMPANY, INC.

DELIVERY WEIGHT

Net 30 Days 16-20 Weeks 6500 lbs.

South Deerfield, MA

Louis N. Grounds

DRESSER-RAN

EMC ENGINEERS, INC. PROJ. #____ PROJECT

Steam Turbine, Motor & Generator DivisionHEET NO. 7 OF

CALCULATED BY ___ DATE

1240 N. Lakeview, Suite 200 Anaheim, CA 92807

CHECKED BY SE DATE SUBJECT

Phone: 714/693-0706 Fax: 714/693-9031

FAX TRANSMITTAL

DATE: 1/9/93

TO: <u>Me.</u>	ENNIS DUES	FROM:CHRISTO	OPHER P. BOVE
cc: EMC E	nd 303-622-52	<u> </u>	
THERE WILL BI	PAGE(s) FOLLO	WING THIS COVER PAGE.	
SU	BJECT: OUR	2/WE28/002	
	HAAP	Cogen	

DENNIS:

PLEASE SEE ATTACHED QUOTATION. A HALD

COPY IS BEING SENT IN THE MAIL. IF

QUESTIONS, PLEASE DON'T

HESITATE

ے د برت بدت

DRESSER-RAND

Electric Machinery Terry Turbodyne January 9, 1992 Steam Turbine, Motor & Generator Division

1240 N. Lakeview, Suite 200 Anaheim, CA 92807 714/693-0706 FAX: 714/693-9031

EMC Engineers, Inc. 2750 S. Wadsworth Blvd., C-200 Denver, Colorado 80227-3493

Attention:

Mr. Dennis Jones

Subject:

HAAP Cogeneration Feasibility Study

Kingsport Tennesee

Steam Turbine Generator Set Dresser-Rand #2/WE28/002

Gentlemen:

Thank you for your inquiry regarding Dresser-Rand Steam Turbines.

We are very happy to respond with the following proposal. Please find attached to this letter details of the equipment we are offering along with form ST-302, our Standard Conditions of Sale.

If you have any further questions, or require additional information, please feel free to contact our office at your earliest convenience. We are most anxious to be of help to you not only on this project but at any time.

Sincerely,

Christopher P. Bove Sales Representative

ms

cc:

B. Oakleaf, D-R Wellsville

B. Plant, D-R Bethesda

D. Stowell, George S. Edwards Co., Inc., Marietta, GA

Attachments: Forms ST-302, ST-124, 8802-SST, 8803-MST,

8903-G, 8901-STG

EMC Engineers Inc. 2/WE28/002 January 9, 1992

Item Number	OPTION I - Multistage
Dresser-Rand Model	"TS" MST

CONDITIONS OF SERVICE

Power (EKW)	1150	200
Speed (RPM)	5000/1800	
Steam Flow (#/HR)	80,000	
Inlet Pressure (PSIG)	300	
Inlet Temperature (°F)	525	
Exhaust Pressure (PSIG)	110	

TECHNICAL

Inlet, Size/Location	8" 400 LB RF	
Exhaust, Size/Location	12" 150 LB FF	
Weight (LB)	26,000 est.	

COMMERCIAL

Price (each) *	\$455,000
Shipment (weeks) **	44-46

^{*} F.O.B., Wellsville, New York.

^{** (}Subject to Prior Sale) Promise dates are from receipt of order with sufficient information and authorization to proceed. Shipping lead times are approximate and are subject to factory verification at time of order.

^{***} Maximum casing exhaust pressure is 160 psig.

EMC Engineers Inc. 2/WE28/002 January 9, 1992

OPTION I - Multistage

INCLUDED FEATURES AND ACCESSORIES:

- Woodward NEMA Class "D" Electronic 505 Governor with Valtek pneumatic actuator
- (1) Handvalves
- Manual Speed Changer
- Mechanical Emergency Trip and Throttle Valve
- Built-Up Rotor Construction and forged wheels
- Self-Equalizing Tilting Pad Thrust Bearing
- Labyrinth Shaft Seals
- Gland Condenser
- Sentinel Warning Valve
- Pressure Lube system for turbine and gear
- Shaft Driven Main Oil Pump
- Motor Driven Auxiliary Pump
- Single Oil Cooler
- Dual Oil Filter 25 Micron
- Oil Reservoir in Baseplate
- Six (6) Instruction Manuals
- One-half Hour No-Load Run Test
- Baseplate, under turbine, gear & generator
- Insulation & Jacketing
- Gaugeboard, local on baseplate
- Solenoid Trip
- High speed & low speed couplings
- Certified Hydro Test
- Certified No-Load Test
- Kato or equal generator, 13.8 KV
- Dresser-Rand or equal reduction gear
- Torsional Analysis
- Combined outline drawing
- Performance Curve
- Casing design 700# psig 750°F 160 psig
- Mechanical & electronic overspeed trip

ADDITIONAL FEATURES AND ACCESSORIES:

PRICE EACH

Additional Instruction Manuals

\$ 60

Item Number	OPTION II - Single Stage		
Dresser-Rand Model	503HE - E	Part Load	

CONDITIONS OF SERVICE

Power (EKW)	750	400
Speed (RPM)	4500/1800	
Steam Flow (#/HR)	65,000	65,000
Inlet Pressure (PSIG)	300	300
Inlet Temperature (°F)	525	525
Exhaust Pressure (PSIG)	110	175

TECHNICAL

Inlet, Size/Location	6" 600 LB RF
Exhaust, Size/Location	8" 150 LB FF
Weight (LB)	14,000 est.

COMMERCIAL

Price (each) *	\$136,000
Shipment (weeks) **	28-30

- * F.O.B., Wellsville, New York.
- ** (Subject to Prior Sale) Promise dates are from receipt of order with sufficient information and authorization to proceed. Shipping lead times are approximate and are subject to factory verification at time of order.

EMC Engineers Inc. 2/WE28/002 January 9, 1992

Item Number	OPTION III - Single Stage			
Dresser-Rand Model	503H			

1 / 1 / 2

CONDITIONS OF SERVICE

Power (EKW)	420
Speed (RPM)	3600
Steam Flow (#/HR)	65,000
Inlet Pressure (PSIG)	300
Inlet Temperature (°F)	525
Exhaust Pressure (PSIG)	175

TECHNICAL

Inlet, Size/Location	6" 600 LB RF
Exhaust, Size/Location	8" 150 LB FF
Weight (LB)	11,000 est.

COMMERCIAL

Price (each) *	\$119,000
Shipment (weeks) **	28

- * F.O.B., Wellsville, New York.
- ** (Subject to Prior Sale) Promise dates are from receipt of order with sufficient information and authorization to proceed. Shipping lead times are approximate and are subject to factory verification at time of order.

OPTION II - Single Stage and OPTION III - Single Stage

INCLUDED FEATURES AND ACCESSORIES:

- Woodward NEMA Class "D" Electronic 505 Governor with Valtek pneumatic actuator
- (2) Handvalves(s)
- Manual Speed Changer
- Mechanical Emergency Trip Valve
- Steam Strainer, Integral & Removable
- Built-Up Rotor Construction with Forged Wheels
- Ball Thrust Bearing
- Carbon Shaft Seals
- Sentinel Warning Valve
- Ring Oil Type Lubrication with Trico Oilers
- Pressure Lube on gear only
 - Shaft Driven Main Oil Pump
 - Single Oil Cooler
 - Single Oil Filter 25 Micron
- Six (6) Instruction Manuals
- One-half Hour No-Load Run Test
- Baseplate, under turbine, gear & generator
- Insulation & Jacketing, painted steel
- Gaugeboard, local
- Solenoid Trip
- High speed and low speed couplings
- Certified Hydro Test
- Certified No-Load Test
- Kato or equal generator 460 KV
- Dresser-Rand or equal reduction gear Option II only
- Torsional Analysis
- Combined Outline Drawing
- Performance Curve
- Casing Design Maximum 700 psig 750°F 300 psig
- Mechanical and electronic overspeed trip

ADDITIONAL FEATURES AND ACCESSORIES:

PRICE EACH

- Additional Instruction Manuals

\$ 60

EMC Engineers Inc. 2/WE28/002 January 9, 1992

EMC ENGIN		
PROJ. #	PROJECT	· <u></u>
SHEET NO	<u>ଟି/</u> OF୍	<u> 102</u>
CALCULATED	D BY[DATE 1/11
CHECKED BY	/D/	ATE
SUBJECT		

OPTIONS:

A) 13.8 KV Generator

Option I

Included

Option II

Add \$58,000 net

Option III

Add \$50,000 net

- B) Switchgear including:
 - Circuit breaker with operator mechanism and under voltage release
 - Protective Relays
 - over/under voltage
 - over/under frequency
 - reverse power
 - Stator overtemperature trip
 - Pilot lights for operating and trip status
 - Ammeter, voltmeter, KW/MW meter
 - Control power transformer
 - Governor mounted in switchgear
 - Synchronous panels
 - auto synchronization
 - generator and bus metering
 - voltage regulator and VAR controller

Option I - 13.8 KV ADD \$87,000 net

Option II & III - 480 KV ADD \$67,000 net (NOTE: Use Option I adder for 13.8 KV)

STANDARD CONDITIONS OF SALE

"These are the terms of payment applicable to products from the Steam Turbine, Motor & Generator Division of the Dresser-Rand Plant in Wellsville, New York. When these terms and conditions are included in, or attached to, a proposal made by Dresser-Rand, said proposal shall remain open for thirty (30) days and in the meantime may be changed or withdrawn. These terms and conditions shall exclusively govern the sale and Purchaser's acceptance of Dresser-Rand's proposal and is expressly limited to these terms and conditions. Dresser-Rand hereby gives notice that it objects to any additional or different terms and conditions which may be contained in Purchaser's assent to Dresser-Rand's terms and conditions."

TERMS OF PAYMENT

A. These are the Steam Turbine, Motor & Generator Division's of Dresser-Rand standard terms of payment for domestic orders.

On all orders under \$100,000 regardless of manufacturing schedule; and those orders over \$100,000 with a manufacturing schedule of less than six (6) months.

Net cash within thirty (30) days after shipment, or after notification that Dresser-Rand is ready to ship. These terms apply to partial as well as complete shipments.

On orders over \$100,000 with a manufacturing schedule of six (6) months or longer:

10% - With Purchaser's Order, Letter of Intent, or written authorization, whichever bears the earliest date.

80% — In approximately equal payments every sixty (60) days, to commence sixty (60) days after date of Purchaser's order and to continue through the balance of the proposed manufacturing schedule.

10% - Due upon shipment or notification that Dresser-Rand is ready to ship.

B. "Dresser-Rand's standard terms of payment for export orders are the same as stated above for domestic orders except that the Purchaser shall promptly, after placement of order, establish an irrevocable letter of credit—covering the full purchase price less any payment made upon placement of order confirmed by a bank in New York, NY which will authorize payment to the Steam Turbine, Motor & Generator Division of Dresser-Rand against its presentation of commercial invoices, packing lists and shipping documents. If other terms are acceptable, they must be set forth elsewhere in the proposal or order or must be set forth in some other writing signed by Dresser-Rand."

PRICE ADJUSTMENT

The following clauses are applicable to the extent they are referred to elsewhere in this proposal. Any purchased material whose price will be adjusted to reflect the vendor's price in effect at the time of shipment is listed as an exception.

- Clause A The prices named herein for Dresser-Rand equipment are not subject to any change from the prices in effect on the date the order is accepted.
- Clause B The prices named herein for Dresser-Rand equipment will be adjusted to the price in effect at the time of shipment.
- Clause C The prices named herein for Dresser-Rand equipment are firm for all deliveries within the first twelve (12) months after the date of the purchase order. For quoted deliveries "longer than twelve (12) months", or for deliveries "extended beyond twelve (12) months" for the customer's convenience, the prices named herein will be adjusted from the twelfth month after the date of contract to the month of shipment in accordance with the following adjustment clause.
- Clause D The prices named herein for Dresser-Rand equipment will be adjusted from the date of the contract to the month of shipment in accordance with the following adjustment clause.

ADJUSTMENT CLAUSE

The prices will be adjusted upward or downward for the time stated above for changes in labor and material costs, based on 45% of the contract price representing the amount of labor and 55% of the contract price representing the amount of material. The labor portion shall be adjusted in accordance with the union contract in effect at the Steam Turbine, Motor & Generator Division of Dresser-Rand plant in Wellsville, New York. The material portion shall be adjusted in accordance with the Foundry and Forge Shop Products Index (Code 1015) as determined and reported monthly by the Bureau of Labor Statistics, U.S. Department of Labor's Wholesale Prices and Price Indexes Publications. In no case shall the final price be less than the contract price.

March, 1988

DRESSER-RAND COMPANY GENERAL TERMS OF SALE — EQUIPMENT AND PARTS

. General

Seller's prices are based on these sales terms. This document together with any additional writings signed by Seller shall represent the final, complete and exclusive agreement between the parties for the sale and use of Seller's equipment, spare and replacement parts, service work incidental thereto and all related matters, and may not be modified, supplemented, explained or waived by parol evidence or in any other way, except in a writing signed by an authorized representative of Seller. Unless prior written agreement is reached, any work commenced by Seller shall be in accordance with the terms and conditions set forth herein. Any reference by Seller to Buyer's specifications and similar requirements are only to describe the products and work covered hereby and no warranties or other items therein shall have any force or effect. Catalogs, circulars and similar pamphlets of the Seller are issued for general information purposes only and shall not be deemed to modify the provisions hereof.

2. Taxes

Any sales, use, or other taxes and duties imposed on this sale, or on this transaction, are not included in the price. Such taxes shall be billed separately to the Buyer. Seller will accept a valid exemption certificate from the Buyer if applicable; however, if an exemption certificate previously accepted is not recognized by the governmental taxing authority involved and the Seller is required to pay the tax covered by such exemption certificate, Buyer agrees to promptly reimburse Seller for the taxes paid.

3. Title and Risk of Loss

Full risk of loss (including transportation delays and losses) and title shall pass to Buyer upon delivery of products to the F.O.B. point or if Seller consents to a delay in shipment beyond the scheduled date at the request of Buyer, upon notification by Seller to Buyer that the products are ready for shipment. However, Seller retains title, for security purposes only, to all products until paid for in full in cash and Seller may, at Seller's option, repossess the same, upon Buyer's default in payment hereunder, and charge Buyer with any deficiency.

4. Delivery and Delays

A. The Seller shall use its best efforts to meet its promised delivery dates. It is understood that Seller's delivery dates are good faith estimates made by Seller at the time of quotation or date of order, as applicable.

The Seller shall not be liable for any non-performance or delay due to war, riots, fire, flood, strikes or other labor difficulty, governmental actions, acts of the Buyer, delays in transportation, inability to obtain necessary labor or materials from usual sources, or other causes beyond the reasonable control of the Seller. In the event of delay in performance due to any such cause, the date of delivery or time for completion will be adjusted to reflect the length of time lost by reason of such delay. The Buyer's receipt of the equipment, spare or replacement parts shall constitute a waiver of any claims for delay.

5. Patents

Seller agrees to assume the defense of any suit for infringement of any United States patents brought against Buyer to the extent such suit charges infringement of an apparatus or product claim by Seller's product in and of itself, provided (i) said product is built entirely to Seller's design, (ii) Buyer notifies Seller in writing of the filling of such suit and Seller has the right to defend, settle and make changes in the product for the purpose of avoiding infringement. Seller assumes no responsibility for charges of infringement of any process or method claims, unless infringement of such claim is the result of following specific instructions furnished by Seller.

6. Manufacturing Sources and Standards

- A. To maintain delivery schedules and to best utilize Seller's manufacturing capacity, Seller reserves the right to have all or any part of the Buyer's order manufactured at any of Seller's, its subsidiaries or licensee's plants on a worldwide basis.
- B. Seller reserves the right to change its specifications, drawings, and standards with the provision that such changes will not impair the performance of its products or parts, and further that such products, and parts will meet any of Buyer's specifications and other specific product requirements previously agreed to and made a part of this agreement.

7. Acceptance and Inspection

A. All products shall be finally inspected and accepted by Buyer within fourteen (14) days after delivery. Buyer shall make all claims (including claims for shortages) excepting only those provided for under the WARRANTY and PATENTS clauses herein in writing within said fourteen (14) day period or they are waived. There shall be no revocation of acceptance. Rejection may be only for defects substantially impairing the value of products or work and Buyer's remedy for lesser defects shall be in accordance with the WARRANTY clause herein.

If Buyer wrongfully rejects or revokes acceptance of items tendered under this agreement, or fails to make a payment due on or before delivery, or repudiates this agreement, Seller shalf, at its option, have a right to recover as damages either the price as stated herein (upon recovery of the price the items involved shall become the property of the Buyer) or the profit (including reasonable overhead) which the Seller would have made from full performance, together with reasonable costs and expenses incurred.

8. Warranty

- A. The Seller warrants that the equipment manufactured by it and delivered hereunder will be free from defects in material and workmanship for a period of twelve (12) months from the date of initial startup or eighteen (18) months from the date of shipment, whichever shall first occur. In the case of spare or replacement parts manufactured by Seller, the warranty period shall be for a period of six (6) months from initial use of the part or nine (9) months from shipment of such part, whichever shall first occur. The Buyer shall be obligated to promptly report any claimed defect in writing to the Seller immediately upon discovery and, in any event, within the above period. After notice from Buyer and substantiation of the claim, Seller shall, at its option, correct such defect either by suitable repair to such equipment or part, or by furnishing replacement equipment or part(s), as necessary, to the original F.O.B. point of ship-
- B. THE SELLER MAKES NO OTHER WARRANTY OR REPRESENTATION OF ANY KIND. ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED.
- C. With respect to equipment, parts and work not manufactured or performed by Seller, Seller's only obligation shall be to assign to Buyer whatever warranty Seller receives from the manufacturer.
- D. The Seller shall not be liable for the cost of any repair, replacement, or adjustment to the equipment or parts made by the Buyer or for labor performed by the Buyer or others, without the Seller's prior written approval.
- E. No equipment or part furnished by Seller shall be deemed to be defective by reason of normal wear and tear, failure to resist erosive or corrosive action of any fluid or gas, or Buyer's failure to properly store, install, operate or maintain the equipment in accordance with good industry practices or specific recommendations of Seller.
- F. The Buyer shall not operate equipment which is considered to be defective without first notifying the Seller in writing of its intention to do so. Any such use of the equipment will be at the Buyer's sole risk and expense.
- G. The repair or replacement of the equipment, spare or replacement part(s) by the Seller under this Warranty provision, shall constitute Seller's sole obligation and Buyer's sole and exclusive remedy for all claims of defects regarding the equipment and parts furnished hereunder.

9. Limitation of Liability

- A. The remedies of the Buyer set forth herein are exclusive and the total liability of the Seller with respect to claims under this contract or regarding the equipment, spare or replacement parts and services incidental thereto as furnished hereunder, whether based in contract, tort (including negligence and strict liability) or otherwise, shall not exceed the purchase price of the unit of equipment or part(s) upon which such liability is based.
- B. The Seller shall in no event be liable for any consequential, incidental, indirect, special or punitive damages arising out of this contract or any breach thereof, or any defect in, or failure of, or malfunction of the equipment or part(s) hereunder, including but not limited to, claims based upon loss of use, lost profits or revenue, interest, lost goodwill, work stoppage, impairment of other goods, loss by reason of shutdown or non-operation, increased expenses of operation, cost of purchase of replacement power or claims of Buyer or customers of Buyer for service interruption whether or not such loss or damage is based on contract, tort (including negligence and strict liability) or otherwise.
- C. Any action by Buyer arising hereunder or relating hereto, whether based on breach of contract, tort (including negligence and strict liability) or other theories, must be commenced within one (1) year after the cause of action accrues or it shall be barred.

10. Nuclear Liability

In the event that the equipment or parts sold hereunder are to be used in a nuclear facility, the Buyer shall, prior to such use, arrange for insurance or a governmental indemnity protecting the Seller against liability and hereby releases and agrees to indemnify the Seller and its suppliers from any nuclear damage, including loss of use, which in any manner arises out of a nuclear incident, whether alleged to be due, in whole or in part, to the negligence or other cause of the Seller or its suppliers.

11. Assignment

Except as to Seller's rights under Article 6 (A), herein, neither party shall assign or transfer this contract without the prior written consent of the other party, which shall not be unreasonably withheld.

12. Governing Law

The rights and obligations of the parties shall be governed by the laws of the State of New York.

DRESSER-RAND

Page	 of	
_		

STANDARD CONDITIONS OF SALE

Service Representative (Domestic)

- a. The machinery shall be installed and put in operation by and at the expense of the Purchaser. Upon request of the Purchaser, Dresser-Rand will furnish the services of a Service Representative to advise and assist the Purchaser in the installation of the machinery. Purchaser shall furnish safe and proper working conditions, and safe storage of any special tools. The Purchaser shall furnish all necessary help, labor, cranes, cribbing, oil, supplies, station operating force, steam, electricity, water and other material and supplies required to install and operate the machinery and shall furnish free available crane and switching service and the services of operators and other employees that may be necessary in connection therewith.
- b. Dresser-Rand shall not be responsible for materials furnished by the Purchaser or for acts or failures to act of personnel furnished by the Purchaser, nor shall Dresser-Rand be responsible for the construction of foundations or for the nature of the soil upon which they are built.
- c. Unless otherwise stipulated, these services are available to the Purchaser at the following terms:

 - (2) Hours worked in excess of the normal eight hour day, Monday through Friday, and hours worked on Saturday, Sunday and Holidays, will be billed at the rate of \$\frac{3}{3} + \frac{3}{3} + \frac{3}
 - (3) The rates specified above are not subject to change provided the Service Representative begins to perform these services within 90 days after the equipment is shipped.
 - (4) The minimum billing for less than four hours worked or spent in travel will be 50% of the daily rate. The minimum billing for more than four hours but less than eight hours worked or spent in travel will be the full daily rate.
 - (5) The time when the Service Representative is ready, willing and able to work at the job site, Monday through Friday, shall be considered to be time worked for the purposes of this paragraph, even though his services are not in fact utilized.
 - (6) The rate quoted in **c**. (1) does not include living expenses for Saturday, Sunday and Holidays when the Service Representative is available for work at the job site. Subsistence for these days will be billed at \$ per day.
 - d. Dresser-Rand shall not in any event be held liable for any special, indirect or consequential damages.

Steam Turbine, Motor & Generator Division Wellsville, NY 14895

SINGLE STAGE MATERIALS OF CONSTRUCTION

 •

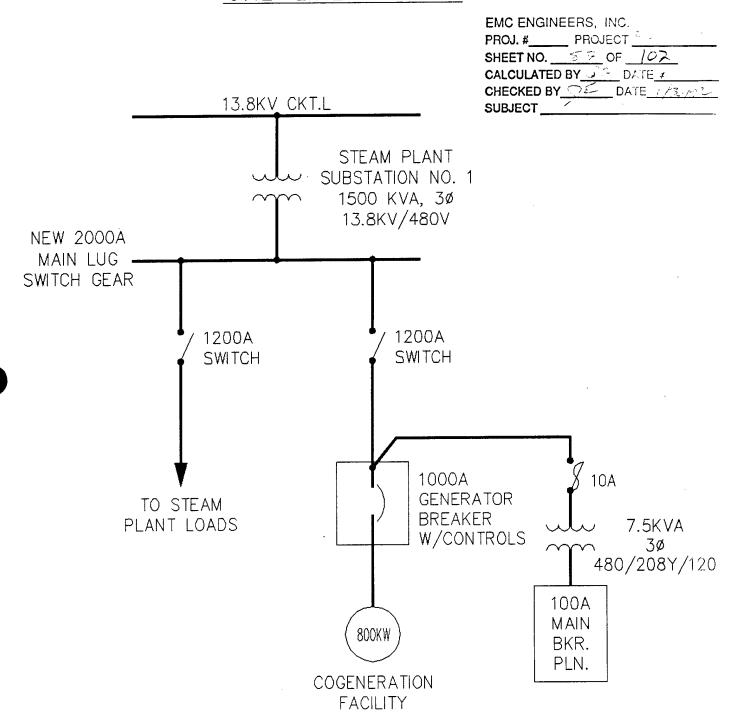
		·		1	, 	
TURBODYNE CLASS	1	2	3)	4	5	6
NEMA CLASS	1	5	6	9	10	11
Steam Inlet Portion of Case	ASTM A278 Cast Iron CL. 40	ASTM A216 Cast Steel GR. WCB	ASTM A216 Cast Steel GR. WCB	ASTM A216 Cast Steel GR. WCB	ASTM A217 Carbon Moly GR. WCI	ASTM A217 Chrome Moly GR. WC6
Top Portion of Case and Exhaust Portion	ASTM A278 Cast Iron CL. 40	ASTM A278 Cast Iron CL. 40	ASTM A216 Cast Steel GR. WCB	ASTM A216 Cast Steel GR. WCB	ASTM A216 Cast Steel GR. WCB (1)	ASTM A216 Cast Steel GR. WCB (2)
Steam Chest	ASTM A278 CL 40 Cl / Cl	ASTM A216 GRWCB Cast Stl	ASTM A216 GRWC8 Cast Sti	ASTM A216 GRWCB Steel	ASTM A217 GRWC6 Carbon Moly	ASTM A217 GRWC1 Chrome Moly
Nozzle Ring	ASTM A285 Sti Plate*	ASTM A285 Sti Plate*	ASTM A285 Sti Plate*	ASTM A285 Sti Plate	ASTM A285 Sti Plate*	ASTM A285 Stl Plate
Buckets & Shroud Bands	AISI 403 Stainless Steel	AISI 403 Stainless Steel	AISI 403 Stainless Steel	AISI 403 Stainless Steel	AISI 403 Stainless Steel	AISI 403 Stainless Steel
Emergency Gov Valve	ASTM A582 Stainless Steel	ASTM A582 Stainless Steel	ASTM A582 Stainless Steel	ASTM A582 Stainless Steel	ASTM A582 Stainless Steel	ASTM A582 Stainless Steel
Packing Rings	Carbon	Carbon	Carbon	Carbon	Carbon	Carbon
Packing Ring Spacers	ASTM A240 Stainless Steel	ASTM A240 Stainless Steel	ASTM A240 Stainless Steel	ASTM A240 Stainless Steel	ASTM A240 Stainless Steel	ASTM A240 Stainless Steel
Packing Ring Springs	Inconel	Inconel	Inconel	Inconel	Inconel	Inconel
Brg. Journal	StI & Babbitt	Sti & Babbitt	StI & Babbitt	StI & Babbitt	StI & Babbitt	StI & Babbitt

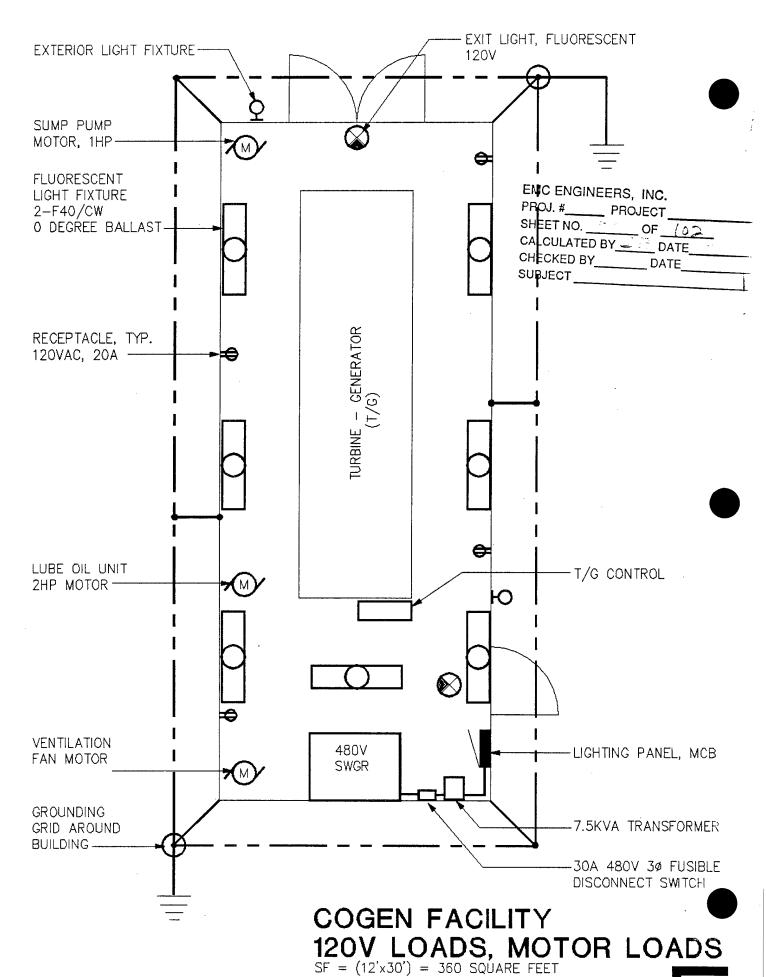
Material supplied is minimum grade. Forgings will be supplied where conditions dictate unless ordered as optional.

^{*}Stainless Optional

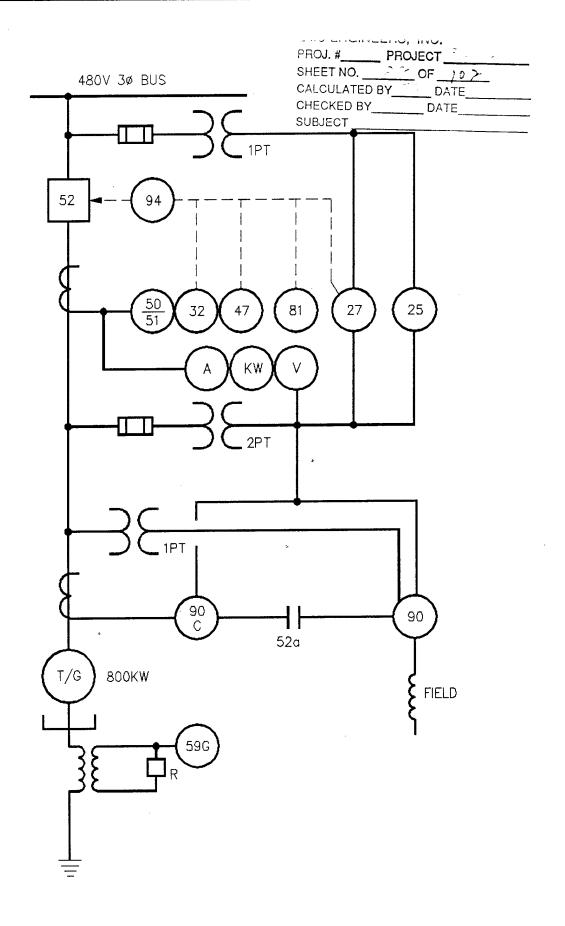
MULTISTAGE MATERIALS OF CONSTRUCTION

PART	CLASS I	CLASS II OR III
Steam End	Cast Iron ASTM A 278 CI 40	Cast Steel ASTM A 216 Gr WCB
Barrel and Exhaust End	Cast Iron ASTM A 278 CI 40 Cast Steel ASTM A 216 GWCB	MTL. Depends on Size and Temp.
Nozzle Ring	Steel Plate ASTM A 285 Gr C	Steel Plate ASTM A 285 Gr C
Diaphragm Nozzies	Stainless Steel AISI 403	Stainless Steel AISI 403
Shaft SAE 4140	Hot Rolled Steel Alloy*	Hot Rolled Steel Alloy*
Wheels SAE 1045	Open Hearth Carb Steel Plate*	Open Hearth Carb Steel Plate*
Buckets & Shroud Bands	Stainless Steel AISI 403	Stainless Steel AISI 403
Governor Valve, Seats & Stem	Stainless Steel ASTM A 351 Gr 420	Stainless Steel ASIM A 351 Gr 420
Emergency Governor Valve	Stainless Steel ASTM A 582 Gr 416	Stainless Steel ASTM A 582 Gr 416
Packing Rings	Carbon	Carbon
Packing Ring Spacers	Stainless Steel ASTM A 240 Gr D	Stainless Steel ASTM A 240 Gr D
Packing Ring Springs	Inconel	Inconel
Steam Strainer	Stainless Steel AISI 302	Stainless Steel AISI 302
Journal Bearings	Babbitt Lined	Babbitt Lined


^{*}Material specified is minimum grade. Forgings will be supplied as dictated by speed, pressure and temperature.


COGENERATION QUOTES	TES															
					STEAM		SWITCH	ADDED	TOTAL	SUPPORT	ADDED	ADDED			ANNUAL	1
		POWER	STEAM		PIPING	BASE	A SEA	ELENO.	1/GSE	SYSTEN	ECTING.	SSTHE	TOTAL	STEAN	8081	SIMPLE
MANUFACTURE	NOTTO	OUTPUT	_ ₹0,4	VOLTAGE	PRESS	SOST	<u> </u>	SOST SOST	SOST ST	SS	<u>8821</u>	88 <u>s</u> 1	ळ्डा	RATE	SAVINGS	PAYBACK
		₹ §	Ŧ	Ş	(PSG)	Ð	Ð	Ð	æ	æ	€	€	€	LBHKW	Ð	(YHS)
COPPUS-EWING	-	813	67,700	460	110	\$227,580	NON	NON NON	\$365,124		\$97,629	\$133,894	\$743,449	83	\$187,937	4.0
DHESSER-RAND	0	750	65,000	460	110	110 \$136,000	\$67,000	NON W	\$327,487		\$97,629	\$133,894	\$705,812	87	\$173,610	4.1
DAESSER-RAND	_	1,150	80,000	13,800	10	\$455,000	\$87,000	NON	\$846,564		\$97,629	\$133,894	\$1,224,889	2	\$240,511	5.1
COPPUS-EWING	CI	813	67,700	13,800	110	\$227,580	\$33,760	\$58,000	\$505,627	\$146,802	\$97,629	\$133,894	\$883,952	83	\$187,937	4.7
DRESSER-RAND	N	750	65,000	13,800	10	\$136,000	\$87,000	\$58,000	\$446,921		\$97,629	\$133,894	\$825,246	87	\$173,610	8.4
DRESSER-RAND	က	420	65,000	460	175 \$1	\$119,000	\$67,000	NON HINDE	\$301,457		\$97,629	WON.	\$545,888	155	\$107,336	5.1
DRESSER-RAND	CI	400	65,000	460	175	\$136,000	\$67,000	NON W	\$327,487		\$97,629	NON NON	\$571,918	163	\$102,132	5.6
DHESSEH-RAND	က	450	65,000	13,800	175	\$119,000	\$87,000	\$50,000	\$408,641		\$97,629	NON	\$653,072	155	\$107,336	6.1
DRESSER-RAND	2	400	65,000	13,800	175	\$136,000	\$87,000	\$58,000	\$446,921		\$97,629	NON	\$691,352	163	\$102,132	8.9

EMC ENGIN	EERS.	INC		
PROJ. #	PRO	JECT		
SHEET NO.		OF	102	
CALCULATED	BY	- ~' —	ATE	
CHECKED BY	24	DA		
SUBJECT		_ 57		- 1 - 1 - 2


COGENERATION QUOTE

HOLSTON COGENERATION FACILITY ONE-LINE DIAGRAM

C-88

SYNCHRONOUS GENERATOR PROTECTIVE RELAYING

FIGURE 7-6. COGENERATION PROTECTIVE RELAYING ONE-LINE DIAGRAM LEGEND

25	Synchronizing relay for synchronizing relay for synchronizing relay for synchronization generated (mechanical).	chronous generation. Speed ration (\pm 5% of synchronous
27	Undervoltage, \geq 80%, \leq 0.5 90% \leq 0.5 sec. at V=0, 1/pha	sec., or time undervoltage, ase.
32	Reverse power.	
47/60	Phase sequence and voltage h	palance.
50/51	Instantaneous and time over	current, 1/phase.
50/51V	Voltage controlled time over 1/phase.	rcurrent with instantaneous,
50/51N	Instantaneous and time resid	dual overcurrent.
52	Circuit breaker.	
59	Overvoltage, \leq 115%, \leq 0.1	sec.
59G	Ground overvoltage (generat	or side).
59N	Ground overvoltage (utility	side).
81-0	Overfrequency, \leq 63Hz, \leq 0.	5 sec.
81-U	Underfrequency, \geq 57Hz, \leq 0	.5 sec.
94	Tripping relay.	
WH	Watt hour meter.	EMC ENGINEERS, INC. PROJ. # PROJECT
S.A.	Surge arrestor.	SHEET NO. 90 OF 102 CALCULATED BY DATE CHECKED BY DATE SUBJECT
,	•	

ENGINEERS OF	Holston	n Army A	Ammunition P	lant DACA01 — 91 –			SHEET 1 DATE PREP 01/21/92	ARED
Engineer	EMC E		s, Inc - PN	¥ 3102002			Estimator	
Description	COGE	NERATION NEOST	ON SYSTEM C	COST			Checked by	,
Description	Qu No.	antity Unit	Materi Per		Hours	Labor Hourly		Total
TURBINE/GENERATOR PACKAGE		Meas.	Unit \$238,456.00	Total \$238,456	Per Unit	Rate	Total	Cost \$238,456
SYSTEM SUPPORT EQUIPMENT		LS	\$95,874.00	\$95,874				\$95,87
ADMIN AREA STEAM MAIN	1	LS	\$87,444.00	\$87,444				\$87,44
ELECTRICAL.	1	LS	\$63,760.00	\$63,760				\$63,760
	 	 -						
	ļ .							
							 	
	I							
	<u> </u>							
	 							
								
	 -							
		ļ					 	
	-						<u> </u>	
	+							
	 	1						
		ļ						
SUBTOTA				\$485,534				\$485,53
OVERHEAD & BOND	0.16			\$77,685				\$77,68
PROFIT SUBTOTA	0.1	 		\$563,219 \$56,322			 	\$563,21 \$56,32
SUBTOTA	Д			\$619,541				\$619,54
CONTINGENCY TOTAL ESTIMATED COST	0.2	Travia	Argot.	\$123,908 \$743,450		1 444,7		\$123,90 \$743 ,45

ENGINEERS Project Engineer Description Description	Holsto Limite EMC I Denve TURB <tur< th=""><th>n Army / d Energy ngineer</th><th>Ammunition Play / Studies — D s, Inc — PN#</th><th>ant ACA01 91</th><th></th><th>-</th><th>DATE PREP</th><th></th></tur<>	n Army / d Energy ngineer	Ammunition Play / Studies — D s, Inc — PN#	ant ACA01 91		-	DATE PREP	
Description	EMC E Denve TURB <tur< th=""><th>ngineer r, CO NE/GEN</th><th>s, Inc − PN#</th><th>3102-002</th><th></th><th></th><th></th><th></th></tur<>	ngineer r, CO NE/GEN	s, Inc − PN#	3102-002				
	TURB <tur Qu</tur 	NE/GEN	EDATOR				Estimator	
	<tur< th=""><th></th><th>ERAIUN</th><th></th><th></th><th></th><th>Checked by</th><th></th></tur<>		ERAIUN				Checked by	
Description					Г		95	
Description	140.	uantity Unit	Materia Per	<u></u>	Hours	Labor Hourly	T	Total
		Meas.	Unit	Total	Per Unit	Rate	Total	Cost
TURBINE/GENERATOR SET FREIGHT		EA LS	\$227,580.00 \$5,000.00	\$227,580 \$5,000	40	\$21.90	\$876	\$228,456 \$5,000
START-UP		LS	\$5,000.00	\$5,000				\$5,000
		-						
<u>, </u>		 						
				· · · · · · · · · · · · · · · · · · ·				
								
		1						
								
				· · · · · · · · · · · · · · · · · · ·				
		 						
		+				*		
		 						
		1				· · · · · · · · · · · · · · · · · · ·		
		\perp						
SUBTO	TAL	 		\$237,580			\$876	\$238,456
OVERHEAD & BOND	0.16			\$38,013			\$140	\$38,153
PROFIT SUBTO	0.1 0.1	 		\$275,593 \$27,559			\$1,016 \$102	\$276,609 \$27,661
SUBTO	TAL			\$303,152			\$1,118	\$27,661
CONTINGENCY TOTAL ESTIMATED COST	0.2	- A - A		\$60,630 \$363,782		2 14 1	\$224 \$1,34 1	\$60,854 \$365,124

ENGINEERS OF	JIMIC	<u>U VIC</u>	F PRUDA	IDLE C	<u> </u>		SHEET 1 O	
			Ammunition Pla				DATE PREPA	RED
			Studies - D		-D-0032		01/13/92	
Engineer		_	s, Inc − PN#	3102-002			Estimator	
Dan adada a	Denver		ON SYSTEM SU	IPPORT FO	IIIPMENT		Checked by	
Description	(SYSC		JN SISIEM SC	orroni Lu	OII MILITI		Silver Sy	
		antity	Material			Labor		
Description	No.	Unit	Per		Hours	Hourly		Total
•	Units		Unit	Total	Per Unit	Rate	Total	Cost
PRE-ENGINEERED BUILDING	360	SF	\$6.30	\$2,268	0.17	\$21.90	\$1,340	\$3,60
>STEEL PIPE, A-53, SCH 40< 6 IN WITH CL 300 WLD NK FLGS	160	I F	\$34.00	\$5,440	0.96	\$21.90	\$3,364	\$8.80
10 IN WITH CL300 WLD NK FLGS	140		\$43.00	\$6,020	1.5	\$21.90	\$4,599	\$10,61
>STEEL PIPE, A-53, SCH 80 <								
1 IN WITH CL 300 WLD NK FLGS	150	LF	\$1.60	\$240	0.2	\$21.90	\$657	\$89
>PIPE INSULATION, FIBERGLASS		ļ. 	# 2.60	\$540	0.08	\$21.90	\$263	\$80
1 IN, 2 IN THK 500 DEG W/ ASJ 6 IN, 2 IN THK 500 DEG W/ ASJ	150 160		\$3.60 \$6.50	\$540 \$1,040		\$21.90	\$561	\$1,60
10 IN, 2 IN THK 500 DEG W/ ASJ	140		\$9.60	\$1,344		\$21.90	\$702	\$2,04
>GATE VALVE, CL 300<								
2 IN FLANGED, STEEL BODY		EA	\$615.00	\$2,460		\$21.90	\$95	\$2,55 \$3.57
3 IN FLANGED, STEEL BODY		EA EA	\$1,700.00 \$2,025.00	\$3,400 \$6,075		\$21.90 \$21.90	\$175 \$544	\$3,57 \$6,61
6 IN FLANGED, STEEL BODY 16 IN FLANGED, STEEL BODY		EA	\$14,300.00	\$14,300		\$21.90	\$584	\$14,88
GATE VALVE, CL 150								****
2 IN FLANGED, STEEL BODY		EA	\$475.00	\$3,325 \$3,300		\$21.90	\$153 \$467	\$3,47 \$3,76
4 IN FLANGED, STEEL BODY 10 IN FLANGED, STEEL BODY		EA EA	\$825.00 \$3,175.00	\$3,300 \$3,175		\$21.90 \$21.90	\$467	\$3,76 \$3,41
>STM TRAP W/STRNR & BLO-DN:	 		Ψ0,175.00	40,170	, 0.303		1200	
3/4 IN, CL 600 FLANGED	3	EA	\$490.00	\$1,470	0.8	\$21.90	\$53	\$1,52
3/4 IN, CL 150 THREADED	2	EA	\$203.00	\$406	0.4	\$21.90	\$18	\$42
>PRV, PILOT-OPERATED<	-	EA	\$1,700.00	\$1,700	4	\$21.90	\$88	\$1,78
3 IN FLANGED 4 IN FLANGED		EA	\$2,000.00	\$2,000		\$21.90		\$2,08
REDUCER, ECC, 10X4		EA	\$70.00	\$140		\$21.90	\$350	\$49
6 IN PSV W/ DRIP PAN ELBOW		EA	\$1,500.00	\$1,500		\$21.90	\$350	\$1,85
PRESSURE GAUGE ASSY, 3.5 IN		EA	\$60.00	\$600		\$21.90 \$21.90		\$73 \$1,69
THERMOMETER AND WELL PIPE SUPPORT		EA LS	\$270.00 \$2,500.00	\$1,620 \$2,500		\$21.90	\$1,796	\$4.29
PIPE ANCHORS & GUIDES		EA	\$230.00	\$460		\$21.90	\$329	\$78
STEAM TURBINE/GENERATOR SET	1	EA						
DESUPERHEATER		EA	\$10,000.00	\$10,000		\$21.90		\$10,13 \$2,52
START-UP SYSTEMS DEMOLITION		LS			60 40	\$42.00 \$21.90		\$87
BENIGETHOR	·	100						
	 							
							1	
	-				-		 	
	-							
	 	 					 	
	 	 						
	-	ļ					 	
	1						 	
	 	ļ			 		 	
	-	 			 		 	
SUBTOTAL	 	<u> </u>		\$75,323			\$20,551	\$95,87
OVERHEAD & BOND	0.16			\$12,052			\$3,288	\$15,34
SUBTOTAL				\$87,375	L		\$23,839	\$111,21
PROFIT SUBTOTAL	0.1	-		\$8,737 \$96,112			\$2,384 \$26,223	\$11,12 \$122,33
CONTINGENCY	0.2	1		\$19,222			\$5,245	\$24,46
TOTAL ESTIMATED COST	1 0.2	V -		\$115,335			\$31,467	\$146,80

ENGINE	RSOPINION OF PROBABLE COST	SHEET 1 OF 1
Project	Holston Army Ammunition Plant	DATE PREPARED
	Limited Energy Studies - DACA01-91-D-0032	01/13/92
Engineer	EMC Engineers, Inc - PN# 3102-002	Estimator
_	Denver, CO	
Description	ADMIN AREA DISTRIBUTION	Checked by

•							Olicoked by	
•		antity	Materia	al .		Labor		
Description	No.	Unit	Per	•	Hours	Hourly		Total
		Meas.	Unit	Total	Per Unit		Total	Cost
6 IN WLDD STL PIPE, SCHED 40	1700	Ŀ	\$14.00	\$23,800	0.587	\$21.90	\$21,854	\$45,654
INSULATION, 500 DEG FIBERGLAS	1700	LF	\$6.50	\$11,050			\$5,957	\$17,007
6 IN GATE VALVE, CL 300 FLGD		EA	\$2,025.00	\$4,050		\$21.90	\$362	
DRIP & TRAP ASSY W/ DRY WELL	2	EA	\$620.00	\$1,240	17.5	\$21.90	\$767	\$2,007
PIPE ANCHOR ASSY & CONC PIER	2	EA	\$230.00	\$460	7.5	\$21.90	\$329	\$789
PIPE SUPPORT ASSY AND PIER		EA	\$105.00	\$9,030	3.7	\$21.90	\$6,969	\$15,999
PIPE GUIDE ASSY & CONC PIER	4	EA	\$230.00	\$920	7.5	\$21.90	\$657	\$1,577
		ļ						
				:				
	ļ							
								,
	<u> </u>							
						•		
					·			
SUBTOTAL				\$50,550			\$36,894	\$87,444
OVERHEAD & BOND	0.16			\$8,088			\$5,903	\$13,991
SUBTOTAL				\$58,638			\$42,797	\$101,435
PROFIT	0.1			\$5,864			\$4,280	\$10,143
SUBTOTAL				\$64,502			\$47,077	\$111,578
CONTINGENCY	0.2			\$12,900			\$9,415	\$22,316
TOTAL ESTIMATED COST				\$77,402				

ENGINEERSOF					701		SHEET 1 C	
Project	Hoiston	Army A	mmunition Pla	nt - 0.4.04	D 0022		DATE PREPA 01/17/92	KED
	Limited	Energy	Studies - DA s, Inc - PN# 3	CAU1-91-	-D-0032		Estimator G	BAIRD
	Denver		s, inc — PN# s	102-002			Latimator	. 6,6
			ISTALLATION (OGENERA	TION FAC	ILITY	Checked by	
	0	n diday	Material			Labor	İ	
Description	No.	untity Unit	Per		Hours	Hourly		Total
Description		Meas.	Unit	Total	Per Unit	Rate	Total	Cost
FUSED DISCONNECT SWITCH	1	EA	\$103.00	\$103	2.5	\$16.19	\$40	\$143
3 PH., 3W, 30A, 600V								
TRANSFORMER, 3 PH., 7.5KVA, DR	1	EA	\$525.00	\$525	11.43	\$16.19	\$185	\$710
480V/208Y120								
		F.	#e02.00	*633	6.67	16.19	\$108	\$731
LIGHTING PANEL, 100A MAIN BKR. 20 CKT, NEMA 3R ENCL.	1	EA	\$623.00	\$623	0.07	10.13	\$100	Ψ/51
20 CKT, NEIVIA SITE NOL.								
MANUAL MOTOR STARTER, SIZE O	2	EA	\$137.00	\$274	1.45	\$16.19	\$47	\$321
MOTOR CIRCUIT INSTALLATION	<u> </u>							
CONDUIT, 3/4" EMT		LF	\$0.47	\$28	0.062	\$16.19		\$88
WIRE, 3#12+#12G EA. CKT.	2.4	CLF	\$6.70	\$16	0.727	\$16.19	\$28	\$44
LIGHTING, FLUORESCENT, 120V	7	EA	\$60.00	\$420	1.4	\$16.19	\$159	\$579
INDUSTRIAL TYPE 2F40CW FIXT.	-		V33.33					
		-	\$150.00	\$300	1.4	\$16.19	\$45	\$345
EXIT LIGHTING, W/ EMERGENCY BATTERY BACKUP FEATURE		EA	\$150.00	\$300	1.7	Ψ10.13	+	4010
								A 400
EXTERIOR LIGHTING, 120V FIXT.	2	EA	\$50.00	\$100	1	\$16.19	\$32	\$132
RECEPTACLE OUTLETS, 120V, 20A	4	EA	\$50.00	\$200	1.25	\$16.19	\$81	\$281
INCL. SURFACE MOUNTING BOX								
LOUR DECOT INCTALLATION								
LIGHTING & RECPT INSTALLATION CONDUIT, 3/4" EMT	160	LF	\$0.47	\$75	0.062	\$16.19	\$161	\$236
WIRE, 2#12+#12G		CLF	\$6.70	\$32	0.727	\$16.19	\$56	\$89
INCTAL PURPLIC CROUNDING							<u> </u>	
INSTALL BUILDING GROUNDING GROUND RODS, 8' LONG, 5/8' DIA	2	EA	\$390.00	\$780	3	\$16.19	\$97	\$877
GROUND GRID, 2/0 BARE CU WIRE	1	CLF	\$100.80	\$101	2.2	\$16.19		\$136
GROUND CONNECT'S, CADWELD	6	EA	\$7.50	\$45	1.14	\$16.19	\$111	\$156
SWITCHGEAR INSTALLATION		-						
2000A MAIN LUG SWITCHGEAR	1	EA	\$15,000.00	\$15,000	24	\$16.19	\$389	\$15,389
W/2-1200A NONFUSIBLE DISC. MODIFY TRANSFORMER PAD FOR	<u> </u>	EA	\$1,000.00	\$1,000	24	\$16.19	\$389	\$1,389
SWITCHGEAR INSTALLATION	 		Ψ1,000.00	Ψ1,000		• • • • • • • • • • • • • • • • • • • 	Ţ,	<u> </u>
FEEDER INSTALLATION FROM SWITCHGEAR IN COGEN BLDG					-			
EXCAVATE TRENCH FOR DUCTS	115	LF			0.75	12.86	\$1,109	\$1,109
UNDERGROUND DUCT, RGS 3" DI	230	LF	\$7.10	\$1,633		\$16.19		\$11,017
700 MCM CABLE, 600V, XHHW BACKFILL TRENCH OVER DUCTS	6.9 115	CLF	\$735.00	\$5,072	185 1.04	\$16.19 \$16.19		\$25,738 \$1,936
CABLE INSTALLATION W/ LUGS		ËA	\$43.50	\$522		\$16.19		\$619
				47.500	40	A 40.40	2104	* 1.00
BUS DUCT CONNECTION FROM 1500KVA XFMR TO SWITCHGEAR	1	EA	\$1,500.00	\$1,500	12	\$16.19	\$194	\$1,694
1500KVA AFIVIR TO SWITCH GEATT				/				
	<u> </u>							
	ļ <u>.</u>	-						
	 							
	-				ļ		+	
	<u> </u>				<u> </u>			
				400 - 1-			#05 446	#00 TO
SUBTOTAL		 		\$28,349 \$4,536			\$35,411 \$5,666	\$63,760 \$10,202
OVERHEAD & BOND SUBTOTAL	0.16	 		\$32,885			\$41,077	\$73,962
PROFIT	0.1			\$3,288			\$4,108	\$7,396
SUBTOTAL	0.2	1		\$36,173 \$7,235			\$45,185 \$9,037	\$81,358 \$16,272
CONTINGENCY TOTAL ESTIMATED COST	1 0.2	1		\$43,408		1 (3800 1)		\$97,629

PRE-ENGINEERED STEEL BUILDING

1992 MEANS 051-235

Building shell	above	foundation	w/26 g	a. colored	roofing	and sid	ding/SF	bare
0			, 0					

\$3

Material

\$0.90

Labor

\$0.70

Equipment

∴ 4.60 x 30 x 12 (1080 + 324 + 252)

= 1,660= 695

Double leaf doors, 6'x7' (495 + 200)

\$2,355

say \$2400

Floor slab-on-grade, direct chute placed (5 cy):

Concrete finishing, float finish (360 SF)

8.35 labor; 0.59 equipment 0.25 labor; 0.05 equipment

Concrete ready mix, 3000 psi (5 cy)

 $52.30 \text{ material} = \$262 \quad \text{say } \$270$

Building Totals:

Material:

1080 + 495 + 270

= 1850

1850

Labor:

324 + 200 + 42 + 90

= 660 + 54

*7*14

Equipment:

252 + 3 + 18

= 273 + 84

357

Total Building

= 2783

2921

Site preparation (40 sy)

0.67 labor; 1.05 equipment

(x 2 for small scale of job)

Labor

Equipment

= 27

54

.__

= 42

84

Total

 $= 69 \times 2$

138

Total Building: 2783 + 138 = 2921

say \$3000

\$3000 /360 SF = 8.33 \$/SF

say 10.00 \$/SF w/ elec. & mech., not including O&P

∴

3600

15% OH

540 4140

10% O&P

414

4554

say \$4600 for building including O&P (12.78 \$/SF).

EMC ENGINEERS, INC.

PROJ. #_____PROJECT_

SHEET NO. _____OF __

CALCULATED BY DATE DATE DATE

SUBJECT ____

PIPE SUPPORT FRAMING

1992 MEANS (051 110) p. 37

6' steam @ 20 lb/LF x 100 LF = 2000 lb x 0.55M & 0.17L = 1100 + 340 = 1,440

10" steam @ 40 lb/LF x 60 LF = 2400 lb x 0.50 M & 0.15L = 1200 _ 360 = 1,560

3,000

Plus Pipe routers, plates, etc. (Allow)

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1

EMC ENGINEERS, INC.
PROJ. #_____ PROJECT_____
SHEET NO. ____ OF ____
CALCULATED BY ____ DATE____
CHECKED BY ____ DATE____
SUBJECT_____

EMC ENGINEERS, INC. LIFE CYCLE COST ANALYSIS (INPUT DATA) PROJ. #_____ PROJECT___ SHEET NO. ____OF ___ **Base Case** CALCULATED BY DATE CHECKED BY_____DATE___ Coal 2,086,488 MMBtu SUBJECT_____ Electricity 58,753,000 kWh Option-1 Proposed System plus repair of existing system. Coal 2,100,533 MMBtu Savings = -14,045 MBtu Electricity 49,003,620 kWh Savings = 9,749,880 kWh $\times 0.003413 \text{ MMBtu/kWh} = 33,276 \text{ MMBtu}.$ Investment Proposed system \$743,450 Repair existing 5,000 \$748,450 Maintenance \$ 52,796

Option-2

Proposed system only.

Coal

2,100,533 MMBtu

Savings = -14,045 MMBtu

Electricity

51,631,600 kWh

Savings = 24,307 MMBtu

Investment

\$743,450

Maintenance \$52,796

SHEET	NO.	90	CF	10	7.2	
CALCUI				ATE	1/20	~ ·
CHECK	ED BY		DA	TE	1/2	•

SPACE LOAD COEF DISTRIBUTION LOSS COEF	PROCESS DEMAND	300 PSIG DEMAND	300 PSIG ENERGY CONTENT	EXIT STEAM ENERGY CONTENT	IN PLANT STEAM	STEAM TEMP	TURBINE STEAM RATE	TURBINE SIZE				
	LBM/HR	LBM/HR	BTU/LBM	BTU/LBM			83 LBM/KW/HR	LBM/HR		\$/MBTU	\$/KW	\$/KWH
1,865,000 22,622	106,982	47,462	1,028	982	16%	430	188	67,700	72.00%	1.2500	9.5000	0.0159
BLC	PROC	PROC300	DHNOW	DHNEW	NB NB	TSTM	ASR	SIZE	BOILEFF	COAL\$	KW\$	KWH\$

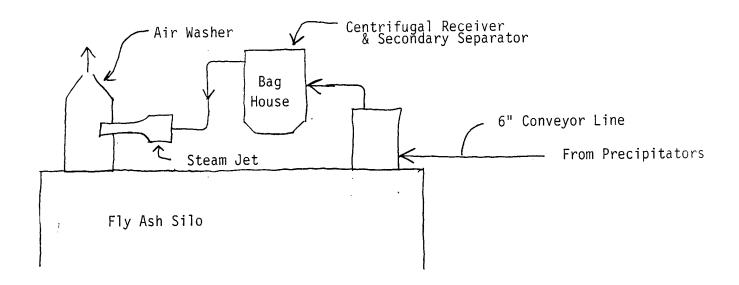
RBINE	STEAM	M/HR)	002'19	37,700	97,700	97,700	92,700	92,700	92,700	92,700	92,700	92,700	002,78	002,79	12.400
¶ હ		KW) (LE												7,018	
σ	\Box	A (KW)													
ELECTRI	DEMAN	₹	9,23	8,92	8,79	8,81	8,65	8	8,9	8,992	9, <u>3</u>	86	9,6 20,6	60'6	8.971
ELECTRIC	USAGE	(KWH)	5,545,500	4,716,000	4,619,000	5,047,000	4,513,500	4,621,000	4,944,500	4,618,000	4,925,000	4,970,500	5,012,000	5,221,500	58.753.500
COGEN	STEAM	(LBM/HR)	128,383	122,820					70,486	70,509	72,840	87,013	106,859	122,249	94 270
STEAM	DEMAND	(LBM/HR)	175,845	170,282	154,149	142,126	125,002	118,650	117,948	117,971	120,302	134,475	154,321	169,711	141 732
DSTRB	SSOT	(LBM/HR)	660'6	9,030	8,846	8,616	8,431	8,247	8,178	8,201	8,316	8,593	8,846	9,030	8 620
HEATING	LOAD	(LBM/HR)	926,99	51,481	35,533	23,740	6,800	633	0	0	2,216	16,112	35,705	50,910	23 342
300 psid	PROCESS	(LBM/HR)	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47,462	47 462
LOW PRES	PROCESS	(LBM/HR)	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	62,308	R7 2/18
AMBIENT	TEMP	Œ	35	88	46	26	ফ	72	75	74	69	25	46	88	28
DEGREE	DAYS		930	759	580	375	111	10	0	0	35	263	564	831	A 158
	_		31	88	31	30	31	8	34	3	8	रु	30	34	
			lan	ep-	Маг	Ş	Nav.	'n	3	Aud	် ကို	 	3	ဝ	>

EMC ENGINEERS, IN PROJ. # PROJECT OF CALCULATED BY CHECKED BY SUBJECT	DATE/
120,000 4,395,395 180,718 737,601 4.1	
100,000 4,380,408 195,705 665,267 3.4	
80,000 4,378,030 198,083 588,423	
60,000 4,405,104 171,009 505,519 3.0	
40,000 4,449,075 127,038 413,690 3.3	
20,000 4,493,046 83,067 306,128 3.7	
4,576,113 120,000 4,388,176 187,937 737,601	
ECONOMIC ANALYSIS BASE ENERGY COST TURBINE SIZE (LBM/HR) ANNUAL ENERGY COST ENERGY COST SAVINGS CAPITAL COST SIMPLE PAYBACK	

TOTAL	CHARGES	<u>(S</u>	\$434,485	\$385,091	\$382,684	\$364,524	\$335,424	\$324,143	\$334,387	\$329,666	\$335,532	\$359,507	\$384,053	\$418,678	4,388,176
ELECTRIC	CHARGES	€	\$159,500	\$144,342	\$140,617	\$147,920	\$137,581	\$142,008	\$147,246	\$142,490	\$150,971	\$147,290	\$149,543	\$153,000	1,762,509
KWH	CHARGES	€	\$78,312	\$66,092	\$63,627	\$70,720	\$61,955	\$63,968	\$68,786	\$63,611	\$68,786	\$69,198	\$70,165	\$73,177	818,399
DEMAND	CHARGES	€	\$80,014	\$77,075	\$75,816	\$76,026	\$74,452	\$76,865	\$77,285	\$77,705	\$81,011	\$76,918	\$78,203	\$78,650	930,020
COAL	PURCHASE	(§)	\$274,985	\$240,750	\$242,067	\$216,604	\$197,843	\$182,135	\$187,141	\$187,176	\$184,561	\$212,217	\$234,510	\$265,678	2,625,667
ELECTRIC	PURCHASE	(KWH)	4,940,833	4,169,849	4,014,333	4,461,838	3,908,833	4,035,838	4,339,833	4,013,333	4,339,838	4,365,833	4,426,838	4,616,833	51,634,028
DEMAND	BILLED	<u></u>	8,423	8,113	7,981	8,003	7,837	8,091	8,135	8,179	8,527	8,097	8,232	8,279	
COAL	USAGE	(MBTU)	219,988	192,600	193,654	173,283	158,275	145,708	149,713	149,741	147,648	169,773	187,608	212,542	2,100,533
BOILER	STEAM	(MBTU)	158,391	138,672	139,431	124,764	113,958	104,910	107,793	107,813	106,307	122,237	135,078	153,030	1,512,384
BOILER	STEAM	(LBM/HR)	207,093	200,736	182,302	168,564	148,997	141,739	140,937	140,963	143,627	159,822	182,498	200,084	168,114
IN PLANT	STEAM	(LBM/HR)	33,963	32,921	29,898	27,644	24,436	23,245	23,114	23,118	23,555	26,211	29,930	32,814	27,571
СНР	DEMAND	(LBM/HR)	173,130	167,816	152,405	140,919	124,562	118,494	117,823	117,845	120,072	133,611	152,569	167,270	140,543
DESUPER	STEAM IN	(LBM/HR)	27,968	52,654	37,243	25,757	9,400	3,332	2,661	2,683	4,910	18,449	37,407	52,108	
POWER	PRODUCE((KW)	813	813	813	813	813	813	813	813	813	813	813	813	
:	-,-	: .i	Jan	Feb	Mar	Apr	May	Jun	国	Aug	Sep	8	Nov.	Dec	⊁

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCA	TION:	HOLSTON AAP		R	EGION:	4
	. NO. & TITLE:	DACA01-91-D-	0032 LIMITED ENER	GY STUDIES		
DISC	RETE PORTION:	COGENERATION				
FISC	AL YEAR:	91			CONOMIC LIFE	25
ANAL	YSIS DATE:	04-Aug-92		F	PREPARED BY: D	JONES
	(COT) (C) T					1
	ESTMENT	NI COCT				\$743,450
	CONSTRUCTIO	IN COST	= (5.5% of 1A) =			\$40,890
	SIOH COST		(6.0% of 1A) =			\$44,607
	DESIGN COST	·-	(6.0% OF TA) =			\$0
	SALVAGE VALU		+ 1B + 1C +1D - 1E	·\ _	F	\$828,947
≒.	TOTAL INVEST	MENI (IA	+ 18 + 10 + 10 - 15	:) =	L	Ψ020,341
						1
0.51	EDOY ON ANALOS	(.) (COCT ()				
2 EN	ERGY SAVINGS	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
	FUEL TYPE	\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)
	ELEC	\$4.67	24,307	\$113,514	15.61	\$1,771,949
	DIST	\$4.07	24,507	\$0	0.00	\$0
1	RESID		o o	\$0	0.00	\$0
	NAT GAS		0	\$0	0.00	\$0
		\$1.25	(14,045)	(\$17,556)	16.06	(\$281,953)
E.	COAL	\$1,20	(14,043)	(\$17,550)	10.00	(4201,000)
_	TOTAL ENERGY	CAVINGS -	10,262	\$95,957	F	\$1,489,995
[.	TOTAL ENERGY	SAVINGS	10,202	Ψ30,337	F	Ψ1,400,000
3 110	NI_ENEDGV SA	VINGS (+) / COST	(_) ∢			
	ANNUAL RECU				Ì	
\ \frac{1}{2}	ADDED MAINT			(\$6,400)	14.53	(\$92,992)
	ł ·	AND SAVINGS		(40,100)		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		* \$9.50/KW/MTH	12 MTHS =	\$92,682	14.53	\$1,346,669
		S (+) / COST (-)		\$86,282		\$1,253,677
		- (·) / · ()				
В.	NON-RECURR	ING (+/-)	YEAR OF			
-	ITEM	, , , ,	OCCURRENCE			
	a.			\$0	0.00	\$0
	b.			\$0	0.00	\$0
	c.			\$0	0.00	\$0
ļ	TOTAL SAVING	S (+) / COST (-)		\$0		\$0
C.	TOTAL NON EN	ERGY DISCOUNTE	D SAVINGS (3A + \$B))		\$1,253,677
					Γ	
			-			
D.	PROJECT NON-	-ENERGY QUALIFI	CATION TEST			
ļ	NON ENERGY S	SAVINGS % (3C / (3	C + 2F))			46%
1						
4 FIF	RST YEAR DOLL	AR SAVINGS (+) / C	osts (-)	\$182,239		
		UNTED SAVINGS				\$2,743,673
6 DIS	SCOUNTED SAV	INGS-TO-INVEST	MENT RATIO (SIR)			2.39
7 SIM	MPLE PAYBACK	(YEARS)				4.55


LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCA	ATION:	HOLSTON AAF)		REGION:	4
	I. NO. & TITLE:		0-0032 LIMITED EN			<u>.</u>
		REPAIR EXIST	NG COGENERATION	SYSTEM		
	AL YEAR:	91			ECONOMIC LIFE	
ANAL	YSIS DATE:	05-Aug-92			PREPARED BY:	D JONES
1 INV	/ESTMENT					
1	CONSTRUCTIO	N COST	=			\$5,000
	SIOH COST		(5.5% of 1A) =			\$275
C.	DESIGN COST		(6.0% of 1A) =			\$300
D.	SALVAGE VALU	JE			_	\$0
E.	TOTAL INVESTA	MENT (1A + 1B +1C +1D -	1E) =		\$5,575
				•		
2 EN	ERGY SAVINGS	(+) / COST (-)				
	FUEL TYPE	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
		\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)
Α.	ELEC	\$4.67	8,969	\$41,887	15.61	\$653,855
В.	DIST		0	\$0	0.00	\$0
C.	RESID		0	\$0	0.00	\$0
D.	NAT GAS		0	\$0		\$0
E.	COAL	\$1.25	0	\$0	16.06	\$0
		-				
F.	TOTAL ENERGY	'SAVINGS [8,969	\$41,887		\$653,855
2 110	N CNEDOV CA	MNCC (1) /COC	T () 4			·
1	ANNUAL RECUF	VINGS (+)/COS) () ¬			
Α.	ADDED MAINTE			(\$6,400)	14.53	(600,000)
	ELECTRIC DEM			(40,400)	14.53	(\$92,992)
		* \$9.50/KW/MT	H * 12 MTHS =	\$34,200	14.53	\$496,926
		6 (+) / COST (-)		\$27,800	14.00	\$403,934
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		42.,000		\$ 100,007
В.	NON-RECURRI	NG (+/-)	YEAR OF			
	ITEM	, ,	OCCURRENCE			
	a.			\$0	0.00	\$0
	b.			\$0	0.00	\$0
	c.			\$0	0.00	\$0
	TOTAL SAVINGS	S (+) / COST (-)		\$0		\$0
					į	
C.	TOTAL NON EN	ERGY DISCOUN	ΓED SAVINGS (3A + \$	B)		\$403,934
ľ			IFICATION TEST			
	NON ENERGY S	AVINGS % (3C /	(3C + 2F))			38%
	OT VE 45 5011	D 0 4 1 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· • • • • • • • • • • • • • • • • • • •		·	
1 4 HIR	ST YEAR DOLLA	R SAVINGS (+)	/ COSTS (-)	\$69,687	Ĺ	
1			, , ,		10"	
5 TO	TAL NET DISCO	JNTED SAVINGS				\$1,057,789
5 TO	TAL NET DISCO	JNTED SAVINGS NGS-TO-INVE	STMENT RATIO (SIR)			\$1,057,789 155.99 0.08

APPENDIX D VACUUM PUMPS ANALYSIS AREAS A & B

EXISTING FLY ASH CONVEYOR SYSTEM

EMC ENGINE	ERS, INC.			
PROJ. #	PROJECT			
SHEET NO	OF_	ד		
CALCULATED	BY <u> P </u> 5 D	ATE	1	د
CHECKED BY	DA.	TE_	1 /	
SUBJECT				

- Existing system operates 4 hours/day with steam jet operating 75% of the time.
- Ash lift height is 65 feet.
- Maximum horizontal distance is 100 feet.
- Hisotircal data indicates that the Area-B CHP generates an average 50 cy. Weight of fly ash is 50 lbm/ft³.

$$\frac{50\,cy}{day}\,x\,\frac{27\,ft^3}{cy}\,x\,\frac{50lbm|ft^3}{day|3\,hrs}=22,500\,lbm|hr\,.$$

• National conveyor estimates vacuum requirements at 1475 cfm with a 10.2" Hg vacuum.

STEAM ENERGY SAVINGS

EMC ENGINEERS, INC.

PROJ. #____ PROJECT _____

SHEET NO. ____ OF ___

CALCULATED BY ___ DATE ___

CHECKED BY ___ DATE ____

SUBJECT ____

Hourly Steam Usage ~ 7,500 lb/hr

Area-A

Area-B

Daily Usage =
$$\frac{3.0 \frac{hrs}{day} \times 7,500 \frac{lb}{hr} = 22,500 \, lb/day}{x \, 1,074 \frac{Btu}{lbm} \times 365 \, days = 8,820 \, MBtu/yr}$$

ADDED ELECTRICITY USE

Blower: 65 Amps @ 460 V

 $kW = \sqrt{3} \text{ VI} = \sqrt{3} (460 \text{ V}) (65 \text{ A}) = 51.8 \text{ kW}.$

<u>Area-A</u>

$$51.8 \, kW \, x \, 1.5 \, \frac{hrs}{day} \, x \, 365 \, \frac{day}{yr} = 28,360.5 \, \frac{kWh}{yr}$$

= **96**.8 MBtu/yr.

Area-B

$$51.8 \, kW \, x \, 3.0 \, \frac{hrs}{day} \, x \, 365 \, \frac{day}{yr} = 56,721.5 \, \frac{kWh}{yr}$$

= 193.5 MBtu/yr.

PROPOSAL DESCRIPTION FOR: REPTEK	EMC ENGINEERS, INC.
VACUUM BLOWER Vacuum Blower pkg, rotary pos displ with standard shaft seals, sized to 1475 ICFM at 10.2"Hg. Package includ Sutorbilt 713-4500 @ 2018 RPM (82% m req 43 BHP @ 70°F & 38% RH @ free ai Max rating: 1851 ICFM, 2450 RPM, 16. Assembled package includes the follo - Non-Elevated Steel Base - V-Belt Drive & Steel Guard	handle CALCULATED BY 6 DATE 1/28 BB CHECKED BY 0 DATE 1/28 BX), SUBJECT DATE 1/28 Tinlet O" Hg.
- 8" Inlet silencer, catl, RISY ty	pe
- 8" Dischg silencer, cstl, SDY ty - 8" Dischg check valve, cstl cons - Varuum relief valve, spring type (set @ 16.0"Hg, req. 48 BHP) - Lot accessory piping - 8" Instrument spool, cstl, inclu - Varuum gauge	t
BLOWER MOTOR Blower motor, 50 HP, 1800 RPM with sliding base, equipped as follows: - 460 volt, 3 phase, 60 hertz - 1.15 Service factor - Standard Efficiency - Std duty construction - TEFC enclosure - 326 T Nema frame - Standard factory tests	(65 AMFS)
THE PRICE, F.O.B. SHIPPING POINT.	#12,968.00
ims: - PRESSURE SWITCH (MEASURE	E AP ACROSS LING FILTER).
PRICE, \$ 150.00	,
(n2) LINE FILTERS) 4/8" FLM	CGEO FINDS &

SUPPORT LEGS, EST. WRIGHT 175 165, -

PRICE, FOS SMIPPING POINT . __ \$1,299,00 EA.

PROJECT SHEET NO. CALCULATED BY A CHECKED BY 17 __ DATE SUBJECT PROPOSAL

FRY EQUIPMENT CO., INC. 2600 W. 2nd AVE., SUITE 7 DENVER, COLORADO 80219 PHONE: (303) 922-8442 FAX: (303) 922-8445

EMC ENGINEERS 2750 S. Wadsworth Blvd.

Denver, CO 80236

JOB: Holston Army Munitions Arsenal

LOCATION: Tennessee

ATTN: Mr. Ron Gerands

DATE: November 26, 1991

WE ARE PLEASED TO QUOTE ON EQUIPMENT AS FOLLOWS:

(1) Liquid Ring Vacuum Pump, Graham Model #1V8146-FRZ. Capacity of 1500 ACFM of dry air at 10.2" HgA or 259 M.M.HgA. Cast iron case, ductile iron rotors, 420 S.S. shaft, 420 S.S. packing glands, 100 HP TEFC motor, 720 RPM, 460/3/60, carbon steel baseplate.

PRICE: \$39,810.00 Net

Note: Liquid Ring Pump requires a maxium of 40 GPM of seal water supply at 60 deg. F.

> FRY EQUIPMENT CO., INC. SUBMITTED BY:

TERMS: Net 30 days DELIVERY: 20-22 weeks

WEIGHT: 6230 lbs.

F.O.B.: Batavia, NY

Louis N. Grounds

Sales Engineer

Maintenance Costs

- Assume 2 men @ \$15/hr.

- Replacement Filters: \$150

- Replacement Time: 1 hour

- Cost/Replacement: \$180

- Assume Replacement Every 200 Operating Hours

EMC ENGIN				
PROJ. #	_ PR	OJECT_	3773	- / _ ` `
SHEET NO.			8	-
CALCULATED	BY_	<u>ිර</u> ු D/	ATE	
CHECKED BY		<u>-</u> DA¹	TE	27 2
SUBJECT_				

Area A

200 hrs x 1 Day = 133 Days/Replacement ~ 4 Mon. Replacement Replacement 1.5 hrs

= 3 Replacements/yr

Cost: $3 \times $180 = $540 + 20\% = $650/yr$

<u>Area B</u>

200 hrs x 1 Day = 67 Days/Replacement ~ 2 Mon. Replacement Replacement 3 hrs

= 6 Replacements/yr

Cost: 6 x \$180 = \$1080 + 20% = \$1300/yr

ENGINEERS					<u>USI</u>		SHEET	
Project			mmunition Plant Studies - DACA				DATE PREPA	ARED
Engineer	EMC E	ngineers	12/06/91 Estimator					
	Denver	, co						
Description	Replac	e steam	extractor with va	cuum blower			Checked by	
	Qua	antity	Material			Labor	<i>J</i>	
Description	No. Units	Unit Meas.	Per Unit	Total	Hours Per Unit	Hourty Rate	Total	Total Cost
>>Demolition<<								
Removal of existing steam jet Removal of air washer		EA EA			16	\$16.89		\$17
Removal of all washer		EA			10	\$16.89	\$270	\$270
>>Mechanical<<				•				
Lever Hoist	1	EA	\$150.00	\$150				\$150
Vacuum Blower w/ 50 hp motor	- 1	EA	\$12,968.00	\$12,968	3	\$16.89	\$51	\$13,019
6" pipe		LF	\$13.54	\$203	0.667	\$16.89		\$372
6" elbows		EA	\$30.00	\$60	4.8	\$16.89		\$222
6" welded flanges		EA	\$37.00	\$148	4.8	\$16.89	\$324	\$472
Line Filter		EA	\$1,299.00	\$1,299	4	\$16.89	\$68	\$ 1,367
Pressure switch		EA	\$150.00	\$150	1	\$16.89	\$17	\$167
>>Electrical<<	050		10.05	*^^	0.115	#4A 4A	****	***
Conduit, 1-1/2"	350		\$2.85 \$74.00	\$998	0.145	\$16.19		\$1,819
Wire, #1 THW Starter, sz 3		CLF EA	\$71.90 \$922.00	\$863 \$922	1.5 12.12	\$16.19 \$16.19	\$291 \$196	\$1,154 \$1,118
35 11 1 11 11	- '		\$922.00	φ922	12.12	φ10.19	4190	\$1,110
>>Equipment Rental<<								
Crane	8	HR	\$19.65	\$157	1	\$14.86	\$119	\$276
						**		
		 						· · · · · · · · · · · · · · · · · · ·
		 	 _					·
		 						
		 						
		1						
								·
		 						
		t						
		1						
						·		
		├──						· · · · · · · · · · · · · · · · · · ·
	- 	 						

SUBT	OTAL			\$17,918			\$2,506	\$20,423
OVERHEAD & BOND	0.16			\$2,867			\$401	/\$3,268
SUBT	OTAL			\$20,784			\$2,907	/\$23,691
PROFIT	0.1			\$2,078			\$291	/ \$2,369
SUBT CONTINGENCY	OTAU 0.2			\$22,863			\$3,197	\$26,060
TOTAL ESTIMATED COST	. 0.2			\$4,573 \$27,435	raum - Basa		\$639 \$3,837	\$5,212
				421,733	200 1 200 h	1.0	# 3,03/	331,272

D-6

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCA	ATION:	HOLSTON AAP			REGION:	4
PROJ	I. NO. & TITLE:		-0032 LIMITED E	NERGY STUDIES		
		AREA B VACUU	M PUMP		ECONOMIC LIEE	25
	AL YEAR:	91			PREPARED BY: [
ANAL	YSIS DATE:	16-Jul-92			FREFARED DI. L	DONLO
	ESTMENT	NOOCT				\$31 <i>,2</i> 72
	CONSTRUCTION SIOH COST	N COST	= (5.5% of 1A) =			\$1,720
	DESIGN COST		(6.0% of 1A) =			\$1,876
	SALVAGE VALU	JF	(0.070 0.17.) =		_	\$0
	TOTAL INVESTA		+ 1B +1C +1D -	1E) =		\$34,868
		•		·	_	
	·					
2 EN	ERGY SAVINGS		0.0.40.100	AND 11 1A1 of	DICCOLINE	DISCOUNTED
	FUEL TYPE	FUEL COST	SAVINGS	ANNUAL \$ SAVINGS (3)	DISCOUNT FACTOR (4)	SAVINGS (5)
	ELEC	\$/MBTU (1) \$4.67	MBTU/YR (2) (194)	(\$906)	15.61	(\$14,142)
	DIST	φ4.07	(194)	\$0	0.00	\$0
	RESID		0	\$0	0.00	\$0
	NAT GAS		0	\$0		\$0
E.	COAL	\$1.25	8,820	\$11,025	16.06	\$177,062
F.	TOTAL ENERGY	'SAVINGS	8,626	\$10,119		\$162,919
0.110	NI ENERGY CA	VINCE (I) / COS	T / \ \ a			
	ANNUAL RECUI	VINGS (+) / COST BRING	· (-) ·			
^.	ADDED MAINT			(\$1,300)	14.53	(\$18,889)
		MAND SAVINGS		(, ,, - , , ,		
		* \$9.50/KW/MTF	* 12 MTHS =	\$0	14.53	\$0
	TOTAL SAVING	S (+) / COST (-)		(\$1,300)		(\$18,889)
В.	NON-RECURR	ING (+/-)	YEAR OF			
	ITEM		OCCURRENCE	\$0	0.00	\$0
	a. b.			\$0	0.00	\$0
	c.			\$0	0.00	\$0
	TOTAL SAVING	S (+) / COST (-)		\$0		\$0
C.	TOTAL NON EN	ERGY DISCOUNT	ED SAVINGS (3A -	- 3B)		(\$18,889)
						·
	DDO ICCT NON	-ENERGY QUALI	EICATION TEST			
D.		-energy goali Bavings % (3C /				-13%
	NON ENLAGT	3AVIIVAC 78 (00)	(00 1 2))			1070
		AR SAVINGS (+)		\$8,819]	
		UNTED SAVINGS				\$144,030
			STMENT RATIO (SI	R)		4.13
7 SII	MPLE PAYBACK	(YEARS)				3 .95

EMC ENGIN	EERS,	INC.		
PROJ. #	PRO	JECT.	210	-007
SHEET NO	7	OF_	<7"	_ , ,
CALCULATE	D BY	<u> </u>	ATE_	7/10/20
CHECKED B'	Y	$\frac{2}{2}$ DA	TE	
SUBJECT				

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCA	ATION:	HOLSTON AAP			REGION:	4		
	PROJ. NO. & TITLE: DACA01-91-D-0032 LIMITED ENERGY STUDIES							
		AREA A VACUUI	M PUMP					
	AL YEAR:	91			ECONOMIC LIFE			
ANAL	YSIS DATE:	16-Jul-92			PREPARED BY: I	D JONES		
1 IM	/ESTMENT							
Α.	CONSTRUCTIO	N COST	=			\$31 <i>,2</i> 72		
B.	SIOH COST		(5.5% of 1A) =			\$1,720		
C.	DESIGN COST		(6.0% of 1A) =			\$1,876		
	SALVAGE VALL	JE	` =			\$0		
	TOTAL INVESTM		+ 1B +1C +1D -	1E) =		\$34,868		
		·		•	•			
2 EN	ERGY SAVINGS	(+) / COST (-)						
	FUEL TYPE	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED		
		\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)		
A.	ELEC	\$4.67	(97)	(\$453)	15.61	(\$7,071)		
B.	DIST		` o´	\$0	0.00	` \$0		
C.	RESID		0	\$0	0.00	\$0		
D.	NAT GAS		0	\$0		\$0		
E.	COAL	\$1.25	5,883	\$7,354	16.06	\$118,101		
F.	TOTAL ENERGY	SAVINGS	5,786	\$6,901		\$111,030		
			· .					
		VINGS (+) / COST	(−) ◀					
A.	ANNUAL RECUF			(0000)	11.50	(02.445)		
	ADDED MAINTE			(\$650)	14.53	(\$9,445)		
	ELECTRIC DEM		* 40 MTHC	* 0	. 4450	00		
		* \$9.50/KW/MTH	" 12 M I H S =	\$0 (\$65.0)	14.53	\$0		
	TOTAL SAVINGS	6 (+) / COST (-)		(\$650)		(\$9,445)		
D	NON-RECURRI	NG (±/_)	YEAR OF					
В.	ITEM	NG (+/-)	OCCURRENCE					
	a.		OCCURRENCE	\$0	0.00	\$0		
	b.			\$0 \$0	0.00	\$0		
	c.			\$0 \$0	0.00	1 1		
	TOTAL SAVINGS	(+) / COST (-)		\$0	0.00	\$0 \$0		
		, (1), 0001 ()		ΨΟ		Ψ0		
C.	TOTAL NON EN	ERGY DISCOUNT	ED SAVINGS (3A +	- 3B)		(\$9,445)		
				,		14011101		
D.	PROJECT NON-	-ENERGY QUALIF	ICATION TEST					
	NON ENERGY S	AVINGS % (3C / (3C + 2F))			-9%		
			•					
4 FIF								
5 TOTAL NET DISCOUNTED SAVINGS								
	S DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR)							
7 SIN	' SIMPLE PAYBACK (YEARS)					5.58		

EMC ENGINEERS, INC.									
PR OJ. #	_ PROJECT		3/42 - 500						
SHEET NO	<u> 3</u> (OF_	· · · · · · · · · · · · · · · · · · ·						
CALCULATED	BY	_ D	ATE -/						
CHECKED BY_		_DA	TE						
SUBJECT									

APPENDIX E INTERMEDIATE STEAM PRESSURE HEADER ANALYSIS

INTERMEDIATE STEAM PRESSURE HEADER

EMC ENGIN	EERS, INC.		
PROJ. #	_ PROJECT_	- '>	·
SHEET NO	OF	-	
	BYDA		ر ب
CHECKED BY	<u> </u>	E <u> </u>	\$ ~
SUBJECT			

Existing Conditions:

Average steam production 161,816 lbm Economizer (EWT) 229°F Economizer (LWT) 285°F Economizer (EAT) 480°F

Excess low pressure steam vented April through October (see boiler model).

Proposed Modification:

Increase backpressure on fan turbine and route exhaust to new feedwater heater.

Analysis:

Fan turbine rated at 550 hp and 21.6 lbm/hp at 5 psig.

Turbine casing rated for 75 psig. Renozzling for 550 hp \Rightarrow 45.5 lbm/hp.

Turbine casing could be retested for 125 psig. Renozzling for 550 hp \Rightarrow 92.7 lbm/hp.

Modify CHP model with new inputs and calculate fuel use. Assume ϵ = 0.8 for feedwater heater.

Header Pressure (psig)	Header Temp (°F)	Header Latent Enthalpy (Btu/lbm)	Turbine Steam Rate (lbm/hp)	Coal* Usage (MMBtu)	Coal Savings (MMBtu)		
5	228	960	21.6	2,155,572	0		
50	298	912	38.7	2,095,722	59,850		
75	320	895	45.5	2,083,088	72,484		
125	353	868	92.7	2,397,027	-241,455		

^{*}From boiler model.

MANUFACTURERS' DATA ON STEAM RATES

Skinner Engine Company Phone: 814/454-7103 Erie, Pennsylvania 16512

Model No. S-28-3 Serial No.

755T10148

EMC ENGINEERS, INC. PROJ. #_____ PROJECT___ SHEET NO. ____OF ___OATE___ CHECKED BY ___ DATE _/ SUBJECT____

Backpressure limited by the ability of exhaust casing to handle exit pressures.

Existing turbines are good for 75 psi only.

Replace nozzles:

 $25,000 \text{ lbm/hr}, 550 \text{ hp}, p_e=75$

25,000/550 = 45.5 lbm/hr/hp

Rehydrotest case:

 $p_e = 125 \text{ psi}, 550 \text{ hp}, 51,000 \text{ lbm/hr}$ 100 psi, 550 hp, 34,000 lbm/hr 51,000/550 = 92.7 lbm/hr/hp 34,000/550 = 61.8 lbm/hr/hp

INTERMEDIATE PRESSURE STEAM HEADER

Feedwater Heater

Design for full CHP capacity (4 boilers).

Feedwater

1,317 gpm

 $228^{\circ}F \Rightarrow 302^{\circ}F$

Steam

75 psig

54,000 lbm

Temperature coefficient

6.5

Material breakdown for feedwater piping:

Wat	er Side	Steam	Side
Item	Qty.	Item	Qty
8" Pipe Elbows Tees Valves	112' 10 2 3	12" Pipe Elbows Tees Valves	16' 1 1 1

Turbines

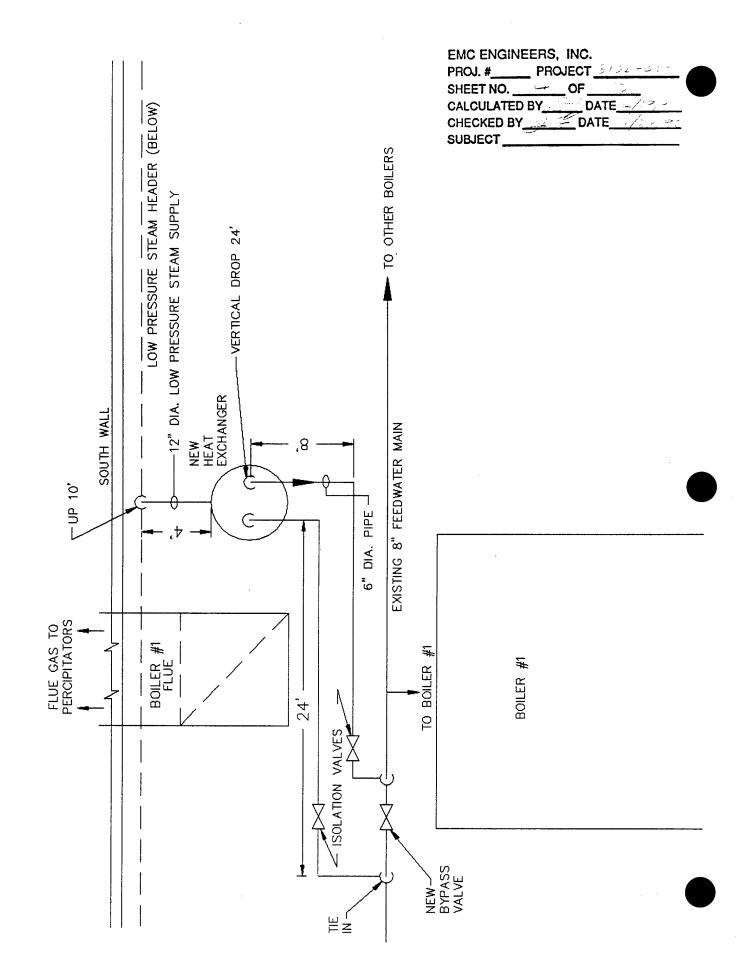
Nozzles, Relief Valves, and Throttle Valve (Skinner Engine Co.)

Per turbine

\$19,115

plus 10 hrs labor at \$81.25

\$813


Labor expenses

\$2000

Steam Chest Piping

Increase from 4" to 6" diameter

		<u> 10tai</u>
Length	35' per boiler	140′
Elbows	6 per boiler	24
12" tap	1 per boiler	4
Valves	2	8

		\$	PF SH CA	IE L	CI.CI.CI.CI.JE	#. JL KE	A'). TE	D	-		RIS	•	ΙE	10 C F 1 D	T .	AT TE	3/ E	2	2			<i>5</i>							
COAL ANALYSIS	LBH AIR/LBH COAL FROM ASHRAE FUNDAMENTALS	LBH OF 6 PSI STEAM CONDENSED PER LBH OF MAKE UP	STEAM TABLES	MEASURED	AREA-A ECONOMIZER ANALYSIS	MEASURED	300 PSI, 626 F	300 PSI, SATURATED	6 PSIG, SAT	228 F, SAT	WEATHER DATA	ASSUMED	ASSUMED	DESIGN DATA	DESIGN DATA	TURBINE MANUFACTURER	DESIGN DATA	DESIGN DATA	TURBINE MANUFACTURER	DESIGN DATA	DESIGN DATA	TURBINE MANUFACTURER	CALCULATED	CALCULATED	CALCULATED					
BTU/LBM	LBM/LBM	ш	BTULBM	ц.	BTUH/F	. *	BTULBM	BTULBM	BTULBM	BTU/LBM	L	*	MMBH	皇	S. M.	LBH/HP	모	GPM	LBH/HP	윺	₩ d5	LBH/HP	%	ᅜ	LBH	PSIG	4		BTU.LBM	ш
14 100.00	1.8	98.00	00.096	480	25000.00	2.46%	1271.00	399	1,157	196	88	B. 10%	1.65	920	62,500	45.50	8	1,750	8.8	135	460	33.4	21.10%	700	932	76	320	0.80	895	228
₽Ħ	THEO	RETURN	PSI6	Œ	ECON	BLOW	£	로	HSLP	H F	₹	SSOT	8	FANHP	FANCEM	FANSTM	DAHP	DAGPM	DASTM	FWHP	FWGPIM	FWSTM	FLASH	FWHEAD	JET	Ī	Ξ	뿔	₹	IPI
HEATING VALUE OF COAL	THEORETICAL COMBUSTION AIR	MIXED WATER TEMP	LATENT HEAT (6 PSI)	ECONOMOZER AIR TEMP IN	ECONOMIZER UA	BLOWDOWN RATE	STEAM ENTHALPY	LIQUID ENTHALPY	LOW PRES STEAM ENTHALPY	DA HEATER LIQUID ENTHAL PY	AMBIENT TEMPERATURE	COMBUSTION LOSSES	RADIATION LOSSES PER BOILER	DESIGN FAN HORSEPOWER	DESIGN FAN CFM	FAN STEAM RATE	DA PUMP DESIGN HORSEPOWER	DA PUMP DESIGN FLOW	DA PUMP STEAM RATE	FW PUMP DESIGN HORSEPOWER	FW PUMP DESIGN FLOW	FW PUMP STEAM RATE	BLOWDOWN FLASH STEAM	FW PUMP HEAD	VACUUM STEAM JET RATE	INTERMEDIATE HEADER PRESSU	INTERMEDIATE HEADER TEMP	PRE-HEATER EFFECTIVENESS	PRE-HEATER LATENT HEAT	LOW PRESSURE STEAM TEMP

PUMP	F	P.UM.	POWER	(HP)	87	333	107	104	96	8	81	78	78	78	79	98	8	103
FEEDWATER PUMP	L-FW]	<u></u>		(GPM)	345	1,317	422	410	379	355	321	308	307	307	312		379	607
	8	PUS P	STEAM	(LBM/HR)	2,472	3,826	2,616	2,472	2,472	2,472	2,472	2,301	2,301	2,301	2,472	2,472	2,472	2.472
	Ճ	PUMP	POWER	(HP)	98	49	40	98	96	96	æ	32	32	32	36	98	98	98
DA PUMPS	শ্ৰ	<u>a</u>	₹0 %	(GPM)	293	1,117	358	348	32.1	301	272	262	260	260	592	288	321	347
	9223	MAKEUP	TEMP	Œ	228	228	228	228	228	228	228	228	228	228	228	228	228	926
3 HEATER		MAKE OP	WATER	(LBM/HR)	145,775	556,108	178,167	173,144	159,863	149,923	135,699	130,251	129,665	129,684	131,779	143,579	160,005	179 675
DEAERATING HEATER		6 PSI	STEAM	(LBMMHR)	26,118	969,636	31,922	31,022	28,642	26,861	24,313	23,337	29,232	23,236	23,610	26,726	28,668	950 OS
٥	LEAVING	MAKE UP	TEMP	Ē	98	98	98	98	98	98	98	98	98	95	99	98	98	ş
VERY	HEAT	RANSFER		(BTUH)	0	0	0	0	0	0	0	0	0	0	0	0	0	2
BLOWDOWN HEAT RECOVERY	HEAT	XCHANGET	EFE		00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.0	00.0	000
LOWDOWN	BLOW	E SWAN	TIGUID	(LBM/HR)	3,256	12,422	3,980	3,868	3,571	3,349	3,031	2,909	2,896	2,897	2,944	3,207	3,574	4 8 67
160	TOTAL	FEED	WATER	(LBM/HR)	171,894	655,744	210,089	204,166	188,506	176,785	160,012	153,587	152,897	152,919	155,390	169,303	188,673	204 642
		BOILERS	ON LINE		2	4	2	2	2	2	2	2	2	2	2	2	2	٠
	BOILER	STEAM	FLOW	(LBM/HR)	167,766	640,000	205,045	199,264	183,980	172,540	156,170	149,900	149,226	149,248	151,659	165,239	184,143	108 774
	귤	STEAM	SEMAND BALANCE	(LBM/HR)	0	539,432	0	0	0	0	0	0	0	0	0	0	0	2
	용표	STEAM	DEMAND	(LBM/HR)	135,200		172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	166 991
	NUMBER	<u></u> 능	DAYS		98	8	31	28	31	8	34	8	31	31	S	31	8	44
			CONDITION	<u> </u>	BASECASE	DESIGN	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	ОСТ	YON	000

E-5

ER ECO	
NM HEAD	
E STE/	
RESSUR	
EDIATE P	
· INTERM	
MODEL	
BOILER	
APUTER	
N-B CON	

EMC ENGINE	ERS, INC.	
PROJ. #	_ PROJECT	3.07-1-2
SHEET NO	<u></u> 5 0F	13
CALCULATED	BYZZ D	ATE 1/- 1/20
CHECKED BY_	DA	TE
SUBJECT		

ART LOADSTEAM OUTLOWDOWDRY FLUE LFLUE HUMIRADIATION COMBUSTION LOSS	8.10%	B.10%
DIATIONC	1.42%	0.79%
UE HUMIRA	3.69%	3.89%
Y FLUE LFLI	14.20%	10.01%
OWDOWIDA	0.71%	0.75%
TEAM OUTBL	71.69%	76.45%
PART LOADS	BASECASE	DESIGN

BOILER76.WK3 DA PUMP CURVE	DA PUMP CUF	\$VE				
	Md9	HEAD	EFF	웊	PLR	%HD
	0	218	%	0	8	80
	100	218	16%	ਲ	2%	88
	200	218	27%	4	10%	41%
	300	217	%96	46	15%	45%
	400	217	44%	8	20%	80%
-	009	215	22%	6 2	%0%	%69
	80	214	63%	69	40%	%89
	000'1	211	70%	92	%09	76%
	1,200	509	75%	35	%09	8
	1,400	202	80%	68	%02	868
	1,600	193	%	8	80%	92%
	1,800	184	%98	26	%06	97%
	2,000	173	87%	100	100%	100%
	2,400	145	85%	103	120%	103%
	2.800	8	74%	98	140%	86%

	<u>-</u>	FLUE	LOSS	(MBH)	1=	21	₽	@	11	1	19	16	16	16	16	16	11	#
	BLOW	8	SSOI	(MBH)	=	2	=	-	F	-	F	F	F	Ŧ	-	F	-	F
		STEAM		(MBH)	88	159	102	86	35	98	78	7.6	7.	74	7.6	88	36	8
		~ 2	PRC	MBH.	23	44	28	28	26	24	22	21	21	21	21	23	25	97
		¥	5	, š	107	203	130	127	117	110	86	96	96	96	88	105	117	126
				(MBH)	L												Ĺ	L
	SOMBUS		FLOW	9	179,995	217,635	192,730	190,966	185,950	181,822	176,267	172,526	172,223	172,233	173,309	179,000	186,006	100 707
	PERCENT COMBUST	EXCESS	Ā		% 86	34%	77%	%08	%68	896	106%	110%	410%	110%	109%	100%	%88	81%
ľ	78	ESTATO	OXYGEN		10.40%	6.33%	9.16%	9.35%	9.86%	10.25%	10.79%	11.00%	11.02%	11.02%	10.94%	10.49%	898.6	0.97%
DING ECONOMIZER					86,947	63,936	06.044	02.083	94,253	88,392	900'08	76,794	76,448	76,460	77,696	84,652	98,336	01 808
BOILER INCLU				BM/HR) (L	83,883	Ĺ	Ĺ	99,632	066,16	86,270	78,085	74,950	4,613	74,624	75,830	62,619	92,071	695.00
BOIL	FLUE		EXT	_	411	419 16	414 10	413 6	412 9	411 E	410 7		409	409 7		411 B	412 9	413
				E	88	98	98	98	98	98	98	98	99	99	99	98	98	£
HEAER					0	0	0	0	0	0	0	0	0	0	0	0	0	
N AIR PR		ENERG	EFFIEXCHANGS	ВТОН														
COMBUSTION AIR PRE	HEAT	FW EXCHANGE ENERGY	EFF		0.00	00.0	00.0	00.0	00'0	00.0	00.0	00.0	0.00	00.0	00.0	00.00	00.0	000
	E	3	TEMP	Œ	305	302	302	302	302	302	302	305	302	302	302	302	302	302
EATER	SIEAM	DEMAND		(LBM/HR)	14,192	54,141	17,346	16,857	15,564	14,596	13,211	12,681	12,624	12,626	12,830	13,979	15,578	16 B11
STEAM PRE-HEATER	HEAI	NSFER		(BTUH)	102,174	156,585	524,627	186,974	329,736	363,610	324,187	349,435	98,378	300,005	182,624	510,773	342,079	M 6 063
SIL	₹	PUMP TRANSFER	STEAM	(LBM/HR)	3,231 12,702,174	9,787 48,456,585	3,748 15,524,627	3,668 15,086,974	3,456 13,929,736	3,297 13,063,610	3,070 11,824,187	2,983 11,349,435	2,973 11,298,378	2,974 11,300,055	3,007 11,482,624	3,196 12,510,773	3,458 13,942,079	3 661 15 046 063
	13.			3			JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	OCT	NOV	DEC
			NOILIONO		ASECASE	NSIGN			-	,				•				

INTERMEDIATE PRESSURE STEAM HEADER ECO	
SOILER MODEL .	
AREA-B COMPU	

BOILER75.WK3 DA PUMP FW PUMP DRAFT FANMISCELLANSTEAM TO LOAD 2,472 3,231 39,264 1,803 135,200

EMC ENGINEERS, INC.							
PROJ. #			002				
SHEET NO	OF	13					
CALCULATED E	3YD	ATE 1/:	3/2:				
CHECKED BY_	DA	TE -					
SUBJECT							

7	R Z	STEAM	H.	31,634	55, 12 6	31,535	31,455	31,582	31,628	31,616	31,413	409	409	31,694	636	31,581	31.461
SNE)	_ _ _ _	ST	(LBM	ક	99	8	31,	31,	31,	31	31,	31,	31	31	31,	31	65
CENTRAL HEATING PL	BLOWN	FLASH	(LBM/HR)	87.1	3,322	100	1,034	928	968	811	178	118	77.5	787	898	926	1031
)	FA	STEAM	(LBM/HR)	19,627	23,083	20,726	20,569	20,132	19,780	19,237	19,016	18,992	18,993	19,079	19,544	20,137	20.554
	TOTAL	<u>\$</u>		402	497	432	428	416	406	391	386	384	384	387	399	416	168
	INDUCED	DRAFT	(SCFM)	41,742	61,480	44,914	44,469	43,216	42,192	40,683	39,916	39,842	39,846	40,106	41,497	43,229	44 497
DRAFT FANS	FORCED	DRAFT	(SCFM)	39,999	48,363	42,829	42,437	41,322	40,405	38,948	98,339	38,272	38,274	38,513	39,778	41,335	006 67
ונ	EXIT	WATER	<u>(</u>	339	323	333	334	336	338	<u>+</u> 8	343	943	343	342	340	336	PEE
	EXT	AR	Œ	411	419	414	413	412	411	410	409	607	604	409	411	412	1617
		<u> </u>		0.39	0.34	0.37	0.37	0.38	0.39	0.39	0.40	0.40	0.40	0.40	0.39	0.38	0.97
æ		Ę		0.55	0.45	0.62	0.62	0.54	0.55	0.57	0.58	0.58	0.58	0.58	0.56	0.54	0.62
ECONOMIZER	CAPACITY	RATIO		0.62	0.34	0.46	0.47	0.50	0.62	0.55	0.56	0.56	0.56	0.56	0.63	0.49	470
=	BOIL FR	EFF		71.7%			73.0%				l			70.9%	71.6%	72.4%	79 08
	FLUE	FLOW	(LBM/HR)	187,837	231,662	202,113	200,112	194,465	189,864	182,625	179,621	179,290	179,301	180,478	186,737	194,528	100 001
	800	No∏	(LBM/HR)	8,256	14,765	9.877	9,627	8,964	B,465	7.745	7,468	7.438	7,439	7,546	8,145	8,971	0.604
	<u> </u>		(MBH)	116	208	139	136	126	119	109	105	105	105	106	115	126	446
	COMBUST	LOSSES	(MBH)	6	11	Ξ	=	40	9	6	6	9	8	6	6	10	÷
	PADIATION	SSOT	(MBH)	2	2	2	2	2	2	2	2	2	2	2	2	2	٠
	FUEL COMBUST	SSO	(MBH)	9	8	5	5	5	9	4	4	4	4	4	4	9	ū
1		NOILIONC		SASECASE	DESIGN		FEB	MAR	APR	MAY	NOT	IDF.	AUG	SEP	DOCT	NON	2

EMC ENGINE	ERS,	INC.	
PROJ. #	PRO	JECT.	3105-405
SHEET NO	3	_OF_	/3
CALCULATED	BY_	D.	ATE 1/47/97
CHECKED BY_		<u></u> DA	TE
SUBJECT			

	EXCESS	VEN	6 387	0000	0000	0.502	3.401	5.515	8.449	9.344	9.461	9.457	9.237	6.838	3.371	0.605	
	OMBUSTI	SSOT SSOT	(MBH)	67	23	22	20	19	92	17	11	17	14	19	20	22	
	FLUE	SSOT	42 42	116	47	46	44	43	41	40	0#	40	07	42	44	46	
	STEAM	LET	(MBH)	-	-	-	-	-	-	-	-	-	-	-	-	-	
	GHP.	EFF	7 3%	80.7%	77.0%	76.6%	74.6%	73.0%	70.4%	%9 [.] 69	%6.69	69.3%	69.7%	71.9%	74.7%	76.6%	
	ENERGY		1	672	215	208	189	174	164	146	145	145	148	165	189	207	
	MAKE		1			4	4	4	9	9	9	၉	9	9	4	4	
	STEAM								157		149	149	161	169	193	211	
	MONTHLY FUEL	2	167 622	699, 588	207,227	182,439	188,072	171,868	162,504	151,631	156,059	156,079	153,213	170,881	182,149	201,496	2,083,619
	FUEL	Z	232 B	832.8	278.5	271.6	252.8	238.7	218.4	210.6	209.8	209.8	212.8	229.7	253.0	270.8	
	STEAM	LOAD	135.200	539,432	172,191	166,877	151,466	139,980	123,623	117,656	116,885	116,907	119,133	132,672	151,630	166,331	
	TOTAL IN PLANT	STEAM	19.41%	15.71%	16.02%	16.25%	17.67%	18.87%	20.84%	21.58%	21.67%	21.67%	21.45%	19.71%	17.66%	16.30%	
	TOTAL IN PLANT	STEAM	32.566	100,568	32,854	32,387	32,514	32,560	32,547	32,345	32,341	32,341	92,526	32,567	32,513	32,393	
	10,000	STEAM	0	44,511	387	0	0	0	0	0	0	0	0	0	0	0	
	EXCESS LO PRES	VENT	5,616	0	0	434	2,940	4,767	7,303	8,076	8,177	8,174	7,984	5,910	2,913	623	
N.	EXCESS LO PRES	STEAM	5,516	(44,511)	(387)	434	2,940	4,767	7,303	8,076	8,177	8,174	7,984	6,910	2,913	623	
) <u>-</u>		CONDITION	BASECASE	DESIGN	NAL	FEB	MAR	APR	MAY	NOT	JUL	AUG	SEP	DOCT	NON	DEC	

Tu EMC Engineers

MANUFACTURERS' REPRESENTATIVE

EMC ENGINE	EERS,	INC.	range years and a second	
PROJ. #	_ PRO.	JECT.	372/19 2 1 12	
SHEET NO	그	OF_	<u> 13</u>	
CALCULATED	BY	<u> </u>	ATE 1/2-2-2	
CHECKED BY			TE	_
SUBJECT				-

Date 01/30/92

Terms 18 10th Net-30

F.U.B. Englewood, CO

QUOTATIUN

	Atto Dennis Jones	Delivery & to 10 weeks					
	Phone 988-2951, FAX: 985-2527						
	Job						
	:						
QTY	DESCRIPTION	SELL EACH WEIGHT					
1	Taco G30420-S Heat Exchangen	\$53,270.00 4800#					
	_						
	and the second s						

2190 W. BATES AVE. • ENGLEWOOD, CO 80110 • (303) 762-8012

** INPUT PARAMETERS **

Shellside Tubeside Fluid Type: Steam Fluid Type: Water 75.00 1320.00 Steam Press.(psig): Flow Rate (gpm): Entering Temp. (°F): 228.0 295.0 Leaving Temp. (°F): 0.0005 Fouling: Load (MBn): 43569.92

Tube Material: Copper .035 Wall

Maximum Length (ft): 10.0

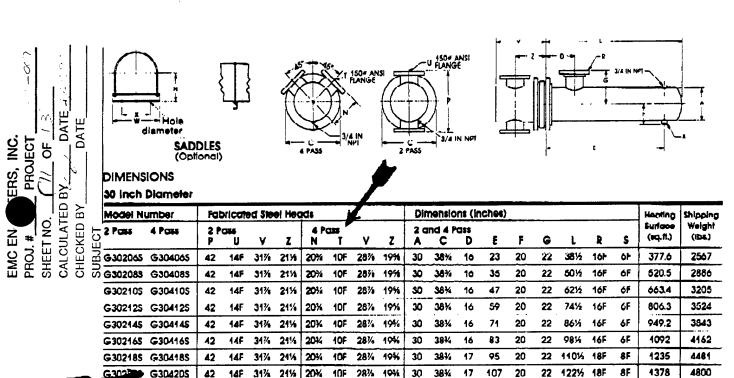
LMTD: 51.4

Sat. Stm. Temp. (°F): 320.0

** SELECTION RESULTS **

Tube Shell Baff. Tube Dia. Num. Length Model Vel.(fps) Pd.(ft) Vel.(fps) Pd.(ft) (in) Passes (ft) Pitch Num. 6.44 14.71 G30420- 5,30 10

Copyright (C) 1989 Taco Inc.


Submittal Data Information U Tube Heat Exchangers

201-019

30" DIAMETER STEAM

SUPERSEDES: SD200B

b:	EMC Engi	neers						
item No.	Model No.	Priss	GPM Tubes	Temp. In	Temp. Out	Steam Pressure Shell	Pressure Drop Tubes	Velocity Tubes
	G30420-S	4	1320	228°F	295°F	75	14.71'HD	6.44TPS

SADDLE DIMENSIONS: H-21: W-33: X-22: Hole Dia.-%.

MATERIALS OF CONSTRUCTION (Unless otherwise Indicated, standard will be furnished.)

Shell

Standard **Steel**

Head

Cast Iron 410°

304ss. 316ss

Tubes

Fabricated Steel 12-30"

Rabilicated Steel, Cast Bronze, Fabricated 304ss/316ss Cast Bronze, Fabricated 304ss/316ss

Tube Sheet Separators 3/4 x 20 BWG Copper Steel

3/4 x 18 BWG Copper, Steet, 304ss, 316ss, 90/10 Cu Ni, Admirally

Working Pressure Max. Temperature Stap 150 PSIG (ASME) Bronze, Brass, 304ss, 316ss, 90/10 Cu Ni Bronzo, Brass, 304ss, 316ss, 90/10 Cu Ni

375°F

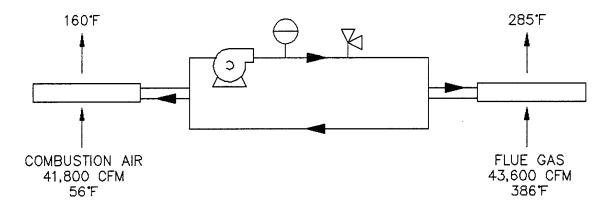
Consult Factory Consult factory

Through

TACO, Inc., 1160 Cranston St., Cranston, RI U2920 (401) 942-8000 Telex: 92-7627 TACO, (Canada) Ltd., 1310 Aimco Blvd., Mississauga, Onlario L4W 182 (416) 625-2160 Telex: 06 961179

Form No. F201-019 Effective 10/1/84

ENGINEERSOF	PINIC	ONC	F PROBA	ABLECC	DST		SHEET 12 C	OF 13	
Project	Holston	n Army	Ammunition Pl	ant			DATE PREPA	RED	
	Limited	l Energy	/Studies - D	ACA01-91-	-D-0032		07/16/92		
	EMC E Denvei		s, Inc - PN#	3102-002			Estimator C	JONES	
			E STEAM PRE	SSURE HEAD	DER		Checked by		
		antity	Materia	ıl		Labor			
Description	No. Units	Unit Meas.	Per Unit	Total	Hours Per Unit	Hourly Rate	Total	Total Cost	
RENOZZLE TURBINES									
(NOZZLES, RELIEF VALVE, CONTROL VALVE)		EA	\$19.115.00	\$76.46A	10	\$81.25	\$3,250	A70 710	
FACTORY LABOR EXPENSES		LS	\$2,000.00	\$76,460 \$2,000	10	\$61.23	\$3,250	\$79,710 \$2,000	
	4	5		¢50.070	00	#10.00	* 000		
FEEDWATER HEATER	1	EA	\$53,270.00	\$53,270	20	\$16.89	\$338	\$53,608	
FEEDWATER STEAM PIPING									
12 IN STEEL PIPE, SCH 80, WLD									
PIPE	16	FT	59.14	\$946	1.6	\$16.89	\$432	\$1,379	
ELBOWS		EA	215	\$430	10.67	\$16.89		\$790	
TEE 14X12		EA	275	\$275	16	\$16.89		\$545	
GATE VALVE	1	EA	6575	\$6,575	15	\$16.89	\$253	\$6,828	
FAN TURBINE PIPING									
6 IN STEEL PIPE, SCH 80, WLD									
PIPE	140		\$25.10	\$3,514	0.8			\$5,406	
ELBOWS		EA	\$45.00	\$1,080	5.33	\$16.89	\$2,161	\$3,241	
TEE 14X6		EA	\$245.00	\$980	9.6	\$16.89		\$1,629	
GATE VALVE	8	EA	\$2,025.00	\$16,200	8.3	\$16.89	\$1,121	\$17,321	
FEEDWATER HEATER PIPING	1								
8 IN STEEL PIPE, SCH 80, WLD									
PIPE	120		\$37.67	\$4,520	0.96	\$16.89		\$6,466	
ELBOWS		EA	\$86.00	\$860	6.86	\$16.89		\$2,019	
TEE		EA	\$115.00	\$230	12	\$16.89		\$635	
GATE VALVE	3	EA	\$3,050.00	\$9,150	10	\$16.89	\$507	\$9,657	
PIPE INSULN, 500 DEG FIBERGLS									
6 IN, 2 IN THK WITH ASJ	140	FT	\$6.45	\$903	0.16	\$16.89	\$378	\$1,281	
8 IN, 2 IN THK WITH ASJ	120	FT	\$7.96	\$955	0.2	\$16.89	\$405	\$1,361	
12 IN, 2 IN THK WITH ASJ	14	FT	\$10.50	\$147	0.246	\$16.89	\$58	\$205	
DEMOLITION	140	FT			0.053	\$16.89	\$125	\$125	
PRESSURE REDUCING STATION	1	EA	8900	\$8,900	11	\$16.89	\$186	\$9,086	
CONDENSATE PIPING									
1 IN STEEL PIPE, SCH 80, WLD	000	 	1.00	****	0.400	A 40.00			
PIPE ELBOWS	200		1.68	\$336	0.188	\$16.89		\$971	
TEE		EA EA	11.35	\$48 \$11	1.6	\$16.89 \$16.89		\$251	
GATE VALVE		EA	115	\$345	1.0	\$16.89		\$38 \$396	
PIPE INSULN, 500 DEG FIBERGLS		-/\-	110	40-10	•	\$10.03	\$31	\$330	
6 IN, 2 IN THK WITH ASJ	200	FT	3.59	\$718	0.08	\$16.89	\$270	\$988	
STEAM TRAP, 1"	 	EA	· 194	\$194	4	\$16.89	\$17	\$211	
STEMPITIAL, I	<u> </u>	LA	194	Φ134		\$10.09	\$17	\$211	
MATERIAL AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT A	ļ								
SUBTOTAL				£100.040		,	017.000	0000 : ::	
OVERHEAD & BOND	0.16	 		\$189,048 \$30,248		******	\$17,099 \$2,736	\$206,147 \$32,983	
SUBTOTAL				\$219,296			\$19,834	\$239,130	
PROFIT	0.1			\$21,930			\$1,983	\$23,913	
SUBTOTAL				\$241,225			\$21,818	\$263,043	
CONTINGENCY	0.2			\$48,245			\$4,364	\$52,609	
TOTAL ESTIMATED COST	\$660,655. Per			\$289,471			\$26,181	\$315,652	


LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

	····					
	TION:	HOLSTON A			REGION:	4
	. NO. & TITLE:		-D-0032 LIMITED E			
			TE PRESSURE STEAM	M HEADER		
	AL YEAR:	91			ECONOMIC LIFE	
ANAL	YSIS DATE:	16-Jul-92			PREPARED BY:	D JONES
4 1884	'ESTMENT					
	CONSTRUCTIO	NCOST				\$315,652
	SIOH COST	11 0031	(5.5% of 1A) =			\$17,361
	DESIGN COST		(6.0% of 1A) =			\$18,939
	SALVAGE VALU					\$0_
E.	TOTAL INVESTM	ENT	(1A + 1B +1C +1D -	1E) =	į	\$351,952
			_			
2 EN	ERGY SAVINGS					
	FUEL TYPE	FUEL COST	SAVINGS	ANNUAL \$		DISCOUNTED
		\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)
A.	ELEC	\$4.67	0	\$0	15.61	\$0
B.	DIST		0	\$0	0.00	\$0
C.	RESID		0	\$0	0.00	\$0
	NAT GAS		0	\$0		\$0
	COAL	\$1.25	72,484	\$90,605	16.06	\$1,455,116
	00/12	Ψ.1.25	72,101	400,000	.0.00	\$1,100,110
F	TOTAL ENERGY	SAVINGS [72,484	\$90,605		\$1,455,116
٠.	TOTAL LITERIOR		12,101	Ψ00,000		Ψ1,-00,110
2 NO	N ENEDGY CAL	/INIGS (+) / CO	DOT / NA			
	N-ENERGY SAV		JS1 (-) •			
Α.	ANNUAL RECUP			(0.400)	44 50	(AE 040)
	ADDED MAINTE			(\$400)	14.53	(\$5,812)
	ELECTRIC DEM					
			<u>ITH * 12 MTHS = </u>	\$0	14.53	\$0
·	TOTAL SAVINGS	; (+) / COST (-	-)	(\$400)		(\$5,812)
_						
В.	NON-RECURRI	VG (+/-)	YEAR OF			
	ITEM		OCCURRENCE			
	a.			\$0	0.00	\$0
	b.	,		\$0	0.00	\$0
	c.			\$0	0.00	\$0
:	TOTAL SAVINGS	(+) / COST (-	-)	\$0		\$0
C.	TOTAL NON EN	RGY DISCOU	INTED SAVINGS (3A -	- 3B)	1	(\$5,812)
			•			
D.	PROJECT NON-	ENERGY QUA	ALIFICATION TEST			
	NON ENERGY S					-0%
			-, 30 - //			5 /6
4 510	ST YEAR DOLLA	R SAVINGS (-) / COSTS (_)	\$90,205		
	TAL NET DISCOU			ψ30,203		\$1 440 204
				⊃ 1		\$1,449,304
			ÆSTMENT RATIO (SII	רי		4.12
1 511	<u> IPLE PAYBACK (</u>	I EARO)				3.90

EMC ENGIN	EERS	, INC.		
PROJ. #	PRO	NECT,	3/2	45 2
SHEET NO	13	OF	12	
CALCULATE	D BY_	<u> </u>	ATE <u>⊋/</u>	= 2
CHECKED B'	Y	$\stackrel{\smile}{-}$ DA	TE	
SUBJECT				

APPENDIX F AREA-B AIR PREHEATER ANALYSIS

AREA B AIR PREHEATER

ENERGY SAVINGS (FROM BOILER MODEL)

BASE CASE AIR PREHEATER SAVINGS 2,155,572 MBTU — ANNUAL COAL USAGE 2,032,323 MBTU

123,249 MBTU/YR

MAINTENANCE COSTS

40 HRS/YR @ \$25 = \$1,000/YR

ELECTRIC ENERGY USAGE

$$\frac{100 \text{ GPM x } 10' \text{ WC}}{3960} = 0.36 \text{ HP}$$

$$\frac{0.36 \text{ HP} \times 0.746 \text{ kW}}{0.85 \text{ HP}} = \frac{0.317 \text{ kW}}{0.85 \text{ HP}}$$

EMC ENGINEERS, INC.							
PROJ. #	_ PROJECT_	379, 1012					
SHEET NO	OF	11					
CALCULATED	BY <u>B 6</u> DA	TE <u> 1/14/92</u>					
CHECKED BY	<i>J €</i> DAT	E 1/2/1/32					
SUBJECT							

2	
Š	
2	
ŗ	
۲,	
ב	
5	
ñ	

						S	RHAH	IC CEE LC EU BJ	J. : ET CK	#NUE	IO AT D	E	D	-	PI _2	RC	IJ	E(C1 F.		ΛT	1 7	1,	7		<i>2</i> /	ं	2	•	
COAL ANALYSIS	LBH AIR/LBH COAL FROM ASHRAE FUNDAMENTALS	LBH OF 5 PSI STEAM CONDENSED PER LBH OF MAKE UR	STEAM TABLES	MEASURED	AREA-A ECONOMIZER ANALYSIS	MEASURED	300 PSI, 525 F	300 PSI, SATURATED	6 PSIG, SAT	228 F. SAT	WEATHER DATA	ASSUMED	ASSUMED	DESIGN DATA	DESIGN DATA	TURBINE MANUFACTURER	DESIGN DATA	DESIGN DATA	TURBINE MANUFACTURER	DESIGN DATA	DESIGN DATA	TURBINE MANUFACTURER	CALCULATED	CALCULATED	CALCULATED					
BTU/LBM	.BM/LBM	LL.	BTU/LBM	LL.	BTUH/F	*	BTU/LBM	BTU/LBM	BTU/LBM	BTU/LBM	ш	*	MMBH	웊	S. P.	LBHAHP	웊	GPM	LBH/HP	웊	GPM	LBH/HP	*	ᆫ	F8H	PSIG	Ŀ		BTU.LBM	Ŀ
14 100 00	8.5	86.00	00.096	480	25000.00	2.46%		399	1,157	1961	88	8.10%	1.65	650	62,500	21.60	8	1,750	9.79	136	. 460	33.4	21.10%	700	932	9	228	0.80	_	228
ΛHH	THEO	RETURN	PSI5	TEI	ECON	BLOW	£	ੜ	HSLP	¥0 H	4	ross	PAD PAD	FANHP	FANCEM	FANSTM	DAHP	DAGPM	DASTM	FWHP	FWGPM	FWSTM	FLASH	FWHEAD	JET	로	Ξ	뿔	≣	LPT
HEATING VALUE OF COAL	THEORETICAL COMBUSTION AIR	MIXED WATER TEMP	LATENT HEAT (6 PSI)	ECONOMOZER AIR TEMP IN	ECONOMIZER UA	BLOWDOWN RATE	STEAM ENTHALPY	LIQUID ENTHALPY	LOW PRES STEAM ENTHALPY	DA HEATER LIQUID ENTHALPY	AMBIENT TEMPERATURE	COMBUSTION LOSSES	RADIATION LOSSES PER BOILER	DESIGN FAN HORSEPOWER	DESIGN FAN CFM	FAN STEAM RATE	DA PUMP DESIGN HORSEPOWER	DA PUMP DESIGN FLOW	DA PUMP STEAM RATE	FW PUMP DESIGN HORSEPOWER	FW PUMP DESIGN FLOW	FW PUMP STEAM RATE	BLOWDOWN FLASH STEAM	FW PUMP HEAD	VACUUM STEAM JET RATE	INTERMEDIATE HEADER PRESSU	INTERMEDIATE HEADER TEMP	PRE-HEATER EFFECTIVENESS	PRE-HEATER LATENT HEAT	LOW PRESSURE STEAM TEMP

PUMP	Ę	PUMP	POWER	Ę	8	333	8	101	103	26	87	77	74	73	73	75	82	ক	007
FEEDWATER PUMP				(GPIM)		-			409		943			291	291	296	326	372	00,
				(LBM/HR)	1	3,826	2,472	2,616	2.472	2.472	2.472	2,301	2,301	2,301	2,301	2,301	2,472	2.472	
	ď	PUMP	POWER	£	98	19	98	40	96	98	96	32	32	32	32	32	98	98	
DA PUMPS	8 0	PUMP	FLOW	(GPIM)		-		358			162						276		
	LEAVING	MAKE UP	TEMP	Ē	228	228	228	228	228	228		228	228						
DEAERATING HEATER		2		=	140,670	556,108	140,098	178,167	172,698	156,838	145,018	129,079	123,485	122,867	122,887	124,940	137,566	167,007	
SEAERATIN				(LBM/HR)	1	989 636	25, 101	31,922	30,942	28, 100	26,982	23, 127	22, 124	22,014	22,017	22,386	24,647	28,130	
]	LEAVING	MAKE UP	TEMP	Œ	99	98	98	98	98	98	98	98	98	98	99	99	98	98	
OVERY	HEAT	TRANSFER		(BTUH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ľ
LOWDOWN HEAT RECOVERY	HEAT	75	EFF		00.0	00.0	00'0	00'0	00.0	00.0	00.0	00.0	00'0			00'0	00'0	00.0	•
BLOWDOW		DOWNEX		(LBM/HR)	3,142	12,422	3,129	3,980	3,858	3,503	3,239	2,883	2,758	2,745	2,745	2,791	3,073	3,507	
	TOTAL			(LBM/HR)	165,873	655,744	165,199	210,089	203,640	184,938	171,000	152,206	145,609	144,880	144,904	147,325	162,213	185,137	0
	1.14 100	200	ON LINE		2	7	2	7	2	2	2	2	2	2	2	2	2	2	
	<u>พ</u> ลาเดช	STEAM		(LBM/HR)	168'191	640,000	161,233	205,045	198,751	180,498	166,894	148,651	142,113	141,402	141,425	143,788	158,319	180,692	101001
		STEAM		(LBM/HR)	(0)	639,432	0	0	0	0	0	0	(O)	0	0	0	0	0	•
		STEAM	DEMAND	(LBM/HR)	135,200		135,200	172, 191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	100001
	NUMBER	ხ	DAYS		30	ප	8	31	28	31	8	31	S	31	31	8	31	30	70
			NOILIONS		BASECASE	Sign	AIR PREHEATER	JAN	FEB	MAR	APR	MAY	NO.	JOF.	AUG	SEP	OCT	NOV	2

55
ATER
Ħ
ய
Ξ
뿐
α.
₩
٩
بے
H
₫
ã
ш
ᇹ
ω
مج
ַ
В
8
¥
ŵ
¥

PART LOADSTEAM OUTBLOWDOWDRY FLUE IFLUE HUMIRADIATION COMBUSTION LOSS BASECASE 72.62% 0.67% 13.44% 3.69% 1.38% 8.10% DESIGN 77.12% 0.71% 9.43% 3.69% 0.74% 8.10%

EMC ENGINE	ERS,	INC.			
PROJ. #	PRO	JECT_	3100	? - 45 7	_
SHEET NO	3	OF_	1)	_ ,.	
CALCULATED					
CHECKED BY_		DA	TE		
SUBJECT					

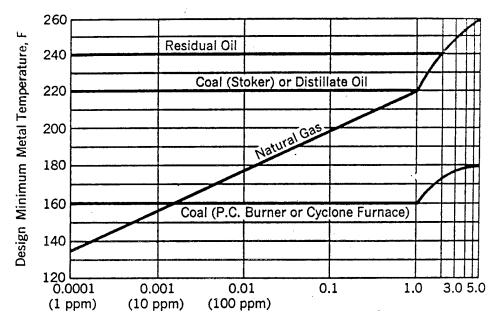
BOILBAIR WK3 DA PUMP CURVE	DA PUMP CUF	IVE				
	GPIM	HEAD	EFF	롸	PLR	dH%
	0	218	క	0	ž	క
	100	218	16%	रु	%9	88
	200	218	27%	4	10%	41%
	300	217	% 96	46	15%	45%
	400	217	44%	8	20%	80%
	000	215	82%	69	% %	%69 %69
	800	214	83%	8	40%	88
	1,000	211	70%	92	%0¢	76%
	1,200	503	75%	æ	% 09	<u>\$</u>
	1,400	202	80%	8	70%	% 68
	009	193	<u>\$</u>	8	80 %	878
	1 800	184	%9 8	97	% %	91%
	2,000	173	87%	90	100%	100%
	2,400	145	85%	103	120%	103%
	2,800	8	74%	98	140%	898

	₩	FLUE	SSOT	(MBH)	16	21	10	11	+	=	40	10	o	6	6	10	10	11	-
	BLOW	NW 08	SSOT	(MBH)	-	2	1	+	1	-	-	-	-	1	1	=	1	1	•
		STEAM	RODUCEI	(MBH)	49	171	98	110	106	16	68	79	92	9/	76	77	98	97	301
		3	Z	(MBH)	16	32	16	21	20	18	17	15	4	14	14	14	16	18	CC
		STEAM		(MBH)	103	203	102	130	126	115	106	85	86	06	06	16	101	115	201
	COMBUST	AR	FLOW	(LBM/HR)	188, 181	232,093	177,347	194,612	192,428	185,569	179,879	171,281	167,973	167,598	167,610	168,850	176,003	185,646	100 4 00
	PERCENT (EXCESS	AR		102%	%	402%	77%	81%	818	%66	411%	116%	116%	116%	114%	104%	%06	040
ONOMIZER		ESTMTD	OXYGEN		10.60%	6.33%	10.62%	9.16%	9.37%	9.98%	10.43%	11.05%	11.26%	11.28%	11.28%	11.20%	10.72%	9.65	9000
COING EQ	BOILER	FEED	WATER	(LBM/HR)	82,937	163,936	82,600	105,044	101,820	92,469	85,500	76,103	72,804	72,440	72,452	73,663	81,107	699 76	707 707
BOILER INCLUDING ECONOMIZER		STEAM	<u> </u>	(LBM/HR)	80,945	160,000	80,616	102,522	99,376	90,249	83,447	74,276	71,067	70,701	70,712	71,894	79,159	90,346	650.00
ш.	FLUE	GAS	EXT	Œ	386	398	285	289	289	287	285	283	282	282	282	282	284	287	000
REHEAER	PRE	HEAT	EXT	Œ	99	98	160	162	162	161	160	169	169	159	159	159	160	161	607
N AIR PREH		ENERGY	EFF EXCHANGE	(BTUH)	0	0	4,431,026	4,944,523	4,879,110	4,674,623	4,506,826	4,2 62, 690	4,165,734	4,144,756	4,145,117	4,181,364	4,391,393	4,676,826	010 040 1
COMBUSTION AIR P	HEAT	FW EXCHANGE	3443		0.00	0.00	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	600
<u> </u>	LEAVING	<u> </u>	TEMP	<u> </u>	228	228	228	228	228	228	228	228	228	228	228	228	228	228	000
HEATER	STEAM LEAVING	DEMAND		(BTUH) (LBMMHR)	0	0	0	0	0	0	(0)	0	0	0	0	0	0	0	-
STEAM PRE-HEATER	HEAT	PUMP TRANSFER		(BTUH)	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	•
<u>.,,</u>	Pw	PUMP	STEAM	(LBM/HR)	3.149	9,787	3,140	3,748	3,661	3.408	3,219	2.964	2,875	2,865	2,865	2,898	3,100	3,410	0,00
			CONDITION		BASECASE	DESIGN	AIR PREHEATER	JAN	FEB	MAR	APR	MAY	NOO	Inf	AUG	SEP	TOO	YON	2

	TO LOAD 200
	NSTEAM 2 136,
2	ISCELLA 1,77
HEALER	FW PUMP DRAFT FANMISCELLANSTEAM TO 3,149 19,298 1,772 135,200
7 Y Y Y	UMP DRA 1,149
	FW 3
ICA-B COMPOTER BOILER MODEL - AIR PREHEATER ECO	BOILBAIR.WK3 DA PUMP FW PUMP DRAFT FANMISCELLANSTEAM TO LOAD 2,472 3,149 19,298 1,772 136,200
	BAIR.WK3
9 4	BOIL

EMC ENGINE	ERS,	INC.	
PROJ. #	PRC	NECT_	3/01-007
SHEET NO.			
CALCULATED E	3Y <u></u> 2	D/	ATE 1/29/22
CHECKED BY_		DAT	re
SUBJECT			

							ECONOMIZER	ч			_	DRAFT FANS	S			CENTRAL HEATING PL	TING PL
	FUEL	1			FLUE	3										BLOW	TOTAL
		SOMEON S	1	3		Ž	CATACITY CITY			EZE	EXT	FORCED	NOCED	TOTAL	ij	<u>₹</u> 8	LO PRE
		2	Z	Sol∃ Sol∃		<u>H</u>	RATIO	DIN.	EFF	AA	WATER	DRAFT	DRAFT	윺	398	FLASH	STEAM
BASECASE DESIGN	(мвн) (мвн)	(MBH)	(MBH)	-	(Le					Œ	Ē	(SCFM)	(SCFIN)		=	(LBM/HR)	LBMAHR
DESIGN	2	10	119	8,471		72.5%	0.67	0.63	0.37	386	283	41,818	43,606	421	9.649	940	25,759
	6	18	222	15,746	247,05	77.1%	0.36	0.42	0.33	398	259	61,576	54,900	538	11,668	3.322	63,605
AIR PREHEATER	4	2 9	112	196'1		76.8%	0.64	0.56	0.39	381	283	39,410	41.092	366	9.213	837	24.875
NAN	9	11	141	6/6'6	204,08	78.0%	0.47	0.61	0.37	387	273	43,247	46,353	437	9,919	1.064	27 267
FEB	9	2 11	137	9,687	201,630	77.9%		0.62	0.37	386	274	42,762	44,807	431	9,826	1.032	26.817
MAR	5	10	126	298'8	193,979	77.4%	0.50	0.54	0.38	384	278	41,238	43,106	415		937	25,899
APR	9	9	116	8,228	69,781	77.0%		0.55	0.39	382	281	39,973	41,710	401		998	25, 182
MAY	4	2 8	104	7,381	178,293	76.4%	99'0	0.58	0.40	379	287	38,062	39,621	382	8,980	77.1	23,996
NOC	4	8	100	7,082	174,701	76.2%		0.60	0.40	378	289	37,327	38,823	376	8,856	738	23,626
ากเ	4	8	86	7,049	174,294	76.1%	0.58	09.0	0.40	378	289	37,244	38,732	374	8,842	734	23,585
AUG	4	8	86	7,050	174,308	76.1%		09.0	0.40	378	289	37,247	38,735	374	8.843	734	23,586
SEP	4	8	101	7,160	175,652	76.2%	0.57	0.69	0.40	378	288	37, 522	39,034	377	8.889	746	23,723
OCT	4	6 2	110	7,832	183,444	76.7%	0.54	0.67	0.39	381	284	39,112	40.765	393	9.161	822	24 715
NON	5	10	125	9,861	194,064	77.4%	0.50	0.64	0.38	384	278	41,255	43,125	415	9.545	938	25 909
DEC	2	11	136	9,657	201,373	77.8%	0.48	0.62	0.37	386	274	42 711	44 750	431	9817	1 028	26 785


EMC ENGIN	EERS	, INC.	
PROJ. #	_ PRO	SJECT,	3107-202
SHEET NO.	5	OF _	<i>1 :</i>
CALCULATE	D BY	D	ATE 1/29/92
CHECKED BY	/	DA	TE
SUBJECT			

LVALOO	STEAM	36.				0.000	0.000	0000	0000	0.000	1.006	1.737	1.818	1.815	1.548	0.078	0.000	0.000	
State Control	COMBUSTI	SSOT SSOT	(MBH)	19	72	18	23	22	20	19	17	16	16	91	16	18	20	22	
26.000000000000000000000000000000000000	FLUE	ross	(MBH)	41	118	56	ॐ	33	31	98	28	27	27	27	27	29	31	33	
	STEAM	E	(MBH)	11	1	1	-	-	Ŧ	=	+	-	-	-	-	1	1	-	
		EFF		70.5%	76.7%	76.0%	76.3%	76.1%	76.6%	75.2%	74.0%	73.3%	73.3%	73.3%	73.5%	74.8%	75.6%	76.1%	
2	FREGY	ADDED	(MBH)	168	672	168	215	208	189	174	154	146	146	146	148	165	189	207	
- 6	¥35			8	13	6	4	4	7	69	6	6	6	9	6	9	4	4	
CTF ANA	₹ 0	COAD	(MBH)	172	989	172	219	212	193	178	157	149	149	149	151	169	193	211	
N III IAINOPA	FUEL	Z	(WBH)	172,004	639,420	161,760	209,261	183,566	186,730	167,055	154,856	143,795	ľ	147,918	146,375	164,331	179,919	202,615	2 032 306
		Z	0.7	ŀ	888.1	224.7	281.3	273.2	249.6	232.0	208.1	199.7	198.8	198.8	201.9	220.9	249.9	272.3	
SAL SAL	10 10	LOAD	(LBM/HR)	135,200	539,432	135,200	172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	166,331	
#OT 41	E PLANT	STEAM		16.49%	15.71%	16.15%	16.02%	16.04%	16.08%	16.13%	16.78%	17.28%	17.34%	17.34%	17.15%	16.20%	16.08%	16.04%	
TOTAL	N PLANT	STEAM	(LBM/HR)	26,691	100,568	26,033	32.854	31,874	29,032	26,914	24,928	24,558	24,517	24,518	24,655	25,647	29,062	31,773	
	A A	STEAM	(LBM/HR)	0	36,031	226	4,655	4.125	2.201	800	0	0	0	0	0	0	2,222	4,066	
100.00	LO PRES	VENT	(LBM/HR)	555	0	0	0	0	0	0	870	1,502	1,671	1,569	1,338	19	ō	0	
	LO PRES	STEAM	(LBM/HR)	555	(36,031)	(226)	(4,655)	(4, 12.5)	(2.201)	(800)	870	1,502	1,571	1,569	1,338	19	(2,222)	(4,056)	
IN		CONDITION		BASECASE	DESIGN	AIR PREHEATER	JAN	FEB	MAR	APR	MAY	NOP	JUL	AUG	SEP	OCT	NON	DEC	

COMMENT #1

280°F Precipitators

% sulfur= 0.75% from coal analysis

Sulfur in Fuel, % by Weight (as fired)

Fig. 4 Limiting tube-metal temperatures to avoid external corrosion in economizers or air heaters when burning fuels containing sulfur.

Minimum metal temperature = 220°F. 280°F provides 60°F safety margin.

EMC ENGINEERS, INC.

PROJ. #_____ PROJECT 3/92-5-5

SHEET NO. ____ OF _____

CALCULATED BY ____ DATE ____

CHECKED BY ____ DATE ____

SUBJECT _____

ANALYSIS OF FAN CAPACITY

(From boiler model)

	ε	Fuel* (MBh)	Forced* Draft Fan (cfm)	Induced* Draft Fan (cfm)	% of Full Flow	% of Full Pressure	Static** Pressure Reduction (" w.c.)
Basecase	0	238.9	41,818	43,603	100	100	0
Preheater	0.32	224.7	39,410	41,092	94.2	88.8	5.6

^{*}From Boiler Model

Fans are designed for 52,500 cfm @ 550 hp.

$$HP = \frac{cfm\Delta p}{\eta_F 6350}.$$

$$\Delta p = \frac{HPx H_F x 6350}{cfm} = \frac{550 0.75 6350}{52,500} = 49.9'' H_2O.$$

$$\frac{p_1}{p_2} = \left(\frac{cfm_1}{cfm_2}\right)^2 Fan Laws.$$

Fans are reported to be at maximum capacity and are the limiting factor for boiler operation. Air preheaters increase boiler efficiency and reduce fuel and air flow. Reduced air flow will offset the static pressure of the air preheater coils.

EMC ENGINEERS, INC.

PROJ. #_____ PROJECT

SHEET NO. _____ OF _____

CALCULATED BY DATE _____

CHECKED BY DATE _____

SUBJECT _____

^{**}Combined static pressure drop allowable for air preheaters.

FAX FROM

TROXLER ENGINEERING

Telephone (303) 779-5667

FAX (303) 721-1151

AEROFIN CORPORATION

PROJ. #_____ PROJECT ______ ?__ ?__

SHEET NO. S OF

CALCULATED BY T DATE 1/1- -

CHECKED BY SE DATE 1/18/92

8377 E. Hinsdale Drive Englewood, Colorado 80112

EMC ENGINEERS, INC.

SUBJECT

Monday January 13, 1992

TO:

Ron Gerrans - EMC Engineers, Inc. 2750 South Wadsworth Blvd., C-200

Denver, Colorado 80227-3493

Telephone: 988-2951

Telefax:

985-2527

SUBJECT: Heat Recovery Coil Loop

TOTAL NUMBER OF PAGES SENT = 2

Dear Ron:

The latest iteration follows and should be self explanatory. You will see that I ended up using a 36 tube face (54" casing height) x 7'-0" Nominal Tube Length (NTL) Exhaust Coil, and two 12 tube face (20-9/16" casing height) x 9'-6" NTL Make Up Air Coils.

I do not have the total flexibility desirable with the coil calculation program available, but it makes me feel that the performance can be achieved even though materials are different, and face velocities and fluid temperatures are quite high. In the event that this project goes ahead, we should take a close look at:

Larger face areas to reduce face velocity and possible erosion.

Materials of construction...stainless steel, std. steel? Fluid medium...Therminol, etc.? Fin spacing...12.5 fpi now. 10 fpi?

For now I have developed budget pricing as follows:

CONSTRUCTION

Steel Tubes, 0.049" wall, welded joints.

L-footed aluminum fins.

Raised face flange connections.

BUDGET PRICING

- (1) 36 TF x $7^{1}-0^{11}$ NTL, 4 row coil....\$ 9,700.00
- (2) 12 TF x 9'-6" NTL, 4 row coils....\$ 10,600.00

Sincerely,

TROXLER ENGINEERING Sales Representatives for the AEROFIN CORPORATION

By: C. G. Troxler

EMC ENGINEERS, INC. PROJ. #_____ PROJECT_ 7_OF____ SHEET NO. ___ CALCULATED BY DATE CHECKED BY DATE 1/29 SUBJECT__

HRRA rE -369-COMPUTER SELECTION OF AEROFIN HEAT RECOVERY COILS

EMC ENGINEERS Job Name : Quote Number : RON GERRANS

System Id :

01/13/92 Date :

Coil Information	E	xhaust		Make-Up	
Coil Type :	-	C		cc	
Fin Material :	Copper Solder	Coated FULL	Copper	Solder Coated FULL	
Coil Circuit : Tube Size :	5/8" x 0.04	9" wall	5/8"	x 0.049" wall	
Number In Face :		1		2	
Tube Face :		36		12	
N. Tube Length :		710		9'6	
Fin Series :		140		140	
Fins Per Inch :		12.5		12.5	
Rows :		4		4	
System Face Area		28.8	sq ft	26.3	
Coil Dry Weight :		1032	lbs	512	lbs
Performance - Total	Heat Recovered	4622.0	MBH Eff	iciency 31.8%	
Air Side				_	<i>c</i> .
Elevation : Standard Pressure		0	it	00 00	IT
Standard Pressure	: :	29.92	in Hg	40339	in Hg
Standard Airilow		1460	£rm ·	1531	CIM
Entering Dry Bulb	.UCILY : Temperature ·	388.0	E Thu	56.0	F F
Standard Pressure Standard Airflow Standard Face Vel Entering Dry Bulb Entering Wet Bulb	Temperature :		-		
Leaving Dry Bulb	Temperature :	287.2	F	161.7	F
Leaving Wet Bulb					
Outside Surface F				0.0100	
Fluid Side - Water		•			
Entering Temperat	ure :	183.3	F	280.6	
Leaving Temperat	ure :	280.6	F	183.3	
Flow Rate :		100.0	ābw	100.0 6.1	ābw
Flow Rate : Tube Velocity : Inside Surface Fo		4.1	fps		
Inside Surface Fo	uling :	0.0000		0.0000	
Losses					
Air Friction :			in wg		in wg
Fluid Pressure Dr	op :	7.1	ft wg	13.9	ft wg

Notes

- EM Entering fluid temperature > program limit 180 °F.
- The use of safety pressure relief valve is advised. Coil weight shown is for one coil. E
- Temperatures exceed standard coil design temp. Contact Home Off.

ENGINE	ERSOF					OST_		SHEET 100	
Project			-	Ammunition P				DATE PREPA	RED
				/ Studies —		-D-0032		07/16/92	
Engineer				s, inc − PN≇	3102-002			Estimator	
		Denver						1	
Description		AREA E	3 AIR PI	REHEATER				Checked by	
			antity	Materi	al		Labor		
Description		No.	Unit	Per		Hours	Hourly		Total
		Units	Meas.	Unit	Total	Per Unit	Rate	Total	Cost
Tee-Reducing, 8*		1	EA	\$185.00	\$185	8	\$16.89	\$135	\$320
				\$100.00	\$100		\$10.03	\$105	9021
Pipe, sch 40, 3"		200	LF	\$6.72	\$1,344	0.372	\$16.89	\$1,257	\$2,60°
Elbow		20	EA	\$19.60	\$392	1.6	\$16.89		\$93
Tee		2	EA	\$26.00	\$52	2.667	\$16.89		\$142
Valve – Globe		1	EA	\$240.00	\$240	2	\$16.89		\$274
Unions		6	EA	\$37.00	\$222	1.778	\$16.89		\$402
Flex Hose		2	EA	\$202.00	\$404	1.143	\$16.89		\$443
Air Seperator		1 000	EA	\$815.00	\$815	1.231	\$16.89		\$830
Insulation, FG/ASJ, 3"D	1XZ VV	200	ĻF	\$4.83	\$966	0.1	\$16.89	\$338	\$1,30
Pipe, sch 40, 1"		30	LF	\$1.54	\$46	0.151	\$16.89	\$77	\$12
Elbow		5	EA	\$1.85	\$9	0.615	\$16.89		\$6
Tee		1	EA	\$3.00	\$3	1	\$16.89	\$17	\$2
Insulation, FG/ASJ, 1"D	x2'W	30	LF	\$3.59	\$108	0.08	\$16.89	\$41	\$148
Expansion Tank		1	EA	\$325.00	\$325	1.6	\$16.89	\$27	\$352
Pump		1	EA	\$955.00	\$955	8	\$16.89		\$1,09
Reclaim Coil		1	EA	\$10,600.00	\$10,600	24	\$16.89		\$11,00
Preheat Coil		1	EA	\$9,700.00	\$9,700	24	\$16.89	\$405	\$10,10
Relief Valve		1	EA	\$745.00	\$745	1.6	\$16.89	\$27	\$772
Wire - #12		4	CLF	\$7.75	\$31	0.727	\$16.19	\$47	\$78
Conduit - 1/2"		100	LF	\$2.70	\$270	0.727	\$16.19	\$162	\$432
Motor Starter		1	EA	\$480.00	\$480	4.444	\$16.19	\$72	\$552
								<u> </u>	
					<u></u>				
								-	
								L	
									
									
AVEOUE 18 1 2 2 2 2	SUBTOTAL				\$27,707			\$3,965	\$31,992
OVERHEAD & BOND	0110707	0.16			\$4,433			\$634	\$5,119
PROFIT	SUBTOTAL				\$32,140			\$4,599	\$37,11
rnorii	SUBTOTAL	0.1			\$3,214			\$460	\$3,711
CONTINGENCY	SUBTUTAL	0.2			\$35,354 \$7,071			\$5,059 \$1,012	\$40,822
TOTAL ESTIMATED		V			\$42,425			- φ1,∪1∠	\$8,164

\$195,947

X 4 BOILERS =

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCA	TION:	HOLSTON AAP			REGION:	4
	. NO. & TITLE:		-0032 LIMITED EI	NERGY STUDIES		
		AREA B AIR PRE	HEATER			
	L YEAR:	91			ECONOMIC LIFE	
ANAL	YSIS DATE:	16-Jul-92			PREPARED BY: [JONES
1 INV	ESTMENT					
Α.	CONSTRUCTIO	N COST	=			\$195,948
	SIOH COST		(5.5% of 1A) =			\$10,777
	DESIGN COST		(6.0% of 1A) =		•	\$11,757
	SALVAGE VALU		=			\$0
E.	TOTAL INVESTM	MENT (1A	+ 1B +1C +1D -	1E) =	1	\$218,482
		(1) (COST ()				
2 EN	ERGY SAVINGS FUEL TYPE	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
	FUEL TIPE	\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)
A.	ELEC	\$4.67	(10)	(\$44)	15.61	(\$693)
	DIST	φ4.07	(10)	\$0	0.00	\$0
	RESID		ő	\$0 \$0	0.00	\$0
1	NAT GAS		0	\$0	0.00	\$0
1	COAL	\$1.25	123,249	\$154,061	16.06	\$2,474,224
	00/12	<u> </u>				
F.	TOTAL ENERGY	SAVINGS	123,240	\$154,017	Ī	\$2,473,531
					Ī	
3 NO	N-ENERGY SA	VINGS (+) / COST	⁻(-) √			
	ANNUAL RECU					
	ADDED MAINTE	ENANCE COST		(\$1,000)	14.53	(\$14,530)
	ELECTRIC DEM					
		* \$9.50/KW/MTH	* 12 MTHS =	(\$36)	14.53	(\$525)
	TOTAL SAVINGS	S (+) / COST (-)		(\$1,036)		(\$15,055)
_		NO (. ()	\/E4D.0E		1	
В.	NON-RECURRI	NG (+/-)	YEAR OF		1	
	ITEM		OCCURRENCE	\$0	0.00	
	a. b.			\$0 \$0	0.00	\$0 \$0
				\$0 \$0	0.00	\$0
	C. TOTAL SAVINGS	3 (+) / COST (-)		\$0	0.00	\$0
		3 (1) / 0001 ()		~		4.0
C.	TOTAL NON EN	ERGY DISCOUNT	ED SAVINGS (3A 🕇	- 3B)	 	(\$15,055)
•			,	,		
D.	PROJECT NON-	-ENERGY QUALI	FICATION TEST	•		
	NON ENERGY S	SAVINGS % (3C / (3C + 2F))	•		-1%
		•				
]		,	
4 FIR	ST YEAR DOLL	AR SAVINGS (+) /	COSTS (-)	\$152,981]	
5 TO	TAL NET DISCO	UNTED SAVINGS			[\$2,458,476
1			TMENT RATIO (SIF	3)		11.25
17 SIM	IPLE PAYBACK	(YEARS)			[1.43

APPENDIX G AREA-B BLOWDOWN HEAT EXCHANGER ANALYSIS

EXISTING CONDITION

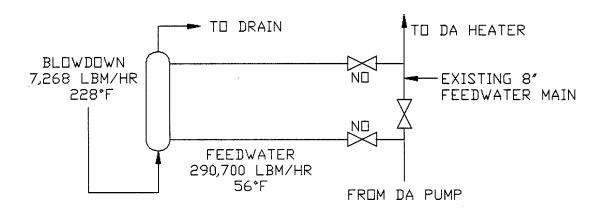
PROJ. #_____ PROJECT_______
SHEET NO. _____ OF ____
CALCULATED BY ____ DATE _____
CHECKED BY ____ DATE ______

BLOWDOWN MEASURED AT 2.5% OF STEAM PRODUCTIONUSECT_

AREA B PEAK STEAM DEMAND = 241,300 LBM/HR (SEE APPENDIX B, PAGE 36)

PEAK STEAM PRODUCTION = 241,300/0.83 = 290,700 LBM/HR

 $BLDWDDWN = 2.5\% \times 290,700 = 7,268 LBM/HR$


21.1% OF BLOWDOWN FLASHES TO STEAM AND IS ROUTED TO LOW PRESSURE HEADER

BLOWDOWN LIQUID = $78.9\% \times 7,268 = 5,734 \text{ LBM/HR}$

PROPOSED MODIFICATION

INSTALL HEAT EXCHANGER TO USE HEAT FROM BLOWDOWN LIQUID TO HEAT FEEDWATER.

DESIGN FOR CURRENT PEAK STEAM PRODUCTION

DESIGN FOR 80% HTX EFFECTIVENESS

$$Q = E \stackrel{\circ}{m}_{BD} C_P (T_H - T_C)$$

 $= 0.8 \times 7,268 \text{ LBM/HR} \times 1 \text{ BTU/LBM°F} \times (228°F - 56°F) = 1,000,000 \text{ BTU/HR}$

FEEDWATER EXIT TEMP

$$T_{E} = T_{I} + \frac{Q}{\stackrel{\frown}{R}_{FW} \stackrel{\frown}{C}_{P}} = 56^{\circ}F + \frac{1}{HR} \frac{E6}{290,700} \frac{BTU}{LBM \times 1} \frac{LBM^{\circ}F}{BTU} = 59.4^{\circ}F$$

-8" MAKE-UP WATER FROM DA PUMP 10' — -3" CONDENSATE DRAIN (EXISTING) NEW 3" PIP TO HTX-BLOWDOWN FLASH TANK DA -REMOVE TANK PLAN DA 6" **FLASH TANK TANK** NO ELEV. 1,235' DA TO DA TANK #2 **TANK** NEW 2" NO NO CONDENSATE PIPE ELEVATION -NEW HTX FIRING FLOOR ELEV. 1,205' -TO 8" DRAIN DA **PUMP** LOWER LEVEL ELEV. 1,185' -

<u>DESIGN</u>

SIZE HEAT EXCHANGER

SHELLSIDE - BLOWDOWN WATER

7,268 LBM/HR/500 ≈ 15 GPM 228 F EWT

TUBESIDE - FEEDWATER

290,700 LBM/HR/500 \approx 600 GPM 56°F \rightarrow 59.4°F

SELECT TACO G16206-6L

PIPING

BLOWDOWN WATER 15 GPM → 2" PIPE FEEDWATER 600 GPM → 6" PIPE

ENERGY SAVINGS

BASECASE MODIFIED 2,155,572 MBTU COAL USAGE

2,153,016 MBTU COAL USAGE

SAVINGS

2,556 MBTU/YR

MAINTENANCE

16 HRS/YR @ \$25 = \$400/YR

EMC ENGIN	eers, inc	•
PROJ. #	_ PROJECT	<u> </u>
SHEET NO.	OF	
CALCULATED		
CHECKED BY	D/	ATE 1/2-/
SUBJECT		

PROJ. #	_ PROJ	ECT_	310	1000
SHEET NO	<u>_</u>	OF_	12	_
CALCULATED	BY	D/	TE_/	129/22
CHECKED BY	(_DAT	E	
SUBJECT				

DUMP	F	DOM:	POWER	á	3	333	106	103	8	87	78	74	74	74	75	83	3	
FEEDWATER PUMP	FW		O II]	_			370	343	307	294	293	293	298	328	37.1	
	క	PUMP	STEAM	(I RIMOHR)	2472	3,826	2.616	2.472	2.472	2.472	2.301	2,301	2,301	2 301	2.301	2472	2.472	
	ĕ0	PUMP	POWER	á	98	19	40	8	98	88	32	32	32	32	32	98	98	
DA PUMPS	<u>ৰ</u>	PCINE	FLOW	GP _P	283	1,120	358	347	316	292	261	250	249	249	263	279	315	
	LEAVING	MAKE UP	TEMP	•	228	228	228	228	228	228	228	228	228	228	228	228	228	
S HEATER		MAKE UP	WATER	(BMAHR)	141.053	657,618	178,154	172,686	156,826	145,463	130,197	124,576	123,955	123,976	126,039	138,720	156,995	
DEAERATING HEATER		6 PSI	STEAM	IL BIMOHRY	24.821	98,126	31,350	30,388	27,597	26,697	22,911	21,922	21,813	21.816	22,179	24,411	27,627	
	LEAVING	MAKE UP	TEMP	Œ	69	69	69	69	69	69	69	69	69	93	69	69	69	
OVERY	HEAT	FRANSFER		- (BTUH)	432,369	1,709,269	546,094	629,332	480,720	445,889	399,092	381,864	379,960	380,023	386,347	425,219	481,237	
BLOWDOWN HEAT RECOVERY	HEAT	EXCHANGE	EFF		0.80	0.80	0.80	0.80	0.80	0.80	080	0.80	080	080	0.80	0.80	0.80	
LOWDOWN		<u>₹</u> 80	7	Ξ	3,142				3,494		2,900					3,090	3,497	
ш	TOTAL	HE	WATER	(LBM/HR)	165,874	655,744	209,504	203,073	184,423	171,061	153,107	146,498	145,768	14 6, 7 92	148,218	163,131	184,622	
		BOILERS	FLOW ON LINE		2	4	2	2	2	2	2	2	2	2	2	2	2	
	BOILER	STEAM	FLOW	(LBM/HR)	161,892	640,000	204,474	198,197	179,996	166,954	149,431	142,981	142,268	142,292	144,659	159,214	180,189	
	뭄	STEAM	BALANCE	(LBM/HR)	2	540,942	0	0	0	0	0	0	ē	0	<u>(</u>	0	0	•
	ਤ	STEAM	DEMAND BALANCE	(LBM/HR)	135,200		172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	
	NUMBER	<u></u> 5	PAYS		90	8	34	28	34	8	31	8	34	31	8	34	8	
			NOILION	1.0	BASECASE	ESIGN	JAN	FEB	MAR	APR	MAY	NOS	חק	AUG	SEP	OCT	NON NON	2

HEATING VALUE OF COAL	<u>^</u>	14 100 00	BTU// BM	COAL ANALYSIS
THEORETICAL COMBUSTION AIR	THEO	1.8		LBH AIRT BH COAL FROM ASHRAE FUNDAMENTALS
MIXED WATER TEMP	RETURN	96.00		LBH OF 5 PSI STEAM CONDENSED PER LBH OF MAKE UR
LATENT HEAT (6 PSI)	PSI6	960.00	BTU/LBM	STEAM TABLES
ECONOMOZER AIR TEMP IN	正	480	L	MEASURED
ECONOMIZER UA	ECON	25000.00	BTUH/F	AREA-A ECONOMIZER ANALYSIS
BLOWDOWN RATE	BLOW	2.46%	*	MEASURED
STEAM ENTHALPY	¥	1271.00	BTULBM	300 PSI, 626 F
LIQUID ENTHALPY	Í	399	BTULBM	300 PSI, SATURATED
LOW PRES STEAM ENTHALPY	HSLP	1,157	BTULBM	5 PSIG. SAT
DA HEATER LIQUID ENTHAL PY	FD4	196	BTULBM	228 F. SAT
AMBIENT TEMPERATURE	Y	8	LL.	WEATHER DATA
COMBUSTION LOSSES	SSOT	8.10%	%	ASSUMED
RADIATION LOSSES PER BOILER	8	1.65	MMBH	ASSUMED
DESIGN FAN HORSEPOWER	FANHP	550	£	DESIGN DATA
DESIGN FAN CFM	FANCFM	52,600	O. P.	DESIGN DATA
FAN STEAM RATE	FANSTM	21.60	LBH/HP	TURBINE MANUFACTURER
DA PUMP DESIGN HORSEPOWER	DAHP	8	웊	DESIGN DATA
DA PUMP DESIGN FLOW	DAGPM	1,750	B MG9	DESIGN DATA
DA PUMP STEAM RATE	DASTM	8	LBHAHP	TURBINE MANUFACTURER
FW PUMP DESIGN HORSEPOWER	FWHP	135	₽	DESIGN DATA
FW PUMP DESIGN FLOW	FWGPM	460	Ø₽M GPM	DESIGN DATA
FW PUMP STEAM RATE	FWSTM	33.4	LBH/HP	TURBINE MANUFACTURER
BLOWDOWN FLASH STEAM	FLASH	21.10%	%	CALCULATED
FW PUMP HEAD	FWHEAD	700	Ŀ	CALCULATED
VACUUM STEAM JET RATE	JET	932	H81	CALCULATED
INTERMEDIATE HEADER PRESSU	呈	9	PSIG	
INTERMEDIATE HEADER TEMP	፰	228	LL.	
PRE-HEATER EFFECTIVENESS	뽀	0.80		
PRE-HEATER LATENT HEAT	圭	096	BTU.LBM	
LOW PRESSURE STEAM TEMP	ΕĐ	228	u	

EMC ENGINE	ERS,	INC.	
PROJ. #	PRO	NECT_	3102-002
SHEET NO.	5	OF	12
CALCULATED I	<u>د⁄ ۲</u> ۲	<u> </u>	ATE 1/27/92
CHECKED BY_		Z DAT	re Te
SUBJECT			

WDNECO D	LWDNECO DA PUMP CURVE	ΥE	-				PART LOADSTEAM OUTBL	LOWDOWIDRY	Y FLUE LFL	UE HUMIRA	DIATIONCO	MBUSTION LOSS
	GPM	HEAD	EFF	뮾	PLR	%Hb	BASECASE 72.62% 0.67% 13.44% 3.89% 1.38% 8.10%	0.67%	13.44%	3.89%	1.38%	8.10%
	0	218	క	0	క	%	DESIGN 77.12%	0.71%	9.43%	3.89%	0.74%	B. 10%
	00	218	16%	ਲ	2%	8						
- "	200	218	27%	4	10%	41%						
	300	217	%% %	46	16%	46%						
	400	217	44%	8	20%	20%						
	009	215	92%	69	30%	%69						
	900	214	83%	69	40%	%89						
	1,000	211	70%	92	%09	%92						
	1,200	509	75%	æ	% 09	8						
	1400	202	%08	8	70%	%68 %						
	1,600	193	%	8	80%	92%						
	1,800	184	86%	26	% 06	%16						
	2,000	173	87%	100	100%	100%						
	2,400	146	86%	103	120%	103%						
	2,800	8	74%	8	140%	%98 8						

2	5	FLUE	1088	(¥BH)	16	21	18	18	17	16	16	15	15	15	15	16	17	4
2410	<u> </u>	₹ 8	ross	(FB)	-	2	-	-	+	•	-	F	-	1	-	•	1	-
					87		100	106	96	89	80	7	16	92	11	92	96	108
200		STEA	PRODUCE	(MBH)	æ	171	9	10	6	æ	æ	_	7	7	_	æ	5	4
10 10 10 10 10 10 10 10 10 10 10 10 10 1		ğ	Z	(MBH)	16	32	21	20	18	41	16	14	14	14	15	16	18	30
2000		STEAM	Tho Tho	(MBH)	103	203	130	126	114	106	98	6	86	8	35	101	116	1961
14011074	COMMO	AR AR	FLOW	LBM/HR)	188,181	232,093	204,526	202,412	195,741	190,398	182,337	179,076	178,705	178,717	179,941	186,972	195,816	202 400
Charter	PERCENT COMBOS	EXCESS	AR		102%	34%	78%	81%	91%	%66	110%	115%	116%	115%	114%	104%	91%	946
- 17		ESTMTD	OXYGEN		10.60%	6.33%	9.18%	9.39%	10.00%	10.43%	11.02%	11.23%	11.26%	11.25%	11.18%	10.69%	%66.6	70110
BOILER INCLOUING ECONOMIZER	ב ב ב	FEED	WATER	(LBM/HR)	82,937	163,936	104,752	101,536	92,212	85,530	76,554	73,249	72,884	72,896	74,109	81,565	92,311	1000
לובע האינול היינולים		STEAM	₽	(LBM/HR)	80,946	160,000	102,237	660 66	86,68	83,477	74,716	71,490	71,134	71,146	72,330	79,607	960'06	00 77.E
ומ	<u> </u>	GAS	EXT	Ē	386	398	390	390	388	386	384	383	383	383	383	386	388	400
HEAER	Į	HEAT	EXI	E	98	99	95	99	88	98	8	98	98	93	98	99	95	77
		ENERGY	EFF EXCHANGE	(BTUH)	0	0	0	0	0	0	0	0	0	0	0	0	0	U
THE NOTICE OF THE	- - -	EXCHANGE	EFFE		00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.00	00.0	00.00	000
	LEAVING	<u> </u>	TEMP	Œ	228	228	228	228	228	228	228	228	228	228	228	228	228	926
FAIFK	N LAN	DEMAND		(LBM/HR)	-	0	(0)	0	0	-	-	-	-	+	-	-	0	(0)
SIEAM PRE-HEALER	HEA	RANSFER		(BTUH)	564	0	(4 19)	(406)	(369)	1,042	935	894	890	068	908	366	(369)	MOE
C	₹	FUND T	STEAM	(LBM/HR)	3,149	9,787	3,740	3,663	3,401	3,220	2,976	2,887	2,877	2,877	2,910	3,112	3,403	1179 6
					-		JAN	FEB	MAR	APR	MAY	NOC	300	AUG	SEP	OCT	NON NON	UCU
			NOITION		BASECASE	DESIGN												

AREA-B COMPUTER BOILER MODEL - BLOWDOWN HEAT RECOVERY
BLWCNECO DA PUMP FW PUMP DRAFT FANMISCELLANSTEAM TO LOAD
2,472 3,149 19,297 1,772 136,202

EMC ENGINE	ERS,	INC.	71	, a
PROJ. #	_ PRO	JECT_	3197	1.9.4
CHEET NO	-5	OF	12	
CALCULATED	BY_	D/	ATE_/	127/22
CHECKED BY	0	$\underline{\hspace{0.1cm}}$ DA $^{\scriptscriptstyle{1}}$	TE	
SUBJECT				

NG PLA	TOTAL	O PRES	STEAM	BW/HR)	25,758	63,605	28, 124	27,671	26,741	26,038	24,873	24,491	24,448	24,450	24,591	25,607	26,752	
CENTRAL HEATING PL		=		ᆮ	840	3,322	1,061	1,029	934	867	776	742	738	739	761	826	935	
ਲ		FAN	STEAM	LBM/HR)	9,649	11,668	10,353	10,258	9 967	9,741	9411	9,281	9,266	9,267	9,315	669 6	9971	
		TOTAL	<u>+</u>		421	638	462	456	439	426	407	400	399	399	402	418	440	
		NDOCED	DRAFT	(SCFM)	43.606	64,900	47,660	47,128	45,466	44,150	42,183	41,393	41,304	41,307	41,603	43,311	45,485	
DRAFT FANS		FORCED	DRAFT	(SCFM)	41,818	51,576	45,460	44,980	43,498	42,311	40,519	39,796	39,712	39,715	39,987	41.549	43,515	
_		EXT	WATER	Ē	283	269	273	276	279	282	287	289	289	289	289	284	279	
		EXI	포	Œ	386	398	390	390	388	386	384	383	383	383	383	382	388	
			<u> </u>		0.37	0.33	0.36	0.36	0.37	0.37	0.38	0.38	0.39	0.38	0.38	0.38	0.36	
~			Ē		0.63	0.42	0.49	0.49	0.61	0.62	0.55	0.56	0.56	0.66	0.56	0.63	0.51	
ECONOMIZER		CAPACITY	RATIO		0.67	0.36	0.49	0.50	0.63	0.56	09.0	0.61	0.61	0.61	0.61	0.57	0.53	
<u> </u>		BOILER	EFF		72.5%	77.1%	74.2%	73.9%	73.3%	72.7%	72.0%	71.7%	71.6%	71.6%	71.7%	72.4%	73.3%	
	ELUE	648	FLO¥		196,229		214,468	212,076	204,598	198,673	189,823	186,270	185,867	185,880	187,211	194 900	204,682	
	3.8	22	FLOW	_	8,471	15,746	10,465	10,173	9,323	8,710	7,880	7,673	7,539	7,540	7,653	8,345	9,332	
		FUEL	z	(MBH)	119	222	148	143	131	123	111	107	106	901	108	118	132	
		COMBUST	S3SS01	(MBH)	10	18	12	12	11	10	6	6	6	6	6	10	11	
	Lugar	RADIATION	SSOT	(MBH)	2	2	2	2	2	2	2	2	2	2	2	4 2 9 100 7,553 16,211 71,7% 0,61 0,56 0,36 289 289 34,637 402 9,316 6 2 11 132 9,345 19,400 72,4% 0,63 0,63 36 276 43,511 418 9,699 6 2 14 142 9,44,632 73,3% 0,63 0,61 0,68 279 43,616 46,86 44 9,911 4 6 2 14 142 9,44,85 74,85 74 74,85 74 74,04 <t< td=""></t<>		
	FUEL	HUMIDITY	SS01	(MBH)	9	6	9	9	9	5	4	4	4	4	4	9	9	
			ONDITION		ASECASE	ESIGN	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG .	SEP	OCT	NON	-

EMC ENGINE	ERS,	INC.	~	007
PROJ. #	PROJ	ECT_	310	00 2
OUEET NO	7	OF	12	_, ,
CALCULATED	BY	2 DA	ATE	1/2/1/2
CHECKED BY		DA1	ΓE	
SUBJECT				

	EXCESS	STEAM	KENT	(MBH.)	1.084	000.0	000.0	000.0	0.000	0.510	2.270	2.972	3.049	3.047	2.791	1.384	0.000	0.000	
		FLUE COMBUSTI	COSS	(MBH)	19	72	24	23	21	20	-8	11	17	17	17	10	21	23	
		FLUE	SSO1	(MBH)	41	118	47	46	44	42	04	68	88	88	39	41	44	46	
		STEAM	TET	MBHS	-	Ŧ	-	-	-	=	=	-	-	-	1	-	F	-	
		품	EFF		70.6%	75.9%	72.7%	72.6%	71.8%	71.0%.	69.3%	%9.6% 68.6%	89.6%	68.5%	68.8%	70.2%	71.8%	72.5%	
	퓽	ENERGY	ADDED	(MBH)	168	674	216	208	189	174	154	146	146	146	148	165	189	207	
		5			1	13	4	4	4	6	69	6	69	6	9	9	4	4	
	STEAM	<u> </u>	LOAD	(MBH)	172	889	219	212	193	178	157	149	149	149	151	169	193	211	
	MONTHL Y	FUEL	Z	(MBH)	172,003	639,420	219,557	192,784	195,613	176,857	165,337	153,756	158,166	158,189	155,384	175,080	189,487	212,810	2,153,019
		0000	0000	1000	238.9	888.1	295.1	286.9	262.9	245.6	222.2	213.5	212.6	212.6	215.8	235.3	263.2	286.0	
	STEAM	10	LOAD	(LBM/HR)	135,202	540,942	172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	166,331	
	TOTAL	IN PLANT	STEAM		16.49%	15.48%	15.79%	15.80%	15.85%	16.16%	17.27%	17.78%	47.84%	17.84%	17.65%	16.67%	15.85%	15.80%	
	TOTAL	IN PLANT	STEAM	(LBM/HR)	26,690	850,66	32,283	31,320	28,530	26,974	25,808	25,426	25,383	25,385	25,526	26,542	28,559	31,221	
			STEAM	_	0	34,521	3,226	2,717	856	0	0	0	0	0	0	0	875	2,650	
	EXCESS	Ξ	VENT	(LBM/HR)	937	0	0	0	0	441	1,962	2,569	2,636	2,633	2,412	1,196	0	0	
1	EXCESS	LO PRES	STEAM		937	(34,521)	(3,226)	(2,717)	(856)	441	1,962	2,569	2,636	2,633	2,412	1,196	(875)	(2,650)	
Ė			_				JAN	FEB	MAR	APR	MAY	NOS	TOF	AUG	SEP	TOO	YON	050	
			SONDITIO		BASECASE	DESIGN													

EMC ENGIN PROJ. #		, INC. WECT_	? <u>, </u>	er e
SHEET NO.			12	
CALCULATED		D/		
CHECKED BY	/	DA	TE	
SUBJECT				

DATE: 7/17/92

TO:	EMC- Eug.
ATTN:	DENNIS JONES 985-2527
FROM:	Nick
TOTAL NO. OF	PAGES (INCLUDING THIS PAGE)
RE:	7ACO G16206-6L
	COPPER TURES
	STEEL SHELL
***************************************	SIFEE HEAD
	STEEL TUBE SHEET
	\$ 4500-5000
	745#
	70727 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

FAX: (303) 781-7362

MANUFACTURERS' REPRESENTATIVE

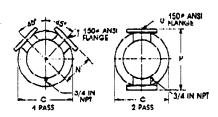
2190 W. BATES AVE. ● ENGLEWOOD, CO 80110 ● (303) 762-8012

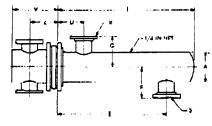
PROJ. #	_ PROJEC		٠, ٠
SHEET NO.	OF	1 1	
CALCULATED	BY	DATE	
CHECKED BY		ATE	
SHRIEGT		~ · · · · · · · · · · · · · · · · · · ·	

201-013

Submittal Data Information U Tube Heat Exchangers

16" DIAMETER LIQUID


SUPERSEDES: SD200-2


Job:. Item POSS P.D. Model **GPM** Temp. GPM Shell Temp. Vel. Tubes Temp. tuQ tuQ P D Shell Vei. Sheil NO. 600 56 59.4°F 15 7 96.3F 3.15 328 G/62061 5.76 .18 . OI FPS FYS

Tube Fluid _____ Shall Fluid

SADDLES (Optional)

DIMENSIONS

16 Inch Diameter

Model N	umber	Fab	rica	ed 51e	el Hec	ids				Dir	nensio	ons (i	nches)						Hoating	Shipping
2 Pass 4 Pass		2 Pc			_	4 P	388			20	and 4 I						_		Surface	Weight
		P	U	<u>. v</u>	_ Z	N		<u> </u>		_ A	С	D	E	F	Ģ		8		(sq.ft.)	(lbs)
G16206L	G10406L	2812	6F	19%	13%	14%	4+	17%	12%	16	231/2	91/4	251/2	1412	141/2	37	8F	8F	104.5	745
G16208L	G16408L	2612	óF	1992	1378	141/4	45	17%	121/8	16	231/2	4%	3/1/2	141/2	141/2	49	8F	8F	141.4	863
C16210L	G16410L	201/2	óF	19%	13%	14%	4F	17%	121/8	16	231/2	9%	491/2	141/2	14%	61	8F	٥٢	178.4	981
G16212L	G16412L	28%	6F	19%	13%	14%	46	17%	12%	16	231/2	934	611/2	141/2	141/2	73	8F	8F	215.3	1105
G16214L	G16414L	281/2	6F	19%	13%	14%	4F	17%	12%	16	2312	9%	731/2	14%	14%	85	8F	ôF	252.2	1187
G16216I	G16416L	281/2	٥F	19%	13¾	44%	4F	17%	12%	16	231/4	91/4	8514	14%	1415	97	86	8F	209.1	1305
G16218L	G16418L	28%	۸F	19%	13%	14%	4F	17%	121/4	16	231/2	9¾	97%	1414	1416	109	8F	8F	326.0	1424
G16220L	G16420L	281/2	6F	19%	13%	141/4	4F	17%	12%	16	231/2	9%	1091/2	141/5	1416	121	8F	86	363.0	1541

SADDLE DIMENSIONS: H-12; W-19; X-13; Hole Dig.-%.

MATERIALS OF CONSTRUCTION (Unless otherwise indicated, standard will be furnished.)

Shell

Standard Steet Optional

Head

Cast Iron 4-10" Fabricated Steel 12-30" 304ss, 316ss Fabricated Steel, Cast Bronze, Fabricated 304ss/316ss Cast Bronze, Fabricated 304ss/316ss

Tubes
Tube Sheet

3/4 x 20 BWG Copper Steel 3/4 x 18 6WG Copper, Steel, 304ss, 316ss, 90/10 Cu Ni, Admiratry Bronze, Brass, 304ss, 316ss, 90/10 Cu Ni

Separators Working Pressure Max. Temperature Steel 150 PSIG (ASME) Bronze, Brass, 304ss, 316ss, 90/10 Cu Ni

375°F

Consult Factory
Consult Factory

Quality Through Design — COMPARE.

TACO, Inc., 1160 Cranston St., Cranston, RI 02920 (401) 942-8000 Telex: 92-7627
TACO, (Canada) Ltd., 1310 Aimco Blvd., Mississauga, Ontario L4W 182 (416) 625-2160 Telex: 06-961179

Printed in USA Copyright 1084: TACO, INC.

Form No. P201-013 Effective 10/1/84

G-9

EMC ENGINE	ERS,	INC.	
PROJ. #	_ PRC	NECT.	3101-20
SHEET NO	10	_OF_	
CALCULATED	BY_ <u>/</u>	<i>ر</i> ر کار کار کار کار کار کار کار کار کار کا	ATE <u>=230/32</u>
CHECKED BY		DA	TE
SUBJECT			

Saturday, July 18, 1992

Taco, Inc.

TACO HEAT EXCHANGER SELECTION, Version 3.00

Job Name: EMC ENGINEERS User ID: DENNIS JONES

** INPUT PARAMETERS **

Tubeside Shellside Fluid Type: Water Fluid Type: Water Flow Rate (gpm): 600.00 Flow Rate (gpm): 15.00 Entering Temp. (°F): Entering Temp. (°F): 56.0 228.0 Leaving Temp. (°F): 59.4 Leaving Temp. (°F): 96.3 Fouling: 0.0005 Fouling: 0.0000 Load (MBh): 988.34 Load (MRh): 982.18

Tube Material: Copper .035 Wall

Maximum Length (ft): 10.0

LMTD: 88.8

** SELECTION RESULTS **

Model Num.	Dia. (in)	Num. Passes	Length (ft)	Baff. Pitch	Tube Vel.(fps)	Tube Pd.(1t)	Shell Vel.(fps)	Shell Pd.(ft)
G16206- 6L	16	2	`3 ´	6	5.76	3.15	0.18	0.01
G18206- 4L	18	2	3	4	4.49	1.95	0.24	0.01
G22408- 9L	22	4	4	9	5.82	9.27	0.10	0.00
G22208- 9L	22	2	4	9	2.91	0.95	0.10	0.00
G24408- 8L	24	4	4	8	4.73	6.20	0.10	0.00
C24208- 8L	24	2	4	8	2.37	0.64	0.10	0.00
G26408- 6T.	26	4	4	6	3.90	4.26	0.13	0.00
G26208- 6L	26	2	4	6	1.95	0.44	0.13	0.00
G30410-12L	30	4	5	12	2.93	2.67	0.05	0.00
G30210-12L	30	2	5	12	1.46	0.29	0.05	0.00

Copyright (C) 1989 Taco Inc.

ENGINE	RSOPINION OF PROBABLE COST	SHEET / OF
Project	Forts McPherson and Gillem EEAP Study DACA21-91-C-0097	DATE PREPARED 07/17/92
Engineer	EMC Engineers, Inc - PN# 3105-000 Atlanta, GA	Estimator D JONES
Description	AREA B BLOWDOWN HEAT EXCHANGER	Checked by

	0"	antity	Materia		<u> </u>	Labor	<u> </u>	
Description	No.	Unit	Per	34	Hours	Hourly	T T	Total
Description	1	Meas.	Unit	Total	Per Unit		Total	Cost
HEAT EXCHANGER		EA .	\$5,000.00	\$5,000			\$68	\$5,068
FEEDWATER PIPING						010.00	000	A770
8' STEEL TEE	2	EA LF	\$340.00	\$680 \$303		\$16.89 \$16.89	\$90 \$324	\$770 \$717
6' STEEL PIPE		EA	\$19.64	\$393 \$74	1.714		\$58	\$132
6" WELD NECK FLANGE 6" GASKET AND BOLT SET		EA	\$37.00 \$14.80	\$148	1.714		\$270	\$418
6' STEEL ELBOW	10	EA	\$130.00	\$520		\$16.89	\$180	\$700
6" IRON BODY GATE VALVE		EA	\$1,300.00	\$2,600		\$16.89		\$2,870
8" IRON BODY GATE VALVE	1	EA	\$2,075.00	\$2,075			\$162	\$2,237
BLOWDOWN PIPING		LF	\$4.98	\$299	0.356	\$16.89	\$361	\$660
2 STEEL PIPE 2 STEEL ELBOW	60	EA	\$59.00	\$354		\$16.89		\$479
2 IRON BODY GATE VALVE	2	EA	\$475.00	\$950		\$16.89		\$984
2' FG PIPE INSUL, 2' WALL	40	LF	\$4.19	\$168		\$16.89	\$60	\$228
		 						
							ļ	
						·		

							ļ	
	<u>- </u>						 	
								·
		<u> </u>						
		<u> </u>						
		İ						
	_	 						
•		 						
	-							
		ļ						
		 						
		ļ			1			
	+	 			1	-		····
		<u> </u>			 	 	 	
		<u> </u>						
		<u> </u>						
SUBTOTA				\$13,260			\$2,002	\$15,262
OVERHEAD & BOND	0.16			\$2,122			\$320	\$2,442
SUBTOTA		 		\$15,382 \$1,538	ļ	ļ	\$2,322 \$232	\$17,704 \$1,770
PROFIT SUBTOTA	0.1	 		\$1,538 \$16,920		ļ	\$232	\$1,770 \$19,475
CONTINGENCY	0.2	+		\$3,384			\$511	\$3,895
TOTAL ESTIMATED COST		+		\$20,304			\$3,066	\$23,370

G-11

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

1. 25

	λΠΟΝ:	HOLSTON AAI			REGION:	4
	I. NO. & TITLE:		D-0032 LIMITED E			
		AREA A BLOW	IDOWN HEAT EXCHA	ANGER		
	AL YEAR:	91			ECONOMIC LIFE	
ANAL	YSIS DATE:	17-Jul-92	****		PREPARED BY: [O JONES
1 100	ESTMENT					
Α.	CONSTRUCTIO	N COST				\$23,370
1	SIOH COST	714 0001	(5.5% of 1A) =			\$1,285
1	DESIGN COST		(6.0% of 1A) =			\$1,402
	SALVAGE VALU	JE	(0.070 01 171) =			\$0
	TOTAL INVESTM		IA + 1B +1C +1D -	1F) =		\$26,058
		(1		, _	. [Ψ20,000
l						
2 EN	ERGY SAVINGS	(+) / COST (-)				
	FUEL TYPE	FUEL COST	SAVINGS	ANNUAL S	DISCOUNT	DISCOUNTED
	· · · -	\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)	1	SAVINGS (5)
A.	ELEC	\$4.67	0	\$0	15.61	\$0
В.	DIST	+ 1101	. 0	\$0	0.00	\$0
	RESID		0	\$0	0.00	\$0
1	NAT GAS		0	\$0	0.00	\$0
E.	COAL	\$1.25	2,556	\$3,195	16.06	\$51,312
-		<u> </u>		\$0,100	10.00	φο1,012
F.	TOTAL ENERGY	SAVINGS [2,556	\$3,195	1	\$51,312
					i i	
					[1
	N-ENERGY SAV		ST (-) ∢			
A.	ANNUAL RECUP					
	ADDED MAINTE			(\$400)	14.53	(\$5,812)
	ELECTRIC DEM					
			TH * 12 MTHS =	\$0	14.53	\$0
	TOTAL SAVINGS	3 (+) / COST (-)	(\$400)		(\$5,812)
_						
B.	NON-RECURRI	NG (+/-)	YEAR OF			
	ITEM		OCCURRENCE			
	a.			\$0	0.00	\$0
	b.			\$0	0.00	\$0
ļ.	C.		· · · · · · · · · · · · · · · · · · ·	\$0	0.00	\$0
	TOTAL SAVINGS	s (+) / COST (-)	\$0		\$0
	TOTAL NONE	==0\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TTD 041/11/00 (04	em)		
C.	IOTAL NON EN	EHGY DISCOUN	TTED SAVINGS (3A +	3명)		(\$5,812)
_	DDO IECT NON	ENERGY OF A	LIEICATION TEOT			
			LIFICATION TEST			
	NON ENERGY S	MY (30)	/ (OC + ZF))			-13%
						•
4 510			LOCOTO ()			
	ST YEAR DOLLA			\$2,795	J	A 1 = -0.0
1	TAL NET DISCOU			~	إ	\$45,500
			ESTMENT RATIO (SIF	7)	<u> </u>	1.75
	IPLE PAYBACK (I EAHO)				9.32

APPENDIX H AREA-B CONDENSATE COLLECTION ANALYSIS

CONDENSATE COLLECTION ECO

EMC ENGINEERS, INC.
PROJ. #_____ PROJECT_____
SHEET NO. _____ OF____
CALCULATED BY____ DATE____
CHECKED BY____ DATE____
SUBJECT_____

Condensate Sources

Turbines:

Entering conditions:

300 psig, 525°F, $h_1 = 1271$ Btu/lbm.

 $h_2 = h_1 - w,$

w = 2545 (Btu/hr/hp) / SR (lbm/hp/hr), where SR is steam rate,

 $h_2 = 1271 - 2545 / SR,$

@ 5 psig ≈ 20 psia

 $h_f = 196 \text{ and } h_g = 1156$.

Quality (X):

$$X = \frac{h_2 - 196}{1156 - 196}.$$

Turbine	Avg. Steam Demand (lbm/hr)	Steam Rate (lbm/hr/hp)	h ₂ (Btu/lbm)	х	Condensate Generated (lbm/hr)
Fans	19,426	21.6	1,153	0.991	175
DA pump	2,738	60.7	1,229	SH*	0
FW pump	3,526	33.4	1,195	SH*	0 ,

^{*}Superheated

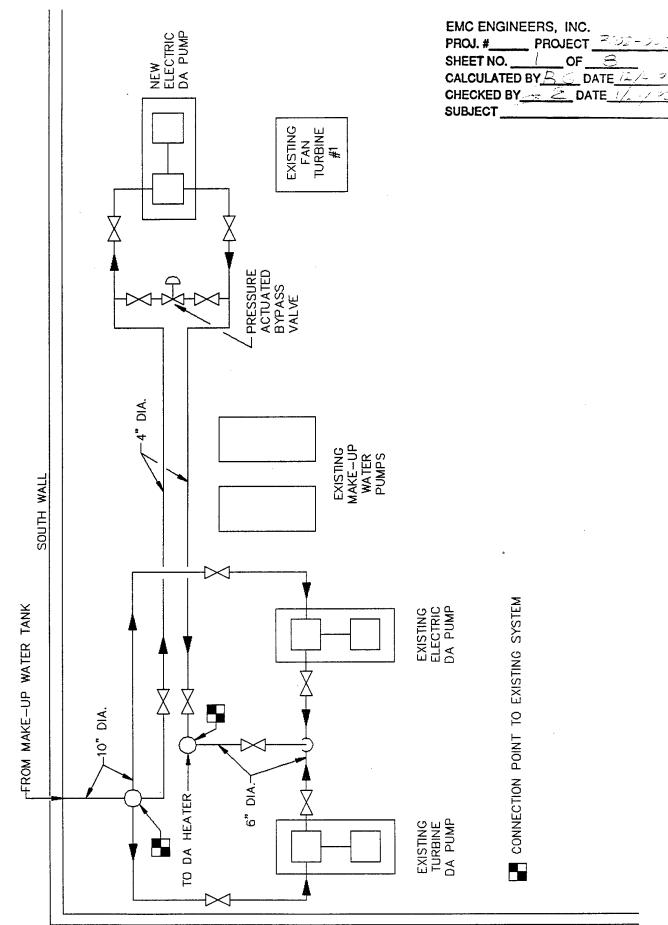
Superheated exhaust from pump turbines will offset pipe loss condensate generation. Remaining condensate is from fan turbines.

At 175 lbm/hr,

$$Q = 175 lbm/hr x (200 - 56)^{\circ} F x 1 Btu/lbm^{\circ} F = 25,176 Btuh$$
.

 $200^{\circ}F$ = condensate temperature at make-up tank.

Make-up Water Heating


The only use for condensate heat is for make-up water heating. Average make-up flow is 143,463 lbm/hr.

Condensate will likley be 200°F from the condensate receiver. The resulting make-up water temperature is:

$$\frac{175 \, lbm/hr \, x \, 200^{\circ} F + 143,402 \, lbm/hr \, x \, 56}{143,463} = 56.2^{\circ} F \, .$$

Make-up water will be heated from 56.0°F to 56.2°F.

APPENDIX I AREA-A ELECTRIC DA PUMP ANALYSIS

CALCULATE PERCENT POWER REQUIRED FOR EXISTING DA PUMP

Pump Nameplate: 1200 gpm

Motor:

Model: G.E. 84 E 86 1 G1 Frame: 5425 Type KI

Elec: 2300V 23.2 A 3 phase Rating: 1765 rpm, 100 hp

Measured Power:

$$\frac{10.8 + 11.2 + 10.8}{3}$$
. Avg.=10.9 amp.

$$kW = \sqrt{3} VI = \sqrt{3} (2300 V)(10.9 A) = 43.4 kW$$
.

Calculated Power:

$$hp = \frac{h_A x gpm}{3960 x \eta_p},$$

where

 h_p = applied head (from graph),

gpm = actual flow = 350 gpm, and

 η_p = efficiency (from graph).

$$hp = \frac{218 \times 350}{3960 \times 0.40} = 48.2 \, hp$$
.

Assuming motor efficiency of 87%, ASHRAE 1988 Equipment, p31.4.

$$kW = \frac{hp \times 0.746}{eff} = \frac{(48.2)(0.746)}{0.87} = 41.3 \, kW.$$

Therefore, measured power agrees with calculated power requirements.

ENERGY SAVINGS

Existing Electric Demand:

10.9 A @ 2300 V

EMC ENGINE	ERS,	INC.		
PROJ. #	_ PRC	NECT.	-	
SHEET NO			SZ.	
CALCULATED	BY F	D.	ATE_	
CHECKED BY		_	TE	
SUBJECT	-			

 $\sqrt{3} VI = \sqrt{3} (2300 V)(10.9 A) = 43.4 kW$.

Proposed Electric Demand:

Pump size = 15 hp

$$\frac{15 hp \times 0.746}{0.9} = 12.4 kW.$$

Electric Demand Savings:

$$434 - 12.4 = 31.0 \text{ kW}.$$

Annual Electric Energy Saivngs:

 $31.0 \ kW \ x \ 8760 \ hrs/yr = 271,560 \ kWh/yr$.

271,560 kWh/yr x 0.003413 MBtu/kWh = 927 MBtu/yr .

PRESSURE DROP CALCULATIONS

Bernoulli equation:

EMC ENGINE	ERS,	INC.		
PROJ. #	_ PRO	JECT_		
SHEET NO		OF_		
CALCULATED	BY_R	DA	TE	
CHECKED BY		DAT	E	
SUBJECT				

$$\frac{P_1}{\gamma} + Z_1 + \frac{V_1^2}{2g} + h_M = \frac{P_2}{\gamma} + Z_2 + \frac{V_2^2}{2g} + h_L.$$

where

 $P_1 = 0$ psi, make-up water tank,

 $P_2 = 7$ psi, control valve on DA heater,

 γ = specific weight, γ = 62.4 lb/ft³,

 Z_1 = elevation 1225 ft, top of make-up water tank,

 Z_2 = elevation 1256.25 ft, top of DA heater,

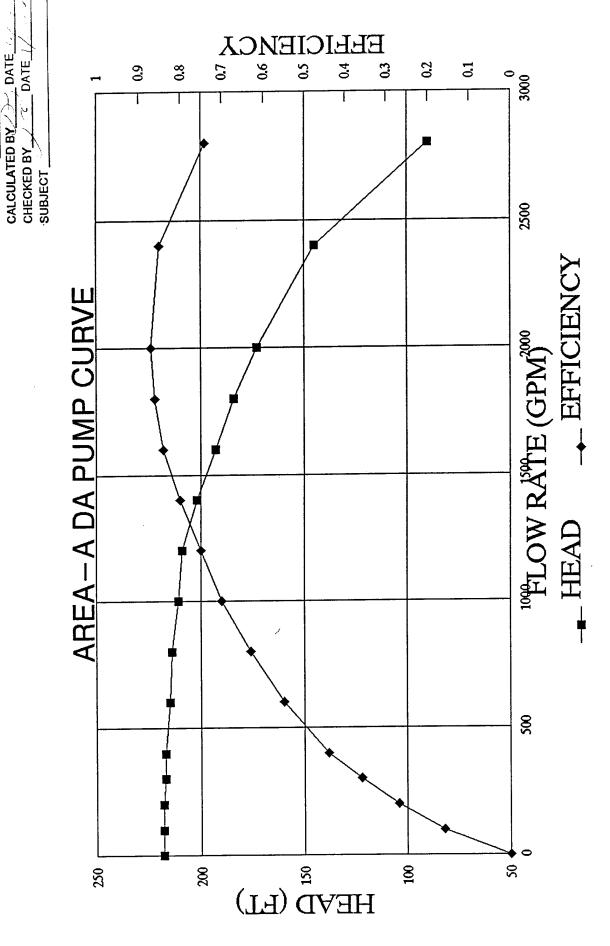
 $g = 32.2 \text{ ft/sec}^2,$

 $V = \text{velocity}, V_1 = V_2 = 9 \text{ ft/sec}$ (350 gpm through 4" dia. steel pipe),

 h_L = energy losses due to piping, H_L = 16 ft (350 gpm through 200' of 4" dia. steel pipe), and

 h_M = energy applied by the pump,

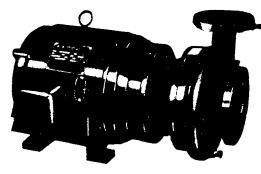
To solve for h_{M} , rearrange the above equation thus:


$$h_M = \frac{P_2 - P_1}{\gamma} + (Z_2 - Z_1) + h_L.$$

Velocity terms cancel out.

$$h_M = \frac{7}{62.4} \times 144 + (1256.25 - 1225) + 16 = 63.4 ft$$

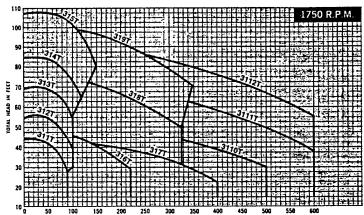
 $h_M = (63.4 \, x \, 1.40 = 88.8 \, ft$,


where 1.40 is the design factor.

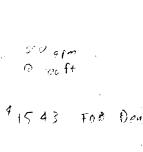
PROJECT

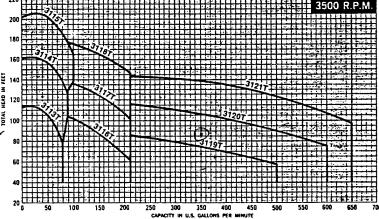
PROJ. # SHEET NO._

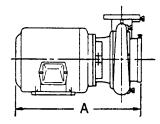
EMC ENGINEERS, INC.

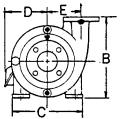


B&G Series 1531 Centrifugal Pumps


Bronze fitted construction—complete with 208 volt or 230/460 volt, 60 cycle, three phase drip-proof motors. Built-to-order units are available when conditions cannot be met by stock pump selections.


Selection Charts





3500 RPM

Dimensions

UNIT	MOTOR	SUCT.	DISCH.		MATE D	IMENSIO D FOR I	NS IN I		UNIT	MOTOR	SUCT.	DISCH. SIZE			IMENSIO D FOR I		
NO.	HP	IN.	IN.	Α	В	С	D	E	NO.	HP	in.	IN.	A	В	С	D	E
311T	1	2	*1½AB	1813/16	91/2	7	5¾	45/8	3112T	10	5	4BB	27%	123/4	101/2	83/4	65/8
312T	11/2	2	*1½AB	1813/16	91/2	7	5¾	45/8	3113T	3	11/2	*11/4AB	18½	81/2	7	5¾	41/2
313T	2	2	*1½BB	1813/16	10	7	5¾	5¾	3114T	5	11/2	*11/4AB	21%	91/2	9	81/8	41/2
314T	3	2	*1½BB	2111/16	11	9	81/8	5¾	3115T	71/2	11/2	*11/4AB	21%	91/2	9	81/8	41/2
315T	5	2	*1½BB	2111/16	11	9	81/8	5¾	3116T	5	21/2	2AB	21%	11	9	81/8	43/4
316T	2	3	21/2A	19%	91/2	7	5¾	411/16	3117T	71/2	21/2	2AB	21%	11	9	81/8	43/4
317T	3	4	ЗАВ	23	101/2	9	81/8	5	3118T	10	21/2	2AB	23¾	113/4	101/2	83/4	43/4
318T	5	3	2½B	223/16	111/4	9	81/8	6	3119T	10	4	3AB	253/16	111/4	101/2	83/4	5
319T	71/2	3	2½B	24%	12	101/2	8¾	6	3120T	15	4	3AB	2611/16	111/4	101/2	83/4	5 🖈
3110T	5	5	4BB	23¾	12	9	81/8	6%	3121T	20	4	3AB	331/2	121/4	121/2	91/8	5
3111T	71/2	5	48B	2515/16	123/4	101/2	8¾	65/8		 							

^{*}On all 1¼ " and 1½ " Pumps, Suction and Discharge openings are NPT threaded, all others drilled and faced per 125# ANSI standards.

7 05 7

ENGINEERS O							SHEET 4 0	
Project	Hoiston	Army A	mmunition Plan	t 				KED
	Limited	Energy	Studies - DAC , Inc - PN#310	AU1-91-D-UL	132		12/05/91 Estimator	
Engineer			, INC - PTV# 3TI	02-002			F S	
D	Denver DA PUN						Checked by	
Description	UA PUR	AP-						
	Qu	intity	Material			Labor		
Description	No.	Unit	Per		Hours	Hourly		Total
200 a.p	Units	Meas.	Unit	Total	Per Unit	Rate_	Total	Cost
NEW PUMP, 15 HP		EΑ	\$1,550.00	\$1,550	14.18	\$16.89	\$240	\$1,79
PIPE, 4 in., sch 40, welded		LF	\$6.77	\$271 \$102	0.432	\$16.89 \$16.89	\$292 \$270	\$56 \$37
TEE, 6 in. ELBOW, 90 deg		EA EA	\$51.00 \$13.00	\$102	3.2	\$16.89		\$26
ELBOW, 45 deg		ĒĀ	\$9.00	\$18		\$16.89		\$12
FLANGE		EA	\$13.00	\$130		\$16.89	\$450	\$58
CHECK VALVE	1	EA	\$715.00	\$715	3.2	\$16.89	\$54	\$76
GATE VALVE		EA	\$825.00	\$2,475	5.33	\$16.89	\$270	\$2,74 \$45
FLEX CONNECTOR	1 2	ΕA	\$200.00 \$2.68	\$400 \$21	1.5 0.262	\$16.89 \$16.89		\$5
PIPE, 2 in., sch 40, welded TEE, 4 in.	+ - 5	LF EA	\$26.00	\$52	5.33	\$16.89	\$180	\$23
FLANGE		ĒÃ	\$7.45	\$15	1.333	\$16.89	\$45	\$6
CONTROL VALVE	1	EA	\$800.00	\$800	1	\$16.89	\$17	\$81
PRESSURE CONTROLS		EA	\$500.00	\$500	3	\$16.89		\$55 \$98
GATE VALVE		EA EA	\$475.00 \$24.10	\$950 \$96	1	\$16.89	\$34	\$90
VIBRATION ABSORBERS >>ELECTRICAL<<		EA	\$24.10	\$30				
CONDUIT, 1/2", galvanized steel	125	LF	\$3.60	\$450	0.178	\$16.19	\$360	\$81
FIBOWS	4	EA	\$11.85	\$47	0.667	\$16.19	\$43 \$81	\$9 \$13
CONDUCTOR, no. 10 THW		CLF	\$11.70	\$59 \$870	8.89	\$16.19 \$16.19	\$144	\$13 \$1,01
STARTER		EA ea	\$870.00 \$7.54	\$8	0.09	\$16.19	\$3	\$1,51
FUSE, existing panel	+	ea.	¥1.57	Ψ0	V.2	¥10.10	<u> </u>	
	-							
							-	
	4						 	
								
	 							
							++	
	 		ļ				 	
	+							
	Ţ. <u></u>				<u> </u>		1	
		L	<u> </u>		<u> </u>			
	+							
	 							
		L	-			· · · · · · · · · · · · · · · · · · ·	 	
	+	 			 		 	
	 	 						
							1	
					 		 	
	-	 			-		 	
		 				***	†****** †	
	1							
	-	ļ					 	
		 					 	
	+	—						
	Ш							
CHOTAT		ļ		\$9,581	ļ		\$2,944	\$12,5
SUBTOTA OVERHEAD & BOND	0.16	 		\$1,533	1		\$471	\$2.00
SUBTOTA		 		\$11,114			\$3,416	\$14,5
PROFIT	0.1			\$1,111			\$342	\$1,46
SUBTOTA	V.			\$12,225			\$3,757	\$15,98
CONTINGENCY	0.2	1		\$2,445 \$14,670		i	\$751	\$3,19 \$19 ,1

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCA	ATION:	HOLSTON AAF)		REGION:	4
PRO	J. NO. & TITLE:	DACA01-91-I	D-0032 LIMITED E	NERGY STUDIES		
DISC	RETE PORTION:	AREA A ELECT	TRIC DA PUMP			
	AL YEAR:	91			ECONOMIC LIFE	25
ANAL	YSIS DATE:	17-Jul-92			PREPARED BY:	D JONES
1 187	/ESTMENT					
Α.	CONSTRUCTION	NICOST	=			C10.470
В.	SIOH COST	M 0001	(5.5% of 1A) =			\$19,179
	DESIGN COST		(6.0% of 1A) =			\$1,055 \$1,151
	SALVAGE VALU		(0.070 01 174) =			\$1,151
	TOTAL INVESTM		A + 1B +1C +1D -	1F) =		\$21,385
				,	Ľ	Ψ21,005
2 EN	ERGY SAVINGS	(+) / COST (-)				
	FUEL TYPE	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
		\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)		SAVINGS (5)
A.	ELEC	\$4.67	927	\$4,329	15.61	\$67,577
В.	DIST		0	\$0	0.00	\$0
C.	RESID		0	\$0	0.00	\$0
D.	NAT GAS		0	\$0		\$0
E.	COAL	\$1.25	0	\$0	16.06	\$0
F.	TOTAL ENERGY	'SAVINGS 🗌	927	\$4,329		\$67,577
						4
		VINGS (+) / COS	ST (-) ∢			
Α.	ANNUAL RECUI					
	ADDED MAINTE			(\$400)	14.53	(\$5,812)
	ELECTRIC DEM					
		* \$9.50/KW/MT		\$3,534	14.53	\$51,349
	TOTAL SAVINGS	6 (+) / COST (-)		\$3,134		\$45,537
Ь.	NON PECUPPI	NO (I /)	\/EAD.OF			
D.	NON-RECURRI	NG (+/-)	YEAR OF			
	ITEM a.		OCCURRENCE	. 60	0.00	
	b.			\$0 \$0	0.00	\$0
	c.				0.00	\$0
	TOTAL SAVINGS	S (+) / COST (-)		\$0 \$0	0.00	\$0 \$0
	TO IT LE OF WITTE	, (,) , 0001 ()		ΨΟ		Φ0
C.	TOTAL NON EN	ERGY DISCOUN	TED SAVINGS (3A -	- 3B)		\$45,537
			122 0/1/11/00 (0/1	0.5)	·	Ψ40,007
					İ	
D.	PROJECT NON-	-ENERGY QUAL	IFICATION TEST.			
		AVINGS % (3C /				40%
		7- V	· · · · //			70/0
4 FIR	ST YEAR DOLLA	R SAVINGS (+)	/ COSTS (-)	\$7,463		
		UNTED SAVINGS		7,1.00	'	\$113,114
			STMENT RATIO (SIF	3)	۱۲	4.20
	IPLE PAYBACK (•	Ī	2.87

APPENDIX J AREA-A AIR PREHEATER ANALYSIS

SOUTH WALL

4 PREHEAT COIL

J & DATE 1/28/37

****** CUSTOMER DIRECT SERVICE NETWORK *******

For exclusive use by: Trane Customer Direct Service Network

STEAM COIL SELECTION AVERAGE OPERATION THAT

PROGRAM VERSION: 6.08

RUN DATE: 01/10/92

PROJECT: HOLSTON ENERGY STUDY

LOCATION: HOLSTON ARMY BASE

OWNER:

USER: R. GERRANS

COMMENTS:

EMC ENGINEERS, INC.

PROJ. # ____ PROJECT 3/67-967

SHEET NO. Z OF 10

CALCULATED BY 8 6 DATE 1/12 -

CHECKED BY CZ DATE 1/28/92

SUBJECT /

INPUT DATA

ELEVATION 0.

SCFM EAT PSI WIDTH LENGTH FA TAG FV 39.17 588. 23040. 56.0 5.0 60. 94. AVG

> COIL FIN

MBH TYPE ROW CIS TYPE FPF LAT SH.0 .0 A 0. 1. SF 168. 0.

OUTPUT DATA

COILS FINS

FIN PER IN LBS

TYPE ROW SERIES TYPE FOOT MBH LAT SPD TAG APD COND/HR A 1 1 SF 168. 1992.9 135.8 AVG .22 2071.8 .454

DIAGNOSTIC MESSAGES ACTUAL CFM ENTERED.

DATA CERTIFIED IN ACCORDANCE WITH ARI STANDARD 410 EXCEPT WHERE * DENOTES OPERATING CONDITIONS WHICH EXCEED ARI RATING RANGES.

 $= FFRET(UCMSS) = \frac{DAT - EAT}{TSTEM - EAT} = \frac{136 - 55}{227 - 56} = 46.\%$

****** CUSTOMER DIRECT SERVICE NETWORK *******

For exclusive use by: Trane Customer Direct Service Network

STEAM COIL SELECTION

DESIGN OPERATING LIGHT

PROGRAM VERSION: 6.08

RUN DATE: 01/10/92

PROJECT: HOLSTON ENERGY STUDY

LOCATION : HOLSTON ARMY BASE

OWNER:

USER: R. GERRANS

COMMENTS:

PROJ. #_____ PROJECT 3/22 - 223
SHEET NO. 3 OF 10

EMC ENGINEERS. INC.

CALCULATED BY DATE //28/42

SUBJECT_

INPUT DATA

ELEVATION 0.

TAG SCFM EAT PSI WIDTH LENGTH FA FV DESIGN 40007. 56.0 5.0 60. 94. 39.17 1021.

COIL FIN

LAT MBH TYPE ROW CIS TYPE FPF SH

.0 .0 A 0. 1. SF 168. 0.

OUTPUT DATA

COILS FINS
IN FIN PER
LBS
TAG TYPE ROW SERIES TYPE FOOT MBH LAT APD COND/HR SPD
DESIGN A 1 1 SF 168. 2599.3 115.9 .57 2699.7 .770

DIAGNOSTIC MESSAGES ACTUAL CFM ENTERED.

DATA CERTIFIED IN ACCORDANCE WITH ARI STANDARD 410 EXCEPT WHERE * DENOTES OPERATING CONDITIONS WHICH EXCEED ARI RATING RANGES.

HEATING VALUE UP CUAL	Y	14 100.00	BIOLBM	COAL ANALYSIS
THEORETICAL COMBUSTION AIR	THEO	=	LBM/LBM	LBH AIR/LBH COAL FROM ASHRAE FUNDAMENTALS
MIXED WATER TEMP	RETURN	130.00	LL	LBH OF 6 PSI STEAM CONDENSED PER LBH OF MAKE UR
LATENT HEAT (5 PSI)	PSI6	960.00	BTULBM	STEAM TABLES
ECONOMOZER AIR TEMP IN	TEI	480	4	MEASURED
ECONOMIZER UA	ECON	25000.00	BTUH/F	AREA-A ECONOMIZER ANALYSIS
BLOWDOWN RATE	BLOW	2.46%	*	MEASURED
STEAM ENTHALPY	¥	1291.00	BTU/LBM	300 PSI, 526 F
LIQUID ENTHALPY	로	428	BTULBM	300 PSI, SATURATED
LOW PRES STEAM ENTHALPY	HSLP	1,167	BTU/LBM	6 PSIG. SAT
DA HEATER LIQUID ENTHAL PY	HLDA	196	BTU/LBM	228 F, SAT
AMBIENT TEMPERATURE	ΤĀ	8	ц.	WEATHER DATA
COMBUSTION LOSSES	SSOT	0.00%	*	ASSUMED
RADIATION LOSSES PER BOILER	PAD AD	1.65	MBH	ASSUMED
DESIGN FAN HORSEPOWER	FANHP	920	皇	DESIGN DATA
DESIGN FAN CFM	FANCEM	62,500	S. M.	DESIGN DATA
FAN STEAM RATE	FANSTM	19.20 LI	¥¥.	TURBINE MANUFACTURER
DA PUMP DESIGN HORSEPOWER	DAHP	8	윺	DESIGN DATA
DA PUMP DESIGN FLOW	DAGPIM	1,750	GPM	DESIGN DATA
DA PUMP STEAM RATE	DASTM	0.0 LB	BM/HP/HR	TURBINE MANUFACTURER
FW PUMP DESIGN HORSEPOWER	FWHP	135	모	DESIGN DATA
FW PUMP DESIGN FLOW	FWGPM	460	GPM	DESIGN DATA
FW PUMP STEAM RATE	FWSTM	30.8 LE	BM/HP/HR	TURBINE MANUFACTURER
BLOWDOWN FLASH STEAM	FLASH	24.20%	*	CALCULATED
FW PUMP HEAD	FWHEAD	1,000	ᇤ	CALCULATED
VACUUM STEAM JET RATE	JET	444	LBM/HR	CALCULATED
INTERMEDIATE HEADER PRESSU	모	9	PSIG	
INTERMEDIATE HEADER TEMP	도	228	L	
PRE-HEATER EFFECTIVENESS	里	0.00		
PRE-HEATER LATENT HEAT	Ξ	96 6	BTULBM	
LOW PRESSURE STEAM TEMP	ΙΡΊ	228	ш	

						6	LOWDOWN H	EAT RECOV	VERY	20	AERATING	HEATER	-	DA PUMPS			FEEDWATER	N PUMP
CONDITION	NUMBER OF DAYS	STEAM DEMAND (LBM/HR)	CHP STEAM BALANCE (LBM/HR)	BOILER STEAN FLOW (LBM/HR)	R BOILERS W ON LINE	TOTAL FEED WATER (LBM/HR)	BLOWN EX LIQUID LIQUID	HEAT XCHANGETR. EFF	HEATI LI VANSFER N	LEAVING MAKE UP TEMP (F)	6 PSI STEAM	MAKE UP WATER (LBM/HB)	LEAVING MAKE UP TEMP	PUMP FLOW	PUMP POWER	PUMP STEAM	PUMP FLOW GPIM	POWER
	ଚ	90,700	9	108,921	2	111,600	2.031	00.0	0	130	10.337	101.263	228	203	32	0	274	81
AIR PREHEATER	96	90,700	0	108,231	2	110,894	2,018	00.0	0	130	10.272	100 622	228	202	33	c	223	8

EMC ENGINE	ERS,	INC.				
PROJ. #	PRO	NECT.	310		<u> i</u>	_
SHEET NO	4	_OF_	12			4
CALCULATED	BY <u>~</u>	<u> </u>	ATE_	177		V
CHECKED BY		DA	TE			
SUBJECT						

PART LOADSTEAM OUTBLOWDOWDRY FLUE IFLUE HUMIRADIATION COMBUSTION LOSS
BASECASE 77:94% 0.76% 16.26% 3.89% 2.17% 0.00%
DESIGN 84:86% 0.82% 8.06% 3.89% 2.37% 0.00%

-	_					_	_	_			_	_				_
	%HP	දී	88	41%	45%	808	%69 8	89%	76%	2 2	868	87%	91%	100%	103%	86%
	PLR	8	2%	10%	15%	20%	%08	40%	%09	%0 9	70%	% 08	% 06	100%	120%	140%
	皇	0	इ	4	46	8	80	8	92	3 5	8	8	16	<u>0</u>	103	æ
	<u> </u>	క	16%	27%	36%	44%	92%	63%	70%	75%	8 08	%	%98	87%	86%	74%
VE	HEAD	218	218	218	217	217	216	214	211	509	202	193	184	173	14.5	8
BOIL AAIR WK3 DA PUMP CURVE	GPM	0	100	200	300	400	900	900	1,000	1,200	1,400	1,600	1,800	2,000	2,400	2 800
AIR.WK3 DA																
BOILA																

EMC ENGINE	ERS,	INC.		
PROJ. #	PROJ	ECT_	75.	55.
SHEET NO	5	OF _/ 3	<i>-</i>	
CALCULATED	BY	DAT	E 1/3	y 2 ·
CHECKED BY_		 _ DATE	_	
SUBJECT		_		

AREA-A COMPUTER BOILER MODEL - AIR PREHEATER

BOILAAIR.WK3 DA PUMP FW PUMP 0 2,824

FANS MISCELLANSTEAM TO LOAD 14,305 1,092 90,700

WATER 302 EFF Ē BOILER CAPACITY
EFF RATIO FUEL COMBUST LOSS LOSSES (MBH) (MBH) (MBH) CONDITION

EMC ENGINI PROJ. #		OJECT		2.73	
SHEET NO.	<u>_</u> G	OF	1 -		4
CALCULATED	BY_	[DATE_ <u>//</u>	<u>:</u>	
CHECKED BY		D.	ATE		
SUBJECT					

								PRO SHE
	·	100		(MBH)		7.886		SUE
		COMBUST	F088	(MBH) (MBH)	0	0		
					50	41		
			H		1	1		
			<u> </u>		70.3%	77.1%		
			ADDED		107	107		
			WATER		10	10		
			OVO]		117	117		
	Š			(MBH)	109,690	100,111		
			Z		152.3	139.0		-
	STEAN	2	TOAC	(LBM/HR)	90,700	90,700		
	TOTAL	Z	STEAM	(LBM/HR)	16.73%	16.20%		
	TOTAL	Z	STEAM	(LBM/HR)	18,221	17,531		
		₽₽	STEAM	(LBM/HR)	0	0		
	EXCESS	LO PRES	KENT	(LBM/HR)	7,439	6,815		
1	EXCESS	LO PRES	STEAM	(LBM/HR)	7,439	6,815		
Ι Σ ,			NOITION		3ASELINE	AIR PREHEATER		•

EMC ENGINEERS, INC.
PROJ. #_____ PROJECT______
SHEET NO. ____ OF ____
CALCULATED BY ____ DATE____
CHECKED BY ____ DATE_____
SUBJECT_____

ENERGY SAVINGS

(From Boiler Model)

Fuel (IN):

Baseline

Preheater

152.3 MBtuh 139.0 MBtuh

13.3 MBtuh x 8,760 hr/yr = 113,880 Mbtu/yr.

Maintenance Costs:

40 hours @ \$25 = \$1000/yr.

EMC ENGINEERS, INC.

SUBJECT____

PROJ. #_____ PROJECT 3/22 - 55 SHEET NO. ____ 8__ OF __ 10 CALCULATED BY 1/5 DATE 1/1 CHECKED BY DATE

ENGINE	SHEET 9 OF 10	
Project	Holston Army Ammunition Plant Limited Energy Studies — DACA01—91—D—0032	DATE PREPARED 07/17/92
Engineer	EMC Engineers, Inc − PN# 3102-002 Denver, CO	Estimator D JONES
Description	AREA A AIR PREHEATERS	Checked by

Bosonpaon									
		Qu	antity	Materi	al		Labor		
Description		No.	Unit	Per	ı	Hours	Hourly	1	Total
		Units	Meas.	Unit	Total	Per Unit	Rate	Total	Cost
16 IN REDUCING TEE		4	ĒΑ	\$350.00	\$1,400	20	\$16.89	\$1,351	\$2,751
								13 2 3 4	4
6 IN PIPE									
PIPE		120		\$25.10	\$3,012			\$1,621	\$4,633
TEE			EA	\$42.00	\$168	8		\$540	\$708
GATE VALVE		4	EA	2025	\$8,100	8	\$16.89	\$540	\$8,640
STRAINER		4	EA	686	\$2,744	8	\$16.89	\$540	\$3,284
ELBOW		16	EA	\$45.00	\$720	5.3			\$2,152
FLANGE			EA	\$24.00	\$672	2.4	\$16.89	\$1,135	\$1,807
				,					
1 IN PIPE						4			
PIPE		120		\$1.54	\$185	0.151	\$16.89	\$306	\$491
TEE			EA	\$3.00	\$36	1	\$16.89	\$203	\$239
ELBOW .			EA	\$1.85	\$59	0.615	\$16.89	\$332	\$392
GATE VALVE		32	EA	\$14.00	\$448	0.421	\$16.89	\$228	\$676
STRAINER		32	EA	\$14.85	\$475	0.5		\$270	\$745
UNION		32	EA	\$7.40	\$237	0.667		\$361	\$597
CAP			EA	\$1.15	\$37	0.267		\$144	\$181
STEAM TRAP		32	ΕA	\$110.00	\$3,520	0.533	\$16.89	\$288	\$3,808
STEAM COIL		4	EA	\$2,400.00	\$9,600	80	\$16.89	\$5,405	\$15,005
									
								ļ	
								ļ	
								ļ	
				ļ				ļ	
					·····			ļļ.	
							<u> </u>	<u> </u>	
								 	
								ļ	
								<u> </u>	
								<u> </u>	
			 		·			 -	
						-		-	
								-	
			 					 	
								·	
									
								i	-
									
									
			<u> </u>						
		· · · · · · · · · · · · · · · · · · ·	 						
· · · · · · · · · · · · · · · · · · ·									
	W-110								
				 					
				· · · · · · · · · · · · · · · · · · ·					
		·		1					•
	SUBTOTAL				\$31,413			\$14,698	\$46,111
OVERHEAD & BOND		0.16			\$5,026			\$2,352	\$7,378
	SUBTOTAL				\$36,439	·		\$17,050	\$53,488
PROFIT		0.1			\$3,644			\$1,705	\$5,349
	SUBTOTAL		1		\$40,083			\$18,755	\$58,837
	SUBTUTAL								
CONTINGENCY TOTAL ESTIMATED		0.2			\$8,017	- ".		\$3,751	\$11,767

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

PROJ. NO. & ITTLE: DACAOI—91—D—0032 LIMITED ENERGY STUDIES		ATION:	HOLSTON AAP			REGION:	4
FISCAL YEAR: 91 ANALYSIS DATE: 17—Jul—92 ECONOMIC LIFE 25 ANALYSIS DATE: 17—Jul—92 PREPARED BY: D JONES					ENERGY STUDIES		
ANALYSIS DATE: 17—Jul—92 INVESTMENT			: AREA A AIR PR	EHEATER			
1 INVESTMENT A. CONSTRUCTION COST B. SIOH COST C. DESIGN COST (5.5% of 1A) = \$3,833 C. DESIGN COST (6.0% of 1A) = \$4,236 D. SALVAGE VALUE = \$0 E. TOTAL INVESTMENT (1A + 1B + 1C + 1D - 1E) = \$79,725 2 ENERGY SAVINGS (+) / COST (-) FUEL TYPE FUEL COST SAVINGS ANNUAL DISCOUNT DISCOUNTED SAVINGS (5) A. ELEC \$4.67 0 \$30 15,61 DIST 0 \$0 0,000 DISTOURD 0 \$0 0,000 DISTO						ECONOMIC LIFE	25
A. CONSTRUCTION COST	ANAL	YSIS DATE:	17-Jul-92			PREPARED BY: I	O JONES
A. CONSTRUCTION COST							
A. CONSTRUCTION COST	1 100	/ESTMENT					
B. SIOH COST (5.5% of 1A) = 33,883 C. DESIGN COST (6.0% of 1A) = \$4,226 D. ISALVAGE VALUE = \$90 E. TOTAL INVESTMENT (1A + 1B + 1C + 1D - 1E) = \$78,725 2 ENERGY SAVINGS (+) / COST (-) FUEL TYPE FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED \$5,000	1 -		ON COST				\$70,605
C. DESIGN COST (6.0% of 1A) = \$4,226		T)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
D. SALVAGE VALUE			•				
E. TOTAL INVESTMENT (1A + 1B + 1C + 1D - 1E) = \$\frac{\$578,725}{\$78,725}\$\$ 2 ENERGY SAVINGS (+) / COST (-)	Į.			=			
2 ENERGY SAVINGS (+) / COST (-) FUEL TYPE				A + 1B +1C +1D -	· 1E) =		
FUEL TYPE FUEL COST SAVINGS ANNUAL \$ DISCOUNTED \$\frac{\$\text{MBTU}(1)}{\$\text{MBTU}(1)} \text{MBTU/YR}(2) \text{SAVINGS}(3) \text{FACTOR}(4) \text{SAVINGS}(5) \text{A} \text{ACTOR}(4) \text{SAVINGS}(5) \text{A} \text{ACTOR}(4) \text{SAVINGS}(5) \text{A} \text{ACTOR}(4) \text{SAVINGS}(5) \text{ADIST}(5) \text{ADIST}(6) \text{ADIST}(•		•	Ľ	
FUEL TYPE FUEL COST SAVINGS ANNUAL \$ DISCOUNTED \$\frac{\$\text{MBTU}(1)}{\$\text{MBTU}(1)} \text{MBTU/YR}(2) \text{SAVINGS}(3) \text{FACTOR}(4) \text{SAVINGS}(5) \text{A} \text{ACTOR}(4) \text{SAVINGS}(5) \text{A} \text{ACTOR}(4) \text{SAVINGS}(5) \text{A} \text{ACTOR}(4) \text{SAVINGS}(5) \text{ADIST}(5) \text{ADIST}(6) \text{ADIST}(
\$\text{AL} \text{ELEC} \$\text{\$	2 EN	ERGY SAVINGS	(+) / COST (-)				
A. ELEC \$4.67 0 \$0 15.61 \$0 B. DIST 0 \$0 0.00 \$0 C. RESID 0 \$0 0.00 \$0 D. NAT GAS 0 \$0 0.00 \$0 E. COAL \$1.25 113,880 \$142,350 16.06 \$2,286,141 F. TOTAL ENERGY SAVINGS (+) / COST (-) 4 A. ANNUAL RECURRING ANNUAL RECURRING (51,000) 14.53 (514,530) ELECTRIC DEMAND SAVINGS (-) / COST (-) (\$1,000) (\$14.53 \$0 TOTAL SAVINGS (+) / COST (-) (\$1,000) (\$14.53 \$0 TOTAL SAVINGS (+) / COST (-) (\$1,000) (\$14.53 \$0 TOTAL SAVINGS (+) / COST (-) (\$1,000) (\$14.53 \$0 TOTAL SAVINGS (+) / COST (-) (\$1,000) (\$14.53 \$0 TOTAL SAVINGS (+) / COST (-) (\$1,000) (\$14.53 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS (+) / COST (-) (\$141,350) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141,350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS (+) / COSTS (-) \$141,350 S2.271,611 28.86		FUEL TYPE	FUEL COST	SAVINGS	ANNUAL S	DISCOUNT	DISCOUNTED
A. ELEC \$4.67 0 \$0 15.61 \$0 B. DIST 0 \$0 0.00 \$0 C. RESID 0 \$0 0.00 \$0 D. NAT GAS 0 \$0 16.06 \$2,286,141 F. TOTAL ENERGY SAVINGS 113,880 \$142,350 16.06 \$2,286,141 F. TOTAL ENERGY SAVINGS 113,880 \$142,350 \$16.06 \$2,286,141 3 NON-ENERGY SAVINGS (+) / COST (-) < A. ANNUAL RECURRING ADNUAL RECURRING (51,000) 14.53 (514,530) ELECTRIC DEMAND SAVINGS 0,14,530 (514,530) (514,530) B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE 0.00 \$0 0				MBTU/YR (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)
B. DIST 0 \$0 \$0 0.00	A.	4	\$4.67	0			
C. RESID 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	В.			0	\$0	0.00	
E. COAL \$1.25 113,880 \$142,350 16.06 \$2,286,141 F. TOTAL ENERGY SAVINGS 113,880 \$142,350 \$2.286,141 3 NON-ENERGY SAVINGS (+) / COST (-) 4 A. ANNUAL RECURRING ADDED MAINTENANCE COST (\$1,000) 14.53 (\$14,530) ELECTRIC DEMAND SAVINGS (1,1000) 14.53 \$0 (1,1000) (\$14,530) B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 TOTAL SAVINGS (+) / COST (-) \$0 \$0 TOTAL SAVINGS (+) / COST (-) \$0 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) (\$14,530) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS (6) / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141,350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS (-) / COSTS (-) \$12,000 \$2,271,611 28,86	C.	RESID		0	\$0	0.00	- I
F. TOTAL ENERGY SAVINGS 113,880 \$142,350 \$2,256,141 3 NON-ENERGY SAVINGS (+) / COST (-) 4 A. ANNUAL RECURRING ADDED MAINTENANCE COST ELECTRIC DEMAND SAVINGS Q KW *\$9.50/KW/MTH * 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (-) \$1,000 \$	D.			0	\$0		\$0
3 NON-ENERGY SAVINGS (+) / COST (−) ◀ A. ANNUAL RECURRING ADDED MAINTENANCE COST ELECTRIC DEMAND SAVINGS Q KW ★\$9.50/KW/MTH ★ 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (−) \$14.50 B. NON-RECURRING (+/−) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (−) \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (−) \$0 0.00 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (−) \$141.350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS — TO -INVESTMENT RATIO (SIR) 28.86	E.	COAL	\$1.25	113,880	\$142,350	16.06	\$2,286,141
3 NON-ENERGY SAVINGS (+) / COST (−) ◀ A. ANNUAL RECURRING ADDED MAINTENANCE COST ELECTRIC DEMAND SAVINGS Q KW ★\$9.50/KW/MTH ★ 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (−) \$14.50 B. NON-RECURRING (+/−) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (−) \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (−) \$0 0.00 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (−) \$141.350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS — TO -INVESTMENT RATIO (SIR) 28.86	_					<u> </u>	
A. ANNUAL RECURRING ADDED MAINTENANCE COST ELECTRIC DEMAND SAVINGS 0, KW *\$9.50/KW/MTH * 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (-) \$1,000) \$14.53 \$0 B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 D. PROJECT NON-ENERGY DISCOUNTED SAVINGS (3A + 3B) \$0 0.00 \$0 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141.350 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141.350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS -TO-INVESTMENT RATIO (SIR) 5 CIMAL RECURRING (\$14,530) \$22.271.611 28.86	F.	TOTAL ENERGY	SAVINGS	113,880	\$142,350		\$2,286,141
A. ANNUAL RECURRING ADDED MAINTENANCE COST ELECTRIC DEMAND SAVINGS 0, KW *\$9.50/KW/MTH * 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (-) \$1,000) \$14.53 \$0 B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 D. PROJECT NON-ENERGY DISCOUNTED SAVINGS (3A + 3B) \$0 0.00 \$0 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141.350 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141.350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS -TO-INVESTMENT RATIO (SIR) 5 CIMAL RECURRING (\$14,530) \$22.271.611 28.86	i						
A. ANNUAL RECURRING ADDED MAINTENANCE COST ELECTRIC DEMAND SAVINGS 0, KW *\$9.50/KW/MTH * 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (-) \$1,000) \$14.53 \$0 B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 D. PROJECT NON-ENERGY DISCOUNTED SAVINGS (3A + 3B) \$0 0.00 \$0 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141.350 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141.350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS -TO-INVESTMENT RATIO (SIR) 5 CIMAL RECURRING (\$14,530) \$22.271.611 28.86	3 110	NI ENEDOV CA	VINGS (+) / COS	T/ Na			
ADDED MAINTENANCE COST ELECTRIC DEMAND SAVINGS Q KW *\$9.50/KW/MTH * 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (-) \$1,000) \$14.53 \$0 B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) \$0 0.00 D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) \$0 0.00 \$0 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141.350 5 TOTAL NET DISCOUNTED SAVINGS \$2.271.611 5 CIMAL RET DISCOUNTED SAVINGS \$38.86) (<i>-)</i> ¬			
ELECTRIC DEMAND SAVINGS Q KW *\$9.50/KW/MTH * 12 MTHS = \$0 14.53 \$0 TOTAL SAVINGS (+) / COST (-) (\$1,000) (\$14,530) B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 C. TOTAL SAVINGS (+) / COST (-) \$0 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141,350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS - TO -INVESTMENT RATIO (SIR) 28.86	/ "		· · · · · · · · · · · · · · · · · · ·		(\$1,000)	14.53	(\$14 E20)
Q KW * \$9.50/KW/MTH * 12 MTHS = \$0					(ψ1,000)	14.55	(\$14,530)
TOTAL SAVINGS (+) / COST (-) (\$1,000) (\$14,530) B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0 b. \$0 0.00 \$0 c. \$0 0.00 \$0 TOTAL SAVINGS (+) / COST (-) \$0 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141,350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS — TO -INVESTMENT RATIO (SIR) \$2,271,611 28.86				1 * 12 MTHS =	\$0	14 53	\$0
B. NON-RECURRING (+/-) YEAR OF ITEM OCCURRENCE a. \$0 0.00 \$0						14.00	
ITEM			()		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(4.1,555)
a. \$0 0.00 \$0	B.	NON-RECURRI	NG (+/-)	YEAR OF			
b.		ITEM		OCCURRENCE			
C. TOTAL SAVINGS (+) / COST (-) \$0 0.00 \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) (\$14,530) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) -1% 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141,350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS -TO -INVESTMENT RATIO (SIR) \$2,271,611 28.86					\$0	0.00	\$0
TOTAL SAVINGS (+) / COST (-) \$0 C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) \$141,350 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86		b.			\$0	0.00	\$0
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A + 3B) D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86		C.	- 111			0.00	\$0
D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86		TOTAL SAVINGS	S (+) / COST (-)		\$0		\$0
D. PROJECT NON-ENERGY QUALIFICATION TEST NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86		TOTAL NONETH	EDOV BIOGO: :: =	TD 041/11/00 /5:	(m)		
NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86	U.	IOTAL NON EN	ERGY DISCOUNT	IED SAVINGS (3A -	+ 3B)		(\$14,530)
NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86]
NON ENERGY SAVINGS % (3C / (3C + 2F)) 4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86	ח	DDO IECT NON	ENERGY OHALL	EICATION TOT			
4 FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) 5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86							ایمد
5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86		HON LINEROT C	MAIIAOO 10 (00 /	(OO T ZF))			-1%
5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86							
5 TOTAL NET DISCOUNTED SAVINGS 6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86	4 FIR	ST YEAR DOLLA	AR SAVINGS (±)	COSTS (-)	\$141 2ED		ļ
6 DISCOUNTED SAVINGS—TO—INVESTMENT RATIO (SIR) 28.86					Ψ171,000) -	\$2 271 611
7 CIMPLE DAYDAOK ACADOX					₹)	ŀ	
0.00					7		
						<u> </u> _	0,00

APPENDIX K INLET AIR DAMPER ANALYSIS

not enough at the 12 W lower door 72 ff. in u.s. = 450 ff.

137 = 340 ff.

4

sustion air renured for ivo boilers. Operation was near average.

30,400 cfm entering door.

33,000 lbm x 1028 Badilbm = 1.65 MBH/bollur.

esoi moire

าปราชาเทอกรนทางเรา

islin, r

en marija je doji sa kalajasa na Po **Go**rina Alajasa na

> eta 000.501 mio <u>000.55</u> *mio 000.56

r through lower door and other openings.

measured remperatures, calculated of Power and assumed early.

INIET	ΔIR	DAMPERS
TIALFI	WIIV	DAMI LINS

PROJ. #	PROJECT	
SHEET NO	OF	<u></u>
CALCULATED	BY / DATE	
CHECKED BY_	DATE_	1/20 00
SUBJECT		

EMC ENGINEERS, INC.

Field Measurements:

Area-B:

Measured 700 fpm entering through 6'H x 12'W lower door 72 ft². Six roof openings at 11.5' x 6.5' \Rightarrow 450 ft².

Area-A:

Six roof openings at 12' x 7.5' \Rightarrow 540 ft².

Analysis of Existing Condition:

Average of 85,000 cfm of combustion air required for two boilers. During the field survey, boiler operation was near average.

Measured 700 fpm x 6' x 12' = 50,400 cfm entering door. Assuming radiation losses are 1% of full load,

Q = 1% x 160,000 lbm x 1028 Btu/lbm = 1.65 MBH/boiler.

Two boilers \Rightarrow 3.29 MBH radiation loss.

The following temperatures were measured:

60°F at the forced draft fan inlet 60°F outside air 71°F on firing floor 90°F above boilers.

Flow past boilers was

$$\frac{3.29 \times 10^{6} Btu/hr^{\circ} F hr cfm}{1.08 Btu (90^{\circ} F - 60^{\circ} F)} = 102,000 cfm.$$

Flow out = 102,000 cfmCombustion = 85,000 cfmInlet Air = 187,000 cfm*

The above analysis indicates measured temperatures, calculated airflows, and assumed radiation loss are properly related.

^{*}Flow entering building through lower door and other openings.

From the above analysis, the following may be assumed: $t_c = t_a \text{, combustion air temperature equals outside air temperature,}$ $t_e = t_c + 30 \text{, exit air temperature is } 30^{\circ}\text{F above combustion air temperature. and}$ $-t_r = 0.67 \cdot t_c + 0.33 \cdot t_e \text{, firing floor room temperature is weighted average of combustion air temperature. and exit air temperature}$

Modified System:

With inlet air dampers in place, only dampers over hot boilers would be open. Combustion air would be heated by boiler heat loss according to the sollowing relation:

$$t_c = \frac{t_a + Q_R}{(1.08 \times cfin)^{1/2} \times 2.3}$$

8 7 8 8 8 8 3 8

where

 Q_R = boiler heat loss, and

cfm = combustion air required.

Room temperature is assumed to be equal to combustion air temperature. If room temperature exceeds 80°F, all dampers are opened for maximum ventilation.

Monthly temperatures were calculated in the following spreadsheet.

Annual Average Combustion Temperature was raised from 56°F to 76°F.

Modified combustion air temperatures were input into computer boiler models.

Area-B

Annual coal usage was lowered from 2,155,572 MBtu to 2,130,727 MBtu. Average efficiency was raised from 71.5% to 73.3%.

Annual coal savings was 24,845 MMBtu.

Area-A

Annual coal usage was lowered from 152.3 MMBtu to 150.2 Average efficiency was raied from 77.9% to 78.9%. Annual coal savings was 18,079 MMBtu.

তিনি স্থান

P18838534383

665025	EMC ENGINEERS, INC. PROJ. # PROJECT 7/2/2
	SHEET NO OF / ©
	CALCULATED BY DATE
r.	CHECKED BY DATE
K-2	SUBJECT

INLET AIR DAMPERS

This spreadsheet calculates combustion air and room temperatures with and without inlet air dampers.

Z	HELL		<u>.</u>	8	8	2	8	8	8	್ಲ 8	<u>2</u> 8	2	3 8	8 9⊝	11	m pniwollot EMC ENGINEERS) ING AL more PROJ. # PROJECT_3/02-00 I
CONDITIO	NIM	요 [<u> </u>				. LE	3	j,	27	<i>5</i> 0	tis	SUL	4.7	· "į	CALCULATED BY DATE 11/25
	J _a			ফ্র	8	2	8	8	8	8	88	3 8	8 %	88	76	STUTETED TO THE CHECKED BY DATE 1/2-1-2
	BUS	H	L ≥ C			. 51.							ንሀኚ	- 1		It gorni , SUBJECT TO THE SUBJECT
MODIFIED	COMBUST	S												ı	e.	combistion are temperature
ž	_			L										_		
	Q				\$	න	ဖွ	7	웞	ଞ	& !	2 2	8	4	8	
	EXISTING															<u> Modifieu System.</u>
									<u>; : : : : : : : : : : : : : : : : : : :</u>	1	<u>4</u>	1, 4	<u></u>		4)(With in stair dampers in place, only dama air rould be heated by boiler heat loss ac
CONDITION	EXISTING	SHAUST 13.65	- F (F		8	92	8	₹	\$	105	호 호	33 ₁ 6		88	8	air 'vould be heated by boiler heat loss ac
S		ш		_						٠,		3,	ر	n _f	_	= <u>_1</u>
1-	SI			ક્ષ	æ	8	8	ফ্র	2	72	2	3	2.4	8	හු	
EXISTING	COMBUST		<u> </u>													.ersaf w
SIS	Ś															
Ш				0	_	_	_	_	_	_	0	_	0	0	0	'(3) = boiler heat loss, and
	£	.	ρÍ	8	8	ğ	ğ	8	20,000	30,00	000	8 8		8	8	cm = combustion air required.
	BOILER	HEAT	Z ESS	3 290 00	8	8	8	8	Š	ଞ୍ଚ	8	ह्यु ह	N X	8	X X	•
	8		- €	၂က	G	ന	ိ	ျ	ટી	្តីប	ão:	၅	္မ	ိုင်	E 11:	. Som temperature is assumed to be e
				စ	7	92	2	2	7	10	10	22 2	- 82	Ŧ	191	seinperature excects 50°F, all dampers are
		ROMBUST	<u>.</u> 5	5.849	9,51	92,749	8	75,457	73,361	7,28	2,5	9,5	95,389	218	36,76	to the transfer of the state of
		```	בּק בּ <u>ק</u>	105	2	တ		~	إطرا	ے اگران	التال	ء بندل	၁ တ	9	80	Michally temperatures were calculated in
		ರ							77.5	~ <del>}</del>	÷ ,	e de la		1.18		Annual Average Conduction Temperatur
		٦,	f	19	8	417	396	340	8	321	2	337	8 8 8 8	460		
		COMBUST	1001 R.	14	-	-				. 1	otr	: 1	150	πi	97	Medickel combustion air temperatures we
		ਨੂੰ	<b>₹</b>										ŕ			
		_		1										_		
			<b>5</b> ≤	18	88	177	<del>1</del> 68	144	140	98	98	43	5 <u>5</u>	195	166	isse to Account on the government of the Control of Average efficiency was raised from 7 Amrest scrings was 24,945 MM
		STEAM	3 °	3						0.	C., (	_ \ _ \	C1	97°C	[ . j	/ mon positi sea, Ameinne againa v
		ES (		3												TAN Flor of sever southers from the rank.
			E											1,5		Cost Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color C
		=		35	88	46	26	8	72	75	74	3	% 46	38	28	<u> </u>
		AMBIENT	- 							ا اگر کو د	äh	/J.v	1. E.	9	burn	Aurual coal usage was lowered from
		<b></b>	_ n _	300000							50 Q	٠٥٠.	oi.			Threatage efficiency was raised from T
														_	_	Admital coal saytings was 18179 MM
			DAYS	8	78	9	ස	8	8	3	<u>ب</u>	පි ද	2 8	31	365	े etal Energy Scoungs ि
			۵						, e.g.	()	M.	F.	239	მ ^ო /	ľ	ha shir cac (Stanzana)
			I.												-	1
			MONIT	_	مِ	<b>.</b>	<b>&gt;</b>	``	, ⊏	_	ō	<u>م</u> .	ಕ ≯	ွှ		
			Σ	=	F	Σ	¥	Σ	3	3	₹	ഗ് (	5 S	<u> </u>	<u> </u>	

AREA-B COMPUTER BOILER MODEL - INLET AIR DAMPERS

		1	ΕN	ΛC	<b>)</b>	E1	VC	311	NI	Ē	ĘF	RS	).	10	<b>V</b> C	]=;	1		(E			-		200	. J			FEEDWATER PUMP		₹
		F	PR	0	J.	#			-		P	R	Ó.	JΕ	C	Τ,	3	4	٤.	2.	-2-	9	2		2			MATE	3	PUMP
			SH	E	E1	۲, "	VC	).	<u> </u>	. ·		Ĺ.	1		F	_	<u>/</u>	0	-	17	<b>7</b> , .	: A.	医克	ا ت ج-ر	₹ ? ?	73		ED		п.
			CH	E.	CI	ΚE	ED	В	Y		) ¥,	کد. سان	2		<u>_</u>	A	A I			_		//	, ;==:					F	ð	PUND
		5	SU	В	JE	C	T		<u>:</u>	100			1	!	• TA	1	Ç÷.	-	=				2.		7		:		1 1 1 1 1 1	₹
									!	1	1	į		:	!	۱ :	:	i :		:	i l	į	-	5,5			;	ļ	3	<u>~</u>
									S	Ξ.	12		3	E	Œ	- 2			5,	100	115	:	į. E	===	1		:			PUMP
									!		1	i	1	:	1	1			;	į į								S	₹	а.
									0		19	176	تر إ	8	7	15.	2		10: 1:0	000	1.7	3	7.5 E	Ξ	Sit SW			DA PUMPS	٥	₽ P
<del></del>									:		ì	:			1	:	!	:	:	1		}	=		3			_		
ZOAL ANALYSIS BH AIR/LBH COAL FROM ASHRAE FUNDAMENTALS BH OF 6 PSI STEAM CONDENSED PER LBH OF MAKE UF STEAM TABLES									Ļ	: :		-		1	1=	12	9		· ·	1/3	(52)	150	150	1	7115	73			LEAVING	MAKE UP
OOL ANALYSIS BH AIR/LBH COAL FROM ASHRAE FUNDAMENTALS BH OF 6 PSI STEAM CONDENSED PER LBH OF MAK STEAM TABLES									600	2	42			2	116'8	137 150 150	1937	650	60	5		020	57.5	•	I.	1986			LEA	₹
NAEN BH O									-	<u> </u>	1	-	1	Ĺ		: !	<u>.</u>							35		9		ER		5
UND ER LI									12	15	1		110	13	\d -	2	100	4	13	1	75	=	i	¥1.7.	25.5%	04 MOEH		HEAT		MAKE UP
AE F	s									į	i			1	1		ł	4					•		(ناء	دند اید (2		DEAERATING HEATER		
ASHR	MEASORED AREA-A ECONOMIZER ANALYSIS								390	7	12		5	94	ie.	9.	5.	5.4	640	3	3335	٠. ش	}	Yer if	1.3		HIST	<b>ERA</b>		6 PSI
NO NO NO NO NO NO NO NO NO NO NO NO NO N	Š								τ.	£	Ξ	RER	: =:		REA		S	RER	g.	ئ ا	7.	2		<b>*</b>	7		चडालिका नित्त जैना मित्राक्ष भने अने	DEA	75	
EAM EF	AZEF			ATED						100	- 5	ACT	12		ACT	. 5	ī	ACT	Ę.	7	ટુ	92	1	E	1	Ŧ	. F.C.1		EAVING	MAKE UP
YSIS H CO, SI STI	Š		<u>ب</u>	5			<b>ATA</b>		ι <u>τ</u> ,	₹	Z	NUE	۲	≤	E S	<u></u>	Ž	5	0	0	600	66	1	SEATE !	.4.	10.73	Man h		/ <u>e</u>	₹
PALBI FALBI	F A	æ	1, 626	Š	SAT	SAT	ERC	잂	딒	N N	AON	Ē	A	Š	Ē.	ğ	V DATA	E MAN	ME	KE	Z		1	=	Total Control		J \$ 141		EAT	SFEH
COAL ANALYSIS LBH AIR/LBH CO LBH OF 6 PSI ST STEAM TABLES	## YE Y	MEASURED	300 PSI, 626 F	300 PSI, SATU	6 PSIG, SAT	228 F, SAT	WEATHER DATA	ASSUMED	SSUMED	<b>ESIGN DATA</b>	<b>SESIGN DATA</b>	URBINE MAN	<b>ESIGN DATA</b>	<b>SSIGN</b>	JRBINE MAN	ESIGN DATA	ESIGN	URBIN	ALCULATED	AL CUL	ਤੁ	:		Ξ.	MARIE		1941	VER	Ŧ.	Š
03363	Σ≪	Σ	ਲ	ਲ	9	23	3	٩	• -	_		F			F	_	_	F	3	ئ 	<u>ن</u>						HE of S	양	۲	9
									. 48	ہے نے	90			č	18	<u>-</u>		<u></u>	3.5	5	Á	2	a i	Ţ.	5	41.14		EAT	Ξ,	CHANGE
∑∑r∑n	L LE	æ	Σ	¥	∑	Σ	L.	*	Ţ	凸	Σ	<u>a.</u>	<u>a</u>		<u>.</u>	<u>.</u>	2	ο.	8	<b>-</b>	I	G	L		Σ	Ŀ		HNA	ું ક્ર	DOWN EX
BTU/LBM LBM/LBM BTU/LBM	BTUHA		BTULBN	BTULBN	BTULBIV	BTULBIN		_	MARIE	3	b	BHA	<u>न्</u> य	9	品	7	6	BHA	اللة		3	2	٦	Ę	ULBN	116		BLOWDOWN HEAT RECOVERY	BLOW	
0000				_		-		_				_	:	_	_	· ·-	_						L		BIE		1.1	BLO.		
4100.00 41.00 56.00 960.00	5000.00	2.46%	1271.00	360	1,157	196	92	8.10%	1.65	920	ğ	2.8	8	1,750	3	ř	ğ	8		ĕ	8		: 228	9	96	228	Ξ.		TOTAL	1
141	250	•	42					~		į	φ				į į				~				=	1611	-		5			
THEO THEO TURN PSI6	ESON	BLOW	£	로	HSLP	A I	۲	ross	₽ V	FANHP	ĔΚ	MIZ.	DAHP	AGPM	DASTM	PWHP.	MG DW	FWSTM	FLASH	8	E	물	Ξ	뿔	圭	5	:	Ī	Ę	7
HHV THEO RETURN PSIG	ш	큡			I	I		=	\ <del>\</del>	Ζ.	FANCEM	FANSTM	9	ă		₹.	Š	Š	균	FWHEAD	Ċ.	- -		=	<b>Ξ</b>	Ė	CMD		Š	BUILERS
A.									监	<u>;</u>		<u>.</u>	ER.	i Te	ļ.,	E						25			1		200		<u> </u>	T COM
_ <u>Š</u> ≥	<b>:</b>				Ę	¥ Y			õ	띰		, <u>, , , , , , , , , , , , , , , , , , </u>	S.	ere Ger		Š,	ينسأ	12	ુ <b>ક</b>		<b>6</b> 55	SHE	. E	S 32	5	튑			BOILER	S C C
COA BUST BUST				į	Ę		J. C.	S	F	P0			ORSE	Š	щ	SHS.	8	ш	SIE		ξį	2	2	<u> </u>	里	¥			i)	Σį
E OF COMI TEMF 5 PSI	_ <	<u>"</u>	_ ։	Δ.	¥	9	ERA	OSS	SSES	JASE.	Σ	ш	ž X	ヹヹ	≨ ≥	Z Z	Z Z	2 2	ASH	E	-	¥ :	HEA	FEC		S		ľ	<u>+</u>	AL ALLOR
VALU CAL I TER I	ZERL	₹ 2	HA	THA!	SSTE	22	5	<u>N</u>	Š	¥ ₹	Ş	A RA	Sessi	i Sign	STEA			STEA	Z !	4	FA	AIE	Y.	11 H	- 	SCA	ر.: نين		Çir E	8
HEATING VALUE OF COAL THEORETICAL COMBUSTION AIR MIXED WATER TEMP LATENT HEAT (6 PSI) ECONOMOZER AIR TEMP IN	ECONOMIZER UA	BLOWDOWN RATE	STEAM ENTHALPY	LIQUID ENTHALPY	LOW PRES STEAM ENTHALPY	DA HEATER LIQUID ENTHAL PY	AMBIENT TEMPERATURE	COMBUSTION LOSSES	410	DESIGN FAN HORSEPOWER	DESIGN FAN CFM.	FAN STEAM RATE	DA PUMP DESIGN HORSEPOWER	DA PUMP DESIGN FLOW	DA PUMP STEAM PATE	FW PUMP DESIGN HORSEPOWER	W FUMP DESIGN FLOW	W PUMP STEAM RATE	<u></u>	W PUMP HEAD	VACUUM SIEAM JEI KAIE	NIERMEUIAIE HEADER PRESS	NIERMEDIATE HEADER TEMP	<u> </u>	PRE-MEATER LATENT HEAT	OW PRESSURE STEAM TEMP			5	DEMAND DAI ANDE
E HE HE HE HE HE HE HE HE HE HE HE HE HE	Ś		STEA		30	Ä	AMB	8	RADIATION LOSSES PER BOJLER	ž Ež	š	FAN	ا م ا	<u>a</u>	ر ا	M .	1 i	¥ 5	BLOWLOWN FLASH STEAM	ž ;	36			PRE-HEATER EFFECTIVENESS	H	ð	112 ME 18 31		5	2 2
										1		1			=						-				-10	الت اح	4	2	ا ا	240
									ر ر		(E)	983	. <del>d</del>	ر المار المار	(2) (2) (2)	2	12		S. 77	Ç 91	rzi rzi	77	4.1	Š	÷.		1		NOMBER	۲
£														: 							·						;	-	36) y 1941	
<b>≫</b> 0									•	: =	Ē	i di	5	Ξ	Ē	7		1	<u> </u>	I A		:				-				
ERE													ì	. :		. ;		,		ł		50°		7:		3			(1) ()≪	NOITIONOS
DAMPERECO.WK3												į						1	;	į	毛が 古	*****		REAL PROPERTY.					1.	CNC
_								٠												:   	.0 	200		3				L		

	1 1 1 2 1 3 1 3 1 2 1 1 1 1 1 1 1 1 1 1		<u>اح</u> : :	- HOMOL	11.00	1.2.1	(4)	经现代的证明的	4 1	FOLING METER							-
				i i		BLOWDOW	BLOWDOWN HEAT RECOVER	OVERY		DE AERATING HEATER	GHEATER		OA PLIMPS	-		CCCCNATCO DIMO	07410
NOMBER	9	프	BOILER		TOTAL	BLOW		HEAT	LEAVING			FAVING		DAT	DA	LIM.	E) W
3 *** *** *** ***	JE STEAM	W STEAM		POILERS		NACO	X	PAA	MAKFID	૽	MAKELID			} 0	}   		Ē
SONDITION DA	YS DEMAND	D BALANCE	Œ.	AN INC	WATER				10,00	7 1	360			2000	T S C L C	j	T (
	(LBM/HR)	(LBM/HR)	٠.		_	C BMAHR)		er in	<u>.</u>	A DIVIDOR				֓֞֝֟֝֓֟֝֓֓֟֝֓֓֓֓֟֝֓֓֓֟֝֓֓֓֓֟֝֓֓֓֓֓֓֓֓֓֓	N STEAM		7 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SE	30 135,200	0	161,706	2	165,684	L	0000	0	99	26 176	140 509		282	36	C V V		ב ב
	30	539,432	640,000	4	655,744	L		0	98	90 636	656 108	228	1 117	3 23	4 R76	1947	200
		0	205,045	2	210,089	$oxed{L}$		0	98	31 922	178 167	228	358	108	2,020	422	101
	28 166,877	0	198,751	2	203,640	L	Ì	0	98	30,942	172 698	228	347	98	2,472	400	404
	31 151,466	0	180,498	2	184,938	3,503		0	98	28 100	156 838	228	316	38	2,472	97.4	3 8
		0	166,894	2	171,000	3,239		0	98	25,982	14.6.018	228	291	98	2472	343	1,6
		0	149,247	2	152,918	2,897		0	98	23,235	129 683	228	260	33	2 304	307	78
NUC	30 117,555	(0)	142,798	2	146,311	2,772	00.0	0	98	22 231	124 080	228	240	8	2 303	204	2
		0	142,085	2	145,581	2,758		0	88	22,120	123,461	228	248	33	2 301	292	74
		0	142,109	2	145,605		00.0	0	88	22,124	123,481	228	248	8	2 304	200	72
		0	144,476	2	148,030			0	98	22,492	125,538	228	262	32	2,301	797	7.5
		0	159,028	2	162,940	3,087	00.0	0	98	24,758	138 182	228	27.7	98	2472	307	B3
-	30 151,630	0	180,692	2	185,137	3,507	00.00	0	98	28, 130	167,007	228	315	98	2472	372	3
DEG 3	166,331	0	198,104	2	202,977	3,845	00'0	0	88	30.841	172 136	228	346	36	2472	408	103

) /----1

	PROJ. # PROSHEET NO S	NC: TEST	HEIDER DE LE	PRY FLUE LOSS	Ť	~ -	=	7	2 2	* 3	-   -			-			<u>.</u> , 1	,			
	CALCULATED BY_		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NWOO NWOO	-	7	-	+	+		-	=	-	-			:*	 .5			
	CHECKED BYSUBJECT	UAIE		@8-€												4.4		سر ۾ عاد			
				STE AW PRODUCET	8	- 9	100	66	38	76	2,92	11	8	106		) : ‡:	•	3 a			
DESIGN 77.68% 0.71% 8.67% 5.89% 0.76% 8.10%		44 FIRE	ECOMES POWE POWE	E E	91	32	-0	4 48	15	# 2	1 4	19	φ   α	2 2							
			Ç,4	FDW		67	7														
			100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 100 PE 10	STEAM OUT	103	203	126	116	96	6	88	26	5 5	126							
		7 7 (m - 7 m) 7 (m - 7 m) 7 (m - 7 m)	A P. C. C. C. C. C. C. C. C. C. C. C. C. C.		-	929	2 74	E 8	3 82	~	2 5	22.5	8 9	9 2			·	-	<b>.</b> .		
			\$ E	COMBUST AIR FLOW (LBMHR)	185,97	230,48	200,694	193,87	180,05	1768	1764	177,6	184 7	200,370							
			AN THE PROPERTY OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF		102%	88	81%	%16	110%	115%	416%	114%	104 %	818							BOTE FROM DIE WORFF
		रहेंद्र है।		*************	.61%	5.33%	9.37%	98%	11.02%	24%	26%	11:18%	70%	9686					71 - JA		CHANTENA CARDONALO
		# 15   S	28 2					-1		1		ĽL	0 0				<u>.</u> 4≟		16 11.1		1.1.1 元本人 1.1.1 元本人
			Wate 1	BOILER INCLUDING ECONOMIZER  BOILER STEAM FEED ESTATIC OUT WATER OXYGEN CRAWHRI GRAWHRI	82.84	163,936	101,820	92.46	76,459	73,166	72.80	74,015	01 47	101489	2		3.463h-	الد الا	J. M. S. P. W. J. A. J. L.	S ES	出てある。
			(GLOH) UNYARALEH OML BA	STEAM OUT	853	8	99,376	249	623	71,399	38	72,238	514	200	(1 46 46 47 27 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	·	**************************************	MANUELA SAKE.	4	LEVAINES LEVAINES	i i
		5,8,5,5,8,6 9,8,5,8,6,8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6		ST ST	Ш			i_			1	Ш			22	6	4 P	Ē, Ř	t:	. E	i.
		5 6 6 6	O (OI) O (OI) F.X.C.USVIPON	EXI EXI	386	86	389	88	383	382	387	382	386	88							
		0.00	19 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (1907) 1907 (19	PRE - EXIT	92	9 9	292	76	76	76	9 92	76	97	92		751 NO 18	Maria Sometra	11.9	2,4478	5 0 MH 6 3	. ( S. 17.17)
		1						2		74		3				5. 52.		2) 2 2 v	8		
8 <del>4 4</del> 8 <del>8 8</del>	50 88 87 87 87 88 87 87 87 87 87 87 87 87		E TATE T	MATEAVING HEAT IN THE HEAT IN THE HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATERIAL HEAT IN THE MATER	0	0	0	0	0	<b>O</b>	0	0	0	0	2.31	3	**************************************		; ;	J To	
% % % 2 % %	2008 808 808 808 808 808 808 808 808 808		90 U.S.	EAT NGE NGE EFFE	000	88	000	000	000	000	38	0.00	000	000	3 g 2 g		£ 5	i d	in in		
<b></b>	10.400100000		5.5 2.05.53.0	EXCH L		-	11	1					ŀ	1							Ti.
¥ ± 4	8888888558			AVING FW TEMP	228	228	22.00 OF C	228	228	228	228	228	228	228,		: :- :-	<u>.</u>			4	
		; c = []	SUMMENT OF THE COMPA	를 다 유 <b>교육</b>	0	000	210	0 6	0	0	5 5 0	0,	00	ر د د	1 1	Telson Telson	20 20 20 20 20 20 20 20 20 20 20 20 20 2	۲			. 4
169 273	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	OROTHIS OFFICE SEANING	STEAM PRE-HEATER  V TT HEAT STEAM  TRANSFER DEWAND  METUNI ABMARN	2.1	O'M' THE	1 14 19 14 19 14 19	0	2(2)	215		OT OUT MA	0.3	Ò	1	CANTYLOUGH STUATE	HOUSE BASED STEWN FALSEN.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3 T	-
218 218 217	217 214 211 209 209 193 173 173 175		8 2 2 2	HEAT ANSFER	0		90	0	0	0,0	0	0	0	30	Logichia" s		THAT I	11.5		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	FAWA BANG
		왕 (1985년) 왕 (1985년)		STEAN H H		0	3 3	¥.	15.14			1			25	2	<u> </u>	1.	i ( L L.	1 <u>2</u>	. Te.
\$ 8 8 5 5 0 8 5	400 41,11,11,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,		1	STEAM PRE FW : HEAT PUMP TRANSFER STEAM RAHRY : RETUHN	3,147	9,787	3,661	3408	2,974	2,884	2,875	2,907	9	3,410							
				•		-		¥ 6	AY	N N N	38	립	5 8								
				×	Ж			≱ ₹	Σ	  -	الإ	S		Ż							
				CONDITION	BASECASE	SIGN															

AREA-B COMPUTER BOILER MODEL - INLET AIR DAMPERS

DAMPERECO.WK3 DA PUMP FW PUMP DRAFT FANMISCELLANSTEAM TO LOAD

2,472 3,147 19,116 1,771 135,200

EMC ENGINE PROJ. #	•	INC. JECT_	3/:/:	+ <b>5</b> 1.15
SHEET NO.	<u>~</u> 5		10	
-	v 2	_		10-12
	5,2		· [	<u> </u>
CHECKED BY SUBJECT		_DA]		= = 5 (Q) = + 5 (J)
SUBJECT ST. K	771	7 7	1 5 5 5L	<u> </u>
2,00		-15/20	NATE:	1 2 2 E
				* - 9
<u> </u>	1-1-		1111	8 1
<b>其一篇</b> (8)		5 - 7		10% Fride
	1 1		1 12	, ;
				ا ـــــ
	111			13
		:		( ; )
1 1 1		10.1.5		
(4) 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1		13123	8 5 6 5 0 7	55
7.7.5	or <del>on</del> jan s	المراجرات	3 3	ŧ :
N. G. G. G. G. G. G. G. G. G. G. G. G. G.	: (a) c/-	7 C C		
S    S    S    S    S    S    S    S		12.5.5	11/2/2	동일등
		11.	117	F.F.
10 pr (00 ) 2 H (0)	i olo		************************	EST
			P OF THE	100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 Ma
	: 1 j			\$ 1
7887	1000	काष्ट्राह्य		্তৰ,
		(A)		<u> </u>
				100
2 -12 - 50 - 12 2 - 12 - 12 2 - 12 - 12	過言言			<b>\$</b>
1 1 2 2 2 2 2 2 2 2 2 2		3 5 5	한100131 <b></b>	F 10;
· .	1 : 1			<u>.</u>
	ارد. د ارد. خ	्राक्षा है। अर्थ कि		
2 7 7 7	3 747	12 (C)	E R E	<u> </u>
		1	1 1 1	1
			16 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	= = =			트 체크
	.   '	4.	: "	1
Constant of	4		. 1	138
12121812			114 - 1 141-11: 1	57 1 85 1 1 1 1
				Ξ ;
12.388		1 2 2 2	5.5.7.665 5.5.7.806 5.5.1.54	= =
12 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		: S : 6   C	33,43	PER VIII
ومنيت مستحد	***	1.1.2.	1	=
in the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of				
			A [3 6	3
- = = 1	<u>ا</u> جار برا.			2 80 Ed
			Ur D'A	<u> </u>
्रिल्वास्त्र काळा ।	ريد سام ۱۳۰۰ اور آهي ا	্র ক্রিম্নার্ট্র		100
(원) 127년 (전) 127일 (경) 127일 - 127일	1802			
			ල Œ ^ . :=	21
		200.0		أشرأ سسب
		EMP.	! !	1
			- ابپا	
	1 . 1		. 전 문 문전 분	i
; ; i	1			

FUEL HUMIDIT RADIATION COMBUST LOSS LOSS LOSS LOSS LOSS (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH) (MBH	. S	COAL FLOW (LBM/HR) 8,367 15,634 10,389		ී	PACITY RATIO 0.56 0.36	NTU 0.64 C	EFF EXT (F) (F) (6) 386	EXT					DI OM	10.
유르하다		COAL FLOW (LBM/HR) 8,367 15,634 10,389 10,098		රී				EXT				1970		2
	2	(LBM/HR) (B,367 15,634 10,098						E	FORCED	NOUCED	TOTAL	LAN	NAMOC	I O PRES
<b>3</b>	2	(LBM/HR) 8,367 15,634 10,098	(LBM/HR) 193,927 245,287 212,696					ZZIZ	DRAFT	DRAFT	9	STEAM	FLASH	STEAM
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8,367 16,634 10,098	193,927 245,287 212,596	73.3%				Œ	SCFM	(SCFIM)		(LBM/HR)	(LBM/HR)	(LBM/HR)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		10,098	245,287	77.7%				283	41.328	43.095	416	9.558	839	25.574
6 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		10,089	212,696	74.9%		0.42		269	61,208	54 508	633	11 584	3 322	63 271
6 2 5	142	10,098	201010	/04 74	0.49			273	45.060	47.244	457	10.272	1064	27 974
2 2	1007	0.040	701,012	14.7%				274	44.677	46.708	452	10,178	1032	27 621
	130	0,47,0	202,669	74.1%	0.63	0.61	0.37 387	278	43.083	45.035	435	9 887	837	26 591
5 2	10 121	8,611	196,449	73.6%	0.65	L	0.37 386	282	41,837	43,655	421	9,652	998	25.861
4 2	9 110	1,779	187,483	72.8%				287	40,021	41,663	402	9,321	77.5	24 692
4 2	9 105	7,472	183,911	72.5%	09.0	0.67		289	39,292	40,869	394	9,192	741	24,311
2	8 105	7,438	183,505	72.5%		0.67	0.39 382	289	39,209	40.779	394	9.178	738	24 268
4 2	8 105	7,439	183,519	72.5%	09.0	0.67		289	39,211	40.782	394	9.178	738	24 270
4 2	901 6	7,552	184,857	72.6%	09.0	0.56		288	39.485	41,079	966	9,226	750	24 411
5 2	9116	8,241	192,589	73.2%	0.57	0.54	0.38 385	284	41,068	42.798	413	9 509	82.5	25.424
5 2	11 131	9,258	202,744	74.1%	0.53	0.51	0.37 387	278	43,100	45,054	435	9.891	938	26,601
6 2	11 142	10,068	209,935	74.7%	0.50	L		27.6	44 627	46 652	451	10 168	1 02B	27 489

AREA-B COM A BOILER MODEL - INLET AIR DAMPERS

	ROJECT	27	171		2.5	
SHEET NO.	OF	) A T		12	度ご	<u> </u>
CALCULATED BY_ CHECKED BY	Ď,	ATE	<del></del>	(년 경년)	<u>≅</u> 5	<u> </u>
SUBJECT				10.5 Te		
, , , , , , , , , , , , , , , , , , , ,				i I	-ਹਵਾ 	
	4	b' .	2 18		5	ு - ப
		·	دایک پ	- 1 '	12 To	
	71§		<del></del>	10.	<u></u>	E
	*1.5			ě <del>e</del>	- 1	<b>F</b>
		0.76	27. a	7 (3)	24.00 24.00 24.00 25.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00	Į.
	** ***	• \$25 A	' €' 3 :		ن کا کی <u>-</u>	¥
	.6		10.1		(T)	
5		ۍ بر د	r District District District	Ţ.		
		1 1 2 1 1 2 1 1	100 0		- - œ :	
¥*	16 pt 1				7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	5
	1		: :	;	**	
	Ą	1	8.8	95	\$	
	ŧ	,				1
		- 200	3,5		111	
	©	းတာကြာ ပြ	0	0	Lij	İ
					=-	_
	က ဆ အကြေ	(a) (b)	÷ ÷	0	М	
				ļ		
	THE STATE	2 S	6 G	030	44216 44217	
	t i	}		1	7. A	15
		den errer Egg		961	33	
	ĭ	हिं ह		أور	7 BOB 2	
		اسوا ج		رجي ر	GJTT	!
	11 F	100 Sec. 11	1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	d contract	5 % 5	
	e in		· •	k To		
	1	ر ( در ا از در از از از از از از از از از از از از از	10.280	6 F	CLO.W	1
	į		= +	18	<i></i>	
	,	;; <u>\$</u>	Z E		E E	1
	. 1-".	17:		-	Ŧ	
	ا نے	<u> </u> ::::::/	ii ee	ju	्रम	، السد
:		.,(	-1-5	15	1068E	i
	: 1		1			:
	SHOULD.		. 11.	1717.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		:	: ;	1=	10.00	

				***		,	,		** '	ء ح		47.17	0	<del></del>			٠.
EXCESS	STEAM	KENT	(MBH)	0.462	0000	0000	0000	0000	0000	1.686	2.407	2.486	2.483	2.220	0.771	0.000	000.0
	) MBUSTI	1088	(MBH)	19	7.1	24	23	21	20	18	17	17	17	17	19	21	23
	FLUE Q	SSO1	(MBH)	89	113	44	44	41	40	37	88	96	98	98	<b>6</b> 8	41	44
	STEAM	TET	(MBH)	-	+	+	-	-	<b>-</b>	- 1	11	+	-	F	1	1	+
	품	<u> </u>		71.4%	76.2%	73.2%	73.0%	72.4%	71.8%	70.2%	%9 [.] 69	69.4%	69.4%	69.7%	71.1%	72.4%	73.0%
EHS.	ENERGY	ADDED	(MBH)	168	672	215	208	189	174	154	146	146	146	148	165	189	202
100			(MBH)	1	13	7	4	4	9	6	8	3	3	9	9	-47	4
STEAM		LOAD	(MBH)	172	989	219	212	193	178	157	149	149	149	151	169	193	211
MONTHLY	FUEL	Z	(MBH)	169,890	634,863	217,975	191,356	194,041	174,846	163,201	161,717	156,062	156,086	163,338	172,905	187,966	211,230
			(MBH)	_		293.0	284.8	260.8	242.8	219.4	210.7	209.8	209.8	213.0	232.4	261.1	283.9
STEAM	2	COAD.	(LBM/HR)	135,200	639,432	172,191	166,877	151,466	139,980	123,623	117,555	116,885	116,907	119,133	132,672	151,630	166,331
TOTAL	IN PLANT	STEAM		16.39%	15.71%	16.02%	16.04%	16.08%	16.13%	17.17%	17.68%	17.74%	17.73%	17.54%	16.57%	16.08%	16.04%
TOTAL	IN PLANT	STEAM	(LBM/HR)	26,506	100,568	32,854	31,874	29,032	26,914	25,624	25,243	25,200	25,202	26,343	26,356	29,062	31,773
	PRV	STEAM	(LBM/HR)	0	36,365	3,948	3,421	1,509	121	0	0	0	0	0	0	1,529	3,353
EXCESS	LO PRES	VENT	(LBM/HR)	399	0	0	0	0	0	1,457	2,080	2,148	2,146	1,919	999	0	0
EXCESS	LO PRES LO	STEAM	(LBM/HR)	399	(36,365)	(3,948)	(3,421)	(1,509)	(121)	1,457	2,080	2,148	2,146	1,919	999	(1,629)	(3.353)
		NOILIONO		ASECASE	ESIGN	JAN	FEB	MAR	APR	MAY	NOS	JUL	AUG	SEP	TO0	YON	020

ANGER ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGER AND ANGE

Š

28 hadded and 1 ptd 1 million of the allowers page 15.

DAMPERECO.WK3

<u>\$</u> <u>K</u>-.7

#### MOF PROBABLECUST

CARE PREVARED

Ho ito Ar y Aminunian Plant

## INLET ATR DAMPERS Studies - DADAG1-91-0-0022 SR39MAG - Phis 102-102

Constru	ection Cos	sts:		A TO A . I of the Intellige Evolution or consequence at a	EKS	OC .	- JA (	
							BARK	
		Lapor		1 	Materia	. 70	350	Action to delicate the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th
teto"			House		16 ^C	, hrib	D#4	
_leo]	lotal SC.27	Rate   51€ <del> </del> 5	Per Unit	intoT	inail.	manuranur 142	alini)	
4, <del>5</del> ,4	\$24±	TEX.5:3	195.0 E	15.200	100.000			
	8214	136 78		T\$64	1,85,74 %		ोन्नि	
Install i	n 24ª sect	ions	10.0	7 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$0.941		000	200
		<del></del>	<del></del>	<del></del>	+		11	
					+1 14 11+1	<del>X7-1-1</del>	40 _	
	<del></del>					·	<u></u>	
					V			<del>-</del> ··
	· · · · · · · · · · · · · · · · · · ·							
The statement when the shape the	1	-+	<del></del>	ļ		+		12' x 4' damp
	· · · · · · · · · · · · · · · · · · ·	median constant	<del></del>	7				
	*							
	!			· · · · · · · · · · · · · · · · · · ·				•
		<del></del>	<del></del>					
MEANS	5.				1	<del></del>	***************************************	
	1						*** **** *	
	·							
- Op	erable lo	uvers:		***************************************			- [157	- 482 - 2540].
Ор	erable lo		0 MH/S	F			<b>[157</b>	- 482 - 2540].
Ор		uvers: 'SF + 0.4	0 MH/S	F.			[157	- 482 - 2540].
	\$26.30/	SF + 0.4						····
	\$26.30/ otor opera	SF + 0.4 ator, pne	umatic c	or electric:				- 482 - 2540]. - 482 - 2560].
	\$26.30/ otor opera	SF + 0.4	umatic c	or electric:				····
Mc	\$26.30/ otor opera \$200/E	SF + 0.4 ator, pne A + 0.57	umatic c 1 MH/E	or electric:			[157	- 482 - 2560].
Mc	\$26.30/ otor opera	SF + 0.4 ator, pne A + 0.57	umatic c 1 MH/E	or electric:			[157	- 482 - 2560].
Mc	\$26.30/ otor opera \$200/E 4" pneum	SF + 0.4 ator, pne A + 0.57 atic tubi	umatic o 1 MH/E	or electric: EA.			[157	····
Mc	\$26.30/ otor opera \$200/E	SF + 0.4 ator, pne A + 0.57 atic tubi	umatic o 1 MH/E	or electric: EA.			[157	<i>-</i> 482 <i>-</i> 2560].
Mc	\$26.30/ otor opera \$200/E 4" pneum \$0.64/I	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07	umatic o 1 MH/E	or electric: EA.			[157	- 482 - 2560]. - 420 - 9416].
Mc	\$26.30/ otor opera \$200/E 4" pneum \$0.64/I eumatic s	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07	umatic of MH/E	or electric: EA.			[157	- 482 - 2560].
Mc	\$26.30/ otor opera \$200/E 4" pneum \$0.64/I eumatic s	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07	umatic of MH/E	or electric: EA.			[157	- 482 - 2560]. - 420 - 9416].
Mc	\$26.30/ otor opera \$200/E 4" pneum \$0.64/I eumatic s	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07	umatic of MH/E	or electric: EA.			[157	- 482 - 2560]. - 420 - 9416].
Mc	\$26.30/ otor opera \$200/E 4" pneum \$0.64/I eumatic s	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07	umatic of MH/E	or electric: EA.			[157	- 482 - 2560]. - 420 - 9416].
Mc 1/4	\$26.30/ htor opera \$200/E 4" pneum \$0.64/I eumatic s \$4.25/I	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07 witch:	umatic of MH/E	or electric: EA.			[157	- 482 - 2560]. - 420 - 9416].
Mc 1/4	\$26.30/ htor opera \$200/E 4" pneum \$0.64/I eumatic s \$4.25/I	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07 witch:	umatic of MH/E	or electric: EA.			[157	- 482 - 2560]. - 420 - 9416].
Mc 1/4	\$26.30/ btor opera \$200/E 4" pneum \$0.64/I eumatic s \$4.25/I	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07 witch: EA + 1 M	umatic of MH/E	or electric: EA.			[157 [157	- 482 - 2560]. - 420 - 9416]. - 420 - 9361].
Mo 1/4 Pn Assume	\$26.30/ bitor opera \$200/E 4" pneum \$0.64/I eumatic s \$4.25/I	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07 witch: EA + 1 M	umatic c 1 MH/E ng: MH/LI MH/EA:	or electric: EA. F. vill require	2		[157 [157	- 482 - 2560]. - 420 - 9416]. - 420 - 9361].
Assume 2	\$26.30/ otor opera \$200/E 4" pneum \$0.64/I eumatic s \$4.25/I	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07 witch: EA + 1 M	umatic c 1 MH/E ng: MH/LI MH/EA:	or electric: EA.	2		[157 [157	- 482 - 2560]. - 420 - 9416]. - 420 - 9361].
1/4 Pno Assume 2 1 400	\$26.30/ bitor opera \$200/E 4" pneum \$0.64/I eumatic s \$4.25/I	SF + 0.4 ator, pne A + 0.57 atic tubi F + 0.07 witch: EA + 1 M	umatic c 1 MH/E ng: MH/LI MH/EA:	or electric: EA. F. vill require	2		[157 [157	- 482 - 2560]. - 420 - 9416]. - 420 - 9361].



ENGINE Project				F PROBA		JSI		SHEET AT	
Project				/ Studies —		-D-0032	¥ <1 ** <b>∀∂*</b> *		
Engineer		EMC E	naineer	s, Inc - PN	¥ 3102-002			11/25/91 Estimator	
Lingilioui		Denver	, co						
Description		INLET A	AIR DA	MPERS			1. s	Checked by	<del>5000</del>
· · · · · · · · · · · · · · · · · · ·			antity	Materi	ai		Labor		1
Description		No.	Unit	Per		Hours	Hourly		Total
			Meas.	Unit	Total	Per Unit		Total	Cost
OPERABLE LOUVERS		1248		\$26.30	\$32,822	0.4		\$8,212	\$41,034 \$5,444
PNEUMATIC MOTORS			EA	\$200.00 \$48.25	\$5,200 \$627			\$244 \$214	\$5,444 \$841
PNEUMATIC SWITCHE PNEUMATIC TUBING		5200	EA		\$3,328		\$16.45		\$9,316
PNEUMATIC TUBING		3200	L.F	\$0.0 <u>+</u>		0.07	Ψ10.πο,	133330	<del>U TU ZAF "</del>
		-		<i>i</i>	, ,			İ	
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	National Control of the Control				
			· ·	17					
				3					
						<del> </del>			
			<del> </del>	<b></b>			<del></del>		
				4	<u> </u>	<del> </del>		<del> </del>	
			<del> </del>			<del> </del>			
			<b>†</b>						
									3/3/3/
							·	<u> </u>	J8 4 200 1
						<u> </u>		ļ	
		· i	<del> </del>				E 1515	ಖರ್ಚ ಕೇರ್ವಿಕ	<del>a C</del>
				<u></u>	Ţ	NEW		8\0° 618	· · · · · · · · · · · · · · · · · · ·
			<del> </del>			11111	1 4 7 7	0-1	
		F			or electric:	matic	or. pre	tor operat	-; ·
						NHV.	₹ <u>₹.</u> .0 +	T COME	
					.F	t /T.T.TA" .	Value T	AC JULE	
			ļ			ļ			
	· m	2				<del>                                     </del>	Hallan St.	smusso '.	1
			<del> </del>		,	TVFIS	11111 - 1	141	
			<del>                                     </del>						
	<u> </u>	* ; .						12 sitson	./T [*]
						ACTAIN	* · ·	27.84.x1	
				<b>`</b>					
			ļ					<del> </del>	
					Det lid	· vietorie	100 355	ach dan	11.77 6.5 7 20.5
			ļ					BUT	
		ļ	<b></b>	166	पञ्चल सम्ब	<del></del>		10000	
	1.1.1	-		- 0	4	<del>                                     </del>	anidi		XO4-
		·	<del> </del>	<b> </b>			2000 C	NAME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	70tr
		<del> </del>					3.	han	C: 1:
······································									
						ļ	ļ		
		ļ	<del> </del>					ļ	<del></del>
		ļ	<del> </del>		<b></b>	<del>                                     </del>	<del>                                     </del>	1	
			<del> </del> -			-	<del> </del>	<del> </del>	
			<b>†</b>						
	1.							ļ	
			ļ			1	ļ <u>.</u>	ļ	
	SUBTOTAL	ļ	<del> </del>	ļ	\$41,978	<del> </del>		\$14,658	\$56,635
OVERHEAD & BOND	<u>aua IUIAL</u>	0,16	<del> </del>		\$6,716		<del> </del>	\$2,345	\$9,062
OATHURYO OF DOLAD	SUBTOTAL		<del> </del>	<u> </u>	\$48,694			\$17,003	\$65,697
PROFIT	330 10 1AL	0.1	<del> </del>		\$4,869	1		\$1,700	\$6,570
	SUBTOTAL				\$53,563			\$18,703	\$72,267
CONTINGENCY		0.2			\$10,713		<u> </u>	\$3,741	\$14,453
TOTAL ESTIMATED	COST	90.00		grand and a signal	\$64,276	s Proberts.	L. Willeston	\$22,444	\$86,720

## LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

	TION:	HOLSTON AAF			REGION:	4
DISCL	. NO. & TITLE:		D-0032 LIMITED EI	NERGY STUDIES		
		INLET AIR DAN	MPERS			
	AL YEAR:	91			ECONOMIC LIFE	
<u>ANAL'</u>	YSIS DATE:	17-Jul-92			PREPARED BY: I	D JONES
	ESTMENT					
	CONSTRUCTIO	)N COST	=			\$86,720
	SIOH COST		(5.5%  of  1A) =			\$4,770
1	DESIGN COST		(6.0%  of  1A) =			\$5,203
	SALVAGE VALU		=			\$0
E. '	TOTAL INVESTI	MENT (1.	A + 1B +1C +1D -	1E) =		\$96,693
2 EN	ERGY SAVINGS					
]	FUEL TYPE	FUEL COST	SAVINGS	ANNUAL \$		DISCOUNTED
		\$/MBTU (1)	MBTU/YR (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)
	ELEC	\$4.67	0	\$0	15.61	\$0
	DIST		0	\$0	0.00	\$0
l l	RESID		0	\$0	0.00	\$0
1	NAT GAS		0	\$0		\$0
E. [	COAL	\$1.25	42,924	\$53,655	16.06	\$861,699
F	TOTAL ENERGY	SAVINGS	42,924	\$53,655		\$861,699
					Ī	
- NO						
3 NOI	N-ENERGY SA'	VINGS (+) / COS	5T (−) ◀			· [
	ANNUAL RECUP			/A 400		
	ELECTRIC DEM		-	(\$400)	14.53	(\$5,812)
		/ * \$9.50/KW/MT	H * 12 MTUS _	60	44.50	
Ļ		5 (+) / COST (-)		\$0 (\$400)	14.53	\$0
•	I O IAL OAVING	· (1) / 0001 (=)	'	(9400)		(\$5,812)
B. 1	NON-RECURRI	NG (+/-)	YEAR OF		-	
1	ITEM		OCCURRENCE			
				<u> </u>		
ſ	a.		OOOORNENCE	60	0.00	
	a. b.		COCORNERIOE	\$0 \$0	0.00	\$0 \$0
	b.		OCCURENCE	\$0	0.00	\$0
	b. c.	S (+) / COST (-)				\$0 \$0
]	b. c. TOTAL SAVINGS			\$0 \$0 \$0	0.00	\$0
]	b. c. TOTAL SAVINGS			\$0 \$0 \$0	0.00	\$0 \$0
]	b. c. TOTAL SAVINGS			\$0 \$0 \$0	0.00	\$0 \$0 \$0
C. 1	b. c. TOTAL SAVINGS TOTAL NON ENI	ERGY DISCOUN	TED SAVINGS (3A +	\$0 \$0 \$0	0.00	\$0 \$0 \$0
C. 1	b. c. TOTAL SAVINGS TOTAL NON ENI PROJECT NON-	ERGY DISCOUN	TED SAVINGS (3A +	\$0 \$0 \$0	0.00	\$0 \$0 \$0 (\$5,812)
C. 1	b. c. TOTAL SAVINGS TOTAL NON ENI PROJECT NON-	ERGY DISCOUN	TED SAVINGS (3A +	\$0 \$0 \$0	0.00	\$0 \$0 \$0
C. 1	b. c. TOTAL SAVINGS TOTAL NON ENI PROJECT NON-	ERGY DISCOUN	TED SAVINGS (3A +	\$0 \$0 \$0	0.00	\$0 \$0 \$0 (\$5,812)
C. 1 D. F	b. c. TOTAL SAVINGS TOTAL NON ENE PROJECT NON- NON ENERGY S	ERGY DISCOUN -ENERGY QUAL AVINGS % (3C /	TED SAVINGS (3A +  IFICATION TEST (3C + 2F))  / COSTS (-)	\$0 \$0 \$0	0.00	\$0 \$0 \$0 (\$5,812)
C. 1 D. F	b. c. TOTAL SAVINGS TOTAL NON ENE PROJECT NON- NON ENERGY S	ERGY DISCOUN -ENERGY QUAL AVINGS % (3C /	TED SAVINGS (3A +  IFICATION TEST (3C + 2F))  / COSTS (-)	\$0 \$0 \$0	0.00	\$0 \$0 \$0 (\$5,812) -1%
C. T D. F N FIRS	b. c. TOTAL SAVINGS TOTAL NON ENE PROJECT NON- NON ENERGY S ST YEAR DOLLA TAL NET DISCOU	ERGY DISCOUN -ENERGY QUAL AVINGS % (3C /	TED SAVINGS (3A -  IFICATION TEST (3C + 2F))  / COSTS (-)	\$0 \$0 \$0 3B)	0.00	\$0 \$0 \$0 (\$5,812) -1%
C. 1 D. F	b. c. TOTAL SAVINGS TOTAL NON ENE PROJECT NON- NON ENERGY S ST YEAR DOLLA TAL NET DISCOU	ERGY DISCOUN -ENERGY QUAL AVINGS % (3C / AR SAVINGS (+) UNTED SAVINGS NGS-TO-INVE	TED SAVINGS (3A +  IFICATION TEST (3C + 2F))  / COSTS (-)	\$0 \$0 \$0 3B)	0.00	\$0 \$0 \$0 (\$5,812) -1%