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ABSTRACT

We discuss the use of homogenization techniques to derive approximate models with sim-

ple geometry for physical models of grids and trusses which have a complex geometry that

gives rise to computational difficulties. Our presentation is in the context of inverse or pa-

rameter estimation problems for composite material structures with unknown characteristics

such as stiffness and internal damping. We present the necessary theoretical foundations for

this approach and discuss comparison of modal properties of the resulting homogenization

model for a two-dimensional grid structure with modal properties observed in experiments

with this grid.
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1. Introduction

We report here on a part of our continuing efforts on the development

of high fidelity dynamic models for composite material structures. The fo-

cus of our investigations has been on models to be used in estimation and

control of large flexible structures mainly intended for use in space (e.g., an-

tennas, platforms, solar panels, experimental arrays, etc.). At present there

is a reasonably adequate understanding of the dynamics of beams and plates

made from known materials such as aluminum alloys. Our recent efforts (see

[BIn] and the references therein) involved models and methods to determine

material parameters in composite material structures with simple geometry

(beams with attached solid bodies or solid plates). These result in inverse

problems that are computationally tractable as long as the physical geometry

is relatively simple. However, substantial difficulties arise in cases involving

more complex geometries such as grids (which may be viewed as plates with

many holes) and trusses (solid columns from which most of the material is

removed in some periodic, regular fashion). In these cases the difficulties

associated with unknown composite material characteristics such as stiffness

and internal damping are combined with severe difficulties related to com-

putational grid selection for a domain that is mostly holes or perforations.

The purpose of this paper is to outline one possible methodology for

dealing with these structures of complex geometry and to report on some

of our initial investigations in this regard. This methodology is based onl

ideas from homogenization and requires that the structures be highly periodic

(many perforations repeated in a regular pattern) and sparse in material (i.e.,

a grid or truss with thin members).

We formulate our ideas in the context of an inverse problem approxi-

mation framework that has been developed for problems involving simple

geometries. A summary of this theoretical framework is presented in Section

2. In Section 3 we describe a particular grid structure which we have used in

our experiments and indicate how to formulate a direct physical model for

this grid within the framework of Section 2. This model leads to computa-

tional methods that are inherently intractable for estimation of parameters
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(and also for the ultimately desired control investigations) due to tile under-

lying computational domain.

In Section 4 we present a summary of results for a homogenization proce-

dure that approximates (in a nonstandard way) the original direct physical

model on a perforated domain by a ioniogenized model on a domain that is

very simple (the perforated domain with all of the perforations filled in). The

resulting approximate model is also in a form to fit into the inverse problem

framework of Section 2. Finally, in Section 5 we report on our initial efforts

on validation of this approximate model by comparing experimentally ob-

served modal properties of the grid with those possessed by the homnogenized

model.
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2. Review of Theory for Second Order Systems

In this section we give a brief summary of the theoretical background

necessary for a rigorous discussion of estimation problems for second order

systems. Detailed discussions can be found in [BI], [BRI], [BR2], [MV)], [13],

[BK].

Let V and HI be complex Hilbert spaces with V~ continuously and~ densely

embedded in HI. WVe may then formulate a Gelfand triple V -+ 11 V- with

duality pairing ( , )v.,v (e.g., see [),which we shiall denote by ( when

no confusion results. Let (Q, d) be a compact metric space of admiissible

parameters q. \V~e consider the parameter dependent abstract second~ or(ler

system

(2.1) i(t) + A 2 (q) iz(t) + A I(q) it(t) =f (t, q) t > 0

where the operators Ai(q) E C(V, VS), 1' 1, 2, arise from paraiiieter dle-

pendent sesquilinear forms aj(q) :V x V -+C which represent generalized

stiffness (or,) and damping (0' 2 ), resp~ectively. More precisely, wve considler i lie

equation

(2.2) (ii(t), 0) + 0a2(q)(U(I), -P) + ao (q)( u(t), p) = (f(t, q), 0)

for all 0 G V/, where or, is symmetric and al, or2 satisfy the following condIitions

(a theory for damping formis C2 that satisfy weaker conditions than~ (13).

namely II-semuiellipticity, can be found in [131]):

(A ) Parameter Continuity: For' rach o E V thi-rc is a fanctionl
on Q x Q sati*sfying r(q. p; 9) 0 as q -* ) in Q snebh IN(i

for cach ' E V tr( hat?

I o,(q) (0, 'p') - a (p) (o. t,)~ I < (q , p;

(13) V-ellipticity: Tht'rc (xiss c1 > 0 sachi that for all q G Q2 and all
<3 E V w
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(C) Boundedness: There exists c2 > 0 such that for all q E Q and all

,) E V we have

jo,(q)(O, ,)j S< c21¢1VIOIy.

Under these conditions on a1 and o2, there exist operators Ai(q) E

£(V, V*) such that

acr(q)(0,V,) = (Ai(q)0, V) 4, V) E V.

Hence equation (2.1), or equivalently, (2.2), is to be interpreted as an equation

in V*. Following standard practice, we may rewrite (2.1) in first order vector

form in the coordinates w = (u, it) and use semigroup considerations when

discussing solutions. To this end, we define 7-( = V x H and V = V x V

and note that V --+ R"-+ V* also forms a Gelfand triple. We also define the

sesquilinear form a(q) : V x V --+ C by

(2.3) -(q)((, V)), (7, )) = -(V,, i)v + a, (q)(0, ) + a02(q)(0, )

so that (2.2) may be written

(zb(t), x) + a(q)(w(t), x) = (F(t, q), X)

(2.4)

w(0) = (no, V0)

for w(t) = (u(t), it(t)) and X = (, 4') in V with F(t, q) = (0, f(t, q)). Equiv-

alently, we may write the equation in V* as

(2.5) zb(t) = A(q)w(t) + F(t, q)

where a(q)(,X, )= (-A(q)X, with

A(q) [-aI(q) -A 2(q)

Since 0' and a 2 satisfy (B) and (C), it is readily establlished that A(q) is

the infiniitesinal generator of an analytic seinigroup T(t; q) on V.7-( and V-.



Moreover, the unique solution w E L2(0, T; 7-) of (2.5) for w0 = (u0 , v0 ) E

H = V x H and f E L 2(0, T; H) is given byt
(2.6) w(t; q)= T(t; q)wo + j T(t - s; q)F(s, q)ds.

For computational purposes, one must consider approximation schemes

for (2.6). Let HN be a family of finite dimensional subspaces of H satisfying

HN C V and the condition

(CI) For each 0 E V, there exists ON E HN such that N - 1 -, 0 as N oc o.

Let . N = HN x HN and let pN be the orthogonal projection of '- onto 'H N.

Moreover, let AN(q) E £(7-tN) denote the operator obtained by restricting

oi(q) of (2.3) to HN X HN; i.e., for E H N,

o,(q) (X,() (-A'N(q) X,(

We denote by TN(t; q) = eA-(q)t the corresponding analytic semigroups on
fN. The approximating systems for (2.6) are then defined by

(2.7) wN"(t; q) = TN(t; q)PN wo + j xT(t - s; q)pNF(s, q)ds.

From an application of the Trotter-Kato theorem on convergence of semi-

groups, one can readily obtain that under conditions (C), (A), (B), (C),

we have for each X E (; ,"(t;qN)pNX - T(t;q)y" in RH, uniformly in t on

compact intervals, whenever {qN} is an arbitrarily chosen sequence in Q with

qN _+ q. Moreover, using the theory of analytic semigroups, one cal argle

that for each X C 7"f and each positive integer kAN(q N)k7T-(t;qV)P-x

A(q)kT(t; q)X in R, again uniformly in t on compact intervals.

It follows immediately that w N(t; qN) of (2.7) converges in 7H to w(t: q) of

(2.6), with the convergence being uniform in t on compact intervals. Further-

more, for f sufficiently smooth (e.g., f E C'([0, T], H) suffices), we find that

zbN(t;q') - tb(t;q) in 7-' as N - oc, uniformly in t on compact intcrvals.

Thus, we see that the first component ut\(; q(\') converges to ut(I: q) in V

while the approximate acceleration u"'(t: q.V) converges in II to utt( I: q). \Vith

more smoothness on f (e.g., f E C([0. T) . 1I)). we obtain that ?1,(1: q ) con-

verges in V to utt(t; q) as X - oc.



If V embeds continuously in C(Q) (this is the case, for example, if

V C H 2 (Q) where Q C R' or Q C R 2 ), then the above results lead to

pointwise convergence (in the spatial variables as well as time) of approxi-

mations to the displacement, velocity or acceleration in dynamic problems

involving structures such as beams and plates. These approximation results

are precisely those needed to treat certain questions arising in inverse or

parameter estimation problems for such structures.

To be more specific, suppose we are given a set of observations z in

the observation space Z along with an observation map F(q) from D C

C([O,T],H) to Z for the system (2.1). Thus, z is a set of observations or

data for Fu(q) where u(q) is the solution to (2.1). A least squares estimation

problem then consists of finding q E Q which minimizes over Q the criterion

(2.8) 4I(q) = Irt(q) Z

subject to (2.1). Typical examples included in this setting are problems

for beams and plates where acceleration measurements (accelerometers) are

available. In the case of a beam of lcngth a, we might have observations Zjk

of the acceleration utt(ti, xk; q) at several times tj,j = 1,2,..., J, in [0, T]

and at several locations Xk E (0, a], k = 1,2,.. ., K, along the beam. Then

V C H2 (0, a) in the usual formulation and D = C2([0, T], V),Z R j" with

Fu(q) {ut(tj, Xk; q):j 1,., J, k = 1,..., K} so that

ID(q) U tt I,(ti, Xk; q) - Zjkl
jJk

For a rectangular plate occupying the region (x, y) E f = (0, a) x (0, b). use of

accelerometers at locations (Xk, Yk), k = 1, . . . , K, would lead to observations

{zjk} for {uut(tj, xkyk;q)}. With V C 1 2(Q), E = C2([O, lJV) and =

RJ?" we have ru(q) = Utt(tXk, Yk; q) j = 1,...,J, k = 1,...,K, } and

-'(q) = >3 '(tJ'k,.k yJ : k) -
J,k

The corresponding approximate problens are formulated using the crite-

rion

(2.9) Z(q) = I 11N(q) -
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for solutions wN(q) = (uN(q),tN (q)) of (2.7). One then seeks a parameter
qN E Q that minimizes 4DN(q) over q E Q subject to (2.7).

Among the important questions related to such approximate problems

are those pertaining to parameter convergence; i.e., for a given fixed set of

data z E Z, do optimal parameters qN for (2.9) converge in some sense to

an optimal parameter for (2.8)? More generally, one can also incorporate

continuous dependence of the optimal estimates on the data by employing

the concept of method stability. If one is given a sequence {zm} of data

sets that converge in Z to a data set z° , and one denotes by q'(Zm) and

q(z ° ) the optimal parameters (in general, these are sets) for (2.9) and (2.8)

corresponding to zm and z° , respectively, then method stability requires that

iN(zm) converges (in some appropriate setwise sense) to 4(z0 ) as N, ti --* 00.

These issues are carefully discussed in [B], [BK], where it is shown that to

insure both parameter convergence and method stability, it suffices to argue

that FuN(qN) -- Fu(q) in Z for any sequence {qN} in Q with qN -+ q. From

the discussions above one thus has that the conditions (A), (B), (C) on cr,

and o'2 and (C) along with a compact parameter space (Q, d) are sufficient

to treat these questions in the case of accelerometer data for beams and

plates.
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3. The AFAL Grid Structure

We consider a rectangular plate perforated with rectangular holes as de-

picted in Figure 3.1. A similar plate has been the subject of numerous

experimental investigations at the Air Force Astronautics Lab (now a part of

the Phillips Lab) at Edwards Air Force Base. Using the Love- Kirchhoff plate

theory (the 2-dimensional analogue of the Euler-Bernoulli theory for beams),

one can model such a grid structure as a second order system of the form

(2.1) so that conditions (A), (B), (C) of the previous section are satisfied.

We summarize here previous findings and refer the reader to [BRi], [B112],

[R] and the references therein for more detailed discussions.

b
X12

Figure 3.1

We assume that the plate is cantilevered along the x'1 axis (at.r 2 = 0) as

depicted in Figure 3.1 and is free on tHie other edges as well as the edges of the

holes (perforations). If we use tile Love-Kirclihloff theory and assu..e lKelviii-

Voigt damping as well as viscous (air) dani mping, the transverse dis)laceii iits

" • • • • • • m



u(t,x1,x 2 ) at time t and location x = (XI,X2) in the perforated domain

Oper = (0, a) x (0, b)- { perforations } satisfy a second order (in time) systemn:

( 02U U Ou 0 2AI1 02M 12  0 2M 2

(3.1) ph-20 + = f t > 0, (X1 ,r12) E Q,,

where p is the mass density, h is the thickness of the plate, and M', 11'2 , and
M 12 are the bending moment about the x, axis, the bending moment about

the X2 axis and the twisting momeii., respectively. If we include Kelvin-Voigt

damping in these moments, we find

El 02U U CDI CD_ _3',

/12  
- E2 1,2 cDI +3 2

1± V 01,012 +1 + 2 20t0z20t

where EI and CDI are the usual stiffness and Kelvin-Voigt damping coeff i-

cients and v is Poisson's ratio. The plate is clamped along the xi -axis where

we must have the (essential) boundary conditions

(3.3) u- =0, forx 2 =0, 0<xI <a, t >0.0x2

Since the plate is free on its other edges and the hole edges, it must satisfy zero

moment and zero shear conditions on these edges. These result in nat uiral

boundary conditions given by

(3.4) 1] 0 =,0.1- + O1112 0

on edges parallel to the X2 axis, and

i-+ 2  12
OX2 Od.'I

on edges parallel to the rl axis.

9



The system (3.1) - (3.5) can be readily formulated in the sesquilinear

framework of Section 2 so that the results given there are applicable. To

that end, define

06 _0n =}

Vper = Hb(Qper)- {q E H 2 (Qper) -  O X2 =-)

and

Hper = L 2 (Qper).

Then Vper -+ Hper - "'per forms a Geifand triple. Moreover, we may define
sesquilinear forms aCer(q) : >( Vper -- C, i 1,2 by

s e s q u i iq ) ( q ) V r ' C

oper

+2qi(1 - q.3)0,12 0,12 }dx,

where q =(qq 2 ,q3,q 4 ) - El CDI and 20 . It is not
2 - v' 1 - u2 1 , n i icxj

difficult to verify that aPer(q) satisfies conditions (A), (B), (C) whenever Q is

a compact subset of C(Qper, R4) nl {q : q c > 0, i = 1,2, 3;q4 _ 0,q 3 < 1.

The system may then be written for u(t) E V,, as

(:3.7) (phutt, V,) + ,:ra(q)(u(t),',) + ar"(q)(&(t), V,) + (q4 i(t), VI,) (f &)

for all G, G Vpr. Given initial data u(O) = 1,,it(O) = V0 with u0 E IPe, VC

lip,,, the methods outlined in Sectie" 2 can be used to develop direct nu-mer-

ical methods as discussed in detail in [BR2]. While the theoretical aspects

of approximation in parameter estimation problems are relatively straight-

forward conceptually given the thleor3 of Section 2, the problems are com-

putationally quite demanding. This is true even though the computatioi.al

domain Q per is amiong the siniplest and most regular of those arising ini grid

an(l truss structures.

The cornputational ditticiulie.: alluded to here motivate one to develop

alternative methods for niodeliig of grid atil truss structures for the purposes

of i(lentific-Iti, n and condtrol.
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4. Homogenization for Grid Structures

Given the difficulties associated with I le miodel for t he grid descrihe IWlIn

the previous section, it is of interest to approximate grid-like andI russ-like

structures with a miodel that retains physical fidelity but I., coiput at iona IlY

inore tractable than a direct physical miodel. One such approximalite 1i idel

can be formulated using honioIgen izat ion tecChniquLes which wer o0 1 i'O Y

dleveloped to niodl composite material structures. Here we out line resullts

for a grid structure similar to that of Section 3. Details for this gridl and

other lattice/truss derivations c-an be found in [13CRI, [R], (iLIl]. '( CS1, VD!'

and [SP].

The basic idea iii our use, of homoen1izat ion is to approximnate a m h I
such as (3. 1) - (3.5) or, equivalent ly, (3.7). by a hiomogenized mnodel (11)on

a domain in which the "htoles" or perforations have beeni "filled III**. That

is, insteadI of a perforated domnain Qpe as dlescribed in Sect ion :3, wve wish to

compute on thle domain Q =(0, a) x (0.1)). The model associated wit I this

domain, even if it is plate-like in forin, wIil of course, be nonphyxsical. Tlie

coefficients in thle distributed svsteinill be non physical hparameit ers.

The hiomogenizat ion procedures we outIi ne here require p~eriod icity viii tIw

st ructuinre ( namy regularly p~lacedl -ioles') as well as sparseness of fii at (il

ii thle structure. Thus wve consider ai gridl st ructutre like t hat ini1i F( ' .1.

but with iariv "boles" or bays. We
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x 2  ~y/2
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= [0,4] x [0,j2
=PYUT

Figure 4.1

ae

consider a typical cell as depicted in Figure 4.1. We map this typical cell to

a fixed size cell Y = [0, l] x [0, f2] via a mapping y = x/c so that the original

cell has dimension ELf by St2. As E --+ 0, periodicity in the original fixed

domain Qper increases. As i --+ 0, the thickness of the members in the grid

decreases. Our approximate equation on Q will be obtained by taking limits

as E -- 0, it -- 0. Of course, the approximate limit model can be expected to

be a better approximation to the actual grid structure if the grid has a large

number of bays and thin members.

To facilitate our discussions, we parameterize the grid structure, denoting

the perforated region by Q,,., and consider a model of which (3.7) is a special

case. (For convenience, we drop the viscous damping term for the discussions

in this section.) We define I,,. = L2(QA,.) and 14,. = 42(Q,,) = {o C
- = 0 on x 2 = 0}. The generalized stiffness and dam)inlg

sesquilinear forms are defined as

(4.1) 7f (0, V') haijkh (-I')6,kh (X)<',riJ( )d-
i,j,1k,h



(4.2) "h(X)O,kh 0',ij (x)dx
c-A" i,j,k,h

for 0,0 E V, ,. Here and throughout we adopt the notation O,ij for

We assume that the functions defined by

aijkh X) = a jkh(x) and bk h  jkh (X) for £ E ,

are Y-periodic and that initial data

are given. We then consider the system for u'"(t) E V,, satisfying for

(4.3)
(phuE'(t), 4) + o'"(u"'+(t), )+ " (u"' (t), 4) (f, ) C (0, T),

a (0) - u6"', •41(o)

We wish to take limits as -- 0,,u -+ 0 in this system. Note how-

ever that as e and y change so does the domain ; hence limit taking

is not a straightforward process. We need to first extend functions such as

u"'U(t), u'", f, etc. to the entire domain Q. We can do this by assigning the

value zero to functions in the region Q - Q,. We shall denote by r this ex-

tension by zero of any function g E L2(fe,,). This results in e L2(l). Such

an extension is not so useful if we wish to deal with functions g E 112(Q",)

(such as uci"(t)) for which the HI2 smoothness is to be preserved. For such

an extension, special extension operators must be formulated.

We shall proceed in two steps. We fix pi at some value and take lhinits

as E -+ 0, obtaining an intermediate "homogenized" solution u" satisfying a

certain intermediate equation. We then take the limit as p -+ 0, obtaining

the desired homogenized system (liE).

Let p > 0 be fixed and let u= u=V' be the solution to (1.3) where w,

shall in our notation temporarily suppress the dependence on the fixed value

of P. Then we have

Lemma 4.1. There exists an cxhnsion operator Pc

P' E C(L'(0, T; V,,), L(0,1T; It2)))

1:3



and a function u = u" such that for some sequence E, - 0 we have

p -U~n -+ 'U in L'(0, T; H(Q)) weak*

(P C'ln), = Penun _ Ut in L'(0, T; L2(Q)) weak.

With additional assumptions on the initial data in (4.3), we can determine

a limit equation that u = u" of Lemma 4.1 satisfies. Define 0 =Y!/iYi,

where IYI denotes the measure (area) of Y. Then we have

Theorem 4.1. Let u' = u'4 be the solution of (4.3) and suppose that

f E L 2(Q,,,) so that f E L2(Q). Moreover, suppose there exist Uo E H(

and vo E L2(Q) such that the initial data for (4.3) satisfy

o ' 0 uo as e 0, weakly in L()

0 Vo as E - 0, weakly in L 2().

Then the convergence of Lemma 4.1 holds with the limit function u(i)

u4(t) E H2(Q) satisfying the homogenized system

(HE")
(Ophut(t),O) + o(t)(u(),Vb) = (Of, 0) fort G (0,T) and all H2(9 )

U(o) = uo/O, ut(o) = vo/O,

corresponding to the homogenized hysteresis sesquilinear form

(4.4) a(t)(u(.), , = fi o i kh ( - )U-kh (r, x)i',j (x)drdx.
i,j,k,h

The coefficients pijkh (t) L-'[Ajkh(s)] are the inverse Laplace tras forms of

the functions

(4.5)
Pijkh(s) = L[p, 3kh](s)

Ij fI a 2 h~) b 2 h - E(arnkhby) + sbemkh(y))X41 (.y)d
IY I •a1 

4(

14



where the functions V'(s,y) are Y-periodic solutions of

E (almkh(y) + sbrkh())(yiJ(S, Y) -P
2 (Y)),&. 0,kh (y)dy 0

e,m,k,h

for all Y-periodic V) E H 2 (Y*). Here P'?3(y) _yjyj.

We note that the general homogenized plate equation (for pu fixed) for

a grid with damping involves a time hysteresis functional of tile solution.

It is instructive to consider the special case of the grid with no damping;

i.e., bijkh = 0. In this case we find that Pgijkh(S) = L[pijkh](s) is actually a

constant, say Pi:kh(S) = ijkh with

(4.6) aijkh j {aijkh(y)- Zamkh(Y)X'A (y)}dy

where Xu is the solution of

E3 a&mkh(Y)(Xij(y) 'Pij(Y)),&. O/,kh (y)dy =0
t,m,k,h

for all Y-periodic 0 E H2 (Y*). Recalling that the inverse Laplace transform

of a constant is that constant times the Dirac delta function (i.e., L-' [aijkh]

dijkhb), we find the sesquilinear form (4.4) reduces to

E aijkh U,kh ( t, X )V',jx)d,

i,j,k,h

or

(4.7) 0(0, 0') =jijkhkh (X)Vj (x)dx.
i,j,k,h

Thus, the hysteresis in the model is a result of nontrivial damping terms in
the grid model. Moreover, we point out that the coefficients in (.1.7). and

hence the coefficients in (HE ") for grids without damping, are tiot simple
averages of the original coefficients aijklh of (4.3). Rather, the homogenized

coefficients are averages of the original coefficients over the structure plus

some correction terms as shown in (4.6).

We proceed to the next step by letting p -+ 0 in (HIE") and the associatled

equations given in Theorem 4.1. To facilitate our discussions, wC r.Strict

15



our considerations to the constant coefficient case; i.e., aijkh and bijkl, are

constants. Moreover, we take fL f2 = 1; hence Y = [0, 1] x [0, 1] and

IYI = 1, JYP = p(2 - p) so that 0 /t(2 - p). It follows ti-at

0
-- U as it--*0.
it

One can establish the following.

Theorem 4.2. For the constant coefficient problem with f, = g2 = 1, thtre

exists a sequence it, -- 0 such that:

(i) The coefficients P$Aih of (4.5) converge in the sense that

1
Pijkh+ Pijkh

where

(4.8)

k2 (aig e + sbjg-)(aikh + sbih)
PTjkh(S) =L[p*,kh](5) = 2 (aijkh + sbi3Akh) I:Z aeee + sbeee

f=1

(ii) The solutions u of (HE ") satisfy

uOn ---+ u in L'(0, T; H'(Q!)) weak*

where u* is the solution to

(HE)
(2phu;,(t), 4,) + *(t)(u*(.), 4) = (2f, 4,) t E (0, T) and all E' 1 t .

u*(O) =irn ! uo/2
A.-0 0

u, (0) = i r Vo = o/ 2,
U-0 0t

with

(4.9) oa(t)(u*(.), fl) j , pijkh(t- )u,*kh (r, x)0, (x)dr d.r.
i,1,k,h

16



We return to the AFAL grid structure of Section 3 corresponding to a (ii-

rect physical model using the Love-Kirchhoff theory with Kelvin-Voigt damp-

ing which is given by equation (3.7) with the sesquilinear forms given by (3.6).

This was the abstract variational form of (3.1) - (3.5). We specialize, tlhe re-

suits of this section to that example. Ve have the coefficients '"Zj= ,i

given by

El
a1122 a22 2 2 1  - v - qI

- qV2E1
a1122 -- a2211 I/j1 - =2 - ql(13

(1212 a2 12 1  (11221 = a2112 -2(l ) 2qt(1 - 'B)

with all other ajkh zero. The bijkh are given by

bi I I, b2222 - CL )2 - q2

1 -

I D 
I 1

b212 =b2121 = b 12 2 1 = b2 11 -2(1 +) -12(1 -
:

with all other bi3kh zero. In t his case (3.6) and (4.1 (4.2) agree'. .lore.over.

using (4.8) of Theorem .1.2, we find

22(s EI+ -ICD) I q3

2 ) Pl2() 1 121 2 (,2 P m 2( 1q) T
-- 1 p-s- 'J{ 1 -,1.; )±,,,!' 1 -a..)

with all other /;,'kh zero. It follows that (7 fr'om (-1.9) c.al )e writlel 8>1 lIw

sum of two sesquilinear forms 1r and (7, givemn by

( , y,) :£j{q,(1 - q I)(,. v, 1, +0 22 ,,22 ) + 1q.( 1 - q:,)o.1 ,.12

We observe that o'7 , a. also sat isfy the condit ions (A). (B3) and ( 1 of Secl ion

2 so that the convergence results summarized in that, section arc r'a~iYlv al,-

plicable to the homogenized model in this case. If we write the hon ,gii /'d

17



model system in strong form analogous to (3.1) - (3.5), we obtain (we include

the viscous damping term so as to compare with (3.1))

O9ut, au* 02M 1  0 a 2 ,1112  12 ,M12

Ph -+ I ±t+ + + =f t E(0O.T),x E Q.at2 ax +209 Cd.

(4.11)

u,(O) = uo/2, ,,K(0) = ,o/2

where ft"' -+u, -* vo weakly in L 2 (Q) as E - 0 as stated in Theorem

4.1 and the moments M., Il, M. are given by

EI O 2u cDI O'u*
2 , + 2x20x t

EI 02u5 CDI 03 U
211 0= 20r

1 + V OxDx 2  1 + VOx Ox 2 Ot"

W\e note that N 1 2 is the same as 11 12 of (3.2) while the form of equation
(4.11) is the same as that of (3.1), with only the moments being different.

Of course u* must also satisfy the clamped boundary condition (3.3) along
the edge x 2 = 0 of Q and the free boundary conditions (3.4) (with 12M. ,')

along x = 0 and x, = a and (3.5) (with A.I, l . 2) along x2 = b.
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5. Comparison with Experimental Results for the AFAL
Grid

The homogenized model (1.11) - (41.12) for the AFAL Grid is. of course.

a type of approximation to the physical model (3.1) - (3.5). Unlike niany ap-

proximate models, we cannot increase the order of approximation by chang-

ing some parameters or mesh sizes. Even though (HE) is the result of a

limiting procedure E,lt - 0, the periodicity of bays and the thickness of

members in a given grid are fixed and hence , and pi are fixed. We can ex-

pect the homogenized model to be a better approximation for structures With

more bays and thinner members than for structures with a small number of

bays and relatively thick members.

Before using the model (4.11) - (4.12) for estimation and control proh -

lems for the AFAL Grid, we )erformed some initial experiments to test how

well the homogenized model described quantitative properties of vibrational

characteristics of the grid. One such investigation involved vibrational ex-

periments (the grid was displaced initially from equilibrium and free release

vibrations were observed: the data consisted of accelerometer measurements

at several locations on the grid). Analysis of the data included experirnental

determination of the fundamental frequencies (which, of course, depend on

the internal damping) for the grid. We then compared these values with

those predicted by the analysis of the homogenization model (4.11) - (1.12).

The AFAL Grid used in our experiments was a 5ft. square (a = b

5) with 16 = 1 x 4t square bays measuring 12" x 12". This correspol'lds to

a calculated - " 1.2" with -i -_ 14.4". The grid was constructed from

aluminum aloy 6061-T6 for which han( book values for stiffness. ('cc.. were

available. We used ph = .05l50132sl1ny.S/ft2 ' 1, =, El = 135.61lb-t. -') =

1.728 x 1051b• s(c/ft2 and - = .02sbnq,/ft" m( c in our calculations with Ihe

model (1.11) - (4.12). We calculated the first eight frequencies ,: for the

homogenized model using two different approaches: an approximnate mode

shape technique based on textbook approxinrat ions [], [L] and an eigeirr'alue

analysis (MATIAB) for a finite element (bicubic 13-splines modified lo sat isly

the essential boundary conlitions) (alerkin approxinmation to ( 1.1 ) - ( I.12).
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\Ve obtained essentially the same results with both approaches. These values

are listed along with the experimentally obtained frequencies '  in the

table below. We observe that for i = 1,2,3, there is good agreement while

, is approximately the average of 4EXP and .uE XP . There is reasonably good

agreement between the pairs o* and w xp,+ for i 5, 6, 7. This comparison

suggests that use of the homogenized model is a reasonable approximation

at least for vibrations involving modes with frequencies less than 16hz.

Mode i W, ;XP

1 .785 .781
2 2.52 2.15
3 -1.93 -1.69
1 6.8-1 6.35
5 8.44 7.23
6 13.8 8.11

7 15.1 13.67
8 15.5 15.5

Table 4.1
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