LOW ENERGY X-RAY AND ELECTRON PHYSICS

AND TECHNOLOGY FOR

HIGH-TEMPERATURE PLASMA DIAGNOSTICS

Fin:2l

Ammat Scientific Report
for the period
01 October 1986 to 30 September 1987
AFOSR \#ISSA-87-0019

BURTON L. HENKE
Principal Investigator

Center for X-Ray Optics
Lawrence Berkeley Laboratory University of California

1 Cyclotron Road
Berkeley, California 94720

Prepared for the
Air Force Office of Scientific Research Directorate of Physics Bolling Air Force Base Washington, D.C. 20332

Approved for public release;
distribut ion unlimited.
October 1987

DTIC
ELECTE
FEB 16 1989
H

225

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE

AFOSR \#ISSA-87-0019
Low Energy X-Ray and Electron Physics and Technology for High Temperature Plasma Diagnostics 01 October 1986 to 30 September 1987
Burton L. Henke
Principal Investigator

PROGRAM SUMMARY

This long-standing AFOSR/program and laboratory (established'in 1954) for low-energy x-ray physics and technology was transferred to the Lawrence Berkeley Laboratory's new Center for X-Ray Optics in December, 1984. Over the past three years, FY/85-87, itg has expanded into a major program of the CXRO with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. These large national laboratory facilities have opened up important opportunities for advancing x-ray physics and technology and for training a group of new young x-ray experimentalists. ${ }^{\text {Th }}$ This program has been particularly addressed toythe development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development, and to student training in experimental x-ray physics. This effort has also the supplemental support of the DOE lead national laboratories-Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the National Laser Users Facility at the University of Rochester.
$\rightarrow+$
Our new LBL laboratory includes five specially designed spectrographic stations for the measurement of x-rays and the associated photoemissions in the $100-10,000 \mathrm{eV}$ region, as described in Appendix 1. Reprints, preprints and technical notes on the recent work of this > $1 /$, we.ers. program, principally those on the development of absolute x-ray spectrometry, are presented in Appendix 2. A listing of research publications for the period 1975-1987 for this on-going program is presented in Appendix 3, and a listing of the citations to this work in the recent scientific literature (for the period 1980 to early 1987) is presented in Appendix 4.

Beginning in $F Y / 88$ the principal investigator for this program will be Eric Gullikson and the co-investigator (consultant and adviser) will be the present PI, Burton Henke. Eric Gullikson gained his initial training in this experimental x-ray physics laboratory under Professor Henke during his Junior and Senior years in an Honors program in physics at the University of Hawaii. He was then invited as a summer student assistant to help establish the first soft x-ray analysis facility at
the LLNL Plutonium Laborato y. He received his Ph. D in solid state experimental physics under rofessor Schultz at UC-San Diego, and he has held a post-doctorate position at the Murray Hill AT\&T Laboratories for the past two and a half years under Dr. Mills. Part of his research effort at AT\&T has been on an investigation of the x-ray photon-counting efficiency of the rare gas solids and, in collaboration with this program, on a similar investigation of the absolute quantum efficiency in the 100-10,000 eV range of the "super photocathodes", solid Ar and Xe. Eric Gullikson was an invited speaker at the March 1986 New York APS meeting. He is now an LBL Staff Scientist on this program. His Curriculum Vitae is attached in Appendix 5.

With the continuity and on-going success of this program assured under Gullikson's leadership and Henke's advisory role, B.L. Henke will begin a phased retirement on October 1,1987 and will begin writing a book on the "Basic Principles and Methods of Low-Energy X-Ray Physics and Technology" (which will be based in large part on his thirty-three years of AFOSR-supported research). The book will include an up-dated version of the x-ray photoabsorption and atomic scattering tables, which originally published from this project in 1982 (ADNDT, Vol. 27), along with the details of their application in absolute x-ray spectrometry. It is felt that such a book at this time will be particularly helpful to the many new young x-ray experimentalists now entering this rapidly expanding field of new applied x-ray physics.

A Administrative: drafling. word processing. manusr.ripl pincouition. promet liurary. calalogs. reprints.
O. Office--BLH

C POP 1123 computer experimental data handling. ploting. bistary of dala files. programs, conference.
D Electrunics construction and maincenance. optical and electronic measurement instruments: supplies.
E. Construction of molecular multilayers for low-energy x-ray analyicrs, Ihin fitm. high resolution photoresists.

1. Flat crystal scanning spectroscopy: mulllayer characterization. absolute crystal reflectivity measurements; molecular and solid stale spectroscopy
2. Fixed analyzer spectroscopy: absolute callbration of elliplical anslyzers. mirror monochromators.
3. Curved crystal scanning, high sensitivily spectroscopy: evaluation of position sensilive defectors: "fast" spectroscopy for time-resolved measurements, radialion damage studies.
4. High sensillvity electron spectrograph ($20^{\prime \prime}$, precision hemispherical analyzer): XPS. secondary electron energy distributions from x-ray photocathodes.
5. Absolute calibrated x-ray source facllity (filtered fluorescent sources, photoncounting proportional counter monltor): pholocathode quantum yield measurements; photoelectrlc detector and photographic film calibration.
6. Vacuum evaporation and sputterlng, fabrication of thin films. x-ray mirrors. low/high densily Csl photocathodes. etc.

7. "Design and Characterization for Absolute X-Ray Spectrometry in the 100-10 000 eV Region," X-Ray Cptics and Microanalysis, Universicy of Western Ontario Press (1986).
8. "A Two-Channel, Elliptical Analyzer Spectrograph for Absolute Time-Resolving/Time-Integrating Spectrometry of Pulsed X-Ray Sources in the 100-10,000 eV Region" (w/ P.A. Jaanimagi), Rev. Sci. Instrum. (Aug. 1985), 1537-52.
9. Technical Notes: "Filter-Mirror Primary Monochromators"
10. "Characterization of Mulcilayer X-Ray Analyzers - Models and Measurements" (w/ J.Y. Uejio, H.T. Yamada, and R.E. Tackaberry), LBL-211003, Opt. Engin., Vol. 25, No. 8 (Aug. 1986), 937-947.
11. Technical Notes: "Low Energy X-Ray Multilayer Analyzers: Molecular and Spurtered/Evaporated"
12. Technical Notes: "High Energy X-Ray Response of Some Useful Crystal Analyzers"
13. Technical Notes: "The Characterization of Transmission Diffraction Gratings"
14. "Low-Energy X-Ray Response of Photographic Films: Part I. Mathematical Models" (w/ S.L. Kwok, J.Y. Uejio, H.T. Yamada and G.C. Young), J. Opt. Soc. Am. (Dec. 1984), 1-29.
15. "Low-Energy X-Ray Response of Photographic Films: Part II. Experimental Characterization" (w/ F.G. Fujiwara, M.A. Tester, C.H. Dittmore and M.A. Palmer), J. Opt. Soc. Am. (Dec. 1984), 1-29.
16. "High Energy X-Ray Response of Photographic Films. Models and Measurements" (w/ J.Y. Uejio, G.F. Stone, C.H. Dittmore, F.G. Fujiwara), LBL-21564, J. Opt. Soc. Am. (Aug. 1986), 818-827.
17. Technical Notes: "The Characterization of X-Ray Photocathodes"
18. Technical Notes: "Low-Energy Fluorescent X-Ray Spectroscopy for Materials Analysis"
19. "Temporal Dependence of the Mass-Ablation Rate in UV-Laser-Irradiated Spherical Targets," P.A. Jaanimagi (w/ J Delettrez, B.L. Henke, and M.C. Richardson), LBL-20787, Phys. Rev. A, Vol. 34, No. 2 (Aug. 1986), 1322-1327.
20. Technical Notes: "A Semi-Empirical Description of the Low-Energy X-Ray Interactions with Condensed Matter - Photoabsorption, Scattering, Specular and Bragg Reflection"

1. DESIGN aNd CHARACTERIZATION FOR ABSOLUTE X-RAY

SPECTROMETRY IN THE 100-10 000 eV REGION

X-Ray Optics and Microanalysis University of Western Ontario Press (1987)

Burton L. Henke
Center for X-Ray Optics
University of California
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

Abstract

Reviewed here are the design and characterization procedures used in our progran for developing absolute x-ray spectrometry in the 100.10 000 eV region. Described are the selection and experimental calibration of the x-ray filters, mirror monochromators, crystal/multilayer analyzers, and the photographic (time integrating) and photoelectric (time resolving) position-sensitive detectors. Analytical response functions have been derived that characterize the energy dependence of the mirror and crystal/multilayer reflectivities and of the phocographic film and photocathode sensitivities. These response functions permit rapid, small-computer reduction of the experimental spectra to absolute spectra (measured in photons per stearadian from the source for radiative transitions at indicated photon energies). Our x-ray spectrographic systems are being applied to the diagnostics of pulsed, high eemperature plasma sources in laser fusion and x-ray laser research

I. INTFODUCTION

There is a considerable present need for the development of efficient absoluce x-ray spectrometry for the characterization and application of the new high-intensicy synchrotron and high-temperature plasma radiation sources. An example of a spectrographic systen recently developed in this labol teory for time-integrated and time-resolved absolute spectrometry in the $100-10000 \mathrm{eV}$ region ${ }^{1}$ is described in Fi.g. 1 . Here the x radiation from a small source is line-imaged at a scatter aperture by reflection from an elliptically curved crystal/multilayer analyzer and chen proceeds to form a normally incident spectrum along a detection

Pis : The opeteal geomery of the allipeteal analyzer
n. ray spectrograph
circle. The Bragg angle range of che spectrun presented by che elliptical analyzer is abour 20.70°. The usually incense high and low energy x-ray background radiation from che synchrocron and plasma sources is effectively reduced by the band-pass characteristic of a primary monochromator combination of a mirror and filter. To obtain the required time-incegrated and time-resolved absoluce spectromery. twin
channels are mployed using both position-sensitive photographic film and streak camera detection (illustrated in Fig. 2). This instrument is now being applied in laser fusion and x-ray laser research using the

laser-produced plasma source of the OMEGA facility at the University of Rochester (utilizing 24 focussed UV laser beams of about 2000 joules total energy of 3510 A light within a 600 picosecond Gaussian pulse). Presented in Figs. 3 and 4 are examples of photograshic and streak camera spectra obtained with this spectrograph on Ol'EGA. ${ }^{2}$

Fig. 3. Exaeple of a photographically recorded spectivm with the Speaxs systen using the PIT olliptical analyzor Measured transitions are for the lonized apectes. Al ${ }^{114}$.
 alcroballoon costed vith 1 mis of al and sxelted by 600-pa/200.J pulse of 351.ra lighe of the orica facility Exposure on the-2495 illa.

Fis 4 A phocograph of the x ray streak camera ourput fur dspecerumpresenced co a Csi cranselssion phococachode by PET ellfpetcal analyzer. The specerun vas leser produced fron a baze glans aleroballoon under emeltation similer co chac deseribed In Fig. 3 .

Illustrated in Fig. 5 is the relationship between a spectral line distriburion of photons as measured at the detection circle and the absolute intensity, i_{0}, of the source. It may be readily derived ${ }^{3}$ that i_{0} is given by:

$$
\begin{equation*}
i_{n}=N(L / F M R(d x / d \theta)) \tag{1}
\end{equation*}
$$

where:
i_{0} - phocons/stearadian emicted ar the source for a given radiati e transition and at the measured photon energy of the spectral line;
N = the cotal number of photons measured within the spectral line distribution per unit length of the spectral line (in the direction normal to the plane of Fig. S).
L = the constant total geometric length of any reflected ray from the source to the detection circle (this invariance is a characteristic of the elliptical focussing geometry);

E = filter transaission:

M - mirror reflectivity;
R - the integrated reflectivity characteristic of the crystal/ multilayer reflection measured in $\Delta \theta$ Bragg angle units; and
$d x / d \theta=$ the ratio of the differential angular width, $d x$, of the radiation from the source to the associated differential angular width, $\mathrm{d} \theta$, of the radiation that is Bragg reflected from the analyzer.

Noce: The response function (1) applies generally for any cylindrical analyzer geometry, since $d x / d \theta$ can be given as an analytical expression characteristic of the particular cylindrical analyzer geomery chat is generating the diffraction line profile, whether it be convex, concave (e.g. elliptical, as here) or flat. ${ }^{3}$

Efficient absolute x-ray spectrometry is achieved by applying the response relationships ${ }^{1,3}$ to the measured spectrum (e.g. via a small computer associated with the spectrographic system) to immediately yield the absolute intensity spectrum of the source. The individual response functions for the primary mirror-filter monochromator, the crystal/ multilayer analyzer and for the position-sensitive detectors may be derived by fitting analytical energy-dependent model relations to calibrations measured at a few photon energies chat are representative of the range of measurement.

In chis paper we review our procedures for establishing the required absoluce response functions and present typical results for applied x-ray spectroscopy in the $100-10,000 \mathrm{eV}$ region. In the Bibliography are listed the recent reports of this laboratory (including those in preparacion) which describe in detail these characterization procedures and which establish the co-authorship of students and research associates for each particular research effort.
II. SPECTROGRAPHIC RESPONSE CHARACTERIZATION

A. Crystals/Multilayers

For our crystal/multilayer characterizations we obtain absolute experimental spectra at several photon energies which include the small angle "cocal-reflection" region, the first order diffraction line and any higher orders that may be allowed. The measurement geometry is shown in Fig.6. A narrow beam of incident radiation of intensity, $I_{0} \cos \theta$, defined by a fine slit at a demountable x-ray cube window and by a razor blade placed near the analyzer, is reflected by the crystal/muleilayer to a gas-flow proportional counter, where monochromatic characteristic line x radiation from the source is isolated by an appropriate filter and by pulse-beighe discrimination

Fig. 6. Cometary fer the masuremont of erystal/culeslayer refleceivicy. The narrow ingilenc grey beat incensticy is t_{0} cen leer reilecelon through che sic. wile tat la tho direct wean intensity that is meaturch ae o. 0 .
with the counter. (Any significant contamination background radiation will also appear in che measured spectrum and thereby the zero-angle incident bean can be corrected co yield the appropriate characteristic line intensity. $I_{0} / 2$.) " The spectrum is step-scanned and appears first on a multichannel analyzer which permits reading out the critical angle for coral reflection. \mathcal{C}_{c}, the integrated reflectivity, R, the
experimental FWHM, w, and peak efficiency, P (defined in Fig. 7). As discussed in Ref. 4, the measured onser of the cotal reflection region signals an accurate goniometer zero-angle secting and the corresponding value of $I_{0} / 2$. The cricical angle for "total reflection," θ_{c}, can be used to yield an estimation of the analyzer's surface structure and refractive properties (opeical constant, δ).

Fig. Seali-angle retlection and first order lrags diffraction for a 100 layer tungsen-carben aletlayet. Tungeen chickness it 0.6 (assumed shatp incerfaces). Definition of che four experieoncal veriables used ce characterize che eryetal/ouletiayes.. che crielcal angle. A. of refleceion ic $t_{4} / 2$. che poak and incegraced reflectulclea. P and R, and che Mnif, w.

We have recently developed a modification of the dynamical Darwin-Prins crystal reflectivity relation to extend its application for the low-energy x-ray region and for reflection by multilayer systems of a finite number of layers. N. Our analycical, modified Darwin-Prins model relation (MDP) can accurately predict the small-angle cotal reflection characteristic and all diffraction orders present for a given photon energy, and can allow the spectrum co be rapidly presenced on a small computer screen and plotter (e.g. with the IBM PC equipped with a FORTRAN compiler). The derivation of chis MDP analytical model is described in Refs. 4 and 5 and the resulting reflectivicy equations are presented below.

As described in Fig. 8, the small fraction of the incident amplitude that is absorbed and reflected by a single layer of unic cells of the crystal, σ and s respectively, can be expressed in cerms of che complex cotal scatcering factor per unit cell, $F_{0}\left(=F_{01}+i F_{02}\right)$, and the structure factor of the unit cell, $F\left(-F_{1}+i F_{2}\right)$. F_{0} is equal to F at its forward-angle scatcering liait (secting 1 - 0 in f). In the
fic. In ehe Daruin. Prine dymalcal eodal for eryseal ieflection, the reflecrion racte for the tetinfinace ciystal. 5 sti.. Is decermined by suming of all positble miesply reflected and eranamiced componencs ac perladically spaced elemancary layers of unte calls. Deflned here are che seall iractianal aeplitudes shac are sbsorbed and reflecead by plame of unlecells. and a respectively, wheh afe relaced to ehe acructure taccor, f. and seaccecine teccer fo per unle coll Fo ls given by che forvard-acactaring value of P.

For \boldsymbol{m} Unit Cells/Unt Areo of Siructure Factor, F_{1} \& F_{2}. and of Total Scollering Factor. F_{01} tif O_{2}. Per Uni Cell

$$
\sigma=-m_{0} \lambda \frac{F_{0}+i F_{c}}{\sin \delta} \text { and } \cdot m_{0^{\lambda}} \frac{F_{1}+i F_{2}}{\sin \sigma_{2}} P(2 \theta)
$$

$P(2 \theta)=1 \propto \operatorname{Cos} 2 \theta$ tor the Two Polarized Components

Darwin-Prins reflectivity model for an ideal, semi-infinite crystal (with reflecting planes parallel to the surface) the ratio of the cotal amplicude that is dynamically reflected, S_{0}, to chat incident, T_{0}, is given by the expression:

$$
\begin{equation*}
S_{0} / T_{0}-\frac{-y}{(1-2) \pm \sqrt{(1-2)^{2}-y^{2}}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
y-\frac{F P(2 \theta)}{F_{0}} \tag{3}
\end{equation*}
$$

and $z=\frac{2 \pi v}{r_{0} \lambda^{2}} \frac{\sin 0[\sin \theta-(m \lambda / 2 d)]}{F_{0}}$

Here r_{0} is the classical electron radius, λ the x-ray wavelength, d the unit cell thickness and crystal reflecting plane spacing, and V the unit cell volune. If the incident radiation is polarized (e.g. synchrotron
radiation) the appropriate value of S_{0} / T_{0} is obtained by secting the polarization factor. $P(2 \theta)$, equal to unity or cos 2θ (σ or π comporent) and the corresponding intensity ratio for this polarized component. I / I_{0}, is obtained by multiplying S_{0} / T_{0} given by (2) by its complex conjugate. (Note: The choice of plus or winus sign in this expression is that which yields a value for I / I_{0} that is less than unity.) For unpolarized incident x-radiation, the reflected intensity ratio is given by one-half of the sum of the two polarized components (with $P(2 \theta)$ equal to unity and cos 2θ respectively).

In the definition of the parameter $z, m / 2 d$ equals $\sin \theta_{0}$, where θ_{0} identifies an angular region for which S_{0} / T_{0} has a significant value (i.e. for the small angle cocal reflection region -0 , and for the first, second and third order diffractions, - $1,2,3 \ldots$ as given by the Bragg equation). In our computer program, this order parameterm, is automatically taken as the integer that is nearest the value of 2d sin $/ / \lambda$, chereby permiteing a continuous ploteing of the spectrum throughout the entire range of reflection angles, \boldsymbol{O}

In our modified Darwin-Prins model we multiply the expression for S_{0} / T_{0} in (2) for the seni-infinite crystal by a factor which then yields the amplitude, $S_{o n} / T_{0}$, reflected from a multilayer of a finite number of layers. N, given by:
where

$$
\begin{equation*}
S_{0 N} / T-\left(S_{0} / T_{0}\right) \frac{1-x^{2 N}}{1-\left(S_{0} / T_{0}\right)^{2} x^{2 N}} \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
x-(-1)^{\bullet} \exp (-\eta) \tag{6}\\
\text { and } \eta- \pm \frac{r_{0} \lambda d r_{0}}{V \sin \theta} \sqrt{y^{2}-(1-z)^{2}} \tag{7}
\end{gather*}
$$

(The plus or minus sign in η is chosen so that i:s real component is positive.)

It is important to note that in order to obtain this relatively simple analytical descripeion for x-ray reflectivity, it was necessary to assume that the fractional amplitude that is absorbed within a unit cell layer, 0 , is small as compared wich unicy. It can be easily shown chat chis condicion is fulfilled when d is sufficiencly saall that the angle for the firsc order reflection, O_{1}, is grester than about three tines the cricical angle for coral reflection from the analyzer, f_{c}. ($0-(\pi / 2)\left(0_{e} / \sin 0_{1}\right)^{2}$) This is usually not a serious linitation because for nearly all praceical applications in spectroscopic analysis. $\theta_{1}>\theta_{c}$.

A more rigorous solution for the reflectivicy of a multilayer consisting of N layer pairs of a heavy and lightelement (e.g. a sputered tungsten-carbon multilayer) may be obtained by consecutively applying the ESM Fresnel reflection equation at each of the 2 N incerfaces, using as the material constants the refractive indices. $n(-1$ - δ - i β) descriptive of each elementary layer, where:

$$
\begin{align*}
& \delta=\frac{r_{0} \lambda^{2}}{2 \pi} n f_{1} \tag{8}\\
& \beta=\frac{r_{0} \lambda^{2}}{2 \pi} n f_{2} \tag{9}
\end{align*}
$$

Here n is che no. density and f_{1} and f_{2} are the acoaic scactering factor components for the element (or compound) comprising each sub-layer. In Fig. 9 we have ploted the total reflection region and the firse chree orders of reflection for a tungsten-carbon multilayer ($N=30,2 d=70 \mathrm{~A}$ and with the tungsten layer of 0.4 d thickness) comparing the optical E\&M model ${ }^{5}$ (OEM) (dashed line) and our modified Darrin-Prins model (MDP). As may be noted, the results are essentialiy identical.

Fig. Camparing the epeleal UM (dashed line) and the MDP calculaced spectra for eungacen-carben alcilayer with 10 layert of the sean photen metgy as in Fig. 7

It was noted above that in order to calculate the crystal/multilayer refleceivity characteristics using the MDP model, we only need to specify the unit cell volume. V. and its complex structure factor. $F\left(-F_{1}+i F_{2}\right)$. The cotal scatering factor per unit cell. $F_{0}\left(-F_{01}+i F_{02}\right)$ is set equal to F with 0 . For the crystallographic case in which the unit cell is couprised of a collection of n_{p} acoms of
type P, of acomic scattering factor $f_{p}\left(-f_{p 1}+i f_{p 2}\right)$, and located at position $z_{\text {f }}$ from a plane of symetry of the unit cell (z_{p} is perpendicular to che reflecting planas), the structure factor components are given by the relations:

$$
\begin{align*}
& F_{1}=\sum_{p} x_{p} f_{p 1} \cos \left(\frac{4 \pi z_{p} \sin \theta^{\prime}}{\lambda^{\prime}}\right) \tag{10}\\
& F_{2}-\sum_{p} x_{p} f_{p 2} \cos \left(\frac{4 \pi z_{p} \sin \theta^{\prime}}{\lambda^{\prime}}\right) \tag{11}
\end{align*}
$$

In the case of a continuous high density distribution of two elements (or compounds) for the sputered/evaporated multilayers, the structure factors are given as noted in Fig. 10 by:

$$
\begin{align*}
& F_{1}=\frac{v}{d} \int_{-d / 2}^{d / 2}\left(n f_{1}+n^{\prime} f_{1}^{\prime}\right) \cos \left(\frac{4 \pi z}{\lambda^{\prime}} \sin \theta^{\prime}\right) d z \tag{12}\\
& E_{2}=\frac{v}{d} \int_{-d / 2}^{d / 2}\left(n f_{2}+n^{\prime} f_{2}^{\prime}\right) \cos \left(\frac{4 \pi z}{\lambda^{\prime}} \sin \theta^{\prime}\right) d z
\end{align*}
$$

Here n and n^{\prime} are the no. densities of the ewo elements at position z within the assumed symetric unit cell and is the number of unit cells per unit area and is equal to (d / V), where V is the volume of the unit cell.
(DENSELY PACKED)

Fig. 10. oofining the acrueve teacer compenace for the unit call of apmetered/eveparacel mielileyer. monl
 incerlace. cempond erensition layor. a linearly varying
 incerfece roughmese.

Our MDP model predicts a refraction modified angle, θ ', and wavelength. λ^{\prime} within the crystal/multilayer, consistent with Snell's Law, and correspondingly it predices a shift in che diffraction peak position from that angle given by the Bragg relation, me $-2 d$ sin 0 by an amount given by $\delta /\left(\sin \theta_{0} \cos \theta_{0}\right)$. The refractive index decrement, $\delta=r_{0} \lambda^{2} F_{01} / 2 \pi V$ is explicitly independent of the structure factor, F, while the intensity of the diffracted line is strongly dependent upon the structure factor, $F_{1}+i F_{2}$, as defined in (10) chrough (13) in terms of the angle. \prime^{\prime}, and wavelengeh, λ ', presented to each unit cell within the crystal/multilayer. It can be readily shown that the sin $\theta^{\prime} / \lambda^{\prime}$ quantity in the structure factor relations can be expressed in the desired and λ variables by the relation:

$$
\begin{equation*}
\sin \theta^{\prime} / \lambda^{\prime}=(\sin \theta / \lambda) \sqrt{1-\frac{2 \delta}{\sin ^{2} \theta}} \tag{14}
\end{equation*}
$$

(Note: This correction only applies for the calculation of the large angle Bragg diffractions for $m \geq 1$ and not for the "total reflection" :. . region (a-0).)

In Fig. 11 and in Table 1 we present a series of calculated integrated reflectivity curves, R vs $E(\bullet V)$, over che energy range 100-10 000 eV for those crystal/multilayer systems that are anenable to bending to the elliptical curvatures required for the specerograph

fig. IL. Integrated reflectiviey, L(erad), va phocon eneft. f(eV). Cer leven cryetal/eleslayers thac may be appliad te cewor en 100.10000 ov regien as ellipeleal analyzers and es listed fat Pable 1 . The folets have been calculared ualing the Rop eecel.

Table 1 . Crystal/mulcilayers having incegraced raflectivitles as ploteed in fig. 11

No	Crysial name	Indices (Mk!)	20	Difiracion order	$\begin{gathered} E(e V) \text { limits } \\ 22.5^{\circ} \cdot(0)-615^{\circ} \end{gathered}$	$\begin{aligned} & R \text { (ast } \\ & \text { Imsad\| } \end{aligned}$
1	LF	12001	4.03	I	1046-3133	0.0431
2	Mice	1002)	19.4	J	4900-2029	0.0286
1	PET	1002)	8.14	1	3701-1335	0.0501
4	Gypaum	10201	15.19	1	2134-884	0.0711
5	Mres	10011	19.44	1	1631-616	0.0136
6	RAP	11010	24.12	1	1240- 514	0.0448
1	KAP	11010	26.63	1	1217- 908	0.0488
1	Leurace		70.00	1	463-192	0.4187
9	Stearave		100.00	1	32-134	0.1262
10	Lipnocerate		130.00	1	249-103	08373
11	Melorsate		160.00	1	203-44	0.1974

[^0]described in the Introduction. In Fig. 12 we comparn the calculated and the experimental integrated reflectivity values for the potassium acid phthallate analyzer (KAP) using bott the Darwin-Prins and the mosaic models." Illustraced here is a measured sharp reflectivity "spike" at the oxygen-K absorption edge resulting from condensed-matter molecular orbital resonance: a reninder that the atomic scattering description used here can apply only outside the absorption edge threshold regions where scattering may be considered "atomic-like" and unaffected by the chemical or solid state.

Fig. 12. The incegraced refleceivity curves for che mecas. slve cels phethelece (WN) eryscal calculeced uning che MOP and the Mosale eryacal medals and coapared vith experimencal cancurcment. Thate codela, wing the atoale acateoring tacrorn. camper be applies near abserpeton chresholde there cheoleal and/or solid seate offects eny oceur-e.e. the sharp. rafleetivity "upike" appasing here natr che oxysen-K edge af 530 ov .

Finally, in Figs. 13 and 14, we present a comparison of the experimental and MDP model characterizations of two synthesized large d-spacing aultilayers, a Langair-Blodgate lead stearate and a sputtered tungsten-carbon. For our modeling of the W-C analyzer we assumed a linearly varying density in the tungsten-carbon eransition layer (or equivalently, an interface roughness layers).

Fif. 13. Th Lermatr-Bledget tan scoarace micileger -
 emperieancal vilua for incegraced reflectivity. t. peak

Cheracterization of a Molecular Lead Stearate Mullilayer

Characterization of a Sputtered Tungsten-Carbon Multilayer

Fig. 16. The apuctared Tungean-Carten mitellayer. 2d - 15
 carben incerface vich an assuest limear varlacion of donal. eles in the incerface ragion. Capartson of mDP eodel curves with experimencel values for lncegreted roflectivity. R, peak officiency. P. Miw, ©. and rosolving gower, E/aE

Fig. 15 :llustraces the complementary aspect of the sputered/evaporated and the molecular Langmuir Blodgett analyzers. For the same d-spacing and for appropriate composition these analyzers have similar peak reflectivities, bue the high-density sputeared/evaporated multilayer has the higher integrated raflectivity and correspondingly, lower resolving power.

B. Mirrors and Filters

For opeimized absolute x-ray spectrometry it is important to suppress the low and high energy background which may be particularly intense in the new large synchrotron and plasma sources. This "extra" radiation can thermally distort the analyzer and can appear in the measured spectrum as high-order diffracted or diffuse scatered background. As noted earlier, a primary monochromator combining the high-energy cut-off characteristic of a saall-angle raflection and the low-energy cut-off characteristic of an absorption edge filter can provide an effective suppression of this "extra" radiation. The band-pass characteristic of a practical mirror-filter monochromator is presented in Fig. 16 for a 30 mrad reflection from an aluminized mirror and for eranswission through a $300 \mu \mathrm{~g} / \mathrm{cm}^{2}$ copper foil.

The filter transmission, F, is raadily calculated using the energy dependent mass absorption coefficient, μ, and the mass per unit area thickness, n, of the filter material, with the usual relation:

$$
\begin{equation*}
F=\exp (-\mu m) \tag{15}
\end{equation*}
$$

Fif. 16. The band-pass characerigeic of che wirfor-filcer cemblmeton of a 10 ered reflection frem Alualnue and erans. alasien ehrough a $300 \mathrm{~m} / \mathrm{cm}^{2}$ Copper Coil.

It can be showns chat the Darwin-Prins relation for the seai-infinite crystal can accurately represent the Fresnel small-angle reflection characteristic. M, by setting the order parameter, m, in the variable, z, equal to zero. For the homogeneous mirror, the unit coll is simply described by a uniform distribueion of a single element (or compound). Alternatively, the two intensity polarization components can be expressed by the following Fresnel relations for the relative incensicies':

For the incident E-vector perpendicular to the reflection plane,

$$
\begin{equation*}
I_{.}(\theta)=\frac{4 \rho^{2}(\sin \theta-\rho)^{2}+\gamma^{2}}{4 \rho^{2}(\sin \theta+\rho)^{2}+\gamma^{2}} . \tag{16}
\end{equation*}
$$

and for the polarization racio,

$$
\begin{equation*}
\frac{I_{0}(\theta)}{I_{0}(\theta)}=\frac{4 \rho^{2}(\rho-\cos \theta \cot \theta)^{2}+\gamma^{2}}{4 \rho^{2}(\rho+\cos \theta \cot \theta)+\gamma^{2}} . \tag{17}
\end{equation*}
$$

where the parameter, ρ, is given by:

$$
\begin{equation*}
\rho=(1 / 2)\left\{\sin ^{2} \theta-a+\left\{\left(\sin ^{2} \theta-a\right)^{2}+\gamma^{2}\right)^{1 / 2}\right\} \tag{18}
\end{equation*}
$$

and $a=2 \delta$ and $\gamma=2 \beta$
The optical constants, δ and β, are given in teras of the cocal scatering factor per unit volume, $n F$, by (8) and (9). (Again, these model calculations, using the atonic scattering factors, can be accurately applied only for photon energies outside the absorption threshold regions.)

Presented in Fig. 17 are comparisons of the Fresnel model prediction and the experimental measurement of the airror reflectivity, M. for high quality surfaces of beryllium, aluainum and fused quartz ${ }^{\text {a }}$ neasured by che procedure outlined above (see Fig. 6).

Fis. 17 Comparing Fresnel seall-angle roflection curves vith experimencal easuramenc frea high qualley elrior eurfaces of taryllime, aluntion and funed Quertz.

C. Photographic Films

Described in Fig. 18 is our method for measuring the optical density, D, vs absolute exposure, I, response of a photographic fila. A characteriscic line spectru from a filtered x-ray source is scanned along the decection circle of an ellipeical analyzer by a proportional counter co yield the absolute peak intensity for each line in photons per $\mu m^{2}-s e c$. Then a photographic camera is introduced with its 35 mm fila eransported along the same detection circle, and a series of exposures are caken at known exposure times. The filn is processed by a controlled, standard procedure and alcrodensitometared spectra are obtained, as shown in Fig. 18. The slits on the proportional counter and on the aicrodensftometer are antched, and have widths chat are small compared to the instrument-broadened diffraction lines. Plots of density. D, vs Exposure, I (photons/ μ^{2}) for corresponding peaks yield che D-I calibration curves shown in Fig. 19 for recently collected data on the high energy x-ray film, Kodak S8-392 (single emulsion) and DEF (double emulsion). This procedure is operationally identical, but the reverse of that which is used to deternine an absolute exposure from a measured density.

Fig. 18. illugtracing the methed for macegraphle ifle calibracion. An allipelical analyeer la ued ce plece apoc erse of the costrot mocen unergies aleng a cecoction elrcte.
 flow propercional emencer with pulee melghe diectiolnation and a certes of mocegrapila expeaures are thes ando. The phocegraphle apoetre are eleroconeleamcoret vich a alic which eotehos that of the propertional counter ant of wideh that to eapll at ecameret with chace of the Inacrumenc. breadomed diffrestion limes. Ae corroaponding lime posks. specular cantiey valuas. D. are ecemared with abselute expesure values I(mhetena/imi) to yield the 0.1 callbration curves. This callbracion presoture is eporacionally siablar te Chat used (in roverae) ter the decoretnation of abselute emposures frea nieromanaltometered apectra.

S8 392 Densily x Erogens
x remee or a (1986)
Δ nooen ond borv (198)
-- Smple. Emureon moder

Fig. 19. Examples of Specular Densticy. D Expesure. f(pheceng/mi) curves for redak' single eculsion si.342 and coule-emision DCF x-ray files. These enpecteoncal dace ari cempared wich che predictions of our energy dependent eatel raspense equactons (21) and (22)

QEE Densuly is Encorete

- Hente el at (906)
- Aocmelt et ar (rans)
- Prumos ano Prumps (ises)
- Dovire Enulison Mocet

The smooth curves show in Fig. 19 which fit the experimental data are D-I curves obtained from our analytical photographic film response model relations. The model relations are functions of the exposure, $I\left(\right.$ phocons $\left./ \mu \mathrm{m}^{2}\right)$, photon energy, $\mathrm{E}(\mathrm{eV})$ and the angle of incidence, θ, and require oniy two fitting parameters, a and b.9.10.11

The general model description is shown in Fig. 20. The x radiation that reaches a layer of silver bronide grains at depth x (distributed within gelatin) is equal to that incident at angle 0 , less the fraction absorbed by the protective supercoat and by the heterogeneous grain-gelatin emulsion above the layer. It follows that the probability for a phocon absorpeion within agbr grain can be expressed as a function of the geometric grain cross section, σ, the grain diameter, d, the supercoat thickness, t, and the energy-dependent linear absorption coefficients, μ_{2}, μ_{0} and μ^{\prime}, for AgBr, gelatin and the heterogeneous emulsion, respectively. It is further assumed for the $100-10000 \mathrm{aV}$ region of interest here that (1) the photon energies are sufficiently high that only one phocon is required to render a grain developable and (2) that these energies are sufficiently low that the photoelectrons generated in the gelatin do not have sufficient range or energy to render addicional unexposed grains developable. We list here the "universal" model relations that have been derived from such general model assumptions:9,10.11

For a monolayer of AgBr grains with no supercoat (designed for EUV and low energy x-rays as the Kodak 101):

$$
\begin{equation*}
D=a_{1}\left(1-\exp \left(-b_{1} \beta_{1} 1\right)\right) \tag{19}
\end{equation*}
$$

For a thick emulsion (tocally absorbing):

$$
\begin{equation*}
\omega D=a \ln (1+b \beta 1) . \tag{20}
\end{equation*}
$$

Fig. 20. The probeblitity tur fineton obserptian within a Agbr grain of crese section. of al depth vichlin eive

 l(pmecens per vilt ares) frem directica. o. other medel asmapeson ore (1) tor the 100.10 000 ov meren energy cegtem of incercec mere. aly one meen obserpcion is requited co renmer a grain anolepale eni (i) che eress. seetion. . . It Inmpentinc of che meren onergy.

For a thin partially absorbing emulsion of chickness T :

$$
\begin{equation*}
D=\quad a D=a \ln \frac{1+b \beta t}{1+b \beta 1 \exp (-\mu \cdot T / \sin \theta)} . \tag{21}
\end{equation*}
$$

And, finally, for a double-emulsion film on a plastic base of thickness, t_{b} and linear absorpeion coefficient, μ_{b} :

$$
\begin{equation*}
a D=a \ln \left(\left(\frac{1+b B I}{1+b B I \exp \left[\left(-\mu^{\prime} T\right) / \sin \theta\right]}\right)\left(\frac{1+b B I \exp \left(\left(-\mu_{b} c_{b}-\mu^{\prime} T\right) / \sin \theta\right]}{1+b B I \exp \left[\left(-\mu_{b} c_{b}-2 \mu^{\prime} T\right) / \sin \theta\right]}\right)\right] \tag{22}
\end{equation*}
$$

In these expressions the factors; β_{1}, a and β vield the dependence upon photon energy. $E(e V)$ and the angle of incidence, 0 , and are given in Refs. 9, 10 and 11.

Having determined the fitting parameters, a and b, by least squares fitting to D-I data at a few representative photon energies, the complete energy response may then be accurately prediceed. These semi-empirical relations can then be used, for example, to derive the absolute film sensitivity curves as shown in Fig. 21. Here, sensicivicy S is defined as the reciprocal of the exposure. I(photons $/ \mu \mathrm{m}^{2}$) which is required io produce a specular density, D, of 0.5.

Fig. 21. Cemparing ehe flle sensietvietes in ene $100 \cdot 10000$ ov regton for the kodak tilea. 101 (approsimately a cono. layes of Agte gratins vichewe supercese). the single coultion
 Here senticivicy. S. is defines is the reciprecal of ene
 cenalty of 0.5.

D. Photocathodes

The position sensicive photoelectric detectors that. are applied \therefore i x-ray spectroscopy include arrays of discrete x-ray diodes, x-ray streak cameras (as described above) and the multichannel plate amplifier detection systems. all of which utilize che basic photocathode element to convert the x-ray photon intensity to an electronic current by photoemission The energy distribution of the emitted electrons from either a front or back surface (cransmission) photocathode is illustraced in Fig. 22. Typically most of the electrons are emitted as secondary electrons in the $0-10 \mathrm{eV}$ region and only a few percent or less escape elastically through the photocathode surface as the original higher energy primary phocoelectrons and Auger electrons. In the

Fig. 22. Describing the eleciton energy dirtribution chac is enictea frea an m-ray phocecachode. Only a seall percan. rage of the elections are entered as elasticably escaping high energy phoceelectereng and amger electicns. Meat of che -leceren eetseion is viehin secenaery alection diseritur. cion in the 0.10 ov regien end eeaured by the phececach. ode' characeriscle quancun yield. Y (elacerens/phecan).

picosecond cime-resolving detectors (e.g. the x-ray streak camera) the priaaries are rejected and the higher energy seconderies arrive at the end of the streak camera sooner than the slower secondaries eneraby setting a liait on the time resolution. For example, for the relatively sharp energy distribution width of about 1.5 oV characteristic of a CsI photocathode, and for the cccelerating fields vithin the typical sereak camera, an intrinsic tise resolution of about two picoseconds may be expected. The cocal number of electrons within this secondary electron distribution is decermined by the photocathode's quantum yield, Y, which is the number of electrons emited per normally incident photon for the front surface photocathode. As suggeseed in Fig. 23 (for front surface operation), the photoenission yield for x-rays is characteristically low because nost of the Initial priaary electrons and subsequently generated secondary electrons are deposited deeply within the photocathode. outside the escape depth region. The fraction of the incident incensicy chat is photoabsorbed within this escape depth is given by the linear

$Y_{1} \sim E \mu(E)_{p \lambda s}$
$E=$ photon energy
$\mu(E)_{\rho}$ - linear x-ray
absorption coef.
λ_{3} - secondory eleciron escape depth

Fis. 23. The emergy dependenc z-ray phozecachede fuancum yielt. Y. Is propertional te the fraction of ehm normoliy Incident phecenc that are absortwod vichin che oseape copth
 Che eseape depeh. i_{0}) and te che mater of seconimery -lecerens genersces by a mocem coecpeion (thich te propereienal te the phecen onergy. L, otwe che oheme of che
 phecen amergy.
absorption coefficient. Ho multiplied by the escape depth, $\lambda_{\text {. }}$. Because the shape of the secondary electron distribution is determined by the surface electronic state of the photocathode and does not depend upon the exciting photon's energy, E , it follows that the total number of emitted electrons should be proportional to E as well. 12 Therafore, in our modeling of the $x-r a y$ photocathode we establish the photon energy dependence of the quantum yield to be given by:

$$
\begin{equation*}
Y-E_{\mu}(E) \rho \lambda_{s} \tag{23}
\end{equation*}
$$

In Ref. 12 we describe our method and instrumentaction for the absolute measurement of phococathode quantun yields in the photon energy region of $100 \cdot 10000 \mathrm{eV}$. Examples of these measurements for the gold and cesiun iodide photocathodes are presenced here in Fig. 24. As can be seen by the superposition of $E_{\mu}(E)$ curve on the plot of data, $\varepsilon_{\mu}(E)$ indeed follows the experimental photocathode ener $6 y$ dependence as suggested by (23). The considerably increased quentur yield of the cesius lodide photocathode (by a factor of about cen) is mostly the result of . the larger escape depth λ_{1} which is decerained by the longer mean free path of the secondary electrons within chis insulator (electron-phonon interaction length) as compared to that for the metal photocathode (electron-electron interaction lengeh).

III. X-RAY INTERACTION COEFFICIENTS

In Sec. II we have sumarized our developaencs of efficienc. analytic spectrographic response functions based upon the description of
 energy-dependent fundamental parameters, the acoaic phocoabsorption cross sections and the aconic scactering factors. We heve denonstrated

Fig. 26. Lraplos of masured phococathode franc surface yiold, Y (elecerons/phecen) ve phecon onergy. E(ov) for (A) a 300 a an file and (B) a 3000 a cestue lodide film the onerg dependanct expresiel in Plg. 23 is demonateraced here by che superpoiticien of the $\mathrm{g} \boldsymbol{\mathrm { g }} \mathrm{E}$) curven on chase log.log pleta. The considerably higher yialds shom here for che Cal phececaehoda la prediceed in our model by che face that the esespe depeh for cel (eleceron-phonon Interaction lengeh) is chout con cimet chat of Au (electron-iection
chat our analyeicai modified Darwin-Prins (MDP) model for mirror and multilayer reflection is generally more efficient and yields results that are essentially identical to those obtained with the optical EKM model using the macroscopic material constants, δ and β. With aither cheorerical approach, the material properties can be derived from the atomic scattering factors for the photon energies outside the absorption chreshold regions where the photon interactions wichin condensed matter may be considered to be with essentially free atons. To facilitate accurate and detailed calculations of the model descriptions presented in Sec. II, we have established photoabsorption and acouic scactering factor tables for 94 elemants within the $100-10000$ eV region. ${ }^{13.16 .15}$ A brief review of this work is presented here.

We define the atonic scateering factor, $f\left(-f_{1}+i f_{2}\right)$ in Fig. 25 and have calculated the atomic scatering factors using the Kramers-Kronis dispersion relations pased upon our compilations of experimental/cheoretical photoabsorpeion cross sections. These relations are:

$$
\begin{align*}
& f_{1}-Z+C \int_{0}^{2} \frac{e^{2} \mu_{1}(0) d 1}{E^{2}-e^{2}} \tag{24}\\
& f_{2}-(1 / 2)=C E_{\mu_{1}}(E) \tag{25}
\end{align*}
$$

Pig 25 lamermergy aisy scatearing by an scom The

 sescered by aingle Theasonian lacteren in the eame a-rediacten field. Hare r. la the claesteal electron retiua; che radial discance te the pelne of eesturemenc. and P(2f) In cha pelasizacion taceer thac tis equal se unlcy er cos 20, cepanding ugan thecther the incident olectric vecter (of magnieude (f) is mermendicular or parcilel to cho olame of sesecering. For the tow-energy zray region for which tha vavelangths are large coepared with the acoetc dimenstons, the seactaring of each ecoulc electen at any angle ie with the sam phase as for che forvard diescion the aceate seactering foctor in chus independent of the engle ot sectering. 20
where E is the photom energy, $C=\left(\pi r_{0} h c\right)^{-1}$. r_{0} is the classical electron radius. h is Planck's constant, and c is the speed of light. The atomic absorption cross section, μ_{a}, is related to the mass absorpeion coefficient $\mu\left(\mathrm{cm}^{2} / \mathrm{gm}\right)$, by:

$$
\begin{equation*}
\mu_{\mathrm{a}}=\mathrm{A} \mu / N_{0} \tag{26}
\end{equation*}
$$

where A is che atomic weight and N_{0} is Avogadro's Number. In our numerical integrations for the values of f_{1} in (24) it was considered sufficient to take the integration range on from 30 eV to 85 keV . using "state of che art" values for $\mu(E)$ to obeain the required μ_{a} values.

For che higher photon energies where the wavelength becones comparable to the dimensions of the atom, the individual atomic electrons may not be scattering in phase, and the atomic scatearing factor will be reduced by the effect of the Interference of these electronic scactering components. For the forward scatcering case (e.g. in small angle reflection), and within the entire 100-10 000 eV region of interest here, all atoaic electrons are scattering essentially in phase and the atoaic scattering factor, f_{1}, given by (24) needs no correction. However, it can be shown that for the larger angles of scactering the value of f_{1} given by (24) should be corrected by replacing the acomic number, Z, by the angle-dependent form factor, f_{0}, for the given acom. (In Ref. 14 we list the sources for the tabulated forn factors for all elements and various charge states.) Thus the acomic scatcering factor for the larger angles of scatering (e.g. for Bragg diffracion) may be more accurately given as:

$$
\begin{equation*}
f=\stackrel{1}{f}_{1} \cdot \Delta f+i f_{2} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta f=\mathbf{Z}-\mathbf{f}_{0} . \tag{28}
\end{equation*}
$$

In Fig. 26 we have ploted the modulus', $\sqrt{\left(\mathcal{F}_{1}^{2}+\mathcal{E}_{2}{ }^{2}\right)}$, of the atomic scatering factor for neon ($2-10$) calculated as describe. usove for the two sctering angles, 0° and 180°. Also plocted here are modulus values based upon nearly exact S-Matrix cheoretical calculations (via a very expensive computer program) by Pratt, et al. As shown in Fig. 26. for most practical purposes the relatively simple Kramers-Kronig model and che simple form factor correction given above are sufficiently accurate.

Fig 26 Plecs of the odulus of ehe aceaic ecactering facter. $T_{1}^{2} \cdot T_{2}^{2}$. va phezen enargy. E(ov) ac 0° and 180° scaccering angles for neen $(2$ - 10\rangle. Ceapared here are the atente scactering facter madulus valuas calculaced by cha celacively siaple krapers.mrenig diseersion eenal and by che meerly excec (twe ompentive) ind ercer s-matriz eheerectcal eecel alis tmenscraces here is the eccucesy of ehe simple fers faccer corfection that is applied In wr calculacton for large-angle ocactering

- O A DELAFIVISFIC-2n OnOER-3-MATRIX CALCULAFIONS
 ($\triangle I_{0}=2-1_{0} \quad \mathrm{I}_{\mathrm{O}}$ - FORM FACTOR)

Finally, Fig. 27 (taken fron our cross section tables ${ }^{14}$) presents plots of the atomic scactering factor components, f_{1} and f_{2}, for Alusinum, illustrating in f_{1} the strong anomolous dispersion throughout chis phocon energy region and in f_{2} a comparison of our fic curve with data calculated directly from cypical experimental measurements of μ using (25) and (26).

fig. 27. Lsapien ot plets of the acoule seatering facter sempenanes, f_{1} and f_{1} (fer Aluamm) caken free Ref. it tliunteced hert. In f_{1}. is che serent anemeleus disperison chrough chia phecen emetiy cesion. and In l_{f}. \& comparisen of enf lle eurve vieh presenc empericencal phoreabserpeion caca applying ralatiens (25) and (26).

ACKNOLTEDGEMENTS

The author gratefully acknowledges the invaluable assistance of his many students and colleagues who have participated in the research efforts that have been reviewed here, and of Debra Nanod in the preparation of this manuscript. Our program on Low Energy X-Ray Physics and Technology is supported by a grant fron the U.S. Air Force Office of Scientific Research, AFOSR-ISS4-85 and supplementally by contracts with the U.S. Departaent of Energy, CIDw9501. Task I (via LaNL and LLNL); CIDw9501, Task II (via the National Lasers Users Facility), and DE-AC03-76SF00098 (via LBL).

1. B.L. Henke and P.A. Jaanimagi, "A Two-Channel, Elliptical Analyzer Spectrograph for Absolute Time-Resolving/Time-Integrating Spectrometry of Pulsed X-Ray Sources in the $100-10,000 \mathrm{eV}$ Region," Rev, Sci. Instrw. 56, 1537-1552. 1985.
2. P.A. Jaanimagi and B.L. Henke, "An Absolutely Calibrated Time-Resolving X-Ray Spectrometer," Proc, of Soc, of Photo-Opt. Inserum. Engin. (SPIE), San Diego. 1985.
3. B.L. Henke H. T. Yamada and T. J. Tanaka, "Pulsed Plasma Source Spectrometry in the 80-8000 eV X-Ray Region." Rev. Sci._Instrum. 54, 1311-1330, 1983.
4. B.L. Henke, J.Y. Uejio, H.T. Yanada, and R.E. Tackaberry, "The Characterization of Multilayer Analyzers - Models and Measurements," in press, opt.Engin. (August 1986).
5. B.L. Henke, H.T. Yamada and J.Y. Uejlo, "Refleceivity Characteristics of Multilayers and Crystal Analyzers for the 100-10,000 eV Region - Theory and Experiment" (in preparation).
6. H.T. Yamada and T.J. Tanaka, "A Computer Program for the Calculation of the X-Ray Reflectivity Characteristics of Sputcered or Evaporaced Muleilayers Using the Opeical ESM Model." LBL-21909, 1986.
7. B.L. Henke, "Ulerasoft X-Ray Reflection, Refraction and Production of Photo-electrons (100-1000 eV Region)." Phys, Rev, A6, 94-104. 1972.
8. B.L. Henke, J. Kerner and D. Kania, "Reflectivity Characteristics of Low-Energy X-Ray Mirror Monochromators" (in preparation).
9. B. L. Henke, S. L. Kwock, J. Y. Uejio, H. T. Yamada and G. C. Young, "Low-Energy X-Ray Response of Photographic Films: Part I. Mathenatical Models." J. Oper. SoceAr._1, 828-849. 1984.
10. B.L. Henke, F. G. Fujiwara, M. A. Tester, C. H. Dietmore and M. A. Palmer, "Low-Energy X-Ray Response of Photographic Eilms: Pare II. Experimental Characterization," J. Opt. Soc. An,_1, 818-827. 1984.
11. B.L. Henke, J.Y. Uejio, G.F. Stone, C.H. Dittmore, F.G. Fujiwara, "High Energy X-Ray Response of Photographic Filas. Models and Measurements". (In press, L_Opt.Soc._1. October 1986).
12. B.L.Henke, J. P. Knauer and K. Premaratne, "The Characterization of X-Ray Photocathodes in the $0.1-10 \mathrm{keV}$ Photon Energy Region," J.Appl. Phys, 52, 1509-1520, 1981.
13. B.L. Henke, "Low Energy X-Ray Interactions: Photoionization, Scaceering, Specular and Bragg Reflection," ALP Conf, Proc. 75. D. T. Atcwood and B. L. Henke, Editors (Am. Instit. of Phys., Now York), 146-155, 1981.
14. B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, and B.K. Fujikawa. "Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100-2000 eV, z - 1-94, "At, Data Nucl. Data Tables 27. 1-144. 1982.
15. B.L. Henke, H.T. Yanada and J.Y. Uejio, "Fine-Spaced Photoabsorption Cross-Sections and Atomic Scattering Factors for the 94 Elements in the 100-10.000 eV Photon Energy Region" (in preparation as $8^{\prime \prime}$ floppy disk, RT•11 format).

Two-channel, elliptical analyzer spectrograph for absolute, time-resolving time-integrating spectrometry of pulsed x-ray sources in the $100-10000-e \mathrm{~V}$ region

B. L. Henke and P. A. Jaanimagia)
Department of Physics and Astronomy. University of Hawaii. Honolulu. Hawaii 96822
(Received 11 December 1984; accepted for publication 18 April 1985)

Abstract

A new spectrographic system has been developed and calibrated in this laboratory for the absolute spectrometry of high-intensity pulsed x -ray sources in the $100-10000-\mathrm{eV}$ region. This spectral region is analyzed with fixed elliptically curved crystals and molecular or sputtered-or-evaporated multilayers of 2 d values in the $3-160-\mathrm{A}$ range. Twin channels are utilized for simultaneous time-integrated photographic recording and for time-resolved x-ray streak camera recording. Absolute calibrations of the elliptical analyzers, of the photographic film, and of the gold and CsI transmission photocathodes have been made using monoenergetic, cw laboratory x-ray sources. The overall transmission characteristics of the spectrograph have also been determined. The instrument has been designed for mounting through a pneumatically controlled high-vacuum valve onto a 4 -in. port of a 1 -m-diameter source chamber and includes an appendage, high-vacuum, sputter-ion prepumping station. The initial dynamic testing and application of this new spectrographic system has been on the University of Rochester's LLE 24 laser beam OMEGA source facility.

INTRODUCTION

There is a considerable need at this time for absolute time-resolved/time-integrated spectrometry of high-intensity, pulsed x-ray sources in the $100-10000-\mathrm{eV}$ photon energy region. Typically these sources are the high-temperature plasmas as involved, for example, in fusion energy and x-ray laser research and in materials excited by the large synchrotron radiation facilities. The spatial extents of the sources to be measured (or imaged) usually subtend a relatively small angle at the spectrograph. The pulse structure to be analyzed requires time resolution in usually the picosecond to microsecond range. We describe here an instrument that can accomplish this type of spectrometry that has been constructed and cw -source calibrated in this laboratory and is now being applied to the diagnostics of laser-produced plasmas with the OMEGA facility at the Laboratory for Laser Energetics, University of Rochester.

In preparation for this type of x -ray spectrograph development we have recen:ly completed some basic studies in low-energy x-ray spectrometry as repoited in Refs. 1-9.

In Ref. 1 we discuss the geometrical and physical x-ray optics for fixed, Bragg reflecting analyzers for pulsed source spectroscopy. This study led to the choice of elliptically curved, fixed Bragg crystals or multilavers for the analyzing element (see Fig. 1). Some of the adva tages of this type of dispersive geometry may be summariz d as follows:
(a) With the source at one focal point for the given elliptical geometry, all reflected radiation passes through the second focal point where an effective scatter aperture may be located and at which is the geometric center for a normalincidence detection circle along which photographic or electronic position-sensitive detection may be effectively applied.
(b) Small bandpass and/or low-energy cut-off filter foils
may be mounted across this scatter aperture. High-energy cut-off mirror monochromators may be easily introduced between the elliptical analyzer and the source (as shown in Fig. 1).
(c) As described in Ref. 1, spectroscopy with spatial resolution for linear or two-dimensional source dis \upharpoonright - $b u t i o n s$ may be accomplished by using slits or curved focusing mirror monochromators with the elliptical analyzers.
(d) This elliptical geometry yields a relatively simple analytical spectrometer transmission function for absolute photometric analysis along the detection circle (as discussed in Ref. 1).

In the design of the present instrument it was considered important to be able to measure simultaneously the spectrum of a subnanosecond source with time integration and with time resolution in the 10 -ps range. To accomplish this, two identical elliptical analyzer channels were utilized, one

Fic. 1. The optical geometry of elliptical analyzer spectrograph. (The elliptical analyzer is mounted so as to permit small rotations about the $A A$ ' and $B B^{\prime}$ axes for alignment.)
 developed. long entrance slit s-ray streak camera. This streak camera photographic camera elliptical analyzer xray spectrograph will be referred to ds the SPEAXS system.

Presented in Sec. I is a description of the basic design features of this SPEAXS system along with that for the alignment procedure for application to the "point" laserproduced sources. In Sec. II we describe the response of the crystal/multilayer analyzers that we have chosen for the $100-10000-\mathrm{eV}$ region and that of the associated low- and high-energy cut-off characteristics of practical filters and mirror monochromators. In Sec. III we describe the photographic and streak camera detection that is applied with this SPEAXS system. And finally in Sec. IV we present some initial measurements on the OMEGA facility and discuss the combining of calibration data for the generation of an overall transmission function for the SPEAXS system as applied for absolute spectrometry

I. DESIGN AND CONSTRUCTION OF THE SPEAXS SYSTEM

A drawing of the SPEAXS system is shown in Fig. 2. It has been designed to bolt onto a 4 -in. port of the 1 -m-diameter spherical source chamber of the OMEGA. The source-to-scatter aperture distance (between focal points of the elliptical analyzer) is 120 cm . The stainless-steel block housing is attached to the chamber through a pneumatically controlled 4 -in vacuum valve and the system is prepumped to 10^{-6} Torr with a Vacion pump backed initially through a molecular sieve trap to a mechanical pump. The twin elliptical analyzer/mirror monochromator stations are mounted through a rear port and are adjustable through two side access ports. A photo of the assembled spectrograph and its appendage Vacion pump are shown in Fig. 3 with the streak camera mounted above and the photographic camera below the housing.

In order to allow a precise optical alignment of the elliptical analyzers, these along with their associated mirror monochromators are mounted on blocks that are attached to structures as shown in Figs. 4 and 5 which permit small rotations about two axes, one along the center line of the scatter aperture slit and the other perpendicular to the aperture plane and through its center (see axes $A-A$ ' and $B-B$ ' in Fig. 1). To achieve optical alignment with a small "point" target, an alignment telescope is precision fit to each ellipti-

Fig. 2. Cut-away drawing illustrating the mounting of the two elliptical analyzer channels in the SPEAXS system. (1-x-ray streak camera; 2elliptical analyzer channels; 3-photographic camera; 4pneumstically controlled valve.)

Fig. 3. The SPEAXS system with the x-ray streak camera in the up and the photographic camera in the down position. Also shown here is a pneumatically controlled 4 -in. vacuum valve through which the system is bolted onto a 1-m-diameter target chamber, and the Vacion/molecular sieve appendage prepumping system.
cal analyzer block, in turn, with the optical axis of the telescope along the central ray to the source focal point of the ray system that illuminates the elliptical analyzer. The tele-scope-and-analyzer block is then rotated about the two axes to bring the image of an ambient-lighted point target to the middle of the telescope reticule as illustrated in Fig. 6. After this alignment, the rotatable crystal block mountings are clamped into fixed positions. When a mirror monochromator is attached to the elliptical analyzer block, with the desired angle of reflection fixed, the optical image that is centered within the alignment telescope field is formed directly by reflected rays presented by the monochromator mirror. (Aluminized optically reflecting test analyzers and mirrors are used in this alignment procedure.)

By placing a point source of visible light at the source position (or alternatively, an image of a point source with a ray system that proceeds to illuminate the total elliptical analyzer surface) the optical perfection of the mirror/analyzer system may be evaluated. With proper optical alignment, a sharp line image appears along the center line of the scatter aperture. A "knife edge" test of the uniformity of the optical reflection from the elliptically curved surface may be demonstrated by the uniformity of the illumination on a screen along the detection circle.

Fig. 4. Showing the elliptical analyzer substrate and mirror monochromator as attached to the mounting block on the rotating table (with the $A A^{\prime}$ axis). The scatter aperture plate is mounted on the bottom of the circular table.

Fig. 5. Back view of rotating mount as shown in Fig. 4. Illustrated here is the rotational adjustment of the mounting block onentation about an axis perpendicular to that of the rotating table axis and through the center of the scatter aperture (the BB' axis).

Finally, the geometrical and smoothness integrity of the crystal/multilayer analyzer surface and the absence of crystal defects may be tested by checking for waviness and variation of photographic density of the photographically recorded x-ray spectral lines on a film placed along the detection circle.

II. CRYSTAL/MULTILAYER ANALYZERS, MIRROR MONOCHROMATORS, AND FILTERS

Thin sections of crystals $10.5 \times 4.0 \mathrm{in}$. and of 0.005 -0.020 in . thickness) are cemented to standardized, elliptically curved substrates which are generated by a computercontrolled milling machine. The construction of the ellipticat analyzers is described in detail in Ref. 1. The large 2d analyzers are deposited as molecular multilayers (lead salts of straight-chain fatty acids) and directly upon the curved substrates that have been clad with thin glass sections and as described in Refs. 1 and 2. In Table I we present a listing of crystals/multilayers that have been chosen for the present SPEAXS system and which are currently under evaluation by the authors for spectrometry in the $100-10000-\mathrm{eV}$ re-

Fig. 6. Depicting the alignment procedure. A precision oriented alignment telescope is fastened to each mounting block in turn, rotating it about the two axes (AA ' and $B B^{\prime}$) until the image of the small target is on the center of the reticule. The mirror/analyzer mounting block is then fixed in this position by tightening its mounting bolts accessible through the side ports.
 Bragg anglen of $22.5100^{7.5}$ deg and the calculated megrated reflectivity R. \{Darwin-Prins) at 45° Bragg angle. Our methods for the calculaton and experimental measurements of the integrated reflectivities are discussed in Refs. 1, 3, and 4. In Fig. 7, we present the integrated reflectivities for the analyzers listed in Table I plotted for the appropriate photon energy segments through the entire $100-10000-\mathrm{eV}$ region in order to illustrate the "coverage" by this set of analyzers.

In Ref. 3 we have presented detailed reflectivity versus angle of grazing incidence and photon energy curves and tables for the mirror monochromator systems that are currently used in low-energy x-ray spectrometry. Two of these mirror monochromators have been applied in this SPEAXS system to effectively suppress the second- and higher-order diffracted background radiations. These are with a $30-\mathrm{mrad}$ reflection from Al and with a 67.5 -mrad reflection from $\mathrm{Al}_{2} \mathrm{O}_{3}$ having high-energy cut-of characteristics at about 1000 and 500 eV , respectively. The reflectivity versus photon energy curves for these mirror monochromators are shown in Fig. 8.

The low-energy background radiation that may be superimposed upon the higher-energy measured spectra can be excessive, first, because the sources of interest often have a relatively large component of low-energy x-rays and EUV and, second, because these longer wavelength radiations can strongly scatter and specularly reflect from the analyzer surface and effectively compete with the Bragg reflected spectral intensities. To suppress this low-energy background, a relatively thick filter with a strong transmission band for the particular spectral region being measured can often be effective (usually placed at the small scatter aperture). In Table II are listed some practical filter materials along with their mass thickness, $m(=1 / 2 \mu)$ for which their transmission will be about 60% at a photon energy just below a given strong absorption edge (the high-energy limit of the particular transmission band). In Figs. 9 and 10 are plotted the transmission bands in the $100-10000-\mathrm{eV}$ region of interest here. [Filter mass thicknesses $\left(\mathbf{M g} / \mathrm{cm}^{2}\right)$ are used rather than linear thicknesses because these usually are more accurately measured and film density values are not required, which are usually not accurately definable for thin films.]

III. PHOTOGRAPHIC AND STREAK CAMERA DETECTION

Particularly in the fusion energy and present x-ray laser research, time-resolved x-ray diagnostics of high-temperature plasmas, is essential. For the application of the present SPEAXS system on the diagnostics of laser-produced plasmas (with subnanosecond pulses) the required time resolution in the 10 -ps range has been achieved with a specially designed x-ray streak camera. In order to obtain an absolute calibration of the time-resolved streak spectrum, a simultaneous absolute time-integrated intensity value on the same spectrum is obtained by photographic recording with a parallel, identical elliptical analyzer channel.

In the present instrument an entrance aperture slit to each channel is applied which establishes a spectral line

No	Cryutal name	Indices ,hh/I	2D	Diffractorn order	$\begin{gathered} E \text { eVilimis } \\ 22.5^{\circ}-101-075 \end{gathered}$	$\begin{gathered} R\left(45^{\prime}\right)^{n} \\ 1 \mathrm{mrad} \end{gathered}$
1	LiF	(200)	4.03	1	8046-3333	0.0433
2	Mica	-002)	19.84	3	4900-2029	0.0286
3	PET	1002)	8.74	1	3707-1535	0.0907
4	Gypsum	1020)	15.19	1	2134-884	0.0711
5	Mica	$1002)$	19.84	1	1633-676	0.0136
6	RAP	(1010)	26.12	1	1240-514	0.0848
7	KAP	(1010)	26.63	1	1217-504	0.0488
8	Laurate ${ }^{\text {a }}$		70.00	1	463-192	0.4878
9	Stearate		100.00	1	324-134	0.8262
10	Lignocerate		130.00	1	249-103	0.9373
11	Melisante		160.00	1	203-- 84	0.8974

- Molecular multilayers of lead salts of straight-chain fatty acids.
${ }^{6}$ For Brage angle, θ, equal to 45°
length at the detection circle of 3 mm . The $1-\mathrm{mm}$ width of the $40-\mathrm{mm}$ streak camera slit (positioned along a chord of the detection circle) is aligned along the middle of this $3-\mathrm{mm}$ wide zone. Correspondingly, a photographic film placed on the detection circle measures spectra within this $3-\mathrm{mm}$-wide band, and a subsequent microdensitometer measurement may be with an effective $1-\mathrm{mm}$ slit length scan averaged through the middle of the exposed $3-\mathrm{mm}$ zone.

A $35-\mathrm{mm}$ photographic film is mounted upon a semicircular film holder of a radius equal to 8.4 cm which may be advanced into this detection circle by means of a sliding/ rotating vacuum feedthrough rod (see Fig. 2) permitting four exposures of the $3-\mathrm{mm}$ spectral bands to be obtained on each $35-\mathrm{mm}$ film strip. After making these exposures, the film holder cassette may be drawn back against the circular access plate that is sealed by an O-ring to the side of the camera housing. In this closed position, a light baffle may then be rotated into place over the cassette entrance slit and the side plate may then be removed along with the film holder within a light-tight enclosure which may be carried to a darkroom for processing.

The photographic camera and the streak camera can be set to have comparable sensitivities in the x-ray region as established by the choice of the photographic film and of the

Fig. 7. Integrated reflectivity, R (mrad), vs photon energy, $E(e V)$, for eieven crystal/multilayers that may be applied to cover the $100-10000-\mathrm{eV}$ region as elliptical analyzers and as listed in Table I. The R plots have been calculated using the Darwin-Prins model. (See Appendix B for detailed R vs E curves.)
transmission photocathode material and thickness at the streak camera's entrance slit. Further adjustment of the sensitivity of the two channels is obtained by introducing matched filters of desired absorption thickness at the two scatter apertures as described earlier. Finally, to bring the exposure within the dynamic range of the photographic detection, the four exposures of the film strip may be with four thicknesses of additional calibrated filter material that are mounted as a wedge at the entrance slit of the translating film cassette.

After a standardized film processing, the properly exposed photographically recorded spectral line (or continuum) may be microdensitometered to yield a profile in photographic density, D. In Ref. 5 we have described an accurate method for analytically transforming this profile in photographic density, D, to a profile in absolute intensity at the detection circle, I (photons $/ \mu^{\mathrm{m}^{2}}$) using a semiempirical photographic response function which relates the exposing intensity, I, to the measured density, D, for a given photon energy, E. This function may be combined with the transmission function of the elliptical analyzer channel via a microcomputer to yield an absolute source intensity plot (e.g., photons/steradian) versus photon energy, E, directly from the microdensitometer data as will be outlined in Sec. V.

Three practical photographic film types have been char-

Fig. 8. Percent reflectivity, $P(\%)$, vs photon energy, $E(e V)$, illustrating highenergy cut-off characteristics of a 67.5 -mrad refiection from an $\mathrm{Al}_{2} \mathrm{O}_{3}$ mirror and of a $\mathbf{3 0 - m r a d}$ reflection from an \mathbf{A} mirror. These monochromators effectively reduce the high-energy background above 500 and 1000 eV , respectively.

Table II. Mass thickness of filters with transmission band characteristics illustrated in Figs. 9 and 10

No.	Filter	Edge (eV)	$\begin{gathered} 1 / 2 \mu \\ \left(\mu \mathrm{~g} / \mathrm{cm}^{2}\right) \end{gathered}$
1	Beryllium Be	$\mathrm{Be}-\mathrm{K}(111)$	81
2	Boron nitride BN	B-K (188)	68
3	Carbon C	C-K (284)	226
	Polypropylene $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{1}\right)_{x}$	C-K (284)	256
	Formvar $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}$	C-K (284)	156
	$\begin{gathered} \text { Mylar } \\ \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4} \end{gathered}$	C-K (284)	152
	$\begin{gathered} \mathrm{Kimfol} \\ \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \end{gathered}$	C-K (284)	181
4	Boron nitride BN	N-K (400)	66
5	Aluminum oxide $\mathrm{Al}_{2} \mathrm{O}_{3}$	O-K (532)	126
	Silicon dioxide SiO_{2}	O-K (532)	116
	Polyformaidehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{x}$	O-K (532)	92
6	Iron Fe	$\mathrm{Fe}-\mathrm{L}_{3}(707)$	234
7	Nickel Ni	$\mathrm{Ni}-\mathrm{L}_{3}(854)$	279
8	Copper Cu	$\mathrm{Cu}-\mathrm{L}_{3}(933)$	318
9	Magnesium Mg	$\mathbf{M g - K}(1303)$	1139
10	$\begin{gathered} \text { Aluminum } \\ \mathrm{Al} \end{gathered}$	Al-K (1560)	1427
11	Silicon Si	Si-K (1840)	1680
12	$\begin{gathered} \text { Saran } \\ \left(\mathrm{CH}_{2}=\mathrm{CCl}_{2}\right)_{2} \end{gathered}$	Cl-K (2820)	3151
13	Silver Ag	Ag-L $\mathbf{H}_{\mathbf{3}} \mathbf{3} 51$)	1296
14	$\begin{aligned} & \text { Tin } \\ & \text { Sn } \end{aligned}$	$\mathrm{Sn}-\mathrm{L}_{3}(3929)$	1669
15	Titanium Ti	Ti-K (4964)	6010
16	$\begin{gathered} \text { Chromium } \\ \mathrm{Cr} \end{gathered}$	Cr-K (5989)	7924
17	$\begin{aligned} & \text { Iron } \\ & \mathrm{Fe} \end{aligned}$	Fe-K (7111)	9804
18	Nickel Ni	Ni-K (8331)	11820
19	Copper Cu	Cu-K (8980)	13699
		29	

acterized in detail for absolute spectrometry in the $100-$ $10000-\mathrm{eV}$ region with the SPEAXS system (see Ref. 5). Their sensitivities versus photon energy, E, are compared in Fig. 11.

The spectral range is covered with the x-ray streak camera by positioning the entrance slit along one of three chords on a detection circle (accomplished with straight through and a tilted mounting flange). The central axis of the streak camera passes through the focal point at the scatter aperture

Fig. 9. Transmission bands of selected filters listed in Table II for the 1001000 eV region. (See Appendix A for detailed transmission curves which indicate the effectiveness of the low-energy cut-off characteristics.)
center and may be mounted so as alternatively to make the angles, $-20^{\circ}, 0$, and $+20^{\circ}$ with the normal to the aperture plane. The minimum distance of the photocathode to the scatter aperture is 24 mm . Because of the large angular dispersion of Bragg reflecting analyzers and because of the mechanical and electrical problems associated with very close coupling of the entrance slit of the streak camera and the analyzer, it becomes of considerable advantage in crystal spectroscopy to employ streak cameras having relatively long entrance slits. For the SPEAXS system an x-ray streak camera has been specially developed that has an entrance slit of 1 by 40 mm with more than 300 spatially resolved elements along this slit. And it has the required $10-\mathrm{ps}$ resolution. This was accomplished by a systematic series of experimental modifications of the basic structure of the RCA 73435 image tube as suggested by an associated series of measurements and precisely computed electron ray traces following each modification. This tube development is described in detail in the companion work of Ref. 6.

The transmission photocathodes that are used with this streak camera on the SPEAXS system are cesium iodide and gold for relatively high and low sensitivity applications, respectively. We have measured the absolute quantum efficiency for these photocathodes (secondary electrons emitted per incident photon) as described in Ref. 7 and examples of the yield versus photon energy curves for 1000-A CsI films and for 200-A gold films are presented in Figs. 12 and 13.

Fig. 10. Transmission bands for selected filters listed in Table II for the 500-10 000-eV region (see Appendix A).

Fig. 11. Comparison of the sensitivities in the $100-10000-\mathrm{eV}$ region of three photographic film types suitable for absolute spectrometry with the SPEAXS system, Kodak's 101, RAR-2495 and SB-392 (35-mm) films. (See Ref. 5 for a description of their characterization.| Sensitivity is defined here as the reciprocal of the exposure. I (photons $/ \mu \mathrm{m}^{2}$), that is required to establish a specular density, D, equal to 0.5 .

IV. INITIAL RESULTS AND PROCEDURES FOR ABSOLUTE SPECTROMETRY

The initial dynamic tests of the SPEAXS system have been on microballoon targets irradiated by a six-beam ultraviolet laser pulse ($\lambda=351 \mathrm{~nm}$) using the University of Rochester's Laboratory for Laser Energetics OMEGA facility. In Figs. 14 and 15 are shown examples of photographically recorded spectra using a $12.7 \mu \mathrm{~m}$ Be foil across the scatter aperture and with the LiF and PET analyzing crystals, respectively. Exposures were on Kodak's RAR 2495 (35 mm) film. The microdensitometry was with a $30 \times 400-\mu \mathrm{m}$ slit and with a multiscan integration of the optical density through the central one millimeter region of the exposed 3 mm band (as also measured by the streak camera's $1-\mathrm{mm}$ slit).

The spectrum of Fig. 14 was generated by a 600 -ps pulse of 200 -J absorbed energy upon a bare glass microballoon of $200 \mu \mathrm{~m}$ diameter. The spectral lines measured here, using

Fig. 12. The quantum yield, Y_{b} (secondary electrons emitted per normally incident photon), vs photon energy, $E(e V)$, of a 1000 -A cesium iodide transmission photocathode (evaporated under high vacuum. See Ref. 7).

Fig. 13. Quantum yield, Y_{b} (secondary electrons per normally incident photonl for 200-A gold transmission photocathode (see Ref. 7).
the LiF analyzer, are for highly ionized species of calcium (a minor element in the glass).

The spectrum of Fig. 15 was generated by a 600 -ps pulse of $200-\mathrm{J}$ absorbed energy upon a $200-\mu \mathrm{m}$-diameter glass microballoon that was coated with $1 \mu \mathrm{~m}$ of aluminum. The spectral lines measured here using the PET analyzer, are for highly ionized species of aluminum and silicon.

The intensities along the three millimeter length of the spectral lines as measured with the LiF analyzers were uniform. The measured intensities, however, symmetrically drop off in the first and third millimeter segments along the spectral line for the PET analyzer (and also for the RAP analyzers that have been applied for these initial tests). We believe that this nonuniformity has resulted from a slight curvature of the crystal surface in its short dimension. We hope to improve the flatness of the crystal mounting on the elliptical substrates by improving the mounting procedures over those as originally described in Ref. I.

Presented in Fig. 16 is an example of the initial tests of the x-ray streak camera (a Polaroid photograph of the image intensifier output for a spectrum from a bare glass microballoon using a PET analyzing crystal and a CsI transmission photocathode). Having elliptically curved analyzers of improved quality, we may then proceed to measure accurate absolute photon energies and intensities of spectral lines and of continuum distributions.

The absolute photon energy $E(\mathrm{eV})$, and wavelength $\lambda(\AA)$, may be determined from the measured angular position β, (see Fig. I) along the detection circle for the elliptical analyzer by the following relation [from Eq. (6), Rcf. 1]:

$$
\lambda(\AA)=\frac{2 d}{m} \sin \left[\tan ^{-1}\left(\frac{!-\epsilon \cos \beta}{\epsilon \sin \beta}\right)\right]_{J}=\frac{12398}{E(\mathrm{eV})}
$$

Here m is the diffraction order and d is the effective atomic plane spacing of the analyze , includes a refraction correction) and expressed in angstroms. The eccentricity parameter, ϵ, for the ellipticity of the analyzer has been given in Ref. 1 [Eq. (5)] by the relation

$$
\epsilon=\sqrt{1+\left(h / R_{0}\right)^{2}}-h / R_{0}
$$

in which R_{0} is the distance between the focal points (between

Fic. 14. Example of photographically recorded spectrum with the SPEAXS system using the LiF crystal elliptical analyzer. Measuring transitions for Ca^{14+} excited by a $600-\mathrm{ps} / 200$-J pulse of $351 \cdot \mathrm{~nm}$ light of the OMEGA facility upon a 200. $\mu \mathrm{m}$-diameter bare glass microballoon. Exposure on RAR-249S film
the source and the center of the scatter aperture) and h is the size parameter that measures th: distance from the second focal point at the scatter aperture to the elliptical analyzer surface along the ray for $\beta=90^{\circ}$. (The elliptical geometry of the analyzer is completely characterized by the parameters R_{0} and h which are equal to 120 and 5.08 cm , respectively, for the present SPEAXS system.)

The absolute source brightness for a characteristic line emission at photon energy E, may be determined as i_{0} (pho-tons-emitted-per-pulse/steradian) by the following relation [see Ref. 1, Eq. (14)]:

$$
i_{0}=N L / F M R W(d \chi / d \theta)
$$

where N is the total number of photons measured at the detection circle or radius r, within a spectral line of length u. L is the constant total pathlength for all rays from the source point, off the analyzer, through the scatter aperture and then to the detection circle, and given by

$$
L=\sqrt{R_{0}^{2}+h^{2}}+h+r
$$

F is the filter transmission factor at photon energy $E ; M$ is the monochromator mirror reflectivity factor at photon energy $E ; R$ is the total integrated reflectivity factor of the crystal/ multilayer analyzer at photon energy $E ;(d \chi / d \theta)$ is the ratio of the differential angle $d \chi$, in the plane of reflection of the

Fig. 15. Example of photographically recorded spectrum with the SPEAXS system using the PET elliptical analyzer. Measuring transitions for the ionized species, $\mathrm{Al}^{1{ }^{1+}}, \mathrm{Al}^{12+}, \mathrm{Si}^{12+}$, and Si^{13+} from a $200-\mu \mathrm{m}$-diameter glass microballoon coated with $1 \mu \mathrm{~m}$ of Al and excited by a $600-\mathrm{ps} / 200-\mathrm{J}$ pulse of $351-\mathrm{nm}$ light of the OMEGA facility. Exposure on RAR. 2495 film.

Fic. 16 A photograph of the x-ray streak camera output for a spectrum presented to a CsI transmissoon photocathode by a PET elliptical analyzer The spectrum was laser produced from a bare glass microhallon.
rays that uriginate at the source to the corresponding differential Bragg angle $d \theta$. of their reflection from the analyzer. It is given by the following relation [from Eq. (8) of Ref. 1]:

$$
\frac{d \gamma}{d \theta}=\frac{\epsilon^{2}-1}{\epsilon|\epsilon-\cos \beta|}
$$

\therefore, for a given spectral line, may be determined by numerically integrating over the spectral line intensity distribution, I (photons $/ \mu \mathrm{m}^{2}$) vs E as derived from the measured photographic density D, vs line position β, using the photographic film response functions described in Ref. 5 (via a microcomputer connected to the microdensitometer).

The filter transmission F, mirror reflectivity \boldsymbol{M}, and analyzer integrated reflectivity R, may be derived by calculations based upon the atomic photoionization cross sections and the associated complex atomic scattering factors. This procedure has been outlined in Ref. 3. We have presented recently in Ref. 4 the atomic photoionization and scattering
factor tables for 94 elements which have been generated by fitting theoretical photoionization vs E curves to the "best available" experimental data for the $30-10000-\mathrm{eV}$ region and applying the quantum dispersion theory, with these data, to generate the corresponding atomic scattering factors. Also presented in Ref. 4 are the detailed calculations for mirror reflectivities and for crystal/multilayer integrated reflectivities..M and R, for materials that are important in currently applied x-ray diagnostics.

Presented in Appendix A are practical examples of filter transmission curves for the $100-10000-\mathrm{eV}$ region that have transmission bands which were described in Figs. 9 and 10.

We have found (see Ref. 8) that our theoretically calculated mirror reflectivity curves generally predict well the experimentally measured data only for mirror surfaces that have been obtained with "state of the art" smoothness. For the mirrors used in the SPEAXS system our calibration procedure is to normalize the theoretically calculated curves to reflectivity curves that we have measured experimentally (for effective averaging of the expeririental data).

In Appendix B we present plots for the first and second diffraction orders for the integrated reflectivity, R, for the eleven crystal/multilayer analyzers that have been shown in Fig. 7 for the $100-10000-\mathrm{eV}$ region. Again, our calibration procedure for the crystal/multilayer analyzers involves fitting and averaging theoretical R vs E curves to directly measured integrated reflectivity data. We have found, as discussed in Ref. 9, that nur closest fits with the experimental data are usually with the theoretical curves calculated with the Darwin-Prins model las applied here for the R - curves shown in Fig. 7 and in Appendix B). Typical R (exp)/R (Dar-win-Prins) normalizing ratios that have been determined for the elliptical analyzers calibrated for the present SPEAXS system are given in Table III.

In Appendix C we present a detailed table for the photographic specular density D vs the exposure I (photons $/ \mu \mathrm{m}^{2}$) and the photon energy $E(\mathrm{eV})$ in the $100-10000-\mathrm{eV}$ region for normal incidence upon Kodak's RAR 2495 film. This film has been found to be particularly useful in the general appli-

Table III. Compartson of expenmental and theoretical integrated reflectivity values-la moditied Darwin-Prins mexdel has been applied for the theoretical calculations

Analyzer	No. layers	2D	Photon energy	R, mrad	R, (mrad)	$R_{1} / R_{,} \cdot 100$
LıF	-	4.03	4510.8	0035	0042	83
Mica-3rd order	-	1984	2293.2	0.027	00334	70
PET	-	8.74	2293.2	0.121	0085	142
Gypsum	-	15.19	2622.4	0.055	0055	99
Mica Ist order	-	19.84	9297	0020	0.01:	147
RAP	--	2612	676.8	0.088	0.085	104
KAP	-	26.63	676.8	0.052	0.0.40	106
Laurate	125	70.00	676.8	0.324	() 3x:	85
Mynstate	200	80.00	192.6	() 4 (1)	0.290	95
Stearate	135	100.00	676.8	0327	0342	96
Behenate	150	12000	277.0	0425	0532	80
Lignocerate	115	130.00	192.0	0.547	0617	89
Melissate	100	160.00	277.0	0359	0.522	69

cation of the SPEAXS system. It. along with other film oypes have been characterized as described in our recent works cited in Ref. 5 .

We have outlined above our procedures for determining the number of photons-emitted-per-pulse/steradian, i_{10}, from a "point" source for a particular atomic transition (characteristic line). In Ref. I we have also presented a similar procedure for the determination of the photons-emitted-per-pulse/steradian-eV, S_{0}, for a continuum distribution [see Ref. 1, Eq. (15i]. Finally, in Ref. I we have described a procedure for the determination of the line shape parameters from the experimental spectral line distribution la spectral line distribution of area under the line equal to the total number of photons, $i_{1,}$ emitted-per-pulse/steradian for the given transition and as defined above). For this line shape analysis, a fold of Gaussian and Lorentzian shape functions the Voigt
function) was assumed for a sufficiently accurate fit of the experimental line profile (see Ref. I, Sec. III).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the invaluable assistance of the staff and students on this program, Priscilla Piano, Murray Tester, Ron Tackaberry, Cyril Lance, Siu Lung Kwok, Jeremy Uejio, and Gerald Young.

This project is part of an overall program on low-energy x-ray physics and technology now at the Center for X-Ray Optics-Lawrence Berkeley Laboratory, and supported by the Air Force Office of Scientific Research Grant No. 840001 and supplemented by the Department of Energy under Contract Nos. DE-AS08-83DP40181 (LANL/LLNL) and DE-AS08-82DP40175 (NLUF).

APPENDIX A

FIGS. Al-A25. Transmission band and low-energy cut-off characteristics of selected filters. [For the $100-10000-\mathrm{eV}$ region having filter thicknesses which yield transmission band peak values of about 60%. The corresponding mass thicknesses, $\rho \chi\left(\mu \mathrm{g} / \mathrm{cm}^{2}\right)$, are listed in Table II.]

APPENDIX B

Figs. Bl-B20. Integrated reflectivity, R (Darwin-Prins), vs photon energy, $E(\mathrm{eV})$, for first- and second-order diffraction from the eleven crystal/multilayer analyzers that have been listed in Table I and described in Fig. 7. These calculated values were for "thick" crystals (setting number of layers, N, equal to infinity).
LEAD MELISSATE 2d-•160A |st ORDER

LEAD MELISSATE 2d--160 A $\quad 2^{\text {nd }}$ ORDER

$$
\text { LEAD LIGNOCERATE } 2 d--130 \text { A } \quad 1^{\text {st }} \text { ORDER }
$$

APPENDIX C

Table CI. A table of the exposures, I (photons $/ \mu \mathrm{m}^{2}$), for the RAR 2495 film at photon energies, $E(\mathrm{eV})$, and wavelengths, $\lambda(A)$ which yield specular photographic densities, D, in the range $0.2-2.0$. These specular density values are as measured in the microdensitometry of photographic spectra when using the nominal 0.1 numerical aperture ($n A$) for both the illumination and the objective optics. (For the corresponding density values that apply with microdensitometry at other numerical apertures, see Ref. 5.)

2495 FILM--EXPOSURE, I(photons/ $/ \pi^{2}$)*

NET DENSITY,D
(SPECULAR-0.1 $\times 0.1 \mathrm{nA}$)

PHOTON ENERGY,E(eV)
WAVELENGTH, $\lambda(A)$

$E(e V)$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	$\lambda(A)$
A											A
75	1.6501	4.5101	9.4601	1.8002	3.2802	5.8402	1.0303	1.7903	3.1103	5.4003	165.31
100	3.8300	1.0201	2.0601	3.7801	6.6201	1.1302	1.9002	3.1802	5.2802	8.7602	123.98
125	1.7800	4.5600	8.9300	1.5801	2.6501	4.3401	6.9801	1.1102	1.7602	2.7802	99.18
150	1.0900	2.7400	5.2000	8.9100	1.4501	2.2801	3.5401	5.4301	8.2601	1.2502	82.65
175	7.89-01	1.9300	3.5800	5.9600	9.4000	1.4401	2.160 :	3.2001	4.7001	6.8701	70.85
200	6.21-01	1.4900	2.7100	4.4100	6.8000	1.0101	1.48 rl	2.1401	3.0501	4.3401	61.99
225	5.20-01	1.2300	2.2000	3.5200	5.3100	7.7700	1.1101	1.5701	2.1901	3.0401	55.10
250	4.53-01	1.0600	1.8700	2.9400	4.3800	6.3000	8.8700	1.2301	1.6901	2.3001	49.59
275	4.07-01	9.42-01	1.6400	2.5600	3.7700	5.3500	7.4300	1.0201	1.3701	1.8501	45.08
B											B
300	1.7200	4.4000	8.5800	1.5101	2.5301	4.1301	6.6201	1.0502	1.6602	2.6102	41.33
325	1.3600	3.4500	6.6300	1.1501	1.8901	3.0201	4.7501	7.3901	1.1402	1.7602	38.15
350	1.1300	2.8300	5.3600	9.1500	1.4801	2.3301	3.5901	5.4801	8.3001	1.2502	35.42
375	9.75-01	2.4000	4.49 CO	7.5600	1.2001	1.8601	2.8201	4.2301	6.2901	9.3101	33.06
C 425											${ }^{39.17}$ C
425	9.35-01	2.3000	4.3000	7.2200	1.1501	1.7701	2.6901	4.0201	5.9801	8.8301	29.17
450	8.19-01	2.0000	3.7200	6.1900	9.7600	1.4901	2.2401	3.3201	4.8801	7.1301	27.55
475	7.38-01	1.7900	3.2900	5.4300	8.4800	1.2801	1.9001	2.7801	4.0401	5.8401	26.10
500	6.74-01	1.6200	2.9500	4.8300	7.4600	1.1201	1.6401	2.3701	3.4001	4.8501	24.80

Table Cl Cont'd.

$E(\mathrm{eV})$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	$\lambda(A)$
0											
550	9.92-01	2.4500	4.6100	7.7800	1.2501	1.9401	2.9501	4.4501	6.6601	9.9201	22.54
600	8.29-01	2.0200	3.7300	6.2000	9.7400	1.4801	2.2101	3.2701	4.7801	6.9501	20.66
650	7.17-01	1.7200	3.1400	5.1300	7.9200	1.1801	1.7401	2.5101	3.6001	5.1301	19.0%
700	6.38-01	1.5200	2.7200	4.3900	6.6800	9.8300	1.4201	2.0101	2.8301	3.9701	17.71
750	5.85-01	1.3700	2.4400	3.8700	5.8000	8.4100	1.1901	1.6701	2.3001	3.1601	16.53
800	5.45-01	1.2700	2.2200	3.4800	5.1400	7.3400	1.0201	1.4101	1.9201	2.5901	15.50
850	5.14-01	1.1800	2.0500	3.1700	4.6300	6.5200	8.9700	1.2201	1.6301	2.1701	14.59
900	4.91-01	1.1200	1.9200	2.9400	4.2400	5.9000	8.0300	1.0701	1.4201	1.8701	13.78
950	4.73-01	1.0700	1.8100	2.7500	3.9300	5.4200	7.2900	9.6400	1.2601	1.6301	13.05
1000	4.59-01	1.0300	1.7300	2.6000	3.6800	5.0200	6.6900	8.7600	1.1301	1.4501	12.40
1100	4.40-01	9.71-01	1.6100	2.3900	3.3300	4.4700	5.8500	7.5300	9.5800	1.2101	11.27
1200	4.30-01	9.39-01	1.5400	2.2600	3.1100	4.1200	5.3300	6.7800	8.5200	1.0601	10.33
1300	4.27-01	9.24-01	1.5100	2.1800	2.9800	3.9200	5.0300	6.3400	7.9000	9.7700	9.54
1400	4.30-01	9.24-01	1.5000	2.1600	2.9200	3.8200	4.8700	6.1100	7.5700	9.3200	8.86
1500	4.37-01	9.37-01	1.5100	2.1700	2.9300	3.8000	4.8300	6.0300	7.4500	9.1500	8.27
E											
1800	3.44-01	7.39-01	1.1900	1.7200	2.3200	3.0200	3.8400	4.8100	5.9500	7.3i 00	6.89
1900	3.49-01	7.47-01	1.2000	1.7200	2.3300	3.0300	3.8400	4.7900	5.9200	7.2600	6.53
2000	3.59-01	7.67-01	1.2300	1.7600	2.3700	3.0800	3.9000	4.8600	5.9900	7.3400	6.20
2100	3.70-01	7.88-01	1.2600	1.8000	2.4300	3.1400	3.9700	4.9400	6.0900	7.4600	5.90
2200	3.84-01	8.18-01	1.3100	1.8700	2.5100	3.2400	4.0900	5.0900	6.2700	7.6700	5.64
2300	4.01-01	8.52-01	1.3600	1.9400	2.6000	3.3600	4.2400	5.2800	6.4900	7.9500	5.39
2400	4.19-01	8.90-01	1.4200	2.1200	2.7100	3.5000	4.4200	5.4900	6.7600	8.2800	5.17
2500	4.40-01	9.33-01	1.4900	2.1200	2.8400	3.6600	4.6200	5.7400	7.0700	8.6600	4.96
3000	5.71-01	1.2100	1.9300	2.7400	3.6700	4.7400	5.9800	7.4300	9.1600	1.1301	4.13
F											
4000	4.97-01	1.0500	1.6800	2.3900	3.1900	4.1200	5.2000	6.4600	7.9600	9.7800	3.10
5000	7.37-01	1.5600	2.4900	3.5400	4.7400	6.1200	7.7300	9.6300	1.1901	1.4701	2.48
6000	1.0900	2.3000	3.6700	5.2200	7.0000	9.0500	1.1401	1.4301	1.7701	2.1801	2.07
7000	1.5600	3.3000	5.2700	7.5000	1.0101	1.3001	1.6501	2.0601	2.5501	3.1501	1.77
8000	2.1700	4.5900	7.3300	1.0401	1.4001	1.8101	2.2901	2.8701	3.5601	4.4101	1.55
9000	2.9300	6.2100	9.9100	1.4101	1.8901	2.4501	3.1101	3.8801	4.8201	5.9801	1.38
10000	3.8600	8.1800	1.3101	1.8601	2.5001	3.2301	4.1001	5.1301	6.3701	7.9001	1.24

* In our notation in this table, a number followed by a space and another number indicates that the first number is to be multiplied by 10 raised to the power of the second number; e.g., $1.27-01$ means 1.27×10^{-1}.

[^1]No. 1.
${ }^{5}$ B. L. Henke, S. L. Kwok, J. Y. Uejio, H. T. Yamada, and G. C. Young, J. Opt. Soc. Am. B 1, 818 (1984); B. L. Henke, F. G. Fujiwara, M. A. Tester, C. H. Dittmore, and M. A. Palmer, J. Opt. Soc. Am. B 1, 828 (1984).
${ }^{6}$ P. A. Jaanimagi and B. L. Henke, Large Aperture Picosecond X-Ray Streak Camera (to be published).
${ }^{7}$ B. L. Henke, J. P. Knauer, and K. Premaratne, J. Appl. Phys. 52, 1509 (1981).
${ }^{\text {K B. L. Henke, F. G. Fujiwara. R. E. Tackaberry, and D. Kania, Reflectivity }}$ Characteristics of Low-Energy .Mirror Monochromators (in preparation).
${ }^{9}$ B. L. Henke, H. T. Yamada, G. C. Young, S. L. Kwok, and J. Y. Cejio, Proceedings of the International Society for Optical Engineering (SPIE) Conference, San Diego, CA, Aug. 18-23, 1985.

Abstract

Associated with the absolute spectrometry of the large plasma and synchrotron x-radiation sources is the often difficult task of rejectin? the intense longer and shorter wavelengths which can be strong sources of background scattered-and-fluorescent radiations and of high-order diffracted radiations. Illustrated in Fig. lis the generation of a transmission band for the rejection of such background radiations around the 500-1000 eV region by combining as a primary monochromator a 300 $\mu \mathrm{g} / \mathrm{cm}^{2}$ copper foil filter and a 30 milliradian reflection from an aluminized x-ray mirror. A copper foil of this thickness is self-supporting and is opaque to the intense uv and longer wavelength light also that is associated, for example, with the laser-produced and synchrotron radiation sources.

Fabrication of Low Energy X-Ray Filters

For the design and construction of light-opaque filters having transmission bands below 500 eV we have developed the following procedures:
(a) From our absorption tables we choose metallic elements which have a minimum in their absorption curves where a filtel transmission band is required. Also the reflectivity and extinction coefficients for a thin film of this metal must be relatively high for the intense uv and longer wavelengths light of the source.

The metal film is deposited upon both sides of a Formvar-coated $30 \mu \mathrm{~g} / \mathrm{cm}^{2}$ carbon foil--very gently with a low power sputtering beam from a focussing Magnetron source (over a period of one to two hours). This slow sputtered deposition upon a rotating window mounted with a mirror-like, carbon foil produces a coating that is uniform, also mirror-like and with minimized ard equalized stresses (as compared to those often obtained by deposition with evaporation sources). Our simple apparatus for fabricating these ultra-thin, self-supporting filter systems is shown in Fig. 2.

Shown in Fig. 3 is a the transmission curve of a filter that was designed and constructed as described above, to be about 59\% transmissive at 200 eV and with transmission for the 351 nm uv light of OMEGA of 10^{-5}. For this filter $50 \mu \mathrm{~g} / \mathrm{cm}^{2}$ of molybdenum was deposited on each side of the $30 \mu \mathrm{~g} / \mathrm{cm}^{2}$ carbon foil.

In Table 1 is reproduced the sputtering rates of some useful filter materials.

$\therefore B L 867-2552$

Figure 1. A filter-mirror primary monochromator for a transmission band around 800 eV .

Figure 2
Sputtering System
for the
Fabrication of Light-Opaque
Low Energy X-Ray Filters

1 - Plasma Magnetron DC Sputter Source
2 - Rotating Filter-Window Assemblies
3 - Constant DC Power Supply and Baritron Pressure Gaging
A conventional, LN trapped, diffusion pump vacuum evaporation system is applied interchangeably for the sputter coating of thin x-ray filter systems. The bell jar is replaced by a glass cylinder on top of which is mounted a baseplate (sealed with an L-type Viton gasket) which supports the magnetron plasma source and a variable spead motor driven sample rotisserie. The high vacuum rotational feed-through is magnetic coupled.
" $\overline{\bar{L}} \mid$
Carbon

문
$\stackrel{0}{0}$
0

1
of Molybdenum

$\xrightarrow{\text { Ezsere } 3}$| Transmission |
| :--- |

REFLECTIVITY, P(\%)-VS- $\theta($ mrod $)$
FUSED QUART? E. 108.5 eV

REFLECTIVITY, P(\%)-VS- $\theta(\mathrm{mrod})$
FUSED QUARTZ E: 192.6 eV

REFLECTIVITY, P(\%)-VS- $\theta(\mathrm{mrod})$
FUSED QUARTZ
$\mathrm{B}=277.0 \mathrm{eV}$

REFLECTIVITY, P(\%)-VS- θ (mrad)

$\xrightarrow{\mathrm{Ge}}$ $\mathrm{E} \cdot 108.5 \mathrm{oV}$

Table 1 (a) Sputtering Yields for Various Materials Bombarded by Ar^{+}(Compiled by Maissel**)

Target	Bumbardme comery, KV					
	0.2	0.6	1	2	5	10
Ag	1.6	3.4				8.8
Al	0.35	1.2				
Au	1.1	2.8				
Co	0.6	1.4				
	0.7	1.3				
Cu	1.1	2.3	3.2	4.3	5.5	6.6
Fe	0.5	1.3	1.4	2.0*	2.5*	
Ge	0.5	1.2	1.5	2.0	3.0	
Mo	0.4	0.9	1.1			2.2
Nb	0.25	0.65				
Ni	0.7	1.5	2.1			
Os	0.4	0.95				
Pd	1.0	2.4				
Pt	0.6	1.6				
Re	0.4	0.9				
Rh	0.55	1.5				
Si	0.2	0.5	0.6	0.9	1.4	
Ta	0.3	0.6				
Th	0.3	0.7				
Ti	0.2	0.6				
U	0.35	1.0				
W	0.3	0.6				
Zr	0.3	0.75				
GaSb (111)	0.4	0.9	1.2			
SiC		1.8				

*Type 304 stainless steel.
**L. I. Maissel, in "Physics of Thin Films" (G.Hass and R.E. Thun, eds.), Vol. 3, p. 61, Acaderic Press Inc., New York, 1966.

Characterization of X-Ray Mirrors

Several years ago we initiated an on-going investigation of the reflectivity characteristics of grazing incidence x-ray mirrors in collaboration with LANL and LLNL (Kania, Day and Kauffman). Generally, we find that state-of-the-art quality mirror surfaces reflected x-radiations of wavelengths not close to mirror absorption edge wavelength according to the E\&M Fresnel Eq. using optical constants derived from our calculated atomic scattering factors, f_{1} and f_{2}. This reassuring predictability is illustrated in some examples of our measurements that are presented here at several photon energies of the percent reflectivity vs grazing incidence angle (milliradians) for three high optical quality mirror surfaces, fused quartz, aluminized fused quartz and germanium. We also found generally that with well characterized systems consisting of thin evaporated films (20 to 1000 A thickness) upon fused quartz, the measured reflectivity curves were closely predicted by a three-media solution of Maxwell's Eq. (vacuum-thin film-fused quartz substrate).

In order to derive an accurate semi-empirical analytical description for the reflectivity of a monochromator mirror that reflectivity should be measured at several photon energies in the region of application to determine if all are well fit by the Fresnel analytical equation. If at all but, say, at one photon energy are well fit by the Fresnel Eq., the atomic scattering factors, f_{1} and f_{2}, at the photon energy of the poor fit curve may be adjusted. If a good fit is thus obtained for that curve as well we then have a basis for considering revising these particular atomic scattering factor values. This procedure is particularly important for photon energies very close to absorption thresholds where condensed matter effects often prevent the scattering from being "atomic-like".

In the event that the reflectivity curves cannot be closely fit by the Fresnel Eq. for any of the several photon energies, we then try to fit the several curves with a modified Fresnel Eq. that is based upon a simple modeling of surface roughness with one or two constant parameters determined empirically. Finally, if a surface film, e.g. an oxide layer, is suspected, a better semi-empirical analytical description may be found using a three-media E\&M model solution for the reflectivity.

Because of the practical importance of mirrors in x-ray optics and spectrometry and because their modeling can yield valuable insights about interface structure and indeed about the accuracy of available optical constants and atomic scattering factors, we consider this on-going study of mirror reflectivity to be an important effort to continue.

REFLECTIVITY, $P(\%)-V S-\theta(\operatorname{mrod})$
AI
$E=192.6 \mathrm{eV}$

REFLECTIVITY, P(\%)-VS- $\theta(\mathrm{mrad})$ $\Delta I \quad E=277.0 \mathrm{eV}$

4.

Characterization of multilayer x-ray analyzers: models and measurements

B. L. Henke
J. Y. Uejio
H. T. Yamade
R. E. Tackaberry
University of California
Lawrence Berkeley Laboratory
Center for X-Ray Optics
Berkeley, California 94720

Abstract

A procedure is described for a detailed char acterization of multilayer analyzers that can be effectively applied to their design, optimization, and application for absolute x-ray spectrometry in the 100 to 10.000 eV photon energy region. An accurate analytical model has been developed that is based upon a simple modification of the dynamical Darwin. Prins theory 10 extend its application to finite multilayer systems and to the low energe x-ray region. Its equivalence to the optical E\&M solution of the Fresnel equations at each interface is demonstrated by detailed comparisons for the reflectiviry of a multilayer throughout the angular range of incidence of 0° to 90°. A special spectrograph and an experimental method are described for the measurement of the absolute reflectivity characteristics of the multilayer. The experimental measurements at three photon energies in the 100 to 2000 eV region are fit by the analvical modified Darwin-Prins equation (MDP) for $1(\theta)$, generating a detailed characterization of two state-of-the-ant multiayers: sputtered tung. sten-carbon with $2 d \sim 70$ A and a molecular lead stearate with $2 d=100 \mathrm{~A}$. The fitting parameters that are determined by this procedure are applied to help establish the structural characteristics of these multilayers.

Subject terms x.rov muthlayered oplics: low energy \times rays; x-ray spectroscopy; x-ray rellection, sputtered/evapor wed mutilayers: Lengmurr-Blodgetl mutiloyers.

Opical Engineering 25(8), 937-947 (August 1986).

CONTENTS

1. Introduction

2 An analytical description of multulayer reflectivity for the 100 to 10.000 eV region
3. Measurement of multilayer reflectivity
4. Fitting the modified Darwin-Prins (MDP) model to experimental measurements
4.1. Characterization of a sputtered tungsten-carbon multulayer
4.2. Characterization of a molecular (Langmuir-Blodgeti) multulayer
4.3. Reflectivity at small angles
5. Summary
6. Ack nowledgments
7. Appendix: MDP finite multilayer model derivation
8. References

1. INTRODUCTION

X-ray physics and technology have been considerably advanced in the past decade, as demanded for the development and application of the new, high intensity x-ray generating sources of synchrotron and high temperature plasma radiations. These have important applications. for example. in the material sciences and in the research and development of fusion energy and now of x-ray lasers. Along with these developments has arisen a considerable need for accurate. absolute x-ray spectrometry.

[^2]For efficient x-ray analysis in the 100 to 10.000 eV region (I to $100 \AA$ range), an important class of analyzers may be applied that utilizes Bragg reflection from periodic layer structures that are parallel to the analyzer surface. These a nalyzers can be constructed in sufficiently thin sections to allow their effective application with curved, focusing optics. We define these analyzer systems generally to be multilayers of the natural or synthesized molecular types and of the synthesized spurtered or evaporated types. Examples of the molecular analyzers that we have used effectively in the 100 to 10.000 eV region (with 2 d values of 3 to $160 \AA$) are LiF. PET. mica (at third and first orders), the acid phthalates, and the Langmuir-Blodgett multilayers.1.: The sputtered, evaporated types have been "tailored" in the 2d range of 20 to several hundred angstroms ${ }^{3-5}$ of high and low \mathbf{Z} layers chosen from a large group of possible combinations. "Compared to the high density, more rugged sputtered/evaporated mululayers of the same d-spacing. the Langmuir-Blodgell molecular analyzers generally have lower atomic densities, lower integrated reflectivities, similar peak reflectivities, and higher resolution. Both types have important application advantages in modern speceroscopy. and they are definitely complementar!

To efficiently design, optimize, a and apply the multulayer analyzers for a given spectroscopic measurement, it is of considerable advantage to have a fast. flexible. and accurate mathematical model code that describes the important reflectivity characteristics and that can be accommodated on a small laboratory computer that may be associated with the spectrographic equipment. We have developed such a mathematical model for multulayer analyzers and apply it here to yield a detailed characteri/ation of two state-of-the-art large-d-spacing analy/ers: a sputtered tungsten-carbon analyrer $(2 d \approx 70 \AA)$ and a molecular lead stearate analyzer $(2 \mathrm{~d} \approx 100 \AA)$.

2. AN ANALYTICAL DESCRIPTION OF MULTILAYER REFLECTIVITY FOR THE 100 TO $10,000 \mathrm{eV}$ REGION

We present here an analytical expression for the intensity ! that is reflected from a system of N periodic layers for incident angles. θ. throughout the 0° to 90° range. It has been obtained by modifying the dynamical theory of Darwin-Prins (DP)(for reflection from an ideal crystal of an infinite number of layers) to obtain a description for \mathbf{N}-layer finite crystal reflection for all angles of Bragg and total reflection and for the x-ray region of 100 to $10,000 \mathrm{eV}$. We intend this approach to complement that of the optical (E\&M) boundary value solution at each interface of the Fresnel equations. ${ }^{\text {. }}$ In the optical E\&M wave solution (OEM), the laver pairs are defined by pairs of their refractive indices ($n=1-\delta-i \beta$). In our modified DarwinPrins description (MDP) the reflecting layer systems are described as planes of unit cells of structure factor F $\left(=F_{1}+i F_{2}\right)$ and of average scattering factor $\bar{f}\left(=\bar{f}_{1}+i \bar{T}_{2}\right)$. In Fig. I we present the DP expressions for the amplitudes reflected and transmitted at on elementary plane of unit cells in terms of the parameters sand σ, which have been related to $\overline{\mathrm{f}}$ and F by using elementary physical optics (see, for example. Compton and Allison ${ }^{9}$ and James ${ }^{10}$). In the DP description it is assumed that the fractional complex amplitude that is reflected. s. and the fractional complex amplitude that is absorbed. o. by the unit cell plane are small compared to unity (as is gencrally required for the practical multilayer analyzer for which the effective number of interacing planes is large).

In the dynamical description of the propagation of waves through the multilayer. all possible multiple reflections within the layers must be taken into account in order to describe the net downward propagating wave amplitude. T, and the net upward propagating wave amplitude \mathbf{S}. This accounting has been elegantly accomplished by Darwin in his solution of the self-consistent difference equat:ons describing the process for any iwo adjacent layers within the semi-infinite multilayer.9. 10 This a pproach yields the analytical result for the ratio of the reflected to the incident amplitudes. $\mathrm{S}_{0} / \mathrm{T}_{0}$. at the surface of the semi-infinite multalayer. which is given by
$\frac{S_{n}}{T_{n}}=\frac{-,}{(0+\xi)+\sqrt{(0+\xi)^{\circ}-1}}$
The third parameter. ξ. introduced in this result. is defined by
$\xi=\frac{2 \pi}{\lambda} d\left(\sin \theta-\sin \theta_{11}\right)$
where, as discussed below. $\sin \theta_{10}$ effectively defines a "region of interest" (gisen by the Bragg equation. $\mathrm{mA}=2 \mathrm{~d} \sin \theta_{0}$). Now. In thw DP difference equation solution. It is established that the net downward propagating wave at the Nith layer has an amplutude pelen simply b! $T_{0} x^{\prime}$. where x is defined by
$x=(-1)^{\prime \prime \prime} \times x p(-\eta)$
where $\eta=\mp \sqrt{s^{2}-(a+\xi)^{2}}$. The value of x is the result of the contributing eflects of all possible multiple reflections within the semi-inlinite mululaver. (In η. the sign + or - is chosen to have ils real part be positive.) Using this result, we derive in Appendix A a modifying factor to be applied to the reflected amplitude ratoo $S_{10} F_{10}$. given in E.4. (1) for the semiinfinite multilayer. to obtain the required amplitude reflection

FOR \rightarrow UNIT CELLS /UNIT AREA OF STRUCTURE FACTOR. $F_{1}+1 F_{2}$. and of average scat tering factor. $1_{1}+1 T_{2}$, PER UNIT CELL
$-\sigma=m r_{0} \lambda \frac{\bar{F}_{1}+\bar{I}_{2}}{\sin \theta}$ AND $-s=m r_{0} \lambda \frac{F_{1}+1 F_{2}}{\sin \theta} \mathrm{P}(2 \theta)$

P(2O) , I OR COS $2 A$ FOR TMF TWO POI ARIJFD COMPONFNTS
Fig. 1. Definition of the small absorption and reflection amplitude fractions σ and s at each plane ofynit cells of the multilayer in terms of the everage scaftering factor f and the atructure factor F for the unit cell. and their area density m.
ratio $S_{0 \times} / T_{0}$ for the finite multilayer of N layers. This is gien by
$\frac{S_{0}}{T_{11}}=\frac{S_{01}}{T_{0}} \frac{1-x^{2 v}}{1-\left(S_{0}, T_{11}\right)^{2} x^{2 N}}$
Also derived in Appendix A is the amplitude ratio $T_{0,}, T_{0}$ that is transmitted through the \mathbf{N}-layer system. This is given b!
$\frac{T_{0}}{T_{0}}=\frac{\left[1-\left(S_{0} / T_{0}\right)^{2}\right] x^{N}}{1-\left(S_{0} / T_{0}\right)^{2} x^{2 N}}$
In the usual way, the intensity ratio that is reflected or transmitted for unpolarized incident x-radiation is obtained hy taking one-half of the sum of the modulisquared of the tho polarization component amplitudes as obtained from Eqs. (4) and (5). by setling $\mathbf{P (2 \theta)}$ equal to unity and to $\cos 2 \theta$.

As may be easily shown. the reflected intensity will be large only when the parameter ξ is small and. therefore. for the angular regions for which $\theta \approx \theta_{0}$ in this parameter ξ. θ_{11} is defined by the Bragg relation
$m \lambda=2 d \sin \theta_{0}$
($\mathrm{m}=0$ for the small-angle Fresnel-reflection region: $\mathrm{m}=1$ for the first-order diffraction line: $m=2$ for the secondorder diffraction line, etc.). To apply this intensity function continuously for the total angular range 0° to 900°. we automatically set m to be that integer that in nearest to the value of $(2 d \sin \theta) ; \lambda$ in our code

By using a structure factor. F. and an average valuc of the atomic scattering factor. \bar{f}. calculated by relations given in the next section. we have applied this modified Darwin-Prins result (MDP) to calculate $l(\theta)$ for a sharply defined. pure tungsten-carbon (W-C) multilayer of d-spacing $=35 \AA$ and $I^{\prime}=0.4$ (${ }^{\prime}$ is the ratio of the heavy layer thick ness to the total d thickness of the layer pair). A plot of $I(\theta)$ for the incident photons of $\mathrm{Cu}-\mathrm{L}_{\mathrm{o}}(930 \mathrm{eV} / 13.3 \AA)$ that includes the small angle Fresnel region and the first-order diffraction line is shown in Fig. 2 for a number of layer pairs. N. equal to 100 In

Fig. 2. An MDP calculated reflectivity curve for $930 \cdot \mathrm{oV}$ photons upon a tungsten-carbon multilayer of $2 \mathrm{~d}=70 \mathrm{~A}$ and with a sharply defined tungsten leyer of thickness equal to $\Gamma \mathrm{d}$. with $\Gamma=0.4$. $N=100$. In the corresponding experimentally measured reflectivity curve, four characteristic values are determined for each photon energy: the total reflection cutoff angle θ_{c} (at $\mathrm{I}_{0} / 2$), the integrated reflectivity R, the peak reflectivity P, and the FWHM ω, at one or more diffraction orders.

Figs. 3 and 4 we compare, in detail, the total reflection region and the first-, second-, and third-order diffraction line intensities for this W-C multilayer, as calculated by this MDP model (solid lines), to those calculated by the optical E\&M (OEM) mode! (dashed lines) for $\mathbf{N}=100$ and $\mathbf{N}=30$, respectively, to illustrate the equivalence of the two models in this low energy x-ray region. Similarly, we compare in Fig. 5 the intensities reflected by the multilayer of $N=100$ at and near 90° (normal incidence).

3. MEASUREMENT OF MULTILAYER REFLECTIVITY

The detailed characteristics of the multilayer reflection as predicted in Fig. 2 are experimentally measured by a specially designed vacuum spectrograph that is schematically described in Fig. 6. A fine slit and filter are positioned at the isolation gate window of one of our demountable x-ray tubes ${ }^{11}$ to provide a strong, characteristic line source in the 100 to 10,000 eV region. The multilayer is mounted with its surface on the axis of a precision $\theta-2 \theta$ goniometer. A sharply defined incident beam is restricted to a small sampled region of the multilayer by a razor blade edge placed close to its surface. The angular resolution of the measurement is set by the divergence of the incident beam and essentially by the slit width at the \mathbf{x}-ray source that is $\mathbf{1 2 0} \mathrm{cm}$ from the goniometer axis. It is typically set to an angular resolution width that is small compared to the diffraction line width of the multilayer analyzer. The reflected beam is measured by a subatmospheric. gas-flow-proportional counter. The counter has a window 10 cm from the goniometer axis: the width of the window is about one-third that of the multilayer analyzer. The counter also has a slit height that is large compared to that of the reflected beam. The effective incident beam is limited in width by the projection of the opening at the razor edge and is therefore proportional to $\cos \theta$, as noted in Fig. 6.

After the onset of the measured Fresnel-reflection region and at $\theta=0$. there usually appears an inflection point in the intensity at $I_{0} / 2$, as illustrated in Fig. 6(and in the experimental plots of Fig. 13). This onset feature determines the incident intensity I_{0} and the zero-angle position of the spectrograph.

Fig. 3. Comperison of the MDP calculated reflectivity of the $N=100$ multilayer described in Fig. 2 (solid lines) with that calculated by the optical E\&M model (dashed lines) for the total reflection region ($m=0$) and for the first three diffraction orders $(\mathrm{m}=$ 1, 2, 3).

Fig. 4. Datsiled calculation comparisons as for Fig. 3 but with $N=30$.

Fig. 5. Detailed calculation comparisons as described for the 100 layer system of Fig. 2 but in the region of normal incidence. Note the sensitive "tuning" by verying the photon energy $\mp 1 \%$ from that yielding the maximum normal incidence reflectivity (OEM-deshed lines).

Fig. 6. (e) The spectrograph geometry used for the measurement of multilayer reflectivity in the region 0° to 70° and (b) the characteristic inflection point in the intensity distribution at $\theta=0$ and at $I_{0} / 2$ (thereby defining the zero angle position of the goniometer and incident intensity $\left.\mathrm{I}_{0} \cos \theta\right)$. After the $\mathrm{I}_{0} / 2$ point. the contribution of the reflected intensity causes a change in slope, which is greater as the real mirror reflectivity $P(\%)$ for these small angles departs from 100\%.

The angular full-width-at-half-maximum (FWHM) of the diffraction line profile (in θ) may be simply determined in terms of the experimentally measured width ω_{x}, the Gaussian instrumental width g, and the Lorentzian emission line widthe by the expression ${ }^{1:}$
$\omega=\omega_{\mathrm{x}}\left[1-\left(\frac{\mathrm{g}}{\omega_{\mathrm{x}}}\right)^{2}\right]-\epsilon$.
where e is given by
$t=\frac{\Delta E}{E} \tan \theta_{0}$.
for which the x-ray source line of photon energy E has an effective energy width of $د E$.

The integrated reflectivity is determined by the total number of counts collected. N_{n}. as the diffraction line is scanned at an angular rate in θ of u_{n} by the relation"
$R=\frac{\omega_{k}, N_{k}}{L_{1} \cos \theta}$
The experimental peak reflectivity P_{k} is measured as the ratio of the intensity at the peak of the diffraction profile
divided by the incident beam intensity $\mathrm{I}_{0} \cos \theta$. Assuming the shape of the true diffraction profile is essentially the same as that of the experimentally measured profile, the area under the profile. R (integrated reflectivity), is equal to $K \omega \mathrm{P}$ or $K \omega, P_{1}$. where K is a shape factor. We may therefore obtain an estimate of true peak reflectivity, P, by the relation
$\boldsymbol{P}=\frac{P_{1} \omega_{\mathbf{N}}}{\omega}$
Nore: It is required that the l_{0} value used in these measure ments be for only those incident photons of energy that are within the characteristic line being measured Low energy background photons can usually be eliminated by an appropriate filter. The high energy photon background is effectively eliminated by the pulse height discrimination of the proportional counter. For our measurements, the Fresnel-reflection region through several orders of diffraction lines is measured at appropriate normalized x-ray intensities, recorded. and displayed with a multichannel analyzer (MCA). This spectrum, along with the associated pulse height spectrum for the detector. provides an accurate check on the possible presence of any significant background radiation that may need to be further eliminated literally or by correction. The MCA is programmed to permit an immediate determination for each diffraction line of its centroid position θ_{x}, FWHM ω_{x}, peak reflectivity P_{n}, and integrated reflectivity R. These data and the spectra are transferred from the MCA to a small computer for the final semiempirical characterization of the multilayer.

4. FITTING THE MDP MODEL TO EXPERIMENTAL MEASUREMENTS

To obtain an absolute. detailed characterization of a given multilayer using the MDP model, it is required to define for the unit cell its average scattering factor \bar{f} and the structure factor F. thereby determining the σ and s material parameters of the MDP intensity relations. These may be determined by using an appropriate unit cell model and by requiring that the result, $l(\theta)$. precisely fit the experimental data for several photon energies at the characteristic values of R.P. and ω for several diffraction orders (defined in Fig. 2). We illustrate this procedure for the characterization of two types of multilayers. the sputtered tungsten-carbon (W-C) multilayer and the molecular Langmuir-Blodgett (LB) multilayer.

4.1. Characterization of a sputtered W-C multilayer

We shall assume that a transition layer of both tungsten and carbon atoms may exist between pure tungsten and pure carbon regions of the mulitayer, as depicted in the unit cell model shown in Fig. 7. (Such a transition-layer model may be applied to account. for example. for an interface roughness ${ }^{\prime \prime}$ or a uniform distribution of W and C.) We shall assume here that this transition layer may be described as the chemically bonded compound WC. as suggested by Auger electron analyses of W-C muitilayers. ${ }^{14}$

For such a uniform transition layer model. the mass per unt area for the light x-component (C) $M_{\text {, }}$, and the mass per unit area for the heavy y-component (W) , M_{1}. that are originally deposited in the construction of each later may be related to the mass densities ρ_{1}, ρ_{1}, and ρ, and to the fractional thicknesses Γ, and Γ, for the $y(W)$ and $/(W C)$ components as follows:
(DENSELY PACKED)

$m=$ No. of Unit Cells Per Unit Areo
Fig. 7. The symmetric unit cell that has been chosen to model a swo-element sputtered/evaporated, high-atomic density multileyer wh the possibility of having a transition layer interface structure. With N relatively large, the effects of fractional lavers at the multilayer surfaces and of a substrate are usually negligible. Defined here are the general integrals for F_{1} and F_{2} for any symmetrical distribution of the heavy and light elements $n(z)$ and $n^{\prime}(z)$, respectively.

$$
\begin{align*}
& M_{x}=\left(1-\Gamma_{y}-\Gamma_{\imath}\right) \rho_{x} d+\Gamma_{,} \rho_{y} d\left(\frac{A_{x}}{A_{y}}\right) . \tag{II}\\
& M_{y}=\Gamma_{y} \rho_{y} d+\Gamma_{1} \rho_{y} d\left(\frac{A_{y}}{A_{y}}\right) . \tag{12}
\end{align*}
$$

where d is the thickness of the layered system and A_{x}, A_{y}, and A, are the atomic or molecular weights. And for the generalized symmetric description shown in Fig. 7. ($1-\Gamma_{y}-\Gamma_{z}$)d, $\Gamma_{y} \mathrm{~d}$, and $\Gamma_{z} \mathrm{~d}$ are the total thicknesses of the carbon, tungsten, and tungsten carbide layers, respectively. We estimate the mass densities ρ_{x} (for amorphous carbon), ρ_{y} (tungsten), and ρ, (tungsten carbide) to be $2.0,19.3$, and $15.6 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. respectively.

For this WC transition layer model, as suggested in the relations presented in Eq. (11), accurately known values of \mathbf{M}_{x} and M_{1}, along with those for the d-spacing and the mass densities ρ_{x}, ρ_{y}, and ρ_{r}, will allow the determination of the structural parameters Γ_{y} and $\Gamma_{r} .\left[\Gamma_{x}=1-\left(\Gamma_{y}+\Gamma_{2}\right)\right.$.] These, in turn, may be applied to determine the average scattering factor mf and the structure factor mF per unit area of the unit cell layer depicted in Fig. I and therefore to determine the essential optical parameters, σ and s . Usually, howe:rer, the a mounts of the light and heavy elements that are deposited per unit area. M_{x} and M_{y}, are not accurately known, and. as described below, these values or their equivalent parameters $\Gamma_{\text {, }}$ and Γ, are determined by fitting the model reflectivity relations to measured reflectivity data.

The structure factor mF per unit area of the unit cell layer ($F=F_{1}+i F_{2}$) is defined by the following integral (derived from the general integrals presented in Fig. 7):
letting $\mathrm{i}=1$ or 2 for the real and imaginary components. Here m is the number of unit cells per unit area, as applied in defining σ and s in Fig. 1 .

The average scattering factor $m \bar{f}$ per unit area of the unit cell layer is equal to that value of mF for forward scattering for which all atoms are scattering in phase and their scattering amplitudes add directly. Thus $\bar{m} \bar{f}=m F$ for $\theta=0$, and we obtain from Eq. (13)
$m \bar{f}_{1}=n_{x} f_{1 x} \Gamma_{x} d+n_{y} f_{1} \Gamma_{y} d+n_{y} f_{1}, \Gamma, d$.
$m \bar{f}_{2}=n_{x} f_{2 x} \Gamma_{x} d+n_{y} f_{2 y} \Gamma_{y} d+n_{y} f_{2} \Gamma_{1} d$.
Here n_{k}, n_{y}, and n, are the number of atoms or molecules per unit volume of atomic or molecular scattering factors $f_{1 x}+i f_{2 x}$. $f_{1 y}+i f_{2 y}$, and $f_{1},+i f_{2 z}$, respectively $\left(n_{y}==N_{0} \rho_{x} / A_{x}, n_{y}=\right.$ $N_{0} \rho_{y} / A_{y}$, and $n_{z}=N_{0} \rho_{z} / A_{2}$, where N_{0} is Avogadro's number and A_{x}, A_{y}, and A, are the atomic or molecular weights).

Inside ine multilayer, as a result of refraction, the angle of incidence and the wavelength at a unit cell plane must be the refraction-rnodified values θ^{\prime} and λ^{\prime}. The angle of retraction θ^{\prime} and the modified wavelength λ^{\prime} that must be used in the description of the wave interference within the multilayer are given by Snell's law, $\cos \theta / \cos \theta=1-\delta=\lambda / \lambda^{\prime}$. We use here only the :eal part of the refractive index, $1-\delta$, because it can be shown that for x-ray refraction effects the first-order terms in β cancel. In the model description of multilayers in the low energy x-ray region where refraction effects become significant, we replace the ratio $(\sin \theta) / \lambda$ that appears in the structure factor F by $\left(\sin \theta^{\prime}\right) / \lambda^{\prime}$ [in the cosine function of Eq . (13)]. In terms of θ and λ, we may easily obtain from Snell's law the relation
$\frac{\sin \theta}{\lambda^{\prime}}=\frac{\sin \theta}{\lambda} \sqrt{1-\frac{2 \delta-\delta^{2}}{\sin ^{2} \theta}}$.
where $\delta=\left(r_{0} \lambda^{2} m / 2 \pi d\right) \bar{f}_{1}$. Equation (13) is integrated to yield

$$
\begin{align*}
m F_{1}= & \left.\frac{n_{y} d f_{1 y}}{\kappa} \sin ^{\prime} \kappa \Gamma_{y}\right) \\
& +\frac{n_{z} d f_{1 z}}{\kappa}\left\{\sin \left[\kappa\left(\Gamma_{y}+\Gamma_{y}\right)\right]-\sin \left(\kappa \Gamma_{y}\right)\right\} \\
& +\frac{n_{x} d f_{1 x}}{\kappa}\left\{\sin \kappa-\sin \left[\kappa\left(\Gamma_{y}+\Gamma_{z}\right)\right]\right\} . \tag{17}
\end{align*}
$$

where $\kappa=\left(2 \pi d \sin \theta^{\prime}\right) / \lambda^{\prime}$ and where $i=1$ or 2 for the real and imaginary components.

Note: Because multilayer analyzers normally have a relalively large number of layers, \mathbf{N}, to produce the desired resolution. it is usually sufficiently precise to model the analyzer by N layers of symmetric unit cells, as defined in Fig. 7. The
reflection effects of fractional layers at the boundaries and of a substrate can usually be considered negligible.

We fit our analytical model to the experimental integrated reflectivities at three photon energies and at the first three diffraction orders, if present, by varying Γ_{\vee} and Γ_{r}. These fits are verified by comparing the calculated and the experimenta! secondary values of ω and P for the several diffraction orders. As noted above. $M_{\text {, }}$ and M, values are uniquely determined by the values of Γ_{1}, Γ, and d (given ρ_{x}, ρ_{y}, and ρ_{t}). The absolute value of the d-spacing is obtained from the measured d_{x} values defined by the Bragg equation $\left(m \lambda=2 d_{s} \sin \theta\right)$ using Eq. (16) to obtain the relation
$d_{k}=d \sqrt{1-\frac{2 \delta-\delta^{2}}{\sin ^{2} \theta}} \Rightarrow d\left(1-\frac{\delta}{\sin ^{2} \theta} \cdots\right)$
Here again we need use only the real part of the complex refractive index, $1-\delta$, because it may be shown that the terms involving β become negligibly small for the x-ray regic n of interest here. To calculate the absolute d-spacing, we simply linearly extra polate a plot of the measured values of d_{x} versus $\csc ^{2} \theta$. using the relation from Eq. (18), $d_{x}=d-$ $\delta \operatorname{dscc}^{2} \theta$. An example of such a least squares fitting and extrapolation is shown in Fig. 8.

For a determination of the atomic scattering factors, we have recently developed state-of-the-art tables of f_{1} and f_{2} for $Z=1$ ic 94 and for photon energies 100 to $2000 \mathrm{eV} .{ }^{15}$ These tables have been established by numerically calculating atomic scattering factors using the Kramers-Kronig dispersion relations with our compilation of the available photoabsorption data above 30 eV . By use of the numerical procedures and the photoabsorption data base from Ref. IS, these scattering factor tables have recently been extended to $10.000 \mathrm{eV} .{ }^{16}$ These atomic scattering factors can be used to predict precisely the multilayer reflection characteristics, but only for photon energies outside the regions near the absorption threstolds and above about 100 eV . where the atoms within the solid can be expected to respond in an "atomiclike" manner. Near the thresholds one may expect the photoabsorption to be strongly affected by molecular orbital resonances, EXAFS. etc. An example of a dramatic threshold effect is the appearance of a strong and sharp reflectivity spike near the $\mathrm{O}-\mathrm{K}_{\alpha}$ edge ($23.3 \AA$) for the potassium acid phthalate (KAP) analyzer. ${ }^{1}$ Multilayer reflectivity at absorption edges should be determined by experimental measurement. Nevertheless, for the large extended regions in the 100 to $10,000 \mathrm{eV}$ range, between absorption edges where the multilayer analyzers are normally applied the atomic scattering description applied here should yield fairly accurate predictions.

Note: For only the low energy x-ray region (for which the wavelengths are large compared to the dimensions of the atomic electron "cloud" a round the nuclei), these atomic scattering factors may be considered angle-independent. For the wave reflection description within the multilayer for which the incident photon energles are higher ($>1000 \mathrm{eV}$) and/or for the large angles of reflection, a simple form-factor correction should be added to f_{1} for these atomic scattering factors appearing in the structure factor F. (A simple correction is described in Ref. I5.) Specifically, in the Darwin-Prins reflectivity expression. Eq. (1). the atomic scattering factors f_{1} in the forward-scattering parameter σ are for zero-angle scattering and require no form-factor correction, but the atomic scatter-

Fig. 8. Determination of the absolute d-spacing for a W-C multilayer ($N=100$) by an extrepolation of the $d_{n} v e r s u s \csc ^{2}$ plot for several diffraction orders m of the refraction relation $d_{x}=d-\operatorname{sdcsc}^{2} \theta$ $\left[d_{\lambda}=m \lambda / 2(\sin \theta)\right]$. The experimental values for the average optical constant 8 for this multitayer as determined from the slopes of these linear plots are 1.12×10^{-3} and 4.24×10^{-4} for the wavelengthe $13.3 \AA$ and $8.34 \AA$, respectively.
ing factors f_{1} in the parameter s. describing scattering in the 2θ reflection direction, must be form-factor corrected. This correction is not included in the optical E\&M (OEM) model because in this description it is assumed that the wavelengths are large compared to atomic dimensions.

With standard fitting procedures, using experimental values for the integrated reflectivities for the multilayer at several photon energies and, if present, at several diffraction orders, along with the medel relations Eqs. (11), (12), (14). (15), and (17), one may determine the mass per unit area values, M_{x} and M_{y}, and, correspondingly, the fractional thicknesses Γ_{y} and Γ_{y}. The $l(\theta)$ function thus determined may then be tested by comparing the predicted results with those measured for the Fresnel-reflection characteristics and for the diffraction line profiles (P and ω).

In Table I and the plots of Fig. 9 we present the results of such a model fit for a typical sputtered tungsten-carbon multilayer.* The present accuracy of the fitting by the MDP analyt. ical function $I(\theta)$ is indicated by the experimental points shown in the characterization plots of Fig. 9.

In Table II are presented the measured values of the integrated reflectivities at the several photon energies and diffraction orders. along with their ratios to the present fit values. Also presented, for comparison, are their ratios to fit values determined by assuming sharp tungsten-carbon interfaces with no transition layers present. We suggest that a transition layer can account for the relative measured intensities for the several diffraction orders that are not predictable by a simple W-C model.

4.2. Characterization of a molecular (LB) multilayer

In Fig. 10 we define the structure factor F for a symmetric unit cell of a molecular multilayer. The scattering factor for this unit cell. $\bar{f}\left(=\bar{f}_{1}+i \bar{i}_{2}\right)$, is given by the relations

[^3]TABLE I．Characterization of a Sputtered Tungsten－Carbon Multilayer

Ele：	¢	$3 \times$	R，－：	$F_{1}:$	\cdots	－E（3）	$E / \pm E$	（，i）
：67． 2	92．2	：うこ．．5	27.2	\therefore－	－iン．52			7i．l
：7：．	39．：	：3i2．3	： 5.3	3.12	：04．23	4.15	41	72.2
：53． 3	＝2．2	：\％－	$\pm . \therefore$ ？	－${ }^{\text {\％}}$	3．4？	1．39	42	57．6
ここ．	75.1	：3うこ．i		$\because \mathrm{F}$	i4． 3 ：	i． 34	40	54.4
2：こ．2	72.3	323．i	2．シこ	5．1：	3 3 .30	5.59	37	38.4
277．2	52.3	－i6．9	$2.3:$	7.13	20.20	9.04	29	44．8
31：．7	34.7	509.5	：． 20	2.99	29.29	13.77	23	39.8
392.4	53.5	iij．i	：． 28	$\pm .90$	19.87	16.34	24	31.6
395.3	53.4	442．9	1．27	4.95	：9．63	16.44	24	314
¢52．2	50.4	38i．：	1．is	．j． 54	17．i0	$19 \$ 7$	23	27．：
5：： 3	i9．4	330.5	$\therefore .55$	3.61	15．05	21.88	23	24.2
52i．9	49.0	329.7	： 12	7.09	14.64	22.46	23	23.6
555．3	48.3	3：0．7	－．79	12．2：	23.53	23.61	24	22.3
5：2．8	i7．8	301.6	1.81	10.75	13.12	24.16	24	21.6
637.4	45.5	270.6	1．9i	12.73	11.91	27.36	23	19.5
5：6．8	45.1	254．7	2.01	14.46	11.09	28.84	23	18.3
3050	44.4	244．i	2.08	15.45	10.62	30.03	23	17.6
75．2	＋3．0	22：． 5	2．：9	18.20	9.53	32.81	24	16.0
95：．5	i1．i	202.7	2.20	21.15	3.58	35.66	24	14.6
929．7	39.7	184.7	2．3）	23.98	7.78	38.70	24	13.3
1011．7	37.9	269.8	2.32	26.77	7.09	41.83	24	12.3
1041．0	37.2	こ5i．	2.32	27.74	6.86	42.93	24	11.9
：188．0	34.1	：44．i	2． 26	32.07	5.89	48.15	25	10.4
：253．6	32.7	136．7	2.22	33.68	5.52	50.33	25	9.89
1486．7	28.0	113.2		37.65	4.30	55.38	27	8.34
：Ti0．う	20.7	97.	$\therefore \because:$	29.90	2．iT	\＄3．97	40	7.13

$\bar{r}_{1}=\sum n_{4} f_{14}$
$\bar{r}_{2}=\sum n_{4} f_{24}$
where Π_{4} is the number of atoms of type q in the unit cell having the atomic scattering factor $\mathrm{f}_{14}+\mathrm{if}_{24}$ ．

For the $\mathrm{m} \overline{\mathrm{f}}$ and mF values needed to obtain σ and s （see Fig．1），we may use $m=1 / A_{0}$ ，where A_{0} is the cross－sectional area of the molecular unit cell．

Figure 11 shows the molecular structure and the unit cell for the lead salt of the straight－chain fatty acids that are used in our construction of molecular analyzers of the Langmuir－ Blodgett type．The general formula for the 20 molecules that can be used to generate Langmuir－Blodgett multilayers is $\left[\mathrm{CH}_{1}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{COO}\right]_{2} \mathrm{~Pb}$ ．The d－spacing in the LB multilayer is approximately given by $2.50(n+4) \AA$ ．${ }^{1 \times}$ We have constructed multilayers in the range $n=10$ to 28 with 2 d values of 70 to 160 A．

To fit the MDP analytical description to the experimental LB multilayer reflectivity．we may adjust \bar{f} and F by slightly varying the area density $m\left(=1 \quad A_{0}\right.$ ．where A_{0} is the molecular cross section），and the fraction α of the fatty acid molecules that have chemically combined with the lead ions to form the lead salt．It is easily shown that the latter adjustment is obtained by simply multiplying the scattering factor $f_{\text {Pb }}$ for the lead atom by α where it appears in the calculation for f and F （ $\alpha \approx 1$ and $A_{0} \approx 20.5 \AA^{2}$ ．nominally）．Again．the parame－ ters A_{0} and α are varied to obtain the＂best fit＂of the MDP results for the integrated reflectivities R at the first three

Fig．9．Plots of the integrated reflectivity R（mrad），the peak reflecti－ vity $P(\%)$ ，the FWHM values a（mrad），and the resolving，power E／AE for the spuitered W．C multilayer as characterized in Table I．Pre－ sented here are the experimental determinations of the paremeters at three x－ray lines：（1）Mo－M．（192．6 eV／64．4 A）．（2）Cu－L L_{a}（930 oV／13．3 A），and（3）Al－K $\mathrm{K}_{\alpha}(1487 \mathrm{oV} / 8.34$ A）．

TABLE II．Absolute Experimental Integrated Heflectivity Velues at Several Diffraction Orders and Photon Erisrgies－Comparisons to Corresponding Fit Values by the Transition Lavir（W．WC－C）and the Pure（W－C）Modets

Photon energy $(e V)$	Diffraction order	$R($ exp $)$ $($ mrad $)$	$\frac{R(\text { exp })}{R(W \cdot W C \cdot C)}$	$\frac{R(\text { exp })}{R(W \cdot C)}$
192.6	1	440	1.13	1.10
929.7	1	204	0386	0.873
929.7	2	00196	0.927	0.291
929.7	3	00137	1.13	0.360
1486.7	1	1258	0659	0.653
1486.7	2	0016	0.773	0.265
1486.7	3	$00: 0$	0.926	0.264

diffraction orders（when present）and at several photon energies．

In Table III and the associated Fig．！ 2 we present a detailed characterization of a state－ol－the－art lead stearate analyzer．＊

[^4]
MOLECULAR MULTILAYERS

$X_{p}=$ No. of p-Atoms of Z_{p}
within the Unit Cell

Fig. 10. Definition of the molecular structure factor components F_{1} and $F_{\mathbf{2}}$ for a symmetric unit cell of a molecular multilayer.

Also shown in these plots are the experimental measurements for R, P, ω, and $E / \Delta E$ at the four photon energies 192.6 eV . $277 \mathrm{eV}, 930 \mathrm{eV}$, and 1487 eV .

4.3. Reflectivity at small angles

To calculate the reflectivity at small angles, as noted earlier. we apply our MDP calculation for the region approaching $\theta=0$ by setting $\mathrm{m}\left[=2 \mathrm{~d}\left(\sin \theta_{0}\right) / \lambda\right]$ equal to zero. For this small-angle region of essentially unly forward scattering. the values of \bar{f} and F approach the same value, and the DP parameters σ and s become essentially equal in this Fresnelreflection region. In this region the Darwin-Prins model and our modified Darwin-Prins model can be easily shown to yield the Fresnel-reflection equation depending only upon the optical constants δ and β, provided we make the substitutions for the average atomic scattering factor terms \bar{f}_{1} and \bar{f}_{2}. using the relations
$\delta=\frac{r_{0} \lambda^{2} m}{2 \pi d} \bar{f}_{1}$.
$\beta=\frac{r_{0} \lambda^{2} m}{2 \pi d} \bar{f}_{2}$.
where r_{0} is the classical electron radius. These indeed are the usual equations that relate the macroscopic optical constants δ and β to the atomic scattering parameters (e.g.. see Refs. 9 . 10, 15, and 19).

Even at larger angles than those usually associated with a "total reflection" region, the Fresnel equation predicts a reflection tail that can be shown in this limit to become
$\mathrm{l}($ Fresnel $)=\frac{\delta^{2}+\beta^{2}}{4 \sin ^{4} \theta}$ for $\theta \gg \sqrt{2 \delta}$
In practice, this tail can be measured directly in the absence of any significant Bragg reflected lines. When the amplitude of a Bragg reflection is imposed, a distortion of this tail occurs. as is illustrated in the measured spectra shown in Fig. 13 for two cases, with a first-order diffracted line near and removed from the region of total reflection. As may be noted. the principal effect upon the shape of the diffraction line as it approaches the total reflectior region is to distort the low angle side of the diffraction profile. It is for this reason that we have chosen as our definition for the measurement of the

Fig. 11. Unit cell structure for the lead salt of the straight-chain fatty stearic acid that comprises a molecular Langmuir-Blodgett multilayer. Given this structure, the average atomic scattering factor f and the structure factor F are determined.
integrated reflectivity R and of the FWHM ω_{k} to measure only the area from the peak position on the large-angle side (a range of $3 \omega_{x}$) and the associated one-half width. which values are then doubled to define R and $\omega_{\mathbf{x}}$. By this procedure, these values are different from those determined from the total profile only in the angles of Bragg diffraction near the total reflection region. We believe this procedure improves the definition of R and ω for the small-angle region and also improves the speed of their computation.

It should be noted here that generally, for an optimized spectral measurement, a multilayer should be chosen with a 2d value that places the spectrum at large Bragg angles. It is for these angles that the effect of the Fresnel.reflection tail (combined effect for all wavelengths present) is minimized and maximum peak-to-background ra'ios are obtained. Also. for the larger angles of Bragg diffraction, the spectral resolution is less affected by the instrumental resolution, which is usually fixed by sensitivity requirements and is angle-independent. The dispersion and the natural analyzer FWHM increase with the angle of diffraction.

The background enhancement at small angles is generally greater for the sputtered/evaporated multilayers than for the molecular multilayers because of their appreciably higher density and correspondingly highei δ and β values. This is illustrated in the measured spectra of Fig. 14 for the M -series of molybdenum (the principal line. M_{ζ}, is at $64.4 \AA / 192.6 \mathrm{eV}$). These spectra are measured with multilayers of the same 2 d values ($\approx 130 \AA$) of sputtered tungsten-carbon and of the molecular lead lignocerate. Both were of effectively infinite thickness for this wavelength region. Comparative spectra like those shown in Fig. 14 usually demonstrate that the molecular multilayers of the same $2 d$ value have similar absolute peak reflectivities, higher resolving power, and appreciably lower integrated reflectivities than do the higher density, sputtered/evaporated multilayer systems.

5. SUMMARY

A simple and accurate analytical model for the multilayer a nalyzer has been developed that can be effectively applied for

TABLE III. Characterization of a Molecular Leed Stearate Multileyer

E(ev)	$\cdots{ }^{3}(\infty)$	${ }^{\theta} \mathrm{B}^{(\omega r)}$	$\mathrm{R}(\boldsymbol{\omega r})$	P(\%)	- (tor)	$\therefore E(e V)$	E/ $4 E$	$A(i)$
125.3	141.8	1570.4	22.02	11.38	188.61			98.9
132.8	131.4	1233.6	2.83	9.11	26.47	1.23	104	93.4
148.7	120.9	1002.2	1.11	6.82	14.44	1.37	108	83.1
151.1	119.0	977.8	1.02	0.61	13.69	1. 39	108	82.1
171.7	104.1	817.7	0.62	5.64	9.83	1.58	109	72.2
183.3	97.3	752.3	0.53	5.49	H. 59	1.68	109	67.6
192.6	92.2	707.9	0.48	5.50	7.83	1.76	109	84.4
212.2	82.2	631.0	0.41	5.56	0.63	1.33	110	58.4
277.0	45.7	466.8	0.38	7.38	4.57	2.51	110	44.8
311.7	31.7	413.2	0.08	0.86	6.37	+. 33	69	39.8
392.4	36.2	323.7	0.11	1.97	4.05	4.71	83	31.6
395.3	36.2	323.2	0.12	2.01	4.80	$\pm .72$	84	31.4
452.2	34.8	281.6	0.13	2.94	3.22	5.04	90	27.4
511.3	32.9	248.3	0.13	3.73	2.68	5.40	95	24.2
524.9	32.1	241.8	0.12	3.49	2.57	5.46	96	23.6
556.3	30.0	227.9	0.21	5.12	2.48	5.84	94	22.3
572.8	29.9	221.3	0.22	6.93	2.38	6.07	94	21.6
637.4	28.7	198.6	0.27	9.70	2.08	6.60	97	19.5
676.8	27.7	186.9	0.28	11.02	1.93	6.92	98	18.3
705.0	26.8	179.4	0.29	12.06	1.85	7.19	98	17.6
776.2	25.4	162.8	0.32	15.31	1.67	7.89	98	16.0
851.5	23.8	148.3	0.34	18.12	1.51	8.63	99	14.6
929.7	22.2	135.7	0.35	20.91	1.39	9.44	99	13.3
1011.7	20.8	124.7	0.36	23.87	1.28	10.34	98	12.3
1041.0	20.4	121.2	0.37	24.83	1.25	10.66	98	11.9
1188.0	18.2	106.1	0.37	29.01	1.10	12.31	97	10.4
1253.6	17.3	100.5	0.37	30.53	1.05	13.04	96	9.89
1486.7	14.8	84.7	0.35	34.99	0.90	15.68	95	8.34

the design, optimization, and application of multilayers in absolute x-ray spectrometry. It may be applied (1) for finite systems of N lavers and (2) for the low energy as well as the conventional x-ray region (100 to 10.000 eV). The structural detail of the multilayer is defined by a unit cell that in turn allows a determination by sımple mathematical formulae of the model parameters, which are the average scattering factor \bar{f} and the structure factor F. These parameters and m, the area density of the unit cells. are the only material parameters that are required for the MDP description.

By fitting the MDP model to the experimental measurements, as described here, we are able (1) to obtain a detailed analytical characterization of a given multilayer a nalyzer as based upon measurements at only a few photon energies and (2) to gain some important insights as to the structure of the multilayer.

We are looking forward to improving the overall accuracy of the characterization procedures described here as we obtain multilayers of higher perfection and more accurate photoabsorption data. which are needed for the determination of the atomic scattering factors.

6. ACKNOWLEDGMENTS

The authors gratefully ack nowledge the important assistance of other members of this Low Energy X-Ray Physics and Technology Project: Robert Ehrlich. Debra Nanod, and Laureen Sasaki: we also thank Mary Hockaday (of the PI4 group. Los Alamos National Laboratory) for her helpful suggestions in preparation of this report. This program is supported by a grant from the Air Force Office of Scientific Research

Fig. 12. Plots for the integrated reflectivity R(mrad). peck reffectivity $P(\%)$, FWHM veluee $w(m r a d)$, and reaoking power E/ AE for the lead stearate moleculer multileyer cheracterised in Table III. Experimentally determined pointe are indicated here es for Fig. 9. inchuding one at C•K_ 144.7 A/280 0V).
(AFOSR-No. 84-0001) and by contracts with the Department of Energy (SAN \# CID \#9501. Task I) via LANL and LLNL (No. DE-AC03-76SF0098) via LBL.

7. APPENDIX: MDP FINITE MULTILAYER MODEL DERIVATION

The Darwin-Prins (DP) solution for the ratio of the amplitude reflected to that incident. $\mathrm{S}_{0} / \mathrm{T}_{0}$, at the vacuum interface of a semi-infinite multilayer also established that the phase and effective allenuation of the net amplitude for a wave propagating into the sems-infinite crystal through \mathbf{N} layers may simply be expressed as $T_{0} x^{\prime} . x$ being given by the relation $x=(-1)^{m} \exp (-\eta)$. where $\eta=\mp \sqrt{s^{2}-(\sigma+\xi)^{2}}$ and is the result of the effects of all possible multiple reflections and transmissions occurring withın the semi-infinite multilayer. (The + or $-\operatorname{sign}$ for η is chosen by the requirement that its real part be postive.)

The amplitude reflection ratio -t the Nih layer, corresponding again to a boundary at an infinitely deep crystal. must also be S_{0} / T_{0}. and therefore the upward propagating wave amplitude at the N th layer must be $\mathrm{S}_{0} \mathrm{x}^{N}$. as depicted in Fig. Al(a). To obtain the reflection ratio for a finite multilayer of N layers, we need to eliminate the boundary condition of an

Fig. 13. Low angle diatortion of a spectral line that appaars in the small-angle reffection reoion. Experimental spectra from W.C multi. layers: $(\mathrm{a}) 2 \mathrm{~d}=200 \mathrm{~A}$ of $\mathrm{Cu}-\mathrm{L}_{\mathrm{g}}(13.3 \mathrm{~A} / 930 \mathrm{eV})$ and $(\mathrm{b}) 2 \mathrm{~d} \propto 70 \mathrm{~A}$ a Al-Ka (8.34 A/1487 ©V).
effect of the wave interaction of the infinite multilaver below the Nith layer. Let us reverse the roles of dounward and upward waves in Fig. Al(a) by inverting the reflection geometry of (a), as shown in (b). Now by multiplying each boundary wave amplitude indicated in (b) by the same constant factor. $S_{0} x^{\prime \prime}, T_{0}$, we obtain a nother consistent set of values for the boundary wave amplitudes. as depicted in (\mathbf{c}). with an incident wave from below of a mplitude $S_{0} x^{\prime}$ and equal to that in (a).

We now subtract. by a superposition, the two boundary wave solutions depicted in (a) and (c), obtaining the boundary amplitudes indicated in (d) and, with the net upward propagating wave at the lower boundary equal to zero, the required boundary condition for the finite crysial of \mathbf{N} layers.

Finally, by dividing each amplitude in (d) by the incident amplitude $T_{0}\left[1-\left(S_{0} / T_{0}\right)^{2} x^{2 N}\right]$. we obiain the amplitude ratio for finite multilayer reflection and for finite multilayer Iransmission, as was given in Eqs. (4) and (5). viz..
$\frac{S_{0 n}}{T_{0}}=\frac{S_{0}}{T_{0}} \frac{1-x^{2}}{I-\left(S_{0} T_{0}\right) \cdot x^{2}}$
$\frac{T_{0 N}}{T_{0}}=\frac{\left[1-\left(S_{0} / T_{0}\right)^{\prime}\right] x^{`}}{1-\left(S_{0} / T_{0}\right)^{2} x^{D^{-}}}$
These analytical results combined with Ey. (1) are accurate and adaptable, have an apprectably higher computational speed and ease of programming than do the usual optical E\&M (OEM) methods. and may be applied with a small laboratory computer having complex number arthmetic capability.

The equivalence of the MDP and the OEM models for low energy x rays has been demonstrated here by detaled compar-

TUNGSTEN-CARBQN
2d. 132Δ
LEAD LIGNOCERATE
2d.129a

ENE - 154

$$
\begin{aligned}
& 1 C \cdot K_{a}(447 \Delta) \\
& 2 M_{0} \cdot M_{1, v} \cdot O_{n, 11}(54 B A) \\
& 3 M_{O} \cdot M_{5}(644 A)
\end{aligned}
$$

Fig. 14. Comparison of the experimental spectre for the molybodenum.M series linss measured with a sputtered W.C multilayer and with a molecular lead lignocerste multilayer, each of $2 \mathrm{~d} \approx 130 \mathrm{~A}$.

(a)

(b)

(c)

(d)

Fig. A1. Illustration of the superposition of perticular solutions given for a semi-infinite erystal by the Darwin-Prins model. which yields the solution for the finise. N-layer erystal (the modified Darwin-Prins solution).
ison plots (shown in Figs. 3 to 5). In recent reports by Lee ${ }^{20}$ and by Perkins and Knight.:? the equivalence of the DP difference equation and the OEM approaches has been demonstrated by a formal rewriting of the latter into closed form. We are pleased to note that coincident with our presentation of the above derivation of the MDP results. Eqs. (4) and (5). Spiller and Rosenbluth ${ }^{22}$ have presented their derivation of the same relations as developed from the OEM solution [see their Eqs. (A|3) and (A|4)].

This MDP phenomenological description that we have presented here can effectively provide the basis for a better understanding of the physical nature of multilayer reflection.

Finally, as noted earlier. we believe that our MDP model is more accurate at the higher photon energies ($>1000 \mathrm{eV}$) than the OEM model, which does not include the angle dependence of the scattered wave amplitudes, which may be large for the shorter x-ray wavelengths. As discussed earlier. It is straightforward to distinguish between forward and 2θ scattering in the MDP solution by inserting angle-dependent atomic scattering lactors using a smple form-factor correction. ${ }^{19}$

8. REFERENCES

I B L Henke. H I Yamada, and I J Ianaka. "Pulxed plasma source spectrometry in the 80 n 000 -eV veray region." Ret Sil Invirum Sa. 1311-1330(1943)
2. B L. Hente and P A Jammayı. "Two-channel. elliplical analyzer vpectrograph for absolute, lime-resulving time-iniegrating specirometrs of pulsed x-ray cources in the 100 10000)eV region." Res Sis Insifum 56. 1537.1532 (1945)

 I'h If ihows. 1 Kahevici ilya?

 114051
 : mife dilm. Van laverand. Vew larkil4ial

 cxternal retlection of vablirom rough surlaces." ()pl Spectrosc to. 124.11211474)

14 K () Rachochi. \mathcal{L} K Hroun. R W Springer.and P Arendt."Auger and depth protile analyw ol whihetic cirvals lor dapervion of wolt

is H I Henhe P Iec. I J Ianaha. R I Shimahukuro, and B K Fulkawa. Alome l)ata and Vuclear l)ata Iablos 27. No I (lyx?)
if $J M$ Auerbach and K (i lisell. . Solfuarefor reflecibity calculation

1^{*} I) H Barrus. $R 1$ Hahe. H Felthauser. \& F Fenimore. and A J
 (Monteres. (alifi.1) I Altuoodand B I Henke.ed, p IIS. American Invtitute of Phows. Dew York II96s|
Is $B \mid$ Henke. In tiP (onf Pris to 'sonl.ow-Energi t-Rai Diagnos-
 American Insiltute of Phosics. Deu Iork (1965)
 fini Monteres. (dil I. [) I Altuoud and 8 I Henke. eds. p IA6.

so P I ec."X-rat diltraction in multilaters." ()pt Commun 17. 159-164 (|YKl)
 ence equalions." Acta (rise A4) 617 119×41
 houndary roughnew trom the measured pertormance of a multilayer wating. In Applic ationion Thin-Film Mu/nlaiered Sirminures io Figured

Burtonl Henkereceivedina A B degreelfom Miami University (Ohio) in 1944. and the M S and Ph D degrees in physics from the Calitor. nia Institute of Technology in 1946 and 1953. respectively

From 1949 to 1967 he was a faculty member in the Department of Physics at Pomona Col. lege (Professor ol Physics from 195810 1987). and from 1967 to 1984 he was Prolessor of Physics at the University of Hawall

Since January 1985 he has been a Senior Staff Scientist with the Lawience Berkeley Laboratory. University of California. where his chiel research interests are the physics of low. energy x rays andelectrons He has also served as a consultant in x-ray physics to government and indusity
D. Henke is a member of the American Physical Society felected as a Felljw in 1969). American Astronomical Society. American Association of Physics Teachers. and American Association of University Prolessors He was a Guggenherm Fellow in 1956, received the Wig Distin. guished Professor Award in 1960. and received a Merit Award with Distinction for Research and Teaching from the University of Hawail in 1982

Jeremy Y. Uejio received the B S degree from the University of Howall in 1984 and is currently working toward an M S degree in computing science at the University of California at Davis

Hubert T. Yamade recerved the B.S degree in physies from the University of Hawan in 1983 and the M S degree in physics from the Callfornie Institute of Technology in 1985. He is currently a graduate student at the University of California at Berkeley working toward a PhD in ohysics.

Ron E. Tackeberry is a graduate of the Naval Nuclear Engineering School. He is currently pursuing a E S degree at San Francisco State Uniuersity

5. TECHNICAL NOTES: LOW ENERGY X-RAY MULTILAYER ANALYZERS: MOLECULAR AND SPUTTERED/EVAPORATED

For efficient x-ray analysis above about 500 eV one generally applies the grown or natural crystals (6). For the lower photon energies, one can apply at large diffraction angles, the constructed multilayers of the molecular or sputtered/evaporated types, and at the small diffraction angles reflection or transmission gratings (7). In these notes, we outline some of the important characteristics of the molecular and sputered/evaporated multilayers that we are currently investigating.

Molecular Multilayers

For many years we have been developing relatively high resolution molecular multilayers of the Langmuir-Blodgett type. These are constructed by the repeated dipping of a substrate in and out of a water surface on which is deposited a monomolecular layer system (usually a barium or lead salt of a straight-chain fatty acid). Our dipping tank is described in Fig. 1 and the process for generating one of the usual types of molecular multilayers is described in Fig. 2. In this way, very regular periodic structures are formed consisting of thin, high olectron density double-atomic-layers of cations, e.g. barium or lead, separated by a low density carbon chain matrix. Using a series of straight-chain fatty acids we have successfully generated this type of multilayer with 2 d -spacings in the $70-160 \mathrm{~A}$ range.

The energy response of these molecular multilayers can be accurately predicted by our Modified Darwin-Prins (MDP) model (4) using a single fitting parameter that allows a small adjustment for the area density of the multilayers. The very good fits between the MDP analytical description and our experimental measurements are illustrated in the plots of Fig. 3 for the integrated reflectivity, R, the peak reflectivity, P, the $F W H M, \omega(m r)$, and the resolving power, $E / \Delta E$, for a lead stearate multilayer. Once the analytical characterization of the multilayer has been established in this way, it is often useful to apply it for the plotting of the analyzer's energy response (at a fixed Bragg angle) to a flat-continumm radiation. This is shown in Fig. 4 for the lead stearate analyzer at $\theta=40$ degrees with a first order peak at 194.4 eV and with no significant second-order radiation.

In Figs. 5 and 6 we present our modified Darwin-Prins (MDP) plots comparing the integrated and peak reflectivities for three stearate multilayers using Ba, Hg and Pb as the cations

In order to fit our MDP analytical characterizations to the measured reflectivities of the sputtered multilayer systems, we have found that a two-parameter adjustment is usually required. These parameters establish the thickness of the heavy element layer and the thickness of a linear transition region which accounts for penetration
of the heavy element into the light element layer and vice versa. Such a fit is lllustrated in fig. 7 for a vanadium-carbon sputtered multilayer of $2 d-s p a c i n g$ similar to that of the molecular lead stearate described above. For comparison with the lead stearate, a flat-continum response of the sputtered multilayer is shown in Fig. 8 for a fixed Bragg angle of $\theta-40$ degrees. Finally, Figs. 9 and 10 show the flat-continuum response of a real and typical tungsten-carbon multilayer at a smaller fixed Bragg angle of 22.5 degrees for the first four diffraction orders. Illustrated here is the significant low energ: specularly reflected component resulting from an application of the high density sputtered multilayers at the smaller angles.

$$
\begin{gathered}
\text { Migure } 2 . \\
\text { MULTILALEEULAR } \\
\hline
\end{gathered}
$$

(Y-TYPE)

${ }^{\text {rigure 4. Flat-Continuum Response of Lead Stearate }}(2 d=100 \mathrm{~A})$

Fisure 5. Integrated Reflectivity for Three Stearate Multilayer Crystals

Figure 7.
Characterization of a Sputtered Vanadium / Carbon Multilayer

0
0
0
1

6. TECHNICAL NOTES

The lliph Energy X-Ray Response of Some Useful Crystal Analyzers

The crystal analyzers that are applied in the SPEAXS system are characterized on our l.BI. calibration facility at several photon energies. We fit to these experimentally derived data appropriate theoretical analytical reflectivity functions which then yield absolute reflectivity characteristics for the entire photon energy region of application. Theoretical crystal reflectivity tables and curves are not only useful as an interpolational basis but can also provide important insights as to relative reflection efficiencies, existence and effect of absorption edges, and generally, the appropriateness of a given crystal analyzer for analysis within a particular photon energy region.

Presented here are tabulated and plotted values for the integrated reflectivity, R, the peak percent reflectivity, P, the $F W H M, \omega$, and the resolving power. $E / \Delta E$ for some natural crystals that may be cleaved or cut with the desired reflecting planes parallel to the surface of a thin bendable section. The crystals that are characterized are:

Crystal (Plane)	2d(A)	Diffraction Orders
Silicon-Si (422)		
Germanium-Ge (422)	2.218	1
Lithium Fluoride-LiF (220)	2.310	1
Silicon-Si (220)	2.848	1
Florite-CaF (220)	3.840	1,2
Germanium-Ge (220)	3.862	1,2
Lithium Floride-LiF (200)	4.000	1,2
Florite-CaF (111)	4.026	1,2
Germanium-Ge (111)	6.308	$1,2,3$
Graphite-C (002)	6.532	1,3
Petaerythritol-Pet (002)	6.696	$1,2,3$
Mica (002)	8.742	$1,2,3,4,5$
Rubidium Acid Phthalate-	20.000	$1,2,3,4,5$
\quad RAP (001)	26.140	$1,2,3,4,5$
Potassium Acid Pthalate-	26.620	$1,2,3,4,5$
\quad KAP (001)		
Thallium Acid Pthalate-	26.620	$1,2,3,4,5$
\quad TAP (001)		

These crystals may be described by symmetrical unit cells of volume, V, spacing, d, and of atructure factor, $F_{1}+F_{2}$. For symmetric unit cells,

The specific crystal planes being used are normally specified by their Miller indices (hkl). When these indices and the crystal coordinates are known, the volume of the unit cell, v, is given by:

$$
V-a b c \sqrt{1+2 \cos \alpha \cos \beta \cos \gamma} \cdot \cos ^{2} \alpha \cdot \cos ^{2} \beta \cdot \cos ^{2} \gamma
$$

and d may be found from:

$$
\begin{aligned}
& h^{2} b^{2} c^{2} \sin ^{2} \alpha+k^{2} a^{2} c^{2} \sin ^{2} \beta+1^{2} a^{2} b^{2} \sin ^{2} \gamma \\
(V / d)^{2}=\quad & +2 h k\left(a b c^{2}\right)(\cos \alpha \cos \beta-\cos \gamma) \\
& +2 k l\left(a^{2} b c\right)(\cos \beta \cos \gamma-\cos \alpha) \\
& +21 h\left(a b^{2} c\right)(\cos \gamma \cos \alpha-\cos \beta)
\end{aligned}
$$

z / d is given by:

$$
z / d=h x^{\prime}+k y^{\prime}+m z^{\prime}
$$

A constan: ita be added in order to make the z / d positions symmetrical about $z-0$. Note: For crystals with a hexagonal unit cell, often four-component Miller indices are used; this notation may be converted to normal Miller indices by neglecting the third component.

Germanium

2d $=2.310 \dot{A}$
Ge
$E(\mathrm{eV}) \quad \theta_{r}(m r) \quad \theta_{B}(m r) \quad R_{p}(m r)$
$R_{m}(m r)$
(422) m $=1$

E/DE $\quad \lambda(A)$
$\begin{array}{llll}5368.7 & 8.2 & 1571.0 & 4.4970 \\ 5414.1 & 8.1 & 1440.0 & 0.2993\end{array}$

1. 069
99.0
3.190
$\begin{array}{lll}0.20 & 26900 & 2.399\end{array}$
54.1.7 8.1 1440.0 0.2993
. 26
0.135
0.123
.
70.0
0.041
0.2029400.
2.102
0.2329900.
1.789
1.658
804.4

3
130.0
0.0191
0.120
$8638.9 \quad$; $1 \quad 671.0 \quad 0.0193$
9886.4 $4.4 \quad 574.0 \quad 0.0181$
0.123
63.0
0.032
$0.28 \quad 28500$.
1.541
0.2731400.
1.435
$0.131 \quad 89.0 \quad 0.020$
$0.30 \quad 32700$.
1.254

Lithium Floride

	Lithium Floride L.1F							$\begin{gathered} 2 \mathrm{~d}- \\ (220) \end{gathered}$	$\begin{gathered} 2.848 \AA \\ m=1 \end{gathered}$
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(m r)$	$\mathrm{R}_{\mathrm{p}}(\mathrm{n})$	$R_{m}(m r)$	P(8)	$\omega(m r)$	$\Delta E(e V)$	E/ $/ \mathrm{E}$	$\lambda(\dot{A})$
4353.0	1.5	1571.0	3.9780		99.0	2.710			2.848
44666.0	7.3	1346.0	0.1312	1.312	98.0	0.116	0.12	37500.	2.176
4511.0	1.2	1306.0	0.1086	1.088	97.0	0.097	0.12	37900.	2.748
4952.0	6.6	1074.0	0.0449	0.484	94.0	0.045	0.12	40900.	2.504
54150	6.0	934.0	0.0274	0.353	92.0	0.032	0.13	42600.	2.290
5899.0	', ',	830.0	0.0188	0.313	82.0	0.028	0.15	39500.	2.102
6930.0	4.7	679.0	0.0156	0.330	93.0	0.019	0.17	41800.	1.789
7478.0	4.3	621.0	0.0152	0.361	96.0	0.017	0.18	41300.	1.658
8048.0	4.0	572.0	0.0148	0.400	97.0	0.016	0.20	40400.	1.541
8639.0	3.7	528.0	0.0142	0.444	98.0	0.015	0.22	39600	1.435
9886.0	33	456.0	0.0129	0.547	99.0	0.013	0.25	39000	1.254

Si
$E(e V)$ $E(e V)$
3229.0

$$
R_{p}(m r)
$$ 3692.0 4466.0

4511.0
4952.0
5415.0
5899.0
6930.0
7478.0
8048.0
8639.0
9886.0

$$
\theta_{C}(m r) \quad \theta_{B}(m r)
$$

$9.4 \quad 1571.0$
5.5960
0.186
0.118
0.117
0.118
0.127
0.139
0.171
0.188
0.206
0.225
0.265

$$
R_{m}(m r)
$$

P(8)
$\omega(m r) \quad \Delta E(e V)$
99.00
3.890
0.19
19400.
3.840
72.00
50.00
50.00 59.00
0.061
0.26
0.27
0.28
74.00
0.039
0.034
0.28

1920
0.31
0.38
0.42
0.027
94.00
0.025
95.00
0.023
0.020
$\begin{array}{ll}0.46 & 17700 . \\ 0.50 & 17400 . \\ 0.58 & 17100 .\end{array}$
1.541
97.00

1. 254

$P(8) \quad \omega(m r) \quad \Delta E(e V)$
$\mathrm{E} / \Delta \mathrm{E} \quad \lambda(\dot{A})$

6457.0	4.9	1571.0	2.2920
6930.0	4.6	1199.0	0.0258
7478.0	4.2	1042.0	0.0147
8048.0	3.9	931.0	0.0100
8639.0	3.7	844.0	0.0073
9886.0	3.2	712.0	0.0059

9886.0
3.2
712.0
0.0059
0.0513
0.1207
0.0742
0.0581
0.0518
78.0
$99.0 \quad 1.4700$
0.069101000.
1.920
$91.0 \quad 0.0255$
$86.0 \quad 0.0160$
$81.0 \quad 0.0123$
$69.0 \quad 0.0113$
).074 109000
1.789
1.658
1.541
1.435
$8.0 \quad 0.0083$
0.096103000 .
1.254

	$\begin{aligned} & \text { Florite } \\ & \mathrm{CaF}_{2} \end{aligned}$							$\begin{aligned} & 2 \mathrm{~d}- \\ & (220) \end{aligned}$	$3.862 \dot{A}$
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$R_{p}(m r)$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	P(8)	$\omega(m r)$	$\Delta E(e V)$	E/ $\triangle E$	$\lambda(\dot{\text { A }}$)
3209.8	11.1	1571.0	6.3510		100.0	4.370			3.863
3691.7	9.6	1054.0	0.1112	0.682	89.0	0.117	0.24	15100.	3.358
4466.3	7.7	802.0	0.0381	0.095	49.0	0.070	0.30	14800.	2.776
4510.8	7.6	792.0	0.0376	0.095	50.0	0.069	0.31	14600.	2.749
4952.2	7.1	705.0	0.0361	0.101	49.0	0.064	0.37	13300.	2.504
5414.7	6.6	635.0	0.0366	0.110	65.0	0.051	0.37	14500.	2.290
5898.8	6.1	575.0	0.0369	0.122	75.0	0.045	0.41	14500.	2.102
6930.3	5.2	482.0	0.0359	0.150	86.0	0.038	0.50	13700.	1.789
3478.1	4.9	444.0	0.0349	0.165	89.0	0.036	0.56	13400.	1.658
8047.8	4.5	410.0	0.0337	0.180	91.0	0.033	0.62	13100.	1.541
8638.9	4.2	381.0	0.0323	0.195	93.0	0.031	0.67	12800.	1.435
9886.4	3.7	331.0	0.0295	0.227	95.0	0.028	0.79	12500	1.254

		$\begin{aligned} & \text { Germanium } \\ & G e \end{aligned}$						$\begin{array}{r} 2 \mathrm{~d}- \\ (220) \end{array}$	$\begin{gathered} 4.000 \AA \\ m=1 \end{gathered}$
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$R_{p}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{m}}(m r)$	$P(\%)$	$\omega(m r)$	$\Delta E(e V)$	E/DE	$\lambda(\lambda)$
3099.7	13.4	1571.0	9.0260		99.0	6.260			4.000
3691.7	11.6	997.0	0.1508	0.374	66.0	0.199	0.5	7750.	3.358
4466.3	9.8	767.0	0.0771	0.269	50.0	0.143	0.7	6760	2.776
4510.8	9.7	758.0	0.0763	0.269	50.0	0.140	0.7	6740	2.749
4952.2	8.9	676.0	0.0735	0.275	65.0	0.108	0.7	7420	2.504
5414.7	8.1	610.0	0.0728	0.295	76.0	0.090	0.7	7800.	2.290
5898.8	7.5	553.0	0.0714	0.321	83.0	0.080	0.8	7740	2.102
6930.3	6.4	464.0	0.0665	0.380	90.0	0.067	0.9	7420	1.789
7478.1	5.9	427.0	0.0634	0.411	92.0	0.062	1.0	7310	1.658
8047.8	5.5	395.0	0.0602	0.441	94.0	0.058	1.1	7220	1.541
8638.9	5.1	367.0	0.0569	0.470	95.0	0.054	1.2	7180.	1.435
9886.4	4.4	319.0	0.0501	0.517	97.0	0.046	1.4	7220	1.254

Germanium

Ge

$\mathrm{E}(\mathrm{eV})$	$\theta_{\mathrm{C}}(\mathrm{mr})$	$\theta_{\mathrm{B}}(\mathrm{mr})$	$R_{p}(\mathrm{mr})$	$R_{m}(\mathrm{mr})$	$P(8)$	$\omega(\mathrm{mr})$	$\Delta \mathrm{E}(\mathrm{eV})$	$\mathrm{E} / \Delta \mathrm{E}$	$\lambda(\AA)$
6199.3	7.1	1571.0	3.533		99.0	2.380			
6930.3	6.4	1107.0	0.042	0.1725	86.0	0.045	0.15	45000.	1.789
7478.1	5.9	977.0	0.027	0.1200	80.0	0.031	0.16	47300.	1.658
8047.8	5.5	879.0	0.019	0.0988	71.0	0.027	0.18	45400.	1.541
8638.9	5.1	800.0	0.014	0.0900	48.0	0.026	0.22	39900.	1.435
9886.4	4.4	678.0	0.013	0.0861	80.0	0.016	0.20	48800.	1.254

	Lithium Floride Lif							$\begin{gathered} 2 \mathrm{~d}- \\ (200) \end{gathered}$	$\begin{gathered} 4.026 \AA \\ \mathrm{~m}=1 \end{gathered}$
$E(\mathrm{eV})$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$R_{p}(\mathrm{mr})$	$R_{m}(m r)$	P(8)	$\omega(m r)$	$\Delta E(e V)$	$\mathrm{E} / \Delta \mathrm{E}$	$\lambda(A)$
3079.0	10.6	1571.0	6.0270		100.0	4.150			4.027
3692.0	8.8	986.0	0.0859	0.708	90.0	0.094	0.23	16000.	3.358
4466.0	7.3	761.0	0.0416	0.555	6P,0	0.067	0.31	14300.	2.776
4511.0	7.2	751.0	3.0414	0.557	74.0	0.064	0.31	14500.	2.748
4952.0	6.6	671.0	0.0408	0.593	91.0	J. 050	0.31	15800.	2.504
5415.0	$6.1)$	605.0	0.0397	0.657	95.0	0.044	0.34	15700.	2.290
5899.0	5.5	549.0	0.0382	0.739	96.0	0.040	0.39	15300.	2.102
6930.0	4.7	460.0	0.0345	0.937	98.0	0.034	0.47	14700.	1.789
7478.0	4.3	424.0	0.0226	1.047	99.0	0.031	0.51	14600.	1.658
8048.0	4.0	393.0	0.0308	1.165	99.0	0.028	0.55	14600.	1. 541
8630.0	3.7	364.0	0.0291	1. 289	99.0	0.026	0.59	14500.	1.435
9886.0	3.3	317.0	0.0259	1. 556	99.0	0.023	0.68	14500.	1.254

（1®） 30

ヶらで1	OT76	$50^{\circ} 1$	220%	0．76	とてI 0	Iとて0 0	$0 \cdot 002$	$S^{\circ} \mathrm{E}$	7．9886
¢をワ1	0656	06.0	7200	0．16	6010	〔5200	0 0．0とて	$0 \cdot 7$	6．8を98
ITS＊	00L6	โ $8^{\circ} 0$	9200	$0 \cdot 06$	101．0	$5920^{\circ} 0$	0 －¢ て	$5 \cdot 7$	8． 2708
$859^{\circ} 1$	0986	960	$820{ }^{\circ}$	$0 \cdot 88$	760%	$9 \angle 200$	0．992	97	18くワし
681 ${ }^{\circ}$	0010I	$69^{\circ} 0$	620%	0．$¢ 8$	$\angle 80^{\circ} 0$	98200	0.882	$6{ }^{\circ}+$	\｛ 0¢69
201 2	00901	550	¢10＊0	$0 \cdot 61$	$2 \angle 0^{\circ} 0$	1080\％	0 0ワ\％	$1 \cdot 5$	8.8685
062＇z	0011I	670	5．0\％ 0	$0 \cdot 7$	590.0	zOE0 0	$0 \cdot 2 \angle \varepsilon$	2•9	じワ「ワ¢
$705^{\circ} \mathrm{Z}$	00911	£が0	＜1000	$0<19$	$950{ }^{\circ}$	$\angle 6200$	0＊807	＜9	で2567
67L	00ワで	$9 \varepsilon 0$	680 0	0.65	$\angle ワ 00$	LCZO 0	0＇15\％	$\varepsilon \cdot 1$	8015%
	00SてI	9¢ 0	$60^{\circ} 0$	0.85	S700	71200	$0 \cdot 95 \%$	ε^{\prime}＇	\＆997ワ
85¢．	000EI	82°	670%	0.51	9\＆I 0	8850 0	0.295	0.6	＜1691
7SI「	00L0I	$87^{\circ} 0$	$280{ }^{\circ}$	087	8て1 0	SでロO 0	$0.61 /$	¢ I 1	£ 7862
8てぐワ	－ 00701	cて．0	601 0		LEI O	92500	$0 \cdot 178$	6.21	サでくのく
L07 5	－00911	00°	ワワ10	0． 15	8610	77600	0 Oc01	く「1	で「6で
72L 5	00211	61．0	£6100	$0 \cdot 09$	$7 \angle て 0$	LLEIO	0 8¢11	$5 \cdot 51$	6．5912
0L0＇9	O0¢01	02%	ワクを 0	0•29	2050	8LSて 0	0.9621	791	7－270て
LOE 9			$000<1$	0 ¢9		0091 11	0．1くSI	$0<1$	8．5961
（y）r	30／3	$\left(\Lambda^{2}\right) 30$	（10）m	（8）d	（xi）${ }^{1 / 2}$	（1w）${ }^{\text {d }}$	（1w）${ }^{\text {g }}$	（1ш）${ }^{3} 0$	$\left(n^{2}\right) 3$
I－w	（IIt）				$\chi_{3} \times 5$				
$\because 80 ¢^{\prime} 9$	－pz				2วfino				

（ヘจ） 3∇

758 I	－00012I	$180^{\circ} 0$	$9900 \times$	0．56	0910	$8 ¢ 500 \%$	$0 \ll 6$	$\varepsilon \uparrow$	$0 \cdot 9886$
SETI	－ 000601	080 \％	7600%	0．85	くワ10	$0 \angle 500 \%$	$0 \cdot 762$	$1 \cdot \varepsilon$	$0.6 £ 98$
1751	－000121	$\angle 90^{\circ} 0$	8600%	016	ESIO	$65 \angle 00^{\circ}$	0 －1／8	$0 \cdot 7$	0．8708
8591	－0002てI	$190^{\circ} 0$	6110\％	0.56	LC10	$2 \angle 010^{\circ} 0$	0． 196	£ 7	0．8 87%
681 1	－0008II	650%	S910\％	$0 \cdot 96$	$0 ヶ 20$	$7 \angle 910^{\circ} 0$	0•7601	く＇ワ	0 0¢69
£10\％			00くワ1	$0 \cdot 001$		007らでて	0 01／5l	$\varepsilon \cdot 5$	0.8519
（ Y ） r	38／3	（ \wedge° ） 30	（10）m	（1）d	（10）${ }^{11 /} \mathrm{d}$	（xw）${ }^{\text {d }}$	$(\mathrm{xw})^{\text {g }}$ \％	$\left(\boldsymbol{1 6)}{ }^{3} \theta\right.$	$\left(n^{2}\right) 3$
$i-u$	（002）				377				
ソ920 \quad \％	－PZ				Ols wn	317			

$E(e V)$	```Florite CaF2```						$\Delta E(e V)$	$\begin{aligned} & 2 \mathrm{~d}- \\ & (111) \\ & E / \Delta E \end{aligned}$	$\begin{array}{r} 6.308 \dot{A} \\ m=3 \\ \lambda(\dot{A}) \end{array}$
	$\theta_{c}(m r)$	$\theta_{B}(m r)$	$R_{p}(m r)$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	$P(8)$	ω (mr)			
5896.6	5.8	1571.0	2.2570		77.0	2. 3200			2.103
5898.8	5.7	1544.0	0.1936	0.3385	77.0	0.2070	0.033	180000.	2.102
6930.3	4.9	1018.0	0.0061	0.0119	57.0	0.0092	0.039	176000.	1.789
7478.1	4.6	908.0	0.0043	0.0096	48.0	0.0078	0.046	164000.	1.658
8047.8	4.3	822.0	0.0034	0.0087	44.0	0.0068	0.051	158000.	1. 541
8638.9	4.0	751.0	0.0031	0.0086	44.0	0.0060	0.056	155000.	1.435
9886.4	3.5	639.0	0.0030	0.0093	65.0	0.0043	0.057	173000.	1.254

$$
E(e V) \quad \theta_{c}(m r) \quad \theta_{B}(m r) \quad R_{p}(m r) \quad R_{m}(m r)
$$

$P(8) \quad \omega(m r) \quad \Delta E(e V)$

2d- $6.532 \dot{1}$
(111) m-1
$E / \Delta E \quad \lambda(\lambda)$

$$
1898.4 \quad 17.2 \quad 1571.0 \quad 14.3300
$$

$$
\begin{array}{rrrrr}
2042.4 & 17.0 & 1193.0 & 0.4035 & 0.541 \\
2165.9 & 16.6 & 1069.0 & 0.2623 & 0.363 \\
2293.2 & 16.2 & 975.0 & 0.1967 & 0.285 \\
2622.4 & 15.1 & 809.0 & 0.1321 & 0.222
\end{array}
$$

48.0	25.000			6.531
42.0	0.741	0.6	3400.	6.070
38.0	0.541	0.6	3360.	5.724
34.0	0.452	0.7	3270.	5.407
32.0	0.376	0.8	3120.	4.728

$$
2984.3 \quad 13.8 \quad 690.0,0.1196 \quad 0.221
$$

$\begin{array}{lllll}37.0 & 0.267 & 1.0 & 3090 . & 4.154\end{array}$

$$
\begin{array}{ccccc}
3691.7 & 11.6 & 540.0 & 0.1220 & 0.265
\end{array}
$$

$61.0 \quad 0.173 \quad 1$.

$$
\begin{array}{lllll}
4466.3 & 9.8 & 439.0 & 0.1195 & 0.324 \\
4510.8 & 9.7 & 434.0 & 0.1191 & 0.327
\end{array}
$$

$\begin{array}{lllll}75.0 & 0.140 & 1.3 & 3370 & 2.776\end{array}$
$\begin{array}{lllll}76.0 & 0.138 & 1.3 & 3360 . & 2.749\end{array}$
4952.2 8.9
393.0
$0.115 ?$
0.359
80.0
0.126
84.0
0.116
1.53290.
2.504
$\begin{array}{llll}5414.7 & 8.1 & 358.0 & 0.1104\end{array}$
$\begin{array}{lllll}5898.8 & 7.5 & 328.0 & 0.1051 & 0.423\end{array}$
86.0
0.106
1.73240 .
2.290
$90.0 \quad 0.091 \quad 2.2$
2.2
3190.
2. 102

3140 .

1. 789
7478.1
1478.1
5.9

257

$$
.0
$$

$$
0.0888
$$

0.517
91.0
0.084
$2.4 \quad 3130$.
1.658
8638.9
9886.4
$\begin{array}{ll}5.1 & 222.0 \\ 4.4 & 193.0\end{array}$
$\begin{array}{ll}0.0836 & 0.547 \\ 0.0785 & 0.576\end{array}$
92.0
0.078
2.6
2.8
3.1
0.062
95.0
3130.
1.541
3130.
1.435
1.254

$\mathrm{E}(\mathrm{eV})$	$\theta_{c}(m r)$	$\theta_{B}(m r)$	$R_{p}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	$P(8)$	$\omega(m r)$	$\Delta E(e V)$	E/ $\Delta \mathrm{E}$	$\lambda(\lambda)$
1851.7	17.0	1571.0	10.3600		100.0	7.090			6.696
2042.4	15.4	1135.0	0.4291	3.34	94.0	0.420	0.40	5120.	6.070
2165.9	14.6	1026.0	0.2915	2.45	92.0	0.307	0.4 C	5360.	5.724
2293.2	13.7	940.0	0.2154	2.04	89.0	0.250	0.42	5480.	5.407
2622.4	12.0	784.0	0.1251	1.75	50.0	0.215	0.57	4640.	4.728
2984.3	10.5	669.0	0.1202	1.88	91.0	0.147	0.55	5430.	4.154
3691.7	8.5	525.0	0.1097	2.48	97.0	0.113	0.72	5130.	3.358
4466.3	7.0	428.0	0.0963	3.29	99.0	0.091	0.89	5000.	2.776
4510.8	6.9	423.0	0.0956	3.34	99.0	0.090	0.90	4990.	2.749
<952.?	6.3	383.0	0.0887	3.83	99.0	0.081	1.00	4970	2.504
5414) 8	349.0	0.0823	4.36	99.0	0.073	1.09	4960	2. 290
5898.8	5.3	319.0	0.0764	4.92	99.0	0.067	1.19	4940	2. 102
69303	45	270.0	0.0661	6.15	100.0	0.056	1.41	4920	1.789
7478.1	4.2	250.0	0.0616	6.82	100.0	0.052	1.52	4910.	1.658
8047.8	39	232.0	0.0575	7.54	100.0	0.048	1.64	4900.	1.541
8638.	3.6	216.0	0.0538	8.30	100.0	0.045	1.77	4890	1.435
9886.4	3.9	188.0	0.0473	9.97	100.0	0.039	2.03	4860	1.254

	$\underset{\text { Graphite }}{\text { Gre }}$						$\Delta E(e V)$	$\begin{gathered} 2 \mathrm{~d}- \\ (002) \\ E / \Delta E \end{gathered}$	$\begin{gathered} 6.696 \AA \\ m-2 \\ \lambda(\lambda) \end{gathered}$
$E(\mathrm{eV})$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$R_{p}(\mathrm{mr})$	$R_{m}(m r)$	P(8)	$\omega(\mathrm{mr})$			
3703.3	8.5	1571.0	3.9200		100.0	2.710			3.348
4466.3	7.0	978.0	0.0372	0.732	96.0	0.041	0.12	36500.	2.776
4510.8	6.9	963.0	0.0353	0.711	95.0	0.039	0.12	36500	2.749
4952.2	6.3	845.0	0.0229	0.610	91.0	0.032	0.14	35500.	2.504
5414.7	5.8	753.0	0.0182	0.605	87.0	0.027	0.16	34600.	2.290
5898.8	5.3	679.0	0.0180	0.648	96.0	0.022	0.16	36600.	2.102
6930.3	4.5	564.0	0.0168	0.811	98.0	0.018	0.20	35100.	1.789
7478.1	4.2	518.0	0.0160	0.917	99.0	0.016	0.21	34800	1.658
8047.8	3.9	478.0	0.0152	1.035	99.0	0.015	0.23	34500.	1.541
8638.9	3.6	443.0	0.0144	1. 164	99.0	0.014	0.25	34500.	1.435
9886.4	3.2	384.0	0.0130	1.452	100.0	0.012	0.29	34200	1.254

Graphite
C

$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(m r)$	$R_{p}(m r)$	$R_{m}(m r)$	$P(8)$	ω (mr)	$\Delta E(e V)$	$E / \Delta E$	$\lambda(\mathbb{1})$
5554.9	5.6	1571.0	2.21000		100.0	1.4500			2.232
5898.8	5.3	1228.0	0.02937	0.798	99.0	0.0265	0.056	106000.	2.102
6930.3	4.5	930.0	0.01015	0.363	97.0	0.0119	0.061	113000.	1.789
7478.1	4.2	837.0	0.00721	0.331	94.0	0.0101	0.068	110000.	1.658
8047.8	3.9	762.0	0.00588	0.331	89.0	0.0089	0.075	107000.	1. 541
8638.9	3.6	698.0	0.00582	0.350	97.0	0.0075	0.077	112000	1.435
9886.4	3.2	597.0	0.00554	0.421	99.0	0.0061	0.089	111000	1. 254

$E(e V)$
$\theta_{C}(m r) \quad \theta_{B}(m r)$
$R_{p}(\mathrm{mr})$
R_{m} (mr)
P(8)
$\omega(m r$
(002) m - 1
$\begin{array}{lll}18.0 & 1571.0 & 14.2500\end{array}$
1418.4
4. 2500
1. 304
$\begin{array}{rr}54.0 & 14.000 \\ 81.0 & 0.497\end{array}$
$\begin{array}{rrr}1486.7 & 17.2 & 1267.0 \\ 1740.0 & 14.7 & 953.0\end{array}$
$\begin{array}{lll}1740.0 & 14.7 & 953.0 \\ 2042.4 & 12.6 & 768.0\end{array}$
$\begin{array}{lll}2042.4 & 12.6 & 768.0 \\ 2165.9 & 11.9 & 714.0\end{array}$
0.1494
0.0872
$\Delta E(e V)$
E/DE
$\lambda(\dot{A})$

1418.4	18.0	1571.0	14.2500		54.0	14.000			8.741
1486.7	17.2	1267.0	0.4647	1.304	81.0	0.497	0.23	6410.	8.339
1740.0	14.7	953.0	0.1494	0.500	71.0	0.201	0.25	7000.	7.125
2042.4	12.6	768.0	0.0872	0.410	46.0	0.164	0.35	5870.	6.070
2165.9	11.9	714.0	0.0845	0.416	64.0	0.235	0.34	6440.	5.724
2233.2	11.2	667.0	0.0840	0.433	75.0	0.115	0.33	6840.	5.407
2622.4	9.8	572.0	0.0822	0.500	86.0	0.092	0.38	6970.	4.728
2984.3	8.6	495.0	0.0780	0.592	91.0	0.081	0.44	6710.	4.154
3691.7	7.0	394.0	0.0684	0.785	95.0	0.065	0.58	6410.	3.358
4466.3	5.7	323.0	0.0591	1.007	97.0	0.053	0.71	6300.	2.776
4510.8	5.7	320.0	0.0586	1.020	97.0	0.053	0.72	6300.	2.749
4952.2	5.2	290.0	0.0542	1.148	98.0	0.048	0.79	6270.	2.504
5414.7	4.7	265.0	0.0501	1.283	98.0	0.044	0.87	6240.	2.290
5898.8	4.3	243.0	0.0464	1.427	99.0	0.040	0.95	6230.	2.102
6930.3	3.7	206.0	0.0400	1.739	99.0	0.034	1.12	6200.	1.789
7478.1	3.4	191.0	0.0372	1.909	99.0	0.031	1.21	6190.	1.658
8047.8	3.2	177.0	0.0347	2.089	99.0	0.029	1.30	6170.	1.541
8638.9	3.0	165.0	0.0324	2.280	99.0	0.027	1.40	6150.	1.435

	$\begin{gathered} \text { Penaaerychritol } \\ \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4} \end{gathered}$							$\begin{array}{r} 2 \mathrm{~d}- \\ (002) \end{array}$	$\begin{array}{r} 8.742 \AA \\ \mathrm{~m}-2 \end{array}$
$E(\mathrm{eV})$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$R_{p}(m r)$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	P(8)	$\omega(\mathrm{nr})$	$\Delta E(e V)$	E/ $\triangle E$	$\lambda(\lambda)$
2836.6	9.1	1571.0	4.61300		78.0	5.2300			4.371
2984.3	8.6	1255.0	0.03137	0.0911	77.0	0.0346	0.034	88500.	4.154
3691.7	7.0	876.0	0.00823	0.0332	62.0	0.0132	0.041	90700.	3.358
4466.3	5.7	688.0	0.00605	0.0330	72.0	0.0089	0.049	92000.	2.776
4510.8	5.7	680.0	0.00605	0.0333	74.0	0.0086	0.048	93600.	2.749
4952.2	5.2	610.0	0.00600	0.0371	84.0	0.0073	0.052	96100.	2.504
5414.7	4.7	551.0	0.00585	0.0420	89.0	0.0064	0.056	96400.	2.290
5898.8	4.3	502.0	0.00564	0.0477	71.0	0.0058	0.063	93900.	2.102
6930.3	3.7	422.0	0.00514	0.0609	95.0	0.0049	0.076	90700.	1.789
7478.1	3.4	389.0	0.00487	0.0681	96.0	0.0046	0.084	8930 S	1.658
8047.8	3.2	360.0	0.00461	0.0759	96.0	0.0043	0.091	88400	1.541
8638.9	3.0	335.0	0.00435	0.0840	970	0.0039	0.097	89000	1.435
9886.4	2.6	291.0	0.00389	0.1017	98.0	0.0034	0.113	87400.	1.254

	$\begin{array}{r} \text { Pentaerythritol } \\ \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4} \end{array}$						$\begin{gathered} 2 \mathrm{~d}- \\ (002) \quad \mathrm{m}=4 \end{gathered}$		
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{p}}(\mathrm{mr})$	$R_{m}(\mathbf{D r})$	P(8)	$\omega(\mathrm{mr})$	$\Delta E(e V)$	E/ ΔE	$\lambda(\lambda)$
5673.1	4.5	1571.0	2.66900		95.0	2.3600			2.185
5898.8	4.3	12930	0.01262	0.1307	95.0	0.0116	0.019	304000	2.102
69303	3 :	959.0	0.00368	0.0477	92.0	0.0043	0.021	332000	1.789
7478.1	34	8610	0.00257	0.0419	88.0	0.0035	0.022	337000.	1.658
80478	3 ?	1820	000191	0.0408	49.0	0.0033	0.027	303000	1.341
8638	311	1100	000193	00423	900	0.0026	0.026	332000	1.435
48804	? ${ }^{\text {a }}$.111)	000187	00498	960	0.0021	0.030	327000	1254

			$\mathrm{K}_{2} \mathrm{O} \times$	$\begin{aligned} & \text { Mica } \\ & 2_{2} \mathrm{O}_{3} \mathrm{SSIO}_{2} \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}$			$\begin{gathered} 2 \mathrm{~d}-\quad 20.000 \AA \\ (002) \quad \mathrm{m} \end{gathered}$		
$E(e V)$	$\theta_{c}(m r)$	$\\|_{\text {B }}(\mathrm{mr})$	$R_{p}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{a}}(\mathrm{mr})$	P(t)	$\omega(\mathrm{mr})$	$\Delta E(e V)$	E/DE	$\lambda(A)$	
620.4	38.0	1571.0	0.6215		0.9	62.000			19.980	
637.4	38.2	1340.0	0.0522	0.0586	0.9	4.040	0.6	1050.	19.450	
676.8	38.2	1160.0	0.0270	0.0303	1.0	1.980	0.6	1160.	18.320	
705.0	37.8	1076.0	0.0210	0.0236	1.0	1.530	0.6	1220.	17.590	
176.?	36.5	926.0	0.0151	0.0170	1.1	0.959	0.6	1390.	15.970	
8515	36.9	8170	0.0134	0.0151	1.4	0.672	0.5	1580	14.560	
929 \%	330	131.0	0.0130	0.0147	1.9	0.503	0.5	1780.	13.340	
10120	31.1	6600	0.0134	0.0152	2.5	0. 388	0.5	2000	12.250	
10410	304	6390	0.0136	0.0155	28	0356	0.5	2090.	11.910	
11880	$\therefore 3$	3500	00148	0.0170	4.4	0.243	0.5	2520	10.440	
12560	2f 0	5180	0.0152	0.0174	5.3	0210	0.5	2720.	9.890	
1.8810		431.0	00126	0.0146	11	0130	0.4	3550	8.339	
11.000	164	3650	00176	0.0203	88	0145	0.1	2630	1. 125	
20420		3090	0.0145	0.0166	11	0149	10	2140	6.010	
21660	151	2910	00154	00178	86	0131	09	2280	5.724	
22930		2140	00164	0.0191	100	0116	0.9	2420	5.407	
26.20	1: 9	2390	0.0186	00222	150	0090	10	2710	4.128	
29840	11	1100	00210	00261		$0 \quad 012$	10	2940	4. 154	
369? 0		1690	00216	00278	280	0060	13	2820	3358	
466011	,	1390	00169	00221	33.0	0.040	1.3	3500	2.716	
$\therefore 31111$, ${ }^{\text {, }}$	1380	00169	00228	330	0040	13	3520	2. 14.0	
4.45: 11	' 0	1260	00164	00232	380	0034	1.3	3120	2.504	
919 11	+	1150	00162	00241	430	0030	14	3860	2.290	
9809 11	39	1050	00159	00252	480	002.	1.3	3960	2102	
023010	$\bigcirc 0$	897	00154	00282	580	0022	11	4010	1789	

			$\mathrm{K}_{2} 0$ * 3 A	$\begin{aligned} & \text { Hica } \\ & 2^{O_{3}}{ }^{\star 6 \mathrm{SiO}_{2}} \end{aligned}$	$2 \mathrm{H}_{2} \mathrm{O}$			$\begin{aligned} & 2 \mathrm{~d}-\quad 20.000 \dot{A} \\ & (002) \quad \mathrm{m}-2 \end{aligned}$	
$E(e V)$	$0_{c}(m r)$	${ }^{8} \mathrm{~B}(\mathrm{mr})$	$R_{p}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	P(8)	$\omega(\mathrm{nr})$	$\Delta E(e V)$	E/ ΔE	$\lambda(i)$
1240.0	26.3	1571.0	2.35500		11.0	20.000			10.000
12540	26.0	1422.0	009601	0.1120	11.0	0.663	012	10000.	9.890
1487.0	220	986.0	001778	0.0213	110	0.125	012	12100	8.339
17400	18.4	1930	000390	0.0044	30	0094	010	10800	7.125
204? 0	157	6520	000489	00056	42	0.085	023	9010	6.070
21660	151	6090	000593	0. 0068	58	0.074	023	9440	572.
22930	14. is	5710	000682	0.0079	77	0.065	023	9910	5.407
$\therefore 6220$	129	4920	000878	0.0104	130	0.049	026	11100	4.728
29840	114	4280	001066	0.0132	210	0.038	023	11900	4154
309? 0	\bigcirc	3430	001132	00147	210	0033	0 3.4.	10800	3358
4.6660	; ${ }^{\text {, }}$	2810	0)00900	00132	340	0 02?	(1) 3.0	13100	2170
. S11 0	;	$? 7811$	000098	00132	350	$002 ?$	113.	13100	? 148
.99? 0	11	2530	000051	00138	400	0019	030	13100	$\therefore 30$.
3.140	6 a	2310	000946	00246	460	0017	$03 \cdot$	1.000	$\therefore 290$
58000	54	2120	000938	00156	510	0 01s	0.41	14.300	2102
-230 0	511	1800	000911	00111	600	0013	0.48	1.0500	178.
. 7811	* '	$10^{\circ} 11$	00089 ?	00189	64.0	0 01?	03 !	1.4.00	1698
a 11.081	- ?	1320	000810	00202	-8 0	0011	(1) 3	1.0000	130.1
Bn30 1	11	16.50	000846	00215	120	0010	(1) 34	1.600	1435
-sish 0	3 -	$\therefore 0$	000193	00243	710	0009	$1) \mathrm{es}$	1:0,00	123.

$E(e V)$	$\theta_{c}(m r)$	${ }^{\prime} \mathrm{B}^{(\mathrm{mar}}$)	$\mathrm{K}_{2} \mathrm{O} \star 3 \mathrm{Al}_{2} \mathrm{O}_{3} \star 6 \mathrm{SSIO}_{2} \star 2 \mathrm{H}_{2} \mathrm{O}$			ω (ar)	$\Delta E(e V)$	$\begin{gathered} 2 d-\quad 20.000 \dot{\lambda} \\ (002)=-3 \end{gathered}$	
			$\mathrm{R}_{\mathrm{p}}(\mathrm{mr})$	$R_{n}(\mathrm{mr})$	P(8)			E/DE	$\lambda(\lambda)$
1859.0	159	1571.0	4. 5690		27.0	15.000			6.669
2042 n	157	1144.0	0.0645	0.0831	29.0	0.172	0.2	12800	6.070
21660	15.1	1032.0	0.0466	0.0622	28.0	0.132	0.2	12700	5.724
22930	144	945.0	0.0374	00524	26.0	0.113	0.2	12300	5.407
262? 0	128	1880	00284	00453	260	0.087	0.2	11500	4.728
29840	11.	6730	00276	00485	35.0	0.066	0.2	12000	4.154
36920	4 :	5280	00265	00476	480	0047	0.3	12500	3358
44660	1 ,	4290	00252	00527	610	0.035	0.3	13100	2776
4.5110	' ${ }^{\text {, }}$	4250	00251	$0 \quad 0532$	620	0.035	0.3	13100	2148
.495? 0	111	3850	00267	00581	610	0.031	0.4	13000	2504
201) 0	\bigcirc	3510	00260	00635	120	0028	04	12900	2290
489011	$3 \times$	3.10	0023 ?	0069 ?	160	0026	05	12800	2 10:
023011) 11	$\therefore 1 ?$	1) 0214	00816	820	0022	0.6	12500	1789
14.30	1.0	2510	00204	00879	840	0021	0.6	12500	1658
40.480	43	2330	00194	00966	860	0019	0.6	12400	1541
5n30	- 11	2110	00185	01010	880	0018	07	12400	1435
-9らい1)	,	1890	00161	01163	910	0016	08	12300	1254

$E(e V)$	$\mathrm{i}_{\mathrm{C}}(\mathrm{rar})$	$\theta_{B}(\mathrm{mr})$	Mica				$\omega(\square r)$	$\Delta E(e V)$	$2 \mathrm{~d}=20.000 \dot{1}$	
			$\mathrm{K}_{2} \mathrm{O}$ * $3 \mathrm{Al}_{2} \mathrm{O}_{3} * 6 \mathrm{SiO}_{2}{ }^{\text {* }} 2 \mathrm{H}_{2} \mathrm{O}$						(002)	m-4
				$R_{p}(\boldsymbol{r r})$	$R_{1}(\mathrm{ar})$	P(8)			$\mathbf{E / \Delta E}$	$\lambda(A)$
2479.0	133	1571.0	1	53800		17.0	7.9500			5.002
26.20	129	12380	0	01174	0.01335	16.0	0.0533	0.05	54300.	4.728
29840	114	9800	0	00505	0.00590	15.0	0.0252	0.05	59200.	4.154
36920	9 :	7360	0	00289	000338	160	0.0131	0.05	69100	3. 358
$\therefore 4660$	7	5880	0	00378	000488	270	00106	007	62900	2.776
. 5110	- ${ }^{\text {- }}$	5820	0	$0038 ?$	000495	280	00105	007	62700	2748
-45? 0	,		(1)	$00 \div 59$	000561	360	00088	005	64.700	2504
5.1511	"	- io 0	0	00430	000628	460	00018	008	65100	$? 290$
S990	\checkmark	. 3.0	0	00.2.6)	000697	S? 0	00070	009	65800	2102
09300	,	106, ${ }^{3}$	()	00. 00	000836	0.0	00037	011	03:00	1789
\cdots 's 1	\bullet	3351	11	(1)0.64)	000906	at 0	0 oos	1) 1.	\$4.100	1658
$40.81)$:	3130	11	(1)0.. 3 ?	0)00978	i3 0	() 00ヶ?	1) 1^{1}	0.2800	1541
$\operatorname{sn320}$	- 1	.410		(1).. ${ }^{\text {a }}$	0 01050	' ${ }^{1}$	1) 30.08	(1) 1.0	0.800	1.35
48800	3 ,	$\therefore 30$	0	00.000	001199	B: 0	(1) 1)0..!	11.	. 1000	1 :30

			$\mathrm{K}_{2} \mathrm{O}^{\text {* }} 3$	$\begin{aligned} & \text { Mica } \\ & 2^{\circ}{ }_{3}{ }^{\star} 6 \mathrm{SiO}_{2} \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}$			$2 \mathrm{~d}-\mathrm{C}$ (002)	$0.000 \dot{\lambda}$ $=-5$
$E(\mathrm{eV})$	$0_{c}(m r)$	$\theta_{B}(\mathrm{nr})$	$R_{p}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{m}}(\mathrm{Er})$	P(${ }^{\text {) }}$	$\omega(\mathrm{Or})$	$\Delta E(e V)$	E/LE	$\lambda(\lambda)$
3098.0	11.0	1571.0	8.1150		68.0	11.000			4.002
3692.0	92	9960	00320	0.0638	52.0	0.053	0.13	29300.	3.358
4466.0	77	7670	00186	0.0517	39.0	0.040	0.19	23800.	2.776
45110	11	7570	00184	00518	39.0	0.040	0.19	23800	2.748
49520	70	$610 \quad 1$	00180	00546	510	0.030	019	26500	2.506
54150	1	*09 11	0 018:	00599	690	0.025	0.19	28000	2.290
58990	' ${ }^{\text {a }}$	2330	(0) 018:	00665	710	0022	0.21	28000	2.102
6930.0	30	.0.0.0	00173	00821	850	0019	026	26900	1.789
76780	$\therefore 0$	".? 0	00104	00907	880	0017	028	26300	1.658
80480	$\therefore 1$	3日) 0	0016 ?	00945	900	0 01t	031	25900	1.541
86390	[.11	10: 0	0015	0108%	410	0015	036	25600	1435
98860	3 ,	11.6	(1)11.01	1) $1: 78$	4.40	0013	039	25100	1.254

Rubidium Acid Phthalate - RAP
2d - $26.140 \dot{1}$
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COJH})(\mathrm{COO}) \mathrm{Rb}$

$E(e V)$	${ }_{c}(\mathrm{mr})$		$R_{P}(m r)$	$R_{n}(\mathrm{mr})$	P(8)	$\omega(\boldsymbol{e r})$	$\Delta E(e V)$	$E / \Delta E$	$\lambda(A)$
475.0	40.2	1571.0	30570		4.5	61.00			26.100
5113	37.9	1192.0	01108	01243	36	220	0.4	1140.	24.248
5249	36.0	11310	00736	00825	24	178	04	1190	23.620
5563	31.1	10230	00748	00835	27	190	07	824	22.287
	31 ;	0780	1) 0104	00781	? 4	114	C 7	ES 1	21645
031	3. 1	8.10	00610	00086	3 ,	118	01	949	19451
0705	11 s	$i S^{8} 0$	00591	011009	4 is	041	01	1010	18.319
1050	11 :	1340	0 0)86	00605	48	08%	01	1050	11586
76 ?	300	0590	00609	00691	60	061	07	1150	IS 973
851,	$\therefore 83$,4? 0	0 U6T?	00754	84	(1) 3	07	1260	14560
9? 9	$\therefore 19$	3300	() 10846	() 0813	1.11	(1) 40.0	0 1	1370	13336
1011	$\therefore 3$.840	(1) (1) 3 n	0 08\%	1) 1	() 30	0	1470	12255
10.110	$\therefore 8$	4.40	(1) U176 5	00843	1*1)	(1)30	0 ,	1310	11910
11880	\therefore ?	.110	0 (1)91	00410	2311	$0: 0$	0 ?	1060	10436
12536	$21:$	3890	() 0100	0 100?	200	026	01	1720	9890
1480 ?	150	395	00105	(1015	3401	011	08	1930	8339
17.011	14?	$\therefore 1$	110.6.	() 0esa	3111	1) 11	0	? 50	1125
.196. ${ }^{\text {a }}$	1:	$\therefore 3) 0$	0058 :	00680	350	11.	10	$\therefore 010$	- 070
$\therefore 165{ }^{\circ}$	114	$\because 10$	00016	00800	400	$0 \quad 12$	1 !	1850	5124
293.	11	$\therefore 100$	(0)0731	00896	-5 0	01 ?	13	1110) 407
$\therefore 62 ?$ -	1111	! ¢ : 0	() 11:96	01008	Ss 0	$1)$: 1	11	1650	- 128
\therefore UR ${ }_{\text {c }}$	4.	$160 \quad 1$	0 0816	01.04	030	010	19	1500	4154
1591	: 0	1.90	0 0188	011.10	1) 11	() 04	? 0	1440	3358
-.bt ?	1) 3	1010	(0)0129	01638	8011	1108	33	1310	2176
-. 510 0	* -	10, 0	00126	01644	810	() OR	13	1370	? 149
4.932 :	, 1	961	00690	$01 / 59$	840	001	31	1330	2504
1.14.	, ?	818	0 Oes3	01811	80, 0	001	41	1330	2290

$E(e V)$	${ }_{c}(n r)$	$A_{B}(\mathrm{mr})$		$R_{p}(\underline{0})$		$R_{m}(\mathrm{Er})$	$P(t)$			(nr)	$\Delta E(e V)$	E/AE	$\lambda(A)$
949.2	26.5	1571.0	0	04317			0.	2		. 000			13.062
1011.7	253	12170	0	. 00072		0.00080	0			350	0.13	7750	12.255
10410	248	11480	0	00054		. 00061	0	1	0	274		8100	11.910
11880	22 ?	9260	0	00026		. 00029	0	1	0	133		10000	10.436
12536	21 ?	8590	1)	00023	0	00026	0	2		106	011	10900	9.890
1486%	181	6920	0	00038	0	00043	0	3	0	058	010	14300	8339
17600	$15:$	5170	0	00359	0	00415	6	4	0	041		15800	7.125
20424	123	4830	0	00565	0	00594	7	3	0	052		10200	6070
21659	119	4560	0	00582	0	00635	8	4	0	048	0 ? 1	10200	5724
2293:	11 '	4210	0	00560	0	00611	9)	0	041	021	11000	5401
262? 4	103	3100	0	00546	0	00599	17	0	0	030	020	12800	4728
29843	9 :	320	0	00546	0	00601	17	0		0?3	020	14700	4154
3691 ?	-	2600	0	005s2	0	00638	26	0		015	0 21	11500	3 358
44663	63	$\therefore 160$	0	00ss1	0	00678	31	0	0	011	0 23	19400	2116
-510 5	6 ?	2120	0	00sso	0	00680	31	0		011	0 ? 3	19400	2749
.95? ?	51	1930	0	00565	0	00104	43	1		010	025	20000	2504
1.16;	,	1700	0	00536	0	00728	48	0	0	00%	0 ? 6	20400	? 290
38988	$4 \cdot 8$	16? 0	0	00s:3	0	00153	53	0	0	008	024	20600	2102
69303	4	1310	0	00496	0	00804	61	0	0	001	033	20900	1789
16781	38	1210	0	00619	0	00829	$6)$	0	0	000	030	21000	1658
80:18	33	1180	0	00\% 00	0	008ss	08	0		000	038	21100	1541
8638 \%	33	1100	0	00:6.6	0	00880		0		00s	04.	21200	1435
980\% -	? B	902	0	00403	0	00924	16	0		00s	040	21400	1254

Rubidiun Acid Phehalate .. RAP

 $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COO}) \mathrm{Rb}$2d - $26.140 \dot{A}$
(001) a-3

$E(e v)$	$\theta c^{(m r)}$	$3_{3}(\mathrm{mr})$		$R_{p}(m r)$	$R_{m}(m r)$	P (1)	$\boldsymbol{*}$ (ar)	$\Delta E(e V)$	$E / \Delta E$	(${ }^{\text {A }}$)
16234	188	15110	2	37600		170	13.000			8710
14867	180	12780	0	02880	00343	150	0.138	006	24000	8.339
17400	$15:$	4580	0	00505	00060	86	0.043	0 OS	32900	7.125
? 04.5	125	1710	0	00508	0 005 7	70	0.052	011	18700	6010
210) 0	11.	311	0	00500	00007	86	0040	0 1?	17600	5724
2993:	11	- i) 1	${ }^{1}$	1)09. 4	$000 / 5$	110	0046	013	17900	, 407
20.? 0	10 ?	$\cdots 11$	(1)	001:0	00092	160	0035	014	18600	4128
2484 1	4 :	-4, 1)	0	00880	00110	240	0028	015	19100	4154
3091?	' ${ }^{\prime}$	34 co	0	011113	00141	400	0020	018	20100	3358
- 860 3	03	$3 . \therefore 11$	U	01000	$001 / 1$	310	0010	021	. 0800	$\therefore 116$
$\therefore \rightarrow 10$ -	0 :	311	$1)$	(1)! ${ }^{\text {a }}$	110173	560	0016	0 ? ?	? 0800	$\therefore 149$
44)?	,	3420	11	(1)!	00189	600	0013	$0 \therefore$	20000	$\therefore 504$
3414 ;	4 :	\therefore an 0	$1)$	0111.11	00.30	6) 0	0013	0 ?	20400	$\because 290$
S898 3	- 6	\therefore A. 1)	$1)$	U101.	0020	100	0 012	0 29	20300	$\therefore 102$
09303	C. 1	.0) 0	0)	(0)co..m	00.51	710	0011	035	20000	1189
16.781	$3+$	14: 11	$1)$	O)O1,	00.66	i4 0	0010	O 3:	14900	1658
rose 18	3 .	('81)	()	(o)co	00.82	820	0009	0 -	19800	1561
	1 1	! \cdot. 1	11	(1) ¢	(1)11.91	8.0	0008	$0 \ldots$	1.800	1.35
ciste.	\therefore -	1... 11	1)	(1)	() 03?8	810	0007	050	19800	1.54

$E(e V)$		$\theta_{c}(m r)$	'stmr)	$R_{p}(\mathrm{mr})$	$R_{n}(\mathrm{mr})$	P(1)	$\omega(E x)$	$\Delta E(e V)$	E/DE	$\lambda(\lambda)$
1897	7	12.6	15710	0.31050		2.6	11.0000			6.533
204?	4	12	11920	000416	0.00466	3.9	0.0749	0.06	33600	6.070
? 165	9	119	10680	000327	0.00367	42	0.0559	0.07	32500	5.724
2293	:	115	9150	000271	0.00313	46	0.0429	0.07	34400	5.407
20?	.	103	8090	000233	000269	62	0.0274	007	38300	4.728
298.	1	4 !	- 840	000238	0 00281	91	0.0194	0.01	42400	4.154
3691	,	"	5600	000283	000351	180	0.0118	0.07	50800	3358
-.60	3	01	4390	$10^{0} 00327$	000648	310	0.0083	0.08	56500	2176
- 510	8	6	. 340	000329	000443	31.0	00082	008	56600	2149
-45?	?	31	3430	000344	000490	380	00071	009	S8200	2504
3.16	,	3	3580	000353	000537	450	00063	009	59000	2290
5898	8	4	3280	000359	000585	510	00058	0.10	58800	? 102
0930	1	4	$\because 10$	000356	000619	610	00049	0.12	58600	1189
14.8	1	18	2510	000330	000126	650	0.0045	0.13	58300	1658
804)	8	33	2380	0 0034.1	000113	69.0	0.0042	0.14	58200	1541
3638	4	33	$\therefore \therefore 10$	000331	000819	120	00039	015	57900	1435
- 5 Sto	.	? \%	1930	1000300	000911	110	00034	017	57300	1254

	Rubidium Acid Phehalate .. Rap							$\begin{gathered} 2 \mathrm{~d}-2^{26.140 \dot{A}} \\ (001) \quad=5 \end{gathered}$	
$E(e V)$	$G_{c}(\mathrm{mr})$	$A_{B}(\mathrm{ar})$	$R_{P}(\underline{0})$	$R_{n}(\mathrm{mr})$	P(1)	ω (mr)	$\Delta E(e V)$	E/ $\mathrm{EE}^{\text {E }}$	$\lambda(\lambda)$
2372.1	11 ?	15710	0.7931		81	8.9300			5.227
26224	103	11300	00036	0.0041	12	0.0360	0.045	58900	4.728
2984 3	9 ?	9190	00019	0 2023	12	00196	0.045	66800.	4.154
3691	10	0980	00015	00019	110	0.0104	0.046	80400	3.358
46003	33	5600	00017	00022	207	00066	0.047	95600.	2.776
. $510=$,	$35 \% 11$	00011	00022	210	00064	0.047	96900	2.749
-95? ?)	50011	00018	00025	210	0.0052	0.048	104000	2.504
5416.	4 ?	4)3 0	00019	00028	340	00045	0.050	108000	2.290
S898 A	- 5	4140	00020	00030	400	00040	0.054	109000	2. 102
69303	$\rightarrow 1$	3690	130091	00037	5: 0	00033	0.062	111000	1. 789
$\cdots 481$	3 s	3230	() 0021	00040	S) 0	00031	0070	107000	1.658
90: 3	3 3	29011	() 0021	$0110 \% 3$	b. 0	00029	0.075	107000	1.541
86394	31	≥ 180	0 002?	() 00600	no 0	00021	0.082	105000	1435
4886 4	? 8	24? 17	() O0. 0	00033	130	00026	0095	104000	1254

$E\left(e b^{\prime}\right)$	$\theta_{c}(m r)$	${ }_{6}{ }^{(m)}$ (m)	$\mathrm{R}_{\mathrm{p}}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	P(1)	$\boldsymbol{u}(\mathrm{mr})$	$\Delta E(e V)$	E/DE	$\lambda(i)$
4662	j9 ${ }^{\text {a }}$	15110	12730		1.9	60.00			26.590
5113	36.9	11480	00299	00336	12	1. 78	041	1250.	24.250
5249	350	10930	0 016?	00181	08	1.48	040	1310.	23.620
5563	298	Q0.4 0	00.090	() OSSl	20	1.79	0.65	861.	22.290
518	30 -	4)10	0) 0.4 .0	0) 05:3	21	1 , 7	$\cup 64$	894.	21.640
631.	$31:$	8.10	001.31	(1) 10.8:	$\therefore 9$	106	063	1010.	19.450
0768	310	- 011	0 0.?	1) 11.8 .80	33	087	062	1090.	18. 320
1050	30)	$\therefore 30$	011.301	1) 11.8 .8.	34	078	062	1130	17.590
176?	293	64.611	n 11.50	1) $6 \rightarrow 18$, 3	060	062	1260	15.970
851 3	21"	28011	110.4	() 11910	11	041	061	1390	14. 560
929 ;	264	S? 0	1) 0038	0 00.s	100	038	061	1520	13.340
10120	248	4 [411	() 0280	1) $11+8$?	130	032	062	1640	12.250
10\%10	24?	-63 11	() Os?.	(1) 102	150	030	062	1080	11.910
11880	218	.033 11	1) 0003	(1) 18803	$\therefore 10$	023	064	1850.	10.440
12540	208	3810	0 Onso	0 0845	2) 0	021	066	1910.	9.890
14870	118	1190	(1) 10	1)11985	3) 0	016	073	2050.	8.339
17400	153	? ' "	111**	1) 11.0	. 60	013	082	2110.	7125
204: 0	131	?3111	1.1)?	-1203	So 0	011	095	2150	6.070
21600	[2 3	$\therefore 10$	1) $0 \because$	() 131?	590	010	100	2160.	5.124
22930		20s 0	11) 1):1:0	(1) 1365	6 2 0	010	106	2170.	5.407
26220	10 :	190	1) Oni 3	() 1681	690	008	120	2190	4728
298.01)	$8 \cdot$	13: 11	(1) U0.18	(1)1531	140	007	1.33	2240	4154
369? 0	1	1:'11	(1)0333	1) 0.689	620	004	124	2970	3358
4.4660	30	10) 11	40.1?	() 014)	150	0 OS	197	2270	2776
45110	$4{ }^{4}$	10.0	U 041?	00801	100	10 OS	200	2260	2748
49520	54	943	00401	00898	800	004	2.30	2160	2.504

	Potasium Acid Phthalate -. KAP$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COO}) \mathrm{K}$						$\begin{gathered} 2 \mathrm{~d}-\quad 26.620 \dot{A} \\ (001) \quad \mathrm{m}-3 \end{gathered}$		
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{p}}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	\boldsymbol{P} (8)	'(nr)	$\Delta E(e V)$	E/DE	$\lambda($ A $)$
1397.0	18.8	1571.00	0.002190		0.02	11.0000			8.875
1487.0	17.8	1222.00	0.000012	0.000014	0.01	00761	0.041	36100.	8.339
1740.0	15.3	932.00	0000002	0.000003	0.01	00283	0.037	47600	7.125
2042.0	13.0	753.00	0.000002	0. 000002	001	00147	0.032	63700.	6.070
2166.0	12.3		0000004	0.000004	002	0.0119	0.031	70800.	5.724
22930	110	65500	$)^{0} 000006$	0.000006	004	1) 0098	0.029	78600	5.401
26220	10.1	S6? y 0	0.000019	0.000021	0 ? 1	00063	0.026	101000.	4. 128
2984.0	8 9	487 U0	0.000067	0.000075	11 ?	00042	0.024	126000	4.154
3692.0	7.1	388.00	0000803	0.000887	8.50	00061	0.060	61200	3358
44660	50	318.00	0000397	0.000434	736	00031	0 050	89100	2110
45110	5.9	315.00	0000392	0.000430	161	00036	0.049	91800	2748
$\therefore 9520$	34	28600	0000366	0.000402	916	() 0028	0.047	106000	2504
54150	49	26100	0000352	0.000389	1100	1) 002 ?	0.045	119000	2290
5899.0	4.5	239.00	0000344	0.000383	1300	00018	0046	135000	2102
6930.0	3.8	203.00	0.000336	0.000383	1900	0 001?	0042	164000	1.189
7478.0	3.6	188.00	0.000335	0.000386	2200	00011	0.044	170000	1658
80480	33	17500	0000334	0000391	2600	00009	0043	188000	1.541
8639.0	3.1	162.00	0.000331	0.000398	2900	U 0008	0045	193000	1435
9886.0	2.7	142.00	0000325	0.000414	3700	00007	0046	213000	25

	Potasium Acid Phthalate -- KAP $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COO}) \mathrm{K}$						$\begin{gathered} 2 d-26.620 A \\ (001)=-4 \end{gathered}$		
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{nr})$	$\mathrm{R}_{\mathrm{p}}(\mathrm{mr})$) $R_{m}(\mathrm{mr})$	$P(8)$	$\omega(m r)$	$\Delta E(e V)$	E/DE	$\lambda(A)$
18630	14.3	1571.00	077790		1.08	64900			6.657
2042 . 0	13.0	1148.00 .0	. 000326	0.000366	1.16	0.0200	0.018	111000	6.070
21660	123	103500.00	. 000248	0.000219	1.28	0.0137	0.018	123000	5.724
22930	116	94800	000214	0.000241	1.46	00105	0.017	133000	5.407
36.20	101	19000	000208	0.000237	? 42	00062	0016	163000.	4.728
29840	8 -	61400	000281	0000324	4.89	00043	0016	186000	4.154
36920	11	52900	000416	0.060535	575	0)0059	0 03;	99000	3358
$\therefore 16660$	30	4.000000	. 000164	0000181	370	00031	0031	147000	2716
45110	59	4く: 00	000158	0.000116	369	00030	0030	151000	2.748
1.9520	34	38600.00	. 000121	0.000133	3.11	00023	0028	117000	2. 504
54150	14.9	35100	000095	0000105	381	0001 ?	0020	$\therefore 12000$	2. 290
58990	45	32100.00	. 000077	0000085	394	() 0014	$0^{1} 020$	2is 3000	2102
09300	38	272.00 .0	.000051	0000057	423	00008	O) 021	334000	1189
1478.0	31	252.00 .000	. 000043	0.000047	4.40	00007	0020	375000	1.658
80480	33	23400.0	. 000036	0.000039	453	00006	0019	420000	1. 541
86390	3	21700.000	. 000030	0.000033	4.66	00004	0018	494000	1435
98.860	? 7	19000	000021	0.000023	488	00003	0010	613000	1254

$E(e V)$	$0_{c}(\mathrm{mr})$	$\mathrm{CB}_{\mathrm{B}}(\mathrm{mr})$	$R_{p}(\underline{\text { m }}$)	$\mathbf{R}_{\mathrm{m}}(\mathrm{mr})$	P(8)	$\omega(\mathrm{mr})$	$\Delta E(e V)$	E/LE	$\lambda(\lambda)$

2328.0	11.4	1571.0	2.07900		33.0	5.7100			5.325
2622.0	10.1	1092.0	0.00592	0.00829	32.0	0.0148	0.020	130000.	4.728
2984.0	8.9	895.0	0.00347	0.00551	29.0	0.0102	0.024	122000.	4.154
3692.0	7.1	682.0	c. 00152	0.00191	14.0	0.0083	0.038	97400.	3.358
44660	59	548.0	0.00125	0.00159	20.0	0.0048	0.035	128000.	2.716
45110	30	542.0	0.00125	0.00160	21.0	00047	0.035	130000	2.748
49520	5.4	489.0	0.00127	0.00168	26.0	0.0038	0.035	141000	2. 504
54150	4.4	464.0	0.00130	0.00179	32.0	0.0032	0.036	149000	2.290
5899.0	4.5	406.0	0.00134	0.00193	380	0.0028	0.039	152000	2.102
69300	3.8	343.0	0.00138	0.00224	490	00023	0.045	155000	1. 789
74780	3.6	317.0	0.00138	0.00242	54.0	00021	0.048	155000	1.658
80480	33	294.0	0.00138	0.00261	590	00019	0.051	158000	1541
86390	3.1	2730	0.00137	0.00280	63.0	$00^{\sim} 18$	0.055	157000	1.435
98860	2.7	238.0	0.00132	0.00322	70.0	0.0015	0.063	156000	1.254

Thallium Acid Phthalate－TAP$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COO}) \mathrm{Tl}$								$\begin{gathered} 2 d-26.620 \dot{i} \\ (001) m-1 \end{gathered}$	
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{P}}(\mathrm{mr})$	$\mathrm{R}_{\mathrm{ma}}(\mathrm{mr})$	$P(1)$	$\omega\left(\begin{array}{rl}\text { r }\end{array}\right.$	$\Delta E(e V)$	E／DE	$\lambda(\lambda)$
466.2	34.4	1571.0	6.425		8.3	69.00			26.590
5113	31.8	1148.0	0.276	0.305	71	2.71	0.62	818.	24.250
52：9	$30 . ?$	1093.0	0221	0.244	67	2.31	0.63	837.	23.620
5503	27.3	994.0	0203	0.224	50	2.39	0.87	642	22.290
47？	280	9510	O） 189	0.209	6 ？	2.14	0.87	656	21.640
n3 ．	281	8210	0156	0113	13	1．51	0.90	711	19.450
$0 \cdot 68$	$\because!$	1000	0159	0116	84	132	094	723	18． 320
かっo	21.1	1230	0164	0.183	44	1.22	0.98	721	17.590
$i \cdot$ ：	？ 5	644.0	0.172	0193	12.0	1.01	1.05	743	is 970
8513	254	3800	0.187	0212	150	0.88	1． 14	746	14.560
424%	24.0	5250	0.203	0233	190	0.77	1.24	751	13.340
101？ 0	230	4190	0.217	0.253	23.0	0.68	1.33	760	12.250
10.410	$\bigcirc 3$	463．0	0.221	0.260	2） 0	0.66	1.36	764	11.910
1188.0	21.6	403.0	0.236	0.288	33.0	0.54	1． 50	790	10.440
12540	20.8	381.0	0.239	0.298	36.0	0.50	1.57	800.	9.890
14870	18.4	319.0	0.239	0.320	46.0	0.40	1.81	824	8.339
17400	161	$? 710$	0227	0.327	55.0	0.33	2.06	843	7125
$\therefore 0.20$	13.8	230.0	0.198	0.306	61.0	0.26	2.28	896	6070
$\because 160.0$	12.9	217.0	0.179	0.279	62.0	0.23	2.28	952	5724
22930	12.0	2050	0145	0221	62.0	0.19	2.09	1100	5407
この？${ }^{\text {a }}$	911	1790	0130	0152	52.0	0.17	250	1050	4． 128
．98：0	8 ：	1570	0.126	0.150	37.0	0.15	2.91	1030.	4154
369 ？ 0	1.0	1270	0.153	0.214	10.0	0.17	4.84	763	3.358
－6Lene 0	61	105.0	0154	0.248	78.0	0.16	682	655	2.776
45110	66	104.0	0.153	0.250	78.0	016	693	651	2148
4932.0	61	94.3	0.149	0.264	81.0	0.15	8.03	616	2.504

$E(e V)$	$\mathrm{S}_{\mathrm{c}}(\mathrm{rar})$	$\mathrm{O}_{8}(\mathrm{ar})$	$R_{p}(\mathrm{mr})$	$R_{m}(\mathrm{mr})$	P (8)	$\omega(E r)$	$\Delta E(e V)$	$E / \Delta E$	$\boldsymbol{\lambda}(\mathbf{A})$
9316	245	1571.0	38650		11.0	32.000			13.310
1012.0	23.6	1170.0	00865	00969	96	0.642	0.3	3680	12.250
10410	233	1108.0	00703	00189	94	0534	0.3	3760	11.910
11580	216	9010	90399	00454	94	0.303	03	4170	10.440
12540	208	8380	1) 0354	00.016	100	0250	03	4330	9890
148i 11	18.	0170	00301	(1) 1300	130	0167	03	4810	8.339
17.00	101	S6) 0	00.124	1) 1135;	190	0119	03	5330	7.125
20420	138	4740	0 0.03	() 03:18	$\therefore 40$	0082	03	6280	6.070
21600	124	4450	1) 0.23	() 02771	$\therefore 0$	0068	0.3	6990	5.724
22930	120	41811	0 U1)	1) $11 / \sim$	$\therefore 21)$	0052	03	8550	5.407
26220	90	3030	00250	00280	$\therefore 10$	0083	0.0	4570	4728
29840	8 ?	3180	00.50	110.88	$\therefore 10$	$\checkmark 071$	0.6	4630	4154
36920	16	2550	$003 \div 5$	$011.1 / 4$	(1) 1)	0063	09	4140	3358
44660	67	2100	00314	00.0 .93	3) 11	O 0ss	12	3850	2.716
4511.0	60	2080	00374	00149 ;	530	0 OSS	1.2	3850	2. 748
4952.0	61	189.0	0.0314	0 OS:1	580	0051	1. 3	3750	2. 504
54150	5 ?	1730	00364	O03)	6.0	0048	1.5	3670	2.290
3899.0) 3	1590	00361	() 11781	か) 0	0045	1.6	3590	2102
6930.0	45	135.0	0.0340	00629	130	0039	2.0	3470	1789
7478.0	4.2	125.0	0.0327	00051	700	0037	2.2	3430	1.658
80480	39	1160	0.0313	00671	180	0.034	2.4	3390	1.541
86390	3.1	1080	0.0300	00690	800	0032	26	3370	1435
98800	3 ?	94 \%	0.0271	00110	81 1)	0028	30	3350	1254

	Thallium Acid Phthalate . TAP$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COO}) \mathrm{Tl}$							$\begin{gathered} 2 \mathrm{~d}=26.620 \dot{i} \\ (001)=m=3 \end{gathered}$	
$E(e V)$	$\theta_{c}(m r)$	$\theta_{B}(\mathrm{Dr})$	$R_{p}(m r)$	$\mathrm{R}_{\mathrm{m}}(\mathrm{m})$	P(8)		$\Delta E(e V)$	$\mathbf{E / \Delta E}$	$\boldsymbol{\lambda}(\dot{A})$
13970	193	15710	3.6010		18.0	18.000			8.874
14870	184	1222.0	0.0547	00637	16.0	0.252	0.14	10900	8.339
17600	161	932.0	00201	00240	130	0.112	0.14	12000	7.125
204? 0	138	7530	00127	0015	14.0	0.068	015	13700	6.070
? 166	1.4	7010	00106	00130	14.0	0056	014	15100	5.724
$\therefore 29311$	120	6550	00075	$0008{ }^{\circ}$	130	0043	013	17900	5407
$\therefore 2 ? 0$	411	2620	00090	0 010:	46	0070	029	8970	4728
298. 11	8 ?	4870	00090	() 0111	1. 0) 058	033	9070	4154
3n9? 0	16	3880	00140	001%	200	0046	041	8980	3358
$\therefore 6600$	07	3180	00168	(1) U:1.'	350	0037	$0 \leq 0$	8990	2776
45110	66	3150	00169	0) 0:14	360	0036	0 50	9000	2748
.9520	01	2860	00173	0 0. 330	$\cdot 10$	0033	0 ss	9030	2504
54.150	51	261.0	00175	0 (1) ${ }^{\text {a }}$	1.10	0030	060	9020	? 290
58990	53	2390	00175	00260	S. 0	0027	066	8990	2102
69300	- 5	203.0	00170	00286	600	0023	078	8890	1. 789
14780	42	188.0	00165	00298	640	0022	0.84	8850	1658
80480	39	1750	00160	00309	610	0020	091	8820	1.541
86390	37	1620	00153	00319	100	1) 019	098	8790	1435
98860	32	1420	00143	00335	150	() 016	112	8800	1254

$$
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COO}) \mathrm{Tl}
$$

$E(e V)$	${ }^{6} c^{(m r)}$	$A_{B}(\mathrm{mr})$	$R_{p}(\underline{r})$	$\mathrm{R}_{\mathrm{m}}(\mathrm{mr})$	P(8)	ω (Er)	$\Delta E(e V)$	E/DE	$\lambda(\dot{1})$
15630	15.1	1571.0	1.16300		9.10	11.000			6.656
2042.0	13.8	11480	000683	000778	7. 10	0.069	0.06	32100	6.070
21660	129	10350	000386	000440	5.77	0.048	0.06	34900	5724
$\therefore 2930$	12.0	948.0	000191	000215	3.86	0.036	006	39300	5407
$\therefore 62 ? 10$	90	1900	000238	000265	259	0065	017	15600	4728
$\therefore 88.11$	8 :	6760	000219	000243	311	0.050	019	16100	4154
309: 0	70	5290	0 0032?	1000366	734	0.032	020	18500	3358
...60 0	6 ?	4300	000399	000464	1300	0022	021	20800	$? 170$
. 110	66	4260	000402	000468	1400	0022	022	20900	2 is 8
:45: 19	61	3860	000430	000511	1800	0.018	022	22300	? 50.0
36150	5	3510	000453	0 00sso	22.00	0016	0.23	23600	$\therefore 200$
58990	53	3210	000470	000587	26.00	0.014	024	2.6.60	? 10.
1,930 0	45	2720	000489	000654	35.00	0.011	027	25100	1784
$\therefore 180$	4.2	252.0	0.00491	000684	3900	0.010	029	26200	1658
80480	3.9	234.0	000490	0.00712	44.00	0.009	030	26500	1541
86390	3.7	217.0	000485	000137	47.00	0.008	0.32	26800	1435
886	32	190.0	000466	000778	5400	0.007	036	21300	125

$2 \mathrm{~d}=26.620 \AA$
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COO}) \mathrm{Tl}$
(001) m-5
$E(e V) \quad \theta_{c}(m r) \quad \theta_{B}(m r) \quad R_{p}(m r) \quad R_{m}(m r) \quad P(\%) \quad \omega(m r) \quad \Delta E(e V) \quad E / \Delta E \quad \lambda(\AA)$
$\begin{array}{lrrr}2328.0 & 11.7 & 1571.0 & 0.405900\end{array}$
$\begin{array}{llllll}2622.0 & 9.0 & 1092.0 & 0.000484 & 0.00054\end{array}$
$\begin{array}{lllll}2984.0 & 8.2 & 895.0 & 0.000228 & 0.000254\end{array}$
$\begin{array}{lllll}3692.0 & 7.6 & 682.0 & 0.000083 & 0.000092\end{array}$
$\begin{array}{llll}4466.0 & 6.7 & 548.0 & 0.000052 \quad 0.000058\end{array}$
$\begin{array}{lllll}4511.0 & 6.6 & 542.0 & 0.000051 & 0.000057\end{array}$
$\begin{array}{lllll}4952.0 & 6.1 & 489.0 & 0.000042 & 0.000047\end{array}$
$\begin{array}{llllll}5415.0 & 5.7 & 445.0 & 0.000035 & 0.000039\end{array}$
$5899.0 \quad 5.3 \quad 406.0 \quad 0.000030 \quad 0.000034$
$6930.0 \quad 4.5 \quad 343.0 \quad 0.000023 \quad 0.000025$
$7478.0 \quad 4.2 \quad 317.0 \quad 0.000020 \quad 0.000023$
$8048.0 \quad 3.9 \quad 294.0 \quad 0.000019 \quad 0.000021$ $8639.0 \quad 3.7 \quad 273.0 \quad 0.000018 \quad 0.000020$
9886.0
3.
$4.5 \quad 8.1100$
$0.4 \quad 0.0828$
$0.3 \quad 0.0511 \quad 0.122 \quad 24400.4 .154$
$\begin{array}{lllll}0.2 & 0.0259 & 0.118 & 31400 & 3.358\end{array}$
$\begin{array}{lllll}0.2 & 0.0154 & 0.112 & 39700 & 2.776\end{array}$
$\begin{array}{lllll}0.2 & 0.0150 & 0.112 & 40300 . & 2.748 \\ 0.3 & 0.0115 & 0.107 & 46300 . & 2.504 \\ 0.3 & 0.0090 & 0.103 & 52700 . & 2.290\end{array}$
$\begin{array}{llll}0.3 & 0.0071 & 0.097 & 60600\end{array}$
$\begin{array}{lllll}0.4 & 0.0046 & 0.089 & 78200 & 1.789\end{array}$
$\begin{array}{lllll}0.4 & 0.0037 & 0.085 & 87900 & 1.658\end{array}$
$\begin{array}{rrrrr}0.4 & 0.0031 & 0.083 & 97500 & 1.541 \\ 0.5 & 0.0026 & 0.079 & 109000 & 1.435\end{array}$
$0.7 \quad 0.0018$
0.073136000 .

1. 254

7. TECHNICAL NOTES: THE CHARACTERIZATION OF transmission diffraction gratings

We have recently initiated a collaborative effort with LLNL and LANL on the absolute characterization of x-ray transmission gratings as those which have been originally developed with microlithography thechniques by the MIT group. Examples of the B-Ka (67.6 A, 183.3 eV) spectra are shown here. These are measured using nearly parallel incident radiation and an appropriately fine slit on the proportional counter to limit the collimination error to a magnitude approximately matching that of the emission line width and grating diffraction width. The spectra are step-scanned and are recorded with a multichannel analyzer (MCA). By the same procedures we have developed in our absolute characterizations of crystal/multilayer analyzers (4), we measure for each diffraction order the FWHM and the line heights and areas relative to these values for the zero order line. The measurement is made absolute by also measuring the ratio of the total intensity within the zero order line to that incident within the illuminated area of the grating.

The line widths are the result of an intensity fold of the colliaination width, the emission line width and the grating diffraction width. By a similar unfolding procedure as applied in our crystal/multilayer characterizations, we determine che characteristic diffraction width (FWHM) parameters at several photon energies.

With measurements, as shown here, at several photon energies along with the usual analytical theoretical intensity equations for transparent-bar gratings, we plan to derive seai-empirical analytical descriptions that accurately characterize the energy dependence of the real transmission gratings for absolute spectrometry.

Transmission Grating Geometry

8 Low-energy x-ray response of photographic films. I. Mathematical models

B. L. Henke, S. L. Ewok, J. Y. Uejio, H. T. Yameda, and G. C. Young
Universty of Howaii. Honolulu. Hawaii 96822

Received February 20. 1904: accepted July 2. 1984

Abstract

Relatively simple mathematical modela are developed to determine the optical density as a function of the x-ray intensity, its angle of incidence, and its photon energy in the $100-10,000-\mathrm{V}$ region for monolayer and emulsion types of photographic films. Semiempirical relations are applied to characterize a noonolayer film (Kodak 101-07) and an emulsion-type film (Kodak RAR 2497); these relations fit calibration data at nine photon energies well within typical experimental error.

1. INTRODUCTION

Photographic film is used extensively as the time-integrating. position-sensitive detector for \mathbf{x}-ray spectrometry of pulsed, high-temperature plasma sources.' These sources include the inertially and magnetically confined plasmas atudied in fusion-energy research and other areas, such as the Z pinch, the exploding wire, and the imploding linear plasma sources. Photographic detection is often chosen for the fired-analyzer spectroecopy of such sources because of its relatively high sensitivity, wide latitude of response, and simplicity of implementation as compared with the alternative positionsensitive electronic-detection array systems.

For the diagnostics of high-temperature plasma sources there is considerable need for well-calibrated aboolute apectrometry. The spectral analysie that is required demands a precise knowledge of peek and integrated intensities and shapes of spectral lines and of the intensity distributions in continua. Such information can be deduced from the measured optical density versus position along the film and its quantitative relationship to the incident intenaity for a given phowaraphic emulsion of appropriate sensitivity and resolution.

Because the optical density is a function not only of the intensity of the x radiation but aleo of its angle of incidence and of its photon enerry, it is important to supplement experimental calibration with theoretical modeling. Semiempirical. universal mathematical relations may then be established that yield detailed photometric information linctuding the effects of x-ray abeorption-edge atructure) besed on a minimum set of experimental data. An optinum deaign for the experimental calibration may be effectively guided by these model relations.

In Pert I of this series of papers we develop rolatively simple mathematical models for the photographic reapone of monolayer and of thick. and thin-emulaion fitms for the low. energy a ray region of $100-10,000 \mathrm{eV}$. Thaee are derived, in the description of the besic photographic-exposure proceses. in order to define the appropriate experimental parameters and finally to entablich univernal, semiempirical relations that can emist in efficient quantitative spectroseropic a-ray analynis. Their validity is established by applying them to the de-
scription of two examples of photographic films: Kodak 101-07, a monolayer, and Kodak RAR 2497, an emulsion-type syatem.

2. SIMPLE MODELS FOR THE PHOTOGRAPHIC X-RAY RESPONSE

A. Monolayer Model

Figure 1 depicts a photographic film for which the sensitive region is a monolayer of densely packed AsBr grains with a pecking density of M_{0} ($\mathrm{A}_{8} \mathrm{Br}$ grains per unit area). A scan-ning-electron-microecope (SEM) photograph of this type of film (Kodak $101-07$) is shown in Fig. 2. As is sugsested by this photograph, the grains may be considered to be nearly spherical, with a mean diameter of abcut $1 \mu \mathrm{~m}$.
We would like to model this monolayer film as a thin slab of average thicknees t_{1}, which. for practical films, such as the Kodak 101, may be somewhat larger than a single grain diameter. Such a thin-alab seometry introduces a total phot on abeorption proportional to sin 0 , the dependence of which, as deacribed below, is demonstrated by experimental measurement.
The probability that a AsBrgrain will absorb a photon under an exposing radiation intensity I (photons per square micrometer) of photon enersy E (electron volts) and at an angle of incidence θ is simply the total number of photona abeorbed per unit aree within the slab divided by the number of grains per unit area $M_{0,}$ viz.,

$$
\frac{I \sin \theta\left[1-\exp \left(-\mu_{1} \frac{t_{1}}{\sin \theta}\right)\right]}{M_{0}}
$$

where μ_{1} is the linear x-ray abeorption coefficient of $\mathrm{A}_{8} \mathrm{Br}_{\mathrm{r}}$ (which parameter introduces the only dependence on photon energy E). For the low-energy x-ray region of intereat here $(100-10,000$ eV), it may be assumed that the absorption of a ainglo photon is sufficient to render the Ag Br grain developable, and therefore any additional abeorption events within that grain cannot contribute to its effective exposure proceene ${ }^{2}$ We may therefore write the differential equation that determinee the increase in the number of grains per unit area $d M$

MONOLAYER MODEL

Fig. 1. Monolayer model fur an effective film thickness t_{1} of \mathbf{M}_{0} densely packed nearly spherical AgBr grains per unit area, and of linear z-ray absorption coefficient equal to μ_{1} (for $\mathbf{A g}$ Br).

Fig. 2. SEM photograph of the Kodak $101-07$ film showing nearly spherical AgBrgrains of about $1-\mu \mathrm{m}$ average diameter.
that have been rendered developable when the radiation intensity is increased by an amount $d /$: we do this by equating $d M$ to the number of grains within the layer that have not yet been rendered developable. viz. $M_{0}-. M$. multiplied by the probability of a photon's being absorbed witt.in a given grain for an increment of intensity $\mathrm{d} /$. Hence

$$
\begin{equation*}
\mathrm{d} M=\left(M_{1}-H^{\prime}\left\{\frac{\sin H\left(1-\exp \left(-\mu_{1} \frac{t_{1}}{\sin H}\right)\right)}{M_{11}}\right) \mathrm{d} I .\right. \tag{1}
\end{equation*}
$$

This may be integrated immediately to yield the number of grains per unit area M rendered developable under a total exposure of incident beam of intensity I photons per unit area at incident angle H; we ohtain

$$
\begin{equation*}
M=M_{0}\left(1-\exp \left\{-\pi \sin H\left[1-\exp \left(-\mu_{1} \frac{t_{1}}{\sin H}\right)\right] I\right\}\right) . \tag{2}
\end{equation*}
$$

Here, we have substituted for $\left(M_{0}\right)^{-1}$ in the argument of the exponential an effective average cross-sectional area of the AgBrgrain, σ.

In the development process, the exposed grain is reduced chemically to a cluster of silver usually of somewhat increased cross-sectional area, which we shall define here as S. This silver cluster strongly aboorbs and scatters the light beam, as can be measured in a densitometer for the exposed-grain density.
In microdensitometry, as required for the quantitative analysis of spectroscopic line images, a relatively small-angle cone of illuminating light is focused and transmitted at a small, optically defined slit-region area of the film; the transmitted beam is received by a neurly matched, small-angle acceptance anerture of an objective lens, imaged at a fixed slit, and then delivered to a photocell. We designate i_{0} as the measured photocell current for the transmitted rays that pass through an unexposed section of the film and i as that for the same small-angle light-cone system passing through a similar section of an exposed region of the film having M silver-cluster grains per unit area. We may relate the fraction transmitted, τ (i.e., i / i_{0}), to the grain density M by using the fraction of the area that is blocked by the silver grains $M S$, obtaining

$$
\begin{equation*}
r=i / i_{0}=1-M S \tag{3}
\end{equation*}
$$

Rather than by using the transmission τ, this measurement is conventionally expressed by using an alternative variable. the optical density D, which is defined as the logarithm of the reciprocal of the transmission τ. Thus

$$
D=\log _{10}(1 / \tau)=-\log _{10}(1-M S)
$$

and

$$
\begin{align*}
D= & -\log _{10}\left[1-M_{0} S\right. \\
& \times\left(1-\exp \left\{-\sigma \sin \theta\left[\left.1-\exp \left(-\frac{\mu_{1} t_{1}}{\sin \theta}\right) \right\rvert\, l\right\}\right) .\right. \tag{4}
\end{align*}
$$

For relatively low spectroscopic exposures on the monolayer films, the value of $M S$ will be small compared to unity. Then Eq. (4) may be simplified to obtain

$$
\begin{equation*}
D=\frac{M_{0} S}{2.30}\left(1-\exp \mid-\sigma \sin \theta\left(1-\exp \left(-\mu_{1} t_{1} / \sin \theta\right)\right) / I\right) \tag{5}
\end{equation*}
$$

In the density measurement defined here by using illumination and objective lenses of small and nearly matched numerical apertures, D is essentially the specular density. This optical denaity may be related to the smaller value, the diffuse density, which is measured when all the forward-scattered light in the transmitted beam is included in the measurement. The relationship between specular and diffuse density will be discussed in Part II ${ }^{3}$ of this research.
As noted above, the practical monolayer film may be offectively thicker than the individual grain diameter, and, in the light-scattering geometry of the developed film, there may be a superposition of the scattering clusters. A more detailed analysis than that given for the derivation of Eq. (4) is then required. Nevertheless, a modified result must again be simply a function of the universal variable $\beta_{1} l$. The same appronch for the derivation of a universal relation for D is deacribed in more detail in the thick-emulsion analysis that is presented below. Thus an important implication of this analysis in deriving Eq. (4) is that the monolayer film density D is a function of the single variable $\beta_{1} 1$, where β_{1} introduces the total dependence on the photon energy E and on the in-

Fig. 3. The universal plot of D versus $\beta_{1} /$ for the Kodak 101.07 monolayer using D-versus.I calibration data as measured at eight photon energies in the $100-1500-\mathrm{eV}$ region. The smooth curve is from fitting the semiempirical Eq. (7), derived here from the monolayer film. The photon energy dependence is introduced by the scaling factor S_{1}.

Fig. 4. Comparing the experimental D.versus log.I calibration data for the Kodak $101-07$ film at the C-Ka (27i.eV') photon energy with the averaged, semiempirical universal response predicted by lia (i).
cudence angle θ and is defined by

$$
\begin{equation*}
\beta_{1}=\sin \theta\left(1-\exp \left(\frac{-\mu_{1} t_{1}}{\sin \theta}\right)\right] \tag{6}
\end{equation*}
$$

' o test this universal-model relationship for the mumulayer film. we have plotted (Fig. 3) for Kodak $101-07$ film the specular densities (which have been measured as described in Part [1] ${ }^{\mathbf{3}}$) for normal-incidence exposures and for eight photon energies in the $100-1500 \cdot \mathrm{eV}$ region. This plot is presented as density D versus the universal variable || $\exp \left(-\mu_{1} t_{1}\right) \mid l$. The value of the effective layer thickness t_{1} was chosen so that the data for the entire range of $p \ldots$ outon energies best fitted a single universal curve. These data for Kodak 101-07 film yielded an empirical value for t_{1} of $: \mu \mathrm{m}$ An efficient, two-parameter empirical equaton, suggested by this model |see Eq. (5)), has been found to be

$$
\begin{equation*}
D=a_{1}\left|1-\exp \left(-b_{1} j_{1} \mid\right)\right| \tag{171}
\end{equation*}
$$

For the Kiodak 101.07 monolayer film, the constanis a_{1} and $b_{\text {I }}$ have been determined by least-squares fitting of this $\left.l\right)$ versus- $\beta_{1} /$ data for phocon energies in the $100-1500-\mathrm{e}$ ' region to be 1.96 and $0.313 \mu \mathrm{~m}^{2}$, respectively This empirically fitted curve is also plotied in Fig. 3 In Fig ta comparisori of the
measured data and of the semiempirical curve is presented for D versus $\log I$ for the Kodak $101-07$ film at the photon energy cf 277 eV . Also, as described in Part II, ${ }^{3}$ the optical film density D was measured with an essentially constant incident intensity at a rarge of incidence angles 0 of 5-90年. In Fig. 5, the optical density D for a constant incident intensity is presented for two ranges of exposure along with that angular dependence predicted by the semiempirical model relation |Eqs. (6) and (7)| for this monolayer film. Note that. in the relation for density D given in Eq. (7), the intensity / should be multiplied by a factor of $|1-F(\theta)|$ to account for the reduction in exposure at very small angles of incidence $\left(\theta<5^{\circ}\right)$. $F(\theta)$ is the fraction of the incident radiation intensit v that is low-angle scattered and/or totally reflected outward from the monolayer surface and therefore not allowed to be photoelectrically absorbed within the AgBr grains.

The prediction accuracy of this simple model relation. using empirically determined values of t_{1} and of a_{1} and b_{1}, set ms to be well within the experimental errors associated with the D-versus-I measurements. It may seem, at first glance, that the scatter of the points on the universal curves as in Fis. 3 may be somewhat excessive, particularly in the region of bow densities associated with low measurement statistics. Most of the variations from the univeral curves reflect the fact that we are comparing here the measurements on many different film samples and at many different photon energies. Most of this error is attributed to the error in the measurement of the absolute intensity / (photons per square micrometer) and to a variatiou of the optical density with development condi. tions. The effect of development is expressed here entirely through the developed silver-grain-cluster croes section S |w which the constant a_{1} is proportional, accurding tu Eq. (S)].

Finally, we may solve for the exposing intensity / (photons per square micrometer) in Eq. (7) to oblain

$$
\begin{equation*}
I=\left(1 / b_{1} \alpha_{1}\right) \ln \left|a_{1} /\left(a_{1}-D\right)\right| \tag{8}
\end{equation*}
$$

By using the values of $\mu_{1}(E)$ calculated from the abourption dala for Ag and Br given by Henke rt al .' we have plotied in Fig. 6 the intensity / (photons per square micrometer) as a function of the photon eneryy E (electron voles) in the 100 $10,000 \cdot \mathrm{e}$ region for normal-incidence expusures that result in optical densities D guual to 0.5 and 1.0 for the Kodal 101.07 monolayer fitm. (The reciprocal of these intensities for a given density value is conventionally defined as the falm sensiturty.)

 deucribed in Part II'l whth the whe inained frum the univernal reatrana functom piven to fia 1?)

Fug 6 The intenaty / iphotons per square micrometer) required wescobish a spectral density of 05 and of 10 in the Kudak 101.07 monolayer film These I versus-E plots were derived using the emmempirical relation given in Fq (8) and illustrate the flat. highsensativity response for the $100-1000$ eV' region and the reduced ernativity along with the abourption edge structure (Br_{r}-L. and As-L.) in the $1000-10000 .+\mathrm{V}$ region

E. Thick-Emulaion Model

We now consider the more complicated problem: establishing an uplical denaity relation for a thick emulsion in which the photons are completely absorbed within a heterogeneous system of AsBr grains umbedded in gelatun. The total volume fraction b^{\prime} of the AgBr is relatively small (typically <? 0%). The thick emulsion film will usually have a protective overcont of thickness 1 , which we assume here to be gelatinlike. We consider (as for the monolayer. film analysis above) the ApBr graina wo be approsimately spherical with a cross section equal to o and with an effective absorbing thickness equal to d

In Fis. i. a monolayer section is depicted within this emulsum mith kow-density pecking and with gelatin that is assumed to be onily between the grains. The prubability that an inctdent phoiton will br absorbed wrthin an individual AgBrgrain in this monolaver section at depth i within the emulsion may the wrillell as

$$
\left\|| \| - \operatorname { e x p } (- \mu _ { 1 } d) | \operatorname { e x p } \left(-\mu_{1} x / \sin \theta \mid \exp \left(-\mu_{0} s / \sin \theta \|=\gamma I .\right.\right.\right.
$$

which is the product of the number of incident photons per unit area $/$. the AsBr grain cruse section n, the probability that - phuton reaching the Agtr grain is absorbed within that grain. the transmission fraction through the emulsion of thick ness r. and the transmission fraction through the overcoat of thickness \boldsymbol{f} for a beam at incidence angle θ. (μ_{0} and μ_{1} are the linear absurption cuefficients of the gelatin and of the $A g B_{r}$, respectively, and μ ' is the heterogeneous linear abeorptson cuefficient for the emulsion.) By defining the quantity in this probability expression within the braces as 7. we may write the differential equation for the additional number of grains rendered developable as a result of an additurnal increment of incident expusure intensity d/ |similarly
as for Eq. 11) abovel as

$$
\mathrm{d} M=\left(M_{0}-M\right) \gamma \mathrm{d} /
$$

where again the quantity $\left(M_{0}-M\right)$ is the number of grains not yet rendered developable by at least one photon absorption. After integrating, we obtain, for the total exposing intensity of I at θ incidence with the film surface, the relation for the number of grains rendered developable within the monolayer section at depth x :

$$
\begin{equation*}
M=M_{0}|1-\exp (-\gamma I)| . \tag{9}
\end{equation*}
$$

On development, the exposed grains are reduced to silver clusters of average cross section S. The fraction r of a light beam that is transmitted through this monolayer section can be written, as described in Section 2.A, as

$$
\begin{aligned}
t_{n}=1-M S & =1-M_{0} S[1-\exp (-\gamma /)] \\
& =1-M_{0} S\left[1-\exp (-\sigma \beta] \exp \left(-\mu^{\prime} x / \sin \theta\right)\right] \mid .
\end{aligned}
$$

with

$$
\begin{equation*}
\beta=\left[1-\exp \left(-\mu_{1} d\right)\right] \exp \left(-\mu_{0} t / \sin \theta\right) \tag{10}
\end{equation*}
$$

This is the transmission for a narrow cone system of light through the nth monolayer section of thickness d and at a depth x equal to nd.
We assume, as a first consideration, that the total optical tranamission for the thick emulsion may be given simply by the product of the monolayer-section transmissions. This asaumption is valid only for relatively small values of $M S$ and of d, so that the probability for shadowing (one grain blocking another in the light beam) is negligible. Then the total transmission is simply

$$
\begin{align*}
r & =\prod_{0}^{\ddot{I}} r_{n}=\ddot{\prod}_{0}\left(1-M_{0} S \mid l\right. \\
& \left.-\exp \mid-\sigma \beta l \exp \left(-\mu^{\prime} n d / \sin \theta\right) \|\right) . \tag{11}
\end{align*}
$$

Since the optical density I) is defined as $\log _{10}(1 / \tau)$, we may then write

Fis. 7. Eimulsion film model for an overcoat of thickness t and a heterogeneous emulsion consisting of V volume fraction of $\mathrm{A}_{8} \mathrm{Br}$ apherical grains distributed withina $(1-V)$ volume fraction of gelatin. Notad here is the probability for phucton absorption of an A BB groin within an asumad monolayer section of average, effective abmoption thickness d at a depth x within the emulsion.

$$
\begin{align*}
D= & -\log _{10}\left[\prod_{0}^{\infty}\left(\tau_{n}\right)\right]=-(1 / 2.30) \sum_{0}^{\infty} \ln \left(1-M_{0} S\{1\right. \\
& -\exp (-\pi \beta l \exp (-\mu \cdot n d / \sin \theta)\}\}) . \tag{12}
\end{align*}
$$

With the assumption that $M S$ is small, this expression for D may then be approximated simply as

$$
\begin{equation*}
D=(1 / 2.30) \sum_{0}^{\infty} M_{0} S\left\{1-\exp \left[-\sigma \beta I \exp \left(-\mu^{\prime} n d / \sin \theta\right)\right\} \mid\right. \tag{13}
\end{equation*}
$$

It is useful here to re-express Eq. (13) as an integral, replacing M_{0} by $N_{0} \mathrm{~d} x$, with N_{0} equal to the number of AgBr grains per unit volume (and therefore equal to M_{0} / d), and nd by x. We may then write for the optical density
$D=(1 / 2.30) \int_{0}^{-} N_{0} S\left\{1-\exp |-\sigma \beta| \exp \left(-\mu^{\prime} x / \sin \theta\right) \mid\right\} d x$.

This integral may be evaluated easily as a converging-series solution. It is considered here, however, that the assumptions made in its derivation (low AgBr -grain density and exposures) are too restrictive for many practical applications of photographic measurement. A more detailed (but more complicated) expression for the transmission through a dense, heterogeneous system of light-absorbing silver-grain clusters could be derived. Nevertheless, for this mure precise description, the resulting transmission in any event must also be a function of the intrinsic exposed AgBr-grain density N at depth x and consequently of the variable

$$
z=\sigma \beta I \exp \left(-\mu^{\prime} x / \sin \theta\right)
$$

which determines the number of grains rendered developable within a differential monolayer section of the emulsion. Here, β is defined by Eq. (10). With no assumptions about the details of the light-absorption process within the thick emulsion, we may write a general expression for the optical density:

$$
\begin{equation*}
D=\int_{0}^{\infty} F(z) d x \tag{15}
\end{equation*}
$$

where $F(z)$ is a function that may be determined empirically, for example, from D-versus-I data for photons of such energy as to be completely absorbed within the given emulsion's total thickness. $F(z)$ has a constant saturation value for large z (at small penetration depths with large exposure I) $\left[N_{0} S / 2.30\right.$ in Eq. (14)]. $F(z)$ approaches zero value as z becomes small (for small exposure $/$ and/or at large depth x). By differentiating the variable 2 , we have

$$
\begin{aligned}
\mathrm{d} z & =-\left(\mu^{\prime} / \sin \theta\right) \sigma \beta I \exp \left(-\mu^{\prime} x / \sin \theta\right) \mathrm{d} x \\
& =-\left(\mu^{\prime} / \sin \theta\right) z \mathrm{~d} x
\end{aligned}
$$

and we may therefore rewrite Eq. (14) completely in the dimensionless variable z as

$$
\begin{equation*}
D=\left(\frac{\sin \theta}{\mu^{\prime}}\right) \int_{0}^{a d l} \frac{F(z)}{z} \mathrm{~d} z \tag{16}
\end{equation*}
$$

We conclude, therefore, that the integral must simply be a function of the integration limit $\sigma \beta l$, and we may write for D versus I the universal relation of the form

$$
\begin{equation*}
D=\left(\frac{\sin \theta}{\mu^{\circ}}\right) \phi(\beta I) \tag{17}
\end{equation*}
$$

We note that the factor $\left(\sin \theta / \mu^{\prime}\right)$ is a mean penetration depth in the x direction of the incident beam inside the emulsion, and, for a given exposure I, the function $\phi(\beta I)$ yields the optical density D per unit mean penetration depth.

Now for the low-energy x radiations of particular interest here, this penetration depth will approach effectively the thickness of the surface monolayer section (see Fig. 7). For such a surface exposure, the transmission factor $\exp \left(-\mu^{\prime} x\right.$ / $\sin \theta$) is not involved, and we consider the contribution to the density D for this surface region to be an amount equal to $d_{0} \phi(\beta I)$, where d_{0} will be an empirically determined parameter that measures the effective surface monolayer depth. We add this limiting surface-layer contribution to D in Eq. (17) to obtain finally for the optical-density contributions for both surface and volume generation of the optical density

$$
\begin{equation*}
D=\left(\frac{\sin \theta}{\mu^{\prime}}+d_{0}\right) \phi(\beta I) \tag{18}
\end{equation*}
$$

Equation (18) may then be written as a function of the universal variables αD and βI, viz.,

$$
\begin{equation*}
\left(\frac{\mu^{\prime} / \sin \theta}{1+\mu^{\prime} d_{0} / \sin \theta}\right) D=\alpha D=\phi(\beta I) \tag{19}
\end{equation*}
$$

(thus defining the universal variables that establish the scaling for D and I as the photon energy and the angle of incidence of the exposing radiation are varied).
'The heterogeneous absorption coefficient μ ' may be appreciably differen' from that which is calculated as $\bar{\mu}$ for a homogeneous absorbing system with the same volume fractions of AgBr and of gelatin. We have derived an expression for the linear heterogeneous absorption coefficient in Appendix A; the expression may be written as follows:

$$
\mu^{\prime}=\mu_{0}-(1 / d)\left(\ln |1-V| 1-\exp \left[-\left(\mu_{1}-\mu_{0}\right) d\right] \mid\right)
$$

Fur the same volume fraction V for $\mathbf{A g B r}$, and hence ($1-V$) for the gelatin, the linear homogeneous absorption coefficients $\bar{\mu}$ may be given by

$$
\begin{equation*}
\bar{\mu}=(1-V) \mu_{0}+V \mu_{1} \tag{21}
\end{equation*}
$$

It may be noted that Eq. (21), given for the heterogeneous linear coefficient in Eq. (20), does reduce to Eq. (20) for the homogeneous coefficient $\bar{\mu}$ for small values of the grain size d.

In Fig. 8 we have plotted for comparison the linear absorption coefficients μ^{\prime} and $\bar{\mu}$, given by Eqs. (20) and (21), for Kodak RAR 2497 film, assuming a value for d equal to 0.3 $\mu \mathrm{m}$.

In order to illustrate the accuracy of prediction of a universal curve as defined by Eq. (19) and of the associated description for the heterogeneous absorption coefficient given in Eq. (20), we have plotted in Fig. 9 the variables $\mu^{\prime} D /(1+$ $\left.\mu^{\prime} d_{0}\right)$ and $\left[1-\exp \left(-\mu_{1} d\right) \mid \exp \left(-\mu_{0} t\right) /\right.$ using D-versus- $/$ data for the Kodak RAR 2497 film measured at $\theta=90^{\circ}$ (and as described in Part [I^{3}). These data have been measured at eight photon energies in the $100-1500-\mathrm{eV}$ region for which we can assume complete absorption within this emulsion. The overcoat thickness t, the mean grain size d, the volume fraction V, and the surface-layer thickness d_{0} were chosen so as to yield a minimum variation from a universal curve for the entire photon-energy range (see Section 3). The values so determined for t, d, d_{0}, and V were $0.3,0.3$, and $0.6 \mu \mathrm{~m}$, and

Fig. 8. Comparison of the linear absorption coefficient as calculated for the heterogeneous RAR 2497 emulsion-film system with an amorphous system of the same volume fraction of AgBr (see Appendix A). Note the appreciable differences in the low-energy x-ray region.

Fig. 9. The universal plot of αD versus βl for the Kodak RAR 2497 emulsion film using D-versus.I calibration data as messured at eight photon energies in the $100-1500 \cdot \mathrm{eV}$ region. The smooth curve is obtained by fitting to these points the semiempirical Eq. (26) derived here for the emulsion-type film. The photon-energy dependence is introduced through the scaling factors α and β.
0.1 , respectively. Again we consider the departures from a universal curve among these data points as plotted here to be well within experimental error.

We have also plotted in Fig. 9 a semiempirical equation for the universal curve, the derivation of which is described below.

Early in the exposure process, the first layers that are encountered within the emulsion may become saturated, i.e., all the AgBr grains within these layers are rendered developable. As the exposure increases, the depth x_{3} of this saturation region increases. The corresponding growth in optical density is depicted in Fig. 10 along with a plot of $F(z)$, which is defined in Eq. (15), where $z=\sigma \beta l \exp \left(-\mu^{\prime} x / \sin \theta\right)$. For sufficiently large values of z and, correspondingly, for sufficiently small values of penetration depth x, and/or for large values of $I, F(z)$ is equal to a constant saturation value F_{s}. For relatively low
densities of AgBr grains within the emulsion, this saturation value is simply $N_{0} S / 2.30$, as suggested in Eq. (14). $F(z)$ may then be interpreted as the optical-abeorption cross section per unit volume of developed silver-grain clusters for an exposure that initiates saturation. For small $z, F(z)$ approeches zero value. We shall define by z_{s} that value of z for which $F(z)$ reaches its constant saturation value, defined here as F_{s}, (within, say, a few percent). The corresponding saturation depth x_{z} may then be related to z_{s} by

$$
\begin{align*}
& z_{s}=\sigma \beta I \exp \left(-\mu^{\prime} x_{s} / \sin \theta\right) \\
& x_{s}=\left(\sin \theta / \mu^{\prime}\right) \ln \left(\sigma \beta I / z_{s}\right) \tag{22}
\end{align*}
$$

We may now write Eq. (15) as follows:

$$
\begin{aligned}
D & =\int_{0}^{x_{0}} F(z) \mathrm{d} x+\int_{x_{0}}^{\infty} F(z) \mathrm{d} x \\
& =F_{s} x_{\mathrm{s}}+\left(\sin \theta / \mu^{\prime}\right) \int_{0}^{x_{1}}(F(z) / z) \mathrm{d} z
\end{aligned}
$$

and, by using Eqs. (22), (16), and (17), we obtain

$$
\begin{equation*}
D=\left(\sin \theta / \mu^{\prime}\right)\left[F_{s} \ln \left(\sigma \beta / / z_{s}\right)+\phi\left(z_{s}\right)\right] \tag{23}
\end{equation*}
$$

By including the parameter d_{0} to account for the surface-layer exposure [as described for Eq. (18)], we may rewrite Eq. (23) as

$$
\begin{equation*}
D=\left(\frac{\sin \theta}{\mu^{\prime}}+d_{0}\right)\left[F_{\mathrm{s}} \ln (\sigma \beta I)+\text { constant }\right] . \tag{24}
\end{equation*}
$$

We therefore predict that, after an initial exposure that will initiate the onset of saturation in the first layers, the optical density D should vary linearly with the logerithm of the exposure I. This is indeed what is usually observed, as is illustrated, for example, in the D-versus-log-I plot for the Kodak RAR 2497 film presented in Fig. 11. This strong linearity in D-versus-log. I is illustrated more generally for the thickemulsion films in the experimental data, which are presented in Figs. 4-7 of Part I^{3} of this research.

Equation (24) may be written as a universal semiempirical equation of the form

Fig. 10. Plotted here is the approximate function $F(z)$ for the light-scattering cross section per unit volume associated with the developed silver-grain clusters and resulting from an intermediate exposure I (calculated for the RAR 2497 film). An exposure was chosen so as to render all grains developable within the first halfthickness of the emulsion. As the exposure I increases, this saturation region increases in depth s, and, according to this model, this process accounts for the linear relationship between D and $\log /$ after the onset of the saturation process.

Fig. 11. Comparing the D-versus-log-/ calibration data for the RAR 2497 film at the $\mathbf{O} \cdot \mathbf{K a}(525-\mathrm{eV}$) photon energy with the averaged universal response function given by the semiempirical Eq. (26).

Fig. 12. The intensity / (photons per square micrometer) required to establish a specular density of 0.5 and of 1.0 in the RAR 2497 emulsion film.

Fig. 13. Comparison of experimentally measured D-versus $-\theta$ plots [measured as described in Part II ${ }^{3}$ for constant incident intensity I and energy Al-Ka $(1487-\mathrm{eV})$) with those predicted by the semiempirical, universal response function given in Eq. (28) for the RAR 2497 film.

$$
\begin{equation*}
\left[\frac{\mu^{\prime} / \sin \theta}{1+\left(\mu^{\prime} d_{0} / \sin \theta\right)}\right] D=\alpha D=a \ln (b \beta l) . \tag{25}
\end{equation*}
$$

However, for exposure / below that which may induce saturation, it is expected that D is directly proportional to l. This may be deduced, for example, by integrating Eq. (14) after expanding the exponential for small values of its argument $\left|\sigma \beta I \exp \left(-\mu^{\prime} x / \sin \theta\right)\right|$, obtaining

$$
D=\left(\frac{\sin \theta}{\mu^{\prime}}\right) \frac{N_{0} S}{2.30} \sigma \beta l
$$

for small I. In order to require that our model relation for the optical density D increase initially as I in the toe region of the D-versus-I response, we make a simple addition to the argument of the logarithmic term in Eq. (25) to obtain, finally, the semiempirical relation for D versus I :

$$
\begin{equation*}
\alpha D=a \ln (1+b \beta I) . \tag{26}
\end{equation*}
$$

For the Kodak RAR 2497 film, the constants a and b have been determined by least-squares fitting of the αD-versus $-\beta I$ data, as plotted in Fig. 9, yielding the values of $0.414 \mu \mathrm{~m}^{-1}$ and $0.454 \mu \mathrm{~m}^{2}$, respectively. This least-squares-fit function has been plotted as the universal curve in Fig. 9, and it has been applied to yield the D-versus-log-I curve presented in Fig. 11, as an example, at the particular photon energy of 525 eV .

C. Thin-Emulsion Model

For the thick-emulsion model described above it was assumed that all the incident photons were absorbed in the overcoating and in the emulsion layers. For the thin-emulsion model it is required that the predicted contribution to the optical density for emulsion depths greater than the value T (the actual emulsion thickness) be subtracted from the density D, as predicted for the thick emulsion as given by Eq. (18).

For the thin-emulsion case, therefore, we rewrite Eq. (16) (after including the surface-exposure correction parameter d_{0}) as

$$
D=\left(\frac{\sin \theta}{\mu^{\prime}}+d_{0}\right) \int_{\Delta l \exp \left(-\mu^{\prime} T / \sin \theta\right)}^{\Delta l}(F(z) / z) \mathrm{d} z
$$

yielding for emulsion thickness T a predicted universal relation

$$
\begin{align*}
\alpha D & =\int_{\Delta / \exp (-\mu \cdot T / \sin \theta)}^{\Delta l} \frac{F(z) \mathrm{d} z}{z} \\
& =\phi(\beta I)-\phi\left[\beta I \exp \left(-\mu^{\prime} T / \sin \theta\right)\right] . \tag{27}
\end{align*}
$$

Correspondingly, we may rewrite Eq. (26) for the thin-emulsion case as

$$
\begin{equation*}
\alpha D=a \ln \left[\frac{1+b \beta I}{1+b \beta I \exp \left(-\mu^{\prime} T / \sin \theta\right)}\right] \tag{28}
\end{equation*}
$$

Note that we have assumed here that the universal function [and its semiempirical description given in Eq. (28) defined through the parameters a and b | is established by using calibration data for which the emulsion is thick, i.e., for photons that are completely absorbed within the emulsion.

The photographic-response function presented in Eq. (28) is applicable in the photon-energy region for which the primary assumption made in its derivation obtains, viz., that each AgBr grain will be rendered developable by a single photon absorption within the grain. It has been thus assumed that the effective cross section for phown excitation σ is constant, i.e., that σ is independent of the photon energy. For photons of energy above about 10 keV it is expected that the photoelectrons that are generated within the emulsion in the vicinity of a given AgBr grain may have sufficient range to contribute, along with the direct photon absorption, to the excitation cross section of that AgBr grain. The effective cross section σ may then be energy dependent at the higher photon energies, re-
quiring that the relatively simple analysis presented here be modified for $E>10 \mathrm{keV}$.?

In Fig. 12, we have applied Eq. (28) to predict for this $100-10,000-\mathrm{eV}$ region the number of photons per square micrometer required to yield optical specular densities of 0.5 and 1.0 for normal incidence upon the Kodak RAR 2497 film.

In many practical spectrographic measurements, the x-ray intensity is not incident at 90° upon the film. Nevertheless, the density-exposure-photon-energy characterizations presented in Figs. 11 and 1:2 can be presented for angles of incidence other than 90° through the θ dependence of Eq. (28). The optical density D has been measured (as described in Part $1 I^{3}$) for θ values in the $5-90^{\circ}$ range for essentially constant incident intensity I and for several photon energies. As is suggested in Fig. 13, the θ dependence as predicted by Eq. (28) for a photon energy of 1487 eV is demonstrated to be well within the limits of the experimental errors for the Kodak RAR 2497 film.

3. SUMMARY AND APPLICATION

In this section, we summarize the results of the foregoing analysis of the low-energy x-ray response of photographic films. These are expressed as semiempirical equations that relate the specular optical density D, the incident intensity I (photons per square micrometer), the angle of incidence θ. and the photon energy E (electron volts) (through the linear absorption coefficients μ_{0} for gelatin, μ_{1} for AgBr , and μ^{\prime} for the heterogeneous emulsion mixture).
The monolayer is defined as a densely packed layer of AgBr grains of effective thickness t_{1}, having

$$
D=a_{1}\left|1-\exp \left(-b_{1} \beta_{1} l\right)\right|
$$

or

$$
I=1 /\left(b_{1}\left(\beta_{1}\right) \ln \left(\frac{a_{1}}{a_{1}-D}\right),\right.
$$

in which

$$
\beta_{1}=\sin \theta\left|1-\exp \left(-\mu_{1} t_{1} / \sin \theta\right)\right|
$$

(a_{1} varies approximately as S / d^{2} and b_{1} as d^{2}).
The thick emulsion is defined as completely absorbing with an effective AgBr -grain thickness d, AgBr volume fraction V, and with a gelatinlike overcoat of thickness t. For the thick emulsion

$$
\alpha D=a \ln (1+b(\beta l)
$$

or

$$
\beta I=(1 / b)[\exp (\alpha D / a)-1],
$$

in which

$$
\begin{aligned}
& S=\left[1-\exp \left(-\mu_{1} d\right)\right] \exp \left(-\mu_{0} t / \sin \theta\right) . \\
& \left(t=\mu^{\prime} /\left(\sin \theta+\mu^{\prime} d_{1}\right),\right.
\end{aligned}
$$

where

$$
\mu^{\prime}=\mu_{0}-(1 / d) \ln \left(1-V|1-\exp |-\left(\mu_{1}-\mu_{0}\right) d| |\right)
$$

and d_{0} is an effective emulsion-surface-layer thickness (a varies approximately as S / d^{3} and b as d^{2}).
The thin-emulsion definition is the same as that for the thick-emulsion case for the lower-energy photons but is modified to account for the incomplete absorption of
higher-energy photons within a finite emulsion thickness T. Here.

$$
\alpha D=a \ln \left[\frac{1+b \beta I}{1+b \beta I \exp \left(-\mu^{\prime} T / \sin \theta\right)}\right]
$$

or

$$
\beta I=(1 / b) \frac{\exp (\alpha D / a)-1}{1-\exp \left(-\mu^{\prime} T / \sin \theta\right) \exp (\alpha D / a)} .
$$

In order to apply photographic materials efficiently as absolute x-ray detectors, it is helpful to have at least approximate information about the film's physical and chemical structure, particularly the volume fraction V, the emulsion thickness T, the overcoat thickness t, and the constituency of the overcoating material if it is not gelatin. Ideally, these parameters would be supplied by the film manufacturers. Unfortunately, at this time these data were not shared with the user. Many of the larger laboratories do have the facilities to measure these parameters directly, but it would seem important to avoid such an expenditure of additional time and effort.

Alternatively, if these film characteristics are not available from the manufacturer or by independent analytical means, their effective values may be determined by more-extensive calibration measurements of D versus I at additional photon energies. This has been the approach adopted in this research.

For the monolayer film, this procedure is not so difficult. A minimum of two photon energies is required for which D. versus-I data are chosen so that the absorption within AgBr is appreciably different. Because it is predicted that D is a function of the single universal variable $\beta_{1} I$, the ratio of the I values for the two photon energies that yield the same D values is a constant and equal to the corresponding ratio of the β_{1} values. The average value for this ratio r may then be applied to determine the effective AgBr -monolayer thickness t_{1}. Thus

$$
r=\frac{1-\exp \left[-\mu_{1}\left(E^{\prime}\right) t_{1}\right]}{1-\exp \left[-\mu_{1}\left(E^{\prime \prime}\right) t_{1}\right]}
$$

in which E^{\prime} and $E^{\prime \prime}$ are the two photon energies for which the two D-versus-I curves are measured. This expression may be solved numerically for the value of t_{1}. With this parameter determined, the universal curve $D=\phi\left(\beta_{1} I\right)$ is established, and a least-squares fitting to this curve, based on D-versus $/ /$ data at the different photon energies, may then be applied to determine the parameters a_{1} and b_{1}. These define the semiempirical equation given above, which relates l (photons per square micrometer) to the values of D, θ, and photon energy E. This equation permits a straightforward microcomputer analysis of the densitometer data to yield an absolute spectrum in I.

In order to characterize similarly an overcoated thickemulsion film, at least three D-versus- I sets of data are required at appreciably different photon energies for which complete absorption within the film is obtained. This is because two parameters, d and t, are required to define $\beta ; V$ and d_{0} also need to be determined to define the scaling factor $\boldsymbol{\alpha}$.

Finally, for the thin-emulsion-type film, the thickness parameter T is determined by using at least one more D-versusl data set at a higher photon energy of a radiation that is appreciably tıansmitted through the emulsion.

We have found that, by using a small computer-plotter systerm, a graphic, iterative determination of the tilm structure parameters was usually rapid and efficient with an accuracy commensurate with that of the experimental calibration data. Log-log plots of a D versus $3 I$ were generated in order (1) to obtain values of t and d that establish a set of 3 values for a series of photon energies that translate the corresponding αD. versus-3I curves along the log $3 I$ axis to form a parallel set and (2) to vary d_{0} and V parameters to establish the values of α for the different photon energies so that the set of parallel curves can then be reduced to a single universal curve by shifting along the $\log \alpha D$ axis. Examples of such universal curves for the monolayer film Kodak 101-07 and the thickemulsion film Kodak RAR 2497 were presented in Figs. 3 and 9. These curves were then least-squares fitted to yield the complete semiempirical equations, as based on the normalincidence D-versus- I data that yield the parameters a and b, which define the complete θ-dependent semiempirical relations described above.

In Part II of this research, ${ }^{3}$ the calibration and the characterization of five films considered to be appropriate for absolute lcw-energy x-ray spectroscopic analysis are described. These calibrations are shown to be well described by the semiempirical equations that have been developed here.

APPENDIX A: LINEAR ABSORPTION COEFFICIENT μ^{\prime} FOR HETEROGENEOUS MATERIALS

In our analysis of the number of AgBr grains that are rendered developable at emulsion depth x [derivation for Eq. (9)], it was necessary to introduce a transmission factor $\exp \left(-\mu^{\prime} x / \sin \theta\right)$, in which μ^{\prime} is the effective linear absorption coefficient for the heterogeneous system of finite-size AgBr grains embedded within a gelatin matrix. For AgBr -grain sizes that are small compared with the reciprocal linear absorption coefficient of AgBr , the heterogeneous coefficient will approach the homogeneous absorption coefficient $\bar{\mu}$, as given by

$$
\begin{equation*}
\bar{\mu}=(1-V) \mu_{0}+V \mu_{1}, \tag{Al}
\end{equation*}
$$

where μ_{0} and μ_{1} are the linear absorption coefficients for gelatin and for AgBr , respectively, and V is the volume fraction for the AgBr component.
In Fig. 14, we present a SEM photo of the cross section of the SB-392 film (described in Part I 3) that illustrates the heterogeneity of the photographic emulsions.
In order to determine μ^{\prime}, we shall again assume that it is sufficiently accurate to model this heterogeneous system as a system of s layers of thickness d equal to the effective grain size, with the grains ordered completely within each layer (absorbing as equivalent, aligned cubes). This geometry is depicted in Fig. 15. We define the x -ray transmission factor τ for the heterogeneous absorber (an averaged value for a large number of incident photons) as follows:

$$
\begin{equation*}
T=\sum_{0}^{*} p_{n} T_{n}=\exp \left(-\mu^{\prime} x\right) \tag{A2}
\end{equation*}
$$

where \boldsymbol{n} is the number of $\mathbf{A g B r}$-grain encounters for a given photon passing through the s layers ranging from zero to s as possible values (for n), p_{n} is the probability of having n encounters, and τ_{n} is the associated transmission factor for a photon passing through nd thickness of AgBr , multiplied by

Fig. 14. A SEM photograph of a cross section of an undeveloped SB-392 film. Illustrated here is the heterogeneous quality of this photographic emulsion.

Fig. 15. Model for the calculation of the transmission of photons through a thickness x of heterogeneous emulsions that consist of s monolayer sections of thickness equal to an effective grain absorption thickness d and with a fraction V of AgBr grains and of $(1-V)$ of gelatin.
that for passing through $(s-n) d$ thickness of gelatin. We shall write expressions for p_{n} and r_{n} for the first few values of n in order to establish the general expression for $\Sigma p_{n} \tau_{n}$. Note that the area fraction occupied by the AgBr grains within this single layer is the same as the volume fraction V, and therefore the probability of encountering one or no AgBr grains for a single photon passing through this layer is V or ($1-V$), respectively. The expressions for p_{n} and τ_{n} are

$$
\begin{aligned}
n=0: & p_{0}
\end{aligned}=(1-V)^{s},
$$

$$
\begin{aligned}
& n=1: p_{1}=s(1-V)^{s-1} V \text {, } \\
& \tau_{1}=\exp \left(-\mu_{1} d\right) \exp \left[-\mu_{0}(x-d)\right] \\
& \left.=\exp \left(-\mu_{0} x\right) \exp \mid-(\Delta \mu) d\right] \text {, where } \Delta \mu=\left(\mu_{1}-\mu_{0}\right) \text {. } \\
& n=2: \quad p_{2}=[s(s-1 / 2)](1-V)^{s-2}(V)^{2} \text {, } \\
& \tau_{2}=\exp \left(-2 \mu_{1} d\right) \exp \left[-\mu_{0}(x-2 d)\right] \\
& =\exp \left(-\mu_{0} x\right) \exp (-2 \Delta \mu d) \text {. } \\
& n=3: \quad p_{3}=[s(s-1)(s-2) / 3!](1-V)^{s-3}(V)^{3} \text {. } \\
& \tau_{3}=\exp \left(-3 \mu_{1} d\right) \exp \left[-\mu_{0}(x-3 d)\right] \\
& =\exp \left(-\mu_{0} x\right) \exp (-3 \Delta \mu d) \text {. }
\end{aligned}
$$

It is evident, therefore, that

$$
\begin{equation*}
p_{n}=\frac{s!}{(s-n)!n!}(1-V)^{s-n} V^{n}, \tag{A3}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{n}=\exp \left(-\mu_{0} x\right) \exp (-n \Delta \mu d) \tag{A4}
\end{equation*}
$$

and that

$$
\begin{equation*}
T=\exp \left(-\mu_{0} x\right) \sum_{0}^{2} \frac{s!}{(s-n)!n!}(1-V)^{s-n}[V \exp (-\Delta \mu d)]^{n} \tag{A5}
\end{equation*}
$$

By recalling that the binomial equation may be written as

$$
\begin{equation*}
(A+B)^{s}=\sum_{0}^{s} \frac{s!}{(s-n)!n!} A^{s-n} B^{n} \tag{A6}
\end{equation*}
$$

we note that

$$
\begin{equation*}
\sum_{0}^{s} p_{n}=\sum_{0}^{s} \frac{s!}{(s-n)!n!}(1-V)^{s-n}(V)^{n}=1 \tag{A7}
\end{equation*}
$$

and that

$$
\begin{equation*}
\tau=\exp \left(-\mu_{0} x\right) \mid 1-V\left[1-\left.\exp (-\Delta \mu d)\right|^{r}=\exp \left(-\mu^{\prime} x\right)\right. \tag{A8}
\end{equation*}
$$

Finally, we may solve Eq. (A8) for μ^{\prime}, and, by letting $s=x / d$, we obtain

$$
\begin{equation*}
\mu^{\prime}=\mu_{0}-(1 / d) \ln \{1-V[1-\exp (-\Delta \mu d)]\} . \tag{A9}
\end{equation*}
$$

This result is essentially the same expression for the heterogeneous abeorption coefficient as that which has been applied by Brown et al. ${ }^{2}$ and by Toor ${ }^{5}$ in their photographic-film models.
In Fig. 8, we have, for the RAR 2497 film, compared the homogeneous linear absorption coefficient $\bar{\mu}$ and the heterogeneous linear absorption coefficient μ^{\prime} for photon energies
in the $100-10,000-\mathrm{V}$ region (using the atomic absorption data recently reported by Henke et al. ${ }^{4}$).

ACKNOWLEDGMENTS

We gratefully acknowledge the invaluable assistance in this program of Priscilla Piano and the helpful advice throughout this research of David Dizon of the Technical Photography Group, Lawrence Livermore National Laboratory, California, and his preparation of the SEM film studies. This program in low-energy \mathbf{x}-ray physics and technology is supported by the U.S. Air Force Office of Scientific Research under grant no. 84-0001 and supplementally by the U.S. Department of Energy under contract no. DE-AS08-83DP40181.

REFERENCES

1. B. L. Henke, H. T. Yamada, and T. J. Tanaka, "Pulsed plasma source spectrometry in the $80-8000-\mathrm{eV}$ x-ray region." Rev. Sci. Instrum. 54, 1311-1330 (1983).
2. D. B. Brown, J. W. Criss, and L. S. Birks, "Sensitivity of x-ray filma. 1. A model for sensitivity in the $1-100 \mathrm{keV}$ region." J. Appl. Phys. 47, 3722-3731 (1976).
3. B. L. Henke, F. G. Fujiwara, M. A. Tester, C. H. Dittmore, and M. A. Palmer, "Low-energy x-ray response of photographic films. II. Experimental characterization," J. Opt. Soc. Am. B 1, 828-849 (1984).
4. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. $E=100-2000 \mathrm{eV}, Z=1-94$, " At. Data Nucl. Data Tablea 27, 1-144 (1982).
5. A. Toor, Lawrence Livermore National Laboratory, Livermore, California 94550 (pernonal communication).

9. Low-energy x-ray response of photographic films. II. Experimental characterization

B. L. Henke, F. G. Fujiwara. and M. A. Tester

C. H. Dittmore
L.awrence Litermore Natomal latworutors, I Aermore. Culiforma 94550

M. A. Palmer

Recemed Feloruary 27, 1984. acce:pled |uly 2. 1984

Optical density versus exposure data have been obtaned at nine photon energies in the $100-2000-\mathrm{eV} \times$-ray region for five spectroscopic films (Kodak films $101-07$. SH-39\%. RAR 2492, RAR 2495, and RAR 2497). These data were determined operationally by a direct comparison of the peak absolute intensities of spectral lines, which were measured with a calibrated proportional counter, with the microdensitometer tracings of the corresponding photographically recorded spectral lines. Film-resolution limits were deduced from an analysis of contact microradiograms of linear zone plates constructed of gold bars. The relationship between the specular densities as measured here and the diffuse densities have been experimentally determined for the five films. Finally, experimental measurements of the optical density versus the angle of incidence of exposing radiation of constant intensity were obtained. These data, relating density to the x-ray intensity, its photon energy, and its angle of incidence, are shown to be fitted satisfactorily in the $100-10000-\mathrm{eV}$ region by the semiempirical mathematical model relations that were derived in Part I of this research [J. Opt. Soc. Am. B 1, 818-827 (1984)].

1. INTRODUCTION

In the research that is described here, we characterize photographic films for absolute spectrographic analysis, particularly in the low-energy x-ray photon-energy region of $100-2000 \mathrm{eV}$. Five films, which were chosen as being appropriate for low-energy x-ray spectroscopy because of their proven quality, vacuum compatibility. and range of sensitivity/resolutions, have been calibrated. These are Kodak's tilms 101.07 and SB-392 and RAR 2492, 2495, and 2497. The first four are currently available. The RAR 2497 film is no longer manufactured but has been included here because of its past and present extensive application at the AV National Laboratories. The ${ }^{2} 497$ film (and its predecessor, RAR 2490) has similar characteristics to those of the newer RAR 2492 and 2495. A comprehensive study of the RAR 2490 film has been reported by Benjamin et al. ${ }^{1}$ An early paper on the calibra. tion of the 101-type film for the low-energy x-ray region has been presented by Koppel, ${ }^{2}$ who has also recently reported ${ }^{3}$ some calibrations for the RAR 2492 and SB- 5 film (which is the sheet-film version of the 3.5 mm SB-392 film that is characterized here). We would like also to refer the reader (o) another excellent paper. by Dozier et al. ${ }^{4}$ on film calibration tor higher photon energies than those particularly addressed here. In Fig. I we present a comparison of the sensitivity versus photon-energy curves for the 101. SB-392, and RAR films as determined by the research desicribed here.
In Section 2 we describe a method for the absolute sensitometric calibration of x-ray spectroscopic films and present graphs and tables for density versus normal incidence expo-
sure data at nine photon energies for the five film types. Also presented here are semiempirical equations derived from the mathematical models developed in Part I of this research ${ }^{5}$ that introduce generally the dependence on the photon energy and on the angle of incidence of the exposing x radiation. In Section 3 we present a relatively simple definition and a method of measurement for spectroscopic film resolution and sughest resolution limits for the film types studied. In Section 4 we discuss the effect of batch-to-batch variation of film characteristics, concluding that each new batch should be calibrated at a few normalizing points for precise, absolute spectrometry. We present comparisons of our film calibrations with those reported from other laboratories for similar film types. In Appendix A we present data that relate the specular densities, as required for spectroscopic film calibration (and as measured directly in this research), to the diffuse density values that may be alternatively applied in comparing our data to other film characterizations. In Appendix B the film-processing procedures that have been followed are described. Finally, in Appendix C tables are presented for the five films of density-versus-exposure data calculated at regularly fine-spaced intervals in photon energy.

2. SENSITOMETRIC CALIBRATION OF X-RAY SPECTROSCOPIC FILMS

For quantitative low-energy x-ray spectroscopy, an accurate relationship must be established among the microdensity values (within slit widths of $20-1(8) \mu \mathrm{m})$, the corresponding exposures (in units presented here as photons per square

Fig. 1 Comparison of the sensitivities of the five investigated spectuscopic films for the $100-10,000$-eV' photon-energy region. Sensitivity is defined here as the reciprocal of the expoaure I (photons per square micrometer) that is required to establish a specular density of 0.5 . These curves were developed in this research.
mictometer), and the photon energy. Generally, this requires microdensitometer measurements using numerical apertures for the objective and the illumination lenses of about $0.1-0.25$. For such densitometry, effectively all the absorbed and the scattered light is subtracted from the incident light beam to
define the resulting transmitted beam. The measured ratio of the transmitted to the incident light r then yields essentially the specular uptical-density value D. which is defined by the relation

$$
\begin{equation*}
\left.D=\log _{111} 1 / \tau\right) . \tag{1}
\end{equation*}
$$

If all the light that is scattered in the forward direction is included in the measurement of the transmitted beam. the corresponding diffuse optical density that is calculated by using Eq. (1) has a simewhat smaller value. Often the diffuse densities are reported in the literature that characterizes a particular photosraphic material. For the five films studied here, the relationships between specular and diffuse densities have been experimentally determined and are presented in Appendix A. It should be emphasized that it is specular density that is directly measured in most analyses of photographically recorded spectra. All the opucal densities that have been measured here are specular, as defined by nearly matched microdensitometer illumination and objective lens numerical apprtures of 0.1 Occasionally, when fine spectroscopic detail requires the use of slits smaller than those used in this research. matched numerical apertures of 0.25 may be employed. With these apertures the optical densities that are measured will be somewhat smaller because more of the diffuse scattered light is accepted by the objective lens. We have also included in Appendix A measurements that permit a conversion between density values measured at 0.25 and those measured at our 0.1 numerical apertures.

An operational method has been developed for the specular microdensity ca..oration of spectroscopic films; the method is based on a direct comparison of the photographically recorded spectrum to the corresponding measured absolutely calibrated (photons per second per square micrometer) spectrum. As illustrated in Fig. 2, this is accomplished by

> SMALL APERTURE LIMITING OF DIFFUSE RADIATION BACKGROUND WITH THIN-WINDOW FILTER (LOW•ENERGY CUTOFF)

establishing along a normal incidence detection circle a Bragg reflected spectrum by means of an elliptically curved cylindrical crustal. A small-slit m-ray source and a scatter aperture are located at respective focal points for the given elliptical analyzer profile. A detailed description of this elliptical analyzer spectrograph. including a description of the crystals and the multilayers employed for establishing the normal-incidence detection of spectra in the $100-10,000 \cdot \mathrm{eV}$ region, was recently presented in another paper. ${ }^{\text {© }}$ Also described in Ref. 6 are the procedures by which the absolute spectral intensities are obtained using a calibrated. flow proportional counter that is scanned atong the detection circle (using a goniometer with its axis through the focal pornt at the scatter aperturel. The flow proportional counter is pressure tuned and calibrated for absolute photon counting by a method that was also described previnusly." Peak intensities and corresponding microdensities are measured with matched microdensitometer and proportional-counter slit systems with slit widths that are set to be small compared with the instrumental spectral linewidths $(\sim 100) \mu \mathrm{m})$. Peak intensities and microdensities are compared on spectral lines that are recorded at a series of exposure umes under constant and known x-ray spectral-line intensities.

Characteristic x radiations at nine photon energies in the $100-2000-\mathrm{eV}$ region were obtained using demountable x ray-tube anodes, ${ }^{\text { }}$ which provided broad-source large angle illumination of the source slit. The anodes were of pure metals except for the graphited and the anodized aluminum anodes, which provided the characteristic ($\cdot \mathrm{K}(1)(277 \mathrm{eV})$ and the $0 . K$ (r 1.525 eV) radiations. The other characteristic

 eV . and Mo-La $12: 293 \mathrm{eV}$) Appropriate filters and x raytube anode voltages were selected to minimize any high-order Bragg reflected line or contınuum background that might be associated with the measured spectral lines. An analysis of the proportional counter pulse-height spectrum was applied we establish that any background remaining at a given spectral line was first-order diffracted and essentially of the same photon energy as that of the line itself. For this reason, peak intensities and microdensities did not require correction for extraneous x-ray background and were considered tutally characteristic of the given spectral-line photon energy.

The measurement procedure was as follows: The absolute photons-per-second per-square-micrometer counting rates on the spectral lines were set by adjusting the x-ray-tube power to yield line intensities of the order of several thousand counts per second. The source was then monitored for constancy by moving the counter to the direction of zero angle. stopping the beam down in this pusifion by means of a fine slit at the counter window to yield approximately the same counting-rate levels as those for the reflected lines. A film cassette was then moved into place with the film to be expueed along the same detertion circle, and a multiple-expesure series was made using a spooled film transport controlled through a flexible cable and a mannetic coupled feedthrough to outside the vacuum chamber. After each expoxure. the diffracted line intensities were measured again, and, if necesaary, a small drift correction for this intensity was made. Ten or more den-sity-versus exposure points were taken at each of the nine photon energies for each film. It was necessary to spray a thin film of static charge eliminating solution on the back
surface of the $101-07$ film, which has no overcoat protection. in order to eliminate the static-discharge beckground expoure associated with transporting this type of film in vecuum.) Manufacturer-recommended film-proceming procedures were followed, and these are described in Appendia B.

Repeated microdensitometer measurements were made using instruments with 0.1 numerical apertures for both the illumination and the transmission beam cones. One set was measured at the I Iniversity of Hawait on a microdenstometer with a $100-\mu \mathrm{m}$ slit \& Boller \& Chivens Microphotometer. Model $1+: 13$). Other sets were measured at the Sandia National Laboratories and at the Lawrence Livermore National Laboratory using a $30-\mu \mathrm{m}$ slit and integrating to the same cotal slit size as that of the first measurements. (The instruments used for these measurements were Photometric Data Systems Modet 1010 microdensitometers.) We found no significant differences among these independent measurements of film densities.

These data were computer plotted as log D versus log I. D versus I. and I versus log I. Examples of these initial plots for the five films exposed to $\mathrm{O} \cdot \mathrm{Ki}(5: 25 \mathrm{eV})$ are shown in Figa. 3-: The onset region. plotted as D versus l, must allow a linear extrapolation to the onigin, and this constitutes a check on the background subtraction that yielded these net densities from the measured gross densities. The correction to net

Fig 3 The measured O versus I data oblained for the five films at nine photun energies and computer plosted as illusurated here for the 101 di film at the \mathbf{O}. Ka (525 eV') phoum energy. The smonth curves were kenerated by the universal. semiempirical equation developed in this paper fior this particular film

Fix f same ax fix 1 lor the sif .19: filin

Fig 5 Same as fig ifor the RAR 249 I IIm

Fis o same as Pix Ifur the KAK : ity : film

densities involved canceling the transmisson of an unexposed purtion of film from the measured transmission so that the resulting transmission r would be the result of only the effect of the expased and developed grain density as defined by Ba. (1) Also plotted in Figs $\mathbf{3}-7$ are the semiempirical model curves obtained as described below. As nuted in Part l., the averaged universal-model curves were derived from fitting many different film sample measurements at many different photon energies. I)iscrepancies with the experimental data on individual films from these universal-model predictions, particularly at the low-statistics low exposure regions, may
be the result mostly of a variation of the development conditions and of the absolute photon-intenaity calibrations for the individual film measurements.

In Tables 1-5, we present for the five films the averaged density versus the normal-incidence exposure data for the nine photon energies in the $100-2000-\mathrm{eV}$ region (also presented in Tables $10-14$ in Appendix C at regularly spaced energy intervals in the extended $100-10,000-\mathrm{eV}$ region). Lasted in these tables are letters referring to the characteristic absorption-edge energies given in Table 6 for the silver-bromide and for the carbon, nitrogen, and ozygen constituents of the gelatin in the photographic emulsion. At these photon energres. significant discontinuities may occur in the filmsensitivity versus photon-energy curve. As may be noted from Fig. I, the carbon, nitrogen, and oxygen edges are not in evidence for the 101 -type film. which consists of essentially a monolayer of silver-bromide erains with no absorbing overcoat of gelatin (as is present for the emulsion-film types).

The sugnificant systematic errors occurring in these calibrations were usually in the determination of the absolute photon intensities. Such errors were discovered by comparing plots of I versus E at constant density D for the five films. If calibration errors were made, the corresponding I point would be systematically off an average I-versus E plot for all five films. (All films were measured at the same calibrated line Intensities.) After correcting for these systematic errors. the residual statistical errors in the D-versus. / data were averaged out by least-squares fitting of the D-versus I data to polyno. mials of the form

$$
\log D=A+B \log I+C(\log /)^{2}
$$

The averaged density data were then plotted as universal curves (for an appropriate range of photon enersies) by a procedure that was developed in Part 1.s These curves, atons with the definitions of the appropriate scaling factors that account for the dependence on photon energy E. are presented in figs. 8-12. For the determination of these scaling factors $\mid \alpha_{1}, 18$, and β (defined in Figs. $\left.8-12\right) \mid$ and of che linear absorption cuefficients (μ_{0} for gelatin. μ_{1} for AgBr, and μ^{\prime} for the heterogeneous emulsion), abeorption data were calculated using data recently compiled by Henke et al * The heterokeneous absorption coefficient was derived in Part ['s to be

$$
\begin{equation*}
\mu^{\prime}=\mu_{0}-(1 / d) \ln \left(1-V|1-\exp |-\left(\mu_{1}-\mu_{0}\right) d \mid 1\right) \tag{2}
\end{equation*}
$$

This reduces to the linear absorption coefficient for a homozeneous system for which the AgBr grain size d approaches a small value, viz..

$$
\begin{equation*}
\bar{\mu}=(1-V)_{\mu_{0}}+V_{\mu_{1}} . \tag{131}
\end{equation*}
$$

A comparison of μ^{\prime} and $\bar{\mu}$ for the heterogeneuus and the homogeneous models of the RAR 2492 film is presented in Fig. IJ.

The film-structure parameters, the grain size d, the effective surface-layer thicknesses d_{0} and l_{1}, and the $A_{g} B r$ volume fraction V that appear in the scaling factors A, ϕ, and β_{1} were determined as described in Part I^{3} by an iterative computerplotting technique in the generation of the universal curves.

As a test of the validity of the semiempirical model equa. tions that were derived in Part $1,{ }^{5}$ the equations were filted

Table 1. Exposure I (photons/ mm^{2}) at Various Net Densities for Film 101-07

- Hr M4 edge
- NK. Ag M4 s edres
- Hr Li, edge

Table 2. Exposure $I\left(\right.$ photons $/ \mu m^{2}$) at Various Net Densities for Film SB-392

Abeorption Fdge	Photon Energy E(ev)	Net Density D (Sperular. $0.1 \times 0.1 \mathrm{nAP}$										Wavelength λ (A)		
		102	04	06	0.8	1.0	1.2	1.4	1.6	1.8	2.0			
A°														
	119	38201	959 cl	18302	3.1402	5.1202	8.1202	1.2603	1.9403	2.9703	$+5203$	114.2\%		
	193	983-01	2 24 (0)	12200	6.N:20	1.0401	1.5401	2.2301	3.1801	4.4901	6.3101	64.37		
	275	341-01	758-1)1	13400	20600	2.9800	4.1600	5.6800	7.6300	1.0101	1.3301	44.76		
H														
- ${ }^{\text {d }}$														
	57.3	1.8300	44300	8.1300	1.3401	2.0901	3.1501	4.6701	6.8201	9.8801	1.4202	21.64		
	705	73i-01	17900	3.1900	5.1000	3.7100	1.1301	1.6101	2.2701	3.1701	4.3901	17.59		
	9.10	3+1-01	3.76-01	1.3300	2.0500	2.9600	4.1300	5.6200	7.5300	9.9900	1.3101	1334		
	1487	18: -01	397-01	650-01	9.49-01	13000	1.7300	2.2400	2.8600	3.6200	4.5500	8.34		
$\mathrm{E}^{\prime}{ }^{(1)}$														
	29.993	14.5-111	312-01	506-01	7.33-01	10000	13200	17000	2.1700	2.7500	3.4800	5.41		

[^5]tu the universal plots of Figs. 8-12 and presented therein as the smooth curves. For the monolayer-type film (Kodak 101.07) the model equation is
\[

$$
\begin{equation*}
D=a_{1}\left[t-\exp \left(-b_{1} p_{1} l\right)\right] . \tag{4}
\end{equation*}
$$

\]

and. for the thick emulsion film. the model equation is

$$
\begin{equation*}
a l)=a \ln (1+b \alpha l) \tag{5}
\end{equation*}
$$

I Note that, to apply this relation, as in Figs. 8-12, we used D - versus-I data only for photon energies below 1500 eV . for which it could be assumed that the photons were escentially absorbed within the emulsion.)

In establishing these least qquares fits, the parameters a_{1}. b_{1}, a, and b were determined. In Table 7 these parameters, along with the empirical film structure parameters, are presented fop the five films that have been characterized in this study.

Finally, the semiempirical equation that has been derived in Part l' for thin emulsions for thicknesses T such that not
all the incident photons are absurbed within the emulsion) becomes

$$
\begin{equation*}
a l)=a \ln \frac{1+b(\beta l}{1+b \beta \mid \exp \left(-\mu^{\prime} T / \sin (1)\right.} . \tag{6}
\end{equation*}
$$

The fitting deacribed above was on the D-versus-/ data that were directly measured for normal-incidence intensities (for θ in the above equations set $\mathbf{t o} 90^{\circ}$). Because for many spertrocopic applications the incident intensities on the photographic films are not at 90°. the θ dependence that has been included in these semiempirical equations is essential. In order to test the accuracy of this predicted $\#$ dependence. we have measured for a given photon energy the D-versus. I data at a series of incidence ankles. The method of measurement is illustrated in Fisg. 14. A small line source of monochromatic radiation was generated by placing a thin wire (source of characteristic fluorescent line radiation) near the window of a demouncable x-ray excitation source. The characteristic line radiation from this wire source was isolated
by using an appropriately filtered excitation radiation of energy only slightly higher than that excited. The source exposes a film that is wrapped under tension around a cylinder as shown in Fig. 14. The variable angle of incidence θ is related to the distance $r \boldsymbol{\sigma}$, as measured along the developed-film density pattern, by the relation

$$
\begin{equation*}
\theta=\tan ^{-1}\left[\frac{\cos \phi+(r / R)}{|\sin \phi|}\right] . \tag{7}
\end{equation*}
$$

The intensity I at a given position along the film is given by

$$
\begin{equation*}
I=I\left(90^{\circ}\right) \frac{\left(R-r^{2}\right)}{R^{2}+r^{2}-2 R r \cos \phi} \tag{8}
\end{equation*}
$$

The normal intensity $l\left(90^{\circ}\right)$ is determined from the value of the optical density D, as measured at the center of the densitometer tracing, using the normal-incidence D-versus- I calibration curves. With these relations, D-versus- θ plots may be generated for constant I and for a given photon energy. Such plots were presented in Part I ${ }^{5}$ for the 101-07 and the RAR 2497 films. Presented here in Fig. 15 is a D-versus $-\theta$ plot for the Kodak RAR 2492 film at the photon energy of Al-K α (1487 eV). On all these plots we have also presented the D. versus $-\theta$ curves for constant incident intensity l, as predicted by the semiempirical relations given above. It may be noted that the agreement between the experimental data and the predictions of the model relations is quite satisfactory.

Table 3. Exposure I (photons $\mu \mathrm{m}^{\mathbf{2}}$) at Various Net Densities for Film 2497

Absorption Edge	Photon Energ: $E(e \mathrm{~V})$	Net Density $D(\text { Specular, } 0.1 \times 0.1 \mathrm{nA})^{\circ}$										Wavelength $\lambda(\AA)$
		11.1	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	
A^{6}												
	109	74500	2.1101	4.6101	9.1701	1.7502	3.2802	6.0802	1.1203	2.0603	3.7703	114.27
	193	16000	3.9800	7.5300	1.2801	2.0701	3.2401	4.9901	7.5901	1.1502	1.7202	64.37
	277	8.48-01	1.9700	3.4500	5.4000	7.9900	1.1401	1.6001	2.2001	3.0101	4.0901	44.76
Br												
C^{d}	525	148 60	3.6400	6.7700	1.1301	1.8001	2.7601	4.1701	6.2201	9.1901	1.3502	23.62
D.												
	57:3	23100	5.9300	1.1601	2.0501	3.4601	5.6601	9.1101	1.4502	2.3002	3.6402	21.64
	705	1.51 (00	3.6800	6.8000	1.1301	1.7801	2.7001	4.0401	5.9701	8.7301	1.2702	17.59
	930	1.0500	2.4100	4.1600	6.4100	9.3300	1.3101	1.8001	2.4401	3.2701	4.3701	13.34
\mathbf{E}^{\prime}	1487	$9+2-01$	2.0400	3.3400	4.8700	6.7100	8.9400	1.1701	1.5101	1.9501	2.5401	8.34
	2293	8.59-01	1.8500	3.0100	4.3800	6.0200	8.0100	1.0501	1.3601	1.7701	2.3301	5.41

[^6]Table 4. Exposure I (photons/ $/ \mathrm{mm}^{2}$) at Various Net Densities for Film 2492

Absorption Edge	Photon Energy E(eV)	Net Density D (Specular, $0.1 \times \mathrm{nA})^{\text {a }}$										Wavelength $\lambda(\lambda)$		
		0:	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0			
A^{*}														
	109	i6is (0)	1.7401	34601	6.2301	1.0702	1.7802	2.9302	4.7802	7.7502	1.2503	114.27		
	193	17700	3.4800	6.2200	9.9800	1.5101	2.2101	3.1701	4.4801	6.2801	8.7301	64.37		
	277	-89-01	17700	2.9900	4.5100	6.4100	8.7700	1.1701	1.5401	2.0001	2.5701	44.76		
$\mathrm{H}^{\text {c }}$														
C^{*}														
	57.3	2.1100	5.1100	9.3800	1.5501	2.4101	3.6501	5.4101	79201	1.1502	16802	21.64		
	70.5	$1: 1900$	3.2400	5.7000	\$.9800	1.3301	1.9101	2.6801	3.7101	5.0801	6.8901	17.59		
	9:30	985-01	2.1800	3.6500	5.4300	7.6200	1.0301	1.3501	1.7501	2.2501	2.8501	13.34		
E^{\prime}	1487	889-01	18900	30300	4.3200	5.8100	7.5100	9.4900	1.1801	1.4501	1.7801	8.34		
	2993	H13-01	1.7200	2.7500	3.9060	5.2300	6.75 (0)	8.5100	1.0601	1.3001	15001	5.41		

[^7]Table 5. Exposure I (photons/ $\mu \mathrm{m}^{2}$) at Various Net Densities for Film 2495

Absorption Edge	Photon Energy: $E(e V)$	Net Denzity $D(\text { Specular, } 0.1 \times 0.1 \mathrm{nA})^{*}$										$\begin{aligned} & \text { Wavelength } \\ & \lambda(A) \end{aligned}$		
		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0			
$A^{\text {b }}$														
	109	2.7300	2.1400	1.4301	2.5901	4.4601	7.5001	1.2402	2.0402	33302	5.4102	114:27		
	193	6.6:-01	1.60 (1)	2.9200	4.7900	7.4200	1.1101	1.6401	2.3801	3.4301	4.9201	64.37		
	-7\%	+04-0):	9.34-01	16300	2.5400	3.7300	5.2900	7.3400	10001	13601	1.8201	4476		
$\mathrm{B}^{\text {c }}$														
cad														
	525	+20-01	149 (0)	$288(0)$	+. 3500	66600	9.8800	14301	20501	29201	4.1101	2362		
$\mathrm{D}^{\text {e }}$														
	573	9.08-1)1	2.23 (0)	+1600)	6.9700	1.1101	1.7001	2.5701	3.8401	5.6801	8.3601	21 is		
	70.5	6.32-01	1.50 (10)	26900	4.3300	6.5900	9.6800	1.3901	19801	2.7801	3.8801	1759		
	930	4.80-01	1.09 (0)	1.8500	2.8300	4.0500	5.6100	7.5700	1.0101	13201	12001	133		
	1487	$4.36-01$	9.34-01	15100	2.1600	2.9200	3.8000	4.8300	60300	74600	91600	834		
$\mathrm{Ef}^{\prime} \quad \begin{array}{llllllllllll}2.293 & 4.01-01 & 8.52-01 & 1.3600 & 1.9400 & 2.6000 & 3.3600 & 4.2500 & 5.2800 & 65000 & 79500 & 541\end{array}$														

[^8]Table 6. Absorption Edges

F.dge	$E(e V)$
A $\mathrm{Br}_{\mathbf{M}} \mathbf{H}$	71
$13 \mathrm{C} \cdot \mathrm{K}$	284
(.) N.K. AK M ${ }_{4}$ S	$398-402$
D: O.K	532
E.: Br-L3.2	1553-1599
$F \cdot A_{H} \cdot L_{3.2}$	3351-35:6

Fig 8 Universal plot for the $\mathbf{S B} \cdot 192$ film using the I) versus I data measured at eight photun enerkies in the 100 - 1 wnul el' repion and the energy dependent scalink facturs noted here, wand d The smouth curve is a least squares fit of the semiempifical tid (5)

3. DETERMINATION OF SPECTROSCOPIC FILM-RESOLUTION LIMITS

For the calibratums described above, the proportional counce. and micrudensitumeter slits were set equal to $100 \mu \mathrm{~m}$, which is small compared with the spectral linewidths generated by the low-energy x-ray spectringraph. In a few instances, the x-ray source slit was brisadened in order to ensure that the
spectral linewidths did satisfy this criterion I It was then assumed that the measured peak densities were precisely related to the corresponding abculute peak intensities through these D-versus-I calibrations not only for the measured lines but also for any that are bromder. It is also important to know how narrow the line and/or how cloeely spaced adjacent lines

Fix y Same an Fix mbor the HAK : Ja: Iilin

$$
\mathrm{COH}_{\mathrm{L}} \quad \text { io } \quad \text { io } \quad \text { indotions mil_- }
$$

Fis. 11 Same as Fig. 8 for the RAR 2495 film.

Fis. 12. U'nue sal plot 1) versus $d_{1} l$ for the 101.07 film in which the scaling factor of noted here introduces the entire photon-energy dependence D versus / data were used as measured at eight photon energes in the 100-1500.eV region. The smouth curve was obtained uaing the universal semiempirical Fq. (4).
may be before the effect of line spreading within the emulsion prevents an accurate determination of the peak intensity when using the D-versus-I calibrations that have been presented here.

A simple test has been applied for the spectroscopic filmresulution limits, it is based on an analysis of contact microradiograms, which are made using a linear zone plate of gold bars to simulate an appropriate range of spectral linewidths and apacings. The spacings between bars varied according to the Fresnet relation tor the position of the bar indges of the zone plate

$$
y=100 \sqrt{n} \text {. }
$$

These micrusteuctures were provided for this research by Ceglio et al "and were constructed by photolithographic techniques similar to thoee currently used in the micruelectronics industry for the zenefation of integrated circuitry. A
final electroplating procedure was applied to produce relatively thick gold-bar microstructures. The gold-bar structures, of about $8 \mu \mathrm{~m}$ in thickness, are essentially opaque to the low-energy x rays that were used to generate the contact microradiograms. The spacings and the openings between the bars $x_{2}-x_{1}$ and $x_{100}-x_{99}$ for the original 100-line zone-plate mask were about 40 and $5 \mu \mathrm{~m}$, respectively. After the final gold plating, the openings were accurately measured and found to be somewhat narrower ($3-38-\mu \mathrm{m}$ range). In Fig. 16 is shown a photomicrograph of a small section of the $2 \mathrm{~mm} \times$

Fig. 13. Comparison of the heterogeneous linear absorption coefficient for the RAR 2492 film with the linear absorption coefficient for an amorphous system of the same volume fraction of AgBr . Note the appreciable difference in the low-energy x-ray region.

Fix. 14. Experimental method for the determination of the effect of the angle of incidence θ on exposure. The film, wrapped around $a 2.5 \mathrm{~cm}(1-\mathrm{in})$ cylinder, is exposed by a filtered, fluorescent line radiation source. The source is a thin wire placed near the window of an x ray tube of effective excitation photon energy just sufficient to excite the desired characteristic nuorescent line from the wire source.

Table 7. Eimpirical Universal Equation Parameters

Pilm	. 4 mml	$d(\mu m)$	$d_{11}(\mu \mathrm{~m})$	1	T ${ }^{(\mu \mathrm{m})}$	$a\left(\mu m^{-1}\right)$	$b\left(\mu \mathrm{~m}^{2}\right)$
2897	$1{ }^{1}$	113	00°	111	711	0.414	0.454
:19:	111	111	U6	01	70	10.52	11.17:
:84\%	111	11.1	06	02	70	0.528	0.3 .6
SH 19:	11	11	15	$0:$	100	$0 \cdot 285$	1.41
1010						a $1.1 .95 \%$	$\begin{gathered} b_{1}\left(\mu \mathrm{~m}^{2}\right): \\ 0.3128 \end{gathered}$

Fig. 15. Comparison of the D-versus θ data (measured as illustrated in Fig. 14) for constant incident intensity I and energy Al-K α (1487 eV) with that predicted by the universal semiempirical relation Eq. (6) for the RAR 2492 film.

Fig. 16. Photomicrograph of a section of the linear zone plate that was applied to simulate exposures to spectral lines of varying width and spacing. The zone plate is formed by $8-\mu \mathrm{m}$-thick gold bars with openings that vary from 3 to $38 \mu \mathrm{~m}$. The bars are essentially opaque to the x radiation that was used to generate the contact microradiograms (Mg-Ka(1254 eV)].

Fig. 17. Densitometer tracing (with a $2 . \mu \mathrm{m}$ microdensitometer slit) on a contact microradiogram of the linear zone plate using a uniform expusure of $\mathbf{M g} \cdot \mathrm{Ku}(1254-\mathrm{eV})$ filtered fluorescent radiation of small effective source size on the RAR 2497 film. The onset of the reduction of the peak densities as the slit widths decrease indicates the spectroscopic film-resolution limit.

4 mm zone-plate structure. In Fig. 17 is shown a microdensitometer tracing on a contact microradiogram of this linear zone plate on RAR 2497 film with an exposure from a filtered fluorescent source of $\mathrm{Mg} \cdot \mathrm{K} \boldsymbol{\alpha}(1254 \cdot \mathrm{eV})$ radiation excited by
$\mathrm{Al}-\mathrm{K} \alpha$ ($1487-\mathrm{eV}$) anode radiation. A microdensitometer slit width of $2 \mu \mathrm{~m}$ was used. It may be noted that, as the openings in the zone plate became narrower, the peak densities decreased, and the densities within the regions obstructed by the gold bars increased as a result of the line spreading. The difference between these densities, $D_{\text {max }}-D_{\text {min }}$, should be a constant for linewidths above a defined spectroscopic film-resolution limit and equal to the net density as determined by the exposure I from the D-versus- I calibration. In Figs. 18-20 we present plots of the $D_{\text {max }}-D_{\min }$ values versus linewidth for contact microradiograms on the three film types RAR 2497, 101-07, and SB-392. These have indicated spectroscopic film-resolution limits of approximately 5,10 , and $15 \mu \mathrm{~m}$, respectively, at a density of about 1.5. Although this

Fig. 18. Plots of net microdensity values $D_{\max }-D_{\min }$ versus zoneplate slit width t for two contact microradiograms on the RAR 2497 film. (Exposures described in Fig. 17.) The indicated spectroscopic film-resolution limit was about $5 \mu \mathrm{~m}$.

Fig. 19. Plots of $D_{\text {max }}-D_{\text {min }}$ versus zone-plate slit width t for two contact microradiograms on the $101-07$ film. (Exposures described in Fig. 17.) The indicated spectroscopic film-resolution limit is about $10 \mu \mathrm{~m}$.

Fig. 20. Plot of $D_{\text {max }}-D_{\text {min }}$ versus zone-plate width ifor a contact microradiograms on the SB-392 film. Exposures described in Fig. 17. The indicated spectroscopic film-resolution limit was about 15 $\mu \mathrm{m}$.
operational criterion for spectroscopic resolution is not precise, it does establish that all the films that have been chosen here for low-energy x-ray spectroscopy can be applied to determine the absolute intensity distributions of typical spectral lines as generated by Bragg spectrographs in the $100-2000-\mathrm{eV}$ region (widths $>20 \mu \mathrm{~m}$).

4. ACCURACY OF FILM CALIBRATIONS: CONCLUSIONS

Absolute x-ray spectrometry demands an accurate knowledge of the D-versus- I relation continuously with photon energy in order to translate a microdensitometer record of a spectrum into an absolute intensity distribution versus photon energy. In order to minimize the considerable amount of effort that is usually involved in the experimental calibration of spectroscopic films for the low-energy x-ray region, the approach that has been adopted here is to apply semiempirical model equations, which introduce the effect of the photon energy through the accurately known energy dependence of the \mathbf{x}-ray absorption coefficients that characterize the film response. If the manufacturer would make available the approximate values for the required model parameters, such as the average grain size, the emulsion and the overcoat thicknesses, and the volume fraction of AgBr , the semiempirical method presented in this paper would require the measurement of D versus I at only a few photon energies. Unfortunately, these data were not available, and it was necessary to make these measurements at an extended number of photon energies. Nevertheless, it has been demonstrated in this paper that (1) universal plots that fully account for the photon-energy dependence can be established and that (2) these plots can be precisely fitted by relatively simple, semiempirical equations involving only two adjustable parameters (a_{1}, b_{1} or a, b). In Figs. 3-7, examples of experimental D-versus- I data are presented along with those predicted by the universal semiempirical equations that indicate the typical accuracy of the present calibrations.

In Part I ${ }^{5}$ it was noted that these parameters have the following, approximate theoretical dependence on the filmstructure parameters: for the monolayer film

$$
a_{1} \sim M_{0} S \sim S / d^{2}, \quad b_{1} \sim d^{2},
$$

and for the emulsion-type film

$$
a \sim N_{0} S \sim V\left(S / d^{3}\right), \quad b \sim d^{2}
$$

Here, $\boldsymbol{M}_{\mathbf{U}}$ is the number of monolayer AgBr grains per unit area, and N_{0} is the number of AgBr grains per unit $v \quad$ ve in the emulsion. V is the volume fraction of AgBr in the emulsion. S is an effective light-absorption cross section of the developed silver grain clusters, and d is an effective average diameter of the AgBr grain. The implications of these approximate proportionalities are that (1) the only effect of the development process on the sensitometric response is through the parameter a_{1} or a by the growth of the cross section S and (2) the effect of grain size d is most sensitively reflected in the values of a_{1}, b_{1} and a, b.

In a batch-to-batch variation of film parameters, we would expect that the volume fraction V would be reasonably constant but that the effective grain size could vary significantly. Such a small variation may affect the values of the scaling

Fig. 21. Comparison of the intensities required to establish specular densities of $0.5,0.7$, and 0.9 as measured independently on the similar film types 101-01 and $101-07$ for the $100-1000-\mathrm{eV}$ photon-energy region.
factors (β_{1}, α, and β) only slightly but could cause relatively large changes in the empirical parameters, a_{1}, b_{1} or a, b. It is therefore suggested here that, for precise film calibration, the following procedure be followed:
(1) For a given film type, the scaling factors should be established as described in this paper.
(2) For each new batch of film, a minimum set of D-ver-sus-I data should be obtained that permits, with the preestablished scaling factors, the generation of the universal plots of αD versus βI (or D versus $B_{1} I$ for the monolayer).
(3) Finally, a least-squares fitting of this universal plot then yields a new pair of fitting parameters, a_{1}, b_{1} or a, b, that establish the universal, semiempirical equations $D=f(l, E$, $\theta)$ for the monolayer and the emulsion types of films.

To assist in the above procedure for the description of the five films that have been characterized here, we present in Appendix C tables of μ_{0} for gelatin and μ_{1} for AgBr ; the scaling factors β_{1}, α, and β; and the universal functions relating D, I, and E (for the particular film batches studied in this research) at regularly spaced intervals in photon energy.

Finally, we would like to compare our film calibrations with those obtained independently on similar photographic materials as reported from other laboratories.

The Kodak 101-01 film has been calibrated for the $100-$ $1000-\mathrm{eV}$ x-ray region using three characteristic line series from copper, iron, and graphite targets that were excited by pro-ton-beam bombardment using the ion accelerator (IONAC) at the Lawrence Livermore National Laboratory ${ }^{10}$ and flow proportional-counter detectors. In Fig. 21, we present these experimental data for each photon energy as the number of photons required to establish a specular density of $0.5,0.7$, and 0.9 . These densities correspond to the reported diffuse densities of $0.35,0.50$, and 0.65 , which were determined using the diffuse-to-specular density calibration curves presented in Appendix A. Along with these experimental points are our semiempirical predicted curves (smooth) for the Kodak 101-07 film, which was studied in this paper. The principal difference between these film systems is that the 101.07 film is on a 4 -mil ESTAR base and the 101 -01 film is on a 5 -mil acetate base.
The Kodak RAR 2490 film has been calibrated using filtered fluorescent x radiations excited in a low-energy x-ray calibration facility at the Los Alamos National Laboratury.

100

Fig. 22. Comparison of the intensities required to establish a specular density of 0.9 as measured independently on the similar film types RAR 2490 and RAR 2495 for the $100-10000-\mathrm{eV}$ photon-energy region.

Averaged data were reported for the $100-10,000-\mathrm{eV}$ region for the exposure required to establish a diffuse density of 0.5 . This corresponds to our specular density value of 0.9 as determined for a similar type emulsion, the Kodak RAR 2495. In Fig. 22, we present these data along with our semiempirical equation prediction for the RAR 2495 film. Although an absolute comparison is not possible here because two film types are involved, it should be noted that the model-prediction photon-energy dependence for $E>2000 \mathrm{eV}$ for such similar systems seems to be satisfactorily verified.

APPENDIX A: SPECULAR-DENSITY VERSUS DIFFUSE-DENSITY CALIBRATIONS

The density measured and referred to in the body of this paper has been specular density D_{s}. Many laboratories use diffuse density D_{d}, and this appendix presents data to permit translation from one type of density to the other. The data presented here are in the form of pluts of the ratio $D_{\sqrt{ }} / D_{d}$ versus D_{d} (Figs. 23-32). Similar types of plots have been presented by others ${ }^{11}$ for different types of films, and there have been some theoretical and empirical treatments of the problem of relating specular to diffuse densities for different types of films. ${ }^{12}$ The data presented here are directed specifically to the five types of films used and processed as described in Appendix B. The processing is important because of the dependence of these types of plots on the light-scattering cross section S, as discussed above. ${ }^{13}$ The speculardensity data were taken at two different matched numerical apertures (N.A.'s) for the optical system of the densitometer. One of these was the standard N.A. of 0.1. These data were used in Figs. 23-27, which give the D_{s} / D_{d} versus D_{d} plots for each of the five films used. In addition, in order to accomodate fine spectral lines, which necessitate increasing the optical apertures, data were also taken at the matched N.A.'s of 0.25 . These N.A. $=0.25$ data are shown in Figs. 28-32 for the five films used.

The densities were measured using the following setups:
(1) Specular density ID, A Photometric Data Systems Model 1010 microdensitometer system equipped with a Hamamatsu R213 end -on photomultiplier and operating with matched objective and illumination optical systems at a N.A.
of 0.1 was used. Readings were also taken at N.A. $=0.25$. The effective objective aperture (i.e., scanned-sample dimensions) for N.A. $=0.1$ was $0.286 \mathrm{~mm} \times 4.416 \mathrm{~mm}$; for N.A. $=0.25$ it was $0.400 \mathrm{~mm} \times 4.416 \mathrm{~mm}$. A mean D_{s} was determined for this sample area.

Fig. 23. Specular density measured with matched 0.1 numerical apertures.

Fig. 24. Specular density measured with matched 0.1 numerical apertures.

Fig. 25. Specular density measured with matched 11 I numerical apertures.

Fig. 26. Specular density measured with matched 0.1 numerical apertures.

Fig. 27. Specular density measured with matched 0.1 numerical apertures.

Fig. 28. Specular density measured with matched 0.25 numerical apertures.
(2) Diffuse density D_{d} (totally diffuse visual density type V 1-b, in conformity with ANSI Standard pH 2.19) A Westrex RA-1100-H integrating-sphere diffuse densitometer with a reading aperture of $0.356 \mathrm{~mm} \times 4.420 \mathrm{~mm}$ was used.

The x-ray film measurements were on the same exposures used to obtain the film-calibration curves. Film-density samples from exposure to $\mathrm{P}-11$ simulated phosphor light source were also measured. The curves in the plots are those fitted to the P-11 data, and the x-ray exposure data are plotted

Fig. 29. Specular density measured with matched 0.25 numerical apertures.

Fig. 30. Specular density measured with matched 0.25 numerical apertures.

Fix. 31. Specular density measured with matched 0.25 numerical apertures.

Fig. 32. Specular density measured with matched 0.25 numerical apertures.
as points for N.A. $=0.1$. The plots for N.A. $=0.25$ portray P-11 simulated phosphor data only. As this and other studies have shown. ${ }^{14}$ however, these plots tend to be independent of the energy of the exposing soft x rays and similar to those for P-11 light.

APPENDIX B: FILM-HANDLING AND -DEVELOPMENT PROCEDURES

Kodak RAR 2492, 2495, and 2497 Films

These three films were handled and developed in the same manner with the exception that the RAR 2495 film required a Kodak Safelight Filter No. 2, whereas the RAR 2492 and 2497 films could be handled with either a No. 1 or a No. 2 filter. The exposed film was processed as follows in a developing tank at $68 \pm 1^{\circ} \mathrm{F}$:
(1) Presoak: 2 min in distilled water. (All five films used in this study were presoaked because of the varying times that the films were kept in vacuum.)
(2) Development: 6 min in Kodak Developer D-19 with constant agitation.
(3) Rinse: 30 sec in Kodak SB-5 Indicator Stop Bath with constant agitation.
(4) Fixing: 5 min in Kodak Rapid Fixer with constant agitation.
(5) Wash: At least 10 min in running water, then 30 sec in Kodak Photo-Flo 200 Solution.
(6) Drying: At room temperature in still air.

Kodak SB-392 (or SB-5)

The Kodak SB- 392 film or the SB- 5 film, the difference between the two being merely their format, was handled under Kodak Safelight Filter No. 1. Special care was taken not to bend the film too sharply, since doing so results in many minute cracks in the film. The processing of this film was as follows at $68 \pm 1^{\circ} \mathrm{F}$ in a developing tank:
(1) Presoak: 2 min in distilled water.
(2) Development: 5 min in Kodak Liquid X-ray Developer or Kodak GBX Developer with constant agitation.
(3) Rinse: 30 sec in Kodak SB- 5 Indicator Stop Bath with constant agitation.
(4) Fixing: 2 min in Kodak Rapid Fixer with constant agitation.
(5) Wash: 30 min in running water, then 30 sec in Photo-Flo 200 Solution.
(6) Drying: At room temperature in still air.

Kodak Special Film Type 101-07

Great care was taken in the handling of this film since the emulsion lacks a protective overcoat of gelatin and is easily marred. It was handled using Kodak Safelight Filter No. 1. It was necessary to spray the back of the film lightly with a commercially available brand of static guard jusi before loading the film into the camera. This prevents the occurrence of dark streaks on the developed film that result from static electricity. The processing of this film at $68 \pm 1^{\circ} \mathrm{F}$ was as follows:
(1) Presoak: 2 min in distilled water.
(2) Development: 4 min in Kodak D-19 Developer diluted $1: 1$ with distilled water and constantly agitated.
(3) Rinse: 30 sec in Kodak SB-5 Indicator Stop Bath with constant agitation.
(4) Fixing: 2 min in Kodak Rapid Fixer with constant agitation.
(5) Wash: At least 7 min in running water followed by 30 sec in Kodak Photo-Flo 200 Solution.
(6) Drying: At room temperature in still air.

APPENDIX C: TABLES OF PARAMETERS APPLIED HERE FOR THE GENERATION OF FIVE SEMIEMPIRICAL, UNIVERSAL FILM-RESPONSE FUNCTIONS

Presented in Table 8 are the energy-dependent scaling factors β_{1}, α, and β that were applied to generate the universal photographic response functions for the five films studied in this research. [In Table 9 we have listed the calculated values for the linear absorption coefficients for gelatin $-\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2}-\left(\mu_{0}\right)$ and for $\mathrm{AgBr}\left(\mu_{1}\right)$, which were used in the generation of the scaling factors.) With these factors, the universal plots, which are presented in Figs. 8-12, were obtained. These plots were then least-squares fitted to our semiempirical model equations to obtain the relatively sensitive pair parameters a_{1}, b_{1} or a, b in order to establish the best-average characterizations (over photon energies in the $100-2000-\mathrm{eV}$ region) for the investigated monolayer and emulsion-type films. (These parameters are listed in Table 7.) The averaged characterizations were presented above in Tables $1-5$ as exposure $/$ versus density D at the nine characteristic photon energies that were used for the D versus I calibrations. Presented in Tables $10-14$ are the averaged film response characteristics predicted by the semiempirical relations for the extended photon-energy region of 100-10,000 eV as calculated at regularly spaced intervals in energy for the five films.

As was discussed in Section 4 , the data presented here can be directly applied along with additional calibration data to new batches of these films to obtain corrected values of the fitting parameters a_{1}, b_{1} or a, b.

Table 8. $\alpha\left(\mu \mathrm{m}^{-1}\right)$, β, and β_{1} Factors versus Photon Energy $E(\mathrm{eV})$

Absorption Edge	$E(\mathrm{eV})$	Film ${ }^{\text {a }}$						
		2492, 2497		2495		SB-392		$\frac{101-07}{\beta_{1}}$
		α	β	α	β	α	β	
$\mathrm{A}^{\text {b }}$								
	75	1.4400	4.76-02	1.4500	4.76-02	6.26-01	3.91-05	1.000
	100	1.3000	1.83-01	1.3200	1.83-01	5.99-01	3.51-03	1.000
	125	1.1600	3.46-01	1.1900	3.46-01	5.64-01	3.16-02	1.000
	150	1.0200	$4.96-01$	$1.07 \quad 00$	4.96-01	5.27-01	1.00-01	1.000
	175	8.99-01	6.10-01	9.72-01	6.10-01	4.89-01	2.00-01	1.000
	200	7.94-01	6.95-01	8.88-01	6.95-01	4.51-01	3.10-01	1.000
	225	7.06-01	7.55-01	8.19-01	7.55-01	4.16-01	4.14-01	1.000
	250	6.34-01	7.98-01	7.62-01	7.98-01	3.84-01	5.05-01	1.000
	275	$5.76-01$	8.28-01	7.17-01	8.28-01	3.56-01	5.83-01	1.000
$\mathrm{B}^{\text {c }}$								
	300	1.1400	3.53-01	1.1800	3.53-01	5.62-01	3.54-02	1.000
	325	1.0800	4.17-01	1.1200	4.17-01	5.44-01	6.45-02	1.000
	350	1.0100	$4.70-01$	1.0600	4.70-01	5.26-01	1.02-01	1.000
	375	9.52-01	$5.14-01$	1.0100	5.14-01	5.09-01	$1.46-01$	1.000
$\mathrm{C}^{\text {d }}$								
	425	9.44-01	5.34-01	$1.00 \quad 00$	5.34-01	5.05-01	1.54-01	1.000
	450	9.03-01	5.87-01	9.72-01	5.87-01	4.91-01	1.94-01	1.000
	475	8.58-01	$6.22-01$	$9.36-01$	6.22-01	$4.76-01$	$2.36-01$	1.000
	500	8.15-01	$6.51-01$	9.00-01	6.51-01	4.61-01	2.81-01	1.000
De ${ }^{\text {e }}$								
	550	9.69-01	5.16-01	1.0200	5.16-01	5.13-01	1.35-01	1.000
	600	$8.91-01$	$5.70-01$	9.58-01	$5.70-01$	4.89-01	2.00-01	1.000
	650	8.20-01	$6.10-01$	$8.97-01$	6.10-01	4.65-01	2.68-01	1.000
	700	7.57-01	6.37-01	8.43-01	6.37-01	4.43-01	3.35-01	1.000
	750	6.96-01	$6.42-01$	7.88-01	6.42-01	4.21-01	3.99-01	1.000
	800	6.38-01	6.37-01	7.36-01	$6.37-01$	3.99-01	4.59-01	1.000
	850	5.86-01	6.25-01	$6.87-01$	$6.25-01$	3.79-01	5.13-01	1.000
	900	5.40-01	6.06-01	$6.42-01$	6.06-01	3.60-01	5.58-01	1.000
	950	4.97-01	5.84-01	6.00-01	5.84-01	3.43-01	$5.97-01$	0.999
	1000	4.57-01	5.59-01	$5.60-01$	5.59-01	3.26-01	6.29-01	0.999
	1050	4.21-01	5.31-01	5.23-01	5.31-01	3.11-01	6.53-01	0.998
	1100	3.88-01	5.03-01	4.88-01	5.03-01	2.96-01	$6.70-01$	0.996
	1150	3.58-01	$4.76-01$	4.55-01	$4.76-01$	2.82-01	6.81-01	0.992
	1200	$3.31-01$	$4.49-01$	$4.25-01$	$4.49-01$	2.69-01	6.86-01	0.988
	1250	3.06-01	4.23-01	3.98-01	4.23-01	2.56-01	6.86-01	0.982
	1300	2.84-01	3.99-01	$3.72-01$	$3.99-61$	2.44-01	6.82-01	0.975
	1350	2.63-01	$3.76-01$	3.48-01	3.76-01	2.33-01	6.75-01	0.966
	1400	2.44-01	3.54-01	$3.26-01$	3.54-01	2.22-01	6.65-01	0.955
	1450	$2.27-01$	3.34-01	$3.06-01$	$3.34-01$	2.12-01	6.52-01	0.943
	1500	2.12-01	3.15-01	2.87-01	3.15-01	2.02-01	6.38-01	0.929
E^{\prime}								
	1800	1.98-01	4.18-01	3.04-01	4.18-01	1.90-01	7.77-01	0.976
	1900	1.81-01	$3.89-01$	2.82-01	3.89-01	1.80-01	7.58-01	0.966
	2000	163-01	3.54-01	2.56-01	3.54-01	1.70-01	7.28-01	0.949
	2100	1.46-01	3.22-01	2.33-01	$3.22-01$	1.59-01	6.96-01	0.929
	2200	1.32-01	2.93-01	2.13-01	2.93-01	1.49-01	6.61-01	0.905
	2300	1.20-01	2.68-01	1.94-01	2.68-01	1.40-01	6.25-01	0.878
	2400	1.09-01	2.44-01	1.78-01	2.44-01	1.31-01	$5.90-01$	0.849
	2500	9.92-02	2.24-01	1.63-01	2.24-01	1.23-01	5.56-01	0.818
	2600	9.06-02	2.05-01	1.50-01	2.05-01	1.15-01	5.23-01	0.786
	2700	8.29-02	1.88-01	1.38-01	1.88-01	1.08-01	4.91-01	0.754
	2800	7.60-02	1.73-01	1.27-01	1.73-01	1.01-01	$4.61-01$	0.721
	2900	6.98-02	1.60-01	1.17-01	1.60-01	9.49-02	$4.33-01$	0.689
	3000	6.43-02	1.47-01	1.08-01	1.47-01	8.91-02	4.07-01	0.657
	3100	5.93-02	$1.36-01$	1.00-01	1.36-01	8.36-02	3.82-01	0.626
	3200	5.49-02	1.26-01	9.:30-0.2	1.26-01	7.85-02	3.59-01	0.596
	3300	5.08-02	1.17-01	8.64-0.2	1.17-01	7.38-02	$3.37-01$	0.567
FR								
	4000	6.32-02	1.73-01	1.16-01	1.7.3-01	9.1:3-02	4.67-01	0.720
	5000	3.71-02	1.02-01	6.92-02	1.02-01	5.9x-02	3.01-01	0.51:3
	6000	2.33-02	6.4.5-02	$4.40-02$	6.45-02	4.01-02	1.99-01	0.359
	7000	1.56-02	4.32-02	2.95-02	4.32-02	2.77-02	1.17-01	0.255

Table 8. Continued

Absorption Edge	$E(\mathrm{el}$)	Film ${ }^{\text {a }}$						
		2492, 2497		2495		SB-392		$\underline{101.07}$
		a	β	a	β	α	β	β_{1}
	8000	1.09-0.2	3.03-02	2.07-0.2	3.03-02	1.98-02	9.73-02	0.185
	9000	7.89-0.3	2.20-02	1.51-02	2.20-02	1.46-02	7.15-02	0.138
	10000	5.91-0.3	1.65-02	1.13-02	1.65-02	1.11-02	5.41-02	0.105

a In our notation in this table, a number followed by a space and another number indicates that the first number is to be multiplied by 10 raised to the power of the second number: ex, $1.27-111$ means $1: 2: \times 11^{-1}$.
${ }^{-} \mathrm{Br}-\mathrm{M}_{4}$ edue

- C'K edge.
d N.K. Ah.M. sedkes
- O.K edge
/ Br-L3.2 edge
*Ag-L3.2 edge

Table 9. Linear Absorption Coefficients ${ }^{\text {a }}$

[^9]Table 10. Exposure I (photons/ $\mu \mathrm{m}^{\mathbf{2}}$) at Various Net Densities for Film 101-07

Absorption Edge	Photon Energy $E(\mathrm{eV})$	Net Density D (Specular, $0.1 \times 0.1 \mathrm{nA}$)									Wavelength $\lambda(\boldsymbol{\lambda})$
		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	
$A^{\text {a }}$											
	75	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	165.31
	150	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	82.65
	295	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	55.10
	300	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	41.33
	37.5	0.34	0.73	1.17	1.68	$\underline{2} .29$	3.04	4.02	5.44	8.07	33.06
$C^{\text {b }}$											
	475	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	26.10
	600	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	20.66
	750	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	16.53
	900	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	13.78
	950	0.34	0.73	1.17	1.68	2.29	3.04	4.02	5.44	8.07	13.05
	1000	0.35	0.73	1.17	1.68	2.29	3.04	4.02	5.45	8.08	12.40
	1050	0.35	0.73	1.17	1.68	2.29	3.04	4.03	5.45	8.09	11.81
	1100	0.35	0.73	1.18	1.69	2.30	3.05	4.04	5.46	8.10	11.27
	1150	0.35	0.74	1.18	1.69	2.30	3.06	4.05	5.48	8.13	10.78
	1200	0.35	0.74	1.18	1.70	2.31	3.07	4.07	5.50	8.16	10.33
	1250	0.35	0.74	1.19	1.71	233	3.09	4.09	5.54	8.21	9.92
	1300	0.35	0.75	1.20	1.72	2.35	3.11	4.12	5.58	8.27	9.54
	1350	0.36	0.76	1.21	1.74	2.37	3.14	4.16	5.63	8.35	9.18
	1400	0.36	0.75	1.23	1.76	2.39	3.18	4.21	5.69	8.44	8.86
	1450	0.37	0.78	1.24	1.78	2.42	3.22	4.26	5.77	8.55	8.55
	1540	0.37	0.79	1.26	1.81	2.46	3.27	4.32	5.85	8.68	8.27
$E^{\text {c }}$											
	1800	0.35	0.75	1.20	1.72	2.34	3.11	4.12	5.57	8.26	6.89
	1900	0.36	0.76	1.21	1.74	2.37	3.14	4.16	5.63	8.35	6.53
	2000	0.36	0.77	1.23	1.77	2.41	3.20	4.23	5.73	8.50	6.20
	2100	0.37	0.79	1.26	1.81	2.46	3.27	4.32	5.86	8.68	5.90
	2200	0.38	0.81	1.29	1.86	2.53	3.35	4.44	6.01	8.91	5.64
	2300	0.39	0.83	1.33	1.91	2.60	3.46	4.57	6.19	9.18	5.39
	2400	0.41	0.86	1.38	1.98	2.69	3.58	4.73	6.41	9.50	5.17
	2500	0.42	0.89	1.43	2.05	2.79	3.71	4.91	6.65	9.86	4.96
	2600	0.44	0.93	1.49	2.14	2.91	3.86	5.11	6.92	10.26	4.77
	2700	0.46	0.97	1.55	2.23	3.03	4.03	5.33	7.22	10.70	4.59
	2800	0.48	1.01	1.62	2.33	3.17	4.21	5.57	7.54	11.18	4.43
	2900	0.50	1.06	1.70	2.44	3.32	4.41	5.83	7.90	11.71	4.28
	3000	0.52	1.11	1.78	2.56	3.48	4.62	6.12	8.28	12.28	4.13
	3100	0.55	1.17	1.87	2.68	3.65	4.85	6.42	8.69	12.89	4.00
	3200	0.58	1.23	1.96	2.82	3.84	5.10	6.74	9.13	13.54	3.87
	3300	0.61	1.29	2.06	2.96	4.03	5.36	7.09	9.60	14.23	3.76
$F^{\text {d }}$											
	4000	0.48	1.02	1.63	2.33	3.18	4.22	5.58	7.56	11.21	3.10
	5000	0.67	1.42	2.28	3.28	4.46	5.92	7.83	10.60	15.72	2.48
	6000	0.96	2.03	3.26	4.68	6.37	8.45	11.18	15.14	22.45	2.07
	7000	1.35	2.87	4.59	6.59	8.97	11.91	15.75	21.33	31.63	1.77
	8000	1.86	3.94	6.32	9.07	12.34	16.39	21.68	29.35	43.53	: . 55
	9000	2.50	5.30	8.48	12.17	16.57	22.00	29.10	39.40	58.43	1.38
	10000	3.27	6.94	11.12	15.96	21.73	28.85	38.17	51.68	76.63	1.24

- $\mathrm{Br} \cdot \mathrm{Ma}_{4}$ edge
${ }^{6}$ N.K. Ag. M 4.5 edges.
- Br. L $\mathrm{L}_{1.2}$ edge
- Ag L. 3.2 edge

Table 11. Exposure I (photons/ $\mu \mathrm{m}^{\mathbf{2}}$) at Various Net Densities for Film SB-392

Absorption Edge	Photon Energy $E\left(\mathrm{eV}^{\prime}\right)$	Net Density D (Specular, $0.1 \times 0.1 \mathrm{nA})^{\text {a }}$										Wavelengch $\lambda(A)$
		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	
$A^{\text {b }}$												
	75	$1.00 \quad 04$	$2.56 \quad 04$	4.9804	8.7304	1.4605	2.3605	3.7605	5.9405	9.3205	1.4606	165.31
	100	1.0602	2.67 02	5.1202	8.8502	1.4503	2.3203	3.6303	5.6403	8.6903	1.3304	123.98
	125	1.0901	2.7101	5.1201	8.7101	1.4002	2.1902	3.3702	5.1102	7.7102	1.1603	99.18
	150	3.1700	7.7500	1.4401	2.4001	3.7901	5.8001	8.7201	1.2902	1.9002	2.7902	82.65
	175	14500	3.4900	6.3%	1.0401	1.6101	2.4201	3.5501	5.1501	7.4101	1.0602	70.85
	$2(6)$	8.54-01	2.0300	3.6.3 00	5.8400	$8.87 \quad 00$	1.3001	1.8701	2.6601	3.7301	5.2001	61.99
	2.5	5.8:-01	1.3600	2.4100	3.8000	5.6800	8.1800	1.1501	1.6001	2.2001	3.0101	55.10
	250	$4.35-01$	1.0000	1.7 .5 m	2.3300	4.0000	5.6800	7.8700	1.0701	1.4501	1.9401	49.59
	275	3.46-01	7.91-01	1.36 (0)	2.1000	$3.04 \quad 00$	4.2500	5.8000	7.8000	1.0401	1.3701	45.08
B ${ }^{\text {c }}$												
	300	9.7000	2.4101	4.5401	7.7101	1.2402	1.9402	2.9702	4.5002	6.7702	1.0103	41.33
	325	5.1200	1.2601	2.3601	3.9701	6.3301	9.7901	1.4902	2.2302	3.3102	4.9102	38.15
	350	3.1100	7.6100	1.4101	2.3501	3.7201	5.6901	8.5401	1.2702	1.8602	2.7302	35.42
	375	2.0900	5.0700	9.3300	1.5401	2.4101	3.6501	5.4301	7.9701	11602	1.6802	33.06
Cd												
	425	1.9600	4.7500	8.7400	1.4401	2.2501	3.4101	5.0501	7.4001	1.0702	1.5502	29.17
	450	1.5100	3.6400	6.6500	1.0901	1.6901	2.5401	3.7301	5.4201	7.8001	1.1202	27.55
	475	1.1900	2.8600	5.1800	8.4300	1.3001	1.9301	2.8201	4.0501	5.7801	8.1901	26.10
	500	9.66-01	$2.30 \quad 00$	4.1500	6.7000	1.0201	1.5101	2.1801	3.1101	4.3901	6.1701	24.80
$\mathrm{D}^{\text {e }}$												
	550	2.2800	5.5400	1.0201	1.6901	2.6501	4.0301	6.0101	8.8:01	1.2902	1.8702	22.54
	600	1.4600	3.5100	6.4000	1.0501	1.6201	2.4301	3.5701	5.1801	7.4501	1.0602	20.66
	650	1.0200	2.4400	4.4100	7.1300	1.0901	1.6101	2.3401	3.3401	4.7401	6.6701	19.07
	700	7.73-01	1.8300	3.2700	5.2300	7.91	1.1601	1.6501	2.3301	3.2601	4.5301	17.71
	750	6.12-01	1.4300	2.5400	4.0200	6.0100	8.6800	1.2301	1.7101	2.3601	3.2301	16.53
	800	5.01-01	1.1600	2.0400	3.2000	4.7300	6.7700	9.4500	1.3001	1.7701	2.4001	15.50
	850	4.22-01	9.73-01	1.6900	2.6300	3.8500	5.4500	7.5300	1.0201	1.3801	1.8401	14.59
	900	3.67-01	$8.39-01$	1.4500	2.2300	3.2400	4.5400	6.2200	8.3800	1.1201	1.4801	13.78
	950	3.24-01	7.37-01	1.2600	1.9300	2.7800	3.8700	5.2500	7.0200	9.2700	1.2101	13.05
	1000	2.92-01	6.59-01	1.1200	1.7000	2.4300	3.3600	4.5200	5.9900	7.8500	1.0201	12.40
	1050	2.66-01	5.98-01	1.0100	1.5300	2.1700	2.9700	3.9800	5.2300	6.8000	8.7800	11.81
	1100	2.46-01	5.50-01	9.25-01	1.3900	1.9600	2.6700	3.5500	4.6400	6.0000	7.7000	11.27
	1150	2.31-01	5.12-01	8.58-01	1.2800	1.8000	2.4400	3.2200	4.1900	5.3900	6.8800	10.78
	1200	2.18-01	4.83-01	8.04-01	1.2000	1.6700	2.2500	2.9700	3.8400	4.9200	6.2500	10.33
	1250	2.08-01	4.59-01	7.61-01	1.1300	1.5700	2.1100	2.7600	3.5600	4.5500	5.7600	9.92
	1300	2.00-01	4.39-01	7.26-01	1.0700	1.4900	1.9900	2.6000	3.3400	4.2500	5.3700	9.54
	1350	1.93-01	4.24-01	6.98-01	1.0300	1.4200	1.9000	2.4700	3.1700	4.0200	5.0700	9.18
	1400	1.88-01	4.12-01	6.77-01	9.92-01	1.3700	1.8200	2.3700	3.0300	3.8400	4.8400	8.86
	1450	1.84-01	4.02-01	6.59-01	9.65-01	1.3300	1.7600	2.2900	2.9200	3.7000	4.6600	8.55
	1500	1.82-01	3.95-01	6.46-01	9.44-01	$1.30 \quad 00$	1.7200	2.2300	2.8400	3.5900	4.5200	8.27
\mathbf{E}^{\prime}												
	1800	142-01	3.08-01	5.03-01	7.33-01	1.0100	1.3300	1.7200	2.1900	2.7700	3.4900	6.89
	1900	1.40-01	3.03-01	4.94-01	7.18-01	9.84-01	1.3000	1.6800	2.1400	2.7000	3.4000	6.53
	2000	1.40-01	3.02-01	4.91-01	7.1-01	9.76-01	1.2900	1.6600	2.1200	2.6800	3.3800	6.20
	2100	1.40-01	3.02-01	4.90-01	7.11-01	9.72-01	1.2800	1.6500	2.1100	2.6700	3.3700	5.90
	2200	1.42-01	3.05-01	4.96-01	7.19-01	982-01	1.2900	1.6700	2.1300	2.6900	3.4100	5.64
	2300	1.44-01	3.11-01	5.04-01	7.31-01	9.98-01	1.3200	1.7000	2.1600	2.7400	3.4800	5.39
	2400	1.48-01	3.18-01	5.16-01	7.47-01	1.0200	1.3400	1.7400	2.2100	2.8100	3.5700	5.17
	2500	1.52-01	3.27-01	5.30-01	7.67-01	1.0500	1.3800	1.7800	2.2800	2.8900	3.6900	4.96
	2600	1.57-01	$3.37-01$	5.46-01	7.91-01	1.0800	1.4200	1.8400	2.3500	3.0000	3.82000	4.77
	2700	1.62-01	3.49-01	5.65-01	8.18-01	1.1200	1.4700	1.9100	2.4400	3.1100	3.98 (x)	4.59
	2800	1.68-Cl	3.62-01	5.86-01	8.48-01	1.1600	1.5300	1.9800	2.5400	3.2400	4.16 (k)	4.43
	2900	1.75-01	3.76-01	6.09-01	8.82-01	1.2000	1.5900	2.0600	2.6500	3.3900	4.3600	4.28
	10,00	1.82-01	3.92-01	6.34-01	9.18-01	1.2600	1.6600	2.1500	2.7600	3.5500	4.5800	4.13
	3100	1.90-01	4.08-01	6.62-01	9.58-01	1.3100	1.7300	2.2500	2.8900	3.7200	$4.81(x)$	4.00
	3200	198-01	4.26-01	6.91-01	1.0000	1.3700	1.8100	2.3500	3.0300	3.9100	5.0600	3.87
	:3300	2.0:-01	4.46-01	722-01	1.0500	1.4300	1.9000	2.4700	3.1810	+.1000)	$5.34(0)$	3.76
Fa												
	4000	150-01	3.44-01	557-01	8.07-01	1.1000	1.4600	1.8900	2.4300	3.1100	4.01 kJ	3.10
	.5000	2.20-01	474-01	7.69-01	1.12 (0)	1.5300	2.0:100	2.6500	3.4300	4.4500	5. $8.3(m)$	2.48
	6000	310-01	6.68-01	1.09 (0)	1.5800	2.1700	2.8900	3.79 (00	$494(n)$	6.46 (x)	x.5x(m)	2.07

Table 11. Continued

Absorption Edge	Photon Energy $E(e V)$	Net Density D (Specular, $0.1 \times 0.1 \mathrm{nA})^{\circ}$													Wavelength $\lambda(A)$
		0.2	0.4	0.6		0.8		1.0		1.2	1.4	1.6	1.8	2.0	
	7000	4.32-01	9.32-01	1.52	00	2.21	00	3.04	00	4.0600	5.3400	7.0000	9.2200	1.2401	1.77
	8000	5.90-01	1.2700	2.07	00	3.03	00	4.17	00	5.5900	7.3700	9.6800	1.2801	1.7301	1.55
	9000	7.88-01	1.7000	2.77	00	4.05	00	5.59	00	7.4900	9.9000	1.3001	1.7301	2.3401	1.38
	10000	1.0300	2.2300	3.63	00	5.30	00	7.33	00	9.8300	1.3001	1.7101	2.2801	3.1001	1.24

- In our notation in this table, a number followed by a space and another number indicates that the first number is to be multuplied by $t 0$ to the power of the second number; $\mathrm{A} .9 \mathrm{~B}:-01$ means $9 \mathrm{~B}: \times 10^{-1}$
${ }^{6} \mathrm{Br} \cdot \mathrm{M}_{4}$ edie
${ }^{\circ}$ C.K'edge
N.K. As.Ms s ediges
- O.K edge
/ Br-L. ${ }^{3.2}$ edge
- Ag-L. 3.2 edge

Table 12. Exposure I (photons/ $\mathrm{\mu m}^{2}$) at Various Net Densities for Film 2497

Absorption Edge	Photon Energy	Net Density D (Specular, $0.1 \times 0.1 \mathrm{nA})^{\circ}$										Wavelength $\lambda(A)$
	$E(e V)$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	
A^{6}												
	75	4.6501	1.4002	3.2602	7.0002	1.4503	2.9503	5.9703	1.2004	2.4104	4.8404	165.31
	100	1.0601	3.0401	6.7701	1.3802	2.6902	5.1702	9.8102	1.8503	3.4903	6.5703	123.98
	125	4.7700	1.3101	2.7701	5.3201	9.7901	1.7602	3.1302	5.5102	9.6902	1.7003	99.18
	150	2.8400	7.4800	1.5101	2.7601	4.8001	8.1501	1.3602	2.2602	3.7402	6.1502	82.65
	175	1.9700	5.0000	9.6900	1.6901	2.8101	4.5301	7.2001	1.1302	1.7702	2.7502	70.85
	200	1.4800	3.6600	6.8500	1.1501	1.8401	2.8501	4.3401	6.5201	9.1701	1.4402	61.99
	225	1.1900	2.8600	5.2100	8.5200	1.3201	1.9801	2.9001	4.2001	6.0401	8.6.3 01	55.10
	250	$9.91-01$	2.3400	4.1700	6.6700	1.0101	1.4701	2.1001	2.9601	4.1301	5.7401	49.59
	275	8.56-01	1.9900	3.4900	5.4800	8.1100	1.1601	1.6301	2.2401	3.0701	4.1801	45.08
${ }^{\text {c }}$												
	300	4.6100	1.2601	2.6601	5.0801	9.2901	1.6602	2.9402	5.1502	9.0102	1.5703	41.33
	325	3.6100	9.6900	1.9901	3.7201	6.6201	1.1502	1.9702	3.3602	5.6902	9.6102	38.15
	350	2.9600	7.7800	1.5701	2.8501	4.9501	8.3701	1.4002	2.3102	3.7902	6.2202	35.42
	375	2.5000	6.4600	1.2701	2.2701	3.8401	6.3401	1.0302	1.6602	2.6502	4.2202	33.06
c ${ }^{\text {d }}$												
	425	2.3900	6.1500	1.2101	2.1501	3.6301	5.9601	9.6501	1.5502	2.4702	3.9102	29.17
	450	2.0500	5.2300	1.0101	1.7801	2.9501	4.7701	7.5901	1.1902	1.8702	2.9102	27.55
	475	1.8200	4.5800	8.7500	1.5101	2.4601	3.9101	6.1101	9.4301	1.4502	2.2102	26.10
	500	1.6300	4.0600	7.6500	1.3001	2.0901	3.2601	5.0001	7.5801	1.1402	1.7102	24.80
I)												
	550	2.5500	6.6200	1.3101	23501	4.0101	6.6601	1.0902	1.7602	2.8402	4.5702	22.54
	600	2.0800	5.2800	1.0201	1.7801	2.9501	4.7401	7.5001	1.1802	1.8:102	2.8402	20.66
	6.50	1.7600	4.3700	8.2600	1.4001	2.2601	3.5401	5.4401	8.2601	1.2502	1.8702	19.07
	700	1.5300	3.7300	6.9000	1.1501	1.8101	2.7601	4.1301	6.1101	8.9701	1.3102	17.71
	750	1.3700	3.2900	5.9800	9.7400	1.5001	2.2401	3.2701	4.7201	6.7601	9.6201	16.53
	800	1.2500	2.9500	5.2800	8.4400	1.2801	1.8601	2.6701	3.7701	5.2701	7.3401	15.50
	850	1.1600	2.6900	4.7400	7.4600	1.1101	1.5901	2.2401	3.1001	4.2601	5.8101	14.59
	900	1.0900	2.5000	4.3500	6.7500	9.8900	1.4001	1.9401	2.6401	3.5801	4.8101	13.78
	950	1.0300	2.3500	4.0400	6.2000	8.9700	1.2501	1.7101	2.3101	3.0901	4.1101	13.05
	1000	9.90-01	2.2300	3.8000	5.7700	8.2700	1.1401	1.5501	2.0601	2.7301	3.6001	12.40
	1050	9.59-01	2.1500	3.6200	5.4500	7.7400	1.0601	1.4201	1.8801	2.4701	32401	11.81
	1100	9.36-01	2.0800	3.4800	5.2100	7.3500	1.0001	1.3301	1.7501	2.2901	≥ 9801	11.25
	1150	$9.20-01$	2.0300	3.3900	5.0400	7.0600	9.5600	1.2701	1.6601	2.1601	2.8001	10.78
	1200	9.10-01	2.0000	3.3200	4.9100	6.8600	9.2500	1.2201	1.5901	2.6601	2.6701	10.33
	1250	9.06-01	1.9900	3.2800	4.8400	6.7200	9.0300	1.1901	1.5501	$2 .(0) 01$	25901	9.92
	1300	9.06-01	1.9800	3.2600	4.7900	6.64 (0)	8.9000	1.1701	1.5201	1.9601	2.5401	9.54
	1350	911-01	1.9800	3.2600	4.78 (0)	6.6100	8.84010	1.1601	1.501	1.9401	2.5101	918
	1400	9.19-01	2.0000	3.27 (0)	4.7900	6.62 (x)	8.8:300	1.1601	1.5001	1.9301	2.50)	8.86
	1450	9.31-01	2.0200	3.30 (0)	4.81300	6.6600	8.8800	1.1601	1.5101	1.9401	25001	8.55
	1500	$9.46-11$	2.0500	3.35 (0)	4.8900	6.7300	8.97 (0)	1.1701	1.5291	1.6601	3 St 01	8.27
E'												
	1800	6.87-01	1.49 (1)	2.4300	3540)	$487(x)$	6.48(x)	H 47 m	1.10101	11201	$\|x+0\|$	6. 69
	1900	70:3-01	1.5200	2.4800	3.6100	4.36 (0)	6.61 (0)	M 6, 100	1.1201	1.44111	1 xs 01	6.53

Table 12. Continued

Absorption Edge	Photon Energy $E\left(\mathrm{eV}^{2}\right)$	Net Density D (Specular, $0.1 \times 0.1 \mathrm{nA}$)										Wavelength $\lambda(\lambda)$
		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.6	
	2000	7.35-01	1.5900	2.5900	3.7600	5.1700	6.8800	8.9900	1.1601	1.5101	1.9701	6.20
	2100	7.69-01	1.6600	2.7000	3.9300	5.4000	7.1800	9.3800	1.2201	1.5801	2.0701	5.90
	2200	8.12-01	1.7500	2.8500	4.1400	5.6900	7.5700	9.9000	1.2801	: 6701	2.1901	5.64
	2300	8.60-01	1.8500	3.0100	4.3900	6.0200	8.0200	1.0501	1.3601	1.7701	2.3301	5.39
	2400	9.13-01	1.9700	3:2000	4.6500	6.3900	8.5100	1.1101	1.4501	1.8901	2.4901	5.17
	2500	$9.70-01$	2.0900	3.4000	4.9500	6.8000	9.0500	1.1901	1.5401	2.0101	26601	4.96
	2600	1.03 00	2.2300	3.62×0	5.2700	7.2400	9.6400	1.2601	1.6501	2.1501	2.8401	4.77
	2700	1.1000	2.3700	38600	5.6100	7.7100	1.0301	1.3501	1.7601	2.3001	3.0501	4.59
	2800	1.1700	2.5300	4.1100	5.9800	8.2200	1.1001	1.4401	1.8801	2.4601	3.2601	4.43
	2900	1.2500	2.6900	4.3800	6.3800	8.7700	1.1701	1.5401	2.0001	2.6301	3.4901	4.28
	3000	1.3300	2.8700	4.6700	5.8000	9.3500	1.2501	1.6401	2.1401	2.8101	3.7401	4.13
	3100	1.4200	3.0600	4.9800	7.2500	9.9700	1.3301	1.7501	2.2801	3.0001	4.0001	4.00
	3200	1.5100	3.2600	5.3000	7.7200	1.0601	1.4201	1.8601	2.4401	3.2001	4.2801	3.87
	3300	1.6100	3.4700	5.6400	8.2200	1.1301	1.5101	1.9901	2.6001	3.4201	4.5701	3.76
F^{\prime}												
	4000	1.1300	2.4400	3.9600	5.7700	7.9300	1.0601	1.3901	1.8201	2.3801	3.1801	3.10
	5000	1.7800	3.8300	6.1400	9.0900	1.2501	1.6801	2.2101	2.8901	3.8101	5.1201	2.48
	6000	2.7100	5.8400	95100	1.3901	1.9101	2.5601	3.3801	4.4401	5.8701	7.9101	2.07
	7000	3.9600	8.5400	1.3901	2.0301	2.8001	3.7501	4.9501	6.5101	8.6301	1.1702	1.77
	8000	5.5700	1.2001	1.9601	2.8601	3.9501	5.2901	6.9901	9.2001	1.2202	1.6502	1.55
	900m	7.5800	1.6461	25701	3.5001	5.3801	7.2101	9.5301	1.2602	1.6702	2.2602	1.38
	10000	1.0001	2.1701	3.5401	5.1601	7.1301	9.5601	1.2602	1.6602	2.2102	3.0002	1.24

- In our notation in this table, a number followed by a space and another number indicateo that the first number is to be multiplied by 10 rased to the power of the second number; eg.9:3-01 means 913×10^{-1}
$-\mathrm{Br}-\mathrm{M}_{4}$ edge
- C. K edge.
- N.K. A! M. M 4 edges
- O.K edre.
${ }^{1} \mathrm{Br}$ - $\mathrm{L}_{3} .2$ edge
- Ag L L 3.2 edge

Table 13. Exposure I (photons/ $\mu \mathrm{m}^{2}$) at Various Net Densities for Fila: 2492

Absorption Edge	Photon Energy	Net Density D (Specular, $0.1 \times 0.1 \mathrm{nA})^{\text {a }}$										Wavelength $\lambda(\lambda)$
	Energy $E\left(\mathrm{el}^{\prime}\right)$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	
A^{6}												
	35	4.1101	1.1202	2.3502	4.4602	8.1102	1.4403	2.5303	4.4103	7.6503	1.3204	165.31
	100	9.4200	2.4901	5.0301	9.1901	1.6002	2.7202	4.5602	7.5802	1.2503	2.0603	123.98
	125	$4.29 \quad 00$	1.1001	2.1301	3.7301	6.2201	1.0102	1.6102	2.5302	3.9702	6.2002	99.18
	150	2.5700	6.3600	1.2001	2.0201	3.2301	5.0201	7.6601	1.1502	1.7302	2.5702	82.65
	175	$1.80 \quad 00$	4.3200	7.8800	1.2901	1.9901	2.9801	4.3701	6.3301	9.0801	1.3002	70.85
	200	1.3600	3.2100	5.7000	9.0600	1.3601	1.9801	2.8101	3.9301	5.4501	7.5101	61.99
	225	11000	2.5300	4.4100	6.8700	1.0101	1.4301	1.9801	2.7001	3.6401	4.8701	55.10
	250	920-01	2.0900	3.5800	5.4800	7.9000	1.1001	1.4901	1.9901	2.6301	3.4401	49.59
	235	-97-01	1.7900	3.0300	4.5700	6.4900	8.9000	1.1901	1.5601	2.0301	2.6201	45.08
$\mathrm{B}^{\text {c }}$												
	300	4.150	1.1601	2.0501	3.5701	5.9301	9.5801	1.5202	2.3902	3.7302	5.8002	41.33
	325	3.2700	81800	1.5601	2.6701	4.3501	6.8701	1.0702	1.6402	2.5002	3.8002	39.15
	350	$2.68 \quad 00$	6.6300	1.2401	2.0901	3.3401	5.1801	7.8801	1.1802	1.7702	2.6202	35.42
	375	$2.28 \quad 00$	5.55 (0)	1.0201	1.7001	2.6601	4.0501	6.0401	8.9001	13002	1.8902	33.06
$\mathrm{C}^{\text {d }}$ (${ }^{\text {a }}$												
	125	21700	52900	97400	1.6101	2.5201	3.8301	5.6901	8.3601	1.2202	1.3702	29.17
	450	18800	4.5200	8.2400	13501	2.0901	3.1201	4.5301	6.6601	9.5701	1.3702	27.55
	475	1.6700	19800	7.1800	1.1601	1.7701	2.6301	3.8001	5.4401	7.7001	1.0802	26.10
	5010	1.5100	3.54 (x)	63300	1.0101	1.5301	2.2301	3.2001	4.5001	6.2901	87201	24.80
D'												
	5.50	23300	56700	1.0501	1.7501	2.7601	4.2201	6.3201	9.3601	1.3802	2.01112	22.54
	600	19000	4.5700	8.3200	1.3601	2.0901	3.1301	4.5801	6.6101	9.4601	1.350?	20.66
	6:50	1.6100	3.8200	6.83300	1.0901	1.6501	2.4201	3.4701	4.8901	6.8401	9.5101	19.07
	$7(0)$	1.41 (0)	3.2800	5 5 500	9.1200	1.3601	1.9501	2.7401	3.7901	5.1901	7.06 ul	17.71
	750	1.27 (x)	2.92000	$5177(0)$	7.57 (0)	1.1501	1.6301	2.2501	3.0501	4.1101	5.4801	16.53
	(0)	1.16 (0)	2.64100	4.53 m	6.9:3 (0)	1.00)01	1.3901	1.6901	2.5301	1.3401	4.3801	15.50

Table 13. Continued

- In our notation in this table. a number followed by a specr and another number indicatis that the firat number is to be muluplied by 10 rassed to the power of the second number: e.s. $7.27-01$ means 7.27×10^{-1}.
- Br-M4 edge
- C.K edge.
d N.K. AE. M ${ }^{\text {s }}$ edge
- O.K edze
${ }^{1} \mathrm{Br} \cdot \mathrm{L}_{3.8}$ edce
- Ae Le. L, 2 edge

Table 14. Exposure I (photons/ $\mu \mathrm{m}^{2}$) at Various Net Densities for Film 2495

Absorption Edge	Photon Energy E(eV)	Net Density D (sperular, $0.1 \times 0.1 \mathrm{nA})^{\circ}$										Wavelength λ (A)
		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	18	2.0	
A^{6}												
	7.5	1.6501	4.5101	9.4601	1.8002	32802	5.3402	10303	17903	3.1103	5.4003	16.531
	100	3.8300	1.0201	2.0601	3.7801	6.6201	1.1302	1.9002	31802	5.2802	87602	12398
	125	1.7800	4.5600	8.9300	1.5801	2.6501	$\checkmark 3401$	6.9801	11102	1.6602	2.8802	9918
	1.00	1.0900	2.7400	5.2000	8.9100	1.4501	2.2801	3.5401	54301	8.2601	12502	0.65
	175	7.89-01	1.93 (10)	$3.58 \mathrm{m0}$	5.9600	9.4000	1.4401	2.1601	32001	4.7001	68701	.085
	$2 \mathrm{O})$	6 21-01	149 (0)	2.7100	4.41 (0)	6.0000	10101	14801	2.1401	30501	$+3401$	-19 99
	2.25	$5.20-01$	1.23 (0)	2.2010	3.5200	5.31 (0)	$\because 75$	1.1101	15701	2.1901	30401	5510
	250	4.53-01	1.06 (0)	18700	2.9400	4.38 (0)	63000	8.8700	12301	16901	2.3001	4959
	275	4.07-01	$9.42-31$	1.6400	2.5600	3770	5.3500	7.4300	1.0201	1.3701	18501	45.08
R'												
	300	17200	$4+0$ (0	8.5800	15101	2.5301	4.1301	66201	10502	16602	26102	1133
	325	136 mo	345 (0)	6.6300	1.1501	1.8901	3.0201	4.7501	7.3901	1.1402	17602	3815
	350	1.13 c 10	2830	5.3600	91500	14801	23301	3.5901	54801	83001	12502	3512
	375	975-01	240 (0)	+49 (0)	7.5 ¢ (m)	12001	1.8601	2.8201	42301	62901	93101	3306
$\mathrm{C}^{\text {d }}$												
	4.25	9.3.5-01	$2.30 \quad(0)$	$4: 3000$	$7: 900$	1.1501	17801	26901	4.0201	59801	88301	291:
	450	8.19-01	$3.00 \quad 00$	3:200	61900	9760	14901	22401	3.3201	-8801	-1301	$2: 55$
	47.5	7.38-01	17900	3×900	5.4300	84800	12801	19001	2.7801	10401	58401	2610
	500	6.74-01	16200	2.9500	4.8300	74600	1.1201	16401	2.3701	3.4001	18501	2480
D^{\prime}	550)	9.92-01	2.45 mo	\$6100	:7800	1.2501	1.9401	2.9501	4.4501	6.6601	99201	2254
	600	8.29-01	$202(\mathrm{C})$	3.7300	6.2000	9.7400	1.4801	2.2101	3.2701	17801	69501	2066
	650	731-01	1.7200	3.1400	5.1300	79200	1.1801	1.7401	2.5101	3.6001	5.1301	1907
	700	6.38-01	$1.5 \geq 00$	2.7200	4.3900	6.6800	9.8300	1.4201	2.0101	2.8301	39701	$13: 1$
	750	585-01	1.3700	2.4400	3.8700	5.8000	8.4100	$\therefore 1901$	1.6701	2.3001	3.1601	1653
	800	545-01	1.2700	2.2200	3.4800	5.1400	$7 ? 400$	1.0201	1.4101	1.9201	25901	1550
	8.50	5.14-01	1.1800	2.0500	3.1700	4.6300	6.5200	8.9700	1.2201	1.6301	21701	1459
	900	+91-01	11200	1.9200	2.9400	+2400	5.9000	8.0300	10701	1.4201	18701	1378
	950	4;3-01	1.0700	18100	2.7500	3.9300	5.4200	7.2900	9.6400	1.2601	16301	1305
	1000	+59-01	10300	1.7300	2.6000	3.6800	5.0200	6.6900	8.7600	11301	1.4501	1240
	1050	+48-01	995-01	16600	2.4800	74900	4.7100	6.2200	8.0707	1.0401	1.320:	1181
	1100	4.40-01	9.71-01	1.6100	2.3900	33300	4.4700	5.8500	75300	9.5800	$1.216!$	1127
	1150	434-01	9.52-01	1.5700	2.3100	3.2000	4.2700	5.5600	7.1100	8.9800	11301	10 \%
	1200	$430-01$	939-01	1.5400	2.2600	3.1100	4.1200	5.3300	6.7800	8.5200	10501	1033
	1250	+28-01	*30-01	15200	22100	3.0400	4.0100	5.1600	65300	8.1700	10101	992
	1300	$427-01$	924-01	1.5100	21800	29800	3.9200	5.0300	6.3400	7.9000	9.7700	954
	1350	$428-01$	$9.23-01$	15000	21700	2.9500	3.8600	4.9300	6.2000	77000	9.5000	918
	1400	4 30-01	9.24-01	1.5000	$216: \times$	2.9200	3.8200	4.8700	6.1100	7.57 co	93200	886
	1450	4.33-01	9.29-01	1.5000	2160	2.9200	3.8000	4.8400	6.0500	74900	92000	835
	1500	+37-01	9.37-01	15100	2170	2.9300	3.8000	4.8300	6.0300	7.4500	91500	627
E.												
	1800	344-01	7.39-01	11900	17200	23200	3.0200	38400	48100	59500	73100	680
	1900	349-01	717-01	12000	17200	23300	3.0300	3.8400	47900	5.9200	72600	653
	2000	159-01	767-01	1.2300	17600	23700	3.0800	3.9000	48600	59900	73400	620
	2100	3:0-01	7.88-01	12600	1.8000	2.4300	31400	39700	+9400	6.0900	74600	550
	2200	384-01	818-01	13100	18700	25100	3.2400	40900	50900	6.7700	76700	564
	2300	+01-01	852-01	13600	19400	26000	3.3600	¢ 2400	52800	64900	79500	539
	2800	+19-01	$890-01$	14200	20200	27100	3.5000	4.4200	54900	6.7600	¢ 2800	517
	2.500	+40-01	933-01	14900	$2: 290$	28400	36600	16200	57400	70700	-6600	45
	2800	+6:-01	980-11	15600	$222(1)$	2900	38400	18500	60200	74200	90900	$1: 7$
	27(M)		10.3 (4)	$158(x)$	$23(0)$	11:100	40400	51000	63300	; mou	y 5600	+ 35
	? $2 \times(1)$	51.1-191	1 (4) (0)	$17: 1(0)$	2 (f)	3.600	4:600	53700	66700	M: 20	10101	143
	(r9m)	i 41 -11]	115 (4)	1 Nitur	260(x)	I 4M (0)	44900	580	70400	B67 (m)	10601	+ 28
	HM(\%)	r. : 1 - 111	121 (m)	1910	23100	16itu)	47100	S $5 \times(0)$	i4.100	916 cm	11301	113
	H14	*i4-61	128 (m)	214 m	? moun	ISN(1)	50100	$63: 60$	7	969 (1)	11901	141
	! (\%)	i. $\langle M-+1\|$	115 Lm	$\underline{15 \%}$	11680	-10(x)	52900	68.7 (1)	vom	10501	12601	18:
	\| 11×1	bit 111	$1+1 \mathrm{~cm}$		1 21 (10)	1 1.1(4)	(1)	? (mi (m)		10 mbl	11301	1 is

Table 14. Continued

Absorption Edge	Eneriy EleV)	Net Density D (specular, $0.1 \times 0.1 \mathrm{nA})^{\text {a }}$											Wavelength $\lambda(A)$
		02	04		06	0.8	1.0	1.2	1.4	1.6	1.8	2.0	
F*													
	4000	+97-01	1.05	01	: 6800	2.3900	3.1900	4.1200	5.2000	6.4600	7.9600	9.7800	3.10
	5000	7.37-01	1 S	(0)	2.4900	3.5400	+.7400	6.1200	7.7300	9.6300	1.1901	1.4701	2.48
	6000	10900	2.30	(0)	3.6700	5.2200	7.0000	9.0500	1.1401	1.4301	1.7301	2.1801	2.07
	T000	1560	. 330	(0)	5.2700	7.5000	1.0101	1.3001	1.6501	2.0601	2.5501	3.1501	1.77
	W00)	≥ 17 (m)	45	(0)	7.3300	1.0401	1.4001	1.8101	2.2901	2.8701	3.5601	4.4101	1.55
	9×00	$\bigcirc 9.300$	$6 \geqslant 1$	(0)	9.9100	1.4101	1.8901	2.4501	3.1101	3.8801	4.8201	5.9801	1.38
	10000	3800	-18	00	1.3101	1.8601	2.5001	3.2301	4.1001	5.1301	6.3701	7.9001	1.24

- In our meation in this cable. number folliwed by a space and another number indicates that the first number is to be multiplied by 10 raised to the power of the wrund number, ef. $384-01$ means 1 st $\times 10^{-1}$
- Hr M4 edee
c C K ede
- NK. Ae Mes aderes
- UK eder
${ }^{\prime} \mathrm{Br}_{\mathrm{L}}^{12}$ edere
- 4 l. 1 , plese

ACKNOWLEDGMENTS

We gratefully acknowledge the invaluable assistance in this prixram of Priscilla Piano. Our thanks also to Robert Anwyl of Eustman Kodak Company, Rochester, New York, for his help in the initial planning of this study and to Al Widman of the Sandia National Laboratory for his help in the microdensitometer measurements. This program in low-energy a rav physics and technology is supported by the U.S. Air Force Office of Scientific Research under grant no. 84.0001 and supplementally by the U.S. Department of Energy under contract no DE-AS08-83DP40181.

REFERENCES

I H F Benjamin. P B Lyons, and K H. Day. "X-ray calibration of RAR 2490 film for application tu laser plasme erperiments." Appl Opt 16, 393-397 119771
: 1. X Kuppel. "Sub tikuolt a ray calibration of photugraphic Gilm." in Adiances in X. Ray Analisis, W L. Pictels, C. S. Bar rell. J Neetirt, and (' O Ruud, eds (Plenum, New York, 1975), Vis1 16. pp 146-153
1 1. N Kuppel. "X ray calibration of film types SB-5 and RAR 2492 in the 15 ghet regom." ARACOR Dorument No. TR-112-00-02 iAdvanced Research and Applcationsi Corp. Sunnyvale. Calif. March 190.21

- ic M Downf, D H Hrown. L. S Birks, P B. Lyons, and R. F. Henjamin, "Senatunty of a ray film II. Kudatino scraben film in the I-100 keV region." I Appl Phys 47, 3732-:3739 (1976).
5 H L. Henite. S I. Kwot. J Y Uefu. H T Yameda, and G. C. fiwne. "Iaw energy ray response of photographic films. I Mathemalkel madels." J Opt ine Am R I. 818 -827 (1984)

6. B. L. Henke, H. T. Yamada, and T. J. Tanaka, "Pulsed plasma source spectrometry in the $80-8000 \mathrm{eV}$ x-ray region," Rev. Sci. Instrum. 54. 1311-1330 (1983).
7. B. L. Henke and M. A. Tester, "Techniques of low-energy x-ray apectroscopy (0.1 to 2 keV segion)," in Advances in X-Ray Analysis, W. L. Pickels, C. S. Barrett. J. Newkirk, and C. O. Rudd, eds. (Plenum, New York, 1975). Vol. 18, pp. 76-106.
8. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, "Low-energy x-ray interaction coefficients: phoLomberption, scattering, and reflection. $E=100-2000 \mathrm{eV}, Z=$ 1-94," At. Data Nucl. Data Tables 27(1), 1-144 (1982).
9. Linear zone plates kindly loaned to us by N. Ceglio's group, Lawrence Livermore National Laboratory, Livermore, California 94550.
10. R. Ernst, Lawrence Livermore National Laboratory, Livermore, California 94550 (personal communication).
11. B. H. Carroll, G. C. Higgins and T. H. James, Introduction to Photographic Theory. The Silver Halide Process (Wiley, New York, 1900), pp. 19-27; C. E. K. Mees and T. H. James, eds., The Theory of the Photographic Process, 3rd ed. (Macmillan. New York, 1966); J. G. Streiffert. "Callier Q of various motion picture emulsions," J. Soc. Motion Pict. Eng. 49, 506-522 (1947); C. Tutte, "The relation bet ween diffuse and specular density," J. Opl. Soc. Am. 12, 559-565 (1926).
12. J. P. Stoering and A. Toor, "X ray calibration of Kodak no SCREEN. Type-AA and Type-M in the l-4.5 keV region," UCID 16775 (Lawrence Livermore Nationa! Laboratory: Livermore, Calif., 1975); D. B. Brown, J. W. Criss and L. S. Birks, "'Sensitivity of a-ray films. I. A model for sensitivity in tre $1-100$ kel' region," J. Appl. Phys 47, 3722-3731 (1976).
13. J. G. Streiffert, "Callier \boldsymbol{Q} of various motion picture emulsions," J. Soc. Motion Pict. Eng. 49, 506-522 (1947).
14. C. E. K. Mees and T. H. James, eds., The Theory of the Photoaraphic Process. Ird ed. (Macmilian. New York, 1966). pp. 190-191.

10 High-energy x-ray response of photographic films: models and measurement

B. L. Henke and J. Y. Uejio
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
G. F. Stone and C. H. Dittmore
Lawrence Livermore National Laboratory, Livermore. California 94550

F. G. Fujiwara
University of Hawaii. Honolulu. Hawaii 96822

Abstract

Received May 12, 1986; accepted June 23, 1986 A detailed characterization has been established for the new, high-sensitivity double-emulsion Kodak Direct Exposure Film (DEF). The experimental data base consisted of density-versus-exposure measurements that were duplicated at several laboratories for x radiations in the $1000-10,000-\mathrm{eV}$ region. The abeorption and geometric properties of the film were determined, which, along with the density-exposure data, permitted the application of a relatively simple analytical model description for the optical density, D, as a function of the intensity, I (photons/ $\mu \mathrm{m}^{2}$), the photon energy, $E(\mathrm{eV})$, and the angle of incidence, θ, of the exposing radiation. A detailed table is presented for the I values corresponding to nptical densities in the $0.2-2.0$ range and to photon energies, $E(\mathrm{eV})$, in the $1000-10,000-\mathrm{eV}$ region. Experimentally derived conversion relations have been obtained that allow the density values to be expressed as either diffuse or specular. Also presented here is a similar characterization of the complementary, single-emulsion x-ray film, Kodak SB-5 (or 392). For the $1000-10,000-\mathrm{eV}$ region this x -ray film is appreciably less sensitive but has higher resolution.

1. INTRODUCTION

There is a considerable need at this time for absolute, highsensitivity, position-sensitive x-ray detection for imaging and for spectroscopic analysis in the higher-x-ray photonenergy region of $1000-10,000 \mathrm{eV}$. An important example of such a need is that for the absolute x-ray diagnostics of hightemperature plasmas that are involved in fusion energy and x-ray laser research. For many such applications, positionsensitive x-ray detection with photographic films can be exceptionally simple and effective. ${ }^{1}$
In companion works ${ }^{2,3}$ we recently repo.ted the development of effective two-parameter analytical equations for the optical density, D, that is generated in thick and thin singleemulsion films by x radiation in the $100-1000-\mathrm{eV}$ region. These equations are functions of the exposure, I (photons/ $\left.\mu \mathrm{m}^{2}\right)$, the photon energy, $E(\mathrm{eV})$, and the angle of incidence, θ. We have applied these model relations to obtain detailed characterizations for the response of the Kodak films that are currently used for position-sensitive detection in the low-energy x-ray region, viz., Kodak 101, RAR 2492, 2495, and 2497, and SB-392. In the present work, we extend this analytical modeling to obtain the detailed response characteristics of the double-emulsion films and specifically of the Kodak Direct Exposure Film (DEF), which has been designed for high sensitivity at the higher photon energies ($1000-10,000 \mathrm{eV}$) as compared to that of its predecessor, the Kodak No-Screen double-emulsion film, which is no longer manufactured. We have also extended by a similar procedure the characterization of the complementary, single-
emulsion x-ray film, the Kodak SB-5 (or 392) for this higher-photon-energy region.

2. ANALYTICAL MODELS FOR PHOTOGRAPHIC FILM RESPONSE

In Ref. 2 we developed a phenomenological model for the photographic response of thick emulsions that implicitly expresses the photon-energy dependence through the linear absorption coefficients for the x-ray absorption within a supercoat, for the heterogeneous absorption within the emulsion, and for the absorption within a AgBr film grain. This model led to a "universal" function, ϕ, for the density, D, as a function of exposure, I, defined as

$$
\begin{equation*}
\alpha D=\phi(\beta \Pi) \tag{1}
\end{equation*}
$$

where α and β are the photon-energy-dependent factors given by

$$
\begin{equation*}
\alpha=\mu^{\prime} / \sin \theta \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\left[1-\exp \left(-\mu_{1} d\right)\right] \exp \left(-\mu_{0} t_{0} / \sin \theta\right) . \tag{3}
\end{equation*}
$$

Note that in Ref. 2, α was defined as $\left(\sin \theta / \mu^{\prime}+d_{0}\right)^{-1}$, where d_{0} is a measure of the thickness of the first layer of AgBr grains that may be the primary absorption layer for the low photon energies ($<1000 \mathrm{eV}$). This parameter, d_{0}, can be neglected for the higher photon energies of interest here.
These "universalizing" factors, α and β, are expressed in

Fig. 1. Properties of the double-emulsion film, DEF. The micrometered total thickness and the transmission for $\mathrm{Cu}-\mathrm{Ka}(8050 \mathrm{eV}$) of the film and of the polyester base rield the indicated values of the emulsion and hase thicknesses. Γ and t_{b}, and of the volume fraction of the AgBr grains, V. (For he base transmission measurements, the emulsions are dissolved .i. ay by using a bleach solution.) The estimate of the film grain size. d, is obtained from SEM film crosssection photos as shown in Fig. 2. The supercoat thickness, t_{0}, is sensitively determined by model equation fitting of the low-energy x-ray exposure data.

Polyester Bose

Fig. 2. Cross section of a DEF emulsion, imaged by a SEM. Sample sections were obtained by breaking liquid-nitrogen-frozen pieces of film. The average grain size was estimated from such photos by the measurement of the outermost embedded grains.
terms of the energy-dependent linear absorption coefficients, μ_{0}, μ_{1}, and μ^{\prime}, for, respectively, the supercoat, the film grain material (AgBr), and the heterogeneous emulsion of these grains within gelatin. The geometric parameters that have been chosen here to define an emulsion are the supercoat thickness, t_{0}, the emulsion thickness, T, and the effective film grain thickness, d. The angle of incidence, θ, of the exposing radiation is measured from the film plane.
An example of the predicted universal curve. $\alpha D=\phi(\beta I)$, will be presented below using measured density-versus-exposure ($D-I$) data for the DEF film. It was also predicted and demonstrated (see Refs. 2 and 3) that this universal curve may be efficiently fitted by a two-parameter equation
for the thick (completely absorbing) emulsion response, viz.,

$$
\begin{equation*}
\alpha D=a \ln (1+b \beta D) \tag{4}
\end{equation*}
$$

The parameters a and b may be determined by least-squares fitting of the experimentally determined and universally plotted data.

For the corresponding response of a thin (incompletely absorbing) emulsion of thickness, T, we must subtract from the optical density, D, given by Eq. (4) for the infinitely thick emulsion, the contribution to the density that is generated within the layers below a depth, T [where the exposing intensity at the emulsion's top surface has been reduced by the factor $\exp \left(-\mu^{\prime} \Gamma^{\prime} \leqslant \operatorname{in} \theta\right)$]. This consideration leads immediately to the simple modification of Eq. (4) for the thinemulsion response, viz.,

$$
\begin{equation*}
\alpha D=a \ln \left[\frac{1+b \beta I}{1+b \beta I \exp \left(-\mu^{\prime} T / \sin \theta\right)}\right] \tag{5}
\end{equation*}
$$

We now extend this model description for the doubleemulsion film. In Figs. 1 and 2 we describe the properties of a double-emulsion film (presented here for the new DEF film). For such a film with photon energies above about 4000 eV , a significant amount of additional optical density will be generated within the second emulsion. This second thin emulsion section will contribute a density that may be predicted by an expression like that described by the model relation (5) for a thin emulsion but with two simple modifications: We replace in Eq. (5) the term for the supercoat transmission, $\exp \left(-\mu_{0} t_{0} / \sin \theta\right.$) (in the β factor) by $\exp \left(-\mu_{b} t_{b} / \sin \theta\right)$, with μ_{b} and t_{b} the linear absorption coefficient and the thickness of the polyester base, and we replace the incident intensity, I, by its reduced value at the top surface of the polyester base, $I \exp \left(-\mu_{0} t_{0}-\mu^{\prime} T\right)$. In terms of our originally defined value of β given in Eq. (3), the additional density, ΔD, within the second emulsion may then be deduced directly from Eq. (5) to be

$$
\begin{equation*}
\alpha \Delta D=a \ln \left\{\frac{1+b \beta I \exp \left[\left(-\mu_{b} t_{b}-\mu^{\prime} T\right) / \sin \theta\right]}{1+b \beta I \exp \left[\left(-\mu_{b} t_{b}-2 \mu^{\prime} T\right) / \sin \theta\right]}\right\} \tag{6}
\end{equation*}
$$

In Ref. 2 we have discussed the justification for a linear addition of the optical density contributions of successive layers when the total optical density is within the usual range of density measurements. With the same assumption, we then add the ΔD density given by Eq. (6) to that of the upper thin-emulsion contribution given by (5) to obtain the expression for the double-emulsion response, viz.,

$$
\begin{align*}
\alpha D= & a \ln \left(\left\{\frac{1+b \beta I}{1+b \beta I \exp \left[\left(-\mu^{\prime} T\right) / \sin \theta\right]}\right\}\right. \\
& \left.\times\left\{\frac{1+b \beta I \exp \left[\left(-\mu_{b} t_{b}-\mu^{\prime} T\right) / \sin \theta\right]}{1+b \beta I \exp \left[\left(-\mu_{b} t_{b}-2 \mu^{\prime} T\right) / \sin \theta\right]}\right\}\right) . \tag{7}
\end{align*}
$$

It should be noted that the fitting parameters a and b, appearing in Eqs. (4)-(7) for the thick, thin, and doubleemulsion films, are those initially suggested for the universal curve fitting and thus for the thick-emulsion, low-energy-photon-absorption regime. The same values of a and b then reappear, as described above, in the subsequently developed expressions for the thin and double-emulsion, higher-ener-gy-photon-absorption regime, with the important assump-
tion that these parameters will be independent of photon energy. For the photon energies in the $100-10,000-\mathrm{eV}$ region this assumption is considered to be a good one because (1) these photon energies are sufficiently high to ensure that a film grain is rendered developable by a single-photon absorption and (2) these photon energies are sufficiently low to ensure that any additional excitation of grains by high-energy photoelectrons is negligible.

3. CHARACTERIZATION OF THE KODAK DIRECT EXPOSURE FILM

We would like to develop here a detailed characterization of the Kodak DEF double-emulsion film by using the model relations presented above and experimental (D versus I) data that have been obtained independently at four laboratories for the $1000-10,000-\mathrm{eV}$ region. In all these investigations, the films were processed with conventional x-ray developers for microdensitometric applications. These studies may be described as follows:
(1) Phillips and Phillips ${ }^{4}$; $\mathrm{Cu}-\mathrm{K} \alpha$ (8050 eV); developed with agitation in GBX for 3 min at $68^{\circ} \mathrm{F}$ and densitometered with an Optronics-1000 using matched influx and efflux optics of 0.25 N.A.,
(2) Rockett et al. ${ }^{5}$; $\mathrm{Cu}-\mathrm{L} \alpha(930 \mathrm{eV}), \mathrm{Al}-\mathrm{K} \alpha(1490 \mathrm{eV})$, $\mathrm{Si}-\mathrm{K} \alpha(1740 \mathrm{eV})$. Ti-K $\alpha, \beta(4510-4930 \mathrm{eV}$), and $\mathrm{Co}-\mathrm{K} \alpha$ (6930 eV); developed with agitation in Kodak Industrex for 5 \min at $68^{\circ} \mathrm{F}$ and densitometered with a Macbeth transmission densitometer, TD-404 (diffuse density), and
(3) Henke et al., this work; $\mathrm{Cu}-\mathrm{L} \alpha$ (930 eV), $\mathrm{Al}-\mathrm{K} \alpha$ (1490 eV), and $\mathrm{Cu}-\mathrm{K} \alpha(8050 \mathrm{eV}$); developed with agitation in Kodak Rapid X-Ray (RXR) for 6 min at ${ }^{7} 2^{\circ} \mathrm{F}$ and densitometered with a PDS microdensitometer using matched influx and efflux optics of 0.1 N.A.

All exposure data were for normal-incidence radiation $(\sin \theta=1)$. For these measurements it is important to have highly monochromatized exposing radiation of accurately known intensity. The Phillips and Phillips ${ }^{4} \mathrm{Cu}-\mathrm{K} \alpha$ radiation, from a copper anode, was Ni foil filtered, focused by a double mirror reflection, and Bragg diffracted from a polyethylene sample. The characteristic line radiations of Rockett et al. ${ }^{5}$ from x-ray tube anodes were filtered, and the background continuum radiation was estimated by pulseheight analysis with their flow-proportional and solid-state x -ray detectors. In this work we have applied the characteristic \mathbf{x}-ray line radiations from a demountable anode source; the line radiations are then filtered and Bragg reflected onto a normal-incidence detection circle of an elliptically curved crystal analyzer spectrograph ${ }^{3.6}$ (see Fig. 3). An intensity spectrum is obtained by scanning an absolutely calibrated flow-proportional counter along this detection cycle. Photographic spectra are then obtained for a series of different exposures of the $35-\mathrm{mm}$ film that is transported along the same detection circle. Microdensitometry is performed with an effective slit of dimensions that match those of the proportional counterslit window and of width smaller than that of the diffraction line spectrum widths. At the monoenergetic Bragg diffraction line peaks, the net optical densities, D, in the photographic spectra are related to the corre-
sponding intensity peaks, I (photons/square micrometer), in the intensity spectra. (This "operational" procedure for film calibration was designed to correspond precisely to the actual procedure, in reverse, for obtaining absolute measurements of intensities from photographic spectra.)

A. Normalizing Independent Density-Versus-Exposure Data Sets

In our combining of the DEF calibration data from the independent laboratory measurements described above, we consider that batch-to-batch variations and any other variations that result from using different (but conventional) x ray film development procedures can be assumed to be small compared with the variations resulting from density and intensity measurement errors. All density values are for net density, i.e., that above the unexposed developed film background density. We ensure that this background correction has been precisely accomplished by requiring that a linear plot of D versus I for the lower densities does indeed extrapolate to the $0-0$ origin.

Before combining these data for fitting by our model relations, we converted the D-I data of Phillips and Phillips ${ }^{4}$ to an equivalent 5 -min development result by using their D versus time-of-development curves (a small correction). We then converted all the D-I data of Refs. 4 and 5 to the specular density values at 0.1 N .A. for the influx and efflux microdensitometer optics. This is a straightforward conversion procedure because the factors, D_{s} / D_{d} (net specular density/net diffuse density), needed for this conversion are slowly varying functions of diffuse density, D_{d}, and are independent of the photon energy. ${ }^{3}$ We have measured the $D_{s} /$ D_{d} versus D_{d} curves, which are shown in Fig. 4, for D_{s} at 0.1

Fig. 3. Method for obtaining monoenergetic, characteristic line exposures, normally incident to a detection circle of an elliptical analyzer spectrograph. An intensity spectrum is obtained by scanning an absolutely calibrated-flow proportional counter along this detection circle. Photographic spectra are obtained by a series of exposures of film transported along the same circle. Microdensitometry is with a slit of effectively the same dimensions as that of the proportional counter slit window and of width that is small as compared to the instrumental broadened diffraction line width. The density-exposure data are taken from corresponding photographic density and absolute intensity peaks (photons/square mıcrometer), operationally similar, but in reverse, to the procedure for the determination of an absolute intensity of spectral lines from a calibrated photographic film spectrum.

Fig. 4. Plots of experimentally measured conversion ratios, $D_{\mathbf{8}} / D_{\boldsymbol{d}}$ (net specular density/net diffuse density), versus diffuse D_{d} for specular density measurements with matched influx-efflux optics at 0.1 and 0.25 N.A. and for total diffuse density. (These ratios are essentially independent of photon energy and are for the conventional, x-ray film development.) These experimental curves yield the conversion Eqs. (8) and (9) that have been applied here to normalize the data sets of Refs. 4 and 5.
and 0.25 N.A. [using the PDS and the Macbeth (doublediffuse) densitometers].

By fitting these D_{s} / D_{d} data, we obtain the required conversion equations

$$
\begin{equation*}
D_{0.1} / D_{d}=1.9-0.35 D_{d}+0.092 D_{d}^{2} \tag{8}
\end{equation*}
$$

and

$$
D_{0.25} / D_{d}=1.31
$$

which yield

$$
\begin{equation*}
D_{0.1} / D_{0.25}=1.5-0.20 D_{0.25}+0.041 D_{0.25}^{2} \tag{9}
\end{equation*}
$$

B. Fitting the Model Equations

The linear absorption coefficients, $\mu_{0,} \mu_{l}, \mu^{\prime}$, and μ_{b} for an assumed gelatin supercoat ($\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2}, \rho=1.40 \mathrm{~g} / \mathrm{cm}^{3}$), for AgBr , for the heterogeneous emulsion, and for the polyester base ($\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}, \rho=1.40 \mathrm{~g} / \mathrm{cm}^{3}$), respectively, were determined as described in the companion Refs. 2 and 3, using photoabsorption data compiled by Henke et al.?

Note that we have been unable to obtain from the manufacturer of the DEF the chemical formula for its special supercoat material, and we assume here that its linear ab-

DEF Density vs Exposure

- Henke et al. (1986)
\times Rockett et al. (1985)
+ Phillips and Phillips (1985)

- Double Emulsion Model

Fig. 5. The density-exposure data chosen here for the model equation fitting, consisting of independent duplicated measurements of several laboratories at the representative photon energies. $\mathrm{Cu}-\mathrm{Lar}(930 \mathrm{ev})$. Al- $\mathrm{Ka}(1490 \mathrm{eV})$, and $\mathrm{Cu}-\mathrm{Kar}(8050 \mathrm{eV})$. Also plotted here are the predicted $D-I$ curves obtained by fitting the analytical model Eq. (7) to these data. Optical densities are net densities (above nonexpused developed background density) as would be measured by microdensitometry using matched influx-effux optics of 0.1 N.A.
sorption coefficient is essentially proportional to that for gelatin and that, for example, a difference in mass density can be accommodated in our choice of an effective value for the supercoat thickness, t_{0}, determined by a precise fitting of the measured lower photon energy data. Similarly, the geometric specifications for the DEF are not available, and we have therefore developed the following procedure for their determination:

The total DEF thickness was carefully micrometered to yield a value of about $213 \mu \mathrm{~m}$. We then measured the x -ray transmission of the base-plus-emulsion, choosing an x-ray wavelength that is transmitting in the $20-40 \%$ range and that has a negligible absorption within the thin supercoat. This transmission is given as r_{1} in Fig. 1. The emulsion is then dissolved away from the polyester base by soaking for about 10 min in a $1: 1$ dilution of a common bleach solution (5% aqueous solution of sodium hypochlorite, by weight). The transmission, defined in Fig. 1 as r_{2} for the remaining polyester base, is then measured. We have chosen the Cu $\mathrm{K} \alpha(8050-\mathrm{eV})$ line radiation for these transmission measurements, derived from a Cu anode, filtered and Bragg reflected with a pentaerythritol (PET) crystal analyzer. The values for τ_{1} and τ_{2} are presented in Fig. 1 for the DEF and were 0.32 and 0.85 , respectively. These results, along with those
for the film thickness, yielded the values of 13 and $185 \mu \mathrm{~m}$ for the emulsion and polyester base thicknesses and a volume fraction, V, of the AgBr grains equal to 0.40 . The general relations for this determination of the emulsion and base thicknesses follow from the transmission equations in Fig. 1 and are

$$
\begin{equation*}
T=\left(1 / \mu^{\prime}\right) \ln \sqrt{\tau_{2} / T_{1}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{b}=\left(1 / \mu_{b}\right) \ln \left(1 / r_{2}\right) \tag{11}
\end{equation*}
$$

in which μ^{\prime}, the linear heterogeneous emulsion absorption coefficient, contains the dependence on the volume fraction, V (see Ref. 2).
The film grain size was estimated from averaged measurements of the outermost imbedded grains imaged in scanning electron microscope (SEM) micrographs of the DEF cross section. The SEM photos were obtained by Dixon, ${ }^{8}$ using small DEF sections obtained by breaking liquid-nitrogenfrozen pieces of the DEF. An example of one of these micrographs is shown in Fig. 2. As will be demonstrated, our model Eq. (7) requires only an estimate of the effective grain size. We have determined from the SEM photos that the average grain size, d, is about $1.6 \mu \mathrm{~m}$. It is not feasible to

Fig. 6. Applying the model Eq. (7) determined by the data sets shown in Fig. 5 to predict $D-I$ curves for additional but unduplicated $D-I$ data at photon energies, Si-Ka(1740 eV), Ti-Ka, $\boldsymbol{\beta}(4510,4930 \mathrm{eV})$, and $\mathrm{Co}-\mathrm{Ka}(6930 \mathrm{eV})$. The prediction for the photonenergy at 1740 eV is excellent. It is suggested here that the high-density values shown here for measurementa with Ti-Ka and Co-Ka radiations are excessively high because the films were also exposed to the appreciably higher continuum radiation that cannot be completely filtered out at the higher photon energies and that was not completely included in the detector "window." |A Si (Li) solid-state detector was used only for these two radiations.| See Ref. 5.

Fig. 7. Demonstration of the universality of the plot of the αD versus βI data for the x radiations that are completely absorbed within the first emulsion, $\mathrm{Cu}-\mathrm{L} \alpha(930 \mathrm{eV}), \mathrm{Al}-\mathrm{K} \alpha(1490 \mathrm{eV})$, and Si$\mathrm{Ka}(1740 \mathrm{eV})$ (for the data of Rockett et al. (X) and Henke et al. (\bullet) shown in Figs. 4 and 5]. Also plotted here is the model Eq. (4) using parameters derived by fitting data at both the high and the low energies.

Fig. 8. Plotted here for the DEF is the intensity, l (photons/square micrometer), that is required to generate a specular density, $D_{0.1}=$ 0.5 , versus photon energy, E (electron volts), using the best fit model curve [Eq. (7)] for the data sets shown in Fig. 5 and the parameters listed in Fig. 1 with the AgBr grain size at $1.6 \mu \mathrm{~m}$ and also at the varied values of 1.2 and $2.0 \mu \mathrm{~m}$ in order to illustrate the insensitivity of Eq. (?) to the film grain size. (The fitting parameter, b, effectively compensates for a variation in d.)
determine an accurate value of the supercoat thickness, t_{0}, from these SEM photos. We therefore establish this value along with those of the fitting parameters, a and b, by a leastsquares best fitting of the model Eq. (7) to the $D-I$ data sets. Fitting only the duplicated data sets that are plotted in Fig. 5 (from four laboratories), we obtain the following values for the DEF film:

$$
a=0.680 \mu m^{-1}, \quad b=1.69 \mu m^{2}, \quad t_{0}=1.0 \mu m
$$

Our determinations of the geometric parameters that are needed in the model Eq. (7) are in excellent agreement with those that have been independently determined by Rockett et al. ${ }^{5}$ on another DEF batch.

In Fig. 6 we present our model $D-I$ curves along with the
unduplicated experimental data of Rockett et al. ${ }^{5}$ for $\mathrm{Si}-\mathrm{Ka}$ (1740 eV), Ti-K $\alpha, \beta(4510 \mathrm{eV}, 4930 \mathrm{eV}$), and Co-K $\alpha(6930$ eV), which were not included in the data base (presented in Fig. 5) chosen for our fitting of Eq. (7). Our prediction of their $D-I$ curve for 1740 eV is excellent. We do not agree, however, with their $D-I$ measurements at the higher photon energies, $4510 / 4930 \mathrm{eV}$ and 6930 eV . Only for these energies have they replaced their proportional gas counter detector by a $\mathrm{Si}(\mathrm{Li})$ solid-state detector. A possible explanation for their higher-density values at these higher photon energies is that the film exposure included that for the higher continuum background associated with these energies (not eliminated in their filtered, direct source radiation and that may not have been completely included in their solid-state detector "window"). Our rejection of these two data sets in our fitting of Eq. (7) seems to be strongly justified by the very satisfactory, simultaneous fitting of the lower-energy data along with that for the highest photon energy, 8050 eV (obtained by Phillips and Phillips ${ }^{4}$ and by this work).

To demonstrate the "universality" of this model description for the DEF we present in Fig. 7 the universal plot, $\alpha D=$ $\phi(\beta \Pi)$, using only the $D-I$ data sets for the x radiations that are essentially completely absorbed within the first emulsion, viz., $\mathrm{Cu}-\mathrm{L} \alpha(930 \mathrm{eV}$), Al-Ka (1490 eV), and $\mathrm{Si}-\mathrm{Ka}$ (1740 eV). Also plotted in Fig. 7 is the model fit curve for a thick emulsion [Eq. (4)] using the geometric parameters and values of a and b as presented above for the overall fit of Eq. (7) for the DEF at both the low and the high photon energies.

It was noted earlier that the grain size, d, chosen here to be $1.6 \mu \mathrm{~m}$, was not amenable to direct, accurate evaluation but, nevertheless, was not required to be known accurately in our model Eq. (7). The fitting parameter, b, can compensate for a variation ind [from Eq. (3) we note that $b \beta \approx b_{\mu_{1}} d$ for the higher photon energy dependence on d in the model equations]. To illustrate this insensitivity we plot in Fig. 8 the intensity I (photons/square micrometer) that is required to generate an optical specular density, $D_{0.1}$, of 0.5 , as a function of the photon energy, E (electron volts), using the "bestchoice parameters" determined above (and listed in Fig. 1),

Fig. 9. The sensitivity, S, for the DEF in the $1000-10,000 \cdot \mathrm{eV}$ region. S is defined here as the reciprocal of the intensity that is required to generate an optical density. $D_{01}=0.5$. Also shown is the calculated sensitivity. S, for the first emulsion only in DEF in order to illustrate the significant improvement in the DEF sensitivity for photon energies higher than about 4000 eV .

Fig. 10. The sensitivity, S, is plotted here for an optical density, $D_{0.1}=0.5$, and for the $1000-10,000-\mathrm{eV}$ region for DEF and compared with that sensitivity for the single-emulsion film Kodak SB-392 (as characterized in Section 4).
along with similar best-fit intensity curves with the grain size parameter, d, varied from the chosen value $1.6 \mu \mathrm{~m}$ to the values 1.2 and $2.0 \mu \mathrm{~m}$.

C. Expressing the Detailed Photographic Response of the Direct Exposure Film

In Fig. 9 we present the sensitivity of the DEF for the $1000-$ $10,000-\mathrm{eV}$ region, defined here as the reciprocal of that intensity (photons/square micrometer) that is required to generate an optical density, $D_{0,1}$, of 0.5 . Also shown here is the same sensitivity curve calculated for the first emulsion only (effect of second emulsion removed) in order to illustrate for which photon energies there is a significant improvement resulting from having the double emulsion. In Fig. 10 we present this DEF sensitivity curve for the $1000-10,000-\mathrm{eV}$ photon-energy region and compare it with that for the sin-gle-emulsion x-ray film Kodak SB-392 (characterized for this high-energy region as described in Section 4).
In Table 1 we present for Kodak DEF a detailed tabulation, using the fitted model Eq. (7), for the normal-incidence

Table 1. Exposure I(photons/ $\mu \mathrm{m}^{2}$) versus Net Optical Density $D_{0.1}$ and Photon Energy $E(\mathrm{eV})$ for the Kodak DEF
Photon

Energy	Net Density D (Specular, 0.1×0.1 N.A.)										Wavelength
$E(\mathrm{eV})$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	$\lambda(A)$
1000	2.24-01	5.03-01	8.50-01	1.2800	1.8200	2.4900	3.3200	4.3600	5.6500	7.2600	12.40
1050	1.96-01	$4.36-01$	7.29-01	1.0900	1.5300	2.0700	2.7300	3.5400	4.5400	5.7500	11.81
1100	1.74-01	3.84-01	$6.38-01$	9.44-01	1.3100	1.7600	2.3000	2.9500	3.7400	4.6900	11.27
1150	1.57-01	3.44-01	5.67-01	8.33-01	1.1500	1.5300	1.9800	2.5200	3.1700	3.9400	10.78
1200	1.43-01	3.12-01	5.11-01	7.46-01	1.0200	1.3500	1.7400	2.2000	2.7300	3.3700	10.33
1250	1.32-01	2.86-01	4.66-01	6.76-01	9.22-01	1.2100	1.5500	1.9400	2.4000	2.9400	9.92
1300	1.29-01	$2.64-01$	4.29-01	6.19-01	$8.40-01$	1.1000	1.3900	1.7400	2.1400	2.6000	9.54
1350	1.14-01	2.46-01	3.98-01	5.72-01	7.72-01	1.0000	1.2700	1.5700	1.9200	2.33100	9.18
1400	1.08-01	2.31-01	3.72-01	5.33-01	7.16-01	9.25-01	1.1700	1.4400	1.7500	2.1100	8.86
1450	1.02-01	2.19-01	$3.50-01$	5.00-01	6.69-01	$8.61-01$	1.0800	1.3300	1.6100	1.93 (10	8.55
1500	9.76-02	$2.08-01$	3.32-01	4.71-01	6.29-01	8.07-01	1.0100	1.2300	1.4900	1.780	8.27
Absorption Edges: $\mathrm{Br}-\mathrm{L}_{3.2}(1533-1599 \mathrm{eV})$											
1800	8.10-02	1.72-01	2.73-01	3.87-01	5.15-01	6.58-01	8.19-01	9.99-01	1.2000	1.4300	6.89
1900	7.73-02	1.64-01	2.60-01	3.67-01	4.86-01	6.19-01	7.68-01	9.34-01	1.1200	1.3300	6.53
2000	7.42-02	1.57-01	2.48-01	3.49-01	4.61-01	5.86-01	7.24-01	8.78-01	1.0500	1.2400	6.20
2100	7.17-02	1.51-01	$2.38-01$	3.34-01	4.40-01	5.58-01	6.87-01	$8.30-01$	9.89-01	1.1600	5.90
2200	6.96-02	1.46-01	2.30-01	3.22-01	4.23-01	5.34-01	6.56-01	7.90-01	9.38-01	1.1000	5.64
2300	6.78-02	1.42-01	2.23-01	3.11-01	4.08-01	5.14-01	6.30-01	7.57-01	8.96-01	1.0500	5.39
2400	6.64-02	1.39-01	2.17-01	3.03-01	3.96-01	4.97-01	6.08-01	7.28-01	$8.60-01$	1.0000	5.17
2500	6.52-02	1.36-01	2.12-01	2.95-01	3.85-01	4.83-01	5.89-01	7.05-01	$8.30-01$	9.67-01	4.96
2600	6.44-02	1.34-01	2.09-01	2.90-01	3.77-01	4.72-01	5.74-01	6.85-01	8.06-01	9.36-01	4.77
2700	6.37-02	1.32-01	2.06-01	2.85-01	3.71-01	4.63-01	5.62-01	6.70-01	7.86-01	9.12-01	4.59
2800	6.33-02	1.31-01	2.04-01	2.82-01	3.66-01	4.56-01	5.53-01	6.57-01	7.70-01	8.92-01	4.43
2900	6.30-02	1.30-01	2.02-01	2.79-01	3.62-01	4.51-01	5.46-01	6.48-01	7.58-01	$8.76-01$	4.28
3000	6.29-0.2	1.30-01	2.02-01	2.78-01	3.60-01	4.47-01	5.41-01	6.41-01	7.48-01	8.64-01	4.13
3100	6.30-02	1.30-01	2.01-01	2.77-01	3.58-01	4.45-01	5.37-01	6.36-01	7.41-01	8.54-01	4.00
:3200	$6.32-0.2$	1.30-01	- $0.01-01$	2.77-01	3.58-01	4.43-01	5.35-01	6.32-01	7.36-01	8.48-01	3.87
3300	6.35-0:	1.31-01	2.02-01	2.78-01	3.58-01	4.43-01	5.34-01	6.30-01	7.33-01	8.43-01	3.76
Absorption Edges: Ag-L, 2 ($33351-3526 \mathrm{eV}$)											
4000	S.81-0]	1.20-01	1.86-01	-. $566-01$	3.32-01	4.12-01	4.98-01	5.90-01	6.89-01	7.94-01	3.10
5000	5.76-02	1.18-01	1.81-01	2.47-01	3.16-01	3.89-01	4.65-01	5.45-01	6.29-01	7.17-01	2.48
8000	6.01-0.3	1.29-01	1.87-01	2.54-()1	3.23-01	3.94-01	4.69-01	5.46-01	6.25-01	7.08-01	2.07
7000	6.6.3-0]	1.35-01	2.05-01	2.77-01	3.52-01	4.28-01	5.07-01	5.89-01	6.73-01	7.60-01	1.77
¢(M)	-6.6t-0:	1.5is-01	2.35-01	3.18-01	4.03-01	4.90-01	5.79-01	6.71-01	7.66-01	8.63-01	1.55
$9 \times \mathrm{KW}$	9.04-0:	1.8:3-01	$2.78-01$	3.75-01	4.75-01	5.78-01	6.83-01	7.91-01	9.01-01	1.0200	1.38
10×601	1118.11	$\because 1901$	3.3:3-101	4.49-01	5.69-01	6.91-01	8.16-01	9.45-01	1.0800	1.2100	1.24

Fig. 11. The density-exposure data chosen here for the model equation fitting for $\mathrm{SB}-392$ film at the representative photon energies, Cu-L α $(930 \mathrm{eV})$. Al-Ka (1490 eV), and $\mathrm{Cu}-\mathrm{K}(8050 \mathrm{eV})$. Also plotted here are the predicted $D-I$ curves obtained by fitting the analytical model Eq. (5) to these total data. Optical densities are net densities (above unexposed, developed background density) as would be measured by using microdensitometry with matched influx-efflux optics of 0.1 N.A.
intensity I (photons/square micrometer) that corresponds to a given specular optical density, $D_{0.1}$ (microdensitometered at matched 0.1-N.A. optics) in the $0.2-2.0$ range and at a given photon energy, E (electron volts), in the $1000-10,000$ eV region. Corresponding values of diffuse optical densities and those microdensitometered at matched $0.25-$ N.A. optics for Table 1 can be obtained by using the conversion relations (8) and (9).

4. CHARACTERIZATION OF THE KODAK SB-392

For optimized measurements with position-sensitive photographic detection, higher resolution may be more important than higher sensitivity. Then the alternative single-emulsion x-ray film, Kodak SB-5 or SB- 392 film, should be considered. (SB-5 and SB- 392 differ only in format, i.e., sheet or 35 mm , respectively.) In Ref. 3 we presented a characterization of the SB-392 specifically for the low-energy x-ray region as based on D-I data at only these energies. To estimate the relative response of this film at the higher photon energies ($>1000 \mathrm{eV}$) we then simply extrapolated into the next energy decade the low-energy results by using our model relations. We now present a more accurate char-
acterization of the SB-392 for the high photon energies ($1000-10,000 \mathrm{eV}$) by using a $D-I$ experimental data base representative only of this energy region and by applying the improved procedures for the parameterization of the model description, as has been described in detail in Section 3 for the characterization of the complementary Kodak DEF.

Using the same calibration procedure as described above for the present work, we have added $D-I$ data for the $\mathrm{Cu}-\mathrm{K} \alpha$ ($8050-\mathrm{eV}$) x radiation to the previously measured data presented in Ref. 3 for the photon energies $\mathrm{Cu}-\mathrm{La}(930 \mathrm{eV}$) and Al-K $\alpha(1490 \mathrm{eV})$. These data are presented in Fig. 11 along with the predicted curves by using the analytical singleemulsion model Eq. (5) that is based on a parameterization determined as follows:

The emulsion-plus-base thickness of the SB- 392 was micrometered to be $196 \mu \mathrm{~m}$. Using PET-crystal-monochromatized Cu -Ka radiation, the transmission for two layers of the film, τ_{f}, and of two layers of the base, r_{b} (with the emulsion removed), were measured to be 0.461 and 0.725 , respectively. These transmissions are related to the emulsion and base thicknesses, T and t_{b}, as follows:

$$
\begin{equation*}
T=\frac{1}{\mu^{\prime}} \ln \left(\frac{T_{h}}{\tau_{r}}\right)^{1 / 2}, \tag{12}
\end{equation*}
$$

Table 2. Exposure I (photons $/ \mu \mathrm{m}^{2}$) versus Net Optical Density $D_{0.1}$ and Photon Energy $E(\mathrm{eV})$ for the Kodal SB-392

Photon Energy	Net Density D (Specular, 0.1×0.1 N.A.)										Wavelength
$E(\mathrm{eV})$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	$\lambda(A)$
1000	3.03-01	$6.87-01$	1.1700	1.7900	2.5600	3.5500	4.7900	6.3700	8.3700	1.0901	12.40
1050	2.63-01	5.90-01	9.94-01	1.4900	2.1200	2.8900	3.8400	5.0300	6.5000	8.3400	21.81
1100	2.33-01	5.16-01	8.60-01	1.2800	1.7900	2.4100	3.1700	4.1000	5.2300	6.6100	11.27
1150	$2.09-01$	4.59-01	7.59-01	1.1200	1.5500	2.0730	2.6900	3.4400	4.3400	5.4300	10.78
1200	1.90-01	4.15-01	6.81-01	9.96-01	1.3700	1.8100	2.3300	2.9600	3.7000	4.5800	10.33
1250	1.75-01	3.80-01	$6.20-01$	$9.00-01$	1.2300	1.6100	2.0600	2.5900	3.2200	3.9500	9.92
1300	1.63-01	$3.52-01$	$5.70-01$	8.23-01	1.1200	1.4600	1.8500	2.3100	2.8500	3.4800	9.54
1350	1.53-01	3.29-01	5.30-01	7.61-01	1.0300	1.3300	1.6900	2.0900	2.5600	3.1100	918
1400	1.45-01	3.:0-01	4.98-01	7.12-01	9.56-01	1.2300	1.5500	1.9200	2.3400	2.8200	8.86
1450	1.38-01	$2.95-01$	4.71-01	6.71-01	8.98-01	1.1600	1.4500	1.7800	2.1600	2.6000	8.55
1500	1.33-01	$2.82-01$	4.50-01	6.38-01	$8.51-01$	1.0900	1.3600	1.6700	2.0200	2.4200	8.27
Absorption Edges: $\mathrm{Br}-\mathrm{L}_{1,2}(1533-1599 \mathrm{eV}$)											
1800	1.01-01	2.13-01	3.39-01	4.79-01	6.36-01	8.12-01	1.0100	1.2300	1.4800	1.7700	6.89
1900	9.67-02	2.04-01	3.23-01	4.56-01	6.03-01	7.68-01	9.53-01	1.1600	1.3900	1.6500	6.53
2000	9.41-02	1.98-01	3.13-01	4.40-01	5.80-01	7.37-01	9.11-01	1.1100	1.3200	1.5700	6.20
2100	9.23-02	1.94-01	3.05-01	4.28-01	5.64-01	7.15-01	8.81-01	1.0700	1.2700	1.5100	5.90
2200	9.13-02	1.91-01	3.01-01	4.21-01	5.54-01	6.99-01	8.61-01	1.0400	1.2400	1.4600	5.64
2300	9.09-02	1.90-01	2.98-01	4.17-01	5.47-01	6.91-01	8.48-01	1.0200	1.2200	1.4300	5.39
2400	9.11-02	1.90-01	2.98-01	4.16-01	5.45-01	6.87-01	8.43-01	1.0100	1.2000	1.4200	5.17
2500	9.18-02	1.91-01	3.00-01	4.18-01	5.46-01	6.88-01	8.42-01	1.0100	1.2000	1.4100	4.96
2600	9.29-02	1.94-01	3.03-01	4.21-01	5.51-01	6.92-01	8.47-01	1.0200	1.2000	1.4100	4.77
2700	9.45-02	1.97-01	3.07-01	4.27-01	5.58-01	7.00-01	8.56-01	1.0300	1.2200	1.4200	4.59
2800	9.64-02	2.00-01	3.13-01	4.35-01	5.68-01	7.12-01	$8.70-01$	1.0400	1.2300	1.4400	4.43
2900	9.87-02	$2.05-01$	3.20-01	4.44-01	5.79-01	7.27-01	8.87-01	1.0600	1.2600	1.4700	4.28
3000	1.01-01	$2.10-01$	3.28-01	4.55-01	5.94-01	7.44-01	9.08-01	1.0900	1.2800	1.5000	4.13
3100	1.04-01	$2.17-01$	3.37-01	4.68-01	$6.10-01$	7.64-01	$9.31-01$	1.1100	1.3200	1.5400	4.00
3200	1.08-01	2.23-01	3.48-01	4.82-01	6.28-01	7.86-01	9.58-01	1.1500	1.3500	1.5800	3.87
3300	1.11-01	$2.30-01$	3.59-01	4.98-01	6.48-01	8.11-01	9.88-01	1.1800	1.3900	1.6300	3.76
Absorption Edges: Ag-L $\mathrm{L}_{3.2}(3351-3526 \mathrm{eV}$)											
4000	8.94-02	1.86-01	2.90-01	4.02-01	5.24-01	6.57-01	8.01-01	9.60-01	1.1300	1.3300	3.10
5000	1.14-01	$2.37-01$	3.69-01	5.10-01	6.64-01	$8.30-01$	1.0100	1.2100	1.4200	1.6600	2.48
6000	1.53-01	3.18-01	4.94-01	6.84-01	8.88-01	1.1100	1.3500	1.6100	1.9000	2.2100	2.07
7000	2.08-01	4.30-01	6.69-01	9.25-01	1.2000	1.5000	1.8300	2.1800	2.5600	2.9900	1.77
8000	2.79-01	$5.77-01$	8.97-01	1.2400	1.6100	2.0100	2.4500	2.9200	3.4300	4.0000	1.55
9000	3.68-01	7.62-01	1.1800	1.6400	2.1300	2.6500	3.2300	3.8500	4.5300	5.2800	1.38
10000	$4.73-01$	9.87-01	1.5300	2.1200	2.7600	3.4400	4.1800	4.9900	5.8700	6.8400	1.24

$$
\begin{equation*}
t_{b}=\frac{1}{\mu_{b}} \ln \left(\frac{1}{r_{b}}\right)^{1 / 2} \tag{13}
\end{equation*}
$$

Applying these equations for the two layers of the film and of the base, the single-emulsion thickness, T; base thickness, t_{b}; and the volume fraction of the AgBr grains, V, were determined to be $11.3 \mu \mathrm{~m}, 183.8 \mu \mathrm{~m}$, and 0.20 , respectively. (It is interesting to note that these values were determined by model fitting alone of the low-photon-energy data in Ref. 2 to be, for T and $V, 10 \mu \mathrm{~m}$ and 0.2 .) With these parameters, the model relation for the single-emulsion film [Eq. (5)] was least-squares fitted to the data sets presented in Fig. 11 to yield the following values of fitting parameters, a and b, and of the supercoat thickness, $t_{(}$:

$$
a=0.545 \mu \mathrm{~m}^{-1}, \quad b=1.39 \mu \mathrm{~m}^{2}, \quad t_{0}=1.0 \mu \mathrm{~m}
$$

In Ref. 3 we reported the measured ratios. D_{s} / D_{d} (net specular density/net diffuse density), for the specular densities, D_{01} and $D_{0, s}$ (measured with microdensitometer influx and efflux matched optics at N.A. values of 0.1 and 0.25).

These measurements yield the conversion equations for SB392

$$
\begin{align*}
D_{0.1} / D_{d} & =1.6-0.10 D_{d} \\
D_{0.25} / D_{d} & =1.2 \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
D_{0.1} / D_{0.25}=1.3-0.07 D_{0.25} \tag{15}
\end{equation*}
$$

Using Eqs. (14), we have converted the diffuse-density, D I data on SB-5 by Koppel and Boyle ${ }^{9}$ and present these also in Fig. 11. Their development procedure was 5 min in RXR at 68° with agitation as compared with our procedure at 6 \min in RXR at 72° with agitation.)

Using the analytical Eq. (5) thus determined for the SB392 film, we presented in Fig. 10 its sensitivity, S, in comparison with that for DEF, and in Table 2 we present the normal-incidence intensity, l (photons/square micrometers), that generates the specular density D_{01} in the 0.2 -
2.0 range and at the photon energy E (electron volts) in the $1000-10,000-\mathrm{eV}$ region.

Finally it is important to note that for the single-emulsion film at medium or low exposures of significantly high-pho-ton-energy x radiation, the $D-I$ relation becomes simply

$$
\begin{equation*}
D=c \mu_{:} I \tag{16}
\end{equation*}
$$

with the energy dependence given completely as that for the absorption coefficient, μ_{1}, of AgBr and with the dependence on the film grain size (before development) and the silver cluster grain size (after development) along with the T and V parameters disappearing within a single fitting parameter, c, that is independent of the angle of incidence, θ. This result may be readily derived by expanding the model Eq. (5) for the high-energy limit for which $\mu_{1} d, \mu_{0} t_{0}$, and $\mu^{\prime} T$ are small compared with unity. For the Kodak SB-392 film exposed with medium or low intensities of photon energies around $10,000 \mathrm{eV}$, the $D-I$ relation may be well approximated by the characteristic equation

$$
\begin{equation*}
D_{01}=7.3 \mu_{1}\left(\mu \mathrm{~m}^{-1}\right) I\left(\text { photons } / \mu \mathrm{m}^{2}\right) \tag{17}
\end{equation*}
$$

where μ_{1} is the linear absorption coefficient of AgBr for a particular photon energy (see μ_{1}-versus E table in Ref. 3).

5. SUMMARY

In this work we have presented detailed characterizations of the new, high-sensitivity double-emulsion Kodak DEF and the less sensitive but higher-resolution single-emulsion Kodak SB- 392 film for microdensitometric applications in the high-energy x-ray region. These characterizations were shown not to be strongly affected by the normal variations (several laboratories evaluated) resulting from the choice of a conventional x-ray development procedures and from batch-to-batch differences. The accuracy of our averaging characterizations was limited mostly by the experimental errors of the $D-I$ measurements. The magnitude of these errors and the accuracy of our characterizations may be estimated by the comparison of the $D-I$ data from the several laboratories as plotted against our model curves in Figs. 5 and 11 .
The three significant figures expressed in Tables 1 and 2 for the exposure I (photons/square micrometer) are, of course, indicative not of the absolute accuracy of these averaged characterizations but rather of relative precision. The absolute accuracy can be evaluated and perhaps improved by fitting our average characterizations to a few experimental $D-I$ film calibrations made on a particular film batch and with a given laboratory's measurement procedure.
The model relations that have been developed in this paper and in companion works ${ }^{2,3}$ for the response of x-ray films and presented here in Eqs. (4)-(7) are relatively simple analytical relations amenable to small-computer generation of absolute spectral intensities. These model descriptions are based on two- or three-parameter fitting of a few D-I experimental data sets that are representative of the pho-ton-energy region of application. A simple procedure has been established for the determination of the basic geometric parameters of the x-ray film that are required for these model analytical descriptions.
The θ dependence of our model Eqs. (4)-(7) has been experimentally verified for incidence angles greater than
about 10 deg (see Ref. 3). The same parameters that have been used to calculate the film characterizations presented in Tables 1 and 2 for normal incidence can be applied in these model equations to calculate the film response for smaller angles of incidence between 10 and 90 deg.

In Appendix A we summarize a recommen led film-handling and -processing procedure that will produce the DEF and SB-392 characteristics described in this work.

APPENDIX A: FILM-HANDLING AND -DEVELOPMENT PROCEDURES

Kodak Type DEF (DEF-392)

The Kodak DEF or DEF-392 (the difference being the sheetfilm or $35-\mathrm{mm}$ format) should be handled under Kodak Safelight Filter no. GBX-2 with a 15-W bulb, no closer than 1 m from the film. This practice should be followed during processing as well. Special care should be taken not to bend the film too sharply, since doing so will result in many minute cracks in the emulsion. Fresh processing solutions should be used whenever possible; this is especially true for the developer because it will deteriorate when in an open tray or processing tank. The processing of the film is as follows, with all solutions, including the wash water, at $68^{\circ} \mathrm{F}$ in either a developing tank for roll film or a tray for sheet film:

1. Development: 5 min in Kodak GBX developer with gentle but continuous agitation.
2. Rinse: $\mathbf{3 0} \mathbf{~ s e c}$ in Kodak Indicator stop bath with gentle but constant agitation.
3. Fixing: 6 min in Kodak Rapid Fixer or GBX fixer with constant agitation.
4. Wash: 30 min in running water then 30 sec in Kodak Photo-Flo 200 working solution.
5. Drying: At room temperature in still air, or at elevated temperatures not over $100^{\circ} \mathrm{F}$ in moving air.

In drying the film at elevated temperatures, care should be taken not to allow the relative humidity at the film to drop below 50%, as this can cause excessive shrinkage of the emulsion and a possible distortion of the image. The use of Photo-Flo wetting agent will help promote uniform drying of the film by either method, with a minimum of drying artifacts and water spots.

Kodak Type SB-5 (SB-392)

Recommended film handling and development procedure is that described above for Kodak DEF.

ACKNOWLEDGMENTS

The authors gratefully acknowlege the important assistance in this work of Debra Nanod. Ron Tackaberry, and Jonathan Kerner and the helpful suggestions of W. C. Phillips. G. N. Phillips, Jr., and P. D. Rockett. The program on LowEnergy X-Ray Physics and Technology at the University of California's Lawrence Berkeley Laboratory (LBL) is sup. ported by a grant from the U.S. Air Force Office of Scientific Research (AFOSR no. 84-0001) and supported supplementally by contracts with the U.S. Department of Energ:
(SAN \# CID \# 9501, Task 1) through the Los Alamos National Laboratory and the Lawrence Livermore National Laboratory and (no. DE-AC03-76SF00098) through LBL.

REFERENCES AND NOTES

1. B. L. Henke and P. A. Jaanimagi. "Two-channel. elliptical analyzer spectrograph for absolute, time-resolving time-integrating spectrometry of pulsed x-ray sources in the $1(00-10,000 \mathrm{eV}$ region." Rev. Sci. Instrum. 56. 1537-1552 (1985).
2. B. L. Henke. S. L. Kwok, J. Y. Uejio, H. T. Yamada, and G. C. Young, "Low-energy x-ray response of photographic films. I. Mathematical models," J. Opt. Soc. Am. B 1. 818-827 (1984).
3. B. L. Henke, F. G. Fujiwara. M. A. Tester. C. H. Dittmore, and M. A. Palmer, "Low-energy x-ray response of photographic firms. II. Experimental characterization," J. Opt. Soc. Am. B 1, 828849 (1984).
4. W. C. Phillips and G. N. Phillips. Jr., "Two new x-ray films:
conditions for optimum diveropment and calibration of response," J. Appl. Cryst. 18, 3-7 (1985).
5. P. D. Rockett. C. R. Bird, C. J. Hailey, D. Su livan. D. B. Brown, and P. G. Burkhalter, "X-ray calibration of (Godak direct exposure film." Appl. Opt. 24, 2536-2542 (1985).
6. B. L. Henke, H. T. Yamada, and T. J. Tanaka, "Pulsed plauma source spectrometry in the $80-8000-\mathrm{eV}$ x-ray region." Rev. Sci. Instrum. 54. 1311-1330 (1983).
7. B. L. Henke. P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa. "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. $E=100-2000 \mathrm{eV}, Z=1$ to 94," At. Data Nucl. Data Tables 27, 1-44 (1982).
8. The SEM film studies were kindly provided by David D. Dixon of the Technical Photography Group, Lawrence Livermore National Laboratory.
9. L. N. Koppel and M. J. Boyle. "X-ray calibration of film types SB-5 and RAR 2492 in the $1.5-8-\mathrm{keV}$ region." Document No. FR-81-112-Sec. IV (Advanced Research and Applications Corp., Sunnyvale, Calif., 1981).

11. TECHNICAL NOTES: THE CHARACTERIZATION OF X-RAY PHOTOCATHODES

The absolute efficiency for tite conversion of x-ray photons to photoemitted electrons and the statistics governing the number of electrons per photon-induced "bunch" need to to characterized for the development of absolute spectrometry particularly for the time-resolving x -ray diodes and streak cameras.

When an x-ray photon is absorbed within a photocathode the resulting primary electrons (photo-and Auger electrons) proceed to generate a much greater number of low energy secondaries (electron hole-pairs). Generally, the average penetration depth of the photons is very large compared to the average escape depth, λ_{s}, of the "random walking" secondaries within the photoemitcer. This "sea" of secondaries has an energy distribution just inside the vacuum-photocathode interface which is determined by the electronic band structure of the material. Because of the relatively large depth through which these secondaries are formed, the energy distribution at the surface becomes independent of the exciting photon energy, E. In addition, the fraction of these secondaries that can escape through the surface and their emitted energy distribution are determined only by the surface work function or electron affinity and are also independent of the exciting photon energy. The quantum yield, Y, (emitted electrons per normally incident photon), however, is strongly dependent upon the photon energy, E, and we find that it is proportional to $E \mu(E)$ where $\mu(E)$ is the mass absorption coefficient of the photocathode. These results have been explained by a phenomenological model and verified experimentally in our previous work. In Fig. 1 the general argument for this energy dependence is given, based upon the reason that since the shape of the energy distribution curves (EDC's) are independent of the photon energy, E, it follows that the yield. Y, should then essentially be proportional to the energy that is deposited within the escape depth, λ_{s}, viz $E \mu(E) \rho \lambda_{s}$. It is noted that Y is also simply proportional to the average imaginary component, f_{2}, of the atomic scattering factors of the material. Therefore, for pure element photocathodes, their energy dependence is essentially that of our f_{2} plots for the 94 elements (ADNDT, Vol. 27).

In Fig. 2 are presented the quantum yield curves as we have measured them for gold and high density cesium iodide, along with the $E \mu(E)$ curves (arbitrary scale) which verify this energy dependence.

We are also measuring the number of "electron bunches" per photon via the counts measured per photor using microchannel plate pulse-counting. These photon counting efficiencies for the high and low density cesium iodide are shown in Fig. 4. The photocathodes were generated by high vacuum evaporation and by evaporation under about is Torr of Ar, respectively. The ratio of the quantum yield, Y, to this
photon counting efficiency gives us the average number of electrons per bunch which is an important parameter in time-resolving statistics.

We are currently investigating the photoenission characteristics of solid Xe and Ar for which the escape depths are orders of magnitude larger than those of the conventionally applied photocathode. As predicted, these photocathodes have considerably higher yields at the higher photon energies. For example, in our preliminary measurements, we obtain for both Xe and Ar at 12.34 eV about 45 enitted electrons per photon, which is twenty times the value for CsI and one thousand times that for gold at this energy. The escape depths of the solid rare gases are no longer small compared to the photon absorption depths for lower energy photons and, consequently, we must expect a falling off from the $E \mu(E)$ dependence accozding to the model described in Fig. 2 in the low energy region.
Figure 1. Photocathode Response, $\boldsymbol{Y}_{\mathbf{S}}$
$\left(Y_{8}=\right.$ Emitted Secondary Electrons per Incident Photon)

$Y_{s} \sim E \mu(E) \rho \lambda_{s}$

$Y_{s}=\mathrm{Kf}_{2}(\mathrm{E})$

XBL 867-2664

Figure 2. Thick Gold Photocathode
(A)

Thick Cesium lodide Photocathode
(8)

${ }^{\text {FIgure }}$ 3. Photon Counting Efficiency (for high and low density CsI)

Figure 4.
Quantum Yield, Y vs Photon Energy, E, for Solid Ar and Xe "Super" Photocathodes Compared to Thick Csl

12. TECHNICAL NOTES: LOW-ENERGY FLUORESCENT X-RAY SPECTROSCOPY FOR MATERIALS AVALYSIS

The low energy fluorescent x-ray spectra of molecules and solids are rich in spectral bands that are the result of radiative transitions from the outermost electronic levels to the photoionized core "holes" of the first sharp inner levels. Consequently, these spectra can be energy "maps" of the symmetries ard densities of states of the chemical-ard-solid state state-sensitive outer electron levels. The band energy structure and shifts become more pronounced and resolvable in the low energy spectra because there are larger effects relative to the low energy region of measurement.

Through many years in this laboratory we have developed a very efficient type of low energy spectroscopy based upon using a cosely coupled high powered de-mountable characteristic line excitation x-ray source, a large-area fluorescent sample, flat crystal/multilayer anlayzers with Soller-slit collimination and pressure-tuned pulse-heigl: discriminating flow proportional counter detection step-scanned data colleciton is by on-line computer programming.

Generally, u s important to selectively excite the desired core states by choosiug a characteristic excitation source line of higher energy that is very close to the photoionization energy. In this way, the spectral series that is measured is well defined and unwanted background radiation is eliminated. After the excitation source is chosen, its filter window, that of the counter, the crystal/multilayer analyzer and the counter gas and pressure are carefully chosen in orde: to optimize the efficiency-and-resolution of the measurement.

Shown here is our vacuum spectrograph as currently set up for the measurement of the band spectra of solid rare gases and of the new "higit temperature" superconductor materials.

High Efficiency X-Ray Spectrograph
for the
100-10,000 eV Region

Shown here is a helium refrigerator system that allows the fluorescent sample temperature to be controlled down to about 15 degrees Kelvin. shroud, held at a temperature lower than that of the sample, provides effective cryo-pumping at the sample surface. This system is currently being applied for the measurement of the band spectra of solid Xe and Ar and for the "high temperature" superconductors (e.g. Cu-Ba-Y-0).

13 Temporal dependence of the mass-ablation rate in uv-laser-irradiated spherical targets

P. A. Jaanimagi,* J. Delettrez, B. L. Henke, ${ }^{*}$ and M. C. Richardson
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299

(Received 6 January 1986)

Abstract

In this paper we present new measurements of thermal transport in spherical geometry using time-resolved x-ray spectroscopy. We determine the time dependence of the mass-ablation rate by following the progress of the ablation surface through thin layers of material embedded at various depths below the surface of the target. These measurements, made with 6 and $12 \mathrm{uv}(351 \mathrm{~nm}$) beams from the OMEGA laser system of the Laboratory for Laser Energetics of the University of Rochester, are compared to previous thermal transport data and to detailed hydrodynamic code simulations. We find agreement with code results for the scaling of the mass-ablation rate with absorbed intensity, but measure larger absolute values than predicted. This finding is interpreted as being the result of irradiation nonuniformities on target. The sharp decrease in the mass-ablation rate after the peak of the laser pulse predicted in simulations is consistent with experimental observations.

I. INTRODUCTION

Thermal transport in spherical targets uniformly irradiated with multiple, nanosecond-duration laser beams has been a topic of much theoretical ${ }^{1}$ and experimental interest. ${ }^{2-6}$ An understanding of thermal transport processes in laser fusion plasmas is important in that they impact directly on laser-induced ablation processes which drive the implosion of direct-drive laser fusion targets. The direct measurement of the transport of thermal energy from the absorption region to the ablation surface is not possible. However, the mass-ablation rate $\dot{\boldsymbol{m}}\left(\mathrm{g} / \mathrm{cm}^{2} \mathrm{~s}\right)$ which is dependent on the thermal transport can be measured through a variety of diagnostics, such as plasma velocity and x-ray spectroscopic techniques. In effect, \dot{m} is a measure of the depth of material penetrated by the heat front during the laser pulse.

There is a growing body of experimental measurements of \dot{m}, some of which appears to suggest that the transport of thermal energy is inhibited. Computer simulations of these experiments place an upper limit on the heat flux $q{ }^{7}$ such that $q=\min \left(q_{\mathrm{cl}}, f q_{\mathrm{fs}}\right)$, where q_{cl} is the classical value, q_{fs} is the free-streaming limit and f is referred to as the flux limiter. Experiments in spherical geometry have inferred various levels of flux inhibition. For $\lambda=1.05 \mu \mathrm{~m}$ laser irradiation ${ }^{2-5}$ values range from as low as $f=0.06$ to fluxes in excess of the free-streaming limit. In Ref. 4, a low-temperature foot on the heat front was postulated which cannot be explained with a simple flux-limited inhibition model. At $\lambda=0.53 \mu \mathrm{~m}$, a flux limiter of $f>0.1$ has been inferred. ${ }^{2}$ In experiments at $\lambda=0.35 \mu \mathrm{~m}$, markedly different values of \dot{m} and of its scaling with absorbed intensity I_{A} were estimated depending on whether they were inferred from charge-collector or timeintegrated x-ray spectroscopy measurements. ${ }^{6}$

This broad range of inferred flux limiters from apparently similar experiments is difficult to reconcile. The inconsistency could be due to differences in experimental parameters such as laser pulse shape and irradiation geometry and uniformity. Other factors such as the
shorter scale lengths on smaller targets and the onset of resonant absorption at higher intensities will also affect thermal transport. Further, important consideration must be given to the influence of time-dependent effects.

In this paper we discuss the time dependence of the mass-ablation rate and its scaling with absorbed intensity. In Sec. II we present simulations of the mass-ablation rate, emphasizing its time dependence during the laser pulse. This is followed in Sec. III with our experimental results from time-resolved x-ray spectroscopy.

II. COMPUTER SIMULATIONS OF THE MASS-ABLATION RATE

Simulations of the interaction of intense $351-\mathrm{nm}$ laser radiation with spherical targets were made with the onedimensional Lagrangian code LILAC. ${ }^{8}$ In the simulations a 2.5 TW peak power, $600-\mathrm{ps}$ [full width at half maximum (FWHM)] Gaussian laser pulse was tangentially focused on $404-\mu \mathrm{m}$-diam targets, producing an average incident intensity of $I_{0}=5 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$. The hydrocode simulations include ray tracing using the azimuthally averaged laser spatial profile, radiation transport with local thermodynamic equilibrium (LTE) opacities and heat flux as the harmonic mean of q_{cl} and $f q_{\mathrm{fs}}$. Simulations were run for a variety of flux limiters ranging from $f=0.02$ to 0.4 . From these code calculations we can obtain the instantaneous mass-ablation rate during a single laser pulse as a function of the instantaneous absorbed intensity as referenced to the original target diameter. The case for a flux limiter of $f=0.1$ is illustrated in Fig. 1 for a solid glass sphere and a $6-\mu$ m-thick glass shell target. The massablation rate was determined by following the progress of the $500-\mathrm{eV}$ isotherm as referenced to the original La grangian frame:

$$
\begin{equation*}
\dot{m}=\rho \Delta r / \Delta \tau \tag{1}
\end{equation*}
$$

where ρ is the material density, and Δr is the thickness of material progressively heated to 500 eV in a time Δ.. The $500-\mathrm{eV}$ isotherm was chosen as a characteristic tempera-

FIG. 1. lilac simulation for the inscantaneous mass-ablation rate [from Eq. (1)] vs the instantancous absorbed intensity during a single laser pulse, $I_{0}=5>10^{14} \mathrm{~W} / \mathrm{cm}^{2}, f=0.1$ on $404-\mu \mathrm{m}$-diam glass targets; solid target (-), $6-\mu \mathrm{m}$ wall shell target (---). Arrows mark 100 -ps time intervals starting at 200 ps code time and P denotes the peak of the laser pulse at 773 ps.
ture for Si line emission in the $2.0-2.5 \mathrm{keV}$ range which was used as a diagnostic in the experiments described later. $\dot{m}(t)$ derived from the $300-\mathrm{eV}$ or $1-\mathrm{keV}$ isotherms is essentially the same as for the $500-\mathrm{eV}$ isotherm, with peak values occurring marginally earlier and later in time, respectively. This is characteristic of the steep classical heat front in the overdense material.

The noteworthy features of the curves in Fig. 1 are (i) that \dot{m} does not have the same scaling with absorbed intensity $\left(I_{A}\right)$ on the rising and falling edges of the laser pulse and (ii) that the peak value of \dot{m} is achieved prior to the peak values of both the incident and absorbed intensities. These features are even more pronounced for the case of an imploding glass shell target as compared to the solid target. A similar dependence of \dot{m} on I_{A} was observed in simulations with other flux limiters as well as for targets of different diameters and different \boldsymbol{Z}.

In a general sense, an empirical mathematical relationship between \dot{m} and I_{0} is valuable for understanding thermal transport, and would aid laser fusion tate design. However, our efforts to use the simulations : generate scaling laws of the form $\dot{m} \propto I_{A}^{x} R_{A}^{y}$ (as in Ref. $1)$, where R_{A} is the radius of the $500-\mathrm{eV}$ isotherm, have been successful only for individual cases and then only for imploding-shell targets. On solid glass spheres the excursion of $\boldsymbol{R}_{\boldsymbol{A}}$ during the laser pulse may range up to 30% of the initial target radius, but it cannot account for the observed decrease in \dot{m}. Larger excursions are observed for higher intensity laser pulses ($5 \times 10^{15} \mathrm{~W} / \mathrm{cm}^{2}$) and for smaller $(200 \mu \mathrm{~m})$ diameter targets.

At $\lambda=351 \mathrm{mn}$ the predominant absorption mechanism is inverse bremsstrahlung in the subcritical region, and we can define an energy deposition radius R_{D} as the weighted average absorption radius. Typically R_{D} lies between the critical and quarter-critical density radii, but inside the peak temperature ($\nabla T=0$) surface. Defining $\Delta R=R_{D}-R_{A}$ as the separation between the energy depo-
sition and ablation surfaces, we find the scaling laws for glass targets:

$$
\begin{aligned}
& \dot{m} \propto I_{A}^{0.5} R_{A}^{1.4} \Delta R^{-0.06} \text { for } f=0.02, \\
& \dot{m} \propto I_{A}^{0.65} R_{A}^{1.3} \Delta R^{-0.3} \text { for } f=0.04,
\end{aligned}
$$

and

$$
\dot{m} \propto I_{A}^{1.0} R_{A}^{1.0} \Delta R^{-0.73} \text { for } f=0.4
$$

The scaling at $f=0.1$ is similar to that at $f=0.4$. The magnitude of ΔR is partially dependent on the size and constituents of the target. For moving-shell targets ΔR increases monotonically throughout the laser pulse, but for solid spheres ΔR is approximately constant after the peak of the laser pulse. We also note that ΔR is proportional to the density scale length L_{D} at R_{D}, and perhaps L_{D} is a more meaningful parameter for the scaling laws, as it affects energy deposition in the corona directly. Another factor which contributes to decreasing \dot{m} is the fact that the fraction of the absorbed energy deposited outside the $\nabla T=0$ surface increases during the laser pulse.

As suggested in Ref. 1, laser energy absorption by inverse bremsstrahlung leads to reduced \dot{m} and reduced ablation pressure compared to an energy dump at critical density. More of the laser energy is dissipated at subcritical densities, flowing more directly into blow-off kinetic energy. With respect to the above scaling laws, inverse bremsstrahlung implies a larger ΔR since R_{D} is greater than the critical-density radius. From Ref. 1 we note that the ablation pressure has a much weaker scaling with radius than \dot{m} does, and our simulations do show that the pressure at the $500-\mathrm{eV}$ isotherm scales with I_{A} on both the leading and trailing edges of the pulse for the solid targets.

In light of the above simulations, care must be taken when plotting \dot{m} obtained from time-resolved x -ray spectroscopy versus absorbed intensity. Using a pulseaveraged I_{A} will result in an underestimate in the value of $\dot{m}\left(I_{A}\right)$. To avoid such problems the time-varying values of \dot{m} should be plotted versus the instantaneous value of I_{1}.

III. EXPERIMENTS

The primary diagnostic for our mass-ablation rate measurements was time-resolved x-ray spectroscopy. ${ }^{9,10}$ The experiments were carried out using 6 and 12 uv ($\lambda=351 \mathrm{~nm}$) beams of the OMEGA laser system of the Laboratory for Laser Energetics at the University of Rochester at incident irradiances of $I_{0}=(1-4)$ $\times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$. The laser pulse had a Gaussian temporal profile with a pulsewidth of $600-750 \mathrm{ps}$ FWHM. Two types of targets were used in these studies. One set consisted of empty glass microballoons ($\sim 230 \mu \mathrm{~m}$ diameter) with a $1.0-\mu \mathrm{m}$-thick wall. These shells were coated with parylene (CH) ($1.0-8.0 \mu \mathrm{~m}$ thick) and then overcoated with a $150-\AA$ layer of $A u$ to provide an initial x-ray time marker. The Au layer thickness was increased to 300 A for the 12 -beam target shots. The second set of targets
were solid glass spheres ($\sim \mathbf{2 0 0} \mu \mathrm{m}$ diameter) coated with three layers: $1.5 \mu \mathrm{~m} \mathrm{CH}, 0.05 \mu \mathrm{~m} \mathrm{Al}$, and $1.5 \mu \mathrm{~m} \mathrm{CH} .{ }^{11}$

An elliptically curved pentaerythritol (PET) crystal analyzer was used to disperse the x-ray spectrum (1.7-2.7 keV range) onto the slit of the x-ray streak camera. Spectral and temporal resolutions were $E / \Delta E \sim 600$ and 15 ps , respectively. Representative perspective plots of the x-ray intensity from streak records for 6 - and 12 -beam shots on the imploding targets are presented in Fig. 2 showing the Au \boldsymbol{M}-band emission and the Si line emission. The time of occurrence of the implosion can be deduced from the peak in the x-ray continuum emission. This x-ray burst is characteristic of the higher temperatures and densities achieved during the stagnation of the glass shell and lasts $\sim 150 \mathrm{ps}$. The mass-ablation rate through the CH layers of known thickness was measured from the time delay between the start of the Au or Al line emission to the onset of the Si emission from the glass substrate. In all of the target shots where \dot{m} could be measured, the CH layer ablated during the rising edge of laser pulse. Thicker CH layers ($6-8 \mu \mathrm{~m}$) did not appear to burn through for intensities $<3 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$.
In order to construct a meaningful plot of \dot{m} versus I_{A}, we require knowledge of the absorbed laser intensity during the CH burnthrough time of interest. Since we could
not measure directly the absorption fraction as a function of time nor relate the x -ray emission to the incident laser pulse, $I_{A}(t)$ was inferred from careful comparisons of the streak data with the LILAC code simulations. We assumed that, if the overall predicted absorption of the laser energy agreed with the experimental measurement, then the code could be relied upon to predict the instantaneous absorbed laser intensity during the pulse. A flux limiter of $f=0.04$ was required to match the absorbed fractions. We also assumed that the hydrodynamic implosion time predicted by the code for the shell targets was correct. Then, by matching the predicted and experimental implosion times we are able to relate the x -ray emission on the streak record to the incident laser pulse. The accuracy of equating the implosion times was checked by calculating the predicted absorbed laser energy up to a time corresponding to the onset of the Au emission as measured on the streak record. The calculated absorbed laser energy was in the range 3.0 to 5.5 J , Fig. 3, and corresponds to a time window of $\sim 80 \mathrm{ps}$. Conservatively, this implies a 100 -ps accuracy in our timing fiducial technique. By including a ± 50-ps jitter in the streak record timing we obtain a timing fiducial with 150 -ps accuracy for the solid sphere targets.
In Fig. 4 we present the scaling of the measured mass-

FIG. 2. Perspective plots of the x-ray intensity as recorded by the streak camera. Correction for the spectrometer response function would increase the intensity on the long-wavelength side by 40%. (a) $150 \AA \mathrm{Au}$ on $4 \mu \mathrm{~m} \mathrm{CH}$ on $1.0-\mu \mathrm{m}$ glass shell target. Diameter is $229 \mu \mathrm{~m}$ at $I_{0}=2.8 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ with six-beam irradiation. (b) $300 \AA \mathrm{Au}$ on $3 \mu \mathrm{~m} \mathrm{CH}$ on $1.0-\mu \mathrm{m}$ glass shell target. Diameter is $289 \mu \mathrm{~m}$ at $I_{0}=4.2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ with 12 -beam irradiation.

FIG. 3. Ablated mass vs absorbed energy during a single laser pulse for six-beam irradiation of multilayer targets. Solid lines are lilac simulations for the mass outside the $500-\mathrm{eV}$ isotherm. For the experimental data the total mass outside the glass substrate is assumed to have been ablated. Data points at $\sim 4 \mathrm{~J}$ absorbed energy are for the ablation of the outer Au layer only.
ablation rate as a function of the average absorbed laser intensity during the CH burnthrough interval; I_{A} is derived from the simulations as outlined above. We also include data for \dot{m} for the outer CH layer on the solid targets where I_{A} is derived using 3 J of absorbed energy for time zero. The time-resolved six-beam data is in excellent agreement with the time-integrated measurements at $I_{A}=7.5 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$, which was measured for a similar target diameter (Ref. 6). The scaling of \dot{m} with I_{A} for six-beam irradiation and $I_{A} \leq 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ is in reasonable agreement with code predictions although the magnitude of \dot{m} is ~ 2 times higher than that predicted for uninhibited transport ($f=0.4$). The scaling of \dot{m} with I_{A} derived from the time-integrated x -ray spectroscopy of Ref. 6 is much weaker than that reported here.

A possible cause for the discrepancy between the measured and calculated values of \dot{m} could be the known vari-

FIG. 4. Mass-ablation rate versus absorbed intensity at $\lambda=0.351 \mu \mathrm{~m}$. Compilation from this study $(---)$, timeintegrated measurements from Ref. 6 , and LILAC simulations at $f=0.1$ and 0.04 for the rising edge of the pulse.
ances in the intensity distribution across the surface of the target. ${ }^{12,13}$ These have been estimated using a threedimensional superposition code which combines the equivalent target plane intensity distribution of each beam and computes a spherical-harmonic mode decomposition of the intensity distribution on the target surface. ${ }^{14}$ An initial assessment of the irradiation uniformity with six uv ($351-\mathrm{nm}$) beams of OMEGA indicates an overall rms nonuniformity of $\sim 50 \%$ in the lowest $30 /$ modes. ${ }^{12} \mathrm{Al}$ ternatively this can be stated as a few percent of the laser energy is absorbed at an intensity greater than three times the average intensity. ${ }^{15}$ Further characterization of the irradiation nonuniformities is obtained from x-ray pinhole pictures of solid high-Z (Au) targets irradiated with six beams, which show large-scale intensity variations across the target surface. ${ }^{16}$ Time-resolved imaging of the x-ray emission from these targets has also confirmed the existence of discrete hot spots. ${ }^{16}$ Given the amount of energy in the hot spots and the sensitivity of our diagnostic (Au emission is detected at the 2% of the total absorbed energy level from Fig. 3), the value of \dot{m} obtained using time-resolved spectroscopy should be characteristic of the absorbed intensity in the hot spots. A shift of our experimental points in Fig. 4 by a factor of 3 in I_{A} results in reasonable agreement with code predictions for $f=0.1$. Under the assumption that the laser energy distribution on target is the same for the approximately constant diameter targets used in these studies, the measured scaling of \dot{m} with I_{A} should be valid. Similarly the discrepancy between the measured and calculated values of the amount of mass ablated during the laser pulse in Fig. 3 can be attributed to the burnthrough of only small areas of the CH coating corresponding to the hot spots in the irradiation pattern.

With 12-beam irradiation the illumination uniformity should be improved and the effects of hot spots on the burnthrough should be commensurately less. Experimentally we do observe a significant decrease in the magnitude of $\dot{m}\left(I_{A}\right)$ (see Fig. 4). Further evidence for the decrease in \dot{m} with the more uniform 12-beam irradiation are the "burnthrough" curves presented in Fig. 5, as measured by the time-integrating channel of the x-ray spec-

FIG. 5. "Burnthrough" curves for CH and $\mathrm{Au} / \mathrm{CH}$ on glass targets with 12 -beam irradiation at $I_{0}=4.0 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ for the $\mathrm{Si} \mathrm{He}_{\boldsymbol{a}}(x)$ and $\mathrm{Si} \mathrm{H}_{\boldsymbol{\beta}}(\mathbf{0})$ x-ray resonance lines.
trometer. ${ }^{10}$ Here we plot the absolute energy in the Si^{+12} $1 s^{2}-1 s 2 p$ and $\mathrm{Si}^{+13} 1 s-3 p$ plines as a function of CH overcoat thickness. The $300 \cdot \AA$ Au layer on two of the targets was assumed to have an areal mass density equivalent to $0.5 \mu \mathrm{~m}$ of CH , although the effective thickness of the Au layer is greater than this due to radiation cooling in the higher- \boldsymbol{Z} material. The projected burnthrough thickness of $\leq 5 \mu \mathrm{~m}$ of CH is much less than the $9 \mu \mathrm{~m}$ of CH interpolated at $I_{0}=3 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ from the six-beam data (Ref. 6). This difference cannot be accounted for strictly by the difference in burnthrough depth between shells and solids, nor by the presence of the thin Au layer on the outside of the targets used in these experiments. Although we have not investigated a very large range of absorbed intensities with 12 -beam irradiation, it is our contention that the scaling of \dot{m} with I_{A} would be the same as for the time-resolved six-beam data.

Although we do not have any direct measurements of the mass-ablation rate on the trailing edge of the laser pulse, we do not observe any Si line emission on the streak records for the six-beam shots on targets with 6 - and 8 $\mu \mathrm{m}$-thick overcoats of CH . This is consistent with the predicted decrease in \dot{m} starting before the peak of the laser pulse as illustrated in Fig. 1. Using the timing fiducial method outlined above we estimate that the onset of the Si line emission for a target with a $4-\mu \mathrm{m}$ CH overcoat occurs $\sim 50 \mathrm{ps}$ before the peak of the laser pulse. If there had been a symmetric scaling of \dot{m} with I_{A} on the leading and trailing edges of the pulse, surely we would have observed the Si line emission from the targets with the thicker CH coatings. In addition, if we extrapolate the experimental data in Fig. 3 to the mass of these CH layers, the absorbed laser energy on these target shots was sufficient to produce some Si line emission.

Consideration must also be given to the probability of lateral thermal smoothing of the hot spots in the intensity distribution on the target which appear to dominate the burnthrough and \dot{m} measurements with six-beam irradiation. The amount of smoothing depends on the fractional separation distance $\Delta R / R_{0}$, where R_{0} is the target radius. ${ }^{17,18}$ For the imploding targets used in this study, the value of $\Delta R / R_{0}$ is ~ 0.2 at the peak of the laser pulse. A
value of ~ 0.3 is predicted at the peak of the laser pulse for the $90-\mu \mathrm{m}$-diam targets irradiated at $10^{15} \mathrm{~W} / \mathrm{cm}^{2}$ in Ref. 6. It is suggested that the lower scaling of \dot{m} with I_{A} in Ref. 6 is the result of thermal smoothing. This smoothing decreases the magnitude of \dot{m} to a level more characteristic of the average intensity on target.

IV. CONCLUSION

The measurement of the mass-ablation rate in spherical geometry with short-wavelength lasers in influenced significantly by time-dependent effects during the laser pulse. ${ }^{19}$ The transport of thermal energy and therefore \dot{m} is affected by the increasing separation between the energy deposition and ablation surfaces. Irradiation nonuniformities also have a significant effect on x -ray spectroscopic measurements of the mass-ablation rate since the burnthrough seems to be dominated by hot spots. Our experimental measurements of \dot{m} are in agreement with code predictions for the scaling of \dot{m} with I_{A} on the rising edge of the laser pulse as shown in Fig. 4; only indirect evidence is presented for lower values of \dot{m} on the trailing edge of the laser pulse.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Dr. R. Epstein, Dr. L. Goldman, Dr. A. Hauer, Dr. R. L. McCrory, Dr. J. M. Soures, Dr. S. Skupsky, and Dr. B. Yaakobi and the technical support of Dr. S. A. Letzring, G. Gregory, and the OMEGA operations group. This work was supported by the U. S. Department of Energy Office of Inertial Fusion under Agreements No. DE-A50882DP40175 and No. DE-FC08-85DP40200 and by the Laser Fusion Feasibility Project at the Laboratory for Laser Energetics which has the following sponsors: Empire State Electric Energy Research Corporation, General Electric Company, New York State Energy Research and Development Authority, Northeast Utilities Service Company, Ontario Hydro, Southern California Edison Company, The Standard Oil Company, and the University of Rochester.
${ }^{*}$ Permanent address: Lawrence Berkeley Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720.
${ }^{1}$ C. E. Max, C. F. McKee, and W. C. Mead, Phys. Fluids 23, 1620 (1980).
${ }^{2}$ T. J. Goldsack, J. D. Kilkenny, B. J. MacGowan, P. F. Cunningham, C. L. S. Lewis, M. H. Key, and P. T. Rumsby, Phys. Fluids 25, 1634 (1982).
${ }^{3}$ J. A. Tarvin, W. B. Fechner, J. T. Larsen, P. D. Rockett, and D. C. Slater, Phys. Rev. Lett. 51, 1355 (1983).
${ }^{4}$ B. Yaakobi, J. Delettrez, L. M. Goldman, R. L. McCrory, R. Marjoribanks, M. C. Richardson, D. Shvarts, S. Skupsky, J. M. Soures, C. Verdon, D. M. Villeneuve, T. Boehly, R. Hutchinson, and S. Letzring, Phys. Fluids' 27, 516 (1984).
${ }^{5}$ A. Hauer, W. C. Mead, O. Willi, J. D. Kilkenny, D. K. Bradley, S. D. Tabatabaei, and C. Hooker, Phys. Rev. Lett. 53, 2563 (1984).
${ }^{6}$ B. Yaakobi, O. Barnouin, J. Delettrez, L. M. Goldman, R. Marjoribanks, R. L. McCrory, M. C. Richardson, and J. M.

Soures, J. Appl. Phys. 57, 4354 (1985).
${ }^{7}$ R. C. Malone, R. L. McCrory, and R. L. Morse, Phys. Rev. Lett. 34, 721 (1975).
${ }^{8}$ For descriptions of earlier versions of LILAC, see E. B. Goldman, Laboratory for Laser Energetics Report No. 16 (unpublished); J. Delettrez and E. B. Goldman, Laboratory for Laser Energetics Report No. 36 (unpublished).
${ }^{9}$ B. L. Henke, H. T. Yamada, and T. J. Tanaka, Rev. Sci. Instrum. 54, 1311 (1983).
${ }^{10}$ B. L. Henke and P. A. Jaanimagi, Rev. Sci. Instrum 56, 1537 (1985).
"The $\mathbf{C H} / \mathrm{Al} / \mathrm{CH}$ solid-sphere targets were supplied as part of a collaborative effort on thermal transport with Los Alamos National Laboratory (LANL).
${ }^{12}$ M. C. Richardson, S. Skupsky, J. M. Soures, W. Lampeter, S. Tomer, R. Hutchison, M. Dunn, and W. Beich, Conference on Lasers and Electro-optics, 1984, Technical Digest (unpublished).
${ }^{13}$ Laboratory for Laser Energetics, Quarterly Report No. 23, 1985 (unpublished).
${ }^{14}$ M. C. Richardson, S. Skupsky, J. Kelly, L. Iwan, R. Hutchison, R. Peck, R. L. McCrory, and J. M. Soures, Proc. SPIE 380, 473 (1983).
${ }^{15}$ S. Skupsky (private communication).
${ }^{10}$ S. A. Letzring, M. C. Richardson, P. D. Goldstone, G. Gregory, and G. Eden, Bull. Am. Phys. Soc. 29, 1318 (1984).
${ }^{17}$ S. E. Bodner, J. Fusion Energy 1, 221 (1981).
${ }^{18}$ S. Skupsky, R. L. McCrory, R. S. Craxton, J. Delettrez, R.

Epstein, K. Lee, and C. Verdon, in Laser Interaction and Related Plasma Phenomena, edited by H. Hora and G. H. Miley (Plenum, New York, 1984), Vol. 6, p. 751.
${ }^{19}$ The acthors thank W. C. Mead of LANL for bringing to our attention a figure which he presented at the 1984 Annual Meeting of the Division of Plasma Physics, Bull. Am. Phys. Soc. 29, 1380 (1984), which indicated a rollover in \dot{m} in simulations of experiments with Gaussian-shaped pulses at $\lambda=1 \mu \mathrm{~m}$.

For x -rays of photon energies in the $100-10,000 \mathrm{eV}$ region (but not near the absorption edge energy) we have demonstrated that accurate calculations for absorption and scattering within condensed matter can be made based upon the atomic scattering factors ($=\mathrm{f}_{1}+\mathrm{if} \mathrm{f}_{2}$) for the atoms comprising the systems (e.g. for the photon energy response of filters, mirrors, multilayers and crystals).

The atomic scattering factors are derived using the Kramers-Kronig relations and the available experimental photoabsorption data (and by interpolating these data using normalized theoretical, Hartree-Slater segments).

The calculational approach of describing x-ray interactiors within condensed matter as scattering by a system of atoms seems to complement well that of the boundary value, E\&M solutions e.g. for multilayer characterization based upon the optical constants of the materials. Our analytical descriptions often have the advantages, however, of computational simplicity, speed and flexibility. Presented here \mathfrak{j} brief outline of this approach.

To illustrate our atowic scattering description of a phot interaction within condensed matter we consider the reflection-absorption-scattering of an x-ray beam incident at anglupon a slab consisting of N layers of atoms or of unit cells of scattering factor, $f_{1}+i f_{2}$, or unit cell structure factor, $F_{1}+i F_{2}$, respectively. Following the nethod of Darwin we write the equations relating the total downard anplitudes and upward amplitudes that must obtain for any two successive layers within the slab and which dynamically are che sums of the anplitudes of all possible aultiple reflections and transuissions. The resuting difference equations are presented in Fig. 1.

In (4) we have derived madification of the Darwin-frins solution of these equations (for the case of an ideal. infinitely thick multilayer system) giving the reflected and transwitced beams for a finite number of layers. The resultirg reflected amplitude for small grazing angles of incidence accurately corresponds to the E\&A Fresnel Eq. prediction when the refractive index unit decrements. δ and β, are related to the average atoalc scattering factor, $f_{1}+i f_{2}$, as noted in Fig. 2. Fot large angle reflection from periodic multilayer, we obtain the Bragg reflected amplitude equation as a function of the Daruin-Prins infinite crystal reflected ratio. S_{0} / T_{0}, and of an analytic parameter, x, chat is also simply defined in cerms of the atonic scatering factors. This modified Darvin-Prins (MDP) result is also given in fig. 2. The result predicts exactly chat obtained by optical

ESM (OEM) solution when the layers are described by their optical constants, δ and β, using relations as those noted in Fig. 2.

In Fig. 3 we present the prediction of our MDP (4) result for the iransmitted beam ior normal incidence and through a uniform slab of atoms of atomic photoabsorption cross-section, μ_{a}, in order to obtain the relation between the atomic scattering and the photoabsorption cross section. We find that the oniy effect of the real part of the atomic scattering factor, f_{1}, is to establish the phase of the transriited amplitude and we obtain the important reiation between the imagina. v part, f_{2}, and the atomic photoabsorption cross section, μ_{4}, that is presented in Fig. 3.

In establishing our atomic scattering tables we obtain the f_{2} values from the experimental transmission measurements of absorption using uniform foil systems. It is important to note that if the absorbers are not uniform, the tra.ismitted intensity is a function of both f_{2} and f_{2} and it is not possible to deduce f_{2} by a transmission measurement as suggested in $\overline{\text { ig }}$. 3 .

We determine the f_{1} atomic scatering factors for zero-angle scattering by the Kramers-Kronig relations that may be uritten as shown in Fig. 4 and are also defined in terms of our compiled and interpolated absorption cross sections. μ_{a}. For large angle scattering, we must take into account the phase differences of the electronic scattaring from different regions of the atoaic electron distribution, i.e. we aust make a form-factor correction to our tabulated f_{1} values. We have shown riat this can be simply and accurately accomplished as suggested in Eig. s

An important test of the accuracy of this relatively siaple semi-empirical approach for obtaining the atonic scattering factors is presented in Figs. 6 through 9 . Here we compare our values of f_{1} determined semi-empirically using the Kramers-Kronig model and measured photoabsorption cross sections (using neon gas and solid carbon filas absorbers) co f_{1} vaiues determined by the nearly exact S-matrix theory (by expensive. large computer calculation). These are given for both 0^{*} and 90° scattering angles.

Finally it is important to point out that our atomic absorption and scattering cross sections cannot be expected to lead to accarate descriptions of absorption. scartering and relfection by condensad matter using semi-emp!rical approach outlined above if the atoms vithin the condensed matter are not scattering "atomic-like". Generally. ehis atomic-like character is preserved within condensed matter except for photon energles belou about 100 eV or photon energies very close to absorption thresholds for which cheaical or solld stace effects become significant. Examples of comparisons of atonic vs condensed matter photoabsorption at the lower energies are shown in Figs. 10.
le has been five years since ve havs deveioped our absorption and scattering cross sectior cables (Vol. 27 of ADNDT-1982) and ve are now
revising these as based upon additional measured absorption coefficients of the past $f i v e$ years. We are comparing our present absorption files to the current measured data base and to the best available theory. Examples of such comparisons are shown in Figs. 11 and 12.

We will continue to make arailable to the scientific community the fine-spaced versions of our absorption and scattering factor tables on convenient floppy disks. Descriptions of their formats are attached here.

$\frac{\text { Dynamical }}{\text { for }}$ Reflection
N layers of m unit cells/unit
For small angles

$S_{O N} / T_{0} \quad$| reduces to Fresnel Eq. |
| :---: |
| with |

$\delta=\frac{r_{0} \lambda^{2}}{2 \pi} n_{A} \bar{f}_{i} \quad \beta=\frac{r_{0} \lambda^{2}}{2 \pi} n_{A} \bar{f}_{2}$

[^10]Fifurre 3. Dynamical Transmission
through
N layers of m atoms/unit area of photoabsorption cross - section, μ_{a}

Relating $f_{2}=\mu_{a} /\left(2 r_{0} \lambda\right)$

Semi-Empirical, Kramers-Kroniq, \mathfrak{f}_{\perp}

$$
f=\sum z_{q} g q q+C \int_{0}^{\infty} \frac{\epsilon^{2} \mu_{0}(\epsilon) d \epsilon}{E^{2}-\epsilon^{2}}
$$

Short wavelength limit

Anomalous effects

$$
C=\left(\pi r_{0} h c\right)^{-1}
$$

For long wavelength and/or small angle

$$
\Sigma z_{q} g_{q}=Z
$$

yielding the angle-independent, f_{l}

$$
f_{1}=Z+C \int_{E_{1}}^{E_{2}} \frac{\epsilon^{2} \mu_{0}(\epsilon) d \epsilon}{E^{2}-\epsilon^{2}}
$$

Figure 5.
Short Wavelength, Large Angle Scattering

$$
\begin{gathered}
\Sigma z_{q} g_{q}=f_{0}=\int_{0}^{\infty} U(r) \frac{\sin \mu r}{\mu r} d_{r} \text { with } \mu=\frac{4 \pi \sin \theta}{\lambda} \\
\text { where } f_{0}=\text { the form factor }=Z-\Delta f_{0}
\end{gathered}
$$

Then the atomic scattering factor, f , becomes

$$
f=\left(f_{1}-\Delta f_{0}\right)+i f_{2}
$$

Firure 6.

Fis:ure 7.

Henke et al.
(Kromers - Kronig)

+ Kissel Parker Praft
(S - Matrix Theory)
Binding energy set at empirical K -edge

Figure 8 .
f_{\perp} - Atomic Scattering Factor for Carbon

Henke et al.
(Kromers - Kronig)

+ Kissel Parker Pratt (S - Matrix Theory)

Binding energy set at empirical K-edge

Fisure 9.

f_{1} - Atomic Scattering Factor for Carbon

Henke et al.
(Kramers - Kronig)

- Kissel Parker Pratt
(S - Matrix Theory)

Binding energy set at empirical K-edge
Figure 10.
Atomic

_-..--E Ederer (I964)
Rabe et al. (I974)
Figure 11.

NBS Comparisons of μ-Values for Gold
(NBSIR 80-3431-1986 Saloman and Hubbell)

Figure 12.

The Atomic Scattering Factor, $\mathrm{fl}+\mathrm{i} * \mathrm{f} 2$, for 94 Elements and for the 100 to $10,000 \mathrm{eV}$ Photon Energy Region (*)

B. L. Henke, H. T. Yamada, and J. Y. Uejio

Center For X-Ray Optics, Lawrence Berkeley Laboratory

Abstract

In a recent work (1), a "state of the art" evaluation and fitting of the best available experimental and theoretical photoabsorption cross sections has been presented for the 30 to $10,000 \mathrm{eV}$ region. Using the quantum dispersion relations, the atomic scattering factors were uniquely determined from the photoabsorption cross section data for the low-energy x-rays. In Ref. 1 , the original data were given at fifty laboratory wavelengths along with compilation references and a description of the fitting procedures. Presented here are the fl and f 2 values which have been interpolated at regular intervals. The tables of the fl value have been extended from 2 keV to 10 keV by Auerbach et al. (2) who have applied the numerical integration procedures and the higher energy photoabsorption compilation as described in ref. 1. For these shorter wavelengths, it is very important to use the atomic form factor correction, as desribed below.

As discussed recently by Henke $(3,4)$, the $f 1$ and $f 2$ parameters may be applied to calculate the low-energy x-ray interactions-absorption, scattering, specular and Bragg reflection.

The corresponding value for the photoabsorption cross section is related to f2 by $E \star m u(E)=K \star f 2$. (The data file contains K values.) For $E * m u(E)$ in eV-barns/atom units, K is equal to $6.987 E+07$ for all atoms.

For the shorter wavelengths and for the larger angles of scattering, the accuracy of these atomic scattering factors might be improved by the inclusion of two small correction terms for relativistic and charge distribution effects. Such corrections can become of relative importance when the magnitude of the scattering factor has been appreciably reduced by anomalous dispersion. As is discussed in Refs. 1 and 3 , the modified scattering factor becomes simply $\mathrm{f}=\mathrm{f} 1$ - delta f sub r - delta $\mathrm{f} 0+\mathrm{i} \times \mathrm{f} 2$, where the relativistic correction, delta f sub r, is equal to $(5 / 3) * A B S(E(t o t)) /\left(m^{*} c * * 2\right)$, which has been tabulated by Cromer and Liberman (5) for $\mathrm{Z}=3$ to $\mathrm{Z}=98$; and the charge distribution correction, delta f0 is equal to (Z - 0), where $f 0$ is the atomic form factor which recently has been tabulated as a function of (\sin (theta)/lambda) by Hubbell and Overbo (6). (note that theta(Hubbell) = 2*theta(Henke).) For (sin(theta)/lambda) less than or equal to $.05 A * *-1$, f0 is approximately equal to Z, and for ($\sin ($ theta) $/$ lambda) approximately equal to $0.1 A * *-1$, f0 is approximately $0.9 * Z$ for most elements. An estimate of the value for the relativistic correction, delta i sub r, may be given by $(1,3)$ delta f sub r=5/3*(E(tot)/m*c**2) $$
=2.19 \mathrm{E}-06 * Z * * 3+1.03 \mathrm{E}-04 * 2 * * 2
$$

The data are presented here at 285 values of photon energy, $E(e V)$. The scattering factor data are stored as REAL*4 values in an unformatted FORTRAN direct access file called "F12C.DAT" which contains 570 records, each 95 double words (one double word is 4 bytes) long. If data for the element with atomic number Z is desired, then the first ninety-five fl values are located
in record $6 Z+1$, the second ninety-five are located in record $6 Z+2$, and the remaining ninety five are located in record $62+3$; f2 data are similarly found in records $6 Z+4,6 Z+5$, and $6 Z+6$. The energies associated with the $f 1$ and $f 2$ values are located in the first three records of the file (stored as REAL*4 values)

The following useful quantities are contained in a second direct access file "INDEX.DAT":

```
1. atomic number of element (INTEGER*2)
2. chemical symbol of element (INTEGER*2)
3. atomic weight (REAL*4)
4. K (energy*mu/f2 in eV*cm**2/gram) (REAL*4)
5. mu(barns/atom)/mu(cm**2/gram) (REAL*4)
```

Where the record number is the same as the atomic number.

The data is divided between records in such an unusual fashion because certain file transfer utilities place a limit on the record size. For an RT-11 system or if the file transfer routine permits records that are 2280 bytes long, the file may be treated as 95 records that are all 570 double words long. In this case, the energies are found in record 1 ; for atomic number Z, the $f 1$ values are found in record $Z+1$, followed by the $f 2$ values. found in record $2 * 2+1$.

The file "Fl2SUB.FOR" contains two subroutines that the user may find useful. The file "F12RT.FOR" contains the same subroutines as "Fl2SUB.FOR", but in a format that more convenient for RT-11 system (see the preceeding paragraph). "INTRAC.FOR" contains a program that will print a table of fl and f2 values for a given element. For more details, see the program listings.

The RSX-11 and VMS operating systems require input files to be in the FILES-11 format. Hence it is necessary to convert the files on the library data floppy disk to this format as they are read in on a RXO2 floppy disk device. The file transfer utility FLX is used. This utility is described at length in the RSX-11 and VAX/VMS reference manuals so only the appropriate commands will be described here. After starting FLX you will be prompted for a command with the letters FLX>. For the example it is assumed that the floppy is mounted on device DY1: and the files will be read in onto the user's disk. After allocating and mounting the disk use the following commands: FLX $>$ DY1:/RT/LI> This will list the files on the disk. Except for F12C.DAT, and INDEX.DAT all files are formatted ASCII. Let NAME.TXT be a sample ASCII file name, then each ASCII file is read in with the command:
FLX \triangle DYI: NAME. TXT/RT. The data library file is read in with the the command: FLX>-DY1:F12C.DAT/RT/IM:380. (Note the decimal point in 380. Absolutely mandatory). Similarly, FLX \rightarrow DY1:INDEX.DAT/RT/IM:16. will read "INDEX.DAT".

Please note: These photoabsorption data and the associated derived (Kramers-Kronig) atomic scattering factors are for free neutral atoms. Nevertheless, for photon interactions at energies sufficiently outside the absorption threshold regions, condensed matter can be modeled as a collection of free atoms and these atomic data may be applied to predict condensed matter absorption and scattering. In the threshold regions, however, these processes may be strongly affected, for example, by the chemical or solid state and their description must then be by direct experimental measurement upon specific systems (typically using synchrotron radiation sources). Accordingly, we have been able to accurately fit experimentally measured, low energy x-ray small angle reflection from optically smooth surfaces of many materials using the Fresnel relation and optical constants derived from these free atom scattering factors.except at photon energies near thresholds.

Finally, we remind the user that these tables are based upon "state of the art" compilations of experimental/theoretical photoabsorption data (to 1982). To improve their accuracy, considerably more experimental photoabsorption data is needed. The authors would like to strongly urge all user groups who can carry out photoabsorption measurements to devote some of their effort to meet this important need.
(*) The data on this disk are taken from the Monterey Conference Proceedings appendix (see references 3 and 4) ; however, the fl-f2 data as originally presented in the Monterey Conference Proceedings have been re-evaluated and some small improvements in the fittings have been included here in the photon energy region below about 300 eV for 26 elements as based, in part, upon newly acquired photoabsorption data. The data are identical with the data in the report "On the Prediction and Application of Low Energy X-ray Interactions" (unpublished).
(1) "Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection," B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro and B. K. Fujikawa, Atomic Data and Nuclear Data Tables Vol. 27, (1982).
(2) The calculations for fl have been extended into the 2000-10,1000 eV region at the Lawrence Livermore National Laboratory-see UCRL Report No. 91230 by J. M. Auerbach and K. G. Tirsell.
(3) "Low Energy X-Ray Interactions: Photoionization, Scattering, Specular and Bragg Reflection," B. L. Henke, AIP Conference Proceedings No. 75, Low Energy X-Ray Diagnostics-1981, Monterey (American Institute of Physics, New York, 1981).
(4) "Low Energy X-ray Spectroscopy with Crystals and Multilayers," B. L. Henke, AIP Conference Proceedings No. 75, Low Energy X-Ray Diagnostics-1981, Monterey (American Institute of Physics, New York, 1981).
(5) D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).
(6) J. H. Hubbell and I. Overbo, J. Phys. Chem. Ref. Data 8, 69 (1979).

An Eight-inch, Flexible, Data Disk for the Mass Absorption Coefficients of 94 Elements for the 30 to $10,000 \mathrm{eV}$ Photon Energy Region

B. L. Henke, H. T. Yamada, and J. Y. Uejio

Center for X-ray Optics
Lawrence Berkeley Laboratory
Berkeley, California 94720

These data are presented at 288 uniformly spaced values of photon energy, $E(e V)$, in three logarithmically spaced regions: 40 points between 30 and 100 eV (E1); 124 points between 100 and $2,000 \mathrm{eV}$ (E2); and 124 points between 2,000 and $10,000 \mathrm{eV}$ (E3). [1] The energy intervals are calculated using the following formulae:

$$
\begin{aligned}
& E 1=\operatorname{INT}\left(30 \times 10^{\wedge}(N * \operatorname{LOG} 10(100 / 30) / 40)\right. \\
& E 2=\operatorname{INT}\left(100 \times 10^{\wedge}(N \times \operatorname{LOG} 10(2000 / 100) / 124)\right. \\
& E 3=\operatorname{INT}\left(2000 * 10^{\wedge}(N \times \operatorname{LOG} 10(10000 / 2000) / 124)\right.
\end{aligned}
$$

Where N is the index for the point number.

The mass absorption coefficients are stored as REAL*4 values in an unformatted FORTRAN direct access file called "EMU.DAT" which contains 97 records, each 288 double words (4 bytes) long. (In BASIC, the file is dimensioned $(96,287)$.) The element names are located in the first record, the atomic weights in the second record, the energies in the third record, and the mass absorption coefficients for the 94 elements in records four thru 97.

Also on the disk are two sample FORTRAN programs ELENMU.FOR and MOLEMU.FOR and cheir executable *.SAV versions. ELENMU.FOR lists the energy and mass absorption coefficients for an element MOLEMU. FOR creates a new file or lists an existing file of mass absorption coefficients for a given molecule. The created file contains 2 records each 288 double words long. Further descriptions of these programs can be found in their respective listings.

NOTE: The FORTRAN programs ELENMU.FOR and MOLEMU.FOR are written in FORTRAN IV for the PDP-11 system.

Please note: These photoabsorption data and the associated derived (Kramers-Kronig) atomic scattering factors are for free neutral atoms. Nevertheless, for photon interactions at energies sufficiently outside the absorption threshold regions, condensed matter can be modeled as a collection of free atoms and these atomic data may be applied to predict condensed matter absorption and scattering. In the threshold regions, however, these processes may be strongly affected, for example, by the chemical or solid state and their description must then be by direct experimental measurement upon specific systems (typically using synchrotron radiation sources). Accordingly, we have been able to accurately fit
experimentally measured, low energy x-ray small angle reflection from optically smooth surfaces of many materials using the fresnel relation and optical constants derived from these free atom scattering factors.except at photon energies near thresholds.

Finally, we remind the user that these tables are based upon "state of the art" compilations of experimental/theoretical photoabsorption data (to 1982). To improve their accuracy, considerably more experimental photoabsorption data is needed. The authors would like to strongly urge all user groups who can carry out photoabsorption measurements to devote some of their effort to meet this important need.
[1] This finely spaced data is equivalent to that found in "LowEnergy X-Ray Interaction Coefficients: Photo-Absorption, Scattering, and Reflection", B. L. Henke, F. Lee, T. J. Tanaka, R. L. Shimabukuro and B. K. Fujikawa, Atomic Data and Nuclear Data Tables, Vol. 27 (January 1982).

APPENDIX 3

LISTING OF REPORTS AND PUBLICATIONS FOR THIS :'YOGRAM ON LOW ENERGY X-RAY PHYSICS AND TECHNOLOGY

ipperadix 3
 RESEARCH PUBI.ICATION BY B.L. HENKE AND CO-WORKERS ON THIS RESEARCH PROGRAM

1. "Low Angle X-Ray Diffraction with Long Wavelengths," Phys. Rev. 89, 1300 (March 15, 1953).
2. "Diffraction of Long Wavelengths X-Rays," Special Technical Report No. 2! , Office of Naval Research; Special Technical Report No. 3. 1-104, Atomic Energy Commission (June 1953).
3. "Submicroscopic Structure Determination by Long Wavelength X-Ray Diffraction," J. Appl. Phys. 26, (1955) (w/ Jesse W. M. DuMond), 903-917.
4. "Slide Rule for Radiographic Analysis," Rev. Sci. Instr. 27, (1956) (w/ Bruno Lundberg), 1043-1045.
5. "Conditions for Optimum Visual and Photometric 'Contrast' in Microradiograms," X-Ray Microscopy and Microradiography (Academic Press, New York, 1957) (w/ B. Lundberg and A. Engstrom), 240-248.

6 a. "Monochromatic Sources of Ultrasoft X-Radiations for Quantitative Microradiographic Analysis," X-Ray Microscopy and Microradiography (Academic Press, New York, 1957), 71-88.
and
b. "High Resolution Contact Microradiography with Ultrasoft Polychromatic X-Rays," X-Ray Microscopy and Microradiography (Academic Press, New York, 1957) (w/ A. Engstrom, R. C. Greulich and B. Lundberg) 218-233.
7. "Semiempirical Determination of Mass Absorption Coefficients for the 5 to 50 Angstrom X-Ray Region," J. Appl. Phys. 28 (1957) (w/R. White and B. Lundberg), 98-105.
8. "Ultrasoft X-Ray Physics and Applications," Summary Technical Report No. 1, AFOSR TN-57-436, ASTIA Document No. AD 136 426, 1-15.
9. "High Resolution Microradiography," Technical Report No. 2, AFOSR TN-58-803, 1-64.
10. "Ultrasoft X-Ray Interaction Coefficients," Technical Report No. 3. AFOSR TN-59-895, August 1959.
11. "X-Ray Microscopy," Technical Report No. 4, AFOSR AF 49 (638)-394, File No. 1-1-20 and The Encyclopedia of Microscopy, George L. Clark. Ed. (Reinhold Publishing, New York, 1961), Vol. 4.
12. "Measurement in the 10 to 100 Angstrom X-Ray Region," Advances in X-Ray Analysis (Plenum, New York, 1961), Vol. 4, 244-279.
13. "Microanalysis with Ultrasoft X-Radiations," Technical Report No. 6, AFOSR AF 49(638)-394, 1961.
14. "Ultrasoft X-Ray Analysis of Micron Systems," Norelco Reporter IV, 82, 1-16, (1957).
15. "Ultrasoft X-Ray Interaction Coefficients," Proceedings, 2nd International Symposium on X-Ray Microscopy and Microanalysis (Elsevier Publishing, Netherlands, 1960) (w/ Jack C. Miller).
16. a. "Projection X-Ray Microscopy at Pomona College," Norelco Reporter, VII, 137 (1960).
b. "Isolation of Selected Elements with an Electron Microscope," Norelco Reporter, VII (1961).
17. "Microstructure, Mass and Chemical Analysis with 8 to 44 Angstrom XRadiation," Proceedings, 7th Annual Conference on Industrial Applications of X-Ray Analysis, 117-155, University of Denver, 1958.
18. "Microanalysis with Ultrasoft X-Radiations," Advances in X-Ray Analysis, (Plenum, New York, 1962), Vol. 5, 285-305.
19. "Small Energy Losses of Electrons in Solids; Design of a Low Energy Electron Spectrometer," (informal notes, 1960, i-xviii) (w/ Charles Greenhall).
20. "Production, Detection and Application of Ultrasoft X-Rays," X-Ray Optics and X-Ray Microanalysis (Academic, New York, 1963).
21. "Sodium and Magnesium Fluorescence Analysis--Part I: Method: Advances in X-Ray Analysis (Plenum, New York, 1963), Vol. 6, 361-376.
22. "Surface Analysis by Soft X-Ray Excitation of Auger and Photoelectrons," (technical notes, 1963, 1-4) (w/ J. Merritt).
23. "X-Ray Fluorescence Analysis for Sodium, Fluorine, Oxygen, Nitrogen, Carbon and Boron," Advances in X-Ray Analysis (Plenum, New York, 1964). Vol. 7, 460-488.
24. "Oxygen Determinations in Silicates and Total Major Elemental Analysis of Rocks by Soft X-Ray Spectrometry," Analyt. Chem. O? (1965) (w/ A. K. Baird), 727-729.
25. "Some Notes on Ultrasoft X-Ray Fluorescence Analysis--10 to 100 Angstrom Region," Advances in X-Ray Analysis (Plenum, New York, 1965), Vol. 8, 269-284.
26. "Spectroscopy in the 15 to 150 Angstrom Ultrasoft X-Ray Region," 4th International Symposium on X-Ray Microscopy and X-Ray Microanalysis, Orsay, France, Optique des Rays X et Microanalyse, R. Castaing, F. Deschamps and J. Philibert, Eds. (Editions Scientifiques Hermann, Paris, 1966), 440-453.
27. "Valence Electron Band Analysis by Ultrasoft X-Ray Fluorescence Spectroscopy," J. Appl. Phys. 37, 922, (1966) (w/ Eric N. Smith), 1-2.
28. "Application of Multilayer Analyzers to 15 to 150 Angstrom Fluorescence Spectroscopy for Chemical and Valence Band Analysis," Advances in X-Ray Analysis (Plenum, New York, 1966), Vol. 9, 430-440.
29. "Design Notes on an Intermediate Resolution Experiment for the Measurement of the Ultrasoft X-Radiations of the Solar Corona," Technical Report No. 7, 1-413, AFOSR 66-2446 (September 1966).
30. "X-Ray Absorption in the 2 to 200 A Region," Technical Report, AFOSR 67-1254 (June 1967), (w/ R. L. Elgin, R. E. Lent and R. B. Ledingham).
31. "Techniques of Low Energy X-Ray and Electron Physics--50 to 1000 eV Region," Proceedings of the 2nd Symposium of Low Energy X - and Gamma Ray Sources and Applications, 522-556, Austin, Texas, March 1967.
32. "Techniques of Low Energy X-Ray and Electron Physics--50 to 1000 eV Region," Norelco Reporter, XIV, No. 3-4, (1967) (w/ R. L. Elgin, R. E. Lent and R. B. Ledingham).
33. "X-Ray Absorption in the 2 to 200 A Region," Norelco Reporter, XIV, No. 3-4, 75-83, (1967).
34. "Some Recent Work in Low Energy X-Ray and Electron Analysis," Advances in X-Ray Analysis (Plenum, New York, 1969), Vol. 12, (w/ R. E. Lent), 480-495.
35. "An Introduction to Low Energy X-Ray and Electron Analysis," Advances in X-Ray Analysis (Plenum, New York, 1970), Vol. 13. 1-25.
36. "X-Ray Absorption Tables for the 2 to 200 A Region," Advances in X-Ray Analysis (Plenum, New York, 1970), Vol. 13, 639-665.
37. Advances in X-Ray Analysis, Vol. 13, a special volume on low energy x-ray and electron analysis, edited by Burton L. Henke, John B. Newkirk and Gavin R. Mallett (Plenum, New York, 1970).
38. "Measurement of Primary Electron Interaction Coefficients (500 to 1500 eV Region," Colloque International du C.N.R.S., Processus Electroniques Simples et Multiples du Domaine X et X-UV (Paris, September 1970), Le Journal de Physique, Colloque C4, Suppl. 10, Vol. 32, October 1971, 115-123.
39. "Surface Characterization by Low Energy Photoelectron Spectroscopy," Proceedings of the 6th Inteinational Congress on X-Ray Optics and Microanalysis (Osaka, Japan, September 1971), 367-384.
40. "The Measurement of Inner Shell Ionization Cross Sections for the 100-1000 eV Region as Involved with X-Ray Electron Interactions within Solids," Proceedings of International Conference on Inner Shell Ionization Phenomena (Atlanta, Georgia, April 1972), 1-75, published as Inner Shell Ionization Phenomena and Future Applications, edited by R. W. Fink et al. (Technical Information Division of the U.S. Atomic Energy Commission, Oak Ridge, Tennessen, 1973).
41. "Ultrasoft X-Ray Reflection, Refraction and the Production of Photoelectrons (100-1000 eV Region)," Proceedings of Spring Meeting of the American Physical Society (Washington, D.C., April 1972), published in Bulletin of the American Physical Society.
42. "The Measurement of Low Energy Electron and X-Ray Interaction Coefficients for Solids," Proceedings of the 7th National Conference of the Electron Probe Analysis Society of America (San Francisco, July 1972).
43. "Ultrasoft X-Ray Reflection, Refraction and Production of Photo-electrons (100-1000 eV Region)," Physical Review A6, 94-104 (1972).
44. "Electron Interactions within Solids-Electron Spectroscopy" and "Light Element Analysis" Proceedings of the U.S.-Japan Seminar on Fundamentals of Scanning Electron Microscopy (Osaka, Japan, November-December 1972).
45. "Low Ėnergy X-Ray and Electron Absorption within Solids (100-1500 eV Region)," Interim Report, AFOSR 72-2174 (August 1973) (w/ Eric S. Ebisu), 1-65.
46. "Low Energy X-Ray and Electron Absorption within Solids (100-1500 eV Region)," Advances in X-Ray Analysis (Plenum, New York, 1974), Vol. 17, 150-213 (w/ Eric S. Ebisu).
47. 'Ultrasoft X-Ray Bragg and Specular Reflection: The Effects of Anomalous Dispersion," Interim Report, AFOSR 72-2174 (August 1974) (w/ Rupert C. C. Perera and Ronald H. Uno).
48. "Demountable Ultrasoft X-Ray Source," (informal notes, August 1974).
49. "Techniques of Low Energy X-Ray Spectroscopy (0.1 to 2 keV Region)," Advances in X-Ray Analysis (Plenum, New York, 1975) (w/ Murray A. Tester), 76-106.
50. "Techniques of Low Energy X-Ray Spectroscopy (0.1 to 2 keV Region)," Interim Report, AFOSR 75-2762 (November 1974) (w/ Murray A. Tester).
51. "Valence Band Spectroscopy in the Ultrasoft X-Ray Region (50 to 100 A), Advances in X-Ray Analysis (Kendall/Hunt, Dubuque, 1976), Vol. 19 (w/ Kazuo Taniguchi), 627-640.
52. "Parameters for the Calculation of X-Ray Absorption Coefficients for H (1) through Ge (32) in the 100-1500 eV Region," Advances in X-Ray Analysis (Kendall/Hunt, Dubuque, 1976), Vol. 19 (w/ Mark L. Schattenburg) , 749-767.
53. "Quantitative Low Energy X-Ray Spectroscopy (50-100 A Region)," J. Appl. Phys. 47 (1976) (w/ Kazuo Taniguchi), 1027-1037.
54. "Sulfur $L_{\text {II, III }}$ Emission Spectra and Molecular Orbital Studies of Sulfur Compounds," J. Chem, Phys. 64 (1976) (w/ Kazuo Taniguchi), 3021-3035.
55. "X-Ray Calibration Sources for the 100-1000 eV Region," Proceedings of the 1976 ERDA Symposium of X- and Gamma-Ray Sources and Applications (University of Michigan, Ann Arbor, May 1976), 36-39.
56. "Secondary Electron Energy Distributions for Gold as Excited by C-K (277 eV) and Al-K (1487 eV) X-Rays," Appl. Phys. Lett. 29 (1976) (w/ J. A. Smith and D. T. Attwood), 539-541.
57. "0.1 to 10 keV X-Ray-Induced Electron Emissions from Solids-Models and Secondary Electron Measurements," J. Appl. Phys, Lett, 29 (1976) (w/ J. A. Smith and D. T. Attwood), 1852-1866.

S8. "High Efficiency Low-Energy X-Ray Spectroscopy in the $100-500 \mathrm{eV}$ Region," J. Appl. Phys. 49 (1978) (w/ R. C. C. Perera. E. M. Gullikson and M. L. Schate onburg), 480-494.
59. Cl-L II, iri Fluorescent X-Ray Spectra Measurement and Analysis for the Molecular Orbital Structure of $\mathrm{ClO}_{4}, \mathrm{ClO}_{3}$ and $\mathrm{ClO}_{2}, " \mathrm{~J}$. Chem. Phys.68, (1978) (w/ R. C. C. Perera and D. S. Urch), 3692-3704.
60. "Some Recent Studies in Low Energy X-Ray Physics," Proceedings of the 8th International Conference on X-Ray Optics and Microanalysis (Boston, August 1977).
61. "Models and Measurement for the Response of Dielectric X-Ray Photocathodes," Scientific Reports, AFOSR 75-2762-F and DOE (04-3)235-PA15, March 1978.
62. "Low Energy X-Ray Emission Spectroscopy in the $100-500 \mathrm{eV}$ Region: Molecular Orbital Interpretation," (Ph.D. Thesis by R. C. C. Perera) Special Scientific Report, AFOSR 75-2762-F, May 1978.
63. "The Secondary Electron Emission Photocathode Characteristics for Time Resolved X-Ray Spectroscopy," Proceedings of the International Conference on X-Ray and XUV Spectroscopy (Sendai, Japan, August 1978); Jap. J. Appl. Phys. 17, 477-482; Suppl. 17-2, p. 23 (1978) (w/ K. Premaratne).
64. "C-K and Cl-L Emission Spectra and Molecular Orbital Analysis of CCl_{4} " Proceedings of the International Conference on X -Ray and XUV Spectroscopy (Sendai Japan, August 1978) ; Jap. J. Appl. Phys. 17, 112-115; Suppl. 17-2, (1978) (w/ R. C. C. Perera).
65. "A Soft X-Ray Spectrometer for the Study of Plutonium and Plutonium-Based Materials," X-Ray Spectrometry 7 (1978) (w/ P. L. Wallace, W. L. Haugen and E. M. Gullikson), 160-163.
66. "Soft X-Ray Induced Secondary Electron Emission from Semiconductors and Insulators: Models and Measurements," Phys. Rev, B19, (1979) (w/ J. Liesegang and S. D. Smith), 3004-3021.
67. "Low Energy X-Ray Emission Spectra and Molecular Orbital Analysis of $\mathrm{CH}_{4}, \mathrm{CCl}_{4}$ and $\mathrm{CHCl}_{3}, " \mathrm{~J}$. Chem. Phys. 70, (1979) (w/ R. C. C. Perera), 5398-5406.
68. "The Characterization of Photocathodes for Application to Time-Resolved X-Ray Spectroscopy," Technical Piogress Report, AFOSR 79-0027 and DOE DE-AS03-76SF00235, April 1979.
69. "Multilayer X-Ryy Spectrometry in the 20-80 A Region: A Molecular Orbital Analysis of $\mathrm{CO} \& \mathrm{CO}_{2}$ in the Gas and Solid States," X-Ray Spectrometry 9, (1980) (w/ R. C. C. Perera). 81-89.
70. "X-Ray Spectroscopy in the $100 \cdot 1000 \mathrm{eV}$ Region," Nucl. Instrum. Methods 177, (1980), 161-171.
71. "Evaluation of High Efficiency CsI and CuI Photocathodes for Soft X-Ray Diagnostics," Appl. Opt. 19, (w/ E. B. Saloman and J. A. Pearlman), 749-753.
72. "The Characterization of X-Ray Photocathodes in the $0.1-10 \mathrm{keV}$ Photon Energy Region," J. Appl. Phys. (March 1981) (w/ J. P. Knauer and K. Premaratne), 1509-1520.
73. "Low Energy X-Ray Interactions: Photoionization, Scattering, Specular and Bragg Reflection," AIP Conference Proceedings No. 75 on Low Energy X-Ray Diagnostics, Monterey, California (American Institute of Physics, New York, 1981), 146-155, D. T. Attwood and B. L. Henke, Editors.
74. "Low Energy X-Ray Spectroscopy with Crystals and Multilayers," AIP Conference Proceedings No. 75 on Low Energy X-Ray Diagnostics, Monterey, California (American Institute of Physics, New York, 1981), 85-100, D. T. Attwood and B. L. Henke, Editors.
75. "Appendix: The Atomic Scattering Factor, f + if, for 94 Elements and for the 100 to 2000 eV Photon Energy Region," AIP Conference Proceedings No. 75 on Low Energy X-Ray Diagnostics, Monterey, California (American Institute of Physics, New York, 1981) D. T. Attwood and B. L. Henke, Editors (w/ P. Lee, T. J. Tanaka, R. L. Shimabukuro and B. K. Fujikawa).
76. "X-Ray Diffraction in Multilayers," Opt. Commun. 37, Vol. 34, No. 3, 159-164 (1981), (P. Lee).
77. "Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection," Atomic Data and Nuclear Data Tables 27. No. 1, (1982) (w/ P. Lee, T. J. Tanaka, R. L. Shimabukuro and B. K. Fujikawa), 1-143.
78. "The Stability of Cesium Iodide X-Ray Photocathodes," Nucl. Instrum. Methods 207, (1983) (w/ K. Premaratne and E. R. Dietz), 465-467.
79. "Pulsed Plasma Source Spectrometry in the $80-8000 \mathrm{eV}$ X-Ray Region," Rev. Sci. Instrum. 54, (1983) (w/ H. T. Yamada and T. J. Tanaka), 1311-1330.
80. "Low-Energy X-Ray Response of Photographic Films: Part I. Mathematical Models," J. Opt. Soc. America (Dec. 1984) (w/ S. L. Kwok, J. Y. Uejio, H. T. Yamada and G. C. Young), 1-29.
81. "Low-Energy X-Ray Response of Photographic Films: Part II. Experimental Characterization," J. Opt. Soc. America (Dec. 1984) (w/ F. G. Fujiwara, M. A. Tester, C. H. Dittmore and M. A. Palmer), 1-29.
82. "Photon Counting Efficiency with High and Low Density CsI Photocathodes in the 100-10,000 eV Region," (w/ K. S. Tan and P. Y. Maeda), in preparation.
83. "X-Ray Diagnostıcs of Laser Plasmas with a Calibrated Elliptical Analyzer Spectrograph," Doctoral Thesis, University of Hawaii, Tina J. Tanaka, May 1983, 1-124.
84. "A Two-Channel, Elliptical Analyzer Spectrograph for Absolute Time-Resolving/Time-Integrating Spectrometry of Pulsed X-Ray Sources in the 100-10,000 eV Region," Rev. Sci. Instrum., (Aug. 1985) (w/Paul A. Jaanimagi).
85. "Large Aperture Picosecond X-Ray Streak Camera," (w/ P. A. Jaanimagi), submitted to Rev. Sci. Instrum.
86. "Numerical Solution of Poisson's Equation," (w/ P.A. Jaanimagi), submitted to J. Comput. Physics, Nov. 1984.
87. "The Characterization of Multilayer Analyzers - Models and Measurements," (w/ J.Y. Uejio, H.T. Yamada, and R.E. Tackaberry) Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE) 29th Annual International Symposium on Optical and Electro-Optical Engineering, San Diego (August 1985).
88. "An Absolutely Calibrated Time-Resolving X-Ray Spectrometer," (w/ P.A. Jaanimagi) Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE) 29th Annual International Symposium on Optical and Electro-Optical Engineering, San Diego, August 1985.
89. "Characterization of Multilayer X-Ray Analyzers - Models and Measurements," (w/ J.Y. Uejio, H.T. Yamada, and R.E. Tackaberry) Opt. Engin., Vol 25, No. 8 (August 1986), 937-947.
90./91. "Reflectivity Characteristics of Multilayers and Crystal

Analyzers for the 100-10,000 eV X-Ray Region - Theory and Experiment," (w/ H.T. Yamada, J.A. Kerner, J.C. Davis, and A.L. Oren) To be published.
92. "Reflectivity Characteristics of Low-Energy X-Ray Mirror Monochromators," (w/ F. G. Fujiwara, R. E. Tackaberry and D. Kania) to be published.
93. "High Energy X-Ray Response of Photographic Films. Models and Meas'rements," (w/J.Y. Uejio, G.F. Stone, C.H. Dittmore, F.G. Fujiwara) J. Opt. Soc. (August 1996), 818-827.
94. "Design and Characterization for Absolute X-Ray Spectrometry in the 100-10,000 eV Region," Proc. of the 11th International Conference on X-Ray Optics and Microanalysis, University of Western Ontario Press, 1987.
95. "Temporal Dependence of the Mass-Ablation Rate in UV-Laser-Irradiated Spherical Targets," P.A. Jaanimagi (w/J. Delettrez, B.L. Henke, and M.C. Richardson), Phys. Rev. A, Vol. 34, No. 2, (August 1986) 1322-1327.
96. "Time-Resolved X-Ray Diagnostics for High Density Plasma Physics Studies," (w/ M.C. Richardson, G.G. Gregory, R.L. Keck, S.A. Letzring, R.S. Marjoribanks, F.J. Marshall, G. Pien, J.S. Wark, B. Yaakobi, P.D. Goldstone, A. Hauer, G.S. Stradling, F. Ameduri, and P.A. Jaanimagi), Laser Interaction and Related Plasma Phenomena, Vol. 7 (1986), Plenum Publishing Corp., 179-211.
97. "Effect of Laser Illumination Nonuniformity on the Analysis of Time-Resolved X-Ray Measurements in U.V. Spherical Transport Experiments," (w/ P.A. Jaanimagi, J. Delettrez, R. Epstein, and M.C. Richardson) LBL-22935, submitted for publication.

APPENDIX 4

CITATIONS OF PUBLICATIONS ON THIS PROGRAM BY B.L. HENKE, ET AL as listed in the science citation index institute for SCIENTIFIC INFORMATION, INC. (PHILADELPHIA, PENNSYLVANIA) 1980 TO EARLY 1987

1981

1982

1983

1987

CURRICULUM VITAE OF PRINCIPAL INVESTIGATOR

CURRICULUM VITAE

ERIC M. GULLIKSON

EDUCATION:
Ph.D. Physics, 1984
University of California, San Diego
B.S. Physics, Highest Honors, 1977

University of Hawaii
PROFESSIONAL POSITIONS:
May 1987 to Present Staff Scientist Lawrence Berkeley Laboratory

Dec. 1984 to May 1987 Post Doctoral Position AT\&T Bell Laboratories

Sept. 1978 to Dec. 1984 Research Assistant, Department of Physics University of California, San Diego

Sept. 1977 to June 1978 Teaching Assistant, Department of Physics University of California, San Diego

June 1977 to Sept. 1977 Research Associate Lawrence Livermore National Laboatory

June 1975 to June 1977 Research Assistant, Department of Physics University of Hawaii

FIELDS OF STUDY:

Low energy x-ray physics
Positron interactions in condensed matter
ESR and magnetization studies in spin glasses

Research Publications by E.M. Gullikson

(1) B. L. Henke, R. C. C. Perera, E. M. Gullikson, and M. L. Schattenburg. High-Efficiency Low-Energy X-ray Spectroscopy in the $100-500 \mathrm{eV}$ Region. J. Appl. Phys. 49, 480 (1978).
(2) P. L. Wallace, W. L. Haugen, E. M. Gullikson, and B. L Henke. A Soft Xray Spectrometer for the Study of Plutonium and Plutonium-based Materials. X-ray Spectrometry 7, 160 (1978).
(3) S. Schultz, E. M. Gullikson, D. R. Fredkin, and M. Tovar. Simultaneous ESR and Magnetization Measurements Characterizing the Spin-Glass State. Phys. Rev. Lett. 45, 1508 (1980).
(4) S. Schultz, E. M. Gullikson, D. R. Fredkin, and Mi. Tovar. Characterization of the Spin-Glass State via ESR. Proceedings of Bariloche 80, Condensed Matter Workshop, 15-20 Dec. 1980, pp. 296-306.
(5) S. Schultz, E. M. Gullikson, D. R. Fredkin, and M. Tovar. Simultaneous ESR and Magnetization Measurements Characterizing the Spin-Glass State. Proceedings of the 26th Annual Conference on Magnetism and Magnetic Materials, Dallas, Texas; 11-14 Nov. 1980. J. Appl. Phys. 52, 1776 (1981).
(6) E. M. Gullikson, S. Schultz, and D. R. Fredkin. ESR Determination of the Anisotropy Energy in the Spin-Glass CuMn. Abstract KF 16, APS Meeting in Phoenix, Arizona; 16-20 Mar. 1981. Bull. Am. Phys. Soc. 26, 440 (1981).
(7) E. M. Gullikson, and S. Schultz. Calorimetric Determination of the Magnetization in a Spin-Glass. Phys. Rev. Lett. 49, 238 (1982).
(8) E. M. Gullikson, S. Schultz, and D. R. Fredkin. The Frequency Dependence of the Anisotropy Energy in the Spin-Glass CuMn. Abstract KL 6, APS Meeting in Dallas, Texas; 8-12 Mar. 1982. Bull. Am. Phys. Soc. 27, 383 (1982).
(9) E. M. Gullikson, D. R. Fredkin, and S. Schultz. Experimental Demonstration of the Existence and Subsequent Breakdown of Triad Dynamics in the Spin-Glass CuMn. Phys. Rev. Lett. 50, 537 (1983).
(10) E. M. Gullikson, S. Schultz, and D. R. Fredkin. Observation of Triad Dynamics in the Spin-Glass CuMn. Abstract HP 2, APS Meeting in Los Angeles, CA; 21-25 Mar. 1983. Bull. Am. Phys. Soc. 28, 468 (1983).
(11) S. Schultz and E. M. Gullikson. Measurement of Static Magnetization using Electron Spin Resonance. Rev. Sci. Instrum. 54, 1383 (1983).
(12) E. M. Gullikson, R. Dalichaouch and S. Schultz. Direct Observation of the Triad Longitudinal Mode in a Spin-Glass. Phys. Rev. B 32, 507 (1985).
(13) E. M. Gullikson, A. P. Mills, Jr., W. S. Crane, and B. L. Brown. Absence of Energy Loss in Positron Emission from Metal Surfaces. Phys. Rev. B 32, 5484 (1985).
(14) A. P. Mills, Jr., E. M. Gullikson, L. Pfeiffer, and W. S. Rockward. Mobility of Positrons in Polyethylene. Phys. Rev. B 33, 7798 (1986).
(15) P. J. Schultz, E. M. Gullikson, and A. P. Mills, Jr. Transmitted Positron Reemission from a thin Single-Crystal Ni(100) Foil. Phys. Rev. B 34, 442 (1986).
(16) E. M. Gullikson, and A. P. Mills, Jr. Positron Dynamics in Rare Gas Solids. Phys. Rev. Lett. 57, 376 (1986).
(17) A. P. Mills, Jr., and E. M. Gullikson. Solid Ne Moderator for Producing Slow Positrons. Appl. Phys. Lett. 49, 1121 (1986).
(18) E. M. Gullikson. Interaction of Positrons with Rare Gas Solids. Invited Paper QO1, APS Meeting in New York, NY; 16-20 Mar. 1987. Bull. Am. Phys. Soc. 32, 898 (1987).
(19) E. M. Gullikson and A. P. Mills, Jr. Positron Deformation Potential and the Temperature Dependence of the Electron and Positron Work Functions. accepted for publication in Phys. Rev. B.
(20) E. M. Gullikson. Hot Electron Diffusion Length in Rare Gas Solid Photocathodes. in preparation.

[^0]:

 - For Brace angle. C. equal to 45°

[^1]: ${ }^{2}$ University of Rochester, Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623.
 'B. L. Henke, H. T. Yamada, and T. J. Tanaka, Rev. Sci. Instrum. 54, 1311 (1983).
 ${ }^{2}$ B. L. Henke, N. S. Balakrishnan, and A. R. Bird, Multilayer Analyzers for Low-Energy X-Ray Spectroscopy (100-500 eV): Part II. Construction and Charccterization (in preparation).
 ${ }^{3}$ B. L. Henke, Low Energy X-Ray Interactions: Photoionization, Scattering, Specular and Bragg Reflection, AIP Conference Proceedings No. 75, edited by D. T. Attwood and B. L. Henke (American Institute of Physics, New York, 1981), 85.
 ${ }^{4}$ B. L. Henke, P. Lee. T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, Atomic Dato and Nuclear Data Tables 27 (Academic, New York, 1982),

[^2]: Invited Paper XR-I04 received Dec. I. 1985; revised manuxiript received March 19. 1486; accepled for publication March 19. I98h: receried by Managing Editor March 21. 1986. This paper is a revision of Paper 561.30 which was presented at the SPIE conference on Applications of Thin-Film Multila yered Siructures to Figured X-Ray Oplics. Aug. 20-22. 19xs. San Diega. Calif. The paper presented there appears(unrefereed) in SPIE I'roceedings Vol. S63

 - 1 1026 Society of Photo-Opital Instrumentation E:nginecrs

[^3]: -I.SM $83-021$ constructed by T. Barbee for the P-I4 X-Ray Diagnosics Group. Los Alamos National Laboratory. LANL.Pl4 have also kindly loaned to us for this evaluation a W-C multilayer of the same d-spacing. mOVLA 0\%OB-2. consitucted by Energy Conversion Devices Inc. These multilayers have ensentually the same reflectivity characteristics.

[^4]: ＊Pb－Str（6－5－85 F3）constructed in this laborators（we Refs． 11 and 19）．

[^5]: - In omir notation in this Lable. a number folhowed by a apere and another number indicates that the firat number is tu be multiplied by io raised to the poimef of the woind number ec. $949-01$ means 489×10^{-1}
 - $\mathrm{Hr} \mathrm{M}_{4}$ der
 - KKiede
 - N.K. Ad M4, edper
 - OK edre
 ${ }^{\prime} \mathrm{Hrlis}$ edge

[^6]: - In our notation in this table, a number followed by a space and another number indicatea that the first number us to be multiplied by 10 raised w the power of the second number; et. $942-01$ means 942×10^{-1}.
 - Br-M4edse.
 c C.Kedse
 - N.K. As Mes edres
 - O.K edge
 / Br L. 1.2 edge

[^7]: - In our motation in this table. a number followed by a spece and another number indicates that the firat number is multiplied by IU rased to the power of the secund number. ea. 178 it means $17 \mathrm{im} \times \mathrm{l}$
 - Hr.M. edice
 - C'K edse
 - N.K. Ae M4 ${ }^{\text {s edres }}$
 - OK edre.
 ' Hi lniedie

[^8]: - In our notation in this table. a number followed bv a space and a nother number indicates that the first number we to be multiplised by 10 rased w the perwet of the second number, eg . $32-01$ means 8.22×10^{-1}
 ${ }^{-} \mathrm{Hr}_{\mathrm{C}} \mathrm{M}_{4}$ edge
 C'Kedge
 ${ }^{4}$ NK. $\mathrm{Ag} \cdot \mathrm{M}_{4}$ s edzes
 - UK Kdge
 ${ }_{t}$ Hr In,2 edre

[^9]: - μ_{0} (gelatin) for $\mu=141 \mathrm{~g} / \mathrm{cm}^{\prime} \mu_{1}\left(\mathrm{~A}_{\mathrm{g}} \mathrm{H}_{\mathrm{r}}\right)$ for $\mu=6.47 \mathrm{~g} / \mathrm{cm}^{3}$ The notation $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{10} \mathrm{O}_{5} \mathrm{~N}_{2}$ is for gelatin.
 - In our nutation in this table, a number followed by a space and another number indicates that the first number is tube multiplied by 10 raised to the power of the second number, ek. $294-111$ means 2.94×10^{-1}
 - Br-M4 edge
 - C.K edge
 - N.K. AR.M4, ediges

 IO.K edge.

 - Br. $L_{3.2}$ edze
 *Ag.L. 3.2 edge.

[^10]: For large angle periodic-plane diffraction:
 where S_{0} / T_{0} is Darwin-Prins for $N=\infty$
 and $x=f\left(m, \theta, F_{1}, F_{2}\right)$

