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Navier-stokes cquations and the two-equation turbulence model
(for the turbulence kinetic enerygy k and its rate of dissipation
€), the numerical simulation of the Stanford mixing layer became

of interest.

Our computational investigations have becen examining tur-
bulent recirculating flowfields characteristic of the CBCC (see,
.., Krishnamurthy, et al.3) by means of the TEACH10 code which
involves elliptic flowfields. The mixing-layer development,
however, is an example of an evolving flow (without flow recir-
culation) which is governed by parabolic equations. Strictly
speaking, a numerical modeling based upon an elliptic formulation
i35 ot necessary to address the mixing-layer problem. Although
the experimentatl configuration19 does not involve recirculating
flow, 1t does represent a confined flowfield, for which the TEACH
procedure 1s appropriate. The availability of comprehensive data
tron the Stanford mixing layer, therefore, constitutes a useful
means of model validation.,

(2) Experimental Details

As scen schematically in Figure 1, the Stanford mixing-layer
oxperiment involves a flow facility which consists of a
4-cm-high, 10-cm-wide and 20-cm-long test section. Upstream of
the test section is a well-designed two-dimensional contraction
tn which is located a splitter plate, midway between the con-
fining walls at the top and bottom. A mixing layer is formed
downstrean of the trailing edge of the splitter plate, with un-

2 qual vaelocities in the initially separate upper and lower
streams, Nitrogen is the carrier gas in both streams flowing
continunusly at free stream velocities of up to 20 m/s. Reacting
flow experiments have employed dilute concentrations of NO in one
stream and 03/03 in the other. The hot-wire anemometry
neasureaents of present interest were made in nonreacting flows
in rhe x-z plane located midway along the width of the test
scction (500 Fugare 1), The available data corvespond to initial

voelocities of 6 m/s in the upper and 3 m/s in the > wer streams.
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SECTION II
REYNOLDS-AVERAGED COMPUTATIONS

This section deals with the numerical modeling of isothermal
turbulent flowfields through the framework of Reynolds-averaged
Navier-Stokes equations, Included are: the predictive results
of the two-dimensional mixing layer and a comparison of these
with the experimental data; the numerical modeling of the CBCC
flowfields; and a description of the predictions of the

vortex-center characteristics in the CBCC.
l. CONFINED TWO-DIMENSIONAL MIXING LAYER

Th2 numerical simulation of the Stanford mixing-layer

experiment!l? s described below.
a. Introduction

The plane turbulent mixinyg layer formed downstream of a
splitter plate separating two uniform and initially parallel
streams represents one of the simplest and wost extensively
studied flows. The most basic flowfield in this configuration is
the classic mixing layer arising from two streams of unequal
v:locities but of the same species. Apart from 1its intrinsic
interest, such a mixing layer is often adopted in experimental
studiezs of turbulent mixing in nonreacting and reacting flows.
The reaent absorption measurement!? of a conserved scalar in a
reacting tlow under Fast chemistry (due to two initially unmixed
reactants of trace concentration present in inert carrier

straams) 15 a good example.
(1) Background

Extensive hot-wirz2 anemometry data of the mean and tluc-
tuating velocity components in nonrcacting flows (when one or
Doth of the reactant species are absont) were available from the
Stanford iniversity experiment.l?  In view of our Hngoing

Flowti2ld computations employing rhe Reynoids-averaged

PP U SO
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behavior of the CBCC. However, within the scope of the present

program, that investigation was not made. Instead, attention was
focused on the influence of boundary conditions, numerical para-
meters, and computational grid on the CBCC flowfield predictions

when only the annular stream is present.

4. OUTLINE OF REPORT

The Reynolds-averaged computations of the CBCC flowfields are
reported in Section II. Section III first discusses briefly the
preliminary results of the time-dependent calculations which led
to the shedding-like behavior and then reports the results of the
comprehensive examination of the unsteady-flow modeling. The
conclusions of the present modeling research program and the
reccamendations in light of these conclusions are outlined in

Section 1V.
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Dynamics Laboratory (AFWAL/FIMM) vectorized, compressible,
time-dependent code. Since the ability of the time-dependent
calculations to provide physically acceptable solutions of the
CBCC flowfield depended on the successful implementation of the
boundary conditions appropriate to the modeling of confined,
subsonic tlowfields, this subject formed the main aspect of the
research. The examination of the boundary conditions and of the
question of acoustic interactions from the exit-plane boundary
was to be made for two simpler flow situations of the CBCC.
These corresponded to the CBCC with only the annular flow and
with only the central jet. Successful implementation of the
necessary boundary conditions to establish the dynamic behavior
in the two cases was to be followed by the numerical investi-

gation of the CBCC with both annular and central flows present.

The actual scope ob ihe unsteady-flow modeling research,
however, entailed a comprehensive examination of the influence of
the inflow and outfliow houndary conditions on the existence of
the bluftf-body vortex shedding or the .ack thereof. This is easy
to see. In the AFWAL/POSF experiments on the CBCC, there is at
present no reason to suspect that the initial and boundary con-
ditions are time depandent. The interior ftlowfield, however,
does exhiblt certain time-dependent features. TIndeed the prelim-
inary computations with the AFWAL/FIMM code appeared to indicate
that the solution of rthe time-dependent governing equations pro-
duced a kKime-depondent flowfield in the UBCC interior. That such
a situarion may not he unique became apparent when under certain
boundary condirions the btime-dependent equations failed to
gJenarate a time-dopendoent solution in the interior and, in fact,
the ftemporal bhehavior was damped out after several time steps.

Of course, such a situation is common when the physical problem
possaesses a steady solution and often the time-dependent for-
mulation is emplonyed to yield the steady solution asymptotically
for large times. It became .important, therefore, to ascertain
whether such was the cas. with the CRCC flowfiold. in this con-
text, a computationnal investigation involving ti ~dependent

boundary conditions would have been helpful oo owucidate the
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flowfield. Other potential contributors of perhaps minor
significance were thought to be the large-scale structures in
the boundary layers of the confining duct and the centerbody

surface, and the duct acoustics.

Irrespective of the source of the unsteadiness, its presence
in itself r-ised important questions with respect to the
numerical modeling. For example, 1is the CBCC flowfield
inherently unsteady? If so, how relevant and useful is the
prediction based on Reynolds-averaged formulation? To the extent
that the latter appeared to show reasonable agreement with the
time-averaged measurements, how would these compare with the
results from the time averaging of the time-dependent solutions?
The unsteady flow modeling with the aid of time-dependent
Navier-Stokes equations was expected to provide answers to at

least some of these (questions.

3. SCOPE OF PRESENT WORK

The work reported here deals with the time-averaged and
time-dependent calculations of the isothermal flowfields in the
CBCC. The former involved the AFWAL/PORT version of the TEACH
program and the modifications implemented during this research.
The investigations examined the large- and small-scale CBCC's and
compared the predictions with the experimental data. 1In addition
to the centerline (axial) distributions and the radial distrib-
tions (at various axial locations) of the mean and fluctuating
fields, the computations addressed the characteristics of the
vortex centers. Also, the Reynolds-averaged calculations
examined the two-dimensional, mixing-layer experiment at
Stanford University. While this configuration is not directly
relevant to the CBCC flowfields, this numerical simulation served
to test several modeling aspects. No computational investigation
with the improved TEACH code recently available to the Air
Forcel® was made within the scope of this progran.

The time-dependent computations involved the axisymmetric

version of the Air Force Wright Aeronautical Laboratories, Flight
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be adequately described and understood in terms of a time-mean
flow." The implications of Richardson's suggestion, that the
predictions must be based on an unsteady-flow model for com-
l parison with and interpretation of experimental data in the near-
) wake region, were discussed earlierl? for the CBCC flowfields.
No time-dependent predictions of the CBCC were available,
however, for an examination of the validity of the Reynolds-

i ’ averaged predictions of the flowfield.

2. OBJECTIVES

. Accordingly, the numerical modeling of the centerbody
combustor flowfields was considered with twofold objectives.
First, the Reynolds-averaged computations with the TEACH code

addressed additional refinements in CBCC predictions with

improved physical and numerical models. Improvements in physics
were concerned with the modifications to the standard k-e model
to account for streamline curvature and the preferential
influence of normal stresses in the dissipation equation., The
l refinements in the area of numerics dealt with the differencing
- schemes and included the incorporation of power-law differencing
schemes and modifications of the hybrid-upwind differencing

schemes.

While the steady-state predictions were expected to show
better agreement with the measured results because of the
improvements in the physical and numerical models, a crucial

, aspect missing in the Reynolds-averaged computations was
accounting for the observed dynamic behavior of the CBCC
flowfield. Thus, the second objective of this research was
concerned with the computational investigation of the unsteady

e ‘ flows. 1t seemed that the flowfield unsteadiness could arise
from several possible causes. Thus, the vortex shedding off the
centerbody trailing face, large-scale entrainment structures in
the shear layer between the annular and central streams, and the

L coherent structures in the central jet could all ither singly or

in combination impart temporal characteristics to the CBCC
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The Reynolds-averaged predictions of the CBCC flowfields
appeared to provide reasonable approximations to the experimental
results, especially for the mean flowfields under isothermal con-
ditions. The quantitative accuracy of the predictions of the
fluctuating fields was generally poor. Several possible sources

for this discrepancy have been identified, as discussed below.

The TEACH procedure utilizes the hybrid-upwind differencing
scheme for the convective terms.3:12 This scheme is known to
suffer from numerical diffusion problems.® The CBCC flowfield is
characterized by large streamline curvature and is a good example
of the complex turbulent flow defined by Bradshaw,l3 due to the
extra strain rates associated with the streamline curvature. It
is known that the turbulent shear stress and the degree of an-
isotropy between the normal stresses are very sensitive to cur-
vature. Since the standard "k-¢ model" does not account for
streamline curvature effects, this was considered to be partly
responsible for the discrepancy between the predicted and the
measured recirculation lengths. Moreover, as noted by Leschziner
and Rodi,l4 the dissipation (e) equation in the standard k-¢
model requires modification in recirculating flows to account
for the preferential influence of the normal stresses on the tur-
bulence transport. Finally, the CBCC flowfield appeared to
exhibit certain flow unsteadiness associated with the bluff-

body near wake.

The applicability of Reynolds-averaged description to
tlowfields possessing large-scale unsteadiness has been a subject
nf much debate. It is known that the separated shear layers and
the recirculation regions downstream of a bluff body are
inherently unsteady. Indeed, high-speed photographs of com-
bustion in the CBCCLl5 have revealed the propagation of large-
scale toroidal vortices, with successive flame bursts and
relative quiescence of random nature. As pointed out by
Richardson, in a discussion of the results of the axisymmetric
wake behind a disk by Carmody,l6 "it appears unlik.ly that a flow

possessing distinct and large-scale periodic characteristics can
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SECTION I

INTRODUCTION

This final rzport documents the computational fluid dynamic
research performed for the Air Force Wright Aeronautical

Laboratories, Aero Propulsion Laboratory (AFWAL/PO), by the

University of Dayton. The computational investigations had two
overall objectives: (a) conducting the steady-state predictive

modeling of the confined turbulent mixing in the near-wake region

v
h of the AFWAL/POSF centerbody combustor configuration and (b)
: performing the time-dependent computations of the centerbody

combustor flowfields.

1

[ ¢ 1. BACKGROUND

The confined recirculating flow involving dual coaxial
streams in the near-wake region of an axisymmetric bluff body has

been the focus of an ongoing diagnostic and predictive research

program 1-3 at the Aero Propulsion Laboratory (APL). A 1/5-scale

model of the APL centerbody combustor configuration (CBCC) 1is in

-
PR

operation at the University of California, Irvine (ucr).4

Numerical predictions of the CBCC flowfields have been the
subject of several research studies in the recent past.3‘9 These
studies dealt with the steady-state flowfield computations based

on the Reynolds-averaged Navier-Stokes equations. The numerical

'—1 w-'ﬂrvv.t,'—'m. ey

calculations employed the well known Teaching Elliptic
Axisymmetric Characteristics Heuristically (TEACH) 10 procedure.

g The modeling of turbulence necessitated by the Reynolds averaging
[ was based on an eddy viscosity computed by the two-equation model
F ' for the turbulence kinetic energy k and the rate of its dissipa-

tion e.11

g
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| LIST OF SYMBOLS
LN (Concluded)

SUBSCRIPTS
e Exit plane of the computational domain
eff Effective value
in Inlet plane of the computational domain
KL, j Last grid points at exit boundary
t Turbulent (Section II)
Stagnation values (Section III)
w Wall condition
1 Upper stream (Section II)
1, j First grid points at inlet boundary
2 Lower stream (Section II)
SUPERSCRIPTS
n Time step or time index

Time-mean value (Reynolds Averaging)

Fluctuating component (Reynolds Averaging)
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LIST OF SYMBOLS
(Continued)

Source term for the variable ¢ in Equation (1)
Time

Temperature

Streamwise rms velocity component

Velocity component along x

Velocity component along z (Section II)
Velocity component along r (Section III)

Rectangular coordinates

Parameter appearing in Equation (38)
Reflection coefficient

Ratio of specific heats

Exchange coefficient for the ¢ in Equation (2)
Dissipation rate of k

Transformed coordinates

Direction normal to the boundary

Inlet turbulence length scale parameter
(Section II)

-2/3u second viscosity coefficient
(Section III)

Molecular viscosity coefficient

Density

Effective Prandtl number for ¢ in Equation (2)

Shear stress or "computational effort" (i.e., CPU time
per iteration per grid point)

Wall shear stress

General dependent variable in Equation (1)
{Section I)

Additional unspecified physical variable
(Section III)

Frequency

Xv
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LIST OF SYMBOLS

a Speed of sound
C Damping parameter
CPU Central processing unit

c, »C),C2 Constants in the "Standard" k-e model

DT Time steps

e Specific internal energy

E Dependent variable

F, G Vector fluxes in mean flow equations
h Half height of channel (= 2 cm)

H Source term [See Equation (60)]

K Turbulent kinetic energy

2 Turbulent length scale (= Ah)

Lo Length of the centerbody

L4 Length of the duct

M Mach number

N Number of time steps

p Static pressure

|2 Static Pressure

Pr Prandtl number

Pk Rate of generation of k in Table 1
0 Conductance

r Radial direction .
R Gas constant

Re Radius of centerbody

R4 Radius of duct
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For these cconditions, the nonuniformities in the inlet mean
velocities were less than 1 percent. The streamwise turbulence
intensities (u/U) in the inlet were below 0.5 percent. The
z—profiles of the streamwise components of the mean (U) and the
rms (u) velocities were measured at the four streamwise stations
of 5, 12, 15, and 18 cm downstream of the trailing edge of the

splitter plate.

(3) Scope of Computations

The predictive calculations have employed the standard
features of the TEACH-type numerics, such as the "hybrid" upwind
differencingl?2 and the k-¢ turbulence modelll (which uses a
constant value of 0.09 for the parameter c,). Additional
features considered in the present calculations are the power-law
differencing scheme3 /20 (which retains the diffusive effects for a
larger cell-Peclet number range, viz., -10 < Pe < 10, than the
"hybrid" upwind scheme) and the streamline-curvature correctionl4
which introduces a curvature-dependent (and thus nonconstant)
cy in the k-e model. The corrections for the effect of
streamline curvature are obtained with and without a modification
of the e-equation.l4 Present computations also examine the
influences of nonuniform inlet profiles and the exit-plane loca-
tion of the computational domain. The sensitivity of the numeri-
cal predictions to different aspects of the modeling is noted by

a comparison of predicted and measured results.

b. Numerical Computations

The TEACH code describes a finite-difference computational
procedure to solve the Reynolds-averaged Navier-Stokes equations.
This procedure involves the primitive (pressure and velocity)
variables instead of the stream function-vorticity formulation
and thus entails a direct solution of the velocity and pressure
fields. A special procedure called the SIMPLE2l algorithm is
employed for this purpose. Further details concerning the
underlying theory and the computational procedure -~re available

in References 3 and 10.

10
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(1) Governing Equations

For the mixing-layer problem of interest here, the governing
equations are formulated in the planar two-dimensional geometry,
11 and V are the time-mean velocity components in the longitudinal
{x) and the transverse (z) directions. Present calculations deal
with the isothermal, nonreacting flow of the carrier (nitrogen)
gas. Theretore, it 1s not necessary to consider the species and
eneryy conservation equations. The only other dependent
variables of interest are k and e. The governing equations for

all the dependent variables can be expressed in the general form

|
|

(r. 24 =g (1)

wjw
X e
|

3 N S 3
™ (pU ¢) + 3z (pV ¢) - T (r

b
where ¢ denotes any dependent variable (time-mean value). 1In
Eq.(l) Sy 1s the source term for the variable ¢ which includes
true source terms (such as those due to chemical reactions) as
well as the terms not covered by the first four terms
(representing the convective and diffusive contributions). T4 is
the eftective exchanyge coefficient for the transport of the

variable ¢ and is given by
F'y = vefe/oy (2)

where peff is the wffective viscosity in the flowfield and oy is
the appropriate effective Prandtl/Schmidt number for each ¢.
Table 1 summarizes the relevant information for all the dependent

variables.

The cffective viscosity uwerf appearing in Eg. (2) is given

by
Meff = M + ut (3)

wher: 1 15 the laminar viscosity and uy is the turbulent eddy

viscosity. The latter i1s obtained from

U = Cy op k2/¢ , (4)

11




A "R

il i

(Xe
[4i\-

+

ze ze
ne’ *lzle! * zlne

26°1 2801 £°1 T

uotjedissid
Z | 1 3,339 Abaaug
x\Nua 2 - 7d(d/3) D o/ n 3 s5uaINQany
Abasug
A, ,33® dr3auTy
30 - 7d o/ 1 X asualngany,
ze 3394, 2 2e 339, X& ze _ wNIUIWOW
Aom ) e ne ) e ¥ de 339y A [|(uean) terpey
wn3uIWON
xe 338, 26 X 339,, X¢ , Xg _ 3394

ADm ) e ne ) e + de 0 (ueay) YeIxy
0 0 1 K3inutjuod

om op ¢ uotienb3

SNOILYNOA ONINMNIAOD
1 3749vd

el i nd

12




"

Y, Ta—ey

1

oA g i Sarhs SaEnas SR AL SEM AR AR /U AARr St
ERERE )

where c, is usually taken to be a constant equal to 0.09. The
above procedure involves the introduction of two partial dif-
ferential equations for k and ¢ which are solved together with
the conservation equations for mass, momentum, and energy. We
note that the inclusion of these additional equations has been
anticipated in the general formulation of Eg. (1) and in Table 1.
The “"standard” k-¢ modelll does not account for streamline cur-
vature effects. Following Leschziner and Rodi,14 ad hoc modifi-
cations have been introduced by us to incorporate curvature
effects in the flowfield modeling of the centerbody con-
figuration.3 Although streamline-curvature effect is not
expected to be significant in the mixing-layer problem, present

calculations examined this question also.

(2) Computational Details

Figure 2 shows the computational domain and the grid-point
distribution initially adopted in the numerical calculations.
The chosen grid consists of 41 longitudinal nodes and 42 lateral
nodes with grid spacings that are nonuniform longitudinally and
uniform laterally. The location of the exit boundary at 22.5 cm
from the trailing edge of the splitter plate is arbitrary. The
experimental details of the region downstream of the 20-cm-long
test section are not known. To find the sensitivity of the
results to the location of the exit boundary, calculations were
also carried out with a different grid consisting of 51 longitu-
dinal nodes and with the exit-plane located at a distance of
31.5 cm.

In the TEACH computational procedure all the salient
locations such as the top and bottom walls, the trailing edge of
the splitter plate, and the exit boundary are located midway
between the adjacent grid nodes. Moreover, a staggered-grid
arrangement is employed in the formulation of the finite-
difference equations. All the dependent variables, except U and
V, are referred to at the grid nodes. U and V are calculated at

locations midway between the grid nodes.

13
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(3) Boundary Conditions

Table 2 summarizes the boundary conditions employed in the
numerical calculations. 1In view of the elliptic formulation of
Eq. (1), the boundary conditions are prescribed on all the
boundaries of the computational Jdomain. The top and bottom
boundaries are the confining walls and the dependent variables U, k

and ¢ are prescribed by wall-function formulation. V vanishes on

P RPN

these boundaries. The right boundary is the outflow boundary at
which the streamwise derivatives of all the dependent variables

are set to zero. The left boundary represents the inflow boun-

X GO

dary. The inlet profiles of U correspond to experimental con-
ditions (e.g., Ujn is 6 m/s in the upper stream and 3 m/s in the
lower stream). With well designed inlets, the transverse

velocity V is close to zero and is treated as such. Numerical

calculations have been performed for both uniform and nonuniform

inlet distributions of U.

The specification of k and € at the inlets requires some

elaboration. The inlet profile of k is obtained from

i

_ 2
k = TURBIN x U} (5)

where U;, denotes the mean longitudinal velocity at the inlet and

TURBIN is the parameter (FORTRAN variables in the TEACH code)

which remains to be specified. We note that the experimental

data on the turbulence intensity measurements in the inlet

provide a basis for selecting the appropriate value of TURBIN.

Furthermore, in the absence of turbulence intensity measurements
o in all three orthogonal coordinate directions, the determination
of k from the intensity results in one or two directions (e.g.,
the Stanford mixing-layer data provide u/U only) requires the

assumption of isotropy.

The inlet distribution of e is specified through the

prescription of the inlet turbulence length scale, according to

e = K /%, (6)
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where £ is the inlet turbulence length scale. For the two-

dimensional mixing layer, & is taken as
2 = Ah, (7)

where ) is a parameter (FORTRAN variable in the TEACH code is
ALAMDA) and h is the half height of the channel (h = 2 cm). The
value of 0.56 for X vsed in the present calculations is based
upon earlier studies.3s14 1In addition, the sensitivity of the

predictions has been checked for x = 0.05.

c. Results and Discussion

Present numerical investigations have considered several
aspects of the mixing-layer flowfield. The results reported here
correspond to initial velocities of 6 and 3 m/s in the upper and
lower streams of nitrogen., The Reynolds number Reyx [based upon

the distance x from the trailing edge of the splitter plate and

defined as Rex = 0.5 (U1 + U2) x/v, where v is the kinematic
viscosity] considered ranges from 14,300 for x = 5 cm to 52,000
for x = 18 cm. The numerical predictions are presented here and

compared with experimental data.

(1) Influence of Inlet Velccity Profile

The predicted results of the mean and rms streamwise velo-
city components in the mixing layer are shown in Figures 3
through 6 for the four x locations of 5, 12, 15, and 18 cm
respectively. The predictions corresponding to both uniform and
nonuniform inlet distributions of U and k are compared with the
hot-wire data. Since the available experimental data at the
inlet sections do not go all the way to the splitter plate and to
the top and bottom walls, some minor arbitrariness arises con-
cerniny the rapid changes in U and u close to these boundaries,
While the rapid decay of the mean velocity to zero does not pose
problems, the rapid increase first and then the rapid decrease of
the rms velocity to zero at the boundaries cause ‘ome difticulty
in prescribing the nonuniform inlet profile for the numerical

calculations.,
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An examination of the results indicates that the ayreement
between the predictions and measurements is much better for the
mean velocity component than for the rms component. For the mean
velocity component, the predicted results with uniform inlet pro-
files show very yood agreement with the experimental data.
Calculations with nonuniform inlet profiles underpredict the
measurements at the four streamwise locations. For the rms velo-
city component, the predictions show that the overall trend in
the mixing layer conforms to the experimental trend.

Quantitative agreement for the magnitude and location of the peak
turbulence intensity, however, 1is generally poor. We note that
the calculations overpredict the turbulent mixing rate, espe-
cially near the origin of the mixing layer. Farther downstream,
predictions tend to indicate better agreement with the measured
data inside the mizing layer and in this case also the calcula-
tions with uniform inlet velocity profiles are clearly superior
to those employing nonuniform profiles. The poor agreement be-
tween the measurements and predictions outside the mixing layer
may be, in part, due to the assumption of isotropy in the numeri-
cal mndeling {u is computed as (2k/3)9:5], the validity of which
is not established in the experiments. Also, the very rapid rise
In the intensity predictions near the top and bottom walls is a
consequence of the normalization with respect to the local mean

velocity U (which vanishes at the walls).

(2) Influence of Turbulence Length Scale, Differencing

Scheme, and Streamline Curvature

The predictive calculations discussed earlier were based upon

the "hybrid" upwind differencing scheme and the "standard" k-«
model without the correction for the streamline curvature. The
inlet rurbulence length scale parameter A was taken as 0.56.
Additional computations were completed to investigate the effect
ot the chanyes in these areas of modeling on the predictions.

The calculations showed that there is no discernible diffterence
in the mean velocity profile at all four x locatio.s between:

(a) » = 0.56 and X = 0.05, (b) upwind and power-law differencing
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schoemes, and {(¢) the results with and without the correction for

streamline curvature,

Figures 7 through 10 show the results of the turbulence
intensity profiles at the four streamwise locations. 1t appears
that the variations in both the inlet turbulence length scale and
the differencing schemes do not have significant influence on the
rms velocity field at the four x locations. The curvature
correction shows no discernible influence on the rms velocity
predictions at the first two streamwise locations. Farther
downstream (at x = 15 and 18 cm), however, a small but noticeable

effect is seen inside the mixing layer.
(3) Other Effects

All the foregoing results were obtained from calculations
that employed the computational domain with the exit-plane
located at x = 22,5 cm. Moreover, the streamline curvature
correction did not involve the dissipation-equation modification
of Reference 14. Therefore, a parametric examination of the
oflfect of a different exit-plane location (x = 31.5 cm) and
s-oquation modification was completed. These calculacions showed
n> difference in the mean and rms predictions at the first three
x locations. Filgure 11 which presents the mean-velocity profile
At x = 18 cm indicates that there is no discernible effect inside
the mixing tayer. The turbulence intensity profile at x = 18 cm

se2n in Figure 12 shows a very small effect in the mixing layer.
d. Conciusions

° The numerical calculations employing the TEACH-type numerics
and the k- turbulence model provide physically correct predic-

tions of the two-dimensional, isothermal mixing layer.

. The numerical predictions of the mean streamwise velocity
protile at different downstream locations show good agreement

“with the hot-wire data trom the Stanford mixing-layer experiment.
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(2) Turbulence Model

The turbulent eddy viscosity ug (the effective viscosity
veff appearing in the governing eguations is given by ut + u
where p is the laminar viscosity) in the k-¢ model is obtained
from pug = cupkz/e, where p is the mass density and cy is a

constant equal to 0.09.

Isotropy is assumed in obtaining k from the rms velocity
components, according to k = (3/2)w2, where w is the axial rms
velocity component. The inlet profile of k is given by 0.03 w2
for the annular jet and by 0.03 W2 for the central jet (see SS
and KP). The required inlet profile for e is specified as

discussed below,

Inlet Turbulence-Length Scale, As in KP, we obtain the

inlet profile of € from ¢ = k3/2/2, where the inlet turbulence-
length scale £ is given by & = A8, Here X is a specified
constant and 8 is a characteristic reference length given by
(Dg-D)/2 for the annular jet and d/2 for the central jet. KP
used 0,3333 and 0.5556 for A. The former value is equivalent to
0.03 used in 3S (since they employ e = cuk3/2/£) and the latter

value 1is used in LR. Present results are based upon A = 0.5556.

Streamline Curvature Correction. Curvature modifications to

turbulence models have been attempted by a number of researchers
(e.g., see LR; Humphrey and Pourahmadi;3l Rodi and Scheuerer;32
and the references cited in them). A majority of these modifica-
tions have been concerned with the k-¢ model. Present numerical
investigation has introduced a curvature-dependent (and hence
nonconstant) ¢, into the standard k-¢ model. Following LR, we
have
) 2 2 aws ws ws

c, = —KlKZ/[Hskl(k/e) (3—;_ + h—c ) =

where Re is the local radius of curvature of a streamline, s and

n denote the coordinates along and normal to the streamline, and
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data2,30 to elucidate the distinctions between the small- and

largye-scale CBCC. This was necessary in view of the differiny

nature of the predictions.
(2) Scope of Computations

This study deals with the isothermal flow-field predictions.
As in SS and KP, present work employs the TEACH computational
procedure (Gosman and Ideriahl0), and the standard features of
the numerics thereof. An additional feature considered here is
the power-law differencing scheme20 in place of the hybrid upwind
scheme. 12 While both the APL and the UCI configurations were
studied, only a limited parametric rarge of the flowfield con-

ditions investigated is reported.
b. Numerical Computations

The details concerning the application of the TEACH proce-
dure to the CBCC flowfields are available in Krishnamurthy et

al.3 and therefore are not repeated here.

(1) Computational Details

Figure 14 shows the present computational domain and the
grid-point distribution. The grid consists of 41 axial nodes and
39 radial nodes with a nonuniform spacing in both directions to
ensure adequate spatial resolution in flowfield regions with
large gradients of the flow variables. The calculations with
this grid require about 170,000g8 words of memory on the CDC CYBER
computer. The converged solutions are attained in less than 900
lterations, with each iteration taking less than a second of com-

puter time,.

The results herein correspond to the conditions shown in
Table 3, with uniform inlet profiles for the mean axial velocity,
corresponding to Wp in the annular jet and Wp in the central jet.
The Reynolds number Rep of the air flow is based upon D and
the reference velocity Wq in the duct. The Reyno.: is number Rep

of the CO2 flow is bhased upon d and ﬁp.
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(1) Background and Objectives

SS and KP employed the two-equation model for the turbulent
kinetic energy k and its dissipation rate e.ll This model in its
standard version does not account for streamline curvature
eftects. Its predictions overestimated the extent of the recir-
culation region in the APL CBCC compared with the laser Doppler
anemometry (LDA) data of Lightman et al.23-24 This was in
contrast to the experience of several previous studies of tur-
bulent recirculating flows where significant underprediction was
observed (e.g., see Pope and Whitelaw;2> Militzer et al.;26
Gosman et al.;27 Durst and RastogiZB). Also, SS and KP overpre-
dicted the central jet CO mass flow rate required in the experi-
ments 24 to eliminate the centerline reverse air flow. Another
aspect in which the prediction was deficient concerned the axial

distribution of the centerline rms axial velocity component.

It is known that the turbulent shear stress and the degree
of anisotropy between the normal stresses are very sensitive to
streamline curvature.2? Thus, the presence of large curvature in
the CBCC may have contributed in part to the discrepancy between
the measurement and prediction. Accordingly, the main objective
of the present study was to examine the influence of curvature
corrections in the prediction. Recent availability of extensive
isothermal LDA data from UCI, as well as LDA (Lightman et
al.2)and CO; concentration (Bradley et al.39) data from APL has

facilitated this inquiry,.

When calculations were made for the UCI CBCC with the stan-
dard k-e¢ model, the centerline recirculation length was underpre-

dicted in line with the experience of other researchers.

The introduction of a curvature correction, along the lines
sugjested by Leschziner and Rodil4 (hereatter denoted by LR),
resulted in only a partial improvement of the prediction.
Therefore, the second objective was to examine the impact of the
diffusinon-equation modification considered in LR. A final objec-

tive was the comparison of the predictions with the newer APL

33
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the predicted and measured results of the axial and radial
distributions of the mean and rms axial velocity, the centerline
stagnation points, and the axial decay of the centerline CO)

concentration.

a. Centerbody Combustor Configuration

The centerbody combustor represents a complex turhbulent
flowfield. As noted by Bradshaw,l!3 a complex turbulent flow is
one which cannot be predicted with acceptable accuracy by methods
developed in classical thin shear layers. The assumptions
inherent in the thin-shear-layer approximation are often
invalidated in realistic flowfields by the presence of several
features (e.g., interacting shear layers or high rates of strain
associated with large streamline curvature). Figure 13 shows
schematically the large- and small-scale CBCC. This involves
confined turbulent mixing of an annular air stream and a central
gas (COp in isothermal experiments and C3Hg in combusting
experiments) jet in the near-wake region downstream of a bluff
body. Figure 13 shows that the ratio D/d is rather large (29 for
the APL and 23 for the UCI configurations). 1Indeed, the present
interjet separation is much larger than that studied in typical
coaxial jet mixing of both confined and unconfined flowfields in
the literature. The wide separation between the jets and the
concomitant presence of the toroidal recirculating bluff-body
wake in the mixing region have raised some interesting flowfield
ramifications addressed only recently in numerical predictions
(e.qg., see Krishnamurthy;5 Sturgess and Syed,6 hereafter denoted
by SS; and Krishnamurthy et al.,3 hercafter denoted by KP).
Depending on the strength of the annular and central jets, the
CBCC flowfield exhibits wake-like and jet-like characteristics
under isothermal conditions (e.g., see Krishnamurthy, Wahrer, and
Cochran?). Nevertheless, the juxtaposition of the two streams
with the near-wake region in a confined configuration renders the
CRCC flowfield a highly "complex turbulent flow," in the sense of
Bradshaw.l!3 1In addition to the interacting she-r layers, large

streamline curvature is present.
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° The numerical predictions of the turbulence (streamwise)
intensity are consistent with the experimental trends and show

fair to poor quantitative agreement.

] Both the mean and rms velocity predictions are not signifi-
cantly affected by parametric changes in the numerical modeling
involving inlet turbulence length scale, differencing scheme,
streamline curvature correction in the k-e model, and the loca-

tion of the computational domain exit plane.

° Predictions based on uniform inlet-velocity profiles show
better agreement with the measurements than the predictions based

on nonuniform profiles.

[ The mixing layer appears to exhibit some interactions with
the boundary layers at the top and bottom walls (being greater
for the latter than for the former) at large distances
downstream. These interactions may explain, in part, the noted
differences between the predicted and measured rms velocity
results, when there is excellent agreement for the mean velocity.
Indeed, this conclusion is consistent with the recent
observations of Wood and Bradshaw.22 They report significant
changes in the turbulence structure (with the mean-velocity
profile remaining unaltered) when the mixing layer is influenced
by a solid surface. While their mixing layer had to contend with
only a bottom boundary layer, they ewmphasize that "...similar,
and perhaps even larger, changes will occur in a two-stream

mixing layer confined by a tunnel roof as well as the floor."
2. LARGE- AND SMALI-SCALE CBCC'S

The confined turbulent recirculating flowfield due to the
isothermal mixing of dual coaxial streams in the near-wake region
of the CBCC is described below. The rfinite-difference
computations examine modifications to the turbulence model to
account for the effects of streamline curvature and for the
preferential influence of normal stresses on turbulence

dissipation. This examination is facilitated by a comparison of
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K1 and K2 are constants equal to 0.267 and -0.489 respectively.
Although an element of arbitrariness in LR was noted in Reference
3, the discussion therein emphasizes the utility of the

ir! formulation of LR which is retained here. Also, as in LR, the

calculations impose an arbitrary positive lower bound of 0.025 on

Cye

£ Modification. We employ the preferential modification of
dissipation proposed in LR for recirculating flowfields.
Although additional work is necessary in view of the ad hoc
nature of this modifi~ation, its inclusion throws some light on

the observed distinction between the small- and large-scale CBCC.

C. Results and Discussion

(1) Pertinent Results from SS and KP

To set the present results in context, we show in Figure 15
the earlier results from SS and KP. With identical values of A
(0.03 in SS), the two (grid A in KP) show good agreement in their
degrees of underprediction of the forward stagnation points (FSP)
and overprediction of the rear stagnation points (RSP) (the FSP
occurs where the central jet loses i*s forward momentum entirely

and the RSP is the usual end of the recirculation zone).

The measurements23-24 showed that for Wp = 47 m/s and Wp
= 135 m/s (corresponding respectively to an air mass flow of
2 kg/s and COp mass flow of 16 kg/hr in the APL CBCC), W was non-
negative on the centerline. 1Indeed, the minimum COjp mass flow
which eliminated the centerline-flow reversal was inferred from
the measurements to be 14.7 kg/hr in SS. The predictions,

however, indicate the occurrence of the centerline reverse flow

(with both stagnation points present) at 16 kg/hr.

Curvature Correction. The preliminary results in KpP for

streamline curvature correction are shown for two COp flow rates

.
)

(viz., 4 and 8 kg/hr). It must be noted that the increase in )
:I. from 0.3333 to 0.5556 has masked the effect of th correction,
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SS and KP have observed, however, that the increase in ) (without
the correction) moves monotonically both the stagnation points
upstream, thereby resulting in greater underprediction of the
FSP. With the correction, the FSP moves farther downstream
towards the measured value. The degree of overprediction of the
RSP is seen greatly reduced with the larger X and the curvature

|
|
correction. Finally, the prediction with the correction has elim- |
inated the centerline-flow reversal at the COp flow of 16 kg/hr.

Unlike the good agreement for the centerline stagnation
points, the centerline peak negative mean axial velocity Wy was
overpredicted with the curvature correction. Since KP had not
isolated the influence of A, hybrid upwind differencing (and the
propensity for numerical diffusion therein), and the arbitrarily
modified grid B, it was essential to examine the effect of the

curvature correction more systematically.

(2) UCI Configuration

Figure 16 compares the present predictions with the
measurements. We note that the standard model underpredicts both
the stagnation points by about 30 percent, a result in agreement
with other studies. Considerable improvement is seen when the
curvature correction to ¢, is introduced. However, the
stagnation points and Wy are still underpredicted. With the
e~equation modification in addition to the curvature correction,
excellent agreement is seen for 0 < z/D < 1.6. Farther
downstream the measured recovery is greater than given by all

the predictions.

Comparison of rms Velocity. The results seen in Figure 17

do not confirm the good agreement observed for the mean axial
velocity. 1In fact, the predictions are very poor especially for
z/D < 1.3, The somewhat better agrecment seen for 2 < z/D < 3 is
not consistent with the greater disparity noted for the mean
velocity. Of course, a major problem in the predictions is the
assumption of isotropy, which is known to be invalid in the near

wake. Furthermore, good agreement for W and pnor agreement for w
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Axial Velocity for UCI CBCC.
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appear to be characteristic of complex turbulent flows (e.g., see

Wood and Bradshawzz).

Radial Distributions. The prelicted radial profiles at four

axial locations in Figures 18 and 19 include both the c, and e
modifications. Good agreement is seen and the comparison is par-
ticularly striking at the axial location well within the recir-
culation region (z/D ~ 0.17) and at the one near the RSP

(z/D~ 1.31).

Flowfield Without the Central Jet. There is a marked dif-

ference in Fiqure 20 where the central jet is absent. The RSP is
underpredicted by about 10% but the predicted magnitude and the
axial location of Wm differ by a factor of 2 from the measured
values. The rm: component, however, shows better agreement be-
tween the prediction and the measurement. This behavior is
clearly different from that of the nonzero central jet seen in
Figures 16 and 17. A parametric dependence emerging from these
observations appears to emphasize the ad hoc nature of the modi-

fications examined,

(3) APL Configuration

The centerline profiles of W and w for the large-scale CBCC
are scen in Figures 21 through 23 for three different values of
Wp. The predictions of the standard k-e model and those with the
correction for curvature (with and without the ¢ modification)

are compared with the LDA data of Lightman et al.?

Measurements. The experimental data for the mean velocity
difter from the earlier results (Lightman et al.23'34).The loca-
tions of the RSP are at a z/D of 1 instead of 0.9 (see Figure
15). Figure 23 indicates a small region of centerline-flow
reversal (0.75 < z/D < 0.975). The newer data thus show better
agreement with the predictions in S8 and KP. 1Indeed, for the
case of zero CO, flow, the RSP result of SS even shows a small

underpreviction,
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Velocity Radial Profiles for UCI CRCC.
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Figure 22 shows the FSP to occur at z/D = 0.28 which more
closely agrees with SS and KP in Figure 15 than did the earlier
experimental data. A crucial difference in the two measurements
which contributes to the appreciable difference in the observed
FSP location is the central-jet exit configuration. Recent
experiments employed a well-designed nozzle, thereby ensuring a
uniform Wp. ®£arlier experiments involved a straight tube 15
diameters in length upstream of the exit plane, resulting in a
nonuniform Wgp. While this difference accounts for the decrease
in the FSP location, the reason for the increase in the RSP

location is not clear.

Predictions. 1In terms of the present predictions, a number
of observations can be made. Calculations with ¢, and ¢ modifi-
cations are clearly inferior for all three CO; flows in all
respects. The fact that the three predictions do not differ
significantly for 16 kg/hr reflects that the central jet essen-
tially breaks through the recirculation region and does not
suffer the large streamline curvature effects associated with the
recirculating flow. At the lower CO) flows, the dissipation
modification significantly decreases the rms velocity. For the
mean velocity, the zero CO2 case shows good agreement for the
RSP and very poor agreement for th2 velocity profile in the
reverse-flow rejion. For the 6 kg/hr COs case, while the magni-
tude of Wy agrees reasonably well with the measured value, its
location, as well as the locations of FSP and RSP, are all con-

siderably overpredicted.

The differences in the predictions based upon standard
¢y and curvature-corrected cy are not clear cut. At 16 kg/hr,
the uncorrected prediction for W is superior, while the correction
yields better w prediction, especially near the RSP (as may be
anticipated). At 6 kg/hr, the conrrection again predicts w
better near the RSP. For W, except for the location of the RSP,
the curvature correction appears to show better agreement vith
the measurement than the standard model. Both calcutiations
underpredict the location of Wyp; the magnitude is underpredicted

by the standard model and overpredicted by the curvature
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correction. For the zero CO, flow case, the uncorrected predic-

tion appears to be better overall.

COy Concentrations. Comparison of the predictions with the
measu;géggggﬁ(éfé&fg;mgt al.)30 of COy mole fractions seen in
Figures 24 and 25 leads to similar conclusions regarding the
calculations. The prediction of the standard model is clearly
superior at the higher flow rate. At 6 ky/hr, the standard model
and the curvature correction do not appear to differ appreciably
from each other. The predictions with the modifications of
cy and e show much slower decay of CO2 centerline concentration
than do the me@asurements and other predictions. This behavior is
consistent with the significant underprediction of w and the

slower decay of W (anted especially for 6 kg/hr in Figure 22).

d. Conclusions

The numerical computations based upon the Reynolds-averaged
equations and k-¢ turbulence model have demonstrated that the
CBCC represents a highly complex turbulent flow. The predictions
with the standard k-« model, as well as ad hoc modifications to
account for the streamline curvature and the preferential influ-
ance of normal stresses on dissipation are compared with the
measurements in a large-scale and a small-scale CBCC. Signifi-
cant Jdifterences between the predictions are noted, especially
for the dissipation-equation modification which results in much
greater dissipation in the large-scale CBCC. The introduction of
the curvature-corrected ¢, results in better predictions for
certain flowfield regions but exhibits a dependence on the

annular and central rlow rates.
3. VORTEX-CrNTER CHARACTERISTICs

The time-averaged characteristics of the vortex center in
the ne ar-wake recirculation region in the CBCC by finite-
difterence computations are examined. The numerical predictions
under 1sothermal aonditions examine the influence of the
turbulence-model corrections under varying annui. r air and

central CO) filows on the axial and radial locations of the vortex
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TABLE 4
FLOWFIELD CONDITIONS

UCI APL

. 2 = -4 . 2 - -4
mAxlo WA ReAxlO mAxlo wA ReAxlo
1.24 7.78 1.07 100 23.38 17.8
1.86 11.67 1.60 200 46,76 35.7
2,48 15.57 2.13 300 70.14 53.5
3.10 19.46 2,67 400 93,52 71.3
3.72 23.35 3.20 500 116.9 89.1

(m_/m )xlO3 W_/W Re_/Re m xlO5 W Re xlO-'3

F" A F' A F A F F F
0.00 0.00 0.00 0 0.0 0.0
0.80 0.53 0.05 111 34.1 16.3
1.59 1.06 0.10 167 51.2 24.4
2,39 1.59 0.15 222 68,2 32,5
3.20 2.13 0.20 278 85.3 40.6
3.98 2.66 0.25 333 102.4 48 .8
4,78 3.19 0.30 389 119.4 56.9
5.58 3.72 0.35 444 136.5 65.0
6,37 4,25 0.40 500 153.6 73.2
556 170.6 §1.3
611 187.7 89.4
o3
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streamline-curvature corrections, and dissipation modifications
[see Paragraph II.2.b(2)]. The range of the annular and central
flow rates investigated for both the large- and small-scale
CBCC's corresponds to all the flow regimes depicted in Figure 26.
Table 4 lists the various characteristics of the flowfield for
both the APL and UCI CBCC. The Reynolds number for the air flow
Rep is based on D and the reference velocity Wq in the duct; the
d and Wp (See Figure 13). Variation in the CO2 flow conditions
1s due to the input parameters which were varied in the actual
experiments (i.e., for UCI, the ratio fp/mp was varied, whereas

for APL, thg was varied).

b. Results and Discussion

(1) APL Configuration

Figure 31 shows the relation between the normalized radial
coordinate of the vortex center and COp tlow rate. 1In what
follows, the turbulence model with curvature correction is
denoted as PC and the one with both curvature correction and
dissipation modificatinn is denoted as PCE. For both the PC and
PCE models, the radial position stays approximately fixed at a
value around 0.36. This is consistent with the preliminary
results in Paragraph If.3.a(l) (which noted that for CO7 flow
rates of 0 to 8 kg/hr and air flow rate of 2 kg/s the normalized
radial coordinate 1is a constant of approximately 0.35). At a
flow rate near 11 kg/hr, however, both models exhibit a slight
increase in distance from the centerline. This move could be a
result of the growing prominence of the central jet at C0O2 rates
of 12 to 16 kg/hr. (Reverse mass flow on the centerline

disappears at 16 kg/hr with an annular flow rate of 2 kg/s.)

The slight movement of the radial coordinate is
insignificant in comparison to the migracion of the axial
coordinate zg, shown in Figure 32. 1In the region ot cente-line
reverse flow, the axial coordinate moves gradually downstream
with increasing COp flow, then migrates back .ow. d the

centerbody. The peak value of z. occurs for o 10w rate ot
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of zero central flow is 0.3 in both calculations. At the highest
COy flow rate, the FREP result is about 20 percent higher than
the TEACH result. Since the TEACH calculations are based upon
the physically more realistic k-¢ turbulence model than the
constant eddy viscosity model used in the FREP calculations,
present results for the axial location of the vortex center may
be more accurate. The identical value for the radial location,
however, implies that the details of turbulence model do not have
much effect on how far the vortex center is displaced off the
centerline. This conclusion is consistent with the observation
of Ko and Chan36 that the radial position of the vortex center in
their unconfined annular jet study was essentially independent of
the momentum flux of the annular jet and hence the pressure
available for the entrainment behind the centerbody face. For
further implications of our results vis-a-vis those of Ko and

Chan,36 we recall our discussion in Reference 5.

(2) Objectives of Present Study

The foregoing results were limited to the APL CBCC and only
a small range of the central COp flow rates for a fixed annular
air flow rate was considered. Although these calculations dealt
with isothermal flowfields, a detailed examination of the vortex
center characteristics could offer additional insights into the
phenomenon of flame stabilization. Accordingly, the main objec-
tive of the present study is a parametric investigation of the
vortex center for varying air and CO3 flow rates under different
turbulence-model corrections in both APL and UCI CBCC's. A
second objective is to examine the influence of the variations in
flow rates, turbulence-model parameters, and combustor scaling on
the magnitude and location of the minimum (which is negative when

centerline flow reversal is present) centerline axial velocity.

(3)  Scope

This study deals with the time-averaged flowfield pre-
dictions and is based on certain modifications to the standard

TEACH numerics. These include a power-law differencing scheme,
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flux represents the positive axial flux contained between the
zero velocity contour and the time-averaged separated streamline.
In other words, the radially outward flux cannot cross the

time-averaged separated streamline into the annular main flow.

The distribution of the turbulence kinetic energy on the
zero velocity contour 1s shown in Figure 28. It is seen that the
local maximum of the kinetic energy on the contour within the
recirculation region occurs at the vicinity of the vortex center,
An examination of the radial distribution of the kinetic energy

at five axial locations shown in Figure 29 indicates that except

BT Ml e i AP e A e T

for the axial location closest to the
bulence kinetic energy peaks near the
These observations appear to indicate

bulence activity is highest along the

centerbody face, the tur-
zero velocity contour.
that the time-averaged tur-

zero axial velocity contour

inside the recirculation region. It is physically reasonable to
expect that the region of highest turbulence activity would
represent the region of optimum mixing. Although the numerical
computations reported here correspond to isothermal flowfields
and do not necessarily apply to reacting flowfields, our current
viewpoint has interesting implications for bluff-body flame
stabilization.33-35 It is tempting to associate the vortex
center with a local hot spot (and temperature peak) and the zero

velocity contour with the optimal region of flame propagation.

Time-Averaged Vortex Center. The radial and axial coor-

dinates (normalized with respect to the centerbody diameter) of
the vortex center for different central COz flow rates are shown
in Figure 30. We note that the radial location of the vortex

flow rate.

center is invariant with CO3 The axial coordinate,

however, is seen to increase slowly with CO; flow rate. A com-
parison of these results with those of our previous study® with
the FREP code (which employed a constant value of turbulent eddy
viscosity) shows the somewhat intriguing result that the pre-
dicted locations of the vortex center in both TEACH and FREP
modeling are not much Jdifferent. TIndeed, the r.lial location is

predicted as 0.35 by both codes. The axial! location for the case
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center, as well as on the magnitude and location of the minimum

centerline axial velocity. These results emphasize and clarify
the complex flowfield interactions of the annular and central

streams in the near-wake region.

a. Recirculation-Zone Structure

The nature of the toroidal recirculating vortex in the CBCC
is illustrated in Figure 26 which shows the computed velocity
field in the APL CBCC. The computations involve annular air
flow and central CO2 flow, with the figure depicting the flow-
fields corresponding to (a) no central flow, (b) small central
flow, and (c) large central flow. The recirculation region
comprises two toroidal vortices: a primary vortex and a smaller
secondary vortex near the central jet. The relative sizes of
these vortices and the locations of the vortex centers are
dependent upon the annular and central flow rates and the
resulting degree of mixing and entrainment present in the system.
At zero or small central flow, the annular flow is dominant,
entraining the COy flow and causing a flow reversal along the
centerline. As the strength of the central jet increases, it
gradually overcomes the centerline reverse flow, and the
secondary vortex grows relative to the primary vortex. Eventu-
ally the central jet becomes strong enough to eliminate the
centerline reverse flow entirely and starts to entrain the an-
ular flow. Off centerline reverse flow and primary vortex are

still present, the latter at diminished strength however.

(1) Preliminary Studies

Associated with the primary vortex is the time-averaged
contour of zero mean axial velocity. Figure 27 presents this
contour and the mean radial velocity (U) distribution thereon for
the case of zero central flow. The point of zero radial velocity
on the contour is the vortex center. As may be expected or phy-
s3ical grounds, the flow is radially outward to the left and
radially inward to the right of the vortex center »n the zecro

velocity contour. Note, however, that the radially outwar:d mass
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7 kg/hr for PCE and 10 kg/hr for PC. This result can be
explained by the competition between the annular and central
flows. As the dominance of the central flow increases, the
entrainment by the annular flow gradually diminishes and
eventually the annular flow begins to get entrained by the
central flow rather than the converse, which is true at low CO3
flows. It is here that z, peaks and the primary vortex (and its
center) is pushed downstream. When entrainment cof the annular
flow begins, the primary vortex is pulled toward the centerbody.
Near the point at which negative centerline flow disappears
(around 16 kg/hr), a secondary peak is also found for z,. 1t
appears that the detachment of the primary vortex from the
centerline promotes a small downstream motion of the vortex
center. After this peak is reached, all increases in COp flow

draw the primary vortex center toward the centerbody.

While the general trend of the path of the vortex center is
consistent between the PC and PCE models, the actual magnitude of
the axial coordinates and the precise location of the peaks vary.
The PCE model tends to predict values further downstream than the
PC model. This same trend is evident in the location of the
minimum centerline velocity (zp). This location steadily moves
downstream with increasing CO2 flow, although the actual magni-
tude of znp is dependent upon the presence of the dissipation
modification., According to Paragraph II.2.c(3), the PC model
tends to predict the minimum velocity location and magnitude wore

accurately for the APL CBCC.

If air flow rate is varied, holding COy flow rate constant,
the radial coordinate of the vortex center again remains fixed
near 0.36 at COp flow rates of 0 and 6 kg/hr (see Figure 33).
This result is consistent with the findings of Ko and chan36 that
in their unconfined annular jet the radial position of the vortex
center is not dependent on the annular momentum fiux. 1In fact,
the radial coordinate normalized by the duct diameter is (.19 and
this compares very well with the value of 0.18 reported by Ko and

Chan. Their results for no central flow and in:reasing annular
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flow, however, show a shift of the vortex center toward the
centerbody. This study, on the other hand, demonstrates no
change in the axial position of the vortex center with increasing
air flow and no COp flow. The differences may be explained by
noting that Ko and Chan used an unconfined jet. Such a
configuration allows for ambient air entrainment at the annular
jet, something which a ducted CBCC cannot provide. With the
addition of the central jet, however, the extra potential for
entrainment is present, thus giving results similar to those of
Ko and Chan (i.e., a movement of the axial coordinate toward the
centerbody with increased annular flow). At lower annular flows,
entrainment of the annular jet by the central jet is a more
prominent feature, thus causing the vortex center to be located

upstream of the vortex center at higher air flows.

(2) UCI Configuration

Figures 34 and 36 reinforce the APL results [discussed in
I1.3.b(1)] in that the radial coordinate of the vortex center is
essentially fixed at approximately 0.36, regardless of COz and
air flow rates. Once again, a slight increase in distance from
the centerline is observed as the CO2 flow rate approaches the
point of elimination of negative centerline velocity. This shift
could be caused by the elongation and lifting of the primary vor-

tex from the centerline.

Figure 35 shows that the variation of the axial coordinates
as predicted by the PCE model follows the same trend as in the
APL case. The first peak occurs consistently (for both APL and
UCI PCE models) at a Wgp/Wp ratio of approximately 1.3. The
secondary peak occurs at a WF/WA ratio of approximately 2.6.

The uniformity at this point is not as strong, however. The
general trend for the variance of z, with &g is that with
increasing air flow, the peak values of z, are less pronounced,
due to the increased prominence of the annular jet. Results
from the PC model (not shown) concur with those of the pPCE

model, The values for the location of the minii..um centerline
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velocity, also shown in Figure 34, confirm the APL results in
that z;,; is nearly linearly dependent upon the CO2 flow rate. An
increase in annular flow, as expected, pushes the zy value closer
to the centerbody. A graph of zg/D versus WF/WA (not shown)
would reveal that the results for all the three air flows (7.8,

15.6, and 23.4 m/s) essentially coincide.

Figure 37 presents the variation of the axial coordinate of
the vortex center with annular air flow. The 2z, value is
essentially constant for low CO3 rates, analogous to the 0 kg/hr
COy flow in APL (see Figure 32), but at a higher value of 0.38
compared to 0.36 for APL. At higher CO3 flow rates, the trends
are not similar to those of the APL CBCC. One possible explana-
tion is the difference in the Wp/Wap ratios. 1In the APL con-
figuration, the ratios ranged from 0.44 to 0.73 in the region
which exhibited a decrease in zc with increased air flow. The
one point which appeared to be dominated by central flow had a
Wrp/Wpn of 2.19. All of the points of the UCI curves at the three
higher COy flows have the Wp/Wp values of 2.13 or higher.

(3) Comparati?e Study

Figures 38 and 39 demonstrate the correlation between the
APL and three C0O2 flow rates of UCI. The normalized minimum cen-
terline velocity as a function of normalized central flow has,
for the most part, a constant relationship in all runs (see
Figure 38). The ratio between 2z and z¢, shown in Figure 39,
appears consistent among all runs when compared to the ratio of
the inlet flow velocities, although these results do not coincide
as well as those in Figure 38. Similar trends can be seen be-
tween the PC and PCE models in both correlations, though for =ach
case only one model is shown. This relation between the minimum
centerline velocity and vortex center location could prove help-
ful in experimental techniques where inlet flow rates and cen-
terline velocities are easier to measure than is the vortax

center location.

The results from this study extend the preliminary results

in Figure 30 and, as noted in Paragraph T1.3.a.(1), appear to
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coincide with those of a previous study on primary vortex charac-
teristics by Krishnamurthy.® Using the Field Relaxation Elliptic
Procedure (FREP) Code, Krishnamurthy obtained the constant value
of 0.35 for the normalized radial coordinate at various central
jet flows. Also, the axial coordinate of the vortex center

moved downstream with increased central flow in the range
observed (0 to 8 kg/hr COy flow and 2 kg/s air flow). 1In a later
investigation, Krishnamurthy, et al.3 compared the results of the
standard TEACH code to the experimental results of Lightman, et
al.2 for annular flow of 2 kg/s and no central jet. The radial
again was found to be consistent at a r/D value of 0.35%, in
agreement with present results. For the axial coordinate,
however, the standard TEACH code considerably underpredicted the
location of the vortex center as compared to the experimental

data (see Table 5).

TABLE 5., AXIAL COORDINATE OF VORTEX CENTER IN VARIOUS MODELS
(APL CBCC).

F_uq,ﬂggﬁl. Normalized Axial Location
Experiment?2 0.43
FREPS 0.30
TEACH (standard)3 0.26
TEACH-PC 0.31
TEACH-PCE 0.31

All of the previous and present studies have underpredicted
the axial location of the vortex center to some degree.
Streamline-curvature correction and dissipation-equation modifi-
cation have provided the closest approximations thus far to the
experimental results, With the central _et added, the general
trend has been that the PCE Model predicts a vortex center loca-
tion further downstream than the PC model. This indicate:s that
better agreement with experimental results for increased COj

flow is likely with the PCE model.
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c. Conclusions

The radial coordinate of the primary vortex center remains
essentially constant regardless of air or CO3 flow rates. The
axial coordinate moves downstream with increasing central flow
and constant annular flow until entrainment of air by COj7 begins;
then z, migrates toward the centerbody. With changing air flow
and zero COy flow, the axial coordinate stays constant. The
addition of central flow causes z; to shift toward the center-
body, if the annular jet is dominant. The differences between
the UCI and APL combustors are seen mostly in the magnitude of
the variables; normalization shows the same overall trends

preserved between the two, although not exactly.
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SECTION III

TIME-DEPENDENT COMPUTATIONS

This section deals with the calculation of the CBCC flowfield
by the solution of the time-dependent Navier-Stokes cequations

using the AFWAL/FIMM unsteady code. .

l. INTRODUCTION

Proper specification of boundary conditions 1s critical to i
the numerical solution of subsonic flowfields. This section
presents a systematic study of the influence of various inflow
and outflow boundary conditions for the numerical solution of the
time-dependent Navier-Stokes equations. Combinations of several
rapresentative inflow and outflow boundary conditions are applied

to obtain the solution of subsonic unsteady flow in a centerbody

combustion chamber of finite computational domain. The absence
of solutions of nonlinear boundary value problems of this class
is explained both by the difficulties in constructing models of
unsteady subsonic flows of a viscous gas in a finite region (due
ta the specific requirements imposed on the ltoundary conditions),
and by the problem of correct resolution of the acoustic
processes hy the difference scheme. For subsonic flow, the
propagation of disturbances upstream against the flow direction
complicates the situation significantly and requires more care in
the choice of inflow and outflow boundary conditions. Following
the approach of Reference 37 the acoustic characteristics of
varinus bhoundary conditions are investigated, which enables one
to study their effect on the longitudinal oscillations in the
domain »of interest. In contrast to subsonic flow, supersonic
flow leaves little choice in the selection of the boundary
conditions and all physical! variables should be specified at the

inflow boundary and none at the outflow boundary.

At a subsonnic inflow bouna ry, the lhavier- 'fokes equations

require the specification »f three boundary conditions and the
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subsonic outflow houndary requires the specification of only one
boundary condition. Therefore, in the numerical solution of the
problem the variables at the boundary points must be calculated
by introducing additional difference algorithms, containing to
some degree elements of spatial extrapolation from the interior
points of the domain. Various extrapolation procedures of the
type ( 9¢/3n )N*l = 0 or ( 32¢/3n2)N*l = 0 can be used to compute
the additional unspecified physical variables required by the
finite-difference scheme at the boundaries (here n is in the
direction normal to the the boundary and n corresponds to the the
time step). However, there is no rigorous mathematical theory

available to justify such extrapolation procedures.
2. BOUNDARY CONDITIONS

In what follows various inflow boundary conditions and their
finite-difference analogues are Iescribed anrd the boundary con-
ditions are applied at both the predictor and corrector steps of
MacCormack's finite-difference algorithm. The conditions are
described only for the (n+l) corrector step. The procedure for
the (n+1,/2) predictor step is identical to the (n+l) corrector
stop, with the time step superscripts (n+l; n+l1/2) replaced hy
(n+1/2; n). The subscripts denote the x (axial) and r (radial)

grid indices and KL is the last grid index in the x direction.

a. Inflow Boundary Conditions

The following paragraphs discuss the various combinations of

the boundary conditions at the inlet,

(1) Boundary Conditions due to Serra

Serral8 suggests the use of total pressure, total
temperature, and flow angle at the inflow boundary for successful

mndeling of internal gas flows.

= 3l .
£ v 0 and = - 0 (8)
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The finite-difference formulation of Eg. (8) is given by

™+l - - (y-1)(untly2 R 9
. Teo- (=D (UTTS14/(2vR) (9)
n+1 n+l,2,,. N+l y/y-1
Py =P + - . 2y RT, & 10
1,3 t/ { 1+ (v l)[Ul,]] /2y 1,J)} (10)
vitl 2000 (11) '
1,j )
n+1 n+1l
u, L o= U, . 12
1,3 2, ( )
n+l n+1 pn+l
.= P RT, - 13
1,3 1,3 /( 1,]) (13)
Knowing Un+1 and vn+l from Egs. (11) and (12) Tn+1 is
1.3 1,3 1.3
determined from Eg. (9) and PT+§ ’ p?+§ follow from Egs. (10)
r 4

and (13), respectively.

(2) A Minor vVariant of Serra's Conditions

A slight variant of Serra's boundary conditions results if

the condition 3U/sx = 0 is replaced by 3pU/3x = 0. We have
v =20, and — = 0 (14)
The finite-difference formulation of Eg. (14) is the same as

Bg. (9) to (13) except for Eg. (12) which is replaced by

Dn+] ”?+1 - pn+1 yntl

. . . 15
L,] v ] 24] 2,] ( )

(a) Rigorous TImplementation

Because of the nonlinearity in Eq. (15), Eqgs. (9),(10},(13)

and (15) form a set of coupled nonlinear ~quations whose solution
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procedure is facilitated by the following method:

n+l _ n+1
Py, = KlTl,j/R (16)
n+) _ n+l
Ui,5 T ¥PyLy (7
2/y-1
n+l n+l _
K2[T1,j] + Tl,j = Tt (18)
where
- y/y-1 - n+l n+l
& P /T, ] r K =055 Y2,5
and
K, = [(r=-1IR/2v][K/K 12,

The solution of Eg. (18) is accomplished iteratively through

quasilinearization as seen below:

{T?*ﬂ T (T,- 6K2/[T?t;]5i )/ 1—5K2/[T?le.li ) (19)
(b) An Alternative Formulation
Scott and Hankey39 implemented inflow boundary conditions
given by Eq. (14) by the following procedure.

LS e Ui Y R 2 (20)
p?f; = P /( 1+(y-1) [U?t§/2]2 /(2yRT?T§)) Y/v-l (21)
vi*l = 0.0 (22)
S
o1*S = Pt ereDtD) (24)




- By making use of the predictor step values of 1 and V Fgs.

ilf (20) and (21) can bhe solved for PT+§ and T1 j o independent of
[4 14
2 the updated values UT+§ and V?+§ obtained from Egs. (22)
9 [4 ’

and (23). Density 1is obtained from Eg. (24). Though this
approach reduces the program complexity, it is found to produce
an entirely different solution from that due to the rigorous
implementation of the inlet conditions as outlined by Egs. (15 to

19) [See paragraph I1l.2.a(2a)].

(3) Boundary Conditions Due t» Oliger and Sundstrom

» " N
PR

Oliger and Ssundstrom40-41 haye shown that the specification
of p, I, and VvV at the inflow is well-posed for the linearized
system of equations. We have

o
oy W, v =0 and 1T = 0. (25)
The finite-difference analog of Eg. (25) is given by
n+1
.= f(t

°1,5 (t) (26)

AR YR (27)
1.3 ;
n+l _

C) Vl,j 0.0 (28)

P+l o ontl

0,5 = T2, (29)

n+1 n+l. .n+1
P .= . . :
d 1,3 - f, T, (30
: where f{t) and g(t) are given functions, which are fairly smooth
) and monotonic for t e (ty, t>) and are practically unchanged
‘ within a characteristic period of oscillation tP = 2n/w < ty-ty.
o (4)  Boundary Condicions Due to Fedorchenko

A. T. Fedorchenko3/7r42 successfully modeled unsteady subsonic
@
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flows of a viscous case with the inflow boundary conditions
involving specification of T, pU, and pV:

T, pU, pvV = 0, and %; . (31)

The finite-difference formulation is given by

Tn+% = Constant (32)
1,3

°TT§ v?f% = 0.0 (33)

p?f% UTT; = f(t) (34)

p?f; = PSTJI. (35)

o1ty = Prfg/(m'l‘f;). (36)

b. Outflow Boundary Conditions

In what follows we describe different variants of essentially
what amounts to the specification of exit pressure (Pg) as the

required outflow boundary condition.

(1) Non-Reflecting Condition

Rudy and Strikwerda43 suggest the use of a non-reflecting
boundary condition which is based on the outflow characteristic
of the Euler equation of motion for application to viscous gases.
The main purpose of the condition is to prevent upstream propaga-
tion of acoustic waves from the outflow boundary and thereby
accomplish rapid convergence to the desired steady-state solution

using time-dependent Navier-Stokes equations. Thus

2 2 2

P AU _ 3°U _ 3°v _ 3T _

5t T PAgE * ofPP)=0, ey =ty = = 0. (37)
3 X d X 3 X

Because of the time dependence of the non-reflecting bhoundary

condition it is necessary to describe the finite-difference

formulation of hoth the predictor and corrector steps.
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The Predictor Step:

2, n+lp
3% :
___K.LLLJ. ——— = () (38)
2
9 X
where ¢ = U, V, and T
n+l/2_ ,n n n /2, ,n+1/2_ ..n .
i, i - ke, ke, RTke, ) Wer,5 ™ Yke, 5! (39) :
n
- aAT (PKL,j - Pg)
The Corrector Step:
2 n+l
3% .
_RL. - g (40)
2
3 X
where ¢ = U, V, and T
n+l  _ n+l/2 n
PKL’j = O.S(PKL,j + PKL'j) (41)
n+l/2 n+1/2, 1/2, n+l _ n+l/2, _ n+1/2_
PKL, (YRTKL,j ) <UKL,j UKL,j ) aAT(PKL,j Po)

Instead of the vanishing second-order derivatives givoen by
Egs. (38) and (40), linear extrapolation of ¢ = U, V, and T is

incorporated atr the exit, as seen below:

ke, ¢ %L, 5 T *ke-1,30 k-1, 47 X¢r-2,3" 1 ke-1,5" ¢ku-2, 3’

-1, (42)

(2) Constant Pressure Condition

The boundary condition most widely used in many gasdynamic

applications involves the specification of constant pressure,

Po= Px, _ = = - =
‘ d X 3 X d X 0 (43
phrl o nkl okl n+l o _ o ontl
Ki.,] 2 JKl,,j UKL—l,j’ vKL,j VKL—l,j’
n+l n+l nt+l n+1
. T and .= P . +
(i ki-1,5 "™ Pke, ke, 3’ (Rl 44)
KL' J
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(3) Split Boundary Condition

Hasen44 suggested the use of a split condition for pressure

as the outflow condition.

(a) Rigorous Implementation

P=Pe’ r < R

S

split condition

aP _
-3—; = 0' RC < r < Rd
S
83U _ 3V _ 3T _
ax ~3x ~ax -0 (45)

where R, and Rg are the radii of the centerbody and duct wall of

the combustor, respectively.

n+l _ .

pKL,J - Pe if r < RC
n+l _ _n+l . :

PkL,j = PxL-1,3 LE Ry< 1 < Ry (46)
n+l _  n+l n+l  _ n+l n+l

bkL,j T ®kL-1,5 ' PkL,5 = Pku, 3/ (RTge, )

where ¢ = U, V, and T.

(b) Alternative Implementation

Instead of evaluating density €from the equation of state, Eq.
(46), Scott and Hankey3? used the following method:

n+1l

n+l
kL,

KL, ] /(RTEZEllj[1+Y(Y'1)M2/2]

= p

Furthermore, after the determination of the primitive
variables, the programming of Reference 39 in the evaluation of

the conservative variable, pe, is as follows:

n+1l _ n+1 n+1 n+1 2 n+1 2
[oelKL,j = pKL,j{CvTKL-I,j + [UKL-I,j] + [VKL—I,j] } (48)
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The implication of Eqg. (48) is that more energy is added at
the outflow houndary by an amount equal to LQ(U2 + V2) hbecause

specific internal energy is defined as e = C,T + lp(U2 + v2),

(4) Relaxation Boundary Condition

The following variant involving the specification of pressure
at the exit is used in Reference 45 for the modeling of

Kelvin-Helmholtz instability.

Pn+1 = p +

KL, 3 ) (P_-P) /Ry, (49)

kT *kL-1

where P is obtained from the linear extrapolation; and

39 = 0, where ¢ = U, V, and T.

(5) Boundary Conditions For Reverse-Flow Exit

A. T. Fedorchenko4? suggests the use of specifying v, T, and

P if there is a flow reversal at the exit.

B 3U _ 3T _ 3V _
b= Porgx 3% ~3x 0
and (50)
V=0,T=T, P=~p and 22Y = g jf gN*l g
’ e’ 7 e 3 x ) KL, j :

9]

solid-Wall Boundary Conditions

The centerbody and duct walls are treated as no-slip,
isothermal surfaces, involving the specification of T, and U, =
Vy = 0. The remalining thermodynamic variables Py and py are eval
uated from:

P

Pw = Rprwl o =0 (51)

(o5

nrocontimiity equation, where n is in the direction normal to the

will.
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d. Centerline Boundary Conditions

The boundary conditions on the axis of symmetry are given by

dU _ 3P _ 3T _ -
3 - 5F - 5% 0 and Vv 0 (52)
e. Acoustic Characteristics of Boundary Conditions

By linearizing the inflow and outflow boundary conditions it
is possible to estimate the acoustic properties of the longitu-
dinal oscillations in the domain of interest. Following the
aproach of A. T. Fedorchenko, 37 the relative value of normal con-
ductance 0 and reflection coefficient 8 can be estimated for the

given inlet boundary by considering small adiabatic fluctuations:

U=T+U', V=V+V',p=p +p', p' = P'/Sz, ’g— <<1
U

P { << 1. (53)

For the boundary conditions given by Eq. (8}, it is possible to

show that

0 = U'p a/pP!
and (54)
B (1+0)/(1-0Q).

4t

1t is known that both 0 and B are real and independent of the

frequency of oscillation. From the definition of Py, we have

(y - 1) U2 y/y -1
Pe = P (1 + 5 .2 : (55)

For small M, the above equation can be approximated by

2
Pz Py (1 - 57 ) (56)

In terms of the small adiabatic oscillations, Eq. (56) becomes

U2 uy
pxopy (1 - 2o - Pel : (57)

2RT RT
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Ssubstituting for P' = - - in Eg. (54), we have
RT
. _p arT . _a _ _1
TRy Tw T
t
and
LM -1 L
U e 1. (58)

For the inflow conditions of Eq. (25), 0 = 0 and 8 = 1 and
they represent adiabatic solid wall boundary conditions involving
specification of U, VvV, and 3T/3n = 0. The inflow conditions act

as a perfact reflecting boundary, independent of M.
The analysis42 of the inflow condition of Eg. (31) shows

M and g = 1M =+ 3, (59)

0 T+M

n

For the exit boundary conditions (P = P.) of Eg. (43),
Fedorchenko??2 showed that O = and 8 = -1, which indicates that

the conditions act like a perfect reflecting bhoundary.

For the total transmission of the quasi-plane normal wave
through the inlet and exit boundaries (that is,, sl << 1), it 1is

required that (O)ipflow = -1 or (O)putflow ¥ '. Tf, however,

(O)inflow > 0 or (O)putflow < 0, it may lead to the amplification

of the longitudinal oscillations in the domain of interest.

The foregoing analysis does not take into account the radial
nscillations arising from the inhomogeneous boundary conditions
ap U ap

at the inlet and the exit (if 50 ¢ 0, then =~ * 0), as well as

the rofraction effects in the vortex flow.42

It is useful to note that the reason for considering
perfectly reflecting permeable boundary conditions at the exit
[except for FEq.(37) from Rudy and strikwerda?3] is du~ to
Hankey, 4% who suggested the need for a feedback mechanism to
sustain the inherent unsteady behavior which is characteristic of

the bluff-body shedding phenomenon at high Reynolds-number flows.
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3. COMPUTATIONAL DETAILS

Using the time-dependent, axisymmetric, compressible
Navier-Stokes equations of a perfect gas, solutions are obtained
for the subsonic flowfield in the CBCC. Figure 40 shows schema-
tically the APL CBCC and the physical domain which consists of 60
axial and 46 radial nodes. Although the dynamic behavior
observed in the centerbody near wakel5 involved combustion due to
the annular air stream and central fuel jet, present computations
are directed towards obtaining a physically meaningful unsteady

solution involving the flowfield due to the annular stream alone.

The equations describing the conservation of mass, momentun,
and energy may be written in the following conservative form in

physical space as

3 E F 1 3rG _
e tax Trae M (60)
where
p_l pU _l
pU QU2 = Txx
E = oV ’ F o= pUV = Tpy ’
pe pUe - UTxx - VTxr - KTx
L — - (61)
— —_ - -
pV 0
pUV = 1,y 0
G = pV2 — Tpp » H = |- tg./r
pVe - VTrr - UTX[' - kTr 0 _J
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and where

= v -
Ty (20 + A) 5+ Mg+ §?J P (62)
- Y vV o, 93Uy _
Tep = (20 +2) s+ A (5 + 53) P (63)
I \ AU, 3V, _
Thp = (2u + ) ?+’\ (3_).(_ +3_f) P (64)
and
o _ 3U |, av
Txr ~ trx M (5? * ?Y) ‘ (65)
The values of Prandtl number (Pr) = 0.72 and ratio of speci-
fic heats (y) = 1.4 are specified. The molecular viscocity u is

related to the temperature by Sutherland's law. Finally, the

pressure is related to temperature by the equation of state
P = pRT. (66)

These equations are advanced in time using the vectorized
computer code of shang47 which employs MacCormack's explicit and
unsplit algorithm.48 A forward-predictor, backward-corrector
nperator sequence 1is used for each time step. FExponential grid
strtching is used to adequately resolve the flowfield in the
anticipated regions of large gradients. The physical domain is
transformed intn a computational domain of unit square with equal
spatial step sizes, Ax and Ar {(Ax # Ar). The time step of
compressible equations is limited by the Courant-Friedrichs-Lewy
(CFL) condition. The maximum allowable time step in transformed

coordinates is given hy

1] u C £ g g
\ N & X Xy 2 £y 2,711/2
Mo, = Vige v g v allge v 5007 + (g7 *+ 56) 7H) (67)
whero
! = 1+ vV
I8 X 1
S L S

t(x) and r(r) are the transformed variables needed for the

tranaformation of the physical domain to the computational
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terbody diameter DC) are equal to 1.1 and 0.5 respectively. 1t is
observed that the initial development of the flowfield is accom-
panied by the generation of longitudinal harmonic oscillations
with a clearly defined dominant frequency wy,] ~ 182 Hz which is
close to the fundamental characteristic frequency of a one-
dimensional quarter-wave resonator wyj ~ a/4Lyq ~ 191 cycles/sec.
In addition, resonance also occurs at all harmonics of the fun-
damental frequency, i.€., wyp = Wyjs eeer Wyp = Mwyq. The
longitudinal oscillations attenuated in about 3,500 time steps
which clearly corresponds to the time it takes for a particle
entering the inflow boundary to reach the exit plane,

L3i/Uinflow ~ 8 milliseconds. The vorticity contours of Figure 42
show heavy concentration in the boundary layers of the duct wall
and the centerbody wall., The positive vorticity contours
corresponding to counterclockwise vorticity originating from the
duct wall bhoundary layer are shown by hatching. The negative
vorticity contours originating at the centerbody boundary layer
are carried past into the centerbody near wake by convection. It
is observed that the tail-end of the zero-~vorticity contour
extends in the axial direction towards the outflow boundary at a
rate of 3 m/s. The stretching of the recirculation region is the
only unsteady feature of the flowfield after the combustor mass

flow reaches the steady state.

Figure 43 of Case 2 shows that there is no variation in the
mass flow rate or in ATcpr Of the flowfield with time. The
pressure contour plot se2n in Figure 44 clearly demonstrates the
existence of a shear layer originating from the trailing edge of
the centerbody and shows the location of the vortex center 1in
this shear layer. Furthermore, as may be anticipated, the
pressure minimum occurs at the vortex center and the pressure
maximum at the centerline stagnation point of the centerbody.
All other saliert features of the flowficld are identical to the

previously discussed Case 1.

Figures 45 to 47 correspond to Cases 3a and 3b., Case 3a
carresponds tooa mass flow rate of 2.5 kg/s and a Reynolds number

of 106 on a2 (60 x 46) grid and Case 3b corresponds to a mass flow
99
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Reynolds number based on the duct diameter and the average Mach
number of the flowfield based on the average inflow velocity.
Table 7 also provides the details of the number of timesteps
(iterations) and the corresponding total time in seconds over
which the flowfield is computed. OQuantities shown in parentheses
in Table 7 must be interpreted with care. The asterisk denotes

the data of Reference 39.

The numerical calculations are performed on the AFWAL CDC
CYBER 750/175 computer and on the NASA Lewis Research Center
CRAY-1 computer. The original AFWAL computer code has been
optimized for the CBCC configuration by reducing the field-length

of computer memory from the initial requirement of 363,000g words
to 172,100y words for the baseline domain. The optimized ver-
g sion of the computer code requires a field-length of 216,240g

words for the extended domain.

i-z The relative computational efficiency, or the so-called
"computational effort" 1t is defined as the CPU time required to

1' advance the solution by one time step per spatial grid point;

E i.er., T = CPU in seconds/number of mesh points x number of time

) steps. For the present computer code t = 5,96 x 10-4 seconds on
the CYBER and t = 4.4 x 1073 seconds on the CRAY. All the

numerical computations are performed for the (60 x 46) grid on

the CYBER and for the (80 x 46) grid on the CRAY. For the solu-

tion to advance 10,000 time steps, the approximate CPU time
required for the computer code is 4.5 hours on the CYBER and 0.45

hours on the CRAY.

The numerical calculations of Cases 1 through 4 of Table 7

show that the flowfield attains a steady mass-flow rate and the

o ) time required for the flowfield to reach this converged mass-flow
rate varied anywhere between Ly/Uinflow 'O 4L3/YUinflowe The
velocity vector plot of Case 1, Figure 42, shows a stationary
recirculation region in the centerbody near wake and does not

® indicate any evidence of vortex shedding. The ¢ nterline reat-

tachment point extends all the way to the exit plane. The axial

Gl anteb e e S Jb B o

and radial coordinates of the vortex center (normalized by cen-
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domain. The calculations are performed using third-order artifi-
cial damping parameters of Reference 49 to suppress spurious

numerical oscillations.
4. RESHLTS AND DISCUSSION

Table 6 shows the details of nine cases modeled with it -
ferent combinatinns of several inflow and outilow boundary con-
ditions. To identify the effect of the rixlative location of the
inlet and exit boundaries on the reflection characteristics of
the boundary conditions to be examined, two different tinite-
difference domains are considered. The baseline domain
corresponding to Figure 40 consists of 60 nodes in the axinl

direction and 46 nodes in the radial direction. The domain

represents a finite-cylindrical duct of lengith, Lg = 45.38 o and
radius, R4y = 12,70 cm and a centerbody of length, Le = 10.50 om
and radius, R, = 7.00 cm. The maesh is constructed with variable

step sizes, Ax and Ar to provide a finer mesh at the near-wall
regions of the centerbody and the duct, as well as in the recir-

culatinn zone of the centerbody near wake. Fxponential

stretching is used to construct the mesh with Ax varying between
a maximum of 1.4 ¢cm to a minimum of $.24 cm and Ar varying
hetween 00505 em to 0024 cm.  Figure 41 shows the extended
domain, which consists of 80 neodes in the axial direction and 46

nodes in the radial direction. The physical dimensions of the

two domains difter only in the axial length »f the cylindrical
duct (L4 is 2gual o 67.05 cm for the extended domain).
b
}. Table 7 shows the details of the numerical computations for
& : . - .
T modeling of the nine different cases of inflow and outflow boin-
\ i
. dary conditions given in Table 6. The table includes the values
b - of the paramcters to be specified for the inflow and outflow
.
°® boundary conditions, CFL number, damping parameters (Cy and Cp)
r . . . . . . . - - .
b .- and thae initial distribution of the flowficeld, In all the
4
t' numerical computations, the values of the tempoeracure and com-
; ponents of velocity to be specified at the conterbod, and ouct
& , . . ,
° walls arce kept constant at T, = 536.6°R and i, = V., = 0. Table 7
4 . . . .
t Also includes rhe rosults of the numerical oo acations in Lorms
thz of the average mass fFlow of the conbhnstor lowtield, average
. : "
p.~ 92
b
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rate of 5.0 kg/s and a Reynolds number of 2 x 10 on a (80 x 46)
grid. Neither the increased Reynolds number nor the variation in
the relative location of the inflow and outflow boundaries show
any difference from the results of Cases 1 and 2. However, there
are minor fluctuations in the mass flow rate with time,
corresponding to a fundamental frequency of wy) = a/4Lq = 128 Hz
for the numerical calculations performed on the (80 x 46) grid of

Case 3b.

For the inflow boundary conditions involving the specifica-
o U apU _ 0
’

tion of total pressure, total temperature, V = 0, X or T =
it becomes practically impossible to specify at the inflow cross-~
section arbitrary profiles of U with characteristic values of the
transverse gradients {especially with a definite value of mass
flow at the inflow). When these inflow conditions are used in
conjunction with the outflow conditions involving P = Pg, or the
nonreflecting condition of Rudy and Strikwerda43 for the
flowfield with a steady-state solution, it becomes extremely dif-
ficult for the system to attain the desired mass flow rate. This
difficulty is evident from the results of Cases 1, 3a, and 3b,
where the average mass flow rates attained by the flowfield are
given by 2.3 kg/s, 2.5 kg/s, and 5.0 kg/s, respectively. The
sitiiation becomes ceven worse for unsteady flowfields or when
these inflow conditions are used in conjunction with outflow con-
ditions involving the split condition of Hasen,%4 which permits

variation of pressure with time at the outflow boundary.

The initial distribution of the flowfield for Case 4
corresponds to the solution of Scott and Hankey39 at 25,700 DT.
Fiqure 48 shows that the fluctuations in the mass flow persist for
the first 8,000 DT. For the next 14,000 DT, both inflow and
outflow mass flows reach essentially a constant value of 5.5 kg/s
but with a slightly increasing monotonicity. The actual dynamics
of this tendency to steady mass flow rate can be seen from the
velocity vector plots of Figures 49a and 49b and the vorticity
contour plots of Figures 49c and 49d. 1In Figiures 49c and 494,
breaking up of the clockwise recirculation vortex occurs as a

counterclockwise vortex originates at the centerline of the cen-
109




e

NArEl a0 st sbus aadd

w

ek G A 00 g g

A

-

—

TN

89°0

L o9lgqel 30 b

‘0

0se) 103 MO[4d SSeW 103ISNquo) Ul

%0

no-01 NOT1vyILI

hZ'0

uotlletaep jeaoduway,

80'0

‘egy o@anbilg

00°0

11X3

L137N]

JLVYM0TS SSYW

(S/79%)

0S¢

e L

-,

.

2

e -

110

ina.

[y %Y

PRPRT




T

‘..,.qm
e
-.-.».L
o
L o1qe), 3O § 958D J0J MO SST J01snquol ul uotljiwidevps [rvaoduway *qgp oanfdiy A
......L
:o'E HOLivHILl .4
LU on°1 [AS LIAR L1 80°1 00'1 Z6°0 h8°'0 9°0 89°0
2 i A i Y 3 i o N 00°0 .....L
- 05°0 \...
| »
t 001 .
L »
F 0s°T "
L4
|
S OON _....
3 w ....-A
w o
- 052 @ 1
insl

qnlu b g

x —l '
‘. b — k
00°§ M — A

= .
05°s 2 -4
] 4
00°h ;.*
1 y
L 05°h -l
b
f
| R
137N )
L 00° .
L L
e ————— | 05°¢ v
/I 11x3 | ]
L 00°9 4
{
L |
. v
v..-\
- . - - .. e 1
A Sy et e a A A 4 PP Sy S L |




4
1 . . ]
1
p ‘L @1gel JO p 9Se) 10J MO[4 SSel 101SNquod Ul uolieraep lerodwal - ogp oanbiy
1
p
“ np-0F NOILvYILI
. 0’z 92 80°2 00°'Z 6°1 "ong't 91 89'1 09°1 51 PR
. . \ 000
n.
g [ 05°0
r
X a
4
m [ 00° 1
Py
1
[ !
.. 05°1
: .
4 00°2
, |
4
: P
1 g
_ F o5z ¥
! Wu o~
g O
" 00°¢ ™
3 { =
' S
w_ - 0s's
wi. -
3
g 00" h
b 05y
|
L 00°s
137N] | _
4
- ——— — 1 05" ;
SR
/ll 11X3 L 00" 9
L Co.
LS WP N '




A YT wT v Y

WYY VYT WY YEw

-

———

[ IO S T O 2 3 2 O B A R L
[ 20 K T B N N O N A AR terr oo, ... ~
‘ Y
[ B N N A =
{ree » .. [} 0 <
© i
Trrorrrree,. fte s .. L., e -
5
tttrertre, v ieeas 1 I TR .
< .
fr. f N .
trr ety e LSS R AL AR R ) % ,. 1
1o} ©
LI B AN B 2 BN ettt Q .
e L) -.-\§\~v-~nwcnn<< b
o 4

. o -

trettore RRPTTRT ) T T b -
~ S g

tetree, e S e e e o + u
o o (@) -

trrtt . < o |

[ .. e v e ... >

LU N <3 LI A [ 5

1€

1 40 20 2 O T e ideen . fl LB Y S 1] (o}
. = ) LS B
LA R A B R [ I O I z O ™ .
) - '
L B B R SO e LI T I B SE VI > ~ ’

~‘ﬂ ﬂ‘n A B I N Y R )

. . LI B B T > .
ter vty Cevaese e os o0y crrenn + :
trtr vty BEII L Ve 0 :
EEREAE L 3 .
EEEERN ’ b 9 B
Prrrrn . [ I R A — B

! [ N I I B Y] .

et . v
:::.. ERRREE > |
e o
SERRSE 3
' P [ S A . q
tt ] | N T R 1} o
LA B A B B A LIS B 2 B ) o 4
- .
Ttrr rores LI B I B} .
e "
trr trtt troY e b
3
trr oty e oy g _
L] v I
9 J
11t t 21t 1t g 3 g 3 i
)
. " ! . . . y
e PO A - PR W . A 2 >




.y

~

L2 2 DU D D I A B N D DN B NI I B
R
LI B LI I R B A A
[ R R R A AL N A N R
NIRRT

[ 200 O SR B I N N AN AP

rr o ot rrrrre.. .. o
vererrrree ool
UL B B L T Y I
| LR LESRTETY N
fitet vt eI I
frereten nnal
ﬂﬁunan... Coraasisllds
12 20 B 2 A ICON i ls
Tttt TEeIY I}
L B2 20 IS B 2 BX BN e esasiasieds
“““““““—......-~.....—

‘/onl!l\\\
IR IR R RN SSSSIE §
]
1t - N
1t

rer v 1

rt ot

1rr vttt

trrt vttt :

Tttt e

trr t et

ttr 1t

| t 2 ¢ ¢yt 22

11,000

N =

-

r=

-

- e = - -

[ S R T B O B R A S
LA A A R
[ I B A ] rer
te ?t 1 12y e e i,
trr rrre Tttt v vy
{rerrtre. RSN Y
I IEEEERY ARV EYYE Y
L LI B A B EEEYYYVESY
ftette,. EXYYFETTTEY
ittt teq, NNV OSSSY
U- tte.. REEYYITEVYY
L0 40 B S O RN YYSRRSY
ftrrtee, REERTYTRRES
uﬂqnnq-. cedagdlieg
LA S0 B 2 IR I RN FTYRERE
TT T % ccrdssattbi
1T 1 % Y q cceeqcssbdban
|20 2 BN K B ... 1o
LR T B
M*...., INOOSSSEI
*.... s
Tt
LI S D O S B}
Tttt e
tr ¢ ¢ty
Tttty
tr ot ot
LI I B I B N
Tt vt
.ttt g
-

22,000

N =

Velocity Vector Plots for Case 4 of Table 7.

49b,

Figure

114

3

o =

4
L
[
A
!




R

Y -
N ~ - - i N T U =

Figure 49c.

Yorticity-Contour Plots for Case 4 of Table 7.

115




.......

N = 11,000

)

N

22,000

Figure 49d. Vorticity-Contour Plots for Case 4 of Table 7.

116




hafi G I Sat i (i e gl fhery sl g R T R TR T I T RrTr——_—_m—ey, AR T St I A e Sy

terbody near wake, gains strength, and grows. At 5,000 DT, the
figures show the remnant of the clockwise vortex which is about
to be washed off downstream. From this point onwards the mass
flow rates tend to their constant values, the clockwise recir-
culation vortex begins to grow, pushing the eddies towards the
exit, and the final state resembles that of Figures 49b and 49d
depicting the stretching of a stationary recirculation vortex,
extending in the axial direction at a rate of 3m/sec. The large
mass flow fluctuations of Figure 48 correspond to the time during
which eddies are washed off the exit. Thus, approximately 8,000
DT are required for the initial transient fluctuations to disap-

pear and the flow to attain a steady mass flow rate of 5.5 kg/s.

It is important to note that none of the calculations
involving Cases 1 to 4 of Table 7 are continued long enough for
the reverse flow to reach the outflow boundary, which would even-
tually happen due to the stretching of the recirculation zone in
the axial direction. The rate at which the recirculation zone
extends in the axial direction is found to be very slow at 3 m/s

in all the cases considered.

Figures 50 and 51 correspond to Case 5 of Table 7. The in-
flow and outflow conditions are identical to Case 4, except for
the inflow boundary conditions, which are programmed by the
simplified procedure described in Paragraph IIT.2.a(2b). During
the first 20,000 DT, after the initial attenuation of the longi-
tudinal oscillations a steady mass flow rate is established as
evidenced by Figures 5la, 5lc, and S5le. Recall that three boun-
dary conditions are to be specified when there is a reverse flow
at the outtlow boundary. As the extending recirculation vortex
causes reverse flow at the outflow boundary around 22,000 DT,
the split houndary condition involving the specification of only
exlt pressure cannot objectively handle the appropriate physics
of the flowfield., As soon as this happens, reverse longitudinal

nscillatinng are established, causing the domain to act as a
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resonator with a fundamental frequency of the guarter-wave reso-
nator. This process of acoustic interaction with the recir-
culation zone is accompanied by shedding-like phenomena seen in
Figures 51b, 51d, and 51f. The mass-flow fluctuations of Figure
50 show that the amplification of the longitudinal oscillations
result in a complete reversal of the mass flow at the inflow and
outflow boundaries and the numerical solution becomes unstable

and nonphysical.

Cases 6a, 6b, and 6c of Table 7 refer to the inflow and
outflow conditions discussed in Paragraphs III.2.a(2b)
and ITI[.2.b(3b). Figures 52 and 53 are taken from Reference 39.
Figure 52 shows that the mass flow varies between a maximum of
4.875 Xg/s to a minimum of 3.125 kg/s and the variations in the
b0Tcpp, is a result of the temperature fluctuations in the
flowfield as ATcp, ~ 1A T. The numerical calculations of the
isothermal flowfield showed temperature fluctuations ranging from
4,000°R to 250°R but the fluctuations are restricted to a very
narrow band of the grid near the centerline of the reattachment
point of the recirculation region. It appeared that these tem-
perature fluctuations were caused by a violation of the CFL cri-
terion due to an earlier discrepancy in the TIMESTEP subroutine,
Figure 53 shows the velocity vector plots and vorticity contour
plots. For a discussion of the results on the unsteady solution
of Case 6a, the reader is referred to Reference 39.

FFor Case &b, the numerical calculations are performed on a
(80 x 46) grid with the corrected TIMESTEP subroutine. Figure 54
shows that the mass fluctuations persist for as long as 36,000 DT
pefor establishing a steady mass-flow rate. However, the tem-
poral variation of ATcgp and the associated temperature fluc-
tuations (ATep;, ~ 1//T) are indications of nonphysical bhehavior
of the solution as the calculations are performed under isother-
mal conditions. Figures 55a to 55e show the initial oscillatory
flowfinlid betore the establishment of a single recirculation

vortex,
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Numerical calculations of Case 6c are performed at a CFL
number of 0.8, with all other conditions bheing identical to Case
6b. Figure 56 shows that the mass flow rate remains stable
around 4.75 kg/s except for the fluctuations resulting from the
eddies being washed off the outflow boundary starting at 28,000
DT and 38,800 DT. However, the large temperature fluctuations
observed (ATcpp ~ 1//T) result from the particular choice of
boundary conditions. Figure 57 shows the velocity vector plots
and vorticity contour plots. The numerical solutions of Cases 6a
to 6c show that the character of mass flow fluctuations and of
the associated oscillatory behavior of the flowfield is a func-
tion of CFL number, as well as the relative location of the
inflow and outflow boundaries. More important, the solution is
nonphysical because of the large temperature fluctuations asso-

cliated with the flowfield.

Cases 7a and 7b are modeled with the inflow conditions of
Paragraph III.2.a(4) and outflow conditions involving split con-
dition of Hasen44 [see Paragraph III.2.b(3a)]. However, the

split condition is modified for Case 7b as seen below:

@
o

p*l - p it j < 43 and

KL, 3 . = 0 if j > 43. (68)

|

X

Q

The condition 3P/3x = 0 is restricted to the duct-wall boundary
layer. The advantage of these boundary conditions is that they
allow for the specification of inflow mass flow and have the
desired reflection characteristics for the modeling of the

unsteady flow behavior, 37

Figures 58 and 59 show that the appearance of the reverse
flow at the outflow boundary triggers mass flow oscillations
startin¢ with a fundamental frequency of wyy ~ 128 Hz. The
establishment of the longitudinal oscillations is preceded by
fluctuations 1in ATcpp, for a short duration, starting from 17,700
bT to 19,700 DI. This appears to resemble the heating phenomenon
of two harmonic waves of different amplitude and ~f slightly dif-

ferent frequencies. The thermal waves are rvestricted to a narrow
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band of grid nodes near the reattachment point of the recir-
culation region. Figure 60 of Case 7b shows that the flow

appears to be steady for the first 50,000 DT followed by tem-
perature fluctuations even before the mass flow variations begin.
Figure 61 shows the extending recirculation region before the
numerical solution becomes unstable and nonphysical due to the

reverse flow at the outflow boundary.

The outflow boundary conditions of Cases 8a and 8b involve
specification of three variables, when there is a reverse flow at
the boundary (see Paragraph II1.2.b(5). Unlike the numerical
solutions of Cases 5 to 7 we studied, the ATcpy of Figure 62
remains invariant with time as it should be, even if the
fiowfield becomes unsteady. When the reverse flow appears at the
outflow boundary around 54,000 DT, longitudinal oscillations are
established at a definite fundamental frequency of wy; = 128 Hz
with a time period of 7.92 milliseconds. This corresponds to the
quarter-wave frequency of the resonator. As the time progresses,
it excites the adjacent harmonics of frequency wyj, 20Wx] sees
nuxl1e The bimodal frequency of the mass flow oscillations
starting from 62,000 DT clearly appears to be qualitatively simi-

lar to the wave shown in Figure 63, which is a superposition of
. . wt . wt :
two simple harmonic waves, [ (2.0 = »g) Sin wt + (0.5 - 7u) sin 3wt} .

The two dominant frequencies of the flowfield correspond to

wxl and wix)]. However, it takes approximately seven cycles

for the longitudinal oscillations to attenuate before
establishing a stcady mass-flow rate. The velocity vector plots
and vorticity contonr plots for the first 40,000 DT of Figures 61
and 64 are identical and are not repeated in Figure 64. Figures
65 and 6 correspond to inflow mass rate of 4 kg/s of Case 8b

and the results are similar to Case 8a.

Figure 67 shows the velocity-vector and vorticity-contour

plots of Case 9. The cutflow boundary ronditions of Reference 45
allows for the reverse flow to appear at the ou.’low boundary
without causing any oscillations in the mass tlow rate but the

results do indicate high temperature fluctuations,
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N = 20,000

Vorticity-Contour Plots for Case 7a of Table 7.

Figure 59c.
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SECTION IV
CONCLUSIONS AND RECOMMENDATIONS

This section presents the main conclusions emerging from the
numerical flowfield modeling of the centerbody combustor

configuration, followed by recommendations for further activity.
1. CONCLUSIONS

Numerical prelictions of the turbulent recirculating flows
in the centerbody combustor configuration have been made for
nonreacting situations within the frameworks of both the
Reynolds-averaged and time-dependent Navier-Stokes egquations.

The steady-state predictions with the Reynolds-averaged equations
have examined both the large-scale and the small-scale CBCC, as
well as the confined two-dimensional mixing layer. The turbulent
eddy viscosity is computed by the k-e model and the calculations
considered the effect of streamline curvature and the
preferential influence of the normal stresses on the eddy
viscosity. For the CBCC flowfields, the computational
investigations address both the annular (air) and central (CO02)
flows. The predicted results of the axial and radial
distributions of the mean and fluctuating axial and radial
velocity components are compared with the available experimental
data.

The time-~dependent calculations of the CBCC address the
large~scale configuration with only the annular (air) stream
present. No modeling of turbulence is included in the present
calculations and the formulation accounts for the molecular
viscosity only (except for the effects of artificial viscosity in
the numerical computations). The predictive calculations with
the time-dependent equations have examined the influence of the
boundary conditions at the inlet and exit on the interior
flowfield from the viewpoint cf explaining the presence or the

absence of a dynamic behavior.
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Following are the major conclusions of this study:

The numerical calculations of the Reynolds-averaged
Navier-Stokes equations with the k-= turbulence model
provide qualitatively correct predictions that are
consistent with experimental observations in the confined

two-dimensional mixing layer and the CBCC flowfields.

The quantitative predictions in these configurations are
generally good for the mean field and poor for the
fluctuating field. This observation is characteristic of
many complex turbulent flows and is largely due to the
inadequacy of the standard k-e model (since it is an
isotropic model and also does not account for the extra
strain rates arising from interacting shear layers, large

streamline curvature, etc.).

Ad hoc modifications to the standard k-¢ model to account
for the effects of large streamline curvature and the
preferential influence of normal stresses emphasize the
complex nature of the CBCC tlowfields by exhibiting a
parametric dependence on the geometric scale and flow rates,
For example, the predictions of the small-scale CBCC with
the standard k-¢ model and the improvements thereon due to
streamline-curvature correction and discipation-equation
modification conform well to the hehavior observed in
several recirculating flows by other investigators. The
predictions of the large-scale CBCC, however, exhibit trends
that are considerably different, since the standard model
appears to be the best overall, while the modifications

overestimate the recirculation-zone lengths,

The predictions of the vortex-center characteristics in the
small-scale and large-scale CBCC's, on the other hand,
demonstrate similar trends vis-a-vis the experimental data.
Since the underprediction of the axial location of the
vortex center by the standard model is corsistent with the

experience of other investigators, it suggests that either
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the nature of the prediction is different in different
regions of the flowfield, or the measurement of the cen-
terline recirculation length in the large-scale CBCC is

significantly affected by the LDA technique.

Preliminary results appeared to demonstrate the capability
of the computations with time-dependent Navier-Stokes
equations to simulate the unsteady flow features in the
CBCC. The physical realism of the predicted behavior is not
clear, however, in view of the large axial extent of the
recirculation region and the very large fluctuations in the
mass flow rates and temperature. One possible source of
this difficulty is the lack of an adequate turbulence model

in the time-~dependent computations.

Comprehensive examination of the inflow and outflow boundary
conditions in the time-dependent computations suggests an
apparent lack of uniqueness in the numerical solutions of
the unsteady flow. Several computational case studies
appear to show that the time-dependent formulation yields a
steady-state solution asymptotically. The fluctuations in
the mass flow persist for a few thousand time steps before
the mass flow becomes steady. It remains unchanged for some
time and the fluctuations start to appear again. The only
unsteady feature in the flowfield during tihe time the
mass-flow rate remains steady is the slow axial propagation
of the recirculation region toward the exit boundary {(at a
speed of approximately 10 ft/s). This process continues
until the reverse flow reaches the exit boundary, thereby
rendering the exit-boundary conditions .incompatible. This
inadequacy of the outflow boundary conditions to handlz the
reverse flow causes the flowfield to become unstead; and
nonphysical, breaks up the recirculation zcne, and exhibits
a shedding-like phenomenon as longitudinal oscillations in
the mass-flow rate begin to appear with a definite

fundamental frequency corresponding to a gquarter-wave
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resonator. It takes a considerable time for these

longitudinal oscillations to attenuate before the flowfield

attains a steady state. The whole process repeats again

with the axial migration of the recirculation region as the
calculations proceed further. Thus, it appears that the
shedding-like behavior observed during the time period

associated with the mass-flow fluctuations may be neither
self-sustaining, nor physical. Therefore, a conclusive .
demonstration of the successful simulation of unsteady

features of subsonic internal flows characteristic of the

CBCC is not available at present.
2. RECOMMENDATIONS

In view of the foregoing conclusions, the present study
offers the following recommendations for further activity in the
time—-averaged and time-dependent computations of turbulent mixing

in subsonic internal flowfields.

° For predicting complex turbulent flows wherein large-scale
unsteadiness is not significant, the time-averaged
formulation (involving the Reynolds-averaged equations in
constant-density flows and the Favre-averaged equations in
variable-density flows, especially reacting flows) should be
adequate, provided hi@her-level turbulence models are used.
For flowfields wherein anisotropy is not significant, the
standard k-¢ model should suffice. 1In the near-wake region
of the CBCC where anisotropic effects are important,
turbulence models involving the direct solution of the
equations for the Reynolds stresses are worthwhile. A
useful start in this direction would be the application of

algebraic stress models,

° For the prediction of turbulent flows possessing unsteady
features, the Reynolds-averaged formulation which retains
the explicit time dependence should be considered. This
approach should be adequate for the numerical simulation of

those unsteady flows whose characteristic frequency of the
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unsteady mean flow is much smaller than the characteristic
frequency of the typical large eddies. Although it is
instructive to regard the present time-dependent
calculations with the full Navier-Stokes equations employing
the laminar viscosity as a special subcase of the
Reynolds-averaged simulation with zero turbulence, its
relevance to the high~Reynolds-number flows in the CBCC is
questionable, T1If the CBCC flowfield is representative of a
cyclic unsteadiness with a single narrow-band frequency
{which is much smaller than the typical eddy frequency) and
no additional complications such as three-dimensional effect

and free-stream turbulence are present, the axisymmetric

Reynolds-averaged formulation should prove to be useful. Of
course, the earlier remarks regarding the turbulence
modeling still apply.

° It appears from the unpublished AFWAL/POSF data on the CBCC

power spectra that this configuration involves a broad-band

distribution of frequencies. Furthermore, the present
experimental setup may not be entirely free from free-stream
Thus,

necessary to consider the three-dimensional simulation with

turbulence and three-dimensional effect. it may be

the Reynolds-averaged equations.

° Nevertheless, further research is clearly needed to
ascertain the influence of the inflow and outflow boundary
conditions on the successful simulation of unsteady
features, or the lack thereof in subsonic internal

flowfields.

° The numerical computation of turbulent flows through
time-averaged Navier-Stokes equations presumes that the

instantaneous flow variable

can be decomposed into a

well-defined mean component (which may be time-dependent)

and a fluctuating component that is essentially random.

Presently a viable theoretical framework to describe ‘

turbulent flows involving distinct quasi-deterministic,
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large-scale structures (which occur in transitional flows
and in flows which are younger and closer to their origin)
does not exist. However, the approach based on large-eddy
simulation with subgrid-scale turbulence modeling is
computationally feasible and theoretically appealing, since
the time-dependent, three-dimensional Navier-Stokes
equations are used to calculate the eddies larger than a
selected cutoff length and turbulence modeling is required
only for the eddies that are smaller. While the available

computer resources are not sufficient for this approach to

simulate reacting flowfields in the CBCC, a start should be
made with this approach for simpler flows which may be
regarded as subsets of the CBCC.
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