MEMORANDUM REPORT ARBRL-MR-03306

DRIFT VELOCITY COMPUTATIONS FOR SHAPED-CHARGE JETS

Steven B. Segletes

September 1983

US ARMY ABMAMENT RESEARCH AMO DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY aberdeen proving ground, maryland

Approved for public release; distribution unlimited.

$83 \quad 10 \quad 17 \quad 008$

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The uoe of theis names or manufaoturere' names in this report doot not oonteitute $i n i o r e m u n t$ of any ammoroial prodwot.

curves using the data from a specific round. This curve depicts the penetra-tion-standoff performance for the single round as if it could be shot repeatedly at a variety of standoffs. The curve could then be compared with the actual datum for the round.

table of contents

Page
LIST OF ILLUSTRATIONS 5
I. INTRODUCTION. 7
II. MEASURING THE DRIFT VELOCITY OF A PARTICLE. 7
III. THE DRIFT VELOCITY DISTRIBUTION FOR A GIVEN ROUND 13
IV. THE QUESTION OF TILT. 19
V. THE CREATION OF A PENETRATION CODE TO ANALYZE DRIFT 22
VI. APPLYING THE CODE TO DATA 31
VII. CONCLUSIONS 51
ACKNOWLEDGEMENTS 52
REFERENCE LIST 53
APPENDIX A: Program Listing and Variable Name Descriptions 55
DISTRIBUTION LIST 79

LIST OF ILLUSTRATIONS

Figure Page
1 Radiographic Apparatus Used to Record Flight of Shaped- Charge Jet. 8
2 Sample Radiograph of a Shaped-Charge Jet in Flight. 9
3 View of Particle Deviation as Projected onto the Transverse Plane 11
4 Locating a Particle in the Transverse Plane Through the Use of Three Radiographs. 12
5 Relative Velocity Fan Showing the Pattern Formed by the Drifting Jet Particles 14
6 Typical Plot of Axial vs. Transverse Velocity for Particles of a Given Round 15
7 Transformation of Relative Fan Into Absolute Fan for a Hypo- thetical Drift Distribution 17
8 Effect of Transformation from Relative to Absolute Drift Velocity on the Slope of the Curve. 18
9 Target Plate for Asymmetrically Initiated Shaped Charge (Reference 2) 21
10 Parameters Generated by PENJET to Describe Crater Formed by Impinging Jet Particle 23
11 PENJET Hole Profile Results from Ellipsoid Superposition 24
12 26
13 Refracted Particle Wave Theory Applied to Local Obliquity 27
14 Concept of Effective'Length as Seen by Impact Plane 28
The Role of Effective Velocity in Penetration Calculations Involving Copper Jets Against Steel Targets 30
16 Analysis of Round 2331. 33
17
Analysis of Round 2332 34
18 Analysis of Round 2334. 35
19 Analysis of Round 2336. 36
20 Routine Performance for Type of Round Analyzed 37

LIST OF ILLUSTRATIONS (CONT'D)

Figure Page
21 Analysis of kound 2937 with the Included Jet Rear Simulation Note: Optimum Performance Data Transferred from Figure 20 39
22 Penetration Capability of Distinct Jet Portions of Round 2331 40
23 Penetration Capability of Distinct Jet Portions of Round 2937. 41
24 PENJET Predictions of Hole Profile for Round 2334 at 23 CD Standoff. Penetration in Cone Diameters 42
25 PENJET Predictions of Hole Profile for Round 2937 at 23 CD Standoff. Penetration in Cone Diameters 43
26 Code Predictions of Rear-Jet Ineffectiveness Due to Side Wall Impacts of Drifting Particles 44
27 Orthogonal Views of Projected Hole Profile of Round 2331 at 18 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters 45
28 Increase of Side-Wall Impacts Predicted at Longer Standoffs 46
29 Orthogonal Views of Projected Hole Profile of Round 2331 at 23 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters 47
30 The Effect of Side-Wall Impacts is Not Only to Decrease Penetration, But to Widen Crater 48
31 Orthogonal Views of Projected Hole Profile of Round 2331 at 38 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters 49
A1 A Diagrammatic Sketch Identifying Some DRIFT Variables 71
A2 A Diagrammatic Sketch Identifying Some PENJET Variables 74

I. INTRODUCTION

Theories to predict penetration of shaped charges have met with varying degrees of success. Except for relatively short standoffs, penetrations diverge greatly and never really approach idealized values. Inspection of jets through the use of flash radiographs reveals why idealized penetration is not a reality: because the idealized jet is not a reality. The presence of drift velocity (seen in a radiograph as jet curvature) is suggested as being the main cause for the variance in jet penetrations. Transverse (or alternately drift) velocity refers to the motion of shaped-charge jet particles in the plane perpendicular to the charge axis of the warhead (drift or transverse plane). The distance travelled by a jet particle in the transverse plane is referred to as the particle deviance.

All shaped charge jets contain drift velocity to some degree or another. The origins of drift are naturally linked to imperfections in the warhead itself. Lack of uniformity of liner thickness, nonhomogeneous explosive, as well as asymmetric liner confinements must all be considered as possible causes of drift velocity in any given round. Fissures in the explosive material and uncentered boosters can also contribute to jet performance that is less than perfect. With respect to the rounds studied in this analysis, it was also noticed that rounds with pressed explosive possessed consistently lower penetration capabilities than their cast explosive counterparts. One theory is that the high pressures ($20,000 \mathrm{psi}$) required to press the explosive were capable of distorting the liner. The problems characterizing these pressed rounds were typical of the early days of pressing. Technology in the area of pressing explosives has since improved to a point where many of the problems then inherent in the rounds studied have been corrected. Some uncased pressed rounds now show penetrations of 5.5 calibers at 24 caliber standoff. Nonetheless, the pressed rounds that were studied possessed adverse qualities that manifested themselves in poor jets. Thus, with a multitude of sources for asymmetric conditions always present, it is not surprising to find the regularity with which drift velocity occurs in jets.

An algebraic analysis can be performed to evaluate numerically the drift velocities of the particles of a given jet. Preliminary and somewhat simplified computations indicate that drift velocity alone is sufficient to account for major variations in jet penetration.

il. measuring the drift velocity of a particle

The flash radiograph is the best tool to perform detailed analysis of the shaped charge jet in flight. It would, therefore, be appropriate to explain the nature and setup of the apparatus and how it relates to the data obtained and used in the analysis. A diagram of the apparatus is shown in Figure 1. The jet is radiographed from three different angles at three different times before it finally penetrates the target. The angular separation of each of the x-ray tubes is 45°. A sample radiograph of one of the rounds studied is shown in Figure 2. Note the fiducial markings which

Figure 1. Radiographic Apparatus Used to Record Flight of Shaped-Charge Jet

Figure 2. Sample Radiograph of a Shaped-Charge Jet in Flight
lie not on but parallel to the charge axis. Data are extracted from the radiographs by a digitizing process whereby each particle on the film is defined by six points located on the perimeter of the particle. By this means, calculations are made for each particle's length, diameter, velocity, mass, momentum, and kinetic energy using procedures described by Blische and Simmons. ${ }^{1}$

If it is assumed that the fiducials are parallel to the charge axis of a round, the radiograph of an ideal jet would contain an image of the jet parallel to the fiducials on all exposures. This assumption is not strictly true, but shall be discussed in Section IV. With near perfect jets rarely being observed, it becomes important to measure the transverse movement of particles with respect to the charge axis. However, the location of the charge axis is, in itself, unknown. One assumes that the charge axis is parallel to the fiducials on all radiograph exposures, though it is not coincident with any one of them. It becomes necessary, therefore, to choose a workable reference. The rear of the jet has always been considered the most stable portion. For this reason, a particle near the rear of the jet that is readily definable in all three radiographs is chosen as the reference. The reference axis is an axis parallel to the warhead charge axis on which the reference particle lies. If the reference particle is not drifting in the transverse plane, the reference axis will be coincident with the charge axis.

To see how the transverse velocity of a particle might be measured, it would be convenient to imagine looking down the charge axis, as if from liner to target. Ignoring all particles of the jet except the reference particle and the particle in question, the charge axis view of the situation could be described by Figure 3. Note that the film shown in the figure is just the "edge" of the film since the view is down the charge axis. The deviance (perpendicular distance between the reference axis and the particle in question) that is seen in the radiograph is less than or at most equal to the actual deviance due to the cosine effect. Given the apparatus of Figure 1, and having exposed the three radiographs simultaneously, the reference particle and the particle in question could be precisely locited with respect to each other in the transverse or drift plane. This situation is illustrated in Figure 4. The time delay that actually exists among the three exposures complicates matters little and three governing equations are readily derived:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{T}}^{*}=\frac{\mathrm{D}_{1} / \cos \left(\theta+45^{\circ}\right)}{\mathrm{t}_{1}} \tag{1}\\
& \mathrm{v}_{\mathrm{T}}^{*}=\frac{\mathrm{D}_{2} / \cos \theta}{\mathrm{t}_{2}} \tag{2}
\end{align*}
$$

[^0]

Figure 3. View of Particle Deviation as Projected onto the Transverse Plane

Figure 4. Locating a Particle in the Transverse Plane Through the Use of Three Radiographs

$$
\begin{equation*}
\mathrm{v}_{\mathrm{T}}^{*}=\frac{\mathrm{D}_{3} / \cos \left(\theta-45^{\circ}\right)}{\mathrm{t}_{3}} \tag{3}
\end{equation*}
$$

where D_{k} - apparent deviance read off the K 'th radiograph
t_{k} - the time between particle formation and the K 'th exposure
θ - deviation angle between path of deviation and some arbitrary reference (chosen parallel to film 2)

Equations (1), (2), and (3) all contain two unknowns, namely magnitude of drift velocity $\left(V_{T}^{*}\right)$ and angle of deviation (θ). Any two of these three equations can be solved simultaneously to yield a result for transverse velocity, both in magnitude and direction. In reality, the equations are solved in all three combinations, and a weighted average is taken depending on the particle's orientation with the radiographs. This velocity shall be called by the name of relative drift velocity since the particles are moving with respect to a moving reference (the reference particle).

III. THE DRIFT VELOCITY DISTRIBUTION FOR A GIVEN ROUND

When relative transverse velocities are evaluated for all the particles of a jet, a polar plot can be made whereby a line segment with length proportional to the magnitude of drift velocity is plotted at the appropriate deviation angle in the transverse plane. A sample velocity fan is shown in Figure 5. This relative velocity fan shows a kind of spray of the jet particles away from the reference particle in the deviation plane.

When a plot is made of the axial versus transverse particle velocity for a given round, a graph similar to Figure 6 frequently results. The data seems to be of the form:

$$
\begin{equation*}
V_{A}=K V_{T}^{*}+V_{R E F} \tag{4}
\end{equation*}
$$

where: $\quad V_{A}$ - axial velocity of particle
V_{T}^{*} - relative transverse velocity of particle
K - constant varying from round to round
$V_{\text {REF }}$ - axial velocity of the reference particle
Most rounds studied were in high correlation with Equation (4).
The next quantity to determine is the drift velocity of the reference particle from which all the calculations were made. If we assume that the reference drift velocity is negligible, then the separation distance between impacts of the jet tip and the reference particle would routinely exceed

ROUND 2344

Figure 5. Relative Velocity Fan Showing the Pattern Formed by the Drifting Jet Particles

Figure 6. Typical Plot of Axial vs. Transverse Velocity for Particles of a Given Round
$1 / 2$ charge diameter (CD) at a 24 CD standoff for typical drift distributions studied. Under such conditions, the reference particle will never enter the crater created by the jet tip because of excessive drift. However, it is not uncommon for a jet to produce a single entrance hole into the target at 24 CD standoff. Thus, the reference must possess a drift velocity which will tend to bring the reference into the crater formed by the jet tip. An equation is needed which expresses that the reference particle should deviate the same distance from the charge axis as the jet tip upon reaching a target block at a given standoff. Mathematically, the assumption is:

$$
\begin{equation*}
D_{R}=D_{j} \tag{5}
\end{equation*}
$$

where: D_{R} - the distance the reference has deviated upon reaching the target surface (magnitude only)
D_{j} - the distance the jet tip has deviated upon reaching the target surface (magnitude only)

Equation (5) does not preclude drift among the jet particles since it pertains to magnitude only. An angular separation of the drifting particles still exists and will tend to separate the jet particles at extended standoff. For a small angular deviation among jet particles however, Equation (5) gives jets the ability to produce single crater target impacts. It is suggested solely because a compensatory reference particle drift was required and is the best which can be proposed at this time. Since drift velocity is assumed to be constant after a particle's formation, Equation (5) can be expressed as:

$$
\begin{equation*}
V_{T_{R}} t_{R}=V_{T_{j}} t_{j} \tag{6}
\end{equation*}
$$

where: V_{T} - the absolute drift velocity of the associated particle
t - the time required for the associated particle to reach the target surface
R - the reference particle
j - an arbitrary jet particle
But the time required for a particle to reach the target surface is equal to the standoff as measured from the virtual origin (Z_{0}) divided by the particle's axial velocity $\left(V_{A}\right)$. Therefore, Equation (6) expands to:

$$
\begin{equation*}
V_{T_{R}} \frac{Z_{o}}{V_{A_{R}}}=V_{T_{j}} \frac{Z_{o}}{V_{A_{j}}} \tag{7}
\end{equation*}
$$

Simplifying:

$$
\begin{equation*}
\frac{V_{A_{R}}}{V_{T_{R}}}=\frac{V_{A_{j}}}{V_{T_{j}}} \tag{8}
\end{equation*}
$$

a relative velocity fan with SCALED REFERENCE VELOCITY ARROW INDICATING MAGNITUDE AND DIRECTION OF REFERENCE DRIFT. THE apex of the fan represents the REFERENCE PARTICLE FROM WHICH DRIFT MEASUREMENTS WERE ORIGINALLY TAKEN.

AN ABSOLUTE VELOCITY fAN IS CREATED BY CONNECTING THE TAIL OF THE REFERENCE VECTOR TO THE relative velocity fan. the apex OF THE FAN LOCATES THE CHARGE AXIS IN THE TRANSVERSE PLANE. THE REFERENCE PARTICLE NOW BECOMES JUST ANOTHER DRIFTING PARTICLE.

Figure 7. Transformation of Relative Fan Into Absolute Fan for a Hypothetical Drift Distribution

For a crater profile in which all particles of the jet enter the target surface at the same point, Equation (5) must hold for all particles, implying:

$$
\begin{equation*}
\frac{V_{A}}{V_{T}}=\text { constant } \tag{9}
\end{equation*}
$$

Since the reference is at the apex of the relative transverse velocity fan, the reference velocity would appear as a vector with its tip attached to the apex of the relative velocity fan. Its length corresponds to the drift velocity of the reference particle and its direction indicates the direction in which the reference is deviated. Its direction of deviation is assumed to be about the same as that of the slowest digitized particle. The absolute velocities of the balance of the particles are calculated by vectorially adding the reference velocity to the relative velocities of the respective particles. Thus, an absolute drift velocity fan is created by drawing the segments from the tail of the reference vector to the tips of the relative drift velocity fan. (See Figure 7.) Graphically, Equation 9 implies a linear V_{A} vs. V_{T} plot which intercepts the origin. With the proper vectorial addi-
tion of the reference drift as just described, relative drift distributions like Figure 6 readily map into absolute drift distributions which satisfy Equation 9. (See Figure 8.)

There is no way to know whether this transformation into absolute velocities is the correct one. However, it is believed that the directional assumption of the reference is a safe one, and that the Equation (5) assumption is as good as any considering the need for the drift correction of particles. In addition, the results obtained from the transformation are supported by the experimental data. Note that Equation (9) does not guarantee that all particles will only form a one crater hole profile even though all the particles should deviate the same distance from the charge axis. A large angular spread in a jet (characterized by a wide absolute velocity fan) may produce enough relative deviation among the particles so as to cause multiple impacts at long standoff. Thus, the deviating factors in jets are both the angular spread and the magnitudes of the drift velocities.

IV. THE QUESTION OF TILT

A possible and potentially fatal flaw in the previous discussion concerns the presence of tilt. The word tilt is taken to mean a charge axis that is not parallel to the radiograph fiducials. An original assumption was that there was no tilt, or that charge axis and fiducials were aligned. It is obvious that some sort of tilt must exist, however small. The answer as to when tilt becomes critical is a bit disconcerting. Depending on the jet, a one-degree tilt of the charge axis off the fiducials could induce an apparent drift velocity of $160 \mathrm{~m} / \mathrm{sec}$ in the jet tip as measured with respect to the fiducials. It is likely that uncertainties of this magnitude exist regularly.

The consequence of tilt on a jet is an apparent drift velocity distribution, which is also governed by Equation (9), which is the assumed relation for actual drift velocity. One may rightfully wonder whether all of the drift velocities read off the radiographs are due completely to tilt, and whether graphs like that of Figure 6 are a consequence of tilt alone. In fact, what is read off the radiographs is the superposition of both tilt and real drift velocity distributions. However, it should be noted that an important aspect of tilt is that it cannot produce a velocity fan. All of the particles of a jet under the influence of tilt exclusively would appear to drift in a uniform direction. Yet, Equation (9) has been seen to hold for jets with velocity fans spanning in excess of 90°.

The concern here is whether a nonlinear drift distribution could be "tilted" into appearing linear on the radiographs, and thus explain the data without having the actual drift obey Equation (9). Such could only be the case if the magnitude of actual drift were small in relation to tilted drift. If this were the case, however, the angular spans of the velocity distributions would also be quite small, which is usually not the case. Thus, it appears that the actual drift velocities are at least of the same order of magnitude as the apparent drift velocities due to tilt. Thus, it seems that the actual drift distributions, though probably different from the measured drift distributions, can still be adequately described by Equation (9). This belief is based only on the rounds studied. No explanation is offered as to why there might be a relation between the axial and transverse velocities of jet particles. Also, it is uncertain as to whether this may be a general phenomena or characteristic only of the rounds studied.

Support for Equation (9) was found in work done by Aerojet General Corporation. ${ }^{2}$ Aerojet was interested in the crater formation of individually impacting particles. A shaped charge suppiied the particles for their experiment. The method employed for dispersion of the particles was asymmetric initiation. Considering that it was desired to induce much drift velocity in the particles, the effects of tilt could be neglected in this experiment. The target plate used in their experiment is shown in Figure 9. The particle impacts generally lie at a constant distance from the slug impact. Assuming the slug flight path to be coincident with the charge axis, Equation 9 is the governing equation.

A penetration code was created to predict penetrations for nonideal shaped-charge jets. Unlike the DSM model, ${ }^{3}$ which can express penetra: ion in a single equation, the model developed analyzes the jet piecemeal. It is described in detail in the following section.

[^1]

Figure 9. Target Plate for Asymmetrically Initiated Shaped Charge (Reference 2)

v. the creation of a penetration code to analyze drift

The purpose of analyzing drift velocity distributions of shaped-charge jets is to see how these distributions affect penetration. The dynamics of penetration is not, however, a thoroughly understood subject. Many theories exist in attempts to discribe the mechanical properties of matter. Classical, empirical and even wave mechanical concepts are used in pursuit of the subject. Consequently, rather than adding to the spectrum of theories that already exist, the author chose to draw upon information already available on the subject whenever possible and to combine views in a seemingly compatible manner.

One shaped-charge penetration model that has received much attention in recent years was formulated by DiPersio, Simon, and Merendino (the DSM model). ${ }^{3}$ This model does a good job at predicting penetration of shaped charges even at extended standoffs. The model accomplished this however, by implying that there exists a cutoff penetration velocity, a minimum penetration velocity below which a jet cannot penetrate. Unfortunately, the DSM cutoff penetration velocity implies that jet material traveling below certain hypervelocity speeds is incapable of penetrating target material. Substantial quantities of jet material are thus eliminated from the penetration process. The DSM model is empirically based and really attempts only to describe the data at hand and does not enter an intense theoretical discussion to describe the origins of jet cutoff other than citing that it exists experimentally. The work presented in this report suggests that the drift of particles off axis is largely responsible for reduced jet penetration, whereby drifting particles strike the target not at the bottom of the hole but somewhere up the hole profile. This commencement of sidewall impacts frequently seems to constitute a cutoff in jet penetration, since the overall depth of penetration is not altered by a sidewall impact.

A method, therefore, had to be devised which would allow penetration to be a function of drift velocity. Three-dimensional finite difference codes were not considered due to a coupling of availability and cost. Yet, a threedimensional description of penetration was required since the source of altered penetration is the spread of the particles off of the one-dimensional axis. Consequently, all aspects of particle penstration would have to be considered: size, shape, and orientation of crater formation in a three-dimensional target block.

The code developed in the present work (referred to as PENJET) includes many simplifications and assumptions. The first assumption concerns the shape of crater formed by an impinging jet particle. The chosen shape wa that of an ellipsoid, with the ellipsoid being characterized by a position in three-dimensional space, dimensions along the axes, as well as an orientation in space (as shown in Figure 10). The position of particle impact is determined by using the velocity fan of a round to trace the particles' flight through three-dimensional space and time in order to locate the particle position with respect to the instantaneous hole profile (formed by earlier particles of the jet). If a particle is found to strike any point within the target, PENJET then proceeds through a series of calculations to determine the remainder of crater parameters. Once the crater formed by a particle is effectively evaluated, PENJET proceeds through subsequent particles of the jet until impacts for all digitized particles have been evaluated. Thus,

(X,Y,Z) LOCATION OF IMPACT IN 3-D SPACE P MAGNITUDE OF PARTICLE PENETRATION R MAGNITUDE OF CRATER RADIUS
$\hat{p}_{x}, \hat{P}_{Y}, \hat{p}_{z}$ penetration axis
(A UNIT VECTOR IN 3-D SPACE)

Figure 10. Parameters Generated by PENJET to Describe Crater Formed by Impinging Jet Particle

Figure 11. PENJET Hole Profile Results from Ellipsoid Superposition
a hole profile for a complete jet is just the superposition of ellipsoids from each of the particle impacts. A two-dimensional representation of a threedimensional hole profile is shown in Figure 11 for a fictitious nondrifting jet. When evaluating the crater formed by an impinging jet particle, crater volume is a constraining factor. That is to say, crater volume is calculated independently of other crater parameters and is assumed to be a function of particle kinetic energy alone. Subsequent calculations for actual crater dimensions are, therefore, constrained by the allowable volumetric target displacement a given particle can produce. The function governing the volume energy relationship is a linear one, similar to that adopted by DiPersio, Simon, and Merendino. ${ }^{3}$ The distinction arises in the fact that the DSM model expresses its proportionality constant as a relationship between total jet kinetic energy and total hole volume. PENJET, on the other hand, bases its constant on the energy of the individual particle. It is not surprising to find, therefore, that the DSM constant differs from its PENJET counterpart. Consider also, that the energy constant of PENJET does not strictly define an exact amount of displaced target material. As mentioned previously, the hole profile of PENJET is the superposition of ellipsoid craters corresponding to each of the jet particles. The orientation of these ellipsoids will greatly affect the spacial overlap of the ellipsoids, and thus the overall volumetric target displacement of a given jet. Because of this spacial overlap of particle craters, the overall crater volume as calculated by PENJET is not the summation of particle energies divided by the energy constant. Estimation of the constant was gotten empirically through examination of target blocks as well as hole profile data.

The crater shape of an individual impact is prescribed (as an ellipsoid) and the particle's crater volume is proportional to its own kinetic energy. Therefore, knowledge of a particle's penetration capability will allow the particle's hole radius to be computed and vice versa. In PENJET, depth of penetration is computed, with crater radius being subsequently determined. The model of particle penetration used in the code is based on the work of Fitzgerald, ${ }^{4}$ who draws on the work of Kineke 5 to imply that crater formation occurs in a direction perpendicular to the stricken surface. Fitzgerald calls this phenomenon the wave refraction theory and shows that it applied to a single particle striking a flat plate at some obliquity (Figure 12). PENJET uses the concept in a more general sense by applying the wave refraction theory to local obliquities as well. Local obliquity is defined as the angle between the particle flight axis and the normal to the impact plane. Inless the impinging particle strikes exactly at the bottom of the hole profile, the refracted penetration wave will not be normal to the original target surface (Figure 13). In the strict sense, the refracted wave theory should only be applicable in the regime of hydrodymamic penetration. A large majority of narticle impacts studied did not fit the qualification for hydrodynamic penetration. For these cases, the direction of penetration would be somewhere between the particle flight axis and the refracted wave axis. It was later noted that the penetration of a particle typically varied less than 5% because of the refracted wave assumption.
4 E. Fitzgerald, Particle Waves and Deformation in Crystalline Solids, Inter-
science Publishers, New York, 1966 .
${ }^{5}$ J. Kineke, Jr. "An Experimental Study of Crater Formation in Metallic Targets," Proc. 4th Symposium Hypervelocity Impact, Vol. I (Held Eglin AFB, Florida, April 26-28, 1960).

Figure 12. Crater Formation According to Refracted Particle Wave Theory

Figure 13. Refracted Particle Wave Theory Applied to Local Obliquity

Jet penetration in the continuous mode is quite a different matter from in the particulate mode. Modifications, therefore, had to be included to describe continuous jet penetration. The criterion on which to base mode of penetration is that of breakup time. PENJET uses a linear breakup equation whereby the jet tip particulates at some $t_{\text {min }}$ and subsequent particle breakup occurs at regular Δt intervals. Estimates of jet particulation are obtained through examination of the radiographs for the three different exposures. These estimates are then used in a least squares fit to evaluate $t_{\text {min }}$ and Δt.
Based on the estimated breakup time, it can be established whether a given particle will be penetrating continuously or particulately at a given standoff. If continuous, the length of the particle is re-evaluated such that:

$$
\begin{equation*}
\ell_{\text {CONTINUOUS }}=\frac{t_{\text {IMPACT }}}{t_{\text {BREAK }}} \quad \ell_{\text {PARTICULATED }} \tag{10}
\end{equation*}
$$

Also, it is assumed that jet penetrating in the continuous mode does not experience the refracted particle wave of Figure 12. This must, of course be the case since the continuous particle is essentially beginning its penetration exactly when and where the previous particle leaves off.

PENJET also considers particle orientation with respect to the stricken crater surface. The assumed shape of a shaped-charge particle is cylindrical, being characterized by a length and diameter. As local obliquity is increased, the length of the particle as seen by the impact point is effectively changed. (See Figure 14.) The extreme case is when local obliquity approaches 90°. In this case, the effective length of the particle approaches the diameter of the particle. Hydrodynamically, the penetration of a particle is proportional to the particle length. Thus, the effective particle length replaces the particle length in penetration calculations.

The presence of obliquity raises more questions. The larger the obliquity, the smaller the component of particle velocity perpendicular to the stricken surface. Once in the hypervelocity regime, large changes in particle velocity produce relatively small changes in penetration. If particle velocity is too small, however, the strength of the target and jet play a major role in reducing the penetration of that particle. Besides the effective particle length that the target "sees", it is believed that an effective velocity also plays a role in determining depth of peneiration. Whereas penetration is assumed to be directly proportional to effective length, the role that effective velocity plays is not nearly so profound. As long as the effective velocity is in the hypervelocity regime (arbitrarily chosen as any velocity above $2 \mathrm{~mm} / \mu \mathrm{sec}$), penetration is assumed greater than the effective particle length for copper jet into an RHA target. As effective velocity increases, penetration is assumed to asymptotically approach the hydrodynamically idealized value.
That is:

$$
\Delta \mathrm{P} \rightarrow \mathrm{~L}_{\mathrm{eff}} / \gamma \text { where } \gamma=\sqrt{\rho_{\mathrm{T}}} \overline{/ \rho}_{\mathrm{j}}
$$

LOCAL OBLIQUITY

Figure 15. The Role of Effective Velocity in Penetration Calculations Involving Copper Jets Against Steel Targets

The asymptotic approach is generated using the hydrodynamic equations, including strength terms. For effective velocities below $2 \mathrm{~mm} / \mu \mathrm{sec}$, penetration rapidly decreases in a manner expressed in Figure 15 so that no penetration is induced when the effective particle velocity is lowered beyond $.8 \mathrm{~mm} / \mu \mathrm{sec}$. Data for the effective velocity curve in the low velocity regime was gathered from work by Weirauch. ${ }^{6}$ Impacts of this nature may be the source of particle residue shown by Simon and DiPersio ${ }^{7}$ to accumulate at the bottom of the hole profile. PENJET, however, does not consider this type of interference.

VI. APPLYING THE CODE TO DATA

Given a set of digitized radiographic data, PENJET will go through all of the mentioned calculations for each digitized particle of the jet to eventually create a three-dimensional hole profile for a given round at a given standoff. If the code is told to use the data of a given round to perform penetration calculations at a variety of standoffs, a theoretical penetration standoff curve can be generated for each round. This curve is, of course, only valid for a particular round. Thus, each generated curve is as individual as the data from which it was generated, and does not, in general, pertain to all rounds of the same type.

The code has both its good and bad aspects. A major consequence is that tilt has no direct effect on the code's ability to calculate penetration. This happens because tilt does not misalign the particles. Rather, it only redefines the charge axis. The particles still drift with respect to each other in the same fashion despite measurements including tilt. Much emphasis was previously placed on tilt for the reason that it would be advantageous to obtain drift distributions unbiased by tilt. In terms of the penetration calculations, though, tilt of and by itself has no effect.

Tilt does, however, indirectly affect the situation in terms of reference drift calculations. As relative drift velocity (as calculated from the radiographs) is the superposition of tilted and actual drift, abnormal relative drift distributions can occasionally result depending on how the two components of measured drift interact with each other. Correspondingly, abnormal relative drift distributions lead to abnormal extrapolations of reference drift, thus making the calculated reference drift suspect. After all, the calculation of reference drift is only an educated approximation: Direction of the drift is based on jet particle orientation, while magnitude of drift velocity is based on fquation (9). Therefore, unlike relative drift computations, which are as good as accuracy of measurement, reference drift is only as good as the governing assumptions. Thus, the poorer the approximation at reference drict, the noorer the quality of penetration calculations.

[^2]Another drawback to the code results from the radiographs themselves. The code can only analyze particles that have been digitized. In mnst radiographs some portion of the jet that is visible has not yet particulated. Attempting to separate the continuous jet into digitizable portions has met with some success, though likely at the cost of accuracy of particle length, since the continuous particles are still stretching when digitized. Also, most radiographs don't even contain the complete jet, for there is still jet matter that hasn't reached the plane of the film by the time it is exposed. Thus, there is no way to digitize these particles. For the rounds studied, it is estimated that over 40% of the jet was routinely nondigitizable.

To what extent the ability to digitize particles affects the penetration code predictions depends on the quality of the jet. In fact, the poorer the jet is, the less predictions are affected. If the undigitized particles drift far enough off course from the front portion of the jet, they will never make it to the bottom of the hole profile to add to penetration. In this situation, calculations based only on the particles digitized should produce results compatible with calculations involving all particles. Since distance of deviation is directly proportional to time in flight which is directly proportional to standoff, longer standoffs will also decrease the penetration effectiveness of the rear of the jet. Thus, penetration predictions at short standoff are subject to unavoidable error since the undigitized jet portion is still capable of increasing jet penetration. The fact that the penetration effectiveness of the jet rear is predicted to decrease with increasing standoff correlates with the DSM concept of minimum jet velocity increasing with standoff. 3

Having kept these reservations in mind, the results of the code based on data from four rounds are illustrated in Figures 16-19. The only factor governing the choice of these particular four rounds was penetration; that is, rounds were chosen with varying penetrations ranging from poor to good. The code was run at standoff increments out to 38 CD . The actual rounds were fired at 24 CD standoff to allow radiography, and the actual penetrations achieved are shown on each of the graphs as a single datum. Steplike variations in the code's predictions result because of the discreteness of the impacting particles: Either a particle made it to the bottom of a hole profile or it did not. Major fluctuations in the code predictions can be taken to imply uncertainty in the jet performance. Uncertainty as to whether two or three given particles make it to the bottom of the hole profile can create penetration variations in excess of $1 / 2 \mathrm{CD}$. A curve was drawn to fit the code's predictions on each of the rounds, though a band width of uncertainty should be realized as well. This curve is PENJET's prediction of penetration, assuming that one could fire the exact same round over and over again at various standoffs. Since we know that the predictions at short standoff are inaccurate due to nondigitizable jet, the code's predictions on Figures 16 19 are generally unreliable below 10 CD. The curve, however, should be valid at the standoff of 24 CD at which the rounds were actually fired.

Figure 20. Routine Performance for Type of Round Analyzed

All of the codes's predictions were in reasonable agreement with experiment except for Round 2332. Upon studying this round for possible causes of discrepancy, it was noted that the round uniquely had what shall be called a switchback angular spiral. This falls into the category of abnormal relative drift distributions. ilost jets contain drift distributions such that the jet particles spiral in only one direction (either clockwise or counterclockwise) throughout the jet. Figure 5, for example, shows a jet spiralling counterclockwise from jet tip to tail. A switchback angular spiral is one in which one part of the jet spirals in one direction, while the subsequent portion of the jet spirals in the opposite direction. Switchback is thought to be a product of abnormal tilt/drift combinations such that subsequent computation of reference drift might be quite inaccurate. As set forth before, an inaccurate reference extrapolation leads to inaccurate penetration calculations.

Figure 20 shows how the actual weapon routinely performs. In order to test whether PENJET could predict the average penetration at standoffs near the peak performance of the round, a radiograph containing a complete and fully particulated jet would be required for digitization. As mentioned previously, no available radiographs fulfilled these requirements. A radiograph was obtained, however, of a complete jet which was not fully particulated. Though not completely digitizable, the presence of a complete jet greatly facilitated estimation of many jet parameters (e.g. velocity of jet rear, drift with respect to jet rear, and total jet length). By this means, the rear of the jet which was not digitizable could be simulated into particles based on analysis of the radiograph containing the continuous jet rear.
Figure 21 shows the PENJET prediction of the round that includes the jet rear simulation. The actual datum as well as optimum performance for this type of round are included in order to put PENJET calculations in perspective.

The importance of a complete jet at short standoff is shown in Figure 22. The penetration standoff curve for Round 2331 is shown here. Superimposed upon it are curves showing the amount of residual penetration resulting from different fractions of the complete jet. The points at which the curves meet signify that the number of particles producing the superimposed curves are also the same number of particles producing the total residual penetration at that point. For example, PENJET's predictions at 11.5 CD standoff imply that predicting penetration using 40 particles would be just as accurate as using 51 particles. Anything less than 40 particles at that standoff would, however, produce inaccurate results. For the 24 CD standoff at which the round was actually fired, less than 20 digitized particles would be required for an accurate description of penetration. At short standoff, however, even 51 particles do not completely describe the penetration capabilities of Round 2331. Estimates are that below 8 CD standoff, particles beyond particle 51 were also capable of adding to penetration. For better quality rounds, though, as illustrated by Round 2937 in Figure 23 , more particles are required even at longer standoffs to accurately describe penetration. For example, more than 50 digitized particles would be required for standoffs out to 25 CD for this particular round.

[^3]

Figure 24. PENJET Predictions of Hole Profile for Round 2334 at 23 CD Standoff. Penetration in Cone Diameters.

Figure 25. PENJET Predictions of Hole Profile for Round 2937 at 23 CD Standoff. Penetration in Cone Diameters.

Figure 26. Code Predictions of Rear-Jet Ineffectiveness Due to Side Wall Impacts of Drifting Particles

Figure 27. Orthogonal Views of Projected Hole Profile of Round 2331 at 18 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters.

Figure 28. Increase of Side-Wall Impacts Predicted at Longer Standoffs

Figure 29. Orthogonal Views of Projected Hole Profile of Round 2331 at 23 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters.

Figure 30. The Effect of Side Wall Impacts is Not Only to Decrease Penetration, But to Widen Crater.

Figure 31. Orthogonal Views of Projected Hole Profile of Round 2331 at 38 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters.

Besides showing a semblance of agreement between code and experiment, Figures 16-19 show that drift alone can easily account for rapid decreases in penetration as is often experienced by rounds at extended standoffs. The process by which penetration is decreased is one of sidewall impacts. This process was briefly mentioned before as a phenomenon which sometimes renders a particle ineffectual. The majority of sidewall impacts, though, are not so oblique as to disrupt penetration; most sidewall impacts go into creating wider hole profiles.

As an example of the devastating effects of drift velocity on jet penetration, a comparison of PENJET's hole profile predictions is shown for two separate rounds in Figures 24 and 25 . The plots represent orthogonal views of the target block as described by PENJET. Both sets of calculations were performed at the same standoff (23 CD). The stark contrast of jet performance is noted not only in terms of depth of penetration, but also in terms of crater width. Sidewall impacts do not occur until much later in the penetration process for Round 2937, thus allowing more of the jet to contribute to the overall penetration.

Figure 26 is PENJET's prediction as to where in the hole profile each particle of Round 2331 strikes the target block at 18 CD standoff. Note that particle number is in order of formation. (Jet tip is particle l.) It is seen that once a particle is blocked from reaching the bottom of the hole, it will usually begin the widening process somewhere up the profile. Subsequent particles try to work their way back down again. This process continues until no jet is left with which to penetrate the target. A plot of the hole profile as generated by PENJET is shown in Figure 27 as two orthogonal views of the target block. Graphs and plots for the same round are shown again at longer standoffs in Figures 28-31. It is seen that penetration is progressively lower because sidewall impacts occur earlier in the penetration process. Consequently, crater diameter progressively increases at longer standoffs. Thus, for Round 2331 at a standoff of 23 CD the total penetration capability of the jet as predicted by PENJET is contained within the first 18 particles.

The profile at 38 CD sharply illustrates the effects of drift velocity on jet penetration. The spread of the particles was so great as to cause the beginnings of a dual crater within $1 C D$ of the target surface. Thus, the ineffectiveness of the jet rear is seen. Any nondigitized portion of Round 2331 would probably produce its penetration in the vicinity of the particle 51 crater, far from the point of maximum penetration.

Thus, the decreases in penetration as predicted by PENJET are due mainly to the presence of drift velocities among the particles. Drift causes scattering of the particles and eventually, at some critical standoff, elimination of the particles from the crater deepening process via the mechanism of sidewall impacts.

VII. CONCLUSIONS

The ability to compute drift velocities for the particles of a shaped charge jet is thought to be significant. In its own right, quantification of drift velocity aids in understanding the nature of the nonideal jet. A degree of imperfection may also be placed upon the jet in hopes of classifying a jet with regard to its quality.

The concept of how a jet penctrates is better understood when drift velocity is considered in the penetration picture. The process of sidewall impacts as a hinderance to penetration can be verified by inspection of actual target blocks. This process is reminiscent of the jet cutoff velocity which varies with standoff as proposed by Dipersio, Simon, and Merendino, ${ }^{3}$ in that the velocity of the particle striking deepest in the hole profile can be considered a cutoff velocity with respect to jet penetration. Implications here are that a jet could approach ideal penetration had drift velocity not been present. Larger craters would also make jets more insensitive to drift. Weaker targets allow for a wider crater for a given jet particle. Thus, the reduced probability of sidewall impact would allow greater penctration.

Compared to armor, a target of mild stcel hydrodynamically should not affect the penetration of a given jet. It will affect penetration, however, when drift velocity is present in the jet. DiPersio and Simon ${ }^{8}$ verified this experimentally by firing jets into steel targets of varying hardness. Increasing crater size could alternately be accomplished by means of increasing the jet's energy. If dynamic impact did not induce additional drift in the jet, projecting the round into the target, as is the case under field conditions, should produce greater penetration than the static detonation of the same round. This cannot be verified experimentally, however, due mainly to the complexity of dynamic impact. Besides possessing possible yaw and pitch, the dynamic round is moving with respect to the target during the jet formation process. This relative motion can manifest itself in the form of drift. Dynamically detonated rounds do, however, create wider craters than their static counterparts as expected.

It is suggested that future investigations attempt to analyze drift from the viewpoint of warhead causes. The first step in understanding penetration in terms of drift has hopefully been set forth in this report. The ability to analyze drift as a function of the warhead would be the link between the imperfect warhead and nonideal penetration. Eventually, the possibility exists where warhead tolerances may be used to place limits upon the drift velocity distributions for a round so that penetration might be expressible as a function of charge tolerances.

[^4]
ACKNOWLEDGEMENTS

The author wishes to acknowledge the following members and emeriti of the Warhead Mechanics Branch of the U.S. Army Ballistic Research Laboratory for their encouraging support of this analysis: R. Jameson, M. Lampson, and J. Simon for technical consultations; V. Kucher for assistance rendered regarding computer related procedures; M. Scarborough and B. Simmons for having radiographs digitized and ready for use as computer data.

1. J. Blische, B. Simmons, "A Method for Reducing Data from Radiographs of Shaped-Charge Jets," BRL Report ARBRL-TR-02330,Jun 81 (AD A102770).
2. K. N. Kreyenhagen, J. E. Ferguson, R. R. Randal1, J. P. Joyce, "Special Explosive Projectors," Proc. 6th Symposium Hypervelocity Impact, Vol. I (Held Cleveland, Ohio, April 30-May 2, 1963).
3. R. DiPersio, J. Simon, A. Merendino, "Penetration of Shaped-Charge Jets Into Metallic Targets," Ballistic Research Laboratory Report No. 1296, September 1965 (AD 476717).
4. E. Fitzgerald, Particle Waves and Deformation in Crystalline Solids, Interscience Publishers, New York, 1966.
5. J. Kineke, Jr. "An Experimental Study of Crater Formation in Metallic Targets," Proc. 4th Symposium Hypervelocity Impact, Vol. I (Held Eglin AFB, Florida, April 26-28, 1960).
6. G. Weihrauch, "The Behavior of Copper Pins Upon Impacting Various Materials with Velocities Between $50 \mathrm{~m} / \mathrm{s}$ and $1650 \mathrm{~m} / \mathrm{s}$," (Doctoral Thesis) University of Karlsruhe, 1971.
7. J. Simon, R. DiPersio, "Experimental Verification of Standoff Effects on Shaped-Charge Jet Cutoff in Sclid Targets," Ballistic Research Laboratory Memorandum No. 1976, May 1969 (AD 854396).
8. R. DiPersio, J. Simon, "The Effect of Target Hardness on the Penetration Capability of Shaped-Charge Jets," BRL Report No. 1408, July 1968 (AD 838991).

APPENDIX A

PROGRAM LISTING
AND
VARIABLE NAME DESCRIPTIONS

The drift velocity and PENJET programs were written as direct additions to Blische's and Simons' radiograph-data-reduction program (Reference 1) introduced in BRL Report 2330. Therefore, a listing of PENJET must be accompanied by the program which generates data for use within PENJET. The right-hand edge of the listing reveals where the statements in question originated. "GETREADY" are nonexecutable statements required for BRL Report 2330, PENJET, or both. "BRL 2330" is the bulk of Blische's and Simnons' program with minor revisions for PENJET applicability. "JETBREAK" is a revision for jet breakup calculations. "DRIFT" is used to calculate the drift distribution for a round while "PENJET" is the jet penetration program. The program is written in FORTRAN IV. An explanation of the program variables is inserted after the program listing.

It should be noted that even though Blische's and Simmons' program is versatile enough to run using data from only two X-ray flash exposures, PENJET is geared to the standard 3 flash setup and will require modifications to run otherwise.

Explanation for the program variable names found in the program segment identified as "BRL 2330 " can be found in BRL Report 2330 (Reference 1). Should one wish to identify variables within the program segment "GETREADY," the other segments should be consulted, as all "GETREADY" variables are contained within other segments. All other significant variables are listed under their appropriate program segment.

601016

 607016
68 52（s）－FOCUS2＋（F30＋P1×10XHAG（1） 60 TO 16
39 S2（J）－FOCUS2＋（F4B＋P1X）OXHAG（I）
6 V1（J）－is2（JI－51（U）IIf（ASM2－FiASHI） IFizx（1）．E日．2x（2）） 60 T0 60 L21J100
G2r01
l2
$12(J)=1$
coro 80
65 IF（NFLASH．EO．2） 6010 so IFIFILM．EO． 2160 TO 67 IFIFILM．EO．3） 601068 EFIFILM．EO．4） 601069 s31J）－FDCUS3－（FIC－P1×14xHAGII） 601017
67 S3（J）＝FOCUS3－（F2C－P1X）OXAAGII） 601017
60 53（J）－FOCUS3＊（F3C＊P1x）＊xhag（I） 601017
$6953(J)=f 0 C U S 3+(f 4 C+P 1 \times)=X H A G(1)$
$6953(J)=f 0 C U S 3+(F 4 C+P 1 \times)$ XXAGG1I）
$17 V 2(J)=(83(J)-S 2(J 1) /(F L A S H 3-F L A S H 2)$ V3（J）－183（J）－SI（J）IIIFLASH3－FLASH2 IF12X11）．E0．2x（2））GO YO 70 （31J） 0 6010 75
$70 \quad 13(\$ 1-1$
605080
 1R34R30＋211
plx－p12
ORL2330
ORL2330
0RL2330 ort2330 orlz330 ortz330 8RL2330
ORL2330 BRL2330 $8 R 12330$
0812330 012330 BRL2330 ORC2330 8RL2330 DRt2330 8RL2330 －R22330 HRL2330 81t2330界L2330 －RE2330 0RL2330 8RL2330 BRL2330
BRL2330 RRL2330
BRL2330 RRL2330
BRL2330 BRL2330
BRL2330 BRL2330 BRL2330晎し2330良L2330 8 CL 2330 ERL2330
 1R34＊21
XVOLII，JIE XYOLII，JI＊．001＊RHO
 OIACJI＝0TARJI＋2．©R2
00 CONTIMUE
MFII．LT．NFLASH）GOTO 149
IFINFLASN．EO． 21 GOTO 05
IFILIIJI．EO．1．ANO．L2\｛JI．EQ．1．AND．L3（d）．EO．11 6070149 IFRLI（S）．EO．O．AND．L2（JI．EO．O．ANO．L3iJ）．EO．OI 60 T0 90 IFILZ（J）．EO．1．AND．L3IJ）．EQ．1） 601099 FF（LIIS）．EQ．A．AND．L3iJi．EQ．1） 60 T0 99 IEfL21S1．EO．O．AND．131）1．EO．O）60 TO 100 FFILIIJI．EO．O．ANO．L3IJI．EQ．OS 60 TD 100 IFILIIJ．．EQ．O．AND．LSIJI．EQ．O） 60 TD 100
IFRLIIJI．EO．O．ANO．L2IMI．EO．O） 60 TO 100
65 IF（LI（J）．EC．L．AND．L21JI．EO．1）GD 10149 TFILIISI．EO．O．ANO．L2（1）．EO．OH 6010100 IF（LIId）．EQ．O．OR．L21JI．EO．0） 60 TO $9 S$
90 KMASS（J）VOL（3）＊．001／3．＊RHO KLU）XLIJIS．
otardiedialdi／3． 6010149
95 XMASS（U）＝VOLIJI＊．001＊RHO 6010 149
100 KMASSIJIEVOLIJ）．001／2．＊RHO
$x L(J)=x t(1): 2$. otafjlebin（s）iz．
149 CONTINUE
150 COMTINUE
c

		JETBREAK	2
	EXPOSURE JIMES 1，2．ANO 3 RESPECTIVELY，TOLAY IS TME DELAY TIME	JEPBREAK	3
	DETMEEN DETONATION ANO JET FDRMATION IMICROSECI．	detereak	4
		JETEREAK	5
	REAOS＊＊BROK1，BROK2，8ROK3，TOLAY	JETBREAK	6
		JEteneak	7
	T2＝FLASHL＋FLASH2＋FLASH3	detareak	0
		detratak	9
		JETEREAR	10
		JETBEEAK	11
	P䚙－ 213.	JEYEAEAK	12
	Tavget213．	JETEREAK	13
	DO 170 MELIMPART		148
	IFIMFLAEH．EQ， 21 GOTO 155	BLL2330	149
		BRL2330	150
	6070160	8RL2330	151
155	VEL（N）＝VI（NI＊． 1	8RL2330	152
160		80L2330	153
		ORL2330	154
	ELOO（N）＝XC（N）／08A（NI	良L2330	155
	VEL（N）FVEL（Nitio．	8RL2330	156
		8142330	157
	SURKE（N）－XKE（N）－SUAKE（N－I）	日RL2330	138
	P（N）－VELIN）XMASS（N）	ERL2330	159
	TOTP（N）＝P（N）＋TOTP（N－1）	BRL2330	160
	SUNDIA（N）＝SUNOIA（N－IB SOIA（N）$^{\text {S }}$	BRL2330	161
		JETAREAK	14
	6070170	BRを2330	162
165	GREAKIII＝0．0	BRL2330	163
170	PRTMT 171．NoVEL（MI，SUM（M），BREAK（M）	BRL2330	164
171		ERL2330	165
	P犋NT 52	BRL2330	166
		BRL2330	167
		BRL2330	168
		314230	169
	00172 JEISNPART	6RL2330	170
172	PRINT 173，J．VI（J），V2（d），Y3（d）	8R22330	172
173		年L2330	172
	－RINT 175	BLL2330	173
175	FORMATIINI，20K\％DARTICLE LEMGYA DIA．LID HASS TOTAL	8RL2330	174
		8kL2330	175
	$210+11$	風L2330	176
	DO 176 İIOMPART	暒L2330	177
176		BRL2330	178
177		ORL2330	179
	PRINT 603	8RL2330	180
603		BRL2330	181
		ORL2330	182
	DO 600 del ，MDART	ERL2330	183
	1．1	8Rt2330	184
600		BRE2330	185
602	FORMAT $23 \mathrm{m}, \mathrm{I2,6x,F6.4,6x,F8.4,6x,F6.41}$	STL2330	186
	P＊TNT 180	BRL2330	167
180	FORMETCEHI，20x，DARTICLE M．E．TOTAL dET DISTAMCE FROM CH	$8 \mathrm{EL2330}$	188
			189
		B6C2330	190
		兓L2330	191
191		8R22330	192
182		APL2330	193
	PATMT 183	－ R $2330^{\text {a }}$	194
183		ORL2330	195
	LESC，th，ix，	Eft2330	196
	DO 185 T I－INPATt	ORL2330	197
175		－ 21230	19

```
184 FONMATI23X,12;9x,F6.2,7%,F6.2%
    DO 192 N-2,MPART
    SUNLEN{N\ SUNLEN{N-1) + XLIN|
    XDIA(M)= XOIA{N-1}&DIA{N)
    EF(N.EO.2: 60 TO 191
    DELVINIEVELIN-II-VELINI
    DELV(NIEV
    60 T0 192
    191 DELV(NI=VE&III-YE&(N)
    192 SDELV(N)=SDELY(N-I)&DELY(N)
    DO 195 J=3,NPART
195 SUMDEL{U|-DELY&&I&SUNDEL{J-1)
    AVLI=SUHLINPARTITFLOATINPARTI
    AVL2-SUNLENINPARTI/FLOATINPART-I)
    GVDI-SUNDTAINPARTI/FLOAT(NPARTI
    AVO2-XDIAENPARTI/FLOATINPART-1I
    ADELVI -SOELYINPARTI/FLOATINPART-1)
    AOELVZESUMOELINPARTIIFLOATINPAMT-2)
    PRIMT 200, AVLI,AVL2,AVOL, AVOZFADELVI,ADELVZ
    0RL2330
    ARL2330
    ALL2330
    *NL2330
    0WL2330
    0RL2330
    BRL2330
    㬉绍30
    ARL2330
    BRL2330
    BRL2330
    BRL2330
    ARL2330
    BR2330
    8RL2330
    BRL2330
    BRL2330
    昨L2330
    BRL2330
```



```
        PRIMT 505
        MRA-2
        NN=1
        IC=O
        CALL POLYLSIVELOSI,NPART,AA,NRA,NN,CC,R奛AF,ERMSOSIGOTTOOET,ICI
        WRTYE{betil CCIII
        NRTTE{6041!
    41 FONMAT{20X,' VIRTUAL ORIGIM FOR FLASM 1=*,F12.6)
```



```
        NRTTE\60421 CC(1)
        DS{2)-CC(1)
    4 FORHAT(2OX,' VIRTUAL ORIGIM FOR FLASH 2***FI2.6)
        IF(L.LT.3) 60 T0 515
```



```
        CALL POLYLSIVELyS
        WHITE{6063)
    43 FGRMAPI2ON," VIRTUAL ONIGIN FOR FLABN 30.,FI2.6%
    DRIFT CALCULATIONS
    EACN REF REFERS TO THE DISPAMCE BETMEEN TNE REFERENCE PARTICLE
    AND TNE FEDUCIAL FRON WHERE ALL OTHEQ MEASURENENTS AME TAKEN.
    REF IS TAKEN IN MM AND SMOULD EE TME ACTUAL DISTANCE REAO OFF DF
    THE FILM. IT MILL THEN EE NULTIPLIEO BY THE MAG FACTORINHECH
    SNOULD HAVE BEEN ENTERED AS DATA IN IRL2330I NOTE, IF XMAG IS
    LESS THAN L., THEN THE FTLN PORTRAYS AM IMAGE LARGE界 TMAM REALITY
    REGO{5% %) REF{1)-REF{2), REF{3)
    REF{1)EREF{1|GXMAG{1)
    GEF{2}=REF{2)&xMAG(2)
    REF(3)OREF(3)*XMAG(3)
    00 401 J=1,3
    00 400 T-1,NPARt
400 M2(J)IT)=R(S.I)-RGF(d)
401 CONTINUE
    MPINT 33
```



```
    I*NUHPER',6X,GFLASM 1 FLASM 2 FLASM 30,II
        00 100 $JJWi,NPARt
```



```
    36 FONmati24x,12,8x,FB.30,3x,F8.3,3x,Fb.31
000 CONTINUE
```

199
199
200
201
201
202
202
203
203
206
204
205
206
207
200
209
209
210
210
211
212
213
214
RRL2330 215
BLL2330 216
0RL2310 217
ent2330 210
$\begin{array}{ll}0 \\ 0 & 210 \\ 0 & 2330 \\ 219\end{array}$
$\begin{array}{ll}\text { ORL2330 } & 219 \\ \text { ent2330 } & 220\end{array}$
$\begin{array}{rr}\text { ert2330 } & 220 \\ \text { ell } 2330 & 221\end{array}$
BRL2350 222
ent2330 223
－122330
Q 12330
0 0 L2330
0RL2330
－ 226
飡し2330 227
8只し2330 220
0RL2330 229
BRL2330 230
领2330
8員L2330
8 142330
0RL2339
BRL2330
BRL2330
0RL2330 236
ORTFT
On Ift
DRIFT
DRIFT
ORIFT
ORIFT
DRIFT
ORIFT
OU IFT
DRIFT
DRIFT
DRIFT
ORIFT
ORIFT
DRIFT
ORIFT
DRIFT
onift
ORIFT
OKIFT
ORIFT
OUIFT
OUIFT
ORIFT
ORIFT
ORIFT
ORTFT
ORIFT
000 CONTINUE
231
23
232
233
236
235
236

5
6

	00491 I=1,NPART	DRIFT	27
	T1(1)-(S1)(1)-0S(1)]/VEL(1)	ORIFT	28
	1211) (S2(I)-0S(2)IVEE(I)	ORIFT	29
	73(T) (53(1)-OS(3)]/VEL(1)	DRIFT	30
		ORIFT	31
		DRIFT	32
		DRIFT	33
	DO $405 \mathrm{Sal}, 3$	DRIFT	36
	IFIAZIU,IItREFIJI) 405,402.405	DRIFT	35
402	THETAII)00.0	DRIFT	36
	VETRAVIII $=0.0$	DRIFT	37
	6070491	DRIFT	38
405	continue	DRIET	39
C		DRIFT	40
c	SOLVING FDR THETA USING Finst rwo governing equations	ORIFT	41
C		DRIF	42
		DRIFT	43
	IFITH12.LT.0.01TH12-TH12+PT	DRIFT	44
${ }^{\text {c }}$		DRIFT	45
${ }^{C}$	SOLVING FOR THETA USING LASt tyo governing eouations	DRIFT	46
c		DRIFT	47
	TH23-ATAN(1.0-2.011S0RT(2.0)0KD23)	ORIFT	48
	1F1TH23.1T.0.017H23-TH23+PI	ORIFT	49
450	FFiABS(TH12-TH231.LT.P1/2.0)60 TO 449	ORIFT	50
	IFITH23.LT. TH12)60 T0 440	DRIFT	51
	TH12-TH12+M	OREET	52
	G0 TO 449	DRIFT	53
448	FH12-TH12-PI	ORIF	54
c		DRIf	55
c	SCLVING For theta USING FIRSt and last governing eouations	DRIFT	56
C		DRIft	57
449	TH13=ATAN((KD13-1.0)/(KD13+1.0))	DRIFT	36
	TF1TH13.17.0.017H13-7H13+PI	DEIFT	59
470	IFIAESITH23-TH13).LT.P1/2.0)60 T0 464	DESFT	60
	IFITH23.(T.TH13)60 10460	ORIFT	61
	TH2 3-TH13+P1	ORIFT	62
	6010469	DRIFT	63
468	TH13-TH13-P1	ORIFT	64
		DRIFT	65
\mathbf{c}	finding an average value por theta and placing it in the proper	ORIFT	66
c	OUAORANT	DRIFT	67
C		ORIFT	60
469	THV-1TH124TH234TH131/3.0	ORIFT	69
	IF(1TH23-P1/2.0)*A2(2,1) 471.473 .472	ORIFT	70
471	THETACII=THV	DRIFT	71
	6070460	DRIFT	72
472	THETAIII-THV*PT	DRIft	73
	TH12-TH12+P1	ORIFT	74
	TH23-TH23+P1	DRIFT	75
	THI 3-TH1 3+P1	ORIf	76
	CFITHETAIII-THV.6T.1.71THV-THV + PI	DRIFT	77
	60 TO 460	DRIFT	78
473	TFiPH13) 474,475,475	ORIET	79
474	PHETAIII-THV+PT	ORIFT	00
	TH12-TH12+PI	DRIFT	81
	TH23-1H23+P1	ORTFT	02
	TH13-TH13+P1	ORIFT	03
	IFITHETAIII-THV.GT.1.7ITHV-PHV \& Pi	DRIFT	64
	60 T0 480	DREF	85
475	TMETAIII = THV	DRIET	86
C		DRIFT	A 7
${ }^{6}$	CALCULATING RELATIVE TRANSVERSE VELOCITIES YHILE ASSIGNING	ORIET	88
${ }^{\text {c }}$		ORIFT	89
c	WITH THE flash x-Ray	OPIFT	90

c

 1 (icosifhz2-PI/4.0)i*e2
EPS(2.1)=A2(2,1)*SIN(TH23) * (TH23-THV1*1000.01T2(11 (EPSI2.1) TCOS(TH23)itat

 $1 \quad f(C O S(T H 12)) *$ \&
 (1 (COS(TM23+Pi/4.0)) **2 DO $481 \mathrm{~J}=1,6$
401 EPE(J,I)-ABS(EPS(J-II)
$E P S U M=0.0$
00462 3:1,6
402 EPSUNE1.OIEPS(J.IIHEPSUM DO $483 \mathrm{~J}=1,6$
4.3 MT(J)=1.OJIEPSIE,IJEEPSUH)
 1
C
c
CONVFRT THETA TO DEGREES
490 THETAIII-180.0*THETACII/PI
491 CONTINUE
PRINT 492

? COEGREESI'OII
$00495 \mathrm{~K}=1$ INPART

494 PODMAT:24X,12.18X,F6.2,17X,F5.11
495 CONTINUE
C
C
C TRAMSLATE APPARENT VALUES IMTO AESOLUTE VALUES
R121:0.0
C
C
C
GUESSTNG AT AN INITIAL DEVIANCE ANGLE FOR THE REFERENCE
TMTNETHETAIII
TMAR FHETAII)
MENDEX-1
Maxdex-i
00391 I-2,NPART
1FITHETAIII.LT.TMIN.OR , TMIM-THETAIII.LT.-300.160 T0 392 6010393
392 THINETMETAII!
MINDEXU 1
6010391
393 TFITMETAIII. GT.THAK.OR.TMAX-THETAIII.ET. 300. 60 T0 394 6010392
394 THAX-THETAIII maxdex=I
391 CONTINUE
IFIMINDEX.GT.MAXDEX) 60 TO 395
INCR..0034907
TNETAO-THETAIMAXDEXI-180.
TWETAOETHE
en 10396

ORTFF
DRIFT
ORIFT
On $1 F T$
OU1FT
DRIFT D 1 1Ft
ORIFT
ORIFT
DRIFT
DRIFT
DRIFI
DREFT
ORIFT
ORIFT
DRIFT
DRIFT
ORIFT
DRIFT
DRIFT
ORIFT
ORIFT
DRIFT
DR IFT
DRIFT
DRIFT
ORIFT
DRTFT
ORIFT
ORIFT
ORIFT
ORIFT
DRyET
DRIFT
ORIFT
onify
ORIFT
DARF
ORIFT
DRIFT
ORIFY 123
DEIFY 126
DRIFT 127
ORIFT 128
ORIFT 129
ORIFT 130
ORIFT 132
ORIFT 132
ORIFT 133
ORIFT 134
$\begin{array}{ll}\text { ORIFT } & 134 \\ \text { DEIFT } & 135\end{array}$
DEIET
DRIFT
DREFT
DRIFT
OR IFT
ORIFT
ORIFT
OR IFT
ORIFT
DKIFT
ORIFT
DRIFT
DEIFT
ORIFT
OETFT
DEIFT
DRIFT
DRET
ORIFT
DRIFT
DRIFT
DRTET
-

136
137
137

130
139
140
140
141
141
142
142
143
144
145
146
147
148
149
149
150
150
152
153
154

```
    395 INCRE-.0034907
    THE TAD=THETA(MINDEX)-1B0.
    0 DRCS=0.0
    00 899 I-1,MPARI
    THETAII}=THETAIII㫙/180.0
    VRIII-VETRAYII)CCOE\TMETAIIB)
    0q9 VYitieveftayiliestmitNETACifi
    THOE=THETAOQP1/180.0
    902 (11)-R12
    TTOTL=1F1%(.122173/ABS(tmE每)
    OO 1100 NOTEIOITOTL
    TMORETMOR& IMES
    003 VTO=0.0
C
    FINOIMG THE MAGNTTUDE OF REFEQENCE TEANSYERSE VELDEITYTMAT UILL
    MAKE IT PROPORTIONAL TO TME AXIAL VE&DCITY
    0U 736 I=1,MPA貫T
    7% VTABSIIIFVETRAYEII
    904 VTO-YTO+10.0
        INC=100
        60 10 909
    905 VTO=VTO+1.0
    #NC-10
    6010 909
    906 VFO-VTO4.1
        INC = 1
    909 VKO-VTO+COSITHON )
        VVO-VTO&SINITMORI
        DO 907 T-2 gNPANP
```



```
C
```



```
    02 T$00.0
    MS=0.0
    T0YAS-0.0
    TAVTS=0.0
    ARYAS=0.0
    Kless-0
    00 000 I-SMMPART
    IFIAESIVTASSIIJ-VTOI .LE. I.0) 6070700
    TSuVTAESIII4TS
    as-vEt1EI*AS
    TBYAS*VTABSIII*VELIII*TEYAS
    TBYTS-YTAESITH*e 2+TEYTS
    ABYASeYELIII*⿻日&*ABYAS
    60 T0 %00
    700 KLESSEKLESS*1
    900 CCNTINUE
    COL-PPEYAS-ITS*ASIIMPART-NLESSIJI/ITAYTS-ITS*&2I(MPART-KLESSIII
```



```
    C0=1C01+1.0/C02172.0
    TBAR-TSIIMDART-KLESSI
    ABAR-ABP(NPART-KLESS:
    *TMTETEAN-ABAR/EO
    T&{XINT.LT.0.0.ANO. IMC.E0.100) 60 10 900
        U4 EXINT.LT.0.0 .MNO. TNC.EQ.10: 50 T0 00S
        IFIMINT.LT.0.0. ANO. INC.EO.11 SOTO }90
        IF(TMC-10) 12,9115910
    0 VTOEVTO-11.0
    60 10 908
    912 vT00VP0-1.1
        $0 10 906
\begin{tabular}{|c|c|}
\hline ORIFT & 155 \\
\hline DREf & 156 \\
\hline ORIFT & 157 \\
\hline ORIFT & 198 \\
\hline ORIFT & 159 \\
\hline ORIET & 160 \\
\hline DRIET & 161 \\
\hline ORIFT & 162 \\
\hline ORTFT & 163 \\
\hline DEIFT & 164 \\
\hline Delft & 165 \\
\hline OfIf & 166 \\
\hline DETFT & 167 \\
\hline DRIFT & 168 \\
\hline ORIFT & 169 \\
\hline DRIFT & 170 \\
\hline DRIFT & 171 \\
\hline ORIFT & 172 \\
\hline ORIET & 173 \\
\hline ORIET & 174 \\
\hline ORIFT & 175 \\
\hline ORIFT & 176 \\
\hline ORIf & 177 \\
\hline ORIFT & 178 \\
\hline ORIFT & 179 \\
\hline ORIFT & 180 \\
\hline ORIFT & 181 \\
\hline ORIFT & 182 \\
\hline OR1Ft & 183 \\
\hline ORIFY & 184 \\
\hline DRIFT & 185 \\
\hline DRIFT & 186 \\
\hline DRIFT & 187 \\
\hline DRSFT & 188 \\
\hline ORIET & 189 \\
\hline ORIFT & 190 \\
\hline DRTFT & 191 \\
\hline DRTFT & 192 \\
\hline DRTFT & 193 \\
\hline ORIFT & 194 \\
\hline ORIFT & 195 \\
\hline D日 \＄FT & 196 \\
\hline DRIFT & 197 \\
\hline OीIFT & 198 \\
\hline DRIFT & 199 \\
\hline OR1FT & 200 \\
\hline ORIFP & 202 \\
\hline DRIFT & 202 \\
\hline DRTFT & 203 \\
\hline ORIFT & 204 \\
\hline DAIFT & 205 \\
\hline DUAFT & 206 \\
\hline ORTFT & 207 \\
\hline DRIFT & 200 \\
\hline DRIFT & 209 \\
\hline DRTft & 210 \\
\hline DRIFT & 211 \\
\hline ORIf & 212 \\
\hline OnIFT & 213 \\
\hline DRIFT & 214 \\
\hline ORIFT & 215 \\
\hline D日IFT & 216 \\
\hline On IFT & 217 \\
\hline ORIFT & 210 \\
\hline
\end{tabular}
```

```
    012 R(2)-SORTICOR*CO2)
        IFIMI2).G7.RI1)
        60 10 1100
1101 R(1)=R(21
    vTOO-VTO
    TMORB-TMOE
    DO 1102 IEFI& MPART
1102 VTB(IE)=VTABS(TE)
1100 continue
    VTDOVT0E
    THOL|FTHORE
    DO 1103 IBI=1,MPANT
l103 vjassitsilevisiItil
    70 DO E15 N-I,NPART
        LF(IVFABSPN)-VTO).LE. 1.0) 60 10 012
        OHI(N) - FHETA(N)-FMOR
        BETA(M)EASIN(VETRAV(N) SSIM(PHI(N))/VTABS(N)I*100.0/PI
        AVST(N)EVEL(N)IVTABSIMIE1000.0
        60 10 }01
    011 vTabs(m)-0.0
        QETA(M)=0.0
        AVSFINI-0.0
    l5 comTinue
    PRINT }70
    FORMATILMI,2IX,TPARTICLE', 5x,*ABSDLUTE TRANSVERSE',5x,'ABSOLUTE '0
```



```
    ? -OCITY IMISII,4X,CDEVIANCE URT REFERENCE TRANSVERSE VELOC'.
        DO }110\mathrm{ JOL,NPART
        MRITE(6,707) d,VTABS($),8ETA(d),AVST(J)
    707 FOHMAT(24X,12,16X,F6.2,15X,F6.1,17X,F6.21
    110 CONTINUE
        PRENT 712,VTO
    712 FORMATIF,22x,'THE TRANSVERSE VELOCITY OF TNE REFERENCE IS i,
        I F6. 2,0 H/S'1
    PRINT 713. R(2)
    713. anHatil:22x,'THE CORRELATIDN COEFFICIENT FOR THIS REGRESSION',
    l
                - I5 4.F5.41
```



```
    *** * N JET****
    ECONST IS THE ENERGY REQUIRED TO CREATE ONE CUSIC-mm of hole
    YOLUNE. RHOJ IS JET DENSITY IN GICUGMM. SIGd IS JET STRENGTH IM
        HEGAPABCALS.. RHOT AND SIGT ARE THE CORMESPONDING TARGET
        variables
        READIS,300IECONST,RHON,SIGJ,RHOT,SIGT
    300 FORMAT(SF10.4)
C
    2MIN 1S THE MINIMUM STAMOOFF At which PENJET MILL EVALUATE THE
    GIVEN DRIFT DISTRIOUTION. 2mAX IS THE MAXIMUM SIAMDOFF TO CE
    AMALYZED. ZINC IS THE IMC REMENY EETMEEN STAMOOFF AMALYZATION.
    ALL mEASUREMERTS ARE IN NH.
    READIS,39712MIN,2MAX,ZINC
    397 fonmatisF10.1)
    DO 301 I=I,NPART
    EETAIIIEEETAISI:3.141S&ISBO.
    * motusill=0.0
    PEN(IIOO.O
    R({I|=XLII)
    RVELII|VELII!
    301 CONTIMUE
\begin{tabular}{|c|c|}
\hline DRIft & 219 \\
\hline DRIf & 220 \\
\hline DRIFT & 221 \\
\hline DRIFT & 222 \\
\hline DRIFT & 223 \\
\hline ORIET & 224 \\
\hline ORIFT & 225 \\
\hline DRIFT & 226 \\
\hline DRIFT & 227 \\
\hline DRIF & 228 \\
\hline DRIFT & 229 \\
\hline DRIFT & 230 \\
\hline DRIET & 232 \\
\hline DRYFT & 232 \\
\hline DRIFT & 233 \\
\hline DRIFT & 236 \\
\hline DRIFT & 235 \\
\hline DRIET & 236 \\
\hline DRIFT & 237 \\
\hline DRIFT & 230 \\
\hline DREFT & 239 \\
\hline DRIF & 260 \\
\hline DRIET & 241 \\
\hline DRIFT & 242 \\
\hline DRIFT & 243 \\
\hline DRIFT & 244 \\
\hline DRIFT & 245 \\
\hline DREF & 246 \\
\hline ORIET & 247 \\
\hline ORIET & 240 \\
\hline DRIFT & 249 \\
\hline ORIET & 250 \\
\hline DRIFT & 251 \\
\hline DRIFT & 252 \\
\hline DRIFT & 253 \\
\hline ORIFT & 254 \\
\hline DRIFT & 255 \\
\hline ORIFT & 256 \\
\hline PENSET & 1 \\
\hline PENJET & 2 \\
\hline PENSET & 3 \\
\hline PENJET & 4 \\
\hline PENJET & 5 \\
\hline PENJET & 6 \\
\hline Pendet & 7 \\
\hline PENJET & 8 \\
\hline PENSET & \(\bigcirc\) \\
\hline PENJET & 10 \\
\hline PENJET & 11 \\
\hline PENJET & 12 \\
\hline PENJET & 13 \\
\hline PENJET & 14 \\
\hline PENSET & 15 \\
\hline PENJET & 16 \\
\hline PENJET & 17 \\
\hline -ENJET & 18 \\
\hline PENJET & 19 \\
\hline DENJET & 20 \\
\hline PENJET & 21 \\
\hline PENJET & 22 \\
\hline PENJFT & 23 \\
\hline PENJET & 24 \\
\hline PENJET & 23 \\
\hline DENJE & 26 \\
\hline
\end{tabular}
```

	Mm1-NPART-1	-ENJET	27
	GAMEA=SORTIRHOT/RHOJ)	PENSET	28
	2SUCO=ININ-21MC	DENJET	29
	KZSUM=O	PENJET	30
280	$25 U 80-25 U 80+21 N C$	PENJET	31
	KISUMER2SUn+1	PENJET	32
	- enmarixzsunioo.	DENJET	33
	2SUBIRISUAIEzSUBO	penjet	34
c		PENJET	35
c	This coop evaluates each oigitized particle	PENJET	36
c		PENJET	37
291	00209 I= 1, NPART	PENJET	36
	NCC 11)=0	-ENJET	39
	NO=O	PENJET	40
269		PEWJET	41
	DELT=3.JVELII)	PENJET	42
	JMiN=1	DENJET	43
c		DENSET	44
c	LOCATING A PARTICLE IN 3-D SPACE...THEN FINOING WHETHER IT STRIKES	DENJET	45
c	PHE HOLE PROFILE, if it OOESN'Pe. THEN TIME IS INCREMEMTED UNIIL	PENJET	46
c	InPact occurs.	PENJET	47
c		PEAJET	48
201	Y(1)-TII) DECT	PEMJET	49
205		PENJET	50
	Y(I)=xIEI*TAN(AETAIII)	PENJET	51
		PENJET	52
	IFINO.EO.21 6010210	PENJET	53
	IFItII).LT.0.0) 60 T0 202	-ENJET	54
	IFIT.EO.1 AND. T(I).LT.EREAKIIIIGOTO 202	PENJE 7	55
	IFIICEO.1160 10210	PEMJET	56
	KLESS-1-1	PEMJET	57
	DO 206 \%JMIN,KLESS	PENJET	58
	IFIEEMIII.LT..O1) 10206	PENJET	59
		PENJET	60
	$\mathrm{V}(1,2)=Y(1)-Y(\$)$	PENJET	61
	V(1,3)-2(1)-21J)	PENJE T	62
		PENJET	63
		PENJET	64
	vanilleatsivamilil	PENJET	65
	VPM(f)=SCRT(Aes(VM(i)**2-VAM(1)**2)	PENJET	66
		PENJET	67
	t 60 to 206	PENSET	68
	IFIMO.EO.1160 TO 210	PENJET	69
	JMIN*)	PENJET	70
	6010201	PENJET	71
206	contimue	PENJET	72
207	Ne=1	PENJET	73
	IF(JHRM.EO.KLESS AMO. 2(II.LE..1) 6050200	PENJET	74
	T(I)-TII)-DELTS6.0	PENJET	75
	6010205	PENJET	76
208		PENJET	77
	NO-2	PENJET	78
	60 20205	PENJET	79
c		PENJET	80
c	finding tme effects of tme particle dfnetration	PENSET	01
C		PENSET	82
210	IFIT.NE. 1 .AND. NO.NE.2160 10202	PENJET	83
	GRa011, il=0.0	PENJET	84
	CRAOIS,21=0.0	PENJET	85
	chiortistet.o	PENJET	86
	6010281	PENJET	87
C		PENAET	08
6	if a partecte is mot in the Cowitmuous mode, the axis df	PENSET	09
c	PENETEATIOM is ryaluated	PENJET	90

```
    202 1FiTII).LT.BREAK(IIINCCIII=1
        IFIJ.EQ.I .AND. NCC(I).EQ.IIGOTC1999
        IFIT(1).(T.BREAK(I)IXLII)=XIIIFIIII/BREAK(I)
        1M1=1-1
        IFITIII.LT.BREAK(I) .AND. IIII.GT.IIIMIIIGOTO 1999
        00 204 LJ=1,3
        VAIIf(J)-ERAD(JMINकLJ)EVAM(II
        VPIt,(s)=V(I-()S)-VA(I,(0)
        AR(I,LJIEVAII,LJI/VAMII)
    204 PRII;LJI=VPIIgLJINVPMII
    RGRAOIC,II=VPR(I)*2./RAOIUS(JH(N)**2
    RGRADII:2)=0.0
    RGRAD(I,3)=VAM(I)*2.1PEN(JMINI**2
    RGM(1)=SQRT(PGRAO(I,1)**2*RGRAO(1, 3)**2)
    RGPADII,1)-RGRAD(I,1)/RGG(I)
        RGRAD(I;3)=RGRAD(I*3)/RGHMII
        DO 214 (J=1,3
    214 GRAD(IFLJ)=RGRAD(IFI)OPR(IFLJ)+RGRAD(I,3)*AR(I,(J)
        GM*50RT(6RAD(I,1)**2+6RAD(I,2)**2+6RAD(1,3)**2)
    00 219 lJ=1% 3
    219 GRAOITHLJI=6RAO(I,(J)/GM
        goro 2si
C
    1999 VECT=SORT(X(I)**2*Y(I)**2*(TII)+2SUBO-(DSII)*DS(2)*OS(3)IM3.)**2)
        GRADII,II-X(II/VECT
        GRADII,2)=Y(I)/YECT
        GRAD(1,3)=(2(1)+23HB0-(0S(1)+DS(2)+0S(3)1/3.)/VECT
    251 PENHAXIK2ZUNI=XLII)/GAMMA+PENHAX(KISUN)
        TFII.EO.1 .OR. HO.EO.Z .DR. NCCIII.EO.IIGOTD 262
C
    effective length and effective velocity calculations.
    XLIT)=GRAD(I,3)*XL(1)*SORT(GRAD(I,1)**2+GRAD(1,2)**2)
    l OTA(I)
    VELII)=GRAD(I,3)=VEL(I)
C
    pe.detration calculations as a functidon df gefective velocity.
    IFIVELIII.GT. .8) GD TO 260
    PEN(I)=0.0
    RaOIUSili=0.0
    U(II=0.0
    HVOLIIi-0.0
    60 ro 209
260 TFIVELIII.6T.1.4) 60 TO 261
    UIII=0.0
    HVOL(I)OXRE(I)/ECOMST
    PEN(II-(VEL(T):-.8)**2/.72*XC(I)
    PENIII=IVEL(I)-.8)**27.72*XCITI
    60 10 209
261 TFIVELItI.6T.2.160 10 262
    U(Il-0.0
    HVOLIIIEXKEIII/ECONST
    PEN(1)={-{VEL(1)-2.)**2/.72+1.)*XL(1)
    RAOTUS(II-SQRTI3.*NVOLSII (I2.*3.14159*PENIIH)'
    GO 10 209
262 RAD=SORT(VELIII**2*RHOJ*RHOT-2.*(RHOJ-RHOTI*(SIGJ-SIGTI/I.EG)
    U(I):(RMOJ&VEL(I)-RADI/(RHOJ-RHCT)
    PENII)=(RHDJ*VEL(I)&XL(I)-XL(I)CRADII(RAO-RHOT*VEL(II)
    HVOLIII-XKE(I)IECOMST
    RADIUS(II-SORTI3.*HVOL(I) (12.*3.14159*PEN(III)
```

PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
DENJE I
PENJET
PENJET
PENJET
DENSET
PENJE T
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJE T
PENJET
PENJET
PENJET
PENSET
PENJET
PENJET
PEMJET
PENJET
PENJET
PENJET
pendes
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENET
PENJEY
DENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENSET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
pendet
PENSET
PRJEY
PENJET
DENJET
PENJET
PENJEY
PENJET
PENJET
PFNJET

91
91
92

115
115
116
117
118
118
119
120
121
123
124
123
126
127
128
129
130

136
137
130
139
140
141
142
145
147
148
149
150
151
152
132
133
154

```
```

209 CONTINUE OENJET I5

```
```

209 CONTINUE OENJET I5
279 Y是期隹,2111

```
```

279 Y是期隹,2111

```
```



```
```

 PENSET
    ```
```

```
```

 PENSET
    ```
```



```
```

 30M, PICROSECIO,H1 PENJET
    ```
```

```
```

 30M, PICROSECIO,H1 PENJET
    ```
```



```
```

 60 T0 213
    ```
```

 60 T0 213
 2Q1 NRTYEI6,212II-HVOLIII-TIII-PENIII,UIII,MCD,HCON,MCONT PENJEY

```
```

2Q1 NRTYEI6,212II-HVOLIII-TIII-PENIII,UIII,MCD,HCON,MCONT PENJEY

```
```



```
```

213 CONTINUE

```
```

213 CONTINUE
*HAX=0.0
*HAX=0.0
OO 215 T-1,NPART
OO 215 T-1,NPART
TFIE|I|.Lf.PMAX) 60 10 215
TFIE|I|.Lf.PMAX) 60 10 215
PHAX=Z(I)
PHAX=Z(I)
DPMAXaPEN(1)*GRADI1,3)
DPMAXaPEN(1)*GRADI1,3)
215 CONTINUE
215 CONTINUE
215 CONTINUE
215 CONTINUE
PENTIKZSUNI - PENSUN
PENTIKZSUNI - PENSUN
WRIFE(6,216)PENSUH
WRIFE(6,216)PENSUH
216 FORMATISHO,10X, THE TOTAL PENETRATION PREDICTEO BY THIS *.
216 FORMATISHO,10X, THE TOTAL PENETRATION PREDICTEO BY THIS *.
I 'PROGNAM IS T,FG.1,' MM'S
I 'PROGNAM IS T,FG.1,' MM'S
PRMNT 257. 2SUS0
PRMNT 257. 2SUS0
257 fORMATI1NO, 10X, 'THESE VALUES MERE CALCULATED AT A STAMDOFF '
257 fORMATI1NO, 10X, 'THESE VALUES MERE CALCULATED AT A STAMDOFF '
1 Of OFG,00' MM.'I
1 Of OFG,00' MM.'I
MRTTE(6.2201
MRTTE(6.2201
220 FORMATIINI,14X,OX,Y, AND L COOROINATES PENETRATION MAX CRA', DENJET
220 FORMATIINI,14X,OX,Y, AND L COOROINATES PENETRATION MAX CRA', DENJET
I TER RAOIUS ARIAL DIRECTION OF PENETRATION'I
I TER RAOIUS ARIAL DIRECTION OF PENETRATION'I
DO 218 IU1,NDART

```
```

 DO 218 IU1,NDART
    ```
```



```
```

217 FGRMAT(11X,I20SF10.2,3F10.4)

```
```

217 FGRMAT(11X,I20SF10.2,3F10.4)
210 CONTIMUE
210 CONTIMUE
DO 263 I=1,MPART
DO 263 I=1,MPART
VELII):RVELII)
VELII):RVELII)
KMALIIJ*O
KMALIIJ*O
263 रLIII*RE(1)
263 रLIII*RE(1)
lFizSUS0.LT. 2mAXI GO T0 250
lFizSUS0.LT. 2mAXI GO T0 250
WRITE(60290)

```
```

 WRITE(60290)
    ```
```



```
```

 * PENETRATION(MMS '*1)
    ```
```

 * PENETRATION(MMS '*1)
 00 209 I-1,K2SUM
 00 209 I-1,K2SUM
 209 YRITEI6,292)ZSUH(1), PENTIII, PENMAXIII
209 YRITEI6,292)ZSUH(1), PENTIII, PENMAXIII
292 FOHMATi10XoF5,0,132,F7,2,T55,F7.21
292 FOHMATi10XoF5,0,132,F7,2,T55,F7.21
515 CONT1MUE
515 CONT1MUE
S0S FORMAT(IN1)
S0S FORMAT(IN1)
OO 510 JN: 1ONPART
OO 510 JN: 1ONPART
VOL(JN)=0.
VOL(JN)=0.
X({IN)=0.
X({IN)=0.
5\0 DTA\JNIEO.
5\0 DTA\JNIEO.
\$00 CONTIMUE
\$00 CONTIMUE
STDP
STDP
ENO
ENO
EFNCCIII.EO.1IGOTO 201
EFNCCIII.EO.1IGOTO 201
PENJET
PENJET
PENJET
PENJET
PENSET
PENSET
PENJET
PENJET
yl(INIEO.
yl(INIEO.
PENJEY
PENJEY
213 CONTINO
213 CONTINO
NETRATIOM PREDICTEO OY THIS : PENJET
NETRATIOM PREDICTEO OY THIS : PENJET
FORNATISNO,10X; THE TOTAL PENEFRATION NREDICTEO OY THIS '* PENJET
FORNATISNO,10X; THE TOTAL PENEFRATION NREDICTEO OY THIS '* PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
OENJET
OENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PEMJET
PEMJET
PEMJET
PEMJET
PENJET
PTMSET
PTMSET
PENSET
PENSET
PENJET
PENJET
PENJET
PENJET
PENJEY
PENJEY
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET
PENJET 198
PENJET 198
PENJET 199
PENJET 199
PENJE: 200
PENJE: 200
BPL2330 237
BPL2330 237
ORL2330 238
ORL2330 238
BRL2330 239
BRL2330 239
BPL2330 240
BPL2330 240
510 DTAIJNI=O. ORL2330
510 DTAIJNI=O. ORL2330
ORL2330 242
ORL2330 242
BRL2330

```
BRL2330
```



```
172
173190
191193195
196
```

 PENJET
    ```
    PENJET
    PENJET
    PENJET
    PENJET
    PENJET
    DENJET
    DENJET
    PENJET
    DENSET
    DENSET
    PENJET
    PENJET
    OENJET
    OENJET
    FENJET
    FENJET
    PENJET
    PENJET
    PENJES
    PENJES
    ORL2330
    ORL2330
156
156
157
157
157
157
150
150
159
159
160
160
161
161
162
162
163
163
164
164
164
164
165
165
166
166
168
168
168
168
169
169
170
170
    171
    171
    172
    172
244
```

244

```

\section*{"JETBREAK"}

BREAK(N) - breakup time of particle \(N\) in usec
BROK \(\left.\begin{array}{l}1 \\ 2 \\ 3\end{array}\right\}\) - observed number of jet particles already particulated as of exposure 2

3
FLASH \(\left.\begin{array}{l}1 \\ 2 \\ 3\end{array}\right\}\) - time after detonation of round for exposure of film \(\begin{aligned} & 1 \\ & 2 \\ & 3\end{aligned}\)
PBAR
PBYPZ statistical variables used in calculation of breakup time
PBYTZ

TAVG
TDLAY - time delay between detonation of round and formation of jet
21 . - time between breakup of adjacent jet particles


Figure Al. A Diagrammatic Sketch Identifying Some DRIFT Variables
"DRIFT"
AVST (I) - the axial velocity divided by the transverse velocity for particle I
```

AZ (1, I)
AZ (2, I) \} - deviance of particle I with respect to the reference on
AZ $(3, I)$ l
exposure 2
3

```

BETA (I) - absolute angle formed between drifting reference and particle I
\(\left.\begin{array}{l}\text { DS (1) } \\
\text { DS (2) } \\
\text { DS (3) }\end{array}\right\} \quad\) - virtual origin calculations based on exposure \begin{tabular}{l}
1 \\
2 \\
3
\end{tabular}

EPS (1, I)
EPS \((2, I)\)
EPS \((3,1)\)
EPS (4, I) - estimate for sensitivity of transverse velocity \(V\) with respect to EPS (5, I)
small changes in drift angle \(\theta\) (of the form \(\frac{d V}{d \boldsymbol{\theta}} \Delta \boldsymbol{\theta}\) ) using all
combinations of drift velocities and drift angles calculated from the 3 radiographs

EPSUM \(\quad-\sum_{K=1}^{6} \frac{1}{\operatorname{EPS}(K, I)}\) a constant used to scale the EPS values to their


MAXDEX - the particle \# that satisfies TMAX
MINDEX - the particle \# that satisfies TMIN
PHI (I) - the supplementary of the relative drift angle between particle I and the reference
\(R\) (2) \(\} \quad\) - correlation coefficient for \(V_{A}\) vs. \(V_{T}\) plot for reference drift \(R\) (1) angle presently being analyzed. previously
\(\left.\begin{array}{l}\text { S1 (I) } \\ \text { S2 (I) } \\ \text { S3 (I) }\end{array}\right\} \quad\) - axial distance from charge base to particle I on exposure \(\begin{aligned} & 1 \\ & 2 \\ & 3\end{aligned}\)

T1 (I)
T2 (I) - estimated existence time from creation of particle \(I\) to exposure T3 (I) of film \(\frac{1}{2}\). 3

THETAO - initial guess at direction of reference drift
TMAX
TMIN
- the angle of the particle which is most clockwise/counterclockwise in the relative angular span.

TH12) \(1 \quad 2\)
TH23
TH 13
THV - the numerical average of TH12, TH23, and TH13
THETA (I) - the relative drift angle of particle I with respect to arbitrary origin (chosen parallel to film 2) (degrees).

THOR - the current reference drift angle being tested
VETR12) \(1 \quad 2\)
VETR23 - relative transverse velocity calculated from equations 2 and 3 VETR13)
- relative drift angle calculated fron governing equations 2 and 3

VETRAV (I) - relative transverse velocity of particle I based on weighted values of VETR12, VETR23, and VETR13 (m/s)

VTABS (I) - absolute transverse velocity of particle \(I(m / s)\)
VTO
- transverse velocity of particle reference ( \(\mathrm{m} / \mathrm{s}\) )

VXO - x component of drift velocity for the reference
VYO
- \(y\)

VX (I) - \(x\) component of relative drift velocity for particle \(I\)
VY (I) \(\quad-y\)
WT (I) - the percentage weight that an individual drift velocity calculation contributes to the overall average.

ABAR ABYAS AS CO
COI
CO2
TBAR
TBYAS
TBYTS
TS
XINT


Figure A2: A Diagrammatic Sketch Identifying Sone PENJET Variables.

\section*{"PENJET"}
\(T\) (I) - impact time of particle \(I\), taken from virtual origin
\(X\) (I) - spacial coordinates for top of particle I at any given time
(and eventually upon impact) \(X=0, Y=0\) denote where charge axis intersects target plate; \(Z=0\) is target surface.

DELT - time increment (varied so that particle travels \(3 \mathrm{~mm} /\) timestep)
U (I) - penetration velocity of particle I (calculated only in the hypervelocity regime e.g. above \(2 \mathrm{~mm} / \mu \mathrm{sec}\) )

RADIUS (I) - crater radius of particle I
PEN (I) - penetration of particle I
HVOL (I) - hole volume created by particle I


VM (I) - magnitude of vector \(\vec{V}\)
\(\left.\begin{array}{l}\text { VA }(I, 1) \\ V A(I, ~ 2)\end{array}\right\} \quad\) the \(\begin{gathered}x \\ y\end{gathered} \quad\) components of vector \(\overrightarrow{V A}\) which is in itself the component VA \((1,3)\}\)
of vector \(\vec{V}\) pointing axially down crater \(J\) (the crater through which particle \(I\) is passing)

VAM (I) - magnitude of vector \(\overrightarrow{V A}\)
\begin{tabular}{|c|c|}
\hline VP (I, 1) & X \\
\hline VP (I, 2) & the \(y\) components of vector \(\overrightarrow{V P}\) which is in itself the component \\
\hline VP ( 1,3\()\) & \(\underset{\sim}{2} \rightarrow\) \\
\hline & of vector \(\vec{V}\) pointing perpendicular to the penetration axis of \\
\hline & crater J (through which particle I is passing). \\
\hline & Note that \(\overline{\mathrm{VA}}+\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{V}}\) \\
\hline
\end{tabular}

VPM (I) - magnitude of vector \(\overrightarrow{\mathrm{VP}}\)
\begin{tabular}{|c|c|}
\hline RGRAD ( \(\mathrm{I}, 1)\) ) & \(x\) \\
\hline RGRAD (I, 2) & the \(y\) components of a vector that is perpendicular to crater \(J\) \\
\hline RGRAD (I, 3) & 2 \\
\hline & at the point of impact of particle \(I\), but in the coordinate system of crater \(J\) (e.g., the \(Z^{\prime}\) axis points down the axis of crater J) \\
\hline RGM (I) & nagnitude of vector \(\overline{\text { RGRAD }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { GRAD (I, } 1) \\
& \text { GRAD (I, } 2) \\
& \text { GRAD }(I, 3)
\end{aligned}
\] & the \(y\) components of a vector that is perpendicular to crater \(J\) 2 at the point of impact of particle 1 , and in laboratory coordinate system (e.g., the axis points perpendicular to the target surface); GRAD becomes the axis of penetration for crater I according to refracted particle wave theory \\
\hline GM ( 1 ) & - magnitude of vector \(\overrightarrow{\text { GRAD }}\) \\
\hline \[
\left.\begin{array}{lll}
A R & (I, & 1) \\
A R & (I, & 2) \\
A R & (I, & 3
\end{array}\right\}
\] & a unit vector version of \(\overrightarrow{V A}\) \\
\hline \[
\left.\begin{array}{ll}
\operatorname{PR} & (I, 1) \\
P R & (1,2) \\
P R & (I, 3)
\end{array}\right\}
\] & a unit vector version of \(\overrightarrow{\mathrm{V}} \mathbf{P}\) \\
\hline NCC (I) & - equals 1 when particle \(I\) is particulate; equals 0 when \(I\) is continuous \\
\hline ECONST & - energy constant used for calculating crater volume ( \(\mathrm{J} / \mathrm{mm}{ }^{3}\) ) \\
\hline zSUBO & - standoff (mm) from virtual origin to target surface \\
\hline RHOJ & - jet density \(\rho_{j}\left(\mathrm{~g} / \mathrm{mm}^{3}\right)\) \\
\hline RHOT & \[
- \text { target density } \rho_{t}\left(\mathrm{~g} / \mathrm{mm}^{3}\right)
\] \\
\hline SIGJ & jet strength (MPa) \\
\hline SIGT & - target strength (MPa) \\
\hline GAMMA & \[
-\left(\rho_{t} / \rho_{j}\right)^{\frac{1}{2}}
\] \\
\hline JMIN & - the last crater number that particle I has been known to successfully have passed through \\
\hline PENSLM & the penetration resulting from PENJET calculations \\
\hline \(\mathrm{NQ}=0\) & - particle 1 is travelling down hole profile \\
\hline \(N \mathrm{Q}=1\) & - particle \(I\) has just struck target; \(t\) is decremented until precise impact time is revealed \\
\hline \(N Q=2\) & - particle \(I\) has drifted so far off course as to preclude entry into any part of the hole profile; it therefore strikes the target surface \\
\hline KZSUM & - number of standoffs at which PENJET has just analyzed a drift distribution \\
\hline PEnmax (K) & - the greatest possible penetration at standoff \#K \\
\hline
\end{tabular}

ZSUB (K) - an array of the standoffs at which PENJET has just been run
PENT (K) - penetration predicted by PENJET at standoff \#K


\section*{DISTRIBUTION LIST}

No. of
Copies

\section*{Organization}

3 Commander
US Army Tank Automotive
Command
ATTN: DRDTA-RWL/C. Bradley DRDTA-TSL
DRDTA-RC/Dr. J. Jellinek
Warren, MI 48090
1 Program Manager
XM1 Abrams Tank System
ATTN: DRCPM-GCM-S
Warren, MI 48090
1 Director
US Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range
NM \(\mathbf{8 8 0 0 2}\)
2 Commander
US Army Materials and Mechanics
Research Center
ATTN: DRXMR-PDD/J. Prifti Tech Lib
Watertown, MA 02172
1 Commander
US Army Research Office
P. O. Box 12211

Research Triangle Park
NC 27709
2 Chief of Naval Research
Department of the Navy
ATTN: Code 427
Code 470
Washington, DC 20360
1 Commander
Naval Sea Systems Command
Washington, DC 20360

2 Commander
Naval Air Systems Command
ATTN: Code AIR-310
Code AIR-350
Washington, DC 20360

No, of
Copies Organization

2 Commander
Naval Surface Weapons Center
ATTN: Code DG-50
DX-21, Lib Br
Dahlgren, VA 2244822448
1 Commander
Naval Surface Weapons Center
ATTN: Code 730, Lib
Silver Spring, MD 20910
1 Commander
Naval Surface Wcapons Center
ATTN: N. Coleburn
Silver Spring, MD 20910
1 Commander
Naval Weapons Center
ATTN: Dr. L. Smith
China Lake, CA 93555
2 Commander
Naval Weapons Center
ATTN: Code 4057
Code 3431, Tech Lib
China Lake, CA 93555
1 Commander
Naval Research Laboratory Washington, DC 20375

1 USAF/AFRDDA
Washington, DC 20311
1 AFSC/SDZ/SDOA
Andrews AFB
Washington, DC 20334
2 US Air Force Academy
ATTN: Code FJSS-41 (NC) Tech Lib
Colorado Springs, CO 80840
1 AFATL/DLJW (Dr. J. Foster)
Eglin AFB, FL 32542
1 AFWL/SUL
Kirtland AFB, NM 87117

\section*{DISTRIBUTION LIST}
No. of Copies Organization
1 AFATL/DLYV (Mr. J. Smith) Eglin AFB, FL 32542
1 AFWL/SUL (LT Tennant)
Kirtland AFB, NM 87117
1 AFAL
Wright-Patterson AFB, OH 45433
1 AFLC/MMWMC
Wright-Patterson AFB, OH 45433
1 Director
Lawrence Livermore National Lab. ATTN: Tech Lib
P. O. Box 808
Livermore, CA 94550
2 Director
Lawrence Livermore National Lab. ATTN: Dr. C. Godfrey
Mr. M. Wilkins
P. O. Box 808
Livermore, CA 94550
1 AFELM, The Rand Corporation
ATTN: Library D
1700 Main Street
Santa Monica, CA 90406
1 Sandia Laboratories
ATTN: Tech Lib
Albuquerque, NM 87115
1 Battelle- Memorial Institute ATTN: Mr. Joseph E. Backofen 505 King Avenue
Columbus, OH 43201
1 Dyna East Corporation
ATTN: P. C. Chou
227 Hemlock Road
Wynnewood, Pa 19096

No. of
Copies
Organization
2 Firestone Defense Research and Products
Division of the Firestone Tire and Rubber Company
ATTN: R. Berus, L. Swabley
1200 Firestone Parkway
Akron, OH 44317
1 Honeywell Inc.
Government and Aerospace Products Division
ATTN: C. R. Hargreaves
600 Second Street
Hopkins, NM 55343
1 Physics International
ATTN: Ron E. Brown San Leandro, CA 94577

1 Drexel Institute of Technology 32nd and Chestnut Streets Philadelphia, PA 19104

1 Systems, Science \& Software ATTN; Dr. R. Sedgwick
P. O. Box 1620

La Jolla, CA 92037

\section*{Aberdeen Proving Ground}

Dir, USAMSAA
ATTN: DRXSY-D
DRXSY-MP, H. Cohen DRXSY-G, Mr. Kramer
Cdr, USATECOM
ATTN: DRSTE-TO-E
Dir, USACSL, B1dg. E3516, EA
ATTN: DRDAR-CLB-PA DRDAR-CLN DRDAR-CLJ-L

\section*{USER EVALUATION OF REPORT}

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.
1. BRL Report Number \(\qquad\)
2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)
3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)
4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.) \(\qquad\)
\(\qquad\)
\(\qquad\)
6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: \(\qquad\)
Telephone Number: \(\qquad\)
Organization Address: \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Director}

FOLD HERE
——


US Army Ballistic Research Laboratory ATTN: DRDAR-BLA-S
Aberdeen Proving Ground, MD 21005
-
OFFICIAL BUSINESS
penalty for private use. \(\mathbf{5 0 0}\)
\(\underset{\text { FIRST CLASS }}{\text { BUSIN }} \underset{\text { PERMIT NO } 12062}{\text { RES }}\) MASHINGTON,OC

POSTAGE WILL BE PAID BY OEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory ATTN: DRDAR-BLA-S
Aberdeen Proving Ground, MD 21005


- - - - - - FOLD HERE \(-\infty-\infty-\infty-\infty\)```


[^0]:    1J. Blische, B. Simmons, "A Method for Reducing Data from Radiographs of Shaped-Charge Jets," BRL Report ARBRL-TR-02330, Jun 81 (AD A102710).

[^1]:    ${ }^{2}$ K. N. Kreyenhagen, J. E. Ferguson, R. R. Randall, J. P. Joyce, "Special Explosive Projectors," Proc. 6th Symposium Hypervelocity Impact, Vol. I (Held Cleveland, Ohio, April 30-Maly 2, 1963).
    3
    R. Dipersio, J. Simon, A. Merendino, "Penetration of Shaped-Charge Jets Into Metallic Targets," Ballistic Research Laboratory Report No. 1296, September, 1965 (AD 476717).

[^2]:    6 G. "eilnauch, "The Behavior of Copper Dins Upon Impacting Various Materials With Velocities Between $50 \mathrm{~m} / \mathrm{s}$ and $1650 \mathrm{~m} / \mathrm{s}$," (Doctoral Thesis) University of Karlsmuhe, 1971.

    7 J. Simon, R. DiPersio, "Experimental Verification of Standoff Fffects on Shaped-Charge Jet Cutoff in Solid Targets," Ballistic Research Laboratory Memorandum No. 1976, May 1969 (AD 854396).

[^3]:    Figure 23. Penetration Capability of Distinct Jet Portions of Round 2937

[^4]:    ${ }^{8}$ R. DiPersio, J. Simon, "The Effect of Target Hardness on the Penetration Capability of Shaped-Charge Jets," BRL Report No. 1408, July 1968 (AD 838991).

