ADF 300329 AD

MEMORANDUM REPORT ARBRL-MR-03306

DRIFT VELOCITY COMPUTATIONS FOR SHAPED-CHARGE JETS

Steven B. Segletes

September 1983

FILE COPY

E

42-4133 756

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

83 10 17 008

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indormament of any commercial product.

A STATE OF A

State State and State

. . . .

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER	3. RECIPIENT'S CATALOG NUMBER
MEMORANDIM REPORT APROL MD-03306 AD-A 12370	
I TITLE (and Sublifie)	5. TYPE OF REPORT & PERIOD COVERE
	1
DRIFT VELOCITY COMPUTATIONS FOR SHAPED-CHARGE	
JE12	- PERFORMING ORG. REPORT NUMBER
. AUTHOR(=)	8. CONTRACT OR GRANT NUMBER(+)
S. B. Segletes	1
-	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
US Army Ballistic Research Laboratory	AREA & WORK UNIT NUMBERS
ATTN: DRDAR-BLT	1L162618AH80
Aberdeen Proving Ground, MD 21005	
JS Army Armament Research & Development Command	September 1983
JS Army Ballistic Research Laboratory (DRDAR-BLA-S)	13. NUMBER OF PAGES
Aberdeen Proving Ground, MD 21005	81
4. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15. DECLASSIFICATION DOWN GRADING
	JUNEOULE
5. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite 7. DISTRIBUTION STATEMENT (of the abstract enfored in Block 20, 11 different for	d. ex Report)
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite 7. DISTRIBUTION STATEMENT (of the abstract enfored in Block 20, if different for	d . en Report)
 B. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from the abstract entereed in Block 20, 11 different from the abstract entereed	d . m Report)
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite 7. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, if different in 8. SUPPLEMENTARY NOTES	d. er Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite J. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different fro SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES J. KEY WORDS (Continue on reverse eide If necessary and identify by block number, shaned, charge, jot	d . m Repart)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for SUPPLEMENTARY HOTES SUPPLEMENTARY HOTES Shaped-charge jet drift distribution sidewall impact	d . ar Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for 8. SUPPLEMENTARY NOTES Supplementary notes shaped-charge jet drift distribution penetration sidewall impact	d. m Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different for SUPPLEMENTARY NOTES Supplementary motes shaped-charge jet drift distribution penetration sidewall impact drift velocity transverse velocity	d . m Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in SUPPLEMENTARY HOTES SUPPLEMENTARY HOTES Supplementation on reverse elde If necessary and identify by block number, shaped-charge jet drift distribution penetration sidewall impact drift velocity transverse velocity	d. m Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide 11 necessary and identify by block number, Shaped-charge jet drift distribution sidewall impact drift velocity transverse velocity ABSTRACT (Continue on reverse eide 11 necessary and identify by block number, This work provides cuantitative compared for the second provides cuantitative cuantitati	d. m Report) bet/
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different for SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES Supplementary on reverse elds 11 necessary and identify by block number, Shaped-charge jet drift distribution penetration sidewall impact drift velocity transverse velocity AMSTRACT (Continue on reverse elds 11 necessary and identify by block number) This work provides quantitative support for the as the major cause for nonideal jet penetration. Je ascertain the component of jet velocity normal to charge for each jet particle. This nonideal velo	d. <i>Bet Report</i>) bet/ sumption that jet curvature t radiographs were analyzed the axis of symmetry of the city component is the drift
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different for DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different for SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES AUSTRACT (Centimus on reverse elds If necessary and identify by block number, shaped-charge jet drift distribution penetration sidewall impact drift velocity transverse velocity AUSTRACT (Centimus en reverse elds If necessary and identify by block number, This work provides quantitative support for the as the major cause for nonideal jet penetration. Je ascertain the component of jet velocity normal to charge for each jet particle. This nonideal velo velocity. The drift velocity distribution determined on the jet in a computer simulation of the penetra code, referred to as PENJET, was employed to gener	d. m Report) bet/ sumption that jet curvature t radiographs were analyzed the axis of symmetry of the city component is the drift ned in this manner was impos tion process. The computer ate penetration-standoff
Approved for public release; distribution unlimite Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different for BLOCK WORDS (Continue on reverse elds if necessary and identify by block number, shaped-charge jet drift distribution penetration sidewall impact drift velocity transverse velocity ADETRACT (Continue on reverse elds if necessary and identify by block number, This work provides quantitative support for the as the major cause for nonideal jet penetration. Je ascertain the component of jet velocity normal to charge for each jet particle. This nonideal velo velocity. The drift velocity distribution determin on the jet in a computer simulation of the penetra code, referred to as PENJET, was employed to gener. D 1,100,704	d. <i>Bet/</i> <i>sumption that jet curvature</i> <i>t radiographs were analyzed</i> <i>the axis of symmetry of the</i> <i>city component is the drift</i> <i>ned in this manner was impos</i> <i>tion process. The computer</i> <i>ate penetration-standoff</i> <i>UNCLASSIFIFD</i>
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different for DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different for SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES AUGUAL Continue on reverse elds if necessary and identify by block number, shaped-charge jet drift distribution penetration sidewall impact drift velocity transverse velocity ABSTRACT (Continue on reverse elds if necessary and identify by block number, shaped-charge jet drift distribution penetration sidewall impact drift velocity transverse velocity ABSTRACT (Continue on reverse elds if necessary and identify by block number) This work provides quantitative support for the as the major cause for nonideal jet penetration. Je ascertain the component of jet velocity normal to charge for each jet particle. This nonideal velo velocity. The drift velocity distribution determi on the jet in a computer simulation of the penetra code, referred to as PENJET, was employed to gener. TO , JAM 73 EDVINOW OF 1 MOV 65 15 OBSOLETE	d. <i>bet/</i> <i>sumption that jet curvature</i> <i>t radiographs were analyzed</i> <i>the axis of symmetry of the</i> <i>city component is the drift</i> <i>ned in this manner was impos</i> <i>tion process. The computer</i> <i>ate penetration-standoff</i> <i>UNCLASSIFIED</i> SUMPLICATION OF THE PAGE (The Date Ex)

and the second second

SECURITY CLASSIFICATION OF THIS PAGE When Date Entering

curves using the data from a specific round. This curve depicts the penetration-standoff performance for the single round as if it could be shot repeatedly at a variety of standoffs. The curve could then be compared with the actual datum for the round.

UNCLASSIFIED

1. A.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ins th

TABLE OF CONTENTS

		ļ	Page
	LIST OF ILLUSTRATIONS	•	5
Ι.	INTRODUCTION		7
п.	MEASURING THE DRIFT VELOCITY OF A PARTICLE	•	7
III.	THE DRIFT VELOCITY DISTRIBUTION FOR A GIVEN ROUND	•	13
IV.	THE QUESTION OF TILT	•	19
v.	THE CREATION OF A PENETRATION CODE TO ANALYZE DRIFT	•	22
VI.	APPLYING THE CODE TO DATA	•	31
VII.	CONCLUSIONS	•	51
	ACKNOWLEDGEMENTS.	•	52
	REFERENCE LIST	•	53
	APPENDIX A: Program Listing and Variable Name Descriptions	•	55
	DISTRIBUTION LIST		79

0110 .' COPY NOPECTEC

LIST OF ILLUSTRATIONS

Figure		Page
1	Radiographic Apparatus Used to Record Flight of Shaped- Charge Jet	8
2	Sample Radiograph of a Shaped-Charge Jet in Flight	9
3	View of Particle Deviation as Projected onto the Transverse Plane	11
4	Locating a Particle in the Transverse Plane Through the Use of Three Radiographs	12
5	Relative Velocity Fan Showing the Pattern Formed by the Drifting Jet Particles	14
6	Typical Plot of Axial vs. Transverse Velocity for Particles of a Given Round	15
7	Transformation of Relative Fan Into Absolute Fan for a Hypo- thetical Drift Distribution	17
8	Effect of Transformation from Relative to Absolute Drift Velocity on the Slope of the Curve	18
9	Target Plate for Asymmetrically Initiated Shaped Charge (Reference 2)	21
10	Parameters Generated by PENJET to Describe Crater Formed by Impinging Jet Particle	23
11	PENJET Hole Profile Results from Ellipsoid Superposition	24
12	Crater Formation According to Refracted Particle Wave Theory	26
13	Refracted Particle Wave Theory Applied to Local Obliquity	27
14	Concept of Effective Length as Seen by Impact Plane	28
15	The Role of Effective Velocity in Penetration Calculations Involving Copper Jets Against Steel Targets	30
16	Analysis of Round 2331	33
17	Analysis of Round 2332	34
18	Analysis of Round 2334	35
19	Analysis of Round 2336	36
20	Routine Performance for Type of Round Analyzed	37

5

PRECEDENC PAGE BLANK-NOT FILMED

. .

5. **5 - 1** - 1

Sec.

4.45

-

LIST OF ILLUSTRATIONS (CONT'D)

Figure		Page	
21	Analysis of Kound 2937 with the Included Jet Rear Simulation Note: Optimum Performance Data Transferred from Figure 20	•	39
22	Penetration Capability of Distinct Jet Portions of Round 2331.	•	40
23	Penetration Capability of Distinct Jet Portions of Round 2937.	•	41
24	PENJET Predictions of Hole Profile for Round 2334 at 23 CD Standoff. Penetration in Cone Diameters	•	42
25	PENJET Predictions of Hole Profile for Round 2937 at 23 CD Standoff. Penetration in Cone Diameters	•	43
26	Code Predictions of Rear-Jet Ineffectiveness Due to Side Wall Impacts of Drifting Particles	•	44
27	Orthogonal Views of Projected Hole Profile of Round 2331 at 18 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters	•	45
28	Increase of Side-Wall Impacts Predicted at Longer Standoffs	•	46
29	Orthogonal Views of Projected Hole Profile of Round 2331 at 23 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters		47
30	The Effect of Side-Wall Impacts is Not Only to Decrease Penetration, But to Widen Crater	•	48
31	Orthogonal Views of Projected Hole Profile of Round 2331 at 38 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters	•	49
A1	A Diagrammatic Sketch Identifying Some DRIFT Variables		71
A2	A Diagrammatic Sketch Identifying Some PENJET Variables		74

6

1 CARLES

ت عار معد والمعالم

......

I. INTRODUCTION

Theories to predict penetration of shaped charges have met with varying degrees of success. Except for relatively short standoffs, penetrations diverge greatly and never really approach idealized values. Inspection of jets through the use of flash radiographs reveals why idealized penetration is not a reality: because the idealized jet is not a reality. The presence of drift velocity (seen in a radiograph as jet curvature) is suggested as being the main cause for the variance in jet penetrations. Transverse (or alternately drift) velocity refers to the motion of shaped-charge jet particles in the plane perpendicular to the charge axis of the warhead (drift or transverse plane). The distance travelled by a jet particle in the transverse plane is referred to as the particle deviance.

All shaped charge jets contain drift velocity to some degree or another. The origins of drift are naturally linked to imperfections in the warhead itself. Lack of uniformity of liner thickness, nonhomogeneous explosive, as well as asymmetric liner confinements must all be considered as possible causes of drift velocity in any given round. Fissures in the explosive material and uncentered boosters can also contribute to jet performance that is less than perfect. With respect to the rounds studied in this analysis, it was also noticed that rounds with pressed explosive possessed consistently lower penetration capabilities than their cast explosive counterparts. One theory is that the high pressures (20,000 psi) required to press the explosive were capable of distorting the liner. The problems characterizing these pressed rounds were typical of the early days of pressing. Technology in the area of pressing explosives has since improved to a point where many of the problems then inherent in the rounds studied have been corrected. Some uncased pressed rounds now show penetrations of 5.5 calibers at 24 caliber standoff. Nonetheless, the pressed rounds that were studied possessed adverse qualities that manifested themselves in poor jets. Thus, with a multitude of sources for asymmetric conditions always present, it is not surprising to find the regularity with which drift velocity occurs in jets.

An algebraic analysis can be performed to evaluate numerically the drift velocities of the particles of a given jet. Preliminary and somewhat simplified computations indicate that drift velocity alone is sufficient to account for major variations in jet penetration.

II. MEASURING THE DRIFT VELOCITY OF A PARTICLE

The flash radiograph is the best tool to perform detailed analysis of the shaped charge jet in flight. It would, therefore, be appropriate to explain the nature and setup of the apparatus and how it relates to the data obtained and used in the analysis. A diagram of the apparatus is shown in Figure 1. The jet is radiographed from three different angles at three different times before it finally penetrates the target. The angular separation of each of the x-ray tubes is 45°. A sample radiograph of one of the rounds studied is shown in Figure 2. Note the fiducial markings which

بالنطف لما

. .

14 W 18 W

lie not on but parallel to the charge axis. Data are extracted from the radiographs by a digitizing process whereby each particle on the film is defined by six points located on the perimeter of the particle. By this means, calculations are made for each particle's length, diameter, velocity, mass, momentum, and kinetic energy using procedures described by Blische and Simmons.¹

If it is assumed that the fiducials are parallel to the charge axis of a round, the radiograph of an ideal jet would contain an image of the jet parallel to the fiducials on all exposures. This assumption is not strictly true, but shall be discussed in Section IV. With near perfect jets rarely being observed, it becomes important to measure the transverse movement of particles with respect to the charge axis. However, the location of the charge axis is, in itself, unknown. One assumes that the charge axis is parallel to the fiducials on all radiograph exposures, though it is not coincident with any one of them. It becomes necessary, therefore, to choose a workable reference. The rear of the jet has always been considered the most stable portion. For this reason, a particle near the rear of the jet that is readily definable in all three radiographs is chosen as the reference. The reference axis is an axis parallel to the warhead charge axis on which the reference particle lies. If the reference particle is not drifting in the transverse plane, the reference axis will be coincident with the charge axis.

To see how the transverse velocity of a particle might be measured, it would be convenient to imagine looking down the charge axis, as if from liner to target. Ignoring all particles of the jet except the reference particle and the particle in question, the charge axis view of the situation could be described by Figure 3. Note that the film shown in the figure is just the "edge" of the film since the view is down the charge axis. The deviance (perpendicular distance between the reference axis and the particle in question) that is seen in the radiograph is less than or at most equal to the actual deviance due to the cosine effect. Given the apparatus of Figure 1, and having exposed the three radiographs simultaneously, the reference particle and the particle in question could be precisely located with respect to each other in the transverse or drift plane. This situation is illustrated in Figure 4. The time delay that actually exists among the three exposures complicates matters little and three governing equations are readily derived:

$$V_{\rm T}^{\star} = \frac{{\rm D}_1/\cos\left(\theta + 45^\circ\right)}{{\rm t}_1} \tag{1}$$

$$V_{T}^{\star} = \frac{D_{2}/\cos\theta}{t_{2}}$$
(2)

¹J. Blische, B. Simmons, "A Method for Reducing Pata from Radiographs of Shaped-Charge Jets," BRL Report ARBRL-TR-02330, Jun 81 (AD A102770).

C.C.C.

.....

State State States

$$V_{\rm T}^{*} = \frac{{\rm D}_{\rm 3}/\cos(\theta - 45^{\circ})}{{\rm t}_{\rm 3}}$$
(3)

where D_{k} - apparent deviance read off the K'th radiograph

 t_k - the time between particle formation and the K'th exposure

 θ - deviation angle between path of deviation and some arbitrary reference (chosen parallel to film 2)

Equations (1), (2), and (3) all contain two unknowns, namely magnitude of drift velocity (V_{+}^{*}) and angle of deviation (θ). Any two of these three

equations can be solved simultaneously to yield a result for transverse velocity, both in magnitude and direction. In reality, the equations are solved in all three combinations, and a weighted average is taken depending on the particle's orientation with the radiographs. This velocity shall be called by the name of relative drift velocity since the particles are moving with respect to a moving reference (the reference particle).

III. THE DRIFT VELOCITY DISTRIBUTION FOR A GIVEN ROUND

When relative transverse velocities are evaluated for all the particles of a jet, a polar plot can be made whereby a line segment with length proportional to the magnitude of drift velocity is plotted at the appropriate deviation angle in the transverse plane. A sample velocity fan is shown in Figure 5. This relative velocity fan shows a kind of spray of the jet particles away from the reference particle in the deviation plane.

When a plot is made of the axial versus transverse particle velocity for a given round, a graph similar to Figure 6 frequently results. The data seems to be of the form:

$$V_{A} = KV_{T}^{*} + V_{REF}$$
(4)

where:

V_A - axial velocity of particle

 V_{r} - relative transverse velocity of particle

K - constant varying from round to round

V_{REF} - axial velocity of the reference particle

Most rounds studied were in high correlation with Equation (4).

The next quantity to determine is the drift velocity of the reference particle from which all the calculations were made. If we assume that the reference drift velocity is negligible, then the separation distance between impacts of the jet tip and the reference particle would routinely exceed

10.0

1/2 charge diameter (CD) at a 24 CD standoff for typical drift distributions studied. Under such conditions, the reference particle will never enter the crater created by the jet tip because of excessive drift. However, it is not uncommon for a jet to produce a single entrance hole into the target at 24 CD standoff. Thus, the reference must possess a drift velocity which will tend to bring the reference into the crater formed by the jet tip. An equation is needed which expresses that the reference particle should deviate the same distance from the charge axis as the jet tip upon reaching a target block at a given standoff. Mathematically, the assumption is:

$$D_{R} = D_{j}$$
(5)

where: D_R - the distance the reference has deviated upon reaching the target surface (magnitude only)

D. - the distance the jet tip has deviated upon reaching the target surface (magnitude only)

Equation (5) does not preclude drift among the jet particles since it pertains to magnitude only. An angular separation of the drifting particles still exists and will tend to separate the jet particles at extended standoff. For a small angular deviation among jet particles however, Equation (5) gives jets the ability to produce single crater target impacts. It is suggested solely because a compensatory reference particle drift was required and is the best which can be proposed at this time. Since drift velocity is assumed to be constant after a particle's formation, Equation (5) can be expressed as:

$$V_{T_R} t_R = V_{T_j} t_j$$
(6)

where: V_{r} - the absolute drift velocity of the associated particle

- t the time required for the associated particle to reach the target surface
- R the reference particle
- j an arbitrary jet particle

But the time required for a particle to reach the target surface is equal to the standoff as measured from the virtual origin (Z_0) divided by the particle's axial velocity (V_A) . Therefore, Equation (6) expands to:

$$v_{T_{R}} \frac{z_{o}}{v_{A_{R}}} = v_{T_{j}} \frac{z_{o}}{v_{A_{j}}}$$
(7)

Simplifying:

$$\frac{V_{A_{R}}}{V_{T_{R}}} = \frac{V_{A_{j}}}{V_{T_{j}}}$$
(8)

A RELATIVE VELOCITY FAN WITH SCALED REFERENCE VELOCITY ARROW INDICATING MAGNITUDE AND DIRECTION OF REFERENCE DRIFT. THE APEX OF THE FAN REPRESENTS THE REFERENCE PARTICLE FROM WHICH DRIFT MEASUREMENTS WERE ORIGINALLY TAKEN.

AN ABSOLUTE VELOCITY FAN IS CREATED BY CONNECTING THE TAIL OF THE REFERENCE VECTOR TO THE RELATIVE VELOCITY FAN. THE APEX OF THE FAN LOCATES THE CHARGE AXIS IN THE TRANSVERSE PLANE. THE REFERENCE PARTICLE NOW BECOMES JUST ANOTHER DRIFTING PARTICLE.

Figure 7. Transformation of Relative Fan Into Absolute Fan for a Hypothetical Drift Distribution

Figure 8. Effect of Transformation from Relative to Absolute Drift Velocity on the Slope of the Curve

For a crater profile in which all particles of the jet enter the target surface at the same point, Equation (5) must hold for all particles, implying:

$$\frac{V_A}{V_T} = \text{constant}$$
(9)

Since the reference is at the apex of the relative transverse velocity fan, the reference velocity would appear as a vector with its tip attached to the apex of the relative velocity fan. Its length corresponds to the drift velocity of the reference particle and its direction indicates the direction in which the reference is deviated. Its direction of deviation is assumed to be about the same as that of the slowest digitized particle. The absolute velocities of the balance of the particles are calculated by vectorially adding the reference velocity to the relative velocities of the respective particles. Thus, an absolute drift velocity fan is created by drawing the segments from the tail of the reference vector to the tips of the relative drift velocity fan. (See Figure 7.) Graphically, Equation 9 implies a linear V_A vs. V_T plot which intercepts the origin. With the proper vectorial addi-

tion of the reference drift as just described, relative drift distributions like Figure 6 readily map into absolute drift distributions which satisfy Equation 9. (See Figure 8.)

There is no way to know whether this transformation into absolute velocities is the correct one. However, it is believed that the directional assumption of the reference is a safe one, and that the Equation (5) assumption is as good as any considering the need for the drift correction of particles. In addition, the results obtained from the transformation are supported by the experimental data. Note that Equation (9) does not guarantee that all particles will only form a one-crater hole profile even though all the particles should deviate the same distance from the charge axis. A large angular spread in a jet (characterized by a wide absolute velocity fan) may produce enough relative deviation among the particles so as to cause multiple impacts at long standoff. Thus, the deviating factors in jets are both the angular spread and the magnitudes of the drift velocities.

IV. THE QUESTION OF TILT

A possible and potentially fatal flaw in the previous discussion concerns the presence of tilt. The word tilt is taken to mean a charge axis that is not parallel to the radiograph fiducials. An original assumption was that there was no tilt, or that charge axis and fiducials were aligned. It is obvious that some sort of tilt must exist, however small. The answer as to when tilt becomes critical is a bit disconcerting. Depending on the jet, a one-degree tilt of the charge axis off the fiducials could induce an apparent drift velocity of 160 m/sec in the jet tip as measured with respect to the fiducials. It is likely that uncertainties of this magnitude exist regularly. The consequence of tilt on a jet is an apparent drift velocity distribution, which is also governed by Equation (9), which is the assumed relation for actual drift velocity. One may rightfully wonder whether all of the drift velocities read off the radiographs are due completely to tilt, and whether graphs like that of Figure 6 are a consequence of tilt alone. In fact, what is read off the radiographs is the superposition of both tilt and real drift velocity distributions. However, it should be noted that an important aspect of tilt is that it cannot produce a velocity fan. All of the particles of a jet under the influence of tilt exclusively would appear to drift in a uniform direction. Yet, Equation (9) has been seen to hold for jets with velocity fans spanning in excess of 90°.

The concern here is whether a nonlinear drift distribution could be "tilted" into appearing linear on the radiographs, and thus explain the data without having the actual drift obey Equation (9). Such could only be the case if the magnitude of actual drift were small in relation to tilted drift. If this were the case, however, the angular spans of the velocity distributions would also be quite small, which is usually not the case. Thus, it appears that the actual drift velocities are at least of the same order of magnitude as the apparent drift velocities due to tilt. Thus, it seems that the actual drift distributions, though probably different from the measured drift distributions, can still be adequately described by Equation (9). This belief is based only on the rounds studied. No explanation is offered as to why there might be a relation between the axial and transverse velocities of jet particles. Also, it is uncertain as to whether this may be a general phenomena or characteristic only of the rounds studied.

Support for Equation (9) was found in work done by Aerojet General Corporation.² Aerojet was interested in the crater formation of individually impacting particles. A shaped charge supplied the particles for their experiment. The method employed for dispersion of the particles was asymmetric initiation. Considering that it was desired to induce much drift velocity in the particles, the effects of tilt could be neglected in this experiment. The target plate used in their experiment is shown in Figure 9. The particle impacts generally lie at a constant distance from the slug impact. Assuming the slug flight path to be coincident with the charge axis, Equation 9 is the governing equation.

A penetration code was created to predict penetrations for nonideal shaped-charge jets. Unlike the DSM model,³ which can express penetration in a single equation, the model developed analyzes the jet piecemeal. It is described in detail in the following section.

² K. N. Kreyenhagen, J. E. Ferguson, R. R. Randall, J. P. Joyce, "Special Explosive Projectors," Proc. 6th Symposium Hypervelocity Impact, Vol. I (Held Cleveland, Ohio, April 30-May 2, 1963).

³ R. DiPersio, J. Simon, A. Merendino, "Penetration of Shaped-Charge Jets Into Metallic Targets," Ballistic Research Laboratory Report No. 1296, September, 1965 (AD 476717).

Figure 9. Target Plate for Asymmetrically Initiated Shaped Charge (Reference 2)

V. THE CREATION OF A PENETRATION CODE TO ANALYZE DRIFT

The purpose of analyzing drift velocity distributions of shaped-charge jets is to see how these distributions affect penetration. The dynamics of penetration is not, however, a thoroughly understood subject. Many theories exist in attempts to discribe the mechanical properties of matter. Classical, empirical and even wave mechanical concepts are used in pursuit of the subject. Consequently, rather than adding to the spectrum of theories that already exist, the author chose to draw upon information already available on the subject whenever possible and to combine views in a seemingly compatible manner.

One shaped-charge penetration model that has received much attention in recent years was formulated by DiPersio, Simon, and Merendino (the DSM model).³ This model does a good job at predicting penetration of shaped charges even at extended standoffs. The model accomplished this however, by implying that there exists a cutoff penetration velocity, a minimum penetration velocity below which a jet cannot penetrate. Unfortunately, the DSM cutoff penetration velocity implies that jet material traveling below certain hypervelocity speeds is incapable of penetrating target material. Substantial quantities of jet material are thus eliminated from the penetration process. The DSM model is empirically based and really attempts only to describe the data at hand and does not enter an intense theoretical discussion to describe the origins of jet cutoff other than citing that it exists experimentally. The work presented in this report suggests that the drift of particles off axis is largely responsible for reduced jet penetration, whereby drifting particles strike the target not at the bottom of the hole but somewhere up the hole profile. This commencement of sidewall impacts frequently seems to constitute a cutoff in jet penetration, since the overall depth of penetration is not altered by a sidewall impact.

A method, therefore, had to be devised which would allow penetration to be a function of drift velocity. Three-dimensional finite difference codes were not considered due to a coupling of availability and cost. Yet, a threedimensional description of penetration was required since the source of altered penetration is the spread of the particles off of the one-dimensional axis. Consequently, all aspects of particle penetration would have to be considered: size, shape, and orientation of crater formation in a three-dimensional target block.

The code developed in the present work (referred to as PENJET) includes many simplifications and assumptions. The first assumption concerns the shape of crater formed by an impinging jet particle. The chosen shape way that of an ellipsoid, with the ellipsoid being characterized by a position in three-dimensional space, dimensions along the axes, as well as an orientation in space (as shown in Figure 10). The position of particle impact is determined by using the velocity fan of a round to trace the particles' flight through three-dimensional space and time in order to locate the particle position with respect to the instantaneous hole profile (formed by earlier particles of the jet). If a particle is found to strike any point within the target, PENJET then proceeds through a series of calculations to determine the remainder of crater parameters. Once the crater formed by a particle is effectively evaluated, PENJET proceeds through subsequent particles of the jet until impacts for all digitized particles have been evaluated. Thus,

- (X,Y,Z) LOCATION OF IMPACT IN 3-D SPACE P MAGNITUDE OF PARTICLE PENETRATION R MAGNITUDE OF CRATER RADIUS
- P_x, P_y, P_z PENETRATION AXIS (A UNIT VECTOR IN 3-D SPACE)

Figure 10. Parameters Generated by PENJET to Describe Crater Formed by Impinging Jet Particle

A.

Aller Al.

a hole profile for a complete jet is just the superposition of ellipsoids from each of the particle impacts. A two-dimensional representation of a threedimensional hole profile is shown in Figure 11 for a fictitious nondrifting jet. When evaluating the crater formed by an impinging jet particle, crater volume is a constraining factor. That is to say, crater volume is calculated independently of other crater parameters and is assumed to be a function of particle kinetic energy alone. Subsequent calculations for actual crater dimensions are, therefore, constrained by the allowable volumetric target displacement a given particle can produce. The function governing the volume energy relationship is a linear one, similar to that adopted by DiPersio, Simon, and Merendino.³ The distinction arises in the fact that the DSM model expresses its proportionality constant as a relationship between total jet kinetic energy and total hole volume. PENJET, on the other hand, bases its constant on the energy of the individual particle. It is not surprising to find, therefore, that the DSM constant differs from its PENJET counterpart. Consider also, that the energy constant of PENJET does not strictly define an exact amount of displaced target material. As mentioned previously, the hole profile of PENJET is the superposition of ellipsoid craters corresponding to each of the jet particles. The orientation of these ellipsoids will greatly affect the spacial overlap of the ellipsoids, and thus the overall volumetric target displacement of a given jet. Because of this spacial overlap of particle craters, the overall crater volume as calculated by PENJET is not the summation of particle energies divided by the energy constant. Estimation of the constant was gotten empirically through examination of target blocks as well as hole profile data.

The crater shape of an individual impact is prescribed (as an ellipsoid) and the particle's crater volume is proportional to its own kinetic energy. Therefore, knowledge of a particle's penetration capability will allow the particle's hole radius to be computed and vice versa. In PENJET, depth of penetration is computed, with crater radius being subsequently determined. The model of particle penetration used in the code is based on the work of Fitzgerald ⁴ who draws on the work of Kineke⁵ to imply that crater formation occurs in a direction perpendicular to the stricken surface. Fitzgerald calls this phenomenon the wave refraction theory and shows that it applied to a single particle striking a flat plate at some obliquity (Figure 12). PENJET uses the concept in a more general sense by applying the wave refraction theory to local obliquities as well. Local obliquity is defined as the angle between the particle flight axis and the normal to the impact plane. Unless the impinging particle strikes exactly at the bottom of the hole profile, the refracted penetration wave will not be normal to the original target surface (Figure 13). In the strict sense, the refracted wave theory should only be applicable in the regime of hydrodynamic penetration. A large majority of particle impacts studied did not fit the qualification for hydrodynamic penetration. For these cases, the direction of penetration would be somewhere between the particle flight axis and the refracted wave axis. It was later noted that the penetration of a particle typically varied less than 5% because of the refracted wave assumption.

⁴E. Fitzgerald, <u>Particle Waves</u> and <u>Deformation</u> in <u>Crystalline</u> Solids, Interscience Publishers, New York, 1966.

⁵J. Kineke, Jr. "An Experimental Study of Crater Formation in Metallic Targets," <u>Proc. 4th Symposium Hypervelocity Impact</u>, Vol. I (Held Eglin AFB, Florida, April 26-28, 1960).

Figure 12. Crater Formation According to Refracted Particle Wave Theory 26

3.9.19

1.4

The All Aller

Figure 14. Concept of Effective Length as Seen by Impact Plane

Jet penetration in the continuous mode is quite a different matter from in the particulate mode. Modifications, therefore, had to be included to describe continuous jet penetration. The criterion on which to base mode of penetration is that of breakup time. PENJET uses a linear breakup equation whereby the jet tip particulates at some t_{min} and subsequent particle breakup

occurs at regular Δt intervals. Estimates of jet particulation are obtained through examination of the radiographs for the three different exposures. These estimates are then used in a least squares fit to evaluate t_{min} and Δt .

Based on the estimated breakup time, it can be established whether a given particle will be penetrating continuously or particulately at a given standoff. If continuous, the length of the particle is re-evaluated such that:

$$\ell_{\text{CONTINUOUS}} = \frac{\tau_{\text{IMPACT}}}{\tau_{\text{BREAK}}} \quad \ell_{\text{PARTICULATED}} \tag{10}$$

Also, it is assumed that jet penetrating in the continuous mode does not experience the refracted particle wave of Figure 12. This must, of course, be the case since the continuous particle is essentially beginning its penetration exactly when and where the previous particle leaves off.

PENJET also considers particle orientation with respect to the stricken crater surface. The assumed shape of a shaped-charge particle is cylindrical, being characterized by a length and diameter. As local obliquity is increased, the length of the particle as seen by the impact point is effectively changed. (See Figure 14.) The extreme case is when local obliquity approaches 90°. In this case, the effective length of the particle approaches the diameter of the particle. Hydrodynamically, the penetration of a particle is proportional to the particle length. Thus, the effective particle length replaces the particle length in penetration calculations.

The presence of obliquity raises more questions. The larger the obliquity, the smaller the component of particle velocity perpendicular to the stricken surface. Once in the hypervelocity regime, large changes in particle velocity produce relatively small changes in penetration. If particle velocity is too small, however, the strength of the target and jet play a major role in reducing the penetration of that particle. Besides the effective particle length that the target "sees", it is believed that an effective velocity also plays a role in determining depth of penetration. Whereas penetration is assumed to be directly proportional to effective length, the role that effective velocity plays is not nearly so profound. As long as the effective velocity is in the hypervelocity regime (arbitrarily chosen as any velocity above 2mm/µsec), penetration is assumed greater than the effective particle length for copper jet into an RHA target. As effective velocity increases, penetration is assumed to asymptotically approach the hydrodynamically idealized value. That is:

$$\Delta P \rightarrow L_{eff} / \gamma \text{ where } \gamma = \sqrt{\rho_T / \rho_j}$$

and the second second second second

The asymptotic approach is generated using the hydrodynamic equations, including strength terms. For effective velocities below $2mm/\mu$ sec, penetration rapidly decreases in a manner expressed in Figure 15 so that no penetration is induced when the effective particle velocity is lowered beyond .8 mm/ μ sec. Data for the effective velocity curve in the low velocity regime was gathered from work by Weirauch.⁶ Impacts of this nature may be the source of particle residue shown by Simon and DiPersio⁷ to accumulate at the bottom of the hole profile. PENJET, however, does not consider this type of interference.

VI. APPLYING THE CODE TO DATA

Given a set of digitized radiographic data, PENJET will go through all of the mentioned calculations for each digitized particle of the jet to eventually create a three-dimensional hole profile for a given round at a given standoff. If the code is told to use the data of a given round to perform penetration calculations at a variety of standoffs, a theoretical penetration standoff curve can be generated for each round. This curve is, of course, only valid for a particular round. Thus, each generated curve is as individual as the data from which it was generated, and does not, in general, pertain to all rounds of the same type.

The code has both its good and bad aspects. A major consequence is that tilt has no direct effect on the code's ability to calculate penetration. This happens because tilt does not misalign the particles. Rather, it only redefines the charge axis. The particles still drift with respect to each other in the same fashion despite measurements including tilt. Much emphasis was previously placed on tilt for the reason that it would be advantageous to obtain drift distributions unbiased by tilt. In terms of the penetration calculations, though, tilt of and by itself has no effect.

Tilt does, however, indirectly affect the situation in terms of reference drift calculations. As relative drift velocity (as calculated from the radiographs) is the superposition of tilted and actual drift, abnormal relative drift distributions can occasionally result depending on how the two components of measured drift interact with each other. Correspondingly, abnormal relative drift distributions lead to abnormal extrapolations of reference drift, thus making the calculated reference drift suspect. After all, the calculation of reference drift is only an educated approximation: Direction of the drift is based on jet particle orientation, while magnitude of drift velocity is based on Equation (9). Therefore, unlike relative drift computations, which are as good as accuracy of measurement, reference drift is only as good as the governing assumptions. Thus, the poorer the approximation at reference drift, the poorer the quality of penetration calculations.

⁶ G. Heilmauch, "The Behavior of Copper Pine Upon Impacting Various Materials With Velocities Between 50 m/s and 1650 m/s," (Doctoral Thesis) University of Karlsruhe, 1971.

⁷ J. Simon, R. DiPersio, "Experimental Verification of Standoff Effects on Shaped-Charge Jet Cutoff in Solid Targets," Ballistic Research Laboratory Memorandum No. 1976, May 1969 (AD 854396).

Another drawback to the code results from the radiographs themselves. The code can only analyze particles that have been digitized. In most radiographs some portion of the jet that is visible has not yet particulated. Attempting to separate the continuous jet into digitizable portions has met with some success, though likely at the cost of accuracy of particle length, since the continuous particles are still stretching when digitized. Also, most radiographs don't even contain the complete jet, for there is still jet matter that hasn't reached the plane of the film by the time it is exposed. Thus, there is no way to digitize these particles. For the rounds studied, it is estimated that over 40% of the jet was routinely nondigitizable.

To what extent the ability to digitize particles affects the penetration code predictions depends on the quality of the jet. In fact, the poorer the jet is, the less predictions are affected. If the undigitized particles drift far enough off course from the front portion of the jet, they will never make it to the bottom of the hole profile to add to penetration. In this situation, calculations based only on the particles digitized should produce results compatible with calculations involving all particles. Since distance of deviation is directly proportional to time in flight which is directly proportional to standoff, longer standoffs will also decrease the penetration effectiveness of the rear of the jet. Thus, penetration predictions at short standoff are subject to unavoidable error since the undigitized jet portion is still capable of increasing jet penetration. The fact that the penetration effectiveness of the jet rear is predicted to decrease with increasing standoff correlates with the DSM concept of minimum jet velocity increasing with standoff. 3

Having kept these reservations in mind, the results of the code based on data from four rounds are illustrated in Figures 16-19. The only factor governing the choice of these particular four rounds was penetration; that is, rounds were chosen with varying penetrations ranging from poor to good. The code was run at standoff increments out to 38 CD. The actual rounds were fired at 24 CD standoff to allow radiography, and the actual penetrations achieved are shown on each of the graphs as a single datum. Steplike variations in the code's predictions result because of the discreteness of the impacting particles: Either a particle made it to the bottom of a hole profile or it did not. Major fluctuations in the code predictions can be taken to imply uncertainty in the jet performance. Uncertainty as to whether two or three given particles make it to the bottom of the hole profile can create penetration variations in excess of 1/2 CD. A curve was drawn to fit the code's predictions on each of the rounds, though a band width of uncertainty should be realized as well. This curve is PENJET's prediction of penetration, assuming that one could fire the exact same round over and over again at various standoffs. Since we know that the predictions at short standoff are inaccurate due to nondigitizable jet, the code's predictions on Figures 16-19 are generally unreliable below 10 CD. The curve, however, should be valid at the standoff of 24 CD at which the rounds were actually fired.

A CARLON CONTRACT

All of the codes's predictions were in reasonable agreement with experiment except for Round 2332. Upon studying this round for possible causes of discrepancy, it was noted that the round uniquely had what shall be called a switchback angular spiral. This falls into the category of abnormal relative drift distributions. Most jets contain drift distributions such that the jet particles spiral in only one direction (either clockwise or counterclockwise) throughout the jet. Figure 5, for example, shows a jet spiralling counterclockwise from jet tip to tail. A switchback angular spiral is one in which one part of the jet spirals in one direction. Switchback is thought to be a product of abnormal tilt/drift combinations such that subsequent computation of reference drift might be quite inaccurate. As set forth before, an inaccurate reference extrapolation leads to inaccurate penetration calculations.

Figure 20 shows how the actual weapon routinely performs. In order to test whether PENJET could predict the average penetration at standoffs near the peak performance of the round, a radiograph containing a complete and fully particulated jet would be required for digitization. As mentioned previously, no available radiographs fulfilled these requirements. A radiograph was obtained, however, of a complete jet which was not fully particulated. Though not completely digitizable, the presence of a complete jet greatly facilitated estimation of many jet parameters (e.g. velocity of jet rear, drift with respect to jet rear, and total jet length). By this means, the rear of the jet which was not digitizable could be simulated into particles based on analysis of the radiograph containing the continuous jet rear.

Figure 21 shows the PENJET prediction of the round that includes the jet rear simulation. The actual datum as well as optimum performance for this type of round are included in order to put PENJET calculations in perspective.

The importance of a complete jet at short standoff is shown in Figure 22. The penetration standoff curve for Round 2331 is shown here. Superimposed upon it are curves showing the amount of residual penetration resulting from different fractions of the complete jet. The points at which the curves meet signify that the number of particles producing the superimposed curves are also the same number of particles producing the total residual penetration at that point. For example, PENJET's predictions at 11.5 CD standoff imply that predicting penetration using 40 particles would be just as accurate as using 51 particles. Anything less than 40 particles at that standoff would, however, produce inaccurate results. For the 24 CD standoff at which the round was actually fired, less than 20 digitized particles would be required for an accurate description of penetration. At short standoff. however, even 51 particles do not completely describe the penetration capabilities of Round 2331. Estimates are that below 8 CD standoff, particles beyond particle 51 were also capable of adding to penetration. For better quality rounds, though, as illustrated by Round 2937 in Figure 23, more particles are required even at longer standoffs to accurately describe penetration. For example, more than 50 digitized particles would be required for standoffs out to 25 CD for this particular round.

(C) Start Start

A CONTRACTOR OF STREET

Figure 23. Penetration Capability of Distinct Jet Portions of Round 2937

41

65 (3

19 1 State

Figure 25. PENJET Predictions of Hole Profile for Round 2937 at 23 CD Standoff. Penetration in Cone Diameters.

1.6

Figure 26. Code Predictions of Rear-Jet Ineffectiveness Due to Side Wall Impacts of Drifting Particles

Figure 29. Orthogonal Views of Projected Hole Profile of Round 2331 at 23 CD Standoff as Predicted by PENJET. Penetration in Cone Diameters.

Figure 30. The Effect of Side Wall Impacts is Not Only to Decrease Penetration, But to Widen Crater.

48

ł

Besides showing a semblance of agreement between code and experiment, Figures 16-19 show that drift alone can easily account for rapid decreases in penetration as is often experienced by rounds at extended standoffs. The process by which penetration is decreased is one of sidewall impacts. This process was briefly mentioned before as a phenomenon which sometimes renders a particle ineffectual. The majority of sidewall impacts, though, are not so oblique as to disrupt penetration; most sidewall impacts go into creating wider hole profiles.

As an example of the devastating effects of drift velocity on jet penetration, a comparison of PENJET's hole profile predictions is shown for two separate rounds in Figures 24 and 25. The plots represent orthogonal views of the target block as described by PENJET. Both sets of calculations were performed at the same standoff (23 CD). The stark contrast of jet performance is noted not only in terms of depth of penetration, but also in terms of crater width. Sidewall impacts do not occur until much later in the penetration process for Round 2937, thus allowing more of the jet to contribute to the overall penetration.

Figure 26 is PENJET's prediction as to where in the hole profile each particle of Round 2331 strikes the target block at 18 CD standoff. Note that particle number is in order of formation. (Jet tip is particle 1.) It is seen that once a particle is blocked from reaching the bottom of the hole, it will usually begin the widening process somewhere up the profile. Subsequent particles try to work their way back down again. This process continues until no jet is left with which to penetrate the target. A plot of the hole profile as generated by PENJET is shown in Figure 27 as two orthogonal views of the target block. Graphs and plots for the same round are shown again at longer standoffs in Figures 28-31. It is seen that penetration is progressively lower because sidewall impacts occur earlier in the penetration process. Consequently, crater diameter progressively increases at longer standoffs. Thus, for Round 2331 at a standoff of 23 CD the total penetration capability of the jet as predicted by PENJET is contained within the first 18 particles.

The profile at 38 CD sharply illustrates the effects of drift velocity on jet penetration. The spread of the particles was so great as to cause the beginnings of a dual crater within 1 CD of the target surface. Thus, the ineffectiveness of the jet rear is seen. Any nondigitized portion of Round 2331 would probably produce its penetration in the vicinity of the particle 51 crater, far from the point of maximum penetration.

Thus, the decreases in penetration as predicted by PENJET are due mainly to the presence of drift velocities among the particles. Drift causes scattering of the particles and eventually, at some critical standoff, elimination of the particles from the crater deepening process via the mechanism of sidewall impacts.

VII. CONCLUSIONS

The ability to compute drift velocities for the particles of a shaped charge jet is thought to be significant. In its own right, quantification of drift velocity aids in understanding the nature of the nonideal jet. A degree of imperfection may also be placed upon the jet in hopes of classifying a jet with regard to its quality.

The concept of how a jet penetrates is better understood when drift velocity is considered in the penetration picture. The process of sidewall impacts as a hinderance to penetration can be verified by inspection of actual target blocks. This process is reminiscent of the jet cutoff velocity which varies with standoff as proposed by Dipersio, Simon, and Merendino,³ in that the velocity of the particle striking deepest in the hole profile can be considered a cutoff velocity with respect to jet penetration. Implications here are that a jet could approach ideal penetration had drift velocity not been present. Larger craters would also make jets more insensitive to drift. Weaker targets allow for a wider crater for a given jet particle. Thus, the reduced probability of sidewall impact would allow greater penetration.

Compared to armor, a target of mild steel hydrodynamically should not affect the penetration of a given jet. It will affect penetration, however, when drift velocity is present in the jet. DiPersio and Simon⁸ verified this experimentally by firing jets into steel targets of varying hardness. Increasing crater size could alternately be accomplished by means of increasing the jet's energy. If dynamic impact did not induce additional drift in the jet, projecting the round into the target, as is the case under field conditions, should produce greater penetration than the static detonation of the same round. This cannot be verified experimentally, however, due mainly to the complexity of dynamic impact. Besides possessing possible yaw and pitch, the dynamic round is moving with respect to the target during the jet formation process. This relative motion can manifest itself in the form of drift. Dynamically detonated rounds do, however, create wider craters than their static counterparts as expected.

It is suggested that future investigations attempt to analyze drift from the viewpoint of warhead causes. The first step in understanding penetration in terms of drift has hopefully been set forth in this report. The ability to analyze drift as a function of the warhead would be the link between the imperfect warhead and nonideal penetration. Eventually, the possibility exists where warhead tolerances may be used to place limits upon the drift velocity distributions for a round so that penetration might be expressible as a function of charge tolerances.

⁸R. DiPersio, J. Simon, "The Effect of Target Hardness on the Penetration Capability of Shaped-Charge Jets," BRL Report No. 1408, July 1968 (AD 838991).

ACKNOWLEDGEMENTS

The author wishes to acknowledge the following members and emeriti of the Warhead Mechanics Branch of the U.S. Army Ballistic Research Laboratory for their encouraging support of this analysis: R. Jameson, M. Lampson, and J. Simon for technical consultations; V. Kucher for assistance rendered regarding computer related procedures; M. Scarborough and B. Simmons for having radiographs digitized and ready for use as computer data.

REFERENCE LIST

- 1. J. Blische, B. Simmons, "A Method for Reducing Data from Radiographs of Shaped-Charge Jets," BRL Report ARBRL-TR-02330, Jun 81 (AD A102770).
- K. N. Kreyenhagen, J. E. Ferguson, R. R. Randall, J. P. Joyce, "Special Explosive Projectors," <u>Proc. 6th Symposium Hypervelocity Impact</u>, Vol. I (Held Cleveland, Ohio, April 30-May 2, 1963).
- R. DiPersio, J. Simon, A. Merendino, "Penetration of Shaped-Charge Jets Into Metallic Targets," Ballistic Research Laboratory Report No. 1296, September 1965 (AD 476717).
- 4. E. Fitzgerald, Particle Waves and Deformation in Crystalline Solids, Interscience Publishers, New York, 1966.
- 5. J. Kineke, Jr. "An Experimental Study of Crater Formation in Metallic Targets," <u>Proc. 4th Symposium Hypervelocity Impact</u>, Vol. I (Held Eglin AFB, Florida, April 26-28, 1960).
- 6. G. Weihrauch, "The Behavior of Copper Pins Upon Impacting Various Materials with Velocities Between 50 m/s and 1650 m/s," (Doctoral Thesis) University of Karlsruhe, 1971.
- 7. J. Simon, R. DiPersio, "Experimental Verification of Standoff Effects on Shaped-Charge Jet Cutoff in Sclid Targets," Ballistic Research Laboratory Memorandum No. 1976, May 1969 (AD 854396).
- 8. R. DiPersio, J. Simon, "The Effect of Target Hardness on the Penetration Capability of Shaped-Charge Jets," BRL Report No. 1408, July 1968 (AD 838991).

APPENDIX A

PROGRAM LISTING

AND

VARIABLE NAME DESCRIPTIONS

THE REAL PROPERTY OF

And a state of the state of the

The drift velocity and PENJET programs were written as direct additions to Blische's and Simmons' radiograph-data-reduction program (Reference 1) introduced in BRL Report 2330. Therefore, a listing of PENJET must be accompanied by the program which generates data for use within PENJET. The right-hand edge of the listing reveals where the statements in question originated. "GETREADY" are nonexecutable statements required for BRL Report 2330, PENJET, or both. "BRL 2330" is the bulk of Blische's and Simmons' program with minor revisions for PENJET applicability. "JETBREAK" is a revision for jet breakup calculations. "DRIFT" is used to calculate the drift distribution for a round while "PENJET" is the jet penetration program. The program is written in FORTRAN IV. An explanation of the program variables is inserted after the program listing.

It should be noted that even though Blische's and Simmons' program is versatile enough to run using data from only two X-ray flash exposures, PENJET is geared to the standard 3 flash setup and will require modifications to run otherwise.

Explanation for the program variable names found in the program segment identified as "BRL 2330" can be found in BRL Report 2330 (Reference 1). Should one wish to identify variables within the program segment "GETREADY," the other segments should be consulted, as all "GETREADY" variables are contained within other segments. All other significant variables are listed under their appropriate program segment.

PRECEDING PAGE MANE-NOT FILME

	7	Q.	06	R A	Ħ	Ħ,	A 1	N (11	NP	U1	1.1	DU	77	U:	1.0	r A	PE	5.	11	NPI	UT	. 11	LP I	E6-	DL	JTP	UT	1				GE	T R I	EAD	1	2
	0	1	HF	NS	11	1N	S	1 1	11	00	11.	. 5.	21	10	ō		53	11	00	ñ,	. VI	Ô١	(1)	00	1.1	1.1	10	01.	D	1411	. (00		GE	T R I	FADY	*	3
	١Ÿ	n.	11	00	ιĒ.	V.	2ĩ	21	0	ī.		11	10			I F I	i i	10	01		C III	à ŝ	ŝ	10				10	01	SUN	F (10	0).	GF	TR	FADY	,	- é
	2 E	÷.	ññ	77				ς,	7	50					1							īv										•••	65	TD			ŝ
	2 C	5		22			ζ.	23							1		~~	<u>, ,</u>	<u>.</u>			::							, <i>, ,</i>				60		2 4 6 1		1
	ט כ ת			N ("	-					~ •		•			~~	;,			, , , ,				-		+ / •	ί.				60		C #U 1		
		2	ΠĒ		- 11	14		21	2	53	1	161	. !	< 1					"			20		22:					c :				95	1			1
	្ច	1	ne.	M 2	n	314	U	2	(3	14	-	15	T A	u	0))	, V	ET	R #	V.	1	00	10	11	(10	0	1 a T	241	10	0) • 1	5(100		6t	I KI	ADI		8
	1						R	61	•	3)																							e£.	TR	EADI		9
	0	t	ΗE	M 2	1	3N		V:	57	(1	0())	, 8	E1		11	00)															6£.	TR	EAD	f i	10
	D	ł	۳Ē	NS	11	7N	₽	H)	11.	10	0		PH	28	ŧ.	10	D)	, ¥	11		51)	10	0)										GE	TR(EADI	1	11
	0	1	HE	NS	1	N	ε	P S	51	6.	10	00),	¥7	1	53											•						GET	TR	EADY	1	12
	0	1	NF	NS	10	7N	v	x	11	00			¥ 1	10	0																		GE	TR	EADY	r -	13
	ñ	7	H.E	NC		3.	÷	1					•••	••		·																	GF	18	FAON	, ,	14
	ň			2		1.14		Ť		10	•	•																					66		6 4 6 1	,	14
	ň		ne.	40			÷		1				10				1 ^	٥١	- 1		1 0	• •	- 11	• • •	001			6 1 1 9	• • •	1001	DENT	1001.	66	78	C 40 1		14
	۰,			- 3		114				"							10		• •			•••		•••		•					LINI	,					
	٤.						H		л.																								90		CAUN		11
	2	1		11 2	1	314		- 1		10	101																						96		EAU		10
	U	1	п£	WS	11	310	4	51	78	11	00	"	•	EN	IT.	11	00	11			П.А.	X L	100									.	65	T RI	EAU		TA
	D	1	NE	NS	1)N	V	C)	lD	ο,	3	11	V P	(I)	0))	, Y	4 (10	10	• 3	Þ	A VI		r oc	, ,	V P	(I)	00	,3},		001,	GE	T R(EAD	r	20
	1						8	GI	141	DI	10	30 ,	, 3),	R (GM.	(1	00	3.	G	R AI	D (10	0,	3),	A	111	00	• 3 ') , PR	(100+	31	GE	TRI	E 40 1	1	21
	Ð	1	HE	NS	11	JN	R	L (13	00	13,	, R'	VE	LI	1	90)																GE	TR	EAD	1	22
	Ð	1	ME	NS	11)N	0	L	11	00	3	•K!	V A	11	1	00),	TA	UI	1	00)											GE	TR	E AD 1	r	23
	Ð	Ť	NÉ.	NŚ	11)N	T	P ((1)	00	3.	R	Ďť	10	Ö,)																	GE	TRI	EAD	1	24
	R	Ē	AĒ.	K	01	2	. x	Dź	23	• K	01	13																					GE	TR	EADI	1	25
	8	Ē.	41	Ţ	NC																												GF	TR	FADY		26
	ñ	à		мé	Tr	1.	¢		•	• •			<i>(</i> 1	••		c.	1 1	• •	. •	n (• 14	n١			101	. •		101	1-1		101.		25		EADY		27
	١ě	1	21	10		e		71	1	ς,			ìñ	Ν.	Ľ		ìÂ	Χí		5		ňň	1.1										65	7.8	E 4 7 1		28
		2						23		"	3				2							~~		6.37 2111				••					00	**	C # 0 1		10
		1	25	73	11					ς,	2.							UH	U			~~		901			110	011	9 A 1		10013	DECAN	90		C 8 0 1		27
	17					: L '	۳ <u>۱</u>	10	20	"	្ទុ		08		1	00	•																90	1 Ki	2 AU 3		30
	U	1	1	112	1	JM	X	VI	JL.	13		100	0 1																				6.	IN	EAUI		31
	D	1	ME	N2	1	JN		Z	11	00	•	10	0)																				GĘ	T R	EAD	/	32
	D	A	T A	5		11),	5/	11	2)		5 A ((3	11	1	3H I	VE	LO	C 1	IT'	۲.	٩,	10	ни	476	110	; RO	2E1	, 31	HÇ I >	1		GE	TR	EAD	1	33
	D	٨	T A	S	B	11	۱,	51	8 C	2)		58	(3	11	1	Эн	CU	MU	۱.	١T.	I VI	E,	10	H I	145	5	(6	R A,	,41	HMS J	>/		66	TR	EADI	1	34
	D		T A	5	C	11	۱,	50	:(21	ψ.	SC	(3	1),	5	:()	4)	11	01	IPI	05'	11	10	N I	4+1	0	11.0	NG	J	ET L	1 CHE	NGTH	GE	TR	EADI	1	35
	11	M	43	. 1	H	1																											GE	TR	EAD	1	36
	Ô		T À	5	01	t i	۱.	50	sc	21		s D '	(3	17	10	Эн	εu	жu		ίŤ.	E VI	F.	10	H I	K . F		11	6U.	. 51	HL E S	121		GF	T R	FADY	1	37
	D		t a	ŝ	F	11	ì.	51	1	21	1	S.F.	13	١.	ŝ		61	11	0ł	D	15	T A	NC	E	F . 1	01	48.0		CHI	ARGE	1 CH	BASE	GF	TR	FAD	7	38
	١ī		٩ N	. ī	ů,					•••						• •	•••		• •			•							••••				CE.	T 8	EAD		10
	'n			' .			۰.	c 1		> 1	. •	. E		•	•••	`		E A	.			۲.	1 01	41	28	•			- 81		>>		CE	TD	E 4 M		10
	ň		• •	ě		17.	"	21	hari	Ēï		5 м	1	1	÷.				n -		·	••					110			1320			00	TO	C #0		41
				2			::	22		2.		201	-		,																		00	10	C + D 1		
	2		12	3						5.				1																							
	U		T A	2		51	1 1	/ 1	344	r L	A.	2.00	3	~ /																			61	1 (6)	EAU		
	Q		T A		PI	1.	NP	A F	1.	NP		e T i	• M	C C	•	101	JN	, M	CC	HN.	T /	4H	P A I	RT :	, 41	IIC	:06	• 41	HAI	TEDø	FH CD	N#4HT	GE	TR	EAD	r –	44
	11	N	υ,	4 H	101	12	1																										GE	TR	EAD	r	45
1	F	٥	R M	A T	C:	31	5,	F!	5.	2.	61	-1	о.	51																			8R	ιz	330		2
2	F	0	R M	AT	U.	7F:	10	• !	51																								BR	L 2	330		3
6	F	Ø	RM	A 1	(JF:	10	• 5	51																								BR	12	330		- 4
21	F	۵	RM	AT	•	21	5)																										BR	£ 2	330		5
30	F	ñ	R M	AT	÷	2	15	• 3	2 X .	• 1	1.	. 2	K .	31	51	1																	BR	ī Ž	330		6
• •		Ŧ	AD	15		21	1	10		ŚF	s.	. 1.6	C L																					12	110		7
	ĩ	è	ĨĔ	òé	1	ŝ	ί.	2		52																								12	110		- Á
22		'n	`÷	<u>~</u> ^		í.	Ξ.		ir.	Ā	21	2																							330		ă
<u>,</u> ,	Ň	ž	٠ń					~		Π.	Me		. 7	- N						• .			~ • •	• •						-		•			330		•••
"	١ē	F						01	141					9 M	Hr I		311	9 R	~			ПА				11				31120		<i>C 7</i>	98	12	330		10
		2			' . .					• •																									330		
	Ĩ		ιE	UF	1		۱.	24	1	٢,																							-	ιZ	330		12
24 	E	N	ŭŪ	OE	.u	2 k -	• Z	0,	5	11	1	11	. N	R C	U	10																	병락	ιZ	330		13
20	F	0	R M	AT	C	10	HR	01	JNI	D	N	JMI	5 .	41	E	2	٠	15	• 7	H	>	1											BR	L 2	330		14
	R	E	A D	(5		2)	F	00	CU:	51	. 9 1	501	C U	52	•	-0	CU	S 3	, f	1	A , I	FZ	A , i	F 3 (A 🛛 F	41	4						8R	ι2	330		15
	1	F	(E	۵F	(, ,)	2 !	5.0	20	ł.																						BR	L Z	330		16
25	R	E	A D	(5		53	F	10		FZ		F)	38	. F	41	3.1	F1	c.	FZ	:C	, F	3C	, F	4C									BR	LZ	330		17
	t	F	(E	OF	U	51)	20		26	, ⁻																						BR	L Z	330		18
26	R	0	- R	HØ																													BR	LŻ	330		19
	1	F	(Ĺ	¢Ĺ	.1	4 E	• 1	1	G	0	T	n :	29																				88	ίź	330		20
						-	_																														_

يەر ر

the second stands and and

	RHO=0.	84LZ330 21
C		6RL2330 22
C	ROUND INFORMATION CARD NEXT	BRL2330 23
	29 PRINT 5	BRL2330 24
	PRENT 3, NROUND, RHO, (XHAG(N), N=1, 3), FDCUS1, FDCUS2, FDCUS3, F	LASH1+FL BRL2330 25
	1ASH2,FLASH3	BRL 2330 26
	3 FORMAT(////+20X, 'ROUND NUMBER '+15+//+20X+'LINER DENSITY	(GN/CC)- BR12330 21
	1 *, F4, 1, /+ 20X, * MAGNIFICATION FACTOR-*+ 3F9.3+ /, 20X+*DISTANC	E FROM L BRL2330 20
	21NER BASE TO FOCAL POINT(NH) , /, 25%, FLASH 1- +, F6.10/025%	FLASH BRL2330 29
	32- ', F6. 1, /, 25X, 'FLASH 3- ', F6. 1, /, 20X, 'DELAY TIMES (MECRO	SEC 1 + /+ BRL2330 30
	425X,*FLASH 1- *+F6.1+7,25X+*FLASH 2- *+F6.1+7,25X+*FLASH 3	- "#F6.1 BKL2330 31
	\$1 51	BRL2330 32
	RHD=RD	UKL2330 33
	PRINT D	UKL2330 34
	5 FURMAITIMIJ	BRL2330 31
		BRL2330 30
	• FURMAIIZIN, PARITULE AVG. VELUCATY TUTAL JET DEEAR	-UP')///C BKL2350 5/
	1249 NUNBER'944, (NN/NICRUSEC), 9349 CENGINING, 4348 (FICRUS	ECT. J/T BKL2330 30
		BR(2330 31
	00 120 8-1787 ASK	
	UU 199 J=1/RTAKI Beadir 201/Tuiri Tuiri K-1.41.1.Tetin Todimo. Toabt	BRI 2330 41
	KCAU(7\$3U/(1%(K/\$17(K/\$K=1\$0}\$)L\$171LN\$1#UUMU\$17AK) E/ENE/E\\ 33.33	BRI 2330 47
	LF(CUF(7)) 32)32 33 DD 38 Mal-4	DKL2330 43
	32 UU 37 M=190 29/01-51 047/79/011/15 5004	BRL2330 44
	LATT-FLURTIATT/1/2000	BAL2330 42
	37 21171-FLURILITANJ/17.7.7900	
	AL(1)#J=(\[T\[]+[T\]])/[0]#ANAU\[] SE(7W/R) EO JW/3)) EO TO 60	BRL2330 44
	1"\[A\\\];C\;C\;C\;C\] \U \U \U \U B1=,K+CABT//JY/1_JY/4\;K+++2/JY/1\}_JY/4\;K+2\++2/A\;K+2	BRJ 2320 40
	NIJ-JUNI(_A_J-ZA\DJ)~ZA\Z\\Z\\Z\\Z\\Z\\Z\\Z\\Z\\Z\\Z\\Z\\Z\\Z	881 23 30 41
	R2=+J+J4R(\\2A\2J=2A\JJ)++2+\2\\2J=1+2+\JJ)++2+\A\1##3\#¥######	8912330 50
	N 3 - 13* 34N1 (14 N 3) - LN (1) - C (11 3) - LT (1) - C (AMMOLT) B1 Va (7 V (1) A 7 V (4) 1/2	8812330 52
	P1 V=(7 V(1) 47 V(4) 1/2.	BPI 2330 51
		8812330 54
		8912330 51
	P3x=(7x(2)+7x(5))/2.	BRL2330 54
	P3Y=(7Y(2)+7Y(8))/2.	BRL2330 57
	XH1+SORT((P1X-P3X)++2+(P1Y-P3Y)++2)+XHAG(1)	BRL2330 50
	XH2+SQRT((P3X-P2X)++2+(P3Y-P2Y)++2)+XHAG(1)	BRL 2330 59
	P'1Z=P1X	BRL2330 60
	P1X=P2X	8RL2330 61
	GOTO 45	BRL2330 62
	40 P1X=ZX(1)	BRL2330 65
	45 1F(L.EQ.2) GOTO 55	BRL2330 64
	IF(L.EQ.3) GOTO 65	BRL2330 65
	IF(IFILM.EQ.2) 60 TO 47	8RL2330 60
	IP(IFTLN.EQ.3) GO TO 48	BRL2330 67
	IF(IFILM.EQ.4) GO TO 49	BPL2330 60
	51(J)=FOCUS1-(F1A-P1X)+XMAG(I)	BRL2330 69
	GO TO 15	BRL2330 70
	47 51(J)=FOCUS1-(F2A-P1X)+XMAG(I)	BR12330 71
	60 TO 19	BRL2330 72
	48 \$1(J)=FOCU51+(F3A+P1X)+XMAG(1)	BRL2330 73
	60 TO 15	BRL2330 74
	49 51(U)=FOCUS1+(F4A+P1X)*XMAG(I)	BRL2330 75
	15 EF(ZX(1).EQ.ZX(2)) 6Q TQ 30	BR12330 70
	L1(J)=0	RRL2330 71
	GOTO 75	BRL2330 70
	50 L1(J)+1	BRL2330 74
	60TO 80	BRL2330 80
	>> 1F(TFILM.EQ.2) 60 TO 57	BRL2330 61
	1PILPILM.EQ.3) GO TO 50	BRL 2330 82
	1 TTTLLN.EQ.41 GO TO 59	BRL2330 83
	52(J)=FOCU52-(F18-P1X)=XMAG(1)	BFL2330 84

The state

	60 70 16	BRL 2330	85
\$7	52(J)=FOCU52-(F28-P)X)+XNAG(1)	8RL2330	86
	60 TO 14	API 2330	87
	50 IN 10 51 IN 20		
00	22/3/= FUCUS2*(F 38+F1K)*KHA4(1)	UKL 2330	
	GO TO 16	84L2330	84
59	S2(J)=FOCUS2+(F4B+P1X)+XNAG(I)	BRL2330	90
16	V1(J)=(52(J)-51(W))/(FLASH2-FLASH1)	BRL 2330	91
	16(7X(1), FO. 7X(2)) 60 10 60	881 2330	97
		881 2330	
		8412330	
	6010 75	8K[2330	94
60	L2(J)=1	BRL 2330	95
	6010 80	BRL 2330	96
	TEINELASH.EQ.21 GOTO BO	881 2330	07
		BH12330	70
	1+(1+1LM.E0.3) 60 10 68	B#L2330	4 9
	{F(IFILM.EQ.4} GO TO 69	BRL2330	1 00
	\$3(J)=FOCU\$3-(F1C-P1x)+XMAG(I)	BRL 2330	101
	60 10 17	BRL 2330	102
67	\$3(4)=E0(11\$3=(E2(=0) +)++RAG(1)	881 2330	102
			1.00
		6KL 23 3V	104
68	\$3(J)=+QCU\$3+(F3C+P1X)*XMAG(1)	BRL 2330	105
	GO TO 17	BRL 2330	106
69	\$3{J}=FOCU\$3+(F+C+P1x)+XMAG(J)	BRL 2330	1 07
17	V2(1)=(\$3(1)=\$2(1))/(F) A\$43=F(A\$42)	881 2330	100
•••	V=10/		100
	¥3(J)=(85(J)-31(J)/((CASH3-FLASH1)	84L2330	104
	IF(ZX(1).EQ.ZX(2)) GO TO 70	BRL 2330	110
	L3(J)=0	BRL 2330	111
	6070 75	BRL 2330	112
70	13(1)=1	BEL 2330	111
••		BBI 2330	1.1 4
			1.1.4
	*U(1) *U(1)***********************************	8KL2330	112
1	[R 3+R 3+ FZ] }	BRL 2330	116
	P1X=P1Z	BRL 2330	117
	1VD1([.#]= PI+XH1/3.+(R1++2+R1+R2+R2++2)+PI+XH2/3.+(R2++2+R2+R3+	BRL 2330	118
•		BPI 2330	1 1 9
		0412330	117
	AVGE(1, J) - AVGE(1, J) - GOITRHD	8KL 2330	120
	XL{8]=XL{8}+3QRT{{P1X-P2X}+*2+{P1Y-P2Y}**2}*XMAG{]}	BKL 2330	121
	DIA(J)=DIA(J)+2.#RZ	BRL 2330	122
80	CONTINUE	BRL 2330	123
	TEITALT.NELASH) GOTO 469	BRL 2330	1 24
		881 3330	1 14
		0412330	107
	IF (LI(J).EG.I.AND.L2(J).EG.I.AND.L3(J).EU.II OU TU IOV	8KL 2330	1 20
	IF(LI(J).EQ.O.AND.L2(J).EQ.O.AND.L3(J).EQ.OI GO TO 90	6#LZ330	127
	IF(L2(J).EQ.1.AND.L3(J).EQ.1) GO TO 99	8RL 2330	120
	₹F{L1(J}.EQ.1.AND.L3(J).EQ.1) GD 70 95	8RL2330	1 29
	TE(11(J), EQ. 1. AND.(2(J), EQ. 1) GO TO 95	881 2330	1 10
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	881 3336	
	1-1C(4)/C(4)/C(4)/C(4)/C(4)/C(4)/C(4)/C(4)/	UKLESSU	1 31
	17(L1)J).84.0.AND.L3(J).89.0) 60 TO 100	ak[5330	1 32
	IF(L1(J).EQ.D.AND.L2(\$).EQ.0) GO TO 100	BRL2330	133
65	[F(L1(J).EQ.1.AND.L2(J).EQ.1) GO TO 149	BRL 2330	1 34
	1F(L1(3), FO. 0. AND.(2(4), FO.0) 60 10 100	BRI 2330	1 36
		101 2330	1 34
~~		UT LEJJU	1 34
40	ANA331474UL (3)740U1/3,4RHU	BK[2330	1 37
	xL(V)=xL(J)/3.	84L 2330	1 38
	DTA(J)=DIA(J)/3.	BRL2330	139
	6010 149	BRL 2330	140
95	244952443-2401 (11) 0.00100.00100	881 2330	141
		7-LC370	1 4 4
		9K[(330	142
100	XNA35(J)=VUL(J)=.001/2.+RHO	5KL2330	143
	XL(J)=XL(J)/2.	BRL 2330	144
	DIA(J)-DIA(J)/2.	BRL 2330	145
149	CONTINUE	881 2330	1 44
180		AD1 2350	144
430	COM11405	94L233U	141
		JETBREAK	1

200

Contractor and and

c

		BROK IS THE NUMBER OF JET PARTICLES THAT HAVE PARTICULATED AS OF	JETBREAK	2
		EXPOSURE TIMES 1, 2, AND 3 RESPECTIVELY. TOLAY IS THE DELAY TIME	JETEREAK	3
;		BETWEEN DETONATION AND JET FORMATION (MICROSEC).	JE TBREAK	4
			JETBREAK	5
		READ(5,+) BROK1, BROK2, BROK3, TOLAY	JETBREAK	6
		P Z = BROK1 + BROK2 + BROK3	JETBREAK	7
		TZ=FLASH1+FLASH2+FLASH3	JETBREAK	ė
		P8Y72=8R0N 2+F1 ASH1+8R0K2+FL ASH2+8R0K3+FL ASH3	JETBREAK	ġ
		PRYP7-BROK 1+42+3 ROK2+42+88 OK 3+42	JE TOREAK	10
		71+(PBYTZ-(P2+T7/3,1)/(PBYPZ-(P2++2/3,1)	JETBREAK	11
			JETRREAK	12
		TAVE - 12/3.	JETRREAK	11
		DO 470 MAS MPART	REI 2330	1 48
			BRI 2330	140
			BPI 2330	1 50
			881 2330	1 51
	166		BBI 2330	1 6 9
	140	VEL (N/-VELN/-VEL)	801 2220	1 63
	100	30NL (N/-XL (N/-30L (N-1/) Kimma (N)-XL (N/-30L (N-1/)	API 2330	1 84
		20082247-882347234824783	BRI 2330	1 54
			BPI 2330	1 54
		VECINI- RAVMACE/NIA AA14/VEI/VIA1AAA 1443	881 2320	1 67
		ARC (N/=, J*ANAJ) (N/=(U/)*(4EL (N/=1000))****	AD1 3330	121
		307KC (N/*AKC (N/*307KC (N~1)	881 2330	1 50
		V (N / * VEL (N / * ANR 3) (N / * A	BRI 1330	1 34
			DAL 2330	141
		307014(N)=307014(N-1)+014(N)	DELESSO	101
		5424217=14787[1*(H-FB4K)={ULA1	JE 1 0x EAN	17
			BRL 2330	102
	107	BREAKILJ-0.0	8KL2330	103
	170	PRINT 1/10 NOVEL (NJSDUNLINJSDKEAKIN)	BRLZSSU	104
	1.11	+URRAI(23X)12)[URP+0.3)4X9+0.2) /X9+0.1)	5KL2330	107
			BKL 23 30	100
	92	FUWNAT(1H1,20X, 'PARTICLE', 4X, 'VELOCITY1', 6X, 'VELOCITY2', 6X,	BRLZ330	167
		· VELUCIIVS·,//224/NURBER·/3X/NICKUSECI//22/NURBERUSECI/	BR1 2330	108
	2	22 • • (AA/A 1CROSEC) • • /)	38L2330	169
		DU 172 J=1, MPART	8RL2330	170
	172	PRENT 173, J.VI(J);V2(J);V3(J)	BRC 2330	171
	173	FURMAT(23X,12,9X,F6.3,F°,F6.3)	8RL2330	172
		PRINT 175	B#L2330	173
	175	FORMAT(1H1,20X, PARTICLE LENGTA DIA, LPD MASS TUTAL J	8RL2330	174
	1	ET*#/#ZZX+"NUNBER*#5X#"(AN}*#4X#"(AN)*#9X#"(GRAMS)*#ZX#*NASS(GRAMS	BRL2330	175
	2	() (/)	BRLZ330	176
		DU 176 1-1,NPART	BRL 2330	177
	176	PRINT 177- 1, RU(1), DIA(1), ELOD(1), RNASS(1), SUMMAS(1)	BRL 2330	178
	177	FORMAT(23X+I2+8X+F4+1+4X+F4+3+2X+F4+1+4X+F5+2+5X+F6+2)	BRL 2330	1 79
		PRINT 603	BRL2330	1 80
	603	FORMAT(1+1,20%, ' PARTICLE', 4%, 'NASS1', 0%, 'NASS2', 0%, 'NASS3',/, 22%,	BRL 2330	161
	1	*NUHBFR*/4X/* (GRANS)*/7X/* (GRANS)*/7X/* (GRARS)*//)	BRL 2330	1.82
		DO 600 J-1;NFART	BRL2330	163
		1=1	BRL2330	1 64
	600	WRITE(6,602) (J+XVOL(1,1),XVOL(1+1,J)+XVOL(1+2+J))	BRL 2330	105
	60Z	FQRMAT(23%,12,6%,F0.4,6%,F0.4,6%)F0.41	BRL2330	186
		PRINT 180	BRL 2330	167
	180	FORMAT(EHI, ZOX, PARTICLE K.E. TOTAL JET DISTANCE FROM CH	BRL2330	186
	1	ARGE BABE" / / 22X / "NUMBER" / 4X+ " (JOULES) ", 3X+" KE(JOULES) "+ 2X+" FLASH	BRL2330	189
	2	177,2X, FLASH 2102X; FLASH 31,/)	BRL2330	1 90
		DO 161 I=1,NPART	8RL 2330	191
	101	PRINT 1820 I.XKE(I),SUMKE(I),SL(I),S2(I),S3(I)	BRL 2330	1 95
	192	FORMAT (23X, 12, 7X, F8.0, 4X, F8.0, 4X, F3.0, 4X, F3.0, 4X, F3.0}	BRL 2330	193
		PRINT 183	8RL 2330	194
	163	FORRATEIM1,20X, PARTICLE', 4X, MOMENTUM', 4X, TOTAL JET', /, 22X, MUMB	BRL2330	1 95
	1	ER4 / 4X/ * 1XG-M/SEC) * / 3X/ * MOMENTUM* / / }	BRL 2330	196
		DO 185 T=1+NPART	BRL 2330	1 97
	185	PRINT 184, I, P(I), TOTP(I)	8#L2330	1 98

CARLANS STATES

	184	FORMAT(23X+12+9X+F6+2+7X+F6+2)	BRL2330	1 99
		NO 192 N. 2. NOART	BB(2110	200
				201
		SUNCENTR/-SUNCENTR-1/+ACT	0×12330	201
		IDIA(N)+IDIA(N-1)+DIA(N)	BKL2330	Z 0 Z
		IF(N.E0.2) GD TO 191	BRL 2330	203
		DELV(N)=VEL(N-1)-VEL(N)	BRL 2330	204
		60 70 192	881 2330	205
				203
	141	DELAINIAECITIAECINI	8K[5330	200
	192	SDELA(N)=SDELA(N-1)+DELA(N)	BRL 2330	207
		DO 195 J=3,NFART	BRL 2330	208
	1 05	SUMDER (H) - DEFW(A) - SUMDER () - 1)	881 2330	200
	1 42		0412330	207
		AVLI=SURL(NPART)7FLUAT(NPART)	8KL2330	210
		AVL2+SUNLEN(NPART)/FLOAT(NPART-1)	BRL 2330	211
		AVD1=SUMDIA(NPART)/FLOAT(NPART)	8RL 2330	212
		AV02-V0TA(NBABT)/ELOAT(MBABT-1)	BB1 2230	
				213
		ADELVI-BDELVINFARI//FLUAIINFARI-I/	SKL 2330	219
		ADELVZ=SUNDEL(NPARTI/FLUAT(NPART-Z)	BRL2330	215
		PRINT 200, AVL1, AVL2, AVD1, AVD2, ADELV1, ADELV2	BRL2330	216
	200	FORMAT(1H1./7///.47X.VMITH JFT TIP W/D TTP-/.20X.VAVERAGE PART	881 2330	217
		TTEL I ENETHI, TY, EA 3, TY, EA 3, 7, 7, 7, 4 AUEBACE AND TOP REPORT AND THE	881 2334	
		LICCE LENGTH FIAFG. CFTAFG. CFTECAF AVERAGE PARTICE DIAMETER JOAP	0412330	510
	2	(F3.2) 0X9F3.2)/920X9'AVERAGE CHANGE IN VELOCITY'90X9F4.29VX9F4.2)	0K[5330	Z 19
		PRINT 505	BRL2330	220
		NRA=2	8812330	221
			881 2330	2 2 2
			0.22330	
		1. = 0	8K[5330	223
		CALL POLYLS(VEL+S1+NPART+AA+NRA+NN+CC+RR+AF+ERMS+SIG+TT+DET+IC)	BRLZ330	2 Z 4
		WRITE(6+41) CC(1)	8RL2330	225
		DS(1)=CC(1)	BRI 2330	2 26
	41	ENDMAT (2014.) VIDTUAL ODIGIN FOR FLASH 1-1-512.61	801 23 10	2 27
		· · · · · · · · · · · · · · · · · · ·		
		CALL FULLES VELY SCHNEAKINASHNASHNASHNASCUKKSAFSEKNSSSLUSIIISDE IS LEI	DKLZSSU	664
		WRITE(0042) ((())	BK1 2330	229
		D3(2)=CC(1)	BRL2330	2 3O
	42	FORMAT(20X, VIRTUAL ORIGIN FOR FLASH 2=1,F12.6)	BRL2330	231
		IF(L.LT.3) 60 TO 515	BRL 2330	2 3 2
			AB1 3330	
		CHEL FUETESIVELY STANTAKIJAAJAKAJANDECJAKJATSEKAJSJUSIISUEIJICI	DK(2330	233
		WRITETONASI CCILI	BKL 2330	Z 34
		D5(3)=CC(1)	8RL2330	Z 35
	43	FORMAT(20X, VIRTUAL ORIGIN FOR FLASH 3-9,F12.6)	BRL 2330	236
			DRYFT	- 1
		OBJET CALCULATIONS	08161	•
:			04171	Č.
			URIFT	3
			DRIFT	•
:		EACH REF REFERS TO THE DISTANCE BETWEEN THE REFERENCE PARTICLE	DRIFT	5
		AND THE FEDUCIAL FROM WHERE ALL OTHER MEASUREMENTS ARE TAKEN.	DETET	Å
		DEC TO TAXEM TH MM AND CUMIN DE OTHER AFTHER THE ATTHER BEAM AFT TH	00157	
		THE IS TAKEN IN AN AND SHULV BE THE RETURN DISTANCE REAV UPP UP	04171	
		THE FILM. IT WILL THEN BE MULTIPLIED BY THE MAG FACTOR (WHICH	URIFT	
;		SHOULD HAVE BEEN ENTERED AS DATA IN BRL2330) NOTE, IF XMAG IS	DRIFT	9
5		LESS THAN 1. , THEN THE FILM PORTRAYS AN IMAGE LARGER THAN BEALITY	DRIFT	10
÷.,			ABTET	
•		ATIN/S AL AFT/IL AFT/AL AFT/AL		
		RT#17977 KET119REF1619REF131	UK 1 F T	12
		REP(1) *REP(1) *RAG(1)	DRIFT	13
		REF 12}=REF 12}+XMAG(2)	DRIFT	14
		REF(3)=REF(3)+XMAG(3)	DRIFT	15
		D0 401 J=1.3	DRIFT	14
		DO 600 T-1-WPART		
	400	••• ••• ==============================	VK171	
	400	ACI391J=ACI391J=RtFlJ]	URIFT	16
	401	CONTINUE	DRIFT	19
		PRINT 33	DRIFT	20
	33	FORMAT(1H1+21X+*PARTICLE*+AX+*DEVIANCE FROM PATH (MH1+-/-21X-	DRIFT	21
	1	NYIMBERIAYAFFIACH 1 FLACH 2 FLACH SO. /L	DRIET	
				66
			URIFI	23
		WRITE (0,30) JJJ,AZ(1,JJJ),AZ(2,JJ)	ORYFT	24
	36	FORMAT(24X,12,8X,F8.3,3X,F8.3,3X,F8.3)	DRIFT	25
	800	CONTINUE	DRIFT	26

_

		DO 491 1=1,NPART	DREFT	27
		T1(I)=(S1(I)-DS(1))/VEL(1)	DRIFT	28
		T2(I)=(\$2(I)-D\$(2))/VEL(I)	DRIFT	29
		T3{T}={S3{I}-DS{3}}/VEL{I}	DRIFT	30
		KD12=AZ(1+I)+T2(I)/(AZ(2+I)+T1(I))	DRIFT	31
		KD23-AZ(2,I)+T3(I)/(AZ(3,T)+T2(I))	DRYFT	32
		KD13-AZ(1+I)+T3(I)/(AZ(3,E)+T1(E))	DRIFT	33
		DO 405 8-1,3	DRIFT	34
		EF(AZ(U,I)+REF(J)) 403,402,405	DRIFT	35
	40Z	THE TA(] >0.0	DRIFT	36
			URIFT	37
	408		DRIFT	30
c	407	CONTINUE	DRIFT	34
č		SOLVING FOR THETA USING FIRST TWO GOVERNING EQUATIONS	ORIET	41
č			DRIFT	47
-		TH12+ATAN(2.0+KD127SQRT(2.0)-1.0)	DRIFT	43
		1F(TH12.LT.0.0)TH12-TH12+PT	DRIFT	44
C			DRIFT	49
C		SOLVING FOR THETA USING LAST TWO GOVERNING EQUATIONS	DRIFT	46
C			DRIFT	47
		TH23=ATAN(1.0-2.0/(SQRT(2.0)+KD23))	DRIFT	48
		1F(TH23.LT.0.0)TH23=TH23+PI	DRIFT	- 49
	450	TF(ABS(TH12-TH23).LT.PI/2.0)60 TO 449	DRIFT	50
		IF(TH23.LT.TH12)60 TD 448	DRIFT	51
		TH12=TH12+P1	ORYFT	52
			URIFT	23
r	440	112-112-11	DRIFT	
č		SPINING FOR THETA USING FIRST AND LAST COMERNEME COMATIONS	OPIET	54
č			DRIFT	57
•	449	TH13=ATAN((KD13-1.0)/(KD13+1.0))	DRIFT	56
		1F(TH13.LT.O.OITH13=TH13+P1	DRIFT	59
	470	IF (A85 (TH23-TH13).LT.PI/2.0)60 TO 469	DRIFT	60
		"IF(TH23.LT.TH13)60 TO 468	DRIFT	61
		TH13+TH13+PI	DRIFT	62
		GO TO 469	DRIFT	63
	468	TH13=TH13-PI	DRIFT	64
ç		EINSTNE IN AVERAGE WALKE DAR THETA AND AL AFEND TO THE DESIDE	DRIFT	63
ž		FINDING AN AVERAGE VALUE FUR INEIN AND FLACENG II IN IME PRUPER	ORIFI	00
č		event	ORIFI	
•	469	THV=(TH12+TH23+TH13)/3.0	DRIFT	60
		1F((TH23-PI/2.0)+AZ(2,1)) 471,473,472	DRIFT	70
	471	THETA(I)=THV	DRIFT	71
		60 TO 480	DRIFT	72
	472	THE TAL I J-THV+PT	DRIFT	73
		TH12+TH12+P1	DRIFT	74
		TH23=TH23+PI	DRIFT	75
		THI 3-THI 3+P1	DRIFT	76
		1 + + + + + + + + + + + + + + + + + + +	DRIFT	71
	473	60 10 460 PE/Tu135 474-478-478	DRIFT	78
	474	171111111 41494139413 THETAITS-THVADT	08151	
		TH12=TH12+PI	DRIFT	
		TH23=TH23+PI	DRIFT	
		TH13=TH13+PI	DRIFT	
		IF (THETA(I)-THV.GT.1.7)THV=THV+P1	DRIFT	64
		GD TD 480	DRIFT	85
	475	THETALIJOTHA	DRIFT	86
2		CALFURATING BELATIVE TRANTWERE VELOCITEE UNTLE ADDITUD	URIFT	87
č		WEIGHTED WALLIES	UR 1 P I De 164	50
č		WITH THE FLASH X-RAY)	ORIET	

_			DRTFT	91
¢		WETELS_AT(1, \$)///05/TH12=\$ //4.0)#T1(T)}#1000.0	DRIFT	92
	480	$V = [K_1 \ge A_2, 1] \times [f_1 \in G_2 \in [V_1 \ge 3] \times [f_2 \in [V_1 \ge 1] \times [f_2 \in [V_1 \ge 1] \times [f_2 \in [F_2 \in [V_1 \ge 1] \times [f_2 \in [V_1 \ge 1] \times [f_2 \in [V_1 \ge 1] \times [f_2 \in [F_2 \in [V_1 \ge 1] \times [f_2 \in [F_2 \in [V_1 \ge 1] \times [f_2 \in [F_2 \in [F_2 \in [F_2 \in [F_2 \subseteq [F_2 \in [F_2 \subseteq [F_2 \subseteq [F_2 \in [F_2 \in [F_2 \in [F_2 \in [F_2 \in [F_2 \subseteq 1] \times [F_2 \in [F_2 : F_2 \in [F_2 : F_2 : F$	DRIFT	93
		YETRIJAA1 (7) 1) (COSTINIJA) T/4.0) T3(T))+1000.0	DRIFT	94
		TERESTICATION THE STRICTHE 2-81/4.01*(TH12-THV)/TI(T)+1000.0	DRIFT	95
	,	///////////////////////////////////////	DRIFT	96
		ERS(2, 1) = A7(2, 1) + SIN(TH23) + (TH23-THV) + 1000.0/T2(1)	DRYFT	97
	1	7(COS(TH23))++2	DRIFT	96
		F05(3, []=AZ(3, []+SIN(TH13+PI/4.0)+(TH13-THV)/T3(])+1000.0	DRIFT	99
	1	7(COS(TH13+P1/4.0))**2	DRIFT	100
		FPS(4,1)=A2(1,1)+SIN(TH13-PI/4.0)+(TH13-THV)/T1(1)+1000.0	DRIFT	101
		1 /(COS(TH13-#I/4.0))##2	DXYFT	102
		EPS (5, I)+AZ(2, I)+SIN(TH12)+(TH12-THV)+1000.0/T2(I)	DRIFT	103
		1 /(COS(TH12))++2	DRIFT	104
		Eb2 (9' I) = V5 (3' I) + 2IN (IH53+ b2/4' 0) + (IH53- IHA1/ L3 (I) + 1000' 0	DRIFT	107
		1 /(COS(TH23+PI/4+0))**2	DRIFT	107
		DO 481 J=1,6	DRIFT	108
	401	EPS(J, I) - ABS(EPS(J+I))	DRIFT	1 09
		Eb204=010	DRIFT	110
		DO 482 3=1,6	DETET	in
	482	EPSUA-1.0/EPS(J+1)+EPSUA	DRIFT	112
			DRIFT	113
	4 7 3	¥1(]/4],0/10/20/20/20/20/20/20/20/20/20/20/20/20/20	DRIFT	114
		VETRAVIIIANIALIAVETAJANIAIANAETAJA	DRIFT	115
~			DRIFT	116
5		CONVERT THETA TO DECRES	DRIFT	117
2		CUNTRE THEFT TO DEGREES	DRIFT	110
v	400		DRIFT	119
	401		DRIFT	1 20
	471		DRIFT	121
	497	FORMATIININ-21XN "PARTICLE", 5X, "RELATIVE TRANS VERSE", 5X, "RELATIVE ".	DRIFT	122
		1 *DEVIANCE *,/,23X,*NUMBER*,8X,*VELOCITY (#/S)*,9X,*ANGLE*+	DRIFT	123
		2 • (DEGREES)'+/)	DRIFT	124
		DO 495 K=1,NPART	DRIFT	127
		WRITE(6+494) KIVETRAV(KI)THETA(KI	DRJFT	120
	494	, PORMAT(24X,12,15X,F6.2,17X,F5.1)	DRIFT	121
	495	GONTINUE	DWIFT	120
С			DRIFT	1 20
C		TRANSLATE APPARENT VALUES INTO ABSOLUTE VALUES	DETET	1 21
C			DRIFT	1 32
		R (2)+0.0	DRIFT	1 33
ç		ANT AND AT AN TAITTAL DENTANCE AND E END THE DEEEDENCE	DRIFT	1 34
ç		GUESSING AT AN INITIAL DEALANCE ANALE FOR THE RELEMENCE	DRIFT	1 35
c			DRIFT	1 36
		M M = 1 M 1 1 1 1 1 1 1 1 1	DRIFT	1 37
		//####################################	DRIFT	1 38
			DRIFT	139
		MAXUEA-1	DRIFT	140
		TELEVICENTIALITATION AND ANTHONY THETALI, LT 300, 160 TO 392	DRIFT	141
			ORIFT	142
	10:	• THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	DRJFT	143
	2.90	MINDEX+1	DRIFT	144
		60 TO 391	DRIFT	145
	393	3 IF(THETALL).GT.THAX.OR.THAX-THETALLI.GT.300.) GO TO 394	DRIFT	146
		60 TO 391	DRIFT	147
	39	4 THAX-THETA(I)	ORIFT	146
		MAXDEX=I	URIFT	149
	39	1 CONTINUE	08121	1 20
		IFIMINDER.GT.MARDER) GO TO 395	URIFE	121
		INCR=.0034907	N#121	170
		THETAD-THETA (HAXDEX)-150.	DETET	1 84
		60 70 396	0×1+1	1.54

	395	1NCR=0034907	DRIFT	1 5 5
		THE TAD=THETA(MINDEX)-180.	DRIFT	156
	396	DRC\$=0.0	DRIFT	157
		D0 899 1=1,NPART	DRIFT	1 58
		THETA(1)=THETA(1)+PI/180.0	DRIFT	1 5 9
		VX(I)=VETRAV(I)+COB(THETA(I))	DRIFT	1 60
	899	¥Y(T)=VETRAY(1)+SIN(THETA(1))	DRIFT	161
		THOR-THETADPPI/180.0	DRIFT	162
	902	R(1)=R(2)	DRIFT	163
		ITOTL=IFIX(.122173/A6\$(INCR))	DRIFT	164
		DD 1100 NOT-1-JITOTL	DRIFT	165
		THORSTHORSING	DRIFT	166
	903	V10-0.0	DRIFT	167
C			DRIFT	168
C		FINDING THE MAGNITUDE OF REFERENCE TRANSVERSE VELOCITYTHAT WILL	DRIFT	169
C		MAKE IT PROPORTIONAL TO THE AXIAL VELOCITY	DRIFT	170
C			DR1FT	171
		DU 756 I=1,NPART	ORIFT	172
	756	VTABS(I)=VETRAV(I)	DRIFT	173
	904	VTD=VT0+10.0	DRIFT	174
		INC=100	DRIFT	175
		60 70 909	DRIFT	1 76
	905	VT0=VT0+1.0	DRIFT	1 77
		INC -10	DRIFT	178
		GQ TQ 909	DRIFT	179
	906	VT0=VT0+.1	DRIFT	100
		INC=1	DRIFT	1 81
	909	vxg=vtg+cos (thor)	DRIFT	182
		VYO-YTO+SIN(THOR)	DRIFT	183
		DQ 907 1=1,NPART	DRIFT	1 84
	907	A1VB2(1)=2041((AX(1)-AXD)++5+(AA(1)-AAD)++5)	DRYFT	185
C			DRIFT	186
C		STATISTICAL CALCULATIONS FOR A LINEAR REGRESSION	DRIFT	187
C			DRYFT	188
	802	13-0.0	DRIFT	1 89
		AS=0_0	DRIFT	1 90
		TBYAS=0.0	DRIFT	191
		TBYTS=0.0	DRYFT	1 9Z
		A8Y A5 = 0.0	DRIFT	193
		KLESS-0	DRIFT	194
		00 900 1-1,NPART	ORIFT	1 95
		IF(A85(VTA85(I)-VTO) .LE. 1.0) 60 TO 700	DRIFT	196
		TS-VTABBIID+TS	DRIFT	197
		A2=VEL (T)+A5	DRIFT	198
		TBYAS-VTABS(I)*VEL(I)+TBYAS	DRIFT	199
		LBL12+ALVR2(1)++5+10112	DRIFT	2 00
		AB7A3=YEL (1)++2+ABYA3	ORIFT	201
		60 10 400	DRIFT	202
	700	RLESS=RLESS+1	DRIFT	2 0 3
	900	CONTINUE	ORIFT	204
		CUI={T\$TAS-{T\$\$A\$}/{NPART-RLE\$\$}}}}/{T\$T\$+{T\$\$+2/{NPART-RLE\$\$}}}	DRIFT	205
		CU2=[T8YAS={T\$*A\$/{NPART=RLE\$\$}}}//(A8YAS={A\$**2/(NPART=RLE\$\$)})	DRIFT	206
		CD-(C01+1.0/C02)72.0	ORTET	2 O 7
		104K=13/1KF4KI=KLE33/	DRIFT	209
		#D#R##D/INF#RI=RLEDD}	URIFT	209
		XINIFIBAR-ABAR/CU	DRIFI	210
		IT (AINIGLIGUGU GANDG INGGEUGIDU) GU IU 904	DRIFT	211
		UTIXINISLISUS SANDS ENGSEDSIDI GU IU VOJ	URIFT	212
		IFTAINT	DRIFT	213
	A1 A	J/11/2 JV/ 78/8/933993U	URIFI	214
	410	CO TO 008	08111	217
		VU 10 7VJ NTO-NTO-1 1	081271	112
	411		UR 1 F I	21/

!

	912	R(2)=SQRT(CO1+CO2)	DREFT	219
		1F(R(2).6T.R(1)) 60 TO 1101	DRIFT	220
		60 TO 1100	DRIFT	2 2 1
1	101	R(1)=R(2)	DRIFT	2 2 2
		¥108-¥10	DRIFT	2 2 3
		THURSTHOR	DRIFT	224
		DO_1102_IB=1+NPART	DRIFT	225
1	102	¥TB <u>(</u> IB)=¥TABS(IB)	DRIFT	2 26
1	100	CONTINUE	DRIFT	227
		410-4108	DRIFT	228
		THORETHORE	DRIFT	229
		DO 1103 TEI=1,NPART	DRIFT	2 30
1	103	AIVE2(IEI)-AIE(IEI)	DRIFT	231
	798	DO 815 N-1,NPART	ORYFT	232
		TF((VTABS(N)-VTD).LE. 1.0) GO TO 811	DRIFT	2 3 3
		PHE (N) = THE TA (N) - THOR	DRIFT	2 34
		BETA(N)=ASIN(VETRAV(N)=SIN(PHI(N))/VTABS(N))=180.0/PI	DRIFT	2 3 5
		AA21(M) = AET(M) \ALVER 2(M) = 1000.0	DRIFT	Z 36
		60 10 815	DRIFT	2 37
	011	A192(N)=0.0	DRIFT	230
		BETA(N)=0.0	DRIFT	2 39
		AV51(N)=0.0	DRIFT	2 4 O
	015	CONTINUE	DRIFT	241
		PRINT 702	DRIFT	242
	70Z	FORMAT(1H1,21X, PARTICLE', 5X, ABSOLUTE TRANSVERSE', 5X, ABSOLUTE ',	DRIFT	243
		L "ANGULAR', 5X4 'AXIAL VELOCITY DVER', /, 23X4 'NUMBER', 4X, VEL',	DRIFT	Z 44
		Z "UCITY (N/S)",4X,"DEVUANCE WRT REFERENCE TRANSVERSE VELOC",	DREFT	245
		3 1111///	DRYFT	Z 46
		DO /IO J-I,HPART	DRIFT	247
	707	WKIIT(0)/0// J/VIAB3(J/)/BE1A(J/)/AV3(J/)	DRIFT	240
		ruknat(29A)12/10A/r0.2/17A/r0.1/1A/r0.2/	URIFT	244
	/10		DRIFT	220
		PRENI /12,9410	DRYFT	291
	112	FORMAT(7,22X, THE TRANSVERSE VELOCITY OF THE REFERENCE IS ',	DRIFT	222
			DRIFT	2 2 3 3
		PRINT (139 RIZ)	ORIFT	234
	113	SWHAT(7)22x3 THE CORRECATION COEFFICIENT FOR THIS REGRESSION'S	URIFI	2 2 2 2
-	1		DRIFT	2 20
Č,			PENJET	1
2		••••••••••••••••	PENJEI	2
č			PENJET	5
2		FANST BE THE ENERGY BEAUTRED TO CREATE ONE CHATCHING OF HOLE	PENJEI	
ř		ECONST &S THE ENERGY REQUIRED TO CREATE UNE CUBIC-MN UP HULE	PENJEI	2
ř		NECADARCALE BUT AND ELET AND FICT AND THE THE CONFERNMENT OF STREAMIN IN	PENJEI	
ř		NABTABLES. KNUT AND STOT ARE THE CURRESPONDING TARGET	PENJEI	
ř		AWFINDES	PENJEI	
•		READIR. 300 HECONST. BUDJ. STC 1. BUDT. ETCT	PERJET	
	300	ENENAT/4510.41	TENJEI Beniet	10
r	344	runna (714747)	TENJEI Apnice	
ř		THIN TO THE MINIMUM CIANDREE AT UNTER BEN OF UTIL PUBLICATE THE	PENJET	12
ř		CTIEN DATE DIVINUS STANDUSS AT WHEN SENDED WILL EVALUATE THE	PENJET	13
ř		ANALYJEN, JIJIKIDULLUN, ENAK IJ INC MALINUN JIANUUFF IU DE	PENJEI	1.4
č		ALL NEASURENENTE ARE IN MM.	PENJEI	17
č		and the second state and the	PENJEI Démiet	12
-		READ(5.397)2NIN. 7MAY. 7INC	PENJET	11
	397	FORMAT(3F10.1)	PENJET	10
		DO 301 1+1-NPART	PENJET	30
		BETA(1)+BETA(1)+3.14189/180.	961461	20
		RADIUS (1)=0.0	PENJET	23
		PEN(1)=0.0	PENJET	22
		RL(1)+XL(1)	OEN.LET	23
		RVEL(I)+VEL(I)	DENJET	92
	301	CONTINUE	DENJET	27
				£ 0

		NH1=NPART-1	PENJET	27
		GAMMA=SQRT (RHOT/RHOJ)	PENJET	28
		2 SUBD= ZHIN-ZINC	PENJET	29
		K 2 SUM=0	PENJET	30
	250	Z SUBO= ZSUBO+ Z INC	PENJET	31
		KZ&UM=KZSUM+1	PENJET	32
		PENNAK (KZSUM)=0.	PENJET	33
		2SUB(K2SUH)=2SUB0	PENJET	34
C			PENJET	35
C		THIS LOOP EVALUATES EACH DIGITIZED PARTICLE	PEHJET	36
C			PENJET	37
	291	DO 209 E=1,NPART	PENJET	38
		NCC(I)=0	PENJET	39
			PENJET	40
	204	([]=(250B0-AL([]-(05([]+D5(2]+05(3)]/s-2.443)/4EL(])	PENJEI	41
		ULI S./VEL(I)	PENJEI Den ICT	42
~		9-14-1	PENJEI	
2		LACATTING A BARTICLE IN 3-A CALCE THEN ETHATING HURTHER IT CTRIFER	PENJET	4.6
ř		LUCATING A PARTICLE IN 3"D SPACETHEN THE TE THEREMINE INTI	PENJET	47
ř		THE MULE FRONTLET IF IT DUESN'(E, THEN FIRE IS INCREMENTED SWITC	DENJET	40
č			PENJET	68
•	201	T (T) = T (H) + NF(T	PENJET	49
	205	X(1)=VEL(1)/AVST(1)+T(1)+COS(BETA(1))	PENJET	50
		Y(1)-X(C)+TAN(BETA(1))	PENJET	51
		Z(1)=VEL(1)+T(1)=Z\$UB0+KL(1)+(05(1)+05(2)+05(3))/3,	PENJET	52
		IF(NG.EG.2) 60 TO 210	PENJET	53
		IF(2(1).LT.0.0) 60 TO 201	PENJET	54
		IF(1.EQ.1 .AND. T(I).LT.BREAK(I))GOTO 202	PENJET	55
		IF(T.EQ.1)60 TO 210	PENJET	56
		KLESS=#-1	PENJET	57
		DO 206 #-JMIN+KLESS	PENJET	58
		1F(PEN(8).LT01)60 TO 206	PENJET	59
		A{I ² 3}=X{I}}=X{I}}	PENJET	60
		A(1'5)=A(1)-A(2)	PENJET	61
		V(1,3)=Z(1)-Z(3)	PENJET	52
		VN(1)=50x1(V(1)1)2)=2+V(1)2)=2+V(1)2)=2+V(1)2)	PENJEI	63
		¥#%{[]=¥\[]][]*\$K#U\]3[]*\$\[]\$2]*\$K#U\3]2[**\[]3]*\$K#U\3]3]	PENJET	40
		VAN(1)/AU3(VAN(1)/) VAN(1)_CAU3(VAN(1)AA3_VAN(1)AA3)\	PENJET	67
		ΥΓΛΙΙ/-ΒΨΑΙΙΑΒΑΙΥΛΙΣ/ΥΥΖ-ΥΒΛΙΣ/ΥΥΖ// ΤΕΙ/ΜΑΒΙΤΙΑΓΙΑΙΤΙ/Ο ΙΔΑΟΙΒΑΛΤΙΒΙΙΙΔΑΟΔΑΜΑΒΙΤΙΔΑΟΣΙΒΕΝΙΙΙΔΑΟ ΕΤ.Ι.ΛΙ	REMIET	47
	1		DENJET	
		15(NO.50-1)60 TO 210	PENJET	60
		JMIN+3	PENJET	70
		60 10 201	PENJET	71
	206	CONTINUE	PENJET	72
	207	NQ-1	PENJET	73
		IF(JMTN.EQ.KLESS .AND. 2(I).LE1) GO TO 200	PENJET	74
		T(1)=T(1)-DELT76.0	PENJET	75
		60 TO 205	PENJET	76
	208	f(1)=(25U\$0-xL(1)-(D5(1)+05(2)+D5(3))/3.)/VEL(1)	PENJET	77
		N9-2	PENJET	78
		60 10 205	PENJET	79
C			PENJET	60
ç		FINDING THE EFFECTS OF THE PARTICLE PENETRATION	PENJEI	01
Ľ		1641 ME 1 AND NO HE 2000 TO 201	PERJET	02
	660	CUTUTET THE V VALUETED IN CAT	PENJEI Bemjet	
			PENJET	
		GRAD(1, 3)=1.0	PENJET	84
		60 TO 251	PENJET	87
c			PENJET	68
C		IF A PARTECLE 15 NOT IN THE CONTINUOUS MODE, THE AXIS OF	PENJET	89
C		PENETRATION IS EVALUATED	PENJET	90

~			BENIET	~ ~ ~
C			FENdEI	41
	202	IF(T(I), LT, BREAKTI) INCC(I) = 1	PENJEI	92
		IF(I.EQ.1 .AND. NCC(I).EQ.1)GUTC1999	PENJET	93
		If(T(1).LT.BREAK(I))XL(I)=XL(I)+T(I)/BREAK(I)	PENJET	94
		IM1=I-1	PENJET	95
		IF(7(I).LT.BREAK(I) .AND. Z(I).GT.Z(IM1))60T0 1999	PENJET	96
		DO 204 LJ=1.3	PENJET	97
		VALT-L STREPADI INTN-L JEVAN (T)	PENJET	08
			PENJET	99
		**************************************	BEN 4ET	1.00
		A (1) L 4/- VA(1) L 3// VAN(1)	PENdel	100
	204	PR11/LJJ= 4P(1/LJJ/4PN(1)	PENJEI	101
		RGRAD(E+1)=VPH(I)+2./RADIUS(JHEN)++2	PENJET	102
		PGRAD11+21=0.0	PENJET	103
		RGRAD(1,3)=VAM(1)+2./PEN(JMIN)++2	PENJET	104
		RGN(I}=SQRT(FGRAD(I,1)++2+RGRAD(I,3)++2)	PENJET	105
		RGPAD(I,1)=RGRAD(I,1)/RGN(T)	PENJET	1 06
		RGRAD(1+3)=RGRAD(1+3)/RGH(1)	PENJET	107
		D0 214 LJ-1.3	PENJET	1 08
	214	GRAD(1-1)=PGRAD(1-1)=PR(1-1)=PGRAD(1-3)=AR(1-1)	PENJET	109
		CH-SCOTTCPANIT-110024CPANIT-210024CPANIT-310021	PENJET	110
		00-300 10-1-3-3-3	BEMIET	
	214	GRAUTISCJI - GRAUTISCJI / GR	PENJEI	114
_		GOTO 251	PENJET	113
С			PENJET	114
C		CONTINUOUS PENETRATION AXIS IS ALONG PARTICLE FLIGHT AXIS.	PENJET	115
C			PENJET	116
1	999	VECT=SQRT(X(1)++2+Y(1)++2+(2(1)+2SUB0-(DS(1)+DS(2)+DS(3))/3.)++2)	PENJET	117
		GRAD(I+1)+X(I)/VECT	PENJET	118
		GRAD(1-2)-Y(1)/VECT	PENJET	119
		CRAD(1-3)=(7(1)+75)(0-(D5(1)+D5(2)+D5(3))/3,)/VEFT		120
	251		BEN IET	1 21
	C * 1	$T_{T} = T_{T} = T_{T$	PENJET	101
~		17(1.Eu.] .UR. NG.EV.2 .UR. NCC(1),EU.1)6010 202	PENJEI	122
Ļ.			PENJEI	123
Ç		EFFECTIVE LENGTH AND EFFECTIVE VELOCITY CALCULATIONS.	PENJET	124
С			PENJĘT	125
		XL(T)=GRAD(I,3)+XL(1)+SQRT(GRAD(I,1)++2+GRAD(I,2)++2)	PENJET	126
		1 + OTA (1)	PENJET	127
		VEL(I)=GRAD(I,3)+VEL(I)	PENJET	128
С			PENJET	129
Č.		PEJETRATION CALCULATIONS AS A FUNCTION OF FRECTIVE VELOCITY.	PENJET	1 30
ē.			PENJET	1 31
•		16/V6//13.6T	DENJET	1 32
			BENIET	1 7 2
			DENJET	1 3 3
			PENJET	1 34
			7ENJE1	1 37
			PENJET	1 36
		GU TU 209	PENJET	137
	260	1F(VEL([].GT.1.4] GO TO 261	PENJET	1 30
		U(1)=0.0	PENJET	1 39
		HVOL(I)=XKE(I)/ECONST	PENJET	140
		PEN(I)=(VEL(I)~.8)++2/.72+XL([]	PENJET	141
		RADEUS (1)+SORT(3,+HVDL(1) /(2,+3,14159+PEN(1)))	PENJET	142
		60 TO 209	DENJET	1 4 2
	261	TE(VE) (1), CT. 2. 160 TO 262	PENIET	344
			BENICT	146
				1 77
		MUULII-ARELII/ELUNJI MENJILA/, JUP/ JULI 1. AAA/ JALI LAV//TIL	PENJEI	170
		TERLAT-1-1VEL117-COUTCH (CTLOUTALI)	PENJET	147
		KWAATAANII2°AMAATII1 //5°43°74724468/[]]]	PENJET	148
		60 TO 209	PENJET	149
	262	RAD=30RT(VEL(I)++2+RH0J+RH0T~2.+(RH0J-RH0T)+(SIGJ-SIGT)/1.E6)	PENJET	150
		U[]]={RHOJ=VEL(E]=RAD}/(RHOJ-RHCT)	PENJET	1 51
		PEN11)=(RHDJ+VEL(I)+XL(I)=XL(I)+RAD)/(RAD-RHDT+VEL(I))	PENJET	152
		HVOL(I)=XKE(I)/ECONST	PENJET	153
		RADEUS(1)=SQRT(3,+HVOL(1) /(2.+3.14159+PEN(1)))	PENJET	1 54

209	CONTINUE	PENJET	1 5 5
279	WRTYF (6,211)	PENJET	1 56
211	FORMAT(1H1,10X, PARTICLE', 5X, HOLE', 6X, TIMPACT', 3X, PENETRATION ',	PENJET	157
1	L 'PENETRATION",6X, 'STATUS '#12X, 'NUMBER'#5X, VOLUME',6X, 'TIME",17X,	PENJET	1 58
	<pre>velocity'+/,23%,'(CU.NM) (MICROSEC)'+4%,'(MM)',5%,'(MM/',</pre>	PENJET	1 59
	3 *HICROSECI*//)	PENJET	160
	DO 713 I=1,NPART	PENJET	161
	\$F(NCC(I).EQ.1)GOTO 201	PENJET	162
	WRITE(6,212)E,HVOL(I)+T(I)+PEN(E)+U(E)+MPA+MPAR+MPART	PENJET	163
	GD TD 213	PENJET	164
201	WRTTE(6,212)I+HVOL(I)+T(I)+PEN(I)+U(I)+MCO+MCON+MCONT	PENJET	165
212	FORMAT (14 X + 12 + 7 X + F6 • 0 + 4 X + F8 • 1 + 7 X + F4 • 1 + 8 X + F8 • 3 + 7 X + 3 A 4 }	ÞENJET	166
213	CONTINUE	PENJET	167
	P#AX=0.0	PENJET	168
	DO 215 t= 1,+NPART	PENJET	169
	7F(Z(I).LF.PMAX) GO TO 215	PENJET	170
	PMAX=Z(1)	PENJET	171
	DPMAX-PEN(I)+GRAD(1,3)	PENJET	172
215	CONTINUE	PENJET	173
	PENSUM=PMAX+DPMAX	PENJET	174
	PENT(KZSUR)=PENSUM	PENJET	1 75
	WRITE(6,216)PENSUN	PENJET	176
216	FORMATIBHO,10X, THE TOTAL PENETRATION PREDICTED BY THIS ',	PENJET	177
	L 'PROGRAM IS ',F6.1,' MN'}	PENJET	178
	PRINT 257, ZSUBO	PENJET	179
257	FORMAT(1H0,10X, THESE VALUES WERE CALCULATED AT A STANDOFF ',	PENJET	1 80
	1 'OF '/F6.Go' MM.')	PENJET	1 81
	WRITE(6+220)	PENJET	182
220	FORMAT(1H1)14X, "X, Y) AND Z COORDINATES PENETRATION MAX CRA',	PENJET	183
:	L • TER RADIUS AXIAL DIRECTION OF PENETRATION•)	PENJET	184
	DO 218 I=1,NPART	PENJET	185
	WRITE(6+297)I;K(I);Y(I);Z(I);PEN(E);RADIUS(E);GRAD(E;I);	PENJET	186
1	L GRAD([,2),GRAD(],3)	PENJET	187
217	FQRMAT(11X,12,5F10.2,3F10.4)	PENJET	188
210	CONTINUE	PENJET	1 89
	DD 263 I-1,NPART	PENJET	190
	AET(1) + MAET(K)	PENJET	191
	KWAL(I)-O	ng NJE T	192
263	XL(I)-RL(I)	PENJET	193
	1F(ZSUBO.LT.ZMAX) GO TO 250	PENJET	194
	WRITE(60290)	PENJET	195
290	FORMAT(1H1, + VIRTUAL ORIGIN ZO(MM) PENETRATION(NM) MAX +,	PENJET	196
	PENETRATION(NA) (+/)	PENJET	197
	DO 289 1-1,KZSUM	PENJET	198
289	WRITE(6,292)25UB(I), PENT(I), PENKAX(I)	PENJET	199
292	FUPMAT(10xpF3.0,T32,F7.2,T55,F7.2)	PENJET	200
515	CONTINUE	PENJET	201
505	FUKRAT(INI)	BPL 2330	Z 37
	VU JIV JR ⁻ IANTARI	8KL 2330	Z 38
		BKL2330	Z 39
		841 2330	240
710		8×L2330	241
200		8KLZ330	242
		8KL2330	243
		8KLZ330	Z 44

1.15

"JETBREAK"

BREAK(N)	-	breakup time of particle N in µsec
BROK 2 3	-	observed number of jet particles already particulated as of 1 exposure 2 3
$\left. \begin{array}{c} 1\\ \text{FLASH} & 2\\ 3 \end{array} \right\}$	-	1 time after detonation of round for exposure of film 2 3
PBAR	-	}
PBYPZ	-	the statistical marketics and in relation of breaking time
PBYTZ	-	statistical variables used in calculation of breakup time
TAVG	-)
TDLAY	-	time delay between detonation of round and formation of jet
Z1 .	-	time between breakup of adjacent jet particles

1 1000

Service States

See.

States States

"DRIFT"

AVST (I) -	the axial velocity divided by the transverse velocity for particle I
AZ (1, I) AZ (2, I) AZ (3, I)	deviance of particle I with respect to the reference on 1 exposure 2 3
BETA (I) -	absolute angle formed between drifting reference and particle I
DS (1) DS (2) DS (3)	virtual origin calculations based on exposure 2 3
EPS (1, I) EPS (2, I) EPS (3, I) EPS (4, I) EPS (5, I)	estimate for sensitivity of transverse velocity V with respect to small changes in drift angle Θ (of the form $\frac{dV}{d\Theta} \Delta \Theta$) using all
	combinations of drift velocities and drift angles calculated from the 3 radiographs
EPSUM -	$ \begin{array}{c} 6 \\ \Sigma \\ \overline{EPS(K, 1)} \\ K=1 \end{array} \begin{array}{c} a \text{ constant used to scale the EPS values to their} \\ proper magnitude \end{array} $
KD 12 KD 23 KD 13	a constant relating time delay between exposures 2 and 3 used in drift velocity calculations 1 3
MAXDEX -	the particle # that satisfies TMAX
MINDEX -	the particle # that satisfies TMIN
PHI (I) -	the supplementary of the relative drift angle between particle I and the reference
R (2) R (1)	correlation coefficient for V _A vs. V _T plot for reference drift angle presently being analyzed. previously
S1 (I) S2 (I) S3 (I)	1 axial distance from charge base to particle I on exposure 2 3

72

- A - A

Sime A

T1 (I) T2 (I) T3 (I)	-	estimated existence time from creation of particle I to exposure 1 of film 2. 3
THETAO	-	initial guess at direction of reference drift
TMAX TMIN	-	the angle of the particle which is most clockwise/counterclockwise in the relative angular span.
TH12 TH23 TH13	-	relative drift angle calculated from governing equations 2 and 3 1 3
THV	-	the numerical average of TH12, TH23, and TH13
THETA (I)	-	the relative drift angle of particle I with respect to arbitrary origin (chosen parallel to film 2) (degrees).
THOR	-	the current reference drift angle being tested
VETR12 VETR23 VETR13	-	relative transverse velocity calculated from equations $\begin{array}{ccc} 1 & 2\\ 2 & and & 3\\ 1 & 3\end{array}$
VETRAV (I)	-	relative transverse velocity of particle I based on weighted values of VETR12, VETR23, and VETR13 (m/s)
VTABS (I)	-	absolute transverse velocity of particle I (m/s)
VTO	-	transverse velocity of particle reference (m/s)
VXO VYO	-	x component of drift velocity for the reference y
VX (I) VY (I)	-	x component of relative drift velocity for particle I y
WT (I)	-	the percentage weight that an individual drift velocity calcula- tion contributes to the overall average.
ABAR ABYAS AS CO CO1 CO2 TBAR TBYAS TBYTS TS XINT		statistical variables used in V _A vs V _T regression

Figure A2: A Diagrammatic Sketch Identifying Some PENJET Variables.

74

÷.,

"PENJET"

T (I)	- impact time of particle I, taken from virtual origin
X (I) Y (I) Z (I)	- spacial coordinates for top of particle I at any given time (and eventually upon impact) $X = 0$, $Y = 0$ denote where charge axis intersects target plate; $Z = 0$ is target surface.
DELT	- time increment (varied so that particle travels 3 mm/timestep)
U (I)	- penetration velocity of particle I (calculated only in the hypervelocity regime e.g. above 2 mm/usec)
RADIUS (I)	- crater radius of particle I
PEN (I)	- penetration of particle I
HVOL (I)	- hole volume created by particle I
V (I, 1) V (I, 2) V (I, 3)	x the y components of a vector drawn from the center of z crater J (through which particle I is instantaneously passing) to the tip of particle I
VM (I)	- magnitude of vector \overline{V}
VA (I, 1) VA (I, 2) VA (I, 3)	x the y components of vector \overrightarrow{VA} which is in itself the component z of vector \overrightarrow{V} pointing axially down crater J (the crater through which particle I is passing)
VAM (I)	- magnitude of vector \overrightarrow{VA}
VP (I, 1) VP (I, 2) VP (I, 3)	x the y components of vector \overrightarrow{VP} which is in itself the component of vector \overrightarrow{V} pointing perpendicular to the penetration axis of crater J (through which particle I is passing). Note that \overrightarrow{VA} + \overrightarrow{VP} = \overrightarrow{V}
VPM (I)	- magnitude of vector \vec{VP}
RGRAD (I, 1) RGRAD (I, 2) RGRAD (I, 3)	x the y components of a vector that is perpendicular to crater J z at the point of impact of particle I, but in the coordinate system of crater J (e.g., the Z' axis points down the axis of crater J)
RGM (I)	- magnitude of vector RGRAD

GRAD (I, 1) GRAD (I, 2) GRAD (I, 3)	x the y components of a vector that is perpendicular to crater J z
	at the point of impact of particle I, and in laboratory coordinate system (e.g., the axis points perpendicular to the target surface); GRAD becomes the axis of penetration for crater I according to refracted particle wave theory
GM (I)	- magnitude of vector GRAD
AR (I, 1) AR (I, 2) AR (I, 3)	a unit vector version of \overline{VA}
PR (I, 1) PR (I, 2) PR (I, 3)	a unit vector version of \overrightarrow{VP}
NCC (I)	- equals 1 when particle I is particulate; equals 0 when I is continuous
ECONST	- energy constant used for calculating crater volume (J/mm^3)
ZSUBO	- standoff (mm) from virtual origin to target surface
RHQJ	- jet density $\rho_{i}(g/mm^{3})$
RHOT	- target density $\rho_t(g/mm^3)$
SIGJ	- jet strength (MPa)
SIGT	- target strength (MPa)
GAMMA	$-(\rho_{t}^{\prime}/\rho_{j}^{\prime})^{\frac{1}{2}}$
JMIN	- the last crater number that particle I has been known to successfully have passed through
PENSUM	- the penetration resulting from PENJET calculations
NQ = 0	- particle I is travelling down hole profile
NQ = 1	 particle I has just struck target; t is decremented until precise impact time is revealed
NQ = 2	- particle I has drifted so far off course as to preclude entry into any part of the hole profile; it therefore strikes the target surface
KZ SUM	- number of standoffs at which PENJET has just analyzed a drift distribution
PENMAX (K)	- the greatest possible penetration at standoff #K

ZSUB (K) - an array of the standoffs at which PENJET has just been run
 PENT (K) - penetration predicted by PENJET at standoff #K

DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	2
12	Commander Defense Technical Info Center	1	Direc US Ai
	ATTN: DTIC-DDA		Benet
	Cameron Station		ATTN:
	Alexandria, VA 22314		Water
2	HQDA (DAMA-ZA; DAMA-RA, T. Rorsta	ad) 1	Comma
	Washington, DC 20310		US Ar and
1	Assistant Secretary of the		ATTN:
	Army (R&D)		4300
	ATTN: Assistant for Research		St. L
	Washington, DC 20310		
	-	1	Direc
1	Deputy Under Secretary of the		US Ar
	Army (Operations Research)		and
	ATTN: SAUS-OR, D. C. Hardison		Ames
	Room 2E621, The Pentagon		Moffe
	Washington, DC 20310		
		1	Comma
3	Commander		US Ar
	US Army Materiel Development		and
	and Readiness Command		ATTN:
	ATTN: DRCDMD-ST		Fort

DRCCG DRCDE-WM 5001 Eisenhower Avenue Alexandria, VA 22333

- 5 Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS DRDAR-LCU-D-R/T. Stevens DRDAR-LCU-LT/A. King DRDAR-LCU-DC/J. Pearson Dover, NJ 07801
- 1 Commander US Army Armament Research and Development Command ATTN: DRDAR-TDC (Dr. D. Gyorog) Dover, NJ 07801
- 1 Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L Rock Island, IL 61299

organization

Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189

Commander US Army Aviation Research and Development Command ATTN: DRDAV-E 4300 Goodfellow Blvd St. Louis, MO 63120

- 1 Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035
- Commander US Army Communications Research and Development Command ATTN: DRSEL-ATDD Fort Monmouth, NJ 07703
- 1 Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
- 9 Commander
 US Army Missile Command
 ATTN: DRSMI-R
 DRSMI-J
 COL C. M. Matthews, Jr.
 DRSMI-VIT
 DRCPM-HD/COL Cass
 DRCPM-HDE-M/R. Masucci
 DRCPM-TO
 DRSMI-YDL
 TOW-PM/COL Williamson
 DRSMI-RLA/E. B. Harwell
 Redstone Arsenal, AL 35893
- 2 Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905

DISTRIBUTION LIST

No. of		No. of	
<u>Copies</u>	Organization	<u>Copies</u>	Organization
3	Commander		
	US Army Tank Automotive	2	Commander
	Command		Naval Surface Weapons Center
	ATTN: DRDTA-RWL/C. Bradley		ATTN: Code DG-50
	DRDTA-TSL		DX-21, Lib Br
	DRDTA-RC/Dr. J. Jellinek		Dahlgren, VA 22448 22448
	Warren, MI 48090		-
		1	Commander
1	Program Manager		Naval Surface Weapons Center
	XM1 Abrams Tank System		ATTN: Code 730, Lib
	ATTN: DRCPM-GCM-S		Silver Spring, MD 20910
	Warren, MI 48090		
		1	Commander
1	Director		Naval Surface Weapons Center
	US Army TRADOC Systems		ATTN: N. Coleburn
	Analysis Activity		Silver Spring, MD 20910
	ATTN: ATAA-SL		
	White Sands Missile Range	1	Commander
	NM 88002		Naval Weapons Center
			ATTN: Dr. L. Smith
2	Commander		China Lake, CA 93555

- US Army Materials and Mechanics Research Center ATTN: DRXMR-PDD/J. Prifti Tech Lib Watertown, MA 02172
- 1 Commander US Army Research Office P. O. Box 12211 Research Triangle Park NC 27709
- 2 Chief of Naval Research Department of the Navy ATTN: Code 427 Code 470 Washington, DC 20360
- 1 Commander Naval Sea Systems Command Washington, DC 20360
- 2 Commander Naval Air Systems Command ATTN: Code AIR-310 Code AIR-350 Washington, DC 20360

- 2 Commander Naval Weapons Center ATTN: Code 4057 Code 3431, Tech Lib China Lake, CA 93555
- 1 Commander Naval Research Laboratory Washington, DC 20375
- 1 USAF/AFRDDA Washington, DC 20311
- 1 AFSC/SDZ/SDOA Andrews AFB Washington, DC 20334
- 2 US Air Force Academy ATTN: Code FJS-41 (NC) Tech Lib Colorado Springs, CO 80840
- 1 AFATL/DLJW (Dr. J. Foster) Eglin AFB, FL 32542
- 1 AFWL/SUL Kirtland AFB, NM 87117

DISTRIBUTION LIST

No. of	
copies	Organization
1	AFATL/DLYV (Mr. J. Smith) Eglin AFB, FL 32542
1	AFWL/SUL (LT Tennant) Kirtland AFB, NM 87117
1	AFAL Wright-Patterson AFB, OH 45433
- 1	AFLC/MMWMC Wright-Patterson AFB, OH 45433
1	Director Lawrence Livermore National Lab. ATTN: Tech Lib P. O. Box 808 Livermore, CA 94550
2	Director Lawrence Livermore National Lab. ATTN: Dr. C. Godfrey Mr. M. Wilkins P. O. Box 808 Livermore, CA 94550
1	AFELM, The Rand Co rporation ATTN: Library D 1700 Main Street Santa Monica, CA 90406
1	Sandia Laboratories ATTN: Tech Lib Albuquerque, NM 87115
1	Battelle- Memorial Institute ATTN: Mr. Joseph E. Backofen 505 King Avenue Columbus. OH 43201

1 Dyna East Corporation ATTN: P. C. Chou 227 Hemlock Road Wynnewood, Pa 19096

No	•	of

Copies Organization

 Firestone Defense Research and Products _____
 Division of the Firestone Tire and Rubber Company ATTN: R. Berus, L. Swabley 1200 Firestone Parkway Akron, OH 44317

- Honeywell Inc. Government and Aerospace Products Division ATTN: C. R. Hargreaves 600 Second Street Hopkins, NM 55343
- 1 Physics International ATTN: Ron E. Brown San Leandro, CA 94577
- 1 Drexel Institute of Technology 32nd and Chestnut Streets Philadelphia, PA 19104
- Systems, Science & Software ATTN; Dr. R. Sedgwick
 P. O. Box 1620
 La Jolla, CA 92037

Aberdeen Proving Ground

Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen DRXSY-G, Mr. Kramer Cdr, USATECOM ATTN: DRSTE-TO-E Dir, USACSL, Bldg. E3516, EA ATTN: DRDAR-CLB-PA DRDAR-CLN DRDAR-CLJ-L

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Na	e:
	مرافع المحال المحال المحالي ويتبرين التكر فتكلما التين بير مختلفا التي يسك فعكرت المؤت بالماحكات التياب

Telephone Number:

Organization Address:

- ---- FOLD HERE ----- -Director NO POSTAGE US Army Ballistic Research Laboratory NECESSARY ATTN: DRDAR-BLA-S IF MAILED Aberdeen Proving Ground, MD 21005 IN THE UNITED STATES OFFICIAL BUSINESS **BUSINESS REPLY MAIL** PENALTY FOR PRIVATE USE. \$300 FIRST CLASS PERMIT NO 12062 WASHINGTON, DC POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY Director US Army Ballistic Research Laboratory ATTN: DRDAR-BLA-S Aberdeen Proving Ground, MD 21005

- FOLD HERE -

Contraction of the second

_