

D. 7

The Air Force Geophysics Laboratory Standalone Data Acquisition
System: A Functional Description

PETER G. VON GLAHN, Capt, USAF

9 October 1980

Approved for publte releasa; distribution unlimited.

TERRESTRIAL SCIENCES DIVISION
PROJECT 7600
AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AFE, MASSACHUSETTS 01731

AR FORCE SYSTEMS COMMAND, USAF

This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Qualified requestors may obtain additional copies from the
Defense Technical information Center. All others should apply to the National Technical Information Service.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMEER AFGL-TR-80-0317.	3. RECIPIENT'S CATALOG NUMBER 253
4. TITLE (and Subïtite) THE AIR FCRCE GEOPHYSICS LABORATORY STANDALONE DATA ACQUISITION SYSTEM: A FUNCTIONAL DESCRIPTION,	5. TYPE OF REPORT \& PERIOD COVERED Scientific. Interim. 6. PERFORMING OTG. REPORT NUMBER IP No. 293
Peter G. ; von Glahn, Capt, USAF	8. Contract or grant numberis)
9. PERFORMING ORGANIZATION NAME AND ADORESS Air Force Geophysics Laboratory (LWH) Hanscom AFB Massachusetts 01731	10. PROGRAM ELEMENT. RROECT, TASK AREA WORKUNINHMBERS 62101 F 7 G 000902
11. Controlling office name and address Air Force Geophysics Laboratory (L.WH)	12. REPORT DATE 9 October 1980
Hanscom AFB Massachusetts 01731	$\begin{gathered} 13 \text { NUMBER OFPAGES } \\ 261 \end{gathered}$
14. MONITORING AGENCY NAME \& ADDRESSfil different from Controlling Officel	15. SECURITY CLASS. (ot thes repon) Unclassified
-	T5. DECLASSIFICATION DOWNGRADING
15. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimit	
17. DISTRIBUTION STATEMENT (oit the abstract entered in Rlock 20. \#f different fro	Report)

19. KEY WORDS (Continue on reverse sife if necessary and identily by block number)

Geokinetic data acquisition
Artive filters
Seismic instrumentation
20. AgSTRACT (Conitnue on reverse side If necessary and identify by block number)

The Standalone Data Acquisition System (SDAS) is a portable digital data recording system for geophysical field data collection. This report describes the SDAS, giving special emphasis to the SDAS signal conditioning subsystem, which uses rustom-designed active filter modules for signal filtering and amplifications. Detailed descriptions of the active filters, including design equations and software, are provided. This subsystem, together with software for its configuration and performance verification, provides an improved

20. Abstract (Continued)

capability for analog signal conditioning. This report also provides a functional description of the SDAS. It documents the system hardware and such software as is needed for system configuration and checkout. Each subsystem in the SDAS is described via functional descriptions and such diagrams and schematics as are necessary to understand subsystem functioning. Detailed schematics, parts lists, software listings, and subsystem specifications are covered in appendices. References are included.

Contents

1. INTRODUCTION 13
1.1 Report Overview 13
1.2 Report Organization 14
2. SYSTEM OVERVIEW 14
2.1 Purpose of System 14
2.2 System Organization 14
2.3 System Specifications 17
3. JUNCTION BOX SUBSYSTEM 17
3.1 Chapter Overview 17
3.2 Junction Box Functional Description 17
3.3 Junction Box Physical Description 17
3.4 Junction Box Wiring Diagrams 19
4. SIGNAL CONDITIONING SUBSYSTEM 21
4.1 Chapter Overview 21
4.2 Signal Conditioner Functional Description 21
4.3 Signal Conditioner Physical Description 22
4.3.1 Signal Conditioner Chassis Description 22
4.3.1.1 Chassis Hardware Description 22
4.3.1.2 Chassis Wiring Description 22
4.3.2 Signal Conditioner Circuit Board Description 28
4.3.2.1 Circuit Board Physical Description 28
4.3.2.2 Signal Conditioner Circuit Description 28
4.4 Signal Conditioner Software Description 32
4.4.1 Software Overview 32
4.4.2 Design Software 32
4.4.3 Analysis Software 33
5. SYSTEM CONTROLLER SUBSYSTEM 35
5.1 Chapter Overview 35
5.2 System Controller Functiona: Description 35
5.3 System Controller Chassis Description 35
5.3.1 Chassis Physical Description 35
5.3.2 Chassis Wiring Description 40
5.3.3 Power Control Circuit Description 41
5.4 System Controller Computer Description 45
5.4.1 General Description 45
5.4.2 Card Cage and Backplane Description 46
5.4.3 Computer Module Description 46
5.4.4 Memory Module Description 46
5.4.5 Interface Module Description 47
5.4.6 Miscellaneous Module Description 47
5.5 System Controller A/D Converter Description 48
6. INTERFACE SUBSYSTEM 50
6.1 Chapter Overview 50
6.2 Interface Subsystem Functional Description 50
6.3 Interface Chassis vescription 50
6.3.1 Physical Description 50
6.3.2 Chassis Wiring 52
6.4 System Clock and Clock Interface 54
6.4.1 Clock Description 54
6.4.2 Clock Interface Description 55
6.5 Digital Tape Recorder and Interface 55
6.5.1 Tape Recorder Description 55
6.5.2 Tape Recorder Modification Description 60
6.5.3 Tape Recorder Interface Description 60
7. SYSTEM PERIPHERALS 61
7.1 Chapter Overview 61
7.2 System Console Description 61
7.3 Printer/Plotter Description 62
7.4 Thart Recorder Description 63
7.5 Floppy Disk System Description 65
7.6 Intercom System Description 65
7.7 Shipping Case Description 66
8. SUBSYSTEM INTERCONNECTION DESCRIPTION 66
REFERENCES 71
APFENDIX A: Junction Box Details 73
APPENDiX B: Signal Condition $\because r$ Chassis Wiring 77
APPENDIX C: Signal Conditioner Circuit Board Details 83
APPENDIX D: Biquadratic Filter Theory 89
APPENDIX E: Sample Signal Conditioning Circuit Card Designs 107
APPENDIX F: Signal Conditioning Circuit Card Design Software 131
APPENDIX G: Signal Conditioning Circuit Card Analysis Software 171
APPENDIX H: System Controller Chassis Signal Wiring Details 193
APPENDIX I: System Controller Computer Details 199
APPENDIX J: System Controller Power Control Board Details 205
APPENDIX K: System Clock Interface Details 215
APPENDIX L: Tape Recorder Interface Details 231
APPENDIX M: Visicorder Preamplifier Details 259
9. SDAS Block Diagram 15
10. Junction Box External View, Showing Side Containing Jl to Jl 2 18
11. Junction Box External View, Showing Side Containing J13 to J16 18
12. Junction Box Internal View 19
13. Junction Box Power Distribution Schematic 20
14. Signal Conditioner Chassis Front View 23
15. Signal Conditioner Chassis Rear View 23
16. Signal Conditioner Distribution Chassis Power Schematic 25
17. Signal Conditioner Chassis Simplified Signal Distribution Schematic 27
18. Signal Conditioner Circuit Board 29
19. Signal Conditioner Circuit Board Component Carrier 29
20. Signal Conditioner Circuit Block Diagram 30
21. Signal Conditioner Circuit Board Design Worksheet 34
22. System Controller Chassis Front View 36
23. System Controller Chassis Front View (Front Panel Open) 36
24. System Controller Chassis Rear View 37
25. System Controller Chassis Interior View 38
26. System Controller Chassis Interior View (Ribbon Cables Removed) 39
27. System Controller Chassis Power Distribution Schematic 42
28. System Controller Power Control Board Block Diagram 45
29. Interface Chassis Front View 51
30. Interface Chassis Front View (Front Panel Open) 51
31. Interface Chassis Rear View 51
32. Interface Chassis Interior View 53
33. Interface Chassis Schematic 56
34. System Clock Front View 58
35. System Clock Interface simplified Block Diagram 58
36. Tape Recorder Front View 59
37. 'lape Recorder Interface Simplified Block Diagram 61
38. System Console Front View 62
39. Printer/Plotter Front View 64
40. Chart Recorder Front View 64
41. Floppy Disk System Front View 65
42. Transit Cases 67
43. Instrumentation Enclosures 67
44. SDAS Field Installation 68
45. SDAS Equipment Interconnection Diagram 69
C-l. Signal Conditioner Circuit Board Schematic 84
C-2. Signal Conditioner Circuit Board Component Locations 86
D-1. General Biquadratic Filter Schematic 90
D-2. Biquadratic Lowpass Filter Frequency Response 92
D-3. Biquadratic Bandpass Filter Frequency Response 94
D-4. Biquadratic Highpass Filter Frequency Response 96
D-5. Biquadratic Case I Band Reject Filter Frequency Response 102
D-6. Biquadratic Case II Band Reject Filter Frequency Response 102
E-l. Example 1 Signal Conditioning Circuit Board Design Worksheet 108
E-2. Example 2 Signal Conditioning Circuit Board Design Worksheet 121
I-1. System Controller Computer Backplane Interrupt Priority Assignment 200
I-2. System Controller Minimum System Computer Suggested Mcdule Locations 201
I-3. System Controller Minimum System Computer Memory Map 202
I-4. DLV-1] Modification Component Locations 204
J-1. System Controller Power Control Board Block Diagram 206
J-2. System Controller Power Control Board Timing Diagram 207
J-3. System Controller Power Control Board Schematic 210
J-4. System Controller Power Control Board Component Locations 212
K-1. System Clock Interface Block Diagram 216
K-2. System Clock Interface Schematic 217
K-3. System Clock Interface Component Locations 219
K-4. System Clock Schematic Excerpt 223
K-5. Pulse Insertion Circuit Schematic 225
K-6. Multisystem Synchronization Example 226
L-1. Tape Recorder Write Adapter Schematic 233
L-2. Tape Recorder Write Adapter Component Locations 235
L-3. Tape Recorder Interface Block Diagram 237
L-4. Tape Recorder Read Interface Schematic 238
L-5. Tape Recorder Read Interface Component Locations 241
L-6. Tape Recorder Write Interface Schematic 245
L-7. Tape Recorder Write Interface Component Locations 248
M-i. Visicorder Preamp Input Schematic 260
M-2, Visicorder Preamp Padding Module Schematic 260
M-3. Visicorder Preamp Internal Views 261
Tables
46. System Specifications 16
47. Junction Box Parts List 20
48. Junction Box Power System Specifications 21
49. Signal Conditioner Chassis Parts List 24
50. Signal Conditioner Power Supply Specifications 26
51. Signal Conditioner Card Feature Summary 31
52. Signal Conditioner Card Specifications 32
53. System Controller Chassis Parts List 40
54. System Controller Power Supply Specifications 44
55. A/D Module Specifications 49
56. Interface Chassis Parts List 54
57. System Clock Specifications 58
58. SDAS Interconnection Cable Details 70
A-1. Junction Box Input Connector (Jl-J17) Pin Identification 74
A-2. Junction Box Output Connector (J18) Pin Identification 74
B-1. Signal Conditioner Input Connector (J1) Pin Identification 77
B-2. Signal Conditioner Chart Recorder Output (J3) Pin Identification 79
B-3. Signal Conditioner A/D Output Connector (J4) Pin Identification 80
B-4. Conditioner Card Socket (Sockets 1-16) Pin Identification 80
B-5. Summation Card Socket (Socket 17)Pin Identification 81
B-6. Calibration Card Socket (Socket 18) pin Identification 82
C-1. Signal Conditioner Card Parts List 87
E-1. Example l FILTER System Console Transactions 110
E-2. Example 1 FILTER Value and Parameter Table 116
E-3. Example 1 FCHECK System Console Transactions 117
E-4. Example 1 FCHECK Value and Parameter Table 120
E-5. Example 2 FILTER System Console Transactions 122
E-6. Example 2 FILTER Value and Parameter Table 125
E-7. Example 2 FCHECK System Console Transactions 127
E-8. Example 2 FCHECK Value and Parameter Table 1.30
F-l. Common Block Definitions 138
F-2. FILTER - Main Program Listing 139
F-3. Subroutine DC Listing 146
F-4. Subroutine DCCHK Listing 147
F-5. Subroutine LP Listing 147
F-6. Subroutine LPCHK Listing 149
F-7. Subroutine HP Listing 150
F-8. Subroutine HPCHK Listing 152
F-9. Subroutine BP Listing 153
F-10. Subroutine ВРСНK Listing 155
F-1l. Subroutine BR Listing 157
F-12. Subroutine BRCHK Listing 159
E-13. Subroutine PRINT Listing 161
F-14. Subroutine RPRINT Listing 163
F-15. Disk File Loading Program Listing 164
F-16. Subroutine STORE Listing 165
F-17. COMMON /sPECS/ Definitions 167
F-18. Subroutine SPECFI Listing 168
G-1. FCHECK - Main Program Listing 175
G-2. Subroutine VDC Listing 181
G-3. Subroutine VLP Listing 181
G-4. Subroutine VHP Listing 183
G-5. Subroutine VBP Listing 185
G-6. Subroutine VBR Listing 186
G-7. Subroutine VPRINT Listing 188
G-8. Subroutine VRPRIN Listing 190
H-1. System Controller Parallel Input Connector (J3-Jll) Pin Identification 195
H-2. System Controller Parallel Output Connector (J3-Jll) Pin Identification 196
H-3. System Controller Serial Input/Output Connector (J15-J17) Pin Iaentification 197
H-4. System Controller A/D Input/Output Connector (J13-J14) Pin Identification 198
I-1. System Controller LSI-1l Backplane Jumper List 200
I-2. System Controller Minimum Computer Module List 201
I-3. System Controller Mininnum Computer Module Jumpers 203
J-l. System Controller Power Control Board Parts List 213
J-2. System Controller Power Control Board Edge Connector Pin Identification 214
K-1. System Clock Interface Parts List 220
K-2. System Clock Cable Pin Identification 221
K-3. System Clock Interface Edge Connector Pin Identification 222
K-4. System Clock Control and Status Register Bit Identification 227
K-5. System Clock Output Register Bit Identification 227
K-6. System Clock Input Register Bit Identification 228
K-7. System Clock Interface Checkout Program Listing 228
K-8. Subroutine GETIME Listing 229
L-1. Tape Recorder Write Adapter Jumper Identification 235
L-2. Tape Recorder Write Adapter Parts List 236
L-3. Tape Recorder Read Interface Parts List 242
L-4. Tape Recorder Read Interface Edge Connector Pin Identification 243
L-5. Tape Recorder Read Interface Outpl: Connector Pin Identification 244
L-6. Tape Recorder Write Interface Parts List 249
L-7. Tape Recorder Write Interface Edge Connector Pin Identification 250
L-8. Tape Recorder Write Interface Output Connector Pin Identification 251
L-9. Tape Recorder Interface Control and Status Register Bit Identification 252
L-10. Tape Recorder Interface Output Register Bit Identification 253
L-11. Tape Recorder Interface Input Register Bit Identification 253
L-12. Tape Recorder Interface Checkout Program Listing 254

M-1. Visicorder Preamp Input Jumper Insertion 260
M-2. Visicorder Preamp Sensitivities 261

The Air Force Geophysics Laboratory Standalone Data Acquisition System: A Functional Description

I. INTRODUCTION

1.1 Report Overview

This report gives a functional description of the Air Force Geophysics Laboratory Standalone Data Acquisition System (SDAS). documents the system hardware and such software as is needed for system configuration and checkout. This document does not cover either the sensors used with the SDAS or the software used for system operation or data reduction.

The SDAS, as described in the report, represents a refinement of the system described in Syverson, et al (1978).1 The system has been completely repackaged. All digital interfaces have been redesigned. Furthermore, an entirely new signal conditioning subsystem has been designed and incorporated into the SDAS. This conditioner, together with software for its configuration and performance verification, provides an improved capability for analog signal amplification and filtering.
(Report received for publication 9 October 1980)

1. Syverson, C.R., Blaney, J.I., Hartnett, E.B., and Molineux, C.E. (1978) Geokinetic Environment Studies, AFGL-TR-78-0124, Final Report, Boston College

1.2 Report Organization

Chapter 2 of this report provides an overview of the SDAS subsystems and their interrelationships. Subsequent chapters cover each of the subsystems in detail. These chapters include subsystem descriptions, principles of operation, and such diagrams and schematics as are necessary for the understanding of subsystem functioning. Detailed schematics and specifications are treated in the appendices. Additional references are given so that an interested reader may obtain further information on areas oi interest.

2. SYSTEM OVERVIEW

2.1 Purpose of System

The Standalone Data Acquisition System is a portable digital data recording system for geophysical field data collection. The system accepts analog electrical signals from sensors, conditions the signals, converts them to a digital form, and records the digital information on magnetic tape. While still in the field, the SDAS can be used to do initial analysis of the recorded data.

2.2 System Organization

The SDAS consists of two groups of components; one group is located adjacent to the sensor array and the other is located in a trailer or recording site. The group near the sensor array (see Figure 1) consists of a junction box and an intercom headset. The junction box serves as a connection point for the sensor signal lines. It also includes a power supply for preamplifiers mounted in or adfacent to the sensors. The intercom headset connected to the box provides an easy means of field coordination during equipment setup and maintenance.

A 19-pair shielded cable connects the junction box to the subsystem group located at the recording site. Of the 19,17 pairs are used for sensor channels. One cable pair is used for sending a calibration signal from the signal conditioner to the junction box for sensor calibration. The 19th pair is used for the intercom channel. Several thousand feet of this cable can be used, depending on the signal levels put out by the sensors or their preamplifiers.

Located at the recording site are the rest of the SDAS subsystems shown in Figure 1. The signal conditioning subsystem provides amplification and analog conditioning (filtering, including anti-alias) of the signals. After conditioning, the analog signals pass to the system controller and an analog strip chart recorder. The recorder provides a continuous record of input signals for real time monitoring and for aiding in later data analysis.

1. SDAS Block Diagram

The controller consists of a small digital computer running under programs stored on the floppy disk memory. An analog-to-digital (A/D) converter, controlled by the computer and located within the controller subsystem, converts the analog signals to digital words. These digital words are then routed to the interface subsystem by the computer.

The interface subsystem contains digital circuitry to interconnect a digital magnetic tape recorder with the computer for recording the digitized data. Also connected to circuitry in the interface subsystem $1 s$ a digital clock to provide time and date information to the computer. This time and date information is added into the digital data stream by the computer prior to recording on the tape recorder.

A system console connected to the control box provides a means for operator communication with the computer. Graphics output (plots) or listings (printouts) can be either displayed on the console or printed on a printer/plotter connected to the computer.

Customized fiberglass shipping cases are used for transporting the SDAS. The system console and printer/plotter each fit into a foum-padded shipping case. The other sDAS components (except the junction box) fit into shock-mounted equipment racks housed in three fiberglass instrument enclosures. Space has been provided in the racks to transport test equipment (such as an oscilloscope or digital multimeter) for use setup and maintenance of the SDAS.

Although the SDAS is designed for easy transportation, some constraints exist on where it can be used. First, the junction box must be provided with 110 vac 60 Hz power if any of the sensors used

Table 1 System Specifications

```
Number of Analog Channels: 16
Power Requirements:
    Junction Box: 110 Vac, 0.2 A
    Rest of System: 110 Vac, 14.5 A
Operating Temperatures:
    Junction Box: -20 to +75 deg C
    Rest of System: +15 to +32 deg C *
Electronic:
    Signal conditioner circuit board input noise:
                12.5\muV (P-P) (dc-20\emptyset Hz) **
    Signal conditioner circuit board harmonic distortion:
        < 0.5% (12 Hz input)
Shipping Weight (Including Cases):
    Rack 1 (controller, interface, floppy):
        220 lb (99.8 kg)
    Rack 2 (recorder, signal conditioner):
        171 1b (77.6 kg)
    Rack 3 (instrumentation and chart recorder):
        221 1b (100.2 kg)
    Peripherals:
        System console: 106 lb (48.1 kg)
        Printer/plotter: 93 lb (42.2 kg)
Shipping Sizes (Including Cases):
    Rack l (controller, interface, floppy):
        36.4 in. H, 24 in. W, 28.5 in. D
        (92.5 < 61.0 x 72.4 cm)
    Rack 2 (recorder, signal conditioner):
        31 in. H, 24 in. W, 29.75 in. D
        (78.7 x 61.0 x 72.4 =%)
    Rack 3 (instrumentation and chart recorder):
        31 in. H, 24 in. W, 29.75 in. D
        (78.7 人61.0 < 72.4 cm)
    Peripherals:
        System console:
            16.5 in. H, 25.5 in. W, 25.5 in. D
            (41.9 x 64.8 x 64.6 cm}
        Printer/plotter:
            12.5 in. H, 28 in. W, 28 in. D
            (31.8 < 71.1 < 71.1 cm)
```

* Limited by floppy disk temperature specifications.
* Input noise rises to approximately $1 \mathrm{mV}(\mathrm{P}-\mathrm{P})$ during printing or plotting on the system printer/plotter. Probable cause is a ground loop through the serial interface for the printer/ploter.
require power from its power supply. Second, the box must be located within a few thousand feet of the recording site with the desired signal to noise ratio and cable availability dictating the exact maximum distance. Third, the recording site must provide some degree of climate control (most of the subsystems there use commercial equipment), as well as 110 Vac 60 Hz power for all subsystems.

2.3 System Specifications

Overall system specifications are contained in Table 1 . Detailea subsystem specifications are covered in the chapter devoted to each.

3. JUNCTION BOX SUBSYSTEM

3.1 Chapter Overview

This chapter covers the SDAS junction box. It contains a functional, physical, and electrical description of the box. Also included are parts lists and power and signal wiring diagrams.

3.2 Junction Box Functional Description

The junction box provides a connection point between the individual sensors and a l9-pair shielded cable connected to the signal conditioning subsystem. Mounted on the box are 17 input connectors, each connected to one pair of conductors in the cable. Another cable pair is used for a calibration signal which is received from the signal conditioning subsystem and routed in parallel to all input connectors. The 19 th cable pair connects to a separate jack on the box for use with an intercom headphone. A power supply in the box is connected to all 17 input connectors to provide dc power for the sensors or sensor preamplifiers. The power supply runs on 110 vac supplied through a separate power cord.

3.3 Junction Box Physical Description

The SDAS junction box (Figures 2 and 3) measures 8 in. (20.3 cm) wide by $10 \mathrm{in} .(25.4 \mathrm{~cm})$ deep by $4 \mathrm{in} .(10.2 \mathrm{~cm})$ high. It has a removable cover secured by four corner-mounted screws. Mounted on its sides are the connectors for attaching cables from the sensors (labeled Jl-JI7 in Figures 2 and 3): a connector for the 19-pair cable that connects the box to the signal conditioning subsystem (Jl8); and a jack for the intercommunications system (J19) protected by a weather-tight dust cover (CV). Also on the side of the box is a water-tight strain relief (SR) for the power cord (PC) supplying 110 Vac, 60 Hz for the internal power supply. A fuse for this power ($F 1$) is also included.

Mounted on the inside bottom of the box (see Figure 4) are a terminal strip (TS), the sensor power supply (PS), two overvoltage protection devices (OVP), and two fuses (F2) for the power supply output. (Note: Two weldnuts mounted on the inside bottom of the box near Jl-Jl2 were ground off during box assembly to allow clearance for the connectors.)

Table 2 gives a parts list for the box.

3.4 Junction Box Wiring Diagrams

Figure 5 gives the power distribution wiring diagram for the junction box. The power supply is adjusted for a +12 vdc output with the OVP trip point set to approximately 13 Vdc. (OVP trip point adjustment procedures are in Appendix A.) Specifications for the power supply and overvoltage protectors are given in Table 2.

Junction box signal routing information is contained in Appendix A.

4. Junction Box Internal View

Table 2 Junction Box Parts List

Part	Noun	Mfgr Part No.	Manufacturer
	Box	A-1008SCEP	Hoffman Engineering Co.
J1-17	Connector	PT07A-12-10S	Bendix
J18	Connector	PT07-24-61S	Bendix
J19	Jack	12B	Switchcraft
CV	Dust cover	512	Switcheraft
Sr	Strain relief	2520	Thomas and Betts
PC	Power cord	17513	Belden
Fl	Fuse holder	342006	Littlefuse
PS	Power supply	115	Ro Associates
OVP	Overvolt protector	OVP-2	Standard Power, Inc
F2	Fuse holder	357002	Littlefuse
TS	Terminal strip	603-6	Kulka

5. Junction Box Power Distribution Schematic

Table 3 Junction Box Power System Specifications

Power Supply: Output Voltage: Output Ripple: Output Regulation: Output Current: Size: Operating Temperature:	```t \pm 1 mV (+ 10 % Line) 3 mV (no load to full load) 0.75 A 3.5 < 7.9 x 1.7 in. (8.9 \times 20.1 \times 4.3 cm) -20 to +75 deg C```
Overvoltage Protector:	
Trip Range (Adjustable): Current Capacity:	5.35 to 32 Vdc 16 A (continuous)
Size:	$\begin{aligned} & 240 \text { A (instantaneous) } \\ & 1.7 \times 2.8 \times 0.7 \text { in. } \\ & (4.3 \times 7.1 \times 1.8 \mathrm{~cm}) \end{aligned}$

4. SIGNAL CONDITIONING SUBSYSTEM

4.1 Chapter Overview

This chapter covers the signal conditioning subsystem. It begins with a functional description of the subsystem. Following this is a description of the physical components of the unit, including theory of operation and circuit diagrams. The final part of the section deals with software that has been developed to configure the subsystem and to determine its actual operational characteristics.

4.2 Signal Conditioner Functional Description

The signal conditioning subsystem amplifies and filters analog signals prior to their digitization and recording. The subsystem consists of a rack of 16 single-channel conditioners, each of which is on a separate printed circuit board. Each board can be configured to provide a variety of types of signal conditioning including lowpass, highpass, bandpass, and anti-aliasing filters. Three parallel isolated outputs are provided on each board. One is routed to each of the output connectors, while the third is routed to a special board slot as described below. Each boart has an overrange indicator to provide a visual signal if the output voltage exceeds the linear input range of the digitizer. Also included on each board is dc voltage adjustment to correct for dc bias in the signals being processed. Several test points are included on the board to allow monitoring of the signals at various stages in the conditioning process.

Mounted on the back of the signal conditioning card rack are a power supply and the input/output connectors. The power supply
provides dc power for the active circuits on the boards. The l9-pair cable from the junction box is connected to the input connector, while cables to the analog strip chart recorder and the system controller are connected to the output connectors. A jack for the intercom headphones is also mounted on the rear of the card rack.

In addition to the 16 signal conditioning cards, two special purpose card slots have been included in the card rack. One is designed for calibration of both the signal conditioning cards and the sensor array. The other slot allows the combination of the outputs of the 16 conditioner cards for custom signal processing (such as the summation of several channels).

4.3 Signal Conditioner Physical Description

4.3.1 SIGNAL CONDITIONER CHASSIS

4.3.1.1 Chassis Hardware Description

Sixteen printed circuit boards mounted in a card rack make up the signal conditioning subsystem (Figures 6 and 7). The basic card rack is built from components made by the vector Electronic Co. The card rack takes up 5.25 in . (13.3 cm) of space in a standard 19 in . (48.3 cm) equipment rack and measures 18.5 in . (47.0 cm) deep, power supply included. A $1 / 8 \mathrm{in}$. (0.3 cm) thick aluminum back panel has been added to the vector rack. Top and bottom dust covers of $1 / 16$ in. $(0.2 \mathrm{~cm})$ aluminum have also been added as has a front panel (the top cover has been removed in Figures 6 and 7 for clarity).

Mounted on the front panel are the conditioner power switch (S1) and pilot light (PL) as are three test points (TP) for monitoring the power supply output. The power supply (PS) itself is bolted to the back panel. Also on the back panel are the input connector (Jl) for the cable from the junction box, an output connector (J2) for the cable to the analog chart recorder, and an output connector (J4) for the cable to the control subsystem. A phone jack (J3) on the back panel has been provided for connection of an intercom system to the junction box. A power cord (PC) provides 110 Vac 60 Hz power for the power supply, which is protected by a fuse (Fl). The power supply outputs are also fused (F2 and F3). Table 4 gives a parts list for the signal conditioner subsystem.

4.3.1.2 Chassis Wiring Description

Figure 8 contains the power wiring schematic for the signal conditioner card rack. Eighteen-gage wire is used for the +12 Vdc ana power common lines to reduce voltage drop problems. These lines are connected to bus wires on the card sockets that distribute the power to all cards. The supply wires are conected to the busses near the center of the card cage to equalize bus voltage drops as much as possible. Also connected to the bus at the same location are two $250 \mu \mathrm{~F} 50 \mathrm{~V}$ electrolytic capacitors (Cl and C 2) and the lines from the remote voltage sense terminals on the power supply.

Table 4 Signal Conditioner Chassis Parts List

Part	Noun	Mfgr Part No.	Manufacturer
Sl	Power switch	7580K7	Cutler-Hammer
PL	Lamp holder	MCM-175T	Alco
	Pilot lamp	330	Chicago Miniature Lamp H. H. Smith
TP	Test point	1506-101/102/103	
PS	Power supply	OEM15D2.4-1-2	ACDC Electronics
J1	Connector	PT07-24-61S	Bendix
J2	Connector	PT@7-24-61P	Bendix
J3	Jack	C-12B	Switchcraft
J4	Connector	DD50S	Cannon
PC	Power cord	17513	Belden
F1-F3	Fuse holderCard rack, consisting of the following parts:		Littlefuse
	Side walls (2)	SW-52-P-156	Vector Electronics Co.
	T-struts (8)	TS-169-P	Vector Electronics Co.
	```T-strut mounting brackets (8 reqd - come in pkg of 6)```	BR16-A	Vector Electronics Co.
	Card guides   (3 pkg of 12)	BR20-10-HP	Vector Electronics Co.
	Nuts, T-strut   (2 pkg of 24)	NT4-7PA	Vector Electronics Co.
	Hex-head T-strut screws (1 pkg)	SC4-26 SC $24-28$	Vector Electronics Co.
	Hex-head T-strut screws ( 1 pkg of 24)	SC24-28	Vector Electronics Co.
	T-strut screw inserts   (2 pkg of 24)	NTT6-3	Vector Electronics Co.
	Edgecard receptacle (18)	R644	Vector Electronics Co.


8. Signal Conditioner Distribution Chassis

The power supply common is not tied to the chassis ground. Rather, it is connected to an isolated stud on the back panel of the rack. This stud, in turn, can be tied to a separate ground point to isolate the signal ground from digital or 60 Hz ground noise (stud not shown in Figure 7).

A voltage dropping resistor (Rl-15 $(\mathrm{R}, 1 / 2 \mathrm{~W})$ has been added to the pilot lamp circuit. It provides a drop of about 1 V so the 14 V pilot lamp can be connected to the 15 V power supply lines.

Specifications for the signal conditioner power supply are given in Table 5.

Figure 9 gives a simplified signal wiring diagram for the signal conditioner subsystem (detailed pin assignments and signal routing information is in Appendix B). The signal conditioner card rack has slots for 18 cards. Slots 1 through 16 are used for signal conditioning cards. Input signals for these slots come from the input connector on the back panel; output signals go to the two back panel output connectors and to slot 17 .

Card rack slot 17 is set up for an analog signal combination circuit card for combining the outputs from the 16 conditioning cards. The output from this slot is connected to channel 17 chart recurder output.

Card rack slot 18 is designed for three purposes - conditioning card checkout, calibration, and spare channel signal conditioning.

The output of the digital-to-analog (D/A) converter in the system controller is routed through the $A / D$ output connector to the slot 18 input pins. Further, the slot 18 output pins are connected in parallel to the slot 16 output pins. Thus, a conditioning card to be checked out can be plugged into slot 18 , the slot 16 card removed, and $\therefore$ signal generated using the system controller $D / A$ converter. The output of the card can be measured using the channel $16 \mathrm{~A} / \mathrm{D}$ input to verify correct card performance.

Table 5 Signal Conditioner Power Supply Specifications

Output Voltage:	$\pm 15 \mathrm{Vdc}( \pm 0.5 \mathrm{~V}$ adj range)
Output Ripple:	$\overline{20} \mathrm{mV} \mathrm{P}-\mathrm{P}, \mathrm{max}$
Output Regulation:	$\pm 20 \mathrm{mV}$ ( $\pm 10 \%$ line)
	$\pm 20 \mathrm{mV}$ (no load to full load)
Output Stability:	$\overline{1} \emptyset \mathrm{mV} / 8 \mathrm{hr}$, typ (after warmup) (Pos to neg relative 5 mV )
Out put Tempco:	$0.028 / \mathrm{deg} C$, max
Output Current :	2.4 A, max
Overvoltage Protection:	Built-in
Size:	$\begin{aligned} & 10.0 \times 3.2 \times 4.9 \mathrm{in}, \\ & (254.0 \times 81.0 \times 125.5 \mathrm{~cm}) \end{aligned}$
Operating Temperature:	0 to +7l deg C



For sensor calibration, circuitry can be inserted into slot 1 generate a calibrating signal which is routed to the calibration signal pair going to the junction box. Alternatively, the D/A converter in the system controller can be used to generate a calibration signal. This signal could be buffered on a card inserted into slot 18 and sent to the sensors via the junction box.

The spare channel signal pair (channel 17) from the junction box is also routed to a different pair of input pins in slot 18. A custom conditioning card inserted in slot 18 could be used to condition this signal for recording by on $A / D$ channel 16 (note that slot 16 must be vacant if this is done to prevent signal conflict).

Outputs for any of the three envisioned uses for slot 18 can be displayed on channel 18 of the chart recorder, as shown in figure 9.

### 4.3.2 SIGNAL CONDITIONER CIRCUIT BOARD DESCRIPTION

### 4.3.2.l Circuit Board Physical Description

Each signal conditioning card consists of a 4.5 x 10 in . (11.4 x 25.4 cm ) fiberglass printed circuit board as shown in figure 10. Permanently mounted on the board are the amplifiers and certain components used to form the filter and gain sections. The exact configuration of the filters is determined by carrier-mounted components (see Figure ll) that plug into the four vacant integrated circuit sockets visible on the card. (The following sections discuss the functions of these components and give information on two computer programs for selecting and checking their values.) A set of test points has been included for monitoring the signal at various points in the filter chain. Mounted near the test points are a trimpot for adjusting circuit dc offset and a light emitting diode (LED) for indicating overrange signals. Appendix contains the detailed circuit board schematics and parts lists.

### 4.3.2.2 Signal Conditioner Circuit Description

Figure 12 gives a block diagram of the signal conditioning circuit board. Each card consists of five conditioning stages, output buffers, and an overrange indicator. Detailed circuit diagrams and circuit descriptions are contained in Appendix $C$.

Stage 1 consists of a variable gain instrumentation amplifier. The amplifier features a differential input with high common mode signal rejection to minimize the effects of noise picked up by the cable from the junction box. It functions as an input buffer, isolating the following stages from interaction with the input signals. It also provides signal gain as set by two resistors, Rl0l and Rl02, located near the amplifier on the circuit card. A dc offset adjusting trimpot is located near the amplifier for nulling out any input offset voltages. The high frequency response of the amplifier is limited by a resistor/capacitor network. The network inserts a pole at approximately 677 Hz .

10. Signal Conditioner Circuit Board

11. Signal Conditioner Circuit Board Component Carrier

12. Signa! Conditioner Circuit Block Diagram

Stages 2, 3, and 5 are similar. Each consists of amplifiers and certain fixed components needed to form biquadratic (biquad) universal active filters. Each filter stage can provide a second order lowpass, bandpass, highpass, allpass, or band reject filter. In addition, each stage can provide amplification of the signal. (Appendix D presents a detailed discussion of the theory and design equitions for the biquad active filter.) Stages 2 and 3 differ slightly from stage 5 . Stage 2 has an additional dc offset voltage adjustment via a trimpot located on the outside edge of the card. This adjustment allows the user to correct for dc drift or offset of signals amplified by the card. Stage 3 is set up as a lowpass filter only. It can handle lower frequencies than the other two stages through the addition of extra capacitors (using solder pads included for that purpose). All parameters for these filters (filter type, gain, frequency resfonse, damping coefficient) are set by carriar-mounted resistors plugged into the board. Section 4.4 of this report covers software developed to assist in the selection of these resistors.

Stage 4 is an amplification stage. Its gain is set by two plug-in resistors. Also, by the addition of a capacitor in parallel with one of the resistors, the stage can provide a single lowpass pole.

Three independently buffered outputs are provided on the board. They appear on the board's edge connector and are single ended. They supply signals to the $A / D$ converter (in the controller chassis). to the chart recorder, and to a spare card slot in the card rack.

A visual overrange indication has been built into each board. The indicator uses a buffered comparator to monitor the boards output. and turn on the LED when the output exceeds approximately +10 or -l Vdc. This level corresponds to the maximum input signal level of the A/D converter. Thus, the user is given a visual indication of possible A/D signal clipping.

Four test points have been incorporated into the board. These appear, together with system ground, on a multiple test point module on the edge of the boar3. They $\mathrm{gi}^{2}$ ve the outputs of stages 1, 2, 4, and 5, with the stage 5 output paralleling the signal recorded by the A/D. At these points, a technician can measure dc offset and observe the signal waveform using a voltmeter or an oscilloscope.

## CAUTION:

The stage 1 test point should be monitored using a lox oscilloscope probe only. Lower impedance probes cause the stage lamplifier to oscillate.

Table 6 summarizes the features of each conditioning stage: Table 7 gives specifications for the signal conditioning board.

Table 6 Signal Conditioner Card Feature Summary

Stage	Features
1	Variable gain, differential input, instrumentation amplifier Dc -677 Hz frequency response Input offset null adjustment Output fed to card edge test print
2	General purpose (Gain, LP, HP, BR, BR, AP) biquad filter Dc offset adjustment (via pot. at card edge) Output fed to card edge test point
3	Lowpass biquad filter   Lower gain capability than stages 2 and 5   Additional filter capacitors easily added
4	Amplification only   Can add capacitor for one lowpass pole Output fed to card edge test point
5	General purpose (Gain, LP, HP, BP, BR, AP) biquad filter
Output	Three individually buffered outputs (one fed to card edge test point)   LED overrange indicator

Table 7 Signal Conditioner Card Specifications

Input Impedance:	3000 MOhms / 1.8 pF
Input CMRR:	100 dB , min
Input Noise:	12.5 uV ( P-P) ( $\mathrm{dc}-200 \mathrm{~Hz}$ )
Max Input Voltage (Above GND)	
For Rated Performance:	$\pm 10 \mathrm{Vdc}$
Max Input Voltage Without Damage:	$\overline{3} \varnothing \mathrm{Vdc}$ (differential)
Output Saturation Level:	$\pm$¢   $\pm$   15 Vdc   Vdc
Harmonic Distortion:	< $0.5 \%$ ( 12 Hz input)
Output Impedance:	75 Ohm

* Rises to $1.0 \mathrm{mV}(\mathrm{P}-\mathrm{P})$ during printer/plotter operation.


### 4.4 Signal Conditioner Software Description

### 4.4.1 SOFTWARE OVERVIEW

Two computer programs have been developed for the design and analysis of a circuit conditioning card. The design program (FILTER) accepts desired filter parameters from the user and calculates the components required to build the filters. The program prints out a complete table of component values and filter parameters for the card.

The analysis program (FCHECK) is a derivative of FILTER. FCHECK is designed to accept component values and calculate the stage by stage filter parameters. It is intended for use after a signal conditioning card is built up to determine the filter's parameters from the values of the actual components used. A table of component values and filter parameters can be printed out as a record of the filter configuration for use in documenting data acquisition configurations and determining system responses.

Both programs include a provision for storing the filter parameters in disk files for use by other programs.

To aid the user in the operation of the programs, two sample circuit card configurations have been selected as typical of those used. Appendix $E$ contains design sheets, annotated system console listings, and component table printouts documenting the design and analysis of these sample configurations.

The following sections give more detailed information on these two programs.

### 4.4.2 DESIGN SOFTWARE

This section describes a computer program developed to aid in building up a signal conditioning card. The program, called filter, was written in FORTRAN and runs on the system computer (see Chapter 5). It can be used to design any or all stages of the signal
conditioning card. Prior to running Fllter, the exact conditioning card configuration (gain distribution, filter types, filter frequencies, filter damping coefficients) must be selected. Figure 13 gives a conditioner card design worksheet to aid in configuration design documentation. The program accepts this configuration information and calculates the resistor/capacitor values needed to build the filters.

The program also can use user-entered component values to calculate filter parameters. Thus, the user can substitute available component values for those calculated by the program and check the effect on the filter parameters of these values. The process of entering component values can be repeated until a satisfactory set of filter parameters is achieved for that stage. Once satisfactory component values are arrived at for all stages on the board, the user can redesign a stage to correct errors or change filter types. Finally, a table of component and filter parameter values can be printed on the line printer to aid in building up the conditioning cards.

Complete annotated listings of the program are contained in Appendix $F$ for those desiring further insight into its workings.

### 4.4.3 ANALYSIS SOFTWARE

This section describes a computer program used to document the stage-by-stage filter parameters of a signal conditioning card. The program, called FCHECK, was written in FORTRAN and runs on the system computer (see Chapter 5). The program accepts component values and calculates the filter parameters for all stages (or any one stage) on the conditioning card. In case of error, the values can be reentered and the calculations repeated. Once all parameters have been calculated, the program allows the user to repeat the process of entering component values for any given stage to correct errors or change filter type for that stage. Finally, a table of component values and filter parameters can be printed on the line printer for archival purposes.

Complete annotated listings of the program are contained in Afpendix $G$ of this report for those desiring further insight into its workings.
$\qquad$
$\qquad$
TOTAL RESPONSE DESIRED:

13. Signal Conditioner Circuit Board Design Worksheet

## 5. SYSTEM CONTROLLER SUBSYSTEM

### 5.1 Chapter Overview

This chapter addresses the system controller. Included is an overview of the subsystem functions and detailed descriptions of its components. Separate subsections will cover the controller chassis and wiring, the system control computer, and the analog to digital (A/D) converter. Digital Equipment Co. 2 (1979) offers detailed information on the system computer as well as an overview of the system software.

### 5.2 System Controller Functional Description

The system contoller is the heart of the SDAS. It contains the digital computer that controls the recording of data and analyzes prerecorded data. The computer also runs programs to design the signal conditioning cards, as documented in Chapter 4 of this report. Further, the power supplies in the unit provide dc power to the interface subsystem.

### 5.3 System Controller Chassis Description

### 5.3.1 CHASSIS PHYSICAL DESCRIPTION

A custom-built aluminum chassis houses the system controller. Figures 14 through 16 give external views of the chassis. (Component labels are referred to below.)

The chassis is designed to fit into a standard $19 \mathrm{in} . \quad(48.26 \mathrm{~cm}$ ) equipment rack. Its front panel, on which is glued an engraved blue plastic dress plate, is made from $0.125 \mathrm{in} .(\varnothing .32 \mathrm{~cm})$ aluminum. The panel measures $10.48 \times 19$ in. ( 26.6 x 48.3 cm ) and includes two slots on each side for screws to fasten the chassis to the equipment rack. A $8.5 \times 11.5 \mathrm{in}$. ( $21.6 \times 29.2 \mathrm{~cm}$ ) door is cut into the front panel to allow access to the computer cards as snown in Figure 14. Figure 15 shows the front view with the door opened, illustrating the locations of the cards. The white ribbon cables visible in this figure connect the inputs and outputs of the computer cards to $J 3$ through $J 17$ on the chassis rear panel.

The chassis box itself is made from aluminum and measures 19 in. $(48.3 \mathrm{~cm})$ deep, $1 \varnothing \mathrm{in} .(25.4 \mathrm{~cm}) \mathrm{high}$, and $17 \mathrm{in} .(43.2 \mathrm{~cm})$ wide. It has a removable top panel to allow access to the internal components. A 0.125 in . ( 0.3 cm ) rear panel contains engraved labels
2. Microcomputer $\frac{\text { Processor }}{\text { Co., Maynard }}$, MA , (1979) Digital Equipment

14. System Controller Chassis Front View

15. System Controller Chassis Front View (Front Panel Open)
for the components mounted on it. In the middle of the panel is a grill for exhausting ventilation air.

Mounted on the front panel are several switches and pilot lights. Switch sl controls the ac power to the controller. The nearby indicator light (Ll) gives a visual indication when the ac power :s on. A second switch (S2) controls the dc power supplies' outputs; pilot light L2 lights up when the dc power is on. The other two switches control the status of the system computer. The RUN/HALT switch (S3) enables or disables the computer RUN mode. When the computer is running, pilot lamp L3 is on. Momentary contact switch 54 initializes (restarts) the computer.

The chassis is mounted in an equipment rack using two chassis slides (CS), one on each side of the box. Two ventilation fans (Bl and $B 2$ ) are mounted on the side of the chassis to provide ventilation air; they are active whenever ac power in the chassis is on.

On the rear panel (see Figure 16) are mounted the input, output, and power connectors as well as fuses and dc ammeters. J3 through J6 provide the parallel digital connections between the interface subsystem and the parallel input/output cards mounted in the computer card rack. Connectors J7 through Jill are spare input/output connectors; they are connected to ribbon cables that run to the front of the computer card rack but which are not currently connected to any input/output cards. Jl2 is used for connecting the floppy disk subsystem to the floppy disk controller card in the computer card rack. Jl3 is used for routing analog signals between the signal

16. System Controller Chassis Rear View
conditioning subsystem and the $A / D$ converter module in the computer card rack. (Jl4 is a spare analog signal connector slot for future expansion.) Serial digital communications are provided through jl5 and Jl6. These are used for communications between the computer and the system console and printer. A spare serial connector (Jl7) is provided for future system expansion; it is currently not connected to any computer card. Five vdc power is supplied to the interface subsystem through Jl, while 110 Vac is supplied to the controller through J2. A power cord ( PC ) , not shown, connects $J 2$ to ac power. Two fuses (Fl and F2) provide protection for the entire controller and for the power control card, respectively. Finally, two dc ammeters (M1 and M2) monitor the current supplied by the controller 5 V and 12 V power supplies.

The inside of the system controller chassis is rather closely packed as illustrated by Figures 17 and 18 . Figure 17 shows an inside view of the chassis with the ribbon cables linking J3-J17 to the computer cards in place to illustrate their routing. Figure 18 gives the same view with the cables removed or relocated in order to illustrate component location.

17. System Controller Chassis Interior View

18. System Controll:r Chassis Interior View (Ribbon Cables Removed)

Card racks (BP1 and $B P 2$ ) for the system control computer dominate the interior of the chassis. Two power supplies, PSl and PS2, provide 12 and 5 Vdc power, respectively, for the system computer and interface circuitry. Mounted on top of PS2 is a ammeter shunt (R1) for the 5 V ammeter. On the bottom of the chassis is mounted a power transformer (Tl) which supplies low voltage ac to the power control board (PCB). This board is connected to the chassis wiring harness through edge connector J18. A ribbon cable runs from this connector to a plug ( Pl ), which is plugged into the lower computer card cage (BP2) to provide power status signals to the computer. On the side panel of the chassis near the control board are mounted the 110 Vac control relay (Kl) and an ac distribution terminal strip (TBI). Finally, a terminal strip (TB2) is mounted on the rear panel near $J 6$ for connecting two signals from this connector to Jl8.

Table 8 gives the parts list for the subsystem.

Table 8 System Controller Chassis Parts List

Part	Noun	Mfgr Part No.	Manufacturer
S1	Switch, SPST	7580K7	Cutler-Hammer
LI	Lamp holder	508-7538-504	Dialco
	Neon lamp cartridge	507-4537-56K	Dialco
S2.S3	Switch, SPDT	MTA-106D	Alcoswitch
L2, L3	Lamp holder	MCM-175T	Alco
	Pilot lamp	328	Chicago Miniature Lamp
S4	Switch, SPDT	MTA-106F	Alcoswitch
CS	Chassis slide (Pr)	C-30ø-S-20	Zero Corp.
B1, B2	Fan	WR2HI	Rotron
JI	Connector	PTG7A-12-3S	Bendix
J2	Connector	PT07A-12-3P	Bendix
J3-J12	Connector	3331-0.006	3M
J13,J14	Connector	DD-50S	Cannon
J15-J17	Connector	DB-25S	Cannon
J18	Socket, PC	R644	Vector
Fl	Fuse holder	344-125A	Littlefuse
F2	Fuse holder	342-858A	Littlefuse
M1	Ammeter, 25 A	02437	Simpson
M2	Ammeter, 10 A	02435	Simpson
BP1, BP2	Card rack	H9270	Digital Equipment Co.
PS 1	Power supply, 12 V	LaS-10-12-OV	Lambda
PS 2	Power supply, 5 V	LJS-12-5-OV	Lambda
R1	Ammeter shunt	6707	Simpson
TI	Transformer, 12.6 V	P-8358	Stancor
Pl	Plug	3473-3	3M
K1	Relay	W388ACQX-9	Magnecraft
TB1	Terminal strip	683-4	Kulka
TB2	Terminal strip	LTS-2ø2	SPC Technology
Cl-C4	Capacitor, $2.5 \mu \mathrm{~F}$, 25 Vdc, tantalum	196 D 225 X 9025 HAl	Sprague
D1	Diode, 1 A, 50 V	1N4001	Motorola
PC	Power cord   (with Bendix PT06SE	$\begin{aligned} & 17513 \\ & -12-35 \text { connector) } \end{aligned}$	Belden

### 5.3.2 CHASSIS WIRING DESCRIPTION

Figure 19 gives the power and control signal wiring diagram for the system controller chassis. Wire sizes are annotated on the figure where they are important (to reduce voltage drop). All 110 Vac power lines are twisted as shown and are routed well away from all de and signal lines.

Pin 18 on $J 18$ is not connected to anything on the power control board. Rather, it serves as a junction point between the ribbon cable connected to P1 and the twisted pair connected to TB2.

Specifications for the controller power supplies are given in Table 9.

Appendix $H$ contains the signal wiring lists for the system controller subsystem. Also included in the appendix are the connection instructions for serial interfaces, such as terminals and printers. Appendix $I$ contains a jumper list for interconnecting the two computer backplanes.

### 5.3.3 POWER CONTROL CIRCUIT DESCRIPTION

The power control circuit board is mounted inside the system controller chassis. It provides power control and status information to the controller power supplies and the controller computer. A block diagram of the board is given in Figure 20.

As shown on the block diagram, the board has its own ac input power supply for running the onboard logic and power supplies. The ac input is also fed into an ac sensing circuit as are the leads from the dc ON/OFF front panel switch. This circuit detects the presence of ac power and the status of the dc ON/OFF switch. It provides the control signals for controlling dc power supplies. A dc sense circuit senses the presence of both power supplies' outputs. When both de voltages are at operating level, the circuit turns on the dc on pilot lamp. It also informs a delay circuit of the power status. This circuit provides the properly-timed power status signals to the system computer for both power up and power down conditions. Also on the board are a buffer for the RUN/HALT front panel switch and a retriggerable oneshot multivibrator. This latter circuit senses the SRUN pulse train from the computer (which indicates that the computer is the RUN rather than HALT mode), and turns on the RUN front panel lamp. Detailed circuit descriptions and board parts lists are contained in Appendix $J$ of this report.

19. System Controller Chassis Power Distribution Schematic


Table 9 System Controller Power Supily Specifications
5 Volt Supply:

Output Voltage:	$5 \mathrm{Vdc}(+0.25 \mathrm{~V}$ adj range)
Output Ripple:	50 mV P=P, max
Output Regulation:	$\pm 20 \mathrm{mV}$ ( $\pm 10 \%$ line, no loā to full load)
Output Tempco:	$0.038 / \mathrm{deg} \mathrm{C}, \mathrm{max}$
Output Current:	30 A at 50 deg $C$, ambient
	24 A at 60 deg C , ambient
Overvoltage Protection:	Built-in, 6.4-6.8 vac trip
Current Limiting:	Built-in
Size:	$6.2 \times 4.7 \times 10.2$ in.
	$(15.8 \times 12.0 \times 26.0 \mathrm{~cm})$
Operating Temperature:	0 to +71 deg $C$

12 Volt Supply.

Output Voltage:	i2 Vdc ( $\pm 0.60 \mathrm{~V}$ adj range)
Output Ripple:	100 mV P-P, max
Output Regulation:	$\begin{aligned} & \pm 48 \mathrm{mV}(t+10 \% \text { line, } \\ & \text { no load to full load) } \end{aligned}$
Output Tempco:	$0.0 .38 / \mathrm{deg} \mathrm{C}, \mathrm{max}$
Output current:	4.2 A at $50 \mathrm{deg} \mathrm{C}$,
	3.4 A at 60 deg $C$, ambient
	2.3 A at $71 \mathrm{deg} \mathrm{C}$,
Overvoltage Protection:	Built-in, 13.3-14.1 Vdc trip
Current Limiting:	Built-in
Size:	$2.1 \times 4.7 \times 10.2$ in.
	$(5.2 \times 12.0 \times 26.0 \mathrm{~cm})$
Operating Temperature:	0 to +71 deg $C$



### 5.4 System Controller Computer Description

### 5.4.1 GENERAL DESCRIPTION

Acting as the controller for all digital data acquisition and analysis functions, the system computer can be considered the heart of SDAS. It consists of a DEC LSI-ll microcomputer, a number of interface cards, and program storage memory. The computer is housed in a card rack in the controller chassis and can be accessed through the front panel door of the chassis. The rack itself consists of card guides and a backplane/socket array into which the computer cards are plugged. The computer communicates with the outside world through interface cards. These are connected to the chassis back panel by multiple-conductor ribbon cables as discussed in the previous section. These cables and the computer cards are visible in figure 15.

The following sections give an overview of the system computer components. More detailed information on the components can be found in the publication by Digital Equipment Co. ${ }^{3}$ (1980). Appendix 1 to this report contains a description (including jumper installations on the modules and a system memory map) of a minimum sDAS computer configuration.

### 5.4.2 CARD CAGE AND BACKPLANE DESCRIPTION

All LSI-11 system circuit boards are housed in two DEC H9270 backplane/card cage assemblies. These are mounted in a custom-built aluminum rack in the controller chassis. Room has been left in the rack for a third backplane assembly should future expansion require it.

The two backplane assemblies are jumpered together using wire wrap techniques. (Appendix $I$ gives the pins jumpered.)

DEC's LSI-11 computer and support circuitry are mounted on printed circuit boards of two sizes: dual- and quad-height modules (the quad-height boards are twice the size of the dual-height boards). These backplanes provide enough room for the LSI-ll processor and up to 7 quad-height or 14 dual-height modules. The backplane provides all signal and power interconnections between the modules.

### 5.4.3 COMPUTER MODULE DESCRIPTION

A DEC LSI-ll microcomputer is used as the computer module in the SDAS. It is a single-board microcomputer version of DEC's PDP-11 minicomputer. It has the same internal architecture and instruction set as the PDP-11. Like the PDP-11, it is a 16 -bit word length computer with multiple general-purpose internal registers. The LSI-11 modules used in the SDAS include the KEV-ll option, which provides additional fixed point as well as floating point arithmetic instructions.

The LSI-11 is housed on a quad-height circuit card bearing DEC module number M7264. Also on the card are 4 K words of random access memory (RAM).

### 5.4.4 MEMORY MODUY E DESCRIPTION

Additional memory beyond that provided on the LSI-11 card is required for running system and applications software. Three types of memory cards are used with the SDAS, depending on availability and system requirements: $4 \mathrm{~K}, 16 \mathrm{~K}$, and 32 K word capacities.

The 4 K word memory used in this sytem is a DEC MSV-11B dynamic MOS RAM. Location of the 4 K word block in memory is determined by onboard jumpers. The module is dual-height and bears an M7944 module number.

[^0]A larger 16 K word RAM capabilty is provided by the DEC MSVIl-CD dynamic MOS RAM module. Like the 4 K module, this unit's position in address space is determined by jumpers. The module is quad-height and has an M7955-YD identification number.

A full 32 K words of RAM (the maximum that the LSI-1l can address) can be provided on a single dual-height module by using a Monolithic Systems Corp. MSC46ø1 LSI-11-compatible memory module.

### 5.4.5 INTERFACE MODULE DESCRIPTION

Two types of digital interface modules (serial and parallel) are used in the SDAS. The serial interfaces are used to communicate with the system console and printer through the use of full duplex serial bit streams. The parallel interfaces are used to control, write to. and read from the system tape recorder and clocks. Signals for these later units are of a multiline, parallel nature.

DEC DLV-11 serial interface cards (module number M7940) are used in the SDAS. They communicate with asynchronous serial devices using either a 20 mA current 100 p or a RS232 interface. The cards can provide jumper-selectable data rates of between $5 \varnothing$ and $960 \varnothing$ baud with user-selectable character formats. Each dual-height DLV-1l card can support one full-duplex serial link. Signals to and from the external device are routed through a ribbon cable socket on the module. (Note: The DLV-ll used for the printer/plotter interface is modified, as described in Appendix I, to reduce the software overhead needed to support the unit.)

For parallel interfaces, the SDAS uses DEC's DRV-1l parallel line units (module M7941). They provide 16 input, 16 output, and 4 control lines between the module and the device connected to it. All lines are TTL level and appear on two ribbon cable sockets on the board. The module is dual height.

### 5.4.6 MISCELLANEOUS MODULE DESCRIPTION

Two other module types are used with the SDAS computer - a bus terminator and floppy disk interface. The bus terminator (DEC REV11-A, module M94ø日-YA) provides several support functions for the LSI-ll system. It includes bus termination resistor networks to provide proper bus voltage and impedance levels. Also on the module is a bootstrap ROM to provide the routines for initial program loading using paper tape, floppy disk, or hard disk program storage media. The module also provides the proper signals for refreshing the system dynamic memories. The bus terminator is a dual-height card and must be inserted as the last card in the card cage.

A DEC RXV-11 floppy cisk interface module is also used in the system. This module (number M7946) provides control functions for the RXØ1 floppy disk subsystem.

### 5.5 System Controller A/D Converter Description

Due to its importance in the data acquisition process, the $A / D$ converter module will be discussed in greater detail than the other computer modules. A model 600-LSI-ll Data Acquisition and Control System, made by ADAC Corporation of Woburn, MA, is used in the SDAS. The module is built on a quad-height circuit board. Incıuded on the board are input signal multiplexers, the $A / D$ converter, provisions for two D/A converters, and LSI-1l bus interface circuitry.

Input signal multiplexers are provided for up to 16 single-ended or 8 differential analog signals. Expansion to a maximum of 64/32 single ended/differential signals is possible with the addition of additional components to the board. (Single-ended implies that only one of the two input signal leads is switched; the other is tied to ground. Differential implies that both leads are switched, each being connected to one side of a differential input amplifier.) Further, the board can be configured for either true single ended operation or for a pseudo-differential mode. In the latter, the signal common is not connected to signal ground but rather to the low input side of the $A / D$ differential input amplifier. Input signals and grounds are brought onto the board through a ribbon cable socket on the board edge.

After multiplexing, the analog signals are captured by a sample and hold amplifier. The amplifier is used to reduce the effective time that the $A / D$ is connected to a given signal from approximately 15 usec to 20 nsec .

The module uses a 12 -bit successive approximation $A / D$ converter to digitize the signals held by the sample and hold. A/D converter range can be selected by jumpers on the module.

Also on the module is one 12-bit D/A converter (solder pads for a second are included, but not components). The input to the converter comes from a user-loaded register on the card. D/A output voltage range is programmed by oncard jumpers. The D/A output signal (and a separate $D / A$ signal return) runs to the ribbon cable socket on the board edge.

Also included on the board is the digital circuitry to connect the multiplexer and converters to the LSI-ll bus. Four registers are provided for the software interface. Two registers contain input words for the D/A converters: one contains the A/D output word, and one contains status/control bits. These latter bits give the status of the module and allow control of the multiplexing and conversion processes.

Table 10 contains key subsystem specifications.
As typically used in the SDAS, the A/D module is set up for -10 to +10 Vdc, pseudo-differential input and -10 to +10 Vdc output. Appendix $I$ details the jumpers required for this configuration.
Table 10 A/D Module Specifications


## 6. INTERFACE SUBSYSTEM

### 6.1 Chapter Overview

This chapter covers the interface subsystem, the system digital clock, and the system digital tape recorder. It includes an overview of the subsystems and their interrelationships. Separate sections then cover the interface chassis and its wiring, the system clock and its interface, and the system digital tape recorder and its interface. Detailed support information is included as required in each section.

### 6.2 Interface Subsystem Functional Description

The interface subsystem houses interface circuits to interconnect the computer's parallel pc ts with the system clock and digital tape recorder. Power for a subsystem is provided by the power supply in the controller chassis.

Mounted in the interface chassis is the system clock. The clock provides the calendar date and time for data identification as well as timing pulses to initiate data sampling. These signals are routed through the interface electronirs to the computer.

The system digital tape recorder provides bulk storage on magnetic tape of data acquired by the SDAS. It also can play back prerecorded data tapes for analysis. Input and output signals to/from the recorder are routed through the interface electronics to/from the computer.

### 6.3 Interface Chassis Description

### 6.3.1 PHYSICAL DESCRIPTION

A custom-built aluminum chassis houses the interface hardware. Figures 2] through 23 give external views of the chassis. Component labels will be referred to below.

The chassis is designed to fit into a standard 19 in . (48.3 $\%$ ) equipment rack. Its front panel is covered with a blue plastic dress panel and is made from 0.125 in . ( 0.32 cm ) aluminum. It measures $6.96 \times 19$ in. ( $17.7 \times 48.3 \mathrm{~cm}$ ) and includes a slot in each side for fastening the chassis to an equipment rack. Also mounted on the panel is the system clock. A $5 \times 8.25 \mathrm{in}$. ( $12.7 \times 21 \mathrm{~cm}$ ) bottom-hinged door is cut into the panel to allow access to the interface cards as shown in Figure 21. In Figure 22, the door is open, showing the cards. The ribbon cables connected to the card edges connect the interface cards to the system clock and the system tape recorder.

The chassis sides, top, and bottom are made from aluminum and measure $19 \mathrm{in} .(48.3 \mathrm{~cm})$ deep, 6.5 in . ( 16.5 cm ) high, and 17 in . $(43.2 \mathrm{~cm})$ wide. The chassis has a removable top panel to allow access

to the wiring and card cage. A 0.125 in. ( 0.32 cm ) rear panel is screwed to the sides and bottom. It contains cutouts for a ventilation fan and for assorted power and signal connectors. Engraved labels are provided on the panel for ease of system interconnection.

The chassis is mounted in the equipment rack on two chassis slides (CS), one on each side of the unit. A ventilation fan (Bl) mounted on the rear air provides ventilation for the components inside; a grill in the chassis top allows the air to exhaust. All input, output, and power connectors are mounted on the rear panel. A power for the fan and clock is supplied through Jl. A power cord (PC), not shown, connects the ac power to Jl. A fuse (Fl) provides protection for this power. Five Vdc power is supplied to the interface cards through J2. Sockets J3 through J9 connect the interface cards to the parallel interfaces in the controller subsystem. Two BNC connectors (J10 and Jll) provide an external connection point for access to the clock master oscillator for special applications. For normal SDAS operation, a BNC to BNC jumper is installed between the two connectors. Finally, J12 and Jl3 connect the interface cards to the system tape recorder.

An inside view of the chassis (Figure 24 ) shows the routing of the signal cables between the card cage (CC), back panel, and system clock. The card cage is made up of commercial card guides and edge connectors mounted between two custom-made aluminum plates. The system clock is inserted through the front panel and is supported by an aluminum bracket.

A parts list for the subsystem is given in Table 11 .

### 6.3.2 CHASSIS WIRING

Interface chassis wiring is shown in Figure 25. Power and ground lines are bussed between the edge connectors using l4-gauge buswire. Wirewrap jumpers are used between the two tape recorder interface card connectors. Although the card cage has slots for six circuit boards, only four circuit board edge connectors are currently installed (three active and one spare).

Connections between the card edge connectors and sockets J6-J9 on the back panel are made using $5 \emptyset$-conductor ribbon cable. (Sockets J3-J6 are spares and are plugged with ribbon cable connectors to keep out foreign objects.) The back panel end of the cable is terminated with a 3 M type 3331 socket; the other end terminates with a type 3307-0000 socket. The 3307 socket plugs directly onto the card cage edge connector pins $1-50$. A keying header ( 3 M type 3404 ) on the connector pins insures proper alignment.

Connections to the oncard sockets are also made using ribbon cables. A 50 -conductor cable connects the clock interface to the clock. Forty-conductor twisted pair cables are used to connect the tape recorder interface cards to Jl2 and Jl3 on the back panel.

Details on all ribbon cables used in the chassis are contained in Appendices $K$ and $L$.

Single conductor coax cable connects the clock interface edge
connector with Jlø and Jll. The edge connector end is stripped and soldered to the edge connector pins, while the other end is terminated with a BNC male connector.

24. Interface Chassis Interior View

Table 11 Interface Chassis Parts List

Part	Noun	Mfgr Part No.	Manufacturer
CS	Chassis slide (2)	C-300-5-20	Zero Corp.
Bl	Fan	WR2H1	Rotron
F1	Fuse holder	344-125A	Littlefuse
J1	Connector	PT07A-12-3P	Bendix
J2	Connector	PT07A-12-3S	Bendix
J3-J9	Connector	3331-0000	3M
J10-J11	Connector, BNC	3846	Pomona Electronics
J12	Connector	DD-37P	Cannon
J13	Connector	DD-37S	Cannon
PC	Power cord	17513	Belden
	(with Bendix PT06S	12-35 connector)	
CC	Card cage parts:		
	Mounting bar (2)	802	Scanbe
	Connector bar (1)	26480-1	Scanbe
	Card guide (12)	T-309-60	Scanbe
	Spacer (20)	T-101-700	Scanbe
	Spacer (8)	T-910	Scanbe
	Edge connector $\langle 6\rangle$	$50-72 C-30$	Cinch

Note: Card cage bars must be cut to 8 in. length.

### 6.4 System Clock and Clock Interface

### 6.4.1 CLOCK DESCRIPTION

The system clock serves two main functions: providing date/time information for recording on the data tapes, and providing the master timing source for data acquisition.

An Electronic Research Company (ERC) model 2446 digital calendar clock (see Figure 26) is used as the SDAS master clock. (Note: ERC no longer makes calendar clocks.) The clock is powered from the 110 Vac power line and uses an internal crystal time base. It provides TTL-level calendar day and time ( 24 hr period) information in binary coded decimal (BCD) format to the interface. Also sent to the interface are a 1 pps and a 100 pps TTL signal. Both provide interrupt signals to the computer. The 1 pps interrupt can be isabled under user control (see below), while the 100 pps interrupt
always enabled. This later rate can be used by system software for data acquisition control.

On the clock's front panel are the user controls. A SET/RUN switch controls the state of the clock. When the switch is in the SET position, day and time (hours and minutes) values can be set into the clock using the pushbutton switches below the time display. When the switch is moved to RUN, the clock starts counting off time, automatically advancing the day count at $0: 00: 00$ hours. A switch to the left of the day display provides for leap years ( 366 days).

Two printed circuit edge connectors on the back of the clock provide power, control, and data signal connections. (See Appendix K for connector pin identifications.)

The clock has been modified to allow external signal synchronization. The oscillator divider chain is broken at the 1000 pps level and the 1000 pps signal routed to a spare pin on the edge connector. The next divider stage input is also brought to another spare pin on the connector. These signals are buffered and routed to the chassis back panel. (See Appendix $k$ for a detailed description of this modification. Several external signal synchronization procedures are also discussed in Appendix K.)

Table 12 lists clock specifications.

### 6.4.2 CLOCK INTERFACE DESCRIPTION


#### Abstract

A block diagram of the system clock interface is given in Figure 27. (See Appendix $K$ for detailed schematic diagrams and parts list.) The interface consists of a multichannel two-to-one line multiplexer to connect the 30 BCD date/time signals from the clock to the 16 parallel input lines of the LSI-ll parallel interface. Two resetable flipflops on the card buffer the one pps interrupt signal; they are cleared by control signals from the LSI-ll parallel interface card. Finally, a number of buffers are included on the card to isolate the assorted control and pulse train signals that pass between the clock and the system computer.

Appendix $K$ discusses software considerations for reading and controlling the interface. Also included is a short interface checkout program.


### 6.5 Digital Tape Recorder and Interiace

### 6.5.1 RECORDER DESCRIPTION

The system digital tape recorder provides the primary means of data storage in the SDAS. It also can be used to play back previously-recorded data tapes for analysis. Further, it provides a backup means of program entry in case of floppy disk failure.

A Kennedy Corp. (Altadena, CA) model 9832 buffered digital tape transport is used as the SDAS digital recorder as shown in Figure 28. It records IBM-compatible (NRZI) tapes in either a 7 -track or a 9-track format. (The 9-track format, with 8 data bits and 1 parity bit, is used in the SDAS installation.) Half-inch (1.3 cm) digital magnetic tape is used on 8.5 in . ( 21.6 cm ) reels ( $1200 \mathrm{ft}[366 \mathrm{~m}$ ] length, nominal): recording density is 800 bpi.

The built-in formatter in the recorder handles many of the functions normally performed by the user. The formatter consists of two 1024-character buffer memories and appropriate control, error check, and interface circuitry. (Character size is 6 or 8 bits for 7or 9 -track operation, respectively.) The received data is loaded into


NOTE
CARD SLOT I = TAPE
READ INTERFACE
CARD SLOT $2=$ TAPE
WRITE INTERFACE
CARD SLOT 3=ERC CLOCK INTERFACE

25. Interface Chassis Schematic

25. Interface Chassis Schematic (Cont.)

26. System Clock Front View

Table 12 System Clock Specifications

Time Base:	Crystal oscillator
Worst Case Accuracy (Constant Temp):	$\pm 5 \mathrm{ppm} / \mathrm{deq} \mathrm{C}$
Oscillator Tempco:	$\frac{ \pm}{1.00 \mathrm{ppm}}$
Oscillator Frequency:	0 to +50 deg $C$
Operating Temperature:	0 to +50 deg c



28. Tape Recorder Front View
a memory which, when full, is swapped with the second memory. While the second is being filled with data, the first is being recorded on tape as a 1024-character record. When the seconding and dumping to is swapped with the first and the proces fill before the first is tape continues; should the second memory is sent to the user until a finished dumping to tape, a busy signal is sentudes built-in read memory is free for loading. The format checks of the recorded data. after write capablity to perform erit automatically backspaces the Should an error be detected, the unit automatichrite process can tape and rerecords the data. The entire load/write process chan per support an average asynchronous data 0 , 000 characters per second). second (maximum burst data rate is 250 loads a 1024-character

For reading data, the formatter initially first buffer is then record of data into both buffer memor readout. When it is empty, the made available for asynchronous user rear access while the first is second buffer is made available for user accilable as an 8-bit being filled from the tape. The data is avachecking and rereading is parallel word. As in read, automatic mode, the transport can support built into the formatter. In the read mode, the trans. an average read rate of 13,617 charact a formatter. A command

Other functions are also performed by the formatter. Another allows the user to dump a partial the tape, while further commands command writes an end of file to the and control read/write status,

Weighing $50 \mathrm{lb}(23 \mathrm{~kg})$, the recorder is designed to mount in a standard 19 in. ( 48.3 cm ) equipment rack occupying 12.25 in . (31.1 cm) of rack space. The unit is 16.68 in . ( 42.4 cm ) deep and requires a 110 Vac power source. It is rated for operation over $a+2$ to $+56^{\circ} \mathrm{C}$ temperature range.

### 6.5.2 TAPE RECORDER MODIFICATION DESCRIPTION

Operational problems (due to crosstalk between write data lines and write command lines) resulted in a redesign of the tape recorder write adapter card. This card plugs into the rear of the recorder and connects the recorder's internal data and control signals to the outside world. The new card has differential line receivers to match the differential line drivers on the interface card. To provide power for the new card, one additional wire had to be added to the write adapter socket.

These modifications are transparent to the SDAS user. Full details of both the new card and the recorder modification procedures are contained in Appendix $L$.

### 6.5.3 TAPE RECORDER INTERFACE DESCRIPTION

Two printed circuit boards in the interface chassis provide the interface electronics between the tape recorder and the DRV-ll parallel line interface module in the computer. The interface functions are divided between the two boards. An overall view of these functions is given in Figure 29.

The interface provides the buffering and differential line drivers for write data and buffering for read data. Recorder status information is buffered on the cards and, for certain signals, converted from a pulse to a level before being sent to the DRV-ll module. These status signals, together with certain command signals, are combined through digital logic to produce an error signal for interrupting the SDAS computer in case of recorder problems. The cards also include logic for forming and buffering the commands issued to the recorder to control its operations.

Complete circuit descriptions and parts lists for these interface cards are included in Appendix L. Also listed there are software considerations for interface operation and a short computer program for checking out the tape recorder and its interface.

7. SYSTEM PERIPHERALS

### 7.1 Chapter Overview

This chapter describes the peripheral hardware needed for SDAS operation. This hardware includes the system console, printer/plotter, chart recorder, floppy disk memory, intercom system, and system shipping cases. A brief description of each of these items, together with appropriate specifications, follows. More details can be found in the equipment users manuals.

### 7.2 System Console Deacription

A Tektronix Model 4025 computer display terminal (see Figure 30 ) is used as the SDAS computer system console. The terminal has the capability of displaying both alphanumeric and graphic data using a raster scan display format. It can display 34 lines of 80 characters of ASCII alphanumeric data stored in a built-in 16 K -byte buffer memory. Up to 2048 cells of graphics data can also be displayed in the user-defined graphics area (each cell is a $14 \times 8$ dot matrix). The terminal allows offline editing of text prior to transmission to the

system computer. Most keys on the console keyboard can be redefined by keyboard-entered commands as can the communications interface configuration. The terminal communicates with the system computer over an RS232 serial line with data rates up to 9600 baud in a full or half duplex mode.

The detachable terminal keyboard has an $8 \mathrm{ft}(2.44 \mathrm{~m})$ cable connecting it to the display; this allows considerable leeway in terminal installation. The display measures $12.5 \times 17.5 \times 21.3 \mathrm{in}$. (31.7 x $44.5 \times 54 \mathrm{~cm}$ ), while the keyboard measures $3 \times 18 \times 9.3$ in. ( $7.6 \times 45.7 \times 23.5 \mathrm{~cm}$ ). Rated at an operating temperature range of +10 to $+40^{\circ} \mathrm{C}$. , the terminal can be stored at -60 to $+50^{\circ} \mathrm{C}$. It weighs $601 \mathrm{~b}(27.2 \mathrm{~kg})$.

### 7.3 Printer/Plotter Description

A Bedford Computer Systems, Inc. System 75 data terminal is used as the SDAS printer/ploter (Figure 31). The System 75 is built around the Hytype II printer mechanism made by Diablo System, Inc. Under built-in microprocessor control, the System 75 can print 45 characters per second. Microprocessor routines optimize printhead motion (by combining strings of motion commands) to yield a higher effective character throughput. As a plotter, the system 75 has a
resolution of 120 horizontal and 48 vertical steps per inch. Bicolored ribbons allow both red and black printing/plotting, thus enhancing output readability.

The Bedford System 75 accepts either single sheet or continuous-sheet paper up to 14 in. ( 35.6 cm ) in width. It will also accept standard sprocket-feed $14.9 \times 11 \mathrm{in}$. ( 37.9 x 27.9 cm ) fan-fold computer paper. It can produce plots or listings up to 13.2 in. $(33.6 \mathrm{~cm})$ wide with a length limited by the paper available.

The System 75 communicates with the SDAS computer over a serial full- or half-duplex RS 232 data link at either 300 or 1200 baud. An internal 128 -character buffer is included in the unit reduces system computer overhead requirements (see Appendix $I$, section $I-4$, for a description of a modification to the computer serial interface card to take full advantage of this buffer). ASCII character strings from the SDAS computer can be used to change a number of terminal parameters, including tab stops, ribbon color, margins, form size, and line spacing. Measuring $8.3 \times 23.3 \times 21 \mathrm{in}$. ( $21 \times 59 \times 53.3 \mathrm{~cm}$ ), the System 75 weighs $48 \mathrm{lb}(21.8 \mathrm{~kg})$ and is rated for an operational temperature range of +7 to $+35^{\circ} \mathrm{C}$. It requires 110 Vac power for operation.

### 7.4 Chart Recorder Description

The model 1858 Visicorder (manufactured by the Honeywell Test Instrument Division, Denver, CO) oscillographic recorder is used as the SDAS chart recorder. The Visicorder is an 18 -channel optical chart recorder with a dc to 5 KHz frequency response (see Figure 32). It uses ultraviolet light generated by a cathode ray tube to expose photosensitized direct print paper. Exposure to room lighting devlopes the paper and yields the finished recording. Chart speeds from $\emptyset .1$ to $12 \emptyset$ in. $/ \mathrm{sec}$ are selected by front panel controls on the recorder. Time and grid lines recorded on the chart assist in reading the resulting record. Further, an external timeline input allows time mark generation by an external clock (such as the SDAS 1 pps clock output). Also written on the chart are channel identification numbers as aids to keeping track of the 18 channels.

Eighteen individual channel preamplifiers (Honeywell Model 1883A) are used to amplify the incoming signals. Front panel gain and trace positioning controls on the preamps allow formatting of the channels for ease of reading and optimum sensitivity. Each preamp also has calibration controls to allow accurate amplitude calibration. Due to the high sensitivity of the preamps, a padding network has to be added to allow 18 channels of 20 V p-p (the output range of the signal conditioning subsystem) to readily fit on the chart. Details on the pad are contained in Appendix $M$.

The Visicorder preamp can accept signals from either the front-mounted BNC or rear-mounted input connectors. Which input is connected is determined by jumpers mounted within the preamp. Appendix M gives further information on these jumpers.

The Visicorder can be mounted in a standard 19 in. ( 48.2 cm ) equipment rack. It occupies $8.8 \mathrm{in}. \mathrm{(22.2} \mathrm{cm)} \mathrm{of} \mathrm{rack} \mathrm{space} \mathrm{and} \mathrm{is}$ 19 in. ( 48.2 cm ) deep. Front panel controls and carrying handles

31. Printer/Plotter Front View

32. Chart Recorder Front View

### 7.5 Floppy Disk System Description

A DEC RX0l dual floppy disk system is used with the SDAS (see Figure 33). The RX0l is a single-sided, single density disk drive that uses 8 in. soft sectored floppy disks. The disk is organized as 77 tracks with 26 sectors per track. Each sector has a capacity of 128 bytes. The RX01 has a formatted capacity of 256 K bytes per drive. Average access time for a read or write operation is 483 msec . The drives connect to the LSI-ll computer through a 40 -conductor ribbon cable connected to a RXVIl interface card. A built-in power supply is included for powering the drives and drive electronics.

The RX0l mounts in a standard $19 \mathrm{in}. \mathrm{(48.2} \mathrm{cm)} \mathrm{equipment} \mathrm{rack}$, occupying 10.8 in . ( 27.3 cm ) of rack space. It requires 20 in . $(50.8 \mathrm{~cm})$ of rack depth and has a total depth of $21.5 \mathrm{in} .(54.6 \mathrm{~cm})$. The dual drive assembly weighs $60 \mathrm{lb}(27.2 \mathrm{~kg})$. Operating temperatures for the assembly are +15 to $+32^{\circ} \mathrm{c}$.

### 7.6 Intercom System Description

A sound-powered headset system is used for communications between persons near the junction box and the signal conditioning system. David Clark model 5030 headsets are used, with the cables terminated in Switchcraft type 480 plugs.


Customized fiberglass shipping cases are used to provide in-transit protection for the major components of the SDAS. They were built by Environmental Container Systems (ECS) of Grants Pass, Oregon. The cases are made of pressure-laminated fiberglass with aluminum extrusion fittings. They are waterproof. Each is equipped with a manual pressure relief valve to allow equalization of internal air pressure prior to opening. Cam-action catches hold the removable covers onto the case bodies, while heavy-duty hand grips allow easy carrying. These cases take two forms: transit cases and instrumentation enclosures.

Figure 34 shows typical transit cases. These cases are used to ship the system console and the printer/piotter. Custom-contoured foam cushions in the cases provide shock control for the items shipped.

ECS instrumentation enclosures are designed for housing and shipping rack-mounted equipment. Each case has removable front and rear covers to allow access to the equipment rack. The rack itself is mounted on elastomeric shock mounts to provide shock and vibration attenuation. It accepts standard 19 in . ( 46.3 cm ) rack modules. Figure 35 shows the SDAS enclosures.

Two sizes of instrument enclosures house the SDAS. One provides 29.8 in. ( 75.6 cm ) of rack space. In it are mounted, top to bottom, the RXDl floppy disk, the interface chassis, and the system controller chassis as shown in Figure 35 . These subsystems are mounted on equipment slides attached to the enclosure rack. The other rack provides 24.5 in . ( 62.2 cm ) of rack space; it houses the digital tape recorder, signal conditioning subsystem, and a $3.5 \mathrm{in} .(8.9 \mathrm{~cm}) \mathrm{high}$ drawer unit. The drawer unit contains the resistors used to configure the signal conditioning cards.

Another 24.5 in. ( 62.2 cm ) equipment enclosure housing test equipment is used in conjunction with the SDAS. Included in it are the Visicorder described above, a rack-mounted storage oscilloscope (Tektronix model 466 in Tektronix type 035-ø131-øø rack adapter), a rack-mounted digital multimeter (Data Precision model 350ø), and a 3.5 in . ( 8.9 cm ) high drawer unit for test leads and probes.

## 8. SUBSYSTEM INTERCONNECTION DESCRIPTION

The previous six chapters have described the various components of the Standalone Data Acquisition System. In order for the system to function, these components must be interconnected as described in the following paragraphs.

A typical field installation of the SDAS is illustrated in Figure 36. In such an installation, the sensor array and junction box are located remotely from the equipment racks. These later items, together with the system console, printer/plotter, and instrumentation rack (if used), would be located in a climate-controlled area. Sufficient power must be available in this area to run the system.

34. Transit Cases

35. Instrumentation Enclosures


Further, tables of some sort are required to support the console and printer/plotter.

Sensors (such as seismometers with preamplifiers or pressure sensors) are connected to Jl-J16 of the junction box, as is the intercommunications headphone. A signal and a power cable run from the junction box to the SDAS signal conditioning subsystem and the nearest power line, respectively. A block diagram of the SDAS equipment racks, showing interconnections, is given in Figure 37. Details of the interconnection cables, including location of connector pin identification, is given in Table 13.

37. SDAS Equipment Interconnection Diagram
Table 13 SDAS Interconnection Cable Details


[^1]1. Syverson, C.R. B Blaney, J.I.; Hartnett, E.B.; Molineux, C.E. (1978) Geokinetic Environment Studies, AFGL-TR-78-0124, Final Report, Boston College
2. Microcomputer Processor Handbook (1979), Digital Equipment Co., Maynard, MA
3. Microcomputer Interfaces Handbciok (1980). Digital Equipment Co., Maynard, MA
4. Tow, J. (1969a) Design formulas for active RC filters using operational-amplifier Biquad, Electronic Letters, 5 (No. 15):339-341
5. Tow, J. (1969b) A step-by-step active filter design, IEEE Spectrum, 6(Dec 69):64-68
6. Thomas, L.C. (197la) The biquad: part $I$ - some practical design considerations, IEEE Transactions on Circuit Theory, CT-18 (No. 3) $: 35 \overline{\overline{0}-357}$
7. Thomas, L.C. (1971b) The biquad: part II - a multipurpose active filtering system, IEEE Transactions on Circuit Theory, CT-18 (No. 3):358-361
8. Daniels, R.W. (1974) Approximation Methods for Electronic Filter Design, McGraw Hill. New York, Chapter 14

## Appendix A

## A. 1 JUNCTION BOX CONNECTOR WIRING

Tables A-1 and A-2 give the connector pin identification and signal routing for junction box connectors Jl-J19. Belden 8451 two-conductor shielded cable is used for all signal lines. The red conductor is used for the + signal. while the black is used for the - signal.

## A. 2 JUNCTION BOX OVERVOLTAGE PROTEGTOR ADJUSTMENT PROCEDURES

The overvoltage protection (OVP) devices in the junction box are designed to short out the power supply output if that output voltage exceeds a preset value. The following steps should be followed to adjust the OVP threshold.

1. Unplug power cord. Disconnect all input and output cables.
2. Remove the two dc power fuses.
3. Jumper across one fuse holder (the power supply overcurcent protection circuits prevent damage when the OVP fires and shorts out the output.)
4. Connect voltmeter from jumpered fuse to power common.
5. Turn potentiometer on OVP connected to jumpered fuse fully counterclockwise.
6. Plug in junction box power cord.
7. Adjust power supply output voltage, as measured by the voltmeter, to the desired OVP trip voltage. (Adjustment potentiometer is near the terminal strip on power supply.)
8. Turn the OVP potentiometer clockwise until OVP trips (measured voltage drops to approximately zero).
9. Unplug power supply.
10. Move jumper and voltmeter to other fuse slot.
11. Repeat steps 5 through 9 for the second OVP.
12. Remove jumper. Connect voltmeter between one power supply output and the power supply common.
13. Plug in power cord.
14. Adjust power supply output for desired operational voltage.
15. Unplug power cord.
16. Replace both fuses.
17. Plug in power cord. Measure each power supply output to power common with voltmeter to verify that neither OVP is tripped.
18. Dab locking compound (or nail polish) on the two OVP potentiometers to insure that the setting is retained.

Table A-1 Junction Box Input Connector (Jl-Jl7) Pin Identification

J1-J17 Connector: Bendix PT07A-12-10S   Mating Connector: Bendix PT06SE-12-1øP(SR)			
	J1-J17	Destination:	
Pin	Signal	Connector	Pin
A	+ 12 Vdc	(Power Supply)   (Power Supply)	
B	- 12 Vdc		
C	Power shield	NC	
D	Signal +	U1/	-
E	Signal -	J1\%	-
F	Signal shield	U17	-
G	Calibration	J 17	AA
H	Power common/ calibration return	J17	BB Supply)
K	Calibration shield	NC	

Table A-2 Junction Box Output Connector (J18) Pin Identification

J18 Connector: Bendix PT07A-24-61S   Mating Connector: Bendix PT@6SE-24-61P(SR)			
J18		Destination	
Pin	Signal	Connector	Pın
A	Channel l signal +	J1	A
B	Channel 1 signal -	J1	$B$
c	Channel 1 shield	U1	C
C	Channel 2 signal +	J2	A
D	Channel 2 signal -	J2	B

Table A-2 Junction Box Output Connector (J18) Pin Identification (contd)

d	Channel 2 shield	J2	c
E	Channel 3 signal +	J3	A
e	Channel 3 signal -	J3	B
f	Channel 3 shield	J3	C
F	Channel 4 signal +	J4	A
G	Channel 4 signal -	J4	B
$g$	Channel 4 shield	J4	c
H	Channel 5 signal +	J5	A
J	Channel 5 signal -	J5	B
h	Channel 5 shield	J5	c
K	Channel 6 signal +	J6	A
i	Channel 6 signal -	J6	B
j	Channel 6 shield	J6	C
L	Channel 7 signal +	J7	A
M	Channel 7 signal -	J7	B
N	Channel 7 shield	J7	c
P	Channel 8 signal +	J8	A
m	Channel 8 signal -	J8	B
n	Channel y shield	J8	c
R	Channel y signal +	J9	A
S	Channel 9 signal -	J9	в
p	Channel 9 shield	J9	$c$
T	Channel 10 signal +	J10	A
U	Channel 10 signal -	Ј10	B
q	Channel 10 shield	J10	C
v	Channel 11 signal +	J11	A
$r$	Channel 11 signal -	J11	B
s	Channel 11 shield	J11	C
W	Channel 12 signal +	J12	A
x	Channel 12 signal -	J 12	B
t	Channel 12 shield	J12	c
Y	Channel 13 signal +	J13	A
2	Channel 13 signal -	J13	B
u	Channel 13 shield	J13	c
a	Channel 14 signal +	J14	A
b	Channel 14 signal -	J 14	B
$v$	Channel 14 shield	J14	c
w	Channel 15 signal +	J15	A
x	Channel 15 signal -	Jlb	B
JJ	Channel 15 shield	-15	c
Y	Channel 16 signal +	Jl6	A
$z$	Channel 16 signal -	J16	B
KK	Channel 16 shield	J16	C
AA	Calibration +	J1-J17	G
BB	Calibration -,	J1-J17	H
	Power common	(+Power supply)	
CC	Calibration shield	(Case)	
DD	Spare channel signal +	J17	A
EE	Spare channel signal -	J17	B
MM	Spare channel shield	J17	C
FF	Intercom signal +	119	Tip
GG	Intercom signal -	$J 19$	Ring
NN	Intercom shield	(Case)	

## Appendix B

Signal Conditioner Chassis Wiring

Tables $B-1$ through $B-6$ give the pin identifications and signal routing for the signal conditioner chassis input and output connectors (J1-J4) and all card sockets. Belden 8451 two-conductor shielded cable is used for all signal lines except between sockets 1-16 and socket 17, where twisted pair is used.

Table B-1 Signal Conditioner Input Connector (J1) Pin Identification

Jl Connector: Bendix PT07A-24-61S   Mating Connector: Bendix PTg6SE-24-61P(SR)			
$J 1$		Destination	
Pin	Signal	Socket	Pin
A	Channel 1 signal +	1	7
B	Channel 1 signal -	1	9
c	Channel 1 shield	1	-
C	Channel 2 signal +	2	7
D	Channel 2 signal -	2	9
d	Channel 2 shield	2	-
E	Channel 3 signal +	3	7
e	Channel 3 signal -	3	9
£	Channel 3 shield	3	-
F	Channel 4 signal +	4	7
G	Channel 4 signal -	4	9
9	Channel 4 shield	4	-
H	Channel 5 signal +	5	7
J	Channel 5 signal -	5	9

Table B-I Signal Conditioner Input Connector (J1)
Pin Identification (contd)

h	Channel 5 shield	5	-
K	Channel 6 signal +	6	7
i	Channel 6 signal -	6	9
j	Channel 6 shield	6	-
L	Channel 7 signal +	7	7
M	Channel 7 signal -	7	9
N	Channel 7 shield	7	-
P	Channel 8 signal +	8	7
m	Channel 8 signal -	8	9
n	Channel 8 shield	8	-
R	Channel 9 signal +	9	7
S	Channel 9 signal -	9	9
p	Channel 9 shield	9	-
T	Channel 10 signal +	10	7
U	Channel 10 signal -	10	9
q	Channel 10 shield	10	-
V	Channel 11 signal +	11	7
$r$	Channel ll signal -	11	9
s	Channel 11 shield	11	-
W	Channel 12 signal +	12	7
X	Channel 12 signal -	12	9
$t$	Channel 12 shield	12	-
Y	Channel 13 signal +	13	7
Z	Channel 13 signal -	13	9
u	Channel 13 shield	13	-
a	Channel 14 signal +	14	7
b	Channel 14 signal -	14	9
$v$	Channel 14 shield	14	-
w	Channel 15 signal +	15	7
x	Channel 15 signal -	15	9
JJ	Channel 15 shield	15	-
Y	Channel 16 signal +	16	7
2	Channel 16 signal -	16	9
KK	Channel 16 shield	16	-
AA	Calibration output +	18	1
BB	Calibration output -	18	A
CC	Calibration shield	18	-
DD	Spare channel signal +	18	2
EE	Spare channel signal -	18	B
MM	Spare channel shield	18	-
FF	Intercom signal +	J3	Tip
GG	Intercom signal -	J3	Ring
NN	Intercom shield	J3	Sleeve

Table B-2 Signal Conditioner Chart Recorder Output (J3) Pin Identification

J3 Connector: Bendix PT07A-24-61P Mating Connector: Bendix PT06SE-24-61S(SR)			
J3		Destination	
Pin	Signal	Socket	Pin
A	Channel 1 output +	1	19
B	Channel 1 output -	1	X
C	Channel 1 shield	1	X
C	Channel 2 output +	2	19
D	Channel 2 output -	2	X
d	Channel 2 shield	2	X
E	Channel 3 output +	3	19
e	Channel 3 output -	3	X
f	Channel 3 shield	3	X
F	Channel 4 output +	4	19
G	Channel 4 output -	4	X
g	Channel 4 shield	4	X
H	Channel 5 output +	5	19
J	Channel 5 output -	5	X
h	Channel 5 shield	5	X
K	Channe1 6 output +	6	19
i	Channel 6 output -	6	X
j	Channel 6 shield	6	X
L	Channel 7 output +	7	19
M	Channel 7 output -	7	X
N	Channel 7 shield	7	X
P	Channel 8 output +	8	19
m	Channel 8 output -	8	X
n	Channel 8 shield	8	X
R	Channel 9 output +	9	19
S	Channel 9 output -	9	X
p	Channel 9 shield	9	X
T	Channel 10 output +	10	19
U	Channel 10 output -	10	X
q	Channel 10 shield	10	X
V	Channel 11 output +	11	19
$r$	Channel 11 output -	11	X
S	Channel 11 shield	11	X
W	Channel 12 output +	12	19
X	Channel 12 output -	12	X
t	Channel 12 shield	12	X
Y	Channel 13 output +	13	19
Z	Channel 13 output -	13	X
u	Channel 13 shield	13	X
a	Channel 14 output +	14	19
$b$	Channel 14 output -	14	X
$v$	Channel 14 shield	14	X
w	Channel 15 output +	15	19
$\mathbf{x}$	Channel 15 output -	15	X
JJ	Channel 15 shield	15	X
Y	Channel 16 output +	16	19
z	Channel 16 output -	16	X
KK	Channel 16 shield	16	X
AA	Summation Card output +	19	19
BB	Summation Card output -	19	X
CC	Summ. Card out shield	19	X
DD	Calib. Card output +	18	19
EE	Calib. Card output -	18	X
MM	Calib. Card out shield	18	X

Table B-3 Signal Conditioner A/D Output Connector (J4) Pin Identification

J4 Connector: Cannon DD50S Mating Connector: Cannon DD50p			
J4		Destination	
Pin	Signal	Socket	Pin
16	Channel 1 output +	1	21
15	Channel 2 output +	2	21
14	Channel 3 output +	3	21
13	Channel 4 output +	4	21
12	Channel 5 output +	5	21
11	Channel 6 output +	6	21
10	Channel 7 output +	7	21
9	Channel 8 output +	8	21
33	Channel 9 output +	9	21
32	Channel 10 output +	10	21
31	Channel 11 output +	11	21
30	Channel 12 output +	12	21
29	Channel 13 output +	13	21
28	Channel 14 output +	14	21
27	Channel 15 output +	15	21
26	Channel 16 output +	16, 18	21
50	Output common -	1-16	Z
46	D/A signal +	18	7
45	D/A signal -	18	9
48	Signal return	(Pin 50 throug	J4   M』 resistor)
49	Power return	(Pin 42	J4)
42	Shield	(Pin 49	J4)

Note: Twisted pair used for $D / A$ signals in cable going from J4 to A/D.

Table B-4 Conditioner Card Socket (Sockets 1-16) Pin Identification

Sockets 1-16		Destination
Pin	Signal	
7	Input +	J 1
9	Input -	J 1
11	+15 Vdc	(Power supply)
M	+15 Vdc	(Power supply)
12	Power Common	(Power supply)
N	Power Common	(Power supply)
14	-15 vdc	(Power supply)
R	-15 Vdc	(Power supply)
17	Output +	Sl7 (Summation card)
V	Output -	Sl7 (Summation card)
19	Output +	J2 (Chart recorder)
X	Output -	J2 (Chart recorder)
	Output shield	J2 (Chart recorder)
21	Output +	J4 (A/D)
Z	Output -   Output shield	J4 (A/D)

Table B-5 Summation Card Socket (Socket 17) Pin Identification

Socket 17		Destination	
Pin	Signal	Socke	Conn Pín
1	Channel 1 output +	S1	17
A	Channel 1 output -	S1	V
2	Channel 2 output +	S2	17
B	Channel 2 output -	S2	V
3	Channel 3 output +	S3	17
C	Channel 3 output -	S3	V
4	Channel 4 output +	S4	17
D	Channel 4 output -	S4	V
5	Channel 5 output +	S5	17
E	Channel 5 output -	S5	$v$
6	Channel 6 output +	S6	17
$F$	Channel 6 output -	S6	v
8	Channel 7 output +	S7	17
H	Channel 7 output -	s7	V
K	Channel 8 output +	S8	17
J	Channel 8 output -	S8	V
10	Channel 9 output +	S9	17
L	Channel 9 output -	S9	v
11	+15 Vdc	( Powe	supply)
M	$+15 \mathrm{Vdc}$	(Powe	supply)
12	Power common	(Powe	supply)
N	Power common	(Powe	supply)
14	-15 Vde	(Powe	supply)
R	-15 Vdc	(Powe	supply)
15	Channel 10 output +	S10	17
S	Channel 10 output -	510	V
16	Channel 11 output +	S11	17
T	Channel 11 output -	S11	V
17	Channel 12 output +	S12	17
U	Channel 12 output -	S12	V
18	Channel 13 output +	S13	17
V	Channel 13 output -	S13	V
19	Output +	J2	AA
X	Output -	J2	BB
	Output shield	J2	CC
20	Channel 14 output +	S14	17
W	Channel 14 output -	S14	V
21	Channel 15 output +	S15	17
Y	Channel 15 output -	S15	V
22	Channel 16 oucput +	S16	17
Z	Channel 16 output -	S16	V

Table B-6 Calibration Card Socket (Socket 18) Pin Identification

Socket 18		Destination	
Pin	Signal	Connector	Pin
1	Calibration +	JI	AA
A	Calibration -	J1	BB
2	Spare channel signal +	J1	DD
B	Spare channel signal -	J 1	EE
7	D/A signal +	J2	46
9	D/A signal -	J2	45
11	+15 Vdc	(Power sup	Y)
M	+15 Vdc	( Power supp	Y)
12	Power common	( Power sup	Y)
N	Power common	( Power supp	Y)
14	-15 Vac	( Power supp	
R	-15 Vdc	(Power sup	Y)
19	Output +	J2	DD
X	Output -	J 2	EE
	Output shield	J2	MM
21	Output + (A/D Ch 16+)	J4	26
Z	$\text { Output }-(A / D \text { Ch } 16-)$ Output shield	J4	50

## Appendix C

Figure $C-1$ contains the schematic diagram of the signal conditioner circuit card.

Amplifier Ul; together with R1, R22, R23, Cll, and Cl2; makes up stage 1 of the conditioning card. Stage gain is set by the values of Rløl and Rlø2 which plug ints socket XR1 (see Figure C-2). Cll, Cl2, R22, and R23 make up a compensation network to prevent high-frequency oscillation. Rl allows for nulling of the stage dc input offset voltage.

Stage 2, a universal biquad filter, $1 s$ made $u p$ of $U 2$ and associated components. R2, R3, R4, R2ø, R21, C1, and C2 are soldered to the board. R20 and 21 allow dc offset adjustment for the entire card. The dc value set by the wiper on $R 2 \emptyset$ is added to the filter output and amplified by the rest of the card. R2ø1-R2ø8 are mounted on componer' carriers and plug into socket XR2.

Three of the four sections of $U 3$ make up stage 3 , a biquad lowpass filter. R5, R6, C3, and C4 are soldered to the circuit board. Extra solder pads have been provided in parallel with $C 3$ and $C 4$ to allow addition of capacicors to lower the frequency range of the stage. R301-R304 are mounted on component carriers and plug into socket XR3.

The fourth section of operational amplifier U3 is used to form stage 4 of the signal conditioning card chain. Its characteristics are set by R306, R309, and C301, which plug into socket XR3.

The four sections of 44 are used to make up stage 5 , a universal biquad filter. R7-R9, C5, and C6 are soldered to the board. R401-R408 plug into socket XF4.


c-1. Signal Conditioner Circuit Board Schematic (Cont.)

Unity-gain buffers for the board outputs are provided by $U 5$ and U6. Half of $U 6$ is used to buffer the input to the overrange sensing circuit.

Dual comparator $U 7$ and associated components make up the overrange sensing circuit. U7 is set up as a window comparator with a range of approximately +10 to -10 Vdc set by RIl-Rl6. When the input voltage is outside the window, Q1 and Q2 turn on the overrange indicator Dl.

Figure $C-2$ gives the location of all parts permanently attached to the circuit card. Table C-l contains a complete parts list of these fixed parts. Part identifiers refer to the annotations on Figure C-2.

Table C-1 Signal Conditioner Card Parts List

Part	Noun	Mfgr Part No.	Manufacturer
XU1-XU6, XRI	Low profile DIP IC socket, 14 pin	514-AGl0D	Augat
XU7	Low protile DIP IC socket, 8 pin	508-AGIDD	Augat
XR2-XR4	Low profile DIP IC socket, 32 pin	532-AGIØD	Augat
MP1, MP3	Card ejector	CP-06PC	Waldom
MP2	Test Point Connector	$500 \mathrm{SR5}$	Dale
R1	Trimpot, $10 \mathrm{~K} \Omega, 1 \mathrm{~W}, 10 \%$, wirewound	3057 P	Bourns
R2-R1ø	Resistor, $10 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 1 \%$, cermet film	CCH	Allen-Bradley
R11, R16	Resistor, $51 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 2 \mathrm{\%}$, metal film	C4	Corning
R12, R15, R17	Resistor, $20 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 2 \%$, metal film	C4	Corning
R13, R14	Resistor, $100 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 2 \%$, metal film	C4	Corning
R18	Resistor, $10 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 2 \%$, metal film	C4	Corning
R19	Resistor, $1 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}, 2 \%$, metal film	C5	Corning
R20	Trimpot, $50 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}, 109$, cermet film	66PR50KWK	Beckman
R21	Resistor, $100 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 1 \%$, cermet film	CCH	Allen-Bradley
R22	Resistor, 680 $\Omega, 1 / 4 \mathrm{~W}, 28$, metal film	C4	Corning
R23	Resistor, $330 \Omega, 1 / 4 \mathrm{~W}, 2 \%$, metal film	C4	Corning
Cl-C6	Capacitor, $1 \mu \mathrm{~F}, 50 \mathrm{~V}, 5 \%$, polycarbonate	625B-1-A-105-J	Electrocube
C7, C9	Capacitor, $33 \mu \mathrm{~F}, 50 \mathrm{~V}$, tantalum	$336 \mathrm{MO50P1B}$	Mallory
C8, C10	Capacitor, $0.01 \mu \mathrm{~F}, 200 \mathrm{~V}$	CKR06	AVX
Cll	Capacitor, $0.0047 \mu \mathrm{~F}, 100 \mathrm{~V}, 10 \%$, polyester	601 PE	TRW
Cl2	Capacitor, $1000 \mathrm{pF}, 500 \mathrm{~V}, 2 \%$, mica	CM06F102Gø3	Arco
Q1, Q2	Transistor	2N2222	TI
D1	Indicator, LED, red	ち50-0406	Dialco
U1	Instrumentation amplifier	AD521K	Analog Devices
U2-U4	Operational amplifier, quad, Bi-FET	TL084CN	
U5, U6	Operational amplifier, dual	LM747EN	Nat'1 Semic.
U7	Comparator, dual	LM393AN	Nat'l Semic.

## Appendix D

## Biquadratic Filter Theory

## D. 1 GENERAL BIQUADRATIC FILTER THEORY

D.1.1 BACKGROUND

Biquadratic (biquad) active filters are an outgrowth of using an analog computer to model system transfer functions. Tow (l969a)4 reported on the circuit used here. His circuit uses resistors. capacitors, and differential input operational amplifiers in a configuration that could provide any second order transfer function.

Tow (1969b) ${ }^{5}$ and Thomas (1971a and 1971b)6,7 turther analyzed the circuit. They reported that the circult possessed low sensitivities to both the active and passive components (that is, any changes in the gain of the amplifiers or the values of the passive components
4. Tow, J. (1969a) Design formulas for active RC filters using operational-amplifier biquad, Electronic Letters. 5 (No. 15):339-341
5. Tow, J. (1969b) A step-by-step active filter design, IEEE Spectrum, 6 (Dec 69):64-68
6. Thomas, L.C. (1971a) The biquad: part I - some practical design considerations, IEEE Transactions on Circuit Theory, CT-18 (No. 3):35 $0-357$
7. Thomas, L.C. (1971b) The biquad: part II - a multipurpose active filtering system, IEEE Transactions on Circuit Theory, CT-18 (No. 3):358-361
are not magnified by the circuit). Further, they reported that the circuit was unconditionally stable (wouldn't oscillate), had a low output impedance, and a high purely resistive input impedance.

The work reported in this section is an extension of that reported in Tow (1969b). In that paper, the basic design and analysis equations for the biquad were presented. These have been reworked to break out the specific parameter terms so that the transfer function can be derived more readily.

## D.1.2 GENERAL BIQUAD CIRCUIT DESCRIPTION

Figure D-l gives the general schematic of a biquadratic active filter section. The transfer function for this circuit can be given by

$$
\begin{equation*}
\mathrm{H}(\mathrm{~S})=\frac{\mathrm{v}_{\text {out }}(\mathrm{S})}{\mathrm{v}_{\text {in }}(\mathrm{S})}=\frac{\mathrm{mS}^{2}+\mathrm{cS}+\mathrm{d}}{\mathrm{~S}^{2}+\mathrm{aS}+\mathrm{b}} \tag{1}
\end{equation*}
$$

where
$S$ is complex frequency. $\quad(S=\sigma+j \omega$, where $\sigma=$ logarithmic rate of growth/decline in nepers/sec and $\omega$ is angular frequency in radians/sec.)


D-1. General Biquadratic Filter Schematic

The values of the coefficients (m,a,b,c,u) in Eq. [1] determine the frequency response of the filter represented by this equation. These coefficients, in turn, are determined by the values of the passive components (Rl-Rll, Cl, C2) used in the circuit. By appropriate selection of these components, a number of different second-order active filters (lowpass, bandpass, highpass, allpass, or band reject) can be constructed from the general circuit. Further, if the values of these components are known, the circuit transfer function can be derived directly. Thus, for the use of a biquadratic active filter, two sets of equations (synthesis and analysis) are required for each type of filter (lowpass, etc.). The following sections give these design equations.

Since the sigral conditioning cards are designed for low frequency use (under 500 Hz ), several simplifying assumptions have been made in deriving these equations. First, ideal operational amplifiers have been assumed. Second, no parasitic reactances have been considered, since these most often affect RF circuits. Third, the effects of amplifier frequency response limitations are ignored.

## D. 2 BIQUAD LOWPASS FILTER DESIGN EQUATIONS

The general second order lowpass filter equation is

$$
\begin{equation*}
H(s)=\frac{m}{s^{2}+(\xi p)(\omega p) S+\omega p^{2}} \tag{2}
\end{equation*}
$$

where
$\omega p$ is the cutoff or pole frequency (in radians/sec)
$\xi \mathrm{p}$ is the damping coefficient.
D.2.1 LOWPASS SYNTHESIS EQUATIONS

Given a desired filter gain at frequencies well below cutoff (Adc) in volts/volt, a desired $\omega$ p, and a desired $\xi p$ as illustrated in Figure D-2, the following equations apply. (Resistor values are in ohms, capacitor values in farads, $k l$ is a scaling constant Ltypically = 1].) (R5, R7, and R8 are not used.)

$$
\begin{equation*}
R 1=\frac{1}{2(\xi p)(\omega p)(C 1)} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& R 2=\frac{k 1}{(\omega \mathrm{p})(\mathrm{C} 2)}  \tag{4}\\
& R 3=\frac{1}{(\mathrm{k} 1)(\omega \mathrm{p})(\mathrm{C} 1)}  \tag{5}\\
& R 4=\frac{1}{(\mathrm{k} 1)(\omega \mathrm{p})(\mathrm{C} 1)(\sqrt{\mathrm{Adc})}}  \tag{6}\\
& R 6=\frac{R 9}{\sqrt{\text { Adc }}} \\
& R 10=R 11
\end{align*}
$$(7)



D-2. Biquadratic Lowpass Filter Frequency Response

Given the values of R's and C's actually used in the lowpass filter design, the following equations give the gain at frequencies well below cutoff (Adc), the actual wp, and the actual $\mathrm{g}_{\mathrm{p}}$. (Resistor values are given in ohms, capacitor values in farads.)
$\operatorname{Adc}(\mathrm{V} / \mathrm{V})=\frac{-(\mathrm{R} 3)(\mathrm{R} 9)(\mathrm{R} 10)}{(\mathrm{R} 4)(\mathrm{R} 6)(\mathrm{R} 11)}$
$\omega p(\mathrm{rad} / \mathrm{sec})=\sqrt{\frac{\mathrm{R} 11}{(\mathrm{R} 2)(\mathrm{R} 3)(\mathrm{R} 10)(\mathrm{C} 1)(\mathrm{C} 2)}}$
$\xi p=\frac{1}{2(R 1)} \sqrt{\frac{(R 2)(R 3)(R 10)(C 2)}{(C 1)(R 11)}}$

## D. 3 BIQUAD BANDPASS FILTER DESIGN EQUATIONS

The general second order bandpass equation, as can be implemented in a single biquad section, is
$H(S)=\frac{m S}{S^{2}+(\xi p)(\omega p) S+\omega p^{2}}$
where
$\omega p$ is the center frequency of the bandpass (in radians/sec)
$\xi \mathrm{p}$ is the damping coefficient.
D.3.1 BANDPASS SYNTHESIS EQUATIONS

Given a desired filter gain at center frequency (Amax) in volts/volt, a desired wp, a desired $\xi_{p}$ (see Figure D-3), Eqs. [3], [4], [5], and [8], in addition to the following equations, apply. (Resistor values are in ohms, capacitor values in farads.) (R6, R7, and R8 are not used.)


D-3. Biquadratic Bandpass Filter Frequency Response

$$
\begin{align*}
& \mathrm{R} 4=\frac{1}{2(\omega \mathrm{p})(\xi \mathrm{p}+1)(\mathrm{C} 1) \sqrt{A \max }}  \tag{13}\\
& \mathrm{R} 5=\frac{\mathrm{R} 9}{\sqrt{A \max }} \tag{14}
\end{align*}
$$

## D.3.2 BANDPASS ANALYSIS EQUATIONS

Given the values of $R^{\prime}$ s and $C$ 's actually used in the bandpass filter design, Eqs. [10] and [11], in addition to the following equations, give the gain at the actual wp (Amax), the actual wp, and the actual $\xi \mathrm{p}$. (Resistor values are in ohms, capacitor values in farads.) Note: Should filter requirements be defined in terms of selectivity $(Q)$ or bandwidth $(B W), \xi_{p}=1 / Q=B W / \omega p$.

$$
R T=(R 2)(R 3)(R 10)(R 11)(C 1)(C 2)
$$

$$
\operatorname{Amax}(\mathrm{V} / \mathrm{V})=\frac{(\mathrm{R} 1)(\mathrm{R} 9)}{(\mathrm{R} 4)(\mathrm{R} 5)} \frac{\sqrt{\mathrm{RT}}}{2(\mathrm{R} 1)(\mathrm{R} 11)(\mathrm{C} 1)+\sqrt{R T}}
$$

## D. 4 BIQUAD HIGHPASS FILTER DESIGN EQUATIONS

The general second order highpass filter design equation is

$$
\begin{equation*}
H(S)=\frac{-m S^{2}}{S^{2}+(\xi p)(\omega p) S+\omega p^{2}} \tag{17}
\end{equation*}
$$

where
$\omega p$ is the cutoff frequency (in radians/sec)
$\xi p$ is the damping coefficient.

## D.4.1 HIGHPASS SYNTHESIS EQUATIONS

Given a desired filter gain at frequencies much above cutoff (Ah) in volts/volt, a desired $\omega \mathrm{p}$, and a desired $\xi \mathrm{p}$ (see Figure D-4). Eqs. [3], [4]. [5], and [8], in addition to the following design equations, apply. (Resistor values are in ohms, capacitor values in farads, $k l$ and $k 2$ are scaling constants [typically $=1]$.) (R6 is not used.)

$$
\begin{equation*}
R 4=\frac{1}{2(\mathrm{k} 2)(\mathrm{Ah})(\xi \mathrm{p})(\omega \mathrm{p})(\mathrm{C} 1)} \tag{18}
\end{equation*}
$$

R5 - R9
$R 7=\frac{2(\mathrm{k} 2)(\xi \mathrm{p})(\mathrm{R} 9)}{\mathrm{k} 1}$

$$
\begin{equation*}
R 8=\frac{R 10}{A h} \tag{21}
\end{equation*}
$$

Note: Low frequency performance degradation can result if actual resistor values are not carefully chosen. See the following section for a discussion of these effects.


## D.4.2 HIGHPASS ANALYSIS EQUATIONS

Although Eq. [17] models an ideal highpass filter, an actual filter constructed using a biquad active filter stage' may not have an ideal frequency response. Such a response comes from values of components which differ slightly from the ideal values given in the above equations. Thus, the actual highpass filter is modeled by

$$
\begin{equation*}
H(S)=\frac{-m\left(S^{2}+(\xi z)(\omega z) S+\omega z^{2}\right)}{S^{2}+(\xi p)(\omega p) S+\omega p^{2}} \tag{22}
\end{equation*}
$$

where
$\xi \mathrm{p}$ and $\omega \mathrm{p}$ are defined as in Eq. [17]
$\omega \mathrm{z}$ is the zero frequency (in radians/sec)
$\xi \mathrm{z}$ is the zero damping coefficient.


#### Abstract

It should be noted that, for actual component values close to those derived in Section D.4.1, $\omega z$ and $\xi z$ are close to zero. Also, Eq. [22] assumes an ideal high frequency response for the filter (i.e. gain of $m$ at $\omega$ of infinity). The actual filter response is limited to several MHz by the high frequency response of the amplifiers as well as by parasitic capacitances and inductances. However, these effects occur at frequencies orders of magnitude higher than those for which the SDAS filters are designed and hence are ignored here.

The presence of these $\omega z$ and $\xi z$ terms shows up as a degradation in the low frequency rejection of the filter. This degradation can be minimized by adjustment of certain resistor values as described below.

Given the actual values of R's (in ohms) and C's (in farads) used in a circuit, Eqs. [10] and [11], in addition to the following equations, derive values for the above parameters as well as for the actual filter gain at frequencies muct above wp (Ah).


$$
\begin{equation*}
A h(V / V)=\frac{-R 9}{R 8} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\omega z(\mathrm{rad} / \mathrm{sec})=\omega \mathrm{p} \sqrt{1-\frac{(\mathrm{R} 3)(\mathrm{R} 8)}{(\mathrm{R} 4)(\mathrm{F} 7)}} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\xi z=\frac{1}{2(\omega \mathrm{z})(\mathrm{R} 1)(\mathrm{Cl})} \quad\left(1-\frac{(\mathrm{R} 1)(\mathrm{R} 8)}{(\mathrm{R} 4)(\mathrm{R} 5)}\right) \tag{25}
\end{equation*}
$$

As can be seen from the above, changes in $R 7$ affect the value of $\omega z$ only while changes in R5 effect $\xi z$ only; therefore, these resistors can be changed to vary $\omega_{z}$ and $\xi_{z}$ and thus "tune" a filter's low frequency rejection.

Several effects can show up in the filter's response, depending on the value of these resistors. Specifically, in Eq. [24], if (due

to the resistors used) the product (R3)(R8) is greater than (R4)(R7), a negative value exists under the square root. Although this negative value implies an imaginary $\omega \boldsymbol{z}$, its presence shows up in actual circuit operation as a real degradation in low frequency rejection of the filter. Further, in Eq. [24], note that as the product (R3)(R8) approaches (R4)(R7), $\omega z$ approaches zero and, consequently, the filter's response approaches that of an ideal highpass filter. Therefore, the value used for $R 7$ should be selected to insure that (R3)(R8) is equal to or slightly greater than (R4)(R7) to insure optimum low frequency rejection.

Another effect shows up in Eq. [25]. In this equation, a value of the product (R1)(R8) greater than the product (R4)(R5) will result in a negative value of $\xi z$. This, in turn, can be observed as a change in low frequency phase response. This change can be reduced or eliminated by careful selection of $R 5$. Thus, to insure optimum low frequency rejection, the values of $R 5$ and $R 7$ used in actual filters should be carefully selected to avoid the possible degradation modes discussed above.

## D. 5 BIQUAD ALLPASS FILTER DESIGN EQUATIONS

The allpass filter, or delay equalizer, can be described by
$H(S)=\frac{\left(S^{2}-2(\omega 0 / B) S+\omega o^{2}\right)}{S^{2}+2(\omega O / B) S+\omega o^{2}}$
where
wo is the critical frequency (in radians/sec)
$B$ is the stiffness ratio.

The ideal allpass filter passes all frequencies with unchanged amplitude but with a frequency-dependent delay. (See Daniels 8 for a good discussion of the allpass filter characteristics. This section uses his notation for the stiffness ratio.)

## D.5.1 ALLPASS SYNTHESIS EQUATIONS

Given a desired wo and B, Eq. [8], in addition to the following design equations, apply for the allpass filter. (Resistor values are in ohms, capacitor values in farads, $k l$ and $k 2$ are scaling constants [typically = 1].) (R6 and R7 are not used.)

[^2]\[

$$
\begin{align*}
& R 1=\frac{B}{2(\omega 0)(C 1)} \\
& R 2=\frac{k 1}{(\omega 0)(C 2)} \\
& R 3=\frac{1}{(k 1)(\omega 0)(C 1)} \\
& R 4=\frac{B}{4(k 2)(\omega 0)(C 1)} \\
& R 5=(k 2)(R 9) \\
& R 8=R 9 \tag{32}
\end{align*}
$$
\]

## D.5.2 ALLPASS ANALYSIS EQUATIONS

Although Eq. [26] models an ideal allpass filter, an actual filter constructed using a biquad active filter stage may not have an ideal frequency response. Such a non-ideal response comes from using components which differ slightly from the ideal values given in the above equations. Thus, the actual allpass filter is modeled by

$$
\begin{equation*}
H(s)=\frac{-\left(S^{2}-2(\omega 0 / B 1) S+\omega 0^{2}\right)}{S^{2}+2(\omega 0 / B 2) S+\omega O^{2}} \tag{33}
\end{equation*}
$$

where
wo is the critical frequency (in radians/sec)

B1 and B2 are the numerator and denominator stiffness ratios, respectively.

Given the actual values of $R^{\prime} s$ (in ohms) and $C^{\prime} s$ (in farads) used in constructing the filter, the following equations give the actual values for these parameters.
$\omega o(\mathrm{rad} / \mathrm{sec})=\sqrt{\frac{\mathrm{R} 11}{(\mathrm{R} 2)(\mathrm{R} 3)(\mathrm{R} 10)(\mathrm{C} 1)(\mathrm{C} 2)}}$
$B 2=2(R 1) \sqrt{\frac{(R 11)(C 1)}{(R 2)(R 3)(R 10)(C 2)}}$
$B 1=(\mathrm{B} 2) \frac{(\mathrm{R} 4)(\mathrm{R} 5)}{(\mathrm{R} 4)(\mathrm{R} 5)-(\mathrm{R} 1)(\mathrm{R} 9)}$

Note that in Eq. [36], the values of $R 1, R 4, R 5$, and $R 9$ determine the deviation of the actual from the ideal performance of the filter.

## D. 6 BIQUAD BAND REJECT FILTER DESIGN EQUATIONS

A band reject filter, as implemented using a biquad filter section, can be modeled by

$$
\begin{equation*}
H(S)=\frac{-m\left(S^{2}+\omega z^{2}\right)}{S^{2}+2(\xi p)(\omega p) S+\omega p^{2}} \tag{37}
\end{equation*}
$$

where
$\omega z$ is the zero frequency (in radians/sec)
wp is the pole frequency (in radians/sec)
$\xi p$ is the pole damping coefficient.

The response of this filter is characterized by a notch or gain minimum at $\omega z$ and a peak or gain maximum at $\omega$. Two design cases arise with this filter type: those in which $\omega$ p is greater than wz (case I) and those where wp is less than wz (case II).

At first glance, both cases would appear equally usable for a given band reject application. However, this may not be the case. The band reject frequency response is characterized by a minimum gain at
the zero frequency and higher gains on either side. These gains are net identical, however (see Figures D-5 and D-6). The gains at frequencies much above $\omega z$ (Ahi) are related to those much below (Alo) by

$$
\begin{equation*}
\text { Alo }=A h i\left(\frac{\omega z}{\omega p}\right)^{2} \tag{38}
\end{equation*}
$$

where both gains are in volts/volt and $\omega z$ and $\omega$ p are defined as above. Therefore, if a greater low frequency gain were required, $\omega z$ would be specified as higher than wo (case 1I).

As $\omega z$ approaches $\omega \mathrm{p}, \mathrm{Eq}$. [38] implies that the two gains become equal. However, as the two approach each other, the value of one of the resistors in the filter grows. (In the limit, where $\omega \mathrm{z}$ equals $\omega \mathrm{p}$, the resistor's value is infinity and the frequency response curve changes to that of an allpass filter.) Thus, the growth of the resistor value puts a limit on the closeness of $\omega \mathrm{Z}$ to $\mathrm{\omega p}$.

Another difference between the cases relates to the shape of the frequency response curve in the vicinity of $\omega z$. Only the shape of the curve closest to $\omega$ p can be effected by changing filter parameters (specifically $\xi \mathrm{p}$ ). The other limb of the curve is fixed by the requirement of having $\xi z$ equal to zero. Therefore, if a specific response is required on one side of $\omega z$, it can be achieved by selection of $\omega p$ to be on that side of $\omega z$.

Finally, another difference between the cases arises from the relationship between filter frequency and component size. Since resistor/capacitor size is inversely proportional to frequency, smaller valued components will result if $\omega p$ is specified as higher than $\omega z$.

Design and analysis equations for both these two cases are given in the following sections.

## D.6.1 CASE I BAND REJECT FILTER

## D.6.1.1 Case I Band Reject Synthesis Equations

Given desired values for $\omega \mathrm{z}, \omega \mathrm{p}, \boldsymbol{\xi} \mathrm{p}$, and the desired filter gain at frequencies much below cutoff (Adc) in volts/volt (see figure D-5), Eqs. [3], [4], [5], [8], and [31], in addition to the following design equations, apply. (Resistors values are given in ohms, capacitors in farads, $k i$ and $k 2$ are scaling constants [typically $=$ 1.1) (R6 is not used.)

$$
\begin{equation*}
R 4=\frac{\omega z^{2}}{2(k 2)\left(\omega p^{3}\right)(\xi \mathrm{p})(\mathrm{C} 1)(\mathrm{Adc})} \tag{39}
\end{equation*}
$$



D-5. Biquadratic Case I Band Reject Filter Frequency Response


D-6. Biquadratic Case II Band Reject Filter Frequency Response

$$
\begin{equation*}
\mathrm{R7}=\frac{2\left(\mathrm{k} 2 ;\left(\omega \mathrm{p}^{2}\right)(\mathrm{g} p)(\mathrm{R} 9)\right.}{(\mathrm{k} 1)\left(\omega z^{2}\right)\left|\frac{\omega \mathrm{p}^{2}}{\omega z^{2}}-1\right|} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
R 8=\frac{\left(\omega z^{2}\right)(R 10)}{\left(\omega p^{2}\right)(A d c)} \tag{41}
\end{equation*}
$$

Note: Severe performance degradation can result if actual resistor velues used are not carefully chosen. See the following section for a disclission of the selection criteria.

## D.6.1.2 Case I Band Reject Analysis Equations

Although Eq. [37] models an ideal band rejection filter, an actual filter constructed using a biquad active filter stage may nave a frequency response that differs from the ideal. Such a response comes from from using resistor values that differ from those derived in the abci, equations. Thus, actual filter response is modeled by Eq. [22]. The presence of a nonzero $\xi z$ term in Eq. [22] results in a degradation of the filter's frequency rejection at the zero frequency. Given actual values of $\mathrm{R}^{\prime} \mathrm{s}$ (in ohms) and $C^{\prime} s$ (in farads), Eqs. [19]. [11], [24], and [25], in addition to the following equations, give actual values for the above parameters as well as for Adc and for the maximum gain at $\omega \mathrm{p}$ (Amax):

$$
\begin{align*}
& \text { Adc (velts/rolts) }-\frac{-\mathrm{R} 9}{\mathrm{R} 8}\left(1-\frac{(\mathrm{R} 3)(\mathrm{R} 8)}{(\mathrm{R} 4)(\mathrm{R} 7)}\right)  \tag{42}\\
& \mathrm{RT}=\sqrt{\frac{(\mathrm{R} 2)(\mathrm{R} 3)(\mathrm{R} 10)(\mathrm{C} 2)}{\left(\mathrm{R} 1^{2}\right)(\mathrm{R} 11)(\mathrm{C} 1)}}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Amax}(\text { volts } / \text { volt })=\frac{-\mathrm{R} 9}{\mathrm{R} 8}\left(\frac{2-\left(\frac{(\mathrm{R} 3)(\mathrm{R} 8)}{(\mathrm{R} 4)(\mathrm{R} 7)}\right)+\left(1-\frac{(\mathrm{R} 1)(\mathrm{R} 8)}{(\mathrm{R} 4)(\mathrm{R} 5)}\right) \mathrm{RT}}{2+\mathrm{RT}}\right) \tag{44}
\end{equation*}
$$

As can be seen from the above equations, changes in $R 7$ affect the value of $\omega z$ and Amax only, while changes in R5 effect $\xi z$ and Amax only; therefore, these resistor values can be changed to "tune" the filter's response. Several effects can show up in the ilter's rosponse, depending on the value of these resistors. Specifically, in Eq. [24], if the product (R3)(R8) is greater than (R4)(R7), a negative value exists under the square root. This shows up in circuit performace as a complete elimination of the gain minimum or notch at $\omega z$. Therefore, the value used for $R 7$ should be selected to insure
tha' (R3) R8) is qreater than (R4)(R7) to insure proper frequency rejer" lon:

Another effect shows up in Eq. [25]. In this equation, a value of the product (RI)(RB) greater than the product (R4)(RS) will result in a neqative value of $\boldsymbol{\xi z}$. This, in turn, can be observed in the fil:e's response as a phase change in the vicinity of wz. This change can te reduced or eliminated by careful selection of R5. Thus, to insure proper frequency rejection and phase, the values of $R 5$ and R7 used in a : ual filters should be carefully selected to avoid the possible degradation modes discussed above.
D.6.2 CASE II BAND REJECT FILTER

## D.6.2.1 Case II Band Reject Synthesis Equations

Given desired values for $\omega z, \omega p, \xi p$, and the desired filter gain at frequencies much below cutoff (Adc) in volts/volt (see Figure D-6), Eqs. [3], [4], [5], [8], [31], [39], and [41], in addition to the following design equation, apply. (Resistors values are given in ohms, capacitors in farads, kl and $k 2$ are scaling constants [typically $=1$.$] )$

$$
\begin{equation*}
\mathrm{R} 6=\frac{2(\mathrm{k} 2)\left(\omega \mathrm{p}^{2}\right)(\xi \mathrm{p})(\mathrm{R} 9)}{(\mathrm{k} 1)\left(\omega \mathrm{z}^{2}\right)\left|\frac{\omega p^{2}}{\omega z^{2}}-1\right|} \tag{45}
\end{equation*}
$$

Note: Filter performance changes can result if actual resistor values used are not carefully chosen. See the following section for a discussion of the selection criteria.

## D.6.2.2 Case II Band Reject Analysis Equations

Although Eq. [37] models an ideal band rejection filter, an actual filter constructed using a biquad active filter stage may have a frequency response that differs from the ideal. This comes from using resistor values in the actual filter that differ from those derived in the above equations. Thus, actual filter response is modeled by Eq. [22]. The presence of a nonzero $\xi \mathrm{z}$ term in Eq. [22] results in a degradation of the filter's frequency rejection at the zero frequency. Given actual values of $R^{\prime} s$ (in ohms) and $C$ 's (in farads), Eqs. [10], [11], [25], and [43], in addition to the following equations, give actual values for the above parameters as well as for Adc and for the maximum gain at $\omega$ p (Amax):

$$
\begin{equation*}
\text { Adc (volts/volt) }=\frac{-\mathrm{R} 9}{\mathrm{R} 8}\left(1+\frac{(\mathrm{R} 3)(\mathrm{R} 8)(\mathrm{R} 10)}{(\mathrm{R} 4)(\mathrm{R} 6)(\mathrm{R} 11)}\right) \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
A \max (\text { volts } / \text { volt })=\frac{-R 9}{R 8}\left(\frac{2+\left(\frac{(\mathrm{R} 3)(\mathrm{R} 8)(\mathrm{R} 10)}{(\mathrm{R} 4)(\mathrm{R} 6)(\mathrm{RTI})}\right)+\left(1-\frac{(\mathrm{R} 1)(\mathrm{R} 8)}{(\mathrm{R} 4)(\mathrm{R} 5)}\right) \mathrm{RT}}{2+\mathrm{RT}}\right) \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
\omega z(\mathrm{rad} / \mathrm{sec})=\sqrt{\omega \mathrm{p}^{2}\left(1+\frac{(\mathrm{R} 3)(\mathrm{R} 8)(\mathrm{R} 10)}{(\mathrm{R} 4)(\mathrm{R} 6)(\mathrm{RII})}\right)} \tag{48}
\end{equation*}
$$

As can be seen from the above, a change in R5 effects $\xi_{z}$ and Amax only; therefore, this resistor value can be changed to "tune" the filter's response. This effect shows up in Eq. [25]. In this equation, a value of the product (Rl)(R8) greater than the product (R4)(R5) will result in a negative value of $\xi \mathrm{z}$. This, in turn, can be observed in the filter's response as a phase change in the vicinity of wz. This change can be reduced or eliminated by careful selection of R5. Thus, to insure proper frequency rejection and phase, the values of $R 5$ used in actual filters should be carefully selected.

## Appendix E

## Sample Signal Conditioning Circuit Card Designs

## E. 1 APPENDIX OVERVIEW

This appendix documents two sample signal conditioning card design sessions using programs FILTER and FCHECK. It is intended to aid users of these programs in understanding their operation. The sample conditioning card configurations selected are cypical of those used in actual data acquisition environments. No attempt has been made to demonstrate every card configuration option. Further, the filter parameter distribution among the stages are not necessarily the optimum to achieve the desired overall performance.

The following sections document these sample configurations. Each contains a signal conditioning card design sheet documenting the desired overall and stage responses. An annotated system console listing follows to document the running of FILTER. The resulting SDAS signal conditioning card resistor value and filter parameters table is also included to document the final board configuration. Next, the component values listed are changed slightly to simulate measured resistor and capacitor values as would be encountered in a actual circuit board. Program FCHECK is run next to determine the actual filter parameters resulting from using the "measured" component values. The annotated console listings and component/parameter table resulting are included to round out the section.

## E. 2 EXAMPLE 1

This example results in the design of a simple multistage lowpass filter conditioning card with a dc gain of 1000. Figure E-1 contains the signal conditioning card design sheet documenting the desired

DATE: $\qquad$ CHANNEL NO: $\qquad$
TOTAL RESPONSE DESIRED:


STAGE 1: GAIN ONLY
STAGE GAIN: $\frac{10.0}{(V / V)}$
POLE FREQUENCY: 670.0 (HZ)
STAGE 2
FILTER TYPE: GAIN. (LP) BP HP BR

ADDED CAPACITOR VALUE: (UFD)
STAGE GAIN: 5.0 (V/V)

STAGE 3: LOW PASS FILTER ONLY
ADDED CAPACITOR VALUE: _ _ (UFD) STAGE GAIN: $\frac{1.0}{\text { POLE FREQUENCY: } 35.0}$ (V/V) (HZ) POLE DAMPING COEFF: 0.623490
STAGE 4: FILTER TYPE: GAIN GAIN AND LP
STAGE GAIN: 10.0 (V/V)
POLE FREQUENCY: 35.0 (HZ)
STAGE 5: FILTER TYPE: GAIN LP BP HP BR
ADDED CAPACITOR VALUE: ____(UFD)
STAGE GAIN: 2.0 (V/V) ZERO FREQUENCY: POLE FREQUENCY: 35.0 (HZ) POLE DAMPING COEFF: 0.222521

E-1. Example 1 Signal Conditioning Circuit Board Design Worksheet
total response and stage type assignmencs. Note that more gain is assigned to stages 1 and 3 ; this results in a smaller spread of resistor values in the active filters in the other stages. The pole damping coefficients were selected to provide a seventh-order Butterworth rolloff at a cutoff frequency of 35 Hz .

Program FILTER is next run to calculate the required component values. Table E-l contains the system console transactions necessary to design this circuit card. Several mistakes have been intentionally added to illustrate error recovery procedures. Prompts and responses issued by the program are underlined. Table E-2 gives the SDAS signal conditioning card resistor value and filter parameters printout resulting from the session given in Table E-1.

In a real situation, the signal conditioning card would next be constructed and used to acquire data. The resistors and capacitors plugged in to the circuit would be measured and their values recorded for later use in program FCHECK. To simblate this, the values determined in the above listings are changed at random by less than 5\%. These values are entered into program FCHECK in Table E-3, together with a few intentional errors, again to show error recovery. Table E-4 contains the parameter printout resulting from the session.

## E. 3 EXAMPLE 2

This example results in the design of a notch and lowpass filter card with a dc gain of 1000 . Figure $E-2$ contains the signal conditioning card design sheet documenting the desired total response and stage type assignments. Note that more gain is assigned to stages 1 and 3 ; this results in a smaller spread of resistor values in the active filters in the other stages. Also, note that an additional l. $\quad \mu \mathrm{F}$ capacitor has been paralleled with the existing capacitor in stage 5. The pole damping coefficients used result in a fourth-order Butterworth response for the lower 1 imb of the notch and a third-order Butterworth response for the anti-aliasing filter at 35 Hz . Also note that the total response diagram indicates a lower gain above 1 Hz . This lower gain reflects the high frequency gain reduction discussed in Appendix $D$, section $D-6$ and not necessarily a desired response.

Program FILTER is next run to calculate the required component values. Table $E-5$ contains the system console transactions necessary to design this circuit card. Several mistakes have been intentionally added to illustrate error recovery procedures. Prompts and responses issued by the program are underlined. Table E-6 gives the SDAS signal conditioning card resistor value and filter parameters printout resulting from the session given in Table E-5.

In a real situation, the signal conditioning card would next be constructed and used to acquire data. The resistors and capacitors plugged in to the circuit would be measured and their values recorded for later use in program FCHECK. To simulate this, the values determined in the above listings are changed at random by less than 5 percent. These values are entered into program FCHECK in Table E-7. together with a few intentional errors, again to show error recovery. Table $E-8$ contains the parameter printout resulting from the session.
Table E-1 Example 1 - FILTER System Console Transactions

Table E-I Example 1 FILTER System Console Transactions (contd)

Table E-1 Example 1 Filter System Console Transactions (contd)

R303 (KOHMS) $=$ ? 4.53	
R304 (KOHMS) $=$ ? 4.53	
ADDITIONAL CAPACITORS ADDED (Y/N) ? N	
GAIN = 1.000 (V/V) 0.000 ( $\mathrm{DB}^{\text {) }}$	
POLE FREQ $(\mathrm{HZ})=35.1$, DAMPING COEF $=0.621$	
REPEAT CHECK ( $\mathrm{Y} / \mathrm{N}$ ) ? N	
FOURTH STAGE:	
GAIN AND/OR SINGLE LP PGLE ONLY	
DC GAIN (V/V) $=$ ? 10.	
R309 (KOHMS) $=$ ? 10.	
R306 $=1.000$ KонмS	
NOTE: Stage inverts Signal	
FILTER FREQ (GAIN ONLY = 0.) ( HZ ) = ? 350. $\ldots$ entered. Stage redesigned below.	
C301 (UFD) $=0.45473 \mathrm{E}-01$	
CHECK ACTUAL COMPONENTS (Y/N) ? N	
SECOND ORDER HIGH PASS FILTER redesigned below.	
ADDITIONAL CAPACItors added ( $\mathrm{Y} / \mathrm{N}$ ) ? ${ }^{\text {N }}$	
HI FREQ GAIN (V/V) $=$ ? 2 .	
POLE FREQ (HZ), DAMPING COEFF $=$ ? 35.,.2	
R4®1 $=11.4$ конмS	
R402 $=4.55$ KOHMS	
R403 $=4.55$ коНMS	

Table E-1 Example 1 FILTER System Console Transactions (contd)

Table E-1 Example 1 FILTER System Console Transactions (contd)

NOTE: STAGE INVERTS SIGNAL	
POLE FREQ $=33.86 \mathrm{~Hz}$	
Check again (Y/N) ? N	
ANY CHANGES (Y/N) ? Y	
Stage to be changed ( $1-5$ ) = ? 5	
STAGE 5:   FILTER TYPE (NONE=9, $\mathrm{LP}=1, \mathrm{HP}=2, \mathrm{BP}=3, \mathrm{BR}=4$ ) $=$ ? 1	
SECOND ORdER LOW pass filter	
ADDITIONAL CAPACITORS ADDED $\{\mathrm{Y} / \mathrm{N}\}$ ? N	
DC GAIN ( $\mathrm{V} / \mathrm{V}$ ) $=$ ? 2 .	
POLE FREQ ( H 2 ) , DAMPING COEFF $=$ ? 35...222521	
R401 $=10.2$ KOHMS	
R402 $=4.55$ KOHMS	
R403 $=4.55$ KOHMS	
R404 $=3.22$ KOHMS	
R406 $=7.07$ KOHMS	
RX01 INFLUENCES DAMPING, RX04 / RX06 GAIN NOTE: STAGE INVERTS SIGNAL	
CHECK ACTUAL COMPONENTS (Y/N) ? Y	
R401 (KOHMS) $=$ ? 10.2	
R402 (KOHMS) $=$ ? 4.53	
R403 (KOHMS) $=$ ? 4.53	

Table E-1 Example 1 filter System Console Transactions (contd)


```
SDAS SIGNAL CONDITIONING CARD RESISTOR VALUES AND FILTER PARAMETERS 29-FEB-80 EXAMPLE 1
```

```
STAGE 1:
```

STAGE 1:
GAIN --
GAIN --
R101 = 10.00 KOHMS
R101 = 10.00 KOHMS
R102 = 100.0 KOHMS
DC GAIN = 10.00 (V/V) [ 20.0 (DBV)]
SINGLE POLE FREQ = 670.0}\textrm{HZ
STAGE 2: -- LOW PASS --
R201 = 2.550 KOHMS
R202 = 4.530 KOHMS
R203 = 4.530 KOHMS
R204 = 2.000 KOHMS
R206=4.420 KOHMS
RX01 CHANGES DAMPING; RX04 / RXO6 GAIN

```

```

STAGE 3:
LOW PASS --
R301 = 3.650 KOHMS
R302 = 4.530 KOHMS
R303 = 4.530 KOHMS
R304 = 4.530 KOHMS
RX@I CHANGES DAMPING; RX@4 / RX0G GAIN

```

```

STAGE 4: -- LOW PASS --
R306=10.00 KOHMS
R309 = 100.0 KOHMS
C301=0.470日E-Q1 UFD
DC GAIN = -10.00 (V/V) [ 20.0 (DBV)]
POLE FREQ = 33.86 HZ
STAGE 5: -- LOW PASS --
R401 = KOHMS
R402 = 4.530 KOHMS
R403 = 4.530 KOHMS
R404 = 3.240 KOHMS
R406 = 7.150 KOHMS
RX01 CHANGES DAMPING; RX04 / RX06 GAIN

```

```

TOTAL FILTER GAIN = -1002. (V/V) 60.0 (DBV)
(CAUTION: TOTAL GAIN IS SIMPLE PRODUCT. CHECK FILTER TYPE
TO DETERMINE ACTUAL COMPOSITE GAIN.)
FILTER INVERTS SIGNAL

```
Table E-3 Example 1 - FCHECK System Console Transactions

Table E-3 Example 1 FCHECK System Console Transactions (contd)

Table E-3 Example 1 FCHECK System Console Transactions (conta)

Table E-4 Example 1 - FCHECK Value and Parameter Table

DATE: \(\qquad\) CHANNEL NO: \(\qquad\)
TOTAL RESPONSE DESIRED:

STAGE 1: GAIN ONLY
STAGE GAIN: 10.0 (V/V)
POLE FREQUENCY: 670.0 (H Z)
STAGE 2: FILTER TYPE: GAIN LP BP HP BR
ADDED CAPACITOR VALUE: \(\qquad\) (UFD) STAGE GAIN: 5.0 \(\qquad\) STAGE GAIN: \(\frac{5.0}{\text { ZERO FREQUENCY: } 1.0}\) 0 (HZ POLE FREQUENCY: 0.25 (HZ)

ZERO DAMPING COEFF: \(\qquad\) POLE DAMPING COEFF: \(\underline{0.92388}\)

\section*{STAGE 3: LOW PASS FILTER ONLY}

ADDED CAPACITOR VALUE: \(\qquad\) (UFD)
STAGE GAIN: 1 (V/V)
POLE FREQUENCY: 35.0 (HZ) POLE DAMPING COEFF: 0.500
STAGE 4: FILTER TYPE: GAIN GAIN AND LP
STAGE GAIN: 10.0 \(\qquad\) (V/V)
POLE FREQUENCY: \(\mathbf{3 5 . 0}\) (HZ)
STAGE 5: FILTER TYPE: GAIN LP BP HP BR
ADDED CAPACITOR VALUE: 1.0 _(UFD)
STAGE GAIN: 2.0 (V/V)
ZERO FREQUENCY: 1.0 (HZ) ZERO DAMPING COEFF:
POLE FREQUENCY: 0.25 (HZ) POLE DAMPING COEFF: 0.38268

E-2. Example 2 Signal Conditioning Circuit Board Design Worksheet

Table E-5 Example 2 - FILTER System Console Transactions
```

-RUN FILTER
SDAS SIGNAL CONDITIONING CARD DESIGN PROGRAM
STAGE TO BE DESIGNED ( }|=\mathrm{ ENTIRE BOARD ) = ? g
STAGE 1:
DC GAIN (V/V) = ? 10.
R102 (K OHMS) = ? 100.
R101=10.00 KOHMS
CHECK ACTUAL COMPONENTS (Y/N) ? N
POLE FREQ (HZ) = ? 670.
STAGE 2:
FILTER TYPE (NONE=0, LP=1, HP=2, BP=3, BR=4)=? 4
SECOND ORDER BAND REJECT FILTER
ADDITIONAL CAPACITORS ADDED (Y/N)?N
DC GAIN (V/V) = ? 5.
ZERO FREQ (HZ) = ? l.
POLE FREQ (HZ), DAMPING COEFF = ? .25,.92388
R201 = 345. KOHMS
R202 = 637. KOHMS
R203 = 637. KOHMS
R204 = 0.110E+04 KOHMS
R205 = 10.0 KOHMS
R206 = 1.23 KOHMS
R208 = 32.0 KOHMS
RXO1 INFLUENCES DAMPING; RX\emptyset8 GAIN
****** FOR BEST FREQ REJECTION, RX01*RX08 SHOULD EQUAL RX04*RX05 ******
NOTE: STAGE INVERTS SIGNAL.
CHECK ACTUAL COMPONENTS (Y/N)?Y

R201	(KOHMS)	= ?	348.
R202	(KOHMS)	$?$	634.
R203	( KOHMS)	$=$ ?	634.
R204	(KOHMS)	$=?$	1100.
R205	(KOHMS)	$=$ ?	10.
R266	(KOHMS)	$=$ ?	1.24
R208	(KOHMS)	$=$ ?	31.6

```

ADDITIONAL CAPACITORS ADDED (\(Y / N\)) ? \(\underline{N}\)
\begin{tabular}{lccc}
DC GAIN \(=4.965\) & \((\mathrm{~V} / \mathrm{V})\) & 13.9 & \((\mathrm{DB})\) \\
ZERO FREQ \(\langle\mathrm{HZ})=0.9943\) & ZERO DAMPING COEF \(=0.669 \mathrm{E}-04\) \\
POLE FREQ \((\mathrm{HZ})=0.2510\) & POLE DAMPING COEF \(=0.911\)
\end{tabular}

MORE CHECKS (Y/N) ? N
STAGE 3:
GAIN CAPABILITY \(1 / 2\) OTHER STAGES
SECOND ORDER LOW PASS FILTER
ADDITIONAL CAPACITORS ADDED (Y/N) ? N
\(\operatorname{DC} \operatorname{GAIN}(\mathrm{V} / \mathrm{V})=\) ? 1.
POLE FREQ (HZ), DAMPING COEFF \(=\) ? 35.,.5
\begin{tabular}{ll}
\(R 301=4.55\) & KOHMS \\
R302 \(=4.55\) & KOHMS \\
R303 \(=4.55\) & KOHMS \\
R304 \(=4.55\) & KOHMS
\end{tabular}

RX01 INFLUENCES DAMPING, RX04 / RX06 GAIN NOTE: STAGE INVERTS SIGNAL

CHECK ACTUAL COMPONENTS (Y/N) ? Y
\begin{tabular}{|c|c|c|c|}
\hline R301 & (KOHMS) & \(=\) ? & 4.53 \\
\hline R302 & (KOHMS) & \(=\) ? & 4.53 \\
\hline R303 & (KOHMS) & ? & 4.53 \\
\hline R304 & (KOHMS) & \(=\) ? & 4.53 \\
\hline
\end{tabular}

ADDITIONAL CAPACITORS ADDED (Y/N)?N
\begin{tabular}{|c|c|c|c|c|c|}
\hline GAIN & 1.000 & (V/V) & 0.000 & (DB) & \\
\hline POLE & (HZ) & 35.1 & , DAMPING & COEF \(=\) & 0.500 \\
\hline
\end{tabular}

REPEAT CHECK (Y/N)?N
FOURTH STAGE:
GAIN AND/OR SINGLE LP POLE ONLY
\(D C \operatorname{GAIN}(V / V)=? 10\).
R309 (KOHMS) = ? 100.
R306 \(=10.00 \quad\) KOHMS
NOTE: STAGE INVERTS SIGNAL
FILTER FREQ (GAIN ONLY \(=0\).) (HZ) \(=\) ? 35.
C 301 (UFD) \(=0.45473 \mathrm{E}-01\)
CHECK ACTUAL COMPONENTS (Y/N) ? Y
```

R306 (KOHMS) = ? 10.
R309 (KOHMS) = ? 12._ Error. Wrong value for R309 entered.
C301 (UFD) = ? . 4
DC GAIN = 1.200 (V/V) [ 1.58 (DB)]
NOTE: STAGE INVERTS SIGNAL
POLE FREQ = 33.16 H2
CHECK AGAIN (Y/N) ? Y_C_Component values entered again.
R306 (KOHMS) = ? 10.
R309 (KOHMS) = ? 100.
C301 (UFD) = ?.047
DC GAIN = 10.0\emptyset (V/V) [ [ 20.0}<l\mp@code{(DB)]
NOTE: STAGE INVERTS SIGNAL
POLE FREQ = 33.86 HZ
CHECK AGAIN (Y/N) ? N
STAGE 5:
FILTER TYPE (NONE=0, LP=1, HP=2, BP=3, BR=4)=? 4
SECOND ORDER BAND REJECT FILTER
ADDITIONAL CAPACITORS ADDED (Y/N)?Y
CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?1.
DC GAIN (V/V) = ? 2.
ZERO FREQ (HZ) = ? I.
POLE FREQ (HZ), DAMPING COEFF = ? . 25..38268

| R401 $=416$. | KOHMS |
| :--- | :--- | :--- |
| R4ø2 $=318$. | KOHMS |
| R403 $=318$. | KOHMS |
| R404 $=0.333 E+04$ | KOHMS |
| R405 $=10.0$ | KOHMS |
| R406 $=0.510$ | KOHMS |
| R408 $=80.0$ | KOHMS |

RXO1 INFLUENCES DAMPING; RXO8 GAIN
****** FOR BEST FREQ REJECTION, RX01*RX@8 SHOULD EQUAL RX@4*RX05 ******
NOTE: STAGE INVERTS SIGNAL
CHECK ACTUAL COMPONENTS (Y/N)?Y
R401 (KOHMS) = ? 412.

```

Table E-5 Example 2 FILTER System Console Transactions (contd)
```

R402 (KOHMS) = ? 316.
R403 (KOHMS) = ? 316.
R404 (KOHMS) = ? 3320.
R405 (KOHMS) = ? 10.
R406 (KOHMS) = ? .511
R408 (KOHMS) = ? 80.6
ADDITIONAL CAPACITORS ADDED (Y/N)?Y
CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?1.
DC GAIN = 1.987 (V/V) 5.96 (DB)
ZERO FREQ (HZ) = 1.008 2ERO DAMPING COEF = -0.208E-04
POLE FREQ (HZ)=0.2518 POLE DAMPING COEF =0.383
MORE CHECKS (Y/N) ? N
ANY CHANGES (Y/N) ? N
RESISTOR AND PARAMETER PRINTOUT (Y/N) ? Y
PRINTOUT ID (<40 CHAR) ?EXAMPLE 2
STORE PARAMETERS ON DISK (Y/N) ? Y
DISK FILE NAME (FORM:DXN:XXXXX.YYY) ? DXI:DUMMY.DAT
CHANNEL NUMBER (1-16)=? 1
STORE PARAMETERS ON DISK (Y/N) ? N
RESTART PROGRAM (Y/N) ? N
STOP --

```

Table E-6 Example 2 - FILTER Value and Parameter Table
```

    SDAS SIGNAL CONDITIONING CARD RESISTOR VALUES AND FILTER PARAMETERS
    29-FEB-80 EXAMPLE 2
STAGE 1: -- GAIN --
R101 = KOHMS
R102 = 100.0 KOHMS

```


Table E-6 Example 2 FILTER Value and Parameter Table (contd)

Table E-7 Example 2 - FCHECK System Console Transactions
```

.RUN FCHECK
SDAS SIGNAL CONDITIONING CARD ANALYSIS PROGRAM
STAGE TO BE ENTERED ( }|=ENTIRE BOARD)?
STAGE 1:
R101 (KOHMS) = ? 10.1
R102 (KOHMS) = ? 100.03
DC GAIN = 9.904 (V/V) [ 19.b (DBV)]
POLE FREQ (HZ) = ? 670.
ENTER AGAIN (Y/N) ? N
STAGE 2:
FILTER TYPE (NONE=0, LP=1, HP=2, BP=3, BR=4)?4
SECUND ORDER BAND REJECT FILTER
NOMINAL POLE FREQ (HZ) = ? . 25
NOMINAL ZERO FREQ (HZ) = ? 1.
R201 (KOHMS) = ? 346.6
R202 (KOHMS) = ? 635.6
R203 (KOHMS) = ? 633.4
R204 (KOHMS) = ? 1158.
R205 (KOHMS) = ? 9.78
R206 (KOHMS) = ? 1.23
R208 (KOHMS) = ? 30.8
ADDITIONAL CAPACITORS ADDED (Y/N)?N
DC GAIN = 4.772 (V/V) [ 13.6 (DB)]
NOTE: STAGE INVERTS SIGNAL
ZERO FREQ (HZ) = 0.9616 , ZERO DAMPING COEF = 0.137E-01
POLE FREQ (HZ)=0.2508 , POLE DAMPING COEF = 0.915
REPEAT CHECK (Y/N) ? N
STAGE 3:
SECOND ORDER LOW PASS FILTER
R301 (KOHMS) = ? 4.59
R302 (KOHMS) = ? 4.52
R303 (KOHMS) = ? 4.55

```

Table E-7 Example 2 FCHECK Systen Console Transactions (contd)
```

R304 (KOHMS) = ? 4.512
ADDITIONAL CAPACITORS ADDED (Y/N)?N
DC GAIN = 1.008 (V/V) [0.728E-01 (DB)]
NOTE: STAGE INVERTS SIGNAL
POLE FREQ (HZ) = 35.1 , DAMPING COEF = 0.494
MORE CHECKS (Y/N) ? N
FOURTH STAGE:
R306 (KOHMS) = ? 9.867
R309 (KOHMS) = ? 102.3
C301 (UFD) (=0. IF NOT USED) = ? .052
DC GAIN = 10.37 (V/V) [ 20.3 (DBV)]
NOTE: STAGE INVERTS SIGNAL
POLE FREQ = 29.92 HZ
ENTER AGAIN (Y/N) ? N
STAGE 5:
FILTER TYPE (NONE=0, LP=1, HP=2, BP=3, BR=4)?3
SECOND ORDER BAND PASS FILTER
R401 (KOHMS) = ? 2.
R402 (KOHMS) = ? 2.
R403 (KOHMS) = ? 3. Redone below.
R404 (KOHMS) = ? 4.
R405 (KOHMS) = ? 5.
ADDITIONAL CAPACITORS ADDED (Y/N)?N
CENTER FREQ GAIN = 0.3798 (V/V) [ -8.41 (DB)]
ZERO FREQ (HZ) = 0.6497E-02 , POLE DAMPING COEF = 0.97 0.612
POLE FREQ (H2) = 64.97
REPEAT CHECK (Y/N) ? N
ANY CHANGES (Y/N)?Y Stage 5 rerun using correct stage type
STAGE 5:
SECOND ORDER BAND REJECT FILTER
NOMINAL POLE FREQ (HZ) = ? .25
NOMINAL ZERO FREQ (HZ) = ? 1.

```

Table E-7 Example 2 FCHECK System Console Transactions (contd)
```

$\begin{array}{ll}\text { R401 } & \text { (KOHMS) }=? 411.3 \\ \text { R402 } & \text { (KOHMS) }=? \underline{315 .} \\ \text { R403 } & \text { (KOHMS) }=? \underline{312.4} \\ \text { R404 } & \text { (KOHMS) }=? 3435 . \\ \text { R405 } & \text { (KOHMS) }=? \underline{19.8} \\ \text { R406 } & \text { (KOHMS) }=? \underline{.506 ~} \\ \text { R408 } & \text { (KOHMS) }=? \underline{80.78}\end{array}$
ADDITIONAL CAPACITORS ADDED (Y/N)?Y
CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?1.
DC GAIN $=1.921$ (V/V) [ 5.67 (DB)]
NOTE: STAGE INVERTS SIGNAL
ZERO FREQ $(\mathrm{HZ})=0.9993$, ZERO DAMPING COEF $=0.101 \mathrm{E}-01$
POLE FREQ $(\mathrm{HZ})=0.2537$, POLE DAMPING COEF $=0.381$
REPEAT CHECK ( $\mathrm{Y} / \mathrm{N}$ ) ? N
ANY ChANGES (Y/N) ?N
RESISTOR AND PARAMETER PRINTOUT (Y/N) ?Y
PRINTOUT ID ( $<4 \theta$ CHAR) ? EXAMPLE 2
Store parameters on disk ( $\mathrm{Y} / \mathrm{N}$ ) ? N
RERUN PROGRAM (Y/N) ? N
STOP --

```

Table E-8 Example 2 - FCHECK Value and Parameter Table

\section*{Appendix F}

Signal Conditioning Circuit Card Design Software

\section*{F.l PROGRAM OVERVIEW}

The following sections list the signal conditioning card design software. The SDAS computer was used for all software development. This software was written in FORTRAN (Digital Equipment Company [DEC] FORTRAN IV version vølC-3A) running under DEC's RT-1l operating system (RT -11FB, version V02C-D2B).

The design program calculates the required plug-in resistor and capacitor values for configuring a signal conditioning card. It accepts filter type and parameter information from the user. After calculating and displaying the optimum resistor/capacitor values, the program allows the user to enter readily-available component values. The program then uses these values to calculate the stage's filter parameters and displays them for the user. Hints on component effects and warnings for values causing performance degradation (see Appendix D) are also displayed. Afcer component values are settled on, the program prints out a table of component values and filter parameters for the card to aid in board configuration and documentation. Finally, the program can store the card filter parameters in a floppy disk file for use by cther programs.

In all its calculations, the program assumes \(10 \mathrm{~K} \Omega\) values for the fixed resistors associated with the filter stages. It also assumes \(1.0 \mu \mathrm{~F}\) values for all fixed capacitors. However, since capacitor values can be changed (either by replacement or, in the case of stage 3, by adding a second capacitor in parallel with the fixed ones), the program asks if additional capacitors are added. If a "Y" reply is given to the question, the capacitor value is asked for. Since the entered value is added to the fixed value, a smaller capacitor can be reflected by entering as a negative value the difference between
\(1.0 \mu \mathrm{~F}\) and the value used on the card. (Both capacitors are assumed to be equal.)

In stages 2 and 5, stage gain can be achieved through two amplifiers. Stage gain is therefore split evenly between the two by the program. In stage 3 , only one amplifier can be used for gain. A comment that the stage gain capability is half of the other stages' is displayed when the stage is processed.

Equations used in this program are covered in Appendix D. Since the program was designed for low frequency (under \(5 \emptyset 0 \mathrm{~Hz}\)) filter designs with moderate stage gains, no allowances for parasitics or amplifier gain-bandwidth product limitations are included.

This program consists of a main program with 14 subroutines. The main program contains all user interfaces; it relies on subroutines to perform the actual calculations and data printouts. Both the main program and the subroutines use a COMMON block to store component values and filter parameters. This block is defined by the statement

COMMON \(R(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{FP}(5), \operatorname{DP}(5), \mathrm{FZ}(5), \mathrm{DZ}(5), N T Y(5)\)
The arrays in this common block are defined in Table \(\mathrm{F}-1\).

\section*{F. 2 MAIN DESIGN PROGRAM}

The main program handles overall communications with the user. It also calculates the component values for stages 1 and 4. Subroutines are called to do the calculations for stages 2 , 3 , and 5 as well as for table printout and disk filter parameter storage.

Table \(F-2\) contains the main resistor calculation program.

\section*{F. 3 SUBROUTINE DC}

This subroutine calculates resistor values for stages 2 and 5 for providing gain only. The subroutine accepts a stage gain value from the user and calculates the resistor value required to achieve that gain. If the user wants to check the effect of using resistor values other than those calculated, subroutine DCCHK is called to perform the needed calculations. After a satisfactory resistor value is reached, the subroutine stores the value and the appropriate stage parameters in COMMON and returns to the calling program.

Table \(F-3\) contains this subroutine.

\section*{F. 4 SUBROUTINE DCCHK}

This subroutine calculates stage gain from user-entered resistor values for stages 2 and 5. The routine includes provisions for repeating the calculation should the user wish to check the effects
of other resistor values. After a satisfactory resistor value is reached, the subroutine returns to the calling subroutine.

Table F-4 contains this subroutine.

\section*{F. 5 SUBROUTINE LP}

This subroutine is called by the main program to calculate the required resistor values for forming a second order (two pole) lowpass filter as discussed in Appendix D, Section D.2. It is usable for stages 2, 3, or 5. The subroutine accepts a stage gain value and filter parameters from the user and calculates the resistor values required to achieve that response. (See Section D.2.1 of Appendix \(D\) for a discussion of the design equations used in this subroutine.) The calculated resistor values are displayed on the system console together with hints on parameters effected by resistor selections. If the user wants to check the effect of using resistor values other than those calculated, subroutine LPCHK is called to perform the needed calculations. After satisfactory resistor values are reached, the subroutine stores the values and the appropriate stage parameters in COMMON and returns to the calling program.

Table F-5 contains the subroutine.

\section*{F. 6 SUBROUTINE LPCHK}

This subroutine calculates the lowpass filter parameters from user-entered resistor and capacitor values for stages 2, 3, and 5 . (See Section D.2.2 of Appendix \(D\) for a discussion of the equations implemented in this subroutine.) The calculated filter parameters are displayed on the system console. The routine includes provisions for repeating the calculation should the user wish to check the effects of other resistor values. After a satisfactory resistor value is reached, the subroutine returns to the calling subroutine.

Table F-6 contains this subroutine.

\section*{F. 7 SUBROUTINE HP}

This subroutine is called by the main program to calculate the required resistor values for forming a second order (two pole) highpass filter as discussed in Appendix D, Section D.4. It is usable for stages 2 or 5 .

The subroutine accepts a stage gain value and filter parameters from the user and calculates the resistor values required to achieve that response. (See Section D.4.1 of Appendix \(D\) for a discussion of the design equations used in this subroutine.) The calculated values are displayed on the system console together with hints on parameters effected by resistor selection and on resistor ratios for proper filter operation (see Appendix D, Section D.4.2 for more on ratios).

If the user wants to check the effect of using resistor values other than those calculated, subroutine HPCHK is called to perform the needed calculations. If no checks are made, the program uses FZERO \(=\) FPOLE/1ø, \(\varnothing \varnothing \varnothing\) and DAMPZ \(=\varnothing\) (zero frequency and damping coefficient. respectively) to model the ideal highpass response. (This modeling is used for compatability with programs using these values to calculate system transfer function information.) If a check of resistor values is made, the calculated FZERO and DAMPZ vales are substituted for the ideal values. After satisfactory resistor values are reached, the subroutine stores the values and the appropriate stage parameters in COMMON and returns to the calling program.

Table \(\mathrm{F}-7\) contains the subroutine.

\section*{F. 8 SUBROUTINE HPCHK}

This subroutine calculates the highpass filter parameters from user-entered resistor values for stages 2 and 5. (See Section D.4.2 of Appendix \(D\) for a discussion of the equations implemented in this subroutine.) The highpass response is modeled by a double pole at FPOLE and a double zero at either the calculated FZERO or FPOLE/10, \(\varnothing \varnothing \varnothing\), whichever is greater. (This modeling of FZERO is used to ease calculations in programs to calculate system transfer function responses.) The calculated filter parameters are displayed on the system console. The program also checks for a negative damping coefficient, as discussed in Appendix D, Section D.4.2, and displays a message if appropriate. The routine includes provisions for repeating the calculation should the user wish to check the effects of other resistor values. After satisfactory resistor values are reached, the subroutine returns to the calling subrot+ine.

Table F-8 contains this subroutine.

\section*{F. 9 SUBROUTINE BP}

This subroutine is called by the main program to calculate the required resistor values for forming a second order (two pole) bandpass filter as discussed in Appendix D, Section D.3. It is usable for stages 2 or 5 . The subroutine accepts a stage gain value and filter parameters from the user and calculates the resistor values required to achieve that response. (See Section D.3.1 of Appendix D for a discussion of the design equations used in this subroutine.) The calculated values are displayed on the system console together with hints on parameters effected by resistor selection.

If the user wants to check the effect of using resistor values other than those calculated, subroutine BPCHK is called to perform the needed calculations. If no checks are made, the program uses FZERO = FPOLE/1ø, øøø (zero frequency) to model the ideal highpass response. (This modeling is used to allow compatability with programs used to calculate system transfer functions.) If a check of resistor values is made, the calculated FZERO is substituted for the ideal value. After satisfactory resistor values are reached, the subroutine stores the values and the appropriate stage parameters in

COMMON and returns to the calling program.
Table F-9 contains the subroutine.

\section*{F. 10 SUBROUTINE BPCHK}

This subroutine calculates the bandpass filter parameters from user-entered resistor values for stages 2 and 5. (See Section D.3.2 of Appendix \(D\) for a discussion of the equations implemented in this subroutine.) The actual bandpass response is modeled by a double pole at FPOLE and a single zero (FZERO) at FPOLE/10, DøD. (This modeling of FZERO is used to ease calculations in programs using these filter parameters to calculate system response information.) The calculated filter parameters are displayed on the system console. The routine jncludes provisions for repeating the calculation should the user wish to check the effects of other resistor values. After satisfactory resistor values are reached, the subroutine returns to the calling subroutine.

Table \(\mathrm{F}-10\) contains this subroutine.

\section*{F.ll SUBROUTINE BR}

This subroutine is called by the main program to calculate the required resistor values for forming a second order band reject filter as discussed in Appendix D. Section D.6. It is usable for stages 2 or 5 .

The subroutine accepts a stage gain value and filter parameters from the user and calculates the resistor values required to achieve that response. (See Sections D.6.1.1 and D.6.2.1 of Appendix \(D\) for a discussion of the design equations used in this subroutine.) The calculated values are displayed on the system console together with hints on parameters effected by resistor selection and on resistor ratios for proper filter operation (see Appendix D, Sections D.6.1.2 and D.6.2.2 for more on ratios). If the user wants to check the effect of using resistor values other than those calculated, subroutine BRCHK is called to perform the needed calculations. After satisfactory resistor values are reached, the subroutine stores the values and stage parameters in COMMON and returns to the calling program.

Table F-11 contains the subroutine.

\section*{F. 12 SUBROUTINE BRCHK}

This subroutine calculates the band reject filter parameters from user-entered resistor values for stages 2 and 5. (See Sections D.6.1.2 and D.6.2.2 of Appendix \(D\) for a discussion of the equations implemented in this subroutine.) The calculated filter parameters are displayed on the system console. The program also checks for a
negative damping coefficient and for a negative \(\omega z\) value, as discussed in Appendix D, Sections D.6.1.2 and D.6.2.2, and displays a message if appropriate. The routine allows repeating the calculation should the user wish to check the effects of other resistor values. After satisfactory resistor values are reached, the subroutine returns to the calling subroutine.

Table F-12 contains this subroutine.

\section*{F. 13 SUBROUTINE PRINT}

This subroutine prints on the line printer a table of resistor values and filter parameters. A user-entered title is added to the printout to allow its positive identification. It uses subroutine RPRINT to print out the table details for stages 2, 3, and 5. The subroutine also calculates a simple total for stage gain and prints it at the bottom of the table. (The total is a product of the stage gains. Since they do not all occur at the same frequency, the total may not accurately reflect gain at a given frequency.)

Table F-13 contains the subroutine.

\section*{F. 14 SUBROUTINE RPRINT}

This subroutine is called by subroutine PRINT to print resistor and filter parameter values for stages 2, 3, and 5. It also prints out hints on effects of component selection on filter parameters.

Table F-14 contains this subroutine.

\section*{F. 15 SUBROUTINE STORE}

This subroutine is called by the main program store filter parameter values in disk files for use by other programs. The files must have been created prior to using this subroutine. The DEC FORTRAN program listed in Table F-15 create a file of the proper format and loads it with zeroes.

Subroutine STORE accepts a file name and channel number from the user. It then calls subroutine SPECFI to read the file into COMMON /SPECS/ (The format of COMMON /SPECS/ is defined in Section E.16.) STORE checks the status flag supplied by SPECFI to see if the record was blank. If the record was blank, the program then clears COMMON /SPECS/. Then it checks which filter stages have data in them, loads the data into COMMON /SPECS/ and calls SPECFI to write the information back to the file. (Note: The convention used in COMMON /SPECS/ for stage gain storage is to store all gains as zero frequency gains. Therefore, the subroutine converts highpass and bandpass filter stage gains to dc gains prior to storage.)

Table F-16 contains subroutine STORE.

\section*{F. 16 SUBROUTINE SPECFI}

This subroutine is called by STORE to read from and write to disk files. The subroutine is general in nature and thus has features not used by STORE. It is designed to handle files containing models of an entire data collection system (sensors, preamps, and signal conditioning cards). Only the signal conditioning card information is used by STORE. Table F~17 gives the definitions of all elements of COMMON /SPECS/.

Subroutine SPECFI creates and reads 16 -record files. When initially creating a file, all records not being filled from COMMON /SPECS/ are loaded with zeroes. Data from COMMON /SPECS/ is stored in the file as a lø4-word record. The first word in the record is set to 1 to indicate data in the record, while the last four words are used to store the LOGICAL*1 array UNITS through the use of an equivalence statement.

Table F-18 contains the subroutine.

Table F-1 Common Block Definitions

Table F-2 FILTER - Main Program Listing
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
PROGRAM FILTER CARD RESISTOR CALCULATIONS \\
\(\operatorname{COMMON} \operatorname{R}(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{FP}(5), \operatorname{DP}(5), \operatorname{FZ}(5), \operatorname{DZ}(5), \operatorname{NTY}(5)\) \\
LOGICAL*1 ANS, YES, NO \\
DATA YES/lHY/,NO/LHN/ \\
TWOPI \(=6.2831853\) \\
TYPE 10
\end{tabular} \\
\hline 10 & FORMAT (' SDAS SIGNAL CONDITIONING CARD DESIGN PROGRAM') NST=0 \\
\hline C & Restart point for redesigning entire board GOTO 11000 \\
\hline 10000 & NST=1 \\
\hline & Clear COMMON for initial program use \\
\hline 11000 & \[
\begin{aligned}
& \text { DO } 900 N=1,5 \\
& \text { DO } 800 M=1,8 \\
& \text { R }(N, M)=0 .
\end{aligned}
\] \\
\hline \multirow[t]{8}{*}{800} & CONTINUE \\
\hline & \[
\begin{aligned}
& \operatorname{CAP}(N, 1)=0 . \\
& \operatorname{CAP}(N, 2)=0 .
\end{aligned}
\] \\
\hline & \(\operatorname{CAP}(\mathrm{N}, 3)=\varnothing\). \\
\hline & \[
\begin{aligned}
& \operatorname{AV}(N, 1)=0 . \\
& \operatorname{AV}(N, 2)=0 .
\end{aligned}
\] \\
\hline & \(F P(N)=0\). \\
\hline & \(\mathrm{DP}(\mathrm{N})=0\). \\
\hline & \(F \mathrm{C}(\mathrm{N})=0\). \\
\hline & \(\mathrm{DZ}(\mathrm{N})=\varnothing\). \\
\hline 900 & continue \\
\hline C & \\
\hline c & Begin. The program asks for the stage to be designed and then \\
\hline C & jumps to that stage. \\
\hline \multirow[t]{2}{*}{c} & IF(NST.EQ.1) GOTO 1000 \\
\hline & TYPE 40 \\
\hline 40 & \\
\hline & ACCEPT 50,NST \\
\hline \multirow[t]{2}{*}{50} & FORMAT (Il) \\
\hline & \(\mathrm{NST}=\mathrm{NST}+1\) \\
\hline 20000 & (ОTO (1000.1000,2000,3000.4000.5000) NST \\
\hline c & \\
\hline \({ }^{\text {c }}\) & Stage 1. Stage l can only be used for gain. The value of stage gain and \\
\hline C & of one of the gain-setting resistors is gotten from the user and the \\
\hline
\end{tabular}
Table F-2 Filter - Main Program Listing (contd)
\begin{tabular}{|c|c|}
\hline C & other resistor value is calculated. The program then allows \\
\hline C & the resistor values to be entered to recalculate gain. When a satis- \\
\hline c & factory gain is reached, the program then accepts a pole frequency for \\
\hline c & the stage. This frequency is determined by the values of the frequency- \\
\hline c & limiting components used on the circuit board and is user-entered. \\
\hline C & The program next stores the component and parameter values in \\
\hline C & the proper COMMON locations. If the entire board is not being \\
\hline C & designed, the program jumps to the closeout section; otherwise, \\
\hline C & the next stage is designed \\
\hline \multicolumn{2}{|l|}{c} \\
\hline 1000 & TYPE 110 \\
\hline 110 & FORMAT (' STAGE \(\left.1:{ }^{\prime}\right)\)
TYPE 12ø \\
\hline 120 & \begin{tabular}{l}
FORMAT ('SDC GAIN (V/v) = ? ') \\
ACCEPT 130.GAIN
\end{tabular} \\
\hline 130 & \begin{tabular}{l}
FORMAT (E12.5) \\
IF (GAIN.EQ.ס.) GOTO \(11 \varnothing 0\) \\
TYPE 140
\end{tabular} \\
\hline \multirow[t]{3}{*}{140} & FORMAT ('\$R102 (OPTIMUM = 100) (K OHMS) = ? ') \\
\hline & \[
\begin{aligned}
& \text { ACCEPT I30,RS } \\
& \text { RG=RS/GAIN }
\end{aligned}
\] \\
\hline & TYPE 150.RG \\
\hline 15® & FORMAT (' RIOl = ',G11.4،' KOHMS') \\
\hline 160 & FORMAT ('ø ChECK ACTUAL COMPONENTS (\(\mathrm{Y} / \mathrm{N}\)) ? ', \$) \\
\hline & ACCEPT 179, ANS \\
\hline \multirow[t]{2}{*}{170} & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO 19øø \\
\hline 1100 & TYPE 180 \\
\hline \multirow[t]{7}{*}{180} & FORMAT ('\$R1®1 (KOHMS) = ? ') \\
\hline & ACCEPT 130,RG \\
\hline & TYPE 140 \\
\hline & ACCEPT 130,RS \\
\hline & GAIN=RS/RG \\
\hline & DBG=20.* (ALOG10(GAIN)) \\
\hline & TYPE 199, GAIN, DBG \\
\hline 190 & FORMAT (' DC GAIN = ',Gll.4,' (V/V) [',Gl0.3,' (DB)]') \\
\hline 195 & TYPE 195 (19 CHECK AGAIN (Y/N) ? , S) \\
\hline & ACCEPT 170,ANS \\
\hline
\end{tabular}
Table F-2 FILTER - Main Program Listing (contd)
\begin{tabular}{|c|c|}
\hline 1900 & IF (ANS.EQ.YES) GOTO 1100 TYPE 198 \\
\hline \multirow[t]{9}{*}{198} & FORMAT ('SPOLE FREQ (HZ) = ? ') \\
\hline & ACCEPT 130,FREQ \\
\hline & \(\mathrm{R}(1,1)=\mathrm{RG}\) \\
\hline & \(\mathrm{R}(1,2)=R S\) \\
\hline & \(\mathrm{FP}(1)=\mathrm{FREQ}\) \\
\hline & \(\operatorname{AV}(1,1)=\operatorname{GAIN}\) \\
\hline & \(\operatorname{AV}(1,2)=20 . *(\operatorname{ALOG10}(\mathrm{GAIN}))\) \\
\hline & \(\mathrm{NTY}(1)=2\) \\
\hline & IF (NST.NE.1) GOTO 6000 \\
\hline \multicolumn{2}{|l|}{C} \\
\hline c & Stage 2. This stage can be used for any type of filter. The \\
\hline c & program accepts the filter type and then calls the appropriate sub- \\
\hline C & routine to perform the actual calculations. If the entire board is \\
\hline C & not being designed, the program jumps to the closeout section; \\
\hline C & otherwise, the next stage is designer. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 2000 & TYPE 200 \\
\hline 208 & FORMAT (' STAGE 2:') \\
\hline 2100 & TYPE 210 \\
\hline 210 & FORMAT ('\$FILTER TYPE (NONE=0, LP=1, HP=2, BP=3, BR=4)=3') ACCEPT 22ø, NTYP \\
\hline \multirow[t]{4}{*}{220} & FORMAT (II) \\
\hline & NTYP \(=\) NTYP +1 \\
\hline & GOTO (2200.2300, 2400.2500,2600) NTYP \\
\hline & GOTO 2100 IREPEAT ABOVE IF GOTO OUT OF RANGE \\
\hline \multirow[t]{2}{*}{2200} & CALL DC(2) \\
\hline & GOTO 2980 \\
\hline \multirow[t]{2}{*}{2300} & CALL LP (2) \\
\hline & GOTO 2900 \\
\hline \multirow[t]{2}{*}{24øø} & CALL HP(2) \\
\hline & GOTO 2900 \\
\hline \multirow[t]{2}{*}{2500} & CALL BP(2) \\
\hline & GOTO 2900 \\
\hline \multirow[t]{2}{*}{2600} & CALL BR(2) \\
\hline & GOTO 2900 \\
\hline \({ }_{c}^{2900}\) & IF (NST. NE.1) GOTO 6000 \\
\hline c & Stage 3. Tris stage can only be used as a lowpass filter. \\
\hline
\end{tabular}
Table F－2 FILTER－Main Program Listing（contd）
If the entire board is not being designed，after subroutine return
the progran．jumps to the closeout section；otherwise，the next stage is designed．
TYPE 300
TYPEMAT（＇STAGE 3：＇）
FORMAT（＇GAIN CAPABILITY \(1 / 2\) OTHER STAGES＇）
CALL LP（3）
IF（NST．NE．1）GOTO 6øロロ
Stage 4．This stage can be used for gain or for gain and a
single lowpass pole only．The program accepts values for stage gain and for one of the gain－setting resistors．It calculates
and displays the value of the other resistor．After accepting a
for a nonzero frequency．If it finds one，it calculates and displays
the required capacitor size．After allowing iterative component entries and parameter calculations，the program stores the component and parameter values in the proper comm jumps to the closeout section；otherwise，the next stage is designed．

FORMAT（＇FOURTH STAGE：＇）
FORMAT（＇GAIN AND／OR SINGLE LP POLE ONLY＇）
TYPE 120
ACCEPT 130，GAIN
Component calculation：
FOREMAT
ACCEPF／GAIN
Rl＝RF \(430, \mathrm{Rl}\)
FORMAT（＇\＄R3日9（KOHMS）＝？＇）
8
\(\stackrel{Q}{\square}\)
\(\stackrel{\otimes}{\sim}\)
430 ～n
昌
Table F-2 Filter - Main Program Listing (contd)

Table F-2 FILTER - Main Program Listing (contd)
\begin{tabular}{|c|c|}
\hline 4900 & ```
IF (ANS.EQ.YES) GOTO 42 ص0
\(R(4,1)=R 1\)
\(R(4,2)=R F\)
\(\operatorname{CAP}(4,1)=C\)
\(\operatorname{AV}(4,1)=-\operatorname{GAIN}\)
\(\operatorname{AV}(4,2)=20 . *(\operatorname{ALOGIC}(\operatorname{GAIN}))\)
\(\operatorname{FP}(4)=F R E Q\)
DP \((4)=\varnothing\).
\(\operatorname{NTY}(4)=1\)
IF (FREQ.NE.D.) \(\operatorname{NTY}(4)=2\)
``` \\
\hline c & \\
\hline c & Stage 5. This stage can be used for any type of filter. The \\
\hline C & program accepts the filter type and then calls the appropriate sub- \\
\hline c & routine to perform the actual calculations. \\
\hline C & \\
\hline 5000 & TYPE 500 \\
\hline 590 & FORMAT (' STAGE 5:') \\
\hline 5100 & \begin{tabular}{l}
TYPE 210 \\
ACCEPT 220, NTYP
\end{tabular} \\
\hline & NTYP=NTYP+1 \\
\hline & \begin{tabular}{l}
GOTO (5200.5300,5400.5500.5600) NTYP \\
goto 5100 l repeat above if goto out of range
\end{tabular} \\
\hline 5200 & CALL DC(5) \\
\hline & GOTO 60ø日 \\
\hline 5300 & CALL LP(5) \\
\hline 5400 & GOTO 6000 \\
\hline & GOTO 6øø® \\
\hline 550ø & CALL BP(5) \\
\hline & GOTO 60ø0 \\
\hline c
c & CALL BR(5) \\
\hline c & Closeout section. This section allows the user to change any \\
\hline C & stage in case of error or changed specifications. This change will \\
\hline C & affect only the stage selected; all other stages' component and \\
\hline C & parameter values stored in COMMON will be unchanged. Once all \\
\hline C & stages are satisfactory, tl.e program allows the user the \\
\hline c & options of printing out a table of component values and of \\
\hline
\end{tabular}
Table F-2 FILTER - Main Program Listing (contd)
\begin{tabular}{|c|c|}
\hline C & storing stage parameters in a floppy disk file. Finally, the program \\
\hline C & allows the user the option of restarting the program to design a new \\
\hline C & filter card. \\
\hline \multicolumn{2}{|l|}{c} \\
\hline 6000 & TYPE 6øø \\
\hline \multirow[t]{4}{*}{600} & FORMAT ('Ø ANY ChANGES (Y/N) ? ', \$) \\
\hline & ACCEPT 179, ANS \\
\hline & IF (ANS.NE.YES) GOTO 7000 \\
\hline & TYPE 616 \\
\hline \multirow[t]{2}{*}{610} & FORMAT ('\$STAGE TO BE CHANGED (1-5) = ? ') ACCEPT 50,NST \\
\hline & NST=NST+1 \\
\hline & GOTO 20000 \\
\hline 7000 & TYPE 620 \\
\hline \multirow[t]{2}{*}{620} & FORMAT ('\$RESISTOR AND PARAMETER PRINTOUT (Y/N) ? ') ACCEPT 17ø.ANS \\
\hline & IF (ANS.EQ.YES) CALL PRINT \\
\hline 7100 & TYPE 630 \\
\hline \multirow[t]{5}{*}{630} & FORMAT ('\$STORE PARAMETERS ON DISK (Y/N) ? ') \\
\hline & ACCEPT 170,ANS \\
\hline & IF (ANS.NE.YI 3) GOTO 7200 \\
\hline & CALL STORE \\
\hline & GOTO 7198 \\
\hline 7200 & PRINT 640 \\
\hline \multirow[t]{3}{*}{640} & FORMAT ('l') \\
\hline & CALL Close (6) \\
\hline & TYPE 650 \\
\hline \multirow[t]{4}{*}{650} & FORMAT ('SRESTART PROGRAM (Y/N) ? ') \\
\hline & ACCEPT 170, ANS \\
\hline & IF(ANS.EQ.YES) GOTO 10000 \\
\hline & END \\
\hline
\end{tabular}

Table F-3 Subroutine DC Listing
```

SUBROUTINE DC (NST)
C NST = Stage number (2,5) passed from calling program.
COMMON R(5,8), CAP (5,3),AV(5,2), DUMMY(20),NTY(5)
LOGICAL*l ANS,YES
DATA YES/1HY/
TYPE 100
FORMAT (' GAIN ONLY')
TYPE 110
FORMAT ('$DC GAIN (V/V) = ? ')
ACCEPT 120,GAIN
FORMAT (El2.5)
R8=10./GAIN
IF (NST.EQ.5) GOTO 1øø\emptyset
TYPE 130,208,R8
130 FORMAT (' R',I3,' = ',G10.3,' KOHMS')
GOTO 1100
TYPE 130,408,R8
1000 TYPE 130,
140 FORMAT ('ONUTE: STAGE INVERTS SIGNAL')
TYPE 15ø
150 FORMAT ('OCHECK ACTUAL COMPONENTS (Y/N) ? ',$)
ACCEPT 160, ANS
160 FORMAT (A1)
IF (ANS.NE.YES) GOTO 140\emptyset
CALL DCCHK (NST,R8,GAIN)
14øø R(NST,8)=R8
AV(NST, l)=-GAIN
AV(NST, 2)=20.*(ALOGI\emptyset(GAIN))
NTY(NST)=1
RETURN
END

```
\begin{tabular}{|c|c|}
\hline & SUBROUTINE DCCHK (NST, R8,GAIN) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & NST \(=\) Stage number (2,5) passed from calling subroutine. \\
\hline C & R8 = Gain setting resistor value passed to calling subroutine. \\
\hline C & GAIN = Stage gain (V/V) passed to calling subroutine. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & LOGICAL* 1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline & \begin{tabular}{l}
NLAB=2Ø8 \\
IF (NST.EQ.5) NLAB=408
\end{tabular} \\
\hline 1000 & TYPE 10Ø, NLAB \\
\hline \multirow[t]{2}{*}{100} & FORMAT (' R', I3, \({ }^{\text {( }}\) (KOHMS) \(=\) ? ', \$) \\
\hline & ACCEPT 110,R8 \\
\hline \multirow[t]{4}{*}{118} & FORMAT (E12.5) \\
\hline & GAIN \(=10 . / \mathrm{RB}\) \\
\hline & DBG \(=20 . *\) (ALOG10(GAIN) ) \\
\hline &  \\
\hline \multirow[t]{2}{*}{120} & FORMAT ('GAIN = ',Gll.4,' (V/V) ',GlØ.3.' (DB)') \\
\hline & TYPE 130 \\
\hline 130 & \[
\begin{aligned}
& \text { FORMAT (' REPEAT CHECK } \left.(Y / N))^{\prime}, \$\right) \\
& \text { ACCEPT } 14 \emptyset, \text { ANS }
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{140} & FORMAT (Al) \\
\hline & IF (ANS.EQ.YES) GOTO 1000 \\
\hline & RETURN \\
\hline & END \\
\hline
\end{tabular}

Table F-5 Subroutine LP Listing
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{SUBROUTINE LP (NST)} \\
\hline C & \\
\hline \multicolumn{2}{|l|}{\(C \quad N S T=\) Stage number ( \(2,3,5\) ) passed from calling program.} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & COMMON \(R(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), F P(5), \operatorname{DP}(5), \operatorname{DUMMY}(10), \operatorname{NTY}(5)\) LOGICAL*I ANS, YES \\
\hline & DATA YES/1HY/ TWOPI \(=6.2831853\) \\
\hline C & \(c=\) Value of fixed capacitor on circuit board in farads. \(C=1\). \(0 \mathrm{E}-06\) \\
\hline C & \(\mathrm{C} 2=\) Value of added fixed capacitor.
\[
c_{2}=\varnothing .0
\] \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get values from user: \\
\hline \multicolumn{2}{|l|}{C (} \\
\hline & TYPE 100 \\
\hline 100 & FORMAT (' SECOND ORDER LOW PASS FILTER') TYPE 110 \\
\hline 110 & FORMAT ('\$ADDITIONAL CAPACITORS ADDED (Y/N) ? ') ACCEPT 129 ANS \\
\hline 120 & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO 1500 \\
\hline 130 & TYPE 130 \\
\hline 136 & ACCEPT 150, C2 \\
\hline & \(C=C+(C 2 * 1.0 E-\varnothing 6)\) \\
\hline 1500 & TYPE 140 \\
\hline
\end{tabular}

Table F-5 Subroutine LP Listing (contd)
\begin{tabular}{|c|c|}
\hline 140 &  \\
\hline & ACCEPT 150,GAIN \\
\hline 150 & \[
\begin{aligned}
& \text { FORMAT (E12.5) } \\
& \text { TYPE } 160
\end{aligned}
\] \\
\hline 168 & FORMAT (' POLE FREQ (HZ), DAMPING COEFF = ? ', ) ACCEPT 17ø,FPOL, DAMP \\
\hline 178 & FORMAT (2E12.5) \\
\hline \multicolumn{2}{|l|}{\(\mathrm{C}^{170}\) FORMAT (2E12.5)} \\
\hline \(c\) & Calculate resistor values ( \(\mathrm{R}^{\prime} \mathrm{s}\) in fOhms ) : \\
\hline \multicolumn{2}{|l|}{c} \\
\hline & \[
\begin{aligned}
& \mathrm{Rl}=1 . /(20 \varnothing \varnothing . * T W O P I * F P O L * C * D A M P) \\
& \text { R2=1./(1øøø.*TWOPI*FPOL*C) }
\end{aligned}
\] \\
\hline & \(\mathrm{R} 3=\mathrm{R} 2\) \\
\hline & R4=1./(1000.*TWOPI*FPOL*C*SQRT(GAIN) ) \\
\hline & R6=10./SQRT (GAIN) \\
\hline & IF (NST.EQ.3) R4=R4/SQRT(GAIN) ICORRECT FOR LACK OF A4
IF (NST.EQ.3) R6=ø. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline c & Display resistor values: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & NN=NST*1øø \\
\hline & IF (NST.EQ.5) NN=4ø0 \\
\hline & TYPE 20ø, NN+1, R1 \\
\hline \multirow[t]{6}{*}{200} & FORMAT (' R', I3,' = ',G10.3,' KOHMS') \\
\hline & TYPE 20日, \(\mathrm{NN}+2, \mathrm{R} 2\) \\
\hline & TYPE 200, NN+3,R3 \\
\hline & TYPE 206, NN+4, R4 \\
\hline & IF (NST.EQ.3) GOTO 1600 \\
\hline & TYPE 200, NN+6,R6 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 1600 \\
& 210
\end{aligned}
\]} & TYPE 210 , \\
\hline & FORMAT ('grXø1 INFLUENCES DAMPING, RX64 / RX66 GAIN') \\
\hline & TYPE 220 \\
\hline \[
{ }_{C}^{220}
\] & FORMAT (' NOTE: STAGE INVERTS SIGNAL') \\
\hline \multirow[t]{3}{*}{C} & Check affects of components selected: \\
\hline & \\
\hline & TYPE 230 \\
\hline \multirow[t]{4}{*}{230} & FORMAT ('ØCHECK ACTUAL COMPONENTS (Y/N) ? ', \$) \\
\hline & ACCEPT 120, ANS \\
\hline & IF (ANS.NE.YES) GOTO 4000 \\
\hline & CALL LPCHK (NST, R1, R2,R3, R4, R6, C2, GAIN,FPOL, DAMP) \\
\hline \multirow[t]{15}{*}{4000} & R(NST, 1) \(=\) R1 \\
\hline & R(NST, 2) \(=\) R2 \\
\hline & R( (SST, 3) \(=\) R 3 \\
\hline & \(\mathrm{R}(\mathrm{NST}, 4)=\mathrm{R} 4\) \\
\hline & R(NST, 6) \(=\) R6 \\
\hline & \(\operatorname{CAP}(\mathrm{NST}, 1)=\mathrm{C} 2\) \\
\hline & \(\operatorname{CAP}(\mathrm{NST}, 2)=\mathrm{C} 2\) \\
\hline & AV(NST, 1) \(=-\mathrm{GAIN}\) \\
\hline & IF (NST.EQ.3) AV(NST, 1) =GAIN \\
\hline & AV(NST, 2) \(=20 . *\) (ALOGI®(GAIN) \()\) \\
\hline & FP( NST ) \(=\mathrm{FPOL}\) \\
\hline & \(\mathrm{DP}(\mathrm{NST})=\) DAMP \\
\hline & NTY (NST) \(=2\) \\
\hline & RETURN \\
\hline & END \\
\hline
\end{tabular}

Table F-6 Subroutine LPCHK Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE LPCHK (NST, R1,R2,R3,R4,R6, C2,GAIN, FPOL, DAMP) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & NST \(=\) Stage number ( \(2,3,5\) ) passed from calling program. \\
\hline C & Rl-R6 = Resistor values passed to calling program. \\
\hline C & \(\mathrm{C} 2=\) Additional capacitor value passed to calling program. \\
\hline C & GAIN = Stage gain (V/V) passed to calling program. \\
\hline C & FPOL \(=\) Stage pole frequency ( Hz ) passed to calling program. \\
\hline C & DAMP = Stage damping coefficient passed to calling program. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & TWOPI \(=6.2831853\) \\
\hline & LOGICAL*1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get values from user: \\
\hline C & \(\mathrm{C}=\) Value of fixed capacitor on filter board in uF. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{6}{*}{2000} & \(\mathrm{C}=1\). \\
\hline & C2=0. \\
\hline & GAIN=1 . \\
\hline & NN=NST*1ø口 \\
\hline & IF (NST.EQ.5) NN=40Ø \\
\hline & TYPE 100, \(\mathrm{NN}+1\) \\
\hline \multirow[t]{2}{*}{100} &  \\
\hline & ACCEPT 110,R1 \\
\hline \multirow[t]{10}{*}{110} & FORMAT (E12.5) \\
\hline & TYPE 100, \(\mathrm{NN}+2\) \\
\hline & ACCEPT 110,R2 \\
\hline & TYPE 100, NN+3 \\
\hline & ACCEPT 110,R3 \\
\hline & TYPE 10日, NN+4 \\
\hline & ACCEPT 110, R4 \\
\hline & IF (NST.EQ.3) GOTO 2100 \\
\hline & TYPE 100, NN+6 \\
\hline & ACCEPT 110,R6 \\
\hline 2100 & TYPE 120 \\
\hline \multirow[t]{2}{*}{120} & FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N) \(\mathbf{z}^{\prime}, \$\) ) \\
\hline & ACCEPT 130,ANS \\
\hline \multirow[t]{3}{*}{130} & \\
\hline & IF (ANS.NE.YES) GOTO 2200 \\
\hline & TYPE 150 \\
\hline \multirow[t]{3}{*}{150} & FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD) ?'. \$) \\
\hline & ACCEPT 160, C2 \\
\hline & \(\mathrm{C}=\mathrm{C}+\mathrm{C} 2\) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Calculate GAIN, FPOL, and DAMP: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{3}{*}{2200} & GA IN=R3/R4 \\
\hline & IF (NST.EQ.3) R6=10. \\
\hline & GAIN=GAIN* (10./R6) \\
\hline \multirow[t]{2}{*}{2400} & DBG=20.* (ALOG10(GAIN)) \\
\hline & TYPE 160,GAIN, DBG \\
\hline 160 &  \\
\hline & FPOL=1./(TWOPI*SQRT (1.E-06*R2*R3*C*C) \\
\hline
\end{tabular}

Table F-6 Subroutine LPCHK Listing (contd)


Table F-7 Subroutine HP Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE HP(NST) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & NST \(=\) Stage number ( 2,5 ) passed from ca: ling program \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & \(\operatorname{COMMON} \operatorname{R}(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{FP}(5), \operatorname{DP}(5), \operatorname{FZ}(5), \mathrm{DZ}(5), \mathrm{NTY}(5)\) LOGICAL* 1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline & TWOPI \(=6.2831853\) \\
\hline C & \(\mathrm{C}=\) Value of fixed capacitor on circuit board in farads. \(\mathrm{C}=1\). \(0 \mathrm{E}-06\) \\
\hline C & \(C 2\) = Value of additional capacitor on circuit board in farads. \(\mathrm{C} 2=0\). \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get values from user: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & TYPE 100 \\
\hline 100 & FORMAT (' SECOND ORDER HIGH PASS FILTER') TYPE 110 \\
\hline \multirow[t]{2}{*}{110} & FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N) \({ }^{\prime}\) ', \$) \\
\hline & ACCEPT 120,ANS \\
\hline \multirow[t]{3}{*}{120} & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO 1000 \\
\hline & TYPE 130 \\
\hline 130 & FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?',\$) ACCEPT 140, C2 \\
\hline \multirow[t]{2}{*}{140} & FORMAT (E12.5) \\
\hline & \(\mathrm{C}=\mathrm{C}+(\mathrm{C} 2 * 1 \cdot \mathrm{E}-06\) ) \\
\hline 1000 & TYPE 150 \\
\hline \multirow[t]{2}{*}{150} & FORMAT ('\$HI FREQ GAIN (V/V) = ? ') ACCEPT 146, GAIN \\
\hline & TYPE 160 \\
\hline \multirow[t]{2}{*}{160} & FORMAT ('\$POLE FREQ (HZ), DAMPING COEFF = ? ) \\
\hline & ACCEPT 170, FPOLE, DAMPP \\
\hline \multirow[t]{2}{*}{\({ }^{170}\)} & FORMAT (2E12.5) \\
\hline & \\
\hline C & Calculate resistor values (R's in kOhms): \\
\hline \multirow[t]{6}{*}{C} & \\
\hline &  \\
\hline & R2=1./(1000.*'TWOPI*FPOLE*C) \\
\hline & R3=R2 \\
\hline & R4=1./( \(2000 . *\) TWOPI *FPOLE*C*DAMPP*GAIN) \\
\hline & R5=10. \\
\hline
\end{tabular}

\section*{Table F-7 Subroutine HP Listing (contd)}
```

 R7=20.*DAMPP
 R8=10./GAIN
 FZERO=FPOLE*1.E-04
 DAMPZ=1.
 000
Display resistor values and hints:
NN=2ø0
IF (NST.EQ.5) NN=400
TYPE 200,NN+1,R1
FORMAT (' R',I3,' = ',G10.3,' KOHMS')
TYPE 200,NN+2,R2
TYPE 200,NN+3,R3
TYPE - 30,NN+4,R4
TYPF 00,NN+5,R5
TYP. 200,NN+7,R7
TYPE 200,NN+8,R8
TYPE 21ø
FORMAT ('ORX01 / RX@5 INFLUENCE DAMPING; RX@7 ZERO FREQ;
+ RX08 GAIN')
TYPE 220
FORMAT (, ****** FOR PROPER LOW FREQ ATTEN, RXO4*RXG7 =
+ RX03*RX08')
TYPE 230
FORMAT (7X,' AND RXø1*RXø8 > RX04*RXø5 ******')
TYPE 240
FORMAT ('g NOTE: STAGE INVERTS SIGNAL')
Check affects of components selected:
TYPE 245
245 FORMAT ('OCHECK ACTUAL COMPONENTS (Y/N) ? ',\$)
ACCEPT 120,ANS
IF (ANS.NE.YES) GOTO 4000
CALL HPCHK (NST,R1,R2,R3,R4,R5,R7,R8,C2,
GAIN, FPOLE, DAMPP, FZERO,DAMPZ)
R(NST, 1)=R1
R(NST, 2)=R2
R(NST,3)=R3
R(NST,4)=R4
R(NST,5)=R5
R(NST,7)=R7
R(NST,8)=R8
CAP(NST, 1)=C2
CAP(NST, 2)=C2
AV(NST,1)=-GAIN
AV(NST,2)=20.*(ALOG10(GAIN))
FP(NST)=FPOLE
DP(NST)=DAMPP
FZ(NST)=FZERO
DZ (NST)=DAMPZ
NTY(NST) =3
RETURN
END

```

Table F-8 Subroutine HPCHK Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE HPCHK (NST,R1,R2,R3,R4,R5,R7,R8,C2,GAIN, +FPOLE, DAMPP, FZERO, DAMPZ) \\
\hline c & \\
\hline c & NST = Stage number ( 2,5 ) passed from calling program. \\
\hline C & Rl-R8 = Resistor values passed to calling program. \\
\hline c & GAIN = Stage gain (V/V) passed to calling program. \\
\hline C & FPOLE \(=\) Stage pole frequency ( Hz ) passed to calling program. \\
\hline c & DAMPP \(=\) Stage pole damping coefficient passed to calling program. \\
\hline c & FZERO \(=\) Stage zero frequency ( Hz ) passed to calling program. \\
\hline \multirow[t]{5}{*}{c} & DAMPZ \(=\) Stage zero damping coefficient passed to calling program. \\
\hline & TWOPI \(=6.2831853\) \\
\hline & LOGICAL* 1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline & \\
\hline & \[
\begin{aligned}
& C=\text { Value of fixed capacitor in } u F \text {. } \\
& C=1 .
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{c} & C2 = Value of additional capacitor in uF. \\
\hline & C2=ø. \\
\hline \multicolumn{2}{|l|}{c} \\
\hline c & Get values from user: \\
\hline \multirow[t]{3}{*}{c} & \\
\hline & \(\mathrm{NN}=200\) \\
\hline & IF (NST.EQ.5) NN=400 \\
\hline 2000 & TYPE 240, \(\mathrm{NN+1}\) \\
\hline 240 & FORMAT (' R', I3,' (KOHMS) = ? ', \$) \\
\hline & ACCEPT 160,R1 \\
\hline \multirow[t]{14}{*}{160} & FORMAT (E12.5) \\
\hline & TYPE 240, \(\mathrm{NN}+2\) \\
\hline & ACCEPT 160,R2 \\
\hline & TYPE 240, NN+3 \\
\hline & ACCEPT 160,R3 \\
\hline & TYPE 240,NN+4 \\
\hline & ACCEPT 160,R4 \\
\hline & TYPE 240, \(\mathrm{NN}+5\) \\
\hline & ACCEPT 160, R5 \\
\hline & TYPE 240, NN+7 \\
\hline & ACCEPT 160,R7 \\
\hline & TYPE 240, \(\mathrm{NN}+8\) \\
\hline & ACCEPT 160,R8 \\
\hline & TYPE 170 \\
\hline 170 & FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N) \({ }^{\prime}\) ', \$) \\
\hline & ACCEPT 180, ANS \\
\hline \multirow[t]{3}{*}{180} & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO 2200 \\
\hline & TYPE 190 \\
\hline \multirow[t]{3}{*}{190} & FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?',\$) \\
\hline & ACCEPT 160, 22 \\
\hline & \(\mathrm{C}=\mathrm{C}+\mathrm{C} 2\) \\
\hline \multicolumn{2}{|l|}{} \\
\hline C & Calculate and display filter parameters: \\
\hline \multirow[t]{2}{*}{} & \\
\hline & AMULT \(=1\). \\
\hline \multirow{3}{*}{\[
2200
\]} & GAIN=10./R8 \\
\hline & DBG=20.*(ALOG10(GAIN)) \\
\hline & TYPE 250, GAIN, DBG \\
\hline 250 & FORMAT ('HI FREQ GAIN = ',G11.4,' (V/V) ',Glo.3,' (DB)') \\
\hline &  \\
\hline
\end{tabular}

Table F-8 Subroutine \(H P C H K\) Listing (contd)
```

 DAMPP=(SQRT(R2*R3))/(2.*R1)
 RT=(R4*R7) - (R3*R8)
 IF (RT.GT.0.0) GOTO 2100
 AMULT=-1.
 RT=-RT
 2100 FZERO=FPOLE*SQRT(RT/(R4*R7))
DAMPZ=SQRT((R2*R3*R7)/(R4*RT))
DAMPZ=DAMPZ*((R4*R5)-(RI*R8))/(2.*R1*R5)
IF (FZERO.GT.(FPOLE*1.E-04)) GUTO 2500
FZERO=FPOLE*1.E-04
DAMPZ=1.
2500 FZERO=AMULT*FZERO
TYPE 260,FZERO,DAMPZ
FORMAT (' ZERO FREQ (HZ) = ',G11.4,', ZERO DAMPING COEF = ',G10.3)
TYPE 265,FPOLE,DAMPP
FORMAT (' POLE FREQ (HZ) = ',GIO.3,', POLE DAMPING COEF = ',Gl0.3)
IF (AMULT.EQ.-1.) TYPE 270
FORMAT ('g****** WARNING! POOR LOW FREQ REJECTION - RX@3*RX08
+ > RX@4*RXØ7 ******')
IF (DAMPZ.LT.0.) TYPE 275
FORMAT ('g****** WARNING! LOW FREQ PHASE ERROR
+ RX01*RX08 < RX04*RX05 ******')
TYPE 280
280 FORMAT ('OREPEAT CHECK (Y/N)?',\$)
ACCEPT 180,ANS
IF (ANS.EQ.YES) GOTO 2000
RETURN
END

```

Table F-9 Subroutine BP Listing
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{SUBROUTINE BP(NST)} \\
\hline C & \\
\hline C & \(N S T=\) Stage number ( 2,5 ) passed from calling program \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & ```
COMMON R(5,8),CAP(5,3),AV(5,2),FP(5),DP(5),FZ(5),DZ(5),NTY(5)
LOGICAL*1 ANS,YES
``` \\
\hline & DATA YES/IHY/ \\
\hline & TWOPI \(=6.2831853\) \\
\hline C & \(C=\) value of fixed capacitor on circuit board in farads. \(C=1.0 E-06\) \\
\hline C & \(C 2=\) Value of additional capacitor in farads. \\
\hline & \(C 2=0\). \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get values from user: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & TYPE 100 \\
\hline 100 & FORMAT (' SECOND ORDER BAND PASS FILTER') \\
\hline & TYPE 110 \\
\hline \multirow[t]{2}{*}{110} & FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N)?', \$) \\
\hline & ACCEPT 120,ANS \\
\hline \multirow[t]{3}{*}{120} & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO \(10 \emptyset 0\) \\
\hline & TYPE 130 , \\
\hline \multirow[t]{2}{*}{130} & FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD) ?', \$) \\
\hline & ACCEPT 140, C2 \\
\hline
\end{tabular}

Table F-9 Subroutine BP Listing (contd)
```

140 FORMAT (E12.5)
C=C+(C2*1.E-06)
1000 TYPE 150
150 FORMAT ('SCENTER FREQ GAIN (V/V) = ?')
ACCEPT 140,GAIN
TYPE 160
FORMAT ('SCENTER FREQ (HZ), DAMPING COEFF = ? ')
ACCEPT 170,FPOLE,DAMPP
FORMAT (2E12.5)
Calculate resistor values (in kOhms):
R1=1./(2000.*TWOPI*FPOLE*C*DAMPP)
R2=1./(1000.*TWOPI*FPOLE*C)
R3=R2
R4=1./(2000.*TWOPI*FPOLE*(1.+DAMPP)*C*SQRT(GAIN))
R5=10./SQRT(GAIN)
FZERO=FPOLE*1.E-04
DAMPZ=0.
C Display resistor values:
NN=200
IF (NST.EQ.5) NN=400
TYPE 200,NN+1,R1
FORMAT (' R',I3,' = ',Gl0.3,' KOHMS')
TYPE 200,NN+2,R2
TYPE 200,NN+3,R3
TYPE 200,NN+4,R4
TYPE 20D,NN+5,R5
TYPE 210
FORMAT ('ORX01 INFLUENCES DAMPING; RX04 / RX05 GAIN')
Check affects of resistor selection:
TYPE 230
230 FORMAT (' ØCHECK ACTUAL COMPONENTS (Y/N) ? ',\$)
ACCEPT 120,ANS
IF (ANS.NE.YES) GOTO 4000
CALL BPCHK (NST,R1,R2,R3,R4,R5,C2,GAIN,FPOLE,
+DAMPP, FZERO, DAMPZ)
4000 R(NST, 1)=R1
R(NST, 2)=R2
R(NST, 3)=R3
R(NST,4)=R4
R(NST,5)=R5
CAP(NST,1)-
CAP(NST, 2)=C
AV(NST, 1)=-GAI_
AV(NST, 2)=20.*(ALUU\triangleO(GAIN))
FP(NST)=FPOLE
DP(NST)=DAMPP
FZ(NST)=FZERO
DZ(NST)=DAMPZ
NTY(NST)=4
RETURN
END

```
Table F-l Subroutine BPCHK Listing
SUBROUTINE BPCHK (NST,R1,R2,R3,R4,R5,C2, GAIN, FPOLE,
DAMPP, FZERO, DAMPZ)
NST \(=\) Stage number \((2,5)\) passed from calling program.
R1-R5 \(=\) Resistor values passed to calling program.
\(\mathrm{Rl}-\mathrm{R5}=\) Resistor values passed to calling program.
\(\mathrm{GAIN}=\) Stage gain \((\mathrm{V} / \mathrm{V})\) passed to calling program.
FPOLE \(=\) Stage pole frequency (Hz) passed to calling program.
DAMPP \(=\) Stage pole damping coefficient passed to calling program.

DAMPZ= Stage zero damping coefficient passed to calling program.
TWOPI \(=6.2831853\)
LOGICAL*1 ANS, YES
DATA YES/1HY/
NN \(=20 \mathrm{D}\)
IF (NST.EQ.5) \(N N=400\)
- gn ut paeoq vo roztredes paxif fo onten \(=0\)

Get values from user:
\((\) KOHMS \()=? \quad, \$\))
FORMAT (' ADDITIONAL CAPACITORS ADDED (\(\mathrm{Y} / \mathrm{N}\)) \(\mathbf{3}^{\prime}, \mathrm{F}\)) ACCEPT 130.ANS
Table F-lø Subroutine BPCHK Listing (conta)

Table F-Il Subroutine BR Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE BR(NST) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & NST = Stage number (2,5) passed from calling program \\
\hline \multicolumn{2}{|l|}{c} \\
\hline & \(\operatorname{COMMONR}(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{FP}(5), \operatorname{DP}(5), \operatorname{FZ}(5), \operatorname{DZ}(5), \operatorname{NTY}(5)\) LOGICAL*I ANS, YES \\
\hline & \begin{tabular}{l}
DATA YES/1HY/ \\
TWOPI=6.2831853
\end{tabular} \\
\hline C & \(c=\) Value of fixed capacitor on circuit board, in farads. \(\mathrm{C}=1.0 \mathrm{E}-06\) \\
\hline C & \(\mathrm{C} 2=\) Value of additional capacitor in farads. \(C 2=0\). \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get values from user: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & TYPE 100 \\
\hline 100 & FORMAT (' SECOND ORDER BAND REJECT FILTER') TYPE 110 \\
\hline \multirow[t]{2}{*}{110} & FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N)?',\$) \\
\hline & ACCEPT 120,ANS \\
\hline \multirow[t]{2}{*}{120} & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO 1صDD TYPE 130 \\
\hline \multirow[t]{2}{*}{130} & FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD) ? \({ }^{\text {' }}\)) \\
\hline & ACCEPT 140, C2 \\
\hline \multirow[t]{2}{*}{140} & FORMAT (E12.5) \\
\hline & \(C=C+(C 2 * 1 . E-06)\) \\
\hline 1080 & TYPE 150 \\
\hline \multirow[t]{2}{*}{150} & FORMAT ('SDC GAIN (V/V) = ? ') ACCEPT 140,GAIN \\
\hline & TYPE 160 \\
\hline \multirow[t]{3}{*}{160} & FORMAT ('\$ZERO FREQ (HZ) = ? ') \\
\hline & ACCEPT 140, FZERO \\
\hline & TYPE 170 \\
\hline \multirow[t]{2}{*}{170} & FORMAT ('\$POLE EREQ (HZ), DAMPING COEFF = ? ') \\
\hline & ACCEPT 180,FPOLE, DAMPP \\
\hline 180 & FORMAT (2E12.5) \\
\hline \multirow[t]{3}{*}{C} & Determine case: \\
\hline & NCASE=1 \\
\hline & IF (FPOLE.LT.FZERO) NCASE=2 \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Calculate resistor values, in kohms: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & R1=1./(2000.*'TWOPI*FPOLE* \({ }^{\text {* }}\) (DAMPP) \\
\hline & R2=1./(100ø.*TWOPI*FPOLE*C) \\
\hline & \(\mathrm{R} 3=\mathrm{R} 2\) \\
\hline & RT=2øøロ.*TWOPI* (FPOLE**3)*DAMPP*C*GAIN \\
\hline & \[
\mathrm{R} 5=10
\] \\
\hline \multirow[t]{4}{*}{C} & Case I (FPOLE equal to or greater than FZERO): R6=0. \\
\hline & RT=ABS ((FPOLE*FPOLE)-(FZERO*FZERO)) \\
\hline & R7= (20.*DAMPP*FPOLE*FPOLE)/RT \\
\hline & IF (NCASE.EQ.1) GOTO 1100 \\
\hline \multirow[t]{3}{*}{C} & Case II (FPOLE less than FZERO) : \\
\hline & R6=R7 \\
\hline & \(R 7=0.0\) \\
\hline 1190 & R8 \(=((\mathrm{FZERO} / \mathrm{FPOLE}) * * 2) *(10 . / \mathrm{GAIN})\) \\
\hline & \\
\hline
\end{tabular}

Table F-11 Subroutine BR Listing (contd)

Table F-12 Subroutine BRCHK Listing
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{SUBROUTINE BRCHK (NST,R1,R2,R3,R4,R5,R6,R7,RB, C2,GAIN, +FPOLE, DAMPP, FZERO, DAMPZ)} \\
\hline C & \\
\hline C & NST \(=\) Stage number (2,5) passed from calling program. \\
\hline C & (- value for NST implies FPOLE and FZERO already contain \\
\hline C & values from calling program). \\
\hline C & R1-R8 \(=\) Resistor values passed to calling program. \\
\hline c & GAIN \(=\) Stage gain (V/V) passed to calling program. \\
\hline C & FPOLE \(=\) Stage pole frequency (Hz) passed to calling program. \\
\hline C & \(D A M P P=\) Stage pole damping coefficient passed to calling program. \\
\hline C & FZERO \(=\) Stage zero frequency (Hz) passed to calling program. \\
\hline C & DAMPZ \(=\) Stage zero damping coefficient passed to calling program. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{LOGICAL*1 ANS, YES DATA YES/1HY/}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{TWOPI \(=6.2831853\)} \\
\hline & IF (NST.LT.0) GOTO \(100 \emptyset\) \\
\hline C & \multirow[t]{2}{*}{Get values of FPOLE and FZERO to determine case:
TYPE IDO} \\
\hline & \\
\hline \multirow[t]{2}{*}{100} & FORMAT (' NOMINAL POLE FREQ (HZ) \(=2^{\prime}, \$\)) \\
\hline & ACCEPT 110,FPOLE \\
\hline \multirow[t]{2}{*}{110} & FORMAT (E12.5) \\
\hline & TYPE 120 \\
\hline \multirow[t]{3}{*}{120} & FORMAT (' NOMINAL ZERO FREQ (HZ) \(=\) (\({ }^{\prime}\) (\$) \\
\hline & ACCEPT \(110 . \mathrm{FZERO}\) \\
\hline & GOTO 1020 \\
\hline C & Already have FPOLE and FZERO: \\
\hline & NST \(=-\) NST \\
\hline \multirow[t]{2}{*}{\[
1020
\]} & NCASE=1 \\
\hline & IF (FPOLE.LT.FZERO) NCASE=2 \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get resistor values from user: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & \(N \mathrm{~N}=200\) \\
\hline & IF (NST. EQ.5) NN=400 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& C \\
& 2000
\end{aligned}
\]} & \(C=\) Value of fixed capacitor on board, in uF. \\
\hline & \(\mathrm{C}=1\). \\
\hline \multirow[t]{3}{*}{} & ```
C2 = Value of additional capacitors, in uF.
C2 = .
``` \\
\hline & AMULT \(=1\). \\
\hline & TYPE 130, NN+1 \\
\hline \multirow[t]{15}{*}{130} & \((\) KOHMS \()=? ~, ~ \$ ~) ~\) \\
\hline & ACCEPT 110,R1 \\
\hline & TYPE 130, NN+2 \\
\hline & ACCEPT 110,R2 \\
\hline & TYPE 130, NN+3 \\
\hline & ACCEPT 11ø.R3 \\
\hline & TYPE 130, NN+4 \\
\hline & ACCEPT 110.R4 \\
\hline & TYPE 130, NN+5 \\
\hline & ACCEPT 110, R5 \\
\hline & IF (NCASE.EQ.2) GOTO 1100 \\
\hline & TYPE 130,NN+7 \\
\hline & ACCEPT 110, R7 \\
\hline & \(\mathrm{R} 6=\varnothing .0\) \\
\hline & GOTO 1200 \\
\hline
\end{tabular}

Table F-12 Subroutine BRCHK Listing (contd)
```

1100 TYPE 130,NN+6
ACCEPT 110,R6
R7=0.0
1200 TYPE 130,NN+8
ACCEPT 1lø,R8
TYPE 140
140 FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N)?',$)
 ACCEPT 150,ANS
150 FORMAT (Al)
 IF (ANS.NE.YES) GOTO 1220
 TYPE 160
160 FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?',$)
ACCEPT 110,C2
C=C+C2
C Calculate and display filter parameters:
1220 IF (NCASE.EQ.2) GOTO 1300
C Case I:
RTI=(R3*R8)/(R4*R7)
IF (RTI.LT.1.) GOTO 1250
AMULT=-1.
1250 GAIN=AMULT*(10./R8)*(1.-RTI)
GOTO 140\emptyset
C Case II:
1300 RTII=(R3*R8)/(R4*R6)
GAIN=(1\emptyset./R8)*(RTII+1.)
1400 DBG=20.*(ALOG10(GAIN))
TYPE 25\emptyset,GAIN,DBG
250 FORMAT (' DC GAIN = ',Gl1.4,' (V/V) ',Gl0.3,' (DB)')
FPOLE=1./(TWOPI*SQRT(1.E-D6*R2*R3*C*C))
DAMPP=(SQRT(R2*R3))/(2.*R1)
IF (NCASE.EQ.2) GOTO 1500
C Case I:
FZERO=SQRT(FPOLE*FPOLE*ABS(1.-RTI))
GOTO 1600
C Case II:
1500 FZERO=SQRT(FPOLE*FPOLE*(1.+RTII))
1600 RT=(R1*R8)/(R4*R5)
DAMPZ=(1.-RT)/(2.E-Ø3*RI*C*TWOPI*FZERO)
FZERO=AMULT*FZERO
TYPE 260,FZERO, DAMPZ
260 FORMAT (' ZERO FREQ (HZ) = ',G1I.4,' ZERO DAMPING COEF = ',Gl\emptyset.3)
TMPE 265,FPOLE, DAMPP (HO FORMAT (' POLE FREQ (HZ) = ,G11.4,' POLE DAMPING COEF = ',G10.3)
AMPING COEF = ',G10.3)
IF (AMULT.EQ.-1.) TYPE 270
270 FCRMAT ('G****** WARNING - IMPROPER OPERATION POSSIBLE!
+RX03*RX08 > RX04*RX07 ******')
TYPE 280
280 FORMAT ('@MORE CHECKS (Y/N) ? ',\$)
ACCEPT 150.ANS
IF (ANS.EQ.YES) GOTO 2000
RETURN
END

```

Table F-l3 Subroutine PRINT Listing


Table F-13 Subroutine PRINT Listing (contd)


Table F-14 Subroutine RPRINT Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE RPRINT (NST) \\
\hline C & \\
\hline C & NST \(=\) Stage number ( \(2,3,5\) ) passed from calling program. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & COMMCN \(R(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{FP}(5), \operatorname{DP}(5), \mathrm{FZ}(5), \mathrm{DZ}(5), \mathrm{NTY}(5)\) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & NN=NST* 100 \\
\hline & IF (NST.EQ.5) NN=40Ø \\
\hline C & \\
\hline C & Print resistor values: \\
\hline \multicolumn{2}{|l|}{c} \\
\hline & DO \(100 \emptyset, N=1,8\) \\
\hline & IF(R(NST,N).EQ.ø.) GOTO 1000 \\
\hline & PRINT 100,NN+N,R(NST, N) \\
\hline 100 & FORMAT (1X,T8, 'R', I3, \(=\) ',G11.4,' KOHMS') \\
\hline 1000 & CONTINUE \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Print capacitor values: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & NUM=NST \\
\hline & IF (NST.EQ.2) NUM=1 \\
\hline & PRINT \(110, N U M, C A P(N S T, 1)\) \\
\hline 110 & FORMAT (1X,T8,'C', II,' = ',G11.4,' UFD') \\
\hline & PRINT 110,NUM+1, CAP (NST, 2) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Print resistor effects hints: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 1150 & GOTO (2000,1200,1300,1400,1500) NTY(NST) \\
\hline 1200 & PRINT 130 \\
\hline \multirow[t]{2}{*}{130} & FORMAT (12X,'RX01 CHANGES DAMPING; RXø4 / RXø6 GAIN') \\
\hline & GOTO 2000 \\
\hline 1300 & PRINT 140 \\
\hline \multirow[t]{3}{*}{140} & FORMAT (12X,'RXøl / RXø5 CHANGE DAMPING; RXø7 ZERO FREQ; \\
\hline & + RXO8 GAIN') \\
\hline & PRINT 145 \\
\hline \multirow[t]{3}{*}{145} & FORMAT (14X,'****** FOR BEST LOW FREQ PERFURMANCE, \\
\hline & + RX04*RX07 \(=\) RX03*RX08 \({ }^{\prime}\) ) \\
\hline & PRINT 148 \\
\hline \multirow[t]{2}{*}{148} & FORMAT (21X,'AND RXø1*RXø8 < RXø4*RXø5 ******') \\
\hline & GOTO 2900 \\
\hline 1400 & PRINT 150 \\
\hline \multirow[t]{2}{*}{150} & FORMAT (12X,'RX⿹1 CHANGES DAMPING; RX04 / RX05 GAIN') \\
\hline & GOTO 2000 堲 \\
\hline 1500 & PRINT 160 \\
\hline \multirow[t]{2}{*}{160} & FORMAT (12X,'RXO1 CHANGES DAMPING; RXø8 GAIN') \\
\hline & PRINT 165 \\
\hline \multirow[t]{4}{*}{165} & FORMAT (14X, '****** FOR BEST FREQ REJECTION, RXø1*RX@8 \\
\hline & + = RX04*RX85 ******') \\
\hline & TEMP=ABS (FZ (NST)) \\
\hline & IF (FP(NST).GT.TEMP) PRINT 168 \\
\hline \multirow[t]{2}{*}{168} & FORMAT (14X,'****** FOR PROPER OPERATION, RX04*RX07 \\
\hline & + > RX03*RX08 ******') \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Print stage gain: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{3}{*}{2000} & IF (NTY(NST).EQ.3) GOTO 2100 \\
\hline & IF (NTY(NST).EQ.4) GOTO 220ø \\
\hline & PRINT 170, ( \(\operatorname{AV}(N S T, N), N=1,2)\) \\
\hline \multirow[t]{2}{*}{170} & FORMAT ('0', Tl6, \({ }^{\prime}\) DC GAIN \(=\) ', Gll.4,' (V/V) [', \\
\hline & +Gl0.3,' (DBV)]') \\
\hline
\end{tabular}

Table F-14 Subroutine RPRINT Listing (contd)


Table F-15 Disk File Loading Program Listing


Table F-16 Sabroutine STORE Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE STORE \\
\hline \multirow[t]{5}{*}{C} & \\
\hline &  \\
\hline & COMMON /SPECS/SENS \((3,3)\), PREAM \((5,3), \operatorname{FILT}(5,5,3)\), UNITS \\
\hline & LOGICAL* 1 TITLE(13), UNITS(16), NULL \\
\hline & DATA NULL/1H / \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get file name and channel (record) number: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & TYPE 100 \\
\hline \multirow[t]{2}{*}{100} & FORMAT ('\$DISK FILE NAME (FORM:DXN:XXXXX.YYY) ? ') \\
\hline & ACCEPT 11ø,TITLE \\
\hline \multirow[t]{2}{*}{110} & FORMAT (13A1) \\
\hline & TYPE 120 \\
\hline \multirow[t]{2}{*}{120} & FORMAT ('\$CHANNEL NUMBER (1-16) \(=\) ? ') \\
\hline & ACCEPT 130,NCH \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{130 FORMAT (I2)}} \\
\hline & \\
\hline C & Load COMMON /SPECS/ from file: \\
\hline \multirow[t]{4}{*}{C} & \\
\hline & CALL SPECFI (2,NCH,NSTA, TITLE) \\
\hline & \(\mathrm{NCH}=\mathrm{NCH}-1\) \\
\hline & IF (NSTA.NE.0) GOTO 2000 \\
\hline \multicolumn{2}{|l|}{c} \\
\hline C & Blank channel (record); clear COMMON /SPECS/: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & DO \(1000 \mathrm{~N}=1.3\) \\
\hline & DO \(1000 \mathrm{M}=1,5\) \\
\hline & SENS ( \(\mathrm{N}, \mathrm{M}\) ) \(=0\). \\
\hline \multirow[t]{3}{*}{1000} & CONTINUE \\
\hline & DO \(1100 \mathrm{~N}=1.5\) \\
\hline & DO 1100 M=1.5 \\
\hline & PREAM ( \(\mathrm{N}, \mathrm{M}\) ) \(=0\). \\
\hline \multirow[t]{3}{*}{1100} & CONTINUE \\
\hline & DO 1200 \(\mathrm{M}=1,16\) \\
\hline & UNITS (M) =NULL \\
\hline \multirow[t]{5}{*}{1200} & CONTINUE \\
\hline & DO \(1300 \mathrm{M}=1.5\) \\
\hline & DO \(1300 \mathrm{~N}=1,5\) \\
\hline & DO \(1300 \mathrm{NN}=1,3\) \\
\hline & FILT (M, N, NN \(=0.01\) \\
\hline 1300 & CONTINUE \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Check which stages have filter parameters stored in them \\
\hline C & and load the parameters into COMMON /SPECS/: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 2000 & DO 7000 M=1,5 \\
\hline & IF (AV(M, 1).EQ.D.) GOTO 70.0 \\
\hline \multirow[t]{4}{*}{C} & Clear FILTER array for stage with parameters: \\
\hline & DO \(2100 \mathrm{~N}=1.5\) \\
\hline & DO \(2100 \mathrm{NN}=1,3\) \\
\hline & FILT (M, N, NN) \(=0.0\) \\
\hline 2100 & CONTINUE \\
\hline
\end{tabular}

Table F-16 Subroutine STORE Listing (contd)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Load FILTER with parameters: \\
\hline C & \\
\hline C & Stage gains: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & GAIN=AV (M, 2) \\
\hline & IF (NTYP(M).EQ.3) GOTO 31øø \\
\hline & IF (NTYP(M).EQ.4) GOTO 3200 \\
\hline & GOTO 3300 \\
\hline C & Change highpass gain to dc gain: \\
\hline \multirow[t]{2}{*}{3100} & GAIN=GAIN-40.*ALOG10(FP(M)/ABS (FZ (M)) ) \\
\hline & GOTO 33øø \\
\hline C & Change bandpass gain to dc gain: \\
\hline \multirow[t]{2}{*}{3200} & GAIN=GAIN-20.*ALOG10(FP(M)/ABS (FZ (M) ) \\
\hline & GAIN=GAIN+20.*ALOG1ø ( \(200 .+20 \emptyset . * D P(M)) /(10 \emptyset .1+2 . * D P(M))\) ) \\
\hline \multirow[t]{4}{*}{3300} & FILT \((M, 1,1)=1\). \\
\hline & FILT(M, 1, 2) =GAIN \\
\hline & FILT (M, 1, 3) \(=\emptyset\). \\
\hline & IF ( \(\operatorname{AV}(\mathrm{M}, 1) . \mathrm{LT} .0.) \mathrm{FILT}(\mathrm{M}, 1,3)=180\). \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Pole frequencies and damping coefficients: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & NEL=2. \\
\hline & IF (FP(M).E.2.0.) GOTO 4200 \\
\hline & IF (DP(M).NE.0.) GOTO \(410 \emptyset\) \\
\hline & FILT (M, NEL, 1) \(=2\). \\
\hline & FILT (M, NEL, 2) \(=\) FP(M) \\
\hline & FILT (M, NEL, 3) \(=0\). \\
\hline & NEL=NEL+1 \\
\hline & GOTO 4200 \\
\hline \multirow[t]{5}{*}{4100} & FILT (M, NEL, 1) \(=3\). \\
\hline & FILT (M, NEL, 2 ) \(=\) FP(M) \\
\hline & FILT (M, NEL, 3) = DP (M) \\
\hline & IF ( DP (M).EQ.-1.) FILT (M, NEL, 3) = ¢. \\
\hline & NEL=NEL+1 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 4200 \\
& C
\end{aligned}
\]} & CONTINUE \\
\hline & \\
\hline C & Zero frequencies and damping coefficients: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & IF (FZ(M).EQ.0.) GOTO 5200 \\
\hline & IF (DZ (M).NE.0.) GOTO 5100 \\
\hline & FILT (M, NEL, 1) \(=4\). \\
\hline & FILT (M, NEL, 2) \(=\) FZ (M) \\
\hline & FILT \((M, N E L, 3)=0\). \\
\hline & NEL=NEL+1 \\
\hline & GOTO 520ø \\
\hline \multirow[t]{5}{*}{5106} & FILT (M, NEL, 1) \(=5\). \\
\hline & FILT (M, NEL, 2) =FZ (M) \\
\hline & FILT (M, NEL, 3 ) = DZ (M) \\
\hline & IF (DZ (M).EQ.-1.) FILT(M,NEL, 3) = \\
\hline & NEL=NEL+1 \\
\hline 5200 & CONTINUE \\
\hline 7000 & CONTINUE \\
\hline c & \\
\hline C & Store COMMON /SPECS/ in file: \\
\hline
\end{tabular}

Table F-16 Subroutine STORE Listing (contd)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{C} \\
\hline & CALL SPECFI ( \(3, \mathrm{NCH}, \mathrm{NSTA}, \mathrm{TITLE}\) ) & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{NCH}=\mathrm{NCH}-1\)}} \\
\hline C & & \\
\hline C & \multicolumn{2}{|l|}{Note file and channel on printout:} \\
\hline C & & \\
\hline 140 & PRINT 140, TITLE, NCH
FORMAT
('ORESULTS STORED & CHANNEL ',12) \\
\hline 140 & \begin{tabular}{l}
RETURN \\
END
\end{tabular} & Channel \({ }^{\text {a }}\) \\
\hline
\end{tabular}

Table F-17 COMMON /SPECS/ Definitions
COMMON definition statement:
COMMON /SPECS/ \(\operatorname{SENS}(3,3), \operatorname{PREAM}(5,3), \operatorname{FILT}(5,5,3)\), UNITS
Where:
```

SENS (3,3) = Parameters of sensor
PREAM (5,3) = Parameters of preamplifier
FILT (5,5,3) = Parameters of signal conditioning card
UNITS = Units of sensor (e.g./IN/SEC)
(UNITS is a LOGICAL*i l5-element array)

```

Array definitions:
    \(\operatorname{SENS}(Y, Z), \operatorname{PREAM}(Y, Z), \operatorname{FILT}(X, Y, Z)\)

Where:
\(X=\) Stage on signal conditioning card
\(Y=\) Parameter number
\(\mathrm{Z}=\) Parameter identifier/data as follows (For FILT, same pattern used for each \(X\) ):

Y, \(1=\) Type of parameter
\(\theta=\) Ignore
\(1=0 \mathrm{~Hz}\) gain/phase
\(2=\) Single pole
3 = Double pole
\(4=\) Single zero
5 = Double zero
\(Y, 2=0 \mathrm{~Hz}\) gain \((\mathrm{dB}) /\) pole/zero frequency ( Hz )
\(Y, 3=\mathrm{Hz}\) phase (deg) / pole/zero damping
coefficient

Table F-18 Subroutine SPECFI Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE SPECFI (NFUN, NCH, NSTA, TITLE) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & NFUN = Function ID passed from calling program: \\
\hline C & \(1=\) Create and write COMMON /SPECS/ into new file. \\
\hline C & \(2=\) Load COMMON/SPECS/ from old file. \\
\hline C & \(3=\) Write COMMON /SPECS/ into old file. \\
\hline C & \(\mathrm{NCH}=\) Channel number (1-16) to be written/read passed from \\
\hline C & calling program. NCH + 1 passed to calling program upon \\
\hline C & exit. \\
\hline C & NSTA \(=\) Record status passed to calling program. \\
\hline C & \(\emptyset=\) Blank record. \\
\hline C & \(1=\) Data in record. \\
\hline C & TITLE = File name (13 element LOGICAL*1 array; form: XXX:YYYYY.ZZZ) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow{4}{*}{c} & COMMON /SPECS/SENS (3,3), PREAM (5,3), FILT(5,5,3), UNITS \\
\hline & \begin{tabular}{l}
LOGICAL*1 TITLE(13),UNITS(16) \\
EQUIVALENCE (UNITS, TEMI)
\end{tabular} \\
\hline & DIMENSION TEMP(104), ZERO(104), TEM1 (4) \\
\hline & NSTA=1 \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Open file: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & IF (NFUN, EQ.1) GOTO 1000 \\
\hline & CALL ASSIGN(2,TITLE, 13, OLD') \\
\hline & GOTO 110Ø \\
\hline 1000 & CALL ASSIGN(2,TITLE, 13, 'NEW') \\
\hline \multirow[t]{2}{*}{1100} & DEFINE FILE 2 ( \(16,208, \mathrm{U}, \mathrm{NCH}\) ) \\
\hline & GOTO (3000, 2000, 3000), NFUN \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & Read from file to COMMON /SPECS/ via array TEMP (NFUN = 2) : \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{7}{*}{2000} & READ ( \(2^{\prime} \mathrm{NCH}\) ) TEMP \\
\hline & NSTA=TEMP (1) \\
\hline & NCNT=2 \\
\hline & DO \(2200 \mathrm{~J}=1,3\) \\
\hline & DO \(2200 \mathrm{~K}=1,3\) \\
\hline & SENS ( \(J, K\) ) \(=\) TEMP ( NCNT ) \\
\hline & NCNT \(=\) NCNT +1 \\
\hline \multirow[t]{5}{*}{2206} & CONTINUE \\
\hline & DO \(2300 \mathrm{~J}=1,5\) \\
\hline & DO \(2300 \mathrm{~K}=1,3\) \\
\hline & \(\operatorname{PREAM}(J, K)=\) TEMP ( NCNT ) \\
\hline & NCNT \(=\) NCNT +1 \\
\hline \multirow[t]{6}{*}{2300} & CONTINUE \\
\hline & DO \(2400 \mathrm{~J}=1,5\) \\
\hline & DO \(240 \emptyset \mathrm{~K}=1.5\) \\
\hline & DO 2400 L=1,3 \\
\hline & FILT ( \(J, \mathrm{~K}, \mathrm{~L}\) ) \(=\) TEMP ( NCNT ) \\
\hline & NCNT=NCNT+1 \\
\hline \multirow[t]{4}{*}{2400} & CONTINUE \\
\hline & DO 250ø \(\mathrm{N}=1,4\) \\
\hline & TEM1 ( N ) \(=\) TEMP ( NCNT ) \\
\hline & NCNT \(=\) NCNT +1 \\
\hline
\end{tabular}

Table F-18 Subroutine SPECFI Listing (contd)
\begin{tabular}{|c|c|}
\hline 2500 & \begin{tabular}{l}
CONTINUE \\
GOTO 4000
\end{tabular} \\
\hline c & \\
\hline c & Write to file from COMMON /SPECS/ via array TEMP (NFUN = 1,3): \\
\hline C & \\
\hline \multirow[t]{5}{*}{3000} & TEMP ( 1 ) = NSTA \\
\hline & \[
\begin{aligned}
& \text { NCNT=2 } \\
& \text { DO } 3100 \quad J=1,3
\end{aligned}
\] \\
\hline & DO \(3100 \mathrm{~K}=1.3\) \\
\hline & \(\operatorname{TEMP}(\mathrm{NCNT})=\operatorname{SENS}(\mathrm{J}, \mathrm{K})\) \\
\hline & NCNT \(=\) NCNT +1 \\
\hline \multirow[t]{5}{*}{3100} & continue \\
\hline & DO \(3200 \mathrm{~J}=1,5\) \\
\hline & DO \(3200 \mathrm{~K}=1,3\) \\
\hline & \(\operatorname{TEMP}(\operatorname{NCNT})=\operatorname{PREAM}(\mathrm{J}, \mathrm{K})\) \\
\hline & NCNT \(=\) NCNT +1 \\
\hline \multirow[t]{6}{*}{3200} & CONTINUE \\
\hline & DO \(3300 \mathrm{~J}=1.5\) \\
\hline & DO \(3300 \mathrm{~K}=1,5\) \\
\hline & DO \(3300 \mathrm{~L}=1.3\) \\
\hline & \(\operatorname{TEMP}(\) NCNT \()=\) FILT \((J, K, L)\) \\
\hline & NCNT \(=\) NCNT +1 \\
\hline \multirow[t]{4}{*}{3300} & CONTINUE \\
\hline & DO \(3350 \mathrm{~N}=1,4\) \\
\hline & \(\operatorname{TEMP}(\mathrm{NCNT})=\operatorname{TEM1}(\mathrm{N})\) \\
\hline & NCNT \(=\) NCNT +1 \\
\hline \multirow[t]{4}{*}{3350} & continue \\
\hline & IF(NFUN.EQ.1) GOTO 3400 \\
\hline & WRITE(2'NCH) TEMP \\
\hline & GOTO 4øø日 \\
\hline & Fill rest of file with zeroes (NFUN = 1) : \\
\hline \multirow[t]{2}{*}{3400} & DO \(3500 \mathrm{~N}=1.100\) \\
\hline & \(\operatorname{ZERO}(\mathrm{N})=\emptyset\). \\
\hline \multirow[t]{5}{*}{3500} & CONTINUE \\
\hline & IF(NCH.NE.1) GOTO 3700 \\
\hline & WRITE(2'NCH) TEMP \\
\hline & DO \(3600 \mathrm{~N}=1,15\) \\
\hline & WRITE(2'NCH) ZERO \\
\hline \multirow[t]{2}{*}{3600} & CONTINUE \\
\hline & GOTO 4000 \\
\hline \multirow[t]{2}{*}{3700} & \(\mathrm{M}=\mathrm{NCH}\) \\
\hline & \(\mathrm{NCH}=1\) \\
\hline \multirow[t]{3}{*}{3800} & WRITE(2'NCH) ZERO \\
\hline & IF(NCH.NE.M) GOTO 3800 \\
\hline & WRITE(2'NCH) TEMP \\
\hline \multirow[t]{3}{*}{3900} & IF (NCH.EQ.17) GOTO 4000 \\
\hline & WRITE(2'NCH) ZERO \\
\hline & GOTO 3900 \\
\hline \multicolumn{2}{|l|}{c} \\
\hline c & Close file: \\
\hline \multicolumn{2}{|l|}{c} \\
\hline 4000 & CALL Close (2) \\
\hline & \[
\begin{aligned}
& \text { RETURN } \\
& \text { END }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Appendix G}

\section*{Signal Conditioning Circuit Card Analysis Software}

\section*{G. 1 PROGRAM OVERVIEW}

The following sections list the signal conditioning card analysis software. The standalone system computer was used for all software development. This software was written in FORTRAN (Digital Equipment Company [DEC] FORTRAN IV, version VølC-3A) running under DEC's RT-ll operating system (RT-11FB, version Vø2C-62B).

The program uses user-entered component values to calculate the filter parameters for a signal conditioning card. After the parameters are calculated, they are displayed on the system console for the user. Hints on component effects and warnings for values causing performance degradation (see Appendix D) are also displayed. The program then allows the user to reenter component values for error correction. After component values are settled on, the program prints out a table of component values and filter parameters for the card to aid in board configuration documentation. Finally, the program can store the complete card filter parameters in a floppy disk file for use by other programs.

In all its calculations, the program assumes lok \(\Omega\) values for the fixed resistors associated with the filter stages. It also assumes \(1.0 \mu F\) values for all fixed capacitors. However, since capacitor values can be changed (either by replacement or, in the case of stage 3, by adding a second capacitor in parallel with the fixed ones), the program asks if additional capacitors are added. If a "Y" reply is given to the question, the capacitor value is asked for. Since the entered value is added to the fixed value, a smaller capacitor can be reflected by entering (as a negative value) the difference between \(1.0 \mu \mathrm{~F}\) and the value used on the card.

Equations used in this program are covered in Appendix D. Since the program was designed for low frequency filter designs with moderate stage gains, no allowances for parasitics or amplifier gain-bandwidth product limitations are included in it.

This program consists of a main program with nine subroutines. The main program contains all user interfaces; it relies on subroutines to perform the actual calculations and data printouts. Both the main program and the subroutines use a COMMON block to store component values and filter parameters. This block is defined in Appendix F, Section F. 2 .

\section*{G. 2 MAIN ANALYSIS PROGRAM}

The main program handles overall communications with the user. It calculates the filter parameters for stages 1 and 4. Subroutines are called to handle calculations for stages 2,3 , and 5 as well as for table printout and disk filter parameter storage.

Table G-1 contains the main parameter calculation program.

\section*{G. 3 SUBROUTINE VDC}

This subroutine calculates stage gain for stage 2 or 5 when that stage is not used as a filter. It accepts resistor values from the user and calculates the gain. After displaying the result, it allows the user to reenter the values to correct errors. When satisfactory values are reached, the program stores the resistor values and stage gain in COMMON and returns to the calling program.

Table G-2 contains this subroutine.

\section*{G. 4 SUBROUTINE VLP}

This subroutine is called by the main program to calculate the lowpass filter parameters from user-entered resistor and capacitor values for stages 2, 3, and 5. After calculating and displaying the resulting filter parameters, the program allows the user to reenter values to correct errors. (See Section D.2.2 of Appendix D for a discussion of the equations used in this routine.) When satisfactory values are reached, the program stores the resistor values and stage parameters in COMMON and returns to the calling program.

Table G-3 contains this subroutine.

\section*{G. 5 SUBROUTINE VHP}

This subroutine is called by the main program to calculate the highpass filter parameters from user-entered resistor and capacitor
values for stages 2 or 5. (See Section D.4.2 of Appendix D for a discussion of the equations implemented in this subroutine.) The filter's reponse is modeled by a double pole at FPOLE and a double zero at the greater of the calculated FPOLE/10, 000 . (This modeling of FZERO is used to ease calculations in programs to calculate system transfer function responses.) After calculating and displaying the resulting filter parameters, the program allows the user to reenter values to correct errors. Should a negative value of \(\omega \mathrm{z}\) result from the calculations, a message to the user is displayed warning of improper filter response as discussed in Section D.4.2. (Such a value is also indicated by a negative frequency pole frequency in the display and array.) When satisfactory values are reached, the program stores the resistor values and stage parameters in COMMON and returns to the calling program.

Table G-4 contains the listing for this subroutine.

\section*{G. 6 SUBROUTINE VBP}

This subroutine is called by the main program to calculate the bandpass filter parameters from user-entered resistor and capacitor stages 2 or 5. (See Section D.5.2 of Appendi: D for a discussion of the equations implemented in this subroutine.) The filter's reponse is modeled by a double pole at fPOLE and a single zero at FPOLE/10, øøø. (This modeling of FZERO is used to ease calculations in programs to calculate system transfer function responses.) After calculating and displaying the resulting filter parameters, the program allows the user to reenter values to correct errors. When satisfactory values are reached, the program stores the resistor va!. ues and stage parameters in COMMON and returns to the calling program.

Table G-5 contains this subroutine.

\section*{G. 7 SUBROUTINE VBR}

This subroutine is called by the main program to calculate the band reject filter parameters from user-entered resistor values for stages 2 or 5. (See Section D.6.1.2 and D.6.2.2 of Appendix D for a discussion of the equations implemented in this subroutine.) VBR initially asks for nominal pole and zero frequency values to determine the proper case for the filter. It then accepts the relevant component values. After calculating and displaying the resulting filter parameters, the program allows the user to reenter values to correct errors. The program also checks for a negative damping coefficient and for a negative \(\omega \boldsymbol{c}\) value as discussed in Sections D.6.1.2 and D.6.2.2 of Appendix D. If such a value is detected, a message is displayed on the system console to alert the user. When satisfactory values are reached, the program stores the resistor values and stage parameters in COMMON and returns to the calling program.

Table G-6 contains this subroutine.

\section*{G. 8 SUBROUTINE VPRINT}

This subroutine prints on the line printer a table of resistor values and filter parameters. A user-entered title is added to the printout to allow positive identification. The routine used subroutine VRPRIN to print out the tables for stages 2, 3, and 5. The total conditioning card gain is calculated and printed out at the bottom of the page. The value printed is a simple total and thus may not reflect the actual card gain at a given frequency.

Table G-7 contains subroutine VPRINT.

\section*{G. 9 SUBROUTINE VRPRIN}

This subroutine is called by subroutine VPRINT to print resistor and filter parameter values for stages 2,3 , and 5.

Table G-8 contains this subroutine.
G. 10 SUBROUTINES STORE AND SPECFI

These subroutines handle the storage of filter parameter values in a floppy disk file. They are fully documented in Appendix \(F\). Sections F. 15 and F.16.
Table G-1 FCHECK - Main Program Listing
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
PROGRAM FILTER CARD RESISTOR VERIFICATION \\
\(\operatorname{COMMON} \operatorname{R}(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{FP}(5), \operatorname{DP}(5), \mathrm{FZ}(5), \mathrm{DZ}(5), \operatorname{NTY}(5)\) \\
LOGICAL*I ANS, YES \\
dATA YES/lHY/ \\
TWOPI \(=6.2831853\) \\
TYPE 100
\end{tabular} \\
\hline \[
100
\] & FOKMAT (' SDAS SIGNAL CONDITIONING CARD ANALYSIS PROGRAM') \\
\hline C & Clear common; reentrant point tor recalculating entire board: \\
\hline \multirow[t]{3}{*}{1900} & DO \(1300 \mathrm{~N}=1,5\) \\
\hline & DO \(1200 \mathrm{M}=1,8\) \\
\hline & \(\mathrm{R}(\mathrm{N}, \mathrm{M})=\varnothing\). \\
\hline \multirow[t]{10}{*}{1200} & CONTINUE \\
\hline & \(\operatorname{CAP}(\mathrm{N}, 1)=0\). \\
\hline & \(\operatorname{CAP}(\mathrm{N}, 2)=0\). \\
\hline & \(\operatorname{CAP}(\mathrm{N}, 3)=0\). \\
\hline & \(\operatorname{AV}(\mathrm{N}, 1)=0\). \\
\hline & \(\operatorname{AV}(\mathrm{N}, 2)=\varnothing\). \\
\hline & \(\mathrm{FP}(\mathrm{N})=0\). \\
\hline & \(\mathrm{DP}(\mathrm{N})=0\). \\
\hline & \(F Z(N)=\varnothing\). \\
\hline & \(\mathrm{DZ}(\mathrm{N})=\varnothing\). \\
\hline 1300 & continue \\
\hline & \\
\hline c & Begin. The program asks for the stage to be calculated and then jumps to that stage. \\
\hline c & \\
\hline & TYPE 110 \\
\hline 110 &  \\
\hline & ACCEPT 120,NST \\
\hline \multirow[t]{2}{*}{128} & FORMAT (Il) \\
\hline & NST \(=\) NS' \({ }^{\text {GOTO }}\) (1500, 1500, 2000, \(\left.3000,4000,5000\right)\) NST \\
\hline \[
{ }_{c}^{14}
\] & GOTO (1500,1500,2000,3000,4000,5000) NST \\
\hline c & Stage 1. Stage 1 can only be used for gain. The program requests the \\
\hline c & resistor values for the stage and calculates the stage gain. After \\
\hline c & displaying the gain, it requests a value for the stage pole frequency. \\
\hline c & This frequency is determined by values of the stage frequency-limiting \\
\hline c & components on the circuit board and must be determined by the user. \\
\hline
\end{tabular}
Table G-1 FCHECK - Main Program Listing (contd)
\begin{tabular}{|c|c|}
\hline C & (If no value is desired, Ø. \(\boldsymbol{D}\) can be entered.) The program allows \\
\hline C & all component values to be reentered in case an error was maven bentered, the program \\
\hline C & first try. When satisfactory values have been ene in the proper COMMON \\
\hline C & stores the component and parameter values in mot being designed, the promr \\
\hline C &  \\
\hline C & jumps to the closeout section; otherwise, the next stage is designed. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 1500 & TYPE 130 \\
\hline 130 & FORMAT (' STAGE 1:') \\
\hline 1600 & TYPE 140 \\
\hline \multirow[t]{2}{*}{140} & FORMAT ('SR101 (KOHMS \(=\) ? ') \\
\hline & ACCEPT 150,RG \\
\hline \multirow[t]{2}{*}{150} & FORMAT (El2.b) \\
\hline & TYPE 160 ( 160 ( \({ }^{\text {a }}\) ( \\
\hline \multirow[t]{4}{*}{160} & FORMAT ('\$RIO2 (KOHMS) \(=?\) ) ACCEPT 150,RS \\
\hline & GAIN \(=\) RS / RG \\
\hline & \(D B G=20 . *(A L O G 10(G A I N))\) \\
\hline &  \\
\hline \multirow[t]{2}{*}{178} &  \\
\hline & TYPE 185 \\
\hline \multirow[t]{2}{*}{185} & FORMAT ('SPOLE FREQ (HZ) = ? \\
\hline & ACCEPT 150, FREQ \\
\hline & TYPE 180 ( 180 \\
\hline \multirow[t]{2}{*}{180} & FORMAT ('gENTER AGAIN (Y/N) ? , \$) \\
\hline & ACCEPT 190, ANS \\
\hline \multirow[t]{9}{*}{190} & FORMAT (AI) \\
\hline & IF (ANS.EQ.YES) GOTO 1600 \\
\hline & \(\mathrm{R}(1,1)=\mathrm{RG}\) \\
\hline & R(1, 2) \(=\) RS \\
\hline & FP(1) \(=\mathrm{FREQ}\) \\
\hline & \(\operatorname{AV}(1,1)=G A I N\) \\
\hline & \(\operatorname{AV}(1,2)=20 . *(A L O G 10\langle G A I N))\) \\
\hline & NTY(1) \(=2\) \\
\hline & IF (NST.NE.1) GOTO 6000 \\
\hline C & \\
\hline C & Stage 2. This stage can be used for any calls the appropriate sub- \\
\hline C & program accepts the filter ify calculations. If the entire board is \\
\hline C & not being designed, the program jumps to the closeout section; \\
\hline
\end{tabular}
Table G－l FCHECK－Main Program Listing（contd）


\footnotetext{

FORMAT（＇STAGE \(3:{ }^{\prime}\) ）
IF（NST．NE．1）GOTO 6000
Stage 4．This stage can be used for gain or for gain and a single and calculates the stage gain．After displaying the stage gain on the system console，the program requests a capacitor value for the stage．
the program calculates and displays the pole frequency．It then
error correction．After satisfactory values have been entered，the


シuvuひuvuひひ
}
Table G-1 FCHECK - Main Program Listing (contd)
\begin{tabular}{|c|c|}
\hline C & locations. If the entire board is not being designed, the program \\
\hline C & jumps to the closeout section; otherwise, the next stage is designed. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 4000 & TYPE 400 \\
\hline 400 & FORMAT (' FOURTH STAGE:') \\
\hline 4100 & TYPE 410 \\
\hline \multirow[t]{2}{*}{410} & FORMAT ('\$R306 (KOHMS) = ? ') ACCEPT 150,R1 \\
\hline & TYPE 420 \\
\hline \multirow[t]{5}{*}{420} & FORMAT ('\$R309 (KOHMS)' = ? ') ACCEPT 150,RF \\
\hline & GAIN=RF/R1 \\
\hline & DBG=20.* (ALOGl0(GAIN)) \\
\hline & FREQ=0. \\
\hline & TYPE 430 \\
\hline \multirow[t]{4}{*}{430} & FORMAT ('\$C301 (UFD) ( \(=\emptyset\). IF NOT USED) \(=\) ? ') \\
\hline & ACCEPT 150, C \\
\hline & TYPE 170,GAIN, DBG \\
\hline & TYPE 440 \\
\hline \multirow[t]{4}{*}{440} & FORMAT (5X,'NOTE: STAGE INVERTS SIGNAL') \\
\hline & IF (C.EQ.0.) GOTO 4200 \\
\hline & FREQ \(=1060 . /\left(\right.\) TWOPI * \({ }^{\text {c }}\) (RF) \\
\hline & TYPE 450, FREQ \\
\hline \multirow[t]{14}{*}{\[
\begin{aligned}
& 450 \\
& 4200
\end{aligned}
\]} & FORMAT (' POLE FREQ \(=\) ',G11.4,' HZ') \\
\hline & TYPE 180 \\
\hline & ACCEPT 190.ANS \\
\hline & IF (ANS.EQ.YES) GOTO 4100 \\
\hline & R \((4,1)=\) R1 \\
\hline & \(\mathrm{R}(4,2)=\mathrm{RF}\) \\
\hline & CAP ( 4,1\()=\) C \\
\hline & \(\operatorname{AV}(4,1)=-\operatorname{GAIN}\) \\
\hline & \(\operatorname{AV}(4,2)=2 \emptyset . *(A L O G 10(G A I N))\) \\
\hline & \(\mathrm{FP}(4)=\mathrm{FREQ}\) \\
\hline & DP (4) = Ø . \\
\hline & NTY (4) \(=1\) \\
\hline & IF (FREQ.NE.ø.) NTY (4)=2 \\
\hline & IF (NST.NE.1) GOTO 60月0 \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Stage 5. This stage can be used for any type of filter. The \\
\hline C & program accepts the filter type and then calls the appropriate sub- \\
\hline
\end{tabular}
Table G-1 FCHECK - Main Program Listing (contd)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{C c routine to pe`form the actual calculations.} \\
\hline 5000 & TYPE 500 \\
\hline \multirow[t]{6}{*}{500
5160} & FORMAT (' Stage 5:') \\
\hline & TYPE 210 \\
\hline & ACCEPT 120, NTYP \\
\hline & NTYP \(=\) NTYP +1 \\
\hline & GOTO (5200.5300.5400,5500,5600) NTYP \\
\hline & GOTO 5100 : REPEAT ABOVE IF GOTO OUT OF RANGE \\
\hline \multirow[t]{2}{*}{5200} & CALL VDC(5) \\
\hline & GOTO 60øø \\
\hline \multirow[t]{2}{*}{5300} & CALL VLP(5) \\
\hline & GOTO 60.0 \\
\hline \multirow[t]{2}{*}{5400} & CALL VHP(5) \\
\hline & GOTO 6øøø \\
\hline \multirow[t]{2}{*}{5500} & CALL VBP(5) \\
\hline & GOTO 60ø日 \\
\hline 560.0 & CALL Vbr(5) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline c & Closeout section. This section allows the user to change any \\
\hline c & stage in case of error or changed specifications. This change will \\
\hline c & affect only the stage selected; all other stage's component and \\
\hline c & parameter values stored in COMMON will be unchanged. Once all \\
\hline c & stages are satisfactory, the program allows the user the \\
\hline c & options of printing out a table of component values and of \\
\hline C & storing stage parameters (SPECS) in a floppy disk file. \\
\hline C & Finally, the program allows the user the option of restarting \\
\hline C & the program to design a new filter card. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{2}{*}{60øø 6} & TYPE \(60 \emptyset\) \\
\hline & \begin{tabular}{l}
FORMAT ('gANY CHANGES (Y/N)?',S) \\
ACCEPT 190 ANS
\end{tabular} \\
\hline & IF (ANS.NE.YES) GOTO 7øøø TYPE 619 \\
\hline \multirow[t]{4}{*}{618} & format (' stage to be changedz', \$) \\
\hline & ACCEPT 120, NST \\
\hline & NST \(=\) NST +1 \\
\hline & GOTO 1400 \\
\hline 7000 & TYPE 620 \\
\hline
\end{tabular}
Table G-1 FCHECK - Main Program Listing (contd)


Table G-2 Subroutine VDC Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE VDC (NST) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & NST \(=\) Stage number (2,5) passed from calling program. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & COMMON \(\mathrm{R}(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{DUMMY}(20), \operatorname{NTY}(5)\) \\
\hline & LOGICAL* 1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline & TYPE 100 \\
\hline \multirow[t]{3}{*}{100} & FORMAT (' GAIN ONLY') \\
\hline & NLAB=208 \\
\hline & IF (NST.EQ.5) NLAB=408 \\
\hline 1008 & TYPE 110, NLAB \\
\hline \multirow[t]{2}{*}{110} & FORMAT ('\$R', I3,' (KOHMS) = ? ') \\
\hline & ACCEPT 120,R8 \\
\hline \multirow[t]{4}{*}{120} & FORMAT (E12.5) \\
\hline & GAIN \(=10 . / \mathrm{R} 8\) \\
\hline & DBG=20.* (ALOG1ø(GAIN) ) \\
\hline & TYPE 130,GAIN, DBG \\
\hline \multirow[t]{2}{*}{130} & FORMAT (' DC GAIN = ',G11.4,' (V/V) [',G]0.3.' (DB)]') \\
\hline & TYPE 140 \\
\hline \multirow[t]{2}{*}{140} & FORMAT ('ØNOTE: STAGE INVERTS SIGNAL') \\
\hline & TYPE 150 \\
\hline \multirow[t]{2}{*}{150} & FORMAT (' REPEAT CHECK (Y/N) ? \({ }^{\text {( }}\) ) \\
\hline & ACCEPT 160,ANS \\
\hline \multirow[t]{8}{*}{160} & FORMAT (Al) \\
\hline & IF (ANS.EQ.YES) GOTO l0ø口 \\
\hline & R(NST, 8) = R8 \\
\hline & \(\operatorname{AV}(\mathrm{NST}, 1)=-\mathrm{GAIN}\) \\
\hline & \(\operatorname{AV}(\) NST, 2) \(=20 . *(\operatorname{ALOG10}(\mathrm{GAIN}))\) \\
\hline & NTY \((\) NST \()=1\) \\
\hline & RETURN \\
\hline & END \\
\hline
\end{tabular}

Table G-3 Subroutine VLP Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE VLP(NST) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline c & NST = Stage number ( \(2,3,5\) ) passed from calling program. \\
\hline \multirow[t]{6}{*}{c} & COMMON \(R(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), F P(5), \operatorname{DP}(5), \operatorname{DUMMY}(10), N T Y(5)\) \\
\hline & LOGICAL* 1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline & TWOPI \(=6.2831853\) \\
\hline & \(\mathrm{C} 2=0.0\) \\
\hline & TYPE 100 \\
\hline 100 & FORMAT (' SECOND ORDER LOW PASS FILTER') \\
\hline c & \(c=\) value of fixed capacitors in UF. \\
\hline \multirow[t]{4}{*}{1000} & \(\mathrm{C}=1\). \\
\hline & GAIN=1. \\
\hline & NN=NST*100 \\
\hline & IF (NST.EQ.5) NN=400 \\
\hline C & \\
\hline c & Get values from user: \\
\hline c & \\
\hline & TYPE 110, \({ }^{\text {NN+1}}\) \\
\hline
\end{tabular}

Table G-3 Subroutine VLP Listing (contd)
```

110 FORMAT ('$R',I3,' (KOHMS) = ?')
 ACCEPT 120,RI
120 FORMAT (El2.5)
 TYPE 110,NN+2
 ACCEPT 120,R2
 TYPE 110.NN+3
 ACCEPT 120,R3
 TYPE 110,NN+4
 ACCEPT l20,R4
 IF (NST.EQ.3) GOTO 1lø\emptyset
 TYPE 110,NN+6
 ACCEPT 120,R6
 GOTO 1200
1100 TYPE 130
130 FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N)?',S)
 ACCEPT 140,ANS
140 FORMAT (AI)
 IF (ANS.NE.YES) GOTO 120\emptyset
 TYPE 150
150 FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?',$)
ACCEPT 120,C2
C=C+C2
C
1200 GAIN=R3/R4
IF (NST.EQ.3) R6=10.
GAIN=GAIN*(10./R6)
DBG=20.*(ALOGIO{GAIN))
TYPE 160,GAIN,DBG
160 FORMAT (' DC GAIN = ',GI1.4,' (V/V) ['.C10.3,' (DB)]')
TYPE 170
FORMAT (' NOTE: STAGE INVERTS SIGNAL')
FPOL=1./(TWOPI*SQRT(1.E-Ø6*R2*R3*C*C))
DAMP=(SQRT(R2*R3))/(2.*R1)
TYPE 180,FPOL, DAMP
FORMAT (' POLE FREQ (HZ) = ',Gl0.3,', DAMPING COEF = ',G10.3)
Check for reentry; store values:
TYPE 190
FORMAT ('\$MORE CHECKS (Y/N) ? ')
ACCEPT 140,ANS
IF (ANS.EQ.YES) GOTO 1\&DO
IF (NST.EQ.3) R6=0.0
R(NST, 2)=R1
R(NST, 2)=R2
R(NST, 3)=R3
R(NST,4)=R4
R(NST,6)=R6
CAP(NST, 1)=C2
CAP(NST, 2)=C2
AV(NST,1)=-GAIN
IF (NST.EQ.3) AV(NST,1)=GAIN
AV(NST, 2)=20.*(ALOG1\sigma(GAIN))
FP(NST)=FPOL
DP(NST)=DAMP
NTY(NST)=2
RETURN
END

```

Table G-4 Subroutine VHP Listing
\begin{tabular}{|c|c|}
\hline & SUBROUTINE VHP(NST) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & NST \(=\) Stage number (2,5) passed from calling program. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & COMMON \(R(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \operatorname{FP}(5), \operatorname{DP}(5), \operatorname{FZ}(5), \operatorname{DZ}(5), N T Y(5)\) LOGICAL*1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline & TWOPI \(=6.2831853\) \\
\hline \multirow[t]{4}{*}{C} & \(\mathrm{C}=\) Value of fixed capacitor on circuit board in uF. \(\mathrm{C}=1\). \\
\hline & C2=0.0 \\
\hline & AMULT \(=1\). \\
\hline & TYPE 100 \\
\hline \multirow[t]{3}{*}{100} & FORMAT (' SECOND ORDER HIGH PASS FILTER') \\
\hline & \(\mathrm{NN}=200\) \\
\hline & IF (NST.EQ.5) \(\mathrm{NN}=400\) \\
\hline \multicolumn{2}{|l|}{c} \\
\hline C & Get values from user: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 1000 & TYPE 11Ø, NN+1 \\
\hline \multirow[t]{2}{*}{110} & FORMAT ('\$R', I3, (KOHMS) = ? ') \\
\hline & ACCEPT 120,R1 \\
\hline \multirow[t]{14}{*}{120} & FORMAT (E12.5) \\
\hline & TYPE 110, \(\mathrm{NN}+2\) \\
\hline & ACCEPT 120,R2 \\
\hline & TYPE 110, NN+3 \\
\hline & ACCEPT 120,R3 \\
\hline & TYPE 110, \(\mathrm{NN}+4\) \\
\hline & ACCEPT 120,R4 \\
\hline & TYPE 110, \({ }^{\text {NN+5 }}\) \\
\hline & ACCEPT 120,R5 \\
\hline & TYPE 110, NN+7 \\
\hline & ACCEPT 120,R7 \\
\hline & TYPE 110, \({ }^{\text {NN+ }}\) - \\
\hline & ACCEPT 120,R8 \\
\hline & TYPE 130 \\
\hline \multirow[t]{2}{*}{130} & FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N) \({ }^{\prime}\) ', \$) \\
\hline & ACCEPT 140, ANS \\
\hline \multirow[t]{3}{*}{140} & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO 1050 \\
\hline & TYPE 150 \\
\hline \multirow[t]{3}{*}{150} & FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD) ? ', \$) \\
\hline & ACCEPT 120, С2 \\
\hline & \(\mathrm{C}=\mathrm{C}+\mathrm{C} 2\) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Calculate and display filter parameters: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{3}{*}{1050} & GA I \(\mathrm{N}=10 . / \mathrm{RB}\) \\
\hline & \(\mathrm{DBG}=20 . *(A L O G 10(G A I N))\) \\
\hline & TYPE 160, GAIN, DBG \\
\hline \multirow[t]{3}{*}{160} & FORMAT (' HI FREQ GAIN \(=\) ',Gll.4, \({ }^{\text {c }}\) (V/V) [', \\
\hline & +GID.3,' (DB)]') \\
\hline & TYPE 170 \\
\hline
\end{tabular}

Table G-4 Subroutine VHP Listing (contd)
```

170 FORMAT (' NOTE: STAGE INVERTS SIGNAL')
FPOLE=1./(TWOPI*SQRT(1.E-D6*R2*R3*C*C))
DAMPP=(SQRT(R2*R3))/(2.*R1)
RT=(R4*R7)-(R3*R8)
IF (RT.GT.0.D) GOTO 1100
AMULT=-1.
RT=-RT
1100 FZERO=FPOLE*SQRT(RT/(R4*R7))
DAMPZ=SQRT((R2*R3*R7)/(R4*RT))
DAMPZ=DAMPZ*((R4*R5)-(R1*R8))/(2.*R1*R5)
IF (FZERO.GT.(FPOLE*1.E-Ø4)) GOTO 1200
FZERO=FPOLE*1.E-04
DAMPZ=1.
1200 TYPE 18И,AMULT*FZERO,DAMPZ
180 FORMAT (' ZERO FREQ (HZ) = ',Gll.4,', ZERO DAMPING COEF = ',Gl@.3)
TYPE 190,FPOLE, DAMPP
FORMAT (' POLE FREQ (HZ) = ',GlØ.3,', POLE DAMPING COEF = ',Gl@.3)
IF (AMULT.EQ.-1.) TYPE 200
200 FORMAT ('|******* WAKNING! POOR LOW FREQUENCY REJECTION -
+ RX03*RX08 > RX04*RX07 ******')
IF (DAMPZ.LT.0.0) TYPE 210
210 FORMAT (' |****** WARNING!! LOW FREQ PHASE ERROR -
+RX01*RX08 < RX04*RX05******')
Check for reentry; store values:
TYPE 220
220 FORMAT ('OREPEAT CHECK (Y/N) ? ',\$)
ACCEPT 140,ANS
IF (ANS.EQ.YES) GOTO 1000
R(NST,l)=RI
R(NST, 2)=R2
R(NST, 3)=R3
R(NST, 4) =R4
R(NST,5) =R5
R(NST,7)=R7
R(NST, 8) =R8
CAP(NST,1) =C2
CAP(NST, 2) =C2
AV(NST, 1)=-GAIN
AV(NST, 2)=20.*(ALOG10(GAIN))
FP(NST)=FPOLE
DP(NST)=DAMPP
FZ(NST)=AMULT*FZERO
DZ(NST)=DAMPZ
NTY(NST) =3
RETURN
END

```

Table G-5 Subroutine VBP Listing
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SUBROUTINE VBP(NST)} \\
\hline C & \\
\hline C & NST \(=\) Stage number ( 2,5 ) passed from calling program \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & ```
COMMON R(5,8), CAP(5,3),AV(5,2),FP(5),DP(5),FZ(5),DZ(5),NTY(5)
LOGICAL*1 ANS,YES
``` \\
\hline & DATA YES/1HY/ TWOPI=6.2831853 \\
\hline \multirow[t]{2}{*}{C} & \(\mathrm{C}=\) Value of fixed filter capacitor on board, in \(u F\). \(C=1.0\) \\
\hline & \[
\begin{aligned}
& C 2=0 \cdot \theta \\
& \text { TYPE } 100
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{100} & FORMAT (' SECOND ORDER BAND PASS FILTER') \\
\hline & NN=200 \\
\hline & IF (NST.EQ.5) \(\mathrm{NN}=40 \emptyset\) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & Get resistor values from user: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 1000 & TYPE 110, NN+1 \\
\hline \multirow[t]{2}{*}{110} & FORMAT ('\$R', I3, \({ }^{\text {(}}\) (KOHMS) \(=\) ? ') \\
\hline & ACCEPT 120.R1 \\
\hline \multirow[t]{10}{*}{120} & FORMAT (E12.5) \\
\hline & TYPE 110, \(\mathrm{NN+2}\) \\
\hline & ACCEPT 220,R2 \\
\hline & TYPE 110, NN+3 \\
\hline & ACCEPT 120,R3 \\
\hline & TYPE 110, NN+4 \\
\hline & ACCEPT 120,R4 \\
\hline & TYPE 110, NN+5 \\
\hline & ACCEPT 120,R5 \\
\hline & TYPE 130 \\
\hline \multirow[t]{2}{*}{130} & FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N)?',\$) \\
\hline & ACCEPT 140,ANS \\
\hline \multirow[t]{2}{*}{140} & FORMAT (Al) \\
\hline & IF (ANS.NE.YES) GOTO 11 คø TYPE 150 \\
\hline \multirow[t]{3}{*}{150} & FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD) ? \({ }^{\prime}\) (\$) \\
\hline & ACCEPT 120.C2 \\
\hline & \(C=C+C 2\) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & Calculate and display filter parameters: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{4}{*}{1100} & GAIN \(=(10 . * R 1) /(R 4 * R 5)\) \\
\hline & GAIN=GAIN* (SQRT (R2*R3)) /(2.*R1+SQRT (R2*R3)) \\
\hline & DBG=20.* \((\) ALOGlø(GAIN) \()\) \\
\hline & TYPE 160,GAIN, DBG \\
\hline \multirow[t]{6}{*}{160} & \[
\begin{aligned}
& \text { FORMAT (' CENTER FREQ GAIN }=1, G 11.4, '(V / V) \quad[', \\
& \text { +G10.3, } \left.(\mathrm{DB})]^{\prime}\right)
\end{aligned}
\] \\
\hline & FPOLE=1./(TWOPI*SQRT(1.E-66*R2*R3*C*C)) \\
\hline & DAMPP= (SQRT (R2*R3))/(2.*R1) \\
\hline & FZERO=FPOLE*1.E-04 \\
\hline & DAMPZ \(=0\). \\
\hline & TYPE 170,FZERO \\
\hline
\end{tabular}

Table G-5 Subroutine VBP Listing (contd)

Table G-6 Subroutine VBR Listing
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{SUBROUTINE VBR(NST)} \\
\hline C & \\
\hline C & NST \(=\) Stage number (2,5) pass from calling program. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & COMMON \(\mathrm{R}(5,8), \operatorname{CAP}(5,3), \operatorname{AV}(5,2), \mathrm{FP}(5), \operatorname{DP}(5), \mathrm{FZ}(5), \mathrm{DZ}(5), \mathrm{NTY}(5)\) \\
\hline & LOGICAL* 1 ANS, YES \\
\hline & DATA YES/1HY/ \\
\hline & TWOPI \(=6.2831853\) \\
\hline \multirow[t]{3}{*}{c} & \(C=\) Value of fixed filter capacitors on board, in uF. \(C=1.0\) \\
\hline & \[
\begin{aligned}
& \mathrm{C}_{2}=0.0 \\
& \text { AMULT=1. }
\end{aligned}
\] \\
\hline & TYPE 100 \\
\hline 100 & FORMAT (' SECOND ORDER BAND REJECT FILTER') \\
\hline C & \\
\hline & Get nominal values of FPOLE and FZERO to determine filter case: \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & TYPE 110 \\
\hline \multirow[t]{2}{*}{110} & FORMAT ('\$NOMINAL POLE FREQ (HZ) = ? ') \\
\hline & ACCEPT 120,FPOLE \\
\hline \multirow[t]{2}{*}{120} & FORMAT (E12.5) \\
\hline & TYPE 130 \\
\hline \multirow[t]{4}{*}{130} & FORMAT ('\$NOMINAL ZERO FREQ (HZ) = ? ') \\
\hline & ACCEPT 120, FZERO \\
\hline & NCASE=1 \\
\hline & IF (FPOLE.LT.FZERO) NCASE=2 \\
\hline
\end{tabular}

Table G-6 Subroutine VBR Listing (contd)
```

C Get resistor values:
NN=200
IF (NST.EQ.5) NN=4ø\emptyset
1000 TYPE 140,NN+1
140 FORMAT ('$R',I3,' (KOHMS) = ?')
    ACCEPT 120,R1
    TYPE 140,NN+2
    ACCEPT 120,R2
    TYPE 140,NN+3
    ACCEPT 120,R3
    TYPE 140,NN+4
    ACCEPT 120,R4
    TYPE 140,NN+5
    ACCEPT 120,R5
    IF (NCASE.EQ.2) GOTO 1100
    TYPE 140,NN+7
    ACCEPT 120,R7
    R6=0.\emptyset
    GOTO 1200
1100 TYPE 140,NN+6
    ACCEPT 120,R6
    R7=0.0
1200 TYPE 140,NN+8
    ACCEPT 120,R8
    TYPE 150
150. FORMAT (' ADDITIONAL CAPACITORS ADDED (Y/N)?',$)
ACCEPT 160,ANS
160 FORMAT (A1)
IF (ANS.NE.YES) GOTO 1250
TYPE 170
170 FORMAT (' CAPACITOR VALUE (BOTH ASSUMED EQUAL) - (UFD)?',\$)
ACCEPT 120,C2
C=C+C2
C
C Calculate and display filter parameters:
1250 IF (NCASE.EQ.2) GOTO 130\emptyset
Case I:
RTI=(R3*R8)/(R4*R7)
IF (RTI.LT.1.) GOTO 1275
AMULT=-1.
1275 GAIN=AMULT*(10./R8)*(1.-RTI)
GOTO 14ø\emptyset
Case II:
1300 RTII=(R3*R8)/(R4*R6)
GAIN=(10./R8)*(RTII+1.)
14\emptyset\emptyset DBG=2\emptyset.*(ALOG1\emptyset(GAIN))
TYPE 180,GAIN,DBG
180 FORMAT (' DC GAIN = ',Gl1.4,' (V/V) [',Gl0.3,' (DB)]')
IF (NCASE.EQ.1) GOTO 150\emptyset
TYPE 190
190 FORMAT (' NOTE: STAGE INVERTS SIGNAL')
1500 FPOLE=1. (TWOPI*SQRT(1.E-06*R2*R3*C*C))
DAMPP=(SQRT(R2*R3))/(2.*R1)
IF (NCASE.EQ.2) GOTO 160\emptyset

```

Table G-6 Subroutine VBR Listing (contd)
```

C Case I:
FZERO=SQRT(FPOLE*FPOLE*ABS(RTI-1.))
GOTO 2000
c Case II:
160ø FZERO=SORT(FPOLE*FPOLE*(1.+RTII))
200ø RT=(R1*R8)/(R4*R5)
DAMPZ=(1-RT)/(2.E-D3*R1*C*TWOPI*FZERO)
TYPE 2ø\emptyset,AMULT*FZERO,DAMPZ
200 FORMAT (' zERO FREQ (HZ) = ',Gll.4,', ZERO DAMPING COEF = ',Gl0.3)
TYPE 210,FPOLE,DAMPP
210 FORMAT ('POLE FREQ (HZ) = ',Gll.4,', POLE DAMPING COEF = ',Glø.3)
IF (AMULT.EQ.-1.) TYPE 220
220 FORMAT ('@****** WARNING1) POOR FREQUENCY REJECTION -
+RX03*RXø8 > RX04*RX07 ******')
C
Check for subroutine repeat and store results:
TYPE 230
230 FORMAT ('QREPEAT CHECK (Y/N) ? ',\$)
ACCEPT 160,ANS
IF (ANS.EQ.YES) GOTO 1000
R(NST, 1)=R1
R(NST,2)=R2
R(NST,3)=R3
R(NST,4)=R4
R(NST,5)}=\mathrm{ R5
R(NST,6)=R6
R(NST,7)=R7
R(NST,8)=R8
CAP(NST, 1)=C2
CAP(NST, 2)=C2
AV(NST,1)=-GAIN
AV(NST, 2)=2ø.*(ALOG1\varnothing(GAIN))
FP(NST)=FPOLE
DP(NST)=DAMPP
FZ(NST)=AMULT*FZERO
DZ (NST)=DAMPZ
NTY(NST)=5
RETURN
END

```

Table G-7 Subroutine VPRINT Listing
```

SUBROUTINE VPRINT
COMMON R(5,8),CAP(5,3), AV (5,2),FP(5),DP(5),FZ(5),DZ(5),NTY(5)
LOGICAL* ( DAT(9),TITLE(40)
CALL DATE(DAT)
AVP=1.
AVS=0.
FORMAT ('\varnothing','STAGE ',II,':',2øx,'-- GAIN --')
FORMAT ('0','STAGE ',I1,':',20x,'-- LOW PASS --')
FORMAT ('0','STAGE ',II,':',20x,'-- HIGH PASS --')
FORMAT ('\emptyset','STAGE ',11,':',20x,'-- BAND PASS --')
FORMAT ('0','STAGE ',II,':',20x,'-- BAND REJECT --')

```

Table G-7 Subroutine VPRINT Listing (contd)
```

Cll
TYPE }11
115 FORMAT (' PRINTOUT ID (<40 CHAR)?',\$)
ACCEPT 118,(TITLE(N),N=1,40)
FORMAT (4øAl)
PRINT 120. DAT
120 FORMAT (1X,9A1,,20X,'ACTUAL COMPONENT VALUES')
PRINT 130,TITLE
C Stage 1:
c
IF (AV(1,1),EQ.ø.б) GOTO 11ø0
PRINT 50,1
PRINT 140,101,R(1,1)
FORMAT (IX,T8,'R',I3,' = ',Gl1.4,' KOHMS')
PRINT 140.102,R(1,2)
PRINT 150,(AV(1,N),N=1,2)
FORMAT ('Q'.TIG,'DC GAIN = ',GlI.4,' (V/V) ['.
+Gl0.3,' (DBV)]')
PRINT 160,FP(1)
160 FORMAT (1X,T16,'POLE FREQ = ',Gll.4,' HZ')
AVP=AV(1,1)
AVS=AV(1,2)
c
C Stage 2:
c
1000 IF (AV(2,1).EQ.0.0) GOTO 1800
GOTO (1100,1200,1300,1400,1500) NTY(2)
1100 PRINT 50.2
GOTO 1600
1200 PRINT 60,2
GOTO 16øø
1300 PRINT 70.2
GOTO 1600
1400 PRINT 80,2
GOTO 16%0
1500 PRINT 90,2
16ø\emptyset CALL VRPRIN (2)
AVP=AVP*AV (2,1)
AVS=AVS+AV (2,2)
C
Stage 3:
1800
IF (AV(3,1).EQ.Ø.0) GOTO 190ø
PRINT 60,3
CALL VRPRIN (3)
AVP=AVP*AV (3,1)
AVS=AVS+AV (3,2)
C
c
1900 IF (AV (4,1).EQ.0.0) GOTO 3000

```

Table G-7 Subroutine VPRINT Listing (contd)
```

    IF (NTY(4).EQ.2) GOTO 200\emptyset
    PRINT 50,4
    GOTO 210\emptyset
    20ø\emptyset PRINT 60,4
210\emptyset PRINT 440,R(4,1)
440 FORMAT (1X,T8,'R306 = ',Gl1.4,' KOHMS')
PRINT 445,R(4,2)
445 FORMAT (1X,T8,'R3\emptyset9 = ',Gl1.4,' KOHMS')
IF (CAP (4,1).NE.\emptyset.0) PRINT 450, CAP (4,1)
450 FORMAT (1X,T8,'C301 = ',Gll.4,' UFD')
PRINT 150,(AV(4,N),N=1,2)
IF(FP(4).NE.0.) PRINT 250,FP(4)
250 FORMAT (1X,T16,'POLE FREQ = ',Gl1.4,' HZ')
AVP=AVP*AV (4,1)
AVS=AVS+AV(4,2)
C
C Stage 5:
30ø\emptyset IF (AV (5,1).EQ.\emptyset.0) GOTO 40ø\emptyset
GOTO (3100.3200,3300,3400,3500) NTY(5)
3100 PRINT 50,5
GOTO 360\emptyset
3200 PRINT 60,5
GOTO 360\emptyset
3300 PRINT 70,5
GOTO 3600
340\emptyset PRINT 80,5
GOTO 360\emptyset
3500 PRINT 90,5
3600 CALL VRPRIN (5)
AVP=AVP*AV (5,1)
AVS=AVS +AV (5,2)
PRINT 6ØØ,AVP,AVS
600 FORMAT ('\emptyset','TOTAL FILTER GAIN = ',Gll.4,' (V/V) ',Gl\emptyset.3,' (DBV)')
PRINT 610
610 FORMAT (5X,'(CAUTION: TOTAL GAIN IS A SIMPLE PRODUCT. CHECK
+ FILTER TYPE')
PRINT 620
620 FORMAT (5X,'TO DETERMINE ACTUAL COMPOSITE GAIN.)')
IF(AVP.LT.O.) PRINT 630
630 FORMAT (' FILTER INVERTS SIGNAL')
400\emptyset RETURN
END

```

Table G-8 Subroutine VRPRIN Listing

NST \(=\) Stage number \((2,3,5)\) passed from calling program.
COMMON R(5, 8), CAP (5, 3), AV (5, 2), FP(5), DP(5), FZ (5), DZ (5), NTY(5)
NN=NST* 1 Øø
IF (NST.EQ.5) \(\mathrm{NN}=400\)
\(C\)
\(C\)
\(C\)
Print resistor values:

Table G-8 Subroutine VRPRIN Listing (contd)

Table G-8 Subroutine VRPRIN Listing (contd)
```

200 FORMAT ('\emptyset****** WARNINGI! POOR FREQUENCY REJECTION -
+RXø3*RX08 > RX04*RX07 ******')
IF (DZ(NST).LT.D.\emptyset) PRINT 21\emptyset
210 FORMAT ('Ø****** WARNING!! LOW FREQ PHASE ERROR -
+RX01*RX08 < RX04*RX05 ******')
GOTO 180\emptyset
1700 PRINT 220,FZ(NST)
220 FORMAT (1X,Tl6,'COMPLEMENTARY ZERO PAIR FREQ = ',Gl1.4.' HZ')
1800 RETURN
END

```

\section*{Appendix H}

\section*{System Controller Chassis Signal Wiring Details}

\section*{H. 1 PARALLEL INTERFACE SIGNAL WIRING}

The following information pertains to connectors J3-Jll on the system controller rear panel (see Chapter 5, Figure 16) when used with Digital Equipment Co. (DEC) DRV-1l parallel interfaces.

J3 through Jll consist of 50 -pin ribbon cable connectors. Attached to these is a 50-conductor ribbon cable (3M \# 3365). Since the DEC parallel interfaces accept \(4 \varnothing\)-pin ribbon connectors, the wires connected to pins 41 through 50 of \(33-J 11\) are not used for signals but are available for other uses. The 50 -wire ribbon cable is therefore split, with wires 41 through \(5 \emptyset\) tied off. The other \(4 \varnothing\) wires are terminated with a \(3 M\) \#3417-6040 plug for connection to the parallel line interface. Pin 1 of the two connectors must be connected to the same edge of the ribbon cable.

The following two tables identify the signals appearing on the pins of J3-Jll. Table \(\mathrm{H}-1\) applies when the cable is connected to J 2 on the DRV-1l parallel interface. Table \(H-2\) applies when the cable is connected to Jl on the DRV-11. Pin l (indicated by an arrow on the connector) of the \(3 \mathrm{M} \# 3417\) connector must be connected to pin \(A\) of J1/J2 of the DRV-11.

\section*{H. 2 SERIAL INTERFACE SIGNAL WIRING}

Connectors J15 - Jl7 provide both RS-232 and 20 mA current loop serial interfaces. The serial connector format given below DOES NOT conform to either the RS-232 or the 20 mA current loop pin
assignments, due to common use of the same pins by both standards. Therefore, a unique pin assignment has been developed to allow either type of interface with no pin assignment conflict.

J15-J17 each consist of a 25-pin "D" connector for connecting to an input/output device. The " \(D\) " connector is mounted on an adapter board which, in turn, is connected to a 4ø-pin ribbon cable through a 3M \#3432 connector (on the adapter) and a 3M \#3417-6040 plug on the cable. The other end of the ribbon cable is terminated with a 3 M \#3417-6040 plug also. It is plugged into the DEC DLV-1l serial interface mounted in the computer card rack. Both plugs are attached to the ribbon cable so that the corresponding pins on each are connected. Pin l of the cable (indicated by an arrow on the plug) is connected to pin 1 of the adapter (also indicated by an arrow on the receptacle) and pin A of the DLV-11 connector.

In addition to connecting the I/O device signal lines to the correct pins on device cable plug (DB-25P), two other connections must be made. First, a jumper must be connected between two pins in the DB-25P as indicated below. Second, the DLV-11 interface card must be set up to match both the I/O device interface parameters and the digital addresses needed to be compatible with operational software. (See reference 3 for specification and configuration information of the DLV-11.) 'rable H-3 gives both the "D" connector and 40-pin connector pin assignments. Also listed in the table is the signal name appearing on the DB-25 pins and the corresponding signal from the I/O device that should be connected to it for proper operation.

\section*{H. 3 A/D SIGNAL WIRING}

J13 and J14 provide signal inputs and outputs between the A/D card mounted in the controller computer card rack and the signal conditioning subsystem. The connectors used are Cannon DD-50S "D" type; they are connected to shielded ribbon cables. The cables, in turn, are terminated in 40 -pin ribbon plugs (3 M \#3417-6040). The entire cable assembly is supplied with the A/D board. (The assembly can be purchased separately from ADAC, Inc, Woburn, MA as part no. W-1 for their DEC 600LSH-16-PDA data acquisition subsystem.) Listed in Table \(\mathrm{H}-4\) are the pin definitions for both the \(5 \varnothing\)-pin " \(D\) " connector and the 40 -pin ribbon cable connectors.

Table \(H-1\) System Controller Parallel Input Connector (J3-J11) Pin Identification
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{```
J3-Jll Connector: 3M #3331-0000
Mating Connector: 3M #3425
```} \\
\hline Pin & Signal & Direction \\
\hline 3 & Data accepted pulse & Out ** \\
\hline 5 & Input bit 2 & In \\
\hline 7 & Input bit 2 & In \\
\hline 8 & Ground & - \\
\hline 9 & CSR \(\square\) & Out \\
\hline 10 & Ground & - \\
\hline 11 & Input bit 15 & In \\
\hline 12 & Input bit 14 & In \\
\hline 13 & Input bit 13 & In \\
\hline 14 & Ground & - \\
\hline 15 & REQ B & In \\
\hline 16 & Ground & - \\
\hline 17 & Input bit 12 & In \\
\hline 18 & Input bit ll & In \\
\hline 19 & Input bit 10 & In \\
\hline 20 & Ground & - \\
\hline 21 & Input bit 9 & In \\
\hline 22 & Input bit 8 & In \\
\hline 23 & Ground & - \\
\hline 24 & Input bit 3 & In \\
\hline 25 & Input bit 7 & In \\
\hline 26 & Ground & - \\
\hline 27 & Input bit 6 & In \\
\hline 29 & Input bit 5 & In \\
\hline 30 & Ground & - \\
\hline 31 & Input bit 4 & In \\
\hline 32 & Input bit 1 & In \\
\hline 33 & Grouns & - \\
\hline 34 & Initlalize & Out \\
\hline 35 & Ground & - \\
\hline 36 & Initialize & Out \\
\hline 37 & Ground & - \\
\hline 38 & Input bit \(\varnothing\) & In \\
\hline 39 & Ground & - \\
\hline
\end{tabular}
** "Out" direction refers to signals put out by the interface card; "In" refers to signals accepted or read by the card.

Notes:
-- Piris not listed are not used.
-- All signal levels are TTL positive loyic ( 5 Vdc \(=1\), \(\emptyset V d c=0\) ). Bit 15 is MSB, bit \(\varnothing\) is LSB.
- Refer to reference 3 for further details on signals.

THE AIR FORCE GEOPHYSICS LABORATORY STANDALONE DATA ACQUISITION-EETC(U)
OCT 80 P G VON GLAHN
UNCLASSIFIED AFGL-TR-80-0317





Table H-2 System Controller Parallel Output Connector (J3-Jll) Pin Identification
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{J3-Jll Connector: 3 M \(\# 3331-\varnothing ø \varnothing \varnothing\)
Mating Connector: 3 M \(\# 3425\)} \\
\hline Pin & Signal & Direction \\
\hline 3 & Output bit 0 & Out \\
\hline 8 & Ground & - \\
\hline 9 & Output bit 1 & Out \\
\hline 10 & Output bit 4 & Out \\
\hline 11 & Ground & - \\
\hline 12 & Output bit 5 & Out \\
\hline 13 & Initialize & Out \\
\hline 14 & Output bit 6 & Out \\
\hline 15 & Ground & - \\
\hline 16 & Output bit 7 & Out \\
\hline 17 & Output bit 3 & Out \\
\hline 18 & Ground & - \\
\hline 19 & Output bit 8 & Out \\
\hline 20 & Output bit 9 & Out \\
\hline 21 & Ground & - \\
\hline 22 & Output bit 10 & Out \\
\hline 23 & Output bit 11 & Out \\
\hline 24 & Output bit 12 & Out \\
\hline 25 & Ground & - \\
\hline 26 & CSR 1 & Out \\
\hline 27 & Ground & - \\
\hline 28 & Output bit 13 & Out \\
\hline 29 & Output bit 14 & Out \\
\hline 30 & Output bit 15 & Out \\
\hline 31 & Ground & - \\
\hline 32 & REQ A & In \\
\hline 33 & Ground & - \\
\hline 34 & Output bit 2 & Out \\
\hline 35 & Ground & - \\
\hline 36 & Output bit 2 & Out \\
\hline 37 & Ground & - \\
\hline 39 & Ground & - \\
\hline 40 & New data ready pulse & Out \\
\hline 49** & 100 PPS & In \\
\hline 50** & Ground & - \\
\hline
\end{tabular}
* "Out" direction refers to signals put out by the interface card; "In" refers to signals accepted or read by the card.
** J6 (ERC WRITE) only.
Notes:
-- Pins not listed are not used.
- All signal levels are TTL positive logic (5 Vdc = 1, Ø Vdc = ©). Bit 15 is MSB, bit \(\varnothing\) is LSB.
-- Refer to reference 3 for further details on signals.
Table \(\mathrm{H}-3\) System Controller Serial Input/Output
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{J15-J17 Connector: Cannon DB-25S Mating Connector: Cannon DB-25P} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{DB}-25 \\
& \text { Pin }
\end{aligned}
\]} & \multirow[t]{2}{*}{Ribbon Pin} & \multirow[t]{2}{*}{Signal} & \multicolumn{2}{|l|}{I/O Device} \\
\hline & & & Direction & Signal \\
\hline 1 & 40 & Protective ground & - & Protective ground \\
\hline 2 & 6 & RS232 Tx data & Out * & RS232 Rx data \\
\hline 3 & 8 & RS232 Rx data & In & RS232 Tx data \\
\hline 4 & 18 & RS232 REQUEST TO SEND & Out & RS232 CLEAR TO SEND \\
\hline 5 & 16 & RS232 CLEAR TO SEND & In & RS232 REQUEST TO SEND \\
\hline 6 & 22 & RS232 DATA SET READY & In & RS232 DATA TERM READY \\
\hline 7 & 39 & Signal ground & - & Signal ground \\
\hline 8 & 24 & RS232 CARRIER & In & RS232 BUSY \\
\hline 9 & 23 & \(20 \mathrm{~mA} \mathrm{Tx} \mathrm{data} \mathrm{+}\) & Out & \(20 \mathrm{~mA} \mathrm{Rx} \mathrm{data} \mathrm{+}\) \\
\hline 10 & 9 & \(20 \mathrm{~mA} R x\) data + & In & \(20 \mathrm{~mA} \mathrm{Tx} \mathrm{data} \mathrm{+}\) \\
\hline 11 & 31 & 20 mA TX data - & Out & \(20 \mathrm{~mA} \mathrm{Rx} \mathrm{data} \mathrm{-}\) \\
\hline 12 & 15 & 20 mA Rx data - & In & 20 mA Tx data - \\
\hline 14 & 1 & Protective ground & - & Protective ground \\
\hline 16 & 2 & Signal ground & - & Signal ground \\
\hline 17 ** & 11 & RS232 TTL Rx data & Out & - \\
\hline 18*** & 7 & 26 mA TTL Rx data & Out & - \\
\hline 19 & 5 & TTL Rx data & In & - \\
\hline 20 & 26 & RS232 DATA TERMINAL READY & Out & RS232 DATA SET READY \\
\hline 21 & 35 & Reader enable + & Out & Reader enable + \\
\hline 24 & 27 & Reader enable - & Out & Reader enable - \\
\hline 25 & 3 & RS232 BUSY & Out & RS232 CARRIER \\
\hline
\end{tabular}

\footnotetext{
"Out" direction refers to signals put out by the interface card: ** "In" refers to signals accepted by the card. ** Jumper to DB25 pin 19 for RSMper to DB25 pin 19 for 20 mA operation.
}
Notes: - Pins not listed are not used.
-- Connector set up for active 20 mA current loop operation.

Table H-4 System Controller A/D Input/Output Connector (J13-J14) Pin Identification
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{J13-J14 Connector: Cannon DD50S Mating Connector: Cannon DD50P} \\
\hline \[
\begin{aligned}
& \text { DD-50 } \\
& \text { Pin }
\end{aligned}
\] & Ribbon
Pin & Signal & Direction \\
\hline 16 & 31 & Channel 0i0a * & Input ** \\
\hline 15 & 29 & Channel l/la & Input \\
\hline 14 & 27 & Channel 2/2a & Input \\
\hline 13 & 25 & Channel 3/3a & Input \\
\hline 12 & 23 & Channel 4/4a & Input \\
\hline 11 & 21 & Channel 5/5a & Input \\
\hline 10 & 19 & Channel 6/6a & Iuput \\
\hline 9 & 17 & Channel 7/7a & Input \\
\hline 33 & 32 & Channel 8/0b & Input \\
\hline 32 & 30 & Channel \(9 / 1 \mathrm{~b}\) & Input \\
\hline 31 & 28 & Channel 10/2b & Input \\
\hline 30 & 26 & Channel \(11 / 3 \mathrm{~b}\) & Input \\
\hline 29 & 24 & Channel \(12 / 4 \mathrm{~b}\) & Input \\
\hline 28 & 22 & Channel 13/5b & Input \\
\hline 27 & 20 & Channel 14/6b & Input \\
\hline 26 & 18 & Channel 15/7b & Input \\
\hline 1 & 1 & Channel 16/8a & Input \\
\hline 2 & 3 & Channel 17/9a & Input \\
\hline 3 & 5 & Channel 18/1Øa & Input \\
\hline 4 & 7 & Channel 19/11a & Input \\
\hline 5 & 9 & Channel 20/12a & Input \\
\hline 6 & 11 & Channel 21/13a & Input \\
\hline 7 & 13 & Channel 22/14a & Input \\
\hline 8 & 15 & Channel 23/15a & Input \\
\hline 18 & 2 & Channel \(24 / 8 \mathrm{~b}\) & Input \\
\hline 19 & 4 & Channel 25/9b & Input \\
\hline 20 & 6 & Channel 26/10b & Input \\
\hline 21 & 8 & Channel \(27 / 11 \mathrm{~b}\) & Input \\
\hline 22 & 10 & Channel 28/12b & Input \\
\hline 23 & 12 & Channel 29/13b & Input \\
\hline 24 & 14 & Channel \(30 / 14 \mathrm{~b}\) & Input \\
\hline 25 & 16 & Channel 31/15b & Input \\
\hline 46 & 37 & D/A 1 & Output \\
\hline 45 & 38 & D/A 1 Return & - \\
\hline 44 & 39 & D/A 2 & Output \\
\hline 42 & 41 & Shield & - \\
\hline 43 & 40 & D/A 2 Return & - \\
\hline 48 & 35 & Signal Return & - \\
\hline 49 & 34 & Power Return & - \\
\hline 50 & 33 & Channel 0-31 Common & - \\
\hline
\end{tabular}
* Number alone \(j s\) single-ended input channel number; number and letter is differential input channel number ("a" is high, "b" is low level signal).
** "Input" refers to signals accepted by the A/D converter;
"Output" refers to signals put out by the D/A converter.
Notes:
-- See reference 4 for further information on the A/D converter board.

\section*{Appendix I}

\section*{I.1 APPENDIX OVERVIEW}

This appendix presents information on the system computer. Specifically, it covers the computer card cage jumpering (to connect the two backplanes together) and the card cage priority assignment procedures. Next, the section defines a minimum computer configuration, a standardized address assignment for the configuration, and a listing of the module jumpering needed to set up the configuration. Finally, a modification to the parallel interface card for use with the printer/plotter is described.

The information included herein is not meant to be all-inclusive: rather it is designed to provide sufficient detail to allow the system user to correctly configure a minimum SDAS without reference to other documents. For those requiring more detailed information on the LSI-ll family of modules and backplanes, references 2 and 3 are recommended.

\subsection*{1.2 INTERFACE CIRCUIT BOARD DESCRIPTION}
I.2.1 BACKPLANE JUMPERING

As discussed in Chapter 5, the LSI-11 card cage consists of two DEC H9270 card racks with integral backplanes. The backplanes of these two racks must be jumpered together using wire wrap jumpers connected to the backplane pins. Table I-1 gives the pins jumpered.

\section*{I.2.2 BACKPLANE INTERRUPT PRIORITY ASSIGNMENT}

The LSI-ll computer system uses a daisy-chain interrupt priority system. Interrupt priority assigned to a given module is determined by its position in the chain. Those modules that are electrically closer on the chain to the computer will have a higher priority. Priority assignment is determined, then, by the position of the module in the backplane. Figure \(I-1\) gives the priority structure of the double-backplane card cage used in the SDAS. It represents a view of the cage looking through the controller chassis access door. (The cards are oriented horizontally, component side down; each rectangle is a double-height module.)

Table I-1 System Controller LSI-11 Backplane Jumper List
\begin{tabular}{|lllll|}
\hline AA1 & AJ1 & AT1 & BF2 & BP1 \\
AB1 & AJ2 & AT2 & BH2 & BP2 \\
AB2 & AK2 & AU2 & BJ2 & BR1 \\
AC1 & AL2 & AV2 & BK2 & BR2 \\
AD1 & AN1 & BA1 & BL2 & BS2 \\
AE2 & AP1 & BB1 & BM2 & BT2 \\
AF2 & AP2 & BB2 & BN1 & BU2 \\
AH2 & AR1 & BE2 & BN2 & BV2 \\
& & & \\
CPU backplane AN2 - second backplane AM2 \\
CPU backplane AS2 & second backplane AR2 \\
CPU backplane CH1 - second backplane AF1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 13 & PRIORITY 14 \\
\hline 12 & 11 \\
\hline \\
BOARD \\
SOMPONENT \\
SIDE
\end{tabular}\(\quad 10\)

I-1. System Controller Computer Backplane Interrupt priority Assignment

\section*{I. 3 SYSTEM CLOCK MODIFICATION DESCRIPTION}

\subsection*{1.3.1 CONFIGURATION DEFINITION}

A minimum SDAS computer configuration is made up of those modules needed to acquire and convert 16 channels of analog data, record it on digital tape, analyze the Jata, and print out the results. The modules included in a minimum configuration are given in Table \(1-2\). Note that 32 K words of RAM are called for. The software can run on less, if necessary.

A suggested module priority arrangement is given in Figure I-2. The exact priority scheme used for a given application would be dictated by software an timing considerations peculiar to that application.

Table I-2 System Controller Minimum Computer Module List
\begin{tabular}{|l|l|l|}
\hline Qty & Module & Use \\
\hline 1 & LSI-1l & System computer \\
1 & A/D & Data conversion \\
1 & \(32 K\) RAM & Program/data storage \\
1 & DLV-11 & System console serial interface \\
1 & DLV-11 & Printer/plotter serial interface \\
1 & DRV-11 & mape recorder parallel interface \\
1 & DRV-11 & System clock parallel interface \\
1 & RXV-11 & Floppy disk interface \\
1 & REV-1 IA & Bus terminator \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & (BLANK) & (BLANK) \\
\hline \multirow{7}{*}{\[
\begin{aligned}
& \text { BOARD } \\
& \text { COMPONENT } \\
& \text { SIDE }
\end{aligned}
\]} & (BLANK) & (BLANK) \\
\hline & REV-II TERMIN. & (BLANK) \\
\hline & OLV-II PRINTER & DLV-II CONSOLE \\
\hline & \multicolumn{2}{|c|}{A/D CONVERTER} \\
\hline & DRV-11 TAPE & DRV-H CLOCK \\
\hline & 32K RAM & RXV-II \\
\hline & \multicolumn{2}{|c|}{LSI-II PROCESSOR} \\
\hline
\end{tabular}

I-2. System Controller Minimum System Computer Suggested Module Loncations

\section*{I.3.2 ADDRESS ASSIGNMENTS AND MEMORY MAP}

A memory map of the minimum system is given in Figure \(1-3\). The LSI-11 computer system uses the highest page in memory for input/output (I/O) module register addresses, as shown in the figure. Also, the LSI-ll uses the base page for interrupt vector locations. with the vector address jumpered on the individual modules. To insure software compatib. lity, \(1 / 0\) register addresses and vector locations have been standardized to those given in the figure. (See reference 2 for register definitions.)


\subsection*{1.3.3 MODULE JUMPERING}

In order to implement the minimum system under discussion here, numerous jumpers on the various modules must be inserted. Table I-3 gives those jumpers that must be inserted for system operation. Module address and interrupt vector assignments are as given in Figure I-3.

\subsection*{1.4 SYSTEM CLOCK SYNCHRONIZATION PROCEDURES}

The DRV-11 serial interface used with the SDAS printer/plotter (Bedford Computer System 75) has been modified. The modification allows a reduction of system software overhead in servicing this printer.

The System 75 is a buffered unit: it can receive data to be printed at a higher rate than it can be printed. When the buffer is full, the printer sets to zero the DATA TERMINAL READY interface line. This line is connected to the DATA SET READY input line of the DRV-11. It is read by the computer from the DATA SET READY bit of the interface status word. When the bit is zero, the software executes a wait loop until it goes to one, indicating more room in the buffer. A byte is then loaded into the interface's UART (Universal Asynchronous Receiver/Transmitter) which transmits it to the System 75. When the transmission is completed, the UART interrupts the computer and signals that it is ready for another byte.

Table \(\mathrm{x}-3\) System Controller Minimum Computer Module Jumpers
\begin{tabular}{|c|c|c|}
\hline Module & Jumpers Installed & Comments \\
\hline Computer & W2, W11 & \\
\hline RXV11 & W2, W5, W7, W12, W13 & \\
\hline DRV-11 (Clock) & Al2, V3, V4, V7 & \\
\hline DRV-11 (Tape) & A3, Al2, V3, V7 & \\
\hline DLV-11 (Console) & A3, A7, V3, V6, V7, FEH, EIA, FRD, FR1, FR2 & 9600 baud, RS232 \\
\hline DLV-11 (Printer) & A3, A4, A5, A7, A9, V3, V4, V5, 2SB, FEH, EIA, FR2 & 1200 baud, RS232 \\
\hline A/D & \begin{tabular}{l}
A/D RANGE: 1-4, 3-5, B-G, E-U MUX: 1-2, D-N, 3-4* \\
D/A RANGE: A-B, E-F, M-B
\end{tabular} & -10 to +10 vac 16 CH PSEUDO DIFF'L -10 to +10 Vdc \\
\hline
\end{tabular}
* Jumpered with 0.01 \(\mu \mathrm{F}\) capacitor

The modification consists of breaking the lead between the UART and the backplane interrupt input. A two-input AND gate is inserted into the line. The DATA SET READY signal is connected to the second input of the gate. As a result, the computer is only interrupted when both the UART TRANSMIT READY and the DATA SET READY (printer/plotter DATA TERMINAL READY) signals are present.

The modification procedure is given below. Figure I-4 shows the locations of the affected components on the DLV-11.

DLV-11 Modification Procedures
1. Cut pin 11 of IC E35.
2. Solder a bridge between pins 11 and 12 of IC E23.
3. Cut pin 6 of IC E23.
4. Connect pin 11 of IC E35 to pin 6 of IC E23.
5. Cut pin 4 of IC E32.
6. Jumper pin 9 of IC E33 to pin 4 of IC E32.

\section*{CAUTION:}

Should a modified DLV-1l be used with an \(I / O\) device not providing a DATA TERMINAL READY signal, the interface DATA SET READY input must be tied to either the interface REQUEST TO SEND or the interface DATA TERMINAL READY outputs (DB25P pins 6,4 , and 20 , respectively). Otherwise, the UART TRANSMIT READY line will never interrupt the computer.

This modification was developed by The Life Support Systems Group, Ltd., 2432 N.W. Johnson, Portland, Oregon \(9721 \varnothing\).


\section*{Appendix J}

\section*{System Controller Power Control Board Details}

\section*{J. 1 APPENDIX OVERVIEW}

This appendix covers the circuitry needed to provide power status and control signals for the system control computer and power supplies. These signals meet the timing requirements specified by DEC in reference 2. All circuitry, excluding switches and indicator lamps, is mounted on a single printed circuit board. The following sections document the circuit functions, schematics, and parts included on this board.

\section*{J. 2 POWER CONTROL CIRCUIT FUNCTIONAL DESCRIPTION}

\section*{J.2.1 CIRCUIT BLOCK DIAGRAM}

Figure J-l gives a block diagram of the signal conditioning card. As shown on the diagram, the board has its own power supply which runs of \(12.6 \mathrm{Vac}, 60 \mathrm{~Hz}\) power. This 60 Hz power also runs to a sensing circuit as do the leads from the dc ON/OFF front panel switch. The circuit puts out a ACON signal when the power is present and the dc ON/OFF switch is on. This signal is delayed and provides the control signal for the controller chassis power supplies.

The outputs from the chassis power supplies are fed to a second sensing circuit. This circuit puts out a DCON signal when both voltages are at operating level (over 908 of final value). This signal also goes to a driver which controls the dc front panel light. The DCON and ACON signals together with the leads from the front

panel INITIALIZE switch are fed to a logic and delay circuit. There, the signals are combined to form the DCOK and POK signals which provide power status information to the computer through its backplane.

A buffer on the board converts the output of the RUN/HALT front panel switch to the HALT signal for the computer.

The SRUN signal from the computer is fed to a retriggerable oneshot multivibrator on the board. (SRUN consists of a pulse train that is present when the computer is running. The oneshot output drives the RUN lamp on the front panel.

Finally, one pin on the board edge connector is used as a junction point. Connected to it are the 100 pps signal from the system clock and the EVNT line to the computer.

\section*{J.2.2 CIRCUIT TIMING INFORMATION}

A timing diagram for key signals on the control card is given by Figure J-2. As shown in the fiqure, turning on system power (via the ac ON/OFF switch) is a prerequisite for circuit operation. When the dc ON/OFF switch is thrown, the ACON signal goes high, indicating the

presence of ac power and initiating the power up timing sequence. This signal is delayed by 5.5 msec to provide the control signal for the chassis power supplies. When the slowest of the two supplies reaches \(90 \%\) of full scale output, the DCON signal goes high. This signal is delayed by 3.6 msec and becomes the DCOK signal for the computer. A further 97 msec delay results in the POK signal, which is also sent to the computer.

The power down timing sequence begins with either a shut off or failure of ac power or a throwing of the dc ON/OFF switch. Either action results in the negation of the ACON signal. Following a 5.2 msec delay from this negation, both the power supply control signal and the POK are negated. After a further 4.8 msec delay, the DCOK signal is negated and the power down sequence is completed.

\section*{J. 3 POWER CONTROL CIRCUIT SCHEMATIC.}

The schematic for the power control card is shown in Figure J-3. Relating the schematic to the block diagram, diodes CRl-CR4 together with capacitor Cl and voltage regulator Ul make up the onboard 5 Vdc power supply. Note that an external diode must be mounted between the output of this supply (at pin 12 on the edge connector) and the +5 V input to the dc sense circuit (pin 20). This diode allows the chassis power supply to power the circuit card after ac power fails. Since the chassis power supply has a longer decay time than the onboard supply, this connection insures orderly power-down timing.

Zener diode VRI along with RI-R3, C2, and Q3 convert the incoming 12.6 Vac power to a 5 Vdc pulse train for the ac sense circuit. The sense circuit is made up of a dual monostable multivibrator (U2) and associated components. The monostables have pulse widths of approximately 10 msec . They are triggered by opposite rising edges of the pulse train from Q3. Both monostables are either enabled or disabled by the dc ON/OFF switch which is debounced by two sections of a hex inverter, U7. When enabled, the two pulse trains are combined by an OR gate (U3) to form the ACON signal. This signal is buffered by an open collector NAND gate (U5) and fed to a RC timing circuit made up of R9 and C5. The voltage acruss C5 is compared to a reference by comparator U6. When the voltage exceeds the threshold, U6 trips and generates the control signal for the control signal for the chassis power supplies, DCONC. DCONC is also inverted by U5 to allow control of power supplies requiring the opposite polarity signal. A jumper allows selection of control signal polarity.

Comparators \(U 9\) and R15-R22 make up the dc sense circuit. The two power supply outputs are connected to resistive dividers. The outputs of these two dividers are compared to a reference voltage (generated by R19 and R2g from the +5 V power line) by the comparators. The comparators outputs are combined by U8 to yield the DCON signal. This signal feeds the dc lamp driver made up of a R32 and 02.

Comparators Ul冋 and associated components, as well as gates UB and U3 make up the logic and delay circuits that generate the DCOK and POK signals for the computer. As for the DCONC signal, delays are generated through RC delays feeding the two comparators. Cll and Cl2 on the two comparators provide positive feedback to insure clean switching of the comparators' outputs.

Two sections of hex inverter 47 and one section of an open collector NAND gate (U5) buffer the RUN/HALT switch output. The resulting signal feeds the BHALT signal to the system computer.

A retriggerable monostable multivibrator (U4) provides the pulse to level conversion for the RUN lamp driver made up of \(R 8\) and 01 . The monostable pulse width of \(8 \varnothing \mathrm{msec}\) is considerably wider than the SRUN signal period so the monostable is continually retriggered as long as SRUN is present.

\section*{J. 4 POWER CONTROL CIRCUIT BOARD DESCRIPTION AND PARTS LIST}

All components for the power control circuits are mounted on a single \(4.5 \times 6.5 \mathrm{in}\). ( \(11.4 \times 16.5 \mathrm{~cm}\) ), double-sided printed circuit board. Signal and power connections to the board are made through a \(44-\mathrm{pin}\) edge connector. A photograph of the board is given in Figure J-4. Parts locations are identified on the photograph; a detailed parts list is given in Table J-l.

Table J-2 gives the pin identification for the control card edge connector.



J-3. System Controller Power Control Board Schematic (Cont.)


J-4. System Controller Power Control Board
Component Locations
Table J-1 System Controlier Power Control Board Parts List


Table J-2 System Controller Power Control Board Edge Connector Pin Identification
\begin{tabular}{|c|c|c|}
\hline Pin & Signal & Direction \\
\hline 1 & 12.6 Vac & In * \\
\hline 2 & Ground & - \\
\hline 3 & 12.6 Vac & In \\
\hline 4 & Switch ground & - \\
\hline 5 & DC ON switch contact & In \\
\hline 6 & DC OFF switch contact & In \\
\hline 7 & INITIALIZE ON switch contact & In \\
\hline 8 & INITIALIZE OFF switch contact & In \\
\hline 9 & RUN switch contact & In \\
\hline 10 & HALT switch contact & In \\
\hline 11 & RUN lamp return & In \\
\hline 12 & 5 vdc lamp power & Out \\
\hline 13 & Dc lamp return & In \\
\hline 14 & DCONC (power supply control) & Out \\
\hline 15 & BHALT & Out \\
\hline 16 & BPOK & Out \\
\hline 17 & BDCOK & Out \\
\hline 20 & +5 Vdc power & In \\
\hline 21 & Ground & - \\
\hline 22 & +12 Vdc power & In \\
\hline
\end{tabular}
* "In" refers to signals accepted by board; "Out" refers to signals put out by board.

\section*{Appendix K}

\section*{K.I APPENDIX OVERVIEW}

This appendix covers details of the system clock interface. It includes block and schematic diagrams of the interface circuit and gives specifications and a parts list for the interface circuit board. Card edge connector pin identifications are given in tabular form. The modifications necessary for external access to the clock oscillator chain are detailed as are procedures for using the resulting signal for system synchronization. Another section of this appendix covers software interface considerations, giving interface register location and bit identification information. A short computer program for checking out the interface is also included.

\section*{K. 2 COMPUTER BACKPLANE}

\section*{K.2.1 CIRCUIT DESCRIPTION}

A block diagram of the clock interface is given in Figure \(K-1\). The interface consists of a 16 -channel 2 to 1 multiplexer to connect the clock \(B C D\) data to the LSI-ll parallel input port. Buffers for the 100 and 1000 pps bit streams are included as are buffers for the two clock control lines. Two flipflops are used to connect the 1 pps signal to the parallel port card interrupt inputs. They are reset by three signals from the computer.

Figure K-2 contains the schematic diagram of the circuits needed to implement this block diagram. Note that both interrupt flipflops (U6) are reset by the initialize signal from the computer.


K-1. System Clock Interface Block Diagram

\section*{K.2.2 PHYSICAL DESCRIPTION}

All components for the interface are mounted on a single 4.5 x 6.5 in . ( \(11.4 \times 16.5 \mathrm{~cm}\) ) double-sided printed circuit board. Power connections to the board are made through the board's edge connector as are connections between the board and \(J 6\) and \(J 7\) on the interface chassis rear panel. (Ribbon cables connect these sockets to a DRV-11 parallel interface card located in the controller chassis.) Connections between the card and the system clock are made through a ribbon cable socket mounted on the card . Figure K-3 is a photograph of the interface card with parts identified. Table k-1 gives the board parts list and is keyed to the board photograph.

Connections between the interface card and the clock take place over a \(5 \varnothing\)-conductor ribbon cable. One end of the cable is terminated with a 3 M \#3425-3000 50-pin plug for connecting to the card. The other cable end is split and connected to the two circuit board connectors on the back of the clock. Table k-2 gives the signal assignments of this cable, referenced to the ribbon cable socket on the circuit board.

Connections between the interface card and the chassis back panel are made through the card edge connector, as are power and ground connections. The back panel connections are made via a 50 -conductor ribbon cable. The cart end of the cable is terminated with a 3 M


K-2. System Clock Interface Schematic



K-2. System Clock Interface Schematic (Cont.)


\#3307- \(0 \emptyset 00\) socket that plugs directly onto the edge connector socket. The other end of the cable is split, with the first 40 wires terminated in a \(3 M \# 3331\) socket. This socket appears as \(J 7\) on the chassis rear panel. The other 10 wires in the cable are soldered to a second \#3331 socket on the chassis rear panel (J6). Table K-3 identifies the signals appearing on the edge connector together with their ultimate destinatior.
Table K-1 System Clock Interface Parts List
\begin{tabular}{|c|c|c|c|}
\hline Part & Noun & Mfgr Part No. & Manufacturer \\
\hline XU1-XU4 & Low profile DIP IC socket, 16-pin & 516-AG10D & Augat \\
\hline XU5-xU7 & Low profile DIP IC socket, 14-pin film & & \begin{tabular}{l}
Augat \\
Corning
\end{tabular} \\
\hline R1-R3 & Resistor, l.5k \(\Omega, 1 / 2 \mathrm{~W}, 28\), metal film Capacitor, \(47 \mu \mathrm{~F}, 35 \mathrm{~V}\), tantalum & 199D476X0035A2 & Sprague \\
\hline Cl
\(\mathrm{C} 2-\mathrm{C} 4\) & Capacitor, \(47 \mu \mathrm{~F}, 35 \mathrm{~V}\), tantalum Capacitor, \(0.01 \mu \mathrm{~F}, 200 \mathrm{~V}\) & CKRø6 & Avx \\
\hline C2-C4
U1-U4 & Capacitor, \({ }_{\text {Quad }}\)-input data selector, TTL & 74157 & TI \\
\hline U1-U4 & Quad 2-input data selector,
Quad 2-input NoR gate, TTL & 7402 & TI \\
\hline U5 & Dual D-type flipflop, TTL & 7474 & TI \\
\hline U7 & Hex open collector buffer, TTL & 7407
\(3433-10 k \cdot 2\) & TI \\
\hline J1 & Socket, 50-pin ribbon cable & 3433-10k 2 & 3 M \\
\hline
\end{tabular}

Table K-2 System Clock Cable Pin Identification
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{```
Connector: 3M #3433-10122
Mating Connector: 3M #3425-3000
Clock Connectors (J1 AND J2): Vector R644
```} \\
\hline \multicolumn{2}{|c|}{Interface} & \multirow[b]{2}{*}{Direction} & \multicolumn{2}{|c|}{Clock} \\
\hline Pin & Signal & & Connector & Pin \\
\hline 1 & Day 100's 1 & In & J1 & w \\
\hline 2 & Day 10:s 1 & In & J1 & 19 \\
\hline 3 & Day 100's 2 & In & J1 & v \\
\hline 4 & Day 10's 8 & In & J1 & 18 \\
\hline 5 & Day lis 1 & In & J1 & U \\
\hline 6 & Day 10's 2 & In & J1 & 17 \\
\hline 7 & Day 1's 8 & In & 31 & T \\
\hline 8 & Day 10's 4 & In & J1 & 16 \\
\hline 9 & Day l's 2 & In & JI & S \\
\hline 16 & Day 1's 4 & In & J1 & R \\
\hline 11 & Hour 10's l & In & J & P \\
\hline 12 & Hour 10's 2 & In & J1 & N \\
\hline 13 & Hour 1's 1 & In & J1 & M \\
\hline 14 & LATCH command & Out & J1 & 11 \\
\hline 15 & Hour l's 8 & In & J1 & L \\
\hline 16 & Hour l's 2 & In & J1 & K \\
\hline 17 & Hour l's 4 & In & J1 & J \\
\hline 19 & Sec 10's 1 & In & J1 & H \\
\hline 20 & Min 10's 1 & In & J1 & 7 \\
\hline 21 & \(\sec 10 \mathrm{~s} 2\) & In & J1 & F \\
\hline 22 & Min 10's 2 & In & J1 & 6 \\
\hline 23 & \(\sec 10 \cdot \mathrm{~s} 4\) & In & 31 & E \\
\hline 24 & Min 10's 4 & In & J1 & 5 \\
\hline 25 & Sec 1's l & In & J1 & D \\
\hline 26 & Min l's 1 & In & J1 & 4 \\
\hline 27 & Sec 1's 8 & In & J1 & c \\
\hline 28 & Min l's 8 & In & Jl & 3 \\
\hline 29 & Sec l's 2 & In & J1 & B \\
\hline 30 & Min l's 2 & In & J1 & 2 \\
\hline 31 & Sec 1's 4 & In & J1 & A \\
\hline 32 & Min 1's 4 & In & J 1 & 1 \\
\hline 35 & Ground & - & J2 & 2, B \\
\hline 36 & RESET Command & Out & J2 & 3, C \\
\hline 37 & Ground & - & J2 & 2,B \\
\hline 38 & 1 pps clock & In & J2 & 4.D \\
\hline 39 & 100 pps clock & In & J2 & 5.E \\
\hline 40 & HOLD command & Out & J2 & 6, F \\
\hline 43 & Ground & - & J2 & 21, Y \\
\hline 44 & 1000 pps clock & In & J2 & 16.T \\
\hline 45 & Ground & - & J2 & 21, Y \\
\hline 46 & 1090 pps clock & Out & J2 & 15, \\
\hline 47 & Ground & - & J2 & 21, Y \\
\hline
\end{tabular}
* "In" refers to signals accepted by the interface circuits from the clock; "Out" refers to signals put out to the clock.

\section*{K. 3 MINIMUM SYSTEM COMPUTER CONFIGURATION}

To allow time synchronization between the SDAS and other systems. an access to the SDAS clock master oscillator is useful. Once the oscillator signal is brought out of the clock, it can be used in a number of ways for synchronization, as discussed below. Figure K-4 contains an excerpt from the SDAS clock schematic diagram showing the frequency divider chain of the clock. The crystal oscillator frequency of 1.0 MHz is repeatedly divided by 10 to yield the 1 pps

Table K-3 System Clock Interface Edge Connector Pin Identification
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interface} & \multirow[b]{2}{*}{Direct} & \multicolumn{2}{|r|}{Rear Panel} \\
\hline Pin & Signal & & Conn/Pin & Signal \\
\hline 3 & REQ B interrupt clear & In * & J7/3 & Data accepted pulse \\
\hline 5 & Hr l's \(4 / \mathrm{Sec} \mathrm{l}^{\prime}\) 's 4 & Out & 37/5 & Input bit 2 \\
\hline 8 & Ground & - & J7/8 & Ground \\
\hline 9 & Mux control signal & In & J7/9 & CSR 0 \\
\hline 10 & Ground & - & 57/10 & Ground \\
\hline 11 & Day 100's 2/High & Out & J7/11 & Input bit 15 \\
\hline 12 & Day 100's l/ Min 10's 4 & Out & J7/12 & Inpct bit 14 \\
\hline 13 & Day 10's 8/Min lo's 2 & Out & J7/13 & Input bit 13 \\
\hline 14 & Ground & - & J7/14 & Ground \\
\hline 15 & 1 pps interrupt & Out & 57/15 & REQ B Input \\
\hline 16 & Ground & - & 57/16 & Ground \\
\hline 17 & Day 10's 4 / Min l0's l & Out & J7/17 & Input bit 12 \\
\hline 18 & Day 10's 2 / Min l's 8 & Out & 37/18 & Input bit 11 \\
\hline 19 & Day lo's 1/Min l's 4 & Out & J7/19 & Input bit 10 \\
\hline 20 & Ground & - & J7/29 & Ground \\
\hline 21 & Day l's 8 / Min l's 2 & Out & 57/21 & Input bit 9 \\
\hline 22 & Day l's 4 / Min l's 1 & Out. & 37/22 & Input bit 8 \\
\hline 23 & Ground & - & J7/23 & Ground \\
\hline 24 & Hr l's \(4 / \mathrm{Sec} \mathrm{l}^{\text {cs }} 4\) & Out & J7/24 & Input bit 3 \\
\hline 25 & Day l's 2 Higl: & Out & J7/25 & Input bit 7 \\
\hline 26 & Ground & - & 57/26 & Ground \\
\hline 27 & Day 1's \(1 /\) Sec 10's 4 & Out & 57/27 & Input bit 6 \\
\hline 29 & Hr lo's 2 / Sec l0's 2 & Out & 57/29 & Input bit 5 \\
\hline 30 & Ground & - & J7/30 & Ground \\
\hline 31 & Hr 10's 1/ Sec 10's 1 & Out & J7/31 & lnput bit 4 \\
\hline 32 & Hr l's 2 / Sec l's 2 & Out & 57/32 & Input bit 1 \\
\hline 33 & Ground & - & 57/33 & Ground \\
\hline 34 & Clear interrupts & In & J7/34 & Initialize \\
\hline 35 & Ground & - & 57/35 & Ground \\
\hline 37 & Ground & - & 57/37 & Ground \\
\hline 38 & Hr l's \(1 / \mathrm{Sec} 1 \mathrm{l}\) (1 & In & 57/38 & Input bit 0 \\
\hline 39 & Ground & - & J7/39 & Ground \\
\hline 41 & REQ A interrupt clear & In & J6/3 & Output bit 0 \\
\hline 42 & Ground & - & 56/25 & Ground \\
\hline 43 & LATCH control & In & J6/26 & CSR 1 \\
\hline 44 & RESET control & In & 6, \(6 / 30\) & Output bit 15 \\
\hline 45 & Ground & - & '31 & Ground \\
\hline 46 & 1 pps interrupt & Out & Jo/32 & REQ A input \\
\hline 47 & Ground & - & J6/33 & Ground \\
\hline 48 & 100 pps & Out & J6/49 & BEVNT*** \\
\hline 49 & Ground & - & 56/50 & Ground** \\
\hline
\end{tabular}

Table K-3 System Clock Interface Edge Connector Pin Identification (contd)
\begin{tabular}{|c|c|c|c|c|}
\hline 55 & 1000 pps & Out & J10 & 1000 pps out \\
\hline 56 & Ground & - & J10 & Ground \\
\hline 57 & 1000 pps & In & J11 & 1000 pps in \\
\hline 58 & Ground & - & J11 & Ground \\
\hline \(65-68\)
\(69-72\) & +5 Vdc power Power ground & - & & \\
\hline
\end{tabular}
* "Out" refers to signals put out by the clock interface card: "In" refers to signals accepted by the card
** Destination is power control card edge connector.
Note:
-- External and internal pin numbers same as connector pin numbers.
-- I's, \(10^{\prime} \mathrm{s}, 100 \mathrm{~s}\) refer to digit of seconds, minutes, hours, and days data.
-- 1, 2, 4, 8 refer to BCD bit (eg. "Hr l's l" is bit lof digit 1 of the hour data segment).

input for the clock counters. As shown in the figure, the modification consists of ureaking the chain at the lo@日 pps point and feeding the 1000 pps stream to in 16 on the edge connector (J2). Pin 15 on the connector is rin to tre input to the next counter stage input.

These two sigl.als (.0日a pps output and input) are buffered on the interface card ard run to the interface edge connector. From there, they run via coaxial cable to a pair of BNC connectors (Jlø and Jli) on the rear panel of the ihterface chassis. For normal use, a short piece of coax (with BNC conrectors on both ends) is jumpered between these connectors.

\section*{K. 4 DRV.II MODIFICATION INFORMATION}

Several methods for time synchronization between the SDAS and another system using the 1000 pps clock signal are discussed below. The simplest method is to insert a BNC "T" connector in the jumper between Jlo and Jll on the chassis rear panel. This signal can then be fed to the other system for its use.

Alternatively, a 1000 pps TTL-level signal from an oscillator on another system can be connected to Jll, with nothing connected to J10. The SDAS system clock would then be slaved to that oscillator.

A more flexible, if more complex, synchronization scheme involves the use of a pulse insertion circuit, such as the one shown in figure K-5.

This circuit consists of a dual retriggerable oneshot multivibrator that puts out one pulse every time the "PULSE" button is pushed. The first oneshot debounces the "PULSE" button while the second provides the actual output pulse. Two-input NAND gates are used to adc the pulse to the clock pulse train. If this circuit is connected to Jll and the oscillator output (either from Jlo or an external source), one additional pulse is added to the pulse stream with each button push. This pulse advances the SDAS clock relative to the oscillator output by 1 msec . If the 100 or 1 pps clock output signals is compared with a similar frequency signal from another source (using an oscilloscope or a high-speed chart recorder), the SDAS clock can be advanced to bring the two into synch.

Figure \(K-6\) shows an instance where this circuit could be used. As shown, an external system with its own digital clock is to be synchronized with the SDAS. A 1000 pps signal from this system functions as the master oscillator for the SDAS clock. The SDAS clock is manually set to be slightly slower than the external clock. By obse:ving the 1 pps SDAS clock output and a time signal from the external clock (such as an IRIG serial time code) on the oscilloscope, the relative timing of the two can be noted. Pulses are then inserted into the SDAS clock stream to advance the SDAS clock until the two signals are in synch, thus synchronizing the two systems.

The above represent thret of the simplest synchronization procedures. More sophisticated ones can be developed as the application dictates.

K-5. Pulse Insertion Circuit Schematic

\section*{K.5.1 INTERFACE REGISTER CONTENTS}

The SDAS system clock interface described above is connected to a single \(D R V-11\) parallel line interface module in the controller computer. System software has access to the three registers (control and status, input, and output) on the module for reading and controlling the clock. Tables \(K-4\) through \(K-6\) give bit identification for these registers; register addresses are as shown in Appendix \(I\), Figure I-3. (Bit is LSB, bit 15 is MSB.)

\section*{K.5.2 SLOCK INTERFACE CHECKOUT SOFTWARE}

Listed in Tables \(K-7\) and \(K-8\) is a simple program to checkout the clock interface. The program was written in FORTRAN (DEC FORTRAN IV, version VDlC-3A) under DEC's RT-1l operating system (RT-llFB, version Vø2C-02B). Also listed is a subroutine (GETIME) written in DEC's PDP-ll operating system (MACRO). This subroutine is called from the main program to reformat the clock data prior to display. IPEEK and IPOKE are two DEC FORTRAN subroutines to read and write, respectively, data to/from specific memory locations. EXIT is a DEC subroutine to return to the operating system. They are contained in DEC's SYSLIB FORTRAN utility library which must be linked to the program.

When the program is loaded and executed, it responds with TYPE D TO EXIT, ANYTHING TO READ TIME. If D<cr> is typed on the console, the program returns to the operating system. If any other entry (or none) is made followed by <cr>, the program will display current time as ERC TIME = DDD HH:MM:SS and will repeat the openjing message.

To check out the clock interface, the clock should be manually set to øøø øø: øø: xx, 111 11:11:xx, 222 22:22:xx, 344 04:44:xx, 388 08:08:xx and the time read out by the program. This tests all the day, hour, and minute data bits. Since the seconds bits cannot be manually set, sufficient readings should be taken to verify that all are connected properly.

Table K-4 System Clock Control and Status Register Bit Identification
\begin{tabular}{|c|c|c|c|}
\hline Bit & DEC Bit Name & Type & Functional Description \\
\hline \(\emptyset\) & CSRø & R/W & HI/LO SELECT. When loaded high, hours and days read; when loaded low, minutes and seconds read. \\
\hline 1 & CSR1 & R/w & DATA HOLD. Input data latched when loaded high; when low, data follows time count. Full time signal (days, hrs, mins, and secs) latched. \\
\hline 5 & INT ENB B & R/W & 1 pps INTERRUPT ENABLE B. Computer interrupted at 1 pps rate when bit loaded high; no interrupt when loaded low. Interrupt cleared automatically when time data read. \\
\hline 6 & INT ENB A & R/W & 1 pps interrupt enable A. Computer interrupted at 1 pps rate when bit loaded high: no interrupt when bit low. Interrupt must be cleared by program using output bit \(\varnothing\). \\
\hline 7 & REQ A & R & INTERRUPT A FLAG. Shows status of 1 pps input connected to REQ A. Cleared under program control using output bit \(\varnothing\). \\
\hline 15 & REQ B & R & INTERRUPT B FLAG. Shows status of 1 pps input connected to REQ B. Cleared when time read. \\
\hline
\end{tabular}

Note:
-- Under TYPE, "R" implies that bit status can be read under program control: "W" implies that bit can be loaded by the program.

Table K-5 System Clock Output
Register Bit Identification
\begin{tabular}{|l|l|}
\hline \hline Bit & Functional Description \\
\hline\(\varnothing\) & CLEAR INTERRUPT. Clears 1 pps interrupt connected to REQ B. \\
15 & RESET. Reset clock to 000 00:00:00. \\
\hline
\end{tabular}

Table K-6 System Clock Input Register Bit Identification
\begin{tabular}{|c|c|}
\hline Bit & Contents \\
\hline 0 & Hour 1's l/ Second l's 1 \\
\hline 1 & Hour 1's \(2 /\) Second l's 2 \\
\hline 2 & Hour 1 's 4 it Second l's 4 \\
\hline 3 & Hour l's \(8 /\) Second l's 8 \\
\hline 4 & Hour lo's \(1 /\) Second lo's 1 \\
\hline 5 & Hour 10's \(2 /\) Second \(10^{\prime}\) s 2 \\
\hline 6 & Day 1's 1/ Second 10's 4 \\
\hline 7 & Day l's 2/High \\
\hline 8 & Day l's 4/Minute l's 1 \\
\hline 9 & Day 1 's \(8 /\) Minute l's 2 \\
\hline 10 & Day 10's 1/ Minute l's 4 \\
\hline 11 & Day 10's \(2 / \mathrm{Minute} 1{ }^{\text {l }} 8\) \\
\hline 12 & Day lo's 4 / Minute l0's l \\
\hline 13 & Day 10's 8/Minute l0's 2 \\
\hline 14 & Day l0ø's l/ Minute l0's 4 \\
\hline 15 & Day log's \(2 / \mathrm{High}\) \\
\hline
\end{tabular}

Notes:
-- l's, lø's, and løø's refer to digit of time unit. -- 1, 2, 4, and 8 refer to BCD bit of digit value. -- "High" implies tied permanently to +5 vdc.

Table K-7 System Clock Interface Checkout Program Listing
\begin{tabular}{|c|c|}
\hline & PROGRAM ERC CLOCK CHECK \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & PROGRAM READS TIME FROM ERC CLOCK INTO ARRAY INTIME AND CALLS \\
\hline C & SUBROUTINE GETIME TO CONVERT TO ARRAY ITIME FOR DISPLAY ON \\
\hline C & CONSOLE. MUST BE LINKED WITH GETIME AND SYSLIB. \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & DIMENSION INTIME(2), ITIME(4) \\
\hline & LOGICAL* 1 ANS, DONE \\
\hline & DATA DONE/1HD/ \\
\hline 100 & TYPE 10 \\
\hline 10 & FORMAT (' TYPE D TO EXIT, ANYTHING TO READ TIME') ACCEPT 20,ANS \\
\hline \multirow[t]{9}{*}{20} & FORMAT (Al) \\
\hline & IF (ANS.EQ.DONE) CALL EXIT \\
\hline & CALL IPOKE ("167770,3) \\
\hline & INTIME (1)=IPEEK ("167774) \\
\hline & CALL IPOKE ("167770, 2) \\
\hline & INTIME (2)=IPEEK ("167774) \\
\hline & CALL IPOKE ("167770.0) \\
\hline & CALL GETIME (INTIME, ITIME) \\
\hline & TYPE 30, (ITIME (N), \(\mathrm{N}=1,4\)) \\
\hline \multirow[t]{3}{*}{30} & \\
\hline & GOTO 100 \\
\hline & END \\
\hline
\end{tabular}

Table K-8 Subroutine GETIME Listing

\section*{Appendix L}

\section*{L. 1 APPENDIX OVERVIEW}

This appendix provides detailed information on the interface circuitry for the magnetic tape recorder used with the SDAS. It includes block diagrams and schematics of the circuits, parts lists, and connector pin identifications. It also includes a discussion of software interface considerations and a listing of a short interface/recorder checkout program.

\section*{L. 2 REPLACEMENT WRITE ADAPTER CIRCUIT BOARD}

The replacement write interface card plugs into the rear of the Kennedy tape recorder. It replaces the board supplied by the manufacturer. Mounted on the board are six dual differential line receivers (see Figure \(\mathrm{L}-1\)). The receivers accept differential digital signals from the write interface and convert them to TTL levels for the Kennedy inputs. The response of each receiver is tailored to the timing requirements of the signal being received. Also included on the board are four jumpers (Si through S4) to configure the recorder as listed in Table L-l.

Figure L-2 gives a view of the component side of the circuit board. A parts list for the board, keyed to the figure, is contained in Table L-2.

Connections between the interface card and the Kennedy recorder are made through the card edge connector. See schematic diagram for connector board, type 4463-b01, in the recorder operation and
maintenance manual for details on the edge connector pin identification.

One additional wire must be added to the Kennedy formatter chassis to supply power to the new write card. A wire-wrap jumper must be installed between pin 18 on the write card socket and pin \(D\) of the socket for Kennedy card \(3607-\varnothing 03\). This card is located immediately above the write interface card in the formatter card cage.

Signals between this card and the write interface card in the interface chassis flow through Jl. Pin identification on this connector is identical to that on Jl3 on the interface chassis back panel (see Table L-8 below).

\section*{L. 3 INTERFACE CIRCUIT BOARDS}

\section*{L.3.1 INTERFACE BLOCK DIAGRAM}

The read and write interface cards, located in the interface chassis card cage, provide the digital interfaces between the tape recorder and the parallel line card in the system computer. The read, write, status, and control interface functions performed by the interface are split between the two cards. Figure L-3 shows an overall block diagram of the interface circuitry; it is discussed below.

Byte-parallel data for recording comes from the DRV-11 parallel interface card in the system controller. The signals are conditioned on the cards and fed to the recorder in differential form. The differential line drivers on the card are connected to provide signal inversions to match the DRV-11 positive logic to the negative (low true) logic required by the recorder.

The recorder output signals use negative logic also. Therefore, the byte-parallel read data and all recorder status lines are inverted to be compatible with the computer's positive logic. Also, all recorder output lines use open collector line drivers, so pullup resistor networks are used to provide proper signal termination.

Two of the status lines from the recorder are pulses as opposed to levels. To insure that the computer reads these properly, pulse-to-level conversion flipflops are used. These and other recorder status signals are combined to yield a composite error signal. This signal is fed to the computer for error interrupt and identification purposes.

Most commands to the recorder are in the form of pulses. A pulse-generator oneshot multivibrator converts a level change from the computer to a pulse. This pulse is combined with command and status bits from the DRV-11 to generate the 10 control signals for the recorder. Six of these signals are associated with writing data to tape. They are converted to differential form to match the differential line receivers added to the recorder.

WOOL

I-1. Tape Recorder Write Adapter Schematic

Tabl: L-1 Tape Recorder Write Adapter Jumper Icentification
\begin{tabular}{|l|l|l|}
\hline Jumper & Installed & Removed \\
\hline Sl & 7 track & 9 track \\
S2 & 7 track & 9 track \\
S3 & 9 track & 7 track \\
S4 & RAW disable & RAW enable \\
\hline
\end{tabular}

Notes:
-- "7 track" implies 7 track tape record/playback.
-- "9 track" implies 9 track tape record/playback.
-- RAW = Read After Write error check.

Table L-2 Tape Recorder Write Adapter Parts List
\begin{tabular}{|c|c|c|c|}
\hline & \(\underline{\text { Table }}\) & Mfgr Part No. & Manufacturer \\
\hline Part & Noun & & \\
\hline xU1-XU7 & Low profile DIP IC socket, 14-pin & \[
\begin{aligned}
& 514-A G 10 D \\
& \text { DD202 }
\end{aligned}
\] & Centralab \\
\hline C1, 3, 5, 7, 9, 11, & Capacitor, \(0.062 \mu \mathrm{~F}, 1 \mathrm{kV}\), 20\%, & & \\
\hline 13,15,17,19,21, & & CM05F221Jø3 & Arco \\
\hline \[
\begin{aligned}
& 23,25,27 \\
& c 2,28
\end{aligned}
\] & Capacitor, \(220 \mathrm{pF}, 50 \mathrm{~V}, 5 \%\), micu & CM4FD101G0 & Cornell-Dubilier \\
\hline C4,6,8,18 & Capacitor, \(100 \mathrm{PF}, 500{ }^{\text {c }}\), \(100 \mathrm{~V}, 2 \%\), mica & DL-15-102G & \\
\hline C12,14,16,18. & Capacitor. \(1000 \mathrm{pF}, 1\) & & Sprague \\
\hline \({ }_{\text {c31 }} \mathbf{2 0 , 2 4 , 2 6}\) & Capacitor, \(47 \mu \mathrm{~F}, 35 \mathrm{~V}\), tantalum & CKRø6 & AVX \\
\hline C29,30,32 & Capacitor, \(0.01 \mu \mathrm{~F}, 200\) V & DS8820n & Nat'l Semic. \\
\hline U1-U7 & Dual differential \({ }^{\text {S }}\) " type & DD37s & Cannon \\
\hline
\end{tabular}

L-3. Tape Recorder Interface Block Diagram

\section*{L. 3. 2 READ INTERFACE CIRCUIT BOARD}
L.3.2.1 Circuit Description

Figure \(L-4\) contains the schematic diagram of the read interface circuit board.

Inverters \(U 1\) and \(U 2\) together with resistor network \(U 4\) buffer the data and signal lines coming from the recorder. Half of each of two dual \(D\) flipflops are used to convert the REOR (Read End of Record) and RDS (Read Data Strobe) status lines (which arrive as pulses) to levels for reading by the DRV-1l. The REOR flipflop is cleared by the command execute pulse (which is generated by half of a dual monostable multivibrator U7). The RDS flipflop, on the other hand, is cleared by either the INITIALIZE or DATA ACCEPTED signals from the computer. The command execute pulse also feeds triple-input NAND gates (U9) to generate three of the pulsed recorder commands. These are buffered by open collector buffers U8.

L-4. Tape Recorder Read Interface Schematic
L-4. Tape Recorder Read Interface Schematic (Cont.)
initialize cmo
cmo enable CMD ENABLE
SSEARCH CMD
\(3 \mathrm{~m}^{*} 3432\)

\[
\begin{aligned}
& \text { w } \\
& \stackrel{w}{a} \\
& \text { a } \\
& \stackrel{\rightharpoonup}{u} \\
& \stackrel{4}{\Phi} \\
& \hline
\end{aligned}
\]

The majority of the remaining logic on the board is associated with error signal processing. Ul \(\emptyset\) and \(U 11\) combine the recorder status signals to form the input to a monostable multivibrator (U7). This in turn puts out a 1 usec pulse to set the error flipflop U6. The pulse is ORed with the signal from pin ll of Ulø. This signal is true whenever the recorder is in the :ead mode and read data is not available. The effect of this ORing is to hold the error flipflop high as long as the condition persists. The flipflop is normally reset by either the INITIALIZE or DATA ACCEPTED signal from the DRV-11. Since the DATA ACCEPTET signal occurs each time the computer reads the DRV-11 input data word, reading the status bits in this word normally clears the error flag. ORing the read data not available signal into the flipflop insures that it is not reset as long as the condition holds.

\section*{L.3.2.2 Gircuit Board Description}

All components for the interface are mounted on a single \(4.5 \times\) 6.5 in. (\(11.4 \times 16.5 \mathrm{~cm}\)) double-sided printed circuit board. Power connections to the board are made through the board's edge connector as are connections between this and the write interface sard. Connections between the board and Jl2 on the interface chassis rear panel are also made through the edge connector. Connections between the card and the recorder read connector are made through a ribbon cable socket mounted on the card edge. Figure L-5 is a photograph of the interface card with parts identified. Table L-3 gives the board parts list keyed to the board photograph.

The card edge connectcr is used for connecting power and ground to the board. It also conn cts signals going between the card and the computer parallel interface. Also run through the edge connector are signals that flow between the two interface cards (read and write). Table L-4 gives the signal assignments for this edge connector together with their sources/destinations on the card.

Connections between the card and the Kennedy recorder are made via Jl on the card. Spectra-Strip \(\#\) 455-248-4ø 4б-conductor twisted pair ribbon cable is used for the connection. Both ends of the cable are terminated with 3 M \#3425-30日の plugs. A printed circuit adapter is mounted on the chassis rear panel connector (J12) to convert the ribbon cable to the 37 -pin connector used by the recorder. Table L-5 lists the pin identification for the signals appearing on JI. It also identifies their origin on the board and where they appear on J 12 .

\section*{L.3.3 WRITE INTERFACE CIRCUIT BOARD}

\section*{L.3.3.1 Circuit Description}

Figure L-6 contains the schematic diagram of the write interface circuit board.

This card contains the differential line drivers for interfacing with the modified tape recorder. It also contains pull-up resistors and inverting buffers for those status signals that appear on the write connector. These status signals are routed to the read interface.

L.3.3.2 Circuit Board Description

All components for the intorface are mounted on a single \(4.5 x\) 6.5 in. (\(11.4 \times 16.5 \mathrm{~cm}\)) double-sided printed circuit board. Power connections to the board are made through the board's edge connector as are connections between this and the read interface card. Connections between the board and \(J 13\) on the interface chassis rear
Table L-3 Tape Recorder Read Interface Parts List
\begin{tabular}{|c|c|c|c|}
\hline Part & Noun & Mfgr Part No. & Manufacturer \\
\hline \[
\begin{gathered}
\text { xu1,2,3,5, } \\
6,8-11
\end{gathered}
\] & Low profile DIP IC socket, 14-pin & 514-AGløD & Augat \\
\hline XU4, XU7 & Low profile DIP IC socket, 16-pin & 516-AGIOD & Augat \\
\hline R1,R2 & Resistor, 5.1K \(\mathrm{K}^{\text {, }} 1 / 2 \mathrm{~W}, 2 \%\), metal film & C5 & Corning \\
\hline R3-R5 & Resistor, \(1.5 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}, 28\), metal film & C5 & Corning \\
\hline C1,2,4,6,8 & Capacitor, 0.01 \(\mu \mathrm{F}, 200 \mathrm{~V}\) & CKRø6 & AVX \\
\hline C3 & Capacitor, \(1000 \mathrm{pF}, 100 \mathrm{~V}, 28\), mica & DL-15-162G & Arco \\
\hline C5 & Capacitor, \(47 \mu \mathrm{~F}, 35 \mathrm{~V}\), tantalum & 199D476X0635A2 & Sprague \\
\hline C7 & Capacitor, \(510 \mathrm{pF}, 590 \mathrm{~V}, 5 \%\) mica & DL-15-511 & Arco \\
\hline U1,2,3 & Hex inverter, tTL & 7464 & Texas Instrument \\
\hline U4 6 & Resistor network & 761-5R220-330 & CTS \\
\hline U5.6 & Dual D-type flipflop, TTL
Dual Monostable multivibrator, TTL & 7474
74123 & Texas Instrument Texas Instrument \\
\hline U7 & Dual Monostable multivibrator, TTL
Hex open collector buffer, TTL & 7417 & Texas Instrument \\
\hline U9 & Triple 3-input NAND gate, TTL & 7410 & Texas Instrument \\
\hline U10 & Quad 2-input AND gate, TTL & 7468 & Texas Instrument \\
\hline U11 & Dual 4-input NOR gate, TTL & 7425 & Texas Instrument \\
\hline J1 & Socket, 40-pin ribbon cable & 3432-1002 & \\
\hline
\end{tabular}

Table L-4 Tape Recorder Read Interface Edge Connector Pin Identification
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interface} & \multirow[b]{2}{*}{Direct} & \multicolumn{2}{|r|}{Destination} \\
\hline Pin & Signal & & Conn/Pin & Signal \\
\hline 3 & Data accepted pulse & In * & J9/3 ** & Data accepted pulse \\
\hline 7 & Read data bit 2 & Out & J9/7 & Input bit 2 \\
\hline 8 & Ground & - & J9/8 & Ground \\
\hline 9 & Gen command pulse & In & J9/9 & CSR 0 \\
\hline 10 & Ground & - & J9/10 & Ground \\
\hline 11 & Not write ready & Out & J9/11 & Input bit 15 \\
\hline 12 & Load point & Out & J9/12 & Input bit 14 \\
\hline 13 & End of tape & Out & J9/13 & Input bit 13 \\
\hline 14 & Ground & - & J9/14 & Ground \\
\hline 15 & Error & Out & J9/15 & Req B input \\
\hline 16 & Ground & - & J9/16 & Ground \\
\hline 17 & Memory busy & Out & J9/17 & Input bit 12 \\
\hline 18 & Read data not avail & Out & J9/18 & Input bit 11 \\
\hline 19 & End of record read & Out & J9/19 & Input bit 10 \\
\hline 20 & Ground & - & J9/20 & Ground \\
\hline 21 & End of file read & Out & J9/21 & Input bit 9 \\
\hline 22 & Read block error & Out & J9/22 & Input bit 8 \\
\hline 23 & Ground & - & J9/23 & Ground \\
\hline 24 & Read data bit 4 & Out & J9/24 & Input bit 3 \\
\hline 25 & Read data bit \(\emptyset\) & Out & J9/25 & Input bit 7 \\
\hline 26 & Ground & - & J9/26 & Ground \\
\hline 27 & Read data bit 1 & Out & J9/27 & Input bit 6 \\
\hline 29 & Read data bit 2 & Out & J9/29 & Input bit 5 \\
\hline 30 & Ground & - & J9/30 & Ground \\
\hline 31 & Read data bit 3 & Out & J9/31 & Input bit 4 \\
\hline 32 & Read data bit 6 & Out & J9/32 & Input bit 1 \\
\hline 33 & Ground & - & J9/33 & Ground \\
\hline 34 & Initialize & In & J9/34 & Initialize \\
\hline 35 & Ground & - & J9/35 & Ground \\
\hline 37 & Ground & - & J9/37 & Ground \\
\hline 38 & Read data bit 7 & Out & J9/38 & Input bit \(\emptyset\) \\
\hline 39 & Ground & - & J9/39 & Ground \\
\hline 53 & HOLD command & In & WI/53 *** & HOLD command \\
\hline 54 & STOP SEARCH Command & In & WI/54 & STOP SEARCH comm \\
\hline 55 & INITIALIZE command & In & WI/ 55 & INITIALIZE COmm \\
\hline 57 & Not write ready & In & WI/ 57 & Not write rdy in \\
\hline 58 & Load point & In & WI/58 & Load point \\
\hline 59 & End of tape read & In & WI/59 & EOT read \\
\hline 60 & Memory busy & In & WI/60 & Memory busy \\
\hline 63 & Command enable & In & WI/63 & Command enable \\
\hline 64 & Command pulse & Out & WI/64 & Command pulse \\
\hline \(65 / 68\)
\(69 / 72\) & & \(+5 \mathrm{Vdc}\) Ground & Power & \\
\hline
\end{tabular}
* "In" refers to signals accepted by on/board circuitry:
"Out" refers to signals generated by card.
** "J9" refers to interface chassis back panel connector J9.
*** "WI" refers to tape write interface edge connector.
Notes:
-- All signals TTL level.
-- Edge connector pins not listed are not used.

Table L-5 Tape Recorder Read Interface Output Connector Pin Identification
\begin{tabular}{|c|c|c|c|}
\hline Pin & Signal & Direct & \[
\begin{aligned}
& \mathrm{J} 12 \\
& \mathrm{Pin}
\end{aligned}
\] \\
\hline 1 & Read data available & In * & 1 \\
\hline 2 & Ground & & 20 \\
\hline 3 & HOLD command & Out & 2 \\
\hline 4 & Ground & - & 21 \\
\hline 5 & STOP SEARCH Command & Out & 3 \\
\hline 6 & Ground & - & 22 \\
\hline 7 & INTIALIZE command & Out & 4 \\
\hline 8 & Ground & - & 23 \\
\hline 9 & READ ONE CHARACTER command & Out & 6 \\
\hline 10 & Ground & - & 24 \\
\hline 11 & End of record & In & 7 \\
\hline 12 & Ground & - & 25 \\
\hline 13 & End of file & In & 8 \\
\hline 14 & Ground & - & 26 \\
\hline 15 & Read data strobe & In & 9 \\
\hline 16 & Ground & - & 27 \\
\hline 17 & Read data bit 0 & In & 10 \\
\hline 18 & Ground & - & 28 \\
\hline 19 & Read data bit 1 & In & 11 \\
\hline 20 & Ground & - & 29 \\
\hline 21 & Read data bit 2 & In & 12 \\
\hline 22 & Ground & - & 30 \\
\hline 23 & Read data bit 3 & In & 13 \\
\hline 24 & Ground & - & 31 \\
\hline 25 & Read data bit 4 & In & 14 \\
\hline 26 & Ground & - & 32 \\
\hline 27 & Read data bit 5 & In & 15 \\
\hline 28 & Ground & - & 33 \\
\hline 29 & Read data bit 6 & In & 16 \\
\hline 30 & Ground & - & 34 \\
\hline 31 & Read data bit 7 & In & 17 \\
\hline 32 & Ground & - & 35 \\
\hline 33 & Read data block error & In & 18 \\
\hline 34 & Ground & - & 36 \\
\hline
\end{tabular}
* "In" refers to signals accepted by onboard circuitry; "Out" refers to signals generated by card.

Notes:
-- All signals TTL level.
-- Connector pins not listed are not used.
-- Bit numbers refer to recorder rather than user bit identifications.

panel are also made through the edge connector. Connections between the card and the recorder write interface card connector are made through a ribbon cable socket mounted on the card edge. Figure L-7 is a photograph of the interface card with parts identified. Table L-6 gives the board parts list and is keyed to the board photograph.

The card edge connector is used for connecting power and ground to the board as well as for connecting signals between the card and the computer parallel interface. Also run through the edge connector are signals that flow between the two interface cards (read and write). Table \(L-7\) gives the signal assignments for this edge connector together with their sources/destinations on the card.

Connections br ween the card and the recorder are made via Jl on the card. Spectri ,trip \#455-248-40 40-conductor twisted pair ribbon cable is used for the connection. Both ends of the cable are terminated with \(3 M\) \#3425-3øøø plugs. A printed circuit adapter is mounted on the chassis rear panel connector (Jl3) to convert the ribbon cable to the 37 -pin connector used by the recorder. Table L- 8 lists the pin identification for the signals appearing on Jl. It also identifies their origin on the board and where they appear on J13.

\section*{L. 4 TAPE RECORDER INTERFACE SOFTWARE CONSIDERATIONS}

\section*{L.4.1 INTERFACE REGISTER CONTENTS}

The SDAS system tape recorder interfaces described above are connected to a single DRV-ll parallel line interface module in the controller computer. System software has access to the three registers (control and status, input, and output) on the module. Tables L-9 through L-ll give bit identification for these registers; register addresses are as shown in Appendix \(I\), Figure \(I-3\). (Bit \(\emptyset\) is LSB, bit 15 is MSB.)

\section*{L.4.2 TAPE RECORDER INTERFACE CHECKOUT SOFTWARE}

Listed in Table \(L-12\) is a short tape recorder checkout program (NEWKEN). The program was written in DEC's assembly language (RT-11 MACRO, version VMø2-12) running under DEC's RT-11 operating system (RT-11FB, version Vg2C-g2B). The program records and plays back a known pattern and displays the results of the test.

Prior to running the program, a tape must be loaded onto the tape recorder and the recorder put ON LINE. After being loaded and executed, NEWKEN rewinds the tape and reports LOAD POINT when the load point is reached. It then records \(10 \theta\) records of data on the tape. An ascending count is used as the bit pattern, with the count reset when it reaches 10,240 . The count is repeated løø times to get \(10 \emptyset 0\) records of 1024 characters each.

When the recording is completed, the tape is rewound with LOAD POINT reported to signal completion. The program then reports READ TEST and proceeds to read back the tape, comparing the read count pattern with an internally generated one. If a discrepancy oscurs,

Table L-6 Tape Recorder Write Interface Parts List
\begin{tabular}{|c|c|c|c|}
\hline & & Mfgr Part No. & Manufacturer \\
\hline Part & Noun & & Augat \\
\hline xul. xU3-xula & Low profile DIP IC socket, \(14-\mathrm{pin}\) & 516-AG1øD & Augat \\
\hline XU2 & Low profile DIP IC socket & CKRø6 & AVX \\
\hline C1-C3, C5 & Capacitor, \({ }^{\text {capacitor }} 47 \mu \mathrm{~F}, 35 \mathrm{~V}\), tantalum & 199D476X0035A2 & TI \\
\hline C4 & Capacitor,
Hex inverter, TTL & 7404 \(761-5 R 220-330\) & CTS \\
\hline U2, U3 & Hex inverter,
Resistor network & 761-5R220-330
DS8836N & Nat'l Semic \\
\hline U2 \({ }_{\text {U4-U10 }}\) & Dual differential line driver & 3432-1002 & 3M \\
\hline J1 & Socket, 40-pin ribbon cabl & & \\
\hline
\end{tabular}

Table L-7 Tape Recorder Write Interface Edge Connector Pin Identification
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interface} & \multirow[b]{2}{*}{Direct} & \multicolumn{2}{|l|}{Destination} \\
\hline Pin & Signal & & Conn/Pin & Signal \\
\hline 3 & Write data bit 7 & In * & J8/3 ** & Output bit 0 \\
\hline 8 & Ground & - & J8/8 & Ground \\
\hline 9 & Write data bit 6 & In & J8/9 & Output bit 1 \\
\hline 10 & Write data bit 3 & In & J8/10 & Output bit 4 \\
\hline 11 & Ground & - & J8/11 & Ground \\
\hline 12 & Write data bit 2 & In & J8/12 & Output bit 5 \\
\hline 14 & Write data bit 1 & In & J8/14 & Output bit 6 \\
\hline 15 & Ground & - & J8/15 & Ground \\
\hline 16 & Write data bit \(\emptyset\) & In & J8/16 & Output bit 7 \\
\hline 17 & Write data bit 4 & In & J8/17 & Output bit 3 \\
\hline 18 & Ground & - & J8/18 & Ground \\
\hline 19 & INITIALIZE command & In & J8/19 & Output bit 8 \\
\hline 20 & STOP SEARCH command & In & J8/20 & Output bit 9 \\
\hline 21 & Ground & - & J8/21 & Ground \\
\hline 22 & REWIND command & In & J8/22 & Output bit 10 \\
\hline 23 & WRITE END OF FILE comm & In & J8/23 & Output bit 11 \\
\hline 24 & WRITE END OF RECORD comm & In & J8/24 & Output bit 12 \\
\hline 25 & Ground & - & J8/25 & Ground \\
\hline 26 & READ command & In & J8/26 & CSR 1 \\
\hline 27 & Ground & - & J8/27 & Ground \\
\hline 28 & HOLD command & In & J8/28 & Output bit 13 \\
\hline 29 & Cormand enable & In & J8/29 & Output bit 14 \\
\hline 30 & FORMATTER ENABLE command & In & J8/30 & Output bit 15 \\
\hline 31 & Ground & - & J8/31 & Ground \\
\hline 32 & READ DATA GOOD & Out & J8/32 & REQ A \\
\hline 33 & Ground & - & J8/33 & Ground \\
\hline 34 & Write data bit 5 & In & J8/34 & Output bit 2 \\
\hline 35 & Ground & - & J8/35 & Ground \\
\hline 37 & Ground & - & J8/37 & Ground \\
\hline 53 & HOLD command & In & RI/53*** & HOLD command \\
\hline 54 & STOP SEARCH command & Out & RI/ 54 & STOP SEARCH Comm \\
\hline 55 & INITIALIZE command & Out & RI/55 & INITIALIZE comm \\
\hline 57 & Not write ready & Out & RI/ 57 & Not write ready \\
\hline 58 & Load point & Out & RI/ 58 & Load point \\
\hline 59 & End of tape read & Out & RI/59 & EOT read \\
\hline 60 & Memory busy & Out & RI/60 & Memory busy \\
\hline 63 & Command enable & Out & RI/63 & Command enable \\
\hline 64 & Command pulse & In & RI/64 & Command pulse \\
\hline 65-68 & \(+5 \mathrm{Vdc}\) & Power & & \\
\hline 69-72 & Ground & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
* "In" refers to sig ncepted by onboard circuitry; \\
"Out" refers to signa.. nerated by card. \\
"J8" refers to interface chassis rear panel connector J8. \\
"RI" refers to tape recorder read interface edge connector.
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Notes:
-- All signals TTL level.
-- Edge connector pins not listed are not used.

Table L-8 Tape Recorder Write Interface Output Connector Pin Identification
\begin{tabular}{|c|c|c|c|}
\hline Pin & Interface Signal & Direct & \[
\begin{aligned}
& \text { J13 } \\
& \text { Pin }
\end{aligned}
\] \\
\hline 1 & Write ready & In * & 1 \\
\hline 2 & Ground & - & 20 \\
\hline 3 & Load point & In & 2 \\
\hline 4 & Ground & - & 21 \\
\hline 5 & End of tape & In & 3 \\
\hline 6 & Ground & - & 22 \\
\hline 7 & Memory busy & In & 4 \\
\hline 8 & Ground & - & 23 \\
\hline 9 & WRITE - H** & Out & 24 \\
\hline 10 & WRITE - L & Out & 5 \\
\hline 11 & WRITE DATA cmd - H & Out & 25 \\
\hline 12 & WRITE DATA cmd - L & Out & 6 \\
\hline 13 & END OF RECORD cmd - H & Out & 26 \\
\hline 14 & END OF RECORD cmd - L & Out & 7 \\
\hline 15 & END OF FILE cmd - H & Out & 27 \\
\hline 16 & END OF FILE cmd - L & Out & 8 \\
\hline 17 & REWIND Command - H & Out & 28 \\
\hline 18 & REWIND Command - L & Out & 9 \\
\hline 19 & Write data bit \(\emptyset-\mathrm{H}\) & Out & 29 \\
\hline 20 & Write data bit \(\square\) - L & Out & 10 \\
\hline 21 & Write data bit \(1-H\) & Out & 30 \\
\hline 22 & Write data bit 1-L & Out & 11 \\
\hline 23 & Write data bit \(2-\mathrm{H}\) & Out & 31 \\
\hline 24 & Write data bit \(2-L\) & Out & 12 \\
\hline 25 & Write data bit \(3-\mathrm{H}\) & Out & 32 \\
\hline 26 & Write data bit 3-L & Out & 13 \\
\hline 27 & Write data bit 4 - H & Out & 33 \\
\hline 28 & Write data bit \(4-\mathrm{L}\) & Out & 14 \\
\hline 29 & Write data bit 5-H & Out & 34 \\
\hline 30 & Write data bit 5-L & Out & 15 \\
\hline 31 & Write data bit 6-H & Out & 35 \\
\hline 32 & Write data bit 6-L & Out & 16 \\
\hline 33 & Write data bit 7-H & Out & 36 \\
\hline 34 & Write data bit 7-L & Out & 17 \\
\hline 35 & FORMATTER ENABLE - H & Out & 37 \\
\hline 36 & FORMATTER ENABLE - L & Out & 18 \\
\hline
\end{tabular}
* "In" refers to signals accepted by onboard circuitry; "Out" refers to signals generated by card.
** "H" and "L" refer to inverting and noninverting differential line driver outputs, respectively.

Notes:
-- All signals TTL level.
-- Connector pins not listed are not used.
-- Bit numbers refer to recorder rather than user bit identifications.
the program halts and displays 001444. To check the expected versus read character, typing \(R 4\) / on the console will result in the display of the contents of the parallel line card input buffer. The read data will be in the lower order bite. Typing R5/ displays the expected data value, again in the lower order byte.

If no errors are encountered while reading the data, the program will display END OF FILE and THAT'S ALL FOLKS followed by gol566, signifying program completion. To reenter the operating system, the user types \(\mathrm{P}\langle\mathrm{cr}>\). To restart the program at the beginning, the user types R7/. When the computer responds with 901566 , the user types \(1052<\mathrm{cr}>\mathrm{P}\) and the program restarts. (To restart the program at the tape reading section, the user types løøø<cr>P.)

To change the number of records recorded/read, the contents of memory location 0011568 must be changed. The program initially loads \(100_{10}\) (1448) as the number of 102410 -character blocks recorded. To record/read a full tape, 1274 is loaded into location 0011568 .

Table L-9 Tape Recorder Interface
Control and Status Register Bit Identification
\begin{tabular}{|c|c|c|c|}
\hline Bit & DEC Bit Name & Type & Functional Description \\
\hline 0 & CSRO & R/W * & INITIATE COMMAND PULSE. Two sec pulse generated on read interface card on low to high transition of line. Pulse used to generate recorder commands and to reset END OF RECORD READ flipflop. \\
\hline 1 & CSR1 & R/W & READ/WRITE. Tape read when loaded high; recorded when cleared. \\
\hline 5 & INT ENB B & R/W & ERROR INTERRUPT ENABLE. Computer interrupted when error occurs when bit set high. Interrupt cleared by reading input buffer or by issuing reset command. \\
\hline 6 & INT ENB A & R/W & Not used. \\
\hline 7 & REQ A & R & Not used. \\
\hline 15 & REQ B & R & INTERRUPT B FLAG. Shows status of ERROR signal connected to REQ B input. ERROR cleared when input buffer read or when RESET command issued. \\
\hline
\end{tabular}
* "R" implies that bit status can be read under program control;
"W" implies that bit can be loaded by the program.

Table L-1ø Tape Recorder Interface Output Register Bit Identification
\begin{tabular}{|c|c|}
\hline Bit & Functional Description \\
\hline \(\emptyset\) & Write data bit 0. \\
\hline 1 & Write data bit 1. \\
\hline 2 & Write data bit 2. \\
\hline 3 & Write data bit 3. \\
\hline 4 & Write data bit 4. \\
\hline 5 & Write data bit 5. \\
\hline 6 & Write data bit 6. \\
\hline 7 & Write data bit 7. \\
\hline 8 & INITIALIZE command* \\
\hline 9 & STOP SEARCH command* \\
\hline 10 & REWIND command* \\
\hline 11 & WRITE END OF FILE command* \\
\hline 12 & WRITE END OF RECORD command* \\
\hline 13 & HOLD command \\
\hline 14 & COMMAND ENABLE. Must be set high to enable issuing any commands to recorder. \\
\hline 15 & FORMATTER ENABLE. Must be set high to read, write, or command tape recorder. \\
\hline
\end{tabular}
* Require low-to-high transistion of status register bit \(\varnothing\) for commands to be performed.

Note:
-- Data bit order given is that seen by the system computer. The bit ordering recorded on tape is opposite to that given (i.e.. write data bit \(\varnothing\) is written as bit 7 on the tape).

Table L-11 Tape Recorder Interface
Input Register Bit Identification
\begin{tabular}{|l|l|}
\hline \hline Bit & Contents \\
\hline 0 & Read data bit \(\varnothing\) \\
1 & Read data bit 1 \\
2 & Read data bit 2 \\
3 & Read data bit 3 \\
4 & Read data bit 4 \\
5 & Read data bit 5 \\
6 & Read data bit 6 \\
7 & Read data bit 7 \\
8 & Read data block error \\
9 & End of file read \\
10 & End of record read \\
11 & Read data not available \\
12 & Memory busy (valid only for write mode) \\
13 & End of tape \\
14 & Tape at load point \\
15 & Write not ready \\
\hline
\end{tabular}

Notes:
-- All signals use positive logic (High = 1).
-- Bit order given is that seen by the system computer. The bit ordering recorded on tape is opposite to that given (i.e.., read data bit \(\theta\) is read as bit 7 on the tape).

Table L-12 Tape Recorder Interface
Checkout Program Listing

Table L-12 Tape Recorder Interface Checkout
Program Listing (contd)
\begin{tabular}{|c|c|c|}
\hline \multirow{8}{*}{3\$:} & \begin{tabular}{l}
HALT \\
BR 2\$
\end{tabular} & ```
;NO - QUIT
;TRY AGAIN IF WRITE NOT READY
``` \\
\hline & MOVB R5, OUTBUF & ;LOAD OUTPUT BYTE \\
\hline & INC CSR & ; DO \\
\hline & INC R5 & ;INCREMENT OUTPUT BIT PATTERN \\
\hline & CMP R5, 10240. & ;DONE 10 RECORDS? \\
\hline & BLT 1\$ & ;NO - BRANCH \\
\hline & CLR R5 & ; YES - CLEAR EIT PATTERN \\
\hline & SOR R3, 1\$ & ; LOOP TILL RECORD COUNTER EXHAUSTED \\
\hline \multirow[t]{9}{*}{4\$ :} & \[
\begin{aligned}
& \text { BIT } \\
& \text { BNE } 40000, \text { INBUF }
\end{aligned}
\] & \begin{tabular}{l}
; MEMORY BUSY? \\
-WAIT IF SO
\end{tabular} \\
\hline & CLR CSR & ; CLEAR DO BIT \\
\hline & MOVB 31ø, OUTBUF+1 & ; LOAD EOF COMMAND \\
\hline & INC CSR & ; DO \\
\hline & TST CSR & ; ERROR? \\
\hline & BPL READ & ; NO - BRANCH \\
\hline & JSR PC,ERROR & ;YES - REPORT IT \& STOP \\
\hline & HALT & \\
\hline & . ENABL LSB & \\
\hline \multirow[t]{6}{*}{READ :} & CLR CSR & ; CLEAR DO \\
\hline & MOV 1,RFLAG & ; SET READ FLAG \\
\hline & MOV 177777,R5 & \\
\hline & SOB R5,. & ; DELAY BEFORE ISSUING NEXT COMMAND \\
\hline & MOV 3,R4 & ; READ MODE \& DO \\
\hline & JSR PC,REWIND & ; REWIND \\
\hline \multirow[t]{6}{*}{READ2 :} & MOV RTEST,Rg & \\
\hline & JSR PC, PRINT & \\
\hline & MOVB 200,OUTBUF+1 & ; ONLY LEAVE FEN UP \\
\hline & BIT 40ø0, INBUF & ; READ DATA AVAILABLE? \\
\hline & BNE - -6 & ; NO - WAIT \\
\hline & BR 4\$ & ; YES - BRANCH (1ST BYTE IS IN OUTBUF) \\
\hline 1\$: & INC R5 & ; BUMP PATTERN FOR EXPECTED BYTE \\
\hline \multirow[t]{5}{*}{2\$ :} & CLR @ NTRY & ; CLEAR RDA RETRY COUNTER \\
\hline & MOV 2,CSR & ; SET READ MODE \& CLEAR DO \\
\hline & INC CSR & ; READ OUT ONE CHARACTER \\
\hline & TST CSR & ; ERROR? \\
\hline & BMI 10\$ & ;YES - BRANCH \\
\hline \multirow[t]{2}{*}{3\$:} & TSTB CSR & ; WAIT FOR DONE \\
\hline & BPL 3\$ & \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
4\$: \\
CHECK :
\end{tabular}} & MOV INBUF,R4 & ; GET STATUS \& DATA \\
\hline & INC @ LENGTH & ; CHARACTERS IN RECORD \\
\hline & CMPB R5,R4 & ; CHAR READ MATCH EXPECTED VALUE? \\
\hline & BEQ \(1 \$\) & ; YES - LOOP \\
\hline & HALT & ; NO - LOW BYTE OF R4 CONTAINS ACTUAL \\
\hline & & ; LOW BYTE OF R5 CONTAINS EXPECTED \\
\hline & JMP @ 1\$ & \\
\hline \multirow[t]{9}{*}{10\$ :} & MOV INBUF,R4 & ; GET STATUS \& READ DATA \\
\hline & BIT 100.,R4 & ; EOF? \\
\hline & BNE 13\$ & ;YES - BRANCH \\
\hline & BIT 2000.R4 & ; EOR? \\
\hline & BNE 20§ & ;YES - BRANCH \\
\hline & BIT 40øø.R4 & ; READ DATA NOT AVAILABLE? \\
\hline & BEQ TENA & ;NO - BRANCH \\
\hline & INC © NTRY & ; RETRY COUNTER + 1 \\
\hline & CMP @ NTRY, 2000. & ;RETRIED 2000 TIMES? (APPRX 100MS) \\
\hline
\end{tabular}

Table L-12 Tape Recorder Interface Checkout Program Listing (contd)
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \text { BLT } 10 \$ \\
& \text { BR } 11 \$
\end{aligned}
\] & ; NO - TRY AGAIN \\
\hline \multirow[t]{2}{*}{TENA :} & TST @ NTRY & ;WAITING FOR READ DATA AVAILABLE? \\
\hline & BNE 2 \$ & ; YES - BRANCH IT'S AVALIABLE \\
\hline \multirow[t]{5}{*}{11\$:} & JSR PC, ERROR & ; REPORT ERROR \\
\hline & BIT 67400,R4 & ; ANY DRINBUF BITS UP? (READ ERROR ONLY) \\
\hline & BNE 12\$ & :YES - BRANCH \\
\hline & HALT & ; NO - STOP \\
\hline & BR 2\$ & ; CONTINUE LOOP \\
\hline \multirow[t]{2}{*}{12\$:} & HALT & \\
\hline & BR \(2 \$\) & ; CONTINUE \\
\hline \multirow[t]{5}{*}{13\$:} & MOV REOF, RØ
JSR PC, PRINT & \\
\hline & MOV DONE,RD & ;GOT EOF - FINISHED \\
\hline & JSR PC, PRINT & \\
\hline & HALT & \\
\hline & . EXIT & ; BACK TO RT MONITOR \\
\hline \multirow[t]{10}{*}{20\$ :} & INC @ NRECS & ; END OF RECORD \\
\hline & CMP @ LENGTH, 1024. & ; CORRECT LENGTH? \\
\hline & BEQ 22\$ & ;YES - BRANCH \\
\hline & MOV @ NRECS,R1 & ;NO - GET RECORD COUNTER \\
\hline & JSR RØ,@ OTOAD ONRECS & ; CONVERT TO DECIMAL OCTAL \\
\hline & MOV @ LENGTH, R1 & : LENGTH \\
\hline & JSR RD, @ OTOAD & ;TO OCTAL \\
\hline & OLEN & \\
\hline & MOV BADLEN, RØ & \\
\hline & JSR PC, PRINT & ; OUTPUT MESSAGE \\
\hline \multirow[t]{3}{*}{22\$ :} & CLR R5 & ; CLEAR BIT PATTERN \\
\hline & CLR @ LENGTH & \\
\hline & BR CHECK & ; GO CHECK CHARACTER READ \\
\hline \multirow[t]{2}{*}{REWIND:} & MOVB 304, OUTBUF+1 & : LOAD REWIND COMMAND \\
\hline & MOV R4, CSR & ; SELECTED MODE \& DO BIT \\
\hline \multirow[t]{8}{*}{1\$:} & MOV INBUF, R1 & ; GET STATUS \\
\hline & BIT 40Øø日.R1 & : LOAD POINT? \\
\hline & BEQ \(1 \$\) & ;NO - WAIT FOR IT \\
\hline & JSR PC, ERROR1 & ; REPORT LOAD POINT \\
\hline & CLR @ NTRY & ; CLEAR RETRY COUNTER \\
\hline & CLR @ NRECS & ; \& RECORD COUNTER \\
\hline & CLR @ LENGTH & ; \& CHARACTER COUNTER \\
\hline & RTS PC & \\
\hline ERROR: & MOV R4, R1 & ; STATUS TO Rl \\
\hline \multirow[t]{5}{*}{ERROR1:} & BIT 11Øøøø,R1 & ; MEMORY BUSY OR WRITE NOT READY? \\
\hline & BEQ ERROR2 & ;NO - BRANCH \\
\hline & TST RFLAG & ; YES - ARE WE READING? \\
\hline & BEQ ERROR2 & ; NO - BRANCH \\
\hline & BIC 1100ø0,R1 & ;YES - DON'T REPORT WRITE ERRORS \\
\hline ERROR2 : & CLR R2 & \\
\hline \multirow[t]{5}{*}{1\$ :} & ROL R1 & ; ROTATE TILL A BIT IS UP \\
\hline & BCS 2\$ & ; BRANCH WHEN UP \\
\hline & INC R2 & \\
\hline & CMP R2, 8. & ;DONT'T OVER DO IT \\
\hline & BLO 1\$ & ; DON'T BRANCH IF NO ERROR BITS ARE UP \\
\hline 2\$: & ASL R2 & :OFFSET INTO ERROR MESSAGE TABLE \\
\hline
\end{tabular}

Table L-12 Tape Recorder Interface Checkout Program Listing (contd)


Table L-i2 Tape Recorder Interface Checkout Program Listing (contd)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{2\$ :} & \[
\begin{aligned}
& \text { MOV 4,R4 } \\
& \text { CLR R }
\end{aligned}
\] & ;CLEAR HIGH ORDER DIVIDEND \\
\hline & DIV - (R3), RD & ;DIVIDE BY TENS POWER \\
\hline & BNE 3\$ & \\
\hline & TST R2 & ; HAS SIGNIFICANCE STARTED? \\
\hline & BNE 3\$ & ; BRANCH IF IT HAS \\
\hline & \[
\begin{aligned}
& \text { MOVB } \\
& \text { BR } 4 \$
\end{aligned},(R 5)+
\] & ; SUPPRESS LEADING ZEROES \\
\hline \multirow[t]{3}{*}{3\$:} & ADD 60,RD & ; MAKE IT ASCII \\
\hline & MOVB RD, (R5)+ & ; STORE IT \\
\hline & INC R2 & ;WE DON'T HAVE TO SUPPRESS \\
\hline \multirow[t]{10}{*}{4\$ :} & SOB R4, 2 \$ & \\
\hline & ADD 60, R1 & ; REMAINDER IS LAST DIGIT \\
\hline & MOVB R1, (R5)+ & \\
\hline & MOV (SP) +, RD & ; RETURN ADDR TO RØ \\
\hline & MOV (SP) +, R1 & \\
\hline & MOV (SP) + , R2 & \\
\hline & MOV (SP) +, R3 & \\
\hline & MOV (SP)+, R4 & \\
\hline & MOV (SP) +, R5 & \\
\hline & RTS Rg & \\
\hline \multirow[t]{2}{*}{TENS :} & \[
\begin{aligned}
& \text {.WORD } 10, .100 . \\
& \text {. LIST }
\end{aligned}
\] & उøб . \\
\hline & . END START & \\
\hline
\end{tabular}

\section*{Appendix M}

As discussed in Chapter 7, a padding network has to be added to the Visicorder preamplifiers to reduce their sensitivity. Without the network, the preamplifier can be adjusted for a minimum sensitivity of \(1 . \varnothing \mathrm{V} / \mathrm{in}\). A divide by \(4 \varnothing\) pad allows a minimum sensitivity of \(4 \varnothing \mathrm{~V} / \mathrm{in}\). Thus, 18 channels of \(2 \varnothing \mathrm{~V}\) peak-to-peak can be recorded on the 8 -in. ( 20.3 cm ) wide chart with minimum overlap. (The linear range of the system \(A / D\) converter is \(2 \varnothing \mathrm{~V}\).

Input connections to the preamp module can be made through either rear-panel mounted connectors or through a female BNC connector on the preamp front panel. Rear-panel inputs can be differentially amplified while the BNC input can only feed a single-ended amplifier. Jumpers within the preamp select the input and its polarity. When the padding circuit is used with the preamp, the jumpers are removed and the circuit plugged in their place.

Figure \(M-1\) shows the input jumper socket arrangement. Table M-1 gives the jumper insertion requirements for the various input/polarity combinations. Normal polarity results in a left trace displacement (viewed while facing the Visicorder) with positive voltage; reverse results in right displacement.

The input padding circuit is shown in Figure M-2. It consists of a dual resistive voltage divider and provides a rear-input standard polarity input. The circuit is built up on locally-fabricated modules that plug into the preamp, Figure \(M-3\) shows the inside view of the preamp with both the standard input jumpers and the padding circuit installed.

The input sensitivity of the preamplifier can be set using two adjustments on the front panel of the unit. These adjustments allow the minimum sensitivity to be set to \(l \mathrm{~V} / \mathrm{in}\). (with sensitivity switch
set to 0.5 V/DIV). Either a calibrated square wave or dc voltage source can be used for the calibration. Table M-2 gives the sensitivities resulting from both standard and minimum sensitivity adjustments with and without the padding circuit installed.


M-1. Visicorder Preamp Input Schematic

Table M-1 Visicorder Preamp Input Jumper Insertion
\begin{tabular}{|c|c|}
\hline \hline Input & Jumpers \\
\hline Rear Input, Standard Polarity & \(1-2,6-7\) \\
Rear Input, Reverse Polarity & \(1-6,2-7\) \\
Front Input, Standard Polarity & \(3-7,4-5\) \\
Front Input, Reverse Polarity & \(3-4,5-7\) \\
\hline
\end{tabular}


M-2. Visicorder Preamp Padding Module Schematic


M-3. Visicorder preamp Internal Views

Table M-2 Visicorder Preamp Sensitivities
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Gain \\
Switch \\
Position
\end{tabular}} & \multicolumn{4}{|l|}{Resulting Sensitivity (V/in.)} \\
\hline & \multicolumn{2}{|c|}{Unpadded} & \multicolumn{2}{|c|}{Padded} \\
\hline & Standard Sensitivity & Minimum Sensitivity & Standard Sensitivity & Minimum Sensitivity \\
\hline . 5 & 0.5 & 1.0 & 20 & 40 \\
\hline . 2 & 0.2 & 0.4 & 8 & 16 \\
\hline . 1 & 0.1 & 0.2 & 4 & 8 \\
\hline .05 & 0.05 & 0.1 & 2 & 4 \\
\hline
\end{tabular}
```


[^0]: 3. Microcomputer Interfaces Handbook, (198ø) Digital Equipment Co.. Maynard, MA
[^1]: $\begin{aligned} & * \text { "SD" } \\ & \text { ** "PD" }=\text { paralal digital } \\ & \text { digital }\end{aligned}$
 Notes: Custom-made cable (20-\#26 AWG stranded wire with shield).
 2. Comes with equipment. 314 AWG stranded).

[^2]: 8. Daniels, R.W. (1974) Approximation Methods for Electronic Filter Design, McGraw Hill, New York, Chapter 14
