UNCLASSIFIED	SVSTE TWO D FEB 8	MS RESE IMENSIO 0 J AH	ARCH LI NAL LIN	NBS INC	DAYTO ASTIC A	N OHIO NALYSIS AFWAL-	0F FR	ACTURE F336 4008	SPEC1ME 15-79-0	F/G 9/ INS U I-5025 NL	/2 ETC (U)	V.
+ 2 ^A irAas												

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the Mational Technical Information Service (MTIS). At MTIS, it will be available to the general public, including foreign mations.

This technical report has been reviewed and is approved for publication.

THEODORE NICHOLAS Project Engineer

FOR THE COMMANDER

والمعاملة والمرابعة والمرابع وأستانه والمتعارك والمتحافظ والمتحافظ والمراجع والمراجع

19

NATHAN G. TÖPVER Chief, Metals Behavior Branch Metals and Ceramics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/MLLN_, N-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/28 July 1980 - 300

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

APPAL-TR-80-4008 APAL-TR-80-4008 APAL-TR-80-400 APAL-TR-80-	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFMAL-TR-80-4008 AD-A087 4440 A. WINGK * TYPE OF REPORT & PERIOD COVERED No Dismensional Linear Elastic Analysis of Fracture Speciaens - User's Manual of a Finite Element • TYPE OF REPORT & PERIOD COVERED Computer Program. • CONTRACT OR GRANT HUMBERS/ Jalees Ahmad, Ph.D. • PERFORMING ORGANIZATION NAME AND ADDRESS PERFORMING ORGANIZATION NAME AND ADDRESS • CONTRACT OR GRANT HUMBERS/ Jalees Ahmad, Ph.D. • CONTRACT OR GRANT HUMBERS/ Fabruary 1980 PERFORMING ORGANIZATION NAME AND ADDRESS • CONTRACT OR GRANT TAKEN Systems Research Laboratories, Inc. • O. PROGRAM TELES/ February 1980 II. CONTROLLING OFFICE MAME AND ADDRESS • CONTRACT OR GRANT HUMBERS/ February 1980 • Report pare February 1980 II. HUMBER OFFICE MAME AND ADDRESS • CONTROLLING OFFICE MAME AND ADDRESS • CONTROL OFFICE MAME AND ADDRESS Mair Force System Command Wright-Patterson AFB, OH 45433 • SECURITY CLASS (of the report) Unclassified Mar Derved for Public Release; distribution unlimited. • Security (CATION/DOWNGRADING Entroluer To DISTRIBUTION STATEMENT (of the method in Stock 30, // different fram Report) Finite Element Method Three point bend specimen Ring specimens Crack Opening Displacement Compact specimen Three point bend specimen Ring specimens Carl Specimen Code for plane stress and plane strein linear elastic analysis of failue-c	. REPORT NUMBER	NO. 3. RECIPIENT'S CATALOG NUMBER
1. TTLE (med Balle) 1. TTTE SF REPORT & PERIOD COVERED Nov Dimensional Linear Elastic Analysis of Fracture Bpecimens - User's Manual of a Finite Element TTTE SF REPORT & PERIOD COVERED PERFORMING ORG. REPORT HUMBER C. AUTORYD Salees Ahmad, Ph.D. Secontract of GRANT WUMBER() PERFORMING ORGANIZATION HAME AND ADDRESS PERFORMING ORGANIZATION HAME & ADDRESS() discussion free Controling Office) HUMBER OF PAGES NUMPER OF PAGES	AFWAL-TR-80-4008 🗸 AD-A087 440	0
No Dimensional Linear Elasic Analysis of Fracture Specimes - User's Manual of a Finite Element Computer Program. *. Authomy - User's Manual of a Finite Element Computer Program. *. Authomy - User's Manual of a Finite Element *. Authomy - User's Manual of a Finite Element *. Authomy - User's Manual of a Finite Element *. Authomy - User's Manual of a Finite Element *. Authomy - User's Manual of a Finite Element *. Authomy - User's Manual of a Finite Element *. Authomy - User's Manual of a Finite Element *. Contract of GRANT HUMBER() *. Eczonnik of GRANT HUMBER() *. Contract of Grant Aut E And ADDRESS *. Contract of Grant Command *. Ferrorenkie Matter Aut Aut E And ADDRESS *. Contract of Grant Aut E And AdDRESS *. Contract of Full Cale Autor () (11) *. Econtrow of AFB, OH 45433 *. Cont	I. TITLE (and Subtitio)	S. TYPE OF REPORT & PERIOD COVERED
Speciaese - User's Manual of a Finite Element Computer Program. • PERFORMING ONC. REPORT HUMBER • ANTRACY ON GRANT HUMBER • CONTRACT ON GRANT HUMBER • CONTROLLING OFFICE HAME AND ADDRESS •	Two Dimensional Linear Elastic Analysis of Fractu	re
Computer Program. Computer Program. Computer Program. Computer Program. Computer Program. Computer Program. Composite Comparison of the second	Specimens - User's Manual of a Finite Element	
7. AUTHOR(0) 9. CONTRACT OR GRANT NUMBER(0) Jalees Ahmad, Ph.D. 9. CONTRACT OR GRANT NUMBER(0) FERFORMING ORGANIZATION NAME AND ADDRESS 9. SPECIFIC USED STATEMENT (STATEMENT AND ADDRESS Systems Research Laboratories, Inc. 9. SPECIFIC USED STATEMENT (STATEMENT AND ADDRESS II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE III. CONTROLLING OFFICE NAME A ADDRESS 12. REPORT DATE III. CONTROLLING OFFICE NAME A ADDRESS 12. REPORT DATE III. CONTROLLING OFFICE NAME A ADDRESS 13. SECURITY CLASS. (of bis report) AT FORCE System Command 9. SECURITY CLASS. (of bis report) AT FORCE System Command 9. SECURITY CLASS. (of bis report) AT FORCE System Command 9. SECURITY CLASS. (of bis report) AT FORCE System Command 9. SECURITY CLASS. (of bis report) MAT FORCE System Command 9. SECURITY CLASS. (of bis report) MAT FORCE System Command 9. SECURITY CLASS. (of bis report) Markinght, Pattement (of the Aberest on Internation Unlimited. 9. SECURITY CLASS. (of bis report) Napproved for Public Release; distribution unlimited. 9. SECURITY NOTES Stress Intensity Factor Ring specimens Crass Stress Intensity Factor Ring specimens Stress Int	Computer Program.	6. PERFORMING ORG. REPORT NUMBER
Jalees Ahmad, Ph.D. S. PERFORMING GROANIZATION NAME AND ACOMESS S. PERFORMING GROANIZATION NAME AND ACOMESS Systems Research Laboratories, Inc., Dayton, OH 45440 Th. CONTROLLING OFFICE NAME AND ADDRESS Th. CONTROL STATEMENT (of the ADDRESS OF ADDRESS TH. CONTROL STATEMENT (of	7. AUTHOR(2)	B. CONTRACT OR GRANT NUMBER(*)
S. PERFORMING ORGANIZATION NAME AND ADDRESS Systems Research Laboratories, Inc. Dayton, OH 45440 10. CONTROLLING OFFICE NAME AND ADDRESS 11. CONTROLLING OFFICE NAME A ADDRESS(// different form Controlling Office) 13. SECURITY CLASS. (of the report) 10. TO Lassified 14. DESTRIBUTION STATEMENT (of the Abstract sentence in Block 20, if different form Report) 15. DISTRIBUTION STATEMENT (of the abstract sentence in Block 20, if different form Report) 15. SUPPLEMENTARY NOTES 15. ANTRACT Confirms on reverse oids if necessary and identify by block number) 16. SUPPLEMENTARY NOTES 15. SUPPLEMENTARY NOTES 15. ANTRACT Confirms on reverse oids if necessary and identify by block number) 16. SUPPLEMENTARY NOTES 15. SUPPLEMENTARY NOTES 15. ANTRACT Confirms on reverse oids if necessary and identify by block number) 16. SUPPLEMENTARY NOTES 16. SUPPLEMENTARY NOTES 17. DISTRIBUTION STATEMENT (of the abstract sentence in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. ANTRACT Confirms on reverse oids if necessary and identify by block number) 19. ANTRACT Confirms on reverse oids if necessary and identify by block number) 19. ANTRACT Confirms on reverse oids if necessary and identify by block number) 19. ANTRACT Confirms on reverse oids if necessary and identify by block number) 20. Antra 10. Determine the sector of plane stress in the section and sector plane stress in the sector of plane stress in the sec	Jalees Ahmad. Ph.D.	F33615-79-C-5025
	···· · ·	لمورد کو
12. NEW WORDS (Continue on reverse side if necessary and identify by Mock number) 13. KEY WORDS (Continue on reverse side if necessary and identify by Mock number) 14. SUPPLEMENTARY HOTES 15. KEY WORDS (Continue on reverse side if necessary and identify by Mock number) 16. SUPPLEMENTARY HOTES 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 18. KEY WORDS (Continue on reverse side if necessary and identify by Mock number) 19. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 18. SUPPLEMENTARY HOTES 18. SUPPLEMENTARY HOTES 19. AND A Distribution on reverse side if necessary and identify by Mock number) 19. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 19. KEY WORDS (Continue on reverse side if necessary and identify by Mock number) 19. NET REPORT DATE 10. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 10. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 10. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 11. Note and the displacement 12. ANT AT A DATE 13. ASTRACT (Continue on reverse side if necessary and identify by Mock number) A finite Element Metho		10. PROGRAM ELEMENT PROJECT TASK
Dayton, OH 45440 11. CONTROLLING OFFICE NAME AND ADDRESS 12. NUMBER OF DATE February 1980 11. CONTROLLING OFFICE NAME AND ADDRESS 12. NUMBER OF DATE February 1980 11. CONTROLLING OFFICE NAME AND ADDRESS 13. NUMBER OF DATE February 1980 12. NUMBER OF DATE February 1980 13. NUMBER OF DATE February 1980 13. NUMBER OF DATE February 1980 13. NUMBER OF DATE February 1980 14. NONTONING AGENCY NAME & ADDRESS(// different from Controlling Office) 15. SECURITY CLASS (of different) Unclassified 14. DISTRIBUTION STATEMENT (of the Abore Controlling Office) 14. SUPPLEMENTARY NOTES 15. SUPPLEMENTARY NOTES 15. Security Continue on reverse side if necessary and identify by Mock number) 15. SUPPLEMENTARY NOTES 16. Supplement Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen So ASTRACY Continue on reverse side if necessary and identify by Mock number) A Finite Element Method Three point bend specimen Ring specimens Crack Opening Displacement Load line displacement Compact specimen So ASTRACY Continue on reverse side if necessary and identify by Mock number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries are also included.	Systems Research Laboratories Inc.	APEA A WORK UNIT NUMBERS
11. CONTROLLING OFFICE HAME AND ADDRESS 12. REPORT DATE February 1980 11. NUMBER OFFICE HAME A ADDRESS(// different from Controlling Office) 13. REPORT DATE February 1980 12. NUMBER OFFICE HAME & ADDRESS(// different from Controlling Office) 13. SECURITY CLASS. (within report) AIr Force Materials Laboratory (LLN) Air Force System Command Wright-Patterson AFB, OH 45433 13. SECURITY CLASS. (within report) 14. DISTRIBUTION STATEMENT (of the Append Approved for Public Release; distribution unlimited. 13. SECURITY CLASS. (within report) 17. DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different from Report) 14. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 14. Supplement Kethod Three point bend specimen Stress Intensity Factor Crack Opening Displacement Load line displacement Compact specimen 30. ASTRACT (Continue on reverse side if necessary and identify by Mock number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens 30. ASTRACT (Continue on reverse side if necessary and identify by Mock number) A finite Element Code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries are also included. DD ://M.T. 1473 EDITION OF 'I NOV SI IS OSBOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (from Date End SECURITY CLASSIFICATION OF THIS PAGE (from Date End SECURITY CLASSIFICATION OF THIS PAGE (from Date End SECURITY CLAS	Davton. OH 45440	
 CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS(II different from Controlling Office) HUNITORING AGENCY NAME & ADDRESS(II different from Controlling Office) SECURITY CLASS. (of this report) AIT Force System Command Wright-Patterson AFB, OH 45433 DISTRIBUTION STATEMENT (of the aborect entered in Block 20, II different from Report) DISTRIBUTION STATEMENT (of the aborect entered in Block 20, II different from Report) NEY WORDS (Continue on reverse side if necessary and identify by Most number) DISTRIBUTION STATEMENT (of the aborect entered in Block 20, II different from Report) NEY WORDS (Continue on reverse side if necessary and identify by Most number) Stress Intensity Factor Ring specimens Crack Opening Displacement Compact specimen A Finite Element Method Three point bend specimen A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point-bend, and ring specimen geometries is provided. Numerical examples forseveral specimen geometries are also included. 		
It. NONITORING AGENCY NAME & ADDRESS(II different free Centraling Office) It. NUMPER OF PAGE IO7 It. NUMPER OF PAGE IO It. NUMPER OF PAGE III. It. SECURITY CLASS. (of this report) Unclassified It. SECURITY CLASS. It. SUPPLEMENTARY HOTES	11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
107 11 HONITORING AGENCY HAME & ADDRESS(II different from Controlling Office) 11. SECURITY CLASS. (ci file report) Air Force System Command Unclassified Wright-Patterson AFB, OH 45433 Unclassified 12. Distribution statement (ci file Report) Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (ci file Report) Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (ci file abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. SUPPLEMENTARY NOTES 20. SUPPLEMENTARY NOTES 20. SUPPLEMENTARY NOTES		
14. WONIYORING AGENCY HAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) AIr Force Materials Laboratory (LLN) 14. Force System Command Unclassified Mirght-Patterson AFB, OH 45433 Unclassified 15. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; distribution unlimited. 15. DECLASSIFICATION/DOWNGRADING 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 16. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 15. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 16. Distribution on reverse oids if necessary and identify by block number) 18. SUPPLEMENTARY NOTES 16. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 16. Distribution on reverse oids if necessary and identify by block number) 18. SUPPLEMENTARY NOTES 17. Distribution on reverse oids if necessary and identify by block number) 18. SUPPLEMENTARY NOTES 16. Distribution on reverse oids if necessary and identify by block number) 18. SUPPLEMENTARY NOTES 16. Distribution on reverse oids if necessary and identify by block number) 19. Extra Control of plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program and mesh g		107
Air Force Naterials Laboratory (LLN) Air Force System Command Wright-Patterson AFB, OH 45433 18. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by Most number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ASSTRACT (Continue on reverse side if necessary and identify by Most number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 'JAM 77 1473 EDITION OF 'NOV SE IS DESOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Davis End	14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)
Air Force System Command Wright-Patterson AFB, OH 45433 16. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract unlevel in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Centimus on reverse olds if necessary and identify by Mock number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ASSTRACT (Centimus on reverse tide if necessary and identify by Meck number) A Finite Element Code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 'JAN 77 1473 EDITION OF 'NOVES IS DESOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Dave Ent	Air Force Materials Laboratory (LLN)	Unclassified
 WTIGHT-Patterson AFB, OH 45433 18. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen A ABSTRACT (Continue on reverse side if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. D 'JANTA 1473 EDITION OF ! NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIE FAGE (When Date End) 	Air Force System Command	
 18. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 30, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverses side if necessary and identify by block number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) ABSTRACT (Continue on reverse side if necessary and identify by block number) A finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for: several specimen geometries are also included. D 'ONN' 1473 EDNYON OF ' NOV &S IS OSSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date End) 	Wright-Patterson AFB, OH 45433	SCHEDULE
Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, 11 different free Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse olds if necessary and identify by block number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse olds If necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 'JAM 73 KDITION OF ' HOV 68 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Three Dave Environment)	16. DISTRIBUTION STATEMENT (of this Report)	
Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different tree Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse olds if necessary and identify by block number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 30. ABSTRACT (Continue on reverse olds if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 'ORM 1473 EDITION OF ' NOV 65 IS DESOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Them Date Environments of the stress and plane stress for the stress are also the security of this program.	•	
 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 30. ABSTRACT (Continue on reverse side if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD FORM 1473 EDITION OF INOV 68 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Date Environment) 	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	trom Report)
 18. KEY WORDS (Continue on reverse side if necessary and identify by block number) Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ADSTRACT (Continue on reverse side if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD FORM 1473 EDITION OF INOV 68 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Them Date Entry 	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	tran Report)
Finite Element Method Three point bend specimen Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen Compact specimen 20. ABSTRACT (Continue on reverse elds II necessary and Identify by block number) A A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point-bend, and ring specimen geometries is provided. Numerical examples forseveral specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF I NOV 68 IS OBSOLETE Unclassified	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 19. SUPPLEMENTARY NOTES	2d . tran Report)
Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen Compact specimen 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point-bend, and ring specimen geometries is provided. Numerical examples forseveral specimen geometries are also included. DD 1000 1000 1100 0F 1 NOV SB IS OBSOLETE Unclassified	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb	tran Report)
Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Them Date Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the obstrect entered in Block 20, if different 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Centinue on reverse side if necessary and identify by block number Finite Element Method Three point bend if	trom Report)
Compact specimen Compact specimen 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Them Date Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number Finite Element Method Three point bend if Stress Intensity Factor Ring specimens	trom Report)
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Dete Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number Finite Element Method Three point bend if Stress Intensity Factor Ring specimens Crack Opening Displacement Lead Line displacement	tran Report)
A Finite Element code for plane stress and plane strain linear elastic analysis of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Date Enter	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block manual Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact anecimen	tran Report)
of fatigue-crack-growth test specimen configurations was developed. A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Them Date Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Centinue on reverse side if necessary and identify by block mani- Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABUTACT (Centinue on payment and if necessary and identify by block mani- 20. ABUTACT (Centinue on payment and if necessary and identify by block mani- 21. ABUTACT (Centinue on payment and block and in the back mani- 22. ABUTACT (Centinue on payment and block and in the back and block an	ed. from Report) ber) specimen
A user's manual for the above code along with user's manuals, for a mesh plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Them Date Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Centinue on reverse eide if necessary and identify by block numb Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Centinue on reverse eide if necessary and identify by block numb A Finite Element code for plane stress and plane is	trom Report) ber) specimen er) strain linear elastic analysis
plotting program, and mesh generating programs for compact, three-point- bend, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Data Enter	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block numb Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse eide if necessary and identify by block numb A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configurati	ed. from Report) ber) specimen er) strain linear elastic analysis ons was developed.
Dena, and ring specimen geometries is provided. Numerical examples for- several specimen geometries are also included. DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the obstrect entered in Block 20, if different 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block manual Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse side if necessary and identify by block number A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configuration A user's manual for the above code along with use	ed. from Report) ber) specimen er) strain linear elastic analysis ons was developed. er's manuals, for a mesh
DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block manuf Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse side if necessary and identify by block manuf A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configurati A user's manual for the above code along with use plotting program, and mesh generating programs for	ed. from Report) ber/ specimen er/ strain linear elastic analysis ons was developed. er's manuals, for a mesh r compact, three-point -
DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entry	Approved for Public Release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Centinue on reverse side if necessary and identify by block mani- Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Centinue on reverse side if necessary and identify by block mani- A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configuration A user's manual for the above code along with use plotting program, and mesh generating programs for bend, and ring specimen geometries is provided. If a several energimen geometries is provided.	ed. from Report) ber) specimen et strain linear elastic analysis ons was developed. er's manuals, for a mesh r compact, three-point- Numerical examples for.
DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entry	Approved for Public Release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block numb Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse eide if necessary and identify by block numb A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configurati A user's manual for the above code along with use plotting program, and mesh generating programs for bend, and ring specimen geometries is provided. Is several specimen geometries are also included.	et. trom Report) ber) specimen et) strain linear elastic analysis ons was developed. er's manuals, for a mesh r compact, three-point- Numerical examples for-
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entre	Approved for Public Release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 80. ABSTRACT (Continue on reverse elde if necessary and identify by block numb A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configurati A user's manual for the above code along with use plotting program, and mesh generating programs for bend, and ring specimen geometries is provided. Is several specimen geometries are also included.	ed. from Report) ber) specimen er) strain linear elastic analysis ons was developed. er's manuals, for a mesh r compact, three-point- Numerical examples for.
BEGURITY CLASSIFICATION OF THIS PAGE (When Data Brit	Approved for Public Release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block mumi Finite Element Method Three point bend i Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse side if necessary and identify by block numb A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configurati A user's manual for the above code along with use plotting program, and mesh generating programs for bend, and ring specimen geometries is provided. I several specimen geometries are also included.	ed. from Report) ber) specimen er) strain linear elastic analysis ons was developed. er's manuals, for a mesh r compact, three-point- Numerical examples for. lassified
	Approved for Public Release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block numb Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 20. ABSTRACT (Continue on reverse eide if necessary and identify by block numb A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configurati A user's manual for the above code along with use plotting program, and mesh generating programs for bend, and ring specimen geometries is provided. I several specimen geometries are also included.	ed. from Report) ber) specimen et strain linear elastic analysis ons was developed. et's manuals, for a mesh r compact, three-point- Numerical examples for. lassified
	Approved for Public Kelease; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetreed enfored in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Centinue on reverse eide 11 necessary and identify by block manual Finite Element Method Three point bend is Stress Intensity Factor Ring specimens Crack Opening Displacement Load line displacement Compact specimen 8. ABSTRACT (Continue on reverse eide 11 necessary and identify by block manual A Finite Element code for plane stress and plane is of fatigue-crack-growth test specimen configurati A user's manual for the above code along with used plotting program, and mesh generating programs for bend, and ring specimen geometries is provided. If several specimen geometries are also included. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unc.	ed. from Report) ber) specimen er) strain linear elastic analysis ons was developed. er's manuals, for a mesh r compact, three-point - Numerical examples for. lassified LASSIFICATION OF THIS PAGE (When Dete Entry

ويوموهم والمقدمة والمناقعة فورعون تتمري والمتعومة كالمحتول وتروينا والمناقبة والمتركز والمراجعة والمراجعة والمراجعة والمراجع

والمعلون سنسب الشغريان فالاختلاف فالانتخاب والإخلام سنادهم والمتسام وكالترب التراسي والمسالح والكلا كالمترب والكا

`

.

FOREWORD

This report was prepared by the Research Applications Divison, Systems Research Laboratories, Inc., Dayton, OH, under Contract No. F33615-79-C-5025, "Mechanical Property Characterization and Modeling of Structural Materials". The contract was administered under the direction of the Air Force Materials Laboratory, Metals Behavior Branch (AFWAL/MLLN), by Dr. Theodore Nicholas, Project Manager. The research reported here was conducted by Jalees Ahmad and was performed during the period June 1979 to August 1979.

The author wishes to thank his colleagues Dr. N. Ashbaugh of Systems Research Laboratories, Inc., and Dr. T. Nicholas for their help, and Ms. Judy Paine for typing the present report.

Ŧ

A:06:S1Ch For STIS 67481 DDC TAB Unitermunaria Justification By_ Distribution/ Aveilability Codes Avail and/or special Dist.

TABLE OF CONTENTS

Section			Page
I	INT	TRODUCTION	1
II	PRC	OGRAM HIGHLIGHTS	2
	1.	ASSUMPTIONS	2
	2.	METHOD OF SOLUTION	2
	3.	ELEMENT GEOMETRY	2
	4.	MESH GENERATION	2
	5.	TOPOLOGY	3
		a. Nodal Coordinates	3
		b. Connectivities	4
	6.	PLOTTING THE MESH	4
	7.	SPECIFYING NODAL DISPLACEMENT AND FORCE BOUNDARY CONDITION	4
	8.	SPECIFYING NON-ZERO STRESS AND PRESSURE ON ELEMENT SIDES	4
	9.	ENFORCING CRACK TIP STRESS SINGULARITY	5
111	DAT	TA PREPARATION	6
	1.	USER'S GUIDE FOR SRL01A	6
		a. Data Set 1	6
		b. Data Set 2	7
		c. Data Set 3	8
		d. Data Set 4	8
		e. Data Set 5	9
		f. Data Set 6	9
		g. Data Set 7	10
		h. Data Set 8	10
		i. Data Set 9	11
		j. Data Set 10	12
		k. Data Set 11	12
	2	T TMTTATIONS	12

and the second second second second

1.97

iv

TABLE OF CONTENTS Continued

and make water on the

Section	L Contraction of the second	Page
IV	SOLUTION PROCEDURE	14
	1. PROGRAM EXECUTION	14
v	NUMERICAL EXAMPLES	15
	1. EXAMPLE 1: SINGLE NOTCH SEMI-CIRCULAR SPECIMEN	15
	a. Step 1: Mesh Generation	15
	b. Step 2: Mesh Plotting	19
	c. Step 3: Executing SRLO1A	20
	d. Step 4: Interpretation of Results	27
	2. EXAMPLE 2: DOUBLE NOTCH RING TENSION SPECIMEN	28
	3. EXAMPLE 3: DOUBLE NOTCH RING COMPRESSION SPECIMEN (CRACK LINE PRESSURE)	36
	a. Data Set 1	38
	b. Data Set 2	38
	c. Data Set 3	38
	d. Data Set 4	38
	e. Data Set 5	38
	f. Data Set 6	38
	g. Data Set 7	38
	h. Data Set 8	38
	i. Data Set 9	38
	4. EXAMPLE 4: COMPACT TYPE SPECIMENS	50
	5. EXAMPLE 5: THREE POINT BEND SPECIMENS	61
	6. EXAMPLE 6: SINGLE NOTCH RING SPECIMEN	71
VI	CONCLUSION	81
	APPENDIX I - MESH GENERATING PROGRAMS	82
	1. C-SHAPED SPECIMEN	82
	2. SINGLE-NOTCH RING SPECIMEN	82
	3. COMPACT TYPE SPECIMEN	83
	4. THREE POINT BEND SPECIMEN	84

v

TABLE OF CONTENTS Continued

Section			Page
	APP	ENDIX II - PLOTTING PROGRAM	85
	1.	USER'S GUIDE FOR MESH PLOTTING PROGRAM (SRL11)	85
		a. Data Set 1	85
		b. Data Set 2	85
		c. Data Set 3	85
		d. Data Set 4	86
		e. Data Set 5	86
		f. Data Set 6	87
		g. Data Set 7	87
	2.	SAMPLE JOB SET-UP FOR THE BEAM PROBLEM OF SECTION V, 5	88

REFERENCES

10,00

89

Sector Land

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Eight Noded Quatrilateral Element.	90
2	Special Forms of General Eight Noded Quadilateral.	91
3	Cantilever Beam.	92
4	Some Possible Discretizations.	93
5	Mesh Plotted by SRL11. (Beam)	94
6	(a) Semi-Circular Cracked Ring.	95
	(b) Region Needed for Analysis.	95
7	Mesh for C-Specimen.	96
8(a)	C-Specimen Mesh Details (a) Region Away from Crack Tip.	97
8(b)	C-Specimen Mesh Details (b) Details of Near Crack Tip Region.	98
9	(a) Double Notch Ring in Tension.	99
	(b) One Quarter of the Ring with Displacement Boundary Conditions.	99
10	(a) Double Notch Ring in Compression.	100
	(b) One Quarter of the Ring with Crack Line Pressure and Displacement Boundary Conditions.	100
11	Compact Specimen. (Schematic)	101
12(á)	(a) Mesh for Compact Specimen. Upper Half of Specimen	102
12 (b)	(b) Mesh for Compact Specimen. Details of Crack-Tip Region.	103
13	Upper Half of Compact Specimen. (Schematic)	104
14	A Three Point Bend Specimen. (Schematic)	105

vii

LIST OF ILLUSTRATIONS (Continued)

FIGURE				PAGE
15	Single Notch Ring Specimens.	(a) (b)	Tension Compression	106
16	Mesh for Single Notch Ring Sp	ecime	en.	107

SECTION I INTRODUCTION

Finite element method is now well established as one of the foremost numerical techniques for analyzing linear elastic crack problems. Among other advantages associated with the use of finite element method is the fact that complicated geometries and physical loading situations can be quite accurately modeled. Therefore, the method is useful in analyzing standard as well as nonstandard crack growth and fracture specimens which may be used in the laboratory.

A disadvantage of the method is that with even a slight change in the geometry of a given specimen, such as the crack length, a new finite element mesh is required. Since finite element mesh generation is usually a time consuming process, parametric studies involving any change in geometry are tedious. Using general purpose large finite element computer codes, such as NASTRAN or MARC, for such problems is an inefficient and expensive process. However, if special purpose finite element codes developed primarily for parametric studies of test specimens are used, the method can be employed economically and with improved efficiency.

The present report provides a user's guide for a special purpose finite element code developed primarily for two dimensional linear elastic analysis of test specimens. User's guides for some supporting computer programs, such as mesh generators for commonly used test specimens and for plotting a mesh, are also included. Precise instructions and a number of illustrative examples are provided to clarify the data preparation for executing the program.

It is expected that a user with only a basic knowledge of theory of elasticity and some acquaintance with FORTRAN language should be able to effectively employ the procedures included in this report.

SECTION II PROGRAM HIGHLIGHTS

1. ASSUMPTIONS

- 1) Material is a homogeneous, isotropic, and linearly elastic solid.
- 2) Conditions of plane stress or plane strain exist.
- 3) Compared to the dimensions of the solid, displacements are small, and assumptions of linear theory of elasticity are valid.

2. METHOD OF SOLUTION

The numerical technique used by the program is based on displacement finite element formulation.

3. ELEMENT GEOMETRY

The element used in the present program is an eight node isoparametric quadrilateral 1 shown in Fig. 1. Some special and degenerate forms of this element are shown in Fig. 2. Element nodes are always numbered anticlockwise starting at any <u>corner</u> node. The four corner nodes are number (I), (I + 1), (I + 2), and (I + 3). The first intermediate node (I + 4) is <u>always</u> between corner nodes (I) and (I + 1). Other intermediate nodes are then numbered anticlockwise also.

4. MESH GENERATION

Mesh generation can be best explained by considering a simple example: consider the cantilever beam shown in Fig. 3. For simplicity let us decide to use only three elements. Fig. 4 shows some possible discretizations.

The mesh of Fig. 4a is most appropriate of all the other meshes shown. As a rule of thumb if the geometry of the problem so allows, curved, irregular and degenerate shapes should be avoided.

The node numbering should be such that the difference between any two node numbers belonging to the same element is kept as small as possible. This difference in Fig. 4a is 7 (=8 - 1). The above practice helps in reducing computational time.

Elements may be numbered in any arbitrary way. However it is a good practice to be systematic as in Fig. 4a. Size of each element, and the total number of elements in the mesh are decided depending upon the nature of a given problem. In general a finer mesh would provide more accurate results than a coarser mesh.

Mesh generation can be accomplished either by actually drawing the elements on a graph paper or by writing a mesh generation program. Usage of mesh generation programs for some specimen geometries is described in Appendix I.

5. TOPOLOGY

Complete topology of the mesh is described by individual element connectivities and X and Y coordinates of the nodal points with respect to any conveniently chosen X, Y coordinate system, as shown in the following example.

For the mesh shown in Fig. 4a the topology can be described as follows.

NODE	<u>x</u>	<u>Y</u>	NODE	<u> </u>	<u>Y</u>	NODE	<u>x</u>	<u>Y</u>
1	4.0	0.5	7	3.50	1.0	13	1.50	1.5
2	4.0	1.0	8	3.50	1.5	14	1.25	0.5
3	4.0	1.5	9	2.50	0.5	15	1.25	1.5
4	3.75	0.5	10	2.50	1.5	16	1.00	0.5
5	3.75	1.5	11	1.50	0.5	17	1.00	1.0
6	3.50	0.5	12	1.50	1.0	18	1.00	1.5

a. Nodal Coordinates

b. Connectivities

Following the numbering convention described in 3, the element connectivites are as follows.

ELEM	Ī	<u>I+1</u>	<u>1+2</u>	<u>I+3</u>	<u>I+4</u>	<u>1+5</u>	<u>1+6</u>	<u>I+7</u>
1	1	3	8	6	2	5	7	4
2	8	13	11	6	10	12	9	7
3	16	11	13	18	14	12	15	17

Note that I can be chosen to be any corner node.

6. PLOTTING THE MESH

After generating a mesh and punching out the nodal coordinates and connectivities on data cards it is often desirable to check for any topographical errors. Perhaps the easiest way is to plot the final mesh. Usage of a mesh plotting computer program developed for this purpose is described in Appendix II.

7. SPECIFYING NODAL DISPLACEMENT AND FORCE BOUNDARY CONDITION

For simplicity the program (SRLOIA) is designed to accept only zero displacement and non-zero force boundary conditions.

For the beam of Fig. 3 and using the mesh of Fig. 4a, we can specify zero X and Y displacement components at nodes 1, 2, and 3. Force of negative P can be specified in Y direction at node 18. The procedure for preparing boundary condition data is described in Section III.

8. SPECIFYING NON-ZERO STRESS AND PRESSURE ON ELEMENT SIDES

In problems where non-zero stress or pressure is to be specified (such as in crack problems with crack face pressure distribution), the pressure or

stress distribution over any side of the element is given in polynomial form. Constant, linear, quadratic, and cubic distributions are permitted. The method for specifying these distributions is discussed in Section III.

9. ENFORCING CRACK TIP STRESS SINGULARITY

The elastic stress singularity at the crack tip is included by surrounding the crack tip by elements of the form shown in Fig. 2e. The collapsed nodes (I + 1), (I + 2), and (I + 5) are placed at the crack tip and the <u>relative</u> displacements among these nodes are forced to be zero. This is accomplished either by specifying the X and Y displacements of the above three nodes to be zero, or simply by assigning a single number to all three nodes in the nodal numbering of the mesh. Details of this method can be found in the paper by Barsoum.² The use of the above procedure is illustrated in Section IV.

SECTION III DATA PREPARATION

1. USER'S GUIDE FOR SRLO1A

In this section the method for inputting topology, material properties, and boundary conditions data for the solution of a given problem is described. Each data set refers to a specific information required by SRL01A for execution.

Columns	Variable	Definition
1-4	NPRTYP	Problem Type (1 or 2).
5-8	NPOINT	Total number of nodes in the mesh.
9-12	NELEM	Total number of elements in the mesh.
13-16	NBOUN	Total number of nodes with displacement boundary condition.
17-20	NCONC	Total number of nodes with concentrated forces.
21-24	NFREE	Degrees of freedom per node (always give 2).
25-28	NYM	Number of different materials in the same problem.
29-32	NBAND	Expected band width.
33-36	IR	Number of nodes per element (always give 8).
37-40	NSTRSS	Stress computation indicator (0 or 1).
41-44	NCPOIN	Total number of corner nodes,
45-48	NQPTS	Total number of re-specified nodes.

a. Data Set 1 (sizing card), Format (1214), Number of cards = 1

Instructions

NPRTYP	Give	1	for	Plane	Stress	problem.
	Give	2	for	Plane	Strain	problem.

NPOINT Count and specify total number of nodes in the mesh (corner nodes + intermediate nodes).

NELEM Count and specify total number of elements in the mesh.

- NBOUN Count and specify total number of nodes which are fixed in either one or both X and Y directions.
- NCONC Count and specify total number of nodes which have concentrated applied forces in either one or both X and Y directions.
- NYM In general each element in the mesh can be allowed to possess different elastic properties. If so, specify the total number of materials to be used. For uniform elastic properties for all elements give NYM equal to 1.
- NBAND This is a sizing parameter found by the following formula. NBAND = (Max. difference between any two nodes of an element +1) × 2.
- NSTRSS For crack problems where stress intensity factors are of interest give NSTRSS = 0. For other problems where element stress and strain components are required give NSTRSS = 1.
- NCPOIN Total number of corner nodes (NPOINT number of intermediate nodes) in the mesh.
- NQPTS If NQPTS is given zero, the intermediate nodes are automatically placed at the middle of straight line distance between the adjoining corner nodes. For problems in which this arrangement needs to be altered, such as in crack problems using the element of Fig. 2e, the number of those intermediate nodes which have to be moved from the mid-position should be counted and specified as NQPTS.

b. <u>Data Set 2 (Elastic Property Cards)</u>, Format (2F20.5), Number of Cards = NYM^{*}

Columns	Variable	Definition
1-20	El	Young's Modulus
21-40	P1	Pois <mark>son's Ratio</mark>

*See a. Section III.

c.	Data Set 3	(Boundary	Conditions),	Format	(414),	Number	of	Cards = NBOUN

Columns	Variable	Definition				
1-4	NF(1)	Node with displacement boundary condition				
5-8	NB(1,1)	Zero X-displacement indicator				
9-12	NB(1,2)	Zero Y-displacement indicator				
ļ	1					

Instructions

- NF(I) Give the number of a node whose X or Y or both displacements are fixed.
- NB(I,1) Give 1 if X-displacement of node NF(I) is fixed. Give 0 if X-displacement of node NF(I) is not fixed.
- NB(I,2) Same as NB(I,1) but for Y-displacement of node NF(I).

* See a. Section III.

Same and the second strategies

d. <u>Data Set 4 (Concentrated Loads)</u>, Format (14,2F20.10), Number of Cards = NCONC^{*}

Columns	Variable	Definition
1-4	NP	Node number of point with conc. load
5-24	U (NP×2-1)	Value of X-component of applied load
25-44	U (NP×2)	Value of Y-component of applied load

* See a. Section III.

e. Data Set 5 (Corner Point Coordinates), Format (14,2F10.5), Number of Cards = NCPOIN*

Columns	Variable	Definitions
1-4	I	Corner node number
5-14	X(I)	X-coordinate of I
15-24	Y(I)	Y-coordinate of I
1		

*See a. Section III.

** For example in Fig. 4a points 1, 3, 6, 8, 11, 13, 16, and 18 are corner nodes (NCPOIN = 8).

f. Data Set 6 (Element Connectivities), Format (914, F10.5, 14), Number of Cards = NELEM*

Columns	Variable	Definitions
1-4	I	** First corner node
5-8	I+1	Second corner node
9–12	I+2	Third corner node
13-16	I+3	Fourth corner node
17-20	I+4	First intermediate node
21-24	I+5	Second intermediate node
25-28	I+6	Third intermediate node
29-32	I+7	Fourth intermediate node
33-36	NEP	Material property number
37-46	THICK	Element Thickness
47-50	NTYPEL	Applied pressure/stress indicator (0 or 1)

Instructions

- NEP If a single material is used (NYM = 1 in Data Set 1), NEP is 1 for all elements.
- NTYPEL If any side of an element (see Fig. 1) is subjected to applied pressure, for that element give NTYPEL as 1. For other elements NTYPEL is given 0.
- * See a. Section III.
- ** Follow the numbering convention of Part 3. (Section II)
- g. Data Set 7 (Crack Tip Node), Format (14), Number of Cards = 1

Columns	Variable	Definition			
1-4	NTIP	Node number of a node located at the crack tip *			

*If there is no crack give zero.

h. Data Set 8 (Coordinate Modification), Format (I4,2F10.5), Number of Cards = NQPTS^{*}

Columns	Variable	Definition
1-4	I	Node number of the point whose coordinates are to be modified
5-14	X(I)	X - coordinate of I
15-24	¥(I)	Y - coordinate of I

See a. Section III.

and the second of

i. Data Set 9 (Pressure Polynomial), Format (I4), Number of Cards = M Format (8F10.5), Number of Cards = M

Card 1

Columns	Variable	Definition Side number of element on which pressure			
1-4	NSIDE	Side number of element on which pressure is applied (See Fig. 1)			

Card 2

Columns	Variable	Definition
1-10 11-20 21-30 31-40 41-50 51-60	Variable A ₁ A ₂ A ₃ A ₄ B ₁ B ₂	First coefficient of T _y traction polynomial Second coefficient of T _y traction polynomial Third coefficient of T _y traction polynomial Fourth coefficient of T _y traction polynomial First coefficient of T _x traction polynomial Second coefficient of T _y traction polynomial
61-70 71-80	в ₃ В4	Third coefficient of T_x traction polynomial Fourth coefficient of T_x traction polynomial

This is an optional data set. Use only if one or more elements have NTYPEL = 1 (See f., Section III). If there are no such elements omit this data set altogether.

*M is the number of elements with NTYPEL = 1. For each such element there are two cards. The set of Card 1 and Card 2 has to be given for each such element. Give M such sets. The order of the sets is the same as the order of element cards in Data Set 6 which have NTYPEL = 1.

(Continued at top of next page)

 T_x and T_y are the x- and y- traction components respectively, obtained by taking the vector dot product between the stress components and the outward unit normal on the surface.

j. Data Set 10 (KI Computation Indicator), Format (14), Number of Cards = 1*

Column	Number
4	1

*If NTIP=0 (see g. Section III), this card is omitted.

k. Data Set 11 (KI Computation Point), Format (14), Number of Cards = 1*

Columns	Variable	Definition
1-4	NKIC	Nodal point on the crack edge whose displacement is to be used for K _I calculation. NKIC should be approximately A/50.0 distance away from NTIP, where A denotes the crack length

^{*}If NTIP=0)(see g. Section III), this card is omitted.

2. LIMITATIONS

For using the stored version of SRLO1A the following imitations on the values of various variables should be observed.

 $0 < NPOINT \le 340^*$ $0 < NELEM \le 100$ $0 < NBOUN \le 50$ $0 < NBAND \le 100$ $0 < NYM \le 5$

For definitions of these variables see a. Section III.

SECTION IV

SOLUTION PROCEDURE

1. PROGRAM EXECUTION

The necessary control cards for executing the program with a single data set (one problem) or multiple data sets (many problems) are as follows.

First Card (Job Card), start at column 1.

AAA, CM300000, T100, I0100, STANY. M760328

AAA = Job identification number (eg. user's initials). T100 = Execution time limit in seconds. This may be changed (eg. T60) I0100 = Input-Output time limit in seconds. This may be changed. M760328 = Example of user's code. Use appropriate account number.

Note: Put a period, then a blank after STANY.

Second Card (attach card), start at column 1.

ATTACH, LGO, SRLO1A, ID=M760328.

SRL01A = Program name. For other programs described in appendices the program name is changed but other parameters remain identical. For executing SRL01A finite element program use the above card exactly the way it is shown.

Note the period after the ID value.

Third Card (load-go card), start at column 1.

LGO,

Fourth Card (end-of-record), this card is available at the computer center.

CARD SEQUENCE

The necessary control cards and data cards have to be arranged in the following sequence.

Job card

LGO.

Attach Card

As many as number of problems to be solved.

LGO.

End of record card Data for first problem End of record card Data for second problem

End of record card Data for the last problem End of job card.

SECTION V

NUMERICAL EXAMPLES

The purpose of providing solved numerical examples using the programs discussed in the present manual is to further clarify the data preparation and program execution described in previous sections.

1. EXAMPLE 1: SINGLE NOTCH SEMI-CIRCULAR SPECIMEN

In order to explain all the procedural details, let us start with the problem of a semi-circular ring containing a radial crack shown in Fig. 6. Due to axial symmetry about the X-axis only one half of the geometry is needed for analysis (Fig. 6b). To account for the other half, we need to specify Y-displacement (V) to be zero on the boundary indicated in Fig. 6b.

The purpose is to obtain nodal displacements and stress intensity factors (K_I) for various values of crack length (A), inner radius (R_i) , and outer radius (R_0) . We proceed in the following steps:

a. Step 1: Mesh Generation

As explained in Section 2, mesh generation can be accomplished either by hand or by using the computer. Let us use SRLC program of Appendix I to generate the mesh. The two data cards used were:

Card 1: Blank Card 2: 0.5 1.0 2.0

The numbers in card 2 represent A, R₁, R₀, respectively.

The output of SRLC in the form of punched deck, and in print, was as follows:

	50003 1.	66000	2.0	0000				
1	185 52 1	17 1	2	1	70	8 C	57	5
	10000000.	00000				.30000		
105	<u>61</u>							
166	し 1							
107	0 1							
108	ü 1							
169	0 1							
114	0 1							
123	ü 1							
128	0 1							
137	0 1							
142	0 1							
151	u 1							
156	u 1							
165	0 1							
170	0 1							
179	<u> </u>							
184	U 1							
185	1 1							
13					1.		100	
1	• ŭ j U i ŭ	1.000	80					
3		1.112	56					
5	• ម៉ុមម៉ូមិម៉ូម	1.225	UU.					
7	• 00000	1.500	ΟU					
9	• (00000	1.775	ថដ					
11	• 6 6 6 6 9 9	1.887	50					
13	• ដីមីមីមីមី	2.000	00					
21	38268	• 923	88					
23	42574	1.027	82					
25	46679	1.131	75					
27	57413	1.385	82					
29	07920	1.639	89					
31	72231	1.743	82					
33	76537	1.847	76					
41	70711	.707	11					
43	70606	.786	uб					
45	 00621	.866	21					
47	-1.0óló6	1.060	66					
49	-1.25511	1.255	11					
51	-1.33400	1.334	66					
53	-1.41421	1.414	21					
61	92308	• 3ö2	68					
63	-1.02782	• 425	74					
65	-1,13175	. 458	79					

į.

67	-1.38582	.57403						
69	-1.53989	.67926						
71	-1.74382	.72231						
73	-1.84776	.76537						
81	990.00	.11006						
83	-1-11250	-11000						
85	-1.22500	.11000						
87	-1.50000	-11000						
89	-1.77500	-11808						
04								
74	-1.00/90	-11004						
104	-1 000.00	•11000						
102	-1 1100000							
406	-1.226.00	0.00000						
104	-4 22500	8.00000						
4.07								
107	-1.85/90	0.00000						
103		0.00000						
115	-1.33/90	0.10000						
117	-1.33/20	• 0 9 6 6 8						
119	-1.90600	• 19110						
121	-1.00290	.09000						
123	-1.55290							
1 24	-1.39379							
1 2 2	-1-34379	. 47560						
176		. 67500						
127	-1.536.5	• 0/500						
11.7	-1.01022							
143	-1047644							
47	-1 - 6 - 6	• 05000						
140	-1.5.0000 -1.5.0000	• USU UU						
121		. 05000						
167	-1.599999							
150								
161	-1.30000	• U 2 U U U						
163	-1.226.30	• U Z U U U						
155	-1.52000	02000						
1/1	-1.63							
173	-1.56203	0000000						
175	-1.5.6.04							
177	-1.3.7.7							
179								
185	-1.5.4.4	0000000 3.36000						
	23 21 1	15 22	4 1.	2	.,		10.500	
5	25 23 3	16 24	4.5	<u>د</u>	4	1.	មាមាមាមីមី កាលការក	
7	27 25 h	17 24	15	99 2.	 _+	1.	JUUUU 10.16 5	
9	29 27 2	18 28	12	5 2	4	. 1 .	10161	
11	31 25 9	19 30	1 4	1.6		4.	មមមមម្រំ លោកតេ	
13	33 31 11	20 32	19	12	1	• 1 ·	30305	•

23	4 3	•1	21	35	42	34	22	1	1.40040
25	4.5	4.3	23	3 n		35	24	-	1.43.46
27			25	37	40	35	26	1	1. 10000
23		47	27	3.4	LA	37	28	1	1.05066
24			20	20	- 40 - 61	76	z.	1	1
22		- 	31		50	70	30		1.4.300
		21			50				1 1 1 2 0 0
43	03	- 01 	44	27	02	24	46	- <u>+</u>	Te 10 0 0 0
42	02	03	43	20	54	22	44	4	TEATION
47	01	02	42	27	00	20	40	T	
49	03	37	47	20	00	21	40	1	1.0000
21	1 1	27	49	23	10	50	50	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
23	13	/1	51	50	(2	29	52	1	1.0.000
63	83	81	61	75	82	74	62	1	1.30000
65	62	33	63	76	84	75	64	1	1.]uÜüÜ
67	87	65	65	77	85	76	ъб	1	1.33366
69	89	07	67	78	88	77	68	1	1.43360
71	31	ъэ	65	73	Ϋ́υ	78	7 ü	1	1.3.33
73	73	37	71	80	92	79	12	1	1.00000
81	83	102	166	82	92	1 1 1	94	1	1.00930
83	85	104	102	84	96	103	95	1	1. JÜ]ÜĹ
83	91	107	165	90	98	105	97	1	1.0.000
91	93	109	107	92	93	148	98	1	1.33363
85	117	115	104	111	115	110	96	1	7.90999
85	87	119	111	86	116	115	111	1	1.00000
87	89	141	119	88	113	126	112	1	1.03000
121	69	103	123	113	97	114	122	1	1.00000
117	131	129	115	125	13ú	124	116	1	1
117	119	133	1 31	118	126	132	125	1	1.44300
119	121	130	1 33	128	127	134	126	1	1.30800
135	121	123	1 37	127	122	128	136	1	1.0.0003
131	145	143	129	139	144	138	1.30	1	1.00000
1 31	133	147	145	132	144	146	139	1	1.000000
133	135	149	167	134	141	168	146	1	1.3.3
149	135	1.37	151	161	135	142	160	1	1
145	1-59	1.7	143	153	154	1 5 2	144	1	1.0.160
147	149	103	161	146	165	162	154	1	1.00343
145	147	151	164	146	166	164	453	1	1.03358
163	160	1 - 1	165	155	160	1 5 5	164	1	1.0.300
164	173	171	167	167	172	166	158	1	1.00300
150	161	174	172	160	1	174	167	4	1_80300
461	157	127	17-	462	16.0	476	1.5.9	-	4 12300
477	103	1-5	170	102	107	170	100	1	4 35360
472	400	107	473	107	4 6 5	1 0 0	470	1	T.0.0.000
170	107	107	477	101	107	TOU	112	1	
1/7	107	107	173	102	107	101	1/4	1	
1//	105	105	1/5	103	102	182	175	1	1.00000
1/9	182	102	177	184	182	183	178	1	1.00000
185	-			. .					
100	-1	4971	20	U . U	1000				
181	-1	438	23	• 0 (1177				
182	-1	500(l d	• 0 (1250				
183	-1.	5117	(7	• Ü l	1177				
184	-1	5125	うし	VeJi	1006				
1									

and the second secon

The first line in the output gives the crack length and the inner and outer radii of the specimen. The rest of the computer print-out corresponds to the data sets described in Section III as follows.

Line 2	Data	set	1
Line 3	Data	set	2
Lines 4 to 20	Data	set	3
Line 21	Data	set	4
Lines 22 to 88	Data	set	5
Lines 89 to 140	Data	set	6
Line 141	Data	set	7
Lines 142 to 146	Data	set	8
Line 147	Data	set	10
Line 148	Data	set	11

Note that data set 9 is missing because no element side is subjected to applied pressure.

b. Step 2: Mesh Plotting

From the punched data deck of step 1, data sets 5 and 6 (coordinates and connectivities) were temporarily removed for use in the plotting program SRL11. In accordance with the description provided in Appendix II, the following data was supplied to SRL11.

6 185 52 [Nodal coordinates of data set 5 above] [Blank card] [Connectivities of data set 6 above] 1 20 1 C-SPEC 0.0 2.0 -2.0 -1.0 3.0 3.0 1.0 1.0 [Blank card] End-of-record.

By executing SRL11, the plot shown in Fig. 7 was obtained. In Fig. 8 details of the fine mesh near the crack-tip are shown. Fig. 8 was obtained by supplying SRL11 with only those element connectivities which were to be plotted and by increasing the scales (XSCALE, YSCALE). The number of elements (52) in the first data card corresponds to the number of elements which are to be plotted.

c. Step 3: Executing SRL01A

Data sets 5 and 6 were placed back in their proper sequence in the punched data deck of Step 1 after removing the blank card which was inserted behind data set 5 for plotting purpose. SRLOLA was then executed by using the following cards.

Job card ATTACH,LGO,SRLO1A,ID=M760328. LGO. End-of-record [Data deck of Step 1] End-of-job.

The output of SRLO1A was as follows.

		X-C00RD	Y-CUORD	X-DISPL	Y-DISPL
NODE	-1	0 • v000 d	1. F03UC	55443382-00	• 11185945-04
NODE	N	0.00000	1. C 5625	5948113E-05	.11187065-04
NODE	m	0. 60566	1.11 23u	5349219E-05	•1118936E-n4
NODE	4	C. Cu000	1.16875	o749467Ľ-65	• 1113253E-04
NODE	الل ا	0.600.0	1.22510	7147ú88E-05	• 1119793E-04
NODE	۱D (0-0-0-0	1. 3625C	8119217E-05	 11231205-34
PCON		ü • va009	1.55000	3034080ビー15	.11278922-34
NODE	ø	U + U O Ü O	1.63750	1r1926nc-64	. 113676fc-04
NOOL	σ	0.60453	1.775uu	11129655-04	. 11463665-34
NODE	10	<u>0.60000</u>	1.83125	11959696-04	• 1151 695E-04
NODE	11	9.0000	1.88750	1232275E-U4	• 11559845-54
NODE	12	U. UOOÚÚ	1.94375	12497 37E-04	.1162922E-U4
NODE	13	L.C0064	2.56940	1239287E-C-	. 11387310-04
NODE	4 4	19134	• 96194	5279507 <u>-</u> 05	- 97948655 •
NODE	15	21287	1.57016	6053292F-05	. 36384425-05
NODE	16	23440	1.17838	- - 58171255_05	 J48J123E-05
NODE	17	28702	1.44291	8657729E-U5	.9141391 ^c -05
NODE	18	33963	1.76745	1057126 <u>6</u> -04	• 8777334E-05
NODE	19	36116	1.81560	1138719L-64	. 801453fi-05
NODE	20	33269	1. 52348	1222r93E-u4	• 9444207 <u>2</u> -05
NODE	21	38258	.92388	5(32954E-U5	• 8367+73E-US
NODE	N V	43421	.97585	- . 54	• 32067682-0F
NCOL	23	42574	1.62782	5772529L-05	. 3U5u 8155-05
NOOF	5	44727	1.1979	51353542-05	. 78374515-05
NUDE	52	46879	1.13175	6446905-05	• 7746138E-05
NODE	0 V	52141	1.25379	7371502E-05	• 7 3 9 1 3 5 2 E + 9 E
NODE	27	57403	1.38582	82315645-C5	.7015532-15
NODE	28	62065	1.51205	31442956-93	• 66533245-8F
ACON	29	č7926	1.63989	10189655-64	 52842265~05
NOOE	- M	73479	1. e 9186	-• 1c +22 45E-84	• 6139021E-05
NCOL	31	72231	1.74332	1r795b304	• 5 ¥ 31 7 7 15-45
NOUL	32	10012-	1.79579	1115¢0 2∟-04	• 2 R 5 3 G 9 5 1 - 0 5
NUDE	<u>ی</u> ۲	70537	1.84776	- .11 328355-64	• 5715u1505

S

50-7 • 5275675=35 • 5276399E=05 424195/E-05 3012551E-05 23395396-05 • 2145118E-05 • 1830 455E-05 .13775595-05 56758512-05 2509491E-05 5935101E-06 39787615-05 . 3657129Ľ-05 33551205-05 22770465-35 883943 fE-06 71434055-35 **3098147 -15** +2867335-05 . 3889 869 80 9E - US 34681485-35 59172156-05 5339267E-05 j119021E-05 .48613962-05 36258945-15 ŝ 4512887E-05 39355862-05 1239784E-05 1+3+3565-06 42826562-05 3042143E-US .15582492-35 .1634A205-09 <u>5644835.</u> -. 56153 152-05 -. 725347 56-05 -. 751781 36-05 -. 5598607E-05 -. 7114505E-05 53584642-05 -- 5985071E-C5 -. 3164694c-95 -. 3527837E-05 -- 4419212E-05 --533919E-05 --5112213E-05 -. 195322 aE-05 -. 2311172E-65 -.2414869E-05 -.26332456-05 -.2964792E-05 -. 39754 452-05 -- 42295 J. 9E-05 -. 4482348E-05 -. 47391 DAE-05 -. /782252E-05 --80487395-05 -- 93156 n 3E-05 -. 2816917c-05 -. 5720674E-05 -. 2055293E-u5 -. 2193547E-05 -. 32389996-05 -- 4978685L-05 -- 8629314E-P5 -- 926227 FE-US --96387716-05 -. 37217652-05 -. 4347320E-05 ľ . 56719 .74089 1.29439 1.33466 1.02349 •42574 46679 .57473 81551 +2724 8606F. .22324 1.44750 1.63699 .7(711 . 78506 • 5 2 6 4 4 •96344 • ـ ى 2 ق ف 1.15789 1.25511 1-37444 ·5++3· . 6000 .66750 .81735 1.58979 .35268 v2665 1.53324 . 66621 1.41421 .40421 .44727 52141 -1.23379 -1.51236 --14492 -- 60750 -- 41735 -.96719 -1.2849 -1.(8979 -.74683 -.78000 --82044 -- 96344 -1.15789 -1-24485 -1-33400 +++2001--1.41421 -.81550 +2169 --- 44858 -1.22324 -1.44750 -1-53924 -1.63799 -. 52338 -- 47585 -1. J2732 -1..7979 -1.13175 -1.30582 -.74711 -- 62621 -1.25511 30 30 50 80 36 6 M ₹ E 5 10 1 ST T N M ŝ 80 53 ± ± e. E د ۵ 62 t c Ω Ω 0.0 5 3 د. ح 끜 ور افر 2 500 3 57 ŝ 5 NUDÉ NODE NODE NODE NCDE 300N NUUL NCDE NOUL NODE NODE NODE NODL NCDE **NGD** A ODL NOJE N.J.C. NCDE **NCOL** NODE NODE NGUL NCOL NODE NODE N ODL **NUDL** NCOL **NODL** NODE NCDE NODE NUDE

22

State of the state of the

A PART OF A PART

-00 -E-36 50-3 -. 4735020E-06 3813443E-05 30960215-05 24193346-05 .1435555-05 0183635-07 -- 1070264E-96 -- 3446869E-36 -. 6357278E-16 -- 3394119E-06 .4623225-05 • 3370069E-u5 5 11114592-05 -- 8891836⁻-06 .34627315-05 27566982-05 -- 1629965E-06 -- 21796355-06 -. 2551877E-06 -- 2957478E-06 37857385-05 30981712-05 24073855-05 -- 1371 3925-06 • 3759396E-05 .30994712-05 2124735E-06 62371395-97 -, 6531651E-07 -• 5776023E-97 275J5utE-05 2699293E-0! 266 0161 -. 1129885 + 3430741 ŝ • . . ē • • • . • . -.3781216£-05 -• 3917469E-05 -. 1243069E-U5 --1359335E-05 -.1492764c-05 -. 17421 u 7E-05 -- 1048544E-05 -. 1995¤61E-05 -. 213531 8E-05 -. 49750226-06 -. 4935758E-06 -. 5058973E-05 -.31588162-06 -.53224825-06 -- 6177528E-u6 -• 6631824E-06 -. 581.77072-06 -. 74850312-06 -- 522434 AL-06 --8503495E-06 --8837524E-06 -- 18507 195-06 -.1885385E-05 --20384451-06 --65908147-05 -- 7525147L-00 - 83458135-05 13509832-66 3523913E-05 -.3643872E-05 -- 4059693E-05 -. 78353215-06 13397 09E-05 13580625-06 13544075-06 . • . 6787 .43769 70079 74384 41610 908TT. 11900 . 45565 . 15540 • L 55 56 • • • • • • • 72231 6537 24634 2894C 34262 39463 .11UUC 10011 .11006 11000 .11006 110 . (.11050 11000 11000 110 uL .11006 10451. ا.دناگ.٩ U- 6 6 8 6 6 6 2.6C35u 67926 (••150) ŝ -1. J125 1.63989 -1.69186 -1.74382 -1.79579 -1.84776 -- 95694 -1.07616 -1.17830 -1.76745 -1.81566 -1-91388 -1.11250 -1.16875 -1.22500 -1.50006 -1.63750 -1.08750 -1.93375 -1.44291 10065 *--1.36258 -1.77550 -1.63125 -1-53549 -- 995u -1.1125 U -1.225 v û -1.77530 39645 -1.45625 ---11255 -1.83755 -1.5.5.50 -1.16375 100+NM+000 52 82 84 85 ðb 87 88 59 6 455 63 95 96 56 liu 101 103 5 102 51 35 96 NODE YUDE NOOL KOOE NODE KUDE NOUL NOOE ROUE NOUE NODE NODE NODL NODE NODE LUDE NODE NUDE NOUL 600E 200F NODL **VODE** NODE KODE CODE NOUL 1005 NUDE VOOL **LUUL** KODL AUUE KOUL

•	-1.22500	0 - 6 - 5 - 5	• 1346449C-66	• 24968182-ù5																														
165	-1.77500	30000.00	624359AE-A5	• 7																														
146	-1.83125	0.0000	F890813E-06																															
167	-1.88750	C • c 44 c •	7323245E-05	J.																														
108	-1.94375	6 - 7 6 c - 0	- -78133232-06																															
1 ú 9	-2.60130	ŭ - 5 ŭ ŭ G Ë	-• 82332 25E-06	ů.																														
116	-1.28125	0.1001.	 12525J3z-00 	.20370222-05																														
111	-1.28125	60377.	5(84189E-06	· 26229182-95																														
112	-1.56336	.12036	6222175E-05	• 47466546-36																														
113	-1.71875	.16036	5510433c-06	54831725-67																														
114	-1.71875	1.1000	5635618E-UG	0.																														
115	-1.33750	100-0-1	 10234295-05 	• 16+87276-35																														
110	-1.33754	• i 458C	20153 <u>04</u> 5-46	• 16414JJE-0F																														
117	-1-33756	0 ŭ ŭ Ū	48645 J25-05	. 16319568-85																														
118	-1.41875	- č 93 u č	- 5 417370E-06	.16518335-35																														
119	-1.51000	.09000	58356914-06	.44396212-76																														
129	-1.58125	1061.	5633249E-06	 16138355-06 																														
121	-1.06250	.09003	5260260 E -05	51453432-08																														
122	-1.66259	• 0 4 0 0 0	5234682 <u>2</u> -06	<i>5</i> 4171802-38																														
123	-1.00250	5.66005	4857085 <u>0</u> -06	. J.																														
124	-1.30563	G • C (^))	.8768525E-u7	 14916068-05 																														
125	-1.36563	• L 8250	45338212-06	 1435194≦-05 																														
126	-1.56036	• 6 8250	5514209E-05	• 4335291E-06																														
127	-1.63438	• U 825U	-• 5817849E-05	.35197552-07																														
128	-1.63438	0.66406	4 b 23C 7 2E - 66	.																														
129	-1.33375	0.0000	 70149056-07 	.124939E5-n5																														
130	-1.39375	• ü 3750	1970C43E-0b	• 1239674g-05																														
131	-1.39375	.07590	43774462-36	• 1232279 <u>5</u> -05																														
132	-1.44638	. u750C	46 3 7 5 6 4 5 - 4 5	. 83202257-06																														
433	-1.50900	.37536	5186338£-06	• 4101734F-06																														
134	-1.5313	• 675 86	5153561E-L6	• 2033534£-66																														
135	-1. čJ 625	.07500	53741 97E-Co	.755531157																														
136	-1.60025	• 53755	-• ¢339444105	• 3214798L-h7																														
137	-1.60625	0 • • 0 0 0 •	3941857E-06																															
138	-1.42188	0.0000	• 3275899 <u>6</u> -07	• 1 [363432-05																														
• 16 22217=05	• 38455841-36	. 1038497 ^E -06	9	• 5025578E-06	• 794494916	• 791538LL-96	. 57236095-36	• 35360752-u6	• 2131164E-16	• 1340 80 8E-36	- 20-12 JU 3E- 71	0.	• 653850£E-06	- 552485855	- 29373385-96	.11287925-36		.49252115-96	• 4873 F54E-96	• 485u 412n-36	.35732322-96	.22715125-36	• 1399151F-76	.922+0575-37	• 4203264c-07	•	• 423238fc-16	. 3974054054	.19715025-36	. / 6196351-37		- 3646644 - 364664	• 31584715-96	· 29617765-95
---------------	---------------	----------------------------	---------------	---------------	-------------------	---------------	---------------	----------------	---------------	-----------------	-------------------	---------------	---------------	-------------	-----------------	----------------	--------------	--------------	----------------	----------------	--------------	--------------	---------------	--------------	---------------	---------------	---------------	--------------	--------------	----------------	---------------	-----------------------	---------------	---------------
-• 393764006	46219735-05	4738275E-06	33340 37E-05	• 32943596-67	17 89 0 4 2 - h 6	3511 ü 342-06	3846519E-86	-• 4622133E-06	4014355E-05	49333155-06	3138761E-06	- 2722674E-05	. 2230850E-07	2633197E-05	-• 32552 39E-05	-• 3332949E-06	2235842E-06	. 1195240-17	1078241E-rG	2016u13u-06	2261549F-U6	2335596E-JS	23935295-00	2401589E-76	15322315-US	17267456-05	.87141812-U3	1036AA 2E-A6	2f35248i-15	20]3019u-66	- 14939662-35	• 59 1195 E-08	288+8+3E-P7	1155162E-u5
. A6254	• • 625Q	• 6250	G • t t O J C	0.0000	. 625 <i>J</i> Û	.05606	. 15420	• 650 J C	. 65430	.0580.J	- L 25 ù c	U. U. U. J.C.	0.0000	• C 35 u C	• 0 35 a (:	• L 35 u u	C. E C C C C	6097600	. 01000	• 62000	• C 2 4 2 5	- L 2 J J Ù			-0707C	C • C E C 0 C	0.0000	• 51334	.f15u0	. 01354	0.0000	6 - V C - C	. E 7354	• • 5 7 8 7
-1.42138	-1.50300	-1.57813	-1.57813	-1.45000	-1.45000	-1.4000	-1.47540	-1,53000	-1.52503	-1.55GuO	-1.550J0	-1.55500	-1.46500	-1.46500	-1.50000	-1.535uü	-1.53500	-1.44005	-1.480.0	-1.48007	-1.49020	-1.54000	-1.51300	-1.526	-1.52000	-1.52000	-1.48533	-1.48647	-1.55468	-1.51354	-1.515J3	-1.49000	-1.49147	-1.49293
NODE 139	NODE 140	NODE 141	NODE 142	NODE 143	NODE 144	NODE 145	NODL 146	NODE 147	NODE 148	NODE 149	NCDE 150	NODE 151	NODE 152	NUDE 153	NODE 154	NODL 155	NODE 156	NUDE 157	NODE 158	NODE 159	NODE 16C	NODE 161	NODE 162	NODE 163	NODE 164	NOUE 165	NODE 166	NODL 167	NODE 168	NODE 169	NODE 176	NODE 171	NODE 172	NODE 173

NUDE 174	-1.43647	• 6 i a 9 u	1653734-65	. 218767556
NUJE 175	にいつうい・オー	3 07 11	16462121-00	• 162J 3765- Jf
NCDE 170	-1-01354		15251255-05	• 95+05910-01
P.CDE 177	-1.51767	. UV7 47	14 35 P A 4 - 4 10	• 3651158c-u7
NGJL 178	-1.23854		12394J5L-06	• 2333771E-07
R00E 175	-1.51019	ن ، ، این این ا	1222494E-P5	J.
NOJE 160	-2.4 3755	いでしょう・フ	· 1079437L-L9	.17399965-06
NUOL 101	-1.49825		5795285 L -07	.14291465-36
NOJL 102	-1.50.JU	042y1 *	8[92338L-07	. 912237(E-67
NUJE 103	-1. pul77	-L-1/7	7642881E-u7	• 289459257
NUDE 164	-1.50250	0.0000	6011956E-07	a.
NCOE 165	-1-1-10	0 3 (i - i - i - i	•	0.
THE CRACK	TIP IS AT NUDE	185		
		1 991 ILS ###	ALENSITY FACTORS ***	
USING THE	Y-UISPL OF HUL.	. 171 Kit	21.J8659	

d. Step 4: Interpretation of Results

The K_I value for the problem is computed by the program and is given at the end of the output. Displacement values at various locations, such as crack mouth opening displacement (node 100) and load point displacement (node 13) can be read directly by identifying the proper node number on the mesh. It should be noted that the actual crack mouth opening displacement and total load line displacement in the present case will be twice the Y-displacement of nodes 100 and 13, respectively. The results are:

 $K_I = 21.58609 \text{ psi}\sqrt{\text{in}}$, Load Point Displacement = $233.74620 \times 10^{-7} \text{ in}$. Crack Mouth Opening Displacement = $75.1878 \times 10^{-7} \text{ in}$.

e. <u>Remarks</u>

AAA, CM7000, T100, I0100, STANY. M-----ATTACH, TAPES, SRLC1, ID=M760328. ATTACH, LGO, SRLC, ID=M760328. LGO. End-of-record 3 (Total number of cases minus 1) 0.2 1.0 2.0 0.3 1.0 2.0 0.4 1.0 4.0 0.5 1.0 4.0 End-of-job.

The above set-up will produce data for crack lengths 0.2, 0.3, 0.4, and 0.5 for $R_i = 1.0$ and $R_0 = 2.0$. The job set-up for multiple runs using SRLO1A is described in Section IV.

Note that the last four elements are as shown in Fig. 2e. Nodes 180, 181, 182, 183, and 184 are located at quarter points of the element sides. This necessitates the specification of the coordinates of these points in data set 8 (Section III). The purpose of this particular procedure is to model the proper stress singularity or the crack tip as mentioned in Section II.

2. EXAMPLE 2: DOUBLE NOTCH RING TENSION SPECIMEN

Consider a double notch circular ring (Fig. 9) under diametral tension. Due to symmetry about X and Y axes only one quarter of the ring needs to be considered for analysis. In fact by changing only the boundary conditions the same mesh as of Example 1 (Fig. 7) can be used. This is accomplished simply by changing the data sets 1, 3, and 4 of Example 1. The following computer print-out shows the changes in the above data sets.

1	185	52	30 1	2	1	70	8	0	51	•	5
	100	0000	0.00000				.3000	0			
105	D	1	U. O	000000	000	U Q Q	0	. 11	36:		00000
106	0	1	0.0	00000	060	000	Ü	.0	000	0000	00130
167	0	1	0.0	00000	000	000	0	• Ü •	Jül	010	00000
108	0	1	0.0	00000	000	600	3	. 01	880	000	00000
109	ů.	1	ម - ម	00000	000	000	ü	.0.	וננ	i li li u	00000
114	Û	1	0.0	UUUU	000	000	0	• 0 (0 ii (0100	00030
123	0	1	0.0	00000	000	000	ú	• 0 *	000	1010	000000
128	Ú	1	0.0	00000	000	000	Û	.0!	003	000	00030
1 37	0	1	0.0	00000	000	ũũũ	U.	.0!	380	000	00930
142	Û	1	0.0	00000	000	GüQ	ل ا	.0:	Jüt	10 ù U	00030
151	Ű	1	J.O	000000	000	ÜÜÜ	0	• Ü •	101	0 0 Ú	00110
156	0	1	0.0	00000	000	000	Û	. 9 9	000	000	00000
165	0	1	0.0	មេចីមិម៉ូរ៉ា	000	000	J	. 8 (101	000	8.000
170		1	U . D	00000	ŲÚÚ	QüŰ	ف	.0.	161	305	06338
179	ú	1	0.0	00000	បបប	010	0	.0.) 0 (000	00000
184	Û	1	0 • Ŭ	00000	000	ŨUŨ	ئا	• Ü (3 6 0	000	00330
185	0	1	0 . ü	00006	ŨŨŨ	000	0	.06	390	066	00000
1	1	0	Ŭ• Ū	000000	U V U	បែបធ	j.	• 3	100	300	01110
2	1	U	0.0	00000	000	000	9	• •	100	OCO	00000
3	1	Q	û . G	00001	000	000	ទ	• 38)05	000	00000
4	1	Û	0.0	LÜ000	000	000	0	. Ű () نا (000	00000
5	1	Ũ	0.0	000000	000	ÖuÖ	9	.00	300	6 C C	00000
ó	1	G	3.0	6000	000	ŪŨÜ	Û.	• 9 3	000	000	00000
7	1	D	0.0	U 0 0 0 0	0000	ŨÚÜ	Û	• 0 :	103	0 C 6	00333
8	1	۵	0.0	66666	000	000	J	. 80	163	060	065300
9	1	IJ	0.0	00000	600	000	Ű	• 04)) (000	00000
10	1	Û	Ĵ•Ŭ	LüGüd	000	000	9	. 8 0	183	GUD	00000
11	1	ß	0.0	000000	600	000	0	• 0 0	00	000	00000
12	1	0	G • O	00003	U O O U	000	3	• 4 6	00	000	00000
13	1	0	0.ú	04040	000	000	9	• 9 0	000	ປິນນິ	00000
1		Ű,		000			1-00660	603	008	_	

28

Note that in data set 1 the number of boundary conditions (NBOUN) has been changed from 17 to 30. In data set 3, thirteen more boundary conditions have been added and the boundary condition of the crack tip has been changed. In data set 4, the load is now applied at node 1. Also, since the applied load is 1.0 lbs, the resulting values for displacements and KI should correspond to a 2.0 lbs load on the actual ring.

The rest of the solution procedure remains identical to that of Example 1. The computer print-out of the results obtained by SRLO1A is shown on the following pages.

· · · · · ·

1		X=C00X C	Y-000-Y	X-DISTL	Y-DISPL
3001	•,		ی ۳۰ ۹۰ هو	•	• 2234a21E-(5
JUCN	2		1.5625		• 2173526 5-65
A D C F	トノ		1 + 1 + 2 U	•	• 21184978-85
LIION	t		1.15.75	•	• 21.71:695 F-15
FOCN	r.	33655.	1.225.	•	 2:132665 F++5
10 DE	٤	- 1021al	1.0525.		• 1976163E-65
300N	~		1. P. W. P.	•	• 1529413 0-65
YODE	80			• • • • • •	· 1995277 - 15
NODE	ים	ិ ៖ ជិនិ ជិន ភ្ល	1.7585	•	• 18667 28 15
10 DE	€ ₩1		1.12.25	•	•1855617E-US
400k	44 41		1.88754	•	• 1845491 °-65
NODE	1.7		1.94375		• 18 35428 E-45
NODE	۲ ۲		2. 51.51	•	 1825764E-05
JUCN	14			22512371-56	19156.65-45
JOOK	لان جع	21287	1.7.15	• 1114356E+16	.13216917-15
NOCE	15		4.1 78.3E	• 5742147E-07	• 19832963-US
NOCE	~ 7	- 29762	1 • 4 4 2 9 2	3007154E-67	• 1333956 E- f5
30 CN	44		1.245		.17655245-15
BOCN	0% •••	35116	1 . 41566	 15895465-56	.1738L415-US
NODF	ż	38269	1.025 BE	2.438595-16	· 17094165-15
ADDE	۲1 ۲4	- 53 76 8	•9×383	 3666 28 78-96 	. 17521535-45
NOPE	22	43421	-27545	31925932F+16	. 17207425- 5
4005	r. 2	- • 42574	1.762	• 265477rr+66	• 178 4435 E- 15
NODE	24	++727	9767.1.1	. 21524475-16	• 15876465-85
NODE	63	46379	1.1 31 75	• 1720 v 4 57 - P f	• 1663745 ~F5
1002	25	52141	1.25175	.73466925-97	. 1627 34 - 5
NODE	27	5745 3	1. 555 82	シュートシャナスサウチョー	.15793742-05
4004	28	62665	2.526.64	x 337 65 31- 52	. 15286635-15
1010	5 2	- • 57 32 6	1.63389		53-36252257 *
NOUT	5. Pri	- 74.79	1.65166	21 F 71 7E-AC	. 145: 169 65
40 DE	т . М		1.74.588	しょう シャルプロ ひのまたん	• 1425611 ²⁻⁰⁵
1001	12	74384	1.79579	29275366-66	.13996575-15
NONE	3	76537	1.8477E	- 13374285-26	. 13725855-15

30Ch	-1-			.27:23145-06	. 157 2224 E- 65
JOCN	u M		• 5 7 24	• 4525 85 ife	• 150 3216E-L5
30CN	35			• 35456.75-66	. 14386755-05
3017	P N)	81 775		• 1 47 886 85 - VE	- 128 6848 6-65
よいてア	36	36715		5216592E-C7	• 1125967E-C5
NOPE	3C	-1.12845	1 2 6 1 3 CH		.1053319 C-15
40 DE		-1		23322625-nf	• 97866315-65
NODE	17 5	1 6 4 4 4 1	7 14 74 70	•74599825-66	• 137 5926 5-1 5
NODE	42	74583	.74589	• 6 3 3 6 5 3 3 E - C 6	• 13226535-65
ADCE	۲۰, ۲۵	75 966	• 7 85 E.c	99-3951346 *	• 127 3215 E-15
1002	44	52644	.12544		• 1225238c+05
BOOK	u t	85521	. [5521	· 54922396-96	• 11 79 457 6-65
NOCE	45	- • 36 344	04240	9 - 3 - 3 - 5 - 5 9 + + + + + + + + + + + + + + + + + +	. 14683755-65
NOCE	4 7	-1.76166	* • 5 6 66	• 7468 31 3F-86	. 9578425E- 6
NODE	48	-1.5785	0 2 2 3 - - T	· 2 + 5 4 4 3 4 F + 7 6	• 97 2 31 76 - L6
1001	с т	-1.25511	£.25311	 14119365-86 	• 72851855-16
40 DE	اريا ارتيا	-1.2489	1.29480		• 6787580 E-L 6
BUCN	•	-1.37466	4.57465	• 5° 584° 6E-67	• 62 81 P 62 E-06
30CN	с. и.	-1.37 444	2.07444		• 57472 4 4 4 4
1001	5	-1.42421	1.424	73-2427 E074-	• 52051551551-26
1002	ר ב ר	- • 5155			• 122 4 519 F-45
NOOE	55	+32.6 -	. 5. 15. 21	• • 38 × 65 25 - 5 6	. 11 9 8 5 2 E-US
BUCN	56	5304	• 56755	 b1462188-166 	• 55368762-16
NO DE	2.5	-1.23234		• 6545 8945 - 16	91-3625272.
3002	ي ت	-1++4 75	064.00	- 40- 4375/F	• 43424135-16
1007	C	-1-55324		• 41731' JE-F6	. 31.776 51 2-66
3000	U	-1.63.99	1.17474	• 3+25 5 25-66	. 19337636
BOCN	•• 9	4 8 F 1 B • 1	• • • •	.11933346+35	• 186 3598 2-45
aucn	60	97565	501 L.		• 552 81 56 E - 11 5
LOCX	رن ۲	-1.2762	• 425 74	• 1 1 - 55 5 5 5 5 - 1 5 5	• 52775v95-16
NODE.	E4	-1-17979	. 4.727	• 11 327 JE-45	• 3517434E-56
JOCN	с Б	-1-1717-	.45.47		• 7×260365-06
300%	4	11・15 87 9			• E117551 2-2 5
ヨロにア	67	-1.3552		• J775651 - 46	• 45 355 82 E - (e

• 87 1 27 37 E-L6	 17 U č 16 25 - 05 		-1. 5555	44 - -	BOOK
- <u>95116955-26</u>	• 17.7 38 LE-US				
-* 2940123 E-07	• 1511 41 3E-CS	• * 95 4 5	-1-66-1-	°6	10 C P
20041356-07	• 15264665-05		- L. 23.75	92	4DEr
-• 6209531 E-08	• 154335 1E+05	1.11.11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1	-1.7751	14	JOCE
• 6255933E-L6	• 162727 7E-15	.1551	-1.25	Ω.	i u u u u
• 7911881 E-06	• 162984 3E-25	•:5541	-1-1250	:1 (T)	
	-163539.E-25	. 55 ^ ^		30	NODE
-• 6270463E-07	• 149711 65-25	-1111- 	1.96.1-	۲. 1	40 De
4953911E-02	<u>• 15. 34955-15</u>		-1-43175	5	NODE
38093435-07	• 15° 8575E-05	.11.01	-1.53755	₩ ² .1	こしいて
241 4584 E-C 7	• 1515463E-05	• 1 2 5 G1	-1.83125	i ti	40EF
1022938 E-67	• 152128 4E-P5		-1 - 77 51 3	ດ ເ	V) DE
• 304.6692 E-4.7	.1529122E-25	• • • •	-1.63.75		ヨごこア
• 1437753E-06	 1524862E+05 		-1.5 X	۲ م ۲	5-1C7
- 3912666E-06	-15331355-0F	• 1986	-1 - 16 25	56	
• 6268411E-ü6	• 1547335 6-05		• 1 • 22 5.	ري مع	1.007
-7097190E-16	• 1550330E-05		-Le16.75	24	ADDE
• 79 ñ 69 41 E- 56	.15518275-05	12011.	-1-1250	4 J.	JUCN
	-1552786E-05		-1.5125_	بر بر در بر	NO CE
• 9642689E-C6	•15529845-05		j N.∪ 66 • •	1) Q	10CN
1523354 5-06	.11ca243E-65	•43760	-14 11 -1-	4	NO LA
-• 5427338 E- C7	• 1226397E-85		-1.01566	50	NOCE
-429.7386.E-57	.12447335-85	19752	-1-7.745	- 25	1001
• 32192u2 E+06	• 126 ⁴ 16 5E-85	- 362F -	-1 - 14 7 01	22	HOUL
		-29942	-121 21-	15	NO DE
• 8547465E-06	•1339327E-15	.267.07	-1. 7 16	34	1005
	-1367828E-05		75554	74	JUCK
1155702E-16	• 761432 3E-86	.75557	-2-34776	1' 6 '	105
4311.664E-U7			-1- 79572	 4 4 	NOUL
• 2567732E-U7	 32: 385 9 5 - 16 	* 200 *	-1 - 74 262	11	NOPE
			-1.6310h		NOL
• 1529318E-C6	• 3773918E-06	.67326	-1.639ky	с у	JOCK
	. 4262912E-C6		-1.51285	e ui	1002

And the second state of the second second

÷.

÷

11 -1.56375 .60160 .17038965-05 .70998345-46 11 -1.26375 -1.26464 .17465 .70998345-46 115 -1.7756 -1.7756 .17466 .70998345-46 115 -1.7756 -1.7756 .17464 .70998345-46 115 -1.7756 -1.7756 .17466 .62464476 115 -1.7756 -1.7756 .153165 0. 117 -1.08375 -1.7756 .1531645 0. 117 -1.04375 .173167 .1531646 0. 117 -1.04375 .17324645 0. .53436545-40 116 -1.04375 .17127465 0. .53436545-40 111 -1.223475 .115-45 0. .53436545-40 111 -1.22146-05 .15127465-05 .53436545-40 .53435545-40	 13770365-36 15363815-66 437886655-06 437886655-06 437886655-06 4378926655-06 13033395-06 13772245-06 13772245-06 33558395-06 335674505-06 335674505-06 33578555-06 33585555-06 	. 15325465 . 15525465 . 15525465 . 171-62685-65 . 15542085-65 . 15542085-65 . 155459876-65 . 155459376-05 . 155499336-65 . 1554993376-05 . 1554993376-05 . 15559376-05 . 15559376-05 . 15559376-05 . 15559346667-05 . 15559346667-05 . 15559346667-05 . 15559346667-05 . 15559346667-05 . 15559346667-05 . 15559346667-05 . 15559376-05 . 1556103667-05 . 1556103677-05 . 155610377-05 . 1556103777-05 . 155610377-05 . 155610377-05 . 1556103777-05 . 155610377		-1.5.5.5. -1.71.675 -1.71.675 -1.37757 -1.37757 -1.57575 -1.55755 -1.555555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.555555 -1.5555555 -1.5555555 -1.5555555 -1.5555555 -1.5555555 -1.5555555 -1.5555555 -1.5555555 -1.55555555 -1.555555555555555555555555555555555555	
11 -1.22 % -1.653% -1.653% -7.69934% 134 -1.22 % -1.75% -1.75% -6246478 -6246478 15 -1.775% -1.775% -1.775% -6246478 -6246478 -6246478 15 -1.775% -1.775% -1.775% -1.775% 0 -62464478 -62464478 -62464478 15 -1.49375 -1.775% -1.524645 0 0 -53436545 0 15 -1.49375 -1.775% -1.712744675 0 -53436545 0 15 -1.224645 -1.712744675 0 -53436545 0 -53436545 -53436545 -1.53236405 </th <th>1 - 43788665-P6 - 43788665-P6</th> <th>• 156420 85-05 • 171562 85-65 • 5375-95</th> <th>200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -</th> <th>-1.271.975 -1.33758</th> <th>3 U U</th>	1 - 43788665-P6 - 43788665-P6	• 156420 85-05 • 171562 85-65 • 5375-95	200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	-1.271.975 -1.33758	3 U U
11 3 -1.26875 68386 .17838965-05 .70998345-06 13 4 -1.22565 1266 .17838965-05 .62464785-06 11 5 -1.77562 12636 .15519585-05 62464785-05	0. 0. 3. 53436545-06 . 53236545-06 . 13770365-16	.1531683E-05 .152964E-05 .1513711E-05 .1712710E-05 .1554879E-05 .1554679E-05		-1.64.375 -1.64.375 -2.17.50 -1.23125 -1.53125 -1.5555 -1.5555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.55555 -1.555555 -1.55555 -1.555555 -1.5555555555	
	6246478E-06	•1711613E-05 •1551958E-05 • • • • • • • •	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-17756	
	- 7913154E-06 - 7099834E-06 - 6246478E-05			-1-11-25 -1-16875 -1-22-651	

	•! • E' 525	• 375	• 158r743E-15	• 1361193 E- 67
E 127	-1.60625		• 16: 1121E-05	•0
110	-1.42185		• 17(52°2E-15	• 26165J3E+16
E 1.70	ニスポンサ・ス・	• 525.	•1503967E-15	• 2793674 5-v6
	-1.5:00.	1.625	21-322275 - C 2	
E 1 4 1	-1.57 81 3	• F 5257	.1573496E-05	• 3626637E-57
F 142	-1.57 21 3	10.1.0	• 1613659E-05	
1 1 1		がすな市場でい	• 17×26535-25	• 2201623 E-16
44	-i.450L	•		. 2187327F-u6
5 145		1335 J.	• 16+1458F-F5	• 2185992 E-06
E 166	-1.47500	• 5:44	.15933675-65	. 1601.665E-06
E 147	-1.50000	• 0 50 to:	• 159° 987E-15	. 100 3463 5- 45
E 142	-1 - 52 500		• 159726 6F - 65	. 6316, 6. £-07
r 149	-1.555.1	1.5 1.5 1.5 1.5 1.5	• 159349 F + FF	. 42012866-67
2	-1.5586	• • • • • • •	a.16179235-05	- 1-348 12 84E- ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.55 11.0	30003.5	 16235765-25 	<i>.</i> ,
5152	-1.4655		.17.17545-05	· 1821,141 E-66
1 453	-1.405'	• 1 355 T	• 16277375-35	• 161 07845-UF
124	-1.50 1.6"	• • 35.1;	• 1611 1985-E5	• 842 P 0 3 5 - 6 7
155 155	-1.5351	• * 5 3 C	 161211 (E-b5 	• 3553417E-07
156	-1 - 57 51		• 164 2295-15	•
157	-1.4301	3.03856	• 17 11 75 3E - 15	• 1366938 E-0 f
158	-1.48761	• 5 2 3 Ŭ E	•16680705-05	. 13556815-06
159	-1-40070		• 1642675E-US	• 1355420 E-VE
160	3664.1-			• 115 27745-56
F 161	-1-53765		• 16 3428 9E-75	• 6439595E-47
162	-1.51.1		•1635064E+45	• 3979456E-#7
E 463	-1.52406	40 h 2 4 * *	• 16341785-25	• 27 2 1 2 4 3 E - 1 7
- 164	-1.52060		• 16472146-15	
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.52300	000000 °C	• 165420 3F-f5	
F 165	-1.485: .	10.77	• 17 18 52 25-1 5	• 1176698 5-06
F 167	-1.48647	.61354	.1653435F-P5	• 1111 461 E-C6
169	-1.59660	• 1 22 [-	• 1 54378 GE-PS	• 5575581E- 1
7 1 F.O	-1-51354	• 41354	• 164691×E-85	• 22198915-67

3UCA	17C	-1.5151-	<u>, fr: ar</u>		
	171	-1 - 49 7 (3:		• 17i 0 40 55-05	• 9596299 ^c -07
NOUT	1.72	-1.49147	• 0 03 54	• 164267 PF-65	• 6817671E-07
NUDE	173	-1.49293	• [- 7 7	• 166690 6E-85	• 300 6869E-C7
ULON.	174	-1.40.647	• <u>52654</u>	• 1 05917 · E · U 5	• 6143543E-f7
BUON	175	-1.5296	200 100 €1 €1	• 1654334E-05	. 45748125-07
30Ch	176	-1.5354	• : 3354	.1658779F-75	· 2823840E-67
30CN	177	-1.5-7-57	• . 7 . 7	• 1661J89E-75	.1524361 E-<7
NOPE	173	-1 + 52 554	• r 3 54	•166657 <u>2</u> E-25	• 6741 946 E-1, 8
JUCK	170	51 11 :	2.4 0 3 6 5	.16671495-n5	•
JUCK	1.9 1	-1.4375		. 17: 21 58-05	• 4778139E-07
200E	+ 32 +	-1.49823	. 541.77	• 1683694E-15	• 4 f 4 2 f 2 3 E - 4 7
300%	+ ê 2	-1.50367	• • • 5 2 •	•16775; 9E-[5	• 22 8 2 8 5 8 E - 0 7
FOCK	1.8.7	-1+52177	22 772 *	• 168 549F-55	• 8185551 E-1.8
NO LE	4 E 4	-1.5225		• 1683 61 2E-P5	•
HOCN	185	-1-5325		-176911 PF-05	•
THE C	PACK	TIP IS AT HORE	1) 1) 1)		
			いたてい たいしょとう キキキ	ENSITY FACTORS 444	
07101	TUC	V-JICCI DE IDUE		6 - 11 250	

「「ないたいない」

あれることである

35

As in Example 1, the K_I value corresponding to the applied load (2.0 lbs) is given directly. Nodes 1 and 100 correspond to the load point and the crack mouth, respectively. Accordingly, we have for 1 lb. load:

 $K_{I} = 3.0068 \text{ psi}\sqrt{\text{in}}$

load point displacement = $22 \cdot 34021 \times 10^{-7}$ in. crack mouth opening displacement = $9 \cdot 511695 \times 10^{-7}$ in.

3. EXAMPLE 3: DOUBLE NOTCH RING COMPRESSION SPECIMEN (CRACK LINE PRESSURE)

The geometry of a Double Notch Compression (DNC) Specimen is shown in Fig. 10a. Let us choose A = 0.5 in, $R_1 = 1.0$ in and $R_0 = 2.0$ in so that the mesh of examples 1 and 2 may again be utilized. For this case however, instead of obtaining a solution for a concentrated load directly, as in Example 2, let us use the crack line pressure concept; the purpose being to illustrate the procedure for applying distributed loads.

In Fig. 10b σ_{yy} is the crack line pressure obtained by analyzing an unflawed ring (no cracks) under the given loads P. In general, crack line stress σ_{yy} may be obtained either by solving the analytical elasticity problem or by performing finite element stress analysis of the unflawed ring. The analytical solution, if available, is of course preferable. For the case under consideration, the stress distribution on the crack line was found by taking the negative of the analytical stress distribution³ obtained for the unflawed ring when P = 1. The node numbers, nodal coordinates and $\pi.\sigma_{yy}$ of the points lying on the crack line are listed below.

Node	X-coordinate(in)	T.σyy(psi)
100 (crack mouth)	-1.0	-10.1365
101	-1.05625	- 7.72739
102	-1.1125	- 5.96154
103	-1.16875	- 4.61541
104	-1.225	- 3.55142

Node	X-coordinate(in)	^π · ^σ yy(psi)
110	-1.28125	-2.68151
115	-1.3375	-1.94734
124	-1.36563	-1.61820
129	-1.39375	-1.30913
138	-1.42188	-1.01697
143	-1.45	-0.739051
152	-1.465	-0.595854
157	-1.48	-0.455750
166	-1.485	-0.409688
171	-1.49	-0.363927
180	-1.4975	-0.295833
185 (crack tip)	-1.5	-0.273276

It is noticed that nodes 100, 101, and 102 belong to the same element whose connectivity is: 81 83 102 100 82 95 101 94 (see connectivity data of Example 2). In accordance with the convention shown in Fig. 1, the nodes 100, 101, and 102 form side 3 of the element. In a similar fashion we can identify the group of nodes (102, 103, 104), (104, 110, 115), (115, 124, 129), etc. being side 3 of respective elements to which they belong.

Next, for each element side, such as (100, 101, 102), we have polynomial traction distribution of the form:

 $T_y = A_1 + A_2X + A_3X^2 + A_4X^3 = \sigma_{yy} n_y = \sigma_{yy}$ $T_x = B_1 + B_2 + B_3Y^2 + B_4Y^3 = 0$

where n_y is the only nonzero component of the outward unit normal. For the present case $B_1 = B_2 = B_3 = B_4 = 0$. Assuming a quadratic distribution of T_y , $A_4 = 0$. Then, for each group of nodes, such as (100, 101, 102), the coefficients A_1 , A_2 , A_3 are found since the coordinates and pressure distribution at each node is known. For the present case this was accomplished by writing a small computer program to solve three linear algebraic simultaneous equations. The result was as follows.

·	~2	A3
51.03588	80.16584	32.35651
28 • 82489	39.99275	14.19187
17.87724	22.03494	6.82783
12.93540	14.57838	4.01532
10.66238	11.31630	2.84494
9.28895	9.41632	2.18785
8.69650	8.61401	1.91623
8.42768	8.25336	1.79527
	51.03588 28.82489 17.87724 12.93540 10.66238 9.28895 8.69650 8.42768	51.03588 80.16584 28.82489 39.99275 17.87724 22.03494 12.93540 14.57838 10.66238 11.31630 9.28895 9.41632 8.69650 8.61401 8.42768 8.25336

Using the displacement boundary conditions shown in Fig. 10b, the SRLOIA data for the problem can now be prepared. Since the mesh and displacement boundary conditions remain identical to those of Example 2, only the changes are described in the following.

a.	Data set	1: NCONC = 0 (no concentrated loads).
ь.	Data set	2: Same as Example 2.
c.	Data set	3: Same as Example 2.
d.	Data set	4: Not present.
e.	Data set	5: Same as Example 2.
f.	Data set	6: NTYPEL = 1 for those elements along the crack surface
g٠	Data set	7: Same as Example 2.
h.	Data set	8: Same as Example 2.
i.	Data set	9:
	3	
	51.03588	80.16584 32.35651 0.0 0.0 0.0 0.0 0.0
	3	
	28.82489	39.99275 14.19187 0.0 0.0 0.0 0.0 0.0
	3	
	17.87724	22.03494 6.82783 0.0 0.0 0.0 0.0 0.0
	3	
	12.93540	14.57838 4.01532 0.0 0.0 0.0 0.0 0.0

3 10.66238 11.3163 2.84494 0.0 0.0 0.0 0.0 0.0 3 9.28895 9.41632 2.18785 0.0 0.0 0.0 0.0 0.0 3 8.6965 8.61401 1.91623 0.0 0.0 0.0 0.0 0.0 3 8.42768 8.25336 1.79527 0.0 0.0 0.0 0.0 0.0 j. Data set 10: Same as Example 2. k. Data set 11: Same as Example 2.

The data image produced by SRLO1A, and the finite element solution were as follows.

1

A SAME AND AND

1	185	52	35	Ũ	2	1	7.	8	6	67	-	5		
	100	1001.	2 0. C .	000				• 30	0 C 3					
1 û 5	Ű	1		9.01	1006	43 0 0	000		J. 9	a ja t	10 ü	6.0	ĴJ	-) N
106	Û	1		ປະມີ	រ៉ែបឋិ	39.05	000		9.0)] n (じり	00	<u>م</u>	C C
107	Ŀ	1		n	1000	ն 0 մ ն	000		- 7. (เป็นที่	05	i: P	οđ	n n
168	Û	1		J . 31	000	0000	000		3.0	1200	<u>n c</u>	ΩU	33	n n
169	Ű	1		0.60	0090	0000	050		0 . 0) J J U	b t	40	09) C
114	9	1		0.00	ngů	0000	0.0.0		1.0	111	00	(† 9	51	0 C
123	0	1		0 • C E	369E	0000	000		U . C	0000	0ſ	60	03	0 Û
128	Ĺ	1		0 🖬 i 🖓	101.	ជិទី ២៨	じじり		9.0	1900	ιũΓ	r B	J J	00
137	Ĺ	1		J. 0.	មើមប	0006	090		- 0 - 0	160	0.0	C 0	00	J 0
142	0	1		- J • 01	0000	0000	GEG		ា.ព	1390	00	00	30	Ů C
151	0	1		3 . ut	686	10 Q (I	Q + Q		9.0	100	0 f	6 Q	00	n n
156	8	1		3.9.	990	99 L la	61.0		6.1	:]t⊐	СŞ	[n	٢đ	3 C
165	L.	1		0.0.	19117	មើមមើ	0 L L		6.0	្រាប់ព	្រក	r (I	9 9	00
170	U	1		9.01	1712	00nr	0 J L		n.:	0.00	រូ ព	ĿĴ	J I	υĈ
173	9	1		_ 2•9u) 9 U C	Cúiu	C y P		_)•1	1300	0.0	r (j	րյ	J P
184	0	1		ii∎ 1) f	1696	0 U Ü Ü	i i n		_ປ 🖕 ປິ	116	C I	ι0	<u>ð</u> b	Pr
185	U	1		_n,i;€	110	3 0 0 C	0 L		រ 🕯	13:00	9.0	0 G	()	30
1	1	Ĺ		0.00	600	u 9 0 u	n .: 0		j. j. u	[ע [ו	C f	00	ιĴ	30
2	1	ú		9.60	000	9660	0 - C		i 🛛 🛈	100	0	0 n	1)	<u>n</u> n
3	1	Ű		Ú∎ñ(- Ulu	0000	nnc		6 • C	1960 1960	60	l' ü	50	0r
4	1	t		u∎ !!	(i) † "	ほうたい	0.0.0		_ J € :	ាស	61	ŧΰ	<u>n </u>	٦r
5	1	i		0 . "(90L	12 () () U	668		0.0	l a C a	0 (n ŋ	00	31
- 5	1	0		0.00	: JOL	nutru	0.0.0		u• 1)));j	€£.	ŰŰ	лŪ	ΰN
7	1	Ŀ		ា 🖓 🕹 🕻	Cu(3000	0.00		9.0	1394	<u>0</u> 1,	βŊ	63	0 r
8	1	U		じゅしも	ieue	ن تا تا با	むこり		ۇ ھاد	1101		ιC	e I	^ (
9	1	n		€£	i u u 1+	មិតភូមិព	Gul		- 1 - 3	en nû	01	0 3	5	<u> </u>
19	1	Û		0. U	19 J.A	0000	GUS		L e Ü	000	CG	r 0	נו	9.6
11	1	Į,		n•5€) • (* 0	ũ ũ C N	000		^• J	1330	n f	εŰ	63	00
12	1	U		1) e u L	at de	CuGP	0.00		J 🛛 🛈	11	66	u (J	٥Ĵ	n n
13	1	i.		1. O . 1. V		J. 1916	61.		· • • •	i di j	f: T	(1	. ٦	10

3	23	21	1	15	22	14	2	0	1	1.00000
5	25	23	3	16	24	15	4	0	1	1.08000
7	27	25	5	17	26	16	6	C	1	1.00000
9	29	27	7	18	28	17	8	£,	1	1.10600
11	31	29	9	19	30	18	10	Û	1	1.66889
13	33	31	11	20	32	19	12	Ĺ.	1	1.00000
23	43	41	21	35	42	34	22	ال	1	1.10003
25	45	43	23	36	44	35	24	Ú.	1	1.00000
27	47	45	25	37	46	36	56	.)	1	1.00000
29	49	47	27	38	48	37	28	L	1	1.00003
31	51	49	29	39	56	38	30	ú	1	1.00030
33	53	51	31	4Ľ	52	39	32	0	1	1.0000
43	63	61	41	55	62	F 4	42	r	1	1.60.80
45	65	63	43	56	64	55	44	e	1	1.00000
47	67	65	45	57	06	56	46	Ũ	1	1.00000
49	69	67	47	58	68	57	48	j,	1	1.00080
51	71	69	49	59	70	58	50	ų	1	1.10000
53	73	71	51	60	72	59	52	Ð	1	1.09000
63	83	81	61	75	82	74	62	ى	1	1.00000
65	85	83	6 3	76	84	75	64	i)	1	1.00000
67	87	85	65	77	86	76	£6	<u>1</u>	1	1.00063
69	89	87	67	78	18	77	68	4	1	1.03000
71	91	89	69	79	90	78	70	0	1	1.0000
73	93	91	71	80	92	79	72	ú	1	1.00000
81	83	162	106	82	95	101	94	1	1	1.0000
83	85	104	192	84	96	103	95	1	1	1.00.00
89	91	107	105	90	98	166	97	~	1	1.00000
31	93	109	167	92	99	108	98	Ü	1	1. 00.000
85	117	115	104	111	116	110	96	1	1	1.96639
85	87	119	117	86	112	118	111	*1 1	1	1.00:00
87	89	121	119	88	113	120	112	Ŀ	1	1.00000
121	89	105	123	113	97	114	122	Ű	1	1.00000
117	131	129	115	125	136	124	116	1	1	1.00300
117	119	133	131	118	125	132	125	Ú	1	1.00000
119	121	135	133	122	127	134	126	÷.	1	1.03300
135	121	123	137	127	122	128	136	3	1	1.09999
131	145	143	129	139	144	138	130	1	1	1.0000
131	133	147	145	132	140	146	139	શં	1	1.16007
135	135	149	147	134	141	148	146	0	1	1.09000
149	135	137	151	141	130	142	150	9	1	1.(0800
145	159	157	143	153	158	152	144	1	1	1.00000
147	149	163	161	143	155	162	154	e	1	1.00000
145	147	111	159	146	154	160	153		1	1,000000
163	149	151	165	155	150	156	164	0	1	7.00000
159	173	171	157	167	172	166	158	1	1	1.0000
159	161	175	173	160	168	174	107	r	1	1.00000
161	163	177	175	162	169	176	168	ა	1	1+00000
177	163	165	179	169	104	170	178	L.	1	1.69300
173	185	185	171	181	185	180	172	1	1	1.00100
175	185	185	173	182	185	181	174	ა	1	1.00000
177	185	182	175	103	185	182	176	ē.	1	1.00000
179	185	185	177	184	185	163	178		1	1. 10 000

.

NODL	1	0.10000	1.00000
NODE	2	8.60033	1.05625
NODE	3	w.f.0090	1.11250
NUDE	4	ŭ.60 <u>0</u> 90	1.10875
NODE	5	មិតម្មិចិត្រូបិ	1.22500
NODE	6	0.0000	1,36250
NODE	7	é.55033	1.57000
NODE	8	6.60000	1.63750
NCOL	9	₽ •(\$978	1.77598
NODE	10	U.JUCUD	1.83125
NCOE	11	0.00000	1.08750
NGDE	12	0.09930	1.94375
NODE	13	v	STATUS
NCDE	14	19134	.96194
NCDL	15	21287	1.07016
NCDE	16	23441	1.17838
NODE	17	28702	1,44291
NODE.	18	33963	1.70745
NODE.	19	36116	1.81566
NUUL	20	38269	1.92388
NODE	21	38268	.92368
NODE	22	40421	.97535
NCOL	23	42574	1.(2782
NODE	24	44727	1.07979
NODE	25	40879	1.13175
NODE	26	52141	1.25879
NODE	27	57403	1.38582
NUUL	28	-+ 62065	1.51286
NOUL	29	-+67926	1.63989
NUUE	30		1.69185
NOUL	31	- 74704	1.74382
NOUL	32		1.79579
NODE	33		1.84775
NODE	34	- 62622	•81550
NOOL	37	- 6000CU	.90/24
NODE	30	- 00/50	• 99898
NODE	31		1.22324
NODE	30	-4 03040	1.44750
NODE	39	-1.02049 -1.0070	1.23924
NCOL	- 40 - 74 - 4	- 70714	1.03099
NODE	41	-0/4/11 m.74600	•/0/11
NODE	42	- 78686	•/4003
NOOF	40 44	- 610000 - 82644	• 1 8006 • 26 1. 1.
NCOL	 4 K		.02044
NCOL	49	-+000CL	+ 0 00 Cl
NODE	40	-1,70344 -1,86866	• 70344 4 66666
NODE	47 4 A	-1.16780	1.4579D
NCOF		- + + +27 07 - 1, 96544	1 0F614 10107
NCDF	77 51	-1,20LAQ	1.2011 1.20100
NORE	51	- 40 6 7407	1 27409 1 77429
11 4 4 E	24	-T+ 23420	Te 33400

NCDE	52	-1.37444	1.37444
NUDE	53	-1.41421	1.41421
NODE	54	81550	. 54496
NODE	55	95724	.61621
NODE	56	99898	.66750
NODE	57	-1.22324	.81735
NCDE	58	-1.44750	. 967 19
NCDE	59	-1.53924	1.12049
NCOL	60	-1.63193	1.05979
NODE	61	- 92338	.38205
NODE	62	- 97585	.4:421
NCDE	£3	-1.92782	. 42574
NODE	64	-1. (7979	. 44727
NODE	65	-1.13175	46379
NODE	66	-1.25879	•52141
NCOL	67	-1.73582	. 57403
NCOE	68	-1.51286	. 62665
NCDE	69	-1. 53989	.67926
NODE	70	-1.69186	.7079
NGDE	71	-1.74382	.72231
NCOL	72	-1.79579	.74384
NODE	73	-1.84776	.76537
NGDE	74	95694	.24634
NODE	75	-1.07816	.26787
NODE	76	-1.17338	.28940
NODE	77	-1.44291	.34202
NCOL	78	-1.70745	.39463
NODE	79	-1.81536	•41616
NCOE	80	-1.51338	+ + 37 6 9
NODE	81	39160	.11000
NODE	82	-1.05125	11000
NOOL	63	-1.11250	11008
NODE	84	-1,16875	•11398
NCOE	85	-1.22500	.11000
NCOE	8 E	-1.36251	•11000
NGDE	87	-1.50000	•11998
NODE	88	-1.63750	•118:0
NGDE	89	-1.77500	+11985
NCDE	90	-1.83125	•11606
NCOE	91	-1.03750	•11000
NGDE	92	-1.93375	•11000
NODE	93	-1.98UJ	.11395
NCDE	94	99500	.05500
NODE	95	-1.11250	.05500
NODE	96	-1.22597	.65500
NUUE	97	-1.7750u	.05500
NUUL	98	-1.00750	.05500
NUUL	99	-1.99000	• 65560
NUUL	100	-1.LUUUU	0.0000
NUUE	101	-1.00025	0.00000
NUUL	162	-1.11250	0•6 ~0 36

Ê.

NGDL	103	-1.16875	00000.
NODL	104	-1.22500	0.00000
NODE	105	-1.77530	0.00000
NODE	106	-1.83125	6.66666
NUDE	167	-1.88756	0.00000
NODŁ	168	-1.94375	0.00000
NODE	109	-2.00000	0.0000
NODE	110	-1.28125	0.0000
NODE	111	-1.28125	.10000
NCDE	112	-1.50890	.16000
NODE	113	-1.71875	.10000
NODE	114	-1.71875	0.00000
NCDE	115	-1.33750	6.66000
NCDE	116	-1.33750	•ú4500
NODL	117	-1.33750	.09000
NODE	116	-1.41875	09090
NGD	119	-1.50010	.09000
NODE	320	=1.58125	. 0 90 0 6
NODE	121	-1-66250	.09000
NODE	122	-1.00250	64599
NODE	123	-1.66250	0.0000
NODE	124	-1.36563	6.(0036
NODE	125	-1.36563	. [8250
NODE	126	-1.54700	• U 825 Ŭ
NODE	127	-1.63438	.08299
NOJE	128	-1.63438	6.61660
NODE	129	-1.39375	0.00000
NGDE	130	-1.39375	. (3750
NODE	131	-1.39375	.17500
NODE	1 32	-1.44588	.17530
NODE	133	-1.59060	.075(-0
NCOL	134	-1.55313	.(7500
NOOL	135	-1.60625	.17500
NODE	136	-1.69525	•C3756
NODE	137	-1.60025	6.16600
NODE	138	-1.42188	0.00000
NCDC	139	-1.42188	.6250
NGDE	140	-1.50000	.06250
NODL	141	-1.97313	.06250
NCDŁ	142	-1.57813	0.10000
NGĐE	143	-1.45000	6.60.30
NODE	144	-1.45)00	•€25J9
NODE	145	-1.45000	•65009
NODE	146	-1.47509	.15000
NCOL	147	-1.54963	.05000
NCDr.	148	-1.52500	●戶与以前位
NODE	149	-1.55000	.65000
NODL	150	-1.55090	.02500
NCDE	151	-1.55,20	6.(1000
NODE	152	-1.46590	0.0000
NODL	153	-1.46563	.03500
NGÙL	154	-1.50000	•C35v8
NODE	155	-1.53500	.03501

A LO STATEMENT ST.

Provident and a second

NODE	156	-1.53500	0.00000
NCDL	157	-1.48300	0.00000
NODE	158	-1.48000	.61000
NODE	159	-1.48000	• 0 2 0 Ŭ O
NODE	160	-1.49000	.02000
NODE	161	-1.50000	•02000
NODE	162	-1.51000	.02000
NODE	163	-1.52000	. (2000
NODE	164	-1.52330	.01986
NODE	165	-1.52000	0.00000
NODE	166	-1.48530	6.0000
NCDE	167	-1.48547	•C1354
NODE	168	-1.50000	•61506
NODE	169	-1.51354	•01354
NODE	170	-1.51500	0.0000
NODL	171	-1.49000	6.66600
NODE	172	-1.49147	·L9354
NODE	173	-1.49293	· U (7 17
NODE	174	-1•49547	•66854
NCDE	175	-1.50000	.01609
NODE	176	-1.50354	.00854
NODE	177	-1.50707	. 6737
NGDE	178	-1.50854	.0354
NCDE	179	-1.51890	0.00000
NGOE	180	-1.49750	0.00000
NODE	181	-1.49823	• 0 • 1 77
NCDE	182	-1.50090	·[L250
NODE	183	-1.50177	•00177
NODE	184	-1.53250	60000.0
NODE	185	-1.50350	0.01000

÷

SIDE	3COEFF	0F	POLYNOMIAL:	51.63586	80.10584	32.35651	1
				6.00000	0.000.0	3.03003	0.00000
SIDc	3COEFF	0F	POLYNOMIAL:	28.82489	39.99275	14.19187	0.00000
				Jerrull	1. Bunrr	1.30104	1.10.00
SIDE	3COEFF	0F	POLYNOMIAL:	17.87724	22.03496	6.82783	0.10000
				0.00030	9.10000	0.01000	0.10001
SIDE	3COEFF	0F	POLYNUMIAL:	12.93543	14.57838	4.91532	0.10103
				s.nennu	u. Jueer	a , ngr.p.n	7.10000
SIDE	3COEFF	ÛF	POLYNOMIAL	10.65233	11.31630	2.84494	e.condo
				6.0u000	0.03060	0.00100	0
SIDE	3COEFF	0F	POLYNÚMIAL:	9.28895	9.41632	2.18785	0.00000
				G. CO330	8.10011	0.10.03	J. 0000
SIDE	3COEFF	OF	POLYNOMIAL:	8.F965u	8.61411	1.91523	3.50300
				9.06300	A.00000	0.00.00	0.0001.0
SIDE	3COEFF	OF	POLYNCHIAL:	8.42768	8.25336	1.79527	3.00000
				. 6.8.83 1	0 15 at 0	3 39493	7 (9.10

.42474416-05 43355565-06 .42691395-06 • 46812545-96 42097435-96 .41+12465-36 38716622-06 37597795-06 36936655-06 ++++9654C-66 3988171-76 ഹ 43321485-76 4332736E-F6 .4337988E-n5 .4335558e-16 4350276E-06 43277462-36 •4251336₹-ú6 43223362-36 43405136-06 ,4169121⁶-16 .4221086⁵-96 .4131559°~06 .41685682-16 . 4J612555-n6 39698325-96 3695238E-96 36450965466 36707465-06 , 43334525-[F .4291522c-0f 42766357-96 42333822-06 41252726-76 .37291096-nf - 4754421 F-PI JeSIC-X 50237462-07 1342163E-u7 -. 3r394 31E-n8 -•18329485-07 -. 2535488E-F7 -. 3177242E-07 57030322-07 43393416-07 3615836E-07 29446306-07 • 13464 42E-07 -. 1959511Ľ-u8 -. 1727449E-07 -. 3238702L-u7 -. 3854714E-U7 --4474381E-67 -. 50 920 33E-07 -• 5713f 0 2E-07 +9919983E-07 -795471 RE-07 . 2823727E-07 . 245938 PE-07 5137827E-07 lasIG-X ¢, • . đ Ċ e... ċ • ð ċ °. ċ 1.15625 1.11250 1.16875 L. 36250 1.52005 1.83125 96798 1-94375 2.0930 1.17835 1+70745 1.81566 1.92388 .52338 • 97585 1.62792 1.07979 1.13175 1.25879 1.38582 1.63989 1.69186 1.74382 1.79579 1.84776 .90724 1.0000 1.22596 63750 1.77530 .96194 1.07016 1.44291 1.51286 •8155r 86826. 14-CO0-X -÷ 0.00000 0.00000 u. C001 - U 0.30763 00000000 i. • 69680 0.0000.00 00003•3 0.00136 -.19154 -.21287 23440 -.28762 -.33963 -.36116 -.38269 -.38263 -.42574 --44727 -- 46879 -. >2141 -.57483 -- 02665 -•07926 70179 --74384 -.76537 -.69520 00000000 0.60000 0.00000 --44421 -.72231 --54490 -.6**b75**ü X-COCRU • i 101 10 4 5 16 17 18 51 23 26 28 29 30 34 353 100450P øσ 5 22 24 S3 31 NCDE NODE NODE NODE NODE NCOE RCDE NCDE **JCON** NODE NODE NODE NODE NODE NODE NODE NODE NCOL NODE NCDE NCDE NCDE NCDE NODE NCDE NODE NODE NCDE NODE NODE NODE **300** NODE NODE

ODE	37	81735	1.22324	1973751E-07	• 3558595-16
30	38	96719	1.44750	2020293E-07	. 329988655-36
30	39	-1.62849	1.53924	36483162-07	• 30250435-v6
ĴΟΈ	40	-1.48979	1.6 3099	52611745-07	.2919834F-9£
ΒE	41	70711	.70711	. 1438383E-00	. 39315825-C6
30	42	74689	.74689	. 132438 <i>4</i> E-96	• 3891168E-F6
ЭÖ	£4	78666	•78656	.1214541 <u>-</u> 05	• 3786547E-96
DE	44	- 82644	. 82644	• 1149628E-E6	 36365305-PE
JOE	45 45	86621	.86621	 1075206E-06 	• 3502571E-06
DC:	4e	96344	• 96344	. 75543455-07	 32431235-06
DE	47	-1.6966	1.56066	• 53297675-07	.29652125-06
30E	4 8	-1.15789	1.15789	. 3 ⁿ 50564E-07	. 269J732E-P6
DE	49	-1.25511	1.25511	.7952857E-03	. 2413143 ^E -36
j0£	50	-1.29489	1.29489	14717385-63	• 2298423c-16
DE	51	-1.33466	1.33466	1060J34E-07	.21845982-36
) DE	52	-1.37444	1.37444	2011A71E-07	.2058773E-06
DE	53	-1.41421	1.41421	29562 3FE-67	•1953612 ^E -fio
DE	54	81550	• 54490	 20708362-05 	 37892665-06
0r	55	+- 9.724	.56520	 1830427E-06 	 352ù7162-P6
DE	56	99896	•66750	 1545837E-06 	• 32251255-nf
DE	57	-1.22324	. 81735	• 120894 cE-P6	- 24432195-06
ĴΕ	58	-1.44755	.96719	 79742736-07 	 1693751≦−66
0É	59	-1.53324	1.02849	. 52255536-67	.13554415-06
0E	ц 9	-1.63339	1.68979	• 4458539E-E7	•1049317 <u>-</u> 76
ЭE	61	52388	• 36258	• 2749238E-06	• 3697 A36£-06
DE	0 2	57585	.44421	. 2f.+8015E-06	• 35369182-66
.0E	63	-1.[2782	• 42574	. 25483255 5-0 6	• 32992ati-té
00°.	64	-1.[7973	• 44727	• 2453439 <u>50</u> 6	• 3679831 <u>0</u> -96
DE	65	-1.13175	• 46879	 23795152-05 	· 26534718-36
DE:	6 6	-1.25879	.52141	. 21996425-06	.22848275-06
Ŋ۲	67	-1.38582	• 574J3	- <u>2653265-05</u>	• 1756 932£-u6
0É	68	-1.51286	.62565	 1930152E-n6 	• 1274377E-26
306	69	-1.63389	• 6 7 9 2 6	. 1733332E-06	20-32266462 .
ä	70	-1.69186	• 7 c t 7 9	. 17299977E-Q6	. 5032858[-07
ΩĘ	71	-1.74382	.72231	 1658594£−₿6 	 39356215-07
DE DE	72	-1.79579	• 7 4 3 8 4	 1530 bt 7E - 05 	.13473645-77
ງບໍ່ຕ	73	-1.84776	.76537	 14955265 	41305185-58

Î

E-06 90-3 33253644-06 · 27487785-06 •1329801E-n6 -- 94100935-09 -.34387355-07 . 46278142-76 .37193535-06 33611615-06 . 3521566E-06 . 26631915-06 .1553771E-06 .61334755-07 1533421E-07 • 7827378E-09 -- 4246841*č*-08 -- 3455361E-98 -- 20593946-97 4157859E-06 - 34598895-06 - 2721314F-06 --7351116E-10 -- 51302596-38 -.97756732-08 • 4293266E-06 • 39368445-06 -3559681c-06 2361128E-36 .3187916-07 -.14418796-07 3849695 5- 64 .3175374 2776387 **.**• • . • • 29515525-36 29726826-86 31J72876-05 2932021E-n6 20551095-06 41432832-06 41049226-06 40521826-65 40313395-06 39554352-06 396-396-36 39886775-05 39355346-06 3967 n 45E-US 39492576-66 39357465-05 3919154E-66 44785176-06 44J9198E-05 43757696-06 40934846-09 46197495-06 397286FE-06 4821429E-06 47850155-06 4759628E-05 47604275-05 4757115E-06 40-3024604 4067433E-06 46403105-06 40108446-06 39859445-05 32472915-96 4174814E-06 4754245E-06 34311145-0 .11040 26787 69224* .11100 .1100C · : : : • • • .34232 .39463 .41616 • 11001 • 7 7 6 6 6 .11306 .111 uľ .11000 .11076 .11900 .05533 • 055 3 • • 65536 .05500 100000.0 9.6000 10000-0 000000 C. C P G G C 0.66706 5. L 86 30 .28940 .1116 .110ⁿč •110JE . 15511 .55505 2.66306 00000-1 0.00000 24634 -1.1125n -1.7.15 -1.17833 -1.75745 -1.615hř -1.91338 -1.05125 -1.11250 -1.16875 -1.5000 -1.c3750 -1.77500 -1.63125 -1.48750 -1- 43375 -1.53000 0[265 ---1.1250 -1.77560 -1. 28750 100065-1--1. P(. 2. -1.05625 -1.16375 -1.22506 -1.77530 -1.83125 -1.94375 -1.44291 -1.2506 -1.225-5 -1-88750 -1.28125 93966 ---2. 1 1 1 -- 95691 -1.3025 э 6 5 55 102 103 104 105 108 169 83 95 150 101 106 117 116 52 20 2 28 29 ů 19 20 84 35 36 87 88 30 91 95 46 5 97 35 NODE NCOE ACON NODE NODE NODI NCDE NOUE NODE NOUE NCUE NCOE NCDE NCDE NOUL NODE NCDE NCUL NODL NCDC NCOL NCDE NCOL NODY NCDE NCOE NCDL NCDL NCDL NODL NCON NODN JCON NCOL NODE ACO V

والمتقافلة والمرابعة والمسارعة والمسارعة المعارية المعارية والأستطاق والمتلية مريح وسكر والمنابعة والمرابع والمرابع والمعارية

く うままをおくまたい うちょうない

and the states of

14 - -----

.

and the second second

84. Ba .. 11

• 4 30 J 892E - 07	• 4224 F52E - 06			
• 5873816E-07	• 4234675Ľ-05	00000 °	-1.47560	
. 94J27485-R7	• 4254F96E-06	- 5 7 6 C	-1.45638	
 94564795-07 	• 4400454106	. 6 25 0 5]ulë4 .1 -	•
• 9569367E-07	• 1715232F-CG	1-	-1.4534.	~
• ℃	• 4329932E-05	010100	-1.57813	•.
 16137082-07 	.4182217E-nG	• ū 62 5 i	-1.57813	
 47293646+07 	• 4158459E-05	• C 625 B	-1.500AA	. .
• 12uJ 416E-06	. 4212895E-06	. (6250	-1.42183	~
• 1227746E-06	. 47158426-05	6 . n C Q C G	-1.42188	_
- <mark>-</mark> -	. 4279641E-0ô	8 . 6 86 0 6	-1.00625	•
• 6368961E-08	. 423645AE-A6	.0375P	-1.60525	•
 1405489E-07 	. 4125366E-05	• 07504	-1.6J625	
 27392495-07 	. 4126r5nE-r6	.[7585	-1.55313	•
• 5132596E-07	• 4C37395E-US	.17505	-1.50968	
. 98506095-07	 4116456E-06 	. 37500	-1.44683	
• 14316915-46	• 4154451E-05	.075uc	-1.3375	
.14506 ⁻ 3 <u>6</u> -06	• 44215 826-06	37 5 0	-1.33375	<i></i>
1472057E-06	• 4723694E-06	r • c 00 ¢8	-1.39375	-
3.	• 4237339E-05	0-56964	-1.63433	~
 1051549E-07 	• 4030914E-05	• 3 8 2 5 6	-1.63434	
. 5354023E-07	.4 (62522E-A6	- n 8231	-1.5u3t3	~
.1652076E-06	 4124297E-06 	0 C S S U .	-1.36563	
 17017125-06 	. 4733229E-U6	0.0000	-1.36563	
J.	• 4201042E-06	0.010.00	-1.00250	~
• 3326484E-0E	• 4161763E-06	-0453U	-1. 66250	
• 7305345E-08	. 405532FE-06	00060.	-1. t6250	
 2436249E-07 	 4055914E-06 	00160.	-1.58125	
. 556605CE-07	. 4028A27E-06	• 0 9 Ü Ü Ü	-1.56306	æ
 1229975E-06 	• 4649565E-06	0 [u 6n •	-1.41875	~
• 185231fE-96	• 46 JAF 27E-U6	10 °0 ° •	-1.33750	
 1894644E-56 	• 4411044E-06	• 6 4 5 4 0	-1.3756	
 1924488E-36 	 4740766E-06 	9. ü Ü Ü Ü U	-1.33750	10
•0	• 4140022E-06	r. E n a B B	-1.71875	+
. 28967J2E-08	. 4P1332F5-05	-1-0-F.	-1.71875	• •
• 587711nE-07	. 39895 RDE-05	.1(n) <u>0</u>	-1.50340	•
• 2272696E-n6	• 4f 59f 64f - 06	.10000	-1.28125	_

and an and an and

é.

• 5972841E-F8 2838728F-u8 3>246445-68 .1323809^r-07 .8257207_-38 . 43203655-07 •170759f=-07 • 3345645E+ 9 • 95151955-08 .12143765-97 17285545-47 • 9847 982^r-58 .27147965-07 .7857521F-07 782241cE-97 3617571E-C7 .15302075-07 .59205232-37 .585012(E-57 . 58477255-07 .27596385-57 11668665-17 .5033736E-97 .2399167E-07 41516u81-97 .38111935-17 . 54579415-07 .2649717F-C7 •1973111c-07 20655176-37 5-399u995-07 • ÷ -• -e. 46379235-36 45558 3 25-05 44455775-00 4415249E-06 44123325-06 44 989326-05 46371065-06 44928425-36 4.520396-06 46529115-06 45241055-86 4696773E-96 45-17735-06 4518525-06 44 378295-06 46962675-06 44248255-06 46118576-65 46247095-06 . 4241537E-nG 43454645-36 43168475-05 4319n71E-06 44 2091 PE-CG 4611014E-35 445867FE-P6 46199972-06 45142985-06 4527581E-U6 45514085-05 455412 85-06 45 381746-36 46959152-05 STRESS INTENSITY FACTORS +++ 43952715-05 47118456-06 90-2405 26424 A439617E-U6 4237373-04 2.60167 X H H .i 2019 . f 20 f u • u 35 U u 00000000 • C 20 00 . 52000 .0323. 00000000 .01354 .1505 +6223. 202n7. • 6 0354 .00177 0.00000 Ú - U G J J P 10030-0 .03500 . 53536 9232399 .01960 5.56000 r. rco 03 +05304 • [[854 46801. 0.000000 0.10000 256 0.0000 30350 12051. .0250. .01036 3-09-5 .610-00 • 0 0177 *** USING THE Y-DISPL OF NORE 171 **TIP IS AT NODE 185** -1.50707 -1.51000 -1.50177 -1.55360 -1.46575 -1.46530 -1.5350 P -1.53500 -1.48300 -1.48330 -1.49336 -1.50136 -1. -103r -1.52000 -1.52000 -1.48500 -1.5030A -1.51354 -1.51500 -1.49293 -1.43647 -1.50354 -1.50354 -1.49823 -1.50300 -1.50000 -1.55030 -1.59990 -1-48055 -1.523UC -1.48547 -1.490.00 -1.49147 -1.49750 -1.50250 -1.5250C -1.55330 -1.56306 CKACK 159 165 166 184 185 149 153 154 155 156 157 158 100 162 163 164 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 1 83 150 51 101 148 25 NODE NODE NODE NOUE NODÉ NODE JCON NOOL NODE NODE NCOL NODL NCOL NODE NODE NODE **BCON** NODE NCDE NCOR NODE NCDE NCOE NODE NODE NODE NODE NOOL NCDE NODE NODE , CDL NODE NODE RODE N COE NODE NOJE ΨH

「「「「「「「「」」」」」」」」」」」」」」」」」

فالمنا التقوين يهدون والمحمد فلاحت كالأخار تنامك فستحصص كمتعط معاملين

and the second

The above results show that K_I for the problem is 2.60167 psi \sqrt{in} . The same problem of double notch ring compression specimen when solved by applying concentrated load P directly (Fig. 10a) gave stress intensity factor value of 2.59355 psi \sqrt{in} . The 0.3% difference in the two values could be attributed to round-off error in the calculation of nodal stresses from elasticity solution and in the evaluation of pressure polynomial constants. Further, the assumption of quadratic pressure distribution over each element side may have contributed to the difference. An interesting exercise would be to try constant, linear, and cubic pressure polynomials.

4. EXAMPLE 4: COMPACT TYPE SPECIMENS

One of the advantages of using programmed mesh generation along with the finite element program is that changes in geometry pose no difficulty. For a compact tension test specimen (Fig. 11) of standard geometry (H/W = 0.6) and for WOL specimen (H/W = 0.486) SRLO1A results can be found in reference 4. For the present example we choose the following dimensions:

H = 1.2 in.
W = 2.4 in.
W₁ = 3.05 in.
S = 0.0938 in.
F = 1.417 in.
E' = 0.55 in.
R = 0.25 in.
θ = 40.0 deg.
A = 1.2 in.

The mesh generation program SRLCMP (Appendix I) was executed using the following cards:

Job Card ATTACH,LGO,SRLCMP,ID=M760328. ATTACH,TAPE8,SRLCM,CY=2,ID=M760328. LGO. End-of-record card 1.2 0.55 1.417 1.2 0.0938 40.0 2.4 3.05 0.25 0.55 End-of-job Card

The last entry on the data cards is the distance n - n (Fig. 11). This distance should always be kept less than $2 \times E'$ and larger than S. The location of point n can be chosen to correspond with the actual COD measurement location in an experimental set-up.

The use of plotting program SRL11 provided the mesh plots shown in Fig. 12. Due to symmetry about the crack axis, only the upper half of the geometry is used in the analysis. The displacement and force boundary conditions are shown in Fig. 13. The crack tip is fixed in both X and Y directions to eliminate rigid body motion.

The data image produced by SRL01A was as follows:

1	330	34	15	1	2	1	190	6	0	11	9	5 ·
	- 100	0000	0.000	00		• • • • • •		. 300	00			
106	1	1		0.0	00000	0000	000		Ö.	000	00	0000000
107	-1	···· ·1		0.0	00001	0000	000		0.1	000	00	0000000
108	1	1		0.0	00000	0000	000		0.	000	00	0000000
104	· · · O - ·	- 1	 .	0.0	0000	0000	000		01	000	100	0000000
100	0	1		0.0	00000	0000	000		0.1	000	00	0000000
3E	· 0	1-	···· - · ···	0.0	00000	0000	000	•••••••	0.	000	100	0000000
14	Û	1		0.0	00000	000	000	ł	0.	000	00	0000000
85	· 0-	- 1 -		0.0	00000	0000	000		0 ÷ 1	0-0-0	00	0000000
70	Û	1		0.0	00000	0000	000	i	0.1	000	00	0000000
62	Û	1		0.01	00000	0000	000		0-1	000	00	0000000
47	0	1		0.0	00000	000	000		0.	000	00	0000000
-39	0 -	- 1	 .	00	00000	0000	000		0 •1	000	00	0000000
24	G	1		0.0	00000	1001	000	1	0.	000	00	0000000
1.6-	0	···•		0	00000	0001	000		0=1	000	00	0000000
1	0	1		0.0	00000	0000	000	(0.(000	00	0000000
277		- 0	. 0000	000	000	· ·		1-0000	001	000	0	

3	26	24	1	17	25	16	2	1	1	L 1.00000
5	- 28	- 26	-3-	18	27	17		1		t1, 00000 -
7	30	29	5	19	29	18	5	1	1	L 1.00000
·· ·· · · ··························	32-		• • •7•	20	31	19				t1+00000
11	34	32	ÿ	21	33	20	10	1	1	L 1.00000
13	- 36	~~34	11	. 55	-35	21	-12	1		1.00000
15	3ê	36	13	23	37	22	14	1	1	L 1.00000
26	· 49	47~	24	- 40	° 4 5	- 39	25	1		L1.00000
28	51	49	26	41	50	40	27	1	1	1.00000
.30	53	51	2-8	· -42	5 2	41-	23			1.00000
32	55	53	30	43	54	42	31	1	1	L 1.00000
-34	57	55	3.5	- 44	56	· 43	3.3	- 1		1.00000
36	59	57	34	45	58	44	35	1		L 1.00000
-36	61	- 53	36	- 46	- 60		57			1.00000
49	12	70	47	63	/1	62	45	1	1	
21		• 12	-49		1.2	- 63				1.00000
53	10	74	51	07	17	04	56	1		
77	े हि र	7D	23.	00	· / / ·	~ 07		1		
5/	0 U 4 3	75	22	67	79	00	20	1		
29	52	50	57	60	01	- 01 - 6 u	20	1		
	64	30	27	- 44-	0 J		0U 	4		
74	110	114	76	00°	447	97 84	73	4		
-74-	110	.448.	. 7.6.	07	140	00	77	•••••••••		
A 0	122	120	78	90 Q1	121	05 Q n	72			
- 62	126	4.92			423	- Q4	· A 1-	•••••••••		
84	126	174	82	93	125	92	33	1		
416	.452	-158-		. 1. 4. 6.	- 1.5.1-	4.34	415			
118	154	152	116	141	153	140	117	ī		1.00000
128	-156	154	118	142	155	141	119			
122	158	156	120	143	157	142	121	Ĩ	1	1.00000
124	-16-0	-158	122	144	159	143	123	1		1.00000
126	162	160	124	145	161	144	125	1	1	L 1.00000
150	173	-171	-148	-164	17-2	163	. 1 49			
152	175	173	150	165	174	164	151	1	1	L 1.00000
154	· 177	175	152	166	176	165-	153			L1-00000
156	179	177	154	167	178	166	155	1	1	1.00000
158	161	179	156	163	18 0	167	157	+		
160	183	181	158	169	182	168	159	1	1	1.00000
162	185	183	150	170	184	169	151	1	1	1.00000
173	196	194	171	187	195	186	172	1	1	1.00000
175	198	-196	-17.3	199	-197	187	174			
177	200	198	175	189	199	185	176	1	1	1.00000
179	202	200	177	190	201	-1-89	178	••••••		
181	ZU4	202	179	191	203	190	130	1	1	1.00000
183	· 206	-204	-141	-192	205	· 191 ·	-132-			1 1,00000
185	200	205	183	193	207	192	154	1		L 1.00000
196	219	217	134	-218	218	203	135			
198	221	219	136	211	220	210	1 37	1	1	L 1.00000
299	223	261	190	£17	222		177	····· 5		
202	222	223	Z U U	215	624	212	201	1		L 1.00000

こうとう きょうかい ちょうしょう

284	227	225	282	214	226	-213-	-203			t	L . 888	••
206	229	227	204	215	855	214	205	1	. 1		L. 000	00
208	231	223	206	216	230	215	-207-				L . 888	00
221	241	233	219	233	240	232	220	1	1		1.000	86.
223	243	261	221	234	242	233	222	4		·	L	
225	245	243	223	235	244	234	224	1			1.000	0.0
227	247	245	225	236	246	235	224	:				<u>.</u>
223	245	247	227	2 37	248	236	22A	4			1_000	0.0
234	251	267	229	236	25.6	237	238	. 1		• •		AA
241	263	261	239	253	262	252	240	1			1.000	nn.
243	265	263	261	254	264	253	242			• • • • • • • • • •	-000	<u>.</u>
245	267	265	243	235	266	254	246	4			1.000	00
251	2-1	272	. 260	260	26.0	254	.250.			· · · · ·		<u></u>
263	2.7	225	243	241	200	293	262	4				0 0 C
203	206	279	201	203	290	29 2	202					U U A A
202	237	239	205	285	290	203	266					
201	207	273	202	207	704	204	200					00
201	307	302	219	249	300	240	200	1				00
200	320	310	232	312	313	311	2 30	1				00
-277	366	360	291	-313-	- 321	- 312	-2-96-				L. UUU	**
301	324	322	233	314	323	313	310	1	. 1			00
303	320	324	301	317	367	314	302	1			L-UUU	40
307	328	320	303	310	327	315	304	1	. 1		L.UUU	00
307		328	305	317	329	316	306				t v 888	UU
245	215	273	247	258	274	257	248	1	. 1		L.000	00
249	2/9	277	275	259	278	276	- 258-	• • • • • • • •			L-888	00
279	305	291	277	293	310	292	276	1	. 1		1.000	00
291	305	503	259	510	304	309	230	1			L.000	00
289	303	301	257	309	302	308	238	1	. 1		1.000	00
266	Z67	-501	267	-296	30-6	285	-268-		·	· · · · · · ·	1.000	00
247	273	271	245	257	272	256	246	1	. 1	L 1	L.000	00
271	265	267	245	270	268	255	256				1.000	9-9
100	102	106	108	101	105	107	104	1	. 1		L. 000	00
102	110	106	106	103	109	1 97	105			· · · · ·	L-000	00
110	131	106	108	132	128	107	109	1	. 1		L.000	00
-131	-129	106	-108	130	127	107	1-28			L	L . 888	0 0
96	102	100	94	99	101	98	95	1	. 1		1.000	00
96	112	110	102	97	111	103	·· · · • • • • •	·· ·-			L- 900	00
112	137	131	110	138	134	132	111	1	. 1		L.000	00
1.37	135	123	131	136	133	-130	134		:1		L . 000	8 8
72	96	94	70	86	95	85	71	1	. 1	L 1	L. 000	00
72	114	112	36	87-	-113	- 97	- 35 -	··· ·			L • • • • •	00
114	150	137	-112	1 39	147	138	113	1	. 1	L 1	L.000	00
-137		-148	135	-147	149	-146	+36				L 	00
4 2000		A 4										
.12000	UUL+	U1				0	•	e n			JUE	1
4 2 A A U 4 7 A A U) 00E+	01 -		-		.	+234	フリザミ	9 6- 93	L₩	995	Z
• 1 2 0 0 U	100CT	Ul 04					. 409	UUU(VE-0:	1 1	UUE	3
• 1 C V V U	UUE:+	U1 .04				• · • • • • • •	+045	17V() 단수 명·원 이 문 · · · ·	L₹	シリミーー	
• 1200L	1 UUL +	UI AA					•122	7 20(UL+U(JDE	5
• 3C446	リザザモキ	*****					-168	97 Q I	DE+8(┡╴──╄	706	

وأنفته ويعالفهم فالمنازع فالمستعاقة المرديم والمعادمة والمستقدم والألي وليردده

and a strand and a

• 121

.1989700E+00	NODE	7
-2369858E+08-	NODE	
.2750000E+00	NODE	9
+4125088E+08-	NO DE-	
.5500000F+00	NODE	11
.7750000E+00	NODE	12
- 1 00000E+01	NODE	13
-11000005+01		
-1200000F+01	NODE	15
N	1305	16
. 4690000F+01	NODE	17
-12293885+88-		-+*
- 1989700F+00	NODE	14
-275000000000		
-5500000E+00	NODE	21
		22
- 1 200000C+01	NODE	23
1		
.23450005-01	NODE	28
		26
. # 4090000E=01	4305	27
	- ++++++++++++++++++++++++++++++++++++	-98
.16095002+00	NODE	22
		A
27698505+00	4302	24
· 27 30000E+00	NODE	32
		-94
0750000E+00 7750000E+00	1305	34
	HJUE	J7
-100000E+01	NODE	30
• 1100000E+01		- 7/ - 74
•15000005401	4JU:	30
	NJUE	37
+ 4070000E-01 1220700E+00	1005	40
•12293002+00	NU UE	41
+1707/UUE+UU 27600005+00	AJDE	46 1. 1
	3775 	•••••••••
• 7700000CTUU 1000005404	NODE	
		47
•12000002701	NODE	40
····	⊒ULF 	99 F
• 23470002-01 46000005-04	ADDE	40
• 4070000E=01	NJ UL - 46 RC	45 - 8 A
• 07717 VUE=V1 "	NO DE	7 U E 4
• 16673006700 	-1305	フレーニター
+ 1007700E+00-	4005 -	76
• 1707/ UUC TUU		23
. 276000000000	4105-	24
	- 11 U L F	77
• 4123000CTUD	AD DE.	20

.1200000E+01
1288.0.00.5+01
• 1200000E+U1
• 12000 90E+01
.1200000F+01
43000000000
• 12000002+01
•1200000E+01
.1200000E+01
- 1200000E+01
• 04375 UUE+JU
•8437500E+00
.8437500E+00
- A4375 00E+00
. 643/ 5 UUE +UU
.8437500E+00
- 84375 DDE+00
-487900UEF00
•4875000E+00
.4875000E+00
4875000EA00
.40790002+00
.48750002+00
• 4875000E+00
4075000E+00
.40/90002700
• 48750 00E+00
•4875000E+00
A 7 50 00 5 100
• 4079UUUE TUU
• 48750 00E+00
.4575000E+00
. A
7007750000000
· 3093/ 502 +00
• 3093750E+00
. 30937 50E+30
30937505+00
70077EA#+AA
• 30331 20F +00
• 3093750E+00
344338848.34
• 3093/ 50E+JU
. 30937 50E+JU . 30937 50F+00
• 3093750E+00
• 3093750E+J0 • 3093750E+00 • 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 131250 0E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00
. 3093750E+J0 . 3093750E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00 . 1312500E+00

والأقلاف والأقافة فالمستعاد مستعادهم ومرارية المتكلا وتركامه والمتريبين

والمقافع والأقلاق ومعافلا فالمعامل والمرون كروحا فالملاحم والمستخدم والمسافرة

and an and a start of the

6

•5500000E+00	NODE	57
-7750000E+00	NODE	-58
•1000000E+01	13 DE	59
.1100000E+01	HODE	-60
.120000E+01	NODE	61
Ð.	-NO DE-	-62
-4690000E-01	NO DE	63
-1229300E+00	-1385-	64
-1989700E+00	NODE	65
-2750000F+00-		-66
-5500000E+00	NODE	67
-1200000F+01	NODE	69
-A	MANE	
2345000F-01	NODE	71
	-4902	-79
. 8491500E-01	NUDE	72
-1609500E+00	NODE	75
23698505100	1000	77
. 27500005100	NODE	7 8
	N9 01	70
550000E+00 5500005+00	NODE	7 7
7750000000000	1005 1005	
	4305 4305	91
	NODE	
	NODE	93
•****************	N305	
74075005-04	NJDE	07
+600000 <u>-01</u>		
• 4090000E-01	NOUL	07
TICC70UCTUU		
•1383/UUE+00		29
• 7700000E+00	NUUE	91
•1200000E+01	NUUL	73
• 5465U UUE -0,2	NUUE	35
+109/0000-01-		
• 2048>00E-01	NUDE	37
4770000		
•13/9000E-01	NJDE	43
		100
• > 3 U > U U U E = U Z	NJDE	101
vivbi0006 ~01~		192
•1280500E-01	NJDE	103
· · · · · · · · · · · · · · · · · · ·	110 0E	104
•26>0000E-02	NJ DE	105

•	1	3	1	2	5	٩	8	E	ŧ	٥	0	
•	1	3	1	2	5	1	0	E	÷	Ð	Û	
•	1	3	1	2	5	Ö	٥	Ē	÷	0	0	
	1	3	t	2	5	•	Ð	Ē	÷	Ð	Ð	
	1	3	1	2	5	0	0	Ē	÷	0	0	
	9	5	6	2	5	Ð	Û	Ε	•	O	1	
•	9	5	6	2	5	0	0	ε	-	0	1	
	9	5	6	2	5	Ð	0	E	-	0	1.	
•	9	5	6	2	5	0	0	E	•	0	1	
•	9	5	6	2	5	Ø	Ð	E	-	Ð	1-	
•	9	5	6	2	5	0	0	E	•	0	1	
	9	5	6	2	5	0	٨	ε	-	C	1	
•	9	5	6	2	5	0	O	E	-	0	1	
ő	6	0	Û	Ø	O	0	Û	E	-	Û	1	
•	6	0	0	٠	0	0	0	E	•	0	1	
	6	Ø	Ð	Ð	Ð	0	Ð	E	-	Ø	1.	
•	6	0	0	٠	0	٥	0	E	•	0	1	
•	6	0	0	0	٥	C	0	E	-	Û	1	
•	6	0	٥	0	0	0	0	Ε	-	0	1	
•	6	Ø	Ð	Ð	0	0	0	E	-	0	1	
	6	٥	٥	0	0	٥	0	E	•	0	1	
•	6	0	0	0	0	Û	0	E	-	Û	1	
•	6	0	0	0	0	0	0	E	•	0	1	
•	6	Ð	0	0	0	Ø	0	ε	-	0	1	
•	6	0	0	0	0	0	Q	E	-	0	1	
-10-	6	D	Ø	0	0	0	0	E	-	Ð	1	
	6	0	0	0	0	0	0	E	-	Û	1	
•	6	0	Ð	0	Ð	O	0	Ê	-	Û	1	
•	4	2	0	0	0	0	0	E	-	0	1	
	3	8	4	5	5	0	0	E	-	Ø	1	
	3	0	0	0	0	0	0	E	-	0	1	
	3	0	Ð	0	0	0	0	E	-	0	1	
٠	3	0	0	0	0	0	0	E	-	0	1	
	3	0	Ð	Ð	Ð	0	0	Ē	-	Ð	1	
•	3	0	0	0	0	0	Q	E	•	0	1	
•	3	Ð	0	0	0	0	Ø	E	-	0	1	
•	3	0	0	0	0	0	0	E	-	0	1	
•	2	4	0	Q	0	Ð	0	Ē	•	Q	1	
•	2	0	4	8	5	Q	Q	Ε	•	Q	1	
•	1	6	9'	7	0	Q	Ø	E	-	Ð	1	
•	8	4	8	5	0	0	0	E	•	0	2	
•	1	9	5	0	Õ	0	Ø	E	-	Q	1	
٠	1	3	7	9	0	0	0	E	-	0	1	
•	1	5	0	Q	0	0	Õ	Ē	•	0	1	
٠	1	2	8	Q	5	Q	0	E	•	0	1	
•	1	0	é	1	Q	0	0	E	۰	Q	1	
•	5	3	O	5	Q	0	Q	E	-	Q	2	
•	3	7	5	٩	Õ	0	Ø	Ē	-	Õ	Z	
•	2	6	5	Q	٥	Ū	0	E	•	Ø	Z	

ş

ŝ

0		-+30E-106
0.	0.	NODE 107
0	-0.	NO DE 108-
0.	.3750000E-02	NODE 109
Q		NO DE -110
0	•1950000E-01	NODE 111
0		-N38E-112-
0.	.3545000E-01	NODE 113
0.	.8491500E-01	NODE 115
		-130E-116
0	.1609500E+00	NODE 117
A		-NODE -148-
0	-23693505+00	NODE 119
	2750000E400	-120-
	- 4125000E+00	NONE 121
Q	<u>5500005400</u>	NO.05 122
	-7750000E+00	NOOF 123
Δ	1000005401	NO. 124
	- 11000000000	NODE 125
	12000000000	NODE 129
- 77500005-02		NODE 127
	.26500006-02	NODE 127
	0 0	NODE 123
		NODE 123
		NUUL 131
		4006 132
19500UUE-U1	U.	NJUE 133
	- 	
24UUUU0E-U1	U•	NJUE 135
•.2945500E=01		
•.1697000E-01	•1697000E-01	NODE 137
30000D0E-01	•4690000E-01	ND DE 139
39900 00E-01 · ····· · ·····		-43-01-140
300000E-01	• 1989/ UUE+UU	NODE 141
		-+30E-142
300000E-01	.5500000E+00	NDDE 143
300000E-01	.100000E+01	ND DE 144
3000000E-01	•1200000E+01	NODE 145
42000 00E-01	0.	NO DE 146
3848500E-01	.3193500E-01	NODE 147
600000E-01	0.	NO DE 148
6000000E-01	•2345000E-01	NDDE 149
600000E-01		130E 150
600000E-01	•8491500E-01	NODE 151
600000E=01	•1229300E+00	NODE 152
600000E-01	•1609500E+00	NODE 153
•.600000E=01	-1989700E+00	NO 01-154
6000000E-01	•2369550E+00	NDDE 155
600000E-01		NO DE 196
600000E-01	•4125000E+00	NO DE 157
GOOROOE-01		NODE 158
6000000E-01	•7750800E+00	NODE 159
		-100E-160

÷,

.1100000E+01	NO DE 161
	-162 -
0.	NJDE 163
.4690000E-01	-N30E-164
•1229300E+00	NO DE 165
-19897002+00	NODE-166
•2750000E+00	NDDE 167
	NO DE 160
	NJUL 109
•1200000E+01	NODE 170
.4690000E-01	NODE 173
	NO OF 176-
1229300E+00	NODE 175
-1609500E+00	-1305 176
.1989700E+00	NODE 177
	NODE 178
.2750000E+00	NODE 179
	- 438E-188
.5500000E+00	NODE 161
	NODE-182
•1000000E+01	NJDE 183
	NODE 485
• 12000002+01	NJUE 105
46000005-01	NODE 187
.1989700F+00	NODE 189
.5500000E+00	NODE 1º1
	-192-192-
1200000E+01	NDDE 193
- 0	1905-194
.2345000E-01	NO DE 195
•0491500E-01	NODE 197
• 1509500E+00	NJUL 193 NDD= 200
23698505400	NODE 200
	NOD-202
.4125000E+00	NDDE 203
.7750000E+00	NODE 205
1100000E+01	NODE 207
-1200000E+01-	490E- 203
0.	EDS EDCK
.4690000E-01	NJDE 210
.1229300E+00	NJDE 211
	-1000 212
6 CT 70000CTUU	4002 213
. 1000000F+01	NONE 215

600000	0E-01
	0E-01-
833150	0E-01
	0E-01-
833150	0F-01
	AC
- 033170	05-01
633190	UE-U1
033170	02-01
833150	0E-01
	0E-01
106630	0E+00
106630	0E+00
106630	0E+00
	0E+80
- 106630	05+00
	AF+ 80-
- 104470	
- • 10003 U	
100030	
106630	UE+00
106630	0E+00
106630	0E+00
106638	0E+00
106630	0E+0D
1-0663-0	0F+00-
106630	06+00
	DE ADD
- 464026	
101029	
101025	02+00
161025	0E+00
161025	0E+90
161025	0E+00
161025	0E+00
161025	0E+00
215420	0E+08
- 215420	DE+00
215420	0 5 + 00
- 215420	0 6400
217420	
215420	UE+00-
•• 215420	0E+00
215420	0E+90
215420	0E+00
215420	0E+08
215420	02+00
215420	0E+08
215420	0E+00
216420	AF+AA
	AE+00
- JC4C1U	
JOB04U	
358640	UE +00
38864 0	DE+00
388640	0E+00
388649	0E+00
388640	0E+00

-1200000E+01-	-NODE-	246
0.	NODE	217
	NO DE	248
.4690000E-01	NODE	219
	NODE	220
.1229300E+00	NODE	221
-1609500E+00-	1302	222
.1989700E+00	NODE	225
	- 400E -	224
• 273UUUUCTUU	NODE	226
550000C+00-	NODE	227
	N305	224
-100000E+01	NODE	229
-1100000E+01	- 43DE	230
.1200000E+01	NODE	231
.4690000E-01-	-NODE	232
.1229300E+00	NODE	233
-19897-00E+00 -	- NO 05	234
.2750000E+00	NDDE	235
-5500000E+00-	-N98E	236
.1000000E+01	NODE	237
-1200000E+01-		238
+ 40YUUUUE =U1	NOUL A	239
- 1229300F+00	NADE	240
<u>-16095002+00</u>	NODE	262
-1989700E+00	NODE	243
.2369850E+00-		244
.2750000E+00	NDDE 2	245
+4125000E+00-	-43 86-1	246
•5500000E+00	NODE	247
-7750000E+00-	ADE .	248
•1000000E+01	NODE	249
-1100000E+01	NO DE	250
•1200000E+01	430E 0	251
++++++++++++++++++++++++++++++++++++++	-4905-	576 767
-1069700E+00	NODE A	255 255
.2750000F+00	NODE	255
-3241250E+00-	-43.05	256
.5500000E+00	NODE	257
-8633750E+00-	NODE (255
.1000000E+01	NO DE 2	259
+1200000E+01	47 BEi	260
•4690000E-01	NODE	261
-8491500E-01-	NO DE	262
•1229300E+00	NODE	263
+1000000000000000000000000000000000000	4401-1	504) L E
• 1707/ UVETUU	NODE S	266
.2750000F+00	NODE	267
.2475000E+04.	NODE	264
.3000000E+00	NODE	269

		e 1.		. .	
				84	•••
-•	433		00	27	00
••	491	43		67 7.	44
•	201	00	00	C T	00
-	201	00. 8 c	00	E 7 E 4	
-•	201	00	111	C. T.	
••	201	00		27	99
-•	501	86	00	E+	00
··· •• •	701 564	00 	00	6+ 6+	99
•	501	80	00	E†	00
· • •	501	8 0	40 40	E+	00
	501	80	00	E+	00
	201	96		£ +	-98
••	561	6 b	00	E+	00
-	501	0D	00		111
	501	8 D	00	Ľ+	00
-•	570	7 7	50	2+	-00
-•	570	97	50	2+	00
•	658	89	50	Ł.+	00
	658	89	50	E+	00
•••	658	89	50	E+	99
•	658	89	50	E+	00
•,	650	89	50	E+	00
••	755	93	00	E+	00
	755	93	00	E+	00
-,	755	93	00	E+	00
	755	93	00	E+	00
- +	755	93	00	E+	00
-•	755	93	00	E+	00
•	755	93	00	E+	30
	755	93	00	E+	00
•	755	93	00	E+	00
-	755	93	00	£+	99
	755	93	00	E+	00
••	755	93	00	2+ ~ .	90
- •	755	93	00	E+	00
. 🗰 🕤	977	96	50	£+	00
•	977	96	50	E+	00
-•	977	96	50	2+ r.	00
•	977	30	20	E +	100
••	809	シソ	00	2:+	90
•	852	30	50	E+	00
	889	>> ~	00	2+ 	00
-•	977	96	50	2+ 5 ·	30
	977	90	ラひ	2+	00
-•	120	U U	UU	2+ 	U1
••	128	UU AA	4U 00	c +	VI
-•	120	00	00	2.+ 5 ·	10
•	120	U U	4 U	E. + F -	¥4 04
•	120	U U		C + C -	
•	120	U U A A		E. 7 c .	Ul
-•	120	U U A A	00	⊏Ŧ ₽▲	Ul 64
	120	4 U A A	10	C.₹ 8-	U 1 A 4
-	144	JU 4 4	90 25	L T 6 4	01
		**	67	27	42

A REAL PROPERTY OF THE PARTY

1023250E+01
9866250E+00
9500000E+00
9866250E+00
1023250E+01
1111625E+01
1200000E+01
14250 00E+01
1425000E+01
1425000E+01
1425000E+01
+.1288375E+01
1376750E+01
1413375E+01
1450000E+01
1413375E+D1
1376750E+01
• 1288 575E + UI
*•1425UUUE+U1
14250 UUE+U1
• 1050000E+01
- 1650000E+01
- 1650000CT01
- 16500002+01
+. 1650000E+01
~.1650000E+01
1650000F+01
-1650000E+01
16500 00E+01
1513375E+01
15500 00E+01
1513375E+01
1750000E+01
1650000E+01
1850000E+01
18508 00E+01
1850000E+01
1850000E+01

.3732500E+00	NDDE	271
. 4616250E+00	NODE	272
.5500000E+00	NODE	273
-6383750F+00-		27.6
.72675005+00	NADE	275
76777505400	1000	276
• 70337 9VE + 00	1005	210
• B U U U U U U E + U U	40.05	211
-9000000E+00	NO DE	275
•1000000E+01	NODE	279
-1100000E+01-	- NO DE-	-28 0
•1200000E+01	NODE	281
-4690000E-01	NODE	282
-1229300E+00	NODE	283
		-284-
.27500005400	NODE	285
		-944-
-33002902400	100	200
• 37 325UUE + UU	VJU:	207
-40102902+00-	AJUE	508.
•5500000E+00	NDDE	28 9
-6383750E+00-	-4301	-290
.7267500E+00	NODE	291
-7633750E+00-	- NODE	292
•1000000E+01	NODE	293
-1200000E+01-	-1305-	294
.4690000E-01	NODE	295
-8491500F=01		296
1229300E+00	NODE	297
		-298
.19897005+00	4000	203
		277
• 2 3 0 3 3 9 UE + U U	NODE	300
• 27 5 UUUUE + UU	1002	301
+125000E+00	JUE	302
•5500000E+00	NODE	303
-7750000E+00	1305	304
.1000000E+01	NODE	305
-1100000E+01	10 DE -	306
1200000E+01	AD DE	307
-3241250E+00-	-13 DE-	308
.5500000E+00	NODE	309
-8633750E+00-	NODE	-310
.4690000E-01	NODE	311
-12293885+88		-34+
. 1989700E+00	NODE	313
-9760000		
- EF 00000E TUU	NAME	314 74 E
• 7 7 U U U U U U U U U U U U U U U U U	-NO DE	317
• TUUUUUUUUUU	10112	310
• 1200000E+01	JU:	317
**690000E-01-	NODE	315
•8491500E-01	ND DE	319
•12293 0 0E+00	-13 UE	320
1609500E+00	ND DE	321
-19897 00E+00-		322

the start of the

والافاقات فالمسارية والاقتلاط فتعالك والمراجع والمتريب والمسارة معاديا

An a subscription of

A avenue

•.1850000E+01	•23690>UE+00	NJDE	525
			-394-
. 10300005401			
•.1850000E+01	.4125000E+00	47 DE	325
		-NODE-	-326
	77500005400	1305	727
••1870000E+01	•//SUUULTUU	AD DE	321
•• 18500 00 E+01	<u>100000E+01</u>		-328-
. 18588 08 5401	110000F+01	NORE	329
- <u>, 1858888</u> E+81		4005	330
The results of the analysis are summarized below:

 $K_{I} = 6.59341 \text{ psi}\sqrt{\text{in}}$ $\delta_{m-m} = 66.43846 \times 10^{-7} \text{ in}$ $\delta_{1-1} = 43.76998 \times 10^{-7} \text{ in}$ $\delta_{p-p} = 48.98702 \times 10^{-7} \text{ in}$ $\delta_{g-g} = 46.30266 \times 10^{-7} \text{ in}$

The points m, 1, p, and g are indicated in Fig. 11 and these correspond to nodes 318, 261, 277, and 281 on the mesh respectively. The displacement values shown above were obtained by multiplying the V-displacements of the corresponding points by two.

5. EXAMPLE 5: THREE POINT BEND SPECIMENS

The geometry of a three point bend specimen is shown in Fig. 14. The data for this problem was generated by using the program of subsection 4 of Appendix I, and the following dimensions:

L = 4.25 in., P' = 0.0625 in. S = 4.0 in., THETA = 40.0 deg. W = 1.0 in., G = 0.2 in. C' = 0.375 in., A = 0.5 in. N = 0.25 in., H = 0.125 in. B = 1.0 in.

The data image produced by SRL01A was as follows:

1	368	99	17	2	2	1	80	8	8 12	21	5
. 🖷	108			1.00	•	-	••	. 3888		-	-
284	8	4		8.01	1004		808	00000	- 801	1000	
285	n			0.01	60.0	0.0.0.0	880	0	- 601	1000	0.0000
286	ñ			0.00	000	2000	000	ā	- 88		000001
287	ă			0.0		BERR					
288	Ř	ī		8.01	1		70X	n n		0000	00000
289	ň			8.00	1111		000	ñ		0000	0 0 0 0 0 0
290	ň	1		0.01	10001	0000	888	ň		000	000000
295	ň	ī		0200	1000	0000	000	Ц	-00		66060
344				8.00	I RARI	0880	000	ň		1000	0 0 0 0 0 0
389	Ā	ĩ		8~00			888			1088	6 BR 8 A
318	Ŭ.	i		0_00	000	1000	000	<u>a</u>		000	00000
323		ĩ		0.01	1100		800		-001	1000	0 0 0 0 0 0 0
332	ě			8.86					10		86643
337	Đ	1		8.80	1100		880	0	200	1000	90000
338		1		8-66	000	0.0.0.0	000		-00	1000	00000
339	1	ĩ		0.00	000	0000	800	a	.000	080	00000
340	1	ĩ		0103	000	0000	004	G	.081		98488
30	-			10000	108				8861		
298		-	15001		104		0	-08000	8800		
32	2 3	1	30	21	2	20	31	1	1	1.	00000
34	5	3	32	22		21	33	1	1	1.	80000
36	5 7	Š	34	23	6	22	35	1	1	12	
38	i i	7	36	24	Ă	23	37	1	1	14	00000
	1 11	ġ	38	25	10	24	39	1	1	1.	00000
6.2	13	11	40	26	12	25	41	1	1	1.1	80000
	15	13	62	27	14	26	43	1	1	1.	
	17	15	-	28	16	27	45	1	1	1.1	80000
6.5	19	17	66	29	18	28	47	•	1	1.4	00000
61	32	38	59	50	31	P4	60	1	-	1.1	00000
63	36	32	61	51	33	59	62	1	1	1.	
65	36	34	63	52	35	51	64	1	1	1.	
67	38	36	65	53	37	52	66	1	1	1.	60000
69		38	67	54	39	53	68	1	1	1.	00000
71	42	40	69	55	41	54	70	1	1	1.	00000
73	44	42	71	56	43	55	72	· 1	1	1.	
71	6 66	44	73	57	45	56	74	1	1	1.	00000
77	48	46	75	58	47	57	76	1	1	1.	
96	61	59	88	79	60	78	89	1	1	1.	00000
92	63	61	90	6.0	62	79	91	1	1	14	00000
94	65	63	92	81	64	81	93	1	1	1.	
96	67	65	94	62	66	81	95	1	1	14	
98	69	67	96	83	68	82	97	· 1	1	1.	00880
100	71	69	98	84	78	83	99	1	1	1.	00000
102	2 73	71	188	85	72	84	181	-	1	1.	
104	75	73	102	86	74	85	183	1	ī	14	00830
186	5 77	75	184	87	76	86	105	1	ī	1.	80800
119	90		117	108	89	107	118	1	ī	1.	00000
121	92	91	119	189	91	108	120	1	· ī	121	
123	94	92	121	110	93	119	122	1	Ĩ	- Ini	
129	96	95	123	111	95	111	124	1	1	14	
4 99			498	44.9		444	494	-	Ĩ		

129	100	98	127	113	99	112	128	1	1	1 00000
131	1.2	189	129	114	181	113	130	1	1	1288598
133	184	112	131	115	183	114	132	1	1	1280900
135	106	104	133	116	105	115	134	1	1	1. 00090
148	119	117	146	137	118	136	147	1	1	1200000
150	121	119	148	138	120	137	149	1	1	1488898
152	123	121	159	139	122	138	151	1	1	1. 10800
154	125	123	152	14.0	124	139	153	1	1	1208800
156	127	125	154	181	126	140	155	1	1	1.00800
158	129	127	156	142	128	141	157	- i	ī	1.000080
168	131	129	154	163	138	142	159	-	4	1.00000
162	133	131	168	164	132	143	161		1	1469866
164	136	133	162	466	131	144	163	i	-	1.00000
177	444	146	175	166	147	165	176	-	4	1_00000
470	4 2 0	444	473	467	440	466	476	-	-	
484	4 2 3	450	470	107	464	467	488	4	4	
707	176	120	113	100	171	101	100	4	-	1.00000
103	124	176	101	103	170	100	102	-	4	1 00000
107	170	174	103	170	177	103	104	4	1	
107	170	170	105	1/1	17/	170	100	1	1	
103	105	190	10/	1/2	199	1/1	100	1	1	7544444
191	102	160	189	173	161	172	190	1	1	160000
193	104	162	191	174	163	1/3	192	1	1	1.00000
203	179	1/7	243	195	178	194	204	1	1	100000
287	181	179	245	196	108	195	206	1	1	1432790
209	183	181	287	197	182	196	208	1	1	1200000
211	185	183	209	198	184	197	210	1	1	140000
213	187	185	211	199	186	198	212	1	1	1.00000
215	189	187	213	280	188	199	214	1	1	1000000
217	191	189	215	201	190	200	216	1	1	1.08000
219	193	191	217	202	192	201	218	1	1	1260880
231	205	283	229	221	204	220	230	1	1	1.00000
233	207	205	231	222	206	221	232	1	1	1 <u>#</u> 00000
235	289	287	233	223	288	222	234	1	1	1.00000
237	211	209	235	224	210	223	236	1	1	<u>140000</u>
239	213	211	237	225	212	224	238	1	1	1. 80000
241	215	213	239	226	214	225	240	1	1	1200000
243	217	215	241	227	216	226	242	1	1	1,00000
245	219	217	243	228	218	227	244	. 1	1	1.00000
257	231	229	255	247	230	246	256	1	1	1.00000
259	233	231	257	248	232	247	258	1	1	1,00000
261	235	233	259	249	234	248	260	1	1	1 .00000
263	237	235	261	258	236	249	262	1	1	1.00000
265	239	237	263	251	238	250	264	1	1	1400000
267	241	239	265	252	248	251	266	1	1	1.00000
269	243	241	267	253	242	252	268	1	1	1.00000
271	245	243	269	254	244	253	27 0	1	1	1,888888
281	259	257	279	273	258	272	280	1	1	1.80800
283	261	259	281	274	260	273	282	1	ī	1. 80888
286	267	265	284	276	266	275	285	Ĩ	ī	1.00000
288	269	267	286	277	268	276	287	1	ī	1202000
291	271	269	288	27 8	271	277	289	1	1	1.00000
265	382	384	284	291	383	295	275	1	1	1488888
547 94 P	947	788	78.9	966	207	384	201	-	-	

263 261 29	8 301	262	292	299	293	1	1	1408	
298 261 28	3 296	292	274	291	297	<u> </u>	<u> </u>	1/11	
382 316 31	8 384	388	317	389	383		- Ī	140	
362 360 31	4 316	381	387	315	308	· · · · · ·	1	1.8	
308 298 31	2 314	299	386	313	307	1		1.00	
312 298 29	8 340	386	207	385	34.4		- 1	4.385	
146 138 78	9 34 6	722	114	191	747	-	1	4.85	
246 746 79	e 319 6 778	966 74 e	194	190	. <u>91</u> / 793	· 👗		A	
310 314 JE 741 749 79	0 33 5 2 734	317	361	367	366	1	1	20 00	
<u></u>	D. 260	.919.		361.		·····	··· • • • • • • • • • • • • • • • • • •		
326 312 31	0 324	320	JII	319	325	1	1	1400	000
_338 338 34	3 32	336	334	337	.331	1	1	10.01	480
328 338 34	9 339	335	339	336	329	1	1	130	1999
_326_338_ 3 4	326	334	339	335	327	1	1	1.11	
324 338 34	0 326	333	339	334	325	1	1	1488	
- 35 38 38 885- 28						tees.		NACE	
				1	- 44 9		- 3. . 8.4	NOCE	1
					• 612:	79999E'	TU 1	NULE	Z
				1	2212		+81	NULE	3
					• 212	30002	+ [1	NOCE	- 4
+ # + 1 7 6 7 1 1 E + 7 8				i	212	5008E	+81	NODE	- 5
- 202 325 E+ 8 E					.212	588 8E	+81	NOCE	6
				1	212	588BE	+81	NO.CE	7
- 937 58 00E- 81					.2129	5008E	+81	NOCE	8
6250004E-81					2125	500 DE -	+01	NOCE	9
-,3125 898 E~81					.212	SUGBE	+81	NODE	10
					2125	SEBE	+01	NOTE	14
/ 3125000E-01					2125	SAA RE	+81	NOTE	12
. 6250000E-01					2125	5000E	+81	NOTE	47
-12508002+08					2125	AAAF		NODE	44
-1875888E+84					2125	5222F	6 <u>8 1</u>	NOCE	14
-2916658E+88					. 2126	5000E		NOLE	17
-395 A300F+08					. 21 26	CONAC.	***	NOCE	10
. 447 91 50 F+0.0					. 24 2 6	1444C	-41 -41	NOCE	1
				1	- 94 9 E	AAAE		NODE	18
					16463 19863			NUUE	19
					2000	7092	• 61	NULE	20
						700E	+ 61	NULE	21
				•	2002	500E	-01	NOCE	22
				1	2002	5998E1	- [1	NOCE	23
~*0 <i>2</i> >282'42*81					2062	50 DE1	-51	NODE	24
				4	2062	50 9E4	F01 .	NOCE	25
. 0250008E-01				•	2062	50 DE1	-01	NOCE	26
£1875000E+00				6	2062	50 DE4	+01	NODE	27
€3958360E+ 86					2062	Stele4	11	NOCE	28
<u>*</u> 2998800E+00					2062	50 BE4	-81	NOCE	29
- . 50 80800 E+ 0 0				•	2000	80 GE4	- 11	NODE	38
-,4687509E+00					2000	000E+	01	NOCE	31
-44375000E+00					2000	TREE	-41	NOCE	32
-«4198758E+08					2010	BODE	10	NOCE	11
-4408 6500E+00					2886	OGREA	11	NOCE	11
- 252 8250E+08				_	2800	OGRF4	01	NOCE	リマーフマー
-41250000E+00					2000	00054	11	NADE	J] 44
					2222			NULE	30
				1	: 988 A			NOCE	37
				-	2044 - 2044			NOCE	38
-#37634 62-41				•	<	44454	791	NULE	39

.

and a significant

.

1.
J3125888E-81
-6251888F-81
21 25 18 BAFARA
6379839 52+0 8
64475159E+48
•2680608E+00
- . 5080800E+00
-d4375008E+08
- 400 65002+08
-41 25 88 00E+ 08
- 46 25 19 BBF- 01
~~ _ £ 28 ####F=#4
6 U C7 2 3 5 9 2 " V 3 : 4 6 7 5 6 6 6 7 - 6 6
• 3 79 8 3 UUE + UU
• 500 00 00 E+00
-45 00 0000E+00
- 44687500E+0 8
-44375000E+08
4 190750E+08
-240865002+00
-2628258E+88
- 6 757 7060E-01
- B 3125000E-01
0.
£3125080E-01
_6250000€−01
21250080E+0 8
_1875900E+28
.2916650E+00
-3958300E+08
4479150F+00
<u> </u>
- 6 7 88 88 8 88 8 8 - 14 77 24 8 8 5 4 8 8
-1250900E+00
- \$627890\$E-\$1
0.
•6250010E-01
•1875000E+00
• 3958300E+00
- 5 8 8 8 8 COE + BO
- # + + + + + + + + + + + + + + + + + +
-44178/382488
• ,

1. - NA23

ģ

- 2000000E+01	NODE	-
- 300000000000	MODE	
	HAAF	
•2400000E+11	RODE	
2208888888481	NODE	43
-200 00005401	NODE	ÅÅ
	NADE	
ACTODUCTO1	RUUE	42
.2888888E+01	NODE	46
¥28888888E+81	NOLE	47
- 244 664 85 481	NOCE	
	NOCE	
61(<u>8</u> 0335 <u>5</u> 4 <u>8</u> 1	NULL	49
•1786335E+81	NODE	50
-178 8335E+81	NODE	84
478 97765 484	NOCE	
• 1/ • 0339E • 01	NULE	76
•1708335E+01	NODE	53
178 8335E+81	NOCE	54
. 178 43385 481	NOCE	ER.
	NOCE	E.
41/803392+81	RULE	70
. 178 8335E+01	NOCE	57
.17883352+01	NOCE	58
-14166785+81	NODE	59
	NOCE	~~~
•14100/8E+81	NULE.	. 75
•1416670E+U1	NOCE	61
.1416670E+01	NOCE	62
-1416670E+01	NODE	63
44466745464	NODE	6.6
	NUUE	09
A1416670E+01	NQCE	65
•1416670E+01	NODE	66
-1416670E+01	NOCE	67
44466785484	NODE	6.
	NUUE	
e14165782+81	NOLE	99
#141667 8 E+01	NOCE	78
-1416670E+01	NOCE	71
- 141 66785+81	NOTE	72
	NOCE	16
A14100/82+81	NUCE	75
°1416678E+01	NOCE	74
-1416670E+01	NOCE	75
-1416670E+01	NOFE	76
	NOCE	
\$14100/EET#1	NUUE	
•1208335E+01	NOCE	78
1208335E+01	NOCE	79
120 A335E+01	NOFE	88
- 420 377EC + 44	NODE	
	NUUE	91
ĕ 128 833 9E+81	NCCE	8Z
1208335E+01	NOCE	83
-1288335E+81	NODE	84
-128A335E4A4	NOFE	22
49447722-44	NADE	07
•1200335L+81	NUUL	90
•1208335E+01	NODE	87
-1900000E+01	NOCE	88
-1000000F+01	NOCE	89
_100000000000444	NODE	00
		70
A 188 88882+81	NUUE	71
618088888 E+81	NOCE	92

26282582+88	•100000E+81	NODE	93
1250004E+90	.1888000E+01	NOCE	- 94
-49375000E-01	•1086008E+\$1	NODE	95
6250008E-01	•100000E+01	NODE	96
-431258002-41	£1000000E+01	NOCE	97
•	•1000000E+61	NOCE	98
£3125000E=01	£1000000E+01	NOCE	- 99
+62518##E-01	◆1003803E+\$1	NODE	198
•1250000E+00	#1000000E+01	NOCE	101
-1875809E+00	• 100 000 0E+01	NODE	102
•2916650E+00	•100000E+01	NOCE	103
3958300E+00	•190998GE+\$1	NODE	104
.4475150E+00	• 100 000 0E + 01	NODE	185
45 09 00 00 E+ 90	<1000008E+01	NOCE	106
- 4500 49 VDE+ 00	•7916650E+00	NOCE	107
- 84 37 508 0E+00	•7916650E+00	NOCE	108
* 4 7 9 1 1 7 8 8 E + 8 8	•7916653E+8¥	NODE	149
- 41258008E+V0	●7916658E+88	NOLE	110
		NULE	111
	• / 91 605 UE + UU	NUCE	112
		NOCE	113
= 10/ JUDETUU	• 7 91 007 ULT UU	NOCE	114
10 10 00 00 00 00 00 00 00 00 00 00 00 0	20466585488	NOCE	117
->= 00000005400	• / JL 00JUE TUU	NODE	447
- 44627828546	_ 503 JJUVE VV	NOCE	448
		NODE	110
- 24 1987586488	_5233300F+da	NOCE	128
	-5833300F+00	NOCE	121
-4262 2250F+08	-5433388F+66	NOCE	122
- 1 25 88 8 0E+ 08	.5833388E+48	NOCE	123
- 49375888E-01	5833304E+00	NOTE	124
6 25 COODE-01	.5833300E+00	NOCE	125
-43125000E-01	4583330 GE+00	NOCE	126
1 ·	.5833389E+80	NODE	127
• 312 50 00E-01	• 583 330 0E+00	NOCE	128
.62 58889E-01	• 583 330 DE+00	NOCE	129
•1250009E+00	₀ 5833300£+00	NOCE	130
#1 77 5000 E+ 88	• 58333 9\$ E+ 4 \$	NODE	131
#2916650E+00	• 583 330 0E+00	NOCE	132
1395830 <u>8E+0</u>	,583330BE+ 40	NOCE	133
• 447 51 50 2 + 08	• 5833300E+80	NODE	134
	▶ 583330 9 E+00	NODE	135
- # 7 45 15 65 65 6 7 88	• 4791650E+ 30	NOUE	136
- 44 37 39 00 24 09	A4791650E+ 60	NUTE	137
	• 77910302+88	NUCE	138
	. 17/710782750	NULS.	139
- 60 C7 88 895 ¥1 A .	● 〒/Ÿ1075と▼ 8 5	NOCE	140
	泉寺 / ブネワフリヒマ しき	NOR	141
506799995-V1 . 4 27 50 065484	• • / 710792 • 8 • 1704 228 2480	NOTE	142
139883888488	タマイフムマアサルマサギ 多ムアロイムモニアム ダル	NAUE	444
	_ L7Q1658F+8A	NODE	4 AR
			_

143 144 145

ومنافقها فأمرع فالانتفاد أبدائكم وتداري والمنافعة فالمتحالة فالمنافعة فليرف فأرقه ولينتم والمتعون والمنافعة والتمري

	-					
•	63		UU	29	E+	
•	ż٩	68	75		E+	
		37	58	88	Ē+	
_	- د 4 از	40	17	žě	<u> </u>	
-	٩٩	172	11	78	ET	22 • •
•	64	00	65	99	E+	0 2
•	22	:62	82	58	E+	88
•	. 1	25	âê	88	F+	00
_		27	-		Ē	64
-	57	31	78		5-	
•	40	27	48	6 ()	£.	¥1
•	13	12	58	80	٤-	81
•	. 1	112	20	68	5 m	A 4
	9 4 72 6					4 4 4 4
		27	48	ev.	5-	91
	• 1	.25	30	20	E+	99
	• 1	. 87	58	00	E+	
	. 2	91	66	50	Ē+	80
	_ 2		17	60	ĒÅ	
	63	フフ	03	V V 8-		
	24	97	91	34	Ę+	4 E
	# 5	:00	00	00	E+	00
•	ا نے		0Õ	00	E+	88
_		77	ĒA			66
-	٩7	ior aa	30		57	00
•	đ٩) 50	65	89	E+	22
•	e 1	. 25	99	88	E+	90
•	a 6	25	88	68	E-	91
			•••	• •		
U	•	-			e	••
	E C	27	u u	ŲŲ	5-	71
	• 1	.87	50		E+	06
	43	195	83	89	E+	
			10	00	Ē+	68
_	. 6	: 66			2.	
-	63	. 88	99	99	E Y	VU
•	d٩	68	75	QQ.	E+	5U
•	٠4	37	50	89	E+	88
•	ď٩	19	87	50	E+	08
_					Ē÷	00
_	30	163		50		
-	9	502	20	70	E.	
•	é.	23			E+	99
•	d q	937	50	80	E-	01
•	äl	525	10	00	E-	81
-	4	112				01
	2					
	۴,		-			••
	63	312	50	20	E-	UI
	di l	529	188	00)E-	11
	.1	25	٥ē	00	E+	
	24				-	
		01	20			
	• 4	2 91	60	38	E4	
	43	595	83	66	E+	
		547	91	50	E+	
				80	E+	0.
		17	20			
-		. 3/	38		IE 4	
•	ď	9 8 8	65		E4	45
	11	129	11		E+	
•		29	١٩Ē			11
	÷ 4	-				

375888885+88	NOTE 146
3758800E+88	NOLE 147
375000 BE+08	NODE 148
3751104E+14	NODE 149
3750000E+88	NOCE 150
3750000E+00	NGCE 161
3750000E+00	NOCE 152
-3750000E+08	NOCE 153
3750800E+10	NOCE 154
3756000E+08	NOLE 155
3750000E+00	NOCE 156
3750000E+00	NOCE 157
3758884E+68	NODE 158
375000 BE+09	NOCE 159
3750000E+00	NOCE 160
.3750008E+90	NOCE 161
3758808E+88	NODE 162
. 375888 QE+88	NODE 163
3750000E+80	NOCE 164
,2812500E+00	NOCE 165
281250QE+06	NOCE 166
.2812508E+88	NODE 167
2812500E+10	NOCE 168
2812500E+80	NOCE 169
.2812500E+00	NOCE 178
,2812 588E+88	NOCE 171
.2812508E+00	NODE 172
e2812500E+88	NOCE 173
.2812500E+88	NOCE 174
1875090E+00	NOCE 175
.1875868E+88	NOCE 176
1375000E+00	NOCE 177
• 187500 DE+ (0	NOLE 178
1875000E+00	NOCE 179
•1875809E+80	NUUE 18
• 1475999E+ {}	NOLE 181
1375090E+UU	NULE 182
	NUCE 183
a 15/ 500 UE+UU	NUUE184
10/75000L+UU	NUCE109
	NOLETOP
• 107 7888LT88	NULE10/
	NODELEO
4107 744 85748	NOCEADO
● ムワF フリビギビマザ♥ 、 4 87 KARAELAR	NOTE 4 04
. 1 A7 588AELAA	NOCEASE
-1475688F488	NOCF4 02
<u>= alley#251</u> 71. _ 16562685588	NODECOL
21656258E+18	NC CE4 QE
.1656258F+AA	NOCEIQA
-1656258E+#A	NOCE1 97
	NOOFICA

<pre>46258800E-01 41875800E+00 45000000E+00 45000000E+00 4375880E+00 44375880E+00 44190750E+00 - \$4006500E+00 - \$2628250E+00</pre>
-d1 25 8888E+04 9375000E-01 -d6 25 80 00E-01 3125000E-01
J3125888E-01 d6258000E-01 +1250000E+00 a1875000E+00 c2916650E+00 a3958360E+00
•447 \$150E+00 •5090000E+00 •44 37 5000E+00 •44 00 6500E+00 •41 25 00 80E+00 •46 25 8800E-01
•62588888E-01 •1875800E+08 •3958300E+08 •5080000E+00 •44375000E+00 •44375000E+00
-44086500E+00 -+2628250E+00 -d1250000E+00 -d9375868E-01 -+6250000E-01 -43125000E-01
<pre></pre>
4479150E+00 x5000000E+00 -4375000E+00 -4125000E+00 -4125000E+00 -4525000E+00

-16869885484	
- 46869884" • 44	NUCE 199
	NOCE 200
+1020290E+0(NOCE 201
1050250E+0	NOCE 202
■1437500E+80	NOUE 283
#1437500E+ ((NOTE 284
-1437508E+08	NOCE 285
+143750 0E+04	NOTE 286
#1437588E+40	NOCE 200
+1437508F+0	NOCE 207
-14375005+00	
-14375805440	NULE 289
	NULE 218
##79/2996+98	NOCE 211
●1437588E+88	NODE 212
£1437500E+00	NOCE 213
•1437500E+00	NODE 214
1437500E+10	NODE 215
#1437588E+88	NODE 216
£1437580E+88	NOLE 217
-1437508E+00	NODE 244
-1437500E+00	NOCE 210
-17187885188	NOUE 219
.12187505488	NOUE 220
12187585464	NULE 221
+10101002+88	NOCE 222
+1610/202+98	NOCE 223
a1218759E+60	NOCE 224
+1218759E+88	NOCE 225
41218758E+80	NOTE 226
• 121 8758E+00	NOCE 227
.1218750E+00	NOTE 228
11009664E+88	NODE 229
.100000E+48	NOTE 276
.1880888E+88	NOCE 234
.100000F+40	MOLE 430
-10808045+88	NODE 232
-18088885188	NOUE 235
-1020000L-00	NUUE 234
	NULE 235
- 199 499 9C + 98	NOCE 236
+ 7 4 A P A A A A A A A A A A A A A A A A A	NOCE 237
+1000000E+10	NODE 236
•1••••••••	NODE 239
• 100 000 0E+00	NODE 248
.1990900E+09	NOCE 241
1000000E+40	NODE 242
. 100000E+ 11	NODE PAR
1000000E+08	NODE 244
1000808E+AA	NODE 242
1812 500 0F - 84	
B1258885-84	NODE AND
	NUC Z47
, 245,20005791 , 21288885-44	NULE 248
4928888	NULE 249
	NODE 250
19-3999 6-01	NODE 251

			_	_	_		_				_	
	ð 1	18	7	g	۲			E	٠	۲		
		t q	R	Ē	ž	ē	ē	Ē	•	ē	ě.	
				ž	ž	Ξ		-	I	ž		
,	Ø. 2	9 0		Ē	y			E	Ŧ			
•	۰٩	3	7	5	ļ	Ş	Ş	E	٠	Q		
•	21	1	9	6	7	5	8	F	•	1	8	
_				ž	ž	2	ž	è	Ĩ	ž	-	
-	6			Ē	2	-		Ē	•			
•	37	26	2	٩	Z	5	U	E	÷			
•	-1	2	5	6	٩	٨	6	Ē	÷	٦	6	
_	. E		-	ē	-	ž	Ā	ē.	_	ā	ā.	
-	8			2		Ľ		Ē.	-	ę		
•	١	5 2	9		U		۲	E	•	U	1	
	â3	11	2	5	2	٦	8	Ë	•	٦	1	
		_	-	-			-	_		-	_	
•	Ξ.		_	_	_	_	_	_		_		
	• 4	1	Z	5	U	U	U	Ę	•	V	1	
,		52	5	Î	i		٠	E	•	٦	1	
	-1	2	Ē	ž	ē	õ	ñ	Ē	•	Ā	ā	
	3 A		-	Ē	ž	ě	2	Ē	ar A	ž		
	61	. 0	Ţ	3	ļ	U	U	E.	+	V	U	
	• 2	29	1	6	6	5	٥	E	ŧ	Ð	Q	
	. 3	9	5	8	3	C	٥	E	÷	ß	0	
				õ	ī	Ē	ě	Ē	Ĺ	ē	ž	
	• 1		1	3	ž.	2	Ű	5	•	4		
4	1		ę	۵	9	٩	٦	E	÷	D	Ð	
•	.3	12	5	3	2	5	Ø	E	ŧ	Ø	8	
	34	2	R	â	ō	ā	Â	Ē.	•	ñ	ñ	
_ '		5.0	-	- -	2	-	ž	-		-		
•		2	9	1	Ļ	5	٩	E	-		I	
(a (52	5	9		٩	Ç	E	•	0	1	
	- 1		7	5		٠	Û	E	•	٥	٥	
	. 1	10	E	ž	ž	ň	Ā	Ē	Ā	Ā	Ā	
		77	2	Ð	3	-	2	5	T	v		
ł	ء ۽	50	U	Q	٠	U	Q	E	÷	P	U	
•	• 2	?5	D	8	٦	9	٠	É	÷	0	0	
•	-		7	Ē	Ē	Ā	Ā	Ē.	•	ā	Ē.	
_	- 2		-	í	ž	ž	~	-		ž	Ξ.	
-			2	Q.		¥	ע ר	Ξ.	•	v	U	
•	49	3	7	5	Q	D	U	E	-	D	1	
•	46	52	5	ŧ	8	Ð	٩	E	•	0	1	
		2	E	ē	ā	ñ	ň	Ē.	_	Ā	÷.	
			2	ä	-	ž	ž	6. 8	-	-	÷.	
- (8 7	2	9	U	U	U	U	£	+	Ų	U	
	• 1	. 8	7	5	Q	C	Q	E	ŧ	O	0	
	. 2	0	1	6	6	5	Ô	Ē	•	Ô	Û	
1		10	-	ž	ž	é	ě	Ē		ř	ñ.	
•		, y	2	0	3	4	U	Ē.		ų	9	
	44)4	7	9	1	5	۵	E	ŧ	U	9	
	, 5	6	Ø	Ø	۱	C	Ø,	E	ŧ	O	8	
_		Ā		7	ř	ñ	A	Ē.	-	ñ	Ĩ	
-	•7		-	: ج	P	2 0	ч е	-	_	*	2	
-		0	đ	1	9	e	đ	Ľ	•	ų	1	
	ľ											
	. 4	6	8	7	5	C	Ø	E	-	Q	1	
,				-	Ē	ň	ň	Ē	_	ñ	4	
		. 0	0	* `	1	4	5	5	-	(' ()	*	
•	j 3	51	Z	5	Ū.	Ū	٥	E	•	Q	1	
•	. 3	11	2	5	ß	Q	٥	E٠	-	Ø	1	
	. 1	1	2	Ę.	Á	Ó	ñ	F	-	ñ	1	
_	- 7		ž	2	ř	ř		-	_	ě	2	
-	. 1	. 9	O	۲	2	Ľ,	V	۲,		V	*	
	ť											
	1	5	6	2	5	Ø	1	E	-	Ø	1	
	_ 1	14	ž	Ē	é	ã	ã	Ē	-	õ	4	
•			2	21 8-	-	Ĩ	ž	-	_	ž	•	
	9 3	1	2	3	ļ	U	Ų	Ľ	•	V	1	
	, 3	11	2	5	١	٩	٩	E	•	٦	1	

	NODE	262
~ A12588 85-81	NOTE	963
	NACE	264
-626888885-84	NOCE	26E
	NOCE	277 926
*****************	NOCE	670
	NOCE	27/
	NOTE	270
+023000E-01	NUCE	277
• 6250000E-81	NOUE	200
• 6259809E-91	NOCE	201
6250000E-11	NUCE	262
.6250000E-01	NOCE	263
•6250000E-81	NOCE	Z64
6250888E-81	NODE	265
₿6250000E-81	NOCE	266
•6250000E-01	NOCE	267
•6250000E-01	NOCE	268
.625000\$E-\$1	NODE	269
•6250000E-01	NOCE	271
£6250009E-01	NOGE	Ż71
•3125000E-01	NOCE	272
.3125000E-01	NODE	273
.312540DE-01	NODE	274
-3125008E-91	NOCE	275
-312500 BE-01	NOCE	276
-3125000E-01	NOTE	277
-3125808E-11	NOTE	278
	NOCE	279
8.	NOLE	280
0.	NOCE	281
R.	NODE	282
â.	NOCE	243
	NACE	284
	NOCE	285
u e A.	NOCE	203
U e	NODE	200
N.	NOCE	201
U A	NOCE	200
ue .	NORE	203
U.	NULE	290
	NUUL	231
• 4087984E - U1	NOUE	292
● 4687500E=01	NULE	293
#4687500E-01	NOCE	294
0.	NOLE	295
V •	NODE	296
•1562500E-01	NOCE	297
• 3125070E-01	NOCE	298
• 3125000E- J1	NOCE	299
• 312 560 DE - 01	NOCE	300
•3125409E-81	NODE	381
• 3125030L- 81	NOCE	J9 2
•1562500E-01	NOCE	383
0.	NORE	784

-42187508E-81
-#2187580E-81
Da
-2187580F-81
~21878066-04
-41 22 20 20 20 2-01
- 125000E-01
-+6250000E-02
0 <u>n</u>
• 6 25 88 90E-02
12588888E-01
-1258888F-01
-12500005-04
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ve
• 346 00 00 E-02
<b>≈9375000E-02</b>
6258008E-02/
-25335000E-02
\$420000E-02
2210000F-02
- 221 80885-85
• 733 5000E-02
ep5220005-05
-•1568008E-02
-41108040E-02
#1188828F=82
4156888885-83
μ «

<b>1.</b>	NOCE THE
+2187588E-81	NOCE 305
A2187508E-01	NOLE 300
.2187500E-81	NOCE 30/
6 m	NOTE TRO
8.	NODE TAR
6250000E- 82	NOCE 314
.1250600E-81	NOCE 312
.1250000E-01	NODE 313
•1250808E- {1	NODE 314
-1250000E-01	NODE 315
-1250000E-01	NODE 316
•6250 <b>0</b> 00E-02	NOCE 317
Dei	NODE 318
8.	NOGE 319
•8460019E-92	NOCE 320
• 937 500 0E- 02	NOCE 321
• 5460000E-02	NOCE 322
8.	NOCE 323
	NOCE 324
+ 221 989 9E-92	NOCE 325
+4424400E-02	NOCE 326
	NODE 327
	NODE 328
47333999 <u>2</u> -92	NUCE 329
- 221 BBBBE- 82	NUCE 330
B* ##5504045-85	NULE 331
<b>B</b> .	NUUE 332
-1180000F-02	NULE 333
.1568000F-02	NOCE 334
•1100000E+02	NODE THE
1	NOOF 335
0.	
0.	NODE 330
0.	NOCEZLA

In this case loads of 0.5 lbs. are applied at points 1 and p (Fig. 14), and the crack tip is fixed in both directions. Therefore the total load point displacement is the sum of the magnitudes of vertical displacements of points p and 1. In Fig. 14, G represents the location of clip gage to measure the crack opening displacement. The result of the analysis gave the following values of stress intensity factor, load point displacement and the crack opening displacement:

 $K_I = 10.6892 \text{ psi}\sqrt{\text{in}}$ Load point displacement = 58.01097 × 10⁻⁷ in. Crack opening displacement = 16.02759 × 10⁻⁷ in.

On the mesh points p and 1 correspond to nodes 30 and 290, respectively. Crack opening displacement is twice the Y displacement of node 229.

6. EXAMPLE 6: SINGLE NOTCH RING SPECIMEN

Single notch specimens in the shape of circular rings are shown in Fig. 15. The program of subsection 2 of Appendix I generates the data for single notch ring compression specimen (Fig. 15a). The data for the tension case is generated by changing the loading condition.

Choosing A = 0.5 in.,  $R_1 = 1.0$  in and  $R_0 = 2.0$  in., the mesh generation program was used to produce the required data for SRLO1A. The data image produced by SRLO1A, which corresponds to the mesh of Fig. 16 was as follows.

1	267	76	32	2	2	1	70	٤	0	36	5	
	100	00000	0.00	0 0				• 3000	0			
	0	1		0.00	0000	000	000	0	• 0	0 0 0 0 0	10000	00
2	0	1		0.00	0000	000	000	0	• 0	00000	10000	00
	L	1		<u> </u>	🗄 🕻 toy	0.854	<u> </u>	·	•:		<u></u>	30
4	0	1		0.00	0 0 0 0	0000	000	0	• 0	00000	00000	00
5	0	1		0.00	0000	0001	<u>000</u>	0	. 0	00000	<u> 20000</u>	00
6	0	1		0.00	0000	000	000	0	• 0	00000	10000	00
_7	0	1		0.00	0000	000	000	. 1	•	6.1		16
e		1		0.01	0000	000	000	0	• 0	00000	00000	00
C	0	1		0.00	0000	0000	000	9	• 0	00000	00000	00
10	0	1		0.00	0000	0000	000	0	. 0	00000	00000	00
11	0	1		0.00	0000	0001	000	0	. 0	0. 6	1 k k	u C
12	、	1		0.00	0000	0 0 0 0	000	0	. 0	00000	0000	00
13	0	1		0.00	0000	0000	000	0	.0	00000	00000	00
135	0	1		û.00	0000	0000	000	0	. 0	00000	00000	00
166	0	1		0.00	0000	0 0 0 0	000	0	• 0	00000	00000	0.0
107	÷.	1			1100	1.1.1	13		.1.			
108	0	1		0.00	0 0 0 0	0000	00 a	0	.0	00000	00000	0.0
108	0	1		0.00	0000	0 0 0 0	000	0	. 0	00000	10000	00
154	Ō	1		0.00	0000	0.000	100	Ō	. 0	00000	0000	00
203	0	1		0.00	0 0 00						12121	in the
208	Ō	1		0.00	00 00	0.000	000	0	. 01	00000	00000	0.0
217	0	1		0.00	0000	0.000	100		. 0	0000	10000	nn
222	Ō	1		0.00	0000	0000	100	Ō	. 0	00000	00000	0.0
231		1		0.00	0 0 0 0	0.00	100			00000	10000	00
236		1			11.60	: 11		•	. i 1	00000	0.0000	0.0
245	Ō	1		0.00	0000	0 0 0 0	000	0	• 0	00000	10000	00
2 2 0	Ō	1		0.00	0 0 0 0	0000	100	Ő	. 0	00000	10000	00
259	0	1		0.00	0000	0.000	000	0	• 0	00000	10000	0.0
204	Ō	ī		•	วิจังว่า	6.0		-		 		
265	1	1		0.00	0000	0 0 0 0	00	0	. 0	0000	0000	00
266	1	1		0.00	0000	0 0 0 0	000	0	. 0	00000	0000	0.0
267	1	1		0.00	0000	0 0 0 0	000	0	. 01	00000	0000	00
<b>i</b> 1		0	000	0 0 0 0	00		1.	10000	0.0	000		
	·····		1462	1163	36		0.	00000	00	000		
3	5 23	21	1	15	22	14	2	1	1	1.	0000	0
5	25	23	3	16	24	15	6.	1	1	1.	0000	0
7	27	25	5	17	26	16	E	1	1	1.	0000	0
q	25	27	7	18	28	17		1	1	1.	Stee.	<u> </u>
11	31	29	G	19	30	18	10	1	1	1.	0000	0
13	3 3 3	31	11	20	32	19	12	1	1	1.	0000	0
23	5 43	41	21	35	42	34	22	1	1	1.	0000	0
25	45	43	23	36	44	35	24	1	1	1.	1110	
27	47	45	25	37	46	36	26	1	1	1.	0000	G
29	49	47	27	38	48	37	28	1	1	1.	0000	Ō
31	. 51	43	29	39	50	33	30	1	1	1.	0000	0
33	53	51	31	40	52	34	32	1	1	1.	0000	0
43	63	61	41	55	62	54	42	1	1	1.	^ 0 0 O	0
45	65	63	43	56	64	55	44	1	1	1.	0000	Ō
47	67	65	45	57	66	56	46	1	1	1.	0000	0
-45	69	67	47	58	68	57	46	1	1	1.	0000	Ū
51	71	64	69	59	7 4	50	5	1	1	1.	36.1 P	1

53	73	71	51	60	72	59	52	1	1	1.00000
63	£ 3	81	61	75	82	74	62	1	1	1.00000
65	85	93	63	76	84	75	64	1	1	1.00000
67	7 ن	35	65	77	86	76	66	1	1	1.00600
63	69	- 87	57	78	83	77	36	1	1	1.00000
71	51	85	65	79	90	76	70	1	1	1.00000
73	53	- 91	71	80	92	75	72	1	1	1.00000
83	103	101	<u>91</u>	95	102	94	32		1	1.00000
85	1.5	133	83	96	164	95	34	1	1	1.61600
87	107	105	85	97	106	96	36	1	1	1.00000
83	109	107	67	32	108	- 37	38	1	1	1.00000
91	111	105		49	110	91	30		1	1.00000
43	113	111	91	100	112	99	32	1	1	1.00000
103	123	121	101	115	122	114	102			1.00000
105	125	123	103	1 10	124	115	194	1	1	1.00000
100	121	122	105	11/	120	110	100	1	1	
145	127	126	110	1 10	120	440		4	1	
111	427	127	444	1 20	122	446	112		1	1.00000
123	122	101	121	1 76	142	115	122	1	4	1.00000
125	145	141	121	135	146	1 75	126			1.00000
127	147	145	125	1.37	146	136	126	4	4	
120	140	147	127	1 38	148	137	126		-	1.00000
131	151	149	129	1.39	150	136	130	1	Î	1.00000
133	153	151	131	140	152	136	132	<del>- î</del> -	1	1.00000
143	163	161	141	155	162	154	142	ī	ī	1.466664
145	165	163	143	156	164	155	144	1	1	1.00000
147	167	165	145	157	166	156	146	1	1	1.00000
149	169	167	147	158	168	157	146	1	1	1.00000
151	171	169	143	159	170	158	150	1	1	1.00000
153	173	171	151	16.	172	159	152	1	1	1.00000
161	103	182	18 D	162	175	181	174	1	1	1.00000
163	165	154	152	164	176	103	175	1	1	1.00000
169	171	167	185	170	17e	186	177	1	1	1.00000
171	173	1 39	167	172	179	180	173	1	1	1.46686
165	157	195	164	1 31	196	190	176	1	1	1.00000
165	167	1 70	157	166	192	193	1 7 1	1	1	1.00000
167	104	201	199	168	193	200	192	1	_1	1.00000
201	165	155	203	193	177	194	202	1	1	1. ULFIL
107	211	203	195	2 05	210	204	196		1	1.00000
197	125	213	211	158	ZUE	212	205	1	1	1.00000
199	201	215	213	200	207	214	206	1	1	1.00000
21	201	203	217	207	202	208	210	1	1	1.00000
411	115	223	61 9 775	514	224	610	21'		1	
211	213	22	227	216	224	2 20	224	L A	;	
77-	217	263	261	214	261	220	220			
295	217	611 927	201 227	2 2 2	210	222	221	1	4	
577	775	231 762	26 3	2 73	275	2.56	224		+	1.00000
375	227	241 241	233	226	235	240	233	4	4	1.00000
723	77	711	765	235	230	236	744			1.00000
21	26.7	251	237	247	252	246	236	1	1	1.11110

239 241 255 253 240 248 254	247 1 1 1.00000
241 243 257 255 242 249 256	246 1 1 1.00000
257 243 245 259 249 244 250	258 1 1 1.00000
253 265 267 251 261 266 260	252 1 1 1.00000
255 265 267 253 262 266 261	254 1 1 1.00020
257 265 267 255 263 268 262	256 1 1 1.00000
259 265 267 257 264 266 263	258 1 1 1.00000
• 11666702+01	U. VJPE 3
• 1250 U UUE + U1	U. NODE 4
• 1333330E+U1	U. NORE 5
• 1410665E+U1	
•15,00 Pg E+t 1	L. NODE 7
• 1563 3 35E +01	U. NDE 8
• 1666670E+01	0. NODE 9
• 1750000E+01	0. NOCE 12
• 1033330E+01	0. NODE 11
• 1916665E+01	0. NOPE 12
• 2000000E+01	0. NOPE 13
• 3619400E+00	.1913400E+00 NODE 14
· 1122265E+01	.2232300E+00 NOPE 15
.1232585E+L1	.2551200E+00 NODE 16
.1442910E+01	.2870150E+00 NODE 17
▲ 16 83 2 35E + 01	-3169050E+00 VONE 18
. 176355557+01	.3507950E+00 NOCE 19
- 19236 BJE+i 1	-3826356 F+ 2 NODE 20
- 9238 8 DDE + DD	-3826800E+00 VODE 21
- 10008705+01	4145700E+00 NORE 22
- 10776605+01	.4464600F+00 NDDE 23
11548 505+01	478351 E+30 NODE 24
- 12316 60FA01	5102400F100 VODE 24
1204 8 30 5 + 01	54213506+00 4035 26
- 1325620E+01	.5740300E+00 NODE 20
44628485404	
• 14020 1UC TUL	600092000400 NOTE 20
46463006404	
10337 30E + UL	
	■ 73346UUE+00 NUPE 32
•104//b/E+1	•/053/1(E+ 1 VJLE 33
• 61549506+00	•5448950E+00 NODE 34
• 9514100E+00	•6357100E+00 NORE 35
• 10E7 3 25E + 01	•7265250E+00 NOPE 36
• 1223240E+01	-8173450E+*** NODE 37
• 1359 155 E+01	• 9081600E+00 NODE 38
<u>• 1495070E+01</u>	<u>.9989750E+00 NODE 39</u>
• 1630985E+01	.1089790E+01 NODE 40
•7071100E+90	•7071100E+00 NOPE 41
• 7560 3 53 E+12	.766.356.+ 0 NODE 42
• 8249600E+00	.8249600E+00 NODE 43
• /c 33 6 50E +00	.2030350E+00 NO7E 44
• 9429100E+90	•9428100E+00 NOTE 45
• 1 1735E+ 1	-1-1735E+11 177E 46

• 1060660E+01	.1060660E+01	NODE 47
• 1119585E+01	.1119565E+01	ND1E 48
• 1175 5 10E +01	.1173510E+01	NODE 49
+ 12 37 4 35 E + 01	.1237435E+11	NOCE 50
+129636 E+ 1	1296360E+01	NDDE 51
• 1355225E+01	.1355285E+01	NODE 52
• 1414210E+01	.1414210E+01	NODE 53
• 5448950E+00	.8154950E+00	NOCE 54
• 63571()E+0	•95141:6E+#f	NODE 55
• 7255250E+00	.1087325E+01	NODE 56
• \$173450E+00	.1223240E+01	NOCE 57
• 30216 00E+00	·135-155E+01	NOTE 58
• 3989750E+00	-149597EE+11	NODE 59
+ 1089750E+01	+1630985F+01	1201 60
• 3826E 00 E + 00	-92338888F+00	NOPE 61
41457 NOF + 00	-1000870E+01	NOCE 57
- 44646 DOF+DD	.1077360E+01	NOPE 63
47:35( F4( 3	11548506401	1705 64
51 02 h DDE 100	4 2312405401	1005 66
5/21 3 50 C + 00	12020402401	JOCE DE
6 24213 20E 400	4 7963 206401	NODE 67
	1000020ETUI	1102 68
• 0 · 272 · 1 / C · · · · ·	+140201(E+31	40DE 60
	- 15390 UUEFUI	JODE ZO
	4 1010/ 700 401	NODE 74
	• 1093/ CUE +U1	NUCE /1
* 73340 000 + 00 76577 005 + 00	++++++++++++++++++++++++++++++++++++++	100E 72
	• 104// OUL TUI	VJ(12 / J
	• 90194002+00	NUUE 74
	+ 1162602E+U1	
	• 1202707ETU1	NUCE 76
	+144291ULTU1	100E 70
* 3107 U 3VC ¥ UU 76 07 0 605 ± 00	• 100JCJJETUI	100E 73
	+ 1/ 03777E+U1	NUCE 79
• 30 20 C DUE TUU	• 192300 UE + U 1	JODE CU
· · · · · · · · · · · · · · · · · · ·	•10000000010701	NUDE DI
	• 1003337ETUI	
	+ 11000/UE+U1	1002 03
U •	+ 127UUUUETUI	1005 04
	• 133333UETU1	NOUE 55
	+ 1 4 10007E TU 1 4 5 0 0 0 0 0 5 + 0 4	NUDE 67
	45077755.04	NODE 67
	+ 1703337E TU 1 4666670E+04	NUL'E 00
	475000/UETU1	1000 09
· •	+#77770E+04	NODE 90
	- 1033330ETUI	1005 02
	• 1710009C VU1	1005 JZ
	- 26406002701	NORE 55
	• 70174UUETUU . 119994EE⊥04	1005 34 1005 0F
	- 1262626701	NODE 72
- • CP91C 00C+00 94704 606 400	+1202909E701 .144924AEAA4	NUDE 20
	+ + + + + + + + + + + + + + + + + + + +	JONE 31
	• 100JCJ7CVU1 .4767E666144	409E 30
	● エド ロリフクフ ニマリ ユ	4005 <b>77</b>

.

3826850E+00	.1923880E+01	100E100
38266 00E+00	•9238800E+00	NOPE 101
41457 00E+00	.1000870E+01	NOJE 102
44646 DDE + DD	.1077860E+91	NOPE103
4783500E+00	+1154350E+01	NOPE 104
5102400E+00	.1231840E+01	NODE 105
5421350E+00	.1308830E+01	NODE 106
5740300E+00	1365620E+01	NODE! 7
6.592()E+1	•1462810E+01	NOPE 108
6378100E+00	1539500E+01	NODE 109
6637 0 00E+00	.1616750E+01	NOPE 110
7015900E+00	.1693780E+01	NODE111
73346LIE+ 0	-177.771E+31	NDDE 112
-• 76537 00E+00	1847760E+01	NO °E 113
5448950E+00	• 8154950E+00	NODE 114
6357100E+00	•9514100E+00	NOPE 115
7265250£+00	•1187325E+ 1	NDDE116
8173450E+00	1223240E+01	NDDE 117
9081600E+00	.1359155E+01	NOPE 113
99397 50E +00	•1495070E+01	NONE 119
10/3750E+01	•1630985E+01	NOPEILS
73711@2E+Eg	•74711(LE+00	NADE 121
-, 7660350E+00	.7660350E+00	NDCE 122
3243600E+00	•8249600E+00	NODE 123
2838650E+00	.6830850E+00	NODE 124
94281#)E+#J	•9428161E+10	100E 125
1001735E+01	.1001735E+01	NOPE 126
1060660E+01	•1060660E+01	NODE 127
1119585E+01	•1119585E+01	NDDE 126
1173510E+01	•117.510E+01	NONE 129
1237435E+01	•1237435E+01	NDPE 130
1296360E+01	.1296360E+01	NODE 131
-• 1355285E +U1	.1355285E+01	NDDE 132
-• 1414210E+01	•14142102+01	NODE 133
8154950E+03	•544895UE+00	NJ71134
-• 9514100E+00	•6357100E+00	NOPE 135
-• 1087 3 25E+01	•7265250E+00	NDDE 136
122324UE+U1	• E 17 3450E+00	NO DE 137
1359155E+11	• 9301651 E+6 6	NUL'E 138
-• 1495 U/UE+U1	• 9989750E+00	NJ 2E 139
1630985E+01	•1089790E+01	100E140
92388 UUE + UU	•3826600E+00	NOCE 141
-• 10008/0E+01	•4145700E+0"	NUCE142
1J77860E+01	• 4464600E+00	<u>NJDE</u> 143
- 11740 70L + VI	•4/03/UUE+UU	VUUE 144
	• <b>51U24UUE+UU</b>	<b>VULL 145</b>
■• 13 00 0 JUL + U1	• 5421350E+00 6960366657 A	VUUE 146
	<u>• &gt;7403002+05</u>	40 JE 147
•• 14020 102 +01 - 45 70 0 005 + 04	• DUDY2UUE+UU	NUUE 146
	•03/01UUE+UU	NUTE 149
-• 10 10 / YUL 701	+003/UUUE+UU	NULE 150
•• 109378UE+01	•/615966E+8r	NOCE 151

.

1770770E+01	.7334800E+00	NOCE 152
1847760E+01	.7653700E+00	NOPE 153
9569400E+00	.2736400E+00	NO7E154
1116430E+01	•3057300E+00	NODE155
1275920E+(1	.3376200E+00	100E156
1435410E+01	.3695150E+00	NODE 157
15949 00E +01	.401+050E+00	NODE 158
1754390E+01	.4332950E+00	NOPE159
1913081E+(1	.4651850E+98	NODE160
99 00 0 00E + 90	.1650000E+00	NODE161
10725 00E+01	.1650000E+00	NOPE 162
1155 0 00E +01	.1650000E+00	NODE163
1237500E+01	-1650900E+06	NODE164
13200 00E+01	.1650000E+00	NODE 165
1402500E+01	.1650000E+00	NODE 166
14350 00F +01	-1650000E+00	NOPE 167
15675 00E+01	.1650000E+00	NODE 168
16546 t JE+1	-1650000E+00	VODE 169
-, 1732580F+01	-1650000E+00	NOPE 170
-, 18150 00E+01	1650000E+00	N00E171
18475 00E+01	1650000F+00	ND75172
	-165.361 E+38	NODE 173
-, 1950 0 00F +00	> 8250000F-01	NORE 174
1160835F+01	.8250000E-01	100E 175
	-8250000E-01	NODE 176
+, 1658 3 35F + 01	-8250000E-11	100F177
- 18241655401	A250000E=01	1205 178
	-8250000E-01	NODE 174
-, 10,000,00F+01	0.	VODE TED
10433355+01	0.	NDDE 161
1166670E+C1		1005 162
- 12500 ROF +01	0.	NODE 183
-, 1333330E+01	0.	NOPETER
- 1666670F+01	0.	NOBE 185
-, 17500 00F+01		NOCETAR
1A 333 30F+01	<u>Î</u>	NODE 187
- 1916665F+01		NODE 16A
+. 20 00 0 00F +01	0.	NODE189
13525 00F+01		NODE
- 1345E 35F + 1	-1466651 F+DD	1005121
	1466650F+00	NODETOT
16331655+01	-1466650F+00	NO 0F 402
1647 5 00F +01	0.	NORFIEL
- 13716705+01	fi a	NODELOE
- 1371670E+01	.64165006-01	1005 105
	.12833005+00	NODE 190
14354 356 401	1283300F+00	VODE TOR
- 15 00 0 00 + 01	1283300F+00	NODELOO
- 1564165F+11	+12833D0F+00	1205 200
16 <b>28</b> 3 30 F + 01	1283300E+00	NODE 204
- 1628 3 30F + 81	-6416500F-01	10 TF 202
16 28 3 30 5 401	0.	107F202
A TAPA AAP WAT		

Store and the street

į.

こうしている しまえるものできたいないのであるとうとういう いたちのある

. 77

1470423E+(1		NODE 204
-• 1400420£+01	-9956000E-01	10 PE 205
1580000E+01	•9958000E-01	1005 206
1599580E+01	.9956000E-01	NOPE 207
1599580E+01	ė •	NODEZ 8
1429170E+01	0.	NONE 209
1429170E+01	• 3541500E-01	<b>NODE 210</b>
1429170E+01	•7083000E-01	NODE 211
1464585E+01	•7083000E-01	NODE 212
1549848E+81	.7063000L-01	10 JE 213
1535415E+01	•7083000E-01	NODE 214
15708 30E+01	•7083000E-01	NODE <u>215</u>
15708 30E +01	.3541500E-01	<b>NODE 216</b>
1570 8 30 E+01	Ũ	100E 217
14387 50E+01	0.	10 PE 218
1433750E+01	.6125000E-01	NODE 219
1500000E+01	.6125000E-01	NODE 220
1561250E+01	•6125000E+01	NO DE <u>221</u>
1561257E+01	0.	100E 222
1448330E+01	0.	NDDE 223
1448330E+01	-2583500E-01	103E 224
1448330E+01	•2167000E-01	NODE 225
1474165E+61	•5167900E-81	NODE 226
1500000000+01	•2167000E-01	10 DE 227
15256 35E+01	.5167000E-01	100E 228
1551670E+01	.5167000E-01	10JE 229
1551670E+01	.258351 E-1	NOPE 230
15516702+01	0.	100E 231
14608 30E+01	0.	<b>NODE 232</b>
14608-30E+01	.3917000E-01	<b>NDDE 233</b>
15 00 00E+01	.3917000E-01	NODE 234
153917}E+01	.3917068E-01	1005 235
1539170E+01	0.	13nE 236
1473330E+01	0.	NODE 237
1473330E+01	.1333500E-01	101E233
1473330E+01	•2667%LLE-01	10PE 239
1486665E+01	.2667000E-01	100E240
1500000E+01	•2667000E-01	NODE 241
1513335E+01	.2667000E-01	<b>NODE 242</b>
1526670E+01	.2667000E-01	100E243
1526673E+11	•1333500E-01	NODE 244
1526670E+01	0.	13DE 245
1481665E+01	0.	103E246
1483130E+01	•1687000E-01	100E247
1500 000 E+F1	-15335" ( E-11	TODE245
1516870E+01	.1687008E-01	1002249
15 18 3 35E +01	0.	NODE 250
1490 0 COE +01	0.	100E251
1491465E+01	.3535000E-'2	VODE252
14929308+01	•707000E-02	10 NE 253
1496465E+01	.8535000E-02	1002254
-, 15000 00E+01	.100000E-01	VOPE255

. . . . . .

1503535E+01	.8535000E-02	NO DE 256
1507070E+01	.707JJILE-02	103E257
1508535E+01	.35350 00E-02	NDPE258
1510000E+01	D	NODE259
14375 00E+01	U •	NODE260
1496230E+01	•177505bE-#2	NODE261
1500000E+01	• 2500000E-02	NODE 262
15 <b>0</b> 1770E+01	.1770000E-02	NODE 263
15025 00E +01	U .	NO.1 264
1500000E+01	Ũ•	NOBE 265
15552 00E+11		NJDE266
1590000E+01	0	NOCE 267
	· · · · · · · · · · · · · · · · · · ·	

The execution of SRLO1A resulted in the following values for stress intensity factor, crack opening displacement, and load point displacement:

$$\begin{split} & K_{\rm I} = 1.8940 \ {\rm psi}\sqrt{\rm in} \\ & {\rm COD} = 2 \times ({\rm Y-displacement} \ of \ node \ 180) = 6.45932 \times 10^{-7} \ {\rm in.} \\ & \delta_{\rm L.P} = {\rm sum} \ of \ {\rm the} \ absolute \ {\rm value} \ of \ {\rm X} \ - \ {\rm displacements} \ of \ node \ 189 \\ & {\rm and} \ node \ 13 = 15.31517 \times 10^{-7} \ {\rm in.} \end{split}$$

# SECTION VI

## CONCLUSION

The report contains user's manuals for the following programs:

- 1. SRLO1A: A two dimensional linear elastic finite element analysis code for crack problems.
- 2. SRL11: A mesh plotting program.
- 3. SRLC: A mesh generation program for C-shaped and doublenotch ring shaped specimens.
- SRLRNG: A mesh generation program for single-notch ring shaped specimens.
- 5. SRLCMP: A mesh generation program for compact tension type specimen geometries.
- 6. SRLBND: A mesh generation program for bend specimen geometry.

Although the mesh generation programs have been carefully tested, the user should not expect these programs to produce acceptable data for arbitrarily chosen geometrical dimensions for any given specimen shape. The programs are however expected to generate proper data for standard geometries with minor modifications.

It is highly recommended that a new user try to solve one or more of the illustrative examples presented in Section IV before attempting to solve a new problem.

### APPENDIX I

#### MESH GENERATING PROGRAMS

#### 1. C-SHAPED SPECIMEN

The finite element data for SRLO1A to analyze a C-shaped specimen may be generated by executing the following program:

Job Card ATTACH,LGO,SRLC,ID=M760328. ATTACH,TAPE8,SRLC1,ID=M760328. LGO. End-of-record N (Total number of data sets to be generated minus 1) A RI RO (Crack length, inner radius, outer radius) . . . . . A RI RO End-of-job.

- Note: a) Format for N is (I4)
  - b) Format for A, RI, RO is (3F10.5)
  - c) The mesh may also be used to analyze double notch circular ring specimens (see examples 2 and 3).

2. SINGLE-NOTCH RING SPECIMEN

وأفرده فتحرف فالمكام فخفاهما كالألاحت معروقها فستقرد وشرعانهم

Data for a single notch ring specimen (Fig. 15a) can be generated by using the following program.

Job Card ATTACH,LGO,SRLRNG,ID=M760328. ATTACH,TAPE8,SRLRG,CY=2,ID=M760328. LGO. End-of-record A RI RO (crack length, inner radius, outer radius) End-of-job.

Note: a) Format for the data card is (3F10.5)

- b) For multiple runs put as many LGO. cards as number of cases, and place an end-of-record card in front of each data card.
- c) The mesh may also be used for a single notch ring tension specimen (Fig. 15b) simply by changing the location of the applied load from nodes 13 and 189 to node 81.

3. COMPACT TYPE SPECIMEN

The data to analyze a compact specimen of given geometry may be generated by using the following program.

Job Card ATTACH,LGO,SRLCMP,ID=M760328. ATTACH,TAPE8,SRLCM,CY=2,ID=M760328. LGO. End-of-record A E F H S THETA W W1 R GS End-of-job

Note: a) Format for the data card (10F7.4)

- b) GS is the distance n-n in Fig. 11.
- c) Procedure for multiple runs is the same as for single notch ring specimen of the previous section.

4. THREE POINT BEND SPECIMEN

```
Job Card
ATTACH,LGO,SRLBND,ID=M760328.
ATTACH,TAPE8,SRLB,CY=2,ID=M760328.
LGO.
End-of-record
L S W G'N P'THETA G A H B
End-of-job
```

- Note: a) Format for the data card (11F7.4) for definition of symbols see Fig. 14.
  - b) For multiple runs follow the procedure described in Section3 for single notch ring specimen.

## APPENDIX II

### PLOTTING PROGRAM

## 1. USER'S GUIDE FOR MESH PLOTTING PROGRAM (SRL11)

a. Data Set 1, Format (314), Number of cards = 1

Columns	Variable/Constant	Definition
4 5-8	6 NPOIN	Output unit Total number of nodes
9–12	NELEM	* Total number of elements

*See a. Section III.

b. Data Set 2^{*}, Form (I4,2F10.5), Number of cards = NCPOIN^{**}

Columns	Variable	Definition
1-4	I	Node number of corner point
5-14	X(I)	Y-coordinate of I
15-24	Y(I)	Y-coordinate of I

* Use the same data cards as 5. Section II. ** See a. Section III.

c. Data Set 3, Format (not applicable), Number of cards = 1

(Blank Data Card)

d. Data Set 4, Format (814), Number of cards = NELEM *

Columns	Variable	Definition
1-4	I	Element connectivities. Use Data Set 6 of f., Section III.
5-8	I + 1	Element connectivities. Use Data Set 6 of f., Section III.
9–12	I + 2	Element connectivities. Use Data Set 6 of f., Section III.
13-16	I + 3	Element connectivities. Use Data Set 6 of f., Section III.
17-20	I + 4	Element connectivities. Use Data Set 6 of f., Section III.
21-24	I + 5	Element connectivities. Use Data Set 6 of f., Section III.
25-28	I + 6	Element connectivities. Use Data Set 6 of f., Section III.
29-32	I + 7	Element connectivities. Use Data Set 6 of f., Section III.

* See a. Section III.

# e. Data Set 5, Format (315, A10), Number of cards = 1

Columns	Variable/Constant	Definition
5	1	
6-10	12	
11-15	L	Output parameter
16-25	LABEL	MESH TITLE
		1





#### Instructions

L	Give 1 if elements and nodes are not to be numbered.
	Give 2 if only elements are to be numbered.
	Give 3 if nodes and elements are to be numbered.
	Give 4 if only nodes are to be numbered.
LABEL	Give ten character title (including spaces, such as RING SPMN1).

NOTE: Only the corner nodes of the mesh are numbered by the program.

f. Data Set 6, Format (8F10.5), Number of cards = 1

Variable/Constant	Definition
YMIN	Minimum of Y-coordinates of all nodes
YMAX	Maximum of Y-coordinates of all nodes
XMIN	Minimum of X-coordinate of all nodes
XMAX	Maximum of X-coordinates of all nodes
YSCALE	Scale on the Y axis
XSCALE	Scale on the X axis [*]
1.0	
1.0	
	Variable/Constant YMIN YMAX XMIN XMAX YSCALE XSCALE 1.0 1.0

* It is recommended to use SCALE = YSCALE = Plot dimension desired divided by actual mesh dimension. Plot dimension desired is limited by the size of the paper available at CALCOMP plotter. Usually, Y dimension of the plot = (YMAX - YMIN) × YSCALE should not exceed 8 inches.

g. Data Set 7, Format (not applicable), Number of cards = 1

(Blank Data Card)

2. SAMPLE JOB SET-UP FOR THE BEAM PROBLEM OF SECTION II, 5.

AAA, CM150000, T100, I0100, STANY. M760328 ATTACH, CCAUX, CCAUX, ID=LIBRARY, SN=ASD LIBRARY, CCAUX. ATTACH, LGO, SRL11, ID=M760328. LGO.

End-of-record card.

6	18	3
1	4.0	0.5
3	4.0	1.5
6	3.5	0.5
8	3.5	1.5
11	1.5	0.5
13	1.5	1.5
16	0.5	0.5
18	0.5	1.5

### BLANK CARD

1	3	8	6	2	5	7	4
8	13	11	6	10	12	9	7
16	11	13	18	14	12	15	17
	1	12	3	BEAM			
0.5	1.5	1.0	.0	2.0	2.0	1.0	1.0
В	LANK CA	RD					
Rad-	of_dete	oard					

#### REFERENCES

- 1. K. J. Bathe and E. L. Wilson, <u>Numerical Methods in Finite Element</u> <u>Analysis</u>, Prentice-Hall, 1976.
- 2. S. R. Barsoum, On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics, Int. J. Num. Meth. in Engrg., <u>10</u> (1), 1976.
- 3. N. E. Ashbaugh and J. Ahmad, paper submitted to the Int. J. of Solids and Structures.
- 4. N. E. Ashbaugh, Mechanical Property Testing and Materials Evaluation and Modeling, AFML-TR-79-4127, Air Force Materials Laboratories, Wright Patterson Air Force Base, OH, 1979.

SIDE 2: (I+I)-(I+2) SIDE 3: (I+2)-(I+3) SIDE 4: (I+3) - (I)Y I I+4 I+7 I+1 I+3 6+1 I+5 I+2 Х

SIDE 1: (I)-(I+1)

Figure 1. Eight Noded Quatrilateral Element.



and the second second second

Figure 2. Special Forms of General Eight Noded Quadilateral.



Figure 3. Cantilever Beam.





(Ь)





(d)



Second Street and an and a second street and the







Figure 5. Mesh Plotted by SRL11. (Beam)


(a)

وأحمدها فالمتكاف المحمد والمتحد والمتحدية

(Ь)

Figure 6. (a) Semi-Circular Cracked Ring. (b) Region Needed for Analysis.



Figure 7. Mesh for C-Specimen.





and the state of the second second



South Strategy and Store of

N Car States





 $R_i = 1.0 IN.$  $R_0 = 2.0 IN.$ A = 0.5 IN.

Figure 9. (a) Double Notch Ring in Tension.

(b) One Quarter of the Ring with Displacement Boundary Conditions.



Sector Sector

1000

ومناور ومحافظة فالمتحدث فالأواملة فلأنفظ ومعترض والمحاري ومراجع المحاولة فتحوز والمتحد والمراجع المحافظ والمعام

Sec. Sec.

فالتفاقيني والماهمات فأنقادها والمتعارية إليان مدغاتها ومحتانا فالمناقب معانيتها ويورد مماكم فتغارب لإلار يتعادين مر







Figure 10. (a) Double Notch Ring in Compression.

(b) One Quarter of the Ring with Crack Line Pressure and Displacement Boundary Conditions.



Figure 11. Compact Specimen. (Schematic)



í

Figure 12 (a). Mesh for Compact Specimen. Upper Half of Specimen.



Figure 12 (b). Mesh for Compact Specimen. Details of Crack-Tip Region.

17 C 12 C



POISSON'S RATIO = 0.3 THICKNESS = 1.0 IN.

وتستأد المتناد المروي والمرود والمروس





Figure 14. A Three Point Bend Specimen, (Schematic)



(a)

فليقدم والمتحافظ معتمد والمناسبة المحافظ

ŀ



Figure 15. Single Notch Ring Specimens.

- (a) Tension
- (b) Compression

