

OPTIMAL CONTROL OF ACTIVE RECOIL MECHANISMS

BY
S. M. WU
A. N. MADIWALE

February 1977

TECHNICAL REPORT

Approved for public release, distribution unlimited.

Prepared For ENGINEERING DIRECTORATE
\&
GENERAL THOMAS J. RODMAN LABORATORY
ROCK ISLAND ARSENAL ROCK ISLAND, ILLINOIS 61201

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMEER - ${ }^{\text {2. SOVT ACCESSIION NO. }}$	3. RECIPIENT'S CATALOO Number
R-TR-77-024	
4. TITLE (MAD Subitho) Optimal Control of Active Recoll Mochanisms	5. TYPE OF REPORT A PERIOD COVERED Final June 1976-December 1976
$\begin{aligned} & \text { 7. AUTHOR(e) } \\ & \text { S.M. Wu } \\ & \text { A.N. Madiwale } \end{aligned}$	g. Contract or gatnt number(a) DAAA09-76-M-2017
9. Performing organization name and adoress University of Wisconsin-Madison Mechanical Engineering Department Madison, Wisconsin	10. PROGRAM ELEMENT. PROJECT, TASK AREA W WORK UNIT NUMEERS 1W161102AH55
```11. CONTROLLING OFFICE NAME AND ADORESS Engineering Directorate/Ware Simulation Division Rock Island Arsenal Rock Island, IL 61201```	12. REPORT DATE   February 1977   13. NUMAER OF PAGES   80
14. MONITORING AGENCY NAME A ADDRESS(II different from Conitrolline Offlico)	15. SECURITY CLASS. (of ehlo roport) UNCLASSIFIED   15. DECLASSIFICATION/DOWNGRADING SCHEOULE

16. DISTRIBUTION STATEMENT (of this Roport)

Approved for public release, distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abatract antered in Block 20, if different from Raport)
16. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse alde If neceesary and identlly by block number)

1. Recoil Mechanism
2. Objective Function
3. Feedback
4. Breech Force
5. Optimal Control
6. Rod Pull
7. Servovalve
8. Non-1inear Optimization
9. ABSTRACT (Continue on foverse aldo If necessary and identlify by block number)

A servo-valve feedback system with variable control law is proposed for modification of a conventional hydropneumatic recoil mechanism to minimize peak recoil force for any round fired. Phase-plane-delta method of digital simulation is used to simulate the recoil mechanism model. An objective function with direct physical interpretations is developed and non-linear optimization techniques are used to design feedback gains for each firing round. The method is applied to M37 recoil mechanism and significant improvement in recoll force tralectories is obtained.

## FOREWORD

This report was prepared by Prof. S. M. Wu and Mr. A. N. Madiwale of the University of Wisconsin-Madison in compliance with Contract No. DAAAO9-76-M-2017. This work was performed for the Ware Simulation Division, Engineering Directorate, and the Research Directorate, GEN Thomas J. Rodman Laboratory, Rock Island, Illinois, with Mr. R. E. Kasten as Project Engineer

## ACKNOWLEDGEMENT

This work was supported by the Ware Simulation Division, Engineering Directorate, Rock Island Arsenal, Rock Island, Illinois under Contract No. DAAAO9-76-M-2017.

The authors developed their basic understanding of modeling recoil mechanisms through reports by Nerdahl and Frantz $(8,9,10)$ and personal communications with the Ware Simulation Division. The suggestions by and discussions with Mr. Robert J. Radkiewicz and Mr. Robert E. Kasten of the Ware Simulation Division were very helpful and are deeply appreciated.

## TABLE OF CONTENTS

Page
SUMMARY ..... -xii
INTRODUCTION ..... 1
I. MATHEMATICAL MODEL FOR HYDROPNEUMATIC
RECOIL MECHANISM ..... 3
II. DIGITAL SIMULATION OF THE MODEL ..... 10
III. FORMULATION OF ADAPTIVE CONTROL ..... AND
OPTIMIZATION PROBLEM ..... 18
3.1 Linear State Feedback ..... 18
3.2 Development of Objective Function ..... 21
3.3 Results for M-102 ..... 27
3.4 Tachometer Feedback ..... 40
CONCLUSIONS ..... 46
Appendix I - Phase-Plane-Delta Digital Simulation Method ..... 48
Appendix II - Nonlinear Optimization Algorithms ..... 54
Appendix III - Design Data for M- 37 Recoil Mechanism ..... 61
1 Block Diagram of Conventional Recoil Mechanism ..... 4
2 Phase Plane for Zone 7 ..... 12
3 Displacement for Zone 7 ..... 13
4 Velocity for Zone 7 ..... 14
5 Rod Pull for Zone 7 ..... 15
6 Cavitation Pressure for Zone 7 ..... 16
7 Gas Pressure for Zone 7 ..... 17
8 Block Diagram of Modified Recoil Mechanism ..... 19
9 Rod Pull for Zone 7 With No Feedback ..... 23
10 Rod Pull for Zone 7 With Linear State Feedback 1 ..... 24
11 Rod pull for Zone 8 With No Feedback .....  29
12 Cavitation Pressure for Zone 8 With No Feedback ..... 30
13 Rod Pull for Zone 8 With State Feedback ..... 31
14 Cavitation Pressure for Zone 8 with Optimal Feedback ..... 32
15 Rod Pull for Zone 7 With No Feedback ..... 34
16 Rod Pull for Zone 7 With Optimal Feedback ..... 35
17 Rod Pull for Zone 6 With No Feedback ..... 36
18 Rod Pull for Zone 6 With Optimal Feedback ..... 37
19 Rod Pull for Zone 5 With No Feedback ..... 38
20 Rod Pull for Zone 5 With Optimal Feedback ..... 39
21 Rod Pull for Zone 7 With Velocity Feedback ..... 41
22 Rod Pull for Zone 6 With Velocity
Feedback ..... 42
23
Rod Pull for Zone 5 With Velocity Feedback ..... 43
24
Rod Pull for zone 1 With Velocity Feedback ..... 44
25 Rod Pull for Zone 1 With No Feedback ..... 45
26
Phase Plane Method ..... 49
27
Phase Plane Delta Method ..... 49
28 Gradient Methods ..... 56

## LIST OF TABLES

## Page

1 Performance Parameters for Optimal Feedback Control ..... 28
2 Area of Variable Orifice of M37 Recoil Mechanism ..... 62
3 Breech Force for Zone 1 ..... 63
4 Breech Force for Zone 5 ..... 64
5 Breech Force for Zone 6 ..... 65
6 Breech Force for Zone 7 ..... 66
7 Breech Force for Zone 8 ..... 67
$A_{R}$ - Recoil rod area. in ${ }^{2}$
$A_{C}$ - Control rod area. in ${ }^{2}$
$A_{D}$ - Floating piston area. in ${ }^{2}$
$A_{N}$ - Total area of floating piston $=A_{C}+A_{D}$. in ${ }^{2}$
$A_{1}$ - Area of orifice between recoil and recuperating chamber. in ${ }^{2}$
$A_{2}$ - Area of orifice between recuperating and control chamber. in ${ }^{2}$
$A_{3}(x)$ - Variable area of the groove in the floating piston at position $x$. in ${ }^{2}$
$B(t)$ - Breech force at time $t$. lbf
$C_{1}$ - Discharge coefficient for orifice $A_{1}$.
$C_{2}$ - Discharge coefficient for orifice $A_{2}$.
$C_{3}$ - Discharge coefficient for orifice $A_{3}$.
$C_{q}$ - Equivalent friction coefficient for frictional loss at orifices
$F_{R}$ - Dry friction at recoil piston.
$F_{P}$ - Dry friction at floating piston.
$F_{q}$ - Equivalent dry friction.
$g_{1}$ - Position feedback gain.
$g_{2}$ - Velocity feedback gain.
$g_{3} \cdot g_{4}$ - other feedback gains for nonlinear feedback.
$J$ - objective function
$\left.\begin{array}{l}J_{3} \\ J_{4}\end{array}\right\}$ - Components of objective function
$\mathrm{J}_{5}$
$m_{\rho}$ - Mass of the floating piston lbf $\sec ^{2} /$ in
$m_{R}$ - Mass of the recoiling parts lbf $\sec ^{2} / i n$
$m_{q}$ - Equivalent mass $1 b f \sec ^{2} / i n$
$P_{0}$ - Initial gas pressure $\mathrm{lbf} / \mathrm{in}^{2}$
$P_{G}$ - Gas pressure at time $t \quad \mathrm{lbf} / \mathrm{in}^{2}$
R - Gas constant
$\operatorname{RDPL}(t)$ - Rod pull at time $t$ lbf
$\operatorname{RDPLD}(t)$ - Desired Rod pull at time $t$ lbf
T - Recoil time sec
$U(t)$ - Open area of servo valve $\mathrm{in}^{2}$
x - Position of recoiling parts with respect to recoil rod in
$\dot{x}$ - velocity of recoiling parts with respect to recoil rod in/sec
$\ddot{x}$ - Acceleration of recoiling parts
$y$ - Position of floating piston with respect to recoiling parts
w - Total weight of the recoiling parts.
$w_{q}$ - Equivalent weight of recoiling parts.

$\alpha$ - The angle of elevation of the gun karrel radians $p$ - Mass density of the hydraulic fluid.

Mathematical model for a conventional hydropneumatic recoil mechanism is developed from physical laws. This mathematical model is simulated on a digital computer by Phase-Plane-Delta method. The time histories of all pertinent parameters such as position of recoiling parts, hydraulic pressures in different chambers, rod pull are available and can be plotted.

A linear state feedback control system is proposed to adapt this conventional recoil mechanism to perform satisfactorily for all firing zones. The control and optimization problem is formulated. An objective function with direct relations to the performance and constraints of the problem is formulated. Davidon-Fletcher-Powell variable metric method of nonlinear optimization is used to design the feedback gains of the state feedback control law.

The above optimiaztion procedure is applied to M-37 recoil mechanism for zone 5 through 8. This recoil mechanism originally was designed for zone 7. One set of feedback gains is designed for each zone and switching of control laws is suggested. A significant improvement in the recoil force time trajectory shape and reduction in peak force of 2.5 to 25 percent is obtained.

## INTRODUCTION

Recoil mechanisms dissipate energy of the reaction of gunfire at a controlled rate so as to minimize the recoil force transferred to the carriage of a weapon system without exceeding available recoil length. Nerdahl and Frantz [ 9] have developed three degrees of freedom nonlinear models of hydropneumatic recoil mechanisms and a procedure to design a variable area orifice to control the energy dissipation. The procedure defines a control function or desired control recoil force-time trajectory for a design firing charge and with the help of digital simulation of the model, computes the orifice area at different positions of the recoil mechanism. This design performs satisfactorily for the designated firing charge, but far from optimum for other firing charges. Thus, a control system which. can adapt to different firing zones is desirable.

A linear state feedback control system with variable gains is proposed in the report. A separate control law is designed for each firing charge and the control law corresponding to the charge being fired is selected from this predesigned set. This control scheme can be implemented by adding a servo valve operating in
tandem with the variable area orifice. The feedback gains for the servo valve can be selected from a predesigned set by identifying the charge being fired by sensing signals such as acceleration with the help of a microprocessor or special purpose digital electronics. The design of the optimal control law is complicated by the highly nonlinear nature of the model induced by turbulent flow through orifices, dry friction at pistoncylinder surfaces and adiabatic gas compression. The nonlinear second order model is simulated on a digital computer using Phase-plane-delta method. A multifactor objective function with direct physical interpretation is developed as a function of the variables computed in the simulation. Davidon-Fletcher-Powell variable metric quasi-Newton nonlinear optimization algorithm is used to minimize the objective function. The procedure is applied to a M-37-105 mm recoil mechanism. Also, velocity feedback for lower zones 1,5 , and 6 is evaluated.

MATHEMATICAL MODEL FOR HYDROPNEUMATIC RECOIL MECHANISM

A schematic diagram for a conventional hydropneumatic recoil mechanism is shown in Fig. 1. A mathematical model based on the physical laws is developed with the following assumptions.

1) Flow through orifices is a potential flow.
2) Temperature variations do not affect the discharge coefficients for the orifice.
3) The recoil mechanism is secured to the carriage through a rigid link called the rod and the carriage rests on a rigid support.
4) Only translation of the recoil parts in direction of firing is considered.
5) There is no cavitation in any chamber.



## PRESSURE RELATIONS

$$
\begin{align*}
& P_{R}-P_{1}=\left(\frac{\rho}{2}\right)\left(\frac{A_{R}}{A_{1} C_{1}}\right)^{2} \dot{x}^{2} \operatorname{sgn} \dot{x} \\
& =T_{1} \dot{x}^{2} \operatorname{sgn} \dot{x}  \tag{1}\\
& \text { where } T_{1}=\left(\frac{\rho}{2}\right)\left(\frac{A_{R}}{A_{1} C_{1}}\right)^{2} \\
& P_{1}-P_{2}=\left(\frac{\rho}{2}\right)\left(\frac{{ }^{A_{C}}}{A_{2} C_{2}}\right)^{2} \dot{y}^{2} \text { sgn } \dot{y} \\
& =\left(\frac{\rho}{2}\right)\left(\frac{A_{C} C^{A}}{A_{2} C_{2}{ }^{A} N}\right)^{2} \dot{x}^{2} \operatorname{sgn} \dot{x} \\
& =T_{2} \dot{x}^{2} \operatorname{sgn} \dot{x}  \tag{2}\\
& \text { where } T_{2}=\left(\frac{\rho}{2}\right) \quad\left(\frac{A_{C} A_{R}}{A_{2} C_{2} A_{N}}\right)^{2} \\
& p_{1}-p_{3}=\left(\frac{\rho}{2}\right) \quad\left(\frac{A_{D}}{C_{3} A_{3}}\right)^{2} \dot{y}^{2} \text { sgny } \\
& =\left(\frac{\rho}{2}\right) \quad\left(\frac{A_{D} A_{R}}{C_{3} A_{3} A_{N}}\right)^{2} \dot{x}^{2} \operatorname{sgn} \dot{x} \\
& =T_{3} \dot{x}^{2} \operatorname{sgn} \dot{x}  \tag{3}\\
& \text { where } T_{3}=\left(\frac{\rho}{2}\right)\left(\frac{A_{D} A_{R}}{C_{3} A_{3} A_{N}}\right)^{2}
\end{align*}
$$

The gas pressure relation

$$
\begin{equation*}
P_{G}=P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x}\right)^{R} \tag{4}
\end{equation*}
$$

Thus the pressure equations are

$$
\begin{align*}
& P_{R}=P_{1}+T_{1} \dot{x}^{2} \operatorname{sgn} \dot{x}  \tag{1}\\
& P_{2}=P_{1}-T_{2} \dot{x}^{2} \operatorname{sgn} \dot{x}  \tag{2}\\
& P_{3}=P_{1}-T_{3} \dot{x}^{2} \operatorname{sgn} \dot{x}  \tag{3}\\
& P_{G}=P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x}\right)^{R} \tag{4}
\end{align*}
$$

Force balance for floating piston

$$
\begin{align*}
m_{p}\left(1+\frac{A_{R}}{A_{N}}\right) \dddot{x}= & m_{p} g \sin \alpha+A_{D} P_{3}+A_{C} P_{2}  \tag{5}\\
& -A_{N} P_{G}-F_{p} \operatorname{sgn} \dot{x}
\end{align*}
$$

Substituting for $P_{R^{\prime}}, P_{2}, P_{3}$ and $P_{G}$ from equations 1, 2, 3, \& 4 in 5 we have

$$
\begin{aligned}
m_{p}\left(1+\frac{A_{R}}{A_{N}}\right) & \ddot{x}=m_{p} g \sin \alpha+A_{D}\left(P_{1}-T_{3} \dot{x}^{2} \operatorname{sgn} \dot{x}\right) \\
& +A_{C}\left(P_{1}-T_{2} \dot{x}^{2} \operatorname{sgn} \dot{x}\right)-A_{N} P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x^{\prime}}\right){ }^{R}-F_{p} \operatorname{sgn} \dot{x} \\
& =m_{p} g \sin \alpha-\left(A_{D} T_{3}+A_{C} T_{2}\right) \dot{x}^{2} \operatorname{sgn} \dot{x} \\
& +\left(A_{D}+A_{C}\right) P_{1}+m_{p} g \sin \alpha-A_{N} P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x^{x}}\right)^{R}-F_{p} \operatorname{sgn} \dot{x}
\end{aligned}
$$

$$
\begin{align*}
A_{N} P_{1}= & m_{p}\left(1+\frac{A_{R}}{A_{N}}\right) \ddot{x}-m_{p} g \sin \alpha-\left(A_{D} T_{3}+A_{C} T_{2}\right) \dot{x}^{2} \operatorname{sgn} \dot{x} \\
& +A_{N} P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x}\right)^{R}+F_{p} \operatorname{sgn} \dot{x} \tag{6}
\end{align*}
$$

Force balance for recoil mass

$$
\begin{align*}
m_{R} \ddot{x}= & B(t)+m_{R} g \sin \alpha-A_{D} P_{3}-A_{C} P_{2}+A_{N} P_{G} \\
& +F_{p} \operatorname{sgn} x-A_{R} P_{R}-F_{R} \operatorname{sgn} \dot{x} \tag{7}
\end{align*}
$$

Adding Equations (5) and (7) we have

$$
\begin{align*}
{\left[m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)\right] \ddot{x}=} & \left(m_{p}+m_{R}\right) g \sin \alpha+B(t)- \\
& A_{R} P_{R}-F_{R} \operatorname{sgn} \dot{x} \tag{8}
\end{align*}
$$

Substituting for $P_{1}$ in Eq. (8) from Eq. (6) we have

$$
\begin{aligned}
& {\left[m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)\right] \ddot{x}=\left(m_{p}+m_{R}\right) g \sin \alpha+B(t)} \\
& -F_{R} \operatorname{sgn} \dot{x}-A_{R} T_{1} \dot{x}^{2} \operatorname{sgn} \dot{x}-\frac{A_{R}}{A_{N}}\left[m_{p}\left(1+\frac{A_{R}}{A_{N}}\right) x-m_{p} g \sin \alpha\right. \\
& \left.\quad+\left(A_{C} T_{2}+A_{D} T_{3}\right) \dot{x}^{2} \operatorname{sgn} \dot{x}+A_{N} P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x}\right)^{R}+F_{p} \operatorname{sgn} \dot{x}\right]
\end{aligned}
$$

$$
=\left[m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)\right] g \sin \alpha+B(t)-\left(F_{R}+F_{p} \frac{A_{R}}{A_{N}}\right) \operatorname{sgn} \dot{x}
$$

$$
-\left[A_{R} T_{1}+\frac{A_{R}}{A_{N}}\left(A_{C} T_{2}+A_{D} T_{3}\right)\right] \dot{x}^{2} \operatorname{sgn} \dot{x}-A_{R} P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x}\right)^{R}
$$

$$
-\frac{A_{R}}{A_{N}} m_{p}\left(1+\frac{A_{R}}{A_{N}}\right) \cdot \ddot{x}
$$

Finally

$$
\begin{align*}
& \quad\left[m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)^{2}\right] \ddot{x}+\left[A_{R} T_{1}+\frac{A_{R}}{A_{N}}\left(A_{C} T_{2}+A_{D} T_{3}\right)\right] \dot{x}^{2} \text { sgn } \dot{x} \\
& \quad+A_{R} P_{0}\left(\frac{V_{0}}{V_{0}-A_{R} x}\right)^{R}+\left(F_{R}+F_{p} \frac{A_{R}}{A_{N}}\right) \operatorname{sgn} \dot{x} \\
& =  \tag{9}\\
& {\left[m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)\right] g \sin \alpha+B(t)}
\end{align*}
$$

Let

$$
\begin{aligned}
m_{q} & - \text { equivalent mass } \\
& =m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)^{2} \\
C_{q} & - \text { equivalent damping coeffienct } \\
& =\left[A_{R} T_{1}+\frac{A_{R}}{A_{N}}\left(A_{C} T_{2}+A_{D} T_{3}\right)\right] \\
F_{q} & - \text { equivalent dry friction } \\
& =\left(F_{R}+F_{p} \frac{A_{R}}{A_{N}}\right) \\
W_{q} & - \text { equivalent weight } \\
& =\left[m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)\right] g \sin \alpha
\end{aligned}
$$

Thus equation (9) can be rewritten as

$$
\begin{align*}
m_{q} \ddot{x} & +C_{q} \dot{x}^{2} \operatorname{sgn} \dot{x}+F_{q} \operatorname{sgn} \dot{x}+A_{R^{\prime}} P_{0}\left(\frac{1}{1-\frac{A_{R}}{V_{0}} x}\right) R \\
& =W_{q}+B(t) \tag{10}
\end{align*}
$$

Note $-C_{q}$ is not a constant and is a function of the position of the floating piston due to the variable orifice area $A_{3}$.

The rod pull is

$$
\begin{equation*}
R D P L=P_{R} A_{R}+F_{R} \text { sgn } \dot{x} \tag{11}
\end{equation*}
$$

From equations (8) and (11) we have

$$
\begin{equation*}
R D P L=-\left[m_{R}+m_{p}\left(1+\frac{A_{R}}{A_{N}}\right)\right] \ddot{x}+\left(m_{p}+m_{R}\right) g \sin \alpha+B(t) \tag{12}
\end{equation*}
$$

Thus equation (10) is the final model of the form

$$
m \ddot{x}+(a+f(x)) \dot{x}^{2} \operatorname{sgn} \dot{x}+k\left(1-a_{0} x\right)^{-R}=w+B(t)
$$

and equations $1,2,3,4$, and 12 are relations for all pertinent variables.

## II

DIGITAL SIMULATION OF RECOIL MECHANISM MODEL

The nonlinear second order model developed in Section I Equation (10) can be simulated on a high speed digital computer by phase-plane-delta method. This method transforms a forced nonlinear model into a linear oscillator for a short interval of time and is explained in detail in Appendix $I$. The simulation results in time histories of all the pertinent variables such as position, velocity, rod pull, and all the pressures. This method is computationally very efficient.

The model in equation (10) can be reformulated in phase-plane-delta format as follows

$$
m_{q} \ddot{x}+c_{q} \dot{x}^{2} \operatorname{sgn} \dot{x}+A_{R} P_{0}\left(1-\frac{A_{R}}{V_{0}} x\right)^{-R}+F_{q} \operatorname{sgn} \dot{x}=W_{q}+B(t)
$$

or

$$
\begin{equation*}
\ddot{x}+p^{2}(x+\delta x)=0 \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
\delta x=-x & +\frac{1}{p^{2} m_{q}}\left\{C_{q} \dot{x}^{2} \operatorname{sgn} x+A_{R} P_{0}\left(1-\frac{A_{R}}{V_{0}} x\right)^{-R}\right.  \tag{14}\\
& \left.+F_{q} \operatorname{sgn} \dot{x}-W_{q}-B(t)\right\}
\end{align*}
$$

From initial conditions $\mathrm{x}_{0}=0, \dot{x}_{0}=0$, the simulation is started and run until the recoil mechanism starts counter-recoil.

A fortran program is written to simulate the recoil
mechanism based on equations (13) and (14).
An example simulation was run for $M-37$ recoil mechanism zone 7 firing charge. The phase plane, $x, \dot{x}, P_{3}, P_{G}$, and rod pull are plotted in Figures 2, 3, 4, 5, 6, and 7 .

The simulation results are in agreement with a digital simulation run by the Ware Simulation Division at Rock Island Arsenal using Continuous System Modeling Program (CSMP).







## III <br> FORMULATION OF ADAPTIVE CONTROL AND OPTIMIZATION PROBLEM

The control groove machined in the floating piston is designed for a designated zone and performs satisfactorily when used for the design zone. The purpose of this research is to adapt the recoil mechanism such that it adapts to the charges being fired so as to perform satisfactorily without violating the system constraints. A modified design of the recoil mechanism with a servo valve operating in tandem with the variable area groove is shown in Figure 8. The area of the servo valve that is open for the flow of hydraulic fluid is controlled by a feedback law. The feedback law can be changed by sensing the zone being fired. This adds the flexibility to change and adapt to the firing zone.

### 3.1 Linear State Feedback

A linear state feedback control is proposed to control the area of the servo valve and is of the form

$$
\begin{equation*}
u=g_{1} x+g_{2} \dot{x} \tag{15}
\end{equation*}
$$

where $g_{1}$ and $g_{2}$ are feedback gains and $u$ is the area of the servo valve. The corresponding modification in the mathematical model is in the equivalent damping coefficient $C_{q}$ as follows


$$
c_{q}=A_{R} T_{1}+\frac{A_{R}}{A_{N}}\left(A_{C} T_{2}+A_{D} T_{3}\right)
$$

and

$$
\begin{equation*}
T_{3}=\left(\frac{\rho}{2}\right)\left(\frac{A_{0} A_{R}}{C_{3} A_{N}\left(A_{3}+u\right)}\right)^{2} \tag{16}
\end{equation*}
$$

The modified form of the model is

$$
\begin{aligned}
m \ddot{x} & +[a+f(x)+u(x, \dot{x})] \dot{x}^{2} \operatorname{sgn} \dot{x}+k\left(1-a_{0} x\right)^{-R}+\text { Fsgn } \dot{x} \\
& =W+B(t)
\end{aligned}
$$

The task of finding optimal values $g_{1}$ and $g_{2}$ of the feedback gains is formulated as follows.

Find optimal values of $g_{1}$ and $g_{2}$ such that an objective function $J\left(g_{1}, g_{2}\right)$ is minimized subject to the following constraints. The system follows the model

1) $m_{q} \ddot{x}+C_{q} \dot{x}^{2} \operatorname{sgn} \dot{x}+F_{q} \operatorname{sgn} \dot{x}+A_{R} P_{0}\left(1-\frac{A_{R}}{V_{0}} x\right)^{-R}=W_{q}+B(t)$
where

$$
\begin{aligned}
& C_{q}=A_{R} T_{1}+\frac{A_{R}}{A_{N}}\left(A_{C} T_{2}+A_{D} T_{3}\right) \\
& \left.T_{3}=\left(\frac{\rho}{2}\right)\left(\frac{A_{0} A_{R}}{C_{3} A_{N}}\right)^{2} \frac{1}{\left(A_{3}+g_{1} X+g_{2} X\right.}\right)^{2}
\end{aligned}
$$

2) $X_{\text {max }}$, the maximum recoil length

$$
\leq X_{m} \text {, the available recoil length }
$$

3) There is no cavitation in chamber 3, i.e.,

$$
P_{3}(t) \geq P_{3} \min
$$

4) The maximum servovalve area $u=g_{1} x+g_{2} \dot{x}$

$$
U_{\max } \leq U_{m}
$$

3.2 Development of an Objective Function

The basic performance criterion is that the actual rod pull trajectory should follow as closely as possible the desired control trajectory for every zone. So let the control trajectory be RDPLD ( $t$ )

Then,

$$
J\left(g_{1}, g_{2}\right)=\int_{0}^{T}[\operatorname{RDPLD}(t)-\operatorname{RDPL}(t)]^{2} d t
$$

will represent the integrated error or least square error criterion. To be able to use unconstrained optimization techniques, penalty functions can be added to take care of constraints and hence the penalty functions are

$$
\begin{aligned}
& J_{2}=\int_{0}^{T} w_{2}\left(P_{3}(t)-P_{3} \min \right)^{2} d t \\
& J_{3}=\int_{0}^{T} w_{3}\left(U(t)-U_{m}\right)^{2} d t \\
& J_{4}=\int_{0}^{T} w_{4}\left(x-x_{m}\right)^{2} d t
\end{aligned}
$$

where

$$
\begin{array}{rl}
w_{2}=0 & P_{3}(t)>P_{3 \min } \\
w_{3}=0 & U(t)<U_{m} \\
w_{4}=0 & x<x_{m}
\end{array}
$$

So the composite objective function is

$$
\begin{aligned}
J\left(g_{1}, g_{2}\right)= & \int_{0}^{T}\left\{w_{1}(\operatorname{RDPLD}(t)-\operatorname{RDPL}(t))^{2}+w_{2}\left(P_{3}(t)-P_{3 \min }\right)^{2}\right. \\
& \left.+w_{3}\left(U(t)-U_{m}\right)^{2}+w_{4}\left(x-x_{m}\right)^{2}\right\} d t
\end{aligned}
$$

By choosing $w_{2}, w_{3}, w_{4}$ large postive numbers, the constraint violations can be avoided.

The VAlOA optimization routine availible on UNIVAC 1110 at UWMACC which uses Davidon - Fletcher - Powell (Appendix III) method was used to find optimal values of $g_{1}, g_{2}$ for zone 7 and results are shown in figure 9, 10. The control trajectory was chosen arbitrarily. Figure 9 is with no feedback and 10 is with optimal feedback gains of $g_{1}=.2742 \mathrm{E}-3$ and $g_{2}=.354 \mathrm{E}-7$. The actual trajectory follows the desired trajectory in Fig. 10 more closely than in Fig. 9.

The procedure was repeated for other zones with arbitrary control trajectory. The optimization procedure is very sensitive to the definition of the control trajectory and thus redefinition of the objective function without the control trajectory is necessary. The main objective can be reiterated as the minimization of rod pull and a flat trajectory to avoid sudden or sharp changes which induce: fatigue failure. The first derivative represents the smoothness or flatness of the trajectory to some extent and hence, a penalty for large first derivatives can be added to the objective function.



The new composite objective function can be written in five parts as

$$
J_{1}=\int_{0}^{T}(\operatorname{RDPL}(t)-C)^{2} d t
$$

where C is a constant $=4200$.
Penalty for non-smoothness

$$
J_{2}=\int_{0}^{T}\left\{\frac{\partial}{d t} \operatorname{RDPL}(t)\right\}^{2} d t
$$

Penalty for constraint violation for cavitation

$$
J_{3}=\int_{0}^{T}\left(P_{3}(t)-P_{3 \min }\right)^{2} d t
$$

Penalty for maximum servo-valve area constraint

$$
J_{4}=\int_{0}^{T}\left(U(t)-U_{m}\right)^{2} d t
$$

Penalty for maximum recoil length constraint

$$
J_{5}=\int_{0}^{T}\left(x-x_{m}\right)^{2} d t
$$

The composite objective function being

$$
\begin{aligned}
& J=w_{1} J_{1}+w_{2} J_{2}+w_{3} J_{3}+w_{4} J_{4}+w_{5} J_{5} \\
& \text { with } \quad w_{3}=0 \text { if } P_{3}(t)>P_{3} \min \\
& w_{4}=0 \text { if } U(t) \leq U_{m} \\
& w_{5}=0 \text { if } \quad x<x_{m}
\end{aligned}
$$

The weighting factors $w_{1}$ and $w_{2}$ provide a trade off between the minimum error and flatness of the rod pull trajectory. Large $w_{1}$ with respect to $w_{2}$ will result in sharp trajectory with a peak in initial stage of recoil.

Large $w_{2}$ with respect to $w_{1}$ will result in a sharp peak at a later stage in recoil and also possibly will result in cavitation at variable area orifice 3 . By choosing $w_{1}$ and $w_{2}$ in between these extremes, a satisfactory shape of the trajectory can be achieved.

The weighting factors $w_{3}, w_{4}$, and $w_{5}$ emphasize or de-emphasize the penalty functions for constraint violations. If any constraint is violated, the corresponding weighting factor can be increased so as to force the optimization algorithm to choose a feasible solution.
3.3 Results for M-37 Recoil Mechanism

The linear state feedback control system and optimization procedure discussed in Sections 3.1 and 3.2 was applied to $\mathrm{M}-37$ recoil mechanism. M-37 was designed for a firing charge zone 7. The design data and breech forces for zones 1, 5, 6, 7, and 8 are tabulated in Appendix III and was provided by the Ware Simulation Division at Rock Island Arsenal. The breech forces used are from simulated breech forces. The breech force for zone 8 was arrived at by multiplying breech force for zone 7 by 1.2 due to unavailability of data.

The feedback gains for zones 5, 6, 7, and 8 and other parameters are presented in Table 1. The rod pull characteristics are plotted in Figures 11 through 20 with no feedback and with optimal feedback.

Figures 11 and 13 portray the time history of the rod pull for no feedback and optimum linear feedback control for zone 8. Zone 8 was arrived at by multiplying zone 7 breech force by 1.2. Though the trajectory for no feedback looks very satisfactory, the Figure 12 which plots the pressure $P_{3}(t)$ reveals that there is cavitation and hence the model is no longer valid. Figure 13 shows trajectory not very flat but there is no cavitation as shown in Fig. 14. This is achieved through optimization with penalty for cavitation. With Random
Table 1 Results of Optimum Feedback for Zones 5, 6, 7 and 8

Zone	Gains		Recoil   Length   (in)	Recoil Time (sec)	Rod Pull Maximum (lbs)	Servo Value Area Maximum (in ${ }^{2}$ )
	$\mathrm{g}_{1}$	$\mathrm{g}_{2}$				
8	0	0	27	. 126	$\begin{aligned} & 25,200 \\ & \text { Cavitation } \end{aligned}$	0
8	. $81 \mathrm{E}-4$	. $884 \mathrm{E}-5$	27.6	. 12	$\begin{aligned} & 25,800 \\ & \text { No Cavitation } \end{aligned}$	. 005
7	0	0	27	. 13	$\begin{aligned} & \text { Max }^{m} 21,500 \\ & \text { Flat } 21,000 \end{aligned}$	0
7	. $1803 \mathrm{E}-3$	. $532 \mathrm{E}-5$	27.6	. 13	$\begin{aligned} & \text { Max }{ }^{m} 21,000 \\ & \text { Flat } 20,500 \end{aligned}$	. 0054
6	0	0	25.8	. 17	14,700	0
6	. $17 \mathrm{E}-3$	. $376 \mathrm{E}-4$	27.2673	. 158	12,900	. 0134
5	0	0	24	. 19	11,360	0
5	.6591E-3	. 1E-3	28.1647	. 194	$\begin{aligned} & \text { Max }^{m} 8,800 \\ & \text { Flat } 8,500 \end{aligned}$	. 032


(5000
30000


Search technique $P_{3}$ min was increased up to 20 psi. With reasonable $P_{3}$ min' cavitation can completely be eliminated.

Figures 15 and 16 are rod pull trajectories for zone 7 with no feedback and with optimal feedback. The improvement is not significant. The improvement was significant as shown in Figures 9 and 10 even for zone 7 with the first objective function. The relative improvement in peak force is about $2.5 \%$ and recoil length is longer by 0.6 inches. There is no change in the total recoil time of .13 seconds.

The rod pull trajectory for zone 6 with no feedback is a more triangular with maximum rod pull of 14,700 lbs. (Figure 17). The optimal feedback control law results in a very flat trajectory with maximum force of 12,900 which is a significant reduction of about $12 \%$ (Figure 18). The recoil length is increased from 25.8 inches to 27.27 inches but recoil time is reduced from .17 seconds to .158 seconds.

The rod pull trajectory for zone 5 with no feedback is a sharp triangular one with peak of 11,360 lbs. (Figure 19). The optimal feedback control law reduces this force to 8500 lbs with a flat and trapezoidal trajectory. The recoil length and time are both increased. The percentage reduction in recoil force is $25 \%$.






3.4 Tachometer Feedback

To investigate different control strategies, only velocity feedback of the form $u=g_{1} \dot{x}$ was studied. In general, it worked very well for lower zones 6,5 and 1 but failed to improve the trajectories for zone 7 and made it worse for zone 8. The optimum feedback gain was arrived at by trial and error.

Trajectory for zone 7 with tachometer feedback gain $g_{1}=.006 \mathrm{E}-3$ (Fig. 21) is not much of an improvement over one without feedback (Fig.15). Fig. 22 for zone 6 with $g_{1}=.025 E-3$ shows a substantial improvement over Fig. 17, the maximum force being 13,200 lbs.; though it is not better than linear state feedback (Fig.18). Fig. 23 for zone 5 with $g_{1}=.07 \mathrm{E}-3$ is trapezoidal and significant reduction in maximum rod pull to $9,400 \mathrm{lbs} .$, but is not better than linear state feedback of Fig. 20. Trajectory for zone 1 with $g_{1}=.35 \mathrm{E}-3$ (Fig. 24) is also very good with reduction to 5,350 lbs. over Fig. 25 (24\%).

Non-linear feedback control laws of the form

$$
u=g_{1} x+g_{2} \dot{x}+g_{3} x^{2}+g_{4} \dot{x}^{2}
$$

were investigated for zone 7. The trajectory obtained were with no improvement and sometimes were worse than those with no feedback.


10000




A mathematical model for a conventional hydropneumatic recoil mechanism was developed and simulated on a digital computer by method of Phase-Plane-Delta. A linear state feedback control system was proposed which can be implemented by retrofitting the present designs with a servovalve to operate in tandem with the variable area groove in the floating piston.

An objective function with direct relation to performance and physical constraints of the system was developed. Davidon-Fletcher-Powell nonlinear optimization algorithm was chosen to optimize this objective function. The procedure was applied to $\mathrm{M}-37$. recoil mechanism with reduction in peak recoil forces from 25 to $2.5 \%$ for lower zones and cavitation was avoided for zone 8. Tachometer feedback was shown to be effective for low zones.

The concept of feedback control system coupled with optimization procedure to design recoil mechanisms was demonstrated to be an efficient and very effective tool. The flexibility of feedback control is added retaining robustness of design.

The techniques of feedback control and optimization procedures are recommended for design of counter recoil and other design problems in recoil mechanism.

## REFERENCES

1. Seireg,Axi, Mechanical Systems Analysis, International Textbook Company, 1969.
2. Gottfried, Byron S. and Weisman, Joel, Introduction to Optimization, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1973.
3. Walsh, G.R., Methods of Optimization, John Wiley \& Sons, New York, 1975.
4. Bellman, Richard, Mathematical Optimization Techniques, University of California Press, Berkley, 1963.
5. Adby, P.R. and Dempster, M.A.H., Introduction to Optimization Methods, Chapman and Hall, London, 1974.
6. Box, M.J., "A New Method of Constrained Optimization and a Comparison With Other Methods," The Computer Journal, 8, pp. 42-52, 1975.
7. Box, M.J., "A Comparison of Several Current Optimization Methods and the Use of Transformations in Constrained Optimization," The Computer Journal, 9, pp. 67-77, 1966.
8. Nerdahl, M.C. and Frantz, J.W., "Development of a Mathematical Model for Designing Functional Controls of a Soft-Recoil Mechanism," Army Weapons Command, Rock Island, Illinois, $A D$ 713565.
9. Nerdahl, M.C. and Frantz, J.W., "Engineering Analysis, Recoil Mechanisms, XM45 Design of Control Grooves and Prediction of System Motion," Army Weapons Command, Rock Island, Ill. Research and Engineering Directorate, AD-876 531L, October 1970.
10. Frantz, J.W. and Nerdahl, M.C., "Mathematical Models for Engineering Analysis and Design of Howitzer, Medium, Towed, $155 \mathrm{~mm}, \mathrm{XM198}, "$ Artillery Systems Laboratory, Research and Engineering Directorate, U.S. Army Weapons Command, Rock Island, Ill., AD-876775L, October 1970.

Phase-plane-delta simulation of non-linear systems
Phase-plane-delta method is an efficient and fast simulation method for non-linear second order differential equations. A generalized phase plane method is also suitable for higher order non-linear differential models; for details see "Mechanical Systems Analysis" by A. Seireg [ 1 ]. The procedure is discussed below for second order equation reproduced with some variation from Prof. Seireg's book.

Consider a linear homogeneous second order differential equation

$$
\begin{equation*}
\ddot{x}+w_{n}^{2} x=0 \tag{1}
\end{equation*}
$$

The solution to this equation being

$$
\begin{align*}
& x=A \sin \left(w_{n} t+\phi\right)  \tag{2}\\
& \dot{x}=A w_{n} \cos \left(w_{n} t+\phi\right) \tag{3}
\end{align*}
$$

From equation 2 and 3 , it can be seen that

$$
x^{2}+\left(\frac{\dot{x}}{w_{n}}\right)^{2}=A^{2}
$$

which represents a circle in the $x$ versus $\frac{\dot{x}}{w_{n}}$ plane. This type of plot is known as the phase plane and is a very powerful and useful tool in the analysis of dynamic problems. It could be seen from Fig. 26 that the horizontal projection of the motion on a time scale will give the velocity curve plotted to a scale $w_{n}$. The


Figure 26 Phase Plane Method


Figure 27 Phase Plane Delta Method
starting point $X_{0}$ on the circle is defined by initial conditions at $t=0$, say $x=x_{0}$ and $\dot{x}=\dot{x}_{0}$; the amplitude of motion being

$$
A=\sqrt{x_{0}^{2}+\left(\dot{x}_{0} / w_{n}\right)^{2}}
$$

The complete procedure is detailed step by step as follows

1) Calculate the natural frequency $w_{n}$ of the system
2) Plot the two perpendicular axes representing $x$ and ( $\dot{x} / w_{n}$ ) respectively. These two axes represent the phase plane.
3) The origin 0 of the phase plane represents the equilibrium condition of the system.
4) Knowing the initial conditions of the motion in terms of initial displacement and velocity, a point $X_{0}$ can be plotted in the phase plane.
5) The free vibration of the system is represented by a circle. The center of the circle is the equilibrium point 0 . The radius of the circle is the distance $\mathrm{OX}_{0}$ joining the origin to the initial point $X_{0}$.
6) The conditions of motion at any time $t_{1}$ are represented by the coordinates of the point $X_{1}$ on the circle at a radial angle $w_{n} t_{1}$ from $X_{0}$. in the counterclockwise direction.
7) The projection of the phase-plane plot on a time scale in the direction of $x,\left(\frac{x_{w}}{w_{n}}\right)$ gives the dis. placement and velocity functions respectively.
8) All information concerning the time history of the motion can be obtained fron the phase-plane plot.

This scheme can be implemented on a digital computer

The phase-plane-delta method
The phase plane method previously discussed is used to study free vibrations of a linear system. With a slight modification, phase-plane method can be used for forced non-linear vibration problems as follows.

Let the system be

$$
\begin{equation*}
m \ddot{x}+k f(x, \dot{x}, t)-F(t)=0 \tag{4}
\end{equation*}
$$

Rewriting the equation

$$
\ddot{x}+\frac{k}{m}[\dot{x}+f(x, \dot{x}, t)-x-F(t) / k]=0
$$

or

$$
\begin{equation*}
\ddot{x}+p^{2}[x+\delta x]=0 \tag{5}
\end{equation*}
$$

where $\delta x=[f(x, \dot{x}, t)-x-F(t) / k] \& p=\sqrt{k / m}$ and is a known function of $x, \dot{x}, t, F(t)$. Equation 5 takes the same form as equation 1 where $p^{2}$ takes the place of $\mathrm{w}_{\mathrm{n}}{ }^{2}$ and x has to be continually modified by an amount $\delta x$ which is a function $x, \dot{x}, t$, and $F(t)$.

Therefore, at any instant of time the nonlinear equation can be represented in the phase-plane as a free vibration of a linear system with a continually changing datum. The procedure is outlined step by step as follows.

1) Write the equation in the form

$$
\ddot{x}+p^{2}(x+\delta x)=0
$$

where $p^{2}$ is a constant.
2) Express $\delta x$ as a function $x, \dot{x}, t, F(t)$.
3) Plot the phase plane axes to represent $x,(\dot{x} / p)$

Fig. 27.
4) Knowing initial conditions $x_{0}, \dot{x}_{0}$, a point $x_{0}$ can be plotted in the phase plane.
5) The value of $(\delta x)_{0}$ is also calculated for the initial condition at time $t=t_{0}$.
6) The center $O_{0}$ of the instantaneous linear vibration at the initial phase of the motion is therefore located on the $x$-axis at a distance $(\delta x)_{0}$ from the origin. When $\delta$ is positive, the distance is taken on the negative $x$-axis and vice-versa.
7) The instantaneous free vibration at the initial phase of the motion can be represented by a small arc of a circle with center $O_{0}$ and radius $O_{0} X_{0}$ in the counter-clockwise direction.
8) A new condition $X_{1}$ is reached after a small increment of time $t_{1}$ where the displacement $x_{1}$ and the velocity is $\dot{x}_{1}$.
9) The value of $(\delta x)_{1}$ corresponding to this new condition can be calculated, and a new center of oscillation $O_{1}$ is determined.
10) The new condition $x_{2}$ corresponding to an additional increment of time $t_{2}$ can be obtained from the arc of a circle with center $O_{1}$, having a radius $O_{1} X_{1}$ and subtending an angle $\mathrm{pt}_{2}$ in the counterclockwise direction.
11) This procedure is then repeated until the time required is reached.
12) It should be noted here that the accuracy of this procedure depends on the magnitude of the angular displacement pt. Better accuracy can be attained also by iteration. This means that after $X_{1}$ is determined, a value of $\delta x$ is calculated which corresponds to a point midway between $X_{0}$ and $X_{1}$. Using this new value of $\delta x$, a better approximation for the new position $X_{1}$ after a small increment of time $t_{1}$ can be obtained. This procedure can be repeated until a desired accuracy is achieved.
13) This procedure is suitable for programming on a high-speed digital computer.

## APPENDIX II

ALGORITHMS FOR OPTIMIZATION
OF NON-LINEAR FUNCTIONS

Three algorithms for non-linear optimization are discussed:

1) Davidon-Fletcher-Powell unconstrained optimization with cubic interpolation.
2) Davidon-Fletcher-Powell unconstrained optimization with
linear search by golden section.
3) Constrained optimization by Random search.

A short introduction to gradient methods of optimization is presented.
The problem of non-linear optimization can be stated as
Find a vector $\underset{\sim}{x}$ of parameters to minimize
$J(x)$, an objective function subject to certain con-
straint of type

$$
c_{i}(x) \leqslant,=\text { or } \geqslant b_{i}
$$

We can express $J(x)$ in Taylor series expansion as

$$
\begin{equation*}
J(x+\Delta x)=J(x)+\Delta x^{\prime} g+\frac{1}{2} \Delta x^{\prime} G \Delta x+\ldots \tag{1}
\end{equation*}
$$

where $\Delta x$ is a vector of increment in $x$
$g$ is the gradient vector
$G$ is the Hessian Matrix of second order partial
derivatives
The first order approximation is

$$
J(x+\Delta x)=J(x)+\Delta x^{\prime} g
$$

The reduction in the function $J(x)$ for moving to $x+\Delta x$ is $\Delta x^{\prime} g$ and is maximum if we move in the negative direction of gradient vector $g$.

$$
\begin{equation*}
\therefore \Delta x=-\lambda \frac{g}{|g|} \tag{2}
\end{equation*}
$$

The optimum value of $\lambda$ is found by univariate linear search in the direction $-\frac{g}{|g|}$.

This is called the steepest descent method. This method converges very slowly. The extension of this method is the conjugate gradient method. Assuming the objective function is quadratic of the form,

$$
\begin{equation*}
J(x)=\frac{1}{2} x^{\prime} G x+b x+c \tag{3}
\end{equation*}
$$

one can find a sequence of search directions $u_{1}^{1}, u_{2}, \ldots, u_{k}$ such that

$$
\begin{equation*}
u_{i} G u_{j}=0 \quad i \neq j \tag{4}
\end{equation*}
$$

By moving sequentially in the directions $u_{1}, u_{2}, \ldots, u_{k}$ with linear univariate searches we can reach the optimum

$$
\begin{equation*}
x^{\star}{ }_{\min }=x_{0}+{\underset{i=1}{n} \lambda_{i} u_{i}, ~}_{i=1} \tag{5}
\end{equation*}
$$

The steepest descent and conjugate gradients are illustrated in
Fig. 28 for two parameter case


Steepest Descent


Figure 28a


Figure 28b
Concept of Conjugate Gradient

The conjugate gradient method transforms concentric elliptic contours into concentric circular contours. The circular contour has the desirable property of the normal to the tangent at any point passes through the center. Once the direction of normal is found in this plane, it can be transformed back to the original plane and direction of the increment in x can be found out and this will pass through the minimum for the quadratic function.
(3) Newton-Raphson Method

$$
\begin{equation*}
J(x+\Delta x)=J(x)+\Delta x^{\prime} g+\frac{1}{2} \Delta x^{\prime} G \Delta x \tag{6}
\end{equation*}
$$

differentiating with respect to $\Delta x$

$$
\frac{\partial J(x+\Delta x)}{\partial \Delta x}=g+G \Delta x
$$

for $x+\Delta x$ to be a optimum point

$$
\begin{align*}
& \frac{\partial J(x+\Delta x)}{\partial \Delta x}=0 \\
& g+G \Delta x=0 \quad, \quad \Delta x=-G^{-1} g \tag{7}
\end{align*}
$$

This method is called Newton-Raphson and is a very efficient method if $G$ and $g$ are available.

The problem for non-quadratic function minimization is to find $G$ which is positive definite and the question of how good an approximation of second order Taylor expansion is. The combination of conjugate gradient method for fast movement when away from minimum can be utilized with the conjugacy being with respect to the Hessian $G$. The Davidon-Fletcher-Powell (DFP) algorithm does exactly that.

The DFP algorithms continuously updates $H$, the inverse of the hessian matrix with linear search in direction of conjugate gradient by cubic interpolation. The step by step procedure given below is reproduced with variation from [4]. The details can be found in [2,3,4 \& 5].

1) Set $H_{i}=I$ and let $k$ be the current iteration number, then set

$$
\begin{equation*}
d_{k}=-H_{k} g_{k} \tag{8}
\end{equation*}
$$

then, $d_{k}$ is the direction of search from the current point $x_{k}$
2) Perform a linear search to find $\lambda_{k}^{*}(>0)$, where $\lambda_{k}^{*}$ is the value of $\lambda_{k}$ that minimizes $J\left(x_{k}+\lambda_{k} b_{k}\right)$
3) Set $\Delta x_{k}=\lambda^{*}{ }_{k} d_{k}$
4) Set $x_{k+1}=x_{k}+\Delta x_{k}$
giving the new current point
5) Evaluate $J\left(x_{k+1}\right)$ and $g_{k+1}$
6) Set $\Delta g_{k}=g_{k+1}-g_{k}$
7) $H_{k+1}=H_{k}+\frac{\Delta x_{k} \Delta x_{k}^{\prime}{ }_{k}}{\Delta x^{\prime}{ }_{k} \Delta g_{k}}+\frac{H_{k} \Delta g_{k} \Delta g^{\prime}{ }_{k} H_{k}}{\Delta^{\prime} g_{k} H_{k} \Delta g_{k}}$
8) Set $k=k+1$ and return to step 1 .
9) Stop when either $\left|d_{k}\right|$ or every component of $d_{k}$ is smaller than some prescribed amount.

The linear search in step 2 can be performed in two ways with cubic interpolation or golden section search.

## Cubic interpolation procedure:

1) Evaluate $J_{0}=J\left(x_{k}\right)$ and $G_{0}=g_{k}^{\prime} d_{k}$
check $G_{0}<0$. Compute $\alpha$ by

$$
\begin{equation*}
\alpha=\min \left[2,-\frac{2\left(J_{0}-J_{e}\right)}{G_{0}}\right] \tag{13}
\end{equation*}
$$

where $J e$ is the estimated values of $J\left(x_{k}+\lambda^{*}{ }_{k} d_{k}\right)$.
2) Evaluate $J_{\alpha}=J\left(x_{k}+\alpha d_{k}\right)$ and $G_{\alpha}=g_{\alpha}=g^{\prime} d_{k}$
3) If $G_{\alpha}>0$ or if $J_{\alpha}>J_{0}$, proceed to rule 5 otherwise go to rule 4.
4) Replace $\alpha$ by $2 \alpha$, return to rule 2 .
5) Interpolate in the interval $[0, \alpha]$ for $\lambda^{*}{ }_{k}$ using

$$
\begin{equation*}
\frac{\lambda_{k}^{*}}{\alpha}=1-\frac{G_{\alpha}+w-Z}{G_{\alpha}-G_{0}+2 w} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\left(z^{2}-G_{0} G_{2}\right)^{1 / 2} \tag{15}
\end{equation*}
$$

and

$$
Z=\frac{3}{\alpha}\left(J_{0}-J_{\alpha}\right)+G_{0}+G_{\alpha}
$$

6) Return to rule 5 to repeat the interpolation in the smaller interval $\left[0, \lambda_{k}\right]$ or $\left[\lambda_{k}, \alpha\right]$ accordingly as

$$
g_{k+1}^{1} d_{k} \geqslant 0 \text { or }<0
$$

stop when the interval of interpolation has decreased to some prescribed value.

The complex method of M.J. Box [6], [7], with random search generates a simplex of $n+1$ points where $n$ is the number of parameters to be optimized. The function is computed at each of the vertexes and the worst vertex is discarded. The reflection of this discarded vertex into the centroid of the remaining vertices is taken as a new vertex and search is carried out in two dimensions, the nrocedure is as follows:


Three initial vertices are $x_{0}, x_{1}, x_{2}$. Let $x_{0}$ be the worst vertex and $x_{c}$ be the centroid of $x_{1}$ and $x_{2}$. Then $x_{3}$ is computed by the relation

$$
x_{3}=(1+\alpha) x_{c}-\alpha x_{\min }
$$

where $x_{\min }$ is vertex with minimum function value. The procedure is repeated until minimum is obtained.

## Appendix III

Design Data for M-: 37 Recoil Mechanism

M-37. recoil mechanism is designed for firing zone
7. All the pertinent parameters necessary for simulation of recoil mechanism model developed in Chapter 1 are given below. The variable area of the groove machined in the floating piston is tabulated in Table 2. Breech forces are tabulated in Tables 3 through 7 for zones 1, 5 through 8. These breech forces are simulated breech force data rather than actual test data. All the design data listed here was provided by Control and Stabilization group of General Rodman Laboratory, Army Weapons Command at Rock Island, Illinois.

$$
\begin{aligned}
& m_{R}-\text { Mass of recoiling parts }=3.6658 \mathrm{lbf} \mathrm{sec}^{2} / \mathrm{in} \\
& m_{\mathrm{P}}-\text { Mass of floating piston }=.06735 \mathrm{lbf} \mathrm{sec}^{2} / \mathrm{in} \\
& \rho-\text { Mass density of hydraulic fluid }=.78 \mathrm{E}-4 \\
& P_{0}-\text { Initial gas pressure }=1153 \mathrm{psi} \\
& V_{0}-\text { Initial volume of gas }=513 \mathrm{in}^{3} \\
& R-\text { Gas constant }=1.68 \\
& A_{R}-\text { Recoil piston area }=2.9906 \mathrm{in}^{2} \\
& A_{C}-\text { Control rod area }=2.4053 \mathrm{in}^{2} \\
& A_{D}-\text { Floating piston area }=11.781 \mathrm{in}^{2} \\
& C_{1}=C 2=C 3-\text { Discharge coefficients }=.8 \\
& A_{1}-\text { Area of orifice } 1=1.25 \mathrm{in}^{2} \\
& A_{2}-\text { Area of orifice } 2=.4536 \mathrm{in}^{2}
\end{aligned}
$$

TABLE 2- AREA OF VARIABLE ORIFICE A3

X	A3 ( X )	$X$	A3(x)
0.00000	. 08680	15.12600	. 07900
. 50420	. 09370	15.63020	. 07710
1.00840	. 09410	16.13440	. 07520
1.51260	. 09630	16.63860	. 07320
2.01680	. 09950	17.14280	. 07130
2.52100	.10110	17.64700	-06940
3.02520	. 10210	18.15120	. 06750
3.52940	. 102.50	18.65540	- $\cap 6540$
4.03360	. 20270	19.15960	-06320
4.53780	.10290	19.66380	. 06100
5.04200	.10280	20,16800	. 05880
5.54620	. 10250	20.67220	. 05630
6.05040	.10190	21.17640	. 05380
6.55460	.10120	21.68060	. 05120
7.05880	.10060	22.18480	. 04870
7.56300	.09960	22.68900	.04580
8.06720	. 09870	23.19320	. 04290
8.57140	. 09770	23.69740	. 03980
9.07560	. 09670	24.20160	. 03630
9.57980	. 09540	24.70580	- 02270
10.08400	.09410	25.21000	. 02870
10.58820	. 09290	25.71420	. 02410
11.09240	. 09150	26.21840	.01910
11.59660	. 09000	26.72260	. 21330
12.10080	. 08850	27.22680	. 01620
12.6050 n	. 08720	27.73100	0.00000
13.10920	. 08570	28.23520	0.00000
13.61340	. 08410	28.73940	0.06000
14.11760	.08250	29.24360	0.00000
14.62180	.08090		

table 3-fiqeech firce for 2tre 1

T	B (T)	T	E (T)
0.00000	9.0	. 03800	1757.0
. 00050	5.0	. 14000	1526.0
-0010:	6.0	-044200	1329.0
-00157	7.0	. 04400	1159.0
.0020.7	8,0	. 04600	1013.0
. 00250	9.0	. 04800	887.0
- 00300	10.0	. 05000	778,0
.00350	$1 \therefore .0$	. 05200	6E3.0
. 20400	12.0	. 05400	6C2.0
-00450	10.0	. 0.5600	530,0
- 00500	72.0	. 05800	468.0
- $01055^{\circ}$	1177.0	, "6000	414.0
-0060?	2041.0	. 06200	367.0
. 00659	3287.0	. 116400	326.0
. 007001	5272.0	. 06600	2.29.0
. 00750	3393.0	.06800	2.57.0
- 20802	13220.0	.07000	229.0
- 00650	20477.0	. 07200	2C5,0
- 00300	30924.0	. 27400	283.0
- 0 C25)	44997.0	.07600	163.0
- 01000	C2180.0	.07802	146.0
. 11050	30403.0	- 2800	131.0
. 011001	76098.0	. C 820	188.0
-1)115\%	105714.0	. 08400	1с6.0
.01187	$1 \sim 7588.0$	. 08600	55,0
-0125:1	102620.0	-08800	86.0
. 01300	O3260.0	. 09000	77.0
- $0135{ }^{\circ}$	82047.0	. 09200	70.0
- 01400	70792.0	. 09400	63.0
-0145	60482.0	. 19600	57.0
- 01502	$5150 n .0$	.99800	52,0
- 01557	43889.0	.10000	47.0
.01600	37532.0	.10200	43.0
.0165	32252.0	.10400	29.0
.0170	27872.0	.10600	25.0
. 01750	24231.0	.10800	32.0
. 01808	21192.0	. 11000	29.0
- 21850	13643.0	.11200	27.0
-01900	16493.0	.11400	24.0
. $0125 \sim$	14669.0	.11600	22.0
. 02000	13113.0	.11800	20.0
. 02050	11770.0	.12000	19.0
. 22100	10626.0	.12200	17.0
. $0215 \%$	3626.0	.12400	16.0
. 02200	8755.0	. 12600	14.0
. $0225{ }^{\circ}$	7992.0	.12800	13.0
. 0230 ,	7320.0	.13000	12.0
- 02350	9726.0	. 132.00	11.0
- 02400	6199.0	. 13400	10.0
- 02457	5729.0	.13600	9.0
. 02500	530n. 0	.13800	9.0
-0255			
. 02607	4593.0	.142.00	7.0
- 12657	4286.0	. 14400	7.0
.0270n	4009.0	. 14600	6.0
.02724 .02759	3384.0	- 14800	6.0
.0280.?	3803.0 366.5	.15000 .152 .00	5.0 5,0
.0300)	3147.0	. 20000	0.0
- 03200	2712.0		
. 03607	2342.0		

TABLE 4. EREECH FITRCE FIR ZTAL 5

T	$B(T)$	T	$E(T)$
0.00000	159.0	.03600	2426.0
. 00050	246.0	. 03800	2069.0
. 00100	513.0	. 04000	1769.0
. 00150	938.0	.04200	1517.0
. 00200	1724.0	. 04400	1364.0
. 00250	3113.0	.04600	1123.0
. 00300	5642.0	. 04800	9 ¢9.0
.00350	10127.0	. 05000	839.0
. 00400	18001.0	. 05200	727.0
. 00450	31434.0	. 05400	632.0
. 00500	53257.0	. 05600	550.0
. 00500	85873.0	. 05800	480.0
. 00600	128386.0	. 06000	419.0
. 00650	173036.0	. 06200	367.0
. 00700	206:42.0	. 06400	322.0
. 00748	217035.0	. 06600	283.0
. 00750	217008.0	.08800	249.0
.00800	205962.0	.07000	220.0
. 00850	181687.0	.07200	194.0
. 00900	153385.0	.07400	172.0
.00950	126693.0	.07600	152.0
.01000	103872.0	. 07800	125.0
.01050	85258.0	. 08000	120.0
. 11100	70386.0	. 08200	$1 C 7.0$
-01200	49196.0	. 08400	55.0
.01250	41695.0	. 08600	85.0
. 01300	35654.0	. 08800	76.0
.01350	30747.0	. 09000	E8.0
. 01400	26725.0	. 09200	61.0
. 02450	23400.0	. 09400	54.0
. 01500	20628.0	. 09600	49.0
. 01550	18298.0	.09800	44.0
. 01600	16324.0	.10000	39.0
. 01650	14641.0	.10200	36.0
. 01700	13195.0	.10400	32.0
. 01734	12315.0	.10600	29.0
. 01750	12135.0	.10800	26.0
.01800	11575.0	.11000	24.0
. 02000	9605.0	. 11200	21.0
. 02200	7998.0	.11400	19.0
. 02400	6683.0	.11600	18.0
. 02600	5602.0	.11800	16.0
. 02800	4711.0	.20000	0.0
. 03000	3973.0		
. 03200	3361.0		
. 03400	2852.0		

TABLE 5- BREECH FIIRCE FMR ZINE 6

T	R(T)	T	E(T)
0.00000	384.0	. 03500	2545,0
. 20050	706.0	. 03700	2135.0
. 00100	1491.0	. 03900	1757.0
.00150	2937.0	. 04100	1517.0
. 00200	5300.0	. 04300	1285.0
- 00250	11343.0	. 04500	1091.0
. 00300	21947.0	- 04700	929.0
-0035	41614.0	. 04900	793.0
. 00400	76017.0	- 05100	678.0
. 00450	130033.0	.05300	582.0
. 00500	200301.0	.05500	5 C 0.0
. 00550	267029.0	. 05700	431.0
.0060n	302300.0	. 55900	373.0
. 00616	304395.0	.06100	323.0
. 00650	295349.0	. 06300	280.0
. 00700	259560.0	. 06500	243.0
. 00750	214473.0	. 10700	212.0
. 00800	172277.0	. 06900	185.0
.00850	137329.0	.07100	162.0
. 00900	109863.0	. 07300	142.0
.00950	88691.0	. 07500	124.0
.01000	72415.0	.07700	159.0
. 11050	59835.0	. 07900	96.0
.01100	50018.0	.18100	85.0
.01150	42274.0	. 08300	75.0
.91400	2088\%.0	. 08500	66.0
.01431	19380.0	. 08700	59.0
. 01450	18986.0	. 18900	52.0
. 01500	17983.0	.09100	46.0
.0170n	14514.0	. 09300	41.0
. 01900	11769.0	. 09500	27.0
.0210n	9586.0	. 09700	33.0
- 22300	7841.0	.09900	29.0
- 02500	6440.0	.10100	26.0
- 02700	5310.0	.10300	24.0
. 22900	4395.0	.20000	0.0
. 3100	3651.0		
. 03300 r	3043.0		

TABLE 6- BREECII FORCE FOR, ZOIIE 7

T	B(T)	T	3(T)
0.00000	2809.6	. 01700	13971.0
. 00020	4589.6	. 11740	13354.0
. 00060	9056.6	. 01780	12765.0
. 00100	18069.0	.01820	122C4.0
. 00140	35565.0	.01860	11668.0
.00180	68543.0	.01900	11156.0
. 00220	126940.0	.01940	10674.0
. 00260	219070.0	.01980	10214.0
. 00300	337720.0	. 02020	9775.1
. 00340	446170.0	. 02060	9355.5
. 00380	496900.0	.112100	8954.5
.00420	476070.0	. 02140	8576.1
. 00460	411400.0	.02180	8215.1
. 00500	335660.0	. 02220	7869.6
. 00540	267300.0	. 02226	7538.8
. 00580	211870.0	. 023200	7222.5
. 90620	168900.0	. 02340	6924.1
. 00660	136050.0	. 02380	6638.1
. 00700	110950.0	. 02420	6364.5
$.0074 n$	91613.0	. 02460	6102.9
. 00780	76562.0	. 02500	5852.1
. 00820	64706.0	. 22540	5615.3
. 00860	55253.0	. 02580	5389.0
. 00900	47627.0	. 02620	5171.7
. 00940	41322.0	. 22660	4963.0
. 00980	36281.0	.02700	4763.3
. 01020	32030.0	.02740	4574.0
- 11060	29784.0	. 02780	4383.7
-01100	28358.0	. 02820	4220.4
.01140	27013.0	. 02880	4054.0
.01180	2.5736 .0	. 22900	38\%4.2
.01220	24521.0	. 02940	3743.0
. 01260	23366.0	. 02980	3558.0
-01300	22263.0	. 03020	3458.6
.0134n	21237.0	. 04020	1361.8
-11380	2.0257.0	. 05020	578.4
-02420	19324.0	.06020	263.3
- 01460	18435.0	.07020	128.1
. 021500	17588.0	. 08020	¢3.5
. 01540	16794.0	. 29020	0.0
. 01580	16036.0	. 20000	0.0
.01620	15314.0		
. 01660	14626.0		

TABLE 7 - BPEECU FDRCE FIR ZOUE 8

T	$8(T)$	T	B ( $T$ )
0.00000	3090.6	. 02700	15368.1
-0002.	5048.6	.01740	14689.4
. 00000	9964.5	. 01780	14041.5
.00100	1987.5	.01820	13424.4
- 00140	39121.5	.01860	12834.8
. 00180	75397.3	. 11900	12271.6
. 00220	139634.0	. 01940	11741.4
-00260	240977.0	.01980	11235.4
. 00300	371491.9	.02020	:0752.6
. 00340	490786.9	.02060	10251.0
. 00380	546589.9	.02100	9849.9
. 00420	523676.9	.02140	9433.7
- 00460	452539.9	.02180	9036.6
- 00500	369225.9	-(2220	8656.6
.00540	294029.9	. 02226	8292.7
.0058	233057.0	. 02300	7944.7
-0062n	135790.0	- 02340	7616.5
.00660	149655.0	. 02380	$73 C 1.9$
.00700	122045.0	. 02420	7 CO 0.9
- 00740	100774.3	. 02461	6713.2
.00780	84218.2	. 02500	6437.3
.00820	71176.6	. 02540	6176.8
.00867	60778.3	- 22580	5927.9
. 00900	52389.7	.02620	5688.9
. 00940	45454.2	. 02680	5459.3
.00980	39909.1	. 02700	5239.6
- 11020	35233.0	-. 2740	5031.4
.01060	32762.4	. 12780	4833.1
-0110n	31193.8	. 02820	4642.4
-01140	29714.3	.02860	4459.4
- 91180	28300.6	. 02900	42.83 .6
- 01220	26973.1	. 029417	4117.3
- 01260	25902.6	. 22980	3957.8
. 01300	24494.8	. 03020	$38 \mathrm{C4.5}$
. 01347	2336.0 .7	. 04020	1458.0
. 01380	$2228 \% .7$	. 25020	636.2
. 01420	21256.4	. 06020	289.6
- 12460	2.0278 .5	. 07020	140.9
. 02500	19346.8	. 08020	69.8
-01540	18473.4	. 09020	0.0
-01580	17639.6	. 20000	0.0
- 01620	16845.4		
-0166.)	15088.6		

## DISTRIBUTION

Copies
Defense Documentation Center ATTN: TIPCR ..... 12
Cameron Station Alexandria, VA ..... 22314
Commander
US Army Harry Diamond LaboratoriesATTN: AMXDO-EDC1
AMXDO-SA ..... 1
Washington, DC ..... 20438
Commander
US Army Armament Materiel Readiness Command ATTN: DRSAR-LEM ..... 1
Rock Island, IL ..... 61201
Commander
US Army Armament Research \& Development CommandATTN: DRDAR-LCW
Mr. R. Wrenn ..... 1
DRDAR-LCW
Mr. M. Barran ..... 1
DRDAR-SCW-T
Mr. E. Larrison ..... 1
Picatinny Arsenal
Dover, NJ 07801
CommanderUS Army Research Office
ATTN: Information Processing Office ..... 1
P.O. Box 12211
Research Triangle Park, NC ..... 27709
Commander
US Army Tank-Automotive Research \& Development CommandATTN: Technical Library1
DRCPM-60 ..... 1
Warren, MI 48090
Commander
Project Manager
Cannon Artillery Weapons systemsATTN: DRCPM-CAWS1
Dover, NJ 07801
CommanderRock Island ArsenalATTN: SARRI-ENW10SARRI-ENSARRI-ADL2
Rock Island, IL ..... 61201
University of Wisconsin-MadisonDepartment of Mechanical EngineeringATTN: Dr. S. Wu5
Madison, WI 53706

