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ABSTRACT
We study the nonlinear Volterra equation
t
u'(t) + Bu(t) + f a(t-s)Au(s)ds 3 F(t) (0 <t <o) (' = d/dt)
5 0
(%)
L u(o) = uo ’
as well as the corresponding problem with infinite delay :
t
u'(t) + Bu(t) + f a(t-s)Au(s)ds 3 f(t) (0 <t < o)
(%) -0
ult) = kit (=0 <t <0).
‘ Under various assumptions on the nonlinear operators A, B and on the given
q

functions a, F, f, h existence theorems are obtained for (*) and (**), followed
by results concerning boundedness and asymptotic behaviour of solutions on
(0 <t <=); two applications of the theory to problems of nonlinear heat flow

with "infinite memory" are also discussed.
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AN ABSTRACT NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION

£ sk Aok ok
M. G. Crandall , S.-O. Londen , and J. A. Nohel

1. Introduction and Summary of Results

We study the nonlinear Volterra equation

t
u'(t) +Bu(t) +f a(t-s)Au(s)ds > F(t) (0<t<oo) ('=d/dt)
0

(1.1) :
u(0) = Uy ;

as well as the corresponding problem with infinite delay

t
u'(t) +Bu(t)+ [ a(t-s)Au(s)ds > f(t) (0 <t < )
-00

(1.1)
o0
u(t) = h(t) (-o<t<O0).

Under various assumptions on the nonlinear operators A, B and on the i

given functions a, F, f, h existence theorems are obtained for (1.1)
and (1. lw), followed by results concerning boundedness and asymptotic
behaviour of solutions; two applications illustrating the theory to problems
of heat flow "with memory" are also discussed. This work was partly
motivated by Barbu [ 2]; see below.

The technical conditions appropriate to various circumstances are some-
what cumbersome and distracting to state. We therefore collect the assump-

tions common to most of our results under the name ''general assumptions. "

Sk
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The General Assumptions. Let H be a real Hilbert space and W a

real reflexive Banach space satisfying
(1. 2) WCHCW

where W' is the dual of W. It is assumed that the injections in (l. 2)
are continuous and dense and (w', w) = (w', w) for w'eH, weW where
(w', w) is the value of w'e W' at weW and ( , ) is the inner
product of H. We denote the norm in H by | . | and the norm in W

by Il - . Let ¢ :W = (-0, ©] and ¢ :H = (-, ©] be convex,

lower semicontinuous (l.s.c.) and proper functions and define
(1. 3) A=y, B = go,

where 3, 9¢ are the subdifferentials of ¢ and ¢ respectively (see,
e.g., [5]). Then A and B are (possibly multivalued) maximal
monotone operators from W and H to W' and H respectively.
Define by H - (-»,o] by

(1.4) ¢H(u) = lim inf{y(v) : ve W and |v-ul <r}.
rio

¢H is automatically l.s.c. and Q'H is convex since ( 1s convex.
¢H is the largest l.s.c. function on H satisfying q;H <¢ on W.
We assume that

{1.5) q;H(u) = ¢(u) for ue w.




Let A is maximal monotone in H and, in view of (1.5),

- %y Py
has the property

(1.6) AHuCAu for ue W.

This follows from the implication: u € W, ve H and q;H(z) 2 n.pH(u) +(v,z - u)
k| for z € H =>(z) > y(u) +{v,z - u) for z€ W when (1.5) holds.

Note that if :L :H —» (-»,o] defined by

: 1 i Wu), uew
1 | ‘JJ(U) =
‘ +oo , ue H\W
is l.s.c., then E = q"H and (1.5) holds. Moreover, ¢ is l.s.c. if ;
lim  (u) = +o, .
| lall e
i The Yosida approximations 1\ of AH can be defined for \ >0 by
{
| =R LD IOE = G ARE
A\ NN, H :

see [ 5] for the properties of PX Relating AX and B we assume there

exists P € [0,®) such that

(1.7) (W,Axu)z-ﬂ(|w|2+|u|2+l) for ue H, we Bu, \e (0,1]. 1
We will also require the compactness assumption

(1.8) For every K>0, {u€ H: l<p(u)| + |ul <K} is precompact in W . ’

In particular, we assume D(¢)SW.

Finally, as regards the kernel a, we will require that the following ~== e v

e e u——

" . Whlte Section
conditions are satisfied. -
(2000 T s 20 -7 | T SR e S ST SRS s ) £ O R e O T AL l
(1.9) a(t) is locally absolutely continuous on [0,%). ’
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( (" For every T >0 thereis a Kp >0 such that
2
ve L°(0, T; H), dl,dze [0,o) and
t S
f (a *v(s),v(s))ds _<_d1 + d2 max lf v(-r)d-rl, Dst<T,
0 0<s<t 0
t
1.10
( ) ﬁ (where a * v(t) = f a(t - s)v(s)ds) imply
0

)

t
l{ v(s)ds | _EKT('*/d_1 + dz), B S

t
\_ and ['f (a*v(s),v(s))dsngT(d
0

2
1+d2)’ 0Lt£LT.

Note that if v € LZ(O, To: H)) whel:e T0 < T satisfies the assumptions
of (1.10) on [0,T.], then v extendedas 0 on (To, T] satisfies
the same conditions on [0, T]. Thus, without loss of generality, T - KT
can be assumed nondecreasing. This concludes the general assumptions.
Some remarks on Conditions (a) are appropriate before proceeding
to the statement of the main results. Conditions (a) abstract what is
actually used in the proofs and are stated in this form for simplicity of
presentation. Moreover,das stated these conditions are perfectly sensible
for operator valued kernels and our results hold in this generality. A
general sufficient condition which implies Conditions (a) is formulated in
Theorem (a) of Appendix (a), and this is used in turn to verify:

Proposition (a). Let a satisfy either the conditions

1
a,a'€ Lloc([O’ ©); R).,

(al) a(0) >0

a' is of bounded variation locally on [0,%),




Remarks: Since A = 9y : W - W!

everywhere defined on W, A

or the conditions

a(t) is nonnegative, decreasing and
2 convex on [0,%), a(0) >0 and
2
a € C7((0,)) N c([0,)) .

Then a satisfies Conditions (a). Moreover, if a = a, + a, with a

1 2 i
satisfying the Conditions (ai), then a satisfies Conditions (a)

Thus a broad class of interesting kernels satisfy Conditions (a).
Proposition (a) is proved in Appendix (a).

Our first existence result is:

Theorem 1. Let the general assumptions (l.2)-(1.10) be satisfied. Further

assume that A = 8y is single-valued and D(A) = W. Then for every

Fe W‘i;lc([o,w); H) and u, € D(¢) equation (1.1) has a solution u in

the sense
(1) u e C([0,); W),
(i) u'e 1L ([0,%); H),

(iii) F-(u'+a *Au)e Lfoc([o,w); HY ,

(iv) F(t) - u'(t) - a * Au(t) € Bu(t) a.e. t>0.

Moreover

t
(v) { Au(s)ds € L;.;C([o,oo); H) .

Theorem 1 is proved in Section 2.

is assumed to be single-valued and

is continuous from the strong topology




e i

e

e e AR e

of W into the weak topology of W!'; see [17]. Thus by (i) above, t - Au(t)
is continuous into the weak topology of W' and a * Au is unambiguously

defined with values in W'. Moreover, by (v) and a * Au(t) =

t t

a(0) [ Au(s)ds +a' *(f Au(s)ds), a *Bue L _ (0,%; H);
0 0

00
loc(
the integrals are taken in the sense of Bochner.
The spaces W and W' enter in Theorem 1 as a technical device
corresponding to the fact that we can obtain estimates in H of u and
integrals of Au under the hypotheses of Theorem 1, but we cannot obtain
estimates on Au in H. These estimates are obtained in Section 2 after

preliminary results, of some independent interest, dealing with the

regularized equation

u;\(t) £ Bux(t) + sI\u)\(t) +a ¥ Axux(t) 3 F(t)
(1.11)

\,€>0, 0 <t<oo, u)\(O) =u, -
After establishing existence and uniqueness of solutions of (1.11) for a
fixed \, € >0, a priori estimates are obtained which enable us to pass
to the limitas \ - 0+ keeping € >0 fixed. Then using a priori
estimates independent of € >0, Theorem l is proved on letting € - 0+.
The compactness assumption (1.8) concerning ¢ and properties of maximal
monotone operators come into play in the passages to the limit\as \ — 0+

+
and thenas & -0 .

Under suitable assumptions estimates on Au in leoc([o,oo); H)

can be obtained. Then existence results can be proved in which neither A
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nor B is required to be single-valued. For example, we have: 3

Theorem 2. Let the general assumptions (1.2)-(1.10) be satisfied with

W=H=W' (so by = ¥ AH = A, etc.). Assume, in addition that

for each r > 0 there is a number k(r) such that

(1.12) k()1 + lwl) > lv] for veauw, weBu and [ul <r.

Then for every F ¢ Wi(’)i([o,oo); H) and u, € D(y) N D(¢) equation (1.1)

2 ;
has a solution u satisfying u,u'e€ Lloc([O, ©); H), and there exist

V,W € leoc([o,oo); H) such that v(t) € Au(t), w(t) € Bu(t) a.e. (0 <t <)

and w'+wtrta*yvy=F a.e. (0<t<w).
Theorem 2 is proved together with Theorem 1 in Section 2.
The next task is to discuss the boundedness and asymptotic behaviour

of solutions of equation (1.1). Two results of this type, motivated by

analogous ones of interest in the stability theory of real scalar Volterra
equations, are given. They seem typical of what one might expect to prove
concerning solutions of (1.1) provided by results like Theorems 1 and 2.

Theorem 3 (i). Let the general assumptions (1.2)-(1.10) be satisfied and

u,v,w be given satisfying the conclusions of Theorem 2. Assume also

that u(0) = uy € D(¢) N D(Y), p =0 in(1.7), inf y(u) >-», a
uew

satisfies conditions (a,), and there is a 6 >0 for which

b
(1.13) IF(t) | < sa(t), IF'(t)] <-sar(t) (0 <t <w).

Then




s

G g

[
e
12}
c
O
O
o
2
3
.
A
8

E 0<t<w

{ (1.14) (b) la * v(t) % < 2a(0)Q_(vit) (0 <t <)
;‘ (oF un ity <,

4 t>0

Ei where Qa is defined by

I t
1 Q,(vst) = { (a % v(r),v(r))d7, v e LL ((0,%)i H) .

{

(ii) If also inf ¢(u) > - and lim ¢(u).= w0 then
ue H lull o
() sop Jul] <=
0<t<wo

4 (1.15) ¢ () sup le(u@)l <=

! 0<t<w

| L (c) u e uc(lo,%) W)

where UC([0,%); W) is the set of uniformly continuous functions

with values in W.

conditions above, a'(t) =0 and A satisfies

_— e e e e, ——

the conditions of Theorem 1, then

S Ee Bl D e

(1.16) v(t) =0 weaklyin W' as t—-®

and if A-I(O) is a singleton then

S i

T

' ! (1.17) u(t) - A-I(O) stronglyin W as t—=«.

Theorem 3 is proved in Section 3.

O G MG A

Remarks. Theorem 3, as stated, does not apply directly to the solutions

of (1.1) given by Theorem 1 even when the additional assumptions on ¢, ¢, a, F
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are satisfied since with v = Au, u as in Theorem 1, we do not have

2

v € Lloc([ 0,); H). The principal difficulty lies in that the defining

o0
expression for Qa(v;t) does not have a clear meaning for v € Lloc([ 0,x); W').

However, for the solutions of (1.1) constructed in the proof of Theorem 1,

this expression may be assigned a meaning and the results of Theorem 3

remain valid. This point is discussed at the end of the proof of Theorem 3
in Section 3.

Moreover, as will be clear from the proofs, if F is compactly
supported and a is a kernel of positive type ([15]), rather than convex
and nonincreasing, the conclusions of Theorem 3 remain valid.

In the next result the somewhat artificial condition (1.13) (see,
however, Proposition 5.2 and the first example of Section 6) on F is
replaced by F € L2(0,°°: H) and a need not be of positive type.

Theorem 4. Let the general assumptions (1.2)-(1.10) be satisfied and

u, v, w be given satisfying the conclusions of Theorem 2 where

2
F e L(0,; H). Assume also that u, € D(¢) N D(y), inf ¢(u) > - and
ue W

there exist a, 6 >0

(1) (W,V)Za'VIZ for we Bu, veAu, ue H

(1.18) and
. .
(ii) lim sup inf [ cos(ot)a(t)dt> 6 - a .
T -+ -o<g<w 0

Then sup Y(u(t)) <o and v € LZ(O,oo; H).
t>0

The proof of Theorem 4 is given in Section 4. £




The problem (1. l)00 may be reduced, in the standard way, to )

problem of the form (1.1) and the above results then applied. This is
carried out in Section 5. Finally, in Section 6, we consider two examples
to illustrate the theory.

Equation (1.1) has been studied by Barbu [ 2], [4] using energy func-
tions [9]. Theorems l and 3 extend his main results in several directions.
Barbu's existence theorem requires, in addition to the assumptions of
Theorem 1, the kernel a to be positive, decreasing and convex,

B = 0 in (1.7) and a number of restrictive technical conditions. Correspond-
ingly, our proofs appear to us to be more illuminating, direct and complete.
See the end of Section 2 concerning the generality afforded by allowing

B > 0. Similar differences exist between our Theorem 3 and the version

of [2]. Theorems 2 and 4 have no direct analogues in [ 2], and we have
not stated an analogue of [ 2, Remark 3.1], which is not quite clear.

See the amended version in [ 4]. However, from the proofs one can

easily invent results of this type.

The special case of (1.1) in which Au = Bu has been studied by
MacCamy [14] by a different method essentially only under conditions a,-
When Au = Bu, (l.1)is formally equivalent to the integral equation

i
(1) u(t) + f b(t = T)Au(T)dr 5> H(t), 0 <t <o,
0
T

in which b(0) = 1, b*(t) = a(t) and H(t) = [ F(r)dr.
0
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Equation (I) has also recently been studied in Hilbert space by
Barbu [ 3] and by S.-O. Londen [1l]; existence, uniqueness and results
for behaviour of solutions as t - ® are obtained in [11] under more general
assumptions than in [ 3]. Since the assumption (1.8) (or some similar
compactness condition) is not made in [11], the results of [11] are also
more general than those obtained in Theorems 2 and 4 in the special case
Au = Bu. It should also be noted that uniqueness of solutions of (1.1) is
not claimed in any of our principal results.

Let us also point out that the case B =0 in (1.1) is ruled out by
the compactness assumption (1.8) (unless H is finited dimensional).

When B=0 (l.1) is formally equivalent to the equation

dz; + a(0)Au(t) + ft a'(t - t)Au(t)dT 3F'(t) .
dt 0
Existence for this problem has recently been studied by Londen [12], [13].
The case when A is a linear second order partial differential operator
has been analyzed by Dafermos [ 7], [8]. Also note that problems related
to the ones considered here have been considered by Artola [1].
Finally, let us remark that this paper is an outgrowth of a seminar
held in Madison, Wisconsin, during 1974-75. We acknowledge with pleasure

the helpful discussions with colleagues and students, in particular with

W. Rudin, D. F. Shea, Luc Tartar and O. Staffans.




2. Proof of Theorems 1 and 2

We begin with a general result (Lemma 2.1) and its consequence
(Corollary 2.1) which will be applied to the regularized equation (1.11).

Consider the initial value problem

(2.1) Z—VZ + Bw 3 G(w); w(0) = Wy -

Concerning (2.1) we prove:

Lemma 2.1. Let TO be given. Let

(2.:2) B be a maximal monotone graph in H X H,

(2.3) G : c([o, T, I3 D(B)) — Ll(O,TO; H) ,

and let there exist a constant M >0 such that

(2.4) IG(u) - g Il <Mllu-vl (0<t<Ty),
L (0, t;H) L (0, t;H)

D(B), then the initial value problem

for u, ve C([O,TO]; D(B)). If w, €

e sense that w is a weak solution

(2.1) has a unique solution w in

(see [ 5; Def. 3.1]) of the initial value problem

(2.5) %—V:JrBwaE(t); w(0) = w,,
where E(t) = G(w)(t); in particular,
(2. 6) we C([0,T,]; H) and w(t) e D(B) on [0,Ty].

If, in addition, B = 8¢, where ¢ : H = (-©,©] is convex,

€ D(¢) and G(w)(t) € L%(0, T i H), then

l.s.c. and proper, and if w

0
w is a strong solution (see [ 5; Def. 3.1]) of (2.5) and

dw 2
i : H) .
(2.7) 4 €L (o,T0 )




Proof of Lemma 2.1. Consider the initial value problem

(2.8) 'gTw+Bw3 G(v); w(0) = woel—D(—B)

where v e C([O, T0]; E(E)) is given. By (2.3) G(v)(t) € Ll(O, TO; H)

and so from (2. 2), W € m), and from [ 5; Theorem 3.4] it follows that
(2.8) has a unique weak solution on [O, To] which we denote by Tv;

in particular, Tv e C([O, TO]; I—DZE)). Furthermore, recalling [ 5; Lemma 3.1]

and (2.4) yields

t
It - 1l <[ llew -cwl ds
L (0,t;H) 0 L (0, s;H)
(2.9) ﬁ
t
<M [ Ju-vl ds, 0 SHETL
N 0 L (0,s;H)

for u, ve C([O, TO]; D(B;). We claim that the mapping T has a unique
fixed point. For, iterating (2.9) one obtains by a straightforward induction
nn

(2.10) I - T 2 % Jlu - vl "
L7(0, T,;H) s L (0, Ty H)

Thus, for n sufficiently large, T" is a strict contraction on

c([o, TO]; D(B)), and consequently, T has a unique fixed point

we C([o, TO]; D(B)) which solves (2.1) as asserted in the first part of
Lemma 2.1.

The second part of Lemma 2.1 follows immediately from {53 Th. 3:.6].
Remark. The conclusions of Lemma 2.1 remain unchanged if the Lipschitz

condition (2. 4) is weakened to

«]3=
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() - gl <u®lu-vl y  OZLET,
L (0,t;H) L (0,t;H)

for u, ve C([O,TO]; D_(B_)) and where € LI(O, To). Moreover, the
proof of the first part of Lemma 2.1 is valid without change if B is
*—accretive in a Banach space X.

Lemma 2.1 will be applied to the regularized problem

u! + Bu,(t) + eA u (t) +a * A u, (t) 5 F(t)
(2.11) A N X\ A\)\

Corollary 2.1. Let the general assumptions (1.2) - (1.10) hold. Let

2

€ >0, \ >0 be fixed. Then forevery Fe¢ Lloc

(0,o; H) and u, € D(¢),

(2.11) has a unique solution u

on [0,%) in the sense that

A
2

u, € C({o0,v); R), uj € Lloc(o’w’ H)

u)\(t)e D(B) a.e. on (0,%)

u, satisfies (2.11) a.e. on [0,) .

Sketch of proof of Corollary 2.1. Define G(u) by setting

G(u)(t) = F(t) - eAXu(t) -a* A)\u(t)

and note that (2.11) may be written as

u')\ + Bu)\ 5 G(u)\), u (0) = u

A 0°

Since A, is Lipschitz with constant 1/\, one easily verifies that G
has the properties (2. 3) and (2. 4) for any T0 > 0. Thus the result follows

from the second part of Lemma 2.1. (Observe we have not used all of the

general assumptions; (1.3), (1.6), ac€ Lioc[o, ©) are sufficient.)
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The next task is to derive bounds on solutions of equations of

the form (2.11) (or (1.1)). This we do in some generality. See the end

of this section for further remarks.

Proposition 2.1. Let T>0,D = 9%, C = 0% where @, ¥ : H =+ (-, ]

are convex, l.s.c. and proper. Let a,§B, Cy € [0,o), Fe w 1(O,T; H),

u, € D(®) N D(¥), a:[0,0) - R be given such that

(1) @(u) 2 -co(lul +1), w(w) > -c(ful +1) for ueH.

(1} (vowd = alvl® ~ptlwl® + bol® = 0 50 S0 2
(2.12)

ve Cu, we Du .

(iii) a satisfies Conditions (a) .

Then there is a constant C depending only on |u0 |, iL a,@(uo), W(uo), B,

S, and [IF|l | (but not otherwise on ®, ¥ and noton a)
wh (0, TiH)

such that if
(1) uw,u, v,we LZ(O, T; H);. u{0) = u
(2.13) (i1) wv(t) € Cu(t), w(t) € Du(t) a.e. 0<t<T,

(iii) u'(t) + w(t) + a * v(t) = F(t) a.e. 0<t<T,

ik 2 T 2 i >
max{ [ lu'(s)| ds,f lw(s)|“ds, a f lv(s)|“ds, lu(t)l,
0 0 0

%
lo(u(t) !, Iwu)l, |[ v(s)dsl} <cC
0




The proof of Proposition 2.1 is given next. The reader may want
to skip ahead to the proofs of Theorems 1 and 2 which follow.

Proof of Proposition 2.1. Although the statement of the result is some-

what complicated, the basic idea of the proof is simple. One inner-
products (2.13) (iii) with each of v(t) and u'(t), integrates the results
over [0,t] and manipulates. (The reader will probably find it helpful

to first trace the proof below assuming P = 0 and make the considerable

simplifications which result.)

L We will use Cl’ c,,... etc., to denote various constants

depending only on a, T, |u |, ®(u.), ¥(u,), B, ¢, and el y
0 0 0 0 Wl 1(0 T;H)

All estimates below are for 0 <t <T. We will also use estimates of

the following sort frequently and without comment:

2
'\/x+y§'~/§+'\/;,(x+y) <2(x2+y) xy<2Lx +é1y2, and

/2

t t
f |fs) lds < 'Jt(f lf(s)lzds) for x,y,n€ (0,0) and fe LZ(O,T; H).
-

0
Forming the inner-product of (2.13) (iii) with v, integrating over

[0,t] and using (2.12) (ii) and [ 5, Lemma 3. 3] yields

i t
' (" wu(t) - Wuy) +a [ Iv(s)|%as
0

) t
(2.14) < i f (a * v(s),v(s))ds < f s))ds
0 0

T T T e T
x Sy g g

. 2 ¢ 2
+F5[f Iw(s) |“ds +£ lu(s)|“ds +1] .
0

«lb=

V.




Next observe that

ot

| [ (¥(s),
0
‘ (2.15)
: a*v(t) =
| \
1 Hence if
% 1‘ (2.16)
v we have
(2.17)
|

t

0
(2.18)

Since a >0,

Invoking (2.12) (i) and employing (2.17) (i) in (2.14) yields

[ (a *v(s),v(s)

t t
£ o, lu(t)| + [ lw(s)|%ds + { hals [2ds + 4.4 g, (1) -

Condition (a),

t

t S
v(s))ds = (EK(t), [ (v(r)dr)- [ (FYs), [ v(r)d7)ds
0 0 0
t
f a(t-s)v(s 0)f T)dT + f '(t-s) f (t)dTds .
0
gv(t) = max lf T)dT
0<s<t O
t
@ | { (F(s), v(s)ds | < /g (1)
(i) la *v(t)| <cg (1) .

17v

L 2
)ds +af [v(s)|“ds
0

0

(2.16), (2.18) and the monotonicity of

t t
t = |lull = + f |w(s)|2ds + f Iu(s)lzds imply
! L (0,t;H) 0 0
‘ t 2 t 2
(2.19) If s):lsl < c, (1+ llull +f |w(s)| ds+f Iu(s)l ds) .
L (0, t;H) 0 0

=]T=
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Now by (2.13) (iii) and (2.17) (ii)

(2.20) |w(s)| = [E(s) - (u'(s) +a *v(s)| < c,(1 + luts) | + g (s)) -

Thus, from (2.19), (2.20) and (2.16)

t
(2.21) g (1) <c (1 + Viul % L us)? + g ()% + lur(s) [as)
L (0, %:H} 0

Next multiply (2.13) (iii) by u' and integrate over (0,t] to find

t t ‘
(2.22) [ lu(s)]%ds + ®u(r) - &(ug) + [ (a *v(s),u'(s))ds :
0 0
t t
= f (F(s),u'(s))ds <( max [r(s) ) f lut(s) lds .
0 0<s<t 0
Calling on (2.17) (ii) and (2.12) (i) again, (2.22) implies |

t 1
(2.23) { lut(s) |%ds Scg(l+(1+g (1) { lut(s) lds + lu(t) ) .

The next step is to eliminate the terms involving u in (2.2l) and (2.23).

One has

£ $ 2. \1/2
(2.24) Iu(t)l = |uo + f u'(s)ds| < luol + Nﬁ:(f |u'(s)| ds)
0 0

t n 2 2
_<_|u0|+3;+2£ lut(s)|“ds

for n>0. Hence

t t
(2.25) flull & ’ f |u(s)|2ds_<_c8(l+ f |u'(s)|2ds) )
L (0,t;H) © 0

I |® -18-
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Thus from (2.21) and (2. 25)

t
(2.26) g (t) <c.(l+ f gv(s)zds + f |u'(s)|2ds) A
0

while choosing n so nc, <El, (2.23) and (2.24) yield (using also

* £ . 2
f lu'(s)lds <=—+ 3 f lu'(s) |“ds)
0

0 25 . 2
= 2 t
(2.27) g lut(s) | dsﬁclo(l+gv(t){ lut(s)lds) .

The Gronwall inequality, (2.26), gv(O) = 0 and the fact that

t
2
t—» f Iu'(s)l ds is nondecreasing imply that
0

2 £ 2
(2.28) gv(t) §c11(l + f lu'(s)|“ds) .
0

Finally, (2.27) and (2.28) give us

t 1s s
[ luts)12as <c, 0+ ([ Tus)|%as)/? [ lut(s)las)
0 0 0
8 2 ool 2
5012(1 s f [ut(s)|“ds + Z—n(f [u'(s)]ds)”) .
0 0

Appropriate choice of n implies

t t
2 2

(2.29) f [ut(s) | “ds < c13(1 + (f [u'(s)ds)”) .

0 0

b | 2
To see that (2.29) implies a bound on f fu'(s)| ds, proceed as follows:
to 0 to
Assume t, >0 and f |u'(s)|2ds < M. Then f [u'(s)lds < ﬁ\/ﬁ
0 0
-]9=
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and, from (2.29)

t t t
tf [ut(s) |st 5{ |u'(s)|2ds gcu(l + (\/t_o's/—ﬁ + tf iu'(s)lds)z)
0 0

t
< Cl3(1 - ZtoM + 2(t - to) tf 'u'(s) lzds)
0

so
! 2 1
]
[ lut(s)|%ds ST oo ot Sl 2tM) < 26501 + 265 M)
t 13 0
0
] . 2
for 2c, (t-t.) << . Iterating, we bound f |u'(s)| ds. Since t_ =0,
13 0 2 0 0
M = 0 may be used to start, (2.29) implies
£ 2
]
(2. 30) f |u(s)l dsgcl4.

0
The proof of Proposition 2.1 is essentially complete. First (2.30), (2.24)

and (2.28) imply gv(t), lu(t)| <c This information, (2.17) (ii),

15°
(2.12) (i) and (2.22) imply ItI?(u(t))I _<_c16. Since w = F - (u' +a *v),
t

f [w(s) Izds £c All these estimates, (2.18) and the bound on

17"

0
t t
&
If (a * v(s),v(s))dsl supplied by Condition (a) imply « f [v(s)|“ds < g
0 0

Finally, |@(u(t))| is bounded via (2.12) (i) and (2.14). The proof is

complete.

Proof of Theorems 1 and 2. The first step in both Theorems is to let X\ 10 in

(2.11) with € € (0,1) fixed. Now B + eA)‘ E a(<p+e¢)\) and A)\ SN where
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%\(X) = min{¢H(Y) + (2)\)—11}’ > Xlz :ye H} isasin[5, Prop. 2.11].

Since convex functions are bounded below by affine functions, there

exists 4 such that ¢ + ELIJ)\ and 4;)\ are bounded below by -co( [ul +1)

uniformly for €,\ € [0,1]. Set & = ¢ +¢ v = in Proposition 2.1.
l‘bx, llj)\

In view of (1.7) we have (2.12) (ii) where & may be used as the

2
coefficient « of |v|° in (2.12) (ii). Hence by Proposition 2.1 for

T>0 thereis a CT independent of &,\ € (0,1] such that for \,e € (0,1]

and te [0, T]

(i) lofu, @)l <c

T
(i) lu (1)l <c
; 2
(2. 31) 4 ) 3{ A, u, (s)%ds < C,,

b 2
@) [ lu(e) s < o

t

ki (vi) { lF(s) - (u;\(s) +a * A)\u)\(s)lzds < CT o

The compactness condition (1.8), and (2. 31 (ii), (iii) imply that there is

a compact subset K_ of W for which u)\([ ,IH S K

T Hence

T
u, € C([0,T]); H) implies u, € C([0,T]; W) (see Lemma 2.2 below). Since
t
T , %,
|u)‘(t) - u)\(s)l <Nt - s({ lu;\(r)l dr)” ", the functions u, are equi

continuous on bounded subsets of [0,00) with values in H. From

=2




a———.

u ([0, T]) & K

s they are also equicontinuous with values in W (see
Lemma 2.2 below). Then by the weak sequential compactness of closed balls in i
L2(0, T; H) for T >0, the Ascoli theorem and (2. 3l) (iv), (v) and (vi)

we have the existence of functions u_ € Cc([0,o); W), Ver We € leoc([o’w); H)

with u' € L2 ({0,»); H) and a sequence X\ 10 such that
€ loc n

( (1) i B in C([0,x); W) 1
n
(ii) B ¥ N
n n ;
(2.32) weakly in
: (iii) u! - u! 2
A £ L (e, T: By for
n
T3>0 . 3
i - ! * -
3 (iv) F (u)\ + sAx u, +a A)\ uy ) W ]
n Hn ]

n n J

2
In particular, (2.32) (i) implies Uy U in L (0, TsH) for T>0.
n

By the demiclosed property of maximal monotone operators (and [ 5,

Example 2. 3. 3]) ve(t) € A

Hue(t) a.e. and We(t) € Bue(t) a.e. (since

- (u' * i SR i
F (u)\ +eA)\ u, +a A)\ uy ) e Bu)\ a.e.). Since v - a *v is
n n A R n n

bounded, and linear on L°(0,T; H) it is weakly continuous and

a* A)\ u, ~+a * ¥ weakly in LZ(O,T; H). Thus (2. 32) implies
nn

(i) ué+we+eve+a*vs=l’
(2.33) 2

i ; g e, (0<t<wo),
(if) ut,wg,v el (0, B),w(t)e Bue(t),ve(t)eAHus(t) a.e. (0<t<x)
Now we want to let € 1 0. InvoKing Proposition 2.1 again we conclude

; IS AN 2
@), lu@l, e [ lv (), [ lui(s)l%as, [ lw (s)|%s

that ¢(u_(t)), ¢(u
& 0 0 0

€

t
and |f ve(s)dsl are all bounded uniformly for € € (0,1], te [0, T].
0




t
- If (1.12) holds we obtain from these estimates that also f lve(s) lzds
0

is locally bounded uniformly for € € (0,1], and the passage to the limit

as € !0 may be done exactly as above. This proves Theorem 2.

In the case of Theorem 1 the situation is different for we no longer

have an estimate on f lve(s) ,st independent of ¢ € (0,1], which
0

is where the assumption in Theorem 1 that A : W— W! is everywhere

(we

P

defined and single-valued- comes in to play. We write Ve = Au
i may use A rather than AH by (1.6)) in this case). Just as above, we

| have the existence of a sequence £ § 0, ue C(j0,x); W), u'e leoc([O,oo); Hy.

2

we LT ([9,«); H) such that
loc
; : 3 2
(1) i C([0,x); W), u:s - u' weakly in Lloc([o,oo); H) ,
: n n
‘ 2
(ii) EnAue ~ 0 in Lloc([ @, «)s H) ,
(2.34) < =
(iii) w_ =F-(u' +& Au +a *Au ) —-w weaklyin
€ 3 n e €
n n n n
2
\ L{o,; B} for T>0, 4
T i
(eAu - 0 in L2 ([0,0); H) since ¢ f [ Au (q)lzds e
€ loe =" ST T

0

0<T, 0<g<1). To take the limit of Au8 we use that since A is
n

maximal monotone, single-valued and everywhere defined it is necessarily

| continuous from the strong to the weak topology and is bounded in some

neighborhood of the compact set u([0,T]) in W (see, e.g., [17]).

Thus Aue (t)-Au)\(t) weakly in W' and boundedly for bounded t.
n

2
Hence Aue *Au)\ weakly in L7(0,T; W') for T>0 and a ¥ Aua - a * Au)\
n n

.

ISP MY
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2
weakly in L7°(0,T; W'). We conclude that u'+w +a *Au = F a.e.

where w(t) € Bu(t) a.e., as desired. Finally, we use the bound on

t t t
lf Aue(s)dsl provided by Proposition 2.1. Clearly f Aue (s)ds —-f Au(s)ds
0 0 nt 0
weakly in W' for t>0. Since W is densein H and f Aus (s)ds
t t g9 =
is bounded in H, f Au(s)ds € H and f Aue (s)ds —-f Au(s)ds
0 0 n 0

weakly in H as well as in W!'. The proof is complete.

It remains to prove:

Lemma 2.2. Let X, Y, K be metric spaces where K is compact. Let

(i) 3 be a setof maps f:X =K,

(ii) g be a one-to-one continuous mapping of K into Y,

(iii) {g e f:fe F} :X +Y be an equicontinuous family.

Then & is equicontinuous.

Proof. Let h = g-l. Then h: g(K) - K is continuous (since K is
compact and g is continuous) and therefore uniformly continuous (since
g(K) is compact). Now g o% = {go f :fe F} is equicontinuous by
assumption and F = h o (g o F) is therefore also equicontinuous. (This
lemma, formulated for us by W. Rudin, is used with K a compact set in
W, g the injection W - H, X = [0,T] or [0,©) and Y = H in the
current work. )

Remarks on (1.7) and Proposition (2.1). We wish to mention here that our

conditions and arguments allow various kinds of perturbations. For example,

consider the perturbed problem

=Pt




u' + Bu + a * APu 5 F(t)
(l.l)P
u() = Uy

where AP = A+P, A and B satisfy the general conditions and the

perturbation P : H - H is Lipschitz continuous, i.e. there is an

w € [0,0) such

(2. 35) 'le - szl e wlxl = x2| for X)s X, € E. r

Then AH + P + wl is monotone and AP)\’ IP)\ are well-defined by

-1
X + )\(AHX FAESEIiaR =i IP)\U, AP)\ =N IP)\)

for 0 <\ <1/w. Moreover, it is an exercise to show that

_1 o
IAP)\u-A)\uljw((l—)\w) |u-(x0+)\(yO+PxO)| + ]P,xol) for 0 <\ < l/w,
Xy € D(AH), Yq € Axo. Thus if A)\ satisfies (1.7), so will APx for
small -~ A >0 (with another choice of B). Thus (1.7) is stable under

Lipschitz continuous perturbations in particular. Hence we can hope to
treat (l.l)P as we did (1.1).

If P is not itself a gradient, it is probably more convenient to
approximate (1. l)P via

1 + *
ul + Bu)\ + a(A)\u)\ Pu)\) + a (Aku + Pu)\) 3F

A
than to use ABX and then proceed as in Proposition 2.1. Additional
terms arise from (u;\, Pu)\) when multiplying by Axu)\ G5 Pu)\, but these

contribute no new difficulties and the same estimates are obtained. ( Clearly 4

(Bu)\,A)\u)\ +Pu}\) has the desired form of lower bound when (2. 35) and (1.7) hold.)
We will not say more about the many other possibilities here, as it is not

very clear at this time in which direction to push the theory.
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Section 3. Proof of Theorem 3.

(i) Let u,u',v,we L [0 ©); H) satisfy
; (i) ww+w+a*v="F

| (3.1)
i (ii) w(t) € Bu(t), v(t) € Au(t) a.e. (0 <t<w).,

Form the inner-product of (3.1) (i) with v, integrate over [0,t] and

use (w(t),v(t)) >0 to find

i
(3.2) (u(t) - wlug) + Q_(vit) < [ (E(r), v(r))dr ,
0
where
(3.3 Qv f (a * v(s), v(s ))ds-—ulfv(sdsz
0
t T t t
= El f a'(T)|f v(s)dledT - % f a'(t - T)|f V(o)dolZdT
0 0 0 1]
El { a" T -5s)| f v(a)dcrlzdsdT .
0 8

See the proof of Proposition (a) in Appendix (a) concerning the validity
of the right-most equality in (3.3). Note each term on the right of (3. 3)

is nonnegative since a satisfies conditions (az). Integrating by parts

and using (1.13) we have

f t t t T

) [ (B(r), v(v))dr = (F(t), [ v(s)ds)-f (F'(v), [ v(s)ds)dr
0 0 0 0

t T
< 5a(t)lf (s)ds| + 6 f '(r) | ff v(s)ds |dr

s)ds lsz)l/z

IA

a(t)|f s)dsl+6“/——)f ()

IA

=Zbm

e e s L

f
6a(t)+gm|f (s)ds | +62a(0) qlf )llf (s)ds |%ar
0




so, from (3. 3) and the above
: 2 1
(3.4) [ (E(r), v(r))dT < 6%(a(0) + a(t)) + 5 Q_(vst) .
0 a
Together (3.2) and (3. 4) imply

(3.5) Wa(®) - Yug) + 5 Q_(vit) <5°(a(0) + a(v) -

Since (¢ is bounded below, (3.5) implies

(3.6) sup Q_(v,t) <o, sup Y(u(t)) <=.
t>0 ° t>0

The estimate

(3.7) la * v(t)l < 2a(0) Qa(v;t), 0<t<owm

follows from Lemma 3.1 which is stated and proved later. Hence (1.14) (a),

(b), (c) hold.
(ii) If also (u) - > as lull =, (3.6) implies (1.15) (a). We now

seek to bound ¢(u(t)). By w(t) = F(t) - (u'(t) + a * v(t)) € 9¢(u(t)) we have

< o(u(t) = (F(1) - (u'(t) +a * v(), w(t)

(3.8) and by the definition of subdifferential

(i) e(u(t)) < <p(u0) + (F(t) = (u¥r) + & * v(t)}, u(t) - uo) .

From (1.15) (a) we have that c, = sup lu(t) - uol <o and from (3.6), (3.7)

t>0
and (1.13), ¢, = sup IF(t) - a * v(t)—] < o, Hence adding (3.8) (i) and (ii)
t>0
L ouv) +olu(t) < - lr® 1%+ (e + e )@ ]+ olug) +eje, <cy

where ¢, is independent of t. Hence (1.15) (b) follows if ¢ is
J

bounded below.

ad?=
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In order to prove (1.15) (c¢) we first show that u € uc([0,»); H).

Forming the inner-product of (3.1) (i) with w(t) and integrating over
[t,t +1] gives the inequality

t+1 =l

2
(3.9) olut +1) - o(ut) + [ |w(s)[®ds <c; [ Iw(s)lds
1 b
t+l
2 2
<clf et | Pae
t
with the same constant ¢, as above. Because ¢(u(t)) is bounded,
t+l
(3.9) implies f [w(s) 'st is bounded. Since u' = F -(a*v +w)
t -~ i t+l 2
and F-a*vel (0,o; H, we also have sup f |u'(s)| ds <oo.

0<t<w t

Thus ue UC([0,®); H). In conjunction with the previously obtained
bounds on |u(t)| and ¢(u(t)), the compactness assumption implies that
(3.10) u([0,=)) is strongly precompact in W .

Hence u e UC([0,x); W) follows from Lemma 2.2, proving (1.15) (c).
(iii) The asymptotic result is obtained by reducing the analysis to the
scalar case as follows. We now have v(t) = Au(t) and A is locally
bounded. Thus (3.10) implies

(3.11) sup  [Au() Iy, <.
0<t<w

The demicontinuity of A, together with ue€ UC([0,®); W), (3.10), (3.11),

implies that for any z ¢ W the function e defined by
(3.12) e(t) = (Au(t), 2),

satisfies

=P -
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(3.13) e(t) ¢ UC[0,»), sup 'e(t)' <o,
0<t<w

Let T >0 be arbitrary and define eT by

(3.14) e{t) = x[0, T]e(t), -0 <t <,

where x is the characteristic function. By the arguments in the proof

of Lemma 3.1 below (in particular note (3.27)) one shows that

o0
K 2 2
(3.15) Q fs T = = f_w & (o) [“da(o)
where “ denotes the Fourier transform, eT(o) = f e 10 eT(t)dt and
—-00

where o 1is a positive measure satisfying (3.24). By (3.12) one has

(3.16) le |

where = x[0,T]v, v = Au. Invoking conditions a., (3.6), (3.15),

Vip 2’

(3.16) and formula (3.27) yield the estimate

2 00
~ 2
0< sup QfeiT)< sup del [ 1z.{0)|“del(o)
a 4m 1L
0<T<w 0<T<w -00
(3.17)
=|Z|2 sup @ (Au; T) <.
0<T<w

But by conditions a a'(t) # 0, and Corollary 2.2 of [16] (see also [15])

2’
a(t) is a strongly positive kernel. This fact together with {3.13), 1(3.17)

and Theorem 1 (ii) of [16] shows that

(3.18) lim e(t) = 0.
o0




do.

Finally (3.12), (3.18) establish (1 16), which together with (3.10) and

_l .
A (0) a singleton implies (1.17;. This completes the proof of Theorem 3.

Remark. Theorem 1 (ii) of [16] can be applied although e(t) only

satisfies (3.13), (3.17) and is not a bounded solution of a scalar Volterra

equation. This fact, which is evident from the proof of Theorem 1 (ii)

of [16], has been exploited and generalized by O. Staffans [19], [20], [21].
The following lemma appears as Lemma 6.2 in Staffans [20] for

the real scalar case; it is included here for the convenience of the reader.

Lemma 3.1. Let a be positive definite on [0,%) and ve Lfoc([o,oo); H).

Then

(3.19) la * wm)|? < 2a(0)Q_(v;iT), 0 <T<w.

Remark. If a satisfies conditions a,, then by the identity (3.3) a

2’
is positive definite on [0,®). See also [16; Theorem 2] and remarks

immediately following.

Proof of Lemma 3.1. Extend a evenly by

(3. 20) a(—t) = a(t)’ OSt SCOT,
and let,
(3.21) ve = x[0,TIv .

Then by (3.20), (3.2l), Fubini's theorem and some elementary calculations

one obtains

(3.22) Q(viT) = 3 [ als)k(s)ds, 0<T<w,
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where
(3.23) kis) = [ (v(t = 8), vo(t)dt .

Since a is positive definite on (-®,®), Bochner's theorem [18]

implies the existence of a positive measure a« such that

o0 o0
1 iot
(3.24) a(t) = >~ {we da(c), -0 <t <, [w da(c) <o .

Combining (3.22) with the first part of (3.24) yields

(3.25) QwiT) = 3= [ k(-o)da(e), 0 <T<w.

But (3.23) and Parseval's theorem give

~ ~ 2 ~
(3.26) kle} = 'VT(O’)' = k(-0), -0 <g <o,
From (3.25), (3.26) one has

(3.27) Q(viT) = ﬁ J IGT(U)IZda(o), 0<T<w,

The conclusion (3.19) is now a result of the following elementary calcula-

tion which uses (3.20), (3.21), (3.24), (3.27), Fubini's theorem, and

Schwartz's inequality:




i S——"

la * v() |% - |f (r)ar|?

IA

sup lf t—T)v )d'rl2

-0<t<w0 =0

1

sig == [ (] ")y, (v)ar |2

—0<t <00 41 —00 -00 T

= gup If 785 (0)da(o) |
-w0<t <w 411'

1A
I,_

nNo
&

o

B

2.
~

<>

=

U)Izda(a) = Za(O)Qa(v;T) .

This completes the proof of Lemma 3.1.
Remarks. The above analysis may be extended to cover the solutions
of (1.1) obtained in the proof of Theorem 1 as follows: First let (1.7)

hold with B = 0. The estimate (3.5) will hold, with the same proof,

with u replaced by us and T by s vie =" A u

where u ,v are
€ Hg' & e

as in the proof of Theorem 1. Hence the analogue of (3. 6) holds uniformly

in € > 0. Using the identity (3. 3) with v = vs = Aue, letting en -0

’

1 t
using the convergence f Aue (s)ds —»f Au(s)ds weakly in H for
0 n 0

every t and invoking Fatou's lemma we find that

t t T
Qa(AU:t) = ‘a‘gl I{ Au(s)ds |2 - —21' { a'(r) l{ Au(s)ds‘zd'r
t

1 : 2
s a'(t - 7) l{ Au(tr)dcrl dr

| o

Elf f a'(r = s)| [ Au(o)do |*dsar
¢ v S
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is bounded independent of t > 0. (Here we regard the above expression

as the definition of Qa(Au;t).) We also have (u(t)) < lim q;e (ue (1))
n—+© n n

by properties of l‘be' In this way, we can preserve all of the assertions
of Theorem 3 except (1.14) (b) which is replaced by

la * Au(t) | < lim inf 2a(0)Q_[Au_ st] -
n-—+x n

(Similarly, Qa(v;T) is replaced by lim inf Qa( Au8 %} in (3.17).)
n -+ n

=33
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Section 4. Proof of Theorem 4.

, 2 1
Let us first observe that for v € Lloc([o,oo) ¢t H) and ae€ Lloc([o,oc)),
S x
T 2% 95 x(0,T)v, a , the even extension of x([0,T ])a to

i
(-»,»), we have

(4.1) Qa(V;T)

1]

2 2 Wt slu(e)ds, vy(t)at

¥ _1_ - - -~
= '_{w(aT*(")VT(“)’VT(“))d“
where the first equality follows from elementary manipulations, and the

second from Parseval's equality and * is as in Section 3. Hence

e S - 1 e 2
(4.4) Q(viT) 25 (w>(1rni - aT*(o)) o :fm IV_T(U)I do
0
= %( inf & o)) [ [v(s)lzds
w>g>-00 T 0
+*
Since a *(a) =2 f cos(ot)a(t)dt, (4.4) and (1.18) imply that
T 0
. 2
(4.5) Q(iT) 2(5 -a) [ lv(s)|"ds .

0
Now inner-product u'+w +a *v = F with v, integrate from 0 to T

and use (1.18) (i), (4.5) to find

T
(4.6) sa(m) - y(o) +5 [ lv(s)%ds
0
T
< (u(T) - $(u(0) + [ (w(s), v(s)ds +Q (vT)

T g i

- [ (Rs), visNds < K([ u(s)[%as)"/?
0 0
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where K2 = f [F(s) lzds. From (4.6) and inf ¢ > -©, we deduce
0

that f Iv(s)lzds and (u(T)) are bounded independent of T >0,
5 :

and the results follow.

aba
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5. Infinite Delay

To treat (1.1)00 by means of Theorems 1-4 we observe that it

may be formally rewritten as

(5.1) u' + Bu + a * Au 3> F(t)
where
(5.2) F(t) = £(t) - p(t)
0 0
and p(t) = f a(t - s)Au(s)ds = f a(t - s)Ah(s)ds. Assuming that
=00 -00
z(t) € Ah(t) a.e., -0 <t< 0, we are reduced to considering properties of
0
(5.3) pit) = f a(t - s)z(s)ds .
- 00

For the existence theorems we want F ¢ W'Ilc’)i([o, ©); H). This will be
the case if f, pe W'}élc([O,w); Hj.

Proposition 5.1. Let =z ¢ Ll(—oo,O; H), a be locally absolutely continuous and

t+T
(5.4) sup f (la(s)l + la'(s) |)ds = KT <o (T > 0) .
0<t<o t
Then p given by (5.3) is in W'}(’Dt([ 0,®); H).
Proof. First, by Fubini's theorem and (5. 4)
T O 0 T-s 0
f f |a(t - s)z(s) |dsdt = f f |a(‘r)|dT |z(s) lds gKT f |z(s)|ds ’
0 - ~00 =g -0

which shows that the integral defining p in (5. 3) converges for a.e.

t>0 and pe Lloc([ 0,®); H). Also, by Fubini's theorem,

1




e

0
p'(t} = f a'(t - s)z(s)ds and lies in Ll

-00 1

([0,»); H) by the same
oc

calculation as above.
For application of Theorem 3 we use:

Proposition 5.2. Let z ¢ Ll(—oo,o; H) and a satisfy conditions (a)

o
Then the function p defined by (5. 3) satisfies

(5.5) la(t) | < sa(t), lg*(t)] < -sa'(t) (0 <t <w)
0
where 6§ = f lz(s)lds.
Proof. By conditions (a)2 and z € Ll(—oo, 0; H) one has
0 0
lpW ] < [ a(t-s)lg(s)lds <a(t) [ lg(s)lds (0 <t <)

and
0
lprt) [ <-a'(t) [ lz(s)lds (0 <t<w).
=00
Thus (5.5) holds and the proof is complete.
For applications of Theorem 4, take fe LZ(O, ©0; H) and recall

Young's inequality:

0 )
Hf a(t - s)z(s)ds || > < llall 5 [z "
=00 L7(0,w;H) L™(0,) L7(-;0;H)
| AP R . , 1 2 y
where ;+q: X l <p,q <. For example, if ae L(0,), fe L°(0,; H),

2
then it suffices to have z ¢ L7(0,o; H).




6. Examples

Example 1

We begin with a brief outline of problems of the form of [2, Example 1].
Let Q be a bounded open domain in IRN with smooth boundary I
and consider the integro-differential equation
t
(6.1) u (t, x) - Au(t, x) + { a(t - s)g(u(s, x))ds = F(t, x)

for (t,x) € (0,%) X 2, together with the boundary condition

d
(6.2) - gﬁ'e y(u) a.e. on (0,) XTI

and the initial condition
(6.3) u(0,x) = uo(x), Xe .

In what follows we formulate conditions which imply that various
of our assumptions hold. If y is maximal monotone in IR, 0 € v(0),

y = 98j where j:R—-[0,o] is convex, l.s.c. and

1 2
= {Zlgradu| dx + {‘ j(u)dx

(6.4)
{ue HY(Q), j(u) e LD},

then ¢ : H = LZ(Q) - (-o,®] is convex, l.s.c. and

2
(6.5) d¢(u) = -Au for ue D(d¢) = {ue H(R), - 2—:16 y(u),

See [6]. Let g:R - IR satisfy
(6.6) g € C(-»,»), g nondecreasing, g(0) =0

and




P

(6.7) ]g(u)' gcl(lu,p_l +1) for ue R
tfor some constant cl and where p satisfies

2<p<w if N=1,2
(6.8)

2N : :
2<p < N - 2 Tf N> 30
u

Setting W = Lp(Q), G(u) = f g(r)dr and (u) = fG(u(x))dx for

0 Q

ue W we have that  : W - (-w0,») is continuous and convex (by
(6.6), (6.7)) while u - ay(u) = g(u) is continuous from W = Lp(Q)

L” P () in the strong topologies. Moreover by (6. 4)

intfo W' =
and j(u) >0, {ue H; lgo(u) [+ |u] <K} is bounded in Hl(Q) and there-

fore by (6.8) and the imbedding theorems is compact in W = Lp(Q). Also,

using Fatou's lemma one can show that llJH in (1.4) is given by
- . 20 1
( G(u(x))dx, u € L7(), G(u) € L(R)
B fu) = #
2 7 1
+ 00 , ue L7(Q), G(u) ¢ L'(Q) .

In particular, (l.5) holds. One also has

Au = g(u), D(A,) = {ue LZ(Q); g(u) € LZ(Q)}

H
and it is straightforward to show, using 0 ¢ y(0) and g(0) = 0, that
(—_\u,A)\u) >0 for ue D(d¢) and (-Au, AHu) >0 for ue D(3¢)

(see [ 6, Cor. 13]). Thus all the assumptions of Theorem 1 hold with
these choices of ¢, U, W, H provided a satisfies Conditions a. We

&
conclude that if t - F(t,*) ¢ Wll(;i([o,m), L7(R2)) and u, eD(e@) (6.1),

-39~




(6.2), (6.3) has a solution u(t,x), t >0, xe 2 suchthat t - u(t,")

satisfies the conclusions of Theorem 1 with the current choices of
¢, ¥, W, H. We also have ¢,y >0 here, so in view of the remarks
following Theorem 3 if, e.g., F=0 and a satisfies Conditions (az), then

f G(u(t, x))dx is bounded. To have lim J(u) = © we require
Q : p-1 ”u “ — 00
lg(u)| > CZ( lul - 1) for some c, > 0. Then (1.15) holds. If also

a'(t) =0, then t - g(u(t,*)) tends to zero weakly in Lp/ as

-1 -1
t-o., Ifalso g (0) = {0}, then A (0) = {0} and by (1.17) u(t,x) =0
in Lp(Q) as t — o0,

The analogue of (6.1) - (6.3) with infinite delay is
t
u, - Au + f a(t - s)g(u(s))ds = f(t), (6.2) and u(t) = h(t) (-0 <t <0),

-00

where we surpress the dependence on X temporarily. According to
Proposition 5.1, if h(0) € D(¢) and

0
[ (f lath(t, %)) 1%ax %at <o
-0

we have the existence of a solution of this problem via Theorem 1. If

Ip_l -1) and

also f=0, a satisfies conditions (az), lg(r)l = Cz( Ir
g-l(O) = {0}, we conclude u(t,:) -0 in Lp(Q) by arguing as above
and using Proposition 5. 2.

In comparison with [ 2], we have eliminated the condition

g(u) > c_( lu |p-l - 1) as a hypothesis for existence of solutions of

2

(6.1) - (6. 3) and are able to make assertions concerning the asymptotic

behavior of the solutions without restriction on N (and other restrictive

=) s




conditions on a wused in [2]). Moreover, the case with infinite delay
is accommodated without further ado.

Example 2. To illustrate Theorem 2, consider the problem
(6.9) u (t, x) - uxx(t, x) -{; a(t - s)(o(ux(s,x))xds = Flt, x)

for t>0, 0 <x <1 with the boundary and initial conditions

(6.10) u(t,0) = u(t,1) =0, t>0 and u(0,x) = uo(x), B<x<i.

Assume the nonlinear function o : IR - IR satisfies

(6.11) ceCl(-—oo,oo), 0<¢g'<Mc<w
and
] 2
(6.12) Z=(r) = f o(s)ds >c(r” - 1) for some c >0 .

7
Let W=H=1L7(0,1) and ¢ : LZ(O,l) - (-»0,o] be defined by

e du 1
_({E(d—x)dx if ueHO(O,l)

(6.13) Y(u) =
+ 00 otherwise .

& is well-defined, proper and convex by (6.11), (6.12) and 1.s.c. by (6.12).

Moreover
d d : d d 7
(6.14) ay(u) = - =+ (o(ﬁ)), ue D(@y) = {ue Hloza;o(d—i) e L7(0,1)} .

It is easy to see that 9y is an extension of the operator given by (6.14).
To see the equality, show (6.14) is the restriction of the subdifferential

of U regarded as a map from H%)(O,l) to R to H (which is easy to

it e At o o

-]




Glaid i v

g o 2a i

P

2
compute), so (6.14) is maximal monotone. We let ¢ : L (0,1) = (-0, o]

be given by
1 2 i

1 |du 1

> { I x' dx, u € Hy(0,1) |

(6.15) ¢(u) =

+ © otherwise .
Z
Clearly {u : lo(u) | + [ul <K} is compact in L7(0,1) for each K.

Moreover, if ue D(d¢) (6.11) implies

N L 1 =

and (1.12) holds.

The key hypotheses to verify is (1.7). This does not seem immediate

tous. Let ue D(d¢), he H%)(O,l), X >0 and

) <

) = A)\(u). We will show

Q.-lQ-
l= g

That is, h = I)\(u) and -dA (

(6.17) o(J\u) = @(h) < ¢(u)
which implies (1.7) with p = 0. Now by (6.16)

: f (- ()

(6.18) 2¢(u) =

l

CLIO_

x e

P
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Note that the indicated derivatives have a meaning by (6.16), since

h,u € H“(l)(o,l). If we knew h € HZ(O,I'), then

s
dh d dh dih d dh
_2)\-{ dx d (d )dx = ok f 2 dx o(dx)dx

x 0~ dx

1 2

dh dh)
= 2% dx >0 .
{ (dx (dxz

Ao,

Hence all terms on the right of (6.18) are nonnegative and ¢(u) > ¢(h)

‘ as desired. If o' > €e>0 for some €, (6.16) implies he HZ(O,I)

dh _1[ [dh,
since —£ o (i and o —£ € H'l 0,1). To proceed, let
dx dx
Hive Hl(O 1) satisfy
€ (5 i
! q ‘ dhe dhe
i (6. S —_— —_— =
| (6.19) he Sl ax ) TR e u
where €& > 0. Since f - os(r) = o(r) + er satisfies o;: =iet (p(he) < ¢(u)
[ by the above. Multiplying (6.19) first by he and integrating we find
E 1 5 1 5 dh dhs dh 5
: [ hidx < [ (h +)\c( te dx
‘. . BT € dx dx
: 0 0
:
| 1 ( d dh dh
= b st of<t] 8 =ik dx
¥. 0
:
k 1
4 = f uh dx ,
) 0 e
b
S0

(6.20) In | < lull
(0 1) (0 1)




e
e |
=4
|
o |
!

P SN

th
Next multiply (6.19) by (— 28) and integrate to find
dx
2 2 2
1 dhs) [1( dhe)(dzhs) (dzhe)
j ===l N ali==lll=—="1" ¢ dx
g LT 0 i dx*
{1 th fl dzu
= - u ax = = =—==shcl5c
G i
2
d
< u——‘; lall
dx L(0,1)

%(0,1)

where (6. 20) is used in the last inequality. Thus

2
1 dzh
€ f 28 dx < C
0 dx 2
d ' h 2
where C is independent of € and therefore ¢ ;——O in L7(0,1)
2 dx
d h
as € 10. Since h_ =17 (u - \e e), and J. 1is a contraction
€ N de A ¢

2
he»h in L°(0,}) as & ¥0. Bince ¢ 1isl.s.c.,

o(h) <lim inf ¢(h_) < ¢(u)
€
el0

and we are done. We are grateful to L. Tartar for an earlier proof of the

above result.

Thus, according to Theorem 2, if t - F(t,*) isin Wié)lc(o,w; LZ(O,l))

and u, € H;(O,l) then (6.9)-(6.10) has a solution u(t,x) with

2

(t,*), u  (t,-) and o(u (t,-)) allin L (0, 1%(0,1)).

t=u(t, ), ut XX loc

We can illustrate Theorem 4 here as well. Assume that

t - F(t,-) also lies in LZ(O,OO; LZ(O,I)). Since by (6.10)

——




|
|
1 1522 2
| (Bu, Au) = [ g—; a! ‘i—i)g—% dxzrvlI ll\ul2
b 0 dx dx
3 we have (1.18) (i) with a = 1/M. Hence if
E
| T
- 6 = a + lim sup inf f cos(ot)a(t)dt >0 ,
E 1 T+ -o<g <o 0
(6.12) and Theorem 4 imply
4
} 2
: | c f (ux(t, X)) "dx < ¢ + sup Y(u(t,)) <o,
E | 0 t>0
and
i 3 2
f f Ig{‘ o(u_(t,x)) | dxdt <.
0 © i
| Remark. Barbu {2] mentions (¢.9), (6.10) under his further restrictions

on a but with a weaker assumption than o' is bounded above. He

does not verify (1.7).




Appendix (a)
Theorem (a). Let a:[0,o) - R satisfy the following conditions:

a 1is locally absolutely continuous on [0, %) and

_—

(1)

a' 1is locally of bounded variation on (0, ®) .

There are constants £,T >0 such that
T
(2) f var(a',[s,s + £])ds <» where var(a‘',I) is

0
the total var1at1on of a' over 1.

There are constants v, T0 >0, y>n such that

e
4 Q(vit) = [ (a * v(s),v(s))ds
(3) 2 t T
= Y'f V(S)dSI2 - n max 'f v(s)dsl2

0 0<7T<t

; H) .

2
\_ for 0<t<T_  and every veL(O,TO,

0

Then a satisfies Conditions (a).

We preceed the proof of Theorem (a) with the proof of Proposition (a)
(which is stated in the introduction).

Proof of Proposition (a). Consider at first the case when conditions

(al) are satisfied. It follows trivially that then (1), (2) hold for
any £,T>0. To obtain (3) we begin by using the identity (for a

proof of (4) under conditions (al) see e.g. [11]), H

t t
Q fvn) = BB | f wnar [t - 5 f ([ visids|ar
0 0
(4) t 1 t L3 iz 2
K % [ a'(t - T)'f s)dsl dr + E f v(u)dul da'(s)dr ,
0 T 0 T—s

-4 b=




2
where v ¢ Lloc(o’ ©; H). Then we notice that simple estimates on the

right side of (4) give

T

ji
Qa(V:t) = g_(z_t_) ]{ v(T)d'r]2 - b(t) sup ’f v(s)ds]z

0<7<t O
5 t t e E
where b(t) = = f |a'(s)|ds + Zf [ Ida'(s)[dT. Choosing T. >0
2 . 0
0 0 0
such that 4b(T0) < inf a(t) shows that (3) holds with this TO’
<t < T
5= 0
v = inf é(zl)., and 2n = y. Thus conditions (al) imply (1) - (3).
SRS

Next let conditions Caz) hold. Observe that this case does allow
a'(0+) = -o. As in the previous case it immediately follows that (1),
(2) are valid for any £,T > 0. (To obtain (2) use the monotonicity of a').
Then notice that a simple application of the dominated convergence theorem

2
), for ve LOC(O,OO; H). But

shows that (4) holds under conditions (a2 |

by (az) all the terms on the right side of (4) are nonnegative and so (3)

holds with any T, >0 such that a(T,) >0, with 2y = a(TO) and

o
n = 0. Hence conditions (az) imply (1) - (3).

Proof of Theorem (a). First notice that it is enough to show that if c Al

1’ CZ’

are arbitrary nonnegative numbers then there is a constant C, = c3(a, Cp» Cy T)

such that for every v ¢ LZ(O, T; H) satisfying the inequality

T

(5) Qa(v;t) L£¢, +c, max lf v(is)ds|, (0<t<T)




t

(6) I{ v(s)ds| <c,, 1Q (i) e,y (0<t<T) .
For then (5) implies w = Tll*'c_zv satisfies
1 : l .
Q (w;t) = ————) Q. (v;st) <1+ max f w(s)dsl
Ney +e, | "a 0<T<t O
and so
{1 = i
l{ v(s)ds| = (Ne, + cz)l{ w(s)ds | <c,(a, 1,1, T)('\/-c:_l i )

Similarly, one estimates Qa(v;t) and finds that KT = 203(a,1, 1. 1%

works in Conditions (a).

Let 1 S, > 0 be arbitrary and (5) hold. It clearly suffices to

consider T = nTO where TO is as in (3) and n 1is an arbitrary positive

integer. The proof is by induction on n.

By (3) and (5) one easily obtains the existence of a constant Cy >0

such that the estimates (6) hold if T = TO. Assume we can find such a

constant for T = nTO (denote this constant by Kl) and let

V€ LZ(O,(n - l)TO; H) satisfy(5) for 0 <t<(n+ l)TO. Thus

t
(7) I{ v(s)ds | <K, |Qa(V:t)| <k, (0 <t<nTy) .

For te [0, TO] one obviously has

t
= Qa(v;nTo) + f (a *v(s + nTO),v(s + nTO))ds "

(*) Q (vt + il
- 0

0

P e -y

Also note that (a * v)(s + nTo) = Il . IZ’ where

€

S ———— i . B8

~48-




nT0 =

I1 = { a(s + nT, - g)v(g)de, L = '({ a(s - £)v(g + nTO)dg :

Substituting these relations into the integrand of the last term of (*)

and writing VT (s) = v(s + nT.) gives

0 0
Qa("?t +nT,) = Qa(v;nTo) + Qa(vnTO;t)
(8) e Dy
A ) (f  els+ nT, - £)v(€)dE, voT (s)ids, (0<t< )
Rl -

where the last term comes from Il and the second term on the right of

(8) comes from IZ'

Suppose we can show that there exist constants Ml’ ml, independent

of v, such that

T

(9) [7(t) | <M +m, max |[ v . (s)ds| (0<t<T.)
P e oy { iy -
G e
where J(t) = f (f a(s + nTO - £)v(g)dE, v (s))ds. Then (5) with

0 o TO

=i + l)TO, (7) and (9) used in (8) imply the existence of constants

Mz, m,, independent of v, such that
&
Qv . ) <M_+m. max lfv (s)ds| (0<t<T.).
a nT0 s ZO.STSt 0 nTO

Consequently by the case n =1, already proved, we have the existence

of a constant KZ > 0 such that

t

(10) l{ Vo (2)d8 | <k, loa(vnTo;t)l <K, (0<t<T).




But then (7), (9), and (10) used in (8) give the existence of a constant

K3 > 0 such that

IQa(v;t + nTo)l Co o RS

Moreover, from the first parts of (7) and (10) one has

':+nTo nTO :
| { v(s)dsl = I{ v(s)dsl + I{ vnTO(s)ds| gKl + KZ’ (0 §t5TO) ?

The induction argument is hence complete provided we can establish (9).
To prove (9) we proceed as follows. Integrating the expression

for J(t) by parts (justified by conditions (1), (2) we have J = Il + ]2 where

nTO ¢

({ a(t +nT, - £)v(£)dE, { Var (8)48) (0 st<To),

—
S
—
—
S
1l

i 0 S

(adg{ als +nT0 - £)v(£)dE, { vnTo(g)dg)ds, <t TO) :

—
oo
o
N
I
1
o~—

Integrating the first factor in the expression for J1

nTO T0 nT0 ¢

n
{ a(t + nTO - E)v(€)dE = a(t) { v(E)dE + g a'(t + nT0 - £) { v(T)dtd§

by parts gives

which, when used in the expression for ] (t) (also apply the first part

1

of (7) and make obvious estimates) gives

t+r1T0

t
(o) [0 <k [ la)] + { la'(s) lds] { "’n'ro(s”ds’ (0=st=Ty) . |

Estimating the expression for IZ one obtains




B e i

'IZ(t)f <{[ ‘ag { als +nT, - ;)V(é)dglds}{O;nTazt I{ vnTo(

s)ds |}

=
= {f |E;‘[a(5){ v(€)dE +f a'(s+nT0—§){ v(t)dvde] lds} x

{o_inf;t |£ vnTO(S)dsl} (0<t=<T,,

where the equality follows after an integration by parts. By conditions (1),

nTO nT0
(2) the quantities f a(s + nTO - £)v(£)dE and a(s) f v(£)dE¢ have
0 0

derivatives in Ll(O, T
nT0

of a'(s +nT, - &) v(T)dTdé. But the Ll-norm of the derivative
0
0 0

o’ H); therefore the same applies to the derivative

equals the total variation. Hence, denoting an arbitrary partition of [0, T.]

by 0 = h < sl ST SN T TO’ it follows that
N nT 0 ¢ r1T0 ¢
L lf S +nT - £) f v(T)dtdE - f a'(s__1+nTO - g)f v(T)deél
=1 0 0 0
%I‘ nTO -
= L f la'(si + nTO -£) - a'(si_l + nT0 - g)ldg max lf v(s)dsl
i=l 0 OSTSnTO 0
nT
fVara' —&,(n+l)T ~elide = k. <o,
0 4
0
where the last steps follow by (2) and (7). Thus
N 3
Iy (t)| <K, ma¥% i‘f v (s)ds| :
. To<r<t 0 ™o

Combining this relation with (**) and recalling that ] = J1 i IZ implies

(9) and completes the proof of Theorem (a). o

~5]-
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t
u'(t) +Bu(t) + [ a(t-s)Au(s)ds - f(t) (0 <t < o)

-0

u(t) = h(t) (-o< t <-0).

Under various assumptions on the nonlinear operators A, B and on

the given functions a, F, f, h existence theorems are obtained for
(*) and, (**), followed by results concerning boundedness and asymptotic

behaviour of solutions on (0/<t < o); two applications of the theory to

problems of nonlinear heat flow with™infinite memory"yare also discussed. ‘
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