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ABSTRACT

We study the nonlinear Volterr a equation

t
u ’(t) + Bu(t) + f  a( t -s)Au( s)ds  ~ F(t) (0 < t  < oo ) ( ‘ = d/dt)

(*)

as well as the corresponding problem with infinite delay

t( u ’(t) + Bu(t) + f  a( t - s )Au(s)ds  f ( t )  (0 < t
(**)~~ -~~~

~~ u (t)  = h(t ) (-
~~ 

< t < O ) .

Under various assumptions on the nonlinear operators A, B and on the given

fu nctions a , F , f , h existence theorems are obtained for (*) and (**), followed

by results  concerning boundedness and asymptotic behaviour of solutions on

(0 < t <c e) ;  two app lications of the theory to problems of nonlinear heat flow

with “infinite memory ” are also discussed.
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AN ABSTRACT NONLI NEAR VOLTERRA INTEGROD IFFEREN TIA L EQUA TION

* **M. G. Crandall , S. -0. Londen , and J . A. Nohel

1. Introduction and Summary of Results

We study the nonlinear Volterra equation

I-
u ’(t) + Bu(t) +f a( t -s)Au(s)d s  ~ F(t) (0 < t < 00) ( ‘ d/dt)

(1.1) 
0

• Luo u0,

as well as the corresponding problem with infinite delay

I-. t
u ’(t) + Bu( t )+ f  a( t -s)Au(s )ds  ~ f( t )  ( 0 <  t < 0 0 )

(1.1 
00

0 0 1
Lu(t = h(t) ( - o o < t < 0 )

Under various assumptions on the nonlinear operators A , B and on the

• given functions a , F, f, h existence theorems are obtained for (1.1)

and (1. 
~ 00~~’ 

followed by results concerning boundedness and asymptotic

behaviour of solutions; two applications illustrating the theory to problems

of heat flow “with memory ” are also discussed . This work was partly

motivated by Barbu [2 1; see below.

The technical conditions appropriate to various circumstances are some-

what cumbersome and distracting to state . We therefore collect the assump-

tions common to most of our results under the name “general assumptions. ‘I

*• Sponsored by the United States Army under Contract No. DAAG29-7 5-C-0024
and the Nationa l Science Foundation under Grant MCS76- 10227 .
** Sponsored by the United States Army under Contract No. DAA GZ9-75-C-0024.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024
and Grant DAHCO4-74—G -0Ol 2, and by the National Science Foundation under
Grant MCS7 5— 21 868.

L I



The General Assumptions. Let H be a real Hu bert space and W a

real reflexive Banach space satisfying

(1.2) W C H CW ’

where W’ Is the dual of W. It is assumed that the inject.tons in (1. 2)

are continuous and dense and (w ’ , w> = (w’, w) for w ’ €H , wEW where

(w ’, w) Is the value of W ’ E W’ at w € W  and ( , ) is the inner

product of H. We denote the norm in H by I . I and the norm in W

by II . II. Let &( W — (- 0 0, 00) and ~p : H -~ (- 0 0, 00] be convex ,

lower semicontinuous (1. s . c . )  and proper functions and define

(1.3) A = a ~~, B = 8 ç ~,

where a4~, ~g’ are the subdifferen tlals of ~~ and q~ respectively (see ,

e.g.,  [5J ) .  Then A and B are (possibly multivalued) maximal

monotone operators fro m W and H to W’ and H respectively.

Define 
~H H -, (_ 0 0, oo] by

( 1. 4 )  
~ H

(u) = j im inf{~ (v) : v € W and Iv — u l cr}

is automatically l .s .c.  and is convex since ~4i is convex.

is the largest 1.5 • c. function on H satisfying t
~H 

<4 i  on W.

We assume that

( 1. 5 )  
~H
(u) = qi(u) for u € W

—2—
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Let AH = 
~~H’ AH is maximal monotone in H and , in view of ( i .  5),

has the property

3 (i. . 6) AHu C Au for u

Thi s follows from the implication: u E W, v € H and 4iH
(z) 

~ + (v, z - u)
~ I

for z € H => ~I)(z) � 4i(u) + (v , z - u) for z € W when (1.5) holds.

Note that if LI) : H -~~ (_ 0 0 , 0 0]  defined by

u € W

L+00 , u € H \ W

is 1. s .c . , then i4 = and (1. 5) holds. Moreover , i~ i s 1. s.c. if

u r n  i~.i(u) =

I I u I I -.oo

The Yosida approximations AX of AH can be defined for X > 0 by

• AX = X
1(I - 

~~~ 
= (I + XA H) ’

see [ 5 ]  for the pro perties of Relating A
~ 

and B we assume there

exists p € [0, oo) such that 

2 2(1.7) (w , A>~u) �. — p ( J w I  + lul +1) for u €  H, we Bu, ) t €  (0,1].

We will also require the compactness assumption -

• (1.8) For every K > 0 , {u€ H: I~’(u) I + IuL~~K} is precompact in W.

In particular, we assume D(~) ~ W.

Finally, as regard s the kernel a, we will require that the following ~~~~~~~

conditions are sati sfied. •r.

Conditions (a): •.-.—.-...

(1.9) a(t) is locally absolutely continuous on [0,00). ..

‘ coon

Hi LIL~
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( For every T > 0 there is a K T >0  such that

y e  L2(O,T; H), d1,d2 e [0,00) and

t Sf (a * v(s) , v(s))ds<d
1 +d 2 max If v( T)d T l , 0~~ t~~ T ,

0 0<s<t 0

(1.10) (where a * v(t) = f  a(t - s)v(s)ds) imply

• ) t
• If v(s)ds l <K T(’I~~

+d
2

), 0~~ t~~ T,
0

t 2
and I f (a * v(s),v(s))dskKT(dl

+ d Z), 0~~ t~~ T.
0

Note that if v € L
2
(0, T0

; H), where T0 
<T satisfies the assumptions

• of (1.10) on [0 ,T0 ], then v extended as 0 on (T0, T] satisfies

the same conditions on [0, T]. Thus, without loss of generality, T -
~~ 
KT

can be assumed nondecreasing, This concludes the general assumptions.

Some remarks on Conditions (a) are appropriate before proceeding

to the statement of the main results. Conditions (a) abstract what is

actually used in the proofs and are stated in this form for simplicity of

presentation. Moreover , as stated these conditions are perfectly sensible

for operator valued kernels and our results hold In this generality. A

general sufficient condition which implies Conditions (a) is formulated in

Theorem (a) of Appendix (a), and this is used in turn to verify:

Proposition (a) . Let a sati s~iy either the conditions

a , a ’ € L1 ( [0 , 00); R) • ,

(a r ) a ( O ) > O

• L a ’ j~ ~~ bounded y~~1at1pn locaijy ~~ [0 , 00)

Ii
i_ i .  -
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~~~

or the conditions

a(t) is nonnegative, decreasing and

(a
2
) convex~~~ [0,00), a(0) >0 ~~~~~~~~

• L 
a € C2((0 , 00) )  fl C([ 0 , 00)) .

Then a satisfies Conditions (a) . Moreover , ~j  a = a
1 

+ a2 with a .

satisfying ~~~ Conditions (a 1), then a satisfies Conditions (a) .

Thus a broad class of interesting kernels satisfy Conditions (a).

Proposition (a) is proved in Appendix (a).

Our first existence result is:

Theorem 1. Let the general assumptions (1. 2) -( l .  10) be satisfied. Further

assume that A = OLI i is single-valued and D(A) = W. Then for every

F € ~~ ‘‘([0,00); H) ~~~~ U
0 

€ D(~ ) eciuation (1. 1) has a solution u fl~

the sense

(i) ~ € C([o,00); W ) ,

(ii) u ’ € L~0~
( [ 0 , 0o ); H)

(ii i) F - (u ’ + a * Au) € L~~~~( [ O , c~D ) ;  H)

( iv) F( t) — u ’(t) — a * Au(t) € Bu(t) a. e. t ~ 0

Moreover

(v) f Au(s)ds€ L~~~([0,oo); H).

Theorem I Is proved in Section 2.

Remarks: Since A = : W —b W’ is assumed to be single-valued and

everywhere defined on W, A is continuous from the strong topology

— 5 —
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of W into the weak topology of W’ ; see [17] .  Thus by (i) above , t -
~~ Au (t)

is continuous into the weak topology of W’ and a * Au is unambiguously

defined with values in W’ . Moreover , by (v) and a * Au(t) =

a(0) Au(s)ds + a ’ * (f Au(s)ds) ,  a * Au € L~~~(0 , oo; H);H 0 0

the integrals are taken in the sense of Bochner.

The spaces W and W’ enter in Theorem 1 as a technical device

corresponding to the fact that we can obtain estimates in H of u and

integrals of Au under the hypotheses of Theorem 1, but we cannot obtain

estimates on Au in H. These estimates are obtained in Section 2 a fter

preliminary results, of some independent interest, dealing with the

regularized equation

r u~ (t) + Bu
~

(t) + € A X ux (t) + a * AX~x I t ) ~ F(t)

(1.11)

~ X , € >0 , 0 <t < 0 0~ u
~

(O) = u0 .

After establishing exi stence and uniqueness of solutions of (1.11) for a

fixed X , e > 0, a priori estimate s are obtained which enable us to pass

to the limit as X — 0~ keeping e >  0 fixed . Then using a priori

estimates independent of £ > 0, Theorem 1 is proved on letting € -. 0+.

The compactness assumption (1.8) concerning ~‘ and properties of maximal

+monotone operators come into play in the passages to the limit~~s X — 0

and then as e -~~ O~~.

Under suitable assumptions estimate s on Au in L~~~([ 0 , oo); H)

• can be obtained . Then existence results can be proved in which neither A

F
-6-
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nor B is required to be single-valued. For example , we h ave:

Theorem 2. Let the general assumptions (1. 2)- ( l .  10) be satisfied with

W =  H = W’ (so = LI), AH = A, e t c . ) .  Assume , ~~~additi on that

• for each r > 0 there is a number k( r) such that

• (1. 12) k(r)( l  + i w i )  ~ lv! j~~ v € Au , w E  Bu 
~~~~~~~~ . 

j u j  < r

Then for every F e  W~’ 1( [0 , co); H) and u0 € D(LI)) fl D(c~) equation ( 1.1)

ha s a solution u satisfy ing u , u ’ € L~~~([ 0 , cc); H), ~~~ there exist

v , w € L~~~( [0 , ~ ) ; H) such that v(t) € Au(t) , w(t) € Bu(t) a . e .  (0 < t  < cc)

and u ’ + w + a * v = F  a .e .  ( 0 < t < o c ) .

Theorem 2 is proved together with Theorem 1 in Section 2.

The next t ask is to di scuss the boundedness and asymptotic behaviour

of solutions of equation (1.1) . Two results of thi s type , motivated by

analogous ones of interest in the stability theory of real scalar Volterra

equatio ns , are give n. They seem typical of what one might expect to prove

concerning solutions of ( 1.1) provided by results like Theorems 1 and 2.

Theorem 3 ( 1).  Let the general assumptions (1. 2 ) - ( l . l0 )  be satisfied and

u , v , w be given sat isfying the conclusions of Theorem 2. Assume

that u(0) = u0 € D(q’) fl D(iji), p = 0 in (1.7),  m l  ~p (u) > — cc , a
U E W

satisfies condition s (a 2 ), and there is a 6 .~~~ 0 for which

(1. 13) IF(t) I < 6a(t) ,  IF ’( t )  I < - 6 a ’(t) (0 ~ t < c c )

Then

—7—
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1(a) sup Q ( v; t )  < c c
a

(1.14) (b) a * v(t) j 2 < 2a(0) Q ( v ;t )  (0 < t  < c c )

(c) sup ~(u( t ) )  <~~ °,

L. t~~0

where 
~a 

is defined ~~

= (a * v(T) , v(T))dT , v € L~0~~
([0 , cc); ~

)

(i i ) j~ also inf q ( u )  > ---c and u r n  4,(u) = then
u € H

(a) sup II u(t) II <~~
0 < t < c c

(1. 15) (b) sup j~~(u(t) ) I <~~

L (c) u € UC( [ 0 , cc);

where UC( [ 0, -c); W) is the set of un iformly continuous functions

with value s j~ W.

F .~ (iii ) If in addition to the conditions above, a ’(t) ~ 0 ~~~ A satisfies

L the conditions of Theorem 1, then

(1. 16) v(t)  0 weakly in W’ as t — cc

and If A 1(0) is a singleton~~~ n

(1. 17) u(t) A
1(0) strongly in W as t -. -~~~.

Theorem 3 is proved in Section 3.

Remarks. Theorem 3, as state d , does not apply directly to the solutions

of (1.1) given by Theorem 1 even when the additional assumptions on ~~, q’, a , F

•1
- 

-8-



are satisfied since with v = Au , u as in Theorem 1, we do no t have

v € L~~~( [ 0 , cc);  H). The principal diff icul ty lies in that the defining

expression for Q (v;t) does not have a clear meaning for v € L ° ( [0 ,~c); W ’).

However , for the solutions of (1.1) constructed in the proof of Theorem 1,

• this expression may be assigned a meaning and the results of Theorem 3

remain valid. This point is discussed at the end of the proof of Theorem 3

in Section 3.

• Moreover , a s will be clear fro m the proofs , if F is compactly

supported and a is a kernel of positive type ( [ 1 5 ] ) ,  rather than convex

and nonincreasing, the conclusi ons of Theorem 3 remain valid.

In the next result the somewhat artificial condition (1.13) (see ,

however , Proposition 5. 2 and the first exampl e of Section 6) on F is

replac ed by F € L 2 (0 ,oo; H) and a need not be of positive type .

Theorem 4. Let the general assumptions ( 1. 2)-( l .  10) be satisfied and

u , v , w be giv en satisfying the conclusions of Theorem 2 where

F e L2 (0 , cxD ; H). Assume also fl~~~~~~ 
u0 € D(q’) fl D(4 i), inf 4~(u) > -cc and

u~~W
there exist a , 6 > 0

2
I (i) (w , v) ~ a v for w € Bu, v € Au , u € H

(1.18)
1 T

L~i) u r n  sup inf f cos( o t )a ( t )d t  > 6 — a
T -~~ -~~< o < ~~ 0

The n sup ~(u( t ) )  < -‘h 
~~~~ v € L 2 (0 , cc; H).

t > 0

The proof of Theore m 4 is given in Section 4.
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The proble m (1. 1) may be reduced , in the standard way , to

problem of the form ( 1. 1) and the at ove results then applied. This ~s

carried out in Section 5. Finally, in Section 6 , we consider two examples

to illustrate the theory.

Equation (1.1) has been studied by Barbu [ z J ,  [ 4 ]  using energy func-

• tions [ 9 ] .  Theorems 1 and 3 extend his main re sults in several directions.

Barbu ’s existence theorem require s , in addition to the assumpti ons of

Theorem 1, the kernel a to be positive , decreasing and convex ,

3 = 0 in (1 .7)  and a number of restrictive technical conditions. Correspond-

ingly , ou r proofs appear to us to be more il luminating, direct and complete .

See the end of Section 2 concerning the generality a fforded by allowing

3 > 0. Similar differences exist between our Theore m 3 and the version

of [ 2 ] .  Theorems 2 and 4 have no direct analogues in [ 2 ] ,  an d we have

not stated an analogue of [ 2 , Remark 3.1 ], which i s not quite clear .

See the amended version in [ 4 ] .  However , from the proofs one can

easily invent results of this type.

The special case of ( 1.1) in which Au = Bu has been studied by

MacGamy [14] by a different method essentially only under conditions a 2 .

When Au = Bu , (1 .1) is formally equivalent to the integral equation

t
(I) u(t ) + f b(t — T)A u(T)dT  ~ H(t ),  0 ~ t < c c ,

0
t

in which b(0) = 1, b ’(t)  = a(t)  and H(t) = f F ( T) d T . 
•

0

4 .-

-10- 
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Equation (I) has also recently been studied in Hilbert space by

Barbu [ 3 ]  and by S. -0. Londen [11] ; existence , u niqueness and results

for behavio ur of solutions as t — -‘~ are obtained in [ I I  J under more general

assumptions than in [ 3 ] .  Since the assumpt i on  1.8)  (or some similar

compact ness condition) is not made in [11], the res ults  of [ i i ] are also

more general than those obtained in Theo rems 2 and 4 in the special case

• Au = Bu. It should also be notei that uniqueness  of solutions of (1 . 1) is

not claimed in ~ny of our principal resul ts .

Let us also poi nt out  that  the case B 0 in ( 1. 1) is ruled out by

the comp actness assumpt ion  ( 1 . 8 )  (unless  H is f ini ted dimensional) .

When B 0 (1. 1) is formally equivalent  to the equation

2 t

L 

+ a(0 )Au ( t )  + f a ’(t - T)Au(T )dT ~ F ’(t )
cit 0

Existence for th is  problem has recentl y been studied by Londen [ 12 ] ,  [13] .

The case when A is a l inear second order parti al diffe rential operator

has been ~na1yzed by Da fermo s [ 7  1, [8 j .  Also note that problems related

to the ones considered here have been considered by Artola [ 1 ] .

Finally,  let us remark tha t  this pap er is an outgrowth of a seminar

hr~1 j  in Madison , Wi sconsin , during 19 74 -7 5 .  We acknowledge wi th plea sure

the helpful  disc ussions with colleagues and s tudents , in partic ular  wi th

W. Ru d in , D. F. Shea , Luc Tartar and 0. Staf fans .

• .

— 11 —
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2. Proof of Theorems 1 and 2

We begin with a general result (Lemma 2 . 1) and its consequence

• (Corollary 2.1) which will be applied to the regularized equation (1.11) .

Consider the initial value problem

(2.1) + Bw ~ G(w) ; w(0) = w0

Concerning (2 .1)  we prove:

Lemma 2.1.  Let T0 be given. Let

( 2 . 2 )  B be a maximal monotone graph in H X H

(2.3) G : C([0,T0]; D(B)) — L1(0,T0; H),

and let there exist a constant M > 0 such that

( 2 . 4 )  IIG(u) - G(v) II cc <M i j u - v i i  cc 
(0 < t < T 0)

L (0 , t; H) L (0 , t ;H)

~~ u, v € c([ 0 , T0 1; D( B)).  If w0 € D(B ) , then ~~~ initial value problem

(2.1)  has a unique solution w in the sen~~ that w is a weak solution

(see [5; Def. 3.1]) of the initial value p~çblem

( 2 . 5 )  + Bw ~ E(t); w(0) = w0

where E ( t )  = G(w) ( t) ; in particular,

(2.6) w€  C([0,T01; H) and w(t) € D(B) QIl [0,T0]

~~ addition , B = 8q’, where q’ : H -~ (_ cc , c c J  j~, convex,

l . s . c .  and proper, and if w0 € D(q’) and G(w)(t)  € L2 (0 , T0 ; H) , then 
•

w isa strong solution (see [5; Del. 3.11) Q.t(2. 5) and

(2.7) € L
2
(0,T0

; H) .

-12-
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Proof of Lemma 2 .1 .  Consider the initial value problem

(2 .8)  ~~~ + B w ~~~G(v) ; w ( 0 ) = w 0 € D(B)

where v € C([0,T0j; D(B)) is given . By ( 2 . 3 )  G(v)(t)  € L1(0 , T0 ; H)

and so from (2 .  2),  w0 € D( B) , and fro m [5 ;  Theore m 3 .4 1  it follows that

( 2 . 8 ) has a unique weak solution on [o , T0 J which we denote by Tv;

in particular , Tv € C([0 , T0 ]; D( B)). Furthermore , recalling [5;  Lemma 3.1]

and ( 2 . 4 )  yields

f-.

if Tu - Tv iI cc ~ 
f IjG(u) - G(v) I I cc

I L (0 , t;H) 0 L (0 , s;H)
( 2 . 9 )

I ~~M f  l u - v u  cc ds , 0 < t < T0 ,
0 L (0 , s;H)

for u , v e C( [0 , T0 ]; D(Bj) . We claim that the mapping T has a unique

fixed point. For , iterating ( 2 . 9 )  one obtains by a straightforward induction

Mn Tn

(2 . 10) ii 1~ u - 1~ v if < Ii u - v Ii
L

cc
(o , T0 ;H) n !  L

cc (o , T0 ;H)

Thus , for n sufficiently large , T” is a st rict contraction on

V C([ 0, T0 ]; D( B)) , and consequently, T has a unique fixed point

w € C([0 , T0 ]; D(B)) which solve s (2.1) as asserted in the first part of

Lemma 2.1.

The second part of Lemma 2 .1  follows immediately from [5;  Th. 3 . 6 ] .

Remark. The conclusions of Lemma 2.1 remain unchanged if the Lipschitz

condition ( 2 . 4 )  is weakened to

.1

— 13—
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li G(u) - G(v) II <~~(t) lj u - vi l  ~ , 0 < t < T 0
L (0,t;H) L (0,t;H)

for u , v € C([o , T0 ]; D( B)) and where ~i. € L
1
(0, T0). Moreover, the

proof of the first part of Lemma 2. 1 is valid without change if B is

• i-accretive in a Banach space X.

Lemma 2. 1 will be applied to the regularized problem

( u ’ + Bu (t) + eA u (t) + a * Axu (t) F(t)
(2 11) 1 x x  x

~~~
u
~

( o ) = u
~~

.

Corollary 2.1. Let the general assumptions (1.2) - (1.10) hold. j~~

c > 0, ~ > 0 be fixed. Then for every F € L~0 (0, 00; H) and u0 € D(c~),

(2 .  11) has a unique solution u~ on [0 , cc) 
~~ ~~~ sense th~~~~~

u~ € C ( f 0 ,cc ); B), u~ € L~~~(O , cc ;  H)

u x(t ) € D(B) a.e.  g~ (0 , 00)

u x satisfies (2.11) a .e .  ~~ [0 , 00 )

Sketch of proof of Corollary 2. 1. DefIne G(u) by setting

G(u)(t) = F(t) - cA~u(t)  - a * A~
u(t)

and note that (2.11) may be written as

u~ + Bu~ ~ G(u,~), u,~(0) = u0

Since A
~ 

is Lipschitz with constant 1/k , one easily verifies that G

has the properties (2. 3) and ( 2 . 4 )  for any T0 > 0. Thus the result follows

from the second part of Lemma 2.1. (Observe we have not used all of the

general assumptions; (1. 3), (1. 6), a e L~~~[ 0, ~~~~~
) are sufficient.)

H -14-



The next task is to derive bounds on solutions of equations of

the form (2.11) (or (1. 1)). This we do in some generality. See the end

of this section for further remarks .

Proposition 2.1.  j~~ T > 0 , D = a~ , C = 3W where ~~~ , W : H -..(_oo , cc ]

are convex, l . s . c .  and proper. ~~~~~~~ a, p, c0 € [o , cc) , F €  W1’1(0 T; H),

u0 € D( ’ Z ) f l D ( W ) , a : [ 0 ,cc )—. . ll~ be given such~ fl~~

(i )  ‘Z ’(u)  > -c~ ( J u l  + 1), W (u)  > -c0( J u l  + 1) for u € H

( i i )  (v , w) > a l v i 2 
~ p( Iw l~ + I~~j 2 

+ 1) ~g u € H and
(2 . 12) ~• 

1 
v € C u , w € D u .

(i i i )  a satisfies Conditions (a)

Then there i s a  constant C depending Qflj~~on i u 0 I , T, a, ’Z ’(u0 ), W (u 0), 13,

• c0 ~~ 1f F ii 1 (but  not otherwise on ~~~ , ‘1’ and not on a)
(0 , T;H)

such that if

• (i) u , u ’, v , w ~ L2 (0 , T; H), .  u(0)  = u 0

(2 .13)  ( i i )  v(t)  € Cu(t) ,  w ( t )  ~ Du(t) a . e .  0 ~ t ~~

• - 

L ( 1 L i )  u ’(t ) + w(t)  + a  * v( t) = F(t) a . e .  0 < t < T

then 

T T T
max{ f iu ’(s)l~ds , f I w(s ) f

2ds~a f lv(s )l 2ds , lu(t) l ,
0 0 0

t

~~u t))  , Iw(u t) ) i. If v ( s )d s  I) < C
0

fo r 0 < t < T .

— 15—
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The proof of Proposition 2.1 is given next. The reader may want

• to skip ahead to the proofs of Theorems 1 and 2 which follow.

Proof of Proposition 2.1. Although the statement of the result is some-

• what complicated , the basic idea of the proof is simple. One inner-

products (2.13) (iii) with each of v(t) and u ’(t) , integrates the results

over [0,tJ and manipulates. (The reader will probably find it helpful

to first trace the proof below assuming 13 = 0 and make the considerable

sirnplifications which result.)

We will use C1, c2, ... etc. , to denote various constants

depending only on a , T, 1u 0 I , ~(u0), W (u0), 13, c0 and I I F H  
~WI’ (0,

All estimates below are for 0 <t <T. We will also use estimates of

the following sort frequently and without comment:

+ y < + ~~~ (x + y)
2 
~ 2(x

2 
+ y

2), xy < ~~~ x~ + ~ y
2
, and

t tf  If~s)lds ~.~[t(f I f ( s ) l 2ds) 2 for x,y,1e (0,cc) and 1€ L
2
(0,T; H).

0~ 0

Forming the inner-product of (2 .13)  (iii ) with v , integrating over

[0 , t J  and using (2 .12)  ( ii) and [5, Lemma 3.3] yields

tr W(u (t))  — 

~
Lf(u

~
) + a f  Iv(s)j

2
ds

(2.14) + f (a * v(s),v(s))ds 
~ 

f  (F(s),v(s))ds
0 0

+ Jw(s)J
2
ds + Ju(s)J

2
ds + 1) .

0 0

- - 

-16-



• Next observe that

t t t S

• f  (F(s), v(s))ds = (F(t), f (v(T )dT)  - f (F’ (s), f v(T)dr)ds
0 0 0 0r (2.15)

- t t t 5
a *v(t) = f a(t — s)v(s)ds = a(O) f v(T) dr + f a ’(t - s) f  v(T)dTds

0 0 0 0

Hence if

(2.16) g (t) = max i f 5 
v(T)dT i

0<s<t 0

we have

( i )  f f (F(s),v(s))ds I c1g (t )
(2.17) 0

(ii) Ia * v(t) I <c1g (t).

Invoking (2.12) (i) and employing (2.17) (i) in (2.14) yields

(a * v(s), v(s))ds + a f  I v ( s ) I 2
ds

(2.18) ~

L < c 2(Iu(t ) i + f w ( s ) f
2ds + f  I u ( s ) i 2ds + 1  + g ( t ) ) .

H 0 0

Since a .~~ 0 , Condition (a) ,  (2 .16) ,  (2.18 ) and the monotonicity of

• t -
~~ fl u If + f lw(s )  I ds + f lu ( s )  i ds imply • I

L (0,t;H) 0 0
‘
I __________________________

t I t t2 2
(2.19) if v(s) is J < c

3(l+ v i l u i l  +f fw(s ) I ds+f Iu ( s) I ds)
0 L (0,t;H) 0 0

I
—17—
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Now by (2.13) (iii) and (2.17 ) (ii)

• (2. 20) lw(s) I = IF(s) - (u’(s) + a * v(s)) I < c 4(l + lu ’(s)  I + g (s)) .

Thus , fro m (2.19) ,  (2.20) and (2.16)

(2.  21) g (t ) < c ~ (1 + 
00 

+ f  (lu(s) j 2 
+ g (s ) 2 

+ Iu ’(s) I
2ds)) .

L (0,t;H) 0

Next multiply (2.13) (iii) by u ’ and integrate over (0 , t J to find

(2. 22) f J u ’(s) I 
2ds + ~~u(t)) - ~

(u
~
) + f (a * v(s), u’(s))ds

• t t
= f (F(s) , u’ (s))ds .~, (  max IF(s)l) f Iu ’(s)Ids .
0 0<s<t 0

Calling on (2.17) (ii) and (2.12) (i) again, (2. 22) implies

(2. 23) Iu ’(s) I
2ds <c6(l + (1 + g (t)) f  I u ’(s) Ids + Iu(t) I ) .

The next step is to eliminate the terms involving u in (2. 21) and (2. 23). • 
-

One has

(2.24) Ju(t) I = Iu
~ 

+ f  u’(s)dsl < Iu~ I + ~ (f Iu 1(s)I
2
dS)~~

2

< I u 0I + ~~~~+~~~f I u ’(s)I
2
ds

for i >0. Hence

(2.25) h u h Iu(s)I 2ds <c 8(1 + f
t 

Iu’(s) h 2ds) .
L (0,t;H) 0 0

-18-
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Thu s from (2 .  21) and (2 .  25)

(2.26) g (t)
2 
<c

9
(l + f g (s) 2ds + f lu ’(s)I

2
ds)

while choosing ~ so ~c6 
<~~~~~, (2 .  23) and (2. 24) yield (using also

f Iu ’(s) Ids <~~~~ ~ f iu ’(s) I
2
ds)

(2. 27) f lu ’(s) l
2ds <c

10
(l + g (t) f iu ’(s) I ds)

The Gronwall inequality, (2.  26) ,  g (O) = 0 and the fact that

t f Iu ’(s) I
2ds is nondecreasing imply t hat

(2 .28)  g (t)2 <c
11(l + f Iu ’(s)l

2ds)

Finally, (2. 27) and (2. 28) give us

t t t

f l u ’(s ) I
2

ds~~~c12 (l + (f Ju ’(s)i
2
ds)~~

2 f Ju ’ (s) lds) -

•

<c
l2(1 ~f 

lu ’(s)I
2ds + ~ (f I u ’( s ) i ds ) 2 ) .

Appropriate choice of i~ implies

( 2 . 2 9 )  iu ’(s) I
2ds < c 13(l + i u ’( s ) i ds ) 2 )

• 0 0

2To see that (2.  29) implies a bound on f I u ’(s) I ds , proceed as follows:

t 0

Assume t0 >0 and f Ju ’(s)i
2
ds < M. Then f iu ’(s)Ids~~~~~~I~

—1 9 --
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and , f rom (2.  29)

t t t

f j u ’( s)  I 2ds <f lu ’(s) i 2ds < c 13(l + ~~~~~ + f iu ’(s) ds) 2 )

< c1~ (1 ± 2t 0M + 2(t  - t
0

) f u ’(s) l
2

ds)

t 
_ _ _ _ _ _ _ _ _ _f iu ’(s) l

2ds 
~~ - 2c1~ (t - t0) 

c13(l + 2t 0 M) < 2c
13(1 + 2t 0M)

for 2c13(t 
- t0) ~ . Iterating, we bound [ iu ’ ( s ) I 2ds. Since t0 = 0,

M 0 may be used to start , (2 .  29) implies

t
(2 .30 )  .1’ u ’(s ) I

2
d s < c 14 .

The proof of Proposition 2. 1 is essentially complete . First (2 .  30), (2 .  24)

and (2. 28) imply g (t), Iu ( t ) I ~ c15 . This information , (2. 17 ) ( i i) ,

(2.12) (i) and (2. 22) imply ~‘(u(t)) I < c
16
. Since w = F — (u ’ + a *

f lw ( s ) I 2ds < C
17

. All these estimates , (2.18) and the bound on
o t t

• 
If (a * v(s),v(s))ds l supplied by Condition (a) imply a f Iv(s) I 2

ds < C 18
. 

-

Finally , l w ( u t ) J  is bounded via (2 .12 )  (i) and (2.14). The proof is

complete .

Proof of Theorems I and 2. The first  step in both Theorems is to let X ~ 0 in

(2.11) with c € (0,1] fixed . Now B + cA~ 
= a ( c o + € 4 Jx ) and Ax 3

~x where

U -20-
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I

= min{
~H

(y) + (2 x ) ~~ Iy - x 1 2 
: y~ H) is as in [ 5 , Prop. 2.11].

Since convex functions are bounded below by aff ine functions , there

exists c0 such that ~ + CL~~ and are bounded below by -c0( I u l  + 1)

uniformly for c,x € [0 , 1]. Set ~ ~ + W = in Proposition 2.1.

In view of (1. 7) we ha ve (2.  12) (ii)  where e may be used as the

coefficient a of f y i 2 in (2.12 ) ( i i) .  Hence by Proposition 2.1 for

T >  0 there is a 0T independent of € , X € (0 , 1] such that for X , e € (0,1]

and t € [ o ,T]

(i) 
~x x (t

~~ ~~
0T

(ii) I co(ux(t))I ~ .
CT

• (iii) J u ~
(t) i < C T

t

(2 .  31) < 
(iv) e f lA xu x (s)  l 2ds .

~~ 
CT

(v) f lu
~

(s) I 2
d s < CT

(v i ) f iF(s )  - (u k (s )  + a * Ax u x(s ) I 2
ds ~ CT

The compactness condition (1.8) , and (2.31 (ii), (i i i )  imply that there is

a compact subset KT of W for which ux([0,T1)CK T. Hence

U
x 

€ c([ 0, T]; H) implies € C([ 0 , T}; W) (see Lemma 2.2 below). Since

_ _  
t

t u ~
(t) - u x ( s ) J  < ~-it - s (f  I u~(T)l

2
dT)lh

’2
, the functions U

x 
are equi-

continuous on bounded subsets of [0,00) with values in H. From

-21-
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u x([ 0, T] ) 
~ 

KT, they are also equicontinuous with values in W (see

Lemma 2 . 2  below) . Then by the weak sequential compactness of closed balls in

L2(O , T; H) for T > 0 , the Ascoli theorem and (2 .  31) ( iv),  (v) and (vi)

we have the existence of functions u~ € C([0,00); W), v , we, 
€ L~~~( [0 , 00) H)

with u ’ € L2 (jo , cc); H ) and a sequence x 0 such th at
c b c  n

(i)  U
~ 

— u in c( [o , cc) ; W)

(ii) A~~
u
~ 

v 
-

(2 .  32) - - - 

weakly in
(i i i)  u~ — U~ ~ L2(0 , T; H) for

(iv) F - (U
~~n 

+ c
~~~

Ux + a * A~~u x ) w J  
T >  0

In particular , (2 .  32) (i)  imp lies U
x 

-* u in L2 (O , T; H) for T > 0.
n

By the demiclosed property of maximal monotone operators (and ~ 5,

Example 2.3.3)) v (t)e AH
u (t) a.e. and w (t) € Bu (t) a .e .  (since

F - (u~ + xn~~ n 
+ a * A

~~
u

~~~
) € Bux a.e.). Since v -~ a * v is

bounded, and linear on L (0, T; H) it is weakly continuous and

a * Ax ux 
— a * v weakly in L2 (O , T; H). Thus (2. 32) implies

( ( o  u ’ + w  + e v  + a * v = F
( 2 . 3 3 ) ~ 

C C C

Uii) u~ , w
~ , v~ € L

1 
(0,Qo; H) , w(t)€ Bu€(t), v~(t)€ 

AHuC(t) 
a.e. (0<t<cc).

Now we want to let e 1 0. Invo 1~ing Proposition 2.1 again we conclude

that ~(u(t)), ~(u(t)), I u (t) i , f iv
~
(s)I

2ds , f Ju~(s)I
2
ds, f iw (s)l

2
ds

and If v (s)ds I are all bounded uniformly for e € (0, 11, t € [0, T].
0

— 2 2 -
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2If (1.12) holds we obtain fro m these estimates that also f j v  (s)  I ds
0-

• is locally bounded uniformly for e € (0 , 1],  and the passage to the l imit

as e 1 0 may be done exactly as above . This proves Theorem 2.

In the case of Theorem 1 the si tuat ion is different  for we no longer

2ha ve an estimate on f I v (s)  I ds independent of c € (0 , 1] ,  which
• C

• is where the ass umption in Theorem I that A : W-’ W’ is everywhere

defi ned and single-valued- comes in to play. We write V = Au (we

may us e A rather tha n AH by (1 .6 ) )  in this case). Just as above , we

2have the existence of a sequence C 1 0 , u € C([ 0 , xl) ;  w), u ’ € L1 ( [0 , oo) H),

we L2 ( [ Q ,~-~); H) such that
b c

(i) u —
~ u in C( [0 , cc) ; W) , u ’ — U ’ weakly in L~~~([0,cc); H)

( i i )  C A U  ~~O in L~~~( [0 , cc) ; H)

(2.34) n

( i i i )  w = F - (u ’ + e Au + a * Au ) — w weakly ine c n e cn n n n

L 2(0 , T; H) for T > 0

( C Au ~~O in L~~~( [ 0 , c c ) ;  H) since ~ 
~ T 

IAu ( s ) j 2
ds < C T for

o < T, 0 < c <1). To take the limit of Au we use that since A is— — C n
maximal  monotone , single-valued and everywhere defined it is necessarily

continuous from the strong to the weak topology and is bounded in some

neighborhood of the compact set u( [0 , T J )  in W (see , e . g . ,  [17] ) .

Thus Au (t)  
~

I
~Au x (t) weakly  in W’ and boundedly for bounded t.

Hence Au 
~~

AU
X 

we akly in L2 (0 , T ; W ’) for T > 0 and a * Au a * Au x

-23-
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weakly in L2 (0 , T; W ’). We conclude that u ’ + w + a * Au = F a . e .

where w(t) € Bu(t ) a .e . , as desired. Finally, we use the bo un d on

t t t
If Au (s)ds I provided by Proposition 2.1. Clearly f Au (s)ds — f Au(s)ds
0 0 n

~ 
0

• weakly in W’ for t > 0. Since W is dense in H and f Au (s)ds• I
n

is bounded in H , f Au(s)ds e H and f Au (s)ds — f  Au ( s)ds
0 0 n 0

weakly in H as well as in W’ . The proof is complete .

It remains to prove :

Lemma 2. 2. Let X , Y, K be met ric space s where K is compact. Let

(i)  ~ be a set of maps f : X - ÷ K ,

(ii ) g be a one-to-one continuous mapp ing of K into Y ,

(iii ) {g o 1: f € : X V j~ . ~~ equicont inuous family .

Then ~ is eguiconti nuous.

Proof. Let h = g 1 Then h : g(K ) -. K is continuous (since K is

compact and g is continuous) and therefore uni formly continuous (since

g( K) is compact) . Now g e~~~ {g . f : f ~ ~~~
} is equicontinuous by

assumptio n and ~ = h ° (g ° 
~~ ) is therefore also equicontinuous.  (This

lemma , formulated for us by W. Rudin , i s used with K a compact set in

W , g the injection W -
~~ H , X = [o , T] or [0 , 00 ) and Y H in the

current w o r k . )

Remarks on ( 1.7) and Prop osition (2 .1) .  We wish to mention here that our

condit ions md arguments  allow various kinds of perturbations.  For example , •

consi I~ r the pe rturbed problem •

— 2 - 4 —  - •
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~~

+ Bu + ~ i ~
- A U ~ 1 ( t )

(l . l)~ 
P

u ( 0 )  u~

• where A~ A ~ F , A and B s a t i s f y  the j~inuru1 condit i ons and th e

per turbation P : H -
~ I-I is Lip sch~tz C I n U n U U U~~ , i .e .  there is an

w e [O ,~Jr ) such

( 2 . 3 5 )  lPx 1 - P x 2 j < ~~~k1 - x 2 l for x1, x2 € H .

Then AH + P + aI is monotone and Apx , 
~Px are well -defined by

x + k (A~~ < + Px) ~ U => X JPx U , Ap~ = \~~(I -

for 0 < k < 1/u . Moreover , it is an exercise to show that

~~x u - Ax u I < ~ (( 1 - X w )  ~ 
lu - (x

0 
+ X ( y 0 + Px 0) I + IPx 0 I )  for 0

x0 ~ 
D(AH ), y0 e Ax0. Thus if A~ sa t i s f ies  (1 .7) ,  so will Apx for

small k > 0 (with another choice of 13). Thus (1. 7) is stable under

Lipschitz con ti nuous perturbations in parti cular.  Hence we can hope to

treat ( l . l ) ~ as we did (1. 1).

If P is not itself a gradient , it is probably more convenient to

appro ximate ( l . l ) ~ via

U~ + Bu x + C ( A
x

U
x 

+ Pu ,) + a * (A \ u \ + Pu~ ) ? F

than to use ~~~ and then proceed as in Proposition 2 .1 .  Additional

term s arise from (u k ,  Pu,) when m u l t i p l y in g  by Ax u x + Pu~ , but these

contribute no new dif f icul t ies  and the same es t imates  are obtained.  ( Clearly

( B U k , A \ U
\ 

+ P u \ ) has the desi red fo~~ of low er bound when ( 2 .  35) and (1.7)  ho ld . )

vV will not :~ay nc ) r(~ about  the ma ny ( th ( r poss ib i l i t ie s  here , as it is not

very  l~~ir -~ t th is  t im i in which direction to push the theory.
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Section 3. Proof of Theorem 3.

( i )  Let u , u ’ , v , w €  L~~~( [0 , cc ) ;  H) sa tis fy

( (i) u’ + w + a v = F
(•~.1) (

~ (ii) w(t) e Bu(t), v( t) € Au(t) a .e.  (0 ~ t < c c )

F cr m the inner-product of (3. 1) (i) with v, integrate over [0, t J  and

use (w( t ) ,  v( t ) )  � 0 to find

•1 t
(3.2) ~1i(u(t)) — 4J(u

~
) + Q

a~~
t) < [ ( F ( T ) ,  v( T)) dT

0

whe re

(3. 3) 
~ a~~’ t) = f ( * v(s) ,  v ( s ) )ds  

~~~ ~~ 
v(s)ds

T • t t
- 

~ f a ’(~~) f f  v c s ) d s I 2 dT -
~~~~ f a ’(t - T ) I f  v(~ ) t h I 2 dT

t

~ f f a ( T  - s) I f  v~f f )d a f 2dsdT
• •_ o o

See the proof ct Proposition (a) in Appendix (a) concerning the validity

of the r i ght -most  equality in (3.  3). Note each term on the right of (3.3)

• , is nonnegative since a satisfies conditions (a2). Integrating by parts

~ and using (1.13) we have

t t t T 

-
•

• ‘ f (F(~ ), v ( T ) ) d T  = (F( t ) , f v( s)ds)  - f (F ’(~ ), f v(s)ds)dT
0 0 0 0t t

h a ( t ) I f  v(s)ds f + o f Ia c(T) I If v(s)ds i dT
o 0 0
t t T 

2 /<o a t)If v(s)ds i + J~t~(f  l a ’ ( T ) I  If v(s)ds l dT)1 2

0 0 0

< 8 2
a( t )  

~~~ ~ v( s)ds I
2 

+ 6 2
a(0 ) +

~~ If
T 

v(s)ds I
2 dT ,

~ 
--1
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so, fro m (3.  3) and the above

(3.4) f (F( ) v(T))dT ~ ~
2
(a(0) ~ a(t)) ~~~ ~ a~~~

t )  -

Togethe r ( 3 . 2 )  and ( 3 . 4 )  imply

1 2
(3.5) L~J( U ( t ) )  — 1TJ( u o ) + 

~~~ 
Qa (

~~
t) < ~ (aç O) •~~

Since ~Ji is bou nded below , ( 3 . 5 )  implies

( 3 . 6 )  sup Q (v , t) <~~~~~~ , sup ~(u( t ) )  <
t _~o ~ t �O

The estimate

( 3 . 7 )  Ia v(t)I ~ 2a(O)  Qa (v;t) , 0 < t  < 0 0

follows from Lemma 3 .1 which is stated and proved later. Hence (1.14) (a) ,

(b),  (c) hold .

(i i)  If also ~( u ) -. as I l u II cc , (3.6) implies (1. 15) (a). We now

seek to bou nd Q( u( t ) ) .  By w(t )  = F(t)  - (u ’(t) + a * v(t)) e 3Q (u( t ) )  we have

(i)  ~( u ( t ) )  (F( t )  - (u ’(t) + a v(t)), u’(t))

(3 .8 )  and by the defini t ion of subdifferent ial

• L ( i i )  ~(u ( t ) )  <
~~

(u
~

) + (F( t )  - (u ’(t ) + a * v( t ) ) ,  u( t )  - u
~

)

Fro m (1 .15) (a)  we have that c2 = sup  Iu ( t )  — u0 1 < c c  and from ( 3 . 6 ) ,  ( 3 . 7 )
• t > o

and (1.13 ) , c1 = sup I F ( t )  - a * v(t)l <~~~~~~~. Hence adding ( 3 . 8 )  (i)  and ( i i )
t -~o

~( u ( t ) )  + ~(u( t ) )  < -  Iu ’(t) 2 + (c1 + c2)Iu ’(t) I + ~(u0) + c1
c
2 
<c

3

where c 3 i s independent of t . Hence ( 1. Ic )  (b)  follows if q, is

bou nded below.

-2 7-
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In order to prove (1.15) (c) we first show that u e UC( [0 , cc);  H).

• Forming the inner-product of (3.1)  (i) with w(t) and integrating over

• [t, t + 1] gives the inequality

t+I t+1
( 3 . 9 )  ~( u ( t  ± 1)) - ~(u( t ) )  + f I w ( s ) i 2 ds < c

~ f Iw s)Ids

< c
l[f 

Iw (s)l2ds1~~
2

t

with the same con stant  c1 as above . Because 4 (u ( t ) )  is bounded ,
t +1

( 3 . ~~) impl ies  f I w ( s ) I 2ds is bou nded . Since u ’ = F - (a * v +w)
t t+l

-ç - 2
and F - a * v ~ L (0,’; H), 

we also have sup f Iu ’( s) I ds <~~~~~~~.

0 < t < -~ t

Thu s u € UC ( [ 0 , ’); H).  In conjunct ion with the previously obtained

bounds on Hit )  I and ~( u ( t ) ) ,  the compactness assumpt ion implies that

(3.10) u ( [ O , x~ ) is strongly precompact in W

Hence u € UC([ 0 , ~i ) ;  W) follows from Lemma 2. 2 , proving (1. 15) (c) .

(i i i)  The asymptotic result is obtained by reducing the ana lys i s  to the

scalar case as follows. We now- have v(t ) = Au(t )  and A is locally

bounded. Thus (3.10) implies

(3.11) sup II Au(t) iI~~
, < -

~~
.

0~~t<cc

The demicontinuity of A, together with u € UC([0,00); W), (3.10), (3.11),

implie s that for any z € W the function e de fined by

(3.12) e(t) = (Au(t), z)

sit i ~ fie s

-28-
L i . ___________________________________________________________ — 

~~- “‘-i .  — ~~~~~—.-•.---- —---



~ 

_ _  ‘1

I
I

(3.13) e(t) € UC[ 0, ) ,  sup Ie ( t ) I
0 -~~t < J -

• Let T > 0 be arbitrary and define eT by

(3.14) e
T(t) = ~[0 , T 1e(t ) ,  -

~~~~~ <~~~ 
< c c ,

where 
~ 

is the characteristic function. By the arguments in the proof

of Lemma 3.1 below (in particular note (3.27)) one shows tha t

(3.15) Q
a
(e; T) = 

~~ f le T(
~

) I d a (
~

) ,

where denotes the Fourier transform , eT(u ) = f e  eT(t)dt and

where a is a positive measure satisfying (3.24). By (3.12) one has

(3.16) ie T(ff)I < I v ~f (o ) l  w I

where V
T 

= x [0,TIv , v Au. Invoking conditions a 2, (3 .  6) , (3.15),

(3.16) and formula (3. 27) yield the estimate

sup Q (e;T) < sup l z~
2 f

I 0 < T < c c  a 0<T<xl -cc
(3.17) ~ 

— —

• I 2
= Z sup Q ( A u ; T) <~~~.

0<T<cc a

But by conditions a2, a ’( t) ~ 0, and Corollary 2.2 of [16] (see also [15))

a(t) is a strongly positive kernel. This fact together with (3.13), (3.17)

and Theorem 1 (ii) of [16] shows that

(3.18) u r n  e(t) = 0
t-’-~

1~

I •

• — 29—
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• Finally (3.12), (3 .  U4) e st ab l i sh  I!  i t ) , which together with (3.10) and

A 1(0 ) a si ngleton imp lit . s l. 17~. This complete s the proof of Theorem 3.

Remark. Theorem 1 ( i i )  of [ l 6 J  in be applied although e(t) only

sat is f i es (3 .13 ) , ( 3 . 1 7 )  in~ is not a bounded soluti on of a scalar Volterra

equation. This t j v t , which is ~-v 1 i ent  from the proof of Theorem I (ii)

of [Io J , has be en exploited and generalized by 0. Staffans [19 1,  [2 0 ] ,  [21] .

The following lemma appears as Lemma 6 . 2  in Staffans [ 2 0 ]  for

the real s -al ir case; it is included here for the convenience of the reader .

Lemma 3 . 1 .  Let a be positive def ini te  on [0,00) and v € L~oc
( [ 0 , cc); H).

Then

(3 .19)  Ia  * v(T)i
2 
~ 
2a(0)Q (v;T), 0 < T < c c j

Remark. If a sa ti s f ies  conditions a 2, then by the identity (3. 3) a

is positive defi nite on [0 , cc ) .  See also [16; Theorem 2] and remarks

immediately following .

Proof of Lemma 3. 1. Extend a evenly by

(3 .  20) a(—t) a(t), 0 ~ t < 0 0~~~

and let,

(3.21) v
T 

= x[0,T]v

Then by (3 .  20), (3. 21), Fubini’s theorem and some elemen tary calcula tions

one obtains

cc

( 3 . 2 2 )  Q
a (

~~
T )  = ~ f a(s )k(s )ds , 0 < T ~ z oo ,

-30- 

- -



_ _ _ _ _ _ _ _  
________ I~~~~~±~ TiI~

f
where

(3 .23) k(s) = f:
(V T t - s), vT(t))dt .

Since a is positive definite on (_cc ,cc), Bochner’s theorem [18]

• implies the existence of a positive measure a such that

(3.24) a(t) ~~ f e~~
tda ( f f ) ,  - c c < t < c c, f da(~ ) < 0 0~~~

H 
-00 -00

Combining (3. 22) with the first part of (3.  24) yields

(3.25) Q
a
(v;T) = ~~ f k(-~ )da(~ ), 0 < T < c c .

But (3. 23) and Parseval ’s theorem give

(3. 26) k ( r )  1 T( r )  1
2 

= <~~ < 0 0~~~

From ( 3 . 2 5 ) ,  (3.26) one has

( 3 . 2 7 ) Qa( v ; T )  = 

~~ ~: 
I
~ T
(
~

)i
2da(

~
), 0 < T < c c . 

- •

The conclusion (3. 19) is now a result of the following elementary calcula-

tion which uses (3. 20) , (3. 21), (3. 24), (3. 27), Fubini’s theorem, and

Schwartz’s inequality:

-fl _ 
-
~

I i

L ~~



Ia * v(T) 1
2 

= i f  a(T - T)v ( T ) d T J
2

< sup If a(t - T )V
T

(T )dT J
2

-00<~~~< 00 -00

= sup ~~~ If (f e
tT )

da(~ ))v
T
(T)dT i

2

-~~ < t < ~~ 4-u -~~~‘ -0 0

cc
1 iot’ 2

= sup 
~~ 

If e vT(ir
)da(cr) I

--~<t<~ 4ii -cc

<
~~~~~ (f da(ff)) 

~: 
V T(f f )  I 2

da(~ ) = 2a(O)Q ( v;T) .

This completes the proof of Lemma 3.1.

Remarks. The above analysis may be extended to cover the solutions

of ( 1.1) obtained in the proof of Theorem 1 as follows: First let (1 .7)

hold with 13 = 0. The estimate ( 3 . 5 )  will hold, with the same proof ,

with u replaced by u and v by v = A u , where u , v are
C c H C  C C

as in the proof of Theore m 1. Hence the analogue of (3.6) holds uniforml y

in C >0. Using the identity (3. 3) with v = 
C 

= Au , letting c —0 ,

using the convergence f AuC (s)ds ~~ Au(s)ds weakly in H for
0 n 0

every t and invoking Fatou ’s lemma we find that

Q u ; t) 
~~~ 

Au(s)ds j 2 - ~ f a’(T)If Au(s)ds I
2dT

- 
. 

— ~~~ fa ’(t — T)  If Au (ff)do I
2dT

+ -
~~ f f a ”( T - s) I f Au( ff )d ff  I 2d sdT



_ _  _ _ _

~~T~~~~T~-T~~~~T~T~ - - -
-

I

is bounded independent of t > 0. (Here we regard the above expression

as the defi nition of Q (Au ; t ) . )  We also have i4 i (u(t)) < lirn i4i (u (t))

by properties of ~~i .  In this way, we can preserve all of the assertions

of Theorem 3 except (1.14) (b) which is replaced by

Ia * Au(t)I
2 < llm inf 2a(0)Q [Au ;t]

(Similarly, Q ( v ; T )  is replaced by lim m l  Q ( A U
C 

; t )  in ( 3 . 1 7 ) . )
n -~cc n

• —33—
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Section 4. Proof of Theorem 4.

* 

Let us first observe that for v e L
~0~

([ 0, cc) : H) and a e L~~~([ 0, ~~~fl ,

T 
~ 
T, VT 

= x (° , T)v , a 
* 

the even extension of ~( [ O , T ])a  to
T

( - 0 0, 0 0) ,  we have

(4.1) Q
a
(v;T) = 

~~ L(cc
a
T*

(t - s)v T(s)ds , v T(t))dt

cc
1 ~~ 

-• -•

= 
~~ j (a (cr )v T

( 0 ) , v
T

( cr )) dr
• -cc

where the first equality follows from elementary manipulations , and the

second from Parseval ’s equality and is as in Section 3. Hence

cc

( 4 . 4 )  Q
a~~~

T) > ( inf 
- 

a 
~~~ ~~~ 

f I~~~ ( o )  1 2do
QO>~~-> OO T cc

= 
~~~~( 

inf a 
~~~ 

T 
i v ( s ) I 2d s .

c c > 0 - > - c c  T 0

*T
Since a = 2 f cos( ot)a( t )dt , (4.  4) and (1. 18) imply that

T 0
T

(4. 5) Q
a~~

T) � (6 - a) f Iv s) I 2ds.
0

• Now inner-product u ’ + w + a * v = F with v , integrate fro m 0 to T

and use (1.18) ( i ) ,  ( 4 . 5 )  to find

T
(4 .6 )  ~(u(T)) - ~(u(0)) + o f Iv(s) I

2
ds

0 T
- ~(u(0)) + f (w(s),v(s))ds + Q (v;T)

T 
0 

T
= f (F(s),v(s))ds~~ K(f Iv (s) I

Z
ds)

l//2

I
I t

— 3 4 —
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where K
2 

= f IF(s) I 2ds. From (4.6) and inf ~ > -cc, we deduce

T 0

th at f Iv(s) I 2ds and 4j (u( T) ) are bounded independent of T > 0,
0

and the results follow.
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‘. Infinite Delay

To treat (1.1) by means of Theorems 1—4 we observ e that it

may be forma lly rewritten as

(5.1) u ’ + Bu + a * Au 3 F(t)

where

(5 .2) F(t) = f ( t) — p(t)

0 0
and p(t) = f a(t - s)Au(s)ds = f a(t — s )Ah(s)ds.  Assuming that

z(t) € Ah(t) a. e. , -~~~~ < t < 0, we are reduced to considering properties of

0
(5 .  3) p(t) f a(t - s)z( s)d s

-00

For the existence theorems we want F €  ~~u l ([ o , cc); H). This will be
b c

the case if f , p e W1’ 1 ( [ 0  00); H).
b c

Proposition 5.1. Let z € L’(-00 , 0; H), a be locally absolutely continuous and

t+T
(5. 4) sup f (la(s) I + la ’(s)I )ds = KT 

<cc (T > 0)
0~~t < c c  t

Then p given ~~ (5. 3) is in w~”([ 0, cc); H).

Proof. First , by Fubini ’ s theorem and ( 5 . 4 )

• T 0 0 T-s 0
I a(t — s)z(s)Idsdt = f I a ( T ) I d T  I z ( s ) I d s  <K T f

00 

Iz(s)Ids ,

which shows that the integral defining p in (5.3) converges for a.e.

t > 0 and p € L~~~([ 0, cc); H). Also , by Fubini ’ s theorem ,

C
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0
p’(t) = f a’(t - s)z(s)ds and lies in L~~~([ 0, cc); H) by the same

calculation as above.

For application of Theorem 3 we use:

- • Proposition 5 . 2 .  Let z € L1(-co , O; H) and a sat isfy  conditions (a) 2 .

Then the function p defined ~~ (5 .  3) sati sfies

(5. 5) Ig(t) I < ôa(t), Ig ’(t) I < -öa ’(t) (0 < t  < c c )

0
where o = Iz (s)Ids.

Proof. By conditions (a)2 and z € J}(-cc, 0; H) one has

0 0
Ip(t )I 

~~ [cc
a(t - s ) I g ( s ) I d s < a(t) f I g ( s ) I ds  ( o < t  < c c )

and

0
Ip ’(t ) I < —a ’(t) Iz(s) Ids (0 < t < 0 0)

Thus (5.5) holds and the proof is complete .

For applications of Theorem 4 , take f € L 2
(0 , ~~; H) and recall

Young ’s inequality:

0
• 

• h f  a(t  — s)z(s)d s  II 2 ~ h a Il II z II
• -cc L (0 , 00 ;H)  L~ (0 , cc) ~~( _ 0 0 ; 0 ;~~)

where + = ~~ , 1 < p ,  q < 0 0~~ For example , if a € L1(0 , cc) , I € L
2 (O , ; H) ,

then it suffices to have z ~ L
2
(0, cc; H).

— 3 7—
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H
6. Examples

Examp le 1

We begin with a brief outli ne of problems of the form of [2 , £xample 1 j .

Let ~ be a bou nded open domain in IRN with smooth boundar y F

an cl ; f lS i  Icr the integro-differential  equation

• (6 .1) u~
(t , x) - ~ u (t , x) + f a(t - s)g(u(s , x))ds = F(t , x)

for ( t , x) € (0 , x )  )< c2 , together with the boundary condition

(6. .
~~) 

- 
~~~ € y(u) a .e .  on (0 , cc ) x F

and the init ial  condition

( 6 . 3 )  u(0 ,x) = u 0(x),  x €

In what follows we for mulate conditions which imply that various

of our ass umptions hold. If -y is maximal monotone in IR, 0 €

= a3 where j : IR - . [0 , cc ]  is convex , l . s . c . and

( q,(u) = 
~ f I gradu l 2dx + f

• - ( 6 . 4 )  F

D(~ ) = {u € H1(~~), j (u )  € L1(r ) }

then ~ : H = L2 (~~) (_ cc , c c j  is convex , 1.s.c. and

(6. s) a~ (u)  = -~~u for u € D(~)cl = {u € H 2 (~~) , - e ~(u ) ,  a. e. on r}

See [ 6 ] .  Let g : JR -. JR satisfy

(~~. 6) g e  C( -00 , 00 ), g noridecreasing , g( O) = 0

and L

-38 —
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(b .  7) g(u)  I K c1( lu  I~~~
1 

~ 1) for u ~

for some constant  c1 and where p s a t i s f i e s

if N l , 2
(t- . 

~~ 2N
~~ 2 p K ~~~~~2 if N > 3 .

Sett ing W L~~~7) , G(u)  = f g(r)dr  and ~(u) = f G(u(x) )dx  for

u € W we have that i( W -
~ 

(- -‘~ ,
-
~~) is continuous and convex (by

(6 .~~) ,  ( 6 . 7 ) )  while u -— a~ (u) = g ( u )  is continuous from W L~ ( t 2 )

into W’ = L~~
’
~~~~~~(l 7) in the strong topologies. Moreover by 6 . 4 )

and j ( u )  ~ 0 , fu  € H; I q ( u )  I + H I < K is bounded in H1(~2) and there-

fore by ( b . ;~ ) and the imbedding theorems is compact in W = L~ ( l 2 ) .  Also ,

us in i  Fato u ’ s lemma one ca n show that in ( 1 . 4 )  is given by

1! G ( u c x ) ) d x , u L 2 (~ 2) ,  G(u)  €

u) = ç
L ~~ , u e L

2
(~~ ) ,  G u )  ~

In par t icular , (1. c) holds .  One also has

A Hu g ( u ) ,  D(A
H

) = {u € L
2 (~~ ); g (u)  € L

2
(~~)}

• and it is straightforward to show , u sing 0 € ‘~‘(O) and g(0 )  = 0 , that

(-  ~u , A \u) > 0 for u € D ( a q )  and (-~~u , AH
u) > 0 for u € D ( a q )

(see [~ . Cor. 1 3 ] ) .  Thus all the a s sumpt ions  of Theorem 1 hold with

these choice s of ~~~ , , W , H provid ed a sati s fies Conditions a .  We

• concl u de tha t if  t F( t ,~~) E W~
1” ( [ 0 , ‘) ,  L

2 (~2))  and u0 €D(~ ) (~~ 
.1 ),

4
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~~~~~~~~~~~~~~~



_ _ _

( 6. 2) , (6 .  3) has a solution u(t , x), t > 0 , x € c2 such that t — u(t , 
~~)

sat isf ies  the concl usions of Theorem 1 with the current choices of

~~~, ~~~, W, H . We also have 
~~~~~~~ � 0 here , so in view of the remarks

foll owing Theorem 3 if , e . g . , F E 0 and a sat isf ies  Condit ions (a 2 ), then

J G~u( t , x ) Y ~x is bounded. To have lim ~(u)  = ‘ we require
1 h u l l

g (u )  > c ,ç u I~~ - 1) for some c2 > 0. Then (1.15) holds. If also

a ’~ t )  ~ 0 , then t g ( u ( t , )) tends to zero weakly in L~~~~~~ (~~) as

‘. If also g 1( 0)  = {o }, the n A~~(o) = {o} and by (1.17) u( t , x) 0

in L0
~~1) as t

The an alogue of ( . 1 )  - ( 6 . 3 )  with infini te delay is

u
~ 

- ~ u + a(t  - s )g(u(s ) )ds  = f ( t ) ,  ( 6 . 2 )  and u(t)  = h ( t)  (-
~ 

< t  ~~ 0),

where we surpress the dependence on x temporarily. According U

Propositi on 5.1 , if h(O)  € D(p ) and

f ( f  ~~~~~~~~~~~~~~~~~ < c c

-‘
~

we have the existence of a soluti on of this problem via Theorem 1. If

al so f 0 , a sa t isf ies  conditions (a 2 ), I g( r ) I > c2 ( I r I ~ 
1 

- I) and

g ’( O )  {o} , we conclude u t , ~~) 
—. 0 in L~ (Q ) by arguing as above

and usin g Proposition 5 . L ~

In comparison with  [ 2 ] ,  we have elimi nate d the condition

g~u) > c2 ( H p 1  
- 1) as a hypothesis  for existence of solutions of

(6 .1) - ((I . 3) and are able to make assertions concerning the asymptot ic

behavio r of the solutions without  restr ict ion on N (and other restr ict ive

-4
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conditions on a used in [ 2 ] ) .  Moreover , the ca se with inf in i te  delay

is accommodated wi thout further ado .

• Example 2. To i l lustrate Theorem 2 , consider the  problem

( 6 . 9 )  u
~

( t , x) - u ( t , x ) - f a ( t - s)(~ (u  s , x)) ds = I ( t . x)

• for t > 0 , 0 < x < I with the b oundary and in i t i a l  conditions

(6.10)  u( t , 0) = u(t , 1) 0 , t > 0 and u(O . x) = u 0 ( x) ,  0 < x  ~ 1

Assume the nonlinear function ~ : JR -— JR sat is f ies

(6. 11) ~ € C1(-~~, cc) ,  0 <~~~~~~
‘ M <

and

(6.12)  E(r) = ~(s)ds > c(r 2 
- 1) for some c > 0

Let W = H = L 2
(0 , 1) and ~ : L2

(0 , 1) — (-
~~, ~ j be defined by

11
J f E(~~~ )dx if u €  14(0, 1)

(6 .13)  4 ( u )  = 0 X

+ 0 0  otherwise

~ is well-defined , proper and convex by (6 .11) ,  ( ( .  12) and 1. s .c .  by (6 .12) .

M oreover

(6 .  1-1) ~~~ u) = - ~~ ( i f(~~~~~~~) ),  u € D(a~~) 1u € 14: ~~ i f(~~~~~~~~) € L2 (0 , 1))

It is easy to see that 0~ is a n extension of the operator given by (6.14) .

To see the ( - qu ~ I i ty ,  show (6. 11) is the re s triction of the subdifferent ial

of b regarded as a map from 14(0, 1) to JR to H (which is easy to

--Il-
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compute), so (6.14) is maximal monotone . We let ~~‘ : L2(0,1) -— (_ oo , ao]

• be give n by

.f ~~~~ dx, u € 14(0, 1)

(6.15) q (u)  =

+ 0 0  otherwise

Clearly {u : lq’(u) I + lu I ~ K } is compact in L2(0 , 1) for each K.

Moreover , if u E D(a ç) (6.11) implies

la~(uH 2 
- 

~ H)  
d x >  J~ f (

d ) )  
(n)) 

dx = ~~~~JAu I 2

and (1 .12) holds .

The key hypotheses to verify is (1 .7) .  This does not seem immediate

to us.  Let u € D(aq~) , h € 14(0, 1), ~ > 0 and

(6.16) h - \~~~ u .

That is , h = J \ (u) and - ~~ = A
~

(u) .  We will show

(6.17) q ( J ~u) = q~(h) < q ’(u)

which implies (1 .7 )  with 13 = 0. Now by (6.16)

(6.18) 2~ (u)  = f (~~~)
2
dx = f (~~~ (h - x ~~~i f (~~~~)) dX

= 

1 
(
~~~

)

2 
2 
~ 

(d 2
~~~~~

))

1 dh d
2 ‘dh ’—2 k f — — a(—)dxdx 2 dx

0 dx

- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Note that the indicated derivatives have a meaning by (6.16), since

u € 14(0, 1) . If we knew h € H 2(O , l•), then

~2 k f -~~if (~~~) d x = 2 x f (~
h )dx

= 2 k  1 if~(~~)(9) dx> 0 .

Hence all terms on the r ight of (6. 18) are nonnegati ve and ç(u) > ~-p (h )

• as desired . If ~r ’ ~ e> 0 for some C , (6 .  16) implies h € H2 (0 , 1)
dh dh dh

- C 1 C Csince = if ci and o- € i-i (0,1). To proceed, let

h~ € 14(0, 1) sa t isfy

(6.19) h - ~ + 3) =

where C > 0. Since 1
L 

~~~ 
= o-(r) + cr satisfies > C , ~‘(h ) < ~(u)

by the above . Mult iplying (6.1 9)  first by h and integrating we find

I I dh dh dh 2

f h 2 dx < f + ki f (_—~~)
_--

~ + C (_ ~~) )dx
0 C C dx dx dx

= f (h - X~~~~(c i ( -~~~ ) ÷ e ~~~~ ))h C dx

= f uh dx ,
0

so

(6.  20) II h II 2 .~~ Il u II 2C L (0 , 1) L (0 , 1)
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Next multiply (6.19) by - 

2
C and integrate to find

dx

1 dh 2 1 dh d
2h 

2 
d 2h 

2

I dx + X ~ ~(-~) 
dx 2 + 

dx
2 

dx

1 d2 h 1 2e d uu 2 dx = _ f  —~~h d x
0 dx O d x

2
h u ll

dx 2 
2 L2 (0 , l)

L (0 , 1)

where (6.  20) is used in the last inequality . Thus

2 2
1 d h

C f  d x < C
0 dx

d2h
- - C - 2

where C is independent of C and therefore ~ 2 
— 0 in L (0, 1)

2 dx
d h

as C ~ 0. Since hC = u - XC ~ , and is a contraction,

— h in L2 (0 , 1) as C 1 0. Since ~ is 1.s. c. ,

- 
- q~(h) < lim inf ~(h ) <~~(u)

C l O

and we are done. We are grate ful to L. Tartar for an earlier proof of the

above result.

Thus , according to Theorem 2 , if t — F(t ,~~) is in W~’ 1 (0 , cc; L2(0 , l))

and u 0 C 14(0 , 1) then ( 6 . 9 ) - ( 6 . b O )  has a solution u(t , x) with

t u(t , .) ,  u
~

(t , ), u ( t ,~~) and ci (u (t , 
~~ 

all in L~~~(0 , 00;  L2 (0 , 1)).

We can illustrate Theore m 4 here as well. Assume that

t F(t , )  also lies in L2 (0 , cc; L2 (0 , l ) ) .  Since by (6.10)

1-

V 

_ _ _ _ _ _ _  
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~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~



_ _ _ _ _  _ _  _ _

(Bu , Au) = f~~ 
ci ’(~~~)~~~~ d x > ~~ IAu h 2

O d x  dx

we have (1.18) (i) with a = 1/M . Hence if

T
— = a + lim sup inf f cos(cit)a(t)dt > 0

T — c c  — 00 <~~ <00 0

(6.12) and Theorem 4 imply

c ( u (t , x)) 2dx <  c + sup ~(u(t , .) )  < c c ,

and

~ cc 

7 l~~~ ci (u (t , x)) I
2 dxdt < c c V

Remark. Barb u (2) mentions ( 6 . 9 ) ,  ( 6 . 1 0 )  under his further restrictions

on a but with a weaker assumption than a ’ is bounded above . He

does not verify (1. 7).

I!
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Appe ndix (a)

Theorem La). Let a : [0 , cc) -— JR satisfy ~~~ following conditions:

I a is locally absolutely continuous on [0, ccc ) and
(1)

(~ a ’ ~~~. locally of bounded variation ~~ (0, cc)

There are constants 1, T > 0  such~~~~
-

- 

I T
(2)  

~ f var(a’,Is ,s + JJ)ds <ccc where var(a~,I) is
0

L the total variation of a’ ~~~ I

There are constants y, T0 > 0, y > ~ such th~~.t

Q (v;t) = f~ (a * v(s) , v(s))ds
( 3 ) 0 t T

~If v(s)dsh
2 

- max If  v(s)ds I
2

0 0 < T < t  0

for 0 <t <T
0 and every v C L2(0 , To ; H)

Then a satisfies Conditions (a).

We preceed the proof of Theorem (a) with the proof of Proposition (a)

(which is sta ted in the intr oduction).

P~~of of Proposition (a) .  Consider at first  the case when conditions

(a 1) are sat isf i ed. It follows trivially that then ( 1), (2)  hold for

an y I , T > 0. To obtain (3) we begin by using the identity (for a

proo f of (4) under conditions (a
t

) see e . g .  [ i i ] ) ,

~~~ ~~ 
v( T )dT I

2 
- ~ a ’ ( T ) I f  v(s) ds I

2 dT

( 1 )  
t t t T  T

I - 

~ f a ’(t  - T) I~f v(s)ds I 2 dT + 
~ .1 f If  v(u)du h

2
da’(s)dT ,

0 T 0 0  T-5
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whe re v € L~~~(0 , 00; H). Then we notice that simple est imates on the

rig ht side of (4) gi ve

~~~ 
v; t)  I f v( T)dT 1

2 
- b(t) sup If v( s)ds 1

2

0 Q < - c - < t  0

where b(t)  = ~ f h a ’(s) lds  + 2 f f Ida ’ ( s ) I d T . Choosing T0 > 0

such that 4b(T 0) < inf a(t) shows that (3) holds with this T0,
0 < t

= m I  ~~~~~~~~~~, an d 2 q = ~~. Thus conditions (a 1) imply (1) - (3 ) .
0 < t  < T0

Ne xt let conditions Ca 2 ) hold. Observe that this case does allow

a ’( O+ ) = -cc ’ As in the previous case it immediately follows that (1),

(2) are valid for any 1, T >  0. (To obtain (2) use the monotonicity of a ’).

Then notice that a simple application of the dominated convergence theorem

shows that (4) holds under conditions (a 2 ) , for v € L
~~c(0

~ 
cc; H). But

by ( a 2 ) all the term s on the right side of (4) are nonnegative and so (3)

holds with any T0 > 0 such that a(T 0 ) > 0 , with 2 -y a(T 0) and

= 0. Hence conditions (a 2 ) i m ply (1) - (3 ) .

Proof of Theore m (a) .  First notice that it is enough to show that if c1, c2 , T

are arbitrary nonnegative numbers then there is a constant c 3 = c3(a , c1, c2, T)

such th at for every v € L2(0 , T; H) sat isfying the inequali ty

(5) Q (v ; t )  < c 1 + c2 max If v( s)ds  I , (0 < t  < T )  - 
-a 

~~~~~~

one has

--4 7— 
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H
(6) If v(s)ds l ~~c 3, I Q a(v;t) h < c3, ( O < t < T )

For then (5) implies w = •~_.l V satisfies
‘~c + c

2 T

Q
a~~~

t) -= ‘-.IE -~ c ) 
Q

a~~~
t) < 1  + max I ( w(s)ds !

1 2 O < T < t 0

an d so

jf v( s)ds l = (~~~~~~~ 
+ c2 ) I f  w(s)ds  I ~ c 3(a , 1, 1, T)(~~~ + c2 )

Similarly, one estimates Q (v;t) and finds that KT 2c 3(a , 1, 1, T)

works in Conditions (a).

Let C1, c2 > 0 be arbitrary and (5)  hold. It clearly suffices to

consider T = nT0 where T0 is as in (3) and n is an arbitrary positive

integer. The proo f is by induction on n.

By (3) and (5) one easily obtains the existence of a constant c3 > 0

such that  the est imates  (6) hold if T = T0 . Assume we can find such a

constant for T = nT 0 (denote this constant by K1) an d let

v € L2 (0 , ( n  + 1)T 0 ; H) sat i s fy  (5) for 0 < t  < (n + l)T 0 . Thus

(7)  jf v(s)ds l < K 1, Qa~~
t)l ~~~~~ ( O < t ~~~nT 0)

For t€ [0,T0J one obviously has 
-

Q
a~~~

t + nT 0) Q
a(v;nT o ) + f (a * v(s + nT 0) , v(s + nT0 ))ds .

:4 
Also note that (a * v)(s + nT 0 ) = I~ + I~, where

I
’
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nT
0 s

= f a(s + nT0 
- ~)v(~~)d~ , 12 f a(s - ~)v(~ + nT0)d~0 0

Substituting these relations into the integrand of the last term of (*)

and writing v 
T (s) = v(s + nT ) givesn 0 0

+ nT0 ) = Qa~~~~
To ) +

(8) ~ 
nT 0L + f (f a(s + nT0 

- ~)v(~ )d~ , vnT (s) )ds , (0 < t  <
4 0 0  0

where the last term comes from I~ and the secon d term on the rig ht of

(8) comes from

Suppose we can show that there exist constants M 1, m 1, independent

of v , such that

(9) Jj(t) I < M 1 + m 1 max I f  VnT (s)ds I (0 <t <T
0)O<T<t 0 0

~ 
nT0

where J(t) = f (f a(s + nT 0 - ~)v(~ )d~ , VnT (s ) )ds .  Then (5)  with
0 0  0

T = (n + l)T 0, (7) and (9) used in (8) imply the existence of constants

M 2, m 2, independent of v , such that

Q
a n T 0

t) < M 2 + m 2 

T 

V T (s)ds I (0 <t <T0)

Consequently by the case n = 1, already proved , we have the existence

of a constant K 2 > 0 such that

(10) if v
T (s)ds 1 ~ K2, IQ (vnT ;t)I ~ K 2, (0 < t  < T0)

—4 9—
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But then (7), (9), and (10) used in (8) give the existence of a constant

K 3 > 0  such that

Q
a t i T o~ I < K 3, (0~~~t~~~T0)

Moreover , from the first parts of (7 ) and (10) one has

nT 0
I f v(s)ds l .~~ If v(s)ds l + I f  V

T 
(s)ds l ~~K1 

+ K2, (0 < t < T 0)
0 0 0 0

The induction argument is hence complete provided we can establish (9) .

To prove (9) we proceed as follows. Integrating the expression

for 1(t) by part s ( jus t i f ied  by conditions (1), (2)) we have J = + ‘2 where

nT0
j
1(t) 

= (f  a(t + nT 0 
— ~)v(~ )d~ , f VnT (s)ds) (0 ~~t~~ T0)

0 0 0

nT 0
j 2 (t) = -f (~~~~ f a(s +nT 0 

- ~)v(~~)d~~, f v T (
~

)d
~

)d5 , (0 ~ t ~ T0 ) .

Integrating the first factor in the expression for J1 by parts gives

nT 0 nT 0 nT 0

f a(t + nT0 
- ~)v(~~)d~ = a(t)  f v(~ )d~ + f a ’(t + nT 0 

- 

~~) f v( T) d T d~
0 0 0 0

which , when used in the expression for j
1(t) (also apply the first  part

of (7) and make obvious estimates) gives

t+nT 0
( **) IJ 1(t ) I .~~ K1[ Ia ( t ) I + f Ia ’ s Ids J f I V nT (s)  Ids , (0 < t < T0 ) .

0 0 0

Estimating the expression for J2 one obtains
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nT
t 0 T

I12(t) I ~{ f  l~~ f a(s + n T 0 
- ~)v(~~)d~~I ds }{  max I f  v T (s)dsl}

0 0 O ’ ( T < t  0 n

nT
0 

nT
0

= {f I~~ [ a ( s )  f v(~ )d~ + f a ’(s + n T 0 - ~~) f v( T) d T d ~~] lds }  x

{ max If V T (~~)ds } (0 < t  < T 0)
0 < T < t  0 0

where the equali ty follows af ter  an integration by parts .  By conditions ( 1),
nT 0 

nT 0
(2)  the quantities f a(s + nT 0 

- ~)v(~ )d~ and a(s)  f v(~ )d~ have

de rivatives in L1
(0 , T0 ; H); there fore the same applies to the derivative

nT 0
of f a ’(s -f n T0 

- 
~~) f v ( T ) dr d~~. But the L1-norm of the derivative

0 0

equals the total variation. Hence , de noting an arbitrary partition of [0 , T0 J -

by 0 = S
0 

< 
~l < 

~N 
= T0, it follows that

N 
nT 0 

nT 0
I f a ’(s . + nT 0 

- 
~~) f v( T) d r d~ - f a ’(s . + nT0 

- 
~~) f v ( T ) d T d ~ I

i - l  0 0 0 
— 

0

nT

< 
~ f la ’(s. + nT0 

- 
~~) 

- a ’(s~~1 + nT 0 
- 

~~) I d ~~ max I 
T 

v(s )d s  I
i - I  0 0 < T < n T 0 0

nT 0
< K 1 f Var(a ’ , [nT 0 

- 
~~~, (n  + l )T 0 

- ~~J ) d ~ = K
4 

<~~~~~,

0

wh ere the las t  steps follow by (2)  and ( 7 ) .  Thus

lJ 2 (t ) 1 < K 4 max ‘f V
T 

( s ) d s l
0 < T < t  0 0

Combining this relation with (**) and recalling that  J = J1 + J 2 implies

( 9) and completes the proof of Theorem (a) .
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)

(~ - * )

L u( t )  = h(t) ( - -
~ < t ~ 01

Unde r various assump t ions  on the no nlinear operators A , B and on

the given f unctions a , F . f , h existence theorems are obtained for

‘ ( *) and (~~~ ‘ , fol lowed by results concerning boundedness and asymptotic

behaviour of solutions on (0 < t < & ‘) ;  two appli cations of the theory to

proble ms of nonlinear heat flow with~~infinite memory ”Thre also discussed .
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