U.S. DEPARTMENT OF COMMERCE National Technical Information Service AD-A026 613

PASSIVE NOSETIP TECHNOLOGY (PANT) PROGRAM
VOLUME XVII, COMPUTER USER'S MANUAL: erosion shape (eros) computer code

Acurex Corporation

PREPARED FOR
Space and Missile Systems Organization

December 1974

INTERIM REPORT PASSIVE NOSETIP TECHNOLOGY (PANT) PROGRAM

Volume XVII. Computer User's Manual: Erosion Shape (EROS) Computer Code

D. Rafinejad
C. Derbidge

Aerotherm Division/Acurex Corporation

SAMS0-TR-74-86

December 1974

AEROTHERM REPORT UM-74-57

IMTERIM REPORT
PASSIVE NOSETIP TECHNOLOGY
(PANT) PROGRAM

Volume XVII. Computer User's Manual: Erosion Shape (EROS) Computer Code

D. Rafinejad
C. Derbidge

FOREWORD

This document is Volume XVII of tie Interim Report series for the Passive Nosetip Technology (PANT) program. A summary of the documents in this series prepared to date is as follows:

Volume I	- Program Overview (U)
Volume II	- Environment and Material Response Procedures for Nosetip Design (U)
Volume III -	Surface Roughness Data
	Part I - Experimental Data
	Part II - Roughness Augmented Heating Data Correlation

Part III - Boundary Layer Transition Data Correlation and Analysis (C ;

Volume IV - Heat Transfer and Pressure Distributions on Ablated Shapes Part I - Experimental Data

Part II - Data Correlation
Volume V - Definition of Shape Change Phenomenology Erom Low Temperature Ablator Experiments

Part I - Experimental Data, Series C (Preliminary Test Series)

Part II - Experimental Data, Series D (Final Test Series)
Part I:I - Shape Change Data Correlation and Analysi.s
Volume VI - Graphite Ablation Data Correlation and Analysis (U)
Volume VII - Computer User's Manual, Steady-State Analysis of Ablating Nosetips (SAANT) Program

Volume VIII - Computer User's Manual, Passive Graphite Ablating Nosetip (PAGANI) Program

Volume IX - Unsteady Flow on Ablated Nosetip Shapes - PANT Series r, Test and Analysis Report

This work was administered under the direction of the Space and Missile Systems Organization with Lieutenant A. T. Hopkins and i,ieutenant E. G. Taylor as Project Officers with Mr. W. Prrtenier and Dr. R. L. Baker of the Aerospace Corporation serving as prıncipal technical monitors. Dr. Dariush Rafinejad was principal $\lambda e r o t h e r m$ investigator $f 0$ the work described in this volume.

This techinical report has been reviewed and is approved.
egraja
E. G. Taylor, Lt., USAF

Project Officer
Aerc and Materials Division Directorate of Systems .ingineering Deputy for Reentry Systoms

ABSTRS.CT

Abstract

A computer program is developed to numerically model the in-depth transient response and shape history of an ablating nosetip subjected to a reentry environment. The generality of the input also allows the user to conveniently analyze the boundary layer, shape change and in-depth response of many materials in 3 variety of test facilities. The somputer code is capable of handling nosetips of shell or plug geometries. The boundary layer and heat transfer distribution are modeled for a variety of environments including hydrometer erosion. In addition, inviscid flow and heat transfer distributions for many types of blunt bodies in hypersonic flow can be readily calculated.

Section Page
INTRODUCTION 1-1
MUYERICAL MODELING PND COMPUTATIONAL PROCEDURES 2-1
2.1 Inviscid Flow Field 2-1
2.1.1 Shock Shape Calculation 2-1
2.1.2 Pressure Distribution 2-4
2.1.3 Boundary Layer Eage State 2-13
2.2 Boundary Layer Heat and Mass Transport 2-15
2.2.1 Laminar Heat Transfer, Smooth Wall 2-16
2.2.2 Turbulent Heat Transfer, Smooth Wall 2-17
2.2.3 Transition Criteria 2-19
2.2.4 Surface Roughness Effects on Heat Transfer 2-21
2.2.5 Transitional Boundary Layer Heat Transfer 2-23
2.2.6 Hydrometer Boundaxy Layer Stirring Effects 2-24
2.3 In-depth Conduction Calculations 2-25
2.3.1 Coordinate System, Governing Equations
2.3.2 Finite-Difference Formulations 2-28
2.3.3 Time Step Control 2-29
2.4 Surface Ablation Response Calculations 2-30
2.4.1 Surface Energy Balance Formulation 2-30
2.4.2 Erosion Modeling 2-34
2.4.3 Use of Thermochemistry Codes to Generate Input Data 2-35
2.4.4 Simpler Forms of the Surface Energy Balance Equation 2-36
2.5 Surface Point Movement and Surface Smoothing 2-37
2.5.1 Shape Change Geometry 2-38
2.5.2 Surface Angle Definition 2-39
2.5.3 Apparent Nose Model 2-39
3 DESCRIPTIONS OF INPUT AND OUTPUT
3.1 Inpiat Instructions 3-1
3.1.1 Restart Information 3-1
3.1.2 Title and Heading Information 3-1
3.1.3 Table 01 - General Program Constants 3-2
3.1.4 Table 02 - Environment Table 3-2
3.1.5 Table 03 - Geometry 3-9
3.1.6 Table 04 ~ Transition Criteria 3-15
3.2.7 Table 05 - Weather Conditions 3-16
3.1.8 Table 06 - Material Properties 3-17
3.1.9 Table 09 - Surface Thermochemistry 3-19
3.1.10 End of Input j-23
3.2 Program Output. 3-25
3.2.1 Output oE Input: 3-25
3.2.2 Calculation Output 3-26
SAMPLE PROBLEES 4-1
REFERENCES R-1
APPENDIX A - DESCRIPTION OF UNLLABELED OUTPUT VARIABLES A-1
Figure Page
2-1 Nosetip shape change calculation procedure. 2-2
2-2 Shock shape evaluation techuique. 2-3
2-3 Pressure distribution calculation nomenclature. 2-5
2-4 Schematic of pressure distribution calculations. 2-6
2-5 Flow chart of logic to determine nosetip sonic point location (subroutine RUNLP). 2-11
2-6 Nosetip geometry. \therefore - $\dot{4}$
3-1 Sketch of surface thermochemistry table make-upfor a givon material including leading constant cards. 3-24

Table		Page
01	Gencra? Erogram Constants	3-2
02	Envircriment Table	3-5
03	Geometry and Material Bound: ries	3-9
04	Transition Criteria	3-15
05	Weather Conditions	3-16
06	Material Properties	3-17
07	(Reserved for future use)	--
08	(Resaryed for future use)	--
09	Surface Thermochemistry	3-19

B^{\prime}	normalized ablation rate defined as $\dot{\mathrm{m}} / \rho_{e} u_{e} C_{M}$	(---)
$C_{\text {D }}$	drag coefficisnt	(---)
C_{H}	Stanton number for heat transfer (corrected for "blowing" if necessary	(---)
$\mathrm{C}_{\mathrm{H}, \mathrm{O}}$	Stanton number for heat transfer not corrected for blowing or stagnation point Stanton number	(---)
C_{M}	Stanton number for mass transfer	(---)
C_{p}	specific heat at constant pressure or pressure coefficient	$\begin{aligned} & \text { (Btu/ } \left.1 b^{\circ} \mathrm{F}\right) \\ & \text { or }(---) \end{aligned}$
D	diameter at start of aft cone	(ft)
d	minimum mesh size	(ft)
d_{p}	hydrometeor particle diameter	(ft)
F	radiation view factor	(---)
F_{K}	factor in Equation (2-27)	(---)
F_{L}	ratio of local laminar heat transfer coefficient to stagnatior point coefficient	(---)
${ }_{F}^{T}$	ratio of local composite turbulent heat transfer coefficient to stagnation point coefficient	(---)
G	erosion mass loss parameter	(---)
H	boundary layer shape factor	(---)
H_{D}	dissociation energy	(Btu/lb)

LIST OF SYMBOLS (Continued)

B_{0}	total enthalpy	(Btu/lb)
$\mathbf{H}_{\mathbf{r}}$	recovery enthalpy	(Btw/lb)
h	enthalpy	(Btu/lb)
h_{c}	material enthalpy	$(8 \subset u / 1 b)$
$h_{i}^{T w}$	enthalpy of species i at temperature Tw	(BEu/lb)
h_{8}	sensible enthalpy	(Btu/lb)
h_{w}	enthalpy of gases adjacent to the wall	(Btu/lb)
\boldsymbol{h}	Eckert reference enthalpy	(Btu/lb)
J	internal conéucさior: :.. ヨe index (X-dir -tion)	(---)
K	interne: conciuction s.गde index (n-dir: t.len)	(---)
$\mathbf{K}_{\mathbf{i}}$	mass i i ¢find oi sgecies i	(---)
K_{L}	rough wail immena heating augmentation fact.r	(---)
$\boldsymbol{K}_{\boldsymbol{T}}$	rough wali tursulent reating augmentation facter	(---)
$K_{T, C}$	rough wall composite heating augmentation factor	(---)
\mathbf{K}_{1}	material coefficient in Equation (2-46)	(in-psiz ${ }^{\text {77 }}$)
k	thermal conductivity or roughness height	$\begin{array}{r} \left(B t u / f t-\sec ^{\circ} F\right) \\ \text { or }(f t) \end{array}$

k_{c}	crater roughness height	(ft)
$\mathbf{k}_{\boldsymbol{i}}$	intrinsic roughness of material in laminar flow	(ft)
k_{t}	effective sand grain roughness height	(ft)
1	internal conduction node index (ф-direction)	(---)
Le	Lewis number	(---)
M	Mach number	(---)
\dot{m}	net mass ablation rate per unit area	(lb/ft ${ }^{2}-\sec$)
$\dot{m}_{\text {e }}{ }^{\text {a }}$	erosion mass removal rate per unit area	$\left(l b / f t^{2}-s e c\right)$
$\dot{m}_{i n}$	incoming hydrometer particle mass flux	$\left(1 b / f t^{2}-s e c\right)$
m_{p}	individual hydrometer particle mass	(1b)
$\dot{m}_{t c}$	thermochemical mass ablation rate per unit area	$\left(1 b / f t^{2}-s e c\right)$
Pr	Pranutl number	(---)
p	pressure	(atan)
\bar{p}	p / p_{0}	(---)
q	heat flux	(Btu/ft ${ }^{2} \sec$)
$q_{\text {chem }}$	heat flux resulting from chemical energy	(Btu/ft ${ }^{2} \mathrm{sec}$)
${ }^{\prime}{ }_{\text {cond }}$	heat flux conducted into solid material at surface	(Btu/ft ${ }^{2} \mathrm{sec}$)
$\mathrm{q}_{\text {rad in }}$	heat flux radiated to surface	(Btu/ft ${ }^{2} \mathrm{sec}$)

LIST OF SXMECLS iContinucti

Grad out	heat flux radiated away from surface	(Btu/ft ${ }^{2}$ gec)
$q_{\text {sen }}$	sensible convective heat flux	(Etu/ft ${ }^{2} \mathrm{sec}$)
$R_{\text {Reff }}$	effective nose radius	(ft)
$\mathrm{R}_{\mathbf{N}}$	geometric body radius of curvature at stagnation point	(it)
Re	unit Reynolds number	(ft ${ }^{-1}$)
$\mathrm{Re}_{\mathbf{K}}$	roughness Reynolds number	(---)
Re_{θ}	momentum thickness Reynolds number	(---)
$\overline{R e}_{\theta}$	composite momentum thickness Reynolds nuraber based on reference conditions	(---)
$\overline{\text { RKI }}$	roughness - laminar heating parameter	(---)
$\overline{\text { RKT }}$	roughness - turbulent heating parameter	(---)
R_{L}	laminar Reynolds analogy factor	(---)
R_{1}	turbulent keynolds analogy factor	(---)
\boldsymbol{r}	radius measured from body axis	(ft)
r_{b}	internal conduction radius measured from body axis	(ft)
s	streamwise length	(ft)
S	transformed 2-coordinate, $=2 / \delta$	(---)
$\dot{\mathbf{s}}$	normal surface recession rate	(ft/sec)

T	temperatiure	$\left({ }^{\bullet} \mathrm{R}\right)$
t	time	(sec)
Δt	time step size	(sec)
\mathbf{u}	velosity	(ft/sec)
X	length measured from the axis along the internal contour	(ft)
\mathbf{Y}	distance measured normal to internal contour or fictitious interface	(ft)
$\overline{\mathbf{Y}}$	radial location of streamline	(ft)
2	axial length measured from original stagnation point	(ft)
2	axial distance measured from the back of the body	(ft)
${ }^{2} c$	axial distance from start of aft cone.	(ft)
z_{i}^{*}	modified diffusion driving force (see Reference 21, page 44 for definition)	(---)
Greek Symbols		
a	mate:ial thermal diffusivity	(ft ${ }^{2} / \mathrm{sec}$)
a_{w}	absorptivity of wall	(---)
B	angle local tangent to the inner contour makes with the body axis	(deg)
B_{0}	stagnation point velocity gradient defined as due/ds $\left.\right\|_{s \rightarrow 0}$	$\left(\sec ^{-1}\right)$
B	velocity gradient parameter	(---)
$\boldsymbol{\gamma}$	specific heat ratio or plug shank inclination angle with the axis). (deg)
Δ	distance from the inner, contour to the nosetip surfac	(ft)

LIS'T OF SYMBOLS (Continued)

Δ_{0}	shock standoff distance	$(f t)$
δ	distance from shank base to fictitious interface	(ft)
δ^{*}	boundary layer displacement thickness	(ft)
η	transformed Y-coordinate, $=Y / \Delta$	(---)
ε	emissivity	(---)
ε_{s}	density ratio across shock	(---)
θ	momentum thickness	(ft)
${ }_{8}$	shock angle	(deg)
λ	blowing reduction parameter (Equation (2-61))	(---)
\wedge	curvature of internal contour	$\left(E t^{-1}\right)$
μ	viscosity	(1b/ft-sec)
$\bar{\mu}$	viscosity evaluated at Eckert reference enthalpy	(1b/ft-sec)
D	density	(1b/ft ${ }^{3}$)
${ }^{\circ} \mathrm{c}$	mass of hydrometer particles per unit volume of air	$\left(2 b / f t^{3}\right)$
$\rho_{\text {m }}$	surface material density	$\left(1 b / f t^{3}\right)$
ρ_{p}	hydrometer particle density	(1b/ft ${ }^{3}$)
\bar{p}	density evaluated at Eckert reference enthalpy	$\left(1 b / f t^{3}\right)$
O	Stefan-Boltzmann constant	$\left(\mathrm{Btu} / \mathrm{ft}^{2} \sec ^{\bullet} \mathrm{R}^{*}\right)$
${ }^{\mathbf{T}}$	wall shear	($1 \mathrm{bf} / \mathrm{ft} \mathrm{t}^{2}$)

\bullet	azimuthal angle	(deg)
Subscripts		
c	cone condition	
e	boundary layer edge condition	
i	condition at start of cone or initial condition or integration point index	
L	laminar	
MN	modified Newtonian	
0	stagnation point or total condition or not corrected for blowing	
R	rough	
s	sensible	
SP	stagnation point	
STIRRED	modified to account for the effects hydrometer boundary layer stirring	
T	turbulent	
TP	tangent point	
TR \triangle TRANS	transition point or transitional	
tc	thermal chemical cnly	

LLST OF SYMBOLS (Concluded)
condition at wall
freestream condition

Superscripts
$\begin{array}{ll}* & \text { sonic point condition } \\ T_{i} & \text { value calculated at } T_{i}\end{array}$

SECTION 1

INYRODUCTION

The purpose of this document is to provide a description of the modeling techniques and input requirements of the EROsion Shape (EROS) computer code that combines enviroment modeling techniques developed by Aerotherm primarily under the PANT program (Reference 29) with in-depth transient conduction routines developed at the Aerospace Corporation (Reference 28).

The primary purpose of this code is to numerically model the in-depth transient response and shape history of an ablating nosetip subject to a reentry environment. The code calculates the inviscid flow and heat transfer distribution for many types of blunt bodies in hypersonic flow. In addition, the boundary layer and heat transfer distributions are modeled for a variety of environments including hydrometer erosion. The in-depth thermal response is capable of calculating the three-dimensional temperature field and surface recession of nosetips at angle of attack. However, due to limitations of the environment package to axi-symmetric geometries, the present code is restricted to nosetips at zero angle of attack. A general thermohemistry model, including kinetic efferts, is used in the surface energy balance formalation.

The generality of the input allows the user to convenieritly analyze the boundary layer, shape change and in-depth response of many materials in a variety of test facilities, including wind tunnel, ballistic range, and arc heater.

A description of the numerical modeling and calculation procedure is given in Section 2: Input requirements and output are described in Section 3 and a sample problem is presentec in Section 4.

SECTION 2

nWMERICAL MODELING AND COMPUTATIONAL PROCEDURES

The problem modeled by the computer code is that of determining the instantaneous shape of an ablating axisymuetric nosetip reentering the atmosphere at zero degrees angle of attack, as well as the in-depth heat transfer and temperature rise. The requirement that the flow be parallel to the body centerline reduces the problem to one of axisymmetric flow and recession. The nosetip shape change events are modeled using the cyclic calculation procedure outlined in Figure 2-1.

The five computation elements illustrated in Figure 2-1 are described in the following sections. Section 2.1 covers the inviscid flow solutions; Section 2.2 described the boundary layer heat and mass transfer calculations; Section 2.3 describes the details of the in-depth conduction calculation; Section 2.1 explains the surface ablation calculations; and Section 2.5 describes the body movement.

The computational scheme is stable and accurate only if computational time steps are kept within certain limits. These limits are imposed by indepth conduction and snape change and are described in Section 2.3 and 2.5, respectively.

2.1 INVISCID FLON FIELD

The inviscid flow fielo serves as a boundary condition for the boundary layer solution. The actual boundary layer edge state is determined from the shock shape and the pressure distribution. The following tisee sections describe the shock shape, pressure distribution, and boundary layer edge state calculations, respectively. A compiete description and justification of the inviscid flow field calculation technique is given in Reference 1.

2.1.1 Shock Shape Calculation

The bow shock geometry ahead of an axisymmetric ablated shape is computed by forming a piecewise $]^{\text {(}}$ ar curve with line segment slopes and lengths dependent on body point slopes and spacing. The technique for evaluating respective shock point locations is given in Figure 2-2. The procedure is to step along

Figure 2-1. Nosetip shape change calculation procedure.
$M \leq 1$

SHOOK CCOROINATES ($x_{3,1}, y_{5,2}$) FOUNO OY ITERESECTION of EQUPTIONS A AND B
EQUATION A arocar $y=1\left(\pi, i=1+\left(x-x_{3,}(i, 1) \tan \theta_{5, l}\right.\right.$
EQUATION B
$y_{0} Y_{i}+\left(x-x_{i}\right) \tan Q_{i}$
COMBINING YIELDS:

M>1

Figure 2-2. Shock shape evaluation sechnique.
the shock by computing the next point based on the previous shock point and the surface slope quantities. The following are needed to perform the calculation:

- Body geometxy quantities
- Shock standoff distance on the stagnation line
- An expression which relates local surface slope to shock slope.

A correlation based on the results of Reference 30 is used to compute the standoff distance (Δ_{0}). The correlation, which includes dependencies on stream Mach number, specific heat ratio and body bluniness ratio (i.e., $r^{*} / 2^{*}$) is given by
where

$$
\begin{equation*}
\Delta_{0}=\left(\frac{\Delta_{0}}{R_{C}}\right) \underset{\substack{\text { sphere }}}{c_{r^{*}}} \tag{2-1}
\end{equation*}
$$

$$
\left(\frac{\Delta_{0}}{R_{c}}\right)_{\text {sphere }}=\left[\left\{\frac{(\gamma-1)}{4\left(M_{\infty}^{2}-1\right)} \frac{M_{m}^{2}+2}{}+1^{\left(\frac{1}{2 K(z)}\right.}-1\right]\right.
$$

r^{*} is the sonic point ordinate and C_{R} is a bluntness ratio correction factor which is a function of $\mathrm{r}^{*} / \mathbf{Z}^{*}$.

For subsonic flow in the shock layer the relationship between shock angle and local body angle is obtained from Reference 3 and is given by

$$
\begin{equation*}
\theta_{s i}=30^{\circ}+\frac{\theta_{i}}{3}+\frac{\theta_{i}^{2}}{270} \tag{2-2}
\end{equation*}
$$

where θ_{i} and $\theta_{s i}$ are in degrees. The accuracy of this approach is discussed in Reference 1.

For supersonic flow in the shock layer, the shock angle is determined by the tangent cone upproximation. In this approach the shock angle is a function of stream Mach number, ratio of specific heats, and body anyie.

The procedure is used with all environment options except that for the arc heater. Since nosetip shape change tests in arc heater environments are generally at a relatively low free stream Mach number, it is more accurate to use a normal shock assumption for all inviscid flow calculations.

2.1.2 Pressure Nistribution

The pressure distribution calculation is based on regional correlations as indicated in Figure 2-3. Region I is defined as the subsonic portior of the flow forward of the limiting sonic flow characteristic. Region II is the supersonic forebody. Region III is the flow over the aft conic surface of the nosetip and starts at the point where the body slope approaches the cone half angle.

Figure 2-3. Pressure distribution calculation Homenclature.

A flow chart identifying the various aspescts of the pressure distribution calculation is given in Figure 2-4. The procedures used to compute the pressure in the three regi ons are desoribed in the foilowing subsections.

Figure 2-4. Schematic of pressure distribution calculations.

2.1.2.1 Region 1, Stagnation Point to Sonic Point

The correlation of Reference 4 as improved in Reference 5 is used in this region to more realistically represent the stagnation point velocity gradient and subsonic region pressure distribution on very blunt bodies. In addition, the correlation was extended to include low free stream Mach numbers. The correlation is an empirical extension and synthesis of the modified Newtonian correlation, valid for spheres, iut ircluding a correlation for flat faced cylinders. It is expressed as follows:

$$
\begin{align*}
\bar{p}= & \bar{p}_{M A i}-\left(1-\bar{p}_{F D}\right)\left[\frac{\bar{p}_{M N}-\bar{p}^{*}}{1-\bar{p}^{*}}\right]+\left(1-\frac{R_{N}}{\bar{R}_{M N X}}\right) \\
& \left\{\left(1-s / s^{*}\right)\left(1-\bar{p}_{\infty}\right) \cos ^{2} \theta+\frac{1}{2} \frac{s}{s^{*}}\left[\bar{p}_{F D}-1+s / s^{*}\left(1-\bar{p}_{\infty}\right) \cos ^{2} \theta\right.\right. \\
& \left.\left.+\left(i-\bar{p}_{F D}\right)\left(\frac{\bar{p}_{M N}-\bar{p}^{*}}{1-\bar{p}^{*}}\right)\right]\right\} \tag{2-3}
\end{align*}
$$

where

$$
\begin{aligned}
\bar{p}= & p / p_{0} \\
P_{0}= & \text { stagnation point pressure } \\
R_{A}= & \text { stagnation point radius of curvature } \\
R_{w A X}= & \text { max }\left(R_{N}, R^{*}\right) \quad . \\
R^{*}= & \text { distance from sonic point to body axis, measured normal to the } \\
& \text { surface at the sonic point } \\
\approx= & \text { surface wetted length from stagnation point } \\
\theta= & \text { angle local tangent makes with body axis } \\
*= & \text { sonic point }
\end{aligned}
$$

and

$$
\begin{gather*}
\bar{p}_{\infty}=p_{\omega} / p_{0} \tag{2-4}\\
\bar{p}_{M N}=\bar{p}_{\omega}+\left(1-\bar{p}_{\infty}\right) \sin ^{2} \theta \tag{2-5}\\
\bar{n}^{*}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-2}} \tag{2-6}
\end{gather*}
$$

$$
\begin{equation*}
\bar{p}_{P D}=1-e^{-n}\left(1-\bar{p}^{*}\right)-\frac{1}{16}\left(s / s^{*}\right)^{2}-e^{-n} \tag{2-7}
\end{equation*}
$$

(flat faced cylinder pressure distribution)
with

$$
\begin{equation*}
n=5 \sqrt{\ln \left(s^{\pi / s}\right)} \tag{2-8}
\end{equation*}
$$

The sonic point location is an important parameter in calculating the surface pressure distribution, for it detemines the surface length over which the Region I correlation is used in the "subsonic" nose region. The importance of the sonic point reflects the fact that geometry effects downstream of the 3onic poi:之 have no influence on the subsonic region flow field, and hence, pressure distribution. In the code the sonic point is found using correlations which account for the effects of the following:

- Free stream Mach nusber $\left(M_{\infty}\right)$
- Ratio of specific heats (Y)
- Nose tip bluntness ($r^{*} / 2^{*}$)
- Surface streamline recompression on biconic shapes (B_{c}^{*})

The procedure is to estimate a sonic point location assuming modified Newtonian flow and then correct the locaicion for the effects noted above.

The modified Newtonian sonic point is the first point downstream of the stagnation point $(\beta=0)$, whi=h has an angle (β) greater than the following:

$$
\begin{equation*}
B_{N}^{*}=\arccos \left(\sqrt{\frac{\bar{p}^{*}-\bar{p}_{\infty}}{1-\bar{p}_{\infty}}}\right) \tag{2-9}
\end{equation*}
$$

where \bar{p}_{∞} and \vec{p}^{*} are defined in Equations $(2-4)$ and (2-6), respectively, and B^{*} is defined in Figure 2-3.

The nosetip geometry is then interrogated to determine the following:

- Bluntness ratio at Newtonian sonic point
- The existence of a conic surface with $30^{\circ}<\beta_{c}<60^{\circ}$ and the conic surface half angle B_{c}
The bluntness ratio, specific heat ratio, and free stream Mach numioer are used to obtain a blunt body sonic point from correlations of exact numerical predictions.
$y=1.4$
$2<M<4$

$$
\begin{aligned}
& \beta^{*}=\beta_{O}^{*}-3.495 \sqrt{\left(r^{*} / 2^{*}\right)^{2}-a^{2}} \\
& B_{O}^{*}=49.9+\frac{M-2.0}{2.0}(50.8-49.9) \\
& a=2.22+\frac{M-2.0}{2.0}(0-2.22)
\end{aligned}
$$

$4<M<7$

$$
\begin{aligned}
& B^{*}=\beta_{0}^{*}-3.495 \sqrt{\left(Y^{*} / 2^{*}\right)^{2}+b^{2}} \\
& B_{0}^{*}=50.8+\frac{M-4.0}{3.0}(51.3-50.8) \\
& b=0.0+\frac{M-4.0}{3.0}(2.0-0.0)
\end{aligned}
$$

$M>7$

$$
\begin{aligned}
& \beta^{*}=\beta_{0}^{*}-3.495 \sqrt{\left(\Gamma^{*} / z^{*}\right)^{2}+4} \\
& \beta_{0}^{*}=51.3
\end{aligned}
$$

$x \neq 1.4$

$$
\beta^{*}=\left(\beta_{0}^{*}\right)_{1.4}+1.3\left(\frac{Y}{-} \frac{1.4}{0.2}\right)
$$

The , urves are hyperbolas. The expressions are written in a form to illustrate as clearly as possible their interrelationships.

If a conic surface is formed in the vicinity of the sonic point, the minimum cone half angle for supersonic cone flow is also computed using the following correlations of exact solutions.

$$
y=1.4
$$

$$
\begin{equation*}
B_{C}^{*}=34.6^{\circ}+17.9^{\circ} e^{-0.3739}(M-2.0) \tag{2-11}
\end{equation*}
$$

$x=1.2$

$$
\begin{equation*}
B_{C}^{*}=26.0^{\circ}+23.6^{\circ} e^{-0.3524}(M-2.0) \tag{2-11}
\end{equation*}
$$

$x=1.1$

$$
B_{C}^{*}=19.1+28.2^{\circ} e^{-0.52 * t}(M-2.0)
$$

For other values of γ, linear interpolation is used.
If the cone half angle (β_{c}) is greater than β_{c}^{*} then the cone is supersonic and the sonic point is at the forward end.

The logic to decide whether the sonic point ie controlied by cone fiow or blunt body flow is shown in Figure 2-5.

2.1.2.2 Region II, Sonic Point to Match Poini with Aft Body Correlations

In t'se supersonic forebody of the nosetip (Region II) pressire distributions are computed either using the modified Newtonian expression (Equation (2-5)) or, for biconic type configurations, using a conic surface recompression correlation. The sone recompression model is based on sphere/cone and ellipsoid/cone exact solutions performed at various Mach numbers. The streamwise length required to obtain the recompression is given by:

$$
\begin{equation*}
\ln \left(\frac{s_{R}}{R_{N}}\right)=4.805\left(\theta-\theta_{0}\right)^{2}-0.22 \tag{2-12}
\end{equation*}
$$

where

$$
. . \quad \theta_{0}=1.047 \text { radiens }
$$

$s_{R}=$ stream length from stagnation point to the end of cone recompression
$R_{N}=$ geometric stagnatio: point radius of curvature
Along a conic surface starting at s_{i}, the recompression pressures are given by a linear function of stream distance; i.e.,

$$
\begin{array}{ll}
\bar{p}=\bar{p}_{i}+\frac{s-s_{i}}{s_{R}-s_{i}}\left(\bar{p}_{c}-\bar{p}_{i}\right) & \text { for } s_{i}<s<s_{R} \tag{2-13}\\
\bar{p}=\bar{p}_{c} & \text { for } s>s_{R}
\end{array}
$$

Figure 2-5. Flow chart of logic to determine nosetip sonic point location (subroutina RUNLP).
where

$$
\begin{aligned}
& \bar{p}_{c}=p_{c} / p_{0}=\text { sharp cone pressure ratio } \\
& \bar{p}_{i}=p / p_{0}=\text { pressure ratio at start of cone, } s_{i}
\end{aligned}
$$

The pressure distribution computation in Region II of the nosetip must also blend together the results from the several correlations, including the following:

- Region I subsonic flow correlation
- Region II conic surface recompression, if any
- Region III C_{D} correlation, Prandtl-Meyer flow or modified Newtonian (see Section 2.1.2.3)

The smoothing is performed using a weighted average between an incremental modified Newtonian expression and a linear aecay expression. For smoothing in the region $\theta_{\text {initial }}>\theta>\theta_{\text {final }}$
where α is the weighting function. Taking 3 linear weighting,

$$
\begin{equation*}
a=\frac{\theta-\theta_{i}}{\theta_{f}-\theta_{i}} \tag{2-15}
\end{equation*}
$$

gives

$$
\begin{align*}
\stackrel{\rightharpoonup}{p}= & \stackrel{\rightharpoonup}{p}+\frac{\theta_{f}-\theta}{\theta_{f}-\theta_{i}}\left(1-\bar{p}_{\infty}\right)\left(\sin ^{2} \theta-\sin ^{2} \theta_{i}\right) \\
& +\left(\frac{\theta-\theta_{i}}{\theta_{f}-\theta_{i}}\right)^{2}\left(\bar{p}_{f}-\bar{p}_{i}\right) \tag{2-16}
\end{align*}
$$

In a typical case, the smoothing expression might be used between the sonic point and the start of a forecone surface and between the end of the forecone and the match point with the Region III correlations. In the case where concave shapes develop as in the sketch below, smoothing is performed between the sonic point and the inflection point in the shape. Downstream of the inflection point, the modified Newtonian relation iEquation (2-5)) is used.

2.1.2.3 Region III - Aft Body

The correlation for aft cone pressures is one developed at Aerospace Corporation (Reference 6). It has the form

$$
\begin{equation*}
\frac{c_{p}}{\theta_{c}^{2}}=f_{n}\left(\frac{z_{c}}{D} \frac{\theta_{c}^{2}}{\sqrt{C_{D}}}, \theta_{c}\right) \tag{2-17}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{c} & =\text { cone half angle } \\
z_{c} & =\text { axial distance from the start of the aft cone } \\
D & =\text { diameter at start of aft cone } \\
C_{D} & =\text { drag coefficient of the forebody } \\
C_{p} & =\left(p-p_{\infty}\right) /(1 / 2) \rho_{\infty} u_{\infty}^{2}
\end{aligned}
$$

The function f_{n} is determined by a series of polynomial curve fits of exact numerical solution for cones of varying bluntness, with cone half angle as a parameter. The curves asymptotically approach the sharp cone pressure level.

TIS: transition between Regions II and III is effected at the point where the pressuce distribution curves for the two regions intersect. That point is determined iteratively since C_{D} is a function of its location.

The calculation procedures used in Region III (aft of shoulder) are based on hypersonic considerations. They are used for $M_{\infty} \geq 5$. To better model the flow for $M_{\infty} \leq 4$, the modified Newtonian calculation procedure for Region II is extended to Region III. For $4<M_{\infty}<5$, linear interpolation is used between $M_{\infty}=4$ and $M_{\infty}=5$ predictions.

Alternate procedures are used for cylindrical afterbodies.

……

2.2.3 Boundary Layer Edge State

The actual boundary layer edge themodynamic state is determined by a look-up on pressure and entropy in a rezl gas Mollier air table. Pressure is known from the inviscid flow solution, and entropy is calculated from considerations
of bow shock shape and boundary layer mass flux. The sketch shown on the following page illustrates the path of a streamline passing through the shock layer. At the point where the streamline, originating at \bar{y}, enters the boundary layer, the mass flux can be expressed as follows:

For the laminar boundary layer

$$
\begin{equation*}
\rho_{\infty} u_{\infty} \bar{y}_{L}^{2}=4.52 r \mu_{e} e_{\theta_{L}} \tag{2-18}
\end{equation*}
$$

For the composite mciel of the turbulent boundary layer, which is described in Section 2.2.2, the free stream location of the boundary layer edge streamline is computed from

$$
\begin{equation*}
\rho_{\infty} U_{\infty} \bar{Y}_{T}^{2}=\left(\frac{100+2 \overline{R e}_{\theta}}{100+\overline{R e}_{\theta}}\right)^{2} 4.52 r \mu_{e} e^{R e_{\theta}} \tag{2-19}
\end{equation*}
$$

The turbulent Reynolds number, $\mathrm{Re}_{\theta_{T}}$ is computed using a roughness augmented momentum thickness. This expression for \bar{y}_{T} passes smoothly from the laminar value at $\overrightarrow{\mathrm{Re}}_{\theta}=0$ to the previously used expression for turbulent flow at large $\overline{r e}_{\theta}$.

The entropy used to compute the edge sonditions when the streamline enters the boundary layer is the entropy existing at the radial coordinate \bar{y}_{L} $0=\bar{Y}_{T}$ just behind the shock. This entropy is evaluated from the free stream conditions, using oblique shock relations (see Referenci 6).

The boundary layer edge velocity over most of the body is computed from energy conservation along an effective inviscid flow stream tube as follows.

$$
\begin{equation*}
u_{e}=\sqrt{2\left(H_{0}-h_{e}\right)} \tag{2-20}
\end{equation*}
$$

Since the boundary layer edge state is determined accounting for entropy swallowing, the edge velocity also is affected. This is the only mechanism by which swallowing influences the boundary layer solution.

In the vicinity of the stagnation point the velocity is assumed to be linear for $p_{e} / p_{t_{2}}=1.0$ to 0.999 . The velority at the 0.999 point is calculated accounting for entropy swallowing using a first guess obtained by assuming normal shock entropy. Therefore, the velocity gradient, due/ds|o, is ivaluated directly from the pressure distribution including entropy layer effects.

The edge viscosity is determined from the following correlatic. taken from Reference 6.

$$
\begin{array}{ll}
\mu=3.0 \times 10^{-5}\left(\frac{T}{2000}\right)^{1.5}\left(\frac{2198.6}{T+198.6}\right) & T<2000^{\circ} R \\
:=1.9 \times 10^{-5}\left(\frac{T}{1000}\right)^{0.7} & T \geq 2000^{\circ} \mathrm{R} \tag{2-21}
\end{array}
$$

T in ${ }^{\circ} R, \mu$ in $1 b / f t-s e c$ units
The Prandtl number is assumed constant at 0.7.

2.2 BOUNDARY LAYER HEAT AND MASS TRANSPORT

The boundary layer heat and mass transport events are modeled using a film coefficient approach. The momentum integral equation is solved assuming that zero pressure gradient relations between skin friction and momentum thickness afply in the presence of pressure gradients. Reynolds analogy and compressibility corrections are applied to obtain the nonblown heat transfer coefficient distribution. Effects of blowing are accounted for as a function of local ablation rate, and the mass transfer coefficient is taken as a constant ratio of heat coefficients.

Details of the solution procedure for laminar flow are given in Section 2.2.1. The turbulent solution procedure is discussed in Section 2.2.2. Transition criteria options in the code are given in Section 2.2.3. Techniques used to compute tine roughness effects on laminar and turbulent heating are reviewed in Section 2.2.4, and relations used to compute heat transfer in regions of transitional boundary layer flow are discussed in Section 2.2.5. The effects of hydrometer boundary dayer stirring are covered in Section 2.2.6.

2.2.1 Laminar Heat Transfer, Smooth Wall

The stagnation point heat transfer coefficient calculation is discussed in Section 2.2.1.1, and the laminar distribution evaluation technique is described in Section 2.2.1.2.

2.2.1.1 Stagnation Point Heat Transfer Coefficient

At high altitude or low Reynolds number conditions, the energy flux to the surface is limited by the total energy content of the free stream. The corresponding heat transfer coefficient is, therefore,

$$
\begin{align*}
q_{\text {limit }} & =\rho_{\infty} u_{\infty} H_{0} \tag{2-22}\\
\left.\rho_{e} u_{e} c_{H, 0}\right|_{\text {limit }} & =\rho_{\infty} u_{\infty}
\end{align*}
$$

For other conditions, the stagnation point heat transfer coefficient is computed using the relation of Fay and Riddell (Reference 7) with Pr $=0.7$.

$$
\begin{equation*}
\rho_{e} u_{e} c_{H, 0}=0.944\left(\Omega_{0} \mu_{0} \beta_{0}\right)^{0.5}\left(\frac{\rho_{w} \mu_{w}}{\rho_{0} \mu_{0}}\right)^{0.1}\left[i .0+\left(L e^{0.52}-1.0\right) \frac{H_{D}}{H_{0}}\right] \tag{2-23}
\end{equation*}
$$

where, as suggested in Reference 8,

$$
H_{D} / H_{O}=\left\{\begin{array}{ll}
0 & , \tag{2-24}\\
1-0.308\left(T_{0} / H_{O}\right), & T_{0}>5000^{\circ} R \\
1-5000^{\circ} R
\end{array}\right\}
$$

The Lewis number used is the average between the Lewis numbers evaluated at the wall and edge temperatures. These are computed from the approximation

$$
L e=\left\{\begin{array}{ll}
1.2 & T<5400^{\circ} \mathrm{R} \tag{2-25}\\
1.2-5.5 \times 10^{-5}\left(T-5400^{\circ} \mathrm{R}\right), & T>5400^{\circ} \mathrm{R}
\end{array}\right\}
$$

2.2.1.2 Laminar Heating Distribution

The method of Reference 9 as simplified in Reference 10 is used to obtain the laminar heating distribution. The correlation is expressed as the local heat transfer coefficient divided by the stagnation coefficient, i.e..

$$
\begin{gather*}
F_{L}=\frac{\rho_{e} u_{e} C_{H, L}}{\rho_{e} u_{e} C_{H, O}} \tag{2-26}\\
F_{L}=\frac{P_{e} u_{e} r F_{k}}{\left[\frac{2}{\hat{P}_{0}} \beta_{0} \int_{0}^{\delta}\left(p_{e} / p_{O}\right) u_{e} r^{2} d s\right]^{1 / 2}} \tag{2-27}
\end{gather*}
$$

where

$$
\begin{aligned}
& F_{X}=1.033\left(\frac{1+0.52 T \tilde{\beta}^{0.606}}{2.116+0.411 \tilde{B}^{0.6 s t}}\right)\left[1.10-0.1625\left(\frac{h_{e}}{H_{0}}\right)+0.0625\left(\frac{h_{e}}{H_{0}}\right)^{2}\right] \\
& \tilde{\beta}=2\left(\frac{h_{e}}{H_{0}}\right) \frac{d u_{e}}{d s}\left(\frac{p_{e}}{p_{0}}\right) u_{e}^{2} r^{2}
\end{aligned} \int_{0}^{8}\left(\frac{p_{e}}{p_{0}}\right) u_{e} r^{2} d s
$$

The corresponding laminar momentum thickness Reynolds number is obtainad by applying Lees transformation to the Blasius incompressible flat-plate skin friction relation. The resulting equation is

$$
\begin{equation*}
R e_{\theta_{L}}=\frac{0.664}{\mu_{e} r}\left[\frac{\rho_{e} \mu_{e}}{p_{e} / p_{0}} \int_{0}^{3}\left(\frac{p_{e}}{p_{0}}\right) u_{e} r^{2} d s\right]^{1 / 2} \tag{2-28}
\end{equation*}
$$

This Reynolds number and the associated momentum thickness are used to obtain boundary layer thickness parameters for use with transition criteria, transitional heating correlations, and turbulent boundary layer starting conditions.

2.2.2 Turbulent Heat Transfer, Smooth Wall

The compressible boundary layer nomentum integral equation is solved to evaluate the fully turbulent heat transfer coefficient distribution. The important assumptions included in the solution are as followe:

- Blowing effects may be decoupled from the boundary layer solution (computes nonblown transfer cnefficient).
- Boundary layer shape factor $H=\delta * / \theta$ is taken as -1 .
- A modified Reynolds analogy (explained more completely below: is used to relate heat transfer to skin friction.
- The Crowell incompressible composite skin friction expression (Reference 11) modified for compressibility, is used.

The integral momentum equation may be written as

$$
\begin{equation*}
\frac{d}{d s}\left(\rho_{e} e^{\theta}\right)=\frac{\tau_{w}}{u_{e}}-\rho_{e} e^{u^{\theta}}\left[\frac{(1+H)}{u_{e}} \frac{d u_{e}}{d s}+\frac{1}{r} \frac{i r}{d s}\right] \tag{2-29}
\end{equation*}
$$

Using properties ($\bar{p}, \bar{\mu}$) evaluated at the Eckert reference enthalpy (Reference 12)

$$
\begin{equation*}
\bar{h}=0.5 \mathrm{~h}_{w}+0.3 \mathrm{~h}_{\mathrm{e}}+0.2 \mathrm{H}_{0} \tag{2-30}
\end{equation*}
$$

The Crowell composite skin friction expression modiiied for compressibility is
where

$$
\lambda=\frac{\overline{R e}}{100+\overline{R e} e_{6}} \quad \text { and } \quad \overline{R e}_{l}=\frac{\overline{n u} e^{i}}{\bar{\mu}}
$$

This expression substituted into the integral momentum equation (which is then integrated) determines $9(s)$. Trial calculations for sphere cone geometries were carried out assuming $-1.0<H<0.5$. Although $H=0.5$ is probably most realistic for conditions of interest, the skin friction was found to be relatively insensitive to variations in F. . The closest approximation (wıthin 10 percent) between $\theta(0)$ from the composite model and the laminar calculations is obtained for $H=-1$. This value, often assumed because it simplifies the momentum equation, was adopted here.

In using Reynolds analogy to determine the Stanton number from the skin friction, separate factors are used to multiply the laminar and turbulent contributions to the skin friction. The laminar Reynolds analogy factor (taken to be independent of s) is determined from the requirement that the composite model yields the correct heat transfer at the stagnarion point, that is,

$$
\begin{equation*}
R_{L}=\frac{\left(\rho_{e} u_{e} c_{H}\right)_{1 a m_{e} s=0}}{0.278\left(\frac{\mu_{e}}{\theta}\right)_{\delta=0}} \tag{2-32}
\end{equation*}
$$

The turbulent Reynolds analogy factor, F_{T}, is currently taken to be unity over the entire body. There is, however, some evidence from turbulent BLIMP solutions that R_{T} is a function of pressure gradient, being about 0.95 on the nose and about 1.15 on the cone, therefore, the factor, R_{T}, was chosen to be

$$
\begin{equation*}
R_{T}=1 \tag{2-33}
\end{equation*}
$$

This is close to the suggestion of Kays' (Reference 14) in which the exponent on the Prandtl number is $\mathbf{- 0 . 4}$. The composite expression for the turbulent neat transfer coefficient becomes

$$
\begin{equation*}
P_{e}^{u_{e}} C_{B, T}=0.278 \frac{\mu_{e}}{\theta} R_{L}+\frac{0.0128 \bar{\rho}_{e}}{\overline{R e}_{\theta} 1 / 4}\left(R_{L}(1-\lambda)+R_{T}\right) \tag{2-34}
\end{equation*}
$$

The turbulent heating factor is defined as

$$
\begin{equation*}
F_{T}=\frac{\rho_{e} u_{e} C_{H, T}}{\rho_{e} u_{e} C_{H, O}} \tag{2-35}
\end{equation*}
$$

2.2.3 Transition Criteria

Suilt into the code are several optional techniques for determining the conditions Eor boundary layer transition. In summary these are:

- Momentum thickness Reynolds number versus boundary layer edge Mach number.
- Run length Reynolds number versus boundary layer edge Mach number.
- Axial distance from stagnation po nt versus vehicle altitude.
- Roughwall transition criterion based on momentum thickness and wall cooling ratio.
- Roughwall transition criterion based on displacement thickness and run length.
- Fully turbulent flow from the stagnation point (composite nodel).

The appropriate boundary layer quantities are computed and compared to critical values input in tabular form by the user. For the two roughwall criteria,
critical values of the appropriate parameters from Reference 15 are built into the code. For the transition correlating parameter involving the momentum thickness, critical values are

$$
\operatorname{Re}_{\theta}\left[\frac{1}{\left(\frac{B^{\prime}}{10}+\left(1+\frac{B^{\prime}}{4}\right) \frac{\rho_{e}}{\rho_{w}}\right)^{\frac{k}{\theta}}}\right]^{\cdot}=\left\{\begin{array}{l}
255, \text { onset } \tag{2-36}\\
215, \text { location }
\end{array}\right\}
$$

For the transition correlating parameter involvi:g the displacement thickness, critical values are

$$
\operatorname{Re}_{k}\left(\frac{s}{\delta^{*}}\right)^{1 / 3}=\left\{\begin{array}{l}
2300, \text { onset } \tag{2-37}\\
2000, \text { location }
\end{array}\right\}
$$

where k_{i} is the intrinsic roughness of the surface appropriate for laminar flow conditions as specified by the user and $R e_{k}=p e^{u} e_{i}{ }_{i} / \mu_{e}$.

Th? onset conditions are determined first and, if satisfied, the point of transition is found from the location condition. Equation ($2-37$) indirectiy accounts for the effects of surface temperature on trarsition through the displacement thickness, δ^{*}. The displacement thickness is computed from the momentun thickness, θ, and wall to edge temperature ratio, (T_{w} / T_{e}) as follows:

$$
\begin{align*}
\theta_{\text {HOT WALL }}= & \theta_{\text {COLD WALL }}\left[1.104-0.348\left(T_{w} / T_{O}\right)\right] \\
& \left(\theta_{\text {COLD WALL }} \text { from Eq. }(2-28)\right) \tag{2-38}\\
\delta^{*=}= & \theta_{\text {HOT WALL }}\left[2.840\left(T_{w} / T_{e}\right)-0.640\right]
\end{align*}
$$

2.2.4 Surface Roughness Effects or: Heat Transfer

Correlations from PANT wind tunnel data (Reference 16) are included to account for the effects of roughzess on laminar and turbulent heat transfer; in addition, surface roughness modeling accounting for intrinsi= roughness, scallop roughness, and crater roughness are included. Roughness effects on leminar and turbulent heating are discussed in Sections 2.2.4.1 and 2.2.4.2 and surface rcughness modeiing is covered in Seztion 2.2.4.3.

2.2.4.1 Roughness Effects on Laminar Heating

The effects of roughness on laminar heating are correlated with the parameter

$$
\begin{equation*}
\overline{R K L}=\operatorname{Re}_{2}{ }^{0.2} \frac{k_{i}}{\theta_{\text {HOT WALL }}}=\left(\frac{\rho_{\infty} u_{\infty} R_{\text {eff }}}{u_{0}}\right)^{0.2} \frac{k_{i}}{\theta_{\text {HOT WALL }}} \tag{2-29}
\end{equation*}
$$

The effect is accounted for with the multiplicative factor K_{L} or the smooth wall laminar Stanton number, $C_{H, L}$, where

$$
K_{L}=\frac{C_{H, L}, R}{C_{H, L}}=\left\{\begin{array}{ll}
1.0 & , \overline{R K I}<50 \\
1.307 \ln (\overline{R K L})+23.09 \overline{R K L}-0.606-6 .<0\rangle, \overline{F K}>50
\end{array}\right\}(2-40)
$$

The correlation is applied to all laminar flow locations.

2.2.4.2 Roughness Effects on Turbulent Heating

The effects of roughness on turbulent heating are corr_lated in Reference 16 using the following parameter:

$$
\begin{equation*}
\overline{\operatorname{RKT}}=\operatorname{Re}_{k}\left(\frac{T_{e}}{T_{w}}\right)^{1 \cdot 3} C_{H, T} 0 \cdot s=\frac{\rho_{e} u_{e} k_{t}}{\mu_{e}}\left(\frac{T_{e}}{T_{w}}\right)^{1 \cdot 3} C_{H, T} 0.5 \tag{2-41}
\end{equation*}
$$

As with laminar flow, the effect of roughness on turbulent heating is accounted for with a multiplicative factor K_{T} on the smooth wall stanton number, $C_{H, T}$ The correlation equation is as follows:

$$
\mathbb{R}_{T}=\left\{\begin{array}{ll}
1.0 & , \overline{R K M} \leq 10 \tag{2-42}\\
\frac{C_{H, T}}{C_{H, T}}=\frac{2}{3} \log _{10}(\overline{R K T})+\frac{1}{3}, & 10<\overline{R K T}<10^{4} \\
3.0 & , \overline{R K T}>10
\end{array}\right\}
$$

In the expression for the composite turbul二殳t heat transfer cofficient, the laminar and turbulent contributions ase aumaented individually, so that en a rough wall,

$$
\begin{equation*}
\hat{\rho}_{e} u_{e} C_{H, T, R}=0.278 \frac{1 e^{e}}{\theta} R_{L} K_{L}+\frac{0.0128 \overline{\rho u_{e}}}{\overline{\operatorname{Re}}_{\theta} / 4}\left(R_{L} K_{L}(2-\lambda)+R_{T} K_{T}\right) \tag{2-43}
\end{equation*}
$$

Por the purpose of output a composite curbulent augmertation factor is defined as

$$
\begin{equation*}
T_{T ; C}=\frac{\rho_{E} u_{e} C_{H, T, R}}{\rho_{e} e_{e} C_{H, T}} \tag{2-44}
\end{equation*}
$$

2.2.4.3 Surface Roughness Modeling

Three types of surface roughness are modeled

- Intrinsic roughness, $\mathbf{k}_{\mathbf{i}}$
- Turbulent or scallop roughness, k_{t}
- Crater roughness, \mathbf{k}_{c}

Intrinsic roughness $\left(k_{i}\right)$ is that asscciated with the basic material granularity and is input as a constant for each material. The intrinsic roughness is used in the transition and laminar heating correlations, unless there are particle impacts as described below.

The turbulent roughness $\left(k_{t}\right)$ is the effective sand grain roughness that results from turbulent ablation and is used in the turbulent heating correlations. The roughness height, k_{L}, is specified in one of two ways. A uniform value of k_{t} for all turbulent regions may be input by the user: or a value may be obtained by using the scallop dimension correlation from Reference 17 . From the correlation, the effective turbulent region scallop depth is computed as follows:

$$
\begin{equation*}
k_{t}=K_{1} p_{e}^{-0 . .7} \tag{2-45}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{k}_{\mathbf{t}}= & \text { the effective sand grain roughness height suitable for use in } \\
& \text { Equation (2-41) } \\
\mathbf{K}_{1}= & \text { a material dependent property deternined from experimental data } \\
& \text { and input by the user (a nominal value for graphite is } \\
& K_{1}=0.93 \text { in-psia }{ }^{0.77} \text {). }
\end{aligned}
$$

$P_{e}=$ instantaneous iocal edge pressure
Crater roughness (k_{c}) results from the impact of hydrometer particles. Presently, the assumption of hemispherical craters is used in conjunction with the mass loss parameter, G, described in Section 2.4.2. Therefore, the crater depth is derived from

$$
\begin{equation*}
k_{c}=\left\{\frac{G \rho_{p}}{4 \rho_{m}}\right\}^{2 / 3} d_{p} \tag{2-46}
\end{equation*}
$$

where

$$
\begin{aligned}
& \rho_{\mathrm{P}}=\text { hydrometer particle density } \\
& \rho_{\mathrm{m}}=\text { surface material density } \\
& \mathrm{d}_{\mathrm{p}}=\text { hydrometer particle diameter } \\
& G=\ln _{e} / m_{i n}=\text { mass loss parameter } \\
& \mathbf{k}_{\mathrm{c}}=\text { crater depth }
\end{aligned}
$$

Since crater roughness (k_{c}) occurs over the entire body, the local roughness (either intrinsic $\left(k_{i}\right)$ or turbulent $\left(k_{T}\right)$) is compared to the crater roughenss $\left(k_{c}\right)$ and the larger is used.

2.2.5 Transitional Boundary Layer Heat Transfer

Transitional heating is computed using a modified version of the correlation of Reference 18. The correlation used is expressed as follows:

$$
\begin{equation*}
C_{H, T R A N S, R}=C_{H, T, R}-A_{T R} / R_{\theta}^{n} \tag{2-47}
\end{equation*}
$$

The values of $A_{T R}$ and n are computed differently aepending on the approach to fully turbulent heating; that is ior

$$
1 \geq \frac{C_{H, T, R}-C_{H, T R A N S, R}}{\left(C_{H, T, R}-C_{H, L, R}\right)_{T R}}>0.4
$$

then

$$
n=0.85
$$

and

$$
\begin{equation*}
A_{T R}=\left[\operatorname{Re}_{\theta}^{0.3}\left(C_{H, T, R}-C_{H, L, R}\right)\right]_{T R} \tag{2-48}
\end{equation*}
$$

where TR denotes the values at the point of transition. For

$$
0.4 \geq \frac{C_{H, T, R}-C_{H, T R A N S, R}}{\left(C_{H, T, R}-C_{H, L, R}\right)_{T R}}
$$

then

$$
n=2.0
$$

and

$$
\begin{equation*}
A_{T R}=\left[\operatorname{Re}_{\theta}^{2}\left(C_{H, T, R}-C_{H, T R A N S, R}\right)\right]_{0.4} \tag{2-49}
\end{equation*}
$$

Where the sinscript, 0.4 , denotes the point where $A_{T R}$ is reevaluated.
Since the boundary layer is transitional, the momentum thickness Reynolds number $\left(\operatorname{Re}_{\theta}\right)$ in Equations $(2-47)$ and (2-49) is computed by integrating the reduced form (i.e., $H=-1$) of the momentum integral equation, Equation (2-29), assuming unity Reynolds analogy factor and using the rough wall Stanton number ($C_{\text {H, TRANS }, R}$) from the previous boundary layer integration station, i.e..

$$
\begin{equation*}
R e_{\theta, i}=\frac{\left.\mu^{r R e_{\theta}}\right|_{i-1}+\left(\rho_{e}^{u} e^{r C_{H, T R A N S, R}}\right)_{i-1}\left(s_{i}-s_{i-1}\right)}{\left.\mu_{e} r\right|_{i}} \tag{2-50}
\end{equation*}
$$

It should be noted that use of rough wall Stanton numbers, $\mathrm{C}_{\mathrm{H}, \mathrm{L}, \mathrm{R}}$ and $C_{H, T, R}$ in the transitional heating correlation provides for a reasonable transformation from the laminar to the turbulent roughness effects models described in Section 2.2.4.

2.2.6 Hydrometer Boundary Layer Stirring Effects

Experiments indicate that in regions of laminar flow hydrometer particle impaction and subsequent erosion can cause significant augmentation to the undisturbed laminar heat transfer rate. An option is provided in the code to model this laminar stirring augmentation. The correlation is in terms of the ratio of the disturbed (stirred) heat transfer coefficient to the undisturbed coefficient. The correlation is of the form

$$
\begin{equation*}
C_{H_{S T I R R E D}}=c\left[\frac{v_{p}}{\rho_{\infty}}(1+G)\right]^{c} \sin ^{2} \theta \tag{2-51}
\end{equation*}
$$

where
$P_{P}=$ particle density
$\rho_{\infty}=$ freestream air density
$G=$ erosion mass loss parameter (described in Secticn 2.4.2)
$\theta=$ local body angle $\left(\theta=90^{\circ}\right.$ at the stagnation point)
The constants (C and c) are presumed to be a function of the surface material. Reference 19 indicates that graphite data are best correlated by
$C=0.098$
$c=0.317$

The implementation of the stirring augmentation logic is flagged by the JROUGH flag described in section 3.1.8. When the stirring augmentation correlation is employed the augmentation factor calculated from Equation (2-51) is compared with the factor calculated from Equation (2-40) and the larger is used.

2.3 IN-DEPTH CONDUCTION CALCULATIONS

This section briefly describes the numerical technique used to solve the heat conduction equation inside the nosetip and the coupi ing between the surface energy balance relations (Section 2.4) and the in-depth conduction solution. The details of the conduction package are described fully by Crowell (Reference 28). In this section only a brief review of the procedure is presented.

Section 2.3.1 describes the coordinate systems and governing equations. The finite-difference formulations of the differential equations and their solutions are explained in Section 2.3.2. The conduction time step control is discussed in Section 2.3.3.

2.3.1 Coordinate System, Governing Equations

The is-depth coordinate systems for shell and plug geometries are illustrated in Figure 2-6. For the shell geometry a body oriented coordinate system which is located on the internal contour is used (x, y, ϕ). For the plug, the geometry is split into two sections, separated by a fictitious boundary (shown as a dashed line in the figure). The location of the interface between the two seculons is chosen such that the geometry of section I is exactly that of the shell configuration. Thus, the coordinate system for region I is also body oriented and located on the fictitious boundary. The shape of the interface

Figure 2-6. Mosetip geometry.
is taken to be spherical for convenience. Cylinderical coordinates are used in region II (the shank portion of the plug).

In the body oriented coordinate system (region I) the heat conduction equation for temperature dependent properties and isotropic conductivities may be written as

$$
\begin{align*}
\rho_{m} C_{p} r_{b}(1+\Lambda Y) \frac{\partial T}{\partial t}=\frac{\partial}{\partial X}\left[\frac{k r_{b}}{1+\Lambda Y} \frac{\partial T}{\partial X}\right] & +\frac{\partial}{\partial Y}\left[k r_{b}(1+\Lambda Y) \frac{\partial T}{\partial Y}\right] \\
& +\frac{\partial}{\partial \phi}\left[\frac{k(1+\Lambda Y)}{r_{b}} \frac{\partial T}{\partial \phi}\right] \tag{2-52}
\end{align*}
$$

where Λ is the curvature of the internal contour or the fictitious interface.
For the cylinderical coordinates (region II) the conduction equation takes the following form

$$
\begin{equation*}
\rho_{m} C_{p} r_{b} \frac{\partial T}{\partial t}=\frac{\partial}{\partial r_{b}}\left(k r_{b} \frac{\partial T}{\partial r_{b}}\right)+\frac{\partial}{\partial z}\left(k r_{b} \frac{\partial T}{\partial z}\right)+\frac{\partial}{\partial \phi}\left(k \frac{1}{r_{b}} \frac{\partial T}{\partial \phi}\right) \tag{2-53}
\end{equation*}
$$

It should be noted that due to the axisymetric assumption, there is no "emperature variation in the -direction, although the conduction package is capable of handling full three-dimensional problems.

The boundary conditions on all surfaces consist of specified heat flux. For most nosetip problems ali the boundaries except the receding surface are insulated and these fluxes are zero. In case of the plug geometry the fictitious interface between regions I and $I I$ is not a boundary of specified flux or temperatuce. The temperature distribution along this boundary is computed by requiring that the temperature and heat flux in the regions I and II be identical at the interface. At the recedi:g surface the boundary condition is

$$
\begin{equation*}
-\left.k \frac{\partial T}{\partial n}\right|_{w}=q_{c o n d}\left(t, T_{w^{\prime}} \dot{s}\right) \tag{2-54}
\end{equation*}
$$

where n denotes the direction normal to the nosetip surface and the functional form of $g_{\text {cond }}$ is determined from the surface energy balance formulation (Section 2.4.1).

In order to solve the moving boundary conduction problem over a fixed domain, the surface movement is incorporated into the heat conduction equation through the use of the following transformations

Region I:

$$
n=\frac{y}{\Delta(t, x, \alpha)} \quad \tilde{x}=x \quad \tilde{\eta}=1 \quad \tilde{t}=t
$$

Region II:

$$
s=\frac{2}{\delta} \quad \tilde{\mathbf{r}}_{\mathrm{b}}=\boldsymbol{r} \quad \boldsymbol{\varnothing}=\varnothing \quad \boldsymbol{Z}=t
$$

The differential equations (2-52) and (2-53) and the boundary conditions (2-55) are transformed into the new coordinate system and then solved by a finite-difference technique. The description of this finite-difference procedure is given in the following section.

2.3.2 Finite-Difference Formulations

The finite-difference schsme which has been adopted is the DufortFrankel method that is an unconditionally stable explicit technique. This method uses a central time difference and therefore, requires storage at two time levels. The Dufort-Frankel method does not require the restrictive ime step iimitation of standard explicit technique ($\Delta t<\frac{\Delta x^{2}}{2 \alpha}$), but for consistency purposes it requires that Δt goes to zero faster than Δx.

Variable mesh spacing is used throughout. First order derivatives are written in second order central or one sided difference forms and for the second order terms the Dufort-Frankel form is usen. For the details of the finite-difference formulation the reader is referred to Reference 28.

When the equations are differenced, the left hand side will contain the temperature of a node ($j k l$) at the $n+1$ time level and the right hand side will contain the temperatures of the neighboring nodes at $n-1$ and n time levels and known geometric parameters. The difference equation is then solved for $\mathrm{T}_{\mathrm{jkl}}^{\mathrm{n}+1}$. In order to start the calculations both the $n-1$ and n time levels are set equal to the initial temperature distribution.

In region I, the domain over which the temperatures are obtained from the differential equations runs from $J=2$, JMAX-1 in the X-direction, $K=2$ to KMAX-1 in the Y-direction and $L=1$ to LMAX in the ϕ-direction. In region II, the temperatures are calculated from the differential equations for JP $=2$ to JPMAX-1, KP $=2$ to KPMAX-1 and $L=1$ to LMAX in X, z and -directions respectively. In the present axisymmetric code, the computations are only performed in the $L=1$ plane. The boundary temperatures are calculated from the finitedifference forms of the boundary conditions.

Following the calculations of the interior point temperatures from the difference equations, the centerline values ($X=0, J=1$ and $J P=1$) are obtained by back extrapolation from the known values of $J=2$ and $J=3$ nodes. For axisymmetric nosetips the following condition must be satisfied along the centerline:

$$
\begin{equation*}
\frac{\partial T}{\partial X}=0 \tag{2-55}
\end{equation*}
$$

These derivatives are written in one-sided for:vard difference forms and solved for centerlire temperatures including the stagnation point temperature.

The surface temperatures and recession rates are determined from simultaneous solution of the difference form of Equation (2-55) with the surface energy balance relations.

2.3.3 Time Step Control

The computational time steps are controlled by a comprehensive technique to achieve numerical stability, economy and output versatility. The core has, basically, two kinds of time steps: a conduction time step and an environment time step. The print time step is currently set equal to the environment time step.

2.3.3.1 Conduction Time Step

The time step of conduction calculations is tr minimum of the following values:

- Explicit finite-difference stability limit: $d^{2} / 4 \alpha$ where d is the minimum mesh size and α is the thermal diffusivity of the nosetip material. This is not =urrently in use because the Dufort-Frankel scheme is unconditionally stable.
- Surface temperature rise control: $\Delta t_{\text {old }}$ (STRD/STRM) where STRD is the input desired surface temperature rise in one time step, and STRM is the maximum surface temperature rise achieved during the previous time step.
- Surface heat flux rise control: $\Delta t_{o l d}\left(q_{o l d} / q_{n e w}\right) C r F$, where q is the maximum surface heat flux and CTF is the desired growth factor. A recomended expression for CTF in terms of the desired maximum surface temperature rise is the following:

$$
\begin{equation*}
C T F=1.5+(S T R D-140) / 300 \tag{2-56}
\end{equation*}
$$

- Surface recession control: $\delta / \dot{S}_{m a x}$, where $\dot{S}_{m a x}$ is the maximun value of surface recession rate and δ is the smallest distance between the first and second nodes in the Y-direction.

At the first conduction step when a majority of the above quantities cannot be calculated, the following time step is also used.

$$
\begin{equation*}
\left(\Delta t_{c}\right)_{\text {first step }}=\operatorname{STRD}\left(\frac{\rho_{m} C_{p}}{\dot{q}}\right) \frac{\delta}{2} \tag{2-57}
\end{equation*}
$$

2.3.4.2 Environment Time Step

The environment time step determines the frequency with which the inviscid and viscid solutions are to be updated and is equal to the user specified value in the absence of time step stability criteria. In the presence of stability criteria, the environment is redefined whenever either one or both of the following conditions are satisfied.

- If the local surface temperature changes by a factor greater than 1.4.
- If the tangent of the local body angle changes by a factor of two or more.

The reference condition for the above two tests is the last environment definition.

The computation time step, DTH, is the minimum of the conduction and the environment time steps. Furthermore, the computation is automatically terminated if the computed time step is less than the user specified minimum, DLTMIN.

2.4 SURFACE ABLATION RESPONSE CALCULATIONS

The formulation of the surface energy balance technique used to compute the surface ablation response is discussed in Section 2.4.1; modeling of erosion due to hydrometer impacts is described in Section 2.4.2; computer codes to provide the necessary input data are described in Section 2.4.3; and simplified means of the surface energy balance equation are presented in Section 2.4.4.

2.4.1 Surface Energy Balance Formulation

The ablation rate and surface temperature at points on the nosetip are determined by accounting for energy, mass, and species conservation at the ablating surface. The sketch below illustrates the ablating surface control

Sketch of Surface Energy Balance Control Volume and Energy Flux Tems
volume and the energy fluxes of interest. The surface energy balance equation employed is of the convective tranafer coefricient type. In the progran, this energy balance equation takes the following form:

(2-58)

Before commencing a term by term discussion of Equation (2-58), however, it will be useful to describe the general nature of this transfer coefficient expression. Iike all such expression, Equation (2-58) is an approximation, the usefulness of which depends mainly on the validity of the transfer coefficient approach. A discussion of this subject is far beyond the scope of the present document. It may be observed here that transfer coefficients have successfully correlated both data and "exact" solutions in simple heat or mass transfer problems, and in combined heat and mass transfer problems for unity (or near unity) Lewis number. Equation (2-58) attempts to extend the transfer coefficient approach to both nonunity Lewis number and unequal mass diffusion coefficient problems, still allowing for chemical reactions and net mass transfer effects. This approach was suggested in Reference 20. Its validity is discussed in References 21 and 22.

In Equation (2-58), the term $q_{\text {sen }}$ represents the "sensible convective heat flux." Physically, this is the convective heit flux which would occur fnr a frozen boundary layer and a noncatalytic wall in the absence of mass
transfer: * it excludes all cheaical energy contributions. The term $q_{\text {sen }}$ is perhaps more usually written in the form

$$
\begin{equation*}
q_{s e n}=\rho_{e} u_{e} C_{H}\left(H_{s_{r}}-h_{s_{w}}\right) \tag{2-59}
\end{equation*}
$$

but, since generally it is more convenient for the user to input H_{r} rather than $H_{s} \cdot q_{s e n}$ in Equation (2-58) has been written in a modified form in which H_{r} appears. This form has tine additional advantage that the driving force for energy transfer involves only edge gas states. The derivation of the modified form from Equation (2-58) is given in Reference 20 and Rererence 21.

The quantity $h_{e_{w}}$ in the $q_{s e n}$ term is part of the input thermochemical data discussed below. The transfer coefficient $\rho_{e} u_{e} C_{H}$ and the recovery enthalpy H_{r} are time dependent variables computed in the program for each analysis location. The transfer coefficient is automatically modified from the nonblown value to implicitly account for the effect of the computed ablation rates. The following relation is used:

$$
\begin{equation*}
\frac{C_{H}}{C_{H, O}}=\frac{\ln \left(1+2 \lambda B_{t C}^{\prime}\right)}{2 \lambda B_{t C}^{\prime}} \tag{2-60}
\end{equation*}
$$

where

$$
\begin{aligned}
B_{t c}^{\prime}= & i m p l i c i t l y ~ d e t e r m i n e d ~ n o r m a l i z e d ~ t h e r m o c h e m i c a l ~ a b l a t i o n ~ r a t e ~
\end{aligned}
$$

$\lambda=$ an input number discussed below
$\frac{\mathrm{C}_{\mathrm{H}}}{\mathrm{C}_{\mathrm{H}, \mathrm{O}}}=$ ratio of blown to nonblown Stanton number
Specified values of λ allow the user to fit blowing correction curves of $C_{H} / C_{H, O}$ versus $B_{t c}^{\prime}$ to account for special effects in the few cases where these are known with confidence, such as molecular weight effects or variable property effects. In view of the uncertainties, it is generally recommended that $\lambda=0.5$ be used for laminar flow. A value $\lambda=0.4$ appears to correlate constant properties for turbulent data somewhat better. For graphite in air, studies have indicated that a value of 0.7 for both laminar and turbulent flow is most appropriate.

[^0]The term $q_{c o n d}$ in Equation (2-58) is obtained from the in-depth conduction analysis as a function of T_{W} and \dot{S} (Equation (2-54)).

The term $q_{\text {chem }}$ in Equation (2-58) represents the net anount of chemical energy fluxes at the surface. The z^{*}-difference term represents transport of cnemical energy associated with chemical reactions at the wall and in the boundary layer, it is the cisemical energy parallel to the sensible convective heat flux term. The z^{*} driving forces for diffusive mass transfer include the effects of unequal diffusion coiefficients; for equal diffusion coefficients the $z^{* \prime}$'s reduce to the familiar mass fractions K_{i}. The $B_{t c}^{\prime} h_{w}$ term represents energy leaving the surface in the gross motion (blowing) of the gas adjacent to the surface. The mass transfer coefficient ($\rho_{e} u_{e} C_{M}$) is obtained from the blown heat coefficient ($p_{e} u_{e} C_{H}$) using a user specified factor, C_{M} / C_{H}. Remaining quantities
 Explicitly but is necessary to :luate the temperature dependent values of various quantities. The quantities $T_{w}, \sum z_{i w}^{*} h_{i} T_{w}$, ard h_{w} are input by the user as the dependent variables in a table with three inaependent variables: p, $p_{e}{ }_{e} C_{M}$, and $B_{t c}^{\prime}$ (if no chemical kinetic effects are considered only two independent variables p and $B_{t c}^{\prime}$ are required).

Similarly, the quantities $\sum z_{i e^{*}}^{h_{i}}{ }_{w}$ and $h_{e_{W}}$ are input as the dependent variables in a table with p and T ar independent variables. These tables are typically generated by the therachemistry codes described below. Further discussion of these tables is given in Section 3.1.9.

Notice tinat the erosion mass loss rate (\dot{m}_{e}) does not appear in Equation (2-58). This is because the eroded material is assumed to leave the surface with the enthalpy of the solid (h_{c}) and, hence, cancels with the net incoming mass rate (\dot{m}) to give

$$
\begin{equation*}
\dot{m}_{c}-\dot{m}_{e} h_{c}=\dot{m}_{t c} h_{c} \tag{2-61}
\end{equation*}
$$

where $\dot{m}_{t c}$ is only the thermochemical portion of the total mass rate (\dot{m}). The total mass rate (\dot{m}) (and hence \dot{m}_{e}) is required, however, in the conduction equation (Equation (2-56)) to compute the net recession rate (\dot{S}). The calculation of the erosion mass loss rate (\dot{m}_{e}) is described in Section 2.1.2.

The surface energy balance solution procedure may be sumarized as follows:

1. Obtain $H_{r}, \rho_{e} u_{e} C_{k, O}$, and p from enviroment definition routines.
2. Reduce the in-depth conduction matrix to calculate the constants in the equation for $q_{\text {cond }}$ (Equation (2-54)).
3. Calculate erosion mass loss rate (\dot{m}_{e})
4. Correct or adjust $\rho_{e} e_{e} c_{H, O}$ for blowing effects
5. Compute $\rho_{e} u_{e} C_{M}=\left(C_{M} / C_{H}\right)\left(\rho_{e} u_{e} C_{H}\right)$
6. Assume $B_{t c}^{\prime}$
7. With $p, \rho_{e} e^{C_{M}}$, and $B_{t c}^{\prime}$, look up in input surface thermochemistry tables values of $T_{w}, \sum z_{i w}^{*} h_{i}^{T} w^{\prime} . h_{w}$
8. With p and T_{w}, look up in input edge gas themochemistry table values of $\sum z_{i e}^{*}{ }^{h_{i}{ }^{T} w}, h_{e_{W}}$
9. Construct Equation (2-53; , noting departure from zero, if any
10. Adjust $B_{\text {tc }}^{\prime}$ quess to reduce departure from zero (Newton-Raphson correction)
11. Go to Step 4 and continue

This procedure converges on a new $B_{t c}^{\prime}$ value in very few iterations. The same procedure may be used with T_{w} as the independent variable and $B_{t c}$ as a dependent variable.

2.4.2 Erosion Modeling

Surface erosion due to hydrometer particle impacts is modeled by two different types of correlations depending on the surface material. For graphite type brittle materials the erosion mass loss corcelation is of the form

$$
\begin{equation*}
\frac{\dot{m}_{e}}{\dot{m}_{i n}}=G=A_{1} u_{\infty}^{b_{m}}{ }_{p}^{c} \sin \theta^{d} \tag{2-62}
\end{equation*}
$$

where

$$
\begin{aligned}
\dot{m}_{e}= & \text { erosion mass loss flux } \\
\dot{m}_{i n}= & \rho_{c} u_{\infty} s i n \theta=\text { incoming particle mass flux } \\
\rho_{c}= & \text { mass of particles per unit volume of air } \\
u_{\infty} & =\text { vehicle velocity } \\
\mathfrak{m}_{p}= & \pi d_{p}^{3} \rho_{p} / G=\text { injividual particle mass } \\
d_{p}= & \text { particle diameter } \\
\theta= & \text { local body angle relative to the axis }\left(\theta=90^{\circ}\right. \text { ac the stagnation } \\
& \text { point })
\end{aligned}
$$

The corstants (A_{1}, b, c and d) in Equition (2-62) are decermined by correlation of ground test data for each given material. Por materials which char (i.e., carbon phenolic) a different set of constants is required for the charred and virgin plastic materials. The two erosion rates predicted for a fu!ly charred and virgin surfact are "briliged" together based on the relative rates of surface erosion and in-depth char generation. Additionally the body ancle (θ) dependence in Equation (2-62) does not fully collapse all carbon phenolic data and, hence, low and high angle erosion correlation constants are required as well as a "bridging" function. Currently specific erozion correlation constants and bridging functions dre built into the code fer carbon phenolic. Reference 19 discusses the details of this modeling and Reference 23 covers the graphite erosion models. The input section (Section 3.1) describes how these specific correlations may be evoked.

For malleable type metal materiale the erosion mass loss correlation is of the form

$$
\begin{equation*}
\frac{\dot{m}_{e}}{\dot{\dot{m}}_{\dot{L}}}=G=\frac{u_{\infty}^{2}}{\bar{C}_{N}} \tag{2-63}
\end{equation*}
$$

where

$$
\mathrm{C}_{\mathrm{N}}=\text { damage coefficient }
$$

The damage coefficient $\left(C_{N}\right)$ is determined from experiment and is primarily a function of surface temperature $\left(T_{w}\right)$. Typically the damage coefficient decreases as the surface temperature approaches the melt tempezature. Built-in values of C_{N} versus T_{w} are available for tungsten. Reference 19 gives the details of the tungsten correlation and the input section tells how it may be evoked.

The input required for erosion calculations is the cloud profile, which is a table of:

- Mass concentration ($\rho_{\mathbf{c}}$)
- Particle diameter (d_{p})
- Particle specific gravity (γ_{s})
versus altitude.

2.4.3 Use of Thermochemistry Codes to Generate Input Data

Section 2.4.1 above makes it clear that some complex tabular thermochemical input is required if the surface energy balance boundary condition is to be used. These tables are generated by any one of a number of separate computer codes. The most recent such code is designated General Nonequilibrium

Ablation Thermochemistry Code (GNAT). It is a general open and closed system thermochemical nonequilibrium code spesifically constructed for this purpose (Reference 24). Other Aerotherm themocheristry codes which treat only equilibrium thermochemistry are in existence. The most recent c. these is the Equilibrium Surface Thermochemistry Code, Version 3 (EST3), which is described in Reference 25. A generally similar code which differs from EST3 only in added detail is designated $A C E$ and is described in Reference 26. An older versior of EST3 was designated EST2 and is described in Reference 27. To obtain the necessary data tables for input, the user selects sets of values for the pressure (p), transfer coefficient ($\rho_{e} u_{e} C_{M}$), and nondinensional thermochemical ablation rate ($\mathrm{B}_{\mathrm{tc}}^{\prime}$). (Note, if chemical kinetics are not considered the only parameters required are pressure (p) and ablation rate ($B_{t c}^{\prime}$).)

The user specifies the elemental composition of the environment gas and the ablating material, and supplies some general species thermochemical data for all molecules to be considered in the system. Finally, the user specifies the unequal diffusion coefficients if they are important. The thermochemistry code then computes all the dependent quantities of interest at each table point in the $p \times B_{t c}^{\prime}$ matrix of independent variable vaiues, namely, $T_{w}, \sum z_{j}^{*} h_{i} T_{w}$, and h_{w}; and punches this information on cards. Similarly, the tables of $\sum^{i} z_{i e^{*}} h_{i}^{T}$ and $h_{e_{w}}$ values are prepared as functions of p and T, and punched out on cards. All these cards form part of the Table 09 card input deck (see Section 3.1.9).

2.4.4 Simpler Forms of the Surface Energy Balance Equation

As noted in Section 2.5 .2 above, for equal diffusion coefficients the z_{i}^{*} driving forces reduce to the simple mass fractions K_{i}. If in addition to equal diffusion the user specifies that $\rho_{e} u_{e} C_{M}=\rho_{e} u_{e} C_{H^{\prime}}$ then sirse $\sum K_{i e} h_{i} T_{W}=h_{e_{W}}$ and $\sum k_{i w} h_{i}=h_{w}$ by definition, Equation (2-58) simplifies to the more familiar form

$$
\begin{equation*}
\rho_{e} u_{e} c_{H}\left(H_{r}-\left(1+B_{t c}^{\prime}\right) h_{w}\right)+\dot{m}_{t c}{ }_{c}-q_{c o n d}+a_{w} q_{r a d}-F \sigma \in T_{w}^{4}=0 \tag{2-64}
\end{equation*}
$$

In this expression $h_{e_{w}}$ and $\sum z_{i}^{*} e^{h_{i}}{ }^{T}$ do not appear, hence the corresponding table is not necessary and need not be inciuded in the input (see Section 3.1.9 below).

A steady state ablation option is also available. If this option is specified the $q_{\text {cond }}$ term in Equation (2-58) is calculated by taking an energy balance on a control volume extending from below the ablating surface down to the thermally unaffected material (see the following sketch).

Sketch of Control Volume Around Thermally Effected Material

Energy conservation on the above control volume gives

$$
\begin{equation*}
\dot{m}_{c}-q_{c o n d}=\dot{m}_{c}^{T}-\frac{d E}{d t} \tag{2-65}
\end{equation*}
$$

where

$$
\begin{aligned}
{ }^{T_{i}}= & \text { the enthalpy of the thermally uneffected material before } \\
& \text { exposure (} T_{i} \text { is assumed to be } 530^{\circ} R \text {) } \\
\frac{d E}{d t}= & \text { rate of energy storage in control volume }
\end{aligned}
$$

The steady state assumption implies that $d E / d t$ is zero and corresponds to the physical situation when the temperature profile relative to the moving surface is invzriant with time. The assumption is accurate for low conductivity ablators and for high ablation rate situations. By considering $d E / d t=0, q_{\text {cond }}$ may_ be calculated from Equation (2-65) as

$$
\begin{equation*}
q_{c o n d}=\dot{m}\left(h_{c}-h_{c} T_{i}\right) \tag{2-66}
\end{equation*}
$$

Notice that for the steady state assumption, $q_{\text {cond }}$ is incependent of material thermal properties and response history.

2.5 SURFACE POINT MOVEMENT AND SURFACE SMOOT:YR!.

The surface energy balance determines the recession rate normal to the surface at each body calculati... puint. Based on the time step size (Δt) these points are then moved the $: 1$ - esforsing distance to define new body points at the end of the time stpr. ": : fov jody poirts are then used to define new surface inclination angic: h. ha body points. In a typical nczetip shape change problem the size of important geometric features in the stagnation region decreases in turbulent flow, and eventually becomes smaller than can be efficiently modeled with typical body point spacing. When a numerically limited nose radius is reached logic is applied to define an apparent nose radius.

The numerics of shape change are described in the following sections. The shape change geometry for body point movement 15 described in Section 2.5.1; surface angle definition techniques are presented in section 2.5.2; and the apparent nose logic is discussed in Section 2.5.3.

2.5.1 Shape Change Geometry

With reference to Figure 2-6, the location and shape of the surface is completely defined by $\Delta(x, \phi, t)$. The rate of change of Δ with time can be related to the surface normal recession rate, \dot{S} by the following equation:

$$
\begin{equation*}
\frac{\partial \Delta}{\partial t}=-\dot{S}\left[1+\left(\frac{\partial \Delta / \partial X}{1+\Lambda \Delta}\right)^{2}+\left(\frac{\partial \Delta / \partial \phi}{R+\Delta \cos \beta}\right)^{2}\right]^{1 / 2} \tag{2-67}
\end{equation*}
$$

where Λ, R and β are the geometric parameters of the internal contol r defined, respectively, as: curvature, radial distance from the nosetip axis end angle of inclination with respect to the nosetip axis.

The Equation (2-67) is written in an explicit finite-difference form and solved for the values of Δ at the $n+1$ time step. Along the centerline where $R=0$. Equation (2-67) is not applied and the condition $\partial \Delta / \partial X=0$ is used to determine the new position of the stagnation point.

In the steady state conduction option the body points are moved along lines of constant radius as indicated by the sketch below.

The relation for the amount of axial movement is

$$
\begin{equation*}
\Delta z=\frac{\dot{S}_{\text {normal }} \Delta t}{\sin \theta} \tag{2-68}
\end{equation*}
$$

When using the steady state energy balance, conduction considerations do not limit time step size; hence, the only consideration limiting time step size is shape change. In other words, the calculated recession rate distribution cannot be applied over such a time span that the body shape (and, hence, recession rate distribution) changes in a drastic manner. The criteria applied is that the tangent of the local body angle may not change by more than a factor of two.

2.5.2 Surface Angle Definition

Numerical shape change calculation techniques are strongly sensitive to the method used to define the local surface angie since this angle strongly influences the surface pressure, heat transfer, ablation, and erosion calculations. Circular curve fits and straight line interpolation techniques are avai2eble.

The circular curve-fit method involves basically fitting a circular arc through the point of interest and the points on either side (i.e., three points define a circle). The body angle is then defined as the tangent to the circle at that point. Exceptions are taken to this definition if the radius of curvature is negative in order to avoid unrealistic concave shapes.

2.5.3 Apparent Nose Model

As shape change proceeds on nosetips for which transition is near the nose, the stagnation point radius of curvature becames too small to model with the typical body point spacing. The code has internal logic to determine when this numerically limited nose radius is reached, and at that time an effective spherical nose radius is computed. This specification controls only the detail at the stagnation point and does not limit or redefine the overall shape of the nosetip.

The apparent nose radius logic used with the circular curve fits involves basically fitting a tangent sphere into the "cone" formed by the second and third body points, and is primarily based on geometrical considerations.

Neither of the apparent nose radius or body angle definition techniques described above is completely successful in predicting all observed nosetip shape change regimes. Hence, both must still be considered to be in the developmental stage.

SECTION 3
 deSCRIPTICNS OF INPUT AND OUTPUT

This section provides detailed user oriented instructions for code input and a description of the output. The input instructions are described in Section 3.1 and output features are covered in Section 3.2.

3.1 INPUT INSTRUCTIONS

The input to the code can be read either from data cards for an initial run or from magnetic tape or disk for a restart run. The details of the input for each of these types of runs are described below. The basic input for an initial run ronsists of:

- One restart information card.
- Three title cards.
- Nine input tables.

Not all nine of the input tables are required for every run. Each table is prec̣eded by a single card containing the identifying table number.

For a restart run only the single restart information card is required, the rest of the information is read from magnetic tape or disk.

The following sections describe the restart information, title cards, and nine input tables, respectively.

3.1.1 Restart Information

The "restart" card is the first card in the data deck. If the run is a restart it is the only card required, and tells the code the iteration from which to begin restart. For an initial run the restart card tells the code how often to write restart files. All restart reading and/or writing is done on Logical Unit 11 and it should be assigned accordingly. The restart card format. is as follows:

$\begin{aligned} & \text { Card } \\ & \text { No. } \\ & \hline \end{aligned}$	Columns	Format	Data	Units
1	1-3	13	ISKI? - number of environmental calls between restart file writes.	--
	4-6	13	IRESRT - restart flag	--
			0 - first run no restart	
			>0 - transient restart - read the IRESRTth set of data on Unit 11 to start the run. No other input is required	
			<0 - steady state restart	

Note that if both ISKIP and IRESRT are equal to zero no data will be read or written on Unit 11 and it need not be assigned.

3.2.2 Title and Heading Information

The second set of input data are three title cards. They are used to transmit title and heading information to the output. The first 72 columns of each of these cards may be used for the title, the alphameric information in columns 61 through 72 of the third card being used as a page heading on all pages after the first.

3.1.3 Table 01 - Genirral Program Constants

These cards supply the code with computation tume information and program Elage whin $_{\text {in }}$ indicate options to be subsequently read.

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Colunms	Yarmat	Datia	Units
1	1-2	12	Table No.	--
2	I-12	E12.5	Initial value of probler time	sec
	13-24	E12.5	Final vaiue of p:oblem time	sec
	25-36	E12.5	First output time increment. This interval represents the time increment for output. Provision for changing this time increment within a run is providec. by the NTIC flag described below.	
	37-48	E12.5	DLTMIN - time step staiviiity flag <0 - sn stability $=0$ - set to 10^{-5} sec >0 - stability criteria used	sec

Table 01 (continued)
Card
No.

3

$$
1-3
$$

4-6
I3
Format E12.5 E12.5

Columans	Format
49-60	E12.5
61-72	
$1-3$	13

I3
-

Data
Units
CTF - defined by Equation (2-56).
If CTF is less than 1.2 or greater than 1.7 it is set to 1.3 .

STRD - maximuni desired surface temperature rise in one conduction time $\quad{ }^{\circ} R$ gtep. If STRD is less than 49 or greater than 201 it is set to $75^{\circ} \mathrm{R}$. STRD is not required for the steady state option.

TC = Flag denoting type of transi- -tion criterion to be subsequently input in Table 04. TC <0 denotes transitional heating is used in the surface energy balance and TC >0 denotes abrupt transition is used.

ABS (TC)
0 - all laminar flow (Table 04 is not needed)

1 - momentum thickness Reynolds No. vs. edge Mach No.
2 - run length Reynolds No. vs. edge Mach No.

3 - axial distance vs. altitude
4 - rough wall transition based on
$\operatorname{Re}_{k}\left(\frac{\mathbf{s}}{\delta^{*}}\right)^{1 / 3}=\left\{\begin{array}{l}2300, \text { onset } \\ 2000, \text { location }\end{array}\right.$
(Table 04 is not needed)
5 - rough wall transition based on
$\operatorname{Re}_{\theta}\left[\frac{1}{\left(\frac{B^{\prime}}{10}+1+\frac{B^{\prime}}{4} \frac{\rho_{e}}{\rho_{w}}\right)^{\frac{k}{\theta}}}\right]^{0.7}= \begin{cases}255, & \text { onset } \\ 215, & \text { location }\end{cases}$
(Table 04 is not needed)
6 - fully turbulent flow (Table 04 is not needed

ENV - flag denoting environment option to be subsequently read in Table 02

1 - flight option
2 - wind tunnei

Table 01 (continued)
Card
No.

Columns	Format	Data	Units
		3 - ballistic range 4 - general 5 - arc heater	
7-9	I3	CF - flag controlling curve fit and apparent nose option	--
		0 - circular curve fits and no apparent nose logic	
		```2 - circular curve fits and appar- ent nose```	
10-12	13	SO - special output flag	--
		0 - boundary layer solution only (no ablation or shape change).	
		1 - general problem with ablation and shape change. Shape profiles written on file 15	
13-15	13	NTIC - number of time interval changes (not number of time intervals)   NTICmax $=10$. A non-zero entry in this colum causes sets of time interval changes to be read from the next card.	--
16-18	13	ISS - conduction option flag	--
		0 - transient conduction option. Sphere-cone initial geometr: with geometric orogression distributions of surtace and in-depth grids.	
		1 - steady state conduction option. Initial geometry and surface point distributions same as abcve.	
		2 - steady state conduction option. General initial geometry and surface points distribution. The details of this input are descxibed in Section 3.1.5.	
19-21	13	IPRNT - flag which determines the amount of environmental output at print times. Six output tables are available and the contents of each is described in Section 3.2.2.1. IPRNT $<0$ denotes output for each integration point and IPRNT $>0$ denotes output for body points only.	--

Table 01 (concluded)
Card


4 This card supplies information for changes in the output time interval and is read only if NTIC > 0 .


### 3.1.4 Table 02-Environment Table

The basic environment information required by the code is the freestream state (pressure and density) and vehicle/gas relative velocity. Given this

Table 02 (continued)
information the code performs real oas calculations for air to find the stagnation conditions. To aid the user in performing calculations for various common flight and ground test facility environments, five environment input options are provided. They are:

1. Flight environment - input altitude and velocity as a function of time; free stream conditions a: found from a built-in ARDC standard atmosphere table.
2. Wind tunnel environuent - input supply pressure and temperature as a function of time as well as free stream Mach No. and ratio of specific heats ( $\gamma$ ); free stream conditions are found based on assumed air isentropic expansion at constant $\gamma$.
3. Ballistic range environment - input projectile velocity and range pressure as a function of time; air assumed to be at $75^{\circ} \mathrm{F}$ to obtain free stream density.
4. General environment - input free stream pressure, density, and velocity as a function of time.
5. Arc heater environment - input consists of a quantitative description of the arc heater flow field and of the start-up transient which the model experiences when injected into this flow field.

For the flight, wind tunnel, ballistic range, and general envi ronment options, Table 02 is basically a time table of envirc:ment conditions. For the arc heater option the environmert is more complex and in this case table 02 provides input of both th? spacial and texporal variation of environment.

There are a ma:imum of 50 entries in this tahle; at least two entries are required.


Table 02 (continued)
3.1.4.2 Input for Wind Tunnel Option, ENV $=2$

Card No.	Columra	Pormat	Data	Units
1	1-2	I2	Table No. 02	--
2	1-2	I2	Must be blank	--
	3-14	E12.8	Time	sec
	15-26	E12.8	Supply pressure	psia
	27-38	E12.8	Supply temperature	${ }^{-} \mathrm{F}$
	39-50	E12.8	Froe stream ratio of specific heats (Card No. 2 only)	--
	51-62	E12.8	Free stream Mach No. (Card No. 2 only)	--
3	1-2	12	Must be blank	--
	3-14	E12.8	Time	sec
	15-26	E12.8	Supply pressure	psia
-	27-38	El2.8	Supply temperature	${ }^{\circ} \mathrm{F}$

(etc) Same as Card No. 3 for increasing time.



Table 02 (continued)

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	CoIumns	Format	Data	Units
	3-14	E12.8	Time	sec
	1526	E12.8	Free stream static pressure	atm
	27-38	E12.8	Free stream static density	1b/ft ${ }^{3}$
	39-50	E12.8	Free stream velocity	$\mathrm{ft} / \mathrm{sec}$
	51-62	E12. 8	Ratio of specific heats (Card No. 2 only)	--
3	1-2	I2	Must be blank	--
	3-14	E12. 8	Time	sec
	15-26	E12.8	Free stream static pressure	atm
	27-38	E12.8	Free stream static density	1b/ft ${ }^{3}$
	39-50	E12. 8	Free stream velocity	fr/sec

(etc) Same as Card No. 3 for increasing time, maximum of 50 entries.

### 3.1.4.5 Input for Arc Heater Environment

The free stream environwent produced by an arc plasma generator, such as the AFFDL 50 MN RENT facility, has characteristics distinctly different from the environment options described above (ENV = 1-4). In general, the pressure level is constant with time but varies with distance from the nozzle exit because of nonparallel flow streamlines. Input consists of one cara containing the steady operating conditions (including model location) and a table of normal shock total pressure ratio as a function of distance from the nozzle exit.

An option also exists for specifying a free stream pressure variation during a start-up transient. The ratio of instantaneous total free stream pressure to the steady value for two or more times are input. The option is flagged by reading in a nonzero entry for the length of the start-up transient (DTIME) which is read from the second card. The values of total pressure ratio versus time are input using the same read statement which specifies the spacial variation of pressure ratio, by adding 100 to each of the times. Agair. a maximum of 50 entries is allowed.

## Table 02 (concluded)

Card No.	Columns	Format	Data	Units
1	1-2	I2	Table No. 02	--
2	1-2	I2	Must be blank	--
	3-14	E12.8	Ptosteady, total free stream pressure	atm
	15-26	E12.8	$H_{0}$, total enthalpy	Btu/1b
	27-38	E12.8	$X_{0}$, axial distance from nozzle exit plane to stagnation point (assumes model advance with recession)	in.
	39-50	E12.8	$\mathrm{K}_{1}$, multirlying constant in the Fay Riddell stagnation point heating relation (if $K_{1}=0$, it is set to i.0)	--
	51-62	E12. 8	DIIME - Duration of start-up transient	sec
	63-74	E12.8	```Y, specific heat ratio (if }\gamma=0\mathrm{ , it is set to 1.2)```	--
3.	1-2	12	Must be blank	--
	3-14	E12. 8	X, distance from nozzle exit plane	in.
	15-26	E12. 8	$\mathrm{P}_{\mathrm{t}_{2}} / \mathrm{P}_{\text {os }_{\text {steady }}}$, pressure ratio	--

4 Same as Card No. 3 for increasing $X$ values.
(etc)

n	1-2	I2	Must be blank	$\cdots$
	- 3-14	E12. 8	Time + 100	sec
	15-26	E12. 8		--

$n+1 \quad$ Same as Card No. $n$ for increasing time, maximum of 50 entries including Cará No. 3. There must be at least two x-values and two time values when this option is used. Time variant environment logic is not debugged.
3.1.5 Table 03-Geometxy

In the first part of this section initial geometry and in-depth grid ar: described and in the second part the input format of Table 03 is explained.

### 3.1.5.1 Initiai Seometry

The initial body geometry is input as a table of ccordinates for several points on the body. This input is different for steady state and transient conduction options. The differences are described below.

1. Transiel.t conduction option - a sphere cone initial geometry and geometric progression distribution of body points are assumed. Input sphere radius, cone half angle, number of body points and the comon ratio of the gecmetric progression. The initial geometry may be of a shell or plug category. For a shell, the internal contour is assumed to be a sphere cone whose sphere radius and cone half angle are input. For a plug, the shark geometry is anput. The conduction option flag in this case is ISS $=0$. The details of these inputs are described in Section 3.1.5.4.
2. Steady state option - under this option, three types of input are possible for initial geometry and surface point distributions:

- Sphere cone geometry and geometric progression distribution $r, f$ surface points. This input is the same as the transient option input. The conduction option flag in this case is ISS $=1$.
- Sphere cone geometry with uniform surface point distribution. Input sphere radius, cone half angle, axial length and number of body points desired on sphere and cone.
- General body - input a table of up to 30 body coordinates ( $x, 2$ ). The conduction option flag in the above two cases is ISS $=2$.


### 3.1.5.2 In-Depth Crid

The input of the in-depth grid applies only to the transient conduction option of the code. The in-depth grid system is shown on Figure 2-6. Since the code is presently limited to axisymetric geometries, we will only consider the grid distributions in the $X$ - and $\eta$-directions.* Geometric progression distributions of grids in both $X$ - and $n$-directions axe assumnd. Therefore it is only required to input the number of the grid points and the common ratios in $x$ - and $\eta$-directicns.

### 3.1.5.3 Surface Temperature

The code assigns one input value of surface temperature to all body points for all input options exrept the general body. If no surface temperature is specified, a default of $530^{\circ} \mathrm{R}$ is utilized. For the general shape option a surface temperature distribution can be input.

[^1]Table 03 (continued)

Card No.	Columns	Format	Data	Units
1	1-2	I2	Table No. 03	--
Read The Follcwing Cards Only if ISS $=0$ or 1. If ISS $=2$ go to page 3-14.				
2	1-4	4A	PS - = "PLUG" or "SHEL", specifying the nosetip geometry	--
	9-13	4A	SB - ignored if PS = "PLUG", must be "SOLI" if a solid body is desired. The solid bocy is a shell with no internal contour.	
3	1-5	I5	ABIATE - integer variable defining surface movement.   $=0$ surface movement is specified in subroutine TRANS   $=1$ surface movement is calculatea in subroutine ABLB	--
	6-10	15	MOVE - integer variable defining surface movement   $=0$ no surface movement   $=1$ allow surface movement   If ABLATE $=1$, MOVE must $=1$	--
	11-15	15	```KAPFLG - has meaning for shell geometry only =1 zero curvature of the inter- nal contour and BETA = \pi/2, ZJ = XJ, 2B = 0 and KAPPA = 0 =0 finite curvature of the internal contour```	$\cdots$
	16-20	15	IPHI .- flag for extrapolation in ф-planes. Applies only to threedimensional in-depth computations.   $=0$ all back extrapolations to be done for half the $\phi$-planes; the other half are defined symmetrically   $=1$ the back extrapolation to be done for $\mathrm{L}=1$ only; the other planes are set to the $\mathrm{L}=1$ values	--

Table 03 (continued)


Table 03 (continued)

Card No.	Columns	Format	Data	Units
7	31-40	F10.0	BSUBB - square of the ratio of the major to minor axis of an ellipse. Enter a value of 1 for spherical contour.	--
	1-10	F10.0	T2FLG - flag for X-variation	--
			$\begin{aligned} & =1 \quad \begin{array}{l} \text { no } X \text {-variation, TERM2 and } \\ \text { T2 are internally set to } 0 \end{array} \\ & =0 \quad \begin{array}{l} \text { allow X-variation } \end{array} \end{aligned}$	
	11-20	F10.0	T7FLG - flag for -variation	--
			$\begin{array}{ll} =1 & \text { no } \phi \text {-variation, TERM7 and } \\ \text { T2 are internaliy set to } 0 \end{array}$	
			$=0$ allow ¢-variation	
			In the present code enter a value of 1 for this flag.	
Cards 8, 9 and 10 Are To Be Input For The Plug Geometxy Only				
8	1-10	F10.0	GAMMA - angle from the horizontal that defines the inclination of the pluy shank	deg
	11-20	F10.0	RLEN - radius of the plug shank ( $r_{1}$ )	$f t$
	21-30	F10.0	2LEN - length of the p? ug shank ( $\mathrm{z}_{1}$ )	ft
9	1-5	15	KPMAX - number of 2 steps +1	--
10	1-10	F10.0	T22FLG - flag for $\phi$-variation in the shank	--
			$=1$ no ф-variation; $T 22$ is set equal to zero	
			$=0$ allow $\phi$-variation	
11	1-10	F10.0	$\frac{\text { TINITL - initial temperature of the }}{\text { body }}$	${ }^{\circ} \mathrm{K}$
Geometric Parameters Relative To The External Contoux				
12	1-10	F10.0	RN2 - nose radius	ft
	11-20	F10.0	THETA2 - cone half angle	deg
	21-30	F10.0	2L - nosetip overhang for SHEL; total axial length for PLUG or SOLID (see Figure 2-6)	$f t$
13	1-5	15	NNMAT - material index assigned to all surface and in-depth grid points	--

Table 03 (concluded)

Card No.	Columns	Format	Data	Units
Read The Following Cards Only if ISS $=2$				
2	1-5	15	NS - number of points on the body surface (maximum 30 points)	--
			$>0$ sphere-ccne geometry   \& 0 general shape	
	6-10	I5	NPN - number of points on the nose; applicable only to sphere-cone option ( $\mathrm{NS}>0$ )	--
	11-20	F10.5	RSTAGI - initial nose radius	ft
	21-30	F10.5	ZMAX - maximum axial length (sphere-cone option only)	ft
	31-40	F10.5	ANGLI - initial cone half angle (sphere-cone option only)	deg
	41-50	F10. 5	TS - initial body temperatures   If entered zero, it is set to $530^{\circ} \mathrm{R}$	${ }^{0} \mathbf{R}$
General Shape Option Only - (read only if NS 50 )				
3	1-2	12	NC - flag to read the coordinates of the body points	--
			$=0$ keep reading   $\neq 0$ stop reading. This indicates that the card is the last of its kind.	
	3-14	E12.8	ZSP - body point axial length measured from the stagnation point	ft
	15-26	E12. 8	RSP - body point radial length	ft
	27-38	E12.8	ATS - body point temperature. If entered zero, it will be set to TS	${ }^{\bullet} \mathrm{R}$
	39-40	12	IMAT - body point material index	--
$\stackrel{4}{(e t c)}$	Same as Card No. 3 for the rest of the body points.			

### 3.1.6 Table 04 - Transition Criteria

This table comunicates criterion for specifying when boundary layer transition occurs. Of the six transition criteria available three require tabular information which is transmitted through this table; they are momentum thickness Reynolds No. ( $\operatorname{Re}_{\theta}$ ) vs local Mach No. ( $\mathrm{M}_{\mathrm{e}}$ ). run length Reynolds No. ( $\mathrm{Re}_{\mathbf{s}}$ ) vs local Mach No. ( $\mathrm{M}_{\mathrm{e}}$ ) and axial transition location vs altitude. The TC flag read with the general constants denotes which criterion applies. This table must contain at least two, but no more than 30 entries.


Table 04 (concluded)

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Columis	Format	Data	Units
	3-14	E12. 8	Altitude	$f t$
	15-26	E12. 8	Axial transition location	in.
${ }_{\text {etc) }}^{3}$	Same as	No. 2	increasing altitude.	

### 3.1.7 Table 05 - Weather Conditions

This table inputs the hydrometer environmentai conditions for use in performing erosion calculations. The input consists of certain erosion calculation flags and a cloud altitude profile. This table is not required for clear air calculations.

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Columns	Format	Data	Units
1	1-2	I2	Table No. 05	--
2	1-5	I5	NCL - number of cloud entries. If $\overline{\text { NCL }}<0$, altitudes are in meters	
	6-15	E10. 2	Maximum altitude of cloud	ft or $m$
	16-25	E10. 2	Minimum alaitude of cloud	ft or m
	38-39	12	NOSLO - particle shock layer slowdown flag	--
			0 - no slowdown	
	.		1 - particles are slowed down as they impinge on the shock wave	
			2 - particle mechanical breakup model employed	
	40-41	12	$\frac{\text { NOHEAL }}{\text { Elag }} \text { - crater roughness healing }$	--
			0 - no healing of craters   1 - crater healing by ablation is modeled	
3	1-10	F10.5	Altitude (independent variable). The units are dictated by the meter flag.	ft or m
	(2-62))	(2-62)	2-58)	

Table 05 (concluded)

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Columns	Format	Data	Units
	11-20	F10.5	Particle mass concentration	$g m / m^{3}$
	21-30	F10.5	Particle diameter	$\begin{gathered} m \times 10^{-6} \\ \text { (micron) } \end{gathered}$
	31-40	F10.5	Particle specific gravity, If entered as zero it is set to 1.0 .	--

This toble must contain at least two but. no more than 20 entries and the altitudes must be entered in an increasing order.

### 3.1.8 Table 06 - Material Properties

Table 06 is used to input material surface roughness and thermal properties. The material index number (MAT) assigned to a given material need (in general) only be consistent with the material indices used in the nosetip configuration input (Table 03). If, however, hyarometer erosion effects are to be included the following assignments must be followed due to built-in values for certain of the erosion correlations.

- Carbon phenolic MAT $=2$
- Tungsten MAT $=3$

Two types of surface roughness are input:

- Laminar or intrinsic roughness $\left(k_{i}\right)$ which is used for rough wall transition criteria and in calculating roughness augmentation to laminar heating.
- Scallop or turbulent roughness ( $k_{t}$ ) which is used in calculating the roughness augmentation to turbulent heating.

Turbulent surface roughness may be input either as a constant or calculated according to $k_{t}=k_{1} p_{e}^{-1.77}$ where $k_{1}$ and a maximum roughness height are input. Three roughness heating augmentation options are allowed for; they are

- No roughness heating augmentation.
- Laminar and turbulent heating augmentation according to the models described in Section 2.2.4-but no hydrometer stirring effects.
- Same as above - but including hydrometer stirring effects.


## Table 06 (continued)

The material thermal properties required include certain constants (i.e., density, heat of formation, etc.) plus tabular values of quantities which are a function of temperature (i.e., specific heat, conductivity: and emissivity). Notice that for the steady state conduction option the specific heat and conductivity are not required and may be entered as dumy values (e.g., 1.0).

Card
iNo.

1

2
2 1-

Format

I2
$I 2$

Data
Table No. 06
MAT - material index. If erosion effects are included use the following assignments.

1 - graphite
2 - carbon phenolic
3 - tungsten

3-10	E8	RHO - material density	$1 \mathrm{bm} / \mathrm{ft}^{3}$
11-20	E10.5	TFO - datum temperature for heat of Eormation. For JANNAF data, $\mathrm{TFO}=536^{\circ} \mathrm{R}$	${ }^{\bullet} \mathrm{R}$
21-30	E10. 5	HFO - heat of formation	$\mathrm{Btu} / \mathrm{lbm}$
31-40	E10. 5	TBRPL - laminar blowing rate reduction parameter. $\lambda$ in Equation (2-60).	--
41-50	E10.5	TBRPT - turbulent blowing rate reduction parameter. $\lambda$ in Equation (2-60).	--

3 1-2
I2
NERODE - erosion law number
=1. generalized input (read the rext card)
$=2$ carbon phenolic erosion m:odel
$=3$ tungsten erosion model
(for NERODE = 1 only)

4

$1-10$	F10.4	$A_{1}$
$11-20$	F10.4	$b$
$21-30$	F10.4	C
$31-40$	F10.4	d


Card No.	Columns	Format	Data	Units
5	1-2	I2	JROUGK - roughness heating augmentation flag.	--
			0 - no augmentation	
			1 - roughness augmentation, but no stirring augmentation	
			2 - roughness and stirring augmentation	
	3-14	E12.8	RUFL - intrinsic roughness height, $k_{i}$	in.
	15-26	E12.8	$\frac{\text { RUFMAX }}{\text { Elag }} \text { - turbulent roughness height }$	in.
			>0 - constant turbulent roughness equal to RUFMAX	
			$<0$ - calculate turbulent roughness according to	
			$k_{t}=K_{2} P_{e}^{-0.77}$	
			with $k_{t_{\max }}=$ ABS (RUFMAX)	
	27-38	E12.8	$\begin{aligned} & \frac{\mathrm{K} 1}{\mathrm{P}_{e}}=1 \text { turbulent roughness height at } \\ & \text { psia. Read only if RUFMAX }<0 . \end{aligned}$	in.
6	1-2	I2	NC - flag, nominally zero, +1 marks terminal card of last material property table, -1 marks terminal card of other intermediate material property tables.	--
	3-10	F10.5	Temperature (independent variable)	${ }^{\circ} \mathrm{R}$
	11-20	F10. 5	Specific Heat	Btu/lb
.	21-30	F10. 5	Thermal conductivity	Btu/ft-
	31-40	F10.5	Emissivity	--

This table must contain at least two but no more than 30 entries.
Currently Tables 07 and 08 are reserved for future use.

### 3.1.9 Table 09 - Surface Thermochemistry

Table 09 consists of the parameters necessary to utilize the surface energy balance formulation cescribed in Section 2.4. The following paragraphs describe the input for a given material.

## Table 09 (continued)

A single lead card specifying the material index is read first, followed by a card containing control integers, followed by a set of tabular thermochenaxstry dasa cards.
3.1.9.1 Table No. and Constants

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Columns	Format	Data	Units
$i$	1-2	I2	Table No. 09	--
2	1-5	I5	MAT - material index no.	--
3	1-5	I5	NBPF - flag controlling reading of mechanical fail quantity (for use with blowing correction)	--
			NBPF	
			0 - no mechanical removal	
			1 - mechanical removal term read and used to reduce blowing rate	
	6-15	Fi0. 5	CMH - ratio of mass to heat transfer coefficients (typically 1.0).	--

### 3.1.9.2 Edge linthalpy Data

Equation (2-58) of section 2.4 indicates that if diffusion coefficients are not equal or if the ratio $C_{M} / C_{H}$ is not unity, then the surface energy balance requires data about the edge gases of the boundary layer. These data are provided in special "edge tables" which precede each pressure section of the surface tables (the various sections of the surface tables are described in section 3.1.9.3 below). The independent variables for an eage table are pressure and temperature. Dependent variables are $h_{e w}$ and the sum $\sum z_{i}^{*} e^{h_{i}^{T}}{ }^{T}$. Card No. $\qquad$ Format
Data
Units
4

$$
1-8
$$

F8. 5
Pressure
atm
$9 \cdot 16$
F8.5
Blank
Blank
('R if negative in which case enthalpies below are Btu/lb)

$$
\text { 34-38 FS.3 Unequal diffusinn exponent } \gamma
$$

Table 09 (continued)

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Columns	Pormat	Data	Units
	39-47	F9. 3	Sumation $\sum z_{i}^{*} e_{i}^{h_{w}}$	cal/gr   (Btu/lb if temperature is entered wit! minus si.jn)
	48-56	F9. 3	Enthalpy of edge gases $\mathrm{h}_{\text {ew }}$	cal/gr (Btu/lb if temperature is entered with minus sign)
	57-58	12	-1 (flag signifying that this card is part of the edge gas table)	--
	59-60	2X	Blank	--
	61-66	A6	Unused	--
	67-78	$2 \lambda 6$	Leave Blank	-

5 Same as No. 4 fo- remaining entries in "edge table" for this pressure, (etc) maximum of 12 temperatures for each pressure.

Note that although the thermochemistry codes described in Section 2.4.3 will provide data decks using ${ }^{\circ} \mathrm{K}$ and cal/gr, in those rare cases in which a user wishes to supply his own deck and prefers to work in ${ }^{\circ} R$ and Btu/lb, he may do so simply by introducing a minus sign as a flag in front of the temperature entries.

The table length is limited to 5 pressure sets (it may have only 1 pressure set) with not more than 12 nor less than 3 temperature entries in each set. The series of temperature values may be different for the edge table at each pressure set. The table is organized as a series of sections, each representing one pressure and each preceding the corresponding pressure oroup of the surface thermochemistry deck as described below. The temperature entries within ear ection must be ordered, either ascending or descending. Similarly, the press.ises must be ordered either ascending or descending. Decks generated by the thermochemistry programs will have been automatically ordered properly.

### 3.1.9.3 Surface Thermochemistry Tables

### 3.1.9.3.1 Description of Surface Thermochemical Tables

This table comprises a series of sections. Each section represents one pressure and one transfer coefficient value. More than one transfer coefficient

## Table 09 (continued)

may be necessary if the effects of kinetics on the surface response are considered. Nondimensional ablation rate, $B_{t c}^{\prime}$, forms the third independent variable within a given section. The table has three dependent variables: $\sum z_{i w}^{*} h_{i}^{T} w$, $h_{w^{\prime}}$ and $T_{w}$.

The thermochemistry programs generate separate groups for each pressure, one at a time. All these groups $=0$ gether make up the surface thermochemistry deck. Within each pressure group the transfer coefficient values will be ordered. Within each transfer coefficient section, ablation rate entries nevd not be ordered in any particular way on the ablation rates; any necessary ordering is made automatically by the code as it reads in the data.

Users providing their own thermochemistry decks must ensure that the transfer coefficients are ordered, but the ordering may be either ascending or descending in each case. The surface thermochemistry cards are identified by a unity flag in column 58, as described in the format specification below.

The number of pressure groups may not exceed 5 (and may be only 1); the number of transfer coefficient values in each pressure group may not exceed 5 but may be only 1 . If no kinetics effects are to be considered a transfer coefficient of zero is acceptable. The sequence of transfer coefficient values need not be the same in the different pressure sections. Within each transfer coefficient section the number of ablation rate entries may not exceea 25 a"d may not be less than 2 . The series of ablation values, $B_{t c}^{0}$ may be unique or each section.

The ${ }^{\circ} \mathrm{R}$-Btu/lb oprion described for the edge tacles in Section 3.9.3.2 may be used for these tables also.


[^2]


Figure 3-1: Sketch of surface thermochemistry table make-ud for a given material including leading constant cards.

### 3.2 PROGRAM OUTPUT

The program output consists of output of the input data for check and verification purposes, and output of actual calculations. The output uf the input is covered in Section 3.2 .1 and the calculation output is described in Section 3.2.2.

### 3.2.1 Output of Input

Program output begins with an output of the restart information: and foilows with tise contents of input Tables 01 through 09. Most of this output is fully lowslea and is printed exactily as input by the user. For those few output items avt fully labeled, Appendix A provides a description.

The sensible enthalpy term output from the material properties information (Table 06) is defined as

$$
\begin{equation*}
h_{c}=H F O+\int_{T F O}^{T} c_{p} d T \tag{3-2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{h}_{c} & =\text { sensible enthalpy } \\
\text { HFO } & =\text { seat of formation (input by user) } \\
C_{p} & =\text { specific neat } \\
T & =\text { temperature }
\end{aligned}
$$

The integration is performed numerically by summing over the table entries.
The surfiee thermochemistry table is output reordered with increasing ablation rates in each section. Fcr ea•h entry in the thermochemistry tables the program computes and oul:put.s the quanitity

$$
\begin{equation*}
\text { TCHEM }=-h_{c_{W}}+\frac{C_{M}}{C_{H}}\left[\sum\left(z_{i e}^{*}-z_{i b i}^{*}\right) h_{i}^{T}+B_{: c}^{\prime}\left(h_{c}^{T}-h_{w}^{T}\right)\right] \tag{3-3}
\end{equation*}
$$

Notice that this term combines all of the tabular input surface thermochemis. $r_{i}$ terms and when comined with the gereral surface energy balance equation !Equation (2-59)) gives

$$
\begin{equation*}
\rho_{e} u_{e} C_{H}\left(H_{r}+T C H E M\right)-q_{c o n d}+a_{w} q_{r a d}-\operatorname{FC} \varepsilon_{w} T_{W}^{W}=0 \tag{3-4}
\end{equation*}
$$

The purpose for the creation of the TCHEM term is to reduce computer storage requirements. For the simplex case of equal diffusion and heat and mass transfer coefficients (i.e., no edge gas tables and $C_{M}=C_{H}$ ) the TCHEM term is redefined to be

$$
\begin{equation*}
{ }^{\text {PCLEBi }}=-h_{w}^{T}+B_{t c}^{1}\left(h_{c}^{T w}-h_{w}^{T}\right) \tag{3-5}
\end{equation*}
$$

and Equation (3-4) is siill applicabie.

### 3.2.2 Calculation Output

Two types of calculation resuits are output, they are the environment calculation and the surface energy balance/in-depth calculations. The environment cutput is iiscussed in Section 3.2.2.1 and the surface energy balance and in-depth $=\because=\approx u t$ is covered in Section 3.2.2.2.

### 3.2.2.1 Environment Output

The er.vironment output consists of six tables which may be called according to the procedure given in Section 3.1. The following paragraphs give a brief description of each of these tables and the sample problem (Section 4) shows typical output.

Table 1 - Summary Information
Table 1 contains a sumary of current geometry, trajectory and state variable values. This table is especially useful as a quick checik on the current nose radius, stagnation point state, and stagnation pnint recession. Also inclu. ${ }^{3} \geq d$ are the transition and sonic point locations, free stream Mach number, and number of cails to the environment and concuction packages (these are equal for the steady state option). For the flight option, the current value of altitude 15 given.

Table 2 - Sumary Distribution
Table 2 is essentially a selective condensation of Tables 3, 4, 5, and 6. Table 2 contains current body geometry, edge pressure ratio, and Mach rumber distributions. Also included are heat transfer coeffic: ont distributions and the momentum thickness Reynolds number distribution. The LkM flag output in Table 2 indicates the boundary layer flow regime and has the following three values:

- 1-1aminar flow
- 0 - transitional flow
- -1 - fully turbulent flow

Table 2 finds its major application in cases where it is desired to keep the amount of printout to a minimum. This is particularly useful when a larje number of output intervals is expected, and minimum output is sufficient.

Table 3 - Entropy Swallowing Information
Table 3 contains the current body geometry, shock shape, and the entropy swallowing distribution.

## Table 4 - Boundary Conditions

Table 4 shows the computed distributions along the body of boundary layer edge properties and recovery and wall conditions. Included in Table 4 (and in Tables 5 and 6) is the NTB or transition flag. This flag has four values indicating the flow regime at a given integration point. These are:

- -1 - laminar flow
- 0 - onset of transition
- 1 - transitional
- 2 - fully turbulent flow

Table 5 - Heat Transfer and Boundary Layer Quantities
Table 5 displays distributions of heat transfer coefficients, heating parameters and heat flux. Mouentum and displacement thickness and laminar momentum Reynolds number distributions are also tabulated.

## Table 6 - Roughness Heating Quantities

Tahle 6 gives distributions of lamirar, turbulent (augmented and smooth), and transitional Stanton numbers. Other useful entries include distributions of surface roughness height, both transition parameters $\left(\operatorname{Re}_{k}\left(s / \delta^{*}\right)^{1 / 3}\right.$ and

$$
\operatorname{Re}_{\theta}\left(\frac{k}{\theta} \frac{T^{e}}{T_{w}}\right)^{J .7}
$$

the turbulent l:ating augmentation parameter, and the net (laminar and turbulent; heating augmentation factor.

### 3.2.2.2 Surfsce Energy Balance and In-Depth Output

Following the environment output comes the in-depth and surface energy balance output in that order. The in-depth output consists of time step information, current nosetip material configuration, and temperature distribution. The time step information gives the size of the various controlling time steps (see Section 2.3 .4 ), the current conduction iteration, and problem time.

Since, typically, more conduction time steps are required than environment time steps the temperature arrays are output only for the last conduction time step preceding an environment call. The time step information is output for every conduction time step. For the steady-state conduction option no in-depth output is required or given.

The surface energy balance and new body point location output is the tinal output prior to the next environment call. The output consists of:

- New body point locations.
- Surface temperature.
- Recession rate (both thermochemical and erosion).
- Nondimensional ablation rate ( $B^{\prime}$ ).
- Crater roughness height.
- Surface heat flux.
- Heat transfer coefficient (both blown and nonblown).

For the transient conduction option these outputs represent the results of the last conduction time step preceding the enviroment call. For the steady state conduction option the output applies over the entire time step between environment calls.

SECTION 4
SAMPLE PROBLEMS

## Sample Problem No. 1

Sample Problem No. 1 is a steady state wind tunnel prediction of an $8^{\circ}$ sphere cone campho: model with a 1.5 -inch nose radius.

This probler is typical of a low temperature ablator (LTA) test. It demonstrates the generality of the material and thermochemistry input, as well as the variable time step output and environment input operations. The initial shape is code-generated by implementing the sphere-cone option. Also incorporated is the stability controlled time step option.




 ーローローロースースース

## 









?


 .3000 ATM


[^3]
sulce ${ }^{20 \%}$

-0 stagnation poivt envinonaent histont fon phe inifial soor shape o.e -
\[

$$
\begin{aligned}
& \text { VELOCITY DENSITY PRESSURE } \\
& \text { (FT/SEC) (LEN/FY). (ATM) }
\end{aligned}
$$
\]

$$
\bullet \bullet
$$

$\operatorname{Ren}_{A G E} \operatorname{RO}_{E}^{207}$
 . $\qquad$

Tहमणन
curve
(1+1)3nr
P
$\bullet$






$\square\left[\begin{array}{l}1 \\ \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right.$

$$
\begin{gathered}
\text { songe pr } \\
\text { axiab LENGT } \\
\text { XOSTAR }
\end{gathered}
$$

$$
\begin{array}{r}
\text { Xe87AR } \\
-(1 H 5 H) \\
-3870
\end{array}
$$

THEN, 0,00 BEC

$$
\begin{aligned}
& \text { STAGNATION STAGNATIUN } \\
& \text { PRESSURE PT. ENTHALPY } \\
& \text { PYZ } \\
& \text { CATM: }
\end{aligned}
$$

 . - EnTROPY gmallowine -_ _




[^4] - PABLEET JUMMANY INFORHAYEON PREESTREAM
MACHONO,
NOINF
\[

$$
\begin{aligned}
& \begin{array}{cc}
\text { PT2 } \\
\text { (ATM) } & \text { HO } \\
\text { (APUALIM) }
\end{array} \\
& \text { (aru/l }
\end{aligned}
$$
\]


TIMEE, 0,00 BEC RUGK 209
taylzes mughness heating quantities

$$
\text { RUI } 209
$$

PIAEO, 0,00 SEC PUGE 207

 TABLED sumhary informailon Table 3 entmopy smallijuing jnfurhation
TIMEE, MT.A5 BEC PUGERGA
TAOLEA B GUNOAIIY CONDItION:





# moughness heating quantities <br> ableob 





:

OELSTA PHEATA
PRANSITSON PMANSIYION
PARAMETER PARAHEYER
STANTN.

stants


 $000^{\circ} 1$ 00030eを $8^{\circ}$.



THEE, AT,H5 SEC PAGE208






## 



## Sample Problem No. 2

Sample problem No. 2 is a steady state weather flight prediction of a $9^{\circ}$ ATJ-S graphite sphere cone nosetip with a 0.65 -inch nose radius.

This problem demonstrates the use of the flight environment option. In addition, the weather option is utilized. Also, the spherecone input option is repeated.




-



$\Gamma$



-•••••••••








\& 33cza
WEATHEA
SPEAOY STAIE
SAM P

DAĢE $z^{\text {gan }}$

InItial gedmetryoos
SPHERE CUNE OPTION - GENENAIED SMAPE
 siox


-açe $3^{\text {An }}$

-oejnitial shape ploteoe
${ }_{6}$ HVI $^{3 \text { IV. }}$




PAGE BAN $\underbrace{8}$
-eosumface eeuilisriun dataono


.0800 ATH ?

 는


 --..-...-513.






PRESSURE -


PRESSURE I IJ. 0000 APM





PRESSURE $=100.0000$ APM


ㄹ․

 PRESSURE $=500.0000$ APM

 m9/8ve-100-N $\begin{array}{cr}\text { PEHP } & \text { BPA1M } \\ 2549.3241 & .1790 \\ 2954.6192 & 1750\end{array}$

amoulden point -: :2 sonic point e -
 $r_{1}$
$\cdots$
$\cdots$

pable-s meat pransfer aho ejundary layer guantities
J a aftual surface point index, i = integration point index, wit a tramsition flat

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\rfloor\)} \& \multirow[t]{3}{*}{1 Vis} \& \multicolumn{8}{|l|}{} \& TSME, \& 3.05 3EC \& \[
\text { PAGE } \operatorname{Zan} 12^{\prime}
\] \\
\hline \& \& \& J. acpua \& al surface po \& Oint index, \& \% Integra \& IIJn point \& INDEX, WTE \& - transifio \& Flat \& \& \\
\hline \& \& 3phear LENGTM
(s'sen) \&  \& \[
\begin{aligned}
\& \text { MEAY YRANS: } \\
\& \text { COEF PASED } \\
\& \text { ON YR } \\
\& \text { HTC } \\
\& \text { (BYU' } \\
\& \text { FIZ-SEC=R) }
\end{aligned}
\] \&  \& baminan heating pamametea F \& \[
\begin{aligned}
\& \text { PJRBULENT } \\
\& \text { MEATINE } \\
\& \text { PARAETER } \\
\& \text { PT }
\end{aligned}
\] \& mEIGATING parameten FFP \& \[
\begin{aligned}
\& \text { MET } \\
\& \text { HEAPING } \\
\& \text { PARMETEN } \\
\& \text { FEHT }
\end{aligned}
\] \& gamimar MOAENTUK Thickness THETA-LAM (HIG) \& \[
\begin{aligned}
\& \text { DISPLACEO } \\
\& \text { MENT } \\
\& \text { PHICXNESE } \\
\& \text { OEGSTM } \\
\& \text { (MIG) }
\end{aligned}
\] \& lamgnan, Homentum RETN AEPMO \\
\hline \& \& 0.0000 \& 1,02a PE +02 \& 1.2916E001 \& . 9122 \& - 1.0000 \& 1.0000 \& 0.0000 \& 1.0000 \& . 178 \& . 087 \& 0.00 \\
\hline 8 \& 48 \& -0603 \& 1.0121E 02 \& 1.221045001 \& \(\begin{array}{r}15062 \\ \hline 4930\end{array}\) \& 19082 \& 1.3167
1.3215 \& 0,0000 \& .9882 \& .172 \& -006 \& 38,45 \\
\hline 3 \& 11 \& -1292 \& 9,0303E+01 \& \(1.2429 E-01\)
\(4.6137 E-01\) \& \%.8930 \& -.9624 \& \begin{tabular}{l}
1.3215 \\
3.884 \\
\hline 80
\end{tabular} \& 0.0000 \& 3.9624 \& -176 \& :092 \& 76.76
115.43 \\
\hline 5 \& 21 \& . 21238 \& Misaife ot \& 5,0428E00 \& 2, 2375 \& - \({ }^{\text {P }} 1878\) \& -.45so \& .9879 \& 4.3680 \& -. 180 \& -100 \& 134.86 \\
\hline + \& 302 \& -3156 \& \(4.8024 E+C\) ? \& -1323E-n! \& 2,4309 \& . 190 \& \(4.10{ }^{4}\) \& .9954 \& 4.7455 \& . 199 \& .119 \& 195.57 \\
\hline ? \& 312 \& -4122 \& 4.0580E +02 \& 0.296aE-01 \& 2.4750 \& . 7376 \& 8.8523 \& . 9977 \& 4.8316 \& . 215 \& -140 \& 236.48
284

a <br>
\hline ! \& 4 \& - 9818 \&  \& 3:0095E-61 \& 2,3771
2.1203 \& . 63459 \& 4.6538
4.1383 \& -9987 \& 9.6419
4.1315 \& . 2374 \& .172 \& 284.75
339.36 <br>
\hline 20 \& 46 \& . 1112 \& 3,122 2E+c2 \& 4,1733E-01 \& 1.0528 \& .4042 \& 3.2243 \& .9995 \& 3.2257 \& . 337 \& . 350 \& 415.10 <br>
\hline 11 \& 39 \& -9175 \& 1.6707E 02 \& 2.2828E-01 \& .9041 \& . 2292 \& 1.700 a \& -9996 \& 1.7050 \& . 507 \& -095 \& 540.54 <br>
\hline 12 \& 512 \& Patio3 \& 7.909PE*O1 \& -7207E.02 \& \& -1416 \& \& \& -.7507 \& . 138 \& 1.141
-8.257 \& 675,12 <br>
\hline 13 \& $\begin{array}{ll}53 & 2 \\ 53\end{array}$ \& 109191
2.419 \&  \& ¢, $3500 \mathrm{E}=02$ \& .3690
.3583 \& -1217 \& . 12228 \& . 99995 \& -.7215 \& . 80.80 \& -1.257
-1.359 \& 735,27
767.31 <br>
\hline 15 \& 57 \& 3.4207 \& $0.4123 E 01$ \& 0.8631k-02 \& . 3498 \& .1075 \& . 6834 \& .9996 \& . 6829 \& . 910 \& 1.454 \& 033,04 <br>
\hline 18 \& 59 \& 3.6215 \& -.2893EP01 \& 8.7000t-02 \& . 3131 \& . 1023 \& . 5705 \& -9990 \& - 0.698 \& - 275 \& 1.544 \& 976,35 <br>
\hline 17 \& $t^{1} 8$ \& 3.9223 \& - 10 coteol \& 0.5074E02 \& . 3376 \& -0970 \& .059\% \& -9996 \& . 6598 \& (\%999 \& 1.931
10715 \& 915,08 <br>
\hline 10 \& ${ }^{-3} 8$ \& ${ }^{4} 0.4230$ \& -. 1033 EPO \& 3. 155566002 \& -3330 \& .0942 \& -6505 \& -999\% \& - 0500 \& 1.038 \& 1.718 \& M2, ${ }^{18}$ <br>
\hline 28 \& 65 8 \& 4.9238
5.4784 \& ¢:9317E408 \& $3.3010 E 002$
$8.2030 E 02$ \& .33290 \& --. 08989 \& ..6428 \& :9997 \& -.6428 \& 1.076 \& 1.794 \& -61024,14 <br>
\hline
\end{tabular}









pableob houghness meating guantities



4 NV8


1
0
2


C DENOIES GRAPNBYE

- DENUPES TUNGSEEN
7


 ....
 0 roe3260s
$x \leq 13$
$000^{\circ 0000000000000000}$

 BOPAL STAGNATION POINT RECESBION DUE TD EAOSION ONLY E.....003S ...INGMES


[^5]

TIMEE. 3.05 asc Date is ${ }^{\text {sah }}$


 " PASLEOS ENTROPY SWALLJNING INFORMATION







$\qquad$


topal btagnation point recesidion due to erjsion ontr a 0.0000 inchea



4-51

## Sample Problem No. 3

Sample Problem No. 3 is a steaçy state clear air flight prediction of a $7^{\circ}$ ATJ-S graphite sphere cone nosetip with a 0.65 -inch nose radius.

This problem repeats the flight environment option, however, this time employing a clear air condition. Again, the sphere-cone input option is used. Also, a short output option is demonstrated.





sIEAUY गiale avalisio
$E$
OF FLIGHP FPA
ATJOS GRAPHITE

## (TRANSITICH CAITEAIA CONTADL) IC © (ERANSTIRGMT CRITERIA CONPROLS ENV (CURVE FIT CONTROL) CF  (ivienmediate igme print confmoli Lpmit

 -atithe inemenent informationoeoINITIAL TIME (SEC) 15.2000 FINAL TIME PSEC 31.0000 -


TTYE STEP gTABPITY CRITERTA IN EFFECT
-อOFLIGHT ENVIRONMENT*-0
ALIITUOE

CTF. 1.300



PPA
PAGE

initial ceonetirae.




 ...



:
-OMATERIAL PROPERTIES-©
 ROUGHYESS HEIGHT FOR LAMINAR HEATING AND TRANSITION
ROUGHNESS HEIGMT FOR TUREULENT HEATING
FLAG FOR PYAE OF ROUGH TURBULENT HEATING - - TMERMAL PRUPERTIES-O.
****** HAPERIはLNUMAF日

## KOLAN - . 00010 (INCH KOTUAD - 00100 (INCN)

JHOUGK E $\bar{i}^{-}$



 RHO 117.0n
sPECTFIC meat


$$
\begin{aligned}
& \text { CONDUCTIVITY } \\
& \text { CBTU/FI-SEC-DEGS }
\end{aligned}
$$







-




-

[^6]c

*en ovenlay (3,3) //vorts

TIMES, 30.05 set PAGEIEA
TAMLE-Z SUMHAPY OISTRIBUTION TABLE




## Sample Problem No. 4

Sample Problem No. 4 is a transient clear air flight prediction of the $7^{\circ}$ nosetip of Sample Problem No. 3.

This problem is basically a repeat of Problem No. 3, however, the transient in-depth conduction option is demonstrated.
$-\infty$
$\vdots$
1








——rieteqai. pprrisam r.fivstahtsone

 THE STE日

ALIITUGE EINVIADNHESTO-O
ALPITUDE VEInCITY


--
-

$\square$

Vds
Reproduced from
best available copy.




$-{ }^{4 x}=0$



spfit

2
0
-
$\vdots$






$$
\text { FQFSSUAF }=501.7000 \mathrm{APM}
$$






gragnation mint itppratife = 5non.0UI:


BIAENAPION MOIAT PFIPERAPIDE = 5607.1796





ITAGMAPION PDIPT TEIPERATIDE $z$ 5066.aSTO





 ifagnation potint if.peratilot $z$ schu.dz:I


 itagnation pmint tenperatiag = 5n0l.0554

.

4.1532E


PMCYE
XIAL
REC
pagnation point tenperatige $=5269.1596$


OLTE OLTI3 OLTC
0 0384f003

TAGN:TION PGIPT TEMPKKATI,OT $=$ SOBQ. 3111










KNCYE E
-agnation point tempeqatide $=5990.0435$




-AGNATION PDINT TEPDEQAP.GG. = Sll., AIPO

 AGNaTIDN DOINT TENPEGATIDE $=5119.2745$



agnation motht teiperatime = 5137.550h




APGRA:IRE = S149.556S
14. Qeress.o."
ngapion potve


agnation motit tenperatioe $=51$ 5.9.9233


AGNATRD"A POI: T TEUPERATIGE F SITh.307:









-agNAIIDN POIUT TEUPERATVEE 5217.709u





PAGNAPION ONINT TEUPERATGRE S256.9911


pagnation point templaatiae $=$ setr.bith







incre:







 stagnation polmt tenaeratife $=5560.2308$

O-PAINE
PMFQMF


MARTTCLE
ROJTHNE;




-* overcar(3.l) /fYort

AC(1) (01)





ThEE, 3n.al sfe parifié

*     * current shape min nuse . * *




，




1.001GAEENZ O. BLTIS

TMCYC
XIAL
REC
 isin.2847


.
$\square$

- ofnotes higlt limat
TIKFE, 3n,AI REC PAGEIET

achives fit id, 12 plitits





## REPERENCES

1. Abpett, M. J. and Davis, J. E., "Passive Nosetip Technology (PANT) Program, Interim Report, Vol. IV - Heat Transfer and Pressure Distributions on Ablated Shapes, Part II - Data Correlation and Analysis," Aerotherm Report 74-90, Aerotherm Division, Acurex Corporation, January 1974.
2. Foiles, S. R., "Shock Configuration Around Spherically Blunted Cones," Lockheed Missiles Space Company, TIAD/831, LMSC Internal Report, Sunnyvale, Calif., May 1966.
3. Lomax, H. and Inouye, M., "Numerical Analysis of Flow Properties About Blunt Bodies Moving at Supersonic Speeds in an Equilibrium Gas," National Aeronautics and Space Administration, NASA TR R-204, July 1964.
4. Love, E. S., et al., "Some Topics in Hypersonic Body Shaping," AIAA papei 69-181, 1969.
5. Moyer, C. B., et al., "A Coupled Computer Code for the Transient Themal Response and Ablation of Non-Charring Heat Shields and Nosetips," Aerotherm Corp., Mountain View, California, NASA-CR-1630, October 1970.
6. "Hardening Technology Studies - III, Vol. I, Combined Thermochemistry and Thermomechanical Response in Nosetips," SAMSO-TR-69-181, March 1969.
7. Fay, J. A. and Riddell, F. R., "Theory of Stagnation Point Heat Transfer in Dissociated Air," J. Aero. Sci., Vol. 25, 73-85, 121 (1958).
8. Lockheed Missiles \& Space Company, "Advanced Composites (RESEP II), Nosetip Response and Thermal Buckling Analysis," Final Report, Change Order No. P001, LMSC-D05238ヶ, Sept. 6, 1969.
9. Cohen, H. B. , "Boundary-Layer Similar Solutions and Correlation Equations for Laminar Heat Transfer Distribution in Equilibrium Air at Velocities up to 41,100 Feet Per Second," National Aeronautics and Space Administration, NASA TR-118, 1961.
10. Hearne, L. F., Chin, J. H., and Woodruff, L. W., "Study of Aerothermodynamic Phenomena Associated with Reentry of Manned Spacecraft," Final Report, Lockheed Missiles \& Space Company, LMSC Y-78-66-1, May 1965, Contract NAS 9-3531.
11. Crowell, P., "Turbulent Heating Near a Stagnation Point," Interoffice Correspondence, The Aerospace Corporation, March 1973.
12. Eckert, E. R. G., "Survey on Heat Transfer at High Speeds," Report of Univ. of Minnesota, Minneapolis, Minn., 1961.
13. Aerotherm Corp., Mt. View, California, "User's Manual, Boundary Layer Integral Matrix Procedure, version C (BLIMPC)," Aerotherm Report UM-70-20, June 1970.

14: Kays, W. M., "Convective Heat and Mass Prnasfer," McGraw-Hill Co., N.Y., (1966).
15. Anderson, A. D., "Passive Nosetip Technology (PANT) Program, Interim Report, Vol. III - Surface Roughness Effects, Part III - Boundary Layer Transition Data Correlation and Analysis," Aerotherm Report 74-90, Aerotherm Division, Acurex Corp., January 1974. (Confidential)
16. Powars, C. A., "Passive Nosetip Technology (PANT) Program, Interim Report, Vol. III - Surface Roughness Effects, Part II - Roughness Augmented Heating Data Correlation and Analysis," Aerotherm Report 74-90, Aerotherm Division, Acurex Corp., January 1974. (Confidential)
17. White, C. A. and Grabow, R. M. "Influence of Scallop Roughness on Nosetip Shape Change Behavior," SAMSO TR 73-88, January 1973.
18. Persh, Jr., "A Procedure for Calculating the Boundary Layer Developmert in the Region of Transition from Laminar to Turbulent Flow," NAVORD Report 4438, March 1957.
19. "Minuteman Natural Hazards Program," Aerotherm Pinal Report; Contract No. FO 4701-74-C-0069, to be published.
20. Kendall, R. M., Rind’l, R. A., and Bartlett, E. P., "A Multicomponent Boundary Layer Chem: :lly Coupled to an Ablating Surface," AIAA Journal, vol. 5, no. 6, June 1967, pp. 1063-1071.
21. Moyer, C. B. and Rindal, R. A., "Pinite Difference Solution for the InDepth Response of Charring Materials Considering Surface Chemical and Energy Balances!" Aerotherm Corporation Final Report 66-7, Part II, March 14, 1967 (also NASA CR-1061, June 1968).
22. Bartlet.t, E. P. and Grose, R. D. "An Evaluation of a Transfer Coefficient Approach for Unequal Diffusion Coefficients," Aerotherm Corporation, Mt. View, California, Report 69-50, June 30, 1969.
23. "Erosion Studies Program," Aerotherm Final Report, Contract No. FO 4701-74-C-0069, Supplemental Task 4.3, to be published.
24. Kelly, J. T., "User's Manual General Nonequilibrium Ablation Thermochemistry (GNAT) Computer Program," Aerotherm Report UM-74-54, October 1974.
25. Aerotherm Corporation, Mountain View, California, "User's Manual, Aerotherm Equilibrium Surface Thermochemistry Program, Version 3," Aerotherm Report UM-70-13, May 1970.
26. Powars, C. A. and Kendall, R. M. "User's Manual, Aerotherm Chemical Equilibrium (ACE) Computer Program, Aerotherm Corporation, Mountain View, California, May 1969.
27. Aerotherm Corporation, Mountain View, California, "User's Manual, Aerotherm Equilibrium S:urface Thermochemistry Program, Version 2," June 1966.
28. Crowell, P. G., "Three Dimensional Heat Conduction and Surface Shape Change of an Ablating Nosetip at Angle of Attack." Technical Report Aerospace Corporation - to be published.
29. Interim Report, Passive Nosetip Technology (PANT) Program, SAMSC-TR-74-86 June 1974.
30. Guy, T. B.. "A Note on the Shock Standoff Dist:ance for a Spherical Body in Supersonic Flow," AIAA Vol. 12, No. 3, 1974.

APPENDIX A
DESCRIPTION OF UNLABELLED OUTPUT VARIABLES


Name	Description	Unats
Hz	- Sumation $\sum_{z}{ }^{*} e^{h_{i}}{ }^{T}{ }_{w}$	Btu/lb
HZW		Btu/lb
RHO	- Material density	$1 b / f t^{3}$
FROUT	- Radial distance from the body centerline to the material interface boundary	in
ROU:'1	- Initial surface foint radius	in
SLOP	- Initial body angle slope with respect to the centerline	deg
SFRM	- Maximum surface temperature rise during the previous time step	${ }^{\bullet} \boldsymbol{R}$
TBRPL	- Laminar blowing rate reduction parameter $i$ in Equation (2-61)	--
TBRPT	- Turbulent blowing rate reduction parameter $\lambda$ in Equation (2-61)	--
T-DIST	- Explicit grid temperature array	${ }^{\bullet} \boldsymbol{R}$
TT-DIST	- Implicit grid temperature array	${ }^{\bullet} R$
TCHEM	- Ablation parameter defined by Equation (3-3) or (3-5!	Btu/lb
TEMP	- Temperature	${ }^{\bullet} \mathrm{R}$
TEO	- Datum temperature for the heat of formation	${ }^{\bullet} \mathrm{R}$
TSEN	- Enthalpy of wall gases, $\mathrm{h}_{\mathbf{w}}$	Btu/lb
zout	- Initial surface point axial coordinate	in


[^0]:    More generally in the presence of chemical reaction it is the diffusive heat flux from the gas to the wall even in the presence of net mass transfer, provided the boundary layer is frozen and the wall is catalytic.

[^1]:    * $n$ defined on rage 2-28.

[^2]:    No: provided by most Aerotherm thermochemistry codes.

[^3]:    
    etypenapure
    DEG 8 .
    590.00
    576.00
    012.00
    

[^4]:     H VMAT CALLED RI BIAST TIME STEP

[^5]:    IMDULDER POINP E 12 SONIE PJ\&NP $\leqslant$ _
    -e OVERLAY(3,1) / NVORT!

[^6]:    

