AD NUMBER		
AD304321		
	CLASSIFICATION CHANGES	
TO:	UNCLASSIFIED	
FROM:	CONFIDENTIAL	
TO: Approved for public release; distribution is unlimited.		

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;
Administrative/Operational Use; JUN 1959. Other requests shall be referred to Office of the Chief of Research and Development (Army), Washington, DC 20310.

AUTHORITY
OCRD, D/A ltr dtd 15 Mar 1973 OCRD, D/A ltr dtd 15 Mar 1973

FRO

Reproduced by

Arraet §e: vices Techicat Information Agency

AELLITATM HALL STATION; ARLINGTON 12 VIRGINIA

\qquad

"NOTICE: When Government or other drawings, specificatioris or other data are used for any purpose other than in conneckior with a definitelv related Government procurement anmaration, the U.S. Government thereby incurs no responsibility, for any osligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto."

BLANK PAGES IN THIS DOCUMENT WERE NOT FILMED

COMFIDELTIAL

WORKING !!APER

This is a working paper of members of the technical staff of the Tactics D_{1}, ision concerned with ORO Study 11.3.

The objective of the study is to deveiop and expioil eriteria for improving the mianitiry weapons system in a manner consistent with trends in infantry weapons deveiopment, organization, tactics, and doctrine. This paper, ORC-T-37R, deals with one aspect of the study. The findings and anaiysis of this paper are subject to revision as may be required bv new facts or by modification of basic assumptions. Comments and criticism of the contents are invited. Remarks should be addressed to:

The Director

Operations Research Office The Johns Hcpkins University 6935 Arlington Road
Bethesda, via ryland

COMFIDENTIAL

coñidetuitã

CONFIEEDHILAL

FOREWORD

The mombers of the field team that conducted the experiment， including authors，prere George Elakemore，Ralph Disney，Carl Hensley，Duncan Love，Paul slicheisen，William Pettijohn，Robert Redick，Kenneth Simpson，WMliana Waiton，John Young，and Kenneth Yudwwitch，ORO．Thomse Ca＇ma．Lloyd Corbett，Paul Scholtz，and Ints Gitmou，Springiveld As sory；Arthur Burns，Olit Mattiteson Cismicai Corporation：C＇ypt J．C．Scianick，1st Lts James Coot． and Liridy Dowtin，2d Lt Olive：Hedges，3d Di\％，US Armv；Favid Ferrin，Aberdeen Provirig Gicind，and Charies Dickey，Frank－ ford Arsenal．

The data reduction from target faces and electrical recorder tapes were made by opn reseasch aides Snelcion Chemit，Betty Fosts：Caジi ばィ usiey，and Kenceth Simpson．
inrs．Foster in particular devoted much time to pairstaking data examination and computations．

In addition to these participants the authors are indebted to numerous others within and without ORO for aid of diverse sorts．

CONFIDENTIAL

CONTENTS

FOREWORD v
SUMMARY 1Phoblem-Facts-Discussion -Majon Conclusions-Hecommendations
PURPOSE 7
HISTORY 7
SALVO EFFECTIVENESS 13
AMMUNITIONS TESTED 15
TEST SYSTEM 17
INS THLMENTATION 22
PREDICTIONS 23
DATA 24
STATISTICAL ANALYSIS 26
SEPARATION OF EFFECTS 27
mISCELLANEOUS EFFECTS 29
INTERPHETATION 30
CONCLUSIONS 35
Major Concleskons - Dacusson of Majon Conclusons - Adortional Comclemons
RECOMMENUATIONS 42
REFERENCES 373

COMFIDENTIA

APPENDIXES
A. Personnel 4 S
B. Mifapons ano amunition 53
C. Target System 67
D. Insthumentation IIS
E. Úata lecomded $14 S$
F. Data Anjustment 169
G. Squad and Qualification Effects 205
II Ifabninc. 217

1. Rate of Fire 223
J. Statistical Analysis 231
K. Sefaration of Eyfects 283
L. Experimental Design 295
M Itt Preoictions 311
N. Malfunctions 341
O. Ovemelll ano Penetration 351
P. Target Characteristic Effects 359
FIGURES
2. average sal vo fains 3
3. 1862 Salvo Patent 9
4. 1879 Omonance Corps Salvo 9
5. 194S Nazi Salvo 10
S. Nazi Salvo Test Target 10
6. Probabiluty of Fibing at, Seeing, on Htting target at Mange R or Gaeater 11
7. Early Preoicted Salvo Effect of Wounding with 30 -cal Pufle 11
8. Duplex and Timplex Cartridges 14
9. Test Anuunttions 14
10. Beank-Pine Pifle ano Tanget 17
11. F (Pmone) Tanget in Uf Postrion 18
12. Fining lane Suomng Sitieng Position with Elbow Pest 18
13. Day Target layout 20
14. Complete Field Layout 21
15. C/S as a Function of acclibacy (Full. Ilanee or Probability) 38
16 C/S as a Function of accuracy 40
16. LiT as a Function of Acceracy 40
17. C/W as a Function of accumacy 40
TABLES
18. Ovem-all Pemcfentage Casualty Gans 2
19. WEApONS aNO ADUNTTONS TEsted in The sal.VUl F.xppanent 1S
20. Tancet Chainactemetics 16
21. SaLiol Tangei System layout 16
S. Thoop Charactehistics 19
22. One Day's Itens 22
23. Tabulation or Rins ($1-68$) mTT Soliads (A-F) and Conditions Smum :S
24. Ratios or Intividial Souade to ABCI) Avem age. 28
9 Ratios of Effictiv ensas or Dupled, Thiplex, and fi.EChétte. navuntiong to Single-Bellet Aivention 28
10 Ratios of Estr.ctiviness of Automatic to Sribattomatic Fine: 28

cônfointitian

-

11. Ratios of Effectiveness of T48 and Carbine to MI 28
12. Rough Gauped Comparisons 28
13. Casualties ay amunitions and Conditidn 30
14. Amainition, System, Combat Load, and Man-aid-load Weights 3)
15. Casualties peir Salvo, pe: :hnute, and per Pound 3 ?
16 Ameth fire casualty fatios 33
16. Unaimed.Fire Casuaity Ratids 33
17. Over-all Casualty Ratids 34
18. Mean Caiterion Casualty Ratios 35
19. Perfect accuracy Casualty Ratios 38

COMFIDEMIAL

PROBLEM

To Caiermine the relative effectiveness of multiple-bullet and siaglebullet rifle ammunitions.

FACTS

Earlier ORO siudy indicated that combai rifie fire would be more effective if hits vere increased by causing each isisger pull to ife several bullets (salvo prisimple). Ammunition designed to fire in this fashion had beenfatyicated.

DISCUSSION

An experiment designed to compare the salvo cartridges with conventional anmunition in combal-simulating aimed rifle fire, was conducted by ORO in June and July 1956 at Fort Bonning, Ga., under the auspices of the SALVO Steering Committee sei up by the Chief of Orcianance.

The armmunitions iesied include $.30-\mathrm{cal}$ duplex and triplex rounds (two and three tandem buileis), cnmpared in hits scored against standard singlebullet AP M2 ammunilion. Two "minimum-climb" fully automatic .22-cal (single-bullei) types of fire were also tested: the Gustafson carbine and a modified T48 rifle. Automatic burst fire from these weapons was compared with semiautomatic fire from the same weapons. A 32 -flecheite 'oad was also iired from a 12 -gage semlauiomatic shotgun.
mhese eighi types of fire were lesied on a combai-simulating range of 22 pop-up (Cocky Ken! targets. Several 10 -man groups of firers were used in sliting and slanding position, in day and nighi flre. The experimental data include the number of rounde fired by each man and the number of hits scored on each target. In addition, elecirizal recording provided chronological firing and hil recorth by man and targei, kiontifying multiple hite from the salvo ammunitions. The data were subjected to statistical analyis to determine average values of hil probabilities and statistical reliabilities. The analysis, incorporating factors of lethality and weighi, leads to conclusions expressan in casualties per aalvo, per lime unit, and per welght anit for both almed and unalmod rifle fire. The hit meapures were converted to casualiy meapures, including accouni of penciration fallure and multiple-hit overkilliag. Differencea are noted in both hits and rate of fire as functions of other experimental variables: firing position, iliumination, marizimanchip qualification, learning, and targei characteriattice (size, range, concealmont, exposure time, firing activity, and movemani).

COMFIDENTIAL

The major findings are summarized in Table 1 ，which 3 hows the percent－ ages of gain or loss in casualites per salvo（per trigger puli），casualties per time unil，and casualties per weight unil．The six major ammunition compar－ isons are summarized in this table．The firsi three lines compare irue salvos with single buliets，the fourth line com meres auiomatic bursts with semiauto－ matic bursts，and the last two iines compare tesi weapons．＂Single＂refers to reguiar Mifire．The comparison of automatic and semiauiomatic fire com－

Table 1
nvem－All Pebeceitage Casialty Gains＊

Ammuaition of firiag compared	Casualtice／selvo	Casealtios／time unit	Casualoise／weight anit	－Averege＂ goin	2σ
Daplex to siggle	＋ 60	$+60$	$+60$	$+63$	± 7
Triplex to siaglob	$+110$	＋ 70	$+110$	$+100$	± 11
Flechettee to siegleb	$+290$	$+100$	＋200	＋200	± 25
Astormatic to ectsioutomatic ${ }^{\text {c }}$	＋ 60	＋ 10	－ 30	＋10	± 5
．22－cel carbice to ．30－cel Ml	＋ 10	＋ 30	$+120$	＋ 50	± 8
． 22 cca ！T48 to ．30－cal M1	＋ 10	＋ 20	＋ 30	＋ 30	± 6

Over thoec from ． 30 －cel siagle bullete or eeminetomatic fire．
braced on limited doie．
clocludes both Geatafion carbine eod modified 「48 rifle．
bines both carbine and T48 results，since they are neariy identical．The car－ bine and T48 are comparse with the M1 in semalatomatic firt oniy．The ＂Casualties／time unil＂incorporate experimental data on rate of fire．The ＂Caounlites／welght unil＂are based on the weight of the weapon plus normal ammusition load（ 224 rounde）．

Table 1 is doduced byweighting the threefiring conditions in the spproxi－ mate ratio of the amouni of experimental firing－2（day uiting）： 1 （day standing）： 1 inight aliting）．This ratio to extremely conservative in heavily weighting the most accurate firting condition．Secondly，values are derived for unalmed－fire casualifes．It it noted that the experiment measured only aimed fire．However， the arbitrary over－all calimate shown if thoughi I be the better goneral effec－ tivenees meagure．The mairad＂Casualtiss／salvo＂is aimply the product of the number of bullets per salvo and the lothality per bultet，adjuated for pene－ tration fallure and multiple－htt overkill．The lable comblace the averages for almed and unalmod fire on afifty－fifty beals．The value of this unalsood fire In ita noutraliztag or harassing offoci is sse ument to be meaourid by in caninalty－ producing potential．

The fifth columa，＂Average gata．＂in a crude mothod of deducting s rough alngle effectivenese rutio．It is almply an sverage of the three srtteria of the other columas．

COSSHDENTIAL

F.gice $1 . \therefore$ wis the average values, together with the 95 percent coufidence beri..

The conflifuce ltmits (20) eatimate (with a 95 percent certalnty) the range within which the true gain lies. For example, with a 95 percent certainty tt is known that the average duplex over stngle-buliet effectiveness gain (as defined) is between 53 percent and 67 percent. These limtts are deduced from sampling errors only. Systematic errors are lound to be up to two to three ttmes larger.

Fig. 1-Average Salvo Gains

MAJOR CONCLUSIONS

1. AIl salvo ammunttions examined show effectiveness increases. The 60 percerit duplex cain is unequtvocal; the automatic ftre gain is amaller, depending on the criterton selected; and the triplex and flechette gains of 100 and 200 percent require further veriftcatton.
N. The amaller weapons examined show effectiveness increases of 20 to 50 percent over the M1 in conventional semtautomatic ftre.
*. Typical fire is at a rate of 16 rounds/min after $1^{2} /$ a sec to acquire at target. Average test accuracy is 14 percent htt probablitty, or an error (linear standerd devtation) of 3.8 mtl .

CONFIDENTIAL

SUMMARY

PECOMMENDATIOMS

From these conclusions and the discussion accompanying the 22 concluinme in the body of this memorandum, the following recommendations are deduced:

1. The duplex and triplex ammunitions should be considered for adoption.
2. Additional tests of triplex and flechette ammunitions should be conducted.
3. Flechette development should be accelerated.
4. A flechette side-arm load should be de veloped for test.
5. Doctrine for aimed "itomatic shoulder fire should be reviewed.
6. An investigation of smaller weapons should be initlated to identify observed .22-cal gains.
7. A .22-cal duplex ammunition should be fabricated and tested.
8. The peep-sight requirement should be reconsidered.
9. Actuai combat accuracy of rifle fire should be determined.
10. This experimental context should be considered for training use.

COMFIDENTIAL

SALVO 1 RIFLE FIELD EXPERIMENT

CONFIDENTIAL

PURPOSE

To determine the relative effectiveness of multipie-builet and singlebullet rifie ammunitions.

An experiment was performed to determine hit probabilities with salvo ammunitions in combat-simulating aimed rifie fire. The anaiysis, incorporating factors of lethailty and weight, leads to conciusions expressed in casualties per saive, per tlme unit, and per weight unit for aimed and unaimed rifle ilire.

HISTORY

The salvo concept is by no means new. Probabiy some clever caveman put several stones in his siing ut one time. Stories exist describing the practhía of some tribes in early modern warlare whu used knives to split their lead bullets. The shotgun is an example of extreme salvo, where lethality and range capabilities have been compromised for the hit increase in the projection of multiple pellets. The massing of artlleiy fire is a further example of salvo, using separated launchers. The machine gun and the automatic rifie approximate the fundamental characteristic of salvo, which is the projection of more than 1 round with a single aiming and firing effort.

The type of eaivo development with which this paper is concerned appears in the 1856 US Army Ordnance Report. ${ }^{3}$ This report dedcribes fire of two and three round ba^{\prime} 'ls at one time from a "rifie musket." An 1862 US Patent ${ }^{2}$ describes "Impiuvement in Compund Bullets for Small-Arms" (Fig. 2). Official concern appears in the 1879 Ordnance Report to the Secretary of War. That report includes the disclosure and subsequent correspondence of Captain of Ordnance E. M. Wright, who proposed the use of a tandem salvo round-three builets ncse-to-tail in a single cartridge (Fig. 3). Captain Wright's efforts were defeated by Captain of Ordnance J. E. Greer, whose negative report was indorsed by the Chief of Ordnance. An overshadowing development, the introduction of the magazine rifie, squeiched further efforts at that time.

In eariy 1945 the Naziz reported on "Die Infanterie Doppeigesshosz."4 Thear report describes in detali the development and testing of a tandem dupiex rifie round and several modifications (Fig. 4). The German reports indicate considerabie success (Fir. 5) and plans for special issue in 1945 as is indicated by the following:

COMFIDENTIAL

Subject: Uve of D-Ammunition for Specisl laque
(SS-Asssult groups)
The purpose of the srecentaticn in Finow was to issue tise D-Ammunition to the battle fronc. SS Stand....willieer Br Heess proposed of at ehe new type of luiantry ammu-

 ge. Üsit schurmann take part in the tests ai Finow.

The development of D-Ammunition for the Pistoi 08 and the infuntry Sturm rifle is also as urgent as for this saliber.

ORO analysts, examining the operational concept of small-arms aimed fire, recommentec is 1952° the development of a weapon designed to fire sima." taneously up to 11% oje tles:

1. It is recomber - \rightarrow that inu Ordnance Corps proceed to determin: : ine teaign or technological feasibility of ceveloping a hand weapon which haa the characteristica clted In this analysis, namely:
2. Maximum hit effectiveness against man targets within 300-yd range [Fig. 6].
(This does not mean that the weapon will be ineffective beyond this range.)
b. Small csliber (iesa than .30).
c. Woundiug cspahility up to 300 yd at least equivgient to the present rifle.
d. Disperslon of rounds from salvos or burste controlied so as to iorm s pettern such that aining errora up to 300 yd will be partly compensated, and bit effectiveness thereby incressed for these ranges.
3. As one posetble alternative to the current volume of fire (fully automatic) approach to the prohlem of increasing the effective firepower of infantry riflemen, it is recommended-subject to ten'ative confirmation of deagre feacibility-that a rifle incorporating at least in principle the military characteristics here proposed be manufactured for further and concluslve teat.

This concept was presented hy ORO to the US Army Chief of Staff, Gen Lawton A. Collins, who directed Ordnance to develon materiel to evaluate the proposed concept. In response to thls order, the SALVO Steering Committee was formed. In 1953, DRN published a memorandum describing the theoretical performance of duplex and triplex tandem rounds (Fig. 7). Subsequent industrial development and testing of these tandem rounds proceeded under the direction of the SALVO Steering Commalttee.

In 1954, ORO, in response to a request from the SALVO Steering Committee, designed a field experiment to determine the hit probabillty of the taidem salvo round in almed combat rifle 11re. By 1956, coordination efforts with l3allistic Research Laboratorles (BRL) (aceAppL) and other interested agencles permilted acceptance of the ORO tisat plan and assignment of facilities at Fort Benning.' In June 1956 the experiment was conducted by ORO.

The recommendations of this memorandum are easentially the same as the preliminary recommendations presented in an earller report." These concluslons and recommeniations have already been disseminated, and in some part carried out. Ai this writing, duplex ammunition is being procured for official user fest with both M1 and T14 rifles. A program is under way (with apparently inadequate priority, however) to examine the shotgun flechette Improvement $w i{ }^{3}$ reduced dispersion. A recommended development of a flechette side-arm or ptsiol load is currentiy in the doldrums, but several agencles are interestod in supporting the development.

CONFIDENTIAL

United States Pa'ment Office.

-

Fig1. Fig 2. Fig.3. Fig.

Fig. 3.
Fig. 6
Fe. 7.
78.8.

Fig. 2-1862 Solvo Potent

DESCRIPTION OF DUUEEIOT OAETEIDGE, FOR PREJENT BERVICF ARMS

 AND ALTEPED UEVOLVERS-CAL. . 16 BUCKSHOT.Comee procent rifo ease, mulformely tapereel! cherge, wo 45 graime mervice prowder; a reend bulbete pure iext; dieaneter, ". A68; lubrt cave, lonllets dipperl in Japaa wax, unilets puybel in far energhe to af. ford s good crimp es lant cep.

Fig. 3-1879 Ordnonce Corps Solvo

CONFIDENTIAL

Fig. 1-- 1945 Nozi Solvo

Fig. 5-Nazi Salva Test Target

COHFIDENTIAL

Fig. 6-Protability of Firing at, Sosing, or Hitting Torget of Ronge R or Greater

Fig. 7-Eorly Prodict od Solvo Elfoet of Wounding with . 30-col Rill.

CONFIDENTIAL

interest ln the salvo rifie program nas resuited in the publication of other studies. It is appropriate inere to discuss the thterpretation of apparent inconsistencies that have been noted. The most pertinent study that has conse to the writers' attentlon has been published by BRL. ${ }^{3}$ A major difference between this BRL report and the present study arises from the effectiveness criterion. The BRL study is based on the criterion of "one or more hits." This criterion discriminates against a saivo load in failing to credlt multiple hits with more lethality tian a single hit. in second assumption is an unreaisticaily low aiming error of only 1 mil (this experiment showed 3.3 mils average dayllght error).

The BRL conclusion that = - ter no consideration is the dupiex builet superior to two independently aimed projectlles" is misleading, since it is true only when based on a quite inequitabie criterion: one dupiex firing vs two singiebullet firings. Two independently aimed projectiles require two weapons and two men for the same opportunity, or a repetition of the opportunity. The summary tables in the BRL report suggest that the caiculations are based on the unrealistic assumptlon of no holdoff (eievation) for gravitational dzop. The need that the BRL report recognizes for theoretical estimates of the effectivenes. of the controlled fuplex round was recognized, and a publlcation was under way simultaneously with the BRL report. ${ }^{10}$ The BRL criticism that ORO-SF-28 falis to empharize the superiorlty of the 22 -cal carbine is accepted.

The totaity of these rriticisms negates the primary BRL conclusion that "the advantages of the duplex round SALVO rifle are marginal." The authors of this memorandum are in agreement with the finai statement of the BRL report: "Any promising smali arms should be finally evaluated on their mass effectiveress against anticipated number of men in llkely patterns, i.e., under service conditlons." Furthermore the authors believe that this (ORO) memorandum has made a substantial effort to satisfy this condition of evaluation.

A second study of direct concern has been made by the Armour Research Foundiation (ARF) for the Springfleld Armory. ${ }^{\text {.1 }}$ Thls study correctly concludes that the exact form of an optinum salvo has not been determined and is not determinable without an ambitious program of basic studies. The Armour repoit implles that experimental materiel development on items such as the duplex might best be curtailed, as they do not represent theoretical optimum ammunltions. In the light of practical considerations of such matters as lead time, such ar implication is unwarranted. The practitioner of military art is generally aware that the materiei he accepts in order to maintain a status of prepares. ness rareiy represents the theoretical optimum, and the satisfactory item is accepted instead of waiting for the perfect item.

The Armour conciusion that an ciptrmum saivo number exists is in itself very tenuous. Clearly, radically different forms of saivo wili yleld different optimum numbers, and the criterion for selection among these types will surely transcend the theoreticai criterta on which the proposed studies would be based. Dollar and logistical cost and development time are slguilicant items that musi modify any concluslons from a theoretical technica, study. The specific proposal of Armour for an automatic weapon is of course worthy of separate consideration, provided that the weapon could overcome the obvious disedvantages of automatic flre that are demonstrateci in this (ORO) study.

Another saivo study hee been conducted by the Midwest Research Institute (MPI). ${ }^{18}$ The MRI report conclunion that "the best system unes a 6.4 Flechette cartridge" is based on examination of cartidgee of 84 or less flechettes. It

CONFIDENTIAL

appears that the criterion on which this conclusion is based would yield tre
 mum number possible. The determinat on of an optimum number requires the application of additional constraints. MRI's conclusion ${ }^{13}$ concerning the deslrable dispersion of flechettes is in reasorable agreement with a recent siudy conducted by ORO. ${ }^{13}$

gALVO EFEECTIVENESS

The objective of military ire is elther to neutralize or to tálitet casualtías on an enemy. Casualty infilction in turn may be separate: ioy torget cheracteristics into categorles designated as aimed fire and unatiou fire. The application of the salvo principle to unaimed area fire is so elementary as not to require spectitc field tests at this time. Because area fire targets are characterized by a dispersion in considerable excess of the cispersion of any reasonable salvo, it is clear that the hits are merely proportional to the number of bullets per saivo, ignuring variations in hit probablitity or leîhality with variations in range or other characteristics of the targets. In the case of automatic fire, the definition of a salvo and the deterioration of aim with suiceeding rounds are subjects of separate consideration. The experiment made no atteinpt to include area fire.

The concept of measurable effectiveness of asmed fise has three parts. The stated objective of aimed fire, "infliction of casualties on targets," provides identification of the three essential and commensurate elements. "Yo "inflict," the target must be hit with the bullets, implying a measure of hit probability. "Casualties" implies a measure of the casualty-producing effect or lethality of the bullets. Thirdly, "targets" Implies that both of the above measures must be applifed to the enemy target systom that is anticipated. The first two parts of the concept are well recognized. In general, howwar, earlier efforts at relative evaluation of firepower have falled to provide an integrated measure reflecting the anticipated target system. As an operational analysis it would appear to be an incomplete study that provides only a table of potentinl effectiveness against a list of target types. The zuthors have attempted herein to make a realistic integration of anticipated target types in order to derive a simply expressed measure of relative effectiveness. Withail, the design retains the capability of correction of these measures with modification of our model of the target system.

The potential hit increase of salvo rifle fire depends on the existence of a fairly large error in combat rifle capability. "Combat expenditure of small arms ammuntion per hit is prodigtous-some 8000 to 12,000 rounds." Measures of rifle aiming error indicate that under target-range conditions, riflemen achieve errors of less than 1 mil. It is evidont, however, that typicai combat error is iarger. From a preliminary experiment, ${ }^{10}$ it was estimated that typical combat rifle fire occurs with an error of 3 to 4 mlls . This figure is the linear standard deviation (0) of a radially normal distribution, and may be interpreted as an average value. Examination of weapons used in this teat indicates the typical dispersion inherent in the weapon-a few tenthe of a mil (App B). Exterior belliatic errore for most conibat ranges ($\langle 300$ jd) are likewise generally

COMFIDENTIAL

Fig. 8-Duplex and Triplex Cartridges

Fig. 9-Test Ammunitions

COMFIDENTIAL

much less than 3 cr 4 mils. It ie apperent that the human aiming error reprssents the preponderant influsnce among these indopendent error sourcss, desspite contention to the contrary. ${ }^{16}$ Ths increass of hit probability then becomes a problem of overcoming the predominant human alming error. This may be accompllehed either by reduction of error, or design of a mode of flre compatible with such an srror. No recommendatlons are made hers regarding continuation of efforts to reduce the aiming error by training or by any other method. The approach of this study is restrlcted to the evaluation of materiel designed to increase the hit cappatitio of precont riflemen.

AMMUNITIONS TESTED

The salvo system deemed operational at the time of investigation was ths tajdem round; which is actually not a salvo weapon, but a salvo ammunition is: mesorporation in conventional small arms. Ths primary test fitem is the duplex, eecond the triplex (Fig. 8) with singls -bullet ammunition for comparlson. The frcnt duplex bullet maintains dispersion comparabls with an ordinary single bullst; the rear bullet of a pair falls in a narrow ring concentrlc about

Table 2
Weapons and Ammunttions Tested in the Salvo I Experiment

Wieapos	Ammunition or firing	Maxxle velocity, ft/mec	Round weight, greine	Bullet weight, graip
M1 rifle (reamed chamber)	.30-cal tiagle-buller M2	2760	414	163
	.30-cel duplex	2630	449	96
	.30-cal triplex	2630	439	61
Guatafo on carbine (M2)	.22-cal memicutomatic	3125	135	41
	.22-cml barat fire	3125	135	41
T48 rifle	. 22 -cal mamicutomatic	3400	280	68
	. 22-cal burat fire	3400	280	68
12-ge ge autolondien ohotrem	32 fle chattes	1400	720	13

the front bullet. The angular spread between the two bullets is the radius of the ring, approximately 3 mils, whlch is about optlmum, being the width of a man-target at combat ranye. ${ }^{\text {to }}$ Ths .22-cal carbine and the T48 afford two examples of burst (automatlc) fire-with semiautomatic fire for comparative controls. These . $22-c a l$ weaphis were selectod as thoss avallable offering the least cllmb-the best hold on target for a alve burst.

The 32 -flechette lond was tested as the most promising of sevaral flechatts developments. ${ }^{18}$ Figurs 9 shows the teat ammuntions and nominal charactaristics. The meajured characteristice are diven la Table Bs, App B.

Four types of mapon were used, and a total of sight defferent coreblinations of weapon and ammunltion or typen of flre wore tostod. Thene olght comblasllons are ahowa in Table 2.

CONFIDENTIAL

Table 3
Iabget (mar.acteristils

Characieriatic	Amount or type
Size	E (knesting and f iprone)
Range	$50-350 \mathrm{rd}$ -
Exponure time	3 to $34^{1 / 2} \mathrm{mec}$
Visibiliey	Day, night, day hidden
Moverneat	3 of 22 targets
Activity	fianiks being fired et 11 of 22 rargeta
Confusion	20 demolition poaitiona plue n plonograph

Table 4
Salvo Itarget System Layout

Target number	Hange, yd	Target aize ${ }^{\text {a }}$	Concealment	tiovement	Aladik firisg	111 amination	Expoame time, aec
1	52	F	C		F	N	28.5
2	63	F.	-		-	v	3.0
3	65	E	-		-	N	7.5
4	67	F	C		F	N	12.0
5	74	F	-		F	D	4.5
6	76	E	-		F	N	4.5
7	77	F	C		F	D	15.0
8	78	F	C		F	N	19.5
9	86	F.	-		-	D	4.5
10	89	F	C		F	D	15.0
11	90	F	C		F	v	4.5
12	91	F	-		-	v	9.0
13	111	F	C		F	D.N	19.5
1\%	127	F	C.		F	D.N	9.0
15	179	F	-		-	D-N	4.5
16	159	E	-	M	-	D-V	10.5
17	161	E	-		F	N	3.0
18	162	E	-	4	-	D-N	6.0
19	164	E	-	M	-	D-N	18.0
20	165	F.	C		-	D-N	34.5
21	169	E	-		-	D-N	4.5
22	176	E.	C		F	D-N	9.0
23	209	F	-		-	N	3.0
24	216	F	C		-	D	4.5
25	218	F	C		-	D-v	15.0
26	221	F	-		F	N	7.5
27	223	F	C		F	N	21.0
28	245	E.	-		F	D	6.0
29	259	ε	-		F	n	10.5
30	267	F.	-		-	D	3.0
31	269	F	C		F	D	25.5
32	334	F	-		F	D	7.5
33	236	F	-		-	D	3.0
34	339	F	C		F	n	210
Total						$\operatorname{lon} \mathrm{N}$	23100
		$14 k$	158.	3M	10F	120	233 5N
		20.				129	

CONFIDEMTIAL

MEST SYSTEM

To describe cumbal, targets in terms of seven characteristics that critically affect aiming erro: as shown in Table 3, a questionnaire-interview was admin'stered to veteran riflemen (App C).

A study of the information obtained led to the adoption of two target systems-one for daytime fire and one for nightime fire. Each of these systems was cooposed of 22 pop-up (Cucky Ken) ${ }^{25}$ targets, 10 of which were common to both gystems, rinking 2 total of 34. The targete were exposed by epringloaded mechanisms for time durations of 3 to $34^{1} / \mathrm{s} \mathrm{sec}$. None of the targets was

Fig. 10 -Biank.Fire Rifle and Target
scheduled for exposure simultaneously with another, and the intervals between successive target exposures were varied. The sum of the scheduled exposure times for the 22 targets during a day rus was 220 sec , and the total time for the run was $7 / 2 \mathrm{~min}$. This means that during a 5 m some target was scheduled for exposure during about half the total time for the run. Three of the targets moved laterally during exposure. Target activity was indicated by blankfire at half the target positlons (Fig. 10).

The 10 flring ponttions were on a 50-yd firing line. The ranges from the firing line to each of the 34 target positions and other characterietics of these targets are shown in Tabie 4. Target slzes were limited to two: E (meeling) and F (prone) sthouettes (F shown in Fig. 11). The minimum target range was limited for safety to 50 yd . The maximum range of 350 gd reflects the occurrence of 95 percent of combat targets within that range (App C). Variations in viaibility were limited to three: day, exposed; day, partly concealod; and night, exprised.

COMFIDENTIAL

Fig. 11-F (Promo) Targot in Up Position

Fig. 12-Firing Lime Showing Sitting Poeition with Elbow Rowt

CONFIDEMTIAL

The almang eraor also domends oit the risleman (Table 5). To make the experiment applicable to typical US riflemen, four average 10 -man equads were constiluted of riflemen of quallications in the same proportion that occurred in the 3d Div: one expert, four sharpshooters, four markemen, and nne unqualifled. In asdition, one better and one worse squad were tested. The firing positions were limited to two: a stable alming positior, raised enough for all men to see all iargets, sitting with elbow reat (Fig. 12); and a poor aiming posilion, standing. Detonation chargee in the targetarea and recorded buttie noises added coniusion for the rifiemen. In addilion, the rifleinen yere subjected to electrical shocks al irregular intervals during the runs by means of wires attached inside the boot.

Table 5
Thoop Canamactenistics

Qualificution	Better, everage, worse
Ponition	Sitting, otanding
Strem	Shock and noise

To recapitulaie, each target system was then composed of 22 Cocky Ken targets, 3 of whica were capable of lateral movemeni, and 11 of which returned blants fire (Figs. 13 and 14). There were 20 de mollilon posilions, including nltrostarch charges to slmulate artillery, and blasting caps, readily confused with rifle fire. Sq.iads were deployed on a 50 -yd line. For uniform visibility, night firings were conducted with limited floodllghting.

The entire program of cargot appearances, target movemonts, demolitions, blank firiagon, aud atreis mivcizs had to be precisely reproducible for a controlled experimeni. To accomplish this, electrlcal controls were plugged into a specially built programmer before each run. To start 2 run, it was necassary only to push the starting button; operation wes then automatic for $7^{i} / 2 \mathrm{~min}$.

The entire schedule was composed of 68 runs. Oniy two runs were alloited to the flechette iesi, owing to limitation on available ammunition. Each of the other types of fire was acheduled to fire from the sitting position both day and night, and from the standing position in the day (Table 8).

Deleition of most of the planned triplex runs was necessitated by a malfunction.

The Cocky Ken targets drop on schedule, nol when hit. There were no simuitaneous target appearances, and the order of target appearances was varied between runs. Ammunition expenditure was unlimited.

Physical details of the test syatem may be seen from motion piciures taken during the experimeni. ORO has prepared a 6 -min fllm showing the installation and operation of the teet system. Included are pictures of installation of the electrically operated targete, installation of track for the moving targeta, zeroing and familiarization fire oi the teat veapons, and a view of the several apecial devices (otrese shockers, ohot recorders, and target hit recordurs). The films also show fire on targets during rune, reveating the general patterne of fire, and giving a clear plcture of the environment of the teat.

CENFIDENTIAL

Fig. 13-Day Target Layout

COMPIDENTIAL

Fig. 14-Campleti Fiold Loyout
b, blawh bore e, blegeing cep, O, altw abtorch
O dry tereot, ㄴd wigh merpel.

CONFIDENTIAL

The test plan, including a summary of requirements drawn uo in December 1955, appears as Annex Ll to App L. This annex describes the elements behind the questionnaire of App C for determination of the target system, and outlines that system. It also outlines a schedule of firings and a list of the various requirements. In addition, App L discusses the adequacy of this tes! plan, and points up the considerations favoring it over others. Considerably more detail on the statistical validity of the test plan is given in App M. A master schedule of the actual experimental runs is given in Table L2.

One. May's Runs

Runao.	Ammunition	V Visibility	Position	Squad
1	Control	Day	Sitting	1
2	Test	nav	Sitting	1
3	Control	Day	Sitting	R
4	Test	Nav	Sittine	B
5	Coatrol	Nay	Standiag	1
6	Teat	Bav	Standian	4
7	Control	Vight	Sitting	B
8	Test	Night	Sittiog	R

INSTRUMENTATION

The operation of all targets was controlled by a programmer, which was set before each run by means of a patch board of 300 sockets. Eight different programs for daytime runs and four duferent programs for nighttime runs were used. The different programs presented the targets in different sequences, but the times of exposure, and the intervals prior to tirget exposure after the preceding target dropped, were held constant for a given target. The intervais between target appearances varied frum 6 to $13^{2} / 2 \mathrm{sec}$.

For recording shots fired, each test rifle was equipped witn a specially constructed switch within the trigger mechanism. The switch was closed with eacn trigger pull, which fed impulses to an Esterline-Angus recorder. Separate channels were used for recording the shots from each of the 10 firing positions.

For recording the number of hits, each target silhouette was covered with two sheets of eicctrically conductive rubber with an insulating rubber sheet sandwiched between them. The passare of a bullst through the aandwich caused a momentary electrical cornection between the conductive rubber sheets. The completion of the electrical circult between the two conducting sheets activated a mechanical counter, and also recorded on continuously advancing roll of paper. The circuitry permitted the separation of hit impulses to stout 1 msec . which permitted recognition of multiple hits. It was also possible to identify shots fired with hits ecored.

The demolition charges in the larinet ares, and the blank-firing rifles were controllod by the programer to permit prectae proschoduling

CONFIDENTIAL

At each fining pusition, a initery and nign-vorage cou were connected to electrodes that could be sllpped into the riileman's boot. Under control of the programmer, shocks were dellvered to the riflcman to slmulate battle stress. The shocks could not exceed $10 / 2$ ma in current, but produced jolte of $u p$ to 5300 volte.

In yiew of the complexity of the instrumentation for the SALVO I experlment, it is nut surprising that many malfunctions occurred. It seeme clear that the electrical data should be appropriately adjusted to e!iminate the effect of malfunctions as far as poselble.

Fortunately, many questions of interest can be studied and conclusions reached on the basis of manual counts of ammunition used and holes in target faces. The major portion of the analysis in this paper is on this besie. Investiga: on of hits by individual rifiemen on individual targete recri!ren the use of the electrical data, since no manual count of this kind ls avallable; Hkewise identification of multiple salvo hits requires the electrically recorded chronological hit record.

PREDICTIONS

Before it is determined that there is some reason for conducting an experiment, there is geicerally some knowledge on which imperfect predictions of the experimental results can be made. The reason for conducting the experiment is to verify the uncertaln assumptions on which such predictions may be base1, and to demonstrate with greater accaracy and greater reliability the differences being discussed. In the instance of the salvo assumptions tested in thls experiment, a good deal of specific detalled information was avallable. The theory of the controlled duplex pattern was already understood. ${ }^{30}$ The patterns of both the random triplex and the flechette loads wara aler : ここnumiviy well predicted. ${ }^{13}$ In addition, basic information on rifle alming errore was also on hand. ${ }^{13}$ Theee earlier examinations of the salvo patterns were readily applied to the ealvo target system to yteld quantitative predictions on the number of rciunde to be flred and the number of hits of each kind expected.

Appendix M discusses these predictior.s in detall. Table M3 presents the predicted hits and rounds ifred for day and night runs, and compares the predictione with the experimental results, showing reaconable agreement. The duplex hit prediction in App M is devoted to a generalized theoretical prediction for controlled duplex hits. The triplex and fiechette hit predictions are also presented in App M. Finally Tables M12 and M13 compare in summary form the prediction and experimentatly achie'ed data. The sgreement is such as to justify the experiment-l.e., it is close enough to demonstrate that the order of magnitude of differences was anticipated, and it is poor enough to rarrant the experiment rather than rely on the thoorstical predict uns wuns.

Finally the experimental deeten itsell is , oughiy fus.ified by the predicted deviations ehown in Table M14. This teble comperes the predtcted thtt probeblities of duplex, tripiex, and flocbette ammunition with be eingle-butiot control. Approximate standard deviations ars then doduced. The sigalficant conclusion is that sach prodicted malvo velue differs from the stacle-bullst valus by at least thres predicted standard deviations. This bay be lieterpretod as a

CONFIDENTIAL

prediction that the experiment il design is adequate to determine these desired ratios with acceptable reliability

A companion theoretical considerution made in conjunction with these predictions is the determination of the ifle zero seiting for the experiment. This is discussed in App M under the secilur. "Combat Zero." The desired zero setting for the test weapons is defined as that setting which results in the minimum value of total mies distance for all target hits due to gravitational drop. An interesting resuit of the comoutations is that this zero setting to insensitive to variattons among the test ammenitions. The result is apparently charactertstic of the target system. The daytime target system yields an optimum zero setting of : 65 yd . All test weapons were accordingly zeroed at 165 yd for both day and night firings.

DATA

The basic data are the manual count of rounds of ammunition expended and the manual count of target hoies for each run. In addition, electrical recordings were made of shots fircd by cach rifleman during the time each target was exposed, and of hits made on that particuiar target. Malfunctions were experienced in the instrumentation, so that serious disagieement exists between the manual count of rounds and holes and the electrical recordings for corresponding shots and hits. A method for adjusting these electrical data has been developed to minimize the effect of malfunctions. The adjusted data tables support the conclusions reached with the unadjusted or raw data tables.

Preliminary reports have been prepared by ORO on the SALVO I experiment. ${ }^{17,13}$ The Systems Analysis Corporation undertuok statistical analysis of the SALVO I data under subcontract to ORO. ${ }^{18}$

In analysis of the data, variance-analyais techniques and selected statisticalsignificance tests have been used in weighing the possible effects of the heavy random error that was evident in sorne of the preliminary analyses. The analysis scheme generally has been based on the assumption that the SALVO I data are samples from parent populations whose parameters have been estimated. The significance levels of differences that may represent real effects of known changes in controlled varlables have been calculated. In this way the possibility that these differences may in fact stem from random error (or sampling variations) has been considered.

The totals of rounds fired and hits scored for each of the 68 runs were tabulated as the hasis for analysis. The largest categories of differences are (a) differences among the several types of test ammunition; (b) differences among the three conditions of firing (day sitting, day standing, and night sitting); and (c) differences a mong the six squads.

Table 7 is a summary of the comparisons that can be made from the resulte of the SALVO I experiment. It is seen that standard single-builet ammunition was used on a total of 18 runs; 10 day sitting, 4 day standing, and 4 night sitting. Duplex ammunition was used on a total of 14 runs; 8 day sitting, 3 day standing, and 3 night sitting. The results of each of these 14 duplex runs can be compared with the resulta of a correaponding single-bullet run

CONFIDENTIAL

Table ？shows that oniy two runs using triplex ammunition were completed． Additional triplex ammunition runs were oritginally scheduled，but were can－ celed and iargely replaced by duplex rins．

The last four ines of runs tabulated in Tabie 7 show that balanced com－ parisons can be made among the following four ：ypes of rifle fire：carbine a．tomatic，carbine semiautomatic，T48 automatic and T48 semiautomatic．The results of one run for each of the four average squads（ $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ．and D）are avallable for comparisons of these types of fire ！2r the day－mittlay firing con－ dition．Squads B and D made each of these four type of run icr day standing， and Squads A and C made similar runs for night sitting．The balance，with re－ spect to squad and ilifumination－position condition，amonig the 32 runs discussed in this paragraph（and listed on iast four iines of the tabic），enabies one to use standard variance－analysis techniques to weigh the possibilitie＇s of chance accounting for the observed differcrices in results．

Table 7

Amenction or firtar Siople	Der estueas										Der acoskisa				Niatt artiof			
	11	425	R	H2\％	034	CSA	030	DS0	EAS	Fis：	AS	429	「嗗	C．n2	H	H9t	fiso	P04
Duplax	42		4		C．33	C．5：	175	Ds9	1．16	F6\％	46		fi3：	（6）	Ho		טצ9	1迷3
Smplee		423		H20														
Cintioe．© itomatic	420		${ }^{818}$		64.3		D41				H2\％			D4）	124		（．4＊	
Corbrec．emmientionetic	119		817		C． 44		$0 \cdot 42$				H21			D8：	${ }^{4} 23$		（4）	
The，ariometit	412		H10		C51		D49				P14			053	416		C．35	
T48，Nemicetemblic	111		19		C32		Ds0				R13			DS4	413		C\％	

It is seen that 12 pairs of runs using single－bullet and dupiex ammunition are avallible from which possibie learning by the squads during the experiment can be assessed．This balance in experience gained betweelt pairs of runs by the same squad enables the authors to evaluate the learning effect with greater confldence than would be possible，in a less systematic arrangement of runs．

The last four runs（ $65-68$ ）were made by the expert（ E ）and unqualified ＂bolo＂（F）squads．

Ali the data described above are recorded in App E．The detalled infor－ mation on roundi firsd and hits scored is listed in Table E4．Most of the sig－ nificent concluslions are dīñon from the ontals by run，whtch are summarized in Tabls E6．In addition a detalled list of weapon mailutitions is included in ths 19 partu of Table E5．Deductions of multiple hits from the chronological records are presented in App O．Target－system malfunctions and observed cordlitions of weather and lighting are included in Table E4．

The adjustment of data to correct for malfunctions and other observed variatlons are described in detail in App F．Tabies Fi to Fil show the ad－ justments made on hit records，target by target，and run by run．Tables F20 to F38 show the amme information for rounds fired．The method o．discarding incomplete portions of data is not used in this anaiges．The reas in for reject－ ing this technique becomss quite evident when it is attempied－the categories amenable to comparison depend In such complex fashion on the Individual pleces

CONFICENTIAL

Of data that discarding uven a smanl perccatane of the total data resulta nitimately in discarding firr too great a proportlon of the summary data to yield useful results. For enampie, if targets with only one malfunction in all the 68 runs are discarded from all of the runs, few if any of the targets yleld total figures. However, where an ubvlous malfunction has affected a plece of data, the erroneous data have h.en eliminated, and replaced with a prorated vaiue. For example, if in Run 4 target 10 was known to remain erected beyond its proper exposure time, the recorcing of too lurge a nurnber of rounde fired is anicipateu. it would he a statistceat luwury inat could not be aiforict to dlscard all the other 50 daytlme values for target 10 because of thls single recognizederror. Instead, the excessive value is replaced by a predicted valu. ünt is an average for that target axd that type of run. it turns out that 13 percent of the hlt and round data is adjisted in this fashion. Many of the later analyses lllustrate that the adjustment djes not signiflcantiy affect major concluslons. That ls, dual anaiyses with botl! raw and adjusted data yleld similar results.

The adjusted hit and rounds-fired data are summarized by rur in Tabie F41 (corresponding to the raw-data Table E6). The flechette results, being quite incomplete are handled differently. Instead of adjusting these grossly incomplete flechette results to perfect runs, the comparable single-bullet data are adjusted to match the incompiete flechette da.ca. This adjustment is explained in detall in App F.

A poendix N summarizes hoth the peapo:! and farget system malfunctions. Table N2 shows four categorles of weapon malfunction for eacn of nine types of fire, with a grand total of two malfunctlons per 100 rounds fired. Table N3 shows a trivial 0.1 percent trigger-switch failure in recording rounds flred, and a very substantial 21 percent error in hit recording; l.e., one of the five categorles of electrlcal-hit-recording fallure occurred 21 tlmes for each 100 hits. Corresponding target-operation malfunction le noted in Table N5 to be 11 percent.

STATISTICAL ANALYSIS

The experlmental data were subjected to detalled statlstical analysis with the asslstance of the Systems Analysis Corporation. ${ }^{18}$ These discussions are presented primarily in App J. In App J the baslc data examined are the number of hits per run and number of hits divided by the number of rounds fired per run. The experiment provides elght types of ammunition and three conditions of fire, with three omlssions. These 21 ammunition-lllumination-position combinations (AIP combinations) then provide four data each: hits and hit probabilltles, both raw and adjusted. These 84 numbers as presented in Table J 2 form the basls for comparlsons.

Arpendix J ls then devoted to deduction of differences and ratlos among the various ammunitlons and conditions, and the eatablifhment by analyals of variance, by test, and by deduction of standard deviations of the reliabilitles or signiflcance of these differences and ratios. The major differences are summarlzed as ratlos of hits and hit probmilities in Table J1. Figures J2 and JS are striking graphical presentations of the consletent differences among

CONFIDENTIAL

tive uiajus tesi items--single-builet, duplex, and triplex ammunitions. Although it is difficult to make a simple summary of the many detailed reliabillty or significance tests in App J, it is generally clear that the major differences for run totals as listed in Table J 1 are quite rea!.

SEPARATION OF ELPESTS

Appendix K presents the major resuits of the experiment. In this analysis the number of hits and the number of rounds fired per run are selected as the basic data for analysis. Hits per round or hit probabilities are discussed only after these baslc data are appropriately reduced. Appendix K is further arbltrarily based exclusively on the adjusted data of App F rather than on the raw data of AppE.

The method of isolating effects of ammunitions and other effective parameters is to sequentially reduce the data by eliminating mean differences. Thus the entire experimental data are used in exarnining for each effect. For example, if the difference between duplex and singie builets is eliminated, then all sltting rins with both ammunitions may be compared against all standirg runs with both ammunitions. It is quite clear that such comparisons ignore interrelations among these effects Nonethe!ess rovin measurea oi tue senarẫiû subo cifecta are aesired. This sequential reduction procedure is made necessary owing to the imbalance of the experimental data. The reductions are made in two stages. The flrst stage yieids results for each ammunition under each condition of illumination and firing position. The second stage further combines stili grosser means, so that ammunitions may be compared without reference to lllumination and position, and also provides a measure of the effects of illumination and position themselves.

Borrowing from the tables of App K, the following tables (8 to 12) compare the results in two measures: hits H and hit probabllities or hits per round fired $\mathrm{P}_{/ /}$. All the data tollowing may be deduced dlrectly from Table K5 and Table K15.

The learning effect is quite evident in terms of absolute hlts H. For each successive run by any squad, the number of hits increased by about 2.0 percent per run. As the regular squads fired as many as 18 runs each, this resulted in a total increase of about 40 percent more hits on the last run than on the first run fired by the same squad. From Table K5 it is clear also that the number of rounds fired increases at almost precisely the same ratio; hence the hit probability is practically constart. The computed average shows a total reduction of 2 percer.t in hit probability over the 18 rusa , or an average relative decrease of only 0.1 percent per run-a quite insignificant charge.

The squad differences are also deducible from Table K5. if we set the average of the so-cailed "regular" squads (A, B, C, and D) at 1.00 , the relative hits and hit probabilities by squad are as shown in Table 8.

The effectiveness of salvo ammunitlons is comparea to single-bullet ammunition for each of the Lllamination-powition conditions in Table 9.

Table 10 compares automitic to semiautomatic fire, combining the two comparable weapons (carbine and T48).

CONFIDEMTIAL

Table: 8

Patios of Thmivedeal Sol ado. Tu) ABCD AVPrag.

Squan	H	P / I
A	1.08	0.94
A	1.08	1.15
C	0.95	0.99
D	0.88	0.93
F.	1.89	1.14
Fb	1.91	0.80

Fripert anned
bMolo mquad.

Tapus 0
Hatios of Effbiciveness of Delplex. Triplex, and Fi.echettif. Amanitions to Single. Bullet Amunition

Amrrunition compared	IPa	H	PH
Duplox to miagle	Day aitting	1.59	1.64
	Day mendiar	1.86	1.64
	Night aittias	1.67	1.86
Triplox to siaglo	Dey mitting	1.7%	2.25
Plectette to miagle	Day standinp!	1.84	3.20
	Nigl istondirin	3.43	7.70

-llluminetion nod ponition ! iring condition.

Tames!
Mutios of Eprbctiveness of fiband Carbine to WI

Weapons compared	IP	H	P_{H}
T+3 to M1	Day aittiap	1.19	1.17
	Day mtwadisa	123	0.89
	Vight mitting	193	2.10
Cartine to Mil	Day nittias	1.48	1.30
	Day otmerlioge	1.59	1.12
	Nisht mittia*	0.62	0.64

Table. 12
Mover Cmoupsp Patios

Tum or condition emmpered	H	P_{H}
Sunction to siveling fav)	0.89	0.70
Vimht to dav (attion)	0.38	0.32
Antematie to aemanatomatiof fire	0.71	04%
Cartree io Ml	1.30	1.11
Tus in M1	139	1.31
Popler to Siugle	1.67	1.70

CONEIDENTIAL

Taiuie ii cumpares the $1 \mathbf{4} 48$ and the carbine to the Mi.
Followigg a more complete scparation of exfoctis as piesunted in Tatuluk15 (App K), it is possible to combine some of the separate conditions of Tables 8 to 11 in Table 12.

MISCELLANEOUS EFFECTS

in addition to the reduct!on and solation of diferences in Apps J and K, separate analyses were made of se veral effects. Appendix G examines squad and qualification differences; App H examines learning; App I examines the rate of fire ; and Apg p teclates cffects of target characterīulics.

The squad analysis of App G agrees quite well with App K. Tables G6 and G12 show grod agreement with Table 8 (from App K). More interesting is the deduction of the relative ratings of the several qualifications from the squad ratings and the known squad compositions, which is stated in App G. From App G, for expert rated at 100 in hit probability, sharpshooter scores 88, marksman scores 75, and unqualified scores 43.

The separated learning effect from App K was already shown to be 2 percent increase per run for both hits and rounds fired. The corresponding analysis of App H yields about a 2 percent increase for rounds fired and a 3 percent increase for hits. It is concluded that the 2 percent per run increase in
 hits is questionable.

Appendix I examines the chronological firing record. First the steady rate of fire is computed. A figure of 17 rounds/min is deduced for single-bullet daysitting fire, 15 rounds/min for all M1 rifie runs, including day standing, and night sitting as well as day sitting. A rough average is 16 rounds $/ \mathrm{min}$.

The computed average lag time to achievement of this steady rate is 1.77 sec. This is the extra time to accuire and 8 wing onto a new target. Average time from target appearance to first round is 1.77 sec plus something less than the steaily rate interval of 3.56 sec , or 5.4 sec . This observed practice is consistent with the recommended optimum of $3.5 \mathrm{sec} .(1.8<3.5<5.4)^{\text {. }}$.

The record also provided evidence of fire continuing after target diamppearance. About 12 percent of all fire comprised this late fire, which continued for an average of $1 \frac{1}{4}$ sec after each target dropped. It is thought that typical values might be smaller, because the dusty condition of the experiment occasionally obscured target disappearance, and hence encouraged late fire.

The effects of individual target characteristics on hits and rounds are axamined in App P. The major effects on rounds fired are quite naturally found to be exposure time and concealment. The number of munds fired is proportional to target exposure time (less :. 77 sec lag time), and is about 25 percent less for concealed targets. The smaller targets receive about 10 percent less fire than the larger targets. Target size, movement, and blank fire have mall effect on rounds fired.

Hita are also proportional to exposure time (minus 1.77 zec). Hitusalso decrease with range ($\alpha 1 / R^{2}$). Also, for targets of approsisately hall size, hits drop to about $\$ 10$ percent, or 84 percent of the bite per target area. In addition the targets exprosed shorteat (3 and $41 / 2 \mathrm{nec}$) are hlt some 50 percent less than

CONFIDENTIAL

 at target positions increases hits scme 50 percent. Target movement reduces hits about 10 percent. The 11 ght concealment has little sbserved effect on hlts in this experiment.

These effects, beyond thelr inherent interest, are of potential value for extending the experimental resuits to target systems composed differentiy than the ones used. It ls possible with these factors to adjust the balance of target characteristics in any suitable iashion, and recompute the integrated experimental results.

INTERPRETATION

The major effects for interpretation are isolated in App K. Tabie K5 is :irst modified by the lethality considerations of App O. If the trivial penetration differences arising from the different day and night target-range distribut!ons are ignored, the net lethality figures for each test ammunition ilsted in Table 13 are obtained. These flgures are based on lethalities of 70 percent

Table 13
Casilalties by amuunition and Conimiton

Ammuaition or firiag	Lethality.	Cradition					
		Day mitting		Day atanding		Night aitting	
		C/t	C / R	C./	$C^{\prime} \cdot R$	C / t	Cin
Singla	20	83	13.4	69	11.3	29	3.5
Daplex	63	118	19.8	116	16.8	44	5.9
Triplex	57	119	24.5	(106) ${ }^{\text {a }}$	(19.4) ${ }^{\text {a }}$	(4.5) ${ }^{\text {a }}$	$(7.8)^{\text {a }}$
Carbise, anmiantomatic	70	123	17.4	117	12.7	18	2.2
Carbian, antomatic	68	75	2.1	69	5.0	19	1.6
T4il, samientomatic	70	99	15.7	85	10.2	57	7.4
T43, setomatic	68	68	2.1	52	4.4	44	3.8
Flechette	28	(57) ${ }^{\text {a }}$	(18.4) ${ }^{\text {a }}$	51	14.5	$40^{\text {b }}$	$10.8{ }^{\text {b }}$

aThesn experimentelly mianing date are artificially developed from the real data for tho en amm-
 tiog, $C / R=0.29$; Night to Day, $C, t=0.38$; Night to Day, $C / R=0.32$.
bNight Standing.
for all conventional buliets and 35 percent for single flechettes (App B). Consideration of salvo overkiliing and penetration fallure modifies these two values to yleld tae lethality figures of Table 13. Appendix O describes the detailed considerations. Applying these lethalities to the data of Table K5, the casual tles per run (C / t) and casualties per 100 rounds fired (C / R) of Table 13 are deduced. C / t ls really a measure of casualties per time ailt, as runs were fired in time (except that day and nlint times difiered). C/R ls sometimes referred to as "percontage casualtien."

Proper operational salvo consideration for automatic fire requires casualthe per trlgeer pull or per salvo (C/8), rather than casvalties per 100 rounde

CONFIDENTIAL

 round for all other fire. The average number of rounds per trigger pull is deduced in App E. The values from Table E7 are 2.07 rounds/salvo for the T18, and 2.63 rounds/salvo for the carbine (2.33 rounds/salvo over-all). Iluminationposition differences are not slenificant. The automatic-fire total rounds per run was carefully measured, and proved to bo 1.50 times the seminutomatic rounde per run.

These two figures then provide the rate of fire in trigger pulls per rum (automatic to semlautomatic): 1.50 to $2.33=0.64$. This one-third reduction in automatic compared with semiautomatic rate of trigger pull also agrees with the observed estimate.

Table 14

Ammanitios	Round	Teapom byatem	Combat loed	Man and iond
Single	. 0591	26.4	40.8	195
Duplox	. 0635	27.4	41.8	19
Triplex	. 0620	27.1	41.5	i96
Carbine	. 0188	13.1	27.5	182
T48	. 0410	22.6	37.0	197
Flechette	. 1024	34.6	49.0	204

Having translated hits to casualties, further refinement of effectiveness measure becomen difficult. For example, how many casualties per dollar, per pound, per minute, or per trigger squeeze? if dollars, apent for what, if pounds, of what? The answers are not clear; one cari only look at aeveral of the seemingly most reasonable criteria.

Costs are not simply accounted for. The prototype fiechettes were extremely expensive, and no good estimate is on hand for production cost. The duplex and triplex ammunitions are more in line with conventional aingle-bullet prodistion cont. The duplez ammunition particularly is loaded in a singlemachine operation, ard production cost is roughly estimeted at about 15 percent over single-bullet coit. Casulties per dollar cost of ammuntition te not com.. puted, as it is thought to be a poor criterion. If any effectiveness-cont ratio is sought, better cost data are first required. Secondly, the system must be defined: the pertiient cont is almost certainly not for ammunition alone, but includes weapon and other costs.

Logietical costs are similarly aifficult to take into account. Here, however, alequate measures are avallable. The pertinent welghts are listed in Table 14. All weights are given in pounds. The round weight is taben from Table 83. The weapon system tncludes a Korean average of 284 rounds, the packaging (1 belt, 1.6 lb ; 3 bandoleers, 0.4 lb : and $28 \mathrm{clips}, 1.7 \mathrm{lb}$) and the weapon. Weapon weights are taken from Table 82.

The $3.7-1 \mathrm{~b}$ ameruntion packaging is taken as constant for all the tent ammunition. The average total tesue in Korean use (clothing and equipment) was 40.8 lb . subtracting the weapon-syotom weight leaves 14.4 lt . This 14.4

CONFIDENTIAS

Ib It taken as constant rom all teat-weepon ayptems and added to produce the "Combat load" column. Finaily, the average $154.5-1 \mathrm{~b}$ man weight is added for the iast column.

For normalizition to time of firing, it is noted that "up" target time was 231 asc for day runs, $2531 / 3$ sec for night russ. From thase quantities it is possible to computn casualties per minute from casualties per run. Divicing by 10 yields average canualty production rate per man. A. this time a list of casualles por unit firing time and casuallies per unit weight for any of the four categories of weight of Table 14 can be made. As it would be tiresnme to inspect a needlessiy compiex tabie using all thene veights, Tahis 15 is computed for only the weapon-system weight (rifie pius 224 rounds plus paclaging).

Table 15
Casualtifs per Salvo, per Minute, and per pound

Ammanitio or firian	Day sittisk			Day atanding			Night aitting			"Averame		
	C/S	C./T	C/ $/$	C/S	C. ${ }^{1}$	C. 1 T	C./S	C/	C. 5	C/S	C, \quad \%	C. ${ }^{\text {W }}$
Sieglo	13.4	2.16	1.14	11.3	1.79	0.96	3.5	0.69	0.30	10.4	1.30	0.89
Daplex	19.8	3.06	1.62	16.8	3.01	1.37	5.9	1.04	0.48	15.6	2.54	1.27
Triplex	24.5	3.09	2.02	(19.4)	(2.75)	(1.60)	(7.8)	(1.07)	(0.64)	19.1	2.50	1.57
Carbine, semisutomati	17.4	3.19	2.98	12.7	3.04	2.17	2.2	0.43	0.38	12.4	2.45	2.13
Carbise, automatic	18.7	1.95	1.21	13.2	1.79	2.17	4.2	0.45	0.27	13.7	1.54	0.89
T48, aemin atomatic	15.7	2.57	1.56	10.1	2.21	1.01	7.4	1.35	0.73	12.3	2.18	1.22
T48, altomatic	14.7	1.77	0.70	Y. 1	1.35	0.44	7.9	1.04	0.38	11.6	1.48	0.56
Flechette	(18.4)	(1.48)	(1.19)	14.5	1.32	0.94	10.8	0.45	0.70	15.5	1.31	1.01

C/S cclumns are taken directly from Table 13 (times 2.63 and 2.07 rounds per aalvo for carbine and T48 bursts, respectively). C/T columns list casuaities per minute per man, asing C / t data from Table 13. C/W columns list casualties per pound of weapon system, using C / R data from Table 13 and weights from Tabie 14. "Average" casualty values are deduced by arbitrarily lumping the three separate conditions of firing in the approximate ratio of the experiment: 2 (day sitting): 1 (day standing): 1 (night sitting). This ratio is conserrative in heavily weighting the most accurate fire.

It is now appropriate to compare salvo with the single-bullet ammunitions: dupiex to single bullet, triplex to aingle bullet, flechette to aingle builet; and also carbine automatlc to carbine seminutomatic, and T48 automatic to semiautomatic. Because these last two ratios are corsistently approxmately equal, they are combined in Table 16. It is also of intereat to note meapon compartsons: carbine semiautomatic to Mi, T48 semiautomatic to M1.

To further goneralize the effectivenesR measure beyond almed-fire casualty production, unaimed or area rifle fire must be considered. This unaimed fire is gensialif tirected at apecific suspected target areas, and tas the primary effect of neutralizing or haraosing enemy troope, and heace protectiag and encuuraging friendly troopa.

Neutralization affectiveness has beon altermatively meesured by (1) number of bangs, (2) number of bullets, (3) number of hits, and (4) number of casuallies. Criterion 1 offera no diacrimination among the test ammunition unlase perhps

COMFIDENTIAL

loudness of bang is included. Criterton 2 equates aingle bullets, scores cuplez doubte, trlplex triple, and ftechettes \times 32. Automatic burets (from the Table K15 rate of fire)score 5 C percent over single bullets on a per time basls. The elower shotgun rate (about hall) and ineffective tumbing fraction of ilechettee reduce the fiechette factor to about 10 umee single bulfets on a per thme baste.

Brief reflection indicates that so long as the target area is larger than the greatest dispersion (a reasonable assumption), the number of hits (criterion 3)

Table 16
Aimeditinc Casualty futtos

Ammuition of firiag corapared	Condition											
	Dav aiting			Day atuding			Nimbt alting			Averame		
	C/s	C/T	C/m	C/S	C/T	C//	C/s	C/T	C/5	C/s	C/T	c/w
Duplex to aiogle	1.48	1.42	1.41	1.49	1.68	1.43	1.69	1.51	1.57	1.48	1.50	1.43
Triplex te aiagle	1.23	1.43	1.77	1.72	1.54	1.57	2.23	1.56	2.13	1.81	1.47	1.76
Fle chette to aizgle	1.37	0.59	1.04	1.28	0.74	0.\%	3.05	1.38	2.30	1.48	0.71	1.12
Astomatic to seminutomatic	1.01	0.65	0.42	0.97	0.60	0.41	1.26	0.84	0.59	1.02	0.65	0.43
C .erbise to M1	1.30	1.18	2.61	1.12	1.70	2.25	0.63	0.62	1.23	1.19	1.45	2.39
T48 $\mathrm{to} \mathrm{M}^{\text {M }}$	1.17	1.19	1.37	0.90	1.23	1.05	2.11	1.96	2.43	1.16	1.28	1.36

Table 17
Unamed-Fine rasualty hatios

Ammemition of firise compared	Nomber of bellets	Relative lethelity	Rete of firs	C/S	C/T	C/W
Daplor to siegle	2	0.90	0.98	1.80	1.76	1.73
Triplex to oterie	3	0.91	0.78	2.43	1.90	2.36
Flechatte to aiegle	16	0.40	0.49	6.40	3.14	4.89
t zomatic to sominutomatic	(2.33)	0.97	(0.64)	2.26	1.45	0.97
Carhine to MI	1	1	1.17	1.00	1.17	2.00
T48 to M1	1	1	1.06	1.00	1.06	1.16

Is just proportional to the number of bullets (criterion 2). The rolative number of casualtios (criterion 4) is then daduced from the number of bollets and the buttid lethally, dogredod for poadratlon tallure and overthl. Thic correeted fethality figere: from Table 13, together with the numbere of bullots per salvo, yield the relative valuea of $\mathrm{C} / \mathrm{8}$ of Table 17. The averege value for rounde per burst (both wompons) is taloon from Tablo E7 20 2.35. The averace rate-of-fire values for computise C / T are then from Tabso K15 for sticte-buttet, duplex, carbine, and T48 ammattion. The alasiag triplex and nochotte ratoe of fire are deduced from the incomplete chit of Table x Ks wing the mothod atatod in footnote of Table 13 (corroctod for lacremeed alith "up" time). Theee then
 sttinge). The C/W valuse we Thble $!4$ syotem mights as belore.

CONFIDENTIAL

The number of fiechettes in Table 17 is halved to account for the observed effect with the prototype loads teated: many of the flechettes fall to fly properiy. Those erratic flechettes presumably fail to reach the target area, or at least fall to reach it in an effective orientation. A most conservative estimate is that at least half of the 32 do fly properiy. It should be noted that suceess in cosrecting this erratie filght will double the fiechette effectiveness of Table 17.

Note that only the relative numbers of unaducd-ifre casuaities have been deduced. If actual casualties were avallabie, experience indicates that the figures might be so much smaller thrn aimed-ifre casuallies as to be inzignificant. Yet the neutralizing effect of potentially casualty-producing rifie ilre Is not insignificani. Cleariy then, the absolule casualty values are not ieeded, and the relative values of Table 17 are stili valid as measures of putential casualties (casualties suffered by the enemy if he should fall to seok cover and be neutralized).

Table 18
Oven-all Cisualty Ramos

Ammantion firing compared	C/S	C / T	C./	0^{4}
	1.04	1.03	1.58	0.03-0.11
Triplex to siagle	2.12	1.69	2.06	0.06-0.14
Flechets to sirgle	3.94	2.9	3.01	0.16- -
Automatic to menoisutomatic	1.64	1.05	0.70	0.04-0.23
Carbine to M1	1.10	1.31	2.20	0.03-0.12
T48 to M1	1.08	1.17	1.22	0.03-0.11

-Stoedard devintion of C/'S colume oaly.

It is desirable now to deduce over-all ammunition comparisons for ali rifle fire. The question is: What relative value to allot to almed fire (Tabie 18) and to unaimed fire (Table 17)? Appendix C shows that unaimed fire constitutes 39 percent of all rifle fire. This agrees with informal accepted milltary opinion that two-thirds to three-fourthe of rifle fire is noisimed. Presumably the conditions of battic are such that almed rifle sire at visible individual targots is generaliy more critical, and hence an appropriate average weights unaimed fire at something less than 89 percent. For lack of a better bagis for value judgment, the ratios of Tables 16 and 17 are welghter equally in doducing the over-all caoualty ration of Tabie 18. Il must be borne in mind that Table 18, altbough our boat over-all elfectivences estimate, havolves a cruds fumping of almed and unaimed fire. The firmor experimental reoults appear in Table 16.

The range of standard deviations is from the minimum puroly rondom or mampling errors, takon from Table $J 36$ and the maximum gross oxperimontal ageregato value from Tablo J33. The perceatape figuras from these iwo tables (divided by $\sqrt{2}$) are sppliod te the $\mathrm{C} / 8$ column to yiold the absolvie valuou licted. The standard deviations for aimed fire (Table 16) are larepr by an average of $\sqrt{3}$. Individual aimod-fire standord devgisiuns may bo compuld from Tabloe J33 and 535.

COMFIDEWTIA!

CONCLUSIONS

Major Cunclusions*

The major conclusions of this paper may be drawn trom Tables 16,17 , and 18. Since the casualty ratios of Table 18 are often not too different for the various criteria ($C / S, C / T, C / W$), it is sensible in these cases io express average ffectlveness ratios. Table 19 shows thene averaged-criterion casualty ratlos.

1. Duplex ammunition achieves 60 percent more casualtios than single bullets over-all. This gain increases with decreasing accuracy (40 percent sitting, 50 percent standing, 60 percent night, and 80 percent unalmed; also 57 percent expert squad, 64 percent averace squad, 72 percent unqualified squad). System weight and rate of flre do not dififer significantiy from those for single bullets.

Table 19
Mefor Catergon Casealty Ratios

Ammnaition or Eiring compered	Dey - itting	Day sittian	Vipht - ittion	Uuaimed	Over-all
Deplex to siagle	1.46	1.53	150	1.0́	1.02
sriplex to siugle	1.68	1.64	1.97	2.23	1.96
Flechette to siagle	1.03	1.00	2.26	4.81	3.30
Automatic to semiamtometic	0.69	0.06	0.90	1.56	1.13
Curbine to M1	1.80	1.69	0.83	1.39	1.54
T48 to M1	1.24	1.06	2.17	1.07	1.17

2. Triplex ammunition appears to achieve double the casualties of single bullets over-all. This gain increases with decreasing accuracy (79 percent day, 120 percent unaimed). System weight does not differ significantly from that for single bullets. Rate of fire appears to be decreased about 20 percent.
3. Flechettes appear to achieve two to four times the casualties of single bullets over-2ll (100 to 290 percent gain). This gain increases radically with decreasing accuracy (0 percent day, 130 percent night, and 380 percent unaimed). System welght is about 30 percent more than that of the M1. Finte of fire appears to be decreseed about 50 percent.
4. Automatic flre without bipod is compared with seminutomatle f.re. Its casuslity score varies from a loss to a pin as accuracy decreases (-30 percent day, -10 percent night, +60 percent unalmod). Raie of fire in rounds per malnute for short bursts is 50 percent greater than that for semiautomatic flre.
5. The $.22-c a l$ carblne achleves 50 percent more casualties than the M1 over-all. This gin decreases with decreasing accuracy (80 percent sitting, 70 percent standing, and 40 percent unaimed). Night fire chows a 20 percent 10se, system weight is 50 percent less than the M1, and the rate of fire is increaned 20 percent.
6. The .22 -cal T48 achieves 20 percent mors caoualtibs than the M1 over2ll. This patn does nut vary appreclably with decreasing accunicy (20 peresant
[^0]
CONFIDENTIAL

sltting, 10 percent standing, and 10 percent unalmed). Nlght fire shows a 120 percent gadn, system weight is 10 percent less than the Ml, and the rate ut itre de increabed 10 percent.

Discussion of Major Cunclusions

it is concluced that duplex ammunition offers an unambiguous gain of 60 percent effectiveness over single-bullet fire. This figure is statistically sound, and holds roughly for considerable modification in the arbitrary weight lag of different types of sire.

The average galn of i00 percent efieciiveness for triplex ammunition is based on meager almed-flre data (two runs) but seems qulte reasonable. This value, however, fluctuates with the criterion used, particularly to give a lower value (70 percent) on a per time basis because of the observed and unexplained reduction in rate of flre. It is suspecied that this observed rate effect is not generally real, as no satisfactory syslematic explanatlon has occurred. Addltional testing is required to verify the 100 percent over-all figure.

The flechette gain depends markedly on the criterion selected. Table 18 shows roughly that casualities per minute double, casualties per pound triple, and casualties per saivo quadruple the single-bullet score. Further the gain depends markedly on the type fire. Almed fire shows an average gain of 10 pe.cent, unaimed fire a gain of 380 percent. Further the gain varles considerably with accuracy condition in aimed flre: no gain in day fire, 130 percent gain at nicht. This suggests that the flechette type of highly multiple salvo is perticulariy valuable in poor accuracy conditions. Very probably the limitations on combat simulation in the experiment produce greater accuracy than true combat, niaking this study's results conservative. The realization that pistol aiming error is generaliy about flve times rifle error ${ }^{18}$ strongly suggests the application of a flechette-type load to a side arm. Furthermore, the 50 percent rate-of-fire decrease and 30 percent weapon-syslem-welght increase together with estimated 50 percent erratic $\sim 1 l$ ght observailon cumbine to indicate that the considerable additional gains may be achieved with successful further development.

The automatic fire results show 60 percent increased effectiveness compared with semiautomatic fire on a salvo or trigger-pull basis, 30 percent decreased effectiveness on a weight basis, no appreciable difference on a llme basls. Further the average ioss is 30 percent in aimed fire. The only conditions apprectably favoring automatic fire are night aimed fire on a per ealvo bask (+30 percent), unaimed fire on a per salvo basts (+130 percent), and unalmed fire on a per llme basis (+50 percent). Other conditions and criterta favor semtautomatlc fire. These automatic fire gains are based on the assump tion that automatic unaimed fire is confined to the target area. This assumption warrants crltical scrutiny. It is noted, however, that the almed-fire data are reatrlcted to flring without bipod (from the shoulder). On the other hand, ali automatic-fire comparisons were made with licht .22-cal weapons, which probably hoid on target better than heavier wsapons such as the BAR and M15.

The .22 -cal carbine and T48 both achieve about 20 percent more camaities per round in aimed semtautomatic fire than the M1 with sinule-buliet ammonition. This accuracy gatn may be attributed to the smaller caliber, the
light weapon weight, or the esduced recoii effect. A further gain is noted in the increased rate o * fire (about 10 percent), resuliting is a 20 to 30 percent
 ment to identify the source of this accuracy and rate-of-fire gain is indicated. The iighter system weights make the advantage of these weapons still more pronounced on a casualty-per-pound basls (30 percent for the T48, 120 percent for the carbine). Here it becomes essential to seiect the criterion that will be used to evaluate ultimate effectiveness. Casualties per pound favor the smallcarbine single-bullet over. 30 -cal duplex ammunition; casualties per round or per minute favor duplex. In all cases (except carbine night fire), the . 22 -cal weapons tested are superior to the $.30-\mathrm{cal} \mathrm{Ml}$. This result naturally suggests that $.22-\mathrm{cal}$ duplex and triolex ammunition be examined to achieve both gains. (Triplex ammunition may not be practicable in .22 cal, considering available muzzle energy and veloclty losses).

Of special note are the night aimed-fire comparisons with the three weapons ilsted in Table 16. Without considering weight differences, it is seen that the carbine drops from a 40 percent average day gain over M1 to a 40 percent night loss. The T 48 increases from a 10 percent average day gain over M1 to a 100 percent night gain. To get a better notion of this nigit effect, the day resuits for the three weapons (C / R and C / T) are normalized and compared with the resultant night values. This yieids a relative carbine night degradation of 60 percent and a relative T48 improvement of 80 percent. These large differences were apparent during conduct of the experiment.
 peep sight. The T48 was noted in the field to have a sight picture about three times the linear dlmension afforded by the M1. This is borne out by the sight dimensions. The angle defined by a pupiliary diameter of $1 / 4 \mathrm{in}$. (night) and the aperture diameters and distances (from Table B2) are: M1, 6 mils; T48, 14 mils; and carbine, 7 mils . The poor carbine night performance is apparentiy not due to sight dimensions. Possibly aperture reflectivity, depth, and taper are involved. Debriefing revealed that troops generaily used the T48 sight in night firing but compietely avolded use of the M1 and carbine sights at aight.

It should he noted that these experimental firings were all with augmented bright moonilght. Variations in lliumination might lead to different results. The lack of explanation for the carbine night degradation and the possible uncertainty in the explanation of the T48 night improvement suggest further field tests on peep sights under conditions of limited illumination.

It is ingtructive to examine the salvo to single-bullet ratio in casualties per saivo as a function of accuracy. In unaimed fire the accuracy is such that the basic single-bullet hit probability is negligible. The associated casualty ratios are given in Tables 16 and 17.

Furthermore it is possible to deduce the casualty production for each ammunition under the condition of perfect accuracy, or 100 percent hit izobebility. For this computation oaly one hit per calvo is first assumed. I somi App 0 the penetration degradations are none for single -bullet ammunition ans automatic fire, 0.2 percent for duplex, 7.1 percent for triplex, and 7.2 percent for fiechette ammunition. Appiying these degrada!!ons to the App B basic buliet lethallites (35 percent for flechettes. 70 percent for ail builets), the C / s for the one-hit case are doduced.

CONFIDENTIAL

Table 20
Perplet-Acceracy Casualty Ratios

Ammunitioe or firian eompared	Nuchber of bullete	C/S		C/T		C/T	
		She hit	Al] lite	Une hit	All bite	Oee hit	A11 hite
Deplex to sisgle	2	1.00	1.30	0.98	1.27	0.96	1.25
Triplex to single	3	0.93	1.37	0.73	1.07	0.90	1.33
Flechetite to eingle	16%	0.46	1.43	0.23	0.70	0.35	1.09
Automatic to eamiectomatic	2.5	1.00	1.33	0.60	0.80	0.40	0.53

- Effective n maber for prototype.

Fig. 15-C/S os a Function of Accurecy (Full Renge of Probobility)

$$
\text { —-- Triplex emmumition } \quad-\infty \text { - Autanatic fire }
$$

-__ Single bullots

CONFIDENTIAL

The C / s for the asumption of all hutitete hitimy bre compuind by the unual overkill calculation. For example, duplex ammunition scores 0.7 cinsublifes with the itrst hit, plus $0.7 \times(1-0.7)$ with the second hit. The total (0.71) is greater than the single bullet (0.7) in the ratlo 1.30, shown in Table 20. The C / T and C / W columns are compuied from the C / S column as in the earller tables.

The one-hil values of cable 20 anply to yery distant targats, and the allhits values apply to very close targets. The integrated average for the targei eystem llesbetween, but would be most tedious to compute. Omiting the artificially generated iriples and flechette data, the C/f are shown in Fig. is as a function of accuracy. Intermediate values from Table 20 are us for the perfect-accuracy points. The figure shows clearly the trend of decreasing saivo gain with increasing accuracy. Furthermore the curves demonstrate thai this effeci is most pronounced for the largest salvos (flecheite slope $>$ triplex slope $>$ duplex slope).

As accuracy characio lized by hif probabilities of over 20 percent is of little practical military significance, the same daia are plotted in Fig. 16 on a larger scaje. This is clearly the accuracy range of interest. Similar plots are siown in Figs. 17 and 18 of C / T and C / W. From all three figures, it is clear that in unaimed or very inaccurate fire the effecifveness order is (1) flechettes, (2) iriples amm:raition, (3) dupiex armunition, (s) automatlc fire, and (5) single bullets. The most accurate fire shows generally (i) iriplex ammunilion, (2) duplex ammunltion, (3) single bullets, (4) flechettes, and (5) Qutnonts: :!.e. Düits anui iripiex ammunitions are never shown to be inferior to single bullets.

From the crossover points on thege flgures it ls evident that further data are needed on actual combat rifle accuracy or hit probablities. Flrm decisions on relative combat effectlveness require lnomiledge of where to make valld comparisons along the abscissa of Flgs. 1e to 18 . Combai experience mist be canvassed to provide an estimate of rifle accuracy in actual combat.

Additional Conclusions

In addition to the six major conclusions on ammunition and weapons differ ences from Tables 16 to 16 , there are 16 other cunclusions from the experiment.
7. Most day targets range from 75 to 350 yd ; night targets from 50 to 225 yd.
8. Mean ranges of firing are 177 yd for day targets and 121 yd for nlght targets.

The target system, based on the questionnalre of App C, gives day target with rang 4 of 75 to 340 yd with a mean range of 190 yd . Table P1 of App P gives the hits by target and permits the calculation of a mean range of hits. This value is 133 yd. Appendix F glves single-bullet rounds firod by target, and permite calculation of a mean range by rounde fired. Thle weighe od mean range is 177 yd . The mean day-target exposure time is $10 \frac{1}{\mathrm{~s}} \mathrm{sec}$.

Similarly the night target range froun 50 to 225 yd , with a mean range of 135 jd . The computed mean hit range (from Table P2) is 85 yd . The msan range by round fired (Table F 40) io i 21 gd . The monn night oxpooure time is 11\% see.

TVILM30ismos

COMFIDEMTIAL

9. Méñ atugie-videt hit pritabitien are 19 percent for day sitiug, is percent for day standing, and 6 percent for night situng; 14 percent average.
10. Mean aiming errors (linear standard deviations) are 3.0 mils for day sitting; 3.4 mils for day standing; and 7.8 mils for night sitting; 2.8 mils average.

The equivalent target sizes (F and E) aro circles of radil 8.8 in . and 14.0 in. (shown in App M). As the questionnaire leads to 12 F and 10 E targets for both day and night, the veighated average target radus is 11.8 ini. Thus it is conciuded that typical rifie targets are representabie by a i-ft-radius circie at aboui 170 yd for day or 120 yd for night.

It is porsibie to use these typical targets together with the $h^{\prime}:$ probabilities from Table K 15 (19, 15 , and 6 percent) to compute representative aiming errors.

From expression M3 of App M the alming error as a ilnear standard deviation O is a function of target size Γ, range R, and hit probabilits $P_{l /}$.

$$
\sigma=T / R \sqrt{-2 \ln \left(1-P_{i l}\right)}
$$

Using the mean ranges (by rounds fired) 170 and 120 yd yield errors of 3.0 mils for day sitting, 3.4 mils for day atanding, and 7.8 mils for night sitting.
 CEP) at 100 yd are about 25 in . for day sitting, 29 in . for day standing, and 66 in. or $5^{1 / 2}$ ft for night sitting.
 percent. This corresponds to an average aiming error of 3.8 mlls (based on a mean target range of 160 yd). If it is desired to deduce accuracy values for all fire inciuding unaimed, the 14 percent. hit probability is reduced to about 4.4 percent by considering that the 69 percent unaimed fire (App C) score negligible hits. This 4.1 percent hit probability correeponds to a $7.0-\mathrm{mil}$ aiming error.
11. Average rate of rifie fire is $3 \mathrm{sec} / \mathrm{round}$.
12. Average time to acquire a target is $1 \% / \mathrm{sec}$.
13. Average extent of laie firc (after target disappearance) is $1 / \mathrm{s}$ aec.

The time pattern of fire is deduced in App 1. These averages hoid for this experiment. This iate fire constitutes about 12 percent of alifire.
14. Average rate of fire drops to $3.2 \mathrm{sec} /$ round for sitting and increases to $2.8 \mathrm{sec} /$ round for standing or night.

Raies of fire can also be compared for the several fi-ing conditions. The ajerage numbers of rounds fired per run from Table K14, divided by the target up times ($231,253^{1} / \mathrm{s} \mathrm{sec}$) yieid average firing times of 3.2 sec for day sitting; 2.7 sec for day standing; and 2.8 sec for night sitting. This agrees with ive AppI over-all average of $3 \mathrm{sec} /$ round but shows a silght incroase in time for careful aiming and a silght decrease for leas careful aiming.
15. The relative hit probabilities by qualification are 100 for uxpert, 88 for sharpshooter, 75 for markman, and 43 for unquallifed.

Appendix G compares squad performance againet squad composition by Army markemanship qualification, and deduces relative scores by qualuication.

CONFIDENFIAL

16. During the experlment, the hits jer round was constant, the hits per unit tlme increased about 2 percent per run (rate of flre Increased about 2 percent per run).

The rrends of score with experience in the test firing is examined in App H snd App K. This shows a 19 to 29 percent increase \ln rounds flred, and a negllgible increase in hit probabllity over the learning span. Thie increase in hits per unit time is large enough to warrant examination of its implications for tradn!ng.
17. Hite foilow inverse-square law with range.
18. Hits and amount of fire are proportional to target appearance dime (less $13 / 4$ sec initual lag) for targets exposed 6 sec or longer.
19. The smalier (F) targets received 10 percent less fire than the large (E) targets, and only about two-thirds as many hits per area.
20. Target movement reduced fire and hits by about 10 percent.
21. Conceaiment reduced the amount of fire by about 30 percent, the hits by about 10 percent.
22. Biank flre at targets increased hits about 50 percent.

Appendix \mathbf{P} on target characteristics leads to concluslons 17 to 22 (from Table P8).

RECOMMENDATIONS

1. The duplex and triplex ammunitions should be considered for adoption.

The increased casuaity production of both duplex and triplex ammunitions is considered well enough demonstrated to warrant their official consideration by Department of the Army and CONARC for adoption. This consideration should presumably be based on independent Army tests and appropriate economic and standardization aspects not evaluated in this study. The demonstrated gains warrant more effort on duplex and triplex ammunitions than on conventional single-bullet ammunltions and weapons.
2. Additional tests of trlplex and flechette ammunitions ghould be conducted.

Further tests are needed of the casualty-production capability of triplex and flechette ammunitions. The principles are now clearly shown; these tests should be performed by CONARC or Ordnance Corps.
3. F'lechette development should be accelerated.

The fiechette potential is so high as to warrant development of a much superior prototype. Fabrication of a sstem of tighter dispersion and more conventent phyaical characterlatics Lu an Ordnance Corpa reaponalbility.
4. A flechette side-arm load should be deveioped for test.

The clear by-product recommendation of this study requires instiation of a project by Ordnance Corpe in rroduce a suitable side-arm flechette load for testing.

CONFIDENTIAL

5. Docirine for aimed automatic shoulder fire whould be reviewed.

Since automatic fire from the shoulder scored poorly in the SALVO I experiment, the Iraining for such fire should be reviewed (perhape by HumRRO), and modified if necessary.
6. An investigation of amaller weapons should be initiated to identify observed .22-cal gains.

The Improved performance of the two amaller caliber weapons may be due tc welght, recoil, or callber difference. An experimental investigation by CONARC or Ordnance Corps is needed to tdentify the specific cause.
7. A.22-cal duptex ammunttion should be fabricated and tested.

A .22-cal duplex ammunition appears to afford dual advantages of duplex hit increase, and $.22-c a l$, Improved operational accuracy. This might well offer the best bet for interim adoption.
8. The peep-sight requirement should be reconsidered.

The night differences observed suggest that the present peep sight is too restrictive, and that a large peep or an open sight is superior. This could be demonstrated by experiment, perhaps by HumRRO.

The tack of knowiedge of how to extend the results of this study to real combat emphaszies the need for data on combat rifle accuracy. ORO is attempting to extract data from experience; other efforts are needed.
10. This experimental context should be considered for training use.

The tearning observed and demonstrated in this experiment suggests the utility of the same sort of context for use in training. HumRRO might examine ORO's test system for useful training features.

CONFIDENTIAL

Appendix A

PERSONNE, 1

SUMMARY 47
TEST SUBJECTS 47
DEBRIEFING 49
Questions Askeo arter eace Set of Two luns-Questions Askeo at the End of Each Week of Firing
TABLES
A1. 3d Div Maresmanship Qualifications 48
a2. Qualifications Furnished and liequested 48
a3. Individeal Qualafications 49
ORO-T-378 45

COMFIDENTIAL

SUMMARY

Test-subject selection was based on the marksmanship scores found in the eight battalions of the 3 d Inf Dtv tn Miay 1956. In accordance with these scores ORO requested four "average" 10 -man squads, each composed of 1 expert, 4 sharpshooteis, i inarksmen, and 1 uncualified ftrer. Two additional squads were requested-one of to experts and one of 10 unqualified firers. The 3d Div furnished 3 experts, 24 sharpshooters, 13 maricemen, and no unqualifled firers, unevealy distributed among the four average 10 -man squads; 8 experts and 2 sharpshooters for the expert squad; and 2 experts, 2 sharpshouters, 2 marksmen, and 4 unqualified firers for the unqualified squad.

The test subjects were asked a series of questions after each pair of runs, and another after the completion of each week of firing. They reported an overwhelming preferance for the T48 with semiautomatic- and automatic-fire opton. The reason most commonly given for this preferencewas the "added ftrepower" that the automatic fire provided. The test subjects also expressed a disitke for the carbine, which had the same automatic- and semiautomatic-fire option. The reason here was lack of "killing power." Answers to other questions are presented in the section "Debriefing."

TEST SUBJECTS

The major criterion used in the selection of the test subjects was their rifie marksmanship qualifications. In addition each subject was given a complete physical examination, and his medlcal records were checked to ensure that he had no record of heart disease or epllepsy. This precaution was taken because of the use of electrtc shock during the test.

The results of a survey ${ }^{10}$ of the rifle marksmanship of elght battaltons of the 3d Div are shown in Table Al.

To the nearest 10 percent this distribution may be approximated by $t 0$ percent experts, 40 percent sharpshooters, 50 percent marksmen, and no unqualified. It was judged, however, that at least a few of the mintmum-score markemon were "peactl-qualifled." Hence it was dectood that the test subjects should include 10 percent experis, 40 percent sharpabooters, 40 percsint markmen, and 10 percent unqualifted. The 40 test subjects requestod irom the 3 d DIv were to be 10 -man groupe or squads, sach group lacludiag 1 expert, 4 sharpohooters, 4 marksmen, and 1 unquilited rklaman.

The 2 d Bn of the 3d Div sent four 10 -sam lots to the test stte ootenatbly having the given qualifications. Duriag the conduct of the expertment, parilicularly n a result of the debrtefing intervews, suppicion arose conesrating the

CONFIDENTIAL

maricsmanship qualifications of the test subjects. Since it was then too late to change test subjects the test continued with the troops furnished. A subsequent check of the service records ${ }^{20}$ of the test subjects indicated deviation from the original criterion as shown in Table A2. Imbalance occurred both in totals and in each 10 -man squad. For exarrple, squads E and F were supposed to be composed exclusively of experts and unqualifieds, respectively. Although this was

Tiule it
3D Itv Iamksmanship (unaificalions

lof ba	Expert	Sharpahooter	Merkaman	Liqualified	Toral
151	15	95	147	0	257
2 d	28	167	150	13	358
3d	20	99	209	5	333
4.h	29	i13	94	6	242
5th	29	123	164	14	330
6th	46	127	99	4	276
7 7h	39	111	107	0	257
8 th	41	116	100	8	265
Total	247	951	1070	50	2318
Percent					
of total	11	41	46	2	100

Table A2
Quatifications Fuanished and requested

Squad	Expert	Sharpahooter	Miarkaman	Unqealified
A	i(1$)$	$3(4)$	$6(4)$	$0(1)$
B	$1(1)$	$7(4)$	$2(4)$	$0(1)$
C	$0(1)$	$6(4)$	$4(4)$	$0(1)$
L	$1(1)$	$8(4)$	$1(4)$	$0(1)$
F.	$8(10)$	$2(0)$	$0(0)$	$0(0)$
F	$2(0)$	$2(0)$	$2(0)$	$4(10)$
Total	$13(14)$	$28(16)$	$15(16)$	$4(14)$

[^1]not the case it can be seen that there was in fact a large differeace between the qualifications of the two lots, and hence the experimental objective of meacuring qualification effects on alvo yatn was largely fulfilled.

Table As shows the results of the postexperiment study of persoanel recorde of personnel teeled in the SALVO I experiment. The subject's seapon qualification listed in the table is the one that had the latest date on hie recorda. Some of the records were not avallable because of discharges or transfers, and these instances are noted.

Seventy-five percent of theee teat aubjects were enliatees, and 75 percent had over 2 years of service. They had completed an average of $9^{t} / 3$ yofrs of schooling, the raage being from the third grade to the third yoar of college.

COMFIDENTIAL

1AGLE A3
indivieual (nalifications

Squad and teat sabject	Qualificationa from peraoanal recorda	3d Div deaigeatioe	pued and teat asbject	Qualificationa from permonnol recorda	3d Div daaignatioa
Squad in			Sh, end is		
Sgt lioange	*	E.	Pli liall	E	E
Sot Lopez	SS	SS	Sif 'leftoo	SS	SS
Pve Perez	SS	SS	Sp 3 Swafford	SS	SS
Ple Duagee	SS	SS	Sp 3 Clispmee	SS	SS
Put ladson	Mint	SS	Sp 3 lirar 300	SS	SS
Sat lisurry	M M	M ${ }^{1}$	Stic Piaz	SS	4 ${ }^{\text {M }}$
Sfit Bennett	b	M M	Sp 3 Nuffer	SS	M ${ }^{\text {a }}$
Sp 3 Chitwood	$\cdots \mathrm{M}$	311	Put Perty	SS	Win
Sp 3 lrake	MM	M	Pfe Rrowe	MM	(14
P'vt Whelchel	M M	UVQ	Pvt foaldia	SS	UNO
Squad 13			Expert aqaed		
Ste Kaokle	E	\&	Ph Olives	E.	t.
$S_{8}{ }^{\text {c }}$ Frnwley	c	SS	Sgt Wifeom	SS	E
Sp 3 linrris	c	SS	Pte llugh	E	c.
Pvt ldama	b	SS	P'vt Holder		E
Pre Koowlea	SS	SS	Ple Diez	SS	E
Cif 31 ampen	${ }^{\text {cs }}$	2188		E	\%
Pve Moasie	SS	M M	Pre Fowler	E	E
Ste Perry	M ${ }^{\text {M }}$	M19	Pre Baiza	E	E
Prt Roon	M M	M M	Sp 3 Seachaz	E	ε
Pal \%erbe	SS	UVQ	Ste f'niater	E	E
Squad C.			"agealified aquad		
Sfe Zdina	SS	E	Ste llabl	SS	EvQ
Sp 3 Mork	SS	SS	Pfc Cosper	d	LV\%
Sp 3 Freemae	SS	SS	Sp 3 Edwards	E	Evo
Sto 0'Reilly	SS	SS	Sp 3 siflor	F.	IVO
Sp 3 Chamblisa	SS	SS	Sp 3 Kiomaly	SS	VQ
Pve Miller	MM	MM	Sp 3 Seac	MM	IV?
Sp 3 tiright	MM	MM	Pfe MeNabb	UVQ	(v)
Pvt Roen	M ${ }^{\text {N }}$	MM	Pfe fitule	UNS	I'vo
Pfic Ortiz	14,	MM	Pvt Coame	UNQ	(V)
P've 3oaner	SS	UNQ	Pve Colon	M M	(1)

Diachneged. bTranoferrad. $\mathrm{CNo}_{\mathrm{N}}$ quafificatioa raeord. difecord miasiag.

DEBRIEFING

After each set of two rwise and at the end of each week of firing the test subjects were asked two series of questions about the experiment itself and about the test and control tiems. The object of the se questions was to obtain subjective informatton concerutng the effect of the experiment on the toet subjects, and also to uncover any lactors affecting the experiment that were not obvlous on the firing line. These questions ware asked in individual interviews. Some difficulty was experienced th questioning the Puerto Rican soldiers owing to their 1 mperfect understandtug of Enclith. The quentions, a numerical tabulation of the answers, and an imerpretation of these answers followe.

COMFIDENTIAL

Quentiona Aaked after Each Set of Two Runz

1. "Dic your weapoa malfunction? Wblch ru" and how many times?"

The anawers to these queatlons were co vague and Inaccurate that asilag them was diacontinued. Tbis Information was inatead collected on the firing line by the Ordnance representativer and is reported in App N.
2. "Do you feel that the targets, that is, the way they appared, the time they were up, and the distances at which they appeared, were like what you would expect com bat to ba like?"

Ariswer	Response, $\%$
Just like combat	18
Very much like combst	21
Sometbing like combat	57
Not mucb like combat	3
Not at all like combat	1

3. "Did the wires attached to your rifle Interfere with your getting hits?"

Answer	Response, \%
Did not interfere	100

4. "How much was your firing affected by concern over getting an electric shock on your leg?"

Answer	Response,\%
A lot	0
Some	2
Very ilttle	5
Not at all	93

5. "How much was firing affected by the wires sttached to your leg?"

Alawer	Reaponse,\%
A lot	0
Sorne	0
Very little	2
Not at all	98

6. "On this run did duat on the target gystem Interfere with your getting hits?"

Answer	Responae, \% of runs
Dunt did mot interiere	15
Duat did intorfere	61^{2}

CONFIDENTIAL

On the 81 perceat of the runs on which there was tome report of duet inferference an sversge of 58 percent of the flrers reported this interfereace. This dust was from low rounds and demolitions in the tirget system.
7. "What effect did heat have on your getting hits?"

Heat was cot reported as affecting hlis.
8. "Was there anything else that affected your getiong bits? Uso, what?"

This was a catch-all qucntlow, which aumetimem turned up imeresting results. One man reported that he had recelved five inoculations in the upper part of his right arm before coming to the fleld for the day's firlag. By the end of the day the man reported a very palnful thoulder. ORO requested that the teat aubjecta be Etven no more Inocula tlons durlag the balance of the test.

During one run five men reported recelving Hght abocks from the trigger housings of their rifles. This ittuation was Investigated and corrected
9. "Were you able to get a sight plcture?" (Thia question was asked after the aight runs.)

Weapon used	Yes, \%	No, \%
M1	0	100
T48	62	38
Carbine	0	100

10. 'Have you fired the regular carblae In automatic fire? If so, do you think that the recoll compensator on the carbine caused it to jump less than an ordinary carblne?" f.As!

Answer	Yea, \%	No, \%
Have fired carbine in automatlc fire	35	65

Of thome who had fired the carblae in sutomatic fire, all thought the modified carblue used In the test jumped teas.

Questions Asked st the End of Each Week of Firing

1. 'If you had your cholce, whicb of the weapon-ammunltion comblatlona you have flred In the teat would you prefer to have in combat?"

Answer	Reaponse, \%
T48 automatlc and semlaut omat ic	72
M1 with duplex ammunition	12
No optnion	8
T48 semlatomatlc	5
T48 automatic	3

More than 90 percent of those who preferred the T48 with automatic and aemiautomatlc option gave as tbe most important reazon tbe automatic-fire capablity. Evsin though the tant subjocts kew that the 10 -inne groupe a wbots were meting fower hite with sumomalc firs the bellef pernteted to many Ifdividusla tbat thoy persomally wars getting mora bite. Otber factors that coas ributed to the populartify of the T48 wara the larger eperture peopsigtis and tbe bellaf that the T4i was itytior.

COMFIDENTIAL

※. "wiblich wenpon and ammuattion would you loat like to have in combat ?"

Answer	Reaponae, \%
Carbine	62
No oplation	27
M1 with AP	5
M1 wlth duplex or triplex	3
T48 autcmutic and semlautomstic	3

In liating their reasond for their dialike of tha carbine, 90 percent mentioned a lack of "killiag power." The aecond most common complaint waa its high rate of malfunction. Thoae who diallked the Ml complaineci about tia welght.
3. "How much experlence have you had in firiag the BAR?"

Answer	Responae, \%
None	23
Some (a few rounds ia basic training)	32
A lot (qualifled)	45

4. "How much experience have you had in automatic carbine firing?"

	Answer
Reaponse, \%	
Never fired	35
Some (a few rounds in basic training)	18
A lot (qualifled)	47

5. "Do you feel that your concern over getting shocked would be like your concera over getting wounded in combat?"

Anawer	Reaponse, \%
Vary much the aame	10
Somewhat the same	43
Not at all the same	47

6. "Have you fired on a raage almilar to this one before?"

Arower	Reaponse, \%
Yos	48
No	52

Of those who asid they had fired on a range similiar to the test raage befora, all but two asid that they wers referring to the Army tranaition range. Two of the teat aubjocts had flred the Mumkno TRAINFIRE 1 rangen and thought thla and the iest range quite almiler.

COMFIDENTIAL

Appendix B

HEAPONS AND AMMUNITION
SUMMARY 55
HEAPONS 56
30-Cal M1 Fufle:-30-Cal M1 Rufle (Modified) - 22-Cal. T48 Pifle-22-CalCarbine (Modified 30-Cal M2 Carbine)-12-Gace autdlondinc Shotcun
AMMUNTTION 59
BLLLET IETHALITY 63
helmet penethation 64
FIGURES
B1 Test Weapons 56
B2 MI Chamer Reaminc 58
B3. Test Amunitions 60
B4. Pattern of 30-Cal Duplex Contmollen Dispersion 61
TABLES
B1. Teer Weapon-Ammi vition Combinations 55
B2 Characteristics cf Test Weapons 57
B3. Characteristics of Test Aumunttions 59
$B 4$ Front. Bullet Imf.cision 59
B5. Belleet Lethality Probabilities 63
B6 Ieimet Penetration lesilits 64

Conf!csn!iat

SUMMARY

The weapons used in the SALVOI test were four kinds of rifles and one shotgun. The rifles were (a) the standard Army .30 -cal Ml rifle, (b) a modified .30 -cal Ml rifle with a reamed chamber to accept long-necked duplex and triplex cartridges, (c) a .22-cal (Gustafson) carbine developed at Aberdeen Proving Ground from the standard Army . $30-\mathrm{cal}$ M2 carbine, and (d) a .22-cal T48 risle modified at Springfield Armory from a . 30 -cal T48 (Fabrique Nationale d'Armes de Guerre). The shotgun was a Remington model 11-48A 12-gage autoloading shotgun with four stiffening ribs welded on the barrel.

Tann.f 131
Th:St Mf.apon-dmantition Combivations

Teapoa	Immunition	リип*
30-cal 171 m	. $30-\mathrm{com}$! 1! 10	8
$30-\mathrm{cal} \mathrm{ll}$		10
.30-cal $\mathrm{HIa}^{\text {a }}$.30-cal dupler	11
30-cal 11 l	- 3-cal trimer	\because
.22-cal Ttя	-39-cal hierre	16
23-cal 1 ? carbine ${ }^{\text {a }}$. 23-cal carbine	16
12-ange shotrun ${ }^{\text {n }}$	32 -flechette loud.	?
Total		68

- Iodified.

Special ammunitions were developed for thistest and compared with standard Army-issue . 30 -cal M2 singie-bullet ammunition. The experimental rifle ammunitlons were (a) .3v-cal duplex (controlled-dispersion type), (b) .3v-cai triplex (random-dispersion type), (c) .22-cal Sterra ammunition, ali produced by Oiln Mathleson Chemical Corp., and (d) .22-cal carbine ammuntion deveioped at Aberdeen Proving Ground. The 12 -gage shotgun sheil contained 32 flechettes that were 125 in . long, developed and produced by Aircraft Armaments Corp.

The expesimental single-bullet rifies and ammunition were checked for disperstion, and all jroved senerally comparable to the standard Mi rifie with single-bullet ammuntition Velocity and lethality were aiso compuicd, and showed that the experimontal rifle loads wers as effactive as the standard ammunition agatnat personnei targets out to 350 yd . The weapon-ammunition combiations used in the teat are listed in Table Bi-

COME!DEMTIA!

WEAPONS
Figure B1 shows the test weapons, and Table B2 compares the rifles and shotgun with respect to some of their differences in speciflcatlons. A comparison of the accuracy of these weapons using the test ammunition is given in the next section in Table B4.

Fig. Bi-Test Weopons

.30-Cal M1 Rifle

The origtinal pian of the experiment was to use modifled Ml rifles to fire not only the duplex and triplex rounds but aiso the single-bullet rounds. The suggestion was made during the experiment that single-bullet performance might be thought to be degraded with the modified M1 t"... iccuilingly Board 3 of The Infantry Center aupplied 12 unmodified Ml rifles for half the single-buliet runs. These rifles proved no more accurate or immune from maifunctions than the modifled M1's they supplanted. Ten-shot groups were

CONFIDENTIAL

taken after the experimert, using an expert fircr from a bench rest. ${ }^{23}$ Ten of these unmodified Ml's had a ilnear standard deviation of less than 0.4 mil, but two were quite inaccurate: 1.1 and 1.7 mils. However, even thesc large errors are generally smaller than the experimental aiming eirors and do not therefore notabiy affect the experimental resuits.

TA0L. ${ }^{32}$
Characteristics of Tyst Wifapons

Characteriatic	. 30 -cal 41	. $22-\mathrm{cal} \mathrm{T} 48$.22-val curbine	12-gatge whotmun
Weisht (empty magazine, no aling). Ib	9.5	9.7	5.2	8
Weight (fall magezise, with aliog), lb	10.0	10.7	6.3	8.5
Rifle leanth, is.	43.6	43.0	35.6	48.5
Barrel lenth, in.	24	21	18	26
Rarrel rifling (right-band twiat), in.	10	9.7	16	Vone
Namber of proovea	2004	6	6	0
Sight radies, is.	28	22	22	-
Sight-aperture dianeter, in.	0.069	$0.8(4)$	0.079	-
A verege eyn-tomperture diatance, in.	5	2.5	4.5	-
Tringer pall, ib	6-7	$6-7$	5-i	-
Capacity, romada	8	$20 *$	15	56
Rate of firs, eutomatic, rounde mia	Noae	700	750	Vone

[^2]
.30-Cal M1 Rifle (Modified)

The standard Army rifie was modified by Springfield Armory by elongating the chamber to accept tha long-necked experimental rounds. The chamber was lengthened 0.46 in ., using reamers supplied by Olin Mathieson Chemical Corp. ${ }^{33}$ These reamers are easy to use, even by relatively inexpert technicians. An lllustration of this operation is given in Fig. B2.

The rifles were fired from a cradie to check their accuracy before and after chamber elongation. The linear standard deviation (using M2 ball ammunition) before rechambering was 0.31 mil , and after rechambering 0.38 mil . ${ }^{34}$ Alter the test 11 modilied rifies were sent to Development and Proof Services, Aberdeen Proving Ground, where their ballistic dispersion was again measured In bench-rest firings at 0.33 to $0.44 \mathrm{mill} .^{25}$ This accuracy is just about the same 2s the 0.38 mil established mean accuracy of standard M1 rifles tested with the sume lot of ammunition. The ammunition used was .30 -cal M2 singie-bullet. the range was 100 yd , and the firings were bench rest by two outstanding experts.

. 22 -Cal T48 Rulle

Twoive . 30 -cal T48 rifles were modified by Springfield Armory ${ }^{24}$ to fire the .22-cal Sierra cartridge. These rlfies were first manufaciured by Fabrique Nationale d'Armes de Guerre, Leise, Belgium. General characteristics are

COMFIDENTIAL

given in Table B2. The T49 is a light-wetght, alr-cooled, gas-operated, magazine-fed shoulder weapon designed to deliver selective'y either semlautomatic or automatic flre.

The 12 rifles were tested at Springfield Armory before the experiment for function and accuracy. The average linear standard deviation when flred from a bench rest was $0.35 \mathrm{mil}{ }^{34}$

Fig. B2-NIl Chomber Rearing

.22-Cal Carbine (Modified .30-Cal M2 Carbine)

The standard Army . $30-c a 1$ M2 carbine wes modified at Aberdeen Proving Ground. ${ }^{20}$ A commerclal .22-cal berrel blank was machined so that Its outslde contour was the same as that of a standard .30 -cal carbine barrel. Internal modifications were required to accommodate the different cartridge. The muzzle was threaded to accept a compensator deslgaed to minimize vertical and horizontal muzzle movement, and to function as a "muzzle brake," reducing recoll by changing the direction of the expanding powder gases. The sverage linear standard deviation was about 0.13 mll .

12-Gage Autoloading Shotgun

The shotgun used in SALVC I was a modified version of the Remington model $11-48 \mathrm{~A}$ sporting arm, utilizing the recolling-barrel principle to achleve its autoloading action. The tapered shoulder at the forward edge of the chamber was reamed square to accummodate the apectal flechette ammunition. Four longitudinal ribe were welded to the barrel to minimize whip. These added approuximately I Ib to the weight of the weapon and shifted the balance point 1.75 in , toward the muzzle. The barrel bore la a simple mamodified cyliader. The aim is accomplished with a boad front stght and as open rear sight.

comipiogiviai

AMMUNITION

Five different kinds of rifle ammunition were fired; three werc .30 cai and two were .22 cai. One type of shotgun load was aiso fired. The ammunitions are compared for seiected characteristics in Table B3 and plctured in Fig. B3. Comparisons of the rifle ammunitions with respect to precision are given in Tabie B4. These dispersion values were obtained from severai sources. The ranges indicate vartations in these reported values. Some of the larger deviations arise from differences in measurement technique.

Taile B3
Charactemistics of Test Amunitions

Cbaracteriatic	$\begin{aligned} & .30-\mathrm{cml} \\ & \mathrm{M} 2 \mathrm{AP} \end{aligned}$.30-cal duplex	.30-cal triplex	.22-cal Sierpa	$\begin{aligned} & .22-c a l \\ & \text { carbiane } \end{aligned}$	32-flerhette 12-gage - hotgun
Totel rowad weight, gruina	114	445	43.4	287	132	717
Cose leagth, in.	2.49	2.94	2.04	2.11	1.30	-
Projectile weight, fonina	163	96×2	60×3	68	41	12×32
Prope'Is weight, graine						
Mara - pge	53	49	50	44	16	30
Betwaea bellets	-	2	1	-	-	-
Case volame, cu in.	0.23	0.23	0.24	0.19	0.08	-
Chargerio-masa ratio	0.33	0.27	0.28	0.65	0.40	-
Total length, im.	3.34	3.34	3.34	2.62	1.684	2.66
Chonber presamers, pai	50,000	52,000	55,000	54,000	37,000	-
Velocity, ft/mec*	2760	$\begin{aligned} & 2510 \\ & 2350 \end{aligned}$	2680, 2560, 2500	3300	2980	1260

"Daplex and triplex valaen for firat, wecond, and third bulleta, reapectively.

Table 1st
Fiont-rbleft Prection

Cortridge	l, dean etemiard deviation, mila
. $30-\mathrm{col} 1 \mathrm{~W} 215$	0.33-0.44
.30-cal duplex	0.19-0.42
.30-cel triplar	0.37-3.60
.22-ral corbice	0.12-0.14
. 22-eal Sionta	0.16-0.44

Mont of the precision data on SALVO ammuaitions was supplied as mean radus and extreme radius. It is assusaed that the patterme are Caussian and radlatiy symmetricai, permitting computation of the correaponding linear standard deviation ofrom mean radius T. The tranoformation to made as follow from the definition of the distributiens:

$$
\begin{equation*}
\text { ar a tres orp }+2+2+= \tag{B1}
\end{equation*}
$$

COMfidential

where $d p$ is the probablity of a hit at distance ; from the center of the pattern. The mean radius \bar{F} is defined as:

$$
\begin{equation*}
\bar{r}=1_{0}^{1} r d P \tag{P2}
\end{equation*}
$$

With appropriate substitution this yields the useful conversion facior

$$
\begin{equation*}
\theta=\sqrt{\frac{\pi}{2} / \pi} \bar{r}=0.80 \bar{r} \tag{B3}
\end{equation*}
$$

Fig. B3-Test Ammunitions

.30-Cal M2 Single-Bullet Cartridge

The experlmental control ammunition used in the tesi was .30-cal single bullet. This was selected in preference to ball ammunition because the elonga tion of the M1 rifle chamber was expected to produce a slight decrease in bellistlc accuracy of ball ammunition, which it did, from 031 mll before reaming to 0.38 mil after. Not so great an effect was expected on the accuracy of ainglebullet ammunition. As it turned out the modified Ml rtlles were used after the first week of the teat only for long-necked duplex and triplex cartridges. Ball ammunltion is usually silghtly more prectse than single-butlet, but proved to be the eame in the modified MI; the average IInear standard deviation of both was 0.38 mill. ${ }^{26}$

.30-Cal Duplex Cartridge

The duplex round wes developed and produced by Olin Mathinson Chemlcal Corp. and was of the "controlled-dispersion" type" This nomonchture is contrasted with "random dispersion." The second or rear bullet of the controlled disperition deviates from the path of the firmi bullet by approximately a 2.4-mil

CONFIDENTIAL

Fig. 84-Pottern of .30-Cal Duplex Controlled Dispersion
F, front bullet; R, reor bullet; range, 100 yd ; position, machine rest.
average. ${ }^{37}$ Tilting the heel of the rear bullet causes that bullet to deviate from the alming point. The direction of the deviation depends on the original orienta tion of the bullet in the chamber and, since this orientation was random, the points of impact of the second bullets were randomiy ortented around the aiming point. The pattern is described further in App M, indicating an optimum builet separation (for 70 percent lethality) of 2.8 mlls . For practicai purposes, Fig. M8 shows that the achleved separation of 2.4 mlis is adequate.

The description of the behavior of the duplex ammunition just given is somewhat idealized. An example of this pattern resulting from the duplex ammunition used on the SALVO i test is given in Fig. B4. There is a central group of holes made by the front bullet, and dispersed around this group are the second or rear bellet holes.

CONFIDENTIAL

Since dupiex ammunition is belng considered as a substltute for the single bullet a comparison of the relatlve preclsion of the two amminltions becomes of interest. Table B4 gives the front-hillet dlsperslons for standard and experimental ammunitions. These linear standard deviatlons were obtained from both bench-rest and Mann barrel machine-rest flrings at 100 yd . It is clear from these firings that duplex front-bullet and single-bullet preclsions are essentially the same. ${ }^{27,28}$ Henc: the duplex rear bullet may be regarded as a bonus or gratuitous increase in hit probabillty.

.30-Cal Triplex Cartridge

The trlplex ammunltion was manufactured by Olin Mathleson Chemlcal Corp. using the same long-necked case as the duplex ammunition. ${ }^{38}$

The markedly high error for trlplex ammunition in Table B4 is not surprising. ${ }^{\text {ar }}$, The higher value comes from bench-rest rather than machlnerest firings." The pattern from the test ammunltion is of the so-called "random" type; i.e., all three bullets fit roughly a symmetrical Gaussian pattern about the center, and the front bullet is not notabiy more accurate than the trailing bullets. Unlike the "controlled" dupiex pattern all three bullets had the possibility of central hits. Test firings ${ }^{29}$ report that two-sirds of all bullets fired fall within a circle of $11.3-\ln$. average radius at 100 yd . From the Gaussian distribution the hit probablitty is given by

$$
\begin{equation*}
P_{H}=1-e^{-R^{2 / 2} \sigma^{2}} \tag{B4}
\end{equation*}
$$

For $P_{H}=0.67$ and $R=11.3 / 3.6 \mathrm{mils}, \sigma=2.14$ mils. Thus the standard deviation σ of the experimental trlplex ammunition is 2.1 mils. Figure M16 in App M showe an optlmum triplex of of 1.7 mils. From that figure the achieved o of 2.1 mils ls quite adequate.

.22-Cal Carbine Cartridge

The carbine ammunition was developed and produced at Aberdeen Proving Ground. ${ }^{34}$ The cartridge case is a rimless bottle-necked type with the same head dimensions as the commerclal .222-cal Remington. The bullet is a new design not prevlously tested, a fuil-jacketed lead-core ball approximately 0.57 in. Long. This ammunition showed the least disperslon of all the types tested. ${ }^{27,28}$

.22-Cal Sierra Cartridge

The 22-cal Sierre round was produced as a high-velocity round by the Western Division of Olin Mathieson Chemical Corp. ${ }^{23}$ It was made from standard components to fit the modified T48 rifle. Its perforniance was examined with the other ammunitions. ${ }^{37,38}$

12-Gage 32-Flechetts Shell

This round wes developed ry Aircraft Armaments, inc., Cockeysville, Md. ${ }^{20}$ At the time of lis use in the sAI, VO I experiment it whe in early prototype form, and limited data on tis performance are avallable.

The standard hich-velocity paper sho:gun thell manufactured by Remington Arms Co wes used. Thirty-two fin-atabliized $1 \frac{1!}{6}-\mathrm{in}$. steol darts replaced the usval shot load These were seated on $1 / 40$-grata aluminum-base plus 0.156 in . Whick to devalop desired pressure and to prevent tumbling of the flec-

CONFIDEHTIAL

hettes from the passage of propellant powder gases between them. Two paperbase wads separated the flechettes and base plug from the propnllant charge of smokeless shotgun powder. The flechettes were nested in a cruciform pattern within four fiber sabots of about 14 grains each. Limited dispersion tests \ln dicated that 52 percent of the projectiles hit within a 30 -in. circle at 40 yd. An ayerage ilnear standard devlation has been given as 9.4 mils. ${ }^{30}$

BULLET LETHALITY

Analysis of SALVO I test ammunitions at Edgewood Arsenal ${ }^{31}$ gives the probabillties of incapacitation shown in Table B5.

Table ${ }^{3} 5$

Baller	Asesult, \%	Hefense, \%	Average,
. $30-\mathrm{cal}$ aingle	44	43	44
.30-cal duplex	44	43	44
.30-cal triplex	44	43	44
. 22 -cal Sierra	45	41	43
.22-cal carbime	42	41	42
. 087 -cal flechete	17	18	18

All data in this table are expressed in percentages of incapacitations for hits at 140 -yd real range. The average range of hitting for the SALVO I target system is shown in App P to be 133 yd for day fire and 85 yd for night flre. Data for 500 -yd range show a lethality drop of less than 7 percent average. These lethality figures are based on hits on the so-called " 100 percent vulnerable body area (vital organs) and neglect hits on nonvltal areas, which have vulnerability of less than 100 percent. It seems reasonable to require that small-arms hits incapacitate attacking troops in $1 / 2 \mathrm{~min}$ and defending troops in 10 or 15 min . Hence the figures in the "Assault" column are the percentages of incapacitations within $1 / 3 \mathrm{~min}$. The "Defense" column 18 composed of simpie means between the computed values for $5-$ and $30-\mathrm{min}$ Incapacitation probabilities. ${ }^{31}$ The figures of Tabie $B 5$ refiect the fact that the asaaulting man can sustain less damage than the defending man before becoming ineffective in his mission. The . 30 -cal single-buliet data were actualiy obtained with the NATO round but are assumed to be appllcable for the .30 -cal ball or single-bullet round without change. It is quite clear from Tabie B5 that one may use an average incapacitation figure of 43 percent for all conventlonal bullets and 18 percent for the individual flechettes. Further, the difference between the assault and defense figures is so trivial that a simple average ls easlly justifiable for general use. It can aiso be concluded that the trlvial differences ainong the conventlonal ammunitions may be neglected.

A refinement of the use of these total incapacitation figures is the extrapolation to over-all operatlonal incapacitation. This is best explained as followe. The total figures of Table B5 for 43 percent probability of total Incapecitation represent the actuai physical incapacitation or physical imprsesibility for the victim to perform in combat. Actually it is expected that most vlctims under typical combat circumstances would fall to function with a level of wounding

COMFIDENTIAL

short of total physical liteapacitation. Even allowing for high motivation and lack of secundary or psychological effect it is clear that the combat function of most victims would be at least reduced in effectlveness. In other words it seems reasonable to assume that the values of Table B 5 represent minimum operational lethality, which is sure to be grossiy exceeded in practice. For example, the Edgewood figures (43 percent) completely ignore a wound such as one causing loss of fine muscular coordination in the leg. Such a wound obviousiy affects a soldier's performance and might reduce hls effectiveness in assault by 50 percent or so. BRL personnel have included such "partial" incapacitations to estimate the operational incapacitation expected from a . 30 -cal girgie bullet. They deduce 71 percent or 1.65 times the 43 percent for the absolute incracitation.

Table 136

Cartridge	Hange, vd	Peactration
. 30 -ral H2 AP	500	Yem
.n0-al Jup'r	100.	Some
	300	Some
.30-cal triplex	200.	No
	100	Yes
.22-cal carbise	400 ,	Vo
	300	Yes
.22-cal Sierre	100	Yea
.087-cal flechetm	500	Some (at low obliqnity ooly)

Use of this same 1.65 ratio for the flechettes resuits in an extrapolated estimate of 30 percent operational incapacitation for that projectile. Examination of the effects of the flechettes, however, reveals that a larger proportion of their total effect accrues in the non-total vuinerable area. This means that the proper correctlon from absolute to operational incapacitation for the flechettes is somewhat larger than the bullet factor of i.S5. It is difficult with presently available lethality data to deduce an accurate operational lethality figure for the flechette. A reasonable estimate is a ratio of 1.95 , or a flechette operational lethality of 35 percent. Hence it is concluded for purposes of calculation in the other sections of this memorandum that all the conventional bullets have an operational lethality of 70 percent, and the individual fiechettes an operational lethality of 35 percent. For special use in an extremeiy desperate and brief combat situation it may be desirabie to use corresponding absolute incapacitation figures of 43 and 18 percent.

HELMET PENETRATION

Heimet penetration tests of SALVO I ammunitions have also been reported. ${ }^{20}$ The resuits are summarized in Table B6. From these resuits it is cuncluded that the heimet protects the head (effectiveiy 18 percent of operationaliy vulnerabie target $2 r e a^{38}$) for triplex, duplex, and the carbine beyond ranges of 150 ,

CONFIDENTIAL

उūû, anủ 350 yủ, respectively Frecaise of te enge of deflectinn and conseouent fallure to penetrate at high obliquity the flechettes are somewhat degraded by helmets at all ranges. Roughly some two-thirds of the flechettes can be expected to penetrate at 100 yd , reducing to one-third at 400 yd .

Edgewood Arsenal personnel have reported that all the SALVO I test ammunitions penetrate the standard US body armor beyond the maximum experimental range (350 yd). Although there is some evidence of reduced lethallty for rounds that have penetrated helmets, this lethality loss is ignored. Certainly no gross differences exist in lethality losses by the test ammunitions. Further reduced by the 18 percent efiectively vuinerable area such differences must indeed be neglligibie. This 18 percent figure is deduced from the product of two reported data: ${ }^{32} 29$ percent of wounds received are head wounds, 62 percent of the head is covered by the US helmet.

COMS! 5 ET! !

Aprendix C

TAHGET SYSTEU

StMmalry 69
RATIONALE. 69
QUESTIONNAIRE 71
CHARACTERISTICS OF COMBAT TARGETS FHOM QUES FIONNAIFE. 74
location of Fommations - idocation of Positions-Location ge Tarcets- Direction of Movement and Duration of Target Exposure
COMPOSITION OF TWO TARGET SYSTEMS SIMULATING COMBAT CONDITIONS 88
DETAILS OF TARGET SYSTEMS SIMULATING COMBAT CONDITIONS 96
FIGURES
Ci. Typical ©rouping of Enemy Defenoing in actual Combat 73
C2. Typical Grouping of Enemy assalliting in actual Combat 73
C3. Ibfle amunition Expenoeo at Varioes Ranges in Cood Visibility in Combat 76
C4 Rafle: anounition Expended at Varioes Ranges in lad Visibility in Combat 76
C5. Amanttion Expenibid for all Mi leffef. Firg at Various Runges fon botil Offensive and Definsiye. Fiee in Combat 76
C6. Frequency distributions of hange of amed Fibe: in Combat 78
C7 Side-to Side. Positidn lintirvals in Combat for Enemy lh.fenoing 80
C8. Front-to-lifar fosition Intervals in Combat fon Finfmy felending 80
C9. Side.to-Siof. Tarcet Intervals mithin a Position in Comiat hob Fnemy Defending 81
Clo. Front roblariar Target lntervals within f fosition in Combat por Fnemy lefending 81
 83
 83
C13. Tanget Doration in Combat mor finemy lefenoing 87
C14 Target Deration in Combat for li.iemy tssallitin. 87
Cis Centers of Target Formations Smellating Combat Condetions 90
C16 Iayout of Tancet systims Smiliative Combat Comitions 98

CONFIDENTIAL

TABLES
 75
C2. Targets at Variohs lianges in Comhat 75
C3. Side-to-Sidf: Position Interiavals in Comrat for Finemy Defending. 79
C4. Fhont.to-Hiah Position Intervals in Combat for Ememy Defending 79
Cj. Number of Targrts within a Hostton in Combat ror Finemy Dr:fending 82
C6. Side.to-Siof: Target Intervals mtion a Position in Combat for Enemy Defending 82
C7. Front-to-Hear Target Intervalas mithin a Position in Combat for Findy Difending 82
C8. Side-to-Side Target Intervals in Comebat for Enemy Assatiting 84
C9. Front-to-Hear Target intervals in Combat for Fenemy assalleting 84
C.10. Frequency of Targer Types in Comibat 85
Cll. Drection or Mubiment or hunning Targets in Combat 85
C12. Target Duration in Combat for Finemy Dffending 86
Cl3. Target Deration in Combat for Fineay assacliting 86
C14. Distribution of Targets for two Target Conplexfs mmulating Combat Conditions 89
Cl5 Location of Centers of Formations for Two Target Complexes Smulating Compat Conditions 89
Cl6. Targets sflected to Simulate Combat Conditions, ay Sze 91
C17. Target Durations for Smulating Combat Conditions, by Visibility and Finemy Ittitide. 92
C18. Interynis preceding Target Appearances for Smulating Combat Conditions 93
C19. Location ano Types of Targets por Two Target Complexfes Simulating Combat Condrtions 94
C20. Target appearance: Programs for Simulating Combat Conditions 96
Col Layout of Target Systems Smulatigg Combat Conditions 97
C22 Time Intervals preceding and dubing appearances of Targets Smulating Combat Conditions 99
C23. Demolition Programs ror Target Systrms Simulating Combat Conditions 100
C24 Shocx Programs for Target Systems Smulating Combat Conimtions 101
C25. Master Schedule for Target Systems Smulating Combat Conditions 102

COMFIDENTIAL

SUMMARY

The target characteristics that criticaliy affect the aiming error are size, range, exposure time, vtsibtlity, movement, dlsclosing activity, and confusing context. Tu determine the values of these factors in a model target system, a questionnaire-interview was conducted with 26 company-grade officer recipients of the Combat Infantryman Badge.

On the basis of responses, twotarget systems were deveioped, one forday ftring and one for night firtng. These stmulated, as closely as feasible, elements ol both offensive and defensive combat situations. The questtonnaire revealed that under conditions of good visibility 96 percent of the aimed fire was delivered at less than 400 yd . Under bad visibility all ainjed fire was included in this range. It also indicated that almed flre accounts for about onetherd of all combat rifle fire.

Battlefield formattons of enemy assaulting and defending forces were developed from sketches prepared by the questionnatre subjects. The centers of the formations were located, and the depths and widths calculated from data on the sketches. Durations of target exposure and directions of movement were likewise developed from questionnaire responses and were computed separately for all targets in each formation.

Thiriy-four positions, some partly concealed, were prepared for the 31 stationary Cocky Ken targets and 3 inoving targets. Seven stattonary and the three moving targets were common to both day and night systems (t.e., 22 targets in each system). Twelve programs were devtsed, which incorporated random order of appearance for the target groups and for indtvidual targets withtn each group. The programs allowed target appearances from 3 to $34^{1} / \mathrm{s} \mathrm{sec}$. There were no simultaneous exposures, and each appearance was preceded by an interval ranging from 6 to $13^{2} / 2 \mathrm{sec}$.

All events in these programs-target appearances, simulated artillery, disclosing fire, and "wounding" by electric shock-were programed through the electronic control system described in App D.

RATIONALE

It is apparent that thetest depends criticaliy on the model of target system that is seiected. The seven prmary target characterist!cs that critically affect the atming errors are size, range, exposure time, visibility, movement, disclosing activity, and confusing context.

A pood model should include a number ol targets that are characterized by appropriate distribution in each of these seven characteristics. Whatever

CONFIDENTIAL

usiesuepenaencres eaist among these characterlstics should also be reproduced in the targets of the model.

In order to describe the anticipated target systems in terms of the given characteristics a questlonnaire-interview was used. The assumption was made that the anticipated target system would not uiffer significantly from the target systems experienced by US riftemen in Korea and WWII. The questionnaireintervicw was an effort then to describe the targets at which riflemen had actually almed and fired.

Twenty-six officers provided by The Infantry School filled out the questionnalre at Fort Benning, Ga., on 5 April 1956. All these officers were quallfied to wear the Combat Infantryman Badge and had served in combat with an infantry battallon or lower-echelon rifle unlt in Europe (5), the Paclflc (3), Korea (11), Korea and Europe (5), and Korea and the Dacific (2). Thelr combet experience ranged from 3 to 32 months with a median of 8 months and a mean of 11 months. Prior to these interviews a preliminary questioning of several dozen experienced officers was conducted at Fort McNalr and Fort Myer. From this questioning it was determined that best resuits could be obtained from intenslve interviews with a small number of carefully selected subjects.
 necessary to guide the establishment of a target complex with consideration of the following factors and their interrelatlons:
(a) Visibllity (good or bad)
(b) Enemy attitude (offense or defense)
(c) Mean distance of formation from friendly forces (nearest 100 yd)
(d) Side-to-side intervals between positions within a formation (nearest yard)
(e) Front-to-rear intervais between positions within a formation (nearest yard)
(f) Number of targets in a position
(g) Side-to-side intervals between targets in a position (nearest yard)
(h) Front-to-rear intervais between targets in a position (nearest yard)
(i) Exposure out of cover (none, head only, head and shoulders, fuli buafj, full body kneeling, or full body upright)
(j) Movement (still or running)
(k) Direction of movement (eight dlrections)
(1) Concealment (none, half-hidden, or entirely hidden)
(m) Firing (not firing or firing hand or shoulder weapon)
(n) Dusation in this particular attitude (seconds)
Many of these factors were subdivided to account for the effects of other factors in the list. For example, duration was handled separately for offensive and defenslve targets. The responses were reduced to yield distritutions of each of the seven target characteristics, including relations among dependent characteristics. The distributions were then used to define the characteristics of an integral number of targets for the experiment.

Two target systems were required for the experiment - one for day firing and one for nlght firirg. Each of the iwo systems was to represent as closely as possible the more common combat rifle targets. In short the problem was to construct target systems to give the closest approximation to those found typically in combat in both defensive and offensive situa!ions.

CONFIDENTIA!

QUESTIONNALRE

Foliowing is 2 copy of the questionnaire. The percentages given iliustrate answers for which there was maximum agreement among the respondent.3. The numbers in parentheses are approximate ranges indicating accuracy of estimate (see Part I of the questionnaire, "Percentage Estimates"). The sketches of the defensive and offensive formations are actual examples received.

AIMED RIFLE FLRE QUESTIONNAIRE
 Part I-Yercentage Estlmates

Make the beat estimate you can of the percentages requested in the folfowing questions. Be guided by your knowiedge and combat experiance, but estimate for the over-ali condtions of modern warfare, not for any particuler type of terseln or sttuation.

Do not record your name, but do put in the upper right corner of this sheet the number of months of combat experience you have bsd with rifle units of batalion size or smaller.

For each percentage that you eatimate, put beside it in parentheses the lowest and highest percentage that would be just aa acceptable to you. This gives an indication of how approximate you befleve your actual estimate to be. For eximple, if you eatimate 20 percent, write $20(5-35)$ or $20(15-40)$. Your estimate may or may net be halfway between the ends of the range in the parenthescs. The parentheticsl numbers do not have to add up to 100 percent but your baaic eatimatea do.

Questions 2-4 alf refer only to the aimed flre mentioned in question 12. This includes not only fire at visibie targets but fire aimed at a particular point of a bidden arce because it is thought more likely to concesi sn enemy than other neerby points.

Visibility is good if there ia either daylight or very bright flares. Visibifity is bad if there is darkness, moonilight, or dim flares.

1. For rifle fire in combat, what percentage of all smmunition ia expended in each of thase three categories:

Category	Ammunition expended, $\%$
a. Aimed iire at visibie or auspected targets	$31(15-40)$
b. Neutralizing and harassing area fire	$53(40-60)$
c. Panic fire	$16(5-30)$
Total	100

2. Substantialiy all combat actions involving aimed rifie fire at visibie or suspected targets (1s above) are fought under conditions of good or bed visibility with emomy forces on the offensive or defensive. Estimate the percentage of all friendiy almod combat rifle fire (other than noutralizing, harassing, and panic fire) in sach of the categories betow. For example, if 100 milition rounds of rifle ammunition represeated totai ammunition expeaditure in aimed fire for a war, what perceatage is expended in each of the four categortes befow. Total of the four percenteges should equal 100 percent.

Enemy attituode	a. Good vialbility, \%	b. Bed viaibility, \%
(1) Defensive	$22(15-30)$	$11(5-26)$
(2) Offensive	$45(35-50)$	$22(10-36)$
Total	67	33

comficiential

3. Averaging all situations when the enemy is on the defensive lyour answera to 2(2) above), what percentage of rinie mmunition (for aimed fire at visible or vuspected targeto) is directed st targete whose distance from friendly troopa ls:

Distance, yd	a. Good visiblity, \%	b. Bad visibllity, \%
(1) $0-60$	$12(5-25)$	$35(10-79)$
(2) $50-100$	$17(10-35)$	$24(10-55)$
(3) $100-200$	$35(10-50)$	$29(20-40)$
(4) $200-300$	$17(5-30)$	$12(5-20)$
(5) $300-400$	$12(3-20)$	$0(0-10)$
(($) 400-500$	$6(0-15)$	$0(0-5)$
(7) $500+$	$1(0-5)$	$0(0-1)$
	Totai	100

4. Averaging all situations when the enemy force is on the offensive fyour answere 2(2) abovel, what percencage of rifle ammunition (for aimed fire at visible or suspected targets) is directed at targets whome diatance from friondly troops is:

Dlatance, yd	a. Good vistbility, \%	b. Bad visibility, \%
(1)	$0-50$	$6(5-15)$
(2) $50-100$	$13(5-25)$	$30(15-40)$
(3) $100-200$	$37(20-50)$	$25(15-30)$
(4) $200-300$	$25(20-30)$	$30(20-50)$
(5) $300-400$	$13(5-20)$	$10(5-20)$
(6) $400-500$	$6(0-15)$	$5(0-10)$
(7) $500+$	$0(0-5)$	$0(0-5)$
	Tots1	100

Part \amalg-Battlefield Formationa

Draw two aketchas, one on each of the two graph eheeta attachad. One will be "Enemy Defondiag" and the other "Enemy Assaulting."

Each sketch is to be an ahstrect representation of 10 enemy infantry troops (a "squad") engreed in a fire flght with frlendly forces at some distance between 100 and 300 yd . Each plature is to represent a typlical moment in a typlcal eagagement with average terrain and vistbility. Friendly troope are in the direction of the bottom of the shoet.

The amall squares on the graph sheets are 5 by 5 yd . The 10 enemy troops are to be drewa ta probable locations with the symbols shown on the accompanying key. The difforent symbols an thla sheok are grouped into flve sets. Do one set at a time in order. (1) First locate the 10 men by drawing the symbol for how each man is out of cover (merely put a dot if mo pert of him is out nf cover). (2) Bealde any man wbo is running (not wellitng, crawltng, or ntllt) put marrow showing his direction of movament. (3) Indicato how muoh comosalment (If any) is is fross of each man. (4) Put an F bocide those likely in te firing thoir weapona thle typical momen. (5) Beside each man put the sumber of socosde the is likely to romath in the postiton in which vou have drawn him. For ozample, fir s ruantag man thite would the the mumber af seconds he will run before atopplat to take cover ar fire his waspos; for s mas whose bead is out af caver, it would be the mamber of seconde that in exposes fuet this mueh of himself. No not nmit any of the key symbols if they are epplitable.

COMFIDENTIAL

Fig. Cl-Typical Grauping of Enomy Defending in Actual Combet
5. by 5-yd squares.

Fig. C2-Typicol Grouping of Enemy Asscolting in Actual Comber 5. by 5-yd squeres

Koy for Figs. Cl and C 2

1. Cover \{omount exposed; prowects egoinst fire es well os sheervefion)

- newe

0 head

9 hoed and shoulders
Q full body, erouching or knoelling
ใ full bedy, upright
§ full baly, mone on erewlime
2. Runniag

4 ruonding in direettion shown
3. Conceolment (protecte agoinst ohser. vetion only)

- ontirely hilden
~ holl hiddon

4. Firine

F firime hewd or shodder Eeepon
3. Derepion
nitpe number of ceeconds eest man is In emweilon ohom

Ono men. full ledy weil ghe ont ofener, ruanting in dreation of erew, net hasken, fir lom. to 4 eee
$\rightarrow 98$
Two enon, hoed end elverthers and of wow, not

contrioteritiai

CHARACTERIBTICE OF COMBAT TARGETS FROM QUEETIONNATRE

This section utlizes the data from the questionnaire to provide a method for establishing a target complex. The data refer only to aimed rifle fire at visible or suapected targete, which, according to the reepondents, accounts for about a third of all combat rifle fire.

Except for Tablee C1 and C2, which are based on Part 1 of the queetionnaire, the data were all taken from the sketches and reduced in the following manner: A smooth curve was hand drawn througha plot of the raw data. This curve was then normalized by multiplying its plotted values by an appropriate factor so that the sum of the ordinatee would be unity.

The curves ehown in Figs. C7 to C14 are these emoothed and normalized plots, with the original data pointe euperimpoeed after having been multiplied by the same factor used to normalize the emoothed curves.

Location of Formatione

Table Cl shows the percentagee of ammunition expended in categories representing combinations of visibility, enemy attitude, and diatence. The breakdown of the first 100 -yd interval wae obtained on the questioneaire because safety factors prevented use of targets closer than 50 yd in the SALVO I experiment.

The percentages shown are based on the eetimates showing greatest agreement on the questionnaire after multiplying by appropriste iactors to correct for rounding errors and to bring the sums back to 100 percent. This estimate is somewhat like the mode in that it was agreed to by more respondents than was any other estimate; i.e., it fell within more of the parenthellcal ranges indicated on the questionnaires. Each percentage shown wae agreed to by about three-quarters of the respondents.

Table C2 contains the same information ae Tabla C1, rearranged under major categorien of visibility rather than enemy attitude for later use to form separate target complexes for good and bad visibility. It is assumed that the percentage of targets taken under fire is proportional to the amount of ammunilion expended at various ranges. The data for each visibility condition are brought up to 100 percent. Note that the range interval of $0-50 \mathrm{yd}$ is omitted in Table C2 since it could not be used in the experiment for safety reasons. Table C2 ts thus computed directly from the dita ilsted in Taole C1.

Figures C3 and C4 present graphically the information in Tables C1 and C2 except that the percentages for enemy defending and enemy assaulting are each. adjusted to total 100 percent.

The number of targets in each visibility complex at each range interval is selected to be proportional to the percentagen in Table C2. An arbitrary total of 22 targots was uosd for each comolex. Thss small number of targets permittod so fow to appear for any range category of Table C2 that each category comprised a single formation. For a large number of targets it micht be desirable to have several formations for some catogorios, but present data provids no gulde to the appropriats 1 izs for formations. The center of each formation is located at random in the proper range interval, with is considered to be 200 jd wide.

COMFIDENTIAL

A prevlcus ntudy ${ }^{33}$ also supnorte the concluslon that by far the preater part of all semiautomatic rifle fire in combat occure in firing on targets at ranges of 300 yd or leas．Of 800 men questioned in this study about the use of the M1 rifle in Korea， 85 percent said that all their firing was done at tar－ gets within a $300-y d$ range（daytlme offenatve lighting）．For daytime defenslve flghting， 80 percent of the men eaid that rifles were used at 300 yd or less．${ }^{33}$

Table Cl
Amunition Expended in Aimed Rifle fine at Vamous Runces in Combat

Distance from triandly forcee， yd	Kiasmy defondian		Esomy asossltina	
	Good viaibility	Bad vioibility	Good visibility	Fad viojbility
	Atmmesition expendsd， 5			
0－50	3	4	3	$?$
50－100	4	3	6	5
100－200	8	3	17	7
200－300	4	1	11	2
300－400	2	0	6	1
400－500	1	0	2	0
$500+$	0	0	0	0
Totel	22	11	45	22

Table C2
Tangets at Vanous Rances in Combat

Distasce frem frieadly forces． yd	Good vieibility		Bad visibility	
	Eany dofeodisa	Enamy ascoultios	Enemay dofondion	Eaomy esossltian
	Targets， 5			
50－100	7	10	13	23
100－200	13	20	13	32
200－300	7	17	5	9
$300-400$	3	10	0	5
400－500	2	3	0	0
5004	0	0	0	0
Total	32	68	31	69

Figure C5 shows（a）the data for daytims offensive and defensive rifle employ－ ment taken from Fig． 1 of ORO－T－18（FEC），and（b）the total fire from Tabls C1．

For the purposes of the SALVO I experiment， 400 yd is usod as the range within which all almed－rifls－fire targets in combet ars to be fousd．

From the Korcan dats，${ }^{33}$ it was found that 93 percent of all daytime rins f1re in combat is directod at targuta 400 yd or lame from the firor．It muat be

COWFIDENTIAL

Fig. C3-Rifle Ammunition Expended at Various Ranges in Good Visibility in Combat

Fig. C4-Rifle Ammunition Expended at Various Ranges in Bad Visibility in Combat

Fig. C5-Ammunition Exponded for All M1 Rille Fire of Vorious Renges for Both Offensive and Defensive Fire in Comber
 - , dote trom Teble CI.

CONFIDENTIAL

noted hers, however, that the conclumlons shown in Flg. C5 repr-sent rifle fire (aimed anci unaimedi) under conditions of good vialbility oniy.

The responses to the SisLVO I questionnalres indicated that 96 percent of aimcs iire under condltions of good vlslbillty occurs on targete 400 yd or less from ths firer, and the corresponding flyure for iad vlsiblity is 100 percent. Of all almed fire, 97 percent is delivered at targets at ranges of 400 yd or less. The concluslons regarding the range distrlbution of targets under aimed rifle fire are then substantially in agreement.

The data of Table C1 were combined for all four conditions. The resulting frequency distribution is shown in the block diagram of Flg. C6a. Ai the suggestion of Dr. J. Bruner of ORO the curve for the expression

$$
\begin{equation*}
f(R)-\left(4 R / R^{2}\right) e^{-2 R / R} \tag{C1}
\end{equation*}
$$

was adjusted to the mean range R of 170 yd computed from Table C 1 . This analytical expression ${ }^{34}$ for the frequency distribution of range R had been found to fit data on ranges of fire received by US tanks (with a different mean range of course). Figure C6b presents the cumulative frequency and shows the phenomenal agreement of the data of Table C1 with this analyticaily expressed distribution. It should be remarked that this comparison was made and agreement noted only many months after the data of Table C1 were gathered.

Location of Fositions

A formation contains several positions (e.g., foxholes), and each position may contain one or several targets. Positions (containing one or several targets) are located with respect to the previously found center of each formation. Tobles C3 and C4 show the distribution of positions in a defense formation, and Figs. C7 and C8 are plots of these data. The intervals are taken from scale sketches as shown in Figs. C1 and C2.

Location of Targets

Table C5 is used to provide the number of targets to fill each position. The data for this table are derlved from the sketches on the questionnaire using the assumption that men drawn within 5 yd of each other were by deflnition in the same position.

For enemy defending, targets are located within a position in the same manner as positions were located within a formation. Tables C6 and C7 (illustrated by Figs. C9 and C10) are used for this purpose.

For enemy assaulting, each position was assumed to contala only one target. Tables C.8 and C9 (illustrated by Figs. C11 and C12) are used tc locate these targets.

Direction of Movement and Luration of Target Exposure

Table C10 shows the frequency distribution of target type. Omitted combinations of symbols represent fypes that did not appear at all in the sample, and bence are assumed to occur with a negligibly small frequency for purposes of this study.

CONFIDENTIAL

Fig. C6-Frogency Dispriturions of Renere of Ained Fire in Combor
贯- iTO rdi O, dooo from Teble CI.

CONFIDENTIA!

Table C3
Side-to.Side Position Interval. 5 in Combat fon Enemy Defending

Leterval, yd	Ocremenecen, 分	leterrel, yd	Ocesronesen, \%
0	1.1	17	2.4
1	1.4	13	2.1
2	2.0	19	1.8
5	2.7	20	1.5
4	3.5	21	1.5
5	4.4	22	1.1
6	5.6	20	1.0
7	7.0	24	0.9
*	8.2	25	0.5
9	8.7	25	0.7
10	3.8	27	0.6
11	8.4	28	0.5
12	7.0	29	0.4
18	5.1	30	0.3
14	6.1	81	0.2
13	3.4	22	0.1
16	2.3	35	0.1

Table C4
Front-to-Rear Position Intervals in Combat fon Enemy Defending

haterval, yd	Ocemrencen, \%	Leterval, yd	Occurrencen, \%
+ 80	0.1	-1	2.6
29	0.1	2	3.4
20	0.1	3	3.0
27	0.1	4	6.5
\%	0.1	5	4.6
25	0.1	6	2.8
24	0.1	7	2.0
23	0.2	3	1.7
22	0.2	9	1.4
21	0.2	10	1.1
20	0.2	11	0.9
19	0.5	12	0.7
11	0.8	12	0.6
17	0.3	14	0.5
16	0.4	15	0.4
15	0.4	16	0.4
14	0.3	17	0.3
11	0.6	18	0.8
12	0.7	19	0.8
11	0.6	20	0.2
10	1.0	21	0.2
9	1.2	22	0.2
\%	1.4	28	0.2
7	1.6	24	0.1
6	1.9	25	0.1
8	2.4	3	0.1
4	8.8	27	0.1
1	3.2	3	0.1
2	8.0	8	0.1
+1	e. 8	$\rightarrow 0$	01
0	3.6		

COMFIDENTIAL

Fig. C7-Side-to-Side Position Intervals in Combat far Enemy Defending

Fig. C8-Frent-to-Rear Position Intorvols in Comber fer Enomy Dofending Pesifive inearvols incroese the divtence from friendly ferces-

CONFIDENTIAL

Fig. C9-Side-to-Side Targat Intervals within a Position in Cambat for Ensmy Defending

Fiy. C:U--iont-ro-Rear Terget Intarvals within a Posifion in Combat for Enemy Defonding

COMFIDENTIAL

Table C5
Vember of Targets mithin a position in Conbat for Enemy Derending.

Tarkete
in position Occurreaces, *

1	83.5
2	11.8
3	3.7
4	0.5
5	0.5

Taple C6
Side-tos Side Target Intervals mithin a Position in Cumbat fon Eneuy Defending

Interval. vd	Oceurrences, $\%$
0	14
1	33
2	27
3	18
4	8

Table C7
Front-tofiear Tanget Intenvals mithin a Position in Combat for Eneuy Defrending

Intervel, vd	Orcurrences, $\%$
0	47
1	25
2	15
3	8
4	4
s	1

CONFIDENTIAL

Fig. Cll-Side-to-Side Target Intervals in Combat for Enemy Assaulting

Fig. C12-Front-to-Rear Torget Intervals in Combat for Enemy Assoulting

CONFIDENTIAL

Tarle．Ca
 for Finemy issaulting

letervel． N	Oeemeeseo．$\%$	betovel．pd	Ocemeeren，
0	2.7	30	1.3
1	4.3	21	1.0
－	63	22	0.0
2	79	28	0.7
4	8． 8	24	0.0
3	9.0	25	0.2
0	0.0	\％	0.4
7	74	27	0.4
0	3.9	2	0.3
，	3.0	2	0.2
10	4.3	30	0.3
11	3.0	31	0.3
12	3.	32	03
13	3.0	${ }^{3}$	0.2
14	2.7	34	0.2
12	3．－	${ }^{3}$	0.1
16	3.1	3	0.1
17	1.8	37	0.1
18	1.6	88	0.1
19	1.4	3	01

Table．C9
Front－toflear Target Intervals in Combat for Finemy Assaulting

letorvel． Td	Oesmenecen．${ }^{\text {a }}$	latevol．－ 1	Oemereaces．\％
＋39	01	0	6.3
30	0.1	－1	6.2
37	0.1	2	0.0
36	0.1	，	0.0
35	0.1	－	2.0
34	0.1	5	3.0
33	0.1	4	2.1
33	0.1	7	2.0
31	0.1	${ }^{1}$	3.3
30	0.1	－	3.3
39	0.2	10	1.9
28	0.3	11	1.7
27	0.2	12	1.0
5	0.2	18	1.4
25	0.2	14	13
34	0.2	13	1.1
23	0.2	16	1.0
33	0.3	19	0.9
31	0.2	18	0.8
20	0.3	19	0.7
19	0.3	\％	06
10	0.2	31	0.2
17	0.3	28	04
16	0.4	23	0.3
13	04	24	0.2
14	0.3	3	02
13	06	3	0.2
13	07	8	0.2
11	08	2	03
10	0 －	2	0.3
－	1.1	30	0.3
＊	13	11	01
9	10	32	01
－	30	${ }^{31}$	01
3	28	4	01
4	40	－35	01
3	82		
3	63		
－ 1	43		

CONFIUEFTIAL

Tamis C. 10
Frbolency of target Typfes in Combat

Terget	fine wy doferdien	Finomy -00enltian	Tarmot	Enomy sofendiar	Fisemy -0 enutior
	Oecwrenceo, \%			Occerisecee, \%	
-	4.3	12 A	F	0.8	43
-	3.3	12	1	0.0	3.3
\bigcirc	3.4	0.8	i	0.8	3.3
-	3.8	0.4	1	0.4	0.8
F 。	2.7	0.4	1	0.4	0.0
\cdots	6.1	2.0	\% 8	0.8	0.4
F-	4.2	2.0	1 2 ${ }^{\text {H }}$	0.0	3.5
ง	9.4	2.3	128	0.0	12
$\underline{1}$	3.1	0.8	Fi	0.4	2.0
1	1.2	0.0	Fil	1.2	3.8
\% 8	1.5	00	F1	0.0	0.4
$F \%$	0.0	0.8	?	0.0	3.8
F	4.6	3.1	9	0.0	2.0
1	8.1	2.3	i H	0.8	171
Fi	3.1	0.8	\$ H	0.0	5.0
-	0.0	0.8	- ${ }^{\text {P }} \mathrm{H}$	0.0	6.9
d	0.8	2.0	- \& H	0.0	0.8
d	0.8	12	F 8	00	4.7
1	0.8	2.0			

-Kay for Toblea C10. C16, and C19

1. Cover (omovint expoend)

- - ene
- ineed
\& head ened ehouldere
- fall body some or crewlion

2 foll body, crouching of keeclie ${ }^{\text {a }}$
I full body, eprinht
2. Reaniof

R rebaven io env direction

3 Conceolme or (protecte opateot obeerveltum only) - eaturely bidde \cdots helf hiddee
6. Firier

F firiag bend or monlder weopon
5. Deration

Nember of aec modn enech men in tu -itention elown

Tabie Cll
Darection of horementa of fuenang Tamgets in Combat

Direction, der	Euenv delendian	B.aemy eacealisan
	Ocemreocen, \%	
0	15	1
45	5	0
90	4	0
135	3	0
180	15	1
225	20	13
2.7	16	68
315	20	13

[^3]
CONFIDENTIAL

Table ci3

Dermetion sec	Ocemences,	Duration. sec	necurresces,
1	03	31	04
2	2.6	32	0.4
3	57	33	0.4
1	0.9	34	0.4
5	2.1	35	0.4
	6.9	36	0.3
7	6.4	37	0.3
8	5.8	38	0.3
,	5.0	39	0.3
10	4.4	40	0.3
11	3.9	41	0.3
12	3.5	42	0.3
13	3.1	43	0.3
14	2.7	4	0.2
15	2.4	45	0.2
16	2.1	46	0.2
17	1.8	47	0.2
18	1.6	48	0.2
19	14	49	0.2
20	13	50	0.2
21	12	51	0.2
22	11	52	0.2
23	10	53	0.2
24	0.9	54	0.2
25	0.8	55	0.2
25	07	56	0.1
27	0.6	57	0.1
3	0.5	53	01
29	05	$5{ }^{5}$	0.1
30	05	${ }^{6}$	0.1
		60-120	10.0

CONFIDEATIAL

Fig. Cl3-Target Durotian in Combot for Enemy Dofonding

Fig. C14-Target Duration in Combot for Enomy Assoulting

CONFIDENTIAL

The directions of movement of running targets are given in Table C11. The length of time a target is vislble 18 given in Tabies C12 and C13 and piotted in Figs. C13 and Cl4.

These characteristics are assigned to specilic targets in the target systems on an equai-prohability haaig. The time durations are computed separately for ail the targets in each formation.

COMPOSITION OE TWO TARGET SYSTEMS SIMULATING COMBAT CONDITIONS

The results of applying the methods described in the preceding section are summarized here. Table C14 shows the number of targets in each range category as based on the percentages in Tabie C2. in three Instances where a single target would have represented a formation it was combined arbitrarily with another formation so that every formation would have from two to seven targets.

Table C15 gives the location of the center of each formation, and Fig. C15 is a scale piot of this information. The centers for the good-visibility compiex we re selected first. Those for the bad-vislbility complex were placed in the same locations for the convenience of using many of the same targets for both complexes. The one exception to using the same locations was in the ciose-in zone of 50-100 yd where the first formation to be chosen (formation C) for the bad-visiblity compiex was seiected at random from thie two already seiected for the good-visibility complex, and the other (formation A) was picked at a new location.

Table C16 shows the kind and number of targets seitcted as based on the percentages of Tabie C10. Targets compietely conceaied and not firing were omitted since they would be unknown to the firing troops. Ruming targets were limited by availability of equipment to three, and these were chosen only from among those moving in directions other than directiy forward 0 s rearward. It was supposed that a target moving in elther of these tio directions for a short time would not show the firing troops more than a siight difference in appearance from a target that remained statlonary. The three moving targeis do not fire as they run, the movement itself belng sufficient to attract attentlon. They are located (as are seven other targets) in the same position for both the goodvisibility and the bad-visibility complexes.

Table C17 shows target durations seiected from Tables C12 and C13. Increments of $1 \mathrm{~d} / 2 \mathrm{sec}$ were used to accommodate the programmer.

The time intervais between (or preceding) targets are listed in Tabie C18. Only one target was permitted to be up at any given time, thus assuring that each target would not compete for receiving fire. Intervals of 6 to $13 / \mathrm{s} \mathrm{sec}$ between targets were used. The iower limit of 6 sec was made this large to reduce carryover effects between targets appearing in sequence. The upper iimit of $11^{1 / 2}$ rec reasonably sets a range of intervals such that, when 22 of them were drawn at random, the totaitime of these intervals plus the target duration times would fit the maximum time capacity of the programmer.

Table Ci8 is a summary of ail the information concerning the target system complled up to this point. The tabuiation includes completely conceaied

COMFIDENTIAL

Table (14
 Similating Combat Condmtons

Distunce from friendly forces, vd	Target complexes			
	Goend visibititv		Bad viaibilitr	
	Finemv defending	Kinemv asssulting	Finems defending	Finemv assaulting
	Targets			
50~100	2	2	3	5
100-200	3	6	3	7
300-300	2	4	1	2
300-400	0	2	0	14
400-500	0	$1{ }^{1}$	0	0
Total	7		7	$1.5=22$

sTargeta in siagle formations are consected bv underlinina. Fisurea are based on Table C2.

Table Cl5

Location of Centers of Formations bor Two Target Complexffs Smilating Combat Coniftions

Apmoximate diatance from firing line. rd	Target complexes		Nistunce, vd from		Finmation
	Enemy defending	Finemy assaulting	Firing line	L.eft edge af range ${ }^{\text {a }}$	
	Targeta				

Cond-tisibility Target System

50-100	2		77	118	H
		2	86	77	C.
100-200	3		127	116	17
		6	162	55	F:
200-300	2		219	102	F
		4	267	01	G
300-400		3	336	17%	11
		Pad-Visibility Target System			
50-10	3		86	77	C
		5	6.3	103	1
100-200	3		197	156	ก
		7	162	55	
200-300	1	3	219	102	F

*Ranee intervsl is 200 vd wide

COMFIDENTIAL

Fig. C15-Éenters of Target Farmations Simulating Combat Conditions O. good visibility, X, bad visibility, and O, locerion of targen s determining extreme engles of fire.

CONFIDENTIAL

Tabee Cl6
Tahgets Selected to Simulate Comeat Conditions, by Size.

Targeta	Enemy defeading			Enemy assoulting		
	Occurrences, \%	No. uned	Typos useda	Occurreuces, \%	No. uned	Type sesda
-	44.3	0	*	12.8	0	-
Subtotal		σ			2	
-	25.7	4	$\text { F } \underset{\sim}{\circ} \stackrel{\circ}{\circ}$	6.8	1	Fo
$\%$	22.0	3	$\begin{aligned} & \text { F } \frac{2}{2} \\ & \text { F } \frac{1}{g} \end{aligned}$	10.1	2	$\text { IF } \begin{array}{r} 8 \\ q \end{array}$
d	3.2	0		13.8	2	$\text { F } \frac{1}{6}$
2	4.0	0		15.6	3	$\text { F } \frac{2}{2} R$
9	0.8	0		40.9	7	$\begin{array}{ll} i & H \\ i & R \\ i & R \\ i & \\ \text { F } & i \\ F & i \end{array}$
Total	55.7	7		87.2	15	

-See footnote ©, Table C10.

CUNFIDENTIAL

Table C17
Target Durations fon Simulating Combat Conditions. by Vistbility and Enemy Attitude

Good visibility		Rad viquibiliey	
Finemy defending (7 targets). eec	Finemy samaultiag (7 targets). sec	Eaemy defending (7 tergets). sec	Enemy ssasulting (15 targetn), ee
4/5	3	4/1/2	3
41/2	3	4/1/2	3
$41 / 2$	3	9	3
9	41/2	9	4\%
9	41/2	15	4/1/2
15	6	191/2	6
19\%	6	19\%	71/
	9		74
	$71 / 2$		9
	101/2		10\%
	15		19
	15		18
	21		21
	251/6		281/2
	$311 / 2$		341/2
Tots)			
66	16.5	81	1723
231		$2531 / 2$	

CONFIDENTIAL

Table C18			
Intervals precedinc Tarcet tppearances fon Simulating, Combat Conditions			
Cood vieibility		And viaibilitv	
Position and target no.	Interval, eec	Ponition and terget no.	Interval, sec
$B 7$	9	42	9
H5	$71 / 2$	44	71/2
C.	10\%	4.3	6
C10	9	46	$10 \frac{1}{2}$
D14	5	41	71:
013	12	C 8	9
D15	9	Cll	12
F. 18	131/2	C 12	10\%
E20	$71 / 2$	014	74
F. 21	131/2	013	6
F. 22	10\%	015	9
F16	9	F19	10\%
F. 19	12	F.20	$7{ }^{2}$
F24	7/2	E.21	9
F25	10\%	F,22	131/2
G30	9	E16	-1/8
G28	13\%	F19	10\%
G31	10\%	F. 17	9
G29	12	F25	12
1133	73	F23	6
1134	9	F27	9
H32	10\%	F'x	74/2
Tetal	219		196\%

-Lettere indicata ierate formation; ambara identify individanl terneta

COMFIDENTIAL

CONFIDENTIAL

targets, but the experimental system omite them, as indicated by the identification numbers in Table C19.

Table C20 gives random sequences of target appearances for each complex such that all targets in a given formation will be used before any targets in another formation appear. The times are in $1 \frac{1}{2}-\sec$ rather than $1-$ sec units for the programmer, which operated in $1 \frac{1}{2}-$ sec steps.

Table cen
Target Appearance Prograns sor Sivelating Combat Conditions

Programe for good-viaibility seque aces (day)								Programs for bad-visibility seqoencen (sjapht)			
1	2	3	4	5	6	7	8	9	10	11	12

Startiar poiat $=$ lormation, and taraet

4-(3)30	A-F24	A-E. 22	A.014	A-C9	1-15	A+134	A-124	A-[1]	A-D15	A-A1	A-A2
C28	F25	F. 19	013	C10	87	H33	F'25	013	013	A4	A 4
(,31	C28	F. 16	n15	H32	C30	11.32	C30	015	D14	A6	13
C29	G31	E.20	k:18	H33	G28	125	G28	C8	E22	A2	11
D14	C29	E21	E. 22	1134	C.31	F24	C29	Cll	F. 19	A3	A6
D13	C30	E18	E20	F. 16	C29	B5	G31	C 12	E20	D13	D15
1115	115	C10	Hil6	F.19	F 24	H7	(1)5	E. 18	F18	015	0.3
124	1013	C9	E.19	E22	F25	C10	B7	E. 29	E21	D14	014
F25	D14	B-F24	E21	E.21	B-E19	C9	C10	E21	E16	B-E16	E18
B-C9	B-F. 16	F25	B-630	E20	E.20	D14	C9	E22	E. 17	F22	E22
C10	E. 19	B7	G29	F.18	E16	D13	B-D13	126	B-A3	E20	E16
F. 18	E21	H5	C,31	B-C29	E21	015	D15	C19	A6	E19	E. 21
E20	E. 20	013	G28	G31	E.2	F-E.19	D14	E17	A4	E. 18	E17
E21	E22	015	B7	G30	E18	E16	E16	B-A2	A2	E21	E19
E22	E18	014	185	C.28	1134	E22	E21	A4	11	E17	E.20
E16	B5	C28	F25	D15	1133	E. 18	E19	A.3	C12	F27	B-C.11
E19	B7	C31	F24	013	1132	F?1	E. 22	A6	C. 8	F26	C12
B7	H34	G29	H32	D14	Clo	E20	E20	Al	C11	F25	C8
85	H33	G30	133	F25	C9	C29	F. 18	F25	F25	F23	F23
H33	H32	H34	H_{34}	F24	D14	C30	1134	F23	F27	C11	F27
H34	Cl0	H133	C.10	R5	D13	C,28	1132	F27	F26	Cl 2	F26
H32	C9	H32	C9	B7	D15	C31	H33	F26	F23	C8	F25

- The letter A or B to the left of tbe hyphen in the atartion point. Fach eequeace wan atarted at either A or A, a.R., program 2A atarted witb target F24 and eaded with C.9, whernan propram 2 B ei erted with target E16 and eaded with target D14. The letter A tr, C, to the right of the hyphen or clooed ep witb the target aumber in the formation.

detalls of target systems simulating COMBAT CONDITIONS

Each target aystem was composed of 22 Cocky Ken targets, 3 of which were capable of lateral movement. The daytime and nightime range distributions were significantly different, requiring the preparation of additional target positions. As 10 of the poaltions were common to day and night target systems, it was necessary to prepcre a total of only 34 position to complete two systems of 22 targets each. These positions are indicated schematically in Fig. C16. Tahle C21 describe weveral characteriatics of the targets.

COMFIDENTIAL

Table C2l
Layout of Tanget Systems Simulating Combat Condmons

Target no.	Reage. vd	Targes size ${ }^{*}$	Coacealmeat ${ }^{\text {b }}$	Movemeat ${ }^{\text {c }}$	Blenk firiag ${ }^{d}$	Illumination*
1	52	F	C		¢	N
2	63	E.				N
3	65	E				N
4	67	F	C		F	v
5	74	F			F	D
6	76	E			F	N
7	77	F	C		F	D
8	78	F	C		F	N
9	86	E				D
10	89	F	C		F	D
11	90	F	C		F	v
12	91	F				N
13	111	F	C		F	D-N
14	127	F	C		F	D-N
15	139	F				D-N
16	152	E		n		D-N
17	161	E			F	N
18	162	E.		M		$\mathrm{n}-\mathrm{N}$
19	164	E		V		D-N
20	165	E	C			D-N
21	169	E				D-N
22	176	E	C		F	D-N
23	209	F				N
24	216	F	C			
25	218	F	C			D.- ${ }^{\text {d }}$
26	221	F			F	N
27	223	F	C		F	N
28	245	E			F	D
29	259	E			F	D
30	267	E				D
31	259	F	C		F	D
32	334	F			F	D
33	336	F				D
34	339	F	C		F	D
Total		$\begin{aligned} & 14 F . \\ & 20 \mathrm{~F} \end{aligned}$	15 C	3M	19F	$\begin{aligned} & 10 \mathrm{D}-\mathrm{N}, 12 \mathrm{D}, \\ & 12 \mathrm{~N} \end{aligned}$

aE, kneeling (large) target; F, prose (amall) target.
bC , camouflage; bleak, so concealment.
eThree tarpote moved leterelly.
dF, blank cartridges fired ne ternet appeared
eD, daytime carget; N , niphtime terget; and D-N, common to both aviteme.

COMFIDENTIAL

Fig. Cl6-Leqout of Terget Systems Simel ding Combet Conditions L indicetes position of lightis for night frixy.

CONFIDENTIAL

The actual programs allowed target appearance from 3 to $34^{1} / 2 \mathrm{sec}$. There were no simultaneous targel appearances, and each targel appearance was preceded by an interval of from 6 to $13^{1 / 2} \sec$ (Table C22). The order in which the targels appeared was also varled to prevent learsing bias. The targels were grouped in elghi nalural operallonal groujings designated A to H. The several targets comprising any group always appeared successivety in random order.

Table C22
Time interyals preceding and duminc appearancers of targets smellating Combat Conomtons

Cood vinibility			Rad visibilitv		
Target	Jnterval preceding, sec	Duration, sec	Target	[nterve] preceding, sec	Duration, sec
5	7.5	4.5	1	7.5	28.5
7	9.0	15.0	2	9.0	3.0
9	10.5	4.5	3	6.0	7.5
10	9.0	15.0	4	7.5	12.0
13	12.0	19.5	6	10.5	4.5
14	6.0	9.0	8	9.0	19.5
15	9.0	4.5	11	12.0	4.5
16	9.0	9.0	12	10.5	9.0
18	13.5	6.0	13	6.0	19.5
19	12.0	15.0	14	7.5	9.0
20	7.5	31.5	15	9.0	4.5
21	13.5	3.0	16	7.5	10.5
22	10.5	4.5	17	9.0	3.0
24	7.5	4.5	18	10.5	6.0
25	10.5	9.0	19	10.5	18.0
28	13.5	6.0	20	7.5	34.5
29	12.0	10.5	21	9.0	1.5
30	9.0	3.0	22	13.5	9.0
31	10.5	25.5	23	6.0	3.0
32	10.5	7.5	25	12.0	15.0
33	7.5	3.0	26	7.5	7.5
34	9.0	21.0	27	9.0	21.0

Twelve pregrams were devised thal incorporated buth random order of the groups and random order of Individual targets within each group. Table C20 ligta thase 12 programs of targelappearances. The 20 demolitions were likewise independenily randomly programedas shown in Table c23. Thefigures indicale the demolltion time in $1 / 2$-sec time increments from the slart of the program. Care was taken to avoid any iransient obscuralion of targets by demolilions by careful coordination of time and position of demolitions relative to target appearances.

The schedule for the siressing shocks is given in Table C24. In this case 16 schedules were used. During each run, 5 of the 10 men on the line received one shock. In each case the enifre scheduie selected from Tables C23 and C24 was incorporaled inio a master program. Finally a last vartalion wha introduced in thal each of the 12 programs could be started al elther of iwo pointa as shown in Table C20.

Programs 1 to 12 are presented in Table C25. Thio master schedule is presented in geometric form identical with the programmer patchbow

CONFIDENTIAL

Table C23
Demolifion Phograms for Tarcet Systems Simulating Combat Conditions

	Promsm											
Demolition	1	2	3	4	5	6	7	8	9	10	11	12

Time incremesta, 1$\}_{1}-\mathrm{sec}$ anits

1^{n}	148	36	13	251	147	227	30	254	2	236	26	141
2^{2}	75	275	289	102	14	255	102	32	226	150	237	104
3	23	4	291	259	176	226	29	199	292	9	115	253
4^{2}	92	221	3	193	278	254	104	45	135	74	181	255
5	255	240	155	250	229	162	89	84	218	285	199	150
6	198	3	83	103	80	40	204	13	61	111	177	120
7	290	158	185	55	12	108	172	213	161	175	40	59
8	112	10	140	256	56	4	103	173	133	73	65	178
9	102	134	41	183	162	111	45	108	130	250	131	55
10	134	63	71	90	161	29	69	223	193	53	188	157
11	262	112	32	133	195	199	32	255	216	298	264	276
12	103	201	70	249	3	236	192	48	60	40	179	219
13	272	126	202	238	120	46	155	61	224	242	198	177
14	125	239	264	42	113	163	245	129	225	149	204	204
15	4	97	266	131	2	2	216	283	122	207	2	256
16^{3}	113	202	125	181	6	169	62	153	183	121	105	106
17	51	62	85	67	67	28	101	214	234	75	104	117
18	24	152	166	139	199	87	112	186	92	55	82	32
19	151	192	243	34	288	47	218	215	217	39	187	74
20	269	74	257	145	70	25	280	85	134	11	42	176

- Blastian capo saed, eut sitrostarch.

CONFIDENTIAL

Tafle C24
Shoci Phograms foh Tabeet Systems Smulating Combat Conditions

CONFIDENTIAL

Table C25a
masten Schedule for Target Systems sumlating Combat Conditions

$\stackrel{\text { ar }}{\square}$				¢	$\stackrel{\sim}{\sim} \rightarrow$	$\stackrel{\#}{0}$							$\stackrel{\text { ¢ }}{5}$
$\vec{\sim}$		$\stackrel{\infty}{\infty}$										－＋－	
ก		E					7		8				
${ }_{8}$					\leqslant	$\stackrel{\sim}{n}$	$\stackrel{\circ}{\mathrm{F}}$		ส్ส			$\stackrel{m}{\square}$	
ล		$\stackrel{\text { ¢ }}{\text { ¢ }}$				$\stackrel{\sim}{\text { 号 }}$							
¢			$\stackrel{\square}{\mathrm{m}}$	$\vec{F} \rightarrow$					\leftarrow				－
\bigcirc												\％	
\propto											$-F^{\circ}$	$\stackrel{\mathrm{m}}{\mathrm{m}}$	
\pm		＜\％			浬								
\pm					$\stackrel{m}{6} \rightarrow$							\leftarrow	
$\stackrel{\sim}{\sim}$						－\％		－\％		$\stackrel{\sim}{\sim} \rightarrow$			E
$\stackrel{8}{\square}$				－F									
을 Q Q	－					\because				\leftarrow			$\stackrel{\rightharpoonup}{6} \rightarrow$
－						¢	$\leftarrow \frac{0}{7}$					$\bar{\square}$	
를 $=$									क्¢ิ．			$\stackrel{\sim}{\sim}$	
$\cdots 0$				$\stackrel{\text { \％}}{\square}$									
a							ㅇ						
∞		$\stackrel{\text { ¢ }}{\substack{\circ}}$				$\stackrel{\text { 玉 }}{ } \rightarrow$		$\stackrel{\text { ® }}{\stackrel{\rightharpoonup}{*}}$				$\leftarrow \Leftarrow$	
－										\％			
\bigcirc		＜					$\stackrel{\square}{6}$	\leftarrow					
＊						－त						E	
\rightarrow		$\stackrel{\sim}{E}$								$\leftarrow \text { โั }$	$\stackrel{a}{F} \rightarrow$		
m			$\leqslant \bar{E} \cdot$	－	$\leftarrow \sum_{F}^{m}-$	そ	－					$\mathrm{F} \rightarrow$	
\sim						8					$\leftarrow \frac{a}{F}$		
－		\％i		$\stackrel{\square}{0}$				\cdots					
		－	\sim	－	－	\sim	\bullet	－	－	－	\bigcirc	＝	ニ

Program 2
ONO-T-378

1	$\xrightarrow{s, 4}$		D6	D3	$\begin{gathered} 124 \\ 4 \end{gathered}$			$\begin{gathered} \mathrm{T} 24 \\ \downarrow \end{gathered}$		D8					$\begin{gathered} \mathrm{T} 25 \\ 4 \\ \hline \end{gathered}$						$\begin{gathered} 125 \\ 6 \\ \hline \end{gathered}$				
2					$\begin{array}{c\|} \hline 1 \\ \text { T28 } \\ b \end{array}$				T28		d1					¢ T31 b 									
3								T31				D17	D10			$\begin{gathered} \mathrm{T} 29 \\ \mathrm{~b} \end{gathered}$							T29	020	
4				$\begin{gathered} \mathrm{T} 30 \\ \uparrow \end{gathered}$		$\begin{gathered} \mathrm{T} 30 \\ \downarrow \end{gathered}$						$\underset{\uparrow}{\mathrm{T} 15}$			$\begin{gathered} \mathrm{T} 15 \\ \downarrow \end{gathered}$							1015	T13 ${ }_{\text {¢ }}^{4}$		
5											$\begin{gathered} \mathrm{T} 3 \\ \vdots \\ \hline \end{gathered}$	D11			$\begin{array}{\|c\|} \hline 1 \\ \text { T14 } \\ b \\ \hline \end{array}$						$\begin{gathered} \mathrm{T} 14 \\ 6 \end{gathered}$				
6	D13	T16		T16					D9							$\begin{gathered} \mathrm{T} 19 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T} 19 \\ \vdots \end{gathered}$							
7		D18						D7		$\begin{gathered} \mathrm{T} 21 \\ 4 \end{gathered}$		$\begin{gathered} \mathrm{T} 21 \\ \downarrow \\ \hline \end{gathered}$				$\begin{gathered} 120 \\ \uparrow \end{gathered}$									
8													$\begin{gathered} \mathrm{T} 20 \\ \downarrow \\ \hline \end{gathered}$				019			$\begin{array}{\|c} \hline \\ 1 \\ 122 \\ b \\ \hline \end{array}$			$\begin{gathered} \mathrm{T} 22 \\ \downarrow \\ \hline \end{gathered}$		
-	\$12	$d 16$					$\begin{gathered} \mathrm{T} 18 \\ \hline \end{gathered}$		T^{8}							$\begin{gathered} \mathrm{TS} \\ 4 \end{gathered}$			$\begin{aligned} & \mathrm{T} 5 \\ & \downarrow \end{aligned}$		d4				776 4
10										$\begin{array}{r} \mathrm{T} \\ \hline \end{array}$				D14	D5	$\begin{gathered} 4 \\ 734 \\ 6 \end{gathered}$									
11					$\begin{gathered} 734 \\ \downarrow \\ \hline \end{gathered}$					$\begin{gathered} \mathrm{T} 33 \\ 4 \\ \hline \end{gathered}$		$\begin{gathered} 733 \\ \downarrow \\ \hline \end{gathered}$							$\begin{gathered} \hline \uparrow \\ \text { T32 } \\ \hline b \\ \hline \end{gathered}$					$\begin{gathered} 732 \\ \downarrow \end{gathered}$	d2
12					¢ T10 b										$\begin{gathered} \mathrm{T} 10 \\ \vdots \end{gathered}$							T9			$\stackrel{T 9}{+}$

0. 1/4-1b introstarch domolition; T 4 , turget erseted; T t. targot droppod; d, blanting cap; b, blank-firiag rifle with the indicoted target; and SeA and StB, two almothetive atentiog ingtanta. Nembers desigesto the target, the demolition, or the positios on liae, at appropriate.

CONFBETHTAL

Table C25（continued）

CONFIDENTIAL

1	${ }_{\text {sun }}$												${ }_{\text {ris }}^{\text {fin }}$				
:					70,		${ }^{019}$		${ }_{\text {ris }}$		${ }^{\text {Tis }}$		9				${ }_{\text {fis }}$
,	Tic			${ }^{07}$					${ }_{2}$				${ }^{197}$				
-											${ }^{20} 9$			${ }_{\text {tion }}$	T	T6	
5		\%					$\mathrm{rip}^{\text {ri }}$	79									
-		T			015	"11			\%	700 ${ }^{010}$					吕		
\cdots																	
-						-		$\stackrel{+}{\text { rasm }}$			${ }^{\text {ra }}$		[${ }^{\circ}$		$\stackrel{\square}{76}$		
,					7			$\stackrel{r^{\frac{1}{5}} \text {. }}{\text { a }}$		${ }^{5}$					${ }_{\text {\% }}^{\text {trs }}$		
-					rim					${ }^{013}$						$\mathrm{T}_{\substack{2}}$	
\square	4				m												
12				$\hat{c o s}_{\text {Ti, }}^{0}$							Tio					${ }^{\circ}$	

2D. $1 / 4$-lb atroaterch demolition; $T 4$, target erected; T, earget dropped; d, blasting cap; b, blank-firing rifle with the iadicated teget; and SAA and SAB, two altenative otarting isamats. Nembere desigate the teget, the demolition, or the position ou lime, as appropriate.

CONFIDENTIAL

Table C25a（continued）

＊			ロ						－				$F \rightarrow$
ล									$\stackrel{\infty}{\square}$	$\stackrel{\sim}{\mathrm{F}} \mathrm{\rightarrow}$	－＋		
ค				$\stackrel{\square}{i} \rightarrow$								－－	
ฯ							\cdots						
－				－-6		－				－			
8			$\stackrel{\text { 唇 }}{ }$	\％		咸		$\stackrel{\text { ¢ }}{\stackrel{\text { H }}{\rightarrow}}$	E		$\stackrel{\text { m }}{\mathrm{F}} \rightarrow$		
\bigcirc									$\stackrel{\text { ¢ }}{ } \rightarrow$				
\pm			－									$\xrightarrow{\text { ant }}$	
\pm				$\stackrel{N}{\mathrm{~N}}$			$\stackrel{\text { ¢ }}{\text { ¢ }} \rightarrow$						
\bigcirc		40				$\stackrel{\text { 玉̈ }}{\text { ¢ }}$							
易				$\stackrel{\stackrel{\rightharpoonup}{m} \rightarrow}{ }$						$\stackrel{\sim}{\mathrm{F}} \rightarrow$			－
－$=$		\％				－							
号			$\stackrel{\sim}{\mathrm{m}} \rightarrow$			$\stackrel{ \pm}{\square}$		－\％					$\stackrel{\square}{\square}$
	E	5			$\stackrel{\mathrm{a}}{\mathrm{F}} \mathrm{\rightarrow}$			\％				4	
号 $=$	a							\bigcirc		－\％			
응		$\theta \rightarrow$			$4-\frac{9}{6}$								
a													$\stackrel{\sim}{\mathrm{F}} \mathrm{\rightarrow}$
∞			－¢										
\cdots		－0									$\leftarrow \frac{m}{F}$		
\bigcirc		$\stackrel{\square}{\square}$											$-\varepsilon$
\sim					ε	$\stackrel{\text { N }}{\mathrm{F}} \mathrm{\rightarrow}$						$\stackrel{\rightharpoonup}{\mathrm{F}} \rightarrow$	
－											$\stackrel{\square}{\square}$		
∞		Nㅜㄹ						$\stackrel{\infty}{\boldsymbol{F}} \rightarrow$					7
\sim		\＃				－N－0			－ $\bar{n}-$	$\stackrel{\text { ir }}{ } \rightarrow$			
－		\％ 1	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$				－	8				$\stackrel{\rightharpoonup}{\mathrm{F}} \rightarrow$
		－	N	m	－	\sim	\bullet	\sim	∞	－	윽	$=$	๕

CONFIDENTIAL

1	${ }_{45}^{45}$		${ }^{\text {no }} \frac{1}{75}$			5				${ }^{\text {mib }}$									$7{ }^{100}$
2			${ }^{\text {mot }}$		ro						∞						010		
,	$\stackrel{*}{*}$													Ti					
.	$\stackrel{+}{\text { to }}$								100			To.							
S			Tos			${ }^{\text {m }}$		-			Tip								
-		$\stackrel{1}{t}$																	To
,			${ }_{T}^{\text {Tis }}$		96				${ }^{\text {os }}$					416	$\stackrel{1}{1}$		T		
-					m								Tio						\square
-	in										${ }^{5}$				${ }_{\text {ts }}^{\text {ts }}$		${ }^{75}$		
\cdots	[00 10		${ }_{\text {f }}^{\text {ta }}$																
\square			$\cdots{ }^{\circ}$		${ }^{\circ}$		7								$\xrightarrow{7}$				
12		${ }^{\text {\% }}$										T3					${ }_{\text {ris }}{ }_{\text {T }}$		

COMFIDEMTIAL
Table C25 (continued)

	-E									
\cdots										
部										
$\frac{s}{5}$		- 8								
8										
$\frac{3}{B}$										
								\because		
Q							\%		\%	
								F-		
				¿						
-			\%	8 -						
						-				
				-						
\because						\%				
\because		8								
\div										
	\% ${ }^{\text {a }}$	${ }_{5}{ }^{\text {a }}$		\%				- ${ }^{-}$		
11										

CONFIDENTIAL

COMFIDENTIAL
Table C25a (contianed)

$\frac{\pi}{3}$:		-	。			$\stackrel{\square}{\square}$		
$\frac{\square}{8}$	-							\bigcirc			
-	,										
8							-				
\bigcirc	,							-			
-	- -	-									
園	B		E-								
	6										
$3{ }^{2}$	-										
	,										
	-	$\stackrel{-}{-}$						${ }^{\text {F }}$			
x^{2}			$\stackrel{\square}{\square}$								
\div	\bigcirc										
\because	-										
\div	-							-			
0	- ${ }^{-2}$										
	-										
\bigcirc	- -					E-					
\% 15	1 -								.		

COMFIDENTIAL

		\%					ε				ε			3
		:				$\stackrel{\square}{\square}$								
		\pm				F^{+}							-	
										-				
	-				$\stackrel{\square}{\square}$		E				$\overline{\mathrm{E}}$			
												-	E.	
					$E \rightarrow$									
						+					- E^{-}			
											\%			
				-						$\stackrel{\square}{*}$				
	$\stackrel{\square}{\square}$													
	\%					E-							*-	
-							-							\%
	$\stackrel{\square}{\square}=$					-								
\%		$\stackrel{\circ}{i}+$			\because						$=$			
										$\stackrel{\square}{\text { F }}$	$\stackrel{ }{*}$			E
		-\%												
$\stackrel{B}{*}=$					$\stackrel{+}{\square}+$		\sim							
										$\stackrel{\square}{\text { er }}$				
-	-*-			-i										
		\%					-							
									E^{+}			-		
		\%								$\stackrel{ }{ }$				
		\%												
-	$\underline{E}=$		-			$\stackrel{\circ}{\text { E, }}$								
-	-	。					-		- ${ }^{\circ}$	-	\because			$=$

comfidential
Table C25＊（continued）

－ 4												$\leftarrow \stackrel{\sim}{F}$	$\stackrel{\infty}{\sim}$
む		F							\cong				
ก									$\stackrel{m}{0}$	$\stackrel{\text { ¢ }}{ } \stackrel{ }{ }$			
ผ			$\cdots \rightarrow$			－\％－							
ล													
¢					－$\vec{F} \cdot$				$\stackrel{\text { 간 }}{ }$				
－			40										
\pm				$\leftarrow{ }_{F}^{m}$	－								
\simeq			\％		－				$-\bar{\square}$			$\overrightarrow{\mathrm{F}} \rightarrow$	
\because											\leqslant		
$8 \cong$			Σ	®	$\stackrel{n}{\mathrm{E}} \mathrm{I}$	\％		$\stackrel{\square}{\mathrm{F}} \mathrm{\rightarrow}$				－\＃－	
＝				$\mathrm{F} \rightarrow$								E	
$\stackrel{\text { a }}{\substack{4}}$	－							$\leftarrow 2$	응				
	5		$\stackrel{F}{\mathrm{~F}}$		－				$\stackrel{\square}{0}$		\％		－
砏 $=$													
\bigcirc													
a				$\leftarrow \square$					$\stackrel{\infty}{6} \rightarrow$	－\％			
∞							－\％				$\stackrel{\square}{6}=$		
\cdots					$\stackrel{\infty}{\square}$				$-\frac{\infty}{F}$			$\stackrel{\sim}{\sim} \rightarrow$	
\bullet					$\stackrel{m}{F} \rightarrow$	\div	\＆	$\stackrel{\text { \％}}{\text { F }}$	＊				$\stackrel{\sim}{\square}$
\checkmark		$\leftarrow \frac{2}{F}$		$\underline{\mathrm{N}} \rightarrow$		$\stackrel{8}{3}$						－～	
－			$\div \frac{0}{5}$			$\stackrel{\square}{0}$			\cdots	$\stackrel{\rightharpoonup}{t}$			
m				\leftarrow			$\stackrel{\text { ®ั，}}{ }$			$\stackrel{F}{F}$	－		
\sim		$\stackrel{\sim}{\square}$							E				
－		in 1	$亏$			$\stackrel{\rightharpoonup}{F} \rightarrow$				$\leftarrow \frac{\pi}{E}$		$\stackrel{\text { ®ั－}}{ }$	
		－	\sim	m	－	\sim	\bullet	\sim	\cdots	a	응	$=$	\because

COMFIDENTIAL

-					\%				¢		\%
		$\stackrel{\square}{0}$									
		$\xrightarrow[\stackrel{8}{5}]{\substack{\text { c }}}$			तิ \rightarrow						
										ह¢ \rightarrow	
\vec{H}				- ${ }^{\text {¢ }}$				$-\frac{9}{F}$	$\stackrel{\text { ¢ }}{ } \rightarrow$		
		$\div \frac{10}{F}$	- ${ }_{-}^{+}$	2	-						
								\%			
				$\stackrel{\square}{\square}$							
					\square						
			$\stackrel{m}{\mathrm{~F}} \rightarrow$			$\stackrel{\text { a }}{\stackrel{\text { F }}{ }}$					-
		\Leftrightarrow									
$\leftarrow \vec{F}$						4		$\overrightarrow{\mathrm{F}} \rightarrow$			
		\leftarrow						- E-			
	$\leftarrow \frac{2}{F}$			$\stackrel{\text { ® }}{\square}$							
		E			$\stackrel{\varrho}{\stackrel{\circ}{F}}$						
\leftrightarrow				\div					- \%	-	
	©				4	\bigcirc					
\leftarrow				$\%$		$\stackrel{\mathrm{F}}{\mathrm{F}}$				$\stackrel{n}{\square}$	$\xrightarrow{\text { R }} \rightarrow$
	$p \rightarrow$	ε					-			$:$	
		F		\%		450		$\stackrel{\square}{0}$			
							8	\%\% \rightarrow		®	
			$\leqslant \frac{m}{F}$		智		$\frac{\square}{\square}$		$\stackrel{\text { N/ }}{\mathrm{F}}$	$\stackrel{\text { g }}{ } \rightarrow$	-
st				$\stackrel{\dot{F}}{ } \rightarrow$			\%				辰
-	\sim	\cdots	-	n	\bullet	\cdots	∞	\cdots	응	$=$	\cong

CONFIDENTIAL

Appendix D

INSTRUMENTATION

SUMMARY 117
INTRODUCTION 117
SYSTEM BLOCK DIAGRAM 119
TIMER 122
TARGET DEVICE 124
PHOGRAMMER 126
BLFFER IELAY PANELS 129
MOVING TARGETS 129
DISCLOSING FIRE FROM THE TARGETS 134
ARTILLEIYY AND RIFLE FIRE 134
EL.ECTRIC SHOCK UNITS 134
HIT REIDOIRDING 137
THIGGER-PULL REOORDING 144
POWER CONSIDERATIONS AND ILLUMINATION 148
FIGURES
D1. Functhonal Diggan or the Conthol System 118
D2. Functional dacram of tee Data-Recondang Systia IIS
D3. Instrumentation of the Salvo I Tanget Systom 120
Di. Peless rion 7ive: 121
U5. Scirmatic Dagram uf tivia 123
Do. Cowy kien Tancet Dence ORO Trpe TD-2 Moosl? 124
ORO-T-378 118

CONFIDENTIAL

D7. Target Device with E Suhousite: Target 125
D8. Schematic Dacram of SALVO 1 Procramera - 27
D9. Рatch Panel. por Phocramea 128
Dio. buffer Ielays 130
Dll. The Moving Target, Carriage, and Track sititia 132
D12. SALYO I Moving-Target Conthol Grcuithy 132
D13. Wave Forms ror Moving Target 133
D14. Blank -Fiaing tofle Unit 135
D15. Electric Shock Unit 135
D16. Schematic Dagram of Electric Shock Unit 136
D17. Het-Recolding Target 138
D18. Ht-Recomang Orcutry 139
D19. Wave Forms for Flip. Flop Switch Responses to Six Rundomly Spaced tits 142
D20. M1 Pifle Sittch for Recordng Thiggein Pulls 143
D21. Theger-Pull Recording Grcuit 143

CONFIDENTIAL

SUMMARY

The instrumentation empioyed to obtain the realism, controi, repicducibliity, and accurate recording of data required for the SALVO I experiment is described in this appendix. The design is based on general considerations of hit recording discussed eisewnere. ${ }^{30}$

A sequentialiy programed $71 / 2$-min flring experiment utilized 18 stationary E (kneeling) and F (prone) slihouette targets, and 3 moving E silhouettes, which were exposed at preselected times for periods ranging from 3 to $34^{1} / 2 \mathrm{sec}$. Additional reailsm was achieved by including in the electronicaliy sequenced program disclosing fire from emplaced biank-ioaded rifies, simulated artiliery bursts, slmulated wounding of test troops by eiectric shock delivered to the lower leg, and recorded battle nclse piayed through a publlc address system.

Switches attached to the irlgger mechanisms indicated the time of firing, and hits on targets were recorded electrlcaliy when projectiles perforated the two conducting surfaces of speclaily constructed targets.

The synchronized hit-recording and trigger-switch instrumentation was sufficiently sensitive to ldentify hits with the weapon from which they were fired, and to determine the instances in which multiple hits resuited from 2 single round for the salvo ammunitions. Electrical recording was complemented by manual counts of hits on the removable paper target faces.

Night firing utilized the same instrumentation but necessitated the installation of tower-mounted floodights to provide a constant level of illumination thant 2rymiximated bright moonllght.

INTRODUCTION

Instrumentation for the SALVO I experiment was designed to provide (a) reallsm, (b) control, (c) capability for recording, and (d) reproducibility.

The realism of the experiment is reflected in the instrumentation by (a) the activation of the target system, (b) the simulated artiliery burstis and simulated disclosing fire, and (c) the slmulated hits on the firing personnei.

The controi function refers to the sequential appearance and disappearance of the targets, firing of the imblated artillery, and delivery of the simulated wounds on the firing personnel.

The data to be recorded are the times of the hits on targets, the times of target appearances and durations of exposure, and the tlmes of rifle trigger pulis. A common time base wan used for all recorded data.

Reproduclble action of ail these events was conirolled by clrcuitry behind the firiag line that permitted changing tae sequence of evente to minimalre the effects of posslble learaing by the test troope.

Fig. DI-Functional Diagrom of the Control System

Fi. D2-Functiend Digeram of the Dore-Recerling Sy tiom

CONFIDENTIAL

The functional diagram presented in Fig. D1 Incticates the importance of two essential components of the control system - the timer, which provides a time base for all events, and the prugrammer, which determines the sequence of those events.

The target mechanism, known as the Cocky Ken (pop-up target) or OROJHU Target Devlce Type 2, was developed for the SALVO 1 experlment by the ORO Electronics Laboratory. An electricalslgnal activates the mechanism that elevates the target by rotating it from a prone position to a vertical position in less than $\frac{2}{3}$ sec. A second electrical slgnal initiates the action that further rotates the target to a supine position. The mechanism is mounted on a 2-by $4-\mathrm{in}$. wooden stake, and positioned in a shallow depression that conceals the unerected target and mechanism from the firing ine.

Electrically detonated $1 / 4-1 \mathrm{~b}$ blocks of nitrostarch slmulated artillery bursts. Disciosing fire was simulated by electricaliy fired blank-loaded rifles emplaced near 10 of the stationary target positions. Flectric-shock devices, used to simulate hits on test personnel, applied a safe level of voltage to the firer's leg by means of sultable electrodes.

Figure D2 is a functlonal dlagram of the recording system. Two recorders were used-an electric-spark 4 -pen Brush unit and a 20-pen Esterline-Angus recorder. The standard timing-puise and the target-appearance tlmes were recorded on both instruments simultanevusly, thereby permitting correlation between the two records.

The very small separation in tlme between lits with salvo ammunition required instrumentation capable of resolving hits separated in time by as little as 0.5 msec . Hit recording was accompllshed by electrically sensing the passage of the bullet through a special target sandwich consisting of two sheets of conductive rubber separated by a sheet of nonconductive rubber. An outer layer of heavy cardboard was added to minimize penetration by ricochet iragments. This target was based on a design developed by the Army Participation Group of the Navy Special Devices Center at Port Washington, N. Y.

The connections between the target sandwich and the recording circultry utilized small-diameter coaxial leads. These were lald in a trench 1 ft deep and covered with soil, to protect them from damage during firing.

The individual target-hit sensing clrcuit was not energized until the target's appearance had been called for. This technique eliminated the possibility of interference by other targets and their lines.

Trigger puils of the test weapons, except for the flechette units, were recorded on separate channeis of a 20-pen Esterline-Angus recorder. Switches were deslgned by ORO's eiectronics group and installed in the M1 rifies, M2 carbines, and T48 rifles. Switch action resuited from the hammer movement in these weapons. A $15-\mathrm{ft}$ llght flexible cable carried the signal tu an interconection block adjacent to the firing position.

SYSTEM BLOCK DIAGRAM

The salvo target system is shown in block form in Fig. D3. This diagram shows all interconnections between the major parts of the system and the flow of power and control signals. The system can be divided into two sections:

CONFIDENTIAL

CONFIDENTIAL

one contalns the control instrumentation necessary for running the experiment (the timer, programmer, control relays, and field devices); the other comprimes the data-recording instrumentation. This involves recording hits scored in the cargets, trigger pulls of each rifle, and the resording of the time base and target exposures. The arrows indicate the direction of fiuw of control, which in gerieral is from left to right on the diagram. Two separate 115 -volt 5 kw generators were used to supply the necessary ac power. Generator 1 supplied power for all the control circuits, targets, demolitions, etc. Generator 2 supplied ac power only to the hit recorder. Any heavy power surges of the control

Fig. D4-Pulses from Timer
circuits were thereby isolated from the relatively sensitive hit-recording circult. The control power was polarized and a common ground used throughout. Power was distributed to the individual control instrumerts via the timer unit. The recording-instrument power was also polarized; it was, however, Individually distrivuled to each instrument.

The tlmer, described in detail in a later section, provided all the necessary timirg and operating pulses to initiate events in the assoclated control instruments.

The heart of the control system is the 300 -poslition stepping-switch programmer that determines the sequence of events (duration of target exposure time and the time between target appearances). At this point events followed several paths. The controller, buffer relays, de nolition networks, and shock

CONFIDENTIAL

units wert plugged into the progranmer patchboard to operate in the desired sequence and at the desired time.

The iarge power and voltage for operating the blank-firing rifle solenoids and the Cocky Ken targets required the use of intermediate buffer relays. I_{2} pulses energized the appropriate relay and the relay contacts, and applled 115-, 230-, and 345 -volt ac to the blank-firing rifie solenoids. Essentaily the buffer relays within the controiler performed an identical function for the target devices.

Other contacts on the controller relays controlled marker pulses to the Esterline-Angus recorder and the Brush recorder that were produced at $11 / 2$ sec intervals via the T_{4} pulses, and indicated the exact time at which the relays were called to activate the targets (Flg. D4). A third function of the controiler relays was to select a second buffer relay that in turn connected the hit-recorder preamplifier to the signal lines of the selected target.

Puises produced by hits on the targets were electronically conveyed through the preampilfier to the spark generator, and then to the pens of the Brush recorder. Pulses received from the trigger-switch mechanisms in the weapons activated pens of the Esterine-Angus recorder.
timer
The timer provided all the necessary timing and operating pulses to the control and recording equipment. Flgure D5 is a schematic diagram of the timer. Four cams attached to the shaft of the synchronous motor operated microswitches to produce the necessary timing and control operating pulses. The motor output shaft rotated at one revolution every $1 / 2 \mathrm{sec}$. Push-button switches were paralleled with each of the microswitches to provide a manual method of producing each of the pulses. This feature was used extensively in routine maintenance and testing of equipment. Neon lights were placed across each of the microswitches to provide a visuai check on each pulse circuit. Resistance-capacitance arc-suppresslon circuits were installed ac ross all operating contacts to reduce damaging inductlve voltage surges.

The T_{1} pulses were deveioped by microswitch $M S_{1}$ and were produced once for every revolution of the motor. The pulse was 0.1 sec long and applied ${ }^{135}$-voit dc to the programmer sequencing relay. The sequencing relay in turn advanced the stepping switch in the programmer one position. The T_{2} pulses (110 -volt 2 c) were then fed through the stepping-switch contacts to operate control equipment. T_{2} pulses were delayed a short perlod of time behind the T_{1} pulses to allow the stepping-switch contacis sufficient time to close before a voltage was applied to them. Microswitch MS_{3} operated relay A, whlch in turn produced the three sets of T_{3} lulses. "?-to-1 step-up transformer connected as a booster transformer cascaded -ith the 115 -voit ac line to provide the 230and 345 -volt power. Relay contacts A_{1}, A_{2}, and A_{3} in the transformer secondary provided the actual I_{3} power pulses. The I_{3} pulses were delayed in time after T_{2} pulses to allow sufflcient time for the control relays to operate. This ensured that the control relays merely carrled the heavy larget power pulses, rather than making or breaking their pulses. T_{4} pulses were 6 -volt dc, and were developed by mlcroswitch MS_{4}. These pulses were used as timing pulses for the Brush recorder and the Esterline-Angus recorder.

The tlmer panel also served as the ac power-dictributlon panel for the other control equlpment. This permitted central control of all equipment power.

COMFIDENTIAL

COMFIDENTIAL

CONFICENYIAL

TARGET DEVICE

A drawing of the ORO Cocky Ken target device is presented in Fig. D6. The besic paris of the device are the housing, drive apring, target-stake socket, and solenoid. The housing, support clamp, and target socket are aluminum castings, heat-treated prior to machining. The housing is approximately 4 by 4 by 3 in ., and contains the eiectrical and most mechanical parts of tre device. An eariier version has been briefly described. ${ }^{16}$

Fig. D6-Cocky Ken Target Device, ORO Type TD-2, Model 2

Manual cocking to the prone position compresses the drive spring that, on signal, rotates the target to the upright and then supine attitudes. Several variations of drive springs were employed depending on the target weight. For the E silhouette target a cocking force of 45 lb (consisting of a heavy soring of 20 turns of $8 / 10-\mathrm{in}$. steel spring wire) was required. For the F silhouette target a cocking force of 35 lb (consisting of a spring of 20 turns of $1 / 4-\mathrm{in}$. steel spring wire) was required.

As shown in Fig. D6 the housing end of the spring is parallel to the drive shaft and projects into the housing through one of four holes spaced 90 deg apart a round the $\%$-in.-diameter drive-shait hole. This feature allows adjustment of the spring tension. Reduced tension results in slower target response, but increases the life of the device. The outside end of the spring fits into one

CONFIDENTIAL

of several holes in a collar that fits into a slot in the end of the drlve shaft, allowing further adjustment of spring tension.

The drive shaft passes through the housing and projects on the other side for the target socket. Both shaft holes of the housing are bossed, or thickened, to minlmize distortion from latching lmpact. Lateral movement of the shaft is restricted by coilars on either slde of the housing. The target socket is pinned to the shaft to facilitate ready replacement of damaged units.

Fig. D7-Torget Device with E Silhouette Target
The latch and pawl system encounters heavy shocks when the target ls operated, and these parts are therefore prehardened. The latch and pawl system is very sensitive to relative positioning; however, because of the sturdiness required of the latch support, adjustabllity could not readily be incorporated in the design. Accurate positioning 18 attalned by drilling the drive shaft for the pewl fastening pins after the target socket is joined to the drlve shaft and the shaft inserted into the housing. The flats of the pewl are thus allgned with the proper position of the target socket.

A 115 -volt Bendix solenoid trips the Latch that releases the drlve spring, thereby erecting the target. The clapper, made of sheot motal with a latcharm window in its center position and a welght on its lower end, is loosely pinned to the armature in the solenoid. The adjustment of the solenoid position is determined by the latch and the window angagement whon the colonold is onergized, such that the trlyped latch will provent the armature from ceating by approximately $1 / 1$ in .

CONFIDENTIAL

A microswitch and its operating cam are jocated in the housing. The functio: of the microswitch is so disconneci the solcnoid from the "up" line, from which it receives pulses, and connect it to the "down" line. This prevents the solenoid from accepting further "up" pulses. The target will thus remain in an erect position untll pulses are applied via the "down" line.

The target installation was a quick and simple operation. A 2-by 4 -in. stake was driven in the ground and the target mechanism was clamped to the stake. Wires from the control position terminated in a three-pin twist-lock plug, which was inserted into a receptacle on the device. To minimize possibie damage to the mechanism, sandbags (up to approximately 9 in . hign) were placed between the device and the firing line. An alternative method of installation was to scoop a shallow bole in the ground, so that the mechanism was half below the surface, with the removed soil placed in front of the device. A device with an E target is shown in Fig. D7.

PROGRAMMER

The ORO-deveioped programmer proved to be a reliable means of obtaining automatic preseritation of targets on a reproctucible schedulc of events controlled by a preselected program of electric pulses. A total of 300 equal time increments was provided such that, beginning with the start-button contact at time zero, event-creating pulses could be obtained from the appropriate terminais on a patch panel in any number up to 300 . For this experiment the basic time increment generated by the timer was $1 \frac{1}{2} \mathrm{sec}$, permitting a program of 450 sec , or $71 / \mathrm{min}$.

The basic component of the programmer wis a 12 -ievel 25 -positiga rotary stepping switch, which advanced one position for each activation of its motor magncts. A second, smaller synchronized-action stepping switch seiected each of the 12 levels of the larger switch in sequence. The top horizontai row of 25 terminals corresponded to the 25 positions of the first level of the main stepping switches; the next row to the next level of the main stepping switches; etc. When the stepping switch had reached the end of the bottom row, other internal circuitry returned the switches to a "homed" position. Pushing the start button set the programmer into its autoinatic sequencing.

The programmer had two main sections: (a) The control for sequencing the switches (T_{1} puise programing), and (b) the seiection of clrcults by the contacts of the stepping switch (T_{2} pulse programing). From Fig. D8, it can be seen that the small stepping switch selected the contact level of the iarge stepping switch. To reduce the required number of level seiection contacts, two adjacent levels of the large stepping switches were connected to a single contact of the level selector switch. This was possible since the contacts of the large stepping arc were distributed on an arc of only $\mathbf{1 8 0} \mathrm{deg}$, and adjacent leveis were not simuitaneously engaged. The individual coniacts of the large stepping switch were connected to the 300 correspondingly located terminals on the patsh panei (Fig. D9). These terminals presented the output c! ine programmer, demolitions, blank-firing rifle relays, shockers, etc. It puises were fed through the level ssiector-switch contacta and then to the large steppingswitch conticts, and from these to the output patchboard terminais. The contacts of the stepping switches did not actually make or break the power to the

CONFIDENTIAL

Fig. D\&-Schomoric Dioprom of SALVO I Programmea

CONFIDENTIA:

loads. T_{2} pulses, as exptaincd eariler, were apptied only after the stepping switches had advanced.

Figure D8 shows the manner in which the controi of the programnier was accoinplished. Since the 26th position of the large stepping switch was not useful for the progress of the programmer, it was necessary that at every 26 th step the large stepping switches were automatically advanced to the next position; on every other 26 th step (or every 52 d step) the small level-selector

Fig. D9-Patch Ponel for Pragrammer
switch also had to be advanced. Both functions were accomplished by the addition of a separate relay cperated by T_{1} pulses, and by the separate side and in terrupter contacts that are part of the steoping switches. Referring to Fig. D8, this functioned $2 s$ follows: the T_{1} puises operated relay R each time they closed. The relay contacts controlled the large stepping-switch magnets, causing the s witch to index around one position. When the 26 th, or blank, position was reached, the side contacts of switch A operated relay R, and hence the large stepping-switch magnets. When these magnets operated, the interrupter contacts were opened and relay R opened the magnet circuit. Since the switch stepped in approximately $1 / s$ sec, it advanced to the next position before the associated T_{2} puise was produced. The $52 d$ step of the switches closed the alde contacts of the large stepping 8 witch B, which controlled the indexing levelselector switch C.

To accomplish the automatic resetting of the prugraminer to the ready or "home" position, two extra tevels for the level-selector switch C were used. The second level controtled the operation of relay R by the timing contacts, and by itis action ensured that the large atepping awitches were stopped in the

COMFIDENTIAL

MOVING TARCETS

The moving-target carriage was developed by ORO's Electronics Laboratory. Three moving targets ware included in the target complex. Each unit moved approximately 60 ft while exposed, and the rates of movement were different for all three.

A trench 3 ft wide and 60 ft long was required to protect the moving carrlage and its gulding and supporting track. The excavated material was placed to the front of the unit to permit a reduction of the required trench dept.b.

CONFIDENTIAL

COMFIDENTIAL

All inree moving targets uthized the E slihonette; the target mechanisms ware the Cock! Ken units previously described. On cummand the target was eievated. As the target neared its fully upright position, the carriage started acceierating until the preset top speed was reached. The internal speedgoverning circuit then functioned to permit the carriage to coast until its speed decreased approximateiy 10 percent, at which point the power was again appiled to accelerate the carriage to the top speed liinit. The effect produced simulated a running man.

Near the end of the desired length of travel, a carrlage-mounted trip switch was triggered by a pawl on the track. The switch caused the drive motor to reverse lts direction thereby slowing, halting, and finally reversing the direction of the carriage travel. As the carriage reversed its direction, the trip switch was again actuated, the motor power was removed, and the target dcvice actuated to drop the target.

Between runs the carriage was retumed manualiy to its starting position, and the target device was again cocked. The unit was then ready for the next run.

Two light control lines of combat wire and the coaxial fead carrying the hit-recording signal were connected between the carriage and the control point behind the firing lines.

A 8 -volt storage battery was mounted on the carrlage to provide a power source for the driving motor. For the 80 -ft runs, a single charge of the storage battery was sufficient for 2 days of operation (approximateiy 20 to 30 runs inciuding testing).

Figure D11 shows the generat construction of the moving target, and Fig. D12 shows a schematic drawing of the control circuitry. Figure D11 shows the basic parts of the carriage and the way in which it is mounted on the tracks.
 rage from the lower track. The wheels arc loosely fitted to their axles and are centered by helical springs from both sides to the channel-shaped iron frame, thus allowing the carriage to follow the horizontal changes of the guiding track without binding. The tracks are two hot-rolled flat-bariron ralis, $1 / 4$ by 2 in ., spaced vertically about 12 in . and supported by a serles of metai posts at approximately 3 -ft intervais. The bottom rail supports the carriage. The top rall maintains the unit in a vertical position, and its fiat side provides a surface against which the propulsion wheel reacts. This track design provided the flexibluty needed to adjut to minor terrain variations.

The supporting structure of the track system ls made of "Dexion," perforated light steel and aluminum angle. The vertical stake used for spacing the tracks and supporting the upper one is bolted to a crosspiece that serves to provide the support for the lower track. To achleve rigidity, a third member is aitached between the crosspiece and the vertical member on the opposite side from the tracks. Longitudinal Dexion members serve to tie these basic sections together.

The motor used is a Ford starter unit equipped with an extra set of fieid windinge to provide reyersib!lity. A centrlugai-switch speed governor is attached to the shaft of the motor, and allowe easy adjustment of the top velocity of the mechanism wthin a range from $5 \mathrm{ft} / \mathrm{sec}$ to $30 \mathrm{ft} / \mathrm{sec}$. Total weight of the target carrtage if 65 fb . The unit can accelerate to 2 velocity of $20 \mathrm{ft} / \mathrm{sec}$ in the firmt 15 ft of track.

COHFIDENTIAL

Off Mothicsen Chembed Cerp
Fig. Sil-The Moving Torget, Corrioge, and Track System

Fig. DI2-SALVO I Moving-Torger Censrel Cirewiry

COMFIDENTIAL

The electronic control sequence of the moving carriage is 2 s follows:
(a) Pulses from an external timer are flrst applied to line 1. The target solenold is energized; the target is ralsed.
(b) The cam-operated microswitch, located within the target mechanism, switches from line 1 to line 2.
(c) Latching relay K1 is energized by the up pulses on Libse 1. Coniscts $\mathrm{KI}_{2}, \mathrm{Ki}_{\text {s }}$, and $\mathrm{K} 1_{1}$ close.
(d) The K 1 , closing of contact Ki_{1} energizes the forward solenold, which in turn enerdzes the drlving motor.

Fig. D13-Wave Forms fer Moving Targel
(e) The target is now moving elong the track, within fractions of a second after the flrat up pulse.
(f) Up pulses are removed aad down pulses are applied to line 2. (Note: K1 Is still set; therfore contact K1; is open, keeping the down pulses off the target solenoid.) Relative wave forms for the operating sequence of the moving targets are shown in Fig. D13.
(g) The target moves along the irack under control of lis governor. When the targei neurs the end of the track the trip switch is thrown via a mechanical stop.
(h) The trip switch deenerglzes the forward solenold and thus the forwerd winding of the driving motor. The irlp switch in its new position energizen the reverse solenoid and thue the "reverse direction travel" windlage of the motor.
(1) Latchat relay K2 te also set through the trip switch, operatiag contacts $\mathrm{K}_{1}, \mathrm{~K}_{2}$, and K_{3}.

CONFIDENTIAL

(j) The larget reverses its direction and, in coming back past the 11 mlt switch, sets it to its ortginal position. Tinis deenergizes the reverse solenold.
(k) Relas K1 resets through contact K_{1}, and the forward sclenoid reinains deenergized owing to contact K_{2}, being open.
(i) This has occurred before the target has had tlme to pick up speed; therefore it coasts to a hatt in a very short distance (1 to 2 ft).
(m) Contact $K 1$, applies the down pulses to the target solenold and the target pops down. Relay B is reset through contacts Kl_{2} and K_{3}.
(n) All switches and relays have been reset to their original condition, so that it is only necessary to push the target back to the other end of the track, cock it, and the target is ready to run again.

Loss of control of the unit, partlcularly at the end of its travel, was experienced and ls primarily ascribed to the type and quality of the latching relays used.

DISCLOSING FIRE FROM THE TARGETS

To disclose the position of targets that we re partly concealed, a blank round was fired at the time of the target appearance from M1 rifles aimed toward the firing line and mounted in spectally constructed boxes.

The rifles were electrically operated and controlled from behind the firing line by the programmer. The operation of the rifles was as follows: T_{2} pulses from the programmer operated the correct buffer relay. The relay contacts in turn apptled ac power to the control lines of the blank-firing rifle for the duration of the relay contact closure. This power operated a Bendix solenoid identical to the ore used in the Cocky Ken target device. The solenoid was mechanically linked to the trigger so that the rifle would fire when the solennid was energized. Figure D14 ls a photograph of the unit.

ARTILLEHY AND RIFLE FIRE

To achleve realism, 10 artillery bursts, simulated by expinding $1 / 4-1 \mathrm{lb}$ blocks of nitrostarch, and 11 rifle shots, simulated by No. 6 electric detonating caps, were detonated in the target area.

Combat wire carried the required currents from the control point to the field locations. A connection block terminated the wire in the fleld, and functioned as a quick connectlon for the wires from the detonating caps, and as a mount for an arc-suppression resistor-capacitor network.

The panel used to terminate the lines from the fleld at the control point incorporated a quick-disconnect plug for the leads from the programmer. To provide maxinum safety this connector was replaceable with a plug that ahorted all leade from the field together and to ground.

ELECTRIC SHOCK UNITS

For additional realism, ORO's Electronics Lab developed a special shocking device that would simulate wounding the subject troops during the experimental firing (FIg. D15).

COMFIDENTIAL

Fig. Dif-Blank-Firing Rifle Unit

Fig. D15-Electric Shock Unit (Shown with Three Floshlight Botteries Instead of the Six Puolite Botteries)

COMFIDEMTIAL

CONFIDENTIAL

Examination of the iterature ${ }^{30}$ indicated that safe electrical currents through the human hody ehould not exceed 12 ma . Current in excess of 12 ma is dangerous if it exceeds about 8 msec . Theee limitations are applicable to full-body ehock on normal adults. Shock that does not traveree the heart region can aafely be conelderably higher (with the provieo that no accidental connectton across the heart region is possible). On the other hand, the safe condttions for normal adults are not adequate in the event that the subject is prone to heart disease or epilepsy. It was also noted that the maximum safe current is very close to the minimum effective current.

Fig. D16-Schemotic Diagrem of Electric Shock Uni:
For use in the SALVO I experiment it was firat thought that violent muscular or peychological reaction to the electric shock micht incur secondary danger, since the subjecte were handling londed weapons in close proximity to one another. It wes decided therefore to keop the shock off the upper porthons of the body entirely. It whe feit that application of the shock on the leg would be quite safe in this regard. Une of carefully constructed electrodee on the lower leg or ankie procludod any posetbility that the high voltage could be appitod to the upper torso. Accondingly alumhum-ptate electrodoes were deelgned to slip into the subject's boots. The subjects were screened for heart discase and opilepay before acceptance. To avold even a remote possibility of catastrophe, the circuit was designod to limit the current to the indicates 12 ma .

The device used was a Ford Model T faition coll, which operated with its own interrupter. (Figure Di6 shows the circutt used.) The relay abown cperated 0 or T_{2} puises from the programmer to clowe the primery circult. The identical equipment is supplied by a movelty company vender the trade name "Avto-ghocko." To meure eafety the unll mes teoleted from the ground in e plantic housiag, thus eliminatiag the poesiblity of the shock paseing through any part of the body but the leg to which the eloctrodes were attached. The

CONFIDENTIAL

resistance \mathbb{R} was added to the item as supplied by the manufacturer. Measurements of a dismantled item indicate the following characterlstics:
(a) The capacltance C ls 0.1μ.
(b) The transformer turns ratio was measured at 1 to 75.
(c) The transformer secondary inductance L_{2} was measured at $17 \frac{1}{2}$ henries.
(d) The resistance R that was added is 0.5 megohms.

From these values it is pesslble to compute the maximum current deliverable from the output terminals on the right side of the figure. Using the two penlite batteries, the prlmary current with the interrupter $\$$ closed was measured at $0.4 \mathrm{amp}\left(\mathrm{I}_{2}\right)$.

The naximum delivered current I_{2} is then given from Ohm's law by

$$
\begin{equation*}
I_{2}=\left(F_{2} / R\right) \tag{D1}
\end{equation*}
$$

where E_{2} is the peak voitage included on the secondary.

$$
\begin{equation*}
E_{2}=m\left(d I_{1}^{\prime} d t\right)=m I_{1} / t \tag{D2}
\end{equation*}
$$

where τ is the decay time, and M is the mutual inductance.

$$
\left\{\begin{array}{c}
+=\sqrt{L_{1} c} \tag{D3}\\
m=K \sqrt{L_{1} L_{2}} \simeq \sqrt{L_{1} L_{2}}
\end{array}\right.
$$

for coefficient of coupling K approaching unity. Combining:

$$
\begin{equation*}
I_{3}=\left(I_{1} / R\right) \sqrt{L_{2} / C} \tag{D5}
\end{equation*}
$$

$$
I_{2}=101 / 2 \mathrm{ma}
$$

The corresponding maximum voltage E_{2} is 5300 volts.
It is thus seen that the delivered current is limited to less than 12 ma . The maximum current actually achleved was probably considerably lower, owing to a variety of factors that increased the decay time, reduced the primary current, decreased the coupling, increased the load resistance, etc.

HIT RECORDING

Figure Dl 7 shows construction details of the hit-recording target. Essentially the target consisted of a front and rear layer of conductive rubber separated by an insulating layer of rubber. The conductive rubber was United States Rubber Company type M8737, and the insulating rubber wes type M8871. The conductlve layers had copper-screen electrodes stapled to their edges as shown in Fig. D17. This configuration was used w that the digtance from a hit to both electrodes and hence the pulse attenuatlon would be approximately the same regardleas of the location of the hit on the target. Several leads were attached to each electrcde to ensure having connections even after one or two had been shot away.

CONFIDENTIAL

The layers of the sandwich were glued together with E. F. Goucirich Co. Vulcaiox rubber cement. The sandwich was then attached to a standard Army pasteboard silhouette target previously mounted to an aluminum-channel supporting stake. An additional pasteboard target was giued to the front of the sandwich to prevent some of the rlcochet fragments from penetrating it and causling a permanent short.

A previous test showed that the usual wood supporting stake could not withetand the heavy flre to be expected in the SALVO I experiment. Aluminum channel was substituted, and functloned satisfactorlly even after sustaining 50 to 75 penetrations.

Fig. Di7-Mit-Recording Target
Explodad diagrom.

Tbe hit indication was obtained when a bullet penetrated the target and produced a transient short between the two layers of conductlve rubber. Voltage applled between the two layers produced a pulse by the shorting action. This pulse produced by the target was of very low amplitude, and shielded cable was required between the target and the recording circuitry to reduce undesired pickup and ccacenuent spurlous indications. The low-amplltude pulses resulted from the . reslatance of the conductive rubber. Attempts to amplify the pulse by increasing the applied voltage above 200 volts were unsuccesaful. Increased voltage produced multiple pulses from a single hit. These multiple pulses were probably caused by arcing acrosa small fragmente of conducting rubber torn loose by a bullet.

Elgure D18 is a schematlc diagram of the target input circuit, preampllfier, and apark gensrator. The input circuit of the preamplifler conalsted of a UTC LS-12X input transformer with a step-up ratio of 10 to 1. A low-pase realstor-capacitor fllter was used on the input of the preamplifier to eliminate high-frequency noise that might be recognized as a hit. Three 67 -volt batteries
CONFIDENTIAL

Fig. D18-Mil-Recording Circuitry

COMFIDEMTIAL

COMFIDENTIAL

were used to develop the target pulse with a resulting signal level at the amolifier input of approximateiy 10 to 20 mv . The amplifier utiized was a rodifi 1 commercially available Scott decade ampilfier. To eliminnte the poseibility of noise or interference from the 60-cycle power supply, the preamplifier was modified to be completely battery operated. Specifications on the ampilifer are as foliows:

Gain-40 db
Equivaient input noise- $10 \mu \mathrm{v}$ for a handwidth of 500 kc
Output voitage -40 volts
Frequency response -0.2 db from 10 cps to 500 kc
Input impedance -1 megohm
The input of the amplifier was made adjustable by means of a 25,000-ohm potertioniciés. Disia oulput was then fed into a second unmodified Scott decade amplifier set to a gain of 20 db . The signal thus available at the input to the spark generator was a pulse of approximately 10 -voit amplitude. Its width was approximately $50 \mu \mathrm{sec}$.

The first stage of the spark generator served as an inverter and ampiiIler. It was a standard audioamplifier, and a gain of 20 db was obtained from one half of a 12 AT 7 . The pulse availabie at the output of this stage had sufficient magnitude to drive the succeeding filp-flop stages; however, its ieading edge was not sharp enough to trigger the liip-flop. A squaring amplifier foilowed the first stage and shaped the pulse into an acceptable form by converting the slow rising puise into a square wave of a standard amplitude and of suitable rice and decay times. The squaring amplifier was a self-contained plug-in unit that operated on a minimum input signal of 30 volts and accepted irequencies beiween 0 and 100 kc . The magnitude of its output signai was 100 volts. One- $\mu s e c$ rise time and a $3-\mu s e c$ decay time were required.

As mentioned earlier, hit; couid occur as ciose together as 0.5 mser: however, the electric-pen writing circuits were unabie to recover in this short tims. To allow suificient time for these circuits to recover, the hit pulses were sequenced to four pens. Each pen was thereby used once for every four hits scored. The desired separation was accompished through irequency dividing llip-flop circuitry. Three piug-in interconnected flip-liops (Fig. D18) were useci to ghtain the desired Irequency division of four to one. The wave forms (Fig. D19) show how the division was accomplished and indicate typical reaponse from six randomly spaced hits.

It is easily seen from these wave forms that any one output of llip-flop 2 or 3 went in a positive direction only ance for every four hit pulses at the input of Illp-Ilop 1. It was this positive pulse that activated the thyratron pen-writing circults.

The thyratron (type 2D21) pen-writing circults were biased with minus 45 volts so that they were normally cut off. The thyratrons were sellextingulshing through the action of the $2-\mu f$ condenser on the plates. A positive pulse on the control grid fired the thyratron, and it extingulehed itself and remained cut off until the next positive pulse from the flip-flop output. The previounly mentioned long recovery time of the thyratrons was the time required for the $2-\mu$ f condenser to charge through the 5000 -ohm plate load (10 msec). If live hite occurred within thls $10-\mathrm{msec}$ period, the thyratron beins pulsed to record the fifth hit would not have had ume to recover. The

CONFIDEMTIAL

 enougn to be acceptable.

The discharge of the condenser through the thy ratron developed a pulse across the 6-volt windtigg of an omlinary fllamenit trinsformer. This pulse was transformed up by a factor of appreximately 1 to 20. A puise of over 500 volts peak was obtained f mm the seconcary of the transformer and applled to the pens of the recorder.

Fig. D17-Wave Forms far Flip.Flop Switch Responses to Six Randomly Spaced Hits

The recorder was a standard Brush Electronics Oscillograph model BL202 that had been modified by replacing the standard ink-wrlting pens with four special electrlc-wrlting pens. The chart paper had its reverse side coated with a conductive graphlte compound. The electric spark developed between the pen and the paper burned a small spot on the paper to provide a permanent recurd of the tlme of each hit. A separate inking-type pen applled timing-marker pulses every $1 / 3 \mathrm{sec}$ by reaponding to T_{4} pulses. The recorder-paper transport speed was set to $50 \mathrm{~mm} / \mathrm{sec}$.

Electromechanlcal counters were incorporated as auxllary hit indlcators. The counters were actuated by a relay that in turn was driven by one triode of a type-12AT7 dual triode. The hit pulses were coupled into the grid of the reLay driver through an and/or gate of the flip-flop outputs. One of the counters

fonatication

Fig. D20-M1 Rifle Switch for Recording Trigger Pulls Old version at bottom, modified varsion at top.

Fig. D21-Trigger-Pull-Recording Circuit

COMFRELTHAL

was allowed to operate as fast as :t could, to indicate all possibie hits. The second counter's action was slowed down by means of a network so that it would only count bursiós of fise rather than inuiviunai hits. Tinus if iour nits were ecored frcis cie automatic burst, counter 1 would indicate four, whereas counter 2 would indicate only one. Multiplex hite were not resolved by either counter.

trigger-pull recording

The internally mounted trigger switches used to indicate time of firing utilized the weapon's hammer movement to provide switching action. Figure D20 is a photograph of the M1 rifle switch showing both old and modified versions.

A light 15 -ft three-wire cable carried the signal from the weapon to a terminal block at the firing line. Two wires of the cable functioned as electrical leads, and the third served as a mechanical strain-absorbing device. Combat wire carried the signal from the bluck to the recorder. Figure D21 shows the recording circuit used.

POWER CONSIDERATIONS AND ILLUMINATION

Two 115-volt 60 -cycle 5 -kw gasoline-driven generators supplied all the power used by the target and recording systems. Although generators of iesser capacity (down to $\mathrm{l}^{1} / 2 \mathrm{kw}$) would have been sufficient, more reliable operation was assured by the larger units. One generator supplied power for the control devices. The second generator supplied power for the recording system only. Separate generators were used to prevent the heavy power surges drawn by the
 and providing spurious pulses that might record as hits.

The night firings took place under a constant low level of artificial illumination approximating that of bright moonlight. Floodlights were mounted on six 20 -ft towers constructed on the site, using Dexion perforated-steel angle. Three towers were spaced along both edges of the firing fan to obtain the required evenness of illumination. In the four fixtures nearer the firing point, 500 -watt incandescent lamps were used; 1000 -watt units were used in the more distant fixtures. These were powered by a separate generator of $5-\mathrm{kw}$ capacity. The reflectors were polnted slightly upward and awhy from the firing iine, so that iliumination on the target area was fairly even.

CONFIDENTIAL

Appendix E

DATA RECORJED

SUMMARY 147
110LES COUNTED 147
ROUNDS COUNTED 147
SHOTS RECOMDED 147
hiTs RECORDED 150
MALFLNCTIONS 151
CONDITIONS OF WEATHER AND LIGIIT IS1
ROUNDS PEH AUTUMATIC BURST 1S1
FIGURES
El. It and Shot Tapes 149
TABLES
E1. Sample Form for Counting Tarcet-Face lioles 148
E2. Smafle Form for Counting tounds 148
E3. Mechanical Counter Pacond 150
E4. Holes Counted, Rounds Coninted. Target Malfunctions, Ufisign Changes, and Weather Varlations 153
E5. Weapon Malfunctions 162
E6. Sumary lesults by Iton (Rai Data) 167
E7. hounds per furst of Automatic Fiae 168
ORO-T-378 145

CONFIDENTIAL

SUMMARY
Seven kinds of data were recorded in the SALVO 1 experiment: (1) bullet holes in the paper target faces, (2) count of ammunition expended per run, (3) continuous recording of rounds fired at each position, (4) continuous recuxuing of bullet hits on each target, (5) malfunctions occurring in the target system, (6) weapon malfunctions, and (7) conditions of weather and 11 ght.

holes COUNTED

At the beginning of each run the targets were covered with paper faces, each of which was clearly identified by run number and target number. The faces were collected at the conclusion of each run, and the holes were counted. and identified as internal or edge holes, since holes at the edges might have falled to be counted by the electronic insirumentation. Ricochets, Identified by their characteristlcally elongated holes, were noted but omitted from the holes-counted totals. Table El lllustrates this type of record, and a later table summarizes these data for runs and targets.

ROUNDS COUNTED

The second kind of data were taken by simply counting the issued ammunition at each firing position at the start of each run, and subsequently counting the unexpended ammunition at each position Immediately following the run (see Table E2). A summary for runs and men firing appears in a later table.

For flechette runs an observer actually counted the shots fired at each target. (Ammunition was lssued in 8 -round cllps for the M1, in 18-round raagazines for the T48, and in 15 -round magazines for the carbine.)

SHOTS RECORDED

The continuous recording from the Esterline-Angus recorder p-ovides a permanent record of trigger actions at each firing position. Figure El shows an example of trigger-action records. Unfortunately, malfunctions in the triggerswitch mechanisms gave rise to quite irequent inllure to record rounds fired, en that this continumue record quite often yielded a lower total than the ammunition count. However the record did permit ancribing all thoee rounds recorded to Individual targets of the system. See App F for adjustment of data (Tables F20 to F36).

COMFIDEMTIAL

rable El

RUN 28	Prograen 7l-14	Ml (Triplex)	Day (1305)
June 23, 1956	Sciand A	Sittiog	

Targes mo.	Complese holes	Edge holes	Total holes	Ricochets
5	6	0	6	0
7	47	4	51	2
9	24	1	25	1
10	46	1	47	0
13	25	0	25	2
14	7	0	7	1
15	0	0	0	0
16	1	0	1	0
18	8	0	8	0
19	17	0	17	1
20	64	3	67	1
21	4	0	4	1
22	1	1	2	1
24	1	0	1	0
25	3	0	3	0
28	8	0	8	0
29	8	0	8	0
30	0	0	0	0
31	12	0	12	0
32	1	0	1	0
33	0	0	0	0
34	7	1	8	1
Totals	290	11	301	11

Table E2
Sample Form fon Counteng Rounds

Deto: Jeas 23 Titac: 1:15 5M	AMMUNTION AND WEAPON ISSOE				
		Firing reas 26			
Position	Men	Weopos erial ω.	Ammusition		
			lasued	Retursed	Fxpesded
1	Styt Boomage	0542	160	37	83
2	Spt Lopez	7047	160	97	63
3	Pvi Pisez	901	160	82	78
4	Pfc Duagee	6973	160	92	68
5	Pvt Lelsoe	7559	160	86	74
6	Spe Powey	3453	160	84	76
7	$S_{\text {pt }}$ Brasatt	8663	160	5	65
3	Sp3 Chir-ood	7349	160	109	51
9	Sp3 Drake	3971	160	82	78
10	Pre Cobsichel	0016	160	0	70
	(8)		1600	av	708

D. Inve, Deve necertor

CONFIDENTIAL

Fig. El-Mil and Shot Tapes

CONFIDENTIAL

HITS RECORDED

Brush Recorder. The continuous Brush recorder hit record ls capable of resolving multiple bullet hite (fron duplex, trlplex, and automatlc ammunitions). Thus the permanent record of the electrically recorded hits is capabie of distliguishlog anong the single and wuillple hlts per trigger pull, which comprlse the total number of hits as counted from the target iaces. (Tables

Table e3
Mechanical Counter Record

Ol to 04 in App 0 give multiple hits from these electrlcal records.) Hit totals Irom this source were not used as they were seriously affected by malfurctions of the mechanism. The proportions of multipie hits from single trigger puils are reported in App 0.

Veeder-Root Counter. Two Veeder-Root electromechanlcal counter: were incorporated into the hit-recording circuitry. Counter 1 had a resolution

CONFIDENTIAL

time of 100 msec, too slow to distinguish between miltiple hiti from one round. The resolution time of Counter 2, retarded by condensers to count only once for each 3-or 4-shot burst from the automatic weapons, was about 800 msec . The differences are illustrated in Table E3, which is tie record of a .22-cal carbine automat!c run. Clearly the counter records include spurious counts, as the run total is 44 hits in excess of the more reliable manual count. If reliable, the counter record implies that 15 percent $[(145-126) / 126]$ of all hits were multigle hits. Unfortunately this figure is probably blased, with a toolarge fraction of spurious multiple hits.

Noise present in the hit-recording system affected the counters 2180. Furthermore the difficulties present in masually recording the output of the two counters during the course of a run increased the number of inaccuracies. For these reasons these data were not used in adjusting the hit totals.

MALFUNCTIONS

A log was kept of all malfunctions that occurred in the target-operating mechaniscos, shockers, and similar programed devices. These malfunctions are incluted in Table E4.

Malfunctions of the individual weapons occurred with considerable frequency. Urfortunately the recording system included no chmnologically guantitative record of these malfunctions. Hence it was not possible to wake accurate corrections to compensate for nonfunctioning weapons. However, the test log reveated when weapon malfunctions occurred, and rough adjustment could be made for recognized failure of a weapon to function during specific target appearances.

The tabular qualitative record of weapons malfunctions appears in Table E5.

CONDITIONS OF WEATHER AND LIGHT

Accidental and deliberate changes in conceaiment, diiierences oi iarget color (some faces were darker than others), and conspicuous neather changes were also logged and are noted in Table E4. These, plus the weapons and targetcomplex malfunctions, were used as a guide in adjusting the data (see App F).

The run totals of rounds fired and hits from Table E4 are summarized in Table E6.

ROUNDS PER AUTOMATIC BURST

In order to properiy consider the approximate effect achleved with autumatic fire, it is necessary to determine the number of rounds fired per burst, or per: ifigger pull. The instructions given to the test trongs were to attempt to fire an average of two or three rounds per burst. Observation during the conduct of the experiment indicated that the discipline in respnnse to this instruction was quite good. The manually recorded data record oniy the total

CONFIDENTIAL

numbere of rounds expended per rin. In order to determine the number of rounds per burst, it is necessary to examine the record of triguer-switch impulses. As the switches were activated by the rifle-bolt action rather than the trigger action itseif, these records include a count of the actual number of rounds fired on each trigger pull. Owing to the considerable maifunctioning of these trigger switches, the record is not complete. However, inasmuch as this study is cencerned only with the average ratio of rounds per trigger pull, the incomplete record is quite satisfactory. It is reasonabiy assumed that the recorded data are an unbiased sample, which will give a good estimate of this ratío.

An analysis was therefore made of the unambiguously reported firing impulses from the 16 runs of automatic fire. The total numbers of bui 3ts and corresponding rounds are shown in Table E7. The rounds per burst from the totals for each of the six types of fire are listed in the right-hand column. It is evident that the results indeed do vary between the iimits of 2 and 3 rounds per burst. For some purposes, it is adequate to use an average number of rounds per burst for all the automatic fire. Tabie E7 shows the grand average to be 2.33 rounds per burst. It is observed that the carbine bursts appear to be consistently slightly longer than the T48 bursts. It is instructive therefore to indicate separate averages for the two weapons. These are 2.07 rounds per burst for the T48, and 2.63 rounds per burs: for the carbine.

CONFIDENTIAL

table e4
holes Counted, Rounds Counted, Tarcet Malpunctions,
Design Changes, and wiather vabiations

Ieget characterintic**								
Range, yd	Movement	Concoulment	Type	Tinee, sec, precoding expoeure		Expoanre time, sec		Terget mo.
				Day	Night	Day	Night	
52		X	F	-	7.5	-	28.5	1
63			F		9.0	-	3.0	2
65			E	-	6.0	-	7.5	3
67		\%	F	-	7.5	-	12.0	4
74			F	7.5	--	4.5	-	5
76			F.	-	10.5	-	4.5	6
77		X	F	00	-	15.0	-	7
78			F	-	9.0	-	19.5	8
86			E	10.5	-	4.5	-	9
89		X	F	9.0	-	15.0	-	10
90		X	F	-	12.0	-	4.5	11
91			F	-	10.5	-	9.0	12
111		x	F	12.0	6.0	19.5	19.5	13
127		χ	F	6.0	7.5	9.0	9.0	14
139			F	9.0	9.6	4.5	4.5	15
152	X		E	9.0	7.5	9.0	10.5	16
161			E	-	9.0	-	3.0	17
162	X		E	13.5	10.5	6.0	6.0	18
164	X		E	12.0	10.5	15.0	18.0	19
165		X	E	7.5	7.5	31.5	34.5	20
169			E	13.5	9.0	3.0	4.5	21
176		X	E	10.5	13.5	4.5	9.0	22
209			F	-	6.0	-	3.0	23
216		X	F	7.5	-	4.5	-	24
218		x	F	10.5	120	0.0	15.0	25
221			F	-	7.5	-	7.5	26
223		X	F	-	9.0	-	21.0	27
245			F.	13.5		6.0		28
239			E	12.0		10.5		29
267			\&	9.0		3.0		30
269			F	11.5		23.5		31
334			F	10.5		7.5		32
336			F	7.5		3.0		33
339		X	F	9.0		21.0		34

Mrehenical melfunctione:

- Target feiled to rige.
leget lalled to move.
c Tergw m or wren lime.
d Asothor tinfer or sieuliageouly
- Blean follod to fire
t Concealment beevy
- Concealmem ligh
- Firese aborked by fifle

Terget face camo off
Terget down asily (eculer of meconde)
Terent do va late (ourblet of eeceelo)

Desipe ehaspen

- Ruatrie eheervahiee sheresif nebcesienst to loe ive
ligher, searsaleses ierreaeel helore siasi grom rues.
- Poerrin ebearvition showed coprealment to lee wo boevy; conce olmant decreaced balare ectoegum pine
- Origioal OD sammer color claeged to white dies cheervinion chowod OD ery geve teo dufficult to ekpedrt.
17 Taget dellihersisly made ts cume dowe eerly for fiechetis rime hecouco of liumed expely of teacaltloe

Benter variatienen

\& Hala.

- Ligte tivo

1 Overly tritice mocalugh

CONFIDENTIAL

Table. F. 4 (continued)

	1	2	2	4	5	6	7	8	9
Turget or mate.	Weapor, whon, med, of fisiag								
	Siagle bultien	Duplei	Single ballee	Dupler	Siagle bellen	Duples	Single bellea	Daplex	T48 nemi
	Viability								
	30	Dey	Toy	Doy	Uey	Day		Nighe	Day
	Positios								
	Silliag	Sittimg	Siltion	Snexias	Stuadiag	Standing	Sitiog	Sittiag	Sittins
	Squad								
	\wedge	\wedge	B	H	A	\wedge	B	B	8
	Arogram								
	1A. 1	18-2	1A. 1	18-2	2A-2	28-2	9A. 1	98-2	2A-5

Holee Counted by Tagret and Related Condtions*

CONFIDENTIAL

TABLE f.4 (contioucd)

$\mathrm{K}=$									
10	11	12	13	14	15	16	17	18	19
Texpen, mone eot/orlipug									
T48 amo	T4* moed	Tusamo	T 40 nomb	Tas ame	T44 mend	T48 amo	Cbe sex	Cla ame	Cbe som
Viaibility									
Day	Day	Day	Day	Day	Nighe	Night	Day	Day	Day
Ponision									
Sitting	Sitlins	Sitting	Sraoding	Srading	Suties	Setting	Strias	Sitaing	Stting
Squed									
d	K	\wedge	B	B	A	k	B	B	A
Prown									
8B-6	3A-5	38-6	4A-5	4A-6	10A-7	108-8	$4 \mathrm{C}-9$	4D-10	5A-11
Folea Coune od by Terges and Aeleod Condition.									
-	-	-	-	-	0	17	-	-	-
-	-	-	-	-	5	+	-		-
-	-	-	-	-	16	5	-	-	-
-	-	-	-	-	s	16	-	\rightarrow	-
9 \%	8 pa	3 po	2 pa	3 pa	-	-	3 pe	5 po	${ }^{4} \mathrm{pa}$
-	-	-	-	-	4	5	-	-	-
29 9	1510	20 pmo	24 pe	19 pmo	-	$-$	30 pe	12 m	18 pm
-	-	-	-	-	12	13	-	-	-
4	15	7	10	4	-	-	14	7	9
18 pt 1\%	16 p	8 p	Is p	16 p	$-$	$-$	16 p	17 p	16%
二	-	二	-	-	0	0	-	-	-
7 p	12 p	12 p	$14 \mathrm{p}(\mathrm{o})$	13 p	8,3	4	16 p	13 p	${ }^{3} \mathrm{p}$
0 p	8^{p}	6 p	$1 p$	${ }^{3}$	3	3	0 p	11 p	3 p
0 p()$^{\prime}$	0 ($0_{\text {(}}$)	0 fa(p)	0 P	0	0	0	0 P	0 P	${ }^{0} \mathrm{p}$
3	10	5	2	2	0	2	,	5	7 (d)
-	-	-	-	-	0	0	-	-	-
71	11	9	5	30 k	9	:	(1)	0 (s)	3
6	17	11	13	5	1	0	21 (i)	9	4
080.3	21	130.3	19	0	26	2	45	23	$3 ?$
2	4	0	2	0	1	0	0	4	2
01	1	0	0	0 d	1	0	0	0	10.4%
-	$-$	-	-	-	0	0	-	-	-
00 (16)	0 (6.) ${ }^{\text {P }}$			0 (is)	-	\square	01218	214	1
$0 \mathrm{pl}(\mathrm{a})$	0 (fa)p	0 (fepp	$0 \mathrm{pf(s)}$	0 (fa)	0	0	1	0	4
-	-	-	-	-	1	0	-	-	-
-	$-$	-	-	-	0	0	-	-	-
0	2	0	1	2 (a)	-	-	7	1	7
2	2	4	7	2	-	-	11	3	10
0	0	0	0	0	-	-	0	0	1
6	0	2	b	3	-	-	1	1	3
0	0	0	2	0	-	-	2	0	1
00.3	00.1%	008	0	0	-	-	c	0	0
0	1	2	2	1	-	-	2	1	14.
*	143	102	127	91	8	73	178	114	135
			Romer	c. Comed	by Meem				
113	70	106	98	111	38	145	73	12	77
6^{1}	68	112	5	74	76	233	73	113	42
54	58	\cdots	68	94	75	116	92	110	\%
104	73	98	72	197	76	111	67	113	31
73	47	109	54	88	41	129	59	108	76
7	62	0	107	132	108	50	7	149	101
79	23	\%	59	0	76	149	37	$1!1$	63
34	73	80	69	76	102	192	36	42	9
76	68	108	64	\oplus	-	192	35	as	02
101	72	150	*	0	105	170	85	140	91
424	308	1056	736	123	73	144	680	1016	38

CONFIDENTIAL

Tuneren(rontinued)

Targol 0 masan.	Rus								
	20	21	22	23	24	25	26	27	20
	Weopes, -mos, andor firing								
	Cbn auto	Cla nema	Cb - amo	Cb_{3} monil	Cbnava	Single buller	Triplos	Single bulla	Triplez
	Viotbilly								
	Day	Dey	Day	Nigte	Nugte	Day	Day	Day	Day
	Poastion								
	Sitivg	Mondiag	Sranding	Sitting	Sinclag	Siniag	Steting	Sinting	Sittiog
	Squed								
	A	B	B	A	A	A	A	B	B
	Homem								
	5B-9	6.A-11	Obe 12	12A-15	12A-16	7A-13	78-16	7A-13	78-16

Holes Conved by Treget and inclead Conditione

COMFIDENTIAL

Table E4 (contiased)

Mus									
29	30	31	33	33	34	35	36	37	30
Veapon, eneo, and/otiring									
Siagle bellet	Triplen	Siagla tullet	Triplea	Duplaz	Siagle tulter	Duplez	Singlo bel!es	Suplez	Single buiter
Viathility									
Day	Day	Nighe	Night	Doy	Day	Dey	Day	Dey	Dey
Ponition									
Standins	Suadint	Sintiog	Sintios	Sinting	Sittina	Silime	Situine	Srandiag	Sicoding
Squed									
A	A	B	H	C	C	D	D	C	C
Propres									
8A-25	12A-15	12A-16	12A-15	4-1	80-8	0A-1	38-8	58-8	SA-7

-		11		-	-	-	-	-	-
-		3		-	-	-	-	-	-
-		9		-	-	-	-	-	-
-		3		-	-	-	-	-	-
pe		-		5	4	2	2	5	6
		3		-	-	-	-	-	-
15 pm		-		19 i	15	19	5	37	15
-		4		-	-	-	-	-	-
B		-		11	11	10	4	8	6
16 p		-		11	19	13	9	$15{ }^{3}$	19 (0)
		1		-	-	-	-	-	-
-		0		-	-	-	-	-	-
13 p		0.		181	10	13 (0)	0.	16	-
6 p		1		0	,	¢	3	6	9
$1 p$		0		0	0	1	1	1	1
4		0		10	3	5	1 k	5	3
-		0		-	-	-	-	-	-
4		0		6	5.8	14 :	13 k	6	2
11		3		15	2	1	7	¢	6
31		+		36	13	2	8	\$7	20
1		0		0	0	0	0	0	1
0		$0{ }^{3}$		11	1	0	01	5	1
-	0	0	\pm	$=$	-	-	-	-	-
0	E	-	\%	0	0	0	1	0	0
4	8	0	8	2	0	2	3	0	1
-	¢	0	8	-	-	-	-	-	-
-	\cdots	0	=	-	-	-	-	-	-
4	2	-	2	60	2.	3	3	2	3
0		-		6	5	7	,	7	5
003		-		213	1 lk	3 t	008	0	0
0		-		$2 \cdot$	3	3	0	-	2
0		-		0	2	0	1	0	0
0		-		0	0	-	0	0	0
0		-		1	3	0 (6)	1	0	2
108		41		159	111	132	81	107	110

Rombe Comedty Man Noter

7	10.	43	03	45	so	56	03
76	12	9	67	\pm	4	5s	71
50	106	70	0	41	47	\%	09
4	70	ω	18	\pm	65	8	-3
as	101	39	33	34	31	36	4
m	112	40	7	53	*	97	70
54	104	30	31	6	4	4	72
7	01	50	29	43	64	63	©
12	36	9	16	83	54	07	39
73	136	37	41	68	16	\cdots	50
769	no	38	Scs	6\%	403	as	อ\%

COMFIDENTIAL

Holea Comed by Taget and Relaed Cooditiona*

1	171	15 (h)	-	-	-	-	-	-	4
2	0 O	2 (b)	-	-	-	-	-	-	1
3	91	4 (b)	-	-	-	-	-	-	11
4	6 b	1 (b)	-	-	-	-	-	-	2
5	-	-	$3 \mathrm{als)}$	2 b	10	6	2	8	-
6	31	2 (b)	-	-	-	-	-	-	0 (j)
7	-	-	21 (b)	301	10	30	12	26	-
8	$0 \leqslant$	0 (b)	-	-	-	-	-	-	0 (j)
-	-	-	30(b)	161	8	01	\%	,	-
10	-	-	11 (t)	20 h	10	30	3	25 j3	-
11	11	0 (3)	-	-	-	-	-	-	1
12	01	0 (t)	-	-	-	-	-	-	0
13	21	1 (b)	7 (b) $^{\text {d }}$	0 he	7	12	0	16	1
14	21	0 (b)	18 (${ }^{\text {c }}$	71	5	1	4	7	0
15	0 O	0 (${ }^{\text {(}}$	0 (3)	01	0	1	0	0	0
16	01	0 (b)	2 a(h)k	6 上	91	261	3	6	0 (d)
17	01	9 ¢	.	-	-	-	-	-	0
18	0 hk	1 (b)	24. (b) b b	91	4	6	31	0 。	11
19	0 O	0 (t)	3 (1)	121	2	11	7	9	0
20	21	1 (1)	6 a(b)	231	20	46	7	17	2
21	0 O	0 (b)	0 (1)	2 H	1	0	0	0	0
22	01	0 (b)	0 ofthel	21	5	5	214\%	Oc	0 d
23	0 O	0 (b)	-	-	-	-	-	-	0
24	-	-	0 a(b)	1 l	1	0	0	0	-
25	11	0 (b)	0 a (b)	8 l	2	0	1	4	0
2	01	0 (t)	-	-	-	-	-	-	0
87	01	0 (t)	-	-	-	-	-	-	0
20	-	-	0 (3)	36	2	0	0	5	-
29	-	-	3 ec ($)^{\text {a }}$	51	5	\%	1	0	-
30	-	-	0 (1)	0 h	0	1	0	0	-
31	-	-	$0 \mathrm{O}(\mathrm{EM} \times$)	121	7	2	4	34	-
32	-	-	(ab)	1 l	0	0	0	0	-
33	-	-	0 (b)	01	0	0	0	,	-
34	-	-	0 ottl	05	0	1	2	1	-
Tual	43	27	*	171	108	14.	6	145	83

Romed. Cound tiy Men $\mathrm{N} \rightarrow \mathrm{m}$

1	4	ω	$\boldsymbol{*}$	84	100	9	1:4	113	ω
2	4	76	4	m	109	6	10	4	110
5	81	-	38	33	101	141	121	106	*
-	0	146	47	93	1.2	. 1	1×0	112	0
3	0	\cdots	4	4	31	50	7	0	m
	2	76	\%	4	109	-1	100	5	12
7	6	178	50	${ }_{4}$	\cdots	\cdots	-	-	ω
1	m	87	4	50	\cdots	\cdots	128	9	110
-	4	\cdots	ω	3	7	9	$\%$	4	*
10	* 5	-	-	4	0	5	9	34	3
Tan	34	-1	4	64	1111	367	1000	mos	as

CONFIDENTIAL

Tarle: E. 4 (conlinued)

ane									
4	40	3	31	52	33	54	35	56	37
Cbe eenl	T4	T48 nom	Ttill eme	T40 mad	T48 axto	T48 semi	T418mo	T40 seal	Deplex
Vleibility									
Nigm	Dey	Day	Day	Day	Day	Day	Nigh	$\mathrm{N} / \mathrm{S}_{4} \mathrm{~m}$	Doy
Posticios									
Statiag	Situlas	Sinios	Stinas	Sistios	Sandias	Storling	5 Strin a	Sitireg	Sixtiag
Speed									
C	D	D	C	C	D	D	C	C	C
Precese									
128-0	4A-3	48. 10	4-0	48. 10	3A-11	3B-12	9A-11	9B-12	2A-13
Eolea Comated by Terget and tolated Coeditiono									
5	-	-	-	-	-	-	20	13	-
0 (r)	-	-	-	-	-	-	0	0	-
1	-	-	-	-	-	-	,	10	-
3	-	-	-	-	-	-	3	2.	-
-	1	4	1	0	3	5	-	-	7
0	-	-	-	-	-	-	1	3	-
-	6 (6)	3	21	27	11	21	$-$	$=$	36
2 \%	-	-	-	-	-	\rightarrow	6	0	-
-	,	10	-	11	3	4	-	-	13
-	10 (e)	21	11 -	32 -	6 es	$13=$	-	-	30.
1:	-	-	-	-	-	-	0	29	-
0%	-	-	-	-	-	-	1	1	-
008	30	$0 \cdot$	$9=$	17 =	5 -	$59=$	4	s	$16=$
1	1	4	4	B	4	0 (a)	2144	1	12
0	1	1	0	0	0	0 (a)	0	1	2
1	1*	$0 \cdot$	4	0 -	9	13 \%	3	2	10
0	\rightarrow	\rightarrow	-	-	-	-	0	0	-
0	5 ib	5	9	-	4	-	1	1	$3+$
0	7 (b)	213	01	6	0 b	23	4	2	,
3	11	31	23.	10.	15.	18.	6	10 t	58.
0	2	0	2	1	0	1	0	1	4
0	0	2	$1=$	$0 \mathrm{j}=$	$0=$	0 -	012	1310	20
$0 \cdot$	0	$=$	-	-	-	-	0	0	-
\rightarrow	-	:	*	บิ	\checkmark	0	-	-	0
$0(t)$	0	0	3	-	0	2	0	-	0
0 (r)	-	-	-	-	-	-	0	0	-
0 (r$)$	-	-	-	-	-	-		0 ¢1\%	-
-	1	2	0	0	1	2	-	-	6
-	5	9	5	4	8	2	-	-	4/1\%
-	0	$0 \cdot$	0	0 (0)	0	0 (a)	-	-	0
-	0	5	3	6	2	4	-	-	0 01k
-	0	-	0	0	0	0	-	-	0
-	0	0	0	0	0	0	-	-	-
-	0	2	$1=$	$1=$	0 -	2	-	-	10
17	8	127	14	160	4	110	59	48	200
			neand	da Comeal	by meen Na	mer			
120	4	50	\cdots	ω	\cdots	${ }^{*}$	101	110	50
5	\pm	30	4	4	114	8	115	50	3
\cdots	49	E2	150	en	154	5	-	20\%	4
67	0	7	112	-	122	91	132	77	S1
${ }^{\circ}$	$\%$	61	¢	30	18	π	\%	28	42
\cdots	$\%$	*	127	32	116	76	73	es	4
0	31	π	$*$	9	16	t	18	4	2
-	4	5	81	4	\%	11	\pm	111	3
0	7	0	180	9	138	*	112	7	32
\$	61	96	138	4	108	9	144	4	71
814	*	616	1112	\pm	13 m	0	1an	3	830

CONFIDENTIAL

Tanle:4 (cominued)

	Rua					
	58	59	60	61	62	63
	Wramom amen. antior furien					
	Siagle butter	Duple:	Single buties	Duplex	Stingle folliot	Ouplex
$\begin{gathered} \text { Terget } \\ \text { or meal } 0 . \end{gathered}$	Vinability					
	Say	Day	Dey	Dry $^{\text {y }}$	Day	Night
	Ponitiom					
	Situlag	Sittis	Stuing	Steading	Suandies	Sitiog
	Sguad					
	C	D	D	c	c	v
	Pragrem					
	28-14	2A-13	28-14	1A-13	18.16	10A-15

Holea Counted by Traget and Relased Condition**

COWFIDENIIAL

Table $\ell 4$ (conlinued)

Holeo Comatad by Traget and Releted Couditiona"

CONFIDENTIAL

CONFIDENTIAL

ω	\cos		Ot	$\begin{aligned} & \text { uled to } \\ & \text { ares clup } \end{aligned}$	6 friledio astraci	OX	I brokes prtamiles． 6 frited to exirare． 2 doubled loed	13 finled 10 en． urert	3 failed io intrart． 3 tailod to epert clep	3 foiled 10 entract	2 soilod to lemi， 2 la iledenas． uract， 1 boli foiled to clean； 1 trubere ex． uecta	3 fated 10 feed． If tailed in ex． リビメ！
49	AEAmer		3 molne fatiod to eloen． 6 4etiod here	1. A onlod	6 bohne laled to cloen 4lenlad to axuret	3 leiled is exituch	15 （oilod to lined： 7 foitod to exirent	4 failed to epret clip； 3 falled to emtret	Glarled to envert； 3 farled io epert clip． 3 lailed to feed	Slailed ie enurect 3 Fuiled 10 feed Throtee ex－ uractor）	1 faited to re－	1 leiled to leed
＊	$=\infty$		OK	5 Inled bo min Imiled －claser： 1 wuber －\＃acte	Itiend geert to feed	5 lauled to teed	4 laijed to epect ofyp． 4 lauled to everacy， 1 frgim arife	i lasled to apert clip	2 triled to exiruct	5 faled to extrert： 2 failed to feed	（1）	Ot
－	\rightarrow－		Wepoen minior									
			1587	1004	138	10	1675	1816	2653	1413	1616	2000
－	\pm		1 CH		Or	is	or	O	OK	Or	ix	Or
\oplus	Aneme		3 leiled to food		4 lafled to artrert： closerdow cluct lor mure pown睰	CK	OK	OK	ox	｜laledineztrert： 1 itcromplete （trip	18	rou
11	Se		OK	－		（1）	OX	Or	1 tavied to leed	3 failed to leed	11silest te feed	2 tavies to toed
12	4－nem		04	2 Inalod to foed	OK	＊	$0 \times$	Traperd coor	Tiapped emor	2 labled toent act： rlowed low elvele	（\％）	OK
43	$=\infty$		－taiced to food	Propertile lean on berel	1 larlod to leed	1 trappeit rese	1 tavied to leed， clowed time clicke	（\％	－	1 feited to leed	（3）	OK
4	Amomer		I forined os fire －ceon Irrace Nol	I lailed se fire brotea （fremef pre）	1 lailed to leed （magrenise ant londed contectly）	1 lailed to leed fenanais mot lealed carverly；	Or	1 utuped coser	\％	1 faitediverurert	\％	0¢
＊	∞		$0 \times$	6.	O	1 momed	I are remed， 3 inated to extrart （Nem：purn to min exurctor apriegl	or	or	Ilanied to a xutrect （Nose：mis －w entrostor wing	3 faicol to leed	02
\pm	－		1 failed to leed	0	Ot	（＊	or	I faited to in． tract	O4	2 baled to extact	14	（\％
＊	Sesemed	0 －nim	1 ant rocest I －agarime bt boor comp －n－b－in ores	0	${ }^{*}$	I short ioral	ox	I sheri recoll； Ifenfel te Hed	OK	2 fallot te amimer	I failed to －ject clipi ！ lople failed to cloer	1 bole feiled te cloen
＊		0	1－acgae－lel－ lower cogitu over lath ath Iforied se －pert rlip	or	ot	（\％	or	＊＊	1 atumer receil	2 athen reccile； 1 tailed to entrel	O4	\％
B	4－0．0＊	Bow 	8 melelotad oc	I Peral ol	0	1 mbl roma	2 eagorime led． fownere ceaght own bill mop： 1 faledio exiract	Ifailad to eqeet elip	3 ethen recelle	－failedio entari	Cid	（1）
± 2		Dov con uns	I mod resent 1 elese	O	2 uban recoile	2 atan escolla	OK	OK	2 eceb rosede	2 lailedie extrest	cal	O．

CONFIDENTIAL

Table E6
Summary Resulets by Ruy (flam Datn

$\begin{aligned} & \text { Ammen ition } \\ & \text { lirios } \end{aligned}$	Firies position	Squad																	
		A			B			C			D			E.			F		
		Ree	Hits	Round fired	Run	llits	Rounde fired	Run	Hite	Roands fired	Ren	Hite	Rounce fired	Rvu	Hita	Rosads fired	Run	Hite	Roundn fired
Stupla bullet	Day sitliza	1	90	60%	3	165	471	34	111	545	36	81	48'2	65	202	865	67	105	688
		25	157	742	27	144	598	58	100	504	60	120	663	-	-	-	-	-	-
	Day stendian	5	81	5.9	-	-.	-	38	110	679	-	-	-	-	-	-	-	-	-
		29	108	787	-	-	-	62	103	720	-	-	-	-	-	-	-	-	-
	Vight sittior	-	-	--	7	53	616	-	-	-	40	27	901	-	-	-	-	-	-
		-	-	--	31	41	950	-	-	-	64	45	88	-	-	-	-	-	-
Duplar	Dey aittiog	2	166	(3)2	4	179	469	33	159	505	35	132	476	66	292	279	68	160	623
		-	-	--	-	-	-	57	209	534	59	195	748						
	Dey etandier	6	190	66%	-	-	-	37	187	635	-	-	-						
		-		-	-	-	-	61	158	645	-	-	-						
	Niphte sittior	-	-	-.	8	44	678	-	-	-	39	43	55.						
		-	-	-	-	-	-	--	-	-	63	109	918						
Traplen	Day sittise	36	301	716	28	$20:$	451	-	-	-	-	-	-						
Carbise																			
Seminetumetic	Day aitisa	19	135	718	17	174	640	4	184	767	12	171	644						
	Day stuedies	-	-	\rightarrow	21	20:\%	985	-	-	-	45	145	808						
	Night sittiar	23	42	109.4	-	-	-	48	17	1314	-	-	-						
A Etomatie	Dun mition	20	1:9	1656	18	114	1016	43	106	1111	$\$ 1$	86	630						
	Day meadiea	-	-	-.	22	142	1655	-	-	-	45	66	1093						
	Vinteresuisa	24	25	1463	-	-	-	47	23	886	-	-	-						
Ts																			
Senesomemetic		11	143	588	9	97	422	52	140	705	50	127	616						
	Dey atandian	-	-	-	13	$12 i$	736	-	-	-	54	118	849						
	Nindt eitetiar	15	85	782	-	-	-	56	82	856	-	-	-						
Antomaric	Day attier	12	102	1055	10	86	824	51	103	1112		86	763						
	Der otandiza	-	-	-	14	91	923	-			53	68	1385						
	Viaht sittion	16	75	1444				55	59	1082									
Flechette	Day etandites Niatitetandis.							69	109	264									
								70	99	289									

CONFIDENTIAL

Table E7
loonds per bu:ast of Automatic fire

Weapon	Position-illumination combination	Burats	Rusada	No. of rounde per burel
T48	Day sitting	25.	512	
		405	801	
		321	618	
		452	946	
Total		1432	2,877	2.01
T48	Dav etanding	383	808	
		455	986	
Total		838	1,794	2.14
T48	Night sitting	392	817	
		313	676	
Total		705	1.493	2.12
Carbine	Day aiting	249	641	
		283	868	
		219	462	
		26.0	608	
Toial		1020	2.669	2.62
Carbine	Day standing	550	1.365	
		310	743	
Total		860	2,164	2.35
Carbine	- Night sitting	391	1,197	
		253	666	
Total		644	1.863	2.89
Corand lotal		5499	12.804	2.33

CONFIDENTIAL

Appendix F
DATA ADJUSTMENT
SUMMAHY 171
ADJUSTMENT OF HOH.ES COUNTED, EXCEPT FOR FLECHETTES 171
ADJUSTMENT OF SHOTS RECORDED, EXCEPT FOR FLECHETTES 172
ADJUSTMENT FOR FLECHETTES 173
TABLES
Fl-F19. Adjustmant eq Boles Counted
Fl. Single Bullets, Day Sitting 174
F2. Single Bullets, Day Standinr 175
F3 Sincle Buliets, Noht Sitting 176
F4 DUplex, Day Sttting 177
if EiriEä, EnO Sinionk ! ?
F6. Duplex, Nget Sttting 178
F7. Thiplex, Day Strting 179
F8 Carbine, Automatic, Day Strting 179
F9. Carbine Automatic. Day Standing 180
filo. Carbine automatic, Ngert Sitting 180
F11. Carbine Semautomatic, Day Sitting 181
F12. Carbinf Semaltomatic, Day Standing 181
F13. Carbine: Semlutomatic, Negat Sitting 182
Fl4 T48 Aitomatic, Day Sitting 182
F15. T48 artcmatic, Day Standing 183
F16. T48 Automatic, Nicitt Stting 183
F17 T48 Semautomatic, IMay Stting 184
F18. T48 Semautomatk;, Day Standing 184
Fly. T48 Semautomatic, Ngit Sutting 185
F20-F38 Adjustment of Smots Pecondrd
froo Sincle betlets Day Strtimg 185
F21 Single Derlets, Day Standing 180
F2: Snget litifis Nant StTing. 189
F23 Demes. Day Stting 190
F24 IXplex Day ftanding 102169

COMFIDENTIAL

F2S Duplex, Nicht Stting $1 \cdot 3$
F26. Thiplex, Day sitting 194
F27. Cahbine Automatic, Day Sitting, 194
F28. Carbine automatic, Day Standing 19S
F29. Carbine automatic, Nocht Sttring 196
F30. Carbine Semiautomatic, Day Sitting 196
F31. Carbine Semiautomatic, Day Standing, 197
F32. Carbine Semialtomatic, Niget Sitting 198
F33. T48 automatic, Day Sitring 198
F34. T48 Automatic, Day Standing 199
F3S. T48 Automatic, Night Strting 200
F36. T48 Semiautomatic, Day Sitting 200
F37. T48 Semiautomatic, Day Standing 201
F38. Ti8 Semiautomatic, Nigit Sitting 202
F39. Peduction of Single-Bullet Mesults for Comparison mith Plecbette Results, Day Standing 202
F40. Reduction of Single-Bullet Pesults for Comparison mth Flecrette Results, Nigit Runs 203
F41. Sumary Results by Run (Adjusted Data) 204

CONFIDENTIAL

SUMMARY

In this appendix the term "holes counted" refers to the raw data of holes counted in the target faces, and the term "hits recorded" refers to the raw data of hits electrically recorded on targets. The category "hlts adjusted" is used for the adjusted data after compensation for malfunctlons, etc. Similarly the category "rounds counted" refers to the raw data of rounds counted for each run, and the category "shots recorded" refers to the electrlcally recorded numbers of trigger pulls. The category "shots adjusted" 18 used for the adjusted diata after compensation for malfunctions, etc.

The holes counted are taken from Table E4. From run and target fotals, corresponding predicted values are computed. The raw value $1 s$ replaced by the predicted value if (a) the two differ by one standard deviation, and an appropriate malfunction was recorded, or (b) the two dilfer by three standard deviations.

The shots recorded are proportionally adjusted to agree with the rounds counted for run totals. Then, only for those cases where hit adjustment was
 predicted shot values are computed, and replace recorded values where differ ing by three standard deviations.

AUJUSTMENT OF HULES C:OUNTED, EXCEPT FOR FLECHETTES

It is desirable to adjust the data to compensate for known and suspected malfunctlons of weapons, targets, etc., for drastlc changes in weather, and for deliberate alterations in target characterlstles such as reduction of the amount of concealment.

After the target column in Tables F1 to F19 is the raw holes-counted column. The next column shows a predicted value for each datum based on the line and column totals of the whole table for holes counted for all runs of the same type of fire. This is computed as follows: The sum of the holes counted for all targets in a given run ls multiplied by the sum of the holes counted for all runs of the same type for a diven target. The product is dlvided by the totai number of holes counted for the entire table (all targets and all runs of that type), to yleld the holcs predicted for that target and run. The atandard deviation o is computed for each line of holes counted (for each target).

CONFIDENTIAL

The raw hole count for a target is rejected for either of the following reasons: (a) there is a known malfunction, weather change, or deliberate design change, and the koles-counted value is different from the holes-predicted vaiue by more than one standard deviation; or (b) the noies-counted value is differcnt from the holes-predicted value by more than three statidard deviatlons. (This is intended to eliminate data affected by maifunctions of which no record was made.)

The final column of hits adjusted for each run is composed of the same values as the original raw holes counted except where rejections occurred for the given reasons. Whenever the raw value was rejected the predicted value is substituted in forming the hits-adjusted column. Such changes were made 185 out of a possible 1452 times; i.e., 13 percent of the hit data was adjusted.

ADJUSTMENT OF SHOTS RECORDED, EXCEIT FOR FLECHETTES

The electrlcally recorded shot record (trigger pulls) provides the only data showing the apportionment of shots to each target. However, the total shots recorded were often different from the total rounds counted for each run becauge of recording malfunctions.

It is desirable to adjust the totals of the shots-recorded values for the different targets of a single run to equal the appropriate rounds-counted totals, retaining their relatlve values or ratios for each target. Moreover, it is desirable to correct for the same malfunctions and weather and design changes that were used to adjust the holes ccunted. (Correction for particular malfunctions of the shot-recording equlpment cannot be done because there was no reliabie means of identifying such malfunctions.) This 18 accomnlished in Tablea $\mathbf{F} \downarrow \cup$ to $\mathbf{F} 38$, where the raw shots recorded are shown after each target number.

The first operation performed is the change of each shots-recorded vaiue proportionally to bring the total to cqual (within rounding errors) the actual rounds counted.

The next column shows the change of each item proportional to the change made from holes counted to hits adjusted for the corresponding target and run of Tables F1 to F19. This takes into account the adjustments made for maifunctlons and weather and design changes. Such changes were made in 155 of 1452 possible cases; l.t., for 11 percent of the data. This value is lower than that for hits gdjusted meazace 20 こ! the otuio-securcieci iterns inat would nor mally have been changed were zero, and therefore did not change.

Next a predicted value is computed using the line and column totals for the whole table of the data 28 adjusted so far (all targets and $2 l l$ runs of the samc type of fire). As before, the predicted value is computed by muitlplying the sum of the adjusted-to-total-rounds-counted values in a given coiumn by the sum of those for a given line (target) and dividing by the total for the whole table. This yields the whots-predicted value for the given line and column (target and run). The standard deviation o is computed for each row of adjusted-to-total-rounds-counted data (for each target).

CONFIDENTIAL

To ellminate unrecorded malfunction effects, all items are rejected where there is a difference between the adjusted values and the predicted values of greater than three standard deviations. There were 38 such changes, none of which coincided with the 155 changes corresponding to hit adjustments. Thus 181 changes cut of a posslble 1452 were made, or 13 percent of the shot data was adjusted. By coincldence this is the same as the percentage of hit data adjusted.

The final column of shots adjusted for each run is composed of the adjusted-to-total-rounds-counted values except where rejectlons occurred. Wherever the adjusted value was rejected the predicted value was substituted in forming the shots-adjusted column.

No special treatment was given to zero values for raw shots recorded. Proportional adjustments, of course, left them still zero. As with other numbers, the zero was used in the final shots-adjusted column unless it differed by more than three standard deviations from the predicted vaiue, in which case the predicted value was substituted.

In Tables F1 to F38 are all the raw and the adjusted data (except for flechettes) broken down by weapon, visibility, firlng position, and target.

ADJUSTMENT FOR FLECHETTES

In comparing the two flechette runs (one day-standing run and one nightstanding run) with corresponding single-bullet runs, the single-bullet information must be balanced with that of the ilechette. The single-bullet runs used 22 targets with a standard program. Run 69, the flechette day-standing run,
 time.

Table F39 shows the shots-fired information equated to the total adjusted ammunition count of 2824. The second column shows the total shots fired per target for the four single-bullet day-standing runs. The fourth columin ahuws the seconc-column information adjusted to balance with run 69, the one flechette day-standing run. Targets 7, 10, 20, and 31, which were up only half the normal time, actually had approximately half the number of shots fired at them in that time. Similarly, the last column shows the balanced target-holes informatlon.

Table F 40 follows a similar pattern in balancing the four single-bullet nlght-sitting runs against run 70, the one flechette nicht-standing run.

Table F41 summarlzes the adjusted hits and rounds fired by run.

CONFIOENTIAL

Table Fl
ADU!!sTMENT OF HCHLES COUNTED, SINGL.E: BULLETS, DAY SITTING

CONFIDENTIAL

Tacle Fi (contiaued)

Tartet	Hole counted	Holee pradleted	Hita -djuat	Moled oounled	Holee predicted	hlte adjuted	Hol ${ }^{\text {es }}$ courted	Holee predietad	Mita edjustod	Hole courcted	Holee predicted	Hite 0juled	-	30
		Rus 85			Tux 69			Nu*			Eun			
5	7	6.8		1	3.5	3.3							2.3	0.8
7	25	31.3		1μ	10.2								8.3	34.8
9	12	14.0		4	7.3	7.3							3.1	0.3
10	14	25.8	25.8	11	13.4								4.7	140
19	20	19.6	18.0	6	0.9								0.7	260
14	4	58		5	3.0	3.0							1.0	5.7
18	3	1.3		0	0.7								1.4	4.2
18	8	9.0		10	5.1	3.1							2.8	0.3
18	y	80		7	4.1								3.7	11.2
19	11	12.0		3	0.2								30	11.7
20	47	43.9		28	22.8								0.5	28.8
21	3	1.7		0	0.9								1.1	3.8
22	5	2.0	2.0	1	1.0								1.7	3.2
24	1	0.3		0	02								0.0	1.0
55	2	1.8		2	1.0	1.0							0.0	3.8
20	3	4.0		2	2.1								1.2	38
20	7	55		1	2.0								1.9	5.7
30	0	0.2		0	0.1								0.3	0.0
31	7	4.3		5	2.2								2.1	74
32	0	0.8		0	0.1								0.9	2.0
33	n	0.2		0	0.1								0.3	0.0
34	5	$+0$		1	2.1								1.7	3.1
Total	202		200.4	105		100.1								

Tabe F2
ADJUఆTMENT OF HOLES COUNTED, SINGLE BULLETS, DAY STANDING

Terster	由rolay counted	Malan predietad	?!2 -djurted	Malep counted	Holes predleted	H1:2 edjueted	Holes counted	:2cina prodicted	riiic odjunted	Roied counled	moten predicted	hte adjueted	-	30
		Rum 5			Rux 29			z'403 3m			Run 03			
5	2	24		2	3.2		0	3.		2	3.1		1.7	52
7	15	12.7	12.9	15	10.0	10.9	15	1.21		1 N	: 8 :		1.2	2.*
\%	0	3. $\%$	5.2	0	7.0		0	7.1		13	0.7	07	4.3	13.0
10	19	12.0	12.9	14	17.2	17.8	10	17.5		12	16.4	10.4	3.1	- 2
13	3	8.3		13	11.0		8	11.3		19	10.5	10.5	8.3	13.6
14	5	4.0		8	82		9	8.3		3	5.9		2.2	0.5
15	1	0.6		1	0.0		1	0.7		0	0.8		04	1.3
16	3	3.2		4	4.3		3	4.1		-	4.1		13	3.7
10	2	1.8		4	24		2	25		1	2.3		1.1	3.3
10	10	0.0		11	09		0	0.0		6	9. 5		3.3	6. 8
20	13	14.3		21	191		80	10.4		17	10.2		31	0.3
81	1	0.6		1	0.0		1	8. $\%$		0	0.8		0.4	13
22	0	08		0	0.8		1	0.6		2	0.8	0.4	0.6	25
24	0	0.0		0	00		0	0.0		0	0.0		00	00
25	1	1.2		4	1.6		1	10		0	18		18	45
20	1	20		4	2.7		3	2.7		2	3 a		1.1	34
20	3	22		0	3.0	3.0	5	3.0		3	2.		08	23
30	0	00		0	0.0		0	00		0	00		0.0	00
31	2	1.3		0	1.0		3	1.0		2	1.8		0	28
12	0	0.0		0	0.0		0	0.0		0	00		- 0	- 6
33	0	00		0	0.0		-	0.0		0	00		0.	0
34	0	04		0	0.8	0.8	3	0.5	6.5	0	03	05	013	- 45
Totel	11		77 A	10\%		118.6	110		1043	102		29.7		

CONFIDENTIAL

Table F3
ADJUSTMENT OF HOLES CCINTED SINLLE BULLETS, NIGIIT SITTING

Tarcee	Mol es conntiond	Hole prodicted	Hite - dusted	Moler	Hole piedicted	Hite adjuated	Holes counted	Howes predicted	Hits sdjurted	Moles covated	Holee predicted	Hite adjunted	σ	30
		Rue 7			Rux 3)			Rue 40			Rue 84			
1	24	20.8		11	16.1		15	10.6		15	17.6		48	14.3
2	0	22		3	1.7		2	1.1		2	1.9		1.1	3.3
3	11	89		9	6.9		4	4.6		4	76		3.1	92
4	0	1.9	1.9	3	1.5		1	1.0		2	18		1.1	3.4
6	2	2.9	2.9	3	2.2		2	1.5	1.5	2	2.4		0.4	1.3
8	11	6.7	8.7	4	5.2		0	3.4		6	57		4.0	11.9
11	5	06	0.6	1	0.5		0	0.3		1	0.5		0.5	1. ${ }^{\text {\% }}$
12	0	0.0		0	00		0	0.0		0	0.0		00	0.0
13	1	1.3		0	1.0	1.0	1	0.7		2	11	1.1	0.7	2.1
14	2	1.3		1	1.0		0	0.7		1	11		0.7	2.1
15	1	0.8		0	0.5		${ }^{1}$	0.3		1	0.5		03	1.5
16	0	1.0		0	0.7		0	0.5		3	0.8	0.4	13	3.9
17	0	0.0		0	0.0		0	0.0		0	0.0		0.0	0.0
14	0	0.6	06	0	0.5		1	0.3	0.3	1	0.5		0.5	1.5
19	0	1.3	1.3	2	1.0		0	0.7		2	11		1.0	3.0
20	1	13		4	1.5		1	1.0		0	1.6	1.6	1.5	4.5
21	0	0.0		0	0.0		0	0.0		0	0.0		00	0.0
22	0	0.8		0	05		0	0.3		2	0.5	0.5	0.9	2.6
23	0	0.0		0	0.0		0	0.0		0	0.0		0.0	0.0
25	0	0.3		0	0.2		0	0.2		1	0.3		0.4	13
28	0	0.0		0	0.0		0	00		0	00		0.0	0.0
27	0	0.0		0	0.0		0	0.0		0	0.0		0.0	0.0
Total	33		36.2	41		42.0	27		25.n	45		420		

CONFIDENTIAL

Tabie F4
AUNE'S'IMF.NT UF IHULE'S COUNTED, DUPLEX, DAY SITTTNG

Terset	Holes counted	Holes predicted	Hits djuated	Holes counted	Hole predicted	Hite adjuated	Holea counted	Role predioted	Hfte adjueted	Hol counted	Holew predicted	Hite edjuited	\cdots	36
		Hue 2			Rus 4			ค4* 57			Tun 59			
3	5	1 1		6	1.1		7	54		5	5.0		2.0	6.1
7	50	26.2		27	2 is		30	330		30	30.0		9.8	29.6
0	17	124		15	127		13	15.6		18	14.6		2.8	11.1
10	22	22.7		41	21.1	23.3	30	23.6		26	267		9.3	26.0
13	1	119		0	12.2		16	14.9		0	13.0	135	13.3	400
14	K	7		2	76	7.6	12	9.3		15	8.7		3.7	11.1
15	0	03		0	0.3		2	0.4		0	0.4		0.7	2.1
16	H	- 7		4	49		10	11.0		2	10.1		0.3	19.0
18	5	76		7	78		5	9.6	9.0	13	8.9		3.4	10.2
19	14	57		9	10.0		9	12.3		12	11.4		3.6	10.8
20	3.4	35.3		40	36.1		53	44.4	44.4	41	41.4		7.7	23.
21	\ddagger	1.7		7	1.7		4	2.1		0	1.0		2.6	7.7
22	2	21		0	2.2		2	2.7		8	2.5	2.5	24	7.8
24	0	02		0	0.2		0	05		0	0.3		0.4	1.3
25	0	0 -		0	0.8		0	1.0		0	0.9		0.9	2.6
38	2	3.6		0	3.1		R	3.8		5	3.6		20	6.0
29	12	6.0		3	B. 2		4	7.6	78	8	7.1		3.0	9.0
30	0	04		0	0.5		0	0.6		0	0.5		0.9	2.0
11	0	2.8		0	2.9		0	3.5		7	3.3		3.1	9.4
32	2	0. ${ }^{\text {S }}$		0	0.8		0	1.0		1	0.9		1.4	4.1
31	0	02		0	0.2		0	0.3		2	0.3		0.7	2.0
34	2	13		3	1.4		0	1.7	1.7	4	1.6	1.8	14	42
Total	156		166	176		1579	209		213	195		201.0		
		Rua 33			Rus 35			Rue 00			Rux 8 \%			
5	5	4.1		2	3.4		7	1.5		1	4 i		2.0	0.1
7	19	25.1		19	20.8		51	48.1		22	25.2		-.	29.0
0	11	11.9		10	9.9		19	21.9		6	120		3.6	11.3
10	11	21.8		13	181		33	40.0		27	21.9		9.3	280
13	18	11.4		13	9.4		43	80.9	20.9	15	11.4		19.3	400
14	B	7.1		B	5.9		y	13.0		6	7.1		3.7	11.1
10	0	0.3		1	0.3		0	00		0	0.3		07	2.1
18	10	8.4		5	8. 8		25	134	184	! ${ }^{\text {a }}$	8.		6.3	190
is	$\hat{0}$	7.5.		14	61	61	11	13.4		7	7.3		3.4	10.2
19	13	93		3	77		12	171		13	94		3.0	10.
20	36	33.		2 H	25.0		49	62.0	520	34	40.0		7.7	23.2
21	0	1.6		0	1.3		0	3.0		0	1.6		26	7.7
22	1	2.0		0	1.7		3	37		3	2.0		2.4	72
24	0	02		0	02		1	0.4		1	0.2		0.4	1.3
25	2	08		2	00		2	1.4		1	0.0		0.	2.8
20	6	2.9	2.9	3	2.4		3	5.3	3.3	2	2.8		20	60
29	6	5.8		7	4.8		11	10.6		3	5.6		30	4.0
30	2	01	01	2	C 1	0.4	0	0.8		0	0.4		0.2	2.6
31	2	27		2	22		7	49		7	27	27	3.1	1
35	0	$0 \times$		0	G. ${ }^{\text {¢ }}$		4	1.4		0	08		1.4	4.1
33	0	0.2		0	0.2		0	0.4		0	02		0.7	2.0
34	1	1.3		0	1.1		2	2.4		0	1.3		14	4.2
Total	159		1543	132		122.0	292		275.6	100		150.7		

CONFIDENTIAL

Table y 5

Target	ilulea counted	Holes predic aed	Hite ctjusted	Holes counted	Holes prodleted	Hite ndjunted	Holea counter	Holea ulcted	Hite edjumted	Holee cousted	Holes predicted	Hits edjusiod	-	30
		Hue 6			Rua 37			Hus 61			Nun			
5	9	6.6		5	3.9		3	3.0					2.5	7.5
7	, 0	101		37	19.3		26	33.4					9.7	29.4
9	3	13.3		8	13.6		22	115	11.6				64	191
10	25	317		15	21.3	21.3	21	18.0					4.1	12.3
13	0	11.7	11.7	16	11.5		17	9.7					78	23.4
14	10	*. 2	5.2	\%	*. 0		7	6 8					1.7	51
15	0	(9. 1		1	0.3		0	0.3					0.5	141
18	3	36		5	3.5		2	3.0					1.2	J. 7
10	2	78	7 *	6	7.7		14	65					5.0	15.0
13	13	9.2		4	9.1		5	77					3.3	9.9
20	Jt	41.9		37	41.2		20	313					130	39.1
21	1	0.4		0	0.3		0	0.3					0.3	14.1
22	0	1.4		5	17		0	1.5					2.4	7.1
24	0	00		0	0.0		0	0.0					0.0	0.0
25	0	0.6		0	0.0		0	0.0					0.0	0.0
28	1	3.2		2	3.1		6	2.7					2.2	6.5
29	29	139	13.3	7	13.6		3	11.3					11.4	34.3
30	0	00		0	0.0		0	0.0					00	00
31	z	60	13.0	4	59		6	5.0					2.9	\% 6
32	0)	0.0		0	00		0	00					0.0	0.0
33	0	0.0		0	00		0	00					0.0	0.0
34	1	0.1		0	0.3		0	0.3					0.5	14.1
Total	130		141.7	187		1933	158		147.5					

Table $\mathbf{F} 6$
ADUUSTMENT OF HOLES CYUNTFD, DUPLEX. NICHT SITTINC

Tarsat	Holes counted	Holes predicted	Hite edjusted	Holes counted	Holes predicted	Hite djusted	Hole counted	Holes prodicted	Hite edjusted	Holes counled	Holes predicted	Mits adjusted	*	30
		Rua *			Ru4 39			Run 63			Rus			
1	9	159		17	15.6		45	395					13.4	46.3
2	2	1.3		0	!. 1		4	3.3					1.6	$4 y$
3	14	63		9	6.1		5	15 \%					3.7	11.0
4	0	3.6		6	3.5		10	89					41	123
6	6	3.6		3	3.5		7	89					1.7	31
*	6	3.8		0	3.0		17	12.8					7.0	211
11	0	0.2		1	02		0	06					0.5	14.1
12	1	04		0	0.4		1	1.1					0.7	21
13	t	22		2	22		4	5.	5.8				0.9	28
14	1	1.1		2	1.3		3	3.3					08	24
15	0	0.0		0	1.0		0	07					0.0	0.0
16	0	1 N		0	1.1		8	44					3.8	83
17	0	00		0	00		0	0.0					00	00
14	6	47		0	0.7		3	17					14	4.2
115	1) 4		0	0.4		1	11					0.5	141
20	8	0.4		2	0.	0.4	0	11	1.1				0.9	$2 \times$
\$1	0	00		0	0.0		0	0.0					0.0	0.6
12	0	00		0	00		0	00					0.0	00
21	0	00		0	0.0		0	0.0					00	00
25	0	04		1	0.4	0.4	1	11					05	141
20	0	0.0		0	00		0	0.0					00	00
27	0	0.0		0	00		n	80					0 O	00
Tounl	44		44	43		10.1	109		1117					

CONFIDENTIAL

CONFIDENTIAL

Table F7
ADULSTMENT UF HOLEN COUNTED, TRIPLEX, DAY SITTING

Targei	Holan couated	Holee predicted	H1ts odjuated	Holse coustert	Hole predticted	Hite edjun.ad	Hoine cowated	Hole predicted	Hit adjust ed	Holes oounted	Hole predic'ed	Hite adjunted	a	35
		Run 26			Run 26			Run			Run			
5	6	9.6	9.8	10	6.4	6.4							2.0	6.0
7	51	54.0		30	36.0								6.0	18.0
8	25	22.8		13	15.2								6.0	18.0
10	47	42.6		14	28.4								11.5	34.5
13	25	15.0		0	10.0								12.5	37.5
14	7	7.2		5	4.8								$1.1)$	30
15	0	0.0		0	0.0								0.13	0.0
16	1	12.0		19	0.0								0.2	27.0
16	8	12.0		12	80								2.0	8.0
10	17	21.0	21.0	18	14.0	14.0							0.5	1.5
20	87	73.2		55	45.8	48.8							6.0	18.0
21	4	2.4		0	1.6								2.0	8.0
22	2	1.2		0	0.8								1.0	3.0
24	1	0.6		0	0.4								0.5	1.5
25	3	1.8		0	1.2								1.5	4.5
26	8	6.0		2	4.0								3.0	90
29	H	54		1	3.6								3.5	10.5
30	0	0.0		0	0.0								0.0	0.0
31	12	9.0		3	6.0								4.5	13.5
32	1	0.6		0	0.4								0.5	1.5
33	0	0.0		0	0.0								0.0	
34	8	4.8		0	3.2								4.0	12.0
Total	301		$30^{\circ} \mathrm{B}$	201		176.2								

Table Fs
ADIUSTMENT OF MOLES COUNTED, CARBINE AUTOMATIC, DAY SITTING

Terget	Hol an counted	Holee predicted	Hite adjuet ed	He!cz	\%ivo predicted	Hita edjugted	Holea counted	Moles predicted	NIts -djuated	Hol es compled	Holes predicted	Hita adjunted	0	30
		Run 18			Ru迷 20			Rus 41			Rum 43			
5	3	8.8		11	10.7		3	B. 1		10	0.3		33	10.0
7	12	150		21	23.		21	1:	:1,3	is	14.		5.0	151
0	7	8.5		16	13.3		5	6.4		A	70		42	18.5
10	17	12.5	12.5	15	10.6	10.6	11	9.4		10	11 \%		20	A 8
13	13	9.2	9.2	12	14.4		7	6.0		7	H. 3		2 F	A. 3
14	11	5.2	5.8	5	8.1		1	3.1		5	48		3.6	107
15	0	0.0		0	0.0		0	0.0		0	00		00	00
15	3	5.6		6	80		2	4.3		-	32	5.2	27	H. 2
16	0	0.2	9.2	11	14.4		21	6	68	4	ค 5		51	27.4
10	9	9.9		28	13.5	15.5	3	74		2	02		103	31.4
20	23	11.8		1	18.5	18.3	0	8.8		20	10.5		52	277
21	4	1.2		0	1.4	18	0	0.0		1	11		1.6	49
22	0	5.2		18	0.1	8.1	0	3. ${ }^{\text {d }}$		3	4 H		7.9	237
24	2	0.8	0.0	1	1.3		0	0.7		1	09		07	21.2
45	0	1.8		6	3.0	3.0	0	1.4		2	1.7		34	7.3
36	1	1.8		5	3.0	30	0	1.4		2	17		1.0	85
20	3	4.5		-	7.0		3	3.4		5	48		20	E1
30	0	0.0		0	0.0		0	0.4		n	0.0		0.0	00
31	1	4.0		8	6.3		0	3.0		7	3.7		3 1	115
32	0	07		3	1.1	1.1	0	05		0	07		13	31
33	0	0.0		0	0.0		0	0.		0	00		0	- 0
34	1	02		0	0.1		n	- 2		0	08		04	
Total	114		1080	179		172.6	86		592	108		1022		

COMFIDEPFIAI

Table Fg
AWI STMANT UF bell.S CUNNTHD, CAABBNL. ALTUMATIC, DAY STANDING

Tarset	Holew counted	Hole predleted	HILS sdjusted	Holes counted	Holas predicted	Hte edjusted	Holen couleted	Hole predicted	Hite stiverod	$\begin{gathered} \text { Holen } \\ \text { conated } \end{gathered}$	Holes prealicted	WIts adjusted	σ	30
		Pan 22			Pua 45			Ru*			Rus			
5	11	4. 9		2	4.1								4.8	13.5
7	32	300		12	140								100	30.0
9	7	H 2		5	3.8								1.0	3.0
10	9	9.6		5	4.4								2.0	6.0
13	14	150		5	70								8.3	250
14	3	41	$4 \times$	4	22	22							0.5	15
15	0	00		0	0.0								0.0	0.0
10	7	6.8		3	3.2								2.0	6.0
18	\cdots	7.5		3	3.5								2.5	7.4
19	5	*. 2	H. 2	7	B.e	3.1							1.0	3.0
20	22	19.5		7	\$ 2								7.5	22.5
21	2	1.4		0	0.6								1.0	3.0
22	1	2.0		2	1.0	1.0							0.5	1.5
34	1	0.7		0	0.3								0.5	1.5
25	4	3.4		1	1.8								15	4.5
28	5	3.4		0	1.6								25	73
29	3	2.7		1	1.3								1.0	3.0
30	0	0.0		0	0.0								00	0.0
91	4	5.5	5.5	4	2.5	2.5							00	0.0
32	0	0.0		0	00								0.0	0.0
33	0	0.0		0	0.0								0.0	00
34	4	4.1		2	. 9								1.0	3.0
Total	142		159,	Bti		5×5								

Table F10
ADSUSTMENT ()F HOLES COUNTED, CARBINE AUTUMATIC, NIGHT SITTINL

Tercet	Hol en counted	holes predicted	Hisia djunted	\%hise coubted	Robes predicted	11tta edjusted	Hole counted	Hole predicted	Hite © ${ }^{\text {duneted }}$	Hole coupled	Hole predicted	Hits © junted	σ	30
		Rua 24			Rus 47			Pus			Tun			
1	4	42	42	4	7.1	7.1							0.0	0.0
2	s	3.7		1	6?								2.5	75
3	5	N 5		11	14.2								3.0	90
4	3	27		2	4.4	44							0.5	15
6	0	00		0	00								00	00
8	0	00		0	0.0								00	0.0
11	4	2.7		1	4.4								15	45
12	0	00		0	00								00	0.0
13	0	05		1	0 -								05	15
14	0	00		0	0.0								00	00
:	0	0 \%		n	00								00	00
16	0	00		0	00								$\square 0$	00
17	0	00		0	00								00	00
18	0	0.5		1	0.								03	15
19	0	$0 \cdot$		0	0.0								00	00
20	4	32		2	5.3	5.1							10	30
21	0	0.0		0	00								00	00
22	0	00		0	0.0								00	00
23	0	0.0		0	00								00	00
24	0	00		0	0.0								00	00
28	0	00		0	0.0								03	00
27	0	00		0	00								0 O) 0
Total	28		242	33		11.								

CONFIDENTIAL

Tsble $\mathbf{F} 11$

Target	Holem counted	Holes predicted	Hita edjusted	Holes counted	Hole predicted	H 1 s adjuy ted	Holen cousted	Holem predicted	Hite djunted	Holes counted	Holes predicted	Hits adjustad	σ	30
		K0\% 7			Hus: 9			Run 42			Rum 44			
5	.	10		4	30		2	38	3.8	6	41		1.5	41
7	10	2m ${ }^{\text {a }}$		1.	218		30	27.6		30	297		52	150
\%	1:	10 ;		9	79		16	100		0	107	10.7	62	14.5
10	16	24.0	210	14	1. 2		24	230		30	24,8		83	156
13	14	77		,	$5 y$		0	74	7.4	12	50		5.9	177
14	0	29		3	22		7	24	2 *	1	3.0		27	10
15	U	03		1	02		0	43		1	0.3		0.4	13
16	H	1.81		7	49		\cdots	12.5		26	13.5	135	79	23 \%
18	3	56	j 6	3	42		9	54	54	6	58		25	7 i
19	21	12 \%	12 *	4	97		12	12.3		11	132		0.0	1^1
20	45	40.8	13.0	37	309		25	$3!2$	332	46	42.1		4.	25.2
21	0	11		2	$0 \times$		2	10		0	1.1		1.0	30
22	0	1.6		1	1.2		2	15		3	1.7		1 :	5.4
24	0	0.5		1	04		1	0.5		0	0.6		05	1.5
25	1	3.6		4	26		B	3.3	3.3	0	36		31	9.3
28	7	15		7	.19		3	41		0	4.7		2.9	8.8
29	11	51		10	$b y$		5	H 7	8.7	8	9.4		23	69
30	0	0.5		1	04		0	0.5		1	0.6		0.5	1.5
31	1	4*		3	$: 6$		12	46	40	1 2	5.0		4.4	13.2
32	2	11		1	0 A		1	1.0		0	1.1		07	2.1
33	$1)$	0)		0	00		0	00		0	00		0.0	00
34	2	11		1	0 N		5	10	07	1	1.1		0.7	21
Tots 1	174		1770	1:35		135	171		1789	184		1822		

Table F12
AlWLSTMR.NT UF HOLES CUUNTED, CARBINE \& MIALTOMATIC, DAY STANDIFIG

Target	Hoiel counted	Holea pred1-ted	Hits sdjunted	Holes counted	Holea predicted	Hita sdjuated	Holee counted	Holea predicted	Hite sdjusted	Holea oounted	Holes prodleted	Hits adjusted	${ }^{\circ}$	30
		Rux 21			Run 46			Run			Rum			
5	4	7.0	70	8	5 n								2.0	b 0
\%	31	332		26	23.8								2.5	7.5
8	15	14.0		9	10.0								3.0	9.0
10	20	26.2	26.2	25	14.8								28	75
13	26	244		16	17.0								5.0	150
14	4	18	87	7	6.3								0.6	1.5
15	2	1.2		0	0.8								10	30
10	4	3.3		6	42								1.6	30
10	3	5.2		0	:1 M								45	175
19	$\therefore 5$	14.0		9	100								30	90
$=2$	$+4$	34.1		17	247								128	37.5
21	0	00		0	0.0	00							0.0	0.0
22	0	52		9	3.3	3.1							45	13.5
24	3	17		0	1.3								15	48
25	4	47	47	4	1.3	3.3							00	00
20	. 3	47		5	33								10	30
29	9	52		0	34								15	13 8
30	1	06		0	01								05	15
31	5	47		3	3.3								1 c	30
42	0	0.0		0	6.0								$0 \cdot$	00
33	\checkmark	00		0	0.0								00	0.0
3 ,	1	12	12	1	0 -								0.8	- 2
Tots	202		212.A	145		1.3**								

CONFIDENTIAL

Table F13
ADNLSTM\&NT いF HUL.ES COLNTED, CAMBIN\& BEMLALTOMATIC, NIGHT SITTING

Terget	Holew counted	Holee preelicted	Hita djusted	Holes counl ed	Holes predicted	Hil adjusted	Holen counted	Hole: pradleted	HHs djuated	Holen counted	Holes predicted	Hil adjueled	0	30
		Run 23			Hu* 48			Mun			Rus			
1	1/4	154		5	6.6								6.5	495
2	2	14		0	0.								10	3.0
3	6	30		1	2.0								2 B	¢ 5
t	4	2.1		3	09								1.5	4.5
6	6	43		0	1.7								30	90
*	1	2.1		2	0.9	0.9							0.5	15
11	1	1.4	14	1	06	0.6							00	00
12	0	00		0	0.0								0.0	0.0
13	1	0.7		0	03								03	1.5
14	1	14	14	1	08	06							00	00
15	1	07		0	03								0.5	15
16	1	14	14	1	06	0 F							0.0	00
17	0	00		0	130								0.0	00
14	0	00		13	00								0.0	00
19	1	07		0	03								0.5	15
20	3	43	4.3	3	1.7	17							0.0	00
21	0	00		0	00								00	00
2.	0	00		0	00								00	00
23	0	0.0		0	0.0								00	00
25	0	0.0		0	0.0) 0	0.0
26	0	70		0	00								00	0.0
27	0	00		0	00								0.0	00
Totel	42		$4+5$	17		134								

Table F14

Target	Holee counted	Holew predicted	Hils sdiusted	Holea counsed	Holes preductad	Hite ©jusiod	Holee counted	He' prodicted	Hits edjuated	Holes counted	Hol ${ }^{\text {a }}$ prodicted	Hite adjusted	-	30
		Run 10			Run 12			Run 49			Run $\$ 1$			
5	9	32	3.2	3	34		1	3.2		1	18		33	23
7	22	157		20	18.7		6	157	157	21	1*9		6.3	196
9	4	62		i	73		*	62		M	74		16	49
10	14	107	1167	\wedge	127	127	10	107		11	12.4		d.A	il 3
13	T	10.3		12	13.0		20	109		9	43.1		4.9	14\%
14	0	25	25	6	30	3.0	1	25		4	3.0		2.4	72
15	0	02		0	0.1		1	02		0	0.3		0.4	17
16	3	4		5	54		\cdots	16	46	4	3.3		19	56
18	7	64		9	7.6		5	6.4		7	7.6		14	42
19	6	55		11	65		7	5.5		0	6.6	6.7	39	118
20	0	107	10.7	13	12 i		11	107		23	12 月	123	32	243
21	2	14		0	1.6		2	14		2	16		11	34
27	0	02		\checkmark	U ${ }^{1}$		\checkmark	$\checkmark .6$.	¢ 2	=	\because :	- 2
24	0	00		0	08		0	00		0	00		00	00
25	0	07		0	0 *		0	07		3	0 A		13	39
28	0	02		0	01		1	02		0	03		04	13
29	2	3 K		1	4.1		5	3.6		5	44		12	37
30	0	00		0	00		0	00		0	0.0		00	00
31	6	25		2	10		0	25		3	3.0		22	65
32	0	00		0	00		0	00		0	0.0		0.0	00
33	0	00		0	00		0	0.0		0	00		00	00
34	0	07		2	0%		0	07		1	0.4		0 \%	25
Total	$4{ }^{4}$		Mt. 1	102		1037	mos		423	103		9x *		

CONFIDENTIAL

Table Fis
adnuntment uf heles cenunted. ten au umatic, day standing

Tartat	Hulem counted	Hulea predicled	$\begin{gathered} \text { Hita } \\ \text { ndjusted } \end{gathered}$	$\begin{aligned} & \text { Holew } \\ & \text { compied } \end{aligned}$	Holes prodicted	$\begin{gathered} \text { Hitu } \\ \text { adjueted } \end{gathered}$	Hole cuunted	Holes predicted	$\begin{aligned} & \text { Hita } \\ & \text { adjueted } \end{aligned}$	Holes courted	Holaa predicted	$\begin{gathered} \text { Hita } \\ \text { djuaind } \end{gathered}$	-	30
		Hun 14			Rum 53			Run			Hun			
B	3	14	3.4	3	2.8	26							00	0.0
1	17	18.0		11	12.0								30	90
-	1	4.0		3	3.0								05	15
10	16	12.6		6	9.4								50	150
13	13	12.0			9.0								25	75
14	3	4.0	4.0	4	3.0								05	1.5
15	0	0.0		0	0.0								00	00
18	2	6.3		9	$4 . ?$								35	10.5
18	20	13.7		4	10.3								$\bigcirc 0$	240
19	5	29		0	2.1								2.5	7.5
23	0	4.6		: 5	6.4	64							7.5	225
21	0	0.0		0	0.0								00	00
22	0	00		0	00								0.0	00
24	0	00		0	00								00	0.0
25	0	00		0	0.0								0.0	0.0
28	2	1.7		1	1.3								0.5	1.5
29	2	2.3		2	1.7	17							0.0	0.0
30	0	ก. 0		0	0.2								00	0.0
31	3	29		2	2.1								0.5	1.3
32	0	00		0	00								0.0	00
33	0	00		0	00								0.0	0.0
34	1	0.6		0	0.4								0.5	1.5
Total	91		91.4	88		587								

Tabla 16
ADJUSTMENT OF HULLS CUENTED, r4s AUTUMATBC, NIGHT SITTING

Turget	Holet cuanted	Holea predicted	$\begin{gathered} \text { Hits } \\ \text { adjuled } \end{gathered}$	Holen counted I	Holea predictand	Hita -dju*ted	Ifole counted	Hol predicted	Hiss adiastad	Holea ocuated	Holue predicted	$\begin{gathered} \text { Hite } \\ \text { adjuated } \end{gathered}$	σ	30
		Rug 16			Ruw 53			Rus			Hun			
1	17	207		20	18.3								1.3	4.5
2	4	22		0	1.5								2.0	6.0
3	5	7.3		y	5.7								15	4.5
;	i6	to.ti		3	8.4								6.5	195
6	5	3.4		1	2.6								2.0	8.0
*	13	10.6		6	8.4								35	10.5
11	0	00		0	0.0								00	0.0
12	3	2.2		1	19								10	78
13	4	4.5	45	4	3.5	3.5							00	00
14	3	24		2	2.2								05	15
15	0	0.0		0	0.0								00	00
16	2	2.8		3	22								$\dot{\sim}$.	8.0
17	n	$\because 6$		v	v.0								0.11	0.0
18	1	11	1.1	1	09	0.9							$0.1)$	00
19	0	2.2		4	38								20	80
20	2	45		8	3.5								20	6.0
21	0	0.0		0	0.0								00	00
22	0	0.0		0	0.0								00	00
23	0	0.0		0	0.0								00	00
25	0	00		0	00								00	00
28	0	00		0	00								00	00
27	0	0.0		0	00								00	00
Totel	75		75 R	\$9		534								

COMFIQEMTIAL

Tabla 517
AINLSTMENT (H HU\&AS COHNTED, TAK SE'AIAUTOMATIC, ; AYY BITTING

Tarces	Holen counted	Holes predicted	Hita adjuated	Molea counted	Holea predleted	Hita adjuated	Hole counted	tholes predicted	Hisa adjuated	Hole oounted	$\begin{aligned} & \text { Holea } \\ & \text { predioted } \end{aligned}$	Hta edjusted	σ	30
		Hua 9			Rum 11			Hun 50			Hua 52			
5	4	31		$*$	4.5	4.3	4	40		0	44		2.6	85
\dagger	20	172		15	254	231	28	22.5		27	24.9		3.3	15.9
9	9	86		15	127		10	11.3		11	12.8		2.3	8.8
10	17	16.5		18	243	24.3	21	21.5		32	23.7	23.77	6.3	187
13	9	7.3		12	10.7		0	$y .5$	9.5	17	10.5	10.5	62	186
14	1	40		9	59		4	5.3		8	5.8		29	B. 8
15	0	02		0	03		1	0.3		0	0.3		0.4	1.3
16	6	31		10	45		0	4.0		0	4.4	4.4	42	127
18	4	5.7		11	8.5		5	7.8		ε	8.3		23	69
19	11	69		17	102		2	9.0	9.0	6	9.9		5.6	16.8
20	3	14.2	142	21	20.3		31	18.5		19	20.4		10.0	301
21	1	1.1		4	17		0	1.5		1	17		3.0	9.0
22	0	0.6		1	0.8		2	0.8		0	O. H		08	2.5
24	0	02		0	0 3		1	0.3		0	0.3		0.4	1.3
25	0	00		0	00		0	0.0		0	0.0		0.0	0.0
28	1	10		2	14		2	1.3		0	1.4		08	25
29	6	40		2	59		9	53		4	$5 . \mathrm{H}$		2.6	8.8
30	0	0.0		0	0.0		0	00		0	00		00	0.0
31	3	? 7		0	3.5		5	3.5		6	3.8		2.3	6.9
32	0	00		0	0.0		0	00		0	00		00	0.0
3.1	0	0.0		0	0.0		0	0.0		0	00		00	0.0
34	0	\% ${ }^{\circ}$		1	11		2	1.0		1	1.1		10	30
Total	97		1112	113		157.2	127		143.3	140		1296		

Tabe FiA
ADJUSTMENT OF 性LES CUUNTFD, T\&B SEMIAUTOMATIC, UAY STANDING

T:raz:	Atoles C..unted	Hole prediated	Mita adjueted	Holea counted	Halea prealicted	Hite adjunted	$\begin{aligned} & \text { Holee } \\ & \text { feounted } \end{aligned}$	Holime predicter	4145 adjusted	Holas oounted	hulea predicied	Hisa adjunted	σ	30
		Ruw 19			Rum 34			Rus			Run			
5	2	3.6	3.6	5	3.4								1.5	4. 5
9	24	23.1		21	217								1.5	4.5
\%	\%	73		4	87								30	9.0
10	15	145		13	13.6								10	3.0
13	14	17.6	176	20	16.4	154							30	90
14	1	05		0	0.5								0.5	15
15	0	00		0	00								00	00
18	2	\cdots		13	72	7.2							55	18.5
18	5	87		\ldots	6.3								15	4.5
18	13	7 8		2	72								55	16.5
20	19	192		1.1	17 *								! 5	\&. 5
21	2	16		$!$: :								15	45
22	0	00		0	00								00	00
24	0	00		0	0.0								00	00
25	0	10		2	10								10	30
28	1	1.6		2	14								15	43
29	:	52		3	4 *								20	60
30	0	0.0		0	00								0.0	00
11	4	82		4	$5 *$								20	${ }^{5} 0$
32	2	1.0		0	10								10	30
3.7	0	00		0	00								0	00
14	2	11		2	15	19							00	10
T-14t	127		1.116	119		1085								

CONFIDENTIAL

Table fils
ADJUSTMENT OF HHLES COUNTEU，T4世 SFMIAUTOMATAC，NHGT S17 TING

Jargel	llolee enunted	Hole predicted	Hite edjuated	Holes counted	Holes predicted	Hite edjuated	Holes counted	Holes provicted	Hite odjueted	Holes counted	Holee prodicted	Hits adjusted	\bigcirc	30
		fun 13			Aun 36			Rus			Rua			
1	0	6.6		13	64	13							6.5	145
2	5	25		0	25	0							2.5	75
3	14	12.2		10	11． 5	10							20	60
4	5	3.6		2	34	2							15	4.5
6	4	3.6		3	3.4	3							0 s	15
B	12	61		0	5.9	0							60	18．0
11	0	14．4		29	142	29							145	43.5
12	4	2.5		1	45	1							1.5	45
13	月	6.6		5	64	5							15	45
14	3	2.0		1	2.0	1							1.0	30
15	0	0.5		1	0.5	：							0.5	15
18	0	1.0		2	1.0	2							10	30
17	0	0.0		0	0.0	0							00	00
18	0	0.5		1	0.5	1							0.5	15
19	1	15		2	t 5	2							05	15
20	28	18.3		10	177	10							8.0	240
21	1	10		1	1.0	1							0.0	0.0
22	1	1.0		1	1.0	1							00	0.0
23	0	0.0		0	0.0	0							0.0	00
25	0	0.0		0	00	0							0.0	0.0
26	1	0.5		0	0.3	0							0． 5	： 5
27	0	00		0	is	\checkmark							0.0	（1） 0
Total	89		HS	82		82								

TbMe F20
ADIUSTMENT OF SHUTS HECORDED．SINGLE BUALETS，DAY SITTING

Tersex	Stor B recorded	Adjuated to total ruand cousted	Adjusted for 1 － －djusted	pre dicted	Shots －djuated	野度 reoorded	Adjuated uo total rounds counted	Adjuated for wis edjurted	Shule pre ticted	shot． edjuated	30
			Run 1					Bue 3			
5	11	$12 . \mathrm{h}$		1.13		\＆	7.2		11.8		36.3
7	51	50.3		45．8		46	\＄5 4		415		26.8
－	13	15.1		19.6		14	16.9		17．6		16.5
10	43	50.0		45.8		39	47.0		40.7		61.6
13	3	3.5		301		IN	217		38.0		749
14	20	23.3		29.5		5	6． 0	is 0	267		$\mathrm{m}_{4} 2$
15	3	105		6． 1		4	44		7.2		211
16	37	43.0		311		31	37.3		27.8		146
15	21	24.4		231		10	220		246		－1．$\%$
15	40	46.5		34.2		27	32.5		30 A		203
2 ＊	M3	$9 \% .5$		44.7		73	67.9		759		300
21	9	10.5		－ 0		n	リ． 6		71		110
22	6	7.0		6.5		7	14		7 h		1 mm
24	3	3.5		45		0	00		41		122
28	11	12 \％		11.8		0	0.0		1115		15） 1
28	0	0.0		164		14	18.		14 A		24.3
29	21	24.4		349		24	14 －		312		fos
30	0	0.0		51		1	12		－ 3		15．
11	5	23.3		3.11		0	10		$20 \pm$		cos
32	y	103		91		5	58		$\cdots 1$		2.1
33	64	144	4	37		0	－． 0		13		10．
34	$4{ }^{4}$	53 －		31 a		4	＊\％		41.		310
Tolal	522	6 ml	3401		6401	191	47n．	（6It．）		－4．2＊	
founde monet ed	607					471					

CONFIDENTIAL

Table $\$ 20$ (cuntinued)

CONFIDENTIAL

Table F 20 (sunat nued)

Tarcet	Shota recorded	Adjusted to Lital rounda countad	Adjusted for hite adjusted	shote proditeted	smote adjueted	Shots reoorded	Adjuat ed to total rounda counted	Adjust ed for hite adjunted	sthots predicted	Sbot. adjusted	30
			Run 3 \%					Run 60			
6	5	51		11.6		15	167		174		363
7	45	461		400		36	622		601		26.9
5	17	17.4		162		19	211		244		16.5
10	33	543	331	397		52	577	36 H	598		61.6
13	59	604		3+1		88	733		514		749
14	i5	:5.4		- $\mathrm{i}_{\text {- }}$		$3{ }^{\circ}$	31.3		34.2		OB:
15	5	51		7.0		22	244		10.6		211
16	34	34.1		271		36	40		40 N		246
18	23	23.6		201		13	144		:30 3		23.4
18	33	33.18		23^{4}		3 H	42.		44 N		305
20	77	78.9		7.15		97	1077		1111		559
21	8	6.1		68		6	67		104		110
22	4	4.1		74		3	33		112		18.8
24	1	1.0		10		4	4.4		80		12:
25	2	2.0		103		19	211		135		35.1
28	23	23.6	118	143		1 A	200		213		29.3
39	2 H	28.7		304		26	2 C 9	154	+j*		60.3
30	1	4.1		4 :		-	7 m		1. 1		157
31	26	\% 6 \%		2494		27	30.0		Is 1		60.0
32	2	2.0		7.8		1 A	20.4		119		23.1
33	6	6.1		33		7	7.8		49		$10 . \mathrm{M}$
34	24	24.6		27.4		14	20.0		41,		509
Total	492	503.8	4708		470.4	587	6630	7016 6		70N:	
Rounds counted	504					663					
			Rus 65					Ran 67			
5	15	14.9		214		12	142	497	1,9		16, 3
7	$8:$	61.4		74.0		42	497		549		269
*	29	28.7		300		15	17 m	325	223		16.5
10	59	54.5	107 A	736		40	47.4		346		616
13	86	65.2	54.6	632		40	474		463		749
14	32	31.7		48.3		30	355	21.3	35 m		342
!	20	i $\hat{*}$. ${ }^{\text {a }}$		13.0		2	24		97		211
16	41	40.6		502		31	367	in 7	372		2t.1)
16	32	31.7		373		32	379		27 t		2.3 .4
18	44	43.8		58.2		$2 ?$	12.0		40.4		20.5
20	121	1198		136.8		80	47		1014		559
21	10	9.8		12.8		11	130		9.		110
22	14	18.8	7.5	1.78		18	In 9		102		$14 \times$
24	11	10%		7.3		1	12		34		122
25	41	40.6		191		33	341	19%	1:1		351
26	24	23.8		264		34	40.3		19.		29.3
29	51	508		56.4		31	. 61		$41 \times$		ค4 3
30	14	13%		82		3	95		10		157
31	88	68.2		534		60	710	312	.195		60
32	21	20.1		147		IH	21.3		104		231
33	10	8.9		60		6	71		45		10 m
31	42	418		511		12	112		379		50.9
Total	閏"3	164.	*72. 1		872.3	Sul	6,4M 1	146\%		646.	
Roundede counted	865					(8)					

CONFIDENTIAL

Talde F2l

Terget	sthots recorded	Adjusted to total round cou alad	Adjusted for hite adjualed	Sthote predicted	Hote adjueted	reoorded	Adjumted to total roved onumted	Adjuat ed for hite -djuntod		Stor, 4 adjuated	30
			Run 5					Sux 29			
3	20	242		131		13	1.32		183		145
7	47	58 ^	14.1	443		55	35.2	63.0	61.6		302
9	0	00		125		25	254		17.3		27.9
10	36	67.7	46.0	48.8		35	53.9	687	878		27.8
13	13	$3 \% 9$		45.6		77	18.3		6.0		43.1
14	24	$3: 38$		30.7		43	43.7		42.7		12.0
15	17	203		8.8		7	7.1		119		21.4
18	23	278		244		32	32 s		34.0		19.6
18	22	268		24.2		28	29.3		33.7		7.1
19	47	568		40.2		55	539		58.0		258
20	67	H10		61.8		137	406.7		113.8		31.6
21	16	193		10.1		12	12.2		141		13.
22	0	00		6.9		3	3.0		98		24.3
24	\checkmark	00		71		20	20.3		98		23.4
25	5	6.0		145		28	28.5		201		24.3
28	19	230		177		21	213		24.8		6.8
23	27	326		2\%2		35	356		40.7		88
33	?	85		4.9		2	2.0		67		7.3
31	22	266		42.2		52	528		58.8		
32	0	00		124		17	17.3		17.8		271
33	10	121		65		6	61		$\text { y. } 1$		15.8
34	15	14.1		33.3		42	42.7		35.2		37.3
Total	479	5413	550.9		550.8	735	7469	766.8		766.8	
Rounds counted	579					747					
			Rum 36					Tus 62			
	7	12.8					133				
7	22	395		50.3		57	630		574		30.2
-	10	100		141		27	298		161		279
18	30	5.19		554		44	48.7	66.6	63.8		27.8
13	30	53 9		516		70	17.4	478	891		43.1
14	19	141		34 y		33	36.5		388		18.4
18	7	12%		9.1		1	11		111		314
18	11	19 A		27.		34	376		318		19.8
18	16	247		27.8		13	144	33.1	314		7.1
18	20	359		45.7		20	321	43.3	522		388
20	58	100.6		92.8		94	104 ก		108.9		31.6
21	4	72		11.5		\bigcirc	100		13.1		154
22	12	21		73		20	221	88	0.9		848
24	S	106		81		3	3.3		9.2		234
25	11	128		161		14	153		188		24.3
28	13	234		20.1		18	177		42\%		t. ${ }^{\text {a }}$
21	19	341		33 \%		33	387		$3{ }^{-3}$		48
30	4	72		55		8	3 S		82		73
31	31	559		47 \%		62	88:		347		458
38	10	140		148		22	243		180		271
32	0	${ }^{18}$		74		12	133		85		15 \%
34	10	11%	198	2n 9		12	431		38.		313
Tefal	**8	0793	6854		6254	531	720.1	7140		7140	
Treneta											
countel	**					721					

CONFIDENTIAL

TaMe F 22

Terse	shate reoordad	Adjuated to total ic: counded	Adjuated for bles edjumbd		$\begin{aligned} & \text { Shote } \\ & \text { =tirented } \end{aligned}$	Bots reoorded	Ad)uget.uf to total rounde covinted	Adjueted for wea adjumed	prote preted	races adjus:	30
			Pua ?					(14 31			
1	92	107.7		86.4		142	1407		134.0		441
2	12	141		12.0		23	22.8		190		121
3	39	45.7		30.0		61	60.4		47.5		42.5
4	0	00		26.1		53	52.5		48.5		68.5
6	20	234	139	19.9		38	37.6		315		88.7
8	39	691	48.1	613		100	107.0		97.1		12.0
11	14	164		20.4		32	317		32.3		19.0
12	9	10.5		15.5		20	10.0		34.6		24.9
13	49	574		20.9		0	0.0		45.7		68
14	29	34.0		346		46	45.6		54.8		333
15	10	117		14.8		25	24.4		22.5		146
16	17	199		28.4		\$0	49.5		45.0		71.4
17	0	00		7.8		9	8.0		12.5		22.2
18	28	32%		324		47	46.6		81.3		80.4
10	41	48.0		40.0		56	57.5		634		18.3
20	78	99.0		627		140	138.7		99.4		154.2
21	11	129		10.4		27	267		16.5		26.5
22	22	23.4		170		23	22.8		26.4		86.9
23	0	0.0		0.0		0	00		4.0		0.0
25	0	00		18.4		29	28.7		29.2		43.1
26	6	00		67		2	20		10.7		24.6
27	0	0.0		24.8		86	20 *		31.3		686
Torel	526	616.0	599.5		599.8	950	950.1	950.1		950.1	
Hounde										-	
enuried	616					950					
			Nue 46					RuF64			
1	59	1044		125.		104	1072		119.7		44.7
8	7	12.4		17.4		14	144		15.3		181
3	15	886		437		26	26 \#		38.4		423
4	こ\%	2*:		32.1		3:	32 ${ }^{\text {c }}$		34.7		*6.
6	11	18.5	14.6	28.9		18	19.6		254		267
8	56	805		90.3		86	H8. 7		78.5		12.6
11	18	28.3		39.7		31	38.8		28.1		19 \%
12	19	33.6		22.6		1 l	14.6		19.9		24.8
13	30	531		421		76	781	431	37.0		68.3
14	83	467		50.4		62	63.4		44.3		33.3
15	11	155		20.7		19	$1 \geq 6$		18.2		14.6
16	40	76.8		114		40	418	116	3×1		71.4
17	7	18.4		11.8		30	20.6		10.1		822
19	! ${ }^{\text {\% }}$	2! ?	- ${ }^{-1}$	97.		! !	-3 ${ }^{\text {a }}$		13.		-2.
19	27	47 F		54.2		51	35%		51.3		16.2
20	60	1082		814		6	00		R0.4		1848
21	-	15:		158		6	06		134		2m 5
82	21	272		26.1		418	474	11%	82.		289
83	0	05		Of		${ }^{6}$	08		$\theta .0$		0.7
85	80	354		3 3\%		33	346		238		42.1
26	*	142		3.18		19	18%		¢ ${ }_{\text {¢ }}$		84.6
27	25	443		361		60	115		11.		En ${ }^{\text {c }}$
Toual	504	901 1	8.3 .8		413y	343	**) 1	964 2		-9n 2	
Tracto conemed	101					$60 \cdot$					

confidential

Table F23
ANL'STMENT OF SHOTS KECOADED, DUPLEX, DAY SITTRNG

Tarset	Shota recorded	Adjunled 10 total rowede counted	Adjuated for lite adjusled		$\begin{aligned} & \text { mota } \\ & \text { adjueled } \end{aligned}$	recorted	Adjunted to toul rounds countod	Adjusled for lite adjusied	sthota predicted	stote adjueted	30
			Run 2					Pun 4			
5	13	147		10.5		-	00		100		217
7	34	34.1		36.0		-	00		34.2		\$0.8
8	27	30.3		20.9		17	28.9		19.8		11.3
: 0	40	45.1		38.3		48	H1.6	464	36.6		28.5
13	1	11		29.0		4	6.8		27.6		60.0
14	12	135		26.5		7	119	432	25.2		33.3
15	3	34		$+1$		0	00		41		17.0
10	25	$23:$		296		33	58.1		251		317
1\%	20	226		27.6		18	272		28.2		32.9
19	34	$3{ }^{4}+$		34.3		24	40.8		32.5		18.4
20	103	1162		94.1		86	149.5		81.3		88.0
21	12	135		10.0		12	20.4		3.5		14.5
22	5	56		- 2		3	3.1		7.8		:5.4
24	0	0.0		3.5		0	00		3.3		38.4
85	0	00		14.3		0	0.0		138		43.5
28	13	147		151		-	00		14.3		24.0
29	25	2\%. 2		33.7		24	408		32.0		37.3
30	5	56		2.5		-	00		2.4		8.1
31	U	00		21.8		-a	0.0		20.0		55 ?
28	4	90		84		-	0.0		月. 0		22.3
13	9	102		47		-2	00		45		11.4
34	47	530		16.1		-	0.0		15.3		53.3
Total	430	4919	4919	4918	4919	278	4691	467.2	487.1	467.2	
Rounde counied	492					469					
			Ruil 33					Ru* 35			
	11	120		104					9.4		
7	27	29.0		35.5		40	42.2		321		56.8
5	20	218		20.0		18	190		18.0		11.3
10	20	307		38.0		34	359		34.3		26.5
13	48	53.7		29.6		39	412		25.0		00.0
14	! !	29 0		2 ± 2		8:	20.\%		25 \%		33.3
15	0	00		13		1	11		30		17.8
19	32	31		29.2		23	24.3		204		317
10	10	175		812		45	47.5	207	24.0		32.9
15	39	427		33.8		24	25.3		30.5		16.4
20	77	84		4.7		65	000		ค5		00.0
21	15	18.4		99		0	03		0.8		145
82	3	33		8.1		14	14.8		7.3		154
24	0	00		35		2	21		11		28.4
25	17	18.		141		15	15 \%		127		43.3
20	22	141	11%	148		20	211		134		240
82	.12	381		332		21	22.2		30		33.3
20	\%	18	20	25		13	137	27	23		6.1
31	24	282		215		20	211		135		58 ?
32	0	00		83		5	5.3		75		224
31	0	00		42		4	4.2		48		114
24	18	206		185		3	2.2		143		30.3
Total	481	5080	484.6	430	4.AR	451	4760	43M 2	43m.c	432 2	
Rourn coumed	508					416					

COAFIDENTIAL

THM0 723 (comisued)

Terget	Bnots reorded	Adjuated to total rouads counter!	Adjuated for Mlea adjured	$\begin{aligned} & \text { thots } \\ & \text { pre- } \\ & \text { dioted } \end{aligned}$	Shote - Anumal	Ebote reoerdid	Antured to tral romede counted	Adfurted for hite adjeated	$\begin{aligned} & \text { hoto } \\ & \text { pre } \end{aligned}$	shots adfust	30
			Ruan 57								
5	8	88		12.2		17	20.7		15.0		21.7
7	42	45.3		41.8		47	87.3		\$i. 6		56.0
0	21	22.7		243		17	2 C .7		20.8		11.3
10	44	47.5		44.8		28	34.1		54.0		28.8
13	51	55.0		33.7		16	18.8		41.4		80.8
14	20	21.6		300		40	48.7		37.8		33.3
16	6	6.5		5.1		15	18.3		6.2		17.8
16	20	21.6		34.4		30	36.5		42.8		31.7
18	25	270	51.8	32.1		32	38.0		30.4		32.9
18	36	38.8		39.8		37	45.1		48.8		18.4
20	93	100.3	84.0	1117		93	113.3		137.0		88.0
21	10	10.8		11.6		4	4.0		14.3		14.5
22	0	97		0.3		15	18.3	8.7	117		154
24	5	5.4		4.1		0	11.0		5.0		38.4
25	2	2.8		16.6		36	43.0		204		43.6
28	10	208		17.8		21	28.6		21.5		240
29	30	324	616	30.1		31	37.8		48.0		33.3
30	3	32		3.0		0	0.0		3.0		6.1
31	23	24.6		254		53	64.8		31.2		58.7
32	13	140		9.8		10	23.1		12.0		22.3
33	8	8.8		8.5		7	8.5		6.7		11.1
34	7	7.6		18.7		47	57.3	22.9	22.9		85.3
Total	495	534.1	5718	5717	5718	814	768.2	901.2	701.2	701.2	
Roundis counted	834					746					
			Fua 66					Rex 68			
8	23	24.2		16.4		7	7.8		123		21.7
7	64	67.4		56.3		45	50.1		42.		58.9
0	21	22.1		72.6		25	85.6		24.0		11.3
10	5s	811		00.2		47	82.3		45.8		28.5
13	60	72.8	36.3	454		48	53.4		34.5		60.8
14	26	37.4		41.8		20	31.2		31.8		32.3
i5	0	0.5		6.8		1	11		8.8		17.8
16	42	44.2	21.2	46.3		38	43		35.2		31.7
18	38	40.0		43.2		31	34.		32.6		32.0
18	44	16.3		53.		33	30.1		40.8		18.4
20	118	124.2	157.2	150.2		9	10.3		114.4		An 0
21	10	10.5		15.8		6	6.8		11.6		145
28	18	18.8		128		11	18.2		6.8		154
34	11	118		58		2	2.2		4.2		384
25	27	28.4		22.4		20	223		170		43.6
28	14	14.7	26.0	23.		17	18.		18.0		24.0
20 30	44	46.3		828		33	34.7		401		323
31	38	5.3 40.0		342		8	18	23.	3.0		-1
38	15	13.8		132		1	180	23.6	10.0		882
33	8	8.4		7.4		2	2.3		8.6		114
54	38	40.0		26.8		0	00		102		56.2
Total	740	7786	788	78.0	768.6	640	622.:	546 5	8×55	585.	
Rounde counted	779					623					

CONFIDENTHAL

TEWe F34
ADJUSTMF.NT OF \&ill IS HECOMDI: DUPLEX, DAY STANTMN

Targex	shota rwoorded	Adjuated to total round ornuted	Adjuted for lite adjutict	$\begin{aligned} & \text { Sote } \\ & \text { pre- } \\ & \text { dieted } \end{aligned}$	stiots edjustod	Bruct reco:-dud	Adjumted to totel 1 rumed courctal	Adyum for lite edjuated	$\begin{aligned} & \text { hote } \\ & \text { pra- } \end{aligned}$	thote edjusted	3 ar
			Run					Rua 37			
8	21	21.8	14.3	18%		12	222		13.3		148
7	74	76.8	61.8	4.3		30	55.5		58.5		9.1
)	22	22.8		18.4		7	110		18.7		14.5
10	70	72.8		66.4		23	426	60.5	80.4		25.4
13	0	0.0	00	47.5		33	611		43.2		04.3
14	35	36.3	298	30.7		18	33.3		27.8		13.
18	115	113.3		47.3		4	7.4		43.0		156.6
19	20	20.7		28.3		10	18.5		25.7		28.6
18	8	0.2	24.2	335		17	31.5		30.5		18.8
15	43	44.8		42.5		14	259		36.6		29.1
20	83	96.5		108.9		57	105.3		97.1		133
21	10	10.4		10.4		,	9.3		9.4		1.8
22	0	0.0		84		11	20.4		7.7		28.8
24	0	0.0		47		${ }^{\text {d }}$	111		4.3		14.5
25	*	0.0		8.8		13	24.1		7.9		31.1
28	31	21.8		28.1		15	27.8		25.8		8.3
29	30	31.1	14.6	36.0		23	42.8		32.7		39.3
30	0	0.0		13		2	3.7		1.2		8.1
31	38	39.4	118.2	88.1		30	53.5		78.2		02.2
32	11	114		15.9		10	18.3		14.4		8.7
33	4	41		2.8		0	0.0		2.7		5.8
34	30	31.1		13.2		3	6.8		12.0		40.6
Totaj	643	888.6	718.5	718.5	716.5	343	635.1	853.0	853.2	8530	
Rounda counted	887					635					
			Kun 61					Rum			
4	10	10"		14.							i¢.9
7	81	82.2		588							9.1
5	28	29.5	18.4	18.1							14.8
10	81	52.6		58.3							36.4
13	70	71.3		41.7							94.8
14	22	22.1		28.9							13.
18	5	5.1		415							159.
19	38	39.7		249							20.8
18	37	37.7		29.4							18.8
19	47	47.1		37.3							29.1
26	84	95.8		83.6							13.3
21	3	3.2		. 91							13
22	3	3.1		7.4							26.9
2.	2	2.0		41							14.5
21	0	0.0		7.8							241
21	29	29.6		24.3							1.3
29	42	42.8		31.6							39.3
30	0	0.0		1.2							1.1
31	08	69.2		78							02.2
32	14	14.3		13.8							8.7
33	4	4.1		28							¢. 2
34	0	00		11 ${ }^{\text {a }}$							40.1
Totel	833	646.0	830.9	2308	630.9						
Rounde counted	645										

CONFIDENTIAL

Twat F25
AEIUTTMENT OF BHOTS RECORDED, DUPLEX, NIGHT \&TTUNG

Tarset	Shote recorded	Adjueted to total round countr	Adjusted for hito adjumed	Sota pre© Coted	Eljotsted	$\begin{aligned} & \text { seots } \\ & \text { recorded } \end{aligned}$	Adjusted to total rounde counted	Adjuated for hat edjuated	Ehote preHeted	seota adjuated	30
			Run ${ }^{\text {a }}$					Rum 39			
1	yo	107.6		105.1		12	72.7		76.1		92.3
2	$?$	8.4		11.1		9	9.1		8.1		12.1
3	47	582		40 ?		28	44.2		29.8		37.1
4	0	0.0		30.8		31	31.3		22.3		79.6
8	2.3	27.5		24.7		18	13.1		17.9		24.1
8	57	682		72.1		43	45.4		52.2		62.5
11	15	17.9		206		19	18.2		14.2		12.6
12	14	187		21.6		16	16.2		15.5		21.4
13	63	75.3		747		47	47.4		54.1		78.0
14	39	46.6		38.3		26	24.2		28.		322
15	12	143		201		18	10.2		14.6		18.9
16	19	227		34.5		28	28.3		250		44.9
17	7	84		6.2		10	10.1		4.5		11.9
18	22	263		454		29	29.3		32.9		62.6
19	54	c. 6		เธิ. ${ }^{\text {a }}$		2	29.3		33.5		43.6
20	69	82.5		30.4		62	82.6	12.5	22.0		106.4
21	9	10.8		4.7		4	1.0		3.4		13.4
22	20	23.9		10.4		27	27.2		11.6		36.4
23	0	0.0		0.3		0	0.0		02		1.4
25	0	0.0		14.3		20	20.2	R. 1	104		47.1
28	0	0.0		5.6		12	12.1		4.2		148
27	0	0.0		124		0	0.0		6.9		54.0
Total	567	6779	677.9	677.7	877.9	548	553.1	490.	490.7	450.9	
Rounde counted	678					553					
			Rue 83					Rum			
1	146	148.3		147.3							92.6
2	15	iis		15.0							12.1
3	44	44.7		57.0							37.1
4	64	65.0		43.2							78.8
6	34	343		34.6							24.1
8	110	111.7		1010							82.5
11	27	27.4		28.9							12.6
12	32	32.5		30. 2							21.4
13	78	79.2	110.7	1047							78.0
14	50	50 m		55.4							32.2
15	23	29.4		28.2							10.8
18	56	569		46.4							44.8
17	1	10		8.7							11.
16	AS	86.3		63.							62.6
19	50	50.8		64.8							43.6
20	0	00		42.6							106.4
31	0	00		1.8							134
22	0	00		22.8							38.4
23	1	10		04							14
35	36	36.6		200							47.1
28	3	6.1		8.2							14.6
27	36	38.6		17.3							84.6
Total	804	916.1	3496	848.7	M9 6						
Rounda coumed	918										

CONFIDENTIAL

Toble 726
ADJ USTMENT OF AOTB RECORDED, TRIPLEX, DAY EITTDNO

Thale 17
ADNUETMENT OF WHOTE RECORDED, CAREDNE AUTOMATIC, DAY GTITING

CONFIDENIIAL

Table F27（contanud）

Tarcer	bhota recorded	Adjuatual to total round counted	Alfugted for blte edjuated		Thate edjuetad	Bota reoorded	Adjuated in ！atel rounda coured	Adjueted for inta edjuated		$\begin{aligned} & \text { Sote } \\ & \text { stadelen } \end{aligned}$	30
			Rus 41					2un 43			
5	16	172		15.6		33	32.9		32.3		40.6
1	96	103.4	356	41.6		71	73.4		88.6		74.5
1	24	25.8		17.8		31	30.9		37.1		33 ก
10	70	71.4		37.9		50	498		79.0		54.2
13	56	625		38.4		81	80.8		808		308
14	14	13.1		19.3		33	52.9		40.1		53.9
15	0	0.0		2.8		10	10.0		5.8		177
16	19	42.0		310		55	94.7	34.7	64.8		10.7
16	90	96.9	27.8	13.8		30	30.0		23.7		33.5
11	43	48.3		32.2		44	43.9		87.1		85.6
20	52	56.0		120.5		175	174.5		251.1		598.1
21	2	2.2		5.9		18	18.0		12.2		34.9
22	17	16.3		9.3		40	39.9		19.8		41.3
34	6	8.5		8.1		23	23.0		18.9		24.5
25	0	0.0		11.6		99	38.8		248		78.3
28	0	0.0		152		43	429		31.6		38.4
29	54	58.2		304		63	62.8		63.3		33.0
30	0	0.0		1.5		3	3.0		$=3.2$		7.0
31	4	4.3		32.4		83	84.8		875		2130
32	0	00		8.0		38	37.9		16.6		493
33	0	0.0		9.9		29	399		14.4		27.2
14	0	0.0		127		83	54.1		28.5		78.1
rocal	385	630.1	5133	513.3	313.3	1114	1109.3	1089.3	1069.2	1069.3	
Rousda covated	830					1111					

Talla Fis
ADUUSTMENT OF \＆HOTA RECORDED，CARPNE AUTOMATIC，DAY §TANDINC

Target	shote recorded	Adjusted to total ronnd ooveted	Adjented for Inla 		$\begin{aligned} & \text { Ehots } \\ & \text { edfejtel } \end{aligned}$	$\begin{aligned} & \text { Sotey } \\ & \text { reportion } \end{aligned}$	Aturited to tetal rownt oeruled	Adjuet ed for lifte －弐しiod	$\begin{aligned} & \text { pota } \\ & \text { pree } \\ & \text { diceted } \end{aligned}$	thota adjusted	30
			Nux 32					Teu 46			
8	51	12.0		53.5		35	369		251		321
7	112	114.3		128.8		80	81.8		89.1		49.1
9	50	81.8		63.4	65.4	46	80.0		35.8	35.8	13
18	76	73.6		93.1	93.1	89	70.4		50.6	55.8	4.8
12	132	134.7		142.2		34	95.6		81.1		58.4
14	48	10.0	80.8	72.7		77	78.5	433	43.1		58.2
18	58	59.2		41.6		8	8.1		32.9		812
16	87	88.		ROR		－	9 － 9		＊\％．\％		7 F .7
18	82	81.7		13.3		44	44.3		454		64.8
15	68	50.8	146.9	114.6		51	530	88.2	635		151.6
20	235	200.3		313.8		115	1315		115		1318
21	21	214		28.5		17	17.3		137		8.3
22	26	28.5		24.6		23	23.5	11.6	13.5		22.1
24	43	43.2		41.0		18	19.4		22.3		38.8
25	81	62.2		55.8	358	¢0	61.3		43.5	43.5	1.5
28	67	60.4		72.2		33	23.5		324		87
21	98	96.8		100.3		87	581		847		582
30	15	153		17.1		11	112		4		4.3
31	141	143	187.9	173.5		111	113.	79	5．4		150.7
38	8 \％	582		－4．2		86	28.2		32.6		49.1
35	11	112		211		31	214		112		15.3
34	88	1000		99.0		22	836		348		70.2
Total	1622	18551	17972	1797.4	1月28．1	1072	1003.2	1806	979.6	\％2\％．3	
Tivent cousted	1825					1003					

CONFIDENTIAE

Teble F'•
ADJUSTMENT OF SIIOTS RECOKDED, CAHBINE AUTOMATIC, NKIHT SITTING

Tarsen	Shot reoorded	Adjuated to total roandy couled	Affucted for bita adfyelad		sillote sedjuat ed	$\begin{aligned} & \text { Chots } \\ & \text { recorderd } \end{aligned}$	4d) $4=1$ en to total round orented	Adiluated for kit ndjuated		Thota adjuated	30
			Run 24					Tu\| 47			
1	170	177.5	186.4	170.4		85	72.3	128.3	144.3		87.2
2	47	49.1		37.4		18	20.0		21.7		43.7
3	108	106.5		102.9		75	63.5		87.1		34.5
4	97	101.3		98.0		31	34.5	759	612		38.1
6	60	627		34.0		0	0.0		25.7		94.1
8	88	92.9		57.8		12	13.4		48.7		$1: 93$
11	24	25.1		32.9		32	35.6		27.8		15.8
12	37	28.2		23.7		14	15.6		80.1		18.8
13	60	855		74.7		:a	E. ${ }^{\text {a }}$		a) 3		43.5
14	93	97.1		68.9		27	30.1		5 B .8		100.5
15	36	378		19 0		11	34.5		3.3 .1		4.7
16	49	61.2		56.6		48	53.4		$4 \mathrm{H.0}$	480	3.3
17	13	13.6		14.6	14.6	12	134		12.4	124	0.3
18	33	55.3		62.5		54	60.1		52.9		7.2
18	49	312		45.8		30	33.4		38.6		267
20	168	175.4		323.5		143	159.2	421.9	273.8		369.8
21	71	741		43.3		39	43.4		53.9		46.1
22	29	30.3		417		42	467		353		24.6
23	0	00		0.0		0	0.0		0.0		0.0
25	64	66.6		82.1		43	47.8		52.6		284
26	21	21.9		11.9		0	0 ก		100		329
27	59	616		52.0		31	34.5		44.1		40.7
Total	1401	1462.3	1471.8	1471.8	1472.6	796	868.0	12461	1246.1	1239.7	
Mounds counted	1483					968					

Table F30
AQUUSTMENT OF BHOTS RECORDED, CAKHINE SEMLAUTOMATIC, DAY SUTTING

Target	Bote reoorded	Acilubled to tolal rovento conoted	Adjusted for bite - idunted		soljuented	I coorded	Alfuated to total reoped counted	Adjuet ed for lile adjuated	Shota pracloted	Sbote adjueted	39
			Pu* 17					Sun 19			
5	8	8.1		9.6		3	5.7		115		11 \%
7	68	66.7		82.3		41	471		74.5		39.8
5	19	19.2		16.0		18	20.7		102		519
10	4.	41.5	62.3	53.7		43	49.4		64.2		30.7
13	67	67.7	37.2	40.2		34	43.6		46.2		98.6
14	0	0.0		6.5		16	20.7		10.1		23.1
15	0	0.0		3.0		0	0.0		9.6		15.2
12	37	374		36.5		26	29.9		42.5		17.
$1{ }^{1}$	\% 1	74	52.1	157		35	40.2		42.7		30.2
19	54	34.	.23. 3	4.f. 1		52	697		57.6		32.
20	109	110.8		118.8		112	127.6		143.1		36.4
21	13	13.1		7.4		11	12.6		A. ${ }^{\text {a }}$		148
23	2	2.0		11.3		11	12.6		135		23.7
24	25	253		131		14	18.1		157		22.7
25	22	22.2		153		22	28.3		18.3		28.8
29	21	21.2		20.6		34	22.2		24.6		19.5
25	37	374		453		56	57.1		590		40.8
30	1	10		3.0		4	4.8		24		4.1
31	14	14.2		13.5		68	749		401		725
32	26	363		14.1		17	185		14.9		244
23	6	E :		14		7	- 0		5.3		\cdots
\$4	37	374		30.2		43	454		361		441
Total	873	938*	6334	0.3.3. 4	93.	46	İsio	750	787 \%	75\% 0	
Rouede counted	646					75*					

CONFIDENTIAL

Taha F30 \{continued

Target	Ahots recorded	A fluated to total rouede coualed	Adjusted for hith adjusted		Bols adjusted	Shuts reoorded	Adjusted to toral rounde counted	Adjust end for lite adjueted	$\begin{aligned} & \text { Bhot: } \\ & \text { prier } \\ & \text { dicted } \end{aligned}$	shota mojusted	30
			Ruo 42					Hun 44			
5	6	6	11.4	9.3		16	18.1		110		117
7	70	70		60.1		64	84.3		71.2		39.8
1	20	29		154		0	0.0		18*		31.9
10	47	47		51.8		12	72.3		61.3		39.7
13	0	0		388		92	92.4		46.0		98.6
14	27	27	10.8	8. 3		3	50		9.7		23.1
15	12	12		2.9		1	19		3.5		152
16	39	39		34.2		89	89.3	46.4	40.5		17.6
16	41	:	34.0	34.4		38	361		40.8		30.2
11	54	54		48.4		60	60.2		55 n		32.6
10	45	4 H	1235	1:5.5		142	142.6		138.7		354
41	2	2		7.1		4	4.9		8.4		149
22	10	10		19.9		24	24.1		129		33.7
24	10	10		12.8		5	5.8		15.0		22.7
38	40	40	16.8	14.8		2	2.0		17.5		26 B
21	14	14		19.8		21	21.1		23.5		18.5
21	42	42	73.1	47.5		44	442		56.3		40.8
30	1	1		1.8		2	2.9		2.3		11
31	100	100	38.3	32.3		17	17.1		38.3		72.5
31	6	6		12.		9	0.0		16.1		244
39	0	0		4.31		5	5.9		5.1		8.9
34	-	9		29.1		34	34.1		, 4.		44.1
Total	644	644	811.8	810.7	611.9	764	766.8	7240	723.9	724.0	
Rounds oounted	644					787					

Table I 31
ADUUGTMENT OF HOTS RECORDED, CAR BINE EEMIAUTOMATIC, DAY ITANDING

Targe	reaorded	Ady unted to total rod counted	Ady untod for hits adjuted		Inota saljuted	Inote reeorded	Adjured to toctal rim oonced	Adinuted for Me - 4 junted	$\begin{aligned} & \text { Hota } \\ & \text { prs- } \\ & \text { theted } \end{aligned}$	Shots adyunted	30
			nuen 21					Rex 46			
5	18	17.8	296	143		13	12.3		16.8		349
1	38	93.8		8.8		74	751		73.7		878
0	28	39.8		392		22	32.3		82.9		136
19	68	63.8	33.4	90.8		*	76.1		88.8		113
13	62	07.		11.3		73	121		$6{ }^{6} .1$		213
14	26	877	38.1	$4{ }^{1} .4$		86	36.6		37.5		49.1
15	36	21.3		14.1		0	8.0		8.5		350
18	42	447		47.4		38	3 n		35		v. 2
10	41	12. 8		S4.4		30	128		11.		189
10	54	50		18.1	-3. 1	11	11		43.4	534	2.1
30	136	134.5		135.4		-8	\cdots *		1009		507
31	6	1.4		- 0.5		8	81		80		18
28	18	19.1		19.1		0	-		-. 3		485
34	16	18.1		21.3	21.8	16	11.3		181	11	84
53	34	54.9	43.3	44.7		43	43 *	36	53.5		- 0
38	83	14.5		387		88	08.4		331		74
18	4	67		36.1		0	-		29.1		1005
39	7	74		1.8		4	41		-		35
31	67	7) 9		909		4	879		484		4t*
33	34	458		838		15	152		178		155
33	E	- 4		-.		4	41		45		3)
34	73	18	11	78.1		48	46	414	te 3		68
total	988	*at	1041	1041	1003:	180	- ${ }^{\circ}$	7**	710	797	
Nound erweled	08*					nen					

CONFIDENTIAL

Tabl F22
ADJUSTMENT OF SHOTS RECORDED, CAK\&INE BEMIAUTOMATIC. NKLII BITTINC

Target	Shot: reoorded	Adjumted to totel rounda counted	Adjunted for hite edjunted	strote predicted	Bbots adjustad	Brote recoriled	Adjumiad to total roundo counted	Adjuated for liste adjuated	binote pre-	Chot: edjweted	30
			Run 3.3					Tus 4\%			
1	153	155.3		1814		75	89.9		98 月		98.1
2	30	304		21.0		3	3.6		13.0		40.2
3	55	35.8		48.3		16	19.2		28.7		549
4	67	68.0		71.6		40	48.0		44.4		30.0
6	25	254		23.8		11	13.2		14.8		18.8
-	39	599		48.7		35	42.0		30.1		61.5
11	27	274	34.4	326		20	240	18.9	20.2		38.0
12	22	22.3		412		17	44.	14.	95		33.2
12	*6	893		99.1		81	731		81.2		21.2
14	17	47%	66.8	58.6		39	$48 \times$	28.1	$9{ }^{\text {a }}$		59.2
13	28	28.4		30.9		18	$21 *$		19.1		10.2
16	45	457	640	55.1		35	420	252	24.1		38.2
17	5	31		6.1	6.1	4	48		2.8	3.8	0.5
1 N	35	353		57.4		48	57 :		25.6		33.0
19	59	34 9		80.1		32	384		37.2		10.8
20	111	112.6	181.4	136.6		88	105.5	598	84.6		152.4
21	24	244		23.		11	13.2		144		18.8
22	41	416		49.4	49.4	32	38.4		30.6	20.6	4.8
2.	(1)	0.0		0.0		0	-0.0		0.0		0.0
25	(4)	408		643		53	63.5		19.8		34.4
26	\%	91		5.7		1	12		3.8		10.4
27	52	534		48.1		20	24.0		29.7		4.7
Total	1019	$103+2$	11314	1131.2	$11 * 0.2$	679	M14.3	700.4	700.8	391.	
Rounde cirntel	10.34					414					

Teble Fis
ADNUSTMENT OF SHOTS RECORDED, T46 AUTOMATIC, DAY 8TTTDN

Targex	stote recorded	Adjueted to total round counted	Adjusted for hite offuetad	Bots predicted	Shota adjueted	Erote reporded	Adyugted to total rouad counted	Adjumed for late - djurtas	Bote praBeted	adjueted	30
			Rus 10					Tun 12			
5	40	500	17.8	18.8		27	33.2		23.0		198
7	95	118.6		119.2		123	158.1		1864		1042
*	23	20.8		19.3		18	82.2		24.4		19.2
10	67	83 . 1	19.8	610		50	81	981	88.1		88.7
12	53	662		80.8		50	1112		1124		19.
14	2	2.5		4.9		84	19.2	4 - 0	37.4		34.1
15	14	17.3		62		1	18		113		17.7
18	4.3	Sis ${ }^{1}$		412		is	$\mathrm{B}^{1} 9$		57.4		29.3
18	55	64 0		45.5		39	72		63.3		46.1
18	37	71.2		558		100	1335		779		103.
20	35	528		87.8		115	1470		1218		$124 *$
21	11	13 n		111		A	0. 0		15.5		6.
22	0	0.0		34		-	111		47		137
24	2	2.8		1		0	0.0		0.0		27.2
35	0	0 is		72		*	$0 \cdot$		142		4e. 1
28	10	18.8		04		23	350		42.5		$4{ }^{4}$
21	41	\$1.2		411		22	272		872		412
30	-	100		5.0		4	4 *		$7{ }^{1}$		6.
21	41	512		41 ?		39	4* ${ }^{\text {a }}$		579		180
32	1	13		A. 7		0	$0 \cdot 0$		122		530
32	26	223		174		23	164		242		$3{ }^{20} 4$
34	30	375		295		14	222		410		- 4
Totel	488	1244	7582		1592	A 35	1084	1059	1037	1047 ?	
Ansemio counted	*24					1036					

CONFIDENTIAL

Tobls F33 (continued)

Teryet	tebols reoorded	Adjusted to tolal manade counted	Adjugted for lite aljugted		Enote adjunted	Ebta reoorded	Adfugted to totai round comed	Adjuet ed for hita edjus*ed	sitote pre- diteted	$\begin{aligned} & \text { Shote } \\ & \text { sdjunted } \end{aligned}$	30
	Rux 49							Rup 51			
8	15	16.5		20.9		20	229		25.0		19.8
7	88	74.8	1987	134.1		94	1076		160.5		104.2
5	18	17.6		21.7		22	25.2		25.9		153
10	77	647		68.8		56	64.1		82.1		55.7
13	0	98.9		006		101	118.6		108.4		37 y
14	24	364		22.1		28	32.1		264		36.1
15	11	12.1		9.2		6	9.2		111		177
18	68	74.6	430	46.3		31	35.5		55.4		36.6
16	34	37.4		612		37	42.4		61.3		46.9
18	26	30.6		62.5		39	44.7		74.8		106.2
70	138	140.7		38.1		146	167.2	931	117.4		1348
81	14	154		12.5		13	14.9		14.9		6.5
83	0	0.0		3.6		15	17.2	5.2	4.3		13.7
84	4	4.4		8.8		20	23.9		8.8		27.2
88	0	00		8.2		31	35.5		9.8		461
28	34	374		34.2		49	58.1		41.0		396
89	33	58.3		48.2		58	83.0		55.3		413
30	7	77		6.8		4	4.6		7.5		66
31	13	143		46.1		75	85.9		53.2		760
35	0	00		9.8		36	41.2		11.8		83.0
35	10	11.0		19.3		11	12.6		234		264
34	0	0.0		33.6		75	$85 . \varepsilon$		40.3		946
Totel	594	783.3	852.3	6324	2523	88.	11083	1020.2	10202	10202	
Sousde cowned	763					1108					

Table F34
ADUUSTMENT OF EHOT: RECORDED, T46 AUTOMATIC, DAY gTANDINC

Tarset	$\begin{aligned} & \text { note } \\ & \text { reoorde3 } \end{aligned}$	sduated to trotal round oontiod	Adjuated for ble -djuntod	sibota predicted	Anote edjented	$\begin{aligned} & \text { Bols } \\ & \text { reoordad } \end{aligned}$	Adjugted to total ronnde pounted	Adjumted for mite -ajupled	Thots prodicted	thate edjueted	30
			Rup 14					Run 33			
5	10	10.2	112	284		52	63.7	53.2	38.4		85.4
7	98	*9.7		H6.6	86.8	bs	104.2		117.3	117.3	8.6
-	25	35.4		527		42	81.5		44.2		19.2
20	107	108.0		78.5		63	18.0		108.4		48.4
15	71	73.5		78.6		05	112.6		108.8		80.6
24	81	21.4	26.8	50.1		73	89.3		673		915
25	10	10.2		4.6		1	15		6.8		13.8
18	57	88.0		56.5		65	787		79.2		33.8
28	133	135.3		99.6		61	92.8		135.0		340
18	81	651		40.4		27	33.1		548		4.8
50	55	58.0		548		140	1718	73.2	743		25.0
82	4	4.1		12.7		31	257		17.1		324
82	0	0.0		$1{ }^{10} 2$		35	404		23.2		60.8
34	0	00		14.3		32	38.8		828		80.8
55	0	0.0		21.4		41	50.3		38.8		75.5
38	17	17.3		881		38	4.1		851		48.8
28	38	386		54.6		68	10.8	317	73.8		157
80	8	8.1		34		0	0.0		47		122
82	55	\%. 6		101.1		117	1434		1385		731
13	48	4n. ${ }^{\text {a }}$		26.5		11	138		358		830
53	0	00		146		36	343		18.7		113
34	63	831		24.8		3	37		331		759
Total	907	383	8314	03! ?	819.3	11.10	13881	12 C 20	1201 ?	18751	
menens											
vewed d	323					19.98					

CONFIDENTIAL

Table F9s
ADJUSTMENT OF SHOTS HECORDED, T48 AUTOMATIC, NGHT SITTING

Target	Shota recorded	Adjuntol to toeal roundr counted	Adyunted for chle adyuled		adjunted	recordad	Adjneted to rotal rounds coumated	Adjented for bite cdjun led	thote predicted	adjuated	30
			Pun 16					Rus 35			
1	154	200.9		205.3		134	1546		150.2		69.5
2	24	31.3		341		34	27.7		24.9		3.4
3	34	444		57.0		47	54.2		41.8		147
4	83	108.3		985		54	62.3		72.1		69.0
8	60	763		69.2		36	41.5		50.8		05.2
8	118	135.9		144.2		83	95.7		105.4		87.3
11	38	49.6		57.9		14	18.1		278		50 3
12	49	63.9		47.6		16	18.5		34.8		68.1
13	81	79.6	89.8	914		88	78.4	68.6	66.8		31.5
14	51	66.5		58.4		30	348		427		41.2
15	32	119		34.8		18	18.5		25.4		346
18	49	63.9		66.3		44	50.8		48.4		19.7
17	5	8.5		15.		17	19.8		11.0		19.7
16	41	53.5	56.9	59.2		42	48.4	436	49.3		23.0
19	00	104.4		1918		62	71.5		74.3		49.4
20	108	1409		170.7	170.7	134	154.8		124.8		29.6
21	25	32.6		33.5		22	25.4		24.5		108
22	38	49.6		53.9		38	43.8		39.5		0.7
25	0	9.9		00		0	00		0.0		9.0
25	8	7.8		4.5		0	9.0		3.3		117
21	8	7.8		17.2		19	219		12.5		21.2
27	46	58.7		592		38	43.8		43.3		22.4
Total	1107	1444.1	1459.0	1459.8	1489.3	938	10619	1087.3	1087.2	1037.5	
noubdn counted	1444					1082					

Table F36
ADJUOTMENT OF BHOTE RECORDED, T46 EEMIAUTUMATIC, DAY EITTING

Tareet	Recorded	Adjunted to total nownd counded	Adjumed for lilta adjunte	Pote proted diet	adtunted	Eeoterdind	Adjumted to total rounde counted	Adunt for Mit adilunted	$\begin{aligned} & \text { Hote } \\ & \text { pros } \\ & \text { dicted } \end{aligned}$	Moed adjuated	30
			Abe					Hun 11			
5	16	18.0		10.8		21	22.9	12.9	14.5		16.
9	43	119		56.7		54	06.6	99.6	71.1		62.
*	18	14.2		19.2		18	297		23.1		16.2
10	41	48.6		346		48	52.3	P9.4	73.8		31.8
15	32	37.9		20.7		36	39.2		34.		58.
14	9	9.9		10.1		20	31.8		24.7		43.6
18	2	2.4		2.4		0	0.0		3.2		11.9
18	29	296		13.0		35	38.1		18.4		02.3
18	29	34.4		38.3		34	37.9		43.8		16.7
19	4	52.2		42.8		64	39.7		87.		29.3
20	1.9	$15 . \%$	72.	76.1		79	76.2		1059		76.7
21	5	5.9		-		6	0.1		-. 3		12.
22	1	12		7.1		18	19.0		10.		3.1
24	1	1.2		4.9		0	9.9		0.4		18.1
21	9	9.9		0.9		9	9.0		0.0		0.9
21	7	1.3		9.1		14	10.2		12.8		6.3
20	84	28.4		21.		33	85.1		42.9		10.1
30	2	2.4		14		1	1.1		1.0		4.1
91	10	17.0		342		8	B. 4		41.1		56.1
32	0	9.9		9.8		1	1.1		0.2		14
34	19	19.9		129		18	18.7		12.4		282
34	27	32.9		10.3		31	38.8		21\%		202
Total	- 1	- 22.1	47*	471.8	47 4.6	-49	588.9	240	648.1	945	
Rounde couned	422					648					

CONFIDENTIAL

Tada F28 (continuod)

Targes	盘ote recorded	Adjuated to total rounde cousted	Adjunted for hile adjusted	$\begin{aligned} & \text { Shote } \\ & \text { preted } \end{aligned}$	Thote edjunted	Esote reoorded	Adunted co totel romala owned	Adjumed for hlte adyunied		edjute unted	20
	Rux 50				10n 82						
5	15	17.8		14.6		4	4.7		14.6		18.9
7	68	78.5		79.3		56	87.4		70.5		529
-	20	23.6		23.2		24	28.1		22.2		15.2
10	89	82.1		73.9		76	88.9	65.8	73.8		20.6
12	0	0.0		34.8		73	68.2	52.7	34.6		83.8
14	19	22.8		249		32	23.8		24.9		43.6
15	8	9.3		32		0	0.0		2.2		11.7
1 \%	0	0.0		18.3		0	0.0		18.6		62.3
16	34	40.4		43.7		44	314		43.7		19.7
10	6	9.5	42.6	57.9		44	51.4		57.		20.2
20	109	129.8		106.8		102	110.2		108.6		78.7
21	12	15.5		9.3		4	4.7		9.2		12.6
22	16	19.0		10.7		0	0.0		10.7		28.1
24	12	143		5.4		4	4.7		5.4		18.6
25	0	0.0		8.0		0	8.0		00		0.0
28	11	13.1		12.3		8	9.4		12.3		6.2
20	42	49.9		428		29	458		42.6		25.1
30	2	3.6		19		0	00		1.9		4.1
21	60	71.4		46.2		87	76.3		44.3		-6.1
22	0	0.0		0.2		0	0.0		0.2		1.4
23	8	7.1		13.5		2	3.5		12.5		22.2
24	7	6.2		28.1		20	23.4		26.1		30.2
Toral	516	616.0	649.3	849.4	8493	605	708.1	6484	449.8	849.4	
Rounde counted	616					706					

Table F?7
ADNUSTMENT OF SHOTE RECOFIED, TAS SEMZAUTOMATIC, DAY OTAMDING

Target	shote recorded	Adjunted to total round count ed	Adjuted Cor lita sodyanted	$\begin{aligned} & \text { pota } \\ & \text { pre- } \\ & \text { deted } \end{aligned}$	Soots	$\begin{aligned} & \text { Ecoth } \\ & \text { reoorded } \end{aligned}$	Adjumted to total round oen-ted	Adjepted for Mte -atyuced	$\begin{aligned} & \text { Bote } \\ & \text { pra- } \\ & \text { Hoted } \end{aligned}$	enote	30
			Rua 13					Rue 64			
5	10	117	21.1	15.1		15	160		19.0		9.7
7	5.8	85.4		671		106	1132		61.8		71.6
8	19	22.2		21.2		66	214		22.3		1.2
10	84	82.1		88.2		47	50.2		88.1		16.2
12	82	72.4	91.0	78.6		78	81.3	60.7	80.6		36.6
14	17	16.8		9.7		8	0.6		10.2		26.6
15	2	2.2		1.1		5	5.5		1.2		2.8
18	28	32.7		22.2		80	44.2	35.6	28.0		4.4
18	22	37.4		28.8		29	41.7		40.6		68
19	49	87.2		36.8		17	18.2		28.6		36.6
20	83	970		94.7	94.7	91	\% 7.2		956	89.6	0.5
21	8	9.3		8.2		7	7.5		8.6		29
22	6	6.2		6.2		7	7.6		8.6		2.7
24	1	1.2		19.		38	31.3		20.2		58.0
25	1	1.2		18.3		34	26.4		10.2		52.0
28	17	18.6		18.6		17	182		14.6		26
29	29	32.6		30.1		$2{ }^{4}$	27.6		21.6		9.2
20	7	8.2		6.1		4	42		\$. 4		56
31	64	76.4		868		50	532		600		252
32	17	18.6		228		27	26.		28.8		136
22	8	58		11.2		18	171		117		17.0
24	37	88.6		61 ?		86	63.1	36.6	645		10.1
Total	820	798.8	7840	9641	7617	984	6412	ent.	6027	8081	
Rounts counted	736					846					

CONFIDENTIAL

Tama FIN
ADJUYTMENT UF SIHTS RECORDF.D. T4: SL.MIAUTUMATIC, NIGHT SITTING

Target	shota rucorded	Adjuated to total rounda counted	Adjuated for llke adjulat		shote adjueted	Strote recorded	Adyumed to total romed oovinted	Adjusted for hite adjueted	$\begin{aligned} & \text { filuos } \\ & \text { pra: } \\ & \text { dicted } \end{aligned}$	Thote adfuated	30
			Rwa 15					Run 38			
1	0	0.0		47.8		47	1002		52.4		150.3
2	21	238		17.3		12	124		18.9		17.1
3	47	533		43.7		37	38.2		47.8		22.7
4	31	35.1		488		81	63.0		51.3		41.9
6	24	272		192		14	14.5		218		191
N	67	759		46.0		101	1043		94.2		42.6
11	12	136		14.9		17	17.6		18.3		6.0
12	35	39.7		26.8		20	20.7		31.6		28.5
13	82	92.9		744		61	63.0		815		44.9
14	42	47.6		42.9		41	42.3		47.0		8.0
15	10	11.3		12.3		14	14.5		13.5		48
16	30	34.0		35.9		40	41.3		38.4		110
17	9	10.2		9.8	9.8	10	10.3		10.7	10.7	0.1
18	14	15.9		224		30	310		245		227
19	42	478		44.9	44.9	45	465		492	49.2	17
20	128	145.1		125.4		116	119.8		138.5		38.0
21	16	16.1		17.5		16	18.8		1\%.2		0.8
22	38	40.8		31.3		24	24.4		343		24.0
23	0	0.0		0.0		0	0.0		00		00
25	17	19.3		171		18	16.5		147		4.2
26	8	91		11.3		14	145		123		$1{ }^{1}$:
27	19	215		30.5		4!	823		3s.3		31.2
Total	890	782.0	782.0	7819	7789	\$29	9563	R56.3	8564	959.4	
Rounds cownted	782					136					

Table F39
REDUCTION OF SINGLE-BULLET RESULTS FON COMPARIBON WITH FLECHETTE RESULTS, DAY BTANDING

Targeta	ancinacari shota fir \rightarrow d (aiagle bulletya	Correction factor frir reduction ie exponure limeb for flechetio targeta	Shota fired (aingle bullef)	Adjuated largel htiac	Reduced target bita
5	15	1	15	3	3
7	51	0444	23	16	7
9	26	1	28	A	8
10	47	0.444	21	16	7
13	71	0	0	11	0
14	34	1	34	6	6
15	11	1	11	I	1
16	23	1	23	4	4
18	27	1	27	3	3
19	55	1	55	B	B
20	132	0475	83	18	9
21	13	1	13	1	1
22	5	1	5	1	1
24	4	1	4	0	\checkmark
25	21	1	21	1	1
24	22	1	22	3	3
29	26	;	28	3	3
10	6	1	6	0	0
31	50	0469	23	1	0
32	18	0	0	0	0
33	,	0	0	0	0
14	11	0	0	1	0
Total	708		410	105	88

[^4]
CONFIDENTIAL

Tsble F40

REDUCTION OF \&NGLE-BULLET RESULTS POR COMPARISON WTH FLECHETTE RESULTS, NKGHT RUNB

Tergete	Adjusted shot: fired (single bullet) ${ }^{2}$	Correction fector for reduction in expuspure timeb for flechett. targete	Shota fired (6ingle bullet)	Adjusted target hite ${ }^{c}$	Reduced target hite
1	123	0.472	48	16	4
2	16	1	16	2	2
3	41	1	41	\%	7
4	45	1	45	1	1
6	25	1	25	2	2
8	84	0.458	38	5	2
11	23	1	23	1	1
12	18	1	16	0	0
13	67	0.458	31	1	0
14	45	1	45	1	1
15	16	1	16	1	1
16	36	1	36	1	1
17	9	1	9	0	0
18	36	1	36	0	0
19	\$2	1	52	1	1
20	76	0477	37	2	1
21	14	1	14	0	0
22	36	1	36	0	0
23	0	0	0	0	0
25	33	9	\checkmark	\bigcirc	\checkmark
26	7	0	0	\checkmark	0
27	53	0	0	0	0
Total	855		574	41	28

[^5]
COMFIDENTIAL

Table F41
SLMMAHY RESULTS by RUN (ADJUSTED data)

Ammuntloa or firing	Fling ponttion	Squad																	
		λ			B			C			D			E			F		
		Hiun	Hita	Rownds tired	Hun	Hite	Rounda fired	Rum	바느제	Tounda 11 red	Kus	Mita	Rouade fired	Rua	Hit.	Rcunde fired	Rua	Hito	Round tired
siagle bullet	Day	1	91	540	3	108	483	34	110	537	36	71	445	65	200	872	67	100	847
	aitions	35	157	827	87	132	57\%	53	90	471	60	131	700	-	-	-	-	-	-
	Day	5	78	351	-	-	-	38	108	825	-	-	-	-	-	-	-	-	-
	atondins	6\%	117	767		-	-	62	99	714	-	T	\rightarrow	-	-	-	-	-	-
	Night	--	-	-	7	58	800	-	-	-	40	28	874	-	-	-	-	-	-
	-itting	-	-	-	31	42	950	-	-	-	84	42	78 \%	-	-	-	-	-	-
Dupler	Day	?	186	492	4	158	467	33	154	465	35	123	438	86	278	789	68	158	586
	mittiag	-	-	-	-	-	-	57	214	572	59	201	701	\rightarrow	-	-	-	-	-
	Day	8	182	319	-	-	-	37	195	863	-	-	-						
	standin	-	-	-	-	-	-	61	146	681	-	-	-						
	Nighe	-	-	-	6	44	678	-	-	-	39	41	491						
	sitsing	-	-	-		-	-	-	-	-	63	113	950						
Triplex	$\begin{aligned} & \text { Day } \\ & \text { sitting } \end{aligned}$	28	309	750	28	176	389	-	-	-	-	-	-						
Cartune aemiautomatic	Day																		
	staied	19	135	758	17	177	633	44	182	724	42	179	611						
	Day nitemata	-	-	-	21	213	1053	-	-	-	48	139	777						
	Night							-	-	-	4								
	bitsing	23	45	1140	-	-	-	4*	13	892	-	-	-						
Carbine utomatic	Day	20																	
	Day	20	108	1801	18	173	900	4	102	10%	4	:	$8 \cdot 3$						
	tanding Nieht	-	-	-	22	180	1820	-	-	-	45	88	928						
	nitting	24	26	1473	-	-	-	47	32	1249	-	-	-						
148 eembutomatlc	Day																		
	bituing	11	\because	8 8ิ	*	111	480	58	130	845	50	144	64.						
	Day -In ndtrat	-	-	-	13	131	782	-	-	-	54	101	988						
	Nisht	-	-	-	13	131	102	-	-	-	54								
	- Ittina	18	25	779	-	-	-	56	82	85	-	-	-						
748 automatic	Day																		
	-ltting	22	104	1058	10	88	758	31	99	1020	48	12	652						
	Day																		
	Misndind	-	-	-	14	91	018	-	-	-	53	59	1875						
	Night																		
	mittiag	18	98	1485	-	-	-	35	58	1098	-	-	-						

CONFIDENTIAL

Appendix G
 SQUAD AND QUALIFICATION EFFECTS

SUMMARY 207
HiT PhOBARILITY BY SQUAD 207
TOTAL HITS BY SQUAD 211
hit probability by qualification 214
SQUAD-AMMUNITION EFFECTS 215
TABLES
G1. Average Squad itt Probablittips 208
G2. Comparison of Squad a and Squad C lit Probabllities 208
G3. Compabison of Squad B and Squad D lity Probabilities 209
G4. Het Phobaellitry or All Six Squads 210
G5. Comp umison or Souads E and F and $\overline{\mathrm{ACD}}$ Hitt Pmobabilities 210
G6 Pelattive Ity ! mobabilutifs of Squads 211
G7. average Squads Total Hits 212
G8. Companison or Total Hts or Squad a and Squad C 212
G9. Compalison of Total lits of Squad B and Squad D 213
glo. Total lets of All Six Syuads 213
gill Compalison of Total hits or Squads E and F and $\overline{\mathrm{ABC}}$ 213
G12. Pelative Total IIts or Squads 214
G13. SQuad Qualifications 215
G14. Ift Phobnerimies by Squad 216
G15. Ift Posabiluty Gans 216
ORO-T-2T8 206

CONFIDENTIAL

SUMMARY

The hit probabilitles for ail six squads [inciuding the so-called expert (E) and unqualified (F) squads] were compared. As expected, Squad E is superior to all others and Squad F is inferior. Analysis of the four "average" squads shows Squad B superior in hit probability and Squads A, C, and D similar to each other.

Similar comparisons for total hits instead of for hit probabilities show Squad E superior; Squads A, B, C, and F similar; and Squad D inferior.

The over-all conclusions about the squads are that Squad Efired more rapidly and more accurately than the others; that Squad F fired more rapidly but less accurately than the others; that Squad B fired less rapidly but more accurately, and Squad D fired as accurately but slower than the other average squads.

The average hit probabilities for the various squads and the known coniposition of the squads \ln terms of number of experts, sharpshooters, marksmen, and unqualifieds were used to determine relative ratings for each of these marksmanship categories. The technique used was a least-squeres best solution of six simuitaneous equations. It was found that, for hit probabilities, if the expert rifieman is rated at 100 , a sharpshorster is 88 , a marksman 75 , and unqualified 43.

HIT PROBABILITY BY SQUAD

Table Gl shows the hit probabilities for the seven sets of runs, which are of the same type for the four average squads. These hit probabilities are the ration of hits to rounds fired taken directiy from Tables E6 and F41. The prime entrles are adjusted data (from Table F4i); the parenthetical entries are raw data (from Table E6). All entries are from the day-sltting firing condition. The mean hit probabilities of Squads A, C, and D are all the same, 19 percent. Squad is is superior with a hit probability of 22 percent. The iechnique of analysis of varlance reveals a statistic F value of 2.2 (adjusted data) or 2.3 (row data). These values from appropriate statistical tables yields significance level of about 14 percent. This means tha: the differences among the mean hit probubilities of Table Gl could occur by chance about 14 percent of the time. It maght roughly be ald that to an 80 percent confidence level squad B ts really better than squads A, C, and D. In any case, relative hit probabilities of $.219 / .191=1.15$ ts the best estimeto for squad B.

Tsble G2 shows hit probablities for all 14 sels of runs which sre com parable (balanced) for squade A and C. The dufereace bet wreen squads A and

CONFIDENTIAL

Table: Gl
Average Squad Hit Probabilities (Day Sitting)

Amnunition or firing	Squed ${ }^{\text {a }}$			
	1	13	C	D
Single bullet	.169(.148)	.224(.223)	.205(.204)	. $160(.168$)
	.190(.212)	.229(.241)	.191(.198)	.171(.181)
Duplex	.337(.337)	.338(.362)	.318(.315)	.281(.277)
Carbine				
Aatomatic	.096(.106)	.120(.112)	.095(.095)	.115(.136)
Semioutonatic	.178(.178)	.280(.278)	.251(.24)	.293(.266)
T48				
Antomatic	.098(.097)	.113(.194)	.097(.093)	.108(.112)
Semiautomatic	.243(.243)	.231(.230)	.200(.199)	.222(.206)
Mesa	.187(.189)	.219(.221)	.194(.192)	.193(.192)

Velsee in pareathesee ara from rew date.

Table: G2
Comparison of Squad a and Souad C Hit Probabrittes

Ammunition or firing	Firing condition	Squad ${ }^{\text {a }}$		
		A	C	C-A
Siagle bullet	Day wittieg	. $169(.148)$.205(.204)	. $036(.056$)
	Day sittiog	.190(.212)	.191(.198)	.001(-.014)
Duplex	Dey eittiog	.337(.337)	.318(.315)	-.019(-.022)
Certine				
Astomatic	Dey aittiog	.096(.106)	.095(.095)	. .001 (-.011)
Semiestomatic	Day aittion	.178(.178)	.251(.240)	.073(.062)
T48				
Astometir	Day eitlian	.098(.097)	.097(.093)	-.001 (-.004)
Semiestomatic	Dey eitting	.243(.243)	.200(.199)	-.043(-.044)
Single bullet	Dey etardiag	.142(.140)	.174(.102)	.032 (.022)
	Dey etanding	.153(.145)	.139(.143)	-.014(-.002)
Doplex	Day eteadiog	.253(.285)	.296(.295)	. $043(.010)$
Carbias				
Aotomatic	Night eittiag	.018(.018)	.026(.026)	.000(.008)
Semisatomatic	Night -ittien	.039 $\times .041$)	.019(.021)	-020(-020)
T48				
Aetomatic	Night eittiag	.051(.052)	.056(.051)	.005(.002)
Seriestomatic	Night erttien	.109(.109)	.095(.096)	-.014(-.013)
Mees		.140(.151)	. $154(.154$)	

-Volves is parsetheses ere from rew deta.

CONFIDENTIAL

C is clearly trivial. Uowever, it is instructive to apply the t test to the null hypothesis (that they are not different). This requires computation of the standard deviation:

$$
\begin{equation*}
a \frac{2}{C-A}=1 / n(n-1)\left|\Sigma(C-A)^{2}-[\Sigma(C-A)]^{2} / n\right| \tag{G1}
\end{equation*}
$$

From Table G2, n is 14, and $\sigma_{\overline{C-\lambda}}=0.00814$ (0.00773).
The statistic t is given by

$$
\begin{equation*}
t=\overline{C-A} / a \overline{C-A} \tag{G2}
\end{equation*}
$$

whence $t=0.75(0.28)$. As in the tables, the parenthetical value is from raw data.

Table G3
Comparison of Squad B and Squad D Hit phosabilities

Ammunition or liring	Firing condition	Squad*		
		B	D	B - D
Single bullet	Day aitting	.224(.223)	.160(.168)	.064(.055)
	Dey aitting	.229(.241)	.171(.181)	.058(.060)
Daplex	Day aitting	.338(.362)	.281(.277)	.057(.085)
Carbine				
Antometic	Day aitting	.120(.112)	.115(.136)	.005(-0.02i)
Seminntomatic	Day aitting	.280(.278)	. 293 (.266)	-013(.012)
T48				
Antametic	Dey aitting	.113(.104)	.108(.112)	.005(-C08)
Semientamatic	Day sitting	.231(.230)	.222(.206)	.009(.024)
Siagle ballet	Night eittiog	.093(.096)	.030(.030)	.063(.056)
	Night eitting	.044(.043)	.055(.052)	$\rightarrow 011(-.009)$
Duplex	Night eitting	.065 $\mathbf{S}^{(065 \text {) }}$.084(.078)	$\rightarrow .019(-.013)$
Carbine				
Antomatic	Dey etanding	.087(.006)	.068(.060)	.023(.026)
Semieutometic	Day etending	.204(.205)	.179(.179)	.025(.026)
T48				
Antomatic	Day atanding	.099(m9)	.046(.049)	.053(.050)
Semientomatic	Duy etandiag	.172(.173)	.135(.139)	.037(.034)
Nioan		.164(.165)	.139(.138)	

a Valure in paranthesea are from rew datu.

From tables of t for 13 degrees of freedom, the significance level of the difference between Squads C and A is 47 percent (adjusted) or 71 percent (raw). This means that the small differences between the mean hit probabilities of these two squads could occur by chance about haif the time or more. It is concluded that the null hypothesis is nether proved 55: disproved, and Squads A and C are as likely to be the same as not. In any case, the 4 percent relative diference in mean hit probabilitigs is trivial for practical purposes. This study concludes that the mean values are valid to two algnificant figures, and both squads score 15 percent mean hit probability for these comparative runs.

Table GS shows hit probabilities for the 14 sets of runs that are comparable for 8 quads B and D. The difference in mean hit probabilities is 16.4 percent as compared with 13.9 percent, which seems considerable. Using Eqs.

CONFIDENTIAL

G1 and G2 again for Squads B and D, the standard deviation is computed: $\sigma \overline{B-} \bar{D}=0.0080(0.0086)$, and $t=3.2(3.1)$. This large value of t would satisfy the null hopothesis (no difference between Squads B and D) less than 1 percent of the tlme by chance. This study concludes that Squad B is superior to Squad D in hlt probability with better than 99 percent confidence. The best estlmate ls further that the hit probability of Squad B is 1.18 times the hit probabillty of Squad D.

Table G4
Hit Probability of all Six Seuads (Day Sitting)

Ammunition	Squade					
	A	B	C	D	E	F
Single ballet	.169(.148)	.244(.223)	.205(.264)	.160(.168)	.229(.233)	.155(.153)
Duplex	.337(.337)	.338(.362)	.318(.315)	.281(.277)	.359(.375)	.266(.257)
Mean	.253(.242)	.281(.292)	.262(.259)	.221(.222)	.294(.304)	.211(.205)

-Valsen in parenthenee are from raw data.

Table G5
Comparison of Squads E and F and $\overline{d C D}$ hit Phubablluties (Day Sitting)

Ammunition	Sqead *					
	$\overline{A C D}$	E	F	$\mathrm{E}-\overline{A C D}$	$\overline{A C D}-\mathrm{F}$	
Siagle bellet	$.178(.173)$	$.229(.233)$	$.155(.153)$	$.001(.060)$	$.023(.020)$	
Duplex	$.312(.310)$	$.359(.375)$	$.266(.257)$	$.047(.063)$	$.046(.053)$	
\quad Moan	$.246(.242)$	$.294(.364)$	$.211(.205)$	$.049(.063)$	$.005(.037)$	

avaives in parenthesee are from rew data.

Table Gi shcws hit probabilitles for the only two sets of runs that are comparables for all six squads. These are the hlt probabilities for the first single-bullet (AP) day-sitting run by each squad. Squads A, B, C, and D made a second run of thls type, but Squads E and F made only one single-bullet run each. Hence Table G4 shows all the balanced comparisons that can be made involving all six squads. Based on so few data, the smaller differences in mean hit probabilitles are not slgnificant. Squad E, composed largely oi expert riflemen, is superior, and Squad F, composed largely of unqualifled or low qualified riflemen, is inferior. The data on Squads A, B, C, and D, that appear in Table G4 are included In T'ables G1, G2, and G3; therefore the more reliable conciusions already reached about those squads are not altered.

Since Squads A, C, and D were found to be essentially thc same in hit probability, they constitute a reasnnable hastic ci comiariaon for Squads E and F. These comparisons are made in Table G5, using the mear of Squads A, C, and D, deslgnated $\overline{A C D}$. The standard deviations are flrst computed: $\sigma \overline{E-A C D}=0.0020(0.0025), \sigma \overline{1 C . D-F}=0.0115(0.0165)$. The correaponding i values are: $t E-A C D=24.5(25.2), 1 \overline{A C D-F}=3.00(2.24)$. The t tables for a single degree

COMFIDENTIAL

of freedom yield slgnificance levels, respectiveiy, 0.03 (0.03) and 0.20 (0.26). This means that to a 97 percent confidence ievel Squad E is really superior to ACD in hit probability, but only about 80 percent confident that Squad F is really inferlor to $\overline{A C D}$. The best reiailive estimates are still given by the mean values of Table $G 5: E / \overline{A C D}=1.20(1.26)$, and $F / \overline{A C D}=0.86(0.85)$.

Finally, from all the comparisons, the relative hit probabllities (shown In Table G6) among all six squads are deduced ($\overline{A C D}$ taken as unity). Adjusted rather than raw values are used in this table, but clearly the effect of adjustment is minor. The superiority of Squad E over Squad B is apparently trivial and not statistically signiflcant.

Tableg6
Relative hit Probabilities of Souads

Squad	Probability	Squad	Probability
A	1.00	D	1.00
B	1.18	E	1.20
C	1.00	F	0.86

TOTAL H:TS BY SQUAD

Total hits per run are considered \ln just the same manner as hit probebilities. The same runs already compared in Tables G1 to G6 are now examined for total hits per run in Tables G7 to G12.

Table G7 shows Squad A superior (140 htts) and Squad D inferior (113 hits) to Squads B and C, whlch are about the same (125 hits). These differences are tested by computing the statistic F for the array. Computation ylelds an F value of 1.34 , which implies a significance level of about 36 percent. This means that the observed differences among the mean inits by squads could occur by chance about 36 percent of the time. This means that the differences so far shown (Table G7) are only slightiy more likely to be real than random.

Squads with more comparable data are now compared. Squads A and C are compared in Table G8. This table shows Squad A to be superior in hits in the ratio $1.10(1.07)$. The standard deviation of the mean difference $c \overline{A-C}=$ 8.90 (8.32). This ylelds a statistic $t=1.12(0.84)$. This corresponds to a significance level of about $0.47(0.56)$. In other words there is about a $50-50$ chance that Squads A and C are really different in hits per run.

Table G9 shows a larger difference between Squads B and D, a ratio of 1.29 (1.21). The standard deviation of this difference $\sigma_{\overline{B-D}}=9.22(7.07)$. The statistic $t=2.73(2.81)$. The corresponding significance level is 0.22 (0.22) or to 278 percent confidence level this difference is real.

Table Gl0 compares all six squads. Among the four average squads, it shows A, B, and C about the same, and D inferlor. Squad F appears also quite slmilar to A, B, and C, but E seems definitely superior to all others. Considering all the comparisons of Tables G7 to G10, it is concluded that Squads A, B, and C score the same number of hits per run, and that Squad D is inferior. It is further obvious that Squad $F(128 \mathrm{hlts})$ ls not significantly different from the average $\overline{A B C}(131 \mathrm{hits})$.

CONFIDENTIAL

Table: G7
averace Souad Tutal Hits (Day Sitting)

Ammanition or firing	Squad*			
	1	B	C	D
Single ballet	$91(90)$	108(105)	110(111)	71(81)
	157(157)	132(154)	$90(100)$	121(120)
Duplex	166(166)	158(170)	154(159)	123(132)
Carbine				
Automatic	173(179)	108(114)	102(108)	59(36)
Semiautomatic	135(135)	177(178)	182(184)	179(171)
T48				
Automatic	104!(102)	86(86)	$99(103)$	92(86)
Semioutomatic	157(145)	111(97)	130(140)	144(127)
Mean	140(139)	126(128)	124(129)	113(115)

-Valuen in parentbenea are from raw datu.

Table G8
Companison of Total Fhts of Souad a and Squad C

Ammanition or firiag	Firing condition	Squad*		
		4	C	A-C
Single bullet	Day aitting	$91(90)$	110(111)	$-19(-21)$
	Day aittiar	157(157)	901100)	$67(57)$
Duplex	Day aition	166(166)	154(159)	$12(7)$
Carbine				
Antomatic	Day aitiana	173(179)	102(106)	$71($ 73)
Semioutomatic	Day aitting	135(135)	182(184)	$47($ 49)
T48				
Aptomatic	Day aitiar	104(102)	99(103)	$5(-1)$
Semiantomatic	Day -itting	157(148)	130(140)	$27(8)$
Siagla Bellat	Day etrediag	$78(81)$	109(110)	-31(-29)
	Day atandink	117(108)	99(103)	$18(5)$
Daplex	Day atandink	182(190)	193(187)	-11(3)
Carbine				
Atometic	Viaht sittian	$2 \mathrm{x}(26)$	$32123)$	-6(3)
Semiantomatic	Night aitting	451 42)	13(17)	32(25)
548				
Antomatic	Visht sitties	$76(75)$	Sex 59)	18(16)
Semiartomatic	Viaht aittiag	85 (25)	82 (82)	$3(3)$
Hean		114(113)	104(1) 0_{6})	

-Valuea is parentheaea are from raw data.

CONFIDENTIAL

Table G9
Comparison of Total. Hits of Solad B and Squaz !

Ammunition or firing	Fising coadition	Squed ${ }^{\text {a }}$		
		B	D	$B-D$
Single bullet	Day aiting	108(105)	71(81)	37(24)
	Day aiting	132(144)	121(120)	$11(24)$
Daplex	Day mitting	158(170)	123(132)	35(38)
Carbine				
In.umatic	Day aitting	1088114)	59(86)	49(28)
Semimutumatic	Day aitink	177(178)	179(171)	$-2(7)$
「48				
Autometic	Dav mitting	86(86)	92(86)	- $6(0)$
Semia utomeric	Day mitting	111(97)	141(127)	-33(-30)
Singic hallet	Night aitting	.50(53)	$28(27)$	$30(26)$
	Nipht aitting	42(41)	$42(45)$	$0(-4)$
Cuplex	Night aitting	44(44)	41(43)	3(1)
Larbine				
Autiomatic	Day atandiag	160(142)	$59(66)$	$101(76)$
Sescieutomat ${ }^{\text {c }}$	Day atanding	213(202)	139(14.5)	74(57)
T 49				
futomentic	Day meading	$91(91)$	59(68)	32(23)
Weariautomitic	Day atauding	131(127)	109(118)	$22(9)$
Vie n		115(114)	90(94)	

- Valuem ir garenthcae are from raw data.

Table Glo
Total Hits of all Six Squads (Day Sitting)

- Valuan ic nernatheaea au from raw data.

Table Gll
Companison of Total. Hits of Sut ans F. and F and $\overline{A B C}$ (Day Sittimgi

Auantrition or fivian	Sqead ${ }^{\text {e }}$				
	$\overline{1 B} \bar{C}$	F.	-	F. $\overline{A B C}$	$\overline{18} \bar{C} \cdot \mathrm{~F}$
Siaple bullet	108(102)	2001202)	1000(105)	$97(100)$	3(-3)
Deplex	159(165)	276(292)	156(160)	117(127)	3(5)
Meas	131(134)	238(246)	120(133)		

CONFIDENTIAL

Table $G 11$ compares Squads E and F with the average $A B C$. Squad E is clearly superior to $\overline{A B C}$ in the ratio $1.82(1.84) ; F$ is essentially the same (ratio 0.98$)$. The standard deviation $\sigma \overline{E-A B C}=12.2(13.5)$. The corresponding $i=7.95(8.67)$. For a single degree of freedom the corresponding significance level is 0.08 ; or 92 percent confidence that Squad E ls superior to $\overline{A B C}$.

The comparison of Squad F with $\overline{A B C}$ yields $\sigma \overline{A B C-F}=0(4), t=\infty(0.25)$. The corresponding slgniflcance level is $0(0.84)$. The adjusted data for the two comparisons agree perfectly; hence the test concludes that the small measured difference is absolutely real. The raw-data test, however, reveals that the diflerence observed could occur by chance 75 percent of the time. Clearly this

Table: G12
Relative Total Hets of Squads

Squad	Hite	Squad	Hits
A	1.00	D	0.78
B	1.00	$\mathrm{~F}_{2}$	1.82
C	1.00	F	1.00

test is mcaningless in the adjusted data case (two measures), where the two differences happen to just agree. The raw-data test, however, is acceptable, showing that it is more llkely than not that there is no diference between Squad F and $\overline{A B C}$.

Finally, from all the comparisons of total hits per run, the reiative hits per run shown in Table $G 12$ for all six squads are deduced ($\overline{A B C}$ taken as unity). Adjusted values are used in Table G12, but again the raw-data vaiues are not significantly different.

HIT PROBABILTTY BY QUALIFICATION

Table G13 shows the compositlons of the 10 -man squads in terms of the rifiemen quailification (from App A).

The squad compositions and the average-hit probablities achieved by the different squads can be used to form a set of equations from which an estimate of the effectiveness of the different qualifications can be obtained. The relative hlt probabilities of Table G6 are used to form Eqs. G3:

This is a set of six equations in four variabies, for which no exact solu tion is expected. The best soiution (in the sense of a soiution with minimum variance) is obtained by applying a least-squares method.

CCNFIDENTIAL

The sum of squares of deviations (measured normal to the regression piane) is given by the function:
$(E+3 S+6 M-100)^{2} / 46+(E+7 S+2 M-118)^{2} / 54+(6 S+4 M-100)^{2} / 52+(E+8 S+M-100)^{2} / 66+$

$$
+(4 E+S-60)^{2 / 17}+(E+S+M+2 U-43)^{2 / 7}
$$

A necessary condíion for this function to be a minimum is that its first partial derivatives be zero. Taking the partial derivatives of this function with respect to E, S, M and U, and setting them equal to zero, a set of four equations is obtained, with solution:
$\left.\begin{array}{l}E=12.3 \\ S=10.9 \\ U=9.3 \\ U=5.3\end{array}\right\}$ or relative to $E=100 s\left\{\begin{array}{l}E=100 \\ S=88 \\ U=73 \\ U=43\end{array}\right.$

These relative ratings relate the standard qualification ratings according to experimental hit probabilities.

Table Gl3
Squad oualifications

Squad	Expert (E)	Shaspahooter (S)	Markaman (M) Unqualified (U)	
A	1	3	6	0
B	1	7	2	0
	0	6	1	0
0	1	8	1	0
E	8	2	0	0
F	2	2	2	4

SQUAD-AMMUNITION EFFECTS

To examine the interreiation of any two of the five factors (ammunition, Llluminatlon, position, squad, and order), Table F41 is reduced for effects of the other three. Squad-ammunition effects are of interest. The entries in Table F4i are divided by the appropriate order reduction factors from Table K5 and lliumination-position reduction factors from Table X15. This elimination of the other three effects yields Table G14.

The bottom row lists the ratios of duplex to single -bullet hit probabilities fo: each squad. The grand average for the four regular squads ($\overline{A B C D}$) 181.64. From this it might be concluded that the average gain of 64 percent is increased to 72 percent for the poorest squad (Squad F), and decreased to 57 percent fo:the best squad (Squad E). These gains are clearly seen in Tabie Gis where the first line of the single-bullet hit probablities gives a measure of the basic performance or rating of the squads.

CONFIDENTIAL

Actually the variations among the four regular squads are so large (25 percent to 111 percent gain) that confidence in the results in Table G15 is low. However, the direction and general nagnitude of the squad quallification eifect on salvo gain is conslstent and reasonable. As extreme Squads E and F did not fire the other salvo ammunitions, no examination is attempted of the qualification effects on those scores.

> Tamr gil

Hit Probabilitifis gy Squad

ammuation	speed											
	1		R		C.		D		F.		F	
	リ11.	Roude	Hite	Rounde	16.4	fisunde	Hite	Rosado	Hite	Rounde	Hita	Poundm
Stasle bulios	ค1	63:	91	570	\%	621	62	515	-	030	0	-64
	109	6.4	91	523	61	420	82	632	178	1030	89	764
	74	525	126	937	102	5 AR 5	5%	760	-	-	-	-
	\%	368	7.	e\%	?	521	79	538	-	-	-	-
Daplex	-	-	-	-	13:	572	109	517	-	-	-	-
	145	-8	138	340	148	519	146	6.36	241	8*)	136	677
	-	-	-	-	184	621	92	ssin	-	-	-	-
	1?0	A72	9	350	111	+ ${ }^{\text {a }}$	140	6.51	-	-	-	-
Retto	1:		1.25		1:2		211		$15 ?$		172	

Table G15
Hit Promablity Ciains

Ammunition	Squad		
	F(pooreat)	A1SCi) (averake)	E (best)
	11.7	14.5	17.3
Percentage ol gain	20.1	23.7	27.1

CONFIDENTIA!

Appendix H

LEARNING EFFECT

SUMMAHY 219
L.EARNING 219Effect on Ht Phobabilmes-Effect on Roumds Fined
TABLES
H1. Effect of Lealning on Ht Probabilities 220
h2. Effect of Learning on Hit Probabilities (Day Sitting Only) 220
h3 Effect of Learning on Hounds Fired 222
h4. Effect of Learing on Rounds Fired (Day Sitting Only) 222
ORO-T-378 217

confiom itial

SUMMARY

In 12 pairs of runs the same squad fired each run of a pair under substantially the same conditions but at different tlmes. This offered a goodopportunity to isolate a learning effect if one was present.

In this experiment there are two ways in which learning might affect results: first, the accuracy of fire might change as the experiment progresses, or, second, the rate of flre might change. An examinatlon of the data cver a span of 12 runs shows that accuracy did appear to increase some 1 to 11 percent, at least for the day-sittlng runs, and that the rate of fire increased some 25 percient. It ls concluded that learning occurred in the experiment, refiected strongly in the number of rounds fired and less strongly in accuracy (hit probability).

LEARNING

Effect on HIt Probabilities

Table $H 1$ liste the 12 paired runs in which each squad usnd the same ammunition and firing position. All other controllable conditions were the same, and the flrst run of each pair was separated from the second by 11 intervening runs by the same squad. The raw hit probabilities in Table H1 are simply tre ratios of holes counted to rounds counted, taken directly from Table E4. The adjusted hit probabillties are ratios of adjusted hits from Tables F1 to F19 to adjusted shots from Tables F20 to F38.

Table H1 shows the hit probabillties (D_{x} for the first; D_{y} for the second run) for each of these 12 pairs of runs, and the differential hit probabilities: $\Delta D=D_{y}-D_{x}$. If there was consiatc-it learning, 30 that the squads did better on the second run of the pair than on the first, the ΔD^{\prime} 's, except for random error, would all be positive. It is observed that the computed learning effect (Δp) is negative on 5 of the 12 pairs of runs from the raw data, and on 4 of the peirs from adjusted data. On the other pairs of runs the learning effect was positive; and Table 111 shows a net posituve learning effect: increase of irom 17.7 to 18.6 percent hit probabllity from raw data, from 18.1 to 18.2 percent from adjuated data. This is 21 to 5 percent relative $1 m$ provement.

The expected value of the everage Δp, under the null hypotbesin (no learning) used in making the test, in eero. Thei values are calculated in order to estimate the probabillty that the average $\bar{A} p$ of +.009 or +.0006 , mould occur a

CONFIDENTIAL

Table hil
Ffffect of Ifarving on lit Probabilities

Squad		n	Ammanition	riring condition	Raw data			Adjumted datn		
	*	y			p_{x}	Py	. 10	p_{x}	P_{y}	1 p
A	l	25	Single bollet	Day Sitting	. 148	. 212	+.064	. 169	. 190	+. 021
	5	29	Single bullet	Day ntnaủing	. 140	. 145	+. 005	. 142	. 153	+. 011
A	3	27	Sinple bullet	Doy sittios	. 223	. 241	+. 018	. 224	. 229	+.005
	7	31	Single bollet	Night sitting	R\%K	. 017	-. 0.43	. $0 \overline{3}$	1044	-. 049
C	33	57	Duplex	Day sitting	. 315	. 392	+.077	. 318	. 374	+.056
	37	61	Duplex	Dey etandiag	. 295	. 245	-. 050	.296	. 235	-. 061
	34	58	Single butlet	Day aitting	. 20.4	. 198	-.006	. 205	.191	-. 014
	38	62	Single bullet	Day standipa	. 162	. 143	-. 019	. 174	. 139	--.035
n	35	59	Duplex	Davaitting	. 277	261	-.016	. 281	.281	+.006
	36	60	Single bnilet	Dey nitting	. 168	. 181	+. 013	. 160	. 171	+. 011
	39	63	Dupler	Night sitting	. 078	. 119	+.041	. 084	. 118	+.034
	40	64	Single ballet	Night sitting	. 030	. 052	+.022	. 030	. 055	+. 025
Total					2.136	2.232	+. 106	2.176	2.186	+. 010
Hean					. 177	. 186	+. 009	. 181	. 182	+.0008
σ_{10}							. 0118			. 0104
-							. 765			. 077

Table h2
Effect of Lefaning on Mit Probarmities (Day Sitting Only)

Squad	Ammunition	Raw dets			Adjesed detn		
		D_{x}	P^{\prime}	Δp	P_{5}	p_{γ}	Ap
1	Siamle ballne	. 149	. 212	+.0.34	169	.190	$+.021$
R	Sinale balle?	. 223	. 241	+. 018	. 224	. 229	$+.005$
C	Duplen	. 315	. 392	+.077	. 318	. 374	+. 0.56
	Sianle bullet	. 204	. 198	-006	. 20.5	. 191	-. 014
n	Dupler	. 277	. 351	-. 016	281	287	+.006
	Sinale builet	. 168	.181	+. $0^{\prime} 3$. 160	. 171	+. 011
Total		1.335	1.435	+. 150	1.357	1.442	+. 085
Vean		. 223	.248	+. 025	. 228	. 240	-. 014
σ				. 0153			.0090\%
${ }^{\square}$				1.63			1.42

COMFIDENTIAL

CONFIDENTIAL

the result of only random variation in the $\Delta p^{\prime} s$. To calculate t, slmply take the ratio of the querage value $\overline{\Delta_{p}}$ to its estimated standard errcr:

$$
\begin{equation*}
t=\overline{\Lambda_{p}} / \sigma \overline{\Delta p} \tag{H1}
\end{equation*}
$$

the standard error of Δp, is given by

$$
\begin{equation*}
\sigma \sigma_{p}^{2}=\Sigma_{n}\left(A p_{n}-\overline{\Delta p}\right)^{2} / n(n-1) \tag{H2}
\end{equation*}
$$

where n is the number of Δp 's.
From standard I tables, the probabilitles that average hit probability increases as large as the computed ΔD 's could occur by chance, if there were no real learning effect, are deduced. The raw data t for 11 degrees of freedom could occur by chance 13 percent of the tlme; the adjusted data t could occur by chance about 30 percent of the time. It is concluded that this analysls reveals no slgniflcant learning effect as reflected in hlt probabilitles of these 12 pairs.

If only the day-sitting data ure considered (the standing and night runs being deemed too lrregular), the apparent consistency of learning improves (see Table H2).

The higher t vaiues correspond to lower probabilltles that the average hit promability increase occurs by chance. The raw datal for 5 degrees of freedom could occur by chance about 9 percent of the tlme; the adjusted data 1 could occur by chance about 11 percent of the tlme.

Examination of the day-sitting hit probabillties reveals a 6 to 11 percent relative increase, which is real to about a 90 percent confldence level. It is concluded that a 12-run inltial experience will increase day-sltting accuracy about 10 percent. Standing and night accuracy are not measured reliably enough in the experlment to establish whether they incur real learning.

Effect on Rounds Flred

Table H3 repeats the arrangement of Table H1 for rounds flred instead of hlt probabilltles. It is noted that the computed learning effect (ΔR) ls negative for 2 of the 12 palrs of runs from raw data, and 3 of the 12 pairs from adjusted data. On the majorlty of runs, however, the learning effect was posltlve; Table H3 shows a net positive learning effect: increase of from 587 to 720 rounds from raw data, from 560 to 720 rounds from adjusted data. This is a 22 to 29 percent relative increase.

The i values are calculated again to estimate the probabillty that these net increases would occur as the result of only random variations in the $\triangle R$'s. Both raw and adjusted data it values for 11 degrees of freedom could occur by chance less than $1 / 2$ percent of the tlme, or iess than once out of 200 times. It 18 conciuded that this analysis demonstrates a real learning effect, reflected in some 25 percent increase in number of rounds flred in a run.

The Table H4 increases in rounds flred for day-sitting runs are a relative 23 percent from raw data or 32 percent from adjusted data. These increases are quite real as ls indicated by the substantial t values computed. Both raw and adjusted data t values for 5 degrees of freedom could occur by chance less than $2^{\frac{1}{2}}$ percent of the tlme. It ls concluded that, for elther day-sitting runs alone or ail 12 pairs of runs, a 12 -run Inltial experience ircreases the rate of fire about 25 percent.

CONFIDENTIAL

Table h3
Effect of Ifarming on Rounds Fired

Squad	Run		Ammunition	Firing condition	Row data			Adjusted dete		
	\%	y			R_{*}	R_{5}	AR	R_{x}	R_{γ}	1 R
1	1	25	Stagle bullet	Day oittiag	607	742	+ 135	540	827	+ 287
	5	29	Siagla bullet	Day otanding	579	747	+168	551	767	+ 216
H	3	27	Siegratallet	Dey aituiag	471	598	+ 127	483	576	+93
	7	31	Saple ballat	Night sittiag	616	950	+ 334	600	950	$+350$
C	33	57	Duplex	Day oittiag	505	534	+ 29	48.5	572	$+87$
	37	61	Duplex	Day etanding	63.5	64.5	+ 10	653	631	- 22
	34	58	Single ballet	Day eittiag	54.5	504	- 41	537	471	- 68
	38	62	Siagla bullet	Day etandiag	679	720	+ 41	625	714	+ 39
n	35	59	Daplex	Dav oittiga	476	748	+ 272	438	701	+ 263
	36	60	Single bulle:	Day sitting	482	683	+ 181	445	709	+ 364
	39	63	Daplex	Night sitting	553	918	+ 365	491	950	+ 459
	40	64	Single ballet	Night eitteng	901	869	- 32	874	768	- 106
Totel					7049	8638	+1589	6722	8636	+1914
Mean					587	720	+ 132	560	720	$+160$
${ }_{8}^{\sigma} \overline{\Delta R}$							39.8			50.4
							3.32			3.18

Table H 4
Epfect of Learning on Rourds Fied (Day Sitting Only)

Squad	Ammanition	Row dots			Adjuena Peta		
		R_{x}	R_{y}	1 R	R_{x}	R_{y}	AR
ABC	Sinale bullet	607	742	+135	540	827	
	Single buller	471	598	+127	483	576	+ 93
	Daplex	803	534	+ 29	485	572	$+87$
	Single bullet	545	504	- 41	537	472	- 68
D	Siagle ballet	476	748	+272	4.38	\%01	+26.3
	Daplex	482	683	+181	445	709	-204
Total		3088	3789	+703	2928	3856	$+928$
Meon		514	6.31	+117	488	643	+155
${ }_{s}^{0} \bar{R}$				45.5			57.2
				2.57			2.71

CORFIDENTIAL

Appendix 1

LAG TIME TG FIRST SHOT, LATE FIRE, AND RATE OF FIRE

SUMMARY 225
LAG TIME AND RATE OF FIRE FOR SINGLE-BULLET DAY-SITTING RUNS 225
fATE OF FIRE FOH SINGLE-BULLET, DUPLEX, AND TRIPLEX MLAS 227
LATE FIRE 229
dURATION OF LATE FIRE 229
TABLES
11. Day-Sitting Single-Bullet Rate-of.Fiae Data, by Target 226
12. Late Shots for Singlebbullet, Duplex, and Thiplex Runs (Rut Data) 228

CONFIDENTIAL

SUMMARY

The .30 singie-bullet day-sitting runs are examined in detail to determine the lag time from the slgnai for the target to pop up until achievement of a steady rate of fire. The sum of the squares of the errors between calculated and observed exposure times ls written as a function of the lag time and the rate of fire. The values that best fit this function are found to be a lag time of 1.75 sec and a rate of fire is 3.75 shots $/ \mathrm{sec}$ for 10 men firing.

The electrical record of shots recorded provlded a count showing that about 12 percent of shots were fired during an average $1.27-\mathrm{sec}$ period after targets had gone down.

The rate of fire of 2.57 shots $/ \mathrm{sec}$ for 10 men firing is computedior slngiebuliet, duplex, and triplex runs. This is lower than the rate for singie-bullet day-sitting runs used to develop the estimate of iag time.

LAG TLME AND RATE OF FLRE FOR SINGLE-BULLET DAY-SITTING RUNS

It is evident that some tlme was required after the target appeared for the riflemen to spot the target and direct fire toward it. The average lag time had been vlsually estimated as about 3 sec . This sectlon develops a method for estimating the average lag time from appearance of the target to beginning fire at this target and the average rate of fire. Such averages are meaningful, though It is recognized that there may be considerable variation from target to target. The data from which these averages were computed were obtained from the electrlcal records of shots fired (Table 11). The way in which these data were obtained is described in detail in App D. The computations are besed on the shots data $\left(N_{s}\right)$ from Table F20. The adjusted shot values are used. The corresponding values of exposure time $\left(t_{i}\right)$ are noted from Table C22. It is belleved that the assumptions made in the least squares method outiined in the paragraphs following are realistic if calculations are confined to a given type ammunition, vlslbility, and firing position. The method is essentialiy that of fitting a straight line to observed rinta.

For a given type run, it is assumed:
t_{i} is the echeduled exponure $t i m$ for target i.
a sec is the lag time for beginning fire at cach target.
N_{i} is the number of shots fired at target i.
K is the time in seconds for each shot. This assumes the average rate of fire is conotant and $1 / K$ is the average rate of fire.

COMfidential

From these four assumptions, it is clear that:
$t_{i}-\alpha=$ effective exposure time for target i. This may be shought of as the calculated exposure time.
$0.88 \mathrm{KN}_{i}=$ effective exposure time for target i. This is the observed exposure time, since Table 12 shows that 12 percent of the Ifre is dellvered after exposure.

Table ll

1	N	N2	Nt
4.5	15	225	68
15	52	2,704	780
4.5	21	441	95
15	52	2,704	780
19.5	44	1,936	858
9	34	1,156	306
4.5	9	81	41
9	35	1,225	315
6	25	676	158
15	39	1,521	585
31.5	\%	9,216	3024
3	9	81	27
4.5	10	100	45
4.5	5	25	23
9	14	1s\%	126
6	19	361	114
10.5	40	1,600	420
3	6	36	18
25.5	37	1,369	944
7.5	10	100	75
3	4	16	12
21	36	1,29	756
2231	613	27.065	9568

The error between the calculated exposure time and the observed exposure time for target i is a function of α and K, and may be written

$$
\begin{equation*}
f(\alpha, K)=f_{1}-\alpha-0.80 K N_{t} \tag{II}
\end{equation*}
$$

To determine a and K, the necessary condition is for the sum of squares af these errors for all targets to be aminimum. Thet is, the exprestion is written for the sum of the equares of the errore for all M largols (whore M If the number of tarcots), which is:

$$
F(a, R)=\sum_{i=1}^{m}\left(u_{i}-a-a=\pi v_{i} \beta\right.
$$

CONFIDENTIAL

and set the first partial derivatives with respact to α and K equal to zero. This leads to the foilowing pair of iinear equations for determining α and K :

$$
\begin{gather*}
\alpha N+0.88 K N_{i}=\Sigma \varepsilon_{i} \\
0.88 \propto \sum N_{1}+0.77 K N_{i}^{2}=0.88 \sum N_{d} \tag{12}
\end{gather*}
$$

General average values for single-bullet day-sitting runs can be obtained by considering all 10 single-bullet day-sitting runs from Table F20.

Table 11 Hsta the average adfusted rounds fired at each single-bullet daysitting target N. Also lioted are target exposure times t. The gaviantities N^{2} and Ni are computed, and all columns totaled. These sums are substituted into Eqs. 12, which become:

$$
\begin{gathered}
2 \alpha+539 K-231 \\
539 \alpha+20959 K=8420
\end{gathered}
$$

These equations yield:

$$
\begin{aligned}
& a=1.77 \mathrm{sec} \\
& K=0.356 \mathrm{oec}
\end{aligned}
$$

The average time between rounds after initial lag for 10 men firing tie K. The average interval for one man is just 10 K , or 3.56 sec , or $1^{\prime} \mathrm{f}$ rounds $/ \mathrm{min}$. of course this interval includes clip change and malfunctions, where they occurred.

The $1.77-\mathrm{sec}$ initial lag reflects the delay in acquiring a new target. It must be appreciated that this delay as deduced here represents the time to achievement of the steady rate of fire, not time untll the first round is fired. The average time until the first round is fired by a single man is in fact 1.77 pius 3.56 , or 5.33 sec . It is noted that this average value of 5.3 sec to first round is somewhat larger than the theoretical optimum time of $3.5 \mathrm{sec} .^{13}$ it should be noted however that the increment before the f1rst round is generally less than the average increment, as the rifle will always be loaded.
rate of fire for single-bullet, duplex, AND TRIPLEX RUNS

In the single-bullet, duplex, and triplex runs there was a total of 8011.5 sec of target-up time. (In Table 12 runs $7,8,31,39,40,63$, and 64 were night runs with target-up times of $253.5 \mathrm{rec} / \mathrm{run}$. All other runs were dey runs with target-up times of $231 \mathrm{sec} / \mathrm{run}$. All runs used 22 targeta.) Doducting 1.77 sec lag time from each of the 748 targets in all 34 runs, leaves a fotal of 17,171 uhots fired in 6888 sec . Thus 2.57 shots $/ \mathrm{sec}$ wes the average rate of fire tor $10 \mathrm{men}, 0.257$ shots $/ \mathrm{sec}(15$ rounde $/ \mathrm{min}$) for one man for single-bullet, duplex, and triplex ammunition.

CONFIDENTIAL

Table 12
Late Sunts for Single-Bullet, Deplex, and Triplex Runs (Ram Data)

Rus	Shota recorded			Percentage of -hote recorded	
	Tarker up	Torget down	Total	- lorget ap	Target dowe
1	465	57	522	89.1	10.9
2	378	58	436	86.7	13.3
3	356	35	391	91.0	9.0
4	20.5	11	276	96.0	$4.0{ }^{\text {a }}$
5	412	69	481	85.7	14.3
6	472	1.1	643	73.4	26.6
7	462	64	526	87.8	12.2
8	508	59	567	89.6	10.4
25	582	83	565	87.5	12.5
26	626	76	702	89.2	10.8
27	522	56	578	90.3	9.6
28	405	42	447	90.6	9.4
29	636	99	735	86.5	13.5
31	860	99	235	89.7	10.3
33	-33	59	462	87.2	12.8
34	492	9	562	87.5	12.5
35	390	61	451	86.5	13.5
36	351	86	4.37	80.3	19.7
37	296	57	343	83.4	16.5
38	340	40	380	89.5	10.5
39	498	50	548	90.0	9.1
40	467	42	509	91.7	3.3
57	435	60	495	87.9	12.1
58	433	59	492	88.0	12.0
59	533	81	614	86.8	13.2
60	493	104	597	82.6	17.4
61	569	64	633	89.9	10.1
62	570	81	651	87.6	12.4
63	800	104	904	88.5	11.5
64	75.5	88	843	89.6	10.4
65	737	136	873	39.4	15.6
66	653	87	740	88.2	11.8
67	517	64	581	89.0	110
68	500	60	560	89.3	10.7
Totalor					
Moen	17,171	2432	19.603	87.6	12.4

- Date iocomplete.

COMFIDEMTIAL

AMOUNT OF LATE FIRE

Table 12 presents shots-recorded daia derived from all the . 30 -cal singlebullet, duplex, and triplex runs (34 of the 68 runs). It includes total numbers and percentages of shcts fired whlle targets were exposed, and after they had dropped. It is seen that 12.4 percent of the shots were fired after the targets were down. This figure may, however, be somewhat higher than might be expected under less dusty firing conditions. The test troops complained on numerous occasions that the targets were partly or completely obscured by dust produced from hits in the target area.

DURATION OF LATE FIRE

A total of 2432 shots (Taule 12) was fired after target went down. At the rate of 2.57 shots $/ \mathrm{sec}$ this took 950 sec . Divided by the 748 targets in all 34 runs, this yields an average of 1.27 sec of late fire per target.

CONFIDENTIAL

Appendix J

STATISTICAL. ANALYSIS OF DATA

SUMMARY 233
HITS AND HIT PROBABILITIES BY AMMUNITION-ILLUMINATION- POSITION CONDITION 233
COMPARISON OF SINGLE-BULLET, DUPLEX, AND TRIPLEX AMMUNITIONS 237
COMPARISON OF AUTOMATIC AND SEMIAITTOMATIC CARBINE AND T48 FIRING 259
COMPARISON OF SINGLE PULLETS AND FLECHETTES 272
FIRING POSITION AND ILLUMINATION 274
CONFIDENCE LIMITS 280
FIGURES
JI. Single-Bullet, Duplex, and Tuiplex lit Phogeg! !ties, Raf Muta 240
J2 Smale Bellet, Duplex and Thiplex hit Phobablitties, adjusted Data 241
TABLES
JI. Itts amd litt Phobabrlities ey alp Condition 234
J2 Sumaly or Rutios or Majon Defferemees $23 S$
J3. Ihts and lit Pmoaamities of Salvo Anmenttion or Fiaing Compaied to Smele-Bullet AP Amentrion 236
j4. Itts and Itt Phoaamities or Standing Compared to Sitting and Nifert Compared to Day 237
JS itts and titr Phobalolities of automatic Compalf.d to Sewautomatic Piat 238
J6. Sancle-Bullet lit Phozamlities and Stamband Erions. Iur Duta 242
J7 Sinclefirliet ift Pmozaeritis and Standard Emrons adjusted Data 243
J8. Deplex lit Phomamurties and Stamdard Eimons, Raipata 244
J子 Duplex ht Phoramurties and Standaad Embons, apjusted Duta 245
J10. Thiplex ift Pmobabluties and Stamdaid Enbons, Day Sittiwe Condition. Rup duta 246
JII Thaplex IIt Pmozamlitis and Standard Eamons. Duy Sittanc Condrtion. adowtionaya 246
ORO-T. 27 231

COMFIDENTIAL

12. Carbine armona tic Hit Panaarilitires and Standaad Errdrs, Rain Data 246
Ji3. Carbine automatic lit Phobabllities and Standard Errors, Adjusted Data 247
J14 Carrine Semiautomatic Ilit Prorabilities and Standahd Errors, Raw Data 247
JIS. Carbine Semiautomatic Hit Prdbabilities and Standard Errors, adjusted Data 248
J16. T48 automatic iUt Phobabilities and Standarle Erbors̃, Rat Data 248
J17. T48 Automatic Hit Probabilities and Standard Ebrors, Adjusted Data 2.49
J18. T48 Semiautomatic Hit Probapllities and Standard Errors, Ram Data 249
j19. T48 Semautomatic 愠 Phobarilities and Standard Errors, adjusted Data 250
J20. Single-Hullet Hits and Standard Ernors, Raw Data 250
J21. S'mgle Bullet lits anio Standahd Errors, Adjusted Data 2S1
J22. Duplex Hits and Standard Erbors, Ral Data 2S2
J23. Diplex Hits and Standard Erqors, Anjusted Data 253
J24. Thiplex Hets and Standard Eriors. DaySitting Condition, Pant Data 253
J2S. Triplex Hits and Standafid Errors, Day-Sititing Condition, Adjusted Data 253
J26. Can bine automatic Hits and Standard Erbors, Rain Data 254
J27. Carbine Automatic Hits and Standard Errors, Adjusted Data 254
J28. Carbine Semiautomatic Huts and Standard Errors, Hai Duta 2SS
J29. Carbine Semiautomatic Hits and Standard Errors, Adjusted Data 25S
J30. T48 Automatic Hits and Standard Errors, Rui Data 256
J31. T48 automatic Hits and Standard Errors, Adjusted Data 2S6
J32. T48 Smimutomatic Hits and Standard Errors. Raw Data 257
J33. T48 Semiautomatic lats and Standard Errors, Adjusted Data 257
J34. Single Bullet and Dupi ex Hits, Day Sitting, Ran Data 2S8
J35. Single-Pullet and Duplex Hets, Day Sittag, Aejleted Dita 259
J36. Single Bullet and Duplex Ilts, All Runs, Raf Data 260
J37. Single-bullet and Duplex Hits. all Runs, adjusted Data 261
J38. Taiplex, Single-Bullet, and Duplex Hits, Day Sitting. Raw Data 262
J39. Thiplex, Single-Bullet, and Duplex lits, Day Sitting, Adjusted Data 263
J 40. Cirbine and T48 Hit Prorabilities, Day Sitting Condition. Ran Data 267
13. Carbine and T48 Hit Prorarilities, Daysitting Condition. adjusted Data 267
J42. Carbine and T48 Htprobabilities, DayStanding Condition, Ran Duta 268
J43. Carbine and T48 hit Probabilities, DayStanding Condition, Adjusted Data 268
J44. Carbine and T48 Itt Probabilities, NightSitting Condition, Ram Data 269
J4S. Carbine and T48 Fit Probabilities, NightSitting Condition, Adjusted Data 269
J46. Candine and T48 Total Huts. Day Sitting Condition, Rain Data 270
14. Cahbine and Ta 8 Total Hits, Day Sitting Coneition, Adjoisied úata 270
J48. Carbine and T48 Total Hits, Day Standeng Condition, Raw Data 271
j49. Cabbine and T48 Tutal Hits, Day Standing Condition, adjuster Data 271
J50. Canbine and T48 Tdtal Hits, NigatSitting Condition, Ran Data 272
J51. Canbine and T48 Total Ibts, NigrtSitting Conditiolv, Adjusted Data 272
jS2. Iut Probabilities and Standard Ermdrs of Flecbettes Compared to Single Bullets 273
JS3. Iht Probabtl:ties of Fleceettes Compared to Single Bullets 274
JS4. Position and Illumination Hit Probabilities and Total Ibte, Rav Data 276
J55. Position and Illumisation ilt Pabobabilities and Total ints, Adjusted Data 277
J56. Test cor Differences en Sitting and Standing Postions, Rai Data 278
J57. Test for Differences in Stting and Standing Fusitums, Aujusted Data 279
JS8. Pencertage Standard Devutions for fots per found for Various if Conditions 281
J59. Hit Pmobabulity pea Salyo 282
J60. Rutio or fet Probablities Fion Salvo 282

CONFIDENTIAL

SUMMARY

This appendix examines variations in both hits per sun and hits per round fired for the 21 ammunition-illumination-position (AlP) conditions. Tabie J1 in the next section summarizes the basis for all comparisons. The three sections following that one extend the interpretation ard justify the inferences on differences that may be attributed to the 21 conditions.

Some of the most outstanding differences in hits and hit probabilities may be shown by listing approximate ratios. Table J2 lists such ratios (all ammunition comparisons except the last as noted are for sitting and standing combined day averages).

HITS AND HIT PROBABILITIES BY AMMUNITION-ILLUMINATION-POSITION CONDITION

The data on hits are drawn entirely from Tables E6 and F33 and presented in a summarized form in Tabie J1. These tables ignore learning and squac differences by fumping together all runs for a given ammunition-llluminationposition (ALP) condition.

The standard deviations in Tabie Jl are computed from run totals, using the usual expression for variance σ^{2}, of the mean of n items ($n-1$ degrees of freedom):

$$
\begin{equation*}
\sigma_{\bar{x}}^{2}-\left\{n \sum\left(x^{2}\right)-(\Sigma x)^{2} y / / n^{2}(n-1)\right] \tag{J1}
\end{equation*}
$$

The table entries of error are standard deviations of means and define the 68 percent confidence limits; i.e., if the experiment is repeated many times twothirds of the time the result will be between $\overline{\bar{z}}-\sigma_{\overline{\bar{x}}}$ and $\overline{\bar{z}}+\sigma_{\bar{z}}$.

Having listed in Table J1 the mean hits and hit probabilities (raw and adjusted) for all 21 ALP conditions, it is instructive to examine pertinent ratios. Aiso the ilsting of standard deviations on and σ_{p} makes convenient the determination of the confidence that each of these ratios is really different from unity. Table J3 lists each of the seven other tupes of fire relative to singlebullet a mmunition for appropriate illumination-position (IP) conditions. The I statisuc for the difference between the means of any quantities x and y is given by

$$
\begin{equation*}
1-\left(\bar{x}-\bar{\eta} / \sqrt{\left(\sigma_{x}^{2} / n_{x}\right)+\left(\sigma_{y}^{2} / n_{y}\right)}\right. \tag{J2}
\end{equation*}
$$

This expression approximates Eq. Ji for large samples. The computed values of t are then sought in statistical tables for $\left(n_{z}+n_{y}-2\right)$ degrees of freedom.

COMFIDENTIAL

CONFIDENTIAL

The C columns in Table J3 give the confidence that the ratio is reaily different from unity.

Of more interest probably than this difference confidence is some measure of the confidence limits about each mean ratio \bar{x} / \bar{y}. Customarily the handling of errors in manipulating laboratory data is done by two rules: (a) for addition or suitraction, add the absolute errors; and (b) for multiplication or division, add the percertage errors. Since independent random errors are being used, addition implies the secand power sum of the percentage errors. For the ratio of \bar{x} to \bar{y}, the standard deviation is

$$
\begin{equation*}
\sigma_{\bar{z} / \bar{y}}=(\bar{x} / \bar{y}) \sqrt{\left(\sigma_{x} / x\right)^{2}+\left(J_{y} / y\right)^{2}} \tag{J3}
\end{equation*}
$$

Table J2
SUMMARY OF RATIOS OF MAJOR DIF FERENCES

Conditions compared	Hita	Hit probability
Stasding to sitting	0.9	0.8
Night to duy	0.4	0.2
Automatic to seminutematic	0.7	0.5
Duplex to single bullet	1.6	1.7
Triplex to single bullet	2.1	2.2
Carbine/AP	1.5	1.3
T48/AP	1.2	1.1
T\&\&/AP (night)	2.0	2.0

Table J3 lists the computed percentage errors of the ratios $\left(\sigma_{\bar{F} / \bar{y}}\right) /(\sqrt{V})$. The columns headed H are really ratios $\left(\vec{H}_{x} / \bar{H}_{A A}\right)$. The columns headed C_{H} are the t test confidences that the dissereries|H. headed $\sigma_{\bar{B}}$ are really $\sigma_{H_{x}} / H_{A P}$. The hit probability columans are similarly defined. Similarly, in foilowing tables, H and P are often used as abbreviations for ratios \bar{H}_{1} / H_{2} and $\bar{F}_{1} / \bar{P}_{2}$.

Table J 4 compares sitting to standing and night to day hits and hit probabilities for each of the ammunitions. The means for all ammunitions reveal that stending hit probability was about three-fourths that of sitting, and that night hit probability whe one-fourth that of day. As mbsolute hits per run dropped off less, it is clgar that the firing rate increases. Frum the mean values of Table J4 the firing rate decreases 22 percent for sitting over that fo: standing and 78 percent for dey over that for aight.

The comparison of automatic to sempatomatic fire is best made irom the balanced data on the two automatic weapons alone. These comparisons are made in Table J5. It appears that for dey fire the automatic weapon acores only two-thirds the hits per run scored by the semiautomatic weapon. The hit probability drope even more, sowing an increase of 53 percent in the rate of fire. The nightime degradation it emaller.

CONFIDENTIAL

Ammuntion or firing	"		C_{H}		0%		p		c^{\prime}		${ }_{\beta}$	
	Adjusted dita	$\begin{aligned} & \text { Raw } \\ & \text { data } \end{aligned}$	$\begin{gathered} \text { Adjusted } \\ \text { data } \end{gathered}$	$\begin{aligned} & \text { Raw } \\ & \text { data } \end{aligned}$	Adjusted clata	$\begin{aligned} & \text { Raw } \\ & \text { data } \end{aligned}$	Adjuated data	Kaw data	Adjustexd data	$\begin{aligned} & \text { Raw } \\ & \text { data } \end{aligned}$	Adjuated data	$\begin{aligned} & \text { Raw } \\ & \text { data } \end{aligned}$
Day stting												
Duplex	1.53	1.52	-	99	4.21	0.20	1.66	1.62	-	100	0.11	0.13
Triplex	2.06	2.06	-	99	1.23	0.22	2.24	2.19	-	100	0.19	0.12
Carbine a utumatic	0.94	099	-	3	(.22	0.15	0.53	0.55	-	100	0.14	0.11
Carbine aemiautomatic	1.42	137	-	95	0.17	016	1.2 H	1.20	-	100	0.16	0.08
Tta automatic	0.81	0.77	-	82	0.09	009	0.53	0.50	-	100	0.05	0.06
Ths aemisutiomatic	115	1.04	-	19	0.14	0.14	1.21	1.10	-	93	0.06	0.06
Day standing												
Duplex	1.72	176	-	106	0.19	0.16	1.72	$1.80{ }^{\text {d }}$	-	100	0.15	0.12
Carbine automatic	1.09	1.03	-	7	0.50	0.38	0.52	0.51	-	100	0.08	0.09
Carbiae aemiautomatic	1.74	1.72	-	95	0.39	0.31	1.28	1.31	-	98	0.10	0.10
T.te automatic	0.74	0.79	-	76	0.17	0.13	0.45	0.47	-	100	0.12	0.12
T48 ammatiomatic	1.19	122	-	85	0.14	0.10	1.01	1.05	$-$	42	0.18	0.17
Flechetto ${ }^{\text {b }}$	1.73	0.89	-		-	-	2.72	3.44	-	-	-	-
Night eltting												
Duplex	1.57	1.55	-	63	0.59	0.56	1.79	1.82	-	100	0.57	0.54
Carbece avomatic	0.69	0.60	-	39	0.12	0.09	0.46	0.42	-	100	0.22	0.22
Cartune aemiautomatle	1.00	0.71	-	55	0.57	0.32	0.62	0.64	-	92	0.18	0.17
T48 automatic	1.60	160	-	90	0.31	0.27	1.02	1.06	-	37	0.30	0.29
T43 aethinutomatic	${ }_{4.120}{ }^{\text {c }}$	2.00 2.36	-	-	0.37	${ }^{0.53}$	1.96 6.60	2.04 7.65	-	100	0.6:	$\stackrel{0.49}{-}$

briechette rune are bot directly comparable aince target expusures were irregulariy reduced. Hence there is groas variatinn
${ }^{\text {chechete }}$ aight I un was fired atanding.

COMFIDENTIAL

Table ${ }^{2} 4$
HIITS AND HIT PROBABILITIES OF STANDING COMPARED TO
SITTING AND NIGRT COMYARED TO DAY

Ammunition or firing	Standing to sitting, \%				Night to day, \%			
	H		P		H		P	
	Adjusted data	Raw data	Adjusted data	Raw data	Adjusted data	Raw data	Adjusted dats	Raw data
Single bullet	86	83	79	75	38	34	27	25
Duplex	96	96	81	86	26	35	29	28
Carbine automatic	99	88	77	70	26	21	20	19
Carbine semiautomatic	104	105	79	82	17	18	13	13
T48 sutomatic	79	85	68	69	71	71	5	5
T48 semiautomatic	88	97	65	71	82	66	44	47
Flechette	-	-	-	-	81	91	83	75
Mean ${ }^{\text {a }}$	92	92	75	76	41	41	23	23

Except for flechetter.

COMPARISON OF SINGLE-BULLET, DUPLEX, AND TRIPLEX AMMUNITIONS

Table J 6 is a tabulation of the raw (i.e., manual count of rounds of ammunition used and count of holes in targets for each run) data for each of the 18 runs in whlch single-bullet ammunition was used, plus additional calculations to be explained later. Table J7 tabulates the corresponding adjusted data. Tables J 8 and J 9 are similar tabulations for the 14 duplex runs, and Tables J10 and $J 11$ show the results for the two tripiex runs. For each of these runs the probability of hits p has been calculated from the relation

$$
\mathrm{p}=\frac{\text { number of holee counted (for all } 22 \text { targete) }}{\text { rounde of ammaition counted }}
$$

The probabllity q of missing the target is $q=1-p$
From elementary statistical theory the standard deviation of of the quantity D In the binomial distribution $(p+q)^{n}$ is given by

$$
\sigma^{2}=p \eta / n
$$

Also the binomial can be shown to tend to normality as n increases. For $n=100$ the normal approximation for the binomial is sufficlentiy good for most practlcal application; forn >400, a condition satisfled by all rum of this experiment, the normal curve approximation for the blnomial will be excelleat.

If the eight duplex runs in Table Js for the day-sitting firing condition are compared with the corresponding eight slaglo-bullat runs in Table J6, the hit probalilities for the duplex runs are from about 50 percent to more than 100 percent grester then those for the single-bullet runs. Thls appears to remove

COMFIDENTIAL

Table J5
hits and hit probabilities of automatic compared to semiautomatic fire

Ancman'tion	Day-aituing condition, \%				Day-atanding condition, \%				Night-bitting condition, \%			
	H		p		H		P		H		P	
	$\begin{aligned} & \text { Alljusted } \\ & \text { dinta } \end{aligned}$	Row data	$\begin{aligned} & \text { Adjusted } \\ & \text { data } \end{aligned}$	Raw data	data Adjusted data	Raw data	Adjusted date	Raw data	Adjusted data	Raw data	Adjusted	R.aw data
Carbise	66	73	42	46	63	60	41	39	100	83	66	6ϵ
T48	; 0	74	44	46	62	65	44	45	80	80	52	52
Mean	68	74	43	46	63	63	43	42	90	82	59	59

CONFIDENTIAL

any doubt as to real effects shown by these data. However, this can be vigorously establlshed in any one of several ways. The : test could be applied to the peirs of corresponding runs. Perhape the slmplest way to examine these hit probabilitles statistically is to follow the method of control charts frequently used in quallty-control work. If control llmits of $\partial \pm 2 \sigma$ are calculated, the probability that another estlmate of the same $;$ will fall outside the $\pm 2 \sigma$ llmlts is about 4 percent. These llmits were computed; graphs of the results are shown in Figs. Jl and J2. The fact that the hit probabilities for the duplex runs (except for night sltting, Run 8, for which there is no definite explanation) far exceed the upper $2 a$ iimit for the hit probabilities of the corresponding singlebullet runs is very strong evidence that the duplex hit-probability improvements are real under all test conditions of this experiment. There is also strong evidence in Flgs. J1 and J2 that some extraordinary condition was experienced in Runs 7 ur 8. Possibly in erroneous ammunition count or target hole count was made in Run 7. Another possible explanation of the unexpected results in comparing Runs 7 and 8 is found in a note of an observer written at the time Run 7 was made. This note states that the targets on Run 7 were seen with an excessive glare in the moonlight. Aside from these two comparisons, each of the duplex runs compared to the corresponding single-bullet run gives hit probabillties that are significanily better at least at the 0.1 percent level. This means that under the assumption that there is no real difference in duplex and slngle-bullet hit probabilities the results of any pair of these comparisons would have less than 1 chance in 1000 of occurring from random or samping variation.

Figures J 1 and J 2 also show the results of the only two tripiex runs completed. Both Runs 26 and 28 have hit probablities far beyond the $3 a$ control limits for Runs 25 and 27, which are the corresponding single-buliet runs. The triplex runs are not directly comparable to duplex runs, but the fact that the hit probabllities for both these runs are above the 2 o control limits for any dupiex run is substantial evidence that the triplex ammunitlon gives a real inc rease over duplex 2 mmunition \ln hit probablities.

Tables J20 to J33 are tabulations for holes counted (totai hits) with additional calculations similar to those in Tables J 6 to J 19.

Tables J34 to J39 contain calculations that compare mean values rather than individual pairs of values.

Table J34 shows a tabulation and the mean value for all day-sitting runs for the single-bullet and duplex ammunition. Twr types of t test for significance of differences are calculated in this table. The signiflcance of the difference in the two mean values (121.5 for the single-bullet ammunition and 185.4 for the dupiex ammunition) is tested by the calculation

$$
\begin{equation*}
B=\frac{\left(m n /\left.(m+n)\right|^{1 / 2}\left(\bar{x}_{2}-\bar{F}_{1}\right)\right.}{\left.\| \sum\left(x_{11}-\bar{x}_{1}\right)^{2}+\sum_{1}\left(r_{21}-\bar{F}_{2}\right)^{2}\right) /(m+n-2) 1^{1 / 4}} \tag{J4}
\end{equation*}
$$

In this expression, m is the slze of the first sample with mean \bar{i}_{1}, and n is the size of the socond sample with mean r_{2}. The value of calculated in this way from the rata in Tabie 320 te $1=3.18$. This value of \mid for 10 degrees of freedom is significant at beyond the 1 percent level.

COMFIDENTIAL

CONFIDENTIAL

CONfidentitial

Table $\sqrt{6}$
SINGLE-BULLET HIT PROBABILITIES AND STANDARD EHRORS, HAW DATA

CONFIDENTIAL

Table $\mathbf{J 7}$
SINGLE-BULLET HIT PROBABILITIES AND STANDAKD EKHOKS, ADJUSTED DATA

Run	Sujund	Shots adjustind, n	Hits adjusted	ρ hata/n	$\theta=\sqrt{p a / a}$
	Day-Sitting Condstion				
1	A	540	91	. 169	. 016
3	B	483	108	. 224	. 019
25	A	821	157	. 190	. 014
27	B	576	132	. 229	. 018
34	C	537	110	. 205	. 017
36	D	445	71	160	. 017
58	C	471	90	191	. 016
60	D	709	121	. 171	. 014
65	E	872	200	. 229	. 014
67	F	647	100	. 155	. 014
Subtotal		6.119	1180	. 193	
Day-Standing Cundition					
5	A	551	78	. 142	. 015
29	A	767	117	. 153	. 013
36	C	625	109	. 174	. 015
62	C	714	99	. 139	. 013
Sukera!		2,85*	+0's	.152	
Night-Bitting Condition					
7	B	800	58	. 093	. 012
31	B	950	42	. 044	. 007
40	D	874	26	. 030	. 006
64	D	768	42	. 05 S	.008
Subtotal		3.192	166	. 052	
Total		11,988	1749	. 148	

CONFIDENTIAL

Table J6
DUPLEX HIT PHORARILITTES AND STANDARD ERKORS, RAW DATA

Run	Squad	Round counted, n	Holem counted	$p=$ holen $/ \mathrm{n}$	$\theta=\sqrt{\mathrm{Pa} / \mathrm{m}}$
Day-3ittiag Condition					
2	A	492	166	. 337	. 021
+	B	469	170	. 362	. 022
33	C	505	158	. 315	. 021
35	D	476	132	. 277	. 020
57	C	534	209	. 392	. 021
59	L)	748	195	. 261	. 016
68	E	779	292	. 375	. 017
68	F	823	160	. 257	. 016
Subural		4628	1483	. 321	
Day-Standirg Condition					
6	A	667	190	. 285	. 017
37	C	635	167	. 295	. 016
61	C	645	156	. 245	. 017
Subtotal		1947	535	275	
Night-8itting Condition					
8		678		. 1085	. 009
39	1)	553	43	078	. 011
63	D	918	109	118	. 001
Subrotal		2140	198	. 091	
Total		6722	2214	254	

COMFIDENTIAL

Table 20

Hun	Squed	Shote sdjuated, .	Hits adjuated	$p=$ hits $/ *$	$0=\sqrt{2 q / n}$
Day-Stting Condition					
2	A	482	166	. 337	. 021
1	B	487	158	. 338	. 22
33	C	4185	154	. 318	. 021
35	D	438	123	. 281	. 021
57	C	572	214	374	. 020
59	D	701	201	287	. 017
66	E	769	278	. 354	. 017
88	F	586	158	. 266	. 018
Subtotal		4510	1448	.321	
Day-Standing Condition					
6	A	719	182	. 253	. 018
37	C	653	193	. 296	. 018
61	c	631	148	.253	.017
Subtotal		2003	523	.261	
Night-gitting Condition					
8	B	678	44	. 065	. 009
39	D	491	41	. 084	. 013
83	0	950	112	114	. 010
Subtotal		2119	187	. 083	
Total		8832	2188	351	

CONFIDENTIAL

Table 210
TRIPLEX RIT PROBABILITIES AND STANDARD ERRORS, DAY-SITTIN: CONDITION, RAW DATA

Hun	Squad	Rounds counted,	Holes counted	$p=$ holen/n	$\sigma=\sqrt{p q / n}$
26	A	706	301	.426	.018
28	B	451	201	445	.023
Tuts!	1137	302	.434		

Teble J11
TRIPLEX RIT PRORABILITIES AND STANDARD ERRORS, DAY-SITTING CONDITIDN, ADUSTED DATA

Run	Sizuad	Shots sdjusted, n	$\begin{aligned} & \text { litits } \\ & \text { sdjusted } \end{aligned}$	$p=$ hats $/ \mathrm{m}$	$v=\sqrt{p q / n}$
26	A	750	309	412	018
28	B	369	176	477	026
Tulat		1119	485	. 433	

Table 512
CAHRINE AUTOMATIC !!!T PRORARHLTIES AND SVAMEARD EヒUHORS, HAW DATA

Hun	Squad	Row xds counted, "	Holes counted	$n=$ holes $/ \mathrm{n}$	$\sigma=\sqrt{\mathrm{paj} / \mathrm{n}}$
	Day-Stting Condition				
20	A	1698	179	. 106	. 00748
18	B	1016	114	. 112	.010
41	D	8.30	88	. 138	. 014
43	C	1111	106	. 095	. 009
Subtutal		4433	485	.109	
	Day-Standing Condition				
45	0	1093	68	. 080	. 007
22	B	1655	142	. 006	. 0000
Subtucal		27 IM	208	.078	
	Night-Sitaina Condilion				
24	A	1463	26	018	008
47	C	*98	23	. 028	005
Sutiotal		2349	49	021	
Toul		9550	742	078	

COMFIDENTIAL

Tabla 313
CARBINE AUTOLAATIC HIT PROBABILITIES AND BTANDARD ERRORE, ADUUETED DATA

Rup	Squad		Hite adjuata.	- = huta/n	$\theta=\sqrt{8970}$
Day-bluting Condition					
20	A	1801	173	. 096	. 007
18	B	900	1 CB	. 120	. 011
41	D	513	39	. 115	. 014
47	C	1089	102	. 093	. 009
Suntotal		4283	412	. 103	
Day-8tunding Condition					
45		928	59	$.064$	$.008$
22	B	1829	180	$.087$	$.007$
3 ubtotal		2757	219	. 079	
Night-8itting Condition					
24	A	1472	28	. 018	. 003
47	C	1240	32	. 026	. 004
Sublotal		2712	38	. 021	
Total		9752	119	. 074	

Run	Squad	Rounds counted, n	Holes counted	p = holet/n	$0=\sqrt{\mathrm{mq} / \mathrm{n}}$
		Day-aitting Condition			
17	B	840	178	278	. 018
19	A	738	135	. 178	. 014
42	D	644	171	. 268	. 017
	C	787	184	. 240	. 015
Subiotal		2809	868	.238	
		Jay-8tandi in Condition			
21	8	985	202	. 205	. 013
48	0	808	145	. 179	. 0135
Subtotal		1793	347	. 194	
		Night-8ition Condition			
23	A	164	42	041	. 006
48	C	814	17	. 021	.008
subtotal		1848	39	. 032	
Total		6450	1074	. 167	

CORFIDENTIAL

Tatle J15

Table J16
T48 AUTOMATIC H1!T PROBABII:TIES AND STANDAID ERHORS, RAW DATA

Run	Squad	Round counted, ${ }^{\text {a }}$	Holen counted	$\mathrm{r}=$ holes in	$\theta=\sqrt{P q / \theta}$

Day-81tting Condition

10	B	824	86	. 104	001
12	A	1056	102	. 097	. 009
49	D	763	86	112	011
51	C	1112	103	093	009
Subtotal		3755	377	. 100	
		Day-Standing Condstion			
14	B	923	91	. 099	. 010
53		1385	68	. 049	. 006
Subtotal		2308	159	. 069	
		Nl ght-stttiag Condition			
16	A	1644	75	052	. 006
55	C	10.2	59	05.	$00{ }^{\circ}$
Subtotal		2526	134	.08.	
Total		M 549	670	.078	

COMFIDENTIAL

Tadie 317
T45 AUTOMATIC hit PRORAELLITIES AND STANDARD EMRORE, ADNUSTED DATA

Run	Squad	adjuatedin	$\begin{aligned} & \text { Hite } \\ & \text { adjunted } \end{aligned}$	p = hte $/$ /	$\theta=\sqrt{p 9} 7$
		Day-8ttios Conditios			
10	B	768	85	. 113	. 011
12	A	:053	104	. 098	. 009
49	D	362	92	. 108	. 011
51	C	1080	99	. 007	. 009
subeotal		3885	351	. 103	
		Duy-Standine Coadition			
14	B	916	91	. 099	. 010
33	D	1275	88	. 048	. 008
subtotal		2193	150	. 058	
		Night-8itting Combition			
18	A	1489	75	. 51	. 005
85	C	1038	58	. 058	. 007
Sublots 1		2527	134	. 053	
Total		8408	885	079	

Tubie J1a
T48 SEMIAUTOMATIC HIT PROBARILITTES AND STANDARD ERRORS, RAW DATA

Run Squad \begin{tabular}{c}
Rounde

counted,

Roles

counted
\end{tabular}$\quad p=$ holes $/ n \quad 0=\sqrt{p / n}$

Day-8itting Condtion

9	B	422	97	.230	.021
11	A	588	143	.243	.018
50	D	816	127	.208	.018
52	C	705	140	.199	$.0: 5$
Subtotal		2331	507	.218	

- 5	A	782	85	. 109	011
56	C	856	82	. 094	. 010
Subtotal		1838	157	102	
Folal		8554	119	168	

CONFIDENTIAL

Tuble 119

Run	Squad	shote adjustad，A	Mits adju＇ted	$D=\mathrm{blt} / \mathrm{m}$	$\sigma=\sqrt{\text { PQ／}}$
		Day－Sittios Condtion			
9	B	480	111	． 231	． 019
11	A	348	187	． 263	． 017
50	D	848	144	． 222	． 016
52	C	64\％	$130 \hat{}$	． 200	． 088
Subtotal		2424	542	． 224	
		Day－standins Condition			
13	B	752	131	． 172	． 014
54	D	605	109	． 135	．01\％
Subsotal		1567	240	． 153	
		Night－8itting Cosalition			
15	A	719	85	． 109	． 011
58	C	859	82	． 095	． 010
Subtotal		1838	187	． 102	
Total		5629	949	． 88	

Tar le J20
SINGLE－BULLET HTTS AND STANDARD ERRORS，RA富 DATA

Run	Squad	Holes counted， 1	sum oá дquarea 2に	s^{2}	4＋25	1－25
Day－Sitting Condition						
1	A	90			188.8	-6.8
3	B	105			201.8	8.2
25	A	157			253.6	80.2
27	B	144			340.8	47.2
34	C	111			こc7． 6	14.2
35	D	91			177.6	－15．8
58	C	100			198.8	3.2
60	D	120			316.6	33.2
65	E	202			298.8	105.2
67	F	106			201.8	8.2
Subtotal		1215	159，621	48.4	2183.0	247.0
Day－Standing Condition						
5	A	81			107.6	54.4
29	A	108			134.6	61.4
38	c	110			128.6	63.4
82	C	103			129.6	78.4
Subtotal		402	40，934	13.3	508.4	296.6
Night－8itusay Condition						
7						
31	B	41			82.6	122
40	D	27			46.6	5.2
64	n	45			e6． 6	33.2
Subtital		168	7.244	10.9	263.2	78.6
Tota．		1：83	217，249	46.9		

CONFIDENTIAL

Table J21
BNGLE-BULLET HIT8 AND BTANDARD ERRORS, ADJUSTED [OATA

Run	Squad	Hite adjusted, n	Sum of equares Σh^{2}	s^{2}	$n+2 S$	A-2s

Cay-Sittlay Condition

1	A	91			188.0	16.
3	B	108			163.0	33.0
25	A	157			232.0	82.0
27	B	132			207.0	57.0
34	C	110			185.0	35.0
36	D	71			146.0	-4.0
58	C	90			165.0	15.0
50	D	121			198.0	46.0
65	E	200			275.0	125.0
67	F	100	,		175.0	25.0
subtotal		1180	151,900	37.5	1930.0	430.0
		Day-Standiag Condition				
5	A	78			111.8	44.2
29	A	117			150.8	83.2
38	C	109			142.6	75.2
62	c	99			132.8	65.2
Subtotal		403	41,455	16.9	638.2	267.8
		Night-8ittig Condtion				
7	B	56			80.6	31.4
31	B	42			66.6	17.4
40	D	28			50.8	14
64	D	42			68.6	17.4
Subtotal		166	7,340	12.3	264.4	87.6
Total		1749	200,695	425		

$$
s s^{2}=\left\{1 /\left(n-111\left\{\sum_{n}^{2}-\left\{\left(\sum_{n}\right)^{2} / \theta 1\right\}\right.\right.\right.
$$

CONFIDENTIAL

Table J22
DUPLEX GITS AND STANDARD EHLIORS. haw data

Day-8itung Condtion

2	A	166			284.0	88.0
4	B	170			268.0	72.0
33	c	159			257.0	81.0
35	D	132			230.0	34.0
57	C	209			307.0	111.0
59	D	198			293.0	97.0
66	E	292			390.0	194.0
68	F	160			258.0	62.0
Subiotal		1483	291,732	43.0	2257.0	6990

Day-Standing Condition						
6	A	190			225.4	154.6
37	c	187			22.4	151.6
61	c	158			193.4	122.6
Subtotal		535	96,033	17.7	641.2	428.8
Night-Stting Condition						
9	B	44			119.6	-31.6
39	D	43			118.8	-32.6
63	D	109			184.6	33.4
Subtotal		196	15,886	37.8	422.8	-30.8
Total		2214	403,430	84.0		

COMFIDENTIAL

Tabla 123
DUPLEX HITS AND STANDARE ERHORS, ADJIJTED DATA

Rum	Squad	Hits adjuated, h		5^{2}	$k+25$	1-25
		Day-Butung Condition				
2	A	168			261.6	70.4
4	B	166			253.6	62.4
33	C	154			249.6	-0.4 4
36	D	123			216.6	27.4
67	C	214			309.6	118.4
69	D	201			298.6	105.4
66	Σ	276			371.6	160.4
${ }^{68}$	F	156			261.6	60.4
Subtotal		1448	273,074	47.8	2212.6	663.2
		Day-standin4 Condtion				
6	A	182			229.0	136.0
37	c	183			240.0	146.0
61	c	156			196.0	101.0
Subtotal		523	92.277	23.5	664.0	362.0
		Night-8iteing Condition				
${ }^{6}$	B	44			124.4	-36.4
19	D	41			121.4	-39.4
63	D	112			192.4	31.6
subtotal		197	16,161	40.2	438.2	-44.2
Total		2168	386.512	62.5		

$$
A^{2}=\left\{1 /(n-1) \|\left\{n^{2}-\left\{(2 n)^{2} / n\right\}\right\} .\right.
$$

Tabla 324
TRIPLEX HITS AND STANDARD ERRORS, DAY\&TTTLNG CONDTTION, RAW DATA

R 4	Squad	Holes counted, 1	Planm of -quares $\Sigma \boldsymbol{k}^{2}$	5	$k+2 S$	h-2S
26	A	301			442.4	159.6
28	-	201			342.4	59.6
Total		502	131.002	70.7	784.6	219.2

$$
a s^{2}=\left\{1 /(n-1) 1\left\{2 s^{2}-\left\{(2 t)^{2} / n\right\}\right\}\right. \text {. }
$$

Tuble 125
TRIPLEX RTTS AND STANDARD ERROAS, DAYSITTING CONDITION, ADJUSTED DATA

Rut	Equad	Hite adjuated, 1	fum of aquarea こん ${ }^{2}$	s^{*}	h+29	1-2S
26	A	309			497	121
2 n	8	176			384	-12
Total		485	126,457	84.0	661	100

$$
a n^{2}=\left\{1 /(n-1)!\left\{\sum_{n}^{2}-\left\{\left(\sum_{n}\right)^{2} / n\right\}\right\} .\right.
$$

COMFIDENTIAL

Tawe J26
CARBINE AUTOMATTC HITE AND :TANDARD ERRORS, RAW DATA

Sun	8quad	Holoe counteo, 1	Bum of squares $\Sigma^{2}{ }^{2}$	s*	$1+25$	1-2S
Day-stutis Condition						
20	A	179			239.6	98.4
18	B	114			184.6	33.4
41	D	88			188.6	B. 4
, 4\%	C	106			168.8	25.4
Subtotal		488	64,889	40.3	807.4	162.6
Day-btandias Condtion						
45	D	46			173.4	-41.4
22	8	142			249.4	34.6
Subrotal		208	24,520	33.7	422.6	-6.8
Night-8ittiag Condition						
24	A	28			30.2.	21.76
47	C	23			27.24	18.76
Subtotal		40	1216	2.12	57.48	40.52
Total		742		54.2		

Table J27
CARBINE AUTOMATIC HITS AND ETANDARD ERRORS, ADJUSTED LATA

COMFIDENTIAL

Table J28
CARBINE SEMLAUTOMATIC HITS AND BTANDARD ERRORA，RAW DATA

Rua	8quad	Hoien courted，k	sum of squares ［解	sa	A＋2．	b－2S
Day－altting Condition						
17	B	178			222	134
19	A	135			179	91
42	D	171			218	127
4	C	184			238	140
subrotal		668	113，008	22.0	644	492
Day－standing Conditiou						
21	B	202			282.6	121.4
46	D	145			225.6	64.4
Sutrotal		347	61，829	40.3	508.2	186.6
Night－stiting Condition						
23	A	42			77.4	8.8
48	C	17			52.4	－164
Subeotal		59	2，053	17.7	129.8	－11．6
Total		1074	176,888	88.4		

$$
a r^{2}=\left\{1 /(r-1) 1\left\{\sum h^{2}-\left[\left(\sum h\right)^{2} / n\right]\right\}\right.
$$

Table J29
CARBINE SEMIAUTOMATIC HITS AND STANDARD ERRORS，ADJUJTED DATA

Run	8quad	Hit adjusted，if	Sum of squares こ h^{2}	${ }^{2}$	h．2い	$h-25$
Day－Situing Conditioa						
17	B	177			${ }^{2} 21.6$	132.4
19	A	135			179.8	20.4
42	D	179			223.6	138.4
44	c	162			2286	137.4
Subrotal		873	114.719	22.3	1514	494.6
Dey－Etandins Condition						
21	B	213			317.6	100.4
46	D	138			243.6	34.
Buctotal		352	64，600	823	5812	142.6
Nrga－bitues Conation						
23	A	48			902	－0．2
46	C	13			34 2	－．3\％
Eubtiotal		86	2，104	22 ＊	148.1	38.4
Total		1083	181，003	707		

$$
a^{2}=(1)(a-1) \mid\left\{\left(4^{2}-\mid(2 x)^{2} \sqrt{2}\right)\right\}
$$

CONFIDENTIAL

Table 330
T4B AUTOMATTC KITE AND gTANDAKD EHRORS
HAW MATA

Run	Squad	Holea counted, ,	dum of squeres $\sum 4^{2}$,	$\cdots+2 i$	(-2
Day-Sittlog Condition						
10	3	18			105.08	68.92
12	A	102			121.08	82.92
48	D	86			10508	88.82
\$1	C	103			122.08	83.82
subtotal		377	35.805	934	453.32	300.88
Day-standing Condetion						
14	B	91			123.6	58.4
33	D	68			100.6	35.4
Subtotel		153	14.905	16.3	224.2	93.8
Night-Sitting Contlion						
18	A	75			97.8	52.4
53	C	59			81.8	36.4
Sublotal		134	9.108	11.3	179.2	88.8
Total		870	57,818	15.6		

Table J31
T4B AUTOMATIC HITS AND STANDARD ERROHS, ADJUSTED DATA

Hus	Squad	Hite sdjuated, 1	Jum of equares $\Sigma 4^{2}$	5	$k+2 S$	$k-2 S$
Day-stetag Condtion						
10	B	88			101.8	702
12	A	104			118.8	882
49	n	O_{2}			107.8	78.2
51	C	98			114.8	83.2
Sutantal		381	36.477	$7 . y$	4442	317.8
Day-gendiag Condition						
14	8	81			138.2	45.8
53	D	59			1042	13.8
Subrotal		150	11.762	22.6	2404	598
Night-stasding Condluium						
16	A	78			1814	80
85	C	38			09.4	32.
3htoral		134	-. 140	129	1048	182
Totel		485	57 \%	193		

COMFIDEHTIAK

Table Jn?
T48 BEMIAUTOMATLC HITS AND STANDARD ERKOHB,
RAW DATA

Run	8quad	Holes counted, h	sum of squarea $9 h^{2}$	*	+ +25	$h-2 s$
Dey-3itting Condition						
9	B	97			138	55
11	A	143			185	101
50	D	127			189	85
52	C	140			182	98
Subtotal		50%	65,587	31.0	675	339
Day-Btanding Cunditimn						
13	8	137			139.72	11438
54	D	118			130.72	105.28
Subiuti 1		245	36.083	*. 36	270.44	319.56
Might-8itting Cordition						
15	A	B5			80.34	80.76
56	C	82			9.124	77.78
- potal		167	13.949	2.12	175.4	158.52
Total		919	109,569	240		

$$
a \cdot 2=\left\{I /(n-1) \mid\left\{\Sigma h^{2}-\{(\Sigma t)-1 n \mid\}\right.\right.
$$

Table $\$ 33$
T4A SEMIAUTOMA TIC HITS AND BTA NDARU ERROM6. ADNUBTED DATA

Run	Squad	Hute sdjueted, "	Sum of squal res こ h^{2}	\checkmark	+2,	h-3*

Daj-sitting Conditior

9	B	111			150.4	716
11	A	157			196.4	1176
50	D	144			183.4	104.6
52	C	130			189.4	90.6
Subtotai		843	74.606	197	68P. 6	384.4
		Day standine Condition				
13	B	1.1*			183.2	19.8
34	D	109			1402	77.6
Subtolal		340	29.042	18	302.4	177.6
		Nigm-stinge Condition				
13	A	AS			- 3	P*
58	(02			Hen 3	77.1
subitual		10.	11.949	21		198.6
Trel		* 4 *	$11 \cdot 10$	It.		

CONFIDENTIAL

The other value of $1=9.56$ shown in Table J34 is the test for mean differences ot pairs of correlated data, and is calcuiated as the ratio of the mean difference to the estlmated standard error of this mean difference. The value of $1=9.56$ for the 7 degrees of freedom availabie is significant at about the 01 percent level. Both these tests constltute strong evidence that the increase of duplex over single-buliet ammunition in total hlts for day-sitting runs is a real effect. It will be observed that the increase of total hits in this sample is over 50 percent.

In Table J36 the totai hlts for all the duplex and single-builet runs are compared, and the same type i tests calculated as expiained prevlously for Table J34.

Table 34
SUNGLE-BULLET AND DUPLEX HITS, DAY SITTING, RAW DATA

Squad	Single bullet		Duplex		Duplex minus single bullet
	Run	Holes counted	Run	Holes counted	
A	1	90	2	166	76
B	3	105	\pm	170	65
A	25	157	-	-	-
B	27	144	-	-	-
C	34	111	33	159	48
D	36	31	35	132	51
C	58	100	57	209	109
D	60	120	59	195	75
E	65	202	66	292	90
F	67	105	68	160	55
No. of runs		10		8	8
Sum (holes counted)		1.215		1,483	569
Mean		121.5		185.4	71.1
Sum of squares		159,6®1		291,731	43,537

| liem | Difference of means | Mean difference |
| :--- | :---: | :---: | :---: |
| Legrees of treeciom | 3.18 | 9.56 |
| Approximate significance level, q | 16 | i |

Even with the reversal for one pair of runs for night-sitting condition, where more hits were scored with the single-bullet than with duplex ammunition (shown in Table 336), the two values fort of 3.12 (30 degrees of frecdon)) and 7.33 (13 degrees of freedom) give strong evidence that the average increase (over 50 percent) for total hits in all dupier. runs over ail wingle-builet runs is a real effect.

Table 338 show's the resulty of significance tests in comparing triplex with duplex and single-buliet ammunitions in total hits. There are only two triplex runs. which, of course, is a very smail sample. When conipared with

CONFIDENTIAL

the two corresponding single-buliet runs, even though there is an average increase of nearly 70 percent in total hits for triples, the difference is slgnifleant at oniy about the 20 percent level. When the ayerage of the 2 triplex runs is compared with the average of the 10 single-bullet day-sitting runs and 8 dupiex day-sitting runs, it is found that the corresponding t values are significant at about the 0.2 percent level and the 15 percent level. This is strong evidence that triplex ammunition is superior to the single-bullet ammunition, but not very strong evidence that trlplex ammunit'... Is really superior to duplex ammu nition in total hits. The relative increase of trlplex over duplex ammunitions total hits is over 30 percent, and if this heid for a few more triplex runs the significance of the difference wouid increase rapidiy.

Tsble 335
SINGLE-BULLET AND DUPLEX HITS, DAY SITTING, ADJUSTED DATAa

Squed	Single bullet		Duplex		Duplex minus single bullet
	Run	Hita scijusted	Run	Mits sdjuated	
A	1	91	2	166	75
B	3	108	4	158	50
A	25	157	-	-	-
B	27	132	-	-	-
C	34	110	33	154	44
D	36	71	35	123	52
C	58	90	57	214	124
D	60	121	59	201	80
E	65	200	86	276	76
F	67	100	58	156	56
No, of runs		10		8	8
Sum (hits sdjusted)		1,180		1,448	557
Mean		118		181	69.6
Sum of aquere		151,900		278,074	,

8
((difference of two means assuming equal varisnce) 3.14
Degrees of freedom 16
Approximate significsnce level 1%

COMPARISON OF AUTOMATIC AND SEMIAUTOMATIC
CARBINE AND T48 FIRING

Table J40 is a summary of the analysis of the hit probabllities from the 16 day-sitting runs, which are balanced with respect to the four average suads and the four types of fire; carbine automatic, carbine semiautomatic, T48 automatic, and T48 semiautomatic. Table J40 shows that the semiautomatic fire for both the carbine and the T48 is consistently better than the automatic fire. The hit probablities for the two types of semlautomatic fire are not very different, but on the average they are more than twice the corresponding value for the automatic fire. It might be concluded without further analysis that automatic fire is inferior to semiautomatic fire as far as hit probabillies are concerned.

CONFIDENTIAL

Table J36
SINGLE-BULLET AND DUPLEX HITS, ALL RUNS, $K A W$ DATA

Squad	Singie bullet		Duplex		Dunlex minus single bullet
	Run	Hotes couited	Run	lloles counted	
Day Sitting					
A	1	90	2	166	76
B	3	105	4	170	65
A	25	157	-	-	-
B	27	144	-	-	-
C	34	111	33	159	48
D	36	81	35	132	51
C	58	100	57	209	109
D	60	120	59	195	75
E	65	202	66	292	90
F	67	105	68	160	55
Day Standing					
A	5	31	6	190	109
A	29	108	-	-	-
C	36	110	37	187	77
C		103	61	158	55
Night Sitting					
B	7	53	8	44	-9
B	31	41	-	-	-
D	40	27	39	43	16
				109	64
No. of runs		18		14	14
Sum (holes counted)		1,783		2,214	881
Men		99.03		158.14	62.9
n:m of squares		207,799		403,430	68,805
Item Di			Difference of means Mean		difference
t			3.12	7.33	
Degreen of freedom			30	13	
Approxlmate significance level, \%				0.1	

COMFIDENTIAL

Table J37
SINGLE-BULLET AND DUPLEX HITS, ALL RUNS, ADJUSTED DATA ${ }^{a}$

Squad	Single builet		Duplex		Duplex minua aingie builet
	Run	Hita adjusted	Kun	Hits adjusted	
Day Sitting					
A	1	91	2	166	75
B	3	108	4	158	50
A	25	157	-	-	
B	27	132	-	-	-
C	34	110	33	154	44
D	36	71	35	123	52
C	58	90	57	214	124
D	60	121	5	201	80
E	65	200	66	276	76
F	67	100	68	156	56
Day Standing					
A	5	78	6	182	104
A	29	117	-	-	--
C	36	109	37	193	84
C	62	99	61	148	49
Night Sitting					
B	7	56	8	4.4	12
B	31	42	-	-	
D	40	26	39	41	15
D	64	42	63	112	70
No. of runs		18		14	
Sum (hite adjusted)		1,749		2,168	891
Mean		97.17		154.86	63.64
Sum of squares		200,695		386,512	-

a
. AItference of means) 3.11
Degrees offreedon 30 Approximate significance level 1%

CONFIDENTIAL

Table J38
TRIPLEX, SINGLE-BULLET, AND DUPLEX HITS, DAY SITTING, RAW DATA ${ }^{a}$
A Triple.. with Corresponding Single-Bullet Hits

Squad	Single bullet		Triplex		Triplex minus single bullet
	LRun	Holes counted	Run	Holes counted	
A	25	157	26	301	144
B	27	144	28	201	57
Nu. of runs		2		2	2
Sum (holes counted)	301	502	201		
Mesn	150.5	251	100.5		
Sum of squares	45,385	131,002	23,985		

${ }^{\mathrm{a}}$ t (difference of means) 2.31
Degrees of freedom : Approximate signifleance level 20 A
B. Triplex with Averages of Duplex and Single-Bullet Hits

1tem	Duplex		Triplex		Single bullet	
	Runs	Holes counted	Runs	Holes counted	Kuns	Holes counted
Total	8	1,483	2	502	10	1,215
Mean		185.4		251		121.5
Sum of squares		291,731		131,002		159,621

Item	Triplex compared to duplex means	Triplex compared to single-bullet means
Degrees of freedom	1.59	4.05
Approximate significancelevel. q	15	10

CONFIDERTIAL

Table J39
TR1PLEX, SINGLE-BULLET, AND DUPLEX H1TS, DAY SITTING, ADJUSTFD DATA ${ }^{\text {B }}$
A. Triplex with Correaponding Single-Bullet Hita

| Squad | Single bullet
 Run | | Hits adjusted | Run | Hits adjusted |
| :---: | :---: | :---: | :---: | :---: | :---: | | Triplex minus |
| :---: |
| aingle bullet |

${ }^{2}$ (difference of means) 1.77
Degrees of freedom 1
Approximate significsace level
B. Triplex with Averages of Duplex and Single-Bullet Hits

ltem	Duplex		Triplex		Single bullet	
	Runa	Hits adjusted	Runs	Hits adjusted	Runs	

Item	Triplex comparad to duplex means	Triplex compared to aingle-bullet meane
Begreen of freerlam	1,40	347
Approximate slgnificance level, 8	8	10

confldential

Comparison of the four squads shows that the mean hit probabllities are practically the same for Squads A and C and also for Squads B and D. It is ques tlonable whether Squads A and C are really inferior to Squads B and D. Anaiysis -ui-variance calculatlons may shed llght on this question.

The assunyptions made in applylng analysis of variance to any rectangular array (which covers the tables of thls section) are briefly as follows:

$$
\begin{equation*}
x_{i j}=C+a_{i}+\beta_{j}+e_{i j} \tag{J5}
\end{equation*}
$$

where $x_{i j}=$ the entry for the i th row and j th column
$C=2$ constant
$\alpha_{b}=$ the effect of the ith row
$\beta_{1}=$ the effect of the i th column
$e_{i j}=$ a normaliy distributed random error
Expressed in words, this assumption is simply that the entries in the rectangular array are, except for random error, additlve functions of the variables represented by the rows and columns. Any departure from additivity of the effects infiates the error and decreases the precision of the tests. The assumption that $e_{i j}$, the random error, is normaily distributed is necessary in order to apply the F test and establish a slgnificance level for rejecting an hypothesis.

The next assumption is that the row and column effects, α_{i} and β_{j} are zero. This is the null hypothesis-or the straw-man technique. If this hypothesis can be disproved, there is evidence that the rows, or columns, do have is real effect.

For an n row, m column rectangular array the total variance is subdivided according to the following identity:

$$
\begin{equation*}
\sum_{11}\left(x_{i j}-\bar{x}\right)^{2}=m \sum_{i}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n \sum_{j}\left(\bar{x}_{j}-\bar{x}^{2}+\sum_{i j}\left(x_{i j}-\bar{x}_{i}-\bar{x}_{i}+\bar{x}\right)^{2}\right. \tag{J6}
\end{equation*}
$$

where $x_{i j}=$ the entry for the ith row and ith column
$X_{i}=$ the niean of the th row
$\dot{x}_{j}=$ the mean of the i th column
$\bar{I}=$ the general mean
The quantity on the left in Eq. J6 ls the total sum of squares of deviations from the general mean, which is subdivided into sums of squares attributabie to rows, columns, and error. The degrees of freedom are mn-1,m-1,n-1, and $(n-1)(m-1)$, respectively, for the total, row, column, and error sum of squares. The total sum of squares can be shown to be equivalent to

$$
\begin{equation*}
\sum\left(z_{11}\right)^{2}-\left(\Sigma \Sigma_{i 1}\right)^{2 / n m} \tag{J7}
\end{equation*}
$$

which is more convenient for numerical calculation. The row and column sum of aquares can also be calculated more conveniently from the similar equivalent expreasions. The error sum of squares can be calculated directly from the expression shown in Eq. J6, or it can be obtained by suttracting the sum of the row and column sum of aquares from the total sum of squares.

CONFIUENTIAL

The numerical entries in the analysis-of-variance tables in this section were calculated as explained previously. The F values are the ratios of row (or column) mean square to the error mean square. Under the null hypothesls each of the three mean square values shown in any one of these tables is an unblased estimate of the varlance in the array from whlch lt was calculatsd. The F function is the ratlo of two unblased estimates of the variance of a normal dist ribution. Its mathematical form is known, and its values for various probabllity levels have been tabulated.

In the analysis of vartance (Table J40), the F value of 30.7 is well beyond the 0.5 percent probabllity levei value of 8.7 found in an F table for 3 degrees of freedom. it is estimated that the 30.7 is at about the 0.1 percent level. This means that under the assumptlons used, which except for the null hypothesis are believed to be reasonable for Table J 40 , the probability of obtaining differences as large as was iound for type of fire from chance variation alone in an experiment of this slze is nc more than 1 in 1000 . This is strong evidence that the differences in hit probabilities for types of flre shown in Table J40 represent real difierences, and this confirms a previous tentative conclusion that semiautomatic fire was superior to automatic ire in these runs. In contrast, the F value of 1.1 found for squad differences is well within reasonable sampling variation. Herce, there is no substantial evidence from the runs in Table J 40 that Squads B and D are really superior to Squads A and C. It should be noted that these caiculations do not prove there are no differences in the squads.

In Table J42 a similar analysic is seen for hit probabilities from the elght day-stasiding runs by Squads B and D. Again there is strong evidence from the results of these runs that the average hlt probabilities from the semlautomatic flre, which are more than twice corresponding values for automatic fire, represent real impiovements. The F value of 112 for type of fire is at approximately the 0.2 percent significance level, and ls strong evidence for refecting the null hypothesls. The F value of 36.1 for squad differences glves substantlal evidence that Squad B is superlor to Squad D in these day-stinding runs.

Table J44 shows the hit probabilltles and analysis for the eight nightsitting runs by Squads A and C. Again there is evidence here that the semiautomatic fire is superior to the automatic flre. This is consistent for the three iliumination-position (IP) conditlons. A more pronounced effect seen in Table J44 is the superiority of the T48 ojer the carbine flrings. This ls a reversal from the results of the daytime flrings, where the carbine is slightly better than the T48. There is no substantinl evidence in Table J44 of real squad differences. In fact the variance estimated from squad differences is less than the variance estimated from the error.

The totai number of holes counted in the same 16 runs that were examined for hit probabilities is shown in Tables J 40 to J 45.

Tabie $J 46$ shows that in the 16 day-sitting runs for bcth the carbine and the T48 rifle, the semiautomatic fire achieved about 30 percent more total hits than the corresponding automatic firs. Aiso there is evidence here that the carbine achieves more total hits than the T48 for both automatlc and semiautomatic fire. The evidencs is not vary strong that any of ths values in Table J46 represent real sffects. The type-of-fire duferences show slgnificance at only about the 3 percent level.

COMFIOENTIAL

The metans for rquads in Tables J 40 and J 41 and J 46 and J 47 are of inter. est even though the differences are not statistically significant in these tabies. Squads A anci C apparently achieved an increase in total hits compared to Squads B and D at the expense of less accurate fire. This appears to be a reasonable conjecture, but it cannot be given as a substantially suppcrted conclusion.

Table J 48 shows the total hit results for the eight day-standing runs by Squads B and D. Here again there is evidence in the row means that semiautomatic fire achieves more hits than automatic fire and that the carbine achieves more hits than the T48. The row means are significantly different at only about the 8 percent level, which is not considered strong statistical evidence that the differences are real. However, the relative consistency in the row means in Tables J 48 to J 51 gives much stronger evidence, when considered together, that these differences represent real effects than is available from one table aione. It is clear that the consistency in the tables strengthens the evidence that the effects indicated by the row means are real. Methods are avaliable for comparing individual pairs of means or each mean with the general mean.

Tables J 48 and J 48 alsu show that in total hits Squad B was superior to Squad D in almost the sume ratio as shown for the hit probabilities in Tables J42 and J43. This difference in total hits for the two squads is significant at approximateiy the 8 percent levei. Tables J 48 and J 49 show that the superior hit probabilities of Squad B on these four pairs of runs (shown in Tabies J42 and J 43) were not achieved as the result of a slower firing rate. This strengthens the evidence in Tables J42 and J43 that Squad B was superior to Squad D on these runs. However, the fact that there is essentially no difference in the performance of squads B and D on the day-sitting runs (shown in Tables J40, J41, 346 , and J47) does not permit any general conciusion concerning these two squads.

Tables J 50 and J 51 show the total hits for Squads A and C in the four pairs of night-sitting runs. Again the semiautomatic fire for both rifies is superior to the corresponding automatic fire. The superiority of the T48 over the carbine is more pronounced for night firings. This same superiority of the T48 over the carbine in hit probabilities was seen for these runs in Tabies J44 and J45. The explanation for this is apparently in the type of sights for the two rifies. For night firings the targets cannot be seen as well through the carbine as through the T48 sight.

Squad A achieved about 25 percent more hits than Squad C on these four pairs of night runs. Significance at approximately the 12 percent levei is evidence, bu* not very strong evidence, that Squad A is really superior to $S q u a d C$ in these runs. In Tables J 44 and J 45 Squad B is seen to score an average hit probability of .055 , which is about 12 percent better than the .049 scored by Squad D on these runs. This difference is not statistically significant even at the 50 percent level.

From the foregoing analysis of the 32 runs made using the carbine or Ta 8 rifle, the following conclusions are drawn:

1. The semiautomatic fire for both the carbine and T48 risle is clearly superior to the corresponding automatic fire in both total hits and hit probabilities.
2. In general the carbine scores silghtly better for daytime runs than the T48 in both tctal hits and hit probabilities. The evidence is not strong that the

CONFIDENTIAL

Tuble 540
CARBINE ANI) TAS HIT PROBABILITIES, DAY-SITTING CONOITON, RAW DATA

Squads	Type of fire								Tutal	Mean
	Carbinm autumatic		Carbine semlquturnatic		T4K automalic		T48 yemifautomate			
	Run	"	Run	f	Hun	'	Ilun	p		
A	20	. 106	19	. 178	12	. 097	11	. 243	. 624	. 156
B	1 N	. 112	17	.278	10	. 104	9	. 230	. 724	. 181
C	43	. 095	44	. 240	51	. 093	52	. 199	. 627	. 157
1)	41	.136	42	. 266	49	. 112	50	. 206	. 720	. 180
Total		. 449		. 962		. 406		. 778	2.695	
Mean		. 11225		. 2405		. 1015		. 2195		. 1684

Analvets of Variance

Surce of varítion

${ }^{3}$ No subneantial evidence ul a real eflect.

Tablo 341
CARBINE. AND T4S HIT PROBABILJTIE.S, DAY-SITTING CONDITION, ADJUSTED DATA

Squads	Type of tire								Total	Mean
	Carbine automatic		Carbine Bemiatumatic		T43 autcmatic		T48 aemlautomatic			
	ikun	r	Run	-	Run	p	Run	P		
A	20	. 096	19	. 178	12	.098	11	. 243	. 615	. 154
B	18	. 120	17	.250	10	. 113	y	. 2331	. 744	. 186
C	43	. 095	44	. 251	51	. 097	52	. 200	. 643	. 161
D	41	. 115	42	. 293	49	. 106	50	. 222	. 73 H	. 185
Toxal		. 426		1.002		. 418		. 696	2.740	
Mean		. 1065		. 2.05		. 1040		. 2240		. 1.

Analvisis of Variance

sinurce of variation	Sum of sjusrea	Degrees of Ireedom	Mean equari	\& value	Approximate elghificar e level 4
Type o! lire	.071113	3	. 023704	33.5	0.1
Squents	.003238	3	. 001079	1.5	37^{1}

an autntantial rifitence of a real effert.

CONFIDENYIAL

Table J42
CARBLNE AND T48 HIT PHOBABILITIES, DAY-8TANDING CONJITION, RAW DATA

Squada	Type of flre								Total	Mean
	Carbine automatic		Carble aeme automatic		T48 automatlo		$\begin{gathered} \text { T48 } \\ \text { seml- } \\ \text { automatic } \end{gathered}$			
	Rus	\cdots	Run	P	Aun	\cdots	Rua	!		
B	22	. 086	21	. 206	14	. 099	13	. 173	. 563	. 141
D	45	. 060	46	. 178	53	. 049	54	. 138	. 427	. 107
Total		. 146		. 984		. 148		. 312	. 996	
Mean		. 073		182		. 074		. 156		. 124

Analysia of Varlance

Source of variation	Sum of squares	Degreen of freedo.n	Mean square	F value	Approximate afaifleance level. \%
Type of fire	. 021498	3	. 007166	112	0.2
Squada	.C02312	1	. 002312	36.1	1

Table J43
CARBINE AND T48 MIT PROBABILITIES, DAY-BTANDING CONDITKON, ADUSTED DÁTA

Squada	Type of t1re								Total	Mean
	Carbine antomatic		$\begin{aligned} & \text { Cerblne } \\ & \text { seml- } \\ & \text { automatic } \end{aligned}$		T48 sutomatle		T48 amiautomatic			
	Run	P	Ru*	p	Rus	P	Rus	-		
B	22	. 087	21	. 204	14	. 089	13	.172	.582	.1405
D	45	. 064	46	179	83	. 046	54	. 135	. 424	. 106
Total		. 151		. 393		. 145		. 307	. 986	
Meas		. 0755		. 1015		. 0725		. 1835		. 123

Anelyele of Vertance

source of variation	suin of aquarea	Degreen of I reedom	Mean aquare	* value	Approxitinte algalficance level. \%
Trpe of flre	. 020858	3	. 008953	73.2	0.4
Suasio	.002381	1	. 002381	25.1	1.8

CONFIDENTIAL

Table J44
CARBINE AND T48 HIT PROBABLITIES, NIGKT-SITTLNG CONDITIUN, RAW DATA

Squade	Type of fire								Totel	Mean
	Carbine aulcmatic		Carbine -0misutomat!c		T48 automeitc		$\begin{aligned} & \text { T\&8 } \\ & \text { semi- } \\ & \text { automatlc } \end{aligned}$			
	Run	P	Run	P	Run	P	Run	P		
A	24	$\begin{aligned} & .018 \\ & .028 \end{aligned}$	$\begin{aligned} & 23 \\ & 48 \end{aligned}$	$\begin{aligned} & .041 \\ & .021 \end{aligned}$	10 53	$\begin{array}{r} .052 \\ .054 \end{array}$	15 56	$\begin{gathered} .109 \\ .086 \end{gathered}$.220 .197	.655 .049
Total		. 044		. 082		. 106		. 205	. 417	
Mean		. 022		. 031		. 053		. 1025		. 052

Analyale of Variance

Source a veriation	Sum of aquerea	Degreee of freedom	Mean square	F value	Approximate algatficance level. \%
Type of fire	. 007785	3	. 002598	31.646	1
Squeds	. 000072	1	. 000072	. 878	48^{4}

No auostantial evidence of a real effect.

Table 345
CARBINE AND TAA HTT PROQABILITIES, NIGHT-SITITNG CONDITION, ADJUSTED DATA

Squede	Type of flre								Total	Men
	Carbise automatic		Cerbine semlautomatio		$T 48$ atomatic		$\begin{gathered} \text { T48 } \\ \text { semal- } \\ \text { eutomatic } \end{gathered}$			
	Rus	p	Run	P	Rus	-	Rua	P		
A	24	. 018	23	. 038	16	. 051	16	. 109	. 217	. 06425
C	47	. 024	48	. 019	-	.068	84	.086	. 196	. 048
Totel		. 044		. 058		. 107		. 204	. 413	
Mean		. 022		. 023		. 0535		. 102		. 051628

Aanlyolia of Variasce

Source of variatioe	Sum of aquarea	Degrees of freedom	Moas equare	* velua	Approximate - igntfloance level 4
T) peof fira	.00788 1	3	.002380	27.292	1.3
Squede	.0000S5	1	.00035	9.573	-*

an evidemee of a rosl effect

CONFIDENTIAL

Table J46
CARBINE AND TA TOTAL HITS, DAY-SITTING CONDITION, HAW DATA

${ }^{a}$ No evidence of a real effect.

Table 347
CARBINE AND T48 TOTAL HITS, DAY-SITTING CONDITION, ADJUSTED DATA

Squada	Type of fire								Tolal	Mean
	Carblne sulomatic		Carbine semlsutomatic		T4B nutomatlo		$\begin{gathered} \text { T48 } \\ \text { semi- } \\ \text { sutomatle } \end{gathered}$			
	Run	Hila	Run	Hit	Run	Hits	Rua	Hite		
A	20	173	19	138	12	104	11	157	589	142.25
B	18	108	17	177	10	88	9	111	482	120.50
C	43	102	44	182	51	99	82	130	513	128.25
D	41	59	42	179	49	92	50	144	474	118.50
Total		442		873		381		542	2038	
Mesa		110.50		188.25		95.28		135.50		127.3.8

Anslyale of Variance

Source of veriation	Sum of equares	Defrees of freodum	Mean aquare	f valua	Approximate - Menificance teval, \%
Type of fire	12.214	3	4071	4.58	1
squads	1,322	3	484	0.52	-

${ }^{3}$ No evidence of a real effect.

CONFIDEKTIAL

Tnble 148
CARBINE AND T4甘 TUTAL HITS, DAY-STANDLNG CONUITION, RAW DATA

Squada	Sppo of fire								Total	Meas
	Carbine automatle		Carblne semi automatic		$T 48$ aufomatic		T48semi- automatic			
	Run	Hita	Tus	Hte	Hus	Hite	İun	Hits		
B	22 45	142 66	21 46	202 145	14	91 68	13	127 118	562	140.5
Tota!		208		347		159		245	959	
Mean		104		173.5		79.5		122.5		119.875

Analyaia of Varlanon

Source of variation	Sum of equarea	Degreea of freedom	Boan aquary	r value	Approximate signtficance level, \%
Type of f!re	9,529	3	3178	6.72	B
Squads	3,403	1	3403	7.23	8

Table J49
CARBINE AND T48 TOTAL HITS, DAY-STANDING CONDITION, ADJUSTED DATA

Squads	Type of fire								Total	Mean
	Carbine automatle		Carbine aemiautomatic		T48 automatic		$\begin{gathered} \text { T48 } \\ \text { aemi- } \\ \text { automatic } \end{gathered}$			
	Hun	HIte	Run	HtL	Run	Hite	Run	HiLe		
8	22	160	21	213	14	91	13	131	395	148.75
D	45	59	46	139	53	59	54	108	366	21.50
Total		219		352		150		240	961	
Mear		109.5		178		75		120		120.125

Anslyale of Verience

Soure of varlatlon	Bum of squarea	Degreea of Ir redom	Maan aquare	F value	Approximate algalficance lovel, 仡
Type of fir	10,542	3	3514	3.18	11.9
Squade	6,553	1	6355	9.65	3.5

CORFICENTISAL

Table J50
CARANE AND تै46 TOTAL HITS, NIOHT-GITTING CONDITION, RAW DATA

Squade	Type of fire									Total	Mean
	Carblne mutomatic		Carbine semlmutomatic		$\begin{gathered} \text { T48 } \\ \text { mutomatic } \end{gathered}$		$\begin{gathered} \text { T48 } \\ \text { nem! } \end{gathered}$automatie				
	Run	Hite	Run	H4\%	Run	Hita	Run		Hita		
$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 24 \\ & 47 \end{aligned}$	$\begin{array}{r} 26 \\ \ldots \quad 23 \end{array}$	$\begin{aligned} & 23 \\ & 48 \end{aligned}$	$\begin{aligned} & 42 \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 55 \end{aligned}$	75 59	$\begin{aligned} & 15 \\ & 56 \end{aligned}$		$\begin{aligned} & 85 \\ & 82 \end{aligned}$	$\begin{aligned} & 228 \\ & 181 \end{aligned}$	$\begin{aligned} & 57 \\ & 45 \end{aligned}$
Total		49		59		134			87	409	
Mean		24.5		29.5		67			83.5		51
	Analyela of Variance										
Soarce of variation		Sum of equares		Degrees of freedom		Mean maure		F	value	App alga	rimate Itance el, \%
Type of llze Squada		$\begin{array}{r} 4054 \\ 288 \end{array}$		3		$\begin{array}{r} 1651 \\ 288 \end{array}$			30.6		1
			5.33				12				

Table 351
CARBINE. AND T4 TUTAL HITS, NIGHT-8ITTING CONLITION, ADUUSTED DATA

Spuada	Type of fire								Total	Mean
	Carble automatic		Carbine aemiqutomatic		T48 mutomatic		T48 semlautomatlc			
	Run	Hita	Run	H14.	Run	Hita	Run	Hita		
A	24	28 32	23	45 13	16 55	76 56	15 56	65	232 185	56 46.25
Total		58		5R		134		187	417	
Mean		29		29		67		83.5		52.125

Analyala of Varlance

Source of variation
Type of fire Squade

${ }^{2}$ No aubstantial evidenoe of a real effect.

COHFIDEMTIAL

results represent a real difference in the two rlfies-par:icuiarly with respect to the hit probabilities.
3. The T48 is superior to the carbine for night firings. This superlorlty, at least for the target systein used in this test, can probably be attrlbuted to the difference in sights on the carbine and T48.
4. The evidence on the relative skill of the four squads (A, B, C, and D) is not conclusive. On the day-standing runs, Squad B's average hit probability of .141 is significantiy better at the 1 percent level than Squad D's average of .107. However, on the day-sitting runs Squads B and D had almost the same average hit probabilities, and both Squads B and D appeared slightly better than Squads A and C, but none of these squad differences on the $d_{\text {ney }}$-sitting runs were statistically slgniflcant even at the 25 percent level. Neither was the difference in hit probability for Squads A ard C on the night-sitting runs statistically significant. Thus there appears to be no certaln basis from the results of these 32 runs for a difference in rating of the four squads participating.

COMPARISON OF SINGLE BULLETS AND FLECHETTES

In comparing the two fiechette runs (one day standing and one night standing) with corresponding single-bullet AP runs, it is necessary to balance the single-bullet information with that of the flechette. The single-bullet runs used 22 targets with a standard program. Run 69, the flechette day-standing run, used only 19 targets, and 4 of these appeared for only half the normal program time. Table F39 shows the shots-fired information ϵ quated to the total adjusted ammunition count of 2824 . Table F 40 dollows a slmllar pattern in balancing the four single-bullet night-sltting runs against Run 70, the one flechette ulgitstanding run.

Tahle J52
HIT PROBABILTTES AND STANDARD ERRORS OF FLECHETTES COMPARED TO SINGLE BULLETS

Ammunlton	Niumination	Firion position	Ammunitlon count, n	Target holes	$p=$ holes $/ n$	$\sigma=\sqrt{p q / n}$
Single bullet	Day	Standing	418	65	.156	.0177
Flechette	Day	Standing	264	109	.410	.0303
Single hullet	Night	Sitsing	574	29	.049	.0090
Flechette	Nlght	Standing	299	99	.343	.0279

Table J52 shows the relatlve hit probabillties and standard errors of singlebullets and flechettes, with day and night comparisons. The flechetie hit probabillty is about three tlmes that of the singie bullet for day comperlson and about seven tlmies that of the slingle bullet for the nlght comparison. This table brings out the effectlveness of the flechette ammun!tlon despite the fact that only two such runs were carried out.

CONFIDENYIAL

Table $J 53$ shows the caiculation of the 1 test as a method of comparing the single-bullet and flechet:e runs. It is seen that this value of $(\quad(1=149)$ for 1 degree of freedom ls significant at approximately the 4 percent level. Thls is substantial evidence even from this small sample that the flechette arnmunition glves hit probabllitles that are superlor to those obtained with the singlebullet ammunition.

Table J53
HIT PROBABILITIES OF FLECHETTES COMPARED TO SINGLE BULLETG

Item	Hit probabllities		Difference
	Flechette	Stugle bullet	
Day runs	. 413	. 156	. 257
Night runs	. 343	. 049	. 294
Total			. 551
Mean			. 275
Sum of squares			. 152485
			. 000685
Vartance (of mean)			. 000342
σ mean			. 0185

$t=.275 / .0185=14.9$. This value of t for 1 deg of freedom is significant at approximately the 4 percent level.

FIRING POSITION AND ILLUMINATION

The three combinatlons of firing position and illumination in the SALVO I experlment were day sitting, day standing, and night sitting. Tabies J54 and J55 show a summary of the results of 34 day -sitting runs, 15 day-standing runs, and 15 nlght-sitting runs, with each of these sets of runs further subdivided according to six types of fire. The 64 r ns in Tables J 54 and J 55 are all the SALVO I experlment runs except for the two triplex and the two flechette runs.

It can be seen from Tables J 54 an 1 J 55 that the number of runs for each type of fire is the same for day-standing and night-sitting flring conditions. Except for two additional day-sitting runs for both the single-bullet and duplex a mmunitions, the number of day-sitting runs for each type of fire is twlce the number of corresponding runs for day standing or night sitting, which means neariy baianced comparisons with lespect to the different types fi=e among the day-sitting, day-standing, and night-sitting runs, even though the mean values for the day-sitting runs are from samples about twice the size of the curresponding samples of day-standing and night-sitting runs. It is true that the effects of different squads are not completely balanced out in Tables 354 and J55, and thls fact should be kept in mind ln drawing concluslons from the computatlons shown in these tables and in Tables $\mathbf{J 5 6}$ and J57. It was shown earlier that the only stistantial evidence of squad differences supported the conclusion of the superinrity of Souad B over the other three average squads. This superlority of Squid B is entanglad to a limited extent in the effects indi-

CONFIDENTIAL

cated in Tables J54 and J55. In any case the squad effect Is smail, andit is believed that squad differences cannot possibly account for the major dilferences shown in Tab'es J54 to J57 for the three combinations of firing positions and iiiummation.

Tables J 54 and J 55 show that the average rounds of ammunition ccunted per run inciease from day-sltting to day-standing to night-sittling positions. There is only one exception to this increased rate of fire: the carbine automatic firing rate is less for night sitting than for day standing. The fact that the t test for differences in rounds of ammunition counted for day sitting and day standing is significant at approximately the 1 percent levei is strong evidence that the indicated increase in rate of fire is real. The increase in rate of fire when comparing the day-standing to night-sitting firings is, on the average, much smaller. This comparison inciudes the reversal for auromatic fire with the carbine mentioned eariler. No statistical test has been appiled to the indicated increase in the rate of fire for the night-sittling over the day-standing positlon. Table J54 shows that the average rounds counted per run for day-standing fire is 924 and for night-sitting fire is 955 . It is evident that the increase in rate of fire for night-sitting over day-standing fire is smail, and the evidence that thls is a real effect is not strong.

The average number of target holes per run decreases progressively from day-sitting to day-standing to night-sitting positions except for one coniparison. The average number of target holes for carbine semautomatic fire is 6.5 holes greater for day standing than for day sitting. In Table 356 the t test shows that the average increase of 9.3 target holes for the day-sltting over the day-standing position is statlotlcally significant at about the 7 percent level. The increases in hits for day sitting were achieved along with a 15 to 20 percent reduction in average ammunitlon expenditures.

The hit probabilities, of course, show a more pronounced progressive average reduction than the target holes with the change in firing-positioniliumination condition. This relation is expected since the rate of fire is progressively increasing. It is seen from Table J56 that the average hit probabilithes for all six types of fire show an increase for day-sitting over day-standing positions, and the t test shows that the average increase of about $41 / 2$ percent (which is a relative increase of more than 25 percent) in hit probabilities is slgnificant at approximateiy the 0.1 percent level. This is strong evidence of a real increase in hit probabilities when changing from the day-standing to the day-sitting position. The decrease in hit probabilities, and also the average number of hits, associated with the night firings is so marked that no statiatical test appears needed to estabiish the night effect as reai.

In summary, it can be concluded from Tables J54, J55, J56, and 557 that in comparing the day-sitting with day-standing with night-zitting firing positions there is a progressive increase in rate of fire and a progressive decrease in both average number of hits and hit probabilities. There is evidence that the IP effects are real.

The eviderce of a reat effect is strong in all comparisons except for the foliowing two: The decrease in average number of hits for the day-standing as compared to the day-sitting conditlons is less than 10 percent, and the increave in firing rate for the night-sitting over the day-standing conditions is less than 5 percent. The statistical evidence that these indtcated effects are reat is not strong. The adjusted data are correspondingly examined in Table J57.

CONFIDENTIAL

Table J54
POSITION AND LLLUMINATION HIT PROBABILITIES AND TOTALHITS, RAW DATA

Ammunition or firing	No. of runs	Total rounds counted	Total holes counted	Hit probabilities	Average rounds counted per run	Average holes sounted per run
	Day-Sittling Condition					
Single bullet	10	6165	1215	. 198	616	121.5
Duplex	8	4626	1483	. 321	578	185.4
Carbine automatic	4	4453	485	. 109	1113	121.2
Carbine semisutomatic	4	2809	668	. 238	702	167.6
T48 automatic	4	3755	377	. 100	939	94.2
T48 semisutomatic	4	2331	507	. 218	583	126.7
Total	34			1.183	4531	818.0
Mean				.197	755	136.0
	Day-Standing Condition					
Single bultet	4	2725	402	. 148	681	100.5
Duplex	3	1947	535	. 275	649	178.3
Carbine automatic	2	2748	208	. 0%	:97.	104.0
Carblne semiautomatic	2	1793	347	. 193	896	173.5
T48 autumatic	2	2308	159	. 089	1154	79.5
T48 semiautomatic	2	1585	245	. 155	792	122.5
Total	15			. 916	5546	758.3
Mean				. 153	924	126.4
	Night-Sitting Condition					
Single builet	4	3336	168	. 050	834	41.5
Duplex	3	2149	196	. 091	718	65.3
Carbine atomstic	2	2349	49	. 021	1174	24.5
Carbine semiautomatic	2	1848	59	. 032	924	29.5
T48 automatic	2	2526	134	. 053	1263	67.0
T48 seminutomatic	2	1638	167	. 102	819	83.5
Total	15			. 349	5730	311.3
Mean				. 058	955	51.9

CONFIDENTIAL

Table J55
POSITION AND ILLUMINATION HIT YROBABILITIES AND TOTAL HITS, ADJUSTED DATA

Ammunition or firing	No. of runa	Total ahota adjusted	Tutal hita adjusted	Hit probabilltiea	Average shota adjuated per run	Average hita adjusted per run
	Day-Sitting Condition					
Single buifet	10	6,119	1180	. 193	611.9	118.0
Duplex	8	4,510	1448	. 321	563.8	181.0
Carbine automatic	4	4,283	442	. 103	1070.8	110.5
Carbine aemlautomatic	4	2,726	673	. 247	681.5	168.3
T49 automatic	4	3,688	381	. 103	922.0	95.3
T48 aemlautomatic	4	2,424	542	. 224	606.0	135.5
Total	34	23,750	4666	1.191	4456.0	808.6
Mean				.199	742.7	134.8
	Day-Standing Cordition					
Single bullet	4	2,657	403	. 152	844.3	100.8
Duplex	3	2,003	523	. 261	667.7	174.3
Carblne autonatic	2	2,757	219	. 079	1378.5	109.5
Carbine aemlautomatlc	2	1,819	352	. 194	909.5	176.0
T48 automatic	2	2,193	150	. 068	1096.5	75.0
T48 aemiautomatic	2	1,567	240	. 153	783.5	120.0
Total	15	12,998	1887	. 907	5500.0	755.6
Mean				. 151	916.7	125.9
	Night-Sitting Condition					
Single bullet	4	3,192	166	. 052	798.0	41.5
Duplex	3	2,119	197	. 093	706.3	65.7
Carblne automatic	2	2,712	58	. 021	1356.0	29.0
Carbine semiautomatic	2	1,832	50	. 032	916.0	29.0
T48 automatic	2	2,527	134	. 053	1283.5	87.0
T48 semiautomatic	2	1,639	187	. 102	819.0	83.5
Total	15	14,020	780	. 353	5858.8	315.7
Mean				. 059	976.5	52.6

CONFIDENTIAL

Table J56
test for differences in sitting and standing positions, raw data

Ammunition or firing	Average rounds counted per run			Average target holes counted			Average bit probabilities		
	Day sittlog condition	Daystanding condition	Difference	Daysitting condition	Daystanding condition	Difference	$\begin{gathered} \text { Day- } \\ \text { sitting } \\ \text { condition } \end{gathered}$	Daystanding condition	Difference
Single bullet	616	681	-65	122	101	21	. 198	. 148	. 050
Duplex	578	649	-71	185	178	7	. 320	. 274	. 046
Carbine automati-	1113	1374	- 261	121	104	17	. 109	. 076	. 033
Carbine semiautomatic	702	896	- 194	167	174	-7	. 238	. 194	. 044
T48 automatic	939	1154	-215	94	80	14	. 100	. 069	. 031
T4s seaniautomatic	583	792	- 209	127	123	4	. 218	. 155	. 063
Total			- 1,015			+ 56			. 267
Mean difference			- 169			+ 9.3			. 0445
Sum of aquares			204,929			1040			. 012571
Variance (differences)			6,645			103.47			. 0001379
Variance (mean differeace)			1,107			17.25			.00002298
Standard deviation (mean difference)			33.3			4.15			. 0048
= mean difference/ staedars deviatlon (mean difference)			$5.07{ }^{\text {a }}$			$2.24{ }^{\text {b }}$			9.27^{7}

${ }^{2}$ Significant at approximately 1 percer: level.
${ }^{\text {e }}$ Significant at approximately U .1 percent level.

CONFIDENTIAI

Tabie J57
test for differences in sitting and standing positions, adjusted data

Ammunition or firing	Average shots acjusted per run			Average hits adjusted			Average bit probabilities		
	Day sitting condition	Daystanding condition	Difference	Day sitting condition	Dsy siandings condition	Difference	Daysitting condition	Dsystanding condition	Difference
Single builet	612	664	-52	118	101	17	.193	.152	. 041
Duplex	564	668	-104	181	174	7	.321	.261	. 060
Carbine automatic	1071	1379	-308	111	110	1	.103	. 079	. 024
Carbine seminutomstic	682	910	-228	168	176	-8	.247	. 194	.053
T48 aitomatic	922	1097	-175	95	75	20	.103	. 068	. 035
T43 eemisutomstic	606	784	-178	136	120	16	. 224	.153	.071
Total			$-1,045$			$+53$.284
Menn difference			-174			$+8.8$.0473
Sum of aqus rea			222,677			1059			.014932
Variance (differences)			8,135			118.2			.0002978
Variance (mean difference)			1,356			19.7			.00004963
Standard deviation (mean difference)			36.8			4.36			. 00704
(= mean difference/ standerd devistion (mcien differences)			4.73^{2}			$2.02{ }^{\text {b }}$			$6.72^{\text {c }}$

[^6]
CONFIDENTIAL

CONPWENCE LIMITS

Table Jl includes directly computed standard deviations of the measured hits and hit probabilities for 19 of the 21 AIP combinations. Tabie J3 includes standard deviatlons of 16 ratlos of hits and hit probabiltiles. These standard deviations are confidence measures, defining the 68 percent confidence limits about the mean. Elsewhere in this appendix two standard devlation increments ale used to define 95 percent confidence limits. These measures are ustful only on the assumption of homogeneous popuiations. Actualiy the computed values are grossiy s wo!len by inclusion of known systematically differing segments of the populations. Squad and learning differences, for exampie, are ignored in Tables J1 and J3.

Of more interest are the further combined values for compisison of ammunitions without separation by IP condition. The problem posed then is the determination of the standard deviatlon of an inhomogeneous population. The same conslderation hoids true for the observed effect of learning (demonstrated in App H). A suggested method for determining over-all standard deviation is based on the reduction ef each of the subpopulations to a unlform conditlon before computing indivldual deviations. The method of reduction of population to achieve the desired homogeneity is demonstrated in App K. The method is most usefui for computation of average effects of each difference on the entire population. However, if the reduced data (for a homogeneous population) were used in determining individual deviations, the restitant standard deviation would be $t 00$ smali. This is true because the reduction factors themselves are deduced from data that include the very random deviations that are being searched for Hence the use of the reduction factors deduced from these data leads to an unrealistically homogeneous population.

It is conciuded that the best measure of standard deviation for the combined conditions that are of interest lles somewhere between vaiues of the type listed in Tables J1 and J3 and the lower values that would obtain from the method just outlined. It is possible, however, to make a very crude estimate of maximum standard deviations, based on the uncombined values of Table J1. Since learning and squad differences are already ignored, results are still of a grossly maximum nature. The most interesting figures of the computed standard deviations are given in the last column of Table "3. If, for example, it is desirable to combine the three figures relating duplex to single bullet, an average may be deduced in the following fashion.

The average hit probability is computed (weighting day sltting twlce as much as each of the other two conditions) yielding an average dupiex-to-singlebullet hit-probability ratio of 1.71 . A crude scheme for deducing corresponding average standard deviation has been tried. In general, however, population combination at this level affords only a minor reduction in the computed standard deviations. It is perhaps adequate and certainly simpler to examine the general magnitude of the indivldual deviations as listed in Table J3 and to regard them as representative of maximum values.

The application of thls method to the hlt ratios of Table J3 gives standard deviations for the pertirent ratiot shown in Table J58 (expressed as percentages of the hit probability).

The average range of these hlt probability ratio standard deviations is θ to 20 percent of the ratio. in considering the method by whtch these hit probabili-

CONFIDENTIAL

ties are transferred to the casualty probabilities discussed in the najor report interpretation, it is apparent that the relative deviations are not grossly altered, Thus it is conciuded that the casuaity ratio standard deviations for ainied fire are somewhat less thars 9 to 20 percent of the ratios

For the final comparisons the unaimed fire results are also utilized. These results are based on theoretical considerations and do not inciude an; experimentai ciata to contribute deviations. Since the over-all average values are weighted equally of almed and unaimed fire, it is concluded that the maximum

Tsble J58
PERCENTAGE STANDARD DEVIATIONS FOR HITS PER ROUND FOR VARIOUS IP CONDiTIONS

Ammunition or firing compared	Day-sitting condition	Day-standing condition	Nigbt-sitting condition	Average σ
Euplox to aingle bullet	6.6	8.7	31.9	13
Triplex to single bullet	8.5	-	-	(9)
Automatic to semiautomatic	17.7	22.4	23.5	20
Carbine to M1	12.5	7.8	29.0	15
T48 iomi	5.0	17.8	27.1	14

estimate of standard deviations for these final results is reduced by a factor of $\sqrt{2}$. This finally ylelds maximum standard deviations on the over-ail ammunition ratlos in the range of 6 to 14 percent, or about 10 percent. Further instructive observations on the statistical valldity of the differences are noted in Figs. J1 and J2. In these figures the individually paired runs are examined by squad. It is clear that, with a single exception, the duplex and single-buiiet values are separated by more than two standard deviations of each. This means that the possibility of any pair not being different is less than $.05^{2}$, or that the confidence in the difference is greater than 98% percent for every one of the indiviclual pairs of runs (with the single exception noted).

In order to determine the confidence limits of aggregated subpopuiations with more precision than can be inferred from the grossly maximum values given, it is possibie to deduce the theoretically pureiy random error associated with the measurements. The results of such a computation will give a minimum value since it does not inciude any systematic errors whatsoever. It should be recognized that, in general, experimental standard deviations do inciude at ieast those systematic errors that have not been causally identified. The method is based on the simple theoretical notion from the binomlal distribution that the standard deviation is given by the quantity $\sqrt{p q / n}$.

This simple computation has been made, based entirely on the data presented in Tables F41 and F43. As the aggregates of interest are concerned with differences among the eight types of fire, the data from the 68 runs are reduced by simple addition of appropriate values of hits and rounds fired. Since the quantity of interest is the saivo rather than the individuai round fired, the conversion is made for the two classes of automatic fire by dividing the number of rounds fired by 2.33, the average number of rounds per automat'c burst. The resulting ratios of hits per salvo are shown in the second column of Table 559.

These hit probability vaiues should not be seriousiy compared since they are deduced from unbalanced conditions. They are computed here solely for

CONFIDENTIAL

the purpose of arriving at the standard deviations. The thlrd column tists the standard devlations computed by the expresslon above. In the fourth column the standard deviatlons are expressed as percentages of the hit probabilities. In the last two rows of the table the carbine and T48 values are combined for semlautomatlc and automatic fire.

From the values shown in Table J 59 it is now possible to deduce the standard deviations associated with the ratios of hit probabllities. The second column of Table J60 lists the six ratios of primary interest. The standard deviations of these ratios are then computed from Eq. J3.

Table 359
HIT PROBABILITY YER SALVO

Ammunition or firing	Hit probablity	Standard deviation, $\%$	Relative atandard deviation, $\%$
Single bullet	14.6	0.32	2.2
Duplex	25.1	0.47	1.3
Triplex	43.3	1.48	3.4
Fiechettes	37.6	2.06	5.5
Carbine semlautomatic	17.0	0.47	2.8
Carbine automatic	17.2	0.58	3.4
T48 semiautomatic	16.9	0.50	3.0
T48 automatic	18.4	0.64	3.5
Semiautomatic	16.9	0.34	2.0
Automatic	17.8	0.43	2.4

Table J60
Ratlo of hit probabiluties per salvo

Ammunition or firing compared	Hit-probability ratio	Standard deviation, \%	Eeiative standard deviation, "
Duplex to single bullet	t. 72	0.05	2.9
Tripiex to alngle bullet	2.97	0.12	4.0
Flechette to alugle bullet	2.58	0.15	5.9
Carbine to M1	1.16	0.04	3.6
T48 to M1	1.16	0.04	3.7
Automatic to semlautomatic	1.09	0.06	3.1

The last column lists these standard deviations as percentages of the ratios. These relative standard deviations are seen to be in the range of 3 to 6 percent, corresponding to the earlier maximum estimates of 8 to 20 percent for aimed fire. The difference is attributable to recognized plus unrecognized systematic errors and appears to be a quite reasonable difference. Since the range is not very great it is useful to identify an average value, which is 3.9 percent. In considering the over-all results, including unaimed as well as almed fire, this figure is again reduced by 2 factor of $\sqrt{2}$. Thus the random standard deviation on the over-all ammunition ratios averages 2.7 gercent, compared with the maximum value deduced earlier of about 10 percent.

Apperdixh

SEPARATION OF FFFECTS

SL'MMARY 285
 285
 290
AMMC'NITION-IIIIMINATION-POSITION RELDLCTION 293
AMMUNITIO N-HLII MINATION-POSITION EFFEETS 293
FIglithes
K1. Orderliegression Iane for Mits per Re'n 288
K2 Onmprliegapscion Lune for lionds Fired 288
TABLES
K1. Mean lijts pfrr filin and founos Fireu per litn by aip Combinations 286
k2 alp Renuced Data, Ifts pfr luen and louenos Fireo per luun 287
h3. alp and Solao Rzoucen Data, Hits perk Re'n and louvds Firf.d per Re'n 287
h4. aip. Soliad, ano Order Reocceo Data, lits per liun and hounios Fipen per Ruen 289
K5. Rflative Data by alf Condition, Squad, and Order 290
h'6. Comparison of Deplex with Single-bllleet ammenition 291
K'7. Comparison of Thaplex with Sincle-Bullet mulention 291
K8. Comparison of flechettes with Singie-bullet Ammenition 291
K'9 Comparison of al omatic mith Semialtomatic fire 291
K!n. Cumparison of T $\$ 8$ with M! Rifle 291
kil. Comparison of Carbine with hl lufle 291
 per liun 292
 242
 292
K15. Rfllative. Data hy Amminition and IP' Combination 293
Kí. Compabison of Standing witil Sitting avd Night mith Day liage 294
K17. Compamison of automatic itth Semialtomatic Fire 294
Kid. Comparison df Carbine ano T48 with Ml lofle 294
Kí9. COMpanison df DePliex with Singleftrliet amme wition 294
ORO-T-378 283

CONFIDENTIAL

SUMMARY

This appendix is based exciusively on the adjusted data of Table F41. The anaiysis begins by recognitior. of three ciasses of systematic differences: (a) the 21 ammunition-lllumination-firing position (AIP) conditions, (b) the six squads, and (c) the sequence or order of run for each squad. The data considered are (a) hits per run and (b) rounds fired per run.

The method is to reduce the data sequentiaily by eliminating mean differences among the data for each of the three classes. The process is started with the largest differences (AlP comblimtions). When the data have been rendered homogeneous relative to AIP combinations, they are reduced for squad differences. Finaily, the data are reduced for order differences. These compietely reduced data then reflect oniy random or unrecognized systematic differences.

These reduced data then are made to yieid separateiy the three ciasses of differences. Each is computed from data that are thus balanced with respect to the other two classes. It is recognized that interreiations among the classes make this procedure imperfect. The lsolated effects of the several parametels are then separately listed in a single tabie.

The process of sequential reduction of the data is then continued to effect separation of the six ammunition conditions from the three illumination-position (IP) conditions (excluding unbalanced trlplex and fiechette data). The resultant isoiated effects are agaln separateiy tabulated.

AMMUNITION-ILLUMINATION-I-OSITION, SQUAD, AND ORDER REDUCTION

The data of Tabie F41 are first reduced by averaging for each of the 21 AIP conditions. The resuitant mean hits per run and rounds fired per run are given in Table Ki.

Having determined these means, the next step $1 s$ to reduce the data indivldually for each rum by dividing by the corresponding AIP class mean (and multlplying by 100 to avold decimals). Thls reduction of Tabie F41 data yields Table K2. In Tabie $\mathbf{K} 2$ advantage is taken of the reduction to array the reduced data according to order as well as squad. An example clarifies the process: Consider the hits per run for the first Squad D single-buliet day-sitting run. From Tabie F4l this is 71 hits for Run 36. As the mean hits per run for the single-bullet diy-sitting runs are 118 , the reduced datum is $71 / 118 \times 100$, or 60. A glance down the coiumn of Table F41 reveals that Run 36 was the second run for Squad D. Hence in Table K2, 60 is entered in the Squad D column and order row 2. Appendix L in the discussion of Table L2 reveais a few deviations in numbered sequence for the actual run order. These deviations are included in the preparation of Table K2.

CONFIDENTIAL

Table K2 ylelds the means for each of the squads. Reduction for squad differences is agaln accompllshed by dividing each datum by its squad mean. For example, the 60 hits for the second run of Squad D is divided by the Squad D mean of 88 (and multiplied by 100) to yield a squad reduced value of 68 . Table K3 tabulates these squad reduced values.

Table ki
Mean Hits pref Hin anif folvids Fired
pr.il Rev by itp Combinations

Ammunition or firing ${ }^{2}$	1 b	Pc	llits	Rounds
SH	D	S	118	611
S13	D	St	101	664
S7	V	S	42	798
D	D	S	181	56.4
1)	D	St	174	668
n	v	S	66	706
T	0	S	243	560
CS	1)	S	168	682
CS	D	S_{t}	176	915
CS	V	S	29	916
C4	$1)$	S	111	1071
C4	D	St	110	13.9
C1	-	S	29	1357
T48, S	D	S	136	606
T18, S	D	St	120	784
T48, S	v	S	8.4	819
T4R. 1	D	S	95	922
T48, 1	0	St	75	1097
T48, 1	v	S	67	1264
Fl	n	St	205	403
Fl	v	St	166	4.35

aSB in single bullet; \mathbf{D} in duplex; T is triplex; CS in carbine semisutomatic; CA is carbine sutomatic; T48, S_{0} is T\&8 semisutonatic; T\&8, A, in T T 48 sutomatic; Fl is fiechetie.
$\left.b^{\prime}\right)$ is day, V is night.
${ }^{\text {c }} \mathrm{S}$ is sittiog. St is standing.

The mean values (combinink squads) for each order are listed in Table K3. These mean values can now be compared with oruer number to yield information on the effect of order (learning), independent of squad and AIP dilferences. Because of the adequacy of data in the 4×15 block of data in Table $K 3$ (for the first 15 runs of the four average squads), the unbalanced data for the other 8 runs are ignored \ln obtaining the means. These mean data are plotted in F1gs. K1 and K2. In addition the regression lines are computed and drawn on thesefigures. These are ordinary linear regression lines (least square deviation of , on x). The slopes are measures of the learning rate.

The flnal reduction for order is accompllshed by taking reduction factors from these regression lines for each onjer. These reduction factors arc listed on the right side of Table K3. The reduction is again done by dividing each datum by lts order reduction fuctor ($\times 100$). The resultant completely reduced data (for AIF conditions, squad, and order) are reproduced in Table K4. Here

CONFIDENTIAL

Table: K2

Order	Squad											
	A		B		C		1)		F.		F	
	llits	Hounds	llita	Round	Ilits	Rounds	Hits	Rounds	llits	Rounds	llits	Hounds
1	77	88	92	79	85	86	68	78	169	143	8.5	106
2	92	87	87	43	93	88	60	73	152	136	86	10.4
3	77	83	13:	75	111	98	62	70	-	-	-	-
4	105	108	67	96	108	94	62	109	-	-	-	-
5	115	107	82	79	92	100	53	48	-	-	\cdots	-
6	110	115	91	82	107	105	$10 ?$	90	-	-	-	\rightarrow
7	101	95	109	97	110	91	97	93	-	-	-	-
8	113	118	121	84	4.5	76	106	107	-	-	-	-
9	80	111	105	93	104	111	79	116	-	-	-	-
10	97	168	156	84	96	107	91	103	-	-	-	-
11	13.3	1.35	121	115	87	82	54	67	-	-	-	-
12	$12 i$	138	14.5	13.3	98	105	79	85	-	-	-	-
13	116	116	112	9.4	118	101	111	124	-	-	-	-
14	15.5	12.5	72	66	76	77	103	116	-	-	-	-
1.5	90	109	100	119	85	95	170	134	-	-	-	-
16	-	-	-	-	98	108	100	\%	-	-	-	-
17	-	-	--	\cdots	100	100	\rightarrow	-	-	-	-	-
18	\rightarrow	-	-	-	100	100	-	-	-	-	-	-
Nean	106	113	106	92	95	96	88	94	161	140	86	105

Tablef. K 3
IIP and Squad fifnucf.d Data, Itts per Ruen and Hounds Figfod peh Run

irder	Squad												ilean		Heduction factor	
	4		H		C:		1)		F.		F					
	Ilits	iids	Hit*	ids	llits	Ild.	lits	Id	Hita	R ${ }^{\text {ds }}$	llits	llds	lits	flds	Hits	Rds
1	73	78	87	86	90	90	37	83	105	102	99	101	82	848	86	$8 ;$
2	8 ?	77	82	90	98	92	68	78	94	9%	100	99	81	R13	88	89
3	7	7.3	1:.5	82	11%	102	71	75					97	83	90	89
4	99	96	67	104	114	98	il	116					17	104	92	91
5	108	9.5	77	80	$9{ }^{\circ}$	101	60	51					6	84	91	93
6	104	102	86	89	11.3	111	122	96					lik,	100	9	95
7	4.5	8.4	103	105	116	9.8	110	99					10n	96	98	98
8	107	104	114	91	47	79	121	114					$9:$	97	100	100
9	75	98	90	101	110	116	90	124					94	110	102	102
10	91	140	147	91	101	112	103	110					111	116	104	104
11	125	120	114	125	92	85	61	31					98	100	106	106
12	120	119	13.	14.5	103	109	90	90					113	116	108	108
13	129	103	10	102	124	105	126	132					116	111	110	111
14	1*	111	68	:2	80	80	117	12.4					103	97	112	113
15	85	97	91	130	90	99	193	143					114	117	114	115
16					103	11.3	114	102							116	11%
1%					105	104									118	119
18					105	104									120	121

avean of Squsdn 4. H. C. and II am

TVILN3CI」MOS

COMFIDENTIAL

Table h4

Ammanition or firser	1	r	Spuad												Hean	
			1		13		c.		$1)$		E		F			
			11 its	Hounds	Hits	Rounds	ilits	Rounds	Hits	Rounds	Hits	Honnds	Itits	Rounds	Hits	Hounds
SH	$1)$	S	$\left\{\begin{array}{r}118 \\ 85\end{array}\right.$	113	96	92	71	71	104	110	-	-	$\overline{115}$	-	$\overline{100}$	-10.
				92	101	101	111	100	77	90	122	120		110		
Sis	$1)$	St	$\left\{\begin{array}{l}99 \\ 81\end{array}\right.$	93	-	-	89	97	-	-	-	-	-	-	-	-
				82	82	113	124	108	-	-	-	-	-	-	98	95
St3	v	s	\{	-	82	113	-	-	98	87	-	-	-	-	-	-
$1)$	1)	5	-	-	139	-	113	95	117	128	-	-	-	-	99	105
			(99	89	93	103	105	106	90	98	10:	111	114	114	104	10%
)	$1)$	-	1-	-	-	-	79	86	-	-	-	-	-	-	-	-
			108	105	-	-	130	115	-	-	-	-	-	-	106	102
$1)$	v	\checkmark	-	-	-	-	-	-	169	124	-	-	-	-	-	-
			-	-	69	114	-	-	79	84	-	-	-	-	106	$10:$
T	1)	S	111	110	61	64	-	-	-	-	-	-	-	-	86	87
C$\therefore 8$	()	5	33	96	97	99	118	117	127	101	-	-	-	-	104	103
		S	-	-	107	118	-	-	8.3	83	-	-	-	-	9.5	101
Cs	V	S	130	98	-	-	47	79	-	-	-	-	-	-	89	89
Cl	1	5	87	113	141	87	103	112	6.4	55	-	-	-	-	99	99
CI	1)	St	-	-	127	134	-	-	58	67	-	-	-	-	93	101
Cl		5	75	84	-	-	118	97	-	-	-	-	-	-	97	91
[18, S	,	5	115	102	82	92	97	108	121	114	-	-	-	-	104	104
I $88, \mathrm{~S}$	i)	St	-	-	105	107	-	-	99	106	-	-	-	-	102	107
T48, S	\checkmark	5	97	86	-	-	95	101	-	-	-	-	-	-	96	94
[48, 1		S	108	10%	90	94	108	114	112	101	-	-	-	-	105	104
[58. 1	1)	5	-	-	114	91	-	-	88	122	-	-	-	-	101	107
THB, 1	1	3	10.	104	-	-	87	80	-	-	-	-	-	-	97	92
F1	$\stackrel{1}{\mathrm{~N}}$	St	-	-	-	-	89	87	-	-	-	-	-	-	89	87
F1		St	-	-	-	-	87	86	-	-	-	-	-	-	87	86
1 l asa			100	100	100	100	98	98	08	99	115	116	11.5	117		

[^7]
CONFIDENTIAL

it is convenient to revert to the original array (by squad as a function of Alp cordtitions).

Table K4 contains the data for each of the 68 runs sequentially reduced for AIP condition, squad, and order. The order reductlon factors in Table K 3 are now an adequate measure of lcarnang, as the; were deduced from data from which AIP and squad differences were already removed. The AIP and squad (row and column) means are listed in Table Kit.

AMMUNITION-ILLUMINATION-1 OSITION, SQUAD. AND ORDER EFFECTS

The final reduction factors are then computed from the products of these means with the corresponding means from Tables K1 and K2 ($\div 100$). Table K5 lists ail these factors for hits per run II and for rounds fired R. These factors themselves are measures of the reiative numbers of hits and rounds fired, as independently affected by order, squad, and AIP conditlons. For convenience the relatlve hit probabilities $\mathrm{P}_{/:}$are aiso listed.

TAhL: 「5

Ammanition or firing	1	P	11	H	'H	Squad	11	R	P_{H}	Order	11	11	PH
S 13	0	S	118	617	191	1	105	113	9.4	1	86	85	101
S13	U	5	99	611	152	13	106	92	115	2	88	H7	101
SI3	v	S	12	838	50	C	93	91	99	3	90	89	101
D)	11	S	188	508	314	1)	86	93	93	4	92	91	101
1)	1)	St	184	092	266	F	185	162	114	5	91	93	101
D	V	\$	70	756	93	F	90	123	80	\%	*	9%	101
T	0	S	209	18?	429					7	98	98	100
CS	$1)$	S	173	702	2.49					8	100	100	100
CS	11	St	167	924	181					9	102	102	100
C.S	v	5	96	815	32					10	104	104	100
C. 4	1)	S	110	1060	10.4					11	106	106	100
C. 1	I)	St	102	1392	73					12	103	103	100
(1)	-	5	28	1233	23					13	110	111	99
148, 5	1)	5	141	630	22.4					14	112	113	99
T48, S	1)	St_{8}	122	839	145					15	114	115	99
T18, S	N	S	81	770	105					16	116	117	90
THR, 1	i)	5	100	959	104					17	118	119	99
T 48,1	1)	\cdots	76	1184	64					18	120	121	99
TAS, 1	5	s	65	1163	56								
Fl	U)	5	182	351	514								
H	v	st	144	374	38.5								

-ll in hita, \boldsymbol{R} is cmands, P_{H} in hit probebslities. See footentea to Table $K 1$ for other oblirevistionn.
From the data of Table K5, a number of comparisons are readily made. These comparisons are seli-explanatory in Tables $\mathrm{K} \delta$ to K . Table K 9 is com puted by simply adding together the appropriate carbine and T48 daia. This is justified as the separate ratios are nearly identical. Tabies K10 and K11 compare the indicated weapons in semiautomeic fire oniy

COMfidenitial

Table: h 6
COMPARISON OF DEPLEX WTH Single-fullft Amminitions

l	P	II	R	P_{H}
D	S	1.59	0.97	1.64
D	St	1.86	1.13	1.64
N	S	1.67	0.90	1.86

Table K8
COMPARISON of FLECBETTES WITH Single-bullet Ammunition*

1	P	H	R	P_{H}
D	St	1.84	0.58	3.20
N	-	3.43	0.45	7.70

${ }^{\text {a }}$ SH aittiag, flechettea atandieg. Also sea footnote to Table K5.

Table h10

Compahison of T48 M1 IUFLE				
1	P	H	it	P_{H}
D	S	1.19	1.02	1.17
D	St	1.23	1.37	0.89
V	S	1.93	0.02	2.10

${ }^{3}$ See footaote to Table is.

Tahle K 7
Compapisun of thipiex with Single-Bullet Ammunition*

I	P	H	n	P_{H}
D	S	1.77	0.79	2.25

a Sec fortacte to Table K5.

Table K'9
Comparison or automatic with Semautomatic Firea ${ }^{\text {a }}$

I	P	H	R	P_{H}
D	S	0.66	1.51	0.44
D	Si	0.62	1.46	6.42
N	S	0.87	1.51	0.58

${ }^{\text {a }}$ See fotnote to Table K 5 .

Table K11
Compahison or Cahbine mith U1 ! !ufle

I	P	H	R	r_{H}
D	S	1.48	1.14	1.30
D	Si	1.69	1.51	1.12
V	S	0.62	0.97	0.64

-See footade to Taile K5.

CONFIDEWYiAL

Table K 12
Squad and Oader feducho liata, Itts ibf fien and Rounds Fiaen feeh Hun

tmmuetion or firiag ${ }^{4}$	Day witting			Duv atanding			Night sittivg		
	Rups	Hite	Rounde	Runa	Hita	Hounde	Rene	Hita	Honada
Si3	10	118	617	4	99	611	4	4.	838
0	8	188	598	3	184	692	3	70	756
C.	4	175	702	2	167	924	2	26	815
CA	4	110	1060	2	102	1392	2	28	1233
T48, S	4	141	630	2	122	839	2	81	770
T48, A	4	100	959	2	76	11 d 4	2	65	1163
Hean		140	716		125	880		52	905

Wee footnote $\#$ to T'eble K1 for ebhrevietione.

Tamie K13
If' fediced Data, Hits phem Run and foenos Fined per fun

Ammencition or firing	Ilay mittiag		Day etanding		Vight aittiog		Mean	
	Hito	Roundo	Hite	Romende	Hits	Rounds	Hite	Rounde
Sil	84	\%	79	69	81	93	82	84
D	134	43	147	79	13.4	R3	137	82
CS	125	98	134	105	50	90	107	98
CA	79	148	82	158	54	136	? 4	148
T4, S	101	88	98	95	156	85	114	89
T48, A	71	134	61	135	125	128	82	133

See footnote to Table Kl for abbreviationa.

TaRIf. Kl4
Completely frbucen Data, fits per Run and Rocinds Fined peii Itun

Anamition or firima	Dey eitting		Day atending		Night aittang	
	Hits	Rounde	Hite	Romate	Hit	Rounde
SR	102	102	\%	82	99	111
D	98	101	107	9	98	101
CS	115	100	123	107	46	92
C. 4	107	100	111	107	73	92
T48, S	89	99	\%	107	137	96
T4R, 1	47	101	74	101	153	*
Mese	100	101	100	97	101	100

- Con footmete a to Table Kl for abbeviatimen

COMFIDENTiAAL

AMMUNITION-ILLUMLNATION-I'OSITION REDUCTION

It is persistently requested that over-all rough comparlsons be deduced from unbalanced data such as these salvo data. Therefore, though it is recugnized that such comparisons lump unlike figures, an attempt is made to deduce from table K5 the separate effects of ammunition and the IP combination. The procedure is parallel to the reduction procedure already used in this appendix. However, the computation is complicated by the weighting of each datum from Table K5 by the number of runs on which it is based. Table K12 shows the data and the weighted means by IP combination. The numbers oi runs of each type are used as welghting factors to compute the mean values. Unhaianced trplex and flechette runs are omitted in this reduction.

The reduction by the IP combination is done as before, by dividing data of each column by the mean. Thls process yields Table K13.

The welghted means for each ammunition are computed and listed. These are then the ammunition reduction factors. Division of each row of Table K13 data by these factoss yiclds the completely reduced data of Taile K14.

AMMUNTTION-ILLUMINATION-POSITION EFFECTS

The means for each IP cumbination are computed in Table K14, which, together with the means of Table K12, form the ammunition reduction factors. These final reduction factors are listed in Table K15.

Table K15
Helative Data by amienition and Il Combrnationa

Ammunition or firing	11	H	P_{H}	1	P	11	8	P_{H}
S8	95	671	14.2	D	S	140	72.3	19
D	159	655	24.3	ก	St	12.5	8.54	15
C.S	124	783	15.8	N	s	53	90.5	6
C. 4	85	1183	7.3					
T4R, S	132	711	18.6					
T48,	9.5	1063	8.9					

See fortnotea to Tablea Kl and K 5 for abtreviations.

Tables K16 to K19 list the significant comparisons from Table K15.
The weapons comparison of Table K18 for the indiscriminate total data (all three IP conditions) is Incomplete. More proper comparisons are made In Tables K10 and K11, where the three IP conditions are separated. The overall superiority of the $T 48$ is seen to stem from its superiority in night fire; the day resuits show the carbine to be cieariy superior. This night superiority is directly attributed to the larger peepsight, which (as noted in App A) permitted proper use of the sights with the T48, In contrast with the rough "pointing" to which the troops resorted with the M1 and carbine. This effect was noted in ORO-SP-2, and a recommendation was made for more complete testing of this observed effect.

CONFIDENTIAL

Tablef Kl6

Comparison of Staning mith Sitting And Nicist with Day Condrions
Conditions compared
St/S (D)
V/D (S)

Table K18
COMPARISON OF CARBINE AND「48 WITH M1 IOPLE*

Weapons compared	H	H	$\boldsymbol{P}_{\boldsymbol{H}}$
$\mathrm{C} / \mathrm{M1}$	1.30	1.17	1.11
$\mathrm{~T} 48 \mathrm{M1}$	1.39	1.06	1.31

See 'iootnotes to Tsbles K! and K5 for abbreviatione.

Table Kl7
COMPARISON OF AUTOMATIC WITH Semautomatic Fine:a

Firing compared	$!1$	R	P_{H}
CA/CS	0.69	1.51	0.46
T48,S/	0.72	1.49	0.48
T48,1	0.71	1.50	0.47

${ }^{*}$ Sen footnotes to Tablea Kl and K'S for abbreviations.

Table K19
Comparison of Duplex with Single- ${ }^{\text {bulfet }}$ Ammunitiona

Ammunition compared	11	R	P_{H}
1$) / \mathrm{SB}$	1.67	0.98	1.70

See iootnotes to Tablea K1 and K5 for -bbreviationa.

COMFIDENTIAL

Appendix L

EXPPERIMENTAL DESIGN

SIMMARY 29?
CHRONOLOGY OF ACTIONS 297
TEST SCHEDULF: 298
ANNE X
L1. oro's Fourth levised Plan for tiee Salvoil ht Probabllity Experiment. December 1955 300
FIGURES
L1. Tahget Runge Distrifution 301
L.2. Target Fxposure Imstribution 302
l. 3 Representative tarcet lunge 304
L4. lianlef Dmensions 308
TABLES
L.1 Schedule Requirements 298
L.2 Master Scheduie: 299
L3 Dally schedlle of Fibing by sumajs 305
L.4. Schedule of Fibing by Weapons 305
L5. 7ero-Firing Ammunition requirements 307
L. 6 Test-Firing Amulnition IE:ourbemi:nts 307
L.7. Total ambentton Iedlinements 307

CONFIDENTIAL

SUMMARY

This appendix outlines the authority and coordination of the experiment design. The schedule that was settled on is described in detail; it is also compared with proposed alternative designs. The detailed test plan (Dec 1955 version) is appended in Annex L1. It includes background, test materiel, conditions, structure, and a list of requirements for the experiment.

CHRONOLOGY OF ACTIONS

On 12 October 1954 ORO received a request from the SALVO Steering Committee to "prepare a draft plan of test to affirm or deny the usefulness of the SALVO principle and the uthlity of the development equipment." An outline was submitted to the committee on 10 December and was discussed at the committee meeting of 25 January 1955. The committee approved the general outline of the test and advised which weapons might best be included in the experiment. ORO agreed to incorporate into the plan of experiment certain sugges tions from the meeting, and to collaborate with the Ballistic Research Laboratories (BRL) in making further detailed revisions before submitting the plan to the Continental Army Command (CONARC) for their approval.

A first revised plan was submitted to the Committee Chairman and to BRL on 25 March. A second revision to accommodate BRL cominents was submitted on 30 June. A third revision to accommodate further BRL comments was completed in August. On 8 August BRL submitted a disapproving criticism of the ORO plan, offering two alternative plans. On instructions from the Committee Chairman the ORO plan was submitted to CONARC for approval on 16 August. On 22 September OHO responded in disapproval of BRL plans:

The BRI, planes are atatiaticaliy more elegant in potentlally reducing the ease of malysia and the actual variance in some of the results. The departure from symmetry in the ORO schedule is secasioned by recognition of dfferencea in value of the several ttema of data, in particular, the primary value assigned by our teat objective to the multiplex firings.

On 7 October The Infantry School responded: "It is felt that such a test as proposed in ORO Salvo Hit Probability Experiment is somewhat premature."

On 21 November BRL resubmitted their inrmal crifiriam of the ORO tent plan with the following recommendation:

It ia very atrongly recommended that the following ate:emente be given careful considerat!on.
(1) The BRL plan B be the plan used during the conduct of i'roject Salvo.
(2) The ORO plas be elimiantod an a posaible plan for conductiog the tent becaune the weekis firing schedule, as designed, is atatiotically weak.

COHFIDENTIAL

On 4 January 1956 the SALVO Steering Committee approved ORO's fourth revised plan of December 1955 (reproduced as Annex L1) and requested approval of the Chlef of R\&D. On 30 January the Chiei of R\&D requested CONARC to suppert thi: ORO test. On 3 April CONARC advised ORO:

Thir Army has selected the Third Divislon, Fort Benning, Georgia, as the unit to c aduct t'e SALVO lit Probability Experiment. The Third Division has recomniended that the test start 18 June 1956 , and will make avaliable persunnel and equipment as specified in Inclosure 1.

TEST SCHEDULE

Table Ll compares the requirements of the ORO schedulc, first as planned and second as run, and the BRL alternative schedules A and B.

It is clear from examination of Table Li that the recommended Plan B (and probably the compromise Plan A as well) of BRL would have been lmpossibie to execute. The number of runs is more than sixtimes those accomplished In the 2 -week experiment as run. The 8 -run/day schedule took about 12 hr ; the

Table 1.1
Scheoulf. Hequirements

Parametar	OHO plax	OPO 1 un	BRI. 1	13RL 1
Total rune	120	68	356	424
Huna dav	8	8	18	28
Teapon type uiay	1	1	4	5
Teapoen day	9	10	36	4.5
Total weapoes	36	30	48	60
Mea	135	60	177	222
Пау』	15	9	19	15
Man daye	675	530	1,5.24	1, P , 0
Hultiplex ammur ition	22.000	12,000	46.000	74.000
Siagla ammuation	51,000	29,000	164.000	244.000
Total ammanitioa	73.000	41.000	210,000	318.000
Tound mas ilay	400	400	1,000	2.000

$28-\mathrm{run} /$ day schedule would presumably require $42 \mathrm{hr} /$ day. In addltion, five times during each day reissue of weapons would have been required. The number of test weapons requlred would have been double, the total ammunition expended would have been almost eight tlmes greater, and the number of test troops requlred would have been almost four tlmes greater. The daily firing requirement on each man would have been five times greater and probably beyond reasonable endurance.

The statistical significance of the diffcrences found justifies the amount of repetlition required in the ORO plan, which was ultimately adopted. The differences among the chlef salvo ammunltlons have been determined wlth statistical slgnificance that is adequate for practical purposes. Secondary differences have been estlmated with sufficient reliability so that those differences whlch are of practical consequences have been rellably determined. The lack

CONFIDENTIAL

of reliabiifty on triplex and flechette results reflects the emergency failure to achieve more than two incomplete runs wlth each of these ammunitions.

When the experiment was finaily conducted 6 months after the iast formaily prepared experimental design, further changes were made. The execution of the experiment differed from this design chiefly in two respects: (a) higherpriority activities denled us the terrain for 1 week, reducing the 96 scheduled regular runs to 64 ; (b) the accident with one run of triplex ammunition caused

Table: 1.2

deletlon of a scheduled six runs of triplex, and replacement of four of these runs with extra duplex runs. Also the limitation on available flechette loads permitted only two incomplete runs with this appended ammunltion.

The schedule for the 68 runs accomplishedis shown in Tabie L2. The major change from the originally planned schedule of 96 runs is the deletion of the last 4 days. The other changes include deietion of triplex Runs 30 and 32 , and substitution of duplex for triplex In Runs 33, 35, 37, and 39. In addition (not shown In Table L2), emergency shifts caused Runs 21 and 22 to be run at the beginning of Day 4, Runs 23 and 24 to be run at the end of Day 4, and Runs 45 and 46 to be run or. Day 7, between Runs 54 and 55 . Of the 96 orlonan!ly scheduled regular runs, 62 were accomplished. In addition two parital runs were appended with fleclette ammunltion, and two additional runs each were added with Squads E and F, flring single-bullet and duplex ammunltion, making a total of 68 runs accomplished.

CONFIDENTIAL

Annex L1

ORO'A FOURTH REVISED PLAN FOH THE SALVO i
HIT PROBABILITY EXPERLMENT, DECEMBER 1955

PURPOSE

To messure the eombat hit probabillty obtsined with currently svsilabie ssivo rifle smmunition $\{$ eompared with singie-buliet rifle ammunition.

AUTHORITY

Minutes of the SALVO Steering Committee Meetings of 28 Sep 54, 25 Jan 55 , and 6 Dee 55. ${ }^{37}$

BACKGROUND

The proposal was made in ORO-T-16n5 that the large errors typicsl of combat rifle fire might be psrtly eompensated for by s wespon firing severui bullets simuitsneousiy or nesrly so. ORO-T -245^{6} suggested s ready mesns of achieving one variety of such sslvo fire with two or three tandem bullets fired with s singie propellsnt. Further reports hy Olin Mathieson Chernieal Corp. ${ }^{23}$ describe the development of salvo ammunition. The Germsn report "Die Infanterie Doppelgeschosz," Deeember 1944 , ${ }^{4}$ deseribes s 8 lm iisr two-bullet tandem round. Approximation to ssivo fire is slso reguiariy seeompilshed by burst fire with sutomatie wespons.

MATERIEL

Three types of rifle fire sre plsnned for this experiment:
(1) Control (singie builet)
(2) Duplex (two tandem bullets)
(3) Burst (sutomstie bursts of 2 or 3 rounds)

Two wespons hsve been selected for this test:*
(1) M1 rifle (firing single-bullet and dupiex rounds) snd
(2) The Gustsfson .22-esl earbine (firing single rounds snd automstie bursts).

CONDITIONS

The humsn siming error is a function ptimarily of eight turget and troop eonditions:
(1) Tsrget size
(2) Tsrget range
(3) Target vlsibility
(4) Target exnosure 1 e
(5) Tsrget movement
(6) Troop quslificstion
(7) Troop firing position
(8) Troop stress

Oniy one of the eight, tsrget rsnge, is sssociated with inherent weapon error; the othc. Enetors are exelusively reisted to the humsn error. For eomprehensiveneas it is neeessary to apeelfy for the experiment several conditions for each of the psrameters. The values for tsrget size, range, visiblity, exposure time, and movement are determined by the deaign of the target system; iroop yuallfication and firing poaition are determined by troop selection and test instruetions. Stress on the troopy will be mado as

[^8]
CONFIDENTIAL

uniform as possible. Combat-simulating features will be determined with the advice of CONABC, by interrogations of combat experienced personnei, and review of pertinent ilterature.

Target Stze and Shape

Approximate measurements reveal that a prone target is about 20 by 20 in ., a kneeling target about 20 by 45 in., and a standing target about 20 by 64 in . It has been estiranted that US troops fire approximately 30 percent prone, 30 percent kneeflng, and 40 percent standing. These dimenalons and proportions will be ascertained by further research. Further account for cover leads to a modified distribution of exposed target area-perhaps 60 percent prone, 20 percent kneeling, 20 percent standing. If it is $28-$ sumed that the enemy tnan-targets are presented fa the ame proportions, the test would accordingly use 1220 - by $20-\mathrm{in}$., 420 - by $45-\mathrm{in}$., and 420 - hy 54 ln . targets, rectangular or oval, with the bottom edge about at ground icvel. Actual dimensions remain to be plotter.

Targe: Range

The targets will be ditributed over the entire effective combat range for rifles. The boundarles tor the area for the target range will be determined by a consensus of combat experience. The distribution of targets within this area will likewise be determined from combat expertence. The frequency distribution for range may approximate the form shown in Flg. Ll.

Fig. LI-Torget Range Distribution

The actuai placement of the targets that must be concealed deponds on the exiatence of sultable cover or suitabie locacions for construction of appropriate cover. The visible targeta may be diatributed to approxtmate the oombat range frequency without thit restriction. In no case wili the actual placement be at obvioua rar.gea (such as even hundred of yards).

Target Vialbillty

In addition to the taherent viaibility differencea botween the two types of targetb (concealed and viallie) it will be dealrable to have some of the targete partly obwcured by camouflage or terrain. Agin combat experience wilil be uaed to determine the occurence of auch visiblify obscurations. Experimentio wili se rum both in cloar daylight and at nigh, the iatter with coatrolied illumalation equivaient to modarately bright moonlight. HumRRO will be consuited for further advice on night fighting and illumination. Some largeta will be ladicated by rifle fire from the target.

CONFIDENTIAL

Target Exposure Time

The exposure times for the visible targets will be deduced from combat experience in a form as shown in Flg. L2.

The concealed targets are slso to remain erect for a finite period, such aa 15 sec . All targets are capable of appearance or disappearance within $1 / 2 \mathrm{sec}$, and cun be made to $r e$ maln exposed for any uumber of seconds dentred. Both concealed and unconvesled targets can be automatically programed for exact reproducibility of target appearance or indication. The entire program for appearance of all targeta will be fixed in advance of the field runs, and the system activated by a single electrical switch. Times of visibie target appearances and disappearances and concealed-target rifle fire indtcations are all recorded automatically on a noving tape. So far as possible, target size and range will be made to correapond with exposure tlme according to combat experience.

Fig. L2-Target Exposure Distribution

Target Movement

An attempt will be made to include at least one lateraliy moving target in the target system. The apeed of movement, range, size, and exposure time will be determined in consultation with CONARC experts. Techaical difficulties (conceslment of tracks, expeasc, etc.) prohlbit the employment of many moving targets.

Troop Quailfication

Troop qualification will be determined in actual proportiona of combat riflemen in each of the caiszorias: expert, aharpehooter, marksman, and nonqualified. The proporthons for the "typlcal" squads of 10 men might be: 1 excert, 3 aharpahooters, 5 marks men, 1 boto. Preflminary spectal qualffication firtngs may be used to confirm puper qualifications. To determine analytically the salvo hit probability difference as a function of troop qualification, runs will also be made with two special squads (experta and bolos).

Firing Position

A preliminary consideration suggeats thnt accuracy extramea in firing may be approximated by two poaltions: prone with rifle suppor: and standing without rifle support. Results from other firing ponitions may be estlmated uy interpolstion between these extremes. Typical squade will fire from both positions. All firing will be from the shoulder (no hip ilrigg).

Streas on Troope

Various combet slmuletions will be used, such as racorded battle noles and such amoke sad sxplosions as will not directly affect physical ecnditions for target identification. Efforts will be made to assure that eaviromseatal conditioas throughout ths exper iment ars equivalent. Extremes of rala, for exsmple, will be svolded.

CONFIDENTIAL

STRUCTURE

Machine-Reat Firlage

Fundamental Information on the accuracy and diapersion of the weapons independent of aiming error has already been gatiered. Further Information as needed may be obtained from machine-rest firings. ror this purpose it is desirable to vary only the range; firlags may be conducted under conditions of augligible wind agalnst fixed targets at known ranges, capable of recording all shots. For each of the wespons and ammunition loads this experiment should record a distribution of errors about the center of impset that is inhercnt in the weapon and ammunition exclusive of the human siming error. The detalled design and conduct of these machine-rest firings are to be supervised by Ballistlc Research Laboratorles.

Incidental to this teat, calibration of the target-hit-time spparstus has been accompllshed. For anslysis of the experimental data it is nceessary to make accurate measurement of the time between bullet strikes from duptex rounds as well as automntic fire on targets at several ranges. Time-interval-vs-range curves will be deduced for the muit1plex loads. This measurement will be accomplisted by aitaching a sensing device to each target. When the target is atruck by a bullet, the sensing device senda an eisctrieal pulse to the recorder. The pulae la manffested sa a spark hoic in a moving tape. The combined resolution of tho sensing devlce and recorder is better than 1 maec.

Zeroing and Familiarization

All rifles will be combat ceroed at a predetermined range (auch as 200 yd) every firing session (half-day sessions). Each maa wili zero his own weapon firing about ten times, ard have his hits identificd progreasively. Each man wili be lasued his weapons and ammunition some time before the experiment to assure his complete familiarization with the functioning of those weapons and the ammunition. Famlilarization will include observation of the buiiti Jron vs range characteristlce of each weapon-ammunltion combination; it wili also then inclutle instructicn and practice in allowing for such a drop by a "Kentucky windage" procedure.

Target System

The system will conslat of about 20 targets: probably 10 viaible and 10 concealed, with 1 moving. All the targets are clectrically controlled, spring powereo, automatic appearing-dissppearing. The concealed targets are indicated by electricaliy controlled rifle fire.

The visible targets can be placed any where on stypical range, requiring a minimum of concealment preparation. The concealed targets require placement behind natural or other cover. The target sppearance and disappearance la accomplished by electricsl control from behind the firing line. The tergete operste by electricatly controlled apring releasea, auch devices being readily installed with a minimum of ficld preparation, requiring no pits to protect eperatora or to hide the target mechanisms. Chey can easily be piaced on the field at new positions asch day to prevent disclosing the positiona to the riflemen.

All tarjets lie guplne un the ground ano out of sight until activated, at which time they pop up to a vertical position. The suring mechanism is adequately powerful to oomplete movement of the target in about $1 / 4$ sec even in a otrong wind. A aecond electrical algaal releases the spring again to continue the target motion to prone poaitlon, again out of sight.

Electrically fired M1 rifies are placed direetly in front of each conceaied target to simulate enemy rifle fire. The rifle is lired by an electric aulenold attachod to the trigeer. It is firmiy muppoited on the terrain, and firea blanks or live rounde fato pits some 20 yd theed. If live the flre ts directed 90 deg or so from the end of the frlate line. The rifle in sandbagred, with oaly the t'p of the muzzle showing. Probably nat iaterally moving target will be lacorporated In the experiment. ORO has a moving-target prolutype that wifl be modified to a suttabie form. This terget is electricaliy driven and can be controlfed frnm the automatle programmer.

Control wiren for sli 20 targets lead to the comerol atation fuat behad the firing line. The vulberable lagths (within 20 yd of a tarnet) sre buriod; the remaining feagh

COMFIDENTIAL

are laid on the uppn ground. The control station includes a programing board for individ ually controlling each of the 20 targets. The clrcuits are arranged so that any number of seconds may be tapped off the programing board by plugging in appropriate jacks. It is possibio to cause any one of the targets to remain erect for any number of seconds and to cause the next target to sppear any number of aeconds later.

Thus the entlre opersticn is nutamatic. It is neccsesry only to preselect the durstions of vislble appearance, the intervals between target appearances, and the targetappearance crder. One run takes 5 mln , uthlizlng tho full range of the 300 -positlon programmer with $1-8 \mathrm{ec}$ intervals.

Fig. L3-Representative Torget Range
V. visible; C, concealed; $M_{\text {, moving }}$

A group of 10 riflemen 18 spaced with 5 yd between men on n fliring line, covering a front of 300 yd (see Fig. L3). Since this complete system has not yet been fleld-tested it is necessary to schedule a prellminary runge test. When the complete system is ready, it will be necessary to provide a suttable firlng range and a few troops with rifles for a preliminary test.

Renge Firings
The varlstions in ths four firing condltions already discusaod are:
(a) Squads (3):

1. Typlcal mlxed
2. Experts
3. Bolos
(b) Wespons (4):
4. M1 slingle bullet
5. M1 duplex
6. . 22 Carbine - aingle round
7. . 22 Carbine - automatle

CONFIDENTIAL

(c) Position (2):

1. Prone
2. Standing
$\begin{aligned} & \text { (d) Illumination (2): } \text { 1. Day } \\ & \text { 2. Nighí }\end{aligned}$

A four-dimensional array would yicld $3 \times 4 \times 2 \times 2=48$ combined conditions. An unsophisticated experimental design to test each of these conditions would eitiser be impractically lengthy or yleld only a slagie measurement for each condition. To obtain the measures required for statistical reliablity it is necessary either to facrease the total schedulo (by an astimated minimum factor of 3) or to $\in i m m i n a t e ~ c e r t a i n ~ c o n d i t i o n s ~ i n ~ o r-~$ der to duplicate uthers of more basic sifnificance. For practical reasons the second a!ternative is chosen. A systematic design permita approximation of the missing measures by analytical means, at the same time assuring reliable measurement of salvo hit capabilities in the most basic conditions in a reasonable schedule.

Tables L3 and LA show the schedule.
Table L3
Diali.y Schenelef. of Firing by Sunfadsa

Day		Night	
Proae	Staadiag	Prose	StardiaR
A, B, C, D, E	A	B	C

Qualification: A, typical 1: R, typical 2; C. tynical 3; D, bola; and E, expert.

Table l4
Schedule of Firing by Weapons

Day	Teek 1	Week 2	Week 3
Mus	1	3	2
Tuea	2	4	1
Ted	3	1	4
Thura	4	2	3
Fri	Bed-weacher allowace		

aWeapos: 1, M1 aingle bellet; 2, M1 duplax; 3, .22 carbiae ainale round; and 4. 22 carbiae antomatic.

The schedule calls for 32 runs per week -24 day and 8 aight runs. In the 3 weeks It is seen that nine measurcs will obtain for each prone-typlcal-squad day firing. Three messures will obtelo for eech of the following: prone-typleal-squed night firing, standing-typicsl-squad day ilring, atanding-typlcal-squad night firing, prone-expert-aquad day firing, prone-bolo-aquad day firing.

The total is 96 masaures from 96 runs -48 a ingie-bullet, 24 duplex, aad $\& 4$ buret masaures. The arrangement of the scheduls is such se to correct for the offects of extraneoun parametera such an weather, learning, fatigue, etc. Severnl"equivaleat " but monidentleal prugrams of target appearance will be employed (both order and exposure timea varied) to minim!za target-learning eff-cts.

If ench man gets off an average of 2 trigger pulle per target with an average of 2 bullete per trigget pull, then for 10 men firing at 20 targets, there ahould be $(2 \times 2 \times 20 \times 10)$

CONFIDEMTIAL

about 800 builets fired for each run. If the hit ratio is only 1 per 8 builets fired, 8 tetal of about ($800 / 8$) 100 hits can be expected, or 5 hits per target average, or 15 hite por target with 3 rapetitions. Sucb numbers of hits are adequate for discriminating betweon scores made in the different types of firs.

Ammunition issue for each run will be callmited. The useful ammunttion expenditure will be limited only by the exposure time sind visibility of the targete. The number of rounds fired by each man will be recorded for each run.

Malfunctions of sny weapons will be rccorded Immediately without interrupting the test. The nature of the maliunction wlil be recorded, together with the number oif rounds fired before stoppage and the quallfication and position of tbs firer.

Ammunition Loade

Ammunition loade wili be 9 -round clips for the M1. For direct comparability, it is eescntial that the single-builet and the duplex caliber .30-06 smmunition be packaged in nearly identicai 8-round clips.

The Gustafson carblee will load from its 15-round magazine. For coniroi purposes it will not employ its bipud, and will be modified to firc semiautomatically only for the single-round controi rune.

Data Recording

Data will be rccorded from several sources. The program of target appearances for each run will be recorded beforehand. Each target face will be identified, and the paper target faces recovered after each run for subsequent amalysis of hite. In addition each target is equipped with an electrical sensing device, whicb sends a pulse to an zutamatic continuous recorder when the target is struck by a bullet. The sensing device and recorder are capable of resolving approximately 1 kc -or separately recording hiss as close as 1 msec.

Tha automatic firc hits wifl be discernible by the cyclic rate (approximately 100 msec). Dupiex hita will be discernibie by pulses separated by the exact time determined by the target distance and muzzic-velocity difference between bullete from the some round. The time between bullet strikes for duplex bullets is first determined as a function of range, as described previously. it is thus possible to recognize multiple hits from a singie trigger pull. With a muzzle-velocity difference of $250 \mathrm{ft} / \mathrm{sec}$ tie time between dupicx etrikes on the nearest ilkely target at 100 ft is about 3 msec . At 500 yd this time interval is about 50 msec .

REQUIREMENTS

Weapons

10 Ml csliber .30 rifles (modified to accept slngle-buliet and duplex rounds from 8 -round clips).
10 Gustafson caliber .22 carbines (modified to fire semiautomatic as well as automatic).

For avoldance of delay in the event of scrious malfunction, it is desriable that the supply of teet weapons be 12 of each type (two spares for each), a total of 24 weapons. All weapone should be of equivalent newness. In addition, some 10 or 15 unmodified M 1 rlfles will be required as port of the tsrget system.

Ammunitlon

[^9]
CONFIDENTIAL

$23 \times 10=38,400$ trigger pulls, or some $\mathbf{8 0 , 0 0 0}$ rounds. The requirements are listad in Table L6. The concealed tsrget incicators will fire another $10 \times 96=960$, or about 1000 rounds of $30-06$ single bulleta, not lacluded in the test or zern firing.

Combining the loads from Tables L 5 and L 6 gives a grand total of estimated ummunition requirement of roughly 70,000 rounds, including ntbut 12,000 rounde of duplex (see Table L7).

Table L5
Tero-Firing ammunition Requirements

Weapou	Ammuation or firiug	Ronad.	Loade
. $30-05 \mathrm{N1}$	Siagle bullet	$10 \times 240=2,400$	3008 -roned clipe
	Daplex	$10 \times 240=2,400$	3008 -round clipe
. 22 Gustefaion	Semiautometic	$10 \times 240=2,400$	50015 -ronad menazinea
	Autometic	$10 \times 600=6,000$	
Totel		13,200	

Table l. 6
Test-firing amunition Requirements

Weapon	Ammunition of firing	Runa	Rowuda (100 trigger polle par rmo)	Loada
. $30-06 \mathrm{M1}$	Siugle bellet	24	9,600	1200 8-ron od clipa
	Daplex	24	9,600	1200 8-round clipa
. 22 Gustafuon	Semioutomatic	24	9.600	2240 15-romad marnzives
	Astomatic	24	24,000	
Total		9	52,800	

Table 1.7
Total amunition Peoumements

Ammusition	Rounde	Loads
$.30-06$	13,000	1625
8-round clipe		
.22 Guatefeon	42,000	$2800 \quad 15$-round makeziues
$.30-06$ Daplex	12,000	15008 roasd clips
Total	66,000	

Target Range

The target range needed for this teat is sketched in Fig. LA; it la a range area of about 300 by 560 yd , with a afety provialons for a wide angle of fire. It la dealrable to permit firing at targeta as close as about 30 yd , with a lateral diaplacement of the flrers by is much as $c 0 \mathrm{j}$ d. The ground should be typleal battieground-more than enough veg etation to conceal targets so that just any bush doea not become too likely a target location. The infoty, zone is deduced by limiting the area for serget positione to beyond the line IT'T in Fig. L4. The firera are reatrlcted to within the segment SS. The minimumangle of fire from the firing line la juat arctangert $100 / 200=27$ deg.

These dimenalons are auggested as a likely oompromiae batweun reacarch aeods and anfoty requirementa. The over-all ulmenslona in partlcular are approximate rather than stringent.

COMFIDENTIAL

The power requirement for the target system is modest; 115 volts $\mathrm{AC}_{\text {, }}$ draving less then 1 kw maximum. The power requirements for the artificial ilghts and tape players for battle notse are also modest: 115 volts AC, drawing probably less than 5 kw steady. Ilfuminstion-measuring equipment as well as the lights themselves will be required for the night tests.

Aithough ORO wili supply the target mechanisms, about 2000 pasteboard targets $(96 \times 20=1920)$ will be required, mounted on sultable stakes.

Fig. L4-Ronge Dimensions

Time
There will be 72 day runs and 24 night runs. The actual runs will take about 5 min each. The prepsration between rums (smmunition isaue, zeruing, target preparation, programing, liluminatlon) will doubtless take much longer. If an average of 25 min preparation per run and 1 hr preparation per session is cstimated, about 48 hr will be spent on 12 day sesslons, and 24 hr on 12 night seaslons. ft should then be posalble, with proper prellminary preparation, to perform the entire teat in 3 weeks.

Personael

In Table L2 it ia seen that the flrings may be reasonably accompliabod with the wee of 15 aeleentod aquada, 5 each week.

The typical mixed aquade will be composed of predetermined quallfiera, auch as cre expert, flve abarpahooters, three marksmen, and one nonqualified. These squads will be relieved of other dutlos for their roapective weoka and will be availabie fuil time for thita experimunt, fncluding nitgits. The export and bolo squade will be compoesd of qualified experts and unquallfied shootera respectively. Theee squads wili be rolleved of moot other dutloa for their reepective weoks and will be svailable part time for thls axperiment.

CONFIDENTIAL

Summary of Requirements

Weapons:

12 M1 rifles (chambera reamed to accept duplex rounds)
12 M1 rifles (unmodified)
12 Gustafson callber .22 carbines
Ammunition (50 percent overallowance):
20,000 rounds caliber $.30-06$ in 8 -round cllps
63,000 rounds caliber . 22 Gustafson $\ln 15$-round magazines
18,000 ruinas caliber . $30-06$ duplex in 8 -round clips
Range:
About 300 by 500 yd with provislon for wide angle of flre; terrain with small rises and adequate vegetatlon to provide some potential individual concealment.

Pcrsonnel:

600 man-days: 3 sets of 50 men for 4 days each. These men must be preselected with cegard to markmanshlp qualificatlons. It 18 antlclpated that 8 atisfactory sets of 50 can be selected from random groups of 60 or 10 , including standby replace menta (almost 48). The men must be free for night firing, as well as day. Project offlcers will of course also be required.

Time:
12 days and 12 nights-barring extraordinary weather, it will take 3 weeks.

Target system:

Aiwnt =is mit-xecording mo-un targata and autnmatio nrogrammer and hit recorder (all designed and probably aupplied by ORO); a 115 -volt AC $5-k w$ power line on the range: Illumination erninment (to he determined with CONARC and HumRRO); about 2000 pasteboard tsrgeta (to be specified).

CONFIDENTIAL

Appendix M
HIT PREDICTIONS
SUMMARY 313
SINGLE.BLLLET IIIT PRFDICTION 313
COMBAT ZERO 318
DUI'LEX AMMUNITION IHIT PREDICTIONS 322
THIPLEX AND FLECHETTE AMMINITION HIT PREDICTIONS 332
PREDICTIONS COMPARFN WITH ACTUAL RESLLTS 338
STATISTICAL AELIABILITY 339
FIGURES
M1-M5. Bullet Dmop as a Function of Rance rom Five Anmunitions M1 30-Cal Single-Bellet M2 Anaunition 318
M2. 30-Cal DUPLEX AMUNITION 319
M3 30-CAL TIPLEX AMUNITION 319
M4 .22-CAL T48 AMunttion 320
M5 .22-cal Caheine Amenition 320
M6. Total Dhop Miss Distance fon Virhous 7emo Rances fon Five: Anmuntions 322
M7 G:omethy of Duplex Itts 323
M8 Total Duplex ameuntion Hit Phobability as a Fenction of aming Faron yor Several Tanget Sizes 330
m9 Total. Duplex amunition lit Pmobabiltty as a Function or tancet Size por Siveral amang Earoms 330
M10 1eplex amountion Gan in Casualties as a Function of Ammeg Eamon ron Sevfanal Tanget Sizfs 331
Mll Duplex amenttion Gain in Casualtifs as a Function or Tancet Size: ron Sevtial. Abang Eamons 331
M12 Duplex mantittion Gan in Casualtirs as a Function or Spaead rom Vanioes lethalmes 332
M13 Coustuy or Ruvdow Remension Hts 333
M14 Derus Gausian Tancer 333

COMFIDENTIAL

M1e. Feliep Map of Salvo Casualty Probabil.ttifs 335
M16. Haniom Thiple: Amunition Casualty Inchease as a Function of Dispersion for Day 336
m17. Random Thiplex anunition Casualty Increase: as a Fuyction of Dispersion fok Nett 336
M18. Random Flechette Casualty Increase as a Function de Dispersion for Day 337
M19. Random Flechette Casualty Increase as a Function of Dispershon for Necht 337
TABLES
M1. Preolcte:o Day Target Hirs 315
M2 Predicteo Nogt Target itts 316
m3 Compabison of Phemictions with liesults for Sitting Singlé-Bullet Iruns 317
M4. Predicted Average Firing Conottions 317
m5. Simplifieo Day Tarcet System 321
M6. Total Drop Mos Dastance: for Various 7ero Ranges for Five amuunttions 321
m?-mil. Theoretical Duplex ammunition hit Probabilities for Variols Target sizes
M7 T- $\frac{1 / 2 \mathrm{MaL}}{}$ 325
M8. $\mathrm{T}=1$ Mit. 326
M9. $I=2$ ML 327
M10. T-4 Mit 328
M11. T-8 W 329
M12. Preoictio Rounos Fired ano Htse Scored 338
M13. Experimental hounos Firen and Hits Scored 339
M14. Preolcteo Hit Probabilities and Tieir Standard Deviations 339

CONFIDEMTIAL

SUMMARY
In order to determine sensibly the requirements for an expertmental destgn it is necessary to predict the results of the experiment. Without some foreknowledge of the magnitude of differences to be expected, it ts not possible to specify some minimum number of measurements required to achieve acceptable reliabtlity. Clearty only rough estimates are possible, or else the experiment tiself is qutte unnecessary.

In this appendix single-builet predicttons are made for rounds ftred and hits scored on both day and ntght target aystems. These values compare reas onably welt with expertmental results.

An optimum zero setting is deduced, which mtntmtzes total bullet dropfor all targets of the day system. The setting is a 165 -yd zero for all ammunitions.

The controlied duplex pattern is analyzed theorettcally to yield hit predtctions as a function of both aiming error and target stze. These general results are applted to the expertmental target system.

The random-dispersion triplex and flechette loads are also examined theorettcally to yield casualttes as a function of disperston. These results are extrapolated to hits for the given ammunition disperstons.

The resultant predictions of hits and rounds fired for all test ammunttions are tabularly compared with the experimental results. Ftnalty the predicted standard deviations are computed to justtfy the statistical reltability of the expertmental design.

SINGLE-BULLET HIT PREDICTION

In order to predict the outcome of the experiment the results of an earlier accuracy expertment were applied to the detailed expertmental target system plan for the SALVO I experiment. ${ }^{\text {is }}$

In thls experiment alming error was determtned for rifles under test condittons for varying times of target exposure. The average errors varied from 3 mils with 8 sec to aim to 20 mils with only $1-\mathrm{sec}$ alming time. Theise are radial errors expressed in angular measure. The averages used are the root-mean-square values. This root-mean-square radial error is identcal with the radial stancard deviation. It is larger by a factor of $\sqrt{2}$ than the coinoionly used linear standard deviation; it is sltghtly larger (by 13 percent) than the mean radius.

This accuracy experiment revealed that the shortest time in which an average man can get a sight picture ts about 2 sec . The test further revealed that

CONEIDENTIAL

for the initial roind at a newiy signted target, $3^{1 / 2} \mathbf{~ s e c}$ ts optimum (mure rapid fire reduces accuracy, and slower fire reduces rate, so that the hits per unit time are decreased). Therefore the basic rate of fire was taken to be about 3 rounds per 10 sec , and the correspondtng aiming error was taken to be 4 mils . Actually the preliminary expertment predicted 5 mils with standing fire for this exposure tlme, but it was felt that the sltting position of the SALVO I experiment would enhance accuracy.

The rate of flre and measure of aiming error next had to be reflned for critical target characteristics. This was done by slmple judgment according to the following ratlonale: the number of rounds flred at a target durtng the day was thought to be reduced by about 2 rounds for 11 ghtly camouflaged targets and 5 round:s for heavily camouflaged targets, as compared wlth unconcealed targets. This feads to the following expression for the number of rounds fired at a given day target:

$$
\begin{equation*}
V=(10-3)(t-1)-2(1 . C)-5(11 C) \tag{M1}
\end{equation*}
$$

where $\quad t=$ the number of seconds of target exposure
$-1=$ the Initial firlng delay, in seconds
$(\mathrm{LC})=$ 'lght concealment
$(\mathrm{HC})=$ heavy concealment
If the target is \ln (LC) or (HC) classification, that term in Eq. M1 becomes unity; otherwise the term is zero. The aiming error must also be modified to account for concealment and movement (M). The expression used for the radial standard devtation α is

$$
\begin{equation*}
\alpha=4.0+(T / 2)(\mathrm{L} . \mathrm{C})+2 T(\mathrm{HC})+2 T(\mathrm{~W}) \tag{M2}
\end{equation*}
$$

where $\mathrm{I}=$ target radius, in mils.
The rationale here is that a $\operatorname{ltghtly}$ concealed target is iikely to be missed by an addtitional quarter target wtdth, and a heavily conceated target by a full target width. Similarly a laterally moving target M is !ikely to incur an add!tlonal error of a full target width. Using these two equations it became possible to predict the number of rounds fired N and number of hits scored H on the 22 targets of the day target system. The results of these calculations are presented in Table M1. The hit probabsility is simply computed from the expression:

$$
\begin{equation*}
p=1-\exp \left[-(T / \alpha)^{2}\right] \tag{M3}
\end{equation*}
$$

The target size I was deduced from the known slze of the E or F silhouette target and the range. The F target has an area of $328 \mathrm{sq} \ln$., or an equivalentclrcle radtus of 10.2 in . The \mathbf{E} target has an area of 853 sq tn ., or an equivalentclrcle radius of 14.5 in . The hit prooabillty on elements of area on the extreme corners of these Irregular targets is somewhat less than would be the case for a clrcular target By actual measurement on the sllhovette targets, for an assumed average error of 5.4 mils , the equivalent ctrchar targets were found to have radil of 9.9 and 14.0 in . These were the values uned as radil of circular iargeta equivalent to the silhovetten in computing 1 .

The predictions for tie ntght target system were made in asimilar fashion. In thie case the inlual f1rtige delay was increased by an additional $20 / 3 \mathrm{sec}$ to account for increased e!!!!iculty tn acquiring the target. On the other hand, the 20/3-sec increase was erased with those targets indicated by blank rifle fire. It is judged that the flash would approxtmately compeneate for the darkness.

CONFIDENTIAL

Certainly the baslc aiming error at night is larger than the day value of 4 mils; an arbltrary jucigment provided an eetimate of a 5 -mll baslc error. It was assumed that the additional error Incurred by light concealment was a half target width rather than the qu? rter target width assumed for the day system. It was further assumed that the existence of blank rifle fire at a target reduces the aiming error by a quarter target width. Finally, it was assumed that under

Table MI
Phedicted Day Tarcet Hits

conditions of low Illumination the outline is vague, even when located, to the extent of an additional hall target width. These considerations lead to modlfled expresslons for the number of rounds flred and the aiming error, as indicated in eqs. M4 and M5.

$$
\begin{align*}
& \text { - }-(10(3)(8-3-2(1)=2(i C)-3(\text { HC) } \tag{M4}
\end{align*}
$$

The parenthetical designations are defined In the forinotes to Table MI,
ORO. T-378

CONFIDENTIAL

Application of these expressions to the infurmation on the 22 targets of the night system ylelded the rounds fired and hits scored at night, which are presented in Table M2.

It is of interest to note from the totals of Tables M1 and M2 what some of the average values are. The most meaningful measure of hit probability is probably the integrated value, taken from the total numbers of hits and rounds fired. These numbers yiela a predicted hit probablity of 9.6 percent during

Table M?
Predicted Night target Mots

Target no.	Aange, yd	Target characteristica	Target silhouette	Target size. mila	F.xposure time, sec	Rounds fired	Radial error, mils	Hite	$\begin{gathered} \text { lit } \\ \text { probsbility, } \end{gathered}$
1	52	1. IIC:	F	4.7	28.5	87	16.7	6.6	7.6
2	63		F	5.3	3	0	10.3	0.0	23.3
3	6.5		F.	5.1	7.5	15	10.1	3.4	22.5
4	67	f, IIC	F	3.6	12	32	14.0	2.0	6.4
0	76	1, HC.	F.	4.4	4.5	12	7.2	3.7	31.2
R	78	f, IIC:	F	3.1	19.\%	55	12.7	3.2	5.8
11	90	1	F	2.7	4.5	12	16.3	0.3	2.7
12	91		F	2.6	9	18	10.4	1.2	6.5
13	111	f. 118:	F	2.2	19.5	60	8.3	4.1	6.8
14	12\%	1	F	1.9	9	25	?.9	1.4	5.6
15	139		H	1.7	4.5	5	6.7	C. 3	6.2
16	152	4	E	2.2	10.5	25	11.6	0.9	3.5
17	161	!	F:	2.1	3	7	6.0	0.8	11.5
18	162	M	F	2.1	6	10	11.3	0.3	3.4
19	164	H	r:	2.0	18	. 50	11.0	1.7	3.3
20	ios	ic.	I:	20	34.5	102	00	4.9	4.8
21	169		F.	2.0	4.5	5	7.0	0.4	7.9
22	176	1. I.C.	$\stackrel{+}{ }$	1.9	9	25	-. 9	1.4	5.6
23	200		F	1.2	3	0	6.2	0.0	3.6
26	221	1	F	1.1	7.5	22	5.5	0.9	3.9
27	223	I. 1.C.	F	1.1	21	65	6.6	1.8	2.8
25	218	1.C	F	1.1	15	3R	7.2	0.9	2.3
Total	2979	111 4. C 511. 3M	$\begin{aligned} & 12 \mathrm{~F} \\ & 10 \mathrm{~F} \end{aligned}$		253.5	671		40.2	
Neat	135			2.6	115	31	9.5	1.8	

the day and 6.0 percent at night. ii is also interesting to note that the predictIon of total rounds fired is essentialiy the same day and night (c75 and 671). The prediction was 65 hite out of 675 rounde fired in day-sitting control (single bullet) fire. It was gratifying, and quite surprising, when the first preliminary single-bullet run resulted in 74 hits out of 669 roundis fired. The later test data proved a somewhat higher hit probability, averaged from the 8 regular singlebultet day-sitting runs. The night prediction from Tabie M2 was 40 hits out of 671 rounds fired. The average result from 4 teat runs thrmed out to he 42 hits out of 834 round fired. These comparisons are listed in Table M3.

It should the noted that the night target system ta senerally composed of longer-appearing and closer targets than the day system, in accord with nor-

CONFIDENTIAL

mal combat practice. A linear mean target distance of 190 yo is reduced to 135 yd ai night. It is of further interest to note what the predicted effective range might be. An effective range may be defined by describing the following calculation: the figures in the "Range" and "Rounds Fired" columns of Tables M1 and M2 are multiplied together for each of the targets. The products are totaled, and this total is divided by the total number of "Rounds Firea" alone. The resulting figurea represent average ranges, which were weighted by preCicted fire. This can then be Interpreted as the average hitting iange. This catculation was performed, and ylelded 191 yd for the day system and 135 yd for the night system.

Table 13
Comparison of Predictions mith Resul.ts for Sitting Single-fylleet Riens

Run	Prediction		Result			
	Hits	Rounds	Hits	Rounds		
Day	65	675	114			577
Vight	40	671	42	834		

Table M4
Predicted Average Fining Conditions

Run	Hange, yd	Fixponure, sec	Rounds fired	Hite	Stit prob- sbility.	o, error. mils
Dav	191	10.5	3.1	0.29	9.6	4.0
$N_{\text {ight }}$	135	11.5	3.1	0.18	6.0	7.4

The average error is also of Interest. Simple linear means of the radial errors are shown at the bottom of Tables M1 and M2. The values are 5.6 mi is for the day and 8.5 mils for night systems. This linear mean is a rather unsophisticated way of averaging the error; a possibly better methor would be based on the fritegrated hit probability. Thls calls for the use of some sort of average target size. The linear mean target sizes from Tables M1 and M2 were used. Thise values are 1.8 mils for the day system and 2.6 mills for the night system. The simple relation for a symmetrically normal error on a circular target is described by Eq. M6:

$$
\begin{equation*}
a=T / \sqrt{-\ln (1-P)} \tag{M6}
\end{equation*}
$$

where f is hit probability. Equation M6 yields radial standard deviations a of 57 mils for the day system and 10.4 mils for the night system. It is noted that these two values are in reasonable agreement with the linear means.

The errors in Table M4 were converted from radial to linear standard deviations, slmply by diviting by $\sqrt{2}$. The errors are presented this way for conventence, since the linear standard deviation a is in more common usage.

CONFIDENTIAL

COMBAT ZERO

Having predicted hits on the target system, it becomes possible to compute a zero settlng for test weapons that will produce a high net hit probability. Of the several possible schemes for defining and computing the combat zero, the following procedure was adopted: Flrst, the ballistic path of all test ammunitions was determined (with the exception of the flechette ammunition). The

Fig. MI-Bullet Drop os a Function of Range for the $.30-\mathrm{cal}$ Single-Bullet M2 Ammunitian
The number to the left of the hyphen on the vertica! lines inficetes ronge, the number to the right indicotes hits (see Toble M5).
arsenals and manufacturers were kind enough to provide Information on the bullet drop as a function of range for the five rifle ammunitions, which is plotted in Flgs. M1 to M5. The lowest curve on each of these figures shows the exaggerated path of the test ammunitions fired horlzontally (e.g., zeroed at zero range). In addition the pathe were computed and plotted for each ammunition zeroed at $100,150,165,200$, and 250 yd. These curves crose the iorlzontal axis at those ranges respectively.

COMFIDENYIAL

CONFIDENTIAL

CONFIDENTIAL

Next, to reduce the complexity of calculation, the target hite shown in Tables M1 and M2 were aggregated, which was arbitrarily accomplished ty iumping three or four targets that occur at nearly the same range and merely attributing the total number of hits on those targets to a representative target at an average of the several tanges. The results of this aggregation yield the simple target system shown in Table M5.

The information C.i the simplified target system is Indicated in Figs. M1 to M5 by the vertical lines drawn at each of the six ranges. Using this hit information as a weighting factor, it becomes possible to compute the total inches

Table M5
Simplified Day target System

Rage. vd	lita
80	20
125	9
165	26
220	2
260	8
3.35	3

Table M6
Total. Drop Miss Distance for Variots 7ero Pavges for Five tmuenitions

Ammunition	T.eto renge, vd				
	100	150	16.5	200	250
	Bullet drop, 10.				
Siuple bullei	3.9	246	218	258	322
Duplex	457	331	305	3.53	453
Triplen	516	367	331	395	512
Carbiae	290	212	193	224	292
T48	186	131	115	139	1:4

of builet drop for the entire target syntem for each value of zero. Consider, as an example, the $.30-\mathrm{cal}$ single-bullet ammunition shown in Fig. M1. Look flrst only at the curve for the 100 -yd vero. The IIrst composite target occurs at 80 jd , where the curve ahows an error of 0.7 in . Since 20 rounds are expected to hit this composite target, a total error of 20×0.7 or 14 in . 18 indlcated. Similarly, the next target at 125 yd sxperiences a drop of 1.1 in for 9 anticipated hits, making a total drop of 9.9 in . The an me procedure is followed for the other four composite target ranges Finally, the stx drop totals are added to yleid a grand total of, in this case, 349 in .

Only this groes total is retained. The same procodere in followed for the 150-yd zero range. In this case the grand lotal comee to 248 La . Thls procedure is then follownd for each of the outer three aero rangea to yleld flaally

CONFIDENTIAL

flve grand totals, correaponding to the five arbitrarily selected zero ranges. This same pattern is then rusowed for each of the other ammunitions presented in Figs. M2 to M5. The resultant total drop distances are listed in Table M6.

It is clear irom thls table that a minimum drop value exists for each of the ammunitions. These total bullet-drop values are plotted in Fis. M6. It is observed that the slowest ammunltiors and those having the worst ballistic coefflcient have the highest values of total drop. More striking is the result that

Fig. M6-Totol Drop Miss Distance for Various Zoro Ranges for Five Ammunitions
the minimum bullet-drop zero range for all five amminitions is apparently the same- 165 yd -which indicates that this zero range is quite sensitlve to the target sybtem but lnsensitlve to variations in ammunition. Thus it was declded that all rifles for this test would te set for a combat zero of 165 yd . The computations were not carried through for the night target syatem; it was assumed that the small difference that such computations might recommend would oe insignificant in view of the very large alming errors in night firing.

DUFLEX AMMUNITION HIT FREDICTION3

This discussion to summarized from ORO-SP-4." To deal analyticaily with the controlled-dispersion duplex ammunition tested, a simplified model

COMFIDENTIAL

of the dispersion pattern was assumed. The simplifications basic to the model were (a) the dispersion of front bullets was normal and symmetrical about the line of fire; (b) the ring of second-bullet impacts was narrowed to a circle of negligitle width and a 3 -mil radius; (c) the circle of second-bullet ampact was concentric about the corresponding front-bullet impact; (d) the angular location of second-bullet impacts on the circle was random; and (e) the target was circular.

Fig. M7-Geometry of Duplex Hits
T indicates torget radius,
R indicates sor-bullet circleradius;

- indicases radius vector from tor.
get center to front-bullet impoct.

From the geometry of Fig. M7 the fraction of the rear-bullet circle that lies on the target is given by

$$
\begin{equation*}
F=(1 / 1 a n) \operatorname{arccoe}\left[\left(R^{2}-T^{2}+r^{2}\right) / 2 R r\right] \tag{M7}
\end{equation*}
$$

for the angle in degrees.
For a radially normal distribution of front-bullet impacts, the probability of a front-bullet Impact at a distance r to $i+d y$ irom the target center is given by

$$
\begin{equation*}
d G=\left(r d r / \sigma^{2}\right) \exp \left(-r^{2} / a^{2}\right) \tag{M8}
\end{equation*}
$$

where a is the radial standard deflation of alming error.
Using the fraction F and the probability element $\mathbb{d} G$ with the geometry of Fis. M7, dupler hit prohebllities ere readl!y deduced.

The single-ball hit probability is

CONFIDENTIAL

The primary duplex hit probabilities of interest are

$$
\begin{gather*}
P_{\varepsilon}=N_{1}-N_{2}+\int_{T}^{T+R}-\int_{\{T \cdot R \mid}^{T} \tag{M10}\\
P_{d}=N_{2}+\int_{|T-R|}^{T} \tag{M11}
\end{gather*}
$$

where $\int=\int F d u$
$P_{s}=$ probability of a single hit
$\mathrm{P}_{d}=$ probability of a double hit

$$
\begin{equation*}
N_{2}=\int_{r=0}^{T-R} d G=1-\exp \left[-(T-R)^{2} / a^{2}\right] \tag{M12}
\end{equation*}
$$

and the proviso that for $T<R, N_{2}$ vanishes, and for $T<R / 2,\left\{_{T-R \mid}^{T}\right.$ reverses sign in Eq. M10 and vanishes in Eq. M11.

The hit probabilities are functions of three variables the duplex spread R, anguiar target size T, and the angular aiming error \approx. It is quite possible then to compute the hits of each type that may be expected with a dupiex round of known spread on a target of a given angular size under conditions of known aiming error. Numerical integration is substituted for expressions not amenable io integration:

$$
\begin{align*}
& \int F d G \cdot \Sigma F \delta G=\left(8 r / 90 \alpha^{2}\right) \Sigma_{r} r \exp \left(r^{2} / \bar{\alpha}^{2}\right) \arccos \left[\left(R^{2}-T^{2}+r^{2}\right) / 2 R_{r}\right] \tag{M13}\\
&=C \Sigma r e_{\alpha} \theta \tag{M14}
\end{align*}
$$

The test ammunition has a dispersion characterized by $R=3 \mathrm{mils}$; hence

$$
\begin{equation*}
f-C(a) \Sigma r e(x) \theta(T) \tag{M15}
\end{equation*}
$$

To evaluate this integral (sum) it is necessary only to substitute values for aimIng error α and angular target size T. This was done for a series of values: $T=1 / \mathrm{s}, 1,2,4$, and 8 mlis ; and $\alpha=1,2,4,8,16$, and 32 mils . Hit probabilities were computed for the 30 pairs of these values and are tabulated in Tables M7 to M11. The products re α^{θ} are indicated as $\pi \alpha$.
in addition to the single $\left(P_{s}\right)$ and double (P_{d}) hit probabilities, several derived quantities are of interest:
(a) Probability of one or more hits: $\quad P=P_{0}+P_{d}$
(b) Total hit probability: $P_{s}=P_{g}+2 P_{d}$
(c) Relative duplex gain in total hits: $\dot{I}_{f}=\left(\dot{P}_{8}-N_{1}\right) / N_{1}$
(d) Relative duplex gadn in casualties: $I_{C}=\left(I_{l /}-L P_{d}\right) / N_{1}$ where L is the Individual duolex bullet lethality (0.70). These probabilities are piotted on Figs. 8 to 11. Figures M8 and M9 show the single $\left(\mathrm{N}_{1}\right)$ and Cuplex total ($P_{\text {}}$) hit probabilities. Figures M10 and M11 show the relative casualty pain (I_{C}) of dupiex vs single-bullet a mmunition.

Using the day target sybiem and predicted single-bullei hit prubabilities of Table M1, the casualty increases can be read from Figs. M10 and M11 for a spread $R=3$ mils and a lethality $L=0.70$. Casualty-gain values can similariy be computed for other values of duplex spread R and ballet lethaltty l., permitting preparation of the curves of Fig. M12 (for the set of salvo targete of 0.8- to 4.6-mill radiv).

CONFIDENTIAL

Table M7
Tbeoretical duplex amunition fit Probability: $T=1 / 2 \mathrm{~m}$ m

r	-	$e_{1}\left(\times 10^{3}\right)$	e_{2}	${ }_{4}$	8	${ }^{16}$	${ }^{3} 3$	$7(\times 104)$	4	*	d	${ }^{16}$	${ }^{3} 12$
	Compatatione for Selected Valvee of e and T												
2.55	4.5	169		0.752	1.02	1.10	1.12	194	2.55	8.7	11.7	12.7	12.9
2.65	7.3	101	0.195	0.728	1.01	1.10	1.12	195	3.76	14.0	19.5	21.2	21.7
$2 \cdot$	3.9	59	0.170	0.703	1.00	1.10	1.12	145	4.20	17.4	24.8	27.1	27.7
2.	9.3	34	0.148	0.679	0.99	1.09	1.12	ค9	3.92	18.0	26.3	29.0	29.5
2.95	9.6	19	0.128	0.655	0.99	1.09	:. 12	53	3.62	18.5	27.9	30.9	31.7
$\Sigma_{\|r-R\|}{ }^{\text {r }}$								676	18.1	76.6	110	121	124
3.05	9.6	10.3							3.21	18.4	28.5	31.7	32.6
3.15	8.9	5.5	0.094	0.607	0.966	1.09	1.12	15.4	2.64	17.0	27.0	30.4	31.3
3.25	1.9	2.9	0.081	0.588	0.957	1.08	1.12	7.3	2.01	14.6	23.9	27.1	27.9
3.35	6.3	1.5	0.068	0.560	0.94 ?	1.08	1.12	3.2	1.46	11.8		22.8	23.5
3.45	3.6	0.8	0.058	0.536		1.08	1.12	1.0	0.71	6.6	11.6	13.3	13.8
Σ_{T}^{T+R}								57.1	10.0	68.4	111.0	125.3	129.1
						Compated Valoee of Probability and Gria							
							C ($\times 10^{68}$)	984	245	61.5	15.4	3.84	
								22.1	6.06	1.55	0.390	$0.09 ?$	0.024
							N_{2}	0	0	0	0	0	0
							P_{s}^{2}	22.2	6.75	2.44	0.730	0.192	0.048
							P_{d}^{z}	0	0		0		0
							${ }^{P}$	22.2	6.75	2.46	0.730	0.192	0.048
							P_{1} :	22.2	6.75	2.48	0.730	0.192	0.018
							T_{H}^{\prime}	0.3	11.6	57.4	87.2	97.9	100
							I_{C} *			57.4	87. 2	97.9	100

CONFIDENTIAL
Table M8
Theoretical. Deflex Avmifition lit Pr pableity: $T=1$ ml

CONFIDENTIAL

,	-	$\cdots \cdot\left(\times 10^{-9}\right)$	$\cdot 2$	${ }^{4}$	${ }^{3}$	96	${ }_{32}$	*	* 2	*	*	716	${ }_{-3}$
C.ampantions for Selected Viviver of end T													
12	23	46	0.787	1.08	1.10	1.12	1.13	8.49	25.0	32.8	35	${ }^{36}$	36
1.0	30	87	0.595	$0 . \%$	1.00	1.12	1.13	5.38	${ }^{36.2}$	59.1	67	${ }_{9}^{69}$	
20	11.	\because	0.415	0.88	${ }^{1.06}$	1.11	${ }_{1.12}^{1.12}$	1.71 0.36	34.3 26.7	72.7 78.7	1038	92 110	112
28	11 $\omega .1$:	0.262 0.159	0.79 0.69	1.00	1.09	1.12 1.12	0.36 0.05	17.9	77.6	112	123	126
Σ_{1}^{7}								16.0	141	321	40.5	430	437
12	17.	$400 \times 10-4$	0.087	0.595	0.962	1.08	1.12	0.005	10.4	-1.1	115	130	136
16	31	27×10^{9}	0.044	0.502	0.922	1.07	1.11	0	5.4	61.9	112	131	${ }^{136}$
10	29%	$1.10{ }^{-1}$	0.021	0.415	0.8:9	1.06	1.11	0	2.4	48.1	102	127	129
4	2.8	\bigcirc	$\bigcirc 000$	0.336	0.834	${ }_{1}^{1.05}$	1.11	0	0.9 0.2	33.7 16.8	8.1 50	105 65	${ }_{70}$
${ }^{18}$	131							0.005	103	231	46	588	540
Comprued Vaivea of Probbilitiv snd Gaiz													
							C ($\times 10^{-5}$)	394	98. 4	24.6	6.15	1.54	0.384
							${ }_{N}{ }_{1}{ }^{3}$	98.2	63.2	22.1	0.05	1.55	${ }_{0}^{0.390}$
								$\stackrel{0}{2.9}$	${ }_{63.5}$	29.4	9.59	${ }_{2.61}$	0.663
							$p_{4}{ }^{\prime}$	5.79	7.76	3.17	0.897	0.232	0.058
							P ${ }^{\text {s }}$	98.7	71.3	32.6	10.5	2.84	0.722
							$\mathrm{P}_{14}{ }^{\text {S }}$	${ }_{6}^{105}$	79.0 24.9	35.7 61.5	${ }_{88.0}^{11.4}$	98.1	100.0
							i_{c}^{H}	${ }^{2} .29$	16.3	51.5	77.6	8.0	89.6

COMFIDENTIAL

-	-	11×10^{3}	28	\bullet	*	$\cdot 16$	${ }^{3} 3$	\cdots	${ }^{\prime}$	" ${ }^{\text {d }}$	${ }^{3}$	16	*32
	Computationo for Selected Valsea of a and ${ }^{\text {T }}$												
1.3	133	208	0.740	1.02	1.10	1.12	1.13	36.0	128	175	197	124	125
1.9	17\%	31	0.458	0.90	1.07	1.11	1.12	6.2	9	184	213	228	230
2.5	98	2	0.237	0.76	1.02	1.10	1.12	0.5	55	177	233	256	231
3.1	82	0	0.102	0.62	0.97	1.09	1.12	0	25	-57	24^{\prime}	276	284
3.7	72	0	0.087	0.48	0.91	1.07	1.11	0	10	129	24.	287	299
\sum_{17-17}^{T}								42.7	313	822	113'	1241	1259
4.3	63.6	$105 \times 10-7$	$111 \times 10-4$	0.355	0.645	1.05	1.11	0	3.04	97.2	23.	288	303
4.9	53.3	0	$28 \times 10-4$	0.252	0.775	1.05	1.10	0	0.73	65.7	20:	288	283
5.5	45.3	0	$6 \times 10-4$	0.170	0.203	1.00	1.10	0	0.15	42.3	17 !	250	271
6.1	34.3	0	1×10^{-4}	0.110	0.631	0.98	1.09	-	0.02	23.0	$13 ?$	204	227
6.7	19.4	0	0	0.058		0.95	1.08	0	0	8.9	$7:$	123	140
$\Sigma_{T}^{\text {ron }}$								0	3.94	237	813	1133	1229
						Computed Valieat of Probebiliyy and Gais							
						$C(x 10 \%)$$N_{1} s$$N_{2} \%$$P_{2}=$$P^{2}$		590	148	36.9	9.22	2.30	0.570
								100	98.2	63.2	22.1	6.00	1.55
								63.2	22.1	6.06	1.55	0.390	0.058
								12.2	17.5	35.6	17.5	5.4:	1.51
								87.8 100	81.3	36.4	12.1	3.25	0.830
						P_{1} \%		180	180	108	49.6	8.66	233 3.16
						I_{4} *		87.8	\$3.0	71.5	88.6	96.5	99.4
						${ }^{\prime} \mathrm{C}$ 5		28.3	25.0	31.2	50.3	59.0	61.9

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

comfidentiani

Fig. M12-Duplex Ammunition Gain in Casualties as a Function at Spread for Vorious Lathalities

THIPLEX AND FLECHETTE AMMUNITION HIT PREDICTIONS

The dispersion patterns of the test triplex and flechette ammunition are of the so-called "random" type, i.e., the pattern of hits can be approximately described by a symmetrical two-dimensional normal or Gaussian distribution. Each projectife independently follows an initia! path, which deviates from the harrel axis by some amount for which this two-dimensional normal curve is the frequency distribution. The tightness of the dispersion is characterized by the shape of this normal curve, usually expressed as the linear standard deviation σ. For the fiechette ammunition used in the experiment, a value of 9.4 mils was given for $\sigma{ }^{30}$

The tripiex ammunition used in the experiment performed in somewhat erratic fashion, but it was indicated by the manufacturer to be at least roughly approximated by considering sach of the three bullets to fit into this random normal frequency pittern. The manufacturer also indicated that except for occasiona; wild rounds the mean apread between any pair of the three bultets was 3 mtl .

It is deairable first to convert the 3 -mil average aeparation $\overline{\delta r}$ of triplex rounds to a deviation σ, which is more commonly used to characterize the dispersion. This conversion is readily made when it is reallzed that the mean

CONFIDENTIAL

difference beiween two samples from a iwo-dimens'onal normal disiribution is Identical with the mean radius of a single sample drawn from a disiribution having a deviation larger by a factor of $\sqrt{2}$. Recalling furiner thai the mean radius oif a rwo-dimensional normal distribution is larger than the Inear standard ceviation by a factor of $\sqrt{\pi / 2}$, the mean spread can be related to the original dispersion σ by

$$
\begin{equation*}
\sigma=1 / \sqrt{m}(\bar{\delta} r)=0.565(\overline{(\bar{r})} \tag{M16}
\end{equation*}
$$

For the rough value of mean spread $\overline{\bar{b}}=3 \mathrm{~min}$, ite deviation is 1.7 mls . The following discussion ouilines the considerailons leading to the soluiton of the problem of kill probability with a normal aiming error imposed on a normal dispersion. This soluiton is iaken from ORO-SP-24. ${ }^{13}$

Fig. M13-Geometry of Random-Dispersion Hits

Fig. M14-Diffuse Goussian Target

Considered firsi is the probability thai a projecille aimed ai a distance R from the center of a circle with radius ρ will hil the circle. The aciual impaci point is assumed to follow a Gaussian distribution with linear standard deviation σ about the aiming poini. Lei the airaing poini be ai R, O; then the probability that the fragmeni impacts within a rectangle of dimensions $d x$ by $d y$, lying ai x, y (see Fig. M13) is

$$
\begin{equation*}
P=1 /\left(2 \pi 0^{2}\right) \text { exp } 1-\left\{(X-R)^{2}+y^{2}\right\} / 2 o^{2} \mid d x d y \tag{M17}
\end{equation*}
$$

and ine probability P thai ii strikes the circle is ithe iniegral of this over the circle:

$$
\begin{equation*}
P=\iint_{2}^{2}, y^{2} \leq \rho \tag{M18}
\end{equation*}
$$

This is sometimes called the "offsei-circle" probabuity. An approxiniation is to replace the sharp regular iargei by a diffuse Gaussian targei (bee Fig. M14) by filitng by momenis. Thus, for the sharp targei, any fragmenifalling within the circle scores 1 ; a fragmeni faling outside acores 0 . This may be represented by a right cylinder of radiue 1 and neight 1, centerad ai the origin. The diffuse farget with the samo zero-ind second-order radial moments-haa height 2 and linear standard devlaitons $\rho / 2$. It gives a acore of

$$
\begin{equation*}
2 e n p 1-00^{2 / 021} \tag{M19}
\end{equation*}
$$

CONFIDENTIAL

to a fragment lnipacting at distance D frots the center. With this approximatlon in Eq. M18, integrating over the entire x, y pianc, this is evaluated to be

$$
\begin{equation*}
\left.P=\left[\rho^{2} 2\left(o^{2}+\rho^{2} 4\right)\right] \exp \mid-\kappa^{2}\left\{2\left(\sigma^{2}+\rho^{2} 4\right)\right]\right\} \tag{M20}
\end{equation*}
$$

Let L be the conditional probablllty that a hit will be a casualiy. Then the probability that the targct becomes a casualty K if there are V projectiles Is

$$
\begin{equation*}
K=1-(1-L P)^{V}-1-e^{-N L P} \tag{M21}
\end{equation*}
$$

In Eq. M20 P is shown to be a function of the radial distance i? of the aiming point from the center of the circle. But the aiming point is itself a random variablc, and the probabillty that the radlal distance is between R and $R+d R$ is given by

$$
\begin{equation*}
\left(1-r^{2}\right) \exp \left(-R^{2} / 2 r^{2}\right) R d R \tag{M22}
\end{equation*}
$$

where t ls the llnear standard deviation at the aiming error. The final complete answer for the casualty probabllity is therefore obtained by substituting Eq. M20 into Eq. M21 and integrating against Eq. M22:

$$
\begin{equation*}
\kappa=1-(y / \partial)(2 y), z \int_{0}^{1 / 2 y} \eta(y z)-1 \exp (-\eta) d \eta \tag{M23}
\end{equation*}
$$

where $y \equiv(1 /$ NL $)\left(\alpha^{2} / \rho^{2}+1 / 4\right)$
$Z=(1 / N L)\left(r^{2} / \rho^{2}\right)$
$\eta \equiv(1 / 2 y) \exp \left[1-2 R^{2} / 2 T^{2} y\right]$
The lasi intcgral is readily recognlzed as the incomplete gamma functlon; hence K is expressed in terms of tabulated functions. A rellef map showing levelllnes of K against $\log Z$ and $\log y$ is given in Flg. M15.

In order to perform computations on any random, normally dispersed salvo ammunition, it is necessary to know the number of projectiles N , the lethality per projectlle L, and the standard deviation of the dispersion. With the ammunition thus characterlzed, it is further necessary only to characterize the target or target system sufficiently so that one knows the aiming errcr and the target size for each element of the target system. From this aiming error and target size, together with the product NL, the vaiue z is computed; y ls likewise deduced from a knowledge of dispersion, target size, and NL. Clearly from Fig. M15 casuaity probability may readily be deter nined by interpolation. This procedure was actually followed \ln detall for each of the salvo experiment targets for a number of ammunltions. ${ }^{13}$ In that case the computations were performed using actual aiming errore deduced from the results of the SALVO 1 experiment. It ls felt that the results of these computations would not be grossiy altered if they were done wlth the predicted errors of Tables M1 and M2, or even the implified predleted values of Table M5. However, the comparative calculations were not performed.

The calculations that were performed are graphically reproduced in rigs. M16 to M19. It is noted that thls entire treatraent of the random dispersion is based on the number of casualties produced rather than the number of bits.
 and the attendant overkill. For a first comparsion between the prediction and

CONFIDENTIAL

test results, it is perhaps desirable to present the predictions in terms of the data that are the primary measure-mainly total htts rather than casualties. It is further noted that the results presenteci in Figs. M16 to M19 are based on salvo hits per single-bullet hit. This method of presentation is convenient and is herein retained.

Fig. M15-Relief Map of Solva Casualry Probabilities

$$
y=(1 N L)\left(\sigma^{2}-\rho^{2}+1 / 4\right)
$$

Examination of Fig. M16 shows that the $1.7-$ mil dispersion, which was already identified as characterizing the experimental triplex ammunition, results in a casualty increase of 66 percent over the single-bullet ammunition. As the rate of sire and the lethality per bullet are, for practical purposes, identical for triplex and single-bullet ammunition, this figure must be corrected only for possible overicill by multiple-bullet hits. The theory reveals the extent of overkill as a function of salvo dispersion, aiming error, and target size. However, it is not deemed worth while to perform this tedious computation for the present purpose; instead the avallable experimental results are used.

It is shown in App O that the proportions of single, double, and triple hits :nat were so Identified are 82,15 , and 4, respectively. These figures correspond to a totai \approx ! 124 hits $[82+(2 \times 15)+(3 \times 4)]$. Using the same 70 percent

COMFIDENTIAL

CONFIDEMTIAL

CONFIDENTIAL

Lethality vaiue used in ORO-SP-24, ${ }^{13}$ overkilis can be accounted for in the foilowing manner: Of the 124 hits, 101 are fuliy credited. The next 19 are second builets on a target that is oniy 30 percent vulnerable; hence these hits are credited as 5.7 effectlve hits. The iast 4 hits are third hits on a target that is now or! ${ }^{\prime}$ about a percent vinerable, and hence are credited with 0.36 effective hits. Thus the total number of effective or equivalent casualty-producing hits ts 107, as compared with 124 actual builet hits with tripiex ammunition. Ihis ratio of 124 to 107 ts used to convert the casuaities of Fig. M18 to total hits. When this ts applied, the 1.66 becomes 1.92 . The predicted number of triplex hits is then characterized as 92 percent greater than the single-bullet hits. This prediction may be compared with the results of the experiment, which are an average of 114 singie-bulict hits compared with 251 trip!ex hits per run, or an experimental increase of 120 percent. This agreement is not too bad, considering the very rough assumptions made with regard to the actuai tripiex pattern.

The night tripiex prediction is based on Fig. M17, from which the $1.7-\mathrm{mil}$ dispersion yieids a casuaity increase of 80 percent over the single-buliet a mmunition. If the same 1.16 ratio as for day fire is used to account for overkili, the predicted number of triplex hits for the night target system is 2.09 times the predicted number of single-bullet hits. However, no experimentai comparison is avaliabie, since night tripiex runs were deieted from the experiment.

The fiechette predictions are made in the same way from Figs. M18 and M19. It is anticipated that the fiechette casualties for the day and night target systems are 1.28 and 3.74 times those for single-buliet ammunition, respectively. In thils case the lethailty per projectile used in the computations leading to these curves is just haif the single-builet value. Converting from casualties to totai hits requires that these factors then be doubied (2.56 and 7.48 times singiebuifet casualties). It is further noted that Figs. M18 and M19 are based on an assumption that the fiechette rate of fire is 80 percent of the single-buliet rate of fire, which was made as a coarse guess based on the reiative cumioersomeness of the shotgun and the troops' unfamiliarity with the weapon. Resuits of the experiment proved the actual degradation to be somewhat greater, resulting in a rate of fire oniy 55 to 60 percent that of rifle flre.

PREDICTIONS COMPARED WITH ACTUAL RESULTS

It is instructive now to gather the predictions on I ounds fired and hits scored for the several ammunitions and to compare them in tabular form with the corresponding experimental results. This is done in Tabies M12 and M13.

Table M12
Premicten Rounds Fiaed and fits Scored

Ammanision	Day				Night			
	Rowade	Hits	Parceat hite	Incieame	Ausude	Hils	Perceat into	in creame
Siruta bullet	675	65	9.6	-	671	40	5.8	-
Depler	675	11:i	17.0	1.77	671	-	-	-
Triplex	6.5	125	18.5	1.93	671	84	125	2.02
Flechottes	540	>166	> 30.7	> 3.02	:238	>299	> 55.6	>9.42

CONFIDENTIAL

The experimental flechette data in Table M13 is taken from the incomplete runs and proportionaily converted to equivalent complete runs for direct compurison with the other ammunitions. It should further be noted that the values inserted in Table M13 for flechette hits are based only on the predicted flechette casualties. The conversion to total hits regardless of overklll was not made.

Table M13
Experimental Rounds Fiben and Mits Scored

Ammunition	Dny				Night			
	Raunde	Hite	Percent hite	lacrease	Raunde	Hite	Percent hite	lacrease
Single bullet	577	114	19.8	-	834	42	5.0	-
Daplex	505	154	32.5	1.64	716	65	9.1	1.82
Triplex	579	251	43.4	2.19	-	-	-	-
Flecherteo	304	151	41.5	2.10	420	144	34.3	6.87

Table M14
Preoicted Ilit Probabllities and Thein Stanoard Deviations

Ammunition	Day				Night			
	P.	o_{p}	R	${ }^{\circ} \mathrm{R}$	P. \%	θ_{P}	R	O_{R}
Single ballet	9.6	1.1	-	-	5.9	0.9	-	-
Deplex	17.0	1.4	1.7%	0.25	-	--	-	-
Triplex	18.5	1.5	1.93	0.27	12.5	1.2	2.12	0.32
Flechettes	>30.7	1.8	3.20	0.41	>55.6	2.1	9.42	1.50

STATISTICAL RELIABILITY

It is of interest to use these predicted results to estimate the reliability with which conclusions may be drawn from the experiment. Such estimation is a key featuro in experimental lesign, since the predicted reliabilities of computed differences and ratios establish criteria for deciding on the number of repetitions. The predictions of Table M12 are examined to determine the confidence anticipated for the ratios of hit probabilities among the several ammunitions. The procedure starts with the predicted hit probablilies, which are repeated as percentages in Table M14. The standard deviations of each of these percentages are then computed from a knowledge of the percentage of tits P and total rounds fired per run N :

$$
\begin{equation*}
\sigma_{p}=\sqrt{P(1-P) N} \tag{M24}
\end{equation*}
$$

The computed standard deviations σ_{p} are also listed in Table M14. It is noted that these deviations are much smaller than the differences among the probabllities. The next column (R) of Table M14 llsts the most Impurtant quantities sought in the experiment, namely, the ratios of each of the three types of salvo

CONFIDENTIAL

hit probability to the control or single-bullet hit probability. Finally the measure of rel' wbility of this ratio is arrived at by using Eq. J3 of App J.

The dalues are finaily listed in Table M14. It is clear from the table that each of the important ratios differs from unity by more than three st...idard deviations, which means, from the data supplied by a single ran, tint the expected ratios are more than 99.7 percent certain of being truly greafer than unity. The least certainly determined ratio is the ratio of duplex to singlebullet hit probabilities in day firing (1.77). From a single pair of runs it is determined that the probable error of this ratio is 0.17 ; or, in simplest terms, that there is a $50-50$ chanse that the actual ratio will be determined to be between 1.60 and 1.94. Six runs (as scheduled for duplex) of each type determine the 50 percent confidence limits on this ratio from 1.70 to 1.84. Clearly this sort of reliatility in the significant computed parameters is adequate for \ln terpretation. If it can be concluded that duplex ammunition will score from 70 to 84 percent more hits than single bullets, there is little practical use in refining this advantage any further. There are additional correlations from other firings of the same ammunitions under somewhat different conditions. Aithough not amenable to simple statistical reilability measures, they afford additional evidence of reliability from observation of consistency.

COAFIDENTIAL

Appendix N

MALFUNCIIONS

SUMMARY 343
WEAPON MALFUNCTIONS 343
DATA-COLIECTION MALFUNCTIONS 347
TARGET-SYSTEM MALFUNCTIONS 347
FIGURE
N1. Rafle iamaged by Triplex Round 346
TABLES
N1. Total Weapon Malfunctions 344
N2. Weapon Malfunctions per 100 Rounds 344
n3. Data-Coliection Malfunctions 347
N4. Target-Systrm Malfunctions 348
n5. Sumary of Malfunctions 348

CONFIDEnTIAL

SUMMARY
The SALVO I experlment not only lnvolved many new experlmental conditlons but also employed measurleg and control equipment that had not been completely tested in the fleld. It is not surprising that a large number of malfunctions of all kinds occurred. These ranged from trivlal difflculties such as the misplacement of camouflage to the actual blowing-up of a weapon-the latter is perhaps less a malfunction than a catastrophe. The malfunction data are lisled fuliy in Tables E4 and E5 of this nemorandum.

The occurrence of malfunctions necessitateci changes in the conduct of the test and in the analysis of the results. Other sections of thls memorandum deal with these matters; this appendix merely tescribes the malfunctions that occurred. They can be grouped Into three different classes: (a) weapon malfunctions (2 percent), e.g., fallure to feed; (b) malfunctions in data collection (21 percent), e.g., no electronlc Indication of a hlt on a target; and (c) unplanned lrregularities in functioning of the target system (11 percent), e.g., a target nut appearing at the right time.

WEAPON MALFUNCTIONS

The weapon-ammunltion malfunctlon was particularly serlous in that, if the incldence of malfunction was not fairly unlform for all weapons and animunitions, the effect of malfunction could posslbly obscure differences in scores among the various weapon-ammunitlon combinations. As a result of this posslbllity, every effort was made durlng the runs to correct each malfunction quickly, and a record was kept of each malfunction and its type. However, slnce the malfunctions were not recorded automatically, and slnce the information concerning the malfunctions was recorded after the run was completed, the record 18 not highly accurate. There also 18 no record of how long each test subject was unable to flre because of malfunctions. Weapon malfunctions are detalled in Table E5 of this memorandum.

Fortunately the incldence of malfunction turned out to be falrly unlform for all runs with the exception of the Gustafson carbine In automatic flre. Each weapon had a characterlstic major source or sources of malfunction, and some ammunitlons tended to malfunction in characterlstic ways.

One change in the orlginal test design can be attributed In part to the at tempt to minimize malfunctlons. Orlginally it was planned to fire the $.30-\mathrm{cal}$

CONFIDENYIAL

Table N1
TO'L..L WEAPON MALFUNCTIONS

Weapon and ammunition or firing	Fallure to			Misc ${ }^{\text {llaneous }}$	Total	Rounds expended
	Feed	Extract	Eject			
M1, unmodified						
.30-cal slugle bullet	95	11	8	10	124	5,363
M1, modified						
.30-cal single builet	19	15	3	0	37	6,863
.30-cal duplex	19	114	5	9	147	8,722
. 30 -cal triplex	4	14	0	3	21	1,157
Carbine						
.22-cal autornatic	184	115	17	44	360	9,550
.22-cal semiautomatic	56	113	13	17	199	6,450
T48						
.22-cal automatic	17	29	8	35	89	8,589
.22-cal semiautomatic	17	16	1	26	60	5,554
Shotgun						
32-flechette foad	-	-	-	9	9	553
Total	411	427	55	153	1046	52,237

Table N2
WEAPON MALFUNCTIONS PER 100 ROUNDS

Weapon and ammunition or firing	Failure to			Misceilaneous	Total
	Feed	Extract	Eject		
M1, unmodified					
.30-cal single bullet	1.7	0.2	0.2	0.2	2.3
M1, modithed					
. 30 -cal aingie builet	0.3	0.2	0.2	0.0	05
.30-cal duplex	0.2	1.3	0.1	0.1	1.7
.30-cal triplex	0.3	1.2	0.0	0.3	1.8
Carbine					
.22-cal automatic	1.9	1.2	0.2	0.5	3.8
.22-cal aemiautomatic	0.9	1.8	0.2	0.3	3.1
T48					
.22-cal automatic	0.2	0.3	0.1	0.4	1.0
.22-cal aemiautomatic	0.3	0.3	0.0	0.5	1.1
Shotgun					
32-flechette load	-	-	-	1.6	1.6
Total	0.8	0.8	0.1	0.3	2.0

CONFIDENTIAL

CONFIDENTIAL

singie-builet (AP), dupiex, and tripiex ammunitions from the same weapon. During the fisst week of firing, however, it appeared that there was a high rate of malfunction both on the single-bullet and dupier runs (the triplex runs being discontinued because of an accident that wili be described iater). It wras conjectured at the time that these malfunctions (mainly faltures to extract) might be due to fouing of the chamber, which resulted from flring singie-buliet ammunition in the specially chambered M1 rifies. It wa二 aisu conjectured that the paint on the nose of ammunition (used to Identify hits from the leading bullet fur the first two duptex runs) might also be a factor. On the advice of the Ordnance Corps representatives present, it was decided to discontinue colcring the noses of duplex ammunition and also to fire single-bullet ammunition from unmodified M1 rifles, during the second week. Accordingiy, Board III at Fort Benning was requested to furnish 12 usable unmodified M1 rifles for the second week of firlng.

The substitution of the unmodified M1 rifles provided by Board III did not have the effect of reducing the over-all malfunction rate. In fact, during the second week of flring there was a greater number of veapon-ammunltion malfunctions daring the single-bullet runs with the unmodified rlfles than during the dupiex runs. The Ordnance experts at th.e test felt that the Board III rifies were to some extent mechanicaliy substandard.

A summary of the total weapon malfunctions experlenced during the test Is given In Table Ni, and the number of malfunctions per 100 rounds fired is glven in Table N2.

It shouid be remembered that the carbine and T48 used were weapons quite changed in development from the originai weapons, and that the "bugs" could therefore not be expected to have been eiiminated. Similar statements couid be made about the extraction problem associated with the long-necked duplex and tripiex cartridges. The iow maifunction rate of the modif!ed M1 rifles firing the singie-builet ammanition points up the much higher rate of malfunction fuund in the unmodified rifles obtained from Board III.

Each weapon and ammunition had its characteristic malfunctions. Those associated with the long-necked cartridges in the modified M1 rifles were primarily failures to extract; often the rim would be stripped from the cartridge and the firer would require heip in clearing his weapon. It was not determined whether a faulty cartricge or fouling of the chamber caused the faiiure to exiract. The carbine's characteristic malfunction was associated with the magazine. In splte of the presautions taken to keep the magazines from being bent or getting dirt in their., fallures to feed because of bent or dirty inagazines were common. The T48 magazine, which nominally held 20 rounds, would only feed if loaded with 19 rounds or less. Many maifunctions aiso occurred because of broken extractors, which usualiy resulted in the loss of several targets for the firers.

A serious complication arose when a modified M1 rifle biew up during the second triplex run, causing the abandoriment of further tripiex testing. Figure Nl shows the weapon and indicates that the flrer's cscape frominjury was remarkable. A description and possilhie explanation of this malfunction based on a Springfleld Armory observer's reconstruction of events is quoted from a letter of 29 Jun 50 irt © Springfield Armory to Ordnance Weapons Command:

CONFIDENTIAL

8. The seventh round of the previous clip sppearex to be fired satisfactorily.
b. The eight round was chambered, whether $w!t h$ of without hand assiatance waa not known. The trigger was squeezed hut the round did not fire. (Springfieid Armory observer indicated thst possibly the mechanism la the trigger grip to recorn shote fired moved the hammer-apring plunger out of position resulting in the hammer not falling. Thia had previoualy occurred in the teais). The eighth round was then manually extracted and the clip ejected. Upon examination of the eighth round by the Springfield Armory ubserve. It was noted that the projectiles were set heck into the cartridge case. The case was cut open and the rearmost projectlle was in a position where it may or may not have heen juat held in alignment hy the cartridge case.

Fig. N1-Rifle Domoged hy Triplex Round
c. A new cifp wat inserted in the rifle and the firat round chambered (whether asaioted home is not known). The trigger was aqueezed and the weapon fired and the aforementioned damage occurred. The boit wan atill in the lucked poittion possithy slightly rotated.

A discussínia was held with the Springfield Arnory observer and other Armory personnel including metallurgiats and design engfaeers, frd the following ponpilhle causes of the accident were offered:
t. The saventh rount of the previoun clip firedbut the rearmost projectllo Maving become loose and moved rearward into the powdar charge) remained in the barrel hullet seat. The eighth round was chambered forcing its projectils resorward. The first sound of the now clip was fired with a projectils aiready in the bore.
b. The hlown-up round could heve contefned four projoctiles instend of three, causing conside rabls presaurs bolld-up and the resulting damage.
c. The damage may have resulted from a atubbias of the fina! round, puahias the rearmeet projectile back into the cartridge cace. Upon firing, if the rear profoctile wers dalayed in the neck of the cass, the preesure could ponaibly be built up oufficinatly

CONFIDENTIAL

to causc the case to be biown sut to the rear. Examination of the blown case indicates that pressures were in the vicinity of 90,000 to $100,000 \mathrm{psi}$.
d. The seventh round of the previoun cilp could have had a reduced powder charge, which upon firing might bave left the three profectiles in the bore. Thercfore, upon firing the first round of the next clip alx profectiles would be in the bore, causing increased chamber pressure.

DATA-COLLECTION MALFUNCTIONS

The original plan had been to coliate each firer's trigger pulls with hits on the targets by measuring; the time interval. Unfortunately the target and the trigger-puil recording system were very sensitive to llne surges, vibration, weather tactors, and other conditions. As a resuli, the records are ¢uil

Taible N3
DATA-COLLECTION MALFUNCTIONS

Type of malfunction	Week 1	Week 2	Totai	Percent of total events or uscs
	No. of malfunctions			
Trigger-switch failure	12	30	42	0.1
Hit-recording failures				
Target completely shorted (dampness)	54	15.	205	7.8
				5.9
Target intermittentiy shorted (noise)	44	33	77	5.1
Target with open circult	5	0	5	0.3
Target facec came off to bouse degree	4	3	7	0.5
Failure of recording spparatus	22 tgt	2 tgt	24 tgt	1.6
Total	129	189	318	21.3

of "noise," making the distinction of correct from spurious indications most difficult. Firm data were obtained from ammunition counts of rounds fired and holes in target faces. Occasionally, pebbles thrown up by ricochets would make holes, or an etge hit might not show on the target face.

A log was kept of malfunctions on each run; a summary of the datacollection malfunctions is given in Table N3. It is not clear from the record how much overlap exists between some of these malfunctions; e.g. a target might have been recorded as intermittently shorted when it was also noted as completely shorted during the run. The malfunctions increased during the second week as the equipment was more used; this was especially true of the target system, which accumulated dirt in the relays.

TARGET-SYSTEM MALFUNCTIONS

As some of the components were used, they tended to fatigue or function less well. Table N4 shows the malfunctions experienced by week, taken from Table E4 of this memorandum.

CONFIDENTIAL

Tabie N4
TARGET-SYSTEM MALFUNCTIONS

Type of malfunction	Weel 1	Weck 2	Total	Perceat of total
	No. of malfunctions			events or uses
Difficulties asaociated with target functioning				
Failure to rise	21	21	42	2.8
Failure to move, moving				
Up at the wrong time	2	5	7	0.5
Down too soun	3	40	43	2.9
Down too late	8	36	44	2.9
Iwo targets up aimultaneously	9	8	17	1.1
Total	43	123	166	1:.1
Difficulties aaaociated with secing targeta Target facc came off to aome				
Target facc came off to aome degree	4	3	7	0.5
Target face too dark	157	0	157	10.5
Camouflage too heavy	71	34	105	7.0
Camouflage too light	6	47	53	3.5
Totsl	238	84	322	21.5
Difficultes aesociated with combat aimulation				
Demolitions failed to firc	8	10	18	2.4
Blanks failed to flre	10	45	55	7.4
Total	18	55	73	9.8

Table N5
SUMMARY GF MALFUNCTIONS

	Malfunctiona,
Major categuriea	2.0^{a}
Weapon firing	11.1^{b}
Target operatlon	21.3^{c}
Hit recording	

${ }^{\text {a }}$ Or total firlnge.
Of total operationa.
${ }^{c}$ Of total hite.

CONFIDENTIAL

Some of the malfunctions listed in Table N4 are clearly not malfunctions in equipment but rather incidents that represent changes in the experimental design. For example, the target faces used in the flrst runs often blended so well into the background that the target was not even shot at, and accordingly the faces were lightened. Another feature about the data in Table N 4 is the overlap between some of the items; e.g., if a dark and camouflaged target was scheduled to appear but was not seen by the experimenter who kept the \log, the target might be !isted as possibly not appearing and as possibly being overly camouflaged. No a'tempt is made in this table to resolve such overlap.

The major categorles of malfunction are summarized by percentage in Taule N5.

COMFIDENTIAL

Appendix 0

OVERKILL AND PENETRATION
sLimmany 353
PENCENTAGE OF MLLTIPLE IIITS 354
OVERKILL CORRECTION 356
PENETRATION FAILLIIE 356
TABLES

1. Peincentage of Duplex Double, Itts 354
2. Pehcentage of Thiplex Culble and Triple ifts 354
3. Percentage of Carbine automatic Dolble Ilts 355
O4. Percentace of t48 automatic Double Ilits 355
O5. Net Lethalities cf Salvo Amenitions 356
O6. Overkill and Penetration Indexes 357
ORO-T-372 $35 i$

CONFIDENTIAL

Abstract

SUMMARY

The electrically recorded hit data, though incomplete, yield proportions of single, double, and triple hits per trlgger pull for duplex and triplex am munltlon and carbine and T48 automatic $11 r e$. From these proportions, for given bullet lethallties, net lethallties are computed, discounting overkill. Penetration-fallure degradations are also computed for dupiex, triplex, and flechette ammunitions. Tabie 06 summarlzes the results.

PERCENTAGE OF MULTIPLE HITS

Tables Ol to 04 show the breakdown of the multiple and totai saivo hits. These data are obtained exclusiveiy from the electricai hit record. It ls noted that the total hits electrlcally recorded for each run do not agree with the target-hoie counts of Table E6 of thls memorandum. This is due to imperfect operation of the eiectric hit-recording system. If it is assumed that the malfunction of the electrical recording svstem were not ltself blaseci with respect to multiple hits, then the proportions of multiple hits are vaild. These proportions may then be used with the more accurate total hit counts from the target faces.

The muitlple-hit data plus the bullet lethalities of App B suppiy the requisite data for discounting overkills by salvo ammunition. Hits and hlt probabilities are thiss reduced to casualties and casualty probabllities, a superior criterlon for con parative effectiveness.

The small sample slze makes thie illumlnation-posltion (1P) differences for each ammunltion unreliable. Further considerations whii utilize only the totai percentages for each ammunition. It ls quite possible to compare the percentage of duplex second-bullet hits with theory from ORO-SP-4; ${ }^{20}$ the percentage of tripiex second- and thlrd-bullet hits can aiso be compared with theory from ORO-SP-24. ${ }^{13}$ These comparisons are laborious and have not been nuade. However, casual examinations reveai agreement of data and theory in general magnitude.

The excess of carbine over T48 multiple hits is thought to be real and is explalned by the dellberately built-in jump compensation on the carblne. The stock shape, muzzle brake, balance, and recoil control were deslgned to minimlze jump in automatic fire. The difference of 3 percent second-bullet hits is rather trlvial, however, especially considering that the 3 percent ls degraded by a factor $1-1$., where L is the chance that the first hit incapacltated the target. For $L=0.7$, the net effectlveness inciease due to fump compen sation of the carbine over the T48 in automatic fire ls jusi 1 percent.

CONFIDEMTIAL

Table 01
PERCFNTAGE OF DUPLEX DOUBLE HITS

Run	$I^{\text {a }}$	$p^{\text {b }}$	Double hits	Total hits	Double hits, 景
2	D	S	14	118	11.9
4	D	S	nd	nd	nd
33	D	S	11	108	10.1
35	D	S	10	76	13.2
57	D	S	13	77	16.9
59	D	S	9	81	11.1
66	D	S	16	100	16.0
68	D	S	10	70	14.3
Subtotsl	D	S	83	631	13.1
6	D	St	21	159	13.2
37	D	St	22	187	11.8
61	D	St	23	122	18.8
Subtotal	D	St	66	468	14.1
8	N	S	5	18	16.7
39	N	S	3	17	17.6
63	N	S	8	45	17.8
Subtotal	N	S	14	80	17.6
Tots 1			163	1179	13.8

a is illumination, D is day, N is night.
b_{P} is firing position, S is sitting, St is standing.

Table 02
PERCENTAGE OF TRIPLEX DOUBLE AND TRIPLE HITS

Run	Double hiti	Triple hits	Total hits	Double hits, \%	Triple hita, \%
16	21	5	171	15.2	2.9
28	9	3	87	13.8	3.4
Total	30	8	258	14.7	3.1

COMFIDENTIAL

Tabie O3
PERCENTAGE OF CARBINE AUTOMATIC DOUBLE HITS

Run	1^{2}	P^{2}	Douk , hits	Total hits	Double hits, \%
18	D	S	7	97	7.2
20	D	S	nd	nd	nd
41	D	ε	1	28	3.6
43	D	S	1	60	1.7
Subtotal	D	S	9	185	4.9
22	D	S	nd	nd	ad
45	D	St	1	41	2.4
24	1	S	2	17	11.8
47	N	S	1	9	11.1
Subtotal	N	S	3	26	11.5
Total			13	252	5.2

${ }^{\text {a }}$ For abbreviations aee footnotes to Table O1.

Table 04
PERCENTAGE OF T48 AUTOMATIC DOUBLE HITS

Run	I^{a}	p^{a}	Double hite	Total hite	Double hite, \%
10	D	S	2	52	3.8
12	D	S	3	68	4.5
49	D	S	0	31	0.0
51	D	S	1	69	1.5
Subtotal	D	S	6	218	2.8
14	D	St	0	22	0.0
53	D	St	0	32	0.0
Subtotal	D	St	0	54	0.0
18	N	S	1	16	6.3
55	N	S	0	33	0.0
Subtotal	N	S	1	49	2.0
Total			7	321	2.2

"For abbreviations see footnotes to Table O1.

CONFIDENTIAL

OVERKILL CORRECTION

The lethal proportion of total hits for salvos up to three is given by

$$
\begin{equation*}
P_{L}=\mathbf{\Sigma}_{n}(1-L)^{n-1} L P_{n} \tag{O1}
\end{equation*}
$$

where P_{f}, is the lethal proportion of all hits, Lis the single projectile lethality, and P_{n} is the proportion of hits by n projectiles from the same tilgger pull.

Table 05 summarizes the net lethalities P_{L} of the sevitul salvo ammunitions, discounting overkill. All slngle-bullet lethalitles L are taken as 70 percent.

No effort was made to employ electrical recording of flechette hits;
hence there are no data on flechette multiple hitting.

Table 05
NET LETHALITIES OF SAIVO AMMUNITIONS

| Amnunition or firing | Double
 hits, \% | Triple
 h!ts, \% | $p_{L}, \%$ |
| :--- | :---: | :---: | :---: | :---: |
| Duplex | 14 | 0 | 63.1 |
| Trlplex | 15 | 3 | 60.7 |
| Carbine automatic | 5 | 0 | 67.6 |
| T48 automatic | 2 | 0 | 68.6 |
| All single hits | 0 | 0 | 70.0 |

PENETRATION FAILURE

The net effectiveness comparlsons require measures of hits, rounds fired, bullet lethalities, multiple hlts, and penetrations. Appendixes J and K of this memorandum give the basic data on hits and rounds fircd. This appendix gives data on multiple hits (overkills). Appendix B gives data on buliet lethalIties. : $\sim \mathrm{m}$ Apps B and P, penetration indexe 3 are deduced.

Appendix B indicates that the duplex ammunition begins to fail to penetrate helmets at 300 yd . Tables P1 and P2 of this memorandum reveal that for day and night target systems the proportlons of tits beyond 300 yd are 1.4 and 0 percent, respectively. As App B indicates that the helmet affords 18 percent effective coverage, thls crirresponds to a 0.3 percent net day degration for duplex, 0.2 percent average, weighting day three times night.

The triplex $i a 118$ to penetrate at 150 yd . Tables P 1 and P 2 of this memorandum give 47.6 percent and 15.2 percent hits beyond 150 yd for day and night. respectuvely. This orreaponds to 8.6 percent day and 2.7 percent night net degradation for trlp ex, 7.1 percent average, weighting day three times night.

From App B o. this memorandum it is estimated that two-thirds of the flechettes penetrate helmets from 0 to 150 yd , and that half of the flechettes penetrate from 150 to 350 yd . Using the percentages above for hits within and beyond 150 yd , it is deduced that there wlll be 6 peicent degradation for the

CONFIDENTIAL

hits to 150 yd, 9 percent degradation beyond 150 yd . The resuitant net degradations for fiechettes are summed for the two proportions of targets. The net day degradation is $9 \% \times 47.6 \%$ plus $6 \% \times 52.4 \%$, or 7.4 percent. The night degradation is $9 \% \times 15.2 \%$ plus $6 \% \times 84.8 \%$, or 6.5 percent, 7.2 percent average, weighting day three tlmes night.

If these penetratlon degradations are now combined with the net iethaiities of Tabie O5, indexes may be deduced that can be used to degrade hits for bullet lethallty, salvo overkill, and penetration failure. These indexes are presented in Tabie O6. When multiplied by hits, they yield casualties.

It is perhaps instructive to cistlmate what overkili degradation factor seems reasonable for flechettes. The next most multipie saivo, triplex, has

Table O6
OVERKILL AND PENETRATION INDEXES

Ammunition or firing	Day	Night
Single-bullet	0.700	0.700
Duplex	0.629	0.631
Triplex	0.556	0.591
Flechette	0.324χ	0.327
Carbine		
Semiautomatic	0.700	0.700
Automatic	0.676	0.676
T48	0.700	0.700
Semiautomatic	0.686	0.686
Automatic		

[^10]a ratio of 82:15:3 for first to second to third builets. Probably flechettes get no worse multipiicity of hits than a ratio of $64: 30: 6$, double the triplex multiple hits. This ratio for $P_{1}: P_{2}: P_{3}$, Sogether with a lethaiity L of 0.35 , yieids a net iethaiity P_{L} of 30.9 from Eq. O1. This corresponds to a degradation factor X of $0.86(309 / 350)$. For iack of better information, this estlmated X in Tabie 06 yields flechette indexes of 0.279 day and 0.281 night. The iower basic lethailty L clearly moderates the overkili degradation.

CONFIDENTIAL

Appendix l'

TARCET-(CHARACTEMISTIC EFFECTS

SIITMARY $3: 1$
RANGE AND TINF REDUCTION 361
SIZE, NOVEMFNT, COVCEAIMENT, AND BLANK FIBI GE EFFECTS 363
TARGET-CHIRACTEHISTIC PREDICTIONS 367
TARCFT-CHAHACTEHISTIC REDUCTION 369
TABIES
il. Dar Tarcet Characteristics and ilits 362
[P. Nicht-Tabgetchabacteristics and mits 363
P3. Day-Tarcet Groeps 364
P4. Nicht-Target (iroups 365
P5. Effects of Tarcet Characteristics on lits 366
P6. Phedicted Targetiluts 368
P7 Dar-Target-Characteristic Hednction 370
P8. Day-Tarcet Fiffects 370

COWFIDENFIAL

SUMMARY

The essential identified target characteristics are rainge, exposure tlme, size, movement, concealment, and blank fire. Range is assumed to affect hits as the inverse square; exposure time in direct proportion (less initial lag ailowance).

With these two assumptions, the hit data are reduced to eliminate range and time differences and are examined for effects of the other characteristics. Connen!mant :und mnvament are found to have little effect on the number of hits; smail vs iarge size reduces hits some 70 percent; blank fire thereases inits some 50 to 100 percent. Conceaiment decreases rounds tired by 25 or 30 percent.

These correction factors are applied to standard targets to predict the number of hits on each of the targets of the experiment. The pradictions are in reasonabie agreement with actual scores.

RANGE AND TIME REDUCTION

The target characteristics considered are those that may substantiaily alfect the number of hits and rounds fired. These include:
a. Rang:

52-339 yd
b. Exposure time of target
$3.0-34.5 \mathrm{sec}$
c. Area of target

Etarget (1.59 sq ft)
F target ' 2.38 sq ft)
d. Lateral movement of target Stationary
Approximateiy 4.2 mph
e. Concealment of target

None
Partial
f. Blank fire at target

The day and night targete are listed separately in Tables P1 and P2 with their characlertatics, and the data from Tables F1 to F19 on hits for all runs with all weapons except the flechette. These include 51 day rurs and 15 night runs. Characteristics such as representation of defense va assault and time and space relations to ofher targe's ore omitied, as they are not experted to measurably affect the number of hits acheved.

CONFIDENTIAL

Tables P1 and P2 show simple tinear mean target ranges os 1 Ju jod for day and 135 yd for night．The average ranges of hitting are deduced by weight－ ing each range by the hits scored at that range．This procedure yields aver－ age ranges of hitting of 133 yd for day and 85 yd for night．

The change in number of hits with changes in lange is first assumed to be inversely proportional to the square of the range．This assumption is jus－ tified for hit probabilities of 20 percent or less．The expansion of the expo－ nential expression for hit probability gives a $1 / R 2$ term followed by terms

Table Pl
DAY－TARGET CHARACTERISTICS AND HITS

Target no．	$\begin{gathered} \text { Hange, } \\ \text { yd } \end{gathered}$	Moving （～4．2 mph）	Partiy concealed	smsii size	Sot firits blanks	Eがロロure time，sec	$\begin{aligned} & \text { Iots! } \\ & \text { hits } \end{aligned}$
5	74	－	－	X	－	4.5	229
7	77	－	X	X	－	15.0	1181
9	86	－	－	－	X	4.5	505
10	89	－	X	X	－	15.0	936
13	111	－	X	X	－	19.5	577
14	127	－	X	X	－	9.0	258
15	139	－	－	X	X	4.5	20
16	152	X	－	－	X	9.0	291
18	162	X	－	－	X	6.0	332
19	164	X	－	－	X	15.0	454
20	165	－	X	－	\＃	31.5	1387
21	169	－	－	－	X	3.0	61
22	176	－	X	－	－	4.5	58
24	216	－	X	X	X	1.5	15
25	218	－	X	X	X	9.0	58
28	245	－	－	－	－	6.0	127
29	259	－	－	－	－	10.5	258
30	267	－	－	－	X	3.0	4
31	269	－	X	X	－	25.5	178
32	334	－	－	X	－	7.5	20
33	336	－	－	X	X	3.0	2
34	339	－	X	X	－	21.0	70
Total	4174	3	10	12	11	231.0	7132
Mean	190					10.5	

successively s maller by iactcrs of at least 2 times probability squared．Foi $P=20$ percent，the second term ts only 10 percent．The error in using oniy the first term of this alternating－sign serles is then less than 10 percent．The change in hits with changes in exposure time is assumed to be proportional to the ratio of the time，each less 1.75 sec ．This 1.75 sec is deduced in App 1 as the mean lag time from target erection to steady hit rate．For example to derive reduced hits from actual（or unreduced）hits h_{1} from a target of given range R_{1} and duration t_{1}（in seconds）to an expected hits h_{2} for a new target of range R_{2} and duration in the procedure is

$$
\begin{equation*}
A_{2}=A_{1}\left(R_{1}+R_{2}\right)^{2}\left(1_{2}-1.25\right)\left(11_{1}-1.85\right)_{1} \tag{P1}
\end{equation*}
$$

CONFIDENTIAL

Tabies P3 and P4 show the targets organized into groups (A, B, etc.) having like characteristics. The total hits from all 66 runs on Tables Fl to F19 are adjusted, using Eq. P1, to what would be expected at each target if it were located at the mean range (190 yd) and exposure time (10.5 sec) for all daytargets. The night targets are adjusted to the same range and exposure time for direct comparlson with day targets.

Table P2
NIGHT-TARGET CHARACTERISTICS AND HITS

Target nn.	Range, yd	$\begin{gathered} \text { Moving } \\ (\sim 4.2 \text { ziph }) \end{gathered}$	Partly concealed	$\begin{gathered} \text { Small } \\ \text { size } \end{gathered}$	Not flring blanks	Expoaure time, sec	Total hits
1	52	-	X	X	X	28.5	220
2	63	-	-	-	X	3.0	33
3	65	-	-	-	X	7.5	116
4	67	-	X	X	X	12.0	60
6	76	-	-	-	X	4.5	44
8	78	-	-	X	-	19.5	73
11	90	-	X	X	-	4.5	40
12	91	-	-	X	X	9.0	$1]$
13	111	-	X	X	-	19.5	39
14	127	-	X	X	-	9.0	21
15	139	-	-	X	X	4.5	4
16	152	X	-	-	X	10.5	18
17	161	-	-	-	X	3.0	0
18	162	X	-	-	X	6.0	9
19	164	X	-	-	X	18.0	15
20	165	-	X	-	X	34.5	68
21	159	-	-	-	X	4.5	2
22	176	-	X	-	-	9.0	3
23	209	-	-	X	X	3.0	0
25	218	-	X	X	X	15.0	2
26	221	-	-	X	-	7.5	1
27	223	-	X	X	-	210	0
Total	2979	3	9	12	15	253.5	771
Mean	135					11.5	

SIZE, MOVEMENT, CONCEALMENT, AND
BLANK-FIRING EFFECTS
The targets in any one group in Tables P3 ard P4 are assumed now to be allke in important respects. The hits data are combined within each groun an the groups may be compared. The run and target product is the total numeer of items of data on which values ale vased. The mean number of hite per run is llsted for each target group.

The relative variance in hits is $\left(\sigma_{\bar{h}} / \bar{h}\right)^{2}$ from the bliuminal distribution with standard deviation $(\sqrt{N p q})$. For h actual nits, $0=\sqrt{\text { hiq }}$. For relatlvely low hit probability, a may be approximated by unity. Hence $0^{2} a h$. For mean hits h / N, the variance is h / N^{2}. The relative varlance of the mean ls by definition

CONFIDENTIAL

Table P3
DAY-TARGET GROUPS
(Adjusted to 190 yd and 10.5 sec)

Tsrget group	Target no	$\begin{aligned} & \text { Moving } \\ & \text { (-4.? mph) } \end{aligned}$	Partly soncealed	Small size	Not firing blanks	Run and target product \uparrow	Total hits h	Mean hits h	Relstive variance $\left.\varphi_{\bar{h}} / \bar{h}\right)^{2}$
A	28	-	-	-	-	-	434	-	-
	29	-	-	-	-	-	479	-	-
Group values		--	-	-	-	102	913	8.94	0.00110
B	5	-	-	X	-	-	110	-	-
	32	-	-	K	-	-	94	-	-
Group values		-	-	X	-	102	204	2.00	0.00490
C	9	-	-	-	X	-	32^{4}	-	-
	21	-	-	-	X	-	336	-	-
	30	-	-	-	X	-	54	-	-
Group values		-	-	-	X	153	719	4.70	0.00139
D	15	-	-	X	X	-	34	-	-
	33	-	-	X	X	-	46	-	-
Group vslues		-	-	X	X	102	80	0.78	0.0125
E	7	-	X	X	-	-	128	-	-
	10	-	\because	X	-	-	136	-	-
	13	-	x	X	-	-	97	-	-
	14	-	X	λ	-	-	139	-	-
	31	-	X	X	-	-	131	-	-
	34	-	X	X	-	-	102	-	-
Group vslues		-	X	X	-	306	733	2.40	0.00136
F	20	-	X	-	X	-	307	-	-
	22	-	X	-	X	-	157	-	-
Group values		-	X	-	X	102	464	4.55	0.00216
G	16	X	-	-	X	-	225	-	-
	18	X	-	-	X	-	496	-	-
	19	X	-	-	X	-	223	-	-
Group values		X	-	-	X	153	944	6.17	000106
H	24	-	X	X	X	-	46	-	-
	25	-	X	X	X	-	92	-	-
Groun valuee		-	X	X	X	102	138	1.35	0.00725

CONFIDENTIAL

Table P_{4}
NIGHT-TARGET GFOUPS
(Adjuated to 190 yd and 10.5 sec)

Target group	Target no.	$\begin{gathered} \text { Moving } \\ (\sim 4.2 \mathrm{mph}) \end{gathered}$	Partly concealed	Small size	Not firing blanks	Run and target product \uparrow	Total hits h	Mean hits万	Relailye varinice $\left(\sigma_{h} / \hbar\right)^{2}$
1	22	-	X	-	-	15	3	0.20	0.333
J	8	-	-	X	-	-	6	-	-
	26	-	-	\because	-	-	2	-	-
Group valuea		-	-	X	-	30	8	0.27	0.125
K	2	-	-	-	X	-	25	-	-
	3	-	-	-	X	-	421	-	--
	6	-	-	-	X	-	23	-	-
	17	-	-	-	X	-	0	-	-
	21	-	-	-	X	-	5	-	-
Group values		-	-	-	X	75	74	0.99	0.014
L	12	-	-	X	X	-	3	-	-
	15	-	-	X	X	-	7	-	-
	23	-	-	X	X	-	0	-	-
Group values		-	-	X	X	45	10	0.22	0.100
M	11	-	X	X	-	-	28	-	-
	13	-	X	X	-	-	7	-	-
	14	-	X	X	-	-	11	-	-
	27	-	X	X	-	-	0	-	-
Group valuea		-	X	X	-	60	46	0.77	0.022
N	20	-	X	-	X	15	14	0.93	0.071
0	16	X	-	-	X	-	11	-	-
	18	X	-	-	X	-	13	-	-
	19	X	-	-	X	-	6	-	-
Group values		X	-	-	X	45	30	0.67	0.033
P	1	-	\%	X	X	-	5	-	-
	4	-	X	X	X	-	6	-	-
	25	-	X	X	X	-	2	-	-
Group values		-	X	X	X	45	13	0.29	0.077

CONFIDENTIAL

just $\left(h / I_{2}^{2}\right) /(h / V)^{2}$, or $1 / h$. This is the relative variance $\left(\sigma_{h} / \bar{h}\right)^{2}$. shown in Tabies 93 and $\mathbf{P 4}$ for each group. The hit values are simply the actual hits (i:) from Tabies P1 and P2, added together for the appropriate groups.

Tabie $\mathbf{P} 5$ compares approprlate groups of targets by the ratioo of their adjusted mean hits ($\bar{h}_{2} / \bar{h}_{1}$) to provide an estimate of the effect of each target characteristic on the nu.nber of holes counted.

Table P5
EfFECTS OF rARCET CHARACTERISTICS ON HITS

Target characteristic	Target groupa compared	Ratio of mean hits per run	$\begin{gathered} \text { Weight } \\ 1 / \sigma^{2} \end{gathered}$	Weighted ratio
Smail target size	B:A	0.224	3310	742
	D:C	0.166	2610	433
	H:F	0.297	1200	357
	L:K	0.222	178	40
	M:I	U. 395	18	7
	P:N	0.312	69	22
Tctal	-	-	7385	1601
Weighted mean ratio	-	-	-	0.22
Movement	G:C	1.313	236	310
	O:K	0.677	46	31
Total	-	-	282	341
Weighted mean ratio	-	-	-	1.21
Conceaiment	E:B	1.200	111	133
	F:C	0.968	301	2.91
	H:D	1.731	17	29
	M:J	2.851	1	2
	N:K	0.940	1's	12
	P:L	1.318	3	4
Total	-	-	446	471
Weighted mean ratio	-	-	-	1.06
No blank fire				
	D: B	$0 . .90$	376	147
	H:E	$0 . \mathrm{Si} 3$	365	116
	L: J	0.815	7	5
	$\mathrm{N}: \mathrm{I}$	4.650	0	1
	$\mathrm{P}: \mathrm{M}$	0.377	71	27
Total	-	-	2263	1056
Weighted mean ratio	-	-	-	0.47

The reiative variance of a ratio is approximated by sum of the relative variances of the two nimbers of the ratio. This relative variance may then be converted to the ordinary absolute ariance, simply by multiplying by the ratio itcelf. The reciprocal of the variance n the ratio is a gocd measure of the reliability of that ratio.

$$
\begin{equation*}
1 \theta_{h_{2}}^{2} \bar{h}_{1}-\frac{\left(\bar{h}_{1} \bar{h}_{2}\right)^{2}}{\left(\sigma \bar{h}_{1} \bar{F}_{1}\right)^{2}+\left(\sigma_{h_{2}} \bar{h}_{2}\right)^{2}} \tag{P2}
\end{equation*}
$$

CONFIDENTIAL

For oxample, the first ratio of Tabie P5 is $\mathbf{U . 2 2 4}$ for $s: \Lambda$. The absolute ratio variance is just this value squared, times the sum of the A and 13 reiative rariances from Tabie P's, which are 0.00110 and 0.00490 . The reciprocal of this quantity ($1 / 0^{2}$) is the weighting factor 3310 , iisted in Table P5.
it is concluded that where size is leduced by 48 percent from the E target $(4.59 \mathrm{sq} \mathrm{ft})$ to the F larget (2.38 sq ft), the number of hits wili reduce by 77 percent.

When a target moves (at about 4.2 mph lateraily) instead of remaining stiil, the hits will increase by 15 percent.

When a target is partly conceaied instead of keing whoily visibie, the hits will increase 5 percent.

When there is no blank fire from the target at the time it appears, the hits will decrease by 52 percent.

The data, after account is taken of these four effects, show no further dependence on range or exposure time.

TARGET-CHARACTERISTIC PREDICTIONS

Having determined the effects of each of six apparent turget characteristics on hits, it is now possible to extrapotate from the experimenta, \rightarrow ita to hypothetical targets having any combination of vaiues of these characteristics. The purpose of such extrapolation is to permit the critical reader to recompute the experimentai resuits on the basic of alternative targel systems, should the seiected target systems prove to be incorrect or unacceptable. For exampie, subsequent analysis may reveai that true combat has a higher percentage of targets at a longer range, but shorter exposure times, or more lateral movement than the proportions used in the experimentai target systems. This disclission outiines how the separated effects of these characteristics may be used to modify the resuits in order to produce an estimate of the results of any modified system of targets.

The effects of range and time have been straightforwardly deduced from simpie theory; the effects of target si:e, movement, concealnient, and blank f^{1} re have been deduced in the preced'ng section. To ,erform illustrative calculation, it is desirade to begin with a standard set of target characteristice. Arbitrarily select the mean range and exposure time that were selected eariler in preparation of Tábies P3 and P4 (190-yd range, $10.5-\mathrm{sec}$ exposure time). In addition arbitrarily seiect for the standard target a large silhouette (E) that is not concealed and nut moving.

In order to perform the requisite calculations, a basic starting point is required-i.e., the number of hits scored on a standard target with the above characteristics must be known. In order to arrive at the best figure, all the data are utilized as ilsted in Tables P3 and P4. Because of the gross difference between the number of hits scored in day and right firirig, these two conditions are computed separately. To compute the average number of hits on a standard day target, the number of hits on each of the target groups of Table P3 are taken, and corrected for reduced target size, movement, conceaiment, or no blank fire as appropriate. This calcu!2tion is performec by appropiriately dividing the number of target hits by $0.23,1.15,1.05$, or 0.48 , respectively.

The sum is then divided by the total number of targets fired on for the ent!re expeziment, to yield the desirex minañ number̃ of hito on the simmuru

COMFIDENTIAL

day target. This mean is 9.68 tits. A simsiar calculation with the data in Table P4 yieids a night standard tirget mean of 1.81 hits.

It is ins ructive now to use these mean standard target hit vaiues together with the derived correction factors for the six significant target characteristics to predict the number of hits on all the targets as described in Tables P1 and P2. This has been done, and the results are listed in Table P6. The "Predicted"

Tabie P6
PREDICTED TARGET HITS

Day hits (9.68)			Night hits (1.81)		
Target no.	Predicted	Counted	Target no.	Predinted	Counted

5	5	5	1	9	14
7	22	23	2	1	2
9	7	10	3	5	8
10	16	18	4	2	4
13	14	12	6	2	3
14	4	5	8	5	5
15	1	0	11	1	3
16	7	7	12	1	1
18	4	7	13	1	2
19	11	9	14	1	1
20	22	27	15	0	0
21	1	1	16	2	1
22	4	2	17	0	0
24	0	0	15	1	1
25	6	1	30	2	1
28	5	3	20	5	4
29	0	5	21	3	0
30	3	5	22	2	0
31	0	4	33	0	0
32	0	0	25	0	0
33	2	1	26	0	0
34	132	140	Total	41	0
Totai			27	1	50

columns list the consputed number of hits based on these deduced factors. The "Counted" columns list the actual number of hits scored on each target. The abreement is reasonably satisfactory. Of course the method of deriving the factors necessarily leads to predictions as good as these.

It should be quite clear now that one can start with either the day or night standard target, and convert to reasonable values of any of the six criticaicharacterlstics and predict the number of hits. This capability, together with the squad differences discussed in Apps G and K, permits fairly flexible extrapoiation beyond the ilmited conditions of the SALVO I caperiment.

CONFIDENTIAL

TARGET-CHARACTERISTIC REDUCTION

Rather than use the conservative method discussed in the section "Size, Movement, Concealment, and Blank-Firing Effects," where the hit data are grouped, it is possible to use all the data as in App K. The inter related effects of the six target characteristics are deduced from all data. To do this analysis, as in App K, reduction is first accomplished for the major effects. The range and tlme reductlons are made flrst identlcally as in the section "Range and Time Reductions." Then a target area reduction is made by multiplying F tar get hits by the known target area ratio (1.92). The list of hits is now ready for successive reduction for blank fire, concealment, movement, additional-exposuretime effect, and additional-target-size effect.

Similarly, for the data on rounds fired, the exposure-time reduction is identical; no range or target-size reductions are made. The rounds data are also then ready for reduction for the same four effects in the same succession.

These sequential reductions have been performed with day data. Table P7 lists the original hit (h) and rounds (r) data, taken from Tables F1 to F38. The next columns are reduced according to these relatlons:

$$
\begin{align*}
& h=h\left(R_{1} / 190\right)^{2}\left[\left(t_{2}-1.75\right) / 8.75\right](4.50 \cdot 2.38) \tag{P3}\\
& K=r\left[\left(t_{2}-1.75\right) / 8.75\right) \tag{P4}
\end{align*}
$$

The factors for the sequential reduction for the other effects are:

$$
\begin{equation*}
\left\|^{\prime}=\right\|(0.831)_{\mathrm{B}}(1.291)_{\mathrm{C}}(0.732)_{\mathrm{M}}(1.606)_{\mathrm{t}<6}(1.574)_{\mathrm{F}} \tag{P5}
\end{equation*}
$$

Expressions P5 and P6 indicate the factors requirnd to successlvely equate means for B, blank flre vs no blank fire; C, concealment vs no conrealment; M , movement vs no movement; $t<6$, exposure less than 6 sec vs exposure of 6 sec or more; F, smaller vs larger target silhouette. Successive application of these factors reduces $\|$ and R to the values llsted in the colunins headed I^{\prime} and R^{\prime} in Table P7. As in App K, the reduction factors are isolated.

The completely reduceddata II' and R^{\prime} are now examined for remaining ifferences of mean for all but the last effect examined (F vs E target size). This examination reveals the following remaining factors:

$$
\begin{align*}
& I^{\prime}-(0.801)_{\mathrm{B}}(0.829)_{\mathrm{C}}(1.525)_{\mathrm{M}}(1.260)_{1 / 6} \tag{P7}\\
& R^{\prime}-(0.808)_{\mathrm{B}}(0.938)_{\mathrm{C}}(1.031)_{\mathrm{M}}(1.015)_{\mathrm{C}} \tag{PB}
\end{align*}
$$

These factors must be multipiled by the factors of Expressions $P 5$ and $P R$ to yleld total corrections for each effect. The reciprocals of these products are then indicatlve of wie effecis of the six sharacteristics invo!ved.

The net slze effect also inciudes the area factor in Eq. P3. The range and time effects of Eqs. P3 and P4 shouid also be noted. The wet eflects are

COMFIDENIIAL

Table P7
DAY-TARGET-CHARACTERISTIC REDUCTION

Target no.	Unreduced		Time, range, slze reduced		Completely reduced	
	h	r	/1	R	'	\therefore
5	229	929	212	2957	445	4005
7	1181	3581	$2 \cdot 16$	2363	414	5024
9	505	1228	329	3906	528	3621
10	936	3113	262	2055	442	4369
13	577	2884	187	1422	315	3023
14	258	1598	267	1929	452	4100
15	20	500	65	1590	164	1632
16	291	1962	225	2369	165	2483
18	352	1943	496	4000	363	4192
19	454	2548	223	1681	163	1762
20	1387	5933	307	1744	396	2538
21	61	543	336	3802	540	3524
22	58	548	157	1743	270	3104
24	15	486	88	1548	288	2311
25	58	844	177	1019	360	1642
28	127	1181	434	2432	361	3210
29	258	2241	479	2241	398	2958
30	4	230	54	1607	87	1490
31	178	2735	252	1007	425	2141
32	20	702	181	1068	236	1561
33	2	445	88	3114	222	3196
34	70	1690	196	769	331	1635

Table P8
DAY-TARGET EFFECTS

Effect	Hit change, $\%$	Round change, $\%$
Blank fire	+50	-6
Connealment	-7	-27
Muvement	-10	-7
Smaller size	-67	-10
6-sec expobure	-51	+6
Range R	$\alpha 1 / R^{2}$	-
Exposure 1	$\alpha(b-1.75)$	$\propto(6-1.75)$

CONFIDENTIAL

listed in riable P8. The additional-target-size effect reduces the F target hits to 33 percent of E target hits, rounds fired is reduced to 90 percent. The targets that were exposed for oniy 3 or $4 \frac{1}{2} \sec$ got 49 percent of the hits received by targets exposed longer, even after reduction by Eq. P1, and rounds fired increased by 6 percent. This suggests the inapplicablifty of the rate-of-fire concept for such a short exposure. Movement reduces target inits to 90 percent of stationary target hits and reduces rounds fired to 93 percent. Concealment redures hits to 93 percent of unconcealed target hits, ard reduces rounds fired to 73 percent. Blank fire at a target increases hits to 50 percent but reduces rounds fired to 94 percent.

Similar calculations are possible for the night target system. It satisfies the present purpose to demonstrate the method of analysis, and deduce a few major effects.

COMFIDEMFIAL

REFRRENCES

1. Dept of Army, "Reporta of Experimenta with Small Arms for the Military Serviee by Offleers of the Ordnanee Department, U. S. Army," 1856.
2. Dept of Commerce, "Improvement In Compound Bulleta forSmall-Arms," US Patent 36197, 12 August 1362.
3. Dept of Array, Annual Report of the Chief of Ordnance, June 1879.
4. - Offlec of the Chief of Ordnance, "Die Infanterle Doppelgesehoaz," Nazi Project Reports, Dec 44 th Apr 45, US Rept BR 276.
5. Operations Research Office, OOperational Requirements for an Iníantry Hand Weapon," ORO-T-16u, Jua 52. SECRET
6. \qquad , "A Proposed Infantry Salvo Weapon," ORO-T-245, Jul 53. CONFIDENTIAL
7. CONARC Letter, ATINF 474 (C), 3 Apr 56.
8. Operationa Reaearch Offee, "SALVO Rifle Experiment-Preliminary Results (U)," " ORO-SP-2, Jan 57. CONFIDENTIAL
9. Balliatle Reaeareh Laboratories, "Evaluation of SALVO Rifie," BRL Memo Rept 1030, Aug 56. CONFIDENTIAL
10. Operations Research Offlee, "Optimum Duplex Spread," ORO-SP-4, Jaa 57. UNCLASSIFIED
11. Armour Researeh Foundation, "Projeet SALVU Study," ARF Final Ropt, Dec 55. SECRET
12. Midwest Research Institute, "An Analysis of the Effeetiveness of SALVO 'Iype AntiPeraonncl Weapona," MRI Final Rept, Jan 57. SECRET
13. Operationa Reaearch Office, "Optimum Dlspersion for Gauaalan SALVO," ORO-SP24, Aug 57. CONFIDENTIAL
14. "The Infantry Rifle-Operational Employment and Suggestions for a New Deslgn," Fourth Triparite Conference on Army Operational Reaearch, Sep 53.
15. Operations Reaearch Office, ${ }^{-R i f l e, ~ C a r b i n e, ~ a n d ~ P i c t o l ~ A l m i n g ~ E r r o r ~ a s ~ a ~ F u n e t i o n ~}$ of Target Exposure Time (U)," ORO-T-324, Dec 55. CONFMENTIAL
16. "Accurate Rifle Fire," Ordnance, 1958: 742 (Jan-Feb 58).
17. Unpublished data, "Prellminary Report-SALVO," Oct 56. CONFIDENTIAL
18. Syatems Analyala Corporation "SALVO Analyaia," SAC Tectnical Rept 112, Oct 57. CONFDENTIAL
19. Dept of Army, ACS-G3 to 3d Div, 10 May 56.
20. Form 20 Records of $2 \mathrm{~d} \mathrm{Bn,15th}$ ICC, 3d Div, Jul 56.
21. Humaa Reaourees Researeh Office, - TRAINFIRE I-A new Course in Basse Rifie Markmanship," HumRRO Technical Rept 22, Oet 55.
22. W. Davis, Development and Proof Service, Abcrdeen Proving Ground, personal communication.
23. Olin-Mathicson Chenical Corp, Wincheater-Weatern Divisien, "Final Narrative Summary Report. Continuation of Researeh and Development Work on Amnaunttivio and Weapons for Sub-taak (a) SALVO Project," Apr 56.
24. Dept of Army, Springfield Armory R\&D Division, "Shipment of SALVO RIfles for Field Teat," Jul 56.
25. -_Aberdeen Proving Ground, Development and Proof Servic ". "Report on Aecuraey Teat of Modified Cal!ber . 30 M1 R1fle," APG Rept DPd/TS2-2015/53, Mar 57.

26. \qquad , Experimental Caliber
27. \qquad Frankford Ars Cal. . 30 Duplex, Cal. Sep 57.
28. , Aberdcen Prct SALVO Rifle Materia'
29. Dept of Air Force, "F Aircraft Armaments
30. Dept of Army, Ballis. of Conventional Rifle Jan 56.
31. .Chenical Was are hair "atories, "Incapacitation Criteris for SALVO Missiles," Technical Rept CWL, 21 ぶ 257.
32. Operations Researct "ffin ":rotection of the Suldier in W'arfare," OFO-R-5, 1 Dec 52. SECRET
33. Operations Researc" "1/ ϵ_{1} ", ne of Infantry Weapons and Equipment in Korea,"

34. Dept of Army, Ballis *... z^{2} h Laboratosies, "Range ani Angular Distribution of Hits on Tanks," ET \& © 1 Memo 590, Dec 51.
35. Operations Research)ft . "velopment of and Test of Electroudc Hit Recording System for SALVO 3 ,pe 4 . Wis 4 tion." ORO-SD-62, May 58.
36. American Paycholof cal f 'sc ation 1935 report of the Comrnittee on the Use of Electric Shock in Ps shol मुण ex Sperimentation.
37. Dept of Army, Offic of t. C lef of Ordnance, Minutes of Steeriag Commitiee Meetings, SALVO R Me F oje t, "88 Sep 54, 25 Jan 55, 6 Dec 55.

[^0]: - Coeclusicas 2 and $\$$ are head an liaind dole.

[^1]: -Parenthetical eatries are the requented numbers; tha nambere precodian indicata the nambers faraiahed.

[^2]: Ha practica tha 20 h round ie the $T 48 \mathrm{magazine}$ (deaisned for .30 cal) caused the weapon to jam. Hence oaly 19 roneda ware londed in tbe T 48 mamaziac.
 bFour in magazive pla* one in chamber.

[^3]: Dhection of movemer
 Feowy troepe

[^4]:
 For the nhaple (lechetie day etanding run to targena 32,33 , and 34 werp gan unced Targeta $7,10,20$, and 31 wire wp ondy hall ner mal lime, and inrimi 13 flopped liver
 l1me te 4 उi 1213).

[^5]: a Beat entimate of shote flred per target per run for reguler terget exponure time
 $\mathrm{b}_{\text {For the }}$ ingle necheite math-standing run 70 , is rgefe $23,25,26$, and 27 were not uned. Targete $1,8,13$, and 20 were up only half normal time. Aasuming $511 / 2$ eec tlme lag, the adjuatment for $1 / 2$ exponure tirie is $(t-3) /(2 t-3)$.
 cThe average of the adjusted veluen for the eingle-bullet might-mfting runs there were no night-atanding aiagle-bullet runs).

[^6]: ${ }^{2}$ Significant at approxdmately 1 percent level. Significant st approxdmately 10 percent level. Cignificant at approximately 0.1 percent ievel

[^7]: Shee footeotes to lable K 1 for abbervistiona.

[^8]: *The neceasity for m mecond burat-fire weapon had been quemtinasd, and woe deleted im thie veraiom, though the 23 -cal T.48 had earlier been nuppeated, and was act mally, und.

[^9]: The zerofirings previousiy deacribed are called for each of the 24 half-dsy sessions. Using the specifled weapons, for 10 trigger pullo per zeroing, the requirementa (assuming an average of $2 \frac{1}{2}$ rounds per automatic burat) are se shown in Table L.5.

 Ammunition expendlture for the range flringe may be deduced by esimotiag 2 trigger pulis per man per terget. For 36 runs with 20 targeta and 10 men, thls is $2 \times 96 \times$

[^10]: The flechette overkill degradation X is unmeasured.

