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Preface 

The NSF-CBMS conference Hopf Algebras and Their Actions on Rings was held at 
DePaul University in Chicago, Illinois. The conference featured a series of ten lectures by 
Susan Montgomery as well as nine supporting lectures by Miriam Cohen, Yukio Doi, 
Warren Nichols, Bodo Pareigis, Donald Passman, David Radford, Hans-Jurgen Schneider, 
Earl Taft, and Mitsuhiro Takeuchi. The conference, which served as a "summer school" 
for both experts and nonexperts in the field, attracted approximately 90 participants 
representing 11 countries. 

This volume contains the expository lectures by the nine supporting lecturers as well as 

invited expository papers by Lindsay Childs and David Moss, Shahn Majid, and Akira 
Masuoka. The lectures by Susan Montgomery appear in the Conference Board of the 
Mathematical Sciences series published by the American Mathematical Society. 

We would like to thank the National Science Foundation and the University Research 
Council at DePaul University for their financial support of this conference. We would also 
like to thank Maria Allegra of Marcel Dekker, Inc., for her assistance in putting this volume 
together. Finally, we thank all of our anonymous referees. 

Jeffrey Bergen 
Susan Montgomery 
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Hopf Algebras and Local Galois Module Theory 
LINDSAY CHILDS State University of New York, Albany, New York 

DAVID J. MOSS State University of New York, Albany, New York 

Let L &#x2283; K be a finite Galois extension of algebraic number fields with Galois 

group G, and with rings of integers S &#x2283; R. Galois module theory seeks to understand 

S as an RG-module. If L/K is tamely ramified, then S is a locally free RG-module by 
a classical theorem of E. Noether, and a rich theory has been developed to understand 

the obstructions to freeness: see, for example [ F83 ] or a forthcoming book by B. Erez. 

However, if L/K is wildly ramified the situation is much less well-understood, for the 

local structure is unclear. 

In 1959 Leopoldt [L59] showed that a useful approach to wild extensions is to 

view S as a module, not over RG, but over the larger order 

A(S) = {α &#x220A; KG&#x005C;αS &#x2286; S}. 
He showed that if K = Q and G is abelian, then S is free over A(S). However, 
Leopoldt’s theorem does not extend beyond K = Q and G abelian, and since the 

appearance of Leopoldt’s paper, positive results on local freeness over the Leopoldt 
order have been scarce. 

One of the first general positive results was in [ C87 ], where it was shown that if G 

is abelian and A(S) is a Hopf order in KG, then S is locally free as an A(S)-module. 
This introduced the theme of “taming wild extensions with Hopf algebras”. 

The purpose of this paper is to offer further positive results on local freeness, 
built around the Hopf algebra theme. We note that this theme, when it applies, opens 

the possibility of extending the global theory of tame extensions to certain classes of 

wild extensions. Such a program has been pursued in recent work of M. Taylor and his 

collaborators ([ ST90 ], [ T88 ], [ T90a ], [ T90b ]), and is nicely described in a recent survey 

paper by Taylor and Byott [ TB92 ]. 
Taylor and Byott almost always assume that L/K is a Galois extension with 

group G; however, in view of the work of Greither and Pareigis [ GP87 ], as well as the 

examples of section 3 , below, it will be useful to assume only that L/K is a Hopf 
Galois extension. 

For the remainder of this introduction, assume K is a local field, a finite extension 

of Qp, with valuation ring R. 

DOI: 10.1201/9781003419792-1



Childs and Moss 

In section 1 , using a previously overlooked theorem of H.-J. Schneider, we show 

that with an appropriate notion of tameness Noether’s theorem cited above generalizes 
to Hopf Galois extensions L/K with Hopf algebra A, where A is any finite dimensional 

cocommutative K-Hopf algebra. In particular, commutativity of A is not needed. 

Let L/K be a Hopf Galois extension with Hopf algebra A. For an order S0 over R 

in L (not necessarily the full integral closure of R in L), call 

A(S0) = {α in A|αS0 &#x2286; S0} 

the Leopoldt order of S0. In section 2 we show that if A(S0) is a Hopf order in A, then 

every Hopf order H over R in A containing A(S0) is the Leopoldt order for some order 

S in L such that S is free over H. 

In sections 3 and 4 we study Kummer extensions with respect to a formal group 
of dimension one. This is a class of extensions S &#x2287; R which are orders in Hopf Galois 

extensions L &#x2287; K and which are free over their Leopoldt orders. These extensions 

were introduced by Taylor [ T86 ] and studied in special cases in [ T85 ] and [ T87 ]. They 
include a large collection of wildly ramified local Galois extensions L/K such that the 

Leopoldt order A(S) of the valuation ring S is Hopf and hence S is free over A(S). 
The freeness of S over A(S) follows from the fact that the algebras S under 

consideration are H-Galois objects (or in the terminology of [ TB92 ], H-principal 
homogeneous spaces) where H is the representing Hopf algebra for a finite subgroup of 

the formal group. Then A(S) will be the dual of H; the main technical difficulty then 

becomes describing that dual, which we study in section 4 , adapting techniques of 

Taylor. 
In a brief final section we introduce the following question. Let L/K be an 

A-Hopf Galois extension, with valuation rings S &#x2287; R. Let A(A, S) be the Leopoldt 
order of S. Does the structure of A(A, S) depend on A? This question is meaningful 
because, as Greither and Pareigis have shown ([ GP87 ], c.f. [ C89 ] and [ P90 ]), a given 
extension L/K may be A-Hopf Galois for more than one Hopf algebra A. We give an 

example of an extension of degree 4 which is Hopf Galois for two Hopf algebras A1 and 

A2, such that only one of the corresponding Leopoldt orders of S is Hopf. 



Hopf Algebras and Local Galois Module Theory 

1. Noether’s Theorem 

The cornerstone of Galois module theory is Noether’s theorem. Let L/K be a 

Galois extension of number fields with rings of integers S, R, respectively and Galois 

group G. Viewing S as an RG-module, we may ask if S is free over RG. This is the 

same as asking if S has a normal basis as a free R-module (or that L/K has a normal 

integral basis). Noether’s theorem asserts that S is locally free over RG (where “local” 

means at the completion at any finite place of R) iff L/K is tamely ramified (“tame”, 
for short), i.e. the ramification index of any non-zero prime ideal p of R is relatively 
prime to the characteristic of R/p. 

Noether’s theorem implies, in particular, that when L/K is wildly ramified (= 
“wild”, i.e. not tame) there is no hope that S could be free over RG. To deal with this 

situation, Leopoldt introduced the idea of viewing S over the ring 

A(S) = {α in KG|αs &#x220A; S for all s in S}, 

an order over R in KG which contains RG, and which we will call the Leopoldt order 

of S. Leopoldt [ Le59 ] showed that if K = Q and G is abelian, then S is always free 

over A(S). However, subsequent examples showed that S need not be locally free over 

A(S) if K ≠ Q or G is not abelian. See [ BF72a ]. 

In [ CH87 ] (c.f. also [ W88 ]), S. Hurley and the first author defined the notion of 

tame extension with respect to a Hopf algebra. Let S be a commutative R-algebra and 

an if-module algebra, where H is an R-Hopf algebra. Suppose S and H are both 

finitely generated projective R-modules of the same rank, and the fixed ring SH = R. 

If I is the space of left integrals of H, then IS is contained in SH = R. We called S/R 
tame IS 75 = R. 

Assuming that H is commutative and cocommutative, we showed in [ CH86 ] that 

S is locally isomorphic to H as an H-module if S is a tame H-extension of R. 

This applies in the case where K is a number field with ring of integers R, L is a 

finite extension of K, S is an order contained in the ring of integers of L, and S is an 

H-module algebra, where H is a cocommutative R-Hopf algebra, finitely generated 
and projective as an R-module. If A = K &#x2297; H and L is an A-Hopf Galois extension 

of K, then S is an if-tame extension of R if IS = R, where I is the space of left 

integrals of H. The result of [( CH86 ] showed that, assuming H is also commutative, 
then S is locally free over H. 

It turns out that the assumption of commutativity on H is not necessary, thanks 



to a deep result of H.-J. Schneider. In fact: 

THEOREM 1.1. Let R be a complete discrete valuation ring of characteristic zero, 

with quotient field K. Let A be a cocommutative K-Hopf algebra, of finite rank as a 

K-module. Let L be a K-algcbra which is a Hopf Galois extension of K with Hopf 
algebra A. Let H be an order over R in A with module of left integrals I and S be an 

order over R in K, such that S is an H- module algebra. If IS = R (that is, the 

H-extension S/R is tame), then S ≅ H as left H-modules. 

The proof of this is a matter of putting together two results. 

One, found as Theorem 5.1 of [ CH86 ], is that if IS = R then S is H-projective. 
To sketch this generalization of a well-known result in representation theory of finite 

groups (c.f. [ S77 ], Lemma 20, page 118): let &#x03D1; generate the free rank one R-module I. 

Since IS = R, there is some z in S so that &#x03D1;z = 1. Now S is a free R- module, so 

H &#x2297;R S, viewed as a left H-module via the H-action on H, is a projective left 

H-module, and the scalar multiplication map μ : H &#x2297;R S → S is a left H-module 

homomorphism. To show that S is H- projective, we find a left H-module splitting 
map &#x03BD; for μ, namely &#x03BD; : S → H &#x2297; S by 

nu left-parenthesis s right-parenthesis equals normal upper Sigma Underscript left-parenthesis theta right-parenthesis Endscripts times theta Subscript left-parenthesis 1 right-parenthesis Baseline circled-times z times dot left-parenthesis theta Subscript left-parenthesis 2 right-parenthesis Superscript lamda Baseline s right-parenthesis

(usual Sweedler notation, and with λ as the antipode of H). It is a technical exercise 

to verify that μ o &#x03BD; is the identity on S. One uses the fact that if &#x03D1; is a left integral 
then for all h in H, 

normal upper Sigma Underscript left-parenthesis theta right-parenthesis Endscripts h times theta Subscript left-parenthesis 1 right-parenthesis Baseline circled-times theta Subscript left-parenthesis 2 right-parenthesis Superscript lamda Baseline equals normal upper Sigma Underscript left-parenthesis theta right-parenthesis Endscripts theta Subscript left-parenthesis 1 right-parenthesis Baseline times circled-times theta Subscript left-parenthesis 2 right-parenthesis Superscript lamda Baseline times h

to verify that &#x03BD; is a left H-module homomorphism. Technical details may be found in 

Theorem 5.1 of [ CH86 ]. 

The other result is Schneider’s. We have K &#x2297;R S ≅ L and K &#x2297;R H ≅ A. Now L 

is an A-Hopf Galois extension of K, so by a result of Kreimer and Cook 

[ KC76 ], L &#x2297; A as left A-modules. Hence S and H are two projective left H-modulcs 

so that K &#x2297;R S ≅ K &#x2297;R H as left K &#x2297;R H-modules. But then Theorem 4.1 of [ Sch77 ] 
applies to yield that S &#x2297; H as left H-modules. a 

Theorem 1.1 extends Noether’s theorem. For if L/K is a Galois extension of 

number fields with group G, and S is the integral closure of R in L, then S is tamely 



ramified iff the trace map t , is onto. But Y generates 

the module of integrals I of RG. So L/K tame is equivalent to the condition IS = R. 

Schneider’s theorem then plays the same role in Theorem 1.1 as Swan’s theorem 

([ Sw60 ], Corollary 6.4, which Schneider’s theorem extends) does in the proof of 

Noether’s theorem (see [CF67], page 22 ). 
This extension of Noether’s theorem to Hopf orders has a nice interpretation 

involving the Leopoldt order. Note that S is any order over R in L, not necessarily the 

maximal order: 

COROLLARY 1.2. With K, R, L, S and A as in Theorem 1.1, suppose the Leopoldt 
order A(S) of S in A, namely, A(S) = {α in A|αs &#x220A; S for all s in S}, is an R-Hopf 
algebra order in A. Then S is a free A(S)-module. 
PROOF. (c.f. [ C87 ], Theorem 2.1). Since L/K is A-Galois, the fixed ring LA = 

{s in L| as = &#x03F5;(a)s for all a in A} = K. We have easily that IS &#x2286; SH &#x2286; LA &#x2229; S = R, 
where I is the module of left integrals of H. Let &#x03D5; be a generator of the 

one-dimensional K-space of left integrals of A. Since L is an A-Hopf Galois extension 

of K, &#x03D5;L = K and &#x03D5;S is a fractional ideal of K. Thus &#x03D5;S = aR for some a in K. But 

then &#x03D1; = &#x03D5;/a is a left integral of A which maps S onto R &#x2286; S. By definition of 

H = A(S), &#x03D5; is in H, so is in I, and IS = R. The result then follows from Theorem 

1.1. a 
This result raises the question, given a Hopf Galois extension L/K of number 

fields with Hopf algebra A, under what conditions is the Leopoldt order 

A(S) = {α in A|αs &#x220A; S for all s in S}, 

of the ring of integers S of L a Hopf order in A? This question was considered in [ C87 ] 
for abelian extensions of Q(i.e. A = QG, G abelian) and for Rummer extensions of 

prime order. 

Over Q, it turns out that A(S) is Hopf iff the extension L/Q is tamely ramified 

at all odd primes, and the ramification group for L/Q at the prime 2 has order at 

most 2 ([ C87 ], Theorem 5.1). By contrast, Leopoldt’s main result in [Le59] is that S is 

free over A(S) for A = QG, G any finite abelian group. 

In the case of Kummer extensions of a local field K of prime order p with 

ramification number t, A(S) is a Hopf order iff t ≡ - 1(modp); if t < pe0/(p - 1) - 1, 
where e0 is the ramification index of K over Qp, then S is free over A(S) iff 



t ≡ a (modp) and a divides p - 1. The first result is a reformulation by Greither 

[ Gr92 ] of the main result of [ C87 ]; the second is due to Bertrandias and Ferton 

[ BF72a ];, c.f. [ BF72b ] for the case t ≥ pe0/(p - 1) - 1. Greither’s reformulation, with 

a suitably generahzed ramification number, holds for any totally ramified Hopf Galois 

extension L/K of order p ([ Gr92 ], Theorem 2.7). 
Greither also has necessary conditions on the ramification numbers of a cyclic 

Galois extension L/K of degree p2 in order that A(S) be Hopf (see [ Gr92 ], Theorem 

3.2). 
2. Ordering Orders 

Rather than starting with a wildly ramified Galois extension of number fields and 

asking if the Leopoldt order of its ring of integers is Hopf, a relatively successful 

strategy has been to begin with a number field K with ring of integers R and a finite 

abelian group G, consider all the Hopf algebra orders over R in KG, and, for a wild 

extension L/K with group G, see if any Hopf algebra order is the Leopoldt order of the 

ring of integers of L. This was essentially the strategy of [Ch87] and [ Gr92 ], The basic 

approach is that starting from a Hopf algebra order one can construct an order over R 

in L. More precisely, let L be a Hopf Galois extension of K, a local number field, with 

Hopf algebra A. Let R be the valuation ring of K, let S be the integral closure of R in 

L (we do not assume L is a field) and let H be a Hopf order over R in A. Then 

Õ(H) = {s in L&#x005C;hs &#x220A; S for all h in H} 

is a lattice in L (i.e. an R-finitely generated submodule of L which contains a K-basis 

of L). Taylor has observed: 

PROPOSITION 2.1. Õ(H) is an order over R in L. 

PROOF. ([ T87 ], Lemma 3.1). To see that Õ(H) is an R-lattice in L, observe that 

since 1 is in H, Õ(H) &#x2286; S; on the other hand, if {hi} is an R-basis of H and {Sj} is 

an R-basis of S (for i, j = 1,..., n), then there is some r in R so that r(hiSj) is in S 

for all i and j. So rS &#x2286; Õ(H) and Õ(H) is a lattice. Now 1 is in Õ(H) because for all 

h in 17, h · 1 = &#x03F5;(h) · 1 and &#x03F5;(h) is in R, hence h · 1 is in S for all h in H. If s, t are in 

Õ(H), then, for all h in H , is S. So st is in Õ(H). Thus 

Õ(H) is an order in L. a 
Thus given a Hopf Galois extension L/K of number fields with Hopf algebra A, 

we have the map A, from orders over R in L to orders over R in A, and the map Õ, 



from orders over R in A to lattices over R in L. For an order S over R in L, 
sometimes A(S) is a Hopf order in A; if H is a Hopf order over R in A, Õ(H) is an 

order over R in L. It is not the case that Õ and A are always inverses of each other. 

The simplest example is to take a wildly ramified abelian extension L/Q, with ring of 

integers S and Galois group G; then ZG acts on S, so, since S is the maximal order of 

L, Õ(ZG) = S. But A(S) is necessarily larger than ZG, for since L/Q is wildly 
ramified, S cannot be projective over ZG by Noether’s theorem, but Leopoldt’s main 

theorem [Le59] is that S is free over A(S). Thus AÕ(ZG) is strictly larger than ZG. 

The following results bear on the question of when A and Õ are inverses of each 

other. 

PROPOSITION 2.2. Let K be a local field with valuation ring R. Let H be a 

commutative, cocommutative R-Hopf algebra, finitely generated and free as R-module, 
and A = K &#x2297;R H. Let L be an A-Hopf Galois extension of K. Let S be an order over 

R in L such that S/R is a tame H-extension. Then S is a free rank one H-module and 

H = A(S). If S is an H-Galois extension of R or H is a local ring, then S = Õ(H), 
hence H = A(Õ(H)) and S is the unique order over R in L which is a tame 

H-extension. 

The hypothesis that S is H-tame reflects a strategy often used in the theory: 
start with H, construct an S so that S is H-tame (a trace condition if A is a group 

ring), then apply this result. 

PROOF. Since S/R is H-tame, by the extension of Noether’s theorem, S is free of 

rank one. 

To show H = A(S), first observe that since A(S) = {a in A | aS &#x2286; S}, we have 

H &#x2286; A(S). Let S = Hw, the free rank one H-module with basis w. Then L = Aw. If 

a is in A(S), then aw &#x220A; S, so aw = hw for some h in H &#x2286; A. But since L is A-free on 

w, a = h in H. Hence A(S) &#x2286; H. 

To show S = Õ(H), recall that 

Õ(H) = {s in L|Hs &#x2286; ÕL} 

where OL is the integral closure of R in L, and HS &#x2286; S &#x2286;L, so S &#x2286; Õ(H). First 

assume S is an H-Galois extension of R. The inclusion S &#x2286; Õ(H) is an R-algebra, 
H-module homomorphism, hence induces an S#H-module structure on Õ(H). But 

S#H ≅ EndR(S) since S is H- Galois, and we therefore have a Morita isomorphism 
Õ(H) ≅ S &#x2297;R Õ(H)H given by multiplication in Õ(H). But 



R &#x2286; Õ(H)H &#x2286; Õ(H) &#x2229; LA &#x2286; OL &#x2229; K = R, hence Õ(H)H = R and S = Õ(H). 
Uniqueness of S follows. 

If H is a local ring and S ≅ H as left H-module, then S is an H-Galois extension 

of R by [ W92 ]. a 

The following result says that if you find one Hopf order which is the Leopoldt 
order of some order in L, then the same is true for any larger Hopf order. 

THEOREM 2.3. Let L/K be an A-Galois extension of local fields, and R be the 

valuation ring of K. Let H0 be a Hopf order in A so that Õ(H0) is H0-tame. Then 

H0 = AÕ(H0)). If H is any Hopf order in A containing H0, then Õ(H) is free over H 

and AÕ(H)) = H. 

PROOF. That H0 = A(Õ(H0)) follows from Proposition 2.2. 

Let &#x03D1;0 generate the module of left integrals of H0. Since S0 = Õ(H0) is H0-tame, 
there is a Z0 in S0 so that &#x03D1;0 Z0 = 1. Let &#x03D1; generate the module of left integrals of H, 
then &#x03D1;0 = r&#x03D1; for some r in R, since H0 &#x2286; H. Let z = rz0. Claim: 

1) z is in Õ(H) = S 

2) &#x03D1;z = 1, hence S is H-tame. 

Claim 2) is obvious: &#x03D1;z = (&#x03D1;0/r)(rz0) = &#x03D1;0z0 = 1. To prove claim 1), first note 

that since H0 &#x2286; H, H (linear duals over R). We have H = H* · &#x03D1;, so for any ξ 
in H, there exists f in H* with ξ = f • &#x03D1;. To show z is in S, we need to show that for 

any ξ in H, ξz is in OL, the valuation ring of L. But 

ξz = (f • &#x03D1;)= (f • (&#x03D1;0/r))(rz0) = (f • &#x03D1;0)z0. Now since f is in H , f • &#x03D1;0 is in 

H0, and since zO is in Õ(H0), (f • &#x03D1;0)z0 is in OL. Thus ξz is in OL, and z is in Õ(H). a 

COROLLARY 2.4. If L/K is a Galois extension of local fields with Galois group G 

and L/K is tamely ramified, then for every Hopf order H in KG, Õ(H) is free over H 

and H = A(Õ(H)). 
This follows immediately from Theorem 2.3 and the fact that any Hopf order in 

KG contains RG (because the dual of any Hopf order in KG is contained in the 

maximal order of KG*, namely RG*). f 

3. Kummer Theory of Formal Groups 

In this section we describe a large class of extensions of a local field K which have 

orders whose Leopoldt orders are Hopf. 



The extensions are called Kummer extensions with respect to a formal group. 
Classical cyclic Kummer extensions of prime power order may be described from this 

point of view, as we will show. 

Fix a prime p, and let K be a local field, a finite extension of Qp. Let R be the 

valuation ring of K, with maximal ideal m generated by π. Let K&#x0304; be an algebraic 
closure of K, and let R&#x0304; be the integral closure of R in K&#x0304;, with maximal ideal m&#x0305;. A 

formal group F = F(x, y) of dimension one defined over R is a power series in two 

variables with coefficients in R so that the operation α +F β = F(α, β) for any α, β in 
m&#x0305; makes m&#x0304; into an abelian group with identity element 0. A homomorphism 
f : F → G from one formal group of dimension one to another is a power series 

f = f(x) in R[[x]] so that for any α, β in m&#x0305;, f(α +F β = f(α) + G f(β). We denote m&#x0304; 

with operation by +F(K&#x0304;). For any extension L of K contained in K&#x0304;, F(L) is 

defined similarly. 
Unreferenced notation and facts about formal groups are from Fröhlich [ F68 ]. 
There is a map [ ] = [ ]F : Z → End(F) given by [0] = 0, [1](x) = x, [-1](x) is 

defined by F(x, [-1](x)) = 0, and for any n, 

[n + 1](x) = F([n](x),x) (n > 0) 

[n - 1](x) = F([n](x), [-1](x)) (n < 0). 
The formal group F has finite height if the power series [p](x) is non-zero modulo m. 

Given formal groups F and G of dimension one and finite height defined over R, 
and a homomorphism f : F → G, we may define an R- Hopf algebra H by 
H = R[[x]]/(f(x)). Here the counit map &#x03F5; is the algebra homomorphism induced by 
sending x to 0; the antipode is the algebra homomorphism induced by sending x to 

[-1]F(x), and the comultiplication map Δ is the algebra map from H to H &#x2297; H 

induced by sending x to F(x &#x2297; 1, 1 &#x2297; x). 
To see that Δ is well-defined, we define Δ in the same way from R[[x]] to 

R[[x]]&#x2297;&#x0302;R[[x]] and show that (f(x)) is mapped to (f(x)) &#x2297; R[[x] + R[[x]] &#x2297; (f(x)) 
(that is, (f(x)) is a coideal). Thus it suffices to show that Δ(f(x)) is in the ideal 

generated by f(x) &#x2297; 1 = f(x &#x2297; 1) and 1 &#x2297; f(x) = f(1 &#x2297; x). But if we write x &#x2297; 1 as y 

and 1 &#x2297; x as z, then R[[x]]&#x2297;&#x0302;R[[x]] ≅ R[[y, z], and Δ(x) = F(y, z). We then have 

Δ(f(x)) = f(F(y, z)) = G(f(y), f(z)). 

Since G(y, z) has no constant term, G(f(y), f(z)) is in the ideal generated by f(y) 
and f(z), as we wished to show. 



Let A = K &#x2297;R H. 

If f has height h, that is, Weierstrass degree q = ph, then by the Weierstrass 

preparation theorem, f = f0 • u, where f0 is a Weierstrass polynomial of degree q and 

u is an invertible power series. Then, since f has no multiple roots, ([ F68 ], p.107-8) 
H ≅ R[x]/(f0(x)) is a free R-module of rank q and Γ, the set of roots of f0 in m&#x0305;, is a 

subgroup of F(K&#x0304;) of order q. 

Following Taylor [ T86 ], we define the Kummer order 

Sc = R[[z]]/(f(z) - c) 

for any c in m . As with H, Sc is a free R-module of rank q. We make Sc into an 

H-comodule algebra by defining the R-algebra homomorphism 

α : Sc → Sc &#x2297; H ≅ R[[z, x]]/(f(z) - c, f(x)) 

to be the homomorphism induced by sending z to F(z, x). Then α is well-defined, since 

α(f(z)) = f(F(z, x)) = G(f(z), f(x)) = G(c, 0) = c = α(c). 

THEOREM 3.1. For any c in m , Sc is an H-Galois object. 

PROOF. It suffices to show that T &#x2297; Sc is a T &#x2297;R H-Galois object for some 

faithfully flat R-algebra T. For that, it suffices to find a faithfully flat R-algebra T so 

that T &#x2297;R Sc is isomorphic to T &#x2297;R H as T &#x2297;R H-comodule algebras, for then T &#x2297;R Sc 
will be isomorphic as Galois object to the trivial T &#x2297;R H-Galois object. 

Let a in K&#x0304; be a root of f(x) - c, and let L = K[a], T the valuation ring of L 

with maximal ideal mT generated by πT. Define an algebra homomorphism γ from 

T &#X2297;R H ≅ T[[x]]/(f(x)) to T &#x2297;R Sc ≅ T[[t]]/(f(t) - c) induced by sending x to t -F a. 

Then 0 = f(x) is sent by γ to 

f(t -F a) = f(F(t, [-1]f(a)) 
= G(f(t),[-1]G(f(a)) 

= G(c,, -~1Gg(c)) 
= 0. 

Thus γ is a well-defined T-algebra homomorphism. To show that γ is a 

T &#x2297; H-comodule homomorphism, we show α o γ = (γ &#x2297; 1) o Δ as maps from T &#x2297;R H 



to (T &#x2297; Sc) &#x2297;T (T &#x2297; H). We write T &#x2297; H as the image of T[[x]] and 

(T &#x2297; Sc) &#x2297;T (T &#x2297; H) as the image of T[[t, x]]. Now 

α o γ(x) = α(t -F a) = α(F(t, [-1]F(a))) 

= F(α(t), [-1]F(a)) 
= F(F(t, x),[-1]F(a)), 

while 

(γ &#x2297; 1) o Δ(x) = (γ &#x2297; 1)F(x &#x2297; 1, 1 &#x2297; x) in (γ &#x2297; 1)(R[[x &#x2297; 1, 1 &#x2297; x]]). Now 

(γ &#x2297; 1)(x &#x2297; 1) is the image in (T &#x2297; Sc) &#x2297;T (T H) of t - a in T[[t, ], and 

( 1)(1 ) is the image of x. So we have 

(γ &#x2297; 1)F(x &#x2297; 1, 1 &#x2297; x) = F(t -F a, x) 

= F(F(t,[-1]F(a)), x)) 

which, using the associativity and commutativity of F, is the same as α o γ(x). Thus 

the map γ is a T &#x2297; H-comodule homomorphism. a 

We can also use the map γ to show that Sc is isomorphic to H* = HornR(H, R) as 

H*-modules, and we give an explicit Galois generator for Sc: 

COROLLARY 3.2. Sc is a free H*-modula on the image in Sc of tq-1 in R[[t]]. 

PROOF. Let I be the free rank one R-module of integrals of H. Since R is local and 

H is commutative and cocommutative we know that H is isomorphic to H* as 

H*-modules, with H = H*j where j is any generator of I. However, since 

H = R[[x]]/(f(x)) and &#x03F5;(xk) = 0 for all k > 0, an easy calculation shows that f(x)/x 
is a generator of I. 

Viewing the situation over the faithfully flat R-algebra T, we now see that 

T &#x2297;R H is a free T &#x2297;RH*-module with generator f(x)/x. Since γ is an isomorphism 
of T &#x2297;R H-comodules (i.e. T &#x2297;R H*-modules), T &#x2297;R Sc is isomorphic to T &#x2297; H* as a 

T &#x2297;R H*-module and is generated by the image in T &#x2297;R Sc of γ(f(x)/x) in T[[t]]. 
Let w(x) = f(x)/x . Then γ(f(x)/x) - w(γ(x)) = w(F(t, [-1](a)). Since f(x) 

has Weierstrass degree q, w(x) ≡ rq-11(modπ) and so 

γ(f(x)/x) ≡ F(t, [-1](a))q-1 ≡ tq-1(modπT). 



Let ψ = γ(f(x)/x) in T[[t]]. If {b1,..., bq} is a T-basis of T &#x2297;R H*, then 

{b1ψ,..., bqψ} is a T-basis of T &#x2297;R Sc. This also yields a T/πTT-basis of 

T &#x2297;RSc/πTT &#x2297;R Sc. But then b1tq-1,... , bqtq-1} also is a set in T &#x2297;R Sc which 

reduces modulo πTT to a T/πTT-basis of T &#x2297; Sc/πTT &#x2297;R Sc. So by Nakayaina’s 
Lemma, {b1tq-1,...,bqtq-1} is also a T-basis for T &#x2297;R Sc. Hence 

T &#x2297;R Sc = T &#x2297;R H*tq-1, and since T is a faithfully flat R-algebra, Sc = H*tq-1. a 

COROLLARY 3.3. Sc = Õ(H*) and H* = A(Sc). 
This follows from Theorem 2.2. a 

If we apply Weierstrass preparation to f(t) - c, we may write 

f(t) - c = g(t)&#x03C5;(t), g(t) a Weierstrass polynomial of degree q, and &#x03C5;(t) an invertible 

power series. Then Sc ≅ R[t]/(g(t)) as R-algebras. This identification confuses the 

H-comodule structure, however. 

Now we consider special cases. 

&#x2663; Suppose g(t) is irreducible over K. Then Lc is a field extension of K. If Γ, the 

set of roots of f(x) in m&#x0305;, is contained in K, then Lc is a (classical) Galois extension of 

K with Galois group G isomorphic to Γ. This follows because of 

PROPOSITION 3.4. If the roots Γ of f(x) are in K, then A = K[[x]]/(f(x)) ≅= KΓ. 

Hence Lc is a Galois extension of K, where the Galois group G ≅ Γ acts on Lc by 
translating (under +F) the generator t of Lc by elements of Γ. 

PROOF. Since f0(x) splits in K, A ≅ K[x]/(f0(x)) ≅ KG where G is a set in 1 - 1 

correspondence with the roots of f0(x), that is, with the elements of Γ, and the map 

&#x03C6; : A → KG is induced by &#x03C6;(x)(sg) = g for g &#x220A; Γ and sg the element of G which 

corresponds to g. Then &#x03C6; may be viewed as corresponding to a pairing 

<>: G × A → K. 

by 

Sg × m(x) → < sg,m(x) > = m(g) 
where m(X) is a polynomial in R[X]. Then the comultiplication on A defines a 

multiplication on G by 

<sgsh,x> = < sg &#x2297; sh, Δ(x) > 

= < sg &#x2297; sh,F(y,z) > 



(identifying A &#x2297; A as the image of R[[x]]&#x2297;&#x0302;R[[x]] ≅ R[[y,z]}) 

= F(< sg,y >, < sh,z >) 
= g +F h 

= < sg+Fh, x > 

Thus the multiplication on G is that induced on G from the formal group 

multiplication on Γ &#x2286; F(K&#x0304;). 
In case A ≅= KΓ, the action of the Galois group G on Lc is induced by translating 

the generator t by elements of Γ. To see this, observe that since Lc = K[[t]]/(f(t) - c) 
is a KG-Galois object, then Lc is a Galois extension of K with group G. The action of 

G on Lc is induced from the coaction map 

α : Lc → Lc &#x2297; A, where A = K[[x]]/(f(x)) and α(t) = F(t, x), by 

Sg · t = F(t, < Sg, x >) = F(t, g) = t +F g 

for g in Γ corresponding to sg in G. Thus G acts on the generator t of Lc by 
translating t by the roots of f(x). a 
&#x2663; If c &#x220A; mK, c , then S . For the Newton polygon N(f(x) - c) of 

f(x) - c and N(g(x)) agree to the left of (q,0). Since N(f(x)- c) has a vertex at 

(0,&#x03C5;(c)), so does N(g(x)). But then &#x03C5;(g(0)) = &#x03C5;(c), and so g(0) &#x220A; mK, a , and 

g(x) is Eisenstein. Therefore S . If π is a generator of mK, then c is in mK and 

not in m iff c = uπ for some u in R*. 

The intersection of these special cases gives our main local Galois module result. 

THEOREM 3.5. Let F, G be formal groups of dimension one, Γ a finite subgroup of 

F(K), f : F → G a homomorphism with kernel = Γ. Let mK be generated by π. 

Then for any unit u of OK, L = K[[z]]/(f(z) - uπ) is a Galois field extension of K 

with group ≅ Γ, and OL = R[[z]]/(f(z) - uπ) is a free rank one module over its 

associated order A = A(OL), where A* ≅ R[[x]]/(f(x)). a 

Adapting methods of Lubin [ Lu79 ] (see Example 4.5 below), a large number of 

examples of Hopf algebras H of the form described in the theorem may be constructed 

from congruence-torsion subgroups of formal groups, as is shown in [ CZ93 ]. 
To explain the terminology, “Kummer extension with respect to the formal group 

F”, we conclude this section by specializing F to the multiplicative formal group Gm. 



PROPOSITION 3.6. Let F = G = Gm, the multiplicative formal group defined as 

Gm(x, y) = x + y + xy. Let q 
= pn and consider the endomorphism [q] : Gm → Gm. 

Suppose K contains a primitive q th root of unity. Then the Kummer extensions of K 

with respect to Gm corresponding to f = [q] are classical Kummer extensions with 

Galois group Cq cyclic of order q. 

PROOF. We consider H = R[[x]]/([q](x)). It is easy to see by induction that for any 

m > 0, [m](x) = (x + 1)m = 1, so 

H = R[x]/([pn](x)) = R[x]/((x + 1)q - 1) 

= R[y]/(yq - 1) 

≅ RCq, 

the group ring of the cyclic group of order q, as R-algebras, where y 
= x + 1. This last 

isomorphism is in fact as Hopf algebras, for 

Δ(y) = Δ(x + 1) = Δ(x) + Δ (1) 

= (x &#x2297; 1 + 1 &#x2297; x + x &#x2297; x) + 1 &#x2297; 1 

= (x + 1) &#x2297; (x + 1) 

= y &#x2297; y 

so the generator y of H is grouplike. 
Given any c in m, Sc = R[t]/([q](t)- c) = R[z]/(zq - (1 + c)), where z = t + 1. 

Since c &#x220A; m, then 1 + c is a unit of R. 

Suppose K contains a primitive q th root of unity ζ. Then 

Γ = {ζr - l|r = 0, 1,...,q - 1} &#x2286; K 

is the set of roots of [g](x). So by Proposition 3.4, Lc is a Galois extension of K with 

group G ≅ Γ, where if sr in G corresponds to ζr - 1 in Γ, then for the generator t of 

Lc, 

sr · t = Gm(t, < sr, x >) 

= Gm(t, ζr- 1) 



= t + ζr - 1 + (ζr - 1)t. 
Hence 

sr · z = sr · t + 1 

= ζr t + ζr = ζr z 

and the Galois group G acts on the generator z by multiplication by q th roots of 

unity. Thus Lc is a Kummer extension of K with group G = Cq. I 

4. Describing H * 

Let F be a formal group of dimension one and finite height defined over the 

valuation ring R of a local field K &#x2287; Qp, Let mK be the maximal ideal of R, 
mK = πR for some parameter π. 

In the last section we showed that given a homomorphism f with domain F and 

an element c in mK, the Kummer extension Sc is isomorphic to H = R[[x]]/(f(x)) as 

an H-comodule, hence Sc ≅ H* as H*-modules. Thus it is of interest to describe H*. 

Taylor [ T85 ], [ T87 ] has found a basis of H* as an R-module when H arises from a 

Lubin-Tate formal group. In this section we extend this description. 
Let G &#x2286; mK be a finite group under the action of F: that is, for g1, g2. in G, 

g1 +F g2 = F(g1, g2) • Let F1 be a formal group and f : F → F1 be a homomorphism 
of formal groups with ker(f) = G, then H = R[[x]]/(f(x)) is a Hopf R-algcbra with 

comultiphcation induced by F, and f will have height h where ph = q =| G |. The 

Weierstrass Preparation Theorem yields a factorization of f(x) as f(x) = h(x)u(x), 
where h(x) is a Weierstrass polynomial of degree q and u(x) is an invertible element of 

R[[x]]. Then 

h left-parenthesis x right-parenthesis equals normal upper Pi Underscript g element-of upper G Endscripts left-parenthesis x minus g right-parenthesis in upper R times left-bracket x right-bracket normal a normal n normal d upper H approximately-equals upper R left-bracket x right-bracket slash left-parenthesis h left-parenthesis x right-parenthesis right-parenthesis times period

Let Γ be an abstract group isomorphic to G, and let &#x03C7; : Γ → G &#x2286; K be an 

isomorphism. Then A = K &#x2297;R H ≅ K[x]/(h(x)) ≅ KΓ, via the map 

α : K[x]/(h(x)) → KΓ 

induced by α(p(x))(γ) = p(x(γ)) for p(x) in K[x]. The standard duality pairing 
KΓ × KΓ → K becomes A × KΓ → K given by: 

p left-parenthesis x right-parenthesis comma k Subscript gamma Baseline gamma greater-than normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts k Subscript gamma Baseline normal p left-parenthesis chi left-parenthesis gamma right-parenthesis right-parenthesis equals normal upper Sigma Underscript g element-of upper G Endscripts k Subscript chi minus 1 Sub Subscript left-parenthesis g right-parenthesis Subscript Baseline times p left-parenthesis g right-parenthesis period



We wish to identify the dual of H. 

We begin with Euler’s formula: if G is the set of roots of h(x), then 

StartFraction 1 Over h left-parenthesis x right-parenthesis EndFraction equals normal upper Sigma Underscript g element-of upper G Endscripts times StartFraction 1 Over h prime left-parenthesis g right-parenthesis times left-parenthesis x minus g right-parenthesis EndFraction

(To prove this one verifies that the polynomial 
normal upper Sigma Underscript g element-of upper G Endscripts left-parenthesis StartStartFraction StartFraction h left-parenthesis x right-parenthesis Over x minus g EndFraction OverOver h prime left-parenthesis g right-parenthesis EndEndFraction right-parenthesis

of degree ≤ q - 1 has the value 1 on all q elements of G, hence by the uniqueness in 

the Chinese Remainder Theorem, must be the constant polynomial 1.) 
Following Taylor ([T85], Section 2), set x = 1/T in Euler’s formula and expand 

both sides as power series in T. If 

h(x) = xq + bq-1xq - 1 + ... + b1x 

with all bj in mK, then the left side of Euler’s formula becomes 

StartFraction 1 Over h left-parenthesis 1 slash upper T right-parenthesis EndFraction equals upper T Superscript q Baseline left-parenthesis StartFraction 1 Over 1 plus b Subscript q minus 1 Baseline upper T plus period period period plus b Subscript 1 Baseline upper T Superscript q 1 Baseline EndFraction right-parenthesis equals upper T Superscript q Baseline plus c Subscript q plus 1 Baseline upper T Superscript q plus 1 Baseline plus period period period

with all Cj in πR, while the right side, 

normal upper Sigma Underscript g element-of upper G Endscripts times StartStartFraction 1 OverOver h prime left-parenthesis g right-parenthesis left-parenthesis StartFraction 1 Over upper T EndFraction minus g right-parenthesis EndEndFraction equals normal upper Sigma Underscript g element-of upper G Endscripts StartFraction upper T Over h prime left-parenthesis g right-parenthesis EndFraction left-parenthesis 1 plus g upper T plus g squared upper T squared plus period period period right-parenthesis times period

Equating coefficients of the powers of T, we get 
normal upper Sigma Underscript g element-of upper G Endscripts times StartFraction g Superscript i Baseline Over h prime left-parenthesis g right-parenthesis EndFraction equals StartLayout Enlarged left-brace 1st Row 1st Column 0 times 2nd Column normal i normal f Baseline 0 less-than-or-equal-to i less-than q minus normal l times 2nd Row 1st Column 1 times 2nd Column if i equals q minus 1 times times 3rd Row 1st Column StartLayout 1st Row  c EndLayout Subscript i plus 1 Baseline 2nd Column if i greater-than q minus 1 comma times w h e r e times c Subscript i plus 1 Baseline times element-of pi times upper R EndLayout

(where g0 = 1 for all g in G, including g = 0). Using this formula, we have 



PROPOSITION 4.1. The dual U in KΓ of H is the R-submodule of KΓ with basis 
StartSet normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts times StartFraction chi left-parenthesis gamma right-parenthesis Superscript i Baseline gamma Over h prime left-parenthesis chi left-parenthesis gamma right-parenthesis right-parenthesis EndFraction vertical-bar i equals 0 comma 1 comma period period period comma normal q minus normal l EndSet period

PROOF. Let {e0, e1,..., eq- 1} be the dual basis in KΓ of the basis 

{1, x, x2,... , xq-1} of H. Then U , and < ei, xj >= δi, j. Let 

f Subscript i Baseline equals normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts StartFraction chi left-parenthesis gamma right-parenthesis Superscript i Baseline gamma Over h prime left-parenthesis chi left-parenthesis gamma right-parenthesis right-parenthesis EndFraction times period

Then 

f Subscript i Baseline comma comma x Superscript j Baseline greater-than normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts StartFraction chi left-parenthesis gamma right-parenthesis Superscript i Baseline Over h prime left-parenthesis chi left-parenthesis gamma right-parenthesis right-parenthesis EndFraction equals gamma comma x Superscript j Baseline greater-than equals normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts StartFraction chi left-parenthesis gamma right-parenthesis Superscript i Baseline Over h prime left-parenthesis chi left-parenthesis gamma right-parenthesis right-parenthesis EndFraction times chi left-parenthesis gamma right-parenthesis Superscript j Baseline equals normal upper Sigma Underscript g element-of upper G Endscripts StartFraction g Superscript i plus j Baseline Over h prime left-parenthesis g right-parenthesis EndFraction equals StartLayout Enlarged left-brace 1st Row 1st Column 0 times 2nd Column normal i normal f i plus j less-than q minus 1 times 2nd Row 1st Column 1 times 2nd Column normal i normal f i plus j equals q minus 1 times 3rd Row 1st Column c Subscript i plus j plus 1 Baseline 2nd Column normal i normal f i plus j greater-than q minus 1 period EndLayout

Then 
f Subscript i Baseline equals normal upper Sigma Underscript j equals 0 Overscript q minus 1 Endscripts left pointing angle f Subscript i Baseline comma x Superscript j Baseline right pointing angle e Subscript j Baseline equals e Subscript q minus 1 minus i Baseline plus normal upper Sigma Underscript j equals q minus i Overscript q minus 1 Endscripts times c Subscript i plus j plus 1 Baseline times e Subscript j Baseline comma

or 

(f0, f1, ..., fq - 1) = (e0, e1,..., eg-1)M 
where M is the q × q matrix 

Since the matrix M is in GLq(R), {f0, f1,..., fq-1} is a basis of U. a 



The next proposition recovers Taylor’s description in [T87]. Let &#x03C5; be the 

valuation on K, normalized so that &#x03C5;(π) = 1. 

PROPOSITION 4.2. Suppose h(x) has the property 
(4.3) h'(0) = b with &#x03C5;(b) = r, and h'(x) = πru(x) with u,(x) invertible in H. 

Then {σ0, σ1,...,σq-1} is a basis of U, where for each i = 0,... ,q - 1, 

sigma Subscript i Baseline times equals StartFraction 1 Over pi Superscript r Baseline EndFraction normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts chi left-parenthesis gamma right-parenthesis Superscript i Baseline gamma period

PROOF. Since u(x) is invertible in H, we may choose as a basis of H the set 

a . Then 

left pointing angle StartFraction x Superscript i Baseline Over u left-parenthesis x right-parenthesis EndFraction comma sigma Subscript j Baseline right pointing angle equals left pointing angle StartFraction x Superscript i Baseline Over u left-parenthesis x right-parenthesis EndFraction comma StartFraction 1 Over pi Superscript r Baseline EndFraction normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts chi left-parenthesis gamma right-parenthesis Superscript i Baseline gamma right pointing angle equals StartFraction 1 Over pi Superscript r Baseline EndFraction normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts chi left-parenthesis gamma right-parenthesis Superscript j Baseline StartFraction chi left-parenthesis gamma right-parenthesis Superscript i Baseline Over u left-parenthesis chi left-parenthesis gamma right-parenthesis right-parenthesis EndFraction equals normal upper Sigma Underscript gamma element-of normal upper Gamma Endscripts StartFraction chi left-parenthesis gamma right-parenthesis Superscript i plus j Baseline Over h prime left-parenthesis chi left-parenthesis gamma right-parenthesis right-parenthesis EndFraction equals normal upper Sigma Underscript g element-of upper G Endscripts StartFraction g Superscript i plus j Baseline Over h prime left-parenthesis g right-parenthesis EndFraction equals left pointing angle f Subscript i Baseline comma x Superscript j Baseline right pointing angle

So the matrix relating the dual basis of a with {σj} is the invertible matrix 

M. Hence {σj |j = 0, . . . , q - 1} is a basis for U. a 

Suppose H = R[[X]]/(f(X)) where f is a homomorphism of formal groups from 

F to F1, and f(X) = h(X)u(X) where h(X) is a Weierstrass polynomial of degree q 

and u(X) is a unit in R[X]]. Then H ≅ R[X]/(h(X)). Let x be the image of X in H. 

When does h(x) satisfy (4.3), namely, h'(x) = h'(0)&#x03C5;(x), &#x03C5;(x) a unit in H? If 

h(x) = h1x + h2x2 + ... + hq-1xq-1 + xq and h'(x) = h'(0) &#x03C5;(x) with &#x03C5;(x) in R[x], 
then, since &#x03C5;;(0) = 1, h1 = h'(0) must divide q and rhr for all r, 1 ≤ r < q. We 

conclude with three examples where (4.3) holds. The first is Taylor’s [T87]. 
EXAMPLE 4.4. Let F be a Lubin-Tate formal group defined over R which admits 

as an endomorphism [π](x) = πx + xq, where q = | R/πR |. Then R[x]/([π](x)) is a 

Hopf R-algebra and [π](x) clearly satisfies (4.3). Moreover, as Taylor points out and is 



easily seen by induction on n using the chain rule, [πn](x) = [π]([πn-1](x) also satisfies 

(4.3). 
On the other hand, if f(x) and g(x) are power series of finite heights whose 

corresponding Weierstrass polynomials satisfy (4.3), it need not follow that (g o f)(x) 
has a Weierstrass polynomial which satisfies (4.3). (For an example, take 

p = 3, f(x) = 3x + x3 + x4, g(x) = 3x + x3.) 
EXAMPLE 4.5. Let Ft be a standard generic formal group of height h. This is a 

formal group defined over Zp[[t1,... ,th-1]]] such that 

left-bracket p right-bracket left-parenthesis x right-parenthesis equals p x u 0 left-parenthesis x right-parenthesis plus t 1 x Superscript p Baseline u 1 left-parenthesis x right-parenthesis plus period period period plus t Subscript h minus 1 Baseline x Superscript p Super Superscript h minus 1 Superscript Baseline u Subscript h minus 1 Baseline left-parenthesis x right-parenthesis plus x Superscript p Super Superscript h Superscript Baseline u Subscript h Baseline left-parenthesis x right-parenthesis

where for each i < h, ui(x) is a unit in Zp[[t1, . . . ,ti]][[x]], and Uh(x) is a unit in 

Zp[[t1,..., th-1]]. See ([ Lu79 ], p. 105). We may specialize Ft to a formal group Fa 
over R by replacing ti by ai in mK for all i = 1,..., h - 1. 

If we choose the ai so that &#x03C5;(ai) ≥ &#x03C5;(a1) for all i ≥ 1, then Fa will have height h 

and Y^bix' [p]Fa(x) = Σbixi with &#x03C5;(a1) = &#x03C5;(b1) ≤ &#x03C5;(bi) for all i, 1 ≤ i < ph. If 

[p](x) = h(x)u(x) where u(x) is a unit of R[[x]] and h(x) = Σ hixi is a Weierstrass 

polynomial of degree ph then &#x03C5;(h1) = &#x03C5;(b1) and &#x03C5;(hi) ≥ &#x03C5;(h1) for 1 ≤ i < ph, as is 

easily seen by writing h(x) = [p](x)u-1(x) and successively comparing coefficients of 

a . Hence R[x]/(h(x)) is a Hopf R-algebra and h(x) satisfies (4.3). Thus if 

h(x) splits in K then H* has a basis of the type described in Proposition 4.2. 

EXAMPLE 4.6. Let F be a formal group of height h defined over R &#x2287; Zp, and 

suppose the Newton polygon of [p]F, N([p]), has a vertex at p. (By appropriate 
specialization of the generic formal group Ft of Example 4.5, such an F is easily 
constructed.) 

Now by Lubin’s Lemma (Lemma 4.1.2 of [ Lu64 ], c.f. [ Z88 ], p. 27), there exists an 

invertible power series u(x) in R[[x]] so that u(F(u-1(x), u-1(y))) = Fu(x,y) has 

m for all m in Zp, and [ζ]Fu(x) = ζx for all ζ in 

the group μp-1 of p - 1st roots of unity in Zp. If [p]F(a) = 0 for a in mK&#x0304;, then 

[p]Fu(u(u(a)) = 0, and, since u(x) is invertible in R[[x]], the elements a and u(a) have the 

same valuation. It follows that the Newton polygons of [p]F and of [p]Fu agree to the 

left of the abscissa ph, since the slopes of the edges of the Newton polygon of [p]F to 

the left of ph are the negatives of the valuations of the roots of [p]F. In particular, the 

Newton polygon of [p]Fu will have a vertex at p iff it is so for [p]F. So, without loss of 

generality, we shall assume that F has the property that [ζ]F(x) = ζx for all ζ in μp-1. 



By Lubin’s Local Factorization Principle ([ Lu79 ], p. 106), there exists a 

factorization [p](x) = h(x)g(x) in R[[x]] where h(x) is a Weierstrass polynomial of 

degree p whose roots are 0 and the p - 1 roots of [p] in K&#x0304; whose valuation is equal to 

—m where m is the slope of the edge joining (1, &#x03C5;(p)) and the vertex at p in the 

Newton polygon of [p]. In fact, h(x) arises as a factor via the Weierstrass Preparation 
Theorem of a homomorphism f : F → F1 of formal groups, where F1 is some formal 

group defined over R (as is f) and ker f = roots of h(x) ([ F68 ], Theorem 4, p. 112). 
Now if a &#x220A; mK&#x0304; is in ker f, so is [ζ](a) = ζa for any ζ in μp-1, and &#x03C5;(ζa) = &#x03C5;(a). 

Thus if a is a root of h(x), then in K , hence ap-1 = b in 

R and h(x) = xp - bx. Then H = R[[x]]/(f(x)) is a Hopf R-algebra, and since 

f(x) = h(x)u(x) for some invertible power series by Weierstrass preparation, 
H ≅ R[x]/(h(x)) and h(x) = xp - bx satisfies (4.3). Thus if h(x) splits in K, then 

U = H* has a basis as in Proposition 4.2. 

5. Hopf Galois Structures 

C. Greither and B. Pareigis ([ GP87 , p.245; [ P90 ], p.84) have shown that the 

non-normal extension Q(21/4)/Q is a Hopf Galois extension for two different Q-Hopf 
algebras. In this section we anticipate future research in local Galois module theory by 
elaborating on this example. We work locally, over Q2. Since x4 - 2 is an Eisenstein 

polynomial, letting w be a root of x4 - 2, the valuation ring S of L = Q2(w) is 

S - Z2[w]. 
EXAMPLE 5.1. Let A1, A2 be the two Q2-Hopf algebras acting on L, and let Ai(S) 
be the Leopoldt order of S in Ai, i = 1,2. Then one Ai is a Z2-Hopf order and the 

other is not. 

As Pareigis observes ([P9Q], p.85), field extensions L/K with more than one Hopf 
Galois structure are very common. For example, if L/K is a Galois extension with 

group Cq,q = pn with p an odd prime, then L/K has a unique Hopf Galois structure 

iff n = 1 (c.f. [Ch189] and [ P90 ], section 5). Example 5.1 shows that choosing which 

Galois module structure to use on L/K relates to the attractiveness of the resulting 
local Galois module structure for L/K. 
PROOF. The Hopf algebra A1 = Q2[c, s]/(c2 + s2 - 1, cs) with comultiplication 
Δ(c) = c &#x2297; c - s &#x2297; s, Δ(s) = c &#x2297; s + s&#x2297;c. One sees that A1 is contained in Q2[i]C4, 
where C4 is the cyclic group of order 4 generated by σ, as follows: 

c = (σ + σ3)/2, s = i(σ - σ3)/2. 


