

Product Catalog Mobile Hydraulics

Part 2: Hydraulic Motors Gears

Product Catalog Mobile Hydraulics

Part 2: Hydraulic Motors Gears

The complete Mobile Hydraulics Catalog Program at a glance:

Part 1	Hydraulic Pumps	Axial Piston Pumps, External Gear Pumps, Electrohydraulic Pumps, Gerotor Pumps	RE 90010-01
Part 2	Hydraulic Motors Gears	Axial Piston Motors, External Gear Motors, Radial Piston Motors, Gears	RE 90010-02
Part 3	Mobile Controls	Control Blocks, Valve Modules, Pilot Control Devices, Power Brake Valves, Steering Units	RE 90010-03
Part 4	Mobile Electronics Accumulators Filters	Controllers, Sensors, Joysticks, Displays, Video Cameras, Tools, Accumulators, Filters, Oil Measurement Technology	RE 90010-04
Part 5	Compact Hydraulics	Mechanical, Solenoid and Proportional Cartridge Valves, Integrated Circuits	RE 90010-05
Part 6	Compact Hydraulics	Load Holding/Motion Control Valves, Compact Directional Valves, Compact Power Modules	RE 90010-06

For the latest product information from Bosch Rexroth, please visit our website: www.boschrexroth.com/products

Bosch Rexroth AG RE 90010-02/07.2012

Publisher Bosch Rexroth AG

Mobile Applications Glockeraustrasse 4

89275 Elchingen, Germany Tel. +49 7308 82-0 Fax +49 7308 7274 info.brm@boschrexroth.de www.boschrexroth.com

Catalog No. RE 90010-02/07.2012

Replaces: RE 90005-01/07.2009

Print Schirmer Medien GmbH & Co. KG

89079 Ulm

Reprints and translation, in whole or in part, only with the

publisher's prior consent.

Subject to revision.

Should you require further technical information, please contact the Rexroth sales partner in your area.

www.boschrexroth.com/addresses

3 8

671

RE 90010-02/01.2012	BOSCII REXIOLII AC	_
General	Page	
	5	1
Axial Piston Motors		
Fixed motors	53	2
Variable motors	165	3
variable motors	165	3
Accessories	439	4
External Gear Motors		
	465	5
Radial Piston Motors		
	507	6
Gears		
Planetary gear units for mobile applications	609	7

Planetary gear units for stationary applications

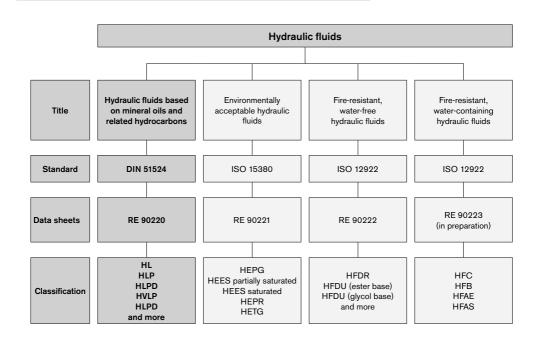
Bosch Rexroth AG RE 90010-02/07.2012

Contents

	Туре	Size	Series	Nominal pressure	Data sheet	Page	
General	турс	3120	Julius	pressure	Data Silect	i age	
Hydraulic fluids based on mineral oils and related hydrocarbons					RE 90220	7	
Environmentally acceptable hydraulic fluid	s				RE 90221	23	1
Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)					RE 90222	37	
Axial Piston Motors							
Fixed motor	A2FM	51000	60/61/63	315400 bar	RE 91001	55	
Fixed plug-in motor	A2FE	28355	60/61	350400 bar	RE 91008	101	
Fixed motor	A4FM	22500	10/30/32	350400 bar	RE 91120	125	2
Fixed motor	A10FM/E	1063	52	280 bar	RE 91172	137	
Variable motor	A6VM	281000	63	350400 bar	RE 91604	167	
Variable motor	A6VM	60280	71	450 bar	RE 91610	247	
Variable plug-in motor	A6VE	28250	63	350400 bar	RE 91606	323	3
Variable plug-in motor	A6VE	60170	71	450 bar	RE 91616	363	
Variable motor	A10VM/E	2885	52	280 bar	RE 91703	411	
Counterbalance valve for travel drives, winch drives and turas drives	BVD	20, 25	41	350 bar	RE 95522	441	4
Counterbalance valve for winch drives	BVE	25	51	350 bar	RE 95525	453	
External Gear Motors							
External gear motors	AZMF	822		180250 bar	RE 14026	467	
	AZMN AZMG	2528 2245		200210 bar 180 bar			5
	7.2	22		.00 50.			
Radial Piston Motors							_
Radial piston motor (multi-stroke)	MCR3	160400	3X	400450 bar	RE 15205	509	
Radial piston motor (multi-stroke)	MCR5	380820	3X	400450 bar	RE 15206	527	
Radial piston motor (multi-stroke)	MCR10	7801340	3X	400450 bar	RE 15207	545	
Radial piston motor (multi-stroke)	MCR15	11302150	ЗХ	400450 bar	RE 15208	561	6
Radial piston motor (multi-stroke)	MCR20	17503000	ЗХ	400450 bar	RE 15209	577	
Radial piston motor for track drives	MCR-T	3801340	ЗХ	450 bar	RE 15221	589	
Radial piston motor for slew drives	MCR-X	160820	ЗХ	300350 bar	RE 15214	599	
Gears			Output to	rque			
Hydrostatic drives HYDROTRAC GFT			945 kNr	n	RE 77110	611	
Hydrostatic travel drives HYDROTRAC G	FT-N		600130	0 kNm	RE 77119	627	
Drive unit for crawler track equipment, Serie 2000 – HYDROTRAC GFT			1542.5 l	kNm	RE 77116	633	
Planetary gear units for mobile application Serie 8000 – HYDROTRAC GFT	ıs		10130 k	Nm	RE 77117	635	7
Swing drives MOBILEX GFB			4115 kN	m	RE 77201	637	
Drive unit for revolving superstructures, Serie 2000 – MOBILEX GFB			414.5 kN	Nm	RE 77206	653	
Winch drives MOBILEX GFT-W			9.5275 l	kNm	RE 77502	655	
Planetary gear units REDULUS GMH/GME			78.6330		RE 76120	673	
Planetary gear units for tunnel boring mac REDULUS GMH/GME	70150 k	Nm	RE 76118	693	8		

General

Designation	Data sheet	Page
Hydraulic fluids based on mineral oils and related hydrocarbons	RE 90220	7
Environmentally acceptable hydraulic fluids	RE 90221	23
Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)	RE 90222	37


Bosch Rexroth AG RE 90010-02/07.2012

Hydraulic fluids based on mineral oils and related hydrocarbons

RE 90220/05.12 1/16 Replaces: 05.10

Application notes and requirements for Rexroth hydraulic components

Contents

1	Basic information	3
	1.1 General instructions	3
	1.2 Scope	3
	1.3 Safety instructions	3
2	Solid particle contamination and cleanliness levels	4
3	Selection of the hydraulic fluid	5
	3.1 Selection criteria for the hydraulic fluid	5
	3.1.1 Viscosity	5
	3.1.2 Viscosity-temperature behavior	5
	3.1.3 Wear protection capability	6
	3.1.4 Material compatibility	6
	3.1.5 Aging resistance	6
	3.1.6 Air separation ability (ASA)	6
	3.1.7 Demulsifying ability and water solubility	6
	3.1.8 Filterability	6
	3.1.9 Corrosion protection	6
	3.1.10 Additivation	7
	3.2 Classification and fields of application	7
4	Hydraulic fluids in operation	9
	4.1 General	9
	4.2 Storage and handling	9
	4.3 Filling of new systems	9
	4.4 Hydraulic fluid changeover	9
	4.5 Mixing and compatibility of different hydraulic fluids	9
	4.6 Re-additivation	9
	4.7 Foaming behavior	9
	4.8 Corrosion	10
	4.9 Air	10
	4.10 Water	10
	4.11 Fluid servicing, fluid analysis and filtration	10
5	Disposal and environmental protection	11
6	Other hydraulic fluids based on mineral oil and related hydrocarbons	12
7	Glossary	15

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the country-specific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of hydraulic fluids based on mineral oils and related hydrocarbons in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant fluid standard during the whole of the period of use.

Other regulations and legal provisions may also apply. The operator is responsible for their observance, e.g. EU directive 2004/35/EG and their national implementations. In Germany the Water Resources Act (WHG) is also to be observed.

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

1.2 Scope

This data sheet must be observed when using hydraulic fluids based on mineral oils and related hydrocarbons in Bosch Rexroth hydraulic components.

Please note that the specifications of this data sheet may be restricted further by the specifications given in the product data sheets for the individual components.

The use of the individual hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with hydraulic fluids based on mineral oils and related hydrocarbons according to DIN 51524 if specified in the respective component data sheet or if Rexroth approval for use is furnished.

Notes:

In the market overview RE 90220-01, hydraulic fluid based on mineral oil are described which, according to the information of the lubricant manufacturer, feature the respective parameters of the current requirements standard DIN 51524 and other parameters which are of relevance for suitability in connection with Rexroth components.

These specifications are not checked or monitored by Bosch Rexroth. The list in the market overview does not therefore represent a recommendation on the part of Rexroth or approval of the respective hydraulic fluid for use with Rexroth components and does not release the operator from his responsibility regarding selection of the hydraulic fluid.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.3 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For hydraulic fluids, the cleanliness level is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Table 1: Cleanliness levels according to ISO 4406

Particles per 10		
More than	Up to and including	Scale number
8,000,000	16,000,000	24
4,000,000	8,000,000	23
2,000,000	4,000,000	22
1,000,000	2,000,000	21
500,000	1,000,000	20
250,000	500,000	19
130,000	250,000	18
64000	130,000	17
32000	64000	16
16000	32000	15
8000	16000	14
4000	8000	13
2000	4000	12
1000	2000	11
500	1000	10
250	500	9
130	250	8
64	130	7
32	64	6

3 Selection of the hydraulic fluid

The use of hydraulic fluids based on mineral oils for Rexroth hydraulic components is based on compliance with the minimum requirements of DIN 51524.

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

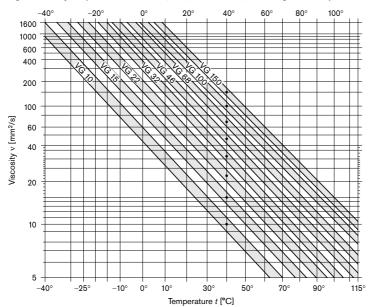
3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of

We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned.

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.


If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter component life cycle will result.

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops; see Fig. 1 "Viscosity temperature chart for HL, HLP, HLPD (VI 100)". The interrelation between viscosity and temperature is described by the viscosity index (VI).

The viscosity temperature diagram in Fig. 1 is extrapolated in the < 40 °C range. This idealized diagram is for reference purposes only. Measured values can be obtained from your lubricant manufacturer and are to be preferred for design purposes.

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in DIN 51524-2,-3 via test procedures "FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). From ISO VG 32 DIN 51524-2,-3 prescribes a rating of at least 10 (FZG test). At present, the FZG test cannot be applied to viscosity classes < ISO VG 32.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:	
HLxx classifications	with EPDM seals	
Zinc- and ash/free hydraulic fluids	with bronze-filled PTFE seals	

3.1.5 Aging resistance

The way a hydraulic fluid ages depends on the thermal, chemical and mechanical stress to which it is subjected. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

Hydraulic fluids based on mineral oils and related hydrocarbons are tested with 20% water additive during testing of aging resistance according to ISO 4263-1.

The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids contain approx. 7 to 13 percent by volume of dissolved air (with atmospheric pressure and 50 °C). Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and

Hydraulic fluids based on mineral oils | RE 90220/05.12

It cannot be improved by additives.

According to DIN 51524 for instance, an ASA value ≤ 10 minutes is required for viscosity class ISO VG 46, 6 minutes are typical, lower values are preferable.

3.1.7 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

For larger systems with permanent monitoring, a demulsifying fluid with good water separation capability (WSC) is recommended. The water can be drained from the bottom of the reservoir. In smaller systems (e.g. in mobile machines), whose fluid is less closely monitored and where water contamination into the hydraulic fluid, for instance through air condensation, cannot be ruled out completely, an HLPD fluid is recom-

The demulsifying ability up to ISO-VG 100 is given at 54 °C, and at 82 °C for fluids with higher viscosity.

Water emulsifying HLPD hydraulic fluids have no, or a very poor, demulsifying ability.

3.1.8 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. Depending on the basic fluid used and the additives (VI enhancers) there are great differences here.

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.9 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in DIN 51524. Hydraulic fluids that are not compatible with the materials listed above must not be used, even if they are compliant with ISO 51524.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.10 Additivation

The properties described above can be modified with the help of suitable additives. A general distinction is made for fluids between heavy metal-free and heavy metal-containing (generally zinc) additive systems. Both additive systems are most often incompatible with each other. The mixing of these fluids must be avoided even if the mixing ratio is very low. See chapter 4, "Hydraulic fluids in operation".

Increasing additivation generally leads to deteriorated air separation ability (ASA) and water separation capability (WSC) of the hydraulic fluid. According to the present state of knowledge, all hydraulic fluids described in this document, independently of the actual additivation, can be filtered using all filter materials with all known filtration ratings $\geq 1~\mu m$ without filtering out effective additives at the same time.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HL fluids according to DIN 51524-1 VI = 100	Hydraulic fluids predominantly only with additives for oxidation and corro-	HL fluids can be used in hydraulic systems that do not pose any require-	HL fluids may be used only for components whose product data sheet specifically allows HL fluids. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
	sion protection, but no specific additives for wear protection in case of mixed friction	ments as to wear protection.	Hydraulic fluids that only comply with the requirements of classes HL and HR in accordance with ISO 11158 without proving that DIN 51524-1 is also met may be used only with written approval of Bosch Rexroth AG.
			Observe restrictions as to pressure, rotation speed etc.
HLP fluids according to DIN 51524-2 VI = 100	Hydraulic fluid with corrosion, oxidation and verified wear protection additives	HLP fluids are suit- able for most fields of application and components provided	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
		the temperature and viscosity provisions are observed.	For the viscosity classes VG10, VG15 and VG22, DIN 51524 defines no requirements as to wear protection (DIN 51354 part 2 and DIN 51389 part 2). Beyond the requirements of DIN 51524 part 2, we require the same base oil type, identical refining procedure, identical additivation and identical additivation level across all viscosity classes.

8/16

Table 4: Classification and fields of application (continued from page 7)

Classification	Features	Typical field of application	Notes
HVLP fluids according to DIN 51524-3 VI > 140	HLP hydraulic fluid with additional improved viscosity temperature behavior	HVLP fluids are used in systems operated over a wide temperature range.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
			The same notes and restrictions as defined for HLP fluids apply accordingly.
			The effect on Rexroth components (e.g. compatibility with material seals, wear resistance capacity) may differ when using related hydrocarbons instead of mineral oils, cf. Table 6, line 8.
			When using HVLP fluids, the viscosity may change on account of the shear of the long-chain VI enhancers. The viscosity index, high at the start, decreases during operation. This needs to be taken into account when selecting the hydraulic fluid.
			The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part 6. Please note that there are practical applications that create a much higher shear load on such fluids than can be achieved by this test. Up to VI < 160, we recommend a maximum permitted viscosity drop of 15 %, viscosity at 100 °C.
			The viscosity limits given by Bosch Rexroth for its components are to be observed for all operating conditions, even after the hydraulic fluids have sheared.
			HVLP fluids should be used only if required by the temperature ranges of the application.
HLPD fluids according to DIN 51524-2, HVLPD fluids in	HLP and HVLP hydraulic fluid with additional detergent and or dispersant	HLPD and HVLPD fluids are used in systems where deposits as well	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
accordance with DIN 51524-3		as solid or liquid contamination need to be kept temporarily suspended	Some of these fluids are able to absorb significant quantities of water (> 0.1 %). This may have negative implications for the wear protection and the aging properties of the fluid.
			The wetting ability of these fluids varies largely depending on the product. Therefore it is not correct to say that they are generally all very well able to prevent stick-slip.
			In individual cases where higher water contamination is to be expected (such as in steelworks or under humid conditions), the use of HLPD/HVLPD fluids cannot be recommended as the emulsified water does not settle in the reservoir but is evaporated in heavily loaded positions. For such cases, we recommend using HLP hydraulic fluids with particularly good demulsifying ability. The water collected at the reservoir bottom is to be drained regularly.
			If HLPD/HVLPD fluids are used, contamination does not settle. It rather remains suspended and needs to be filtered out or removed by appropriate draining systems. For this reason, the filter area must be increased.
			HLPD/HVLPD fluids may contain additives that in the long run are incompatible with plastics, elastomers and non-ferrous metals. Furthermore, these additives may lead to the premature clogging of hydraulic filters. Therefore, test the filterability and the selection of the filter material in consultation with the filter manufacturer.

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard DIN 51524 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing the fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

Changeovers, in particular between hydraulic fluids with heavy metal-free and heavy metal-containing (generally zinc) additives, frequently lead to malfunctions, see chapter 3.1.10 "Additivation".

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remainder of the previous hydraulic fluid. We recommend obtaining a written performance guarantee from the manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

For information on changing over hydraulic fluids with different classifications please refer to VDMA 24314, VDMA 24569 and ISO 15380 appendix A.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This also includes hydraulic fluids with the same classification and from the market overview RE 90220-01. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with DIN 51524 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

During storage and operation, hydraulic fluid based on mineral oils with anti-corrosion additives protect components against water and "acidic" oil degradation products.

4.9 Air

Under atmospheric conditions, the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

Water in the hydraulic fluid may result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation.

Undissolved water can be drained from the bottom of the reservoir. Dissolved water can be removed only by using appropriate measures. If the hydraulic system is used in humid conditions, preventive measures need to be taken, such as an air dehumidifier at the reservoir vent. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

To ensure a long service life for the hydraulic fluids and the components, we recommend that values below 0.05 % (500 ppm) are permanently maintained. Detergent and or dispersant hydraulic fluids (HLPD / HVLPD) are able to absorb (and keep suspended) more water. Prior to using these hydraulic fluids, please contact the lubricant manufacturer.

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and clean

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced in regular intervals and tested by the lubricant manufacturer or recognized, accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum

Compared to the pure unused hydraulic fluid, the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This value must be kept as low as possible. As soon as the trend analysis notes a significant increase in the acid number, the lubricant manufacturer should be contacted.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

Hydraulic fluids based on mineral oil and related hydrocarbons are hazardous for the environment. They are subject to a special disposal obligation.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons

6 Other hydraulic fluids based on mineral oil and related hydrocarbons

Serial number	Hydraulic fluids	Features / Typical field of application / Notes
1	Hydraulic fluids with classification HL, HM, HV according to ISO 11158	 Can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see Table 4: "Hydraulic fluid classification".
		 Fluids only classified in accordance with ISO 11158 may be used only with prior written approval of Bosch Rexroth AG.
2	Hydraulic fluids with classification HH, HR, HS, HG ac- cording to ISO 11158	- May not be used.
3	Hydraulic fluids with classification HL, HLP, HLPD, HVLP, HVLPD to DIN 51502	 DIN 51502 merely describes how fluids are classified / designated on a national level. It contains no information on minimum requirements for hydraulic fluids. Hydraulic fluids standardized according to DIN 51502 can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see Table 4: "Hydraulic fluid classification".
4	Hydraulic fluids with classification HH, HL, HM, HR, HV, HS, HG according to ISO 6743-4	 ISO 6743-4 merely describes how fluids are classified / designated on an international level. It contains no information on minimum requirements for hydraulic fluids. Hydraulic fluids standardized according to ISO 6743-4 can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see table 4: "Classification and fields of application".
5	Lubricants and regulator fluids for turbines to DIN 51515-1 and -2	Turbine oils can be used after confirmation and with limited performance data. They usually offer lower wear protection than mineral oil HLP. Classification of turbine oils to DIN 51515-1 comparable to HL, turbine oils to DIN 51515-2 comparable to HLP. Particular attention must be paid to material compatibility!
6	Lube oils C, CL, CLP in accordance with DIN 51517	Lube oils in acc. with DIN 51517 can be used after confirmation and with limited performance data. They are mostly higher-viscosity fluids with low wear protection. Classification: CL similar to HL fluids and CLP similar to HLP fluids. Particular attention must be paid to material compatibility, specifically with non-ferrous metals!
7	Fluids to be used in pharmaceutical and foodstuff industries, in acc. with FDA / USDA / NSF H1	There are medical white oils and synthetic hydrocarbons (PAO). Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524. May be used only with FKM seals. Other fluids used in pharmaceutical and foodstuff industries may be used only after confirmation. Attention is to be paid to material compatibility in accordance with the applicable food law. Caution! Fluids used in pharmaceutical and foodstuff industries should not be confused with environmentally acceptable fluids!

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons (continued from page 12)

(Continued non	ironi page 12)	
Serial number	Hydraulic fluids	Features / Typical field of application / Notes
8	Hydraulic fluids of classes HVLP and HVLPD based on related hydrocarbons	 Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524.
		- Lower pour point than HLP
		- Other wetting (polarity)
9	Automatic Transmission Fluids (ATF)	 ATF are operating fluids for automatic gearboxes in vehicles and machines. In special cases, ATFs are also used for certain synchronous gearboxes and hydraulic systems comprising gearboxes.
		- To be used only after confirmation!
		- Some of these fluids have poor air separation abilities and modified wear properties.
		- Check material compatibility and filterability!
10	Multi-purpose oil (MFO) – Industry	Multi-purpose oils (industry) combine at least two requirements for a fluid, for instance metal machining and hydraulics.
		- To be used only after confirmation!
		 Please pay particular attention to air separation ability, modified wear properties and the reduced material life cycle.
		- Check material compatibility and filterability!
11	Multi-purpose oils (MFO) – Mobil UTTO, STOU	Multi-purpose oils combine requirements for wet brakes, gearboxes, motor oil (STOU only) and hydraulics.
		- Fluids of the types:
		- UTTO (= universal tractor transmission oil) and
		- STOU (= Super Tractor super tractor universal oil)
		- To be used only after confirmation!
		Please pay particular attention to shear stability, air separation ability and modified wear properties.
		- Check material compatibility and filterability!
12	Single-grade engine oils 10W, 20W, 30W	- To be used only after confirmation!
		- Please pay particular attention to the air separation ability and filtering ability.
13	Multi-grade engine oils 0Wx-30Wx	- To be used only after confirmation!
		 Please pay particular attention to air separation ability, changes in wear protection capability, viscosity changes during operation, material compatibility, dispersant and detergent properties and filterability.
		Caution! Multi-grade engine oils have been adapted to specific requirements in combustion engines and are suitable for use in hydraulic systems only to a limited extent.
14	Hydraulic fluids for military applications to MIL 13919 or H 540, MIL 46170 or H 544, MIL 5606 or H 515,	- To be used only after confirmation!
		 Please pay particular attention to air separation ability, changes in wear protection capability, viscosity changes during operation, material compatibility, water separa- tion capability and filterability.
	MIL 83282 or H 537, MIL 87257	Caution! Hydraulic fluids for military applications do not meet the current requirements for high-quality hydraulic fluids and are suitable for use only to a limited degree.
15	Motor vehicle transmis- sion oils	Motor vehicle transmission oil can be used after confirmation and with limited performance data.
		Pay particular attention to wear protection, material compatibility, specifically with non-ferrous metals, as well as viscosity!

Continued on page 14

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons (continued from page 13)

Serial number	Hydraulic fluids	Features / Typical field of application / Notes	
16	Diesel, test diesel in acc. with DIN 4113	 Diesel / test diesel has poorer wear protection capabilities and a very low viscosity (< 3 mm²/s). 	
		- May be used only with FKM seals	
		- Please note their low flash point!	
		- To be used only after confirmation and with limited performance data!	
17	Hydraulic fluids for roller processes	Hydraulic fluids for roller processes have lower wear protection capabilities than mineral oil HLP and a lower viscosity	
		- Please note their low flash point!	
		Hydraulic fluids for roller processes with limited performance data can be used only after confirmation.	
18	Fluids for power steering, hydro-pneumatic sus- pension, active chassis etc.	 Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524. 	
		- Please note the low viscosity!	
		- In most cases they have poor water separation capability	
		- Check the material compatibility!	

7 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration.

API classification

Classification of basic fluids by the American Petroleum Institute (API) – the largest association representing the US oil and gas industry.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Related hydrocarbons

Related hydrocarbons are hydrocarbon compounds that are not classified as API class 1. 2 or 5.

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Demulsifying

Ability of a fluid to separate water contamination quickly; achieved with careful selection of base oil and additives.

Detergent

Ability of certain additives to emulsify part of the water contamination in the oil or to hold it in suspension until it has evaporated with increasing temperature. Larger water quantities, in contrast (above approx. 2 %), are separated immediately.

Dispersant

Ability of certain additives to keep insoluble liquid and solid contamination in suspension in the fluid.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a self-ignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Hydraulic fluids based on mineral oils

Hydraulic fluids based on mineral oils are made from petroleum (crude oil).

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis) Is a procedure to determine nearly all elements in liquid and

solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Stick-slip effect (sliding)

Interaction between a resilient mass system involving friction (such as cylinder + oil column + load) and the pressure increase at very low sliding speeds. The static friction of the system is a decisive value here. The lower it is, the lower the speed that can still be maintained without sticking. Depending on the tribologic system, the stick-slip effect may lead to vibrations generated and sometimes also to significant noise emission. In many cases, the effect can be attenuated by replacing the lubricant.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

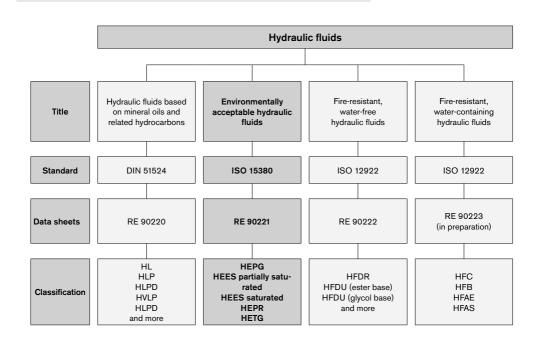
Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de

+49 (0) 93 52 / 18-23 58 www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.


Subject to change.

Rexroth Bosch Group

Environmentally acceptable hydraulic fluids

RE 90221/05.12 1/14 Replaces: 05.10

Application notes and requirements for Rexroth hydraulic components

Contents

2/14

1	Basic information	3
	1.1 General instructions	3
	1.2 Environmental compatibility	3
	1.3 Scope	3
	1.4 Safety instructions	3
2	Solid particle contamination and cleanliness levels	4
3	Selection of the hydraulic fluid	5
	3.1 Selection criteria for the hydraulic fluid	5
	3.1.1 Viscosity	5
	3.1.2 Viscosity-temperature behavior	5
	3.1.3 Wear protection capability	6
	3.1.4 Material compatibility	6
	3.1.5 Aging resistance	6
	3.1.6 Biological degradation	6
	3.1.7 Air separation ability (ASA)	7
	3.1.8 Demulsifying ability and water solubility	7
	3.1.9 Filterability	7
	3.1.10 Corrosion protection	7
	3.1.11 Additivation	7
	3.2 Classification and fields of application	8
4	Hydraulic fluids in operation	10
	4.1 General	10
	4.2 Storage and handling	10
	4.3 Filling of new systems	10
	4.4 Hydraulic fluid changeover	10
	4.5 Mixing and compatibility of different hydraulic fluids	10
	4.6 Re-additivation	10
	4.7 Foaming behavior	10
	4.8 Corrosion	11
	4.9 Air	11
	4.10 Water	11
	4.11 Fluid servicing, fluid analysis and filtration	11
5	5 Disposal and environmental protection	12
6	Glossary	13

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the country-specific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of environmentally compatible hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant fluid standard during the whole of the period of use.

Other regulations and legal provisions may also apply. The operator is responsible for their observance, e.g. EU directive 2004/35/EG, 2005/360/EG and their national implementation. In Germany the Water Resources Act (WHG) is also to be observed.

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

Environmentally acceptable hydraulic fluids have been used successfully for many years. In some countries, the use of environmentally acceptable hydraulic fluids is already prescribed in ecologically sensitive areas (e.g. forestry, locks, weirs).

Environmentally acceptable hydraulic fluids may only be used in the pharmaceutical and food industry subject to required certification to FDA/USDA/NSF H1.

1.2 Environmental compatibility

There is no unambiguous legal definition for environmentally acceptable hydraulic fluids as different testing procedures can be applied for biological degradation and toxicity.

According to ISO 15380 the definition of "environmentally acceptable" is as follows: Humans, animals, plants, air and soil must not be endangered. With regard to hydraulic fluids in an unused condition in the bin this mainly means:

- biological degradation at least 60 % (according to ISO 14593 or ISO 9439)
- acute fish toxicity at least 100 mg/l (according to ISO 7346-2)

- acute daphnia toxicity at least 100 mg/l (according to ISO 5341)
- acute bacteria toxicity at least 100 mg/l (according to ISO 8192)

The same amount of care should be taken when handling environmentally acceptable hydraulic fluids as for mineral oils, leakage from the hydraulic system should be avoided. Environmentally acceptable hydraulic fluids are designed so that in the event of accidents and leakage,less permanent environmental damage is caused than by mineral oils, see also chapter 5 "Disposal and environmental protection".

In comparison to mineral oil HLP/HVLP, the biological degradation of environmentally acceptable hydraulic fluids may change fluid aging, see chapter 3.1.5 "Aging resistance", 3.1.6. "Biological degradation" and 4 "Hydraulic fluids in operation".

1.3 Scope

This data sheet must be applied when using environmentally acceptable hydraulic fluids with Rexroth hydraulic components. The specifications of this data sheet may be further restricted by the specification given in the data sheets for the individual components.

The use of the individual environmentally acceptable hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with environmentally acceptable hydraulic fluids according to ISO 15380 if specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the environmentally acceptable hydraulic fluids.

Notes:

In the market overview RE 90221-01, environmentally acceptable hydraulic fluids based on mineral oil are described which, according to the information of the lubricant manufacturer, feature the respective parameters of the current requirements standard ISO 15380 and other parameters which are of relevance for suitability in connection with Rexroth components.

These specifications are not checked or monitored by Bosch Rexroth. The list in the market overview does not therefore represent a recommendation on the part of Rexroth or approval of the respective hydraulic fluid for use with Rexroth components and does not release the operator from his responsibility regarding selection of the hydraulic fluid.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For mineral oils, the cleanliness level of environmentally acceptable hydraulic fluids is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over

the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Table 1: Cleanliness levels according to ISO 4406

Particles per 100 ml

Particles per 10			
More than	Up to and including	Scale number	
8,000,000	16,000,000	24	
4,000,000	8,000,000	23	
2,000,000	4,000,000	22	
1,000,000	2,000,000	21	
500,000	1,000,000	20	
250,000	500,000	19	
130,000	250,000	18	
64000	130,000	17	
32000	64000	16	
16000	32000	15	
8000	16000	14	
4000	8000	13	
2000	4000	12	
1000	2000	11	
500	1000	10	
250	500	9	
130	250	8	
64	130	7	
32	64	6	

3 Selection of the hydraulic fluid

Environmentally acceptable hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements of ISO 15380.

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of wear.

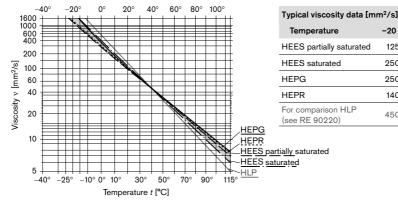
We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter life cycle will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

3.1.2 Viscosity-temperature behavior


For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI).

If exposed to the cold for several days, viscosity may rise significantly (HETG and HEES). After heating, the characteristic values as specified on the data sheet are restored. Please ask your lubricant manufacturer for the "Flow capacity after 7 days at low temperature" (ASTM D 2532) of fluid classifications HETG and partially saturated HEES.

All known environmentally acceptable hydraulic fluids have better viscosity temperature behavior than mineral oil HLP and generally feature greater shear stability than HVLP mineral oils. This should be taken into consideration when selecting hydraulic fluid for the required temperature range. A lower viscosity level can frequently be used to save any drive power during a cold start and avoid viscosity being too low at higher temperatures. The required viscosity and temperature limits in the product data sheets are to be observed in all operating conditions.

Depending on the basic fluid types/classes, VI indices can be achieved of 140-220, see Fig. 1: "Examples: V-T diagrams in comparison to HLP (reference values)" and Table 4: "Classification and fields of application of environmentally acceptable hydraulic fluids".

Fig. 1: Examples V-T diagrams in comparison to HLP (reference values, double-logarithmic representation)

Detailed V-T diagrams may be obtained from your lubricant manufacturer for their specific products.

40 °C

46

46

46

46

46

100 °C

9

8

10

10

7

-20 °C

1250

2500

2500

1400

4500

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in ISO 15380 via test procedures"FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). From ISO VG 32, ISO 15380 prescribes a rating of at least 10 (FZG test). At present, the FZG test cannot be applied to viscosity classes ISO VG 32. The wear protection capability of environmentally acceptable hydraulic fluids in relation to the two test procedures is comparable to that of mineral oil HLP/HVLP.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:		
HE general	One-component color coatings, lead, galvanized zinc coatings, some non-ferrous metals, seals made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. NBR is only permitted by prior consent, please observe the customary seal and tube replacement intervals. Do not use any hydrolysis/susceptible polyurethane qualities.		
	Note Please check seals and coatings of control cabinets, outer coatings of hydraulic compo- nents and accessories (connectors, cables, control cabinets) for resistance to vapors issuing from hydraulic fluids.		
HETG/HEES	Zinc, some non-ferrous alloys with zinc		
HEPG	Steel/aluminum tribocontacts, paper filters, polymethylmethacrylate (PMMA), NBR		
	Note Check plastics for resistance		

The material incompatibilities mentioned here do not automatically result in function problems. However the elements of the materials are found in the hydraulic fluids after use. The biological degradation of hydraulic fluids is negatively influenced.

3.1.5 Aging resistance

The way an environmentally acceptable hydraulic fluids ages depends on the thermal, chemical and mechanical stress to which it is subjected. The influence of water, air, temperature and contamination may be significantly greater than for mineral oils HLP/HVLP. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

A modified aging test (without adding water) is prescribed for fluid classifications HETG and HEES. Hydraulic fluids with HEPG and HEPR classification are subjected to the identical test procedure as mineral oils (with 20 % water added). The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Biological degradation

Environmentally acceptable hydraulic fluids are ones which degrade biologically much faster than mineral oils. Biological degradation is a biochemical transformation effected by micro-organisms resulting in mineralization. For environmentally acceptable hydraulic fluids that make reference to ISO 15380, biological degradation according to ISO 14593 or ISO 9439 must be verified. 60% minimum degradation is defined as limit value. Proof of biological degradation is furnished for the new, unmixed, ready-formulated hydraulic fluids. Aged or mixed hydraulic fluids are less able to degrade biologically. Biological degradation outside the defined test procedure is subject to a variety of natural influences. The key factors are temperature, humidity, contamination, fluid concentration, type and quantity of micro-organisms. Environmentally acceptable hydraulic fluids require no extended maintenance in comparison to mineral oils, please observe chapter 4 "Hydraulic fluids in operation".

3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging. It cannot be improved by additives.

According to ISO 15380, for instance, an ASA value ≤ 10 minutes is required for viscosity class ISO VG 46, 6 minutes are typical, lower values are preferable.

3.1.8 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

Fluids classified HETG, HEES and HEPR separate from water. HETG and HEES hydraulic fluids have a different water separation ability to mineral oil HLP/HVLP. At 20 °C, in comparison to mineral oil HLP/HVLP, a multiple (> factor 3) of water can separate in the hydraulic fluid. Water solubility is also more temperature-dependent than for mineral oils. With regard to water solubility, HEPR hydraulic fluids behave like HVLP hydraulic fluids (see RE 90220). In the majority of cases, HEPG-classified fluids HEPG dissolve water completely , see chapter "4.10 Water".

3.1.9 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. Depending on the different basic fluids (glycols, saturated and partially saturated ester oils, hydrocrack oils, polyalpha olefins, triglycerides) and additives (VI enhancers), there are great differences here.

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Rewroth therefore requires the same degree of filterability of environmentally acceptable hydraulic fluids as for mineral oils HLP/HVLP to DIN 51524. As ISO 15380 does not comment on the filterability of hydraulic fluids, filterability comparable to that of mineral oils HLP/HVLP must be requested of lubricant manufacturers.

Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-17-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.10 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in ISO 15380. Hydraulic fluids that are not compatible with the materials listed above must not be used, even if they are compliant with ISO 15380.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.11 Additivation

The properties described above can be modified with the help of suitable additives. Environmentally acceptable hydraulic fluids should never contain heavy metals. According to the present state of knowledge, all hydraulic fluids, regardless of additivation, can be filtered with all customary filter materials in all known filtration ratings (\geq 0.8 μ m), without filtering out effective additives at the same time.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Bosch Rexroth AG

Classification	Features	Typical field of application	Notes	
HEPG according to ISO 15380 Density at	Basic fluid, glycols	Systems on exposed water courses (locks, weirs, dredgers)	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.	
15 °C: typically > 0.97 kg/dm ³			Very good viscosity/temperature characteristics, shear stability	
VI: typical > 170			- Resistant to aging	
			Incompatible with mineral oil (exceptions must be confirmed by the lubricant manufacturer)	
			- Can be water-soluble	
			- Can be mixed with water	
			- Very good wear protection properties	
			A higher implementation temperature with the same viscosity in comparison to mineral oil is to be expected	
			 Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions. 	
			Classified as insignificantly water-endangering (water hazard class WGK 1)	
			 Prior to commissioning, contact the lubricant manufacturer, as the components are tested with mineral oil HLP/corrosion protection oil. 	
HEES partially saturated according to ISO 15380	(< 30%)	Suitable for most fields of application and components.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.	
Density at 15 °C: typically		sters, mixtures with		 Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under −15 °C.
0.90-0.93 kg/dm ³ VI: typical > 160 Iodine count < 90				 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity
lodine count < 90			Limit lower (depending on viscosity class) and upper implementation temperatures (maximum 80 °C due to aging)	
			- Good viscosity/temperature characteristics, shear stability.	
			- Good corrosion protection, if correspondingly additivized	
			Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in some cases as not water-endangering	
			- High dirt dissolving capacity on fluid changeovers	
			In unfavorable operating conditions (high water content, high temperature), HEES on ester basis have a tendency to hydrolysis. The acidic organic decomposition products can chemically attack materials and components.	

Continued on page 9

Table 4: Classification and fields of application (continued from page 8)

Classification	Features	Typical field of application	Notes
HEES saturated according to ISO 15380 Density at 15 °C: typically 0.90-0.93 kg/dm³ VI: typical 140-160 lodine count <15	Basic fluid: Ester based on renew- able raw materials, synthetic esters, mixtures of various esters, mixtures with polyalphaolefines (< 30%)	Suitable for most fields of application and components. Saturated HEES should be preferred over partially saturated HEES and HETG for components and systems exposed to high stress levels.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner. Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C. In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity Good viscosity/temperature characteristics, shear stability Good corrosion protection, if correspondingly additivized Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in the case of low viscosity classes (up to ISO VG 32) also classed as not water-endangering High dirt dissolving capacity on fluid changeovers
HEPR according to ISO 15380 Density at 15 °C: typically 0.87 kg/ dm³ VI: typical 140–160	Basic fluid: synthetically manufactured hydro- carbons (polyalpha olefins PAO) partly mixed with esters (< 30 %)	Suitable for most fields of application and components. HEPR should be preferred over partially saturated HEES and HETG for components and systems exposed to high stress levels.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner. — Behaves similarly to HVLP- hydraulic fluids, individual products comply with ISO 15380 HEPR and DIN 51524-3 HVLP—Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C. — Good viscosity-temperature behavior—Classified as insignificantly water-endangering (water hazard class WGK 1) Note: Note shear stability (see chapter 4.11 "Fluid servicing, fluid analysis and filtration" and chapter 6 "Glossary")
HETG according to ISO 15380 Density at 15 °C: typically 0.90-0.93 kg/dm³ VI: typical > 200 lodine count > 90	Basic fluid: vegetable oils and triglycerides	Not recommended for Rexroth compo- nents!	Practical requirements are frequently not fulfilled by hydraulic fluids in this classification. Use only permissible after consultation. Viscosity is not stable over time Very fast fluid aging, very hydrolysis-susceptible (please observe neutralization number) Tendency to gumming, gelling and setting. Limit the lower (depending on viscosity class) and upper implementation temperatures (see chapter 3.1.5) Only limited material compatibility Filterability problems at water ingress High dirt dissolving capacity on fluid changeovers Mostly classed as not water-endangering

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 15380 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components within the framework of the applicable liability legislation insofar as the latter is due to non-observance of the following instructions.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

In particular with the changeover from mineral oils to environmentally acceptable hydraulic fluids, but also from one environmentally acceptable hydraulic fluids to another, there may be interference (e.g. incompatibility in the form of gelling, silting, stable foam or reduced filterability or filter blockage).

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remains of the previous hydraulic fluid. Bosch Rexroth recommends obtaining verification of compatibility from the

manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

For information on changing over hydraulic fluids with different classifications, please refer to VDMA 24314, VDMA 24569 and ISO 15380 appendix A.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This also includes hydraulic fluids with the same classification and from the market overview RE 90221-01. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with ISO 15380 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

Environmentally acceptable hydraulic fluids are tested for corrosion protection in the same way as mineral oil HLP/ HVLP. When used in practice other corrosion mechanisms are revealed in detail and in individual cases, for the most part in contact with non-ferrous and white alloys.

4.9 Air

Under atmospheric conditions the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

HEPG dissolves water completely. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

In the case of hydraulic fluids classed HETG, HEES and HEPR undissolved water can be drained off from the reservoir sump, the remaining water content is however too high to ensure that the maximum permissible water limit values are observed in the long term.

Water in the hydraulic fluid can result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all environmentally acceptable hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

Due to the higher water solubility (except for HEPR) in comparison to mineral oil HLP/HVLP it is urgently advised that precautions be taken when using environmentally acceptable hydraulic fluids, such as a dehumidifier on the reservoir ventilation.

Water content has an affect particularly in the case of HETG and partially saturated HEES in that it accelerates aging (hydrolysis) of the hydraulic fluid and biological degradation, see chapter 4.11 "Fluid servicing, fluid analysis and filtration".

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum"

Differences in the maintenance and upkeep of environmentally acceptable hydraulic fluids with the corresponding suitability characteristics (as required in market overview RE 90221-01) in comparison to mineral oil HLP/HVLP are not necessary. Attention is however drawn to the note in chapter 1.3.

After changing over hydraulic fluids it is recommended that the filters be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Compared to the pure unused hydraulic fluid the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This difference must be kept as low as possible. As soon as the trend analysis notes a significant increase in the values, the lubricant manufacturer should be contacted.

A higher viscosity than that of new materials indicates that the hydraulic fluid has aged. Evaluation by the test lab or lubricant manufacturers is however authoritative, whose recommendation should be urgently observed.

On systems where the possibility of water contamination cannot be completely ruled out (also condensation), it should be ensured via the hydraulic system circuit that fluid aging products are not accumulating in individual areas of the hydraulic system, but are being removed from the system in a controlled manner via the filtration system. This should be ensured via suitable hydraulic circuits (e.g. flushing circuit) or system manufacturer's operating instructions/specifications.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

All environmentally acceptable hydraulic fluids, are like mineral oil-based hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

6 Glossary

Additivation Additives are

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration. Please refer to Hydrolysis.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a self-ignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Saturated esters

Esters differ by the number of C atoms (chain length) and position of the bonds between the C atoms. Saturated esters do not have double/multiple bonds between C atoms and are therefore more resistant to aging than partially saturated esters.

Partially saturated esters

In contrast to saturated esters, partially saturated esters have double/multiple bonds between C atoms. Rexroth defines partially saturated esters as unsaturated bonds and mixtures of esters with unsaturated and saturated bonds. Esters with unsaturated bonds are produced on the basis of renewable raw materials

Depending on their number and position, these unsaturated bonds between the C atoms are instable. These bonds can detach themselves and form new bonds, thus changing the properties of those liquids (an aging mechanism). One of the underlying requirements for inclusion in the market overview RE 90221-01 is an aging stability characteristic. Attention is however drawn to the note in chapter 1.3.

Hydrolysis

Hydrolysis is the splitting of a chemical bond through the reaction with water under the influence of temperature.

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method..

lodine count

The iodine count is a yardstick for the quantity of single and multiple unsaturated bonds between C atoms in the basic fluid. A low iodine count indicates that the hydraulic fluid contains few unsaturated bonds and is thus considerably more resistant to aging than a hydraulic fluid with a high iodine count. A statement about the position at which these multiple bonds are located and about how "stable" they are against influencing factors cannot be derived simply by stating the iodine count.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values. For hydraulic fluids based on glycol, DIN EN ISO 12937 is to be applied in conjunction with DIN 51777-1.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

$\label{eq:RFA} \textbf{(wavelength dispersive x-ray fluorescence analysis)}$

Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Stick-slip

Interaction between a resilient mass system involving friction (such as cylinder + oil column + load) and the pressure increase at very low sliding speeds. The static friction of the system is a decisive value here. The lower it is, the lower the speed that can still be maintained without sticking. Depending on the tribologic system, the stick-slip effect may lead to vibrations generated and sometimes also to significant noise emission. In many cases, the effect can be attenuated by replacing the lubricant.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

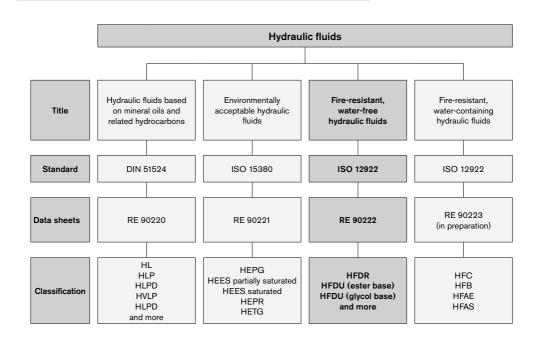
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
Fax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

Bosch Rexroth AG

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.


Subject to change.

Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)

RE 90222/05.12 1/16

Application notes and requirements for Rexroth hydraulic components

Contents

1	Basic information	3
	1.1 General instructions	3
	1.2 Fire resistance	3
	1.3 Scope	4
	1.4 Safety instructions	4
2	Solid particle contamination and cleanliness levels	5
3	Selection of the hydraulic fluid	6
	3.1 Selection criteria for the hydraulic fluid	6
	3.1.1 Viscosity	6
	3.1.2 Viscosity-temperature behavior	7
	3.1.3 Wear protection capability	7
	3.1.4 Material compatibility	7
	3.1.5 Aging resistance	7
	3.1.6 Environmentally acceptable	8
	3.1.7 Air separation ability (ASA)	8
	3.1.8 Demulsifying ability and water solubility	8
	3.1.9 Filterability	8
	3.1.10 Corrosion protection	8
	3.1.11 Additivation	8
	3.2 Classification and fields of application	9
4	Hydraulic fluids in operation	11
	4.1 General	11
	4.2 Storage and handling	11
	4.3 Filling of new systems	11
	4.4 Hydraulic fluid changeover	11
	4.5 Mixing and compatibility of different hydraulic fluids	11
	4.6 Re-additivation	11
	4.7 Foaming behavior	11
	4.8 Corrosion	12
	4.9 Air	12
	4.10 Water	12
	4.11 Fluid servicing, fluid analysis and filtration	
	Disposal and environmental protection	
6	Glossary	14

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the countryspecific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of fire-resistant, water-free hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant hydraulic fluid standard during the whole of the period of use.

The currently valid standard for fire-resistant hydraulic fluids is the ISO 12922. In addition, other, more detailed documents, guidelines, specifications and legislation may also be valid. The operator is responsible for ensuring that such regulations are observed, for example:

- 7th Luxembourg Report: Luxembourg, April 1994, Doc. No. 4746/10/91 EN "Requirements and tests applicable to fire-resistant hydraulic fluids for hydrostatic and hydrokinetic power transmission and control"
- VDMA 24314 (1981-11): "Changing hydraulic fluids guidelines"
- VDMA 24317 (2005-11): "Fire-resistant hydraulic fluids minimum technical requirements"
- FM Approval Standard 6930 (2009-04): "Flammability Classification of Industrial Fluids" (only available in English)
- DIN Technical Report CEN/TR 14489 (2006-01): "Selection guidelines for protecting safety, health and the environment"

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

1.2 Fire resistance

There is no clear legal definition of fire-resistant hydraulic fluids. There are great differences regarding fire resistance. The selection is the sole responsibility of the system operator with respect to requirements (application, construction and design of the system, hottest source in the system, necessary fire protection).

Different test procedures are applied for evaluating fire resistance.

Fire resistance test procedure according to ISO 12922:

- Ignition properties of spray according to ISO 15029-1 (Spray flame persistence - hollow-cone nozzle method)
- Ignition properties of spray according to ISO 15029-2 (Stabilized flame heat release)
- Wick flame persistence of fluids according to ISO 14935 (average flame persistence)
- Determination of the flammability characteristics of fluids in contact with hot surfaces, ignition process according to ISO 20823 (ignition temperature, flame spread)

In general, fire-resistant hydraulic fluids are distinguished between water-containing fire-resistant and water-free fire-resistant hydraulic fluids. Water-containing fire-resistant hydraulic fluids are described in RE 90223.

Water-free, fire-resistant hydraulic fluid means hydraulic fluids with a water-proportion of 0.1% by volume ("Karl Fischer method", see chapter 6 "Glossary"), measured at the time of filling in the transport container.

In Europe water-free, fire-resistant hydraulic fluids are not approved for use in underground coal mining. The classification HFDU is no longer included in the VDMA 24317: 2005.

In contrast to water-containing fluids, all water-free, fireresistant hydraulic fluids have a flash point and a fire point. Specific parameters for flash point and fire point can be found in the technical and/or safety data sheet for the hydraulic fluid concerned

Just as much care should be taken when working with fireresistant hydraulic fluids are with other hydraulic fluids, e.g. mineral oils. A leak from the hydraulic system must be avoided. The best and most cost-effective protection against fire and explosion is to prevent leakage with meticulous service, maintenance and care of the hydraulic system.

1.3 Scope

This data sheet must be applied when using water-free, fireresistant hydraulic fluids with Rexroth hydraulic components. The specifications of this data sheet may be further restricted by the specifications given in data sheets for the individual components concerned.

The use of the individual water-free, fire-resistant hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with water-free, fire-resistant hydraulic fluids according to ISO 12922 if specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the water-free, fire-resistant hydraulic fluids.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

Fire-resistant, water-free hydraulic fluids | RE 90222/05.12

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For mineral oils, the cleanliness level of water-free, fire-resistant hydraulic fluids is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Table 1: Cleanliness levels according to ISO 4406

	icaa icveia dooordii		
Particles per 10	00 ml		
More than	Up to and including	Scale number	
8,000,000	16,000,000	24	20 / 18 / 15
4,000,000	8,000,000	23	> 4 μm > 6 μm > 14 μm
2,000,000	4,000,000	22	
1,000,000	2,000,000	21	
500,000	1,000,000	20	
250,000	500,000	19	
130,000	250,000	18	
64000	130,000	17	
32000	64000	16	
16000	32000	15	
8000	16000	14	
4000	8000	13	
2000	4000	12	
1000	2000	11	
500	1000	10	
250	500	9	
130	250	8	
64	130	7	
32	64	6	

3 Selection of the hydraulic fluid

Water-free, fire-resistant hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements of ISO 12922.

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

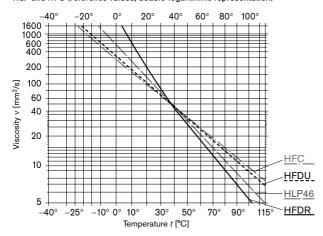
Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

6/16

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of wear.


We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter component life cycle will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

Fig. 1: Examples V-T diagrams for water-free, fire-resistant hydraulic fluids in comparison to HLP and HFC (reference values, double-logarithmic representation)

Typical viscosity data [mm²/s] at temperature	0 ℃	40 °C	100 °C
HFDR	2500	43	5,3
HFDU (ester base)	330	46	9,2
HFDU (glycol base)	350	46	8,7
For comparison HLP (see RE 90220)	610	46	7
For comparison HFC (see RE 90223)	280	46	

Detailed V-T diagrams may be obtained from your lubricant manufacturer for their specific products. Descriptions of the individual classifications can be found in chapter 3.2 and in Table 4.

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI).

For cold testing over a period of several days, the viscosity of ester-based HFDU can increase greatly. After heating, the characteristic values as specified on the data sheet are restored. Please ask your lubricant manufacturer for the "Flow capacity after seven days at low temperature" (ASTM D 2532) for the fluid classification ester-based HFDU.

HFDU fluid based on ester and glycol have better viscosity/ temperature characteristics than mineral oil HLP (see Fig. 1). This should be taken into consideration when selecting hydraulic fluid for the required temperature range. The viscosity and temperature limits required in the product data sheets are to be observed in all operating conditions.

Note

For ambient temperatures below 0 °C, fire-resistant, watercontaining hydraulic fluids of classification HFC are to be preferred because they observe the component-related viscosity ranges and because the have better pour points (see RE 90223).

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in ISO 12922 via test procedures "FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). The wear protection capability of water-free, fire-resistant hydraulic fluids in relation to the two test procedures is comparable to that of mineral oil HLP/HVLP.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:					
HFD in general	Seals, plastics and coatings of control cabinets, outer coatings of hydraulic components and accessory components (connectors, wiring harnesses, control cabinets) are to be tested for stability.					
	Note: hydraulic fluid vapors can also lead to incompatibility!					
HFDR	Individual component color coating, lead, galvanic zinc-plating, in part non-ferrous metals with zinc, tin and aluminum in a tribological system. Sealing elements made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. Do not use any hydrolysis/susceptible polyure-thane qualities.					
HFDU based on ester	Single-component color coatings, lead, galvanized zinc coatings, in part non-ferrous metals with zinc, tin, seals made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. Do not use any hydrolysis/susceptible polyure-thane qualities.					
HFDU based on glycol	Single-component color coatings, steel/aluminum tribocontacts, paper filters, polymethylmethacrylate (PMMA). The compatibility of NBR is to be examined for individual case.					

The material incompatibilities mentioned here do not automatically result in function problems. However the elements of the materials are found in the hydraulic fluids after use. The material incompatibilities described here may lead to accelerated aging of the hydraulic fluid and to reduced fire resistance.

3.1.5 Aging resistance

The way a water-free, fire-resistant hydraulic fluid ages depends on the thermal, chemical and mechanical stress to which it is subjected. The influence of water, air, temperature and contamination may be significantly greater than for mineral oils HLP/HVLP. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle			
80 °C	100 %			
90 °C	50 %			
100 °C	25 %			

A modified aging test (ISO 4263-3 or ASTM D943 – without the addition of water) is specified for fluid classification HFDU. Fluid classification HFDR is described with a special procedure with respect to oxidation stability (EN 14832) and oxidation service life (ISO 4263-3). The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Environmentally acceptable

HFDU fluids based on ester and glycol are hydraulic fluids which may also be classified as environmentally acceptable. The main criteria for fire-resistant, water-free hydraulic fluids are the leak-free, technically problem-free use and the necessary fire resistance. Environmentally acceptable is merely a supplementary criterion. Notes on environmentally compatible hydraulic fluids can be found in RE 90221.

3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging. It cannot be improved by additives.

According to ISO 12922 for instance, an ASA value \leq 15 minutes is required for viscosity class ISO VG 46, practical values on delivery are \leq 10 minutes, lower values are preferable.

3.1.8 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

The fluid classifications HFDU based on ester and HFDR separate water, but HFD hydraulic fluids have a different water separation ability to mineral oil HLP/HVLP. At 20 °C, in comparison to mineral oil HLP/HVLP, a multiple (> factor 3) of water can separate in the hydraulic fluid. Water solubility is also more temperature-dependent than for mineral oils. The fluid classification HFDU based on glycol usually dissolves water completely, see chapter "4.10 Water".

3.1.9 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. This can differ greatly depending on the different basic fluids (glycols, esters) and additives (VI enhancers, anti-fogging additives).

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Rexroth therefore requires the same degree of filterability of water-free, fire-resistant hydraulic fluids as for mineral oils HLP/HVLP to DIN 51524. As ISO 12922 does not comment on the filterability of hydraulic fluids, filterability comparable to that of mineral oils HLP/HVLP must be requested of lubricant manufacturers.

Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.10 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in ISO 12922.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.11 Additivation

The properties described above can be modified with the help of suitable additives.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HFDU (glycol-based) according to ISO 12922	Base fluid: Glycols	Mobile systems with high thermal loading	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically > 0.97 kg/dm³			Very good viscosity/temperature characteristics, shear stability
VI: typical > 170			- Resistant to aging
typicai / 1/0			- Can be water-soluble
The classification			- Can be mixed with water
"HFDU" is no longer			Very good wear protection properties
listed in the current standard sheet			A higher implementation temperature with the same viscosity in comparison to mineral oil is to be expected
VDMA 24317.			Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.
			Prior to commissioning, contact the lubricant manufacturer, as the components are tested with mineral oil HLP/corrosion protection oil.
			Incompatible with mineral oil (exceptions must be confirmed by the lubricant manufacturer).
HFDU (ester-based) according to ISO 12922	Base fluid: Ester based on regenerative raw materials, synthetic	Suitable for most fields of application and components.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically 0.90-0.93 kg/dm³	ester and mixtures of different esters		 Preferred use of FKM seals. Please enquire about shaft seal rings and implementation temperatures under −15 °C.
VI: typical > 160	Because of the fire resistance, HFDU hydraulic fluids		Note shear stability (see chapter 4.11 "Fluid servicing, fluid analysis and filtration" and chapter 6 "Glossary")
.54.116 COUITE \ 90	based on ester are		- Fire resistance is not stable over time
The classification "HFDU" is no longer listed in the current standard sheet	usually partially saturated esters		In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity. Please check ATEX approvals for hydraulic components.
VDMA 24317.			Limit the lower (see chapter 3.1.2) and upper implementation temperatures (see chapter 3.1.5)
i			- Good viscosity-temperature behavior
			Usually classified as insignificantly water-endangering (water hazard class WGK 1)
i			- High dirt dissolving capacity on fluid changeovers
			In unfavorable operating conditions (high water content, high temperature), HFDU on ester basis have a tendency to hydrolysis. The acidic organic decomposition products can chemically attack materials and components.

Fire-resistant, water-free hydraulic fluids | RE 90222/05.12

Olifiti	F	Typical field	N-4			
Classification	Features	of application	Notes			
HFDR according to ISO 12922 Density at 15 °C:	Base fluid: phos- phoric acid ester	Turbine control systems	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.			
typically 1.1 kg/dm ³ VI : typical 140–160			Classified as hazardous materials (for transportation and storage)			
VI. typicai 140 100			- Hazardous working material			
			- Water-endangering (Water hazard class 2 - WGK2)			
			- Develops toxic vapors in case of fire			
			 Preferred use of FKM, and possibly PTFE seals. Please enquire for shaft seal rings and implementation tempera- tures under -15 °C. 			
			In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity			
			Phosphoric acid esters display a tendency to hydrolysis when they come into contact with moisture. Under the influence of water/moisture, they become unstable or form highly aggressive, acidic components which could damage the hydraulic fluid and component beyond repair.			
			- Poor viscosity/temperature characteristics			
			Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.			
			In unfavorable operating conditions (high water content, high temperature), HFDR have a tendency to hydrolysis. The acidic inorganic decomposition products chemically attack materials and components.			
HFDU (continued)	Based on triglycer- ides, mineral oils or related hydrocarbons	Not recommended for Rexroth components!	Hydraulic fluids based on polyalphaolefines are not recommended on account of their poor fire resistance. This classification can usually be identified from: density < 0.89; VI < 140 to 160			
			Hydraulic fluids based on triglycerides are not recommended on account of their aging resistance. This classification can usually be identified from: density > 0.92; VI > 190; iodine count > 90			
			Consult your lubricant manufacturer or your Bosch Rexroth sales partner if the classification of a hydraulic fluid is not clear.			
HFDS	Based on haloge-	Not approved for	HFDS and HFDT have not been permitted to be manufactured or used since 1989 for environmental reasons.			
HFDT	nated hydrocarbons or mixtures with halogenated hydrocarbons	Rexroth components!	Tured or used since 1989 for environmental reasons.			

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 12922 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components within the framework of the applicable liability legislation insofar as the latter is due to non-observance of the following instructions.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

Problems may be encountered in particular when changing over from water-containing, fire-resistant hydraulic fluid or mineral oils to water-free, fire-resistant hydraulic fluids (e.g. incompatibilities in the form of gelling, silting, stable foam, reduced filterability or filter blockage). This may also happen when changing products within the same classification.

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remains of the previous hydraulic fluid. Bosch Rexroth recommends obtaining verification of compatibility from the

manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

Information about changing to a hydraulic fluid of a different classification can be found, for example, in VDMA 24314 and in ISO 7745. In addition, the information given in chapter 3.1.4 "Material compatibility" is also to be observed.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This includes hydraulic fluids with the same classification. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with ISO 12922 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

12/16

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

Water-free, fire-resistant hydraulic fluids are tested for corrosion protection in the same way as mineral oil HLP/HVLP. When used in practice other corrosion mechanisms are revealed in detail and in individual cases, for the most part in contact with non-ferrous and white alloys.

4.9 Air

Under atmospheric conditions the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

410 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

HFDU hydraulic fluids on glycol basis are water-soluble or can be mixed with water. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

In the case of HDFU hydraulic fluids on ester basis, undissolved water can be drained off from the reservoir sump, the remaining water content is however too high to ensure that the maximum permissible water limit values are observed in the long term.

With the fluid classification HFDR, the greater density of the ester means that the any water that has ingressed will be on the surface of the hydraulic fluid. This means that any water that has ingressed into the system cannot be drained off in the sumo of the reservoir.

Water in the hydraulic fluid can result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all water-free, fire-resistant hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

Due to the higher water solubility in comparison to mineral oil HLP/HVLP it is urgently advised that precautions be taken when using water-free, fire-resistant hydraulic fluids, such as a dehumidifier on the reservoir ventilation.

Water content has an affect particularly in the case of HEDU hydraulic fluid on ester basis and HFDR in that it accelerates aging (hydrolysis) of the hydraulic fluid and biological degradation, see chapter 4.11 "Fluid servicing, fluid analysis and filtration"

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and decassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours)

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum

No differences are needed in the maintenance and care of water-free, fire-resistant hydraulic fluids with the appropriate suitability parameters compared to HLP/HVLP mineral oils. Attention is however drawn to the note in chapter 1.3.

After changing over hydraulic fluids it is recommended that the filters be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Compared to the pure unused hydraulic fluid the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This difference must be kept as small as possible. The lubricant manufacturer should be contacted as soon as the trend analysis notes a significant increase in values.

A higher viscosity than that of new materials indicates that the hydraulic fluid has aged. Evaluation by the test lab or lubricant manufacturers is however authoritative, whose recommendation should be urgently observed.

On systems where the possibility of water contamination cannot be completely ruled out (also condensation), it should be ensured via the hydraulic system circuit that fluid aging products are not accumulating in individual areas of the hydraulic system, but are being removed from the system in a controlled manner via the filtration system. This should be ensured via suitable hydraulic circuits (e.g. flushing circuit) or system manufacturer's operating instructions/specifications.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

All water-free, fire-resistant hydraulic fluids, are, like mineral oilbased hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

6 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration. Please refer to Hydrolysis.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a self-ignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Partially saturated esters

In contrast to saturated esters, partially saturated esters have double/multiple bonds between C atoms. Rexroth defines partially saturated esters as unsaturated bonds and mixtures of esters with unsaturated and saturated bonds. Esters with unsaturated bonds are produced on the basis of renewable raw materials.

Depending on their number and position, these unsaturated bonds between the C atoms are instable. These bonds can detach themselves and form new bonds, thus changing the properties of those liquids (an aging mechanism). Attention is however drawn to the note in chapter 1.3.

Hydrolysis

Hydrolysis is the splitting of a chemical bond through the reaction with water under the influence of temperature.

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

Iodine count

The iodine count is a yardstick for the quantity of single and multiple unsaturated bonds between C atoms in the basic fluid. A low iodine count indicates that the hydraulic fluid contains few unsaturated bonds and is thus considerably more resistant to aging than a hydraulic fluid with a high iodine count. A statement about the position at which these multiple bonds are located and about how "stable" they are against influencing factors cannot be derived simply by stating the iodine count.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values. For hydraulic fluids based on glycol, DIN EN ISO 12937 is to be applied in conjunction with DIN 51777-1.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis)

Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers and anti-fogging additives. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Axial Piston Motors

Fixed motors

Designation	Туре	Size	Series	Nominal pressure	Data sheet	page
Fixed motor	A2FM	51000	60/61/63	315400 bar	RE 91001	55
Fixed plug-in motor	A2FE	28355	60/61	350400 bar	RE 91008	101
Fixed motor	A4FM	22500	10/30/32	350400 bar	RE 91120	125
Fixed motor	A10FM/E	1063	52	280 bar	RE 91172	137

Bosch Rexroth AG RE 90010-02/07.2012

Axial Piston Fixed Motor A2FM

RE 91001/06.2012

1/46

Replaces: 09.07

Data sheet

Series 6

Size Nominal pressure/Maximum pressure

5 315/350 bar 10 to 200 400/450 bar 250 to 1000 350/400 bar

Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	4
Dimensions	11
Flushing and boost pressure valve	34
Pressure-relief valve	36
Counterbalance valve BVD and BVE	38
Speed sensors	42
Installation instructions	44
General instructions	46

Features

- Fixed motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits
- For use in mobile and stationary applications
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and the low-pressure side.
- Finely graduated sizes permit far-reaching adaptation to the drive case
- High power density
- Small dimensions
- High total efficiency
- Good starting characteristics
- Economical design
- One-piece tapered piston with piston rings for sealing

М

Ordering code for standard program

		A2F		М		/	6		W	-	٧						
1	01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

Hydraulic fluid

	Mineral oil and HFD. HFD for sizes 2	250 to 1000 only in combination with long-life bearings "L" (without code)		ı
01	HFB, HFC hydraulic fluid	Sizes 5 to 200 (without code)		ı
		Sizes 250 to 1000 (only in combination with long-life bearings "L")	E-	ı

Axial piston unit

02 Bent-axis design, fixed A2F

	Drive shaft bearing	5 to 200	250 to 500	710 to 1000	
03	Standard bearing (without code)	•	•	-	
03	Long-life bearing	-	•	•	L

Operating mode

04 Motor (plug-in motor A2FE, see RE 91008)

Size (NG)

05	Geometric displa	acen	nent,	see	table	e of v	/alue	s on	pag	e 7														
05		5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250	355	500	710	1000	l

Series

~~		1
06	1 6	1
		1

Index

	NG10 to 180	1
07	NG200	3
	NG5 and 250 to 1000	0

Direction of rotation

08 Viewed on drive shaft, bidirectional	l w	ı
---	-----	---

Seals

09	FKM (fluor-caoutchouc)	٧

	Drive shafts	5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250 to 1000	
	Splined shaft	-	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	-	Α
	DIN 5480	-	•	•	-	•	•	-	•	•	-	•	-	•	-	•	-	-	•	Z
10	Parallel keyed shaft	•	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	-	В
	DIN 6885	-	•	•	-	•	•	-	•	•	-	•	-	•	-	•	-	-	•	Р
	Conical shaft ¹⁾	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	С

	Mounting flang	es	5 to 250	355 to 1000	
11	ISO 3019-2	4-hole	•	-	В
''		8-hole	_	•	Н

¹⁾ Conical shaft with threaded pin and woodruff key (DIN 6888). The torque must be transmitted via the tapered press fit.

Ordering code for standard program

	A2F		М		/	6		W	-	٧						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

	Port plates for service lines ²⁾			5	10-16	23	28, 32	45	56,63	80,90	107-125	160-180	200	250	355-500	1000	
	SAE flange ports	01	0	-	-	•	•	•	•	•	•	•	•	•	•	•	010
	A and B at rear		7	-	-	-	-	-	-	-	-	-	-	-	•	-	017
	SAE flange ports	02	0	-	-	•	•	•	•	•	•	•	-	•	-	-	020
	A and B at side, opposite		7	-	-	-	-	•	A	•	•	•	-	•	-	-	027
			9	-	-	-	-	-	•	•	-	-	-	-	_	-	029
	Threaded ports A and B at side, opposite	03	o	•	•	•	•	-	-	-	-	-	-	-	-	-	030
	Threaded ports A and B at side and rear ³⁾	04	o	-	•	•	•	•	•	-	-	-	-	0	-	-	040
	SAE flange ports A and B at bottom (same side)	10	0	-	-	-	•	•	•	•	•	•	-	-	0	-	100
12	Port plate BVD with 1-level pressure-	17	1	-	-	-	-	-	-	-	•	-					171 178
	relief valves for mounting a	18	- 8	_	-	-	•	•	•	•	•	•	-	-	_	-	181
	counterbalance valve ⁵⁾ BVE	18		-	-	-	-	-	-	-	•	•	-	_4)	_	-	188
	Port plate with	19	1	_	-	_	•	•	•	•	•	•	-	-	_	-	191
	pressure-relief valves		2	-	-	_	•	•	•	•	•	•	-	-	_	-	192
	Valves (see pages 34 to 41)		Ł														
	Without valve	ithout valve															
	Pressure-relief valve (without press	sure	boo	ost f	acility)				1							
	Proceuro-rollof valvo (with proceur	hor	not.	faci	li+v/)					2	l						

nout valve	0
ssure-relief valve (without pressure boost facility)	1
ssure-relief valve (with pressure boost facility)	2
shing and boost pressure valve, mounted	7
unterbalance valve BVD/BVE mounted ⁵⁾⁶⁾	8
shing and boost pressure valve, integrated	9
unterbalance valve BVD/BVE mounted ⁵⁾⁶⁾	8

	Speed sensors (see pages 42 and 43)	5 to 16	23 to 180	200	250 to 500	710 to 1000 ⁴	
	Without speed sensor (without code)	•	•	•	•	•	
	Prepared for HDD speed sensor	-	A	•	•	-	F
13	HDD speed sensor mounted ⁷⁾	-	A	A	•	-	Н
	Prepared for DSA speed sensor	-	0	0	0	-	U
	DSA speed sensor mounted ⁷⁾	_	0	0	0	_	v

Special version

	Standard version (without code)	
14	Special version for slew drives (standard with port plate 19)	J

Standard / special version

	Standard version (without code)	
15	Standard version with installation variants, e. g. T ports against standard open or closed	-Y
	Special version	-s

▲ = Not for new projects

= Preferred program

2) Fastening thread or threaded ports, metric

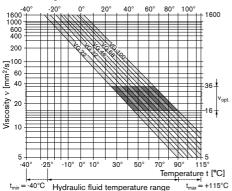
O = On request

3) Threaded ports at the sides (sizes 10 to 63) plugged with threaded plugs

– Not available

4) Please contact us.

● = Available


- 5) Note the restrictions on page 39.
- 6) Specify ordering code of counterbalance valve according to data sheet (BVD RE 95522, BVE RE 95525) separately.
- 7) Specify ordering code of sensor according to data sheet (DSA RE 95133, HDD RE 95135) separately and observe the requirements on the electronics

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The fixed motor A2FM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt.}, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Vote

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U (sizes 250 to 1000) or using a flushing and boost pressure valve (see pages 34).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾ $v_{max} = 1600$		T _{St} ≥ -40 °C	$t \le 3$ min, without load (p ≤ 50 bar), $n \le 1000$ rpm (for sizes 5 to 200), $n \le 0.25 \cdot n_{nom}$ (for sizes 250 to 1000)
Permissible temperature	e difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase v < 1600 to 400		T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference		ΔT = approx. 12 K	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

²⁾ Sizes 250 to 1000, please contact us.

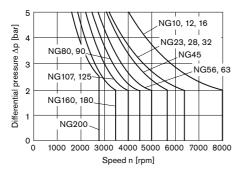
Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

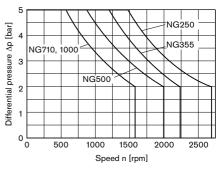
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.


Shaft seal

Permissible pressure loading


The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

Sizes 10 to 200

Sizes 250 to 1000

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from $\cdot 25$ °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed on drive shaft					
clockwise	counter-clockwise				
A to B	B to A				

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-life bearing

Sizes 250 to 1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearing and case flushing via port U is recommended.

Flushing flow (recommended)

NG	250	355	500	710	1000	
q _{v flush} (L/min)	10	16	16	16	16	

Operating pressure range

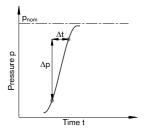
(operating with mineral oil)

Pressure at service line port A or B

Size 5

Nominal pressure p _{nom}	_315 bar absolute
Maximum pressure p _{max}	10 s
Summation pressure (pressure A + pressure	re B) p _{Su} 630 bar
Sizes 10 to 200	
Nominal pressure p _{nom}	400 bar absolute
Maximum pressure p _{max}	10 s
Summation pressure (pressure A + pressur	e B) p _{Su} _ 700 bar

Sizes 250 to 1000

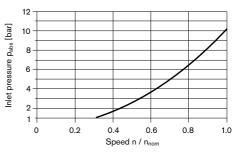

Nominal pressure pnom	350 bar absolute
Maximum pressure p _{max}	400 bar absolute
Single operating period	10 s
Total operating period	300 h

Summation pressure (pressure A + pressure B) p_{Su} _ 700 bar

Minimum pressure (high-pressure side) ____25 bar absolute

Rate of pressure change $R_{A\;max}$

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve 16000 bar/s



Note

Values for other hydraulic fluids, please contact us.

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from $\nu_{\text{opt}} = 36$ to 16 $\text{mm}^2/\text{s}.$

Please contact us if these conditions cannot be satisfied.

Definition

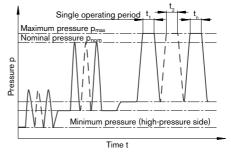
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

Table of values (theoretical values, without efficiency and tolerances; values rounded)

0.				-	and t	40	4.0				4-			
Size		NG		5	10	12	16	23	28	32	45	56	63	80
Displacement per revolution		V _g	cm ³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Speed maxin	num ¹⁾	n_{nom}	rpm	10000	8000	8000	8000	6300	6300	6300	5600	5000	5000	4500
		n _{max} ²⁾	rpm	11000	8800	8800	8800	6900	6900	6900	6200	5500	5500	5000
Input flow ³⁾														
at n _{nom} an	d V _g	qv	L/min	49	82	96	128	144	177	202	255	281	315	362
Torque ⁴⁾														
at V_g and	$\Delta p = 350 \text{ bar}$	T	Nm	24.7 ⁵⁾	57	67	89	128	157	178	254	313	351	448
	$\Delta p = 400 \text{ bar}$	T	Nm	-	66	76	102	146	179	204	290	357	401	512
Rotary stiffne	ess	С	kNm/rad	0.63	0.92	1.25	1.59	2.56	2.93	3.12	4.18	5.94	6.25	8.73
Moment of in rotary group	ertia for	J_{GR}	kgm²	0.00006	0.0004	0.0004	0.0004	0.0012	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072
Maximum an	gular	α	rad/s ²	5000	5000	5000	5000	6500	6500	6500	14600	7500	7500	6000
Case volume)	٧	L		0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
Mass (appro	x.)	m	kg	2.5	5.4	5.4	5.4	9.5	9.5	9.5	13.5	18	18	23
Size		NG		90	107	125	160	180	200	250	355	500	710	1000
Displacemen	nt geometric,	V_g	cm ³	90	106.7	125	160.4	180	200	250	355	500	710	1000
per revolution	n					120				200	000	500	710	1000
Speed maxin		n _{nom}	rpm	4500	4000	4000	3600	3600	2750	2700	2240	2000	1600	1600
		n _{nom} n _{max} 2)	rpm rpm											
				4500	4000	4000	3600	3600	2750	2700	2240	2000	1600	
Speed maxin	num ¹⁾			4500	4000	4000	3600	3600	2750	2700	2240	2000	1600	
Speed maxin	num ¹⁾	n _{max} ²⁾	rpm	4500 5000	4000 4400	4000 4400	3600 4000	3600 4000	2750 3000	2700	2240	2000	1600	1600
Speed maxin Input flow ³⁾ at n _{nom} an Torque ⁴⁾	num ¹⁾	n _{max} ²⁾	rpm	4500 5000	4000 4400	4000 4400	3600 4000	3600 4000	2750 3000	2700	2240	2000	1600	1600
Speed maxin Input flow ³⁾ at n _{nom} an Torque ⁴⁾	num ¹⁾ d V _g	n _{max} ²⁾ q _V	rpm L/min	4500 5000 405	4000 4400 427	4000 4400 500	3600 4000 577	3600 4000 648	2750 3000 550	2700 - 675	2240 - 795	2000	1600 - 1136	1600
Speed maxin Input flow ³⁾ at n _{nom} an Torque ⁴⁾	$d V_g$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$	n _{max} ²⁾ q _V	rpm L/min Nm	4500 5000 405 501	4000 4400 427 594	4000 4400 500 696	3600 4000 577 893	3600 4000 648 1003	2750 3000 550 1114	2700 - 675 1393	2240 - 795 1978	2000 - 1000 2785	1600 - 1136 3955	1600 - 1600 5570
Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and	num ¹⁾ $\frac{d V_g}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 400 \text{ bar}}{\cos s}$	n _{max} ²⁾ q _V T	rpm L/min Nm Nm	4500 5000 405 501 573 9.14	4000 4400 427 594 679	4000 4400 500 696 796 11.9	3600 4000 577 893 1021	3600 4000 648 1003 1146 18.2	2750 3000 550 1114 1273	2700 - 675 1393 - 73.1	2240 - 795 1978 -	2000 - 1000 2785 -	1600 - 1136 3955 -	1600 - 1600 5570
Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of ir	$\frac{d V_{g}}{d V_{g}}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p}{\Delta r} = \frac{400 \text{ bar}}{\Delta r}$ $\frac{d V_{g}}{d V_{g}} = \frac{1}{1000} \frac{1}{10000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10$	n _{max} ²⁾ q _V T T c	rpm L/min Nm Nm kNm/rad	4500 5000 405 501 573 9.14	4000 4400 427 594 679 11.2	4000 4400 500 696 796 11.9	3600 4000 577 893 1021 17.4	3600 4000 648 1003 1146 18.2	2750 3000 550 1114 1273 57.3	2700 - 675 1393 - 73.1	2240 - 795 1978 - 96.1 0.102	2000 - 1000 2785 - 144	1600 - 1136 3955 - 270	1600 - 1600 5570 - 324
Speed maxin Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of ir rotary group Maximum an	$\frac{\Delta V_g}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ sess electia for	n _{max} 2) q _V T T c J _{GR}	rpm L/min Nm Nm kNm/rad kgm²	4500 5000 405 501 573 9.14 0.0072	4000 4400 427 594 679 11.2 0.0116	4000 4400 500 696 796 11.9 0.0116	3600 4000 577 893 1021 17.4 0.0220	3600 4000 648 1003 1146 18.2 0.0220	2750 3000 550 1114 1273 57.3 0.0353	2700 - 675 1393 - 73.1 0.061	2240 - 795 1978 - 96.1 0.102	2000 - 1000 2785 - 144 0.178	1600 - 1136 3955 - 270 0.55	1600 - 1600 5570 - 324 0.55

- 1) The values are valid:
 - for the optimum viscosity range from $v_{\text{opt}} = 36 \text{ to } 16 \text{ mm}^2/\text{s}$
 - with hydraulic fluid based on mineral oils
- ₂₎ Intermittent maximum speed: overspeed for unload and overhauling processes, t < 5 s and $\Delta p < 150$ bar
- Restriction of input flow with counterbalance valve, see page 39
- 4) Torque without radial force, with radial force see page 8
- 5) Torque at $\Delta p = 315$ bar

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

(splined shaft and paral	ilei keyea snatt)				-0,							
Size		NG		5	5 ³⁾	10	10	12	12	16	23	23
Drive shaft		Ø	mm	12	12	20	25	20	25	25	25	30
Maximum radial force ¹⁾ at distance a	Fq	a a	kN mm	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7 16	5.4 16
(from shaft collar)	<u> → a -</u>	_		0.4.5	0.45			70		100	110	110
with permissible torq		T _{max}	Nm	24.7	24.7	66	66	76	76	102	146	146
≜ permissible pressu	ıre Δp	Δp perm	bar	315	315	400	400	400	400	400	400	400
Maximum axial force ²⁾	F _{ax} ±==	+F _{ax max} -F _{ax max}	N N	180	180	320 0	320 0	320 0	320	320 0	0	0
Permissible axial force per	bar operating pressure	±F _{ax perm/bar}	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2
Size		NG		28	28	32	45	56	56 ⁴⁾	56	63	80
Drive shaft		Ø	mm	25	30	30	30	30	30	35	35	35
Maximum	ıFa _	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	9.1	11.6
radial force ¹⁾ at distance a (from shaft collar)	a	a	mm	16	16	16	18	18	18	18	18	20
with permissible torq	ue	T _{max}	Nm	179	179	204	290	357	294	357	401	512
△ permissible pressu		Δp perm	bar	400	400	400	400	400	330	400	400	400
Maximum axial force ²⁾	πЪ	+F _{ax max}	N	500	500	500	630	800	800	800	800	1000
	F _{ax} ±==	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per	bar operating pressure	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	8.7	10.6
Size		NG		80 ⁴⁾	80	90	107	107	125	160	160	180
Drive shaft		Ø	mm	35	40	40	40	45	45	45	50	50
Maximum radial force ¹⁾	Fq	F _{q max}	kN	11.1	11.4	11.4	13.6	14.1	14.1	18.1	18.3	18.3
at distance a (from shaft collar)	a	a	mm	20	20	20	20	20	20	25	25	25
with permissible torq	ue	T _{max}	Nm	488	512	573	679	679	796	1021	1021	1146
≜ permissible pressu	ıre ∆p	Δp_{perm}	bar	380	400	400	400	400	400	400	400	400
Maximum axial force ²⁾	F _{ax} ±==	+F _{ax max}	N	1000	1000	1000	1250	1250	1250	1600	1600	1600
	'ax	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per	bar operating pressure	±F _{ax perm/bar}	N/bar	10.6	10.6	10.6	12.9	12.9	12.9	16.7	16.7	16.7
Size		NG		200	250	355	500	710	1000			
Drive shaft		Ø	mm	50	50	60	70	90	90			
Maximum radial force ¹⁾	Fq	F _{q max}	kN	20.3	1.26)	1.5 ⁶⁾	1.96)	3.06)	2.66)			
at distance a	1441/ /	а	mm	25	41	52.5	52.5	67.5	67.5			
(from shaft collar)	_ a □											
	ue L	T _{max}	Nm	1273	5)	5)	5)	5)	5)			
(from shaft collar)		T _{max} Δp _{perm}	Nm bar	1273 400	5)	5)	5)	5)	5)			
(from shaft collar) with permissible torq				_								
(from shaft collar) with permissible torq △ permissible pressu		Δp_{perm}	bar	400	5)	5)	5)	5)	5)			
(from shaft collar) with permissible torq △ permissible pressu	re Δp	Δp perm +F _{ax max} -F _{ax max}	bar N	400 1600	5)	⁵⁾	5)	5)	5) 4400			

¹⁾ With intermittent operation

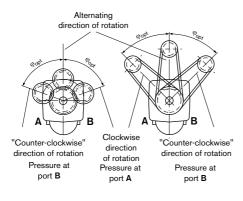
- 3) Conical shaft with threaded pin and woodruff key (DIN 6888)
- 4) Restricted technical data only for splined shaft
- 5) Please contact us.

6) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.

Note

Influence of the direction of the permissible axial force:

+F_{ax max} = Increase in service life of bearings


-F_{ax max} = Reduction in service life of bearings (avoid)

²⁾ Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_{q_1} the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	Φopt	Форт
5 to 180	± 70°	± 45°
200 to 1000	± 45°	± 70°

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_O}$$
 [min⁻¹]

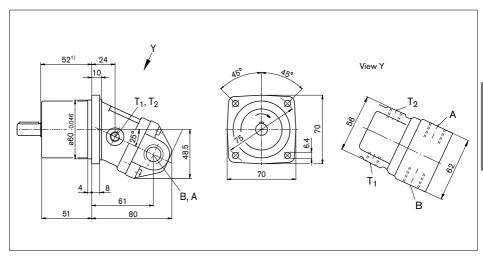
Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

Power
$$P = \frac{2 \, \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} \; [kW]$$

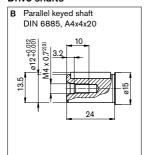
V_g = Displacement per revolution in cm³

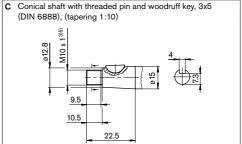
up = Differential pressure in bar

= Speed in rpm


η_v = Volumetric efficiency

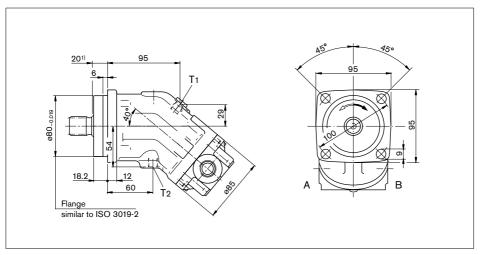
η_{mh} = Mechanical-hydraulic efficiency


 η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)


Dimensions size 5

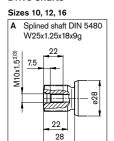
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

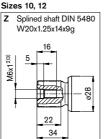
Drive shafts

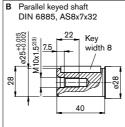

Ports

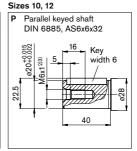
Designation	Port for	Standard ⁶⁾	Size ³⁾	Maximum pressure [bar]4)	State7)
A, B	Service line	DIN 3852	M18 x 1.5; 12 deep	350	0
T ₁	Drain line	DIN 3852	M10 x 1; 8 deep	3	0
T ₂	Drain line	DIN 3852	M10 x 1; 8 deep	3	0

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Thread according to DIN 3852, maximum tightening torque: 30 Nm
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)


Dimensions sizes 10, 12, 16


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

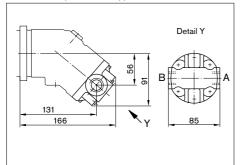



Sizes 10, 12, 16

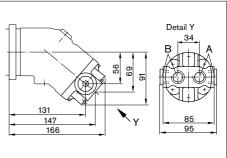
Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar]4)	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	O ⁵⁾


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 10, 12, 16


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

03 - Threaded ports at side, opposite

04 - Threaded ports at side and rear

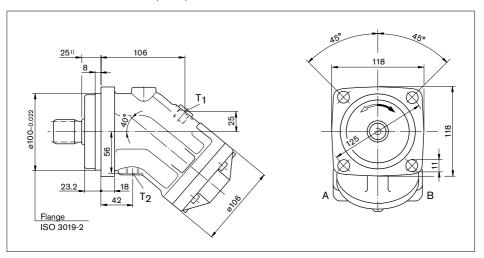
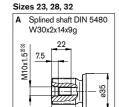


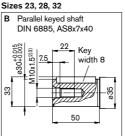
Plate	Designation	Port for	Standard ³⁾	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
03	A, B	Service line	DIN 3852	M22 x 1.5; 14 deep	450	0
04		Service line	DIN 3852	M22 x 1.5; 14 deep	450	1x O each

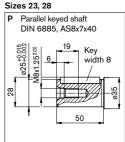

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) The spot face can be deeper than specified in the appropriate standard.
- 4) O = Must be connected (plugged on delivery)

Dimensions sizes 23, 28, 32

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts


27


35

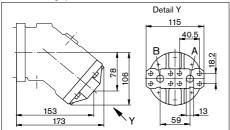
Sizes 23, 28

Z Splined shaft DIN 5480
W25x1.25x18x9g

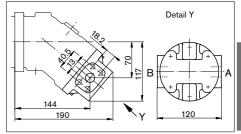
19
19
28
28
43

Ports

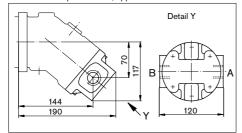
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	O ⁵⁾

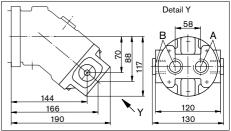

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

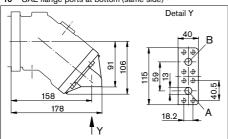
Dimensions sizes 23, 28, 32


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates


01 - SAE flange ports at rear

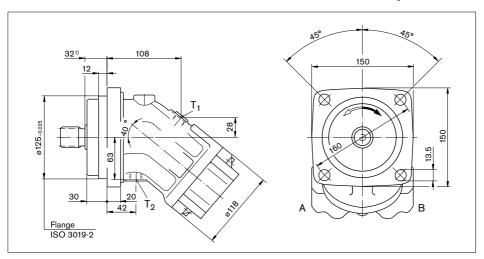

02 - SAE flange ports at side, opposite


03 - Threaded ports at side, opposite

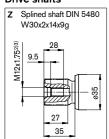
04 - Threaded ports at side and rear

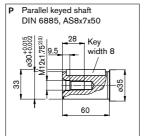
10 - SAE flange ports at bottom (same side)4)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1/2 in M8 x 1.25; 15 deep	450	0
03		Service line	DIN 3852 ⁵⁾	M27 x 2; 16 deep	450	0
04]	Service line	DIN 3852 ⁵⁾	M27 x 2; 16 deep	450	1x O each


- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard
- 4) Only sizes 28 and 32
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)

Note


Port plates 18 and 19: see pages 37 and 40

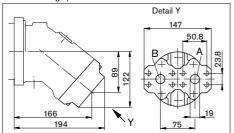

Dimensions size 45

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

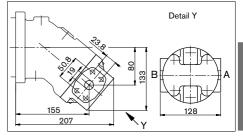
Drive shafts

Ports

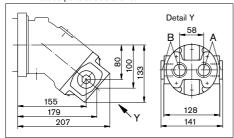
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 38526)	M18 x 1.5; 12 deep	3	O ⁵⁾

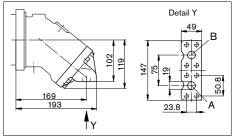

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions size 45


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

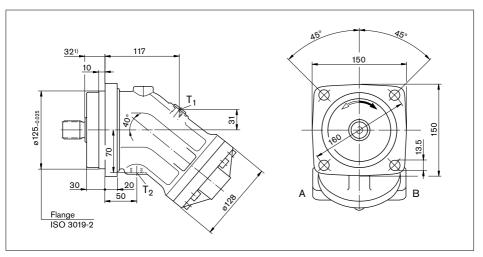

01 - SAE flange ports at rear


02 - SAE flange ports at side, opposite

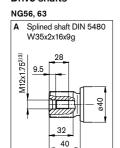
04 - Threaded ports at side and rear

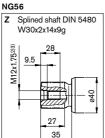
10 - SAE flange ports at bottom (same side)

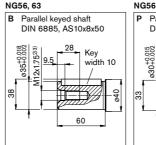
Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁵⁾
01, 02, 10	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
04		Service line	DIN 38524)	M33 x 2; 18 deep	450	1x O each

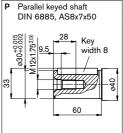

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) O = Must be connected (plugged on delivery)

Note


Port plates 18 and 19: see pages 37 and 40

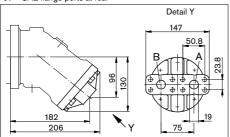

Dimensions sizes 56, 63


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

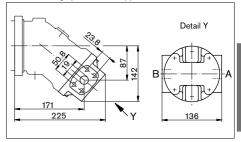


Drive shafts

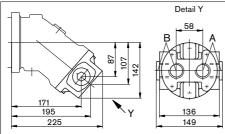
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

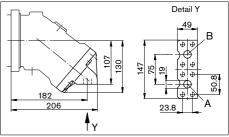

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions sizes 56, 63


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

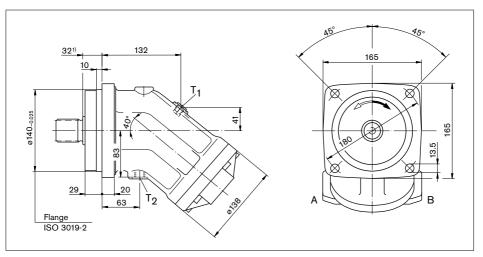

01 - SAE flange ports at rear


02 - SAE flange ports at side, opposite

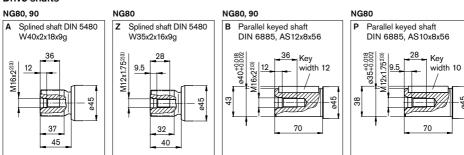
04 - Threaded ports at side and rear

10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁵⁾
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
04		Service line	DIN 3852 ⁴⁾	M33 x 2; 18 deep	450	1x O each


- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) O = Must be connected (plugged on delivery)

Note

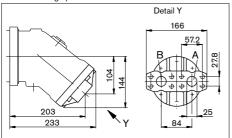

Port plates 18 and 19: see pages 37 and 40

Dimensions sizes 80, 90

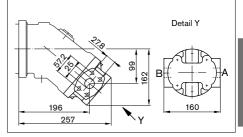
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

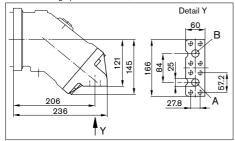
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾


- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 80, 90


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

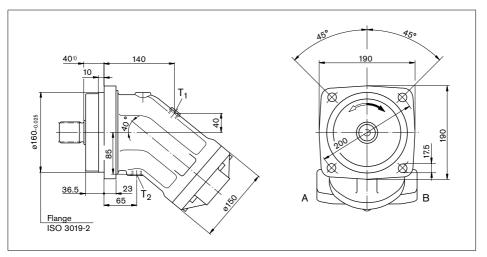
Location of the service line ports on the port plates


01 - SAE flange ports at rear

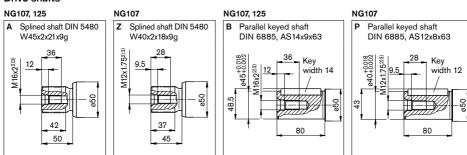
02 - SAE flange ports at side, opposite

10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	450	0


- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Note

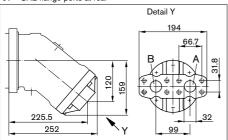

Port plates 18 and 19: see pages 37 and 40

Dimensions sizes 107, 125

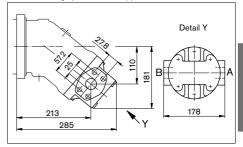
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

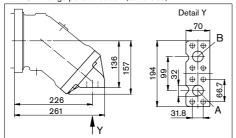
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
To	Drain line	DIN 38526)	M18 x 1.5: 12 deep	3	O ⁵⁾

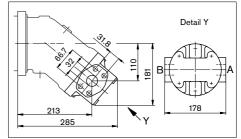

- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 107, 125


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

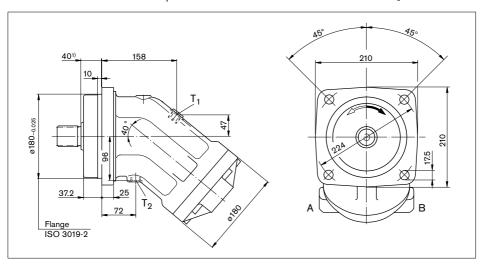
Location of the service line ports on the port plates


01 - SAE flange ports at rear


02 - SAE flange ports at side, opposite (size 107)

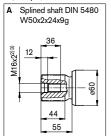
10 - SAE flange ports at bottom (same side)

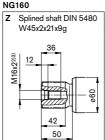
02 - SAE flange ports at side, opposite (size 125)

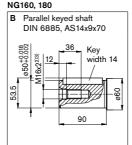

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 10	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
02 (size 107)		Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	450	0
02 (size 125)		Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0

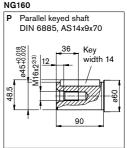
- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Note


Port plates 17, 18 and 19: see pages 37 and 40

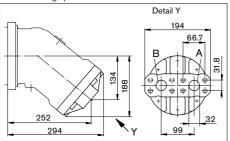

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



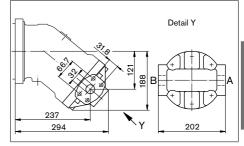

Drive shafts

NG160, 180

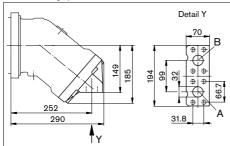
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	O ⁵⁾


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 160, 180


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

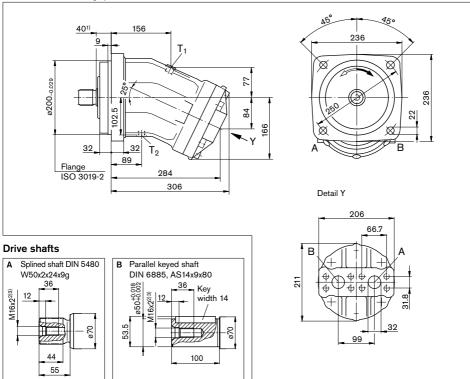
Location of the service line ports on the port plates


01 - SAE flange ports at rear

02 - SAE flange ports at side, opposite

10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0

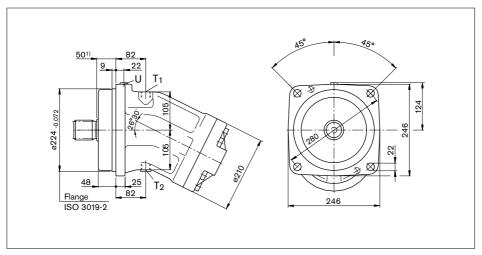

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Note

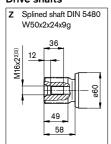
Port plates 18 and 19: see pages 37 and 40

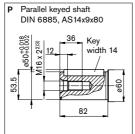
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear



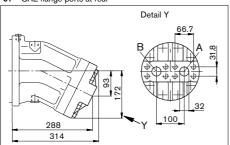
. 0.13					
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
T ₁	Drain line	DIN 38527)	M22 x 1.5; 14 deep	3	X ⁶⁾
T ₂	Drain line	DIN 38527)	M22 x 1.5; 14 deep	3	O ⁶⁾


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

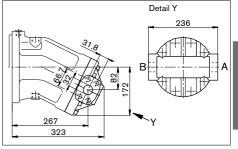

Notes

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			400	
T ₁	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	O ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
U	Bearing flushing	DIN 3852 ⁶⁾	M14 x 1.5; 12 deep	3	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

01 - SAE flange ports at rear

02 - SAE flange ports at side, opposite

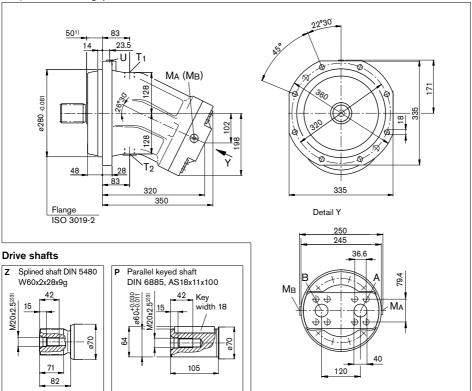
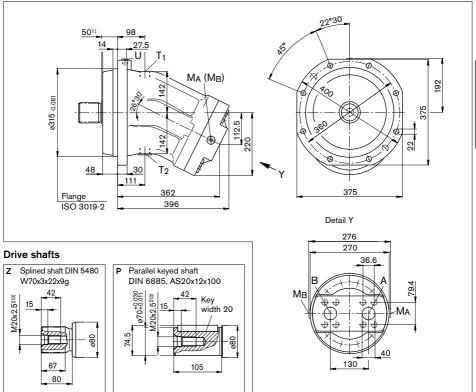


Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

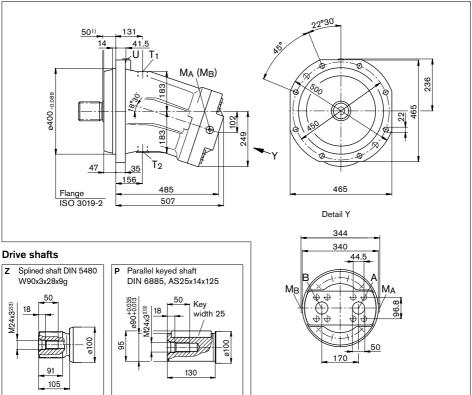


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴)	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
T ₁	Drain line	DIN 38527)	M33 x 2; 18 deep	3	O ⁶⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M14 x 1.5; 12 deep	3	Χ
M _A , M _B	Measuring operating pressure	DIN 38527)	M14 x 1.5; 12 deep	400	Х

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

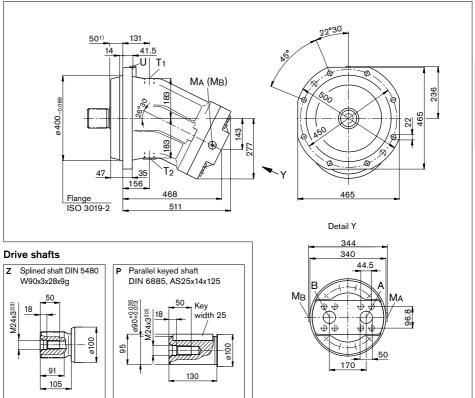


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185) DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
T ₁	Drain line	DIN 38527)	M33 x 2; 18 deep	3	O ⁶⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M18 x 1.5; 12 deep	3	Χ
M _A , M _B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Х

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear



Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ⁵⁾ DIN 13	2 in M20 x 2.5; 30 deep	400	0
T ₁	Drain line	DIN 38527)	M42 x 2; 20 deep	3	O ⁶⁾
T ₂	Drain line	DIN 38527)	M42 x 2; 20 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M18 x 1.5; 12 deep	3	Χ
M _A , M _B	Measuring operating pressure	DIN 38527)	M14 x 1.5; 12 deep	400	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- $\scriptstyle{7)}$ The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ⁵⁾ DIN 13	2 in M20 x 2.5; 30 deep	400	0
T ₁	Drain line	DIN 38527)	M42 x 2; 20 deep	3	O ⁶⁾
T ₂	Drain line	DIN 38527)	M42 x 2; 20 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M18 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 38527)	M14 x 1.5; 12 deep	400	Х

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- $\scriptstyle{7)}$ The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding

installation drawing. Dimensions in mm.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 027, the valve is mounted directly on the fixed motor (sizes 45 to 180, 250); with port plate 017 (sizes 355 and 500) on a plate.

Cracking pressure of pressure retaining valve

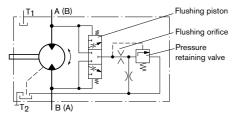
(observe when setting the primary valve)

Sizes 45 to 500, fixed setting______16 bar

Switching pressure of flushing piston ∆p Sizes 45 to 500_____

8±1 bar

Flushing flow q_v


Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and $\nu = 10 \text{ mm}^2/\text{s}$

 $(p_{ND} = low pressure, p_G = case pressure)$

Schematic

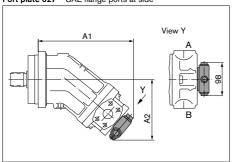
Standard flushing flows

Flushing and boost pressure valve, mounted (code 7)

Size	Flushing flow q _v [L/min]	ø [mm]	Mat. No. of orifice
45	3.5	1.2	R909651766
107, 125	8	1.8	R909419696
160, 180	10	2.0	R909419697
250	10	2.0	R909419697
355, 500	16	2.5	R910803019

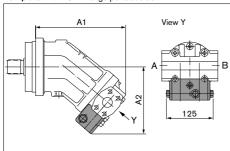
With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta_{DND} = 25$ bar.

Flushing and boost pressure valve, integrated (code 9)

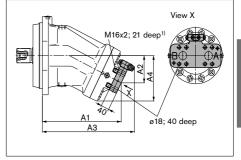

Size	Throttle ø [mm]	q _v [L/min]
56, 63,	1.5	6
80, 90	1.8	7.3

Flushing and boost pressure valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions

Port plate 027 - SAE flange ports at side


Size	A1	A2
45	223	151
107, 125	294	192
160, 180	315	201
250	344	172

Port plate 029 - SAE flange ports at side

Size	A1	A2
56, 63	225	176
80, 90	257	186.7

Port plate 017 - SAE flange ports at rear

Size	A1	A2	А3	A4
355	356	120	421	198
500	397	130	464	220

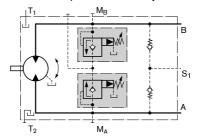
 DIN 13, observe the general instructions on page 46 for the maximum tightening torques

Pressure-relief valve

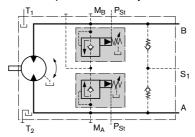
The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).

Cracking pressure setting range ______ 50 to 420 bar

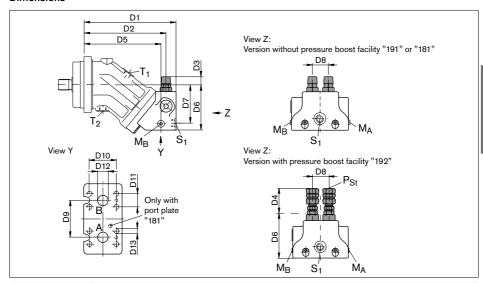

With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port $P_{\rm SI}$.

When ordering, please state in plain text:


- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version without pressure boost facility "191"


Version with pressure boost facility "192"

Pressure-relief valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

Size		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB.16	209	186	25	68	174	102	87	36	66	50.8	23.8	ø19	M10; 17 deep
45	MHDB.16	222	198	22	65	187	113	98	36	66	50.8	23.8	ø19	M10; 17 deep
56, 63	MHDB.22	250	222	19	61	208	124	105	42	75	50.8	23.8	ø19	M10; 13 deep
80, 90	MHDB. 22	271	243	17.5	59	229	134	114	42	75	57.2	27.8	ø25	M12; 18 deep
107, 125	MHDB. 32	298	266	10	52	250	149.5	130	53	84	66.7	31.8	ø32	M14; 19 deep
160, 180	MHDB.32	332	301	5	47	285	170	149	53	84	66.7	31.8	ø32	M14; 19 deep

Size	A, B	S ₁ 1)	M _A , M _B ¹⁾	P _{St} 1)
28, 32	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
45	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
56, 63	3/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
80, 90	1 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
107, 125	1 1/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
160, 180	1 1/4 in	M26 x 1.5; 16 deep	M30 x 1.5; 16 deep	G 1/4

Assembly instructions for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the pst port!

Designation	Port for	Standard	Size	Maximum pressure [bar] ²⁾	State ³⁾
A, B	Service line	SAE J518	See above	450	0
S ₁	Supply (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure	DIN 3852	See above	450	Χ
P _{St}	Pilot pressure (only with port plate 192)	DIN ISO 228	See above	30	0

- 1) Observe the general instructions on page 46 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

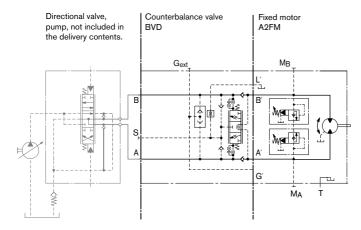
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

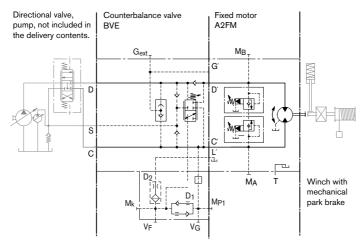

- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A2FM90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A2FM090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12

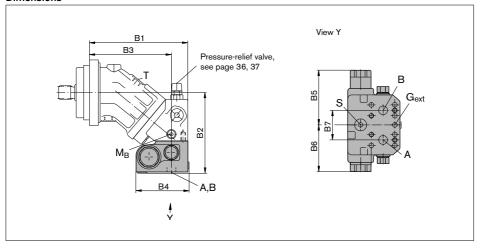

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Winch counterbalance valve BVD...W and BVE

Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A2FM090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0


Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without valv	/e	Restricted v	Restricted values in operation with DBV and BVD/BVE								
Motor			DBV				BVD/BVE					
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code		
28	400/450	176	16	350/420	100	181	20	350/420	100	188		
32		201				191, 192	(BVD)					
45		255										
56		280	22		240				220			
63		315										
80		360										
90		405										
107		427				171				178		
125		500				191, 192						
107		427	32		400	181	25		320	188		
125		500				191, 192	(BVD/BVE)					
160		577										
180		648										

pressure-relief valve	DBV
counterbalance valve, double-acting	BVD
counterbalance valve, one-sided	BVE

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A2FM	Counterbalar	Counterbalance valve									
Size	Туре	Ports	Dimen	Dimensions							
		A, B	B1	B2	В3	B4 (S)	B4 (L)	B5	В6	B7	
28, 32	BVD 20 16	3/4 in	209	175	174	142	147	139	98	66	
45	BVD 20 16	3/4 in	222	196	187	142	147	139	98	66	
56, 63	BVD 20 17	3/4 in	250	197	208	142	147	139	98	75	
80, 90	BVD 20 27	1 in	271	207	229	142	147	139	98	75	
107, 125	BVD 20 28	1 in	298	238	251	142	147	139	98	84	
107, 125	BVD 25 38	11/ ₄ in	298	239	251	158	163	175	120.5	84	
160, 180	BVD 25 38	11/ ₄ in	332	260	285	158	163	175	120.5	84	
107, 125	BVE 25 38	11/ ₄ in	298	240	251	167	172	214	137	84	
160, 180	BVE 25 38	11/ ₄ in	332	260	285	167	172	214	137	84	
250	On request										

1 0113						
Designation	Port for	Version	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
A, B	Service line		SAE J518	see table above	420	0
S	Infeed	BVD20	DIN 3852 ³⁾	M22 x 1.5; 14 deep	30	Χ
		BVD25, BVE25	DIN 3852 ³⁾	M27 x 2; 16 deep	30	Χ
Br	Brake release, reduced high pressure	L	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	420	Х
M _A , M _B	Measuring pressure		ISO 6149 ³⁾	M12 x 1.5; 12 deep	420	Х

¹⁾ Observe the general instructions on page 46 for the maximum tightening torques.

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

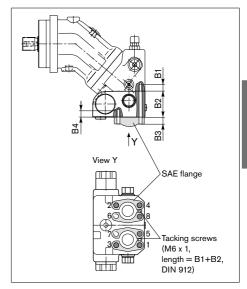
³⁾ The spot face can be deeper than specified in the appropriate standard.

⁴⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) _____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Size	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Port plate	18				17
B1 ¹⁾	M10 x 1.5; 17 deep	M10 x 1.5; 17 deep	M12 x 1.75; 18 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep
B2	782)	68	68	85	68
B3	customer-specific				_
B4	M10 x 1.5; 15 deep	M10 x 1.5; 15 deep	M12 x 1.75; 16 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep

- 1) Minimum required thread reach 1 x ø-thread
- 2) Including sandwich plate

Speed sensors

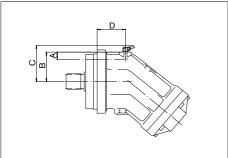
The versions A2FM...U and A2FM...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated.

The sensors measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

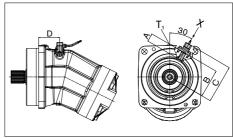

HDD	RE 35135
The sensor is mounted at the spe lows:	cially provided port D as fol-
DSA	with one mounting bolt
HDD	with two mounting bolts

We recommend ordering the A2FM fixed motor complete with sensor mounted.

Version "V"

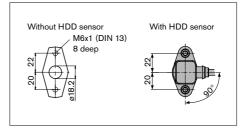
DSA

Sizes 23 to 200 with DSA sensor


Version "V"
Sizes 250 to 500 with DSA sensor

On request

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Version "H"

Sizes 250 to 500 with HDD sensor

View X

RE 95133

Speed sensors

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Size			23, 28, 32	45	56, 63	80, 90	107, 125
Number of teeth			38	45	47	53	59
DSA	Α	Insertion depth (tolerance ± 0.1)	18.4	18.4	18.4	18.4	18.4
	В	Contact surface	57.9	64.9	69.9	74.9	79.9
	С		74.5	81.5	86.5	91.5	96.5
	D		54.7	54.3	61.5	72.5	76.8
Size			160, 180	200	250	355	500
Numbe	er of te	eeth	67	80	78	90	99
HDD	Α	Insertion depth (tolerance \pm 0.1)	-	-	32	32	32
	В	Contact surface	-	-	110.5	122.5	132.5
	С		_	-	149	161	171
	D		-	-	82	93	113
DSA	Α	Insertion depth (tolerance \pm 0.1)	18.4	18.4	32	32	32
	В	Contact surface	87.4	100.9	-	_	-
	С		104	117.5	-	-	-
	D		86.8	97.5			

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 8.

Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

With sizes 10 to 200 with installation position "shaft upward", an air-bleed port R is required (state in plain text when ordering special version). With sizes 250 to 1000, port U is provided as standard in the area near the bearings for air bleeding.

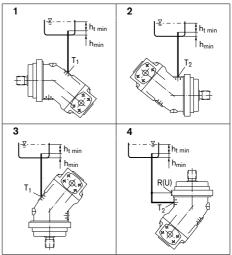
Installation position	Air bleed	Filling
1	-	T ₁
2	-	T ₂
3	-	T ₁
4	R (U)	T ₂
5	L ₁	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	R (U)	T ₂ (L ₁)

L₁ Filling / air bleed

R Air bleed port (special version)

U Bearing flushing / air bleed port

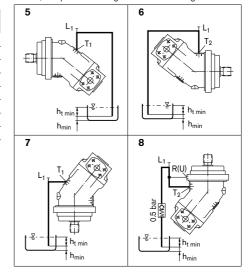
T₁, T₂ Drain port


h_{t min} Minimum required immersion depth (200 mm)

h_{min} Minimum required spacing to reservoir bot-

tom (100 mm)

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

General instructions

- The motor A2FM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:
 Observe the manufacturer's instructions regarding tightening torques of the fittings used.
 - Mounting bolts:
 For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B11, we record.

DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.

Threaded plugs:
 For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs My apply. For values, see the following table.

Ports		Maximum permissible tight- ening torque of the	Required tightening torque of the	WAF hexagon socket of the	
Standard	Size of thread	female threads M _{G max}	threaded plugs M _V 1)	threaded plugs	
DIN 38521)	M10 x 1	30 Nm	15 Nm ²⁾	5 mm	
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm	
	M14 x 1.5	80 Nm	35 Nm	6 mm	
	M16 x 1.5	100 Nm	50 Nm	8 mm 8 mm	
	M18 x 1.5	140 Nm	60 Nm		
	M20 x 1.5 170 Nm		80 Nm	10 mm	
	M22 x 1.5	210 Nm	80 Nm	10 mm 12 mm	
	M26 x 1.5	230 Nm	120 Nm		
	M27 x 2 330 Nm		135 Nm	12 mm	
	M30 x 2	420 Nm	215 Nm	17 mm	
	M33 x 2	540 Nm	225 Nm	17 mm	
	M42 x 2	720 Nm	360 Nm	22 mm	
DIN ISO 228	G 1/4	40 Nm	-	_	

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.
2) In the "lightly oiled" state, the M_V is reduced to 10 Nm for M10 x 1 and 17 Nm for M12 x 1.5.

Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 Fax: +49-7308-72-74 info.brm@boschrexroth.de

An den Kelterwiesen 14 72160 Horb, Germany Tel.: +49-7451-92-0 Fax: +49-7451-82-21

www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Fixed Plug-In Motor A2FE

RE 91008/06.2012

1/24

Replaces: 09.07

Data sheet

Series 6

Size

Nominal pressure/Maximum pressure

28 to 180 400/450 bar 250 to 355 350/400 bar

Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	4
Dimensions sizes 28 to 180	10
Dimensions size 250	12
Dimensions size 355	13
Flushing and boost pressure valve	14
Pressure-relief valve	16
Counterbalance valve BVD and BVE	18
Speed sensors	22
Installation instructions	23
General instructions	24

Features

- Fixed plug-in motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuits
- Far-reaching integration in mechanical gearbox due to recessed mounting flange located in the center of the case (extremely space-saving construction)
- The output speed is dependent on the flow of the pump and the displacement of the motor
- The output torque increases with the pressure differential between the high-pressure and the low-pressure side.
- Small dimensions
- High total efficiency
- Complete unit, ready-assembled and tested
- Easy to install, simply plug into the mechanical gearbox
- No configuration specifications to be observed when installing

Ordering code for standard program

	A2F		Ε		/	6		W	-	٧						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

Н١	/dr	au	IIC	ĦΙ	uıc

	Mineral oil and HFD. HFD for si	zes 250 and 355 only in combination with long-life bearings "L" (without code)		
01	HFB, HFC hydraulic fluid	Sizes 28 to 180 (without code)]
		Sizes 250 to 355 (only in combination with long-life bearings "L")	E-	1

Axial piston unit

02 Bent-axis design, fixed A2F

	Drive shaft bearing	28 to 180	250 to 355	
03	Standard bearing (without code)	•	•	
US	Long-life bearing	_	•	L

Operating mode

04 Motor, plug-in version

Sizes (NG)

05	Geometric displacement	ent, see	table o	of values	on pag	ge 7									
05		28	32	45	56	63	80	90	107	125	160	180	250	355	1

Series

06

Index

07	NG28 to 180	1	l
07	NG250 and 355	0	l

Direction of rotation

08 Viewed on drive shaft, bidirectional

Seals

09 FKM (fluor-caoutchouc)

	Drive shafts	28	32	45	56	63	80	90	107	125	160	180	250	355		
10	Splined shaft	•	•	-	•	•	•	•	•	•	•	•	-	-	Α]
10	DIN 5480	•	_	•	•	-	•	_	•	-	•	-	•	•	Z	l

	Mounting flanges		28 to 180	250 and 355	
11	ISO 3019-2	2-hole	•	_	L
''		4-hole	-	•	М

● = Available

O = On request

- = Not available

= Preferred program

Ordering code for standard program

	A2F		Е		/	6		W	-	٧						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

Port plates ¹⁾			28	32	45	56	63	80	90	107	125	160	180	250	355	
SAE flange ports	01	0	-	-	-	-	-	-	-	-	-	-	-	•	0	010
A and B at rear		7	-	-	-	-	-	-	-	-	-	-	-	-	0	017
SAE flange ports	02	0	-	_	-	-	-	-	-	-	-	-	-	•	0	020
A and B at side, opposite		7	-	-	•	A	A	A	A	•	•	•	•	•	-	027
		9	-	-	-	•	•	•	•	-	-	-	-	-	-	029
SAE flange ports	10	0	•	•	•	•	•	•	•	•	•	•	•	-	•	100
A and B at bottom (same side	e)	7	-	-	-	-	-	-	-	-	-	-	-	-	•	107
Port plate with 1-level pressure-relief	BVD 17	1	-	-	-	-	-	-	-	•	•	-	-	-	-	171 178
valves for mounting a coun-	18	8	•	•	•	•	•	•	•	•	•	•	•	-	-	181
terbalance valve ²⁾	BVE 18		-	-	-	-	-	-	-	•	•	•	•	_4)	-	188
Port plate with	19	1	•	•	•	•	•	•	•	•	•	•	•	-	-	191
pressure-relief valves		2	•	•	•	•	•	•	•	•	•	•	•	-	-	192
Valves (see pages 14 to 21)		₺					•				-		•	•		
Without valve								0								
Pressure-relief valve (without	pressure b	000	st faci	lity)				1								
Pressure-relief valve (with pre	ssure boos	st fa	acility))				2	1							
Flushing and boost pressure	valve, mou	nte	d					7]							
Counterbalance valve BVD/B	VE mounte	ed ²⁾	(3)					8]							
Flushing and boost pressure	valve, integ	grat	ed					9]							

Speed sensor (see page 22)

28 to 45 56 to 180 250 3554)

	Without speed sensor (without code)	•	•	•	•	
	Prepared for HDD speed sensor	-	A	•	-	F
13	HDD speed sensor mounted ⁵⁾	-	A	•	-	Н
	Prepared for DSA speed sensor	0	0	0	-	U
	DSA speed sensor mounted ⁵⁾	0	0	0	-	V

Special version (only sizes 28 to 180)

Γ	1 1	Standard version (without code)]
	14	Special version for slew drives (standard with port plate 19)	J	1

Standard / special version

	Standard version (without code)	
15	Standard version with installation variants, e. g. T ports against standard open or closed	-Y
	Special version	-S

▲ = Not for new projects

1) Fastening thread or threaded ports, me

O = On request

2) Note the restrictions on page 19.

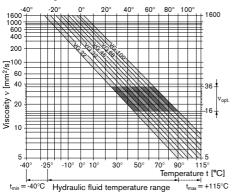
3) Specify ordering code of counterbalance valve according to data sheet (BVD - RE 95522, BVE - RE 95525) separately.

- = Not available

4) Please contact us

● = Available

5) Specify ordering code of sensor according to data sheet (DSA - RE 95133, HDD - RE 95135) separately and observe the requirements on the electronics


= Preferred program

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The plug-in motor A2FE is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt}) , see shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt.}, shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost pressure valve (see page 14).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment				
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term				
(Cold) start-up ¹⁾ $v_{max} = 1600$		T _{St} ≥ -40 °C	$t \le 3$ min, without load (p ≤ 50 bar), n ≤ 1000 rpm (for sizes 28 to 180) n $\le 0.25 \cdot n_{nom}$ (for sizes 250 and 355)				
Permissible temperature difference		$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid				
Warm-up phase	$\nu <$ 1600 to 400 $$	T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min				
Operating phase							
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.				
Maximum temperature		115 °C	in the bearing				
		103 °C	measured at port T				
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data				
Short-term operation ²⁾	$v_{min} \ge 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}				
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5				

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

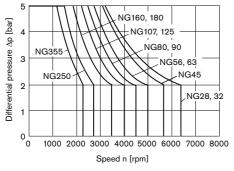
 $_{\rm 2)}\,$ Sizes 250 and 355, please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed on drive shaft					
clockwise	counter-clockwise				
A to B	B to A				

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-life bearing

Sizes 250 and 355

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible.

Operating pressure range

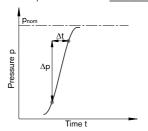
(operating with mineral oil)

Pressure at service line port A or B

Sizes 28 to 180

Nominal pressure pnom	400 bar absolute
Maximum pressure p _{max} Single operating period	450 bar absolute
Total operating period	300 h
Summation pressure (pressure	e A + pressure B) p _{Su} 700 bar

Sizes 250 and 355

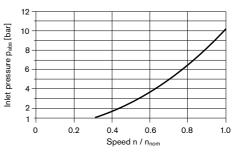

Nominal pressure p _{nom}	350 bar absolute
Maximum pressure p _{max} Single operating period	400 bar absolute 10 s
Total operating period	300 h

Summation pressure (pressure A + pressure B) p_{Su} _ 700 bar

Minimum pressure (high-pressure side) 25 bar absolute

Rate of pressure change RA may

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve 16000 bar/s



Note

Values for other hydraulic fluids, please contact us.

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from $\nu_{\text{opt}} = 36$ to 16 $\text{mm}^2/\text{s}.$

Please contact us if these conditions cannot be satisfied.

Definition

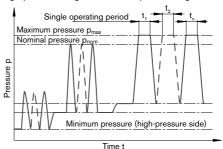
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Summation pressure psu

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t$

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size		NG		28	32	45	56	63	80	
Displacement geometric, per revolution		V_g	cm ³	28.1	32	45.6	56.1	63	80.4	
Speed maximum ¹⁾		n _{nom}	rpm	6300	6300	5600	5000	5000	4500	
		n _{max} ²⁾	rpm	6900	6900	6200	5500	5500	5000	
Input flow ³⁾										
at n_{nom} and V_{g}		q_V	L/min	177	202	255	281	315	362	
Torque ⁴⁾										
at V_g and	$\Delta p = 350 \text{ bar}$	T	Nm	157	178	254	313	351	448	
	$\Delta p = 400 \text{ bar}$	T	Nm	179	204	290	357	401	512	
Rotary stiffness		С	kNm/ rad	2.93	3.12	4.18	5.94	6.25	8.73	
Moment of iner	tia for rotary group	J_{GR}	kgm ²	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072	
Maximum angul	lar acceleration	α	rad/s ²	6500	6500	14600	7500	7500	6000	
Case volume		V	L	0.20	0.20	0.33	0.45	0.45	0.55	
Mass (approx.)		m	kg	10.5	10.5	15	18	19	23	
Size		NG		90	107	125	160	180	250	355
	and the same of the		cm ³	90	106.7	125	160.4	180	250	355
	geometric, per revolution	Vg	_							
Speed maximum ¹⁾		n_{nom}	rpm	4500	4000	4000	3600	3600	2700	2240
		n _{max} ²⁾	rpm	5000	4400	4400	4000	4000	-	_
Input flow3)									- 675	
Input flow3) at n _{nom} and	V_{g}	n _{max} ²⁾	rpm L/min	405	427	500	577	648	675	795
Input flow3) at n _{nom} and Torque ⁴⁾	V _g								675	
Input flow3) at n _{nom} and		q _V	L/min	405	427	500	577	648		795
Input flow3) at n _{nom} and Torque ⁴⁾	V_g $\Delta p = 350 \text{ bar}$	q _V	L/min	405 501	427 594	500 696	577 893	648	1393	795 1978
Input flow3) at n _{nom} and Torque4) at V _g and Rotary stiffness	V_g $\Delta p = 350 \text{ bar}$	q _V	L/min Nm Nm kNm/	405 501 573	427 594 679	500 696 796	577 893 1021	648 1003 1146	1393	795 1978 –
Input flow3) at n _{nom} and Torque4) at V _g and Rotary stiffness	V_g $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ tia for rotary group	qv T T	L/min Nm Nm kNm/ rad	405 501 573 9.14	594 679 11.2	500 696 796 11.9	577 893 1021 17.4	648 1003 1146 18.2	1393 - 73.1	795 1978 - 96.1
Input flow3) at n _{nom} and Torque ⁴⁾ at V _g and Rotary stiffness Moment of iner	V_g $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ tia for rotary group	q _V T T c	L/min Nm Nm kNm/ rad kgm²	405 501 573 9.14 0.0072	427 594 679 11.2 0.0116	500 696 796 11.9 0.0116	577 893 1021 17.4 0.0220	648 1003 1146 18.2 0.0220	1393 - 73.1 0.061	795 1978 - 96.1 0.102

- 1) The values are valid:
 - % for the optimum viscosity range from ν_{opt} = 36 to 16 mm²/s
 - with hydraulic fluid based on mineral oils
- 2) Intermittent maximum speed: overspeed for unload and overhauling processes, t < 5 s and Δp < 150 bar
- Restriction of input flow with counterbalance valve, see page 19
- 4) Torque without radial force, with radial force see page 8

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

Size	ior Reyed Sharty	NG		28	28	32	45	56	56 ⁴⁾	56
Drive shaft		Ø	mm	25	30	30	30	30	30	35
Maximum radial force ¹⁾	Fq	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1
at distance a (from shaft collar)	a	a	mm	16	16	16	18	18	18	18
with permissible torqu	ue	T _{max}	Nm	179	179	204	290	357	294	357
△ permissible pressu	ire ∆p	Δp_{perm}	bar	400	400	400	400	400	330	400
Maximum axial force ²⁾	ffb	+F _{ax max}	N	500	500	500	630	800	800	800
	Fax±==	-F _{ax max}	N	0	0	0	0	0	0	0
Permissible axial force pressure	per bar operating	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7
Size		NG		63	80	80 ⁴⁾	80	90	107	107
Drive shaft		Ø	mm	35	35	35	40	40	40	45
Maximum radial force ¹⁾	Fq	F _{q max}	kN	9.1	11.6	11.1	11.4	11.4	13.6	14.1
at distance a (from shaft collar)	a	a	mm	18	20	20	20	20	20	20
with permissible torqu	ue	T _{max}	Nm	401	512	488	512	573	679	679
△ permissible pressu	ire Δp	Δp_{perm}	bar	400	400	380	400	400	400	400
Maximum axial force ²⁾	- +TU	+F _{ax max}	N	800	1000	1000	1000	1000	1250	1250
	rax±===	-F _{ax max}	N	0	0	0	0	0	0	0
Permissible axial force pressure	per bar operating	±F _{ax perm/bar}	N/bar	8.7	10.6	10.6	10.6	10.6	12.9	12.9
Size		NG		125	160	160	180	250	355	
Drive shaft		Ø	mm	45	45	50	50	50	60	
Maximum radial force ¹⁾	Fq	F _{q max}	kN	14.1	18.1	18.3	18.3	1.25)	1.5 ⁵⁾	
at distance a (from shaft collar)	a	a	mm	20	25	25	25	41	52.5	
with permissible torqu	ue	T _{max}	Nm	796	1021	1021	1146	3)	3)	
△ permissible pressu	ire Δp	Δp_{perm}	bar	400	400	400	400	3)	3)	
Maximum axial force ²⁾	F _{ax} ±==	+F _{ax max}	N	1250	1600	1600	1600	2000	2500	
	· ax	-F _{ax max}	N	0	0	0	0	0	0	
Permissible axial force pressure	±F _{ax perm/bar}	N/bar	12.9	16.7	16.7	16.7	3)	3)		

¹⁾ With intermittent operation

Note

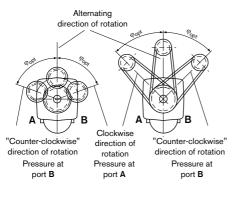
Influence of the direction of the permissible axial force:

 $+F_{ax max}$ = Increase in service life of bearings

-F_{ax max} = Reduction in service life of bearings (avoid)

²⁾ Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

³⁾ Please contact us.


⁴⁾ Restricted technical data only for splined shaft

⁵⁾ When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_{q_1} the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output					
NG	Форт	Форт					
28 to 180	± 70°	± 45°					
250 and 355	± 45°	± 70°					

Determining the operating characteristics

Input flow
$$q_v = \frac{v_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_0} \qquad \qquad [min^{\text{-}1}]$$

$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi} \quad [Nm]$$

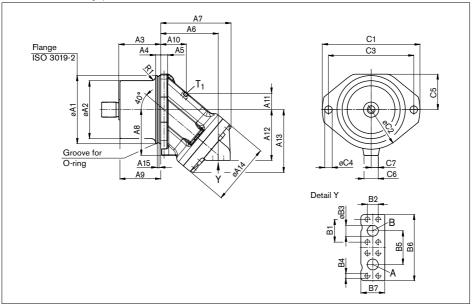
Power
$$P = \frac{2 \, \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} \, [kW]$$

V_a = Displacement per revolution in cm³

p = Differential pressure in bar

n = Speed in rpm

η_v = Volumetric efficiency


η_{mh} = Mechanical-hydraulic efficiency

 η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

Dimensions sizes 28 to 180

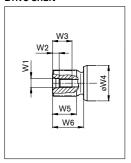
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 10 - SAE flange ports at bottom

Size	øA1		øA2	1	A31)	A4	A٤	5	A6	A7	A8	A9	A10	A11	A12	A13	øA14	A15
28, 32	135.0.	025	94 _{-0.5}	1	88.8	15	16	6	94	114	95	87.1	45	27	91	106	106	5.2
45	160-0.0	025	117 + 1.5	,	92.3	15	18	3	109	133	106	90	50	31.3	102	119	118	5.2
56, 63	160.0.	025	121 -0.5	,	92.3	15	18	3	122	146	109	90	59	34	107	130	128	5.2
80, 90	190.0.	029	140.3.0	.5	110	15	20)	127	157	123	106	54	41	121	145	138	5.2
107, 125	200-0.	029	152.3.0	.5	122.8	15	20)	143	178	135	119	58	41	136	157	150	5.2
160, 180	200-0.	029	171.6-0.	5	122.8	15	20)	169	206	134	119.3	75	47	149	185	180	5.2
Size	B1	B2	øB3	В4,	DIN 13	2)		В5	В6	В7	С	1 ø	C2	C3	øC4	C5	C6	C7
28, 32	40.5	18.2	13	M8	x 1.25;	15 d	еер	59	115	40	18	38 1	54	160	14	71	42	13
45	50.8	23.8	19	M10	x 1.5;	17 de	еер	75	147	49	2	35 1	90	200	18	82	47.5	15
56, 63	50.8	23.8	19	M10	x 1.5;	17 de	еер	75	147	48	2	35 1	90	200	18	82	36	0
80, 90	57.2	27.8	25	M12	2 x 1.75	; 17 c	deep	84	166	60	2	30 2	20	224	22	98	40	0
107, 125	66.7	31.8	32	M14	1 x 2; 1	9 dee	р	99	194	1 70	28	36 2	32	250	22	103	40	0
160, 180	66.7	31.8	32		1 x 2; 1			99	194	1 70		36 2	32	250	22	104	42	0

Size	R1	O-ring ³⁾	Service line port A, B SAE J518	Drain port T ₁ DIN 3852 ²⁾
28, 32	10	126 x 4	1/2 in	M16 x 1.5; 12 deep
45	10	150 x 4	3/4 in	M18 x 1.5; 12 deep
56, 63	10	150 x 4	3/4 in	M18 x 1.5; 12 deep
80, 90	10	180 x 4	1 in	M18 x 1.5; 12 deep
107, 125	16	192 x 4	1 1/4 in	M18 x 1.5; 12 deep
160, 180	12	192 x 4	1 1/4 in	M22 x 1.5; 14 deep

- 1) To shaft collar
- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- _ 3) Not included in the delivery contents

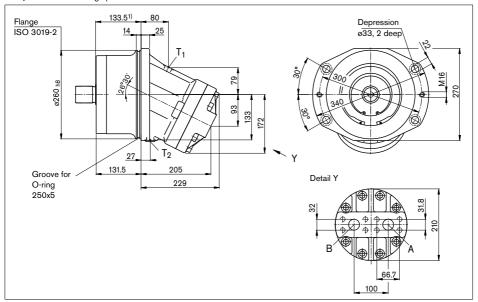

Note

Port plates 17, 18 and 19; see pages 17 and 20.

Dimensions sizes 28 to 180

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

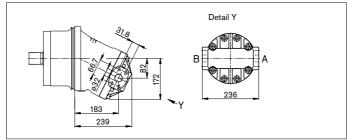
Drive shaft


Size	Splined shaft (DIN 5480)	W1 1)	W2	W3	øW4	W5	W6
28, 32	A W30 x 2 x 14 x 9g	M10 x 1.5	7.5	22	35	27	35
28	Z W25 x 1.25 x 18 x 9g	M8 x 1.25	6	19	35	28	43
45	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	35	27	35
56, 63	A W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	40	32	40
56	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	40	27	35
80, 90	A W40 x 2 x 18 x 9g	M16 x 2	12	36	45	37	45
80	Z W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	45	32	40
107, 125	A W45 x 2 x 21 x 9g	M16 x 2	12	36	50	42	50
107	Z W40 x 2 x 18 x 9g	M12 x 1.75	9.5	28	50	37	45
160, 180	A W50 x 2 x 24 x 9g	M16 x 2	12	36	60	44	55
160	Z W45 x 2 x 21 x 9g	M16 x 2	12	36	60	42	50

¹⁾ Center bore according to DIN 332 (thread according to DIN 13), observe the general instructions on page 24 for the maximum tightening torques.


Dimensions size 250

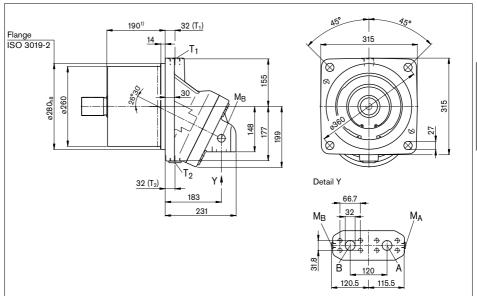
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Port plate 01 - SAE flange ports at rear

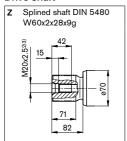
Drive shaft

Port plate 02 - SAE flange ports at side

Ports


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line fastening thread A/B	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0
T ₁	Drain line	DIN 38527)	M22 x 1.5; 14 deep	3	O ⁵⁾
T ₂	Drain line	DIN 38527)	M22 x 1.5; 14 deep	3	X ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 24 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 23).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Dimensions size 355

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 10 - SAE flange ports at bottom

Drive shaft

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line fastening thread A/B	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 22 deep	400	0
T ₁	Drain line	DIN 38527)	M33 x 2; 18 deep	3	O ⁵⁾
T ₂	Drain line	DIN 38527)	M33 x 2; 18 deep	3	X ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 24 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devcies and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 23).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalizing your design, request a binding

installation drawing. Dimensions in mm.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 027 (sizes 45 to 180 and 250) and with port plate 107 (size 355), the valve is mounted directly on the fixed

Cracking pressure of pressure retaining valve

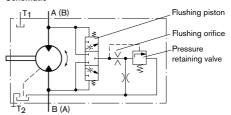
(observe when setting the primary valve) Sizes 45 to 355, fixed setting

Switching pressure of flushing piston Δp

Sizes 45 to 355

8±1 bar

Flushing flow qv


Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and v = 10 mm²/s

 $(p_{ND} = low pressure, p_G = case pressure)$

Schematic

Standard flushing flows

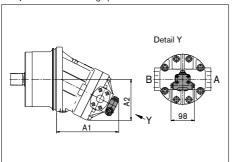
16 bar

Flushing and boost pressure valve, mounted (code 7)

Size	Flushing flow q _v [L/min]	ø [mm]	Mat. No. of orifice
45	3.5	1.2	R909651766
107, 125	8	1.8	R909419696
160, 180	10	2.0	R909419697
250	10	2.0	R909419697
355	16	2.5	R910803019

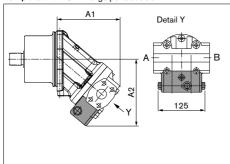
With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

Flushing and boost pressure valve, integrated (code 9)


Size	Throttle ø [mm]	q _v [L/min]
56, 63,	1.5	6
80, 90	1.8	7.3

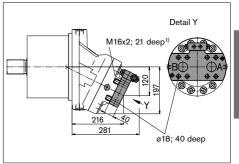
Flushing and boost pressure valve

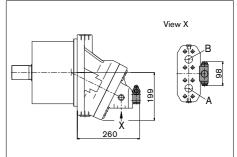
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions

Sizes 107 to 250
Port plate 027 - SAE flange ports at side

Size	A1	A2
107, 125	211	192
160, 180	232	201
250	260.5	172


Sizes 56 to 90
Port plate 029 - SAE flange ports at side


Size	A1	A2
56, 63	165	176
80, 90	178	186.7

DIN 13, observe the general instructions on page 24 for the maximum tightening torques.

Size 355
Port plate 017 - SAE flange ports at rear

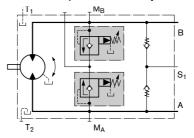
Port plate 107 - SAE flange ports at bottom

Pressure-relief valve

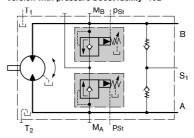
The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).

Cracking pressure setting range ______ 50 to 420 bar

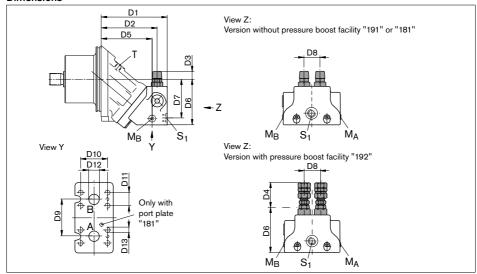

With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port $P_{\rm SI}$.

When ordering, please state in plain text:


- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version without pressure boost facility "191"


Version with pressure boost facility "192"

Pressure-relief valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

Size		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB.16	145	122	25	68	110	102	87	36	66	50.8	23.8	ø19	M10; 17 deep
45	MHDB.16	161	137	22	65	126	113	98	36	66	50.8	23.8	ø19	M10; 17 deep
56, 63	MHDB. 22	189	162	19	61	147	124	105	42	75	50.8	23.8	ø19	M10; 13 deep
80, 90	MHDB.22	193	165	17.5	59	151	134	114	42	75	57.2	27.8	ø25	M12; 18 deep
107, 125	MHDB.32	216	184	10	52	168	149.5	130	53	84	66.7	31.8	ø32	M14; 19 deep
160, 180	MHDB.32	249	218	5	47	202	170	149	53	84	66.7	31.8	ø32	M14; 19 deep

Size	A, B	S ₁ ¹⁾	M _A , M _B ¹⁾	P _{St} ¹⁾
28, 32	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
45	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
56, 63	3/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
80, 90	1 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
107, 125	1 1/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
160, 180	1 1/4 in	M26 x 1.5; 16 deep	M30 x 1.5; 16 deep	G 1/4

Assembly instruction for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the pst port!

Ports

Designation	Port for	Standard	Size	Maximum pressure [bar] ²⁾	State 3)
A, B	Service line	SAE J518	See above	450	0
S ₁	Supply (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure	DIN 3852	See above	450	Χ
P _{St}	Pilot pressure (only with port plate 192)	DIN ISO 228	See above	30	0

- 1) Observe the general instructions on page 24 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

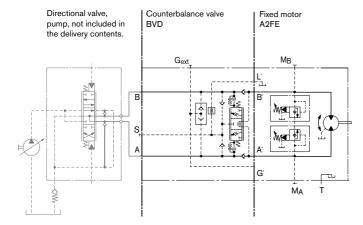
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

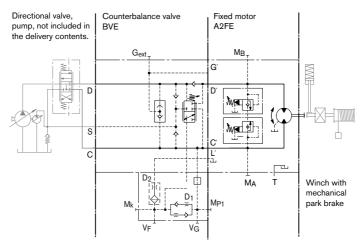

- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A2FE90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A2FE090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

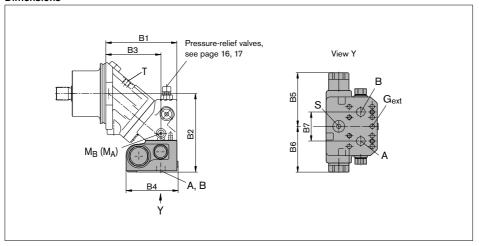
Winch counterbalance valve BVD...W and BVE

Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A2FE090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE


	Without val	ve	Restricted v	Restricted values in operation with DBV and BVD/BVE						
Motor			DBV				BVD/BVE			
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code
28	400/450	176	16	350/420	100	181	20	350/420	100	188
32		201				191, 192	(BVD)			
45		255								
56		280	22		240				220	
63		315								
80		360								
90		405								
107		427				171				178
125		500				191, 192				
107		427	32		400	181	25		320	188
125		500				191, 192	(BVD/BVE)			
160		577]							
180		648								

DBV _____ pressure-relief valve
BVD _____counterbalance valve, double-acting

BVE _____counterbalance valve, one-sided

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A2FE	Counterbalance valve										
Size	Туре	Ports	Dimen	sions							
		A, B	B1	B2	В3	B4 (S)	B4 (L)	B5	В6	B7	
28, 32	BVD 20 16	3/4 in	145	175	110	142	147	139	98	66	
45	BVD 20 16	3/4 in	161	196	126	142	147	139	98	66	
56, 63	BVD 20 17	3/4 in	189	197	147	142	147	139	98	75	
80, 90	BVD 20 27	1 in	193	207	151	142	147	139	98	75	
107, 125	BVD 20 28	1 in	216	238	168	142	147	139	98	84	
107, 125	BVD 25 38	11/ ₄ in	216	239	168	158	163	175	120.5	84	
160, 180	BVD 25 38	11/ ₄ in	249	260	202	158	163	175	120.5	84	
107, 125	BVE 25 38	11/ ₄ in	216	240	168	167	172	214	137	84	
160, 180	BVE 25 38	11/ ₄ in	249	260	202	167	172	214	137	84	
250		On request									

Ports

Designation	Port for	Version	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
A, B	Service line		SAE J518	see table above	420	0
S	Infeed	BVD20	DIN 38523)	M22 x 1.5; 14 deep	30	Χ
		BVD25, BVE25	DIN 3852 ³⁾	M27 x 2; 16 deep	30	Χ
Br	Brake release, reduced high pressure	L	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	420	Х
M _A , M _B	Measuring pressure A and B		ISO 61493 ⁾	M12 x 1.5; 12 deep	420	Х

¹⁾ Observe the general instructions on page 24 for the maximum tightening torques.

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and

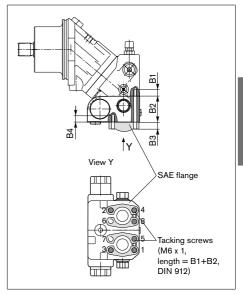
³⁾ The spot face can be deeper than specified in the appropriate standard.

⁴⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) _____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Size	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Port plate	18				17
B1 ¹⁾	M10 x 1.5; 17 deep	M10 x 1.5; 17 deep	M12 x 1.75; 18 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep
B2	78 ²⁾	68	68	85	68
B3	customer-specific				
B4	M10 x 1.5; 15 deep	M10 x 1.5; 15 deep	M12 x 1.75; 16 deep	M14 x 2; 19 deep	M12 x 1.75; 16 deep

- 1) Minimum required thread reach 1 x ø-thread
- 2) Including sandwich plate

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Speed sensors

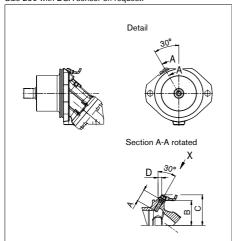
The versions A2FE...U and A2FE...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated. The sensors measures the speed and direction of rotation.

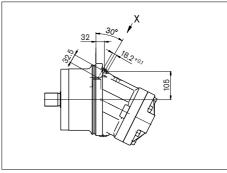
Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

DSA	 RE 95133
HDD	 RE 95135

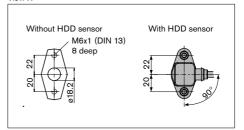

The sensor is mounted on the port provided for this purpose with a mounting bolt.

We recommend ordering the A2FE plug-in motor complete with sensor mounted.

Version "V"


Sizes 28 to 180 with DSA sensor

Size 250 with DSA sensor on request.



Version "H"

Size 250 with HDD sensor

View X

Size		28, 32	45	56, 63	80, 90	107, 125	160, 180	250	
Number of teeth		38	45	47	53	59	67	78	
DSA	Α	Insertion depth (tolerance ± 0.1)	32	32	32	32	32	32	32
	В	Contact surface	66	On reques	t				
	С		On reques	st					
	D		12.3	On reques	t				

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

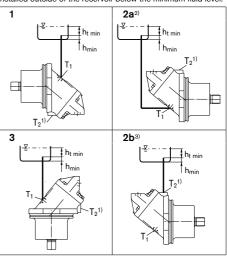
See the following examples 1 to 5.

Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

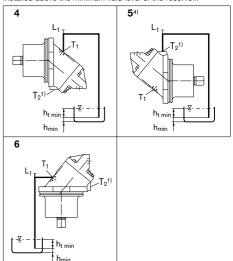
Installation position	Air bleed	Filling
1	-	T ₁
2	_	T ₁ (sizes 28 to 180) T ₂ (sizes 250 and 355)
3	-	T ₁
4	(L ₁)	T ₁ , (L ₁)
5	(L ₁)	T ₂ , (L ₁)
6	(L ₁)	T ₁ , (L ₁)

L₁ Filling / air bleed


T₁, T₂ Drain port

h_{t min} Minimum required immersion depth (200 mm)
h_{min} Minimum required spacing to reservoir bottom (100 mm)

- Standard for sizes 250 and 355, special version for sizes 28 to 180
- 2) Piping suggestion without port T₂ (standard for sizes 28 to 180).
- 3) Piping suggestion with port T₂ (standard for sizes 250 to 355, special version for sizes 28 to 180).
- Installation position only permissible if port T₂ is fitted (standard for sizes 250 and 355, special version for sizes 28 to 180).


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

General instructions

- The motor A2FE is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit:

The maximum permissible tightening torques $M_{G\ max}$ are maximum values for the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tightening torque of the	Required tightening torque of the	WAF hexagon socket of the	
Standard	Size of thread	female threads M _{G max}	threaded plugs M _V 1)	threaded plugs	
DIN 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm	
	M16 x 1.5	100 Nm	50 Nm	8 mm 8 mm 10 mm	
	M18 x 1.5	140 Nm	60 Nm		
	M20 x 1.5	170 Nm	80 Nm		
	M22 x 1.5	210 Nm	80 Nm	10 mm	
	M26 x 1.5	230 Nm	120 Nm	12 mm	
	M27 x 2	330 Nm	135 Nm	12 mm	
	M30 x 2	420 Nm	215 Nm	17 mm	
	M33 x 2	540 Nm	225 Nm	17 mm	
DIN ISO 228	G 1/4	40 Nm	_	-	

¹⁾ The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

Bosch Rexroth AG
Mobile Applications
Glockeraustrasse 4
89275 Elchingen, Germany
Tel.: +49-7308-82-0
Fax: +49-7308-72-74
info.brm@boschrexroth.de

An den Kelterwiesen 14 72160 Horb, Germany Tel.: +49-7451-92-0 Fax: +49-7451-82-21

www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

²⁾ In the "lightly oiled" state, the My is reduced to 17 Nm for M12 x 1.5.

Fixed Displacement Motor A4FM

RE 91 120/04.00 replaces: 03.95 and RE 91 100

for open and closed circuits

Sizes 22...500 Series 1, Series 3 Nominal pressure up to 400 bar Peak pressure up to 450 bar

Index

Features

Ordering Code

Technical Data

Installation and Commissioning Guidelines

Flow and Output Torque

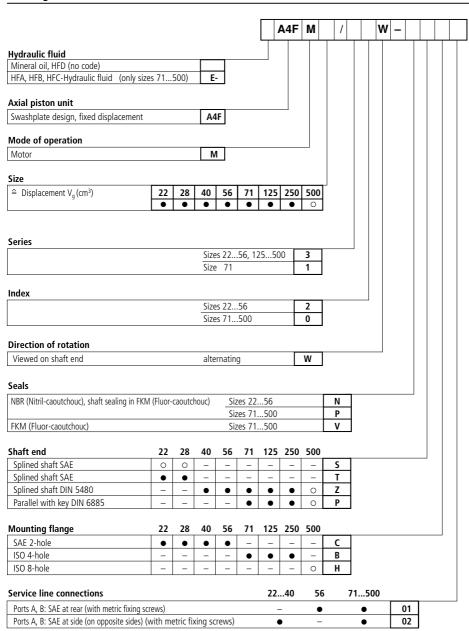
Unit Dimensions, Sizes 22, 28

Unit Dimensions, Size 40

Unit Dimensions, Size 56

Unit Dimensions, Size 71

Unit Dimensions, Size 125


Unit Dimensions, Size 250

Features

- Axial Piston Fixed Displacement Motor A4FM of swashplate design is used in open and closed loop circuits for hydrostatic driver.
- 3 5 drive
 - 4 Output speed is proportional to input flow and inversely proportional to motor displacement.
 - 6 7 Output torque increases with the pressure drop across the motor between the high and low pressure sides.
 - 8 Long service life, optimum efficiencies
 - Compact design for special applications where A2FM cannot be
 applied
 - 11 Proven rotary group in swashplate-technology

12

Ordering Code

- available
- O = available on enquiry
- = not available

Fluid

We request that before starting a project detailed information about the choice of pressure fluids and application conditions are taken from our catalogue sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistance fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet).

The sizes 22..56 are not suitable for operation with HFA, HFB and HFC.

Operation viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

$$v_{opt}$$
 = operating viscosity 16...36 mm²/s

referred to the loop temperature (closed circuit) or tank temperature (open circuit).

Viscosity limits

The limiting values for viscosity are as follows:

Size 22...56

 $v_{min} = 5 \text{ mm}^2/\text{s}$, short term at a max. permissible temp. of $t_{max} = 115^{\circ}\text{C}$ $v_{max} = 1600 \text{ mm}^2/\text{s}$, short term on cold start ($t_{min} = -40^{\circ}\text{C}$)

Size 71...500

 $v_{min} = 10 \text{ mm}^2/\text{s}$, short term at a max. permissible drain temp. $t_{max} = 90^{\circ}\text{C}$

 $v_{max} = 1000 \text{ mm}^2/\text{s}$, short term on cold start ($t_{min} = -25^{\circ}\text{C}$)

Please note that the max. fluid temperature is also not exceeded in certain areas (for instance bearing area).

At temperature of -25°C up to -40°C special measures may be required for certain installation positions, please contact us.

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the loop (closed circuit) or the tank temperature (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (v_{ont}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of X°C the operating temperature is 60°C. Within the operating viscosity range (v_{opt}) shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and motor speed and is always higher than the circuit temperature. However, at no point in the circuit may the temperature exceed 115°C for sizes 22...56 or 90°C for sizes 71...500.

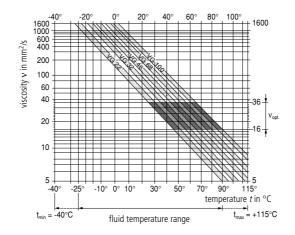
If it is not possible to comply with the above condition because of extreme operating parameters or high ambient temperatures we recommend housing flushing. Please consult us.

Filtration

The finer the filtration the better the achieved purity grade of the pressure fluid and the longer the life of the axial piston unit. To ensure the functioning of the axial piston unit a minimum purity grade of:

9 to NAS 1638

18/15 to ISO/DIS 4406 is necessary.


At very high temperatures of the hydraulic fluid (90°C to max. 115°C, not permissible for sizes 71...500) at least cleanless class

8 to NAS 1638

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

Selection diagram

valid for operation with mineral oils

Flushing of the bearings (Sizes 125...500)

operating conditions, flushing quantities and notes on bearing flushing see RE 92 050 (A4VSO).

Operating pressure range

Maximum pressure at port A or B (Pressure data to DIN 24312)

Size		2256	71500	
Nominal pressure p _N	bar	400 ¹)	350	
Peak pressure p _{max}	bar	450 ¹)	400	

¹⁾ Size 28 with S-shaft: 315/350 bar

The summ of the pressures at ports A and B may not exceed 700 bar.

Direction of flow

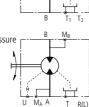
clockwise rotation	anti-clockwise rotation
A to B	B to A

Symbol

Size 22...56

A. B Service line ports T_1, T_2 Case drain

(1 port plugged)

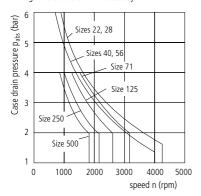

Size 71...500

A. B Service line ports

MA, MB Pressure gauge, working pressure

T, R(L) Case drain, Air bleed (1port plugged)

Flushing port (Sizes71...500)


Case drain pressure

The max. permissible leakage pressure (housing pressure) is dependent on speed (see diagram). The pressure in the housing must be equal to or greater than the external pressure on the shaft sealing ring

Max. leakage pressure (housing pressure)

6 bar (sizes 22...56) Pabs. max. 4 bar(sizes71...500)

A leakage line to the tank is necessary.

Installation and Commissioning Guidelines

General

At start-up and during operation the motor housing has imperatively to be filled up with hydraulic fluid (filling of the case chamber). Startup has to be carried out at low speed and without load till the system is completely bleeded.

At a longer standstill the case may discharge via operating line. At new start-up a sufficient filling of the housing has to be granted.

The leakage oil in the housing has to be discharged to the tank via highest positioned case drain port.

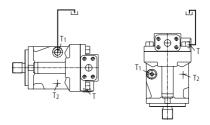
Installation position

- Sizes 22 56. Shaft horizontal or shaft down

- Sizes 71 (series1): Shaft horizontal, vertical installation position

as to agreement

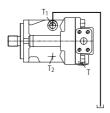
- Sizes 125...500: Optional, at vertical installation position

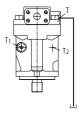

bearing flushing is recommended at port U

(as to RD 9205)

Installation below tank level

Motor below min. oil level in the tank (standard)


- → Fill up axial piston motor before start-up via highest positioned case drain port
- → Operate motor at low speed till motor system is completely filled
- → Minimum immerson depth of the drain line in the tank: 200mm (relative to the min_oil level in the tank)



Installation on top of tank level

Motor on top of min. oil level in the tank

- → Actions as installation below tank level
- → Note: installation position "drive shaft up" for sizes 22...56 not permissible

valid for operation with mineral oil

Table of values (theoretical values, without considering η_{mh} and η_{v} : values rounded)

	7 Jun 19 7												
Size			22	28	40	56	71	125	250	500			
Displacement	V_g	cm ³	22	28	40	56	71	125	250	500			
Max. speed	n _{max continuou}	s rpm	4250	4250	4000	3600	3200	2600	2200	1800			
	n _{max interm.} 1)	rpm	5000	5000	5000	4500	-	-	-	_			
Max. flow (at n _{max})	q _{V max}	L/min	93	119	160	202	227	325	550	900			
Torque constants	T _K	Nm/bar	0,35	0,445	0,64	0,89	1,13	1,99	3,97	7,95			
Torque (at $\Delta p = 400$ bar)	T _{max}	Nm	140	178	255	356	395 ²)	696 ²)	1391 ²)	2783²)			
Filling volume		L	0,3	0,3	0,4	0,5	2,0	3,0	7,0	11,0			
Moment of inertia about drive axis	J	kgm ²	0,0015	0,0015	0,0043	0,0085	0,0121	0,0300	0,0959	0,3325			
Actual starting torque at n = 0 rpm (Δp = 350 bar)		Nm (app	rox.)				320	564	1127				
Weight (approx.)	т	kg	11	11	15	21	34	61	120				
41				2.									

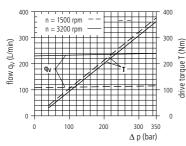
¹) Intermittent max. speed at overspeed: $\Delta p = 70...150$ bar

Calculation of size

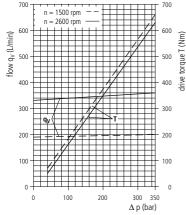
Flow	$q_v = \frac{V_g \bullet n}{1000 \bullet \eta_v}$	in L/min	$V_g = geometric displacement per rev. in cm3$ $\Delta p = pressure differential in bar$
Output speed	$n = \frac{q_V \bullet 1000 \bullet \eta_V}{V_g}$		$\begin{array}{ll} n & = \text{ speed in rpm} \\ \eta_v & = \text{ volumetric efficiency} \end{array}$
Output torque	$T = \frac{V_g \bullet \Delta p \bullet \eta_{mh}}{20 \bullet \pi}$	in Nm	$\eta_{\text{mh}} = \text{mechhyd. efficiency}$ $\eta_t = \text{overall efficiency}$
	$= T_K \bullet \Delta p \bullet \eta_{mh}$		
Output power	$P = \frac{T \bullet n}{9549} = \frac{2 \pi \bullet T \bullet n}{60000}$	in kW	
	$=\frac{q_{v}\bullet\Deltap\bullet\eta_{t}}{600}$		
Outros delices			

Output drive

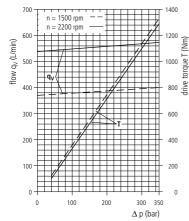
permissible axial and radial loading on drive shaft

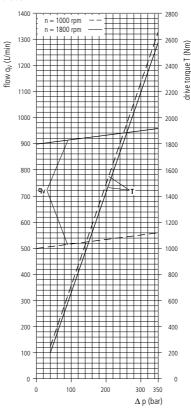

Size				22	28	40	56	
Distance of F _q	Fq↓	а	mm	17,5	17,5	17,5	17,5	
(from shaft shoulder)	· 	b	mm	30	30	30	30	
	a, b, c	С	mm	42,5	42,5	42,5	42,5	
Max. permissible radial force a	t distance a	F _{q max}	N	2500	2050	3600	5000	
	b	F _{q max}	N	1400	1150	2890	4046	
	c	F _{q max}	N	1000	830	2416	3398	
Max. permissible axial load	<u></u> ffh	- F _{ax max}	N	1557	1557	2120	2910	
	Fax =	+ F _{ax ma}	x N	417	417	880	1490	

Size				71	125	250	500
Max. axial force at housing pressure p_{max} 1 bar abs.	↓ ^{Fq} □	\pm $F_{ax max}$	N	1400	1900	3000	4000
Max. axial force at housing pressure p _{max} 4 bar abs.	± F _{ax}	+ F _{ax max}	N	810	1050	1850	2500
	X/2 X/2	- F _{ax max}	N	1990	2750	4150	5500
Max. radial force	×	F _{q max}	N	1700	2500	4000	5000

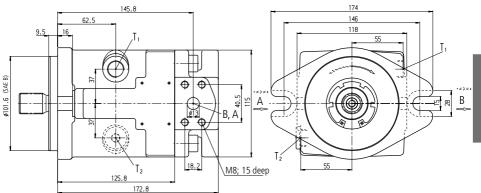

²) $\Delta p = 350 \text{ bar}$

Flow and Drive Torque


Size 71


Size 125

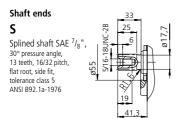
Size 250

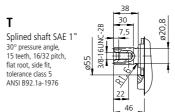


Size 500

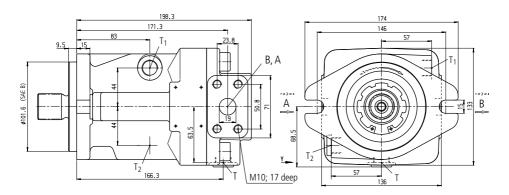
(Fluid: Hydraulic oil ISO VG 46 DIN 51519, t = 50°C)

Before finalising your design, please request a certified drawing.




Connections

A, B Service line ports SAE 1/2" 420 bar

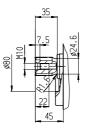

(6000 psi) high pressure series

T₁, T₂ Leakage port / oil filling port M18x1,5; 12 deep

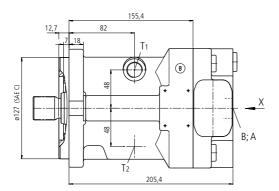
Before finalising your design, please request a certified drawing.

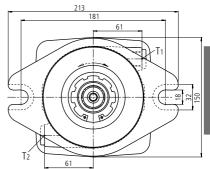
Connections

A, B Service line ports


SAE ³/₄" 420 bar (6000 psi) high pressure serie

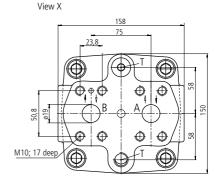
T, T₁, T₂ Leakage port / oil filling port


M18x1,5; 15 deep

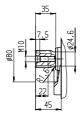

Shaft ends **Z**

Splined shaft W 30x2x30x14x9g DIN 5480

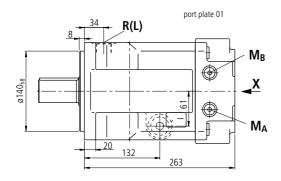
Before finalising your design, please request a certified drawing.

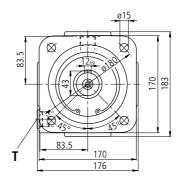


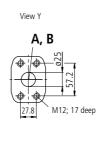
Connections

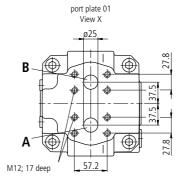

A, B Service line ports

T, T₁, T₂ Leakage port / oil filling port


SAE ³/₄" 420 bar (6000 psi) high pressure serie M 18x1,5 ; 12 deep





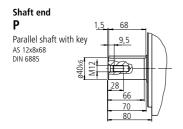

Before finalising your design, please request a certified drawing.

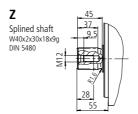
port plate 02

Connections

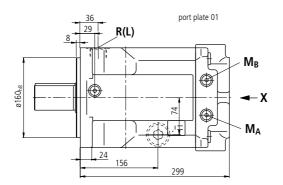
A, B service line ports

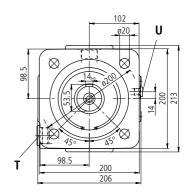
SAE 1"
(high pressure series)

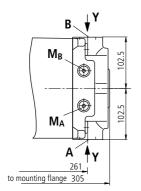

R (L) oil filling and bleed

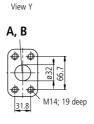

M27x2

T oil drain (plugged)


M_A, M_B
measuring port for pressure (plugged)


M14x1,5

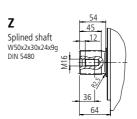



Before finalising your design, please request a certified drawing.

port plate 02

port plate 01 View X

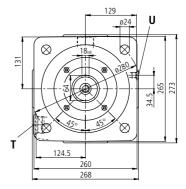
Connections

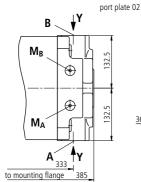

A, B service line ports

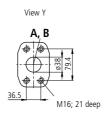
R (L) oil filling and bleed
M33x2
T oil drain (plugged)
M34x2
M_A, M_B measuring port for pressure (plugged)
M14x1,5
U Flushing port,
M14x1,5

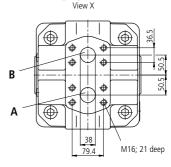
Shaft end P

Parallel shaft with key 14x9x80 DIN 6885






flushing of the bearings (plugged)


Before finalising your design, please request a certified drawing.

port plate 01

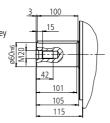
Connections

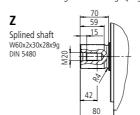
A, B service line ports

R (L) oil filling and bleed
T oil drain (plugged)

 ${\rm M_{A},\,M_{B}}$ measuring port for pressure (plugged)

U Flushing port, flushing of the bearings (plugged) SAE 1 ¹/₂" (high pressure series)


M42x2


M42x2 M14x1,5

M14x1,5

Shaft end **P**

Parallel shaft with key AS 18x11x100 DIN 6885

Bosch Rexroth AG
Mobile Hydraulics
Product Segment Axial Piston Units
Elchingen Plant
Glockeraustrasse 2
89275 Elchingen, Germany
Telephone +49 (0) 73 08 82-0
Facsimile +49 (0) 73 08 72 74
info.brm-ak@boschrexroth.de
www.boschrexroth.com/brm

Horb Plant An den Kelterwiesen 14 72160 Horb, Germany Telephone +49 (0) 74 51 92-0 Facsimile +49 (0) 74 51 82 21 © 2003 by Bosch Rexroth AG, Mobile Hydraulics, 89275 Elchingen All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

1/28

RE 91172/02.12

Replaces: 11.10

Fixed displacement motor Axial piston design A10FM / A10FF

Data sheet

Series 52 Sizes 10 to 63 Nominal pressure 280 bar Maximum pressure 350 bar Open and closed circuit

A10FM 23...63

A10FE 10...45 (2-hole-flange)

A10FE 11...18 (8-hole-flange)

Contents

Type code for standard program	2
Technical data	4
Dimensions A10FM sizes 23 to 63	8
Dimensions A10FE	
sizes 10 to 63	14
Flushing and boost pressure valve	24
Anti cavitation valve	24
Speed sensor	25
Installation instructions	26
General instructions	28

Features

- Fixed displacement motor in axial piston swashplate design for hydrostatic drives in open and closed circuit operation
- The output speed is proportional to the inlet flow
- The output torque increases with the pressure differential between the high and low pressure sides
- For use in mobile and industrial applications
- Long service life
 - High permissible output speeds
 - Well proven A10-rotary group technology

 - High power to weight ratio compact design
 - Plug-in version for space saving installation
 - Low noise level
 - Mechanical and hydraulic connections also acc. to SAE
 - Speed sensor optional
 - Integrated anti cavitation valve optional, i.e. for fan drives

018 023 028 037 045 058 063

Ordering code for standard program

A10F	М		/	52		_	٧		C	;					
01	02	03		04	05		06	07	08	3	09	,	10		11
	iston un														•
01 Swas	hplate des	sign, fixed	displacen	nent, nomi	nal press	ure 280 ba	r, maximur	n pressure	350	bar					A10F
Opera	ting mod	е													
02 Motor	, open an	d closed c	ircuit												M
Size (NG)														
03 Theoretical displacement see page 6 018 023 028 037 045 058 063													063		
	Series 04 Series 5, Index 2														52
															32
	ion of rot d on drive					alast Sa									1
1	a on arive	e snart				clockwise counter c									R ¹⁾
05						bidirectio									L" W
						Didirectio	i i cui								VV
Seals															
06 FKM	(Fluoro-ru	bber)													V
Drive								018	023	028	037	045	058	063	
		ISO 301						0	•	•	•	•	•	•	R
07 Spline								-	0	0	•	•	•	•	W
Taper	ed with w	oodruff ke	y and thre	aded end				0	•	•	•	•	•	•	С
Mount	ing flange	:						018	023	028	037	045	058	063	
08 SAE 2	2-hole							0	•	•	•	•	•	•	С
Ports f	or service	lines						018	023	028	037	045	058	063	
SAE-1			3 on side,	same side	Mountin	g bolts met	ric	-	•	•	•	•	•	•	10N00
09 -				side, same				0	•	•	•	•	•	•	16N00
Ventile								018	023	กวล	037	045	058	063	
	ut valves							018	•	925	•	•	•	•	0
		flushing v	alve					-	•	•	•	•	•	•	7
	ntegrated								1 -		1	1 -			

Prepared for speed sensor (for inductive speed sensor ID)

Speed sensor
Without speed sensor

Only necessary in conjunction with valve configuration "2" (integrated anti cavitation valve)

Ordering code for standard program

A10F	E		/	52		-	,	V									
01	02	03		04	05		(06	0	7	08	В	09)	10		11
	l piston un																
01 Swa	shplate de	sign, fixed	displacen	nent, nomi	nal pressu	ıre 280 b	ar, ma	aximu	m pre	ssure	350	bar					A10F
Ope	rating mod	le															
02 Mot	or, open an	d closed o	circuit														Е
Sizo	(NG)																
	oretical dis	placement	see page	6		010	011	014	016	018	023	028	037	045	058	063	
			1 0			[- 1 - 1	1	1	1	1	1		1	1			
Seri		0															
04 Seri	4 Series 5, Index 2														52		
Dire	Direction of rotation																
Viev	ved on driv	e shaft			se											R ¹⁾	
05						clockwis	е										L ¹⁾
	bidirectional														W		
Seal	s																
06 FKN	1 (Fluoro-ru	ibber)															٧
Delice	e shaft					010	011	01.4	016	010	023	000	027	045	050	062	
	ned shaft to	n ISO 301	9-1 (SAE	J744)		010	•	•	•	•	023	028	037	045	038	•	R
_ <u> </u>	ned shaft to						Ť-	Ť	Ť	-	0	0	•	•	•	•	W
_ <u>⊢</u>	ered with w					•	•	•	•	•	•	•	•	•	•	•	С
Man	nting flange	_				010	011	014	016	010	023	000	027	045	OFO	062	
	2-hole	<i>3</i>				010	•	014	•	•	U23	U28	-	U45	-	-	C ²⁾
	cial 2-hole						<u>-</u>	-	-	-	•	•	•	•	•	•	F
_ <u>_</u>	cial 8-hole						•	•	•	•	-	-	-	-	-	-	Н
	for service		2:			010	011	014	016	018	023	028	037	045	058	063	
mou	-flange poi inting bolts		o, on side,	same siu	е	-	-	-	-	-	•	•	•	•	•	•	10N00
09																	400100
Thre	aded ports	A and B,	metric, on	side, sam	ne side	•	•	•	•	•	•	•	•	•	•	•	16N00
Valv	es					010	011	014	016	018	023	028	037	045	058	063	
Witl	nout valves					0	•	0	•	•	•	•	•	•	•	•	0
10 Witl	n integrated	d flushing v	alve			-	-	-	-	-	•	•	•	•	•	•	7
Witl	n integrated	d anti cavit	ation valve	•		•	•	•	•	•	•	•	•	•	•	•	2
Spe	ed sensor					010	011	014	016	018	023	028	037	045	058	063	
	nout speed	sensor				•	•	•	•	•	•	•	•	•	•	•	
	pared for sp		or				Ť	Ť	Ť	0		_		_	0	0	D
(for	inductive s	peed sens	or ID)				-	-	_				•			9	U

- 1) Only necessary in conjunction with valve configuration "2" (integrated anti cavitation valve)
- 2) R-shaft with C-flange on sizes 10 to 18 in preparation

Fluids

Prior to project design, please see our technical data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable fluis) for detailed information on fluids and operating conditions.

For operation on environmentally acceptable fluids please consult us (when ordering, please state in clear text the fluid to be used).

Operating viscosity range

To achieve optimum values for efficiency and service life we recommend an operation viscosity (at operating temperature) within the range,

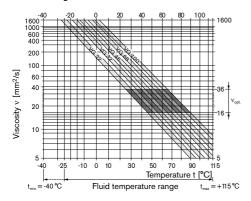
 v_{opt} = opt. operating viscosity 16 ... 36 mm²/s

referred to the tank temperature (open circuit).

Limit of viscosity range

For critical operation conditions the following values apply:

 v_{min} = 5 mm²/s (closed circuit) 10 mm²/s (open circuit) for short periods (t ≤ 1 min) at a max. perm. temperature of 115 °C.


Please note that the max. leakage fluid temperature of 115 °C is also not exceeded in certain areas (for instance bearing area). The fluid temperature in the bearing area is approx. 5 K higher than the average leakage fluid temperature

 $\begin{array}{ll} \nu_{\text{max}} = & 1600 \text{ mm}^2/\text{s} \\ & \text{for short periods (t \leq 1 \text{ min)}} \\ & \text{on cold start} \\ & (t_{\text{min}} = p \leq 30 \text{ bar, n} \leq 1000 \text{ min}^{-1}, -25 \text{ °C)}. \end{array}$

At temperatures between -40 °C and -25 °C special measures are required, please consult us for further information.

For detailed information on operation with low temperatures see data sheet RE 90300-03-B.

Selection diagram

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The fluid should be selected so that witin the operating temperature range, the viscosity lies within the optimum range (v_{opt}), see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

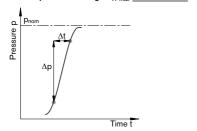
Example: at an ambient temperature of X $^{\circ}$ C the operating temperature in the tank is 60 $^{\circ}$ C. In the optimum viscosity range ($v_{\rm opt}$; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and input speed and is always higher than the tank temperature. However, at no point of the component may the temperature exceed 115 °C.

If it is not possible to comply with the above conditions because of extreme operating parameters please consult us.

Filtration of the hydraulic fluid

Filtration improves the cleanliness level of the hydraulic fluid, which, in turn, increases the service life of the axial piston unit.


To ensure the functional reliability of the axial piston unit, a gravimetric evaluation is necessary for the hydraulic fluid to determine the amount of contamination by solid matter and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 to ISO 4406 is to be maintained.

If above requirements cannot be maintained please consult us.

Operating pressure range

Pressure at service line port (pressure port) A or B

Nominal pressure p _{nom}	_ 280 bar absolute					
Maximum pressure p _{max} Single operating period	350 bar absolute 2.5 ms					
Total operating period	300 h					
Minimum pressure (high pressure side) _	10 bar ²⁾					
Rate of pressure change R _{A max}	16000 bar/s					

Outlet pressure

at n_{max}

Minimum pressure at low pressure side pabs max ______18 bar

Case drain pressure

Maximum permissible case drain pressure (at port L_1):

P _{max abs} motor operation in open circuit	4 bar _{abs}
p _{max abs} motor operation in closed circuit	4 bar _{abs}
P _{max obs} numn/motor operation in open circuit	2 har

Direction of flow

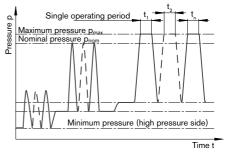
viewed on drive shaft	
clockwise rotation	counter clockwise rotation
A to B	B to A

Definitions

Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax


The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)

Minimum pressure at the high pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Rate of pressure change RA

Maximum permissible rate of pressure rise and pressure reduction during a pressure change, over the entire pressure range.

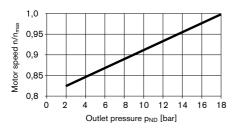
Total operating period = $t_1 + t_2 + ... + t_n$

¹⁾ Other values on request

²⁾ Lower pressures time dependent, please consult us.

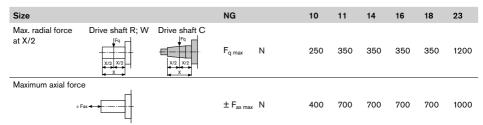
Table of values (theoretical values, without efficiency and tolerances: valuea rounded)

Size		NG		010	011	014	016	018	023
Displacement		$V_{g max}$	cm ³	10.6	11.5	14.1	16.1	18	23.5
Speed 1)									
at V _{g max}		n_{nom}	rpm	5000	4200	4200	4200	4200	4900
Input flow									
at n _{nom}		$q_{v max}$	L/min	53	48	59	68	76	115
Power									
at n_{nom} , $\Delta p = 280$ bar	P_{max}	kW	24.7	22.5	27.6	31.6	35.3	53.6	
Actual starting torque									
at n= 0 rpm, $\Delta p = 280$	bar		Nm	37.5	30	45	53	67.5	75
Torque									
at V _{g max}	$\Delta p = 280 \text{ bar}$	T_{max}	Nm	47	51	63	72	80	105
Torsional stiffness	R	С	Nm/rad	-	-	-	-	14835	28478
Drive shaft	W	С	Nm/rad	-	-	-	-	-	-
	С	С	Nm/rad	15084	18662	18662	18662	18662	30017
Moment of inertia rotary g	roup	J _{TW}	kgm ²	0.0006	0.00093	0.00093	0.00093	0.00093	0.0017
Maximum angular accelera	ation	α	rad/s ²	8000	6800	6800	6800	6800	5500
Case volume		V	L	0.1	0.15	0.15	0.15	0.15	0.6
Weight approx.		m	kg	5	6.5	6.5	6.5	6.5	12


Size		NG		028	037	045	058	063
Displacement		V _{g max}	cm ³	28.5	36.7	44.5	58	63.1
Speed 1)								
at V _{g max}		n _{nom}	rpm	4700	4200	4000	3600	3400
Input flow								
at n _{nom}		q _{v max}	L/min	134	154	178	209	215
Power								
at n_{nom} , $\Delta p = 280$ bar		P_{max}	kW	62.5	71.8	83.1	97.4	100.1
Actual starting torque								
at n= 0 min ⁻¹ , $\Delta p = 280$ bar			Nm	105	125	170	205	230
Torque								
at V _{g max}	$\Delta p = 280 \text{ bar}$	T_{max}	Nm	127	163	198	258	281
Torsional stiffness	R	С	Nm/rad	28478	46859	46859	80590	80590
Drive shaft	W	С	Nm/rad	-	38489	38489	60907	60907
	С	С	Nm/rad	30017	46546	46546	87667	87667
Moment of inertia rotary group		J _{TW}	kgm ²	0.0017	0.0033	0.0033	0.0056	0.0056
Maximum angular acceleration		α	rad/s ²	5500	4000	4000	3300	3300
Case volume		٧	L	0.6	0.7	0.7	0.8	0.8
Weight approx.		m	kg	12	17	17	22	22

¹⁾ for maximum speed an outlet pressure (in low pressure side) of 18 bar is required (see diagram on page 7)

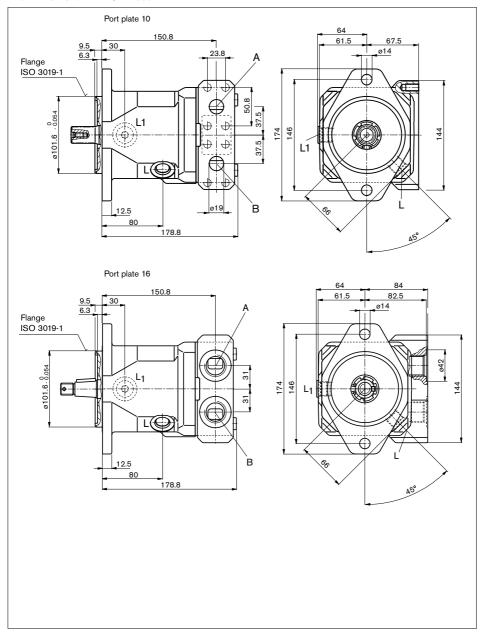
Note


Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.

Permissible motor speed in relation to outlet pressure

Determination of motor size (NG)

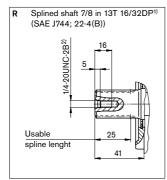
Permissible radial and axial forces on the drive shaft

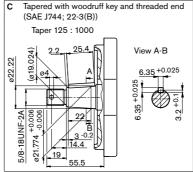


Size			NG		28	37	45	58	63
Max. radial force at X/2	Drive shaft R; W	Drive shafte C	F _{q max}	N	1200	1500	1500	1700	1700
Maximum axial force	e Fax ←		± F _{ax max}	N	1000	1500	1500	2000	2000

Dimensions A10FM size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FM 23-28/52W-VxCxxN000



Dimensions A10FM size 23 - 28

Before finalising your design request a certified installation drawing. Maße in mm.

Drive shafts

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	X ⁴⁾

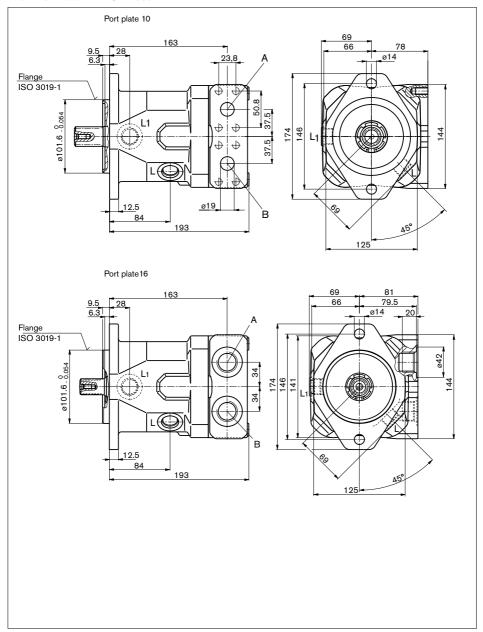
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

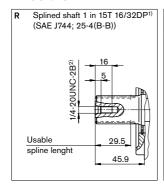
⁵⁾ The counterbore can be deeper than stipulated in the standard.

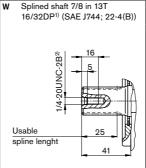

O = Must be connected (plugged on delivery)

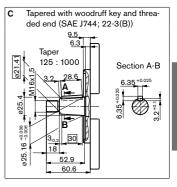
X = Plugged (in normal operation)

Dimensions A10FM size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FM 37-45/52W-VxCxxN000




Dimensions A10FM size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm.

Drive shafts

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

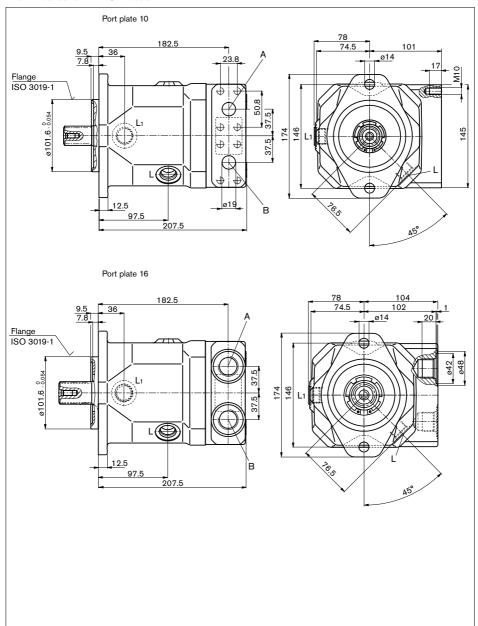
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

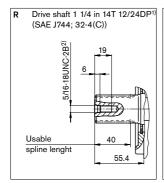
⁵⁾ The counterbore can be deeper than stipulated in the standard.

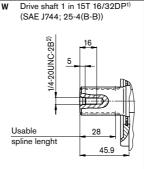

O = Must be connected (plugged on delivery)

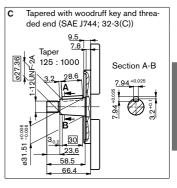
X = Plugged (in normal operation)

Dimensions A10FM size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FM 58-63/52W-VxCxxN000




Dimensions A10FM size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm

Drive shafts

Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

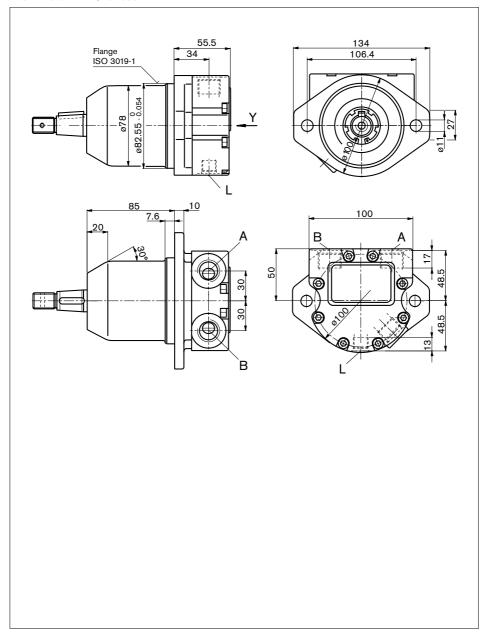
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut.

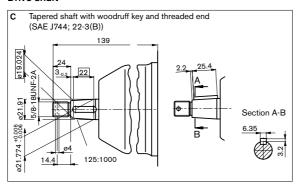
⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

⁵⁾ The counterbore can be deeper than stipulated in the standard.


O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions A10FE size 10


Before finalising your design request a certified installation drawing. Dimensions in mm

A10FE 10/52W-VxC16N000

Dimensions A10FE size 10

Drive shaft

Before finalising your design request a certified installation drawing. Dimensions in mm.

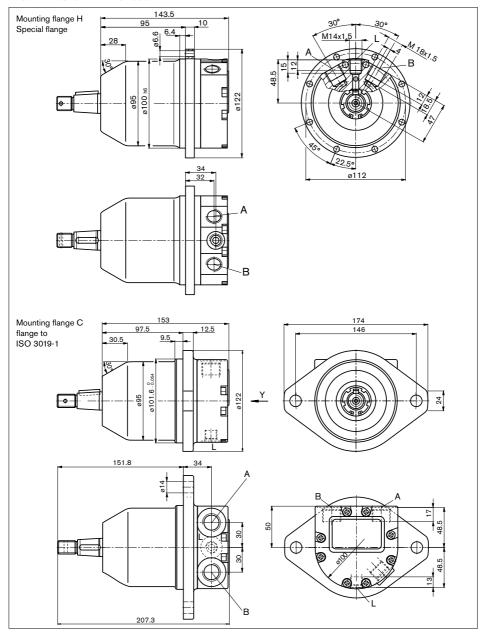
Designation	Port for	Standard	Size ²⁾	Max. pressu- re [bar] ³⁾	State
A, B	Service line	DIN 3852-1	M18 x 1.5; 17 deep	350	0
L	Case drain	DIN 3852-1	M14 x 1.5; 13 deep	4	O ⁴⁾

¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut.

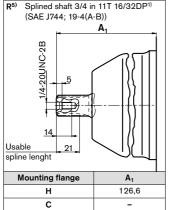
⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

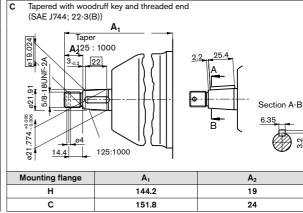

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions A10FE size 11 - 18

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FE 11-18/52W-Vxx16N000



Dimensions A10FE size 11 - 18

Before finalising your design request a certified installation drawing. Dimensions in mm

Drive shafts

Designation	Port for	Standard	Size ²⁾	Max. pressu- re [bar] ³⁾	State
A, B	Service line	DIN 3852-1	M18 x 1.5; 12 deep	350	0
L	Case drain	DIN 3852-1	M14 x 1.5; 12 deep	4	O ⁴⁾
L ₁	Case drain	DIN 3852-1	M14 x 1.5; 12 deep	4	X ⁴⁾

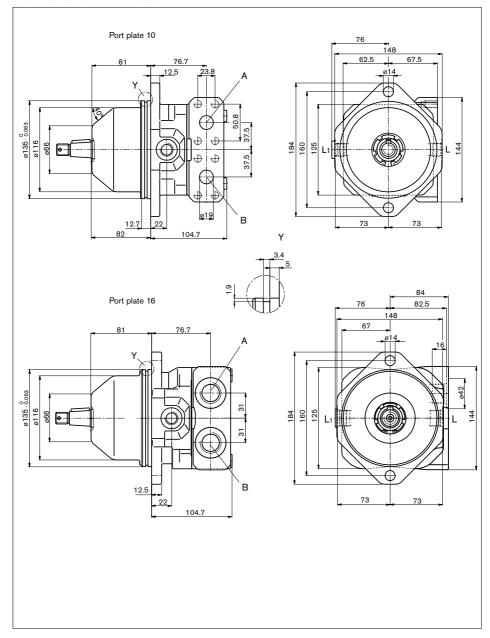
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

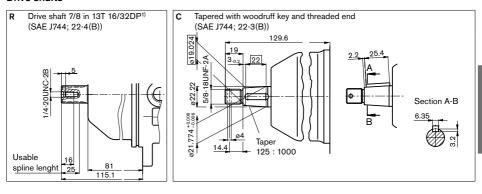
⁵⁾ R-shaft with C-flange for size 10 resp. 11 to 18 in preparation.


O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions A10FE size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm


A10FE 23-28/52W-VxFxxN000

Dimensions A10FE size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm

Drive shafts

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	X ⁴⁾

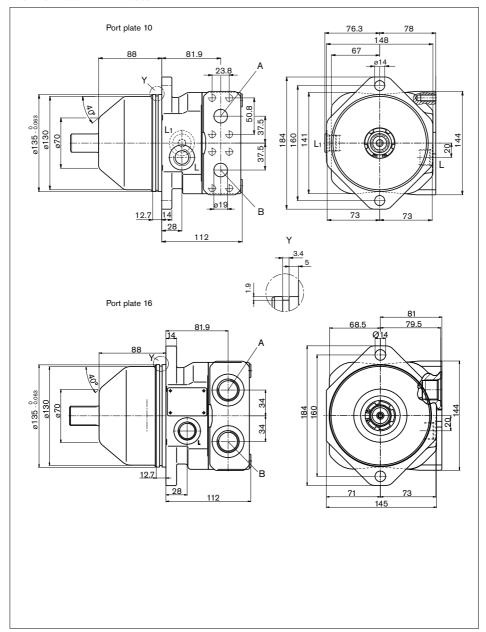
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

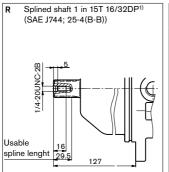
⁵⁾ The counterbore can be deeper than stipulated in the standard.

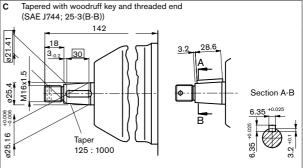

O = Must be connected (plugged on delivery)

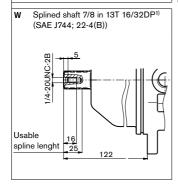
X = Plugged (in normal operation)

Dimensions A10FE size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm


A10FE 37-45/52W-VxFxxN000




Dimensions A10FE size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm.

Drive shafts

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure range)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

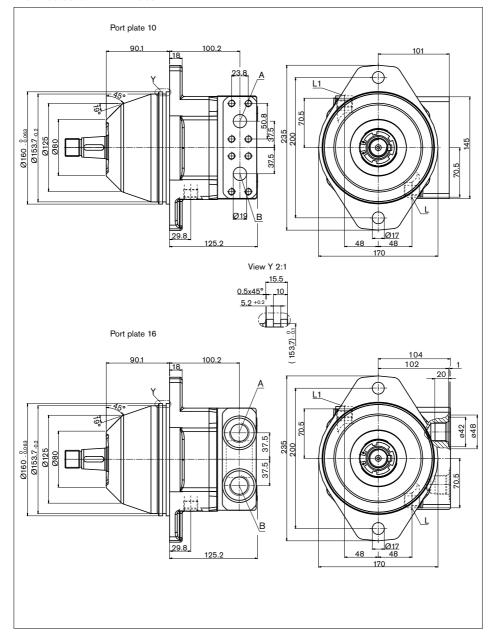
 $^{^{1)}\,\}text{ANSI}\,\text{B92.1}\,\text{a-1996},\,30^{\circ}\,\text{pressure}$ angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

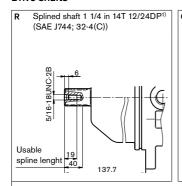
⁵⁾ The counterbore can be deeper than stipulated in the standard.

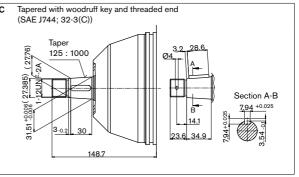

O = Must be connected (plugged on delivery)

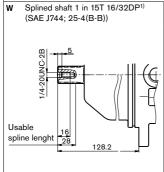
X = Plugged (in normal operation)

Dimensions A10FE size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FE 58-63/52W-VxFxxN000




Dimensions A10FE size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.

Drive shafts

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure range)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

 $^{^{1)}}$ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Pressure data in bar absolut.

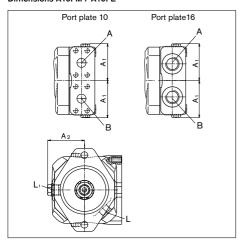
⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

⁵⁾ The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Flushing and boost pressure valve

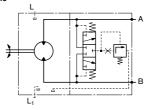

Before finalising your design request a certified installation drawing. Dimensions in mm.

Ordering Option N007

This valve assembly is used to flush an unacceptable heat load out of the closed loop circuit, and to maintain the necessary minimum boost pressure (16 bar, fixed setting). The valve is integrated into the port plate.

A built-in fixed orifice determines the flushing flow, which is taken out of the low pressure side of the loop and directed into the motor housing. It leaves the housing together with the case drain flow. This combined flow is replenished with fresh oil by means of the boost pump.

Dimensions A10FM / A10FE


Standard flushing flow

With low press. side $p_{ND} = 20$ bar and an orifice dia. 1,6 mm: 5,5 L/min (sizes 23 - 63). Other orifice diameters are available, please state in clear text.

Further flushing flows for sizes 23 - 63 see table:

Flushing flow [L/min]	Orifice ø [mm]
3.5	1.2
5.5	1.6
9	2

Schematic

	Port for
A; B	Service line
L, L ₁	Case drain (L ₁ plugged)

Size (NG)	A ₁	A ₂
23/28	72	72
37/45	77	77
58/63	77	82

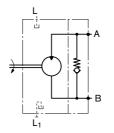
Anti cavitation valve

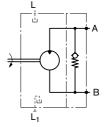
Ordering option N002

When stopping a system with a relatively large mass (i.e. fan drive) the anti-cavitation valve provides fluid to the motor inlet during the coasting time.

The valve assembly is integrated inside the port plate.

Important


It is necessary to specify a direction of rotation (clockwise or counter clockwise) looking at the shaft end of the motor.


The outside dimensions are identical to the standard units except the A10FE 11 - 18 with the 8-hole mounting flange, for the difference in lenght see unit dimensions.

Schematic

Clockwise rotation

Counter clockwise rotation

	Port for
A; B	Service line
L, L ₁	Case drain (L ₁ plugged)

Speed sensor

Ordering option D

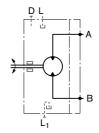
The version A10FM...D comprises gearing around the rotary unit (prepared for speed pickup).

In this case, the rotating cylinder barrel can provide a speed dependent signal, which can be picked up by a suitable sensor and processed for further evaluation. Sensor port (D) will be closed for delivery.

A motor, prepared for speed sensing will be delivered without the necessary accessory parts which must be ordered separately.

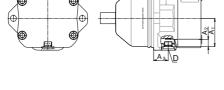
Inductive speed sensor ID R 18/20-L250 (see RE 95130) and mounting parts (spacer and 2 seals per kit) can be ordered separately with the following part numbers:

Size (NG)	Ordering Nr.	Nr. of teeth
23/28	R902428802	48
37/45	R902433368	48
58/63	in preparation	9


Dimensions

A10FE....D

Size (NG)	A1	A2	A3	Port "D" (plugged)
23/28	61	15.5	27.7	M18 x 1.5
37/45	66	17	33.9	M18 x 1.5
58/63	69	14.8	46.1	M18 x 1.5


Schematic

	Port for
A; B	Service line
L, L ₁	Case drain (L ₁ plugged)

A10FM....D

Size (NG)	A1	A2	A3	Port "D" (plugged)
23/28	61	15.5	101.8	M18 x 1.5
37/45	66	17	84.2	M18 x 1.5
58/63	69	14.8	128.5	M18 x 1.5

Installation instructions

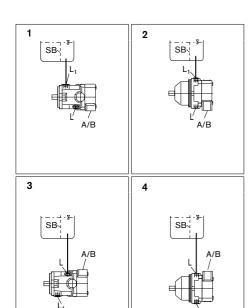
Genera

At all times, the axial piston unit must be filled with fluid and air bled during commissioning and operation. This must also be observed after a prolonged period of standstill as the system may drain back to the reservoir via the hydraulic lines.

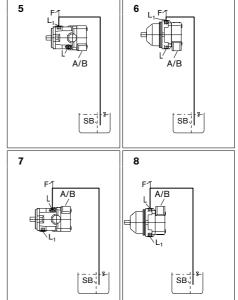
The case drain fluid in the motor housing must be directed to tank via the highest available tank port and must drain the fluid below the minimum fluid level in the reservoir.

Installation position

See following examples 1 to 8.


Recommended installation positions: 1 and 3 resp. 2 and 4. Additional installation positions are available on request.

Below reservoir installation (standard)


Below reservoir installation means, that the motor is mounted below the minimum fluid level.

Above reservoir installation

Above reservoir installation means, that the motor is mounted above the minimum fluid level. A check valve in the case drain line is only permissible under certain conditions; please consult

Install. position	Air bleed	Filling
1, 2	-	L ₁
3, 4	_	L

Install. position	Air bleed	Filling
5, 6	F	L ₁ (F)
7, 8	F	L (F)

 $L/L_1 = Case drain port$, F = Air bleed resp. filling port, , SB = Baffle.

Notes

General instructions

- The motor A10FM and A10FE has been designed to be used in open and closed circuits.
- Project planning, assembly and commissioning of the axial piston unit require the involvement of qualified personnel.
- Before operating the axial piston unit read the relevant operating manual thoroughly and completely. If needed request this information from Rexroth
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
 - Pressure ports:

The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

- The service line ports and function ports are only designed to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to DIN 13849.
- The following tightening torques apply:
 - Fittings:
 - Observe the manufacturer's instructions regarding the tightening torques of the fittings used.
 - Mounting bolts:

For fixing screws with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque individually according to VDI 2230.

- Mounting bolts threads and threaded ports in the axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the threaded plugs, supplied with the axial piston unit, the required tightening torques M_V apply. For values, see the following table.

Ports Standard		Maximum permissible tightening torque for the female threads M _{G max}	Required tightening torque for the threaded plugs M _V	WAF hexagon socket of the threaded plugs
DIN 3852	M14 x 1.5	80 Nm	35 Nm ¹⁾	6 mm
	M18 x 1.5	140 Nm	60 Nm ¹⁾	8 mm
	M27 x 2	330 Nm	135 Nm ¹⁾	12 mm
ISO 11926	3/4-16 UNF-2B	160 Nm	62 Nm	5/16 in
	7/8-14 UNF-2B	240 Nm	110 Nm	3/8 in

¹⁾ The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

Avial Piston Units An den Kelterwiesen 14 72160 Horb a.N., Germany Telephone +49 (0) 74 51 92-0 +49 (0) 74 51 82 21 info.brm-ak@boschrexroth.de www.boschrexroth.com/axial-piston-motor

Bosch Rexroth AG

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Axial Piston Motors

Variable motors

Designation	Туре	Size	Series	Nominal pressure	Data sheet	page
Variable motor	A6VM	281000	63	350400 bar	RE 91604	167
variable motor	AOVIVI	261000	63	350400 bar	RE 91604	107
Variable motor	A6VM	60280	71	450 bar	RE 91610	247
Variable plus is meter	A6VE	28250	63	350400 bar	RF 91606	323
Variable plug-in motor	AOVE	26250	63	350400 bar	KE 91000	323
Variable plug-in motor	A6VE	60170	71	450 bar	RE 91616	363
W : 11	A 40\ /\ A /\	00 05	50	0001	DE 04500	444
Variable motor	A10VM/E	2885	52	280 bar	RE 91703	411

Bosch Rexroth AG RE 90010-02/07.2012

Axial Piston Variable Motor A6VM

RE 91604/06.12

1/80

Replaces: 07.09

Data sheet

Series 63 Size

Size Nominal pressure 28 to 200 400 bar/450 bar 250 to 1000 350 bar/400 bar Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	5
HD - Proportional control hydraulic	10
EP - Proportional control electric	14
HZ - Two-point control hydraulic	18
EZ – Two-point control electric	19
HA - Automatic control high-pressure related	21
DA - Automatic control speed-related	27
Electric travel direction valve (for DA, HA.R)	29
Dimensions 28 to 1000	30
Connector for solenoids	70
Flushing and boost pressure valve	71
Counterbalance valve BVD and BVE	73
Swivel angle indicator	77
Speed sensors	78
Installation instructions	79
General instructions	80

Features

- Variable motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits
- For use in mobile and stationary applications
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The displacement can be infinitely changed from $V_{q \text{ max}}$ to $V_{q \text{ min}} = 0$.
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and low-pressure side and with increasing displacement.
- Wide control range with hydrostatic transmissions
- Wide selection of control devices
- Cost savings through elimination of gear shifts and possibility of using smaller pumps
- Compact, robust motor with long service life
- High power density
- Good starting characteristics
- Small swing torque

Ordering code for standard program

	A6V		М					/	63	W		_	٧								-	
01	02	0.3	04	05	06	07	08		0.9	10	11		12	13	14	15	16	17	18	19		20

Hydraulic fluid

Mineral oil and HFD. HFD for sizes 250 to 1000 only in combination with long-life bearings "L" (without code)					
01	HFB, HFC hydraulic fluid	Sizes 28 to 200 (without code)			
		Sizes 250 to 1000 (only in combination with long-life bearings "L")	Е		

Axial piston unit

02 Bent-axis design, variable A6V

	Drive shaft bearing	28200	250	355	500	1000		
03	Standard bearing (without code)	•	•	•	•	-		l
	Long-life bearing	-	•	•	•	•	L	١

Operating mode

04	Motor (plug-in motor A6VE, see RE 91606)	М	٦

Sizes (NG)

05 Geometric displacement, see table of values on page 8	28	55	80	107	140	160	200	250	355	500	1000	

Control devices

Proportional control hy	rdraulic Δ	p = 10 bar	•	•	•	•	•	•	•	•	•	•	•	HD1
	Δ	p = 25 bar	•	•	•	•	•	•	•	•	•	•	•	HD2
	Δ	p = 35 bar	-	-	-	-	-	-	-	•	•	•	•	HD3
Two-point control hydr	aulic		-	-	-	-	-	-	-	•	•	•	•	HZ
			•	-	-	-	•	•	•	-	-	-	-	HZ1
			-	•	•	•	-	-	-	-	-	-	-	HZ3
Proportional control el	ectric	12 V	•	•	•	•	•	•	•	•	•	•	•	EP1
		24 V	•	•	•	•	•	•	•	•	•	•	•	EP2
Two-point control elec-	tric	12 V	•	-	-	-	•	•	•	•	•	•	•	EZ1
		24 V	•	-	-	-	•	•	•	•	•	•	•	EZ2
		12 V	-	•	•	•	-	-	-	-	-	-	-	EZ3
6	24 V	-	•	•	•	-	-	-	-	-	-	-	EZ4	
Automatic control high	-pressure related													
	with minimum pressure incre $\Delta p \le approx$. 10 bar	ase	•	•	•	•	•	•	•	•	•	•	•	HA1
	with pressure increase $\Delta p =$	100 bar	•	•	•	•	•	•	•	•	•	•	•	HA2
Automatic control spe	ed-related													<u> </u>
$p_{St}/p_{HD} = 3/100$	hydraulic travel direction valv	e	-	_	-	-	-	-	-	•	•	•	0	DA
p _{St} /p _{HD} = 5/100	hydraulic travel direction valv	e	•	•	•	•	•	•	•	-	-	-	-	DA1
	electric travel direction valve	12 V	•	•	•	•	•	•	•	-	-	-	-	DA2
	+ electric V _{g max} -circuit	24 V	•	•	•	•	•	•	•	-	-	-	-	DA3
p _{St} /p _{HD} = 8/100 hydraulic travel direction val		'e	•	•	•	•	•	•	•	-	-	-	-	DA4
	electric travel direction valve	12 V	•	•	•	•	•	•	•	-	-	-	-	DA5
	+ electric V _{g max} -circuit	24 V	•	•	•	•	•	•	•	-	-	-	-	DA6

	Pressure control (only t	or HD, EP)	28	55	80	107	140	160	200	250	355	500	1000	
ſ	Without pressure control	(without code)	•	•	•	•	•	•	•	•	•	•	•	
1	Pressure control	fixed setting	•	•	•	•	•	•	•	•	•	•	•	D
ľ	'	hydraulic override, two-point	•	•	•	•	•	•	•	1)	1)	1)	1)	Е
1		hydraulic remote control, proportional	-	_	-	_		_	-	•	•	•		G

 $[\]bullet$ = Available O = On request \blacktriangle = Not for new projects - = Not available = Preferred program

¹⁾ Fitted as standard with version D (sizes 250 to 1000)

Ordering code for standard program

										<u> </u>													
	A6V		М					/	63	W		-	٧									- [
01	02	03	04	05	06	07	80		09	10	11		12	13	14	15	16	17	18	3 1	9	工	20
	Overrides	for	ontr.	مام كا	11 on	4 H V J	,					28	55	80	107	140	160	200	250	255	500	1000	
	Without											20	•	•	107	140	•	200	250	333	900	•	
	Hydraulic						opor	tiona	l			•	•	•	•	•	•	•	•	•	•	•	T
	Electric o						•				12 V	•	•	•	•	•	•	•	_	-	-	-	U1
8(24 V	•	•	•	•	•	•	•	-	-	-	-	U2
	Electric o	verrid	le								12 V	•	•	•	•	•	•	•	-	-	-	-	R1
	+ electric	trave	l dire	ction	valve						24 V	•	•	•	•	•	•	•	-	-	-	-	R2
	Series																						
09	Series 6,	index	3																				63
_																							
10	Viewed or				livootic	nol																	w
_	viewed of	II UIIV	e sna	it, bic	mecuc	ла																	_ vv
	Setting ra											28	55	_	_	140	160	200	250	355	500	1000	
	$V_{g min} = 0$				thout							•	•	•	•	•	•	•	-	-	-	-	
11	$V_{g min} = 0$).8 V _g		↓-	-	-	-	-	_	-	•	•	•	•	1
	$V_{g min} > 0$.4 V _g	_{max} to	0.8 \	g max	Vgn	nax =	V _{g ma}	_{ax} to C).8 V _g	max	-	-	-	-	-	-	-	•	•	•	•	2
	Seals																						
12	FKM (fluo	r-cao	utchc	ouc)																			٧
	Drive sha	fts										28	55	80	107	140	160	200	250	355	500	1000	
	Splined s		DIN 5	480								•	•	•	•	-	•	•	_	-	-	-	Α
13	'											•	•	•	•	•	•	-	•	•	•	•	z
	Parallel ke	eyed	shaft	DIN 6	8885							Τ-	-	-	-	-	-	-	•	•	•	•	Р
	Mounting	flone										28	55	80	107	140	160	200	250	255	500	1000	
	ISO 3019		jes							4-ho	le		•	•	•	140	•	200	230	-	-	-	В
14	100 0010	-								8-ho		+-	-	_	-	-	-	-	_	•	•	•	Н
	SAE flanc			ce lin	ies ³⁾					01	0	28	55	80		_		200		355 •			
	A and B a									UI	7	•	•	Ť	•	•	•	•	•	•	•	•	010 017
	SAE flang	10 001	rte							02	0	•	•	•	•	•	•	•	•	•	•	•	020
	A and B a			osite						02	7	•	•	•	•	•			÷	•	•	•	020
	SAE flang	ne noi	rts							15													
15	A and B a			osite	+ rea	r					0	-	-	-	-	-	-	-	•	•	•	•	150
	Port plate						В١	۷D		37		Ι_	_	_		_	_	_	_	_	_	_	370
	valves for valve ⁴⁾	mour	nting	a cou	nterba	lance					0				_								378
	valve						_			38	8	<u> -</u>	•	•	•	•	•	•	● ₆₎	-	-	-	380
							В١	VΕ		38			-	-	•	•	•	•	_6)	_	-	-	388
	Valves (se	e paç	ges 7	1 to 7	'6)							_											
	Without v	alve									0												
	Flushing a	and b	oost	press	ure va	lve mo	unte	ed			7]											
	Counterb	alanc	e valv	e mo	unted	5)					8												

- ▲ = Not for new projects 2) Specify exact settings for $V_{g \, min}$ and $V_{g \, max}$ in plain text when ordering: $V_{g \, min} = ... \, cm^3$, $V_{g \, max} = ... \, cm^3$
- 3) Metric fastening thread
- 4) Only possible in combination with HD, EP and HA control. Note the restrictions on page 74.
- 5) Specify ordering code of counterbalance valve according to data sheet (BVD RE 95522, BVE RE 95525) separately. Note the restrictions on page 74.

- = Not available

6) Counterbalance valve MHB32, please contact us.

O = On request

= Preferred program

• • • • • • • • • B

Ordering code for standard program

	A6V		М					/	63	W		-	٧									-								
01	02	03	04	05	06	07	08		09	10	11		12	13	14	15	16	17	18	3	19		20							
	Speed sensors (see page 78)											28	55	80	107	140	160	200	250	355	500	1000)7)							
	Without s	peed	l sens	or								•	•	•	•	•	•	•	•	•	•	•	0							
	Prepared	Prepared for HDD speed sensor						T-	•	A	A	A	A	A	\blacktriangle	•	•	-	F											
16	HDD speed sensor mounted ⁸⁾						-	•	A	A	A	A	A	lack	•	•	-	Н												
	Prepared	for D	SA s	oeed	senso	or						•	•	•	•	•	•	•	0	0	0	-	U							
	DSA speed sensor mounted ⁸⁾											•	•	•	•	•	•	•	0	0	0	-	V							
	Swivel angle sensor (see page 77)											28	55	80	107	140	160	200	250	355	500	1000)							
	Without s	wivel	angle	sens	sor (w	rithou	t code	e)				•	•	•	•	•	•	•	•	•	•	-								
17	Optical swivel angle sensor							-	-	-	-	-	_	-	•	•	•	•	V											
	Electric s	wivel	angle	sens	or							-	-	-	-	-	_	-	•	•	•	•	E							
	Connecto	r for	soler	oids	(see	page	70)									28 to	200		2	50 t	o 10	00								
	Without co	nnec	tor (wi	thout	solenc	id, on	ly with	hydr	aulic c	ontrol	s)						•				-		0							
,,	(size 250 to 1000 without code)					(size 250 to 1000 without code)								(size 250 to 1000 without code)										-				•		
18	DEUTSCH - molded connector, 2-pin - without suppressor diode											•				-		Р												
	HIRSCHMANN connector - without suppressor diode (without code)													-				•												
	Beginning of control								28	55	80	107	140	160	200	250	355	500	1000)										
	At V _{q min} (standard for HA)						•	•	•	•	•	•	•	•	•	•	•	Α												

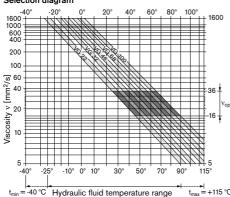
Standard	/ cnoolol	vorcion

At $V_{g max}$ (standard for HD, HZ, EP, EZ, DA)

		Standard version (without code)	
	20	Standard version with installation variants, e. g. T ports against standard open or closed	-Y
1		Special version	-s

^{● =} Available ○ = On request ▲ = Not for new projects -= Not available = Preferred program

⁷⁾ Please contact us.


⁸⁾ Specify ordering code of sensor according to data sheet (DSA - RE 95133, HDD - RE 95135) separately and observe the requirements on the electronics.

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable motor A6VM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC, or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum viscosity range (v_{opt.}, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U or using a flushing and boost pressure valve (see pages 71 and 72).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}\text{C}$	$ \begin{array}{l} t \leq 3 \text{ min, without load } (p \leq 50 \text{ bar)}, \\ n \leq 1000 \text{ rpm (sizes } 28 \text{ to } 200), \\ n \leq 0.25 \bullet n_{\text{nom}} \text{ (sizes } 250 \text{ to } 1000) \end{array} $
Permissible temperature	difference	$\Delta T \leq 25 \ K$	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400	T = -40 °C to -25 °C	At $p \leq 0.7$ • $p_{nom},~n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference		ΔT = approx. 12 K	between hydraulic fluid in the bearing and at port T.
			The bearing temperature can be reduced by flushing via port U.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$\nu_{min} \geq 7$	$T_{max} = +103 ^{\circ}C$	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 6

- 1) At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).
- 2) Sizes 250 to 1000, please contact us.

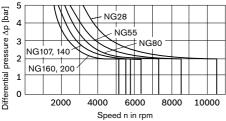
Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

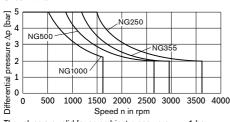
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.


Shaft seal

Permissible pressure loading


The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

Sizes 28 to 200

The values are valid for an ambient pressure $p_{abs} = 1\,$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Influence of case pressure on beginning of

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

HD, HA.T (sizes 28 to 200)	increase
HD, EP, HA, HA.T (sizes 250 to 1000)	increase
DA	decrease

With the following controls, an increase in the case pressure has no influence on the beginning of control:

EP, HA, HA.R, HA.U (sizes 28 to 200)

The factory settings for the beginning of control are made at $p_{abs}=2$ bar (sizes 28 to 200) and $p_{abs}=1$ bar (sizes 250 to 1000) case pressure.

Direction of flow

Direction of rotation, viewed on drive shaft									
clockwise	counter-clockwise								
A to B	B to A								

Long-life bearings

Sizes 250 to 1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearings and case flushing via port U is recommended.

Flushing flow (recommended)

NG	250	355	500	1000
a _{v flush} (L/min)	10	16	16	16

Operating pressure range

(operating with mineral oil)

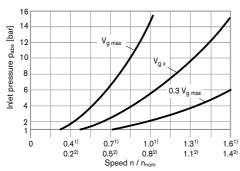
Pressure at service line port A or B

Sizes 28 to 200

Nominal pressure p _{nom}	400 bar absolute
Maximum pressure p _{max}	450 bar absolute
Single operating period	10 s
Total operating period at	300 h
Sizes 250 to 1000	

Nominal pressure pnom	350 bar absolute
Maximum pressure p _{max}	400 bar absolute 10 s 300 h

Minimum pressure (high-pressure side) ___25 bar absolute


Summation pressure (pressure A + pressure B) $p_{Su}\,_\,700$ bar

Rate of pressure change R_{A max}

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve 16000 bar/s

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).

¹⁾ For sizes 28 to 200

This diagram is valid only for the optimum viscosity range from $\nu_{opt}=36$ to 16 $\text{mm}^2/\text{s}.$

Please contact us if the above conditions cannot be satisfied.

Note

Values for other hydraulic fluids, please contact us.

Definition

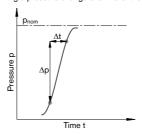
Nominal pressure p_{nom}

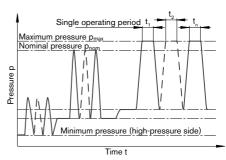
The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.


Summation pressure psu

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

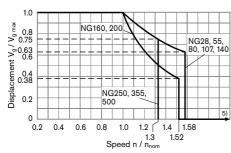
Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_{1+}t_{2+...+}t_{n}$

²⁾ For sizes 250 to 1000

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size		NG	28	55	80	107	140	160	200	250	355	500	1000
Displacement geometric ¹⁾ ,	V _{g max}	cm ³	28.1	54.8	80	107	140	160	200	250	355	500	1000
per revolution	V _{g min}	cm ³	0	0	0	0	0	0	0	0	0	0	0
	V _{g x}	cm ³	18	35	51	68	88	61	76	188	270	377	762
Speed maximum ²⁾ (while adhering to the maximum permissible input flow)													
at V _{g max}	n_{nom}	rpm	5550	4450	3900	3550	3250	3100	2900	2700	2240	2000	1600
at $V_g < V_{g x}$ (see diagram below)	n _{max}	rpm	8750	7000	6150	5600	5150	4900	4600	3600	2950	2650	1600
at V _{g 0}	n _{max}	rpm	10450	8350	7350	6300	5750	5500	5100	3600	2950	2650	1600
Input flow ³⁾													
at n _{nom} and V _{g max}	q _{V max}	L/min	156	244	312	380	455	496	580	675	795	1000	1600
Torque ⁴⁾													
at $V_{g max}$ and $\Delta p = 400$ bar	T	Nm	179	349	509	681	891	1019	1273	-	-	-	-
at $V_{g max}$ and $\Delta p = 350$ bar	Т	Nm	157	305	446	596	778	891	1114	1391	1978	2785	5571
Rotary stiffness													
$V_{g max}$ to $V_{g}/2$	C _{min}	KNm/rad	6	10	16	21	34	35	44	60	75	115	281
V _g /2 to 0 _(interpolated)	C _{max}	KNm/rad	18	32	48	65	93	105	130	181	262	391	820
Moment of inertia for rotary group	J_{GR}	kgm²	0.0014	0.0042	0.008	0.0127	0.0207	0.0253	0.0353	0.061	0.102	0.178	0.55
Maximum angular acceleration	α	rad/s²	47000	31500	24000	19000	11000	11000	11000	10000	8300	5500	4000
Case volume	٧	L	0.5	0.75	1.2	1.5	1.8	2.4	2.7	3.0	5.0	7.0	16.0
Mass (approx.)	m	kg	16	26	34	47	60	64	80	100	170	210	430


¹⁾ The minimum and maximum displacement are infinitely adjustable, see ordering code, page 3. (standard setting for sizes 250 to 1000 if not specified in the order: $V_{g min} = 0.2 \cdot V_{g max} V_{g max} = V_{g max}$).

- for the optimum viscosity range from $v_{opt} = 36$ to 16 mm²/s
- with hydraulic fluid based on mineral oils
- 3) Restriction of input flow with counterbalance valve, see page 74
- 4) Torque without radial force, with radial force see page 9

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet 90261.

Permissible displacement in relation to speed

5) Values in this range on request

Determining the operating characteristics

Input flow
$$q_v = \frac{\frac{1}{1000 \cdot \eta_v}}{1000 \cdot \eta_v} \qquad [L/min]$$
 Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_v}{V_g} \qquad [min^{-1}]$$
 Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi} \qquad [Nm]$$

$$2 \pi \cdot T \cdot n \qquad q_V \cdot \Delta p \cdot \eta_T$$

Power $P = \frac{2 \pi (1 + 1)}{60000} = \frac{q_V \times 25 \times 10}{600}$ [kW]

V_g = Displacement per revolution in cm³

Δp = Differential pressure in bar

n = Speed in rpm

 $\eta_v = Volumetric efficiency$

 $\eta_{mh} = Mechanical-hydraulic efficiency$

 η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

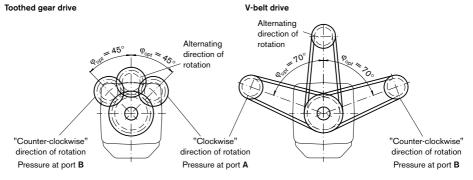
²⁾ The values are valid:

Permissible radial and axial forces of the drive shafts

Size	NG		28	28	55	55	80	80	107	107	140
Drive shaft	Ø	mm	30	25	35	30	40	35	45	40	45
Maximum radial force ¹⁾	F _{q max}	N	4838	6436	8069	7581	10283	10266	12215	13758	15982
(from shaft collar)	_ a	mm	17.5	14	20	17.5	22.5	20	25	22.5	25
with permissible torque	T _{max}	Nm	179	179	349	281	509	444	681	681	891
≜ Permissible pressure Δp at V _{g max}	p _{nom perm.}	bar	400	400	400	322	400	349	400	400	400
Maximum axial force ²⁾	+F _{ax max}	N	315	315	500	500	710	710	900	900	1030
'ax	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per bar operating pressure	F _{ax perm./ba}	_r N/bar	4.6	4.6	7.5	7.5	9.6	9.6	11.3	11.3	13.3

Size	NG		160	160	200	250	355	500	1000
Drive shaft	Ø	mm	50	45	50	50	60	70	90
Maximum radial force ¹⁾	F _{q max}	N	16435	18278	20532	1200 ³⁾	1500 ³⁾	1900 ³⁾	2600 ³⁾
(from shaft collar)	a	mm	27.5	25	27.5	41	52.5	52.5	67.5
with permissible torque	T _{max}	Nm	1019	1019	1273	4)	4)	4)	4)
 ≙ Permissible pressure ∆p at V_{g max} 	p _{nom perm.}	bar	400	400	400	4)	4)	4)	4)
Maximum axial force ²⁾	+F _{ax max}	N	1120	1120	1250	1200	1500	1900	2600
'ax	-F _{ax max}	N	0	0	0	0	0	0	0
Permissible axial force per bar operating pressure	F _{ax perm./ba}	, N/bar	15.1	15.1	17.0	4)	4)	4)	4)

- 1) With intermittent operation.
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.
- 4) Please contact us.


Note

Influence of the direction of the permissible axial force:

- +F_{ax max} = Increase in service life of bearings
- -F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_{α} on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

The proportional hydraulic control provides infinite setting of the displacement, proportional to the pilot pressure applied to port X.

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum pilot pressure)

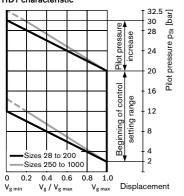
Note

- Maximum permissible pilot pressure: pSt = 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 10 bar.
- The beginning of control and the HD characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 6) and thus a parallel shift of the characteristic.
- A leakage flow of maximum 0.3 L/min can escape at port X due to internal leakage (operating pressure > pilot pressure).
 The control is to be suitably configured to avoid an independent build-up of pilot pressure.

HD1 Pilot pressure increase $\Delta p_{St} = 10$ bar


A pilot pressure increase of 10 bar at port X results in a decrease in displacement from $V_{g\,\text{max}}$ to 0 cm³ (sizes 28 to 200) or from $V_{g\,\text{max}}$ to 0.2 $V_{g\,\text{max}}$ (sizes 250 to 1000).

Beginning of control, setting range 2 to 20 bar

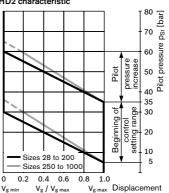
Standard setting:

Beginning of control at 3 bar (end of control at 13 bar)

HD1 characteristic

HD2

Pilot pressure increase $\Delta p_{St} = 25$ bar


A pilot pressure increase of 25 bar at port X results in a decrease in displacement from $V_{g\ max}$ to 0 cm³ (sizes 28 to 200) or from $V_{g\ max}$ to 0.2 $V_{g\ max}$ (sizes 250 to 1000).

Beginning of control, setting range _____5 to 35 bar

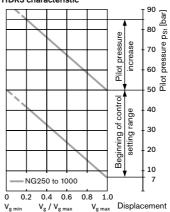
Standard setting:

Beginning of control at 10 bar (end of control at 35 bar)

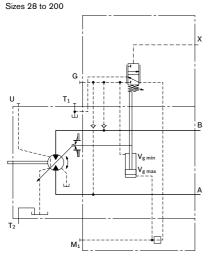
HD2 characteristic

HD3 Pilot pressure increase $\Delta p_{St} = 35$ bar

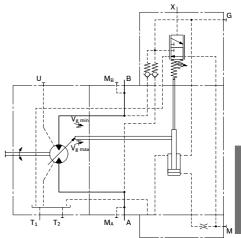
(sizes 250 to 1000)


A pilot pressure increase of 35 bar at port X results in a decrease in displacement from $V_{q\ max}$ to 0.2 $V_{q\ max}$.

Beginning of control, setting range ______7 to 50 bar


Standard setting:

Beginning of control at 10 bar (end of control at 45 bar)


HDR3 characteristic

Schematic HD1, HD2, HD3

Schematic HD1, HD2, HD3 Sizes 250 to 1000

Note

The spring return feature in the control part is not a safety device

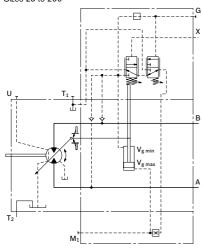
The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

12/80

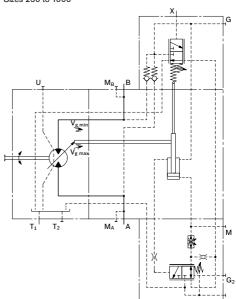
Pressure control, fixed setting

The pressure control overrides the HD control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve

Sizes 28 to 200 80 to 400 bar Sizes 250 to 1000 80 to 350 bar


Schematic HD.D

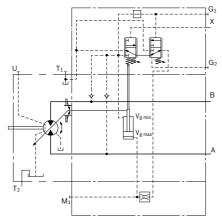
Sizes 28 to 200

Schematic HD.D

Sizes 250 to 1000

HD.E

Pressure control, hydraulic override, two-point


Sizes 28 to 200

The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting.

Required pilot pressure at port G_2 : $p_{St} = 20$ to 50 bar

Please state the 2nd pressure setting in plain text when ordering.

Schematic HD.E

Sizes 250 to 1000 (HD.D)

Pressure control with 2nd pressure setting for HD.D provided as standard (see page 12).

The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting.

Required pilot pressure at port G2:

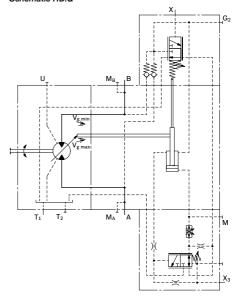
 $p_{St} \ge 100 \text{ bar}$

Please state the 2nd pressure setting in plain text when ordering.

HD.G Pressure control, remote control

Sizes 250 to 1000

displacement $V_{g\,max}$. A pressure-relief valve (not included in the delivery contents), which is located separately from the motor and which is connected to port X_3 , assumes the task of controlling the internal pressure cut-off valve. So long as the target pressure value has not been reached, pressure is evenly applied to the valve from both sides in addition to the force of the spring, and the valve remains closed. The target pressure value is between 80 bar and 350 bar. When the target pressure value is reached at the separate pressure-relief valve, this will open, reliving the pressure on the spring side to the reservoir. The internal control valve switches and the motor swivels to maximum displacement $V_{g\,max}$. The differential pressure at the control valve is set as standard to 25 bar. As a separate pressure-relief valve, we recommend:

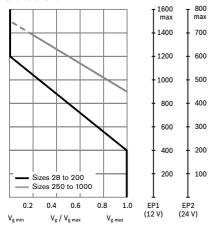

When the set pressure value is reached, the remote control

pressure control continually regulates the motor to maximum

DBD 6 (hydraulic) as per RE 25402

The maximum line length should not exceed 2 m.

Schematic HD.G



The proportional electric control provides infinite setting of the displacement, proportional to the control current applied to the solenoid (sizes 28 to 200) or proportional valve (sizes 250 to 1000).

For sizes 250 to 1000, the pilot oil supply at port P requires an external pressure of $p_{min} = 30$ bar ($p_{max} = 100$ bar).

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

The following only needs to be noted for sizes 250 to 1000:

 The beginning of control and the EP characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 6) and thus a parallel shift of the characteristic.

Technical data, solenoid

Sizes 28 to 200

	EP1	EP2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Control current			
Beginning of control	400 mA	200 mA	
End of control	1200 mA	600 mA	
Limiting current	1.54 A	0.77 A	
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω	
Dither frequency	100 Hz	100 Hz	
Duty cycle	100 %	100 %	
Type of protection see connector design page 70			

Type of protection see connector design page 70

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

- BODAS controller RC		
Series 20		RE 95200
Series 21		RE 95201
Series 22		RE 95202
Series 30	RE 95203,	RE 95204
and application software		

- Analog amplifier RA _____ RE 95230
- Electric amplifier VT 2000, series 5X (see RE 29904) (for stationary application)

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics

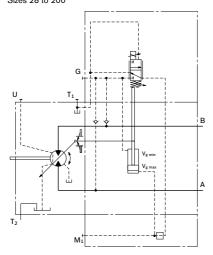
Technical data, proportional valve

Sizes 250 to 1000

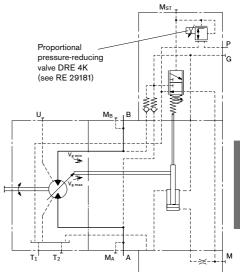
	EP1	EP2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Beginning of control at V _{g max}	900 mA	450 mA	
End of control at V _{g min}	1400 mA	700 mA	
Limiting current	2.2 A	1.0 A	
Nominal resistance (at 20 °C)	2.4 Ω	12 Ω	
Duty cycle	100 %	100 %	
Type of protection see connector design page 70			

Type of protection see connector design page 70

See also proportional pressure-reducing valve DRE 4K (RE 29181).


Note

The spring return feature in the control part is not a safety device


The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

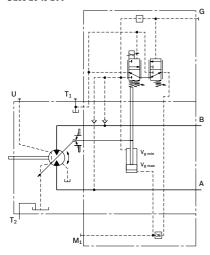
Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

Schematic EP1, EP2 Sizes 28 to 200

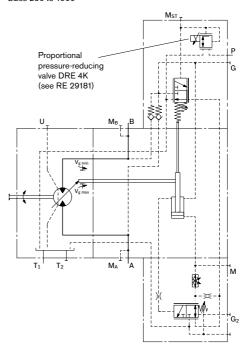
Schematic EP1, EP2 Sizes 250 to 1000

EP.D Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve:


Sizes 28 to 200	80 to 400 bar
Sizes 250 to 1000	80 to 350 bar

Schematic EP.D

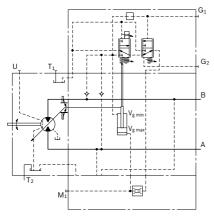
Sizes 28 to 200

Schematic EP.D Sizes 250 to 1000

EP.E

Pressure control, hydraulic override, two-point

Sizes 28 to 200


The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting.

Required pilot pressure at port G₂:

 $p_{St} = 20 \text{ to } 50 \text{ bar}$

Please state the 2nd pressure setting in plain text when ordering.

Schematic EP.E

Sizes 250 to 1000 (EP.D)

Pressure control with 2nd pressure setting for EP.D provided as standard (see on page 16).

The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting.

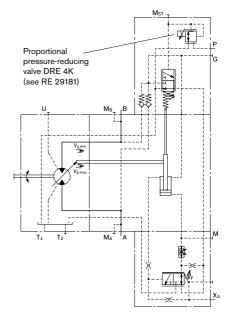
Required pilot pressure at port G2:

 $p_{St} \ge 100 \text{ bar}$

Please state the 2nd pressure setting in plain text when ordering.

EP.G Pressure control, remote control

Sizes 250 to 1000

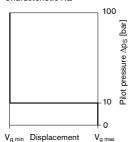

When the set pressure value is reached, the remote control pressure control continually regulates the motor to maximum displacement $V_{g\,max}$. A pressure-relief valve (not included in the delivery contents), which is located separately from the motor and which is connected to port X_3 , assumes the task of controlling the internal pressure cut-off valve.

So long as the target pressure value has not been reached, pressure is evenly applied to the valve from both sides in addition to the force of the spring, and the valve remains closed. The target pressure value is between 80 bar and 350 bar. When the target pressure value is reached at the separate pressure-relief valve, this will open, reliving the pressure on the spring side to the reservoir. The internal control valve switches and the motor swivels to maximum displacement $V_{g\ max}$. The differential pressure at the control valve is set as standard to 25 bar. As a separate pressure-relief valve, we recommend:

DBD 6 (hydraulic) as per RE 25402

The maximum line length should not exceed 2 m.

Schematic EP.G

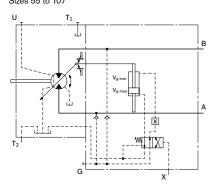


HZ - Two-point control hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{g\,min}$ or $V_{g\,max}$ by switching the pilot pressure at port X on or off.

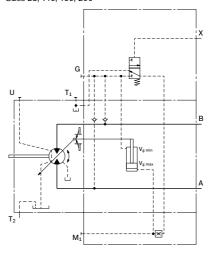
- Position at V_{g max} (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)

Characteristic HZ

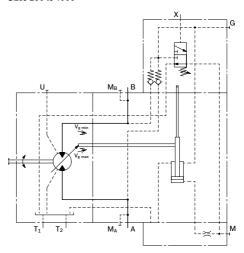

Note

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.


A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.

Schematic HZ3 Sizes 55 to 107


Schematic HZ1

Sizes 28, 140, 160, 200

Schematic HZ

Sizes 250 to 1000

EZ - Two-point control electric

The two-point electric control with switching solenoid (sizes 28 to 200) or control valve (sizes 250 to 1000) allows the displacement to be set to either $V_{g\,min}$ or $V_{g\,max}$ by switching the electric current at the switching solenoid or control valve on or off.

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

Technical data, solenoid with Ø37

Sizes 28, 140, 160, 200

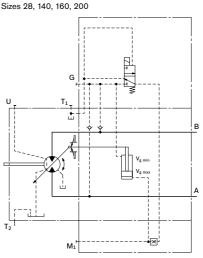
	EZ1	EZ2
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100 %	100 %

Type of protection see connector design page 70

Technical data, solenoid with Ø45

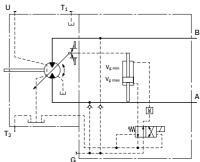
Sizes 55 to 107

	EZ3	EZ4
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω
Nominal power	30 W	30W
Minimum required current	1.5 A	0.75 A
Duty cycle	100 %	100 %
To a few testing to the second section of the		

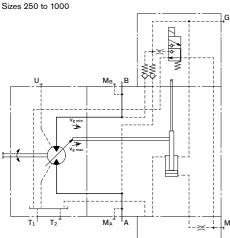

Type of protection see connector design page 70

Technical data, control valve

Sizes 250 to 1000


	EZ1	EZ2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Displacement V _{g max}	de-energized	de-energized	
Displacement V _{g min}	energized	energized	
Nominal resistance (at 20 °C)	6 Ω	23 Ω	
Nominal power	26 W	26W	
Minimum required current	2 A	1.04 A	
Duty cycle	100 %	100 %	
Type of protection see connector design page 70			

Schematic EZ1, EZ2


Schematic EZ3, EZ4

Sizes 55 to 107

EZ - Two-point control electric

Schematic EZ1, EZ2

The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VM motor with HA control is $V_{g\ min}$ (maximum speed and minimum torque). The control unit measures internally the operating pressure at A or B (no control line required) and upon reaching the beginning of control, the controller swivels the motor from $V_{g\ min}$ to $V_{g\ max}$ with increase of pressure. The displacement is modulated between $V_{g\ min}$ and $V_{g\ max}$, thereby depending on load conditions.

- Beginning of control at $V_{\text{g min}}$ (minimum torque, maximum speed)
- End of control at V_{g max} (maximum torque, minimum speed)

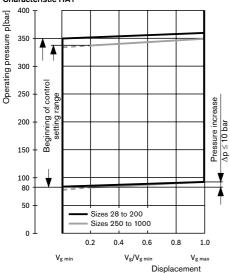
Note

- For safety reasons, winch drives are not permissible with beginning of control at V_{q min} (standard for HA).
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.</p>

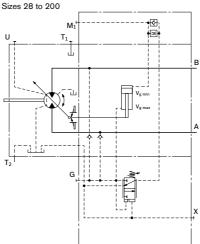
Please note that pressures up to 450 bar can occur at port G.

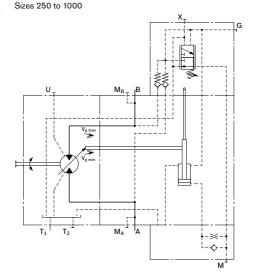
- The beginning of control and the HA characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 7) and thus a parallel shift of the characteristic. Only for HA1T (sizes 28 to 200) and HA1, HA2, HA.T, (sizes 250 to 1000).
- A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.
 Only for control HA.T.

HA1 With minimum pressure increase


An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from 0 cm³ to $V_{g \; max}$ (sizes 28 to 200) or from 0.2 $V_{g \; max}$ to $V_{g \; max}$ (sizes 250 to 1000).

Beginning of control, setting range


Sizes 28 to 200	80 to 350 bar
Sizes 250 to 1000	80 to 340 bar

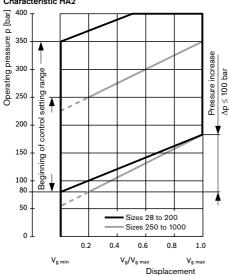

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 300 bar.

Characteristic HA1

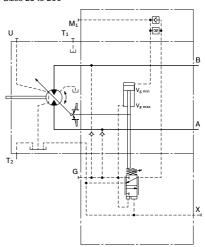
Schematic HA1

HA - Automatic high-pressure related control

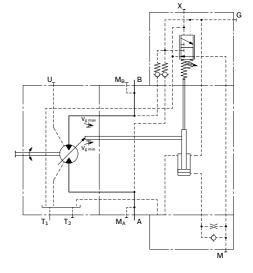
HA2 With pressure increase


An operating pressure increase of Δp = approx. 100 bar results in an increase in displacement from 0 cm³ to $V_{g max}$ (sizes 28 to 200) or from 0.2 $V_{g max}$ to $V_{g max}$ (sizes 250 to 1000).

Beginning of control, setting range


Sizes 28 to 200_______80 to 350 bar Sizes 250 to 1000 80 to 250 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 200 bar.


Characteristic HA2

Schematic HA2 Sizes 28 to 200

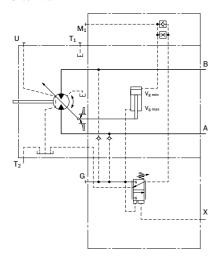
Sizes 250 to 1000

Override hydraulic remote control, proportional

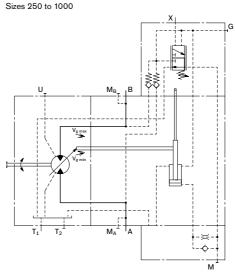
With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port X.

For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar (sizes 28 to 200) or 8 bar (sizes 250 to 1000).

Example (sizes 28 to 200):

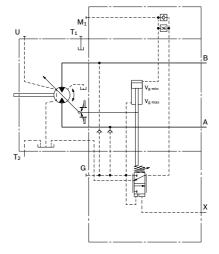

Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar

Note


Maximum permissible pilot pressure 100 bar.

Schematic HA1.T

Sizes 28 to 200



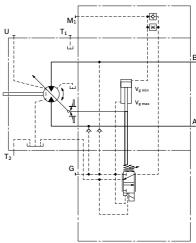
Schematic HA1.T

Schematic HA2.T

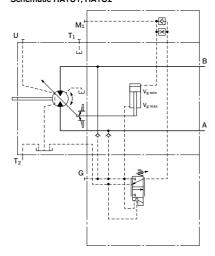
Sizes 28 to 200

HA.U1, HA.U2 Override electric two-point

Sizes 28 to 200


With the HA.U1 or HA.U2 control, the beginning of control can be overridden by an electric signal to a switching solenoid. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position. The beginning of control is adjustable between 80 and 300 bar (specify required setting in plain text when ordering).

Technical data, solenoid with Ø45


	U1	U2
Voltage	12 V (±20 %)	24 V (±20 %)
No override	de-energized	de-energized
Displacement V _{g max}	energized	energized
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω
Nominal power	30 W	30 W
Minimum required current	1.5 A	0.75 A
Duty cycle	100 %	100 %

Type of protection see connector design page 70

Schematic HA2U1, HA2U2

Schematic HA1U1, HA1U2

HA.R1, HA.R2 Override electric, travel direction valve electric (see page 29)

Sizes 28 to 200

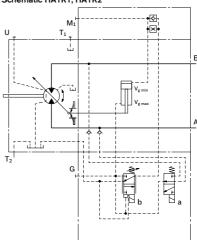
With the HA.R1 or HA.R2 control, the beginning of control can be overridden by an electric signal to switching solenoid b. When the override solenoid b is energized, the variable motor swivels to maximum swivel angle, without intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor (A or B) is always connected to the HA control, and thus determines the swivel angle, even if the high-pressure side changes (e. g. -travel drive during a downhill operation). This thereby prevents undesired jerky deceleration and/or braking characteristics.

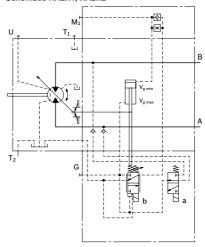
Depending on the direction of rotation (direction of travel), the travel direction valve is actuated through the pressure spring or the switching solenoid a (see page 29 for further details).

Technical data, solenoid a with Ø37

(travel direction valve)


		R1	R2
Voltage		12 V (±20 %)	24 V (±20 %)
No override		de-energized	de-energized
Direction of	Operating		
rotation	pressure in		
ccw	В	energized	energized
cw	Α	de-energized	de-energized
Nominal resist	ance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	er	26.2 W	26.5 W
Minimum requ	ired current	1.32 A	0.67 A
Duty cycle		100 %	100 %
Type of protect	tion see connecto	or design page '	70

Technical data, solenoid b with Ø45


(electric override)

	R1	R2	
Voltage	12 V (±20 %)	24 V (±20 %)	
No override	de-energized	de-energized	
Displacement V _{g max}	energized	energized	
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω	
Nominal power	30 W	30 W	
Minimum required current	1.5 A	0.75 A	
Duty cycle	100 %	100 %	
Type of protection see connector design page 70			

Schematic HA1R1, HA1R2

Schematic HA2R1, HA2R2

DA - Automatic control speed-related

The variable motor A6VM with automatic speed-related control is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

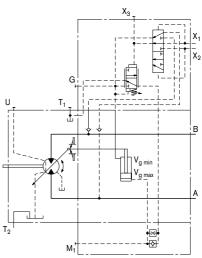
Pressure ratio pSt/pHD: 3/100, 5/100, 8/100

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales department and on the Internet at www.boschrexroth.com/da-control.

Note

The beginning of control and the DA characteristic are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 6) and thus a parallel shift of the characteristic.


DA, DA1, DA4 Hydraulic travel direction valve

Dependent on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures connections X_1 or X_2 .

Direction of rotation	Operating pressure in	Pilot pressure in
cw	Α	X ₁
ccw	В	X ₂

Schematic DA1, DA4

Sizes 28 to 200

Schematic DA

Sizes 250 to 1000

We man by the state of th

DA - Automatic control speed-related

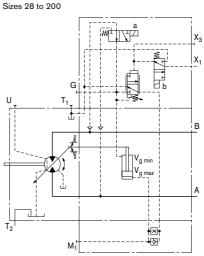
DA2, DA3, DA5, DA6 Electric travel direction valve + electric V_{g max}-circuit

The travel direction valve is either spring offset or switched by energizing switching solenoid a, depending on the direction of rotation (travel direction).

When the switching solenoid b is energized, the DA control is overridden and the motor swivels to maximum displacement (high torque, lower speed) (electric $V_{q\ max}$ -circuit).

Technical data, solenoid a with Ø37

(travel direction valve)


		DA2, DA5	DA3, DA6	
Voltage		12 V (±20 %)	24 V (±20 %)	
Direction of rotation	Operating pressure in			
ccw	В	de-energized	de-energized	
cw	Α	energized	energized	
Nominal resistance (at 20 °C)		5.5 Ω	21.7 Ω	
Nominal power		26.2 W	26.5 W	
Minimum required current		1.32 A	0.67 A	
Duty cycle		100 %	100 %	
Type of protection see connector design page 70				

Technical data, solenoid b with Ø37

(electric override)

24 V (±20 %) de-energized						
de-energized						
do onorgizod						
energized						
21.7 Ω						
26.5 W						
0.67 A						
100 %						
Type of protection see connector design page 70						

Schematic DA2, DA3, DA5, DA6

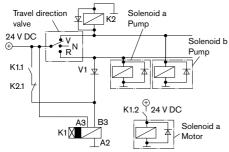
Electric travel direction valve (for DA, HA.R)

Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e. g. A4VG with DA control valve).

If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle's mass and current travel speed.

When the travel direction valve of the pump (e. g. 4/3-directional valve of the DA-control) is switched to

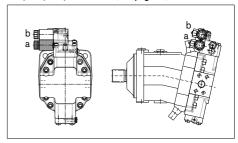
- the neutral position,

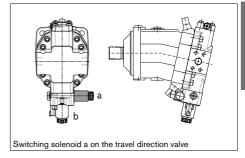

the electric circuitry causes the previous signal on the travel direction valve on the motor to be retained.

- reversing,

the electric circuitry causes the travel direction valve on the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

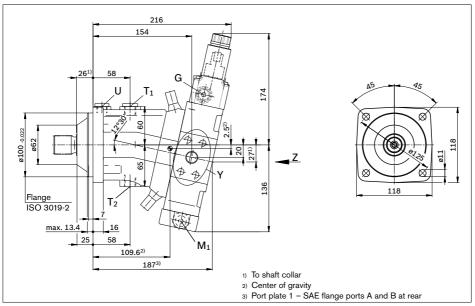
As a result, jerky deceleration or braking is prevented in both cases.

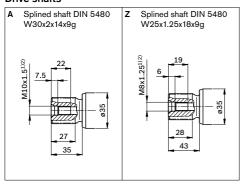

Schematic - electric travel direction valve


Note

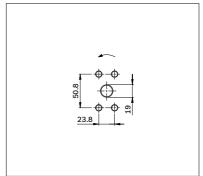
The shown diodes and relays are not included in the delivery of the motor.

DA2, DA3, DA5, DA6 control (see page 28)

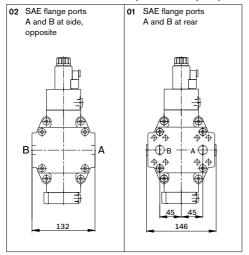

HA1R., HA2R. control (see page 26)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP1, EP2 - Proportional control electric


Port plate 02 - SAE flange ports A and B at side, opposite

Drive shafts

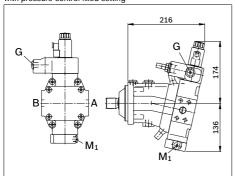

Service line port (detail Y)

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

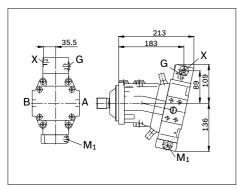
Location of the service line ports on the port plates (view Z)

Ports

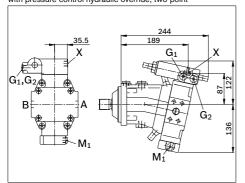

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
	Drain line	DIN 13 DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х
G ₂	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	Х
U	Bearing flushing	DIN 3852 ⁵⁾	M16 x 1.5; 12 deep	3	Х
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
Х	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Х
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	0
Х3	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

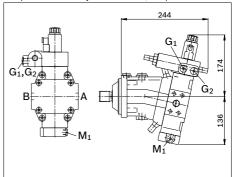

Dimensions size 28

Proportional control electric, with pressure control fixed setting

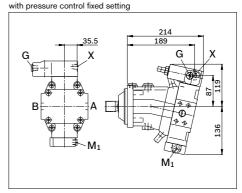

HD1, HD2

Proportional control hydraulic

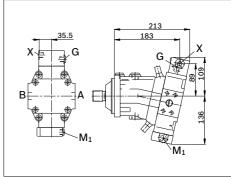
HD.E


Proportional control hydraulic, with pressure control hydraulic override, two-point

EP.E


Proportional control electric,

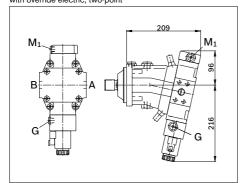
with pressure control hydraulic override, two-point


HD.D

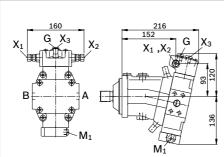
Proportional control hydraulic,

HZ1

Two-point control hydraulic

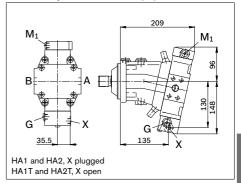

EZ1. EZ2

Two-point control electric

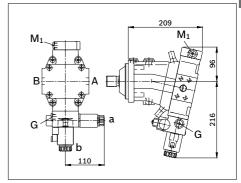

HA1U1, HA2U2

Automatic control high-pressure related, with override electric, two-point

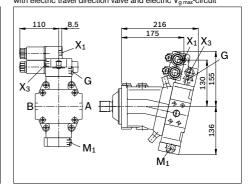
DA1, DA4


Automatic control speed related, with hydraulic travel direction valve

X₁, X₂ pipe fitting 8B-ST according to DIN 2353-CL Use installed fittings! Before finalizing your design, request a binding installation drawing. Dimensions in mm.

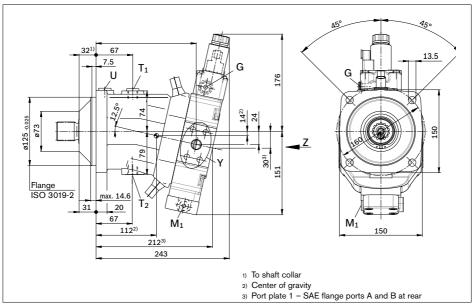

HA1, HA2 / HA1T, HA2T

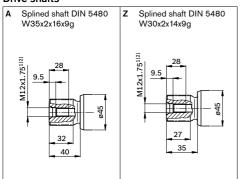
Automatic control high-pressure related, with override hydraulic remote control, proportional


HA1R1, HA2R2

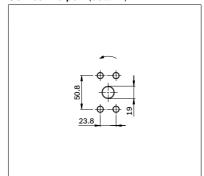
Automatic control high-pressure related, with override electric and travel direction valve electric

DA2, DA3, DA5, DA6

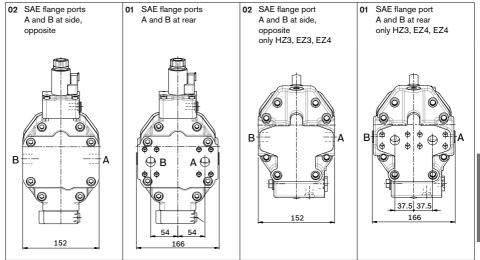

Automatic control speed related, with electric travel direction valve and electric $V_{g\ max}$ -circuit


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP1, EP2 - Proportional control electric


Port plate 02 - SAE flange ports A and B at side, opposite

Drive shafts


Service line port (detail Y)

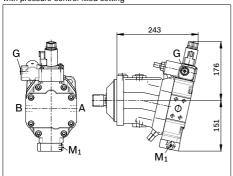
- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

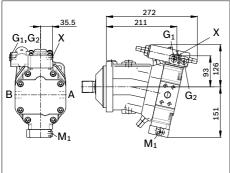
Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
T ₁	Drain line	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х
G ₂	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	Χ
U	Bearing flushing	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	Х
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
Х	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Х
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	0
Х ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Χ


- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

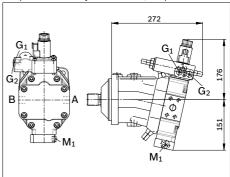
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 55

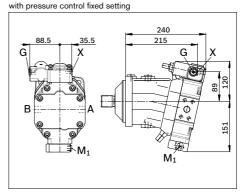

EP.D

Proportional control electric, with pressure control fixed setting

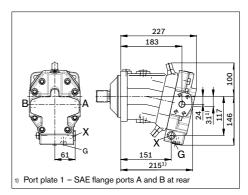
HD1, HD2
Proportional control hydraulic


HD.E Proportional control hydraulic, with pressure control hydraulic override, two-point

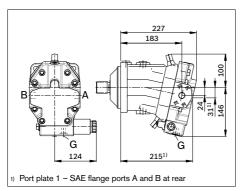
EP.E


Proportional control electric,

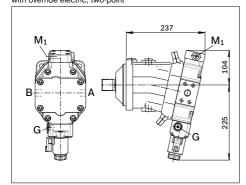
with pressure control hydraulic override, two-point


HD.D

Proportional control hydraulic,

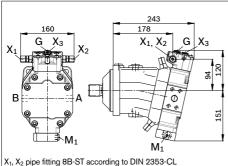

HZ3

Two-point control hydraulic


EZ3, EZ4

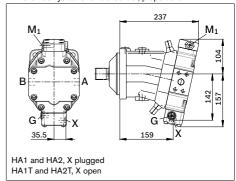
Two-point control electric

HA1U1, HA2U2


Automatic control high-pressure related, with override electric, two-point

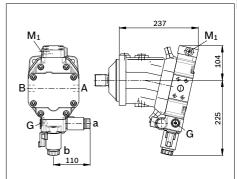
DA1, DA4

Use installed fittings!

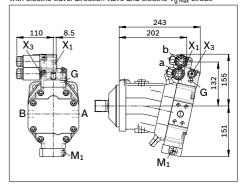

Automatic control speed related, with hydraulic travel direction valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HA1, HA2 / HA1T, HA2T

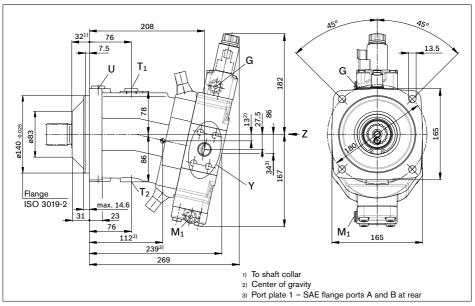

Automatic control high-pressure related, with override hydraulic remote control, proportional

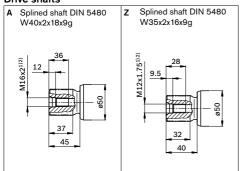
HA1R1, HA2R2


Automatic control high-pressure related,

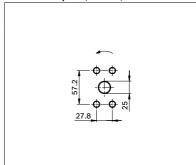
with override electric and travel direction valve electric

DA2, DA3, DA5, DA6

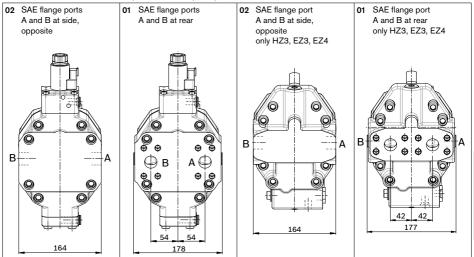

Automatic control speed related, with electric travel direction valve and electric $V_{g\;max}$ -circuit


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP1, EP2 - Proportional control electric


Port plate 02 - SAE flange ports A and B at side, opposite

Drive shafts

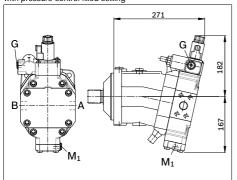

Service line port (detail Y)

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- $_{\rm 2)}$ Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

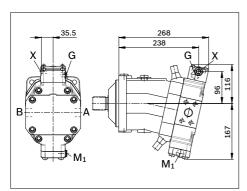
Location of the service line ports on the port plates (view Z)

Ports

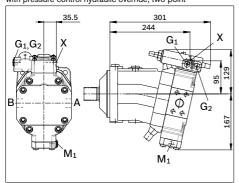

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J5183)	1 in	450	0
	Fastening thread A/B	DIN 13	M12 x 1.75; 17 deep		
T ₁	Drain line	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Χ
G_2	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	Χ
U	Bearing flushing	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	Χ
X	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
X	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	0
X ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

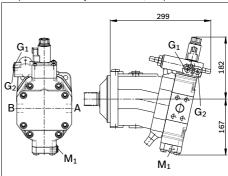

Dimensions size 80

Proportional control electric, with pressure control fixed setting


HD1, HD2

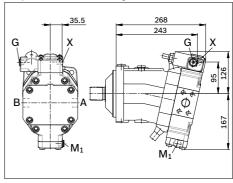
Proportional control hydraulic

HD.E

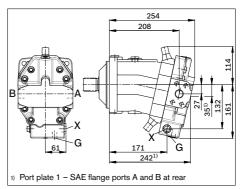

Proportional control hydraulic, with pressure control hydraulic override, two-point

EP.E

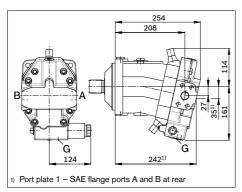
Proportional control electric,


with pressure control hydraulic override, two-point

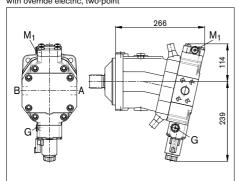
HD.D


Proportional control hydraulic,

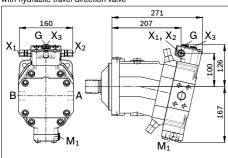
with pressure control fixed setting


HZ3

Two-point control hydraulic


EZ3, EZ4

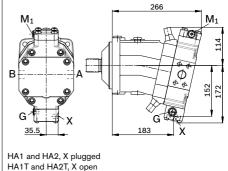
Two-point control electric


HA1U1, HA2U2

Automatic control high-pressure related, with override electric, two-point

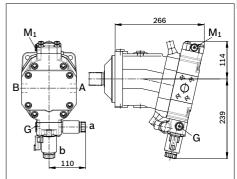
DA1, DA4

Automatic control speed related, with hydraulic travel direction valve

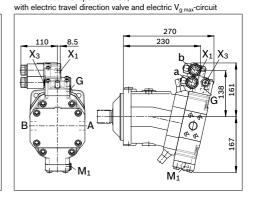

X₁, X₂ pipe fitting 8B-ST according to DIN 2353-CL Use installed fittings!

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HA1, HA2 / HA1T, HA2T

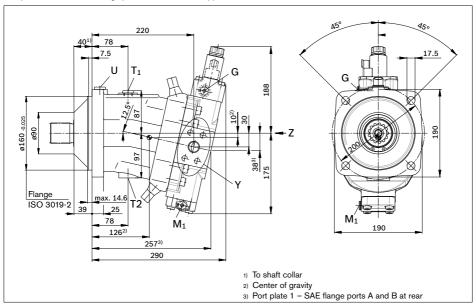

Automatic control high-pressure related,

with override hydraulic remote control, proportional


HA1R1, HA2R2
Automatic control high-pressure related,

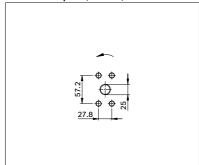
with override electric and travel direction valve electric

DA2, DA3, DA5, DA6

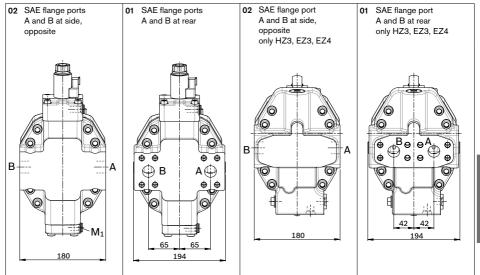

Automatic control speed related,


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP1, EP2 - Proportional control electric


Port plate 02 - SAE-SAE flange ports A and B at side, opposite

Drive shafts


Service line port (detail Y)

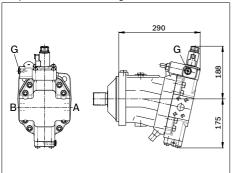
- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

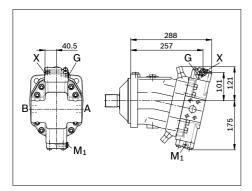
Location of the service line ports on the port plates (view Z)

Ports

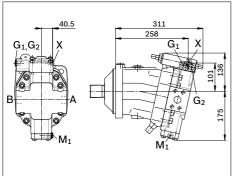
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J518 ³⁾	1 in	450	0
	Fastening thread A/B	DIN 13	M12 x 1.75; 17 deep		
T ₁	Drain line	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Χ
G_2	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	Χ
U	Bearing flushing	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	Χ
Χ	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
Χ	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	0
X ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	X


- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

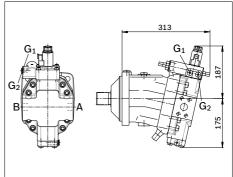
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions size 107

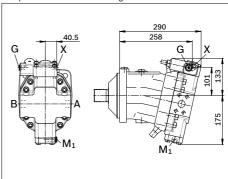
EP.D


Proportional control electric, with pressure control fixed setting

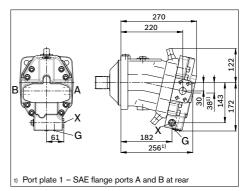
HD1, HD2 Proportional control hydraulic


HD.E Proportional control hydraulic, with pressure control hydraulic override, two-point

EP.E

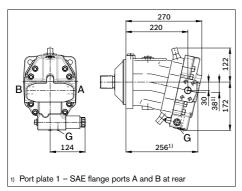

Proportional control electric,

with pressure control hydraulic override, two-point

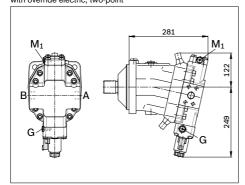


HD.D

Proportional control hydraulic, with pressure control fixed setting

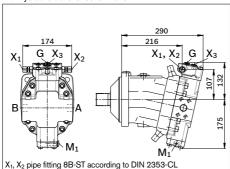


HZ3 Two-point control hydraulic


EZ3, EZ4

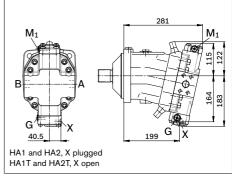
Two-point control electric

HA1U1, HA2U2


Automatic control high-pressure related, with override electric, two-point

DA1, DA4

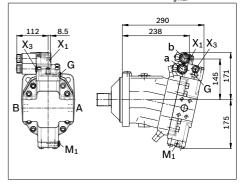
Use installed fittings!


Automatic control speed related, with hydraulic travel direction valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HA1, HA2 / HA1T, HA2T

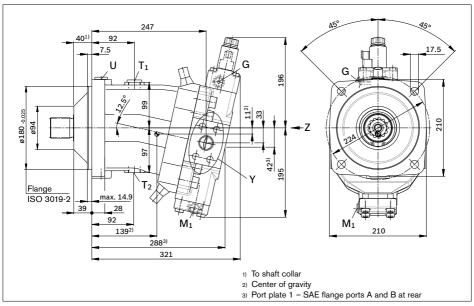
Automatic control high-pressure related, with override hydraulic remote control, proportional

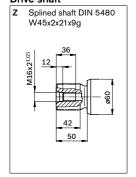


HA1R1, HA2R2

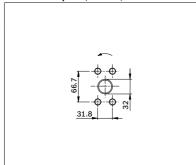
Automatic control high-pressure related, with override electric and travel direction valve electric

DA2, DA3, DA5, DA6

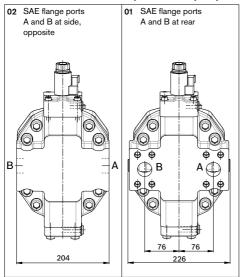

Automatic control speed related, with electric travel direction valve and electric $V_{g\ max}$ -circuit


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP1, EP2 - Proportional control electric


Port plate 02 - SAE flange ports A and B at side, opposite

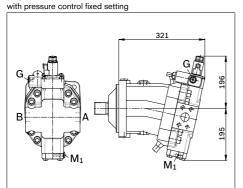
Drive shaft


Service line port (detail Y)

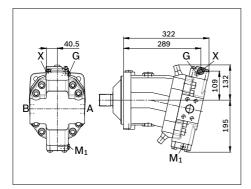
- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

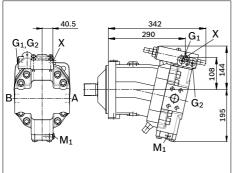
Location of the service line ports on the port plates (view Z)



Ports

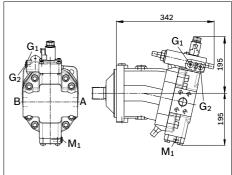

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
T ₁	Drain line	DIN 3852 ⁵⁾	M26 x 1.5; 16 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M26 x 1.5; 16 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х
G_2	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	Χ
U	Bearing flushing	DIN 3852 ⁵⁾	M22 x 1.5; 14 deep	3	Χ
Χ	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
Х	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	X
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	0
Х ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- $_{\rm 6)}$ O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Proportional control electric,

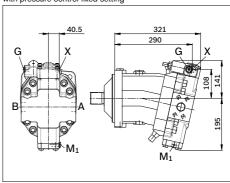
HD1, HD2 Proportional control hydraulic

HD.EProportional control hydraulic,
with pressure control hydraulic override, two-point

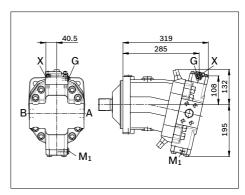


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP.E


Proportional control electric,

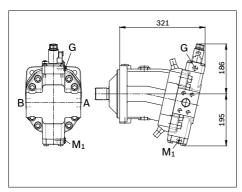
with pressure control hydraulic override, two-point



HD.D

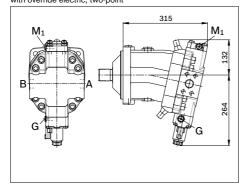
Proportional control hydraulic, with pressure control fixed setting

HZ1
Two-point control hydraulic



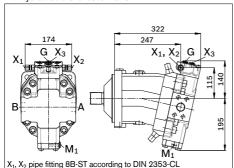
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 140

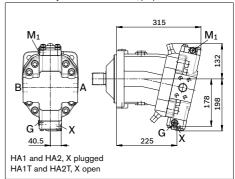

EZ1, EZ2

Two-point control electric

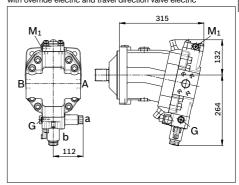
HA1U1, HA2U2


Automatic control high-pressure related, with override electric, two-point

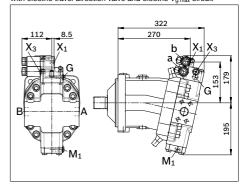
DA1, DA4


Use installed fittings!

Automatic control speed related, with hydraulic travel direction valve

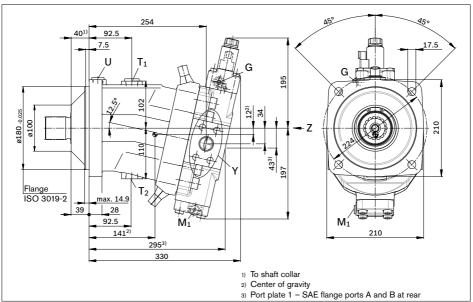

HA1, HA2 / HA1T, HA2T

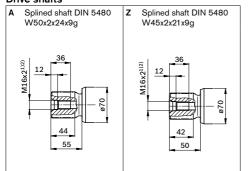
Automatic control high-pressure related, with override hydraulic remote control, proportional


HA1R1, HA2R2

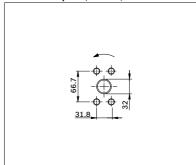
Automatic control high-pressure related, with override electric and travel direction valve electric

DA2, DA3, DA5, DA6

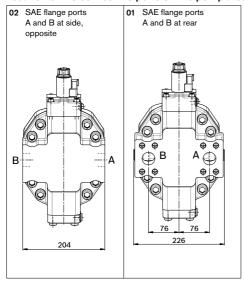

Automatic control speed related, with electric travel direction valve and electric $V_{g\;max}$ -circuit


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP1, EP2 - Proportional control electric


Port plate 02 - SAE-SAE flange ports A and B at side, opposite

Drive shafts

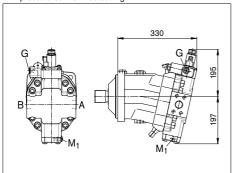

Service line port (detail Y)

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- $_{\rm 2)}$ Center bore according to DIN 332 (thread according to DIN 13)

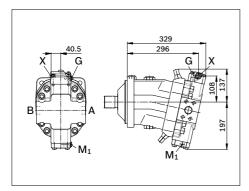
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

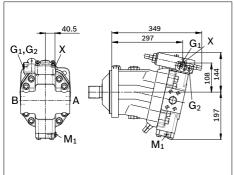
Ports


Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
T ₁	Drain line	DIN 3852 ⁵⁾	M26 x 1.5; 16 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M26 x 1.5; 16 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х
G_2	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	Χ
U	Bearing flushing	DIN 3852 ⁵⁾	M22 x 1.5; 14 deep	3	Χ
Χ	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
Х	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Х
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	0
X ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х

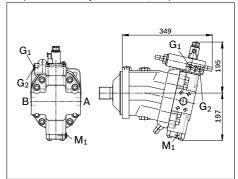
- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- $_{\rm 6)}$ O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

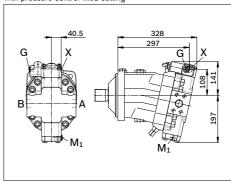
Dimensions size 160


Proportional control electric, with pressure control fixed setting

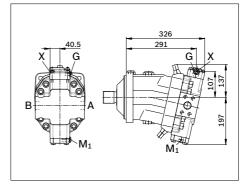
HD1, HD2 Proportional control hydraulic


HD.E Proportional control hydraulic, with pressure control hydraulic override, two-point

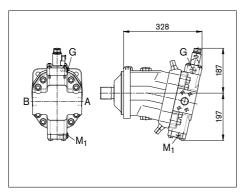
EP.E


Proportional control electric,

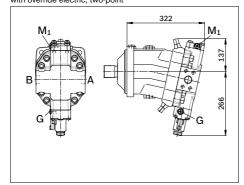
with pressure control hydraulic override, two-point


HD.D

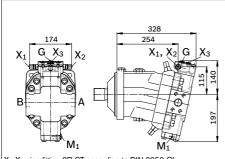
Proportional control hydraulic, with pressure control fixed setting


HZ1

Two-point control hydraulic


EZ1, EZ2

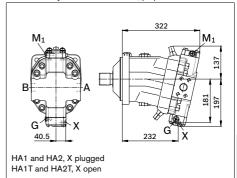
Two-point control electric


HA1U1, HA2U2

Automatic control high-pressure related, with override electric, two-point

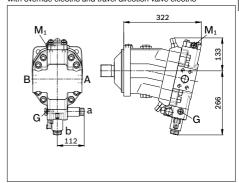
DA1, DA4

Automatic control speed related, with hydraulic travel direction valve

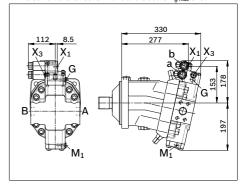


X₁, X₂ pipe fitting 8B-ST according to DIN 2353-CL Use installed fittings!

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

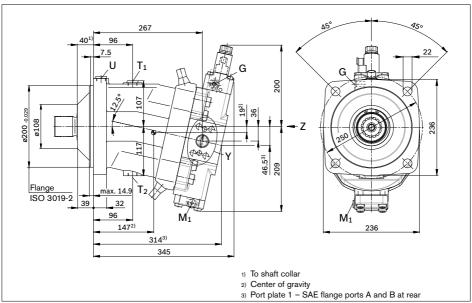

HA1, HA2 / HA1T, HA2T

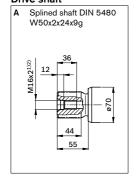
Automatic control high-pressure related, with override hydraulic remote control, proportional


HA1R1, HA2R2

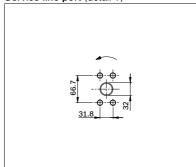
Automatic control high-pressure related, with override electric and travel direction valve electric

DA2, DA3, DA5, DA6

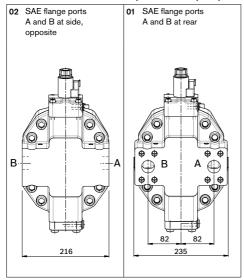

Automatic control speed related, with electric travel direction valve and electric $V_{q\;max}$ -circuit


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP1, EP2 - Proportional control electric


Port plate 02 - SAE-SAE flange ports A and B at side, opposite

Drive shaft


Service line port (detail Y)

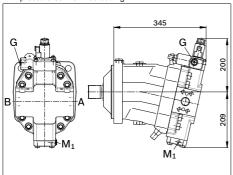
- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- $_{\rm 2)}$ Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

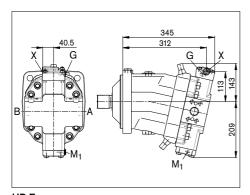
Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
T ₁	Drain line	DIN 3852 ⁵⁾	M26 x 1.5; 16 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M26 x 1.5; 16 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	Х
G ₂	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	Χ
U	Bearing flushing	DIN 3852 ⁵⁾	M22 x 1.5; 14 deep	3	Х
Χ	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
Х	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Х
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	0
Х ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	40	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	450	X

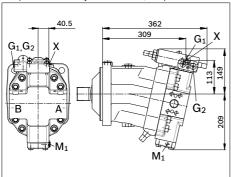

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- $_{\rm 6)}$ O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 200

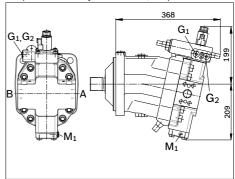

EP.D

Proportional control electric, with pressure control fixed setting

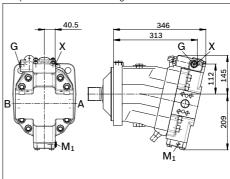

HD1, HD2

Proportional control hydraulic

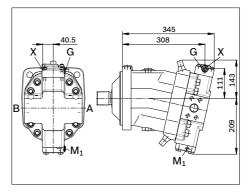
HD.E


Proportional control hydraulic, with pressure control hydraulic override, two-point

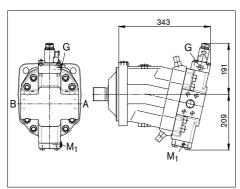
EP.E


Proportional control electric,

with pressure control hydraulic override, two-point

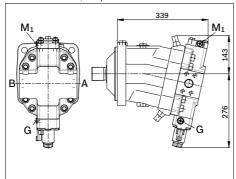

HD.D

Proportional control hydraulic, with pressure control fixed setting

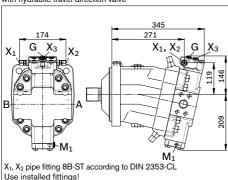

HZ1

Two-point control hydraulic

EZ1, EZ2

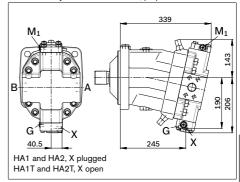

Two-point control electric

HA1U1, HA2U2


Automatic control high-pressure related,

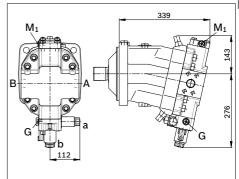
with override electric, two-point

DA1, DA4


Automatic control speed related, with hydraulic travel direction valve

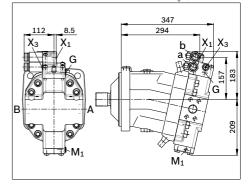
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HA1, HA2 / HA1T, HA2T


Automatic control high-pressure related, with override hydraulic remote control, proportional

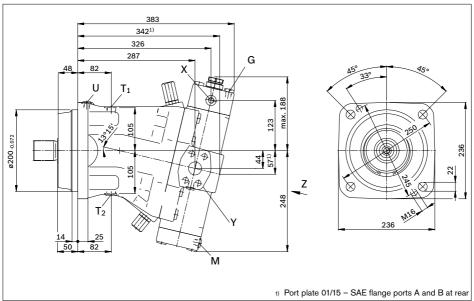
HA1R1, HA2R2

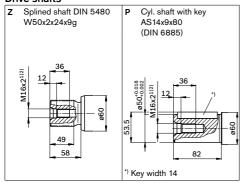
Automatic control high-pressure related,


with override electric and travel direction valve electric

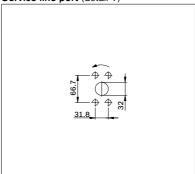
DA2, DA3, DA5, DA6

Automatic control speed related,

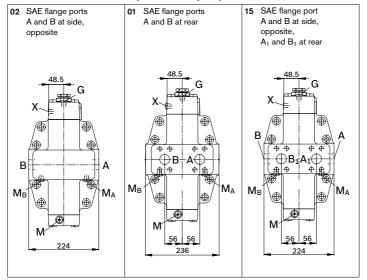

with electric travel direction valve and electric $V_{g\ max}$ -circuit


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HD1, HD2 - Proportional control hydraulic HZ - Two-point control hydraulic


Port plate 02 - SAE flange ports A and B at side, opposite

Drive shafts


Service line port (detail Y)

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

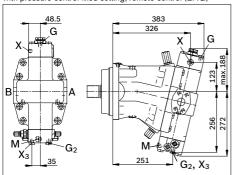
Location of the service line ports on the port plates (view Z)

Ports

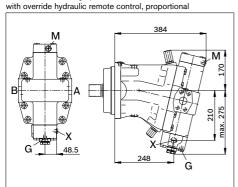
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0
A ₁ , B ₁	Additional service line for plate 15 Fastening thread A ₁ /B ₁	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0
T ₁	Drain line	DIN 3852 ⁵⁾	M22 x 1.5; 14 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M22 x 1.5; 14 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ
Р	Pilot oil supply (EP)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
X	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
X	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
Х ₃	Remote control valve (HD.G, EP.G)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	0
М	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ
M _A , M _B	Measuring pressure A/B	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х
M _{St}	Measuring pilot pressure	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

EP1, EP2


Proportional control electric

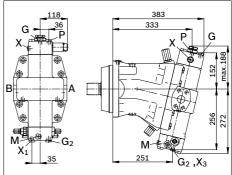
HD.D, HD.G


Proportional control hydraulic,

with pressure control fixed setting; remote control (EP.G)

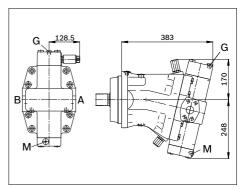
HA1, HA2 / HA1T, HA2T

Automatic control high-pressure related,

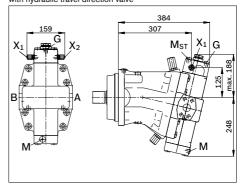


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP.D, EP.G

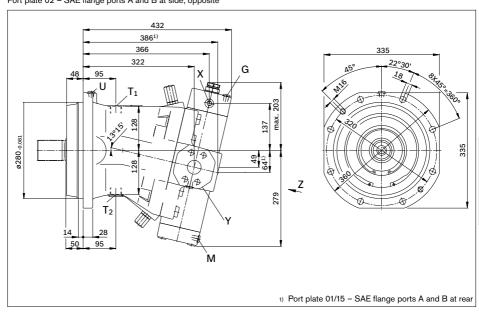

Proportional control electric,

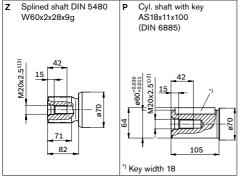
with pressure control fixed setting; remote control (EP.G)


EZ1, EZ2

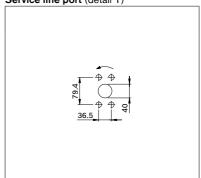
Two-point control electric

DA

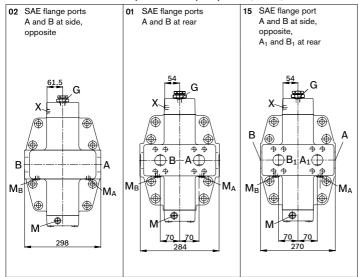

Automatic control speed related, with hydraulic travel direction valve


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HD1, HD2 - Proportional control hydraulic


HZ – Two-point control hydraulicPort plate 02 – SAE flange ports A and B at side, opposite

Drive shafts


Service line port (detail Y)

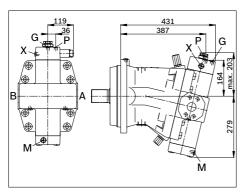
- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

Ports

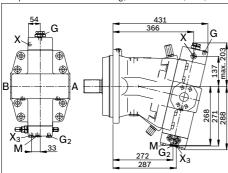
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/2 in M16 x 2; 24 deep	400	0
A ₁ , B ₁	Additional service line for plate 15 Fastening thread A ₁ /B ₁	SAE J518 ³⁾ DIN 13	1 1/2 in M16 x 2; 24 deep	400	0
T ₁	Drain line	DIN 3852 ⁵⁾	M33 x 2; 18 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M33 x 2; 18 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ
Р	Pilot oil supply (EP)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
X	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
X ₃	Remote control valve (HD.G, EP.G)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	0
М	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х
M _A , M _B	Measuring pressure A/B	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	X
M _{St}	Measuring pilot pressure	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х


- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 355

EP1, EP2

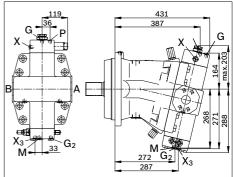

Proportional control electric

HD.D, HD.G

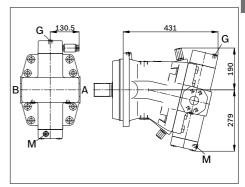
Proportional control hydraulic,

with pressure control fixed setting; remote control (EP.G)

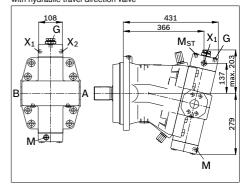
HA1, HA2 / HA1T, HA2T


Automatic control high-pressure related, with override hydraulic remote control, proportional

EP.D, EP.G

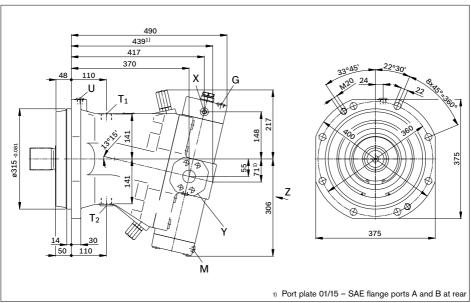

Proportional control electric,

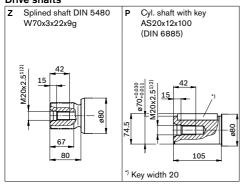
with pressure control fixed setting; remote control (EP.G)


EZ1, EZ2

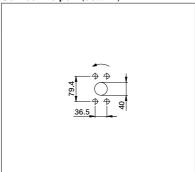
Two-point control electric

DA

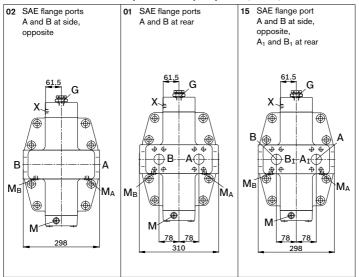

Automatic control speed related, with hydraulic travel direction valve


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HD1, HD2 - Proportional control hydraulic HZ - Two-point control hydraulic


Port plate 02 - SAE flange ports A and B at side, opposite

Drive shafts


Service line port (detail Y)

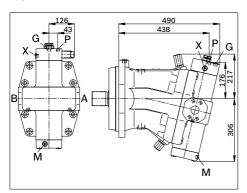
- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

Ports

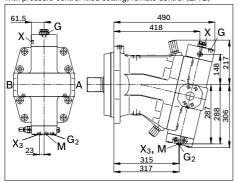
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/2 in M16 x 2; 24 deep	400	0
A ₁ , B ₁	Additional service line for plate 15 Fastening thread A ₁ /B ₁	SAE J518 ³⁾ DIN 13	1 1/2 in M16 x 2; 24 deep	400	0
T ₁	Drain line	DIN 3852 ⁵⁾	M33 x 2; 18 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M33 x 2; 18 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	400	Χ
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	400	Χ
Р	Pilot oil supply (EP)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	Χ
Χ	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
X	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
X ₃	Remote control valve (HD.G, EP.G)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	0
М	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х
M _A , M _B	Measuring pressure A/B	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х
M _{St}	Measuring pilot pressure	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ


- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 500

EP1, EP2

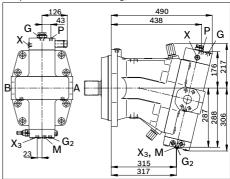

Proportional control electric

HD.D, HD.G

Proportional control hydraulic,

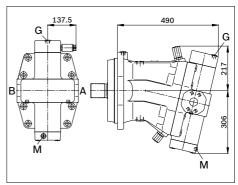
with pressure control fixed setting; remote control (EP.G)

HA1, HA2 / HA1T, HA2T

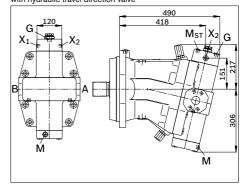

Automatic control high-pressure related,

with override hydraulic remote control, proportional M

EP.D, EP.G


Proportional control electric,

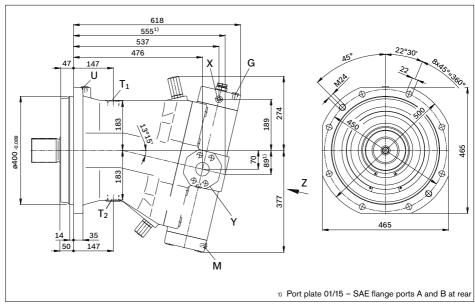
with pressure control fixed setting; remote control (EP.G)


EZ1, EZ2

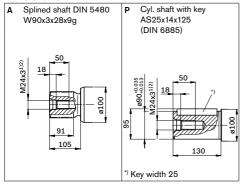
Two-point control electric

DA

Automatic control speed related, with hydraulic travel direction valve



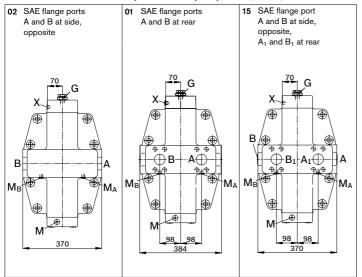
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


HD1, HD2 - Proportional control hydraulic

HZ - Two-point control hydraulic

Port plate 02 - SAE-SAE flange ports A and B at side, opposite

Drive shafts

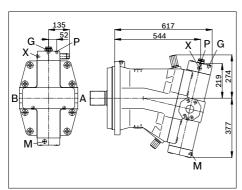


Service line port (detail Y)

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

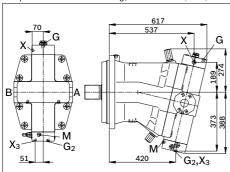
Location of the service line ports on the port plates (view Z)


Ports

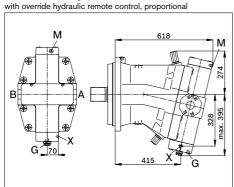
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	2 in M20 x 2.5; 24 deep	400	0
A ₁ , B ₁	Additional service line for plate 15 Fastening thread A ₁ /B ₁	SAE J518 ³⁾ DIN 13	2 in M20 x 2.5; 24 deep	400	0
T ₁	Drain line	DIN 3852 ⁵⁾	M42 x 2; 20 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁵⁾	M42 x 2; 20 deep	3	O ⁴⁾
G	Synchronous control	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	400	Χ
G_2	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	400	Χ
Р	Pilot oil supply (EP)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	3	Χ
Χ	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	100	0
Χ	Pilot signal (HA1 and HA2)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	3	Χ
X ₃	Remote control valve (HD.G, EP.G)	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	0
M	Measuring stroking chamber	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ
M _A , M _B	Measuring pressure A/B	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Χ
M_{St}	Measuring pilot pressure	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х

- 1) Observe the general instructions on page 80 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 79).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

EP1, EP2


Proportional control electric

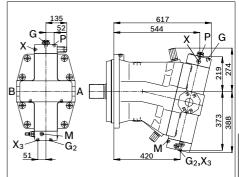
HD.D, HD.G


Proportional control hydraulic,

with pressure control fixed setting; remote control (EP.G)

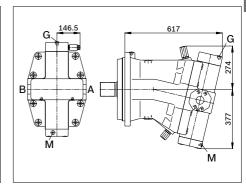
HA1, HA2 / HA1T, HA2T

Automatic control high-pressure related,



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP.D, EP.G


Proportional control electric,

with pressure control fixed setting; remote control (EP.G)

EZ1, EZ2

Two-point control electric

Connector for solenoids

DEUTSCH DT04-2P-EP04

Sizes 28 to 200

Molded, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

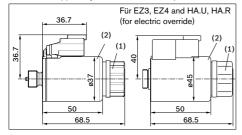
IP67 ______ DIN/EN 60529 and IP69K ______ DIN 40050-9

Circuit symbol

Mating connector

DEUTSCH DT06-2S-EP04

Bosch Rexroth Mat. No. R902601804


 Consisting of:
 DT designation

 - 1 housing
 DT06-2S-EP04

 - 1 wedge
 W2S

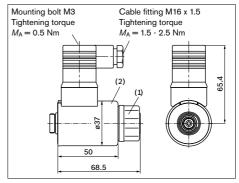
 - 2 sockets
 0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HIRSCHMANN DIN EN 175 301-803-A/ISO 4400

Sizes 250 to 1000


Without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

IP65 DIN/EN 60529

The seal ring in the cable fitting is suitable for line diameters of $4.5\ \mathrm{mm}$ to $10\ \mathrm{mm}$.

The HIRSCHMANN connector is included in the delivery contents of the motor.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- Retighten the mounting nut. Tightening torque: 5+1 Nm. (WAF26, 12-sided DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

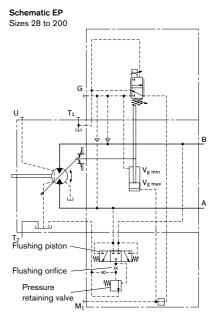
The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve) fixed setting 16 bar

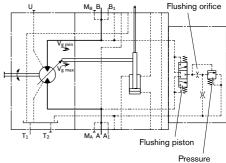
Switching pressure of flushing piston Δp 8±1 bar

Flushing flow q_v


Orifices can be used to set the flushing flows as required. Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and v = 10 mm²/s

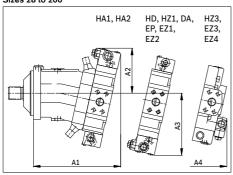
 $(p_{ND} = low pressure, p_G = case pressure)$


Size	Flushing flow q _V [L/min]	Mat. No. of orifice
28, 55	3.5	R909651766
80	5	R909419695
107	8	R909419696
140, 160, 200	10	R909419697
250	10	R909419697
355, 500, 1000	16	R910803019

With sizes 28 to 200, orifices can be supplied for flushing flows from 3.5 to - 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

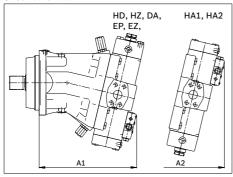
Schematic

Sizes 250 to 1000



retaining valve

Flushing and boost pressure valve


Dimensions

Sizes 28 to 200

NG	A1	A2	А3	A4
28	214	125	161	-
55	243	133	176	236
80	273	142	193	254
107	288	144	200	269
140	321	154	218	-
160	328	154	220	-
200	345	160	231	-

Sizes 250 to 1000

NG	A1	A2	
250	357	402	
355	397	446	
500	440	504	
1000	552	629	

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

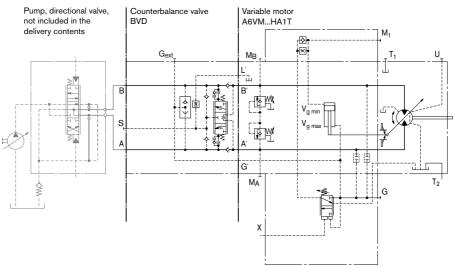
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

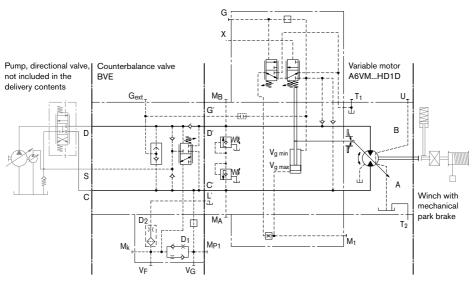

- BVD available for sizes 55 to 200 and BVE available for sizes 107 to 200.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A6VM80HA1T/63W-VAB38800A + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, controls with beginning of control at V_{q min} (e. g. HA) are not permissible for winch drives!
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525.
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive for wheeled excavators A6VM80HA1T/63W-VAB38800A + BVD20F27S/41B-V03K16D0400S12


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

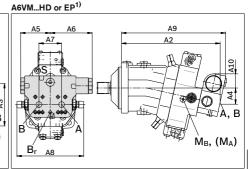
Winch counterbalance valve BVD...W and BVE

Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes
A6VM80HD1D/63W-VAB38800B + BVE25W38S/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE


	Without val	ve	Restricted v	restricted values in operation with DBV and BVD/BVE								
Motor			DBV	DBV			BVD/BVE	BVD/BVE				
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code		
55	400/450	244	22	350/420	240	380	20	350/420	220	388		
80		312					(BVD)					
107		380	32		400	370				378		
107		380				380	25		320	388		
140		455					(BVD/BVE)					
160		496										
200		580	On request									
250	350/400	675	On request						-			

DBV ______pressure-relief valve
BVD _____counterbalance valve, double-acting
BVE ____counterbalance valve, one-sided

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A6VM...HA A1 A2 B Gext

A6VM	Counterbalar	nce valve										
NGplate	Туре	Ports	Dimens	sions								
		A, B	A1	A2	А3	A4	A5	A6	A7	A8	Α9	A10
5538	BVD2017	3/4 in	311	302	143	50	98	139	75	222	326	50
8038	BVD2027	1 in	340	331	148	55	98	139	75	222	355	46
10737	BVD2028	1 in	362	353	152	59	98	139	84	234	377	41
10738	BVD2538	1 1/4 in	380	370	165	63	120.5	175	84	238	395	56
14038	BVD2538	1 1/4 in	411	401	168	67	120.5	175	84	238	426	53
16038	BVD2538	1 1/4 in	417	407	170	68	120.5	175	84	238	432	51
20038	BVD2538	1 1/4 in	448	438	176	74	120.5	175	84	299	463	46
10738	BVE2538	1 1/4 in	380	370	171	63	137	214	84	238	397	63
14038	BVE2538	1 1/4 in	411	401	175	67	137	214	84	238	423	59
16038	BVE2538	1 1/4 in	417	407	176	68	137	214	84	238	432	59
20038	BVE2538	1 1/4 in	448	438	182	74	137	214	84	299	463	52

Ports

Designation	Port for	Version	A6VM Plate	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁵⁾
A, B	Service line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 38524)	M22 x 1.5; 14 deep	30	Χ
		BVD25, E	BVE25	DIN 38524)	M27 x 2; 16 deep	30	X
Br	Brake release,	L	7	DIN 38524)	M12 x 1.5; 12.5	30	0
	reduced high-pressure				deep		
			8	DIN 38524)	M12 x 1.5; 12 deep	30	0
G _{ext}	Brake release,	S		DIN 38524)	M12 x 1.5; 12.5	420	Х
	high-pressure				deep		
M_A, M_B	Measuring pressure A and B			ISO 6149 ⁴⁾	M18 x 1.5; 14.5 deep	420	Χ

¹⁾ At the mounting version for the controls HD and EP, the cast-in port designations A and B on the counterbalance valve BVD do not correspond with the connection drawing of the A6VM motor.

The designation of the ports on the installation drawing of the motor is binding!

²⁾ Observe the general instructions on page 80 for the maximum tightening torques.

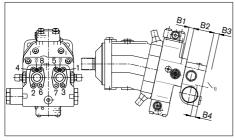
³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ The spot face can be deeper than specified in the appropriate standard.

⁵⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) _____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

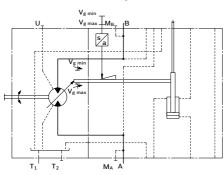
- 1) SAE flange
- $_{2)}$ Tacking screw (M6 x 1, length = B1 + B2, DIN 912)

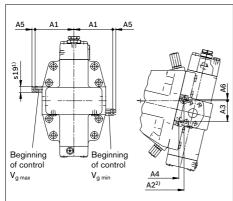
NGplate	5538	8038, 10737	107, 140, 160, 20038
B1 ³⁾	M10 x 1.5 17 deep	M12 x 1.75 15 deep	M14 x 2 19 deep
B2	68	68	85
B3	customer-speci	fic	
B4	M10 x 1.5 15 deep	M12 x 1.75 16 deep	M14 x 2 19 deep

³⁾ Minimum required thread reach 1 x Ø-thread

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Swivel angle indicator (sizes 250 to 1000)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Optical swivel angle indicator (V)

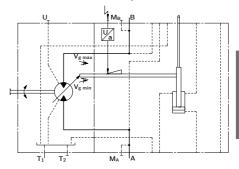
The swivel position is indicated by a pin on the side of the port plate. The length of pin protruding depends on the position of the lens plate.

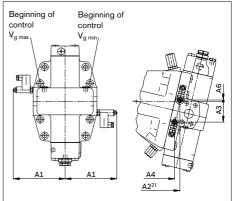
If the pin is flush with the port plate, the motor is at the beginning of control. At max. swivel, the pin length is 8 mm (visible after removing the cap nut).

Example: beginning of control at Vg max

NG	A1	A2 ²⁾	А3	Α4	A5 ³⁾	A6	
250	136.5	256	73	238	11	5	
355	159.5	288	84	266	11	8	
500	172.5	331	89	309	11	3	
1000	208.5	430	114	402	11	3	

- 1) Size
- 2) Dimension to mounting flange
- 3) Required clearance for removal of cap nut


Electric swivel angle indicator (E)


The motor position is measured by an inductive position transducer. This converts the stroke of the control device into an electric signal.

This signal is used to forward the swivel position to an electric controller.

Inductive position transducer, type IW9-03-01 type of protection according to DIN/EN 60529: IP65

Example: beginning of control at Vg min

NG	A1	A2 ²⁾	А3	A 4	A6	
250	182	256	73	238	5	
355	205	288	84	266	8	
500	218	331	89	309	3	
1000	254	430	114	402	3	

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Speed sensors

Version A6VM...U and A6VM...F ("prepared for speed sensor", i.e. without sensor) is quipped with a toothed ring on the rotary

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the speed sensor DSA or HDD mounted, a signal proportional to the motor speed can be generated. The sensors measure the speed and direction of rotation.

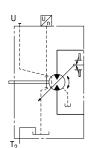
Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

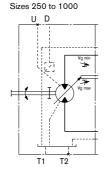
DSA	RE 95133
HDD	RE 95135

Version "V" (sizes 28 to 200)

Suitable for mounting the DSA speed sensor. The sensor is fastened at the upper reservoir port T₁.

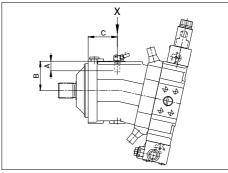
Note

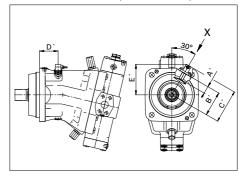

With speed measuring, only port T2 can be used to drain the case drain.


Version "H" (sizes 355 and 500)

Suitable for mounting the HDD speed sensor. The sensor is flanged onto the port provided for this purpose with two mounting bolts.

We recommend ordering the A6VM variable motor complete with installed sensor.


Schematic Sizes 28 to 200


Dimensions

Version "V" with DSA sensor (sizes 28 to 200)



Dimensions

Version "H" with HDD sensor (sizes 355 and 500)

View X

Size			55	80	107	140	160	200	250	355	500
Number of	of tee	th	54	58	67	72	75	80	78	90	99
DSA A		Insertion depth (tolerance -0.25)	18.4	18.4	18.4	18.4	18.4	18.4	-	-	
	В		75	79	88	93	96 91.7	101 95.2	– On – reauest	-	-
	С		66.2	75.2	77.2	91.2			roquoor	-	-
HDD	A'	Insertion depth (tolerance \pm 0.1)	-	-	-	-	-	-	-	32.5	32.5
	B'	Contact surface	-	-	-	-	-	-	-	122.5	132.5
	C'		-	-	-	-	-	-	-	161	171
	D'		-	-	-	-	-	-	-	93	113
	E'		-	-	-	-	-	-	-	145	154

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 8. Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

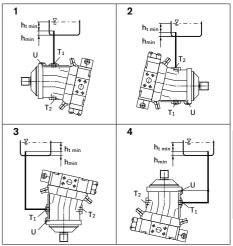
In certain installation conditions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

Installation position	Air bleed	Filling
1	_	T ₁
2	_	T ₂
3	-	T ₁
4	U	T ₁
5	U (L ₁)	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	U	T ₁ (L ₁)

L₁ Filling / air bleed

U Bearing flushing / air bleed port

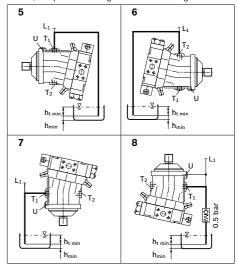
T₁, T₂ Drain port


ht min Minimum required immersion depth (200 mm)

h_{min} Minimum required spacing to reservoir

bottom (100 mm)

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

80/80

General instructions

- The motor A6VM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instruction regarding tightening torques for the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports Standard	Size of thread	Maximum permissible tightening torque of the female threads M _{G max}	Required tightening torque of the threaded plugs M _V ¹⁾	WAF hexagon socket of the threaded plugs
DIN 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M26 x 1.5	230 Nm	120 Nm	12 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm

The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

An den Kelterwiesen 14

72160 Horb, Germany

Tel.: +49-7451-92-0

Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 Fax: +49-7308-72-74 info.brm@boschrexroth.de

Fax: +49-7308-72-74 Fax: +49-7451-82-21 info.brm@boschrexroth.de www.boschrexroth.com/axial-piston-motors

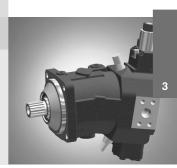
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5.

Axial Piston Variable Motor A6VM


RE 91610/06.12

1/76

Replaces: 01.12

Data sheet

Series 71 Sizes 60 to 280 Nominal pressure 450 bar Maximum pressure 500 bar Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	6
HP - Proportional control hydraulic	11
EP - Proportional control electric	13
HZ - Two-point control hydraulic	16
EZ – Two-point control electric	17
HA - Automatic control high-pressure related	18
DA - Automatic control speed-related	23
Electric travel direction valve (for DA, HA.R)	25
Dimensions size 60 to 280	26
Connector for solenoids	65
Flushing and boost pressure valve	66
Counterbalance valve BVD and BVE	68
Speed sensor	72
Setting range for displacement	73
Installation instructions	75
General instructions	76

Features

- Variable motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits
- For use in mobile and stationary applications
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The displacement can be infinitely changed from $V_{g\;\text{max}}$ to $V_{g\;\text{min}}=0.$
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and low-pressure side and with increasing displacement.
- Wide control range with hydrostatic transmissions
- Wide selection of control devices
- Cost savings through elimination of gear shifts and possibility of using smaller pumps
- Compact, robust motor with long service life
- High power density
- Good starting characteristics
- Version with 9-piston rotary group
- Good low speed characteristics
- High uniformity

A6\	νМ					0	0			/	71	М	W	٧	0						-	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21

Axial nic	ton unit	

01 Bent-axis design, variable, nominal pressure 450 bar, maximum pressure 500 bar

A6V

Operating mode

02 Motor M

Sizes (NG)

03	Geometric displacement	nt, see table of values on page 8		060	085	115	150	170	215	280]
	Control devices			060	085	115	150	170	215	280	
	Proportional control	positive control	$\Delta p_{St} = 10 \text{ bar}$	•	•	•	•	•	•	•	HP1
	hydraulic		$\Delta p_{St} = 25 \text{ bar}$	•	•	•	•	•	•	0	HP2
		negative control	$\Delta p_{St} = 10 \text{ bar}$	•	•	•	•	•	•	•	HP5
			$\Delta p_{St} = 25 \text{ bar}$	•	•	•	•	•	•	0	HP6
	Proportional control	positive control	U = 12 V DC	•	•	•	•	•	•	•	EP1
	electric		U = 24 V DC	•	•	•	•	•	•	•	EP2
		negative control	U = 12 V DC	•	•	•	•	•	•	•	EP5
			U = 24 V DC	•	•	•	•	•	•	•	EP6
	Two-point control	negative control		-	-	-	•	•	•	•	HZ5
04	hydraulic			•	•	•	-	-	-	-	HZ7
04	Two-point control	negative control	U = 12 V DC	-	-	ı	•	•	•	0	EZ5
	electric		U = 24 V DC	-	-	-	•	•	•	0	EZ6
			U = 12 V DC	•	•	•	-	-	-	-	EZ7
			U = 24 V DC	•	•	•	-	-	-	-	EZ8
	Automatic control high-pressure related,	with minimum pressure increase	$\Delta p \le approx.$ 10 bar	•	•	•	•	•	•	•	HA1
	positive control	with pressure increase	$\Delta p = 100 \text{ bar}$	•	•	•	•	•	•	•	HA2
	Automatic control	hydr. travel direction valve		•	•	•	•	•	•	0	DA0
	speed-related, negative control	elect. travel direction valve	U = 12 V DC	•	•	•	•	•	•	-	DA1
	$p_{St}/p_{HD} = 5/100$	+ electric V _{g max} circuit	U = 24 V DC	•	•	•	•	•	•	-	DA2

	Pressure control/overi	rides		060	085	115	150	170	215	280	
	Without pressure contr	ol/override		•	•	•	•	•	•	•	00
	Pressure control fixed s	•	•	•	•	•	•	•	D1		
	Override of the	hydraulic remote control, propo	ortional	•	•	•	•	•	•	0	Т3
05	HA1 and HA2	electric, two-point	U = 12 V DC	•	•	•	•	•	•	-	U1
	controls		U = 24 V DC	•	•	•	•	•	•	-	U2
		electric and travel direction	U = 12 V DC	•	•	•	•	•	•	-	R1
		valve, electric	U = 24 V DC	•	•	•	•	•	•	-	R2

Connector for solenoids1) (see page 65)

06	Without connector (without solenoid, only with hydraulic controls)	0
	DEUTSCH - molded connector, 2-pin – without suppressor diode	Р

ullet = Available O = On request - = Not available

¹⁾ Connectors for other electric components can deviate.

A6V	/ M					0	0			/	71	М	w	v c)				-	
01	02	03	04	05	06	07	08	09	10		11	12	13	14 15	16	17	18	19 2	0	2
Add	litional	functi	on 1																	
7 Wit	thout ad	dition	al fund	ction																0
Δdc	ditional	funct	ion 2																	
	thout ad			ction																О
																				_
	ponse								rol)											_
	thout da	mping	(stan													. 5.				_
Dar 9	mping												h coun	terbala	nce va	lve BV	D/BVE			1
					e-side															4
				On	e-sided	d in ou	tlet fro	m larç	ge stro	king c	hambe	er (DA)								7
Sett	ting ran	ges f	or dis	place	ement	2)							060	085	115	150	170	215	280	
V _{g n}	_{nax} -adjus	sting s	crew	Vgr	_{min} -adj	usting	g scre	ew												
	thout ad		screv	v sho	ort (0-	adjus	table)						•	•	•	•	•	•	-	A
(not	t for NO	3280)		me	dium								•	•	•	•	•	•	-	E
		lon	g								•	•	•	•	•	•	-	(
				ext	ra lon	g							-	-	•	•	•	•	-	
Sho	ort			sho	ort (0-	adjus	table)						•	•	•	•	•	•	•	E
10		me	dium								•	•	•	•	•	•	•	F		
					long							•	•	•	•	•	•	•	G	
		extra long							_	-	•	•	•	•	•	H				
Med	dium			sho	ort (0-	adjus	table)						•	•	•	•	•	•	•	J
				me	dium								•	•	•	•	•	•	•	ľ
				lon	g								•	•	•	•	•	•	•	L
				ext	ra lon	9							-	-	•	•	•	•	•	N
Seri	iec																			
	ries 7, in	dev 1																		7
. 001	1100 7, 111	ucx i																		
	figurati																			_
12 Met	tric, por	t threa	ıds wi	th O-	ring s	eal ac	ccord	ing to	ISO	6149										N
Dire	ection o	f rota	tion																	
13 Viev	wed on	drive	shaft,	bidire	ection	al														٧
C	.i.a																			
Sea	M (fluor	-cacut	chouc	٠,																
14 [1 10]	IVI (IIUOI	Caoui	CHOUC	,,																
	e shaft																			_
15 Sta	ındard b	earing	9																	_ (
Mou	unting f	lange	s										060	085	115	150	170	215	280	
	3019-			125	5-4								•	-	-	-		<u>_</u>	_	М
				140									<u> </u>	•	-	-	-	-	† <u>-</u>	N
					• •								1	_	_	_			_	<u>```</u>

	200-4	
■ = Available	O = On request	- = Not available

160-4

180-4

16

P4

R4

²⁾ The settings for the adjusting screws can be found in the table (pages 73 and 74).

A6V	М					0	0			/	71	М	W	٧	0						_	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21

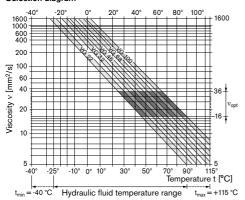
	Drive shafts			060	085	115	150	170	215	280	_
	Splined shaft	1 1/4 in 14T 12/24DF		•	-	-	-	-	-	-	S
	ANSI B92.1a	1 1/2 in 17T 12/24DF		-	•	-	-	_	_	-	s
		1 3/4 in 13T 8/16DP		-	-	•	•	-	-	-	T
		2 in 15T 8/16DP		-	-	-	0	•	•	-	Т
17		2 1/4 in 17T 8/16DP		-	-	-	-	-	-	•	Т
/	Splined shaft	W35x2x16x9g		•	-	-	-	-	-	-	z
	DIN 5480	W40x2x18x9g		-	•	•	-	_	-	-	z
		W45x2x21x9g		-	-	-	•	•	-	-	Α
		W50x2x24x9g		-	_	_	-	_	•	_	Α
		W60x2x28x9g		_	_	_	_	_	_	•	Α
	Port plates for serv	vice lines		060	085	115	150	170	215	280	
	SAE flange ports A			•	•	•	•	•	•	•	Г
	SAE flange ports A	and B at side, opposite		•	•	•	•	•	•	•	
8		vel pressure-relief valves fo	r BVD20	•	•	•	-	_	-	-	Г
	mounting a counter		BVD25, BVE25	_	_	•	•	•	•	_	Г
	Valves (see pages (26 to 71)		060	085	115	150	170	215	280	
	Without valve	50 to 71)		•	•	•	130	•	213	●	
	Counterbalance va	lve BVD/BVE mounted ⁴⁾		•	•	•	•	•	•	-	1
		pressure valve mounted,	Flushing flow q _v [L/min]								_
	flushing on both sid		3.5	•	•	•	-	_	_	_	Γ.
	Flushing flow with:		5	•	•	•	_	_	_	_	
	$\Delta p = p_{ND} - p_G = 2$ $v = 10 \text{ mm}^2/\text{s}$	o bar and	8	•	•	•	•	•	•	_	1
		e, p _G = case pressure)	10	•	•	•	•	•	•	_	
9	Only possible with	port plates 1 and 2	14	•	•	•	-	_	_	_	H
•			17	-	_	_	•	•	•	_	_
			20	_	_	6 5)	•	•	•	_	
			25	_	_	6 5)				-	<u> </u>
			30	-	_	6 5)	•			_	H
					_	_		-			⊢
			35	-		-	_	•	_	-	L.
			40	-	-	-	•	•	•	-	
_			adjustable 0 to 60 ⁶⁾	-	-	-		-	-	•	Ľ
	Speed sensors (se	e page 72)		060	085	115	150	170	215	280	
	Without speed sen	sor		•	•	•	•	•	•	•	
_	Prepared for DSA	and concer			_	_		_	_	0	Г

	Speed sensors (see page 72)	060	085	115	150	170	215	280	
	Without speed sensor	•	•	•	•	•	•	•	0
20	Prepared for DSA speed sensor	•	•	•	•	•	•	0	U
	DSA speed sensor mounted ⁷⁾	•	•	•	•	•	•	0	٧

- O = On request - = Not available
- 3) Only possible in combination with HP, EP and HA control. Note the restrictions on page 69.
- 4) Specify ordering code of counterbalance valve acc. to data sheet (BVD RE 95522, BVE RE 95525) separately. Note the restrictions on page 69.
- 5) Not for EZ7, EZ8 and HZ7
- 6) Indicate in your order the required flushing flow in plain text.
- 7) Specify ordering code of sensor acc. to data sheet (DSA RE 95133) separately and observe the requirements on the elec-

A6V	М					0	0			/	71	М	W	٧	0						_	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21

Standard / special version


		Standard version	0
2	21	Standard version with installation variants, e. g. T ports against standard open or closed	Υ
L		Special version	S

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable motor A6VM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed. Please contact us.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature; in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt.}, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

lote

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U or using a flushing and boost pressure valve (see pages 66 and 67).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50$ °C $T_{opt} = +5$ °C to +20 °C	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up1)	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}C$	$t \leq 3$ min, without load (p ≤ 50 bar), n ≤ 1000 rpm
Permissible temperatu	re difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400	T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference	е	$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T. The bearing temperature can be reduced by flushing via port U.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$\nu_{min} \geq 7$	$T_{max} = +103 ^{\circ}C$	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 7

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

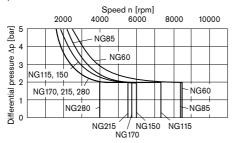
²⁾ Size 280, please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

HP, HA.T3 _______increase
DA ______decrease

With the following controls, an increase in the case pressure has no influence on the beginning of control: HA.R and HA.U (sizes 60 to 215), EP, HA

The factory setting of the beginning of control is made at $p_{abs} = 2$ bar case pressure.

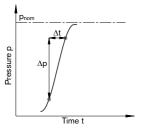
Direction of flow

Direction of rotation, viewed on drive shaft				
clockwise counter-clockwise				
A to B	B to A			

Operating pressure range

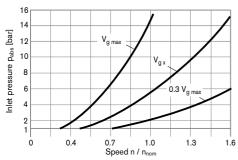
(operating with mineral oil)

Pressure at service line port A or B


Nominal pressure pnom	450 bar absolute
Maximum pressure pmax	500 bar absolute
Single operating period	10 s
Total operating period	300 h

Minimum pressure (high-pressure side) ___25 bar absolute

Summation pressure (pressure A + pressure B) p_{Su} 700 bar


Rate of pressure change RA max

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve 16000 bar/s

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from $v_{\text{ont}} = 36$ to 16 $\text{mm}^2/\text{s}.$

Please contact us if the above conditions cannot be satisfied.

Note

Values for other hydraulic fluids, please contact us.

Definition

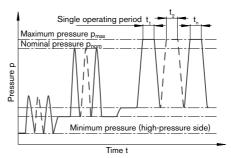
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

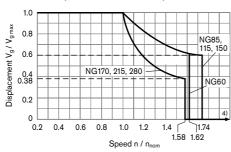
Summation pressure psu

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$


Table of values (theoretical values, without efficiency and tolerances; values rounded)

Nenngröße	NG		60	85	115	150	170	215	280
Displacement geometric, per revolution	$V_{g max}$	cm ³	62.0	85.2	115.6	152.1	171.8	216.5	280.1
	V _{g min}	cm ³	0	0	0	0	0	0	0
	V _{g x}	cm ³	37	51	69	91	65	82	175
Speed maximum ¹⁾ (while adhering to the maximum permissible input flow)									
at V _{g max}	n _{nom}	rpm	4450	3900	3550	3250	3100	2900	2500
at $V_g < V_{gx}$ (see diagram below)	n _{max}	rpm	7200	6800	6150	5600	4900	4600	3950
at V _{g 0}	n _{max}	rpm	8400	8350	7350	6000	5750	5500	3950
Input flow ²⁾									
at n_{nom} and $V_{\text{g max}}$	q _{V max}	L/min	276	332	410	494	533	628	700
Torque ³⁾									
at $V_{g \text{ max}}$ and $\Delta p = 450 \text{ bar}$	T	Nm	444	610	828	1089	1230	1550	2006
Rotary stiffness									
$V_{g max}$ to $V_{g}/2$	C _{min}	kNm/rad	15	22	37	44	52	70	72
V _g /2 to 0 (interpolated)	C _{max}	kNm/rad	45	68	104	124	156	196	209
Moment of inertia for rotary group	J_{GR}	kgm ²	0.0043	0.0072	0.0110	0.0181	0.0213	0.0303	0.0479
Maximum angular acceleration	α	rad/s ²	21000	17500	15500	11000	11000	10000	7000
Case volume	V	L	0.8	1.0	1.5	1.7	2.3	2.8	3.4
Mass (approx.)	m	kg	28	36	46	61	62	78	101
N-1-									

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible displacement in relation to speed

- 1) The values are valid:
 - for the optimum viscosity range from $v_{opt} = 36$ to 16 mm²/s
- with hydraulic fluid based on mineral oils
- 2) Restriction of input flow with counterbalance valve, see page 69
- 3) Torque without radial force, with radial force see page 10
- 4) Values in this range on request

Determining the operating characteristics

Input flow
$$q_v = \frac{v_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_0}$$
 [min⁻¹]

Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

Power
$$P = \frac{2\pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} \text{ [kW]}$$

V_g = Displacement per revolution in cm³

Δp = Differential pressure in bar

n = Speed in rpm

n_v = Volumetric efficiency

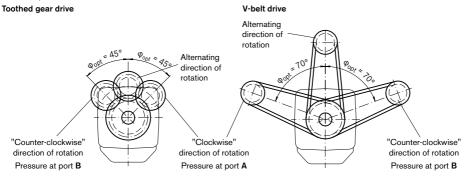
η_{mh} = Mechanical-hydraulic efficiency

 η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

Permissible radial and axial forces of the drive shafts

Size	NG		60	85	115	150	150	170	215	280
Drive shaft		in	1 1/4	1 1/2	1 3/4	1 3/4	2	2	2	2 1/4
Maximum radial force ¹⁾	F _{q max}	N	7620	12463	14902	15948	17424	19370	22602	26821
(from shaft collar)	a	mm	24.0	27.0	33.5	33.5	33.5	33.5	33.5	40
with permissible torque	T_{max}	Nm	310	595	828	890	1089	1230	1445	1916
$ riangleq$ permissible pressure Δp at $V_{g max}$	p _{nom perm.}	bar	315	440	450	370	450	450	420	430
Maximum axial force ²⁾	+F _{ax max}	N	500	710	900	1030	1030	1120	1250	1575
'ax = [[]	- F _{ax max}	N	0	0	0	0	0	0	0	03)
Permissible axial force per bar operating pressure	F _{ax} perm./bar	N/bar	7.5	9.6	11.3	13.3	13.3	15.1	17.0	19.4
Size	NG		60	85	115	150		170	215	280
Drive shaft		mm	W35	W40	W40	W45		W45	W50	W60
Maximum radial force¹) ↓ Fq ∏	F _{q max}	mm N	W35 10266	W40 12323	W40 16727	W45 19534				W60 26913
	F _{q max}							W45	W50	
Maximum radial force ¹⁾ at distance a		N	10266	12323	16727	19534		W45 21220	W50 25016	26913
Maximum radial force ¹⁾ at distance a (from shaft collar)	a	N mm	10266 20.0	12323	16727 22.5	19534 25.0		W45 21220 25.0	W50 25016 27.5	26913 35
Maximum radial force ¹⁾ at distance a (from shaft collar) Permissible nominal pressure at V _{g max} Permissible torque Maximum axial force ²⁾	a pnom perm. Tmax +Fax max	N mm bar Nm	10266 20.0 450	12323 22.5 450	16727 22.5 450	19534 25.0 450		W45 21220 25.0 440	W50 25016 27.5 450	26913 35 450
Maximum radial force ¹⁾ at distance a (from shaft collar) Permissible nominal pressure at V _{g max} Permissible torque	a p _{nom perm.}	N mm bar Nm	10266 20.0 450 444	12323 22.5 450 610	16727 22.5 450 828	19534 25.0 450 1089		W45 21220 25.0 440 1200	W50 25016 27.5 450 1550	26913 35 450 2005

¹⁾ With intermittent operation.


Note

Influence of the direction of the permissible axial force:

- + F_{ax max} = Increase in service life of bearings
- F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force Fq on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

²⁾ Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

³⁾ Please contact us.

HP - Proportional control hydraulic

The proportional hydraulic control provides infinite setting of the displacement, proportional to the pilot pressure applied to port X.

HP1, HP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum pilot pressure)
- End of control at $V_{g\,max}$ (maximum torque, minimum speed at maximum pilot pressure)

HP5, HP6 negative control

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum pilot pressure)

Note

- Maximum permissible pilot pressure: pst = 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 10 bar.
- The beginning of control and the HP characteristic are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel shift of the characteristic.

HP1, HP5 pilot pressure increase Δp_{St} = 10 bar

HP1 positive control

A pilot pressure increase of 10 bar at port X results in an increase in displacement from V $_{g\ min}$ to V $_{g\ max}.$

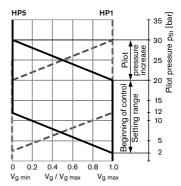
HP5 negative control

A pilot pressure increase of 10 bar at port X results in a decrease in displacement from $V_{g\ max}$ to $V_{g\ min}$.

Beginning of control, setting range _____2 to 20 ba

Standard setting:

Beginning of control at 3 bar (end of control at 13 bar)


Note

The spring return feature in the control part is not a safety device

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

Characteristic

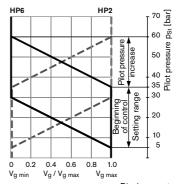
Displacement

HP2, HP6 pilot pressure increase $\Delta p_{St} = 25$ bar

HP2 positive control

A pilot pressure increase of 25 bar at port X results in an increase in displacement from $V_{g\ min}$ to $V_{g\ max}.$

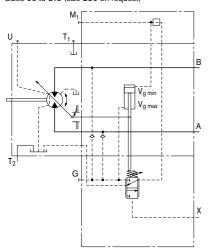
HP6 negative control

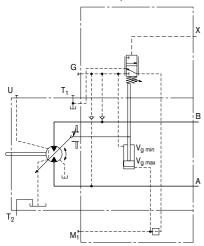

A pilot pressure increase of 25 bar at port X results in a decrease in displacement from $V_{q\,max}$ to $V_{q\,min}$.

Beginning of control, setting range _____5 to 35 bar

Standard setting:

Beginning of control at 10 bar (end of control at 35 bar)

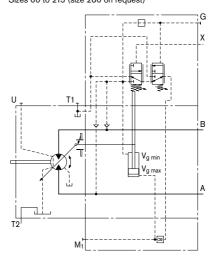

Characteristic


Displacement

HP - Proportional control hydraulic

Schematic HP1, HP2: positive control Sizes 60 to 215 (size 280 on request)

Schematic HP5, HP6: negative control Sizes 60 to 215 (size 280 on request)


HP5D1, HP6D1 Pressure control, fixed setting

The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.

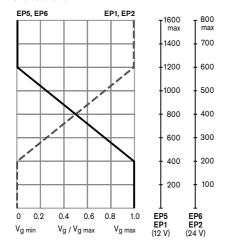
The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve_____ 80 to 450 ba

Schematic HP5D1, HP6D1: negative control Sizes 60 to 215 (size 280 on request)

EP - Proportional control electric

The proportional electric control provides infinite setting of the displacement, proportional to the control current applied to the solenoid


EP1, EP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum control current)
- End of control at V_{g max} (maximum torque, minimum speed at maximum control current)

EP5, EP6 negative control

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

Technical data, solenoid

	EP1, EP5	EP2, EP6
Voltage	12 V (±20 %)	24 V (±20 %)
Control current		
Beginning of control	400 mA	200 mA
End of control	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 Hz	100 Hz
Duty cycle	100 %	100 %
Type of protection see connec	ctor design page	e 65

The following electronic controllers and amplifiers are available

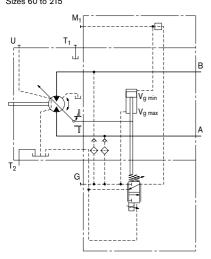
The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

BODAS controller RC	
Series 20	RE 95200
Series 21	RE 95201
Series 22	RE 95202
Series 30	RE 95203, RE 95204
and application software	

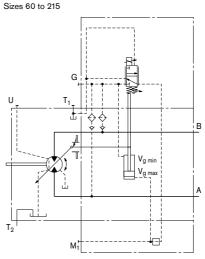
- Analog amplifier RA______ RE 95230
- Electric amplifier VT 2000, series 5X (see RE 29904) (for stationary application)

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics

Note

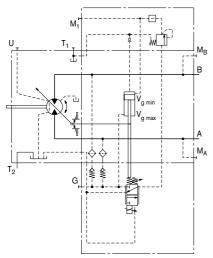

The spring return feature in the control part is not a safety device

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

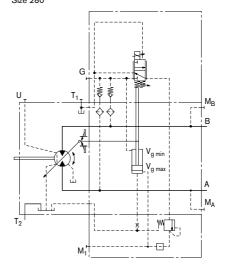

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

EP - Proportional control electric

Schematic EP1, EP2: positive control Sizes 60 to 215



Schematic EP5, EP6: negative control

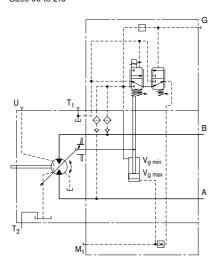


Schematic EP1, EP2: positive control

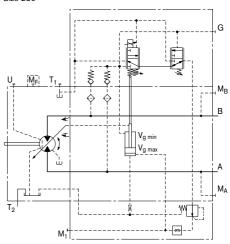
Size 280

Schematic EP1, EP2: negative control Size 280

EP - Proportional control electric


EP5D1, EP6D1 Pressure control, fixed setting

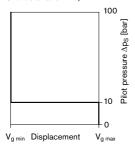
The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve _____ 80 to 450 bar

Schematic EP5D1, EP6D1: negative control Sizes 60 to 215

Schematic EP5D1, EP6D1: negative control Size 280

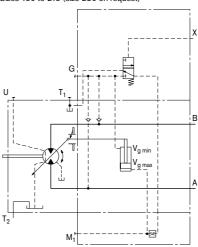

HZ - Two-point control hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{g \, min}$ or $V_{g \, max}$ by switching the pilot pressure at port X on or off.

HZ5, HZ7 negative control

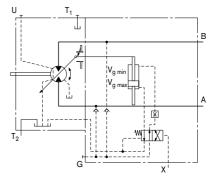
- Position at V_{g max} (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)

Characteristic HZ5, HZ7


Note

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please

Please note that pressures up to 500 bar can occur at port G.


Schematic HZ5: negative control

Sizes 150 to 215 (size 280 on request)

Schematic HZ7: negative control

Sizes 60 to 115

EZ - Two-point control electric

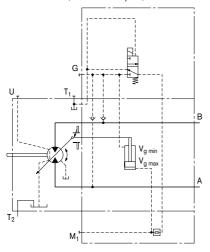
The two-point electric control allows the displacement to be set to either $V_{g\,min}$ or $V_{g\,max}$ by switching the electric current to a switching solenoid on or off.

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure \leq 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

Technical data, solenoid with Ø37


Sizes 150 to 280

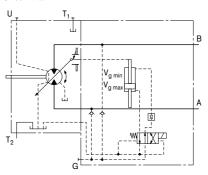
	EZ5	EZ6
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100 %	100 %

Type of protection see connector design page 65

Schematic EZ5, EZ6: negative control

Sizes 150 to 215 (size 280 on request)

Technical data, solenoid with Ø45


Sizes 60 to 115

	EZ7	EZ8
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω
Nominal power	30 W	30W
Minimum required current	1.5 A	0.75 A
Duty cycle	100 %	100 %

Type of protection see connector design page 65

Schematic EZ7, EZ8: negative control

Sizes 60 to 115

The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VM motor with HA control is $V_{g\ min}$ (maximum speed and minimum torque). The control unit measures internally the operating pressure at A or B (no control line required) and upon reaching the beginning of control , the controller swivels the motor from $V_{g\ min}$ to $V_{g\ max}$ with increase of pressure. The displacement is modulated between $V_{g\ min}$ and $V_{g\ max}$ thereby depending on load conditions.

HA1, HA2 positive control

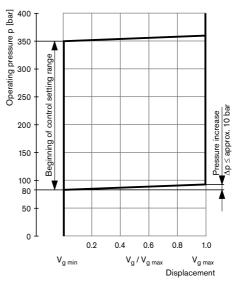
- Beginning of control at $V_{\text{g min}}$ (minimum torque, maximum speed)
- End of control at V_{g max} (maximum torque, minimum speed)

Note

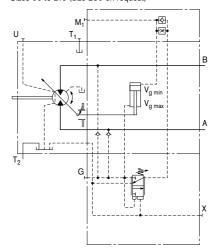
- For safety reasons, winch drives are not permissible with beginning of control at V_{a min} (standard for HA).
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

 The beginning of control and the HA.T3 characteristic are influenced by case pressure. An increase in case pressure causes an increase in the beginning of control (see page 7) and thus a parallel shift of the characteristic.


HA1 With minimum pressure increase, positive control

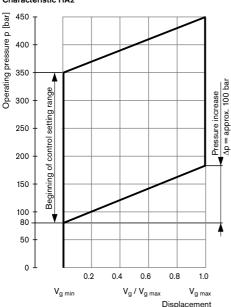
An operating pressure increase of $\Delta p \leq approx.$ 10 bar results in an increase in displacement from $V_{g \; min}$ towards $V_{g \; max}.$


Beginning of control, setting range 80 to 350 ba

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 300 bar.

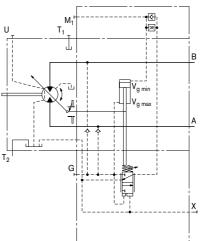
Characteristic HA1

Schematic HA1 Sizes 60 to 215 (size 280 on request)


HA2 With pressure increase, positive control

An operating pressure increase of Δp = approx. 100 bar results in an increase in displacement from $V_{q \text{ min}}$ to $V_{q \text{ max}}$.

Beginning of control, setting range ______ 80 to 350 bar


Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 200 bar

Characteristic HA2

Schematic HA2

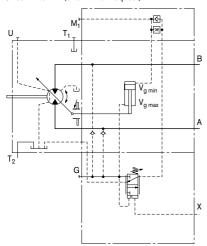
Sizes 60 to 215 (size 280 on request)

HA.T3 Override hydraulic remote control,

With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port X.

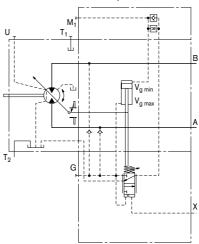
For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar.

Beginning of control setting	300 bar	300 bar	
Pilot pressure at port X	0 bar	10 bar	
Beginning of control at	300 bar	130 bar	


Note

Maximum permissible pilot pressure 100 bar.

Schematic HA1.T3

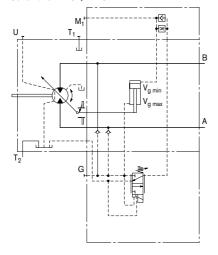

proportional

Sizes 60 to 215 (size 280 on request)

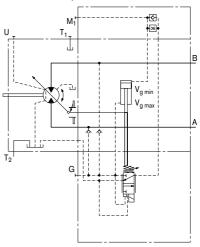
Schematic HA2.T3

Sizes 60 to 215 (size 280 on request)

HA.U1, HA.U2 Override electric, two-point


Sizes 60 to 215

With the HA.U1 or HA.U2 control, the beginning of control can be overridden by an electric signal to a switching solenoid. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position. The beginning of control is adjustable between 80 and 300 bar (specify required setting in plain text when ordering).


Technical data, solenoid with Ø45

	U1	U2
Voltage	12 V (±20 %)	24 V (±20 %)
No override	de-energized	de-energized
Displacement V _{g max}	energized	energized
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω
Nominal power	30 W	30 W
Minimum required current	1.5 A	0.75 A
Duty cycle	100 %	100 %
Type of protection see connecto	r design page 6	35

Schematic HA1U1, HA1U2

Schematic HA2U1, HA2U2

HA.R1, HA.R2 Override electric, travel direction valve electric (see page 25)

Sizes 60 to 215

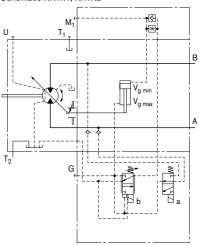
With the HA.R1 or HA.R2 control, the beginning of control can be overridden by an electric signal to switching solenoid b. When the override solenoid b is energized, the variable motor swivels to maximum swivel angle, without intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor (A or B) is always connected to the HA control, and thus determines the swivel angle, even if the high-pressure side changes (e.g. -travel drive during a downhill operation). This thereby prevents undesired jerky deceleration and/or braking characteristics.

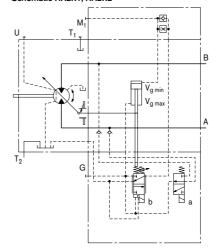
Depending on the direction of rotation (direction of travel), the travel direction valve is actuated through the pressure spring or the switching solenoid a (see page 25 for further details).

Technical data, solenoid a with Ø37

(travel direction valve)


		R1	R2
Voltage		12 V (±20 %)	24 V (±20 %)
No override		de-energized	de-energized
Direction of rotation	Operating pressure in		
ccw	В	energized	energized
cw	Α	de-energized	de-energized
Nominal resist	ance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	er	26.2 W	26.5 W
Minimum requ	ired current	1.32 A	0.67 A
Duty cycle		100 %	100 %

Type of protection see connector design page 65


Technical data, solenoid b with Ø45 (electric override)

	R1	R2		
Voltage	12 V (±20 %)	24 V (±20 %)		
No override	de-energized	de-energized		
Displacement V _{g max}	energized	energized		
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω		
Nominal power	30 W	30 W		
Minimum required current	1.5 A	0.75 A		
Duty cycle	100 %	100 %		
Type of protection see connector design page 65				

Schematic HA1R1, HA1R2

Schematic HA2R1, HA2R2

DA - Automatic control speed-related

The variable motor A6VM with automatic speed-related control is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

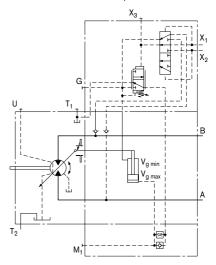
Pressure ratio p_{St}/p_{HD} ______5/100

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales department and on the Internet at www.boschrexroth.com/da-control.

Note

The beginning of control and the DA characteristic are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 7) and thus a parallel shift of the characteristic.


DA0 Hydraulic travel direction valve, negative control

Dependent on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures connections X_1 or X_2 .

Direction of rotation	Operating pressure in	Pilot pressure in
cw	Α	X ₁
ccw	В	X ₂

Schematic DA0

Sizes 60 to 215 (size 280 on request)

DA - Automatic control speed-related

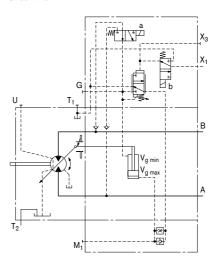
DA1, DA2 Electric travel direction valve + electric V_{g max}-circuit, negative control

The travel direction valve is either spring offset or switched by energizing switching solenoid a, depending on the direction of rotation (travel direction).

When the switching solenoid b is energized, the DA control is overridden and the motor swivels to maximum displacement (high torque, lower speed) (electric $V_{g\,max}$ -circuit).

Technical data, solenoid a with Ø37

(travel direction valve)


		DA1	DA2
Voltage		12 V (±20 %)	24 V (±20 %)
Direction of rotation	Operating pressure in		
ccw	В	de-energized	de-energized
cw	Α	energized	energized
Nominal resistance (at 20 °C)		5.5 Ω	21.7 Ω
Nominal power		26.2 W	26.5 W
Minimum required current		1.32 A	0.67 A
Duty cycle		100 %	100 %
Type of protection see connector design page 65			

Technical data, solenoid b with Ø37

(electric override)

DA1	DA2			
12 V (±20 %)	24 V (±20 %)			
de-energized	de-energized			
energized	energized			
5.5 Ω	21.7 Ω			
26.2 W	26.5 W			
1.32 A	0.67 A			
100 %	100 %			
Type of protection see connector design page 65				
	12 V (±20 %) de-energized energized 5.5 Ω 26.2 W 1.32 A 100 %			

Schematic DA1, DA2 Sizes 60 to 215

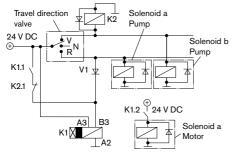
Electric travel direction valve (for DA, HA.R)

Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e. g. A4VG with DA control valve).

If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle's mass and current travel speed.

When the travel direction valve of the pump (e. g. 4/3-directional valve of the DA-control) is switched to

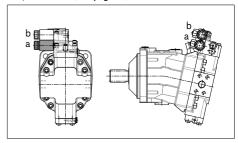
- the neutral position,

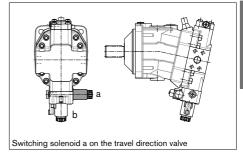

the electric circuitry causes the previous signal on the travel direction valve on the motor to be retained.

- reversing,

the electric circuitry causes the travel direction valve on the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

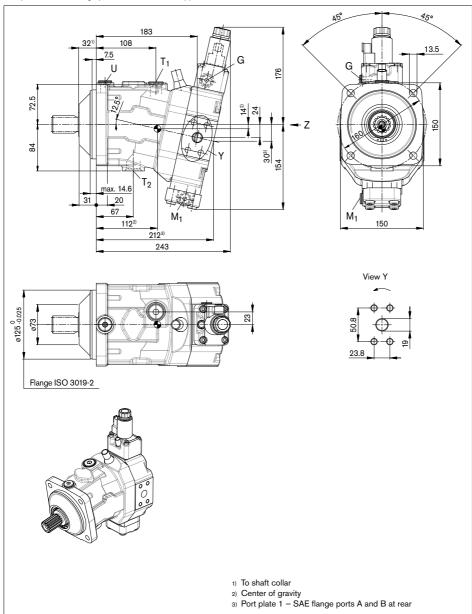
As a result, jerky deceleration or braking is prevented in both cases.


Schematic - electric travel direction valve

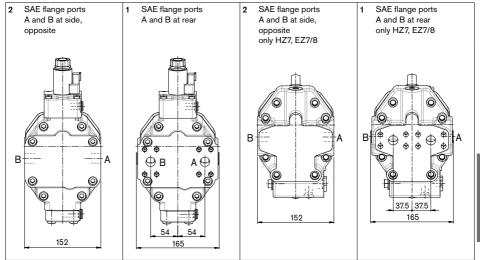

Note

The shown diodes and relays are not included in the delivery of the motor.

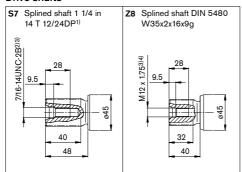
DA1, DA2 control (see page 24)


HA1R., HA2R. control (see page 22)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5, EP6 - Proportional control electric, negative control

Port plate 2 - SAE flange ports A and B at side, opposite



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

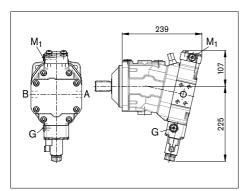
Location of the service line ports on the port plates (view Z)

Drive shafts

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 76 for the maximum tightening torques.
- 4) Center bore according to DIN 332 (thread according to DIN 13)

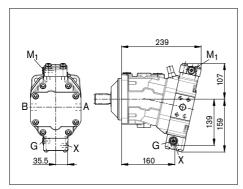
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 60

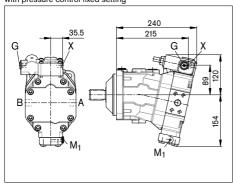

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J5183)	3/4 in	500	0
	Fastening thread A/B	DIN 13	M10 x 1.5; 17 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
U	Bearing flushing	ISO 6149 ⁵⁾	M18 x 1.5; 14.5 deep	3	Х
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8xM12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	0
Х3	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	Х
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х

- 1) Observe the general instructions on page 76 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 75).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

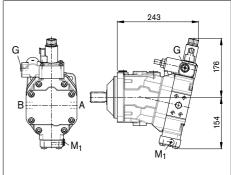

EP1, EP2

Proportional control electric, positive control

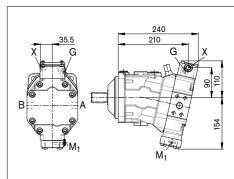

HP1, HP2

Proportional control hydraulic, positive control

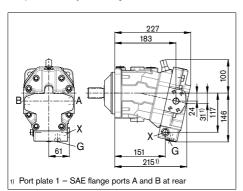
HP5D1, HP6D1


Proportional control hydraulic, negative control, with pressure control fixed setting

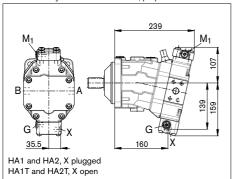
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5D1, EP6D1

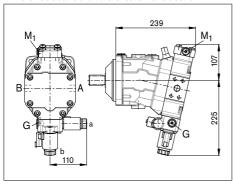
Proportional control electric, negative control, with pressure control fixed setting


HP5, HP6

Proportional control hydraulic, negative control

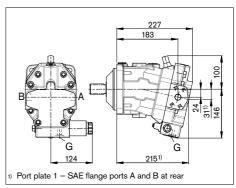

HZ7

Two-point control hydraulic, negative control

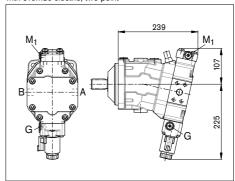

HA1, HA2 / HA1T3, HA2T3

Automatic control high-pressure related, positive control, with override hydraulic remote control, proportional

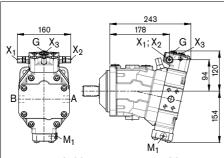
HA1R1, HA2R2


Automatic control high-pressure related, positive control, with override electric and travel direction valve electric

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EZ7, EZ8

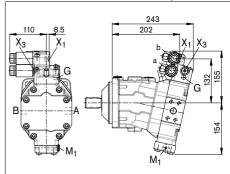
Two-point control electric, negative control


HA1U1, HA2U2

Automatic control high-pressure related, positive control, with override electric, two-point

DAG

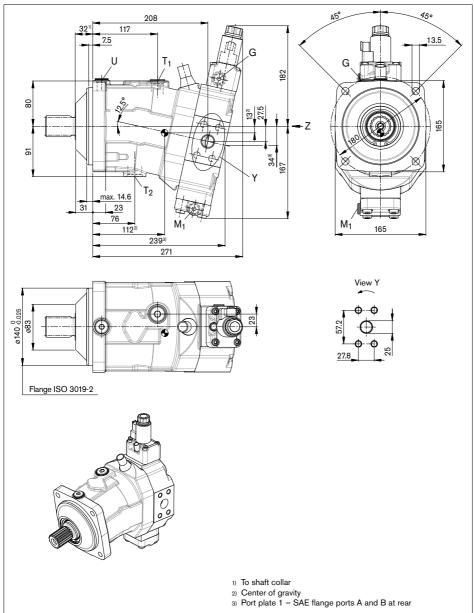
Automatic control speed related, negative control, with hydraulic travel direction valve



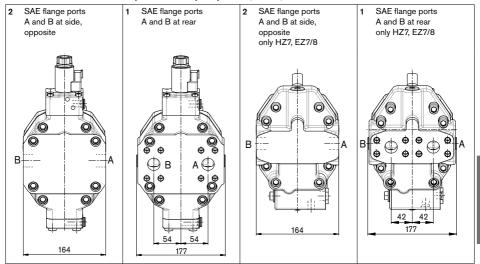
X₁, X₂ Pipe fitting SDSC – L8xM12 – F acc. to ISO 8434-1 Use assembled fitting!

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

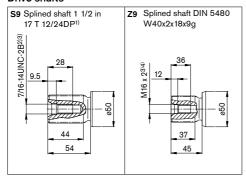
DA1, DA2


Automatic control speed related, negative control, with electric travel direction valve and electric $V_{g\ max}$ - circuit

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5, EP6 - Proportional control electric, negative control

Port plate 2 - SAE flange ports A and B at side, opposite



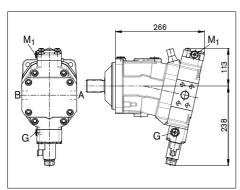
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

Drive shafts

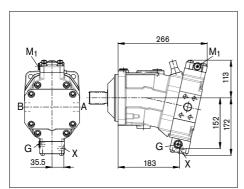
- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 76 for the maximum tightening torques.
- 4) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

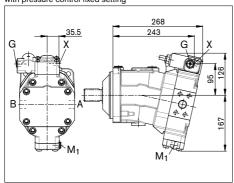

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J518 ³⁾	1 in	500	0
	Fastening thread A/B	DIN 13	M12 x 1.75; 17 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
U	Bearing flushing	ISO 6149 ⁵⁾	M18 x 1.5; 14.5 deep	3	Χ
Χ	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
X	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8xM12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	Χ
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х

- 1) Observe the general instructions on page 76 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 75).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

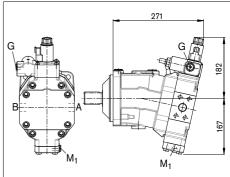

EP1, EP2

Proportional control electric, positive control

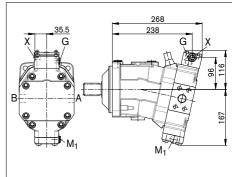

HP1, HP2

Proportional control hydraulic, positive control

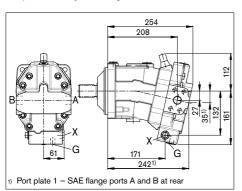
HP5D1, HP6D1


Proportional control hydraulic, negative control, with pressure control fixed setting

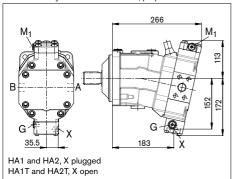
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5D1, EP6D1

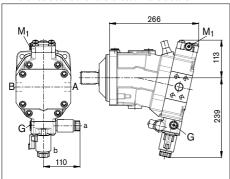
Proportional control electric, negative control, with pressure control fixed setting


HP5, HP6

Proportional control hydraulic, negative control

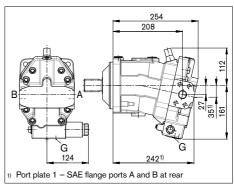

HZ7

Two-point control hydraulic, negative control

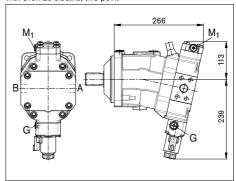

HA1, HA2 / HA1T3, HA2T3

Automatic control high-pressure related, positive control, with override hydraulic remote control, proportional

HA1R1, HA2R2


Automatic control high-pressure related, positive control, with override electric and travel direction valve electric

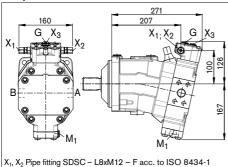
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EZ7, EZ8

Two-point control electric, negative control

HA1U1, HA2U2

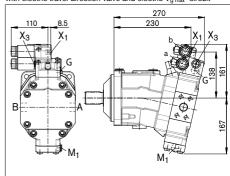
Automatic control high-pressure related, positive control, with override electric, two-point



Use assembled fitting!

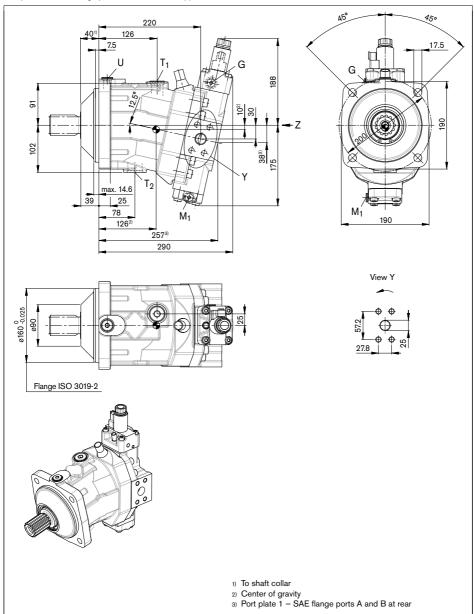
Dimensions size 85

DAG

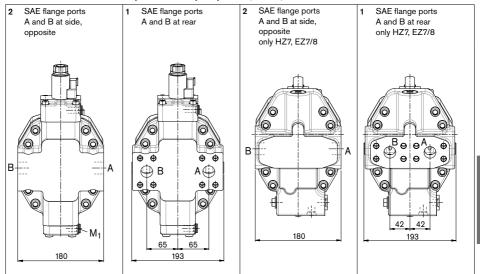

Automatic control speed related, negative control, with hydraulic travel direction valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

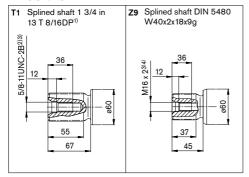
DA1, DA2


Automatic control speed related, negative control, with electric travel direction valve and electric V $_{g\;max}$ - circuit

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5, EP6 - Proportional control electric, negative control

Port plate 2 - SAE flange ports A and B at side, opposite



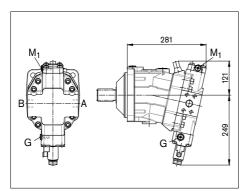
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

Drive shafts

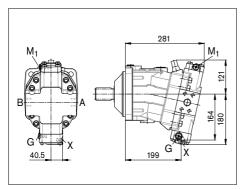
- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 76 for the maximum tightening torques.
- 4) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

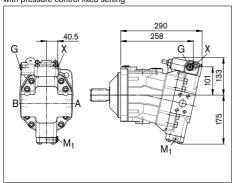

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J5183)	1 in	500	0
	Fastening thread A/B	DIN 13	M12 x 1.75; 17 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M33 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
U	Bearing flushing	ISO 6149 ⁵⁾	M18 x 1.5; 14.5 deep	3	Χ
X	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
X	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8xM12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	Χ
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х

- 1) Observe the general instructions on page 76 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 75).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

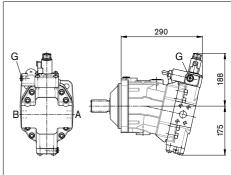

EP1, EP2

Proportional control electric, positive control

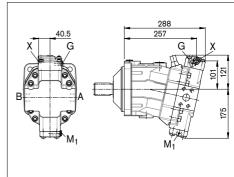

HP1, HP2

Proportional control hydraulic, positive control

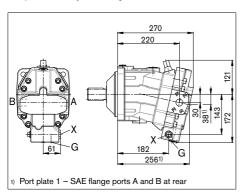
HP5D1, HP6D1


Proportional control hydraulic, negative control, with pressure control fixed setting

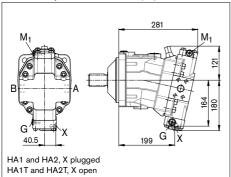
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5D1, EP6D1

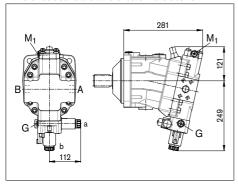
Proportional control electric, negative control, with pressure control fixed setting


HP5, HP6

Proportional control hydraulic, negative control

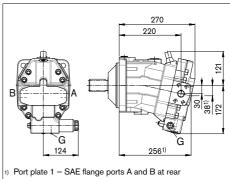

HZ7

Two-point control hydraulic, negative control

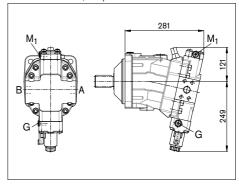

HA1, HA2 / HA1T3, HA2T3

Automatic control high-pressure related, positive control, with override hydraulic remote control, proportional

HA1R1, HA2R2


Automatic control high-pressure related, positive control, with override electric and travel direction valve electric

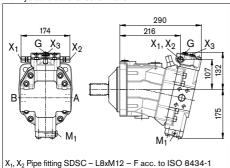
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EZ7, EZ8

Two-point control electric, negative control

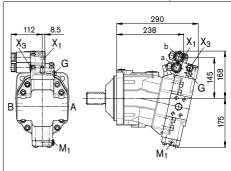
HA1U1, HA2U2

Automatic control high-pressure related, positive control, with override electric, two-point



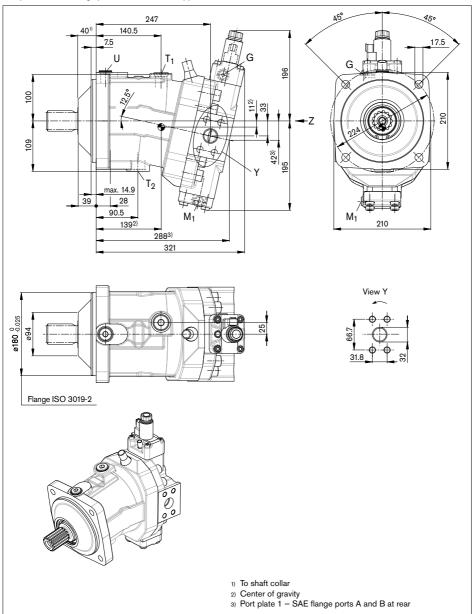
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Use assembled fitting!

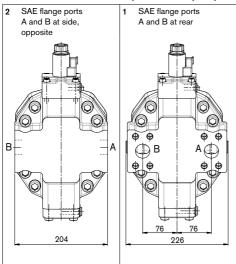

Dimensions size 115

Automatic control speed related, negative control, with hydraulic travel direction valve

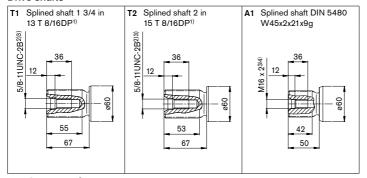
DA1, DA2


Automatic control speed related, negative control, with electric travel direction valve and electric $V_{g\ max}$ - circuit

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5, EP6 - Proportional control electric, negative control

Port plate 2 - SAE flange ports A and B at side, opposite



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

Drive shafts

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 76 for the maximum tightening torques.
- 4) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 150

Ports

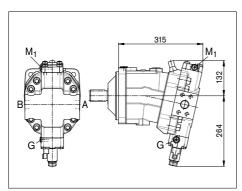
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J518 ³⁾	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 x 2; 19 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M33 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х
U	Bearing flushing	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	Х
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	X
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8xM12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	0
Х3	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	X
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x1.5; 11.5 deep	500	Х

¹⁾ Observe the general instructions on page 76 for the maximum tightening torques.

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and

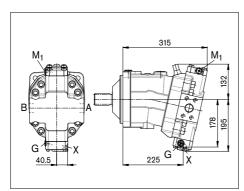
³⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

⁴⁾ Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 75).

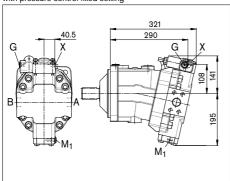

⁵⁾ The spot face can be deeper than specified in the appropriate standard.

⁶⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

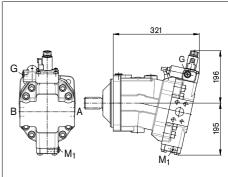

EP1, EP2

Proportional control electric, positive control

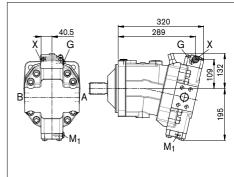

HP1, HP2

Proportional control hydraulic, positive control

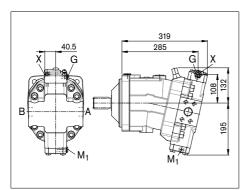
HP5D1, HP6D1


Proportional control hydraulic, negative control, with pressure control fixed setting

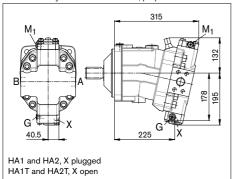
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5D1, EP6D1

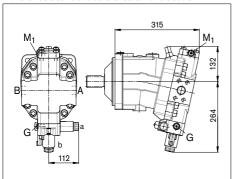
Proportional control electric, negative control, with pressure control fixed setting


HP5, HP6

Proportional control hydraulic, negative control


HZ5

Two-point control hydraulic, negative control

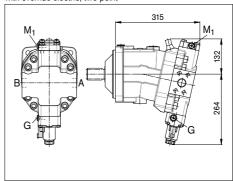

HA1, HA2 / HA1T3, HA2T3

Automatic control high-pressure related, positive control, with override hydraulic remote control, proportional

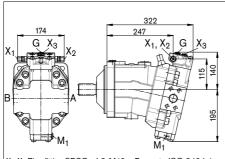
HA1R1, HA2R2

Automatic control high-pressure related, positive control, with override electric and travel direction valve electric

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EZ5, EZ6

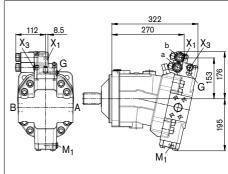
Two-point control electric, negative control


HA1U1, HA2U2

Automatic control high-pressure related, positive control, with override electric, two-point

DAG

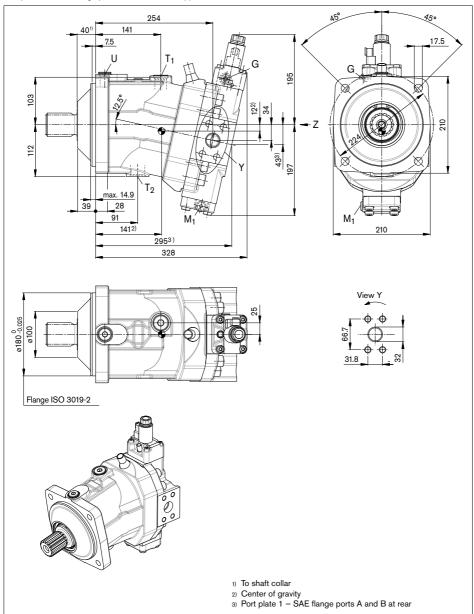
Automatic control speed related, negative control, with hydraulic travel direction valve



X₁, X₂ Pipe fitting SDSC – L8xM12 – F acc. to ISO 8434-1 Use assembled fitting!

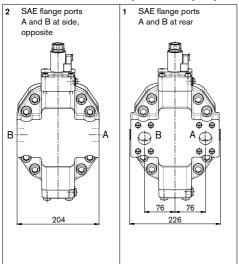
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

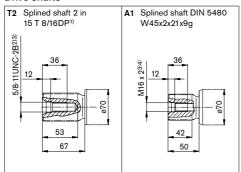
DA1, DA2


Automatic control speed related, negative control, with electric travel direction valve and electric $V_{g\ max}$ - circuit

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP5, EP6 - Proportional control electric, negative control


Port plate 2 - SAE flange ports A and B at side, opposite


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 170

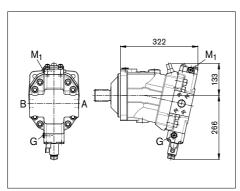
Location of the service line ports on the port plates (view Z)

Drive shafts

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 76 for the maximum tightening torques.
- 4) Center bore according to DIN 332 (thread according to DIN 13)

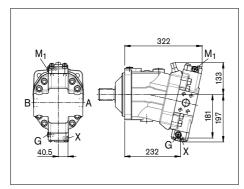
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 170

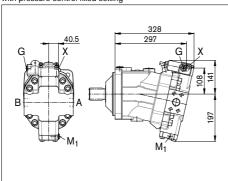

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J518 ³⁾	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 x 2; 19 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M33 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x1.5; 11.5 deep	500	Х
U	Bearing flushing	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	Х
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8xM12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	0
Х3	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	X
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х

- 1) Observe the general instructions on page 76 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 75).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

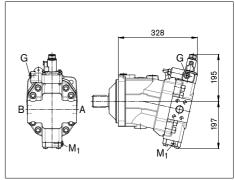

EP1, EP2

Proportional control electric, positive control

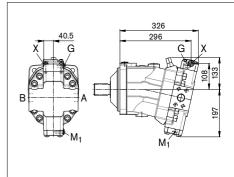

HP1, HP2

Proportional control hydraulic, positive control

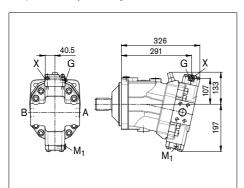
HP5D1, HP6D1


Proportional control hydraulic, negative control, with pressure control fixed setting

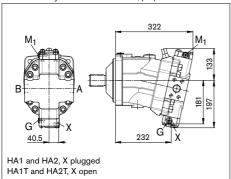
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5D1, EP6D1

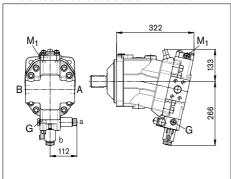
Proportional control electric, negative control, with pressure control fixed setting


HP5, HP6

Proportional control hydraulic, negative control

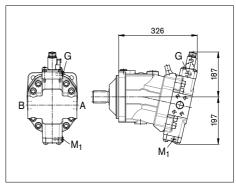

HZ5

Two-point control hydraulic, negative control

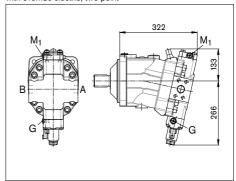

HA1, HA2 / HA1T3, HA2T3

Automatic control high-pressure related, positive control, with override hydraulic remote control, proportional

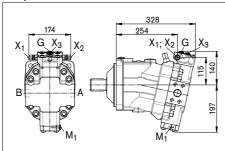
HA1R1, HA2R2


Automatic control high-pressure related, positive control, with override electric and travel direction valve electric

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EZ5, EZ6

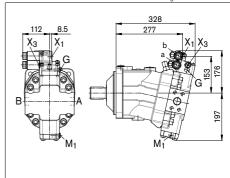
Two-point control electric, negative control


HA1U1, HA2U2

Automatic control high-pressure related, positive control, with override electric, two-point

DAC

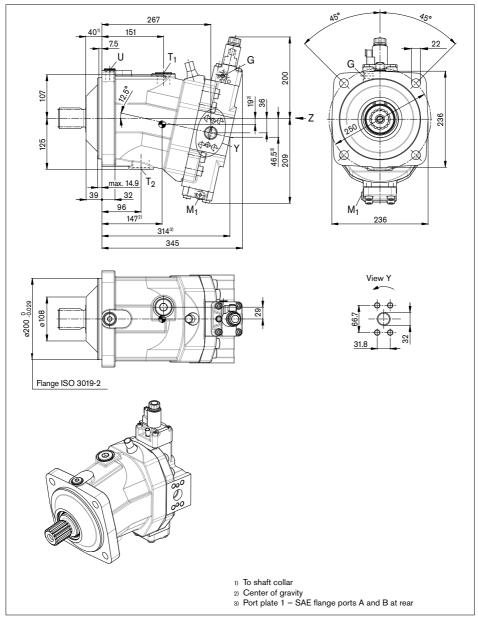
Automatic control speed related, negative control, with hydraulic travel direction valve



X₁, X₂ Pipe fitting SDSC – L8xM12 – F acc. to ISO 8434-1 Use assembled fitting!

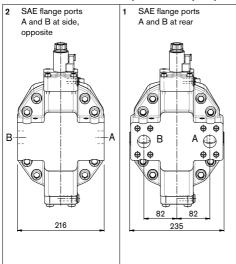
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

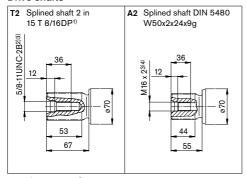
DA1, DA2


Automatic control speed related, negative control, with electric travel direction valve and electric $V_{g\;max}$ - circuit

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP5, EP6 - Proportional control electric, negative control


Port plate 2 - SAE flange ports A and B at side, opposite


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

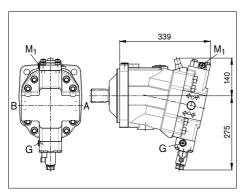
Dimensions size 215

Location of the service line ports on the port plates (view Z)

Drive shafts

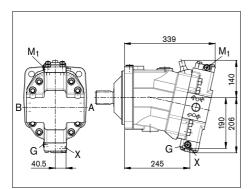
- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 76 for the maximum tightening torques.
- 4) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

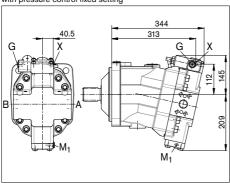

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J5183)	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 x 2; 19 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M33 x 2; 19 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M42 x 2; 19.5 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
U	Bearing flushing	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	Χ
Χ	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
X	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8xM12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	40	Χ
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х

- 1) Observe the general instructions on page 76 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 75).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

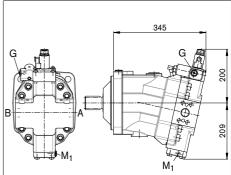

EP1, EP2

Proportional control electric, positive control

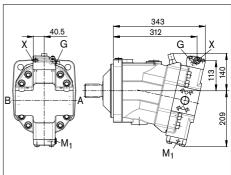

HP1, HP2

Proportional control hydraulic, positive control

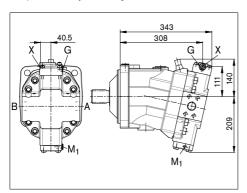
HP5D1, HP6D1


Proportional control hydraulic, negative control, with pressure control fixed setting

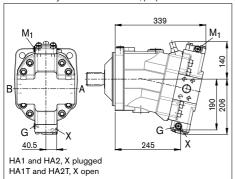
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EP5D1, EP6D1

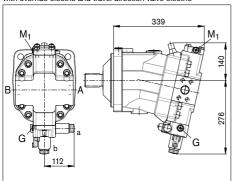
Proportional control electric, negative control, with pressure control fixed setting


HP5, HP6

Proportional control hydraulic, negative control

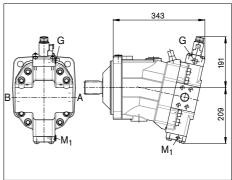

HZ5

Two-point control hydraulic, negative control

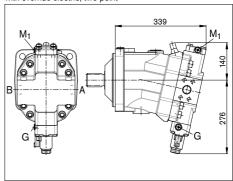

HA1, HA2 / HA1T3, HA2T3

Automatic control high-pressure related, positive control, with override hydraulic remote control, proportional

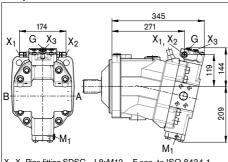
HA1R1, HA2R2


Automatic control high-pressure related, positive control, with override electric and travel direction valve electric

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


EZ5, EZ6

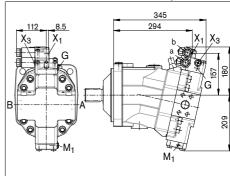
Two-point control electric, negative control


HA1U1, HA2U2

Automatic control high-pressure related, positive control, with override electric, two-point

DAG

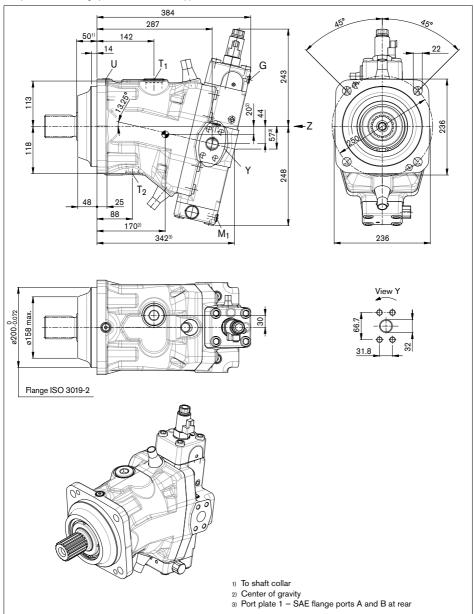
Automatic control speed related, negative control, with hydraulic travel direction valve



X₁, X₂ Pipe fitting SDSC – L8xM12 – F acc. to ISO 8434-1 Use assembled fitting!

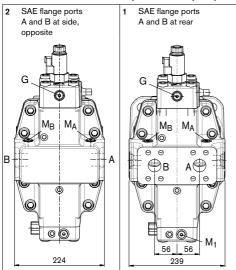
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

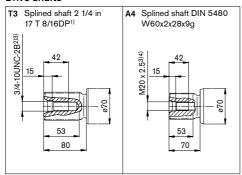
DA1, DA2


Automatic control speed related, negative control, with electric travel direction valve and electric $V_{g\ max}$ - circuit

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP5, EP6 - Proportional control electric, negative control


Port plate 2 - SAE flange ports A and B at side, opposite


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 280

Location of the service line ports on the port plates (view Z)

Drive shafts

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 76 for the maximum tightening torques.
- 4) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	500	0
T ₁	Drain line	ISO 6149 ⁵⁾	M42 x 2; 19.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M33 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
U	Bearing flushing	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
M _A	Measuring pressure A	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
M _B	Measuring pressure B	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х

- 1) Observe the general instructions on page 76 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 75).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

EP1, EP2

Proportional control electric, positive control

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Connector for solenoids

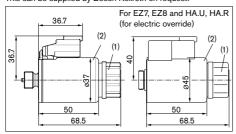
DEUTSCH DT04-2P-EP04

Molded, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

IP67 ______ DIN/EN 60529
and IP69K _____ DIN 40050-9

Circuit symbol



Mating connector

DEUTSCH DT06-2S-EP04 Bosch Rexroth Mat. No. R902601804

Consisting of:	DT designation
- 1 housing	DT06-2S-EP04
- 1 wedge	W2S
- 2 sockets	0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- Retighten the mounting nut. Tightening torque: 5+1 Nm. (WAF26, 12-sided DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve)

 Sizes 60 to 215, fixed setting
 16 bar

 Size 280, adjustable
 15 to 35 bar

Switching pressure of flushing piston Δp

Sizes 60 to 115 (small flushing valve) _______ 8±1 bar Sizes 115 to 215 (medium and large flushing valve) 17.5±1.5 bar Size 280 ______ on request

Flushing flow q_v

Sizes 60 bis 215

Orifices can be used to set the flushing flows as required. Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25 \text{ bar und } v = 10 \text{ mm}^2/\text{s}$

 $(p_{ND} = low pressure, p_G = case pressure)$

Size 280

(Flushing volume up to 60 L/min adjustable, please contact us)

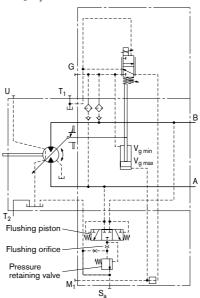
Small flushing valve for sizes 60 to 115

Material number of orifice	ø [mm]	q _v [L/min]	Code
R909651766	1.2	3.5	Α
R909419695	1.4	5	В
R909419696	1.8	8	С
R909419697	2.0	10	D
R909444361	2.4	14	F

Medium flushing valve for size 115

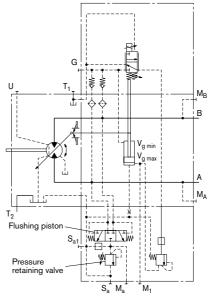
Material number of orifice	ø [mm]	q _v [L/min]	Code
R909431310	2.8	20	Н
R909435172	3.5	25	J
R909449967	5.0	30	K

Large flushing valve for sizes 150 to 215


Material number of orific	ce ø [mm]	q _v [L/r	nin] Code
R909449998	1.8	8	С
R909431308	2.0	10	D
R909431309	2.5	17	G
R909431310	2.8	20	Н
R902138235	3.1	25	J
R909435172	3.5	30	K
R909436622	4.0	35	L
R909449967	5.0	40	М

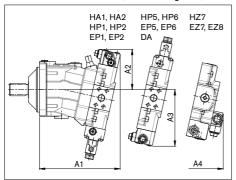
For a flushing flow greater than 35 L/min, it is recommended that port S_a be connected in order to prevent an increase in case pressure. An increased case pressure reduces the flushing flow.

Schematic EP

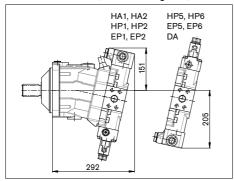

Sizes 60 to 215

Port Sa only for sizes 150 to 215

Schematic EP Size 280


51Ze 260

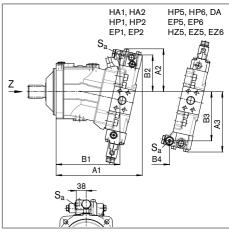
Flushing and boost pressure valve


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions of sizes 60 to 115 (small flushing valve)

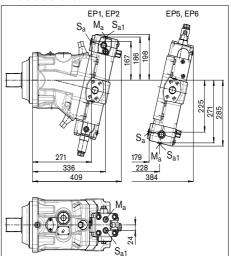
NG	A1	A2	A3	A4
060	243	133	176	236
085	273	142	194	254
115	287	143	202	269
115	287	143	202	269

Dimensions of size 115 (medium flushing valve)


NG	S _a ¹⁾	S _{a1} 1)	M _a ¹⁾
150	M22 x 1.5; 15.5 deep	-	-
170	M22 x 1.5; 15.5 deep	-	-
215	M22 x 1.5; 15.5 deep	-	-
280	M22 x 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep

1) ISO 6149, ports plugged (in normal operation)

Observe the general instructions on page 76 for the maximum tightening torques.


The spot face can be deeper than specified in the appropriate standard.

Dimensions for sizes 150 to 215 (large flushing valve)

	A1	B1	A2	B2		В3	
	325	239	165	142	230	187	
					233		
215	349	263	172	148	244	201	185

Dimensions size 280

Counterbalance valve BVD and BVE

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

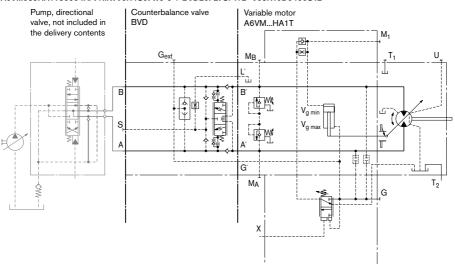
Function

68/76

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note


- BVD available for sizes 60 to 215 and BVE available for sizes 115 to 215.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A6VM085HA1T30004A/71MWV0N4S97W0-0 + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, controls with beginning of control at V_{g min} (e. g. HA) are not permissible for winch drives!
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

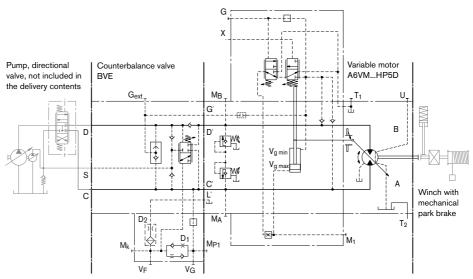
Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A6VM085HA1T30004A/71MWV0N4S97W0-0 + BVD20F27S/41B-V03K16D0400S12

Counterbalance valve BVD and BVE


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Winch counterbalance valve BVD...W and BVE

Application options

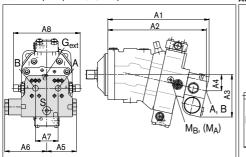
- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A6VM085HP5D10001A/71MWV0N4S97W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0

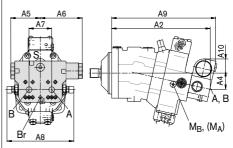
Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without val	ve	Restricted v	Restricted values in operation with DBV and				BVD/BVE				
Motor			DBV	BVD/BVE								
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code		
60	450/500	276	22	350/420	240	7	20	350/420	220	7W		
85		332					(BVD)					
115		410	32		400							
115		410				8	25		320	8W		
150		494					(BVD/BVE)					
170		533										
215		628	On request									
280		700	-	-	-	-	-	-	-	-		

DBV _____ pressure-relief valve
BVD _____counterbalance valve, double-acting


BVE _____counterbalance valve, one-sided

Counterbalance valve BVD and BVE


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A6VM...HA, HP1, HP2 and EP1, EP2

A6VM	Counterbalance valve											
NGplate	Туре	Ports	Dimen	sions								
		A, B	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10
607	BVD2017	3/4 in	311	302	143	50	98	139	75	222	326	50
857	BVD2027	1 in	340	331	148	55	98	139	75	222	355	46
1157	BVD2028	1 in	362	353	152	59	98	139	84	234	377	41
1158	BVD2538	1 1/4 in	380	370	165	63	120.5	175	84	238	395	56
1508	BVD2538	1 1/4 in	411	401	168	67	120.5	175	84	238	426	53
1708	BVD2538	1 1/4 in	417	407	170	68	120.5	175	84	238	432	51
2158	BVD2538	1 1/4 in	448	438	176	74	120.5	175	84	299	463	46
1158	BVE2538	1 1/4 in	380	370	171	63	137	214	84	238	397	63
1508	BVE2538	1 1/4 in	411	401	175	67	137	214	84	238	423	59
1708	BVE2538	1 1/4 in	417	407	176	68	137	214	84	238	432	59
2158	BVE2538	1 1/4 in	448	438	182	74	137	214	84	299	463	52

Ports

Designation	Port for	Version	A6VM plate	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁵⁾
A, B	Service line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 38524)	M22 x 1.5; 14 deep	30	Χ
		BVD25, E	BVE25	DIN 38524)	M27 x 2; 16 deep	30	Χ
Br	Brake release,	L	7	DIN 38524)	M12 x 1.5; 12.5 deep	30	0
	reduced high pressure		8	DIN 38524)	M12 x 1.5; 12 deep	30	0
G _{ext}	Brake release, high pressure	S		DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	420	Х
$M_{A,}M_{B}$	Measuring pressure A and B			ISO 6149 ⁴⁾	M18 x 1.5; 14.5 deep	420	Х

¹⁾ At the mounting version for the controls HP5, HP6 and EP5, EP6, the cast-in port designations A and B on the counterbalance valve BVD do not correspond with the connection drawing of the A6VM motor. The designation of the ports on the installation drawing of the motor is binding!

²⁾ Observe the general instructions on page 76 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ The spot face can be deeper than specified in the appropriate standard.

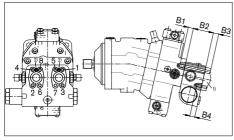
⁵⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Counterbalance valve BVD and BVE

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) _____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

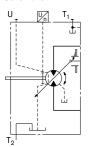
- 1) SAE flange
- 2) Tacking screw (M6 x 1, length = B1 + B2, DIN 912)

NGplate	607	857 1157	1158, 1508, 1708
B1 ³⁾	M10 x 1.5 17 deep	M12 x 1.75 15 deep	M14 x 2 19 deep
B2	68	68	85
B3	customer-spec	ific	
B4	M10 x 1.5 15 deep	M12 x 1.75 16 deep	M14 x 2 19 deep

3) Minimum required thread reach 1 x Ø-thread

Speed sensor

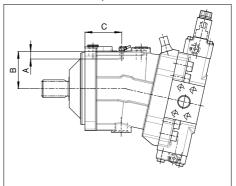
Version A6VM...U ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.


With the speed sensor DSA mounted, a signal proportional to motor speed can be generated. The DSA sensor measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet (DSA – RE 95133).

The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover.

We recommend ordering the A6VM variable motor complete with sensor mounted.


Schematic

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

Version "V" with mounted speed sensor

Size		60	85	115	150	170	215	280
Number of	teeth	54	58	67	72	75	80	78
Α	Insertion depth (tolerance -0.25)	18.4	18.4	18.4	18.4	18.4	18.4	32
В	Contact surface	75	79	88	93	96	101	111.5
С		66.2	75.2	77.2	91.2	91.7	95.2	82

Setting range for displacement

		60				ε	35			115 150						
	V _{g max} (c	:m ³ /rev)	V _{g min} (c	m³/rev)	V _{g max} (c	:m³/rev)	V _{g min} (c	:m ³ /rev)	V _{g max} (c	m³/rev)	V _{g min} (c	m³/rev)	V _{g max} (c	:m ³ /rev)	V _{g min} (c	:m³/rev)
	from	to	from	to	from	to	from	to	from	to	from	to	from	to	from	to
	62.0	62.0	0.0	15.0	85.2	85.2	0.0	31.5	115.6	115.6	0.0	24.0	152.1	152.1	0.0	44.0
A	without	screw	M10 R9091		without	screw	M12 R9090		without	screw	M12 R9090	x 70 85976	without	screw	M12 R9091	x 80 53075
	62.0	62.0	> 15.0	30.5	85.2	85.2	> 31.5	52.0	115.6	115.6	>24.0	47.5	152.1	152.1	>44.0	69.0
В	without	screw	M10 R9091		without	screw	M12 R9091		without	screw	M12 R9091	x 80 53075	without	screw	M12 R9091	x 90 54041
	62.0	62.0	> 30.5	43.0	85.2	85.2	>52.0	59.0	115.6	115.6	> 47.5	71.0	152.1	152.1	>69.0	99.0
С	without	screw	M10 R9091		without	screw	M12 R9091		without	screw	M12 R9091		without	screw	M12 R9091	x 100 53975
									115.6	115.6	> 71.0	80.0	152.1	152.1	>99.0	106.0
D	х		x	ī.	,	(· ·	without	screw	M12 R9091	x 100 53975	without	screw	M12 R9091	x 110 54212
	< 62.0	47.5	0.0	15.0	< 85.2	55.5	0.0	31.5	< 115.6	93.5	0.0	24.0	< 152.1	111.0	0.0	44.0
E	M10 R9091		M10 R9091		M12 R9090		M12 R9090		M12 R9090		M12 R9090	x 70 85976	M12 R9091		M12 R9091	x 80 53075
	< 62.0	47.5	> 15.0	30.5	< 85.2	55.5	> 31.5	52.0	< 115.6	93.5	>24.0	47.5	< 152.1	111.0	>44.0	69.0
F	M10 R9091		M10 R9091		M12 R9090		M12 R9091		M12 R9090		M12 R9091	x 80 53075	M12 R9091		M12 R9091	x 90 54041
	< 62.0	47.5	> 30.5	43.0	< 85.2	55.5	>52.0	59.0	< 115.6	93.5	> 47.5	71	< 152.1	111.0	>69.0	99.0
G	M10 R9091		M10 R9091		M12 R9090		M12 R9091	x 90 54041	M12 R9090		M12 R9091	x 90 54041	M12 R9091		M12 R9091	x 100 53975
									< 115.6	93.5	> 71.0	80.0	< 152.1	111.0	>99.0	106.0
Н	>	ī.	x		,	(· ·	M12 R9090					M12 x 110 R909154212		
	< 47.5	33.0	0.0	15.0	< 55.5	35.0	0.0	31.5	< 93.5	71.0	0.0	24.0	< 111.0	87.0	0.0	44.0
J	M10 R9091		M10 R9091		M12 R9091		M12 R9090		M12 R9091		M12 R9090	x 70 85976	M12 R9091		M12 R9091	x 80 53075
	< 47.5	33.0	> 15.0	30.5	< 55.5	35.0	> 31.5	52.0	< 93.5	71.0	>24.0	47.5	< 111.0	87.0	>44.0	69.0
K	M10 R9091		M10 R9091		M12 R9091		M12 R9091		M12 R9091			x 80 53075	M12 R9091		M12 R9091	x 90 54041
	< 47.5	33.0	> 30.5	43.0	< 55.5	35.0	> 52.0	59.0	< 93.5	71.0	> 47.5	71.0	< 111.0	87.0	>69.0	99.0
L	M10 R9091		M10 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091	x 90 54041	M12 R9091		M12 R9091	x 100 53975
									< 93.5	71.0	> 71.0	80.0	< 111.0	87.0	>99.0	106.0
М	>	(×	(,	((M12 R9091		M12 R9091	x 100 53975	M12 R9091		M12 R9091	x 110 54212

Specify exact settings for V $_g$ $_{min}$ and V $_g$ $_{max}$ in plain text when ordering: V $_g$ $_{min}$ = ... cm³, V $_g$ $_{max}$ = ... cm³

Theoretical, maximum setting:

for $V_{g min} = 0.7 \cdot V_{g max}$ for $V_{g max} = 0.3 \cdot V_{g max}$

Settings that are not listed in the table may lead to damage. Please contact us.

Setting range for displacement

		10	70			2	15			2	80	
	V _{g max} (c	:m³/rev)	V _{g min} (c	:m ³ /rev)	V _{g max} (c	:m ³ /rev)	V _{g min} (c	m³/rev)	V _{g max} (c	m³/rev)	V _{g min} (c	m ³ /rev)
	from	to	from	to	from	to	from	to	from	to	from	to
	171.8	171.8	0.0	35.0	216.5	216.5	0.0	44.5				
A	without	screw	M12 R9091	x 80 53075	without	screw	M12 R9091		х		,	
	171.8	171.8	> 35.0	63.5	216.5	216.5	>44.5	80.0				
В	without	screw	M12 R9091		without	screw	M12 R9091		х		>	
	171.8	171.8	>63.5	98.0	216.5	216.5	>80.0	115.0				
С	without	screw	M12 : R9091		without	screw	M12 : R9091		х		,	
	171.8	171.8	>98.0	120.0	216.5	216.5	> 115.0	150.0				
D	without	screw	M12 R9091		without	screw	M12 R9091		х	x		
	< 171.8	139.0	0.0	35.0	< 216.5	175.0	0.0	44.5	280.1	230.0	0.0	55.0
E	M12 R9091		M10 R9091	x 80 53075	M12 R9091		M12 R9091		M16 x 100 R910909811		M16 x 100 R910909811	
	< 171.8	139.0	>35.0	63.5	< 216.5	175.0	>44.5	80.0	280.1	230.0	>55.0	98.0
F	M12 R9091		M12 R9091	x 90 54041	M12 R9091		M12 R9091		M16 x R91090		M16 : R9109	
	< 171.8	139.0	>63.5	98.0	< 216.5	175.0	>80.0	115.0	280.1	230.0	> 98.0	141.0
G	M12 R9091		M12 : R9091		M12 R9091		M12 : R9091		M16 x R9109		M16 : R9109	
	< 171.8	139.0	>98.0	120.0	< 216.5	175.0	> 115.0	150.0	280.1	230.0	> 141.0	184.0
Н	M12 R9091		M12 R9091		M12 R9091		M12 : R9091		M16 x R9109		M16 : R9109	
	< 139.0	112.0	0.0	35.0	< 175.0	141.0	0.0	44.5	< 230.0	188.0	0.0	55.0
J	M12 R9091		M12 R9091		M12 R9091		M12 R9091		M16 x R9109		M16 : R9109	
	< 139.0	112.0	>35.0	63.5	< 175.0	141.0	>44.5	80.0	< 230.0	188.0	>55.0	98.0
K	M12 R9091		M12 R9091		M12 R9091		M12 R9091			M16 x 110 R910909719		x 110 09719
	< 139.0	112.0	>63.5	98.0	< 175.0	141.0	>80.0	115.0	< 230.0	188.0	> 98.0	141.0
L	M12 R9091		M12 : R9091		M12 R9091		M12 : R9091		M16 x R9109		M16 : R9109	
	< 139.0	112.0	>98.0	120.0	< 175.0	141.0	> 115.0	150.0	< 230.0	188.0	> 141.0	184.0
М	M12 R9091		M12 R9091	x 110 54212	M12 R9091		M12 : R9091		M16 x R9109		M16 s R9109	

Specify exact settings for $V_{g\;\text{min}}$ and $V_{g\;\text{max}}$ in plain text when ordering: $V_{g min} = ... cm^3, V_{g max} = ... cm^3$

Theoretical, maximum setting:

for $V_{g \; min} = 0.7 \bullet V_{g \; max}$ for $V_{g \; max} = 0.3 \bullet V_{g \; max}$

Settings that are not listed in the table may lead to damage. Please contact us.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding via flushing port U must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 8. Further installation positions are possible upon request.

Recommended installation position: 1 and 2.

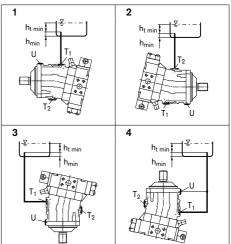
Note

In certain installation positions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

Installation position	Air bleed	Filling
1	_	T ₁
2	_	T ₂
3	_	T ₁
4	U	T ₁
5	U (L ₁)	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	U	T ₁ (L ₁)

L₁ Filling / air bleed

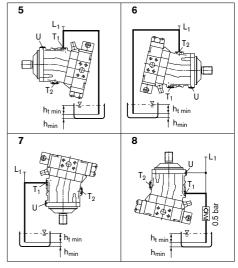
U Bearing flushing / air bleed port


T₁, T₂ Drain port

h_{t min} Minimum required immersion depth (200 mm)

h_{min} Minimum required spacing to reservoir bottom (100 mm)

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

General instructions

- The motor A6VM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding the tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports Standard	Size of thread	Maximum permissible tightening torque of the female threads M _{G max}	Required tightening torque of the threaded plugs M _V	WAF hexagon socket of the threaded plugs
ISO 6149	M10 x 1	30 Nm	15 Nm	5 mm
	M12 x 1.5	50 Nm	25 Nm	6 mm
	M14 x 1.5	80 Nm	45 Nm	6 mm
	M16 x 1.5	100 Nm	55 Nm	8 mm
	M18 x 1.5	140 Nm	70 Nm	8 mm
	M22 x 1.5	210 Nm	100 Nm	10 mm
	M27 x 2	330 Nm	170 Nm	12 mm
	M33 x 2	540 Nm	310 Nm	17 mm
	M42 x 2	720 Nm	330 Nm	22 mm
DIN 3852	M12 x 1.5	50 Nm	25 Nm ¹⁾²⁾	6 mm
	M22 x 1.5	210 Nm	80 Nm ¹⁾	10 mm
	M27 x 2	330 Nm	135 Nm ¹⁾	12 mm

- The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.
- In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5.

Bosch Rexroth AG Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 Fax +49 7308 7274 info.brm@boschrexroth.de

An den Kelterwiesen 14 72160 Horb, Germany Tel. +49 7451 92-0 Fax +49 7451 8221

www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Variable Plug-in Motor A6VE

RE 91606/06.12

1/40

Replaces: 10.07

Data sheet

Series 63

Size

Nominal pressure/Maximum pressure

28 to 160

400 bar/450 bar

250 350 bar/400 bar

Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	4
HD - Proportional control hydraulic	9
EP - Proportional control electric	12
HZ - Two-point control hydraulic	15
EZ - Two-point control electric	16
HA - Automatic control high-pressure related	17
DA - Automatic control speed-related	21
Electric travel direction valve (for DA)	23
Dimensions 28 to 250	24
Connector for solenoids	28
Flushing and boost pressure valve	29
Counterbalance valve BVD and BVE	31
Counterbalance valve integrated BVI	35
Speed sensor	38
Installation instructions	39
General instructions	40

Features

- Variable plug-in motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed
- Far-reaching integration in mechanical gearbox due to a recessed mounting flange located on the center of the case (extremely space-saving construction)
- Easy to install, simply plug into the mechanical gearbox (no configuration specifications to be observed)
- Tested unit ready to install
- For use especially in mobile applications
- The displacement can be infinitely changed from $V_{g \text{ max}}$ to $V_{g \text{ min}} = 0$.
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and low-pressure side and with increasing displacement.

Ordering code for standard program

_	rae	11116	,	Juc	101		<i></i>	<u> </u>	Pi	ogi	am									
A	V6V	Ε					1	63	W		-	٧								
	01	02	03	04	05	06		07	08	09		10	11	12	13	14	15	16	17	18
	Axial p	iston	unit																	
	Bent-a			ariable	•															A6V
	Operat Motor,			ion																Е
			11 4010	1011																_
	Sizes (r I			I.I.										Las	1.07	1400		l
03	Geom	etric a	iispiac	ement,	, see ta	able o	rvalue	s on pa	ige 7					28	55	80	107	160	250	
	Contro													28	55	80	107	160	250	
	Propo	rtional	contro	ol hydra	aulic						_	p = 10		•	•	•	•	•	•	HD1
												p = 25	bar	•	•	•	•	•	•	HD2
	Two-point control hydraulic									_	-	-	-	-	•	HZ				
													•	_	-	-	•	-	HZ1	
														-	•	•	•	●1)	-	HZ3
	Propo	rtional	contro	ol elect	tric								12 V	•	•	•	•	•	•	EP1
													24 V	•	•	•	•	•	•	EP2
	Two-po	oint co	ontrol e	electric	;								12 V	•	-	-	-	•	•	EZ1
04													24 V	•	-	-	-	•	•	EZ2
													12 V	-	•	•	•	-	-	EZ3
											24 V	-	•	•	•	-	-	EZ4		
	Automatic control with minimum pressure increase Δp ≤ 10 ba) bar	•	•	•	•	•	•	HA1			
	high-pressure related				_	with pressure increase $\Delta p = 100 \text{ bar}$						•	•	•	•	•	•	HA2		
	with minimum pressure increase Δp ≤ 10 ba) bar	-	•	•	•	•	-	HA3 ¹			
	Autom	atic co	ontrol	speed	related	ł								_	l _	_	_	_		DA
								on valv											Ľ	
	p:	St/PHD	= 5/10	00, ele	ctric tr	avel d	irectio	n valve	+ ele	ctric V	g max-C	rcuit	24 V	•	•	•	•	•	-	DA3
	Pressu	re co	ntrol (only fo	or HD,	EP)														
05	Withou	ut pres	ssure o	control	(with	ut co	de)													
	Pressu	ire coi	ntrol, fi	xed se	etting															D
	Overrio	de of o	contro	ls HA																
	Withou	ut ove	rride (v	vithout	t code)														
06	Hydrai	ılic ov	erride,	remot	e cont	rol, pr	oportio	nal												Т
	Series																			
	Series	6. ind	lex 3																	63
	Directi				d:	1														w
υď	Viewe	u on a	iive sr	iaii, Di	urectio	niai														VV
	Setting													28	55	80	107	160	1	1
	$\begin{aligned} & V_{g \text{ min}} = 0 \text{ to } 0.7 V_{g \text{ max}} \text{ (without code)} \\ & V_{g \text{ min}} = 0 \text{ to } 0.4 V_{g \text{ max}} & V_{g \text{ max}} = V_{g \text{ max}} \text{ to } 0.8 V_{g \text{ max}} \end{aligned}$										•	•	•	•	•	<u> </u>				
09														_	_	 -	-	_	•	1
	V _{g min} :	> 0.4 \	V _{g max} 1	to 0.8	V _{g max}	V	g max =	V _{g max} 1	to 0.8	V _{g max}				-	_	-	-	-	•	2
	Seals													28	55	80	107	160	250	
10	FKM (fluor-c	aoutch	nouc)										•	•	•	•	•	•	V

 $[\]bullet = \text{Available}$ O = On request

st -= Not available

⁼ Preferred program

Only possible in combination with port plate 22 (integrated counterbalance valve).

²⁾ Specify exact settings for V $_{g~min}$ and V $_{g~max}$ in plain text when ordering: V $_{g~min}$ = ... cm³, V $_{g~max}$ = ... cm³

Ordering code for standard program

Α	6V	Е					/	63	w		-	٧								
(01	02	03	04	05	06		07	08	09		10	11	12	13	14	15	16	17	18
	Orive s	shafts												28	55	80	107	160	250	
11	Spline	d shaf	ft DIN	5480										•	-	•	-	•	-	Α
'''														-	•	-	•	-	•	Z
N	Mount	ing fla	inges											28	55	80	107	160	250	
:	Simila	r to IS	O 301	9-2							2	2-hole		•	•	•	•	•	-	L
12												1-hole		-	_	-	-	-	•	М
- 1	Modifi	ed ada	apter f	lange							2	2-hole		-	-	-	•	-	-	U
F	Port pl	ates f	or ser	vice lii	nes ³⁾									28	55	80	107	160	250	
- [:	SAE fl	lange _l	ports								()2	0	•	•	•	•	•	•	020
- 1	A and	B at s	ide, o	pposite	9								7	•	•	•	•	•	•	027
	SAE flange ports							22	1	-	•	•	•	•	-	221				
13	A and	B at b	ottom	only w	vith integ	rated	cour	nterbal	ance v	alve B	VI ⁴⁾		2	-	•	•	•	•	-	222
	Port plate with 1-level pressure-relief valves for BV mounting a counterbalance valve ⁵⁾⁷⁾						VD	3	37	0	-	-	-	•	-	-	370 378			
											3	38	8	-	•	•	•	•	●9)	380
									В	VE	3	38		-	-	-	•	•	_9)	388
V	/alves	(see	pages	29 to 3	37)								1							
-	Witho	ut valv	e										0]						
				e integ		inte	rnal	ductino	9				1]						
14	(pilot p	pressu	re for	brake ı	release)	exte	ernal	piping					2							
ſ	Flushi	ng and	boos	t press	sure valve	e mou	inted						7							

	Speed sensor (see page 38)	28	55	80	107	160	250	
	Without speed sensor	•	•	•	•	•	•	0
15	Prepared for DSA speed sensor	0	0	0	0	0	0	U
	DSA speed sensor mounted ⁸⁾	0	0	0	0	0	0	٧

	Connector for solenoids (see page 28)	28 to 160	250	
	Without connector (without solenoid, only with hydraulic controls)	•	-	0
10	(size 250 without code)	-	•	
16	DEUTSCH - molded connector, 2-pin - without suppressor diode	•	-	Р
	HIRSCHMANN connector – without suppressor diode (without code)	-	•	

	Beginning of control		28	55	80	107	160	250	
	Port plate 02, 37, 38	at V _{g min} (standard for HA)	•	•	•	•	•	•	Α
١.		at V _{g max} (standard for HD, HZ, EP, EZ, DA)	•	•	•	•	•	•	В
'	Port plate 22	at V _{g min} (standard for HA3)	-	•	•	•	•	-	В
		at V _{g max} (standard for HZ3)	-	•	•	•	•	-	В

Standard / special version

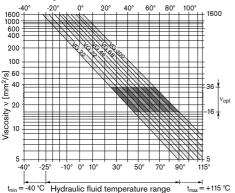
Counterbalance valve mounted⁶⁾⁷⁾

	Standard version (without code)	
18	Standard version with installation variants (e. g. T ports against standard open or closed)	-Y
	Special version	-S

● = Available

- O = On request - = Not available
- data sheet (BVD RE 95522, BVE RE 95525) separately.

= Preferred program


- 3) Metric fastening thread
- 4) Only for HZ3 and HA3. Add specification of integrated counterbalance valve BVI, see separate ordering code on page 35. Note the restrictions on page 36.
- 5) Only possible in conjunction with HD, EP and HA1 and HA2
- 6) Specify ordering code of counterbalance valve according to
- 7) Note the restrictions on page 32.
- 8) Specify ordering code of sensor according to data sheet (DSA - RE 95133) separately and observe the requirements on the electronics.
- 9) Counterbalance valve MHB32, please contact us.

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable motor A6VE is not suitable for operation with HFA hydraulic fluid. If HFB, HFC, or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X $^{\circ}$ C, an operating temperature of 60 $^{\circ}$ C is set in the circuit. In the optimum viscosity range ($v_{opt.}$, shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case with a flushing and boost pressure valve (see page 29).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}C$	$t \le 3$ min, without load (p ≤ 50 bar), $n \le 1000$ rpm (sizes 28 to 160), $n \le 0.25 \cdot n_{nom}$ (size 250)
Permissible temperature	difference	$\Delta T \leq 25~K$	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400	T = -40 °C to -25 °C	At $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

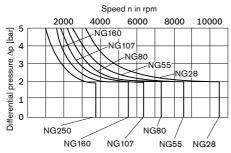
²⁾ Size 250, please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

HD, HA.T (sizes 28 to 160)	increase
HD, EP, HA, HA.T (size 250)	increase
DA	decrease

With the following controls, an increase in the case pressure has no influence on the beginning of control: EP, HA (sizes 28 to 160)

The factory settings for the beginning of control are made at $p_{abs}=2$ bar (sizes 28 to 160) or $p_{abs}=1$ bar (size 250) case pressure.

Direction of flow

Direction of rotation, viewed	ccw			
cw	ccw			
A to B	B to A			

Operating pressure range

(operating with mineral oil)

Pressure at service line port A or B

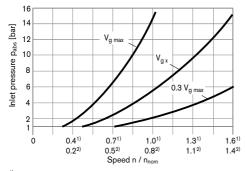
Sizes 28 to 160

Nominal pressure p _{nom}	400 bar absolute
Maximum pressure p _{max}	450 bar absolute
Single operating period	10 s
Total operating period	300 h

Size 250

Nominal pressure pnom	350 bar absolute
Maximum pressure p _{max} Single operating period	400 bar absolute
Total operating period	300 h

Minimum pressure (high-pressure side) ____25 bar absolute


Summation pressure (pressure A + pressure B) p_{Su} 700 bar

Rate of pressure change RA max

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve 16000 bar/s

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operation mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).

¹⁾ For sizes 28 to 160

This diagram is valid only for the optimum viscosity range from $\nu_{\text{opt}}=$ 36 to 16 $\text{mm}^2/\text{s}.$

Please contact us if the above conditions cannot be satisfied.

Note

Values for other hydraulic fluids, please contact us.

Definition

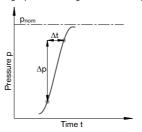
Nominal pressure pnom

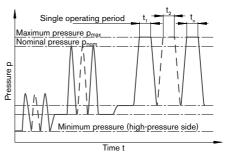
The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.


Summation pressure psu

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

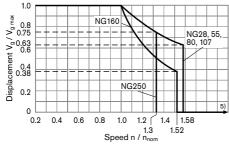
Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

²⁾ For size 250

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size		NG	28	55	80	107	160	250
Displacement geometric ¹⁾ ,	$V_{g max}$	cm ³	28.1	54.8	80	107	160	250
per revolution	V _{g min}	cm ³	0	0	0	0	0	0
	V _{g x}	cm ³	18	35	51	68	61	188
Speed maximum ²⁾ (while adhering to the maximum permissible input flow)								
at V _{g max}	n _{nom}	rpm	5550	4450	3900	3550	3100	2700
At $V_g < V_{g x}$ (see diagram below)	n _{max}	rpm	8750	7000	6150	5600	4900	3600
at V _{g 0}	n _{max}	rpm	10450	8350	7350	6300	5500	3600
Input flow ³⁾								
at n_{nom} and $V_{g \text{ max}}$	q _{V max}	L/min	156	244	312	380	496	675
Torque ⁴⁾								
At $V_{g \text{ max}}$ and $\Delta p = 400 \text{ bar}$	Т	Nm	179	349	509	681	1019	-
At $V_{g \text{ max}}$ and $\Delta p = 350 \text{ bar}$	T	Nm	157	305	446	596	891	1391
Rotary stiffness								
$V_{g max}$ to $V_{g/2}$	C _{min}	KNm/rad	6	10	16	21	35	60
V _{g/2} to 0 (interpolated)	C _{max}	KNm/rad	18	32	48	65	105	181
Moment of inertia for rotary group	J_{GR}	kgm ²	0.0014	0.0042	0.008	0.0127	0.0253	0.061
Maximum angular acceleration	α	rad/s ²	47000	31500	24000	19000	11000	10000
Case volume	٧	L	0.5	0.75	1.2	1.5	2.4	3.0
Mass (approx.)								
Port plate 02, 37, 38	m	kg	16	26	34	47	64	90
Port plate 22	m	kg	-	35	43	53	72	_


¹⁾ The minimum and maximum displacement are infinitely adjustable, see ordering code, page 2. (standard setting for size 250 if not specified in the order: $V_{g \text{ min}} = 0.2 \cdot V_{g \text{ max}} V_{g \text{ max}} = V_{g \text{ max}}$.

- for the optimum viscosity range from $\nu_{\text{opt}} = 36 \text{ to } 16 \text{ mm}^2\text{/s}$
- with hydraulic fluid based on mineral oils
- 3) Restriction of input flow with counterbalance valve, see page 32
- 4) Torque without radial force, with radial force see page 8

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible displacement in relation to speed

5) Values in this range on request

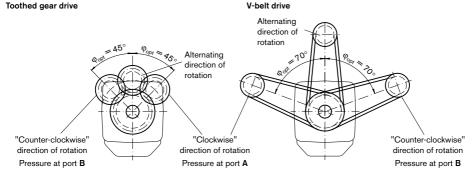
²⁾ The values are valid:

Permissible radial and axial forces of the drive shafts

Size	NG		28	55	80	107	160	250
Drive shaft	Ø	mm	30	30	40	40	50	50
Maximum radial force ¹⁾	F _{q max}	N	4838	7581	10283	13758	16435	1200 ³⁾
at distance a (from shaft collar)	a	mm	17.5	17.5	22.5	22.5	27.5	41
with permissible torque	T _{max}	Nm	179	281	509	681	1019	4)
≜ Permissible pressure Δp at V _{g m}	pnom perm.	bar	400	322	400	400	400	4)
Maximum axial force ²⁾	+F _{ax max}	N	315	500	710	900	1120	1200
1 ax ± <u>+</u> - t	-F _{ax max}	N	0	0	0	0	0	0
Permissible axial force per bar operating pressure	F _{ax perm./bar}	N/bar	4.6	7.5	9.6	11.3	15.1	4)

- 1) With intermittent operation.
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.
- 4) Please contact us.

Note


Influence of the direction of the permissible axial force:

+F_{ax max} = Increase in service life of bearings

-F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force Fq on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

Determining the operating characteristics

HD - Proportional control hydraulic

The proportional hydraulic control provides infinite setting of the displacement, proportional to the pilot pressure applied to port X.

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum pilot pressure)

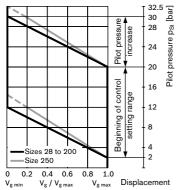
Note

- Maximum permissible pilot pressure: pst = 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 10 bar.
- The beginning of control and the HD characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.
- A leakage flow of maximum 0.3 L/min can escape at port X due to internal leakage (operating pressure > pilot pressure).
 The control is to be suitably configured to avoid an independent build-up of pilot pressure.

HD1 Pilot pressure increase $\Delta p_{St} = 10$ bar


A pilot pressure increase of 10 bar at port X results in a decrease in displacement from $V_{g\,max}$ to 0 cm³ (sizes 28 to 160) or from $V_{g\,max}$ to 0.2 $V_{g\,max}$ (size 250).

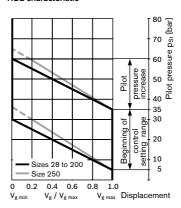
Beginning of control, setting range _____2 to 20 bar

Standard cotting

Beginning of control at 3 bar (end of control at 13 bar)

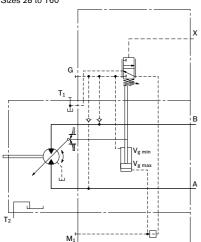
HD1 characteristic

HD2 Pilot pressure increase $\Delta p_{St} = 25$ bar

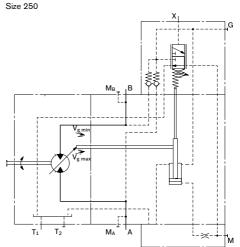

A pilot pressure increase of 25 bar at port X results in a decrease in displacement from $V_{g\ max}$ to 0 cm³ (sizes 28 to 160) or from $V_{g\ max}$ to 0.2 $V_{g\ max}$ (size 250).

Beginning of control, setting range _____5 to 35 bar

Standard setting:


Beginning of control at 10 bar (end of control at 35 bar)

HD2 characteristic



HD - Proportional control hydraulic

Schematic HD1, HD2 Sizes 28 to 160

Schematic HD1, HD2

Note

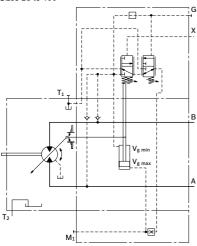
The spring return feature in the control part is not a safety

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

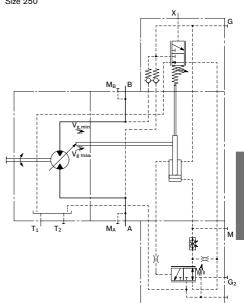
HD - Proportional control hydraulic

Pressure control, fixed setting


The pressure control overrides the HD control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 80 to 400 bar Sizes 28 to 160 Size 250 80 to 350 to bar

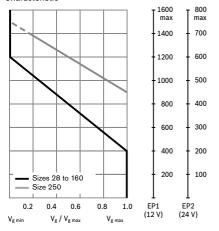

Schematic HD.D

Sizes 28 to 160

Schematic HD.D

Size 250

EP - Proportional control electric


The proportional electric control provides infinite setting of the displacement, proportional to the control current applied to the solenoid (sizes 28 to 200) or proportional valve (sizes 250).

For size 250, the pilot oil supply at port P requires an external pressure of $p_{min} = 30$ bar $(p_{max} = 100 \text{ bar})$.

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic

12/40

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure \leq 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

The following only needs to be noted for size 250:

 The beginning of control and the EP characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

Technical data, solenoid

Sizes 28 to 160

	EP1	EP2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Control current			
Beginning of control	400 mA	200 mA	
End of control	1200 mA	600 mA	
Limiting current	1.54 A	0.77 A	
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω	
Dither frequency	100 Hz	100 Hz	
Duty cycle	100 %	100 %	
Type of protection see connector design page 28			

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

- BODAS controller RC		
Series 20	F	RE 95200
Series 21		RE 95201
Series 22	I	RE 95202
Series 30	RE 95203, I	RE 95204
and application software		

- Analog amplifier RA _____ RE 95230
- Electric amplifier VT 2000, series 5X (see RE 29904) (for stationary application)

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics

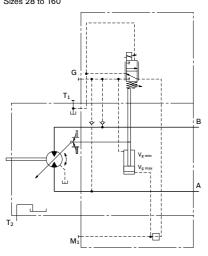
Technical data, proportional valve Size 250

	EP1	EP2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Beginning of control at V _{g max}	900 mA	450 mA	
End of control at V _{g min}	1400 mA	700 mA	
Limiting current	2.2 A	1.0 A	
Nominal resistance (at 20 °C)	2.4 Ω	12 Ω	
Duty cycle	100 %	100 %	
Type of protection see connector design page 28			

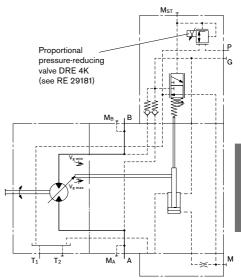
See also a constituent a constituent a DDE 41

See also proportional pressure-reducing valve DRE 4K (RE 29181).

Note


The spring return feature in the control part is not a safety device

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands


Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

EP - Proportional control electric

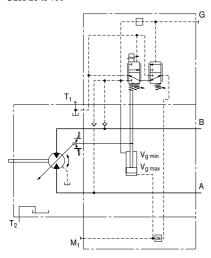
Schematic EP1, EP2 Sizes 28 to 160

Schematic EP1, EP2 Size 250

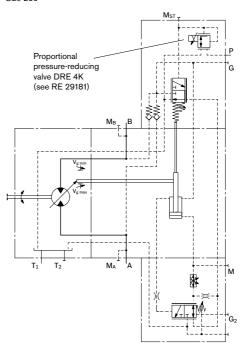
EP - Proportional control electric

EP.D Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

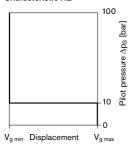
Setting range of the pressure control valve


Sizes 28 to 160 _______ 80 to 400 bar

Size 250 _______ 80 to 350 to bar

Schematic EP.D Sizes 28 to 160

Schematic EP.D Size 250



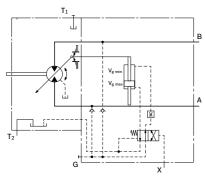
HZ - Two-point control hydraulic

The two-point hydraulic control allows the displacement to be set to either V $_{g\ min}$ or V $_{g\ max}$ by switching the pilot pressure at port X on or off.

- Position at V_{g max} (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)

Characteristic HZ

Note

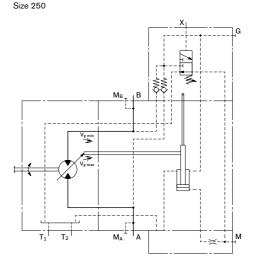

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.</p>

Please note that pressures up to 450 bar can occur at port G.

A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.

Schematic HZ3

Sizes 55 to 107


Size 160 With integrated counterbalance valve BVI, see page 37

Schematic HZ1 Sizes 28, 160

G Vg min Vg max

М

EZ - Two-point control electric

The two-point electric control with switching solenoid (sizes 28 to 160) or control valve (size 250) allows the displacement to be set to either $V_{g\,\text{min}}$ or $V_{g\,\text{max}}$ by switching the electric current at the switching solenoid or control valve on or off.

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

Technical data, solenoid with Ø37

Sizes 28, 160

	EZ1	EZ2
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100 %	100 %
**		

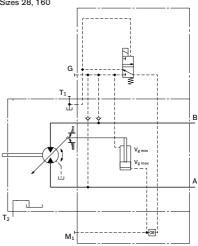
Type of protection see connector design page 28

Technical data, solenoid with Ø45

Sizes 55 to 107

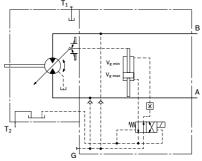
	EZ3	EZ4
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω
Nominal power	30 W	30W
Minimum required current	1.5 A	0.75 A
Duty cycle	100 %	100 %

Type of protection see connector design page 28

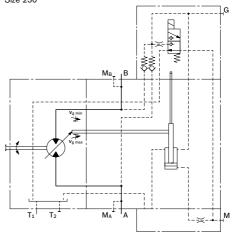

Technical data, control valve

Size 250

	EZ1	EZ2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Displacement V _{g max}	de-energized	de-energized	
Displacement V _{g min}	energized	energized	
Nominal resistance (at 20 °C)	6 Ω	23 Ω	
Nominal power	26 W	26W	
Minimum required current	2 A	1.04 A	
Duty cycle	100 %	100 %	
Type of protection see connector design page 28			


Schematic EZ1, EZ2

Sizes 28, 160


Schematic EZ3, EZ4

Sizes 55 to 107

Schematic EZ1, EZ2

Size 250

The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VE motor with HA control is $V_{g\ min}$ (maximum speed and minimum torque). The control unit measures internally the operating pressure at A or B (no control line required) and upon reaching the beginning of control, the controller swivels the motor from $V_{g\ min}$ to $V_{g\ max}$ with increase of pressure. The displacement is modulated between $V_{g\ min}$ and $V_{g\ max}$, thereby depending on load conditions.

- Beginning of control at $V_{g\,min}$ (minimum torque, maximum speed)
- End of control at V_{g max} (maximum torque, minimum speed)

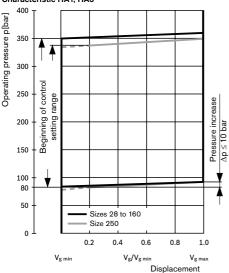
Note

- For safety reasons, winch drives are not permissible with beginning of control at V_{q min} (standard for HA).
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.</p>

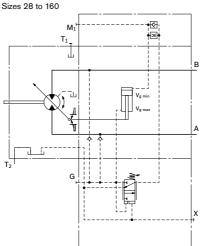
Please note that pressures up to 450 bar can occur at port G.

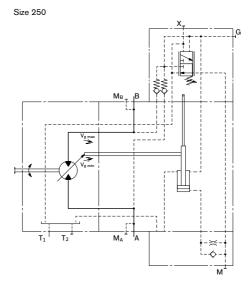
- The beginning of control and the HA characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic. Only for HA1T (sizes 28 to 160) and HA1, HA2, HA3, HA.T, (size 250).
- A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.
 Only for control HA.T.

HA1, HA3 With minimum pressure increase


An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from 0 cm³ to $V_{g max}$ (sizes 28 to 160) or from 0.2 $V_{g max}$ to $V_{g max}$ (size 250).

Beginning of control, setting range


Sizes 28 to 160	 80 to 350	bar
Size 250	80 to 340	har


Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 300 bar.

Characteristic HA1, HA3

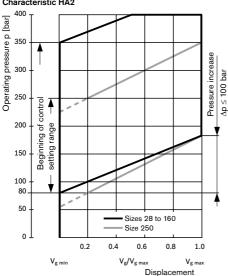
Schematic HA1

Schematic HA3

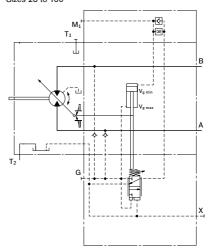
Sizes 55 to 160

With integrated counterbalance valve BVI, see page 37

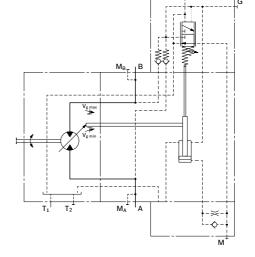
With pressure increase


An operating pressure increase of $\Delta p = approx$. 100 bar results in an increase in displacement from 0 cm³ to V_{g max} (sizes 28 to 160) or from 0.2 $V_{g max}$ to $V_{g max}$ (size 250).

Beginning of control, setting range


Sizes 28 to 160 80 to 350 bar Size 250 80 to 250 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 200 bar.


Characteristic HA2

Schematic HA2 Sizes 28 to 160

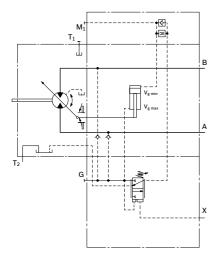
Size 250

Override hydraulic remove control, proportional

With the HA.T control, the beginning of control can be influenced by applying a pilot pressure to port X.

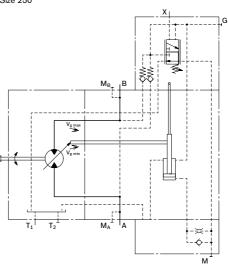
For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar (sizes 28 to 160) or 8 bar (size 250).

Example (sizes 28 to 160):

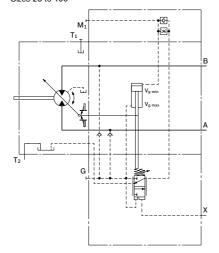

Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar

Note

Maximum permissible pilot pressure 100 bar.


Schematic HA1.T

Sizes 28 to 160


Schematic HA1.T

Size 250

Schematic HA2.T

Sizes 28 to 160

DA - Automatic control speed-related

The variable motor A6VE with automatic speed-related control, is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

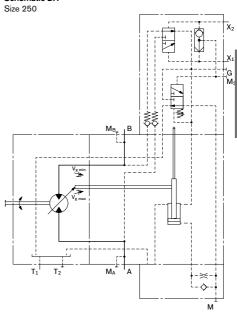
Pressure ratio p_{St}/p_{HD}: 3/100, 5/100

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales department and on the Internet at www.boschrexroth.com/da-control.

Note

The beginning of control and the DA characteristic are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 5) and thus a parallel shift of the characteristic.


DΑ

Hydraulic travel direction valve

Dependent on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures connections X_1 or X_2 .

Direction of rotation	Operating pressure in	Pilot pressure in
cw	Α	X ₁
ccw	В	X ₂

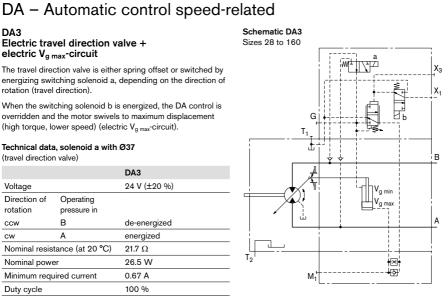
Schematic DA

Electric travel direction valve + electric $V_{g\ max}$ -circuit

The travel direction valve is either spring offset or switched by energizing switching solenoid a, depending on the direction of rotation (travel direction).

When the switching solenoid b is energized, the DA control is overridden and the motor swivels to maximum displacement (high torque, lower speed) (electric $V_{g max}$ -circuit).

Technical data, solenoid a with Ø37


(travel direction valve)

		DA3
Voltage		24 V (±20 %)
Direction of rotation	Operating pressure in	
ccw	В	de-energized
cw	Α	energized
Nominal resistance (at 20 °C)		21.7 Ω
Nominal power	er	26.5 W
Minimum required current		0.67 A
Duty cycle		100 %
Type of protection see connector		or design page 28

Technical data, solenoid b with Ø37

(electric override)

	DA3,	
Voltage	24 V (±20 %)	
No override	de-energized	
Displacement V _{g max}	energized	
Nominal resistance (at 20 °C)	21.7 Ω	
Nominal power	26.5 W	
Minimum required current	0.67 A	
Duty cycle	100 %	
Type of protection see connector design page 28		

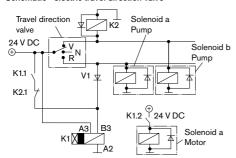
Electric travel direction valve (for DA)

Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e. q. A4VG with DA control valve).

If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle's mass and current travel speed.

When the travel direction valve of the pump (e. g. 4/3-directional valve of the DA-control) is switched to

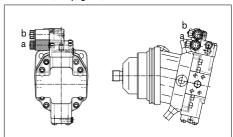
- the neutral position,


the electric circuitry causes the previous signal on the travel direction valve on the motor to be retained.

- reversing,

the electric circuitry causes the travel direction valve on the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

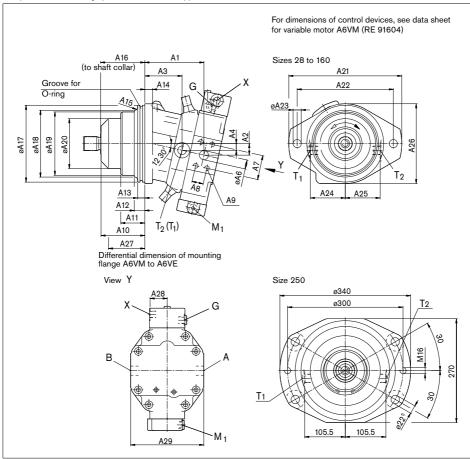
As a result, jerky deceleration or braking is prevented in both cases.


Schematic - electric travel direction valve

Note

The shown diodes and relays are not included in the delivery of the motor.

DA3 control (see page 22)



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

HD1, HD2 - Proportional control hydraulic

Port plate 02 - SAE flange port A and B at side, opposite

Ports

Size	Service line port A, B SAE J518	Drain port T ₁ ; T ₂ ²⁾ DIN 3852 ³⁾	
28	3/4 in	M18 x 1.5; 12 deep	
55	3/4 in	M18 x 1.5; 12 deep	
80	1 in	M18 x 1.5; 12 deep	
107	1 in	M18 x 1.5; 12 deep	
160	1 1/4 in	M26 x 1.5; 16 deep	
250	1 1/4 in	M22 x 1.5; 14 deep	

¹⁾ Hole ø22 with spot face ø48; 2 deep

For further ports, see variable motor A6VM (RE 91604)!

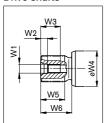
^{2) 1}x plugged

³⁾ Observe the general instructions on page 40 for the maximum tightening torques.

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Standard flange L (sizes 28 to 160), M (size 250)

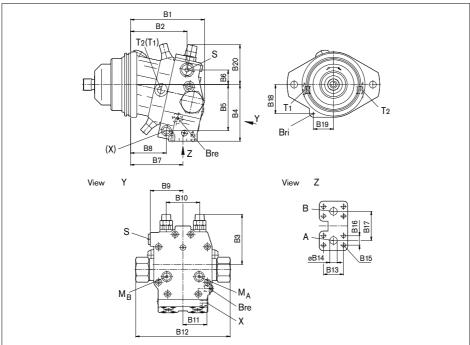

NG	A1	A2	A3	Α4	øA6	A7	A8	A9 (DIN 13) ²⁾	A10	A11	A12	A13	A14	A15
28	91	20	47	10	ø19	50.8	23.8	M10 x 1.5; 17 deep	88	54	-	15	14	R10
55	123	24	77	14	ø19	50.8	23.8	M10 x 1.5; 17 deep	91	50	22	15	16	R6
80	129	28	78	16	ø25	57.2	27.8	M12 x 1.75; 17 deep	109.5	65	30	15	18	R10
107	137	30	84	18	ø25	57.2	27.8	M12 x 1.75; 17 deep	121.8	72	35	15	18	R12
160	171	34	109	20	ø32	66.7	31.8	M14 x 2; 19 deep	122	67	29	15	20	R5
250	204	44	103	20	ø32	66.7	31.8	M14 x 2; 19 deep	131.5	-	-	14	25 ¹⁾	-
NG	Δ163)	Δ17	Δ.	12 /	119 A2	ο Δ21	Δ22	αΛ23 Λ24 Λ25	Δ26	Δ27	Δ2 <u>8</u>	A29	O-rir	na ⁴⁾

NG	A16 ³⁾	A17	A18	A19	A20	A21	A22	øA23	A24	A25	A26	A27	A28	A29	O-ring ⁴⁾
28	89	135-0.025	110	-	86	188	160	ø13.5	62.5	62.5	142	64	35.5	132	126x4
55	92	160-0.025	139	132	104	235	200	ø17	72.5	72.5	166	59	35.5	152	150x4
80	110.5	190-0.029	151	143	116	260	224	ø21	78.5	78.5	198	79	35.5	164	182x4
107	122.8	200-0.029	168	160	132	286	250	ø21	86.5	86.5	210	82	40.5	180	192x4
160	123	200-0.029	188	180	146	286	250	ø21	98.5	98.5	210	83	40.5	204	192x4
250	133.5	260-0.081	230	-	-	-	-	-	-	-	-	83.5	48.5	224	250x5

Adapter flange U (size 107)

NG	A1	A2	A3 A	4 <i>A</i>	۱5	A6	A7	A8	A9 (D	IN 13)	2)	A10	A11	A12	A13	A14
107	150	30	96 18	8 1	5.5	25	57.2	27.8	M12 x	1.75; 1	17 deep	109.5	59.7	22.7	18	15
NG	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	O-ring ⁴⁾

Drive shafts


NG	Splined shaft DIN 5480	W1 ²⁾⁵⁾	W2	W3	øW4	W5	W6
28	A (W30x2x14x9g)	M10 x 1.5	7.5	22	ø35	27	35
55	Z (W30x2x14x9g)	M12 x 1.75	9.5	28	ø45	27	35
80	A (W40x2x18x9g)	M16 x 2	12	36	ø50	37	45
107	Z (W40x2x18x9g)	M12 x 1.75	9.5	28	ø60	37	45
160	A (W50x2x24x9g)	M16 x 2	12	36	ø70	44	55
250	Z (W50x2x24x9a)	M16 x 2	12	36	ø60	49	58

- 1) Hole ø22 with spot face ø48; 2 deep
- 2) Observe the general instructions on page 40 for the maximum tightening torques.
- 3) To shaft collar
- 4) The O-ring is not included in the delivery contents
- 5) Center bore according to DIN 332 (thread according to DIN 13)

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HA3 – Automatic control high-pressure relatedPort plate 22 – SAE flange port A and B at bottom, with integrated counterbalance valve

Ports

NG	B1	B2	ВЗ	B4	B5	В6	В7	В8	В9	B10	B11	B12	B13	B14	B15 (DIN 13)2)	B16	B17
55	192	144	127	144	117	37	133	91	83	85	64	259	50.8	19	M10 x 1.5; 17 deep	23.8	80
80	198	150	136	162	132	40	138	93	83	90	69	259	57.2	25	M12 x 1.75; 17 deep	27.8	86
107	202	161	139	171.5	143	40	144	99	85	96	72	259	57.2	25	M12 x 1.75; 17 deep	27.8	86
160	240	195	152	197	162	47	177	128	102	108	78	259	66.7	32	M14 x 2: 19 deep	31.8	94

NG	B18	B19	B20	Service line port A, B SAE J518	Drain port T ₁ ; T ₂ ¹⁾ DIN 3852 ²⁾	Infeed S DIN 3852 ²⁾
55	74	51	102	3/4 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
80	90	53	114	1 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
107	96	58	122	1 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
160	94	65	136	1 1/4 in	M26 x 1.5; 16 deep	M27 x 2; 16 deep

^{1) 1}x plugged

Note:

Port plate HZ3 and HA3 are not identical!

²⁾ Observe the general instructions on page 40 for the maximum tightening torques.

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designa- tion	Port for	Standard ⁵⁾	Size ¹⁾	Maximum pressure [bar]2)	State ⁸⁾
X	Pilot signal (open with HZ and HA3T, plugged with HA3)	ISO 6149	M14 x 1.5; 11.5 deep	100	0
M_{A} , M_{B}	Measuring stroking chamber	DIN 3852	M14 x 1.5; 11.5 deep	420	Χ
Bre	Brake release, external	DIN 3852	M14 x 1.5; 11.5 deep	30	O/X ⁶⁾
Bri	Brake release, internal (not provided on versions with flange U)	-	ø4	30	X/O ⁷⁾

- 1) Observe the general instructions on page 40 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 39).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) Must be connected for external piping. Is plugged with internal ducting.
- 7) Is plugged with external ducting. Must be connected with internal piping.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Connector for solenoids

DEUTSCH DT04-2P-EP04

Sizes 28 to 160

Molded, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

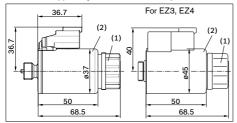
IP67 ______ DIN/EN 60529 and IP69K ______ DIN 40050-9

Circuit symbol

Mating connector

DEUTSCH DT06-2S-EP04

Bosch Rexroth Mat. No. R902601804


 Consisting of:
 DT designation

 - 1 housing
 DT06-2S-EP04

 - 1 wedge
 W2S

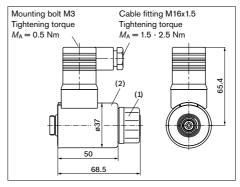
 - 2 sockets
 0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HIRSCHMANN DIN EN 175 301-803-A/ISO 4400

Size 250


Without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

IP65 DIN/EN 60529

The seal ring in the cable fitting is suitable for line diameters of $4.5\ \mathrm{mm}$ to $10\ \mathrm{mm}$.

The HIRSCHMANN connector is included in the delivery contents of the motor.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- 3. Retighten the mounting nut. Tightening torque: 5+1 Nm. (WAF26, 12-sided DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

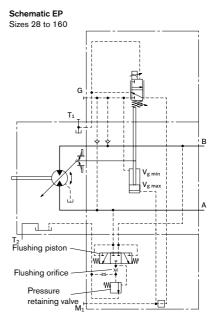
In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

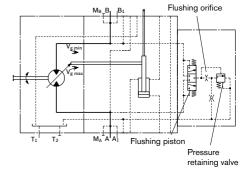
Cracking pressure of pressure retaining valve

(observe when setting the primary valve) fixed setting _______16 bar


Switching pressure of flushing piston Δp ______ 8±1 bar

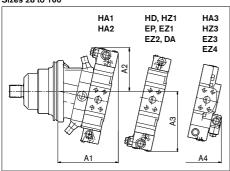
Flushing flow qv

Orifices can be used to set the flushing flows as required. Following parameters are based on: $\Delta p_{ND} = p_{ND} - p_{G} = 25 \text{ bar and } \nu = 10 \text{ mm}^{2}/\text{s}$ $(p_{ND} = \text{low pressure, } p_{G} = \text{case pressure})$

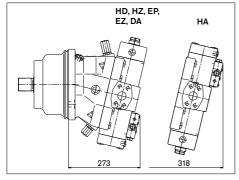

Size	Flushing flow q _V [L/min]	Mat. No. of orifice
28, 55	3.5	R909651766
80	5	R909419695
107	8	R909419696
160	10	R909419697
250	10	R909419697

With sizes 28 to 160, orifices can be supplied for flushing flows from 3.5 to - 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

Schematic


Size 250

Flushing and boost pressure valve


Dimensions

Sizes 28 to 160

NG	A1	A2	А3	A4
28	152	125	161	-
55	182	133	176	176
80	194	141	192	176
107 (L flange)	204	143	202	186
107 (U flange)	217	143	202	199
160	245	154	220	-

Size 250

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

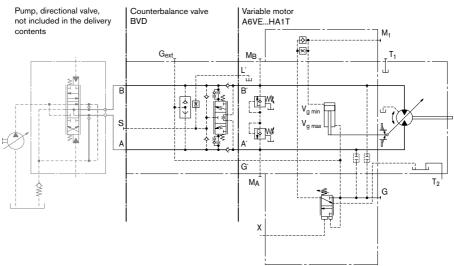
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

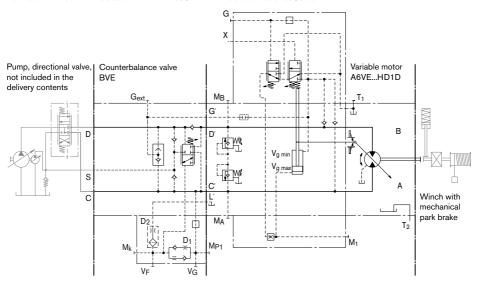

- BVD available for sizes 55 to 160 and BVE available for sizes 107 and 160.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A6VE80HA1T/63W-VAL38800A + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, controls with beginning of control at V_{q min} (e. g. HA) are not permissible for winch drives!
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive for wheeled excavators A6VE80HA1T/63W-VAL38800A + BVD20F27S/41B-V03K16D0400S12


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

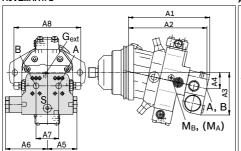
Winch counterbalance valve BVD...W and BVE

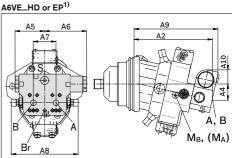
Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes
A6VE80HD1D/63W-VAL38800B + BVE25W38S/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE


. commonate impartment of processing in operation man 221 and 212/212													
	Without val	ve	Restricted values in operation with DBV and BVD/BVE										
Motor			DBV				BVD/BVE						
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code			
55	400/450	244	22	350/420	240	380	20	350/420	220	388			
80		312					(BVD)						
107		380	32		400	370				378			
107		380				380	25		320	388			
160		496					(BVD/BVE)						
250	350/400	675	On request										


DBV ______ pressure-relief valve
BVD ______counterbalance valve, double-acting
BVE ______counterbalance valve, one-sided

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A6VE...HA1/2

A6VE	Counterbalance valve												
NGplate	Туре	Ports	Dimens	ions									
		A, B	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	
5538	BVD2017	3/4 in	252	243	143	50	98	139	75	222	267	50	
8038	BVD2027	1 in	261	252	148	55	98	139	75	222	276	46	
10737	BVD2028	1 in	280	271	152	59	98	139	84	234	295	41	
10738	BVD2538	1 1/4 in	298	288	165	63	120.5	175	84	238	311	56	
16038	BVD2538	1 1/4 in	334	324	170	68	120.5	175	84	238	349	51	
10738	BVE2538	1 1/4 in	298	288	171	63	137	214	84	238	315	63	
16038	BVE2538	1 1/4 in	334	324	176	68	137	214	84	238	349	59	

Ports

Designation	Port for	Version	A6VE Plate	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁵⁾
A, B	Service line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 38524)	M22 x 1.5; 14 deep	30	Χ
		BVD25, E	BVE25	DIN 38524)	M27 x 2; 16 deep	30	X
Br	Brake release,	L	7	DIN 38524)	M12 x 1.5; 12.5 deep	30	0
	reduced high-pressure		8	DIN 38524)	M12 x 1.5; 12 deep	30	0
G _{ext}	Brake release, high-pressure	S		DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	420	Х
$M_{A_i}M_{B_i}$	Measuring pressure A and B			ISO 6149 ⁴⁾	M18 x 1.5; 14.5 deep	420	Х

¹⁾ At the mounting version for the controls HD and EP, the cast-in port designations A and B on the counterbalance valve BVD do not correspond with the connection drawing of the A6VE motor.

The designation of the ports on the installation drawing of the motor is binding!

²⁾ Observe the general instructions on page 40 for the maximum tightening torques.

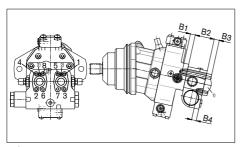
³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ The spot face can be deeper than specified in the appropriate standard.

⁵⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) ____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10 x 1.5	10.9	75
M12 x 1.75	10.9	130
M14 x 2	10.9	205

- 1) SAE flange
- 2) Tacking screw (M6 x 1, length = B1 + B2, DIN 912)

NGplate	5538	8038, 10737	10738, 16038	
B1 ³⁾	M10 x 1.5 17 deep	M12 x 1.75 15 deep	M14 x 2 19 deep	
B2	68	68	85	
B3	customer-speci	customer-specific		
B4	M10 x 1.5 15 deep	M12 x 1.75 16 deep	M14 x 2 19 deep	

3) Minimum required thread reach 1 x Ø-thread

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Counterbalance valve integrated BVI

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

The integrated counterbalance valve is designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking or traveling downhill.

Note

- The integrated counterbalance valve must be ordered additionally, see ordering code below.
- The counterbalance valve does not replace the mechanical service brake and park brake.
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Application options

- Track drive in excavator crawlers

Ordering code

BVI			00		-	
01	02	03	04	05		06

Counterbalance valve

01 Counterbalance valve integra	ounterbalance valve integrated			
Brake piston version	qv [L/min]	Material number		
Volume preselected	≤ 150	R902038832	51	
	= 150 - 210	R902038936	52	
	= 210 - 270	R902038833	53	
02	= 270 - 330	R902038834	54	
	= 330 - 400	R902038835	55	
	> 400	P902038836	56	

	Throttle mounting	Material number	
00	Constant throttle	R909432302	8000
03	Throttle pin	R909651165	0603

Check valve

04	Without residual opening	00	J
----	--------------------------	----	---

Brake release valve

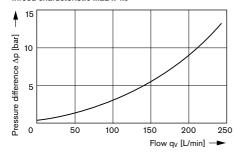
- 1	With brake release valve (standard with HZ)	Without disable function	1	
	With brake release valve (standard with HA)	With disable function	2	l

Standard / special version

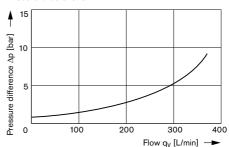
06	Standard version	0	
00	Special version	S	J

Counterbalance valve integrated BVI

Table of values

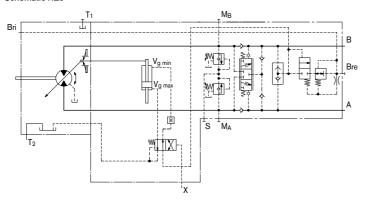

Operating pressure	nominal pressure	р	bar	350
	peak pressure	р	bar	420
Flow, maximum		q _{v max}	L/min	400
Counterbalance spool	start of opening	р	bar	12
	fully open	р	bar	26
Pressure-reducing valve for brake release	control pressure	р	bar	21+4
(fixed setting)	beginning of control	р	bar	10+4

Comparison between port plates 02 and 22

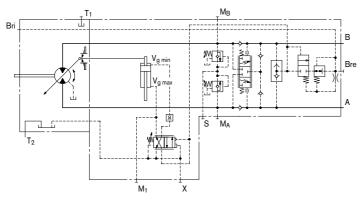

Maximum permissible input flow with restricted nominal pressure 350 bar, maximum pressure 420 bar

	standard plate (02)			cted values with integrated co (22)	unterbalance
Motor					with BVI + DBV
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	Code	p _{nom} /p _{max} [bar]	q _V [L/min]
55	400/450	276	22	350/420	240
80		332			
107		410			
160		533			400

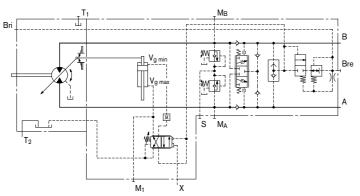
Infeed characteristic M22 x 1.5



Infeed characteristic M27 x 2



Counterbalance valve integrated BVI


Schematic HZ3

Schematic HA3

Schematic HA3.T

Speed sensor

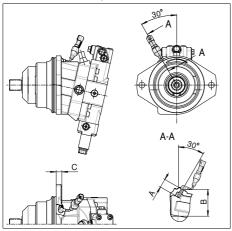
Version A6VE...U ("prepared for speed spensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the speed sensor DSA mounted, a signal proportional to motor speed can be generated. The sensor measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet (DSA – RE 95133).

The sensor is mounted on the port provided for this purpose with a mounting bolt.


We recommend ordering the A6VE variable motor complete with installed sensor.

Schematic

Dimensions

Version "V" with mounted speed sensor

NG	55	80	107	160	250
Number of teeth	54	58	67	75	86
Α	32	32	32	32	on request
В	83.3	87.3	96.3	104.3	on request
С	26	16.5	14.2	28.5	on request

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T1, T2).

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installa-

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

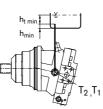
See the following examples 1 to 6.

Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

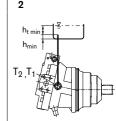
In certain installation conditions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

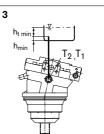

Installation position	Air bleed	Filling
1	_	T_2 , T_1
2	-	T ₂ , T ₁
3	-	T ₂ , T ₁
4	L ₁	T ₂ , T ₁ (L ₁)
5	L ₁	T ₂ , T ₁ (L ₁)
6	L ₁	T ₂ , T ₁ (L ₁)

L₁ Filling / air bleed

 T_1, T_2 Drain port

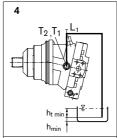
h_{t min} Minimum required immersion depth (200 mm)

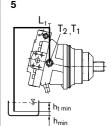

h_{min} Minimum required spacing to reservoir bottom (100 mm)

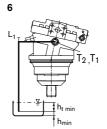


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is


installed outside of the reservoir below the minimum fluid level.





Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

General instructions

- The motor A6VE is designed to be used in open and closed circuits
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified person-
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instruction regarding tightening torques for the fittings used.

Mounting bolts:

For mounting bolts with metric ISO threads according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit: The maximum permissible tightening torques MG max are maximum values for the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs My apply. For values, see the following table.

Ports Standard	Size of thread	Maximum permissible tightening torque of the female threads M _{G max}	Required tightening torque of the threaded plugs M _V ¹⁾	WAF hexagon socket of the threaded plugs
DIN 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M26 x 1.5	230 Nm	120 Nm	12 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm

The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for instal-

Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 Fax: +49-7308-72-74 info.brm@boschrexroth.de

An den Kelterwiesen 14 72160 Horb, Germany Tel.: +49-7451-92-0 Fax: +49-7451-82-21

www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

²⁾ In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5.

Variable Plug-in Motor A6VE

RE 91616/06.12 Replaces: 01.12

1/48

Data sheet

Series 71 Sizes 60 to 170 Nominal pressure 450 bar Maximum pressure 500 bar Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	5
HP - Proportional control hydraulic	10
EP - Proportional control electric	12
HZ - Two-point control hydraulic	14
EZ - Two-point control electric	15
HA - Automatic control high-pressure related	16
Dimensions size 60 to 170	20
Connector for solenoids	36
Speed sensor	36
Flushing and boost pressure valve	37
Counterbalance valve BVD and BVE	39
Counterbalance valve integrated BVI	43
Setting range for displacement	46
Installation instructions	47
General instructions	48

Features

- Variable plug-in motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed
- Far-reaching integration in mechanical gearbox due to a recessed mounting flange located in the center of the case (extremely space-saving construction)
- Easy to install, simply plug into the mechanical gearbox (no configuration specifications to be observed)
- Tested unit ready to install
- For use especially in mobile applications
- The displacement can be infinitely changed from V_{g max} to $V_{a \min} = 0$.
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and low-pressure side and with increasing displacement.

Ordering code for standard program

A6V	Ε					0	0			/	71	М	W	٧	0						-	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21

Axial piston unit

-	01	Bent-axis design, variable, nominal pressure 450 bar, maximum pressure 500 bar	A6V	1
- 1	ווע	Bent-axis design, variable, nominal pressure 450 bar, maximum pressure 500 bar	HOV	ı

Operating mode

02 Plug-in motor Ε

	Sizes (NG)							_
03	Geometric displacement	060	085	115	170			
	Control devices			060	085	115	170	
	Proportional control	positive control	$\Delta p_{St} = 10 \text{ bar}$	•	•	•	•	HP1
	hydraulic		$\Delta p_{St} = 25 \text{ bar}$	•	•	•	•	HP2
		negative control	$\Delta p_{St} = 10 \text{ bar}$	•	•	•	•	HP5
			$\Delta p_{St} = 25 \text{ bar}$	•	•	•	•	HP6
	Proportional control	positive control	U = 12 V DC	•	•	•	•	EP1
	electric		U = 24 V DC	•	•	•	•	EP2
		negative control	U = 12 V DC	•	•	•	•	EP5
			U = 24 V DC	•	•	•	•	EP6
	Two-point control	negative control		-	-	-	•	HZ5
04	hydraulic			•	•	•	O ¹⁾	HZ7
	Two-point control	negative control	U = 12 V DC	-	-	-	•	EZ5
	electric		U = 24 V DC	-	-	-	•	EZ6
			U = 12 V DC	•	•	•	-	EZ7
			U = 24 V DC	•	•	•	-	EZ8
	Automatic control, high-pressure related,	with minimum pressure increase	∆p ≤ approx. 10 bar	•	•	•	•	HA1
	positive control	with pressure increase	$\Delta p = 100 \text{ bar}$	•	•	•	•	HA2

Pressure control/override

	Without pressure control/override	00	
05	Pressure control fixed setting, only for HP5, HP6, EP5 and EP6	D1	l
	Override of the HA1 and HA2 controls, hydraulic remote control, proportional	T3	1

 $\Delta p \leq$

approx. 10 bar

0 0

0

Connector for solenoids2) (see page 36)

06	Without connector (without solenoid, only with hydraulic controls)	0
100	DEUTSCH - molded connector 2-pin – without suppressor diode	P

Additional function 1

07	Without additional function	0

Additional function 2

● = Available O = On request - = Not available

with minimum pressure increase

¹⁾ Only possible in combination with port plate 6 (integrated counterbalance valve)

²⁾ Connectors for other electric components can deviate.

М

Ordering code for standard program

A6V	E					0	0			/	71	М	W	٧	0						-	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21

Response time damping (for selection, see control)
--

		Without damping (standar	d with HP and EP)	0				
- 0	9	Damping	HP, EP, HP5, 6D. and EP5,6D.; HZ, EZ, HA3, HA1 and HA2 with counterbalance valve BVD/BVE					
			One-sided in inlet to large stroking chamber (HA)	4				

Setting range for displacement3) 060 085 115 170 V_{g max}-adjusting screw V_{g min}-adjusting screw Without adjusting screw short (0-adjustable) medium • • В • С long • extra long • D Short short (0-adjustable) Ε F 10 medium • • G long extra long • Н J Medium short (0-adjustable) • medium • • Κ • • L long

Series

11 Series 7, index 1	71
----------------------	----

Configuration of ports and fastening threads

extra long

Direction of rotation

13 Viewed on drive shaft, bidirectional

Seals

14 FKM (fluor-caoutchouc)

Drive shaft bearing

15 Standard bearing 0

	wounting nanges		000	UBO	110	170	
	ISO 3019-2	160-2	•	-	-	-	P2
16		190-2	_	•	-	-	Y2
		200-2	-	-	•	•	S2

	Drive shafts		060	085	115	170	
Г	Splined shaft DIN 5480	W35x2x16x9g	•	-	-	-	Z8
1	7	W40x2x18x9g	-	•	•	-	Z9

● = Available
O = On request -= Not available

W45x2x21x9g

³⁾ The settings for the adjusting screws can be found in the table (page 46).

Ordering code for standard program

4/48

A6V	Е					0	0			/	71	М	W	٧	0						-	
01	0.0	U3	0.4	05	06	07	0.8	nα	10		11	10	13	1//	15	16	17	18	10	20		21

• • • 1 • • • 2 • • • 6	0 0 0	erhalance valve RVI4)	SAE flange ports A and B at rear SAE flange ports A and B at side, opposite				
• • • 6	• • •	erbalance valve RVI4)	7 11				
	• • •	erbalance valve RVI4)	OAE # I D I I I I I I I I I I				
• • - 7		SAE flange port A and B at bottom only with integrated counterbalance valve BVI ⁴⁾					
	• • •	BVD20	Port plate with 1-level pressure-relief valves for mounting a				
- • • 8		BVD25, BVE25	counterbalance valve ⁵⁾				
085 115	060 085 1	BVD25, BVE25	counterbalance valve ⁵⁾ Valves (see pages 37 to 46)				

Valves (see pages 37 to 46)		060	085	115	170	
Without valve		•	•	•	•	0
Counterbalance valve BVD/BVE mounted ⁶⁾		•	•	•	•	W
Brake release valve integrated (only with port plate 6)	for external piping	•	•	•	0	Υ
	with internal ducting	•	•	•	0	Z
Flushing and boost pressure valve mounted,	Flushing flow q _v [L/min]					
	3.5	•	•	•	-	Α
	5	•	•	•	-	В
$v = 10 \text{ mm}^2/\text{s}$	8	•	•	•	•	С
$(p_{ND} = low pressure, p_G = case pressure)$	10	•	•	•	•	D
Only possible with port plates 1 and 2	14	•	•	•	-	F
	17	-	-	-	●7)	G
	20	-	-	●7)	●7)	Н
	25	-	-	●7)	●7)	j
	30	-	-	●7)	●7)	К
	35	-	-	-	●7)	L
	40	-	-	-	●7)	М
	Without valve Counterbalance valve BVD/BVE mounted ⁶) Brake release valve integrated (only with port plate 6) Flushing and boost pressure valve mounted, flushing on both sides Flushing flow with: $\Delta p = p_{ND} - p_{G} = 25 \text{ bar and } v = 10 \text{ mm}^{2}/\text{s}$	Without valve Counterbalance valve BVD/BVE mounted ⁶⁾ Brake release valve integrated (only with port plate 6) Flushing and boost pressure valve mounted, flushing on both sides Flushing flow with: Ap = P _{ND} - P _G = 25 bar and v = 10 mm²/s (P _{ND} = low pressure, p _G = case pressure) Only possible with port plates 1 and 2 10 11 17 20 25 30 35	Without valve Counterbalance valve BVD/BVE mounted ⁶⁾ Brake release valve integrated (only with port plate 6) Flushing and boost pressure valve mounted, flushing on both sides Flushing flow with: $\Delta p = p_{ND} - p_{G} = 25 \text{ bar and}$ $v = 10 \text{ mm}^{2}/\text{s}$ $(p_{ND} = \text{low pressure, } p_{G} = \text{case pressure})$ Only possible with port plates 1 and 2 $10 = \frac{1}{17}$ $\frac{1}{20}$ $\frac{1}{25}$ $\frac{1}{30}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$	Without valve Counterbalance valve BVD/BVE mounted ⁶) Brake release valve integrated (only with port plate 6) Flushing and boost pressure valve mounted, flushing on both sides Flushing flow with: Δp = P _{ND} − P _G = 25 bar and v = 10 mm²/s (p _{ND} = low pressure, p _G = case pressure) Only possible with port plates 1 and 2 Value Value	Without valve ● ● ● ● Counterbalance valve BVD/BVE mounted ⁶) for external piping with internal ducting with internal	Without valve ● ● ● ● Counterbalance valve BVD/BVE mounted ⁶) for external piping with internal ducting with internal

Speed sensor (see page 36)

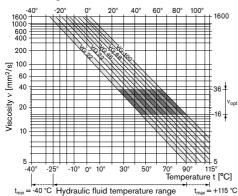
		-F		_
		Without speed sensor	0	
- :	20	Prepared for DSA speed sensor	U]
		DSA speed sensor mounted ⁸⁾	v	1

Standard / special version

	Standard version	0
2	Standard version with installation variants, e. g. T ports against standard open or closed	Υ
	Special version	s

= Available	○ = On request	 – = Not available
-------------	----------------	---------------------------------------

- 4) Only for HZ7 and HA3. Supplement specification for integrated counterbalance valve BVI, see separate ordering code on page 43. Note the restrictions on page 44.
- 5) Only possible in combination with HP, EP and HA control. Note the restrictions on page 40.
- 6) Specify ordering code of counterbalance valve acc. to data sheet (BVD RE 95522, BVE RE 95525) separately. Note the restrictions on page 40.
- 7) Not for EZ7, EZ8, HZ7 and HA3
- 8) Specify ordering code of sensor acc. to data sheet (DSA RE 95133) separately and observe the requirements on the electronics.


Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable motor A6VE is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Please contact us.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature; in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt.}shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend using a flushing and boost pressure valve (see pages 37 and 38).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm ² /s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}C$	$t \leq 3$ min, without load (p ≤ 50 bar), n ≤ 1000 rpm
Permissible temperatur	re difference	$\Delta T \leq 25~K$	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400	T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference	•	ΔT = approx. 12 K	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 6

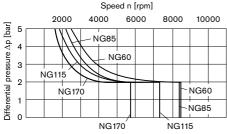
¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

These values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 $^{\circ}$ C to +115 $^{\circ}$ C.

Note

For application cases below -25 $^{\circ}$ C, an NBR shaft seal is required (permissible temperature range: -40 $^{\circ}$ C to +90 $^{\circ}$ C). State NBR shaft seal in plain text when ordering. Please contact us.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

HP. HA.T3 increase

With the following controls, an increase in the case pressure has no influence on the beginning of control: EP, HA

The factory setting of the beginning of control is made at $p_{abs} = 2$ bar case pressure.

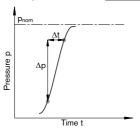
Direction of flow

Direction of rotation, viewed on drive shaft			
cw	ccw		
A to B	B to A		

Operating pressure range

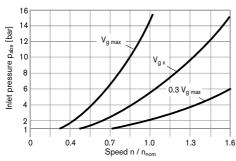
(operating with mineral oil)

Pressure at service line port A or B


Nominal pressure pnom	_ 450 bar absolute
Maximum pressure p _{max} Single operating period	_ 500 bar absolute
Total operating period	300 h

Minimum pressure (high-pressure side) ____25 bar absolute

Summation pressure (pressure A + pressure B) p_{Su} _ 700 bar


Rate of pressure change RA max

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve 16000 bar/s

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from $v_{\text{opt}} = 36$ to 16 $\text{mm}^2/\text{s}.$

Please contact us if the above conditions cannot be satisfied.

Note

Values for other hydraulic fluids, please contact us.

Definition

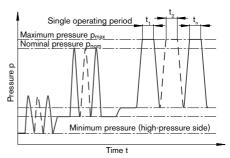
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

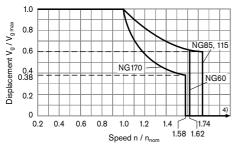
Summation pressure psu

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$


Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size	NG		60	85	115	170
Displacement geometric,	$V_{g max}$	cm ³	62.0	85.2	115.6	171.8
per revolution	V _{g min}	cm ³	0	0	0	0
	V _{g x}	cm ³	37	51	69	65
Speed maximum ¹⁾ (while adhering to the maximum permissible input flow)						
at V _{g max}	n _{nom}	rpm	4450	3900	3550	3100
at $V_g < V_{gx}$ (see diagram below)	n _{max}	rpm	7200	6800	6150	4900
at V _{g 0}	n _{max}	rpm	8400	8350	7350	5750
Input flow ²⁾						
at n_{nom} and $V_{g \text{ max}}$	q _{V max}	L/min	276	332	410	533
Torque ³⁾						
at $V_{g max}$ and $\Delta p = 450$ bar	T	Nm	444	610	828	1230
Rotary stiffness						
$V_{g max}$ to $V_{g}/2$	c _{min}	kNm/rad	15	22	37	52
V _g /2 to 0 (interpolated)	C _{max}	kNm/rad	45	68	104	156
Moment of inertia for rotary group	J_{GR}	kgm ²	0.0043	0.0072	0.0110	0.0213
Maximum angular acceleration	α	rad/s ²	21000	17500	15500	11000
Case volume	V	L	0.8	1.0	1.5	2.3
Mass (approx.) without BVI	m	kg	28	36	46	62
with BVI	m	kg	37	45	52	70

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible displacement in relation to speed

- 1) The values are valid:
 - for the optimum viscosity range from $\nu_{\text{opt}} = 36 \text{ to } 16 \text{ mm}^2\text{/s}$
 - with hydraulic fluid based on mineral oils
- 2) Restriction of input flow with counterbalance valve, see pages 40 and 44
- 3) Torque without radial force, with radial force see page 9
- 4) Values in this range on request

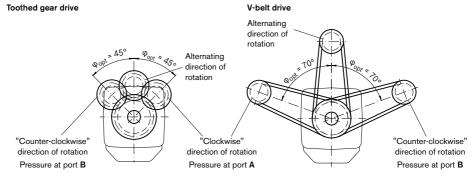
9/48

Technical data

Permissible radial and axial forces of the drive shaft

Size		NG		60	85	115	170
Drive shaft			in	W35	W40	W40	W45
Maximum radial force ¹⁾	Fq	F _{q max}	N	10266	12323	16727	21220
(from shaft collar)	a	a	mm	20	22.5	22.5	25
with permissible torque		T _{max}	Nm	444	610	828	1189
≜ Permissible pressure Δp at V _{g max}		p _{nom perm.}	bar	450	450	450	435
Maximum axial force ²⁾	ax ±==	+ F _{ax max}	N	500	710	900	1120
'		- F _{ax max}	N	0	0	0	0
Permissible axial force per bar operating pressure		F _{ax} perm./bar	N/bar	7.5	9.6	11.3	15.1

¹⁾ With intermittent operation.


Influence of the direction of the permissible axial force:

+ F_{ax max} = Increase in service life of bearings

- F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_a on the service life of bearings

By selecting a suitable direction of radial force Fq, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

Determining the operating characteristics

²⁾ Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

HP - Proportional control hydraulic

The proportional hydraulic control provides infinite setting of the displacement, proportional to the pilot pressure applied to port X.

HP1, HP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum pilot pressure)
- End of control at $V_{g\,max}$ (maximum torque, minimum speed at maximum pilot pressure)

HP5, HP6 negative control

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum pilot pressure)

Note

- Maximum permissible pilot pressure: pSt = 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.</p>
 - Please note that pressures up to 500 bar can occur at port G.
- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 10 bar.
- The beginning of control and the HP characteristic are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel shift of the characteristic.

HP1, HP5 pilot pressure increase Δp_{St} = 10 bar

HP1 positive control

A pilot pressure increase of 10 bar at port X results in an increase in displacement from $V_{g\,min}$ to $V_{g\,max}$.

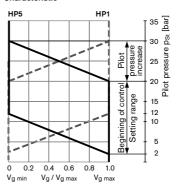
HP5 negative control

A pilot pressure increase of 10 bar at port X results in a decrease in displacement from $V_{g\ max}$ to $V_{g\ min}$.

Beginning of control, setting range _____ 2 to 20 bar

Standard setting:

Beginning of control at 3 bar (end of control at 13 bar)


Not

The spring return feature in the control part is not a safety device

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

Characteristic

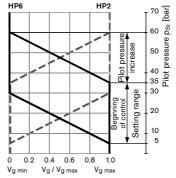
Displacement

HP2, HP6 pilot pressure increase $\Delta p_{St} = 25$ bar

HP2 positive control

A pilot pressure increase of 25 bar at port X results in an increase in displacement from $V_{q\,min}$ to $V_{q\,max}$.

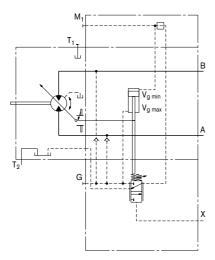
HP6 negative control

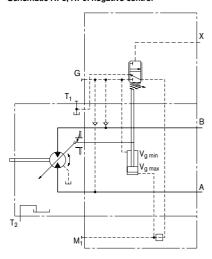

A pilot pressure increase of 25 bar at port X results in a decrease in displacement from $V_{g\ max}$ to $V_{g\ min}$.

Beginning of control, setting range _____5 to 35 bar

Standard setting:

Beginning of control at 10 bar (end of control at 35 bar)

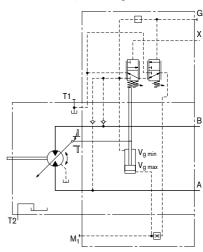

Characteristic


Displacement

HP - Proportional control hydraulic

Schematic HP1, HP2: positive control

Schematic HP5, HP6: negative control


HP5D1, HP6D1 Pressure control, fixed setting

The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.

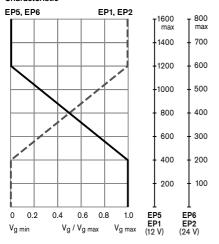
The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve_____ 80 to 450 ba

Schematic HP5D1, HP6D1: negative control

EP - Proportional control electric

The proportional electric control provides infinite setting of the displacement, proportional to the control current applied to the solenoid.


EP1, EP2 positive control

- Beginning of control at V_{a min} (minimum torque, maximum permissible speed at minimum control current)
- End of control at V_{g max} (maximum torque, minimum speed at maximum control current)

EP5, EP6 negative control

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

Technical data, solenoid

EP1, EP5	EP2, EP6
12 V (±20 %)	24 V (±20 %)
400 mA	200 mA
1200 mA	600 mA
1.54 A	0.77 A
5.5 Ω	22.7 Ω
100 Hz	100 Hz
100%	100%
	12 V (±20 %) 400 mA 1200 mA 1.54 A 5.5 Ω 100 Hz

Type of protection see connector design page 36

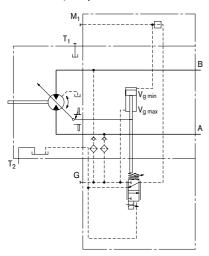
The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

 BODAS con 	troller RC		
Series 20			RE 95200
Series 21			RE 95201
Series 22			RE 95202
Series 30		RE 95203,	RE 95204
and applicati	on software		

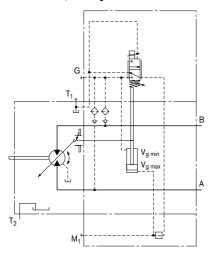
- RE 95230 Analog amplifier RA
- Electric amplifier VT 2000, series 5X (see RE 29904) (for stationary application)

Further information can also be found on the internet at: www.boschrexroth.com/mobile-electronics

Note


The spring return feature in the control part is not a safety device

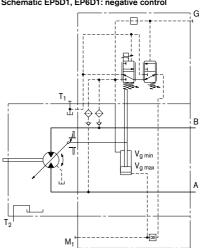
The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.


Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

EP - Proportional control electric

Schematic EP1, EP2: positive control

Schematic EP5, EP6: negative control

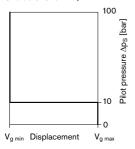

EP5D1, EP6D1 Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve_

Schematic EP5D1, EP6D1: negative control

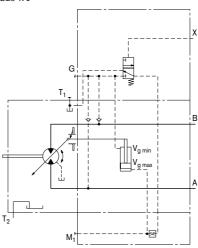

HZ - Two-point control hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{g \, min}$ or $V_{g \, max}$ by switching the pilot pressure at port X

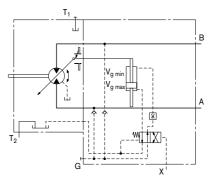
HZ5, HZ7 negative control

- Position at V_{g max} (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)

Characteristic HZ5, HZ7


Note

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please


Please note that pressures up to 500 bar can occur at port G.

Schematic HZ5: negative control

Size 170

Schematic HZ7: negative control Sizes 60 to 115

Schematic HZ7: negative control

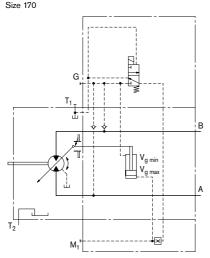
Size 170 with integrated counterbalance valve BVI, see page 45

EZ - Two-point control electric

The two-point electric control allows the displacement to be set to either $V_{g\,min}$ or $V_{g\,max}$ by switching the electric current to a switching solenoid on or off.

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

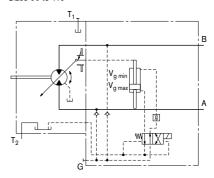

Please note that pressures up to 500 bar can occur at port G.

Technical data, solenoid with Ø37 Size 170

	EZ5	EZ6
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100%	100%

Type of protection see connector design page 36

Schematic EZ5, EZ6: negative control


Technical data, solenoid with Ø45

Sizes 60 to 115

	EZ7	EZ8			
Voltage	12 V (±20 %)	24 V (±20 %)			
Displacement V _{g max}	de-energized	de-energized			
Displacement V _{g min}	energized	energized			
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω			
Nominal power	30 W	30 W			
Minimum required current	1.5 A	0.75 A			
Duty Cycle	100%	100%			
Type of protection see connector design page 36					

Schematic EZ7, EZ8: negative control

Sizes 60 to 115

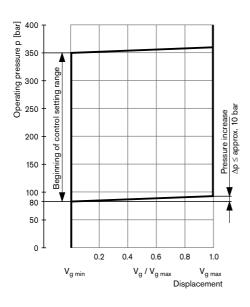
The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VE motor with HA control is $V_{q\,min}$ (maximum speed and minimum torque). The control unit measures internally the operating pressure at A or B (no control line required) and upon reaching the beginning of control, the controller swivels the motor from $V_{q min}$ to $V_{q max}$ with increase of pressure. The displacement is modulated between $V_{q \, min}$ and V_{g max}, thereby depending on load conditions.

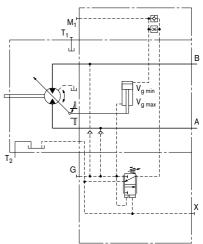
HA1, HA2, HA3 positive control

- Beginning of control at V_{a min} (minimum torque, maximum speed)
- End of control at V_{g max} (maximum torque, minimum speed)

- For safety reasons, winch drives are not permissible with beginning of control at V_{g min} (standard for HA).
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please
 - Please note that pressures up to 500 bar can occur at port G.
- The beginning of control and the HA.T3 characteristic are influenced by case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel shift of the characteristic.


HA1, HA3 With minimum pressure increase, positive control

An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from $V_{g~min}$ towards $V_{g~max}.$

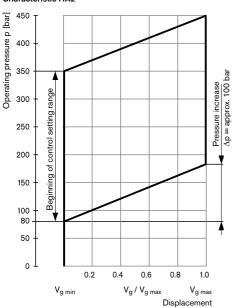

Beginning of control, setting range ______ 80 to 350 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 300 bar.

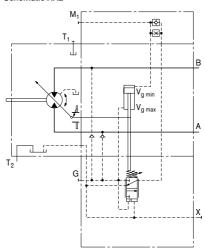
Characteristic HA1, HA3

Schematic HA1

Schematic HA3
With integrated counterbalance valve BVI, see page 45


HA2 With pressure increase, positive control

An operating pressure increase of $\Delta p=$ approx. 100 bar results in an increase in displacement from V $_{g\,min}$ to V $_{g\,max}.$


Beginning of control, setting range ______ 80 to 350 bar

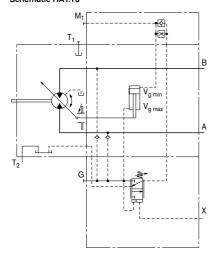
Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 200 bar.

Characteristic HA2

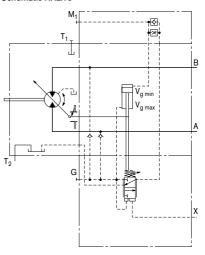
Schematic HA2

HA.T3 Override hydraulic remote control,

proportional
With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port X.


For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar.

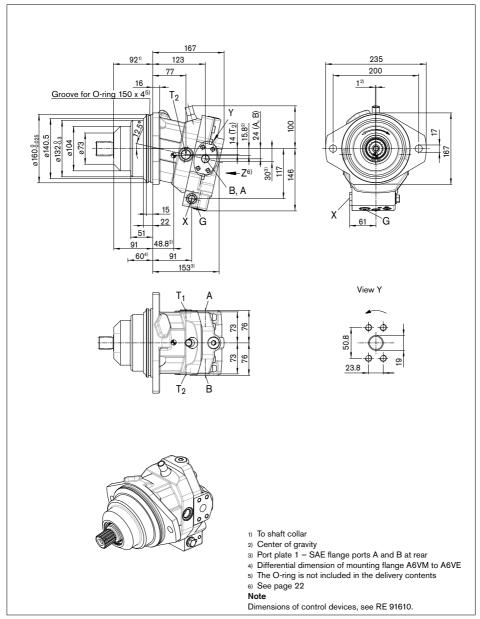
Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar


Note

Maximum permissible pilot pressure 100 bar.

Schematic HA1.T3

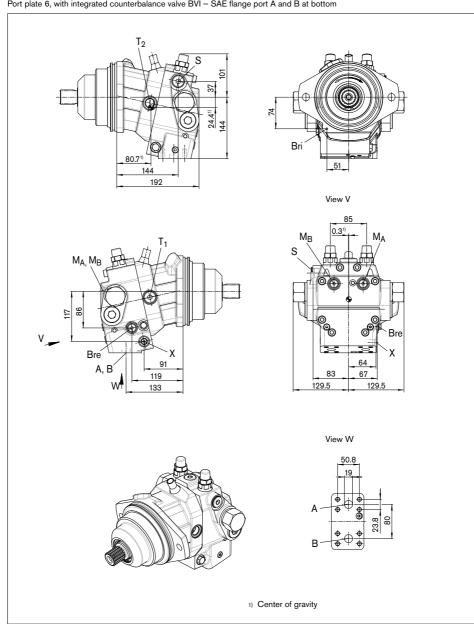
Schematic HA2.T3


Schematic HA3.T3

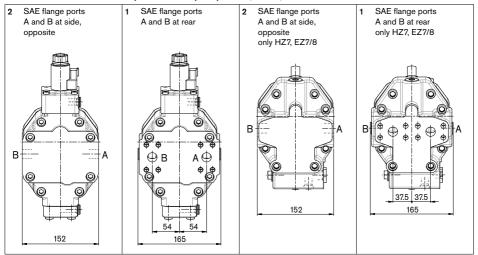
With integrated counterbalance valve BVI, see page 45

HZ7 - Two-point control hydraulic

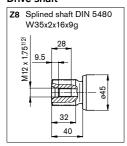
Port plate 2 - SAE flange ports A and B at side, opposite


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


HZ7 - Two-point control hydraulic

Port plate 6, with integrated counterbalance valve BVI - SAE flange port A and B at bottom



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

Drive shaft

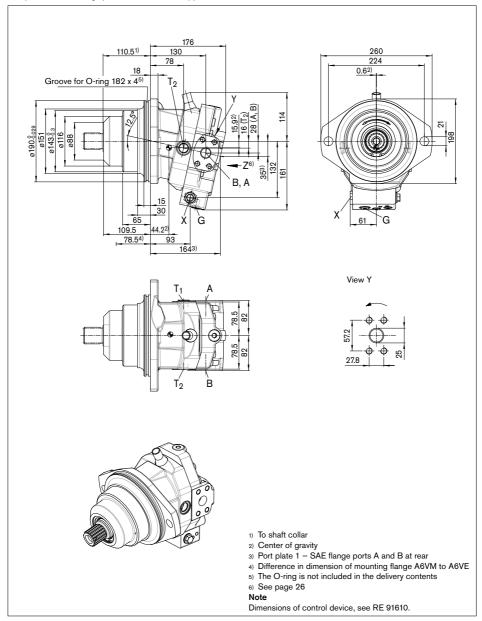
- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 48 for the maximum tightening torques.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	500	0
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
Χ	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
Χ	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ

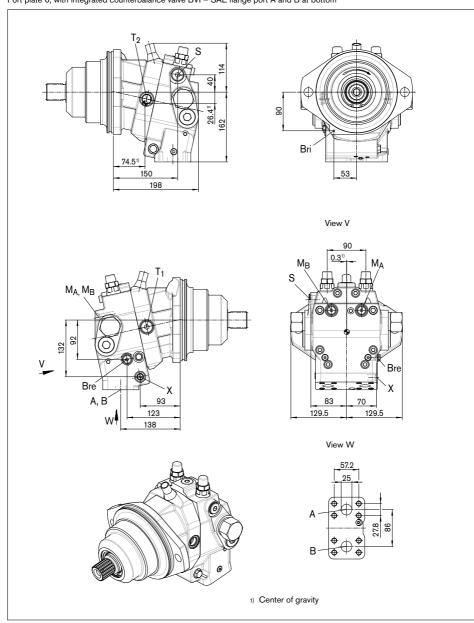
Ports with integrated counterbalance valve


Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	420	0
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	O ⁴⁾
Х	Pilot signal	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
S	Infeed	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	30	Х
M _A , M _B	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	420	Х
M ₁ only for HA3	Measuring stroking chamber	ISO 6149 ⁵⁾	M10 x 1; 10 deep	420	Х
Bre	Brake release, external	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	30	O/X ⁶⁾
Bri	Brake release, internal	_	ø4	30	X/O ⁷⁾

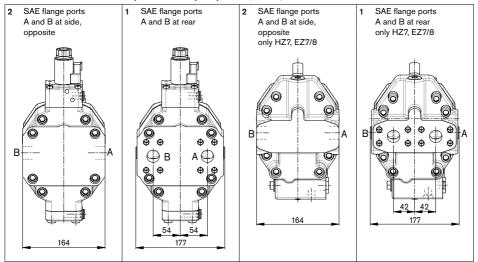
- 1) Observe the general instructions on page 48 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 47).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) Must be connected for external piping. Is plugged with internal ducting.
- 7) Is plugged with external ducting. Must be connected with internal piping.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in standard operation)

HZ7 - Two-point control hydraulic

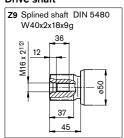
Port plate 2 - SAE flange ports A and B at side, opposite


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


HZ7 - Two-point control hydraulic

Port plate 6, with integrated counterbalance valve BVI - SAE flange port A and B at bottom



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates (view Z)

Drive shaft

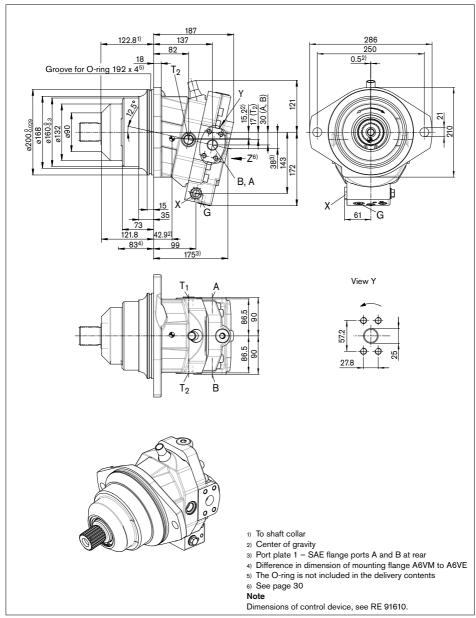
- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 48 for the maximum tightening torques.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	500	0
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
X	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
Χ	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	X

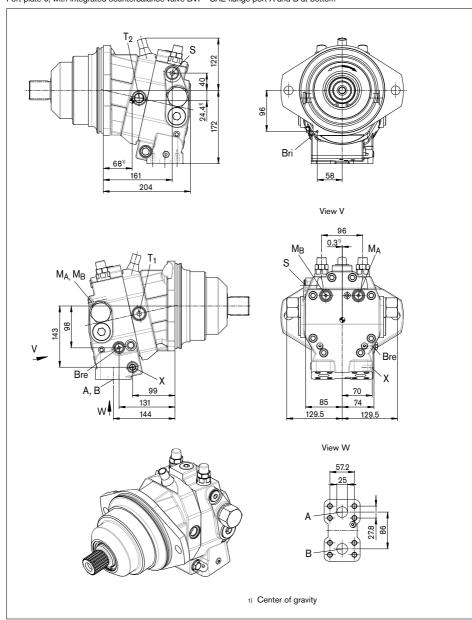
Ports with integrated counterbalance valve

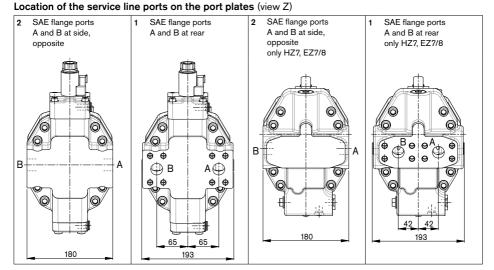

	_				
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line	SAE J518 ³⁾	1 in	420	0
	Fastening thread A/B	DIN 13	M12 x 1.75; 17 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	O ⁴⁾
Χ	Pilot signal	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
S	Infeed	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	30	X
$M_{A,}M_{B}$	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	420	Χ
M ₁ only for HA3	Measuring stroking chamber	ISO 6149 ⁵⁾	M10 x 1; 10 deep	420	X
Bre	Brake release, external	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	30	O/X ⁶⁾
Bri	Brake release, internal	_	ø4	30	X/O ⁷⁾

- 1) Observe the general instructions on page 48 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 47).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) Must be connected for external piping. Is plugged with internal ducting.
- 7) Is plugged with external ducting. Must be connected with internal piping.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in standard operation)

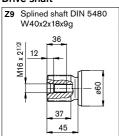
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HZ7 - Two-point control hydraulic


Port plate 2 - SAE flange ports A and B at side, opposite


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HZ7 - Two-point control hydraulic


Port plate 6, with integrated counterbalance valve BVI - SAE flange port A and B at bottom

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

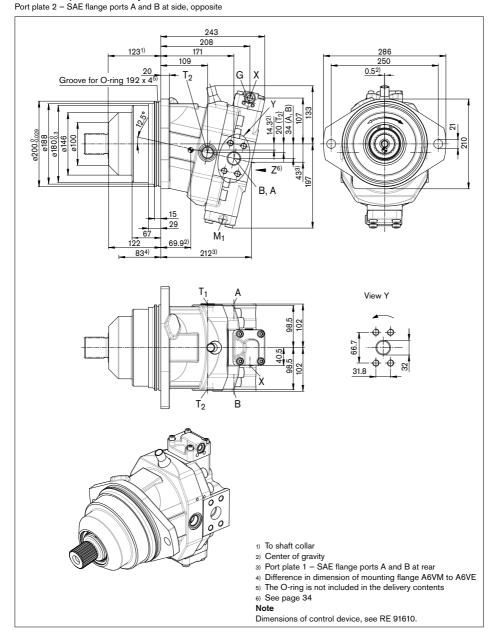
Drive shaft

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 48 for the maximum tightening torques.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

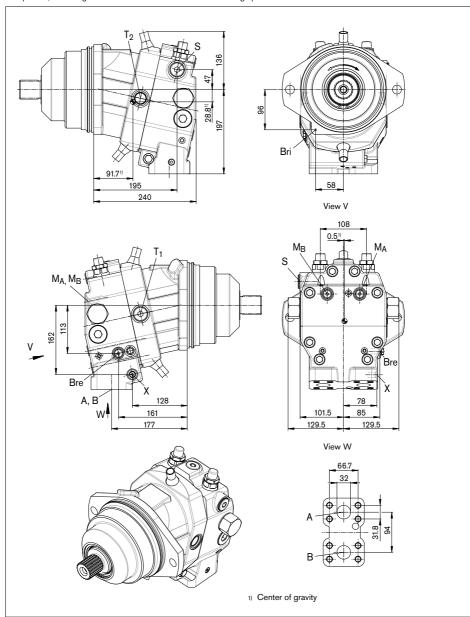
Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	500	0
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	X
Χ	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
X	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ


Ports with integrated counterbalance valve

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	420	0
T ₁	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	3	O ⁴⁾
Х	Pilot signal	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
S	Infeed	ISO 6149 ⁵⁾	M22 x 1.5; 15.5 deep	30	Х
M _A , M _B	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	420	Х
M ₁ only for HA3	Measuring stroking chamber	ISO 6149 ⁵⁾	M10 x 1; 10 deep	420	Х
Bre	Brake release, external	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	30	O/X ⁶⁾
Bri	Brake release, internal	-	ø4	30	X/O ⁷⁾

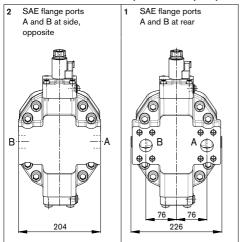
- 1) Observe the general instructions on page 48 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 47).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) Must be connected for external piping. Is plugged with internal ducting.
- 7) Is plugged with external ducting. Must be connected with internal piping.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in standard operation)

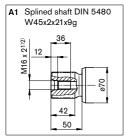
HZ5 - Two-point control hydraulic


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HZ7 - Two-point control hydraulic


Port plate 6, with integrated counterbalance valve BVI - SAE flange port A and B at bottom


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 170

Location of the service line ports on the port plates (view Z)

Drive shaft

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 48 for the maximum tightening torques.

Dimensions size 170

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	500	0
T ₁	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Х
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1 and HA2)	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Х
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 16 deep	500	Х

Ports with integrated counterbalance valve

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	420	0
T ₁	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M27 x 2; 19 deep	3	O ⁴⁾
X	Pilot signal	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	100	0
S	Infeed	ISO 6149 ⁵⁾	M27 x 2; 19 deep	30	Х
M _A , M _B	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	420	Х
M ₁ only for HA3	Measuring stroking chamber	ISO 6149 ⁵⁾	M10 x 1; 10 deep	420	X
Bre	Brake release, external	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	30	O/X ⁶⁾
Bri	Brake release, internal	_	ø4	30	X/O ⁷⁾

- 1) Observe the general instructions on page 48 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 47).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) Must be connected for external piping. Is plugged with internal ducting.
- 7) Is plugged with external ducting. Must be connected with internal piping.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in standard operation)

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded, 2-pin, without bidirectional suppressor diode

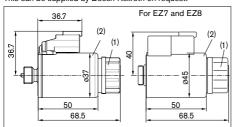
There is the following type of protection with mounted mating connector:

IP67 _____DIN/EN 60529 and IP69K _____ DIN 40050-9

Circuit symbol

Mating connector

DEUTSCH DT06-2S-EP04 Bosch Rexroth Mat. No. R902601804


 Consisting of:
 DT designation

 - 1 housing
 DT06-2S-EP04

 - 1 wedge
 W2S

 - 2 sockets
 0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- 3. Retighten the mounting nut. Tightening torque: 5+1 Nm. (WAF26, 12kt DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

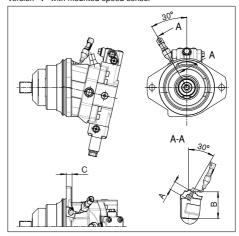
Speed sensor

Version A6VE...U ("prepared for speed sensing", i.e. without sensor) is equipped with a toothed ring on the rotary group.

With the speed sensor DSA mounted, a signal proportional to motor speed can be generated. The DSA sensor measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet (DSA – RE 95133)

The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover.


We recommend ordering the A6VE variable motor complete with sensor mounted.

Schematic

Dimensions

Version "V" with mounted speed sensor

NG	60	85	115	170
Number of teeth	54	58	67	75
Α	32	32	32	32
В	83.3	87.3	96.3	104.3
С	26	16.5	14.2	28.5

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve) fixed setting ________16 bar

Switching pressure of flushing piston Δp

Size 60 to 115 (small flushing valve) $_$ 8 \pm 1 bar Size 115 to 170 (medium and large flushing valve 17.5 \pm 1.5 bar

Flushing flow qv

Orifices can be used to set the flushing flows as required. Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and v = 10 mm²/s

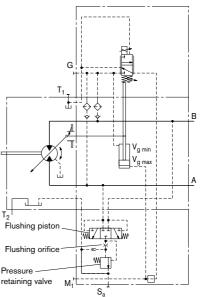
 $(p_{ND} = low pressure, p_G = case pressure)$

Small flushing valve for sizes 60 to 115

Mat. No. of orifice	ø [mm]	q _v [L/m	in] Code
R909651766	1.2	3.5	Α
R909419695	1.4	5	В
R909419696	1.8	8	С
R909419697	2.0	10	D
R909444361	2.4	14	F

Medium flushing valve for size 115

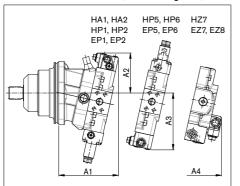
Mat. No. of orifice	ø [mm]	q _v [L/min]	Code
R909431310	2.8	20	Н
R909435172	3.5	25	J
R909449967	5.0	30	K


Large flushing valve for size 170

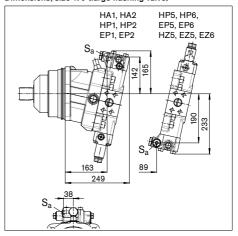
Mat. No. of orifice	ø [mm]	q _v [L/r	min] Code
R909449998	1.8	8	С
R909431308	2.0	10	D
R909431309	2.5	17	G
R909431310	2.8	20	Н
R902138235	3.1	25	J
R909435172	3.5	30	K
R909436622	4.0	35	L
R909449967	5.0	40	М

For a flushing flow greater than 35 L/min, it is recommended that port S_a be connected in order to prevent an increase in case pressure. An increased case pressure reduces the flushing flow.

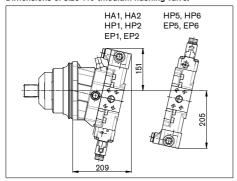
Schematic EP


Port Sa only for size 170

Flushing and boost pressure valve


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions of sizes 60 to 115 (small flushing valve)



NG	A1	A2	А3	A4
060	183	133	176	176
085	195	142	194	176
115	204	143	202	186

Dimensions, size 170 (large flushing valve)

Dimensions of size 115 (medium flushing valve)

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
Sa	Flushing (only size 170)	ISO 61493)	M22 x 1.5; 15.5 deep	3	Χ

- 1) Observe the general instructions on page 48 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) The spot face can be deeper than specified in the appropriate standard.
- 4) X = Plugged (in normal operation)

Counterbalance valve BVD and BVE

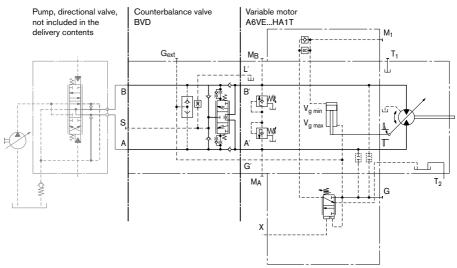
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note


- BVD available for sizes 60 to 170 and BVE available for sizes 115 to 170.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A6VE085HA1T30004A/71MWV0Y2Z97W0-0 + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, controls with beginning of control at V_{q min} (e. g. HA) are not permissible for winch drives!
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

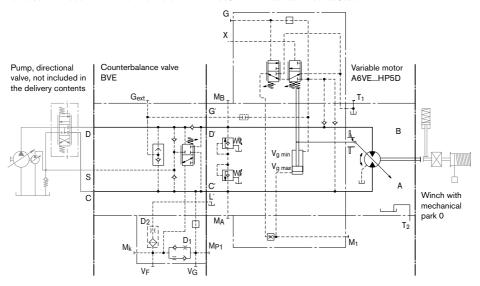
Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A6VE085HA1T30004A/71MWV0Y2Z97W0-0 + BVD20F27S/41B-V03K16D0400S12

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Winch counterbalance valve BVD...W and BVE

Application options

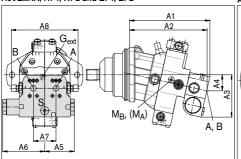
40/48

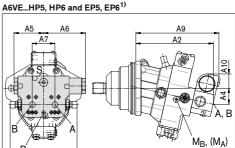
- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A6VE085HP5D10001A/71MWV0Y2Z97W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without val	ve	Restricted	Restricted values in operation with DBV and E				d BVD/BVE				
Motor			DBV	DBV								
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code		
60	450/500	276	22	350/420	240	7	20	350/420	220	7W		
85		332					(BVD)					
115		410	32		400							
115		410				8	25		320	8W		
170		533					(BVD/BVE)					


DBV ______ pressure relief valve
BVD ______counterbalance valve, double-acting
BVE _____counterbalance valve, one-sided


Counterbalance valve BVD and BVE

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A6VE...HA, HP1, HP2 and EP1, EP2

A6VE	Counterbalance valve											
NGplate	Туре	Ports	Dimens	Dimensions								
		A, B	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10
607	BVD2017	3/4 in	252	243	143	50	98	139	75	222	267	50
857	BVD2027	1 in	261	252	148	55	98	139	75	222	276	46
1157	BVD2028	1 in	280	271	152	59	98	139	84	234	295	41
1158	BVD2538	1 1/4 in	298	288	165	63	120.5	175	84	238	311	56
1708	BVD2538	1 1/4 in	334	324	170	68	120.5	175	84	238	349	51
1158	BVE2538	1 1/4 in	298	288	171	63	137	214	84	238	315	63
1708	BVE2538	1 1/4 in	334	325	176	68	137	214	84	238	349	59

Ports

Designation	Port for	Version	A6VE plate	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁵⁾
A, B	Service line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 38524)	M22 x 1.5; 14 deep	30	Х
		BVD25, E	VE25	DIN 38524)	M27 x 2; 16 deep	30	Х
Br	Brake release, reduced high-pressure	L	7	DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	30	0
			8	DIN 38524)	M12 x 1.5; 12 deep	30	0
G _{ext}	Brake release, high-pressure	s		DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	420	Х
M _A , M _B	Measuring pressure A and B			ISO 6149 ⁴⁾	M18 x 1.5; 14.5 deep	420	Х

¹⁾ At the mounting version for the controls HP5, HP6 and EP5, EP6, the cast-in port designations A and B on the counterbalance valve BVD do not correspond with the connection drawing of the A6VE motor. The designation of the ports on the installation drawing of the motor is binding!

²⁾ Observe the general instructions on page 48 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

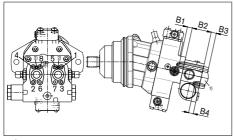
⁴⁾ The spot face can be deeper than specified in the appropriate standard.

 $_{5)}$ O = Must be connected (plugged on delivery)

X = Plugged (in standard operation)

Counterbalance valve BVD and BVE

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) ____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10 x 1.5	10.9	75
M12 x 1.75	10.9	130
M14 x 2	10.9	205

- 1) SAE flange
- 2) Tacking screw (M6 x 1, length = B1 + B2, DIN 912)

NG plate	607	857, 1157	1158, 1708		
B1 ³⁾	M10 x 1.5 17 deep	M12 x 1.75 15 deep	M14 x 2 19 deep		
B2	68	68	85		
B3	customer-speci	fic			
B4	M10 x 1.5 15 deep	M12 x 1.75 16 deep	M14 x 2 19 deep		

3) Minimum required thread reach 1 x Ø-thread

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Counterbalance valve integrated BVI

Function

The integrated counterbalance valve is designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking or travelling downhill.

Note

- The integrated counterbalance valve must be ordered additionally, see ordering code below.
- The counterbalance valve does not replace the mechanical service brake and park brake.
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of beginning
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Application options

- Track drive in excavator crawlers

Ordering code

BVI			00		-	
01	02	03	04	05		06

Counterbalance valve

0.	Counterbalance valve integrated			BVI
		F1 (1 1		

	Counterbalance spool version	qv [L/min]	Material number	
	Volume preselection	≤ 150	R902038832	51
		= 150 - 210	R902038936	52
02		= 210 - 270	R902038833	53
02		= 270 - 330	R902038834	54
		= 330 - 400	R902038835	55
		≥ 400	R902038836	56

Throttle mounting	Material number

0	Constant throttle	R909432302	8000
ľ	Throttle pin	R909651165	0603

Check valve

04	Without residual opening	00	

Brake release valve

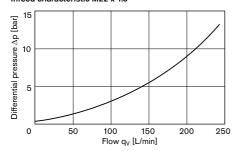
0		se valve (standard HZ) without disable function	1
0	With brake rele	se valve (standard HA) with disable function	2

Standard / special version

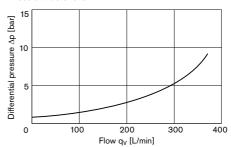
06	Standard version	0	
	Special version	S	l

Counterbalance valve integrated BVI

Table of values

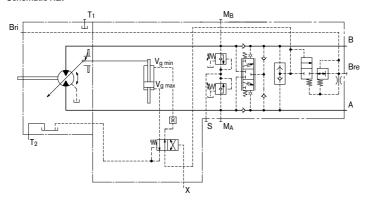

Operating pressure	nominal pressure	р	bar	350
	maximum pressure	р	bar	420
Flow, maximum		q _{v max}	L/min	400
Counterbalance spool	start of opening	р	bar	12
	fully open	р	bar	26
Pressure-reducing valve for brake release (fixed setting)	control pressure	р	bar	21+4
	beginning of control	р	bar	10+4

Comparison of port plates 1 + 2 and 6

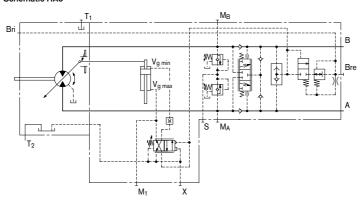

Maximum permissible input flow with restricted nominal pressure 350 bar, maximum pressure 420 bar

	Without restriction standard plate (1		Restricted values plate with integrated counterbalance valve (6						
Motor					with BVE + DBV				
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	Code	p _{nom} /p _{max} [bar]	q _V [L/min]				
60	450/500	276	6	350/420	240				
85		332							
115		410							
170		533			400				

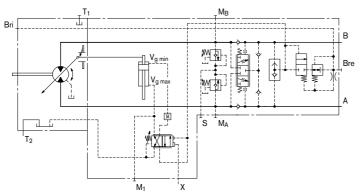
Infeed characteristic M22 x 1.5



Infeed characteristic M27 x 2



Counterbalance valve integrated BVI


Schematic HZ7

Schematic HA3

Schematic HA3.T3

Setting range for displacement

	60			85			115				170					
	V _{g max} (c	m³/rev)	V _{g min} (c	m³/rev)	V _{g max} (c	:m³/rev)	V _{g min} (c	:m³/rev)	V _{g max} (c	:m³/rev)	V _{g min} (c	:m ³ /rev)	V _{g max} (c	m³/rev)	V _{g min} (c	:m ³ /rev)
	from	to	from	to	from	to	from	to	from	to	from	to	from	to	from	to
	62.0	62.0	0.0	15.0	85.2	85.2	0.0	28.0	115.6	115.6	0.0	24.0	171.8	171.8	0.0	28.0
A	without	screw	M10 R9091		without	screw	M12 R9090		without	screw	M12 R9090		without	screw	M12 R9091	x 80 53075
	62.0	62.0	> 15.0	30.5	85.2	85.2	> 28.0	48.0	115.6	115.6	> 24.0	47.5	171.8	171.8	> 28.0	56.0
В	without	screw	M10 R9091		without	screw	M12 R9091		without	screw	M12 R9091		without	screw	M12 R9091	
	62.0	62.0	> 30.5	43.0	85.2	85.2	> 48.0	59.0	115.6	115.6	> 47.5	71.0	171.8	171.8	>56.0	91.0
С	without	screw	M10 R9091		without	screw	M12 R9091		without	screw	M12 R9091		without	screw	M12 R9091	
									115.6	115.6	> 71.0	80.0	171.8	171.8	> 91.0	118.0
D	х		,)		1	(without	screw	M12 R9091		without	screw	M12 R9091	
	< 62.0	47.5	0.0	15.0	< 85.2	59.0	0.0	28.0	< 115.6	93.5	0.0	24.0	< 171.8	145.0	0.0	28.0
E	M10 R9091		M10 R9091		M12 R9090		M12 R9090	x 70 85976	M12 x 70 M12 x 70 R909085976		M12 x 80 R909153075		M10 x 80 R909153075			
	< 62.0	47.5	> 15.0	30.5	< 85.2	59.0	> 28.0	48.0	< 115.6	93.5	> 24.0	47.5	< 171.8	145.0	> 28.0	56.0
F	M10 R9091		M10 R9091		M12 R9090		M12 R9091	x 80 53075	M12 x 70 R909085976		M12 x 80 R909153075		M12 x 80 R909153075		M12 x 90 R909154041	
	< 62.0	47.5	> 30.5	43.0	< 85.2	59.0	> 48.0	59.0	< 115.6	93.5	> 47.5	71	< 171.8	145.0	>56.0	91.0
G	M10 R9091		M10 R9091		M12 R9090		M12 R9091	x 90 54041	M12 R9090		M12 R9091		M12 R9091		M12 R9091	
									< 115.6	93.5	> 71.0	80.0	< 171.8	145.0	> 91.0	118.0
Н	х		,		,		1		M12 R9090		M12 x 100 R909153975		M12 R9091		M12 R9091	x 110 54212
	< 47.5	33.0	0.0	15.0	< 59.0	38.5	0.0	28.0	< 93.5	71.0	0.0	24.0	< 145.0	118.0	0.0	28.0
J	M10 R9091		M10 R9091		M12 R9091		M12 R9090	x 70 85976	M12 R9091		M12 R9090		M12 R9091		M12 R9091	x 80 53075
	< 47.5	33.0	> 15.0	30.5	< 59.0	38.5	> 28.0	48.0	< 93.5	71.0	> 24.0	47.5	< 145.0	118.0	> 28.0	56.0
K	M10 R9091		M10 R9091		M12 R9091		M12 R9091	x 80 53075	M12 R9091		M12 R9091		M12 R9091		M12 R9091	x 90 151041
	< 47.5	33.0	> 30.5	43.0	< 59.0	38.5	> 48.0	59.0	< 93.5	71.0	> 47.5	71.0	< 145.0	118.0	>56.0	91.0
L	M10 R9091		M10 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091	
									< 93.5	71.0	> 71.0	80.0	< 145.0	118.0	> 91.0	118.0
М	х	ī	,		,	((M12 R9091		M12 : R9091		M12 R9091		M12 R9091	

Specify exact settings for V $_g$ min and V $_g$ max in plain text when ordering: V $_g$ min = ... cm³, V $_g$ max = ... cm³

Theoretical, maximum setting:

for $V_{g min} = 0.7 \cdot V_{g max}$ for $V_{g max} = 0.3 \cdot V_{g max}$

Settings that are not listed in the table may lead to damage. Please contact us.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 6.

Further installation positions are possible upon request.

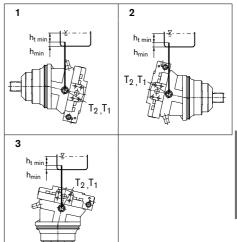
Recommended installation position: 1 and 2.

Note

In certain installation positions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

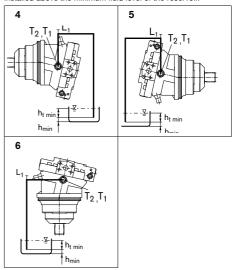
Installation position	Air bleed	Filling
1	-	T ₂ , T ₁
2	-	T ₂ , T ₁
3	-	T ₂ , T ₁
4	L ₁	T ₂ , T ₁ (L ₁)
5	L ₁	T ₂ , T ₁ (L ₁)
6	L ₁	T ₂ , T ₁ (L ₁)

L₁ Filling / air bleed


T₁, T₂ Drain port

h_{t min} Minimum required immersion depth (200 mm)

h_{min} Minimum required spacing to reservoir bottom (100 mm)


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

General instructions

- The motor A6VE is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding the tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads of the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of the threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tightening torque of the	Required tightening torque of the	WAF hexagon socket of the		
Standard	Size of thread	female threads M _{G max}	threaded plugs M _V	threaded plugs		
ISO 6149	M10 x 1	30 Nm	15 Nm	5 mm		
	M12 x 1.5	50 Nm	25 Nm	6 mm		
	M14 x 1.5	80 Nm	45 Nm	6 mm		
	M18 x 1.5	140 Nm	70 Nm	8 mm 10 mm		
	M22 x 1.5	210 Nm	100 Nm			
	M27 x 2	330 Nm	170 Nm	12 mm		
DIN 3852	M12 x 1.5	50 Nm	25 Nm ¹⁾²⁾	6 mm		
	M22 x 1.5	210 Nm	80 Nm ¹⁾	10 mm		
	M27 x 2	330 Nm	135 Nm ¹⁾	12 mm		

¹⁾ The tightening torques apply for screws in the "dry" state as received on delivery and the "lightly oiled" state for installation.

Bosch Rexroth AG
Mobile Applications
Glockeraustraße 4
89275 Elchingen, Germany
Tel. +49 7308 82-0
Fax +49 7308 7274
info.brm@boschrexroth.de
www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

²⁾ In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5

Axial piston variable motor A10VM Plug-in version A10VE

RE 91703/03.10 Replaces: 06.09

1/28

Data sheet

Series 52 Size 28 to 85 Nominal pressure 280 bar Maximum pressure 350 bar Open and closed circuit

A10VM

A10VE

Contents

Features	1
Ordering code for standard program	2
Technical data	4
Two-point direct control DG	7
Two-point control, hydraulically operated HZ/HZ6	8
Two-point control, electrically operated EZ	9
Dimensions size A10VM 28 to 85	10
Dimensions size A10VE 28 to 63	18
Integrated flushing and boost press. relief valve, N007	24
Connector for solenoids	25
Speed pickup	26
Mounting position	27
General instructions	28

Features

- Dual displacement motor, axial piston swashplate design, for hydrostatic transmissions in open and closed circuits
- Output speed is directly proportional to inlet flow and inversely proportional to motor displacement
- Output torque increases proportional to the pressure difference between high and low pressure sides and increasing displacement
- Heavy duty bearings for long service life
- High permissible output speed
- Well proven A10-rotary unit technology
- High power/weight ratio compact dimensions
- Cost effective
- Low noise
- External control pressure supply possible
- Minimum displacement can be set externally
- SAE-2-bolt mounting flange on A10VM
- Special 2-bolt mounting flange on A10VE

Ordering code for standard program

A10V	М			/	52	W			_	٧		С						
01	02	03	04		05	06	07			08	09	10	11		12	1	3	14
Axial piston unit																		
Swash plate design, variable, nominal pressure 280 bar, maximum pressure 350 bar													A10V					
Opera	ting Mo	ode																
02 Motor,			sed circ	cuit														М
Size (I	VG)																	
03 Displa		t V _{a max}	in cm ³											028	045	063	085	1
Contro															045			,
	oint co			Directly	operate	d extern	al con	trol s	upply	withou	t pilot v	alve		028	045	063	085	DG
					ically ope		.a. 0011		king ti			ithout		•	•	•	0	HZ
				,	, ,			orific	_		w	ith		•	•	•	0	HZ6
04				Electrica	aly with s	solenoid	valve	Stro	king ti	me	w	ithout		•	•	•	•	EZ1
					voltage 1			orific			w	ith		•	•	•	•	EZ6
					aly with s		valve			me	_	ithout		•	•	•	0	EZ2
				control	voltage 2	24V		orific	ce		w	ith		•	•	•	0	EZ7
Series																		
05 Series	5, Ind	ex 2																52
Directi	on of r	otation																
06 Viewe	d on sh	naft end									В	i-directi	ional					W
Minim	um dis	placem	ent								028	()45	0	63	08	3 5	
07 V _{g min}	(in cm ³) steple	ssly ad	justable				fror	n/to		8/28	3 1:	2/25	16	/38	22	/50	1
	ment s	tate in c	clear te	xt				fror	m/to		-	2	6/45	40	/62	48	/85	2
Seals				-														
08 FKM (flour-ru	ibber)																V
Drive s														028	045	063	085	
09					or higher									•	•	•	•	R
Spline	d shaft	, ANSI	B92.1a	-1976, f	or reduc	ed drive	torque	е						-	•	•	•	W
Mounti																		
10 SAE J	744 2-	bolt																С
Ports f	or serv	ice lines	5															
					etric fixin	g screw	S							•	•	•	•	10N00
				fixing sc										0	•	0	0	11N00
Thread	ded po	rts on si	de, sar	ne side,	metric tl	nread								•	•	•	0	16N00
Valves																		
12	ut valve					/			>					•	•	•	•	0
Integra	ated flu	ishing va	alve, on	nly with s	side port	s (10N0	0 and	16N	00)					•	•	•	•	7
Speed														,				
13 ⊢		ed picku												•	•	•	•	-
Prepa	red for	ınductiv	e type	of spee	d pickup	ID R								•	•	•	0	D
		soleno																
14					out supp									A	A	A	A	Н
DEUT	SCH -	connec	tor, mo	lded, 2-	pin – wit	hout sup	opress	or di	od					•	•	•	•	P

● = available

O = in preparation

- = not available

▲ = not for new projects

Ordering code for standard program

	[r				1	1	$\overline{}$	_			Т .	\neg		T	П	\neg
A10		E			/	52	W			١ ١	_		F						
01		02	03	04		05	06	07		0	8	09	10	11		12	1	13	14
Axia	al pist	on u	ınit																
01 Sw	1 Swash plate design, variable, nominal pressure 280 bar, maximum pressure 350 bar														A10V				
One	orotin	~ m	nd o																
	Operating mode Motor, plug in type, open and closed circuit														Е				
			туро, с	pon and	2 01000	a onoun													
	e (NG																I	T	1
03 Dis	splace	ment	V _{g max}	in cm³												028	045	063]
Cor	ntrol d	levic	es													028	045	063	
Two	o poin	t cor	ntrol	Di	rectly c	perated	, externa	l contro	ol supply	, with	out	pilot val	ve			•	•	0	DG
				Hy	ydraulio	ally		;	Stroking	time			witho	out		•	•	•	HZ
				_				(orifice				with			•	•	•	HZ6
04				Ele	ectrical	y with so	olenoid v		Stroking	time			witho	out		•	•	•	EZ1
				_		oltage 12			orifice				with			•	•	•	EZ6
				Ele	ectrical	y with so	olenoid v		Stroking	time			witho	out		•	•	•	EZ2
				CO	ntrol vo	oltage 24	4V	•	orifice				with			•	•	•	EZ7
Ser	ries																		
05 Sei	ries 5,	Inde	ex 2																52
Dire	ection	of r	otation																
	Direction of rotation 6 Viewed on shaft end Bi-directional W											w							
			placem											28		45		63	
07				es adjus					m/to m/to				10	/28		2/25 3/45		6/38 0/62	2
Sea		ant b	lease si	ate in c	lear tex	ı		IIC	111/10						20	0/40	40	7/02	
08 FKI		ur-ru	hher)																V
			550.7																
	ve sha															_	Т	063	
109							r drive to									•	•	•	R
Spi	ilinea s	snaπ,	, ANSI	B92.1a-	1976, 1	or reauc	ed drive	torque									•	•	W
Моц	unting	flan	ge																
10 Sp	ecial 2	2-bol	t																F
Port	ts for	servi	ce line																
SA	E flan	ges a	at side-	same si	de, met	ric fixing	screws									•	•	•	10N00
11 SA	E flan	ges a	at rear,	metric fi	xing sc	rews										0	•	0	11N00
Thr	readec	d por	ts on si	de , san	ne side	, metric	thread									•	•	•	16N00
Valv	ves																		
Wit	thout	valve	ıs.													•	•	•	0
12 ├──				alve, onl	y with s	side port	s (10N0	0 and	16N00)							•	•	•	7
					,														
_	ed pic		4.224													_	_		
13 ⊢			d picku		of apon	d pickup	ID D									0	•	0	_ D
FIE	epared	1 101	illuuctiv	е туре с	oi speei	и ріскир	אטוי										•		
			soleno													1			
14 ├──							ressor c									A	A	A	Н
DE	UTSC	CH -	connec	tor, mol	ded, 2-	pin – wit	thout sup	opresso	or diod							•	•	•	P
● = ava	ailable) = in p	reparat	ion	- = not	availab	le	•	= 1	not for n	ew proj	ects					

Technical data

Fluid

Prior to project design please see our data sheets RE 90220 (mineral oil), RE 90221 (ecologically acceptable fluids) and RE90223 (HF-fluids) for detailed information on fluids and application conditions.

When operating on ecologically acceptable fluids, limitations to the techical data may be necessary.

Please contact us and state the fluid used in clear text when ordering.

Operating viscosity range

For optimum efficiency and service life we recommend an operating viscosity (at operating temperature) in the range

 v_{opt} = opt. operating viscosity 16...36 mm²/s

referred to circuit temperature in closed circuits or tank temperature in open circuits.

The following limits are valid for extreme operating conditions:

 $v_{\text{min}} = 5 \text{ mm}^2 / \text{s} \text{ (closed circuit)}$ $v_{\text{min}} = 10 \text{ mm}^2 / \text{s} \text{ (open circuit)}$

briefly (t \leq 1 min) at max. permissible temperature of 115 °C.

Please note, that the max. fluid temperature of 115 °C may also not be exceeded in certain areas (for instance bearing area) The temperature in the bearing area is approx. 5 K higher than the average fluid temperature.

 $v_{\text{max}} = 1600 \text{ mm}^2\text{/s}$ briefly (t < 1 min)

on cold start ($t_{min} = -25$ °C, p ≤ 30 bar, n ≤ 1000 rpm).

At temperatures between -25 °C and -40 °C special measures may be required for certain installation positions. Please consult us for further information

For detailed information on operation at very low temperatures see RE 90300-03-B.

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit), circuit temperature (closed circuits), in relation to the ambient temperature.

The fluid should be selected, so that within the operating temperatue range, the viscosity lies within the optimum range (v_{opl}) , see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

Example: at an ambient temperature of X °C the operating temperature in the tank is 60 °C. In the optimum viscosity range (v_{opt}; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; select VG 68.

Important: The leakage fluid (case drain fluid) temperature is influenced by pressure and motor speed and is always higher than the tank temperature. However, at no point in the circuit may the temperature exceed 115 °C.

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult us

Filtration of fluid

The finer the filtration the better the achieved cleanliness of the fluid and the longer the life of the axial piston unit.

To ensure a reliable functioning of the axial piston unit, a minimum cleanliness of

20/18/15 to ISO 4406 is necessary.

At very high fluid temperatures (90 °C to max. 115 °C) the minimum cleanliness has to be at least

19/17/14 to ISO 4406.

If above cleanliness classes cannot be met please consult us.

Operating pressure range

Pressure at port A or B

(Pressure data to DIN 24312)

 $\begin{array}{ll} \mbox{Nominal pressure pN} & 280 \mbox{ bar} \ ^{1)} \\ \mbox{Maximum pressure p}_{\mbox{max}} & 350 \mbox{ bar} \\ \mbox{With motors connected in series please consult us.} \end{array}$

Case drain pressure

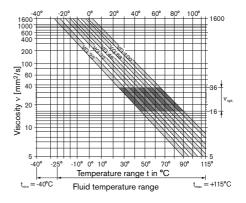
Max. permissible pressure at leakage port L

 p_{abs} max operation as a motor in open circuit p_{abs} max operation as a motor in closed circuit p_{abs} 4 bar abs

p_{abs} max motor/pump operation in open circuit 2 bar abs

Direction of rotation

Direction of rotation, viewed on shaft end
clockwise counter-clockwise


B to A A to B

Adjustment of displacement

The minimum displacement is steplessly adjustable within the range of the screw lengths 1 or 2 (see ordering code).

Please state minimum displacement in clear text when ordering

Selection diagram

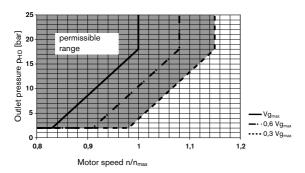

Technical data

Table of values (theoretical values, without efficiency levels and tolerances; values rounded)

Size			28	45	63	85
Displacement	V _{g max}	cm ³	28	45	62	87
	V _{g min}	cm ³	8 (VM)/10(VE)	12	16	22
Speed ¹⁾						
max. at $V_{g max}$	n _{0 max}	min ⁻¹	4700	4000	3300	3100
max. at V _{g min}	n _{0 max zul}	min ⁻¹	5400	4600	3900	3560
Min. speed in cont. operation	n _{0 min}	min ⁻¹	250	250	250	250
Inlet flow						
bei $n_{0 max}$ and $V_{g max}$	qvo max	L/min	131,6	180	205	270
Torque constant ²⁾ at V _{g max}	T _K	Nm/bar	0,445	0,716	1,002	1,35
Torque						
at $V_{g max}$ $p_N = 280 bar$	T_{max}	Nm	125	200	276	387
Actual starting torque						
at $n = 0 \text{ min}^{-1}$ $p_N = 280 \text{ bar}$	T	Nm ca.	92	149	205	253
Rotary stiffness Shaft R	С	Nm/rad	26000	41000	69400	152900
Shaft W	С	Nm/rad	19800	34400	54000	117900
Mass moment of inertia (about output shaft)	J	kgm²	0,0017	0,0033	0,0056	0,012
Filling volume	٧	L	0,6	0,7	0,8	1,0
Weight approx.	m	kg	14	18	26	34

¹⁾ At maximal speed in closed circuit operation make sure that motor outlet pressure is at least ≥ 18 bar.

Minimum required outlet pressure (low pressure) at port A (B) depending on motor speed

 $^{^{2)}}$ In open circuit Δp 280bar at $p_{boostpress.}$ 2bar In closed circuit Δp 260bar at $p_{boostpress.}$ 20bar

Technical data

Calculating size

Flow
$$q_V = \frac{V_g \bullet n}{1000 \bullet \eta_V} \qquad [L/min] \qquad V_g = Displacement per rev. in cm^3$$

$$\Delta p = Differential pressure in bar$$

$$Torque \qquad T = \frac{1,59 \bullet V_g \bullet \Delta p \bullet \eta_{mh}}{100} \qquad [Nm] \qquad n = speed in rpm$$

$$\eta_V = Volumetric efficiency$$
 or
$$T = T_K \bullet \Delta p \bullet \eta_{mh} \qquad \eta_{mh} = Mechanical-hydraulic efficiency$$

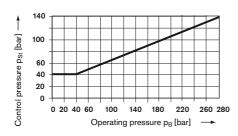
$$Output power \qquad P = \frac{2\pi \bullet T \bullet n}{60000} = \frac{q_V \bullet \Delta p \bullet \eta_t}{600} \quad [kW] \qquad \eta_t = Total efficiency (\eta_t = \eta_V \bullet \eta_{mh})$$

$$T_K = Torque constant$$

$$Output speed \qquad n = \frac{q_V \bullet 1000 \bullet \eta_V}{V_Q} \qquad [min^{-1}]$$

Permissible radial and axial forces on drive shaft

Size					28	45	63	85
Max. radial force	X/2 X/2	at X/2	F _{q max}	N	1200	1500	1700	2000
Max. axial force	±Fax◀■		F _{ax}	N	1000	1500	2000	3000

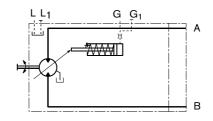

Two-point direct control DG

Normally the motor is at max. displacement. By applying an external pressure to port G, the control piston is directly pressurized and the motor swivels back to min. displacement

The minimum required control pressure is $p_{St} \ge 40$ bar

Please note, that this minimum required control pressure at port G depends directly on the operating pressure p_B in port A or B. (Pressure in A or B),see control pressure diagram below. With a control pressure above this minimum required pressure level the motor will destroke properly.

Control pressure diagram


Control pressure = 0 bar $\triangleq V_{g \text{ max}}$

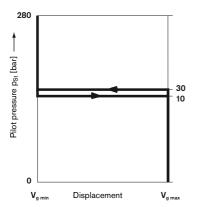
Control pressure ≥ 40 bar Δ V_{q min} (see circuit diagram)

The max. permissible control pressure is $p_{St} = 280$ bar.

V_{gmin} adjustment please state in clear text with order

Circuit diagram

Ports for							
A, B	Pressure						
L, L ₁	Caise drain (L ₁ plugged)						
G, G ₁	For external control pressure (G ₁ plugged)						


Two-point control, hydraulically operated HZ/HZ6

Normally the motor is at max. displacement. By applying a pilot pressure p_X to port X the pilot valve shifts and the control piston is pressurized causing the motor to swivel to min. displacement ($p_X \ge 30$ bar).

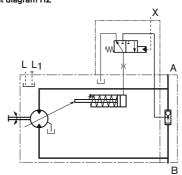
The necessary control pressure is via a shuttle valve taken out of the motor pressure side A or B. A minimum pressure difference of $\Delta p_{A,B} \geq 20$ bar between the motor pressure sides is required.

Only $V_{g max}$ or $V_{g min}$ are possible.

 $V_{\text{g min}}$ - adjustment please state in clear text when ordering.

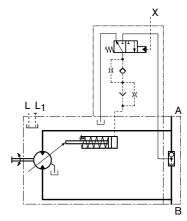
Pilot pressure $p_X = 0$ bar $\triangleq V_{g \text{ max}}$ Pilot pressure $p_X \ge 30$ bar $\triangleq V_{g \text{ min}}$

Techn. data HZ/HZ6	
Minimum pilot pressure	30 bar
Maximum permissible	280 bar
pilot pressure	


Version HZ6 with stroking time shuttle orifice

Slow down of swivel action by means of shuttle orifice.

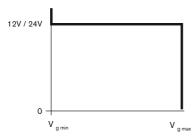
This enables a smooth swivel action.


Standard orifice size = 0.21 mm; other sizes on request.

Ports for							
A, B	Pressure						
L, L ₁	Caise drain (L ₁ plugged)						
Х	Pilot pressure (plugged)						

Circuit diagram HZ6

Ports for							
A, B	Pressure						
L, L ₁	Caise drain (L ₁ plugged)						
X	Pilot pressure (plugged)						


Two-point control, electrically operated EZ¹⁾

Normally the motor is at maximum displacement. By energizing the solenoid of the control valve, the control piston is pressurized and the motor swivels to minimum displacement.

The control pressure is via a shuttle valve taken out of the motor pressure side A or B. A minimum pressure difference of $\Delta p_{A,B} \geq 20$ bar between the pressure sides is required.

The motor can only swivel between $V_{g \text{ max}}$ or $V_{g \text{ min}}$.

 $V_{g \, min}$ - adjustment please state in clear text when ordering.

De-energized	≜ V _{g max}
Energized	≜ V _{g min}

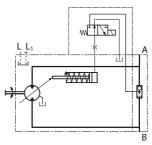
Techn. data EZ		
Version	EZ 1/6	EZ 2/7
Supply voltage	12V DC	24V DC
Nom. current at 20°C	1.5 A	0.8 A
Duty cycler	100% ED	100% ED
Plug protection class to DIN 43650	IP 65	IP 65

Ambient temperature range -20°C to +60°C. If the above temperature range cannot be met please consult

Features

us

- with spring return at solenoid
- Solenoid plug can be turned 4 x 90°

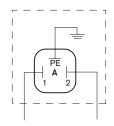

Version EZ6/7 with stroking time shuttle orifice.

Slow down of swivel action by means of shuttle orifice. This enables a smooth swivel action.

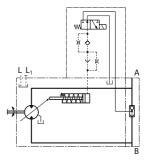
Standard orifice size = 0.21 mm; other sizes on request.

More information see page 25

Circuit diagram EZ1/2

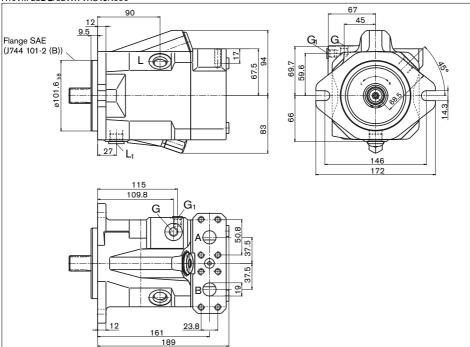


Ports fo	or
A, B	Pressure
L, L ₁	Caise drain (L ₁ plugged)


Connection to solenoid according to DIN 43650

Plug connection to DIN EN 175301-803-A Cable screw joint M 16x1.5

Circuit diagram EZ6/7

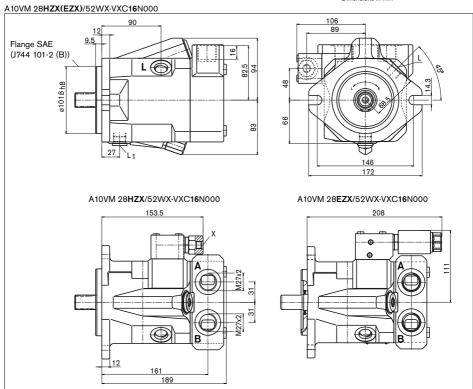


Ports fo	or
A, B	Pressure
L, L ₁	Caise drain (L ₁ plugged)

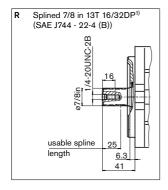
1) Shown in the unit dimensions: DIN connector from HIRSCHMANN; Preferred for mobile applications (other dimensions): DEUTSCH connector molded, 2-pin – without suppressor diode

Before finalising your design please request a certifified installation drawing. Dimensions in mm

A10VM 28DG/52WX-VXC10N000

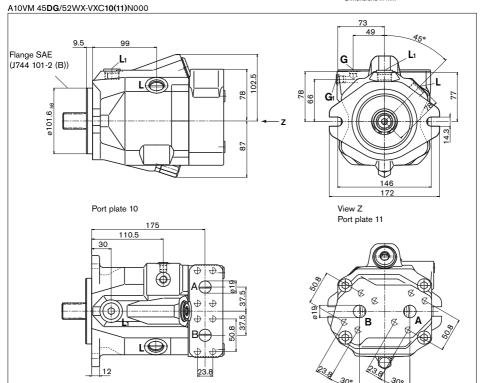


Ports


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (High presure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Х
X	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0

- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- $^{4)}$ Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

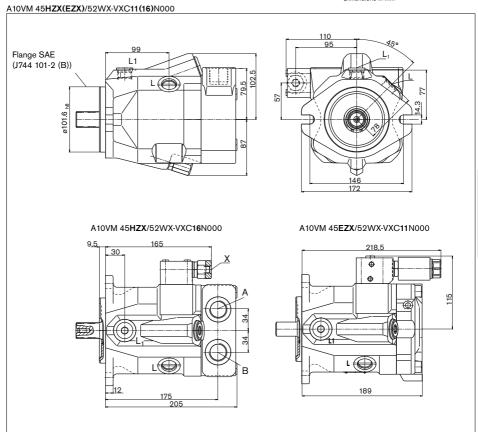
Before finalising your design please request a certifified installation drawing. Dimensions in mm



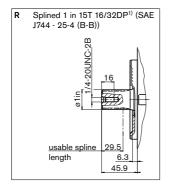
Drive shaft

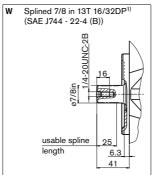
Before finalising your design please request a certifified installation drawing.

Dimensions in mm

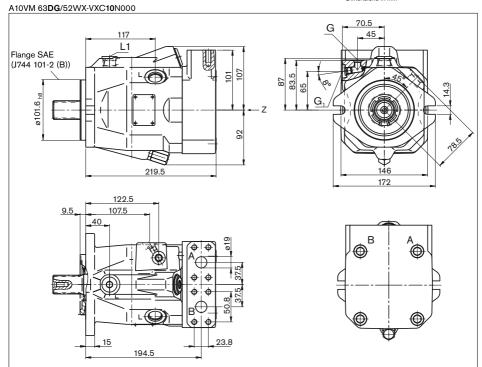


Ports


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
Х	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0

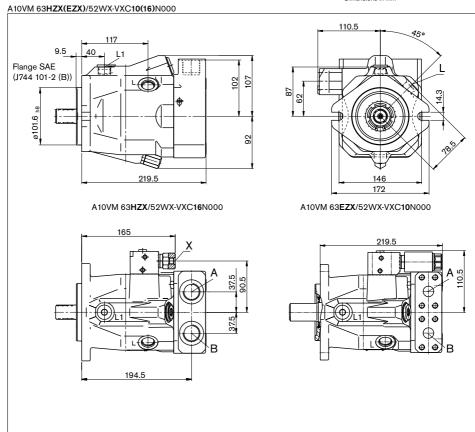

- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- $_{\rm 2)}$ Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L₁ must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalising your design please request a certifified installation drawing. Dimensions in mm

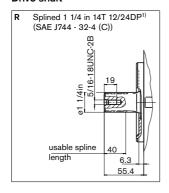


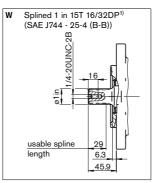
Drive shaft

Before finalising your design please request a certifified installation drawing. Dimensions in mm

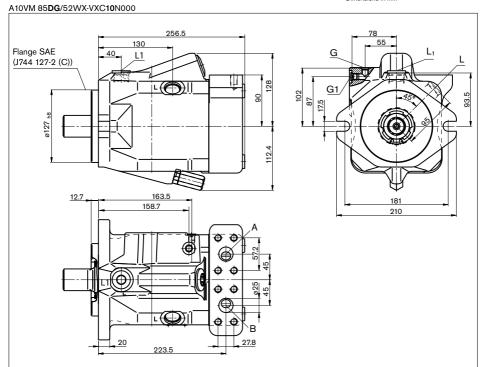

Ports

Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
Х	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must bee connected (plugged on delivery)
- X = Plugged (in normal operation)

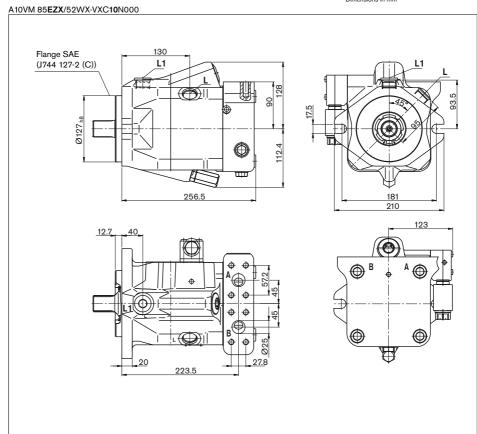

Before finalising your design please request a certifified installation drawing.

Dimensions in mm

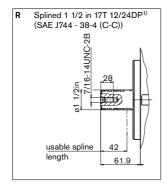

Drive shaft

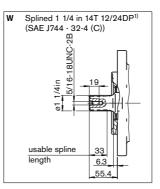
Before finalising your design please request a certifified installation drawing.

Dimensions in mm

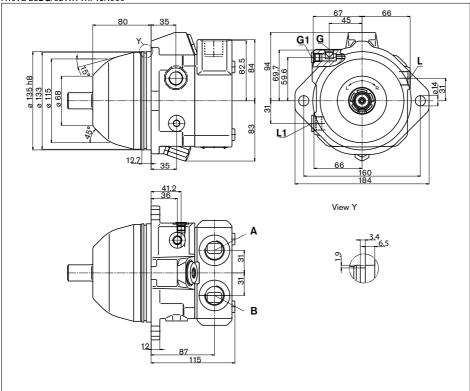


Ports


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure sereis, code 62)	SAE J518C	1 in	350	0
	Fixing thread (port plate 10)	DIN 13	M12; 17 deep		0
L	Case drain	ISO 11926 ⁵⁾	1 1/16-12UN-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	1 1/16-12UN-2B	4	X ⁴⁾
G	external control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	external control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Х

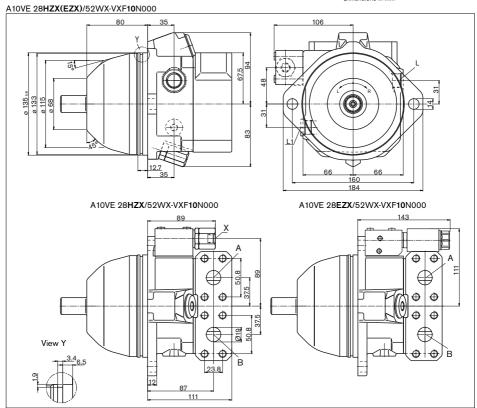

- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- $^{4)}$ Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalising your design please request a certifified installation drawing. Dimensions in mm

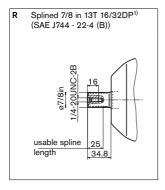

Drive shaft

Before finalising your design please request a certifified installation drawing. Dimensions in mm

A10VE 28DG/52WX-VXF16N000

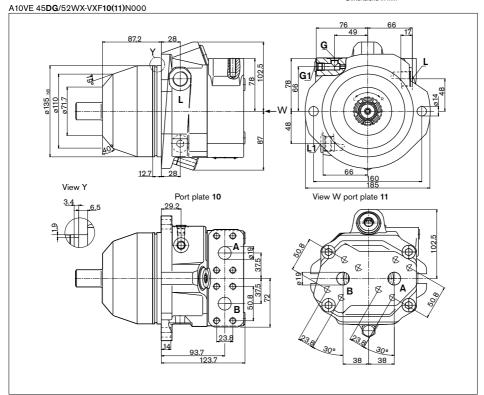

Ports

Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
Х	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L₁ must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalising your design please request a certifified installation drawing.

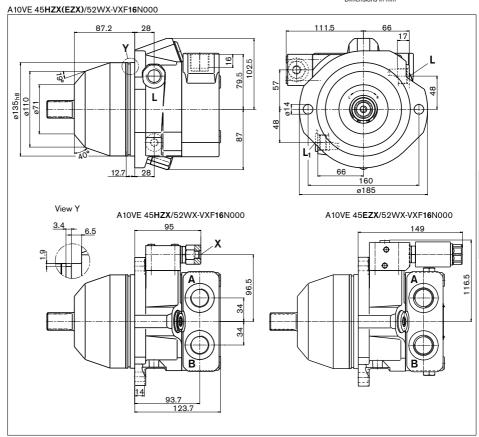
Dimensions in mm



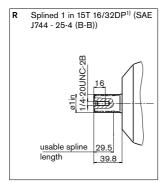
Drive shaft

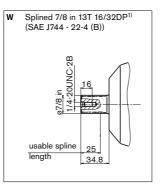
Before finalising your design please request a certifified installation drawing.

Dimensions in mm


Ports

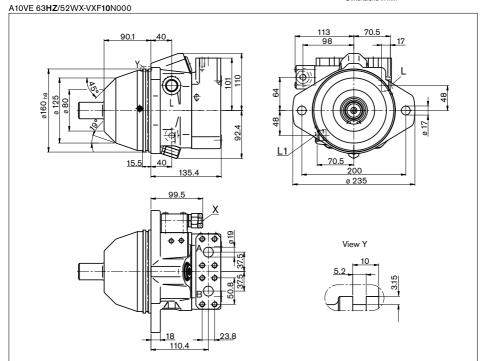
Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10, 11)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
X	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L₁ must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Before finalising your design please request a certifified installation drawing.

Dimensions in mm

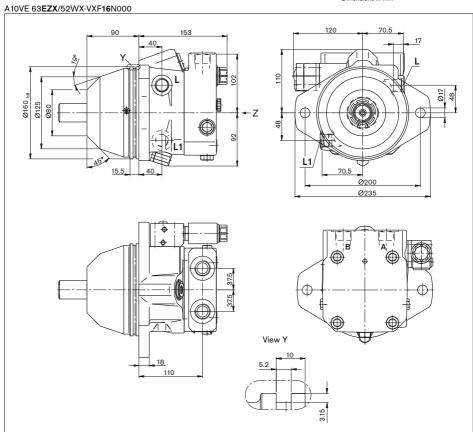
Drive shaft



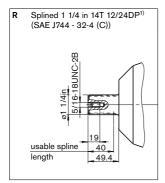
Dimensions A10VE size 63

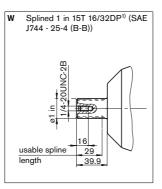
Before finalising your design please request a certifified installation drawing.

Dimensions in mm


Ports

Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
Х	External control pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Dimensions A10VE size 63

Before finalising your design please request a certifified installation drawing. Dimensions in mm

Drive shaft

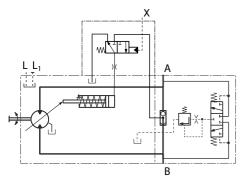
Integrated flushing and boost press. relief valve, N007

The flushing and boost pressure relief valve is used in closed circuits to flush an unacceptable heat load out of the circuit and to maintain a minimum boost pressure level (fixed setting). The valve is integrated into the port plate.

A built-in fixed orifice determines the flushing flow, which is taken out of the low pressure side of the loop and directed into the motor housing. It leaves the housing together with the case drain flow. This combined flow must be replenished with fresh, cool fluid by means of the boost pump.

Standard flushing flow

With a pressure of $p_{ND}=20$ bar in the low pressure side of the circuit and an orifice dia. of ø1.6 mm the flushing flow amounts to 5.5 L/min (Size 28 - 85).


Other orifice diameters can be ordered in clear text.

Further flushing flows for sizes 28 - 85 see table:

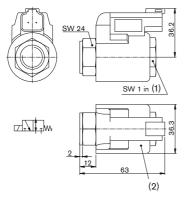
Flushing flow (L/min)	Orifice dia. in mm
3.5	1.2
5.5	1.6
7.2	1.8

Circuit diagram

e.g. A10VO..HZ/...N007

Ports fo	or
A, B	pressure
L, L ₁	case drain (L ₁ plugged)
х	pilot pressure

Connector for solenoids


DEUTSCH WKM08130D-01-C-V-XXDN, 2-pin

Molded, without bidirectionale suppre (Standard)	essor diode P
Rexroth part-No. R902650409	12V
R902650408	24V

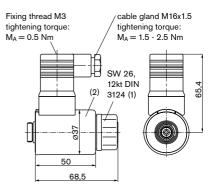
Technical data of electric	
Voltage	Cocurrent flow
Supply voltage	12 or 24 V
Nominal current	1.5 A
Voltage tolerance	-15 % bis +15 %
Operating period	100 %
Protection class	IP 65
Technical data of hydraulic	
Nominal pressure	maximum 350 bar
Flow	maximum 25 L/min
Sealing	FKM (flour-rubber)
Operating temperature of fluid	-20 °C to +120 °C

D

10 mm²/s to 420 mm²/s

The female connector is not part of the scope of supply. This can be supplied by Rexroth on request.

HIRSCHMANN DIN EN 175 301-803-A /ISO 4400


(not for new projects)

without bidirectional suppressor diode ______ H

Degree of protection to DIN/EN 60529: IP65

The sealing ring in the cable gland (M16x1,5) is suitable for cables 4.5 mm to 10 mm in diameter.

The HIRSCHMANN-connector is part of the scope of supply of the motor.

Note for round solenoids:

The position of the connector can be changed by turning the solenoid body.

Proceed as follows:

- 1. Loosen fixing nut (1)
- 2. Turn the solenoid body (2) to the desired position.
- 3. Tighten the fixing nut

Tightening torque of fixing nut: 5+1 Nm

Electronic controls

Viskosity range

Function

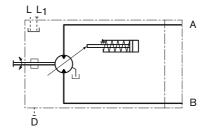
Control	Electronic function	Electronics		Further information
		RA	analogue	RD 95 230
Electric pressure control	Regulated current outout	VT2000	analogue	RD 29 904
		RC2-2/21 1)	digital	RD 95 201

¹⁾ Current outputs for 2 valves, sparately controllable

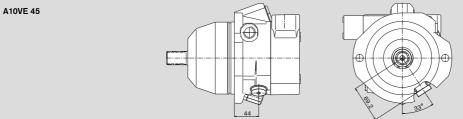
Speed pickup

The version A10VM/E...D ("prepared for speed pickup") comprises gearing around the rotary unit.

In this case, the rotating cylinder barrel can provide a speed dependent signal, which can be picked up by a suitable sensor and processed for further evaluation. The sensor port will be plugged for delivery.

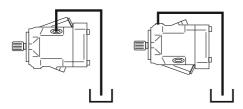

This preparation for speed pickup does not include the necessary working parts. They must be ordered separately as a kit with a corresponding part number.

Inductive speed sensor ID R 18/20-L250 (see RE 95130) and mounting parts (spacer and 2 seals per kit) can be ordered separately under the following part numbers:

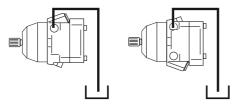

Size	Part Nr.	Number of teeth
28	R902428802	48
45	R902437557	48
63	R902428802	56
85	in preparation	

Before finalising your design please request a certifified installation drawing. Dimensions in mm

Circuit diagram


Mounting position

The motor housing must be filled during start up and operation. The drain line must be arranged, so that the housing cannot empty itself when the motor is at standstill. The end of the drain line must enter the tank below the minimum fluid level.


In all installation positions the highest case drain port must be used to fill the housing and to connect the drain line.

In case of a vertical installation please consult us.

A10VM

A10VE

General instructions

- The A10VM/VE is designed for operation in open and closed circuits
- Systems design, installation and commissioning requires trained technicians or tradesmen.
- Be sure to read the entire operating instructions throughly and completely befor using the axial piston unit. If necessary, request them at Rexroth.
- All hydraulic ports can only be used for the fastening of hydraulic service lines.
- During and shortly after operation of a axial piston unit the housing and especially a solenoid can be extremely hot, avoid being burned; take suitable safety measures (wear protective clothing).
- Dependent on the operating conditions of the axial piston unit (operating pressure, fluid temperature) deviations in the performance curves can occur
- Pressure ports:

All materials and port threads are selected and designed in such a manner, that they can withstand the maximum pressure. The machine and system manufacturer must ensure, that all connecting elements and hydraulic lines are suitable for the actual operating pressures.

- Pressure cut off and pressure control are not suitable for providing system protection against excessive pressures. A suitable overall main line relief valve must be incorporated.
- All given data and information must be adhered to.
- The following tightening torques are valid:
 - Female threads in the axial piston unit: the maximum permissible tightening torques M_{GMax} are maximum values for the female threads in the pump casting and may not be exceeded. Value see table below.

- Fittings:

please comply with the manufacturer's information regarding the max. permissible tightening torques for the used fittings.

for fastening bolts to ISO 68 we recommend to check the permissible tightening torques in each individual case to VDI 2230.

for the metal plugs, supplied with the axial piston unit the following min. required tightening torques M_V apply (see table).

Threaded port sizes		Maximum permissible tightening torque of the threaded holes M _{G max}	Requiered tightening torque of the locking screws M _V	WAF hexagon socket of the locking screws
7/8-14 UNF-2B	ISO 11926	240 Nm	127 Nm	3/8 in
7/16-20UNF-2B	ISO 11926	40 Nm	15 Nm	3/16 in
3/4-16 UNF-2B	ISO 11936	160 Nm	62 Nm	5/16 in
1 1/16-12 UNF-2B	ISO 11926	360 Nm	147 Nm	9/16 in
M14x1,5	DIN 3852	80 Nm	35 Nm	6 mm
M16x1,5	DIN 3852	100 Nm	50 Nm	8 mm
M18x1,5	DIN 3852	140 Nm	60 Nm	8 mm
M22x1,5	DIN 3852	210 Nm	80 Nm	10 mm
M27x2	DIN 3852	330 Nm	135 Nm	12 mm

Axial Piston Units An den Kelterwiesen 14 72160 Horb a. N., Germany Telephon +49 (0) 74 51 92-0 Fax +49 (0) 74 51 82 21 info hrm-ak@hoschrevroth de www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Bosch Rexroth AG

Hydraulics

RE 90010-02/07.2012 Bosch Rexroth AG

Axial Piston Motors

Accessories

Designation	Туре	Size	Series	Nominal pressure	Data sheet	page
Counterbalance valve for travel drives, winch drives and turas drives	BVD	20, 25	41	350 bar	RE 95522	441
Counterbalance valve for winch drives	BVE	25	51	350 bar	RE 95525	453

Bosch Rexroth AG RE 90010-02/07.2012

Rexroth Bosch Group

Counterbalance Valve BVD

RE 95522/10.08 1/12 Replaces: 04.08

Data sheet

Series 41 Size NG20, 25 Nominal pressure 350 bar Peak pressure 420 bar for travel drives, winch drives and track drives

Contents

Ordering Code / Standard Program	2
Design and Safety Instructions	4
Technical Data	4
Operation	6
Dimensions, Size 20	8
Dimensions, Size 25	9
Fixing the Counterbalance Valve	10
Port Types	11
Cross-References	11
General Instructions	12

Features

- Space-saving installation due to compact design and direct mounting on A2FM(E) and A6VM axial piston motors (series 63)
- Available as a complete set with A2FM(E) and A6VM axial piston motors (series 63) and GFT gear units; test stand run as standard.
- Standard service line ports according to SAE J518
- Integrated brake release valve, with and without pressure reduction
- High efficiency due to low flow resistance
- Easy optimization options during commissioning due to modular design.

2/12 Bosch Rexroth AG BVD | RE 95522/10.08

Ordering Code / Standard Program

BVD					/	41		_	٧				
01	02	0.3	04	05		06	07		08	nα	10	11	12

	Valve type
01	Counterbalance valve, double-acting

	Size	
	Flow, max. q _{v max} 220 l/min	20
02	Flow may a 200 l/min	O.E.

BVD

Control range (pressure when brake piston starts/stops opening)

02	730 bar (travel drive)	F	
US	2040 bar (winch and track drive)	w	l

Ports (size classification)

	NG	A2FM/E./.181	A2FE./.171	A6VM./.370	A6VM./.380	
	20	28, 32, 451)				16
		56, 63			55	17
04		80, 90			80	27
			107, 125	107		28
	25	107, 125, 160, 180			107, 140, 160	38

Ports for brake release

o	with high pressure	S	
	with reduced high pressure 21 ⁺⁴ bar (brake release valve)	L	l

Series

C	6 Series 4, Index 1	41

Long cover

	g		
07	B-side (standard)	В	
07	A-side	0	

Seals

08	FKM (fluor-caoutchouc)	٧

Piston version

	100% of max. flow q _{v max} (see size)	01	l
09	75% of max. flow q _{v max} (see size)	02	l
	50% of max. flow q _{v max} (see size)	03	

Residual opening in piston

	Without residual opening (obligatory for winches)			
	With residual opening	Ø 1.2	K12	
10		Ø 1.6	K16	
		Ø 1.8	K18	
		Ø 2.0	K20	

¹⁾ Intermediate plate necessary for all three sizes

Ordering Code / Standard Program

BVD					/	41		_	٧				
01	02	03	04	05		06	07		08	09	10	11	12

Damping during closing

	Throttle pin	Comparative surface area 0.0361 mm ²	Designation on pin	25	D2500
		0.0520 mm ²		3	D0300
11		0.0836 mm ²		38 ²)	D0400
		0.1762 mm ²		55	D0600
		0.2798 mm ²		69 ³)	D0800

Flushing cavity

	Plugged		S00
10		Ø 1.2	S12
12	fice (only for A6VM)	Ø 1.6	S16
	IOF AGVIVI)	Ø 1.8	S18

²⁾ Standard for travel drives

Ordering information

When placing the order, the following information is necessary to ensure correct settings at our test stands:

- Motor ordering code
- Counterbalance valve ordering code
- Flow
- Application (e.g. excavator, winch etc.)
- Pressure setting of the secondary pressure relief valves in the motor

Gear unit and/or counterbalance valve and axial piston motor can be ordered as ready-assembled and tested units.

Type selection (Ordering Code)

Size

depends on the necessary flow rate and the available motor port plates.

Control range

defines the pressure range at which the brake piston starts to open.

For travel drives in wheeled vehicles, use code "F":

The control piston opens at a differential pressure between A and B of 7 bar. In this case, the brake is not operated via the port for brake release on the counterbalance valve.

For winch and track drives, use code "W"

The control piston opens at a differential pressure between A and B of 20 bar. This ensures that the mechanical park brake actuated via the brake release port is fully opened (generally at 18 bar) before the brake piston opens.

Ports

depend on the motor size used.

The line ports A and B on the motor port plates are of different distance and diameter. To choose the appropriate connection, please refer to the table in the ordering code and on page 10.

For A2FM/E, sizes 28, 32 and 45, a intermediate plate is required between motor port plate 181 and the counterbalance valve. This intermediate plate is automatically included when motor and counterbalance valve are ordered as a set.

Brake release

The integrated pressure reduction valve is necessary when the mechanical brake on the gear unit cannot handle the full system pressure.

The maximum permitted brake release pressure must be agreed with the winch manufacturer. The brake release valve limits the high pressure to 21...25 bar (4 bar tolerance). It opens at about 10-14 bar.

Piston version ...

depends on the maximum flow across the counterbalance valve.

If for instance the maximum operational flow is only some 110 l/min while using a size 20 counterbalance valve which features a nominal flow of 220 l/min, then select the 50% control piston (code "03"). This ensures smooth operation.

If the desired flow is not within the range of the pistons supplied, please contact us.

Residual opening in piston ...

ensures soft stopping of wheeled vehicles. In winch applications, any residual opening is prohibited, since otherwise the load would not stay suspended. Therefore select code "K00".

Damping

defines the closing speed of the counterbalance valve. The higher the value, the faster the valve closes.

For the initial layout (prototype), we recommend the following damping:

- for wheel drives: D0400
- for winches and track drives: D0800

Flushing cavity

supplies motor flushing oil via an internal port. Only available for A6VM.

³⁾ Standard for winch and track drive

4/12 Bosch Rexroth AG BVD | RE 95522/10.08

Design and Safety Instructions

Failure to observe any of the following points can lead to uncontrolled working conditions with serious personal injury and material damage:

- The counterbalance valve does not replace the mechanical park brake. Provide appropriate mechanical brake systems.
- Counterbalance valves are only used in open circuit.
- System optimization for the first prototype is recommended with regard to the valve block, axial piston motor, counterbalance valve and park brake.
- The counterbalance valve and main control valve must be matched to one another.
- If a park brake is installed, it must not close until after the counterbalance valve has closed. Otherwise excessive wear will be caused to the brake linings.
- Comply with the maximum control pressure of the park brake. If necessary, use the integrated pressure reduction valve as a brake release valve with reduced high pressure (code "L")
- The counterbalance valve converts the entire kinetic energy/ potential energy into heat during the braking/lowering process.
 Consequently, ensure sufficient cooler and/or tank capacity.

- Counterbalance valves should be operated in combination with close-by secondary pressure relief valves, in order to protect the motor against pressure spikes. The motor port plates for direct installation of the counterbalance valve (A2FM: plate 181; A2FE: plate 171/181; A6VM: plate 370/380) already contain these secondary pressure relief valves.
- Auxiliary boost pressure at port S of the counterbalance valve reliably reduces the risk of cavitation due to lack of fluid in the low-pressure line. Ensure sufficient boost pressure and flow.
- The axial piston motor and counterbalance valve should always be ordered as a complete set. This ensures optimal matching and combined testing.
- If motor and counterbalance valve are ordered separately, consult our application engineers for the appropriate motor version.

The above safety measures and instructions must be adapted to the application and extended if necessary.

Technical Data

Hydraulic fluid

Please refer to the detailed information in our catalog sheets concerning the choice of hydraulic fluids and application conditions (see cross-references on page 11).

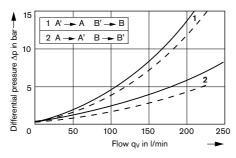
Table of values

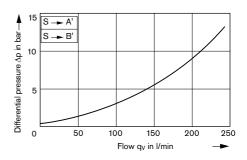
Size				20	25
Operating pressure	р	bar	Nominal pressure	350	350
			Peak pressure	420	420
Flow, max.	q _{v max}	l/min		220	320
Opening pressure of brake piston	р	bar	BVD.F	7	7
			BVD.W	20	20
Pressure at which brake piston finishes opening	р	bar	BVD.F	30	30
			BVD.W	40	40
Pressure reduction valve for brake release (fixed values)	р	bar	BVDL/	21+4	21+4
Opening pressure			BVDL/	10+4	10+4
Weight, approx.	m	kg		9	15

Technical Data

Characteristics

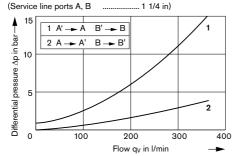
Size 20

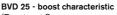


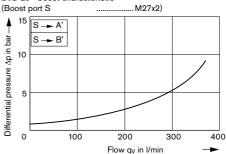

(Service line ports A, B3/4 in) _____

BVD 20...27 and 20...28

(Service line ports A, B 1 in)







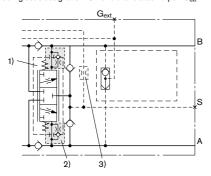
Size 25

BVD 25...38

The above specifications are based on:

- Oil viscosity $v = 41 \text{ mm}^2/\text{s}$
- Oil temperature 9 = 50 °C
- Brake piston fully open
- Piston code 01 (100% q_{v max})

6/12 Bosch Rexroth AG BVD | RE 95522/10.08


Operation

Travel/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open controls. Cavitation occurs if the motor speed is greater than it should be for the given flow during braking, downhill travel or decrease in motor load.

BVD circuit diagram

Counterbalance valve with shuttle valve and Gext (plugged).

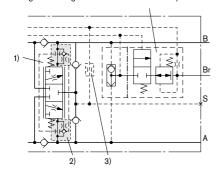
Ordering code designation "S" for brake release via port Gext.

1) Residual opening

Brake piston

with residual opening (K..) without residual opening (K00)

2) Damping


3) Flushing cavity... ...plugged (S00) Γ

LT

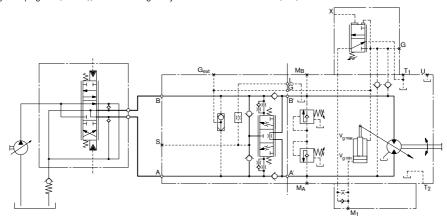
Counterbalance valve with shuttle valve, brake release valve and port Br.

Ordering code designation "L" for brake release port Br.

Operation

Circuit diagram - Travel counterbalance valve BVD..F

Application example


Travel drive for wheeled excavators

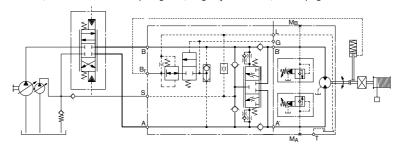
e.g. A6VM80HA1T/63W-VAB380 + BVD20F27S/41B-V03K16D0400S12

Variable motor with high pressure related control and hydraulic override (HA1T), port plate with integrated pressure-relief valves, prepared for mounting a counterbalance valve (380).

Travel counterbalance valve, size 20 with 50% piston (03) for approx. 110 l/min, internal residual opening in piston for smooth braking (K16),

high damping rate (D0400), internal flushing cavity to motor with 1.2 mm orifice (S12).

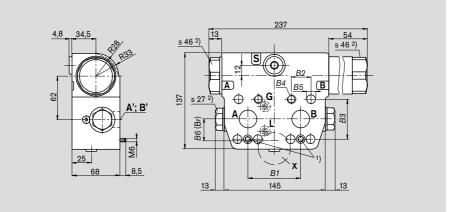
Circuit diagram - Winch counterbalance valve BVD..W


Application example

Winch drive in cranes; track drive in crawler excavators

e.g. A2FE160/61W-VAL181 + BVD25W38L/41B-V02K00D0600S00 mounted on a GFT-W Rexroth winch gear unit

Fixed motor with port plate with integrated pressure-relief valves for mounting a counterbalance valve (181).


Winch counterbalance valve, size 25 with pressure reduction valves for brake release pressure (L), with 75% piston (02) for approx. 240 l/min, without internal residual opening (K00, obligatory for winches), low damping rate (D0800).

Other A6VM and A2FM/E axial piston motors can alternatively also be used.

8/12 Bosch Rexroth AG BVD | RE 95522/10.08

Dimensions, Size 20

¹⁾ Countersink ø 11x6.5 and through-hole ø 6.6 for 2x M6 mounting screws for fixing the counterbalance valve to the motor. In order to prevent incorrect assembly, the mounting screws must be used (included in the delivery contents)

Detail X

With shuttle valve and G_{ext} port (code S) With shuttle valve, brake release valve and Br port (code L)

	B1	B2	ВЗ	B4	ØB5	B6
BVD 2016	66	23.8	50.8	M10x1.5	10.5	25.5
BVD 2017	75	23.8	50.8	M10x1.5	10.5	27.0
BVD 2027	75	27.8	57.2	M12x1.75	13	27.0
BVD 2028	84	27.8	57.2	M12x1.75	13	27.0

Ports

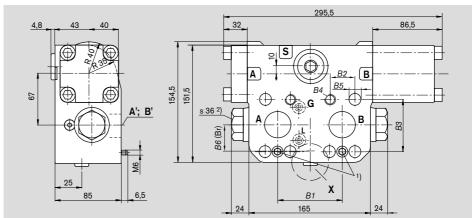
Designa- tion	Operation		Standard	Size 1)	Peak pres- sure (bar) 2)	Status
A, B	Service line port, fixing thread A/B	Version 16, 17	SAE J518 ³⁾ DIN 13	3/4 in M10x1.5; 15 deep	420	0
		Version 27, 28	SAE J518 ³⁾ DIN 13	1 in M10x1.75; 16 deep	420	0
S	Boost port		DIN 3852	M22x1.5; 14 deep	30	Х
Br	Brake release, reduced high pressure	Version L	DIN 3852	M12x1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressu	re Version S	DIN 3852	M12x1.5; 12.5 deep	420	Х

O-rings for	connection	to mounted	axial piston	mo	tor
A' D'	0		1/ '	40	40

A', B'	Service line port	Version 16, 17	AS 568 A	24.99x3.53 (S-FKM90)
		Version 27, 28	AS 568 A	32.92x3.53 (S-FKM90)
G	High pressure for A6VM mo (with O-ring)	otor HA control	DIN 3771	9x2 (N-V80G1)
L	Flushing (with O-ring)		DIN 3771	9x2 (N-V80G1)

¹⁾ Please observe the general instructions for the max. tightening torques on page 12

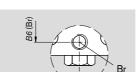
²⁾ Width across flats


²⁾ Short-term pressure spikes may occur depending on the application. Please keep this in mind when selecting testers and armatures.

³⁾ Only dimensions according to SAE J518

O = open, must be connected (plugged on delivery)

X = plugged (in normal operation)


Dimensions, Size 25

- 1) Countersink ø 11x6.5 and through-hole ø 6.6 for 2x M6 mounting screws for fixing the counterbalance valve to the motor. In order to prevent incorrect assembly, the mounting screws must be used (included in the delivery contents)
- 2) Width across flats

Detail X

With shuttle valve and G_{ext} port (code S) With shuttle valve, brake release valve and Br port (code L)

	B1	B2	В3	B4	ØB5	B6
BVD 2538	84	31.8	66.7	M14x2	15	31.6

Ports

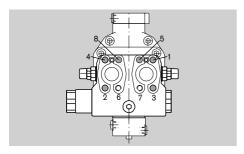
Designa- tion	Operation		Standard	Size 1)	Peak pres- sure (bar) 2)	Status
A, B	Service line port, fixing thread A/B	Version 38	SAE J518 ³⁾ DIN 13	1 1/4 in M14x2; 19 deep	420	0
S	Boost port		DIN 3852	M27x2; 16 deep	30	Х
Br	Brake release, reduced high pressure	Version L	DIN 3852	M12x1.5; 12 deep	30	0
G _{ext}	Brake release, high pressure	Version S	DIN 3852	M12x1.5; 12.5 deep	420	Х

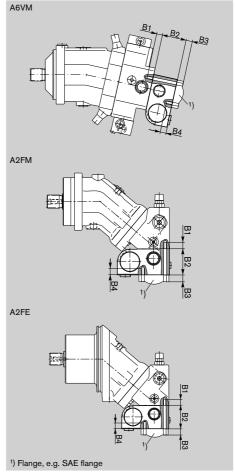
O-rings for connection to mounted axial piston motor

O migo io	or connection to mounte	a axiai piston motor			
A', B'	Service line port	Version 38	AS 568 A	37.69x3.53 (S-FKM90)	
G	High pressure for A6V O-rings)	M motor HA control (with	DIN 3771	9x2 (N-V80G1)	
L	Flushing (with O-ring)		DIN 3771	9x2 (N-V80G1)	

- 1) Please observe the general instructions for the max. tightening torques on page 12
- 2) Short-term pressure spikes may occur depending on the application. Please keep this in mind when selecting testers and armatures.
- 3) Only dimensions according to SAE J518
- O = open, must be connected (plugged on delivery)
- X = plugged (in normal operation)

10/12 Bosch Rexroth AG BVD | RE 95522/10.08


Fixing the Counterbalance Valve


When delivered, the counterbalance valve is attached to the motor using 2 tacking screws. Do not remove the tacking screws when connecting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be attached to the motor port plate using the provided tacking screws. In both cases, the final attachment of the counterbalance valve to the motor is by the connectio of the service lines, e.g. using SAE 4-bott flanges. A total of 6 screws with thread lengths B1+B2+B3 and 2 screws with thread lengths B3+B4 are required.

When tightening the screws, it is imperative that the sequence 1 to 8 (as shown in the adjacent diagram) be adhered to and carried out in two phases.

In the first phase the screws should be tightened to 50% of their tightening torque before being tightened to maximum tightening torque in the second phase (see table below).

Thread	Strength class	Tightening torque in Nm
M10	10.9	75
M12	10.9	130
M14	10.9	205

Axial piston motor	A2FM/E	A2FM/E	A6VM	A2FM/E	A6VM	A2FE	A6VM	A2FM/E	A6VM
NG	28, 32, 45	56, 63	55	80, 90	80	107, 125	107	107, 125, 160, 180	107, 140 160
Dimension B1 ¹)	M10x1.5 17 deep	M10x1.5 17 deep	M10x1.5 17 deep	M12x1.75 18 deep	M12x1.75 15 deep	M12x1.75 17 deep	M12x1.75 15 deep	M14x2 19 deep	M14x2 19 deep
Dimension B2	78 ²)	68	68	68	68	68	68	85	85
Dimension B3	Customer-specific								
Dimension B4	M10x1.5 15 deep	M10x1.5 15 deep	M10x1.5 15 deep	M12x1.75 16 deep	M12x1.75 16 deep	M12x1.75 16 deep	M12x1.75 16 deep	M14x2 19 deep	M14x2 19 deep

¹⁾ Minimum necessary screw insertion depth 1xØ

²⁾ Including intermediate plate

Port Types

		NG20						NG	i25
Ordering code	16	1	7	2	7	2	8	3	8
Service line port A and B		3/4 in			1	in		1 1/	'4 in
Boost port S (plugged)		M22x1.5; 14 deep						M27x2;	16 deep
Spacing between service line ports (A'-B')	66	66 75 84					8	4	
For mounting on axial piston motor	A2FM/E	A2FM/E	A6VM	A2FM/E	A6VM	A2FE	A6VM	A2FM/E	A6VM
Size	28, 32, 45	15 56,63 55 80, 90 80 107, 125			107	107, 125, 160, 180	107, 140, 160		
Motor port plate required (with secondary pressure-relief valves, mutual bleed-off)	181					181	380		

Cross-References

Mineral oil	RE 90220
Environmentally acceptable hydraulic fluids	RE 90221
HF hydraulic fluids	RE 90223
A2FM	RE 91001
A2FE	RE 91008
A6VM	RE 91604
Hydrotrac GFT	RE 77110
Mobilex GFT-W	RE 77502

12/12 Bosch Rexroth AG BVD | RE 95522/10.08

General Instructions

- The BVD counterbalance valve is designed to be used in open circuits.
- Project planning, assembly and commissioning of the axial piston unit with counterbalance valve require the involvement of qualified personnel.
- The service line ports and function ports are only designed to mounting hydraulic lines.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take suitable safety measures (e.g. wear protective clothing).
- There may be shifts in the characteristic depending on the operating state of the axial piston unit (operating pressure, fluid temperature).
- The data and note contained herein must be adhered to.
- The following tightening torques apply:
 - Threaded hole in axial piston unit:

The maximum permissible tightening torques M_{Gmax} are the maximum values for the threaded holes that must not be exceeded. For values, refer to the following table.

- Armatures:

Observe the manufacturer's instruction regarding tightening torques for the used armatures.

Fixing screws

For fixing screws according to DIN 13, we recommend checking the tightening torque in individual cases as per VDI 2230.

- Locking screws:

For the metallic locking screws supplied with the axial piston unit, the required tightening torques of locking screws M_V apply. For values, refer to the following table.

Thread size at ports tightening tord		Max. permissible tightening torque of the threaded holes M _{Gmax}	Required tightening torque of the locking screws M _V	WAF hexagon socket	
M12x1.5	DIN 3852	50 Nm	25 Nm	6 mm	
M22x1.5	DIN 3852	210 Nm	80 Nm	10 mm	
M27x2	DIN 3852	330 Nm	135 Nm	12 mm	

Axial Piston Units
Glockeraustraße 2
89275 Elchingen, Germany
Phone: +49-7308-82-0
Fax: +49-7308-72-74
info.brm-ak@boschrexroth.de
www.boschrexroth.com/axial-piston-pumps

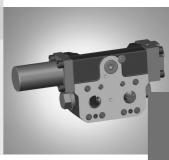
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Bosch Rexroth AG

Hydraulics



Counterbalance Valve BVE

RE 95525/11.11 1/12

Data sheet

Series 51 Size 25 Nominal pressure 350 bar Maximum pressure 420 bar For winch drives, open circuit

Contents

Ordering code for standard program	2
Project planning and safety instructions	3
Technical data	4
Choosing the counterbalance spool version	5
Functional description	6
Application example of winch	7
Dimensions size 25	8
nstallation versions	10
Mounting the counterbalance valve	11
General instructions	12

Features

- Single-action counterbalance valve especially for winch drives in open circuits
- Sensitive damping for stable lowering
- Simple adaptation to application
- Compact design and direct fitting to axial piston motors A2FM, A2FE and A6VM, A6VE
- Available in a set with axial piston motors A2FM, A2FE and A6VM, A6VE.
- Standard service line ports according to SAE J518
- Integrated brake release valve optional, with or without pressure reduction
- Good efficiency through reduced flow losses

4

2/12

Ordering code for standard program

_																		
B	VE 25		38		/	51	N		-	V		0	K00		T30	S00	–	
(01 02	03	04	05		06	07	08		09	10	11	12	13	14	15		16
	Valve type	:																
01	Counterba	alance	valve,	single-s	ide													BVE
	Size (NG)																	
	Flow, nom		_{nom} 32	0 l/min	at ∆p	= 20 b	ar											25
	Control ra							ol otori	to/oton		na)							
	Spring val		nessur	e when	Count	18 to 3		oi star	is/stop:	s open	rig)							w
03	(without re		ressure	e)	-	9 to 39												v
	Davida																	
	Ports Size alloca	ation: 6	200 000	no 11														38
04																		_ 36
	Ports for b			9														
05	With high			O	1+4	. /			.1									S L
	With redu	cea ni	gn pres	ssure 2	ı · · baı	г (ргаке	releas	se vaive	;)									<u> </u>
	Series																	
06	Series 5, i	index 1																51
	Configura	tion of	f ports	and fa	stenin	g threa	ıds											
07	Metric, po	rt thre	ads wit	h profil	ed sea	ling ring	g acco	rding to	DIN 3	8852								N
	Long sprir	ng cov	er (des	sign: se	e page	8)												
08	On port si	ide C,	lift via p	oort C														С
	On port si	ide D,	lift via p	oort D														D
	Seals																	
09	FKM (fluo	r-caou	tchouc)														V
	Counterba	alance	spool	versio	n (sele	ction: s	see pac	ge 5)										
	10		-					, .										10
10	20																	20
	Opening of	harac	teristic	s of co	unterl	nalance	spoo	ı										
11	Standard						ороо	•										0
	Danishaal a																	
12	Residual of Without	penin	ig in co	untert	alance	e spoo												КОО
																		ROU
	Damping						ool)											1
	Throttle pi	ın, com	nparativ	e diam	-	Inlet				Out								D4500
13						0.4 mn				2.0								D4599 D4545
					-	0.4 mn				0.4								D4545
						J.4 IIII				0.7	1411							D4360
	Damping D2 (reservoir outlet)					Too												
	With orific		s mm															T30
	Flushing o	avity																
15	15 Plugged S						S00											
	Standard	/ spec	ial ver	sion														
	Standard	version	n															0
16	Standard	version	n with i	nstallat	on var	iant, e.ç	g. ports	open	or clos	ed, cor	ntrary to	stan	dard					Υ
	Special version						s											

Short designation X on a feature refers to a special version not covered by the ordering code.

Project planning and safety instructions

Order details

When placing the order, the following information is necessary to ensure correct acceptance at our test stands:

- Motor ordering code
- Counterbalance valve ordering code
- Flow
- Application (e.g winch)
- Pressure setting of the secondary pressure relief valves in the motor
- For the design of the brake release valve, we must know the following data for the mechanical park brake:
 - the cracking pressure
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 har)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Counterbalance valve and axial piston motor can be ordered as a ready-assembled and tested unit.

Type selection (ordering code)

Control range

The control range defines the pressure range at which the counterbalance spool starts to open.

The control range of the counterbalance spool is to be chosen so that the mechanical park brake is fully open before the counterbalance spool starts to open.

Brake release

The integrated pressure reduction valve is necessary when the mechanical brake on the gear unit cannot handle the full

The maximum permissible brake release pressure must be agreed with the winch manufacturer. The brake release valve reduces the high pressure to the value stated.

Counterbalance spool version

The counterbalance spool version depends on the maximum flow required through the counterbalance valve.

Counterbalance spool selection for required flow as per diagram on page 5.

If the desired flow is not within the range of the counterbalance spool supplied, please contact us.

Residual opening in counterbalance spool

In winch applications, any residual opening is prohibited, since otherwise the load would not stay suspended. For that reason, version "K00" is prescribed.

The throttle pin from D1 (inlet) and the orifice D2, plus the return pressure to the reservoir, define the actual cracking pressure of the counterbalance spool in Mp1.

The damping D1 (outlet) and D2 define the closing speed of the counterbalance spool. The larger the comparative diameter D1 (outlet), the faster the counterbalance spool will close (see table on page 4).

For the initial equipment (prototype), we recommend damping D1 = D4599 and D2 = T30.

Safety instructions

Failure to observe any of the following points can lead to uncontrolled operating conditions with serious personal injury and material damage.

- The counterbalance valve does **not** replace the mechanical park brake. If necessary, provide mechanical brake systems.
- Counterbalance valves are usually only used in open circuits.
- System optimization (reduction) for the first prototype is recommended with regard to the valve block, axial piston motor, counterbalance valve and park brake.
- The opening and closing characteristics of the counterbalance valve and control piston in the directional valve must be mutually compatible.
- The mechanical park brake in winch drives must only be effective after the counterbalance valve spool has closed. Otherwise, the brake will be subject to wear.
- Note the maximum permissible cracking pressure of the park brake. If necessary, use the integrated pressure reduction valve as a brake release valve with reduced high pressure (version "L").
- The counterbalance valve converts the entire kinetic energy/potential energy into heat during the braking/lowering process. Consequently, ensure sufficient cooler and/or tank capacity.
- Counterbalance valves should only be operated in combination with close-by secondary pressure relief valves in order to protect the motor against pressure spikes. The table on page 11 lists the motor and port plate types for the counterbalance valve BVE25. The port plates already contain the secondary pressure-relief valves.
- Feeding at port S of the counterbalance valve reduces the risk of cavitation. Ensure sufficient pressure and flow for feedina.
- We recommend ordering an axial piston motor and counterbalance valve as a single unit. This ensures optimal matching and combined testing.
- If motor and counterbalance valve are ordered separately, we recommend that you consult our application engineers for the appropriate motor version.

Further safety-relevant measures for the application must be added as necessary by the customer.

Technical data

Hydraulic fluid

The axial piston motor used is decisive for the choice of hydraulic fluid

Further information should be taken from our data sheets during project planning.

Operating pressure range

Pressure at service line port C or D

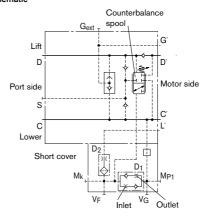
Nominal pressure p_{nom} _	35	i0 bar absolute
Maximum pressure p _{max} Single operating period	42	0 bar absolute 10 s
Total operating period		300 h

Definition

Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}


The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Identification of cracking pressure p1

(value without return pressure)

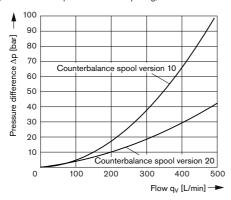
The throttle chain from D₁ and D₂ is used to damp the opening and closing speeds of the counterbalance spool. The actual working pressure, measured at MP1, is reduced by the throttle chain from D₁ and D₂ and actuates the counterbalance spool. The dependence of the actual pressure value at MP1 for the opening of the counterbalance spool on the cross-sectional area of the orifice at D_1 and D_2 is stated in the table below.

Schematic

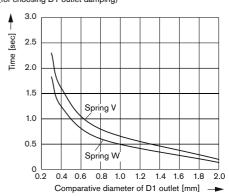
Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size	NG			BVE.W	BVE.V	
Operating pressure			bar	Nominal pressure	350	350
				Maximum pressure	420	420
Flow, nominal, at $\Delta p = 20$ bar	q _{v max}	L/min		320	320	
Start of opening of counterbalance sp	ool at port M _k	Δp_{KB}	bar		18	9
End of opening of counterbalance spo	ol at port M _k	Δp _{KE}	bar		38	39
Pressure reduction valve for brake release (fixed values)	Maximum control pressure	р	bar	BVEL/	21+4	21+4
	Start of control	р	bar	BVEL/	10+4	10+4
Mass approx.		m	kg		18	18

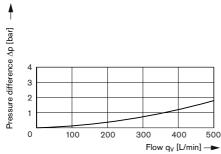
Cracking pressure p1


			Pressure value at co	ounterbalance spool	Pressure value at port M _{P1}		
Pres- sure spring		Orifice in reservoir outlet D2		End of opening ∆p _{K E} [bar] (approx.)	Start of opening \[\Delta p_1 \] [bar] (approx.)	End of opening ∆p₁ [bar] (approx.)	
W	0.45	0.3	18	38	24	51	
V	0.45	0.3	9	39	12	52	

Choosing the counterbalance spool version


Characteristic valid for BVE.../51.D). Schematic: see page 4

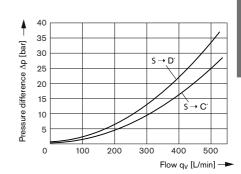
Pressure difference D → D'


(counterbalance spool at maximum opening)

Counterbalance spool closing time (for choosing D1 outlet damping)

Pressure difference C' → C

The above specifications are based on:


- Oil viscosity $v = 10 \text{ mm}^2/\text{s}$
- Oil temperature 9 = 50 °C
- Counterbalance spool fully open

Note

Pressure Δp of approx. 20 to 50 bar is normal for regulating the maximum flow in winch systems.

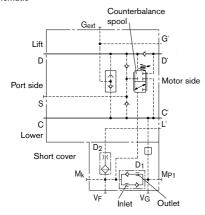
If the desired flow is not within the range of the two counterbalance spool supplied, please contact us.

Feed pressure at port S

Functional description

Winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if during braking or the load-lowering process the motor speed is greater than it should be for the given inlet flow and therefore the inlet pressure collapses. If the inlet pressure drops below the given value Δ_{PKE} (see table on page 4), the counterbalance spool will move towards the close position. The cross-sectional area of the counterbalance valve return channel is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor is again as it should be for the given inlet flow.

Brake release


Version S

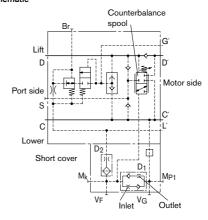
6/12

Counterbalance valve with shuttle valve and port G_{ext} (plugged), without brake release valve (pressure reduction).

The respective high pressure is balanced via the shuttle valve and is available at port G_{ext} for release of the mechanical park brake. The brake release function without pressure reduction via the brake release valve is only employed if the mechanical park brake is approved for the maximum operating pressure.

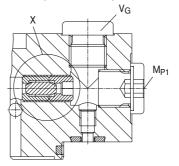
Schematic

Version L


Counterbalance valve with shuttle valve, brake release valve for pressure reduction and port Br (plugged).

Counterbalance Valve BVE Series 51 | RE 95525/11.11

The respective high pressure is balanced and fed to the brake release valve (pressure reducing valve) via the shuttle valve. This opens from about 10 bar and reduces the respective operating pressure to approx. 21⁺⁴ bar. This brake release function is employed when the mechanical brake on the gear unit cannot handle the full system pressure.


The maximum permissible brake release pressure must be agreed with the winch manufacturer.

Schematic

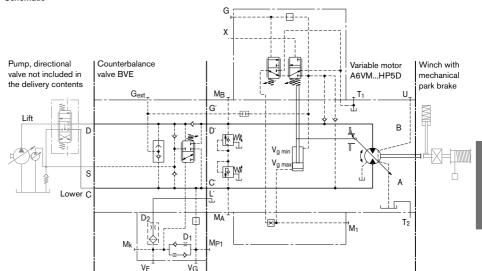


Damping D1

Installation position of throttle pin in short cover

View X

Application example of winch

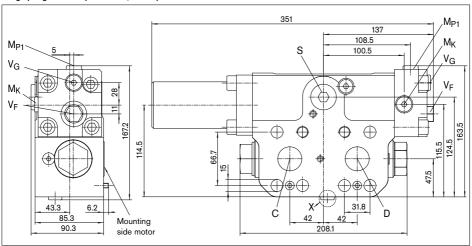

Variable motor with integrated pressure-relief valves in the port plate and mounted counterbalance valve.

Winch counterbalance valve, size 25, without brake release valve (S), with counterbalance spool (10), without internal residual opening (K00, mandatory for winches), with weak damping (D4599).

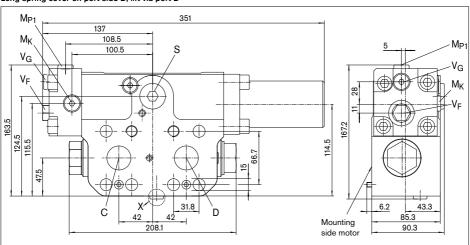
e.g.: A6VM170HP5D10001F/71MWV0R4T28W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0 fitted

to a Rexroth winch drive

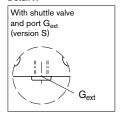
Schematic

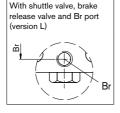


As an alternative to the above example, other axial piston motors from Bosch Rexroth (A2FM, A2FE and A6VM, A6VE) can also be used.


Dimensions size 25

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Long spring cover on port side C, lift via port C



Long spring cover on port side D, lift via port D

Detail X

Dimensions size 25

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports with profiled sealing ring (ordering code designation N)

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State
C, D	Service line	SAE J518 ³⁾	1 1/4 in	420	0
	Fastening thread C/D	DIN 13	M14 x 2; 19 deep		
S	Infeed	DIN 3852	M27 x 2; 16 deep	5)	Χ
Br	Brake release, reduced high pressure	DIN 3852	M12 x 1.5; 12.5 deep	8	Х
G _{ext}	Brake release, high pressure	DIN 3852	M12 x 1.5; 12 deep	420	Χ
C', D'	Service channel to motor ⁴⁾		ø30	420	0
G′	Selected high pressure, channel to motor ⁴⁾		ø4.2	420	0
L'	Leakage channel to motor ⁴⁾		ø4.2	10	0
M _{P1}	Measuring pressure A, before filter	DIN 3852	M14 x 1.5; 12 deep	420	X
V _G	Plug for threaded channel ⁴⁾	DIN 3852	M14 x 1.5; 12 deep	420	X
V _F	Threaded plug for filter channel ⁴⁾	DIN 6149	M16 x 1.5; 13 deep	420	Х
Mĸ	Measuring pressure at counterbalance spool	DIN 3852	M14 x 1.5; 12 deep	420	Х

O-ring for sealing to axial piston motor							
C´, D´	Service line port	AS 568 A	37.69 x 3.53 (-S-FKM90)				
G′	Selected high-pressure channel for HA control of A6VM motor	DIN 3771	9 x 2 (-N-V80G1)				
Ľ	Leakage channel	DIN 3771	9 x 2 (-N-V80G1)				

¹⁾ Observe the general instructions on page 12 for the maximum tightening torques.

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

³⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

⁴⁾ No customer ports. Subject to technical change

⁵⁾ Application-specific. Please contact us

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Installation versions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Design: A6VM

Direction of rotation: lift	Cloc	kwise	Counter-clockwise		
Flow direction at motor	A t	о В	B to A		
Counterbalance valve effect at motor port	,	A	В		
Installation version of port plate	Start of control V _{g max} Lifting winch	Start of control V _{g min} Pulling winch – not permissible for lifting winch	Start of control V _{g max} Lifting winch	Start of control V _{g min} Pulling winch – not permissible for lifting winch	
Long spring cover at BVE	On port side D	n port side D On port side C		On port side D	
Counterbalance valve ordering code	BVE25/51.D	BVE25/51.C	BVE25/51.C	BVE25/51.D	
		C		C	

Start of control $V_{g\;max}$, negative control

HP5, HP6, EP5, EP6, HZ5, HZ7, EZ5, EZ6, EZ7, EZ8, DA0, DA1, DA2

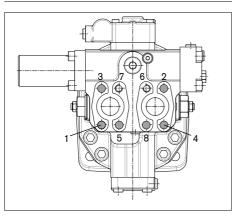
Start of control $V_{g\ min}$, positive control – not permissible for lifting winch HP1, HP2, EP1, EP2, HA1, HA2

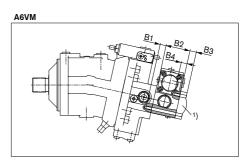
Design: A2F

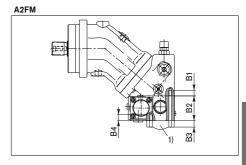
-		
Direction of rotation: lift	Clockwise	Counter-clockwise
Flow direction at motor	A to B	B to A
Counterbalance valve effect at motor port	А	В
Long spring cover at BVE	On port side C	On port side D
Counterbalance valve ordering code	BVE25/51.C	BVE25/51.D
	C	

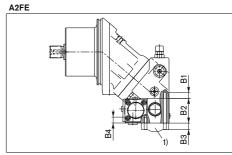
Mounting the counterbalance valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:


6 screws (1, 2, 3, 4, 5, 8)	length B1+B2+B3
2 screws (6, 7)	length B3+B4


Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).


In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M10	10.9	75
M12	10.9	130
M14	10.9	205

Axial piston motor	A2FM, A2FE	A6VM/63,	A6VE/63	A6VM/71	A6VE/71
Size	107, 125, 160, 180	107, 140, 160	107, 160	115, 150, 170	115, 170
Motor port plate required (with secondary pressure-relief valves, mutual bleed-off)	181	380	380	8	8
Dimension B1 ¹⁾	M14 x 2; 19 deep				
Dimension B2	85				
Dimension B3	Customer-specific				
Dimension B4	M14 x 2; 19 deep				

¹⁾ Minimum necessary thread length 1 x Ø

General instructions

- The BVE counterbalance valve is designed to be used in an open circuit.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the counterbalance valve, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the counterbalance valve and the axial piston unit. Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the counterbalance valve (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure of the counterbalance valve. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding the tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads of the counterbalance valve or axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the metallic threaded plugs supplied with the counterbalance valve or axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

1 0.13		Maximum permissible tightening torque of the	Required tightening torque of the	WAF hexagon socket of the	
Standard				threaded plugs	
ISO 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm	
	M14 x 1.5	80 Nm	35 Nm	6 mm	
	M27 x 2	330 Nm	135 Nm	12 mm	

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation. 2) In the "lightly oiled" state, the My is reduced to 17 Nm for M12 x 1.5.

Bosch Rexroth AG Axial piston units Glockeraustraße 2 89275 Elchingen, Germany

+49-7308-82-0 Tel.: +49-7308-72-74 info.brm-ak@boschrexroth.de

www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

Counterbalance Valve BVE Series 51 | RE 95525/11.11

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

External Gear Motors

Designation	Туре	Size	Nominal pressure	Data sheet	Page
External gear motors	AZMF AZMN	822 2528	180250 bar 200210 bar	RE 14026	467
	AZMG	2245	180 bar		

Bosch Rexroth AG RE 90010-02/07.2012

Rexroth Bosch Group

External Gear Motors

RE 14 026/05.09 Replaces: RE 14 026/01.05

AZMF ..., AZMN ..., AZMG ...

Model F = 8 ... 22.5 cm³/rev N = 25 und 28 cm³/rev G = 22.5 ... 45 cm³/rev

Contents Page Function Overview 3 Ordering code 4 Drive shaft 6 Front cover 7 Port connections 8 Motors with integral Valves and Sensors 9 10 Design calculations for Motors Diagrams 10 Specifications 14 Drive arrangement 16 Connectors 17 **Dimension Drawings** 19 40 Notes

General

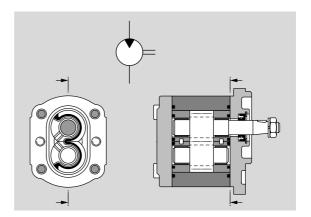
Rexroth external gear motors are produced in 3 different models, with different displacements being produced by means of gears of differing widths.

Different versions of motors are achieved by the use of different flanges, shafts, valves and integrated speed sensors.

Features

- High pressures combined with small size and low weight
- Large speed ranges
- Broad viscosity and temperature ranges
- Reversible motors for 2- and 4-quadrant operation

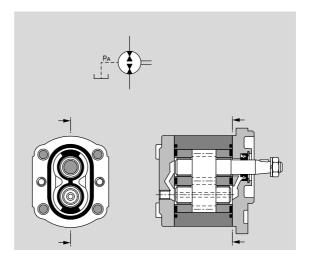
Fields of application


- Road construction machines as road rollers and pavers
- Agricultural machines and forestry technology as harvesters and forestry machines
- Street vehicles such as busses, trucks and special vehicles and above all in hydrostatic fan drives.

Function

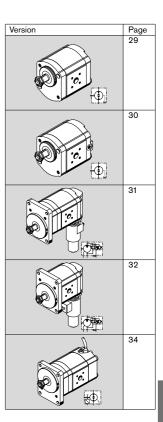
If pressurized oil is fed into the motor, a torque can be obtained from the shaft leading out of the housing. Here, a distinction is made between motors that rotate on one direction and reversible motors.

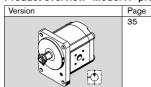
External gear motors that rotate in one direction

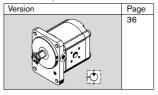

These are of asymmetrical design, i.e. the high and low pressure sides are defined and not interchangeable at will. In this case, reversible operation is not possible. In order to ensure a high efficiency level, a special running-in method is used for motors. Leakage oil is discharged internally to the outlet side. Pressure loading of the outlet is limited by the shaft seal.

Reversible external gear motors

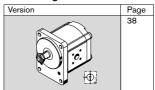
The displacement method in external gear motors is the reverse of the pump process. Reversible motors have a special feature, however. Their symmetrical construction means that the high or low pressure chambers are separate from the bearing and shaft seal chamber. The resulting leakage oil is routed through a separate oil drain gland in the housing cover. This oil drainage enables the motor to be subjected to load via the return line, which in turn allows the use of series connections. Due to the connection between the shaft seal and the low-pressure end, however, standard motors and pumps can only withstand a pressure of up to approx. 3 bar.

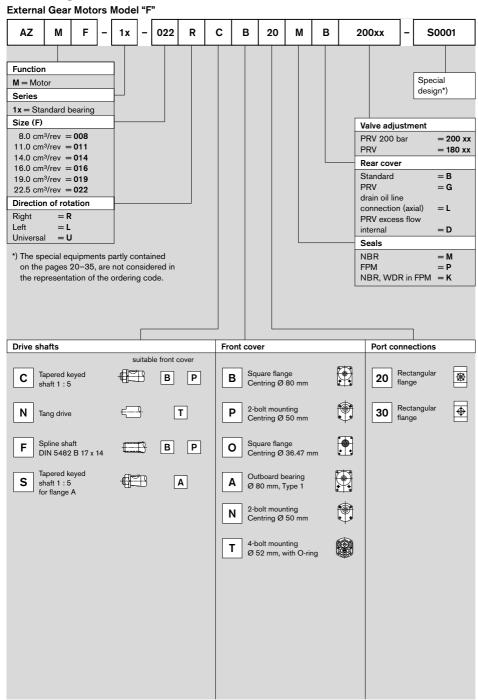

The figure shows a reversible gear motor for 4-quadrant operation, i.e. both output and input torque in both directions. (Hydraulic motor becomes a pump if load reversal occurs.)


Product overview "Model F" preferential range


	Wiodei	
Version		Page
		19
		20
i.ė.) (D)	21
		22
		23

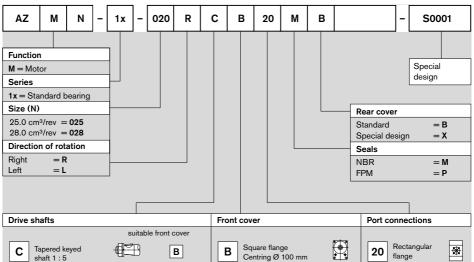
erential range	
Version	Page
i.e.	24
	25
	26
	27
	28

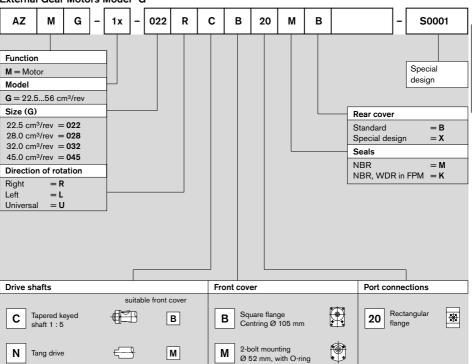

Product overview "Model N" preferential range


Product overview "Model G" preferential range

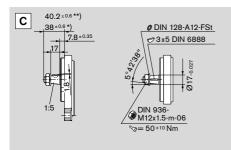
Version	Page 37
i.i.	37

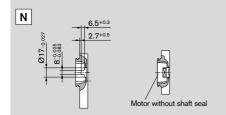
39

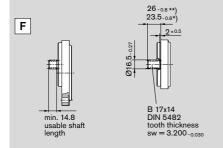

Ordering code

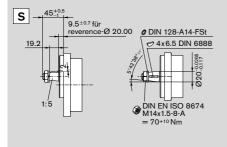

5/40

Ordering code

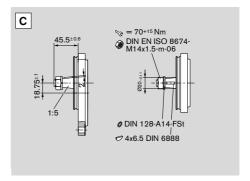


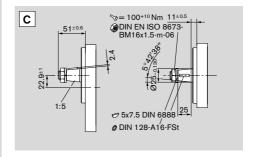


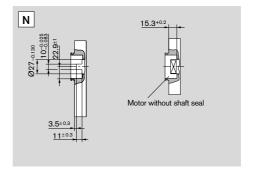

External Gear Motors Model "G"

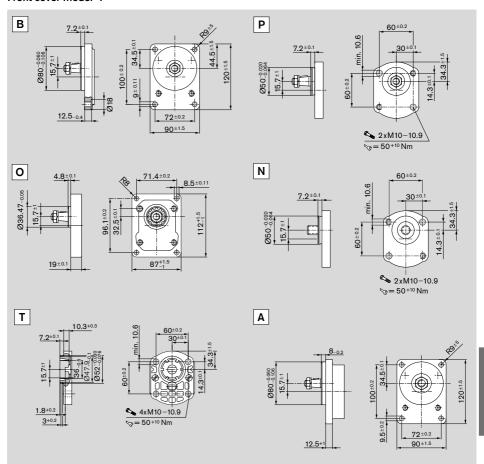


Drive shaft model "F"

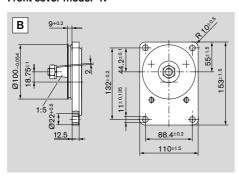


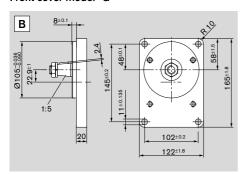


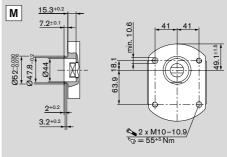

Drive shaft model "N"


- *) in combination with front cover B
- **) in combination with front cover P

Drive shaft model "G"

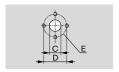



Front cover model "F"



Front cover model "N"

Front cover model "G"


Port connections

20 Rectangular flange

Synopsis	s	Size	Inlet side			Outlet side			
of Type			С	D	E	С	D	E	
20 ₁		8.0 22.5 cm ³	15	35	M6 utilizable depth 13	20	40	M6 utilizable depth 13	
Ţ)=	22.5 45.0 cm ³	18	55	M8 utilizable depth 13	26	55	M8 utilizable depth 13	

Synopsis	Size	Port connections (direction of rotation universal)					
of Type		С	D	E			
20 ± 8.0 22.5 cm ³		15	35	M6 utilizable depth 13			
	22.5 45.0 cm ³	18	55	M8 utilizable depth 13			

30 Rectangular flange

Synopsis	Size	Inlet side			Outlet side			
of Type		С	D	E	С	D	E	
30	4 8 cm ³	13.5	30.2	M6 ι	ıtilizable depth 13	13.5	30.2	M6 utilizable depth 13
=	11 28 cm ³					20.0	39.7	M8 utilizable depth 13

External gear motors with integrated valves, sensors

Gear motor with integrated, pilot-operated proportional pressure relief valve and rotary shaft seal relieved of load thanks to the three-chamber design.

The use of gear motors without this relief of the rotary shaft seal is not recommended due to the loads from the oil return line, particularly when the oil is cold. The basis of this drive unit is a motor model "F". The pilot proportional pressure relief valve is integrated in the rear end cover. This unit has the following advantages:

- No pipework necessary for the functioning of the prop. pressure relief valve
- Integrated pressure relief
- Fail-safe function in the event of power loss
- Drag speed virtually zero
- Motor speed prop. controllable
- Unaffected by pressure loads from the outlet Additional information see:

Hydrostatic fan drives 1 987 761 700 http://www.boschrexroth.com/brm

External gear motors with pressure relief valve

return port pressure < 3 bar (10 bar at starting)

External gear motors with integrated speed sensor

The DSM1-10 Hall-effect speed sensor was specially developed for tough use in mobile work machines. The sensor detects the speed signal of ferromagnetic gear wheels. In this process, as an active sensor, it supplies a signal with constant amplitude independent of the rotational speed.

Due to its compact, sturdy design, the gear motor with integrated sensor is suitable for the applications such as

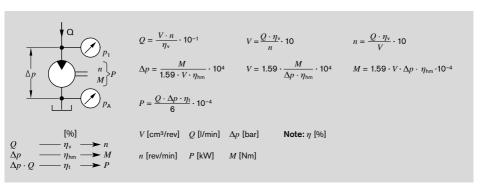
- In fan drives for buses, trucks and construction machinery from 7 to 20 kW
- As a vibration drive for road rollers and road construction machinery

For additional information see: Speed Sensor DSM RE 95 132 http://www.boschrexroth.com/brm

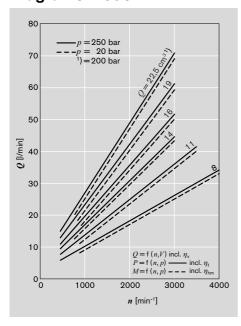
Design calculations for motors

The design calculations for motors are based on the following parameters:

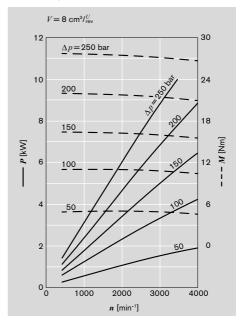
V [cm³/rev] Displacement Q [l/min] Inlet flow rate p [bar] Pressure (p_1, p_A) M [Nm] Output torque n [rev/min] Output speed P [kW] Output power

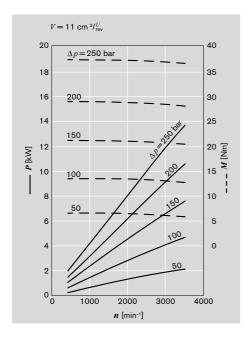

It is also necessary to allow for different efficiencies such as:

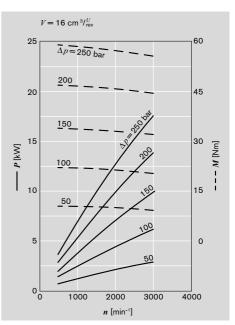
 $\eta_{\rm v}$ Volumetric efficiency $\eta_{\rm hm}$ Mechanical-hydraulic efficiency

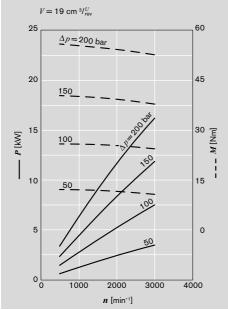

η_t Total efficiency

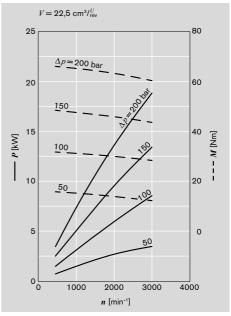
The following formulas describe the various relationships. They include correction factors for adapting the parameters to the usual units encountered in practice.

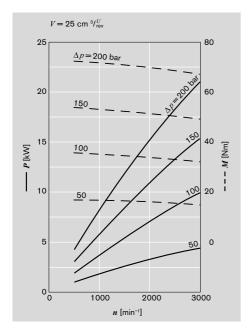

Note: Diagrams providing approximate selection data can be found on subsequent pages. These graphs contain the levels of efficiency in each case.

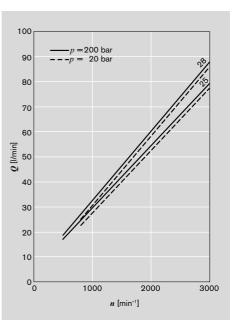


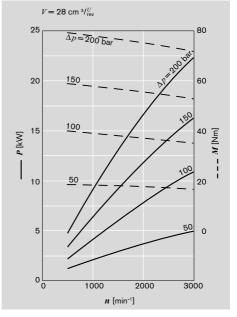

Diagrams Model "F"



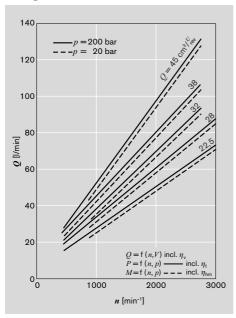


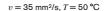


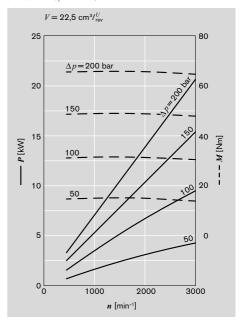


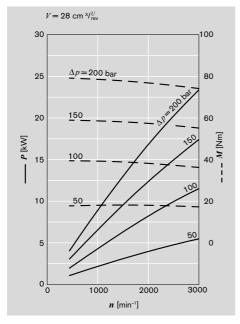


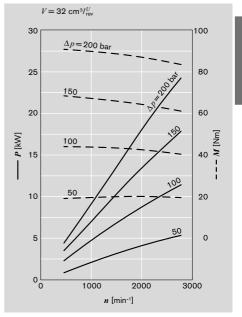
Diagrams Model "N"

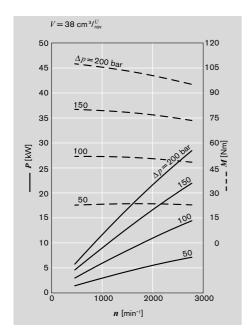

$$v = 35 \text{ mm}^2/\text{s}, T = 50 ^{\circ}\text{C}$$

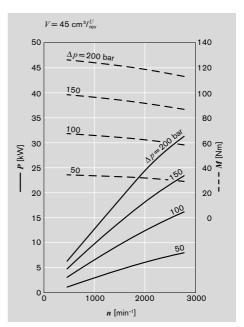







Diagrams Model "G"





Specifications

- p	
General	
Construction	external gear motor
Mounting	Flange or through-bolting with spigot
Port connections	screw, flange
Direction of rotation	One direction of rotation or reversible
(looking on shaft)	
Mounting position	any
Load on shaft	radial and axial forces after consulting
Ambient temperature range	-30 °C+80 °C with NBR seals*)
	-20 °C+110 °C with FPM seals**)
Fluids	mineral oil-based hydraulic fluids to DIN/ISO,
	other fluids upon request
Viscosity	12800 mm ² /s permitted range
	20100 mm ² /s recommended range
	2,000 mm ² /s permitted for starting
Fluid temperature range	max. +80 °C with NBR seals*)
	max. 110 °C with FPM seals**)
Filter ***)	contamination at least class 19/16 according to
	ISO 4406 to be obtained with filter $b20 = 75$.
	For higher lifespan demands we recommend a corre
	spondingly higher filter class.

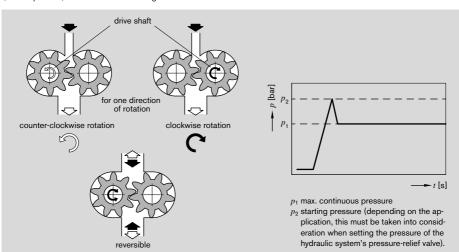
- *) NBR = Perbunan®
- **) FPM = Viton®
- ***) During the application of control systems or devices with critical counter-reaction, such as steering and brake valves, the type of filtration selected must be adapted to the sensitivity of these devices/systems.

Safety requirements pertaining to the whole systems are to be observed.

In the case of applications with frequent load cycles please consult us.

Model F

Displacement	cm ³ /rev	5.5 ¹)	8	11	14	16	19	22.5		
max. continuous pressure p ₁	bar	250	250 18							
max. starting pressure p_2		280 210								
min. rotational speed	min-1	500								
max. rotational speed p_1		4,000		3,500	3,000					
Motor outlet pressure $p_{\rm A}$ Leakage-oil line pressure $p_{\rm L}$	bar	P1 — (3 bar*)	P1 → PA						


Model N

Displacement	cm ³ /rev	25	28			
max. continuous pressure p ₁	bar	210	200			
max. starting pressure p_2		240	230			
min. rotational speed	min ⁻¹	500				
max. rotational speed p ₁		3,000				
Motor outlet pressure $p_{\rm A}$ Leakage-oil line pressure $p_{\rm L}$	bar	P ₁	3 bar*)			

Model G

Displacement	cm ³ /rev	22.5	28	32	38	45
max. continuous pressure p ₁	bar	180	'			
max. starting pressure p2	1	210				
min. rotational speed	min ⁻¹	500				
max. rotational speed p ₁	1	3,000		2,800	2,600	
Motor outlet pressure $p_{\rm A}$ Leakage-oil line pressure $p_{\rm L}$	bar	P1 —► (3 bar*)			

1) On request *) Short-term when starting 10 bar

Power take-off

1. Flexible couplings

The coupling must not transfer any radial or axial forces to the motor.

The maximum radial run out of shaft spigot is 0.2 mm.

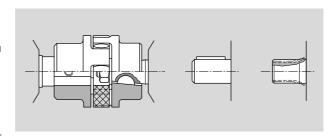
Refer to the fitting instructions provided by the coupling manufacturer for details of the maximum permitted shaft misalignment.

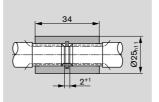
2. Sleeve couplings

Used on shafts with DIN or SAE splining. **Note:** There must be no radial or axial forces exerted on the motor or sleeve coupling. The sleeve must be free to move axially. The distance between the motor shaft and drive shaft must be 2⁺¹. Oil-bath or oil-mist lubrication is necessary.

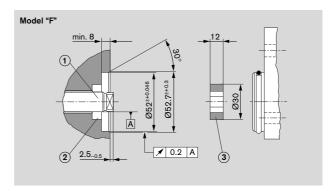
3. Drive shaft with tang

For the close-coupling of the motors to gearboxes, etc. the motors shaft has a special drive shaft with tang which combines with a center coupling ③. There is no shaft seal.


The recommended arrangements and dimensions for the drive end and sealing are as follows.

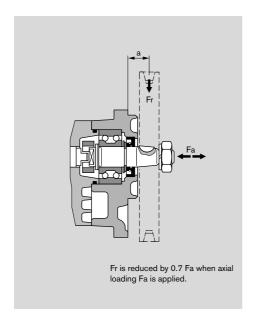

① Drive shaft

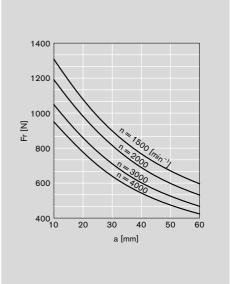
Case-hardened steel DIN 17 210, e.g. 20 MnCrS 5 case-hardened 0.6 deep; HRc 60 ± 3 . Surface for sealing ring ground without rifling $R_{max} \le 4 \mu m$


(2) Radial shaft seal

Rubber-covered seal (see DIN 3760, Type AS or double-lipped ring). Cut 15° chamfer or fit shaft seal with protective sleeve.

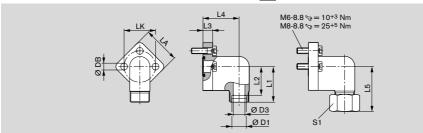
Spline	M_{max}	V	$p_{max.}$
shaft	[Nm]	[cm ³ /rev]	[bar]
DIN	190	822.5	$p_{max.}$
SAE	130		




M_{max}	V	$p_{max.}$
[Nm]	[cm3/rev]	p _{max.} [bar]
65	814	280
	16	230
	19	190
	22.5	160

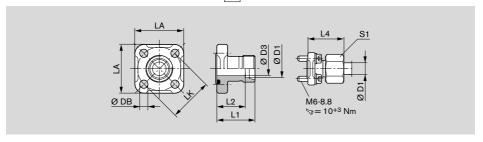
4. Outboard bearing Model "F"

Outboard bearings eliminate possible problems when the motors are driven by V-belts or gearwheels. The diagrams below show the maximum overhung and thrust loads that can be tolerated, referring to a bearing life of $L_{\rm H}=1,\!000$ hours.


M _{max.} [Nm]	V [cm³/rev]	p _{max.} [bar]
65	16	230
	19	190
	22.5	160

Connectors

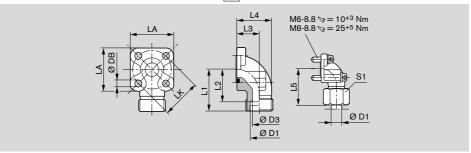
Gear motor flange, 3-bolt, 90° angle, for square flange 30 see page 8



LK	D1	D3	L1	L2	L3	L4	L5	LA	S1	DB	Screws	O-ring	Weight	Ordering-No.	p
											3 pieces	NBR *)	[kg]	_	[bar]
30	12L	10	37	30.0	10	37.5	46	38	22	6.4	M6x22	16x2.5	0.13	1 515 702 146	250
30	15L	12	37	30.0	10	37.5	47	38	27	6.4	M6x22	16x2.5	0.14	1 515 702 147	250
30	18L	15	37	30.0	10	37.5	47	38	32	6.4	M6x22	16x2.5	0.17	1 515 702 148	160
40	22L	19	43	35.5	14	41.0	53	48	36	8.4	M8x30	24x2.5	0.29	1 515 702 149	160
40	28L	24	43	35.5	14	41.0	53	48	41	8.4	M8x30	24x2.5	0.40	1 515 702 150	160

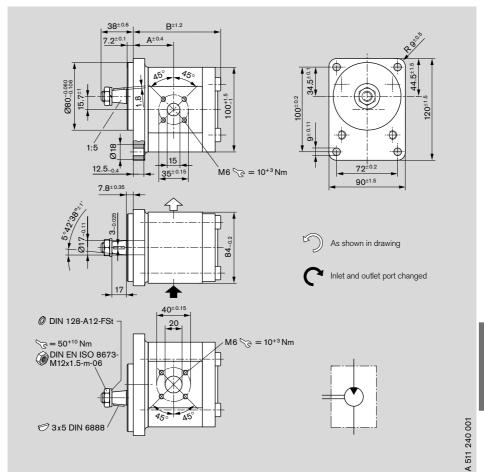
Complete screw connection with O-ring, metric screw set, nut/mother and sleeve fitting *) NBR = Perbunan®

Connectors (continuation)


Gear motor flange, straight, for square flange 20 see page 8

LK	D1	D3	L1	L2	L4	LA	S1	DB	Screws	O-ring	Weight	Ordering-No.	p
									4 pieces	NBR *)	[kg]		[bar]
35	10L	8	30	23.0	39.0	40	19	6.4	M6x22	20x2.5	0.09	1 515 702 064	315
35	12L	10	30	23.0	39.0	40	22	6.4	M6x22	20x2.5	0.10	1 515 702 065	315
35	15L	12	30	23.0	38.0	40	27	6.4	M6x22	20x2.5	0.10	1 515 702 066	250
40	15L	12	35	28.0	43.0	42	27	6.4	M6x22	24x2.5	0.12	1 515 702 067	100
40	18L	15	35	27.5	44.0	42	32	6.4	M6x22	24x2.5	0.13	1 515 702 068	100
40	22L	19	35	27.5	44.5	42	36	6.4	M6x22	24x2.5	0.12	1 515 702 069	100
40	28L	24	42	27.5	34.5	42	41	6.4	M6x22	24x2.5	0.15	1 515 702 008	100

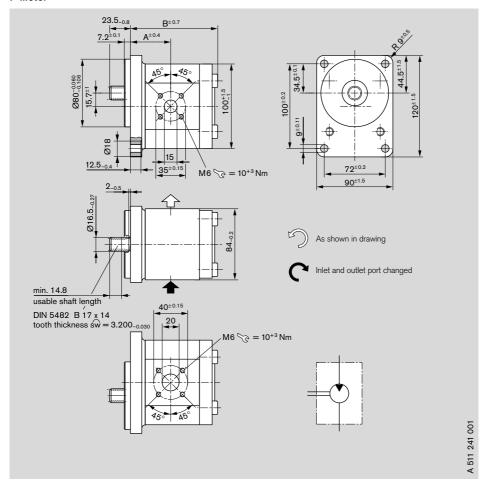
Complete screw connection with O-ring, metric screw set, nut/mother and sleeve fitting *) NBR = Perbunan®


Gear motor flange, 90° angle, for square flange 20 see page 8

LK	D1	D3	L1	L2	L3	L4	L5	LA	S1	DB	Screws		O-ring	Weight	Ordering-No.	p
											2 pcs.	2 pcs.	NBR *)	[kg]		[bar]
35	10L	8	38	31.0	16.5	26.5	47.0	40	19	6.4	M6 x 22	M6 x 35	20 x 2.5	0.16	1 515 702 070	315
35	12L	10	38	31.0	16.5	26.5	47.0	40	22	6.4	M6 x 22	M6 x 35	20 x 2.5	0.16	1 515 702 071	315
35	15L	12	38	31.0	16.5	26.5	46.0	40	27	6.4	M6 x 22	M6 x 35	20 x 2.5	0.15	1 515 702 072	250
35	16S	12	38	29.5	20.0	31.0	48.0	40	30	6.4	M6 x 22	M6 x 40	20 x 2.5	0.18	1 515 702 002	315
35	18L	15	38	29.5	20.0	31.0	47.0	40	32	6.4	M6 x 22	M6 x 40	20 x 2.5	0.18	1 545 702 006	250
35	20S	16	45	34.5	25.0	38.0	56.0	40	36	6.4	M6 x 22	M6 x 45	20 x 2.5	0.24	1 515 702 017	315
40	15L	12	38	31.0	22.5	36.5	46.0	42	27	6.4	M6 x 22	M6 x 22	24 x 2.5	0.15	1 515 702 076	100
40	18L	15	38	30.5	22.5	36.5	47.0	42	32	6.4	M6 x 22	M6 x 22	24 x 2.5	0.17	1 515 702 074	100
40	20S	16	40	29.5	22.5	35.5	50.0	42	36	6.4	M6 x 22	M6 x 45	24 x 2.5	0.20	1 515 702 011	250
40	22L	19	38	30.5	22.5	36.5	47.5	42	36	6.4	M6 x 22	M6 x 22	24 x 2.5	0.17	1 515 702 075	100
40	28L	22	40	32.5	28.0	43.0	49.0	42	41	6.4	M6 x 20	M6 x 50	24 x 2.5	0.24	1 515 702 010	100
40	35L	31	41	30.5	34.0	55.0	52.0	42	50	6.4	M6 x 22	M6 x 60	24 x 2.5	0.33	1 515 702 018	100
55	20S	17	45	34.5	24.0	40.0	56.0	58	36	8.4	M8 x 25	M8 x 50	33 x 2.5	0.44	1 515 702 004	250
55	30S	26	49	35.5	32.0	50.0	62.0	58	50	8.4	M8 x 25	M8 x 50	33 x 2.5	0.50	1 515 702 006	250
55	35L	31	49	38.5	32.0	51.5	62.0	58	50	8.4	M8 x 25	M8 x 60	33 x 2.5	0.47	1 515 702 005	100
55	42L	38	49	38.0	40.0	64.5	61.0	58	60	8.4	M8 x 25	M8 x 70	33 x 2.5	0.60	1 515 702 019	100

Complete screw connection with O-ring. metric screw set. nut/mother and sleeve fitting *) NBR = Perbunan®

F-Motor

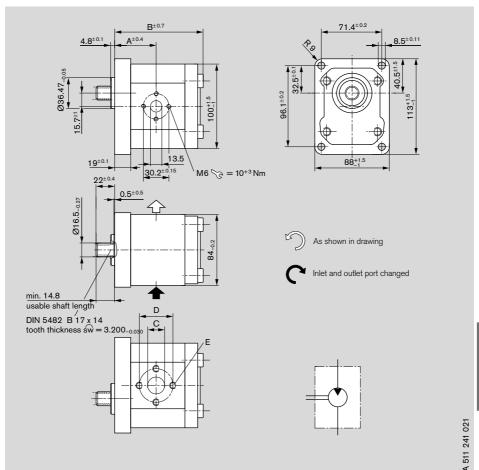

Ordering code

AZMF - 1x - [AZMF - 10 - [C B 20 M B

C B 20 K B* AZMF - 10 -C B 20 M B - S0012 **

Displace-	Ordering-No.		Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
8	0 511 425 300	0 511 425 001	210	500	4,000	2.9	43.2	91.1
11	0 511 525 300	0 511 525 001	210	500	3,500	3.0	47.0	96.3
14	0 511 525 304	-	210	500	3,000	3.2	47.5	101.3
16	-	0 511 625 005	210	500	3,000	3.4	47.5	104.7
19	0 511 625 308	0 511 625 003	180	500	3,000	3.6	47.5	109.7
19	-	0 511 625 009 *	180	500	3,000	3.6	47.5	109.7
22.5	0 511 725 304 **	0 511 725 005 **	210	500	3,000	3.9	61.1	125.3

F-Motor

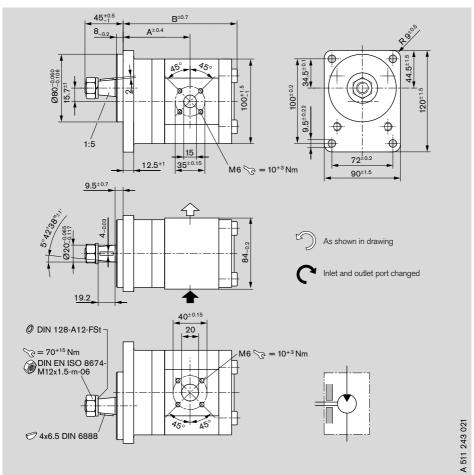


erina	

AZME - 10 - C C F B 20 M B

AZWF - 10 F B 20 W B											
Displace-	Orderin	ng-No.	Max.	Min.	Max.	kg	Dimension				
ment			operating	rotation	rotation						
			pressure	speed	speed		[mm]				
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B			
8	0 511 425 301	0 511 425 002	210	500	4,000	2.9	43.2	91.0			
11	0 511 525 301	0 511 525 002	210	500	3,500	3.0	47.0	96.0			
14	0 511 525 303	-	210	500	3,000	3.2	47.5	101.0			
16	0 511 625 301	0 511 625 001	210	500	3,000	3.4	47.5	104.4			
19	0 511 625 300	0 511 625 002	180	500	3,000	3.6	47.5	109.4			
22.5	0 511 725 303	0 511 725 004	180	500	3,000	3.8	61.1	126.8			

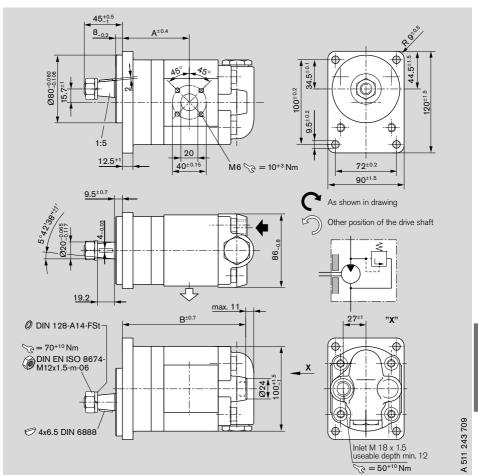
F-Motor



Ordering code

AZMF - 10 - _ _ _ _ _ F O 30 M B

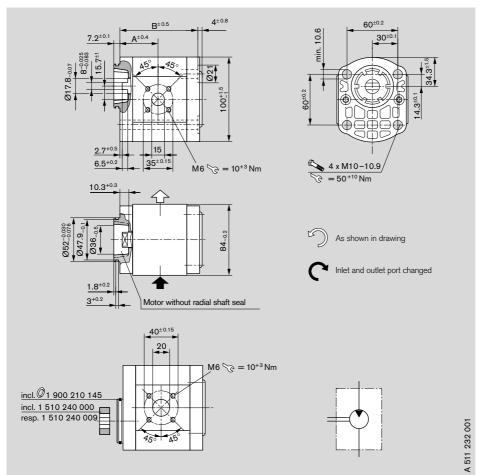
Displace-	Orderi	ng-No.	Max.	Min.	Max.	kg	Dimen	Dimension				
ment			operating	rotation	rotation							
			pressure	speed	speed		[mm]					
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B	C	D	E	
8	-	0 511 425 003	210	500	4,000	2.9	44.9	90.7	13.5	30.2	$M6 = 10^{+3}$	
19	0 511 625 303	-	180	500	3,000	3.7	49.0	109.1	20.0	39.7	$M8 = 25^{+5}$	
22.5	-	0 511 725 305	180	500	3,000	3.9	56.6	114.5	20.0	39.7	$M8 = 25^{+5}$	


F-Motor

Ordering code

Displace-	Orderii	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation	-		
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
8	0 511 445 300	0 511 445 001	250	500	4,000	3.5	74.7	120.6
11	0 511 545 300	0 511 545 001	250	500	3,500	3.6	78.5	125.6
14	0 511 545 301	-	250	500	3,000	3.7	79.0	130.6
16	0 511 645 300	0 511 645 001	250	500	3,000	3.8	79.0	134.0
16	-	0 511 645 003	230	500	3,000	3.8	93.0	134.0
19	0 511 645 302	-	190	500	3,000	4.2	79.0	139.0
22.5	0 511 745 300*	0 511 745 001*	160	500	2,500	4.8	92.6	156.4

F-Motor



Ordering code

AZMF - 10 - _ _ _ _ S A 20 M D XXXXX - S0076

Displace-	Orderin	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
8	0 511 445 301	0 511 445 003	200	500	4,000	3.6	74.7	133.1
11	0 511 545 302	0 511 545 003	150	500	3,500	3.8	79.1	138.1

F-Motor

Ordering code

0 511 715 300

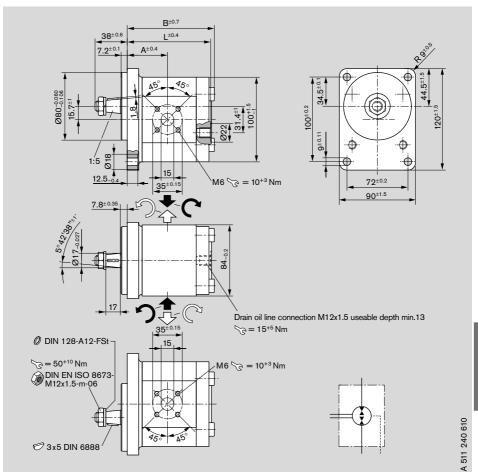
0 511 715 001

AZINI - 10 -											
Displace-	Orderin	ng-No.	Max.	Min.	Max.	kg	Dimension				
ment			operating	rotation	rotation						
			pressure	speed	speed		[mm]				
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В			
8	0 511 415 300	0 511 415 001	250	500	4,000	2.5	40.7	80.3			
11	0 511 515 300	0 511 515 001	250	500	3,500	2.6	44.5	85.3			
16	0 511 615 301	0 511 615 002	230	500	3,000	3.0	45.0	93.7			
19	0 511 615 300	0 511 615 001	190	500	3,000	3.2	45.0	98.7			

500

3,000

3.4

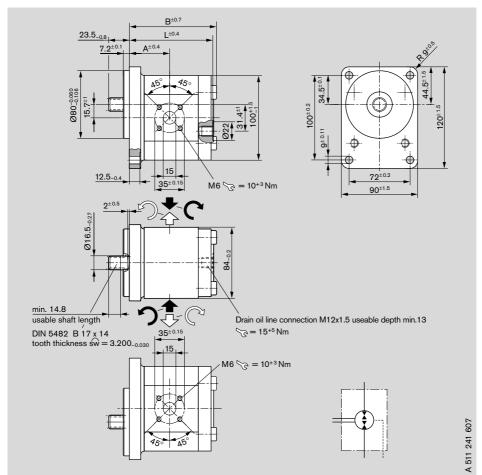

52.6

104.1

160

22.5

F-Motor

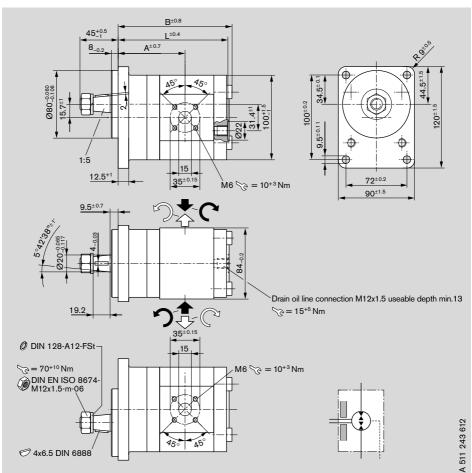


Ordering code

AZIVII -								
AZMF -	10 -		U	С	В	20	Κ	L*

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension		
ment		operating-	rotation	rotation				
		pressure	speed	speed		[mm]		
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min-1]		Α	B	L
8	0 511 425 601	210	500	4,000	3.4	43.2	90.7	85.8
11	0 511 525 604	210	500	3,500	4.2	47.0	95.9	90.8
16	0 511 625 602	210	500	3,000	3.9	47.5	104.3	99.2
22.5	0 511 725 601 *	180	500	3,000	3.9	55.1	114.6	109.6

F-Motor

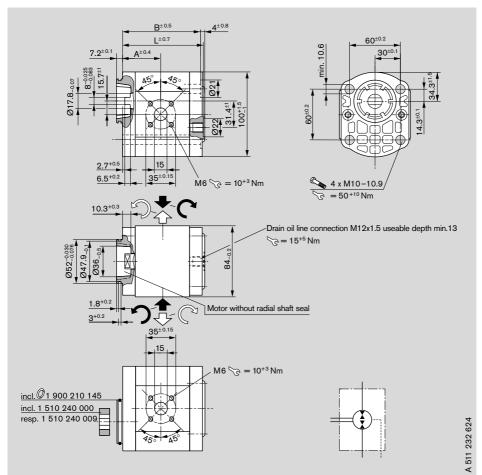


Ordering code

AZMF - 10 - | U F B 20 M L

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension	Dimension		
ment		operating	rotating	rotating					
		pressure	speed	speed		[mm]			
[cm3/rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	L	
8	0 511 425 603	210	500	4,000	2.9	43.2	91.0	85.8	
11	0 511 525 601	210	500	3,500	3.0	47.0	96.0	90.8	
16	0 511 625 603	210	500	3,000	3.4	47.5	104.4	99.2	
19	0 511 625 605	180	500	3,000	3.6	47.5	109.4	104.2	
22.5	0 511 725 602	180	500	3,000	3.8	55.1	114.8	109.6	

F-Motor

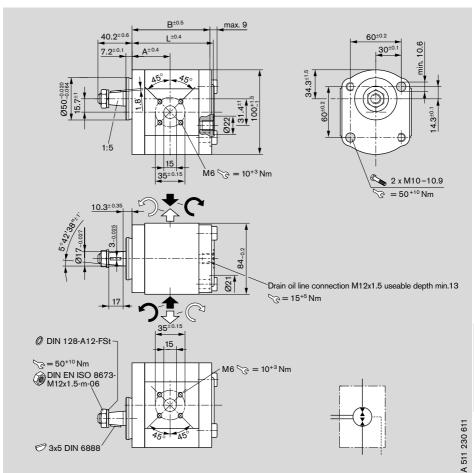


Ordering code

AZMF - 10 - _ U S A 20 M L

Displace- ment	Ordering-No.	Max. operating	Min. rotation	Max. rotation	kg	Dimension		
		pressure	speed	speed		[mm]		
[cm ³ /rev]	Universal	[bar]	[min-1]	[min ⁻¹]		Α	В	L
8	0 511 445 601	250	500	4,000	3.5	74.8	120.8	116.9
11	0 511 545 601	250	500	3,500	3.6	78.6	125.8	121.9
16	0 511 645 601	230	500	3,000	4.0	79.1	134.2	130.3
19	0 511 645 603	190	500	3,000	4.2	79.1	139.2	135.3

F-Motor

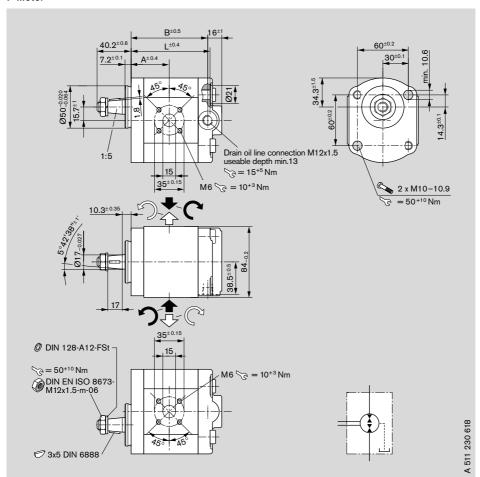


Ordering code

AZMF - 10 - U N T 20 M L - S0164

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension	Dimension		
ment		operating	rotation	rotation					
		pressure	speed	speed		[mm]			
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B	L	
8	0 511 415 605	250	500	4,000	2.5	40.7	80.3	82.8	
11	0 511 515 602	250	500	3,500	2.6	44.5	85.3	87.8	
16	0 511 615 607	230	500	3,000	3.0	45.0	93.7	96.2	
19	0 511 615 608	190	500	3,000	3.2	45.0	98.7	101.2	
22.5	0 511 715 601	160	500	3,000	3.4	52.6	104.1	106.6	

F-Motor

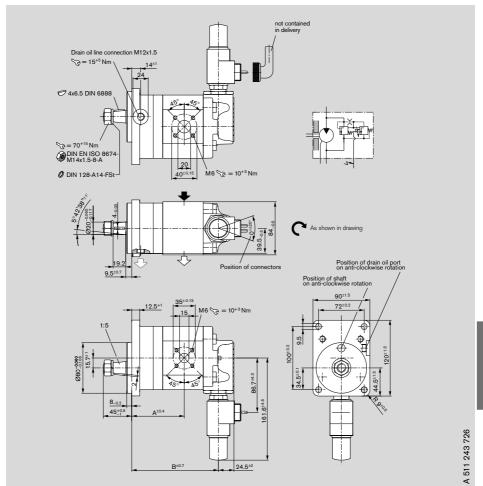


Ordering code

AZMF - 1X - 🔲 🔲 U C P 20 M L

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension		
ment		operating	rotation	rotation				
		pressure	speed	speed		[mm]		
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	L
8	0 511 415 606	210	500	4,000	2.8	40.7	80.3	83.3
11	0 511 515 601	210	500	3,500	2.8	44.5	85.3	88.3
14	0 511 515 605	210	500	3,000	3.1	45.0	90.3	93.3
16	0 511 615 609	210	500	3,000	3.1	45.0	93.7	96.7

F-Motor

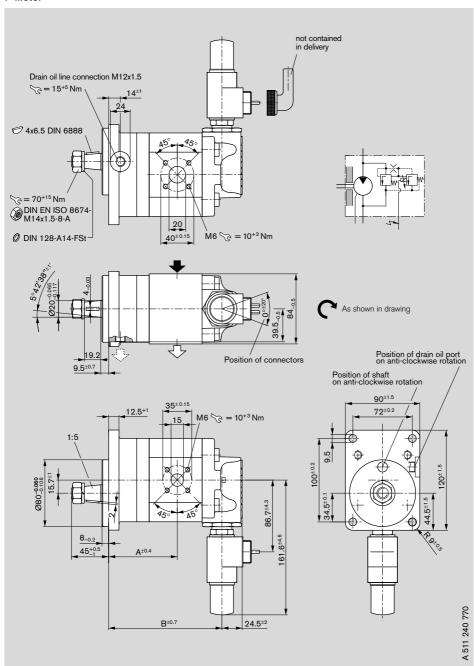


Ordering code

AZMF - 11 - _ _ _ U C N 20 M B - S0077

Displace-	Ordering-No.	Мах.	Min.	Мах.	kg	Dimension	Dimension		
ment		operating	rotation	rotation					
		pressure	speed	speed		[mm]			
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B	L	
8	0 511 415 607	210	500	4,000	2.9	40.7	80.3	80.3	

F-Motor



Ordering code

AZMF - 11 - _ _ _ _ _ S A 20 P GXXXX AZMF - 12 - _ _ _ _ S A 20 P GXXXX*

Displace-	Orderin	ıg-No.	Min.	Max.	PVR	Coil	kg	Dimensi	ion
ment			rotation	rotation		nominal			
			speed	speed		current		[mm]	
[cm ³ /rev]	L	R	[min ⁻¹]	[min ⁻¹]	[bar]	[1]		Α	В
16	-	0 511 645 007	500	3,000	130	1.5	5.0	79.0	137.7
16	-	0 511 645 005 *	500	3,000	170	1.5	5.0	79.0	137.7
16	0 511 645 306	-	500	3,000	170	1.5	5.1	79.0	137.7
16	0 511 645 307	-	500	3,000	210	1.5	5.1	79.0	137.7
16	-	0 511 645 011 *	500	3,000	210	1.5	5.1	79.0	137.7

F-Motor

33/40

Dimensions in mm

0 511 625 309

0 511 725 311

_

☐ ☐ C B 20 P GXXXX

F-Motor

16

16

19

19

19

22.5

22.5

22.5

22.5

Ordering code AZMF - 11 -

Min. PRV Displace-Ordering-No. Max. Coil Dimension kg 15 rotation rotation nominal ment speed speed current [mm] [cm3/rev] [min-1] [min-1] [bar] [1] Α В 8 0 511 425 302 500 4,000 210 0.75 4.7 48.7 98.3 8 0 511 425 015 500 4,000 90 1.5 4.6 48.7 98.3 8 0 511 425 013 500 4,000 130 1.5 4.7 48.7 98.3 8 0 511 425 012 170 1.5 4.7 48.7 98.3 500 4,000 8 _ 0 511 425 014 500 4,000 150 1.5 4.7 48.7 98.3 11 500 170 1.5 4.7 47.5 _ 0 511 525 013 3,500 103.5 11 0 511 525 011 500 3,500 180 0.75 4.8 47.5 103.5 90 11 0 511 525 309 500 3.500 1.5 4.8 47.5 103.5 3,500 180 11 0 511 525 308 500 0.75 4.8 47.5 103.5 14 0 511 525 014 500 3,000 210 1.5 4.9 43.2 108.5 16 0 511 625 019 500 3.000 210 1.5 5.0 47.5 111.7

500

500

500

500

500

500

500

500

500

0 511 625 020

0 511 625 018

0 511 625 022

0 511 625 021

0 511 725 021

0 510 725 023

0 511 725 027

210

210

210

210

180

210

210

210

170

3,000

3,000

3,000

3,000

3,000

3,000

3,000

3,000

3,000

1.5

1.5

0.75

0.75

0.75

1.5

1.5

0.75

1.5

5.0

5.0

5.1

4.0

5.1

5.3

5.3

5.3

5.2

47.5

47.5

47.5

47.5

47.5

55.1

55.1

55.1

55.1

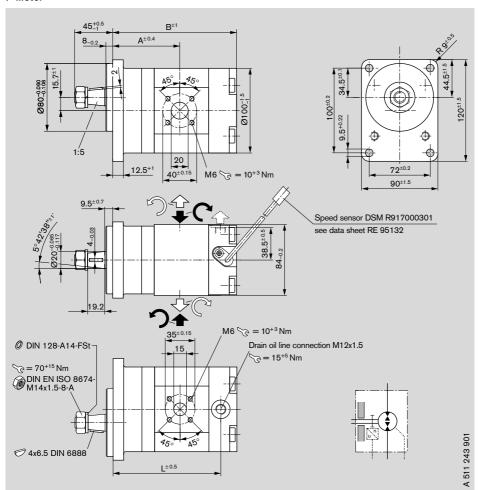
111.7

111.7

116.7

116.7

116.7

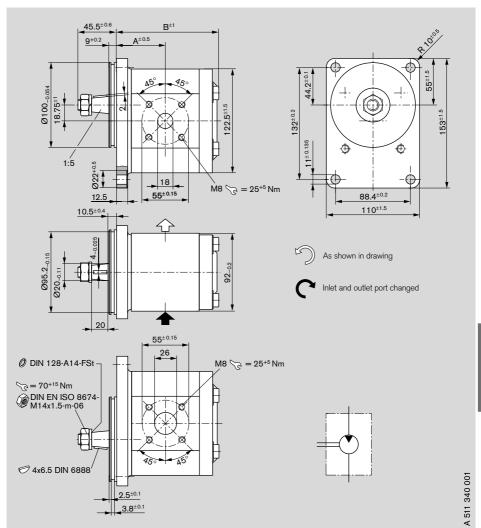

122.1

122.1

122.1

122.1

F-Motor

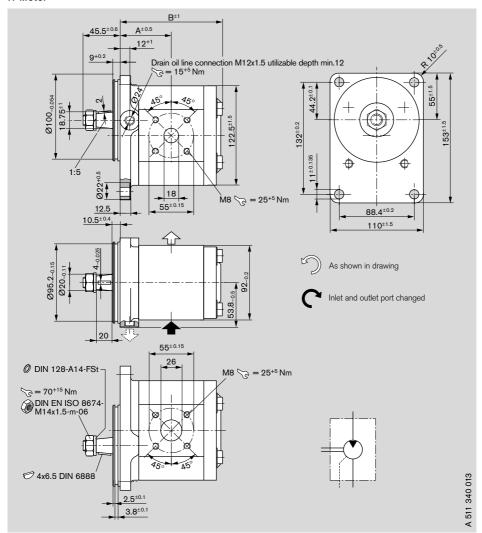


Ordering code

AZMF - 12 - U S A 20 P L - S0079

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension	Dimension		
ment		operating	rotation	rotation					
		pressure	speed	speed		[mm]			
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	L	
16	0 511 645 607	230	500	3,000	3.6	79	146.7	127.7	

N-Motor

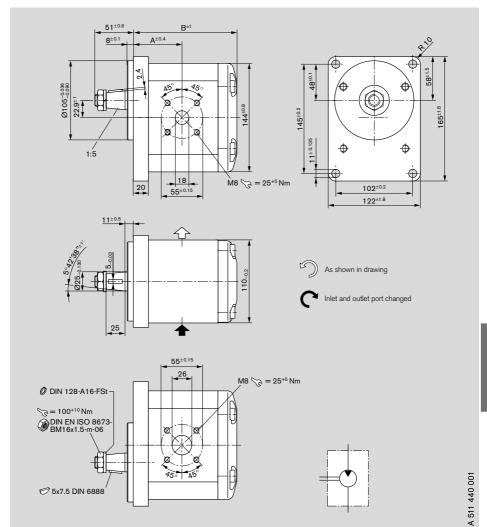


Ordering code

AZMN - 11 - | | | | C B 20 M B

Displace-	Orderin	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
25	0 511 725 307	-	210	500	3,000	6.3	55.0	116.1
28	0 511 725 309	0 511 725 019	200	500	3,000	6.3	56.6	119.1

N-Motor

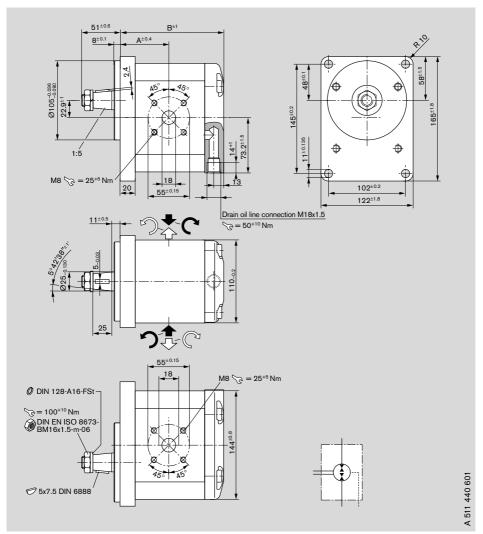


Ordering code

AZMN - 11 -		P B - S0097			
Displace-	Orderir	ng-No.	Мах.	Min.	Max
ment			operating	rotation	rota
	//		nressure	sneed	sne

Displace-	Orderin	Ordering-No.		Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
25	-	0 511 725 024	210		3,000	10.3	60.5	120.8
28	0 511 725 312	-	210		2,800	6.1	62.0	123.8

G-Motor

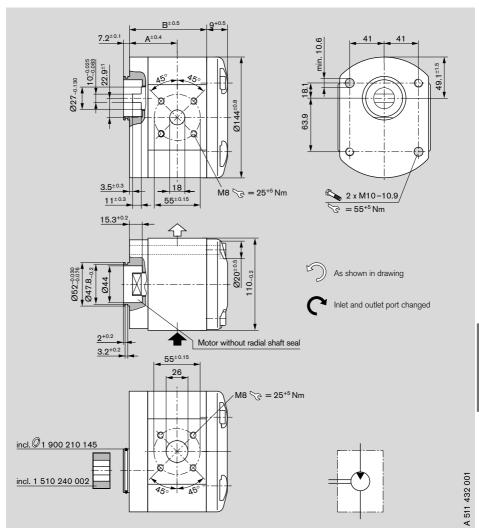

Ordering code

AZMG - 11 - _ _ _ _ _ C B 20 M B

Displace-	Ordering-No.		Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
22.5	0 511 725 300	0 511 725 001	180	500	3,000	9.1	61.0	128.7
32	0 511 725 301	0 511 725 002	180	500	2,800	9.6	64.5	137.2
45	0 511 725 302	0 511 725 003	180	500	2,600	10.1	69.5	149.2

Dimensions in mm

G-Motor


Ordering code	•				
AZMG - 11 -	ΠГ	ا∏ر	ЈСВ	20 K	

AZMG - 11 - 🔲 🔲 U C B 20 K X* - S007	7
AZMG - 11 - 🗌 📗 🔲 U C B 20 M X - S007	7

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension	
ment		operating	rotation	rotation			
		pressure	speed	speed		[mm]	
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
22.5	0 511 725 600	210	500	3,000	9.0	61.0	128.7
28	0 511 726 603	210	500	3,000	9.2	63.0	133.7
32	0 511 726 604*	210	500	2,800	9.4	64.5	137.2

Dimensions in mm

G-Motor

Ordering code

AZMG - 11 -	Ш	$\sqcup \sqcup$	∐N	1 M	20 M B
-------------	---	-----------------	----	-----	--------

Displace-	Orderin	ng-No.	Мах.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
45		0 511 715 002	210	500	2,600	8.4	70.5	151.2

Notes

Filter recommendation

The major share of premature failures in external gear motors is caused by contaminated pressure fluid.

As a warranty cannot be issued for dirt-specific wear, we recommended filtration compliant with cleanliness level 20/18/15 ISO 4406, which reduces the degree of contamination to a permissible dimension in terms of the size and concentration of dirt particles:

Operating pressure [bar]	>160	<160
Contamination class NAS 1638	9	10
Contamination class ISO 4406	18/15	19/16
To be reached with $\beta_v = 75$	20	25

We recommend that a full-flow filter always be used. Basic contamination of the pressure fluid used may not exceed class 20/18/15 according to ISO 4406. Experience has shown that new fluid quite often lies above this value. In such instances a filling device with special filter should be used.

Genera

- The motors supplied by us have been checked for function and performance. No modifications of any kind may be made to the pumps; any such changes will render the warranty null and void!
- Motor may only be operated in compliance with permitted data (see pages 14 – 18).

Project planning notes

Comprehensive notes and suggestions are available in Hydraulics Trainer, Volume 3 RE 00 281, "Project planning notes and design of hydraulic systems". Where external gear motors are used we recommend that the following note be adhered to

Technical data

All stated technical data is dependent on production tolerances and is valid for specific marginal conditions. Note that, as a consequence, scattering is possible, and at certain marginal conditions (e.g. viscosity) the technical data may change.

Characteristics

When designing the external gear motor, note the maximum possible service data based on the characteristics displayed on pages 10 to 14.

Additional information on the proper handling of hydraulic products from Bosch Rexroth is available in our document: "General product information for hydraulic products" RE 07 008.

Leakage oil line

A leakage oil line must be connected directly to the tank in reversible motors or motors stressed by run-back. Observe sufficient dimensions.

Contained in delivery

The components with characteristics as described under device measurements and ordering code, pages 19 – 39, are contained in delivery.

You can find further information in our publication:
"General Operating Instructions for External Gear Units"
RE 07 012-B1.

Bosch Rexroth AG
Hydraulics
Produktbereich Außenzahnradmaschinen
Robert-Bosch-Straße 2
D-71701 Schwieberdingen
Tel. +49 (0) 711-811 10 63
Fax +49 (0) 711-811 26 18 83
bmr-az_info@boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rewroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Radial Piston Motors

Designation	Туре	Size	Series	Nominal pressure	Data sheet	Page
Radial piston motor (multi-stroke)	MCR3	160400	зх	400450 bar	RE 15205	509
Radial piston motor (multi-stroke)	MCR5	380820	зх	400450 bar	RE 15206	527
Radial piston motor (multi-stroke)	MCR10	7801340	зх	400450 bar	RE 15207	545
Radial piston motor (multi-stroke)	MCR15	11302150	зх	400450 bar	RE 15208	561
Radial piston motor (multi-stroke)	MCR20	17503000	зх	400450 bar	RE 15209	577
Radial piston motor for track drives	MCR-T	3801340	зх	450 bar	RE 15221	589
Radial piston motor for slew drives	MCR-X	160820	зх	300350 bar	RE 15214	599

Bosch Rexroth AG RE 90010-02/07.2012

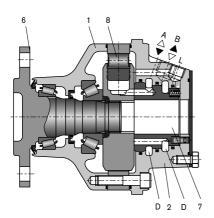
Radial Piston Motor (Multi-Stroke) MCR3

RE 15205/06.09 1/18 Replaces: 02.98

Data sheet

Series 3X Size 160 to 400 Differential pressure up to 450 bar Torque output up to 2300 Nm Speed up to 875 rpm Open and closed circuits

Contents


Functional description
Ordering code
Schematic diagrams
Direction of rotation
Technical data
Permitted loading on drive shaft
Dimensions

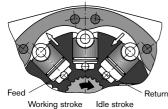
Features

- 2 Compact robust construction
- 4 High volumetric and mechanical efficiencies
- 5 High pressure rating
- 5 High reliability
- 6 Low maintenance
- Smooth running at very low speeds
- 11 Low noise
 - Reversible
 - Sealed tapered roller bearings
 - High radial forces permitted on drive shaft
 - Freewheeling possible
 - Available with optional holding brake (multi-disc) or dynamic (drum) brake
 - Available with:
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

2/18 Bosch Rexroth AG MCR3 | RE 15205/06.09

Functional description

Hydraulic motors type MCR are radial piston motors with a rotating shaft.


Construction

Two part housing (1, 2), rotary group (3, 4), cam (5), drive shaft (6) and flow distributor (7)

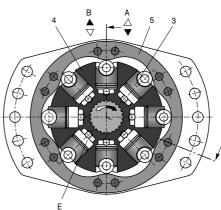
Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque Generation

The number of working and return strokes corresponds to the number of lobes on the cam x number of pistons (8).

Flow paths


The cylinder chambers (E) are connected to ports A and B via the axial bores and the annular passages (D).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard, except on Hydrobase motors

Freewheeling

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports A and B to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port L. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

Bosch Rexroth AG

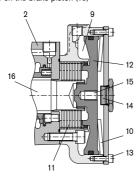
Functional Description

Flushing flow rates (for $p_{charge} - p_{case} = 25 \text{ bar}$)

Ordering code	Flow	(±1 l/min)
F1	3	l/min
F2	5	l/min
F7	7	l/min
F4	10	l/min
F8	12.5	l/min
F6	13.5	I/min

Holding brake (multi-disc brake)

By way of rear housing (2) and brake shaft (16).

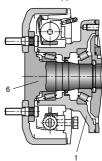

Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring allowing the brake discs to turn independently.

Note: This brake is provided solely for static use - not to be used dynamically.

Manual release of holding brake

The brake may also be released manually by loosening screws (13), or by removing plug (14) and inserting a puller into the tapped hole on the brake piston (15)

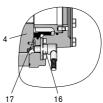


Dynamic brake

Where mechanical dynamic braking is required, a drum brake may be specified. The drum brake is mounted directly onto the drive shaft (6) and front housing (1). Braking torque is provided by brake shoes acting on the inside of the drum.

Operation of brake

- hydraulic brake fluid (special order required for mineral oil operation)
- mechanical brake cable (not supplied)



Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.

Versions are available for use with regulated supplies (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Bosch Rexroth AG MCR3 | RE 15205/06.09

Ordering code

4/18

MCR	3				Z	_	ЗХ				12					
01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16

		_		1		_		-/.			1		- 1		- 1		i	1
	01	02	03	04	05	06		07	08	09	10) .	11	12	13	14	15	16
	Radial pi	cton m	otor															
01	Kaulai pi	Ston m	OLOI															MCR
-																		WCK
	Frame si																	
02	Frame si	ze 3																3
	Housing	Туре																
	Front cas																	Α
	Front cas			E 4 met	ric hole	s												D
03	Rear cas							,										F
	High rad				, rear c	ase mo	unting	lange										W
	Hydroba	se (naii	motor))														Н
	Nominal :	size, dis	splacen	nent V ir	n cm ³ /r	ev					160	225	255	280	325	365	400	i
04	Low Dis	olaceme	ent: mo	tors use	standa	ırd cyli	ndrical _I	oistons		LD	•	•	•	•	-	-	-	
	High Dis	placem	ent: mo	otors us	e stepp	ed pist	ons			HD	-	-	_	_	•	•	•	
	Drive sha	aft																
	Splined:	shaft Al	NSI B9	2.1 (only	y availal	ole witl	n housir	ig type '	'A")									A45
05	Parallel k	_									mum	torque	1500	Nm)				L40
00	With flan								and "W	")								F180
	Without	drive sh	naft (on	ly availa	ble with	housi	ng type	"H")										Z
	Through	shaft																
06	Without	through	n shaft															Z
	Series																	
07	Series 3	0 to 39	(series	30 to 3	39 are c	limens	onally in	nterchar	ngeable	·)								зх
	Brake																	
_	Without	hrake																A0
	Hydraulie		se sprin	a applie	ed multi-	disc h	oldina b	rake 22	00 Nm									B2
80	Dynamic										e 17)							C2R
	Dynamic																	C2L
	Seals																	
_	NBR (nit	rile rub	her) (e	cent d	namic I	orake -	see na	ge 17)										М
09	FKM (flu								age 17)								V
_						,												
_	Single / Single s					tation												1L
10	Bi-direct						of rotati	on										2WL
		ionai tvi	о орсс	a, otano	aura air	Jonon	or rotati	011										
11	Ports	uith LIN	IE thros	4 (CVE	IE14\													12
	Tapped v	WILLI OI	ir tillea	iu (SAE	J514)													12
	Studs			,														
12	Without																	
	With wh	eel stuc	is and i	nuts (5 s	studs fit	ted on	y to mo	tors wit	n housi	ng typ	es "F	and '	VV")					S
	Speed se																	
	Without		(no cod	de)														
13	Sensor r																	P0
	Sensor v			or														P1
	Sensor v	vith reg	ulator															P2

F1 to F8

ullet = available -= not available

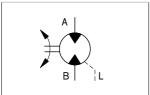
Without flushing (no code)
With flushing (see table on page 3)

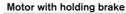
5/18

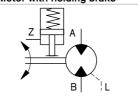
Ordering code

MCR	3				Z	_	ЗХ				12					
01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16

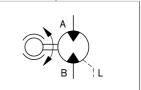
Special order

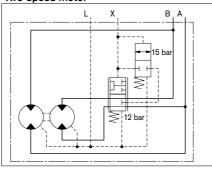

15 Special feature soxxx

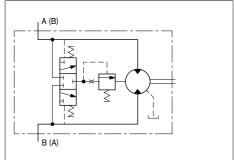

Other


16 Mark in text here

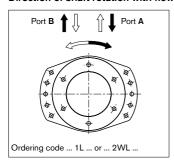
Schematic diagrams


Motor without brake




Motor with dynamic brake

Two-speed motor



Motor with flushing valve

Direction of rotation

Direction of shaft rotation with flow (viewed from drive shaft)

Bosch Rexroth AG MCR3 | RE 15205/06.09

Technical data

6/18

(For operation outside of these parameters, please consult Rexroth)

Description			Radial-	piston ty	pe, low-	speed, hi	igh-torqu	e motor		
Frame size			MCR3							
Type of mounting			Flange	mountin	g; face n	nounting				
Pipe connections ¹⁾²⁾			Threaded per SAE J514							
Shaft loading			see page 10							
Displacement	V _g	cm ³ /rev	160	225	255	280	325	365	400	
Output torque										
Specific torque (at $\Delta p = 250$ bar)		Nm	570	810	910	1000	1160	1310	1430	
Maximum torque ³⁾⁴⁾	T _{max}	Nm	1030	1450	1640	1800	1860	2090	2290	
Output speed										
Minimum speed for smooth running ⁵⁾	n _{min}	rpm				0.5				
Maximum speed (1L) ^{6) 7) 8)}	n _{max}	rpm	670	475	420	385	330	295	270	
Maximum speed (2WL) ^{6) 7)}	n _{max}	rpm	875	620	550	500	430	385	350	
Output power										
Nominal power ⁹⁾	Р	kW	18	18	18	18	22	22	22	
Weight	m	kg		see	unit dim	ensions o	on pages	11-17		
Moment of inertia	kgm ²		see	unit dim	ensions o	on pages	11-17			
Hydraulic										
Pressure ¹⁰⁾										
Nominal pressure ⁹⁾	p_{nom}	bar	250	250	250	250	250	250	250	
Maximum differential pressure ³⁾	Δp_{max}	bar	450	450	450	450	400	400	400	
Maximum pressure at port "A" or "B"3)	p _{max}	bar	470	470	470	470	420	420	420	
Maximum case drain pressure	p _{case max}	bar	10	10	10	10	10	10	10	
Hydraulic fluid ¹¹⁾ ¹²⁾				Mi	neral oils	(HLP) to	DIN 51	524		
Hydraulic fluid temperature range ¹³⁾	t _{min/max}	°C				-20 to +8	35			
Viscosity Range	ν _{min/max}	mm²/s				10 to 20	00			
Fluid cleanliness					ISO 44	06, Clas	s 20/18/	15		
Brake										
Holding brake (disc brake)						B2				
Minimum holding torque	T _{min}	Nm				2200				
Release pressure (min/max)	p _{rel}	bar				11/15				
Maximum pressure at brake port "Z"		bar				40				
Oil volume to operate brake	V _{rel}	cm ³				23				

- 1) Ensure motor case is filled with oil prior to start-up. See operating manual RE 15215-B.
- 2) For installation and maintenance details, please see operating manual RE 15215-B.
- 3) Maximum values should only be applied for a small portion of the duty cycle. Please consult Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For motors with housing type D, maximum torque is 1500 Nm, which restricts maximum pressure accordingly.
- 5) For continuous operation at speeds < 5 rpm please consult Rexroth Engineering Department in Glenrothes.
- $_{\rm 6)}$ Based on nominal no-load Δp of 20 bar in full-displacement mode.
- $_{7)}$ Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at > 100 rpm.
- 8) Single-speed (1 L) motors are available by special order with a 30 % increase in the stated maximum speed.
- 9) Nominal values are guide values for continuous operation.
- 10) When operating motors in series, please consult Rexroth Engineering Department in Glenrothes.
- 11) For use with environmentally acceptable fluids HEES, HEPG, HETG, Viton seals must be specified. For further information, please refer to RE 90221.
- 12) For use with HF hydraulic fluids please refer to RE 90229.
- 13) Extension of the allowable temperature range may be possible depending on specification.

Please consult Rexroth Engineering Department in Glenrothes for further details.

Technical data (Mean values, measured at $v = 46 \text{ mm}^2/\text{s}$ and t = 45 °C)

- All torques apply to run-in motors

For reduced displacement operating mode multiply the torques by ratio of reduced displacement

Note

- Case pressure must be added to minimum charge pressures quoted. Quoted pressures are guide values but can be circuit-dependant. Please contact Bosch Rexroth Engineering Department in Glenrothes for further advice. Figures quoted in technical data tables below are average values.
- Where flushing is used, q_{VL} will increase by the flushing flow rate. Mean case leakage values are average values for single speed motors

T = Torque in Nm

 $q_V = Input flow in I/min$

 q_{VL} = Mean case leakage in I/min

Minimum charge pressure in pump mode in bar

			MCR3.160											
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200	250	300	350	400	500	600
100	T	Nm	132	227	232	232	229	227	224	219	206	196	220	208
	qv	I/min	0.32	4.32	8.32	16.32	24.32	32.32	40.32	48.32	56.32	64.32	80.32	96.32
	q _{VL}	I/min	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
200	T	Nm	306	463	469	469	463	467						
	qv	I/min	0.65	4.65	8.65	16.65	24.65	32.65						
	q _{VL}	l/min	0.18	0.18	0.18	0.18	0.18	0.18						
300	T	Nm	489	703	710	710	710							
	q _V	l/min	0.97	4.97	8.97	16.97	24.97							
	q _{VL}	I/min	0.27	0.27	0.27	0.27	0.27							
400	T	Nm	693	907	917	920								
	q _V	l/min	1.29	5.29	9.29	17.29								
	q _{VL}	I/min	0.35	0.35	0.35	0.35								
Min. charge pressure	р	bar	1	3	3	4	5	6	6	7	8	8	10	12

			MCR3	225									
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200	250	300	350	400	450
100	T	Nm	186	319	326	326	322	319	315	308	290	276	286
	q _V	I/min	0.32	5.95	11.57	22.82	34.07	45.32	56.57	67.82	79.07	90.32	101.57
	q _{VL}	I/min	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
200	T	Nm	430	652	659	659	652	650					
	q _V	I/min	0.65	6.27	11.90	23.15	34.40	45.65					
	q _{VL}	I/min	0.18	0.18	0.18	0.18	0.18	0.18					
300	T	Nm	688	988	999	999	1047						
	qv	l/min	0.97	6.60	12.22	23.47	34.72						
	q _{VL}	I/min	0.27	0.27	0.27	0.27	0.27						
400	T	Nm	974	1275	1289	1261							
	qv	l/min	1.29	6.92	12.54	23.79							
	q _{VL}	I/min	0.35	0.35	0.35	0.35							
Min. charge pressure	р	bar	1	3	3	4	5	6	8	9	10	11	13

Bosch Rexroth AG MCR3 | RE 15205/06.09

Technical data (Mean values, measured at $v = 46 \text{ mm}^2/\text{s}$ and $t = 45 \,^{\circ}\text{C}$)

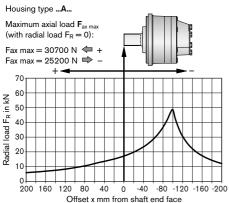
			MCR3	. 255								
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200	250	300	350	400
100	Т	Nm	211	361	369	369	365	361	357	349	329	313
	q _V	l/min	0.32	6.70	13.07	25.82	38.57	51.32	64.07	76.82	89.57	102,32
	qvL	I/min	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0,09
200	Т	Nm	487	739	747	747	739					
	qv	I/min	0.65	7.02	13.40	26.15	38.90					
	q _{VL}	I/min	0.08	0.18	0.08	0.18	0.08					
300	Т	Nm	779	1120	1132	1132						
	qv	I/min	0.97	7.35	13.72	26.47						
	q _{VL}	I/min	0.27	0.27	0.27	0.27						
400	Т	Nm	1104	1445	1461							
	qv	I/min	1.29	7.67	14.04							
	q _{VL}	I/min	0.35	0.35	0.35							
Min. charge pressure	р	bar	1	3	3	5	6	7	8	10	11	13

			MCR3	. 280							
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200	250	300	350
100	Т	Nm	232	397	406	406	401	397	392	383	361
	q _V	l/min	0.32	7.32	14.32	28.32	42.32	56.32	70.32	84.32	98.32
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
200	T	Nm	267	406	410	410	406				
	q _V	l/min	0.65	7.65	14.65	28.65	42.65				
	q _{VL}	l/min	0.18	0.18	0.18	0.18	0.18				
300	T	Nm	856	1230	1243	1243					
	qv	l/min	0.97	7.97	14.97	28.97					
	q _{VL}	I/min	0.27	0.27	0.27	0.27					
400	Т	Nm	1212	1586	1604						
	qv	l/min	1.29	8.29	15.29						
	q _{VL}	l/min	0.35	0.35	0.35						
Min. charge pressure	р	bar	1	3	3	5	6	8	9	10	12

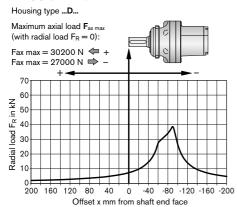
			MCR3	. 325						
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200	250	300
100	Т	Nm	269	460	471	471	463	455	434	409
	qv	l/min	0.32	8.45	16.57	32.82	49.07	65.32	81.57	97.82
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
200	Т	Nm	621	941	952	952	941			
	qv	I/min	0.65	8.77	16.90	33.15	49.40			
	qvL	I/min	0.18	0.18	0.18	0.18	0.18			
300	Т	Nm	993	1428	1443	1443				
	q _V	I/min	0.97	9.10	17.22	33.47				
	qvL	I/min	0.27	0.27	0.27	0.27				
400	Т	Nm	1407	1841	1862					
	q _V	I/min	1.29	9.42	17.54					
	qvL	l/min	0.35	0.35	0.35					
Min. charge pressure	р	bar	1	3	4	5	7	8	10	12

8/18

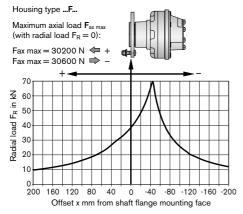
Technical data (Mean values, measured at $v = 46 \text{ mm}^2/\text{s}$ and $t = 45 \,^{\circ}\text{C}$)


			MCR3	. 365					
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200	250
100	T	Nm	302	517	529	529	520	511	488
	q _V	l/min	0.32	9.45	18.57	36.82	55.07	73.32	91.57
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09	0.09	0.09
200	Т	Nm	697	1057	1069	1069	1057		
	q _V	l/min	0.65	9.77	18.90	37.15	55.40		
	q _{VL}	l/min	0.18	0.18	0.18	0.18	0.18		
300	T	Nm	1115	1603	1621	1621			
	qv	l/min	0.97	10.10	19.22	37.47			
	q _{VL}	l/min	0.27	0.27	0.27	0.27			
400	T	Nm	1580	2068	2091				
	qv	l/min	1.29	10.42	19.54				
	q _{VL}	l/min	0.35	0,35	0.35				
Min. charge pressure	р	bar	1	3	4	6	7	9	11

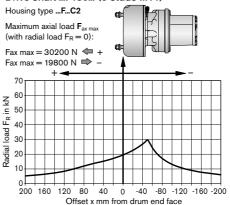
			MCR3	. 400					
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200	250
100	Т	Nm	331	567	579	579	567	547	522
	qv	l/min	0.32	10.32	20.32	40.32	60.32	80.32	100.32
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09	0.09	0.09
200	Т	Nm	764	1159	1171	1171	1159		
	qv	l/min	0.65	10.65	20.65	40.65	60.65		
	q _{VL}	l/min	0.18	0.18	0.18	0.18	0.18		
300	Т	Nm	1222	1757	1776	1776			
	q _V	l/min	0.97	10.97	20.97	40.97			
	q _V L	l/min	0.27	0.27	0.27	0.27			
400	T	Nm	1732	2266	2292				
	q _V	l/min	1.29	11.29	21.29				
	q _{VL}	l/min	0.35	0.35	0.35				
Min. charge pressure	р	bar	1	3	4	6	8	10	13


10/18 Bosch Rexroth AG MCR3 | RE 15205/06.09

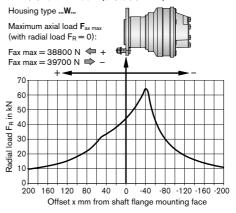
Permitted loading on drive shaft


Drive shaft ...A45...

Drive shaft ...L40...



Drive shaft ...F180... (5 studs M14)

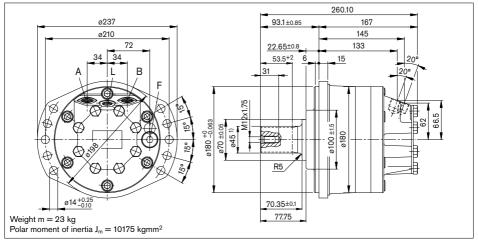


(Speed n = 50 rpm, pressure differential $\Delta p = 250$ bar, 2000 hrs L10 life at 50 °C)

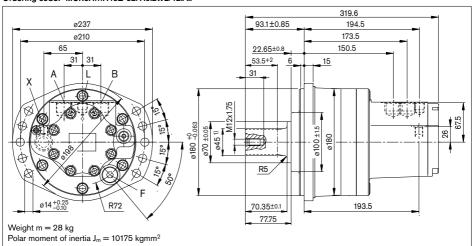
Drive shaft ...F180... (5 studs M14)

Drive shaft ...F180... (5 studs M14)

Note:


These values and graphs are for initial guidance only. For actual motor life calculations under typical or specified duty cycles, contact Rexroth Engineering Department in Glenrothes.

Dimensions


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

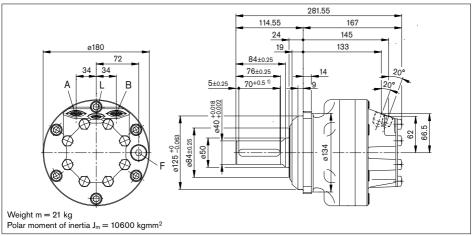
Flanged front housing, splined drive shaft, single speed (1)

Ordering code: "MCR3A...A45Z-32/A0.1L/12./..."

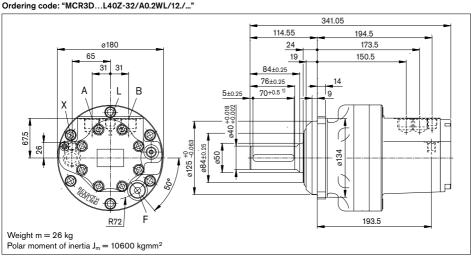
Flanged front housing, splined drive shaft, two speed (2W) Ordering code: "MCR3A...A45Z-32/A0.2WL/12./..."

Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	7/8 in - 14 UNF	470/420 ²⁾	0
L	Case drain	SAE J514	9/16 in - 18 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

- 1) Spline data: ANSI B92.1-1996 class 5, 30° Pressure angle, Fillet root side fit, Pitch 24/48, PCD 44.45 mm, No. of teeth 42
- 2) depends on nominal size
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)


12/18 Bosch Rexroth AG MCR3 | RE 15205/06.09

Dimensions


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

4 hole SAE flanged front housing, parallel drive shaft, single speed (1)

Ordering code: "MCR3D...L40Z-32/A0.1L/12./..."

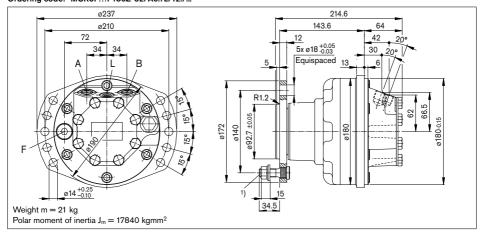
4 hole SAE flanged front housing, parallel drive shaft, two speed (2W)

Note: To prevent excessive shaft loading with D-type motors, the mating bore should have F7 or G6 tolerance

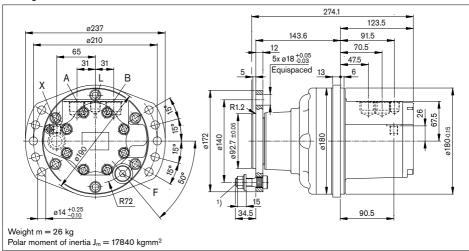
Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	7/8 in - 14 UNF	470/420 ²⁾	0
L	Case drain	SAE J514	9/16 in - 18 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

¹⁾ Parallel key A12x8x70 - DIN 6885

²⁾ depends on nominal size


O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Flanged rear housing, flanged drive shaft, single speed (1) Ordering code: "MCR3F...F180Z-32/A0.1L/12./..."

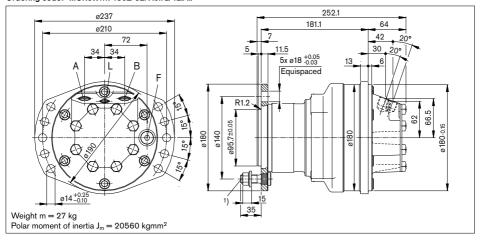
Flanged rear housing, flanged drive shaft, two speed (2W) Ordering code: "MCR3F...F180Z-32/A0.2WL/12./..."

Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	7/8 in - 14 UNF	470/4202)	0
L	Case drain	SAE J514	9/16 in - 18 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

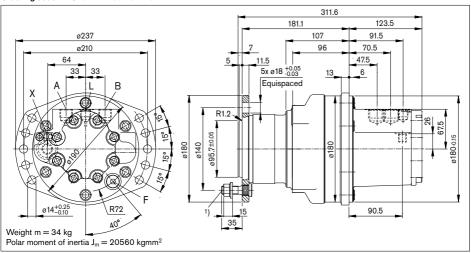
^{1) 5}x wheel studs M14x1.5 with shouldered hex nut for wheel fixing, clamping length 5 to 20 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 140)

²⁾ depends on nominal size

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

14/18 Bosch Rexroth AG MCR3 | RE 15205/06.09


Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

High radial load bearings fitted, rear case mounting flange, single speed (1) Ordering code: "MCR3W...F180Z-32/A0.1L/12./..."

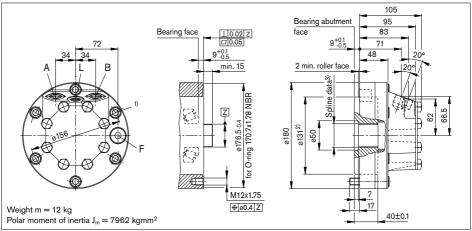
High radial load bearings fitted, rear case mounting flange, two speed (2W) Ordering code: "MCR3W...F180Z-32/A0.2WL/12./..."

Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	7/8 in - 14 UNF	470/420 ²⁾	0
L	Case drain	SAE J514	9/16 in - 18 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

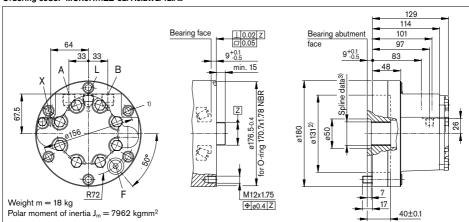
^{1) 5}x wheel studs M14x1.5 with shouldered hex nut for wheel fixing, clamping length 5 to 20 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 140)

²⁾ depends on nominal size

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

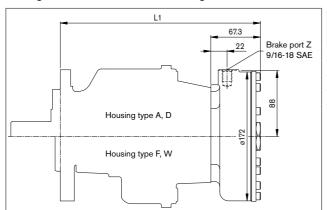
Dimensions


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Hydrobase for mounting on customer's shaft, single speed (1)

Ordering code: "MCR3H...ZZ-32/A0.1L/12./..."

Hydrobase for mounting on customer's shaft, two speed (2W) Ordering code: "MCR3H...ZZ-32/A0.2WL/12./..."

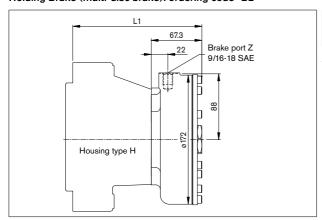

Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	7/8 in - 14 UNF	470/4204)	0
L	Case drain	SAE J514	9/16 in - 18 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	X

- 1) 6x M12x1.75 bolts on a P.C.D of 156
- 2) Mating part must clear this diameter
- 3) Spline data: BS3550 class 1, Fillet root side fit, Pitch 24/48, PCD 38.1 mm, No. of spaces 36
- 4) depends on nominal size
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

16/18 Bosch Rexroth AG MCR3 | RE 15205/06.09

Dimensions

Holding Brake (multi-disc brake): ordering code "B2"


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Housing type	Single speed (1) L1	Two speed (2W) L1
Α	224.3	275.8
D	224.3	275.8
F	264.8	316.4
W	302.3	353.8

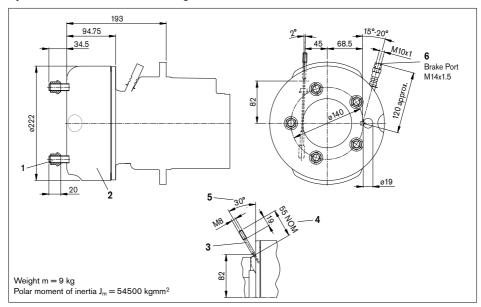
Weight m = 9 kg

Polar moment of inertia $J_m = 520 \text{ kgmm}^2$

Holding Brake (multi-disc brake): ordering code "B2"

Housing type	Single speed (1) L1	Two speed (2W) L1
Н	162.3	181.3

Weight m = 9 kg


Polar moment of inertia $J_m = 520 \text{ kgmm}^2$

Dimensions

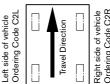
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Bosch Rexroth AG

Dynamic brake (drum brake): ordering code "C2R" / "C2L"

- 1 5 Studs M14x1.5 with spherical wheel nuts
- 2 Dynamic brake (drum brake) ordering code C2L/R for use with brake fluid DOT 3+5 or SAE JI 703. If brake is to be used with mineral oil a special order is to be made.

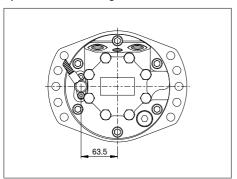
Please state if seals for mineral oil are required when placing order.


- Brake cable (Bowden cable). The brake illustrated is for right side of vehicle. The left is a mirror image of this (see fig. below).
- 4 Brake cable length.
- Angular position of brake cable.
- Brake port $p_{max} = 117$ bar. Brake cylinder operating volume $V = 7 \text{ cm}^3$.

Brake torque after run-in

Braking torque	Cable tension	Braking torque	Port pressure
2000 Nm	1000 N	2000 Nm	82 bar
2900 Nm	1440 N	2900 Nm	117 bar

MCR dynamic drum brake run-in procedure


- Brake the machine hard in forward and reverse directions until the brake drum temperature reaches 200 °C.
- Allow the brake to cool.
- To remove residue, brake gently 2 times each in the forward and reverse directions.

18/18 Bosch Rexroth AG MCR3 | RE 15205/06.09

Dimensions

Speed sensor: ordering code "P1" / "P2"

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Bosch Rexroth Limited Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK

Phone +44 (0) 15 92 631 777 Telefax +44 (0) 15 92 631 936 www.boschrexroth.co.uk © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.

The data specified in this document serve only to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from this information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and ageing. Subject to change.

Radial Piston Motor (Multi-Stroke) MCR5

RE 15206/07.09 1/18 Replaces: 06.06

Data sheet

Series 3X Size 380 to 820 Differential pressure up to 450 bar Torque output up to 4900 Nm Speed up to 570 rpm Open and closed circuits

Contents

Functional description

Ordering code

Schematic diagrams

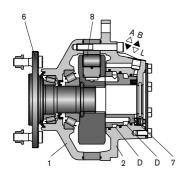
Direction of rotation

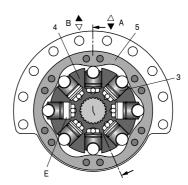
Technical data

Permitted loading on drive shaft

Dimensions

Features


- Compact robust construction
- 4 High volumetric and mechanical efficiencies
- 5 High pressure rating
- High reliability

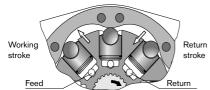

2

- 6 Low maintenance
- Smooth running at very low speeds
- 10 Low noise
 - Reversible
 - Sealed tapered roller bearings
 - High radial forces permitted on drive shaft
 - Freewheeling possible
 - Available with optional holding brake (multi-disc) or dynamic (drum) brake
 - Available with:
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

2/18 Bosch Rexroth AG MCR5 | RE 15206/07.09

Functional description

Hydraulic motors type MCR are radial piston motors with a rotating shaft.


Construction

Two part housing (1, 2), rotary group (3, 4), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque Generation

The number of working and return strokes corresponds to the number of lobes on the cam x number of pistons (8).

Flow paths

The cylinder chambers (E) are connected to ports A and B via the axial bores and the annular passages (D).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard, except on Hydrobase motors.

Freewheeling

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports A and B to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port L. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

Bosch Rexroth AG

Functional Description

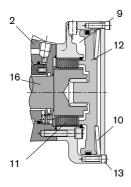
Flushing flow rates (for $p_{charge} - p_{case} = 25 \text{ bar}$)

Ordering code	Flow	(±1 l/min)
F1	3	l/min
F2	5	l/min
F7	7	l/min
F4	10	l/min
F8	12.5	l/min
F6	13.5	I/min

Holding brake (multi-disc brake)

Mounting

By way of rear housing (2) and brake shaft (16).

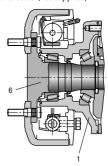

Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring allowing the brake discs to turn independently.

Note: This brake is provided solely for static use - not to be used dynamically.

Manual release of holding brake

The brake may also be released manually by loosening screws (13).

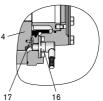


Dynamic brake

Where mechanical dynamic braking is required, a drum brake may be specified. The drum brake is mounted directly onto the drive shaft (6) and front housing (1). Braking torque is provided by brake shoes acting on the inside of the drum.

Operation of brake

- hydraulic brake fluid (special order required for mineral oil operation)
- mechanical brake cable (not supplied)



Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.

Versions are available for use with regulated supplies (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Bosch Rexroth AG MCR5 | RE 15206/07.09

Orderina code

4/18

	MCD	5				Z	_	зх				1:	<u>, T</u>					Т
-	MCR		00	0.4	٥٦		_		00	00	10			10	10		45	- 4
_	01	02	03	04	05	06		07	08	09	10	1	1	12	13	14	15	1
	Radial pi	ston m	otor															
)1																		MC
	Frame si	ze																
02	Frame si	ze 5																
	Housing	Type																
	Front ca		ied															
	Front ca			E 4 me	tric hole	s												
03	Rear cas																	
	Rear cas	se flang	ed															
	Hydroba	se (half	motor)														H
	Nominal	size. d	isplace	ement \	/ in cm ³	/rev				380	470	520	565	620	680	750	820	
	Low Dis						ndrical	oistons	LD	•	•	•	•	-	-	-	<u> </u>	1
)4	High Dis								HD	-	-	_	-	•	•	•	•	İ
	Drive sha					e												,
	Splined		NSI RO	121 (on	v availal	hle with	houeir	na type '	'Δ")									A
	Parallel I									– maxi	mum t	orque	3000	Nm)				L
)5	With flar											o.quo	-	,				F1
	Without																	
	Through			,			3 71 -											
	Without		shaft															
		tillougi	1 SHAIL															<u> </u>
	Series	01.00		. 00 1	00	P	11 - 1		1.1.	`								_
	Series 3	0 to 39	(series	s 30 to	39 are 0	imensi	onally II	ntercnar	ngeable	:)								3
	Brake																	_
	Without																	A
	Hydrauli																	В
)8	Hydrauli																	В
	Dynamic																	C4
	Dynamic	brake	(drum I	orake) to	or left ha	and side	e of ver	iicle (se	e figure	page	16)							C.
	Seals																	_
09	NBR (ni																	N
	FKM (flu	oroelas	tomer/	Viton) (except c	lynamic	brake	- see p	age 16)								١
	Single /	Two-sp	eed o	peratio	n													_
10	Single s																	1
_	Bi-direct	ional tw	o spe	ed, stan	dard dir	ection (of rotati	on										21
	Ports																	
11	Tapped	with UN	IF threa	ad (SAE	J514)													1:
	Studs																	
	Without	studs (no cod	e)														
12	With whe	el studs	and nu	ts (Stud	only fitt	ed to mo	otors wit	h housin	g type "	C" and	"F"; 5	studs c	on "C" t	type, 10) studs	on "F"	type)	-
	With twi	ce norn	nal num	nber of v	wheel st	uds an	d nuts (only ava	ailable	with ho	using	type "(C")					s
	Speed se	ensor																
	Without		(no co	de)														
	Sensor r		, 50	,														Р
13	Sensor v		regulat	or														P
	Sensor v																	P
	Flushing																	_
_	Without		ı (no c	nde)														
			g (110 O	ouo,														

■ = available

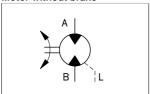
With flushing (see table on page 3)

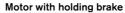
- = not available

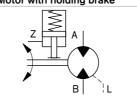
Ordering code

MCR	5				Z	_	ЗХ				12					
01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16

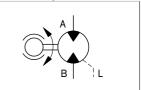
Special order

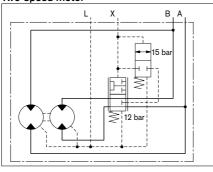

15 Special feature SOXXX

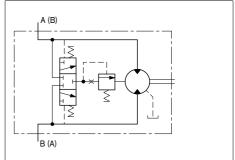

Other


16 Mark in text here *

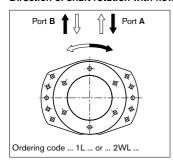
Schematic diagrams


Motor without brake




Motor with dynamic brake

Two-speed motor



Motor with flushing valve

Direction of rotation

Direction of shaft rotation with flow (viewed from drive shaft)

Bosch Rexroth AG MCR5 | RE 15206/07.09

Technical data

6/18

(For operation outside of these parameters, please consult Rexroth)

Pacing	, ,		′ '			,					
Flange mounting Flange mounting m	Description			Radial-	piston ty	pe, low-s	speed, hi	gh-torqu	e motor		
Pipe connections 192 Threaded per SAE J514 Shaft loading She page 9 She page 10	Frame size			MCR5							
Shaft loading See	Type of mounting			Flange mounting; face mounting							
Displacement Vg cm³/rev 380 470 520 565 620 680 750 820	Pipe connections ¹⁾²⁾			Threaded per SAE J514							
Output torque Specific torque (at Δp = 250 bar) Nm 1360 1680 1860 2020 2220 2440 2690 2940 Maximum torque 3/4) T _{max} Nm 2450 3030 3350 3640 3550 3900 4300 4700 Output speed Minimum speed for smooth running 5) n _{min} rpm 475 385 350 320 290 265 240 220 Maximum speed (2WL) 6) 7) n _{max} rpm 475 385 350 320 290 265 240 220 Maximum speed (2WL) 6) 7) n _{max} rpm 570 465 420 385 350 320 290 265 240 220 Maximum speed (2WL) 6) 7) n _{max} rpm 570 465 420 385 350 320 290 265 250 220 290 290 290 35 35 35 35 35 35 35 35 35	Shaft loading			see pa	ge 9						
Name	Displacement	cm ³ /rev	380	470	520	565	620	680	750	820	
Maximum torque³14) T _{max} Nm 2450 3030 3350 3640 3550 3900 4300 4700	Output torque										
Output speed Minimum speed for smooth running ⁵) n _{min} rpm rpm 5 5 5 5 0.	Specific torque (at $\Delta p = 250$ bar)		Nm	1360	1680	1860	2020	2220	2440	2690	2940
Output speed Minimum speed for smooth running ⁵) n _{min} rpm 5 5 5 5 0.5 <th< td=""><td>Maximum torque³⁾⁴⁾</td><td>T_{max}</td><td>Nm</td><td>2450</td><td>3030</td><td>3350</td><td>3640</td><td>3550</td><td>3900</td><td>4300</td><td>4700</td></th<>	Maximum torque ³⁾⁴⁾	T _{max}	Nm	2450	3030	3350	3640	3550	3900	4300	4700
Maximum speed (1L)6) 7) 8) n _{max} rpm 475 385 350 320 290 265 240 220	Output speed										
Maximum speed (2WL) ^{6) 7)}	Minimum speed for smooth running ⁵⁾	n _{min}	rpm	5	5	5	5	0.5	0.5	0.5	0.5
Output power Nominal power ⁹) P kW 29 29 29 29 35 35 35 35 Weight m kg see unit dimensions on pages 10-17 Image: see unit dimensions on pages 10-17	Maximum speed (1L) ^{6) 7) 8)}	n _{max}	rpm	475	385	350	320	290	265	240	220
Nominal power ⁹⁾ P kW 29 29 29 29 35 35 35 35 35 Weight m kg see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions on pages 10-17 when the finertia Jm kgm² see unit dimensions kgm² kgm² see unit dimensions Jm kgm² kgm²	Maximum speed (2WL) ^{6) 7)}	n _{max}	rpm	570	465	420	385	350	320	290	265
Weight m kg see unit dimensions on pages 10-17 Moment of inertia J _m kgm² see unit dimensions on pages 10-17 Hydraulic Pressure¹0¹ pnom bar 250	Output power										
Moment of inertia J _m kgm² see unit dimensions on pages 10-17	Nominal power ⁹⁾	Р	kW	29	29	29	29	35	35	35	35
Hydraulic Pressure¹0¹0 Nominal pressure³0 ρ _{nom} bar bar 450 450 450 450 450 400 400 400 400 400	Weight	m	kg			see unit	dimensi	ons on p	ages 10-	17	
Pressure¹0¹0 Nominal pressure³0 p _{nom} bar 250 400	Moment of inertia	J _m	kgm ²			see unit	dimensi	ons on p	ages 10-	17	
Nominal pressure 9 P _{nom} bar 250 250 250 250 250 250 250 250 250 250	Hydraulic										
Maximum differential pressure³) Δρ _{max} bar 450 450 450 450 400 400 400 400 Maximum pressure at port "A" or "B"³) p _{max} bar 470 470 470 420 420 420 420 Maximum case drain pressure p _{case max} bar 10 <t< td=""><td>Pressure¹⁰⁾</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Pressure ¹⁰⁾										
Maximum pressure at port "A" or "B"3) pmax bar 470 470 470 420	Nominal pressure ⁹⁾	p_{nom}	bar	250	250	250	250	250	250	250	250
Maximum case drain pressure p _{case max} bar 10 <td>Maximum differential pressure³⁾</td> <td>Δp_{max}</td> <td>bar</td> <td>450</td> <td>450</td> <td>450</td> <td>450</td> <td>400</td> <td>400</td> <td>400</td> <td>400</td>	Maximum differential pressure ³⁾	Δp_{max}	bar	450	450	450	450	400	400	400	400
Hydraulic fluid 11) 12)	Maximum pressure at port "A" or "B"3)	p _{max}	bar	470	470	470	470	420	420	420	420
Hydraulic fluid temperature range ¹³⁾ t _{min/max} °C -20 to +85 Viscosity Range v _{min/max} mm²/s 10 to 2000 Fluid cleanliness ISO 4406, Class 20/18/15 Brake Holding brake (disc brake) B2 B4 Minimum holding torque T _{min} Nm 2200 4400 Release pressure (min/max) p _{rel} bar 11/15 11/15 Maximum pressure at brake port "Z" bar 40 40 Oil volume to operate brake V _{rel} cm³ 23 46	Maximum case drain pressure	p _{case max}	bar	10	10	10	10	10	10	10	10
Viscosity Range V _{min/max} mm²/s 10 to 2000 Fluid cleanliness ISO 4406, Class 20/18/15 Brake Holding brake (disc brake) B2 B4 Minimum holding torque T _{min} Nm 2200 4400 Release pressure (min/max) p _{rel} bar 11/15 11/15 Maximum pressure at brake port "Z" bar 40 40 Oil volume to operate brake V _{rel} cm³ 23 46	Hydraulic fluid 11) 12)					Mineral	oils (HL	P) to DII	V 51 524	1	
SO 4406, Class 20/18/15	Hydraulic fluid temperature range ¹³⁾	t _{min/max}	°C				-20 1	to +85			
Brake Holding brake (disc brake) B2 B4 Minimum holding torque T _{min} Nm 2200 4400 Release pressure (min/max) p _{rel} bar 11/15 11/15 Maximum pressure at brake port "Z" bar 40 40 Oil volume to operate brake V _{rel} cm³ 23 46	Viscosity Range	ν _{min/max}	mm²/s				10 to	2000			
Holding brake (disc brake) B2 B4 Minimum holding torque T _{min} Nm 2200 4400 Release pressure (min/max) p _{rel} bar 11/15 11/15 Maximum pressure at brake port "Z" bar 40 40 Oil volume to operate brake V _{rel} cm³ 23 46	Fluid cleanliness					ISC	4406, 0	Class 20	/18/15		
Minimum holding torque T _{min} Nm 2200 4400 Release pressure (min/max) p _{rel} bar 11/15 11/15 Maximum pressure at brake port "Z" bar 40 40 Oil volume to operate brake V _{rel} cm³ 23 46	Brake										
Release pressure (min/max) p _{rel} bar 11/15 11/15 Maximum pressure at brake port "Z" bar 40 40 Oil volume to operate brake V _{rel} cm³ 23 46	Holding brake (disc brake)					B2				B4	
Maximum pressure at brake port "Z" bar 40 40 Oil volume to operate brake V _{rel} cm³ 23 46	Minimum holding torque	T _{min}	Nm		2	200			4	400	
Oil volume to operate brake V _{rel} cm ³ 23 46	Release pressure (min/max)	p _{rel}	bar		1	1/15			1	1/15	
	Maximum pressure at brake port "Z"		bar			40				40	
Dynamic brake (drum brake) see information on page 16	Oil volume to operate brake	V _{rel}	cm ³			23				46	
	Dynamic brake (drum brake)		see information on page 16								

- 1) Ensure motor case is filled with oil prior to start-up. See operating manual RE 15215-B.
- 2) For installation and maintenance details, please see operating manual RE 15215-B.
- 3) Maximum values should only be applied for a small portion of the duty cycle. Please consult Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For motors with housing type D, maximum torque is 3000 Nm, which restricts maximum pressure accordingly.
- 5) For continuous operation at speeds < 5 rpm please consult Rexroth Engineering Department in Glenrothes.
- 6) Based on nominal no-load DP of 20 bar in full-displacement mode.
- 7) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 8) Single-speed (1L) motors are available by special order with a 20 % increase in the stated maximum speed.
- 9) When operating motors in series, please consult Rexroth Engineering Department in Glenrothes.
- 10) Nominal values are guide values for continuous operation.
- 11) For use with environmentally acceptable fluids HEES, HEPG, HETG, Viton seals must be specified. For further information, please refer to RE 90221.
- 12) For use with HF hydraulic fluids please refer to RE 90229

 Extension of the allowable temperature range may be possible
 - Extension of the allowable temperature range may be possible depending on specification.
- 13) Please consult Rexroth Engineering Department in Glenrothes for further details.

Technical data (Mean values, measured at $v = 46 \text{ mm}^2/\text{s}$ and t = 45 °C)

- All torques apply to run-in motors

For reduced displacement operating mode multiply the torques by ratio of reduced displacement

Note

- Case pressure must be added to minimum charge pressures quoted. Quoted pressures are guide values but can be circuit-dependant. Please contact Bosch Rexroth Engineering Department in Glenrothes for further advice. Figures quoted in technical data tables below are average values.
- Where flushing is used, q_{VL} will increase by the flushing flow rate. Mean case leakage values are average values for single speed motors

T = Torque in Nm

 $q_V = Input flow in I/min$

 q_{VL} = Mean case leakage in I/min

= Minimum charge pressure in pump mode in bar

			MCR5	. 380				
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200
100	T	Nm	314	538	544	542	540	537
	qv	l/min	0.55	10.05	19.55	38.55	57.55	76.55
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09	0.09
200	T	Nm	726	1101	1113	1109	1104	1099
	qv	l/min	1.10	10.60	20.10	39.10	58.10	77.10
	q _V L	l/min	0.18	0.18	0.18	0.18	0.18	0.18
300	T	Nm	1161	1669	1687	1682	1674	
	q _V	l/min	1.65	11.15	20.65	39.65	58.65	
	q _{VL}	l/min	0.27	0.27	0.27	0.27	0.27	
400	T	Nm	1645	2153	2177	2177		
	q _V	l/min	2.20	11.70	21.20	40.20		
	q _{VL}	l/min	0.35	0.35	0.35	0.35		
Min. charge pressure	р	bar	1	4	4	6	9	14

MCR5	. 470				
0	25	50	100	150	200
389	666	673	669	666	658
0.55	12.30	24.05	47.55	71.05	94.55
0.09	0.09	0.09	0.09	0.09	0.09
898	1361	1376	1369	1361	
1.10	12.85	24.60	48.10	71.60	
0.18	0.18	0.18	0.18	0.18	
1436	2065	2087	2076		
1.65	13.40	25.15	48.65		
0.27	0.27	0.27	0.27		
2035	2663	2693			
2.20	13.95	25.70			
0.35	0.35	0.35			
1	5	5	7	10	16

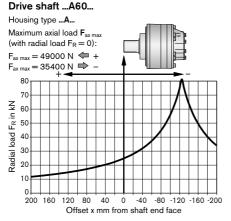
			MCR5	. 520				
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200
100	Т	Nm	430	737	745	740	734	725
	qv	I/min	0.55	13.55	26.55	52.55	78.55	104.55
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09	0.09
200	Т	Nm	993	1506	1523	1513	1504	
	q _V	I/min	1.10	14.10	27.10	53.10	79.10	
	q _{VL}	I/min	0.18	0.18	0.18	0.18	0.18	
300	Т	Nm	1589	2284	2309	2294		
	q _V	I/min	1.65	14.65	27.65	53.65		
	q _{VL}	l/min	0.27	0.27	0.27	0.27		
400	T	Nm	2251	2946	2979			
	q _V	l/min	2,20	15.20	28.20			
	q _{VL}	I/min	0.35	0.35	0.35			
Min. charge pressure	р	bar	1	6	6	7	11	17

MCR5	. 565				
0	25	50	100	150	200
468	791	809	800	782	773
0.55	14.68	28.80	57.05	85.30	113.55
0.09	0.09	0.09	0.09	0.09	0.09
1079	800	809	818	827	
1.10	15.23	29.35	57.60	85.85	
0.18	0.18	0.18	0.18	0.18	
1727	2374	2428	2482		
1.65	15.78	29.90	58.15		
0.27	0.27	0.27	0.27		
2446	3093	3165			
2.20	16.33	30.45			
0.35	0.35	0.35			
1	6	6	8	12	18

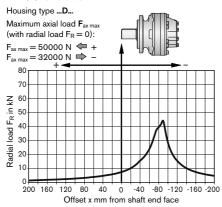
Bosch Rexroth AG MCR5 | RE 15206/07.09

Technical data (Mean values, measured at $v = 46 \text{ mm}^2/\text{s}$ and $t = 45 \,^{\circ}\text{C}$)

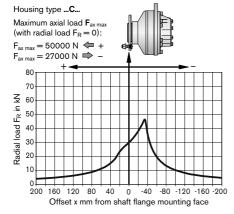
			MCR5	. 620				
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150	200
100	Т	Nm	513	878	888	878	868	845
	q _V	l/min	0.55	16.05	31.55	62.55	9.55	124.55
	q _{VL}	I/min	0.09	0.09	0.09	0.09	0.09	0.09
200	Т	Nm	1184	1796	1816	1796	1776	
	q _V	I/min	1.10	16.60	32.10	63.10	94.10	
	qvL	l/min	0.18	0.18	0.18	0.18	0.18	
300	Т	Nm	1895	2723	2753	2738		
	q _V	l/min	1.65	17.15	32.65	63.65		
	q _{VL}	l/min	0.27	0.27	0.27	0.27		
400	Т	Nm	2684	3513	3552			
	qv	l/min	2.20	17.70	33.20			
	q _{VL}	l/min	0.35	0.35	0.35			
Min. charge pressure	р	bar	1	2	3	7	12	23


MCR5 . 680							
0	25	50	100	150	200		
563	963	974	963	942	920		
0.55	17.55	34.55	68.55	102.55	136.55		
0.09	0.09	0.09	0.09	0.09	0.09		
1299	1970	1991	1970	1948			
1.10	18.10	35.10	69.10	103.10			
0.18	0.18	0.18	0.18	0.18			
2078	2987	3019	3003				
1.65	18.65	35.65	69.65				
0.27	0.27	0.27	0.27				
2944	3853	3896					
2.20	19.20	36.20					
0.35	0.35	0.35					
1	3	4	9	15	25		

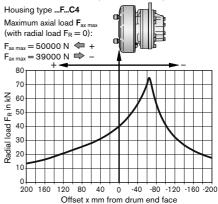
			MCR5 . 750				
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150
100	Т	Nm	621	1062	1074	1056	1033
	qv	I/min	0.55	19.30	38.05	75.55	113.05
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09
200	Т	Nm	1432	2172	2196	2172	2149
	q _V	I/min	1.10	19.85	38.60	76.10	113.60
	q _{VL}	l/min	0.18	0.18	0.18	0,18	0.18
300	Т	Nm	2292	3295	3330	3312	
	q _V	I/min	1.65	20.40	39.15	76.65	
	q _{VL}	I/min	0.27	0.27	0.27	0.27	
400	Т	Nm	3247	4249	4297		
	q _V	I/min	2.20	20,95	39.70		
	q _{VL}	l/min	0.35	0.35	0.35		
Min. charge pressure	р	bar	1	3	4	9	15


MCR5 . 820								
0	25	50	100	150				
679	1162	1175	1148	1135				
0.55	21.05	41.55	82.55	123.55				
0.09	0.09	0.09	0.09	0.09				
1566	2375	2401	2375	2349				
1.10	19.85	38.60	76.10	113.60				
0.18	0.18	0.18	0.18	0.18				
2506	3602	3641	3622					
1.65	20.40	39.15	76.65					
0.27	0.27	0.27	0.27					
3550	4646	4698						
2.20	20.95	39.70						
0.35	0.35	0.35						
1	4	6	11	19				

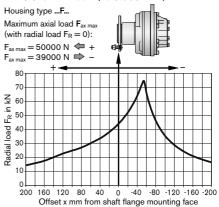
8/18


Permitted loading on drive shaft

Drive shaft ...L50...



Drive shaft ...F180... (5 studs M14)



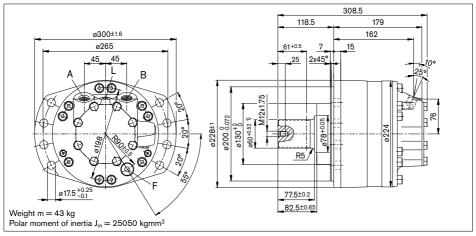
(Speed n = 50 rpm, pressure differential Δp = 250 bar, 2000 hrs L10 life at 50 °C)

Drive shaft ...F180... (10 studs M18) C4 Brake

Drive shaft ...F180... (10 studs M14)

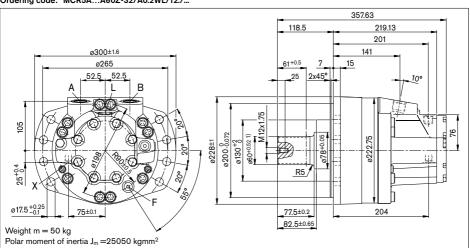
Note:

These values and graphs are for initial guidance only. For actual motor life calculations under typical or specified duty cycles, contact Rexroth Engineering Department in Glenrothes.


10/18 Bosch Rexroth AG MCR5 | RE 15206/07.09

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Flanged front housing, splined drive shaft, single speed (1)

Ordering code: "MCR5A...A60Z-32/A0.1L/12./..."

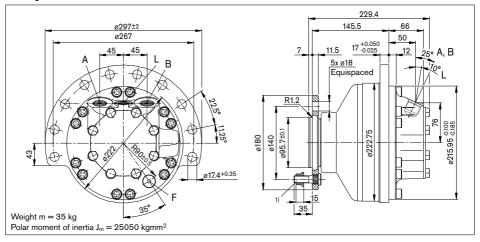
Flanged front housing, splined drive shaft, two speed (2W)

Ordering code: "MCR5A...A60Z-32/A0.2WL/12./..."

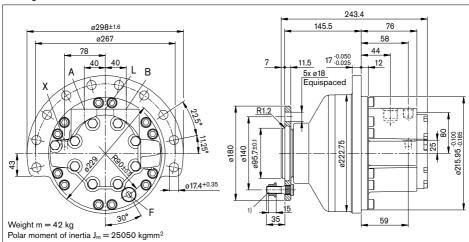
Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	1 1/16 in - 12 UNF	470/420 ²⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
X	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

¹⁾ Spline data: ANSI B92.1-1996 class 5, 30° Pressure angle, Fillet root side fit, Pitch 24/48, PCD 59.26 mm, No. of teeth 56

²⁾ depends on nominal size


O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Flanged rear housing, flanged drive shaft, compact front housing, single speed (1) Ordering code: "MCR5C...F180Z-32/A0.1L/12./..."

Flanged rear housing, flanged drive shaft, compact front housing, two speed (2W) Ordering code: "MCR5C...F180Z-32/A0.2WL/12./..."

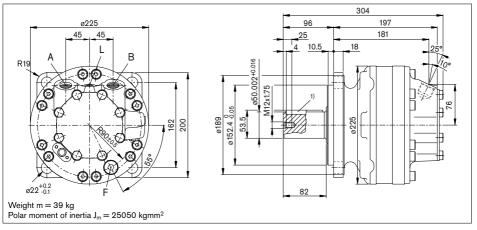
Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	1 1/16 in - 12 UNF	470/420 ²⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

^{1) 5}x wheel studs M14x1.5 with shouldered hex nut for wheel fixing, clamping length 5 to 20 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 140)

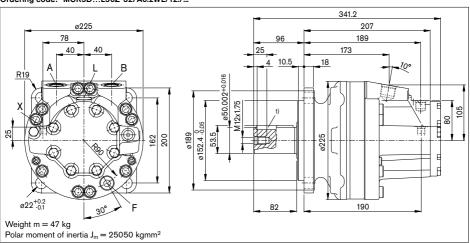
²⁾ depends on nominal size

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


12/18 Bosch Rexroth AG MCR5 | RE 15206/07.09

Dimensions


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

4 hole SAE flanged front housing, parallel drive shaft, single speed (1)

Ordering code: "MCR5D...L50Z-32/A0.1L/12./..."

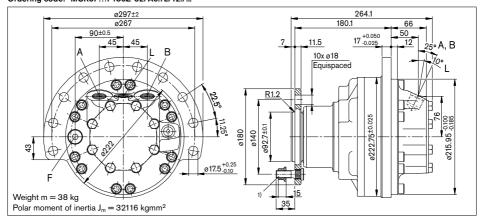
4 hole SAE flanged front housing, parallel drive shaft, two speed (2W) Ordering code: "MCR5D...L50Z-32/A0.2WL/12./..."

Note: To prevent excessive shaft loading with D-type motors, the mating bore should have F7 or G6 tolerance

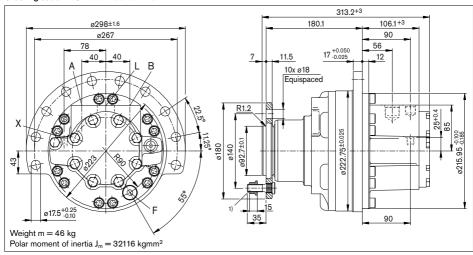
Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	1 1/16 in - 12 UNF	470/420 ²⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
X	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	X

¹⁾ Parallel key A14x9x70 - DIN 6885

²⁾ depends on nominal size


O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


Dimensions

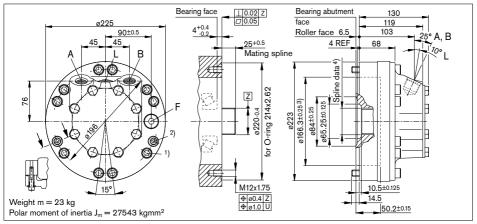
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Flanged rear housing, flanged drive shaft, single speed (1) Ordering code: "MCR5F...F180Z-32/A0.1L/12./..."

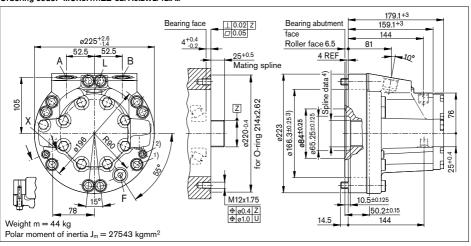
Flanged rear housing, flanged drive shaft, two speed (2W) Ordering code: "MCR5F...F180Z-32/A0.2WL/12./..."

Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	1 1/16 in - 12 UNF	470/4202)	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	X

- 1) 10x wheel studs M14x1.5 with shouldered hex nut for wheel fixing, clamping length 5 to 20 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 140)
- 2) depends on nominal size
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)


14/18 Bosch Rexroth AG MCR5 | RE 15206/07.09

Dimensions

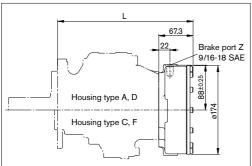

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Hydrobase for mounting on customer's shaft, single speed (1)

Ordering code: "MCR5H...ZZ-32/A0.1L/12./..."

Hydrobase for mounting on customer's shaft, two speed (2W) Ordering code: "MCR5H...ZZ-32/A0.2WL/12./..."

Designation	Port function	Code 12	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J514	1 1/16 in - 12 UNF	470/420 ⁵⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х


- 1) 10x M12x1.75 bolts on a P.C.D of 196
- 2) 2x M8 bolts used to retain cam and cannot be used for mounting motor, see bolt sectional view
- 3) Mating part must clear this diameter
- 4) Spline data: N50x2x24x9H DIN 5480
- 5) depends on nominal size
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

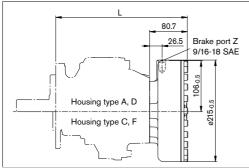
Bosch Rexroth AG

Holding Brake (multi-disc brake): ordering code "B2"

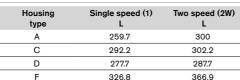
Housing type	Single speed (1) L	Two speed (2W) L
Α	246.3	286.6
С	278.8	288.8
D	264.3	274.3
F	313.4	353.5

67.3 Brake port Z 9/16-18 SAE 88±0.25 þ Housing type H

Housing type	Single speed (1) L	Two speed (2W)
Н	186.3	226.4


Weight m = 9.5 kg

Polar moment of inertia J_m = 1403 kgmm²


Weight m = 9.5 kg

Polar moment of inertia $J_m = 1403 \text{ kgmm}^2$

Holding Brake (multi-disc brake): ordering code "B4"

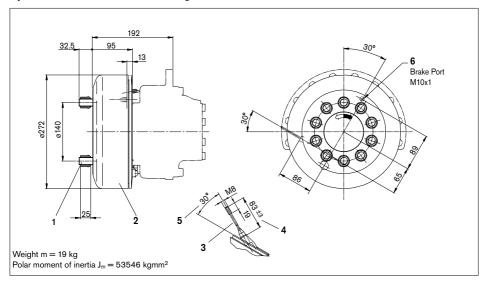
Housing type	Single speed (1) L	Two speed (2W) L
Α	259.7	300
С	292.2	302.2
D	277.7	287.7
F	326.8	366.9

Weight m = 16 kg

Polar moment of inertia J_m = 2980 kgmm²

Housing Single speed (1) Two speed (2W) type Н 199.7 239.8

Weight m = 16 kg


Polar moment of inertia J_m = 2980 kgmm²

16/18 Bosch Rexroth AG MCR5 | RE 15206/07.09

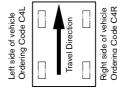
Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dynamic brake (drum brake): ordering code "C4R" / "C4L"

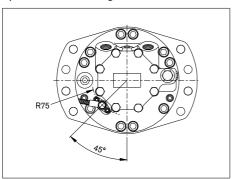
- 1 10 Studs M18x1.5 with spherical wheel nuts
- 2 Dynamic brake (drum brake) ordering code C4L/R for use with brake fluid DOT 3+5 or SAE JI 703. If brake is to be used with mineral oil a special order is to

be made. Please state if seals for mineral oil are required when placing order.


- 3 Brake cable (Bowden cable). The brake illustrated is for right side of vehicle. The left is a mirror image of this (see fig. below).
- 4 Brake cable length.
- 5 Angular position of brake cable.
- 6 Brake port p_{max} = 97 bar. Brake cylinder operating volume V = 9 cm³.

Brake torque after run-in

Braking torque	Cable tension	Braking torque	Port pressure
3000 Nm	1270 N	3000 Nm	73 bar
4000 Nm	1661 N	4000 Nm	97 bar


MCR dynamic drum brake run-in procedure

- Brake the machine hard in forward and reverse directions until the brake drum temperature reaches 200 °C.
- Allow the brake to cool.
- To remove residue, brake gently 2 times each in the forward and reverse directions.

Dimensions

Speed sensor: ordering code "P1" / "P2"

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Bosch Rexroth AG

Bosch Rexroth Limited Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 (0) 15 92 631 777

Telefax +44 (0) 15 92 631 936 www.boschrexroth.co.uk © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.

The data specified in this document serve only to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from this information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and ageing. Subject to change.



Radial Piston Motor (Multi-Stroke) MCR10

RE 15207/07.10 1/16 Replaces: 02.98

Data sheet

Series 3X Size 780 to 1340 Differential pressure up to 450 bar Torque output up to 8000 Nm Speed up to 215 rpm Open and closed circuits

Contents

Functional description

Ordering code

Schematic diagrams

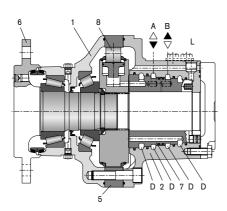
Direction of rotation

Technical data

Permitted loading on drive shaft

Dimensions

Features


- Compact robust construction
- High volumetric and mechanical efficiencies
- 5 High pressure rating
- High reliability

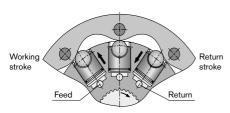
2

- 6 Low maintenance
 - Smooth running at very low speeds
- 10 Low noise
 - Reversible
 - Sealed tapered roller bearings
 - High radial forces permitted on drive shaft
 - Freewheeling possible
 - Available with optional holding brake (multi-disc) or dynamic (drum) brake
 - Available with:
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

2/16 Bosch Rexroth AG MCR10 | RE 15207/07:10

Functional description

Hydraulic motors type MCR are radial piston motors with a rotating shaft.


Construction

Two part housing (1, 2), rotary group (3, 4), cam (5), drive shaft (6) and flow distributor (7)

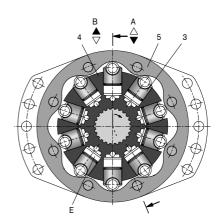
Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque Generation

The number of working and return strokes corresponds to the number of lobes on the cam x number of pistons (10).

Flow paths


The cylinder chambers (E) are connected to ports A and B via the axial bores and the annular passages (D).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard, except on Hydrobase motors.

Freewheeling

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports A and B to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port L. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

Functional Description

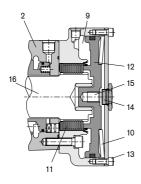
Flushing flow rates (for $p_{charge} - p_{case} = 25 \text{ bar}$)

Ordering code	Flow	(±1 l/min)
F1	3	l/min
F2	5	I/min
F7	7	l/min
F4	10	l/min
F8	12.5	l/min
F6	13.5	I/min

Holding brake (multi-disc brake)

Mounting

By way of rear housing (2) and brake shaft (16).

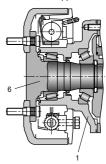

Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring allowing the brake discs to turn independently.

Note: This brake is provided solely for static use - not to be used dynamically.

Manual release of holding brake

The brake may also be released manually by loosening screws (13), or by removing plug (14) and inserting a puller into the tapped hole on the brake piston (15)

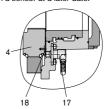


Dynamic brake

Where mechanical dynamic braking is required, a drum brake may be specified. The drum brake is mounted directly onto the drive shaft (6) and front housing (1). Braking torque is provided by brake shoes acting on the inside of the drum.

Operation of brake

- hydraulic brake fluid (special order required for mineral oil operation)
- mechanical brake cable (not supplied)



Speed sensor

A Hall-effect speed sensor (17) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (18) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.

Versions are available for use with regulated supplies (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

4/16

Orderi	ng d	cod	е														
MCR	10				Z	_	зх				4	2					
01	02	03	04	05	06		07	08	09	10	1		12	13	14	15	16
Radial pi	ston m	otor															
01	51011111	OLOI															MCR
Frame si	70																
02 Frame si																	10
Housing	Type																•
Front cas		jed, SA	E 4 met	tric hole	es												D
Rear cas	e flang	ed															F
Hydroba	se (half	motor))														Н
Nominal	size, d	isplace	ment V	in cm	³/rev						780	860	940	1120	1250	1340	_
Low Disp	olaceme	ent: mo	tors use	standa	ard cylir	ndrical	pistons			LD	•	•	•	_		-	
High Dis	placem	ent: mo	otors us	e stepp	ed pist	ons				HD	-	-	-	•	•	•	J
Drive sha	aft																
Parallel k	eyed s	haft Ø6	60 mm (only ava	ailable v	vith ho	using typ	oe "D"	– maxin	num to	orque	4800	Nm)				L60
05 With flar																	F250
Without	drive sh	naft (on	ly availa	ble with	n housir	ng type	"H")										Z
Through																	
6 Without	through	n shaft															Z
Series																	
97 Series 3	0 to 39	(series	30 to 3	39 are 0	dimensi	onally i	nterchar	ngeable	:)								3X
Brake																	
Without				1 10		1.0. 1		00.11									A0
Hydraulio 8 Hydraulio																	B5 B7
Dynamic										15)							C7R
Dynamic																	C7L
Seals									13-								
NBR (nit	rile rub	ber) (ex	xcept dy	namic	brake -	see pa	age 15)										М
FKM (flu							_	age 15))								V
Single /	Two-sp	eed or	peration	1													
Single st					tation												1L
Bi-direct	ional tw	o spee	d, stanc	dard dir	ection o	of rotati	on										2WL
Ports																	
11 Tapped v	vith UN	IF threa	ad (SAE	J514) (A and I	3 ports	SAE sp	lit flanç	je metri	c bolt	holes)					42
Studs																	
Without	studs (no code	e)														
With wh	eel stuc	ds and i	nuts (6	studs fi	tted onl	y to mo	tors wit	h housi	ng type	"F")							S
Speed se	ensor																
Without	sensor	(no cod	de)														
Sensor r	eady																P0
Sensor v			or														P1
Canaari	with roa	ulatar															D0

	Flushing	
	Without flushing (no code)	
14	With flushing (see table on page 3)	F1 to F8

P2

■ = available - = not available

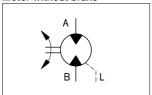
Sensor with regulator

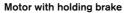
Ordering code

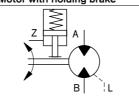
RE 15207/07:10 | MCR10

MCR	10				Z	_	ЗХ				42					
01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16

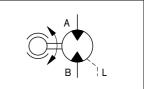
Special order

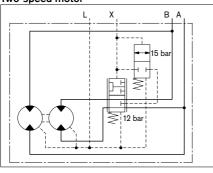

15	5 Special feature	soxxx	ı

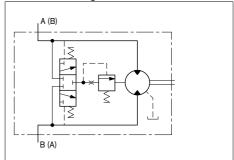

Other


16 Mark in text here

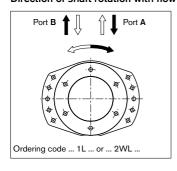
Schematic diagrams


Motor without brake




Motor with dynamic brake

Two-speed motor



Motor with flushing valve

Direction of rotation

Direction of shaft rotation with flow (viewed from drive shaft)

Bosch Rexroth AG MCR10 | RE 15207/07:10

Technical data

6/16

(For operation outside of these parameters, please consult Rexroth)

Radial-p	iston type, l	low-speed,	high-torque	motor			
MCR10	MCR10						
Flange r	Flange mounting; face mounting						
Flanged	Flanged per SAE J518 (code 62), Threaded per SAE J514						
See pag	ge 9						
v 780	860	940	1120	1250	1340		
2790	3080	3370	4010	4480	4800		
5030	5540	6060	6420	7160	7680		
5	5	5	0,5	0,5	0,5		
215	195	180	150	135	125		
44	44	44	50	50	50		
see dim	see dimensions on pages 10 - 15						
see dim	see dimensions on pages 10 - 15						
250	250	250	250	250	250		
450	450	450	400	400	400		
470	470	470	420	420	420		
10	10	10	10	10	10		
	Mineral oils (HLP) to DIN 51 524						
		-20	to + 85				
	10 to 2000						
	ISO 4406, Class 20/18/15						
	B5			B7			
	4400			7000			
	40			40			
	11/15 11/15						
	17 36						
	17			36			
	MCR10 Flange I Flanged See pag 9v 780 2790 5030 5 215 44 see dim see dim 250 450 470 10	MCR10 Flange mounting; fa Flanged per SAE JE See page 9 97 780 860 2790 3080 5030 5540 5 5 215 195 44 44 see dimensions on see dimensions on see dimensions on Min 10 10 B5 B5 4400 40	MCR10 Flange mounting; face mountin Flanged per SAE J518 (code 6 See page 9 97 780 860 940 2790 3080 3370 5030 5540 6060 5 5 5 215 195 180 44 44 44 see dimensions on pages 10 - see dimensions on pages 10 - 250 250 250 450 450 450 470 470 470 10 10 10 10 Mineral oils (H -20 18O 4406, B5 4400 40	MCR10 Flange mounting; face mounting Flanged per SAE J518 (code 62), Threade See page 9 780 860 940 1120 2790 3080 3370 4010 5030 5540 6060 6420 5 5 5 5 0,5 215 195 180 150 44 44 44 50 see dimensions on pages 10 - 15 see dimensions on pages 10 - 15 see dimensions on pages 10 - 15 250 250 250 250 250 450 450 450 400 470 470 470 420 10 10 10 10 10 Mineral oils (HLP) to DIN -20 to + 85 10 to 2000 ISO 4406, Class 20/1	Flange mounting; face mounting Flanged per SAE J518 (code 62), Threaded per SAE . See page 9 97 780 860 940 1120 1250 2790 3080 3370 4010 4480 5030 5540 6060 6420 7160 5 5 5 5 0,5 0,5 215 195 180 150 135 44 44 44 50 50 see dimensions on pages 10 - 15 see dimensions on pages 10 - 15 250 250 250 250 250 250 450 450 450 450 400 400 470 470 470 470 420 420 10 10 10 10 10 Mineral oils (HLP) to DIN 51 524 -20 to + 85 10 to 2000 ISO 4406, Class 20/18/15 B5 B7 4400 7000 40		

- 1) Ensure motor case is filled with oil prior to start-up. See operating manual RE 15215-B.
- 2) For installation and maintenance details, please see operating manual RE 15215-B.
- 3) Maximum values should only be applied for a small portion of the duty cycle.
 - Please consult Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For motors with housing type D, maximum torque is 4800 Nm, which restricts maximum pressure accordingly.
- 5) For continuous operation at speeds < 5 rpm please consult Rexroth Engineering Department in Glenrothes.
- $_{6)}$ Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 7) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at > 100 rpm.
- 8) When operating motors in series, please consult Rexroth Engineering Department in Glenrothes.
- 9) Nominal values are guide values for continuous operation.
- 10) For use with environmentally acceptable fluids HEES, HEPG, HETG, Viton seals must be specified. For further information, please refer to RE 90221.
- 11) For use with HF hydraulic fluids please refer to RE 90229.
- 12) Extension of the allowable temperature range may be possible depending on specification. Please consult Rexroth Engineering Department in Glenrothes for further details.
- 13) Holding brake torque values apply when used with standard mineral oil (HLP) and may change where other fluids or friction modifying additives are used.

7/16

Technical data (Mean values, measured at $v = 46 \text{ mm}^2/\text{s}$ and $t = 45 \text{ }^{\circ}\text{C}$)

- All torques apply to run-in motors

- For reduced displacement operating mode multiply the torques by ratio of reduced displacement

- Case pressure must be added to minimum charge pressures quoted. Quoted pressures are guide values but can be circuit-dependant. Please contact Bosch Rexroth Engineering Department in Glenrothes for further advice. Figures quoted in technical data tables below are average values.
- Where flushing is used, q_{VL} will increase by the flushing flow rate. Mean case leakage values are average values for single speed motors

Torque in Nm

Input flow in I/min

Mean case leakage in I/min

= Minimum charge pressure in pump mode in bar

			MCR10	. 780			
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	150
100	T	Nm	646	1030	1092	1077	1034
	qv	l/min	0.63	20.13	39.63	78.63	117.63
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09
200	T	Nm	1490	2110	2235	2221	2217
	qv	l/min	1.25	20.75	40.25	79.25	118.25
	q _{VL}	l/min	0.18	0.18	0.18	0.18	0.18
300	T	Nm	2384	3240	3352	3331	
	q _V	l/min	1.88	21.38	40.88	79.88	
	q _{VL}	l/min	0.27	0.27	0.27	0.27	
400	T	Nm	3377	4370	4370		
	q_V	l/min	2.51	22.01	41.51		
	q _{VL}	l/min	0.35	0.35	0.35		
Min. charge pressure	р	bar	1	3	3	5	6

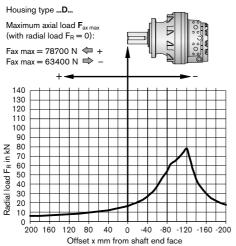
MCR10 . 860					
0	25	50	100	150	
712	1136	1204	1184	1117	
0.63	22.13	43.63	86.63	129.63	
0.09	0.09	0.09	0.09	0.09	
1642	2327	2464	2446	2379	
1.25	22.75	44.25	87.25	130.25	
0.18	0.18	0.18	0.18	0.18	
2628	3572	3696	3693		
1.88	23.38	44.88	87.88		
0.27	0.27	0.27	0.27		
3723	4818	4818			
2.51	24.01	45.51			
0.35	0.35	0.35			
1	3	3	5	7	

			MCR10	. 940			
Pressure Diff. ∆p (bar)	Speed n	rpm	О	25	50	100	150
100	T	Nm	778	1242	1317	1282	1307
	qv	l/min	0.63	24.13	47.63	94.63	141.63
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09
200	T	Nm	1795	2543	2693	2678	
	q _V	l/min	1.25	24.75	48.25	95.25	
	q _{VL}	l/min	0.18	0.18	0.18	0.18	
300	T	Nm	2872	3905	4039		
	q_V	l/min	1.88	25.38	48.88		
	q _{VL}	l/min	0.27	0.27	0.27		
400	T	Nm	4069	5266	5266		
	q_V	l/min	2.51	26.01	49.51		
	q _{VL}	l/min	0.35	0.35	0.35		
Min. charge pressure	р	bar	1	3	3	5	8

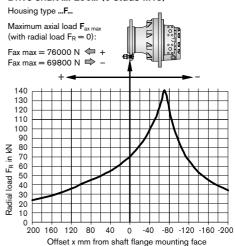
MCR10	MCR10 . 1120					
0	25	50	100	150		
927	1480	1569	1498	1346		
0.63	28.63	56.63	112.63	168.63		
0.09	0.09	0.09	0.09	0.09		
2139	3030	3209	3206			
1.25	29.25	57.25	113.25			
0.18	0.18	0.18	0.18			
3422	4652	4813				
1.88	29.88	57.88				
0.27	0.27	0.27				
4848	6275	6275				
2.51	30.51	58.51				
0.35	0.35	0.35				
1	3	3	5	9		

Technical data (Mean values, measured at $v = 46 \text{ mm}^2/\text{s}$ and $t = 45 \,^{\circ}\text{C}$)

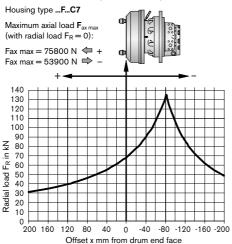
			MCR10	. 1250			
Pressure Diff. ∆p (bar)	Speed n	rpm	0	25	50	100	125
100	T	Nm	1035	1651	1751	1635	1530
	q _V	l/min	0.63	31.88	63.13	125.63	156.88
	q _{VL}	l/min	0.09	0.09	0.09	0.09	0.09
200	Т	Nm	2387	3382	3581	3486	
	q _V	l/min	1.25	32.50	63.75	126.25	
	q _{VL}	I/min	0.18	0.18	0.18	0.18	
300	Т	Nm	3820	5192	5371		
	q _V	l/min	1.88	33.13	64.38		
	q _{VL}	l/min	0.27	0.27	0.27		
400	Т	Nm	5411	7003	7003		
	qv	l/min	2.51	33.76	65.01		
	q _{VL}	l/min	0.35	0.35	0.35		
Min. charge pressure	р	bar	1	3	3	7	9


MCR10	1340			
0	25	50	100	125
1109	1770	1877	1726	1601
0.63	34.13	67.63	134.63	168.13
0.09	0.09	0.09	0.09	0.09
2559	3626	3839	3670	
1.25	34.75	68.25	135.25	
0.18	0.18	0.18	0.18	
4095	5566	5758		
1.88	35.38	68.88		
0.27	0.27	0.27		
5801	7507	7507		
2.51	36.01	69.51		
0.35	0.35	0.35		
1	3	3	7	9

8/16


Permitted loading on drive shaft

(Speed n = 50 rpm, pressure differential Δp = 250 bar, 2000 hrs L10 life at 50 °C)

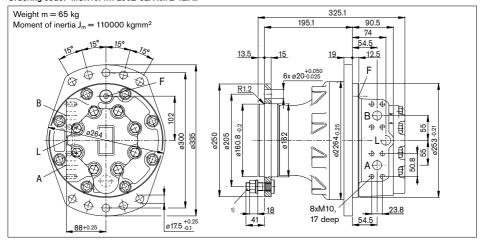

Drive shaft ...L60...

Drive shaft ...F250... (6 studs M18)

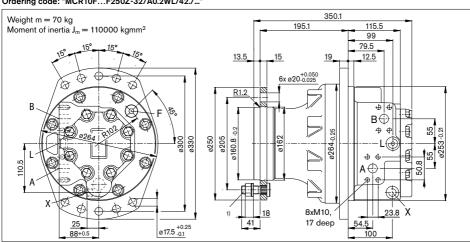
Drive shaft ... F250... (8 studs M20)

Note:

These values and graphs are for initial guidance only.


For actual motor life calculations under typical or specified duty cycles, contact Rexroth Engineering Department in Glenrothes.

10/16 Bosch Rexroth AG MCR10 | RE 15207/07:10


Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Flanged rear housing, flanged drive shaft, single speed (1) Ordering code: "MCR10F...F250Z-32/A0.1L/42./..."

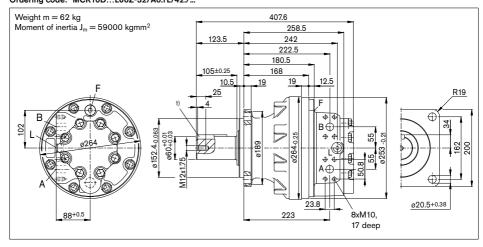
Flanged rear housing, flanged drive shaft, two speed (2W) Ordering code: "MCR10F...F250Z-32/A0.2WL/42./..."

Designation	Port function	Code 42	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J518 ²⁾	3/4 in	470/4203)	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
Χ	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Χ

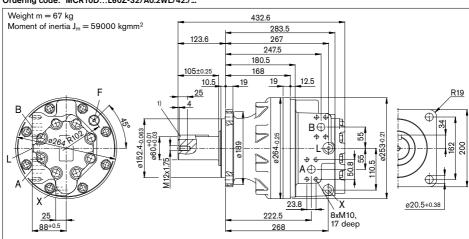
^{1) 6}x wheel studs M18 x 1.5 with flat nuts (DIN74361-2) for wheel fixing, clamping length 5 to 23 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 205)

²⁾ Only dimensions according to SAE J518 (code 62 - high pressure series)

³⁾ Depends on nominal size


O = Must be connected (plugged /covered for transportation)

X = Plugged (in normal operation)


Dimensions

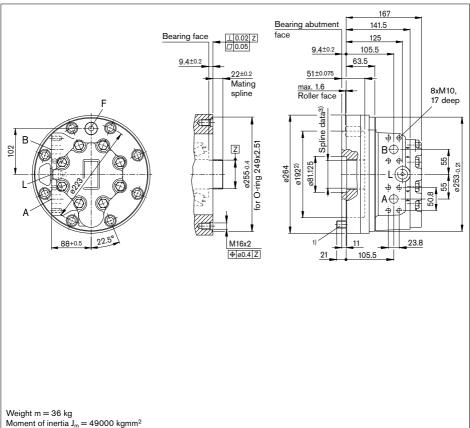
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

4 Hole SAE flanged front housing, parallel drive shaft, single speed (1) Ordering code: "MCR10D...L60Z-32/A0.1L/42./..."

4 Hole SAE flanged front housing, parallel drive shaft, two speed (2W) Ordering code: "MCR10D...L60Z-32/A0.2WL/42./..."

Designation	Port function	Code 42	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J518 ²⁾	3/4 in	470/420 ³⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
X	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

- 1) Parallel key A18 x 11 x 80 DIN 6885
- 2) Only dimensions according to SAE J518 (code 62 high pressure series)
- 3) Depends on nominal size
- O = Must be connected (plugged /covered for transportation)
- X = Plugged (in normal operation)


12/16 Bosch Rexroth AG MCR10 | RE 15207/07:10

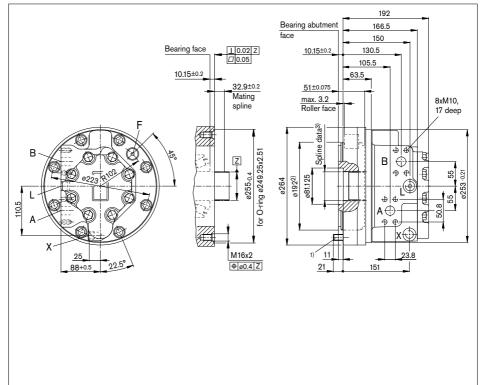
Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Hydrobase for mounting on customer's shaft, single speed (1)

Ordering code: "MCR10H...ZZ-32/A0.1L/42./..."

Designation	Port function	Code 42	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J518 ⁴⁾	3/4 in	470/4205)	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х


- $_{\mbox{\scriptsize 1)}}$ 8x hexagon socket head cap screw ISO 4762 M16x70 on a P.C.D of 223
- 2) Mating part must clear this diameter
- 3) Spline data: N65x2x31x9H DIN 5480
- 4) Only dimensions according to SAE J518 (code 62 high pressure series)
- 5) Depends on nominal size
- O = Must be connected (plugged /covered for transportation)
- X = Plugged (in normal operation)

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

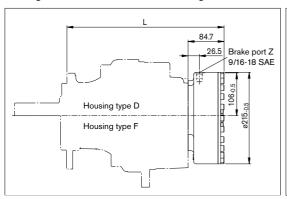
Hydrobase for mounting on customer's shaft, two speed (2W)

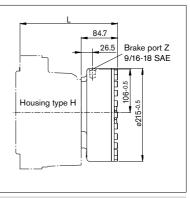
Ordering code: "MCR10H...ZZ-32/A0.2WL/42./..."

Weight m = 40 kg

Moment of inertia J_m = 49000 kgmm²

Designation	Port function	Code 42	Size	Peak pressure [bar]	State
A, B	Inlet, outlet	SAE J518 ⁴⁾	3/4 in	470/420 ⁵⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Χ


- 1) 8x hexagon socket head cap screw ISO 4762 M16x70 on a P.C.D of 223
- 2) Mating part must clear this diameter
- 3) Spline data: N65x2x31x9H DIN 5480
- 4) Only dimensions according to SAE J518 (code 62 high pressure series)
- 5) Depends on nominal size
- O = Must be connected (plugged /covered for transportation)
- X = Plugged (in normal operation)


14/16 Bosch Rexroth AG MCR10 | RE 15207/07:10

Dimensions

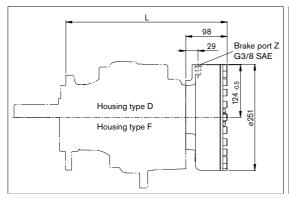
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

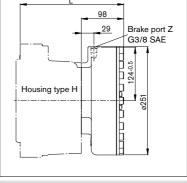
Holding Brake (multi-disc brake): ordering code "B5"

Housing type	Single speed (1) L	Two speed (2W) L
D	343.2	368.2
F	370.3	395.3

 Housing type
 Single speed (1)
 Two speed (2W)

 H
 226.2
 251.2


Weight m = 19 kg


Weight m = 19 kg

Moment of inertia $J_m = 3220 \text{ kgmm}^2$ (single speed)

Moment of inertia J_m = 3819 kgmm² (two speed)

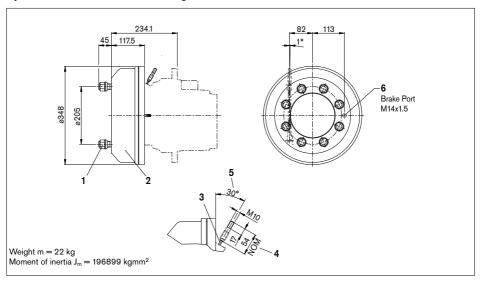
Holding Brake (multi-disc brake): ordering code "B7"

Housing type	Single speed (1) L	Two speed (2W) L
D	356.5	381.5
F	383.6	408.6

Housing	Single speed (1)	Two speed (2W)
type	L	L
Н	239.5	264.5
Mainka - 01	= 1	

Weight m = 25 kg

Weight m = 25 kg


Moment of inertia $J_m = 3660 \text{ kgmm}^2$ (single speed)

Moment of inertia $J_m = 4030 \text{ kgmm}^2$ (two speed)

Dimensions

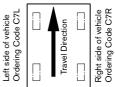
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dynamic brake (drum brake): ordering code "C7R" / "C7L"

- 1 8 Studs M20x1.5 with spherical wheel nuts
- 2 Dynamic brake (drum brake) ordering code C7L/R for use with brake fluid DOT 3+5 or SAE J 1703.

If brake is to be used with mineral oil a special order is to be made.

Please state if seals for mineral oil are required when placing order.

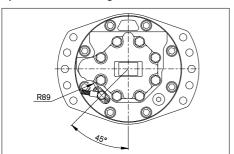

- 3 Brake cable (Bowden cable). The brake illustrated is for right side of vehicle. The left side is a mirror image of this (see fig. below).
- 4 Brake cable length.
- 5 Angular position of brake cable.
- 6 Brake port p_{max} = 120 bar. Brake cylinder operating volume V = 13 cm³.

Brake torque after run-in

Braking torque	Cable tension	Braking torque	Port pressure
4700 Nm	1755 N	4700 Nm	89 bar
6400 Nm	2400 N	6400 Nm	120 bar

MCR dynamic drum brake run-in procedure

- Brake the machine hard in forward and reverse directions until the brake drum temperature reaches 200 °C.
- Allow the brake to cool.
- To remove residue, brake gently 2 times each in the forward and reverse directions.



Bosch Rexroth AG MCR10 | RE 15207/07.10

Dimensions

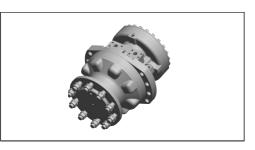
16/16

Speed sensor: ordering code "P1" / "P2"

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Bosch Rexroth Limited Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK

Phone +44 (0) 15 92 631 777 Telefax +44 (0) 15 92 631 936 www.boschrexroth.co.uk © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.


The data specified in this document serve only to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from this information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and ageing. Subject to change.

Rexroth Bosch Group

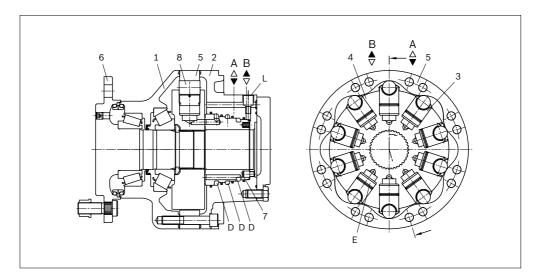
Radial Piston Motor (Multi-Stroke) MCR15

RE 15208

Edition: 05.2012 Replaces: 10.1994

•	Series	ЗХ

- ▶ Size 1130 to 2150
- ▶ Differential pressure up to 450 bar
- ▶ Torque output up to 12730 Nm
- ► Speed up to 150 rpm
- ▶ Open and closed circuits


Features

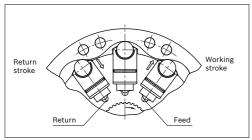
- ▶ Compact robust construction
- ▶ High volumetric and mechanical efficiencies
- High pressure rating
- ► High reliability
- ▶ Low maintenance
- ► Smooth running at very low speeds
- Low noise
- ► Reversible
- Sealed tapered roller bearings
- ▶ High radial forces permitted on drive shaft
- ► Freewheeling possible
- Available with optional holding brake (multi-disc) or dynamic (drum) brake
- ► Available with:
 - Two speed option
 - Integrated flushing valve
 - Speed sensor

\mathbf{a}			

Contents	
Functional description	2
Ordering code	
Technical data	-
Permitted loading on drive shaft	10
Dimensions	4 -

Functional description

Hydraulic motors type MCR are radial piston motors with a rotating shaft.


Construction

Two part housing (1, 2), rotary group (3, 4), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

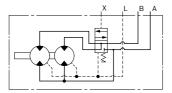
The number of working and return strokes corresponds to the number of lobes on the cam x number of pistons.

Flow paths

The cylinder chambers (E) are connected to ports A and B via the axial bores and the annular passages (D).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard, except on Hydrobase motors.

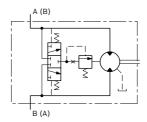

Freewheeling

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports A and B to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port L. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

▼ Two-speed motor


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or counter-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request). Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values

based on a boost / charge pressure of 25 bar.

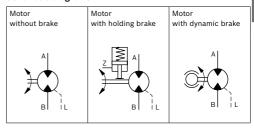
▼ Motor with flushing valve

Flushing flow rates (for $p_{charge} - p_{case} = 25 \text{ bar}$)

Ordering code	Flow ±1 L/min
F1	3 L/min
F2	5 L/min
F7	7 L/min
F4	10 L/min
F8	12.5 L/min
F6	13.5 L/min

Holding brake (multi-disc brake)

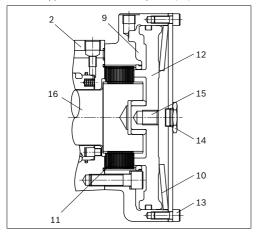
Mounting


By way of rear housing (2) and brake shaft (16).

Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring allowing the brake discs to turn independently.

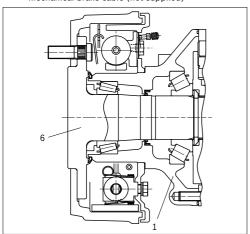
Note: This brake is provided solely for static use - not to be used dynamically


Schematic diagrams

4 MCR15 Series 3X | Functional description

Manual release of holding brake

The brake may also be released manually by loosening screws (13), or by removing plug (14) and inserting a puller into the tapped hole on the brake piston (15).

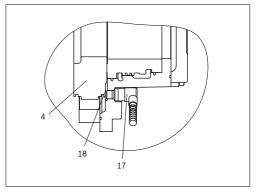


Dynamic brake

Where mechanical dynamic braking is required, a drum brake may be specified. The drum brake is mounted directly onto the drive shaft (6) and front housing (1). Braking torque is provided by brake shoes acting on the inside of the drum.

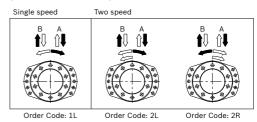
▼ Operation of brake

- Hydraulic brake fluid (special order required for mineral oil operation)
- Mechanical brake cable (not supplied)


Bosch Rexroth AG, RE 15208/05.2012

Speed sensor

A Hall-effect speed sensor (17) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (18) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies (code P1) and for direct connection to a 12 V or 24 V unregulated supply (code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (code PO). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(viewed from drive shaft)

Ordering code

_	01	02	03	04	05	06			07	08	09	10	11	12	13	14	15	16
	MCR	15				Z	1	'	ЗХ		М		42					
_	11-1-1-1					-					•							
$\overline{}$	Radial p			speed, h	nigh-torqu	ue moto	r											MCR
_	me size				- '													
_	Frame	size 15																15
	using typ																	
$\overline{}$	Short fi		e – rear	mountin	g flange													С
		se flang			gg-													F
		ase (half																н
Nor	minal siz			V in cm	³/rev								113	0 1250	1500	1780	2150	<u> </u>
$\overline{}$					standard	cylindr	ical pi	istor	ns LD				•	•	•	-	-	
	High di	splacem	ent: mot	ors use	stepped	pistons	HD						-	-	-	•	•	
Dri	ve shaft																	
$\overline{}$		inge ø25	0 mm (c	only avai	lable wit	h housii	ng typ	e "C	2")									F250
	With fla	inge ø28	0 mm (c	only avai	lable wit	h housii	ng typ	e "F	")									F280
	Withou	t shaft (d	only avai	lable wi	th housir	ng type	"H")											z
Thr	ough sha	aft																
$\overline{}$	Withou		h shaft															Z
Ser	ies																	
_		30 to 39	(series	30 to 39	are dime	ensiona	lly inte	erch	angeab	le)								ЗХ
Bra																		
_	Withou	t brake																A0
	-		se spring	applied	d multi-di	sc hold	ing br	ake	11000	Nm								B11
					r right ha													C12R
					r left han													C12L
Sea	ıls																	
09	NBR (n	itrile rub	ber)															М
Sin	gle- / Tw	o-speed	operati	on														
$\overline{}$	ī -				n of rotat	ion												1L
	Switcha	able two	speed,	anti-cloc	kwise di	rection	of rot	atio	n									2L
	Switcha	able two	speed,	clockwis	se directi	on of ro	tatior	n										2R
Por	ts																	
11	Tapped	with UN	IF thread	d (SAE J	514) (A a	and B p	orts S	AE s	plit flar	nge metr	ic bolt h	oles)						42
Stu	ds																	
	Withou	t studs (no code)														
		heel stud																s
Spe	ed sens	or																
<u> </u>	Withou		(no cod	e)														
	Sensor			-														P0
	Sensor	without	regulato	or														P1
	Sensor	with reg	gulator															P2

MCR15 Series 3X | Ordering code

	01	02	03	04	05	06		07	80	09	10	11	12	13	14	15	16
ſ	MCR	15				z	/	ЗХ		М		42					
	Flushing																

1	.4	without flushing (no code)		
L		With flushing (see table on page 3)	F1-F8	

Spe	ecial order				
	1				

15	Special feature	٤	soxxx

Other

6

16 Mark in text here

Technical data

Frame size				MCR15						
Type of mounting			Flange mo	unting; fac	e mounting					
Pipe connections ¹⁾²⁾			Threaded	per SAE J5	14 or flange	d per J518 (d	code 62)			
Shaft loading			see page	9						
Displacement	V_{g}	cm ³ /rev	1130	1250	1500	1780	2150			
Output torque										
Specific torque (at Δp = 250 bar)		Nm	4180	4630	5550	6590	7960			
Maximum torque ³⁾	$T_{\sf max}$	Nm	7530	8330	9990	10540	12730			
Output speed										
Minimum speed for smooth running ⁴⁾	n_{min}	rpm	5	5	5	5	5			
Maximum speed (1L & 2L) ^{5) 6)}	n_{max}	rpm	150	150	150	125	125			
Output power										
Nominal power ⁸⁾	P	kW	55	55	55	60	60			
Pressure										
Operating pressure ⁸⁾	p_{nom}	bar	250	250	250	250	250			
Maximum differential pressure ³⁾⁷⁾	Δp_{max}	bar	450	450	450	400	400			
Maximum pressure at port "A" or "B"3)7)	p_{max}	bar	470	470	470	420	420			
Maximum case drain pressure	p _{case max}	bar	10	10	10	10	10			
Weight	m	kg	see unit dimensions on pages 11 to 13							
Moment of Inertia	J	kgm ²	see unit dimensions on pages 11 to 13							
Hydraulic fluid ⁹⁾										
Hydraulic fluid type			Mineral oi	ls (HLP) to	DIN 51 524					
Hydraulic fluid temperature range ¹⁰⁾	t _{min/max}	°C	-20 to 85							
Viscosity range	$v_{min/max}$	mm²/s	10 to 200)						
Fluid cleanliness			ISO 4406, Class 20/18/15							
Holding brake (disc brake)			B11							
Minimum holding torque	T	Nm	11000							
Release pressure (min)	p _{rel min}	bar	12							
Release pressure (max)	p _{rel max}	bar	15							
Maximum pressure at brake port "Z"	p	bar	40							
Oil volume required to operate brake	V	cm ³	77							
Dynamic brake (drum brake)			see inforn	nation on p	age 15					

- Ensure motor case is filled with oil prior to start-up. See operating manual RE 15215-B.
- For installation and maintenance details, please see operating manual RE 15215-B.
- a) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For continuous operation at speeds < 5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 5) Based on nominal no-load Δp of 20 bar in full-displacement mode.

Note

For operation outside of these parameters, please consult Bosch Rexroth.

- 6) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 7) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) Guide values for continuous operation.
- 9) For use with environmentally acceptable fluids HEES, HEPG, HETG, Viton seals must be specified. For further information, please refer to RE 90221.
- 10) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.

Technical data - mean values

- ► Measured at $v = 46 \text{ mm}^2/\text{s}$ and $t = 45^{\circ}\text{C}$
- ► All torques apply to run-in motors
- ► For reduced displacement operating mode multiply the torques by ratio of reduced displacement

T = Torque in Nm

 q_V = Input flow in L/min

 q_{VL} = Mean case leakage in L/min

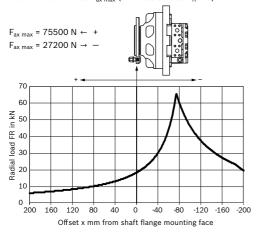
p = Minimum charge pressure in pump mode in bar

Note

- Case pressure must be added to minimum charge pressures quoted. Quoted pressures are guide values but can be circuit-dependant. Please contact Bosch Rexroth Engineering Department in Glenrothes for further advice. Figures quoted in technical data tables below are average values.
- Where flushing is used, q_{VL} will increase by the flushing flow rate. Mean case leakage values are average values for single speed motors.

	Size		1130					1250				
Pressure diff. ∆p in bar	Speed n	rpm	0	25	50	100	150	0	25	50	100	150
100	T	Nm	1133	1529	1583	1493	1397	1253	1692	1751	1691	1512
	q_{\lor}	L/min	0.72	28.95	57.40	114.19	171.31	0.74	31.95	63.40	126.19	189.31
	$q_{\sf VL}$	L/min	0.20	0.20	0.30	0.50	0.90	0.20	0.20	0.30	0.50	0.90
200	T	Nm	2447	3166	3238	3166	3133	2707	3503	3582	3503	-
	q_{\lor}	L/min	2.18	29.59	58.09	114.98	172.16	2.18	32.59	64.09	126.98	-
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	0.40	0.40	0.50	0.60	1.00	0.40	0.40	0.50	0.60	-
300	T	Nm	3670	4749	4858	4694	_	4060	5254	5373	-	-
	q_{\lor}	L/min	4.04	30.10	59.02	115.52	-	4.04	33.10	65.02	-	-
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	0.50	0.50	0.70	0.70	_	0.50	0.50	0.70	-	-
400	T	Nm	4892	6331	6474	-	_	5411	7003	7162	-	-
	q_{\lor}	L/min	5.84	31.00	59.81	-	_	5.82	34.00	65.81	-	-
	$q_{ m VL}$	L/min	1.00	1.00	1.00	-	_	1.00	1.00	1.00	-	-

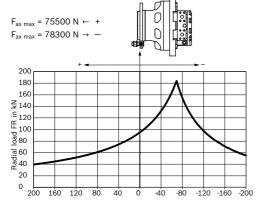
	Size		1500					1780			
Pressure diff. Δp in bar	Speed n	rpm	0	25	50	100	150	0	25	50	100
100	T	Nm	1504	2030	2101	1983	1719	1558	2456	2420	2043
	q_{\lor}	L/min	0.40	37.90	75.60	151.00	226.80	0.74	45.41	90.05	179.22
	$q_{ m VL}$	L/min	0.20	0.20	0.30	0.50	0.90	0.37	0.41	0.45	0.53
200	T	Nm	3248	4203	4298	4203	_	3683	50.49	5116	5833
	q_{\lor}	L/min	0.80	38.30	76.00	151.20	-	2.18	46.55	91.22	180.55
	$q_{ m VL}$	L/min	0.40	0.40	0.50	0.60	-	1.09	1.11	1.13	1.17
300	T	Nm	4872	6304	6448	-	-	5949	7692	7794	-
	q_{\lor}	L/min	1.00	38.50	76.40	-	-	4.04	48.00	93.10	_
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	0.50	0.50	0.70	-	-	2.02	2.15	2.28	_
400	T	Nm	6494	8403	8594	-	-	8160	10335	10425	_
	q_{\lor}	L/min	2.00	39.50	77.40	-	-	5.82	49.46	94.81	_
	$q_{ m VL}$	L/min	1.00	1.00	1.00	-	-	2.92	3.21	3.50	_


	Size		2150			
Pressure diff. Δp in bar	Speed n	rpm	0	25	50	100
100	T	Nm	1882	2967	2922	2467
	q_{\lor}	L/min	0.72	54.66	108.55	216.22
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	0.37	0.41	0.45	0.53
200	T	Nm	4448	6098	6180	-
	q_{\vee}	L/min	2.18	55.80	109.72	_
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	1.09	1.11	1.13	_
300	T	Nm	7186	9290	9414	_
	q_{\vee}	L/min	4.04	57.25	111.60	_
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	2.02	2.15	2.28	_
400	T	Nm	9855	12483	-	_
	q_{\vee}	L/min	5.84	58.71	-	_
	$q_{ m VL}$	L/min	2.92	3.21	_	-

Permitted loading on drive shaft

Drive shaft ...F250...(6 studs M18)

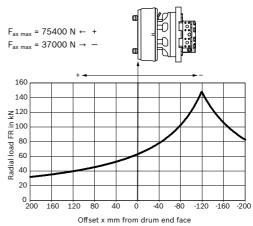
Housing type ... C...


Maximum axial load $F_{ax max}$ (with radial load F_{R} = 0):

Drive shaft ...F280...(10 studs M22)

Housing type ...F...

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):



Offset x mm from shaft flange mounting face

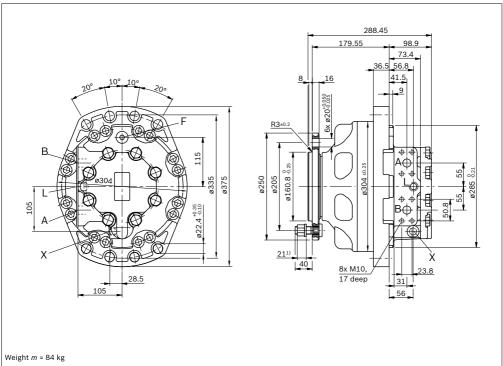
Drive shaft ...F280...(10 studs M22)

Housing type ...F...C12

Maximum axial load $F_{ax max}$ (with radial load F_{R} = 0):

Note

- These values and graphs are for initial guidance only and are based on:
 - Speed n = 50 rpm, pressure differential Δp = 250 bar, 2000 hrs L10 life at 50 °C
- For actual motor life calculations under typical or specified duty cycles, contact Rexroth Engineering Department in Glenrothes.


Dimensions

Flanged rear housing, flanged drive shaft, compact front housing, single speed (1)

Ordering code: "MCR15C...F250Z-32/A0.1L/11./..."

Flanged rear housing, flanged drive shaft, compact front housing, two speed (2)

Ordering code: "MCR15C...F250Z-32/A0.2L/11./..."

Moment of inertia $J_m = 0.1712 \text{ kgm}^2$

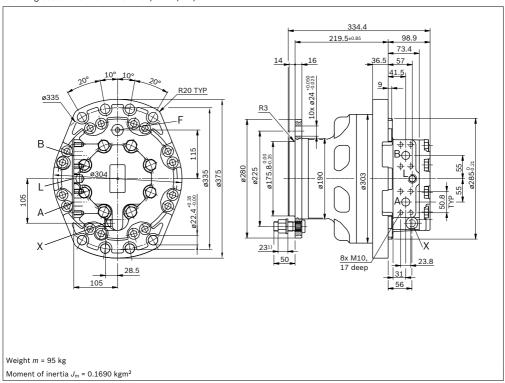
Designation	Port function	Code 42	Size	Maximum pressure [bar]	State ³⁾
А, В	Inlet, outlet	SAE J518	3/4 in	470/420 ²⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
X	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	X

^{1) 6}x wheel studs M18 x 1.5 with flat nuts (DIN74361-2) for wheel fixing, clamping length 5 to 19 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 205)

²⁾ Depends on nominal size

³⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


12 MCR15 Series 3X | Dimensions

Flanged rear housing, flanged drive shaft, single speed (1)

Ordering code: "MCR15F...F280Z-32/A0.1L/42./..."

Flanged rear housing, flanged drive shaft, two speed (2)

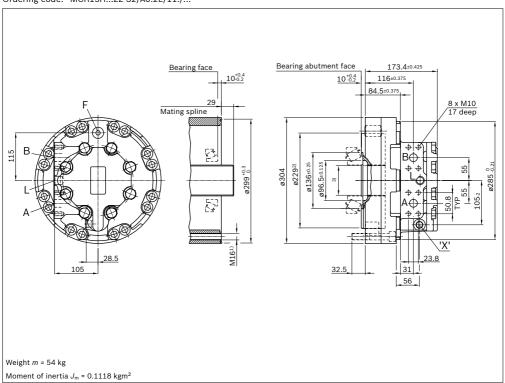
Ordering code: "MCR15F...F280Z-32/A0.2L/42./..."

Designation	Port function	Code 42	Size	Maximum pressure [bar]	State ³⁾
A, B	Inlet, outlet	SAE J518	3/4 in	470/420 ²⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
X	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

^{1) 10}x wheel studs M22 x 1.5 with flat nuts (DIN74361-2) for wheel fixing, clamping length 5 to 27 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 225)

²⁾ Depends on nominal size

³⁾ O = Must be connected (plugged on delivery)

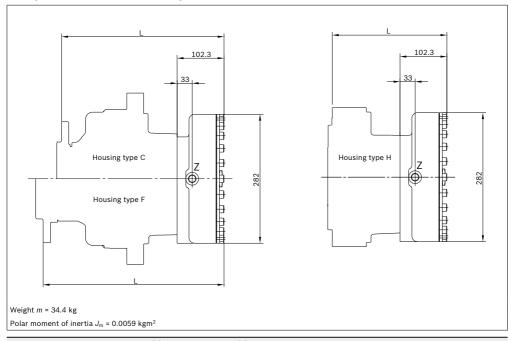

X = Plugged (in normal operation)

Hydrobase for mounting on customer's shaft, single speed (1)

Ordering code: "MCR15H...ZZ-32/A0.1L/11./..."

Hydrobase for mounting on customer's shaft, two speed (2)

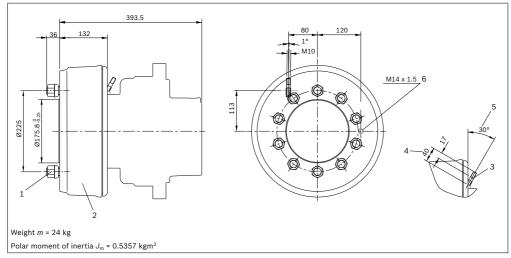
Ordering code: "MCR15H...ZZ-32/A0.2L/11./..."



Designation	Port function	Code 42	Size	Maximum pressure [bar]	State ⁵⁾
A, B	Inlet, outlet	SAE J518	3/4 in	470/420 ²⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
X	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

- 1) 14 x M16 x 2 bolts on a P.C.D of 270
- 2) Mating part must clear this diameter
- 3) Spline data: N75x2x36x9H DIN 5480
- 4) depends on nominal size
- 5) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

14 MCR15 Series 3X | Dimensions


Holding brake (multi-disc brake): ordering code "B11"

Housing type	Single speed (1) L	Two speed (2) L
С	355.4	355.4
F	395.4	395.4
Н	250.2	250.2

٥

Dynamic brake (drum brake): ordering code "C12R" / "C12L"

- 1 10 Studs M22 x 1.5 with hexagonal wheel nuts
- 2 Dynamic brake (drum brake) ordering code C12L/R for use with brake fluid DOT 3+5 or SAE JI 703.

If brake is to be used with mineral oil a special order is to be made.

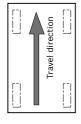
Please state if seals for mineral oil are required when placing order.

3 Brake cable (Bowden cable).

The brake illustrated is for right side of vehicle. The left is a mirror image of this (see fig. below).

- 4 Brake cable length (nominal).
- 5 Angular position of brake cable.
- 6 Brake port p_{max} = 112 bar.
 Brake cylinder operating volume V = 24.91 cm³.

Braking torque	Cable tension	Braking torque	Port pressure	
9000 Nm	2580 N	9000 Nm	84 bar	
12000 Nm	3460 N	12000 Nm	112 bar	


MCR dynamic drum brake run-in procedure

- ▶ Brake the machine hard in forward and reverse directions until the brake drum temperature reaches 200°C.
- ► Allow the brake to cool.

▼ Brake torque after run-in

▶ To remove residue, brake gently 2 times each in the forward and reverse directions.

Left side of vehicle Ordering code C12L

Right side of vehicle Ordering code C12R

Before finalizing your design, request a binding installation drawing. Dimensions in mm

Bosch Rexroth Limited Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 (0) 15 92 631 777 Telefax +44 (0) 15 92 631 936 www.boschrexroth.com/brm © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

Rexroth Bosch Group

Radial Piston Motor (Multi-Stroke) MCR20

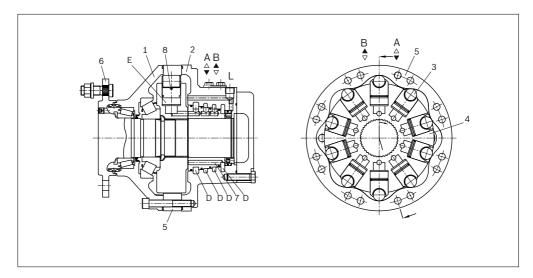
RE 15209

Edition: 05.2012 Replaces: 03.1995

Ser	

- ▶ Size 1750 to 3000
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 17760 Nm
- ▶ Speed up to 125 rpm
- ▶ Open and closed circuits

Features


- ► Compact robust construction
- ▶ High volumetric and mechanical efficiencies
- ▶ High pressure rating
- ► High reliability
- ▶ Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- ► Reversible
- Sealed tapered roller bearings
- ► High radial forces permitted on drive shaft
- ► Freewheeling possible
- Available with optional holding brake (multi-disc) or dynamic (drum) brake
- ► Available with:
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

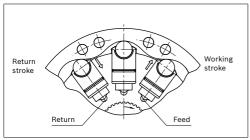
(:n		

Contents	
Functional description	2
Ordering code	5
Technical data	6
Permitted loading on drive shaft	8
Dimensions	9

2

Functional description

Hydraulic motors type MCR are radial piston motors with a rotating shaft.


Construction

Two part housing (1, 2), rotary group (3, 4), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam x number of pistons.

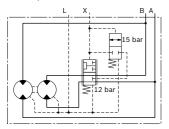
Flow paths

The cylinder chambers (E) are connected to ports A and B via the axial bores and the annular passages (D).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard, except on Hydrobase motors.

Freewheeling

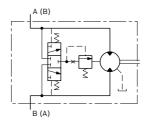

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports A and B to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port L. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Two-speed motor


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or counter-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

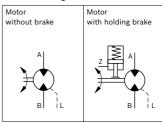
▼ Motor with flushing valve

Flushing flow rates (for p_{charge} - p_{case} = 25 bar)

Ordering code	Flow ±1 L/min
F1	3 L/min
F2	5 L/min
F7	7 L/min
F4	10 L/min
F8	12.5 L/min
F6	13.5 L/min

Holding brake (multi-disc brake)

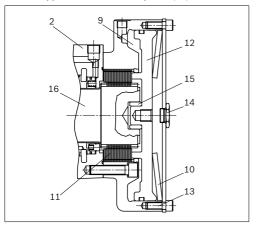
Mounting


By way of rear housing (2) and brake shaft (16).

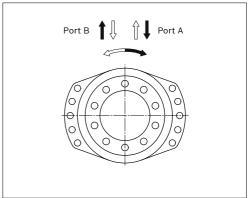
Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring allowing the brake discs to turn independently.

Note: This brake is provided solely for static use - not to be used dynamically


Schematic diagrams

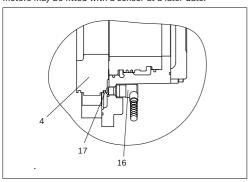
4 MCR20 Series 3X | Functional description


Manual release of holding brake

The brake may also be released manually by loosening screws (13), or by removing plug (14) and inserting a puller into the tapped hole on the brake piston (15).

Direction of shaft rotation with flow

(viewed from drive shaft)



Speed sensor

A Hall-effect speed sensor (17) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (18) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.

Versions are available for use with regulated supplies (code P1) and for direct connection to a 12 V or 24 V unregulated supply (code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (code PO). These "sensor-ready" motors may be fitted with a sensor at a later date.

Bosch Rexroth AG, RE 15209/05.2012

Ordering code

• = Available

- = Not available

MCR 20 Radial piston motor 01 Radial piston type Frame size 02 Frame size 20 Housing type 03 Short front case – Hydrobase (half m Nominal size, displacement High displacement Drive shaft 05 With flange ø280 m Through shaft 06 Without through s Series 07 Series 30 to 39 (se Brake 08 Without brake Hydraulic release	e, low-spe - rear momotor) ement V i th: motors nt: motors mm (only)	in cm³/ s use st s use st	flange /rev			07 3X	08	09 M	10	11	12	13	14	15	16 MCR
Radial piston motor 01 Radial piston type Frame size 02 Frame size 20 Housing type 03 Short front case – Hydrobase (half m Nominal size, displace 04 Low displacement High displacement Drive shaft 05 With flange ø280 m Through shaft 06 Without through s Series 07 Series 30 to 39 (s Brake 08 Without brake Hydraulic release	- rear mo motor) ement V i it: motors nt: motors	in cm³/ s use st s use st	flange /rev	e motor		38		IVI							
01 Radial piston type Frame size 02 Frame size 20 Housing type 03 Short front case – Hydrobase (half m Nominal size, displace 04 Low displacement High displacement Orive shaft 05 With flange ø280 i Through shaft 06 Without through s Series 07 Series 30 to 39 (si Brake 08 Without brake Hydraulic release	- rear mo motor) ement V i it: motors nt: motors	in cm³/ s use st s use st	flange /rev												
Frame size 02 Frame size 20 Housing type 03 Short front case – Hydrobase (half m Nominal size, displace 4 Low displacement High displacement OF With flange Ø280 in Through shaft 06 Without through s Series 07 Series 30 to 39 (si Brake 08 Without brake Hydraulic release	- rear mo motor) ement V i it: motors nt: motors	in cm³/ s use st s use st	flange /rev												
Prame size 20	ement V into the motors into the motors into motors into motors into the motor into the mot	in cm³/ s use st s use st	/rev andard	cylindria											20
Housing type 03 Short front case – Hydrobase (half m Nominal size, displace 04 Low displacement High displacement 05 With flange Ø280 i Through shaft 06 Without through s Series 07 Series 30 to 39 (si Brake 08 Without brake Hydraulic release	ement V into the motors into the motors into motors into motors into the motor into the mot	in cm³/ s use st s use st	/rev andard	cylindria											20
03 Short front case – Hydrobase (half m Nominal size, displace 04 Low displacement High displacement 05 With flange ø280 m Through shaft 06 Without through s Series 07 Series 30 to 39 (se Brake 08 Without brake Hydraulic release	ement V into the motors into the motors into motors into motors into the motor into the mot	in cm³/ s use st s use st	/rev andard	cylindria											
03 Short front case – Hydrobase (half m Nominal size, displace 04 Low displacement High displacement 05 With flange ø280 m Through shaft 06 Without through s Series 07 Series 30 to 39 (se Brake 08 Without brake Hydraulic release	ement V into the motors into the motors into motors into motors into the motor into the mot	in cm³/ s use st s use st	/rev andard	cylindria											
Hydrobase (half m Nominal size, displace O4 Low displacement High displacement O5 With flange ø280 is Through shaft O6 Without through s Series O7 Series 30 to 39 (si Brake O8 Without brake Hydraulic release	ement V into the motors into the motors into motors in m	in cm³/ s use st s use st	/rev andard	cylindric											С
Drive shaft 05 With flange ø280 i Through shaft 06 Without through s Series 07 Series 30 to 39 (si Brake 08 Without brake Hydraulic release	t: motors nt: motors mm (only	use st	andard	cylindria											Н
Drive shaft 05 With flange ø280 i Through shaft 06 Without through s Series 07 Series 30 to 39 (si Brake 08 Without brake Hydraulic release	t: motors nt: motors mm (only	use st	andard	cylindria							1750	2100	2500	3000	
High displacement Drive shaft 05 With flange ø280 is Through shaft 06 Without through s Series 07 Series 30 to 39 (si Brake 08 Without brake Hydraulic release	nt: motors	s use st		⊂γiiiIUI I(cal pisto	ns LD					•	•	-	-	İ
05 With flange ø280 in Through shaft 06 Without through soeries 07 Series 30 to 39 (soeries) Brake 08 Without brake Hydraulic release											T -	-	•	•	
05 With flange ø280 in Through shaft 06 Without through s Series 07 Series 30 to 39 (si Brake 08 Without brake Hydraulic release										,					1
06 Without through s Series 07 Series 30 to 39 (s Brake 08 Without brake Hydraulic release	shaft	y availa	ble with	housin	g type "	C")									F280
06 Without through s Series 07 Series 30 to 39 (s Brake 08 Without brake Hydraulic release	shaft														
07 Series 30 to 39 (series 30 to 39) Brake 08 Without brake Hydraulic release	oait														z
07 Series 30 to 39 (series 30 to 39) Brake 08 Without brake Hydraulic release															
O8 Without brake Hydraulic release	series 30 t	to 39 a	re dime	nsionall	v intercl	nangeabl	e)								зх
08 Without brake Hydraulic release					,		-,								
Hydraulic release															A0
	snring ar	nnlied i	multi-dis	sc holdii	ng hrake	17000 N	lm								B19
Seals	Spring up	ppiicu i	marci dic	oc moran	Бышк	. 170001	*****								, 515
09 NBR (nitrile rubbe	or)														М
															IVI
Single- / Two-speed or															
10 Single speed, star															1L
Bi-directional two	speea, s	standar	a airect	ion of re	otation										2WL
Ports															
11 Tapped with UNF	thread (S	SAE J5:	14) (A a	nd B po	rts SAE	split flan	ge metri	c bolt ho	oles)						42
Studs															
12 Without studs (no															
With wheel studs	and nuts	S													S
Speed sensor															
13 Without sensor (n	no code)														
Sensor ready															P0
Sensor without re	egulator														P1
Sensor with regula	lator														P2
Flushing															
14 Without flushing ((no code))													
With flushing (see	e table on	n page :	3)												F1-F8
Special order															
15 Special feature															soxxx
Other															
16 Mark in text here															

Technical data

Frame size			MCR20			
Type of mounting			Flange mo	unting; face	mounting	
Pipe connections ¹⁾²⁾			Threaded per SAE J514 or flanged per J518 (code 62)			
Shaft loading			see page 8	3		
Displacement	V_{g}	cm ³ /rev	1750	2100	2500	3000
Output torque						
Specific torque (at Δp = 250 bar)		Nm	6480	7770	9250	11100
Maximum torque ³⁾	$T_{\sf max}$	Nm	11660	13990	14800	17760
Output speed	-					
Minimum speed for smooth running ⁴⁾	n_{min}	rpm	5	5	5	5
Maximum speed (1L & 2WL) ^{5) 6)}	$n_{\sf max}$	rpm	125	125	115	115
Output power						
Nominal power ⁸⁾	P	kW	70	70	85	85
Pressure						
Operating pressure ⁸⁾	p_{nom}	bar	250	250	250	250
Maximum differential pressure ³⁾⁷⁾	Δp_{max}	bar	450	450	400	400
Maximum pressure at port "A" or "B"3)7)	p_{max}	bar	470	470	420	420
Maximum case drain pressure	$p_{case\ max}$	bar	10	10	10	10
Weight	m	kg	see unit di	imensions o	n pages 9 to	11
Moment of Inertia	J	kgm ²	see unit di	imensions o	n pages 9 to	11
Hydraulic fluid ⁹⁾						
Hydraulic fluid type			Mineral oil	ls (HLP) to [DIN 51 524	
Hydraulic fluid temperature range ¹⁰⁾	$t_{\rm min/max}$	°C	-20 to 85			
Viscosity range	$v_{min/max}$	mm²/s	10 to 2000)		
Fluid cleanliness			ISO 4406,	Class 20/18	3/15	
Holding brake (disc brake)			B19			<u> </u>
Minimum holding torque	T	Nm	17000			<u> </u>
Release pressure (min)	p_{relmin}	bar	15			·
Release pressure (max)	$p_{rel\ max}$	bar	30			
Maximum pressure at brake port "Z"	þ	bar	40			
Oil volume required to operate brake	V	cm ³	99			

- Ensure motor case is filled with oil prior to start-up. See operating manual RE 15215-B.
- For installation and maintenance details, please see operating manual RE 15215-B.
- a) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For continuous operation at speeds < 5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 5) Based on nominal no-load Δp of 20 bar in full-displacement mode.

Note

For operation outside of these parameters, please consult Bosch Rexroth.

- 6) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 7) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) Guide values for continuous operation.
- For use with environmentally acceptable fluids HEES, HEPG, HETG, Viton seals must be specified.
 - For further information, please refer to RE 90221.
- 10) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.

Technical data - mean values

- ► Measured at ν = 46 mm²/s and t = 45°C
- ► All torques apply to run-in motors
- For reduced displacement operating mode multiply the torques by ratio of reduced displacement

T = Torque in Nm

 q_V = Input flow in L/min

 q_{VI} = Mean case leakage in L/min

p = Minimum charge pressure in pump mode in bar

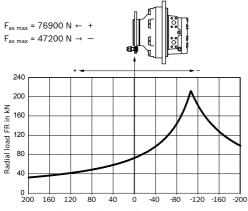
Note

- Case pressure must be added to minimum charge pressures quoted. Quoted pressures are guide values but can be circuit-dependant. Please contact Bosch Rexroth Engineering Department in Glenrothes for further advice. Figures quoted in technical data tables below are average values.
- Where flushing is used, q_{VL} will increase by the flushing flow rate. Mean case leakage values are average values for single speed motors.

	Size		1750				
Pressure diff. ∆p in bar	Speed n	rpm	0	25	50	100	125
100	T	Nm	1950	2423	2507	2206	2111
	q_{\vee}	L/min	1.6	45.4	89.3	176.8	221.0
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	0.8	8.0	0.9	0.9	1.1
200	T	Nm	3899	5013	5124	5013	-
	q_{\vee}	L/min	2.4	46.2	90.3	178.0	-
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	1.2	1.2	1.4	1.5	-
300	T	Nm	5850	7520	7688	-	-
	q_{\vee}	L/min	3.4	47.2	91.3	-	-
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	1.7	1.7	1.9	-	-
400	T	Nm	7799	10028	10251	-	-
	q_{\vee}	L/min	4.4	48.2	92.1	-	-
	$q_{ m VL}$	L/min	2.2	2.2	2.3	-	-

2100				
0	25	50	100	125
2335	2902	3002	2570	2390
1.6	54.1	106.8	211.8	269.7
0.8	0.8	0.9	0.9	1.1
4670	6005	638.0	6005	-
2.4	54.9	107.8	213.0	-
1.2	1.2	1.4	1.5	-
7006	9007	9207	-	-
3.4	55.9	108.8	-	-
1.7	1.7	1.9	-	-
9341	12010	12276	-	-
4.4	56.9	109.6	-	-
2.2	2.2	2.3	-	-

	Size		2500				
Pressure diff. ∆p in bar	Speed n	rpm	0	25	50	100	115
100	T	Nm	2188	3263	3342	2706	2594
	q_{\lor}	L/min	1.6	64.1	126.8	251.8	289.5
	$q_{ m VL}$	L/min	8.0	8.0	0.9	0.9	1.0
200	T	Nm	5173	6844	7003	6605	-
	q_{\vee}	L/min	2.4	64.9	127.8	253.0	-
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	1.2	1.2	1.4	1.5	-
300	T	Nm	8356	10504	10743	-	-
	q_{\lor}	L/min	3.4	65.9	128.8	-	-
	$q_{\scriptscriptstyle extsf{VL}}$	L/min	1.7	1.7	1.9	-	-
400	T	Nm	11459	14165	14244	-	-
	q_{\lor}	L/min	4.4	66.9	129.6	-	-
	$q_{ m VL}$	L/min	2.2	2.2	2.3	-	-


3000				
0	25	50	100	115
2626	3915	4011	3247	2435
1.6	76.6	151.8	301.8	347.0
0.8	0.8	0.9	0.9	1.0
6207	8212	8403	-	-
2.4	77.4	152.8	-	-
1.2	1.2	1.4	-	-
10027	12605	12891	-	-
3.4	78.4	153.8	-	-
1.7	1.7	1.9	-	-
13751	16998	-	-	-
4.4	79.4	-	-	-
2.2	2.2	-	-	-

Permitted loading on drive shaft

Drive shaft ...F280...(10 studs M22)

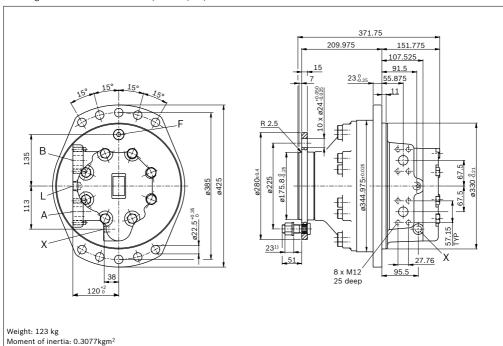
Housing type ... C...

Maximum axial load $F_{ax max}$ (with radial load $F_R = 0$):

Offset x mm from shaft flange mounting face

Note

- ► These values and graphs are for initial guidance only and are based on: Speed n = 50 rpm, pressure differential \(\Delta p = 250\) bar, 2000 hrs L10 life at 50 °C
- For actual motor life calculations under typical or specified duty cycles, contact Rexroth Engineering Department in Glenrothes.


Dimensions

Flanged rear housing, flanged drive shaft, compact front housing, single speed (1)

Ordering code: "MCR20C...F280Z-32/A0.1L/11./..."

Flanged rear housing, flanged drive shaft, compact front housing, two speed (2W)

Ordering code: "MCR20C...F280Z-32/A0.2WL/11./..."

Ports

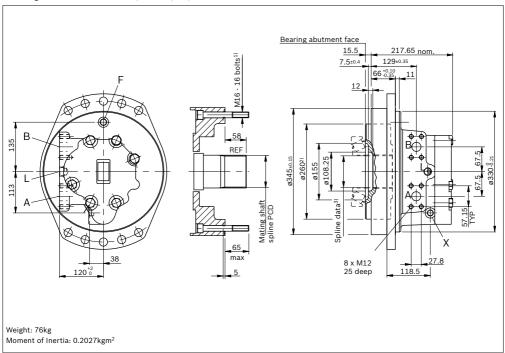
Designation	Port function	Code 42	Size	Maximum pressure [bar]	State ³⁾
A, B	Inlet, outlet	SAE J518	1 in	470/420 ²⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
X	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

^{1) 10}x wheel studs M22 x 1.5 with flat nuts (DIN74361-2) for wheel fixing, clamping length 5 to 28 mm, ordering code S (wheel studs and nuts equally spaced on P.C.D. of 225)

²⁾ Depends on nominal size

³⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


10 MCR20 Series 3X | Dimensions

Hydrobase for mounting on customer's shaft, single speed (1)

Ordering code: "MCR20H...ZZ-32/A0.1L/11./..."

Hydrobase for mounting on customer's shaft, two speed (2W)

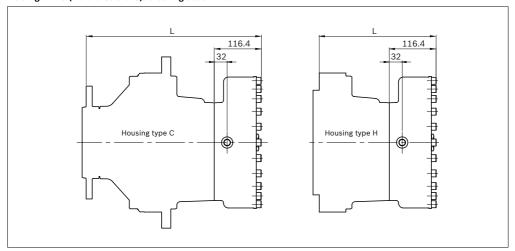
Ordering code: "MCR20H...ZZ-32/A0.2WL/11./..."

Ports

Designation	Port function	Code 42	Size	Size Maximum pressure [bar]	
A, B	Inlet, outlet	SAE J518	1 in	470/420 ⁴⁾	0
L	Case drain	SAE J514	3/4 in - 16 UNF	10	0
Х	2 speed port	SAE J514	9/16 in - 18 UNF	35	0
F	Filler port	SAE J514	3/4 in - 16 UNF	10	Х

^{1) 16} x M16 x 2 bolts on a P.C.D of 310

²⁾ Mating part must clear this diameter


³⁾ Spline data: N90x2x44x9H DIN 5480

⁴⁾ Depends on nominal size

⁵⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Holding brake (multi-disc brake): ordering code "B19"

Housing type	Single speed (1) L	Two speed (2W) L
С	434.2	434.2
Н	290.1	290.1

Weight m = 53.2 kg

Polar Moment of Inertia $J_m = 0.0258 \text{kgm}^2$

12

Bosch Rexroth Limited Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 (0) 15 92 631 777 Telefax +44 (0) 15 92 631 936

www.boschrexroth.com/brm

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

Rexroth Bosch Group

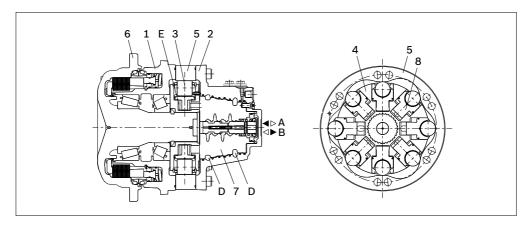
Radial Piston Motor for Track Drives MCR-T

RE 15221

Edition: 06.2012

•	56	rrie	s 3	SΛ

- ▶ Size 380 to 1340
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 8640 Nm (theoretical)
- ▶ Speed up to 475 rpm
- ▶ Open and closed circuits


Features

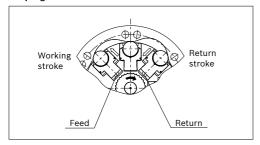
- ▶ Compact robust construction
- ► High brake capacity
- ▶ High volumetric and mechanical efficiencies
- ► High pressure rating
- ► High reliability
- ► High bearing life
- ► Low maintenance
- ▶ Smooth running at very low speeds
- ▶ Low noise
- Freewheeling possible
- Available with
 - Integrated flushing valve
 - Speed sensor
 - Bi-directional two speed
 - Integrated parking brake

Contents

Contents	
Functional description	
Ordering code	
Technical data	•
Dimensions	

Functional description

Hydraulic motors type MCR-T are specially designed radial piston motors for track drives.


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (8) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (3).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam x number of pistons in the cylinder block.

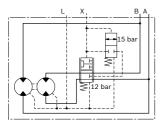
Flow paths

The ports A and B which are located at the rear case carry oil through the distributor to the cylinder chambers (E).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling

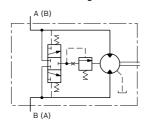

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports A and B to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port L. In this condition, the pistons are forced into the cylinder block which forces the rollers to loose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. Maximum speed of the motor remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Two-speed motor



Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or counter-clockwise direction, the flushing valve opens and allows a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cold fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request). Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

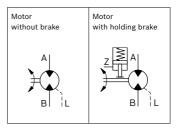
▼ Motor with flushing valve

Flushing flow (for $p_{charge} - p_{case} = 25 \text{ bar}$)

Ordering code	Flow ±1 L/min
F1	3 L/min
F2	5 L/min
F7	7 L/min
F4	10 L/min
F8	12.5 L/min
F6	13.5 L/min

Holding brake (multi-disc brake)

▼ Mounting

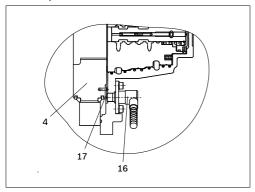

In MCRT, the brake is integrated into the motor itself. The brake parts that are attached to the shaft can rotate while the ones that are attached to the front case remain stationary.

▼ Brake application

As a safety requirement in mobile applications a parking brake is provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs that are compressed by a disc spring. The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area compresses the disc spring allowing the brake discs to turn independently.

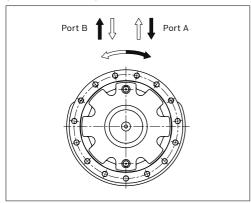
Note: This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams


4 MCR-T Series 3X | Functional description

Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies (code P1) and for direct connection to a 12 V or 24 V unregulated supply (code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (code PO). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(view from drive shaft)

Bosch Rexroth AG, RE 15221/06.2012

Ordering code

01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
MCR		T			Z	/	ЗХ		٧							

Radial piston motor

01 Radial-piston type, low-speed, high-torque motor

Frame size

C	2 Frame size	5	5
		6	6
		10	10

Housing type

		 П
03	3 Front case flanged	 - 1

Nominal size, displacement Vg in cm3/rev

04	Frame size 5		380	470	520	565	620	680	750	820
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	-
	High displacement motors use stepped pistons	HD	-	-	-	-	•	•	•	•
	Frame size 6									920
	High displacement motors use stepped pistons	HD								•
	Frame size 10			780	860	940	1120	1180	1250	1340
	Low displacement: motors use standard cylindrical pistons	LD		•	•	•	-	-	-	-
	High displacement motors use stepped pistons	HD		-	-	-	•	•	•	•

Drive shaft

0	With flange ø284 mm	F284]
	With flange ø315 mm (only available with MCR10T)	F315]

Through shaft

- 1	001	Med to the transfer of the tra	_	
	06 l	Without through shaft		

Series

07 Series 30 to 39 (series 30 to 39 are dimensionally interchangeable)

3X

Brake

08	Without brake	A0
	Hydraulic release spring applied multi-disc holding brake 4500 Nm	B4.5
	Hydraulic release spring applied multi-disc holding brake 5000 Nm	B5
	Hydraulic release spring applied multi-disc holding brake 7000 Nm (only available with MCR10T)	В7

Seals

0	9 NBR (nitrile rubber)	М
	FKM (fluoroelastomer/Viton)	٧

Single/two-speed operation

10	Single speed, standard direction of rotation	1L
	Bi-directional two speed, standard direction of rotation	2WL

Ports

11	Tapped with UNF thread (SAE J514)	12	1
	Tapped with UNF thread (SAE J514) (A & B ports SAE split flange metric bolt holes) (only available with MCR10T)	48	1

• = Available - = Not available

MCR-T Series 3X | Ordering code

6

Other

16 Mark in text here

	01	02	03	04	05	06		07	80	09	10	11	12	13	14	15	16
	MCR		Т			Z	1	3X		V							
Stu	ds																
_	Without	studs (no code))													
	With wh	neel stud	ls and nu	uts													S
Spe	ed sense	or															
13	Without	sensor	(no code	e)													
	Sensor	ready															P0
	Sensor	without	regulato	r													P1
	Sensor	with reg	ulator														P2
Flus	hing																
14	Without	flushing	g (no coo	de)													
	With flu	shing (s	ee table	on page	3)												F1-F8
Spe	cial orde	er															
15	Special	feature															soxxx

Technical data

Frame size											MCR6T	
Type of mounting			Flange r	nounting								
Pipe connections ¹⁾²⁾			Threade	d per SA	E J514							
Displacement ¹¹⁾	V_{g}	cm ³ /rev	380	470	520	565	620	680	750	820	920	
Output torque												
Specific torque (at Δp = 250 bar)		Nm	1360	1680	1860	2020	2220	2440	2690	2940	3290	
Maximum torque ³⁾	$T_{\sf max}$	Nm	2450	3030	3350	3640	4000	4380	4830	5290	5930	
Output speed												
Minimum speed for smooth running ⁴⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Maximum speed (1L) ⁵⁾⁶⁾	$n_{\sf max}$	rpm	475	385	345	320	290	265	240	220	195	
Maximum speed (2WL) ⁵⁾⁶⁾	$n_{\sf max}$	rpm	475	385	345	320	290	265	240	220	195	
Output power												
Nominal power ⁸⁾	P	kW	29	29	29	29	35	35	35	35	35	
Pressure												
Operating pressure ⁸⁾	p_{nom}	bar	250	250	250	250	250	250	250	250	250	
Maximum differential pressure ³⁾⁷⁾	Δp_{max}	bar	450	450	450	450	450	450	450	450	450	
Maximum pressure at port "A" or "B"3)7)	p_{max}	bar	470	470	470	470	470	470	470	470	470	
Maximum case drain pressure	p _{case max}	bar	10	10	10	10	10	10	10	10	10	
Weight	m	kg	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	65.9	
Moment of Inertia	J	kgm ²	0.000139	0.000139	0.000139	0.000139	0.000139	0.000139	0.000139	0.000139	0.000150	
Hydraulic fluid ⁹⁾												
Hydraulic fluid type			Mineral	oils (HLP) to DIN	51524						
Hydraulic fluid temperature range ¹⁰⁾	t _{min/max}	°C	-20 to 8	5								
Viscosity range	$v_{min/max}$	mm²/s	10 to 20	000								
Fluid cleanliness			ISO 440	6, Class 2	20/18/15							
Holding brake (disc brake)				B4.5				В	5			
Minimum holding torque	Nm			50	00							
Release pressure (min)	bar			12.0		12.0						
Release pressure (max)	bar	15.0 15.0										
Maximum pressure at brake port "Z"	bar			40				4	.0			
Oil volume to operate brake	$V_{\rm rel}$	cm ³			20.0			20.0				

- Ensure motor case is filled with oil prior to start-up. See operating manual RE 15215-B
- For installation and maintenance details, please see operating manual RE 15215-B.
- a) Maximum values should only be applied for a small portion of the duty cycle. Please consult Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For continuous operation at speeds <5 rpm please consult Rexroth Engineering Department in Glenrothes
- 5) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 6) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 7) When operating motors in series, please consult Rexroth Engineering Department in Glenrothes.

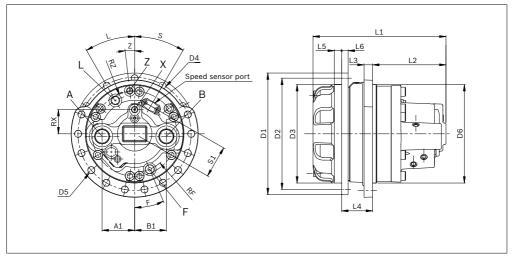
- 8) Guide values for continuous operation.
- For use with environmentally acceptable fluids HEES, HEPG, HETG, Viton seals must be specified.
 - For further information, please refer to RE 90221.
- 10) Extension of the allowable temperature range may be possible depending on specification.
 - Please consult Rexroth Engineering Department in Glenrothes for further details.
- 11) For available displacement options please consult Rexroth Engineering Department in Glenrothes

Note: For actual motor life calculations under typical or specified duty cycles, contact Rexroth Engineering Department in Glenrothes

MCR-T Series 3X | Technical data

Frame size	_		MCR10T									
Type of mounting			Flange mo	ounting								
Pipe connections ¹⁾²⁾			Flanged p	er SAE J51	8 (code 62), threaded	per SAE J	514				
Displacement ¹¹⁾	V_{g}	cm ³ /rev	780	860	940	1120	1180	1250	1340			
Output torque												
Specific torque (at Δp = 250 bar)		Nm	2790	3080	3370	4010	4230	4480	4800			
Maximum torque ³⁾	$T_{\sf max}$	Nm	5030	5540	6060	7220	7610	8060	8640			
Output speed												
Minimum speed for smooth running ⁴⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
Maximum speed (1L) ^{5) 6)}	$n_{\sf max}$	rpm	335	300	275	230	220	210	195			
Maximum speed (2WL) ^{5) 6)}	$n_{\sf max}$	rpm	335	300	275	230	220	210	195			
Output power												
Nominal power ⁸⁾	P	kW	44	44	44	50	50	50	50			
Pressure												
Operating pressure ⁸⁾	p_{nom}	bar	250	250	250	250	250	250	250			
Maximum differential pressure ³⁾⁷⁾	Δp_{max}	bar	450	450	450	450	450	450	450			
Maximum pressure at port "A" or "B"3)7)	p_{max}	bar	470	470	470	470	470	470	470			
Maximum case drain pressure	p _{case max}	bar	10	10	10	10	10	10	10			
Weight	m	kg	93.6	93.6	93.6	93.6	93.6	93.6	93.6			
Moment of Inertia	J	kgm ²	0.000266	0.000266	0.000266	0.000266	0.000266	0.000266	0.000266			
Hydraulic fluid ⁹⁾												
Hydraulic fluid type			Mineral o	ils (HLP) to	DIN 51524	ı						
Hydraulic fluid temperature range ¹⁰⁾	t _{min/max}	°C	-20 to 85									
Viscosity range	$v_{\text{min/max}}$	mm²/s	10 to 200	0								
Fluid cleanliness			ISO 4406	, Class 20/	18/15							
Holding brake (disc brake)			B7									
Minimum holding torque	T_{min}	Nm	7000									
Release pressure (min)	p _{rel min}	bar	10.0									
Release pressure (max)	p _{rel max}	bar	15.7									
Maximum pressure at brake port "Z"	p	bar	40									
Oil volume to operate brake	V_{rel}	cm ³	22.0									

- Ensure motor case is filled with oil prior to start-up. See operating manual RE 15215-B
- 2) For installation and maintenance details, please see operating manual RE 15215-B.
- a) Maximum values should only be applied for a small portion of the duty cycle. Please consult Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For continuous operation at speeds <5 rpm please consult Rexroth Engineering Department in Glenrothes
- 5) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 6) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 7) When operating motors in series, please consult Rexroth Engineering Department in Glenrothes.


- 8) Nominal values are guide values for continuous operation.
- 9) For use with environmentally acceptable fluids HEES, HEPG, HETG, Viton seals must be specified.

For further information, please refer to RE 90221.

- 10) Extension of the allowable temperature range may be possible depending on specification.
 Please consult Rexroth Engineering Department in Glenrothes for
- further details.
- 11) For available displacement options please consult Rexroth Engineering Department in Glenrothes

Note: For actual motor life calculations under typical or specified duty cycles, contact Rexroth Engineering Department in Glenrothes.

Dimensions

Motor	D1	D2	D3	D4	D5	D6	L1	L2	L3	L4	L5	L6
MCR5T	ø284	ø260	ø230	15 x 1/2-13UNC	8 x 5/8-11UNC	ø230	310.4	171.2	20	72	17	15
MCR6T	ø284	ø260	ø230	15 x 1/2-13UNC	10 x ø17	ø240	310.4	171.2	20	72	17	15
MCR10T	ø321	ø285	ø255	8 x M16	10 x ø17	ø268	349.8	195.8	16	86	16	18

			-	-	nv.			• •		
Motor	L	S	Z	F	RX	RZ	RF	A1	B1	S1
MCR5T	30°	30°	6.5°	23°	56.5	R101	R90	76	74	75
MCR6T	35°	30°	18.5°	23°	56.5	R101	R95	76	74	75
MCR10T	-87°	150°	-76.2°	-87°	71	R121	R108	45	45	89

Ports

Designation	Port function	Ordering code 12	Size	Ordering code 48 ¹⁾	Size ¹⁾	Maximum pressure [bar]	State ²⁾
A, B	Inlet, outlet	SAE J514	1 5/16-12 UN	SAE J518	3/4 in	470	0
L	Case drain	SAE J514	3/4-16 UNF	SAE J514	3/4-16 UNF	10	0
X	2 speed port	SAE J514	9/16-18 UNF	SAE J514	9/16-18 UNF	30	0
Z	Brake port	SAE J514	9/16-18 UNF	SAE J514	9/16-18 UNF	40	0
F	Filler port	SAE J514	3/4-16 UNF	SAE J514	3/4-16 UNF	10	Х

¹⁾ Applicable to MCR10T only

²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Bosch Rexroth Limited Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 (0) 15 92 631 777 Telefax +44 (0) 15 92 631 936 www.boschrexroth.com/brm © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

Rexroth Bosch Group

Radial Piston Motor for Slew Drives MCR-X

RE 15214

Edition: 06.2012 Replaces 04.2009

_	Sei	ies	2

- ▶ Size 160 to 820
- ► Maximum pressure 300 bar
- ► Torque output up to 3700 Nm
- ► Open circuits

Features

- ► Low-speed radial-piston design
- ▶ Short installation length
- Industry-standard mounting
- ► Integrated pinion
- ▶ High volumetric and mechanical efficiency
- ▶ Smooth operation at very low speed
- ► Low noise and backlash
- ► Anti-shock cross-port relief valves
- ► Anti-cavitation valves
- ► Holding brake
- ▶ Optional brake release valve with delay function

^-----

Contents	
Application	2
Functional description	2
Ordering code	4
Technical data	(
Dimensions	5

Application

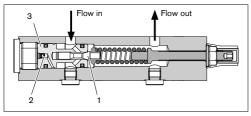
The MCR-X motors are intended for open-circuit operation as drive motors for the slewing function primarily of excavators in the 2 to 8 ton weight range (MCR3X for 2 to 4 ton and MCR5X for 4 to 8 ton). Other possible areas of application include slewing for forestry machines and aerial work platforms.

Functional description

The MCR-X is a low-speed high-torque motor of radial-piston design. For a description of the operating principle see Bosch Rexroth data sheets RE 15205 and RE 15206.

Anti-shock relief valves

Pressure relief valves venting to return line are fitted to facilitate use in open circuits. These valves have an antishock function to limit the rate of rise of pressure and prevent overly rapid changes in acceleration, thus limiting the shock felt by the machine operator and extending gear life.


With reference to Figure 1, these valves function as follows:

- Flow enters as shown, causing the small piston (1) to push against the spring.
- When sufficient pressure builds up behind the small piston to overcome the spring force, it moves to the right, releasing fluid.
- ▶ The pressure causes oil to flow through the orifice (2) to the rear of the large piston (3).
- Pressure builds up at the rear of the large piston causing it to move to the right and further compress the spring. This movement gradually increases the relief pressure until the final setting is reached.

The result is a two-stage relief valve giving a rapid step up to the initial opening pressure of the small piston, followed by a gradual rise to the final pressure setting (see Technical Data on page 7 for typical pressure trace).

This architecture delivers a high degree of reliability and repeatability and is patented by Rexroth.

Section of an anti-shock relief valve (Figure 1)

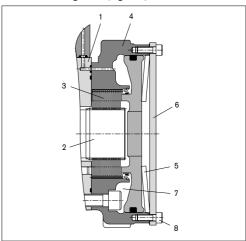
Anti-cavitation valves

During deceleration it is necessary to maintain sufficient pressure at the motor inlet to hold the pistons against the cam ring and prevent cavitation. For this reason the motor is equipped with a make-up port M, which feeds anti-cavitation check valves connected to ports A and B (see schematic diagram on page 5). See Technical Data on page 6 for details of the pressure that is required at port M.

Holding brake

A holding brake is usually required to comply with relevant equipment standards such as EN474 and is, therefore, fitted as standard to the MCR-X motor.

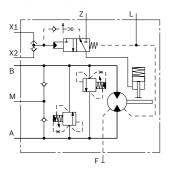
The brake is mounted by way of the rear case (1) and brake shaft (2).


A disc pack (3), with alternate discs splined to the brake shaft and brake housing (4), is compressed by the force of a disc spring (5) acting through a piston (6). The friction between the discs generates a holding torque.

When fluid is fed into the annular area (7), the pressure on the underside of the piston rises, opposing the spring force

If sufficient pressure is applied (see Technical Data on page 6), the piston moves to the right, removing the compression on the disc pack and allowing the motor to turn freely. When the pressure is removed the spring forces the piston back to the left and once again compresses the disc pack. Thus, the brake is fail-safe.

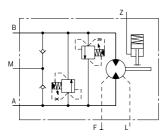
In case of hydraulic system failure, it may be manually released by loosening the end cover screws (8).


Section of holding brake (Figure 2)

Brake valve option

The holding brake is designed to be engaged only once the motor has stopped rotating. Premature engagement can lead to noise, overheating and wear or seizure of the brake discs. Thus, there is a need to delay brake engagement after the control joystick pilot pressure falls to zero, for sufficient time to allow the machine upperstructure to come to rest in the worst case of maximum speed and maximum moment of inertia. For this reason, a brake control valve with a delay function is offered as an option on the MCR-X.

▼ MCR-X with brake valve

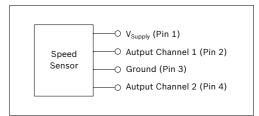


The valve functions as follows:

- ► The brake release pressure is fed to port Z.
- Pilot pressure from the joystick (one line for each direction) is fed to ports X1 and X2 and an internal shuttle valve feeds the higher of these to the brake control valve.
- ► If the pilot pressure is sufficient, the valve shifts and the brake is immediately released.
- When the joystick is returned to the centre position, pilot pressure falls, the valve shifts back and flow is drained from the brake at a metered rate determined by the diameter of an orifice within the valve. This metering of the flow out of the brake results in a delay in engagement.

Where the brake valve option is not supplied, the above functions must be implemented externally to the motor.

▼ MCR-X without brake valve

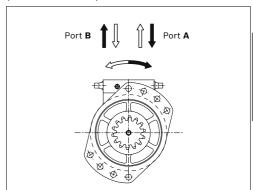


Speed sensor options

A hall-effect speed sensor may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc is fitted to the motor cylinder block, and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed. Versions are available for use with regulated supplies (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The MCR-X may also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code PO). These "sensorready" motors may be fitted with a sensor at a later date.

Terminal connections



Connector ______ Deutsch DT04-4P-E008
Cable length ______ 600 mm
For technical data see standard DO/100/117 (please con-

For technical data see standard DO/100/117 (please column sult Rexroth Engineering Department in Glenrothes).

Direction of shaft rotation with flow

(view from drive shaft)

4 MCR-X Series 3X | Ordering code

Ordering code

01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
MCR		Х			Z	/	3X		٧							

Radial piston motor

C)1	Radial-piston type, low-speed, high-torque motor,	MCR	١
		equipped with cross-port relief and anti-cavitation valves		ĺ

Frame size

0	2 Frame size	3	3
		5	5

Motor type

03 Slew motor

Nominal size, displacement $V_{\rm g}$ in ${\rm cm^3/rev}$

04	Frame size 3			160	225	255	280	325	365	400
	Low displacement: motors use standard cylindrical pistons	LD		•	•	•	-	-	-	-
	High displacement motors use stepped pistons	HD		-	-	-	•	•	•	•
	Frame size 5		380	470	520	565	620	680	750	820
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	-
	High displacement motors use stepped pistons	HD	-	-	-	-	•	•	•	•

Drive shaft

05	Pinion specification: module 6, 14 teeth	G101
	Pinion specification: module 6.5, 17 teeth	G126
	Pinion specification: module 5, 13 teeth (only MCR3X)	G79
	Other¹)	GXXX

Through shaft

	Without through shaft	

Series

	0 : 00 : 003)	
107	Series 30 to 39 ²⁾	3X

Brake

Hydraulic release multi-disc holding brake	B	,
Hydraulic release multi-disc holding brake (only MCR5X)	B4	4

Seals

09	NBR (nitrile rubber)	М	
	FKM (fluoroelastomer/Viton)	٧	1

Direction of rotation

10	viewed from drive shaft: clockwise with flow into port A	1L	

Ports

1	Tapped with UNF thread (SAE J514)	12
	Tapped to JIS B 2351	64

Speed sensor

13	Without sensor (no code)		ı
	Sensor ready	P0	
	Sensor without regulator	P1	
	Sensor with regulator	P2	l

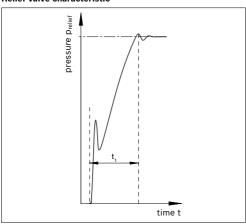
	01	02	03	04	05	06		07	80	09	10	11	12	13	14	15	16
	MCR		х			Z	1	ЗХ		٧							
Valv	/es																
13	13 With brake valve orifice ø0.6 mm												V01				
	Without	brake v	alve														V02
	Other ³⁾																vxx
Reli	ef settin	g															
14	220 bar																Α
	Other																B to Z
Spe	cial orde	er															
15	Two-coa	t black	paint														SO400
	Other																soxxx

Other

16 Mark in text here

¹⁾ Other pinions may be provided to the customer's specification, depending on sales volume

²⁾ Series 30 to 39 are dimensionally interchangeable

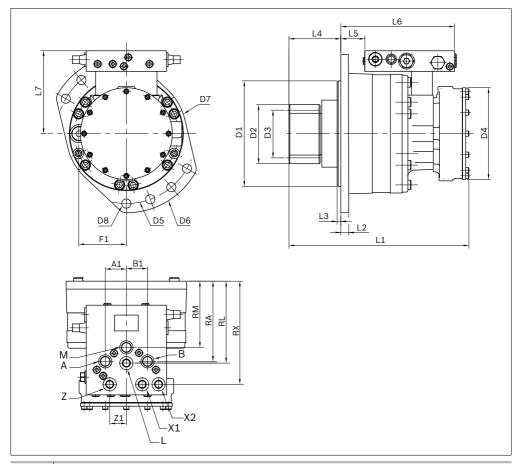

^{• =} Available - = Not available

a) The brake delay orifice must be sized to suit the machine. Ø0.6 mm is the standard size but other diameters may be supplied depending on the particular case.

Technical data

front case	ase				
or JIS B 2	B 2351	I			
n (see pa	page 9)	9)			
) to DIN	IN 51 52	24			
8/15					
280	0 32	25	365	400	
215			165	150	
1240			1620	1780	
0.5			0.5	0.5	
0.0			0.0	0.0	
565	5 620	20	680	750	820
105			85	80	75
2510			3020	3330	3640
0.5			0.5	0.5	0.5
0.0	0.0		0.0	0.0	
	enroth	enrothes).	enrothes).	enrothes).	enrothes).

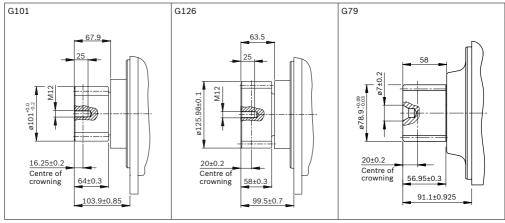
Relief valve characteristic


- The motor must be filled with oil prior to start-up. The filler port F is provided for this purpose.
- 2) For use with other fluids, please consult Rexroth Engineering Department in Glenrothes.
- a) With high oil viscosity, there is an increased risk of cavitation, so p_M may need to be increased. The machine should be tested at the minimum operating tempe-
- 4) An increase in the maximum pressure to 350 bar, and corresponding torque increase, may be possible by special order. Please consult Rexroth Engineering Department in Glenrothes for further details.

rature to ensure satisfactory operation.

- 5) For operation below the quoted make-up pressure, please contact Rexroth Engineering Department in Glenrothes.
- e) The quoted make-up pressure applies at the port M. Please take pressure drop in the make-up line into account. Rexroth recommends a minimum make-up line diameter of 5/8 in, but this must be confirmed by machine testing.

- 7) The quoted values are for initial reference only. Please contact Rexroth Engineering Department in Glenrothes for a full technical evaluation prior to ordering.
- 8) The setting range quoted applies with standard springs. Extension of the range may be possible by special order.
- e) The standard orifice diameter is quoted, along with the delay time for ISO VG46 oil at 50°C. However, the orifice diameter must be selected to ensure that the brake does not apply before the motor has stopped rotating. Please contact Rexroth Engineering Department in Glenrothes for further information.
- 10) The holding brake must be applied only in the static condition. Application of the brake while the motor is turning may result in damage to the unit and reduction in holding torque. The machine designer must ensure that an adequate brake delay exists to prevent this. The brake is, however, applied with a noise-reduction coating, to prevent brake squeal during short-duration drivethrough caused by swing ram operation.


Dimensions

Motor	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	L5	L6	L7
MCR3X	ø175	ø79	ø69	ø174	ø220	ø248	ø190	ø17	315	15	8	17	15	191	132
MCR5X	ø200	ø112	ø91	ø174	ø265	ø300	ø228	ø17.5	334.7	15	7	16	18	215.5	157

Motor	A1	B1	Z1	F1	RM	RA	RL	RX
MCR3X	29.5	29.5	13	72	94	132	123.4	171
MCR5X	40	40	31.5	90	125.5	152	155.2	195.5

Drive shaft

Pinion data		G101	G126	G79	
Module	mm	6	6.5	5	
No. of teeth		14	17	13	
Pressure angle	٥	20	20	20	
Addendum mod. coefficient		0.5	0.4	0.4	
Dimension over pins	mm	102.88±0.05	128.64±0.04	81.7±0.09	
Pin diameter	mm	10.5	11	9.60	
Crowning	mm	0.0115/0.1035	0.0762/0.1016	0.0762/0.102	
Accuracy grade (ISO1328)		8	8	8	

Ports

Designation	Port function	Ordering code 12	Size	Ordering code 64	Size	Maximum pressure [bar]	State ¹⁾
A, B	Inlet, outlet	SAE J514	3/4-16 UNF	JIS B 2351	G3/8 in	300	0
М	Anti-cavitation	SAE J514	3/4-16 UNF	JIS B 2351	G3/8 in	300	0
X1, X2	Brake pilot	SAE J514	9/16-18 UNF	JIS B 2351	G1/4 in	30	0
L	Case drain	SAE J514	9/16-18 UNF	JIS B 2351	G1/4 in	70	0
Z	Brake port	SAE J514	9/16-18 UNF	JIS B 2351	G1/4 in	40	0
F	Filler port	SAE J514	3/4-16 UNF	SAE J514	3/4 in - 16 UNF	10	Х

 $_{1)}$ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Bosch Rexroth Limited Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 (0) 15 92 631 777 Telefax +44 (0) 15 92 631 936 www.boschrexroth.com/brm © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

GearsPlanetary gear units for mobile applications

Designation	Output torque	Data sheet	Page
Hydrostatic drives HYDROTRAC GFT	945 kNm	RE 77110	611
Hydrostatic travel drives HYDROTRAC GFT-N	6001300 kNm	RE 77119	627
Drive unit for crawler track equipment, Series 2000 – HYDROTRAC GFT	1542.5 kNm	RE 77116	633
Planetary gear units for mobile applications, Series 8000 - HYDROTRAC GFT	10130 kNm	RE 77117	635
Swing drives MOBILEX GFB	4115 kNm	RE 77201	637
Drive unit for revolving superstructures, Series 2000 – MOBILEX GFB	414.5 kNm	RE 77206	653
Winch drives MOBILEX GFT-W	9.5275 kNm	RE 77502	655

Bosch Rexroth AG RE 90010-02/07.2012

Rexroth Bosch Group

Hydrostatic Drives HYDROTRAC GFT

for Mobile Applications

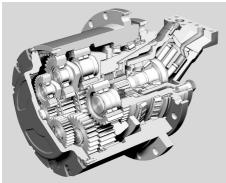
RE 77110 / 06.10 1/16 Replaces: 07.04

Data Sheet

Output torques from 9000 to 450000 Nm

Contents	Page
Description, Gear Unit Design, Hydraulic Motors, Multiplate Parking Device, Disconnecting Device, Sealing System, Oil Changes, Design Variants, Type Code	2
Dimensions and Technical Data	4
Fixed-displacement Motors Variable-displacement Motors	10 10
Bid Data Sheet	12 - 14

Features


- · compact, space-saving planetary design
- full-complement planet gear bearing system
- · robust main bearing system
- · easy mounting
- · comfortable oil changing
- · integrated multiplate parking device
- · low-noise running characteristics

Description

Rexroth compact hydrostatic HYDROTRAC GFT drives are the ideal driving components for wheeled or track-laying vehicles and other mobile equipment. They are the perfect choice for every conceivable moving or turning application.

The drives are extremely compact and thus may also be installed in space-critical mounting configurations. The drives' load capacity and availability is extraordinary thanks to the use of case-hardened gearwheels as well as guenched and tempered, surface-hardened annulus gears.

The gearteeth design reflects both standard requirements and in-house operating strength calculations based on our comprehensive know-how and optimally adapted to our modern fabrication processes.

Three-stage compact hydrostatic drive Rexroth HYDROTRAC GFT with multiplate parking device and Rexroth plug-type motor

The drives feature maximum total efficiency ratings which, inter alia, is due to the use of Rexroth plug-type motors. The drives described in this bulletin are constantly reviewed and advanced. Other design variants with deviating transmission, dimensions and power characteristics are available if so requested for specific applications.

Gearbox Design

Gearbox design is based on long years of experience and reflects not only the customary standard design regulations but also satisfies operational strength requirements as per DIN 3990, ISO 6336, AGMA, GL or DNV. The output torque values indicated are short-term admissible peak torques meant for excavator travel drive applications. For other applications deviating output torques differing from those specified may

apply to the respective gearbox. Even in the project stage we are prepared to offer application-specific consultation to customers aimed at finding the optimum drive configuration.

Hydraulic Motors

Rexroth hydraulic motors are preferably integrated in a spacesaving manner as flanged-on fixed or variable displacement units plugged into the gearbox.

Multiplate Parking Device

As a standard supply feature a spring-loaded hydraulically released multiplate parking device is arranged on the input end of the gearbox. The parking torque of the device will suit the respective motor torque.

Disconnecting Device

If requested, some of the drive systems may also be provided with a mechanical disconnecting device so that, if time is of essence, the equipment can be towed without damaging the hydraulic system.

Sealing System

An axial mechanical seal is mounted between the stationary and rotating gearbox sections. This prevents moisture and dirt from entering the drive even under extreme operating conditions.

Oil Changes

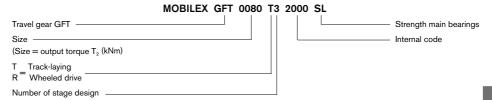
Save for regular oil changes the drives do not require maintenance. Oil changes may conveniently be made from the outside. Recommendations as to lube oils are given in the operating manual.

Design Variants

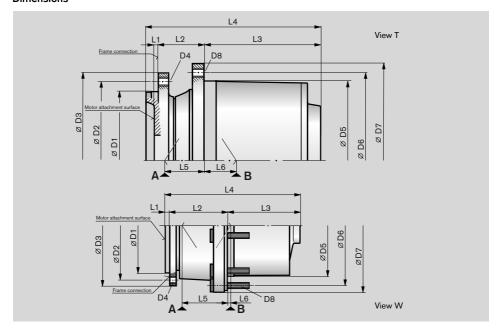
Model designations 1000 - 9000 indicate basic size and design variants that are readily available to our customers. To suit specific application requirements other models can also be furnished upon request. Depending on currently furnished units and transmission ratios many drives are available on preferential terms offering favorable prices and improved delivery times. If you are interested, please let us know.

To suit the required ratio the garboxes are of two- (T2) or three-stage (T3) design. If so requested, gear models 330 and 450 may be provided with an additional preliminary stage and in that case will be of four-stage design (T4).

3/16


Hydrostatic Drives HYDROTRAC GFT overview

Type/Design Variant GFT	Output Torque T _{2 max} Nm	Gear Ratio from/to i
GFT 0009 T2	9000	47.6 - 55.3
GFT 0013 T2	13000	32.1 - 37.6
GFT 0017 T2	17000	45.4 - 54.0
GFT 0017 T3	17000	77.9 - 88.2
GFT 0024 T3	24000	102.6 - 137.2
GFT 0026 T2	26000	50.5 - 62.0
GFT 0034 T2	34000	50.5
GFT 0036 T3	36000	115.0 - 138.8
GFT 0040 T2	40000	35.9 - 59.1
GFT 0050 T3	50000	73.9 - 125.7
GFT 0060 T3	60000	105.5 - 169.9
GFT 0065 T2	65000	55.4
GFT 0080 T3	80000	99.0 - 215.0
GFT 0110 T3	110000	95.8 - 173.9
GFT 0160 T3	160000	210.8 - 251.0
GFT 0220 T3 / R3	220000	97.7 - 365.0
GFT 0330 T3	330000	168.9 - 302.4
GFT 0330 T4	330000 / 380000	451.7 - 826.6
GFT 0450 T4	450000	347.1 - 421.7

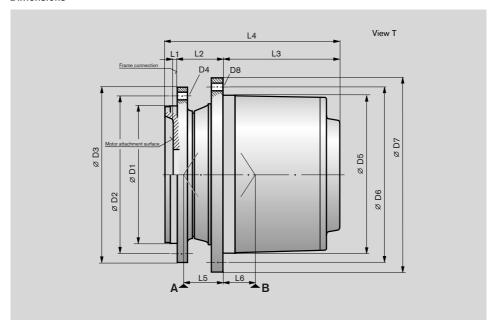

For information on our currently available compact hydrostatic HYDROTRAC GFT drives please visit www.boschrexroth.com/gears

Should you need a special driving solution deviating from our standard product range please let us know. Differently sized units and additional design variants can be furnished if so requested.

Type Code

Dimensions

Technical Data


Type/Design Variant GFT	Output Torque T _{max.}	Ratio i	Holding Torque T _{Br max.}	Hydraulic Motor
	Nm		Nm	
GFT 0009 T2 3000	9000	47.6 • 55.3	215	A6VE 28
GFT 0013 T2 4000/1	13000	32.1 • 37.6	400	A6VE 55
GFT 0013 T2 4000/2	13000	32.1	400	A2FE 45
GFT 0017 T2 3000/1	17000	54.0	350	A6VE 55
GFT 0017 T2 3000/2	17000	54.0	350	A10VE 63/A2FE 45 • 63
GFT 0017 T2 9000/SL	17000	45.4	-	A6VE 55
GFT 0017 T3 1000	17000	77.9	250	A6VE 28/A2FE 28
GFT 0017 T3 9000/2 SL • 9000/3 SL	17000	77.9 • 88.2	-	A6VE 28
GFT 0024 T3 1000	24000	102.6 • 120.5 • 137.2	300	A6VE 55
GFT 0024 T3 5000	24000	137.2	250	A6VE 55/A10VEC 45
GFT 0024 T3 9000	24000	120.5	300	A10VEC 45
GFT 0026 T2 1000	26000	50.5 • 62.0	715	A6VE 80
GFT 0034 T2 4000	34000	50.5	-	A6VE 107
GFT 0036 T3 3000/1	36000	115.0 • 138.8	715	A6VE 55
GFT 0036 T3 3000/2	36000	115.0 • 138.8	715	A6VE 80/A2FE 80 • 90

Dimensions, Bearing Load Ratings and Mass

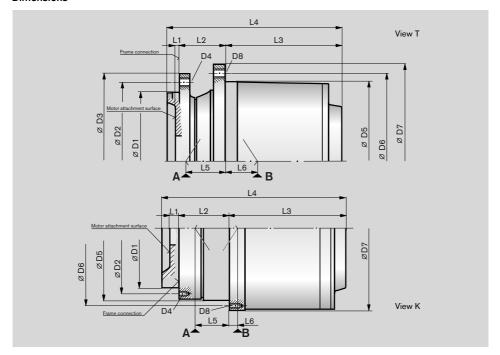
Type/Design Variant	D1	D2	D3	D4	D5	D6	D7	D8
GFT					mm			
GFT 0009 T2 3000	210	244	268	12x M14	230	260	284	16x M16
GFT 0013 T2 4000/1	240	275	300	18x M16	270	305	335	16x M16
GFT 0013 T2 4000/2	240	275	300	18x M16	270	305	335	16x M16
GFT 0017 T2 3000/1	250	290	320	16x M20	280	305	330	16x M16
GFT 0017 T2 3000/2	250	290	320	16x M20	280	305	330	16x M16
GFT 0017 T2 9000/SL	250	305	330	18x M16	260	300	335	10x M22x1.5
GFT 0017 T3 1000	240	275	300	18x M16	270	305	330	16x M16
GFT 0017 T3 9000/2 SL	240	275	310	12x M16	260	300	335	10x M22x1.5
GFT 0017 T3 9000/3 SL	250	305	330	18x M16 (S)	260	300	335	10x M22x1.5
GFT 0024 T3 1000	240	285	320	20x M20	280	305	330	20x M16
GFT 0024 T3 5000	240	275	304	18x M16	280	305	330	20x M16
GFT 0024 T3 9000	290	320	345	16x M16	280	305	330	20x M16
GFT 0026 T2 1000	270	310	350	16x M20	320	350	380	20x M16
GFT 0034 T2 4000	410	380	420	20x ø18	325	381	420	12x M22x1.5
GFT 0036 T3 3000/1	270	310	350	16x M20	320	350	380	20x M16x1.5
GFT 0036 T3 3000/2	270	310	350	16x M20	320	350	380	20x M16x1.5

Type/Design Variant	L1	L2	L3	L4	L5	L6	A -	. –	Mass	View
GFT			n	nm				Co (N	kg	
GFT 0009 T2 3000	-	60	149	232	18	64	132	255	50	Т
GFT 0013 T2 4000/1	8	75	149	232	49	54	140	290	85	Т
GFT 0013 T2 4000/2	30	75	149	254	49	54	140	290	85	T
GFT 0017 T2 3000/1	8	82	152	242	78	69	108	142	90	Т
GFT 0017 T2 3000/2	30	82	152	264	78	69	108	142	90	Т
GFT 0017 T2 9000/SL	-	82	155	245	56	47	140	290	90	W
GFT 0017 T3 1000	27	75	181	283	71	76	108	142	100	Т
GFT 0017 T3 9000/2 SL	5	75	184	267	49	54	140	290	95	W
GFT 0017 T3 9000/3 SL	8	75	184	267	49	54	140	290	95	T
GFT 0024 T3 1000	8	82	189.5	279.5	56	47	140	290	95	Т
GFT 0024 T3 5000	16	82	209.5	307.5	56	47	140	290	110	Т
GFT 0024 T3 9000	16	82	209.5	307.5	56	47	140	290	100	T
GFT 0026 T2 1000	20	90	220	330	58	50	186	400	145	Т
GFT 0034 T2 4000	12	151	226	389	60	62	399	806	170	W
GFT 0036 T3 3000/1	15	90	200	333	56.5	56.5	170	405	125	Т
GFT 0036 T3 3000/2	10	90	200	300	56.5	56.5	170	405	125	T

Dimensions

Technical Data

Type/Design Variant GFT	Output Torque T _{max} .	Ratio i	Ratio Holding Torque i T _{Br max.}	
	Nm		Nm	
GFT 0040 T2 9000	40000	35.9 • 41.0 • 48.3 • 59.1	800	A6VE 107 • 160
GFT 0050 T3 1000/1	50000	84.2 • 91.1	800	A6VE 80 • 107
GFT 0050 T3 1000/2	50000	125.7	800	A2FE 63
GFT 0050 T3 3000	50000	73.9 • 125.7	800	A6VE80 • 107
GFT 0050 T3 9000 SL • 9000/1	50000	91.1	800	A6VE 80/A2FE 80
GFT 0050 T3 9000/2	50000	84.2	800	A6VE80
GFT 0050 T3 9000/3	50000	125.7	800	A2FE 63
GFT 0060 T3 7000/1	60000	105.5 • 119.8 • 139.9 • 169.9	725	A6VE 80 • 107/A2FE 80 • 90
GFT 0060 T3 7000/2	60000	105.5	725	A6VE 107
GFT 0065 T2 1000	65000	55.4	1060	A6VE 160
GFT 0080 T3 1000 • 2000	80000	99.0 • 126.9 • 215.0	1025	A6VE 107 • 160/A2FE 107
GFT 0110 T3 1000	110000	95.8 • 114.8 • 173.9	1025	A6VE 107 • 160 A2FE 107 • 125 • 160
GFT 0110 T3 9000	110000	173.9	1100	A6VE 160/A2FE 160


Dimensions, Bearing Load Ratings and Mass

Type/Design Variant	D1	D2	D3	D4	D5	D6	D7	D8
GFT				1	mm			
GFT 0040 T2 9000	330	370	410	20x M20	360	400	440	16x M20
GFT 0050 T3 1000/1	270	310	350	18x M20x1.5	350	400	430	16x ø22
GFT 0050 T3 1000/2	270	310	350	16x M20	350	400	430	16x M20x1.5
GFT 0050 T3 3000	330	370	410	20x M20	360	400	440	16x M20
GFT 0050 T3 9000 SL	270	310	350	16x M20	350	400	440	16x M20
GFT 0050 T3 9000/1	330	370	408	16x M20	365	405	435	22x M16
GFT 0050 T3 9000/2	330	370	408	16x M20	365	405	435	22x M16
GFT 0050 T3 9000/3	270	310	350	16x M20	350	400	430	16x M20x1.5
GFT 0060 T3 7000/1	330	370	410	20x M20x1.5	400	450	490	20x M20x1.5
GFT 0060 T3 7000/2	330	370	410	20x M20x1.5	400	450	490	20x M20x1.5
GFT 0065 T2 1000	380	430	480	20x M24	430	480	520	24x M24
GFT 0080 T3 1000	420	460	500	24x M20	460	510	550	24x M20
GFT 0080 T3 2000	380	430	480	20x M24	430	480	520	20x M24
GFT 0110 T3 1000	420	460	500	24x M24x3	460	500	540	36x M18x1.5 ¹⁾
GFT 0110 T3 9000	420	460	500	24x M24x3	460	500	530	36x M18x1.5

¹⁾ alternative: 36xø22

Type/Design Variant	L1	L2	L3	L4	L5	L6	A +		Mass	View
GFT							С	Со		
			n	nm			K	κN	kg	
GFT 0040 T2 9000	25	90	261.5	376.5	38	73	212	425	205	T
GFT 0050 T3 1000/1	39.5	82	281.5	403	56.5	54	212	425	220	T
GFT 0050 T3 1000/2	20	82	281.5	383.5	56.5	54	212	425	220	T
GFT 0050 T3 3000	25	114	276	415	62	48	212	425	220	T
GFT 0050 T3 9000 SL	15	82	318	415	45.5	79.5	393	895	220	Т
GFT 0050 T3 9000/1	25	100.5	304	429.5	60.5	50	212	425	220	Т
GFT 0050 T3 9000/2	25	100.5	304	429.5	70.5	40	212	425	220	Т
GFT 0050 T3 9000/3	20	82	282	383.5	56.5	54	212	425	220	T
GFT 0060 T3 7000/1	-	90	308	423	55	62	250	520	250	T
GFT 0060 T3 7000/2	-	90	331	446	55	62	250	520	250	T
GFT 0065 T2 1000	-	148	245	415	128	20	A 250 B 480	A 480 B 950	340	Т
GFT 0080 T3 1000	-	165	300	486.5	108	25	A 509	A 1080	370	Т
GFT 0080 T3 2000	22	148	295	465	112	18	B 480	B 950	350	Т
GFT 0110 T3 1000	-	165	305	491.5	107	25	A 509	A 1080	395	T
GFT 0110 T3 9000	21.5	165	305	491.5	107	24	B 480	B 950	505	T

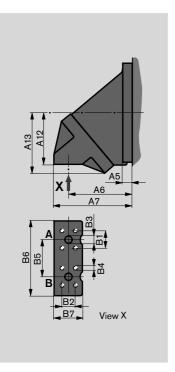
Dimensions

Technical Data

Type/Design Variant GFT	Output Torque T _{max.}	Ratio i	Holding Torque T _{Br max.}	Hydraulic Motor
	Nm		Nm	
GFT 0160 T3 1000	160000	210.8 • 251.0	1020	A6VE 107 • 160/A2FE 125
GFT 0220 T3 9000/2	220000	97.7	-	A6VM 355
GFT 0220 R3 9000/3	220000	145.4	1400	A6VM 200
GFT 0220 T3 9000/4	220000	365.0	1100	A6VE 160
GFT 0330 T3 2000 • 3000	330000	168.9 • 252.0 • 302.4	2500	A2FE 355/A6VE 250
GFT 0330 T4 1000 ²⁾	380000	826.6	-	-
GFT 0330 T4 2000	330000	451.7	625	A6VE 160
GFT 0450 T4 1000/1	450000	421.7	1450	A6VE 250
GFT 0450 T4 1000/2	450000	347.1	1450	A6VE 250

²⁾ Gearbox with angle gear stage on input side

Bosch Rexroth AG

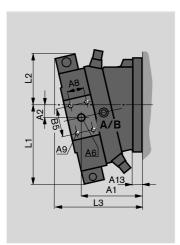

Dimensions, Bearing Load Ratings and Mass

Type/Design Variant	D1	D2	D3	D4	D5	D6	D7	D8
GFT					mm			
GFT 0160 T3 1000	450	510	560	30x M24x2	535	600	650	30x M24x2 3)
GFT 0220 T3 9000/2	460	520	570	24x M30	610	680	735	24x ø33
GFT 0220 R3 9000/3	460	600	650	30x M30	610	680	735	24x M30
GFT 0220 T3 9000/4	450	515	568	29x M36x3	570	620	670	42x M30x2
GFT 0330 T3 2000	580	680	735	30x M30	660	730	785	30x M30
GFT 0330 T3 3000	580	680	735	30x M30	660	730	785	30x M30
GFT 0330 T4 1000	580	680	735	30x M30	660	730	785	30x M30
GFT 0330 T4 2000	580	680	735	30x M30	660	730	785	30x M30
GFT 0450 T4 1000/1	450	515	568	29x M36x3	570	620	670	42x M30x2
GFT 0450 T4 1000/2	580	680	735	36x M30x2	680	750	810	36x M30x2

³⁾ alternative: 30xø30

Type/Design Variant GFT	L1	L2	L3	L4	L5	L6	C A	- B Co	Mass	View
			n	nm			k	:N	kg	
GFT 0160 T3 1000	30	168	340	538	138	26	688	1520	680	Т
GFT 0220 T3 9000/2	45	170	350	565	155	35	710	1560	850	Т
GFT 0220 R3 9000/3	45	170	350	565	155	35	710	1560	850	T
GFT 0220 T3 9000/4	-	255	305	-	190	17	710	1560	880	K
GFT 0330 T3 2000	150	125	400	675	190	25	1040	2450	1250	T
GFT 0330 T3 3000	87	188	400	675	190	25	1040	2450	1230	T
GFT 0330 T4 1000	-	188	430	1175	190	25	1040	2450	1410	-
GFT 0330 T4 2000	-	188	400	675	190	25	1040	2450	1320	T
GFT 0450 T4 1000/1	13	255	512	810	175	19	1040	2450	1240	K
GFT 0450 T4 1000/2	-	156	532	775	155	39	1040	2450	1250	Т

Corresponding Hydraulic Motors: Dimensions and Mass


Fixed-displacement motor A2FE

Nominal	A5	Α6	A7	A12	A13	B1	B2	В3	Mass
size				n	nm				kg
28	16	94	114	91	106	40.5	18.2	13	10.5
45	18	109	133	102	119	50.8	23.8	19	15.0
63	18	122	146	107	130	50.8	23.8	19	19.0
80	20	127	157	121	145	57.2	27.8	25	23.0
90	20	127	157	121	145	57.2	27.8	25	25.0
107	20	143	178	136	157	66.7	31.8	32	34.0
125	20	143	178	136	157	66.7	31.8	32	36.0
160	20	169	211	149	188	66.7	31.8	32	47.0
355	30	183	231	148	199	66.7	31.8	32	110.0

Nomi size	nal	В4	B4 B5 mm		В7	A/B
28	32	M8x15	59	115	40	SAE 1/2in
45		M10x17	75	147	49	SAE 3/4in
56	63	M10x17	75	147	49	SAE 3/4in
80	90	M12x17	84	166	60	SAE 1in
107	125	M14x19	99	194	70	SAE 1 1/4in
160	180	M14x19	99	194	70	SAE 1 1/4in
355		M14x22	120	*	*	SAE 1 1/4in

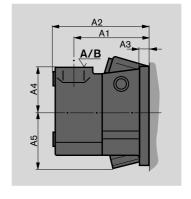
For further technical data see bulletin RE 91008

* dimensions to be indicated on request

Variable-displacement motor A6VE

Nominal size	A1	A2	A13	L1 nm	L2	L3	Mass kg
28	91	20	14	162	163	153	16
55	123	24	16	151	111	179	26
80	130	28	18	167	116	190	34
107	137	30	18	175	122	208	45
160	171	34	20	200	154	245	64
250	204	44	25	248	188	302	90

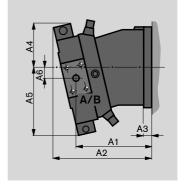
Nominal size	A6	А7	A8 mm	А9	A/B
28	19	50.8	23.8	M10x17	SAE 3/4in
55	19	50.8	23.8	M10x17	SAE 3/4in
80	25	57.2	27.8	M12x17	SAE 1 in
107	25	57.2	27.8	M12x17	SAE 1 in
160	32	66.7	31.8	M14x19	SAE 1 1/4in
250	32	66.7	31.8	M14x19	SAE 1 1/4in


For further technical data see bulletin RE 91606

Corresponding Hydraulic Motors: Dimensions and Mass

Variable-displacement motor A10VE

Nominal size	A 1	A2	A3 mm	A4	A5	A/B	Mass kg
45	94	125	14	78	87	SAE 3/4in	18
63	111	154	18	101	93	SAE 3/4in	26


For further technical data see bulletin RE 91703

Variable-displacement motor A6VM

Nominal size	A 1	A2		A4 im	A5	A6	A/B	Mass kg
200	267	345	32	143	209	36	SAE 1 1/	80
355	322	432	28	203	279	49	4in	170

For further technical data see bulletin RE 91604

Dept.: ___

Contact:

Location:

Company: _

You wish to receive an offer for HYDROTRAC GFT as a wheel drive?

To be able to quote, we require the following data from you: Fax No. +49 2302 877-148.

	relevant drawings,	sketches,						
Please attach notes etc.	C _R B _R ing	1	Total number Rim size Radial load Pull force Axial load Wheel diam Wheel radiu Width of whounting le Max. output Max. travel s Output speed Max. system Working pre Ratio Gradient Multiplate p Fixed-displa	eter es, loaded eeter es, loaded eetel ngth torque epeed er pressure essure earking brake cement moto	empty s	F _R	no e	N N N mm mm mm mm km/h rpm bar bar
V	Vheel side view		Variable-dis Type of disp	placement m		type	e	
Special appli Other client r Must legal pr	olementation time cation conditions requirements ovisions and/or s	s specification	Brake valve			yes		
Remarks								
Typical opera	ating states: Output torqu	ie (Nm)	Radial load (N)	Output	t speed (r	pm)	Cycle du	ration (%)
2								

Name: _

You wish to receive an offer for HYDROTRAC GFT in a track-laying drive system?

To be able to quote, we require the following data from you: Fax No. +49 2302 877-148.

Please attach relevant drawings, sketches, notes etc.

Contact:	
Company:	
Location:	
Fax:	
Phone:	

₽ C_T Вт

C _r	Technical Data Type of equipment Equipment weight emp Required total pull force Track type Sprocket diameter Track width Radial load, lever arm Max. output torque Max. travel speed Output speed Working pressure Max. system pressure, limited Ratio Multiplate parking brake Fixed-displacement motor Variable-displacement motor	t loadedN Rubber track Steel track D ₁
	Type of displacement Brake valve	yes no
Planned annual demand Expected implementation time Special application conditions Other client requirements Must legal provisions and/or specifications be ol yesno if affirmative, please specify Remarks		

Dept.: ___

Typical operating states:

Typiour operating states.							
State	Output torque (Nm)	Output speed (rpm)	Cycle duration (%)				
1							
2							
3							
4							

Name: __

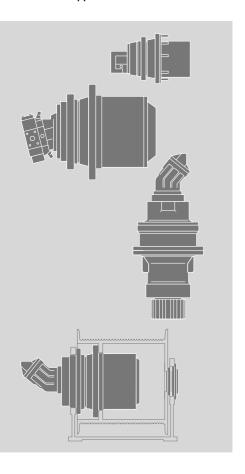
You wish to receive an offer for HYDROTRAC GFT in a roller drive system?

To be able to quote, we require the following data from you: Fax No. +49 2302 877-148.

Please attach relevant drawings, sketches, notes etc.

Contact:	
Company:	
Location:	
Fax:	
Phone:	

	Technical Data	
	Type of equipment	Tandem roller Road rolle
	Equipment weight	t
	Total pull force required	N
	Drive for	Tire Rear whee
	Tire Tamping plate:	with without
	Tire diameter	D _B mm
	Rear wheel diameter	D _R mm
	Weight distribution front	t rear
	Output torque, max., front	T ₂ Nm
	Output torque, max., rear	T ₂ Nm
	Travel speed, max.	v _{max} km/h
	Output speed	n ₂ rpm
	Working pressure	Δp bar
	System pressure, max., limited	ps bar
	Transmission ratio, tire drive	i
annilmanilman .	Transmission ratio, rear wheels	i
	Gradeability	s %
	Multiplate parking brake	yes no
Fixed-displacement motor, front Type	Fixed-displacement n	notor, rear Type
Variable-displacem. motor, front Type	Variable-displacem. n	notor, rear Type
Type of displacement, front	Type of displacement	t, rear
Scavenger valve, front yes	no Scavenger valve, real	r yes no
Planned annual demand		
Expected implementation time _		
Special application conditions		
Other client requirements		
Must legal provisions and/or specifications be	observed?	
yes no if affirmative, please specify _		
Remarks		
·		
·		


Typical operating states:

State	Output torque (Nm)	Output speed (rpm)	Cycle duration (%)
1			
2			
3			
4			

Date:	Name:	Dont :
Date.	inalle.	Dept.:

Notes

Products for Mobile Applications

Planetary Gear Units for Mobile Applications

Hydrostatic Travel Drives

- HYDROTRAC GFT for fixed- or variable-displacement motor output torques between 9 and 450 kNm Technical Documentation RE 77110
- HYDROTRAC GFT
 with integrated hydraulic two-speed motor
- HYDROTRAC GFT for use on large tracklaying vehicles output torques up to 3250 kNm Upon request

Hydrostatic Swing Drives

 MOBILEX GFB for fixed- or variable-displacement motors

output torques between 4 and 115 kNm Technical Documentation RE 77201

MOBILEX GFB

with swash-plate motor Hydrostatic Winch Drives

 MOBILEX GFT – W for fixed- or variable-displacement motors output torques between 14 and 275 kNm Technical Documentation RE 77502

Bosch Rexroth AG
Mannesmannstraße
58455 Witten, Germany
Phone +49 2302 877-0
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/gears

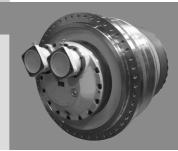
© This document, as well as the data, specifications and other informations set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.

It may not be reproduced or given to third parties.

It may not be reproduced or given to third parties.

The data specified above only serve to describe the product. No statement concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

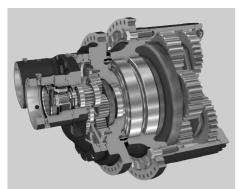

HYDROTRAC is a registered trademark.

Hydrostatic Travel Drives HYDROTRAC GFT-N

RE 77119/09.11 1/6

Data Sheet

Output torques from 600 to 1,300 kNm


Contents	Page	Features
Description, Gear Unit Design, Hydraulic Motors, Spring-loaded Multiplate Parking Brake, Sealing System, Oil Changes, Other Notes Dimensions and Technical Data	2	compact, space-saving planetary/spur gear units attached spring-loaded multiplate parking brake system robust main bearing system easy to install convenient way of oil changing

For further information see: www.boschrexroth.com/gears

Description

HYDROTRAC GFT-N travel drives from Rexroth have been built especially for use with hydraulic mining excavators as well as for tracklaying cranes.

The drives can be integrated as a complete unit into the undercarriage frame. The sprocket mounted to the output side transmits the required torque to the track.

Three-stage planetary gear with pre-arranged spur gear stage and spring-loaded multiplate parking brake Rexroth HYDROTRAC GFT-N

Gearbox Design

Gearbox design is based on long years of experience and reflects not only customary standard design regulations but also satisfies operational strength requirements according to DIN 3990, ISO 6336, AGMA, GL or DNV for example. The output torque values indicated are short-term admissible peak torques meant for excavator travel drive applications. For other applications deviating output torques differing from those specified may apply to the respective gearbox.

To determine the optimum drive configuration we are prepared to offer application-specific consultation to customers even in the project stage.

Hvdraulic Motors

Rexroth hydraulic motors are preferably integrated as flangedon fixed or variable displacement units plugged into the gearbox.

Spring-loaded Multiplate Parking Brake System

As a standard supply feature the gearbox comes with one or two spring-loaded hydraulically released multiplate parking brakes attached on the input side.

The static multiplate parking brake system is only a parking brake

The parking brake torque will suit the respective motor torque.

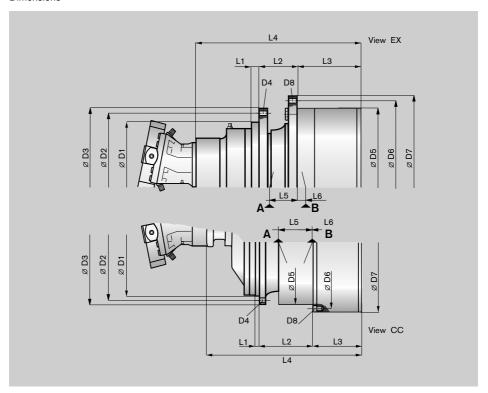
Sealing System

An axial mechanical seal is arranged between the stationary and rotating gearbox sections. This prevents moisture and dirt from entering the drive even under extreme operating conditions.

Oil Changes

Apart from regular oil changes the drives do not require maintenance. Oil changes may conveniently be made from the outside. Recommendations as to lube oils are given in the operating manual.

Other Notes


Statutory requirements prescribe that all rotating components must be provided with touch guards.

All safety regulations prescribed for the relevant mounting locations must be observed.

Commissioning and maintenance of the gear units must be in line with the instructions provided in our operating manual.

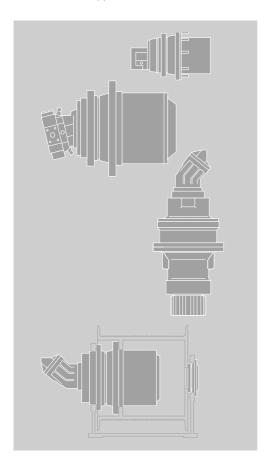
Should you need a gear variant other than those described in this product bulletin please do not hesitate to contact us.

Dimensions

Technical Data

Туре	Output torque	Transmission ratio	Locking torque	Hydraulic motor
GFT	T _{max}	i	T _{Br max}	
	Nm		Nm	
GFT 0600 N/1	600,000	243.5	1x* 3,115	A2FM 500
GFT 0600 N/2	614,000	326.5	2x* 1,200	A6VE 160
GFT 0600 N	794,000	289.1 • 520.2	2x* 1,830	A2FE 160 / A6VM 250
GFT 0800 N	792,000	284.8	integrated in motor	2x 250 cm ³
GFT 0800 N	984,000	386.7	2x* 1,830	A2FM 250
GFT 1100 N	1,117,000	401.5	2x* 1,700	A6VM 250
GFT 1300 N	1,300,000	458.5	2x* 1,700	A6VM 250

^{*} Number of brakes


Dimensions, Bearing Load Ratings and Masses

Type GFT	D1	D2	D3	D4	D5	D6	D7	D8
				mm				
GFT 0600 N/1	670	750	815	30x ø39	885	975	1,055	24x ø39
GFT 0600 N/2	730	810	880	41x M30x2	885	965	1,020	48x M30x2
GFT 0600 N	668	726	779	30x M36x1.5	780	850	900	45x M36x1.5
GFT 0800 N	830	980	1,050	48x M30x2	920	976	1,055	48x M30x2
GFT 0800 N	668	726	779	30x M36x1.5	780	850	900	45x M36x1.5
GFT 1100 N	1,110	1,230	1,310	48x M36	1,040	1,170	1,226	52x M30
GFT 1300 N	1,110	1,230	1,310	48x M36	1,040	1,170	1,226	52x M30

Туре	L1	L2	L3	L4	L5	L6	Α-	⊦ B	Mass	View
GFT							С	Co		*
							k	N	kg	
GFT 0600 N/1	60	242.5	459.5	1,167	186	62	1,320	3,150	2,500	EX
GFT 0600 N/2	57.5	245	464.5	1,161	186	62	1,320	3,150	2,600	EX
GFT 0600 N	33	405	368	1,211.5	248	6	1,320	3,150	2,850	CC
GFT 0800 N	25	229	673	1,332	69	186	2,450	5,200	3,800	EX
GFT 0800 N	66	405	486	1,324	255	2	2,450	5,200	3,320	CC
GFT 1100 N	60	503	585	1,524	318.5	48.5	3,900	7,650	7,050	EX
GFT 1300 N	60	503	593	1,565.5	319	49	3,900	7,650	7,500	EX

^{*} EX = for tracklaying excavators / CC = for tracklaying cranes

Products for Mobile Applications

Planetary Gear Units for Mobile Equipment

Hydrostatic Travel Drives

- HYDROTRAC GFT for fixed- or variable-displacement motors output torques between 9 and 450 kNm Data sheet RE 77110
- HYDROTRAC GFT 2160 gear unit for crawler driven equipment output torque 42,5 kNm Data sheet RE 77125
- HYDROTRAC GFT-N for use in mining excavators and tracklaying cranes output torques between 600 and 1300 kNm Data sheet RE 77719
- HYDROTRAC GFT for use on large tracklaying vehicles output torques up to 3250 kNm On request

Hydrostatic Swing Drives

- MOBILEX GFB for fixed- or variable-displacement motors output torques between 4 and 115 kNm Data sheet RE 77201
- MOBILEX GFB 2160 gear unit for slewing of the superstructure output torque 14,5 kNm Data sheet RE 77208

Hydrostatic Winch Gears

 MOBILEX GFT–W for fixed- or variable-displacement motors output torques between 14 and 275 kNm Data sheet RE 77502 Notes

Bosch Rexroth AG
Mannesmannstraße
58455 Witten, Germany
Phone +49 2302 877-0
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/gears

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

HYDROTRAC is a registered trademark.

Printed in Germany

Rexroth Bosch Group

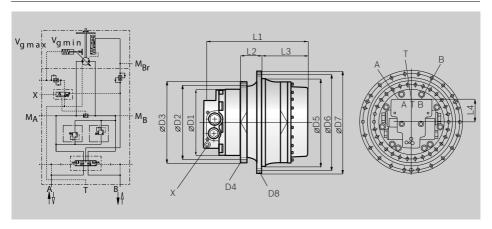
HYDROTRAC GFT

Drive unit for crawler track equipment Series 2000 RE 77116/06.12 1/2

Data sheet

Contents Page Description

Dimensions Technical data two-s


The hydrostatic drive unit of the GFT 2000 series consists of a two-stage planetary gearbox with an integrated hydraulic swash plate axial-piston motor. The complete unit is designed as a drive for tracked vehicles. The integrated dual displacement motor is provided with an automatic shifting function for automatic selection between $V_{g\,min}$ and $V_{g\,max}$. Optionally, the integrated dual displacement motor is provided with an HZ-adjustment.

- · Compact, space-saving two-stage drive unit
- · Suitable for crawler track equipment
- · Open circuit
- · Automatic shifting function
- · Integrated Multiple disk brake
- Mechanical disconnect mechanism (optional)
- Connection plate with integrated brake valve and pressure relief valve
- · Easy installation as a complete unit

For more information: www.boschrexroth.com/getriebe

Technical data • Dimensions

GFT type	Max. output torque	Motor displacement	Max. pressure	Gear ratio	Braking torque, static	Weight approx.	Tonnage class
	Nm	cm³	bar	i	Nm	kg	to
GFT 2120 E	13,500	54	300	53	129	85	7 - 10
GFT 2140 E	26,500	90	350	53	250	155	10 - 15
GFT 2160 E	42,500	170	350	45	475	250	20 - 25
GFT 2180 E			in preparati	ion			30 - 35

GFT type	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	A/B*	T*	Х*
• •															
									mm						
GFT 2120 E	210	250	280	12x M16	265	300	326	12x M14	368.5	80	154.5	76.5	M27x2	M14x1.5	M14x1.5
GFT 2140 E	246	280	308	20x M16	324	364	394	18 ₂ M16	410	99.5	176.5	82	M33v2	M16x1.5	M14x15
4				20% 11110				10% 11110			.,		moone	III I OX II O	
GFT 2160 E	300	340	372	30x M16	402	440	470	22x M16	477.5	98.5	196.5	98	M33x2	M18x1.5	M14x1.5
GFT 2180 E								in prepara	tion						
U 1100 L								, -,							

^{*}JIS connections optional

Bosch Rexroth AG
Mannesmannstraße
84855 Witten, Germany
Phone +49 2302 877-0
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/getriebe

© All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and aging. Subject to modification without prior notice.

HYDROTRAC is a registered trademark.

Printed in Germany

HYDROTRAC GFT

Planetary gearboxes for mobile applications Series 8000 RE 77117/06.12 1/2

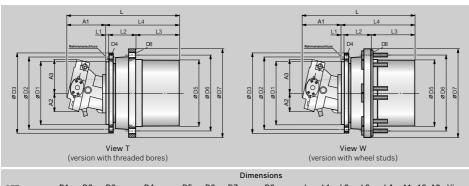
Data sheet

Contents

Dimensions Technical data	2	The hydrostatic compact drive of the 8000 series consists of a two- or three-stage planetary gearbox, providing a space-saving drive unit when it is combined with a hydraulic bent-axis axial piston motor. The complete unit is used as drive component for wheeled and tracked vehicles and other mobile equipment.
		Product features
		Compact, space-saving two- or three-stage planetary gearbox
		 Integrated multiple disk brake
		Supplied with space-saving hydraulic plug-in motor or with connection for space-saving hydraulic plug-in motor
		 Disconnect mechanism (optional)
		Rugged design

Page

Description


· Easy assembly

· For open and closed circuit

For more information: www.boschrexroth.com/getriebe

Technical data • Dimensions

GFT type	Nominal output torque	Gear ratio	Braking torque, static	Braking torque, dynamic	Weight approx.	compatible hydraulic motors A6VE
	Nm	i	Nm	Nm	kg	Series 71
GFT 8110 E	10.000	17 - 48		ρ		28 • 60
GFT 8120 E	13.000	22 - 32	size	ssure		28 • 60 • 85
GFT 8130 E	20.000	29 - 51		pre	120	60 • 85
GFT 8140 F	30.000	90 - 137	motor	brake	125	60
GFT 8150 E	42.000	23 - 53	uo			60 • 85 • 115 • 170
GFT 8160 F	52.000	80 - 128	- Si	g on		60 • 85
GFT 8170 F	70.000	64 - 111	depending	igi		115
GFT 8180 F	100.000	91 - 127	ф	depending		115 • 170
GFT 8190 F	130.000	77 - 102	-	ŏ		170

GFT type	DI	D2	D3	D4	D5	D6	υı	D8	L	LI	L2	L3	L4	AI A	42 A3	view
								mm								
GFT 8110 E																
GFT 8110 E							. in	preparation							ŧ,	
GFT 8120 E							""	proparation							adjustment	
GFT 8120 E									g)						gins	
GFT 8130 E	250	290	320	16x M20	280	305	330	16x M16	r size	14	82	162	258			Т
GFT 8130 E	250	305	330	10x M22x1.5	260	300	335	10x M22x1.5	moto	14	82	162	258	_	e and	W
GFT 8140 F	240	285	320	18x M20	280	305	330	30x M16	m no	14	82	195	291		size	Т
GFT 8140 F														_	motor	
GFT 8150 F									depending							
GFT 8150 F									ebe						ы В	
GFT 8160 F							in	preparation	ъ						i i	
GFT 8170 F							. ""	proparation							depending	
GFT 8180 F															ŏ	
GFT 8190 F																

Bosch Rexroth AG Mannesmannstraße 58455 Witten, Germany Phone +49 2302 877-0 Fax +49 2302 877-148 info.gears@boschrexroth.de www.boschrexroth.com/getriebe © All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and aging.

Subject to modification without prior notice.

HYDROTRAC is a registered trademark.

Printed in Germany

Swing Drives MOBILEX GFB

for Mobile Applications

RE 77201 / 06.10 1/16 Replaces: 05.06

Data Sheet

Swing Drives with Output Torques of between 4 and 115 kNm

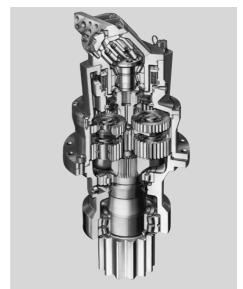
Contents	Page
Description, Lubrication, Brake, Hydraulic Motors	2
Type of Construction, Overview of Swing Drives	3
Application Conditions, Gearbox Design, Higher Torques, Gearbox Selection, Multiplate Parking Device, Driver Groups	4
and Service Time Categories Classification Examples	5
Dimensions and technical data for output torques from:	· ·
4000 Nm to 17500 Nm for excavators 7000 Nm to 28500 Nm for cranes 22000 Nm to 54000 Nm for excavators	6/7
38000 Nm to 94500 Nm for cranes	8/9
Fixed-displacement motors Variable-displacement motors	10 11
Design data sheet	12/13
Dimensions and technical data for output torques up to 115 kNm	14

Features

- Compact, space-saving two or three-stage planetary design
- Easy mounting
- Integrated multiplate parking device
- Low-noise operation
- High efficiency
- Long service life
- Convenient oil change

И

Description


Rexroth MOBILEX GFB planetary gearboxes are hydrostatic swing gears.

They are suitable for use in excavators and cranes of all types, in ship unloading equipment, forestry equipment and in all applications where accurate positioning is called for.

The drive consists of a two or three-stage gearbox with an integrated multi-disk parking brake, an output pinion as well as a hydraulic motor, preferably from Rexroth.

A dedicated team of R&D, design and sales engineers makes sure that the clients' wishes and concepts are quickly translated into technically and economically viable solutions.

In their work, they are assisted by modern computer software for gearing design and component optimization. The information provided in this bulletin serves to help you select the planetary gearbox best suited for your application. In addition, our field personnel are available to you to provide advisory services even at the project stage.

Rexroth MOBILEX GFB two-stage hydrostatic compact drive with a multiplate parking device and a Rexroth plug-in motor

Lubrication

The gearteeth and bearings are splash lubricated. Aside from periodic oil changes, the drive units are maintenance-free. Oil changes are easy to do. The oil brands recommended in the operating manual shall be exclusively used.

The change intervals for the relevant application conditions are also given in the operating manual. The pinion-side antifriction bearing of the output shaft is grease-lubricated for life.

Multiplate Parking Device

The standard supply scope includes a spring-loaded, hydraulically released multiplate parking device arranged on the input side.

The multiplate parking device is not a service brake.

Hydraulic Motors

The gearbox is designed for direct flange attachment of a variable or fixed displacement motor (preferably a Rexroth hydraulic motor). If requested, the motor can be supplied along with the gearbox.

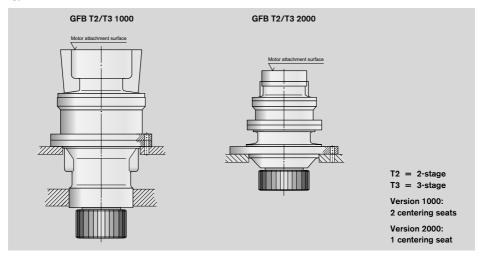
Gearbox Supply

Rexroth MOBILEX planetary gearboxes are delivered ready for installation, but without oil filling. The standard gearbox version comes with a priming coat of grey color (similar to RAL 7032) and is internally protected with a temporary corrosion preventive that preserves the gearbox for 24 months, if stored in a dry location.

External flanges, shaft extensions and mating faces are protected with TECTYL 502 C.

Mass, Oil Volumes, Dimensions

The specified mass are average figures.


As far as oil volumes are concerned, gearbox operators should rely on oil level readings rather than specified oil volumes. Figures and dimensions are not strictly binding. We reserve the right to make changes in line with technical progress.

Further Notes

As prescribed by statutory provisions, all rotating parts must be protected by guards against accidental contact. Local safety regulations must be complied with.

Commissioning and maintenance of the gearboxes must be performed in line with the instructions given in our operating manual.

Type of Construction

Ordering Example

Swing Drives MOBILEX GFB - Overview

Type/Version GFB	Out Excavator	put Torque Crane T _{2 max} Nm	Gear Ratio from/to i
GFB 0009 T2	4000	7000	33.4
GFB 0017 T2	7700	12700	32.5 - 45.7
GFB 0024 T3	10600	17500	149.1
GFB 0026 T2	10000	16500	43.9 - 51.5
GFB 0036 T3	17500	28500	117.6 - 153.6
GFB 0050 T2	22000	38000	32.3
GFB 0050 T3	22000	38000	147.4
GFB 0080 T3	38200	68300	186.4
GFB 0084 T2	38200	68300	35.1
GFB 0144 T2	54000	94500	49.3

Application Conditions

The gearboxes are designed for use at ambient temperatures of between -20° C and +40° C. Environmental influences such as salt water, salty air, sand, dust, overpressure, heavy vibrations, extreme shocks and ambient temperatures, aggressive fluids and the like may affect the function of the gearbox. All such conditions must be specified so that the gearbox can be designed for safe operation.

Gearbox Design

The gearbox design is based on many years of practical application experience. The maximum output torques T_{2 max} indicated under technical data for crane applications relate to FEM Section I, 3rd Edition and Section IX (FEM - Fédération Européenne de la Manutention), as well as DIN 15020, collective load class L2, service time category T5 corresponding to driver group M5. The reference output speed is 25 revolutions per minute maximum. If the swing drive is to be classified in another driver group, the required output torque must be converted using the K factor (see table).

This conversion gives you the maximum admissible output torque for the new driver group selected. Whether or not the chosen overall classification can be met will be determined by the Rexroth gear technology experts.

Higher Torques

For gearboxes transmitting higher torques than those indicated in this product catalog, please contact us.

Gearbox Selection

- T₂ = Output torque
- T_{2K} = Corrected output torque

K factor according to service time category and collective group given in the table.

$$T_{2K} = T_2 \cdot K$$

T_{2 K} of the gearbox to be selected must be ≤ T_{2 max} (according to this product catalog).

Multiplate Parking Device

 $T_{Br \, sta. \, min} = 1,3 \cdot T_1 \, \text{(input torque)}$

The holding torque multiplies with the selected transmission ra-

See also Gearbox Design.

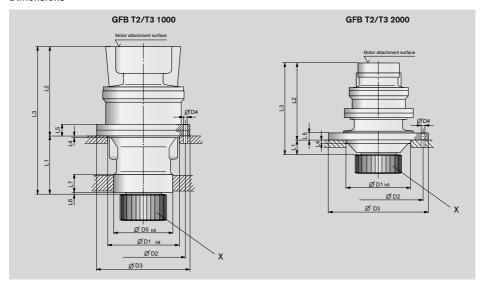
A design data sheet for swing drives is reproduced on pages 12 and 13.

Driver Groups and Service Time Categories to FEM, Section I, 3rd Edition 1987

(FEM: Fédération Européenne de la Manutention)

Service time category				T 2	Т3	T 4	T 5	T 6	Т7	T 8
As	sumed	l average s	ervice time per day in hours	0.25 - 0.5	0.5 - 1	1 - 2	2 - 4	4 - 8	8 - 16	>16
Th	Theoretic service life in hours			400 - 800	800 - 1600	1600 - 3200	3200 - 6300	6300 - 12500	12500 - 25000	25000 - 50000
Co	Collective load class				up with K f	actor				
sdr	I 1 low exceptional cases: low l		Maximum loads occur only in exceptional cases; low loads are present at all times	M 1 0.90	M 2 0.90	M 3 0.90	M 4 0.90	M 5 0.95	M 6 1.05	M 7 1.2
tive groups	L 2	medium	Low, medium and high loads are present for roughly equal periods of time	M 2 0.90	M 3 0.95	M 4 0.95	M 5 1	M 6 1.15	M 7 1.30	M 8 1.50
Collective	L3	high	Loads are always near the maximum	M 3 1.05	M 4 1.05	M 5 1.10	M 6 1.25	M 7 1.40	M 8 1.60	M 8 1.80
	L 4 very high Always maximum loads				M 5 1.30	M 6 1.45	M 7 1.65	M 8 1.85	M 8 2.10	M 8 2.40

5/16


Classification Examples

See FEM Section I, 3rd Edition, Table T.2.1.3.5.

Type of Crane	Component	Type of Driver					
(Designation)	Operated 1)	Hoisting	Swinging	Level Luffing	Trolley Travelling	Crane Travelling	
Erection cranes		M 2 – M 3	M 2 – M 3	M 1 – M 2	M 1 – M 2	M 2 – M 3	
Loading bridges	hook	M 5 – M 6	M 4	-	M 4 – M 5	M 5 – M 6	
Loading bridges	grab or magnet	M 7 – M 8	M 6	-	M 6 – M 7	M 7 – M 8	
Workshop cranes		M 6	M 4	-	M 4	M 5	
Overhead travelling cranes, ram cranes, scrap yard cranes	grab or magnet	M 8	M 6	-	M 6 – M 7	M 7 – M 8	
Unloading bridges, container gantry cranes	hook or spreader	M 6 – M 7	M 5 – M 6	M 3 – M 4	M 6 – M 7	M 4 – M 5	
Other gantry cranes (with trolley and/or live ring)	hook	M 4 – M 5	M 4 – M 5	-	M 4 – M 5	M 4 – M 5	
Unloading bridges, container gantry cranes (with trolley and/or live ring)	grab or magnet	M 8	M 5 – M 6	M 3 – M 4	M 7 – M 8	M 4 – M 5	
Berth cranes, shipyard cranes, dismantling cranes	hook	M 5 – M 6	M 4 – M 5	M 4 – M 5	M 4 – M 5	M 5 – M 6	
Dockside cranes (slewable, gantry type,), floating cranes, floating shearlegs	hook	M 6 – M 7	M 5 – M 6	M 5 – M 6	-	M 3 – M 4	
Dockside cranes (slewable, gantry type,), floating cranes, floating shearlegs	grab or magnet	M 7 – M 8	M 6 – M 7	M 6 – M 7	-	M 4 – M 5	
Floating cranes and floating shearlegs for very high loads (normally above 100 tons)		M 3 – M 4	M 3 – M 4	M 3 – M 4	-	-	
Shipboard cranes	hook	M 4	M 3 – M 4	M 3 – M 4	M 2	М3	
Shipboard cranes	grab or magnet	M 5 – M 6	M 3 – M 4	M 3 – M 4	M 4 – M 5	M 3 – M 4	
Tower cranes for construction sites		M 4	M 5	M 4	М 3	М 3	
Derrick tower gantries		M 2 – M 3	M 1 – M 2	M 1 – M 2	-	-	
Railroad cranes, approved for service on trains		M 3 – M 4	M 2 – M 3	M 2 – M 3	-	-	
Vehicle-mounted cranes	hook	M 3 – M 4	M 2 – M 3	M 2 – M 3	-	-	

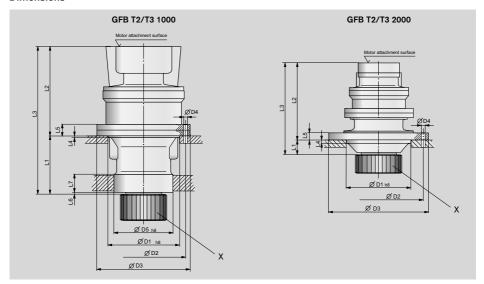
¹⁾ This column shows some typical uses for general information

Dimensions

X The gearing of the output pinion (module, number of teeth, tooth width, etc.) is governed by the customer's ring gear.

Technical Data

Type/Version GFB	Output Torque Excavator Crane T _{2 max.} Nm		Gear Ratio	Holding Torque	Hydraulic Motor
			i	T _{Br max.} Nm	
GFB 0009 T2 2000/2	4000	7000	33.4	245	A6VM 55 / A2FM 56
GFB 0017 T2 1000	7700	12700	32.5 • 45.7	390	A2FE 45 • 56
GFB 0017 T2 2000	7700	12700	45.7	390	A2FE 45 • 56
GFB 0024 T3 1000/1	10600	17500	149.1	249	A2FM 32
GFB 0026 T2 1000	10000	16500	43.9 • 51.5	613	A2FE 80
GFB 0026 T2 2000	10000	16500	43.9 • 51.5	613	A2FE 80
GFB 0036 T3 1000/1	17500	28500	117.6 • 153.6	332	A2FM 45
GFB 0036 T3 1000/2	17500	28500	117.6 • 153.6	332	A2FE 45 • 63


GFB 0009 T2 2000/2 = Identification number for different overall lengths/diameters and motor attachment variants.

Dimensions, Mass

Type/Version GFB	D1	D2	D3	D4	D5	Mass
			mm			kg
GFB 0009 T2 2000/2	175	260	288	12x 17.5	-	85
GFB 0017 T2 1000	256	290	320	16x 17.5	225	130
GFB 0017 T2 2000	250	305	340	16x 17.5	-	130
GFB 0024 T3 1000/1	265	315	355	20x 17.5	230	165
GFB 0026 T2 1000	280	350	380	20x 17.5	250	225
GFB 0026 T2 2000	275	335	365	20x 17.5	-	240
GFB 0036 T3 1000/1	280	350	380	20x 17.5	250	210
GFB 0036 T3 1000/2	280	350	380	18x 17.5	280	175

Type/Version GFB	L1	L2	L3	L4	L5	L6	L7
			mr	m			
GFB 0009 T2 2000/2	40	325.5	365.5	26	22	-	-
GFB 0017 T2 1000	200	300	500	6	38	6	55
GFB 0017 T2 2000	57	443	500	46	23	-	-
GFB 0024 T3 1000/1	245	387	632	15	34	8	75
GFB 0026 T2 1000	250	321	571	12	33	10	85
GFB 0026 T2 2000	55	511	566	20	223	-	-
GFB 0036 T3 1000/1	245	423	668	12	33	5	85
GFB 0036 T3 1000/2	245	332	577	12	33	5	85

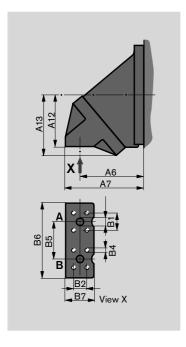
Dimensions

X The gearing of the output pinion (module, number of teeth, tooth width, etc.) is governed by the customer's ring gear.

Technical Data

Type/Version	Output Torque		Gear Ratio	<u>H</u> olding	Hydraulic Motor
GFB	Excavator	Crane		Torque	
	T ₂ r	nax.	i	T _{Br max.}	
	N	m		Nm	
GFB 0050 T2 9000	22000	38000	32.3	473	A2FE 63
GFB 0050 T2 9000/1	22000	38000	32.3	473	A2FM 80
GFB 0050 T2 9000/2	22000	38000	32.3	473	A2FM 80
GFB 0050 T3 1000/3	22000	38000	147.4	414	A2FM 63
GFB 0050 T3 1000/4	22000	38000	147.4	414	A2FM 63
GFB 0080 T3 1000/3	38200	68300	186.4	975	A2FM 80 • 90
GFB 0084 T2 2000/1	38200	68300	35.1	1661	A2FM 180 • 200
GFB 0084 T2 2000/2	38200	68300	35.1	1661	AA2FM 180
GFB 0144 T2 2000	54000	94500	49.3	1423	A2FM 180 • 200

 ${\sf GFB\ 0050\ T3\ 1000/3} = {\sf Identification\ number\ for\ different\ overall\ lengths/diameters\ and\ motor\ attachment\ variants.}$

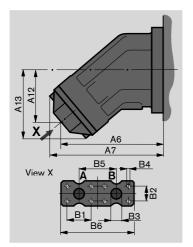

9/16

Dimensions, Mass

Type/Version GFB	D1	D2	D3	D4	D5	Mass
			mm			kg
GFB 0050 T2 9000	300	375	410	20x 17.5	280	240
GFB 0050 T2 9000/1	300	375	410	20x 17.5	280	240
GFB 0050 T2 9000/2	300	375	410	20x 17.5	280	240
GFB 0050 T3 1000/3	330	375	411	24x 17.5	300	310
GFB 0050 T3 1000/4	330	375	411	24x 17.5	300	315
GFB 0080 T3 1000/3	440	480	530	24x 26	370	540
GFB 0084 T2 2000/1	400	470	510	24x 26	-	515
GFB 0084 T2 2000/2	400	460	510	24x 26	-	515
GFB 0144 T2 2000	460	520	562	24x 26	-	1050

Type/Version GFB	L1	L2	L3	L4	L5	L6	L7
			mı	m			
GFB 0050 T2 9000	245	287.5	532.5	12	33	5	-
GFB 0050 T2 9000/1	245	292.5	537.5	12	33	5	-
GFB 0050 T2 9000/2	245	299.5	544.5	12	33	5	-
GFB 0050 T3 1000/3	290	429.5	719.5	15	38	40	75
GFB 0050 T3 1000/4	290	396.5	686.5	15	38	40	75
GFB 0080 T3 1000/3	314	554.5	868.5	14	40	41	121
GFB 0084 T2 2000/1	64	721	785	10	465	-	-
GFB 0084 T2 2000/2	64	710	774	10	465	-	-
GFB 0144 T2 2000	85	857	942	55	655	-	-

Corresponding Hydraulic Motors: Dimensions and Mass



Fixed-displacement motor A2FE, Series 61

Nominal Size	A6	A7	A12	A13	Mass (kg)
45	109	133	102	119	15
56	122	146	107	130	18
63	122	146	107	130	19
80	127	157	121	145	23
90	127	157	121	145	25

Nomi	nal Siz	ze B1	B2	ВЗ	B4	В5	В6	В7	A/B
45		50.8	23.8	19	M10x17	75	147	49	SAE 3/4"
56	63	50.8	23.8	19	M10x17	75	147	49	SAE 3/4"
80	90	57.2	27.8	25	M12x17	84	166	60	SAE 1"

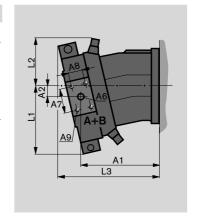
For further technical data see RE 91008

Fixed-displacement motor A2FM, Series 61 (9 Series 63)

Nominal Size		. A6	i	Α7	A12	Α	13	Mass (kg)
28	32	150	3	173	78	1	06	9.5
45		166	6	194	89	1	22	13.5
56	63	18	2	206	96	1	30	18
80	90	203	3	233	104.5	1	45	23
125		225	.5	252	120	1	59	32
180		25	2	294	134	1	88	45
200	1)	284	4	309	84	1	65	66
Nomi	nal Size	B1	B2	ВЗ	B4	B5	В6	A/B
28	32	40.5	18.2	13	M8x15	59	115	SAE 1/2"
45		50.8	23.8	19	M10x17	75	147	SAE 3/4"
56	63	50.8	23.8	19	M10x17	75	147	SAE 3/4"
80	90	57.2	27.8	25	M12x17	84	166	SAE 1"
125		66.7	31.8	32	M14x19	99	194	SAE 1 1/4"
180		66.7	31.8	32	M14x19	99	194	SAE 1 1/4"
200	1)	66.7	31.8	32	M14x19	99	204	SAE 1 1/4"

For further technical data see RE 91001

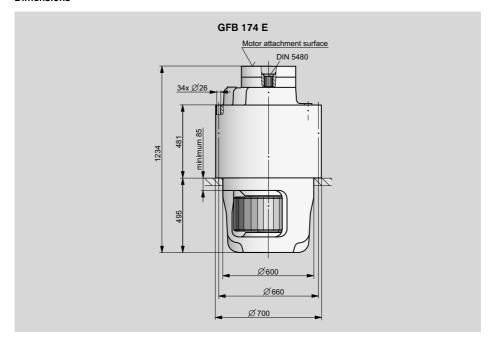
Corresponding Hydraulic Motors: Dimensions and Mass


Variable-displacement motor A6VM, Series 63

Nominal Size	A 1	A2	L1 *	L2 *	L3 *	Mass (kg)
55	183	24	151	111	238	26

^{*} Dimensions may vary depending on the displacement

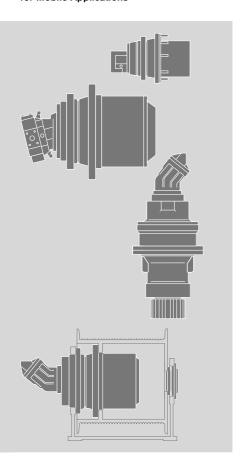
Nominal Size	A6	A7	A8	А9	A/B
55	19	50.8	23.8	M10x1.5x17	SAE 3/4"


For further technical data see RE 91604

MOBILEX GFB		
To be able to quote, we require the	Person in charge:	
following data from you:	Company:	
	Place:	
Fax No. +49 2302 877-148	Fax: Telephone:	
Please attach drawings, sketches, notes, etc.	E-Mail:	
Technical Data		
Type of equipment:		
Excavator	Crane Type:	Other
Equipm. weight (tons): empty loade	ed Lifting load (tons):	
	Caarbarr	
	Gearbox	n ₁ min ⁻¹
	input opecu	T ₁ Nm
	input torquo	i :1
	Reduction ratio	 T ₂ kNm
	Output torque, nom.	T ₂ kNm
	Output torque, max.	n ₂ min ⁻¹
4 4	Output speed	ED %
	Duty factor FEM Classification	M L T
	FEM Classification	
No. of teeth b	Machine	
No. or teeth	Speed, superstructure	n _o min ⁻¹
Output shaft housing design (long/short) is	Torque, superstructure	T _o kNm
to be determined in consultation with us.		
Drive Connection	Attachment of	
Hydraulic motor:	Electric motor:	
Fixed-displace- Varia	ble-dis- ment type Three-p	phase DC
Туре	Type (of construction	n)
Manufacturer	Manufacturer	
Working pressure DP I	oar Voltage *	volts
Secondary valves	Frequency *	HZ
set at	oar Type of protection *	
Circulating oil volume	/min Temperature class *	
V _{g min} *	cm ³	
V _{g max} *	cm³	
Pressure cut-off *	oar	
Regulation start/end *	oar * if gearbox is suppli	ed with the motor

					Person in charge: _ Company: _ Place: _ Fax: _ Telephone: _ E-Mail: _		
Pinion gearing	mill	ed gr	ound		Splined connection	(DIN 548	0/SAE)
Angle of pressure Number of teeth Module Tooth width Addendum modification **	a° Z m b		- - _ mm _ mm		Number of teeth Module Tooth width	Z m b	mm mm
Position of pinion Ambient temperature Ambient conditions Number of teeth, ring gear Tooth width, ring gear		bot-	_ °C _ °C - - _ mm	эр	horizontal		
Gearing, ring gear Manufacturer of ring gear Multi-disk parking brake Multi-disk parking brake With locking device		normali-	no dry	empered Ty	hardened pe		_
Braking torque ** Release pressure, min. ** Release pressure, max. ** Gearbox with excentricity	T _{brake} P _{release} P _{release}	yes	Nm bar bar no	if	yes, how much (mm)		specified by custome
Gearbox design in conform	-	the regulations	of a classifi	cation bo	dy ges n	0	
Budgeted annual requirem Estimated implementation Special application condition	period ons equirem	or standards th	nat must be	observed	i?		
Date:		Name:			Dept.:		

Dimensions


Technical Data

of previously built swing drives MOBILEX GFB, output torques > 94.5 kNm.

Type/Version GFB	Gear Ratio i	Output Torque, max. T _{2 max.} kNm
GFB 0174 E	63.6	115

Notes

Products for Mobile Applications

Planetary Gear Units for Mobile Applications

Hydrostatic Travel Drives

- HYDROTRAC GFT for fixed- or variable-displacement motor output torques between 9 and 450 kNm Technical Documentation RE 77110
- HYDROTRAC GFT with integrated hydraulic two-speed motor
 HYDROTRAC GFT
 - for use on large tracklaying vehicles output torques up to 3250 kNm Upon request

Hydrostatic Swing Drives

- MOBILEX GFB for fixed- or variable-displacement motors output torques between 4 and 115 kNm Technical Documentation RE 77201
- MOBILEX GFB
 with swash-plate motor

Hydrostatic Winch Drives

 MOBILEX GFT – W for fixed- or variable-displacement motors output torques between 14 and 275 kNm Technical Documentation RE 77502

Bosch Rexroth AG
Mannesmannstraße
58455 Witten, Germany
Phone +49 2302 877-1
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/gears

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

duced or given to third parties without its consent. Product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

MOBILEX is a registered trademark.

MOBILEX GFB

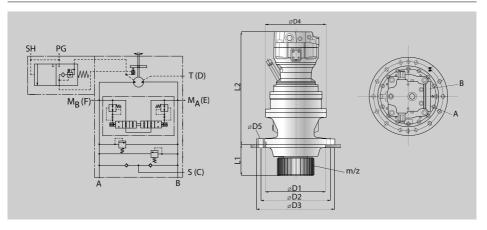
Drive unit for revolving superstructures

Series 2000

RE 77206/06.12 1/2

Data sheet

Contents Page Description


Dimensions Technical data

The hydrostatic drive unit of the GFB 2000 series consits of a two-stage planetary gearbox with an attached hydraulic swash plate slew drive motor. This compact drive is designed for swiveling a revolving superstructure of a crawler or wheel excavators. The slew drive motor is provided with an integrated static multiple disk brake and a vibration damping valve.

- · Compact, space-saving two-stage drive unit
- · Multiple disk brake integrated into the motor
- · Built-on brake release valve
- · Standard configuration with a vibration damping valve
- · Good anti-cavitation method
- · Compact design by integrated valves
- · Easy installation as a complete unit
- Open circuit

Technical data • Dimensions

GFB type	Max. output torque	Motor displacement	Max. pressure	Gear ratio	Max. braking torque, static	Weight approx.	Tonnage class
	Nm	cm³	bar	i	Nm	kg	to
GFB 2120 E	4,000	45	350	21	215	90	7 - 10
GFB 2140 E	5,500	75	350	18.3	380	120	10 - 15
GFB 2160 E	14,500	150 / 170	350	20.7	650/700	265	20 - 25
GFB 2180 E			in pre	paration			30 - 35

GFB type	D1	D2	D3	D4	D5	L1	L2	A/B mm	С	D	E/F	PG	SH	m	Z
GFB 2120 E	200	275	310	251	8x ø18	104	436.4		ç	ion	uo	port	port	+2	est
GFB 2140 E	200	290	323	260	9x ø18 + 1x ø20	136	474.5	ire port	connection	eakage oil connection	connection	essure po	essure po	Module on request	ı on request
GFB 2160 E	345	400	450	350	13x ø22 + 1x ø24	179	586.5	Pressure	Suction c	akage oil	Measuring	Control pressure	Control pressure	Module o	No. of teeth
GFB 2180 E			i	n prepa	aration				0)	Ľe	ž	Ŏ	Ŏ	_	Š

Bosch Rexroth AG Mannesmannstraße 58455 Witten, Germany Phone +49 2302 877-0 Fax +49 2302 877-148 info.gears@boschrexroth.de www.boschrexroth.com/getriebe © All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and aging.

Subject to modification without prior notice.

MOBILEX is a registered trademark.

Printed in Germany

7

Winch Drives MOBILEX GFT-W for Mobile Applications

RE 77502 / 06.10 1/16 Replaces: 05.04

Data Sheet

Winch Drives for Rope Pull Forces from 50 - 595 kN

Contents	Page
Fields of Application, Description, Gearing, Lubrication, Motors Options, Backstop, Limit Switches,	2
End Supporting Bearing, Cable Drum, Winch Frame	3
Application Conditions, Gearbox Design, Driver Groups and Service Time Categories, Fleet Angle, Multiplate Parking Device, Gearbox Selection	4
Classification Examples	5
Dimensions and Technical Data for Output Torques of between:	
14000 Nm and 67000 Nm	6
100000 Nm and 275000 Nm	8
Fixed-Displacement Motors	10
Variable-Displacement Motors	11
End Supporting Bearing	12
Bid Data Sheet	13


Features

- Compact, space-saving planetary gearbox design
- Planet wheel carried in full-complement bearings
- Robust bearing system absorbing the forces exerted by the cable pull
- Simple mounting
- Easy oil change
- Integrated multiplate parking device
- Low-noise operation

Description

MOBILEX GFT-W hydrostatic winch drives from Rexroth are ideal drive components for winches. They have proven their worth in the most arduous applications and under tough operating conditions. MOBILEX GFT-W winch drives are used in all kinds of winches - mobile and crawler cranes, railroad cranes, shipboard, dockside and container cranes. Due to their extremely compact design, the gear units can be mounted inside the cable drum in a space-saving manner. They are designed for ease of installation and maintenance. High-quality manufacturing processes and the use of case-hardened gear-wheels as well as quenched, tempered and surface-hardened ring gears warrant outstanding load-carrying capacity, operational safety and low-noise running characteristics.

The teeth of the gearwheels are designed according to standard specifications and our own strength calculations, which have been developed based on our comprehensive know-how and are optimally adapted to our manufacturing processes. The drives provide optimum total efficiency due to the use of Rexroth hydraulic motors, among other things. The gear units described in this document are subject to constant updating and technical advancement. To suit the specific needs of our customers in terms of dimensions and output characteristics, further variants can be supplied. That's why we provide advice and support even in the project stage to help you find the most appropriate solution for your requirement.

Lubrication

The gears and bearings are splash-lubricated. The drive units are maintenance-free save for periodic oil changes, which are convenient to make. Only the oils specified in the operating manual should be used in the gearboxes.

The change intervals for different operating conditions are also specified in the operating manual.

Multiplate Parking Device

A spring-loaded, hydraulic released multiplate parking device arranged on the input side is provided.

 $T_{Br \, sta. \, min} = 1,6 \cdot T_1 \, \text{(input torque)}$

The multiplate parking device is not a service brake, but a static holding device. Where required, a service or emergency brake should be provided by the equipment supplier/operator.

The static holding torque multiplies in accordance with the transmission ratio selected.

Hydraulic Motors

The gearbox is designed for direct flange-attachment of a variable or fixed-displacement motor (preferably a Rexroth hydraulic motor). If requested, the motor is supplied with the gearbox.

7

Declaration of design

2000 = oil inlet, oil outlet, oil level at the gearbox cover 4000 = oil inlet, oil outlet, oil level on the motor side

6000 = oil inlet, oil outlet, oil level on the motor side Assembly of two gearboxes in one rope drum possible

9000 = special design

Options

Upon request, the drives can be equipped with the following accessories:

End Supporting Bearing, Cable Drum, Winch Frame

In addition to the standard scope of supply (Representation A), complete winch drives series can be supplied with: end supporting bearing end supporting bearing and cable drum end supporting bearing, cable drum, and winch frame.

Limit Switches

Upon request, special end supporting bearings can be designed to connect to specific geared cam-type limit switches.

Overview of GFT-W Winch Drives

Type/Design GFT-W	Output Torque 1) T 2 max Nm	Cable Pull, max. 2)	Gear Ratio from/to i
GFT 0013 W2 ³⁾	9500	50	-
GFT 0017 W2	14000	67	45.4
GFT 0017 W3 ³⁾	14000	74	-
GFT 0024 W3	19000	99	90.1 - 102.6
GFT 0026 W2	18000	84	50.5 - 62.0
GFT 0036 W3 ³⁾	26000	118	
GFT 0040 W2 ³⁾	27000	108	-
GFT 0050 W3 ³⁾	37500	150	-
GFT 0060 W3 ³⁾	42500	164	-
GFT 0080 W3	67000	231	61.3 - 79.1
GFT 0110 W3	100000	300	79,5 - 95.8
GFT 0160 W3	140000	373	210.8 - 251.0
GFT 0220 W3	200000	471	246.1
GFT 0330 W3	275000	595	183.2 - 252.0

For our current range of GFT-W winch drives, visit us at www.boschrexroth.com/gears

Should you require a specific winch drive solution that is not covered by our standard range, please contact us. Further dimensions and design variants can be supplied.

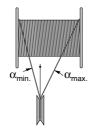
- 1) Design to FEM L2T5M5
- 2) Based on a theoretical 1st layer winding diameter Dws
- 3) on request

Application Conditions

The gearboxes have been designed for use at ambient temperatures of between -20 C and +40 C. Environmental influences such as salt water, salty air, sand, dust, overpressure, heavy vibrations, extreme shocks and ambient temperatures, aggressive media, etc. will affect the function of the product. Such influences must be specified to ensure that the winch drive is designed to safely meet the requirements.

Gearbox design

The gearbox design is based on many years of practical experience. The maximum output torques T22211 indicated under Technical Data relate to FEM Section 1,3rd issue, and Section IX (FEM - Fédération Européene de la Manutention), as well as DIN 15020, collective load class L2, service time category T5 corresponding to driver group M5. The reference output speed is 25 revolutions per minute maximum.


If the winch is classified into a different driver group, the required output torque must be converted by applying factor K (see table).

This results in the maximum permissible output torque for the new classification. Whether or not the selected overall classification is feasible, will be determined by the specialists of Rexroth.

The output torques indicated are peak torques that are permissible for short-term operation only (e.G. unloaded hook, emergencies, etc.) The gear units are not designed for continuous operation.

Fleet Angle

Observing the admissible fleet angle α is prerequisite for proper cable winding.

The fleet angle α should not be smaller than 0.5 to make sure that the cable does not climb the drum flange and properly forms the next layer.

The fleet angle α should not be larger than 1.5 to make sure that the cable, when in the first layer, is not pulled against the groove wall and that, in the case of several cable layers, the cable winds neatly over the full length of the drum to drum flanges.

Gearbox Selection

T₂ = output torque

F = cable pull in N

D_w = relevant winding diameter in m

$$T_2 = \frac{F \cdot D_W}{2}$$

• T_{2K} = corrected output torque

K factor according to the service time category and collective group given in the table.

$$T_{2K} = T_2 \cdot K$$

 T_{2 K} of the gearbox to be selected must be T_{2 max} (according to the bulletin).

See also Gearbox Design.

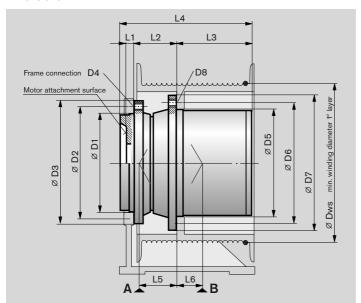
See page 13 for a data sheet relating to the winch drive design.

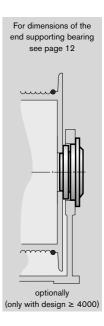
Driver Groups and Service Time Categories to FEM, Section I, 3rd Issue 1987

(FEM: Fédération Européenne de la Manutention)

Service time category			T 2	Т3	T 4	T 5	Т6	T 7	T 8	
As	sumec	d average s	ervice time per day in hours	0,25 - 0,5	0,5 - 1	1 - 2	2 - 4	4 - 8	8 - 16	>16
Theoretic service life in hours			400 - 800	800 - 1600	1600 - 3200	3200 - 6300	6300 - 12500	12500 - 25000	25000 - 50000	
Collective Load Class				Driver Gro	oup with K	Factor				
sdr	L 1	light	maximum loads occuring in exceptional cases only, slight loads constantly	M 1 0,90	M 2 0,90	M 3 0,90	M 4 0,90	M 5 0,95	M 6 1,05	M 7 1,2
tive groups	L 2	medium	small, medium and maximum loads about equally distribu- ted over service time	M 2 0,90	M 3 0,95	M 4 0,95	M 5 1	M 6 1,15	M 7 1,30	M 8 1,50
Collective	L3	heavy	loads always near maximum	M 3 1,05	M 4 1,05	M 5 1,10	M 6 1,25	M 7 1,40	M 8 1,60	M 8 1,80
	L 4	very heavy	always maximum loads	M 4 1,25	M 5 1,30	M 6 1,45	M 7 1,65	M 8 1,85	M 8 2,10	M 8 2,40

5/16


Classification Examples


see FEM Section I, 3rd Issue, Table T.2.1.3.5.

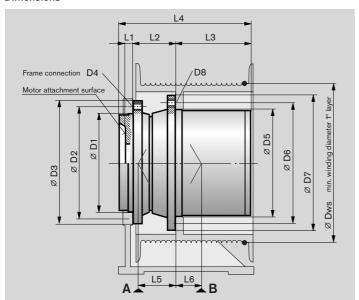
Type of Crane	Component	Type of Driver						
(Designation)	Operated 1)	Hoisting	Swinging	Level Luffing	Trolley Travelling	Crane Travelling		
Erection cranes		M 2 – M 3	M 2 – M 3	M 1 – M 2	M 1 – M 2	M 2 – M 3		
Loading bridges	hook	M 5 – M 6	M 4	-	M 4 – M 5	M 5 – M 6		
Loading bridges	grab or magnet	M 7 – M 8	M 6	-	M 6 – M 7	M 7 – M 8		
Workshop cranes		M 6	M 4	-	M 4	M 5		
Overhead travelling cranes, ram cranes, scrap yard cranes	grab or magnet	M 8	M 6	-	M 6 – M 7	M 7 – M 8		
Unloading bridges, container gantry cranes	hook or spreader	M 6 – M 7	M 5 – M 6	M 3 – M 4	M 6 – M 7	M 4 – M 5		
Other gantry cranes (with trolley and/or live ring)	hook	M 4 – M 5	M 4 – M 5	-	M 4 – M 5	M 4 – M 5		
Unloading bridges, container gantry cranes (with trolley and/or live ring)	grab or magnet	M 8	M 5 – M 6	M 3 – M 4	M 7 – M 8	M 4 – M 5		
Berth cranes, shipyard cranes, dismantling cranes	hook	M 5 – M 6	M 4 – M 5	M 4 – M 5	M 4 – M 5	M 5 – M 6		
Dockside cranes (slewable, gantry type,), floating cranes, floating sheerlegs	hook	M 6 – M 7	M 5 – M 6	M 5 – M 6	-	M 3 – M 4		
Dockside cranes (slewable, gantry type,), floating cranes, floating sheerlegs	grab or magnet	M 7 – M 8	M 6 – M 7	M 6 – M 7	-	M 4 – M 5		
Floating cranes and floating sheerlegs for very high loads (normally above 100 t)		M 3 – M 4	M 3 – M 4	M 3 – M 4	-	-		
Shipboard cranes	hook	M 4	M 3 – M 4	M 3 – M 4	M 2	М 3		
Shipboard cranes	grab or magnet	M 5 – M 6	M 3 – M 4	M 3 – M 4	M 4 – M 5	M 3 – M 4		
Tower cranes for construction sites		M 4	M 5	M 4	М 3	М 3		
Derrick tower gantry		M 2 – M 3	M 1 – M 2	M 1 – M 2	-	-		
Railroad cranes, approved for service in trains		M 3 – M 4	M 2 – M 3	M 2 – M 3	-	-		
Vehicle-mounted cranes	hook	M 3 – M 4	M 2 – M 3	M 2 – M 3	-	-		

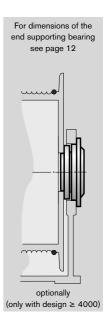
¹⁾ This column only shows some typical areas of winch use for informative purposes.

Dimensions

Technical Data

Type/Design GFT-W	Output Torque T _{2 max.}	Cable Pull max.	Transmission Ratio i	Holding Torque T _{Br max.}	Hydraulic Motor
	Nm	kN		Nm	
GFT 0017 W2 4000	14000	67	45.4	460	A6VE 55/A2FE 56 • 63
GFT 0024 W3 4000	19000	99	90.1 • 102.6	460	A6VE 55/A2FE 56 • 63
GFT 0026 W2 2000	18000	84	62.0	710	A6VE 80/A2FE 80 • 90
GFT 0026 W2 4000	18000	84	50.5	710	A2FE 90
GFT 0080 W3 6000/1	67000	231	61.3 • 79.1	1890	A6VM 160/A2FM 180
GFT 0080 W3 6000/2	67000	231	61.3 • 79.1	1890	A6VM 250


Bosch Rexroth AG


Dimensions, Mass

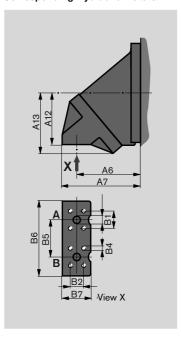
Type/Design GFT-W	D1	D2	D3	D4	D5	D6	D7	D8	Dws
GF1-W				ı	mm				
GFT 0017 W2 4000	250	290	320	14x M20	280	305	330	16x 17.5	380
GFT 0024 W3 4000	250	290	320	14x M20	280	305	330	20x ø18	385
GFT 0026 W2 2000	270	310	350	16x M20	320	350	380	20x M16	430
GFT 0026 W2 4000	270	310	350	16x M20	320	350	380	20x 17.5	430
GFT 0080 W3 6000/1	380	430	470	28x M24	430	460	495	24x 22	580
GFT 0080 W3 6000/2	380	430	470	28x M24	430	460	495	24x 22	580

Type/Design GFT	L1	L2	L3	L4	L5	L6	A +	- B Co	Mass
			m	m			k	:N	kg
GFT 0017 W2 4000	30	82	152	264	56	47	108	142	105
GFT 0024 W3 4000	30	82	189.5	301.5	56	47	140	290	130
GFT 0026 W2 2000	30	90	220	340	58	49	186	400	145
GFT 0026 W2 4000	30	90	220	340	58	49	186	400	145
GFT 0080 W3 6000/1	69	120	295	484	76	19	212	425	430
GFT 0080 W3 6000/2	69	120	295	484	76	19	212	425	430

Dimensions

Technical Data

Type/Design GFT-W	Output- Torque T _{2 max.}	Cable Pull max.	Transmission Ratio i	Holding Torque T _{Br max} .	Hydraulic Motor
0==					
GFT 0110 W3 4000	100000	300	114.8	1100	A6VE 160
GFT 0110 W3 6000/1	100000	300	79.5 • 95.8	1890	A6VM 200 • 250/A2FM 200
GFT 0110 W3 6000/2	100000	300	95.8	1890	A2FM 250
GFT 0110 W3 6000/3	100000	300	95.8	1890	A6VM 160/A2FM 160 • 180
GFT 0110 W3 6000/4	100000	300	79.5	1890	A6VM 250/A2FM 200
GFT 0110 W3 9000	100000	300	79.5	1500	A6VM 200 • 250/A2FM 200
GFT 0160 W3 4000	140000	373	210.8 • 251.0	1360	A2FE 180
GFT 0220 W3 6000	200000	471	246.1	1470	A6VE 160
GFT 0330 W3 9000/1	275000	595	252.0	2860	A6VE 250/A2FE 250
GFT 0330 W3 9000/2	275000	595	183.2	2X 1700	2X A6VM 160


9/16

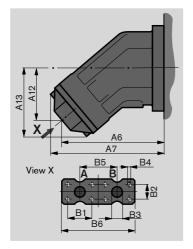
Dimensions, Mass

Type/Design GFT-W	D1	D2	D3	D4	D5	D6	D7	D8	Dws
GF1-W				n	nm				
GFT 0110 W3 4000	420	460	500	24x M24	460	500	540	36x 20	640
GFT 0110 W3 6000/1	380	430	470	28x M24	490	530	567	24x 26	650
GFT 0110 W3 6000/2	380	430	470	28x M24	490	530	567	24x 26	650
GFT 0110 W3 6000/3	380	430	470	28x M24	490	530	567	24x 26	650
GFT 0110 W3 6000/4	380	430	470	28x M24	460	500	530	24x 22	650
GFT 0110 W3 9000	380	430	470	28x M24	490	530	567	24x 26	650
GFT 0160 W3 4000	450	510	560	30x M24x2	535	600	650	30x 30	750
GFT 0220 W3 6000	460	600	650	30x M30	610	680	735	24x 33	850
GFT 0330 W3 9000/1	580	680	735	28x M30	660	730	785	30x 33	925
GFT 0330 W3 9000/2	450	515	568	32x M30x2	570	620	668	42x M24	-

Type/Design	L1	L2	L3	L4	L5	L6	A + B		Mass
GFT							С	Co	
			n	nm				kN	kg
GFT 0110 W3 4000	0	165	305	491.5	107	25	A 509 B 480	A 1080 B 950	440
GFT 0110 W3 6000/1	69	140	280	489	96	- 2	212	425	460
GFT 0110 W3 6000/2	69	140	280	489	96	- 2	212	425	406
GFT 0110 W3 6000/3	69	140	280	489	96	- 2	212	425	515
GFT 0110 W3 6000/4	69	130	291	490	86	8	212	425	515
GFT 0110 W3 9000	69	140	290	498	94	0	212	425	515
GFT 0160 W3 4000	30	168	340	538	138	26	688	1520	680
GFT 0220 W3 6000	45	170	350	565	155	35	710	1560	820
GFT 0330 W3 9000/1	47	188	430	705	190	25	1040	2450	1380
GFT 0330 W3 9000/2	281	255	410	946	180	35	1040	2450	1500

Corresponding Hydraulic Motors: Dimensions and Mass

Fixed-Displacement Motor A2FE, Series 61


Nominal Size	A6	A7	A12	A13	Mass (kg)
56	122	146	107	130	18
63	122	146	107	130	19
80	127	157	121	145	23
90	127	157	121	145	25
160	169	211	149	188	47
250 1)	*	230	*	172	*

Nomi	nal Siz	e B1	B2	ВЗ	B4	В5	В6	В7	A/B
56	63	50.8	23.8	19	M10x17	75	147	49	SAE 3/4"
80	90	57.2	27.8	25	M12x17	84	166	60	SAE 1"
160	180	66.7	31.8	32	M14x19	99	194	70	SAE 11/4"
250	1)	*	*	*	*	*	*	*	*

¹⁾ Series 60

For further technical data see RE 91008

* Missing dimensions upon request

Fixed-Displacement Motor A2FM, Series 61

Nominal Size	A6	A7	A12	A13	Mass (kg)
160 180	252	294	134	188	32
200 1)	284	309	84	165	45
250 ²⁾	288	314	93	172	45

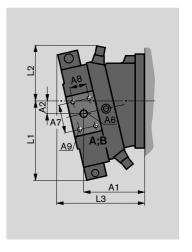
Nominal Size	В1	B2	В3	B4	B5	В6	A/B
160 180	66.7	31.8	32	M14x19	99	194	SAE 1 1/4"
200 1)	66.7	31.8	32	M14x19	99	204	SAE 1 1/4"
250 ²⁾	66.7	31.8	32	M14x19	100	210	SAE 1 1/4"

¹⁾ Series 63

For further technical data see RE 91001

²⁾ Series 60

Corresponding Hydraulic Motors: Dimensions and Mass

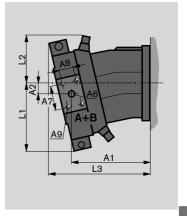

Variable-Displacement Motor A6VE, Series 63

Nominal Size	A1	A2	L1 *	L2 *	L3 *	Mass (kg)
55	123	24	151	111	179	26
80	130	28	167	116	190	34
160	171	34	200	154	245	64
250	204	44	248	188	302	90

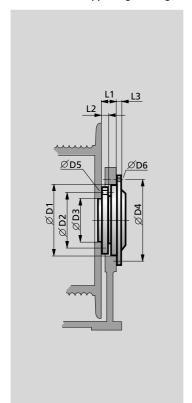
^{*} Dimensions vary, depending on type of displacement

Nominal Size	A6	A7	A8	А9	A/B
55	19	50.8	23.8	M10x17	SAE 3/4"
80	25	57.2	27.8	M12x17	SAE 1"
160	32	66.7	31.8	M14x19	SAE 11/4"
250	32	66.7	31.8	M14x19	SAE 11/4"

For further technical data see RE 91606


Variable-Displacement Motor A6VM, Series 63

Nominal Size	A 1	A2	L1 *	L2 *	L3 *	Mass (kg)
160	254	34	197	137	329	64
200	267	36	209	143	345	80
250	287	44	248	188	383	90


^{*} Dimensions vary, depending on type of displacement

Nominal Size	A6	A7	A8	А9	A/B
160	32	66.7	31.8	M12x1.75	SAE 1 1/4"
200	32	66.7	31.8	M12x1.75	SAE 1 1/4"
250	32	66.7	31.8	M12x1.75	SAE 1 1/4"

For further technical data see RE 91604

Standard End Supporting Bearing

Gearbox Size	D1	D2	D3	D4	D5
	H7/j6		H7/j6		
GFT 0013 W					
GFT 0017 W	140	115	90	157	12 x ø 14
GFT 0024 W	175	145	115	198	12 x ø 18
GFT 0026 W	175	145	110	190	12 X Ø 10
GFT 0036 W	200	170	140	230	12 x ø 18
GFT 0040 W	200	170	140	200	12 10 10
GFT 0050 W					
GFT 0060 W	225	190	150	260	12 x ø 22
GFT 0080 W					
GFT 0110 W					
GFT 0160 W	260	220	180	295	12 x ø 22
GFT 0220 W					
GFT 0330 W	Dimensions upon request				
			noiono upi	onrequest	
		2	noiono upi	on request	
Gearbox Size	D6	L1	L2	L3	Mass
Gearbox Size	D6				Mass appr. (kg)
Gearbox Size		L1	L2	L3	appr. (kg)
	D6				
GFT 0013 W	6 x ø 9	L1 76	L2	L3	appr. (kg)
GFT 0013 W GFT 0017 W		L1	L2	L3	appr. (kg)
GFT 0013 W GFT 0017 W GFT 0024 W	6 x ø 9	L1 76 76	L2 13	L3 10	9 15
GFT 0013 W GFT 0017 W GFT 0024 W GFT 0026 W	6 x ø 9	L1 76	L2	L3	appr. (kg)
GFT 0013 W GFT 0017 W GFT 0024 W GFT 0026 W GFT 0036 W	6 x ø 9	L1 76 76	L2 13	L3 10	9 15
GFT 0013 W GFT 0017 W GFT 0024 W GFT 0026 W GFT 0036 W GFT 0040 W GFT 0050 W GFT 0060 W	6 x ø 9	L1 76 76	L2 13	L3 10	9 15
GFT 0013 W GFT 0017 W GFT 0024 W GFT 0026 W GFT 0036 W GFT 0040 W GFT 0050 W GFT 0060 W GFT 0080 W	6 x ø 9 6 x ø 11 6 x ø 14	L1 76 76 77	13 20 20	10 15	9 15 21
GFT 0013 W GFT 0017 W GFT 0024 W GFT 0026 W GFT 0036 W GFT 0040 W GFT 0050 W GFT 0060 W	6 x ø 9 6 x ø 11 6 x ø 14	L1 76 76 77	13 20 20	10 15	9 15 21 30
GFT 0013 W GFT 0017 W GFT 0024 W GFT 0026 W GFT 0036 W GFT 0040 W GFT 0050 W GFT 0060 W GFT 0080 W	6 x ø 9 6 x ø 11 6 x ø 14	L1 76 76 77	13 20 20	10 15	9 15 21

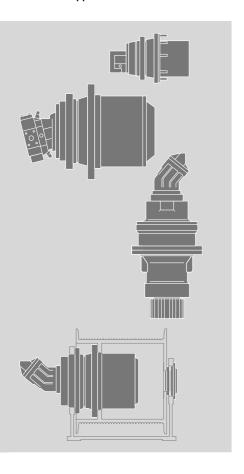
Dimensions upon request

GFT 0330 W

٧	′ 011	wich	ŧο	receive	an	offer

to be able to quote, we require the following data from you: Fax No. +49(0)2302-8 77-1 48.

d d	
Standard scope of supply:	
Gearbox, with end supporting bearing,	
· · · · · ·	


Fax No. +49(0)2302-8 77-1 48.	Comp		
Please attach drawings, sketches, notes, etc.	Place:		
	Fax:		
	Teleph	none:	
	Technical Data		
	Design to FEM	T L	м
d - -	Machine		
	Hoisting Winch L	evel-Luffing Winch	
		Pull Winch Other:	
	Equipment weight		t
	Lifting capacity, max. (crane	e)	t
	Cable Pull	F	N
	Cable velocity, max.	V ₂	m/min
<u> </u>	Cable diameter	d	mm
Standard scope of supply:	Groove: no gr., DIN, Lebus		
Gearbox, with end supporting bearing,	Cable pitch / pitch direction	п р	mm
if required	Number of cable layers, ma	x	
	Winding diameter, 1 st layer	Dws	mm
Upon request:	Drum flange diameter	D ₂	mm
Gearbox with drum and winch frame	Length between flanges	L	mm
	Cable drum capacity		
	Output torque, max.	T _{2 max}	Nm
	* Output speed, max.	n _{2 max}	rpm
	* Transmission ratio	i	
	* Input torque, max.	T _{1 max}	Nm
	* Input speed, max.	n _{1 max}	rpm
	* Gearbox size		
	Working pressure	Δp	bar
	Inlet flow rate, max.	Q _{max}	I/min
	Fixed-displacement motor		
	Variable-displacement moto	or Type	
	Type of displacement		
	Brake valve	yes no	
	Backstop	yes no	
	* To be defined by Bosch Rexroth		
Budgeted annual requirement			
Expected implementation period			
Special application conditions			
Further customer-specific requirements			
Are there any legal regulations or standards th	at must be observed?		
yes no if yes, which:			
Remarks			
Itoliano			
Date: Name	e:	Dept.:	

Person in charge: ___

Notes

Notes

Products for Mobile Applications

Planetary Gear Units for Mobile Applications

Hydrostatic Travel Drives

 HYDROTRAC GFT for fixed- or variable-displacement motor output torques between 9 and 450 kNm Technical Documentation RE 77110

· HYDROTRAC GFT with integrated hydraulic two-speed motor

· HYDROTRAC GFT for use on large tracklaying vehicles output torques up to 3250 kNm Upon request

Hydrostatic Swing Drives

 MOBILEX GFB for fixed- or variable-displacement motors output torques between 4 and 115 kNm Technical Documentation RE 77201

 MOBILEX GFB with swash-plate motor

Hydrostatic Winch Drives

• MOBILEX GFT - W for fixed- or variable-displacement motors output torques between 14 and 275 kNm Technical Documentation RE 77502

Bosch Rexroth AG Mannesmannstraße 58455 Witten, Germany Phone +49(0)2302 877-0 +49(0)2302 877-148 info.gears@boschrexroth.de www.boschrexroth.com/gears

© This document, as well as the data, specifications and other informations set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent

form in it, all the exclusive property of boson in the product of given to third parties. The data specified above only serve to describe the product. No statement concerning a certain condition or suitability for a certain application can be derived. from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

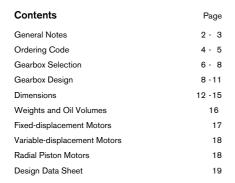
MOBILEX is a registered trademark.

Gears

Planetary gear units for stationary applications

Designation	Output torque	Data sheet	Page
Planetary gear units REDULUS GMH/GME	78.63300 kNm	RE 76120	673
Planetary gear units for tunnel boring machines (TBM)	70150 kNm	RE 76118	693

Bosch Rexroth AG RE 90010-02/07.2012


Planetary Gear Units REDULUS GMH/GME

RE 76120 / 07.10 1/20 Replaces: 10.05

Data Sheet

Continuous Output Torque from 78,6 to 3,300 kNm Ratios from 19 to 2,334

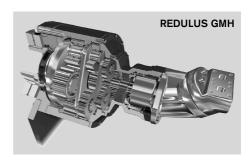
for hydraulic and electric motor drives

Description

Rexroth's REDULUS GMH / GME planetary gearboxes are reliable transmission components that have proved successful in a wide range of operating conditions.

Due to our long years of experience and our wide spectrum of products and applications we know exactly what industrial requirements planetary gearboxes must meet. Our quality management system to DIN EN ISO 9001:2000 is the base and guarantor of a consistently high quality level.

A dedicated team of R&D, design and sales engineers makes sure that the clients' wishes and concepts are quickly translated into technically and economically viable solutions. In their work, they are assisted by modern computer software for gearing design and component optimization.


The information provided in this documentation serves to help you select the planetary gearbox best suited for your application. In addition, our field personnel are available to you to provide advisory services even at the project stage.

General Notes

REDULUS GMH / GME

REDULUS GMH / GME planetary gearboxes are characterized by compact construction and extremely high mechanical efficiency.

REDULUS GMH hydraulic drive units are optimum combinations of a hydraulic motor (preferably of Rexroth make) and a planetary gearbox for hydrostatic power transmission and mechanical torque multiplication.

Design Example

Design Variants

The ordering code explained on pages 4/5 provides an overview of the available design variants.

Precise Transmission Ratios

The calculated precise transmission ratios can be seen from the table on page 8.

The transmission ratio ranges for the various gearbox sizes are shown on page 7.

Housing

Housings of nodular cast iron are standard.

Where the ring gears are part of the gearbox housing, they are made of quenched-and-tempered steel.

Other materials are available upon request.

Output

Where the gearbox design features a shrink disk, this disk is included in the scope of supply. The hollow shaft is supported inside the gearbox such that it can safely absorb the weight of the unit and the reaction forces exerted by the torque arm.

Input

For direct motor attachment, the input shaft has been designed as a sleeve with an internal profile to DIN 5480 to accommodate the motor shaft.

Seals

The standard scope of supply includes input and output shafts sealed with radial shaft seal rings running on replaceable wearing sleeves.

Mounting Position

The gearboxes can be mounted in any position. However, the desired mounting position must be specified so that we can ensure proper lubrication.

Bearing System

Gear wheels, planet carriers and shafts are carried exclusively in antifriction bearings.

Gearbox Supply

Rexroth REDULUS gearboxes are delivered ready for installation, but without oil filling. An external paint coat (blue, RAL 5015) is applied and the gearbox interior is provided with a temporary corrosion preventive that protects the unit for a period of 24 months, if stored in a dry place.

External flanges, shaft extensions and mating faces are protected with TECTYL 502 C.

Weights, Oil Volumes, Dimensions

The specified weights and oil volumes are average figures. Gearbox operators should rely on oil level readings rather than the specified oil volumes. Figures and dimensions are not strictly binding. We reserve the right to make changes in line with technical progress.

Noise Characteristics

The gearbox design has been optimized with respect to noise generation. The noise levels produced are in conformity with the relevant provisions of VDI 2159.

Gear Teeth

Spur and planet gear wheels have straight teeth and are casehardened and correctively ground. The ring gears are made of quenched and tempered nitrided material. Bevel gears are of case-hardened and ground quality or provided with HPG gear teeth.

All gear teeth are designed for adequate fatigue strength at the rated torque indicated.

Lubrication

The gearboxes are designed for splash lubrication. Where gearboxes are mounted in inclined or vertical position, appropriate measures are taken to ensure that the units are properly lubricated.

Proprietary gear oils with EP additives are suitable for lubrication. Recommended brands are those which have successfully passed the 12th load stage of FZG testing (A/8, 3/90) accordina to DIN 51354.

Consult the operating manual for recommended oils.

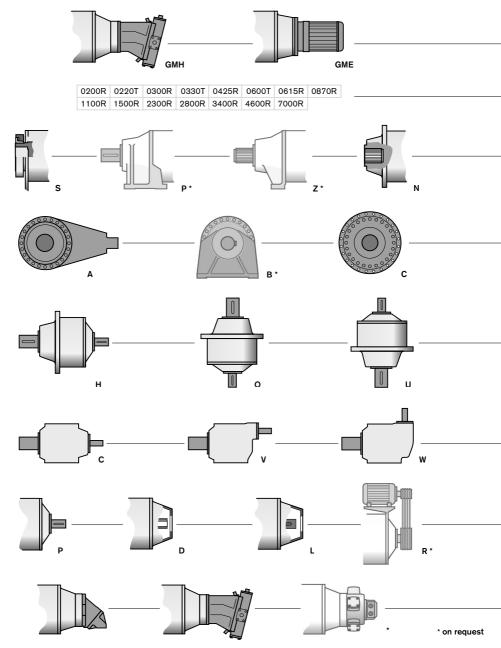
Up to the thermal power limit P_T (see page 11), cooling is achieved by heat dissipation through the gearbox housing. Where this limit is exceeded, cooling fans or water coolers are used. Please consult us for cooling in vertical mounting position.

Further Notes

As prescribed by statutory provisions, all rotating parts must be protected by guards against accidental contact. Local safety regulations must be complied with.

Commissioning and maintenance of the gearboxes must be performed in line with our operating manuals.

In the case of shaft-mounted gearboxes with torque arm, care must be taken to ensure that the torque arm is attached to the foundation in a manner to allow the gearbox to move with machine shaft displacements without restraining forces acting on it. Any coupling arranged between the gearbox and the prime mover must also be designed to allow such movement.


Hvdraulic Motors

For proper operation of hydraulic motors, make sure to follow the motor manufacturer's instructions.

Electric Motors (Direct Attachment)

Please note that this mounting variant requires the motor to be oil-tight and the motor locating bearing to be arranged on the near side of the gearbox.

Ordering Code

REDULUS GME 0220T 3 Z C O 64.4 H C O P
T
Type GMH Hydraulic Drive
GME Electric Drive
CINE Elocatio Brite
— Gearbox Size —
Gearbox Size
Number of gear stages
Output Side —
S hollow shaft for shrink disk
P shaft with key
Z male splined shaft
N female splined shaft
Housing Design
A torque arm
B foot-mounted C flange-mounted
O hange-mounted
Brake
O without brake
B with brake
0
Gear ratio
Mounting Position
H horizontal
O vertical, output on top
U vertical, output on bottom
Position of Input Shaft —
C coaxial (standard)
V offset (spur gear stage)
W angle-type (bevel gear stage)
Cooling
O no cooling
W oil/water cooling compartment
E external cooling
Electric Drive
P shaft with key
D direct-attached motor
L motor bell housing and coupling
R belt transmission
Hydraulic Drive
by Rexroth products,
preferably A2FE; A2FM; A6VE; A6VM; (MR; MRE) *

Gearbox Selection

 $T_{2 \text{ Dauer}} \ge f_S x T_{Betr.}$

Service Factor fs

Load Classification		Hydraulic Motor	Electric Motor
Uniform, no shock	U	0.75	0.75 - 0.90
Reversing operation, moderate shock	М	0.75 - 0.90	0.90 - 1.10
Reversing operation, heavy shock	Н	0.90 - 1.10	1.10 - 1.30

 $T_{2 \, \text{Dauer}} = \text{Gearbox continuous output torque (Nm)},$ see table on page 7

 f_S = Service factor, see table page 6 $T_{Betr.}$ = Operating torque of driven machine (Nm)

A gear unit design which is **finite-life fatigue-resistant** can be sufficient for certain applications.

We are at your disposal to check your selection and service life determination.

Load Classification1) of Driven Machines

Dredgers and	Conveyors and	Cranes	Rolling mills
sidecast.	handling	Luffing gear U	Plate turnover gear M
equipment	equipment	Travel gear M	Ingot pushers H
Endless bucket excav H	Load	Hoisting gear M	Ingot conveying equipm. H
Travel gear	- uniformly U	Slewing gear M	Scale breakers H
- tracklaying H	- medium M	Winches M	Walking beam
- rail M	- heavy M	Metal working	conveyors H
Bucket wheel	Bucket M	machinery	Chain tractors M
- overburden H	Assembly M	Folding presses H	Cooling banks M
- coal H	Belt M	Plate bending machines M	Ladle turnables M
Slewing units M	Chain M	Plate straightening	Skid traverses M
Sand mixers M	Apron M	machines H	Tube welders H
	Screw M	Eccentric presses H	Tube drawing machines M
Mining and	Inclined hoists H	Hammers H	Roller straightening
building	Discharge M	Crank presses H	machines M
equipment	Car dumpers H	ShearsM	Shears
Crushers H		Forging presses H	- plate H
Briquetting presses H	Rubber/plastics	Machine tools	- wireM
Rotary tubular kilns H	industry	- main drives M	- billetH
Roller press H	Extruders	- auxiliary drives U	- cropping H
Clay mixers M	- rubber H	•	- trimming M
	- plasticM	Mills, rotary type	Conveying straighteners M
Chemical	Calenders M	Pan grinders H	Manipulators H
industry	Rubber kneaders H	Ball mills H	Roll adjusting equipm M
Mixers M	Mixers M	Tube mills H	Sewage treatment equipm.
Agitators	Rubber mills M	Bowl mill crushers H	Filter presses M
- pure liquids U	Rolling mills - rubber . H	Food industry	Rotary aerators M
 liquids and solids M 		Bottling machinery U	Lifting screws M
Drying drums M	Metallurgical industry	Kneading machines M	Screening equipmU
	Revolving furnace M	Mash tubs M	Thickener H
	Converters H	Presses H	
	Slag ladle car U	Cane crushers M	
	Sinter conveyors M	Cane mills H	
	Toothed roll crushers . H	Cane knives M	
	Torpedo mixers M	Beet slicers M	

¹⁾ The load classifications indicated are based on experience. For driven machines other than listed or in case of operating conditions deviating from normal please consult Factory.

Gearbox Selection

Standard Transmission Ratio Ranges (Coaxial Gearbox Design)

$$i = \frac{n_1}{n_2}$$

i = Desired gearbox transmission ratio

 n_1 = Drive motor speed in min⁻¹

n₂ = Driven machine speed in min⁻¹

Gearbox Size Type	Continuous Output Torque T _{2 Dauer}	Ratio Ranges		
GMH / GME	Nm	2-stage	3-stage	4-stage
0200 R	78,600	28 - 56	87 - 265	514 - 2334
0220 T	105,000	19 - 28	64 - 366	*
0300 R	117,000	28 - 56	87	514 - 1506
0330 T	150,000	21 - 24	89 - 303	*
0425 R	162,000	28 - 56	121 - 265	469 - 981
0600 T	300,000	24	*	*
0615 R	245,000	29 - 55	123 - 265	478 - 981
0870 R	328,000	29 - 55	154 - 502	529 - 1137
1100 R	470,000	29 - 55	154 - 502	529 - 1137
1500 R	670,000	29 - 55	154 - 502	529 - 1137
2300 R	1,000,000	25 - 50	*	*
2800 R	1,300,000	26 - 50	*	*
3400 R	1,500,000	28 - 56	*	*
4600 R	2,050,000	*	*	*
5500 R	2,675,000	*	*	*
7000 R	3,300,000	*	*	*

^{*} on request

Gearbox Selection

Precise Ratios

Preferable ratios = printed in bold / * on request

GMH / GME	2-stage	3-stage	4-stage
0200 R	28.23 • 30.53 • 33.33 • 47.37	109.02 • 265.26	1136.84 • 1504.34
0220 T	19.14 • 28.00	64.43 • 81.23 • 98.69 • 106.92 • 144.38 •	*
		146.43 • 156.41 • 189.91 • 247.06 • 366.00	
0300 R	30.53 • 33.33 • 36.84 • 39.47 • 47.37	87.41 • 312.42	794.31
0330 T	20.71	113.93 • 169.86 • 210.86 • 253.01 • 303.43	*
0425 R	28.23 • 47.37	265.26	*
0600 T	*	*	*
0615 R	33.84	*	*
0870 R	33.84	203.01	*
1100 R	*	214.29	*
1500 R	*	*	*
2300 R	*	*	*
2800 R	*	141.48	*
3400 R	*	*	*
4600 R	*	*	*
5500 R	*	*	*
7000 R	*	*	*

Gearbox Design

Mechanical Review

Gearbox Size Type	Continuous Output Torque	Output Speed for $L_{h10} = 10,000$
GMH / GME	T _{2 Dauer}	n _{Lh}
	Nm	min
0200 R	78,600	80.9
0220 T	105,000	37.1
0300 R	117,000	115.5
0330 T	150,000	16.2
0425 R	162,000	89.4
0600 T	300,000	27.8
0615 R	245,000	50.7
0870 R	328,000	91.4
1100 R	470,000	42.1
1500 R	670,000	40.7
2300 R	1,000,000	21.7
2800 R	1,300,000	19.7
3400 R	1,500,000	43.4
4600 R	2,050,000	12.5
5500 R	2,675,000	16.0
7000 R	3,300,000	8.1

The continuous output torques shown in this table relate to:

- · no-shock operation
- up to five starts per hour with start-up factor $\mathbf{C}_{\text{zul.}}$ as high as 3 times the rated torque being possible.

The exact admissible start-up factor for a specific gearbox size and type can be seen from the table on page 9.

In the case of more frequent starts and higher start-up factors, you should consult us for advice.

Gearbox Design

Review of Maximum Starting Torque T_M

 $T_{M} \times i_{nenn} \times f_{M} / T_{2 Dauer} = C \le C_{zul}$

 T_M = Rated motor torque i_{nenn} = Transmission ratio

f_M = Motor start-up factor

T_{2 Dauer} = Continuous output torque of gearbox

C = Start-up factor

C_{zul} = Admissible start-up factor

Gearbox Size Type GMH / GME	Rated Output Torque in Nm T _N	Admissible Start-up Factor Rel. Flange-mounted/ Foot-mounted C _{zul.}	ated to Output Side Attachment Hollow Shaft with Shrink Disk C _{zul.}
0200 R	78,600	2.6	2.3
0220 T	105,000	3.0	2.3
0300 R	117,000	2.3	2.1
0330 T	150,000	2.5	1.6
0425 R	162,000	2.4	2.4
0600 T	300,000	3.0	*
0615 R	245,000	2.0	2.0
0870 R	328,000	2.6	2.2
1100 R	470,000	2.5	2.1
1500 R	670,000	2.7	2.2
2300 R	1,000,000	2.2	1.9
2800 R	1,300,000	*	*
3400 R	1,500,000	*	*
4600 R	2,050,000	*	*
5500 R	2,675,000	*	*
7000 R	3,300,000	*	*

^{*} on request

Determination of Bearing Life L_{10h}

$$L_{\rm 10h} = \, (T_{\rm 2\;Dauer} \, \, / \, \, T_{Lh})^{10/3} \, \, \, x \, (n_{Lh} \, \, / \, \, n_2) \, \, \, x \, 10,\!000 \; h$$

L_{10h} = Nominal bearing life in h

 $T_{2 \, \text{Dauer}} = \text{Continuous}$ output torque of gearbox in Nm see page 7

 T_{Lh} = Operating torque for determination of bearing life in Nm

 n_{Lh} = Gearbox output speed for L_{10h} = 10,000 h in min⁻¹ see page 8

n₂ = Operating output speed of gearbox in Nm (speed of driven machine)

Additional Forces

If there are additional radial or axial forces acting on the input and/or output shaft, the shaft and bearing selection needs to be reviewed by your Rexroth partner.

The following information is required for this review:

- dimensioned drawings with force application points
- · specification of radial and/or axial forces
- · lever arm, in the event of circumferential forces

(see design data sheet REDULUS GMH / GME, page 19)

Review of Thermal Loads

Besides mechanical loads, thermal loads need to be checked as well

Additional cooling is required, if

$$P_T$$
 is $< P_{erf}$.

Additional cooling options:

- · Oil or water compartment on gearbox
- · Built-on or separate fan
- · Connected oil/air or oil/water cooler

Admissible thermal power limit P_T

$$P_T = P_{th} x f_W x f_A$$

Additional cooling is not required if:

$$P_T$$
 is $> P_{erf}$.

P_{erf} = required power of driven machine in kW

 P_T = admissible thermal power of gearbox in kW

 P_{th} = thermal limit rating in kW (see table on page 11)

 f_W = thermal factor (see table on page 10)

f_A = utilization factor (see table on page 10)

Thermal Factor fw

Relative Duty	Ambient Temperature							
per Hour in %	10°	20°	30°	40°	50°			
100	1.13	1.00	0.87	0.74	0.60			
80	1.20	1.07	0.92	0.79	0.64			
60	1.31	1.16	1.02	0.86	0.71			
40	1.53	1.35	1.18	1.01	0.82			
20	2.00	1.78	1.55	1.32	1.08			

Utilization Factor fa

İ	%	20	30	40	50	60	70	80	90	100
Ī	f₄	0.52	0.66	0.77	0.83	0.88	0.92	0.95	1.00	1.00

 $T_{\mbox{\scriptsize Betr}}$ = Operating torque of driven machine

T_{2 Dauer} = Continuous output torque of gearbox

Gearbox Design

Nominal Thermal Power Limit Pth in kW

Gearbox Size Type	Small Rooms				Location Large Rooms			Outdoors		
GMH / GME	Transmisson Stages									
	2-st	3-st	4-st	2-st	3-st	4-st	2-st	3-st	4-st	
0200 R	59	45	37	81	63	52	113	87	71	
0220 T	58	44		81	61		112	84		
0300 R	80	60	48	110	84	68	153	116	94	
0330 T	69	52		97	73		133	100		
0425 R	100	80	66	138	111	92	192	154	127	
0600 T	120			168			232			
0615 R	130	100	81	179	139	114	249	193	157	
0870 R	156	121	96	216	170	134	301	235	186	
1100 R	197	153	124	273	215	173	379	296	239	
1500 R	303	227	182	419	314	251	582	436	349	
2300 R	331	258	219	458	357	303	636	496	420	
2800 R	370	291	248	512	403	344	712	560	478	
3400 R	433	334	280	600	462	388	833	641	538	
4600 R	494			691			955			
5500 R	744			1030			1434			
7000 R	877			1228			1695			

The figures shown are average values. We will be pleased to check your selection in questionable cases.

Applicable to:

• Gearbox utilization: 90 - 100 % • Relative duty factor: ED = 100 %

• Ambient temperature: $T_u = 20^{\circ} \text{ C}$

• Max. oil temperature: t_{Öl max.} = 90° C

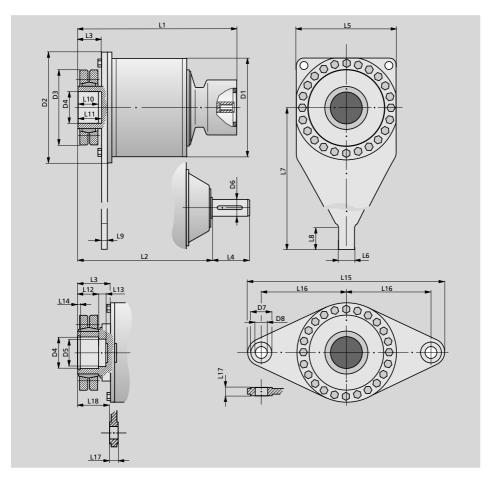
· Horizontal mounting position

Heat transmission into the foundation has been assumed to be 10 %.

For a gearbox with a direct-attached hydraulic motor, the thermal limit rating given in the table must be multiplied by a factor of 1.25 for two-stage types and 1.2 for threestage types.

(Assumed: appr. 60° C oil temperature in the hydraulic circuit)

2-st = 2-stage


3-st = 3-stage

4-st = 4-stage

Dimensions

Type:

Hollow Shaft with Shrink Disk, Coaxial Design

Strength of machine shaft

 $R_e \geq 500 \text{ N/mm}^2$

Surface roughness of machine shaft

 $R_a \leq 3.2 \text{ mm}$

Tolerance range for shaft diameter D₆

≤ Diameter 50 mm: k6 > Diameter 50 mm: m6 Keys to DIN 6885, sheet 1

Splined shaft profile to DIN 5480

Drawings and dimensions are not strictly binding. We reserve the right to make changes in line with technical progress.

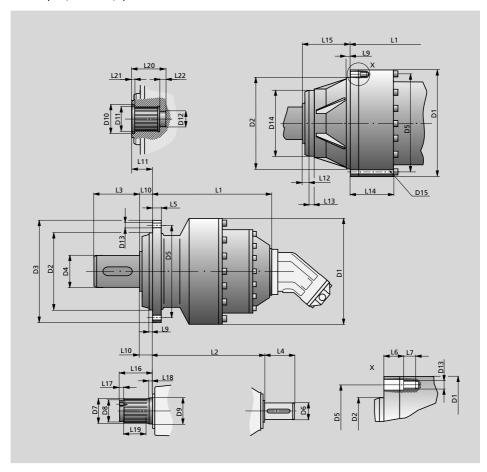
Missing dimensions on request.

Dimensions (in mm)

Weights and oil volumes see page 16 2-st = 2-stage, 3-st = 3-stage, 4-st = 4-stage

Gearbox Size	D1	D2	D3	D4	D5	2-st	D6 3-st	4-st	D7	D8	2-st	L1 3-st	4-st	2-st	L2 3-st	4-st	L3
Туре				H7	H7												
0200 R	600	600	430	200	180						790						243
0220 T	610	735	460	220								870.5					288.5
0300 R	705	705	460	220	200		60				885		1038,		1039		262.5
0330 T	660	785	460	220	200							951	5				
0425 R	790	790	570	260	240						1010	1151					315
0600 T	885																
0615 R	900																
0870 R	990	900	650	290	260							1516					320
1100 R	1100	990	660	310	280					130		1188					
1500 R	1140	1100	770	360	330		80		180			1698			1502		
2300 R	1270								*	160							
2800 R	1365	1170	850	400	360				*	100		1727					350
3400 R	1550								*								
4600 R	1670								*								
5500 R	1770								*								
7000 R	1970								*								

^{*} on request


Gearbox Size Type	2-st	L4 3-st	4-st	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18
0200 R				600	120	1050	100	30			158	117	38				
0220 T				735	120	1050	100	30	140	155							
0300 R		85		705	140	1355	110	30			176	128	40				
0330 T											176	128	40				
0425 R				790	160	1460	120	40			201	150	43				
0600 T																	
0615 R				900	170	1765	130	50			216	164	46				
0870 R											216	164	46				
1100 R		140					160	50			247	198	42	2040	900	70	352.5
1500 R				1170	240	2230					275	235	21	2350	1000		
2300 R									*								
2800 R									*								
3400 R									*								
4600 R									*								
5500 R									*								
7000 R									*								

^{*} on request

Dimensions

Type:

Flange-mounted Type, Coaxial Design Internal Spline, Solid Shaft, Splined Shaft Profile

Tolerance range for shaft diameter D₆

≤ Diameter 50 mm: k6 > Diameter 50 mm: m6

Keys to DIN 6885, sheet 1

Splined shaft profile to DIN 5480

Internal spline to DIN 5480

Drawings and dimensions are not strictly binding. We reserve the right to make changes in line with technical progress.

Missing dimensions on request.

Dimensions (in mm)

Weights and oil volumes see page 20 2-st = 2-stage, 3-st = 3-stage, 4-st = 4-stage

Gearbox Size	D1	D2	D3	D4	D5	2-st	D6 3-st 4-st	D7	D8	D9	D10	D11	D12	D13	D14	D15
Туре		h7		m6					k6	k6	H7		H7		h7	
0200 R	600	520			560	65					205	N 200x5x30x38x9H	180	30xM20x1.5		30xø22
0220 T	610	500	730		675						202	N 200x5x30x38x9H		30xø26		
0300 R	705	710	860		810	80					225	N 220x5x30x42x9H	200	36xø26		
0330 T								*								
0425 R								*								
0600 T								*								
0615 R								*								
0870 R								*								
1100 R								*								
1500 R								*								
2300 R								*								
2800 R								*								
3400 R								*								
4600 R								*								
5500 R								*								
7000 R								*								

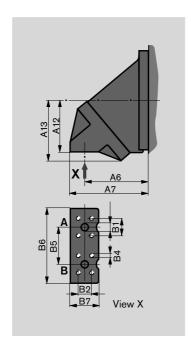
^{*} on request

Gearbox- Size Type	2-st	L1 3-st	4-st	2-st	L2 3-st	L3		L4 3-st 4	L5	L6	L7	L9 L10	L11	L12L13L14L15L16L17L18L19	L20 L21	L22
0200 R				670	685		140			35	38	10	195	260	200 50	30
0220 T		750							41			10	157.		120 20	
0300 R			774	861			105		48			15	5		230 50	30
0330 T												*	155			
0425 R												*				
0600 T												*				
0615 R												*				
0870 R												*				
1100 R												*				
1500 R												*				
2300 R												*				
2800 R												*				
3400 R												*				
4600 R												*				
5500 R												*				
7000 R												*				

^{*} on request

Weights and Oil Volumes

Gearbox		Shi	rink Disk ar	nd Torque	Arm					Flange-mo	unted Ty	pe	
Size Type	2-st	age	3-st	age	4-st	age		2-st	age	3-st	age	4-st	age
	Weight	Oil- Vol.	Weight	Oil- Vol.	Weight	Oil- Vol.		Weight	Oil- Vol.	Weight	Oil- Vol.	Weight	Oil- Vol.
	kg	- 1	kg	1	kg	- 1		kg	- 1	kg	- 1	kg	1
0200 R	900	20.0						760	22.0	800	17.0		
0220 T			1075	20.0							30.0		
0300 R	1150	35.0	1450	30.0	1250	25.0		1050	35.0	1000		1100	25.0
0330 T			1350*	30.0									
0425 R	2050	50.0	2150	48.0									
0600 T													
0615 R			3100	50.0									
0870 R			4100	90.0									
1100 R			5700	140.0									
1500 R			6500	250.0									
2300 R							_						
2800 R							_						
3400 R							-						
4600 R							-						
5500 R							-						
7000 R							-						

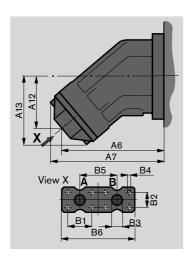

The oil volume indicated applies to horizontal mounting position and mid-gearbox oil level.

Gearbox weights do not include oil filling and motor.

Weight and oil volume values are approximate.

^{*} Design without torque arm

Corresponding Hydraulic Motors: Dimensions and Mass


Fixed-displacement Plug-in Motor A2FE, Series 61

Nominal	A6	A7	A12	A13	Mass (kg)
45	109	133	102	119	15
56	122	146	107	130	18
63	122	146	107	130	19
80	127	157	121	145	23
90	127	157	121	145	25
107	143	178	136	157	34
125	143	178	136	157	36
160	169	211	149	188	47
180	169	211	149	188	48
250 1)	*	230	*	179	*

Nomin	al B1	B2	ВЗ	B4	В5	В6	В7	A/B
45	50.8	23.8	19	M10x17	75	147	49	SAE 3/4"
56 6	50.8	23.8	19	M10x17	75	147	49	SAE 3/4"
80 90	57.2	27.8	25	M12x17	84	166	60	SAE 1"
107 12	66.7	31.8	32	M14x19	99	194	70	SAE 11/4"
160 180	66.7	31.8	32	M14x19	99	194	70	SAE 11/4"
250 1)	*	*	*	*	*	*	*	*

¹⁾ Series 60

For further technical data see RE 91008

Fixed-displacement Motor A2FM, Series 61

Nominal	A6	A7	A12	A13	Mass (kg)
107 125	225.5	252	120	159	32
160 180	252	294	134	188	32
200 1)	284	309	84	165	45
250 ²⁾	288	314	93	172	45

Nominal	В1	B2	В3	B4	B5	В6	A/B
107 125	66.7	31.8	32	M14x19	99	194	SAE 1 1/4"
160 180	66.7	31.8	32	M14x19	99	194	SAE 1 1/4"
200 1)	66.7	31.8	32	M14x19	99	204	SAE 1 1/4"
250 ²⁾	66.7	31.8	32	M14x19	100	210	SAE 1 1/4"

¹⁾ Series 63

For further technical data see RE 91001

^{*} Dimensions not indicated are available upon request

²⁾ Series 60

Corresponding Hydraulic Motors: Dimensions and Mass

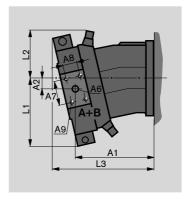
Variable-displacement Motor A6VE, Series 63

Nominal Size	A 1	A2	L1 *	L2 *	L3 *	Mass (kg)
55	123	24	151	111	179	26
80	130	28	167	116	190	34
107	137	30	175	122	208	45
160	171	34	200	154	245	64
250	204	44	248	188	302	90

^{*} Dimensions vary depending on displacement

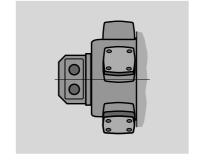
Nominal Size	A6	Α7	A8	А9	A/B
55	19	50.8	23.8	M10x17	SAE 3/4"
80	25	57.2	27.8	M12x17	SAE 1"
107	25	57.2	27.8	M12x17	SAE 1"
160	32	66.7	31.8	M14x19	SAE 11/4"
250	32	66.7	31.8	M14x19	SAE 11/4"

For further technical data see RE 91606

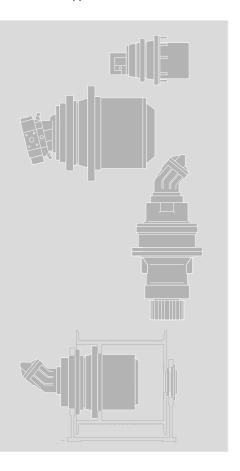

Variable-displacement Motor A6VM, Series 63

Nominal Size	A 1	A2	L1 *	L2 *	L3 *	Mass (kg)
107	220	30	175	122	290	47
160	254	34	197	137	329	64
200	267	36	209	143	345	80
250	287	44	248	188	383	90

^{*} Dimensions vary depending on displacement


Nominal Size	A6	A7	A8	А9	A/B	
107	25	57.2	27.8	M12x1.75	SAE 1"	
160	32	66.7	31.8	M12x1.75	SAE 1 1/4"	
200	32	66.7	31.8	M12x1.75	SAE 1 1/4"	
250	32	66.7	31.8	M12x1.75	SAE 1 1/4"	

For further technical data see RE 91604


Radial Piston Motor MR / MRE (on request)

For technical data see RE 15228

You wish to receive an offer? REDULUS GMH / GME				
To be able to quote, we require the		Person in charge:		
following data from you:		Company:		
Fax-No. +49 2302 877-148		Place:		
Please attach drawings, sketches, notes, etc.		Fax:		
•		Telephone:		
Technical Data		E-Mail:		
Driven machine / application				
Drive Unit				
Drive onit	 P	kW	bar	
Input speed	n,	KVV	min-1	
· ·	n ₂		min-1	
Output speed Transmission ratio	i			
	T _{2 Dauer}		Nm	
Output torque	T _{2max}		Nm	
Output torque, max.	ED			
Duty factor				
Number of starts in succession, starting impact				
Gearing calculation (e.g. DIN 3990 AGMA)				
Service factor	Lh10		h	₽
Bearing life	t.		°C	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Ambient temperatures	F _R		N	Fig. 1
External forces acting on input and	F.		N	9
output journals (radial, axial)	-			0°
Gear unit mounting position (Fig. 1)		H □n □o		270° 90° 180°
Mounting position of reaction arm (Fig. 2) in case of shaft-mounted gearboxes (looking towards output shaft-	ft)	0° 90° 180°	270°	Fig. 2
Additional forces on input and output shafts (Fig. 3)	F.	(kN) r _a (mm) F _R (kN) L (m	m)	with load applied centrically
Budgeted annual requirement				$r_a = 0$
Estimated implementation period				Fig. 3
Special application conditions				
Further customer-specific requirements				
Are there any legal regulations and/or standards that	t must b	ne observed?		
Yes No If yes, which:				
Remarks				
Date: Name:		De	ept.: _	

Products for Mobile Applications

Planetary Gear Units for Mobile Applications

Hydrostatic Travel Drives

- HYDROTRAC GFT for fixed- or variable-displacement motor output torques between 9 and 450 kNm Technical Documentation RE 77110
- HYDROTRAC GFT with integrated hydraulic two-speed motor
- HYDROTRAC GFT for use on large tracklaying vehicles output torques up to 3250 kNm Upon request

Hydrostatic Swing Drives

- MOBILEX GFB for fixed- or variable-displacement motors output torques between 4 and 115 kNm Technical Documentation RE 77201
- MOBILEX GFB with swash-plate motor

Hydrostatic Winch Drives

 MOBILEX GFT – W for fixed- or variable-displacement motors output torques between 14 and 275 kNm Technical Documentation RE 77502

Bosch Rexroth AG
Mannesmannstraße
58455 Witten, Germany
Phone +49 2302 877-0
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/gears

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

dured or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

REDULUS is a registered trademark.

Planetary Gears for Tunnel Boring Machines (TBM) REDULUS GMH/GME

RE 76118/06.12 1/4

Data Sheet

Continuous output torques from 70 to 150 kNm

Contents

Description, Gear Unit Types and Design, Hydraulic Motors, Electric Motors, Mounting Positions, Seals, Gaskets, Lubrication, Cooling, Other Notes

Dimensions and Technical Data

Features

Page

- · Compact, space-saving two- or three-stage planetary gearboxes
- · Gears suited for optional mounting positions
- · Variable input and output side configuration
- · Gears can be powered by Rexroth hydraulic motors, direct attachment of electric motors possible
- · Integrated water compartment for gear oil cooling
- · High-grade seals installed on input and output side
- · Integrated spring-loaded multiplate locking device

Description

REDULUS GMH/GME planetary gears for tunnel boring machines (TBM) transform the rotational speed and torque of hydraulic or electric motors into the relevant output speed and torque rates required for cutting shield driving. They thus produce the necessary input torque and optimum speed needed for the rotation of the cutter head of tunnel boring machines.

Gearbox Design Types

Please refer to relevant information on page 3 of the present data sheet

Hydraulic Motors

To make sure the hydraulic motor operates properly observe the instructions issued by the manufacturer.

Electric Motors (Direct Attachment)

This attachment method calls for an oil-tight motor design and the locating bearing of the motor bearing system is to be arranged on the side facing the gear.

Mounting Position

For proper and sufficient cooling and lubrication the gearboxes must be mounted in horizontal position.

Should other mounting positions be required this must expressly be specified in the project stage.

Gear Teeth

Spur and planetary gearwheels are straight-cut, case-hardened and ground as necessary. Annulus gears are quenched and tempered and nitrogen hardened. The gearteeth are fatigue resistant at nominal torque rates.

The design is based on established standard specifications such as, for instance, DIN 3990, ISO 6336 and AGMA.

Bearing System

Exclusively antifriction bearings of adequate size are used for gearwheels and shafts.

Seals and Gaskets

Included in the supply are radial seal rings on input and output shafts. They run on replaceable wear bushes.

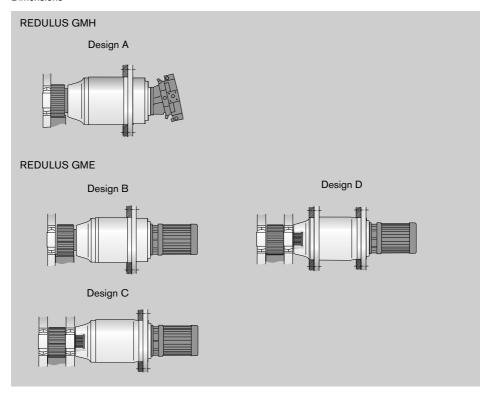
Lubrication

The gears have a splash lubrication system.

In the event of inclined or vertical mounting situations suitable measures are taken with respect to lubrication.

Cooling

Up to the thermal limit heat dissipation for cooling takes place via the gearbox casing. If this limit is exceeded additional water coolers (integrated water chamber) are used.

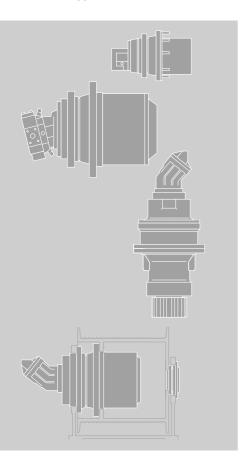

In case of inclined or vertical mounting positions the Factory is to be consulted.

Other Notes

Statutory requirements provide that all rotating components must be provided with touch guards.

All safety regulations prescribed for the relevant mounting locations must be observed. Commissioning and maintenance of the gear units to be in line with the instructions provided in our operating manual.

Dimensions



Technical Data

Type GMH / GME	Continuous Output Torque	Motor attachment	Design type	Number of gear stages	Ratio	D	L	Weight, appr.
					i			
	Nm					mm	mm	kg
GME 200 *	78,600	Electr. motor	С	2	28 - 36	740	805	1,150
GME 200 *	78,600	Electr. motor	D	2	47	740	805	1,150
GME 300 *	117,000	Electr. motor	С	2	28 - 47	820	900 / 820	1,500
GME 300 *	117,000	Electr. motor	D	3	87	740	89	1,500
GMH/GME 330	150,000	Hydr./electr. motor	A/B	3	113,9	780	1,141 / 1,170	1,500

^{*} alternative with brake

Products for Mobile Applications

Planetary Gear Units for Mobile Equipment

Hydrostatic Travel Drives

- HYDROTRAC GFT for fixed- or variable-displacement motors output torques between 9 and 450 kNm Data sheet RE 77110
- HYDROTRAC GFT 2160
 gear unit for crawler driven equipment
 output torque 42,5 kNm
 Data sheet RE 77125
- HYDROTRAC GFT-N for use in mining excavators and tracklaying cranes output torques between 600 and 1300 kNm Data sheet RE 77719
- HYDROTRAC GFT for use on large tracklaying vehicles output torques up to 3250 kNm On request

Hydrostatic Swing Drives

- MOBILEX GFB for fixed- or variable-displacement motors output torques between 4 and 115 kNm Data sheet RE 77201
- MOBILEX GFB 2160 gear unit for slewing of the superstructure output torque 14,5 kNm Data sheet RE 77208

Hydrostatic Winch Gears

 MOBILEX GFT–W for fixed- or variable-displacement motors output torques between 14 and 275 kNm Data sheet RE 77502

Bosch Rexroth AG
Mannesmannstraße
58455 Witten, Germany
Phone +49 2302 877-0
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/gears

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.

REDULUS is a registered trademark.

Printed in Germany

The Drive & Control Company

Bosch Rexroth AG

Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel. +49 7308 82-0 Fax +49 7308 7274 info.brm@boschrexroth.de www.boschrexroth.com

Your local contact person can be found at:

www.boschrexroth.com/addresses

Catalog No.: RE 90010-02/07.2012 Replaces: RE 90005-01/07.2009