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Abstract

Advances in Machine Learning (ML), coupled with increased availability of
huge amounts of data collected from diverse sources and improvements in

computing power, have led to a widespread adoption of ML-based solutions in
critical application scenarios. However, ML models intrinsically introduce new se-
curity vulnerabilities within the systems into which they are integrated, thereby
expanding their attack surface. The security of ML-based systems hinges on the
robustness of the ML model employed. By interfering with any of the phases of
the learning process, an adversary can manipulate data and prevent the model
from learning the correct correlations or mislead it into taking potentially harmful
actions. Adversarial ML is a recent research field that addresses two specific re-
search topics. One of them concerns the identification of security issues related to
the use of ML models, and the other concerns the design of defense mechanisms
to prevent or mitigate the detrimental effects of attacks.

In this dissertation, we investigate how to improve the resilience of ML models
against training-time attacks under black-box knowledge assumption on both the
attacker and the defender. The main contribution of this work is a novel defense
mechanism which combines ensemble models (an approach traditionally used only
for increasing the generalization capabilities of the model) and security risk anal-
ysis. Specifically, the results from the risk analysis in the input data space are
used to guide the partitioning of the training data via an unsupervised technique.
Then, we employ an ensemble of models, each trained on a different partition, and
combine their output based on a majority voting mechanism to obtain the final
prediction. Experiments are carried out on a publicly available dataset to assess
the effectiveness of the proposed method. This novel defence technique is comple-
mented by two other contributions, which respectively support using a Distributed
Ledger to make training data tampering less convenient for attackers, and using
a quantitative index to compute ML models’ performance degradation before and
after the deployment of the defense. Taken together, this set of techniques provides
a framework to improve the robustness of the ML lifecycle.
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In questioni di scienza,
l’autorità di un migliaio di persone
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di un singolo individuo.
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Chapter 1

Introduction

Machine Learning (ML) and data-driven technologies have proven to be ex-
tremely effective in understanding and predicting the behavior of real-world

systems, especially after the advent of Deep Learning. Although ML approaches
have shown and still do demonstrate remarkable performance and successful ap-
plications across a wide range of domains, vulnerabilities underlying learning al-
gorithms are considered an intrinsic limitation that could result in catastrophic
consequences when ML models are exposed to adversarial behavior. If multiple
ML models rely on each other for decision making, compromising a single model
might automatically trigger a cascading effect that leads all other models to make
wrong decisions as well. Moreover, if ML models receive input from the physical
world, e.g. from sensors, they can suffer from adversarial manipulation of phys-
ical objects. Therefore, security and integrity of ML models pose great concern,
particularly when ML-based components are integrated into sensitive areas such
as safety-critical infrastructures.

In the ML context, adversaries have the chance to attack the system at various
levels either by interfering with the training phase of the model or the inference
phase, after the model has been deployed. The focus of this dissertation is on the
so-called data poisoning attacks, which are considered very harmful as they target
what is unique to ML: training data. This type of attack occurs when adver-
saries are able to directly influence the learning process by maliciously modifying
a portion of the samples used to train the models themselves. A recent work by
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1 Introduction 2

Kumar et al. [2] found that industry practitioners rank data poisoning as one of
the most troubling threat against ML-based systems, claiming that they are not
adequately equipped to defend, detect and react to such ML attacks. This suggests
the need for new defensive mechanisms for ML-based systems that are generic and
applicable to different types of models while making minimal assumptions about
attackers.

Most existing defense techniques against training-time attacks focus on protect-
ing learning algorithms from specific types of attack. This corresponds to scenarios
where the defender is assumed to be aware of which malicious actions will be taken
against the training data set so as to react accordingly to defend it. However, in
practice the defender can hardly know in advance the kind of attack that will be
launched or the exact data points that will be targeted (excluding trivial cases
such as outliers). In light of the above considerations, in this dissertation we con-
sider a defender who has no knowledge about the attacker’s strategy. Therefore,
before implementing any protection mechanism, estimating which points can be
considered most at risk becomes essential. To this end, we propose the use of linear
classifiers to approximate the separating decision boundaries between classes and
assign a different risk index to points by using an iterated procedure that takes
into account their distance from the identified hyperplanes. The result is a risk
map the defender uses to adapt the defense mechanism based on his believes about
what the attacker may do.

We propose a novel defense strategy against poisoning attacks which is based
on ensemble methods. The purpose of classical ensemble learning is to improve
generalization capabilities in non-adversarial settings [3, 4, 5]. In this work, we
focus on using multiple learners in an ensemble system to improve the robustness
of ML models while achieving accurate performance. The intuitive explanation for
employing an ensemble-based methodology stems from the fact that an adversary
has to corrupt more than one sub-model in order to make the whole ensemble
useless. Our approach is based on partitioning the training data set into a number
of partitions, whereby the partition assignment for each data point is driven by an
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unsupervised technique (anti-clustering) which takes into account the aforemen-
tioned risk index. The main advantage of the approach is that our technique is
generic enough to be potentially used in different settings. It does not require the
model to be necessarily linear, thereby allowing deep networks to be used.

On the attack front, existing work mainly focuses on how to successively at-
tack popular ML algorithms by injecting small fractions of well-crafted adversarial
samples [6, 7, 8] into the training data set. These attack strategies usually rely on
worse-case analysis where the modifications introduced into the training set are
purposely designed to maximise the damage on the targeted learning algorithm.
However, they are strongly tied to the attacker being aware of the exact model to
attack or being able to exploit feedback from the learner to find optimal attack
instances [9, 10]. In this dissertation, we make a more restrictive assumption on
the adversary’s knowledge: we assume the attacker is not aware of the model he is
attacking, rather he only has information about (and can access to) the training
set used by the target model. Obviously, lacking useful information to use to max-
imize a certain objective function, the attacker will have to devise an alternative
strategy to decide which data points to attack.

We assume that, as in the case of the defender, the attacker uses a reference
linear model and then preferentially attacks (in a randomized fashion) the points of
the training set on the basis of their proximity to the separation surface. Therefore,
the attack is not optimal with respect to the target model, though it may be
optimal with respect to the attacker’s (lack of) knowledge.

1.1 Motivation and Research Questions

As Machine Learning is applied to increasingly sensitive tasks, it has become cru-
cial to be able to deal with noisy or potentially untrustworthy training data. Our
work is motivated by the emerging requirement that ML models need to be robust
to worst-case tampering with the data assets used in their training. Clearly, signifi-
cantly improving the ability of ML techniques to cope with attacks requires defense
mechanisms that do not merely rely on assumptions about attackers and are not
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Figure 1: ML lifecycle stages covered by the techniques proposed in the thesis
work (red frame).

strictly coupled to specific learning algorithms. This fosters their practicality and
has inherent advantages in dealing with adversarial transferability.

We wish to provide an actionable contribution to the study of robust ML,
from both a theoretical and empirical perspective. Our work spans a number of
topics, both theoretical and applied, dealing with alleviating the consequences of
learning in the presence of attacks. Our ambitious goal (though we will, of course,
fall short of this task) is to provide a co-ordinated panoply of techniques that
can be used within the ML models’ lifecycle to assess data tampering risks and
minimize tampering likelihood and severity. Our main thrust, however, will be in
devising theoretically sound techniques for alleviating training set data tampering,
showing that they transfer well to practice. In order to be applicable to a variety
of ML models, our techniques rely on linear reference models (namely Support
Vector Machine (SVM) and Nearest Convex-Hull (NCH) classifiers) to represent
the attacker’s (and the defender’s) knowledge about the ML-based systems we
intend to harden. Taking into consideration a typical ML lifecycle [11], the stages
we cover with the techniques proposed in this work are marked in red (Figure 1).
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Based on the general motivation given above, we came up with the following three
main research questions.

[RQ1]: How to model the attack (and defence) choices in a way compatible
to different levels of knowledge about the ML model to be attacked?

[RQ2]: How to devise a model-independent defence technique (targeting the
model or its data assets) to make attacks less convenient and effective?

[RQ3]: Which metric should be used to assess the level of degradation of
ML models before and after the application of defence techniques?

1.2 Main Contributions

Our main contribution toward the research questions [RQ1] and [RQ2] concerns
the model training phase. We introduce a data partitioning technique which aims
to mitigate the detrimental effect of corrupted data in the learning process by
creating diverse subsets of the training data to be fed to the base learners of an
ensemble model. The proposed defense technique also acts at the model deploy-
ment phase, as the model can be adapted according to the specific environment into
which it operates. With the additional components (representing possible exten-
sions of the technique proposed in the main part of the dissertation) we intervene
before and after training, i.e. in the data management and model testing stages.
In particular, we act at the level of data collection to reach a consensus on which
data should be considered trustworthy and can therefore be used during train-
ing. In this sense, our contribution is the proposal of a data compensation-based
scheme leveraging the security properties of Distributed Ledger-based systems to
support ML models’ training set selection. The approach requires those who want
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to contribute data to propose it as a ledger update in such a way that it is less
convenient for attackers to insert corrupted data. Regarding the post training
phase, our contribution lies in the definition of an index measuring the severity of
ML models’ degradation against a golden standard held-out dataset. The degra-
dation index is expressed as a function of the deformation of the convex hulls of
the classes calculated on the held-out dataset. Its calculation can be helpful in de-
ciding whether re-training is needed [RQ3]. The two auxiliary techniques provide
input consensus and a posteriori control, respectively. The overall objective of the
three proposed solutions, either used individually or in combination, is to deliver
a comprehensive methodology to strengthen the security of practical ML-based
systems against adversarial attacks.

1.3 Experimental Design

The thesis contains two distinct, though related, experiments. The first experi-
ment deals with the effectiveness of the proposed ML architecture in delivering
accuracy (and certified accuracy) in the presence of attacks. The second experi-
ment concerns the capability of our proposed ML index to be used as a predictor of
accuracy changes. We have selected two reference benchmarks widely used in the
literature, namely the Modified National Institute of Standards and Technology
(MNIST) [12] and the Belgium Traffic Sign Classification (BTSC) [13] datasets:

⋄ MNIST is a large dataset of labeled handwritten digits that is commonly
used for training various image processing systems. It contains black and
white images, normalized to fit into a 28x28 pixel bounding box and anti-
aliased to introduce grayscale levels. MNIST was created by extending and
“re-mixing” the samples from the original NIST’s training dataset.

⋄ The BTSC dataset is extracted from the larger BelgiumTS and contains
cropped images around annotations for 62 different classes of traffic signs.
BTSC is split into a training part with 4591 images and a testing part with
2534 images. The split follows that of the original BelgiumTS recorded in
Belgium, in urban environments from Flanders region, by GeoAutomation.
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Both datasets are suitable for validating common tasks within the scope of com-
puter vision, a field that has also recently been extensively investigated to assess
the adversarial robustness of various deep neural network (DNN) architectures and
approaches [14, 15]. Notably, MNIST is one of the most commonly used dataset for
which finding adversarially robust models is still considered an open problem [16].
Adversarial attacks against DNN draw significant attention due to the widespread
use of such architectures in critical tasks. For instance, quick and accurate iden-
tification of traffic signs is a primary concern of autonomous driving systems and
partially automated vehicles [17, 18].

The rationale behind our benchmark selection lies in the different purposes of
the experimentations. The first experiment needed to reveal changes in accuracy
when training data items are tampered with. Therefore, data should contain sam-
ples sourced from different individuals (as MNIST handwritten samples do). The
second experiment needed to identify the points in the training set that can be used
to compute an held-out data set for evaluating and predicting accuracy changes.
For this reason, the data set should contain multiple takes of the same image, as
BTSC does (on average there are 3 images/annotations for each physically distinct
traffic sign).

1.4 Dissertation Outline

This dissertation is divided into two main parts. Part I contributes to answering
[RQ1] and [RQ2] by introducing the defence framework we propose to counter
poisoning attacks in scenarios where the attacker has no knowledge of the exact
model he is attacking, and, at the same time, the defender does not know the at-
tacker’s exact attack strategy. Part II discusses two research approaches aimed at
answering [RQ2] and [RQ3]. These approaches are intended as auxiliary, integra-
tive components of the overall approach proposed in Part I, and require additional
validation. In detail, the structure of the chapters is organized as follows.
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Part I: Risk-driven Ensemble Techniques for Secure Training

In Chapter 2, after brief introductory information on ML phases and paradigms,
we present an overview of the domain of adversarial ML, including the most signif-
icant types of defence approaches proposed in the literature against data poisoning
attacks along with the limitations of existing schemes.

In Chapter 3, we present the first component of our defence framework, i.e.,
a method for assessing the risk associated with ML training data which is based
on assigning a risk index to points in relation to their proximity to the separation
surfaces identified with a linear model (specifically, a SVM classifier). [RQ 1-2]

In Chapter 4, we describe the partitioning strategy we use to partition the
training data set via an unsupervised technique (anti-clustering) accounting for
the above risk index, and the ensemble construction that aggregates the sub-model
outputs using majority voting. [RQ 1-2]

In Chapter 5, we evaluate the effectiveness of our approach founded on the
symmetrical (lack of) information between the attacker and the defender; we as-
sume the attacker can corrupt a portion of the training set labels. [RQ 1]

Part II: Auxiliary Techniques

In Chapter 6, we introduce an index estimating the severity of ML model’s data
assets degradation which serves to monitor the performance of deployed models (a
posteriori), and which can be used to instantiate the parameters of the ensemble-
based technique (Part I) during re-training. [RQ 3]

In Chapter 7, we discuss the use of Distributed Ledger Technologies as a means
to foster the contribution of trustworthy data for use when training ML models,
proposing a Proof-of-Useful-Work based on the notion of reciprocity. [RQ 2]
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Lastly, Chapter 8 summarizes the contributions of this dissertation and presents
concluding remarks with discussions on potential directions for future work.

The following table shows a mapping between the research questions provided in
Section 1.1 and the thesis chapters.

RQ Chapter
1 3,4,5
2 3,4,7
3 6

1.5 Publications

Part of the research findings of this dissertation have been published or under
review for publication in the following journals and conferences.

⋄ Journals:

– (under review) Lara Mauri, Bruno Apolloni, and Ernesto Damiani.
An Anti-clustering Partition Strategy for Improving Robustness of En-
semble ML Classifiers. Submitted to Computers & Electrical Engineer-
ing, 2022 [Chapters 3-4-5]

– Lara Mauri and Ernesto Damiani. Estimating Degradation of Machine
Learning Data Assets. ACM Journal of Data and Information Quality
(JDIQ), 14(2):1–15, 2021 [Chapter 6]

⋄ Conferences:

– Lara Mauri, Ernesto Damiani, and Stelvio Cimato. Be your Neigh-
bor’s Miner: Building Trust in Ledger Content via Reciprocally Useful
Work. In 2020 IEEE 13th International Conference on Cloud Comput-
ing (CLOUD), pages 53–62, 2020 [Chapter 7]
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Risk-driven Ensemble Techniques
for Secure Training
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Chapter 2

Background and Literature
Review

This chapter presents the background of our research, reviews relevant work in
the area of secure learning, and identify the limitations and gaps in the literature.
First, we briefly introduce the ML lifecycle and some basic learning paradigms.
Then, we present the security vulnerabilities of ML-based systems at different stages
of learning. Lastly, we review prior work in the area of adversarial learning, de-
scribing existing training-time attack and defense strategies as well as the main
shortcomings we identified in such approaches.

2.1 Preliminary Concepts

2.1.1 The Machine Learning Lifecycle

The notion of ML lifecycle relates to the steps organizations follow to develop
an ML model and integrate it into a fully-fledged system. As Figure 2 shows,

the process employed to produce and use ML models typically consists of a series of
independent stages that are performed in an iterative fashion. Below we describe
the range of activities encountered within each stage.

The preliminary step in an ML project is to reach a clear understanding of the
business context, defining the business goals to be achieved along with the data

11
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Figure 2: A typical machine learning lifecycle.

needed to achieve them. Obviously, the entire process is backed by system-level
requirements from which derive the operating constraints for the ML model.

Data Management is the first actual phase of the process, and includes the fol-
lowing set of data curation operations. The data ingestion activity is responsible
for the collection of all the data needed to achieve the business goal. Ingested data
are usually arranged as multidimensional data points (also called data vectors).
The second data management activity, data exploration, inspects and displays
data through plots or charts. Pre-processing is concerned with creating a consis-
tent dataset suitable for training, testing and evaluation. Several techniques are
employed to clean, wrangle, and curate the data so as to convert it into the right
format, remove noise, and anonymize it as needed. Feature selection reduces the
number of dimensions composing each data vector in order to obtain a reduced
dataset that better represents the underlying problem.

The core phase in the ML model development process is Model Training, which
deals with selecting the ML model structure and learning the internal model pa-
rameters from the data. Depending on the nature of the available data and the
business goal, different ML techniques can be employed (which will be discussed
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in more detail in Section 2.1.2). In this thesis, our focus is on supervised learning
scenarios. In the training process of a supervised ML-based system, the learning
algorithm generates by trial-and-error an ML model that works well (i.e. deliv-
ers the expected output) on a baseline dataset for which the desired output is
known. Essentially, training is done by computing the error made by the model
on the training set data and using it to adjust the model’s internal parameters to
minimize the error. The achieved error reduction is continuously verified during
training by feeding the ML model with some data put aside for testing. At this
stage, it is critical that the training set is of high quality and trustworthy to avoid
inaccuracies or inconsistencies in the data. While learning sets the values of the
internal parameters of ML models, the so-called hyper-parameters, which control
how the training is conducted (e.g., how the error is used to modify the internal
parameters), are set separately during model tuning.

While being tuned, the ML model is also validated to determine whether
it works properly when fed with data collected independently from the original
dataset. The Model Testing phase includes all the activities that provide evidence
of the model’s ability to generalise to data not seen during training.

The transition from model development to production is handled by the Model
Deployment phase. The trained/validated ML model is integrated into a pro-
duction environment, where it can make practical decisions based on the data
presented to it. Since the production data landscape may change over time, in-
production ML models require continuous monitoring.

The Model Maintenance phase serves precisely to monitor the ML model. It
feeds into earlier stages of the ML lifecycle to allow the model to be recalibrated
and retrained as needed.

2.1.2 Learning Paradigms

Learning paradigms pertain to the possible scenarios under which ML-based sys-
tems can learn when data is fed to them. These paradigms differ primarily based
on the type of the training data available to the learner and the way it is received,
as well as on the nature of the test data used to evaluate the learning algorithm.
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Other parameters for further differentiating learning approaches relate to whether
learners are active or passive, and whether an online or batch (offline) learning
strategy is applied. Based on the degree of interaction between the learner and
the environment, three major learning paradigms arise:

⋄ Supervised learning: In a supervised scenario, the training set consists of
pairs of input and desired output variables (usually in the form of labels),
and the goal is to learn a mapping function from the input to the output
by the learning algorithm. Supervised learning problems can be further
divided into two distinct groups depending on whether the output domain
is categorical (classification problem) or cardinal (regression problem).

⋄ Unsupervised learning: In an unsupervised scenario, the training set consists
solely of unlabelled input data and no corresponding output, and the goal
is to discover interesting properties/structures in the data. Unsupervised
learning problems can be further grouped into clustering and association
problems according to whether the aim is to infer intrinsic groupings in the
data or relationships (usually represented in form of rules) hidden in large
datasets.

⋄ Reinforcement learning: In this paradigm, learning is conducted in an ex-
ploratory fashion with some form of supervision. The learning algorithm
actively interacts with the environment and receives a feedback (reward)
whenever it performs an action (i.e., selects an output for a given observa-
tion) in an attempt to accomplish the specific goal for which it is rewarded
and to receive maximum reward at the same time.

2.2 Adversarial Machine Learning

One of the basic assumptions in learning theory is that training data accurately
represent the underlying phenomenon addressed by learning [19]. This assumption
is obviously violated when data is altered, either intentionally or unintentionally,
to the extent that the statistical distribution of training data differs from that
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of test data. The problem of diverging distributions, also referred to as dataset
shift, is commonly considered the root cause of performance degradation of trained
models [20]. In practical situations, potential differences in the two distributions
may be the result of natural drifts due to the effect of time, the presence of biased
samples or changes in trends and customer behavior – classical examples can be
found in recommender systems [21], natural language processing [22] and speech
recognition [23]. In this scenario, mechanisms for effectively handling natural
low-dimensional and geometrically simple distribution shifts have been reported
in the literature [24, 25]. By contrast, considerably more challenging are the
adversarial cases, where one has to deal with malicious data modifications. This is
due to the fact that ML techniques have not been originally conceived to cope with
cunning adversaries who, in principle, may undermine the whole system security by
exploiting the intrinsic vulnerabilities of ML technologies (e.g., learning algorithms
or generated models) through careful data manipulation. Moreover, the need
to periodically retrain ML models to adapt their decision-making capabilities to
changes gives adversaries additional room to interfere with the learning process.

A number of attack surface and attack vectors can be identified along a typical
ML lifecycle. On one hand, some of the potential vulnerabilities are already known
to exist in conventional IT systems and still remain part of the ML attack surface,
though perhaps they can be seen in a new light when examined through the ML
lens. On the other hand, this traditional attack surface expands along new axes
when considering the specific, multifaceted and dynamic nature of ML processes.
The resulting surface is therefore extremely complex, and mapping it requires
going through all the various steps of the ML lifecycle and explaining the different
security threats, a task that is inherently challenging due to the large amount of
vectors that an adversary can target. Regardless of the ML stage targeted by the
adversary, attacks against ML-based systems have negative impacts that generally
result in performance decrease, system misbehavior, and/or privacy breach.

Far from being a mere hypothesis, adversarial exploitation of ML vulnera-
bilities have become a reality in various applications. These include antivirus
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engines, autonomous bots, visual recognition and social networks, among oth-
ers [26, 15, 27, 28]. These attacks have motivated the investigation of ML security
properties, leading to the novel research field of adversarial machine learning,
which lies at the intersection of machine learning and computer security. In an
effort towards improving the robustness of ML models so that learning is success-
ful despite operating in adversarial settings, this emerging field aims to address
the following main open issues: (i) identifying potential weaknesses of ML-based
systems, (ii) devising the corresponding attacks and evaluating their impact on
the attacked system, and (iii) proposing countermeasures against the considered
attacks. An overview of the evolution of active research in this emerging area over
the last ten years can be found in [29], where the authors presented a historical
picture of the work related to the security of machine learning from a technical
perspective.

2.2.1 Threat Modeling

Defining an accurate threat model is a key requirement to proper risk analysis
of any system. A threat model is an integral component of any defence strat-
egy because it specifies the conditions under which attacks are carried out and
the defence is supposed to operate. Barreno et al. [30, 31] and Huang et al. [32]
were among the first to propose a security framework specific for the ML domain.
The framework, along with its subsequent extensions by other authors [33, 34], is
intended to serve as a guidance for correctly identifying where and how an ML
model may be attacked by providing careful profiling of the adversary who wish
to subvert the system. In this pioneering work, the discussion was centered on
the particular characteristics of the affected application, i.e., intrusion detection
and spam filtering. More recent work focuses on the security properties of deep
learning algorithms in the computer vision and cybersecurity domains. For ex-
ample, Yuan et al. [35] proposed a taxonomy of attack approaches for generating
adversarial examples. Pitropakis et al. [36] further provided an extensive survey of
ML vulnerabilities and associated potential attack strategies, while Papernot [37]
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covered ML security and privacy through the lens of Saltzer and Schroeder’s princi-
ples [38]. The common denominator among these threat models is the abstraction
of the underlying system to characterize possible attack vectors along multiple
axes. Typically, a threefold approach is used based on the goals, capabilities and
knowledge of the attacker. In the following, we briefly characterize each of these
axes.

2.2.1.1 Adversarial Goals

The first axis, i.e., adversarial goals, relates to the type of security violation the
attacker may cause, and the specificity of the attack and error the adversary in-
tends to produce. As for the former aspect, following the classical CIA triad
(confidentiality, integrity, availability), the attacker is supposed to undermine the
functionality of the system under attack, or to deduce sensitive information about
it. More in detail, violating integrity implies performing malicious activities with-
out compromising normal system operation (e.g. evade a spam email detection
system via false negative). Typically, integrity is compromised when an adversary
is capable to manipulate model inputs so as to control model outputs. By contrast,
an availability violation interferes with normal operation and consists of prevent-
ing access to a resource or system functionality by legitimate users. Here, the goal
is to make the model inconsistent with respect to the target environment. By
violating privacy, an attacker gains unauthorized access to sensitive/confidential
information about the system, such as parameters or data used to train the model.
This aspect is essentially linked to the need of preventing the exposure of sensi-
tive information in environments where users have different degrees of trust. As
for attack specificity, an attacker may launch either targeted attacks focusing on
specific samples or indiscriminate attacks focusing on a broad range of samples. In
the context of ML classifier systems, error specificity is a characteristic introduced
in [34] to disambiguate the notion of misclassification in multiclass problems. An
attacker may aim to mislead the system to incorrectly classify an input sample
into a specific class (error-specific attacks) or into any of the classes except the
correct class (error-generic attacks).
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2.2.1.2 Adversarial Capabilities

This second axis is defined based on the extent to which the adversary can influ-
ence the training data or input samples, or observe the output of a trained model,
and on the presence of data manipulation constraints. The attack influence can
be categorized as causative if the attacker has the ability to influence the learn-
ing process by manipulating the training data, or exploratory if the attacker can
only manipulate input samples during the prediction phase, possibly observing the
model’s decisions on these carefully crafted instances. Thus, exploratory attacks
aim to cause the model to produce erroneous output, rather than to tamper with
it. The potential presence of constraints for data manipulation by the attacker is
strongly related to the application domain, but in general, we can distinguish two
models of adversarial corruption: data insertion and data alteration. At one side,
we may consider an adversary with unlimited control over a small fraction of the
data. In this scenario, the attacker is restricted to alter only a limited amount
of data points, but is allowed to modify them arbitrarily. An example is when
the attacker crafts a small number of attack instances that he then inserts into
the dataset for training or evaluation. At the other side, we may assume that
the attacker can manipulate any of the data points, but with a limited degree of
alteration.

2.2.1.3 Adversarial Knowledge

Within the ML context, it is possible to identify several data and information
that are considered sensitive in view of possible attacks. These include training
data, learning algorithms and architecture, hyperparameters and weights, among
others. Formally, the attacker’s knowledge can be described in terms of a vector
θ = (D, X, f, w) consisting of four elements representing his level of access to the
different ML system components under attack: (i) the dataset used for training D;
(ii) the set of features X; (iii) the learning algorithm f , along with the objective
function optimized during training; (iv) the parameters of the ML algorithm w.
This representation enables the definition of different attack settings, ranging from
white-box attacks to black-box attacks, with varying degrees of black-box access.
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In the case of a white-box attack, the adversary has full knowledge of the target
system. This scenario is quite unrealistic, but it allows one to perform a worst-case
evaluation of ML system security, enabling the estimation of the upper bounds of
the performance degradation that is likely to be incurred by the system under
attack. In the more challenging black-box setting, the adversary has no or limited
knowledge about the targeted ML system. Typically, in limited knowledge attacks
with surrogate data, the attacker is assumed to know the feature set X, the model
architecture and the learning algorithms f , but not the training data D and the
trained parameters w. The attacker may be able to collect a surrogate training
set from a similar source having analogous characteristics and data distribution
and then estimate the parameters of f by leveraging the surrogate dataset. On
the contrary, limited knowledge attacks with surrogate models imply that the at-
tacker can use a surrogate model (which may differ from the targeted model) to
craft the attack points, since he knows D and X, but not the learning algorithm f .

In addition to the three dimensions just mentioned, another aspect to consider is
the strategy adopted by the attacker, which in many cases can be formulated as an
optimization problem taking into account the various aspects of the threat model.

2.2.2 Training Under Adversarial Conditions

Attacks against ML-based systems exist at every stage of the ML lifecycle, and
an attack launched at a certain stage of the learning process has the potential to
cause cascading effects at subsequent phases. Current research focuses primarily on
offensive approaches targeting the two core phases of learning, namely the model
training and testing phases. In a test-time attack, also known as evasion attack,
the goal is to evade the trained ML model by elaborately modifying clean target
instances. Conversely, the so called poisoning attack, takes place either during the
initial training phase of the ML model or during the re-training phase, and the goal
is to adversely affect the performance of an ML-based system by inserting, editing
or removing points into the training set. Below we examine poisoning attacks in
more detail, as they are the focus of this thesis.
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Poisoning is considered one of the most effective attacks against an ML-based
system [31, 39]. In this type of attack, the attacker is supposed to have some
control over a portion of the training data used by the learning algorithm, and the
consequences of the attack depend on the attacker’s ability to access/manipulate
the training data. The obvious reason for assuming that the attacker is able to
modify only a moderate fraction of the data is that an unbounded adversary can
cause the leaner to learn any arbitrary function. Thus, in general, all attack sce-
narios bound the effort required by the adversary to achieve his desired goal [40].
The high-level objective of poisoning, which is categorized as a causative attack,
is to influence or corrupt the ML model itself, resulting in a degradation of the
system’s performance that may in turn facilitate subsequent system evasion [41].
Specifically, an attacker may launch either an error-generic poisoning attack or an
error-specific attack. In the former case, the objective is to induce the ML model
to produce a massive number of false outputs such that the learning process is
subverted and eventually the system becomes unusable for end users. In the lat-
ter case, the attacker seeks to induce the ML model to produce specific kinds of
errors, such as a specific incorrect classification [42, 8]. Let us consider attacks
involving manipulation of training set labels. In these scenarios, the attackers
could randomly draw new labels for a part of the training pool or choose them to
cause maximum disruption. For example, in a label-flipping attack, the attacker
introduces label noise into the training set by modifying the labeling information
contained therein. Basically, the attacker selects the subset of the training data
for which he wants to change the label either randomly or by following specific
criteria based on his aims. Biggio et al. [43] studied the effect of label noise in sup-
port vector machines, performing both random and adversarial label flipping, and
showed how model performance decreases when varying the percentage of flipping
performed. In the case of adversarial label flips, the adversary aims to find the
combination of flips maximizing the classification error on uncontaminated test
data, which corresponds to designing an optimal attack strategy. The main tech-
nical difficulty in devising a poisoning attack is the computation of the poisoning
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samples. Several studies have shown that with such a strategy, even a small per-
centage of carefully poisoned data can dramatically decrease the performance of
the ML model under attack [44, 10, 45]. Another attack is manipulating feature
values in the training set — either by perturbing them to shift the classification
boundary or by adding an invisible watermark that can later be used to “back-
door” into the model. The most common defense technique against these attacks
is outlier detection. Unfortunately, attackers can generate poisoning points that
are very similar to the true data distribution (called inliers) but that still success-
fully mislead the model. An interesting approach are micro-model protocols [46]
that partition the training set horizontally and train classifiers on non-overlapping
epochs (called micro-models), evaluated on the entire training set. By taking ma-
jority voting of the micro-models, training data items can be classified as either
safe or suspicious. Intuition suggests that there is safety in numbers, as attackers
could only affect a few micro-models at a time. Another common type of defense
is to analyze a priori the impact of newly added training data on the model’s
accuracy. The idea is that if an input is poisonous, it will destroy the model’s
accuracy on the test set. This can be spotted by doing a sandbox execution of the
model (or of a simplified version of it) with the new sample before adding it to the
production training pool. Below we discuss common defenses in more detail.

2.3 Defence Strategies Against Poisoning Attacks

As mentioned, adversarial ML research has two main branches. One branch ac-
tively designs ingenious attacks to defeat ML-based systems. The other branch
studies ways to enhance their capability in coping with such attacks. Recently,
there hes been a flurry of activity focused on designing techniques to improve the
robustness of ML-based systems against training-time attacks [47, 48, 49, 50, 51].
Previous work has investigated both empirical and theoretical defence strategies
for mitigating data poisoning attacks at different stages of the ML lifecycle. Many
of the proposed techniques have limitations in terms of applicability, type of at-
tack they protect against, effect on accuracy, and increase in training complexity.
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In the following, we provide an overview of the most significant approaches pro-
posed in the literature. Our defense technique, which will be detailed in Chapter
4, falls into the model enhancement category, and in particular is based on model
composition.

2.3.1 Detection-based Schemes

A common defence strategy against poisoning attacks involves the use of detection-
based schemes that seek to identify possible directions along which poisoned data
deviate from their uncorrupted counterparts, and then sanitize or exclude the
suspicious points (outliers) from the final dataset used for training.

2.3.1.1 Data Sanitization

The Reject on Negative Impact (RONI) defense [52], which was proposed against
spam filter poisoning attacks, assesses the impact of each individual suspicious in-
stance on training and discards points exhibiting a significant negative effect on the
model’s performance. Albeit this technique has been proven effective against some
specific types of poisoning attacks, its main limitation is the high run-time over-
head due to frequent retraining and the occurrence of overfitting in cases where
the dataset is small compared to the number of features. In [53], Paudice et
al. proposed a countermeasure against optimal poisoning attacks based on pre-
filtering with outlier detection for linear classifier, and showed that their method
can mitigate the effect of the attacks even when the data is scarce compared to
the number of features. In another work by the same authors [45], a sanitization-
based mechanism was presented to identify and re-label training points suspected
of being malicious. Their approach makes use of k-Nearest-Neighbours (kNN) to
detect samples having a negative impact on the performance of ML classifiers and
assigns to each data point the most common label among its k nearest neighbours
in feature space. Similarly, in [54], the authors proposed a defence strategy that
filters out outliers by solving an optimization problem. This proposal requires pro-
viding as a parameter a value corresponding to the estimated percentage of points
that are expected to be outliers. However, this task is very challenging, and in
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the case where this estimate does not match actual conditions, the performance
of the algorithm decreases dramatically, especially when the system is not under
attack. Other interesting works that have addressed the problem of removing con-
taminative effect due to poisoning include [46] and [55]. Defenses based on point
filtering are easy to deploy as they consist of an additional pre-processing step
to be added to the learning procedure, but necessitate extensive hyperparameter
tuning. Moreover, some recent research has questioned whether data sanitization
defenses are vulnerable to attackers who explicitly seek to evade anomaly detec-
tion [56, 57]. The affirmative answer was given by Koh et al. [58], who showed that
certain outlier-based defences are effectively vulnerable to adaptive attackers who
explicitly attempt to evade anomaly detection. In particular, they showed how to
bypass common data sanitization techniques such as anomaly detectors based on
nearest neighbors, training loss, and singular-value decomposition.

2.3.1.2 Robust Estimation

The idea behind pre-filtering solutions draws on the notion of robust statistics,
a line of work which has been studying the fundamental problem of learning in
the presence of outliers since the 1960s [59, 60, 61]. The main objective of robust
learning is to harden ML models by improving their generalization capability. Re-
cently, the problem has received considerable attention due to the pressing need
to design modern ML models for high-dimensional datasets that are robust and
computationally efficient [62, 63, 64]. For instance, Steinhardt et al. [65] intro-
duced a simple criterion –resilience– which, if satisfied, ensures that properties of
a dataset, such as its mean, can be robustly estimated even in the presence of a
large fraction of arbitrary extra samples. Some work such as [62] analyzed mean
and covariance estimation, while other focused on estimating Gaussian and binary
product distributions, obtaining dimension-independent errors, and in many cases
errors almost linearly dependent on the fraction of adversarially corrupted sam-
ples [66]. A number of additional results have also been published. An overview of
the recent developments on algorithmic aspects of high dimensional robust statis-
tics can be found in [67].
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2.3.2 Model Enhancement Mechanisms

Unlike the schemes described above, model enhancement defences do not aim to
remove the points that are supposed to have been attacked (by adopting pre-
filtering), rather they act directly during the training phase and aim to prevent
poisoning from taking effect by leveraging various methods.

2.3.2.1 Adversarial Poisoning

Borgnia et al. [68, 69] investigated the effects of multiple augmentation schemes
on data poisoning attacks and demonstrated that strong data augmentations such
as mixup [70] and cutout [71] can desensitize models to triggers and data pertur-
bations. The principle is that by modifying model input via input pre-processing
techniques, backdoor trigger recognition is prevented. These strategies can be
viewed as special cases of adversarial poisoning, where the adversarial training
technique (one of the primary defenses against adversarial example [72]) is adapted
to defend against training-time attacks [73, 74]. In its original form, adversarial
training involves augmenting the training data with on-the-fly crafted adversarial
examples so as to desensitize neural networks (NN) to test-time adversarial per-
turbations [75]. In adversarial poisoning, training data are modified in a similar
fashion, but for the purpose of desensitizing NNs to the specific types of pertur-
bations caused by data poisoning [76]. Some work has also explored the in-depth
interaction of adversarial training with noisy labels, focusing on the smoothing
effects of adversarial training under label noise [77]. Albeit promising, research in
this regard is in its infancy. At present, these techniques are heuristic approaches
that lack formal guarantees on convergence and robustness properties, and thus
deserve further investigation.

2.3.2.2 Model Composition

Another line of work relates to the use of ensemble learning to reduce the influ-
ence of poisoning samples via partitioning the training set. Most studies focused
on the popular Bootstrap aggregation (or bagging) framework [78], arguing that, in
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addition to accuracy, bagging can also improve robustness in adversarial settings.
In their preliminary work, Biggio et al. [79] described an empirical defence based
on such framework. They experimentally investigated whether bagging ensembles
can be exploited to build robust classifiers against poisoning attacks, assessing the
effectiveness of the approach on a spam filter and on a web-based intrusion detec-
tion system. Similarly, other work [80] investigated the use of bagging and random
subspace methods [81] for constructing robust systems of multiple classifiers, ex-
tending the preliminary results presented in [82, 83]. Apart from these studies
that investigate the potential benefits of classical model composition schemes for
defensive purposes, research proposing the use of ensemble models with new data
partitioning schemes that explicitly account for poisoning attacks is rather limited.
Many of the existing studies actually target inference-time attacks [84, 85, 86, 87].
With regard to training-time attacks, one approach that is emerging in the re-
search community is based on the conjunction of ensembles and certifiable robust-
ness of ML models [88, 89, 90] for developing provably robust defences against
data poisoning [91, 88, 92, 93]. Specifically, some works focused on distributional
robustness guarantees [94, 62, 95], while others focused on pointwise certified ro-
bustness [96, 97, 98]. Jia et al. [99] leveraged the intrinsic majority vote mechanism
of kNN and rNN (radius Nearest Neighbors [100]) and showed they provide de-
terministic certified accuracy against both data poisoning and backdoor attacks.
Levine and Feizi [97] proposed a certifiable ensemble-based method where the par-
titioning of the training set into disjoint subsets is deterministically performed
via a hash function. However, there is no consensus on the metrics to be used,
although some quantitative metrics of model robustness in face of label-flipping
attacks have been proposed [101].

2.4 Limitations and Gaps

For the purpose of determining intervention points on which to focus our research
work, we have performed a gap analysis along the lines of [102]. Specifically, we
have identified three shortcomings in the techniques proposed in the literature
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(reviewed in the previous Section), which are as follows:

⋄ Difficult applicability in case of limited access to the ML model to be de-
fended [75, 54, 29]. Most existing defense schemes are model-dependent as
they require some degree of knowledge of the underlying ML model details,
and thus cannot be applied blindly to all models. By contrast, approaches
that treat the protected model as a black box are inherently more robust to
the transferability of attacks.

⋄ Tenuous connections to basic cyber-security concepts (especially threat, vul-
nerability, and risk) [47, 51]. The risk definition from statistical decision
theory need to be tailored to the ML context throughout multiple domain
of applications. Assessing the risk of compromise associated with specific
input data enables well-founded decisions about which defense strategy to
adopt and which data to consider most sensitive towards building a secure
ML model.

⋄ Lack of a shared quantitative definition of the severity of attacks and the
effectiveness of defense measures [103, 48, 104, 105]. No standardized or
officially approved risk indicators and attack magnitude indices are avail-
able that can guide ML practitioners in estimating ML models’ performance
degradation before and after the deployment of a defense mechanism.



Chapter 3

Risk Analysis of ML Data Assets

This chapter outlines a method for assessing the risk associated with ML training
data which is based on assigning a risk index to points in relation to their prox-
imity to the separation surfaces identified with a linear model (specifically, a SVM
classifier).

3.1 Risk Estimation Techniques

In security, the assessment of risks is the first step towards the adoption of appro-
priate security measures for the protection of assets. Traditionally, assessing

the risk of an attack to a given asset requires two estimations: the one of the
attack’s severity, based on the available information on the affected assets’ value,
and the one of the attack’s likelihood based on available information about the
threats and the asset’s vulnerabilities. The product of severity and likelihood is
used as the reference model for risk quantification [106], writing R = S×L, where
L is a measure of likelihood (for example, a probability or a possibility value [107])
and S is a severity value in monetary units.

Some studies [108] introduced the concept of risk index. The risk index (or risk
degree) is a joint quantification of severity and likelihood that can be quantized into
discrete levels, e.g., very high risk, high risk, medium risk, low risk, and very low
risk, or computed as a continuous risk score. In terms of the data tampering risk,
computing the risk score of individual data points with respect to data tampering

27
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can be modeled as learning a function on the data space, and is itself suitable
for the application of ML models. A wide range of methods have been proposed
to address learning risk from examples [109], most of them assuming a linear
regression model [108] where the risk score varies linearly with the distance in the
data space. However, research has shown that for many types of data a linear
approach to risk scoring is not appropriate [110], as close data points may have
different severity or likelihood of attacks.

3.2 A Risk Score for Training Data

In terms of data tampering risk in the training and deployment of ML models, a
complete asset model identifying ML data assets that can be subject to threats
has been released by the European Network and Information Security Agency
(ENISA) [11, 111]. When the specific data asset under attack is the training set,
one can follow the R = S×L risk model. In principle, the data tampering attack’s
severity can be linked to model’s performance degradation after attack. This would
however require consensus on the performance degradation metrics to use (see
Section 2.3.2.2) and on the procedure to be used for computing it. Research is
ongoing on extracting “gold standard” data sets from input data spaces, providing
held-out benchmarks suitable for measuring ML performance degradation (see
Chapter 6). However, such held-out data sets are forcibly problem-dependent.

In terms of the likelihood estimation, some work has been done on heuristics
for estimating the likelihood of attacks to ML assets (including data tampering)
on the basis of available information on the model deployment architecture [112].
This type of likelihood estimate applies to an entire data asset rather than to
individual data items, and is not yet suitable for the risk assessment concerning
individual data points.

In order to escape the pitfall of linear risk models [110] (and enable fine-
granularity risk assessment), we model the training data risk index as a non-linear
function of the features, enabling a greater variance of risk index values across
the training set. Low-degree polynomials with decreasing coefficients (in the form
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a + bx + cx2) have been used since long in risk modelling [113], as they support
capturing additional information through coefficients. The details of the compu-
tation of our risk index and of its role in our procedure are given in the next Section.

Figure 3: A simplified 2D representation of risk-related color assignment according
to Algorithm 1.

3.3 Calculating Our Risk Index

A key statement of ML research is that not all points in a training set have the
same relevance. This is stemmed, for instance, by the Vapnik-Chervonenkis dimen-
sion [114] and the analogous Sentry points notion [115], where only a relatively
small number of items of a training set are responsible for the Boolean function
being learned with no tolerance on errors (consistent function). In particular, for
the separating hyperplanes considered in this thesis, this number is less or equal
to the dimensionality of the points plus 1.

The general idea is to relate the risk index of the training points to their be-
longing or not to the set of the support vectors identified using a Support Vector
Machine (SVM) algorithm. We consider more “relevant” the points not far from
the hyperplane, with proper graduation (corresponding to the colors of the map
shown in Figure 3). To this end, we apply an iterated process that allows us
to identify the support vectors of the hyperplane separating classes according to
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a progressive pruning of the points supporting the separator in a previous itera-
tion (see the pseudo-code in Algorithm 1). In practice, we define a distance scale
separator through a succession of SVM classifications. In the first iteration, the
support vectors are assigned the maximal suitability. Then, we obtain a second
set of risky points (whose risk index has a lower value than the previous one) by
iterating the SVM over the remaining set of points after removing the previously
identified support vectors, and so on. Figure 4 illustrates the implementation of
the algorithm in a simple two-dimensional space.

Algorithm 1 Generating color graduation
Input: Original training set D = {(xi, yi)}n

i=1, linear separator L, color set c
Output: Color map xc

1: D′ ← D
2: j ← 1
3: xc ← ∅
4: tmax ← |c| − 1
5: while j < tmax do
6: Identify support vectors svj of Lj separating data points in D′

7: Associate color cj to svj

8: Add {svj, cj} to xc
9: Remove svj from D′

10: j ← j + 1
11: end while
12: ∀x ∈ D′:
13: Associate color c0 to x
14: Add {x, c0} to xc
15: return xc

In this way we characterize points which are close to the joint boundary of the
classes, the mislabeling of which may induce severe errors in the learning procedure.
In principle, points more internal to the classes are useless per se; their addition
has the sole role of increasing the number of points considered.

As will be illustrated in Chapter 4, the calculation of this risk index in the
adversarial context is performed by both the defender and the attacker, but the
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use they will make of it is different. Furthermore, we assume that both the de-
fender and the attacker do not know the attack strategy adopted by the attacker
and the learning algorithm employed by the defender, respectively. This obviously
introduces a degree of uncertainty about the impact of the indices themselves. In
summary, it is necessary to consider the following two aspects: 1) the attacker
does not know the separator that will be exactly used by the defender and vice
versa, 2) when two sets are not linearly separable, many more points than just the
support vectors must be considered to determine this separation hyperplane.

Figure 4: Assigning different gradations of risk-related colors based on proximity
to separator hyperplanes.

In turn, the bordering condition depends on the function we adopt to separate
the classes. Thus, for instance a point that is far from a bordering hyperplane may
result in being close to another bordering surface. Since we assume that neither
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the attacker nor the defender knows the true classifier surface, adopting separa-
tion hyperplanes according to the Occam’s razor principle has a twofold advantage:
we do not introduce arbitrary features into the classifier, and we rely on a simple
and robust separator, which normally fosters learning generalization to the test set.

The next Section introduces the problem definition, along with general information
about the attack strategy and the proposed defence approach that will be detailed
in Chapter 4, and their link with the use of the reference linear model and the risk
indices.

3.4 Problem Definition and Solution Outline

Consistent with the vast majority of existing literature in poisoning attacks, here
we consider binary linear classification problems. Furthermore, we assume the
attacker is able to manipulate the labels of some training data, i.e., he can per-
form label-flipping poisoning attacks. In principle, the game between the defender
looking for a classification setting that is more robust against label flips and the at-
tacker looking for a flipping strategy that mostly degrades the performance of the
classifier under constraints on the flipping budget can be formalized as a bi-level
optimization problem [116]

max
z

∑︂
(x,y)∈T

V (y, fS′(x), (1)

s.t.fS′ ∈ arg min
f

n∑︂
i=1

V (y, fS′(xi)) + γ∥f∥2, (2)

n∑︂
i=1

cizi ≤ C, zi ∈ {0, 1}, (3)

where f is the classifier and V is the related loss function which depends on the
difference between a target value y and the classifier output f(x). f is trained
on a training set S = {xi, yi}n

i=1, which is corrupted by the attacker into S =
{xi, y′

i}n
i=1. The variable z denotes whether a label has been flipped (→ zi = 1)

or not (→ zi = 0); each flip has a cost ci, and the total flipping cost threshold is
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C. The attacker aims to maximize V with a proper setting of z, as in (1), under
the constraint (3); the defender aims to learn a fS which minimizes V , as in (2).
However, this optimization problem proves very difficult to solve in general [117],
depending on the complexity of f and on the discreteness of y. A rich literature
proposes various approaches to address this issue, including the simplification of
f , typically by reverting it to linear functions formalized via SVMs [116, 118, 32,
119, 120, 34], and by smoothing the labels, either in terms of continuous variables
to be discretized [116], or in terms of the probabilities with which y takes on its
values [118], or by looking for greedy solutions, which identify the points to be
poisoned one at a time [6]. Unfortunately, the diversity of these techniques makes
comparison between them essentially based on numerical experiments whose run
times are relatively high. Also, extending the model from binary to multi-class
classification is not obvious. For these reasons, we devised an alternative attack-
defense framework that shows some benefits in terms of feasibility and efficiency.

Given the assumptions made about the attacker’s and defender’s knowledge,
the respective actions taken to solve the problem are as follows.

⋄ The attacker’s poisoning strategy leverages point classification through an
SVM classifier, using support vectors as candidate points to be flipped.

Rationale: As support vectors are the points which determine the position of
the hyperplane separating a pair of classes, either in the original space or in a
kernelized space, a simple live-out of one of them changes the position of the
separator, resulting in a misclassification of the training set or, at least, in
a decrease in the margin of one of its sides. Obviously, one may expect that
few points farther away from the separator may damage the classifier even
more. However, the more distant they are from the separator the more they
can be disabled by both the robustness of the classification algorithms being
employed and by sanitization algorithms. Correspondingly, points close to
the boundary may fly under the defender’s radar. Thus, the attacker may
be interested in flipping the labels of these points.
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⋄ The defender’s strategy takes advantages of ensemble model composition
(consisting of training different learner on disjoint subsets of the entire train-
ing set and merging their outputs according to a consensus algorithm), whose
strong theoretical foundation is widely appreciated in the literature [121].
Here we specialize the partitioning technique so as to make the individual
models diverse enough to maintain high accuracy and to be resilient to poi-
soning.

Rationale: If the attacker flips the label of a point with high risk index, this
will degrade the performance of only one sub-model. If another point, which
is close to the first one, is assigned to another partition, thus affecting a
different sub-model, we can expect two benefits: (i) the classification of the
latter point is not degraded by the label flip of the former, since it obeys
the second sub-model, (ii) the second sub-model is expected to correctly
classify the former point, contributing to a correct result in the majority
voting mechanism. Thus, our interest is to put into different partitions the
points that are close to each other in some feature space of interest, and this
is exactly the goal of the anti-clustering algorithm.



Chapter 4

Anti-clustering Partitioning and
Model Composition Against
Training-time Attacks

In this chapter, we present our novel defence framework against poisoning attacks,
describing the various components into which it is articulated along with the threat
model, which defines the information the adversary has at his disposal and the type
of attack he can perform. The key idea behind the proposed defense scheme is to
make an attack less effective through a data partitioning technique guided by the
risk analysis described in the previous chapter.

4.1 Adversarial Threat Model

In the following, we provide our set of assumptions about the influence the at-
tacker has on the data used by the learning algorithm and his level of knowledge

about the targeted ML model. Then, we provide a description of the strategy and
of the type of poisoning attack he can perform.

35
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4.1.1 Attacker’s Power

As discussed in Section 2.2.1, the attacker’s knowledge κ can be defined as a tuple
θ = (D, X, f, w), where D is the training set, X is the feature set, f is the learning
algorithm, and w are the parameters learned after training the ML model. Instead
of assuming the attacker has perfect knowledge about the targeted system, here
we consider a more realistic scenario where he launches his attack disposing of
limited information about the system under attack. In particular, the adversary
knows the input feature representation X and the training data D, but not the
learning algorithm f . The adversary builds his own surrogate model f̂ (in our case,
a linear SVM model) that he uses to estimate which points to attack. Therefore,
the black-box attack with limited knowledge can be denoted with κ̂ = (D, X, f̂ , ŵ).

Since any system can be trivially bypassed by an unconstrained attacker taking
full control of the training data, imposing restrictions on the attacker is necessary
to design meaningful defenses, but also to reflect the actual (constrained) circum-
stances under which the attacker is likely to operate. In line with the existing
literature in poisoning attacks [122], we assume here that the attacker has some
control over a fraction of the training data used by the learning algorithm, and
is restricted to changing the training labels, i.e., he can perform a label-flipping
attack. Furthermore, he aims to produce specific types of error, which means that
he can decide the direction of the flip (e.g., causing only a certain label of his
interest to flip). We denote the altered training set with D′ = {(xi, yi)}n

i=1.

4.1.2 Attack Algorithm

As mentioned above, the attacker knows nothing about the target model. In or-
der to select the samples that, if modified, would cause the maximum decrease
in the accuracy of the target model w.r.t. his goal, he uses the surrogate model
to approximate the target discriminating function and to generate the probability
distribution that serves in selecting the points to attack. Therefore, before per-
forming any flip, the attacker applies Algorithm 1 (see Section 3.3). Obviously, a
rational attacker’s intention would be to preferentially manipulate the most risky
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points identified by the surrogate model. One natural way of implementing this
strategy is to employ a probability weighting function (pℓ). In particular, we model
the above behaviour with a nonlinear function of probability which modifies the
weights different probabilities have according to the risk level associated to the
data points and to the number of risky points belonging to each risk level:

prℓi
= nrℓi

rℓi∑︁|c|−1
j=1 nrℓj

rℓj

(4)

where nrℓ is the number of data points having risk index rℓ and |c| is the desired
number of risk levels identified after applying Algorithm 1. Note that, for now, in
Eq. (4) we assume that the attacker chooses to flip the labels of only the points cor-
responding to the identified support vectors, thus excluding the remaining points,
i.e, those having risk index 0 (see line 12 of Algorithm 1). As a result, for each
data point the probability of flipping depends on the level of risk associated with it
(as defined by the SVM model) and on the total number of identified risky points
having the same level of risk as it. From this it follows that the percentage of
flipped points belonging to a given risk level grows as the level of risk increases;
the higher the risk (and the corresponding number of risky points identified), the
greater the probability a given sample is flipped.

Algorithm 2 describes the procedure for the flipping attack strategy. This algo-
rithm is fully operational if the percentage of flipped points is relatively moderate.
If the attacker can flip many labels, the result is that all the labels of the risky
points are flipped, plus the labels of the points not identified as support vectors in
any of the iterations of the risk index calculation algorithm are flipped randomly.

A second aspect concerns the direction of the label-flipping attack, which can
be either symmetrical or asymmetrical. Provided that in any case a proper check
must be be put in place to avoid multiple flips of the same label that could bring
back the original value of the label, the first option (symmetric flip) turns out to
be less effective from the attacker’s point of view, since the flip on the two halves
can offset their effect, thus leaving the separating hyperplane almost unchanged.
The second option circumvents this drawback (in Algorithm 2, the check at line 7
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indicates the use of the asymmetric technique (monodirectional attack).

Algorithm 2 Risk-driven Weighted Probabilistic Flipping Attack
Input: Original training set D = {(xi, yi)}n

i=1, flip direction d, flipping budget ϵ
Output: Contaminated training set D′

1: D′ ← D
2: j ← 0
3: flagi ← 0
4: while j < ϵ do
5: Extract a data point (x′

i, y′
i) from D′ with probability prℓi

6: if flagi = 0 then
7: if y′

i = d then
8: y′

i ← −y′
i

9: flagi ← 1
10: Add (x′

i, y′
i) to D′

11: end if
12: else Repeat from line 4
13: end if
14: j ← j + 1
15: end while
16: return D′

4.2 The Proposed Defence Framework Under the
Hood

Our novel defence strategy consists of three main components: (i) calculation and
polynomization of risk indices associated with training data, (ii) anti-clustering
partitioning, and (iii) ensemble composition for increasing diversity and attack re-
silience. Flowchart in Figure 5 illustrates the different components of the proposed
framework. The rest of this Chapter defines the characteristics of each component
and how they relate to each other.
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Figure 5: Flowchart of the proposed defence framework.

4.2.1 Feature Space Extension

The first component of our defence framework is our risk index. In line with the
general remarks made in Chapter 3, it can be defined in this setting as an explicit
polynomial function of the color, which is a quantization of point’s distance from
a separation hyperplane of our reference SVM model. It is important to remark
that, should attack data be available in the form of reports on previously attacked
data points, some alternative (and conceivably non-linear) risk index could be
learnt from them. In case of rational attacks [123], which tamper data based on
the damage, intuition suggests that the learnt risk index landscape would be close
to the graph of our explicit function of the color map. The idea here is to use the
risk index as part of the information that will be used to assign the data points to
the training sets of multiple learners, in order to minimize the learners’ exposure
to poisoned data. In principle, we can achieve this by performing a (temporary)
feature space extension, adding the risk index to the data points’ features, and
then using an unsupervised technique (Section 4.2.3) on the extended data space
to group points into partitions that are highly diverse in terms of both risk and
position. Each partition, stripped of the risk feature, can then be used for training
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a separate learner, minimizing its exposure to potentially poisoned data. For the
sake of flexibility, however, in addition to computing the risk index as a polynomial
function of the color, then we will use this additional feature for rescaling when
computing the distance in the expanded feature space at (anti-)clustering time
(Section 4.2.3).

4.2.2 Ensemble Structuring and Composition

The second component of the proposed defence framework is ensemble learning.
Ensemble learning is a well-established method that has been proven to yield im-
proved generalization capabilities. The central idea is to employ multiple learners
(which are usually called base learners) and combine their predictions based on a
consensus algorithm, treating them as a committee of decision makers. Numerous
empirical and theoretical studies have demonstrated that ensemble models very
often attain higher accuracy than single models [124]. The principle is that when
individual predictions from different base learners are combined appropriately, the
committee’s decision has on average better overall accuracy than that of any in-
dividual constituent member. Our intuition is that, by properly partitioning data
and combining output predictions, weak learners can become strong learners not
only in terms of accuracy, but also in terms of resilience to poisoning attacks. Our
approach relies on two key assumptions:

1. Individual models are sufficiently diverse as to maintain high accuracy and
be resistant to training-time attacks;

2. There exist enough intact models in the ensemble such that the consensus
output is not corrupted.

Assumption (1) hinges on the way the base models are trained, and comes as a
result of our proposed approach for the training phase. Assumption (2) depends
on several factors. The most significant ones are the power of the adversary and
the strategy used for partitioning the training data. Obviously, if the adversary
can tamper with a very large number of points, there is no way for an ML model
to learn any meaningful correlation. On the other hand, if the adversary can only
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compromise a limited portion of the data, then the way training data is partitioned
is key to ensure that compromised data does not adversely affect the behavior of
the model and that a sufficient number of models are kept pristine.

4.2.2.1 Ensemble Member Generation and Combination Rule

When designing an ensemble-based system, three interrelated aspects need to be
considered: (i) the partitioning method used to select the training data for each
base model, (ii) the specific procedure used for generating the ensemble members,
and (iii) the combination rule for obtaining the ensemble decision. Our technique
for partitioning the training data based on robustness criteria will be described
in Section 4.2.3, while details on our choices regarding the other two aspects are
provided below.

In a sense, ensemble-based systems can be seen as algorithm-free-algorithms,
meaning that they are generally independent of the type of base learner used to
create the ensemble. This feature is of great benefit as it allows complete discretion
in using a specific type of learner most suitable for a given application. The pool
of base learners in the ensemble can be trained either from the same family or from
different families of learning models. In our framework, we use the homogeneous
ensemble approach, which involves using the same base learner multiple times
to generate the family of learners. In this case, therefore, we do not introduce
diversity at model level, but at data level used by each model. Once the base
models have been trained, it is necessary to determine how to aggregate their
individual outputs in order to obtain a single final prediction. In the literature,
there exist several different approaches for model combination [125]. The most
commonly used in practice are the linear combiner, the product combiner, and the
voting combiner. Here, we adopt the third type of combination rule as it is known
to exhibit consistently good behavior in many applications and is amenable when
models output class labels.

Although there are different flavors of the voting combination method, the most
popular one (known as hard voting or majority voting) requires every individual
classifier to vote for a class, then the class that received the most votes by the
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classifiers is chosen as the ensemble prediction (in statistical terms, the ensemble
decision corresponds to the mode of the distribution of individually predicted la-
bels). Assume that N is the number of classifiers in the ensemble and L is the
number of classes. The decision of the tth classifier (Ct) is denoted by dCt,j ∈ {0, 1},
where j = 1, .., L. If Ct decides for class ωj, then dCt,j = 1, and 0 otherwise. The
ensemble output for the majority voting combiner is calculated as

max1≤j≤L

N∑︂
t=1

dCt,j (5)

Interestingly, the voting-based rule can be proven to be an optimal approach for
combining classifiers, if they are independent [126]. In fact, under the minor
assumptions of: 1) N is odd, and 2) each classifier has probability p of correctly
classifying a given instance, the ensemble predicts the correct (uncorrupted) label
if at least ⌊N/2⌋+ 1 base classifiers output the correct label.

4.2.2.2 The Accuracy-Diversity Breakdown

It turned out that diversity is one of the essential properties governing how well an
ensemble can perform. Frequently, the term accuracy-diversity breakdown [127,
128] is used to express the fact that an ensemble error is primarily impacted by
two distinct elements, namely the accuracy of the individual models and their in-
teraction once combined. As stated by Dietterich [129], an ensemble of learners
succeeds in achieving better accuracy if and only if its individual members are
accurate and diverse. However, the exact relationship between diversity and accu-
racy still remains an open research issue, in part due to the fact that there is no
consensus in the community regarding the definition or measurement for diversity
(which basically depends on the problem to be solved) [130, 131], as opposed to
accuracy. On one hand, if each base learner makes the same errors for new in-
stances, there is no utility in combining their outputs. On the other hand, if the
base learners are maximally accurate, they provide the same correct predictions,
but there is no distinction between them.
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The breakdown of the ensemble error depends on both the type of error func-
tion and the combination rule. In the case of regression ensembles with linear
combiners, error decomposition schemes such as the bias-variance-covariance de-
composition [132] and the ambiguity decomposition [133] are commonly used to
split the error into an accuracy term and a diversity term. For instance, with the
latter decomposition scheme, the squared error of a linearly combined ensemble is
broken into the sum of two components quantifying the average squared error of
the individual models and the ambiguity level, respectively. Since the ambiguity
term (which expresses the interactions between the predictions) is guaranteed to al-
ways be positive, for an arbitrary data point, the ensemble squared error invariably
turns out to be less than or equal to the average of the individual squared errors.
However, this type of analysis is only suitable for regression tasks with quadratic
loss. In the case of classification ensembles, there is a partial theory that relates
the classifier correlation to the ensemble error rate [134], but the results hold only
when a linear combiner classification ensemble is applied. Conversely, the case of
a classification problem with a majority vote combiner is more challenging, and no
single accepted theoretical framework capturing the accuracy-diversity breakdown
currently exists for it [135]. In spite of this, simple intuition given by a Binomial
experiment can prove that correlation between models does indeed affect perfor-
mance. In practice, if we have N different base classifiers each with identical error
probability p = P (ht(x) ̸= y), assuming their errors are statistically independent,
the following error probability of the majority voting ensemble holds:

P (H(x) ̸= y) =
N∑︂

k>(N/2)

(︄
N

k

)︄
pk(1− p)(N k) (6)

Nevertheless, if the decisions of the base classifiers are dependent, we lack a series
of independent Bernoulli trials, and thus we have no guarantee on the amount
of the error reduction when a classification ensemble with a voting combiner is
employed.

As for robustness concerns, besides benefits shown by experimental results of
the many papers we mentioned in Section 2.3.2.2, Levine and Feizi [97] introduced
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a deterministic lower bound on the efficacy of majority voting which is stated as
follows. Let us denote by fi(x) the x classification by the i-th base learner, and
by nc(x) the number of base learners classifying x as c, where the final result of
their ensemble g(x) is the index of the maximum nc. Then, let:

t(x) = ⌊ng(x) −maxc ̸=(x)(cc(x))
2 ⌋ (7)

Any flipping of less than t(x) labels does not change g(x).
The above threshold t(x) represents a lower bound on the number of poisoning

flips a defender may withstand with no damage. As a matter of fact, this number is
definitely higher in all the protocols we experimented with. Equation (7) highlights
a crucial trade-off between robustness and accuracy rooted on the number k of
partitions. Actually, the gap ng(x) − maxc ̸=(x)(cc(x)) grows with the number of
partitions k, whereas the accuracy of the single learner decreases with k increasing,
because the size of the local training set decreases as well. Levine and Feizi used
very large values of k, on the order of thousands of partitions for datasets such
as MNIST [12], to exhibit the robustness of their strategy. By contrast, we will
employ a dozen partitions for the same dataset to provide a proper balance between
robustness and accuracy (Chapter 5).

4.2.3 Anti-clustering for Training Set Partitioning

As discussed earlier, the concept of diversity plays an important role in the ML pro-
cess. Specifically, diversity of the training data ensures they can provide more dis-
criminatory information, thereby resulting in improved performance of the learned
model [136]. Besides increasing the model’s representational ability, data diver-
sification schemes can also be exploited for defensive purposes in the context of
adversarial learning. The rationale behind the use of the ensemble-based defense
strategy is that an attacker is required to expend a lot of effort to compromise the
system as he must fool multiple models in the ensemble instead of just a single
one. By using diverse data to train each individual model, the models’ errors on
the test set are more likely to be statistically independent of each other and this
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allows for improved robustness to attacks.

4.2.3.1 Data Diversification

Starting from the observation that by simply reversing the logic behind the pop-
ular k-means clustering method it is possible to generate partitions that closely
resemble each other, Späth [137] and Valev [138, 139] independently coined the
term anti-clustering to denote a type of data partitioning that ensures similarity
between partitions by enforcing dissimilarity within each partition. In other words,
the objective is to provide high intra-group dissimilarity and low inter-group dis-
similarity. Formally, given the set of elements T = {t1, ..., tn} and the number
of subsets k into which T has to be partitioned, the anti-clustering partitioning
defines a set of disjoint partitions (anti-clusters) P1, ..., Pk satisfying the following
conditions:

k⋃︂
i=1

Pi = T (8)

Pi ∩ Pk = ∅,∀i, k ∈ {1, ..., k}, i ̸= k (9)

Condition (8) ensures that every element in T is assigned to at least one of the anti-
clusters. On the other hand, condition (9) requires pairwise disjoint anti-clusters.
This means that no pair of two anti-clusters can contain the same element.
It is worth noting that having partitions of equal size is not mandatory for anti-
clustering methods [140]. However, obtaining comparable sized partitions is a de-
sirable property, and in classical graph-partitioning based clustering this practice
is a standard constraint that avoids trivial partitions [141, 142]. It is well under-
stood that the performance and statistical validity of ML models are affected by
both the size of the input data partitions and the distribution of samples across
the different partitions [143]. For these reasons, we give the following additional
restriction:

| Pi |=| Pk |,∀i, k ∈ {1, ...k} (10)
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From condition (10) it follows that if the number of elements in T , denoted by N , is
a multiple of the number of desired partitions k, then each anti-cluster consists of
N
k

elements. By contrast, in the case where N is not divisible by k, the anti-clusters
will differ by one in their size.

4.2.3.2 Dissimilarity Measure and Objective Function

As previously mentioned, anti-clustering partitioning possesses in itself the ability
to ensure that points close to each other are put into different partitions. In order
to take advantage of this inherent characteristic for our defensive purposes, we need
to choose a specific objective criterion for anti-clustering based on information in
a dissimilarity matrix that accounts for the relevance of the points.

Assuming π = {P1, ..., Pk} is a partitioning of the set T , where the i-th partition
Pi contains a subset of all given elements in T , and assuming Π is the set of all
possible partitions, the objective function f : Π → R+ associates a positive real
number f({P1, ..., Pk}) with each partition. The generic anti-clustering problem
may be formulated as follows: find a feasible partitioning π∗ such that

f(π∗) = max{f(π) | ∀π ∈ Π} (11)

As for classical clustering methods, there is a wide range of criteria for anti-
clustering as well [144]. The most intuitive criterion, which, as mentioned earlier, is
the one that gave rise to the concept of anti-clustering, is based on the direct rever-
sal of the k-means clustering logic [145]. Thus, the goal of k-means anti-clustering
is to maximize the within-group variance, where within-cluster heterogeneity is
measured as the sum of the squared Euclidean distances between individual data
points and cluster centers. For the purpose of illustration, Figure 6 shows in a
two-dimensional space how the point assignments to three different equal-sized
partitions may vary depending on whether the objective function minimizes (k-
means clustering) or maximizes (k-means anti-clustering) the variance.

For our anti-clustering partitioning we adopt another type of criterion: anti-
cluster editing, which is the reverse of the cluster editing clustering paradigm [146].
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Figure 6: k-means objectives. In (a) we see that k-means clustering minimizes
the variance within partitions. The logic is reversed in (b), where anti-clustering
k-means maximizes the variance within partitions.

This criterion measures within-cluster heterogeneity as the sum of pairwise dis-
similarity between elements within the same group. The corresponding objective
function, which the anti-clustering should maximize, is:

Ddiversity = Σ1≤i≤j≤ndijxij (12)

where the variable xij is used to identify whether two elements belong to the same
anti-cluster or not:

xij =

⎧⎪⎨⎪⎩
1, if xi ∈ Pk ∧ xj ∈ Pk

0, otherwise
(13)

Figure 7 shows the different assignment of points according to whether the ob-
jective function minimizes (cluster editing) or maximizes (anti-cluster editing) the
diversity. Differently from Figure 6, where the dashed lines (i.e., the input values
of the objective function) are drawn to connect each point with the centroid of
the cluster to which the point is assigned, in Figure 7 the lines are drawn between
pairs of points within the same cluster. This reflects the different definitions of
within-cluster heterogeneity used by the two criteria.

In Eq. (12) the dissimilarity measure dij usually corresponds to the Euclidean
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Figure 7: Cluster editing objectives. (a) Cluster editing minimizes the diversity
objective (sum of pairwise distances within each cluster), whereas (b) anti-cluster
editing maximizes it.

distance (or squared Euclidean distance), though, in principle, any theoretically
sound distance metrics can be used. We employ Euclidean distance in our approach
as well, but introducing a distortion in its calculation that takes into account the
risk index (Section 4.2.1) associated with each point. We assume that an N ×N

non-negative symmetric matrix D = [dij] is used to represent pairwise dissimilarity
measurements, whose entries are computed as follows:

dij = ∥ i− j ∥
max(ri, rj)

(14)

∥ i−j ∥ is the Euclidean distance between two points i and j in the M -dimensional
space, and the distortion defined at the fraction denominator is given by the max-
imum between the risks ri and rj of the points under consideration.

The effectiveness of the partitioning strategy clearly depends on the notion of
distance between two points. Here, we rescale the Euclidean distance so as to
take into account the closeness of the points to the separator hyperplane. The
general criterion is: two points are closer the higher their risk index. Thus, a
simple distortion can be induced via Eq. (14).



Chapter 5

Experimental Evaluation

In this chapter, we report empirical results evaluating the performance of our de-
fense technique against label-flipping poisoning attacks under the assumption of
symmetric lack of information between the attacker and the defender. The ex-
perimental results show that our method is more effective compared to both an
ensemble method based on random partitioning and to a traditional model trained
on the whole training set for moderate poisoning rates.

5.1 MNIST Benchmark

We evaluated the effectiveness of our proposed method on a benchmark for
handwritten digit recognition, the MNIST [12] dataset, which contains a

collection of 70000 images of handwritten digits from 0 to 9, where the training
set and the test set include 60000 and 10000 samples, respectively. This dataset
is considered a typical benchmark for classification algorithms because of its high
variability of available representations for the same digit. Each sample is repre-
sented as a feature vector consisting of a 28 × 28 grid of 256-valued gray shades.
We normalized the pixel values by rescaling them to the range [0, 1]. In line with
most of the existing literature in adversarial attacks, here we considered a binary
classification problem, where the task is to distinguish between digits 1 and 7.
The result is a total of 15170 images of dimension 784, with 13007 images in the
training set and 2163 in the test set.

49
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5.2 Heuristic

Finding a partitioning that maximizes the diversity criteria is computationally
challenging for k ≥ 2 and an arbitrary M -dimensional Euclidean space problem.
Especially when the number of elements is very large, obtaining the optimal anti-
clustering partitioning in an acceptable running time is extremely difficult with
an exact algorithm. To alleviate these issues, in our implementation we opted
for a heuristic algorithm. In particular, we used the exchange method proposed
by Papenberg and Klau [140], which is an adaptation of the procedure defined
in [147]. The procedure is based on exchanging elements between different anti-
clusters such that each swap improves the objective value by the largest possible
margin. The following steps are repeated for each element. First, samples are
randomly assigned to different anti-clusters. Then, the algorithm simulates each
possible exchange with elements in other anti-clusters on the basis of the initial
assignment – for a total of (N − N

k
) swaps. The swap that maximally improves

the objective function is performed.

5.3 Practical Implementation Details

Regarding the learners, as mentioned earlier, the advantage of our defense tech-
nique is that it is not intended for a specific ML model. Thus, on the defender side
we opted for deep neural networks with no great sophistication as the base learners
for the ensemble. In addition, we used the reference SVM model for identifying
the risk levels on the part of the defender and the points to attack on the part of
the adversary. The SVM is a standard two-classes linear separator that have been
implemented via the CRANE library of Python. The training of those learners
has been carried out in TensorFlow-Keras.

Metrics. Our evaluation metric is distilled into two components. On one
hand, we use clean accuracy calculated on testing data to evaluate how models
perform on pristine data. On the other hand, the second metric – after poison-
ing accuracy – describes how models perform on label-flipped data with varying
poisoning rate. This allows us to investigate how the algorithm performs against
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different corruption ratio. In addition to these two, we also use an additional met-
ric – certified accuracy – again evaluated on the test set, defined as follows. For a
given flipping percentage it is the ratio between: (i) the number of items that have
a different label when classified by the function learned from the original training
set and the one learned from the poisoned version of the training set, and (ii) the
test set size. Ensemble gap is a measure that applies to the ensemble methods.
On each element of the test set, it reckons the difference between the number of
base learners whose output coincides with the majority vote result and the number
referring to the second highest voted. A large gap denotes high robustness of the
result to further perturbations of the training set.

Risk levels. We opted for 10 colors (i.e., ten different values for the risk index
calculated in Algorithm 1), plus a 0-level collecting images which do not correspond
to any support vector identified during the 10 iterations of the algorithm.

Attacker’s budget. We used the label-flipping strategy described in Algo-
rithm 2 (see Section 4.1.2), with the attack performed monodirectionally, deciding
to change the 1 labels to 7. We assessed the efficacy of our strategy for a flipping
rate ρ ranging from 0.08% to 25%. With ρ ∈ (0.08, 8) Algorithm 2 fully exploits
the riskiness difference, where the risk level rℓ translates to the drawing proba-
bility via the formula (4). Outside of this range, the sole difference which proves
effective is between support vectors and non support vectors (see Section 4.1.2).

5.4 Shared Knowledge

In a preliminary experiment, we randomly selected a subset of 3000 points from
the training set and performed the label-flipping attack with different poisoning
rates to decide how many partitions k to use for our ensemble trained on all of the
data (13007 points). We tested three different values for k, namely 3, 15, and 30.
Obviously, the number of partitions k is a parameter that controls the trade-off
between robustness and accuracy. By analyzing the curves shown in Figure 8, we
decided to focus on k = 15 partitions as a good compromise between robustness
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and accuracy. The smaller slope of the curve as the percentage of poisoning in-
creases is a property that denotes robustness, albeit at the cost of poor accuracy
when few points are poisoned.

Figure 8: Accuracy curves for percentage of label-flipping ranging from 10% to
40% and k ∈ {3, 15, 30} partitions.

5.5 Experimental Results and Analysis

The approach most similar to the one we propose is that by Levine and Feizi [97],
which uses an ensemble-based method where the partitioning of the training set
into disjoint subsets is performed via a hash function, so data are randomly shuf-
fled among partitions based on their hash. In all experiments, we compared the
performance of our ensemble-based defense (where partitioning is performed ac-
cording to our anti-clustering technique) – hereafter referred to as anticl – with
that of an ensemble method using a randomized partitioning mimicking the ef-
fect of hash-based partitions selection [97]. Specifically, in the technique we will
henceforth refer to as classic, the training set is partitioned randomly, without
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repetition, and regardless of the risk levels identified by means of Algorithm 1.
Also, we denote by mon, (short for “monolithic”), the model trained on the whole
training set with the traditional ensemble-less architecture. For each of the ex-
periments we have performed 10 repetitions, thus Table 2, which summarizes our
results in terms of accuracy for the three methods, presents average values derived
from 10 different runs performed on the whole training set considered.

5.5.1 Absence of an Attack

First of all, Table 1 clearly shows that in the absence of attacks (denoted by the
suffix clean), the order of accuracy is as follows:

mon clean > classic clean > anticl clean

The first inequality seems rather obvious, since, in the absence of local minima,
learning based on the whole dataset is more efficient than composing multiple
learners on partial training sets, where the huge dimensionality of the training
points prevents the local minima mentioned above. The second inequality confirms
that under the above conditions the random partitioning underlying classic clean,
defeats any “smarter” partitioning strategy (the value of probabilistic strategies).
However, as Table 1 shows, the difference in accuracy is quite shallow. Although
the classic technique exhibits slightly higher accuracy than the anticl one, and
thus closer to that of mon, taking additional factors into account when performing
partitioning resulted in only a slight overall degradation in accuracy when no
attack is performed.

Method mon clean classic clean anticl clean
Accuracy 0.99594 ± 0.00130 0.99371 ± 0.00075 0.98917 ± 0.00065
Mean gap - 14.8714 14.907

Table 1: Comparison of accuracy and ensemble gap (which applies only to anticl
and classic methods) when no attack is performed, and k = 15 partitions.
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5.5.2 Under Attack

In order to evaluate worst-case behavior, we started the experiments by checking
which would be the most efficient strategy on the part of the attacker.

Attack Strategy Selection. The graph in Figure 9 shows a natural order for
the experiments where:

a) We monodirectionally flip the labels of 270 images belonging to risk levels
1− 10, with probabilities calculated according to (4);

b) Then, we monodirectionally flip the labels of 215 images belonging to the
risk level 0 (lying far from the linear separator);

c) Again, we monodirectionally flip 485 images, but this time all belonging to
risk levels 1− 10, with probabilities calculated according to (4).

270 270+215 485

0.5 1.0 1.5 2.0 2.5 3.0

0.965

0.970

0.975

0.980

0.985

0.990

average_test_acc_MON_POIS

average_test_acc_CLASSIC_POIS

average_test_acc_ANTICL_POIS

Figure 9: Accuracy trend with increased number of flips for both bordering (risk
levels 1− 10) and inner data points (risk level 0).

We observe that, with respect to effectiveness, we obtain: a ≃ b < c. Regarding
the ordering of methods in case of attack (denoted by the suffix pois), now for
low flipping rates we have

classic pois > mon pois > anticl pois
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whereas for higher rates of poisoning, anticl turns out to be superior to the others:

anticl pois > classic pois > mon pois

From this it follows that adding 215 non-support vector images leaves the accuracy
almost unchanged, with a very small increase due to the random shaking effect of
the non-support vector (inner) images. Conversely, choosing additional images
close to the boundaries (i.e., from the support vectors) changes performance in a
way that will be discussed later. This confirms our strategy for high percentages
of poisoning, which consists of first flipping all support vector images and then
saturating the desired percentage of poisoned points with inner images.

Figure 10: Accuracy comparison for k = 15 partitions and poisoning rate ranging
from 0.08% to 25% of the training set size.

To confirm the above observations, first we carried out an experiment where all the
flip percentages are less than 3.5%, and all the poisoned points are selected from
risk levels 1− 10. In particular, percentages range from 0.8% to 3.3% of the train-
ing set. This corresponds to percentages from 2% to 81% of the points having risk
levels 1− 10, with a number of flipped points ranging from 11 to 431. In a second
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experiment, we considered higher percentages of poisoning, i.e., between 10% and
25%. Clearly, in this second case, we adopted the strategy of monodirectionally
flipping all the points of levels 1−10 having label 1 (for a total of 527 points) plus
other points taken from level 0 until saturating the desired percentage. Thus, the
total number of flipped points (both levels 1− 10 and level 0) varies from 1301 to
5203.

Label flips Acc∗

%tr %rl1 10 #rl1 10 #rl0 #tot MON CLASSIC ANTICL

0.08 2 11 0 11 0.99579±0.00153 0.99366±0.00065 0.98908±0.00049

0.4 10 54 0 54 0.99556±0.00117 0.99329±0.00058 0.98936±0.00068

0.8 20 108 0 108 0.99301±0.00215 0.99278±0.00049 0.98908±0.00082

1.2 31 162 0 162 0.99320±0.00254 0.99241±0.00032 0.98881±0.00091

1.6 41 216 0 216 0.99079±0.00316 0.99223±0.00052 0.98922±0.00061

2 51 270 0 270 0.98950±0.00223 0.99218±0.00059 0.98918±0.00054

2.5 61 323 0 323 0.98404±0.00421 0.99066±0.00153 0.98941±0.00066

3.3 81 431 0 431 0.97831±0.00787 0.98608±0.00273 0.98936±0.00065

3.7 51 270 215 485 0.99024±0.00197 0.99237±0.00049 0.98987±0.00079

4 51 270 270 540 0.98918±0.00579 0.99163±0.00120 0.98987±0.00070

5 39 207 443 650 0.99320±0.00396 0.99241±0.00054 0.98881±0.00078

8 98 520 520 1040 0.97646±0.00465 0.98192±0.00428 0.99042±0.00084

10 100 527 774 1301 0.96417±0.01027 0.97716±0.00454 0.99024±0.00107

15 100 527 1424 1951 0.96675±0.00677 0.96615±0.00947 0.99001±0.00183

20 100 527 2074 2601 0.95214±0.01629 0.94392±0.01272 0.97582±0.00442

25 100 527 2725 3252 0.85654±0.12899 0.84248±0.04135 0.86934±0.05094

30 100 527 3375 3902 0.57318±0.09154 0.59052±0.04075 0.53550±0.04942

40 100 527 4676 5203 0.47531±0.00014 0.47526±1.17027 0.47526±1.17027

Table 2: Results on the MNIST dataset using different label-flipping attack strate-
gies. Averaged test accuracy plus/minus the standard deviation as a function of
the poisoning points. %tr and %rl1 10 are the percentage of flipped points with
respect to the total number of training data and the percentage of flipped points
with respect to the total number of points with risk level 1 − 10 with label 1,
respectively. #rl1 10 is the numerical equivalent of %rl1 10 , #rl0 is the number of
flipped points with risk level 0, and #tot is the total number of flipped points (lev-
els 0− 10).
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As we can observe from the graph in Figure 10, the results confirms that when
the poisoning rate is consistent (say from 6% to 25%), our method has a higher
accuracy compared to both classic and mon methods. In particular, the percent-
ages between 10 and 20 are the ones for which anticl is more robust.

Effect of large percentages of poisoned data. Although in the literature on
poisoning attacks the budget of the attacker, in terms of the number of points he is
able to modify, almost never exceeds 20−25% of the size of the training set [29], in
a further experiment we assessed the degree of degradation reached by the different
methods with percentages equal to 30% and 40% of the training set. The results
reported in Table 2 (last two lines) show that regardless of the method, accuracy
decreases dramatically when the rate is so high as to bring the classification to
accuracy values not much different from a mere coin toss (accuracy close to 50%).
The accompanying trend in standard deviations confirms the general behavior: we
have moderate values for no or low poisoning rates (say less than 25%), which
strongly increase beyond this threshold, until reaching equivalent values in the
case of the two ensemble methods that are definitely lower than the corresponding
value for mon. It is worth noting that, although in principle an attacker can ar-
bitrarily increase the number of corrupted points in the training set, in real-world
applications, significantly increasing the poisoning rate inevitably leads to making
the attack obvious.

5.5.2.1 Certified Accuracy

Certified accuracy is a measurement of certified robustness against any poison-
ing attacks under certain conditions. There is no single definition of certified
accuracy, and different certifiably robust approaches have been proposed in the
literature [103]. Here, we consider the definition we provided in Section 5.3, i.e.,
a measure that, for a given poisoning rate, certifies whether the predicted label
stays unchanged or not for each testing input. In Table 3 we report the results up
to the poisoning percentage of 40% also in terms of the actual number of points
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Figure 11: Certified accuracy comparison, with k = 15 partitions for anticl and
classic methods. The figure on the top shows the certified accuracy to label-
flipping poisoning attacks. The figure on the bottom shows how the corresponding
number of certified points changes as the flip percentage increases.
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in the test set that did not change their labels after the label-flipping attack. The
corresponding graphs are given in Figure 11. We note a benefit similar to that
observed with the accuracy metric: up to 25% anticl prevails over the other two
methods, where up to 20% the number of certified points is very high. Beyond the
25% threshold, the trend is reversed, where training corruption leads to essentially
random classifications.

Label flips certpoints certacc

%tr MON CLASSIC ANTICL MON CLASSIC ANTICL

2 2153 2154 2156 0.99565 0.99625 0.99676

5 2106 2118 2153 0.97383 0.97928 0.99565

10 2083 2108 2149 0.96329 0.97484 0.99380

15 2088 2081 2141 0.96574 0.96250 0.98987

20 2056 2034 2104 0.95067 0.94036 0.97286

25 1848 1811 1872 0.85478 0.83767 0.86555

30 1234 1266 1148 0.57068 0.58562 0.53088

40 1023 1017 1016 0.47304 0.47031 0.46985

Table 3: Certified accuracy, with k = 15 partitions for anticl and classic methods.
certacc is the percentage quantifying the output changes in case of label contami-
nation of the training set; certpoints is the corresponding number of certified points.

5.5.2.2 Ensemble Gap

As mentioned earlier, the gap between the number of voters of the highest and
second highest voted result of an ensemble is a measure of the robustness of an
ensemble classifier against poisoning attacks, as highlighted by (7). The second
row of Table 1 shows a small superiority of anticl over classic in case of a clean
training set, which apparently reverses in the case of a poisoned training set.

However, a smaller gap with the poisoned training set may again denote a
superiority of our method, which raises more contested voters when the majority
result is wrong. In fact, the gap difference of the two methods is so small that it
invests exactly the faulty classified points, the number of which in turn increases
with the poisoning rate. Thus, within the previously mentioned range (6%, 25%)
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of the poisoning rate, we observe this virtuous phenomenon that tends to vanish
for higher rates (see Figure 12).

Figure 12: Gap comparison between the anticl and classic ensemble methods.

5.5.3 Discussion

Our results come from a double accuracy vs. robustness trade-off (with regard
to both the number of partitions and the poisoning rate), where, in order to
ensure good performance with high, though informational feasible, poisoning of the
training set labels, we sacrifice some accuracy in the near-unpoisoned conditions.
Note that this is a common effect of introducing relatively random noise into
algorithms. This occurs, for instance, with randomized smoothing algorithms [88],
where pure noise is introduced to make the algorithm more robust so as to learn
the substance of the classification logic and avoid pursuing details which induce
over-fitting.





Part II

Auxiliary Techniques

61





Chapter 6

Instantiating Ensemble
Parameters Based on Model
Degradation Index

This chapter outlines a method for assessing the degradation of an ML model using
held-out data which is computed combining training set points in relation to their
proximity to the separation surfaces identified with a reference model (specifically,
a Convex Hull classifier).

6.1 Introduction and Background

In the previous Chapters, we discussed how training data can play a crucial role
in shaping the learning process of ML models and determining the quality of

decision making [148]. In Chapter 4, we focused on alleviating the consequences
of training set poisoning. In this Chapter, following [149], we focus on a distinct
though related topic, i.e. how to estimate the degradation of models. This is a
frequent scenario in practical environments - for example, in the Internet of Things,
where faulty or compromised sensors may lower the overall quality of the data on
which inference is based [150]. Being able to quantify ML model degradation
(which can be due to the injection of spurious, adversarial or low quality data in
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periodic re-training) provides context knowledge useful to decide whether to deploy
the robustness-aimed measures based on ensemble, and even to set the parameters
of such measures, including the number of training partitions, for subsequent re-
training. We start from the notion that all ML data assets, including the training
set, can be considered artefacts with a certain quality. In the context of Artificial
Intelligence (AI), it is possible to consider data quality as a set of properties the
information fed to (and produced by) AI-ML models should have [151]:

⋄ Accuracy: Reflects the difference between the data and an underlying “true
value”. This difference includes sensor errors and any error introduced at
ingestion (e.g., by quantization).

⋄ Consistency: Expresses compliance of data to user-defined rules; for example,
the age of a sibling cannot be equal or greater than the one of a parent.

⋄ Timeliness: Expresses difference between the time when data is made avail-
able and a deadline. It denotes if data is being received in time for performing
a task.

⋄ Completeness: Expresses whether the number of data points available is
enough for the intended purpose (e.g., computing a formula or training an
ML model).

For the purposes of this Chapter, we focus on two aspects of ML data assets’
quality: data uncertainty and trustworthiness, which can be seen as two different
aspects of indeterminacy (how much it is known about the consequences of using
a data item). Uncertainty is mainly related to imprecision affecting raw data,
while indeterminacy is an inherent issue for pre-processed data assets (for example,
training sets) that are targeted by modifications aimed at changing the ML model
behavior in production. In all cases, spurious items (adversarial, poisonous or
simply low-quality data points) that become part of data assets can impair ML
model accuracy, requiring filtering or other alleviation measures.
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6.1.1 Model Degradation

Even if there is no tampering with data assets, ML models’ predictive performance
can decrease over time as they are fed with new data. This phenomenon is known
as model degradation. There are two major heuristics for identifying and tracking
model degradation:

⋄ Explicit quantification: Conceptually, the simplest way to identify model
degradation is to explicitly quantify the amount of decrease in model per-
formance or its trend. However, measuring the accuracy of a deployed ML
model on live input data is a notoriously difficult problem. This difficulty
arises because for each input one needs access to both the model’s output,
i.e. the classification or prediction value proposed by the model, and the
ground truth, i.e. the true value. Even when the model’s outputs and the
ground truth values are both available, it may be difficult to synchronize
them to check the performance decrease’s trend. Consider an ML model
that predicts the total amount of rain that will fall in a month. The actual
value will only be observed monthly, so appreciation of the rate at which the
model’s performance is decreasing may involve considerable delay.

⋄ Distribution comparison: These techniques compare the probability distri-
butions of the input features to those of the training data to infer model
degradation. This a priori technique can be helpful when it is not possible
to observe the ground-truth values. This method can be improved by issuing
alerts when the divergence between key features distribution is significant.
However, in production it is not always possible to continuously monitor all
features’ distributions.

The remainder of the Chapter is organized as follows: Section 6.2 describes a
technique for estimating the severity of AI-ML model performance degradation
due to spurious additions to training sets, computing an held-out data set (Section
6.2.1) to be used as a “gold standard” for the data assets (training and validation
data) used for ML training. Section 6.3 discusses how Convex Hulls (CHs) can be



6 Instantiating Ensemble Parameters Based on Model Degradation Index 65

used to approximate class regions of classification models and introduces our CH-
based degradation severity index for ML data assets, while Section 6.4 explains how
to compute it. Section 6.5 reports the experimental evaluation of our approach on
the Belgium Traffic Sign Classification Benchmark (BTSC). Finally, Section 6.6
draws our conclusions.

6.2 Estimating Severity of AI-ML Models’ Data
Assets Degradation

ML model degradation is noticed when the accuracy in production deviates sen-
sibly with respect to the accuracy measured in validation. Our approach allows
a fast estimate of the severity of models’ performance degradation due to spuri-
ous additions to training sets. It is designed to be ML model-independent and
computationally lightweight. The approach consists of two major components: an
held-out data set generator and a convex-hull engine. Our notion of held-out data
set should not be confused with the simple hold-out [152] technique used for ML
model validation, where some manually labeled data kept aside from the training
set are used for model validation purposes. Rather, we take a validation-agnostic
point of view: ML model training can use either simple hold-out or, more probably,
cross-validation alternating training and test data.

Whatever the validation technique, checking the performance of ML models
against an additional held-out data set has become customary when models are
trained using uncertain data, i.e. data that may or may not be representative of the
data space at deployment [153]. Our approach is to start from the training set to
generate an held-out data set that can be used as a “gold standard” [153] for quick
degradation assessment. Our convex hull engine comes in at this point: we use
changes in convex hull of the classes computed by the ML model under assessment
on the held-out data set to estimate the severity of the model’s degradation. It is
important to remark that if the training set is later added to, our technique allows
to fuse successive severity estimates, in the line of data uncertainty measures based
on Dempster-Shafer theory of evidence [151]. In the ML lifecycle, held-out data
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sets are mostly used during the training phase for early stopping, i.e. stopping
training when the error on the held-out data set increases, in order to prevent
model over-fitting. For the purposes of this thesis, we refrain from interactive use
of the held-out data set, as the error on the held-out data set may fluctuate during
training. We use held-out data only after training, in order to provide a quality
benchmark for trained models.

6.2.1 Using Latent Variables to build the Held-out Data
Set

In principle, the held-out data set can be built by manually selecting labeled data
points that are considered certain (e.g., because they come from trusted sources
or were measured at a time where no spurious data injection was possible). Also,
held-out data may be composed of hand-picked data points whose classification
is going to be verified during ML model audit or certification at the request of
an auditing authority [154]. However, manual selection does not scale well, and
cannot easily generate held-out sets comparable to the training set size. In the
following, we discuss how, for the purpose of quality assessment, the held-out data
set can also be built in an unsupervised way, modeling training data as observables,
or manifest variables, and extracting held-out data as latent variables, which are
not directly observable.

Latent class models were first introduced by Lazarsfeld in the Fifties of the last
century [155] and were later made computationally efficient by Goodman [156].
Often, the observed variables are modeled as classifications assigned by different
judges. We follow the idea of using latent class models to correct symmetric
disagreements that appear to result from multi-rater bias [157]. The latent class
model underlies various unsupervised ML techniques, starting from the seminal
Auto Class model [158]. We propose an unsupervised latent class model to build
the held-out data set for the degradation assessment of AI-ML data assets.

Let us call D the ML data asset whose degradation we want to assess. We
define a window of observation W of k-dimensional (complete or partial) data
points taken from D. The scope of this window is decided heuristically, according
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to temporal locality (e.g., the data points may be repeated sensor readings) or to
spatial locality (e.g., the data points may be subset of pixels sampled from a set
of images showing the same object).

In order to distillate a single “golden” data point out of W , we consider k

latent variables, one for each component of the data points in W . We apply
the classic naive Bayes approach [156]: we assume the values of data in W (the
observed variables) to be all conditionally independent of one another, given the
value of each latent variable1. Let H, K, J , and L be the observed variables,
i.e. the components of the data points in W , and let XH , XK ,XJ and XL be the
corresponding latent variables, i.e. the components of the “golden” data point we
want to compute. For each latent variable XI (I ∈ {H, K, J, L}), our latent model
is:

p(i1, i2, ..., ik, xi) = p(i1|x)p(i2|x)...p(ik|x)p(xi) (15)

where the equality holds by our assumption of observable variables’ independence.
The estimate of the conditional probabilities in Eq. (15) can be carried out by
replacing the probabilities on the right-hand side by the corresponding estimates.

Several competing techniques (including max-likelihood) are available for com-
puting such an estimate. Recent research [159] has proposed the Laplacian rule of
succession as an alternative method to estimate the conditional probabilities of the
candidate x values. The classic Laplacian succession rule [160] provides a setting
where, repeating n times an experiment that can result in a success or failure, and
getting s successes, and n− s failures, we can estimate the probability of success
of the next time. In our setting, “success” corresponds to x = ij. For the sake of
computational speed, we use a pre-computed Laplace distribution [161], and esti-
mate each p(ij|x) as the probability associated to ij by the Laplace distribution
centred in x (see Figure 13).

1This assumption may of course require filtering out highly correlated features. This is a
customary practice in data pre-processing, and lies outside the scope of this dissertation.
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Figure 13: A differential Laplacian distribution. Values on the x-axis are the
difference between x and ij.

Once estimates of p(ij|x) have been computed for all possible values of x in the
representation interval, the most probable latent value is assigned to x. This
way, the values chosen to build the held-out data set are the ones for which the
agreement among the observable variables within the observation window W is
highest.

i1 i2 i3
1 2 0
1 1 2
2 2 1
0 0 0

Table 4: Three observable variables.

As a simple example (the complete computation carried out for our experiments
is described in Section 6.5.1), let us consider three integer variables (i.e., k = 3)
taking values in the interval [0 − 2] and an observation window W containing
4 tri-dimensional points. For each possible value of the latent variable x (one
of the 3 components of the golden data point), we compute p(x) and estimate
p(ij|x) by querying the Laplacian distribution centered in x (we obtain L(ij, x)).
Let us now estimate xi1 using Eq. 15. Looking at the first column of Table 4,
for xi1 = 0 we get p(xi1) = 0.25, to be multiplied by L(1, 0)L(1, 0)L(2, 0)L(0, 0).
For xi1 = 1 we get p(xi1) = 0.5, to be multiplied by L(1, 1)L(1, 1)L(2, 1)L(0, 1).
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For xi1 = 2 we get p(xi1) = 0.25, to be multiplied by L(1, 2)L(1, 2)L(2, 2)L(0, 2).
By comparison, the golden value for the first latent variable is xi1 = 1. The
computation can be repeated for xi2 and xi3 , obtaining the “golden” tri-dimensional
vector GV = (1, 2, 0).

6.3 A Degradation Severity Index based on Classes’
Convex Hulls

Most classification models make use of a distance metric in some n-dimensional
space to compute separation surfaces between classes. Generally speaking, poison-
ing attacks try to deform such surfaces at training time, in order to “push” future
data points across them at run-time. Intuitively, the severity of an adversarial
input to an ML model is linked to the attack’s effectiveness in achieving such de-
formation; but if the structure of the ML model being attacked is unknown, it is
difficulty to quantify it a priori. To achieve model independence for our severity
index, we look at the classes computed on the held-out data set by a virtual Near-
est Convex-Hull (NCH) classifier, which plays a similar role to the SVM reference
classifier we introduced in Chapter 3.

6.3.1 The Reference Model

Computational geometry models have been used since long to approximate class
regions of data classification models. In geometric terms, we can represent each
class by the smallest convex region enclosing all points in the class. Such an
envelope corresponds to the so-called Convex Hull (CH). Formally, the CH of a
set of points S in a n-dimensional space is the smallest convex set that contains
S. A point in S is an extreme point (with respect to S) if it is a vertex of the
convex hull of S. If S is finite then the convex hull of S is a convex polytope with
vertices, edges and facets making up its boundary. Figure 14 shows the convex
hull of a set of bi-dimensional points.

The “hard-margin” version of the NCH classifier model assigns a data point
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Figure 14: The convex hull of a set of bi-dimensional points.

x to the group of training points whose CH is closest to x. Performing NCH
classification involves solving an optimization problem to find the distance of the
input object to each class. Starting from the Eighties, several algorithms for doing
so have been proposed under the general heading of finding the minimum distance
between convex sets [162]. The NCH model has the property that the extent of
proximity of a test point x to a given class is determined without taking into
consideration objects from other classes. In classic separable cases, however, a
problem arises if the object x to be classified lies inside the CHs of two or more
classes, since its distance to these CHs is equal to zero, leaving the classification of
x undetermined. This problem was solved by introducing the soft-margin version
of the NCH classifier [163], where overlap between a data point x and a given class
C’s CH is penalized linearly or polynomially.

6.3.2 CH Deformation

For the sake of speed, we do not directly apply NCH classification to compute our
severity metrics. Rather, we compute the deformation of the CHs of the classes
computed by the ML model M under evaluation on an held-out data set derived
from M ’s training set. Intuition suggests that for each point p to be classified,
the best choice for an attacker would be to cut the CH point that is closest to p.
Figure 15 shows the effect of cutting a CH point: the closest CH to the candidate
point x, originally the one depicted in red (upper part of Figure 15), becomes
the one depicted in green after one point of the red class’ CH has been removed
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(lower part of Figure 15). This cut corresponds to a CH deformation, as stated in
Theorem below.

Figure 15: The link between classes’ CH deformation and NCH classification ac-
curacy.

Theorem. For any point p outside the CH of a class C, the point c ∈ C closest
to p lies on the CH of C.

Proof. Without loss of generality, let us consider p as the origin of a system of
coordinates, and let us fix the direction of the x-axis along the line connecting p

and c. Then, c is the point of C with the smallest x coordinate. Therefore c lies
on the CH of C.

In the following, we will assess the severity of the degradation of a generic ML
model M via the deformation of the CHs of the classes computed by M on a
held-out data set.

Definition. Given a model M , let CH(C) be the convex hull of a class C of the
VNCH model corresponding to M . If M is modified by a change in a data asset,
resulting in a model M ′, we define the severity S of the degradation as follows:

S = | CH(C) ∪ CH(C ′) |
| CH(C) ∪ CH(C ′) | + | CH(C) ∩ CH(C ′) | (16)
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where |CH| denotes the area within the convex hull CH and C ′ is computed by
the VNCH model corresponding to M ′ on the same set of data points belonging to
model M’s class C.

Of course C ′ ̸= C, as different data assets were used for training M ′. Specifically,
C ′ may miss some points that were in C and include some points that were not
in C. Note that, when no point of CH(C) is missing in C ′, and any additional
point of C ′ fall inside CH(C) (for example, when C = C ′) S = 1/2. Our severity
index S is modeled after the Dempster-Schafer measures used in data quality [151].
Indeed, such measures are able to represent incomplete knowledge, and update it
as new information comes. We looked for the simplest representation that was at
the same time easy to compute and provided the following properties:

⋄ Representation interval: Our severity index S takes values inside the interval
[0, 1], which helps comparing it to individual data assets’ quality measures.

⋄ Weak Monotonicity: S is weakly monotonic with respect to random points’
addition. Given two sets D and D′ of random data points with D ⊆ D′,
S(D) ≤ S(D). This property is also held by most data quality indexes [151].

6.4 Computing the S index

There exist several methods for computing the CH of a set of finite number of
points in a Euclidean space. Discussions on which is the best performing CH
algorithm are outside the scope of this thesis. We used Quickhull [164], which is
able to compute the convex hull in 2D, 3D and higher dimensions with the average
time complexity of O(nlogn). The recursive nature of the Quickhull algorithm
allows a fast implementation and proves efficient in practice, though there are also
variants of the algorithm that can make it run much faster2.

2When needed, it is possible to approximate the CH of the union with the union of the CHs,
and the CH of the intersection with the intersection of the CHs. This yields O(|CH|) complexity,
where usually |CH| << n.
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6.4.1 Aggregation

Once class-based S indexes have been computed, they need to be aggregated to
provide the degradation metrics for the entire model. Several aggregation tech-
niques for uncertainty measures have been proposed [165], which can be briefly
summarized as follows:

⋄ Averaging: This technique aggregates numerical data points by taking their
average or median.

⋄ Bayesian Systems. This technique takes data points as samples and com-
putes their typical value by means of a conditional Probability Density Func-
tion (PDF). The Bayesian approach is widely used in recommender systems
[166]. It also underlies the held-out data set generation proposed in this
dissertation.

⋄ Belief Models: In belief-based aggregation, data points are represented as
beliefs and some technique (usually, max-likelihood) is used to select the
most probable one. As the sum of beliefs over all possible data points does
not necessarily add up to 1, belief values are easier to generate and process
than probabilities.

⋄ Fuzzy arithmetics: Fuzzy numbers can be used to represent uncertain values;
in this case, aggregation is computed as fuzzy average.

⋄ Flow Models: Data points are modeled as paths within probabilistic processes
like Markov chains. Aggregation is performed by taking the most probable.

In order to estimate the overall level of degradation of the classification model
M , we need to compute an aggregation putting together the degradation indexes
SCi

associated to M ’s classes C1, C2, ..., Cn. We follow the literature [166] in using
the classic Ordered Weighted Averaging operator [167], where the order takes into
account the importance of each source. The overall severity index SM is computed
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as follows:

SM = 1
n

n∑︂
i=1

ωiSCi
(17)

where ωi = n−i−1
n+1 and n is the number of classes.

6.5 Experimental Evaluation

We carried out an experimental evaluation of our approach on the Belgium Traffic
Sign Classification Benchmark (BTSC) dataset [13], using a Convolutional Neu-
ral Network (CNN). BTSC is part of the widely adopted Belgium Traffic Sign
Dataset, which features multiple, calibrated images of traffic signs. The subset we
used for our experiments originally contains 62 classes of traffic signs with 4591
images in the training set and 2534 images in the test set. On average for each
physically distinct traffic sign three images are available with different position/ori-
entation, scale and illumination. The actual data set we used to train the CNN is
a gray-scale remapping of the original BTSC data. Based on both shape and color
features and types of message they communicate, we split BTSC into five macro
classes of traffic signs, namely warning, mandatory, stop and yield, prohibitory and
information. Table 5 summarizes the specification of the data set used for training
according to our remapping, whereas our manual prioritization of the five classes
is given in Table 6.

Class Type Shape Color

C1 Warning Triangular (pointing upward) Red
C2 Mandatory Circular Blue
C3 Stop and Yield Octagonal or Triangular (pointing downward) Red
C4 Prohibitory Circular Red
C5 Information Square or Rectangular or Diamond Blue or Red

Table 5: Summary information of traffic sign data set.
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Prioritization Type Class

1 Stop and Yield C3
2 Prohibitory C4
3 Mandatory C2
4 Warning C1
5 Information C5

Table 6: Prioritization of the classes.

6.5.1 Building the held-out data set

Here, we show the computation of an image belonging to the held-out data set
for our traffic sign classifier, applying the approach described in Section 6.2.1. For
the sake of conciseness, we show the generation process on binary versions of the
BTSC images. We define an observation window W composed of four data points.
Each data point is a sub-area of a training image, namely a square whose side is
four pixels, at the center of the 64-pixel side image. It is important to remark that
the definition of an observation window W based on spatial locality may require
zooming or other pre-processing activities, in order to normalize the window’s size
with respect to the entire image. However, this is not the case for the BTSC train-
ing set, where cropping and zooming were applied, as customary, in the training
set construction phase of the ML lifecycle, yielding a uniform set of images.

Figure 16: A binary image from the training set (above) and 16 pixel areas included
in the window of observation W (below). We used the classic Otsu’s algorithm for
thresholding [1].
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Figure 16 shows four binary images taken from the classifier training set (above),
and the 16- pixel (4x4) sub-areas included in W (below). Figure 17 shows a “golden
point” distilled from the window W (right-hand side) and the image including it3

(left-hand side). This lightweight technique allows for fast computation of large
held-out data sets.

Figure 17: A “golden” data point (left) and the held-out set image embedding it
(right).

6.5.2 Noise Insertion

In our experiments, we considered degradation due to the insertion of random
noise data into the training set of an ML model. This type of poisoning attack
degrades the performance of the ML classifier by adding new (spurious) data to
the training set that may cause some held-out points to be mis-classified.

In order to assess degradation severity, we calculated the CH of each class before
and after the insertion, computing CH deformation. We repeated our experiment
considering varying percentages of spurious additions to the training set. Some
relevant results are shown in Figure 18, where additions of spurious points amount
to about 10 and 20 percent of the original training set. Each row shows the CH
of a class i) before the insertion, ii) after the insertion, and iii) their overlap. For
cases where the noise insertion has caused changes in the classification, one of the
mis-classified images is also shown.

Case (a) shows the circumstance where 10% spurious additions resulted in
no change of the convex hull of the class under consideration (i.e. C1). All the
points in this class were correctly classified and eventual changes in classification
suffered by the other classes did not affect it. Looking at case (b), also concerning

3The other pixels of the image were computed by simple majority voting.
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Figure 18: Example of convex hull (CH) deformations as a result of poisonous
additions. Rows (a)–(e) show the CH of the class under evaluation i) before the
attack, ii) after the attack, iii) their overlap, and iv) greyscale representation of
one of the mis-classified images (when applicable).
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class C1, we notice that by adding 20% spurious data, the CH of the class has
slightly changed. In particular, a point that before the noise insertion was on the
class’ CH has changed class after it, causing a decrease in the area defined by the
hull. The image of the traffic sign for which the classification is no longer C1 is
shown. In cases (c) and (d), which refer respectively to classes C2 and C3, the
CH deformation is more pronounced. Of particular interest is the deformation for
class C3. This set of points is relatively small, but it is clearly visible that the
classification change of an extreme point with very limited support (i.e., which is
far from the other points of the class) has led to a large deformation of the CH.
Lastly, like what happened in case (a) for class C1, in case (e) the CH of class C5

has not changed, but the cause is different: the few mis-classified points fell all
within the CH and hence, mis-classification did not affect the class perimeter.

Results in Table 7 show that doubling the insertion of spurious data only in-
creases marginally the index. Indeed, this trend is in accordance with the negligible
variations in the per-class and overall accuracy in classification of the ML model.
The Pearson correlation index between variations of our index and accuracy vari-
ations over four randomly chosen runs of the model was ρ = 0.75, suggesting that
our index’s changes can be used to predict accuracy variations.

Class
S Index

10% Spurious Data 20% Spurious Data
(Accuracy: 0.972) (Accuracy: 0.972)

C1 0.501 0.501
C2 0.500 0.501
C3 0.500 0.503
C4 0.501 0.500
C5 0.500 0.500
SM 0.2499 0.2504

Table 7: OWA-based aggregation of S indexes associated to each class for a sample
run.
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6.6 Conclusion and Outlook

In this Chapter, we have proposed a quantitative technique for assessing the degra-
dation of ML models’ data assets due to injection of spurious training data. Some
work remains to be done to bridge the Index computation with the setting of the
hyper-parameters of the ensemble model introduced in Chapter 4.

6.6.1 Setting Ensemble Hyper-parameters based on the In-
dex

Generally speaking, ML models’ performance depends primarily on the selection
of hyper-parameters for that particular problem. In the case of ensembles, de-
termining the exact hyper-parameters for the base learners and the meta-learner
is difficult and complex as the hyper-parameter space is larger [168]. Regarding
training data, research has focused on the hyper-parameters driving the training
process (e.g, determining the training to test data ratio that maximises the ac-
curacy of ensemble models [169]). The hyper-parameter of interest in our case is
the number k of training set partitions, and the optimization target is certified
accuracy rather than accuracy. In our approach, the index’s changes are used to
trigger partition adjustment as they predict accuracy variations. The idea is to
use a threshold on index-predicted accuracy variation to trigger re-partitioning of
training data. For the computation, we plan to follow the approach of previous
work [170] in using simple yet effective evolutionary methods to tackle the ensem-
ble optimization. We plan to map the ensemble partitions to virtual particles,
define the position of each particle by the hyper-parameter value (the number of
parts k), and then use an evolutionary optimization algorithm to proceed towards
the best value in terms of certified accuracy, integrated with the standard metric
Mean Magnitude of Relative Error (MMRE) used for ensemble hyper-parameters
optimization [171]:

MMRE = 1
n
∑︁n

t=1 MRE
(18)
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where n is number of samples.
We will further develop this approach in our future work.

6.6.2 Countermeasures

Of course, once degradation has been detected and measured, some countermea-
sures should be taken. Filtering would require applying the usual criteria for outlier
identification; but, as our experimentation suggests, spurious data values can be
“inliers”, whose filtering is burdensome and error-prone [172], unless humans are
kept in the loop [173]. We argue that a more viable strategy for alleviating ML
data assets’ degradation is the addition of compensation data that counterbalance
the damage caused by the insertion of spurious data [174]. The acceptable amount
(and collection cost) of compensation data depends on the specific data asset to
be restored. In principle, contributing l labeled data that result in an increase
∆SM of the severity index for a model M should require the addition of enough
compensation data items to offset ∆SM , bringing SM back to the original value.
We believe that the notion of compensation can be at the basis of collaborative
protocols for ensuring ML data asset quality, as the actor doing the compensation
needs not be the same who contributed the initial data. The next Chapter will
present a Distributed Ledger-based approach based on the notion of reciprocity,
where the computation of compensation is used as Proof-of-Useful-Work (PoUW)
[174].



Chapter 7

Integrating DLT for Training
Data Trustworthiness

This chapter outlines a method for improving the trustworthiness and quality of
training set data, which is based on using a Distributed Ledger (DL) based on Proof-
of-Useful Work (PoUW), where the work required from a candidate contributor to
the DL holding training data set improves the value for ML inference of the other
points already in the ledger.

7.1 Introduction

The identification of threats to ML models’ data assets is pointless if it does
not lead to choosing safeguards or countermeasures (a.k.a. security controls)

to counteract or alleviate the attacks’ impact. In this Chapter, we put forward the
novel idea of using an ML-oriented distributed consensus mechanism to support
ML models’ training set selection, using Distributed Ledger Technology (DLT) as a
data protection framework. We envision a radical change in the domain, when or-
ganizations adopting ML models will start to use DLT technology to gain assurance
about the integrity and trustworthiness of their models’ training data, building ro-
bust ML-based systems that are immune to external interference. Developing on
this idea, we investigate the notion of Reciprocally Useful Work (RUW) across ML

81
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data assets, forcing proposed additions to the training set to “pay the price” of
useful updates to other assets. Even if an attacker succeeds in inserting spurious
labeled data into the training set, the work he has performed to that end will have
benefited other labeled data to compensate for the effects of the poisoned value.
Under reasonable assumptions about the ratio between malicious and honest users,
improved data values will offset the effect of insertion and append attacks.

7.1.1 Distributed Ledger Technology

DLTs, often going under the collective name of blockchain, support a community
of users in agreeing on the current state of a distributed data structure, the Dis-
tributed Ledger (DL). Permissioned DLTs support access control policies to the
ledger content, while non-permissioned DLTs allow any user to take part to the
protocol. The DL state is updated via a distributed consensus protocol, which
conditions any update to the ledger by having reached an agreement among par-
ticipants. In the literature, many consensus mechanisms have been proposed. The
first use of a consensus mechanism was implicitly defined by Bitcoin [175], which
introduced the Proof of Work (PoW) mechanism as consensus. PoW is difficult
to generate but easy to verify. The idea came from Hashcash [176], a protocol
originally designed for spam prevention. The Hashcash Protocol works as follows.
Suppose a client wants to send an email to a server. At the beginning, the client
and the server both agree on a hash function H() which maps an input string to
an output string of length n. Then, the email server sends a challenge string c to
the client, who must find a string x such that H(c||x) starts with k zeros. Since
H() has pseudorandom outputs, the probability of success in a single trial of this
PoW puzzle is very low. So providing a solution is a proof of having spent CPU
time (work) in multiple trials. The operation of a DLT consensus protocol is only
slightly more complicated. Depending on the network architecture and blockchain
type, some or all DLT users update the ledger by adding blocks to it. The creation
of each new block to be added to the ledger is performed by a participant who
is known as the leader of the consensus protocol in that execution. This leader
is elected by a mechanism of election, consisting of a PoW puzzle competition
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followed by implicit voting to reach an agreement, a sequence called Nakamoto
Consensus.

7.2 Outline

In this Chapter, following [174], we discuss the use of DLTs to increase the quality
of training data and the trust in their integrity. Regardless of the alleviation
techniques used to improve the robustness of ML models, training data could be
poisoned by stealthy attackers like compromised sensors, which can contribute
to training set with poisoned points. Our scheme complements the alleviation
procedure described in Chapter 4, inasmuch it is aimed at making less convenient
for the attacker to insert poisoned data in the training set.

Specifically, we elaborate on the idea of achieving trustworthiness of ML train-
ing data via a DL, which supports community-wide agreement on the data used
to express reputation [177] or to train ML models. Blockchain’s original consensus
mechanism based on the PoW notion supports trust in properties of ledger trans-
actions like order and, indirectly, provenance but was not designed for establishing
collective trust in properties of ledger content (e.g., being genuine representation
of an external world phenomenon). In fact, as previously mentioned, PoWs have
been introduced to prove that a certain amount of effort was spent and force ma-
licious users of the ledger to shoulder a too large computational burden. PoW
schemes are decoupled from the task they are attached to. The work (and energy)
expended is generally not useful for anything except proving that some work has
been done. Alternative lines of research focused on Proofs of Space (PoS) [178]
where any user wishing to add to the ledger must prove she has set aside some
disk space. Recently, the notion of Proof-of-Useful-Work [179] has emerged, where
the proof-of-computation needed to access the ledger concerns a problem whose
solution is actually useful for the application(s) supported by the ledger itself.

A major difference between our RUW protocol and other approaches to PoUW
reported in the literature (see Section 7.3) is the notion of reciprocity. Namely,
rather to have DL miners computing a collectively useful PoUW, we rely on work
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exchange: each agent is asked to perform a RUW computation that benefits some-
one else, and will be able to update the ledger only if someone else (not necessarily
the same person as the beneficiary) reciprocates. In our approach, instead of doing
a part of a single collaborative task, each miner executes a task useful for someone
else. This way, a single DL can be used for supporting multiple applications or
ML models, each having its implementation of RUW. Our approach also confines
the scope of an attack: each poisoned value added to the ledger will only affect the
outcome of the application in which the attacker is directly involved. Finally, our
approach directly compensates the decrease of data utility due to hostile content
injected on the ledger with an increase of the utility of some other data. We claim
that, under reasonable assumptions about the ratio between malicious and hon-
est users, the data whose utility will increase will be most of the time an honest
contribution, compensating the disruption due to poisoning. Specifically, in our
consensus protocol, any participant x has to satisfy two conditions in order to be
able to contribute a sample sx to the ledger:

(1) x having delivered the result ry of a hard computation ry = C(sy) that
improves the quality of some other contributor y’ sample sy;

(2) Some participant z having delivered the result of rx = C(sx).

The remainder of this Chapter is structured as follows. Section 7.3 discusses
in depth the ideas behind Proof-of-Useful-Work; our proposed reference problem
(Hamiltonian path computation) is discusses in Section 7.3.1. Section 7.4 describes
our DL consensus protocol based on RUW, while Section 7.5 presents an evaluation
of its properties. Finally Section 7.6 draws our conclusions.

7.3 Proofs of Useful Work in the Wild

The original PoW mechanism of blockchain involves a considerable expenditure of
both energy and computation and has neither meaningful applications nor inter-
est in itself. In fact, the computational work done by blockchain miners serves no
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useful purpose beyond determining accounting rights among participants and se-
curing the system itself, thereby ensuring Sybil-resistance [180]. In order to tackle
the environmental drawbacks of PoWs, there have been several attempts to con-
struct consensus schemes that convert the meaningless work into practical tasks.
Early efforts include Primecoin [181], which is based on searching for Cunning-
ham and bi-twin chains of prime numbers, and Permacoin [182], which repurposed
Bitcoin’s mining resources as a distributed archival storage system. In particular,
Permacoin relies on Proof-of-Retrievability, which requires miners to prove having
access to a given copy of a file to successfully mint new coins. Both Primecoin
and Permacoin have failed to reach wide adoption. For the former, it is still under
discussion whether it is actually useful to find long sequences of prime numbers,
whereas for the latter it is claimed that the protocol recovers only a small fraction
of mining resources, so it cannot completely replace PoW.

The works proposed in [183] and [184] took a different approach to PoUWs,
where the computation invested by miners is used to solve classes of problems of
general utility. More specifically, the study in [183] focused on the construction of
a PoUW scheme whose hardness is based on different computational problems that
can be represented by low-degree polynomials, such as Orthogonal Vectors (OV),
3SUM and All-Pairs Shortest Path (APSP). Although the authors argue their ap-
proach may be seen as a delegation of computation that can provide PoUWs useful
for any type of graph problems reducible to OV, 3SUM or APSP, the actual link
between the work they propose and its subsequent useful utilization is somewhat
feeble. The idea behind the Resource-Efficient-Mining (REM) framework [184]
is to achieve PoUW by leveraging the Intel Software Guard Extensions (SGX),
which enable process execution in an isolated environment conferring hardware
protections on user-level code. Indeed, miners use or outsource SGX CPUs for
computationally intensive workloads and have to prove that a certain amount of
useful work has been devoted to a specific branch of the DL. Then, trustworthiness
of the workloads is ensured by means of a hierarchical attestation mechanism. Also,
the authors show that REM addresses two major limitations identified in the com-
peting Proof-of-Elapsed-Time consensus mechanism (originally invented by Intel
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and currently supported in the Hyperledger Sawtooth blockchain platform [185]),
namely the stale and broken-chip problems.

The idea of directing computational resources to the solution of some ML-
related task is currently emerging as a major line of research on PoUW. The
protocol proposed in [186] has put forward the notion of Proof-of-Learning by
drawing inspiration from ML competitions, such as the ones hosted in Kaggle and
Codalab platforms, and its ultimate goal is to create an open repository of state-
of-the-art ML models and datasets. The process involves three different types of
actors, namely suppliers, trainers and validators, who, depending on the role, can
either host an ML competition, train and propose models, or make decisions about
new blocks and ranking. The mechanism used to select the members of the com-
mittee of validators is built upon Algorand’s cryptographic sortition [187], which
randomly chooses a subset of nodes according to per-user weights, providing each
node with a priority. As a consequence, the scheme in [186] inherits some of Algo-
rand’s open issues related to preventing collusion between actors. The solution in
[188] is also based on ML competition, but the focus is on privacy-preserving data
mining. In [189], a draft design of Proof-of-Deep-Learning (PoDL) is discussed.
PoDL is an improved PoW-like scheme where miners are asked to perform deep
learning training and submit blocks along with their trained DL models as proofs.
The block containing the DL model which provides the highest accuracy is then
fully accepted by the network. The protocol deals with the problem of model over-
fitting by means of a block acceptance policy. However, PoDL has some inherent
limitations. First, the verification process is not efficient, as full nodes are required
to repeat the training. Second, strong assumptions are made on the honesty of
the data provider. Coin.AI [190] is another theoretical proposal in which mining
involves training a Deep Neural Network (DNN). The procedure for generating
the mapping from the input (the hash of the last mined block, the transaction
list and a nonce) to the DNN architecture is expressed as a context-free grammar.
Similarly, BlockML [191] proposes a system for supervised training of Neural Net-
works. Also, there are works investigating the concept of PoUW with the aim of
either integrating federated learning in the consensus process of DLs [192, 193] or
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of helping developers build their DApps while promoting cloud-based computing
[194]. Interest in developing PoUW-based solutions for AI also extends to projects
beyond academia. For example, in [195] a hybrid proof-of-work/proof-of-stake DL
called Personalised Artificial Intelligence (PAI) is used to train a DNN. In the pro-
posed system, miners process a separately allocated mini-batch and improve their
local models by sharing weight updates with their peers, while supervisors record
all messages and detect possible malicious behaviour during training. Other actors
involved in the protocol are verifiers and evaluators. At the core of the protocol lies
a novel way to derive nonces by means of a formula that takes into consideration
inputs and by-products of the ML training.

In the next Section, we will outline an alternative type of difficult mathematical
problem upon which we based our RUW scheme.

7.3.1 The Hamiltonian Path Problem

The Hamiltonian Path Problem (HPP) is one of the best-known traversal problems
which involves finding a path passing through all the vertices of a graph. According
to the standard graph notation, a graph G is a pair G = (V , E), where V is the
set of vertices and E is the set of edges. Formally, a Hamiltonian path (HP) is a
spanning path in a graph G, i.e. a simple traversal that touches each vertex of G
exactly once. If the endpoints of the visit are adjacent, the path can be extended
to a cycle and the corresponding variant of the problem is to find a Hamiltonian
cycle (HC). The origins of the Hamiltonian problems date back to the eighteenth
century, when William Rowan Hamilton proposed a puzzle known as the Icosian
game, whose objective was finding a HC along the edges of a dodecahedron.

Over time, the Hamiltonian problem has been examined through different lens,
and several variants of the original version have been proposed for both directed
and undirected graphs in different computational frameworks. A widely studied
extension is represented by the Travelling Salesman Problem (TSP), where a cost
function assigns an integer cost to each edge in the graph. Essentially, the TSP is
concerned with computing the most cost-efficient HC on a given weighted graph.
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Thus, an instance G of the Hamiltonian cycle problem can be easily turned into
an instance G ′ of the TSP by modeling the problem as a complete graph where
all edges of the original graph obtain weight 1 and all other edges obtain weigh 2.
If the original graph G has a HC, then the cost function assigns to each edge of
such cycle a cost of 1, and so G ′ contains a tour of cost |V|. Conversely, if G is not
Hamiltonian, then any tour of G ′ must use some edge not in E , i.e. has a length
of at least |V|+ 2.

Despite its simple definition, the problem of finding a Hamiltonian path, or
determining whether or not one exists, is computationally difficult for general
graphs [196]. In fact, both the directed and non-directed variants were two of
Karp’s celebrated 21 NP-complete problems [197]. The main difficulty of Hamil-
tonian problems lies in the fact that the large volume of data that needs to be
analyzed makes it extremely unlikely the existence of a polynomial-time algorithm
capable of solving the HPP for an arbitrary graph. An evidence of the complexity
is that determining Hamiltonicity1 by inspection is not trivial even for small-size
instances, and slight increases in the size of the problem result in a massive increase
in computational complexity. Therefore, the Hamiltonian problems are interesting
on their own because they are closely related to the long-standing question on the
relationship between the two complexity classes P and NP . These problems have
attracted the interest of computer scientists for many years due to their funda-
mental theoretical importance, as well as their broad spectrum of applications in
different fields, including computer graphics, cryptology, operations research and
genomics. Pre-computation of Hamiltonian paths across raster bit planes (e.g.,
portions having uniform pixel luminance) is a classic image pre-processing task.
It satisfies two properties of PoUW: being hard for all and being useful for some-
one. Its computation adds values to the image because makes standard image
pre-processing simpler, in view of training computer vision models [198, 199, 200].

In order to generally state the concept of Hamiltonian path in the context of
1Here we use the term Hamiltonicity to refer to graph properties that are related to both HCs

and HPs. Though, to be precise, the proper term used to designate graphs possessing only HPs
is semi-Hamiltonicity.
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digital image pre-processing, we adopt a graph-based approach. Since graphs rep-
resent a set of elements and a set of pairwise relationships between those elements,
these structures provide a natural way of representing images. In this thesis, we
consider only the non-directed graph version of HPP. Therefore, given an image
represented by means of a non-directed graph G, HPP determines whether a HP
exists in G (with an additional constraint, which will be discussed later). Intu-
itively, we treat every pixel in the image as a vertex in a graph. In addition, we
interpret the image as a complete graph, where each vertex is connected to every
other vertex by an edge (that is, E = V × V). Accordingly, the adjacency matrix
associated with these graphs contains all 1s with 0s on its main diagonal. The
reason why it is convenient to use a complete graph is that for such a graph the
existence of a feasible solution is always guaranteed. Since every vertex is con-
nected to every other vertex, it is always possible to find a HP or HC. Actually,
the number of HPs and HCs in a complete graph with n = |V| vertices is n! and
(n−1)!

2 , respectively.

7.4 The Proposed Protocol

For the sake of conciseness, we describe our protocol as a fully on-chain process, i.e.
using the DL as the support for executing operation on data as well as the storage
for the final data points. Our data operation are modeled as special primitives
on the chain (Figure 19). We assume all contributors to have access to these
primitives, and their code to have been supplied by some trusted third party (which
is offline when the protocol is executed). This choice will allow us to focus on the
protocol’s steps rather than on precautions for ensuring code to be trustworthy.
We remark that the hard Hamiltonian computation has to be implemented off-
chain if it has to play the full role of PoUW, as on-chain computation would
affect the CPU time of the DL node being updated rather than the one of the
updater. However, as the result of the computation is checked on-chain, pushing
the contract off-chain can be done via a simple challenge pattern [201]. Also, on-
chain computation of the Hamiltonian will provide the desired effect in terms of



7 Integrating DLT for Training Data Trustworthiness 90

improving the data utility. We are also well aware that off-chaining other steps of
the protocol may be preferable for performance reasons as well as for preventing
Denial-of-Service (DoS) attacks by imposing some marginal effort also on who
proposes the Hamiltonian challenge, but we will not deal with this problem in this
thesis.

Figure 19: Phases of the proposed protocol.

In order to illustrate the image operations carried out during the first phase of
the proposed protocol, we make use of a 256-level gray-scale image taken from
the BTSC dataset [13]. In gray-scale images, pixel intensity values are integers
ranging from 0 (black) to 255 (white). The intensity of each pixel is composed
of 1 byte, so they can be represented by an 8-bit binary sequence. The proposed
protocol consists of four phases, which are detailed hereinafter.
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7.4.1 Phases

7.4.1.1 Challenge preparation

The first phase of our protocol is challenge preparation on the part of a poten-
tial contributor. The generation of the challenge involves three main steps: (i)
changing image representation, (ii) regionalized permutation, and (iii) problem
hardening. Suppose the 8-bit gray-scale image shown in Figure 20 is the one to be
used to create the challenge.

Figure 20: An 8-bit gray-scale image of size 194× 193 pixels.

The first step consists in changing the representation of the image through bit-
plane decomposition and enlargement [202, 203]. An 8-bit image may be considered
as being composed of eight 1-bit planes with plane 1 containing the lowest-order
bit of all pixels in the image and plane 8 all the highest-order bits. For ease of
presentation, henceforth we consider only the 5 × 5 pixel portion of the original
image shown in Figure 21.

Figure 21: A selected 5× 5 pixel portion of the image.

By using the traditional binary bit-plane decomposition [204], the image can be
split into eight binary bit planes. Figures 22(a) through (h) are the eight bit planes
of the selected 5×5 pixel portion, with Figure 22(a) corresponding to the highest-
order bit. Image enlargement generates a new representation of the image in which
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 22: Bit planes 8 through 1.

pairs of consecutive bit planes are grouped together and placed adjacent to each
other. The transformed image will be composed of four parts corresponding to the
four groups of bit planes created as above. Therefore, starting from an image of
size M ×N , we create an image of double the size. By applying these operations
to our selected 5 × 5 portion, we obtain four sub-squares which form a 10 × 10
expanded image. In this new representation, each unit (or pseudo-pixel) contains
only two bits.

In the second step, we compute a permutation of the pseudo-pixels of the en-
larged image. As previously mentioned, we assume images are represented by a
fully connected graph, where pixels correspond to the vertices and every pair of
distinct vertices is connected by a unique edge in the graph. Clearly, finding a
permutation of the pixels amounts to finding a HP by a one-to-one correspon-
dence between the n elements of the permutation and the n vertices of the graph.
In the process of visiting each pseudo-pixel, we enforce the constraint that the
Hamiltonian path enters and exits each region exactly once within each of the
four sub-squares of the enlarged image, where by regions we mean groups of pixels
having in common k bits in their binary code. Basically, the idea is to traverse
the four sub-squares by visiting all the pseudo-pixels they contain in lexicographic
order, starting from the first sub-square and then moving to the others. Since our
pseudo-pixels are represented by two bits, k is equal to 2, so there are 2k = 4
possible combinations of bits (00, 01, 10, 11). It follows that when k = n, the no-
tion of pseudo-pixel coincides with that of pixel, and it is exclusively in this case
that the path visits all the pixels in order of intensity values – all the shades of
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gray from black to white. Figure 23 shows the HP generated on the expanded im-
age, where the dotted lines delimit the four sub-squares of pseudo-pixels, and the
blue cell and the green one are the starting point and the ending point, respectively.

Figure 23: Hamiltonian path within the expanded image.

Once the HP has been generated, the pseudo-pixels locating in each of the four
sub-squares have changed their position. At this point, the expanded image is
restored to its original size M × N (5 × 5, in our case), thereby forming a new
permuted image.

The fact that no worst-case efficient algorithm exists to find a HP or HC implies
that the only known way to determine whether a given general graph is Hamilto-
nian is to undertake an exhaustive search. However, we do have to keep in mind
that while finding an Hamiltonian path is a NP-complete problem in general,
there is no guarantee that finding one in a specific image will be difficult enough
for our purposes. Also, it is evident that the instance specific characteristics have
a significant impact on the intrinsic difficulty of the problem. So the rationale
behind the third step is that in order to achieve the overall hardness property,
it is necessary to implement a mechanism to increase the difficulty degree of the
instances. To capture the hardness of the problem represented by a particular
instance of both the HPP and the closely related TSP, diverse direct and indirect
metrics have been investigated in several works [205, 206, 207, 208]. For example,
in [209] the authors converted the TSP optimisation problem into a binary decision
problem (under the question can an algorithm find a solution with a tour length
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less than l?) and they correlated difficulty with the existence of a phase transition,
suggesting that the dimensionless ratio l√

n·A could be used as a critical parame-
ter controlling the transition from easy to hard, where n and A are the number
of cities to visit and the average inter-city distance, respectively. Typically, the
phase transition occurs at l√

n·A ≈ 0.75. Since the strategy in [209] required to
find the optimal or a sub-optimal solution, entailing a considerable computational
effort, the work carried out in [210] proposed an alternative approach to infer the
complexity of the instances by analyzing different spatial properties, including the
statistical distribution of distances. Specifically, in order to discriminate easy- and
hard-to-solve instances, some parameters were derived from the distribution and
correlated with the hardness value obtained from

⃓⃓⃓
l√
n·A − 0.75

⃓⃓⃓
. In our context,

distances between cities can be interpreted as the differences between the binary
representation of the pixels within the image. Since in natural binary code the
value of each bit depends on its position, we believe it is reasonable to calculate
distances by means of the arithmetic distance instead of the Hamming distance. In
fact, while the arithmetic distance is proportional to the binary difference of two
values expressed in binary code, the Hamming distance does not account for posi-
tional values. For instance, consider the difference from a pixel having a gray level
128 (10000002) to a pixel having gray level 127 (011111112). While the arithmetic
distance between the two values is just 1 bit, the Hamming distance is the maxi-
mum it can be for 8-bit pixels, i.e. 8 bits. We can roughly estimate the distribution
of distances by considering the ratio between the number of difference values in the
image (computed using arithmetic distance) and the total number of all possible
differences. So, the protocol’s step 3 performs a modification of the probability
distribution of distances (which increases the value differences in a controlled man-
ner) that will make sure the Hamiltonian problem published as a challenge belongs
to a category of hard instances, unsuitable for heuristics or approximate searches.
When we use a 256-level gray-scale image, the number of potential differences is
modest because pixels may have a maximum difference of 255, thus the higher the
image resolution, the harder the problem can be made to solve. Intuitively, the
idea is to obtain an image whose pixels tend to occupy the entire range of possible
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intensity levels and, in addition, tend to be distributed uniformly. Once the above
operations have been performed, the Hamiltonian challenge is declared open on
the ledger.

The last step of this first phase is the on-chain generation of a random number
corresponding to the time period the contributor has to wait before she is allowed
to solve a challenge. Such a number is received by the contributor in the form of
a token that becomes valid after the defined random amount of time to wait has
elapsed2. This ensures the enforcement of a delay (not known to the contributor
in question) on the contributor’s actual ability to solve another challenge.

7.4.1.2 Challenge solution

In the second phase of the protocol, challenge solution, which is asynchronous w.r.t.
phases 1 and 3, the contributor searches for an open challenge while presenting the
token received at the end of the previous phase. The search fails if the prescribed
random time has not yet elapsed, whereas in the positive case, the contributor is
allowed to solve the challenge she found. The resolution of the challenge consists
in computing a permutation of the pixels in order to obtain an image equivalent
to the original one (from which the challenge was derived). In other words, the
contributor has to calculate a HP, and once generated, the result is compared with
the original image. In case the two images match, the contributor is allowed to
publish the solution, at the same time getting the token for condition (2) and
leaving a token for condition (1) for the other contributor to retrieve.

7.4.1.3 Token acquisition

In the third phase, token acquisition, the contributor searches the ledger for the
solution to its own challenge, retrieve the condition (1) token and leaves a condition
(2) token.

2Attempts to use a token that is not yet valid will not succeed. For the sake of simplicity,
this is not shown in Figure 19.
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7.4.1.4 Trusted data update

Finally, phase 4 is trusted data update, where the contributor officially publishes
the original image on the ledger, with both tokens.

7.4.2 Discussion

As can be clearly seen in the representation of Figure 24, our procedure allows us
to calculate a Hamiltonian path across four different levels, while preserving infor-
mation about original bit depth. The fact that our traversal proceeds by visiting
each image unit on the basis of internal regions is the key of its usefulness. Once
the solution of a given challenge is published, the problem of determining which
pixels of the original image have a certain configuration in specific bit positions
is greatly simplified. For example, consider the two lowest bits of any 8-bit pixel.
In order to identify all the pixels ending with, say, the value ‘10’ (that is, having
pixel intensity equal to 102), it suffices to access the fourth sub-square, and therein
you will find all the pseudo-pixels with the searched value in sequence. Therefore,
calculating a region-based Hamiltonian path within digital images is useful both
for determining the relative importance of each bit in the image and for having a
direct access to the set of pixels that contribute to the total image appearance by
the same values in specific bit positions.

Figure 24: Hamiltonian path across bit planes.
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7.5 RUW Protocol Evaluation

The goal of our RUW scheme is to prevent manipulation attacks on training data
by imposing reciprocity of useful work: any manipulation that affects a data point
(e.g., appending a spurious value) will require some work that will improve the
quality of another value. In this Section, we first discuss how our protocol delivers
reciprocity; then we discuss the impact of reciprocity on data value. Here we are
not interested in the mechanisms used for the composition and the concatenation
of the blocks to the DL, but we assume that blocks are chained using hashes of
previous transactions, as it happens in public DLs such as Bitcoin or Ethereum.

The core of our proposal is that RUW participants are requested to perform
computation in a reciprocal way: each participant should satisfy conditions (1)
and (2) before updating the ledger, contributing with the solution of a challenge
and getting a benefit from the computation performed by someone else. In the
standard framework of indirect reciprocity, pairs of participants, one donor and
one recipient, cooperate on occasion even if they will not meet again. There are a
couple of assumptions we have to make in order to prevent malicious behaviors:

⋄ Challenges are randomly assigned to participants, each one selected among
the available pool of submitted samples;

⋄ Each participant cannot solve a challenge she submitted.

With the first assumption, we want to avoid that malicious participants cooperate
in poisoning the training set, by submitting fake samples with known information
which could ease the solution of the challenges; in this case one could solve the
challenge of the other and then together they will be allowed to modify the dis-
tribution ledger. Therefore, we introduce a random waiting time, generated by an
on-chain trusted module, before the contributor of a challenge can solve another.
Being unknown to the participant, this random waiting time makes it unpractical
for an attacker both to try to solve its own challenge (which is likely to be in-
tercepted by a honest participant during the delay) and to collude with another
attacker (effective collusion would require sharing the waiting time duration, which
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is only computed on-chain). In this setting, occasional success of collusion cannot
of course be excluded. We argue nonetheless that it can be controlled via classic
exponential back-off, enlarging the time interval in which the random delay is cho-
sen [211]. We liken our collusion setting to the collision attack scenario, where an
attacker connected to a CSMA/CD access control network tries to disrupt com-
munication by generating collisions with others. In our case, the “collision” event
models the success of a collusion strategy, i.e. the attacker being able to intercept
and solve a challenge posed by herself or by an accomplice, contributing nothing
to the data point’s value. It is well known that the success rate of CSMA/CD
collision attacks depends on two factors: (i) traffic, expressed as the expected
value of the number of competing terminals that attempt to access the network
simultaneously, and (ii) the attacker’s capability of monitoring accesses to the net-
work. The security literature [212] shows that even when accesses (in our case,
challenges) are fully monitored by the attacker, the predictability of the collisions
(in our case, intercept) is very sensitive to changes in the delay parameters, even
with a large number of competing terminals. Following this line of reasoning, we
argue that a random token validity will force in most cases malicious participant
to solve another party’s challenge before being allowed to submit a fake sample.
So, the attacker will incur in a cost c to compute the solution, giving a contribute
∆ to the improvement of the whole model, that compensate the damage produced
by the submitted fake sample.

7.5.1 Value Analysis

Let us assume that a training set D has an overall value V (D). The append attack
adding a random value v changes the dataset value to V (D + v). So we can call
∆V = V (D+v)−V (D) the disruption achieved by the attacker. In insert attacks,
we have to pay attention to the position in D where v is inserted, as the decrease
in value of the dataset may depend on that; if so, we should consider the dataset’s
Shapley value [213] by taking the average of the value decreases across all the pos-
sible insertion points for v. We also remark that the quantification of V (D) (and
of V (D +v)) for a given problem P may be done on a simple model rather than on



7 Integrating DLT for Training Data Trustworthiness 99

the actual ML model that will be used to solve P , with the advantage of having
a simpler computation of the disruption. We use D to build a Nearest-Neighbor
model for P and compute the disruption due to the injection of a value v in D

by using a test set T , and counting the number of elements in T for which v is
the closest value. Figure 25a and Figure 25b show (some) data belonging to our
training and test sets.

(a) Training set. (b) Test set.

(c) Poisoned image.

Figure 25: Training, test and poisoned data items for the reference NN model.

Figure 26: NN-based classification.



7 Integrating DLT for Training Data Trustworthiness 100

Figure 26 shows the operation of the NN model: an image from the test set is
classified according to the label of the item in the training set which is closest to
it.

Figure 27: The effect of the poisoning attack on the NN model.

Figure 25c shows a poisoned image prepared by the attacker. As shown in Figure
27, the injection of the poison v introduces an error in the classification, as v be-
comes the nearest neighbor to the test image.

Figure 28: The remediation action by our protocol.
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Thanks to our protocol, however, the injection of v also guarantees that some data
point v′ in the training set is modified to v′

h by adding the Hamiltonian path to
it. The total value variation can be written as ∆V = V (D + v − v′ + v′

h)− V (D).
Figure 28 also shows that the increase in value is enough to move the training

image v′ closer to the test one, offsetting the effect of the poison v. Of course,
this would not happen if V (D ∗ v − v′ + v′

h) > V (D) when v = v′, i.e. were the
Hamiltonian unluckily added to the fake image injected by the same, or by another
attacker. The probability of the latter event (the attacker’s good work not being
beneficial to honest participants, because it lands on another attacker) depends
on the ratio between attackers and honest participants. However, as previously
discussed, we claim that the probability of the former event (an attacker solving
its own challenge, or two attackers colluding) can be controlled by the protocol via
time randomization.

7.6 Conclusions

In this Chapter we put out the idea of Reciprocally Useful Work (RUW), a novel
update mechanism for Distributed Ledgers where any agent wishing to add a block
to the ledger must first perform an activity that will improve the utility for the DL-
supported application of some other agent’s block. Our scheme is aimed at making
less convenient for stealthy attackers like compromised sensors to contribute to
training set with poisoned points. Also we showed how RUW-supported trust in
training data can be used to alleviate the problem of poisoning attacks to ML
models.





Chapter 8

Conclusion and Future Work

In this chapter, we summarize the contributions of this dissertation and discuss
some potential future research directions.

8.1 Summary of Contributions

In recent years, there has been a surge toward integrating Artificial Intelligence-
based systems into IT infrastructures, with Machine Learning as one of the

most widely used technologies. At the same time, the growth in power and scale
of ML models has been accompanied by an expansion of their attack surface with
innumerable attack vectors that, due to the uncertain nature of ML algorithms,
are not fully understood. With the increasing challenges of adversarial attacks,
developing appropriate defense mechanisms and security controls specific for ML
applications is of paramount importance to ensure correct decision making.

In this dissertation, we focused on data, which is the core element of any AI-
ML systems, and investigated how to make ML models more resilient to poisoning
attacks and reduce the vulnerabilities that threats exploit in ML-based systems.
One of the main gaps we identified in the literature is the fact that both the attacks
and the proposed defense techniques are strictly tied to the model being considered.
From the attack standpoint, knowing in advance the ML model to be attached
allows for precise modeling of attack strategies that focus on worst-case analysis,
i.e., are designed to maximize the damage on the learning algorithm. However,

102
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in most practical situations, the adversary does not know the actual architecture,
parameters, or output of the model. Moreover, when considering the entire ML
lifecycle, even a more constrained attack (such as a label-flipping poisoning attack)
is likely to be as harmful as an optimal one. From the defense standpoint, the fact
that defense techniques are designed to protect specific algorithms makes them
model-dependent and therefore not applicable on a large scale and in possibly
different scenarios. Other gaps we found in the literature include the lack of
approaches to estimate the risk of compromise associated with various ML data
assets, as well as the lack of a shared quantitative definition of the severity of
attacks and the effectiveness of the defense measures put in place.

In an effort toward filling the above gaps, in this thesis we contributed to
the study of robust ML from both a theoretical and empirical perspective by
proposing three types of security controls tailored for ML functionalities based on
ensemble model robustness, index-based degradation detection, and distributed
ledger-based training data trustworthiness. Whether they are applied individually
or in conjunction, the overall goal of the proposed techniques is to provide a
framework to enforce the security and robustness of practical ML-based systems
in adversarial environments.

Specifically, in Part I we presented a novel defense mechanism combining
ensemble composition and security risk analysis to protect ML models against
training-time attacks, under the assumption of black-box knowledge about the at-
tacker’s and the defender’s strategies. Based on the proximity to the separation
surfaces identified with a linear model, each data point is associated with a risk
index that is used during partitioning of the training set by an unsupervised tech-
nique. In Part II, we proposed two novel auxiliary techniques to assess the severity
of degradation of ML model data assets and to improve the trustworthiness and
quality of data to be used in training, respectively. The former technique, which
relies on convex hull classifiers, serves to monitor the performance of deployed mod-
els (a posteriori) and can be useful in establishing whether re-training is needed
and to appropriately instantiate the parameters of the ensemble-based approach.
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The latter technique leverages inherent benefits of Distributed Ledger Technolo-
gies to make it less convenient for attackers to insert poisoned data points into the
training set with ad-hoc Proof-of-Useful-Work definition.

8.2 Future Research Directions

As some of our proposed controls are not validated in depth, nor standardized
in how they should be implemented, we recognize that further research should
focus on creating benchmarks for their effectiveness. Furthermore, this work offers
numerous avenues for future research directions. Below we outline some of them.

A possible improvement is concerned with the risk analysis associated with the
input data space. In addition to introducing generic risk landscapes, wherein the
color and corresponding risk index value of data points depend on contextual in-
formation (such as the non-uniform cost of attack for different regions in the input
data space), one could better characterize the possibilistic component associated
with the risk of tampering with the training data in terms of the uncertainty of
data itself. The assessment of uncertainty about the training data is intended to
estimate how feasible it is for a certain training data to have been tampered with
and is essential to ensure that the defense mechanism employed is proportional
to such uncertainty measure. In this regard, delving into how ML-oriented dis-
tributed consensus schemes can support ML models’ training set selection while
decreasing uncertainty on data is a key step towards the convergence of AI and
DLT, since applications using both technologies in close integration can benefit
from high-quality data for training efficient and robust ML models.

As for the natural trade-off between accuracy and robustness, which serves
as a guiding principle in designing defenses against adversarial attacks, there is
certainly no single path on how to solve it, and commonly the decision on which
factor to prioritize is driven by specific use cases or applications. In the case
of the ensemble-based technique, the hyper-parameter controlling the accuracy-
robustness dilemma is the number of base learners in the ensemble. Instantiating
ensemble parameters based on the model’s degradation index may be an easily
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applicable option, but further efforts are needed to properly bind the index to
ensemble optimization. For example, partition adjustment could be controlled on
the basis of a threshold on index-predicted accuracy variation, calculated through
evolutionary approaches.

Another appealing perspective for future investigation concerns the action abil-
ity of attackers. Relevant literature, from which our own research draws, focuses
on depicting adversarial scenarios where attackers operate autonomously, and the
extent and success of the corresponding attack depends primarily on the resources
and incentives the individual attacker wants to invest in damaging the system.
Nowadays many attackers no longer operate exclusively independently, rather they
are part of cyber-crime, meaning they act with a strong orientation to their po-
tential gain from the offensive action. In this sense, we argue that it might be
interesting to broaden the theoretical perspective by taking into account not only
the difficulty and cost of at-scale compromises, but also the connections between
malevolent actions and long-range benefits within a criminal group.

In conclusion, educating ML adopters about potential perils and proper design of
security controls before ML models are deployed in high-stakes decision domains is
a pivotal step. By engaging experts in cybersecurity and machine learning issues,
we hope that our work will foster opportunities to design innovative and effective
security solutions against emerging threats on ML models.
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