Honeywell

MAINTENANCE MANUAL

BENDIX/KING ${ }^{\oplus}$
KTS 152
TEST SET

MANUAL NUMBER 006-15630-0007 REVISION 7 JANUARY, 2002

WARNING

Prior to the export of this document, review for export license requirement is needed.

COPYRIGHT NOTICE

©1975-2002 Honeywell International Inc.

Reproduction of this publication or any portion thereof by any means without the express written permission of Honeywell is prohibited. For further information contact the manager, Technical Publications, Honeywell, One Technology Center, 23500 West 105th Street Olathe KS 66061 telephone: (913) 712-0400.

REVISION HISTORY

KTS 152 Maintenance Manual
Part Number: 006-15630-XXXX
For each revision, add, delete, or replace pages as indicated.
REVISION No. 7, January 2002

ITEM	ACTION
All pages	Full Reprint, new manual

Revision 7 creates a new stand-alone manual for the KTS 152 which was extracted from revision 6 of the KCS 55/55A maintenance manual, (P/N 006-05111-0006). Any revisions to the KTS 152, beginning with revision 7 , will not be a part of the KCS 55/55A manual.

THIS PAGE IS RESERVED

TABLE OF CONTENTS
 SECTION IV
 THEORY OF OPERATION

PARAGRAPH PAGE
4.1 General 4-1
4.2 Power Input Requirements 4-2
4.3 Test Panel Power Controls 4-2
4.4 Voltage Monitor 4-3
SECTION V
MAINTENANCE
PARAGRAPH PAGE
5.1 Testing the KG 102/A 5-1
5.2 Testing the KSG 105 5-2
5.3 Testing the Gyroscope 5-2
5.4 KTS 152 Test Procedure 5-3
SECTION VI
ILLUSTRATED PARTS LIST
PARAGRAPH PAGE
6.1 General 6-1
6.2 Revision Service 6-1
6.3 List of Abbreviations 6-1
6.4 Sample Parts List 6-3
6.5 KTS 152 Final Assembly 6-5

LIST OF ILLUSTRATIONS

FIGURE
PAGE
4-1A Test Set Hook-up, Assembled Unit 4-1
4-1B Test Set Hook-up, Gyro Isolated 4-1
5-1 Gyro to KSG 105 Connections 5-6
5-2 Gyro Waveforms 5-6
5-3 KG 102/A to KSG 105 Connections 5-8
5-4 Slave Synchro Calibration Waveforms 5-8
6-1 Sample Parts List 6-3
EARLY UNITS - S/N 1199 AND BELOW
FIGURE PAGE
6-2 P.C. Board Assembly, Board 301-2 6-15
6-3 P.C. Board Assembly, Board 303 6-17
6-4 P.C. Board Assembly, Board 304 6-18
6-5 P.C. Board Assembly, Board 305 6-20
6-6 P.C. Board Assembly, Board 306 6-21
CURRENT UNITS - S/N 1200 AND ABOVE
FIGURE PAGE
6-7 Partial Cable Interconnect 6-22
6-8 P.C. Board Assembly, Board 301 6-23
6-9 P.C. Board Assembly, Board 302 6-24
6-10 P.C. Board Assembly, Board 303 6-25
6-11 P.C. Board Assembly, Board 304 6-26
6-12 P.C. Board Assembly, Board 305 6-27

KTS 152 SCHEMATICS

FIGURE

PAGE
6-13 KTS 152 Schematic 6-29

SECTION IV THEORY OF OPERATION

4.1 GENERAL

The KTS 152 test set is designed to test the KG 102, KG 102A and the KSG 105 Directional Gyros. Two cables are provided with the set. One is used to connect the unit under test to the main unit connector on the test set and the other is used to connect the gyroscope itself to the tester where it is internally strapped to the Main Unit Connector and back to the Pigtail Connector on the unit. The two hookup configurations are shown below.

FIGURE 4-1A TESTER HOOK-UP, ASSEMBLED UNIT

FIGURE 4-1B TESTER HOOK-UP, GYRO ISOLATED

4.2 POWER INPUT REQUIREMENTS

Provisions are made on the rear of the tester for three different power sources.
Of primary importance is the 115VAC 400 Hz supply. This source is required to supply power to the tester itself and to the KSG 105 gyro when it is being tested. As such, it is always required regardless of the type of unit under test.
The KG 102 and KG 102A require either +14VDC or +28VDC. Only the one being used need be connected to the tester, however, both may be plugged into the rear of the tester if available. A front panel switch selects the desired one. Neither of these sources is- required when testing the KSG 105, however, they may remain connected to the tester if desired.
Each of the DC sources should be capable of supplying a minimum of 4 amps continuously and the 115VAC source should have a 50VA capability.

4.3 TEST PANEL POWER CONTROLS

Power Control is divided into two sections. First, power to the test set is controlled with the two INPUT POWER Switches. One is used to switch the 115VAC and the other is used to switch the +14 or +28 VDC if required. These sources are fused individually at the tester input and appropriately annunciated. Test set power is supplied by the 115VAC and is controlled by the INPUT POWER Switch. If a KSG105 Unit is being tested, the 14/28VDC INPUT POWER Switch may remain OFF, however, no damage will, result if it is switched ON.
Secondly, power to the individual unit under test is controlled with the UNIT POWER Switches.
This section of the tester consists of four switches, two fuses and two annunciators. Operation of the KSG 105 switch will supply 115VAC power to Pins X and r of the KSG 105 Unit Connector if the unit is properly connected to the tester. If it has been improperly connected to the KG 102/A Connector, an internal relay will prevent power from being applied to either connector. This situation will be annunciated by the illumination of the IMPROPER CONNECT lamp and failure of the KSG 105 lamp to illuminate. A 26VAC switch is used in conjunction with the KSG 105 and is interlocked in the manner described above. This switch is used to excite the synchro transmitters internal to the KSG 105 and to phase lock the tester demodulator used to position the tester heading card to the position commanded by these transmitters. Power to the KG 102/A is controlled by the $14 / 28 \mathrm{VDC}$ and $+14-28 \mathrm{~V}$ switches. The $14 \mathrm{~V}-28 \mathrm{~V}$ switch selects the supply corresponding to the power selector switch on the unit itself. This source must, of course, be plugged into the proper jacks at the rear of the tester. As with the KSG 105, if the KG 102/A is plugged into the wrong front panel connector, the IMPROPER CONNECT lamp will light and power will not be supplied to either connector.
An additional interlock feature is provided to prevent unit damage if the $14 \mathrm{~V}-28 \mathrm{~V}$ selector is in the 28 V position and the unit selector is in the 14 V position. This configuration results in excessive current draw by the KG 1021A and imminent damage to the unit. An overload circuit is incorporated into the tester to detect this high current level and operate a relay designed to remove power from the Connector. Operation of this relay causes the IMPROPER CONNECT lamp to illuminate and the KG 102/A lamp to go OFF. The tester will remain latched in this configuration until the KG 102/A, 14/28VDC UNIT POWER Switch is cycled OFF and then ON. Naturally the 14/28V discrepancy should be cleared prior to reapplication of power. Even though this interlock removes power shortly after it is applied, intentional "testing" of this circuit will eventually degrade the components in both the tester and the KG 102/A.

4.4 VOLTAGE MONITOR

This section provides front panel access to input $14 / 28 \mathrm{~V}$ power along with the internally generated $+12 \mathrm{VDC},+5 \mathrm{VDC}$ and 26VAC. These voltages will be present when the INPUT POWER switches are operated. Standard three-quarter inch spaced banana jacks are provided along with redundant Pin jacks for each voltage. All of the black ground jacks are connected together and to the tester chassis. This ground is also common to the $14 / 28 \mathrm{~V}$ input sources and the ground buss for all of the internal tester circuitry. The only circuit not connected to this ground in any way is the 115VAC input line or the 115VAC power to the KSG 1-05 Connector Pins X and r.

THIS PAGE IS RESERVED

SECTION V
 TESTING

5.1 TESTING THE KG 102/A

NOTE:
When testing a KG 102, (as opposed to a KG 102A) it is necessary to jumper KG 102/A front panel pin t to ground in order to achieve proper auto slaving action. This jumper is not required when testing the KG 102A as the ground is provided internal to that unit.

Initial testing of the KG 102/A should be performed with the unit assembled and connected as shown in figure 4-1A. Both of the INPUT POWER Switches may be turned on at this point along with the $+14 / 28 \mathrm{~V}$ KG 102/A UNIT POWER Switch.
During gyro spin-up, the KG 102/A HDG and AP VALID lamps will remain OFF and the Compass Card will not rotate. If the KA 51 slave button is depressed however, and one of the flux value simulator switches is ON, the card will Fast Slave to the appropriate heading. The system will remain in Fast Slave until the slaving error goes to zero and the gyro motor has reached operating speed. Each flux value switch corresponds to a specific heading as indicated in the table below:

Switch ON	Heading
X	360 deg.
Y	120 deg.
Z	240 deg.
$X-Y$	60 deg.
$X-Z$	300 deg.
Y-Z	180 deg.

At the conclusion of the Fast Slave and Spin-up Cycles, the HDG and AP valid lamps will come ON. A diamond shaped array of lamps is provided to depict each quarter degree step of the Compass Card. As the gyro is manually rotated, or as the system performs an auto or manual slave function, "rotation" of these lamps should conform to rotation of the Compass Card.
The remaining tester function, as it involves the assembled unit, is the WAVEFORM ANALYSIS feature. This section is designed to detect a faulty gyroscope by measuring the time between Compass Card steps when the unit is being rotated at thirty degrees per second. Normally the step interval is 8.33 ms at this rate, however, if the gyro waveform is unsymmetrical and falls below 5.0 ms , the WAVEFORM FAIL lamp will come on. Since this test requires an accurate turntable , it is generally performed with the gyroscope isolated from the base assembly and mounted on the table with the connections made through the turntable slip rings. A CAL TP is located on the front panel to monitor the 5.0 ms positive pulse each time a Compass Card step occurs. This pulse width is factory adjusted with a potentiometer located inside the tester.

5.2 TESTING THE KSG 105

As with the KG 102/A, the KSG 105 assembled unit should be connected to the tester as shown in Figure 4-1A except that the KSG 105 Connector must be used. While testing the KSG 105, the KG 102/A 14/28VDC INPUT and UNIT power switches may remain OFF and the DC supplies need not be connected to the rear of the tester. Operation of the 115VAC UNIT POWER Switch will supply power to the KSG 105 and placing the 26VAC switch ON will excite the heading transmitter synchros and cause the tester Compass Card to align with the synchro selected by the HEADING TRANSMITTER Switch. Unlike the KG 102/A hook-up, the Compass Card does not respond to KSG 105 rotation on a step-for-step basis as it does with the KG 102/A. Rather it becomes a part of a servo follower system where a synchro error voltage is translated into a stepper motor format in the tester to ultimately drive the Card. For this reason it is possible for the Compass Card to fall behind the gyro if it is rotated faster than the maximum slewing rate of the Card. This rate is approximately $30 \mathrm{deg} / \mathrm{Sec}$. When the gyro rotation has stopped, however, the Card will continue to rotate and display the correct heading.
Slaving operation is identical to that described for the KG 102/A, as is the HDG and AP VALID functions.

$5.3 \quad$ TESTING THE GYROSCOPE

With the system connected as shown in Figure 4-1B,the units can be operated as described above, with the added features of full access to the gyro connector pins, a current interrupt switch to measure gyro drift during a momentary power failure, a gyro current measuring port and means to interject a simulated gyro signal into the system. With the GYRO Switch in the GYRO position, the output signals from the gyroscope are patched through the tester and back to the unit. When the switch is placed in the GYRO SIM position, however, a simulated gyroscope signal controlled by the GYRO SIMULATOR section of the tester is transmitted to the Main Unit. The GYRO Spin Motor is still driven from the Main Unit supply and not from the tester.
The simulator controls consist of an ON-OFF Switch, direction control, rate adjust controls and a single revolution control. With the possible exception of the FREE RUN - 1 REV Switch and the RESET Switch, these controls should be self explanatory. When the switch is placed in the I-REV position and the RESET button depressed, 1440 steps will be transmitted to the Main Unit. This corresponds to 360 degrees of Card rotation and is used primarily with the KSG 105 to determine if the internal stepper motor has skipped any of the incoming gyro pulses.
Use of the tester with known good units will help in becoming thoroughly familiar with the features and trouble shooting capabilities it has.

5.4 KTS 152 TEST PROCEDURE

5.4.1 Panel Switch Positions

Input Power:
14/28 VDC
115 VAC
Unit Power:
115 VAC
14/28 VDC
26 VAC
$+14 \mathrm{~V} \ldots+28 \mathrm{~V}$
HDG Transmitter
Flux Valve Sim
X
Y
Z
Gyro-Gyro Sim
Gyro Simulator
ON-OFF
CCW-CW
VAR-30 deg./s
Free Run- 1 Rev
KA 51A
Slave/In
5.4.2 Input Power Switches

14/28 VDC \qquad ON
115 VAC
14/28 VDC Input Power Lamp
$\longrightarrow \mathrm{ON}$

115 VAC Input Power Lamp
KG 102/A AP Valid Lamp
One of four 1 deg. lamps
Voltage Monitor
26VAC
Frequency
+14 VDC
+28 VDC
+12 VDC
-12 VDC
+5 VDC

——OFF

\qquad ON
_ OFF
_ OFF
__ Gyro
\qquad OFF
$\ldots \mathrm{CW}$
_ VAR
__ Free Run

OFF
$\longrightarrow \mathrm{ON}$
$\ldots \mathrm{ON}$
_ON
\qquad 26 +/- 2 VAC
$\ldots 400+/-20 \mathrm{~Hz}$ +14 +/- 1 VDC $+28+/-2$ VDC +12 +/- 1.2VDC -12 +/-1.2 VDC
+5 +/- 0.5 VDC

KGS 105 Pins X to r
KGS 105 Pin c to Gnd
\qquad $0.00+/-1$ VAC
\qquad $0.00+/-1$ VAC

5.4.3 UNIT POWER

115 VAC
14/28 VDC
26 VAC
KGS 105-115 VAC Lamp
KG 102/A - 14/28 VDC Lamp
KSG 105 - Pins X to r
KSG 105 - Pins c to Gnd
KG 102/A - Pin e-to Gnd

5.4.4

GROUND KG 102/A Pin b
5.4.5

GROUND KG 102/A PIN V

KG 102A pin e to Gnd
KSG 105 Lamp
KSG 105 Pins X to r
KSG 105 Pin c to Gnd

Remove ground at pins b and V INPUT POWER Switch 14/28 VDC
UNIT POWER Switch 14/28 VDC
5.4.6

Ground KSG 105 Pin b

5.4.7

Ground KSG 105 Pin a

KSG 105 Pins X to r
KSG 105 Pin c to G-nd
GS 102/A Lamp-
\qquad KSG 105 Lamp ON Improper Connection Lamp OFF
115 +/- 10 VAC
26 +/- 2 VAC
OFF

UNIT Power - 115 VAC Switch \qquad

- 26 VAC Switch \qquad
Remove KSG 105 grounds at pins b and a

5.4.8 KG 102/A Short Circuit Test

CAUTION:

This test can result in tester damage if not performed in the following manner.
a) INPUT POWER SWITCH 14/28 VDC \qquad ON
b) UNIT POWER SWITCH 14/28 VDC \qquad
c) Ground KG 102/A pins b and V
d) Connect a 2.0 ohm 10W resistor between KG 102/A Pin e and ground. This resistor can vary by 20% and represents a short circuit to the 14 V supply.

CAUTION:
Switch the KG 102/A Unit Power 14/28 VDC switch ON for no more than ONE SECOND if the IMPROPER CONNECTION Lamp does NOT come ON. This lamp should light within one-quarter to one-half of a second after the switch has been operated. The KG 102/A 14/28 VDC lamp shall go OFF.
e) If the lamp does light, leave the $14 / 28 \mathrm{VDC}$ switch ON . (An internal relay has removed power to the 2.0 ohm short circuit.)
f) Remove the 2.0 ohm resistor from pin e. Improper Connection Lamp ON
KG 102/A Pin e to Gnd $0.0+/-0.1$ VDC
g) Switch the $14 / 28$ VDC unit power switch OFF, then ON.

KG 102/A 14/28 VDC Lamp \qquad
Improper Connection Lamp \qquad OFF
KG 102/A pin e to Gnd \qquad $14+/-2 V D C$

5.4.9 Ground KG 102/A

Pin a \qquad HDG Valid ON
Pin d \qquad AP Valid OFF
Remove Grounds from pins a and d

5.4.10 Jumper KSG 105

Pin V to n \qquad HDG Valid ON
Pin V to m \qquad HDG Invalid ON
Pin j to U \qquad AP Valid ON
Pin j to Y \qquad Invalid ON

Remove Jumpers

5.4.11

Remove ground from KG 102/A pin V and ground KSG 105 pin a. Connect the circuit shown below to the tester pin jacks.

FIGURE 5-1, GYRO TO KSG 105 CONNECTIONS

Panel switches:
Gyro
Gyro Simulator
R121 Trim Pot
\qquad Gyro Sim
\qquad

30 deg/s
\qquad FREE RUN
Adjust for a square wave period of 33.3 ms at GYRO pin D.

Monitor the Waveform Analysis CAL.TP. with a scope and adjust R160 (inside the tester) for 5 ms positive pulses.

5.4.12

Monitor the waveforms at GYRO pins D and E. They shall appear as shown below:

FIGURE 5-2, GYRO WAVEFORMS

5.4.13

GYRO SIMULATOR VAR/30 deg/s

RATE Adjust
__ Fully CW
Period - Gyro Pin E \qquad 15 +/- 10 ms
RATE Adjust \qquad Fully CCW
Period - GYRO Pin E \qquad 1 sec Min.

5.4.14

Adjust the Pin E period for 18 ms and depress the WAVEFORM ANALYSIS FAIL-RESET button.
FAIL LAMP ON
Adjust the period for 25 ms and depress the RESET BUTTON.
FAIL LAMP \qquad OFF
(This lamp should come on when the period is reduced to 20 ms)
5.4.15

Adjust the period for 1 sec . and the simulator direction to CCW.
1 deg LED's:
Rotation \qquad CCW
Step period \qquad $0.25+/-0.05 \mathrm{sec}$
Simulator direction CW
Rotation \qquad CW
Step period \qquad $0.25+/-0.05 \mathrm{Sec}$

5.4.16 Panel Switches:

VAR -- $30 \mathrm{deg} / \mathrm{S}$ \qquad $30 \mathrm{deg} / \mathrm{s}$
FREE Run-1 Rev \qquad 1 Rev
Set the scope sweep to $2 \mathrm{sec} / \mathrm{cm}$ and monitor GYRO pin D. Wait 15 seconds; there shall be no square wave on pin D or E. Depress the ONE REV --- RESET button and measure the time during which the square wave is present.
Square Wave Duration
$12+/-0.5 \mathrm{sec}$
Every time the reset button is depressed, 360 cycles of the pin D square wave should occur and then stop.

5.4.17

Depress the reset button and then switch simulator ON/OFF switch OFF. The waveform shall stop. Remove the circuit shown in step 11 above.

5.4.18 Slave Synchro Calibration

INPUT POWER 14/28VDC
26VAC Switch
\qquad OFF

14v-- 28V Switch ON

Remove GND from KSG-105 pin a and GND KG-102 pin V. Connect 26VAC from KSG 105 pin c through 3.9K ohms to KG 102/A pin Z as shown below:

KG 102 /A

KSG 105

FIGURE 5-3, KG 102/A TO KSG 105 CONNECTIONS

Place the slave switch X ON and Y and Z OFF. Ground KG 102/A pin W and monitor v with a scope. Loosen the slave CT hold down screws and rotate for zero volts AC on the scope (slave CT is synchro directly behind compass card with N on the compass card under the lubber line. Tighten the hold down screws.
To determine if this is the correct null, connect a second scope probe to KSG 105 pin P. With the compass card remaining on " N ", switch X OFF and Y ON.
The two waveforms shall appear as follows:

KSG 105

KG 102/A

FIGURE 5-4, SLAVE SYNCHRO CALIBRATION WAVEFORMS

If the " Y " and "Z" waveforms are reversed, the slave CT must be rotated 180 degrees.
5.4.19 Heading Transmitter Calibration

INPUT POWER 14/28V
KSG 105 Pin a

Connect 26 VAC from KSG 105 Pin c through 3.9 K ohms to KSG 105 pin Z.
Loosen the HDG CT hold down screws and rotate the synchro until N is under the lubber line. (HDG CT is the unit next to the stepper motor). The card should step back and forth about "N" approximately every second. Tighten the hold down screws.

5.4.20

Remove the 26 VAC from pin Z and connect it to pin W. The heading card shall move rapidly CW to approximately 305 degrees where it slows rapidly to a stepping motion until it reaches 300 degrees. The card should then step back and forth about $300+/-2$ deg. Remove KSG-105 grounds at pins a and T. Remove 26 VAC from pin W.

5.4.21

KSG 105 Flux Valve Simulation

Flux Valve Switches	X	ON
	Y	OFF
	Z	OFF
KSG 105 Pin	L	0.06 +/- 0.01 VDC
	H	$0.00+/-0.01$ VDC
	D	$0.00+/-0.01$ VDC
Flux Valve Switches	X	OFF
	Y	ON
	Z	OFF
KSG 105 Pins	L	0.00 +/- 0.01 VDC
	H	0.06 +/- 0.01 VDC
	D	0.00 +/- 0.01 VDC
Flux Valve Switches	X	OFF
	Y	OFF
	Z	ON
KSG 105 Pins	L	0.00 +/- 0.01 VDC
	H	$0.00+/-0.01$ VDC
	D	0.06 +/- 0.01 VDC
Flux Valve Switches	X	OFF
	Y	OFF
	Z	OFF
KSG 105 Pin u		GND

KSG 105 Pins

L	$0.06+/-0.01 \mathrm{VDC}$
H	$0.06+/-0.01 \mathrm{VDC}$
D	$0.06+/-0.01 \mathrm{VDC}$

UNIT AND INPUT POWER OFF

ILLUSTRATED PARTS LIST

6.1 General

The Illustrated Parts List (IPL) is a complete list of assemblies and parts required for the unit. The IPL also provides for the proper identification of replacement parts. Individual parts lists within this IPL are arranged in numerical sequence starting with the top assembly and continuing with the sub-assemblies. All mechanical parts will be separated from the electrical parts used on the sub-assembly. Each parts list is followed by a component location drawing.

Parts identified in this IPL by Honeywell part number meet design specifications for this equipment and are the recommended replacement parts. Warranty information concerning Honeywell replacement parts is contained in Service Memo \#1, P/N 600-08001-00XX.

Some part numbers may not be currently available. Consult the current Honeywell catalog or contact a Honeywell representative for equipment availability.

6.2 Revision Service

The manual will be revised as necessary to reflect current information.
6.3 List of Abbreviations

Abbreviation	Name
B	Motor or Synchro
C	Capacitor
CJ	Circuit Jumper
DS	Diode
E	Lamp
F	Voltage or Signal Connect Point
FL	Fuse
FT	Filter
I	Feedthru
J	Integrated Circuit
L	Jack or Fixed Connector
M	Inductor
P	Meter

Table 1
Abbreviations

Abbreviation	Name
Q	Transistor
R	Resistor
RT	Thermistor
S	Switch
T	Transformer
TP	Test Point
U	Component Network, Integrated Circuit,
V	Circuit Assembly
W	Photocell/Vacuum Tube
Y	Waveguide

Table 1 (Continued)
Abbreviations

The above is only a sample. The actual format and style may vary slightly. A 'Find Number' column, when shown, references selected items on the BOM's accompanying Assembly Drawing. This information does not apply to every BOM. Therefore, a lack of information in this column, or a lack of this column, should not be interpreted as an omission.

Figure 6-1
Sample Parts List

THIS PAGE IS RESERVED

6.5 KTS 152 FINAL ASSEMBLY/SUB-ASSEMBLIES

071-05026-0000 Rev. 5

SYMBOL	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
	071-01053-0000		SLAVING ACCESSORY	EA	1.00
	076-00900-0002		DIAL HEADING	EA	1.00
	155-02109-0000			EA	. 00
	155-02110-0000			EA	. 00
	200-01866-0000		HEADING DRIVE ASSY	EA	1.00

071-01053-0000 Rev. 4
071-01053-0099 Rev. 1

SYMBOL PART NUMBER FIND NO DESCRIPTION UM 00000099

012-01088-0000	CUSHION	EA	.	1.00
$023-00096-0001$	MTR SLAVE	EA	1.00	.
$025-00018-0000$	WIRE 26 BLK	IN	\cdot	3.60
$025-00018-0022$	WIRE 26 RED	IN	.	3.60
$057-01520-0001$	SERIAL NUMBER TAG	EA	1.00	\cdot
$071-01053-0099$	COMMON BOM	EA	1.00	.
$088-00393-0001$	PLATE FACE	EA	1.00	.
$088-00404-0000$	COVER	EA	1.00	.
$088-00406-0001$	PSHBTN W/MARKING	EA	.	1.00
$088-00406-0002$	PSHBTN W/MARKING	EA	1.00	.
$088-00406-0003$	PSHBTN W/MARKING	EA	\cdot	1.00
$089-06414-0004$	SCR PHP 2-28X1/4	EA	.	2.00
$200-00690-0000$	COMPENSATOR PC BD	EA	1.00	.

200-00690-0000 Rev. 3

SYMBOL PART NUMBER FIND NO DESCRIPTION UM 0000

007-06029-0000	DIO S 1N457A	EA	4.00
009-05366-0000	PC BD	EA	1.00
016-01026-0000	RTV CLEAR DC \#732	AR	. 00
019-05069-0000	XFMR	EA	1.00
031-00226-0000	SW MOM DPDT	EA	2.00
031-00226-0002	SW MOM DPDT	EA	1.00
096-01030-0030	CAP TN 22UF10\%35V	EA	1.00
130-00103-0023	RES FC 10K QW 5\%	EA	1.00
130-00512-0023	RES FC 5.1K QW 5\%	EA	1.00
133-00045-0005	RES VA 10K QW 30\%	EA	2.00
136-01002-0072	RES PF 10K QW 1\%	EA	2.00
150-00004-0010	TUBING TFLN 22AWG	IN	1.20

200-01866-0000 Rev. 0
SYMBOL PART NUMBER FIND NO DESCRIPTION UM 0000

$016-01008-0004$	GLYPTAL 7526 BL	AR	.00
$016-01029-0000$	EPOXY HY-S0L 1C	AR	.00
$029-00254-0000$	GEAR CHG 12/36T	EA	1.00
$029-00266-0000$	GEAR PIN 12T/64DP	EA	1.00
$029-00305-0001$	GEAR 18/36T	EA	1.00
$029-00306-0000$	GEAR SPUR 64P	EA	2.00
$029-00306-0001$	GEAR SPUR 64P	EA	2.00
$047-03669-0002$	GEAR PLT W/HDW	EA	1.00
$073-00034-0001$	MOUNTING LUG	EA	4.00
$078-00023-0000$	SPRING RETURN	EA	2.00
$089-05853-0004$	SCR SET 2-56X1/8	EA	4.00
$089-05903-0003$	SCR PHP 4-40X3/16	EA	2.00
$089-06024-0004$	SCR SHC 4-40X1/4	EA	4.00
$090-00019-0002$	RING RTNR .250	EA	2.00
$090-00186-0000$	RETAINER RING	EA	2.00
$148-00007-0000$	SYNCHRO XMTR	EA	1.00
$148-00013-0000$	SYNCHRO CONT XFMR	EA	1.00
$148-05027-0001$	MOT STPG 12VDC	EA	1.00

071-05026-0000 Rev. 1 (Original Manual Revision)

THIS PAGE IS RESERVED

FIGURE 6-2 P.C. BOARD ASSEMBLY, BOARD 301-2, DRAWING
(Dwg. 300-05986-0000 Rev. 0)

FIGURE 6-3 P.C. BOARD ASSEMBLY, BOARD 303, DRAWING (Dwg. 300-05987-0000 Rev. 0)

FIGURE 6-4 P.C. BOARD ASSEMBLY, BOARD 304, DRAWING (Dwg. 300-05988-0000 Rev. 1)

FIGURE 6-4A P.C. BOARD ASSEMBLY, BOARD 304, DRAWING (Dwg. 300-05988-0000 Rev. 0)

FIGURE 6-5 P.C. BOARD ASSEMBLY, BOARD 305, DRAWING (Dwg. 300-05989-0000 Rev. 0)

FIGURE 6-6 P.C. BOARD ASSEMBLY, BOARD 306, DRAWING (Dwg. 300-05990-0000 Rev. 0)

FIGURE 6-7 PARTIAL CABLE INTERCONNECT

FIGURE 6-8 P.C. BOARD ASSEMBLY, BOARD 301, DRAWING

FIGURE 6-9 P.C. BOARD ASSEMBLY, BOARD 302, DRAWING

FIGURE 6-10 P.C. BOARD ASSEMBLY, BOARD 303, DRAWING

FIGURE 6-11 P.C. BOARD ASSEMBLY, BOARD 304, DRAWING

FIGURE 6-12 P.C. BOARD ASSEMBLY, BOARD 305, DRAWING

THIS PAGE IS RESERVED

