

Universidad Pública de Navarra

Departamento de Producción Agraria

Instituto de Agrobiotecnología

Regulation of the response of plants to volatile compounds emitted by fungal phytopathogens

Tesis Doctoral para optar al grado de Doctor, presentada por:

Pablo García Gómez

Director: Dr. Javier Pozueta Romero Codirector: Dr. Abdellatif Bahaji Nazih Tutor: Dra. Inmaculada Farrán Blanch

Pamplona, 2020

El Dr. **Javier Pozueta Romero**, Profesor de Investigación del Consejo Superior de Investigaciones Científicas y el Dr. **Abdellatif Bahaji Nazih**, Investigador Distinguido del Consejo Superior de Investigaciones Científicas,

CERTIFICAN:

Que el trabajo titulado "*Regulation of the response of plants to volatile compounds emitted by fungal phytopathogens*" recogido en la presente memoria, ha sido realizado por Pablo García Gómez en el Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra) y cumple las condiciones exigidas por la legislación vigente para optar al grado de Doctor. Pablo García Gómez ha disfrutado de una beca predoctoral FPI (referencia **BES-2014-068741**) del Ministerio de Ciencia, Innovación y Universidades. Este trabajo ha sido financiado por los proyectos **BIO2013-49125-C2-1-P** y **BIO2016-78747-P** de la Comisión Interministerial de Ciencia y Tecnología.

Y para que así conste, firman la presente en Pamplona, a X de X de 2020.

Fdo. Javier Pozueta Romero

Fdo. Abdellatif Bahaji Nazih

Resumen
Summary
Introducción1
1. Los microorganismos producen compuestos volátiles bioestimulantes1
1.1. Compuestos volátiles producidos por algunos microorganismos
beneficiosos fomentan el crecimiento e inducen cambios en la
fisiología v el desarrollo de las plantas1
1.2. VCs emitidos por microorganismos patógenos también fomentan
el crecimiento e inducen cambios en el metabolismo y el desarrollo de
las plantas
1.3. Naturaleza de los VCs microbianos que fomentan el crecimiento v
producen cambios en el desarrollo de las plantas
1.4. Limitaciones de los sistemas empleados para el estudio de la
respuesta de las plantas a VCs microbianos
2 Factores que afectan a la arquitectura radicular
2.1 Factores endógenos
2.1. Factores exógenos 20
3 Hinótesis de trabajo
3 1 Hipótesis relacionadas con la naturaleza de los VCs
bioestimulantes de origen microbiano
3.2 Hinótesis relacionadas con la regulación de la respuesta de las
raíces a VCs microbianos
Chietivos 24
Controls 1 "Valatile compounds other than CO ₂ emitted by different
microorganisms promote distinct post-transcriptionally regulated responses
in nlants"
1 Introduction 30
2 Materials and methods
3 Results 4
4 Discussion 6
5 Supplemental figures and tables 6'
Canítulo 2 "Volatile emissions from fungal phytopathogens modulate plant root
metabolism and architecture through mechanisms involving cvanide scavenging
and hormone- and ROS- mediated proteome resetting"
1 Introduction 11
2 Materials and methods
3 Results 12
4 Discussion 13
5 Supplemental figures and tables
Conclusiones 150
Referencias 163
Anéndice 190
Listado de abreviaturas

Listado	de	publicaciones				
Listado	de	comunicaciones	presentadas	en	congresos	
Agrade	cim	ientos				

RESUMEN

El crecimiento y el desarrollo de las plantas están afectados por microorganismos presentes en la filosfera, la rizosfera y/o la endosfera. En la fase de precolonización, antes de que se establezca un contacto físico con la planta, bacterias y hongos beneficiosos sintetizan una gran cantidad de sustancias que fomentan el crecimiento de la planta. Tales sustancias fomentan además la formación de raíces laterales y el crecimiento de pelos radiculares, mejorando así la capacidad exploratoria de las raíces para obtener agua y minerales del suelo y aumentando la superficie de la raíz y, por tanto, su predisposición para ser colonizada e infectada. Estos microorganismos también emiten un gran número de compuestos volátiles (VCs), con masa molecular inferior a 300 Da y alta presión de vapor, que promueven el crecimiento de la planta y la fotosíntesis y modulan la arquitectura de la raíz. Recientemente, el grupo de investigación en el que he realizado mis investigaciones demostró que esta capacidad no está restringida a microorganismos beneficiosos, sino que también se extiende a patógenos. Este trabajo se ha llevado a cabo con la doble intención de identificar la naturaleza de los VCs microbianos con propiedades bioestimulantes y profundizar en el conocimiento de los mecanismos implicados en la respuesta de las raíces a los VCs emitidos por microorganismos patógenos.

Mediante el uso de un sistema de co-cultivo "box-in box" en el que las plantas crecen en la proximidad de cultivos microbianos cubiertos con filtros de carbón activado que adsorben VCs con masas moleculares superiores a 45 Da, en el capítulo 1 investigué hasta qué punto señales aéreas emitidas por diferentes microorganismos son capaces de producir distintas respuestas en las plantas. Además, evalué la contribución y modo de acción de compuestos volátiles orgánicos e inorgánicos (VOCs and VICs, respectivamente) de origen microbiano en estas respuestas. Para ello expuse plantas de Arabidopsis a VCs emitidos por cultivos adyacentes de Alternaria alternata y Penicillium aurantiogriseum cubiertos o no con filtros de carbón activado. Estudios por cromatografía de gases-masas no detectaron VOCs en el aire de las cámaras en las que estaban incluidos los cultivos de hongos cubiertos con filtro. Sin embargo, el aire de estas cámaras presentaba una concentración mayor de CO₂, CO y NO. Independientemente de la filtración por carbón activado, VCs emitidos por los dos fitopatógenos utilizados en este estudio promovieron el crecimiento e indujeron cambios distintos en el desarrollo. Plantas cultivadas en concentraciones de CO₂ existentes en las cámaras de crecimiento de los cultivos microbianos eran similares a las cultivadas en condiciones

de CO₂ ambiental. Plantas expuestas a VCs filtrados o no por carbón activado o a altos niveles de CO₂ mostraron cambios transcriptómicos similares a los inducidos por alta irradiación lumínica. La información obtenida indica que (a) VICs fúngicos diferentes al CO₂ y/o VOCs no detectados por nuestros sistemas analíticos influyen fuertemente en la respuesta de la planta a VCs, (b) diferentes microorganismos liberan VCs con diferente potencial bioactivo, (c) cambios transcriptómicos en plantas expuestas a VCs se deben principalmente a una señalización del incremento de la fotosíntesis, y (d) la respuesta de la planta a VCs está regulada, al menos parcialmente, a nivel post-transcripcional.

En el capítulo 2, usando el mismo sistema "box-in-box" del capítulo 1, caractericé la respuesta a nivel proteómico, hormonómico y metabólico de raíces de Arabidopsis a VCs emitidos por P. aurantiogriseum. El análisis proteómicos reveló que los VCs fúngicos reprimen la expresión de acuaporinas inducibles por auxinas así como la expresión del transportador de hierro IRT1 sensible a citoquininas (CKs) y enzimas reguladoras de la acumulación de especies reactivas de oxigeno (ROS). Los VCs fúngicos también aumentaban la expresión de proteínas que controlan la producción de isoprenoides derivados de mevalonato (MVA) y de enzimas inducibles por CKs y etileno involucradas en la conversión de metionina en etileno y en la eliminación de cianuro. Estos cambios están asociados con un incremento de la eficiencia del uso del agua, una reducción del contenido de hierro y un incremento de la producción de ROS, etileno y CKs derivadas de MVA. Los patrones de expresión de marcadores hormonales y la caracterización de la respuesta de mutantes aportaron evidencias sobre la implicación de la eliminación del cianuro y la señalización de auxinas, CKs, etileno y ROS en los cambios de la arquitectura radicular inducidos por la exposición a VCs. En conjunto, los datos presentados en este capítulo muestran que los VCs emitidos por fitopatógenos fúngicos modulan la arquitectura y el metabolismo de la raíz a través de complejos mecanismos en los que la eliminación de cianuro y una reprogramación del proteoma inducida por hormonas y ROS juegan un papel importante. Algunos de estos mecanismos difieren de los que intervienen en la respuesta de la planta a VCs emitidos por microorganismos beneficiosos.

SUMMARY

Plants' growth and development are influenced by microorganisms occurring either aboveground in the phyllosphere, underground in the rhizosphere and/or in the endosphere inside the vascular transport system and apoplastic space. In the precolonization phase, before direct contact with plants occurs, beneficial bacteria and fungi synthesize a multitude of substances that promote growth and cause massive lateral root formation and enhanced root hair growth, thus improving the root's exploratory capacity for water and minerals and predisposing plants for microbial colonization and infection. These microorganisms also emit a large number of volatile compounds (VCs) with molecular masses of less than 300 Da and high vapour pressure that promote growth and photosynthesis, and modulate root system architecture in both host and non-host plants. We have recently demonstrated that this capacity is not restricted to beneficial microbes, but also extends to phytopathogens. This thesis has been focused on investigating the nature of VCs involved in plant's response, and deepen in the knowledge of the mechanisms responsible for that response in roots.

Using a "box-in-box" co-cultivation system in which plants are grown in the vicinity of microbial cultures covered with organic VC-adsorbing charcoal filters, in chapter 1 I addressed the question of whether airborne signals from different microorganisms can promote distinct responses in plants. In addition, I evaluated the contribution and mode of action of microbial volatile organic and inorganic compounds (VOCs and VICs, respectively) in these responses. Towards this end Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected by gas chromatography combined with mass spectrometric detection in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited higher CO₂ and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO₂ levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO₂. Plants exposed to charcoal-filtered fungal VCs, non-filtered VCs, or super-elevated CO₂ levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, I concluded that, in the "box-in-box" system, (a) fungal VICs other than CO₂ and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct

action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily post-transcriptional.

In chapter 2, using the same "box-in-box" co-cultivation system of chapter 1, I characterized the response of Arabidopsis thaliana roots to VCs emitted by P. aurantiogriseum. High-throughput, isobaric labeling-based proteomic analyses revealed that fungal VCs down-regulated the expression of auxin-responsive aquaporins and the cytokinin (CK)-responsive iron carrier IRT1, and of enzymes that regulate accumulation of reactive oxygen species (ROS). Fungal VCs also increased expression of proteins controlling the production of mevalonate (MVA)-derived isoprenoids, and ethylene- and CK-responsive enzymes involved in converting methionine to ethylene, and in cyanide scavenging. These changes were associated with enhanced intrinsic photosynthetic water use efficiency, reduced iron content, and stimulation of ROS, ethylene, cyanide and MVA-derived CKs production. Expression patterns of hormone reporters and developmental responses of mutants provided strong evidence for the involvement of cyanide scavenging and auxin, ethylene, CK and ROS- mediated proteome resetting in the fungal VC-promoted changes in root architecture. Some of the mechanisms involved in the root response to P. aurantiogriseum VCs differ from those involved in the response to VCs emitted by beneficial microorganisms.

INTRODUCCIÓN

Tanto la demanda creciente de alimentos surgida como consecuencia del incremento de la población mundial, como la progresiva reducción de las superficies cultivables han generado la necesidad de identificar nuevos tratamientos que permitan incrementar el rendimiento de los cultivos. La "revolución verde" permitió incrementar la producción de cereales desde 820 millones de toneladas en 1960 a 2400 millones de toneladas en 2015 (http://iofacturo.mx/ecologia/que-es-la-revolucion-verde). Sin embargo, esto ha sido posible en gran medida gracias a la aplicación intensiva de fertilizantes elaborados a partir de recursos limitados de nitrógeno y fósforo y a la sobre-explotación de recursos hídricos. La "nueva agricultura" capaz de hacer frente a los futuros desafíos y demandas de la humanidad tendrá que reunir condiciones de sostenibilidad y respeto al medio ambiente. Previsiblemente, gran parte de las medidas que se adopten en este sentido estarán basadas en el empleo de bioestimulantes de origen microbiano (Bhattacharyya and Jha, 2012; Farrar et al., 2014) definidos como cualquier microorganismo o sustancia procedente de un microorganismo que, aplicado sobre una planta, incremente su eficiencia de captación de nutrientes, su tolerancia a estrés abiótico, su rendimiento y/o calidad independientemente de su contenido en nutrientes (du Jardin, 2015).

1. LOS MICROORGANISMOS PRODUCEN COMPUESTOS VOLÁTILES BIOESTIMULANTES

1.1. Compuestos volátiles producidos por algunos microorganismos beneficiosos fomentan el crecimiento e inducen cambios en la fisiología y el desarrollo de las plantas

Bacterias y hongos microscópicos existentes en la filosfera, la rizosfera y la endosfera sintetizan sustancias tales como carbohidratos, proteínas, lípidos, aminoácidos, hormonas, etc. que actúan directa o indirectamente sobre la planta regulando su crecimiento, desarrollo y/o metabolismo (De-la-Peña y Loyola-Vargas, 2014). En la fase de pre-colonización (antes de que tenga lugar un contacto físico entre la planta y el microorganismo) los microorganismos beneficiosos producen compuestos que actúan como "semi-" o "info-químicos" que participan en innumerables procesos de comunicación e interacción entre las plantas y los microorganismos. Entre otros compuestos, estos microorganismos sintetizan y emiten una amplia gama de compuestos volátiles (VCs) de bajo peso molecular y punto de ebullición que son capaces de difundir a través del aire, el suelo y superficies porosas (Schulz y Dickschat, 2007; Lemfack

et al., 2014). Dependiendo de las condiciones de cultivo, mezclas de VCs emitidos por algunos aislados de bacterias y de hongos beneficiosos existentes en la rizosfera promueven el crecimiento y cambios en la arquitectura radicular de las plantas que facilitan la captación de nutrientes y agua (Ryu et al., 2003; Zhang et al., 2007; Splivallo et al., 2009; Zhang et al., 2009; Gutiérrez-Luna et al., 2010; Blom et al., 2011; Meldau et al., 2013; Naznin et al., 2013; Hung et al., 2014; Delaplace et al., 2015; Ditengou et al., 2015; Garnica-Vergara et al., 2016; Cordovez et al., 2018). VCs emitidos por *Bacillus subtilis* GB03 incrementan la eficiencia fotosintética y el contenido de clorofila en las hojas (Zhang et al., 2008). Además, estos compuestos facilitan la captación y transporte de este nutriente (Zhang et al., 2009). Estudios de mutantes de Arabidopsis con alteraciones en la producción y señalización de hormonas expuestos a la acción de VCs emitidos por algunos aislados de *B. subtilis* han aportado evidencia sobre la implicación del ácido abscísico (ABA) y las auxinas en el fomento del crecimiento por mezclas de VCs microbianos (Zhang et al., 2008).

1.2. VCs emitidos por microorganismos patógenos también fomentan el crecimiento e inducen cambios en el metabolismo y el desarrollo de las plantas

Investigaciones llevadas a cabo en el laboratorio del Instituto de Agrobiotecnología en el que he realizado mi trabajo de tesis doctoral demostraron que una amplia gama de microorganismos filogenéticamente diversos (tanto bacterias como hongos, incluyendo patógenos y microorganismos que normalmente no interactúan de manera mutualista con las plantas) son capaces de emitir VCs que fomentan el crecimiento de las plantas, el desarrollo radicular y la floración (**Figura 1**) (Sánchez-López et al., 2016b). La exposición a VCs emitidos por fitopatógenos también conlleva un notable incremento de la capacidad fotosintética y del contenido de pigmentos fotosintéticos, azúcares solubles y almidón foliar (Ezquer et al., 2010; Li et al., 2011; Sánchez-López et al., 2016b). Contra todo pronóstico, Sánchez-López et al. (2016a) demostraron que VCs emitidos por el fitopatógeno oportunista *Alternaria alternata* promueven la acumulación de niveles excepcionalmente elevados de almidón en mutantes *pgi1-2* carentes de fosfoglucoisomerasa plastidial (pPGI). Estas observaciones aportaron evidencias sobre la existencia de importantes rutas de biosíntesis de almidón alternativas a la ruta "clásica" según la cual pPGI juega un papel fundamental en la conexión del ciclo de

Calvin-Benson (CBC) con las reacciones directamente implicadas en la biosíntesis de almidón (Bahaji et al., 2014a; Bahaji et al., 2014b).

с

Figura 1: VCs emitidos por microorganismos filogenéticamente diversos fomentan el crecimiento y la floración en plantas de Arabidopsis cultivadas *in vitro*. (a) Peso fresco de roseta, (b) tiempo de aparición del botón floral y (c) fenotipo externo de plantas de Arabidopsis cultivadas en ausencia o presencia durante una semana de cultivos adyacentes de los microorganismos que se indican en la figura. El árbol filogenético fue construido usando PhyloT phylogenetic (www.phyloT.biobyte.de) (Sánchez-López et al., 2016b).

Aún a pesar de las grandes diferencias existentes entre los volatilomas de hongos y bacterias (Schulz y Dickschat, 2007; Lemfack et al., 2014), estudios comparativos de los cambios que ocurren en el transcriptoma de plantas de Arabidopsis expuestas a mezclas de VCs emitidos por la bacteria beneficiosa *B. subtillis* y por el hongo fitopatógeno *A. alternata* evidenciaron la existencia de mecanismos moleculares altamente conservados de respuesta de la planta a diferentes mezclas de VCs microbianos (Sánchez-López et al., 2016b). Entre las alteraciones observadas en los transcriptomas de estas plantas cabe destacar el incremento de la expresión de funciones reguladas por citoquininas (CKs) y por la luz, implicadas en la producción de pigmentos fotosintéticos, la asimilación del azufre (conversión de SO4²⁻ en SO3²⁻ y producción de sulfolípidos), la protección contra el estrés oxidativo, la síntesis de componentes de la pared celular, el metabolismo de aminoácidos y la síntesis y degradación de almidón (Sánchez-López et al., 2016b).

Plantas de Arabidopsis tratadas con VCs de A. alternata experimentan una reducción del contenido de ABA y un notable incremento del contenido de CKs activas (Sánchez-López et al., 2016a; Sánchez-López et al., 2016b). El efecto ejercido por los VCs de A. alternata en el crecimiento, desarrollo y metabolismo de plantas de Arabidopsis es reducido en mutantes de producción y señalización de CKs (Sánchez-López et al., 2016b). Globalmente, la información disponible al inicio de mis investigaciones indicaba que la respuesta de las plantas a VCs microbianos está fundamentalmente regulada a nivel transcripcional a través de mecanismos en los que la luz, el ABA y las CKs juegan un papel importante (Figura 2) (Sánchez-López et al., 2016b). Sin embargo, hay que destacar que investigaciones llevadas a cabo recientemente en nuestro laboratorio han demostrado que la respuesta de la planta a VCs microbianos está altamente regulada a nivel post-traduccional. Ameztoy et al. (2019) mostraron que la exposición de las plantas a VCs emitidos por A. alternata conlleva una reducción global del thiol redox proteoma, especialmente de proteínas relacionadas con la fotosíntesis. Los mismos autores mostraron que el tratamiento con VCs fúngicos sobre plantas ntrc carentes de una tiorredoxina plastidial NADP-dependiente (NTRC) que regula el estado redox del cloroplasto (Pérez-Ruiz et al., 2017) (a) oxida el redox-proteoma de este mutante y (b) ejerce un efecto reducido sobre la acumulación de almidón, el crecimiento, el desarrollo radicular y la floración en este mutante. Todo ello indicaría que cambios en el redoxproteoma de la planta mediados por NTRC juegan un papel importante en su respuesta a VCs microbianos (Li et al., 2011; Ameztoy et al., 2019).

Estudios realizados por Sánchez-López et al. (2016b) basados en el empleo de

Figura 2: Modelo integrativo de los mecanismos que regulan transcripcionalmente la respuesta de la planta a VCs emitidos por *A. alternata*. La descripción detallada de este modelo aparece en la sección "hipótesis de trabajo" de esta memoria (Sánchez-López et al., 2016b).

una amplia colección de microorganismos filogenéticamente diversos mostraron que VCs emitidos por el hongo filamentoso *Penicillium aurantiogriseum* ejercen un efecto peculiar sobre el desarrollo radicular de la planta, distinto al ejercido por VCs de otros microorganismos. Plantas sometidas a la acción de VCs emitidos por este fitopatógeno desarrollan un sistema radicular muy profuso con numerosas raíces secundarias y pelos radiculares muy abundantes y largos (**Figura 3**) dando lugar a un incremento de la superficie de contacto de la planta con el medio, y por tanto, de su capacidad de adquirir nutrientes y agua. Esta peculiaridad de *P. aurantiogriseum* convierte a este hongo en un atractivo modelo tanto para investigar los mecanismos que fomentan el crecimiento y el desarrollo en plantas sometidas a VCs microbianos como para llevar a cabo estudios de bioprospección de nuevos compuestos que incrementen el rendimiento de los cultivos de manera sostenible y económica.

1.3. Naturaleza de los VCs microbianos que fomentan el crecimiento y producen

Figura 3: VCs emitidos por el hongo fitopatógeno *P. aurantiogriseum* fomentan el crecimiento de la parte aérea y la formación y desarrollo de pelos radiculares en plantas de Arabidopsis. La fotografía muestra raíces de plantas de Arabidopsis en ausencia (control) o presencia durante 7 días de cultivos adyacentes de *P. aurantiogriseum*.

cambios en el desarrollo de las plantas

Todas las investigaciones realizadas hasta el momento sobre el efecto estimulante de VCs microbianos en el crecimiento y desarrollo de las plantas han girado en torno a compuestos de naturaleza orgánica comúnmente designados como VOCs (de "volatile organic compounds") (Kanchiswamy et al., 2015). De los 2000 VOCs microbianos identificados hasta el momento (Lemfack et al., 2018) muy pocos se han descrito como promotores del crecimiento. El trabajo pionero en esta temática (Ryu et al., 2003) identificó 2 compuestos (3-hydroxybutan-2-ona (acetoína) y 2,3-butanediol), como los principales VOCs emitidos por *B. subtilis* causantes del fomento del crecimiento de la planta. Recientemente, se han identificado otros VOCs microbianos que fomentan el crecimiento de la planta tales como el dimetildisulfuro (Meldau et al., 2013), algunos sesquiterpenos tales como el thujopseno y el β -cariofileno (Ditengou et al., 2015) o la 6-pentil-2H-piran-2-ona (Garnica-Vergara et al., 2016). No obstante, el efecto estimulante de estos compuestos aplicados en estado puro sobre el crecimiento de la planta es muy inferior al observado en plantas expuestas a mezclas de VCs microbianos.

Además de VOCs, los microorganismos son capaces de producir algunos VCs de carácter inorgánico (VICs), tales como el ácido sulfídrico (H₂S), el hidrógeno

molecular (H₂), el óxido nítrico (NO), el dióxido de nitrógeno (NO₂), el óxido nitroso (N₂O), el monóxido de carbono (CO), el dióxido de carbono (CO₂), el amoníaco (NH₃) y el ácido cianhídrico (HCN) (Engel et al., 1972; Wharton and Weintraub, 1980; Siegel and Siegel, 1987; Nandi and Sengupta, 1998; Conrath et al., 2004; Blom et al., 2011; Shatalin et al., 2011; Schreiber et al., 2012; Weise et al., 2013). Aplicados en elevadas concentraciones, estos compuestos pueden resultar nocivos para la planta. Sin embargo, algunos de estos compuestos (e.g. H₂S, CO, NO, NO₂, N₂O o H₂) pueden ejercer un efecto beneficioso cuando se aplican en bajas concentraciones (Dong et al., 2003; He et al., 2004; Guo et al., 2009; Jin et al., 2009; Kong et al., 2010; Xu et al., 2010; Chen et al., 2011; Dooley et al., 2013; Jin et al., 2013; Lisjak et al., 2013; Zeng et al., 2013; Lin et al., 2014; Takahashi et al., 2014; Wang and Liao, 2016; Kuruthukulangarakoola et al., 2017). VICs emitidos por algunas bacterias que fomentan el crecimiento son determinantes importantes de la arquitectura radicular de la planta (Creus et al., 2005; Molina-Favero et al., 2008).

1.4. Limitaciones de los sistemas empleados para el estudio de la respuesta de las plantas a VCs microbianos

Todos los estudios sobre la respuesta de las plantas a VCs microbianos se han llevado a cabo haciendo uso de sistemas de co-cultivo sellados en los que no existe contacto físico entre las plantas y los microorganismos y en los que el intercambio de gases con el exterior es muy limitado. El sistema de co-cultivo más simple y ampliamente utilizado está basado en la utilización de placas de Petri septadas y selladas con Parafilm. Tales placas poseen dos compartimentos conectados entre sí a través de una ranura que permite el intercambio de gases entre ambos compartimentos (Kai et al., 2016). En uno de los compartimentos se cultivan las plantas, mientras que en el otro se cultivan los microorganismo emisores de VCs (**Figura 4a**). Otro sistema de co-cultivo sellado utilizado para el estudio de las relaciones planta-microorganismo consiste en un miniinvernadero que consta de un recipiente cerrado donde se cultivan las plantas, conectado a un matraz donde se cultivan los microorganismos cuyos VCs son impulsados al miniinvernadero mediante una bomba (**Figura 4b**) (Kai et al., 2016).

Todos los microorganismos productores de VCs promotores del crecimiento y de cambios del desarrollo de la planta descritos hasta el momento son heterótrofos. En condiciones aeróbicas estos microorganismos consumen O₂ y emiten CO₂. Los

Figura 4: Sistemas de co-cultivo utilizados en el estudio de los VCs microbianos. (a) Sistema de co-cultivo basado en el uso de placas Petri septadas (arriba placa abierta; abajo placa sellada con Parafilm) y (b) esquema del sistema de mini-invernadero (Kai et al., 2016).

sistemas de co-cultivo anteriormente descritos acumulan altos niveles de CO_2 como consecuencia de la respiración microbiana (Kai and Piechulla, 2009). Concentraciones elevadas de CO_2 y niveles reducidos de O_2 potencian la fijación fotosintética de CO_2 , reducen la fotorrespiración y promueven el crecimiento, la floración, la acumulación de almidón y cambios en la arquitectura radicular de la planta (Quebedeaux and Hardy, 1975; Makino and Mae, 1999; Ramonell et al., 2001; Ainsworth and Rogers, 2007; Song et al., 2009; Niu et al., 2011; Hachiya et al., 2014; Thompson et al., 2017). Por ello, algunos investigadores han propuesto que el efecto estimulante de los VCs emitidos por microorganismos en los sistemas de co-cultivo arriba descritos podría ser debido en gran parte a la exposición de las plantas a elevadas concentraciones de CO_2 y han cuestionado la implicación de otro tipo de VCs en este fenómeno (Kai and Piechulla, 2009; Casarrubia et al., 2016; Kai et al., 2016). Como consecuencia de la controversia generada, se ha propuesto que los sistemas de co-cultivo sellados para el estudio de la respuesta de las plantas a VCs microbianos deben incluir sistemas de monitorización del CO_2 (Piechulla, 2017).

2. FACTORES QUE AFECTAN A LA ARQUITECTURA RADICULAR

Las raíces cumplen funciones tan esenciales para la supervivencia de la planta como la toma de agua y nutrientes, la fijación al suelo o el establecimiento de interacciones con el entorno, ya sean con microorganismos o con otras plantas. En algunas especies, las raíces son almacenadoras de sustancias de reserva. Todas estas funciones dependen en gran medida de la arquitectura de la raíz que, a su vez depende de la longitud de la raíz primaria (PR) y del número y longitud de bifurcaciones surgidas de la PR denominadas raíces laterales (LR). Tanto la PR como las LRs están revestidas de pelos radiculares, que son células especializadas en la captura de agua y minerales. Según su origen y desarrollo se distinguen dos tipos de sistemas radicales (**Figura 5**). Las gimnospermas y las dicotiledóneas poseen un sistema radicular alorrizo, caracterizado por poseer una PR dominante sobre las LRs. Las monocotiledóneas y las pteridófitas poseen un sistema radical homorrizo que está formado por un conjunto de raíces adventicias y que se halla profusamente ramificado. En ambos casos la arquitectura de la raíz está determinada por factores endógenos y exógenos.

2.1. Factores endógenos

Auxinas

Las auxinas están involucradas prácticamente en todos los procesos de desarrollo de las plantas. A concentraciones fisiológicas, promueven la división de las células vegetales, aunque en altas concentraciones pueden inducir o inhibir la elongación celular (Perrot-Rechenmman and Napier, 2005). El ácido indolacético (IAA) es la auxina más estudiada y se presenta en forma libre o conjugada con otros compuestos. Existen varias rutas de síntesis del IAA en plantas que se agrupan en: rutas dependientes e independientes de la metabolización del triptófano (Figura 6).

En general las zonas más importantes de síntesis del IAA son los tejidos jóvenes (yemas, hojas, frutos y semillas inmaduras). El transporte y la distribución de las auxinas a las restantes partes de la planta juegan un papel importante para el desarrollo de la misma. El transporte acropétalo de las auxinas se produce desde los tejidos aéreos jóvenes hacia las raíces a través de rutas de larga y corta distancia (Ljung et al., 2005; Teale et al., 2006). En la ruta de larga distancia, las auxinas se transportan a través del floema maduro mientras que en la ruta de corta distancia el transporte de las auxinas tiene lugar de célula a célula y está mediado por transportadores específicos de entrada y salida de auxinas (Vieten et al., 2007; Vanneste and Friml, 2009). En *Arabidopsis*

Figura 5: Representación esquemática de los distintos tipos de sistemas radiculares (Bellini et al., 2014).

Figura 6: Rutas de síntesis de IAA. (a) Rutas triptófano-dependientes. El triptófano puede convertirse en IAA a través de reacciones acopladas de desaminación (que dan lugar a ácido indol-3-pirúvico), descarboxilación (que dan lugar al indol-3-acetaldehido, que también puede obtenerse por la desaminación de la triptamina) y oxidación (dando lugar al IAA). Rutas alternativas de producción de IAA a partir del triptófano incluyen (i) la producción de indol-3-acetaldehído vía triptamina, o (ii) la producción de indol-3-acetaldexima, que una vez convertida en indol-3-acetonitrilo, puede dar lugar a IAA (Srivastava, 2002). (b) Ruta independiente de triptófano. Esta ruta surge a partir del producto final de la ruta del shikimato (corismato), que es convertido en antranilato, 5-fosforribosilantranilato, dioxirribulosa, fosfato indol-3glicerol (IGP) e indol mediante la acción acoplada de las enzimas antranilato sintasa. El IAA puede sintetizarse a partir de indol o IGP (Srivastava, 2002).

thaliana, se han descrito tres familias de proteínas transportadoras de auxinas: las AUX1 y similares (AUX1/LAX), las PIN y las p-glicoproteínas (PGP) de tipo ABC (Zazímalová et al., 2010). Las proteínas de la familia PIN exportan auxinas (Blilou et al., 2005; Geisler and Murphy, 2006) mientras que las de la familia AUX1/LAX las importan (Bennett et al., 1996; Swarup et al., 2001). Las PGP actúan indistintamente tanto como importadoras como exportadoras (Geisler and Murphy, 2006). El flujo de auxinas por estos transportadores juega un papel importante en la distribución de estas en la raíz y, por tanto, en la arquitectura radicular. Mutantes deficientes en AUX1 son agravitrópicos y presentan alteraciones en la distancia entre LRs y en la aparición y desarrollo de pelos radiculares (Vanneste and Friml, 2009). Por otro lado, las mutaciones

de proteínas PIN alteran el desarrollo de los meristemos de la raíz, la organogénesis, la diferenciación del tejido vascular y la respuesta gravitrópica, lo que sugiere que estas proteínas juegan un papel crítico en estos procesos (Blilou et al., 2005; Zhao et al., 2015).

Una vez en el interior de la célula, las auxinas se unen a la proteína receptora TIR1 y son señalizadas según se ilustra en la **Figura 7**.

Citoquininas

Figura 7: Modelo de señalización de auxinas. Con niveles bajos de auxinas, el correpresor TPL reprime la transcripción regulada por auxina mediante la unión de las proteínas AUX/IAA a los ARFs. Con niveles altos, el complejo SCF^{TIR1} se une a la auxina y se dirige a las proteínas AUX/IAA para su degradación a través de la vía ubiquitina-proteasoma. La ubiquitina se conjuga covalentemente a las AUX/IAA por la actividad secuencial de tres enzimas: las enzimas activadoras de ubiquitina (E1), las enzimas conjugadoras de ubiquitina (E2) y las proteínas ligasas de ubiquitina (E3). Esto permite a las proteínas AUX/IAA ser reconocidas por el proteasoma y degradarlas, liberando los ARF y activando los genes involucrados en la respuesta a auxinas (Saini et al., 2013).

Las CKs estimulan la división celular de las plantas, controlan la diferenciación del meristemo de la raíz, promueven la formación de pelos radiculares e inhiben la formación de LRs y el alargamiento de la PR (Riefler et al., 2006; Bishopp et al., 2009; Ramireddy et al., 2014). Mutantes deficientes en producción o señalización de CKs se caracterizan por poseer una PR más larga y un mayor número de LRs que las plantas silvestres (Bishopp et al., 2009; Ramireddy et al., 2009; Ramireddy et al., 2014). Las CKs son derivados de

adenina que poseen una cadena lateral en la posición N6, que es la que determina su actividad biológica en plantas. La cadena lateral puede ser de naturaleza isoprenoide o aromática. Entre las CKs isoprenoides se encuentran la cis-zeatina (cZ), la trans-zeatina (tZ), la isopenteniladenina (iP) y la dihidrozeatina (DZ), con sus respectivos derivados glicosilados (Sakakibara, 2006). Entre las CKs aromáticas se incluyen la benciladenina, la kinetina y la metahidroxibenziladenina. La síntesis de CKs isoprenoides en las plantas se produce a través de dos rutas metabólicas: la ruta del metileritritol fosfato (MEP) y la ruta del mevalonato (MVA) (**Figura 8**) (Sakakibara, 2006).

Históricamente se asumía que las CKs solo eran sintetizadas en las raíces de las plantas y de ahí se transportaban hacia el tallo y las hojas (Beck and Wagner, 1994). Sin embargo, las CKs también pueden sintetizarse en la parte aérea de las plantas (Hirose et al., 2008). Dependiendo de su naturaleza química, el movimiento de las CKs en la planta puede ser tanto hacia las raíces como hacia las hojas. Por ejemplo la tZ es transportada hacia el ápice de la planta a través del xilema, mientras que la iP se transporta fundamentalmente a través del floema (Hirose et al., 2008; Kudo et al., 2010). Se conoce la existencia de un transporte de CKs entre células a través de dos familias de transportadores: permeasas de purinas y transportadores de nucleósidos (Kang et al., 2017). El mecanismo principal de señalización de las CKs está basado en el sistema de doble componente de transferencia de grupos fosfato que se ilustra en la **Figura 9**.

Etileno

El etileno es un VOC que juega un papel fundamental en la formación y el crecimiento de las LRs e inhibe el alargamiento de la raíz y el transporte de auxina. Mutantes con elevada síntesis o señalización de etileno poseen un reducido número de LRs, mientras que mutantes insensibles al etileno muestran una gran proliferación de LRs (Negi et al., 2008). El etileno también es clave para el desarrollo de los pelos radiculares. Mutantes insensibles a la acción del etileno muestran pelos radiculares más cortos, mientras que mutantes sobreproductores de etileno poseen pelos radiculares más largos (Pitts et al., 1998; Rahman et al., 2002). En las plantas el etileno se produce a partir de la S-adenosil metionina mediante la acción acoplada de la 1-aminociclopropano-1-carboxilato sintasa y la aminociclopropano-1-carboxilato oxidasa (**Figura 10**). Los mecanismos de señalización del etileno se ilustran en la **Figura 11**.

Figura 8: Rutas implicadas en la biosíntesis de CKs en Arabidopsis. Según este modelo, las cadenas laterales isoprenoides de isopenteniladenina (iP), trans-zeatina (tZ) y dihidrozeatina (DZ) provienen mayoritariamente de la ruta del metileritritol fosfato (MEP), mientras que la cadena lateral de la cis-zeatina (cZ) proviene de la ruta del ácido mevalónico (MVA). Las enzimas isopenteniltransferasas (IPT) son las encargadas de sintetizar iPRTP, iPRDP e iPRMP, a partir de ATP, ADP y AMP, respectivamente. iPRTP, iPRDP e iPRMP pueden convertirse en sus respectivas formas de tZ (tZRTP, tZRDP y tZRMP) gracias a la enzima CYP735A. La formación de iPRMP a partir de iPRTP e iPRDP es catalizada por fosfatasas. Ambas formas iPRMP y tZRMP (junto con DZRMP y cZRMP) se metabolizan en los nucleosidos iPR, tZR, DZR y cZR respectivamente por la acción de la adenosina quinasa (AK), los cuales pueden transformarse en las respectivas CKs activas por la adenosin nucleosidasa (Sakakibara, 2006).

Óxido nítrico

El NO es un determinante importante del desarrollo de PRs y LRs. Comparadas con plantas silvestres, plantas deficientes en NO poseen una raíz primaria larga y un reducido número de LRs, mientras que plantas expuestas a sustancias donadoras de NO o que acumulan altos niveles de este VIC presentan un elevado número de LRs (Correa-Aragunde et al., 2004). El NO también está implicado en el desarrollo de los pelos radiculares. Un incremento de los niveles de NO endógeno fomenta el desarrollo de estas estructuras, mientras que un descenso del NO endógeno inhibe su formación y desarrollo (Lombardo et al., 2006). El NO se produce en numerosos orgánulos

Figura 9: Mecanismo de señalización de CKs de doble componente de transferencia de grupos fosfato. Según este modelo, la CK se une en la luz del retículo endoplasmático (ER) al receptor dimerizado CHK, situado en la membrana del ER, comenzando así la vía de señalización. El receptor se autofosforila en un residuo de histidina conservado, que luego se transmite a un residuo de ácido aspártico conservado. La señal se desplaza a través del citosol a una proteína de fosfotransferencia de histidina (HPt), que luego se mueve al núcleo, transfiriendo el fosfato a un residuo de ácido aspártico conservado en los reguladores de respuesta a CKs (RR), clasificados en dos grandes grupos: tipo A (type-A RR) y tipo B (type-B RR). Ambos RR conservan un motivo de aminoácidos concreto (DDK). Los de tipo B además contiene un dominio de factor de transcripción GARP, que les permite activar genes regulados por citoquinina, mientras que los de tipo A, al no poseer este dominio, funcionan como represores de la respuesta a CKs (Keshisian and Rashote, 2015).

(mitocondrias, cloroplastos y peroxisomas) mediante reacciones enzimáticas en las que intervienen peroxidasas, nitrato sintasas y enzimas similares a la NO sintasa. El NO también puede producirse de forma no-enzimática en ciertas condiciones, como en el caso de una bajada del pH que puede provocar la formación de NO a partir de nitrato (Wilson et al., 2008; del Río, 2011; Hancock, 2012; Mur et al., 2012; del Río et al., 2014). Independientemente de su origen, el NO es una especie reactiva del nitrógeno que puede modular la función de las proteínas a través de la nitrosilación de los grupos tioles de cisteínas o reaccionar con ROS, para generar peroxinitrito, que a su vez puede dar lugar a la nitración de las tirosinas de las proteínas.

Especies reactivas de oxígeno

Los ROS (H₂O₂ y O₂⁻) son determinantes importantes de la arquitectura de la raíz (Tsukagoshi et al., 2010). Los productores más importantes de H₂O₂ en plantas son la glicolato oxidasa y la acil-CoA oxidasa peroxisomales implicadas en las vías de

Figura 10: Ruta de síntesis del etileno. Las plantas utilizan como precursor del etileno la S-adenosilmetionina, la cual es transformada por la 1-aminociclopropano-1-carboxilato sintasa (EC 4.4.1.14), obtieniendose 1-amino-ciclopropano-1-carboxilato y liberándose S-metil-5-tioadenosina, y posteriormente la aminociclopropano-1-carboxilato oxidasa (EC 1.14.17.4), mediante el uso de ácido ascórbico como cofactor, transforma el 1-amino-ciclopropilcarboxilato en etileno, generándose además ácido cianhídrico (HCN) y CO₂. https:// www.qmul.ac.uk/sbcs/iubmb/enzyme/reaction/misc/ethene.html

fotorrespiración y de la β -oxidación de ácidos grasos, respectivamente. Las peroxidasas unidas a la pared celular también son importantes productores de H₂O₂ (Bolwell and Daudi, 2009; O'Brien et al., 2012). Una fuente importante de O₂⁻ es la NADPH oxidasa localizada en la membrana plasmática (Suzuki et al., 2011; Marino et al., 2012; Baxter et al., 2014). Otras fuentes importantes de O₂⁻ y H₂O₂ son los cloroplastos y las mitocondrias donde tiene lugar diferentes reacciones oxidativas y de transporte de electrones (Asada, 2006; del Río et al., 2006; Rhoads et al., 2006; Halliwell and Gutteridge, 2007; del Río and Puppo, 2009; del Río, 2013). Plantas silvestres tratadas con inhibidores de la actividad de la NADPH oxidasa o mutantes *rhd2* que no expresan una NADPH oxidasa no poseen pelos radiculares y desarrollan raíces cortas (Foreman et al., 2003).

Existen diferentes mecanismos de regulación génica por ROS. Está ampliamente aceptado que la detección de ROS externos e internos por sensores de membrana conlleva la inducción de cascadas de reacciones en las que MAP quinasas (MAPKs) transfieren grupos fosfato a factores de transcripción (Figura 12) (Apel and

Figura 11: Modelo propuesto de la señalización de etileno en Arabidopsis. El etileno es percibido en la membrana del ER por una familia de receptores (ETR1, ERS1, ETR2, EIN4 y ERS2). En ausencia de etileno (Air), los receptores activos interactúan con la región N-terminal del regulador negativo CTR1 (Kieber et al., 1993) para fosforilar directamente el dominio C-terminal del regulador positivo de las respuestas de etileno EIN2 (Alonso et al., 1999), impidiendo la separación del dominio CEND de EIN2 por las proteínas F-box EPT1/2 y reprimiendo la transducción de señalización. En el núcleo, las proteínas implicadas en la señalización de etileno EIN3/EIL1 se degradan a través del ubiquitina-proteasoma mediado por las proteínas F-box EBF1/2. En presencia de etileno tiene lugar una inactivación de sus receptores y CTR1, lo que resulta en la desfosforilación de EIN2 y, por lo tanto, la escisión del dominio CEND. Este dominio CEND se transporta al núcleo y participa en la estabilización y acumulación de EIN3/EIL1 y, en consecuencia, induce la transcripción de factores de respuesta a etileno (ERFs) y otros genes sensibles al etileno (Yang et al., 2015).

Hirt, 2004). La señalización de ROS internos también puede producirse mediante la inactivación de una proteína fosfatasa que defosforila a las MAPKs (**Figura 12**). Los ROS también pueden modular la expresión génica modificando la actividad de los factores de transcripción (Apel and Hirt, 2004) (**Figura 12**).

2.2. Factores exógenos que afectan a la arquitectura radicular

Figura 12: Esquema propuesto para la detección y señalización de ROS en plantas. Los ROS de origen tanto intracelular como extracelular son detectados por sensores de ROS, constituidos por proteínas histidin-quinasas de membrana, las cuales activan una cascada de fosforilacion de proteínas MAP quinasas (MAPKKK, MAPKK y MAPK), que inducen la activación de factores de transcripción mediante la fosforilacion de los mismos mediante la MAPK activa. Los ROS intracelulares pueden mantener activa la MAPK gracias a la inhibición por oxidación de una fosfatasa (PPase) o actuar directamente sobre la activación de los factores de transcripción a través de la oxidación de residuos de cisteínas. (Apel and Hirt, 2004)

Factores abióticos

La arquitectura radicular está fuertemente determinada por factores exógenos de carácter abiótico, tales como la disponibilidad de agua y de macronutrientes (fósforo, azufre, potasio, calcio y nitrógeno) y micronutrientes esenciales (hierro, boro, molibdeno, manganeso, cobre, níquel y zinc). En función de la disponibilidad de agua, las plantas responden fomentando el crecimiento de sus raíces laterales en las zonas con mayor grado de humedad o reprimiendo el crecimiento en zonas con escasa humedad (Bao et

al., 2014; Orman-Ligueza et al., 2018; Robbins and Dinneny, 2018). La disponibilidad de nutrientes puede alterar el número, la longitud, el ángulo y el diámetro de las raíces y los pelos radiculares (Forde and Lorenzo, 2001; López-Bucio et al., 2003; Malamy, 2005). Las plantas responden a concentraciones crecientes de nitrato inhibiendo el crecimiento de la raíz primaria y de las raíces laterales (Lopez-Bucio et al., 2005). Plantas crecidas en suelos pobres en fosfato reducen drásticamente el crecimiento de la raíz primaria (Sánchez-Calderón et al., 2005) y desarrollan más raíces laterales y pelos radiculares que plantas crecidas con altas concentraciones de fosfatos (Williamson et al., 2001; Lopez-Bucio et al., 2002; Jiang et al., 2007). Una deficiencia leve de hierro fomenta el alargamiento de las raíces primaria y laterales, mientras que una deficiencia severa causa retraso en el crecimiento de las raíces (Gruber et al., 2013). La deficiencia de zinc conlleva el desarrollo de un sistema radicular altamente ramificado (Gruber et al., 2013).

Factores bióticos

Los microorganismos existentes en la rizosfera también modifican la arquitectura radicular de las plantas. Estos microorganismos pueden mejorar el desarrollo y el crecimiento de las raíces mediante la producción y liberación al exterior de fitohormonas tales como auxinas, CKs y etileno (Thuler et al., 2003; Perrig et al., 2007; Cassán et al., 2009; Moubayidin et al., 2009; Stepanova and Alonso, 2009; Dodd et al., 2010; Overvoorde et al., 2010) o mediante la liberación de enzimas que interfieren en el metabolismo de fitohormonas. La enzima más estudiada es la 1-aminociclopropano-1-carboxilato deaminasa, que modula la producción de etileno en la planta (Penrose et al., 2001; Glick 2005; Contesto et al., 2008). Muchos microorganismos pueden fomentar el crecimiento y desarrollo de las LRs (Combes-Meynet et al., 2011; Chamam et al., 2013) y de los pelos radiculares (Dobbelaere et al., 1999; Contesto et al., 2008), fomentando así la capacidad exploratoria de nutrientes de la planta y, por tanto, el crecimiento.

3. HIPÓTESIS DE TRABAJO

El estudio de la respuesta de las plantas a VCs emitidos por microbios fitopatógenos constituye un modelo ideal tanto para investigar los mecanismos reguladores del metabolismo, crecimiento y desarrollo de la planta y su interacción con los microorganismos, como para diseñar estrategias biotecnológicas que permitan incrementar la productividad de los cultivos. Las hipótesis planteadas al inicio de mi

trabajo de tesis doctoral pueden incluirse en dos grandes bloques cuyos fundamentos y razonamientos se detallan a continuación:

3.1. Hipótesis relacionadas con la naturaleza de los VCs bioestimulantes de origen microbiano

Todos los microorganismos productores de VCs que fomentan el crecimiento y cambios del desarrollo de la planta descritos hasta el momento (tanto los patógenos utilizados por el grupo de investigación en el que he realizado mi trabajo como los beneficiosos utilizados por otros grupos de investigación) son heterótrofos. En condiciones aeróbicas estos microorganismos consumen O2 y emiten CO2. Los sistemas sellados de co-cultivo clásicamente empleados para el estudio de las relaciones planta-microorganismo mediadas por VCs acumulan altos niveles de CO₂ como consecuencia de la respiración microbiana (Kai and Piechulla, 2009). Concentraciones elevadas de CO₂ y niveles reducidos de O₂ potencian la fijación fotosintética de CO₂ y promueven el crecimiento, la floración, la acumulación de almidón y cambios en la arquitectura radicular de la planta (Quebedeaux and Hardy, 1975; Makino and Mae, 1999; Ramonell et al., 2001; Ainsworth and Rogers, 2007; Song et al., 2009; Niu et al., 2011; Hachiya et al., 2014; Thompson et al., 2017). El sistema "box-in-box" utilizado por mi grupo de investigación para realizar estudios de la respuesta de la planta a VCs microbianos es un sistema "semi-sellado" en el que el intercambio de gases con el exterior está mediado por una fina lámina de plástico semipermeable a VCs de pequeño tamaño molecular. Consecuentemente, una hipótesis de trabajo contemplada al inicio de mi trabajo proponía que una parte considerable de la respuesta de la planta a los VCs emitidos por microorganismos patógenos descritos por mi grupo de investigación son debidos a la exposición de las plantas a elevadas concentraciones de CO₂.

Todas las investigaciones realizadas hasta el momento sobre el efecto bioestimulante de los VCs microbianos han girado en torno a VOCs (Kanchiswamy et al., 2015). Sin embargo, además de VOCs, los microorganismos son capaces de producir VICs que, aplicados en bajas concentraciones pueden ejercer un efecto beneficioso para la planta (Dong et al., 2003; He et al., 2004; Guo et al., 2009; Jin et al., 2009; Kong et al., 2010; Xu et al., 2010; Chen et al., 2011; Dooley et al., 2013; Jin et al., 2013, Lisjak et al., 2013; Zeng et al., 2013; Lin et al., 2014; Takahashi et al., 2014; Wang and Liao, 2016; Kuruthukulangarakoola et al., 2017). Es más, VICs emitidos por algunas

bacterias que fomentan el crecimiento son determinantes importantes de la arquitectura radicular de la planta (Creus et al., 2005; Molina-Favero et al., 2008). Por lo tanto, otra hipótesis de trabajo planteada al inicio de mis investigaciones proponía que algunos VICs (incluyendo los emitidos por hongos fitopatógenos) juegan un papel importante en la respuesta de la planta a VCs microbianos.

3.2. Hipótesis relacionadas con la regulación de la respuesta de las raíces a VCs microbianos

Investigaciones llevadas a cabo antes de mi incorporación al laboratorio en el que he realizado mi trabajo de investigación permitieron elaborar un esquema integrativo de los procesos bioquímicos y moleculares que operan en las plantas expuestas a la acción de los VCs emitidos por microorganismos patógenos (Figura 2). La hipótesis de trabajo planteada al inicio de mi investigación contemplaba que los VCs emitidos por fitopatógenos fúngicos son percibidos por receptores localizados en la membrana plasmática de células foliares que producen señales promotoras de la expresión de funciones relacionadas con la fotosíntesis. El incremento de la actividad fotosintética resultante conlleva incrementos en la producción de gliceraldehido-3-P, un intermediario del CBC que actúa como precursor de la síntesis de compuestos isoprenoides plastidiales tales como clorofilas, carotenoides y hormonas, entre las que destacan las giberelinas y CKs. Estas últimas inician una cascada de reacciones que derivan en la producción de proteínas relacionadas con la captación de luz, la fotoprotección, la síntesis de componentes de pared celular, la iniciación de la floración y el desarrollo radicular, la defensa contra el estrés oxidativo, el metabolismo de aminoácidos y la captación de hexosas citosólicas precursoras de la biosíntesis de almidón. Según este modelo, la regulación de la respuesta de la planta a VCs microbianos está altamente regulada a nivel transcripcional (Sánchez-López et al., 2016b). Sin embargo, existen indicios de que esto no es del todo correcto. Así, trabajos realizados en nuestro laboratorio han mostrado que la acumulación de niveles excepcionalmente elevados de almidón foliar promovida por los VCs fúngicos depende en gran medida de la activación redox de enzimas del metabolismo del almidón (Li et al., 2011). Además, la mayoría de los cambios observados en el proteoma de plantas expuestas a VCs microbianos no están asociados con cambios en el transcriptoma (Sánchez-López et al., 2016a). Es más, parece que los mecanismos de regulación post-transcripcional juegan un papel importante en

la adaptación de las plantas (especialmente las raíces) a cambios del entorno (Floris et al., 2009; Lan et al., 2012). Por lo tanto, otra hipótesis de trabajo planteada al inicio de mis investigaciones contemplaba que la respuesta de las plantas (especialmente de las raíces) a VCs microbianos está regulada post-transcripcionalmente.

En la fase de pre-colonización los microorganismos beneficiosos producen VCs que promueven cambios en la arquitectura radicular de las plantas que facilitan la captación de nutrientes y agua. Estas adaptaciones son el resultado de procesos en los que (a) la señalización de hormonas (especialmente auxinas, etileno y CKs) y ROS juegan un papel destacado y (b) determinadas rutas metabólicas actúan como fuente de energía y de moléculas-señal. Sin embargo, hasta el momento no se han realizado estudios de los cambios que ocurren en el metaboloma, el proteoma y el hormonoma de raíces de plantas expuestas a VCs emitidos por fitopatógenos. Otra hipótesis de trabajo planteada al inicio de mis investigaciones proponía que los microorganismos patógenos emiten VCs que fomentan el crecimiento y cambios en el desarrollo radicular a través de cambios en la señalización de hormonas y ROS que a su vez dan lugar a cambios en el proteoma y metaboloma de la planta.

OBJETIVOS

El objetivo general de esta tesis es profundizar en el conocimiento de los mecanismos que regulan la interacción entre las plantas y los microorganismos fitopatógenos durante la fase de pre-colonización. Para ello se plantean los siguientes objetivos específicos:

1) Identificar la naturaleza de los VCs emitidos por dos hongos fitopatógenos (*A. alternata* y *P. aurantiogriseum*) que fomentan el crecimiento y promueven cambios en el metabolismo y el desarrollo de Arabidopsis.

2) Estudiar los mecanismos bioquímicos y moleculares implicados en la respuesta de las raíces a los VCs emitidos por *P. aurantiogriseum*.

CAPÍTULO 1

Volatile compounds other than CO₂ emitted by different microorganisms promote distinct post-transcriptionally regulated responses in plants

1. INTRODUCTION

The metabolic activity of microorganisms results in the emission of complex mixtures of volatile compounds (VCs). It is well known that beneficial bacteria and fungi can produce volatiles that promote plant growth as well as developmental and metabolic changes (Ryu et al., 2003; Hung et al., 2013; Kanchiswamy et al., 2015). We have recently shown that this capacity is not restricted to beneficial microorganisms, but also extends to phytopathogens (Sánchez-López et al., 2016b). When Arabidopsis plants were exposed to airborne signals released by the saprophytic fungus Alternaria alternata, growth promotion was accompanied by enhanced photosynthetic electron transport and CO₂ assimilation rates, accelerated flowering, changes in the redox status of enzymes involved in starch metabolism, and starch over-accumulation resulting from the activation of non-canonical starch biosynthetic pathway(s) (Ezquer et al., 2010; Li et al., 2011; Sánchez-López et al., 2016a; Sánchez-López et al., 2016b). Short exposure to VCs emitted by A. alternata and plant growth-promoting bacteria induced similar transcriptomic changes, indicating that plants react to microbial VCs through highly conserved regulatory mechanisms (Sánchez-López et al., 2016b). These findings expanded our knowledge of the diversity and complexity of the mechanisms involved in modulating plant physiology and growth when plants interact with microorganisms, and raised questions about the evolution of the involved processes and their ecological significance.

Growth promotion by microbial VCs has frequently been associated with lipophilic carbon-based compounds with molecular masses less than 300 Da and high vapour pressure, which are known as volatile organic compounds (VOCs) (Kanchiswamy et al., 2015). Nearly 2000 microbial VOCs emitted by 1000 microorganisms are presently registered in the microbial VOC database (Lemfack et al., 2018). Over 50 of these VOCs have been shown to induce changes in the plant's growth, physiology and/or defence responses (Piechulla et al., 2017). In many cases, exposure of plants to discrete (individual) VOCs or VOC mixtures either failed to reproduce or only partially reproduced the effects induced by the complex blends of VCs emitted by plant growth promoting microorganisms (Groenhagen et al., 2013; Naznin et al., 2013; Cordovez et al., 2017). This indicates that VOCs not detected by the analytical methods used in these studies may be partly responsible for the growth-promoting effects of microbial VCs. In addition to VOCs, microorganisms also release a limited number of volatile

inorganic compounds (VICs) with molecular masses less than 45 Da such as hydrogen sulfide (H₂S), molecular hydrogen (H₂), nitric oxide (NO), nitrogen dioxide (NO₂), nitrous oxide (N₂O), carbon monoxide (CO), carbon dioxide (CO₂), hydrogen cyanide (HCN) and ammonia (NH₃) (Engel et al., 1972; Wharton and Weintraub, 1980; Siegel and Siegel, 1987; Nandi and Sengupta, 1998; Conrath et al., 2004; Blom et al., 2011; Shatalin et al., 2011; Schreiber et al., 2012; Weise et al., 2013). These compounds can cross biological membranes. Some of them are very reactive with proteins and can act as signalling molecules that promote photosynthesis, growth and developmental changes in plants when exogenously applied in a discrete form and in low concentrations (Dong et al., 2003; He et al., 2004; Guo et al., 2009; Jin et al., 2009; Kong et al., 2010; Xu et al., 2010; Chen et al., 2011; Dooley et al., 2013; Jin et al., 2013; Lisjak et al., 2013; Zeng et al., 2013; Lin et al., 2014; Takahashi et al., 2014; Wang and Liao, 2016; Kuruthukulangarakoola et al., 2017). There is also evidence that emissions of some of these compounds from growth-promoting rhizobacteria are an important determinant of root development in their host plants (Boccara et al., 2005; Johnson et al., 2008; Molina-Favero et al., 2008).

A number of studies on plant's responses to microbial VCs have largely relied on the use of sealed dual co-cultivation systems in which plants are exposed to complex mixtures of VICs and VOCs released by nearby microbial cultures (Ryu et al., 2003; Zhang et al., 2009; Ezquer et al., 2010; Blom et al., 2011; Ditengou et al., 2015; Casarrubia et al., 2016; Sánchez-López et al., 2016a; Sánchez-López et al., 2016b; Cordovez et al., 2017). All currently known microorganisms that produce plant growthpromoting volatiles are heterotrophic and thus emit respiratory CO₂ and consume O₂ when grown under aerobic conditions. In sealed co-cultivation systems, microbial respiratory CO₂ can accumulate to high levels in the headspace (Kai and Piechulla, 2009) while O₂ levels can fall below the atmospheric O₂ concentrations. Elevated CO₂ and strong reduction of O2 levels enhance photosynthesis, reduce photorespiration, and promote plant growth, flowering, starch accumulation and changes in root architecture (Quebedeaux and Hardy, 1975; Makino and Mae, 1999; Ramonell et al., 2001; Ainsworth and Rogers, 2007; Song et al., 2009; Niu et al., 2011; Hachiya et al., 2014; Thompson et al., 2017). Therefore, several authors have argued that the responses of plants grown in closely proximity to microbial cultures in sealed containers could be largely due to accumulation of elevated levels of CO₂ from microbial respiration, which calls into

question past interpretations of results obtained using sealed co-cultivation systems (Kai and Piechulla, 2009; Casarrubia et al., 2016; Kai et al., 2016). Consequently, studies using sealed co-cultivation systems should include appropriate CO₂ controls and online monitoring of the levels of this gas in the growth containers. In addition, the design of the test system should be described in detail (Piechulla, 2017; Piechulla et al., 2017).

Our previous studies on plant responses to microbial volatiles were conducted using a "box-in-box" co-cultivation system in which the plant and microbial cultures were placed in a container sealed with a polyvinyl chloride (PVC) plastic wrap (cf. Supplemental Figure 2 in Ezquer et al., 2010, cf. Supplemental Figure 1 in Sánchez-López et al., 2016b). In studies using this and other sealed test systems, plants co-cultured with phylogenetically distant microbial species exhibited very similar transcriptomic changes, suggesting that all of the microorganisms emit the same bioactive VC(s)(Sánchez-López et al., 2016b). It is thus possible that our observations were due at least in part to elevated CO₂ resulting from microbial respiration. Using the same "box-inbox" test system, here we have conducted new studies to address the question of whether airborne signals from different microorganisms can promote distinct responses in plants. In addition, we evaluated the contribution and mode of action of microbial VOCs and VICs (including respiratory CO₂) in these responses by performing comparative analyses of plants' developmental, biochemical and molecular responses to (i) CO₂, (ii) complex mixtures of VICs and VOCs, and (iii) VOCs-depleted (VICs-containing) volatile emissions from the fungal phytopathogens A. alternata and P. aurantiogriseum. Our results show that, in the test system used in this work and our previous studies, respiratory CO₂ plays only a minor role in plant responses to microbial VCs. Moreover, we present evidence that mixtures of VICs from different microorganisms can promote growth and distinct developmental changes in Arabidopsis. We also provide evidence that (a) the highly conserved transcriptional changes occurring in plants exposed to microbial VCs are indirectly due to enhanced photosynthesis, and (b) some plant responses to fungal VOCs-depleted VC mixtures are primarily regulated at the posttranscriptional level.

2. MATERIALS AND METHODS

Plant and microbial cultures, growth conditions and sampling

The work was carried out using Arabidopsis thaliana L. (Heynh) ecotype Columbia

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa (Col-0) and the fungal species A. alternata (CECT 20192) and P. aurantiogriseum (CECT 20226). Plants were cultured in Petri dishes (92x16mm, Ref. 82.1472.001, Sarstedt) containing sucrose-free solid half strength Murashige and Skoog (MS) (Phytotechlab M519) medium. A. alternata and P. aurantiagriseum were cultured in Petri dishes (35x10mm, Ref. 82.1135.500, Sarstedt) containing solid MS medium supplemented with 90 mM sucrose. To investigate the plants' responses to fungal VCs, microbial cultures without lids (with or without filter of charcoal, SIGMA 05105) and plant cultures without lids were placed in sterile boxes without physical contact, and sealed with a PVC film. As negative controls, plant cultures were placed in sealed boxes together with Petri dishes containing sterile MS medium. The sealed boxes containing plants and fungal cultures were placed in CO₂-controlled growth cabinets (Conviron[®], Manitoba, Canada) with a 16 h light (90 µmol photons sec⁻¹ m⁻²)/8 h dark photoperiod (22°C during the light period and 18°C during the dark period). The growth cabinets were modified including a Vaisala CARBOCAP, Carbon Dioxide Module GMM112 to allow the cabinets to reach 10000 ppm CO₂. Microbial VCs and CO₂ treatments started at the 14th day after sowing. Unless otherwise indicated plants were grown on horizontal plates.

Root morphological analysis

The numbers and lengths of the plants' roots and root hairs in plants grown on vertical plates were measured using a stereomicroscope Olympus MVX10 (Japan). Microphotographs were captured with a DP72 video camera (Olympus, Japan) and the Cell D software (Olympus, Japan).

Analytical procedures

Fully expanded source leaves of plants cultured in the absence or presence of VCs or exogenously supplied CO₂ were harvested at the end of the light period, freeze-clamped, and ground to a fine powder in liquid nitrogen with a pestle and mortar. Starch was measured using an amyloglucosydase–based test kit (Boehringer Mannheim, Germany). For measurement of sucrose, glucose and fructose levels, a 0.1 g aliquot of the frozen powder was resuspended in 1 ml of 90% ethanol, left at 70 °C for 90 min, and centrifuged at 13,000 x g for 10 min. Sugar contents from supernatants were then determined by HPLC with pulsed amperometric detection on a ICS-3000 Dionex system.

Gas exchange determinations

Fully expanded apical leaves were enclosed in a LI-COR 6400 gas exchange portable photosynthesis system (LI-COR, Lincoln, Nebraska, USA). The gas exchange determinations were conducted at 25 °C with a photosynthetic photon flux density of 350 μ mol m⁻² s⁻¹. Net rates of CO₂ assimilation (*An*) were calculated using equations developed by von Caemmerer and Farquhar (1981).

Headspace analysis of microbial VCs

The system to analyse the microbial VCs in the headspace of growth chambers containing fungal cultures is illustrated in Figure 1. The solid-phase microextraction (SPME) technique was selected for gas chromatography-mass spectrometry (GC-MS) analyses of VOCs. The PVC wrap of the sealed growth boxes was carefully drilled with a Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) coated fiber, and VOCs were adsorbed at 22 °C for 30 min. The fiber was injected into an Agilent 7890A gas chromatograph containing a 30 m x 0,25 mm fused silica HP-5MS column. The chromatographic conditions used were: inlet 250 °C; column 40 °C for 2 min followed by ramping at 5 °C/min to 250 °C. Mass spectral analyses were carried out with an Agilent 5975C instrument. The scan mass range extended from m/z 20 to 400. Mass spectra of VCs were compared to those obtained from the NIST library and identifications were confirmed using commercially available standard compounds. High purity chemicals (generally with purities above 99%) were purchased from Sigma-Aldrich to identify some compounds released by the fungi. Kovats retention indices were calculated according to generally accepted standards (van Den Dool and Dec Kratz, 1963), based on the chromatographic retention times of a saturated alkane mixture (C7 - C30; Sigma-Aldrich) and other alkanes (< C7) occurring in the chromatogram background.

For online monitoring of the CO₂ contents in sealed growth boxes with or without fungal cultures, the sealed growth boxes were connected to a Vaisala CARBOCAP[®] Carbon Dioxide Probe GMP343 combined with a Vaisala Handheld Measurement Indicator MI70. For O₂ and CO contents analyses, sealed growth boxes were connected to a MX4 portable headspace analyser (Industrial Scientific Corporation, Pennsylvania, United States). For NO analyses, sealed growth boxes were connected to a Ecotech Serinus 40 Oxides Nitrogen Analyser (Ecotech Pty Ltd., Knoxfield, VIC, Australia).

936/21221977/A), which includes enabling Kalman filter in measuring settings.

CO2-controlled growth cabinet

b

Growth cabinet

Figure 1: System to analyse (a) VOCs, CO_2 , O_2 and CO; and (b) NO in the headspace of growth chambers containing fungal cultures.

Capítulo 1

The Analyser was used under the conditions needed to meet EN Type approval (TUV

Textural characterization of activated charcoal

Nitrogen adsorption at -196 °C was measured using an ASAP 2020 volumetric adsorption analyser from Micromeritics (Norcross, Georgia, USA). Approximately 0.1532 g of sample was weighed in an elongated Pyrex glass tube. Before adsorption analysis, the sample was outgassed for at least 15 h at 573 K at the degassification port of the adsorption apparatus with a residual vacuum of 7×10^{-1} Pa. Specific surface areas were calculated from the N₂ adsorption data (molecular cross section 0.162 nm²) by the

$$\frac{1}{n^a(1-p'/p^0)} = \frac{1}{n_m^a} + \frac{1}{n_m^a C} \cdot \frac{1-p'/p^0}{p'/p^0}$$

Brunauer-Emmett-Teller method:

where n^a is the amount adsorbed, $n^a{}_m$ is the monolayer capacity, p/p^o is the relative pressure, and C is a constant related to the heat of adsorption.

Micropore volume was estimated by applying the DR method to the $\ensuremath{N_2}$

$$\log V = \log V^{0} - D \log^{2} \frac{p^{0}}{p}$$

(VmicroDR) adsorption data:

where V is the volume adsorbed at a given relative pressure, V^0 is the micropore volume and D is a constant characteristic of the adsorbent structure.

Mesopore volume (V_{meso}) values were obtained by subtracting the amount adsorbed at p/p° 0.80 and 0.30. Macropore volume (V_{macro}) was obtained by difference between Vt and the amount adsorbed at p/p° 0.80. Pore volumes were calculated using liquid-state density for adsorbate of N₂ at 0.808 g cms.1-³ (Garrido et al., 1987; Rodríguez-Reinoso et al., 1989).

Gene expression analyses

We proceeded essentially as described in Sánchez-López et al. (2016b). Briefly, total RNA was extracted from frozen Arabidopsis leaves of plants cultured in vitro using the Trizol method according to the manufacturer's procedure (Invitrogen), and then purified with the RNeasy kit (Qiagen). RNA amplification, labelling and statistical data analysis were performed basically as described by Adie et al. (2007). The Arabidopsis

Gene Expression Microarray 4 x 44K (G2519, Agilent Technologies) was used for hybridization. Three independent biological replicates were hybridized for leaves from microbe-treated plants and from controls. Images from Cy3 and Hyper5 channels were equilibrated to compensate for intensity differences and captured with a GenePix 4000B scanner (Axon). Spots were quantified using GenPix software (Axon) and normalized using the Lowess method. Means of the three replicates log-ratio intensities and their standard deviations were calculated, and the expression data were statistically analysed using the LIMMA package (Smyth and Speed, 2003). Functional characterization of the differentially expressed genes was done using the Mapman tool (http://gabi.rzpd.de/ projects/MapMan/).

Non-reducing western blot analyses

Fifty mg of the homogenized frozen material (see above) was extracted in cold 16% (w/v) TCA in diethyl ether, mixed, and stored at -20 °C for 2 h. The pellet was collected by centrifugation at 10,000 x g for 5 min at 4 °C, washed 3 times with ice-cold acetone, dried briefly under vacuum, and resuspended in 1x Laemmli sample buffer containing no reductant. Proteins were separated on 10% SDS-PAGE under non-reducing conditions as described by Hendriks et al. (2003), transferred to nitrocellulose filters, and immunodecorated by using the antisera raised against the small subunit of maize AGP, and a goat anti-rabbit IgG alkaline phosphatase conjugate as the secondary antibody (Sigma).

Statistical analysis

The data presented are the means (\pm SE) from four independent experiments, with 3-5 biological replicates, each biological replicate being a pool of 12 plants. The significance of differences between control and treated was statistically evaluated by means of Student's t-test using SPSS software. Differences were considered significant if p<0.05.

3. RESULTS

Volatile emissions of *A. alternata* and *P. aurantiogriseum* promote distinct developmental changes in Arabidopsis plants cultured in a "box-in-box" co-cultivation system

Volatiles emitted by A. alternata and P. aurantiogriseum cultures promoted rosette

growth and flowering in adjacent plants (**Figure 2**), in keeping with the results of Sánchez-López et al. (2016b). Furthermore, fungal VCs promoted root growth (**Figure 2**), root hair proliferation and elongation, and formation of first and second order lateral roots (LRs), thereby increasing the density of the root system (**Figure 3**).

Volatiles from both microorganisms promoted distinct developmental responses in vicinity plants. Leaves of plants exposed to VCs from P. aurantiogriseum were more wrinkled, thicker, and harder than those of plants exposed to VCs from A. alternata (Figure 1a and data not shown). Primary roots of plants exposed to A. alternata VCs were longer than those of control plants and P. aurantiogriseum VC-exposed plants (Figure 3c). Furthermore, whereas A. alternata VCs had no effect on the length of first order LRs, *P. aurantiogriseum* VCs inhibited the growth of this root type (Figure **3c**). In addition, the root hairs of plants treated with *P. aurantiogriseum* VCs were substantially longer than those of plants treated with A. alternata VCs (Figure 3b,c). P. aurantiogriseum VCs also stimulated the formation of second-order LRs more strongly than A. alternata VCs (Figure 3c), leading to a higher density of second-order LRs in plants treated with *P. aurantiogriseum* compared to those treated with *A. alternata* VCs (Figure 3a,c). The strong proliferation and elongation of root hairs, combined with the shortening of the LRs induced by *P. aurantiogriseum* VCs led to the formation of peculiar brush-like structures that were not seen in roots of plants exposed to A. alternata VCs (Figure 2, Figure 3a,b).

Charcoal-filtered and non-filtered fungal volatile emissions promote similar responses in exposed plants

We next investigated the contribution of fungal VOCs and VICs in the plant responses in the "box-in-box" system used in this work and previous studies. So, we characterized Arabidopsis plants grown in the absence or presence for one week of adjacent *A. alternata* and *P. aurantiogriseum* cultures covered with a black, porous nylon mesh, with or without a top layer of VOC-adsorbing activated charcoal (**Figure 4**). According to the adsorption isotherm of N₂ at -196 °C (**Supplemental Figure 1a**) and the porosity distribution (**Supplemental Figure 1b**), the type of charcoal used in this study was a micro-meso-porous carbon with specific surface area of 1109 m²/g, micropores greater than 0.7 nm and mesoproses between 2 and 5 nm (**Supplemental Table 1**). Therefore, small molecules such as CO₂ (with a molecular cross section of 0.162 nm² and size of

Figure 2: Volatile emissions of *A. alternata* and *P. aurantiogriseum* promote rosette and root growth and flowering in Arabidopsis plants cultured in a "box-in-box" co-cultivation system. (a) External phenotypes of plants and (b) roots, and (c) rosette FW, (d) root FW and (e) time of floral bud appearance of Arabidopsis plants grown in the absence or continuous presence for one week of adjacent cultures of *A. alternata* or *P. aurantiogriseum*. Values given in (c), (d) and (e) represent the means \pm SE of 3 biological replicates obtained from 3 independent experiments, each biological replicate being a pool of 12 plants. Asterisks indicate significant differences relative to plants not cultured with adjacent fungal cultures based on Student's t-test (p<0.05).

Figure 3: Volatile emissions of *A. alternata* and *P. aurantiogriseum* promote distinct responses in the root architecture of Arabidopsis plants cultured in a "box-in-box" co-cultivation system. (a) External phenotypes of plants and (b) roots, and (c) root architecture parameters of Arabidopsis plants grown on vertical plates in the absence or continuous presence for one week of adjacent cultures of *A. alternata* or *P. aurantiogriseum*. and b = 1 cm and 1 mm, respectively. Values given in (c) represent the means \pm SE of three biological replicates obtained from three independent experiments, each biological replicate being a pool of 12 plants. Asterisks indicate significant differences relative to plants not cultured with adjacent fungal cultures based on Student's t-test (p<0.05). Scale bars in a and b are 1 cm and 1 mm, respectively.

0.33x0.53x0.33 nm), CO, NO, O₂, etc. could cross the porosity of this carbon, especially in the presence of larger molecules that could cover the smallest microporosity. We reasoned that if the plant's responses to microbial VCs were mainly due to VOCs, charcoal-filtered (VOCs-depleted, VICs-containing) fungal volatile emissions should trigger at most a weak response. Conversely, if the fungal cultures release VICs with high action potentials, charcoal-filtered microbial volatile emissions should still trigger

Figure 4: Schematic representation of the "box-in-box" co-cultivation system used in this work. Plant cultures were placed in boxes containing *A. alternata* or *P. aurantiogriseum* cultures covered with a porous nylon mesh with or without an upper charcoal filter.

strong responses in plants.

As a first step in these studies, we conducted compositional analyses of the VCs in the headspace of PVC film-sealed growth chambers containing A. alternata or P. aurantiogriseum cultures with and without charcoal filters. VOCs analyses were done using SPME coupled with GC-MS, a technology that has been widely used to analyse VOCs emitted by microorganisms and to elucidate their potential function in plant-microbe interactions (Zou et al., 2010; Velázquez-Becerra et al., 2011; Meldau et al., 2013; Naznin et al., 2013; Contreras-Cornejo et al., 2014; Garnica-Vergara et al., 2016; Farag et al., 2017; Nieto-Jacobo et al., 2017; Schenkel et al., 2018). VOCs extraction was performed using a DVB/CAR/PDMS coated fiber that can capture C3-C20 volatiles and semi-volatiles with molecular masses between 40 and 275 Da. A detailed description of the system used to perform these studies is presented in Figure 1. As shown in **Supplemental Table 2** and **Figure 5**, SPME GC-MS analyses of VOCs in the headspace of growth chambers containing A. alternata or P. aurantiogriseum cultures lacking charcoal filters revealed that these microorganisms have different organic volatilomes. Some of the VOCs released by the two fungal phytopathogens have previously been identified among the emissions of plant-growth promoting microorganisms (Supplemental Table 2). VIC analyses revealed substantially higher levels of CO and NO in the headspace of growth chambers containing the fungal

Capítulo 1

cultures than in controls (**Figure 6**). No VOCs were detected in the headspace of growth chambers containing fungal cultures covered with charcoal filters (**Supplemental Table 2**, **Figure 5**), showing that this hydrocarbon material captures all VOCs emitted by *A*. *alternata* and *P. aurantiogriseum* that can be adsorbed by the DVB/CAR/PDMS coated fiber and detected by GC-MS under the conditions used in this study. In contrast, CO and NO levels in the headspace of growth chambers containing fungal cultures covered with charcoal filters were higher than in controls (**Figure 6**). This shows that the two fungal species emit CO and NO and confirms that the charcoal filter used in this study

Figure 6: CO and NO contents in the headspace of PVC-sealed growth boxes containing *A. alternata* or *P. aurantiogriseum* cultures with or without charcoal filters. Values represent the means \pm SE of four biological replicates obtained from four independent experiments, each biological replicate being four growth boxes. Asterisks indicate significant differences relative to controls (fungal cultures lacking growth boxes) based on Student's t-test (p<0.05).

poorly retains these small VICs.

As expected, plants grown beside fungal cultures not covered with a charcoal filter produced larger rosettes and roots, flowered earlier and developed denser root systems with longer root hairs than control plants (Figure 7a,b). Fungal VCs without charcoal filtration also increased photosynthetic activity in the exposed plants (Figure 8a) and promoted the accumulation of photosynthetic pigments (Figure 8a) and primary photosynthates (i.e. sucrose, glucose, fructose and starch) (Figure 8b). Notably, these responses were identical to those of plants grown in the vicinity of fungal cultures covered with a charcoal filter (Figures 7 and 8).

Figure 7: Charcoal-filtered (VOCs-depleted) and non-filtered fungal volatile emissions promote similar growth and root developmental responses in exposed plants. (a) External phenotypes and (b) rosette and root FW and time of floral bud appearance of plants grown with adjacent *A. alternata* or *P. aurantiogriseum* cultures with or without charcoal filter. (c) Root architecture parameters of plants grown with adjacent fungal cultures with charcoal filter. In (a) and (b) plants were grown on horizontal plates, whereas in (c) plants were grown on vertical plates. Values given in (b) and (c) represent the means \pm SE of three biological replicates obtained from three independent experiments, each biological replicate being a pool of 12 plants. Asterisks indicate significant differences relative to plants not cultured with adjacent fungal cultures according to Student's t-test (p<0.05).

Figure 8: Charcoal-filtered (VOCs-depleted) fungal volatile emissions promote photosynthesis in leaves. (a) Net rates of CO₂ assimilation (*An*) and total chlorophyll content, and (b) photosynthate (starch, sucrose, glucose and fructose) levels in leaves of plants cultured with adjacent *A. alternata* or *P. aurantiogriseum* cultures with or without charcoal filter. Values represent means \pm SE of three biological replicates obtained from three independent experiments, each biological replicate being a pool of 12 plants. Asterisks indicate significant differences relative to plants not grown with adjacent fungal cultures according to Student's t-test (p<0.05).

Respiratory CO₂ makes only a minor contribution to the growth and root architecture changes induced by charcoal-filtered fungal VCs

The results presented above would indicate that, in the box-in-box test system used in this study, VICs could play an important role on plant responses to volatiles emitted by *A. alternata* and *P. aurantiogriseum*. We next investigated the contribution of respiratory CO₂ to the changes in plant growth and root development induced by charcoal-filtered fungal VCs. We also investigated whether strong reduction in the O₂ concentration in the headspace of the co-cultivation system could occur that would account for the observed plant's responses to the presence of adjacent microbial cultures. To this end, we first measured the CO₂ and O₂ concentrations in the headspace of PVC film-sealed boxes containing fungal cultures covered with charcoal filters using the system illustrated in **Figure 1**. To test the CO₂-permeability of the PVC film sealant, sealed boxes with or without fungal cultures were placed in a CO₂-controlled growth cabinet, and the CO₂ levels in the cabinet.

As shown in **Figure 9** the CO₂ and O₂ concentrations in the headspace of the sealed boxes before the addition of the *A. alternata* and *P. aurantiogriseum* cultures were ca. 420 ppm and 21 kPa, respectively. The O₂ concentration in the headspace of the sealed boxes did not change significantly upon addition of the fungal cultures (**Figure 9**), but the headspace CO₂ concentration oscillated between ca. 550 ppm and 500 ppm during the day and night periods, respectively (**Figure 9**). This oscillation in the headspace CO₂ concentration can be attributed to the regulation of fungal metabolism by light (Farkas et al., 1990; Tisch and Schmoll, 2010). The CO₂ concentrations inside the sealed boxes rapidly changed to match those inside the growth cabinet when the CO₂ level in the cabinet was increased (**Figure 9** and **Supplemental Figure 2**), showing that the PVC film sealant around the box is highly permeable to CO₂.

We next characterized Arabidopsis plants cultured for one week under 16 h light, 550 ppm CO₂/8 h dark, 500 ppm CO₂ conditions and compared them with plants cultured under the same light/dark cycle with ambient CO₂ levels. As a positive control, we also characterized plants cultured with sustained super-elevated (2000 ppm) CO₂ levels. No differences in shoot fresh weight (FW), root architecture or time of floral bud appearance were detected between plants cultured under ambient CO₂ conditions and plants cultured under 16 h light, 550 ppm CO₂/8 h dark, 500 ppm CO₂ conditions

Figure 9: Time-course of CO_2 and O_2 levels in the headspace of PVC-sealed growth boxes containing *A. alternata* or *P. aurantiogriseum* cultures covered with charcoal filters. The sealed boxes were connected to CO_2 and O_2 analysers, and placed in CO_2 -controlled growth cabinets with a 16 h light/8 h dark photoperiod (cf. **Figure 1**). At the indicated time the CO_2 concentration in the cabinet was increased to 1000 ppm.

(Figure 10). The 2000 ppm CO₂ treatment caused the FW of the plant's rosettes to increase approximately two-fold (Figure 10a), which was substantially lower than the 5-fold increase of FW exhibited by plants cultured with adjacent fungal cultures (cf. Figure 7b). The super-elevated CO₂ treatment also promoted early flowering (Figure 10a) and the formation of second order LRs and elongation of root hairs (Figure 10b). However, unlike treatment with fungal volatiles, the super-elevated CO₂ treatment did not promote the formation of first-order LRs, root hair proliferation, or the formation of brush-like root structures (Figure 10b).

Figure 10: Respiratory CO₂ plays a minor role in growth and root architecture changes induced by charcoalfiltered fungal VCs in Arabidopsis plants grown in a "box-in-box" co-cultivation system. (a) Rosette FW and time of floral bud appearance and (b) root architecture parameters of plants grown under 550 or 2000 ppm CO₂ conditions. In (a) plants were grown on horizontal plates, whereas in (b) plants were grown on vertical plates. Values are means \pm SE of three biological replicates obtained from three independent experiments, each biological replicate being a pool of 12 plants. Asterisks indicate significant differences from plants cultured under atmospheric CO₂ conditions according to Student's t-test (p<0.05).

Respiratory CO₂ plays a minor role in the accumulation of exceptionally high starch levels in leaves induced by charcoal-filtered fungal VCs

Short-term exposure to microbial VCs promotes the accumulation of exceptionally high levels of starch in leaves (Ezquer et al., 2010; Li et al., 2011; Sánchez-López et al., 2016b). The contribution of fungal respiratory CO₂ emissions to this phenomenon was investigated by comparing the starch contents in leaves of Arabidopsis plants grown for 16 h under 550 ppm CO₂ conditions to those of plants cultured for 16 h with adjacent

A. alternata cultures covered with a layer of activated charcoal. As positive control, we also characterized plants cultured for 16 h under 2000 ppm CO₂. As shown in **Figure 11**, treatment with 550 ppm and 2000 ppm CO₂ caused a ca. 1.3-fold and 2-fold increases in the leaf starch content, respectively, both of which are much smaller than the ca. 15-fold

Figure 11: Leaf starch levels in Arabidopsis plants cultured in the absence or presence for 16 h of 550 ppm CO₂, 2000 ppm CO₂ or adjacent *A. alternata* cultures covered with charcoal filters. Values represent means \pm SE of three biological replicates obtained from three independent experiments, each biological replicate being a pool of 12 plants. Asterisks indicate significant differences from plants not cultured with exogenously supplied CO₂ or adjacent fungal cultures according to Student's t-test (p<0.05).

increase observed in plants cultured with adjacent fungal cultures (cf. Figure 8).

Starch accumulation induced by charcoal-filtered fungal VCs is associated with reductive activation of ADP-glucose pyrophosphorylase, but that induced by super-elevated CO₂ is not

We have shown that short-term exposure to complex mixtures of VICs and VOCs released by *A. alternata* promotes reductive monomerization (activation) of APS1 in leaves (Li et al., 2011). APS1 is the regulatory subunit of ADP-glucose pyrophosphorylase (AGP), which catalyses the first committed step of starch biosynthesis. We therefore proposed that fungal VC-mediated reductive activation of APS1 could at least partly explain the accumulation of high levels of starch in leaves of VCs-exposed plants (Li et al., 2011).

In leaves, APS1 is present as a mixture of 50 kDa active (reduced) monomers

and 100 kDa inactive (oxidized) dimers. To determine whether CO₂- and charcoal-filtered fungal VC-promoted starch accumulation involves APS1 reductive monomerization, we conducted non-reducing APS1 immunoblot analyses of proteins extracted from leaves of plants exposed for one day to 2000 ppm CO₂ or charcoal-filtered VCs emitted by *A*. *alternata* cultures. As shown in **Figure 12**, exposure of plants to charcoal-filtered fungal

Figure 12: Non-reducing western blot analysis of APS1 in leaves of Arabidopsis plants cultured in the absence or presence for 12 h of charcoal-filtered VCs emitted by adjacent *A. alternata* cultures or 2000 ppm CO₂.

VCs promoted reductive APS1 monomerization. Conversely, exposure of plants to 2000 ppm CO₂ did not alter the redox status of APS1 (Figure 12).

Complex mixtures of fungal VCs, charcoal-filtered VCs, super-elevated CO₂ and increased irradiance all induce similar transcriptomic changes in leaves

We finally performed high-throughput transcriptomic analyses of leaves from Arabidopsis plants exposed for 16 h to charcoal-filtered VCs emitted by nearby *A. alternata* cultures, or super-elevated CO₂ levels (2000 ppm CO₂). The sets of genes exhibiting differential expression patterns under these treatments were compared to those previously reported for plants cultured in the absence or in the presence of adjacent *A. alternata* cultures without a covering charcoal filter (cf. Supplemental Table 3 in Sánchez-López et al., 2016b).

As shown in **Supplemental Table 3**, 258 genes were up-regulated and 399 genes were down-regulated when plants were exposed to charcoal-filtered fungal VCs (with a > 3.0-fold difference relative to control; p < 0.05). Nearly 50% of the genes that were down-regulated in leaves of plants exposed to charcoal-filtered fungal VCs were

also down-regulated in leaves of plants exposed to fungal VCs without charcoal filtration (**Supplemental Table 3**). Furthermore, 53% of the genes that were up-regulated in leaves of plants exposed to charcoal-filtered fungal VCs were also up-regulated in leaves of plants exposed to fungal VCs not filtered by charcoal (**Supplemental Table 3**). Superelevated CO₂ treatment induced the up-regulation of 217 genes and down-regulation of 401 genes (with a > 3.0-fold difference relative to control; p < 0.05) (**Supplemental Table 4**). Sixty percent of the genes that were down-regulated in leaves of plants treated with 2000 ppm CO₂ were also down-regulated in leaves of plants exposed to fungal VCs without charcoal filtration (**Supplemental Table 4**). Furthermore, 52% of the genes that were up-regulated in leaves of plants exposed to 2000 ppm CO₂ were also up-regulated in leaves of plants exposed to 2000 ppm CO₂ were also up-regulated in leaves of plants exposed to 2000 ppm CO₂ were also up-regulated in leaves of plants exposed to 2000 ppm CO₂ were also up-regulated in leaves of plants exposed to 2000 ppm CO₂ were also up-regulated in leaves of plants exposed to VCs without charcoal filtration (**Supplemental Table 4**).

The most strongly up-regulated gene in leaves of plants exposed to fungal volatiles without charcoal filtration was At1g61800 (Sánchez-López et al., 2016b), which encodes the GPT2 glucose-6-phosphate (G6P)/phosphate translocator that is necessary for dynamic photosynthetic and metabolic acclimation to increased irradiance (Athanasiou et al., 2010; Dyson et al., 2015). Notably, 55% of the genes that were down-regulated in plants exposed to increased irradiance (cf. Supplemental Table 1 in Athanasiou et al., 2010) were also down-regulated in leaves of plants exposed to fungal VCs (**Supplemental Table 5**): 80% of the 20 genes exhibiting the strongest down-regulation in plants exposed to increased irradiance were also down-regulated in leaves exposed to fungal VCs (**Table 1**). Moreover, 25% of the genes that were up-regulated in plants exposed to increased irradiance (cf. Supplemental Table 1 in Athanasiou et al., 2010) were also up-regulated in leaves of plants treated with fungal VCs (**Supplemental Table 5**), 50% of the 20 genes most strongly up-regulated genes in plants exposed to increased irradiance defined and the strongest down to increase distribute the strongest down-regulated in leaves of plants treated with fungal VCs (**Table 5**), 50% of the 20 genes most strongly up-regulated genes in plants exposed to increased irradiance being also up-regulated in leaves exposed to fungal VCs (**Table 1**).

4. DISCUSSION

Features and benefits of the "box-in-box" dual co-cultivation system for studying plant responses to microbial volatile emissions

The sealed split Petri dish-based passive diffusion co-cultivation system has frequently been used to investigate the plant's response to microbial emissions of volatile compounds. Using tri-partite Petri dishes, Casarrubia et al. (2016) analysed the effect of activated charcoal on growth of Arabidopsis plants cultured in the absence or presence

Table 1: Sets of the 20 most strongly up-regulated and 20 most strongly down-regulated genes in plants exposed to high irradiance (Athanasiou et al., 2010) that are also up- and down-regulated by VICs emitted by *A. alternata*.

Up-regulated genes	
ID	Description
At1g61800	glucose-6-phosphate/phosphate translocator 2, putative mRNA, complete cds
At4g15210	beta-amylase (BMY1) / 1,4-alpha-D-glucan maltohydrolase mRNA, complete cds
At4g25630	fibrillarin 2 (FIB2) mRNA, complete cds
At1g32900	starch synthase, putative mRNA, complete cds
At4g16590	glucosyltransferase-related protein mRNA, complete cds
At2g27840	histone deacetylase-related / HD-related protein mRNA, complete cds
At3g18600	DEAD/DEAH box helicase, putative mRNA, complete cds
At1g06000	UDP-glucoronosyl/UDP-glucosyl transferase family protein mRNA, complete cds
At1g56650	myb family transcription factor (MYB75) mRNA, complete cds
At3g44750	histone deacetylase, putative (HD2A) mRNA, complete cds
Down-regulated genes	
ID	Description
At1g74670	gibberellin-responsive protein, putative, complete cds
At2g40610	expansin, putative (EXP8), complete cds
At5g48490	protease inhibitor/seed storage/lipid transfer protein (LTP) family protein, complete cds
At3g15450	expressed protein, complete cds
At1g70290	trehalose-6-phosphate synthase, putative, complete cds
At1g23390	kelch repeat-containing F-box family protein, complete cds
At2g22980	serine carboxypeptidase S10 family protein, complete cds
At2g18700	glycosyl transferase family 20 protein / trehalose-phosphatase family protein, complete cds
At2g33830	dormancy/auxin associated family protein, complete cds
At5g61590	AP2 domain-containing transcription factor family protein mRNA, complete cds
At2g15890	expressed protein mRNA, complete cds
At1g80920	DNAJ heat shock N-terminal domain-containing protein mRNA, complete cds
At5g40890	chloride channel protein (CLC-a) mRNA, complete cds
At1g72150	SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein mRNA, complete cds
At5g24490	30S ribosomal protein, putative mRNA, complete cds
At5g22920	zinc finger (C3HC4-type RING finger) family protein mRNA, complete cds

of adjacent cultures of the endomycorrhizal fungus *Oidiodendron maius*. Irrespective of the inclusion of activated charcoal in one of the three compartments, fungal cultures promoted plant growth of nearby plants. Because CO₂ levels in the headspace of sealed Petri dishes containing microbial cultures can become extremely high as a result of microbial respiration (Kai and Piechulla, 2009) the authors concluded that the observed growth promotion was mainly due to fungal respiratory CO₂ rather than specific fungal

VOC signals (Casarrubia et al., 2016). However, neither the absence of microbial VOCs nor the accumulation of high levels of CO₂ concentrations in the headspace of charcoal-containing Petri dishes was confirmed.

The "box-in-box" system used in this work and our previous studies has a number of advantages over the sealed split Petri dish system when studying plants' responses to microbial volatile emissions. First, the air diffusion surface of this system is exceedingly larger than that of the sealed Petri dish system (in which air can only diffuse via a slit between the plate and the lid). Second, the sealing wrap used in this experimental setup is highly CO₂- and O₂- permeable PVC, which impedes strong increases in the CO₂/O₂ balance in the headspace of the growth chamber due to respiratory metabolism that would otherwise interfere with the effects of microbial VCs. Third, the system permits easy online monitoring of volatiles in the growth container's headspace (**Figures 1** and **9**). Fourth, the setup enables the filtration of all VOCs emitted by the microbial cultures, facilitating studies on plant responses to microbial VICs emissions.

Different microbes can release VCs other than CO₂ that promote distinct responses in nearby plants

Results presented here show that diverse microorganisms can release VCs that promote distinct responses in plants. The contribution of VOCs and VICs to plants' responses to VCs emitted by A. alternata and P. aurantiogriseum was investigated using a type of charcoal (cf. Supplemental Figure 1) that captured all VOCs emitted by these fungal species that can be detected by our SPME GC-MS system (Supplemental Table 2). However, the charcoal did not capture small VICs such as CO, NO and CO₂ (Figures 6 and 9). Therefore, plants grown in the presence of both fungal cultures with charcoal filters were exposed to VOCs-depleted volatile emissions. The responses of plants to charcoal-filtered VCs emitted by nearby fungal cultures were identical to those of plants exposed to fungal VCs without charcoal filtration (Figures 7 and 8). Thus, in our experimental system, microbes can release bioactive VICs and/or VOCs that are either poorly captured by the type of micro-meso-porous charcoal used in this study (Supplemental Figure 1b) or not detected by our SPME GC-MS system. Moreover, these VICs and/or uncaptured VOCs appear to be stronger determinants of the plants' responses to VCs than the fungal VOCs that are detected by our SPME GC-MS system. Some potentially relevant bioactive VICs are CO and NO, whose concentrations in the

headspace of the growth boxes increased in the presence of fungal cultures with charcoal filters (**Figure 6**). The fact that charcoal-filtered *A. alternata* and *P. aurantiogriseum* VCs promoted distinct changes in the leaves and root architecture of exposed plants (**Figure** 7) strongly indicates that the charcoal-filtered volatilomes of the two microorganisms have different action potentials. It is evident that further efforts will be necessary to identify all the bioactive VCs of different microorganisms and characterize their action potentials.

We must emphasize that the data obtained in this study do not imply that microbial VOCs lack bioactivity. In fact, some *A. alternata* and *P. aurantiogriseum* VOCs detected by our SPME GC-MS system (i.e. 2-butanol,3-methyl, 1-butanol,2methyl, tridecane, 3-octanone, β -elemene, γ -muurolene, cis-thujopsene, acoradiene, valencene, α -chamigrene and α -copaene, cf. **Supplemental Table 2**) are emitted by plant-growth promoting microorganisms. Moreover, some of these compounds are known to be bioactive when exogenously supplied to plants. For example, discrete application of cis-thujopsene massively stimulated LR formation in Arabidopsis (Ditengou et al., 2015), while 2-butanol,3-methyl promoted plant growth and salinity tolerance (Ledger et al., 2016).

Several factors indicate that plant's responses to charcoal-filtered microbial VCs were not due to enhanced CO₂/O₂ ratio caused by fungal respiration. First, if the enhanced CO₂/O₂ balance were a major determinant of the plant's response to nearby microbial cultures, one would expect all microbial cultures to induce similar responses in plants. However, charcoal-filtered VCs from P. aurantiogriseum and A. alternata induced distinct changes in the leaf morphology and root architecture of Arabidopsis plants (Figures 2 and 7). Second, plants grown under CO₂ levels equal to those measured in the headspace of sealed chambers containing fungal cultures (ca. 550 ppm) did not promote growth or changes in the root architecture of the plant or accumulation of starch in leaves (Figures 10 and 11). Third, super-elevated (2000 ppm) CO₂ caused a 2-fold increase in both leaf starch content and FW of exposed plants, which was substantially lower than the 15-fold increase in leaf starch content and 5-fold increase in FW induced by charcoal-filtered microbial VCs (cf. Figures 7b, 10a and 11). Furthermore, unlike treatment with charcoal-filtered fungal VCs, the super-elevated CO₂ treatment did not promote the formation of first-order LRs, root hair proliferation, or the formation of brush-like root structures (Figure 10b). Fourth, charcoal-filtered

microbial VCs promoted reductive activation of the starch biosynthetic AGP enzyme, but super-elevated CO₂ conditions did not (Figure 12).

The presence of fungal cultures in the sealed growth chambers increased the headspace CO and NO concentrations (**Figure 6**), which is consistent with the capacity of fungi to emit these VICs (Wharton and Weintraub, 1980; Siegel and Siegel, 1987; Conrath et al., 2004; Schreiber et al., 2012). Exogenous application of CO promotes growth, chlorophyll accumulation, LR formation and root hair elongation (Guo et al., 2008; Xuan et al., 2008; Guo et al., 2009; Kong et al., 2010; Han et al., 2012; Yang et al., 2016). Furthermore, exposure to parts per billion levels of NO promotes growth and chlorophyll accumulation (He et al., 2004). Moreover, NO enhances expression of non-symbiotic hemoglobins (nsHB) (Kuruthukulangarakoola et al., 2017), which is known to promote growth (Hunt et al. 2002; Hebelstrup and Jensen 2008). We observed similar responses in plants exposed to charcoal-filtered fungal VCs (**Figures 7** and **8**, **Supplemental Table 3**) (Sánchez-López et al., 2016a; Sánchez-López et al., 2016b). This suggests that enhancement of growth and photosynthesis and promotion of early flowering and changes in the root architecture of plants exposed to charcoal-filtered fungal VCs could be at least partly due to fungal CO and NO emissions.

Many transcriptional changes occurring in leaves after brief exposure to VCs are probably due to enhanced photosynthetic CO₂ fixation signalling

The transcriptomic changes in leaves of Arabidopsis plants shortly exposed to superelevated CO₂ and VCs emitted by diverse microorganisms, with and without charcoal filtering, are strikingly similar (**Supplemental Table 3**, **Supplemental Table 4**) (Sánchez-López et al., 2016b). These transcriptomic changes are also very similar to those seen in plants shortly exposed to increased irradiance (**Table 1**, **Supplemental Table 5**). All of these treatments promote photosynthetic CO₂ fixation (**Figure 8a**) (Makino and Mae, 1999; Ainsworth and Rogers, 2007; Athanasiou et al., 2010). We thus propose that many transcriptomic changes in the leaves of plants exposed to super-elevated CO₂, increased irradiance, or microbial VCs indirectly result from signalling of enhanced photosynthetic CO₂ fixation by means of Calvin-Benson cycle (CBC) intermediate(s) or their derivatives. In this respect it should be noted that the production of the CBC intermediate glyceraldehyde 3-phosphate (GAP) is the first point of regulation in the synthesis of isoprenoid compounds derived from the plastidial

methylerythritol 4-phosphate (MEP) pathway, including hormones (Pulido et al., 2012; Pokhilko et al., 2015). Fungal VCs promote the accumulation of high levels of MEP pathway-derived carotenoids and chlorophylls (**Figure 8a**) (Sánchez-López et al., 2016a), which, in turn, further promote photosynthesis. Moreover, fungal VCs promote the accumulation of MEP pathway-derived CKs and the resulting changes in the expression of a significant number of CK-regulated genes (Sánchez-López et al., 2016a; Sánchez-López et al., 2016b). Therefore, as shown schematically in **Figure 13**, we propose that many transcriptional changes occurring in leaves of plants shortly exposed

Figure 13: Suggested model for the plant's transcriptional response to short exposure to fungal VCs, superelevated CO₂ and increased irradiance. According to this model VCs interact with as yet unidentified plasma membrane receptors to produce signals that rapidly promote changes in gene expression. Alternatively and/or additionally, some VCs (especially small and highly reactive VICs) penetrate the cell and modify photosynthesis- and metabolism-related proteins. Increased irradiance and treatment with super-elevated CO₂ promote photosynthesis. Augmentation of the photosynthetic activity induced by these treatments results in enhanced GAP, which enters the MEP pathway to fuel the production of isoprenoid hormones that initiate a cascade of reactions resulting in highly conserved changes in the expression of genes involved in many different processes.

to microbial VCs, super-elevated CO₂ and increased irradiance are due to signalling involving photosynthetic GAP-derived isoprenoid hormones.

Regulation of some plant responses to fungal VCs is primarily post-transcriptional

The observation of similar transcriptional changes, but distinct developmental and metabolic responses in plants exposed to super-elevated CO₂ levels and VCs emitted by different microorganisms (**Figures 7, 8, 11** and **12, Supplemental Tables 3** and **4**, cf. Supplemental Table 3 in Sánchez-López et al., 2016b) suggests that some responses induced by microbial VCs are regulated, at least in part, by different post-transcriptional mechanisms. This hypothesis is supported by the findings that more than 80% of the proteins that are differentially expressed by fungal VCs are encoded by genes whose expression is not altered by this treatment (Sánchez-López et al., 2016a).

Reversible protein thiol redox regulation through mechanisms such as NO-dependent S-nitrosylation, disulfide bond formation, S-sulfenylation and S-glutathionylation is a fundamental switch mechanism of post-translational regulation of metabolism, growth and development, which allows plants to adjust to ever changing environmental constrains (Buchanan and Balmer, 2005; Hu et al., 2015; Aroca, et al., 2017). The findings that plants exposed to charcoal-filtered microbial VCs, but not to super-elevated CO₂, exhibit reductive activation of the starch biosynthetic enzyme AGP (**Figure 12**) further strengthen the idea that some of the plants' responses to microbial VCs are post-transcriptionally regulated, and suggest that some of these responses are due to post-translational modifications of the thiol redox proteome. Further investigations will be needed to determine whether global post-translational redox modifications of proteins are involved in plant responses to microbial VCs.

5. SUPPLEMENTAL FIGURES AND TABLES

Supplemental Figure 1: Textural characterization of the charcoal used in this study. (a) N₂ adsorption isotherm at -196 ^oC of the charcoal, which according to IUPAC classification, is type I(b)–IV(a). The adsorption branch of this xerogel corresponds to type I(b), and the hysteresis loop is characteristic of type-IV(a) isotherms. Type I(b) isotherms are found with materials having pore size distributions over a broader range including wider micropores and possibly narrow mesopores ($< \pm 2.5$ nm). Type IV isotherms are given by mesoporous adsorbents. In the case of a Type IVa isotherm, capillary condensation is accompanied by hysteresis. This occurs when the pore width exceeds a certain critical width, which is dependent on the adsorption system and temperature. The hysteresis loop is H4. The adsorption branch is a composite of Types I and II, the more pronounced uptake at low p/p0 being associated with the filling of micropores. H4 loops are often found in micro-mesoporous carbons. (b) Porosity distribution of Barret, Joyner and Halenda, which predicts that micropores are greater than 0.7 nm. In the porous texture of the coal there are also present mesopores with sizes ranging between 2 and 5 nm.

Supplemental Figure 2: Time-course of CO_2 levels in the headspace of PVC-sealed growth boxes placed in a CO₂-controlled growth cabinet in which the CO₂ concentrations were increased stepwise from 550 to 700, 1000 and 1500 ppm. The growth boxes did not contain fungal or plant cultures.

Supplemental Table 1: Textural parameters for the activated charcoal used in this study.

$V_{micro(DR)}{}^{a}$ (cm ³ /g)	V_{meso}^{b} (cm ³ /g)	V_{macro}^{c} (cm ³ /g)	$a_{BET(N2)}(m^2/g)$
0.48	0.097	0.115	1109

^a Micropore volume was deduced by applying the DR.

 $^{\rm b}$ Deduced by difference between the amount of N_2 adsorbed in the relative pressure range 0.3–0.8.

 $^{\rm c}$ Deduced by difference between the amount of N_2 adsorbed in the relative pressure range 0.8–1.0.

Uppna.

Supplemental Table 2: VOCs in the headspace of growth boxes containing *A. alternata* and *P. aurantiogriseum* cultures with or without an upper activated charcoal filter. ^a Compounds identified by comparison of RT and mass spectral data to those of authentic compounds. Other compounds were identified by comparing their mass spectral data to spectra from the NIST library and by comparing their linear retention indices (using an n-alkane scale) to literature values. ^bCompounds emitted by *A. alternata* described in Weikl et al. (2016). ^cCompounds previously reported to affect plant growth (Ditengou et al., 2015; Kanchiswamy et al., 2015). n.d., not detected. Chromatograms are shown in Figure 5.

Retention time	Chemical family	A. alteri	nata	P. aurantiogrise	um
(min) =		- Charcoal	+Charcoal	- Charcoal	+ Charcoal
	Alcohol				
2.099		n.d.	n.d.	3-buten-2-ol,2-methyl ^a	n.d.
2.219		l-propanol,2- methyl ^a	n.d.	n.d.	n.d.
2.777		2-butanol,3- methyl ^a	n.d.	2-butanol,3-methyl ^a	n.d.
3.628		1-butanol,2- methyl ^{a,b}	n.d.	1-butanol,2-methyl ^a	n.d.
	Aldehyde				
16.783		Decanal ^a	n.d.	n.d.	n.d.
	Alkane				
2.680		hexane,3-methyl	n.d.	n.d	n.d
4.156		heptane,4-methyl	n.d.	n.d	n.d
4.284		heptane,3-methyl	n.d.	n.d	n.d
7.532		n.d.	n.d.	pentane,2-nitro-	n.d.
9.810		octane,2,4,6- trimethyl	n.d.	n.d	n.d
16.608		dodecane ^a	n.d.	n.d	n.d
20.003		tridecane ^a	n.d.	n.d	n.d
	Alkene				
3.336		n.d.	n.d.	cyclopentene,3-ethyl	n.d.
3.726		n.d.	n.d.	1-methylcyclohexa-2,4-diene	n.d.
3.970		n.d.	n.d.	1-ethylcyclopentene	n.d.
8.281		n.d.	n.d.	2-butene,1-bromo-3-methyl	n.d.
	Aromatic compound				
10.953		n.d.	n.d.	benzene,1-methoxy-3- methyl ^a	n.d.
15.544		benzaldehyde,4- ethyl	n.d.	n.d	n.d
18.491		n.d	n.d	3,5-dimethoxytoluene	n.d.
22.342		n.d	n.d	benzene,1,2,3-trimethoxy-5- methyl	n.d.
	Carboxilic acid				
15.867		octanoic acid ^a	n.d.	n.d	n.d.

	Ketone				
2.538		n.d.	n.d.	2-butanone,3-methyl	n.d.
4.543		n.d.	n.d.	4(1H)-pyrimidinone ^a	n.d.
10.235		3-octanone ^{a,c}	n.d.	n.d	n.d.
	Monoterpene				
10.116		n.d.	n.d.	2-methylenebornane	n.d.
11.104		n.d.	n.d.	2-methyl-2-bornene	n.d.
16.089		n.d.	n.d.	2-methylisoborneol ^a	n.d.
	Nitrile				
2.226		n.d.	n.d.	isobutyronitrile	n.d.
	Oxime				
6.433		n.d.	n.d.	butyl aldoxime,2- methyl,syn-	n.d.
6.628		n.d.	n.d.	butyl aldoxime,2- methyl,anti-	n.d.
	Sesquiterpene				
21.894		β-elemene ^{b,c}	n.d.	n.d.	n.d.
22.377		γ -muurolene ^{a,c}	n.d.	n.d.	n.d.
22.439		α -cedrene ^{a,b}	n.d.	α -cedrene ^a	n.d.
22.514		n.d.	n.d.	cadina-1,4-diene ^c	n.d.
22.652		β -cedrene ^b	n.d.	β-cedrene	n.d.
22.909		n.d.	n.d.	α-copaene ^c	n.d.
22.913		cis-thujopsene ^{a,b}	n.d.	n.d.	n.d.
23.219		unknown sesq. 1	n.d.	n.d.	n.d.
23.791		α -longipinene ^{a,c}	n.d.	n.d.	n.d.
23.999		acoradiene ^{b,c}	n.d.	n.d.	n.d.
24.238		4,5-di-epi- aristolochene	n.d.	n.d.	n.d.
24.447		valencenec	n.d.	n.d.	n.d.
24.708		lpha-chamigrene ^{a,b}	n.d.	α -chamigrene ^a	n.d.
24.763		cuparene ^a	n.d.	n.d.	n.d.

by total A. altern	ane 3: List 01 ξ nata VCs (cf. Sul	enes wnose expression in reaves is anered by enarcoar-intered v.C.s emined by <i>A. anernata.</i> Genes mat are univerentany regulated plemental Table 3 in Sánchez-López et al., 2016b) are highlighted in yellow color.
Fold Change	9	Description
59.14	AT2G24850	ref Arabidopsis thaliana tyrosine aminotransferase 3 (TAT3), mRNA [NM_128044]
42.09	AT2G41240	ref] Arabidopsis thaliana basic helix-loop-helix protein 100 (BHLH100), mRNA [NM_180018]
35.34	AT2G14560	ref] Arabidopsis thaliana LURP-one-like protein (DUF567) (LURP1), mRNA [NM_127019]
27.3	AT2G39030	ref Arabidopsis thaliana Acyl-CoA N-acyltransferases (NAT) superfamily protein (NATA1), mRNA [NM_129460]
20.71	AT3G56970	ref] Arabidopsis thaliana basic helix-loop-helix (bHLH) DNA-binding superfamily protein (bHLH38), mRNA [NM_115556]
19.34	AT3G22235	ref Arabidopsis thaliana cysteine-rich TM module stress tolerance protein mRNA [NM_180292]
18.89	AT3G22240	ref] Arabidopsis thaliana cysteine-rich/transmembrane domain PCC1-like protein mRNA [NM_113122]
18.82	AT3G45140	ref] Arabidopsis thaliana lipoxygenase 2 (LOX2), mRNA [NM_001339198]
17.05	AT2G14247	ref Arabidopsis thaliana Expressed protein mRNA [NM_201723]
16.45	AT3G56980	ref] Arabidopsis thaliana basic helix-loop-helix (bHLH) DNA-binding superfamily protein (bHLH39), mRNA [NM_115557]
15.78	AT3G44860	ref Arabidopsis thaliana farnesoic acid carboxyl-O-methyltransferase (FAMT), mRNA [NM_114355]
14.81	AT1G47400	ref]Arabidopsis thaliana hypothetical protein mRNA [NM_103634]
13.64	AT1G47395	ref] Arabidopsis thaliana hypothetical protein mRNA [NM_179449]
13.38	AT1G61120	ref Arabidopsis thaliana terpene synthase 04 (TPS04), mRNA [NM_104793]
13.06	AT5G44420	ref] Arabidopsis thaliana plant defensin 1.2 (PDF1.2), mRNA [NM_123809]
12.37	AT1G73600	ref Arabidopsis thaliana S-adenosyl-L-methionine-dependent methyltransferases superfamily protein mRNA [NM_106018]
11.96	AT3G57260	ref Arabidopsis thaliana beta-1,3-glucanase 2 (BGL2), mRNA [NM_115S86]
11.48	AT3G57240	ref Arabidopsis thaliana beta-1,3-glucanase 3 (BG3), mRNA [NM_115584]
11.27	AT3G22231	refl Arabidopsis thaliana pathogen and circadian controlled 1 (PCC1), mRNA [NM113121]
10.64	AT3G26830	ref Arabidopsis thaliana Cytochrome P450 superfamily protein (PAD3), mRNA [NM_113595]
10.49	AT4G01080	ref]Arabidopsis thaliana TRICHOME BIREFRINGENCE-LIKE 26 (TBL26), mRNA [NM_116338]
10.48	AT1G80130	ref] Arabidopsis thaliana Tetratricopeptide repeat (TPR)-like superfamily protein mRNA [NM_10662]
10.38	AT2G25510	refl Arabidopsis thaliana transmembrane protein mRNA [NM_001202672]
10.29	AT5G54610	ref Arabidopsis thaliana ankyrin (ANK), mRNA [NM_124842]
10.02	R65132	tc AAD15384.1 - Arabidopsis thaliana (Mouse-ear cress), partial (68%) [TC400604]
69.6	AT1G61800	ref Arabidopsis thaliana glucose-6-phosphate/phosphate translocator 2 (6PT2), mRNA [NM_001334001]
9.18	AT2G43620	ref] Arabidopsis thaliana Chitinase family protein mRNA [NM_129924]
9.13	AT4G23600	ref] Arabidopsis thaliana Tyrosine transaminase family protein (CORI3), mRNA [NM_179099]
8.9	AT2G30766	ref]Arabidopsis thaliana hypothetical protein mRNA [NM_001336300]
8.88	AT1G14880	ref Arabidopsis thaliana PLANT CADMIUM RESISTANCE 1 (PCR1), mRNA [NM_101357]
8.87	AT4G21840	ref Arabidopsis thaliana methionine sulfoxide reductase B8 (MSRB8), mRNA [NM_118304]
8.74	AT5G42800	ref Arabidopsis thaliana dihydroflavonol 4-reductase (DFR), mRNA [NM_123645]
8.69	TA28146_3702	tc]Rep: ER lumen protein retaining receptor - Vitis vinifera (Grape), partial (5%) [TC395123]
8.3	AT4G39950	ref Arabidopsis thaliana cytochrome P450, family 79, subfamily B, polypeptide 2 (CYP79B2), mRNA [NM_120158]
8.21	EG497537	Unknown

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

7.94	AT5G44430	ref Arabidopsis thaliana plant defensin 1.2C (PDF1.2c), mRNA [NM_123810]
7.77	AT3G23120	ref Arabidopsis thaliana receptor like protein 38 (RLP38), mRNA [NM_113213]
7.72	AT2G27402	ref Arabidopsis thaliana plastid transcriptionally active protein mRNA [NM_001336115]
7.62	AT4G22870	ref Arabidopsis thaliana 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein mRNA [NM_001160794]
7.58	AT2G41090	ref Arabidopsis thaliana Calcium-binding EF-hand family protein mRNA [NM_129674]
7.32	CB185526	Unknown
7.28	AT1G73010	ref Arabidopsis thaliana inorganic pyrophosphatase 1 (PS2), mRNA [NM_105959]
7.26	AT2G26400	_ref Arabidopsis thaliana acireductone dioxygenase 3 (ARD3), mRNA [NM_001336065]
7.2	AT3G25180	ref Arabidopsis thaliana cytochrome P450, family 82, subfamily G, polypeptide 1 (CYP82G1), mRNA [NM_202630]
7.18	AT1G56650	ref Arabidopsis thaliana production of anthocyanin pigment 1 (PAP1), mRNA [NM_104541]
7.11	CD533642	gb 3209 Arabidopsis Leaf Senescence Library Arabidopsis thaliana cDNA 3', mRNA sequence [CD533642]
7.07	AT2G30770	ref Arabidopsis thaliana cytochrome P450 family 71 polypeptide (CYP71A13), mRNA [NM_128630]
7.03	AT1G15520	ref Arabidopsis thaliana pleiotropic drug resistance 12 (ABCG40), mRNA [NM_001332173]
7.03	AT1G19960	ref Arabidopsis thaliana transcription factor mRNA [NM_101851]
6.95	AT4G14400	ref Arabidopsis thaliana ankyrin repeat family protein (ACD6), mRNA [NM_179051]
6.87	AT2G26010	ref Arabidopsis thaliana plant defensin 1.3 (PDF1.3), mRNA [NM_128160]
6.84	AT1G76960	ref Arabidopsis thaliana transmembrane protein mRNA [NM_106347]
6.79	AT2G43570	ref Arabidopsis thaliana chitinase (CHI), mRNA [NM_129919]
6.74	AT5G17220	ref Arabidopsis thaliana glutathione S-transferase phi 12 (GSTF12), mRNA [NM_1212728]
6.66	AT3G24982	ref Arabidopsis thaliana receptor like protein 40 (RLP40), mRNA [NM_113404]
6.62	AT3G44990	ref Arabidopsis thaliana xyloglucan endo-transglycosylase-related 8 (XTH31), mRNA [NM_114368]
6.47	AT5G59670	ref Arabidopsis thaliana Leucine-rich repeat protein kinase family protein mRNA [NM_001345366]
6.46	AT4G21760	ref Arabidopsis thaliana beta-glucosidase 47 (BGLU47), mRNA [NM_001341512]
6.38	AT2G29350	ref Arabidopsis thaliana senescence-associated gene 13 (SAG13), mRNA [NM_201829]
6.08	AT4G21830	ref Arabidopsis thaliana methionine sulfoxide reductase B7 (MSRB7), mRNA [NM_118303]
5.88	AT1G12030	ref Arabidopsis thaliana phosphoenolpyruvate carboxylase, putative (DUF506) mRNA [NM_101075]
5.86	AT5G03350	ref Arabidopsis thaliana Legume lectin family protein mRNA [NM_120414]
5.85	AT5G60900	ref Arabidopsis thaliana receptor-like protein kinase 1 (RLK1), mRNA [NM_001345434]
5.8	AT1G35710	ref Arabidopsis thaliana kinase family with leucine-rich repeat domain-containing protein mRNA [NM_103273]
5.8	AT5G19240	ref Arabidopsis thaliana Glycoprotein membrane precursor GPI-anchored mRNA [NM_121929]
5.69	AT1G56430	ref Arabidopsis thaliana nicotianamine synthase 4 (NAS4), mRNA [NM_104521]
5.69	AT5G54060	ref Arabidopsis thaliana UDP-glucose:flavonoid 3-o-glucosyltransferase (UF3GT), mRNA [NM_124785]
5.66	AT5G53048	ref Arabidopsis thaliana other RNA lnCRNA [NR_143344]
5.61	AT5G24660	ref Arabidopsis thaliana response to low sulfur 2 (LSU2), mRNA [NM_122375]
5.55	AT3G27060	ref Arabidopsis thaliana Ferritin/ribonucleotide reductase-like family protein (TSO2), mRNA [NM_113620]
5.5	AT5G53450	ref Arabidopsis thaliana OBP3-responsive protein 1 (ORG1), mRNA [NM_001345057]

ref[Arabidopsis thaliana ferric reduction oxidase 3 (FRO3), mRNA [NM_001198138]	Unknown ref1.4rahidonsis thaliana alutathione S-transferase TAU 20 (GCTI I20) mBNA (NM -106484)	ref Arabidopsis thaliana methioning synthese 2 (MS2), mRNA [NM_111249]	r ref Arabidopsis thaliana Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family (YLS9), mRNA [NM_129157]	gb Arabidopsis thaliana clone 31878 mRNA, complete sequence [AY087114]	ref Arabidopsis thaliana flavin-dependent monoxygenaer 1 (FMO1), mKNA (NM 101/83)	rer] Arabidoosis thaliana monogalactosyntiacylgiyceroi synthase type C (MGUC), mKNA (NMI_UUL1248.29) ref] Arabidoosis thaliana Glutaredoxin family orotein mRNA (NM 100560)	ref Arabidopsis thaliana 2-isopropylmalate synthase 2 (IMS2), mRNA [NM_122208]	ref Arabidopsis thaliana APS-kinase 2 (AKN2), mRNA [NM_120157]	refi Arabidopsis thaliana transmembrane protein mRNA [NM_001085080]	ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_001203824]	ref Arabidopsis thaliana Glucose-1-phosphate adenylyltransferase family protein (APL3), mRNA [NM_001342527]	ref Arabidopsis thaliana beta-amylase 5 (BAMS), mRNA [NM_179058]	ref Arabidopsis thaliana Tetratricopeptide repeat (TPR)-like superfamily protein (ATSDI1), mRNA [NM_124262]	ref Arabidopsis thaliana cytochrome p450 79f1 (CYP79F1), mRNA [NM_101507]	ref Arabidopsis thaliana isopropylmalate dehydrogenase 1 (IMD1), mRNA [NM_001036803]	ref Arabidopsis thaliana purple acid phosphatase 14 (PAP14), mRNA [NM_201975]	ref Arabidopsis thaliana Rubber elongation factor protein (REF) mRNA [NM_105404]	ref Arabidopsis thaliana APS reductase 1 (APR1), mRNA [NM_116699]	ref [Arabidopsis thaliana methionine sulfoxide reductase B5 (MSRB5), mRNA [NM_001203745]	ref Arabidopsis thaliana phenazine biosynthesis PhzC/PhzF family protein mRNA [NM_116519]	ref Arabidopsis thaliana expansin B3 (EXPB3), mRNA [NM_001341907]	ref Arabidopsis thaliana Kunitz family trypsin and protease inhibitor protein mRNA [NM_10592]	ref Arabidopsis thaliana UDP-Glycosyltransferase superfamily protein mRNA [NM_100480]	ref Arabidopsis thaliana Thioredoxin superfamily protein (GRX480), mRNA [NM_102616]	ref Arabidopsis thaliana Eukaryotic aspartyl protease family protein mRNA [NM_121114]	ref Arabidopsis thaliana GDSL-like Lipase/Acylhydrolase superfamily protein mRNA [NM_102706]	gb Arabidopsis thaliana Col-0 2-oxoglutarate-dependent dioxygenase (AOP2) pseudogene, mRNA sequence [AF418241]	ref Arabidopsis thaliana isopropylmalate isomerase 2 (IPMI2), mRNA [NM_129871]	ref Arabidopsis thaliana leucoanthocyanidin dioxygenase (LDOX), mRNA [NM_001036623]	ref Arabidopsis thaliana cell wall-associated kinase (WAK1), mRNA [NM_101978]	ref Arabidopsis thaliana NIM1-interacting 2 (NIMIN-2), mRNA [NM_148752]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_120607]	ref Arabidopsis thaliana flavin-monooxygenase glucosinolate S-oxygenase 3 (FMO GS-OX3), mRNA [NM_001334038]
AT1G2302C	AT2G16367 AT1G78370	AT3G03780	AT2G3598C	AT1G21525	AT1G1925C	A12611810 AT1G06830	AT5G23020	AT4G39940	AT5G0876C	AT4G1747C	AT4G3921C	AT4G1521C	AT5G4885C	AT1G1641C	AT5G1420C	AT2G4688C	AT1G67360	AT4G0461C	AT4G0483C	AT4G0285C	AT4G28250	AT1G73325	AT1G0600C	AT1G28480	AT5G1076C	AT1G29660	AT4G0306C	AT2G4310C	AT4G22880	AT1G21250	AT3G25882	AT5G0525C	AT1G6256C
5.48	5.47 5.47	5.44	5.39	5.36	5.35	5.32 5.18	5.15	5.09	5.02	4.98	4.95	4.95	4.92	4.82	4.73	4.65	4.65	4.64	4.63	4.56	4.48	4.46	4.44	4.44	4.42	4.4	4.35	4.32	4.32	4.32	4.29	4.28	4.27

|--|

35 ref Arabidopsis thaliana transcription factor SCREAM-like protein mRNA [NM_001336840]	10 ref Arabidopsis thaliana P-loop containing nucleoside triphosphate hydrolases superfamily protein mRNA [NM_103518]	00 ref Arabidopsis thaliana cation/H+ exchanger 2 (CHX2), mRNA [NM_106588]	30 ref Arabidopsis thaliana Nucleic acid-binding, OB-fold-like protein mRNA [NM_115123]	50 ref Arabidopsis thaliana downstream neighbor of Son mRNA [NM_115332]	20 ref Arabidopsis thaliana Auxin-responsive GH3 family protein (PBS3), mRNA [NM_001343268]	51 ref Arabidopsis thaliana alpha carbonic anhydrase 2 (ACA2), mRNA [NM_001336149]	60 ref Arabidopsis thaliana Histone superfamily protein mRNA [NM_125934]	30 ref Arabidopsis thaliana hypothetical protein mRNA [NM_123618]	50 ref Arabidopsis thaliana FUMARASE 2 (FUM2), mRNA [NM_001344914]	60 ref Arabidopsis thaliana cysteine-rich/transmembrane domain protein B mRNA [NM_104484]	15 Unknown	70 ref Arabidopsis thaliana response to low sulfur 3 (LSU3), mRNA [NM_114817]	60 ref Arabidopsis thaliana hypothetical protein mRNA [NM_118830]	80 ref Arabidopsis thaliana tubulin beta-1 chain (TUB1), mRNA [NM_106228]	10 ref Arabidopsis thaliana Pyridoxal phosphate phosphatase-related protein (PEPC1), mRNA [NM_001084087]	90 ref Arabidopsis thaliana Histone superfamily protein mRNA [NM_121077]	70 ref Arabidopsis thaliana hypothetical protein mRNA [NM_124879]	80 ref Arabidopsis thaliana glucose-6-phosphate dehydrogenase 3 (G6PD3), mRNA [NM_102274]	50 ref Arabidopsis thaliana basic helix-loop-helix (bHLH) DNA-binding superfamily protein (BHLH101), mRNA [NM_120497]	70 ref Arabidopsis thaliana Tetratricopeptide repeat (TPR)-like superfamily protein mRNA [NM_100355]	i 702 tc Rep: At2g25510/F13B15.17 - Arabidopsis thaliana (Mouse-ear cress), partial (41%) [TC388653]	70 ref Arabidopsis thaliana hypothetical protein (DUF1262) mRNA [NM_101217]	90 ref Arabidopsis thaliana pinoid-binding protein 1 (PBP1), mRNA [NM_124829]	40 ref Arabidopsis thaliana Plant invertase/pectin methylesterase inhibitor superfamily mRNA [NM_128201]	40 ref Arabidopsis thaliana L-Aspartase-like family protein mRNA [NM_117957]	60 ref] Arabidopsis thaliana Pollen Ole e 1 allergen and extensin family protein mRNA [NM_113610]	33 Unknown	20 ref Arabidopsis thaliana rhamnose biosynthesis 1 (RHM1), mRNA [NM_106504]	20 ref Arabidopsis thaliana UvrABC system protein C mRNA [NM_116057]	60 ref Arabidopsis thaliana BON association protein 2 (BAP2), mRNA [NM_130139]	60 ref Arabidopsis thaliana plant natriuretic peptide A (PNP-A), mRNA [NM_179648]	- Unknown	50 ref Arabidopsis thaliana allene oxide synthase (AOS), mRNA [NM_123629]	90 ref Arabidopsis thaliana Disease resistance-responsive (dirigent-like protein) family protein mRNA [NM_117190]	80 ref Arabidopsis thaliana peroxisomal 3-keto-acyl-CoA thiolase 2 (KAT5), mRNA [NM_001344808]
AT2G4043	AT1G4391	AT1G7940	AT3G5263	AT3G5475	AT5G1332	NP45466	AT5G6536	AT5G4253	AT5G5095	AT1G5606	BP78334!	AT3G4957	AT4G2696	AT1G7578	AT1G1771	AT5G1035	AT5G5497	AT1G2428	AT5G0415	AT1G0477	TA29588_3.	AT1G1347	AT5G5449	AT2G2644	AT4G1844	AT3G2696	TC300095	AT1G7857	AT3G6192	AT2G4576	AT2G1866	T42092	AT5G4265	AT4G1119	AT5G4888
3.8	3.79	3.77	3.77	3.77	3.76	3.76	3.75	3.75	3.73	3.72	3.72	3.7	3.69	3.68	3.67	3.67	3.67	3.65	3.64	3.63	3.62	3.61	3.6	3.58	3.58	3.57	3.57	3.56	3.56	3.55	3.54	3.53	3.51	3.51	3.5

130	3702 Unknown	00 ref Arabidopsis thaliana PHE ammonia lyase 1 (PAL1), mRNA [NM_129260]	80 refl Arabidopsis thaliana PDI-like 2-2 (PDIL2-2), mRNA [NM_100376]	010 ref Arabidopsis thaliana serine carboxypeptidase-like 9 (SCPL9), mRNA [NM_201788]	00	40 ref Arabidopsis thaliana Phosphoglycerate mutase family protein mRNA [NM_001340043]	590 ref[Arabidopsis thaliana Heavy metal transport/detoxification superfamily protein mRNA [NM_180545]	3702 tc Rep: Eukaryotic translation initiation factor 4E - Cucumis melo (Muskmelon), partial (11%) [TC394106]	90 ref Arabidopsis thaliana myb domain protein 90 (MYB90), mRNA [NM_105310]	is 7 $$ ref[Arabidopsis thaliana phosphopantothenoylcysteine decarboxylase subunit mRNA [NM $_{-}$ 112403]	150 $$ ref[Arabidopsis thaliana hypothetical protein mRNA [NM $_114313]$	00 ref Arabidopsis thaliana Histone superfamily protein mRNA [NM_121078]	i40 ref Arabidopsis thaliana heat shock protein 70 (Hsp 70) family protein (BIP1), mRNA [NM_122737]	40 ref[Arabidopsis thaliana histone H4 (HIS4), mRNA [NM128434]	60 ref Arabidopsis thaliana Nucleotide-diphospho-sugar transferases superfamily protein (ATCSLA09), mRNA [NM_120457]	20 ref Arabidopsis thaliana ChaC-like family protein mRNA [NM_001343968]	45 ref Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolase 8 (XTH8), mRNA [NM_101028]	10 ref Arabidopsis thaliana alpha carbonic anhydrase 2 (ACA2), mRNA [NM_001336148]	370 ref[Arabidopsis thaliana SAUR-like auxin-responsive protein family mRNA [NM_111822]	i60 ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_122151]	02 gb BP586302 RAFL15 Arabidopsis thaliana cDNA clone RAFL15-05-M21 3', mRNA sequence [BP586302]	80 ref Arabidopsis thaliana Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein (XYP1), mRNA [NM_12SB04]	020 ref Arabidopsis thaliana breast cancer associated RING 1 (BARD1), mRNA [NM_202029]	90 ref Arabidopsis thaliana acyl activating enzyme 12 (AAE12), mRNA [NM_105261]	830 ref[Arabidopsis thaliana calcium-binding transcription factor NIG1 (NIG1), mRNA [NM_124054]	550 ref Arabidopsis thaliana loricrin-like protein mRNA [NM_125851]	500 ref Arabidopsis thaliana myb domain protein 29 (MYB29), mRNA [NM_120851]	12 tc[GB]AL590346.1[CAC35882.1 putative protein [Arabidopsis thaliana] [NP335312]	660 ref Arabidopsis thaliana Histone superfamily protein mRNA [NM_113651]	80 ref[Arabidopsis thaliana calmodulin like 37 (CML37), mRNA [NM_123603]	90 ref Arabidopsis thaliana glycosyl hydrolase 9B8 (GH9B8), mRNA [NM_128859]	:50 ref Arabidopsis thaliana SPFH/Band 7/PHB domain-containing membrane-associated protein family (FLOT1), mRNA [NM_122434]	00 def Arabidopsis thaliana UDP-Giycosyltransferaes superfamily protein (GBSS1), mRNA [NM_103023]	010 ref Arabidopsis thaliana OPC-8:0 CoAligase1 (OPCL1), mRNA [NM_202143]
AT5G6075 AT5G4202	TA28264_3	AT2G3704	AT1G0495	AT2G2301	AT4G083(AT3G6044	AT5G2665	TA50968_3	AT1G6635	AT3G1535	AT3G4445	AT5G1040	AT5G2854	AT2G2874	AT5G0376	AT5G2622	AT1G1154	AT2G2821	AT3G0987	AT5G2246	BP58630.	AT5G6408	AT1G0402	AT1G6589	AT5G4685	AT5G6455	AT5G0765	NP33531	AT3G2736	AT5G4238	AT2G3295	AT5G2525	AT1G329(AT1G2051
3.22 3.22	3.22	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.2	3.18	3.18	3.17	3.16	3.16	3.15	3.15	3.14	3.13	3.13	3.13	3.12	3.11	3.11	3.1	3.1	3.09	3.08	3.08	3.07	3.07	3.06	3.05	3.04	3.04

opsis thaliana SKUS-similar 6 (SKS6), mRNA [NM_103408]	gg42860 - Arabidopsis thaliana (Mouse-ear cress), partial (39%) [TC388419]	opsis thaliana Pseudouridine synthase/archaeosine transglycosylase-like family protein (APS3), mRNA [NM_001340955]	opsis thaliana cysteine-rich RLK (RECEPT0R-like protein kinase) 6 (CRK6), mRNA [NM_179095]	opsis thaliana hemoglobin 1 (HB1), mRNA [NM_127165]	opsis thaliana glycine-rich RNA-binding protein 3 (GR-RBP3), mRNA [NM_125496]	opsis thaliana receptor-like protein kinase-related family protein (EP1), mRNA [NM_118446]	opsis thaliana myo-inositol polyphosphate 5-phosphatase 2 (IP5PII), mRNA [NM_117911]	opsis thaliana sulfotransferase 12 (SOT12), mRNA [NM_126423]	opsis thaliana DPP6 N-terminal domain-like protein mRNA [NM_102017]	opsis thaliana coiled-coil protein mRNA [NM_123899]	opsis thaliana mRNA for hypothetical protein, complete cds, clone: RAFL26-03-H08 [AK230465]	opsis thaliana UDP-glucosyltransferase 74F2 (UGT74F2), mRNA [NM_1229944]	opsis thaliana Chaperone Dnal-domain superfamily protein mRNA [NM_001334483]	opsis thaliana glutathione S-transferase tau 2 (GSTU2), mRNA [NM_128502]	opsis thaliana Pentapeptide repeat-containing protein mRNA [NM_001084054]	opsis thaliana hydroxyproline-rich glycoprotein family protein mRNA [NM_001332581]	opsis thaliana DUF2358 family protein (DUF2358) mRNA (NM_130184)	opsis thaliana thionin 2.2 (THI2.2), mRNA [NM_123049]	opsis thaliana Papain family cysteine protease (RD19), mRNA [NM_120069]	opsis thaliana calmodulin-like 38 (CML38), mRNA [NM_001198484]	opsis thaliana hypothetical protein (DUF1677) mRNA [NM_128138]	opsis thaliana Polyketide cyclase/dehydrase and lipid transport superfamily protein mRNA [NM_180243]	opsis thaliana other RNA lncRNA [NR_139108]	opsis thaliana cellulose synthase like E1 (CSLE1), mRNA [NM_104462]	opsis thaliana WUSCHEL related homeobox 2 (WOX2), mRNA [NM_125325]	opsis thaliana NAC domain containing protein 6 (NAC6), mRNA [NM_123323]	opsis thaliana P-loop containing nucleoside triphosphate hydrolases superfamily protein mRNA [NM_001331471]	opsis thaliana ketose-bisphosphate aldolase class-ll family protein mRNA [NM_001198099]	opsis thaliana atypical CYS HIS rich thioredoxin 4 (ACHT4), mRNA [NM_001123776]	opsis thaliana CONSTANS-like 5 (COL5), mRNA [NM_125149]	opsis thaliana phytosulfokine 5 precursor (PSK5), mRNA [NM_125984]	37-013-002-M08-17R MPIZ-ADIS-013 Arabidopsis thaliana cDNA clone MPIZp770M082Q 5-PRIME, mRNA sequence [CB259684]		opsis thaliana sugar phosphate exchanger, putative (DUF506) mRNA [NM_119400]	
ref Arabidopsis thaliana SKU5-sim	tc Rep: At5g42860 - Arabidopsis tl	ref Arabidopsis thaliana Pseudour	ref Arabidopsis thaliana cysteine-i	ref Arabidopsis thaliana hemoglob	ref Arabidopsis thaliana glycine-ri	ref Arabidopsis thaliana receptor-	ref Arabidopsis thaliana myo-inos	ref Arabidopsis thaliana sulfotrans	ref Arabidopsis thaliana DPP6 N-t	ref Arabidopsis thaliana coiled-coi	gb Arabidopsis thaliana mRNA for	ref Arabidopsis thaliana UDP-gluc	ref Arabidopsis thaliana Chaperor	ref Arabidopsis thaliana glutathio	ref Arabidopsis thaliana Pentapep	ref Arabidopsis thaliana hydroxyp	ref Arabidopsis thaliana DUF2358	ref Arabidopsis thaliana thionin 2.	ref Arabidopsis thaliana Papain fa	ref Arabidopsis thaliana calmodul	ref Arabidopsis thaliana hypotheti	ref Arabidopsis thaliana Polyketid	ref Arabidopsis thaliana other RN	ref Arabidopsis thaliana cellulose	ref Arabidopsis thaliana WUSCHEI	ref Arabidopsis thaliana NAC dom	ref Arabidopsis thaliana P-loop co	ref Arabidopsis thaliana ketose-bi	ref Arabidopsis thaliana atypical C	ref Arabidopsis thaliana CONSTAN	ref Arabidopsis thaliana phytosulf	gb 31-E9537-013-002-M08-T7R N	Unknown	ref Arabidopsis thaliana sugar pho	wold A volider of the line AIAC down
AT1G41830	TA36353_3702	AT4G14680	AT4G23140	AT2G16060	AT5G61030	AT4G23170	AT4G18010	AT2G03760	AT1G21680	AT5G45310	AK230465	AT2G43820	AT1G71000	AT2G29480	AT1G12250	AT1G23040	AT2G46220	AT5G36910	AT4G39090	AT1G76650	AT2G25780	AT3G13062	TC297782	AT1G55850	AT5G59340	AT5G39610	AT1G04280	AT1G18270	AT1G08570	AT5G57660	AT5G65870	CB259684	TA29086_3702	AT4G32480	
3.03	3.03	3.02	3.02	3.01	3.01	3.01	-3.01	-3.01	-3.01	-3.01	-3.02	-3.03	-3.03	-3.03	-3.03	-3.03	-3.03	-3.04	-3.04	-3.04	-3.04	-3.04	-3.04	-3.05	-3.05	-3.05	-3.06	-3.08	-3.09	-3.09	-3.09	-3.09	-3.09	-3.1	

ref [Arabidopsis thaliana MATE efflux family protein mRNA [NM_125936] ref [Arabidopsis thaliana gutathione peroxidase 7 (GPX7), mRNA [NM_001342119] ref [Arabidopsis thaliana RING/U-box superfamily protein mRNA [NM_111928] ref [Arabidopsis thaliana hypothetical protein mRNA [NM_001203316] ref [Arabidopsis thaliana FMN-linked oxidoreductases superfamily protein mRNA [NM_001035985] ref [Arabidopsis thaliana Homeodomain-like superfamily protein (RVE1), mRNA [NM_121736]	ref Arabidopsis thaliana DNAJ-like 20 (J20), mRNA [NM_11457] ref [Arabidopsis thaliana Wound-responsive family protein mRNA [NM_001035991] ref [Arabidopsis thaliana DNA-directed RNA polymerase subunit beta-beta protein, putative (DUF506) mRNA [NM_001336739] ref [Arabidopsis thaliana stress response NST1-like protein mRNA [NM_118701]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_001334179] ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_105534] ref Arabidopsis thaliana 12-oxophytodienoate reductase 2 (OPR2), mRNA [NM_106319] <mark>ref Arabidopsis thaliana 2-oxoglutarate (20G) and Fe(II)-dependent oxygenase superfamily protein mRNA [NM_001344483]</mark>	ref Arabidopsis thaliana HSP20-like chaperones superfamily protein mRNA [NM_128504] ref Arabidopsis thaliana ethylene-responsive element binding protein (EBP), mRNA [NM_112550] ref Arabidopsis thaliana GroES-like zinc-binding alcohol dehydrogenase family protein mRNA [NM_124576]	ref Arabidopsis thaliana NAD(P)-binding Rossmann-fold superfamily protein mRNA [NM_001341639] ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_001335830] ref Arabidopsis thaliana sulfate/thiosulfate import ATP-binding protein, putative (DUF506) mRNA [NM_111614] ref Arabidoosis thaliana GRAM domain-containing protein / ABA-responsive protein-like protein mRNA [NM_120919]	rel Arabidopsis traliaria Greave ouriarir-Contaiming protein / ABA-tesponsive protein-inke protein mixiva (nw_120919) ref Arabidopsis thaliana catalase 1 (CAT1), mRNA [NM_101914] ref Arabidopsis thaliana alternative oxidase 1 A (AOX1A), mRNA [NM_11315] ref Arabidopsis thaliana beta-D-xylosidase 4 (XY14), mRNA [NM_001345643] ref Arabidopsis thaliana UDP-Glycosyltransferase superfamily protein (UGT3722), mRNA [NM_001084510]	ref Arabidopsis thaliana ATP binding cassette protein 1 (ABCI8), mRNA (NM_116715) ref Arabidopsis thaliana Vacuolar iron transporter (VIT) family protein mRNA (NM_116715) ref Arabidopsis thaliana Vacuolar iron transporter (VIT) family protein mRNA (NM_113425) ref Arabidopsis thaliana acetyl CoA;(2)-3-hexen-1-ol acetyltransferase (CHAT), mRNA (NM_111219) ref Arabidopsis thaliana myb domain protein 112 (MYB112), mRNA (NM_103696)	ref Arabidopsis thaliana Protein kinase superfamily protein mRNA [NM_179111] ref Arabidopsis thaliana histone-lysine N-methyltransferase trithorax-like protein mRNA [NM_123434] tc Rep: Vacuolar-processing enzyme gamma-isozyme precursor - Arabidopsis thaliana (Mouse-ear cress), partial (23%) [TC400087] ref Arabidopsis thaliana glyoxalase II 3 (GLY3), mRNA [NM_202289] <mark>ref Arabidopsis thaliana Major facilitator superfamily protein mRNA [NM_180152]</mark> ref Arabidopsis thaliana AFP2 (ABI five-binding protein mRNA [NM_180152]
AT5G65380 AT4G31870 AT3G10910 AT5G06980 AT1G18020 AT5G17300	AT4G13830 AT1G19660 AT2G38820 AT4G25690	BT025685 AT1G68620 AT1G76690 AT5G43450	AT2G29500 AT3G16770 AT5G51970	AT4G24050 AT2G22960 AT3G07350 AT5G08350	AT1620630 AT1620630 AT3622370 AT5664570 AT2630140 AT2630140	AT4G04770 AT3G25190 AT3G03480 AT1G48000	AT4G25390 AT5G40690 TC312617 AT1G53580 AT1G53580 AT2G48020 AT3G02140
-3.11 -3.12 -3.12 -3.12 -3.13 -3.13	-3.14 -3.14 -3.14 -3.14	-3.14 -3.15 -3.15 -3.16	-3.16 -3.16 -3.18	-3.19 -3.19 -3.2	-3.22 -3.22 -3.26 -3.26 -3.26 -3.26	-3.26 -3.26 -3.27 -3.27	-3.27 -3.27 -3.28 -3.28 -3.28 -3.29 -3.3

ref Arabidopsis thaliana acyl-CoA oxidase 2 (ACX2), mRNA [NM_001037068]	rerį Arabidopsis traliana Pyridoxai prospnate (PLP)-dependent transrerases superramiry protein (POPZ), mkwa [NWUU12U3U18] ref į Arabidopsis thaliana NAD(P)-binding Rossmann-fold superfamily protein mRNA [NM_128483]	ref Arabidopsis thaliana FTSH protease 8 (FTSH8), mRNA [NM_100523]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_126510]	ref Arabidopsis thaliana electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO), mRNA [NM_129901]	ref Arabidopsis thaliana nicotianamine synthase 3 (NAS3), mRNA [NM_100794]	ref Arabidopsis thaliana sugar transporter 14 (STP14), mRNA [NM_106370]	gb Arabidopsis thaliana unknown protein (At1g03580) mRNA, partial cds [AY091013]	ref Arabidopsis thaliana cycling DOF factor 2 (CDF2), mRNA [NM_180775]	ref Arabidopsis thaliana Sulfite exporter TauE/SafE family protein mRNA [NM_104856]	ref Arabidopsis thaliana Exostosin family protein (FRA8), mRNA [NM_179782]	ref Arabidopsis thaliana bifunctional nuclease in basal defense response 1 (BBD1), mRNA [NM_179560]	ref Arabidopsis thaliana Thioredoxin superfamily protein mRNA [NM_116160]	ref Arabidopsis thaliana sinapoylg ucose 1 (SNG1), mRNA [NM127864]	ref Arabidopsis thaliana Glycosyltransferase family 61 protein mRNA [NM_111867]	ref Arabidopsis thaliana cytochrome P450, family 87, subfamily A, polypeptide 6 (CYP89A6), mRNA [NM_105168]	ref Arabidopsis thaliana cytochrome P450, family 89, subfamily A, polypeptide 5 (CYP89A5), mRNA [NM_105169]	ref Arabidopsis thaliana PPR containing protein (DUF179) mRNA [NM_113848]	ref Arabidopsis thaliana ferric reduction oxidase 7 (FRD7), mRNA [NM_001344853]	ref Arabidopsis thaliana Ubiquitin-like superfamily protein (ATG8F), mRNA [NM_179064]	ref Arabidopsis thaliana RING/U-box superfamily protein (AIRP1), mRNA [NM_001341614]	ref Arabidopsis thaliana glutamate dehydrogenase 1 (GDH1), mRNA [NM_121822]	gb Arabidopsis thaliana clone asmbl_5374 unknown mRNA sequence [EF182961]	ref Arabidopsis thaliana bacteriophage N4 adsorption B protein mRNA [NM_126046]	gb Arabidopsis thaliana Full-length cDNA Complete sequence from clone GSLTFB73ZE03 of Flowers and buds of strain col-0 of Arabidopsis thaliar [BX822227]	ref Arabidopsis thaliana BTB and TAZ domain protein S (BTS), mRNA [NM_11924]	ref Arabidopsis thaliana Acyl-CoA N-acyltransferases (NAT) superfamily protein mRNA [NM_128762]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_129331]	ref Arabidopsis thaliana ferric reduction oxidase 6 (FRO6), mRNA [NM_001344852]	ref Arabidopsis thaliana WRKY DNA-binding protein 25 (WRKY25), mRNA [NM_128578]	ref Arabidopsis thaliana Peroxidase superfamily protein mRNA [NM_001124989]	ref Arabidopsis thaliana Protein phosphatase 2C family protein mRNA [NM202927]	ref Arabidopsis thaliana high chlorophyll fluorescence phenotype 173 (HCF173), mRNA [NM_001332253]	ref Arabidopsis thaliana defensin-like protein mRNA [NM115856]
AT5G65110	A13622200 AT2G29290	AT1G06430	AT2G04795	AT2G43400	AT1G09240	AT1G77210	AT1G03580	AT5G39660	AT1G61740	AT2G28110	AT1G75380	AT3G62950	AT2G22990	AT3G10320	AT1G64940	AT1G64950	AT3G29240	AT5G49740	AT4G16520	AT4G23450	AT5G18170	AT2G13431	AT5G66480	BX822927	AT4G37610	AT2G32020	AT2G37750	AT5G49730	AT2G30250	AT2G37130	AT4G31860	AT1G16720	AT3G59930
-3.31	-3.31 -3.31	-3.31	-3.31	-3.32	-3.32	-3.32	-3.32	-3.33	-3.33	-3.35	-3.35	-3.35	-3.35	-3.35	-3.37	-3.38	-3.39	-3.4	-3.4	-3.4	-3.41	-3.41	-3.41	-3.41	-3.42	-3.43	-3.43	-3.44	-3.44	-3.45	-3.45	-3.45	-3.46

-3.46	AT2G42870	ref Arabidopsis thaliana phy rapidly regulated 1 (PAR1), mRNA [NM_129848]
-3.47	AT4G16190	ref Arabidopsis thaliana Papain family cysteine protease mRNA [NM_117715]
-3.47	AT1G53280	ref Arabidopsis thaliana Class I glutamine amidotransferase-like superfamily protein (DJ1B), mRNA [NM104206]
-3.48	AT1G17990	ref Arabidopsis thaliana FMN-linked oxidoreductases superfamily protein mRNA [NM_001035985]
-3.48	AT3G26220	ref Arabidopsis thaliana cytochrome P450, family 71, subfamily 8, polypeptide 3 (CYP71B3), mRNA [NM_113529]
-3.49	AT4G22920	ref Arabidopsis thaliana non-yellowing 1 (NYE1), mRNA [NM_001341565]
-3.5	AT2G44130	ref Arabidopsis thaliana Galactose oxidase/kelch repeat superfamily protein mRNA [NM_129976]
-3.51	AK230421	gb Arabidopsis thaliana mRNA for hypothetical protein, complete cds, clone: RAFL2S-33-B21 [AK230421]
-3.52	AT5G39050	ref Arabidopsis thaliana HXXXD-type acyl-transferase family protein (PMAT1), mRNA [NM_123267]
-3.53	BU917423	ref Arabidopsis thaliana RING/U-box protein mRNA [NM_112412]
-3.59	N38085	tc Rep: Cysteine proteinase - Populus tomentosa (Chinese white poplar), partial (36%) [TC397589]
-3.6	AT1G55920	ref Arabidopsis thaliana serine acetyltransferase 2;1 (SERAT2;1), mRNA [NM_104470]
-3.6	AT5G64230	ref Arabidopsis thaliana 1,8-cineole synthase mRNA [NM_125819]
-3.61	AT1G10140	ref Arabidopsis thaliana Uncharacterized conserved protein UCP031279 mRNA [NM_100888]
-3.61	AV566399	gb AV566399 Arabidopsis thaliana green siliques Columbia Arabidopsis thaliana cDNA clone SQ242f10F 3', mRNA sequence [AV566399]
-3.63	AT1G13700	ref Arabidopsis thaliana 6-phosphogluconolactonase 1 (PGL1), mRNA [NM_001332083]
-3.63	AT3G43670	ref Arabidopsis thaliana Copper amine oxidase family protein mRNA [NM_114235]
-3.63	AT1G20350	ref Arabidopsis thaliana translocase inner membrane subunit 17-1 (TIM17-1), mRNA [NM_101886]
-3.64	AT2G47180	ref Arabidopsis thaliana galactinol synthase 1 (GolS1), mRNA [NM_130286]
-3.64	AT2G36950	ref Arabidopsis thaliana Heavy metal transport/detoxification superfamily protein mRNA [NM_129251]
-3.66	AT2G15890	ref Arabidopsis thaliana maternal effect embryo arrest 14 (MEE14), mRNA [NM_001084426]
-3.67	AT1G67070	ref Arabidopsis thaliana Mannose-6-phosphate isomerase, type I (DIN9), mRNA [NM_001334269]
-3.67	AT3G13065	ref Arabidopsis thaliana STRUBBELIG-receptor family 4 (SRF4), mRNA [NM_112145]
-3.69	AT3G10740	ref Arabidopsis thaliana alpha-L-arabinofuranosidase 1 (ASD1), mRNA [NM_001337894]
-3.7	AT1G14130	ref Arabidopsis thaliana 2-oxoglutarate (20G) and Fe(II)-dependent oxygenase superfamily protein mRNA [NM_101278]
-3.7	AT3G04060	ref Arabidopsis thaliana NAC domain containing protein 46 (NAC046), mRNA [NM_11277]
-3.71	TC309871	tc Rep: Conglutin gamma-like protein - Arabidopsis thaliana (Mouse-ear cress), partial (35%) [TC396686]
-3.72	AT5G18130	ref Arabidopsis thaliana transmembrane protein mRNA [NM_203067]
-3.74	AT1G09420	ref Arabidopsis thaliana glucose-6-phosphate dehydrogenase 4 (G6PD4), mRNA [NM_001198018]
-3.74	AT1G01240	ref Arabidopsis thaliana transmembrane protein mRNA [NM_001331263]
-3.75	AT4G20070	ref Arabidopsis thaliana allantoate amidohydrolase (AAH), mRNA [NM_001341398]
-3.77	AT2G26355	ref Arabidopsis thaliana other RNA lncRNA [NR_140673]
-3.77	AT4G33660	ref Arabidopsis thaliana cysteine-rich TM module stress tolerance protein mRNA [NM_119522]
-3.81	TA35940_3702	tc Rep: Chromosome chr18 scaffold_1, whole genome shotgun sequence - Vitis vinifera (Grape), partial (42%) [TC384450]
-3.84	AT5G66052	ref Arabidopsis thaliana transmembrane protein mRNA [NM_148167]
-3.84	TA29208_3702	Unknown

00 ref Arabidopsis thaliana ferritin 4 (FER4), mRNA [NM_129588]	38 ref Arabidopsis thaliana UDP-glucosyl transferase 7381 (UGT7381), mRNA [NM_119576]	80 ref Arabidopsis thaliana C2H2-type zinc finger family protein mRNA [NM_14477]	70 ref Arabidopsis thaliana RING/U-box superfamily protein mRNA [NM_18066]	70 ref Arabidopsis thaliana Tyrosine transaminase family protein (TAT7), mRNA [NM_124776]	20 ref Arabidopsis thaliana Transmembrane amino acid transporter family protein mRNA [NM_129602]	80 ref Arabidopsis thaliana Serine protease inhibitor, potato inhibitor I-type family protein (UPI), mRNA [NM_123724]	90 ref Arabidopsis thaliana Glutamyl-tRNA reductase family protein (HEMA1), mRNA [NM_104609]	60 ref Arabidopsis thaliana Zinc-binding dehydrogenase family protein mRNA [NM_001343474]	70 ref Arabidopsis thaliana cytochrome P450, family 87, subfamily A, polypeptide 9 (CYP89A9), mRNA [NM_111218]	20 ref Arabidopsis thaliana Eukaryotic aspartyl protease family protein mRNA [NM_121917]	70 ref Arabidopsis thaliana alkenal reductase (AER), mRNA [NM_121703]	30 ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_180517]	60 ref Arabidopsis thaliana transmembrane protein mRNA [NM_120294]	20 ref Arabidopsis thaliana bZIP transcription factor family protein (BZO2H3), mRNA [NM_001344083]	73 ref Arabidopsis thaliana defensin-like protein mRNA [NM_001036935]	90 ref Arabidopsis thaliana cytochrome P450, family 72, subfamily A, polypeptide 15 (CYP72A15), mRNA [NM_112330]	40 ref Arabidopsis thaliana gamma vacuolar processing enzyme (GAMMA-VPE), mRNA [NM_119448]	50 ref Arabidopsis thaliana UDP-glucosyl transferase 73C1 (UGT73C1), mRNA [NM_129230]	07 ref Arabidopsis thaliana hypothetical protein mRNA [NM_148161]	702 Unknown	60 ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_202876]	80 ref Arabidopsis thaliana UDP-D-glucose/UDP-D-galactose 4-epimerase 3 (UGE3), mRNA [NM_104996]	00 ref Arabidopsis thaliana Zinc-binding dehydrogenase family protein mRNA [NM_001343476]	70 ref Arabidopsis thaliana acyl activating enzyme 5 (AAE5), mRNA [NM_121642]	90 ref Arabidopsis thaliana Kelch repeat-containing F-box family protein mRNA [NM_102188]	40 ref Arabidopsis thaliana cysteine-rich TM module stress tolerance protein mRNA [NM_100413]	60 ref Arabidopsis thaliana calcium exchanger 7 (CAX7), mRNA [NM_121792]	50 ref Arabidopsis thaliana Transducin/WD40 repeat-like superfamily protein (RUP1), mRNA [NM_124604]	50 ref Arabidopsis thaliana CONSTANS-like 1 (COL1), mRNA [NM_121590]	00	50 ref Arabidopsis thaliana Aldolase-type TIM barrel family protein mRNA [NM_125821]	00 ref Arabidopsis thaliana Auxin efflux carrier family protein mRNA [NM_179633]	85 ref Arabidopsis thaliana Pollen Ole e 1 allergen and extensin family protein mRNA [NM_179769]	80 ref Arabidopsis thaliana beta carbonic anhydrase 6 (BCA6), mRNA [NM_179492]	00 ref Arabidopsis thaliana Zinc finger C-x8-C-x3-H type family protein (ATCTH), mRNA [NM_001202675]
AT2G4030	AT4G3413,	AT3G4608	AT5G5597	AT5G5397	AT2G4042	AT5G4358 [,]	AT1G5829 [,]	AT5G1696	AT3G0347	AT5G1912 [,]	AT5G1697	AT5G1863	AT5G0216	AT5G2877	AT5G4497.	AT3G1469	AT4G3294	AT2G3675	AT5G6520	TA29997_37	AT4G2416	AT1G6318 [,]	AT5G1700	AT5G1637	AT1G2339 [,]	AT1G0534	AT5G1786	AT5G5225 ⁴	AT5G1585	AT2G3940	AT5G6425	AT2G1750	AT2G2738.	AT1G5818	AT2G2590
-3.85	-3.85	-3.86	-3.86	-3.9	-3.9	-3.91	-3.92	-3.92	-3.93	-3.94	-3.95	-3.96	-3.96	-3.97	-3.99	-4.01	-4.01	-4.03	-4.03	-4.04	-4.06	-4.08	-4.08	-4.1	-4.1	-4.11	-4.12	-4.13	-4.14	-4.18	-4.19	-4.19	-4.19	-4.2	-4.2

-4.21 -4.21	AT2G28120 AT5G14120	ref [Arabidopsis thaliana Major facilitator superfamily protein mRNA [NM_128372] _ref [Arabidopsis thaliana Major facilitator superfamily protein mRNA [NM_121416]
-4.24	AT2G26150	ref Arabidopsis thaliana heat shock transcription factor A2 (HSFA2), mRNA [NM_001336038]
-4.26	AT5G13330	ref Arabidopsis thaliana related to AP2 6l (Rap2.6L), mRNA [NM_121336]
-4.26	AT5G17170	ref Arabidopsis thaliana rubredoxin family protein (ENH1), mRNA [NM_001085129]
-4.28	AT3G15770	ref Arabidopsis thaliana hypothetical protein mRNA [NM_112447]
-4.28	TA26159_3702	Unknown
-4.3	AT3G50560	ref Arabidopsis thaliana NAD(P)-binding Rossmann-fold superfamily protein mRNA [NM_114916]
-4.3	AT5G63190	ref Arabidopsis thaliana MA3 domain-containing protein mRNA [NM_125714]
-4.31	AT3G10020	ref Arabidopsis thaliana plant/protein mRNA [NM_111837]
-4.33	TA28495_3702	Unknown
-4.36	AT1G76600	ref Arabidopsis thaliana poly polymerase mRNA [NM_106310]
-4.37	AT3G15620	ref Arabidopsis thaliana DNA photolyase family protein (UVR3), mRNA [NM_112432]
-4.37	AT3G19390	ref Arabidopsis thaliana Granulin repeat cysteine protease family protein mRNA [NM_112826]
-4.38	AT1G75490	ref Arabidopsis thaliana Integrase-type DNA-binding superfamily protein mRNA [NM_106202]
-4.42	AT3G15500	ref Arabidopsis thaliana NAC domain containing protein 3 (NAC3), mRNA [NM_112418]
-4.43	AT1G77450	ref Arabidopsis thaliana NAC domain containing protein 32 (NAC032), mRNA [NM_106394]
-4.43	TC313866	tc Rep: Chaperone protein dnaJ 8, chloroplast precursor - Arabidopsis thaliana (Mouse-ear cress), partial (50%) [TC404503]
-4.45	AT3G14680	ref Arabidopsis thaliana cytochrome P450, family 72, subfamily A, polypeptide 14 (CYP72A14), mRNA [NM_112329]
-4.46	AT3G22460	ref Arabidopsis thaliana O-acetylserine (thiol) lyase (OAS-TL) isoform A2 (OASA2), mRNA [NM_113145]
-4.46	AT4G13250	ref Arabidopsis thaliana NAD(P)-binding Rossmann-fold superfamily protein (NYC1), mRNA [NM_117396]
-4.49	AT1G07890	ref Arabidopsis thaliana ascorbate peroxidase 1 (APX1), mRNA [NM_10063]
-4.49	AT4G16680	ref Arabidopsis thaliana P-loop containing nucleoside triphosphate hydrolases superfamily protein mRNA [NM_001341126]
-4.49	AT5G58350	ref Arabidopsis thaliana with no lysine (K) kinase 4 (WNK4), mRNA [NM_125220]
-4.5	AT1G68190	ref Arabidopsis thaliana B-box zinc finger family protein (BBX27), mRNA [NM_001334353]
-4.52	AT1G07040	ref Arabidopsis thaliana plant/protein mRNA [NM_100578]
-4.55	AT5G24120	ref Arabidopsis thaliana sigma factor E (SIGE), mRNA [NM_001343842]
-4.57	AT1G14870	ref Arabidopsis thaliana PLANT CADMIUM RESISTANCE 2 (PCR2), mRNA [NM_101356]
-4.6	AT4G26530	ref Arabidopsis thaliana Aldolase superfamily protein (FBAS), mRNA [NM_001036644]
-4.6	AT1G13300	ref Arabidopsis thaliana myb-like transcription factor family protein (HRS1), mRNA [NM_101201]
-4.61	AT5G26200	ref Arabidopsis thaliana Mitochondrial substrate carrier family protein mRNA [NM_122521]
-4.62	AT4G38470	ref Arabidopsis thaliana ACT-like protein tyrosine kinase family protein (STY46), mRNA [NM_001342498]
-4.63	AT3G46690	ref Arabidopsis thaliana UDP-Glycosyltransferase superfamily protein mRNA [NM_114536]
-4.63	AT3G13061	ref Arabidopsis thaliana other RNA lncRNA [NR_141586]
-4.64	AT3G62260	ref Arabidopsis thaliana Protein phosphatase 2C family protein mRNA [NM_180406]
-4.65	AT1G53100	ref Arabidopsis thaliana Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family protein mRNA [NM_104189]

83

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

-4.65 -4.66	AT2G30600 AT1G30820	ref Arabidopsis thaliana BTB/POZ domain-containing protein mRNA [NM_001202713] _ref Arabidopsis thaliana CTP synthase family protein mRNA [NM_102819]
-4.66	AT1G79270	ref [Arabidopsis thaliana evolutionarily conserved C-terminal region 8 (ECT8), mRNA [NM_001334878]
-4.66	NP229859	tc GB AL391141.1 CAC01711.1 quinone oxidoreductase-like protein [NP22959]
-4.67	AT1G22380	ref Arabidopsis thaliana UDP-glucosyl transferase 85A3 (UGT85A3), mRNA [NM_102088]
-4.67	AT5G47560	ref]Arabidopsis thaliana tonoplast dicarboxylate transporter (TDT), mRNA [NM_124129]
-4.71	EG427617	gb]AYALO23TFB pooled cDNA populations Arabidopsis thaliana cDNA, mRNA sequence [EG427617]
-4.72	TC295612	ref[Arabidopsis thaliana other RNA ncRNA [NR_143567]
-4.73	AV805941	gb AV805941 RAFL9 Arabidopsis thaliana cDNA clone RAFL09-44-M15 3', mRNA sequence [AV805941]
-4.74	AT1G32170	ref Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolase 30 (XTH30), mRNA [NM_102950]
-4.74	AT1G63800	ref Arabidopsis thaliana ubiquitin-conjugating enzyme 5 (UBC5), mRNA [NM_001334127]
-4.76	AT5G57655	ref Arabidopsis thaliana xylose isomerase family protein mRNA [NM_180872]
-4.76	AT4G37370	ref Arabidopsis thaliana cytochrome P450, family 81, subfamily D, polypeptide 8 (CYP81D8), mRNA [NM_119900]
-4.79	DR368472	gb 12826078 CERES-AN65 Arabidopsis thaliana cDNA clone 13618395', mRNA sequence [DR368472]
-4.81	AT5G57560	ref Arabidopsis thaliana Xyloglucan endotransglucosylase/hydrolase family protein (TCH4), mRNA [NM_125137]
-4.82	DR368506	gb 12842501 CERES-AN65 Arabidopsis thaliana cDNA clone 13668115', mRNA sequence [DR368506]
-4.84	AT2G39570	ref Arabidopsis thaliana ACT domain-containing protein (ACR9), mRNA [NM_129515]
-4.85	AT1G35670	ref Arabidopsis thaliana calcium-dependent protein kinase 2 (CDPK2), mRNA [NM_103271]
-4.86	AT1G80440	ref]Arabidopsis thaliana Galactose oxidase/kelch repeat superfamily protein mRNA [NM_106692]
-4.87	AT4G20860	ref Arabidopsis thaliana FAD-binding Berberine family protein mRNA [NM_118204]
-4.89	TA30818_3702	Unknown
-4.91	AT4G15530	ref Arabidopsis thaliana pyruvate orthophosphate dikinase (PPDK), mRNA [NM_001341051]
-4.95	AT3G61900	ref Arabidopsis thaliana SAUR-like auxin-responsive protein family mRNA [NM_116055]
-4.96	AT2G18050	ref Arabidopsis thaliana histone H1-3 (HIS1-3), mRNA [NM_179539]
-4.96	AT1G72060	ref Arabidopsis thaliana serine-type endopeptidase inhibitor mRNA [NM_105864]
-5.01	TA28705_3702	Unknown
-5.05	AT5G50760	ref Arabidopsis thaliana SAUR-like auxin-responsive protein family mRNA [NM_124454]
-5.08	AT5G38710	ref Arabidopsis thaliana Methylenetetrahydrofolate reductase family protein mRNA [NM_123232]
-5.09	AT4G24972	ref [Arabidopsis thaliana tapetum determinant 1 (TPD1), mRNA [NM_202883]
-5.1	AT4G34131	ref Arabidopsis thaliana UDP-glucosyl transferase 7383 (UGT7383), mRNA [NM119574]
-5.1	AT5G51070	ref [Arabidopsis thaliana Clp ATPase (ERD1), mRNA [NM_124486]
-5.11	AT4G34135	ref Arabidopsis thaliana UDP-glucosyltransferase 7382 (UGT7382), mRNA [NM_179161]
-5.12	AT1G70290	ref Arabidopsis thaliana trehalose-6-phosphatase synthase S8 (TPS8), mRNA [NM_001334443]
-5.15	AT3G14660	ref Arabidopsis thaliana cytochrome P450, family 72, subfamily A, polypeptide 13 (CYP72A13), mRNA [NM_001338130]
-5.15	AT3G15630	ref Arabidopsis thaliana plant/protein mRNA (NM_112433]
-5.18	AT5G24490	ref Arabidopsis thaliana 305 ribosomal protein mRNA [NM_122357]

ref Arabidopsis thaliana NAC-like, activated by AP3/Pl (NAP), mRNA [NM_105616]	ref Arabidopsis thaliana Rab GTPase-like A1l protein (RABA6b), mRNA [NM101680]	ref Arabidopsis thaliana cinnamyl-alcohol dehydrogenase (CAD1), mRNA [NM_105927]	ref Arabidopsis thaliana Transketolase family protein (DIN4), mRNA [NM_112191]	ref Arabidopsis thaliana beta galactosidase 1 (BGAL1), mRNA [NM_112225]	ref Arabidopsis thaliana trehalose phosphate synthase (TPS10), mRNA [NM_001333882]	ref Arabidopsis thaliana NAC domain containing protein 3 (NAC3), mRNA [NM_113825]	ref Arabidopsis thaliana AUTOPHAGY 8E (ATG8E), mRNA [NM_180100]	ref Arabidopsis thaliana WRKY DNA-binding protein 26 (WRKY26), mRNA [NM_120792]	ref Arabidopsis thaliana stress up-regulated Nod 19 protein mRNA [NM_001345498]	ref Arabidopsis thaliana Integrase-type DNA-binding superfamily protein mRNA [NM_105820]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_202810]	ref Arabidopsis thaliana basic leucine-zipper 1 (bZlP1), mRNA [NM_124322]	ref Arabidopsis thaliana MYB-like 2 (MYBL2), mRNA [NM_001334485]	ref Arabidopsis thaliana ATP binding cassette subfamily B4 (ABCB4), mRNA [NM_001337238]	ref Arabidopsis thaliana TSPO(outer membrane tryptophan-rich sensory protein)-like protein (TSPO), mRNA [NM_130344]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_121477]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_111847]	ref Arabidopsis thaliana plant/protein mRNA [NM_001160863]	ref Arabidopsis thaliana 2 iron, 2 sulfur cluster binding protein (NEET), mRNA [NM_124551]	ref Arabidopsis thaliana glycine-rich protein / oleosin mRNA [NM_12492]	ref Arabidopsis thaliana acyl-CoA-binding domain 3 (ACBP3), mRNA [NM_001084972]	ref Arabidopsis thaliana PGR5-like A protein mRNA [NM_180889]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_120128]	ref Arabidopsis thaliana Thiamin diphosphate-binding fold (THDP-binding) superfamily protein mRNA [NM_001332503]	ref Arabidopsis thaliana basic leucine zipper 9 (BZIP9), mRNA [NM_122389]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_119524]	ref Arabidopsis thaliana DRE-binding protein 2A (DREB2A), mRNA [NM_001036760]	ref Arabidopsis thaliana sugar phosphate exchanger, putative (DUF506) mRNA [NM_127631]	ref Arabidopsis thaliana aldehyde dehydrogenase 7B4 (ALDH7B4), mRNA [NM_104287]	Unknown	ref Arabidopsis thaliana UDP-glycosyltransferase 7384 (UGT7384), mRNA [NM_127109]	ref Arabidopsis thaliana BTB and TAZ domain protein 1 (BT1), mRNA [NM_001345581]	ref Arabidopsis thaliana glycine-rich protein 3 short isoform (GRP3S), mRNA [NM_001124801]	ref Arabidopsis thaliana glutathione S-transferase tau 7 (GSTU7), mRNA [NM_128496]	ref Arabidopsis thaliana neuronal PAS domain protein mRNA [NM_001345621]
AT1G69490	AT1G18200	AT1G72680	AT3G13450	AT3G13750	AT1G60140	AT3G29035	AT2G45170	AT5G07100	AT5G61820	AT1G71520	AT4G12735	AT5G49450	AT1G71030	AT2G47000	AT2G47770	AT5G14730	AT3G10120	AT1G13990	AT5G51720	AT5G56100	AT4G24230	AT5G59400	AT4G39675	AT1G21400	AT5G24800	AT4G33666	AT5G05410	AT2G20670	AT1G54100	TA26531_3702	AT2G15490	AT5G63160	AT2G05380	AT2G29420	AT5G64190
-5.19	-5.21	-5.22	-5.24	-5.24	-5.25	-5.25	-5.28	-5.32	-5.37	-5.4	-5.4	-5.41	-5.46	-5.48	-5.54	-5.6	-5.64	-5.69	-5.69	-5.7	-5.71	-5.72	-5.75	-5.76	-5.78	-5.78	-5.81	-5.84	-5.86	-5.86	-5.89	-5.91	-5.92	-5.94	-5.98

ref Arabidopsis thaliana HSP20-like chaperones superfamily protein mRNA [NM_124523] ref14 rabidonsis thaliana pt Critica nhoschhodiesterases sunorfamily nrotein (GDPD2), mRNA [NM_203136]	ref Arabidopsis thaliana UDP-glucosyltransferase 75B1 (UGT75B1), mRNA [NM_100435]	ref Arabidopsis thaliana Class I glutamine amidotransferase-like superfamily protein (GAT1_2.1), mRNA [NM_101374]	_ref Arabidopsis thaliana transmembrane protein mRNA [NM_128753]	ref[Arabidopsis thaliana stress-induced protein mRNA [NM_127155]	ref[Arabidopsis thaliana SAUR-like auxin-responsive protein family mRNA [NM_129259]	_ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_100146]	ref[Arabidopsis thaliana seed imbibition 2 (SIP2), mRNA [NM_180384]	ref Arabidopsis thaliana GAST1 protein homolog 1 (GASA1), mRNA [NM_001198478]	ref Arabidopsis thaliana isovaleryl-CoA-dehydrogenase (IVD), mRNA [NM_114399]	ref Arabidopsis thaliana FAD-binding Berberine family protein mRNA [NM_102808]	ref Arabidopsis thaliana myo-inositol oxygenase 2 (MIOX2), mRNA [NM_127538]	Unknown	ref[Arabidopsis thaliana ortholog of sugar beet HS1 PRO-1 2 (HSPRO2), mRNA [NM_129558]	ref[Arabidopsis thaliana Carbohydrate-binding protein mRNA [NM_114839]	ref Arabidopsis thaliana Chaperone DnaJ-domain superfamily protein mRNA [NM_127342]	ref Arabidopsis thaliana glutamate dehydrogenase 2 (GDH2), mRNA [NM_001125712]	ref Arabidopsis thaliana Putative membrane lipoprotein mRNA [NM_119213]	ref[Arabidopsis thaliana Integrase-type DNA-binding superfamily protein (WRI4), mRNA [NM_001334913]	ref[Arabidopsis thaliana UDP-Glycosyltransferase superfamily protein mRNA [NM_129233]	ref Arabidopsis thaliana PAS/LOV protein B (PLPB), mRNA [NM_179597]	ref Arabidopsis thaliana 4-hydroxyphenylpyruvate dioxygenase (PDS1), mRNA [NM_100536]	ref Arabidopsis thaliana SNF1-related protein kinase 2.9 (SNRK2.9), mRNA [NM_127867]	ref[Arabidopsis thaliana UDP-glucosyl transferase 73B5 (UGT73B5), mRNA [NM_127108]	2 Unknown	ref[Arabidopsis thaliana monooxygenase 1 (MO1), mRNA [NM_001203809]	ref Arabidopsis thaliana Chaperone Dnal-domain superfamily protein (J11), mRNA [NM_119771]	ref[Arabidopsis thaliana don-glucosyltransferase 1 (DOGT1), mRNA [NM_129235]	ref[Arabidopsis thaliana 5'-AMP-activated protein kinase beta-2 subunit protein (AKINBETA1), mRNA [NM_001036841]	ref Arabidopsis thaliana calcium uniporter (DUF607) mRNA [NM_126063]	ref[Arabidopsis thaliana lysine-ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme mRNA [NM_001160811]	_ref Arabidopsis thaliana homogentisate 1,2-dioxygenase (HGO), mRNA [NM_180856]	ref Arabidopsis thaliana Zinc-binding dehydrogenase family protein mRNA [NM_121704]	ref[Arabidopsis thaliana trehalose-phosphatase/synthase 9 (TPS9), mRNA [NM_102235]	
AT5G51440 AT5G41080	AT1G05560	AT1G15040	AT2G31945	AT2G15960	AT2G37030	AT1G02660	AT3G57520	AT1G75750	AT3G45300	AT1G30720	AT2G19800	AT1G42490	AT2G40000	AT3G49790	AT2G17880	AT5G07440	AT4G30670	AT1G79700	AT2G36780	AT2G02710	AT1G06570	AT2G23030	AT2G15480	TA27461_37C	AT4G15760	AT4G36040	AT2G36800	AT5G21170	AT5G66650	AT4G33150	AT5G54080	AT5G16980	AT1G23870	NENCED41A
6 -6 1	-6.11	-6.13	-6.14	-6.18	-6.19	-6.2	-6.22	-6.24	-6.26	-6.26	-6.31	-6.39	-6.48	-6.53	-6.57	-6.62	-6.65	-6.92	-6.96	-7.01	-7.11	-7.2	-7.23	-7.23	-7.26	-7.31	-7.41	-7.42	-7.45	-7.6	-7.65	-7.68	-7.7 2 01	T0'/-

-7.88	AT4G34710	ref Arabidopsis thaliana arginine decarboxylase 2 (ADC2), mRNA [NM_20255]
-7.94	AT5G22920	ref Arabidopsis thaliana CHY-type/CTCHY-type/RING-type Zinc finger protein mRNA [NM_122198]
-8.03	AT1G62510	ref Arabidopsis thaliana Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein mRNA [NM_104930]
-8.17	AT1G77760	ref Arabidopsis thaliana nitrate reductase 1 (NA1), mRNA [NM_106425]
-8.18	AT1G19530	ref Arabidopsis thaliana DNA polymerase epsilon catalytic subunit A mRNA [NM_00132396]
-8.25	AT1G28330	ref Arabidopsis thaliana dormancy-associated protein-like 1 (DYL1), mRNA [NM_179300]
-8.27	AT2G32150	ref Arabidopsis thaliana Haloacid dehalogenase-like hydrolase (HAD) superfamily protein mRNA [NM_001336371]
-8.45	AT3G14990	ref Arabidopsis thaliana Class I glutamine amidotransferase-like superfamily protein (D11A), mRNA [NM_001035621]
-8.45	AT4G28040	ref Arabidopsis thaliana nodulin MtN21 /EamA-ilke transporter family protein (UMAMIT33), mRNA [NM_118943]
-8.56	AT1G66180	ref Arabidopsis thaliana Eukaryotic asparty protease family protein mRNA [NM_105289]
-8.58	AT4G14690	ref Arabidopsis thaliana Chlorophyll A-B binding family protein (ELIP2), mRNA [NM_117551]
-8.58	AT5G09440	ref Arabidopsis thaliana EXORDIUM like 4 (EXL4), mRNA [NM_120981]
-8.73	AT2G38400	ref Arabidopsis thaliana alanine:glyoxylate aminotransferase 3 (AGT3), mRNA [NM_001202772]
-8.81	AT3G24420	ref Arabidopsis thaliana alpha/beta-Hydrolases superfamily protein mRNA [NM_113349]
-8.88	AT2G23150	ref Arabidopsis thaliana natural resistance-associated macrophage protein 3 (NRAMP3), mRNA [NM_127879]
-9.15	AT5G54585	ref Arabidopsis thaliana hypothetical protein mRNA [NM_148130]
-9.25	AT1G76680	ref Arabidopsis thaliana 12-oxophytodienoate reductase 1 (OPR1), mRNA [NM_202428]
-9.26	AT4G36850	ref Arabidopsis thaliana PQ-loop repeat family protein / transmembrane family protein mRNA [NM_001342421]
-9.31	AT1G07400	ref Arabidopsis thaliana HSP20-like chaperones superfamily protein mRNA [NM_100614]
-9.32	TA30874_3702	Unknown
-9.33	AT3G44300	ref Arabidopsis thaliana nitrilase 2 (NIT2), mRNA [NM_114298]
-9.44	AT5G64260	ref Arabidopsis thaliana EXORDIUM like 2 (EXL2), mRNA [NM_125822]
-9.74	AT5G66400	ref Arabidopsis thaliana Dehydrin family protein (RAB18), mRNA [NM_126038]
-9.77	AT3G61060	ref Arabidopsis thaliana phloem protein 2-A13 (PP2-A13), mRNA [NM_20241]
-10.34	AT1G03090	ref Arabidopsis thaliana methylcrotonyl-CoA carboxylase alpha chain (MCCA), mRNA [NM_179252]
-10.73	AT4G16690	ref Arabidopsis thaliana methyl esterase 16 (MES16), mRNA [NM_117770]
-10.84	TC309308	tc Rep: Chromosome chr19 scaffold_4, whole genome shotgun sequence - Vitis vinifera (Grape), partial (29%) [TC396119]
-11.55	AT2G41380	ref Arabidopsis thaliana S-adenosyl-L-methionine-dependent methyltransferases superfamily protein mRNA [NM_129701]
-12.28	AT1G66760	ref Arabidopsis thaliana MATE efflux family protein mRNA [NM_179533]
-12.31	AT1G22500	ref Arabidopsis thaliana RING/U-box superfamily protein (ATL15), mRNA [NM_10299]
-12.51	AT2G29490	ref Arabidopsis thaliana glutathione S-transferase TAU 1 (GSTU1), mRNA [NM_128503]
-12.52	AT4G25580	ref Arabidopsis thaliana CAP160 protein mRNA [NM_001341752]
-12.58	AT1G17170	ref Arabidopsis thaliana glutathione S-transferase TAU 24 (GSTU24), mRNA [NM_101578]
-12.64	AT1G02610	ref Arabidopsis thaliana RING/FYVE/PHD zinc finger superfamily protein mRNA [NM_001331347]
-13.3	AT5G20250	ref Arabidopsis thaliana Raffinose synthase family protein (DIN10), mRNA [NM_001036833]
-13.3	AT3G60140	ref Arabidopsis thaliana Glycosyl hydrolase superfamily protein (DIN2), mRNA [NM_001340024]

2 Unknown ref Arabidopsis thaliana pyruvate kinase family protein mRNA [NM_001339402] ref Arabidopsis thaliana GHMP kinase family protein mRNA [NM_121451] ref Arabidopsis thaliana GHMP kinase family protein mRNA [NM_121451]	rerj Arabidopsis tralidaa Chaperone Una-domain supertamily protein (Ja), mixiva (NMLU6740) ref (Arabidopsis thaliana sugar transporter 1 (STP1), mRNA (NM_L00998) ref (Arabidopsis thaliana E3 ubiduitin-protein (jizase RUM-like protein (SIS), mRNA (NM_180421)	ref[Arabidopsis thaliana Methylenetetrahydrofolate reductase family protein (ERD5), mRNA [NM_113981]	ref Arabidopsis thaliana NAD(P)-binding Rossmann-fold superfamily protein mRNA [NM_111271] ref Arabidopsis thaliana beta-galactosidase 4 (BGAL4), mRNA [NM_125070]	ref Arabidopsis thaliana Uncharacterized protein family (UPF0497) mRNA [NM_001341066]	ref Arabidopsis thaliana Dormancy/auxin associated family protein mRNA [NM_001336474] ref Arabidoncis thaliana polynaliatrinonansi inhibiting notatin 1 /05101 / mBNA [NM_4 20150]	ref Arabidopsis thaliana Myzus persicae-induced lipase 1 (MPL1), mRNA [NM_001343319]	ref Arabidopsis thaliana NAD(P)-binding Rossmann-fold superfamily protein mRNA [NM_100821]	_ref Arabidopsis thaliana Peroxidase superfamily protein mRNA [NM_001036908]	ref Arabidopsis thaliana transcription factor UPBEAT protein (UPB1), mRNA [NM_130295]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_11442]	_ref[Arabidopsis thaliana threonine aldolase 1 (THA1), mRNA [NM_100736]	tc Rep: Xylosidase - Arabidopsis thaliana (Mouse-ear cress), complete [TC384346]	ref[Arabidopsis thaliana hypothetical protein (DUF1997) mRNA [NM_123314]	ref[Arabidopsis thaliana trehalose phosphatase/synthase 11 (TPS11), mRNA [NM_127426]	ref Arabidopsis thaliana P-loop containing nucleoside triphosphate hydrolases superfamily protein mRNA [NM_179641]	ref[Arabidopsis thaliana branched-chain amino acid transaminase 2 (BCAT-2), mRNA [NM_001035939]	ref Arabidopsis thaliana thioredoxin-dependent peroxidase 2 (TPX2), mRNA [NM_105269]	ref[Arabidopsis thaliana aluminum induced protein with YGL and LRDR motifs ${\sf mRNA}$ [NM $_118880$]	ref Arabidopsis thaliana hypothetical protein mRNA [NM_179014]	_tc Rep: Uncharacterized protein At4g35770.3 - Arabidopsis thaliana (Mouse-ear cress), partial (53%) [TC406344]	Unknown	_ref Arabidopsis thaliana Lactoylglutathione lyase / glyoxalase I family protein (GLY17), mRNA [NM_001084382]	2 Unknown	ref Arabidopsis thaliana tolB protein-like protein mRNA [NM_001340340]	2 Unknown	tc Rep: Chromosome chr19 scaffold_4, whole genome shotgun sequence - Vitis vinifera (Grape), partial (59%) [TC393828]	ref[Arabidopsis thaliana aluminum induced protein with YGL and LRDR motifs mRNA [NM_001035625]	ref]Arabidopsis thaliana light-harvesting chlorophyll-protein complex II subunit B1 (LHB1B1), mRNA [NM_128995]	reri Arabidopsis thaliaha xyloglucan endotransglucosylase/nydrolase z4 (X i H.24), mKNA [NM1191/3]
TA29020_370 AT3G49160 AT5G14470 AT1.680030	AT1G80920 AT1G11260 AT5G02020	AT3G30775	AT3G04000 AT5G56870	AT4G15610	AT2G33830	AT5G14180	AT1G09500	AT5G39580	AT2G47270	AT3G45730	AT1G08630	TC304561	AT5G39520	AT2G18700	AT2G18193	AT1G10070	AT1G65970	AT4G27450	AT4G08555	BP667596	BP660593	AT1G80160	TA25819_370	AT4G01870	TA29937_370	BE039144	AT3G15450	AT2G34430	A14G3U27U
-13.62 -13.64 -13.65	-14.27 -14.78 -14.84	-15.04	-15.3 -15.36	-15.73	-15.78 -16.41	-16.93	-17.15	-17.43	-18.57	-18.87	-19.42	-20.29	-20.75	-20.83	-20.87	-22.64	-23.72	-23.82	-24.27	-25.61	-27.03	-27.88	-28.03	-30.14	-30.24	-30.35	-30.57	-31.15	-33.28

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

Supplemen	ıtal Table 3 in Sái	ichez-López, e	t al., 2016b) are highlighted in yellow color.
Fold Change	Q	ProbeID	Description
21.39	AT1G80130	AT1G80130	ref Arabidopsis thaliana tetratricopeptide repeat domain-containing protein mRNA, complete cds [NM_106662]
13.68	AT2G41240	BHLH100	ref Arabidopsis thaliana transcription factor bHLH100 mRNA, complete cds [NM_129689]
12.85	AT3G56970	BHLH038	ref Arabidopsis thaliana transcription factor ORG2 mRNA, complete cds [NM_11556]
11.58	AT2G46880	PAP14	refl Arabidopsis thaliana purple acid phosphatase 14 mRNA, complete cds [NM_201975]
10.94	AT4G01080	TBL26	ref Arabidopsis thaliana protein TRICHOME BIREFRINGENCE-LIKE 26 mRNA, complete cds [NM_116338]
10.37	AT3G22240	AT3G22240	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM113122]
9.9	AT3G56980	BHLH039	ref Arabidopsis thaliana transcription factor ORG3 mRNA, complete cds [NM_115557]
9.88	AT4G22870	AT4G22870	ref Arabidopsis thaliana le ucoanthocyanidin dioxygenase-like protein mRNA, complete cds [NM_001160794]
9.73	AT1G56650	PAP1	ref] Arabidopsis thaliana transcription factor MYB75 mRNA, complete cds [NM_104541]
9.37	AT3G22235	AT3G22235	ref] Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_180292]
9.17	AT4G15210	BAM5	ref Arabidopsis thaliana beta-amylase 5 mRNA, complete cds [NM_117609]
8.95	AT4G39210	APL3	ref Arabidopsis thaliana glucose-1-phosphate adenylyltransferase large subunit 3 mRNA, complete cds [NM_120081]
8.91	AT5G17220	GSTF12	ref Arabidopsis thaliana glutathione S-transferase phi 12 mRNA, complete cds [NM_121728]
8.59	AT3G57240	BG3	ref Arabidopsis thaliana beta-1,3-glucanase 3 mRNA, complete cds [NM_115584]
8.26	R65132	R65132	tc AAD15384.1 - Arabidopsis thaliana (Mouse-ear cress), partial (68%) [TC400604]
8.25	AT2G27402	AT2G27402	ref] Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_201818]
8.19	AT3G22231	PCC1	ref Arabidopsis thaliana protein PATHOGEN AND CIRCADIAN CONTROLLED 1 mRNA, complete cds [NM113121]
7.82	AT4G36700	AT4G36700	ref Arabidopsis thaliana cupin family protein mRNA, complete cds [NM_119834]
7.69	AT3G18000	CPuORF30	ref Arabidopsis thaliana conserved peptide upstream open reading frame 30 mRNA, complete cds [NM_001125181]
7.66	AT5G54060	UF3GT	ref Arabidopsis thaliana anthocyanidin 3-O-glucoside 2'''-O-xylosyltransferase mRNA, complete cds [NM_124785]
7.59	AT1G19960	AT1G19960	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_101851]
7.51	AT1G47395	AT1G47395	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_17949]
7.25	AT5G42800	DFR	ref Arabidopsis thaliana dihydroflavonol-4-reductase mRNA, complete cds [NM_123645]
7.14	AT2G26400	ARD3	ref Arabidopsis thaliana acireductone dioxygenase 3 mRNA, complete cds [NM_128197]
7.13	CB185526	CB185526	Unknown
6.95	AT1G78370	GSTU20	ref Arabidopsis thaliana glutathione S-transferase TAU 20 mRNA, complete cds [NM_106484]
6.89	AT4G23600	CORI3	ref Arabidopsis thaliana cystine lyase CORI3 mRNA, complete cds [NM_179099]
6.86	AT2G14560	LURP1	refį Arabidopsis thaliana protein LURP1 mRNA, complete cds [NM_127019]
6.62	AT4G17470	AT4G17470	ref Arabidopsis thaliana putative palmitoyl-protein thioesterase mRNA, complete cds [NM_001203824]
6.48	AT5G03350	AT5G03350	ref Arabidopsis thaliana lectin-like protein mRNA, complete cds [NM_120414]
6.12	AT4G21760	BGLU47	ref Arabidopsis thaliana beta-glucosidase 47 mRNA, complete cds [NM_118296]
5.99	AT2G42540	COR15A	ref Arabidopsis thaliana cold-regulated protein 15a mRNA, complete cds [NM_001202804]
5.85	AT4G22880	LDOX	ref Arabidopsis thaliana leucoanthocyanidin dioxygenase mRNA, complete cds [NM_118417]
ø.c	AI 1661800	GP12	rerl Arabidopsis thanana glucose-e-phosphate/phosphate translocator z mkink, complete cos (nwr_104802)

ref Arabidopsis thaliana Kunitz family trypsin and protease inhibitor protein mRNA, complete cds [NM_105992] gb Arabidopsis thaliana mRNA for hypothetical protein, complete cds, clone: RAFL14-04-D19 [AK227365] ref Arabidopsis thaliana HAD superfamily, subfamily IIIB acid phosphatase mRNA, complete cds [NM_100285]	ref Arabidopsis thaliana methionine synthase 2 mRNA, complete cds [NM_111249] ref Arabidopsis thaliane GroES-like protein mRNA, complete cds [NM_102158]	ref Arabidopsis thaliana lipoxygenase 2 mRNA, complete cds [NM_114383] ref Arabidopsis thaliana Aluminum activated malate transporter family protein mRNA, complete cds [NM 105532]	ref Arabidopsis thaliana flavin-containing monooxygenase FMO GS-OX3 mRNA, complete cds [NM_104934]	ref[Arabidopsis thaliana REF/SRPP-like protein mRNA, complete cds [NM_179525]	gb JKHR01A12 Size-selected small cDNAs of Arabidopsis thaliana Arabidopsis thaliana cDNA clone JKHR01A12, mRNA sequence (B	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_117875]	ref Arabidopsis thaliana Anion-transporting ATPase mRNA, complete cds [NM_125466]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_130031]	gb Arabidopsis thaliana Col-0 2-oxoglutarate-dependent dioxygenase (AOP2) pseudogene, mRNA sequence [AF418241]	ref Arabidopsis thaliana transcription factor MYB90 mRNA, complete cds [NM_105310]	ref Arabidopsis thaliana stress-induced protein KIN2 mRNA, complete cds [NM_121602]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_114313]	ref Arabidopsis thaliana calmodulin-like protein 10 mRNA, complete cds [NM_129674]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_116057]	ref Arabidopsis thaliana isopropylmalate dehydrogenase 1 mRNA, complete cds [NM_001036803]	ref Arabidopsis thaliana protein NIM1-INTERACTING 2 mRNA, complete cds [NM_148752]	ref Arabidopsis thaliana cellulose synthase-like A01 mRNA, complete cds [NM_117760]	ref Arabidopsis thaliana tetratricopeptide repeat domain-containing protein mRNA, complete cds [NM_122026]	ref[Arabidopsis thaliana pollen Ole e 1 allergen and extensin family protein mRNA, complete cds [NM_113610]	ref Arabidopsis thaliana copper amine oxidase family protein mRNA, complete cds [NM_102904]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_201723]	ref Arabidopsis thaliana PLAT-plant-stress domain-containing protein mRNA, complete cds [NM_127785]	ref Arabidopsis thaliana monothiol glutaredoxin-S11 mRNA, complete cds [NM_100560]	ref Arabidopsis thaliana L-aspartase-like family protein mRNA, complete cds [NM_117957]	ref[Arabidopsis thaliana putative wound-responsive protein mRNA, complete cds [NM_117095]	ref Arabidopsis thaliana mediator of RNA polymerase II transcription subunit 36a mRNA, complete cds [NM_118695]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_103634]	ref Arabidopsis thaliana TRAF-like family protein mRNA, complete cds [NM_113741]	ref Arabidopsis thaliana granule-bound starch synthase 1 mRNA, complete cds [NM_10303]	ref Arabidopsis thaliana mitochondrial import inner membrane translocase subunit TIM22-4 mRNA, complete cds [NM_101690]	ref Arabidopsis thaliana cold and ABA inducible protein kin1 mRNA, complete cds [NM_121601]
AT1G73325 AK227365 AT1G04040	MS2 AT1G23100	LOX2 AT1G68600	FMO GS-OX3	AT1G67360	BU917432	AT4G17670	AT5G60730	AT2G44670	AF418241	MYB90	KIN2	AT3G44450	AT2G41090	AT3G61920	IMD1	NIMIN-2	CSLA01	AT5G20190	AT3G26960	AT1G31690	AT2G14247	AT2G22170	AT1G06830	AT4G18440	AT4G10270	FIB2	AT1G47400	AT3G28220	AT1G32900	AT1G18320	KIN1
AT1G73325 AT3G25795 AT1G04040	AT3G03780 AT1G23100	AT3G45140 AT1G68600	AT1G62560	AT1G67360	BU917432	AT4G17670	AT5G60730	AT2G44670	AT4G03060	AT1G66390	AT5G15970	AT3G44450	AT2G41090	AT3G61920	AT5G14200	AT3G25882	AT4G16590	AT5G20190	AT3G26960	AT1G31690	AT2G14247	AT2G22170	AT1G06830	AT4G18440	AT4G10270	AT4G25630	AT1G47400	AT3G28220	AT1G32900	AT1G18320	AT5G15960
5.73 5.71 5.65	5.44 5.44	5.41 5.36	5.33	5.24	5.22	5.2	5.15	5.1	5.05	5.04	5	4.99	4.94	4.94	4.93	4.87	4.82	4.78	4.76	4.75	4.74	4.67	4.65	4.65	4.62	4.62	4.6	4.55	4.52	4.52	4.51

91

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

tc [GB]NM_001085318.1 NP_001078787.1 unknown protein;similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G63063	ref Arabidopsis thaliana Leucine-rich repeat protein kinase family protein mRNA, complete cds [NM_125339]	ref Arabidopsis thaliana isopropylmalate isomerase 1 mRNA, complete cds [NM_115761]	ref Arabidopsis thaliana cysteine-rich receptor-like protein kinase 5 mRNA, complete cds [NM_179094]	ref Arabidopsis thaliana cation/H(+) antiporter 2 mRNA, complete cds [NM_106588]	ref Arabidopsis thaliana nicotianamine synthase 4 mRNA, complete cds [NM_104521]	ref Arabidopsis thaliana serine carboxypeptidase-like 9 mRNA, complete cds [NM_127866]	ref Arabidopsis thaliana MATE efflux family protein mRNA, complete cds [NM_101383]	ref Arabidopsis thaliana isopropy malate isomerase 2 mRNA, complete cds [NM_129871]	ref Arabidopsis thaliana fumarate hydratase 2 mRNA, complete cds [NM_124474]	ref Arabidopsis thaliana Probable pectinesterase/pectinesterase inhibitor 41 mRNA, complete cds [NM_116466]	ref Arabidopsis thaliana disease resistance-responsive, dirigent domain-containing protein mRNA, complete cds [NM_117190]	ref Arabidopsis thaliana pathogenesis-related protein 5 mRNA, complete cds [NM_106161]	ref Arabidopsis thaliana putative low temperature and salt responsive protein mRNA, complete cds [NM_119211]	ref Arabidopsis thaliana nodulin MtN21/Eam4-like transporter family protein mRNA, complete cds [NM_116899]	ref Arabidopsis thaliana bidirectional sugar transporter SWEET13 mRNA, complete cds [NM_124458]	ref Arabidopsis thaliana dihomomethionine N-hydroxylase mRNA, complete cds [NM101507]	ref Arabidopsis thaliana mitochondrial import receptor subunit TOM7-2 mRNA, complete cds [NM_105096]	ref Arabidopsis thaliana chalcone synthase mRNA, complete cds [NM_121396]	ref Arabidopsis thaliana ribonucleoside-diphosphate reductase small chain C mRNA, complete cds [NM_113620]	ref Arabidopsis thaliana adenosine-5'-phosphosulfate-kinase 2 mRNA, complete cds [NM_120157]	ref Arabidopsis thaliana putative nucleotide-diphospho-sugar transferase mRNA, complete cds [NM_105172]	ref Arabidopsis thaliana histone H4 mRNA, complete cds [NM $_{-}$ 14462]	ref Arabidopsis thaliana WRKY DNA-binding protein 54 mRNA, complete cds [NM_129637]	ref Arabidopsis thaliana flavonol-7-0-rhamnosyltransferase mRNA, complete cds [NM_100480]	ref Arabidopsis thaliana fasciclin-like arabinogalactan protein 16 mRNA, complete cds [NM_179922]	ref Arabidopsis thaliana anthocyanin 5-O-glucosyltransferase mRNA, complete cds [NM_117485]	ref Arabidopsis thaliana histone deacetylase HDT1 mRNA, complete cds [NM_114344]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_126137]	ref Arabidopsis thaliana hydroperoxide lyase 1 mRNA, complete cds [NM_117633]	ref Arabidopsis thaliana plant invertase/pectin methylesterase inhibitor domain-containing protein mRNA, complete cds [NM_12]	ref Arabidopsis thaliana methylthioalkylmalate synthase 3 mRNA, complete cds [NM_122208]	ref Arabidopsis thaliana GDSL esterase/lipase mRNA, complete cds [NM102706]	ref Arabidopsis thaliana fasciclin-like arabinogalactan protein 2 mRNA, complete cds [NM_117342]	gb BP586302 RAFL15 Arabidopsis thaliana cDNA clone RAFL15-05-M213', mRNA sequence [BP586302] ref1Arabithonsis thaliana flavonci svnthase 1 mRNA commiate cds [NM 001203332]	
NP1655641	AT5G59670	IPM11	CRK5	CHX2	NAS4	SCPL9	AT1G15150	IPM12	FUM2	ATPMEPCRB	AT4G11190	PR5	AT4G30650	AT4G08300	AT5G50800	CYP79F1	TOM7-2	TT4	TSO2	AKN2	AT1G64980	AT3G45930	WRKY54	AT1G06000	FLA16	AT4G14090	HDA3	AT5G67370	HPL1	AT5G20740	IMS2	AT1G29660	FLA2	BP586302 FIS1	-
AT5G63087	AT5G59670	AT3G58990	AT4G23130	AT1G79400	AT1G56430	AT2G23010	AT1G15150	AT2G43100	AT5G50950	AT4G02330	AT4G11190	AT1G75040	AT4G30650	AT4G08300	AT5G50800	AT1G16410	AT1G64220	AT5G13930	AT3G27060	AT4G39940	AT1G64980	AT3G45930	AT2G40750	AT1G06000	AT2G35860	AT4G14090	AT3G44750	AT5G67370	AT4G15440	AT5G20740	AT5G23020	AT1G29660	AT4G12730	BP586302 AT5G08640	
4.51	4.47	4.46	4.43	4.43	4.41	4.4	4.39	4.37	4.36	4.29	4.27	4.27	4.26	4.26	4.25	4.24	4.24	4.18	4.18	4.17	4.17	4.1	4.08	4.06	4.03	4.01	3.99	3.94	3.92	3.91	3.9	3.85	3.83	3.82 3.8	5

3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77	AT1G11545 AT1G11545 AT1G73600 AT3G73600 AT3G23830 AT3G3056 AT3G3056 AT3G23800 AT3G25500 AT4G14400 AT3G515120 AT3G151510 AT3G151520 AT3G25500 AT3G25570 AT3G32440 AT3G25500 AT3G2500	XTH8 CPUORF32 S0T17 BU917428 GRP4 GRP4 AT3G03060 AT3G03060 AT3G3050 AT3G32550 AT3G25500 AT5G15120 NP226468 AT3G255120 AT5G3120 AT5G33427 FR02 BP783345 AT2G33427 FR02 AT5G02570 FAMT AT2G25440 AT5G025570 F3H FAMT AT2G256440 AT5G025570 F3H FAMT AT2G256440 AT5G025570 F3H AT5G025570 F3H AT5G025570 F3H AT5G025570 F3H AT5G025570 F3H AT5G025570 F3H AT5G025570 F3H AT5G025570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 F3H AT5G02570 AT5G02570 F3H AT5G02570	ref Arabidopsis thaliana probable wjogucan endotransglucosylase/hydrolase protein 8 mRNA, complete cds [NM_10128] ref Arabidopsis thaliana sulferansferaae 17 mRNA, complete cds [NM_101717] gb]1/800055 Size-selected small CDNAA chabidopsis thaliana Arabidopsis thaliana CDNA clone JK04805, mRNA sequence [8U917. ref Arabidopsis thaliana sulferansferaae 17 mRNA, complete cds [NM_1012717] gb]1/800055 Size-selected small CDNAA chabidopsis thaliana Arabidopsis thaliana CDNA clone JK04805, mRNA sequence [8U917. ref [Arabidopsis thaliana Prlopa containing nucleoside triphosybate hydrodises superfinanity protein mRNA, complete cds [NM_1117 ref [Arabidopsis thaliana Prlopa containing nucleoside triphosybate hydrodises superfinanity protein mRNA, complete cds [NM_1117519] ref [Arabidopsis thaliana protein ARAA-binding protein 3 mRNA, complete cds [NM_112549] ref [Arabidopsis thaliana nucharacterized protein mRNA, complete cds [NM_1117519] ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_1113469] ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_113469] ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_113469] ref [Arabidopsis thaliana incharacterized protein mRNA, complete cds [NM_113459] ref [Arabidopsis thaliana incharacterized protein mRNA, complete cds [NM_113459] ref [Arabidopsis thaliana incharacterized protein mRNA, complete cds [NM_113459] ref [Arabidopsis thaliana incharacterized pr
23	AT4G12030	BAT5	ref Arabidopsis thaliana probable sodium/metabolite cotransporter BASS5 mRNA, complete cds [NM_117273]
51	AT5G12910	AT5G12910	ref Arabidopsis thaliana histone H3-like 4 mRNA, complete cds [NM_121294]
51	AT3G23450	AT3G23450	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_113248]
ŝ	AT4G28250	EXPB3	ref Arabidopsis thaliana expansin B3 mRNA, complete cds [NM_118965]

A11992/0 AT4G24265 AT2G39030 AT3G52630 AT4G02850	DGLUZI	rei Arabiuopsis utariata dera-guucosiaase 21 minua, comprete cus (nini_102296)
AT2G39030 AT3G52630 AT4G02850	AT4G24265	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM 148370]
T3G52630 T4G02850	AT2G39030	ref Arabidopsis thaliana L-ornithine N5-acetyltransferase NATA1 mRNA, complete cds [NM_129460]
T4G02850	AT3G52630	ref Arabidopsis thaliana Nucleic acid-binding, OB-fold-like protein mRNA, complete cds [NM_115123]
	AT4G02850	ref Arabidopsis thaliana phenazine biosynthesis PhzC/PhzF family protein mRNA, complete cds [NM_116519]
T1G54040	ESP	ref Arabidopsis thaliana epithiospecifier protein mRNA, complete cds [NM_180632]
T4G04940	AT4G04940	ref Arabidopsis thaliana transducin/WD40 domain-containing protein mRNA, complete cds [NM_116732]
VT1G01190	CYP78A8	ref Arabidopsis thaliana cytochrome P450, family 78, subfamily A, polypeptide 8 mRNA, complete cds [NM_100001]
VT1G07070	AT1G07070	ref Arabidopsis thaliana 60S ribosomal protein L35a-1 mRNA, complete cds [NM_100581]
AT1G04240	SHY2	ref]Arabidopsis thaliana auxin-responsive protein IAA3 mRNA, complete cds [NM_100305]
AT3G09922	IPS1	ref Arabidopsis thaliana protein ED BY PHOSPHATE STARVATION1 mRNA, complete cds [NM_180219]
AT5G61000	RPA70D	ref Arabidopsis thaliana replication protein A 70 kDa DNA-binding subunit D mRNA, complete cds [NM_125493]
AT3G46320	AT3G46320	ref Arabidopsis thaliana histone H4 mRNA, complete cds [NM_180329]
AT5G45650	AT5G45650	ref Arabidopsis thaliana subtilase family protein mRNA, complete cds [NM_123933]
AT5G44565	AT5G44565	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_203153]
AT1G52040	MBP1	ref Arabidopsis thaliana myrosinase-binding protein 1 mRNA, complete cds [NM_104085]
AT4G00360	CYP86A2	ref Arabidopsis thaliana cytochrome P450 86A2 mRNA, complete cds [NM_116260]
AT1G74770	AT1G74770	ref Arabidopsis thaliana zinc ion binding protein mRNA, complete cds [NM_106135]
AT4G39950	CYP79B2	ref Arabidopsis thaliana tryptophan N-monooxygenase 1 mRNA, complete cds [NM_120158]
AT2G16890	AT2G16890	ref Arabidopsis thaliana UDP-glycosyltransferase 90A1 mRNA, complete cds [NM_127242]
AT3G10110	MEE67	ref Arabidopsis thaliana mitochondrial import inner membrane translocase subunit TIM22-1 mRNA, complete cds [NM_111846]
AT3G23120	RLP38	ref Arabidopsis thaliana receptor like protein 38 mRNA, complete cds [NM_1313]
AT1G78020	AT1G78020	ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_106451]
AT1G76790	AT1G76790	ref Arabidopsis thaliana indole glucosinolate o-methyltransferase 5 mRNA, complete cds [NM_106329]
AT5G11740	AGP15	ref [Arabidopsis thaliana arabinogalactan protein 15 mRNA, complete cds [NM_121212]
AT2G37510	AT2G37510	ref Arabidopsis thaliana RNA recognition motif-containing protein mRNA, complete cds [NM_123306]
AT5G22460	AT5G22460	ref Arabidopsis thaliana esterase/lipase/thioesterase family protein mRNA, complete cds [NM_180724]
AT1G79530	GAPCP-1	ref Arabidopsis thaliana glyceraldehyde-3-phosphate dehydrogenase GAPCP1 mRNA, complete cds [NM_106601]
AT4G37400	CYP81F3	ref Arabidopsis thaliana cytochrome P450, family 81, subfamily F, polypeptide 3 mRNA, complete cds [NM_119903]
AT4G12880	ENODL19	ref Arabidopsis thaliana early nodulin-like protein 19 mRNA, complete cds [NM_001203782]
AT2G33210	HSP60-2	ref Arabidopsis thaliana heat shock protein 60-2 mRNA, complete cds [NM_179872]
AT5G05270	AT5G05270	ref Arabidopsis thaliana Chalcone-flavanone isomerase family protein mRNA, complete cds [NM180439]
AT1G24020	MLP423	ref Arabidopsis thaliana MLP-like protein 423 mRNA, complete cds [NM_102249]
AT3G19350	MPC	ref Arabidopsis thaliana maternally expressed PAB C-terminal protein mRNA, complete cds [NM_112822]
NT2G28740	HIS4	ref[Arabidopsis thaliana histone H4 mRNA, complete cds [NM128434]

ref Arabidopsis thaliana dehydration-responsive element-binding protein 3 mRNA, complete cds [NM_121197] ref Arabidopsis thaliana TRAM, LAG1 and CLN8 (TLC) lipid-sensing domain containing protein mRNA, complete cds [NM_103581]	ref Arabidopsis thaliana triacylglycerol lipase-like 1 mRNA, complete cds [NM_179441]	ref Arabidopsis thaliana 40S ribosomal protein S27a-1 mRNA, complete cds [NM_102190]	ref Arabidopsis thaliana histone H3 mRNA, complete cds [NM_121077]	ref Arabidopsis thaliana SAUR-like auxin-responsive protein mRNA, complete cds [NM_10494]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_121437]	ref Arabidopsis thaliana sugar transporter ERD6-like 14 mRNA, complete cds [NM_116713]	ref Arabidopsis thaliana cyclic nucleotide gated channel 3 mRNA, complete cds [NM_130207]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_100261]	ref Arabidopsis thaliana SKU5 similar 6 mRNA, complete cds [NM_103408]	ref Arabidopsis thaliana glycosyl hydrolase 9B5 mRNA, complete cds [NM_101849]	ref Arabidopsis thaliana coumaroyi-CoA:anthocyanidin 3-O-glucoside-6-O-coumaroyitransferase 2 mRNA, complete cds [NM_100	ref Arabidopsis thaliana ethylene-responsive transcription factor 15 mRNA, complete cds [NM_179831]	ref Arabidopsis thaliana Heavy metal transport/detoxification superfamily protein mRNA, complete cds [NM_001085064]	ref Arabidopsis thaliana GDSL esterase/lipase mRNA, complete cds [NM_119022]	ref Arabidopsis thaliana GATA transcription factor 12 mRNA, complete cds [NM_122484]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_001085241]	ref Arabidopsis thaliana cellulose synthase-like A10 mRNA, complete cds [NM_102254]	ref Arabidopsis thaliana Monogalactosyldiacylglycerol synthase 3 mRNA, complete cds [NM_001124829]	ref Arabidopsis thaliana protein NIM1-INTERACTING 1 mRNA, complete cds [NM_100126]	ref [Arabidopsis thaliana 60S ribosomal protein L3-2 mRNA, complete cds [NM_104840]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_106104]	gb Arabidopsis thaliana At4-2 mRNA, complete sequence [AY334555]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_001084423]	ref Arabidopsis thaliana beta glucosidase 18 mRNA, complete cds [NM_104118]	ref Arabidopsis thaliana protein RADIALIS-like 4 mRNA, complete cds [NM_001084443]	ref Arabidopsis thaliana ferric reduction oxidase 3 mRNA, complete cds [NM_102150]	ref Arabidopsis thaliana molecular chaperone Hsp40/DnaJ family protein mRNA, complete cds [NM_112664]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_001124079]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_112403]	ref Arabidopsis thaliana UDP-glucosyl transferase 78D1 mRNA, complete cds [NM_102790]	ref [Arabidopsis thaliana high-mobility group B6 protein mRNA, complete cds [NM_122249]	ref Arabidopsis thaliana beta-glucosidase 1 mRNA, complete cds [NM_17940]	ref Arabidopsis thaliana Non-specific lipid-transfer protein-like protein mRNA, complete cds [NM_125804]	ref Arabidopsis thaliana ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein mRNA, complete cds [NM_117330]
TINY2 AT1G45010	TLL1	AT1G23410	AT5G10390	AT1G56150	AT5G14330	AT4G04750	CNGC3	AT1G03820	SKS6	GH9B5	AT1G03495	ERF15	AT5G05365	AT4G28780	GATA12	AT5G44568	CSLA10	MGDC	NIMIN1	RPL3B	AT1G74440	AY334555	AT2G15000	BGLU18	RL4	FR03	AT3G17830	AT1G65486	AT3G15357	UGT78D1	HMGB6	AT1G45191	AT5G64080	AT4G12600
AT5G11590 AT1G45010	AT1G45201	AT1G23410	AT5G10390	AT1G56150	AT5G14330	AT4G04750	AT2G46430	AT1G03820	AT1G41830	AT1G19940	AT1G03495	AT2G31230	AT5G05365	AT4G28780	AT5G25830	AT5G44568	AT1G24070	AT2G11810	AT1G02450	AT1G61580	AT1G74440	AY334555	AT2G15000	AT1G52400	AT2G18328	AT1G23020	AT3G17830	AT1G65486	AT3G15357	AT1G30530	AT5G23420	AT1G45191	AT5G64080	AT4G12600
3.21 3.21	3.2	3.2	3.19	3.18	3.18	3.17	3.17	3.17	3.16	3.15	3.15	3.15	3.15	3.14	3.13	3.13	3.12	3.12	3.12	3.12	3.11	3.11	3.09	3.08	3.07	3.06	3.06	3.06	3.06	3.04	3.04	3.03	3.03	3.03

ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_129604] ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_123510]	ref[Arabidopsis thaliana histone H3 mRNA, complete cds [NM100790]	ref Arabidopsis thaliana putative phytosulfokines 5 precursor mRNA, complete cds [NM_125984]	ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_201907]	rer Arabidopsis thaliana acetyl LOA1/2/-5-nexen-1-ol acetyltransrerase mkivA, complete cos [NW111219] ref l Arabidopsis thaliana chanerone protein dna 120 mRNA, complete cds [NM_179045]	ref Arabidopsis thaliana FAD-binding Berberine family protein mRNA, complete cds [NM 102808]	ref Arabidopsis thaliana SRPBCC ligand-binding domain-containing protein mRNA, complete cds [NM100128]	ref Arabidopsis thaliana senescence associated protein 20 mRNA, complete cds [NM_20250]	ref Arabidopsis thaliana R2R3-MYB transcription family mRNA, complete cds [NM_105503]	ref Arabidopsis thaliana cytochrome P450 71B22 mRNA, complete cds [NM_113527]	ref Arabidopsis thaliana ubiquitin-conjugating enzyme E2 5 mRNA, complete cds [NM_105055]	ref Arabidopsis thaliana putative beta-amylase BMY3 mRNA, complete cds [NM_121872]	ref Arabidopsis thaliana branched chain alpha-keto acid dehydrogenase E1 beta mRNA, complete cds [NM_12191]	ref Arabidopsis thaliana FAD/NAD(P)-binding oxidoreductase family protein mRNA, complete cds [NM_111792]	ref Arabidopsis thaliana auxin-responsive GH3 family protein mRNA, complete cds [NM_121340]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_001085242]	ref Arabidopsis thaliana 1-aminocyclopropane-1-carboxylate oxidase 2 mRNA, complete cds [NM_104918]	ref Arabidopsis thaliana putative BTB/POZ domain-containing protein DOT3 mRNA, complete cds [NM_121063]	ref Arabidopsis thaliana pollen Ole e 1 allergen and extensin family protein mRNA, complete cds [NM_179769]	ref Arabidopsis thaliana alanine:glyoxylate aminotransferase 3 mRNA, complete cds [NM_001202772]	ref Arabidopsis thaliana zinc finger A20 and AN1 domain-containing stress-associated protein 4 mRNA, complete cds [NM_12918]	ref Arabidopsis thaliana allantoate amidohydrolase mRNA, complete cds [NM_118126]	ref Arabidopsis thaliana RWD domain-containing prote in mRNA, complete cds [NM_115894]	ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_129331]	ref Arabidopsis thaliana putative WRKY transcription factor 40 mRNA, complete cds [NM_106732]	ref Arabidopsis thaliana aldo-keto reductase family 4 member C8 mRNA, complete cds [NM_201898]	ref Arabidopsis thaliana beta carbonic anhydrase 6 mRNA, complete cds [NM_179492]	ref Arabidopsis thaliana Glutathione S-transferase family protein mRNA, complete cds [NM_118108]	ref Arabidopsis thaliana aquaporin PlP1-1 mRNA, complete cds [NM_001084854]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_125244]	ref Arabidopsis thaliana ATAF-like NAC-domain transcription factor mRNA, complete cds [NM_112418]	ref Arabidopsis thaliana vacuolar-processing enzyme gamma mRNA, complete cds [NM_11948]	ref Arabidopsis thaliana NAC transcription factor RD26 mRNA, complete cds [NM_001084983]	ref [Arabidopsis thaliana alternative oxidase 1A mRNA, complete cds [NM_113135]
AT2G40435 AT5G41460	AT1G09200	PSK5	AT2G38820	LTAI 120	AT1G30720	AT1G02470	SAG20	MYB62	CYP71B22	UBC5	BMY3	DIN4	AT3G09580	AT5G13370	AT5G44572	ACO2	D0T3	AT2G27385	AGT3	AT2G36320	ААН	AT3G60300	AT2G37750	WRKY40	AT2G37760	BCA6	AT4G19880	PIP1A	AT5G58570	NAC3	GAMMA-VPE	RD26	A0X1A
AT2G40435 AT5G41460	AT1G09200	AT5G65870	AT2G38820	A13G03480 AT4G13830	AT1G30720	AT1G02470	AT3G10985	AT1G68320	AT3G26200	AT1G63800	AT5G18670	AT3G13450	AT3G09580	AT5G13370	AT5G44572	AT1G62380	AT5G10250	AT2G27385	AT2G38400	AT2G36320	AT4G20070	AT3G60300	AT2G37750	AT1G80840	AT2G37760	AT1G58180	AT4G19880	AT3G61430	AT5G58570	AT3G15500	AT4G32940	AT4G27410	AT3G22370
3.03 3.03	3.01	-3.01	-3.01	-3.02	-3.02	-3.02	-3.03	-3.04	-3.05	-3.06	-3.07	-3.07	-3.07	-3.07	-3.07	-3.08	-3.08	-3.08	-3.09	-3.09	-3.09	-3.09	-3.09	-3.1	-3.12	-3.12	-3.12	-3.12	-3.12	-3.13	-3.13	-3.13	-3.14

ref Arabidopsis thaliana heat stress transcription factor B-2a mRNA, complete cds [NM_125595]	ref Arabidopsis thaliana sulfur E2 mRNA, complete cds [NM_105449]	ref Arabidopsis thaliana putative transcriptional activator with NAC domain mRNA, complete cds [NM_10054]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_127972]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_001160795]	ref Arabidopsis thaliana carbonic anhydrase 2 mRNA, complete cds [NM_001036806]	ref Arabidopsis thaliana probable glucuronoxylan glucuronosyltransferase IRX7 mRNA, complete cds [NM_179782]	ref Arabidopsis thaliana xylanase 1 mRNA, complete cds [NM_104617]	ref Arabidopsis thaliana dihydroflavonol 4-reductase-like1 mRNA, complete cds [NM_119708]	ref Arabidopsis thaliana PR-6 proteinase inhibitor family protein mRNA, complete cds [NM_123723]	ref Arabidopsis thaliana monothiol glutaredoxin-S2 mRNA, complete cds [NM_121865]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_180317]	ref Arabidopsis thaliana monothiol glutaredoxin-S7 mRNA, complete cds [NM_117658]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_125176]	ref Arabidopsis thaliana cysteine proteinase RD19a mRNA, complete cds [NM_120069]	ref Arabidopsis thaliana HXXXD-type acyl-transferase-like protein mRNA, complete cds [NM $_129556$]	ref Arabidopsis thaliana myb-like transcription factor family protein mRNA, complete cds [NM $_113478$]	ref Arabidopsis thaliana autophagy-related protein 8h mRNA, complete cds [NM_111517]	ref Arabidopsis thaliana serine carboxypeptidase-like 31 mRNA, complete cds [NM_001198028]	ref Arabidopsis thaliana auxin efflux carrier family protein mRNA, complete cds [NM_179633]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_147877]	ref Arabidopsis thaliana putative class 3 lipase mRNA, complete cds [NM_121868]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_180017]	ref Arabidopsis thaliana proline dehydrogenase 1 mRNA, complete cds [NM_113981]	ref Arabidopsis thaliana aspartyl protease-like protein mRNA, complete cds [NM_100205]	ref Arabidopsis thaliana bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein mRNA, complet [NM_124225]	ref Arabidopsis thaliana beta glucosidase 11 mRNA, complete cds [NM_202017]	ref Arabidopsis thaliana soluble epoxide hydrolase mRNA, complete cds [NM $_128231$]	ref Arabidopsis thaliana zinc finger protein ZAT6 mRNA, complete cds [NM_120516]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_127188]	ref Arabidopsis thaliana 12-oxophytodienoate reductase 2 mRNA, complete cds [NM_106319]	ref Arabidopsis thaliana Telomerase activating protein Est1 mRNA, complete cds [NM_102591]	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_001084720]	ref] Arabidopsis thaliana high chlorophyll fluorescence phenotype 173 protein mRNA, complete cds [NM_101533]	reri Aradidopsis trialiana neavy-metar-associated domain-containing protein mikny, complete cas [nwi_12323.1]
HSFB2A	SUFE2	ATAF1	AT2G24100	AT4G25170	CA2	FRA8	RXF12	DRL1	AT5G43570	AT5G18600	AT3G29240	AT4G15670	AT5G57910	RD19	AT2G39980	AT3G25790	ATG8H	scpl31	AT2G17500	AT5G21940	AT5G18630	AT2G41230	ERD5	AT1G03230	AT5G48490	BGLU11	SEH	ZAT6	AT2G16340	OPR2	AT1G28260	AT3G19615	HCF173	UC605071A
AT5G62020	AT1G67810	AT1G01720	AT2G24100	AT4G25170	AT5G14740	AT2G28110	AT1G58370	AT4G35420	AT5G43570	AT5G18600	AT3G29240	AT4G15670	AT5G57910	AT4G39090	AT2G39980	AT3G25790	AT3G06420	AT1G11080	AT2G17500	AT5G21940	AT5G18630	AT2G41230	AT3G30775	AT1G03230	AT5G48490	AT1G02850	AT2G26740	AT5G04340	AT2G16340	AT1G76690	AT1G28260	AT3G19615	AT1G16720	AI 263695U
-3.14	-3.15	-3.16	-3.16	-3.16	-3.17	-3.17	-3.17	-3.17	-3.17	-3.17	-3.17	-3.18	-3.18	-3.19	-3.2	-3.2	-3.2	-3.22	-3.22	-3.22	-3.23	-3.23	-3.24	-3.24	-3.25	-3.25	-3.25	-3.25	-3.25	-3.26	-3.26	-3.26	-3.26	-3.27

895 ref]Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_179941] 1 ref1Arabidoncie thaliana useuclar asticos/cretor avcharaer 1 mDNA cominder of INM 201001]	re الحالية فيمنعا في مناقبته محمدها تعنيمان إلى من الحداقاتها . 1780	960 ref Arabidopsis thaliana putative serine carboxypeptidase-like 52 mRNA, complete cds [NM_127861]	480 ref] Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_126046]	.795	ref Arabidopsis thaliana carbonic anhydrase 1 mRNA, complete cds [NM_111016]	710 ref] Arabidopsis thaliana UDP-glycosyltransferase 76F2 mRNA, complete cds [NM_115429]	.400 ref Arabidopsis thaliana thiamin diphosphate-binding fold protein mRNA, complete cds [NM_101992]	920 refl Arabidopsis thaliana alpha/beta-hydrolase domain-containing protein mRNA, complete cds [NM_ 179552]	290	2 ref Arabidopsis thaliana sulphotransferase 12 mRNA, complete cds [NM_126423]	830 ref Arabidopsis thaliana curculin-like (mannose-binding) lectin-like protein mRNA, complete cds [NM_106531]	.6 ref Arabidopsis thaliana SNF1-related kinase mRNA, complete cds [NM_128066]	ref Arabidopsis thaliana D-ribulose-5-phosphate-3-epimerase mRNA, complete cds [NM_125534]	1 ref Arabidopsis thaliana ethylene-responsive transcription factor ABR1 mRNA, complete cds [NM_125871]	560	770 ref Arabidopsis thaliana dehydrodolichyl diphosphate synthase 2 mRNA, complete cds [NM_125264]	1 ref Arabidopsis thaliana bifunctional nuclease 1 mRNA, complete cds [NM_179559]	140 ref Arabidopsis thaliana UDP-glycosyltransferase 87A2 mRNA, complete cds [NM_128569]	.480 refl Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_115108]	1 ref Arabidopsis thaliana ATP binding cassette protein 1 mRNA, complete cds [NM_116715]	250ref Arabidopsis thaliana Aldolase-type TIM barrel family protein mRNA, complete cds [NM_125821]	760 refl Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_112446]	160 ref Arabidopsis thaliana pyruvate kinase-like protein mRNA, complete cds [NM_114775]	t ref Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolase protein 22 mRNA, complete cds [NM_125137]	820 ref Arabidopsis thaliana CTP synthase-like protein mRNA, complete cds [NM_102819]	1 ref Arabidopsis thaliana bifunctional UDP-glucose 4-epimerase and UDP-xylose 4-epimerase 1 mRNA, complete cds [NM_101148	120ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM111847]	700	.930 ref Arabidopsis thaliana universal stress protein-like protein mRNA, complete cds [NM_180231]	1 gb Arabidopsis thaliana clone 108218 mRNA sequence [DQ108691]	100 ref Arabidopsis thaliana jacalin-like lectin domain-containing protein mRNA, complete cds [NM_001198273]	Eref Arabidopsis thaliana chloride channel protein CLC-e mRNA, complete cds [NM119709]	220 ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_130184]
AT2G3689!	AT1G70780	AT2G2296(AT5G6648(AT2G0479	CA1	AT3G5571(AT1G21400	AT1G7392(AT1G2729(SOT12	AT1G7883(CIPK16	RPE	abr-01	AT2G4756(AT5G5877(BBD1	AT2G3014(AT3G5248(ABC1	AT5G6425(AT3G1576(AT3G4916(TCH4	AT1G3082(UGE1	AT3G1012(AT4G15700	AT3G1193(PGIP1	AT1G52100	CLC-E	AT2G4622(
AT2G36895	AT1G70780	AT2G22960	AT5G66480	AT2G04795	AT3G01500	AT3G55710	AT1G21400	AT1G73920	AT1G27290	AT2G03760	AT1G78830	AT2G25090	AT5G61410	AT5G64750	AT2G47560	AT5G58770	AT1G75380	AT2G30140	AT3G52480	AT4G04770	AT5G64250	AT3G15760	AT3G49160	AT5G57560	AT1G30820	AT1G12780	AT3G10120	AT4G15700	AT3G11930	AT5G06865	AT1G52100	AT4G35440	AT2G46220
-3.27 -3.28	-3.28	-3.29	-3.29	-3.3	-3.31	-3.32	-3.33	-3.34	-3.34	-3.35	-3.35	-3.35	-3.36	-3.36	-3.36	-3.36	-3.37	-3.37	-3.37	-3.38	-3.39	-3.4	-3.41	-3.41	-3.41	-3.43	-3.43	-3.44	-3.45	-3.45	-3.46	-3.46	-3.46

NAC102 ref Arabidopsis thaliana NAC domain-containing protein 102 mRNA, complete cds [NM_125774]	S4G21 ref[Arabidopsis thaliana senescence-associated protein SAG21 mRNA, complete cds [NM_116471]	PGL1 ref [Arabidopsis thaliana 6-phosphogluconolactonase 1 mRNA, complete cds [NM_101239]	vT3G57760 ref Arabidopsis thaliana protein kinase family protein mRNA, complete cds [NM_001035802]	5PTASE2 ref [Arabidopsis thaliana Type I inositol-1,4,5-trisphosphate 5-phosphatase 2 mRNA, complete cds [NM_179071]	SR05 ref Arabidopsis thaliana probable inactive poly [ADP-ribose] polymerase SR05 mRNA, complete cds [NM_203252]	RAP2.9 ref Arabidopsis thaliana ethylene-responsive transcription factor RAP2-9 mRNA, complete cds [NM_179009]	TC405990 tcl Rep: Formate dehydrogenase - Arabidopsis thaliana (Mouse-ear cress), partial (18%) [TC405990]	vT3G46600 ref Arabidopsis thaliana scarecrow-like protein 30 mRNA, complete cds [NM_114527]	CYP71B3 ref Arabidopsis thaliana cytochrome P450 71B3 mRNA, complete cds [NM_113529]	vT5G39080 ref Arabidopsis thaliana HXXXD-type acyl-transferase-like protein mRNA, complete cds [NM_123270]	RHL41 ref Arabidopsis thaliana high light responsive zinc finger protein ZAT12 mRNA, complete cds [NM_125374]	BZ02H3 ref Arabidopsis thaliana basic leucine zipper 63 mRNA, complete cds [NM_001036885]	xT1G66180 ref Arabidopsis thaliana aspartyl protease family protein mRNA, complete cds [NM_105289]	NIT2 ref Arabidopsis thaliana nitrilase 2 mRNA, complete cds [NM_114298]	TCH3 ref Arabidopsis thaliana calmodulin-like protein 4 mRNA, complete cds [NM_001202794]	35940_3702 tc] Rep: Chromosome chr18 scaffold_1, whole genome shotgun sequence - Vitis vinifera (Grape), partial (42%) [TC384450]	WRKY45 ref Arabidopsis thaliana WRKY DNA-binding protein 45 mRNA, complete cds [NM_111063]	CAT1 ref Arabidopsis thaliana catalase 1 mRNA, complete cds [NM_101914]	vT3G04010 ref Arabidopsis thaliana O-gycosyl hydrolases family 17 protein mRNA, complete cds [NM_111272]	xT2G32150 ref Arabidopsis thaliana haloacid dehalogenase-like hydrolase domain-containing protein mRNA, complete cds [NM_128774]	EXPA1 ref Arabidopsis thaliana expansin A1 mRNA, complete cds [NM_001124101]	TIM17-1 ref Arabidopsis thaliana translocase inner membrane subunit 17-1 mRNA, complete cds [NM_101886]	ACBP3 ref Arabidopsis thaliana acyl-CoA-binding domain 3 mRNA, complete cds [NM_001084972]	ADC2 ref [Arabidopsis thaliana arginine decarboxylase 2 mRNA, complete cds [NM_119637]	vT4G24050 ref Arabidopsis thaliana NAD(P)-binding Rossmann-fold superfamily protein mRNA, complete cds [NM_118537]	vT4G20860 ref Arabidopsis thaliana FAD-binding Berberine family protein mRNA, complete cds [NM_118204]	LUT1 ref [Arabidopsis thaliana carotene epsilon-monooxygenase mRNA, complete cds [NM_115173]	vT1G49500 ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_103338]	vT2G27830 ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_128343]	CAX7 ref Arabidopsis thaliana calcium exchanger 7 mRNA, complete cds [NM_121792]	ACX2ref Arabidopsis thaliana acyl-coenzyme A oxidase 2 mRNA, complete cds [NM_001037068]	GGT1 ref Arabidopsis thaliana glutamate:glyoxylate aminotransferase mRNA, complete cds [NM_001036006]	vT5G06570 ref Arabidopsis thaliana probable carboxylesterase 15 mRNA, complete cds [NM_120740]	CP5 ref Arabidopsis thaliana membrane related protein CP5 mRNA, complete cds [NM_105147]	WOX2 ref [Arabidopsis thaliana WUSCHEL-related homeobox 2 mRNA, complete cds [NM_125325]
00 NA	30 S/	00 P	50 AT3(.0 5P	5 S	16 R∕	3 TC4	00 AT3(CVI CVI	80 AT5(IO RI	0 BZ	30 AT1(200	T 00	702 TA359	70 WF	0	.0 AT3(50 AT2(50 E)	TIN DI	SO AI	0 A	50 AT4(50 AT4(-L	00 AT1(80 AT2(0 C	0 A	0.0	'0 AT5(0	× 01
AT5G6379	AT4G0238	AT1G1370	AT3G5776	AT4G1801	AT5G6252	AT4G0674	TC314163	AT3G4660	AT3G2622	AT5G3908	AT5G5982	AT5G2877	AT1G6618	AT3G4430	AT2G4110	TA35940_37	AT3G0197	AT1G2063	AT3G0401	AT2G3215	AT1G6953	AT1G2035	AT4G2423	AT4G3471	AT4G2405	AT4G2086	AT3G5314	AT1G4950	AT2G2783	AT5G1786	AT5G6511	AT1G2331	AT5G0657	AT1G6472	AT5G5934
-3.47	-3.47	-3.48	-3.48	-3.51	-3.51	-3.51	-3.51	-3.52	-3.53	-3.55	-3.55	-3.56	-3.56	-3.57	-3.57	-3.57	-3.58	-3.59	-3.59	-3.6	-3.61	-3.61	-3.62	-3.62	-3.62	-3.64	-3.64	-3.64	-3.64	-3.65	-3.66	-3.66	-3.67	-3.68	-3.68

-3.68	AT3G53230	AT3G53230	ref[Arabidopsis thaliana cell division control protein 48-B mRNA, complete cds [NM_115183]
-3.68	AT4G33660	AT4G33660	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_119522]
-3.7	AT2G05380	GRP3S	ref Arabidopsis thaliana glycine-rich protein 3 short isoform mRNA, complete cds [NM_001124801]
-3.71	AT5G43450	AT5G43450	ref Arabidopsis thaliana 1-aminocyclopropane-1-carboxylate oxidase-like protein mRNA, complete cds [NM_123711]
-3.71	AT1G26800	AT1G26800	ref Arabidopsis thaliana RING/U-box domain-containing protein mRNA, complete cds [NM_102444]
-3.73	AT3G50560	AT3G50560	ref Arabidopsis thaliana Rossmann-fold NAD(P)-binding domain-containing protein mRNA, complete cds [NM_114916]
-3.74	AT5G66650	AT5G66650	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_126063]
-3.75	AT4G17245	AT4G17245	ref Arabidopsis thaliana RING/U-box domain-containing protein mRNA, complete cds [NM_117830]
-3.77	AT5G64570	XYL4	ref Arabidopsis thaliana beta-D-xylosidase 4 mRNA, complete cds [NM_125853]
-3.8	AT1G69260	AFP1	ref Arabidopsis thaliana ABI five binding protein mRNA, complete cds [NM_105593]
-3.81	AT3G03470	CYP89A9	ref Arabidopsis thaliana cytochrome P450, family 87, subfamily A, polypeptide 9 mRNA, complete cds [NM111218]
-3.81	AT5G59510	RTFL5	ref [Arabidopsis thaliana protein rotundifolia like 5 mRNA, complete cds [NM_125343]
-3.83	AT1G08570	ACHT4	ref Arabidopsis thaliana atypical CYS HIS rich thioredoxin 4 mRNA, complete cds [NM_001123776]
-3.83	AT4G34138	UGT73B1	ref Arabidopsis thaliana UDP-glucosyl transferase 7381 mRNA, complete cds [NM_119576]
-3.84	AT1G03220	AT1G03220	ref Arabidopsis thaliana aspartyl protease-like protein mRNA, complete cds [NM_100204]
-3.85	AT5G59310	LTP4	ref Arabidopsis thaliana non-specific lipid-transfer protein 4 mRNA, complete cds [NM_125322]
-3.85	AT4G24160	AT4G24160	ref Arabidopsis thaliana lysophosphatidic acid acyltransferase mRNA, complete cds [NM_202876]
-3.85	AT5G64190	AT5G64190	ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_125815]
-3.87	AT2G34430	LHB1B1	ref Arabidopsis thaliana light-harvesting chlorophyll protein complex II subunit B1 mRNA, complete cds [NM_128995]
-3.89	AT4G33150	AT4G33150	ref Arabidopsis thaliana lysine-ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme mRNA, complete cds [1
-3.89	AT1G77450	NAC032	ref Arabidopsis thaliana NAC domain containing protein 32 mRNA, complete cds [NM_106394]
-3.9	AT2G18193	AT2G18193	ref Arabidopsis thaliana P-loop containing nucleoside triphosphate hydrolases superfamily protein mRNA, complete cds [NM_175
-3.91	AT5G02160	AT5G02160	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_120294]
-3.92	AT2G02930	GSTF3	ref Arabidopsis thaliana glutathione S-transferase F3 mRNA, complete cds [NM_126346]
-3.93	AT2G40340	DREB2C	ref Arabidopsis thaliana dehydration-responsive element-binding protein 2C mRNA, complete cds [NM_129594]
-3.96	AK221828	AK221828	gb Arabidopsis thaliana mRNA for hypothetical protein, complete cds, clone: RAFL21-96-E04 [AK221828]
-3.99	AT1G56220	AT1G56220	ref Arabidopsis thaliana dormancy/auxin associated protein mRNA, complete cds [NM_104501]
-4.01	AT5G65207	AT5G65207	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_148161]
-4.02	AT4G15690	AT4G15690	ref Arabidopsis thaliana monothiol glutaredoxin-S5 mRNA, complete cds [NM_117660]
-4.04	AT1G18020	AT1G18020	ref Arabidopsis thaliana putative 12-oxophytodienoate reductase-like protein 2B mRNA, complete cds [NM_179352]
-4.06	AT4G03320	tic20-IV	ref Arabidopsis thaliana translocon at the inner envelope membrane of chloroplasts 20-IV mRNA, complete cds [NM_116570]
-4.06	AT2G41730	AT2G41730	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_129737]
-4.08	AT4G15550	IAGLU	ref Arabidopsis thaliana UDP-glucose:indole-3-acetate beta-D-glucosyltransferase mRNA, complete cds [NM_117646]
-4.09	AT2G47180	GolS1	ref Arabidopsis thaliana galactinol synthase 1 mRNA, complete cds [NM_130286]
-4.09	AT5G47860	AT5G47860	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_124160]
-4.1	AT1G55920	SERAT2;1	ref Arabidopsis thaliana serine acetyltransferase 1 mRNA, complete cds [NM_104470]

AT563190 ref[Arabidopsis thaliana MA3 domain-containing protein mRNA, complete cds [NM_125714]	A 14625590 ref Arabidopsis thaliana receptor-like Serine/threonine-protein kinase mkNA, complete cds [NM_118671] AT3645730 ref Arabidonsis thaliana uncharacterized protein mRNA, complete cds [NM_1144421]	GPX1 ref Arabidopsis thaliana phospholipid hydroperoxide glutathione peroxidase 1 mRNA, complete cds [NM_128065]	AT5G14110 ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_121415]	AT3G48990 ref Arabidopsis thaliana 4-coumarate–CoA ligase-like 10 mRNA, complete cds [NM_114758]	AT5G53970 ref Arabidopsis thaliana tyrosine aminotransferase mRNA, complete cds [NM_124776]	CIPK3 ref Arabidopsis thaliana CBL-interacting serine/threonine-protein kinase 3 mRNA, complete cds [NM_001036350]	SNR2.9 ref]Arabidopsis thaliana serine/threonine-protein kinase SNRK2.9 mRNA, complete cds [NM_127867]	AT1G21550 ref Arabidopsis thaliana putative calcium-binding protein CML44 mRNA, complete cds [NM_102004]	AT1G19660 ref Arabidopsis thaliana putative wound-responsive protein mRNA, complete cds [NM_001035991]	BCB ref Arabidopsis thaliana blue-copper-binding protein mRNA, complete cds [NM_122030]	AT3G06500 ref Arabidopsis thaliana protein alkaline/neutral invertase C mRNA, complete cds [NM_111526]	GDH2 ref Arabidopsis thaliana glutamate dehydrogenase 2 mRNA, complete cds [NM_001125712]	WRKY26 ref Arabidopsis thaliana WRKY DNA-binding protein 26 mRNA, complete cds [NM_203017]	AT1G71000 ref Arabidopsis thaliana chaperone Dnal-domain containing protein mRNA, complete cds [NM_105769]	AT2G28120 ref Arabidopsis thaliana major facilitator protein mRNA, complete cds [NM_128372]	AT2G17880 ref Arabidopsis thaliana DNAJ heat shock N-terminal domain-containing protein mRNA, complete cds [NM_127342]	GSTF8 ref [Arabidopsis thaliana glutathione S-transferase phi 8 mRNA, complete cds [NM_180148]	AT1G53280	FDH ref Arabidopsis thaliana formate dehydrogenase mRNA, complete cds [NM_121482]	SUC7 ref Arabidopsis thaliana putative sucrose transport protein SUC7 mRNA, complete cds [NM_001036165]	AT4G25580 ref Arabidopsis thaliana CAP160 protein mRNA, complete cds [NM_118690]	FRO7 ref Arabidopsis thaliana ferric reduction oxidase 7 mRNA, complete cds [NM_124352]	AT3G62260 [ref]Arabidopsis thaliana putative protein phosphatase 2C 49 mRNA, complete cds [NM_116091]	BU917423 Unknown	AT4G26530 ref Arabidopsis thaliana fructose-bisphosphate aldolase 5 mRNA, complete cds [NM_001036644]	AT1G33110 ref Arabidopsis thaliana MATE efflux family protein mRNA, complete cds [NM_103045]	DASA2 ref Arabidopsis thaliana O-acetylserine (thiol) lyase (DAS-TL) isoform A2 mRNA, complete cds [NM113145]	AT2G15960 ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_127155]	AT3G20395 ref Arabidopsis thaliana RING-finger domain-containing protein mRNA, complete cds [NM_001084725]	FRO6 ref Arabidopsis thaliana ferric reduction oxidase 6 mRNA, complete cds [NM_124351]	AT1G79700 ref Arabidopsis thaliana AP2-like ethylene-responsive transcription factor WRI4 mRNA, complete cds [NM_001084380]	ERD1 ref Arabidopsis thaliana chaperone protein ClpD mRNA, complete cds [NM_124486]	
AT5G63190	A14625390 AT3645730	GPX1	AT5G14110	AT3G48990	AT5G53970	CIPK3	SNRK2.9	AT1G21550	AT1G19660	BCB	AT3G06500	GDH2	WRKY26	AT1G71000	AT2G28120	AT2G17880	GSTF8	AT1G53280	FDH	SUC7	AT4G25580	FR07	AT3G62260	BU917423	AT4G26530	AT1G33110	0ASA2	AT2G15960	AT3G20395	FRO6	AT1G79700	ERD1	
AT5G63190	A14G25390 AT3G45730	AT2G25080	AT5G14110	AT3G48990	AT5G53970	AT2G26980	AT2G23030	AT1G21550	AT1G19660	AT5G20230	AT3G06500	AT5G07440	AT5G07100	AT1G71000	AT2G28120	AT2G17880	AT2G47730	AT1G53280	AT5G14780	AT1G66570	AT4G25580	AT5G49740	AT3G62260	BU917423	AT4G26530	AT1G33110	AT3G22460	AT2G15960	AT3G20395	AT5G49730	AT1G79700	AT5G51070	
-4.1	-4.11	-4.12	-4.13	-4.16	-4.17	-4.21	-4.21	-4.22	-4.23	-4.24	-4.25	-4.25	-4.25	-4.26	-4.26	-4.27	-4.28	-4.32	-4.35	-4.38	-4.38	-4.4	-4.4	-4.41	-4.44	-4.44	-4.45	-4.45	-4.45	-4.46	-4.46	-4.46	
-4.92 -4.95	AT1G23390 AT1G72900	AT1G23390 AT1G72900	ref Arabidopsis thaliana F-box/kelch-repeat protein mRNA, complete cds [NM_102188] ref Arabidopsis thaliana Toll-Interleukin-Resistance domain-containing protein mRNA, complete cds [NM_105948]																														
----------------	------------------------	------------------------	---																														
-4.95	TC309308	TC396119	tcl Rep: Chromosome chr19 scaffold_4, whole genome shotgun sequence - Vitis vinifera (Grape), partial (29%) [TC396119]																														
-4.98	AT1G07890	APX1	ref Arabidopsis thaliana L-ascorbate peroxidase 1 mRNA, complete cds [NM_001123772]																														
'n	AT5G22920	AT5G22920	ref [Arabidopsis thaliana ring finger and CHY zinc finger domain-containing protein 1 mRNA, complete cds [NM_122198]																														
-5.04	AT5G52640	HSP90.1	ref Arabidopsis thaliana heat shock protein 90.1 mRNA, complete cds [NM_124642]																														
-5.05	AT3G28210	PMZ	ref Arabidopsis thaliana zinc finger (AN1-like) family protein mRNA, complete cds [NM_113740]																														
-5.09	AT5G54080	HGO	ref Arabidopsis thaliana homogentisate 1, 2-dioxygenase mRNA, complete cds [NM_180856]																														
-5.1	AT2G20670	AT2G20670	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_127631]																														
-5.14	AT1G70290	TPS8	ref Arabidopsis thaliana putative alpha,alpha-trehalose-phosphate synthase [UDP-forming] 8 mRNA, complete cds [NM_105697]																														
-5.14	AT1G72680	CAD1	ref Arabidopsis thaliana cinnamyl-alcohol dehydrogenase mRNA, complete cds [NM_105927]																														
-5.14	AT2G23150	NRAMP3	ref Arabidopsis thaliana metal transporter Nramp3 mRNA, complete cds [NM_127879]																														
-5.18	AT1G22890	AT1G22890	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_102136]																														
-5.2	AT5G39050	AT5G39050	ref Arabidopsis thaliana phenolic glucoside malonyltransferase 1 mRNA, complete cds [NM_123267]																														
-5.29	AT2G31945	AT2G31945	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_128753]																														
-5.31	AT1G60140	TPS10	ref Arabidopsis thaliana putative alpha,alpha-trehalose-phosphate synthase [UDP-forming] 10 mRNA, complete cds																														
-5.33	AT4G36040	AT4G36040	ref Arabidopsis thaliana chaperone protein dnaJ 11 mRNA, complete cds [NM_119771]																														
-5.33	AT1G68190	AT1G68190	ref Arabidopsis thaliana putative zinc finger protein mRNA, complete cds [NM_105490]																														
-5.33	AT4G16680	AT4G16680	ref Arabidopsis thaliana putative RNA helicase mRNA, complete cds [NM_11769]																														
-5.34	AT5G21170	AKINBETA1	ref Arabidopsis thaliana SNF1-related protein kinase regulatory subunit beta-1 mRNA, complete cds [NM_001036841]																														
-5.34	AT2G41380	AT2G41380	ref Arabidopsis thaliana S-adenosyl-L-methionine-dependent methyltransferase-like protein mRNA, complete cds [NM_129701]																														
-5.35	AT5G24800	BZIP9	ref Arabidopsis thaliana basic leucine zipper 9 mRNA, complete cds [NM_122389]																														
-5.35	AT1G69490	NAP	ref Arabidopsis thaliana NAC transcription factor protein family mRNA, complete cds [NM_10516]																														
-5.37	AT4G37370	CYP81D8	ref Arabidopsis thaliana cytochrome P450, family 81, subfamily D, polypeptide 8 mRNA, complete cds [NM_119900]																														
-5.39	AT4G36850	AT4G36850	ref Arabidopsis thaliana PQ-loop repeat family protein / transmembrane family protein mRNA, complete cds [NM119849]																														
-5.4	AT1G22400	UGT85A1	ref Arabidopsis thaliana UDP-glycosyltransferase 85A1 mRNA, complete cds [NM_102089]																														
-5.41	AT5G26200	AT5G26200	ref Arabidopsis thaliana mitochondrial substrate carrier family protein mRNA, complete cds [NM_122521]																														
-5.42	AT1G15040	AT1G15040	ref Arabidopsis thaliana putative glutamine amidotransferase mRNA, complete cds [NM_101374]																														
-5.46	AT5G54165	AT5G54165	ref [Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_001125962]																														
-5.48	BP660593	BP660593	Unknown																														
-5.49	AT1G10070	BCAT-2	ref Arabidopsis thaliana branched-chain-amino-acid aminotransferase 2 mRNA, complete cds [NM_001035939]																														
-5.53	TA32559_3702	TA32559_3702	tc Rep: AT3g60140/T209_120 - Arabidopsis thaliana (Mouse-ear cress), partial (9%) [TC397325]																														
-5.55	AT1G54100	ALDH7B4	ref Arabidopsis thaliana aldehyde dehydrogenase 7B4 mRNA, complete cds [NM_104287]																														
-5.55	AT3G13750	BGAL1	ref Arabidopsis thaliana beta galactosidase 1 mRNA, complete cds [NM_112255]																														
-5.61	AT3G12580	HSP70	ref Arabidopsis thaliana heat shock protein 70-4 mRNA, complete cds [NM_1212093]																														
-5.63	AT2G37130	AT2G37130	ref Arabidopsis thaliana peroxidase mRNA, complete cds [NM_001124989]																														

Capítulo 1

-6.65	AT4G34131	UGT73B3	ref Arabidopsis thaliana UDP-glucosyl transferase 73B3 mRNA, complete cds [NM_119574]
-6.73	A14634135	001/362 AT3G1/000	rer Arabidosts trainiana OLP-gucosytransretases / sisz mkva, compilere cos (wwi_1/-91b1) ref Arabidoopst trainiana OLP-gucosytransretases / sisz mkva, compilere cos (wwi_1/-91b1)
-6.74	BP667596	BP667596	ter jaraguedoss cinaiana proteiri paratrikov, complete cua juwi_outopout 1 tcl Reo: Uncharacterized protein At4e35770.3 - Arabidopsis thaliana (Mouse-ear cress). partial (53%) [TC406344]
-6.79	AT1G62510	AT1G62510	ref l Arabidopsis thaliana bifunctional inhibitor/lipid-transfer protein/seed storage 25 albumin-like protein mRNA, complete cds [N
-6.88	AT1G10585	AT1G10585	ref Arabidopsis thaliana basic helix-loop-helix domain-containing protein mRNA, complete cds [NM_100934]
-6.98	AT5G51720	AT5G51720	ref Arabidopsis thaliana CDGSH iron-sulfur domain-containing protein NEET mRNA, complete cds [NM_124551]
-7.01	AT4G39675	AT4G39675	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_120128]
-7.03	AT5G05410	DREB2A	ref Arabidopsis thaliana dehydration-responsive element-binding protein 2A mRNA, complete cds [NM_120623]
-7.04	AT4G37610	BT5	ref Arabidopsis thaliana BTB and TAZ domain protein 5 mRNA, complete cds [NM_119924]
-7.1	AT5G49450	bZIP1	ref Arabidopsis thaliana basic leucine-zipper 1 mRNA, complete cds [NM_12322]
-7.14	AT1G23870	TPS9	ref Arabidopsis thaliana putative alpha,alpha-trehalose-phosphate synthase [UDP-forming] 9 mRNA, complete cds [NM_102235]
-7.17	AT1G71030	MYBL2	ref Arabidopsis thaliana putative myb family transcription factor mRNA, complete cds [NM_105772]
-7.22	AT3G49790	AT3G49790	ref Arabidopsis thaliana Carbohydrate-binding protein mRNA, complete cds [NM_14839]
-7.25	AT5G39520	AT5G39520	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_123314]
-7.29	AT1G19530	AT1G19530	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_101811]
-7.32	AT2G15490	UGT73B4	ref Arabidopsis thaliana UDP-glycosyltransferase 7384 mRNA, complete cds [NM_127109]
-7.46	AT1G28330	DYL1	ref Arabidopsis thaliana dormancy-associated protein-like 1 mRNA, complete cds [NM_001160906]
-7.65	AT5G19120	AT5G19120	ref Arabidopsis thaliana aspartyl protease family protein mRNA, complete cds [NM_121917]
-7.66	AT5G52570	BETA-OHASE 2	ref Arabidopsis thaliana beta-carotene hydroxylase 2 mRNA, complete cds [NM_124636]
-7.85	AT1G72060	AT1G72060	ref Arabidopsis thaliana serine-type endopeptidase inhibitor mRNA, complete cds [NM_105864]
-7.86	AT1G08630	THA1	ref Arabidopsis thaliana threonine aldolase mRNA, complete cds [NM_100736]
-7.95	AT1G71520	AT1G71520	ref Arabidopsis thaliana ERF/AP2 transcription factor family protein DREB A-5 mRNA, complete cds [NM_105820]
-7.98	AT2G36750	UGT73C1	ref Arabidopsis thaliana UDP-glucosyl transferase 73C1 mRNA, complete cds [NM_129230]
-8.03	AT3G45300	IVD	ref Arabidopsis thaliana isovaleryl-CoA-dehydrogenase mRNA, complete cds [NM_114399]
-8.48	AT1G66760	AT1G66760	ref Arabidopsis thaliana MATE efflux family protein mRNA, complete cds [NM_179523]
-8.61	AT1G43160	RAP2.6	ref Arabidopsis thaliana ethylene-responsive transcription factor RAP2-6 mRNA, complete cds [NM_103468]
-8.64	AT2G15480	UGT73B5	ref Arabidopsis thaliana UDP-glucosyl transferase 73B5 mRNA, complete cds [NM_127108]
-8.71	AT1G15380	AT1G15380	ref Arabidopsis thaliana LactoyigIutathione lyase / glyoxalase I family protein mRNA, complete cds [NM_101407]
-8.71	AT2G29480	GSTU2	ref Arabidopsis thaliana glutathione S-transferase tau 2 mRNA, complete cds [NM_128502]
-8.75	AT1G05560	UGT75B1	ref Arabidopsis thaliana UDP-glucosyltransferase 75B1 mRNA, complete cds [NM_100435]
-8.76	AT1G11260	STP1	ref Arabidopsis thaliana sugar transporter 1 mRNA, complete cds [NM_100998]
-8.85	AT1G15010	AT1G15010	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_101370]
-9.32	AT1G77760	NIA1	ref Arabidopsis thaliana nitrate reductase [NADH] 1 mRNA, complete cds [NM_106425]
-9.76	AT2G40000	HSPRO2	ref Arabidopsis thaliana HS1 PRO-1 2-like protein mRNA, complete cds [NM_129558]
-9.94	AT2G36800	DOGT1	ref Arabidopsis thaliana UDP-glycosyltransferase 73C5 mRNA, complete cds [NM_129235]

-10.1	AT1G76600	AT1G76600	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_106310]
-10.12	AT4G35090	CAT2	ref Arabidopsis thaliana catalase 2 mRNA, complete cds [NM_119675]
-10.19	AT4G15760	M01	ref Arabidopsis thaliana monooxygenase 1 mRNA, complete cds [NM_001203809]
-10.72	AT5G20250	DIN10	ref Arabidopsis thaliana putative galactinolsucrose galactosyltransferase 6 mRNA, complete cds [NM_001036833]
-10.8	AT1G76680	OPR1	ref Arabidopsis thaliana 12-oxophytodienoate reductase 1 mRNA, complete cds [NM_106318]
-11.01	AT5G51440	AT5G51440	ref Arabidopsis thaliana heat shock protein 23.5 mRNA, complete cds [NM_124523]
-11.06	AT1G80440	AT1G80440	ref Arabidopsis thaliana F-box/kelch-repeat protein mRNA, complete cds [NM_106692]
-11.13	AT1G65970	TPX2	ref Arabidopsis thaliana thioredoxin-dependent peroxidase 2 mRNA, complete cds [NM_105269]
-11.18	AT4G16690	MES16	ref Arabidopsis thaliana methyl esterase 16 mRNA, complete cds [NM_117770]
-11.56	AT4G33666	AT4G33666	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_119524]
-11.92	AT2G47270	AT2G47270	ref Arabidopsis thaliana transcription factor UPBEAT1 mRNA, complete cds [NM_130295]
-12.02	AT5G54585	AT5G54585	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_148130]
-12.03	AT1G80920	ЯГ	ref Arabidopsis thaliana chaperone protein dnaJ 8 mRNA, complete cds [NM_106740]
-12.2	AT2G36780	AT2G36780	ref Arabidopsis thaliana UDP-glucosyl transferase 73C3 mRNA, complete cds [NM_129233]
-12.35	AT5G22140	AT5G22140	ref Arabidopsis thaliana FAD/NAD(P)-binding oxidoreductase family protein mRNA, complete cds [NM_147895]
-12.43	AT5G16960	AT5G16960	ref Arabidopsis thaliana zinc-binding dehydrogenase family protein mRNA, complete cds [NM_121702]
-13.14	AT3G04000	AT3G04000	ref Arabidopsis thaliana aldehyde reductase mRNA, complete cds [NM_111271]
-13.43	AT1G17170	GSTU24	ref Arabidopsis thaliana glutathione S-transferase TAU 24 mRNA, complete cds [NM_101578]
-14.23	AT1G07400	AT1G07400	ref Arabidopsis thaliana class I heat shock protein mRNA, complete cds [NM_100614]
-14.85	AT5G66400	RAB18	ref Arabidopsis thaliana dehydrin Rab18 mRNA, complete cds [NM_126038]
-14.87	AT1G80160	AT1G80160	ref Arabidopsis thaliana GLYOXYLASE I 7 mRNA, complete cds [NM_001084382]
-15.89	AT4G27450	AT4G27450	ref Arabidopsis thaliana aluminum induced protein with YGL and LRDR motifs mRNA, complete cds [NM_118880]
-16.14	AT2G33830	AT2G33830	ref Arabidopsis thaliana dormancy/auxin associated protein mRNA, complete cds [NM_179889]
-16.16	AT2G18700	TPS11	ref Arabidopsis thaliana putative alpha,alpha-trehalose-phosphate synthase [UDP-forming] 11 mRNA, complete cds [NM_127426
-16.54	TC304561	TC384346	tc Rep: Xylosidase - Arabidopsis thaliana (Mouse-ear cress), complete [TC384346]
-16.74	AT1G09500	AT1G09500	ref Arabidopsis thaliana alcohol dehydrogenase-ilke protein mRNA, complete cds [NM_001035935]
-17.51	AT5G14180	MPL1	ref Arabidopsis thaliana Myzus persicae-induced lipase 1 mRNA, complete cds [NM_121422]
-17.67	AT5G02020	AT5G02020	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_180421]
-17.72	AT5G56870	BGAL4	ref Arabidopsis thaliana beta-galactosidase 4 mRNA, complete cds [NM_125070]
-19.16	AT5G14470	AT5G14470	ref Arabidopsis thaliana GHMP kinase family protein mRNA, complete cds [NM_121451]
-19.62	AT2G05540	AT2G05540	ref Arabidopsis thaliana glycine-rich protein mRNA, complete cds [NM_126577]
-20.85	AT3G24420	AT3G24420	ref Arabidopsis thaliana hydrolase, alpha/beta fold family protein mRNA, complete cds [NM_113349]
-22.75	AT4G08555	AT4G08555	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_179014]
-23	AT3G28740	CYP81D1	ref Arabidopsis thaliana cytochrome P450 CYP81D11 mRNA, complete cds [NM_113795]
-24.7	AT3G60140	DIN2	ref Arabidopsis thaliana beta-glucosidase 30 mRNA, complete cds [NM_115877]
-25.49	AT5G01600	FER1	ref Arabidopsis thaliana ferretin 1 mRNA, complete cds [NM_120238]

Capítulo 1

-31.28	AT1G73120	AT1G73120	ref Arabidopsis thaliana uncharacterized protein mRNA, complete cds [NM_105970]
-34.59	AT3G20340	AT3G20340	ref Arabidopsis thaliana paraquat downregulated protein mRNA, complete cds [NM_112925]
-41.4	AT3G15450	AT3G15450	ref Arabidopsis thaliana aluminum induced protein with YGL and LRDR motif mRNA, complete cds [NM_001035625]
-41.54	AT1G05680	UGT74E2	ref Arabidopsis thaliana Uridine diphosphate glycosyltransferase 74E2 mRNA, complete cds [NM_100448]
-41.68	AT5G49360	BXL1	ref Arabidopsis thaliana bifunctional {beta}-D-xylosidase/{alpha}-L-arabinofuranosidase mRNA, complete cds [NM_124313]
-41.95	AT4G01870	AT4G01870	ref Arabidopsis thaliana tolB-related protein mRNA, complete cds [NM_116417]
-42.02	BE039144	BE039144	tc Rep: Chromosome chr19 scaffold_4, whole genome shotgun sequence - Vitis vinifera (Grape), partial (59%) [TC393828]
-48.66	AT3G47340	ASN1	ref Arabidopsis thaliana asparagine synthetase [glutamine-hydrolyzing] mRNA, complete cds [NM_180333]
-111.32	AT4G35770	SEN1	ref Arabidopsis thaliana senescence-associated protein DIN1 mRNA, complete cds [NM_119743]

Capítulo 1

Supplemental Table 5: List of genes whose expression is altered by high irradiance treatment (Athanasiou et al., 2010). Genes that are differentially regulated by *A. alternata* VCs (cf. Supplemental Table 3 in Sánchez-López, et al., 2016) are highlighted in yellow color.

Representative Public ID	Gene Title	Fold change
At1g74670	gibberellin-responsive protein, putative	-22.4
At2g40610	expansin, putative (EXP8)	-16.2
At5g48490	protease inhibitor/seed storage/lipid transfer protein (LTP) family protein	-15.4
At3q15450	expressed protein	-12.1
At1q70290	trehalose-6-phosphate synthase, putative	-10.4
At1g23390	kelch repeat-containing F-box family protein	-10.2
At2g25900	zinc finger (CCCH-type) family protein	-9.8
At2g22980	serine carboxypeptidase S10 family protein	-9.6
At2g18700	glycosyl transferase family 20 protein / trehalose-phosphatase family protein	-9.5
At2g33830	dormancy/auxin associated family protein	-9.2
At5g59080	expressed protein	-9.2
At5g61590	AP2 domain-containing transcription factor family protein	-9
At5g02760	protein phosphatase 2C family protein / PP2C family protein	-8.8
At2g15890	expressed protein	-8.6
At1g80920	DNAJ heat shock N-terminal domain-containing protein	-8.5
At5g40890	chloride channel protein (CLC-a)	-8.3
At1g72150	SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein	-8
At5g24490	30S ribosomal protein, putative	-8
At5g22920	zinc finger (C3HC4-type RING finger) family protein	-8
At4g24800	MA3 domain-containing protein	-7.8
At1g18620	expressed protein	-7.7
At2g44740	cyclin family protein	-7.4
At4g30690	translation initiation factor 3 (IF-3) family protein	-7
At3g19850	phototropic-responsive NPH3 family protein	-6.9
At3g13750	beta-galactosidase, putative / lactase, putative	-6.7
At1g63800	ubiquitin-conjugating enzyme 5 (UBC5)	-6.6
At3g62550	universal stress protein (USP) family protein	-6.5
At5g35790	glucose-6-phosphate 1-dehydrogenase / G6PD (APG1)	-6.5
At1g19660	wound-responsive family protein /// wound-responsive protein-related	-6.4
At1g80440		-6.3
At1g52200	expressed protein	-0.3
At1 a 25 2 2 0	expressed protein	-0.3
At1g23230		-0.1
At3a53800	armadillo/beta catenin repeat family protein	-0.1
At/a20260		-6.1
At1a08980	amidase family protein	-5.0
At1g11260	alucose transporter (STP1)	-5.8
At1g15740	leucine-rich repeat family protein	-5.8
At3a26510	octicosapeptide/Phox/Bem1p (PB1) domain-containing protein	-5.6
At1a56220	dormancy/auxin associated family protein	-5.6
At5a03350	legume lectin family protein	-5.6
At5g63190	MA3 domain-containing protein	-5.4
At2g32100	ovate protein-related	-5.4
At1g68190	zinc finger (B-box type) family protein	-5. <u>3</u>
At5g18600	glutaredoxin family protein	-5.3
At4g27450	expressed protein	-5.3
At5g60680	expressed protein	-5.1
At1g13260	DNA-binding protein RAV1 (RAV1)	-5.1
At1g02300	cathepsin B-like cysteine protease, putative	-5.1
At4a39090	cysteine proteinase RD19a (RD19A) / thiol protease	-5

At5g14120	nodulin family protein	-5
At3g61060	F-box family protein / lectin-related	-4.9
At2g27050	ethylene-insensitive3-like1 (EIL1)	-4.8
At1g13650	expressed protein	-4.7
At3g47160	expressed protein	-4.6
At2g15960	expressed protein	-4.4
At4g04330	expressed protein	-4.4
At4g27440	protochlorophyllide reductase B, chloroplast / PCR B / NADPH-protochlorophyllide oxidoreductase B (PORB)	-4.4
At4g14270	expressed protein	-4.4
At3q51840	short-chain acyl-CoA oxidase	-4.4
At3q28860	multidrug resistance P-glycoprotein, putative	-4.4
At4g26530	fructose-bisphosphate aldolase, putative	-4.3
At5g49730	ferric reductase-like transmembrane component family protein /// ferric reductase-like transmembrane component family protein	-4.3
At1g12780	UDP-glucose 4-epimerase / UDP-galactose 4-epimerase / Galactowaldenase	-4.3
At4g01026	expressed protein	-4.2
At1g54820	protein kinase family protein	-4.2
At5g02160	expressed protein	-4.1
At2g39400	hydrolase, alpha/beta fold family protein	-4
At4q05070	expressed protein	-4
At4q32340	expressed protein	-4
At1g71030	myb family transcription factor	-4
At1g01240	expressed protein	-4
At5q02020	expressed protein	-4
At2q18300	basic helix-loop-helix (bHLH) family protein	-4
At1g29395	stress-responsive protein, putative	-4
At2q46220	expressed protein	-3.9
At1q17990	12-oxophytodienoate reductase, putative /// 12-oxophytodienoate reductase, putative	-3.9
At5q44680	methyladenine glycosylase family protein	-3.9
At5q44530	subtilase family protein	-3.9
At3q18080	glycosyl hydrolase family 1 protein	-3.9
At3g26170	cytochrome P450 71B20, putative (CYP71B2) /// cytochrome P450 71B19, putative (CYP71B19)	-3.9
At3g59940	autophagy 4b (APG4b) /// kelch repeat-containing F-box family protein	-3.8
At1q11530	thioredoxin family protein	-3.8
At1g09750	chloroplast nucleoid DNA-binding protein-related	-3.8
At2g30510	signal transducer of phototropic response (RPT2)	-3.8
At4q03510	zinc finger (C3HC4-type RING finger) family protein (RMA1)	-3.8
At5g06690	thioredoxin family protein	-3.7
At5g62360	invertase/pectin methylesterase inhibitor family protein	-3.7
At2g40750	WRKY family transcription factor	-3.7
At2g02710	PAC motif-containing protein	-3.6
At3q26740	light responsive protein-related	-3.6
At4g36040	DNAJ heat shock N-terminal domain-containing protein (J11)	-3.6
At1g49500	expressed protein	-3.6
At4g28240	wound-responsive protein-related /// NADH dehydrogenase-related	-3.6
At1g33240	trihelix DNA-binding protein, putative	-3.6
At5g05690	cytochrome P450 90A1 (CYP90A1) (CYP90) (CPD)	-3.6
At4g39510	cytochrome P450 family protein	-3.6
At2g34620	mitochondrial transcription termination factor-related / mTERF-related	-3.6
At2g22990	sinapoylglucose:malate sinapoyltransferase (SNG1)	-3.5
At2g29290	tropinone reductase, putative / tropine dehydrogenase, putative	-3.5

At5g13800aytocsyl hydrolase family 35 protein35At5g13806CBS domain-containing protein35At5g13806CBS domain-containing protein35At5g12807haloacid dehalogenase-like hydrolase family protein35At5g27808expressed protein34At5g28202expressed protein34At5g28203arabinogalactan-protein (ACP16)34At5g28201arabinogalactan-protein (ACP16)34At5g24470pseudo-response regulator 5 (APRR5)34At1g21500expressed protein34At1g2483autophay 61 (APC86)34At1g25402autophay 61 (APC86)34At1g25403expressed protein34At1g25404ben protesse homelog 1, mitochodrial (LON)33At1g125502expressed protein33At1g12522expressed protein33At1g26406glycerol kinase, putative / lactase, putative33At1g26406glycerol kinase, putative / lactase, putative33At1g26408expressed protein33At1g26280cytochrome P450 family protein33At1g26280cytochrome P450 family protein33At1g26280cytochrome P450 family protein33At1g26280cytochrome P450 family protein33At1g26130expressed protein33At1g261400phosphatidate cyticlylytansferase family protein33At1g26150glactioni synthase, putative (PCH1) family protein32At1g26150glactioni synthase, put	At1g32540 zinc finger protein, putative		-3.5
Ak227830 expressed protein -35 Ak59(1980) CBS domain-containing protein -35 Ak19(2200) expressed protein -35 Ak1922802 expressed protein -34 Ak1922802 expressed protein -34 Ak1922803 expressed protein -34 Ak1922804 expressed protein -34 Ak1922805 expressed protein -34 Ak1922805 expressed protein -34 Ak1921500 expressed protein -34 Ak1921500 expressed protein -34 Ak1927670 purine permease-related -33 Ak192770 purine permease-related -33 Ak192700 conspressed protein -34 Ak192700 purine permease-related -33 Ak192700 purine permease-related -33 Ak192700 purine permease-related -33 Ak192700 purine permease-related -33 Ak1926280 expressed protein -33 Ak1926280 expressed protein -33 Ak1926280 expressed protein	At5g63800	glycosyl hydrolase family 35 protein	-3.5
Atsj0860CBS domain-containing protein-3.5At1g13210halacaid dehalogenase-like hydrolase family protein-3.5At3g22800expressed protein-3.4At5g22802expressed protein-3.4At5g28020arabinogalactan-protein (ACP16)-3.4At5g24270pseudo-response regulator 5 (APRR5)-3.4At5g24470pseudo-response regulator 5 (APRR5)-3.4At5g24470pseudo-response regulator 5 (APRR5)-3.4At1g21500expressed protein-3.4At1g32600gamma-glutamyltranspeptidase family protein-3.4At1g32700purper protein-3.4At1g32700purper protein-3.4At1g32700purper protein-3.3At1g326280oytech-related-3.3At1g326280oytech-related-3.3At3g52840beta-galactoclidase, putative / lactase, putative-3.3At3g52820cytochrome P450 family protein-3.3At3g53630expressed protein-3.3At3g54280phosphatidate cytlicly/itransferase family protein-3.3At3g52820cytochrome P450 family protein-3.3At3g52820zinc finger (B-box type) family protein-3.3At3g52820zinc finger (B-box type) family protein-3.3At3g52820zinc finger (CCCH-type) family protein-3.3At3g52820zinc finger (CCCH-type) family protein-3.3At3g52820zinc finger (CCCH-type) family protein-3.3At3g52820zinc finger (CCCH-type) family protein	At2g27830	expressed protein	-3.5
Attg12210 halaccid dehalogenase-like hydrolase family protein -3.5 Attg2220 expressed protein -3.4 Attg2220 cysteine synthase, putative / O-acetylserine (thiol)-lyase, putative / O-acetylserine sutthydylase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine sutthydylase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine sutthydylase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine sutthydylase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine (thiol)-lyase, putative / D-acetylserine suttive / D-acetylserine (thiol)-lyase, putative / D-acetylserine suttive / D-acetylserine	At5g10860	CBS domain-containing protein	-3.5
At6g26283expressed protein3.5At6g26282cysteine synthase, putative / O-acetylserine sulflytrytrase, putative / O-acetylserine sulflytrytrytrytrytrytrytrytrytrytrytrytrytry	At1g13210	haloacid dehalogenase-like hydrolase family protein	-3.5
Att g27290 expressed protein 34 Att g28020 cysteine synthase, putative / O-acetylserine (thiol)-lyase, putative / O-acetylserine suthydylase, putative 34 Att g246330 arabinogalactan-protein (AGP16) 34 Att g246330 arabinogalactan-protein (AGP16) 34 Att g21500 expressed protein 34 Att g21500 expressed protein 34 Att g25275 expressed protein 34 Att g252750 expressed protein 33 Att g252750 beta-galactoidase, putative / lactase, putative 33 Att g262800 cylochrome P450 family protein 33 Att g264400 phosphatidate cylidylyftansferase family protein 33 Att g26430 phosphatidate cylidylyftansferase family protein 33 Att g26430 photalwe protein family protein 33 Att g26430 photalwe protein family protein 33 Att g264430 phosose transporter, putative (RSH3) 33 <td>At5g62630</td> <td>expressed protein</td> <td>-3.5</td>	At5g62630	expressed protein	-3.5
At5g2802cysteine synthase, putative / C-acetylserine (thiol)-lyase, putative / C-acetylserine-3.4At2g46330arabinogalactan-protein (AGP16)-3.4At3g24630expressed protein-3.4At1g21500expressed protein-3.4At41g21500gamma-glutamyltranspeptidase family protein-3.4At1g2527expressed protein-3.4At1g2527expressed protein-3.4At1g2527purite permase-related-3.3At1g2527purite permase-related-3.3At1g25280serine-rich protein-related-3.3At3g26280petro-th protein-related-3.3At3g26280cytochrome P450 family protein-3.3At3g26280cytochrome P450 family protein-3.3At3g26280cytochrome P450 family protein-3.3At3g26280cytochrome P450 family protein-3.3At3g26280cytochrome P450 family protein-3.3At3g26280phosphatidate cytidylyltransferase family protein-3.3At3g26280cytochrome P450 family protein-3.3At3g26280protein-for protein-3.3At3g26280proteon-dependent oligopedide transport (PC1) family protein-3.3At3g26280protein-for protein-3.3At3g26280protein-3.3At3g27290protein-3.3At3g26280protein-3.3At3g26280protein-3.3At3g26280protein-3.3At3g26280protein-3.3At3g26280pr	At1g27290	expressed protein	-3.4
A2946330arabinogalactan-protein (AGP16)-3.4At5g24470pseudo-response regulator 5 (APRR5)-3.4At1g21500expressed protein-3.4At4g16520autophagy 8f (APC8f)-3.4At4g35540gamma-glutamyltranspeptidase family protein-3.4At1g25275expressed protein-3.4At1g25276expressed protein-3.4At1g45770purine permease-related-3.3At1g100460glycerol kinase, putative-3.3At1g25280serine-rich protein-related-3.3At3g25280expressed protein-3.3At3g25280expressed protein-3.3At3g25280cytochrome P450 family protein-3.3At3g25280cytochrome P450 family protein-3.3At3g25280cytochrome P450 family protein-3.3At3g25280zinc finger (B-box type) family protein-3.3At1g454130RelA/SpOT protein, putative (RSH3)-3.3At1g21290zinc finger (CCCH-type) family protein-3.3At1g2190proton-dependent oligopetide transport (POT) family protein-3.2At1g2190proton-dependent oligopetide transport (POT) family protein-3.2At1g21740lecutin-ticholestroi acytitransferase family protein-3.2At1g2190proton-dependent oligopetide transport (POT) family protein-3.2At1g21910protein-depetide family protein-3.2At1g21920proton-dependent oligopetide transport (POT) family protein-3.2At1g21930glactinol synthase, putative<	At5g28020	cysteine synthase, putative / O-acetylserine (thiol)-lyase, putative / O-acetylserine sulfhydrylase, putative	-3.4
Atsg24470pseudo-response regulator 5 (APRR5)3.4Attg21500expressed protein-3.4Atsg1620autophagy 81 (APC8f)-3.4Atsg1620gamma-glutamyltranspeptidase family protein-3.4Atsg27401Lon protease homolog 1, mitochondrial (LON)-3.3Attg26275expressed protein-3.3Attg26280givcerol kinase, putative-3.3Attg26280givcerol kinase, putative-3.3At3g26280cytochore P450 family protein-3.3At3g26280cytochore P450 family protein-3.3At3g26280protein-related-3.3At3g26280protein-P450 family protein-3.3At3g26280protein p450 family protein-3.3At3g26280protein-ptotein ptotein-3.3At3g26280protein-ptotein ptotein-3.3At1g64520zinc finger (B-box type) family protein-3.3At1g65290protein ptotein ptotein-3.3At1g65290protein-ptotein ptotein-3.3At1g65290protein-ptotein ptotein-3.3At1g52190proten-dependent oligopeptide transport (PC7) family protein-3.3At1g52190proten-dependent oligopeptide transport (PC7) family protein-3.2At1g7340hydroisea, alphabeta foid family protein-3.2At1g30250galactinol synthase, putative-3.2At1g26300protease-associated (PA) domain-containing protein-3.2At1g30300galactinol synthase, putative / neoxanthin cleavage enzyme, putative /-3.1 <t< td=""><td>At2g46330</td><td>arabinogalactan-protein (AGP16)</td><td>-3.4</td></t<>	At2g46330	arabinogalactan-protein (AGP16)	-3.4
Artig21500expressed protein3.4At4g16520autophagy 8f (APG8f)-3.4At4g36504garma-glutamytranspeptidase family protein-3.4Art1g25275expressed protein-3.4At5g47040Lon protease homolog 1, mitochondrial (LON)-3.3At1g19770purine permease-related-3.3Art3g52840beta-glalactosidase, putative-3.3At3g52840beta-glalactosidase, putative / lactase, putative-3.3At3g5280serine-rich protein-related-3.3At3g5280expressed protein-3.3At3g5280expressed protein-3.3At3g65280expressed protein-3.3At1g65201expressed protein-3.3At1g65202expressed protein-3.3At1g65203expressed protein-3.3At1g652100expressed protein-3.3At1g621900protein, putative (RSH3)-3.3At1g621900proto-dependent oligopeptide transport (POT) family protein-3.3At1g734800hydrolase, alphabeta fold family protein-3.2At1g734800pytholase, alphabeta fold family protein-3.2At1g734800pytholase, alphabeta fold family protein-3.2At1g734800pytholase, putative-3.2At1g734800pytholase, putative / lactase family protein-3.2At1g734800pytholase, putative / lactase family protein-3.2At1g734800pytholase, putative / lactase-3.2At1g734800pytholase, putative / lactase-3.2	At5g24470	pseudo-response regulator 5 (APRR5)	-3.4
At4g16520autophagy 8f (APG8f)-3.4At4g39640gamma-glutamyltranspeptidase family protein-3.4At1g2527expressed protein-3.3At1g19770purine permease-related-3.3At1g19770glycerol kinase, putative-3.3At1g362840beta-galactosidase, putative / atass, putative / atasss	At1g21500	expressed protein	-3.4
A44 Attg25275aymma-glutamyttranspeptidase family protein-3.4Attg25275aymessed protein-3.4Attg25275byttages homolog 1, mitochondrial (LON)-3.3Attg19770purine permease-related-3.3Attg252520serine-rich protein-related-3.3Attg252520serine-rich protein-related-3.3Attg252520serine-rich protein-related-3.3Attg252520serine-rich protein-related-3.3Attg26280cytochrome P450 family protein-3.3Attg26280zinc finger (B-box type) family protein-3.3Attg68520zinc finger (B-box type) family protein-3.3Attg54130RelA/SpoT protein, putative (RSH3)-3.3Attg54130rexpressed protein-3.3Attg54130rexpressed protein-3.3Attg54130rexpressed protein-3.3Attg54130rexpressed protein-3.3Attg54130rexpressed protein-3.3Attg54120zinc finger (CCCH+type) family protein-3.3Attg2420zinc finger (CCCH+type) family protein-3.3Attg2420proton-dependent oligoperitide transport (POT) family protein-3.2Attg173400hydrolase, alphabeta fold family protein-3.2Attg173400hydrolase, alphabeta fold family protein-3.2Attg19860lecithin-cholesterol acyltransferase family protein-3.2Attg19860proteas-associated (PA) domain-containing protein-3.2Attg19860protein factor-3.1A	At4g16520	autophagy 8f (APG8f)	-3.4
Attg2527expressed protein-3.4Attg2770Lon protease homolog 1, mitochondrial (LON)-3.3Attg19770purine permease-related-3.3Attg19707purine permease-related-3.3Attg25280beta-galactosidase, putative / lactase, putative-3.3At5g25280cytochrome P450 family protein-3.3At5g25280cytochrome P450 family protein-3.3At5g26280cytochrome P450 family protein-3.3At5g04290phosphatidate cytidylytransferase family protein-3.3At1968520zinc finger (B-box type) family protein-3.3At1968520zinc finger (B-box type) family protein-3.3At1965209proteshor protein, putative (RSH3)-3.3At1930250expressed protein-3.3At4924220leucine-rich repeat transmembrane protein kinase, putative-3.2At4924220leucine-rich repeat transmembrane protein kinase, putative-3.2At4934220leucine-rich repeat transmembrane protein / LACT family protein-3.2At4919860lecithin:cholesterol acyltransferase family protein-3.2At4919870galactinol synthase, putative-3.2At4919870secine-poxycardenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / acretenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / acretenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / a.1At4919870secine-poxycardenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / a.1-3.1At4919800lecithin:cholesterol acyltr	At4g39640	gamma-glutamyltranspeptidase family protein	-3.4
At5g47040Lon protease homolog 1, mitochondrial (LON)-3.3At1g190770purine permease-related-3.3At1g190760glycerol kinase, putative-3.3At3g52840beta-galactosidase, putative / lactase, putative-3.3At3g52820serine-rich protein-related-3.3At3g56360expressed protein-3.3At3g56360expressed protein-3.3At1g64420phosphatidate cylidylyltransferase family protein-3.3At1g64520zinc finger (B-box type) family protein-3.3At1g64520zinc finger (B-box type) family protein-3.3At1g64520zinc finger (CCH-type) family protein-3.3At1g54130RelA/SpOT protein, putative (RSH3)-3.3At1g52190zinc finger (CCCH-type) family protein-3.3At1g52190proton-dependent oligopeptide transport (POT) family protein-3.3At1g52190zinc finger (CCCH-type) family protein-3.2At1g73480hydrolase, alpha/beta fold family protein / LACT family protein-3.2At1g73480hydrolase, alpha/beta fold family protein / LACT family protein-3.2At1g63620myb family transcription factor-3.2At1g636820myb family transcription factor-3.1At1g63680protease-associated (PA) domain-containing protein-3.1At1g63680protease family protein-3.1At1g63680protease family protein-3.1At1g63680protease family protein-3.1At1g63680protease fortein-3.1 <t< td=""><td>At1g25275</td><td>expressed protein</td><td>-3.4</td></t<>	At1g25275	expressed protein	-3.4
At1g19770purine permease-related-3.3At1g10460giverol kinase, putative-3.3At3g52620serine-rich protein-related-3.3At3g52620cytochrome P450 family protein-3.3At3g52620cytochrome P450 family protein-3.3At3g52620cytochrome P450 family protein-3.3At3g52620cytochrome P450 family protein-3.3At3g52620cytochrome P450 family protein-3.3At1g6820zinc finger (B-box type) family protein-3.3At1g6820zinc finger (B-box type) family protein-3.3At1g73250expressed protein-3.3At1g130250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein-3.3At1g120250expressed protein chanse, putative-3.2At1g120250galactinol synthase, putative-3.2At1g120250galactinol synthase, putative-3.2At1g120350galactinol synthase, putative-3.2At1g120350galactinol synthase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage doxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage doxygenase, putative / neoxanthin cleavage enzyme,	At5g47040	Lon protease homolog 1, mitochondrial (LON)	-3.3
At1g80460glycerol kinase, putative-3.3At1g825240beta-galactosidase, putative / lactase, putative-3.3At5g25280cytochrome P450 family protein-3.3At3g26280cytochrome P450 family protein-3.3At3g65380expressed protein-3.3At5g0490phosphatidate cytidylytransferase family protein-3.3At1g6520zinc finger (B-box type) family protein-3.3At1g053740expressed protein-3.3At1g05250expressed protein-3.3At1g154130Rel/XpoT protein, putative (RSH3)-3.3At1g15150hexose transporter, putative-3.3At4g29190zinc finger (CCCH-type) family protein-3.3At4g29190proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g05050galactinol synthase, putative-3.2At1g05050myb family transcription factor-3.2At1g05050myb family transcription factor-3.2At1g05050myb family transcription factor-3.1At1g05050transferase family protein-3.1At1g05050transferase family protein-3.1At1g05050transferase family protein-3.1At1g05050myb family transcription factor-3.1At1g05050transferase family protein-3.1At1g05050transferase family protein-3.1At1g05050transferase family protein-3.1At1g748	At1g19770	purine permease-related	-3.3
At3g52840beta-galactosidase, putative / lactase, putative-3.3At3g52820serine-rich protein-related-3.3At3g52820serine-rich protein-related-3.3At3g56360expressed protein-3.3At3g56360expressed protein-3.3At1g68520zinc finger (B-box type) family protein-3.3At1g68520expressed protein-3.3At1g65130RelA/SpoT protein, putative (RSH3)-3.3At1g30250expressed protein-3.3At1g130250expressed protein-3.3At1g130250expressed protein-3.3At1g130250expressed protein-3.3At1g130250expressed protein-3.3At1g130250expressed protein-3.3At1g130250expressed protein-3.3At1g130250expressed protein-3.3At1g130250galactinol synthase, putative-3.3At1g54180hydrolase, alpha/beta fold family protein-3.2At1g16410hydrolase, alpha/beta fold family protein / LACT family protein-3.2At1g17480hydrolase, alpha/beta fold family protein / LACT family protein-3.2At1g19801lecithin:cholesterol acyltransferase family protein-3.2At1g17480hydrolase, alpha/beta fold family protein-3.2At1g19802protein-family protein-3.2At1g19803expressed protein-3.1At2g198201transferase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage diaxygenase, putative / neoxanthin cleavage enzyme,	At1g80460	glycerol kinase, putative	-3.3
At5g25280serine-rich protein-related-3.3At3g26280cytochrome P450 family protein-3.3At3g26280cytochrome P450 family protein-3.3At3g6530expressed protein-3.3At1g65520zinc finger (B-box type) family protein-3.3At1g6520expressed protein-3.3At1g65520zinc finger (B-box type) family protein-3.3At1g65510hexos transporter, putative (RSH3)-3.3At1g51150hexose transporter, putative-3.3At4g32190zinc finger (CCCH-type) family protein-3.3At4g32190zinc finger (CCCH-type) family protein-3.3At4g32120leucine-rich repeat transmembrane protein kinase, putative-3.2At1g52190proton-dependent oligopeptide transport (POT) family protein-3.2At1g0350galactinol synthase, putative-3.2At1g0350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At4g19800protease-associated (PA) domain-containing protein-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / arotenoid cleavage dioxygenase, putative-3.1At3g60270transferase family protein-3.1At2g30390expressed protein-3.1At2g30302expressed protein-3.1At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g26500	At3g52840	beta-galactosidase, putative / lactase, putative	-3.3
At3g26280cytochrome P450 family protein-3.3At3g56360expressed protein-3.3At5g04490phosphatidate cytidylyltransferase family protein-3.3At1g68220zinc finger (B-box type) family protein-3.3At2g37490expressed protein-3.3At1g54130RelA/SpoT protein, putative (RSH3)-3.3At1g30250expressed protein-3.3At1g30250expressed protein-3.3At1g51150hexose transporter, putative (RSH3)-3.3At4g29190zinc finger (CCCH-type) family protein-3.3At4g21910proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g03050galactinol synthase, putative-3.2At1g03050galactinol synthase, putative-3.2At1g03050protease-associated (PA) domain-containing protein-3.2At1g10800protease-associated (PA) domain-containing protein-3.1At3g50270transferase family protein-3.1At2g34170remorin family protein-3.1At2g3030expressed protein-3.1At2g3030expressed protein-3.1At2g3030expressed protein-3.1At2g43030expressed protein-3.1At2g3030expressed protein-3.1At2g3030expressed protein-3.1At2g43010phybractronsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At2g	At5g25280	serine-rich protein-related	-3.3
At3g56360expressed protein-3.3At5g04490phosphatidate cytidylyltransferase family protein-3.3At1g68520zinc finger (B-box type) family protein-3.3At1g68520expressed protein-3.3At1g54130RelA/SpoT protein, putative (RSH3)-3.3At1g510150hexose transporter, putative (RSH3)-3.3At1g510150hexose transporter, putative (RSH3)-3.3At1g52190proton-dependent oligopeptide transport (POT) family protein-3.3At4g21910zinc finger (CCCH-type) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g173480hydrolase, alpha/beta fold family protein-3.2At1g19350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At1g163690protease-associated (PA) domain-containing protein-3.2At3g16520myb family transcription factor-3.1At3g16520transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At1g74840myb family transcription factor-3.1At1g74840myb family transcription stress protein (ERD6) / sugar transporter family protein-3.1At2g30930expressed protein-3.1At2g44010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short-3	At3g26280	cytochrome P450 family protein	-3.3
At5g04490phosphatidate cytidylyltransferase family protein-3.3At1g68520zinc finger (B-box type) family protein-3.3At2g37490expressed protein-3.3At1g54131RelA/SpoT protein, putative (RSH3)-3.3At1g30250expressed protein-3.3At1g30250expressed protein-3.3At1g516150hexose transporter, putative (RSH3)-3.3At4g29190zinc finger (CCCH-type) family protein-3.3At4g24200proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g73480hydrolase, alpha/beta fold family protein-3.2At1g09350galactinol synthase, putative-3.2At1g63690protease-associated (PA) domain-containing protein-3.2At1g63690protease-associated (PA) domain-containing protein-3.1At3g50270transferase family protein-3.1At3g50270transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g3030expressed protein-3.1At2g3030expressed protein-3.1At2g3030expressed protein-3.1At2g40450expressed protein-3.1At2g40450expressed protein-3.1At2g2030expressed protein-3.1At2g2030expressed protein-3.1At2g40450expressed protein-3.1At2g240310phytochrome-	At3g56360	expressed protein	-3.3
At1g68520zinc finger (B-box type) family protein-3.3At2g3740expressed protein-3.3At1g54130RelA/Sp0T protein, putative (RSH3)-3.3At1g50250expressed protein-3.3At1g50250expressed protein-3.3At4g29190zinc finger (CCCH+type) family protein-3.3At4g29190zinc finger (CCCH+type) family protein-3.3At4g2100proton-dependent oligopeptide transport (POT) family protein-3.2At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g09350galactinol synthase, putative-3.2At1g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antily transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At1g78400expressed protein-3.1At2g41870remorin family protein stress protein (ERD6) / sugar transporter family protein-3.1At1g76400ATP-dependent protease La (LON) domain-containing protein-3.2At2g43101phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein g (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3<	At5g04490	phosphatidate cytidylyltransferase family protein	-3.3
At2g37490expressed protein-3.3At1g54130RelA/SpoT protein, putative (RSH3)-3.3At1g30250expressed protein-3.3At5g16150hexose transporter, putative-3.3At5g16150hexose transporter, putative-3.3At4g29190zinc finger (CCCH-type) family protein-3.3At4g29190proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g73480hydrolase, alpha/beta fold family protein-3.2At1g99550galacinol synthase, putative-3.2At1g9860lecithin.cholesterol acyltransferase family protein / LACT family protein-3.2At1g63690protease-associated (PA) domain-containing protein-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / carotenoid cleavage dioxygenase, putative / carotenoid cleavage dioxygenase, putative / carotenoid cleavage dioxygenase putative / carotenoid cleavage dioxygenase protein-3.1At2g41870remorin family protein-3.1At2g41870expressed protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g40300expressed protein-3At3g40450expressed protein-3At3g40450expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix	At1g68520	zinc finger (B-box type) family protein	-3.3
At1g54130RelA/SpoT protein, putative (RSH3)-3.3At1g30250expressed protein-3.3At1g30250expressed protein-3.3At1g20251inc finger (CCH-type) family protein-3.3At4g2192zinc finger (CCH-type) family protein-3.3At4g2420leucine-rich repeat transmembrane protein kinase, putative-3.2At1g7340hydrolase, alpha/beta fold family protein-3.2At1g9850galactinol synthase, putative-3.2At4g9860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At1g6520myb family transcription factor-3.2At1g63600protease-associated (PA) domain-containing protein-3.1At2g41870transferase family protein-3.1At3g50270transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At1g74840myb family transcription factor-3.1At1g74840expressed protein-3.1At1g74840expressed protein-3.1At1g74840myb family transcription factor-3.1At1g9450expressed protein-3.1At1g7480expressed protein-3.1At1g7480expressed protein-3.1At1g7480phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3A	At2g37490	expressed protein	-3.3
At1g30250expressed protein-3.3At5g16150hexose transporter, putative3.3At4g29190zinc finger (CCCH-type) family protein-3.3At1g52100proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g73480hydrolase, alpha/beta fold family protein-3.2At1g09350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At3g40450expressed protein-3.1At3g40450expressed protein-3.3At4g24180myb family transcription factor-3.1At3g4050expressed protein-3.1At5g40450expressed protein-3.1At5g40450expressed protein-3.3At1g75460ATP-dependent protease La (LON) domain-containing protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under r	At1g54130	ReIA/SpoT protein, putative (RSH3)	-3.3
At5g16150hexose transporter, putative-3.3At4g29190zinc finger (CCCH-type) family protein-3.3At4g29190proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g73480hydrolase, alpha/beta fold family protein-3.2At1g09350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At4g19870protease-associated (PA) domain-containing protein-3.2At4g19170-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / a.1-3.1At3g50270transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g3030expressed protein-3.1At2g40870early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At5g40520expressed protein-3At2g41870phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At2g4580chlorophyll A-B binding protein (LHCB2:4)-3At	At1g30250	expressed protein	-3.3
At4g29190zinc finger (CCCH-type) family protein-3.3At1g52190proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g73480hydrolase, alpha/beta fold family protein-3.2At1g09350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At4g19170g-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At3g50270transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At1g08930early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3At1g75460ATP-dependent protease La (LON) domain-containing protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g9850nitrate transporter (NTL1)-3 <td>At5g16150</td> <td>hexose transporter, putative</td> <td>-3.3</td>	At5g16150	hexose transporter, putative	-3.3
At1g52190proton-dependent oligopeptide transport (POT) family protein-3.3At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g73480hydrolase, alpha/beta fold family protein-3.2At1g09350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At4g19860protease-associated (PA) domain-containing protein-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At2g3030expressed protein-3.1At2g3030expressed protein-3.1At5g04550myb family transcription factor-3.1At2g3030expressed protein-3.1At5g40450expressed protein-3.1At5g40450expressed protein-3At5g40450expressed protein-3At5g2270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g685730endo-xyloglucosyl transferase, putative / xyloglu	At4g29190	zinc finger (CCCH-type) family protein	-3.3
At4g34220leucine-rich repeat transmembrane protein kinase, putative-3.2At1g73480hydrolase, alpha/beta fold family protein-3.2At1g09350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At1g63690protease-associated (PA) domain-containing protein-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / -3.1-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At2g30930expressed protein-3.1At2g30930expressed protein-3.1At5g40450expressed protein-3.1At5g40450expressed protein-3.1At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g97690chlorophyll A-B binding protein (LHCB2:4)-3At3g9850nitrate transporter (NTL1)-3	At1g52190	proton-dependent oligopeptide transport (POT) family protein	-3.3
At1g73480hydrolase, alpha/beta fold family protein-3.2At1g09350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At1g63690protease-associated (PA) domain-containing protein-3.2At4g19170g-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At2g41870transferase family protein-3.1At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g3030expressed protein-3.1At5g40450expressed protein-3.1At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At3g98500nitrate transporter (NTL1)-3	At4g34220	leucine-rich repeat transmembrane protein kinase, putative	-3.2
At1g09350galactinol synthase, putative-3.2At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At1g63600protease-associated (PA) domain-containing protein-3.2At4g19170g-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At3g16520UDP-glucoronsyl/UDP-glucosyl transferase family protein-3.1At1g0830early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At1g75460ATP-dependent protease La (LON) domain-containing protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730endo-xyloglucan transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g68850nitrate transporter (NTL1)-3	At1g73480	hydrolase, alpha/beta fold family protein	-3.2
At4g19860lecithin:cholesterol acyltransferase family protein / LACT family protein-3.2At5g08520myb family transcription factor-3.2At1g63690protease-associated (PA) domain-containing protein-3.2At4g19170g-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antennoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antennoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antennoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antennoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antennoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antennoid cleavage dioxygenase, putative / neoxanthin cleavage enzyme, putative / antipotein-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At1g30830early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At5g40450expressed protein-3At5g40450expressed protein-3At5g40450expressed protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730endo-xyloglucan transferase, putative / xyloglucan endotransglycosylase, putative / <td>At1g09350</td> <td>galactinol synthase, putative</td> <td>-3.2</td>	At1g09350	galactinol synthase, putative	-3.2
At5g08520myb family transcription factor-3.2At1g63690protease-associated (PA) domain-containing protein-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At3g16520UDP-gluccornosyl/UDP-glucosyl transferase family protein-3.1At2g30930expressed protein-3.1At1g74840myb family transcription factor-3.1At2g40450expressed protein-3.1At1g78400ATP-dependent protease La (LON) domain-containing protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730endo-xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g6850nitrate transporter (NTL1)-3	At4g19860	lecithin:cholesterol acyltransferase family protein / LACT family protein	-3.2
At1g63690protease-associated (PA) domain-containing protein-3.2At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At3g10520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At1g08930expressed protein-3.1At1g08930expressed protein-3.1At1g78400MTP-dependent protease La (LON) domain-containing protein-3At5g2270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730endo-xyloglucan transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At5g08520	myb family transcription factor	-3.2
At4g191709-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative-3.1At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g30930expressed protein-3.1At2g30930expressed protein-3.1At5g40450expressed protein-3.1At5g40450expressed protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730exploucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At1g63690	protease-associated (PA) domain-containing protein	-3.2
At3g50270transferase family protein-3.1At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At1g74840UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g3030expressed protein-3.1At1g0830early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At1g0830expressed protein-3.1At5g40450expressed protein-3At5g22270expressed protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730endo-xyloglucan transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At4g19170	9-cis-epoxycarotenoid dioxygenase, putative / neoxanthin cleavage enzyme, putative / carotenoid cleavage dioxygenase, putative	-3.1
At2g41870remorin family protein-3.1At1g74840myb family transcription factor-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g30930expressed protein-3.1At1g08930early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At5g40450expressed protein-3At5g40450expressed protein-3At5g22270expressed protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730endo-xyloglucan transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At3g50270	transferase family protein	-3.1
At1g74840myb family transcription factor-3.1At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g30930expressed protein-3.1At1g08930early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At5g40450expressed protein-3At5g22270expressed protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At2g41870	remorin family protein	-3.1
At3g16520UDP-glucoronosyl/UDP-glucosyl transferase family protein-3.1At2g30930expressed protein-3.1At1g08930early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At5g40450expressed protein-3At5g22270expressed protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At1g74840	myb family transcription factor	-3.1
At2g30930expressed protein-3.1At1g08930early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At5g40450expressed protein-3At1g75460ATP-dependent protease La (LON) domain-containing protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At3g16520	UDP-glucoronosyl/UDP-glucosyl transferase family protein	-3.1
At1g08930early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein-3.1At5g40450expressed protein-3At1g75460ATP-dependent protease La (LON) domain-containing protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At2g30930	expressed protein	-3.1
At5g40450expressed protein-3At1g75460ATP-dependent protease La (LON) domain-containing protein-3At5g22270expressed protein-3At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3-3At1g69850nitrate transporter (NTL1)-3	At1g08930	early-responsive to dehydration stress protein (ERD6) / sugar transporter family protein	-3.1
At1g75460 ATP-dependent protease La (LON) domain-containing protein -3 At5g22270 expressed protein -3 At2g43010 phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2) -3 At3g27690 chlorophyll A-B binding protein (LHCB2:4) -3 At5g65730 xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / endo-xyloglucan transferase, putative -3 At1g69850 nitrate transporter (NTL1) -3	At5g40450	expressed protein	-3
At5g22270 expressed protein -3 At2g43010 phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2) -3 At3g27690 chlorophyll A-B binding protein (LHCB2:4) -3 At5g65730 xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / endo-xyloglucan transferase, putative -3 At1g69850 nitrate transporter (NTL1) -3	At1g75460	ATP-dependent protease La (LON) domain-containing protein	-3
At2g43010phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)-3At3g27690chlorophyll A-B binding protein (LHCB2:4)-3At5g65730xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / endo-xyloglucan transferase, putative-3At1g69850nitrate transporter (NTL1)-3	At5g22270	expressed protein	-3
At3g27690 chlorophyll A-B binding protein (LHCB2:4) -3 At5g65730 xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3 -3 At1g69850 nitrate transporter (NTL1) -3	At2g43010	phytochrome-interacting factor 4 (PIF4) / basic helix-loop-helix protein 9 (bHLH9) / short under red-light 2 (SRL2)	-3
At5g65730 xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / -3 At1g69850 nitrate transporter (NTL1)	At3g27690	chlorophyll A-B binding protein (LHCB2:4)	-3
At1g69850 nitrate transporter (NTL1) -3	At5g65730	xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / endo-xyloglucan transferase, putative	-3
	At1g69850	nitrate transporter (NTL1)	-3

At4g23820	glycoside hydrolase family 28 protein / polygalacturonase (pectinase) family protein	-3
At3g14050	ReIA/SpoT protein, putative (RSH2)	-3
At1g48300	expressed protein	-3
At5g19140	auxin/aluminum-responsive protein, putative	-3
At5g03230	expressed protein	-3
At3g50500	protein kinase, putative	-3
At1g72160	SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein	-3
At1g24070	glycosyl transferase family 2 protein	3
At4g25700	beta-carotene hydroxylase	3
At4g29510	protein arginine N-methyltransferase, putative	3
At4g32720	RNA recognition motif (RRM)-containing protein	3
At1g31860	histidine biosynthesis bifunctional protein (HISIE)	3
At3g03920	Gar1 RNA-binding region family protein	3
At1g09240	nicotianamine synthase, putative	3
At5g06110	DNAJ heat shock N-terminal domain-containing protein / cell division protein-related	3
At4g27570	glycosyltransferase family protein /// glycosyltransferase family protein	3
At2g23340	AP2 domain-containing transcription factor, putative	3
At3a23810	adenosylhomocysteinase, putative / S-adenosyl-L-homocysteine hydrolase, putative /	3.1
Al3923010	AdoHcyase, putative	5.1
At3q44990	xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative /	3.1
	endo-xyloglucan transferase, putative	
At5g14050	transducin family protein / WD-40 repeat family protein	3.1
At2g18230	inorganic pyrophosphatase (soluble) (PPA) / pyrophosphate phospho-hydrolase / PPase	3.1
At1g61570	mitochondrial import inner membrane translocase (TIM13)	3.1
At4g39950	cytochrome P450 79B2, putative (CYP79B2)	3.1
At3g56070	peptidyl-prolyl cis-trans isomerase, putative / cyclophilin, putative / rotamase, putative	3.1
At1g31970	DEAD/DEAH box helicase, putative	3.1
At5g14520	pescadillo-related	3.1
At3g51240	naringenin 3-dioxygenase / flavanone 3-hydroxylase (F3H)	3.2
At1g67360	rubber elongation factor (REF) family protein	3.2
At1g80750	60S ribosomal protein L7 (RPL7A)	3.2
At1g17100	SOUL heme-binding family protein	3.2
At3g58070	zinc finger (C2H2 type) family protein	3.2
At5g65860	ankyrin repeat family protein	3.2
At1g26770	expansin, putative (EXP10)	3.2
At5g55915	nucleolar protein, putative	3.2
At3g16810	pumilio/Puf RNA-binding domain-containing protein	3.3
At2g44860	60S ribosomal protein L24, putative	3.3
At2g28600	expressed protein	3.3
At3g03770	leucine-rich repeat transmembrane protein kinase, putative	3.3
At1g55900	NLI interacting factor (NIF) family protein	3.3
At2g37250	adenylate kinase family protein	3.3
At1g07890	L-ascorbate peroxidase 1, cytosolic (APX1)	3.3
At3g16780	60S ribosomal protein L19 (RPL19B)	3.4
At5g08180	ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein	3.4
At3g13940	expressed protein	3.4
At1g55210	disease resistance response protein-related/ dirigent protein-related	3.5
At5g64680	expressed protein	3.5
At1g15100	zinc finger (C3HC4-type RING finger) family protein	3.5
At1g25260	acidic ribosomal protein P0-related	3.5
At1g63780		
•	brix domain-containing protein	3.5
At3g23620	brix domain-containing protein brix domain-containing protein	3.5 3.6

At3g23990	chaperonin (CPN60) (HSP60)	3.7
At3g17790	acid phosphatase type 5 (ACP5)	3.7
At3g21890	zinc finger (B-box type) family protein	3.7
At2g38210	stress-responsive protein, putative /// ethylene-responsive protein, putative	3.7
At1g15425	expressed protein	3.7
At5g09590	heat shock protein 70 / HSP70 (HSC70-5)	3.8
At3g57000	nucleolar essential protein-related	3.8
At1g63810	nucleolar RNA-associated family protein / Nrap family protein	3.8
At3g08590	 2,3-biphosphoglycerate-independent phosphoglycerate mutase, putative / phosphoglyceromutase, putative 	3.8
At1g15440	transducin family protein / WD-40 repeat family protein	3.9
At1g31660	bystin family	3.9
At4g01560	brix domain-containing protein	3.9
At5q15550	transducin family protein / WD-40 repeat family protein	3.9
At3g22310	DEAD box RNA helicase, putative /// DEAD box RNA helicase, putative (RH9)	4
At4g37910	heat shock protein 70, mitochondrial, putative / HSP70, mitochondrial, putative	4
At2q36630	expressed protein	4
At3q57150	dyskerin, putative / nucleolar protein NAP57, putative	4.1
At3q05060	SAR DNA-binding protein, putative	4.1
At5q61770	brix domain-containing protein	4.1
At1a19640	S-adenosyl-L-methionine:iasmonic acid carboxyl methyltransferase (JMT)	4.2
At4g20170	expressed protein /// expressed protein	4.3
At4a34710	arginine decarboxylase 2 (SPE2)	4.3
At1a60850	DNA-directed RNA polymerase putative	4.0
At3q56090	ferritin nutative	4.4
At1a20040	DNA directed RNA polymerase family protein	4.4
Attg29940	mitochendrial alwanistatin family protein	4.4
At2q40260	transducin family protein / M/D 40 report family protein	4.5
At2940300		4.0
Attg50110	forritin 1 (EED1)	4.0
At1~52020	heinun i (FERI)	4.0
At1g52930	bix domain-containing protein	4.0
At1g57590	pectinacetylesterase, putative	4.7
At4g15770	60S ribosome subunit biogenesis protein, putative	4.9
At2g03760	steroid suitotransterase, putative	5
At1g80270	DNA-binding protein, putative	5.1
At3g14720	mitogen-activated protein kinase, putative / MAPK, putative (MPK19)	5.2
At4g33030	UDP-sulfoquinovose synthase / sulfite:UDP-glucose sulfotransferase / sulfolipid biosynthesis protein (SQD1)	5.4
At4g01080	expressed protein	5.5
At3g06530	BAP28-related	5.5
At1g02820	late embryogenesis abundant 3 family protein / LEA3 family protein	5.6
At3g13230	expressed protein	5.7
At2g47990	transducin family protein / WD-40 repeat family protein	5.9
At5g42760	O-methyltransferase N-terminus domain-containing protein	6
At3g44750	histone deacetylase, putative (HD2A)	6.1
At4g34590	bZIP transcription factor family protein	6.1
At1g56650	myb family transcription factor (MYB75)	6.2
At1g06000	UDP-glucoronosyl/UDP-glucosyl transferase family protein	6.4
At3g18600	DEAD/DEAH box helicase, putative	6.7
At2g27840	histone deacetylase-related / HD-related	6.8
At3g14395	expressed protein	6.8
At5g58770	dehydrodolichyl diphosphate synthase, putative / DEDOL-PP synthase, putative	6.9
At2g34260	transducin family protein / WD-40 repeat family protein	7.2

At3g10530	transducin family protein / WD-40 repeat family protein	7.2
At4g16590	glucosyltransferase-related	7.6
At1g32900	starch synthase, putative	8
At4g25630	fibrillarin 2 (FIB2)	9
At2g27420	cysteine proteinase, putative	9.2
At5g49480	sodium-inducible calcium-binding protein (ACP1) / sodium-responsive calcium-binding protein (ACP1)	9.7
At1g64780	ammonium transporter 1, member 2 (AMT1.2)	10
At4g15210	beta-amylase (BMY1) / 1,4-alpha-D-glucan maltohydrolase	13.7
At1g61800	glucose-6-phosphate/phosphate translocator, putative	34

CAPÍTULO 2

Volatile emissions from fungal phytopathogens modulate plant root metabolism and architecture through mechanisms involving cyanide scavenging and hormone- and ROS- mediated proteome resetting

1. INTRODUCTION

The root system represents an important interface through which plants interact with the environment. It provides anchorage, facilitates the acquisition of water and mineral nutrients from the soil and allows the establishment of biotic relationships with the rhizosphere (van Dam and Bouwmeester, 2016). In response to environmental changes, roots reorganize their metabolism and architecture in order to improve fitness and cope with and survive these changes (López-Bucio et al., 2003; Yang et al., 2008; Krapp et al., 2011; Gargallo-Garriga et al., 2014; Bouguyon et al., 2016). These adjustments result from the integration of environmental cues leading to shifts in phytohormone signaling and gene expression. Physiological and genetic studies have provided strong evidence that auxin is a master regulator of root system architecture (RSA) (Boerjan et al., 1995; Casimiro et al., 2001; Saini et al., 2013). Other phytohormones such as ethylene and cytokinins (CK) interact with auxin to trigger cascades of events leading to root morphogenesis (Pitts et al., 1998; Stepanova et al., 2005; Ivanchenko et al., 2008; Strader et al., 2010; Lewis et al., 2011; Schaller et al., 2015; Liu et al., 2017). In addition to phytohormones, reactive oxygen species (ROS) play important roles in RSA adjustment to varying environmental conditions (Foreman et al., 2003; Passardi et al., 2006; Tsukagoshi et al., 2010; Sundaravelpandian et al., 2013; Manzano et al., 2014).

In soil, microorganisms communicate with plants by exchanging chemical signals throughout the rhizosphere. Such interactions are important for plant productivity (De-la-Peña and Loyola-Vargas, 2014). In the precolonization phase, before direct contact with plants occurs, beneficial bacteria and fungi emit diffusible substances (e.g. carbohydrates, proteins, fatty acids, flavonols, organic acids, amino acids and hormones) that cause massive lateral root (LR) formation and enhanced root hair (RH) growth, thus improving the root's capacity to explore for water and minerals and predisposing plants to fungal colonization and infection (López-Bucio et al., 2007; Contreras-Cornejo et al., 2009; Felten et al., 2009; Verbon and Liberman, 2016). These microorganisms also emit a large number of volatile compounds (VCs) with molecular masses of less than 300 Da that promote growth and photosynthesis, and modulate RSA in both host and non-host plants (Ryu et al., 2003; Zhang et al., 2008; Splivallo et al., 2009; Gutiérrez-Luna et al., 2010; Delaplace et al., 2015; Ditengou et al., 2015; Garnica-Vergara et al., 2016; Cordovez et al., 2018). Recent studies have shown that this capacity is not restricted to beneficial microbes; it also extends to phytopathogens and microbes that do not

normally interact mutualistically with plants (Sánchez-López et al., 2016b; Cordovez et al., 2017; García-Gómez et al., 2019; Moisan et al., 2019).

RSA modulation by microbial VCs has frequently been associated with lipophilic carbon-based compounds, which are known as volatile organic compounds (VOCs) (Zhang et al., 2007; Splivallo et al., 2009; Gutiérrez-Luna et al., 2010; Bitas et al., 2015; Delaplace et al., 2015; Ditengou et al., 2015; Garnica-Vergara et al., 2016; Cordovez et al., 2018). In addition to VOCs, microorganisms also release a limited number of volatile inorganic compounds (VICs) with molecular masses of less than 45 Da such as hydrogen sulfide, molecular hydrogen, nitric oxide (NO), nitrogen dioxide, nitrous oxide and carbon monoxide (CO) (Engel et al., 1972; Wharton and Weintraub, 1980; Siegel and Siegel, 1987; Nandi and Sengupta, 1998; Conrath et al., 2004; Shatalin et al., 2011). These compounds can act as signaling molecules that promote growth and modulate RSA when applied individually and at low concentrations (Correa-Aragunde et al., 2004; Cao et al., 2007; Guo et al., 2009; Fernández-Marcos et al., 2011; Dooley et al., 2013; Lin et al., 2014; Takahashi et al. 2014, Zhu et al., 2016). There is evidence that VIC emissions from growth-promoting rhizobacteria promote changes in the RSA of their host plants (Creus et al., 2005; Molina-Favero et al., 2008).

Using a "box-in-box" co-cultivation system in which plants are grown in the vicinity of microbial cultures covered with charcoal filters, we have recently provided evidence that VCs with molecular masses of less than 40 Da are major determinants of plant responses to microbial volatile emissions (García-Gómez et al., 2019). VOCs-depleted (NO and CO-containing) volatile emissions from *Penicillium aurantiogriseum* (a fungal phytopathogen that can be found in the rhizosphere [Bodini et al., 2011; Gharaei-Fathabad et al., 2014; Kłapeć et al., 2018]) inhibit primary root (PR) and LR growth, stimulate the de novo LR formation, and promote extensive proliferation and elongation of RHs leading to the formation of peculiar "brush-like" structures at the root tip and the development of a "cotton-like" external root phenotype (García-Gómez et al., 2019). These changes in RSA resemble those occurring in plants treated with exogenous auxins (Casimiro et al., 2001), CO (Guo et al., 2008; Guo et al., 2009), NO (Pagnussat et al., 2002; Correa-Aragunde et al., 2004; Fernández-Marcos et al., 2011) and diffusible substances emitted by beneficial microorganisms (López-Bucio et al., 2007; Splivallo et al., 2009; Ditengou et al., 2015; Garnica-Vergara et al., 2016).

To date, the majority of studies on the root response to complex mixtures

of microbial VCs have been conducted using beneficial microorganisms and focused mainly on analyses of reporters for auxin-inducible gene expression, RSA adjustments in ethylene and auxin transport/signaling mutants, transcriptome changes in roots of VC-exposed plants and identification of bioactive microbial VOCs (Zhang et al., 2007; Felten et al., 2009; Splivallo et al., 2009; Bailly et al., 2014; Ditengou et al., 2015; Garnica-Vergara et al., 2016; Cordovez et al., 2018; Camarena-Pozos et al., 2019). These studies have shown that RSA modulation promoted by microbial VCs is associated with changes in the root transcriptome, and involves processes wherein auxin and ethylene play important roles. Recent studies have provided evidence that this type of RSA modulation is associated with ROS production (Ditengou et al., 2015) and post-translational thiol-redox proteome changes (Ameztoy et al., 2019).

Post-transcriptional events such as the regulation of translation and protein stability result in weak correlations between the transcriptomic and proteomic responses of plants to environmental cues. Although there has been a considerable increase in our knowledge in recent years regarding the importance of post-transcriptionally regulated root morphogenetic adjustments to changing environmental conditions (Floris et al., 2009; Lan et al., 2012; Žd'árská et al., 2013), nothing is known about root proteome reprogramming following exposure to microbial VCs. Plants use metabolic pathways as a source of energy and signaling molecules to drive extensive defense programs and promote developmental changes in response to pathogens (Bolton, 2009; Rojas et al., 2014). However, the metabolic and developmental adjustments made by roots in response to compounds (particularly VCs) emitted by microbial phytopathogens remain largely unknown. To obtain insights into the mechanisms involved in the response of roots to VCs emitted by microbes, we performed comprehensive proteomic, metabolic and developmental analyses of Arabidopsis plants exposed to VOCs-depleted volatile emissions from *P. aurantiogriseum* cultures. We also characterized the response to VOCs-depleted fungal VCs in mutants with altered hormone and ROS status. Our findings show that VCs emitted by the fungal phytopathogen P. aurantiogriseum modulate plant root metabolism and architecture through complex mechanisms that involve cyanide scavenging and proteome resetting mediated by hormones and ROS. Some of these mechanisms differ from those involved in the response to VCs emitted by beneficial microorganisms.

2. MATERIALS AND METHODS

Plant and microbial cultures, growth conditions and sampling

The experiments were carried out using Arabidopsis thaliana L. (Heynh) WT plants (ecotype Col-0), the aux1-T auxin influx carrier mutant (N657534) (Fischer et al., 2006), the etr1-3 ethylene receptor mutant (N3070) (Hua and Meyerowitz, 1998), the eir1 ethylene insensitive and auxin efflux carrier mutant (N8058) (Luschnig et al., 1998), the ahk2/3, ahk2/4 and ahk3/4 CK signaling mutants (Riefler et al., 2006), the rhd2 mutant which is impaired in a plasma membrane NADPH oxidase (Foreman et al., 2003), the *cas-c1* mutant which is impaired in the mitochondrial β -cyanoalanine synthese (N522479) (García et al., 2010), the auxin- and ethylene-inducible DR5: GUS reporter (N16703) (Ulmasov et al., 1997; Stepanova et al., 2005) and the CK ARR5: GUS reporter (D'Agostino et al., 2000). Unless otherwise indicated the plants were cultured in Petri dishes (92 x 16mm, Ref. 82.1472.001, Sarstedt) containing sucrose-free half-strength solid Murashige and Skoog (MS) (Phytotechlab M519) medium in growth chambers providing 'long day' 16 h light (90 µmol photons sec-1 m-2), 22 °C /8 h dark, 18 °C cycles. P. aurantiogriseum was cultured in small Petri dishes (35 x 10mm, Sarstedt, Ref. 82.1135.500) containing solid MS medium supplemented with 90 mM sucrose. Effects of microbial VCs on plants were investigated using the "box-in-box" co-cultivation system as described in (García-Gómez et al., 2019). Briefly, plant cultures 14 days after sowing and fungal cultures in unlidded Petri dishes with a top layer of charcoal filters that adsorb VCs with molecular masses of more than 40 Da were placed in sterile plastic boxes (200 x 150 x 50 mm IT200N Instrument Trays; AW Gregory, UK) sealed with polyvinyl chloride plastic wrap. As negative controls, Petri dishes containing plants were cultured in sealed boxes together with Petri dishes each containing sterile microbial culture media and a charcoal filter. After the incubation time indicated for each experiment, roots were harvested, immediately freeze-clamped and ground to a fine powder in liquid nitrogen with a pestle and mortar.

Determination of gas exchange rates and photosynthetic parameters

Gas exchange rates were determined as described by Sánchez-López et al. (2016b) using a LI-COR 6400 gas exchange portable photosynthesis system (LI-COR, Lincoln, NE, USA). Net rates of CO₂ assimilation (An) and stomatal conductance (gs) were calculated as described by von Caemmerer and Farquhar (1981). Water use efficiency (WUE*i*) was

calculated as the ratio of An to gs as described by Flexas et al. (2016).

Root morphological analysis

Ten days after sowing plants cultured on vertical square Petri dishes (10 x 10 x 2 cm, Sarstedt, Ref. 82.9923.422) were placed in sealed plastic boxes containing fungal cultures covered with charcoal filters. After 6 days of co-cultivation in vertical position, the numbers and lengths of the plants' roots and RHs were measured using an MVX10 stereomicroscope (Olympus, Japan). Photomicrographs were captured with a DP72 video camera (Olympus, Japan) and the Cell D package (Olympus, Japan). RHs were measured in a region of 5 mm from the LR tips.

ROS staining

ROS were semi-quantitatively detected in rosettes essentially as described by Nguyen et al. (2017). Briefly, O_2^- was detected by staining roots for 15 min with 0.05% nitro blue tetrazolium (NBT) (w/v) in 50 mM potassium phosphate, pH 7.0, and H₂O₂ by staining for 5 h with 0.1% 3,3'-diaminobenzidine in 10 mM potassium phosphate, pH 7.0.

GUS expression analysis

Expression of the GUS reporter gene was monitored using the histochemical staining assay described by Jefferson et al. (1987).

Analytical procedures

The amino acids contents were determined from frozen powder samples (see above) as described by Loiret et al. (2009). To determine the levels of CKs, aliquots of the frozen powders were lyophilized and CKs were quantified according to the method described in Novák et al. (2008). HCN contents in roots and ethylene produced and released by roots were measured as described by García et al. (2010). Levels of UDP-glucose and TCA intermediates were measured as described by Ghaffari et al. (2016). Fe and Zn levels were measured as indicated in Eggert and von Wirén (2013).

Proteomic analysis

High-throughput, isobaric labeling-based differential proteomic analyses were conducted essentially as described in Sánchez-López et al. (2016a) for Arabidopsis leaves but with

the following modifications. For protein sample preparation, samples were prepared by grinding 200 mg of root material into a fine powder under liquid nitrogen using a pre-cooled mortar and pestle. The tryptic peptides were labeled using a iTRAQ-4 plex Isobaric Mass Tagging Kit (SCIEX, Foster City, CA, USA). Search engines were configured to match potential peptide candidates with a mass error tolerance of 25 ppm and fragment ion tolerance of 0.02Da, allowing for up to two missed tryptic cleavage sites and a maximum isotope error (13C) of 1, and also allowing for fixed MMTS modification of cysteine and variable oxidation of methionine, pyroglutamic acid from glutamine or glutamic acid at the peptide N-terminus, acetylation of the protein N-terminus and modification of lysine and peptide N-terminus with iTRAQ 4-plex reagents. Statistical significance was measured using q-values (FDR). The cut-off for identifying differentially regulated proteins was established at a FDR \leq 2.7% and log2 ratios (+VC treatment vs. –VC treatment) of either > 0.4 (for proteins whose expression is up-regulated by fungal VCs) and < -0.4 (for proteins whose expression is downregulated by VCs).

Statistical analysis

Unless otherwise indicated, data presented here are means (\pm SE) obtained from 3-4 independent experiments, with 3-5 replicates for each experiment. The significance of differences between plants not exposed to VCs, and plants exposed to *P. aurantiogriseum* VCs was statistically evaluated with Student's t-test using the SPSS package. Differences were considered significant if P<0.05.

3. RESULTS

Fungal VCs promote changes in the root proteome and metabolome of exposed plants

We carried out high-throughput, isobaric labeling-based differential proteomic analysis of roots of Arabidopsis plants cultured in the absence, or presence for three days, of VOCs-depleted (VICs-containing) emissions of adjacent cultures of *P. aurantiogriseum* covered with charcoal filters that adsorb VCs with molecular masses of more than 40 Da. As shown in **Supplemental Table 1**, 178 out of the 2988 proteins identified in this study were proteins of known functions that were differentially expressed in response to VOCs-depleted fungal VCs. Among them, 49 were up-regulated and 129

were down-regulated (**Supplemental Table 1**). We compared the sets of proteins that were differentially expressed in leaves exposed to fungal VCs (Sánchez-López et al., 2016a) with those of fungal VC-exposed roots (this work). We found that only 8% of the proteins that were differentially expressed in response to fungal VCs in roots were also differentially expressed in VC-exposed leaves (**Supplemental Table 1**). Using the broad categories outlined by the MapMan tool (https://mapman.gabipd.org/) (Thimm et al., 2004), the 178 differentially expressed proteins (DEPs) with known functions were assembled into 23 functional groups (**Figure 1**). The general trend indicates that RSA and root metabolic changes in plants treated with VOCs-depleted fungal VCs are associated with DEPs that fit into the following groups:

Figure 1: Functional categorization of DEPs in roots of plants cultured in the presence of VOCs-depleted VCs emitted by *P. aurantiogriseum*. Proteins that were significantly down- or up-regulated following VC exposure were sorted according to the putative functional categories assigned by MapMan software. The numbers of up- and down-regulated proteins in each categorical group are indicated by gray and black bars, respectively. Proteins discussed here are boxed.

Transport

Fungal volatile emissions down-regulated the expression of plasma membrane and vacuolar aquaporins (e.g. PIP1-1, PIP1-2, PIP2-1, PIP2-2, PIP2-3, PIP2-7, TIP1-1, TIP1-

2 and TIP2-2) involved in processes such as water transport (Maurel et al., 2015) and hydrogen peroxide (H₂O₂) transport and detoxification (Bienert et al., 2007; Dynowski et al., 2008; Rodrigues et al., 2017) (**Supplemental Table 1, Figure 1**). Exposure to fungal VCs also reduced the expression of ACA8, a plasma membrane calcium pump that regulates cytosolic calcium concentration and signaling in response to environmental changes (Costa et al., 2017; Yang et al., 2017) and that of IRT1, (**Supplemental Table 1, Figure 1**), a metal ion carrier protein that mediates the entry of Fe and Zn into roots (Korshunova et al., 1999; Rogers et al., 2000; Varotto et al., 2002). Consistent with this finding, leaves of VC-exposed plants had lower levels of Fe and Zn than controls (166 \pm 9.4 and 96.5 \pm 4 µg g⁻¹ dry weight (DW) of Fe in leaves of VC-treated and non-treated plants, respectively, and 128 \pm 18.2 and 86.3 \pm 2.3 µg g⁻¹ DW fo Zn in leaves of VCtreated and non-treated plants, respectively).

Major carbohydrate metabolism

Exposure to VOCs-depleted fungal VCs diminished the expression of the two vacuolar invertases of Arabidopsis (**Supplemental Table 1, Figure 1**), BFRUCT3 and BFRUCT4, the latter being an important determinant of root length in Arabidopsis (Sergeeva et al., 2006; Leskow et al., 2016).

Redox metabolism

Exposure to charcoal-filtered fungal VCs down-regulated the expression of various extracellular peroxidases (e.g. PER3, PER32 and PER34) (**Supplemental Table 1, Figure 1**). Some of them (e.g. PER34) are important determinants of root and RH growth (Passardi et al., 2006; Manzano et al., 2017).

Cell wall metabolism

VOCs-depleted fungal VCs down-regulated the expression of cell wall breakdown enzymes (e.g. BGLU20-23), and stimulated the expression of enzymes involved in the synthesis of precursors for cell wall biosynthesis (e.g. UGP2, UGD4 and UXS4) (**Supplemental Table 1, Figure 1**). In agreement with this observation, roots of fungal VC-exposed plants accumulated higher levels of cell wall precursor molecules than controls (81.1 ± 15.2 and 10.9 ± 3.2 nmol g⁻¹ dry weight (DW) of UDP-glucose in roots of VC-treated and non-treated plants, respectively, and 107 ± 8.8 and 46.6 ± 8.7 nmol

g⁻¹ DW glucuronic acid in roots of VC-treated and non-treated plants, respectively). VCs also up-regulated the expression of enzymes involved in cell wall expansion such as arabinogalactan proteins and xyloglucan endotransglucosylases (e.g. XTH14, FLA6 and FLA13) (**Supplemental Table 1**).

Amino acid metabolism

Charcoal-filtered fungal VCs increased the expression of enzymes involved in nitrogen assimilation (e.g. GLUT1), the conversion of cytosolic citrate to Gln (e.g. ASP2 and GLN1-2) and the conversion of cytosolic Met and mitochondrial Cys to Asp and Asn (e.g. METK2, METK3, ACO2 and CAS-C1) (**Supplemental Table 1, Figure 1**). Accordingly, levels of α -ketoglutarate, Glu, Gln, Asp and Asn in roots of VC-treated plants were higher than in controls (**Table 1**). Levels of citrate and other TCA metabolic intermediates acting as precursors for amino acid biosynthesis (e.g. cis- and transaconitate, citrate, α -ketoglutarate, malate, and succinate) were higher in VC-exposed roots than in controls (**Table 1**).

Hormone metabolism

VOCs-depleted fungal VCs increased the expression of ACLA-1, an enzyme that participates directly in the conversion of cytosolic citrate into the acetyl-CoA necessary for the synthesis of mevalonate (MVA)-derived isoprenoids (Fatland et al., 2005). Fungal VCs also increased the expression of ethylene biosynthetic enzymes such as METK2, METK3 and ACO2 (**Supplemental Table 1, Figure 1**); the latter catalyzes the rate-limiting step of ethylene biosynthesis in many processes in response to environmental changes and is an important determinant in plant-microbe interactions (Barry et al., 1996; Nascimento et al., 2018).

Down-regulation of water and iron transport systems in response to VOCs-depleted fungal VCs is associated with enhanced intrinsic photosynthetic water use efficiency Fe participates in electron transfer reactions starting from the photochemical water splitting occurring during photosynthesis. Down-regulation of the expression of aquaporins and IRT1 in roots and of Fe contents in leaves in response to VOCs-depleted fungal VCs suggested enhancement of photosynthetic efficiency thus reducing the water and Fe demands of leaves. To test this hypothesis we measured the WUE*i* by analyzing

Table 1: Metabolites contents in roots of plants cultured in solid MS medium in the absence or presence of adjacent cultures of *P. aurantiogriseum* covered with VOC-adsorbing charcoal filters for one week. Values represent the mean \pm SE of determinations in 3 independent experiments. Asterisks indicate significant differences, according to Student's t-test (P<0.05), between VC-treated and non-treated plants.

		-VCs (nmol/g DW)	+VCs (nmol/g DW)
~	Cis-Aconitate	8.7 ± 2.0	20.5 ± 1.6*
pun	Citrate	962 ± 138	$1,409 \pm 130*$
lodu	Malate	$1,011 \pm 125$	$1,897 \pm 279*$
con	α-ketoglutarate	40.5 ± 11.7	$118.1\pm4.8\texttt{*}$
CA	Succinate	121.1 ± 14.7	$271.4\pm21.5\texttt{*}$
E	Trans-Aconitate	5.1 ± 2.2	$20.0 \pm 1.7 \texttt{*}$
	Asp	$14,\!540 \pm 1,\!262$	$18,\!158\pm722*$
	Glu	$23,\!474 \pm 1,\!250$	$34,459 \pm 942*$
	Ser	$40,\!058 \pm 1,\!835$	$15,532 \pm 371*$
	Asn	$163,\!959 \pm 5,\!315$	$195{,}804 \pm 2{,}941 *$
	Gly	$7,002 \pm 358$	$5,641 \pm 329*$
	Gln	$38,\!920 \pm 1,\!689$	$62,\!034 \pm 1,\!408 *$
	His	$5{,}241 \pm 297$	$5{,}144\pm197$
~	Thr	$16{,}750\pm883$	$15{,}277\pm345$
Icid	Ala	$53,\!608 \pm 3,\!614$	$129,404 \pm 3,263*$
0 0 E	Arg	$8,401 \pm 469$	$\textbf{7,098} \pm \textbf{1,049}$
/mi	GABA	$16,\!172\pm373$	$23,221 \pm 689*$
Y	Pro	$13{,}227\pm404$	$14{,}306\pm279$
	Tyr	$9{,}926 \pm 449$	$9{,}848 \pm 252$
	Val	$4,\!983\pm938$	$5{,}563\pm139$
	Met	$2,465 \pm 215$	$2,\!100\pm109$
	Ile	$4,\!474\pm290$	$3,668 \pm 128$
	Leu	$4,\!095\pm283$	$3,\!769\pm279$
	Lys	$1,\!889\pm171$	$1{,}687 \pm 211$
	Phe	$3,723\pm279$	$2,894 \pm 117$

 A_n and g_s at varying intercellular CO₂ concentrations (*Ci*) in plants cultured in the absence, or presence for three days, of adjacent cultures of *P. aurantiogriseum* covered with charcoal filters. These analyses revealed that plants exposed to fungal VCs had higher A_n and similar g_s (and thus higher WUE*i*) values than controls at all *Ci* levels (**Figure 2**). This indicates that enhancement of photosynthetic activity by fungal VCs is due not to and increased rate of passage of CO₂ entering through the stomata, but to improved photosynthetic efficiency.

Figure 2: *P. aurantiogriseum* VCs enhance photosynthetic water use efficiency. Curves of (a) net CO₂ assimilation rate (A_n), (b) G_s versus intercellular CO₂ concentration (*Ci*) and (c) WUE*i* in leaves of plants cultured in the absence or continuous presence of adjacent cultures of *P. aurantiogriseum* covered with VOC-adsorbing charcoal filters for three days. Treatment with VCs began 28 days after seeds were sown.

VOCs-depleted fungal VCs enhance CK, auxin and ethylene signaling in roots

CKs negatively regulate IRT1 expression (Séguéla et al., 2008) and up-regulate the expression of ethylene biosynthetic enzymes (e.g. METK2, METK3 and ACO2) (Žďárská et al., 2013; Brenner and Schmülling, 2015). On the other hand ethylene up-regulates the expression of ACO2 and CAS-C1 (Maruyama et al., 2001; van

Zhong and Burns, 2003) whereas auxin down-regulates the expression of aquaporins (Nemhauser et al., 2006; Péret et al., 2012). Down-regulation of IRT1 and aquaporins, and up-regulation of METK2, METK3, ACO2 and CAS-C1 promoted by fungal VCs suggested that these VCs enhance CK, ethylene and auxin signaling. This inference was corroborated by characterization of plants harboring the CK-inducible *ARR5:GUS* CK marker and the auxin- and ethylene-inducible *DR5:GUS* marker. As shown in **Figure 3**,

Figure 3: VOCs-depleted fungal VCs enhance CK- and auxin-responsive gene expression in roots. GUS activity in roots of plants harboring (a) the CK *ARR5:GUS* reporter and (b) the auxin and ethylene *DR5:GUS* reporter, cultured in the absence or presence of adjacent cultures of *P. aurantiogriseum* covered with VOC-adsorbing charcoal filters for one week. Scale bars: left panels: 5 mm; right panels: 1 mm.

ARR5:GUS and *DR5:GUS* plants grown with adjacent fungal cultures showed greater GUS expression in vascular tissues, root tips, LR primordia and RHs than controls. Furthermore, ethylene production in roots of plants treated with VOCs-depleted fungal VCs was substantially higher than in controls (**Figure 4**). Moreover, CK content analyses revealed that treatment with fungal VCs causes a significant increase in the total content of both MVA- and 2-C-methyl-D-erythritol 4-phosphate (MEP)-derived CKs. The most strongly accumulated CK forms were the free bases of the biologically active cis-zeatin (cZ) and isopentenyladenine (iP), their ribosides (cZR and iPR respectively), their precursors (cZRMP and iPRMP, respectively) and the precursor and transport forms of tZ (tZR and tZRMP, respectively) (**Table 2, Supplemental Figure 1**).

Figure 4: VOCs-depleted fungal VCs enhance ethylene production in roots. Time-course of ethylene accumulation in sealed vials containing roots of WT plants cultured in the absence or presence of adjacent cultures of *P. aurantiogriseum*. Values are means \pm SE for three biological replicates obtained from three independent experiments.

Growth and developmental responses to fungal VCs in auxin, ethylene and CK signaling mutants

To address the roles of auxin, ethylene and CKs in RSA changes induced by VOCsdepleted fungal VCs we assessed root development in the *aux1-T* auxin influx carrier mutant, the *etr1-3* ethylene receptor mutant, the *eir1* ethylene insensitive and auxin efflux carrier mutant and the *ahk2/3*, *ahk2/4* and *ahk3/4* CK signaling mutants cultured in the absence, or presence for one week, of adjacent cultures of *P. aurantiogriseum* covered with VOC-adsorbing charcoal filters. As shown in **Figure 5b** and **6b**, fungal VCs promoted similar to WT enhancements of root growth (on a fresh weight basis) in these mutants. However, the stimulatory effect on rosette growth was weaker in the

	MEP pathway (plastid) derived CKs			MVA pathway (cytosol) derived CKs		
		-VCs	+VCs		-VCs	+VCs
Precursors	iPRMP	41.5 ± 4.8	$243\pm34\texttt{*}$			
	tZRMP	83.1 ± 8.3	$252\pm 64*$	cZRMP	88.7 ± 7.3	$145.9\pm8.5*$
	DHZMP	0.49 ± 0.09	0.65 ± 0.17			
	∑ (%)	125	621		88.7	145.9
Transport forms	iPR	11.6 ± 0.4	$51.3\pm6.6*$			
	tZR	31.7 ± 5.3	$68.9 \pm 15.2 \texttt{*}$	cZR	47.2 ± 1.3	$57.3 \pm 1.7 *$
	DHZR	3.55 ± 0.16	3.39 ± 0.19			
	∑ (%)	46.9	123.6		47.2	57.3
Active forms	iP	34.9 ± 1.9	$76.9\pm10.0*$			
	tΖ	69.5 ± 6.6	53.3 ± 9.1	cZ	26.0 ± 1.3	$53.2\pm1.5*$
	DZ	0.76 ± 0.13	0.77 ± 0.16			
	∑ (%)	105	131		26.0	53.2
Glycosylated (inactive) forms	iP7G	128 ± 5	138 ± 3			
	tZ7G	238 ± 15	$88.9\pm3.5*$			
	DHZ7G	33.9 ± 1.9	$11.7\pm0.2\texttt{*}$			
	iP9G	31.4 ± 0.9	$46.5\pm1.2^{\boldsymbol{*}}$	cZ9G	60.9 ± 2.6	52.8 ± 4.2
	tZ9G	373 ± 20	$172\pm13\texttt{*}$			
	DHZ9G	24.8 ± 2.5	$10.9 \pm 1.0 \texttt{*}$			
	tZROG	6.89 ± 0.34	5.91 ± 0.27	cZROG	42.7 ± 2.6	$21.2\pm0.8\texttt{*}$
	∑ (%)	837	473		103	74.1
TOTAL	Σ (%)	1,114	1,350		265	330

Table 2: CK content (pmol g^{-1} DW) in roots of plants cultured in solid MS medium in the absence or presence of adjacent cultures of *P. aurantiogriseum* covered with VOC-adsorbing charcoal filters for 3 days. Values represent the mean ± SE of determinations in 3 independent experiments. Asterisks indicate significant differences, according to Student's t-test (P<0.05), between VC-treated and non-treated plants.

aux1-T, eir1, etr1-3 and ahk2/3 mutants than in WT plants. These findings indicate that auxin, ethylene and CKs are important determinants of shoot growth responses to VOCs-depleted fungal VCs.

In keeping with García-Gómez et al. (2019), VOCs-depleted fungal VCs shortened the PR and LRs, and increased the number of elongated LRs in WT plants (**Figure 5c**). As in WT plants, fungal VCs increased the number of elongated LRs in *aux1-T, eir1, etr1-3* and CK signaling mutants. However, fungal VCs did not shorten the LRs in these mutants (**Figure 5c, Figure 6c**). Furthermore, unlike in WT plants and CK signaling mutants, fungal VCs did not shorten the PRs in *aux1-T, eir1* and *etr1-3* mutants (**Figure 5a,c, Figure 6c**).

Under non-induced conditions, roots of CK signaling mutants produced RHs whose numbers and sizes were comparable to those of WT roots (**Figure 6c**). *aux1-T, eir1* and *etr1-3* mutants produced fewer and shorter RHs than WT plants (**Figure 5c**), observations consistent with those of Pitts et al. (1998). As in WT plants, auxin, ethylene

Figure 5: Changes in RSA promoted by VOCs-depleted fungal VCs involve enhanced auxin and ethylene signaling (a) external phenotypes, (b) root and rosette FW and (c) root architecture parameters of WT, *aux1-T, eir1* and *etr1-3* plants cultured in the absence or continuous presence of VOCs-depleted VCs emitted by adjacent *P. aurantiogriseum* cultures. Values in panels (b) and (c) are means \pm SE for three biological replicates (each a pool of 12 plants) obtained from four independent experiments. Letters "a", "b" and "c" indicate significant differences, according to Student's t-test (P<0.05), between: "a" WT plants and mutants cultured without fungal VC treatment, "b" VC-treated and non-treated plants, and "c" VC-treated WT and mutant plants. RH number and length data were obtained from a pool of 6 first order LRs per plant. Scale bars in "a", 2 mm. Plants providing data shown in (a) and (b) were grown on horizontal plates whereas those providing data in (c) were grown on vertical plates.

Figure 6: (a) external phenotypes, (b) rosette and root FW and (c) root architecture parameters of WT, *ahk2/3*, *ahk2/4* and *ahk3/4* plants cultured in the absence or continuous presence of VOCs-depleted VCs emitted by adjacent *P. aurantiogriseum* cultures for one week. Values in panels (b) and (c) are means \pm SE for three biological replicates (each a pool of 12 plants) obtained from four independent experiments. Letters "a", "b" and "c" indicate significant differences, according to Student's t-test (P<0.05), between: "a" WT plants and mutants cultured without fungal VC treatment, "b" VC-treated and non-treated plants, and "c" VC-treated WT and mutant plants. RH number and length data were obtained from a pool of 6 first order LRs per plant. Plants providing data shown in (a) and (b) were grown on horizontal plates, whereas those providing data in (c) were grown on vertical plates. Scale bars in "a", 2 mm.

and CK mutants developed new RHs and elongated them in response to fungal VCs, although the stimulatory effect in auxin and ethylene mutants was weaker than that in WT plants and CK signaling mutants (**Figure 5a,c, Figure 6c**). Unlike in WT and CK mutants, fungal VCs did not promote the development of a "cotton-like" external root phenotype caused by the formation of "brush-like" structures at the root tips in *aux1-T*, *eir1* and *etr1-3* mutants (**Figure 5a,c, Figure 6a**).

RSA adjustment promoted by VOCs-depleted fungal VCs is associated with enhanced ROS content in roots and RHs

Root and RH growth is associated with ROS accumulation (Foreman et al., 2003; Tsukagoshi et al., 2010; Manzano et al., 2014), which in turn is determined by cytosolic calcium concentration (Foreman et al., 2003; Drerup et al., 2013; Dubiella et al., 2013). VOCs-depleted fungal VCs promoted down-regulation of the expressions of calcium pumps, aquaporins and apoplastic peroxidases in roots (cf. **Supplemental Table 1, Figure 1**) suggesting enhanced ROS content. This was corroborated by specific superoxide anion (O_2^-) and H_2O_2 staining analyses, which revealed higher levels of O_2^- and H_2O_2 in roots and RHs of fungal VC-treated plants than in controls (**Figure 7**).

The possible involvement of ROS accumulation in the fungal VC-promoted RSA changes was investigated by characterizing the root and RH growth response of WT plants to the NADPH oxidase inhibitor diphenyleneiodium (DPI) (Cross and Jones, 1986). We also characterized the response of plants to ascorbic acid, which is known to modulate root architecture through antioxidant action (Olmos et al., 2006). Furthermore, we characterized the response of rhd2 plants to VOCs-depleted fungal VCs. These plants lack an NADPH oxidase that contributes to ROS production in roots, and have shorter roots and RHs than WT plants (Foreman et al., 2003). As shown in Figure 8 and 9, enhancement of RH growth promoted by VOCs-depleted fungal VCs was weaker in DPI- and ascorbic acid-treated plants than in controls. As in WT plants, VOCs-depleted fungal VCs promoted root and rosette growth in *rhd2* plants (Figure 10a,b). As expected, in the absence of fungal VCs *rhd2* roots showed only a few short malformed RHs (Figure 10a) that accumulated low levels of O_2^- (Figure 10). Notably, unlike WT plants, this mutant was unresponsive in terms of O_2^- accumulation in RHs (Supplemental Figure 2), RH growth stimulation (Figure 10a,c) and PR and LR shortening promoted by fungal VCs (Figure 10c).

Figure 7: VOCs-depleted fungal VCs promote ROS accumulation in roots. (a) NBT staining of O_2 - and (b) 3,3'-diaminobenzidine staining of H_2O_2 in roots of WT plants cultured in the absence or presence of adjacent cultures of *P. aurantiogriseum* with charcoal filters for one week. Scale bars: left panels, 5 mm; right panels, 1 mm.

Figure 8: DPI treatment inhibits the fungal VC-promoted elongation of RHs. (a) Photographs of roots and (b) RH lengths of WT plants cultured in the absence or continuous presence of VOCs-depleted VCs emitted by adjacent *P. aurantiogriseum* cultures for one week, with or without DPI supplementation. Values in panel (b) are means \pm SE for three biological replicates (each a pool of 12 plants) obtained from four independent experiments. Letter "b" and "c" indicate significant differences, according to Student's t-test (P<0.05), between: "b" VC-treated and non-treated plants, and "c" VC-treated plants without DPI treatment and VC-treated plants with DPI treatment. RH length data were obtained from a pool of 6 first order LRs per plant. Plants were grown on vertical plates. Scale bars in "a", 500µm.

Figure 9: Ascorbic acid treatment inhibits the fungal VC-promoted elongation of RHs. (a) External phenotypes, (b) rosette FW and (c) RH length of WT plants cultured in solid MS medium with or without 0,1 mM ascorbic acid supplementation. Values in panels (b) and (c) are means \pm SE for three biological replicates (each a pool of 12 plants) obtained from four independent experiments. Letters "b" and "c" indicate significant differences, according to Student's t-test (P<0.05), between: "b" VC-treated and non-treated plants, and "c" VC-treated plants without ascorbic acid treatment and VC-treated plants with ascorbic acid treatment. RH length data were obtained from a pool of 6 first order LRs per plant. Plants were grown on vertical plates. Scale bars in "a", 2 mm.

Figure 10: RSA adjustment promoted by VOCs-depleted fungal VCs is a ROS dependent process. (a) External phenotypes, (b) rosette and root FW, (c) root architecture parameters of WT and *rhd2* plants cultured in the absence or continuous presence of VOCs-depleted VCs emitted by adjacent *P. aurantiogriseum* cultures. Values in panels (b) and (c) are means \pm SE for three biological replicates (each a pool of 12 plants) obtained from four independent experiments. Letters "a", "b" and "c" indicate significant differences, according to Student's t-test (P<0.05), between: "a" WT and *rhd2* plants cultured without fungal VC treatment, "b" VC-treated and non-treated plants, and "c" VC-treated WT and *rhd2* plants. RH number and length data were obtained from a pool of 6 first order LRs per plant. Plants providing data shown in (a) and (b) were grown on horizontal plates, whereas those providing data in (c) were grown on vertical plates. Scale bars in "a", 500 µm.

CAS-C1 is an important mediator of root responses to VOCs-depleted fungal VCs Cyanide (HCN) is a toxic compound produced mainly by 1-aminocyclopropane-1-carboxylate oxidase (ACO) in the last step of the ethylene biosynthetic pathway. Mitochondrial β -cyanoalanine synthase (CAS-C1) participates in HCN detoxification (García et al., 2010; Arenas-Alfonseca et al., 2018). CAS-C1 null cas-c1 mutants accumulate more HCN and produce fewer and shorter RHs than WT plants (García et al., 2010, Arenas-Alfonseca et al., 2018). It has therefore been suggested that CAS-C1 is essential in order to maintain low HCN levels and allow for proper RH development (García et al., 2010). In addition, *cas-c1* RHs accumulate lower levels of ROS than WT RHs (García et al., 2010; Arenas-Alfonseca et al., 2018). Fungal VC-promoted expression of ethylene biosynthetic enzymes (e.g. METK2, METK3 and ACO2) and CAS-C1 (cf. Supplemental Table 1, Figure 1) suggested that up-regulation of CAS-C1 could play a role in the elongation process promoted by fungal VCs by removing the HCN generated by ACO2. To test this hypothesis we measured HCN levels in roots of WT plants cultured in the absence or presence of adjacent fungal cultures covered with charcoal filters. We also characterized the RSA and ROS accumulation responses of *cas-c1* mutants to VOCs-depleted fungal VCs.

Fungal VCs caused a ca. 3-fold increase in HCN contents in roots (15.5 ± 5.9) and 42.3 ± 6.2 nmol g⁻¹ FW in non-treated and VC-treated plants, respectively). As in WT plants, VOCs-depleted fungal VCs promoted root and rosette growth in *cas-c1* plants (**Figure 11a,b**). In keeping with findings by García et al. (2010), *cas-c1* roots not treated with fungal VCs exhibited only a few short malformed RHs (**Figure 11a**) and accumulated low levels of O₂⁻ in the RHs (**Supplemental Figure 2**). Notably, unlike WT plants, this mutant did not exhibit O₂⁻ accumulation in RHs (**Supplemental Figure 2**), RH growth stimulation (**Figure 11a,c**) and LR shortening in response to exposure to fungal VCs (**Figure 11c**).

4. DISCUSSION

Fungal VCs promote changes in the root proteome that affect metabolic processes involved in growth and development

This is the first study reporting a high-throughput, isobaric labeling-based analysis of the changes in the roots proteome in response to microbial emissions, particularly VCs. Using a 2DE approach, Kwon et al. (2016) reported changes in the expression of 17

Figure 11: CAS-C1 is an important mediator of the root response to VOCs-depleted fungal VCs. (a) External phenotypes, (b) rosette and root FW, (c) root architecture parameters of WT and *cas-c1* plants cultured in the absence or continuous presence of VOCs-depleted VCs emitted by adjacent *P. aurantiogriseum* cultures for one week. Values in panels (b) and (c) are means \pm SE for three biological replicates (each a pool of 12 plants) obtained from four independent experiments. Letters "a", "b" and "c" indicate significant differences, according to Student's t-test (P<0.05), between: "a" WT and *cas-c1* plants cultured without fungal VC treatment, "b" VC-treated and non-treated plants, and "c" VC-treated WT and cas-c1 plants. RH number and length data were obtained from a pool of 6 first order LRs per plant. Plants providing data shown in (a) and (b) were grown on horizontal plates, whereas those providing data in (c) were grown on vertical plates. Scale bars in "a", 500 µm

proteins in roots of Arabidopsis plants after inoculation with the plant-growth promoting rhizobacterium *Paenibacillus polymyxa* E681; none of them were identified in our study. This indicates that the strategies of proteome adaptation to inoculation with beneficial bacteria and treatment with VCs emitted by a fungal phytopathogen differ greatly. That only 8% of the proteins that were differentially expressed by fungal VCs in roots were also differentially expressed in VC-exposed leaves (**Supplemental Table 1**) strongly indicates that strategies for acclimation to fungal VCs are quite distinct in tissues below and above ground.

Our data strongly indicate that root growth and developmental changes promoted by VCs from fungal phytopathogens is largely due to metabolic reorganization partly caused by proteome resetting. ATP-citrate lyase (ACL) is a cytosolic enzyme that catalyzes the conversion of citrate to acetyl-CoA and oxalacetate and is required for normal growth and development (Fatland et al., 2005). Changes in ACLA expression are associated with alterations in the levels of cytosolic acetyl-CoA-derived metabolites including MVA-derived isoprenoids some of which (e.g. CKs) are important mediators in the growth and developmental responses to environmental changes. For this reason, it has been suggested that ACLA is an important determinant of MVA-derived isoprenoid synthesis growth and development (Fatland et al., 2005). VOCs-depleted fungal VCs enhanced ACLA-1 expression (Supplemental Table 1, Figure 1) and levels of MVAderived CKs (e.g. cZ, cZR and cZRMP) (Table 2). It is therefore conceivable that the accumulation of MVA-derived CKs promoted by fungal VCs is due, at least in part, to augmented ACLA-1 expression as schematically illustrated in Figure 12. The high levels of MEP-derived CKs (Table 2) occurring in fungal VC-exposed roots could be explained by the transport of dimethylallyl diphosphate from the cytosolic MVA pathway into plastids (Kasahara et al., 2004) (Figure 12).

VOCs-depleted fungal VCs reduced the expression of aquaporins and the IRT1 metal ion transporter in roots (**Figure 1, Supplemental Table 1**), and this was associated with reduced Fe and Zn levels in leaves. Because CKs down-regulate IRT1 expression (Séguéla et al., 2008), it is tempting to speculate that fungal VC-promoted reduction in the metal ion content of roots is primarily due to reduced IRT1 expression caused by the enhancement of CK levels (**Table 2**) and signaling (**Figure 3a**). One possible explanation for the fungal VC-promoted down-regulation of expression of IRT1 and aquaporins is that fungal VCs greatly enhance the photosynthetic efficiency

thus reducing the water and Fe demands of leaves. In line with this presumption, plants exposed to fungal VCs had higher WUE_i than controls (**Figure 2**). Our findings are consistent with the idea that root iron acquisition is under long-distance regulation by photosynthesis (Vert et al., 2003).

Amino acid metabolism plays an important role in regulating root growth and development (Mo et al., 2006; Muñoz-Bertomeu et al., 2009; Pelagio-Flores et al., 2011; Frémont et al., 2013). Fungal VCs promoted the accumulation of the long-distance nitrogen transport amino acids Glu, Asn and Gln (Table 1). This metabolic change was associated with enhanced expression of plastidial Glu synthase 1 (GLUT1) and enzymes involved in the conversion of cytosolic citrate to Glu and Gln (e.g. ASP2 and GLN1-2) and the conversion of cytosolic Met and mitochondrial Cys to cytosolic Asp, Asn, Glu and Gln (e.g. METK2, METK3, ACO2 and CAS-C1) (Supplemental Table 1, Figure 1). CKs up-regulate METK2, METK3 and ACO2 expression (Žďárská et al., 2013; Brenner and Schmülling, 2015), which suggests that fungal VC-promoted augmentation of Asp, Asn, Glu and Gln contents in roots is due, at least in part, to enhanced METK2, METK3 and ACO2 expression caused by the increase in CK levels. Fungal VCs also led to the accumulation of citrate and other TCA intermediates (Table 1). This metabolic change was not associated with altered expression of TCA cycle enzymes or other proteins involved in mitochondrial respiration. Overall, the findings indicate that the stimulatory effect of fungal VCs on Glu, Gln, Asp and Asn contents and growth is due, at least in part, to activation of amino acid metabolism through mechanisms involving post-translational activation of mitochondrial respiration enzymes and CK-mediated transcriptional and/or translational up-regulation of the expression of enzymes involved in the conversion of cytosolic Met and mitochondrially synthesized citrate and Cys into cytosolic Glu, Gln, Asp and Asn as schematically illustrated in Figure 12.

VOCs-depleted fungal VCs down-regulated the expression of cell wall breakdown enzymes, and stimulated the expression of enzymes involved in the synthesis of precursors for cell wall biosynthesis (**Supplemental Table 1, Figure 1**). Consistently, fungal VCs enhanced the intracellular levels of the cell wall polysaccharides precursors glucuronic acid and UDP-glucose in roots. In Arabidopsis, mutants impaired in enzymes involved in the synthesis of cell wall polysaccharides show reduced growth and defects in LR and RH development (Favery et al., 2001; Diet et al., 2006; Handford et al., 2012). It is therefore conceivable that the root growth and RSA changes promoted by fungal

VCs are at least partly due to enhanced expression of cell wall biosynthetic enzymes and down-regulation of cell wall degradation enzymes, as illustrated in **Figure 12**.

BFRUCT4 is a vacuolar invertase that has been suggested as being in the conversion of sucrose to fructose and glucose leading to osmotic water uptake and a subsequent increase in turgor as a driving force for root elongation (Sergeeva et al., 2006). Consistent with this hypothesis, plants lacking BFRUCT4 have shorter roots than WT plants (Sergeeva et al., 2006; Leskow et al., 2016). VOCs-depleted fungal VCs down-regulated the expression of BFRUCT4 (**Supplemental Table 1, Figure 1**) and shortened PR and LRs (**Figure 5**). This finding indicates that root shortening in response to fungal VCs is due, at least to some extent, to down-regulation of BFRUCT4 expression.

Promotion of root shortening by VOCs-depleted fungal VCs involves enhanced auxin, ethylene and CK signaling

Ethylene, auxin and CK inhibit root growth (Riefler et al., 2006; Stepanova et al., 2007; Swarup et al., 2007; Street et al., 2015). VOCs-depleted fungal VCs shortened PR, but not LR, in the *ahk2/3, ahk2/4* and *ahk3/4* CK signaling mutants (**Figure 6c**). Furthermore, fungal VCs did not shorten PR and LRs in the *aux1-T, eir1* and *etr1-3* mutants (**Figure**

Figure 12: Suggested model for regulation of root proteomic and metabolic responses to VOC-depleted fungal VCs. Mixtures of VOC-depleted fungal VCs (VICs and/or VOCs with molecular masses of less than 40 Da) up-regulate the expression of ACLA-1, which regulates the metabolic flux from mitochondrially synthesized citrate to MVA-derived isoprenoids such as CKs. The resulting enhanced CK content down-regulates the expression of IRT1, thus restricting the uptake and subsequent transport of Fe to the aerial part of the plant. CKs up-regulate the expression of enzymes involved in the conversion of cytosolic Met to ethylene and HCN (METK2, METK and ACO2) the latter being converted to Asp, Glu and the long-distance nitrogen transport amino acids Asn and Gln by means of the ethylene-induced CAS-C1, ASP2 and GLN1-2. The resulting enhanced ethylene level promotes root shortening and RH formation and elongation. Fungal VCs down-regulate the expression of aquaporins through enhanced auxin signaling action, thus reducing H₂O and H₂O₂ uptake by root cells. Fungal VCs also down-regulate ACA8 calcium pump expression. Activation of plasma membrane NADPH oxidases by the resulting high cytoplasmic calcium concentrations, and downregulation of aquaporins and apoplastic peroxidases (e.g. PER3, PER32, PER34 and PER72) by fungal VCs leads to apoplastic oxidative burst due to the accumulation H2O2 and O2-, which promotes root and RH growth and RH elongation. Fungal VCs down-regulate the expression of vacuolar invertases (e.g. BFRUCT 3 and 4), thus limiting glucose and fructose production from sucrose. This, and the reduction of water uptake due to down-regulation of aquaporin expression, leads to a reduction in turgor as a driving force for root elongation. Enzymatic activities that are up-regulated by VOC-depleted fungal VCs are highlighted with red letters, whereas enzymatic activities and pathways that are down-regulated by VCs are highlighted with green letters. Multistep enzymatic reactions and signaling cascades are depicted with dashed arrows. Metabolites whose levels are higher in roots exposed to fungal VCs than in controls are highlighted in blue. DMAPP: dimethylallyl diphosphate.

5a,c). It can therefore be concluded that fungal VC-promoted RSA changes related to PR length are largely CK-independent, whereas those related to LR length involve CK and canonical auxin and ethylene signaling pathways. Root elongation is due mainly to an increase in the volume of cells along the growing zone, which is caused by water entering the cell via aquaporins (Hukin et al., 2002). Aquaporin genes are repressed by auxin (Nemhauser et al., 2006; Péret et al., 2012). VOCs-depleted fungal VCs enhanced auxin signaling (**Figure 3b**) and down-regulated the expression of aquaporins (**Supplemental Table 1, Figure 1**). It is thus conceivable that the PR and LR shortening that results from exposure to fungal VCs is due, at least in part, to enhanced auxin signaling, which in turn limits water uptake as a consequence of the down-regulation of the expression of aquaporins (**Figure 12**).

VOCs-depleted fungal VCs enhanced ethylene and active CK synthesis and signaling (**Table 3, Figures 3** and **5**) and the expression of ethylene biosynthetic enzymes (e.g. METK2, METK3 and ACO2) (**Supplemental Table 1, Figure 1**). CKs up-regulate the expression of enzymes involved in the synthesis of ethylene (Žďárská et al., 2013; Brenner and Schmülling, 2015), which is known to exert a negative effect on LR growth (Stepanova et al., 2005). It is thus likely that the fungal VC-promoted LR shortening is due, at least in part, to enhanced CK signaling, which in turn limits LR growth through enhanced ethylene action (**Figure 12**).

Promotion of LR formation and RH proliferation and elongation by VOCs-depleted fungal VCs involves auxin, ethylene and CK signaling independent mechanisms

Auxin, ethylene and CKs are important determinants of LR formation (Pitts et al., 1998; Riefler et al., 2006; Ivanchenko et al., 2008; Negi et al., 2008; Werner et al., 2010; Chang et al., 2013). Moreover, auxin and ethylene serve as key mediators of RH formation and elongation (Pitts et al., 1998). VOCs-depleted VCs emitted by *P. aurantiogriseum* increased LR number in auxin, ethylene and CK signaling mutants (**Figures 5a,c** and **6c**). These findings suggest the operation of important auxin, ethylene and CK signaling independent mechanisms in the promotion of LR formation and proliferation and elongation of RHs by fungal VCs. It is worth to note that the stimulatory effect of fungal VCs on RH formation and elongation was stronger in WT plants than in auxin and ethylene mutants (**Figure 5c**). In the presence of fungal VCs,

these mutants failed to form "brush-like" structures at the root tips (**Figure 5a**). It thus appears that the promotion of the "cotton-like" external root phenotype by fungal VCs caused by the strong proliferation and elongation of RHs at the root tips is auxin- and ethylene- dependent.

LR shortening and RH formation and elongation promoted by VOCs-depleted fungal VCs are ROS-dependent processes

ROS accumulation in the apoplast, mediated through the activity of redox metabolismrelated enzymes (e.g. NADPH oxidases and peroxidases), plays an important role in root and RH growth and development (Foreman et al., 2003; Passardi et al., 2006; Montiel et al., 2012; Manzano et al., 2017). Plasma membrane aquaporins are capable of transporting H₂O₂ (Bienert et al., 2007; Dynowski et al., 2008; Rodrigues et al., 2017) and thus may act as determinants of apoplastic ROS content (Grondin et al., 2015). Here we found that VOCs-depleted fungal VCs enhanced ROS levels in roots and RHs (Figure 7, Supplemental Figure 2). Fungal VCs also down-regulated the expression of plasma membrane aquaporins and redox metabolism-related enzymes (Supplemental Table 1, Figure 1), some of which (e.g. PER34) are directly involved in root growth and RH formation and development (Passardi et al., 2006; Manzano et al., 2017). Furthermore, VOCs-depleted fungal VCs reduced the expression of ACA8, a calcium pump that determines the concentration of the cytosolic calcium that regulates NADPH oxidase activity through calcium-dependent protein kinases (Drerup et al., 2013; Dubiella et al., 2013; Costa et al., 2017; Yang et al., 2017). We also found that the NADPH oxidase inhibitor DPI and the antioxidant ascorbic acid prevent the RH elongation promoted by *P. aurantiogriseum* VCs (Figures 8 and 9) and that *rhd2* plants lacking a root-expressed NADPH oxidase do not show O₂⁻ accumulation in RHs (Supplemental Figure 2), RH growth stimulation (Figure 10a,c) and LR shortening in response to fungal VCs (Figure 10c). Overall the data provide evidence that an apoplastic oxidative burst due to downregulation of plasma membrane aquaporins and apoplastic peroxidases, and activation of NADPH oxidases by calcium-dependent protein kinases, are major determinants of the root's response to VOCs-depleted fungal VCs (Figure 12).

ROS may function as a downstream component in auxin-mediated signal transduction (Ma et al., 2014; Mangano et al., 2017). As auxin down-regulates aquaporin gene expression (Nemhauser et al., 2006; Péret et al., 2012) and fungal VCs

enhance auxin signaling (**Figure 3b**), it is conceivable that the fungal VC-promoted root response caused by an apoplastic oxidative burst is due, at least in part, to down-regulation of expression of plasma membrane aquaporins caused by enhanced auxin signaling (**Figure 12**).

CAS-C1 mediates the root response to VOCs-depleted fungal VCs through mechanisms other than the maintenance of low HCN levels

Synthesis of ethylene results in the production of HCN, which is a potent toxin that inhibits heme-containing enzymes such as cytochrome c oxidase and peroxidases. To prevent self-poisoning, plants maintain an endogenous HCN detoxification pathway involving CAS-C1, which catalyzes the addition of HCN to Cys to produce H₂S and β -cyanoalanine, the latter being transported from mitochondria to the cytosol where it is converted to Asp or Asn by β -cyanoalanine nitrilase (NIT4) (Piotrowski et al., 2001) (**Figure 12**). CAS-C1 null mutants accumulate 40-60% more HCN and produce fewer and shorter RHs than WT plants (García et al., 2010; Arenas-Alfonseca et al., 2018). Thus, it has been suggested that CAS-C1 is essential in maintaining HCN at low levels that allow proper RH development (García et al., 2010).

VOCs-depleted fungal VCs enhanced the expression of ethylene biosynthetic enzymes (e.g. METK2, METK3 and ACO2) and CAS-C1 (**Supplemental Table 1, Figure 1**). This finding suggests that CAS-C1 may play a role in the fungal VCpromoted RH elongation and activation of mitochondrial respiration by removing the HCN generated by ACO2. We found that fungal VCs do not promote RH elongation in *cas-c1* plants (**Figure 11**), which supports the idea that CAS-C1 is an important mediator of the RH response to fungal VCs and indicates that no other HCN scavenging system can replace CAS-C1 in promoting RH elongation in response to fungal VC exposure. However, fungal VCs caused a ca. 3-fold increase in HCN contents in the roots of WT plants. This finding strongly indicates that (a) roots of WT plants exposed to fungal VCs are capable of accumulating high levels of HCN without inhibiting mitochondrial respiration and RH formation and elongation, and (b) CAS-C1 operates in the fungal VC-promoted RH formation and elongation through mechanisms other than maintaining low levels of HCN.

In Arabidopsis, enhanced flux from HCN to Asn and Asp by the ectopic expression of β -cyanoalanine nitrilase promotes RH elongation (O'Leary et al., 2014).

One possible explanation for the fungal VC-promoted RH formation and elongation could therefore involve the conversion of HCN produced by ACO2 to cytosolic Asp, Asn, Glu and Gln through the coupled reactions of CAS-C1, NIT4, ASP2 and GLN1-2 as schematically illustrated in **Figure 12**. Lack of CAS-C1 prevents not only the scavenging of HCN molecules produced in the last step of the ethylene biosynthetic pathway but also the formation of ROS by hitherto unknown mechanisms (Arenas-Alfonseca et al., 2018). Here we found that *cas-c1* plants are unresponsive in terms of O_2^- accumulation in RHs (**Supplemental Figure 2**). Therefore, another possible explanation for the RH formation and elongation promoted by fungal VCs could involve the enhancement of ROS production and signaling by as yet to be identified CAS-C1 dependent mechanisms. At low concentrations H₂S can act as a signaling molecule that promotes growth and RSA changes (Chen et al., 2011; Lisjak et al., 2013; Mei et al., 2017). Therefore, a third explanation for the fungal VC-promoted RH changes could involve the enhancement of CAS-C1-mediated H₂S production.

Concluding and additional remarks

This is to our knowledge the first comprehensive study on the response of roots to VCs emitted by a fungal phytopathogen. Our results show for the first time that microbial VCs can modulate root architecture through mechanisms involving HCN scavenging. Our findings also show that VCs from a fungal phytopathogen can modulate root metabolism and architecture through complex mechanisms involving proteome changes mediated by CK, ethylene, auxin and ROS. Our data contrast with previous reports showing that complex mixtures of VCs or discrete (individual) VOCs emitted by beneficial microorganisms exert a null or minor effect on LR formation and RH formation and elongation in auxin and ethylene signaling mutants (Splivallo et al., 2009, Contreras-Cornejo et al., 2015; Garnica-Vergara et al., 2016). Furthermore, our results differ from those of studies showing that complex mixtures of VCs emitted by the symbiotic fungus Trichoderma atroviride inhibit PR growth in ethylene signaling mutants (Contreras-Cornejo et al., 2015). In addition, our findings contrast with reports showing that VCs from beneficial rhizobacteria and rhizofungi enhance IRT1 expression (Zhang et al., 2009; Zamioudis et al., 2013; Martínez-Medina et al., 2017). It thus appears that the mechanisms involved in RSA and metabolic adjustments to VCs emitted by beneficial and by pathogenic microorganisms are different. Clearly, further

Capítulo 2

experiments are necessary in order to test this hypothesis.

MEP pathway MVA pathway OPPP/glycolysis ----> GAP + PYR Acetyl-CoA CYTOSOL PLASTID HMG-CoA DXP + ADP/ATP HMBDP MÝA DMAPP -DMAPP -→ IPP through prenylated t-RNA ADP/ATP cZRDP/cZRTP tZRDP/tZRTP **iPRDP/iPRTP** DHZMP iPRMP < cZRMP < |↑ 1 ¥∣ DHZR cZR ļ 1 iP cΖ tZROG cZROG iP7G DZ7G tZ7G DHZ9G tZ9G iP9G cZ9G

5. SUPPLEMENTAL FIGURES AND TABLES

Supplemental Figure 1: VCs emitted by *P. aurantiogriseum* promote augmentation of the levels of CKs in roots. Scheme representing pathways of CK biosynthesis through the plastidic MEP and cytosolic MVA pathways is shown. Metabolites whose levels are higher in roots exposed to fungal VCs-exposed than in controls are highlighted in green, and metabolites whose levels are lower in roots exposed to fungal VCs-exposed than in controls are highlighted in red. Data from Table 3. Multistep reactions are depicted with hollow arrows.

Supplemental Figure 2: VOCs-depleted fungal VCs promote O_2^- accumulation in WT RHs but not in *rhd2* and *cas-c1* RHs. NBT staining of O2- in RHs of WT, *rhd2* and *cas-c1* plants cultured in the absence or presence of adjacent cultures of *P. aurantiogriseum* with charcoal filters for one week. Red arrowheads indicate diformazan precipitates formed by NBT reduction by O_2^- . Scale bars 200 µm.

unctions.	. DEPs the	it are discu	ssed in ti	he main text	re highlighted in yellow.
Accesión number	Protein ID	Fold change (log2)	qValue (FDR)	Subcellular location	Description
Amino acid I	metabolism				
AT3G04520	Q9FPH3	1.497	0,019	Cytosol	Q9FPH3 THA2_ARATH Probable low-specificity L-threonine aldolase 2 OS-Arabidopsis thaliana GN=THA2 PE=1 SV=1
AT1G66200	Q8LCE1	0.968	0,011	Cytosol	Q8LCE1 GLN1-2_ARATH Glutamine synthetase cytosolic isozyme 1-2 OS=Arabidopsis thaliana GN=GLN1-2 PE=1 SV=2
AT5G53460	Q9LV03	0.626	0,014	Plastid	Q9LV03 GLUT1_ARATH Glutamate synthase 1 [NADH], chloroplastic OS=Arabidopsis thaliana GN=GLUT1 PE=1 SV=2
AT3G61440	Q95757	0.52	0,025	Mitochondrion	Q95757 [CAS-C1_ARATH Bifunctional L-3-cyanoalanine synthase/cysteine synthase C1, mitochondrial OS=Arabidopsis thaliana GN=CAS-C1 PE=1 SV=1
AT5G19550	P46645	0.419	0,05	Cytosol	P46645 AAT7ARATH Aspartate aminotransferase, cytoplasmic isozyme 1 OS=Arabidopsis thaliana GN=ASP2 PE=1 SV=2
AT2G43910	Q0WP12	-0.558	0,015	Cytosol	00WP12-2 H0L1_ARATH Isoform 2 of Thiocyanate methyltransferase 1 OS=Arabidopsis thaliana GN=H0L1
AT1G23310	Q9LR30	-0.873	0,013	Peroxisome	Q9LR30 GGT1_ARATH Glutamate-glyoxylate aminotransferase 1 0S=Arabidopsis thaliana GN=GGAT1 PE=1 SV=1
AT3G45300	09SWG0	-0.942	0.002	Mitochondrion	OSSWG01IVD _ ARATH Isovalervi-Cox dehudrozenase. mitochondrial OS=Arabidoosis thail ana GN=IVD PE=1 SV=2
AT4G29840	Q957B5	-2.352	0,013	Plastid	QBS7851THRC1. ARATH Threonine synthese 1, chloroplastic OS=Arabidopsis thaliana GN=TS1 PE=1 SV=1
indegradat	idona fondi	otice			
AT1G53580	09C8L4	-0.633	0,02	Mitochondrion	O9C8L4 IETHE1 ARATH Persulfide dioxygenase ETHE1 homolog, mitochondrial OS=Arabidoosis thaiiana GN=GLY3 PE=1 SV=3
=					
ATEC 20E10	21300	1 310	0100	ED Color	ODGELELVITH1 A DATULVoriale tenerand v CNADE 11 DG-Arabidonorie draliana CNA-VITH1 DE-1 EV-2
OTCESSCIA	000817	0T7'T	040	Colori Colori	CODORITIONEL TANATI VESIONE RAISPONE RAISPONE VESTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN POSTAVENEN P
09526911A	128767	0.843	0,U24	201Bl	
A14G34870	Q42406	0.609	0,005	Golgi	042409 (PT180_ARATH PeptidyI-prolyticis-trans isomerase CYP18-4 OS-Arabidopsis thaliana GN=CYP18-4 PE=1 SV=1
AT1G35720	Q9SYT0	0.502	0,008	Apoplast	095YT0 ANXD1_ARATH Annexin D1 05=Arabidopsis thaliana GN=ANN1 PE=1 SV=1
Cell Wall					
AT4G25820	Q9ZSU4	1.857	0,044	Extracellular	0925U4 XTH14_ARATH Xyloglucan endotransglucosylase/hydrolase protein 14 OS-Arabidopsis thaliana GN=XTH14 PE=1 SV=1
AT5G44130	Q9FFH6	0.941	0,045	Plasma membrane	09FFH6JFL413_ARATH Fasciclin-like arabinogalactan protein 13 OS=Arabidopsis thaliana GN=FL413 PE=1 SV=1
AT2G47650	Q858T4	0.711	0,003	Golgi	Q8SBT4 UXS4_ ARATH UDP-glucuronic acid decarboxylase 4 O5=Arabidopsis thaliana GN=UXS4 PE=2 SV=1
AT5G39320	Q9FM01	0.705	0,004	Cytosol	Q9F M01 UGDH4_ARATH UDP-glucose 6-dehydrogenase 4 OS=Arabidopsis thaliana GN=UGD4 PE=1 SV=1
AT3G03250	Q9M9P3	0.414	0,05	Cytosol	Q9M9P3 UGPA2_ARATH UTP-glucose-1-phosphate uridylyltransferase 2 OS=Arabidopsis thaliana GN=UGP2 PE=1 SV=1
AT3G10740	Q95G80	-0.621	0,022	Apoplast	Q95G80/ASD1_ARATH Alpha-L-arabinofuranosidase 1 OS=Arabidopsis thaliana GN=ASD1 PE=1 SV=1
AT1G66280	Q9C8Y9	-0.674	0,014	ER	09C8Y9JBGL22_ARATH Beta-gucosidase 22 OS=Arabidopsis thaliana GN=BGLU22 PE=1 SV=1
AT5G06860	Q9M5J9	-0.744	0,005	Golgi, cell wall	Q9M5J9 PGIP1_ARATH Polygalacturonase inhibitor 1 OS=Arabidopsis thaliana GN=PGIP1 PE=1 SV=1
AT3G09260	Q9SR37	-0.857	0,006	ER	Q9SR37 BGL23_ARATH Beta-glucosidase 23 OS=Arabidopsis thaliana GN=BGLU23 PE=1 SV=1
AT5G58090	Q93Z08	-0.934	0,034	Plasma membrane	093208 E136_ARATH Glucan endo-1,3-beta-glucosidase 6 OS=Arabidopsis thaliana GN=At5g58090 PE=1 SV=2
AT1G66270	Q9C525	-1.312	0,013	ER	09C5251BGL21_ARATH Beta-glucosidase 21 OS=Arabidopsis thaliana GN=BGLU21 PE=1 SV=1
AT5G04970	Q9FF77	-1.689	0,005	Cell wall	Q9F577 PME47_ARATH Probable pectinesterase/pectinesterase inhibitor 47 OS=Arabidopsis thaliana GN=PME47 PE=2 SV=1
AT1G75940	Q84WV2	-1.834	0,005	ER	Q84WV2 BGL20_ARATH Beta-glucosidase 20 OS=Arabidopsis thaliana GN=BGLU20 PE=2 SV=1
o-factor an	d vitamina m	at abolicm			
O-Idcioi di	ומ אורפווווווים נוו	FLADUISITI			
AT3G14990 AT5G50960	Q9FPF0 Q8H1Q2	-1.147 -1.605	0,001 0,008	Golgi Cytosol	O9FPF0 DI JA_ARATH Protein Di-1 homolog A O5=krabidopsis thaliana GN=DIJA PE=1 SV=1 Q8H1Q2 NBP35_ARATH Cytosolic Fe-5 cluster assembly factor NBP35 O5=krabidopsis thaliana GN=NBP35 PE=1 SV=1
Jevelopmen	Ŧ				
AT3G03340	A0A1 191 RM4	1.555	0.013	Nircleus	ADA1191 RM41 ADA161 RM4_ARATH I LIC7 related protein OS=Arabidonsis thaliana GN=LINE6 PF=4 SV=1
AT2G23810	Q858Q6	-0.97	0,016	Plasma membrane	resonance in the second s
AT4G37070	023179	-1.076	0,001	Plasma membrane	033179 PL1_ARATH Patatin-like protein 1 OS=Arabidopsis thaliana GN=PLP1 PE=1 SV=2

Supplemental Table 1: list of proteins whose expression is differentially regulated by VOCs-depleted VCs of *P. aurantigrioseum*. DEPs are classified according to their functions. DEPs that are discussed in the main text are highlighted in yellow.

DNA					
AT3G54560	023628	-0.68	0,014	Nucleus	023628 H2AV1_ ARATH Histone H2A variant 1 OS=Arabidopsis thaliana GN=H2AV PE=1 SV=1
AT3G15950	Q9LSB4	-0.691	0,001	ER	Q9LSB4 NAI2_ARATH TS41-like protein OS=Arabidopsis thaliana GN=NAI2 PE=1 SV=1
At1g07660	P59259	-0.845	0,001	Nucleus	P59259 H4_ARATH Histone H4 0S=Arabidopsis thaliana GN=Attg07666 PE=1 SV=2
AT1G08880	004848	-1.149	0,017	Nucleus	004848 H2AXA_ARATH Probable histone H2AXa OS=Arabidopsis thaliana GN=At1g08880 PE=1 SV=1
AT5G28740	Q9LKU3	-1.356	0,031	Nucleus	Q9LKU3 Q9LKU3_ARATH Tetratricopeptide repeat (TPR)-like superfamily protein OS=Arabidopsis thaliana GN=T32B20,g FE=4 SV=1
Fermentation	-				
	_				
AT1G77120	P06525	1.312	0,001	Cytosol	P06525 ADH1_ARATH Alcohol dehydrogenase class-P OS=Arabidopsis thallana GN=ADH1 PE=1 SV=2
Glycolysis					
VITACIPECO	A CLUTCOO		200.0	0.4000	DDJMDALENOO - ADATU Guassilise aadassa 2 OC-Assabidaasiis Abadisaan ON-ENOO DE-4 EU-4
N95629218	Q92W34	771.7	/70'0	CYTOSOI	
Hormone me	tabolism				
AT1G62380	Q41931	1.025	0,002	Golgi	Q41931 ACCO2_ARATH 1-aminocyclopropane-1-carboxylate oxidase 2 OS=Arabidopsis thaliana GN=ACO2 PE=1 SV=2
AT4G01850	P17562	0.896	0,014	Cytosol	P17562 METK2_ARATH S-adenosylmethionine synthase 2 OS=Arabidopsis thaliana GN=SAM2 PE=1 SV=1
AT1G10670	Q9SGY2	0.598	0,05	Cytosol	Q9SGY2 ACL41_ARTH ATP-citrate synthase alpha chain protein 1 OS=Arabidopsis thaliana GN=ACL4-1 PE=1 SV=1
AT2G36880	Q9SJL8	0.435	0,049	Cytosol	Q95JL8 METK3_ARATH 5-adenosylmethionine synthase 3 OS=Arabidopsis thaliana GN=METK3 PE=1 5V=1
AT3G44320	P46010	-0.776	0,027	Cytosol	P46010 NRL3_ARATH Nitrilase 3 OS=Arabidopsis thaliana GN=NIT3 PE=1 SV=1
AT3G44310	P32961	-1.114	0,003	Cytosol	P32961 NRL1_ARATH Nitrilase 1 OS=Arabidopsis thaliana GN=NIT1 PE=1 SV=2
Lipid metabo	lism				
AT1G65290	080800	1.798	0.021	Mitochondrion	0808001 ACPM2 - ARATH Acvi carrier protein 2. mitochondrial OS=Arabidoosis thailana GN=MTACP2 PE=1 SV=1
AT7633150	OFFIND	-0530	0.024	Perovisome	OS6WDQ1THIK2_ARATH_3.4etravul-C.0a.thinlser_3_nerroxisemal OS=Arahidnosis thaliana GN=9E11 PE=1 SV=2
AT1645201	A0A1PRAVY3	-0.62	0.073	Golei	A0A188AVY1 A0A188AVY3 ARATT Triacvierol lineareike 1 05-arabidrotsi thaliana GN=11 1 PE-4 SV=1
AT5G48880	0570C8	-0.699	0.044	Peroxisome	0570C81THIK5 ARATH 3-ketoacv1-Cod thiolase 5. peroxisomal OS=4rabidosis thaliana OS=4K15 FE=1.5V=2
AT3G51840	096329	-1.185	0.001	Peroxisome	0963.291ACO24_ARATH AcvI-coenzyme A oxidase 4, peroxisomal OS=Arabidonsis thailiana GN=ACX4 PE=1 SV=1
AT4G16155	F4JLP5	-2.272	0,018	Plastid	F4LID5/PLPD2_ARATH Dihydrolippy (dehydrogenase 2, chloroplastic C5-arabidosis thaliana GN=PD2 PE=2 SY=2
Major CHO m	netabolism				
AT1G62660	Q43348	-0.577	0,018	Vacuole	Q43348 INVA3_ARATH Acid beta-fructofuranosidase 3, vacuolar OS=Arabidopsis thaliana GN=BFRUCT3 PE=2 SV=1
AT1G12240	Q39041	-0.56	0,016	Vacuole	Q39041 INVA4_ARATH Acid beta-fructofuranosidase 4, vacuolar OS=Arabidopsis thaliana GN=BFRUCT4 PE=1 SV=2
Metal handlin	a hinding				
AT3G56240	A0A1191 NC0	0.678	0.004	Peroxisome	ADA1191 NCD1 ADA1191 NCD_ARATH Conner chanerone OS=Arabidonstis thaliana GN=CCH PE=4 SV=1
					-
Miscellaneou	is enzyme ram	٨			
AT4G16260	Q8VZJ2	1.053	0,001	Extracellular	08VZI2 BGNEM_ARATH Probable glucan endo-1,3-beta-glucosidase At4g16260 OS=Arabidopsis thaliana GN=At4g16260 PE=1 SV=1
AT4G13180	Q9SVQ9	-0.578	0,039	Plastid	Q95VQ9_QR9VQ9_ARATH A14g13180/F17N18_70 O5=Arabidopsis thaliana GN=At4g13180 PE=1 SV=1
AT3G16420	004314	-0.702	0,001	Cytosol	004314 JAL30_ARATH PYK10-binding protein 1 0S=Arabidopsis thaliana GN=PBP1 PE=1 SV=1
AT1G78850	Q9ZVA4	-0.717	0,002	Extracellular	Q9ZV44 [EP1L3_ARATH EP1-like glycoprotein 3 OS=Arabidopsis thaliana GN=At1g78850 PE=1 SV=1
AT3G26720	P94078	-0.718	0,003	Extracellular	P94078 MANA1_ARATH Alpha-mannosidase At3g26720 OS=Arabidopsis thaliana GN=At3g26720 PE=1 SV=1
AT3G16410	004316	-0.727	0,001	Cytosol	004316 JAL29_ARATH Nitrile-specifier protein 4 OS=Arabidopsis thaliana GN=NSP4 PE=2 SV=1
AT3G16400	Q9SDM9	-0.782	0,023	Cytosol	Q9SDM9 JAL28_ARATH Nitrile-specifier protein 1 OS=Arabidopsis thaliana GN=NSP1 PE=1 SV=2
AT5G66920	Q8LPS9	-0.783	0,036	Extracellular	Q&LP59 Q&LP59_ARATH At5g66920/MUD21_18 OS=Arabidopsis thaliana GN=sks17 PE=2 SV=1
AT3G29250	F4J2Z7	-0.84	0,011	Extracellular	F4J2Z7 SDR4_ARATH Short-chain dehydrogenase reductase 4 OS=Arabidopsis thaliana GN=SDR4 PE=2 SV=1
AT4G34138	O8VZE9	-0.902	0.011 1	Plasma membrant	• QBVZE91U73B1 ARATH UDP-givcosvitransferase 73B1 05=Arabidopsis thaliana GN=UGT73B1 PE=2 SV=1

JPNé

Capítulo 2

SV=1			
065423 065423_ARATH AT4g_21580/F1865_200 05=Arabidopsis thaliana GN=F18E5_200 PF=2 SV=1 065787 CT3B6_ARATH Knotronne P450 7186 O5=Arabidopsis thaliana GN=CP77186 FF=2 SV=1 05957 usi QaS7U3_ARATH AX492520 05=Arabidopsis thaliana GN=Arag42150 PF=2 SV=1 03950 API ANG7_ARATH NAR49250 05=Arabidopsis thaliana GN=Arag42150 PF=2 SV=1 03950 API ANG7_ARATH NAR49250 05=Arabidopsis thaliana GN=Arag42150 PF=2 SV=1 03950 API ANG7_ARATH NAR47250 05=Arabidopsis thaliana GN=Arag4250 PF=2 SV=1 03050 API ANG7 PF dependent address like protein, chloroplastic O5=Arabidopsis thaliana GN=At4809750 FE=3 SV=1 0 05223 Q05521 Q0552 ARATH Dynamin-A O5=Arabidopsis thaliana GN=At48099750 FE=2 SV=1 0 05223 Q05523 Q0572 Q0572	055471 (CDA3_ARATH Cyrtidire deaminase 3 OS-Arabidopsis thaliana GK=CDA3 PE-2 SV=1 0647401 SC138_ARATH Protein transport protein SEC13 bronolog 8 OS-Arabidopsis thaliana GK=SEC138 PE=1 SV=2 0485491 (SS1_ARATH 405 ribosomal protein SF-1 OS-Arabidopsis thaliana GK=PESA PE=1 SV=2 0485491 (RS1_ARATH GS ribosomal protein P1-3 OS-Arabidopsis thaliana GK=PESA PE=1 SV=2 05811 (RS1_ARATH GS ribosomal protein P1-3 OS-Arabidopsis thaliana GK=PET13A/PE=2 SV=1 0483591 (RS1_ARATH GS ribosomal protein P1-3 OS-Arabidopsis thaliana GK=PET13A/PE=2 SV=1 0483591 (RS1_ARATH GS ribosomal protein D13a-1 OS-Arabidopsis thaliana GK=PET13A/PE=2 SV=1 0423751 (RS2/S_ARATH Exitaryotic aspartly protease family protein OS-Arabidopsis thaliana GK=PET14.2 PE=2 SV=1 0423751 (SQ2/S5_ARATH Exitaryotic aspartly protease family protein OS-Arabidopsis thaliana GK=SET14.2 PE=2 SV=1 0423751 (SQ2/S5_ARATH Exitaryotic aspartly protease Ramily protein OS-Arabidopsis thaliana GK=SET14.2 PE=2 SV=1 0323751 (SQ2/S5_ARATH Exitaryotic aspartly protease Ramily protein OS-Arabidopsis thaliana GK=SET14.2 PE=2 SV=1 0323751 (SQ2/S5_ARATH Exitaryotic aspartly protease S10420 (SA-Arabidopsis thaliana GK=SET14.2 PE=2 SV=1 0323751 (SQ2/S4_ARATH Exitaryotic aspartly protein OS-Arabidopsis thaliana GK=SET14.2 PE=2 SV=1 0323751 (SCR92_ARATH Exitaryotic aspartly protein OS-Arabidopsis thaliana GK=SET14.2 PE=2 SV=1 0323751 (SCR92_ARATH Exitaryotic aspartly protein OS-Arabidopsis thaliana GK=R4T12 PE=2 SV=1 0323751 (SCR92_ARATH Exitaryotic aspartly protein OS-Arabidopsis thaliana GK=R4T12 PE=2 SV=1 0323751 (SCR92_ARATH Exitaryotic aspartly protein OS-Arabidopsis thaliana GK=R4T12 PE=2 SV=1 0323751 (SCR92_ARATH Exitaryotic aspartly protease 201350 (SS-Arabidopsis thaliana GK=R4T12 PE=2 SV=1 0323751 (SCR92_ARATH Piant UBX domain-containing protein 7 OS-Arabidopsis thaliana GK=R4T12 PS=2 0324531 (SVZ_ARATH PIANT HPA)ADH CSPARIDE PCS-SVARIDOS Exitaliana GK=R4T12 PS=2 0324531 (SVZ_ARATH PIANT HPA)ADH CSPARIDE PCS-SVARIDOS EXITALIA	0.343:01 HBL_ARMTH Non-symbiotic hemoglobin 1 OS=Arabidopsis thaliana GN=AHBL PE=1 SV=1 P21278[SDDF1_ARMTH Supervoxide Elimitase [Fe] 1, chorapolatic OS charabidopsis thaliana GN=55D PE=1SV=4 G8.7C9] GSTUE_ARMTH Gutentone Stransforme EVO GS=Arabidopsis thaliana GN=55TU20 PE=1 SV=1 G9.1999 [PER32_ARMTH Perovidase 32:05=Arabidopsis thaliana GN=55TU20 PE=1 SV=1 G9.1989 [PER32_ARMTH Perovidase 32:05=Arabidopsis thaliana GN=55TU20 PE=1 SV=1 G9.1783 [MJAR1, ARMTH Perovidase 32:05=Arabidopsis thaliana GN=55TU20 PE=1 SV=1 G9.1783 [MJAR1, ARMTH Perovidase 35:54pin teachers 1; peexis form 10:5=Arabidopsis thaliana GN=85TU20 PE=1 SV=1 G9.2938 [ISCIU_ARMTH Perovidase 35:54pin teachers 2; peexis form 10:5=Arabidopsis thaliana GN=85TU30 PE=1 SV=1 G9.2938 [ISCIU_ARMTH Gutentones 55:54pin teacher 2; peexis form 10:5=Arabidopsis thaliana GN=85TU30 PE=1 SV=1 G9.2948 [ISCIU_ARMTH Perovidase 34:05=Arabidopsis thaliana GN=85TU30 PE=1 SV=1 G9.2948 [ISCIU_ARMTH Perovidase 34:05=Arabidopsis thaliana GN=85T019 PE=1 SV=1	Or3310/SDOC2. ARANH Superoide dismutase (Lu-Zn) 2. chioroplastic OS-chabiologas inhiaina GW-SD2 PE=1.SV-2 OBEILOSI CHU- ARANH Guturhiones F-transferase U/17 OS-chabiologas thaliana GM-SSTU17 PE=2.SV-1 OSFH6[(STTUO_ARANH Guturhione S-transferase U/24 OS-chabiologas thaliana GM-SSTU12 PE=2.SV-1 P24704[SDOC1_ARANH Superovide dismutase[Cu-Zn] 1 OS-chabiologis thaliana GM-SSTU12 PE=2.SV-1 QSSM99] ALFL6_ARANH Superovide dismutase[Cu-Zn] 1 OS-chabiologis thaliana GM-SSD1 PE=1 SV-2 GSSM99] ALFL6_ARANH PHD finger protein ALFIN-LIKE 6 OS-chabiologis thaliana GM-SSD1 PE=1 SV-2 GSSM99] ALFL6_ARANH PHD finger protein ALFIN-LIKE 6 OS-chabiologis thaliana GM-SSD1 PE=1 SV-2
Cytosol ER Extracellular Plasma membrar Mitochondrion Golgi ER Extracellular	Cyrosol Cyrosol Cyrosol Cyrosol Cyrosol Extracellular Vacuole Extracellular Vacuole Extracellular Vacuole Stracellular Vacuole Cyrosol Vacuole Cyrosol	Cytosol Plastid Peroxisome Extracellular Peroxisome Cytosol Cytosol	Plastid Cytosol Cytosol Nucleus
0,003 0,021 0,001 0,005 0,006 0,001 0,011 0,011	0,02 0,016 0,013 0,004 0,004 0,005 0,002 0,002 0,003 0,00000000	0,001 0,021 0,024 0,024 0,006 0,006 0,001	0,009 0,001 0,005 0,003 0,003
-0.918 -0.939 -1.086 -1.167 -1.167 -1.195 -1.321 -1.333 -1.544 -1.544	1136 09 0859 0836 0836 0643 0643 0649 0.646 0.646 0.646 0.646 0.641 1.102 0.941 1.103 0.1123 1.1016 1.1023 1.1023 1.1023 1.1023 1.1023 2.047 2.0	1.896 0.888 0.828 0.829 -0.454 -0.539 -0.52 -0.826 -1.009	-1.105 -1.403 -1.551 -1.988 -1.988 1.301
065423 065787 0957U3 095084 080517 095291 095283 048532 048532 048532 039100	095847 066740 066740 086549 081502 082511 082792 082792 082792 082792 082759 093992 093759 093759 093759 093759 093759 093759 093750 093750 093750 093750 093750 093750 093750 093757 093750 093757 003757 0000000000	tion 024520 024520 024576 024189 023044 031643 0328043 0328043 0328043 0358008	078310 Q9FUS8 Q9SHH6 P24704 Q8S8M9
AT4G21580 AT2G24180 AT4G12510 AT4G12510 AT3G03880 AT2G4790 AT2G47000 AT2G42500 AT2G42500 AT2G42500 AT2G42500 AT2G426900	A14623630 Protein A126310050 A15647700 A15647700 A15647700 A13607110 A11607130 A11603230 A11603200 A17613900 A17613900 A116139000 A116139000 A116139000 A116139000 A1161390000 A1161390000000000000000000000000000000000	Redox regula: AT2G16060 AT4C251000 AT1G78370 AT3G32980 AT3G5280 AT3G78380 AT3G78380 AT3G78380 AT3G78380 AT3G49120	AT2G28190 AT1G10370 AT1G17170 AT1G08830 AT1G08830 AT2G02470

 QBSSK/ MLP34_AKATH MLP-like protein 34 OS=Arabidopsis thaliana GN=MLP34 Pr≡≤ SV=1 ONd3111 IAI 33_ARATH Iaralin-related lectin 33 OS=Arabidoosis thaliana GN=IAL33 PE=1 SV=1	Cytosol	1,001 0.004	-0.927	004311	AT16/0850 AT3G16450
P92095 [GLT1_ARATH Germin-like protein subfamily T member 1 0S-Arabidopsis thaliana GN=GLP1 PE=2 SV=2	Extracellular	0,013	-0.874	P92995	AT1G18970
Q8GYB8 OPR2_ARATH 12-oxophytodienoate reductase 2 OS=Arabidopsis thaliana GN=OPR2 PE=1 SV=2	Cytosol	0,005	-0.76	Q8GYB8	AT1G76690
Q9SUR0 Q9SUR0 AT4G23670 protein OS=Arabidopsis thaliana GN=At4g23670 PE=2 SV=1	Cytosol	0,007	-0.723	Q9SUR0	AT4G23670
022413 ML262_MM4111 ML2711KE (FUCUR) 320 03-X1 adjucupsis trialiala GN-ML1320 FE-2 3Y-1 P31168 COR47 ARATH Dehydrin COR47 OS-Arabidopsis thaliana GN=COR47 PE=1 SV=2	Nucleus	0,037	-0.712	P31168	AT1G20440
 004309] JAL35_ARATH Jacalin-related lectin 35 05=Arabidopsis thaliana GN=JAL35 PE=1 2V=1	Cytosol	0,003	-0.654	004309	AT3G16470
 C052VQ3 GSTZ1_ARATH Glutathione S-transferase Z1 OS=Arabidopsis thaliana GN=GSTZ1 PE=1 SV=1	Cytosol	0,026	-0.639	Q9ZVQ3	AT2G02390
 O9C8G5 CSCLD_ARATH CSC1-like protein ERD4 OS=Arabidopsis thaliana GN=ERD4 PE=2 SV=1	Plasma membrane	0,007	-0.635	Q9C8G5	AT1G30360
 Q8H121 Q8H121_ARATH Glutathione S-transferase family protein OS=Arabidopsis thaliana GN=At4g19880 PE=1 SV=1	Plastid	0,007	-0.623	Q8H121	AT4G19880
 Q9LHA8 MD37C_ARATH Probable mediator of RNA polymerase II transcription subunit 37c OS=Arabidopsis thaliana GN=MED37C PE=1 SV=1	Cytosol	0,039	-0.613	Q9LHA8	AT3G12580
004310] JAL34_ARATH Jacalin-related lectin 34 OS=Arabidopsis thaliana GN=JAL34 PE=1 SV=1	Cytosol	0,006	-0.533	004310	AT3G16460
A0A1P8AWX3 A0A1P8AWX3_ARATH Leucine-rich repeat (LRR) family protein OS=Arabidopsis thaliana GN=At1g33590 PE=4 SV=1	Extracellular	0,043	-0.51	F4HR88	At1g33590
080950 JAL22_ARATH Jacalin-related lectin 22 OS=Arabidopsis thaliana GN=JAL22 PE=1 SV=1	Plasma membrane	0,023	-0.499	080950	AT2G39310
P43082 HEVL_ARATH Hevein-like preproprotein OS=Arabidopsis thaliana GN=HEL PE=1 SV=1	Extracellular	0,023	0.672	P43082	AT3G04720
P19171 CHIB_ARATH Basic endochitinase B OS=Arabidopsis thaliana GN=CHI-B PE=1 SV=3	Extracellular	0,02	0.697	P19171	AT3G12500
Q8GWI7 JAL10_ARATH Jacalin-related lectin 10 OS=Arabidopsis thaliana GN=JAL10 PE=2 SV=1	Extracellular	0,001	0.88	Q8GWI7	AT1G52070
PODI10 PER1_ARATH Peroxidase 1 OS=Arabidopsis thaliana GN=PER1 PE=1 SV=1	Extracellular	0,012	1.069	PODI10	AT1G05240
149419. JIAZY - AKATH Pacalin-Frated lection Or D-S-Arabiodopsis trailaina GN=JAZY PrE=3 5 V=1 10391031 DFBAZA_ARTH Parciviciase da OrS-Arabiohonisci Haliana GREDFRAL PEE=2 VS=1	Extracellular Extracellular	100,0	1.145	P4IB95	AT4626010
O24658 CHI59_ARATH Endochitinase At2g43590 OS=Arabidopsis thaliana GN=At2g43590 PE=2 SV=1	Extracellular	0,024	1.383	024658	AT2G43590
Q9LDN9 PER37_ARATH Peroxidase 37 OS=Arabidopsis thaliana GN=PER37 PE=2 SV=1	Extracellular	0,002	1.427	Q9LDN9	AT4G08770
P46422 G5FF2_ARATH Glutathione S-transferase F2 OS=Arabidopsis thaliana GN=G5TF2 PE=1 SV=3	Cytosol	0,001	1.431	P46422	AT4G02520
record i trad_control environmenta or control tradicional and tradicional control i control i control control c OPENARS [GL111 ARATH Germin-like protein subfamily 1 member 110 Sch rational control control prezional control c 2015 - 201 - 2015 - 20	Extracellular	0.013	1.497	Q9FMA8	AT5G38940
OB1881 OB1888 ARATH AT4633720 OS-Arabidopsis thaliana GA=T161.210 PE-25V=1	Extracellular	0,001	2.748	081888	AT4G33720
					Stress
 QG7N2] QG7N2] QG7N2_ARATH GTPase activator protein of Rab-like small GTPases-like protein OS=Arabidopsis thaliana GN=MJC0.4 PE=2 SV=1	Mitochondrion	0,03	-2.047	Q67YN2	AT5G41940
09UUS71RF33_AR41H Rapid alkalinization factor 23 OS-Arabidopsis thaliana GN=RAL23 PE=1 LV=1	Extracellular	0,008	-1.534	09LUS7	AT3G16570
Q96262 PCAP1_ARATH Plasma membrane-associated cation-binding protein 1 OS=Arabidopsis thaliana GN=PCAP1 PE=1 SV=1	Plasma membrane	0,008	-1.209	Q96262	AT4G20260
Q9FMD7 V5659_ARATH Probable inactive receptor kinase At5g16590 OS=Arabidopsis thaliana GN=At5g16590 PE=1 SV=1	Plasma membrane	0,039	-0.94	Q9FMD7	AT5G16590
QUWUK5 FABIA_ARATH 1-prosphatidylinositor-3-phosphate 5-kinase FABIA OS=Arabidopsis thaliana GN=FABIA PE=2 SV=1 F4IB68 F4IB68 ARATH Kinase-like protein OS=Arabidopsis thaliana GN=AXI@51840 PE=4 SV=2	Golgi Extracellular	0,046 0.05	1.201 -0.769	Q0WUR5 F4IB68	AT4G33240 AT1G51840
09MA62 RLF22_ARATH Protein RALF-like 22 0S=Arabidopsis thaliana GN=RALFL22 PE=3 SV=1	Extracellular	0,024	1.387	Q9MA62	AT3G05490
					Signalling
P41088 [CFI1_ARATH Chalcone-flavonone isomerase 1 05=Arabidopsis thaliana GN=CHI1 PE=1 5V=2	ER	0,001	-1.4	P41088	AT3G55120
Q3ECS3 BGL35_ARATH Myrosinase 5 OS=Arabidopsis thaliana GN=TGG5 PE=1 SV=1 b131141/CHCV_AbATH Chalchone struttures OS=Arabidonesis thaliana GN=CHC BE=1 SV=1	Extracellular	0,001	-0.937	Q3ECS3	AT1G51470
C95818 FL3H_ARATH Naringenin,2-oxoglutarate 3-dioxygenase OS-Arabidopsis thaliana GN=F3H PE=1 SV=1	Cytosol	0,016	-0.854	Q95818	AT3G51240
O9LNE6 U89C1_ARATH UDP-glycosyltransferase 89C1 OS-Arabidopsis thaliana GN=UGT89C1 PE=2 SV=1	Cytosol	0,002	-0.837	Q9LNE6	AT1G06000
1055Rd01 JACT, ZARATH Laccase-70S-Arrabidopsis transmer and the Company of the Compan	Extracellular	0,007	-0.757	Q95R40	AT3G09220
1949/49/11/2014)ARATH DETREQUIZ-DA U-MERUPTURTISTICERES. LOS=ARABIOROPSIS FIRAIRAINA IN A LELE LAVEL 1944/41/11/2014)ARATH Provenin CTPRITORINE EVITHAGE-11KE 17.0 Za-Arabidvanch Haliana GNE-SCU 17.0 E=2 SV=2	Varuola	250,0	5 1 Z D-	D49499	A14G34050 AT1G74020
				etabolism	Secondary m

VF2 -0.965 0,043 Cytosol Q9ZVF2 ML329_ARATH MLP-like protein 329 OS=Arabildopsis thaliana GN=MLP329 PE=2 SV=1	MU2 -1.029 0,001 Extraœllular Q9LMU2]KTI2_ARATH Kunitz trypsin inhibitor 2 OS=Arabidopsis thaliana GN=KTI2 PE=2 SV=1	GH6 -1.067 0,001 Cytosol Q95GH6 DOX1_ARATH Alpha-dioxygenase 1 0S=Arabidopsis thaliana GN=DOX1 PE=1 SV=1	-1.068 0,016 Cytosol Q9SUQ9 Q9SUQ9_ARATH AT4g23680/F9D16_150 OS=Arabidopsis thaliana GN=At4g23680 PE=2 SV=1	014 -1.098 0,01 Extracellular P94014[GL21_ARATH Germin-like protein subfamily 2 member 1 05=Arabidopsis thaliana GN=GLP4 PE=2 SV=2	267 -1.117 0,029 Cytosol 023267/023267_0RATH AT4g14060/d13070w OS=Arabidopsis thaliana GN=d13070w PE=2 SV=1	XD5 -1.361 0,001 ExtraceItular Q8RXD5/KTI1_ARATH Kunitz trypsin inhibitor 1 OS=Arabidopsis thaliana GN=KTI1 PE=2 SV=1	6X6 -1.492 0,02 Cytosol F4K6X6 F4K6X6_ARATH HSP20-like chaperones superfamily protein OS=Arabidopsis thaliana GN=At5820970 PE=3 SV=1	F82 -1.703 0,008 Cytosol Q5XF82/JAL11_2RATH Jacalin-related lectin 11 OS=Arabidopsis thaliana GN=JAL11 PE=2 SV=1	ation	510 -0.797 0.036 Mitochondrion Q9SIU0[MAO1_ARATH NAD-dependent malic enzyme 1, mitochondrial OS=Arabidopsis thaliana GN=NAD-ME1 PE=1 SV=1		VM2 0.884 0.004 Plasma membrane QBVVM2 [PHT11_ARATH Inorganic phosphate transporter 1-1 O5=Arabidopsis thaliana GN=PHT1-1 PE=1 SV=2	6540.398 0.043 Golgi, vacuole 0.23654[VATA_ARATH V-type proton ATPase catalytic subunit A OS=Arabidopsis thaliana GN=VHA-A FE=1 SV=1	F79 -0.549 0,038 Plasma membrane Q9LF79/ACA8_ARATH Calcium-transporting ATPase 8, plasma membrane-type OS-Arabidopsis thaliana GN=ACA8 PE=1 SV=1	WK6 -0.762 0,004 Plasma membrane Q56WK6 PATL1_ARATH Patellin-1 OS=Arabidopsis thaliana GN=PATL1 PE=1 SV=2	287 -0.842 0,006 Plasma membrane P43287/PIP22_ARATH Aquaporin PIP2-2.0S=Arabildopsis thaliana GN=PIP2-2 PE=1 SV=2	963 -0.943 0,02 Vacuole Q41963 TIP12_ARATH Aquaporin TIP1-2 OS=Arabidopsis thaliana GN=TIP1-2 PE=1 SV=2	GT8 -1.003 0,002 ER Q9FGT8/TIL_ARATH Temperature-induced lipocalin-1 OS=Arabidopsis thaliana GN=TIL PE=1 SV=1	818 -1.1.32 0,005 Vacuole P25818[TIP11_ARATH Aquaporin TIP1-1 OS=Arabidopsis thaliana GN=TIP1-1 PE=1 SV=1	TB3 -1.207 0,048 Vacuole F4JTB3/DTX35_ARATH Protein DETOXIFICATION 35 OS=Arabidopsis thaliana GN=DTX35 PE=1 SV=1	856 -1.264 0,02 Plasma membrane Q3856 IRTI_ARATH Fe(2+) transport protein 1 0S=Arabidopsis thaliana GN=IRT1 PE=1 SV=2	004 -1.399 0,01 Plasma membrane P93004[PIP27_ARATH Aquaporin PIP2-7 OS=Arabidopsis thaliana GN=PIP2-7 PE=1 SV=2	B38 -1.454 0,023 Plastid Q94B38 GPT2_ARATH Glucose-6-phosphate/phosphate translocator 2, chloroplastic OS=Arabidopsis thaliana GN=GPT2 PE=2 SV=2	837 -1.465 0,008 Plasma membrane P61837/PIP11_ARATH Aquaporin PIP1-1 OS=Arabidopsis thaliana GN=PIP1-1 PE=1 SV=1	975 -1.606 0,05 Vacuole Q41975[TIP22_ARATH Probable aquaporin TIP2-2 OS=Arabidopsis thaliana GN=TIP2-2 PE=1 SV=2	286 -1.74 0,003 Plasma membrane P43286 PlP21_ARATH Aquaporin PIP2-1 OS=Arabildopsis thaliana GN=PIP2-1 PE=1 SV=1	611 -1.747 0,002 Plasma membrane Q06611 PIP12_ARATH Aquaporin PIP1-2 OS=Arabidopsis thaliana GN=PIP1-2 PE=1 SV=1	302 -2.091 0,001 Plasma membrane P30302[PIP23_ARATH Aquaporin PIP2-3 OS=Arabidopsis thaliana GN=PIP2-3 PE=1 SV=1	
łZVF2 -0.965	LMU2 -1.029	SGH6 -1.067	SUQ9 -1.068	4014 -1.098	3267 -1.117	RXD5 -1.361	K6X6 -1.492	5XF82 -1.703	nation	35IU0 -0.797		VYM2 0.884	3654 -0.398	JLF79 -0.549	6WK6 -0.762	3287 -0.842	1963 -0.943	FGT8 -1.003	5818 -1.132	UTB3 -1.207	1.264 -1.264	3004 -1.399	14B38 -1.454	1837 -1.465	1975 -1.606	3286 -1.74	1.747 -1.747	0302 -2.091	
AT2G01530 Q9	AT1G17860 Q9	AT3G01420 Q9.	AT4G23680 Q9.	AT1G09560 P9.	AT4G14060 02	AT1G73260 Q8	AT5G20970 F4	AT1G52100 Q5	TCA/org transform	AT2G13560 Q5	Transport	AT5G43350 Q8	AT1G78900 02	AT5G57110 Q5	AT1G72150 Q5	AT2G37170 P4	AT3G26520 Q4	AT5G58070 Q9	AT2G36830 P2	AT4G25640 F4	AT4G19690 Q3	AT4G35100 P9	AT1G61800 Q9	AT3G61430 P6	AT4G17340 Q4	AT3G53420 P4	AT2G45960 Q0	AT2G37180 P3	

CONCLUSIONES

- 1) Las plantas responden de modo diferente a los VCs emitidos por distintos microorganismos.
- 2) VICs y VOCs de tamaño molecular inferior a 45 Da son determinantes importantes de la respuesta de las plantas a VCs emitidos por hongos fitopatógenos.
- El CO₂ respiratorio juega un papel minoritario en la respuesta de la planta a VCs emitidos por hongos fitopatógenos.
- Los cambios altamente conservados que ocurren en el transcriptoma de plantas expuestas a VCs fúngicos son debidos a la señalización del aumento de la fotosíntesis.
- 5) La respuesta de las plantas a VCs fúngicos está regulada en gran medida a nivel post-transcripcional.
- 6) Los VCs de *P. aurantiogriseum* fomentan cambios en la arquitectura y en el metabolismo de la raíz causados a su vez por cambios en el proteoma.
- Las auxinas, las CKs, el etileno y los ROS juegan un papel importante en los cambios de la arquitectura de la raíz inducidos por la exposición a VCs de *P. aurantiogriseum*.
- 8) CAS-C1 juega un papel fundamental en los cambios de la arquitectura de la raíz inducidos por VCs de *P. aurantiogriseum* a través de mecanismos no relacionados con el mantenimiento de los niveles intracelulares de cianuro.

REFERENCIAS

Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19: 1665–1681

Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. Plant Cell Environ **3**: 258–270

Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 25: 2148–2152

Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, et al (2019) Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. Plant Cell Environ 42: 2627–2644

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–399

Arenas-Alfonseca L, Gotor C, Romero LC, García I (2018) β -cyanoalanine synthase action in root hair elongation is exerted at early steps of the root hair elongation pathway and is independent of direct cyanide inactivation of NADPH oxidase. Plant Cell Physiol **59**: 1072–1083

Aroca A, Benito JM, Gotor C, Romero LC (2017) Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J Exp Bot **68**: 4915–4927

Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141: 391–396

Athanasiou K, Dyson BC, Webster RE, Johnson GN (2010) Dynamic acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiol 152: 366–373

Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, et al (2014a) Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 32: 87–106

Bahaji A, Baroja-Fernández E, Sánchez-López ÁM, Muñoz FJ, Li J, Almagro G, Montero M, Pujol P, Galarza R, Kaneko K, et al (2014b) HPLC-MS/MS analyses show that the near-starchless *aps1* and *pgm* leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s) alternative to the pPGI-pPGM-AGP pathway. PLoS One **10**(3):e0121181

doi: 10.1371/journal.pone.0104997

Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J **80**: 758–771

Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T, et al (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci U S A **111**: 9319–9324

Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J **9**: 525–535

Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot **65**: 1229–1240

Beck E, Wagner BM (1994) Quantification of the daily cytokinin transport from the root to the shoot of *Urtica dioica L*. Bot Acta **107**: 342–348

Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol **65**: 639–666

Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948–950

Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol **28**: 1327–1350

Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem **282**: 1183–1192

Bishopp A, Help H, Helariutta Y (2009) Cytokinin signaling during root development. Int Rev Cell Mol Biol **276**: 1–48

Bitas V, McCartney N, Li N, Demers J, Kim JE, Kim HS, Brown KM, Kang S (2015) *Fusarium oxysporum* volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol doi: 10.3389/fmicb.2015.01248

Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature **433**: 39–44

Blom D, Fabbri C, Eberl L, Weisskopf L (2011) Volatile-mediated killing of

Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol **77**: 1000–1008

Boccara M, Mills CE, Zeier J, Anzi C, Lamb C, Poole RK, Delledonne M (2005) Flavohaemoglobin HmpX from *Erwinia chrysanthemi* confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J **43**: 226–237

Bodini SF, Cicalini AR, Santori F (2011) Rhizosphere dynamics during phytoremediation of olive mill wastewater. Bioresour Technol **102**: 4383–4389

Boerjan W, Cervera M-T, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, van Onckelen H, van Monatgu M, Inze D (1995) *Superroot*, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7: 1405–1419

Bolton MD (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant-Microbe Interact **22**: 487–497

Bolwell GP, Daudi A (2009) Reactive oxygen species in plant-pathogen interactions. In: del Río LA, Puppo A, eds. Reactive oxygen species in plant signaling . Berlin, Heidelberg: Springer-Verlag, 113–133

Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A, et al (2016) Nitrate controls root development through post-transcriptional regulation of the NRT1.1/NPF6.3 transporter/ sensor. Plant Physiol **172**: 1237–1248

Brenner WG, Schmülling T (2015) Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Front Plant Sci **6**: 29

Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Ann Rev Plant Biol **56**: 187–220

Camarena-Pozos DA, Flores-Núñez VM, López MG, López-Bucio J, Partida-Martínez LP (2019) Smells from the desert: microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell Environ **42**: 1368–1380

Cao ZY, Xuan W, Liu ZY, Li XN, Zhao N, Xu P, Wang Z, Guan RZ, Shen WB (2007) Carbon monoxide promotes lateral root formation in rapeseed. J Integr Plant Biol **49**: 1070–1079

Casarrubia S, Sapienza S, Fritz H, Daghino S, Rosenkranz M, Schnitzler JP, Martin F, Perotto S, Martino E (2016) Ecologically different fungi affect Arabidopsis development: contribution of soluble and volatile compounds. PLoS One Dec 14;11(12):e0168236. doi: 10.1371/journal.pone.0168236

Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell **13**: 843–852

Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) *Azospirillum brasilense* Az39 and *Bradyrhizobium japonicum* E109, inoculated singly or in combination, promote seed germination and earlyseedling growth in corn (*Zea mays L.*) and soybean (*Glycine max L.*). Eur J Soil Biol **45**: 28–35

Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the *Azospirillum-Oryza sativa* association. Phytochemistry 87: 65–77

Chang L, Ramireddy E, Schmülling T (2013) Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot **64**: 5021–5032

Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in *Spinacia oleracea* seedlings. J Exp Bot **62**: 4481–4493

Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011). The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact **24**: 271–284

Conrath U, Amoroso G, Köhle H, Sültemeyer DF (2004) Non-invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. Plant J **38**: 1015–1022

Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175: 178–189

Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by *Trichoderma atroviride*. Mol Plant-Microbe Interact **28**: 701–710

Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) *Trichoderma virens*, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis.

Plant Physiol 149: 1579-1592

Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of *Trichoderma virens* plays a role in plant protection against *Botrytis cinerea* through volatile organic compound emission. Plant Soil **379**: 261–274

Cordovez V, Mommer L, Moisan K, Lucas-Barbosa D, Pierik R, Mumm R, Carrion VJ, Raaijmakers JM (2017) Plant phenotypic and transcriptional changes induced by volatiles rom the fungal root pathogen *Rhizoctonia solani*. Front Plant Sci 8: doi: 10.3389/fpls.2017.01262

Cordovez V, Schop S, Hordjik K, de Boulois HD, Coppens F, Hanssen I, Raaijmakers JM, Carrión VJ (2018) Priming of plant growth promotion by volatiles of root-associated *Microbacterium* spp. Appl Environ Microbiol **84**: pii:e01865-18

Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta **218**: 900–905

Costa A, Luoni L, Marrano CA, Hashimoto K, Köster P, Giacometti S, De Michelis MI, Kudla J, Bonza MC (2017) Ca²⁺-dependent phosphoregulation of the plasma membrane Ca²⁺-ATPase ACA8 modulates stimulus-induced calcium signatures. J Exp Bot **68**: 3215–3230

Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the *Azospirillum* brasilense-induced lateral root formation in tomato. Planta **221**: 297–303

Cross AR, Jones OTG (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J **237**: 111–116

D'Agostino IB, Deruère J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol **124**: 1706–1717

De-la-Peña C, Loyola-Vargas VM (2014) Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol **166**: 701–709

Delaplace P, Delory BM, Baudson C, Mendaluk-Saunier de Cazenave M, Spaepen S, Varin S, Brostaux Y, du Jardin P (2015) Influence of rhizobacterial volatiles on the root system architecture and the production and allocation o biomass in the model grass *Brachypodium distachyon* (L.) P. Beauv. BMC Plant Biol doi: 10.1186/s12870-015-0585-3

del Río LA (2011) Peroxisomes as a source of reactive nitrogen species signal molecules. Arch Biochem Biophys **506**: 1–11

del Río LA (2013) Peroxisomes and their key role in cellular signaling and metabolism. Berlin, Heidelberg: Springer-Verlag. ISBN: 978-3-642-00390-5

del Río LA, Corpas FJ, Barroso JB, López-Huertas E, Palma JM (2014) Function of peroxisomes as a cellular source of nitric oxide and other reactive nitrogen species. In: Nasir Khan M, Mobin M, Mohammad F, Corpas FJ, eds. Nitric oxide in plants: metabolism and role in stress physiology. Berlin, Heidelberg: Springer-Verlag, 33–55

del Río LA, Puppo A (2009) Reactive oxygen species in plant signaling . Berlin, Heidelberg: Springer-Verlag.ISBN: 978-3-642-00390-5

del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signalling. Plant Physiol 141: 330–335

Diet A, Link B, Seifert GJ, Schellenberg B, Wagner U, Pauly M, Reiter W-D, Ringli C (2006) The Arabidopsis root hair cell wall formation mutant *lrx1* is suppressed by mutations in the *RHM1* gene encoding a UDP-L-rhamnose synthase. Plant Cell **18**: 1630–1641

Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, van Doorn MM, Legué V, Palme K, Schnitzler JP, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun doi: 10.1038/ ncomms7279

Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of *Azospirillum brasilense* wild type and mutant strains altered in IAA production on wheat. Plant Soil **212**: 153–162

Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol **157**: 361–379

Dong Z, Wu L, Kettlewell B, Caldwell CD, Layzell DB (2003) Hydrogen fertilization of soils - is this a benefit of legumes in rotation? Plant Cell Environ **26**: 1875–1879

Dooley FD, Nair SP, Ward PD (2013) Increased growth and germination success in plants following hydrogen sulfide administration. PLoS ONE 8: e62048 doi:10.1371/journal.pone.0062048

Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6: 559–569

Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte C-P, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci **110**: 8744–8749

Du Jardin P (2015) Plant biostimulants: Definition, concept, main categories and regulation. Sci Horti 196: 3–14

Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U (2008) Plant plasma membrane water channels conduct the signalling molecule H₂O₂. Biochem J **414**: 53–61

Dyson BC, Allwood JW, Feil R, Xu YUN, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN (2015) Acclimation of metabolism to light in *Arabidopsis thaliana*: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Plant Cell Environ **38**: 1404–1417

Eggert K, von Wirén N (2013) Dynamics and partitioning of the ionome in seeds and germinating seedlings of winter oilseed rape. Metallomics **5**: 1316–1325

Engel RR, Matsen JM, Chapman SS, Schwartz S (1972) Carbon monoxide production from heme compounds by bacteria. J Bacteriol **112**: 1310–1315

Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, et al (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol **51**: 1674–1693

Farag MA, Song GC, Park YS, Audrain B, Lee S, Ghigo JM, Kloepper JW, Ryu CM (2017) Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals. Nat Protoc **12**: 1359–1377

Farkas V, Gresik M, Kolarova N, Sulova Z, Sestak S (1990) Biochemical and physiological changes during photoinduced conidiation and derepression of cellulase synthesis in *Trichoderma*. In *Trichoderma reesei* cellulase: biochemistry, genetics, physiology and application. (eds C.P. Kubicek, D.E. Eveleigh, H. Esterbauer, W. Steiner & E.M. Kubicek-Pranz), pp 139-155. Graham, Cambridge.

Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J **12**: 1193–1206

Fatland BL, Nikolau BJ, Wurtele ES (2005) Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell **17**: 182–203

Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) *KOJAK* encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev **15**: 79–89

Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V (2009) The ectomycorrhizal fungus *Laccaria bicolor* stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:

1991-2005

Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci 108: 18506–18511

Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for Arabidopsis planar polarity is mediated by combined *AUX1, EIN2*, and *GNOM* activity. Curr Biol **16**: 2143–2149

Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, et al (2016) Mesophyll conductance to CO₂ and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ **39**: 965–982

Floris M, Mahgoub H, Lanet E, Robaglia C, Menand B (2009) Post-transcriptional regulation of gene expression in plants during abiotic stress. Int J Mol Sci 10: 3168–3185

Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232: 51–68

Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature **422**: 442–446

Frémont N, Riefler M, Stolz A, Schmülling T (2013) The Arabidopsis *TUMOR PRONE5* gene encodes an acetylornithine aminotransferase required for arginine biosynthesis and root meristem maintenance in blue light. Plant Physiol **161**: 1127–1140

García-Gómez P, Almagro G, Sánchez-López ÁM, Bahaji A, Ameztoy K, Ricarte-Bermejo A, Baslam M, Antolín MC, Urdiain A, López-Belchi MD, et al (2019) Volatile compounds other than CO₂ emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. Plant Cell Environ **42**: 1729–1746

García I, Castellano JM, Vioque B, Solano R, Gotor C, Romero LC (2010) Mitochondrial β -cyanoalanine synthase is essential for root hair formation in *Arabidopsis thaliana*. Plant Cell **22**: 3268–3279

Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Rivas-Ubach A, Oravec M, Vecerova K, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, et al (2014) Opposite metabolic responses of shoots and roots to drought. Sci Rep doi: 10.1038/srep06829

Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, López-Bucio J (2016). The volatile 6-pentyle-2H-pyran-2-one from *Trichoderma atroviride* regulates *Arabidopsis thaliana* root morphogenesis via auxin signaling and *ETHYLENE INSENSITIVE 2* functioning.

New Phytol 209: 1496–1512

Garrido J, Linares-Solano A, Martin-Martinez JM, Molina-Sabio M, Rodríguez-Reinoso F, Torregrosa R (1987) Use of N₂ vs CO₂ in the characterization of activated carbons. Langmuir 3: 76–81

Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett **580**: 1094–1102

Ghaffari MR, Shahinnia F, Usadel B, Junker B, Schreiber F, Sreenivasulu N, Hajirezaei MR (2016) The metabolic signature of biomass formation in barley. Plant Cell Physiol **57**: 1943–1960

Gharaei-Fathabad E, Tajick-Ghanbary MA, Shahrokhi N (2014) Antimicrobial properties of Penicillium species isolated from agricultural soils of northern Iran. Res J Toxins **6**: 1–7

Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett **251**: 1–7

Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013) Production of bioactive volatiles by different *Burkholderia ambifaria* strains. J Chem Ecol **39**: 892–906

Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell **27**: 1945–1954

Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol **163**: 161–79

Guo K, Kong WW, Yang ZM (2009) Carbon monoxide promotes root hair development in tomato. Plant Cell Environ **32**: 1033–1045

Guo K, Xia K, Yang ZM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot **59**: 3443–3452

Gutierrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Reyes de la Cruz H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in *Arabidopsis thaliana* through volatile organic compound emission. Symbiosis 51: 75–83

Hachiya T, Sugiura D, Kojima M, Sato S, Yanagisawa S, Sakakibara H, Terashima I, Noguchi K (2014) High CO₂ triggers preferential root growth of *Arabidopsis thaliana* via two distinct systems under low pH and low N stresses. Plant Cell Physiol **55**: 269–80

Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford

University Press. ISBN-13: 9780198717478

Han B, Xu S, Xie YJ, Huang JJ, Wang LJ, Yang Z, Zhang CH, Sun Y, Shen WB, Xie GS (2012) *ZmHO-1*, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Sci 184: 63–74

Hancock JT (2012) NO synthase? Generation of nitric oxide in plants. Period Biol 114: 19–24

Handford M, Rodríguez-Furlán C, Marchant L, Segura M, Gómez D, Alvarez-Buylla E, Xiong G-Y, Pauly M, Orellana A (2012) *Arabidopsis thaliana* AtUTr7 encodes a Golgi-localized UDP–glucose/UDP–galactose transporter that affects lateral root emergence. Mol Plant 5: 1263–1280

He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, et al (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305: 1968–1971

Hebelstrup KH, Jensen EO (2008) Expression of NO scavenging hemoglobin is involved in the timing of bolting in *Arabidopsis thaliana*. Planta **227**: 917–927

Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is ativated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol **133**: 838–849

Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot **59**: 75–83

Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167: 1731–1746

Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in *Arabidopsis thaliana*. Cell **94**: 261–271

Hukin D, Doering-Saad C, Thomas CR, Pritchard J (2002) Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta **215**: 1047–1056

Hung R, Lee S, Rodriguez-Saona C, Bennett JW (2014) Common gas phase molecules from fungi affect seed germination and plant health in *Arabidopsis thaliana*. AMB Express 4:53

Hung R, Lee S, Bennett JW (2013) *Arabidopsis thaliana* as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol **6**: 19–26

Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis ES (2002) Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in *Arabidopsis thaliana*. Proc Nat Acad Sci U S A **99**: 17197–17202

Huot B, Yao J, Montgomery BL, He SY (2014) Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7: 1267–1287

Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in *Arabidopsis thaliana*. Plant J **55**: 335–347

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J **6**: 3901–3907

Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol 4: 1460–1470

Jin CW, Du ST, Zhang YS, Tang C, Lin XY (2009) Atmospheric nitric oxide stimulates plant growth and improves the quality of spinach (*Spinacia oleracea*). Ann Appl Biol **155**: 113–120

Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W (2013) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ **36**: 956–969

Johnson E, Sparks JP, Dzikovski B, Crane BR, Gibson DM, Loria R (2008) Plantpathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals. Chem Biol 15: 43–50

Kai M, Effmert U, Piechulla B (2016) Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front Microbiol 7:108 doi:10.3389/fmicb.2016.00108

Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles-an effect of CO₂? FEBS Lett **583**: 3473–3477

Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6: 151 doi:10.3389/fpls.2015.00151

Kang J, Lee Y, Sakakibara H, Martinoia E (2017) Cytokinin Transporters: GO and STOP in Signaling. Trends Plant Sci **6**: 455–461

Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem **279**: 14049–14054

Klapeć T, Cholewa G, Cholewa A, Dutkiewicz J, Wójcik-Fatla A (2018) Fungal diversity of root vegetables and soil rhizosphere collected from organic and conventional farms in eastern Poland. Ann Agric Environ Med **25**: 374–381

Korshunova YO, Eide D, Clark WG, Guerinot M Lou, Pakrasi HB (1999) The IRT1 protein from *Arabidopsis thaliana* is a metal transporter with a broad substrate range. Plant Mol Biol **40**: 37–44

Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou J-P, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157: 1255–1282

Keshishian EA, Rashotte AM (2015) Plant cytokinin signalling. Essays Biochem **58**: 13–27

Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell **72**: 427–441

Kong WW, Zhang LP, Guo K, Liu ZP, Yang ZM (2010) Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotech J 8: 88–99

Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol **52**: 53–60

Kuruthukulangarakoola GT, Zhang J, Albert A, Winkler B, Lang H, Buegger F, Gaupels F, Heller W, Michalke B, Sarioglu H, et al (2017) Nitric oxide-fixation by non-symbiotic haemoglobin proteins in *Arabidopsis thaliana* under N-limited conditions. Plant Cell Environ **40**: 36–50

Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Seo JS, Chung WS, Bae DW, Kim SG (2016) Proteomic analyses of the interaction between plant-growth promoting rhizobacterium *Paenibacillus polymyxa* E681 and *Arabidopsis thaliana*. Proteomics **16**:122–135

Lan P, Li W, Schmidt W (2012) Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol Cell Proteomics 11: 1156–1166

Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J, Donoso R (2016) Volatile-mediated effects predominate in *Paraburkholderia phytofirmans* growth promotion and salt stress tolerance of *Arabidopsis thaliana*. Front Microbiol 7:1838 doi:10.3389/fmicb.2016.01838

Lemfack MC, Gohlke BO, Toguem SMT, Preissner S, Piechulla B, Preissner R (2018) mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 42: 1261–1265

Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42: 744–748

Leskow CC, Kamenetzky L, Dominguez PG, Díaz Zirpolo JA, Obata T, Costa H, Martí M, Taboga O, Keurentjes J, Sulpice R, et al (2016) Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development. J Exp Bot 67: 4091–4103

Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development **138**: 3485–3495

Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, et al (2011) Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. Mol Plant Microbe Interact 24: 1165–1178

Lin Y, Zhang W, Qi F, Cui W, Xie Y, Shen W (2014) Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J Plant Physiol 171: 1–8

Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ **36**: 1607–1616

Liu J, Moore S, Chen C, Lindsey K (2017) Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: from experiments to systems modeling, and back again. Mol Plant **10**: 1480–1496

Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 17: 1090–1104

Loiret FG, Grimm B, Hajirezaei MR, Kleiner D, Ortega E (2009) Inoculation of sugarcane with *Pantoea sp.* increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. J Plant Physiol **166**: 1152–1161

Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1: 28–33

López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) *Bacillus megaterium* rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in *Arabidopsis thaliana*. Mol Plant-Microbe Interact **20**: 207–212

López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol **6**: 280–287

López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129: 244–256

López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Pérez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol 137: 681–691

Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in *Arabidopsis thaliana*. Genes Dev 12: 2175–2187

Ma F, Wang L, Li J, Samma MK, Xie Y, Wang R, Wang J, Zhang J, Shen W (2014) Interaction between HY1 and H₂O₂ in auxin-induced lateral root formation in Arabidopsis. Plant Mol Biol **85**: 49–61

Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO₂. Plant Cell Phys **40**: 999–1006

Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ **28**: 67–77

Mangano S, Denita-Juarez SP, Choi H-S, Marzol E, Hwang Y, Ranocha P, Velasquez SM, Borassi C, Barberini ML, Aptekmann AA, et al (2017) Molecular link between auxin and ROS-mediated polar growth. Proc Natl Acad Sci 114: 5289–5294

Manzano C, Pallero-Baena M, Casimiro I, De Rybel B, Orman-Ligeza B, van Isterdael G, Beeckman T, Draye X, Casero P, del Pozo JC (2014) The emerging role of reactive oxygen species signaling during lateral root development. Plant Physiol 165: 1105–1119

Manzano C, Pallero-Baena M, Silva-Navas J, Navarro Neila S, Casimiro I, Casero P, Garcia-Mina JM, Baigorri R, Rubio L, Fernandez JA, et al (2017) A lightsensitive mutation in Arabidopsis *LEW3* reveals the important role of N-glycosylation in root growth and development. J Exp Bot **68**: 5103–5116

Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci **17**: 9–15

Martínez-Medina A, Van Wees SCM, Pieterse CMJ (2017) Airborne signals from *Trichoderma* fungi stimulate iron uptake responses in roots resulting in priming of

jasmonic acid-dependent defences in shoots or Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40: 2691–2705

Maruyama A, Saito K, Ishizawa K (2001) β -Cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol **46**: 749–760

Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95: 1321–1358

Mei Y, Chen H, Shen W, Shen W, Huang L (2017) Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC Plant Biol **17**: 162 doi:1186/12870-017-1110-7

Meldau DG, Meldau S, Hoang LH, Underberg S, Wünsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium *Bacillus* sp B55 promotes *Nicotiana attenuata* growth by enhancing sulfur nutrition. Plant Cell **25**: 2731–2747

Mo X, Zhu Q, Li X, Li J, Zeng Q, Rong H, Zhang H, Wu P (2006) The *hpa1* mutant of Arabidopsis reveals a crucial role of histidine homeostasis in root meristem maintenance. Plant Physiol **141**: 1425–1435

Moisan K, Cordovez V, van de Zande EM, Raaijmakers JM, Dicke M, Lucas-Barbosa D (2019) Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia **190**: 589–604

Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by *Azospirillum brasilense* Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact **21**: 1001–1009

Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sánchez F, Quinto C (2012) A *Phaseolus vulgaris* NADPH oxidase gene is required for root infection by rhizobia. Plant Cell Physiol **53**: 1751-1767

Moubayidin L, DiMambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14: 557–562

Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151: 541–558

Mur LAJ, Mandon J, Persijn S, Crisstescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KM, Gupta KJ (2012). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052 doi:10.1093/aobpla/pls052

Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24: 61–84

Nascimento FX, Rossi MJ, Glick BR (2018) Ethylene and 1-aminocyclopropane-1carboxylate (ACC) in plant–bacterial interactions. Front Plant Sci **9**: 114

Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus *Phoma* sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ **28**: 42–49

Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in *Arabidopsis thaliana*. Plant J **55**: 175–187

Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell **126**: 467–475

Nguyen HM, Sako K, Matsui A, Suzuki Y, Mostofa MG, Ha CV, Tanaka M, Tran LSP, Habu Y, Seki M (2017) Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in *Arabidopsis thaliana* and rice. Front Plant Sci 8: 1001 doi:10.3389/fpls.2017.01001

Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, et al (2017) Environmental growth conditions of *Trichoderma* spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8: 102 doi: 10.3389/fpls.2017.00102

Niu Y, Jin C, Jin G, Zhou Q, Lin X, Tang C, Zhang YS (2011) Auxin modulates the enhanced development of root hairs in *Arabidopsis thaliana* (L.) Heynh. under elevated CO2. Plant Cell Environ **34**: 1304–1317

Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69: 2214–2224

O'Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta **236**: 765–779

O'Leary B, Preston GM, Sweetlove LJ (2014) Increased β -cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis. Mol Plant 7: 231–243

Olmos E, Kiddle G, Pellny TK, Kumar S, Foyer CH (2006) Modulation of plant morphology, root architecture, and cells structure by low vitamin C in *Arabidopsis thaliana*. J Exp Bot **57**: 1645–1655

Orman-Ligueza B, Morris EC, Parizot B, Lavigne T, Babé A, Ligeza A, Klein S,

Sturrock C, Xuan W, Novák O, et al (2018) The xerobranching response represses lateral root formation when roots are not in contact with water. Curr Biol 28: 3165–3173

Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol **2**:a001537 doi: 10.1101/cshperspect.a001537

Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol **129**: 954–956

Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C (2006) Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta **223**: 965–974

Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in *Arabidopsis thaliana*. Plant Cell Physiol **52**: 490–508

Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocycopropane-1carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol **47**: 77–80

Péret B, Li G, Zhao J, Band LR, Voß U, Postaire O, Luu D-T, Da Ines O, Casimiro I, Lucas M, et al (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14: 991–998

Pérez-Ruiz JM, Naranjo B, Ojeda V, Guinea M, Cejudo FJ (2017) NTRCdependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc Natl Acad Sci U S A **114**: 12069–12074

Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth promoting compounds produced by two agronomically important strains of *Azospirillum brasilense*, and implications for inoculant formulation. Appl Microbiol Biotechnol **75**: 1143–1150

Perrot-Rechenmann C, Napier RM (2005) Auxins. Vitam Horm 72: 203–233

Piechulla B (2017) Considering microbial CO₂ during microbe-plant cocultivation. Plant Physiol **173**: 1529 doi: 10.1104/pp.16.01584

Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ **40**: 2042–2067

Piotrowski M, Schönfelder S, Weiler EW (2001) The *Arabidopsis thaliana* isogene NIT4 and its orthologs in tobacco encode β -cyano-L-alanine hydratase/nitrilase. J Biol Chem **276**: 2616–2621

Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation

in Arabidopsis. Plant J 16: 553-560

Pokhilko A, Bou-Torrent J, Pulido P, Rodríguez-Concepción M, Ebenhöh O (2015) Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis. New Phytol **206**: 1075–1085

Pulido P, Perello C, Rodríguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant **5**: 964–967

Quebedeaux B, Hardy RW (1975) Reproductive growth and dry matter production of *glycine max* (L.) Merr. in response to oxygen concentration. Plant Physiol **55**: 102–107

Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol **130**: 1908–1917

Ramireddy E, Chang L, Schmülling T (2014) Cytokinin as a mediator for regulating root system architecture in response to environmental cues. Plant Signal Behav **9**(1):e27771

Ramonell KM, Kuang A, Porterfield DM, Crispi ML, Xiao Y, McClure G, Musgrave ME (2001) Influence of atmospheric oxygen on leaf structure and starch deposition in *Arabidopsis thaliana*. Plant Cell Environ 24: 419–428

Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signalling. Plant Physiol **141**: 357–366

Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell **18**: 40–54

Robbins NE, Dinneny JR (2018) Growth is required for perception of water availability to pattern root branches in plants. Proc Natl Acad Sci U S A **115**: 822–831

Rodrigues O, Reshetnyak G, Grondin A, Saijo Y, Leonhardt N, Maurel C, Verdoucq L (2017) Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc Natl Acad Sci U S A114: 9200–9205

Rodríguez-Reinoso F, Garrido J, Martín-Martínez JM, Molina-Sabio M, Torregrosa R (1989) The combined use of different approaches in the characterization of microporous carbons. Carbon 27: 23–32

Rogers EE, Eide DJ, Guerinot M Lou (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A **97**: 12356–12360

Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci **5**: 17

Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A **100**: 4927–4932

Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: A master regulator in plant root development. Plant Cell Rep 32: 741–757

Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57: 431–449

Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of *Arabidopsis thaliana*. Plant Cell Physiol **46**:174–84

Sánchez-López ÁM, Bahaji A, De Diego N, Baslam M, Li J, Muñoz FJ, Almagro G, García-Gómez P, Ameztoy K, Ricarte-Bermejo A, et al (2016a) Arabidopsis responds to *Alternaria alternata* volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol **172**: 1989–2001

Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, et al (2016b) Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell Environ **39**: 2592–2608

Schenkel D, Maciá-Vicente JG, Bissell A, Splivallo R (2018) Fungi indirectly affect plant root architecture by modulating soil volatile organic compounds. Front Microbiol 9: doi: 10.3389/fmicb.2018.01847

Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell **27**: 44–63

Schreiber F, Wunderlin P, Udert KM, Wells GF (2012) Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Front Microbiol **3**: 372 doi: https://doi.org/10.3389/fmicb.2012.00372

Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24: 814–842

Séguéla M, Briat J-F, Vert G, Curie C (2008) Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J **55**: 289–300

Sergeeva LI, Keurentjes JJB, Bentsink L, Vonk J, van der Plas LHW, Koornneef M, Vreugdenhil D (2006) Vacuolar invertase regulates elongation of *Arabidopsis thaliana* roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci U S A 103: 2994–2999

Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H₂S: a universal defense against antibiotics in bacteria. Science **334**: 986–990

Siegel SM, Siegel BZ (1987) Biogenesis of carbon monoxide: production by fungi and seed plants in the dark. Phytochemistry **26**: 3117–3119

Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31: 265–273

Song X, Kristie DN, Reekie EG (2009) Why does elevated CO₂ affect time of flowering? An exploratory study using the photoperiodic flowering mutants of *Arabidopsis thaliana*. New Phytol **181**: 339–346

Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol **150**: 2018–2029

Srivastava LM (2002) Plant growth and development. Hormones and the environment. Oxford: Academic Press

Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol **12**: 548–555

Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell **17**: 2230–2242

Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multivel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell **19**: 2169–2185

Strader LC, Chen GL, Bartel B (2010) Ethylene directs auxin to control root cell expansion. Plant J 64: 874–884

Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE (2015) Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physio **169**: 338–350

Sundaravelpandian K, Chandrika NNP, Schmidt W (2013) PFT1, a transcriptional mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytol **197**: 151–161

Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory

burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14: 691-699

Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15: 2648–2653

Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186–2196

Takahashi M, Furuhashi T, Ishikawa N, Horiguchi G, Sakamoto A, Tsukaya H, Morikawa H (2014) Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytol **201**: 1304–1315

Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol **11**: 847–859

Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: 914–939

Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S (2017) Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front Physiol 8: 578 https://doi.org/10.3389/ fphys.2017.00578

Thuler DS, Floh EI, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by *Azospirillum* sp in chemically defined media. Lett Appl Microbiol **2**: 174–178

Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Applied Microbiol Biotech **85**: 1259–1277

Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell **143**: 606–616

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971

van Dam NM, Bouwmeester HJ (2016) metabolomics in the rhizosphere: tapping into belowground chemical communication. Trend Plant Sci **21**: 256–265

van Den Dool H, Dec Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J

Chromatogr A 11: 463-471

Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell Mar 136: 1005–1016

van Zhong G, Burns JK (2003) Profiling ethylene-regulated gene expression in *Arabidopsis thaliana* by microarray analysis. Plant Mol Biol **53**: 117–131

Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in *Arabidopsis thaliana*. Plant J **31**: 589–599

Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Altamirano-Hernández J, Flores-Cortez I, Valencia-Cantero E (2011) A volatile organic compound analysis from *Arthrobacter agilis* identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil **339**: 329–340

Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci **21**: 218–229

Vert GA, Briat JF, Curie C (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132: 796–804

Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta **153**: 376–387

Wang M, Liao W (2016) Carbon monoxide as a signaling molecule in plants. Front Plant Sci doi: https://doi.org/10.3389/fpls.2016.00572

Weikl F, Ghirardo A, Schnitzler JP, Pritsch K (2016) Sesquiterpene emissions from *Alternaria alternata* and *Fusarium oxysporum*: effects of age, nutrient availability, and co-cultivation. Sci Rep doi:10.1038/srep22152

Weise T, Kai M, Piechulla B (2013) Bacterial ammonia causes significant plant growth inhibition. PLoS ONE 8: e63538. doi:10.1371/journal.,pone.0063538

Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell **22**: 3905–3920

Wharton DC, Weintraub ST (1980) Identification of nitric oxide and nitrous oxide as products of nitrite reduction by Pseudomonas cytochrome oxidase (nitrite reductase).

Biochem Biophys Res Commun 97: 236-242

Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126: 875–82

Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signaling in plants. Plant Cell Environ **31**: 622–631

Xu Q, Zhou B, Ma C, Xu X, Xu J, Jiang Y, Liu C, Li G, Herbert SJ, Hao L (2010) Salicylic acid-altering Arabidopsis mutants response to NO₂ exposure. Bull Envirol Contam Toxicol 84: 106–111

Xuan W, Zhu, FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol **148**: 881–893

Yang C, Lu X, Ma B, Chen SY, Zhang JS (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8: 495–505

Yang DL, Shi Z, Bao Y, Yan J, Yang Z, Yu H, Li Y, Gou M, Wang S, Zou B, et al (2017) Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol 175: 424–437

Yang L, Ji J, Wang H, Harris-Shultz KR, Abd Allah EF, Luo Y, Guan Y, Hu X (2016) Carbon monoxide interacts with auxin and nitric oxide to cope with iron deficiency in Arabidopsis. Front Plant Sci doi: https://doi.org/10.3389/fpls.2016.00112

Yang TJW, Perry PJ, Ciani S, Pandian S, Schmidt W (2008) Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J Exp Bot 59: 3453–3464

Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial *Pseudomonas* spp. bacteria. Plant Physiol **162**: 304–318

Žďárská M, Zatloukalová P, Benítez M, Šedo O, Potěšil D, Novák O, Svačinová J, Pešek B, Malbeck J, Vašíčková J, et al (2013) Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiol 161: 918–930

Zazímalová E, Murphy AS, Yang H, Hoyerová K, Hosek P (2010) Auxin transporterswhy so many? Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a001552

Zeng J, Zhang M, Sun X (2013) Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS ONE, 8: e71038 doi: 10.1371/journal. pone.0071038

Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta **226**: 839–51

Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inucible mechanisms. Plant J 58: 568–577

Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels *in planta*. Plant J 56: 264–273

Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J (2015) OsAUX1 controls lateral root initiation in rice (*Oryza sativa L*.). Plant Cell Environ **38**: 2208–2222

Zhu Y, Liao W, Wang M, Niu L, Xu Q, Jin X (2016) Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. J Plant Physiol 195: 50–58

Zou C, Li Z, Yu D (2010) *Bacillus megaterium* strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol **48**: 460–466

APÉNDICE

LISTADO DE ABREVIATURAS

ABA	Abscisic acid
ABC	ATP-binding cassette
ACA8	Autoinhibited-Ca2+ ATPase 8
ACLA1	ATP citrate lyase 1
ACO2	Aminocyclopropane-1-carboxylic oxidase 2
ADP	Adenosine diphosphate
AGP	ADP-glucose pyrophosphorylase 1
AHK2	Arabidopsis histidin kinase 2
AHK3	Arabidopsis histidin kinase 3
AHK4	Arabidopsis histidin kinase 4
AK	Adenosine kinase
AMP	Adenosine monophosphate
An	Net CO2 assimilation rate
APS1	Small AGP subunit 1
ARF	Auxin response factor
ARR5	Arabidopsis thaliana response regulator 5
ASP2	Aspartate aminotransferase 2
ATP	Adenosine triphosphate
AUX1	Auxin resistant 1
BFRUCT3	Acid beta-fructofuranosidase 3
BFRUCT4	Acid beta-fructofuranosidase 4
BGLU20	Beta glucosidase 20
BGLU21	Beta glucosidase 21
BGLU22	Beta glucosidase 22
BGLU23	Beta glucosidase 23
BR	Brassinosteroids
CAR	Carboxen
CAS-C1	Cyanoalanine synthase C1
CBC	Calvin-Benson cycle
СНК	Cytokinin histidin kinase
Ci	Intercellular CO2 concentration
CKs	Cytokinines

Apéndice

CTR1	Constitutive triple response 1
cZ	Cis-zeatine
cZ9G	Cis-zeatine-9-glicoside
cZR	Cis-zeatin riboside
cZRMP	Cis-zeatin riboside monophosphate
cZROG	Cis-zeatine riboside-O-glicoside
DEP	Differentially expressed protein
D(H)Z	Dihidrozeatine
D(H)Z7G	Dihidrozeatine-7-glucoside
D(H)Z9G	Dihidrozeatine-9-glucoside
D(H)ZR	Dihidrozeatine-riboside
D(H)ZRMP	Dihidrozeatin riboside monophosphate
DPI	Diphenyleneiodium
DVB	Divinylbenzene
DW	Dry weight
EIL1	Ethylene-insensitive 3-like 1
EIN3	Ethylene-insensitive 3
EIN4	Ethylene-insensitive 4
EIR1	Ethylene insensitive root 1
ER	Endoplasmatic reticulum
ERF1	Ethylene response factor 1
ERS1	Ethylene response sensor 1
ERS2	Ethylene response sensor 2
ETR1	Ethylene response 1
ETR2	Ethylene response 2
FLA6	Fasciclin-like arabinogalactan 6
FLA13	Fasciclin-like arabinogalactan 13
FW	Fresh weight
G6P	Glucose-6-phosphate
GA	Gibberellins
GAP	Glyceraldehyde 3-phosphate
GC-MS	Gas cromatography mass spectrum
GLN1	Glutamine synthetase 1

Uppna. Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

Apéndice

GLT1	Glutamate synthase 1
GMP	Guanosine monophosphate
GPT2	Glucose-6-phosphate transporter 2
gs	Stomatal conductance
GSH	Reduced glutathione
GSNO	S-nitrosoglutathione
GSNOR	S-nitrosoglutathione reductase
GUS	β-glucuronidase
HPt	Histidine transference protein
IAA	Indolacetic acid
IGP	Indole-3-glycerol phosphate
iP	Isopentenyladenine
iP7G	Isopentenyladenosine-7-glucoside
iP9G	Isopentenyladenosine-9-glucoside
IPA	Indole-3-piruvic acid
iPR	Isopentenyl riboside
iPRDP	Isopentenyl riboside diphosphate
iPRMP	Isopentenyl riboside monophosphate
iPRTP	Isopentenyl riboside triphosphate
IPT	Isopentenyl transferase
IRT1	Iron-regulated transporter 1
LAX	Like-AUX1
LR	Lateral root
LRP	Lateral root primordium
MAP	Mitogen-activated protein
MEP	Methylerithritol phosphate
METK2	S-Adenosylmethionine synthetase 2
METK3	S-Adenosylmethionine synthetase 3
MMTS	Methyl methanethiosulfonate
MS	Murashige-Skoog
MVA	Mevalonic acid
NADPH	Nicotinamide adenine dinucleotide phosphate
NBT	Nitroblue tetrazolium

NIT4	Nitrilase 4
nsHB	Non-synthetic hemoglobin
NTRC	C-type NADPH dependent thiorredoxin reductase
PDMS	Polydimethylsiloxane
PER3	Peroxidase 3
PER32	Peroxidase 32
PER34	Peroxidase 34
PGI1	Phosphoglucoisomerase 1
PGP	P-glycoprotein
PIN	PIN-formed protein
PIP1	Plasma membrane intrinsic protein 1
PIP2	Plasma membrane intrinsic protein 2
pPGI	Plastidial phosphoglucoisomerase
PR	Primary root
PVC	Polyvinyl chloride
RH	Root hair
RHD2	Root hair defective 2
ROS	Reactive oxygen species
RR	Response regulator
RSA	Root system architecture
SDS-PAGE	Sodium dodecylsulfate polyacrylamide gel electrophoresis
SL	Strigolactones
SPME	Solid phase microextraction
TCA	Tricarboxylic acid
TIP1	Tonoplast intrinsic protein 1
TIP2	Tonoplast intrinsic protein 2
TIR1	Transport inhibitor response 1
tΖ	Trans-zeatin
tZ7G	Trans-zeatin-7-glicoside
tZ9G	Trans-zeatin-9-glicoside
tZR	Trans-zeatin-riboside
tZRDP	Trans-zeatin riboside diphosphate
tZRMP	Trans-zeatin riboside monophosphate

Apéndice

tZROG	Trans-zeatin riboside-O-glicoside
tZRTP	Trans-zeatin riboside triphosphate
UDP	Uridine diphosphate
UGD4	UDP-glucose 6-dehydrogenase 4-like
UGP2	UDP-glucose pyrophosphorylase 2
UXS4	UDP-xylose synthase 4
VCs	Volatile compounds
VICs	Volatile inorganic compounds
VOCs	Volatile organic compounds
WT	Wild-type
WUEi	Water use efficiency
XTH14	Xyloglucan endotransglucosylase/hydrolase 14

LISTADO DE PUBLICACIONES

- Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, Novák O, Spíchal L, Doležal K, Baroja-Fernández E, Pozueta-Romero J (2016a) Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell Environ. doi: 10.1111/pce.12759
- Sánchez-López ÁM, Bahaji A, De Diego N, Baslam M, Li J, Muñoz FJ, Almagro G, García-Gómez P, Ameztoy K, Ricarte-Bermejo A, Novák O, Humplík JF, Spíchal L, Doležal K, Ciordia S, Mena MC, Baroja-Fernández E, Pozueta-Romero J (2016b) Arabidopsis responds to *Alternaria alternata* volatiles by triggering pPGI-independent mechanisms. Plant Physiol. doi:10.1104/pp.16.00945
- García-Gómez P, Almagro G, Sánchez-López ÁM, Bahaji A, Ameztoy K, Ricarte-Bermejo A, Baslam M, Antolín MC, Urdiain A, López-Belchi MD, López-Gómez P, Morán JF, Garrido J, Muñoz FJ, Baroja-Fernández E, Pozueta-Romero J (2019) Volatile compounds other than CO₂ emitted by different microorganisms promote distinct post-transcriptionally regulated responses in plants. Plant Cell Environ. doi: 10.1111/pce.13490
- 4. Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, Ugena L, Spíchal L, Doležal K, Kaneko K, Mitsui T, Cejudo FJ, Pozueta-Romero J (2019) Plant responses to fungal volatiles involve global post-translational thiol redox proteome changes that affect photosynthesis. Plant Cell Environ. doi: 10.1111/pce.13601.
- 5. García-Gómez P, Bahaji A, Gámez-Arcas S, Muñoz FJ, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, De Diego N, Ugena L, Spíchal L, Doležal K, Hajirezaei M, Romero L, García I, Pozueta-Romero J (enviado) Volatile emissions from fungal phytopathogens modulate plant root metabolism and architecture through mechanisms involving cyanide scavenging and hormone- and ROSmediated proteome resetting. Plant Cell Environ

LISTADO DE COMUNICACIONES PRESENTADAS EN CONGRESOS

 Sánchez-López ÁM, Bahaji A, De Diego N, Baslam M, Li J, Muñoz FJ, Almagro G, García-Gómez P, Ameztoy K, Ricarte-Bermejo A, Novák O, Humplík JF, Spíchal L, Doležal K, Ciordia S, Maria del Carmen Mena, Navajas R, Baroja-Fernández E, Pozueta-Romero J. Arabidopsis is capable of responding to volatile phytostimulants emitted by phytopathogenic microorganisms by triggering plastidic phosphoglucose isomerase independent mechanisms. XIII Reunión de Biología Molecular de Plantas. 22-24 junio 2016, Oviedo

- 2. Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, Novák O, Spíchal L, Doležal K, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action: a case of dirty dishes (2016) XIII Reunión de Biología Molecular de Plantas. 22-24 junio 2016, Oviedo
- 3. Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Humplík JF, Novák O, Spíchal L, Doležal K, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Biology Europe EPSO/FESPB 2016 Congress. 26-30 junio, Praga
- 4. Sánchez-López ÁM, Bahaji A, De Diego N, Baslam M, Li J, Muñoz FJ, Almagro G, García-Gómez P, Ameztoy K, Ricarte-Bermejo A, Ugena L, Novák O, Humplík JF, Spíchal L, Doležal K, Ciordia S, Maria del Carmen Mena, Baroja-Fernández E, Pozueta-Romero J. Arabidopsis respond to volatile compounds emitted by phytopathogenic microorganisms through plastidic phosphoglucose isomerase independent mechanisms. Plant Biology Europe EPSO/FESPB 2016 Congress. 26-30 junio, Praga
- 5. García-Gómez P, Baslam M, Muñoz FJ, Sánchez López ÁM, Bahaji A, Almagro G, De Diego N, Spíchal L, Doležal K, Baroja-Fernández E, Pozueta-Romero J.Volatile compounds emitted by the fungal phytopathogen *Penicillium aurantiogriseum* promote changes in the root architecture of *Arabidopsis thaliana* through auxin action. XXII Reunión de la Sociedad Española de Fisiología vegetal y XV Spanish-Portuguese Congress of Plant Physiology. 26-29 junio 2017, Barcelona
- 6. Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, Ugena L, Spíchal L, Dolezal K, Kaneko K, Mitsui T, Cejudo FJ and Pozueta-Romero J. Plant responses to fungal volatiles involve global post-translational thiol redox proteome changes that affect photosynthesis. XXIII Reunión de la Sociedad Española de Fisiología vegetal y XVI Spanish-Portuguese Congress of Plant Physiology. 26-28 junio 2019, Pamplona
- 7. García-Gómez P, Bahaji A, Muñoz FJ, Sánchez-López ÁM, Almagro G, Ameztoy K, Baroja-Fernández E, Baslam M, De Diego N, Ugena L, Spíchal L, Dolezal K, Hajirezai M and Pozueta-Romero J. Volatile organic compounds-depleted microbial emissions modulate plant root architecture and metabolome through proteome resetting, and hormone and ROS signaling. XXIII Reunión de la Sociedad Española

de Fisiología vegetal y XVI Spanish-Portuguese Congress of Plant Physiology. 26-28 junio 2019, Pamplona

- 8. Gámez-Arcas S, Sánchez-López ÁM, Ricarte-Bermejo A, Baslam M, Baroja-Fernández E, García-Gómez P, Muñoz FJ, Bahaji A, Ugena L, Ameztoy K, Almagro G, De Diego N, Spíchal L, Dolezal K and Pozueta-Romero J. Arabidopsis plants lacking plastid phosphoglucose isomerase respond to microbial volatiles through GLUCOSE-6-P/PHOSPHATE TRANSLOCATOR2 action. XXIII Reunión de la Sociedad Española de Fisiología vegetal y XVI Spanish-Portuguese Congress of Plant Physiology. 26-28 junio 2019, Pamplona
- 9. García Gómez P, Bahaji A, Gámez-Arcas S, Muñoz FJ, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, De Diego N, Ugena L, Spíchal L, Doležal K, Hajirezaei M, Romero LC, García I, Pozueta-Romero J. Volatiles from fungal phytopathogens modulate plant root metabolism and architecture through cyanide scavenging, and hormone-and ROS-mediated proteome resetting. Small molecules in plant research: Chemistry and Biology Come Together Symposium. 10-11 diciembre 2019, Valencia

AGRADECIMIENTOS

Hace ya 5 años, me comunicaron una noticia, la concesión de una beca FPI para realizar el Doctorado en Navarra. Ello suponía hacer un sacrificio, dejar a mi familia y amigos en Murcia, pero también una gran oportunidad de poder dedicarme a algo que me gusta y apasiona, la investigación en plantas, y una formación como investigador en un reconocido grupo. Este periodo de formación tristemente se acerca a su fin, y debido a ello, me gustaría expresar mi más sincero agradecimiento a todas las personas e instituciones, que de una forma u otra, me han ayudado a lo largo de este camino y que sin ellos esta tesis no hubiera sido posible.

- A Javier Pozueta, mi director, por darme la oportunidad de realizar la tesis doctoral en su grupo y hacer que me sintiera como en casa desde el primer día, y sobre todo, por sus conocimientos, persistencia y motivación que han sido claves para la presentacion de este trabajo.
- A Abdellatif Bahaji, por la codirección de este trabajo, por ser un gran compañero de fatigas, y por su guía y consejos tanto para la realización de la tesis como para guiarme en la vida.
- A Francisco Muñoz, por su infinita paciencia conmigo, por sus explicaciones tanto de técnicas de laboratorio como de programas informáticos, y por esa alegría (con la dosis necesaria de jocosidad/malicia) que aporta al grupo y que hace que el trabajo sea más agradable.
- A Edurne Baroja, por ser como una segunda madre para mí, por todo el cariño que has tenido conmigo desde el primer día que llegué a este grupo.
- A mis compañeros del laboratorio. A Ángela, por comportarse como la hermana que siempre está cuando se le necesita, y por compartir tanto buenos como malos momentos, A Samuel, por toda su ayuda, su buen humor, sus famosos "dichos" y los ratos de café en la Mordida. A Goi y a Kinia, por ser unas fantásticas compañeras de laboratorio difícilmente reemplazables. Tampoco puedo olvidarme de antiguos integrantes del

laboratorio (Adriana, Maite, Ohiana, Lydia, Blanca, Curro, Rosa, Ángel...) a los que les doy las gracias por su apoyo a lo largo de estos años.

- Al Dr. Karel Doležal (Palacký University of Olomouc, Cezch Republic), por darme la oportunidad de realizar una estancia en Olomouc. A todo su equipo, en especial a Nuria, por su guía, conocimientos y buenos ratos especialmente en congresos. Y a Zoila y Manuel, por haberme hecho más amena dicha estancia.
- Al Dr. Mohammed Hajirezai (Institute of Plants Genetics and Crop Research (IPK), Alemania), por acogerme en su grupo de investigación, por el exquisito trato que recibí y por todo lo que me enseñaron él y su equipo.
- A todo el personal técnico y de administración del Instituto de Agrobiotecnología, en especial a Víctor, Fernando Zaratiegui y Fernando Armona.
- A Inmaculada Farrán, por ser mi tutora de tesis.
- A todos los componentes del Instituto de Agrobiotecnología, con especial mención al grupillo de los partidos de voleibol en general y a Javi Buezo en particular.
- A todos mis amigos tanto de Murcia como de Pamplona, con mención especial a Álvaro, Mul, Kike, Emi y Rayos por su amistad sincera a lo largo de los años. Y a mis grupos de *Magic* tanto de Pamplona como de Murcia, y a mi equipo de *Heroes of the Storm, Noche en el Nexo,* por hacerme más amena esta estancia de 5 años.
- Y por último, a toda mi familia. A Pak, mi hermano y confidente, por nuestras charlas, por su apoyo incondicional, y a mis padres, Pablo y María Dolores, por todo, por haber sido junto con Pak, los grandes pilares de mi vida y los que me habéis hecho ser lo que soy. Mención especial a mi abuelo, Paco, al cual le dedico esta tesis como tributo, pues él, a través de mi padre, me transmitió el cariño hacia el campo en general y las plantas, en particular.

Por haberme hecho esta travesía más grata y más fácil. Gracias a todos!!

