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Abstract

Oxalic acid is one of the most abundant organic acids produced by plants. Much of the global production of oxalic acid is deposited on soll
surfaces in leaf litter to be oxidized by microorganisms, resulting in a pH increase and shifting the carbonate equilibria. In what is known as
the oxalate-carbonate pathway, calcium oxalate metabolism results in CO, being sequestered into soils as insoluble calcite (CaCO3). There is a
growing appreciation that the global scale of this process is sufficiently large to be an important contribution to global carbon turnover budgets.
The microbiomics, genetics, and enzymology of oxalotrophy are all soundly established, although a more detailed understanding of the landscape-
scale kinetics of the process would be needed to incorporate oxalotrophy as an element of process models informing the relevant Sustainable
Development Goals. Here, we review the current state of knowledge of oxalotrophs and oxalotrophy and the role they play in terrestrial ecosys-
tem services and functions in terms of carbon sequestration and nutrient cycling. We emphasize the relevance of these to the Sustainability
Development Goals (SDGs) and highlight the importance of recognizing oxalotrophy, when accounting for the natural capital value of an ecosys-
tem.

Sustainability statement: This review, Oxalate and oxalotrophy: an environmental perspective, addresses the impact of oxalate and oxalotrophy
on the United Nations Sustainable Development Goals. Oxalates are common constituents of plant tissues. However, the environmental impact
of these chemical constituents is principally derived from their decomposition by soil microorganisms, with the release of CO, and stimulation
of the oxalate-carbonate pathway and associated soil pH changes. These processes result in improved soil structure and quality with positive
impacts on land and agriculture (Goals 2, 15), contribute directly to carbon sequestration (Goal 13), and contribute indirectly, through local and
global effects, to other SDGs including Goal 3 (good health and wellbeing) and Goal 14 (life below water).
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Introduction Other Land Use (AFOLU) projects requires a cost analysis to
be undertaken, based on the alternative land uses identified
in the project’s assessment (Verra 2019). A major issue with
this approach is that ecosystem services are not accounted

In the early 21st Century, we are witness to rates of biodiver-
sity loss and ecosystem deterioration coupled with a rate of cli-

mate change that are unprecedented in human history (IPBES ¢ W that th ; £ a land h
2019, Fischer et al. 2021, Diffenbaugh et al. 2023). To combat Of, such that the true impact of a land use change cannot

a legacy of environmental destruction that is one of the defin- ,be valued or compared to alternatl.ves. Wltho‘.lt ““C,le.r stand-
ing characteristics of the Anthropocene (Folke et al. 2021), '8 the true value of ecosystem services, strategic decmqns on
the Kunming-Montreal Global Biodiversity Framework was ~ €COSYStem management, protection, or rejuvenation, designed
established in December 2022 at the 15th meeting of the Con- to help achieve the SDGs (Sachs et al. 2023) may not necessar-
ference of Parties to the UN Convention on Biological Diver- ily be focused on the ecosystems that would offer the greatest
sity (COP 15 2022). This framework identifies biodiversity as ~ "ctUr™: . . .

an important element in fighting climate change, poverty, and . An ecosystem service that is not currently. recognized for
providing food security. The protection of biodiversity is un- '™ value is oxalotrophy (the ability of organisms to use ox
derstood to be critical in achieving many of the UN Sustain- alate. as a carbon and energy source: Kost et al. 2013). Mi-
able Development Goals (SDGs) declared in the 2030 Agenda crobial energy cycles that involve carbon-cycling are now rec-

for Sustainable Development (UN General Assembly 20135) ognized as being highly influential in the provision and reg-
and remains an urgent priority (Sachs et al. 2023) ’ ulation of ecosystem services. Oxalate salts, oxalic acid, and

A vital future objective is the identification of ecosystems oxalogenic plants are widespread across the terrestrial world.

that contribute most to achievement of the SDGs and climate Th.e lcap acity for OXS llqtroahy, (;)nce Fgought (tio. be a rljlre bac-
targets. The financial viability of Agriculture, Forestry, and terial trait, 1s now believed to be widespread in prokaryotes
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and lower eukaryotes, and is found extensively in terrestrial
ecosystems, plant-associated microbiomes and animal diges-
tive tracts (Hervé et al. 2016).

The critical ecosystem service of oxalotrophy is related to
the oxalate-carbonate pathway (Aragno and Verrecchia 2012,
Palmieri et al. 2019), where CO; is sequestered as insoluble
carbonates in soils (Verrecchia 1990). In this pathway, ox-
alotrophic bacteria and fungi are able to decompose calcium
oxalate in leaf litter and soil organic matter, forming CaCOj3
in the process due to a local rise in pH (Pons et al. 2018, Uren
2018, Hervé et al. 2021). While there is a growing under-
standing of the scale and significance of this process, its im-
portance in global ecosystem servicing is to date only poorly
understood. Understanding the interactions between oxalo-
genic plants, saprophytic decomposers, and/or oxalotrophic
microorganisms in pristine and agricultural soils is crucial to
exploit this naturally occurring carbon capture process and
possibly for the future engineering of carbon sequestration in
drylands.

In this review and for the sake of brevity, we focus largely
on oxalotrophic processes in terrestrial ecosystems. Related
and equally important topics such as oxalogenesis (Palmieri
etal. 2019) and the role of oxalate in a human clinical context
(Galan-Llopis et al. 2023) have been recently and comprehen-
sively reviewed.

Oxalate salts and oxalic acid in the
environment

Oxalic acid (C;H;O4) is one of the most common and impor-
tant organic acids produced by plants and soil microorgan-
isms in terrestrial ecosystems (Chen and Liao 2016). The salt
of its conjugate base, oxalate, is also highly abundant, with
calcium oxalate being the most common oxalate species in
the environment (Gadd et al. 2014) and the most abundant
organic biomineral found in terrestrial ecosystems (Baran
and Monje 2008). Calcium oxalate includes mineral forms
whewellite (monohydrate) and weddellite (dihydrate) (Verrec-
chia et al. 1993), collectively called CaOx hereafter. Other
common oxalate salts found in plants and soils include mag-
nesium oxalate (glushinskite) and highly soluble sodium and
potassium oxalate species.

Sources of oxalates

The two main sources of oxalates in terrestrial environments
are plants and fungi (Cailleau et al. 2011, Martin et al. 2012,
Parsons et al. 2022, Sonke and Trembath-Reichert 2023).
There is little evidence of oxalogenesis in bacteria or archaea,
with only a handful of reports on the process in specific Bacil-
lota (previously Firmicutes): Burkholderia and Pseudomonas
genera (Hamel et al. 1999, Nakata and He 2010, Nakata
2011). While more research on prokaryotic oxalogenesis is
undoubtedly required, the current consensus is that plants and
fungi are the primary contributors to environmental oxalate
pools (Cailleau et al. 2011, Martin et al. 2012).

Oxalates in plants

Oxalate/oxalic acid production in plants is common and
serves several roles, including (i) the sequestration of excess
Ca within plant tissues (Nakata 2003), (ii) the detoxification

of phytotoxic metals both in the soil and in the plant (Ma
et al. 2001), (iii) light regulation (Franceschi 2001), and (iv)

Cowan et al.

protection against herbivory (Franceschi and Nakata 2005).
Recently, the formation of CaOx has been linked to a drought
adaptation in plants, providing a CO, source during stom-
atal closure (Tooulakou et al. 2016). Such a drought adapta-
tion would explain the strong negative correlation (r = —0.79)
found between mean annual rainfall and percentage of plant
species containing CaOx crystals (Karabourniotis et al. 2020)
as well as the extreme accumulations of CaOx (ca. 100 kg in
some cacti) in desert plants (Garvie 2006).

Oxalates in soils

Oxalates are introduced into soils by root exudation, the
microbial decomposition of plant litter, or via biosynthesis
by soil fungi (Arnott 1995, Shimada et al. 1997, Jarosz-
Wilkotazka and Graz 2006, Verrecchia et al. 2006, Gadd et al.
2014, Hervé et al. 2021). Oxalates are often released by plants
as a stress response in conditions of low nutrient availability
or elevated levels of toxic metals (Adeleke et al. 2017). Acidic
soils impose both the stress of low plant-available phosphorus
(P) and phytotoxic aluminium (Al) concentrations. One of the
key adaptation mechanisms for plants growing in acid soils is
the production of oxalic acid either from the plant root itself
or through the symbiotic relationship with mycorrhizal fungi
(Dutton and Evans 1996; Ma et al. 1997, 2001; Gadd 2004,
Fomina et al. 2005, Zhang et al. 2014). The chelation capacity
of released oxalate reduces the phytotoxicity of Al while re-
leasing phosphate sorbed to Fe and Al oxide surfaces. Oxalic
acid production is also stimulated by ectomycorrhizal fungi
in high pH environments where availability of P is reduced by
interactions with calcite (Arvieu et al. 2003).

Oxalates in fungi

Oxalic acid production by fungi is influenced by multiple
environmental factors, such as available carbon and nitro-
gen sources, presence of metal oxalates, and pH (Graz et al.
2009, Guggiari et al. 2011, Martin et al. 2012). Mycorrhizal
and saprophytic fungi in soils are known to increase envi-
ronmental oxalate reserves (Arvieu et al. 2003, Palmieri et al.
2019): these free-living, pathogenic, or plant symbiotic fungi
either biosynthesize oxalic acid and excrete it into the envi-
ronment or increase environmental oxalate levels by breaking
down oxalate-rich plant matter and releasing the CaOx id-
ioblasts into the surroundings (Gadd 2004; Verrecchia et al.
2006). In addition to nutrient provision and metal detoxi-
fication, the role of oxalic acid in fungi has been linked to
pathogenicity (Williams et al. 2011, Vylkova 2017), competi-
tion (Gadd 2007, Lehner et al. 2008, Plassard et al. 2009), reg-
ulation of bacterial-fungal interactions (Deveau et al. 2018)
and wood degradation (Shimada et al. 1997, Guggiari et al.
2011, Hatakka and Hammel 2011). CaOx crystals are closely
associated with fungal hyphae (Uren 2018) and may be a by-
product of ectomycorrhizal mineral weathering (Schmalen-
berger et al. 2015). These CaOx crystals, together with CaOx
derived from decaying plant material, are the major sources
of CaOx in soils (Uren 2018).

Despite the similar solubility of CaOx (K, = 2.7 x 1077)
and calcite (CaCO3; K, = 3.3 x 107?) and the even greater
solubility of gypsum (CaSO4-2H,0; K, = 3.1 x 1075, the
abundance of both calcite and gypsum in soils are much
greater than that of CaOx (Uren 2018). The most common
CaOx mineral, whewellite, is considered to be thermodynam-
ically stable at ambient conditions (Verrecchia et al. 2006,
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Brecevic and Kralj 2010) and is not spontaneously oxidized.
Thus, it is generally believed that the lower concentrations
of CaOx in soils are predominantly related to the metabolic
breakdown of CaOx by oxalotrophic microorganisms (Mar-
tin et al. 2012, Hervé et al. 2016). While oxalotrophy is likely
to be the main factor controlling oxalate concentrations in
soils, abiotic factors such as carboxylate sorption (Jones and
Edwards 1998, Jones et al. 2003) and oxidation by manganese
oxides (Stone 1987, Uren 2018) can also reduce the concen-
trations of extractable oxalates.

The high turnover rate and low concentrations of CaOx in
most soils means it is not easily detected through mineralog-
ical techniques like X-ray diffraction (XRD) (limit of detec-
tion 2%-5%). In addition, identification and quantification of
oxalate species in soils is not straightforward (Adeleke et al.
2017). These combined factors may have led to the impor-
tance of CaOx in biogeochemical cycles being substantially
underestimated until recently.

Detection and quantitation of oxalate species

Techniques to detect and quantify oxalate salts and ox-
alotrophic activity are essential for an accurate understand-
ing of the effects of oxalotrophy and oxalate dynamics at
ecosystem scales. Accurate quantification of oxalate species
in soil is challenging due to spatial heterogeneity and tem-
poral variability of organic acids in soils (Jones et al. 2003,
Adeleke et al. 2017). CaOx may be identified using a dye
stain test, scanning electron microscopy (SEM), infrared (IR)
spectroscopy, and XRD (Proia and Brinn 1985, Cailleau et al.
2011, Rojas-Molina et al. 2015, Schmitt et al. 2018, Francis
and Poch 2019), but none of these methods are fully quanti-
tative. Chemical analysis of oxalate-containing soils and veg-
etation typically involves extraction followed by quantitative
analysis of oxalate in solution. Acid is used to dissolve spar-
ingly soluble oxalate salts, and CaOx content may be deter-
mined by calculating the difference between total and water-
soluble oxalate extracted from a sample (Ross et al. 1999, Sav-
age et al. 2000, Xu et al. 2006, Tang et al. 2008, Savage and
Martensson 2010, Liu et al. 2015, Schmitt et al. 2018). The
strengths and limitations of various methods to quantify ox-
alates in solution, as well as details of limits of detection and
quantification, linear ranges, and recovery efficiencies, have
been recently reported (Misiewicz et al. 2023).

Enzymatic methods for quantitation of oxalate are based on
detection of hydrogen peroxide produced by oxalate degra-
dation using the enzyme oxalate oxidase. However, interfer-
ence by other compounds in complex sample matrices is a se-
rious limitation of this technique (Hansen et al. 1994, Zuo
et al. 2010) and removal of reducing compounds and pH ad-
justment of samples is usually required (Keevil and Thornton
2006, Sigma-Aldrich Co. 2020). Some assay methods require
addition of Ca?* to promote oxalate precipitation (Certini
et al. 2000, Cailleau et al. 2011, Mujinya et al. 2011, Naik
et al. 2014, Liu et al. 2015, Shen et al. 2021), which adds un-
certainty to the result if other Ca-bearing minerals are present
and/or where Ca?* ions need to be quantified.

Indicator methods for detection of oxalates in solution are
based on alteration of fluorescence or ultraviolet (UV) radi-
ation absorbance of indicator compounds, often containing
copper, nickel, or iron (Holmes and Kennedy 2000, Chamjan-
gali et al. 2006, Zhai et al. 2006, 2007, Tang et al. 2008, Zhai
2008, Chamjangali et al. 2009, Rhaman et al. 2014, Pourreza

et al. 2018, Tavallali et al. 2018, Emami and Mousazadeh
2021, Hontz et al. 2020, Rocha et al. 2020, Shi et al. 2022,
Chen et al. 2023). While these approaches are rapid and sim-
ple, most demonstrate interference effects by other organic an-
ions. Electrochemical techniques, which are based on conduc-
tivity measurements (Holmes and Kennedy 2000, Strobel et al.
2004, Ardakani et al. 2006, Noblitt et al. 2009, Vardo Moura
et al. 2022, Kotani et al. 2023) are the most sensitive meth-
ods for the detection of oxalates in solution, but accuracy is
affected by changes in bulk solution conductivity, and high
oxalate concentrations cannot be measured accurately.

Liquid chromatography-mass spectroscopy (LC-MS) has
shown high sensitivity, accuracy, and selectivity for oxalate
analyses (Li et al. 2022, Mu et al. 2022, Misiewicz et al.
2023). However, the instrumentation and expertise required
for this method is not necessarily available to all investigators
and additional steps may still be necessary to prepare samples
with complex matrices (Gémez et al. 2022). Other spectro-
scopic methods may also hold promise. Raman spectroscopy
has been used to measure the ratio of whewellite to weddellite
in kidney stones (Khalil and Azooz 2007). Semi-quantitative
analysis of oxalic acid on clay surfaces has been achieved by
IR spectroscopy (Zhang et al. 2018).

Detection and quantitation of microbial
oxalotrophy

Accurate methods for monitoring oxalate dynamics are es-
sential in studies of the geochemical or biological processing
of oxalate in the environment. The potential for oxalotro-
phy may be implied (but not proven) by the identification of
oxalotrophic microorganisms and confirmation of their func-
tional potential. Similarly, the potential capacity for oxalate
metabolism can be identified by analysis of the key genes en-
coding enzymes of the oxalate degradation pathways (oxc,
frc, oxdC, and oxIT: Sonke and Trembath-Reichert 2023), ei-
ther by gene-specific PCR or via full genome or metagenome
sequencing. While the presence of a single gene in a multi-
gene pathway is not, in itself, evidence of active metabolism,
the presence of a complete pathway is more definitive, par-
ticularly if supported by transcriptomic data (i.e. evidence of
active gene expression). The contribution of both fungi and
bacteria to oxalate degradation has been confirmed by gPCR
analysis of the frc gene (Martin et al. 2012).

Quantitation of oxalate degradation provides definitive evi-
dence of oxalotrophy, and has been monitored qualitatively by
observation of the dissolution of oxalate salts around growing
microbial colonies (Braissant et al. 2002, 2004). Oxalotrophic
bacterial activity has also been monitored by isothermal mi-
crocalorimetry (Bravo et al. 2011). Oxalate degradation in mi-
crobial cultures may be monitored quantitatively by measur-
ing depletion of oxalate in the medium by chemical analyti-
cal methods (Strom et al. 2001, van Hees et al. 2002, Daniel
et al. 2007, Fujii et al. 2013, Dauer and Perakis 2014). This
allows determination of oxalate mineralization rates (Strém
et al. 2001, van Hees et al. 2002, Van Hees et al. 2003).

Alkalinity is arguably the most easily-measured fermenta-
tion parameter but is completely nonselective. Bicarbonate
ions are produced as a by-product of oxalate oxidation and
thus an increase in solution pH may be considered, under
very specific fermentation conditions, as confirmation of ox-
alotrophic activity (Braissant et al. 2002, 2004; Cailleau et al.
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Figure 1. Diagrammatic summary of the principal oxalotrophic pathways, intermediates and enzymes (adapted from Palmieri et al. 2019, Robertson and

Meyers 2022, Sonke and Trembath-Reichert 2023).

2011, 2014; Martin et al. 2012, Rowley et al. 2017, Gatz-
Miller et al. 2022).

Mineralogical and petrographic studies have proved useful
in the identification of oxalate transformation processes and
in constructing biogeochemical models of oxalate process-
ing pathways (Verrecchia and Dumont 1996, Cailleau et al.
2011). Mineral substrates and products of oxalotrophy may
be identified and micromorphologically described by use of
techniques such as X-ray fluorescence microscopy (XFM),
XRD, SEM, and optical microscopy (Braissant et al. 2004,
Garvie 2006, Cailleau et al. 2011, Bonazza et al. 2015, Francis
and Poch 2019, Parsons et al. 2022).

A novel approach for detecting and perhaps quantify-
ing oxalotrophy involves determination of the respiratory
quotient (RQ). RQ is the number of moles of CO, pro-
duced per mole of O, consumed during respiration (Dilly
2001). This quotient is, in part, controlled by the oxida-
tion state of carbon in the substrate. The oxidation state
of carbon is much higher in oxalate (4+3) than in carbohy-
drates (0), making the RQ for oxalate oxidation (4) much
larger than the RQ of aerobic respiration involving carbohy-
drate oxidation (1) and most other organic substrates (+0.7-
+1.3) (Masiello et al. 2008). Therefore, determinations of
RQ from measurements of CO, and O, concentrations in
the headspace of incubation vessels and the air-filled pore
spaces of soils (e.g. Gallagher and Breecker 2020, Hicks Pries
et al. 2020), although not yet to our knowledge applied
for this purpose, may enable nondestructive monitoring of
oxalotrophy.

The biochemistry and genetics of oxalotrophy

Genes, pathways, and enzymes

The capacity for oxalotrophy is widespread in both prokary-
otes and lower eukaryotes, and can occur both aerobically

and anaerobically (Fig. 1). In bacteria, aerobic oxidation of
oxalate occurs via a CoA-dependent activation to oxalyl-
CoA, which is either decarboxylated by oxalyl-CoA decar-
boxylase [Oxc: EC 4.1.1.8] with subsequent formyl-CoA
transferase (Frc: EC2.8.3.16]-catalyzed CoA removal to gen-
erate formate (for subsequent oxidation to CO;) or con-
verted to glyoxylate by oxalyl-CoA reductase [glyoxylate de-
hydrogenase: EC 1.2.1.17] for subsequent carbohydrate syn-
thesis via the glycine/serine pathways or energy production
via the TCA cycle. Under anaerobic conditions, the primary
oxidation product, formate, is excreted from the cell via
an oxalate: formate antiporter (OxIT), with the associated
H"-dependent membrane polarization driving APT synthase
activity.

An alternative pathway for aerobic oxalate catabolism,
where oxalate is indirectly converted to formate via the gly-
ocolate pathway and the use of a C1 tetrahydrofolate inter-
mediate, has been recently proposed (Robertson and Meyers
2022). Formate may be oxidised to CO, with the synthesis
of NADH or excreted via an oxalate-formate antiporter, hith-
erto only implicated in anaerobic oxalate metabolism. This
pathway (Fig. 1), which may be specific to the actinobacte-
rial genus Kribella, does not contain the first accepted ox-
alotrophic marker enzyme gene (oxc). Although the gene frc is
present in some of the oxalotrophic Kribbella species, it is not
thought to play any role in the proposed oxalotrophy pathway
for this genus.

In fungi and other lower eukaryotes, oxalate is oxidized
by two enzymes: oxalate decarboxylase [OdcC: EC 4.1.1.2]
and oxalate oxidase [Oxo: EC 1.2.3.4]. The detailed enzymol-
ogy of these pathways has been comprehensively reviewed by
Palmieri et al. (2019).

The key genes for oxalotrophy (oxc, frc, ode, and oxo0),
together with the oxalate-formate antiporter gene (oxIT)
are widely used as markers for identification of (putative)
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oxalotrophic microbial taxa (Sonke and Trembath-Reichert
2023). Such approaches have the potential to identify both
novel oxalotrophic taxa and novel oxalotrophic environ-
ments, although the discovery that alternative pathways
(Robertson and Meyers 2022), which do not use the oxalyl-
CoA decarboxylase/formyl-CoA transferase pathway high-
lights the weaknesses of marker-specific functional surveys.
Furthermore, enzyme substrate-promiscuity implicates other
enzymes in fulfilling the role of the oxalyl-CoA reductase,
demonstrated in Kribella spp. (Robertson and Meyers 2022)
and in Methylorubrum extorquens (Scheider et al. 2012). It is
therefore clear that estimations of the diversity and capacity of
oxalotrophy will inevitably be underestimated using oxc and
frc surveys.

A recent multilocus survey of multiple metagenome se-
quence datasets, including high quality Metagenome Assem-
bled Genomes (MAGs), suggested that microbial oxalotrophy
is widespread in marine habitats, and may be an important
trophic strategy in marine sediments (Sonke and Trembath-
Reichert 2023).

The genetic basis of oxalotrophy (i.e. gene organisation,
gene copies and the effect of biotic and abiotic factors on the
regulation of expression) has not been widely investigated and
has only been described for a few bacterial models. For exam-
ple, the oxc and frc genes have been shown to be transcribed
as an operon in lactic acid bacteria and in E. coli (Federici
et al. 2004, Azcarate-Peril et al. 2006, Lewanika et al. 2007).
A more recent study by Jiang et al. (2020) showed that the
two marker genes form an operon in a broad range of species,
although some operons also include a third gene encoding a
transporter protein (e.g. in Escherichia coli G3/10) or a CoA:
oxalate CoA-transferase (e.g. in Acetobacter pasteurianus). By
contrast, in Oxalobacter formigenes the genes have indepen-
dent promoters and are located several kilobases apart on the
genome (Sidhu et al. 1997).

The regulation of expression of these marker genes has also
been understudied, although environmental pH has been iden-
tified as an important regulator of microbial oxalate gene ex-
pression. For instance, in Bifidobacterium animalis oxc gene
expression is upregulated by a pH increase from 4.5 to 6.5
(Turroni et al. 2010), whereas in Lactobacillus acidophilus
this increase occurred between pHs 4.5 to 5.5 but was reduced
at a pH of 6.8 (Azcarate-Peril et al. 2006).

Microbiology of oxalotrophs

Bacterial oxalotrophy

Culture-dependent studies of oxalotrophy have underpinned
our understanding of the microbiology and biochemistry of
the oxalotrophic process. Some oxalotrophic bacteria are
completely dependent on oxalic acid as a carbon source and
energy (“specialist” oxalotrophs), whereas others can utilize
oxalic acid in addition to other carbon sources (“generalist”
oxalotrophs) (Sahin 2003). Based on culture-dependent stud-
ies, the capacity for bacterial oxalotrophy is not distributed
across all taxa, and was initially considered as a rare trait
attributed to cultured representatives of the Actinomycetota
(previously Actinobacteria), Bacillota, and Pseudomonadota
(previously Proteobacteria) phyla, predominantly from terres-
trial ecosystems (e.g. soil, freshwater sediments, plants, gut
habitats, and other host-associations) (Table 1) (Hervé et al.
2016, Robertson and Meyers 2022). The recent application

of metagenomic analyses has extended this capacity to the
Bacteroidota (previously Bacteriodetes) (Tanca et al. 2017)
and to marine environments (Sonke and Trembath-Reichert
2023), highlighting the likelihood that many more taxa may
contribute to oxalotrophic carbon cycling than generally
thought.

Due to the critical role that bacteria play in oxalate-
carbonate pathway processes in natural ecosystems, the de-
tection, identification, and characterization of these microor-
ganisms are essential for understanding their contribution to
ecosystem functioning. Although cultrable bacteria only rep-
resent a small percentage of the total population, culture-
based studies provide critical, and unique datasets, such as
process kinetics and interorganismal interactions, that con-
tribute to our understanding of the role of microorganisms
in the oxalate-carbonate pathway. For example, cultivation
studies have led to the suggestion that certain Insecta hosts ac-
tively recruit bacteria capable of degrading oxalic acid in order
to minimize oxalate toxicity (Kikuchi et al. 2005, Compant
et al. 2008, Itoh et al. 2014, Maddaloni and Pascual 2015,
Tago et al. 2015). Similarly, plant rhizosphere function has
been shown to be highly dependent on Burkholderia spp. ox-
alotrophy (Kost et al. 2014).

Culture-dependent studies of oxalotrophs have primarily
focused on enumeration and taxonomy, particularly via the
use of selective growth media (Table 1), generally employing
solid media containing CaOx as a sole carbon source (Kham-
mar et al. 2009, Bravo et al. 2011, Cailleau et al. 2014, Sun
et al. 2019). Potassium, sodium, and ammonium oxalate salts
have also been successful in culturing oxalotrophs, and are
consumed at similar rates to CaOx (Tamer and Aragno 1980,
Tamer 1982, Campieri et al. 2001, Sahin et al. 2002, Bravo
et al. 2015, Robertson and Meyers 2022). Kribbella spp. are
an exception, being inhibited by sodium oxalate but capable
of metabolising CaOx very rapidly (Robertson and Meyers
2022). Despite the use of traditional cultivation techniques be-
ing limited to only a handful of media, the diversity of cultur-
able oxalotrophic bacteria is steadily increasing (Table 1) and
new species are expected to be found when targeting new en-
vironments (Bravo et al. 2015, Sonke and Trembath-Reichert
2023) and/or with refinements in culture media and culturing
technologies (Wu et al. 2020).

Almost all growth kinetics and oxalate consumption char-
acterization have been conducted on a few model bacterial
strains (Table 1) and very few studies have assessed the ecolog-
ical role of cultivable oxalotrophic bacteria. Due to the high
oxidation state of oxalate, bacterial growth rates on oxalate as
a sole carbon source are generally low (Braissant et al. 2002),
and the relationship between bacterial growth and oxalate
degradation is species-dependent (Campieri et al. 2001, Bravo
et al. 2015). An apparent decoupling between cell growth and
oxalate consumption suggests that not all strains use oxalate
solely for biomass production.

The highest oxalate consumption rates for soil oxalotrophs
are recorded for Pseudomonadota species. Cupriavidus ox-
alaticus (generalist) and C. necator (specialist) consumed cal-
cium and potassium oxalate at rates greater than 0.6 uM h~!
and 0.4 uM h=', respectively (Bravo et al. 2011). Variovorax
soli C18 consumed potassium oxalate at a rate of 0.24 uM
h~! (Bravo et al. 2015). Members of the Actinomycetota also
demonstrated comparable consumption rates (up to 0.29 uM
h~!) (Bravo et al. 2011, 2015).
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Oxalate and oxalotrophy

Fungal oxalotrophy

A dynamic relationship exists between fungi, oxalic acid, and
the environment (Gadd 1999, Gadd et al. 2014, Palmieri et al.
2019). Much of the work on oxalate processing by fungi
has focused on oxalogenesis rather than oxalotrophy, a pro-
cess dominated by basidiomycetous brown and white wood-
rot fungi from soil environments (Shimada et al. 1997, Mu-
nir et al. 2001, Mikela et al. 2002, Jarosz-Wilkotazka and
Graz 2006, Guggiari et al. 2011). Filamentous Asco- and
Mucoromycetes have also been shown to be capable of ox-
alic acid biosynthesis. Some fungal taxa, such as Aspergillus,
Fusarium, and Pleurotus spp. are capable of both oxalogene-
sis and oxalotrophy, switching from anabolism to a catabolic
metabolism under nutrient-rich conditions. The duality in fun-
gal oxalate metabolism may explain why oxalotrophy in the
environment has largely been overlooked in lower eukaryotes
(Gadd 1999, Guggiari et al. 2011, Palmieri et al. 2019).

The enzyme mostly reported to be associated with fun-
gal oxalotrophy is oxalate decarboxylase (OXD: EC 4.1.1.2),
which degrades oxalic acid into formate and carbon dioxide
(CO;) (Shimazono 1955, Kathiara et al. 2000, Mikela et al.
2002, Zhu and Hong 2010, Kamthan et al. 2015, Kumar et al.
2016). This mainly intracellular enzyme, which is also found
in bacteria (Just et al. 2004), occurs within vesicles close to
the plasma membrane, as well as attached to the fungal cell
wall (Dutton et al. 1994, Micales 1997, Kathiara et al. 2000,
Sato et al. 2007, Mikela et al. 2009). It was predicted that
OXD occurs in most lignocellulose-degrading basidiomycetes,
but it is best documented for Flammulina (Collybia) velutipes
(Mehta and Datta 1991, Kesarwani et al. 2000, Dias et al.
2006, Guggiari et al. 2011, Chakraborty et al. 2013, Kamthan
et al. 2015), Trametes (Coriolus) versicolor (Shimazono 19535,
Dutton et al. 1994, Mikeli et al. 2002, Zhu and Hong 2010,
Guggiari et al. 2011), and Pholiota spp. (Guggiari et al. 2011).

A second enzyme found to be associated with fungal ox-
alotrophy is oxalate oxidase (OXO, oxalate: oxygen oxidore-
ductase, EC 1.2.3.4) (Aguilar et al. 1999, Svedruzic et al. 2005,
Watanabe et al. 2005, Graz et al. 2009). This enzyme, which
has been reported in the white-rot fungi A. bienni and C. sub-
vermispora, cleaves oxalate into two CO, molecules and hy-
drogen peroxide (Aguilar et al. 1999, Graz et al. 2009). Both
OXD and OXO activities have been reported for C. subver-
mispora, (Mikeli et al. 2009). The presence of multiple genes
associated with oxalotrophy in a single genome suggests that
different enzyme isoforms may play different physiological
roles in oxalotrophic fungi (Mikela et al. 2010).

Formate dehydrogenase (FDH, EC 1.2.1.2. and 1.2.2.1)
may also play an important role in fungal oxalotrophy, since
this enzyme can convert potentially toxic formate (produced
by OXD) to CO; (Watanabe et al. 2005). The co-location of
the fdh and oxd genes in fungal genomes (Sato et al. 2009)
also suggests a functional link between the two gene products,
a concept supported by observations of the co-expression of
odc and fdh genes in some basidiomycetes (Sato et al. 2007,
2009).

Although the genes implicated in oxalotrophy have been
recorded in many fungi, relatively little is known of their
gene expression control, the detailed structures and functional
properties of enzymes, or their physiological roles. The poten-
tial link between oxalic acid degradation and energy genera-
tion is also poorly understood.

Analogous to the role of oxalic acid in fungus-plant sym-
bioses (Dutton et al. 1996), it is suggested that oxalic acid may
play important role in bacterial-fungal interactions (Deveau
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et al. 2018). Simon et al. (2016) proposed that oxalotrophic
bacteria in soil environments are generally nonmotile and re-
quire fungal hyphae as a ‘transit’ mechanism to locate envi-
ronmental oxalate reserves (Bravo et al. 2013a). It has been
demonstrated that fungus-derived oxalic acid can act as a
chemoattractant for motile oxalotrophic bacteria, which then
utilize the secreted oxalic acid as a carbon and energy source
(Haq et al. 2018, Rudnick et al. 2015).

The role of fungi in oxalate-carbonate pathway processes
is poorly understood, although it is generally appreciated
that the contribution of oxalotrophic fungi is under-estimated
(Martin et al. 2012, Hervé et al. 2021).

Environmental microbiomics of oxalotrophs

Phylogenetic diversity of oxalotrophic taxa

Recent advances in molecular techniques, particularly
metabarcoding and metagenomic methods, have allowed
researchers to investigate the uncultured fraction of ox-
alotrophic taxa in virtually any environment and at scales
from local to regional to global.

Specific marker genes are widely accepted as indicators of
the capacity for oxalotrophy in different groups of organisms
and under different environmental conditions (oxdC, bacte-
rial, anaerobic; oxc, frc, oxIT, bacterial, aerobic; odc, oxo,
fungal: see Fig. 1). Nevertheless, caution is advised in generat-
ing functional interpretations from gene marker data. The frc
gene is not unique to oxalotrophy and is not considered to be
adequate as a sole molecular marker for this process (Kham-
mar et al. 2009). The inclusion of both oxdC and oxc genes
as markers is, however, considered to be sufficient to confirm
the presence of microbial oxalotrophy (Sonke and Trembath-
Reichert 2023). Alternatively, it has been suggested that the
entire oxalate operon, with both the oxc and frc genes, is a
valid marker for oxalotrophy (Azcarate-Peril et al. 2006).

In fungi, the genes encoding the oxalate decarboxylase (EC
4.1.1.2) or oxalate oxidase (EC 1.2.3.4) (Graz et al. 2023)
(see Fig. 1) could be used as markers, although, to the au-
thors’ knowledge, the latter has not been used in any molecu-
lar marker studies to date.

Notwithstanding the power of eDNA-based methods,
metabarcoding approaches rely on conserved consensus se-
quences and therefore may not identify novel or highly
sequence-variable oxalotrophic genes (Simon et al. 2016).

Alternative approaches to functional prediction using phy-
logenetic datasets, such as the “function from phylogeny”
algorithms PiCRUSt (https://picrust.github.io/picrust) and
Tax4Fun (http://tax4fun.gobics.de), could also aid in the iden-
tification of oxalotrophic capacity. These programs generate
functional predictions based on alignments between metabar-
coding data and genomic data from known genomes (Douglas
et al. 2020, Wemheuer et al. 2020), and are therefore solely
predictive in nature. However, they do provide a valuable ba-
sis for further experimental verification. A study of termite gut
microbiomes (Suryavanshi et al. 2016) demonstrated that the
use of PICRUSt could predict oxalotrophic functional genes
via KEGG Orthology. This study inferred the presence of a
highly diverse oxalotrophic community in the termite gut, sug-
gesting the presence of five different oxalotrophic pathways
with formate, carbon dioxide or hydrogen peroxide as poten-
tial metabolic end-products.

A pioneering study (Sahin 2003) suggested that most
oxalotrophic taxa identified in public sequence databases
were aerobes and clustered into either proteobacterial or
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Figure 2. (A) Phylogenetic trees of the protein sequences of the two essential oxalotrophic genes, oxalyl-CoA decarboxylase (OXC) and formyl-CoA
transferase (FRC). Sequences were extracted from the Refseq protein database. Numbers of sequences used to draw the trees are shown in brackets
above each tree. The sequences were first aligned using MAFFT and the tree calculated using FastTree v2.0, while the trees were drawn using the Itol
webserver. Sequences belonging to the dominant phyla (phyla that contained >1% of the total number of sequences for each marker gene) are
highlighted in the tree using color strips. (B) Barplot showing the number of OXC and FRC sequences, retrieved from the RefSeq database belonging to
rare phyla (i.e. phyla that contained <1% of total retrieved sequences for either marker gene).

actinobacterial clades. Gram-negative oxalotrophic bacteria
belonged to various Pseudomonadota subclasses (o, B, and y
with one §), whereas Gram-positive oxalotrophs aligned with
the Bacillota and Actinomycetota phyla.

Probably the most comprehensive phylogenetic analysis of
the key oxalotrophy genes (oxc, frc, oxdC, and oxIT) was a re-
cently published (Sonke and Trembath-Reichert 2023) bioin-
formatic study of publicly available genome and metagenome
datasets. Oxc genes clustered into three primary Groups, each
including several separate clades: Group I included multiple
genera from the phylum Actinomycetota, Group II consisted
of several Pseudomonadota-dominated clades largely of ter-
restrial origin, while Group III was composed exclusively of
Alphaproteobacteria but from diverse origins, including hy-
drothermal vent waters, cold marine sediments, plant micro-
biomes, and human gut samples.

OxdC genes clustered into two primary groups, each of
multiple clades. As for oxc gene phylogeny, taxonomic assign-
ments within clades were mostly homogeneous [Pseudomon-
adota and Bacillota for prokaryotes, and various fungal phyla
and the chlorophyte Chloroflexota (previously Choroflexi)].
The homogeneous clustering of genes according to taxonomic
groups was interpreted as evidence for vertical inheritance
rather than Horizontal Gene Transfer (although some evi-

dence for the latter was noted) (Sonke and Trembath-Reichert
2023).

Similar phylogenetic distributions have been observed using
other marker gene sets. Khammar et al. (2009) used degener-
ate primers to identify both frc and oxc genes. The study re-
vealed a high taxonomic similarity between frc genes, most of
which grouped within «- and B-proteobacterial clades. The 8-
proteobacterial cluster included frc genes positioned adjacent
to oxc genes, thought to be indicative of an oxalate operon
(Azcarate-Peril et al. 2006).

A comparison of the cultured oxalotroph diversity with pu-
tative oxalotrophic taxa identified in sequence datasets sug-
gests that a high proportion of oxalotrophs remain uncultured
(e.g. Barka et al. 2016). Given that a proportion of marker
sequences cannot be assigned to any known taxa (Sun et al.
2019), it is also possible that these “dark” oxalotrophs may
harbor alternative oxalotrophic pathways (Janssen 2006).

An up-to-date phylogenetic survey of OXC and FRC pro-
tein sequences from the NCBI RefSeq database (Fig. 2)
shows, as previously reported (Palmieri et al. 2019), that
these oxalotrophic markers are mainly present in four
phyla: Pseudomonadota, Bacillota, Bacteroidota (previously
Bacteriodetes), and Actinomycetota (Fig. 2A). In the case of
OXC, the sequences from Bacteroidota, Actinomycetota and
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Bacillota form a phylogenetic cluster distinct from the ma-
jority of Pseudomonadota sequences, suggesting that they are
more closely related. By contrast, the phylogenetic clustering
of the FRC proteins is less evident, with the Bacillota and
Bacteroidota sequences clustering together in a distinct phy-
logenetic clade. The sequences for both markers were also
found in taxa that are not often associated with oxalotro-
phy (Fig. 2B). These include the Fusobacteriota genus Ceto-
bacterium, which is often associated with fish intestinal tracts
(Ramirez et al. 2018, Qi et al. 2023), and the bacterial ma-
rine sponge symbiont Entotheonella palauensis (from the Ni-
trospinae/Tectomicrobia group) (Lackner et al. 2017, Schmidt
et al. 2000). The Chloroflexi genus Tepidiforma was found to
only contain sequences for the oxc gene, and a recent study
(Palmer et al. 2023) has shown that two members in this
genus, Tepidiforma flava and Tepidiforma thermophila, were
unable to grow with oxalate as a sole carbon source, further
suggesting that both marker genes are essential for oxalotro-
phy. While both OXC and FRC proteins were found in Fungi,
none of the fungal taxa in the database contained both mark-
ers, consistent with the view that fungi catabolize oxalate us-
ing alternative enzyme pathways (Fig. 1).

Phylogeography of oxalotrophic taxa: Although best
known for their presence (and function) in soil ecosystems
(Palmieri et al. 2019), plant rhizospheres (Voronina and
Sidorova 2017) and the human gut (Sadaf et al. 2017), ox-
alotrophs now appear to be present in widely diverse habi-
tats, including oxic and anoxic, mesophilic and thermophilic,
oligotrophic and copiotrophic, halophilic and nonhalophilic
and neutrophilic and acidophilic environments. Metagenomic
sequence data suggest that oxalotrophic capacity, encoded by
both prokaryotes and lower eukaryotes and probably asso-
ciated with multiple taxa in any specific habitat, exists in
environments as diverse as soils, compost, plant-associated
communities (e.g. rhizospheric and ectomycorrhizal micro-
biomes), waste and fresh water, acid mine drainage, marine
water, deep sea hydrothermal fluids, marine sediments, and
animal and invertebrate gut systems (Suryavanshi et al. 2016,
Tanca et al. 2017, Sonke and Trembath-Reichert 2023).

Ecosystem services and functions of
oxalotrophy in relation to the SDGs

Sustainable agriculture (SDG 2: promote
sustainable agriculture)

Oxalotrophic bacteria have been studied in numerous natural
ecosystems, but their presence and role in agricultural soils
and their association with crops is not well understood. Ox-
alotrophy and oxalate production are important in recruiting
plant-beneficial endophytic bacteria for important crops such
as lupin and maize (Kost et al. 2013). Oxalotrophy has also
been highlighted as a possible way to ameliorate acid soils
(Xu et al. 2019). Soil acidity affects 40% of arable land and
is a major problem affecting food security in many develop-
ing countries where lime sources are unaffordable. As a re-
sult, alternative ways to buffer acid soils are highly sought af-
ter. Xu et al. (2019) examined the effect of CaOx addition to
acid soils fertilized either by manure or NPK fertilizer. Their
findings demonstrated that oxalotrophy in both fertilized and
manured soils increased soil pH, but manured soils responded
more rapidly to CaOx addition due to functional redundancy.
While the application of CaOx to agricultural soils is not eco-
nomically feasible, the potential of oxalotrophy to reduce soil
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acidity should be further explored, especially given how preva-
lent CaOx can be in crop residues.

Oxalotrophy can also play a role in the soil stability of culti-
vated fields. In a study on the CaOx content of soybean plants
(Glycine max), it was suggested that the rapid breakdown of
CaOx contained in unharvested crop residues is important for
Ca recycling. This rapid release of Ca was suggested to main-
tain aggregate stability and good physical soil structure in the
intensively cultivated Mollisols of Argentina (Borrelli et al.
2016). More work to understand the role of oxalotrophy and
Ca release in other crop residues is important, as this could be
a further advantage of minimum tillage practices, which aim
to retain plant residues in the soil.

Nutrient cycling in ecosystems (SD 15: Life on land)

The role of CaOx in ecosystem Ca cycling is deemed to be
an important issue (Dauer and Perakis 2014, Turpault et al.
2019, Parsons et al. 2022) with the view that Ca dynamics are
different from other basic cation cycles due to fungal CaOx
production and subsequent microbial breakdown resulting in
rapid Ca turnover (Dauer and Perakis 2014). Calcium is an
essential nutrient in plants and animals and understanding the
cycling of Ca in the environment is essential for sustainable
management of ecosystems and their biodiversity.

Calcium is often a limiting nutrient in weathered tropi-
cal ecosystems and dystrophic forest soils (Dauer and Perakis
2014, Turpault et al. 2019). A large component (23 %-40%)
of the total Ca in detritus of temperate forest ecosystems is
made up of CaOx (Dauer and Perakis 2014). This biomineral
and its microbial breakdown is increasingly being recognized
as an important component of Ca flux through these ecosys-
tems. In low-Ca forest soils it was demonstrated that CaOx
contribution to the total Ca pool was greater and the turnover
rate of CaOx was faster compared to a high-Ca forest ecosys-
tem (Dauer and Perakis 2014). This highlights the importance
of CaOx and oxalotrophy in nutrient cycling of dystrophic
ecosystems (Dauer and Perakis 2014, Turpault et al. 2019).

The importance of biodiversity and the ecosystem health of
the CaOx biogeochemical cycle has only recently been recog-
nized. Soil detritivores such as earthworms, springtails, and
termites carry CaOx-degrading bacteria in their digestive sys-
tems (Cromack et al. 1977, Suryavanshi et al. 2016). Substan-
tial quantities of CaOx from plant litter are processed and
ingested by soil fauna such as earthworms and oribatids in
deciduous forest ecosystems (Cornaby et al. 1975, Rehman
et al. 2021) and, in semi-arid regions, oribatids, and termites
play an important role in this process (Francis and Poch 2019)
with the litter-transforming oribatids making CaOx-rich litter
accessible for subsequent microbial degradation and mineral-
ization (Cornaby et al. 1975, Francis and Poch 2019, Rehman
et al. 2021). Work on intact west African forests and adjacent
degraded lands has shown that both an intact, healthy, and
functioning ecosystem with soil fauna and intact pore spaces
are needed for the processes of Ca bioaccumulation to take
place (Rehman et al. 2021). Arthropods, diplopods, isopods,
oribatids, and snails accumulate significant concentrations of
Ca in the form of oxalate and/or carbonate in their exoskele-
tons (Cromack et al. 1977, Norton and Behan-Pelletier 1991).
Unlike CaOx associated with root exudates, fungi, and bacte-
ria, the higher mobility of the soil mesofauna further disperses
CaOx throughout soil ecosystems, but this has not yet been
factored into soil CaOx budgets.
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Carbon sequestration and the oxalate-carbonate
pathway (Goal 13: Climate action, Goal 15: life on
land)

Carbon sequestration in both biomass and soils is the major
driver of atmospheric CO, drawdown in nature-based solu-
tions, yet the permanence of organic carbon soil sequestration
is not always certain (Dees et al. 2023). However, conversion
of organic carbon to soil inorganic carbon via the oxalate-
carbonate pathway can result in almost permanent carbon se-
questration, either in the form of soil carbonates in semi-arid
and drier climates or leaching of bicarbonate to groundwater
and transport to the ocean in more humid climates, where it
counteracts ocean acidification and stores atmospheric carbon
(Hartmann et al. 2013, Monger et al. 2015, Taylor et al. 2016,
Zhang et al. 2022).

The importance of the oxalate-carbonate pathway in land-
scape carbon dynamics has been increasingly recognized over
the past decade (Cailleau et al. 2011, Martin et al. 2012,
Aragno and Verrecchia 2012, Rowley et al. 2017, Pons et al.
2018, Uren 2018, Francis and Poch 2019, Hervé et al. 2021,
Rehman et al. 2021). The metabolic breakdown of CaOx by
microorganisms produces energy, which is utilized by the or-
ganism, as well as inorganic carbon (bicarbonate) and calcium
(Uren 2018). Oxidation of CaOx by oxalotrophic microbes
may induce a pH shift in soil solution due to the transforma-
tion of a stronger acid (oxalic acid; pk1 = 1.25, pk2 =4.27) to
a weaker acid (carbonic acid; pk1 = 6.35, pk2 = 10.33) and
concomitant consumption of protons. If the soil environment
is sufficiently alkaline, precipitation of calcium carbonate is fa-
vored (Braissant et al. 2004, Parsons et al. 2022). An increase
of 2.5 pH units was observed in sterilized soils treated with
oxalate and oxalotrophic fungi and bacteria after 90 days of
incubation, and this shift occurred within <10 days in natural
soils harboring an active guild of autochthonous oxalotrophic
microorganisms (Martin et al. 2012).

The individual reactions associated with the oxalate-
carbonate pathway can be summarised as follows:

Sparingly soluble calcium oxalate dissolves and dissociates:

1. CaC,04 — Ca?t + C2042_
Microorganisms catalyze the aerobic oxidation of oxalate:
2. 2C2042_ + 0, +4H —» 2H,CO;3; + 2CO,

Because pH increases (protons are consumed) when oxalate
is oxidized, carbonic acid will dissociate to form bicarbonate:

3. H,CO3 - Ht + HCO;~
And the bicarbonate will dissociate to form carbonate ions:
4, HCO;~ — H* + COgZ_

The calcium released from Ca-oxalate dissolution and the
bicarbonate produced from carbon oxidation react to form
CaCO;3:

5. Ca*t + CO3%~ — CaCOs

The overall reaction can be written in many ways, for ex-
ample:

6. 2CaC, 04 + O, + 2HT
2CaCOj3; + 2H,0 + 4CO;,

+ 2HCO3 - —

which shows that 4 moles of carbon in CaOx are oxidized
to 4 moles of CO, while the pH shift results in two moles of
carbon (as dissolved inorganic carbon) being precipitated as

Cowan et al.

calcite. This representation demonstrates that not all the car-
bon involved in the OCP is necessarily from oxalate oxidation;
ambient bicarbonate derived from “background” soil respira-
tion might contribute to the carbon sequestered as calcite. If
we represent all valence four carbons as CO,, then reaction
six simplifies to:

7. 2CaCy04 + Oy — 2CaCO3 4+ 2CO;,

The overall RQ for the OCP process is two.

The Ca and carbon mass balance of an oxalogenic-
oxalotrophic ecosystem [soil under a Milicia excelsa (Iroko)
tree] was modelled according to biogeochemical changes asso-
ciated with the oxalate-carbonate pathway and 800 kg of cal-
cium carbonate was predicted to accumulate over the course
of 170 years in the soil (Gatz-Miller et al. 2022). Approx-
imately 1000 kg of inorganic carbon was predicted to ac-
cumulate in soil surrounding an 80-year-old Iroko tree via
the oxalate-carbonate pathway (Braissant et al. 2004). Cac-
tus biomass accumulates ~1.8 x 10'" g year™! atmospheric
carbon as CaOx across the Sonoran, Chihuahua, Great Basin,
and Mojave deserts. The saguaro cactus of Arizona sequesters
up to 40 g atmospheric C m~2 in CaOx and releases an esti-
mated 2.4 g calcite m 2 year~! into the soil (Garvie 2006). Ox-
alotrophic microorganisms therefore contribute to long-term
storage of carbon in mineral form as calcium carbonate, which
has a much longer mean residence time in soils compared to
organic compounds (Braissant et al. 2004, Verrecchia et al.

2006).

Climate change and preservation of
biodiversity

Nature-based solutions are increasingly recognized as an im-
portant tool for harnessing ecosystem services to fight climate
change while supporting biodiversity (Seddon et al. 2020).
Ecosystems supporting CaOx-rich vegetation in both arid and
humid regions potentially provide important carbon seques-
tration services via the oxalate-carbonate pathway (Garvie
2006, Cailleau et al. 2011, Rehman et al. 2021). Drylands
have lower soil organic carbon contents than their more hu-
mid counterparts (Lal et al. 2021, Heckman et al. 2023) and so
have not been prioritized for conservation, despite occupying
~40% of Earth’s land surface (Sorensen 2007). Oxalotrophy
as an ecosystem service for carbon capture in arid and semi-
arid regions, as well as more humid regions, is a vital prior-
ity for future research. With semi-arid and drier environments
occupying almost half the earth’s land surface, even small
amounts of annual carbon sequestration can have a large im-
pact on atmospheric CO, drawdown (Lal et al. 2021) and the
impact of leached bicarbonate generated in tropical ecosys-
tems has not been accounted for, in spite of the fact that the
oxalate-carbonate pathway has been documented as impor-
tant for carbon cycling in west African (Cailleau et al. 2011,
Rehman et al. 2021), Amazonian (Cailleau et al. 2014), In-
dian (Hervé et al. 2018), and Madagascan forest ecosystems
(Hervé et al. 2021).

There are also likely to be unique ecosystems where the
rates of oxalatrophy are surprisingly high. One such exam-
ple may be the Subtropical Thicket of South Africa, which
is characterized by a closed-canopy vegetation rich in suc-
culent species (Vlok et al. 2003), but also occurs in a semi-
arid climate. Given the erratic nature of rainfall in the re-
gion, “alarm” photosynthesis, a drought adaptation in plants
where CaOx provides a source of CO, during periods of
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extended stomatal closure (Tooulakou et al. 2016), is likely
to be common. More importantly, this type of photosynthesis
has been recorded in Portulacaria afra (Tooulakou et al. 2016),
a stem and leaf succulent tree, that is commonly a dominant
component of Subtropical Thicket vegetation (Penzhorn et al.
1974; Vlok et al. 2003). This species promotes litter produc-
tion, water and sediment trapping, and carbon accumulation
(Lechmere-Oertel et al. 2005, 2008, Mills and Cowling 2010;
van Luijk et al. 2013) and may be a source of extensive oxala-
trophy.

However, in line with the global trends in biodiversity loss
(PBES 2019, Pimm and Raven 2019), ecosystems where ox-
alotrophy is likely, or has been documented, are also being re-
moved at unprecedented rates. Forests in western Africa have
decreased by 83% in under 120 years (Aleman et al. 2018).
The Amazon is fast approaching the critical threshold of rain-
forest decline, with 75% of it having lost resilience in the last
20 years (Boulton et al. 2022). Madagascar has lost 25% of
its tree cover in the last 22 years (Suzzi-Simmons 2023). Un-
derstanding these organic—inorganic carbon biogeochemical
processes and recognition of their economic value as natu-
ral capital (Dasgupta 2021) are vital for the future manage-
ment, rehabilitation, and protection of these ecosystems and
the ecosystem services they provide.

Because inorganic carbon is stored over a much longer time-
frame than organic carbon, nature-based solutions, with a
value multiplier such as organic-inorganic carbon transfor-
mation, offer increased land value compared to a more tran-
sient organic carbon storage. Nature-based solutions with the
potential to store carbon for decades are predicted to accrue
a cost in the $15-$40 per ton range, whereas engineered so-
lutions with more permanent removal are currently in excess
of $200 per ton (and likely will stay above $100 per ton even
with technological breakthroughs: WEF 2022). The oxalate-
carbonate pathway therefore represents a low cost, nature-
based solution that has the carbon storage potential of an en-
gineered solution, and so ecosystems where this takes place
offer potential value in terms of their natural capital value
(Dasgupta 2021) and this needs to be taken into considera-
tion for ecosystem conservation and regeneration.

Conclusions

Ecosystems are being lost at an alarming rate without appre-
ciation of the substantial impact that oxalate and oxalotro-
phy have on ecosystem service provision. Coupled with our
lack of understanding of the nonlinear impacts of the removal
of such ecosystems, the scale of this destruction may result
in magnified negative impacts on human health and well-
being, which are directly tied to planetary health and well-
being. The role and importance of oxalotrophy in cultivated
lands and other ecosystems needs urgent attention to deter-
mine how land management practices might influence or cap-
italize on this carbon capture process. Understanding the intri-
cacies of these organic—inorganic carbon biogeochemical pro-
cesses is paramount for effectively managing, rehabilitating,
and protecting these ecosystems and the ecosystem services
they offer.
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