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Abstract

One of the critical limitations in architectural design optimization (ADO) is slow convergence due to high-dimensional and multiscale
variables. For the rapid and optimal digital prototyping of architectural forms, this paper proposes a novel metaheuristic optimization
technique that hybridizes standard low-level algorithms: the differential evolutionary cuckoo-search-integrated tabu-adaptive pattern
search (DECS-TAPS). We compared DECS-TAPS to 10 major standard algorithms and 31 hybrids through 14 benchmark tests and
investigated multi-objective ADO problems to prove the computational effectiveness of multiple algorithm hybridization. Our findings
show that DECS-TAPS is vastly efficient and superior to the covariance matrix adaptation evolution strategy algorithm in multifunnel
and weak structural functions. The global sensitivity analysis demonstrated that integrating multiple algorithms is likely conducive
to lowering parameter dependence and increasing robustness. For the practical application of DECS-TAPS in building simulation
and design automation, Zebroid—a Rhino Grasshopper (GH) add-on—was developed using IronPython and the GH visual scripting
language.
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1. Introduction
1.1. Architectural design optimization
Environmental performance-based building design (EPBD) is a

non-prescriptive and evidence-driven approach to achieving de-
sirable building performance, including improved thermal com-
fort, daylighting, energy saving, and acoustics (Loftness et al., 2005;
Hensen & Lamberts, 2011). EPBD has drawn increasing attention
in architecture because early-phase design decision making has
the most significant impact on the full spectrum of environmen-
tal building performance (Kohler & Moffatt, 2003; Kolarevic &
Malkawi, 2005; Ataman & Dino, 2021). The performance-based
understanding of architectural practices places a high priority
on the work of optimal form finding as a basis for sustainable
building (Wortmann, 2019a). Although architectural design prob-
lems have been less investigated in the study of mathematical op-
timization, the optimal design of environmental building forms
often poses complex engineering problems, entailing solid deci-
sion support gathered from interdisciplinary scientific knowledge,
including a greater level of technical expertise (Shi et al., 2016;
Kheiri, 2018).

For the past few years, collective commitments to architec-
tural design optimization (ADO) in EPBD have led to remarkable
progress in innovating design methodologies and developing de-
sign computation tools (Waibel et al., 2019; Wortmann, 2019b;
Yi et al., 2019; Li et al., 2020). The application of building perfor-
mance simulation and optimization solvers on designers’ tools
has allowed the active use of metaheuristic optimization algo-
rithms (MHOAs) in design areas, such as building layout plan-
ning, human behavior organization, or spatial topology of build-
ing components (Lanza Volpe, 2018; Song & Sun, 2021). Yi and
Yi (2014) and Dino (2016) presented the automated generation of
optimal 3D building massing. Furthermore, the growing aware-
ness of the dominant contribution of indoor activities and spatial
settings to high-performance buildings led to the study of opti-
mal thermal zoning or behavior-driven space configuration in the
context of architectural design practice (Yi, 2016, 2020). Various
designer-friendly solver toolkits, including GenOpt (Wetter, 2018),
MOBO (Hasan & Palonen, 2013), Galapagos, Goat (Flöry et al., 2018),
Octopus, TopOpt (DTU, 2018), and Opossum (Wortmann, 2017),
have been built and introduced in building practice along with
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Figure 1: MHOA categorization.

Figure 2: Types in MHOA hybridization recipes (Xu & Zhang, 2014).

Figure 3: Definition of tabu areas (Yi et al., 2019).

the widespread usage of architectural design simulation. Also,
as many different mathematical algorithms have become avail-
able in architecture, an extensive analysis of the algorithm per-
formance in EPBD has been made by Waibel et al. (Li et al., 2020)
and Wortmann (Song & Sun, 2021).

Efforts to improve ADO are still ongoing and evolving. Never-
theless, further elaborations are required for the algorithms be-
cause high-dimensional variables with different data scales in

building geometry optimization often delay the design process
(Ciccozzi et al., 2018). Consequently, it is imperative to develop a
more efficient and accurate algorithm in ADO. The most widely
used techniques for solving building design problems currently
are graph theory, simulated annealing (SA), and genetic algorithm
(GA). However, SA suffers from premature convergence, and the
single-solution-based and undirected stochastic operation is in-
efficient for solving complex multimodal problems. In GA, the
exhaustive repeated evaluation of populations and delayed opti-
mization thereof have been noted in the literature (Shi, 2010). In
the EPBD optimization practice, a single function evaluation may
take minutes to hours of performance simulation (e.g., energy,
daylight, and airflow). The slow convergence rate is the biggest
obstacle that architects face during the early-stage design de-
velopment (Yi et al., 2019). On top of that, orchestration of GA
and SA parameters calls for skilled experience, as coarse evolu-
tion is ill-suited to dealing with data scalability and solution ro-
bustness (Katoch et al., 2021). Parallel computing on multiproces-
sors or problem decomposition can help overcome this limitation
immediately (Brunetti, 2015; Su & Yan, 2015); however, the com-
putational expenses may increase exponentially, and they might
not always ensure satisfactory solutions. Moreover, high-level ex-
pertise is required to decompose an ADO problem. Instead, the
hybridization of well-established algorithms can provide much
cheaper methods to resolve those challenges.
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Figure 4: Mesh adaptation strategy (Yi et al., 2019).

1.2. Brief review of metaheuristic optimization
algorithms and hybridization

Metaheuristics refer to high-level numeric procedures based on
iterative black-box learning—search and evaluation with little
prior information of objective formulae or problem domains.
MHOAs are thus designed to approximate optimal solutions
non-deterministically. Many different MHOAs, variants, and hy-
brids have been introduced (Abdel-Basset & Abdel-Fatah, 2018).
MHOA families can be categorized according to space exploration
mechanisms. The two primary criteria for this classification are
whether or not (i) an algorithm deals with multiple candidates
simultaneously and (ii) trials and evaluations depend on proba-
bilistic measures.

In most MHOAs (Fig. 1), randomness is an essential ingredient
of algorithm construction because a certain degree of random-
ness extraordinarily strengthens the ability of solution search.
Almost every algorithm attempts to encode randomness in a
particular manner, balancing the two procedural components—
diversification (global exploration) and intensification (local ex-
ploitation). For example, SA is based on random greedy search,
and, to complement Markov chain hill climbing, it allows random
moves based on the Boltzmann distribution. Cross-entropy (CE)
also builds on the stochastic Monte Carlo simulation, and a so-
lution update is inferred by random samples generated from a
particular underlying probability density function for rare-event
estimation. In CE, candidates are parametrized by means and
variances of feasible distributions, and the important sampling
technique is used to measure sampling similarity (Kroese et al.,
2006).

Standard SA and tabu search (TS) are a subset of trajectory-
based algorithms (Shehab et al., 2017) because they generally
breed a single candidate at every iteration. However, when solv-
ing multimodal problems, many recent studies have revealed that
population-based fitness updates perform much more robustly
(Mohamed, 2017; Ahmed et al., 2021). In evolutionary algorithm
(EA) to support collective exploration, GA (Holland, 1975) is among
the most well-known branch techniques, including evolutionary
strategy (ES) and genetic programming. Based on the natural prin-
ciple of “survival of the fittest,” individual candidates in GA evolve
through generative choices and breeding of improved attributes—
the operations of crossover, reproduction (recombination), and
mutation. Classic GAs are based on the binary form of num-
bers (genotype), while ES supports real numbers (phenotype). Dur-

ing the evolutionary stages at the phenotype levels, ES focuses
more on the stochastic mutation of individuals, leaving out the
crossover. Gaussian distributions and related parameters are gen-
erally involved in controlling the ES process.

On the other hand, to solve ill-conditioned/non-separable ob-
jective functions, the covariance matrix adaptation-evolution
strategy (CMA-ES) was developed and successfully applied to var-
ious multidimensional and multimodal optimization problems
(Hansen & Ostermeier, 1996). It effectively exploits the fitness
landscape of principal components on a transformed coordi-
nate using multivariate distribution. The CMA-ES and its variants
are often considered one of the most successful metaheuristics.
Nonetheless, (i) algorithmic and computational complexity due
to eigendecomposition, (ii) complicated stopping criteria, and (iii)
several constraints concerning hyperparameter setup (Krause et
al., 2016; Jin et al., 2020) are the main drawbacks. These often
cause significant errors in large-scale problems (Caraffini et al.,
2019; Wortmann, 2019b). In particular, the biased determination
of an initial learning rate (step size) often leads to inferior candi-
dates and local stagnation because it is originally based on the cu-
mulative step-size adaptation strategy (Wang et al., 2019). Another
computational barrier in algebraic stability is to keep covariance
matrices positive definite.

It can be said that the EA operations are a reinforced manipula-
tion of the entry population, lacking “internal” cooperative/social
intelligence (Juang, 2004). Swarm intelligence (SI) algorithms have
been developed alternatively by taking advantage of physical or
biological paradigms found in nature. Particle swarm optimiza-
tion (PSO) mimics the movement of entities in a migratory flock
of birds or fish schooling (Banks et al., 2007), and cuckoo search
(CS) (Yang & Suash, 2009) and firefly algorithm (FA) (Yang, 2009)
were inspired by the ecological behavior of bird species. The ant
colony optimization (ACO) algorithm incorporates the collective
communication system of food-finding ants (Dorigo et al., 1996;
Dorigo et al., 2006). The whale optimization algorithm (WOA) (Mir-
jalili & Lewis, 2016) and its improved variant hybridizing DE (Bo-
zorgi & Yazdani, 2019) have been recently proposed to represent
the Humpback whale’s prey-chasing behavior through a popu-
lation update with a spiral-shape function. The unusual mating
pattern of Scottish deer has led to the development of the red
deer algorithm (RDA) that employs an improved crossover method
based on the elitism of population update (Fathollahi-Fard et al.,
2020). Swarm-based algorithms are popular in hybridization due
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Table 1: Benchmark functions and list of simulation tests.

ID nd Test function Type f(x) [vmin, vmax] f(x∗)

T1 2 Ackley (f1) M, I, AS −20 exp[−0.2
√

(x2
1 + x2

2 )/2]
− exp[(cos2πx1 + cos2πx2 )/2] + e + 20

[−5.0, 5.0] 2 0

T2 2 Drop wave (f2) HM, I − 1+cos(12
√

x2
1+x2

2 )
0.5(x2

1+x2
2 )+2 [−5.12, 5.12] 2 −1

T3 2 Levi N.13 (f3) HM, I, AS sin23πx1 + (x1 − 1)2(1 + sin23πx2 )
+(x2 − 1)2(1 + sin22πx2 )

[−10.0, 10.0] 2 0

T4 2 Michalewicz (f4) M, S −
2∑

i = 1
sin(xi )[sin( ix2

i
π

)]
2

[0.00, 3.14] 2 −1.8013

T5 2 Eggholder (f5) M, I, WS −(x1 + 47) sin(
√|x2 + 0.5x1 + 47|) −

x1 sin(
√|x1 − (x2 + 47)|)

[−512.00, 512.00] 2 −959.64

T6 5 5D Ackley (f1) M, I, AS −20 exp[−0.2

√
5∑

i = 1
x2

i /5] [−5.00, 5.00] 5 0

− exp[
5∑

i = 1
cos2πxi/5] + e + 20

T7 5 Styblinski-Tang (f6) M, S, HC 0.5(
5∑

i = 1
x4

i − 16x2
i + 5xi ) [−5.00, 5.00] 5 −195.83

T8 5 Bent cigar (f7) U, I, HC x2
1 + 106

5∑
i = 2

x2
i [−1.0E + 2, 1.0E + 2] 5 0

T9 5 Griewank (f8) M, S, WS
5∑

i = 1

x2
i

4000 −
5∏

i = 1
cos xi√

i
+ 1 [−6.00E + 2, 6.00E + 2] 5 0

T10 10 Rastrigin (f9) HM, S, AS 10d +
nd∑

i = 1
[x2

i − 10 cos(2πxi )] [−5.12, 5.12] 10 0

T11 30 [−5.12, 5.12] 30

T12 50 Sphere (f10) U, S, AS
nd∑

i = 1
x2

i [−1.0E + 3, 1.0E + 3] 50 0

T13 50 Rosenbrock (f11) M, I, LC, WS
nd−1∑
i = 1

[100(xi+1 − x2
i )2 + (xi − 1)2] [−5.00, 10.00] 50 0

T14 50 Lunacek bi-Rastrigin
(f12)

HM, S, WS min{
nd∑

i = 1
(xi − μ1 )2

, dnd + s
nd∑

i = 1
(xi − μ2 )2} +

10
nd∑

i = 1
[1 − cos(2π (xi − μ2 ))]

[−5.00, 5.00] 30 0

Note: nd – dimension, U – unimodal, M – multimodal, HM – highly multimodal, S – separable, I – inseparable, LC – low-conditioning, HC – high-conditioning, AS –
adequate global structure, and WS – weak global structure.

to their structural simplicity. Although each claims difference,
their search mechanisms bear similarities in many ways. For in-
stance, CE, CS, and ACO take elitist selection like GA. Continuous
ACO assigns probability distributions to populations and fitness
values similar to CE. PSO, CS, and FA are drawn from the idea of
successive random walks, and FA can be considered a special case
of PSO. The individual recognition of a spatial position in PSO cor-
responds to the response of a population element to the light in-
tensity in FA. Also, by employing Lévy distributions as a substitute
for the velocity, PSO can be converted to CS.

The hybridization of established MHOAs is an active topic of
research with considerable interest in various areas (Il-Seok et al.,
2004; Amaran et al., 2014; Li & Gao, 2016; Li et al., 2019; Ficarella et
al., 2021). Since different parameters, iterative durations, and op-
erating frequencies of heterogeneous mathematical components
render an individual MHOA uniquely characterized (El-mihoub
et al., 2006; Xu & Zhang, 2014), numerous recipes of mixed al-

gorithms have been extensively suggested to improve computa-
tional performance and solution quality. Talbi (Talbi, 2002) divided
the various synthesis methodologies into three primary schemes:
(i) sequential, (ii) parallel-synchronous (P-S), and (iii) parallel-
asynchronous (P-AS). Sequential is the simplest type wherein two
or more algorithms perform in a hierarchical order so that a so-
lution from the former becomes the input to the latter. In the P-
S type, the subalgorithm operators are integrated into the main
algorithm, whereas two algorithms are concatenated through a
third-party joint in P-AS (Fig. 2).

In early hybrid MHOAs, well known are TS-integrated SA (Os-
man & Christofides, 1994), extreme-point TS (Blue & Bennett,
1998), embedding GA into the SA framework (GA-SA) (Mori et al.,
1996; Li et al., 2002; Soke & Bingul, 2006), and PS-based neighbor
search in the course of SA’s iteration (PS-SA) (Hedar & Fukushima,
2004; Vasant & Barsoum, 2010). In this approach, evolutionary
schemes were preferred for computational collaboration, such as
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Table 2: Benchmark hybrid algorithms.

PS DE CMA-ES PSO ACO CS FA CE GA SA

TS B (Audet &
Dennis,
2006)

B (Terki &
Bouber-

takh,
2021)

B (Zhang et
al., 2013)

B (Osman &
Christofides,

1994)

PS C (Zhu,
2011)

B B (Tawhid
& Ali, 2016)

B (Nassef et
al., 2000)

B

DE A
(Mohamed
et al., 2017)

C (Araújo &
Uturbey,

2013)

B (Wang et
al., 2012)

C (Zhang et
al., 2016)

C (Nithya &
Jeyachidra,

2021)

B (Xiaobing
et al., 2021)

CMA-ES B (Xu et al.,
2019)

PSO C (Rahmani
et al., 2013)

C (Ding et
al., 2019)

C B (Juang, ) B (Shieh et
al., 2011)

ACO B (Zhang et
al., 2019)

C (Wang et
al., 2020)

CS C C (Kanagaraj
et al., 2013)

B
(Alkhateeb

& Abed-
alguni,
2019)

FA B (Li et al.,
2019)

B (Rahmani
&

MirHassani,
2014)

B (Devi &
Sabrigiriraj,

2019)

CE B (Lopez-
Garcia et al.,

2016)
GA C (Li et al.,

2002)

Table 3: Hyperparameter setting.

Parameter MADS SA PSO DE

np 40 40
rl λr1 (equation

13)
α = 0.9 K μ0

F = 0.5

Tinitial (K) 1E + 5 μ0
CR = 0.9

Tfinal (K) 1E-5

Parameter GA CS ACO DECS-TAPS

np 40 40 40 20
Nmax 1E + 4 1E + 4 1E + 4 1E + 3
ltb 25
SF 25
rm 0.2
relite 0.5
λ 1.5 1.5
rcs 0.5 0.25

CMA-ES

np = 4 + 3ln n, wi = ln 0.5(np + 1) – ln i (i = 1, …, np/2)cc = cσ = 4/n,
c1 = 4/n2, cμ = 0.3np/n2, dσ = 1 + √

(0.3np/n)

Note: np – population size, ltb – tabu memory size, rl – learning rate, relite – ratio
of the best candidates in population, Nmax – maximum iteration, rm – ratio of
mutation in GA, rcs – ratio of CS, K = 2r/|2 − m − √

m2 − 4m| (Eberhart & Shi,
2000; Barrera et al., 2016), r ∈ (0, 1), m = c1 + c2 (c1 = c2 = 2.05) (Clerc & Kennedy,
2002), SF – stagnation factor, cc, cσ , c1, cμ, and dσ in CMA-ES refer to the learning
rates of rank-one and rank-μ update and the damping parameter (Hansen &
Ostermeier, 1996; Source Code for Module barecmaes2, 2014).

mesh-adaptive direct search (MADS)-GA (Pandian, 2011), DE-TS
(Ponsich & Coello Coello, 2013), TS-GA (Garai & Chaudhurii, 2013;
Zhang et al., 2013), and GA-DE (Trivedi et al., 2016; Nithya & Jey-
achidra, 2021).

In many studies, SI and evolutionary mechanisms are impor-
tant hybridization ingredients. In particular, PSO-sourced param-
eters are widely used as a catalyst for synthesizing advanced al-
gorithms. For example, hybrids of PSO-GA/PS integration have re-
ceived great attention, and several variants have been introduced
by Ali and Tawhid (2017), Juang (2004), Kao and Zahara (2008), Kuo
and Han (2011), and Sahu et al. (2015a). On the other hand, Sha
and Hsu (Sha & Hsu, 2006) used a tabu-based memorizing tech-
nique for the population update in PSO. Variants of PSO-SA (Xia &
Wu, 2006; Shieh et al., 2011; Javidrad & Nazari, 2017) and PSO-ACO
(Kıran et al., 2012; Rahmani et al., 2013; Mahi et al., 2015) also ex-
ist. Growing interest in hybrid swarm-based approaches has led to
the development of several novel algorithms based on CS or FA,
such as PSO-CS (Fan et al., 2011; Ding et al., 2019), DE-CS (Wang
et al., 2012), GA-CS (Kanagaraj et al., 2013), ACO-CS (Nanchara-
iah & Mohan, 2014; Zhang et al., 2019), CS-SA (Alkhateeb & Abed-
alguni, 2019), FA-GA (Rahmani & MirHassani, 2014), PS-FA (Sahu
et al., 2015b), DE-FA (Zhang et al., 2016), and GA-ACO (Wang et al.,
2020). A few CE-informed hybrids have also been suggested, such
as GA-CE (Lopez-Garcia et al., 2016) and CE-FA (Li et al., 2019). Re-
cently, RDA and WOA have been hybridized with GA and SA, such
as HRDGA and HWISA, respectively (Fathollahi-Fard et al., 2021).
However, not all hybrids are equally successful because they often
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Figure 5: DECS-TAPS conceptual mechanism.

require tedious control parameter tuning depending on empirical
findings from a specialized problem context (Islam et al., 2021).
Moreover, data formats exclusive to a specific algorithm, such as
the binarization of classic GAs, may cause conflict in streamlining
heterogeneous data. In some cases, conjugation of incompatible
operators results in a significant tradeoff between computation
speed and accuracy (Deb & Srivastava, 2012).

1.3. Motivation behind proposing a hybrid of
multiple algorithms

The no free lunch theorem for optimization (Wolpert & Macready,
1997) states that there is no such universally best algorithm for
general purposes. Unlike other problems, building geometry de-
sign often introduces a large number of variables. Moreover, EPBD
is associated with many engineering factors of building systems.
Such decision-making input does not need to be as accurate
as other engineering problems. However, ADO in the early de-
sign phase of EPBD practice may have to deal with many vari-
ables with different data scales. This aspect makes standard
population-based or stochastic MHOAs, such as GA, SA, or simi-
lar hybrids, ill-suited to ADO. Meanwhile, most existing hybridiza-
tion strategies have been proposed in the form of pairwise com-
binations, and the integration of multiple algorithms for more
active data exchange has been addressed relatively less despite
its immense potential to mitigate parametric fragility and op-
erational dependence on the data structure and domain scale.
Deng et al. (2012) found that a triple combination of GA, PSO,
and ACO outperforms two-way hybrids and individual MHOAs.
Liu et al. (Liu & Fu, 2014) accomplished machine-learning inte-
gration with the PSO-CS, developing a threefold hybrid algorithm
of the support vector machine (SVM) CS-PSO (CS-PSO-SVM). More
recently, Fathollahi-Fard et al. (2018) successfully validated a hy-
brid of RDA, GA, and SA and other threefold algorithm combina-

tions. These achievements have motivated our attempts to bet-
ter advance existing MHOAs and hybrids by considering the con-
junction of four or more low-level algorithms for introducing fur-
ther functional improvement, including reducing the hyperpa-
rameter sensitivity and algorithm complexity that enable fast
convergence.

1.4. Research objectives and presentation
structure

This study presents the algorithm design and performance of a
novel quadruple variant that intersects MADS, TS, DE, and CS: the
differential evolutionary cuckoo-search-integrated tabu-adaptive
pattern search (DECS-TAPS). The study’s main objectives were as
follows: (i) to develop a high-efficient algorithm for large-scale
and multivariate architectural design problems; (ii) to validate al-
gorithm performance and utility; and (iii) to implement the pro-
posed algorithms in EPBD. To this end, based on our prior knowl-
edge from Yi et al. (2019), we decided to mix population and non-
population-based MHOAs and hypothesized that (i) the use of a
non-population-based search mechanism expedites diverse ex-
ploration and is computationally more efficient, and (ii) a sequen-
tial mixture of population-based search is advantageous in error-
reduced exploitation in large-scale domains. We investigated the
algorithm’s performance with popular test functions and case-
study architectural design problems. The remainder of this paper
is organized as follows: The MHOAs used in DECS-TAPS are briefly
reviewed in Section 2, and improved hybridization strategies are
described in Section 3. In Sections 4.1 and 4.2, DECS-TAPS is val-
idated by comparing other pairwise hybrids through benchmark
problems, and the mechanical behavior of the algorithm is also
discussed. EPBD applications of the proposed hybrid are presented
in Section 4.3.
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Figure 6: Algorithm flow chart (DECS-TAPS).

2. Methods and Material
Global optimization problems (GOPs) are generally represented by
a triplet, (S, �, f), where f: x⊆S → R is an objective function (fitness)
and S is a search space defined over a finite set of discrete vari-
ables, x ∈ x. � is a set of constraints among the variables, by which
S� denotes the set of feasible solutions. Solving a GOP is to find at
least one global optimal solution, x∗⊆S�, which is expressed as

f (x∗ ) ≤ f (x),∀x ⊆ S�. (1)

Swarm/population-based algorithms (PBAs), including DE, PSO,
and ACO, extend the variable vectors x to a space of vari-
able swarm X = [x1, . . . , xm]T , ∀xi ∈ X (i = 1,…, m), and xi =
[xi1, . . . xin]T ∈ Rn, ∀xi j ∈ xi (j = 1,…, n). xi is referred to as the i-th in-
dividual, where m and n are the population size and the number of
the variables determined in a problem, respectively. At each iter-

ation, the population is evolved toward a better solution (x’), such
that

x′ = argmin f� (x) ,∀x ⊆ S�. (2)

2.1. Spatial TS
TS employs a rule of prohibition progress search process that en-
courages positive fusion with other methods (Li & Gao, 2016; Tay-
fur et al., 2021). To prevent duplicated searches, spatial tabu mem-
ories restrict visiting a spatial domain in the vicinity of previous
candidates and violating user-set regulations. The TS memorizing
mechanism is rather a strategic scheme than an explicit paramet-
ric algorithm. In this study, we employed the tabu area list (TAL)
that takes an optimal value (x´t) at t-th iteration depending on the
TAL memory length ξ ∈ N1. In each trial vector expressed as xt, t ∈
N1, a tabu list with a size of ξ was updated, and a new candidate
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Figure 7: Pseudo-code of the DECS-TAPS algorithm.

referring to TAL: = {τ j}ξj = 1 was then generated to avoid the areas
around evaluated vectors (termed tabu regions) (TRs) (Glover &
Marti, 2006). The TRs were drawn from τ j with a radius rTR. Given
an updated TAL and a new trial point xt+1, it was overridden to
have new search directions outside the TRs (Fig. 3) by λr2 (xt+1−
τ̄), where τ̄ = (

ξ∑
j = 1

τ j )/ξ , and λr2 ∈ R is a random number greater

than max{||xt − τ j||}j = 1,…, ξ + rTR.

2.2. Mesh adaptive pattern search
DS, also known as pattern search (PS), such as the Hooke–Jeeves
algorithm (HJA) (Moser, 2009) is among the earliest optimization
techniques. It is built on the non-stochastic, grid-based point-
by-point navigation. Depending on the search space coordination
and the definition of neighbor bases, it has some variants, such
as depth-limited search and the Nelder–Mead/Amoeba method.
DS/PS supports solving both non-linearly discontinuous and non-
differentiable problems but often exhibits poor performance be-

cause it can get stuck in suboptimal regions by finding only im-
mediate local neighbors. Advanced DS variants, such as MADS, are
used to overcome this drawback by responsibly changing search
areas (Audet & Dennis, 2006).

At each iteration of MADS, the PS strategy subdivides � into a
k-dimensional set of mesh points. The mesh size parameter, �t ∈
Rn, determines the resolution of a PS grid. Based on the number of
trials, each candidate creates a neighborhood over a mesh grid. For
instance, if xt is chosen as an incumbent solution at t-th iteration,
PS generates several mesh vertices around xt (Fig. 4), such that

xt
q = xt+β	tdk(q = 1, ...., 2 j), (3)

where dk is a spanning coordinate vector with dkj = 1, if j = k and
dkj = 0; otherwise, if j �= k and β = 1 (q ≤ j) or − 1 (q > j). Then, f�(xt

i )
is obtained per feasible point. A combination of MADS and TS sug-
gested by Hedar and Fukushima (2006) contributes to improving
the algorithm performance. The dynamic spanning of mesh ver-
tices with flexible mesh size adaptation diversifies the neighbor-
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Table 4: Test results (30 runs): standard non-hybrid algorithms.

ID HJA (PS) MADS SA GA CE

T1 13 296 ± 9375.4
(10%, 81.080)

1516 ± 9784
(98%, 0.262)

14 752 ± 6045
(64%, 0.099)

11 120 ± 7396
(68%,0.097)

870 ± 146
(100%)

T2 18 796 ± 4740
(6%, 0.363)

14 009 ± 9076
(30%, 0.008)

19 817 ± 1468
(10%, 0.003)

19 547 ± 2481
(6%, 0.003)

16 562 ± 7356
(18%, 0.003)

T3 12 627 ± 9568
(22%, 0.021)

5710 ± 8881
(86%, 0.021)

16 057 ± 5525
(46%, 0.017)

17 674 ± 4738
(22%, 0.013)

1021 ± 221
(100%)

T4 12 598 ± 9541
(22%, 0.424)

18 762 ± 4705
(6%, 0.343)

16 335 ± 4977
(58%, <1E-4)

16 006 ± 5748
(44%, 0.001)

1597 ± 4652
(94%, 0.036)

T5 19 998 ± 7.98
(2%, >1E + 5)

18 027 ± 5919
(10%, >1E + 4)

19 976 ± 154
(4%, 469.4)

20 000
(0%, 955.1)

20 000
(0%, 759.9)

ID CMA-ES PSO CS ACO DE

T1 485 ± 97
(100%)

17 119 ± 4772
(94%,<1E-5)

5366 ± 2725
(98%, 0.133)

3508 ± 632
(100%)

1525 ± 125
(100%)

T2 491 ± 103
(100%)

7679 ± 6148
(86%,<1E-6)

13 414 ± 7910
(42%, 0.002)

13 968 ± 6602
(64%, 0.001)

2471 ± 468
(100%)

T3 524 ± 75
(100%)

1224 ± 908
(100%)

5204 ± 2741
(98%, <1E-4)

3938 ± 3483
(96%, <1E-3)

1017 ± 112
(100%)

T4 602 ± 57
(100%)

3168 ± 4377
(98%,<1E-5)

3223 ± 4348
(94%, 0.032)

1310 ± 378
(100%)

616 ± 293
(100%)

T5 ≥20 000
(0%, >1E + 5)

18 448 ± 5289
(10%, >1E + 4)

13 200 ± 7915
(48%, 3191.9)

9816 ± 5986
(82%, 2038.6)

2259 ± 280
(100%)

Note: Number of evaluation ± standard deviation (success rate percentage, mean error).

hood search and makes it resistant to changes in domain scales.
Note that the poll size parameter 	p is introduced to update 	

such that 	t(p) = k
√

	t . 	t(p) represents the stepwise exploration
boundary around an incumbent vector. Equation (3) can then be
rewritten as

xt
q = xt + βλr1	

tdk, (4)

where λr1 is a random number from {λr1 | 1 ≤ λr1 ≤ 	t(p)/	t , λr1 ∈
N}. If a solution is improved, 	t+1 = 2	t ; otherwise, 	(t+1) = 	t/2.
Note that � is normalized as {x | x ∈ [0, (Loftness et al., 2005)], x ∈
Rn}, and every neighbor does not exceed the current exploration
boundary.

2.3. Adaptive differential evolution
During the adaptive DE execution, a trial vector ut

i is obtained by

ut
i = xt

g + F
(
xt

i − xt
r1

) + F
(
xt

r2
− xt

r3

)
, (5)

where xt
g and F represent the t-th best global solution and the scale

factor, respectively. xt
i is the current solution, and three random

individuals (xt
r1

–xt
r3

) are independently chosen from the current
population X. Note that we considered the DE mutation opera-
tor managed with a single best target and two differential vec-
tors containing a current solution (revised DE/best/2). It is under-
stood that DE is crucially sensitive to mutation (Qin et al., 2009).
Among several vector generation methods, the classic DE/rand/1
is robust but inefficient. A greedier scheme, such as DE/best/1, in-
creases the convergence rate, but its diversification is insufficient
to avoid premature convergence in high-dimensional multimodal
problems (Opara & Arabas, 2018). The modified DE/best/2 strikes a
compromise between speed and solution quality in the proposed
framework. ut

i is accepted if a random number [0, 1] is less than
or equal to the crossover rate (CR). F and CR are generally con-
stant, but many studies suggest advantages of self-adaptive F and
CR. Employing Zhang et al.’s proposal (Zhang & Sanderson, 2009)

about JADE, DECS-TAPS determines F and CR probabilistically at
each iteration such that

Ft ∼ C
(
μt

F, 0.1
)

CRt ∼ N
(
μt

CR, 0.1
)
, (6)

where C and N denote the Cauchy and normal distribution, re-
spectively, with the mean of μ. Initially, μ0

F = 0.5 and μ0
CR = 0.9.

These values are updated at the end of each generation as fol-
lows:

μt
F = (1 − c) μt

F + cSF

μt
CR = (1 − c) μt

CR + cSCR, (7)

where c is a positive constant between 0 and 1 that prevents trivial
evolution and was set to 0.5 in this study. SF and SCR are the means
of the parameter archive—s set of all successful F and CR values.

2.4. Cuckoo search
CS is similar to PSO in terms of the solution update, which is ex-
pressed as

xt+1
i = xt

i + α ⊕ L
′
e vy (λ) , (8)

where xt+1
i and vt+1

i represent the updated (next) position and ve-
locity at time t + 1, respectively. α > 0 is the step size (or learning
rate) that relates the Lévy flight to the search domain scale, and
the product ⊕ denotes the entrywise multiplication. Usually, α = 1

or 0.3 ≤ α ≤ 1.99 and L
′
e vy ∼ u = t−λ (1 ≤ λ ≤ 3) (Mantegna, 1994;

Yang & Suash, 2009). In the standard CS, the Lévy step length is
characterized by the power-law behavior of stochastic distribution
and can be computed as

L
′
e vy (λ) = u/|v|λ−1

, (9)

where u ∼ N (0, σ 2
u ), v ∼ N (0, σ 2

v ), σu = [ 
(1+λ) sin( πλ
2 )

λ
( (1+λ)
2 )20.5(λ−1)

]
λ−1

, and σv =
1. N and 
 denote the normal and gamma distribution, respec-

tively.
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Figure 8: Benchmark functions and performance comparison of basic algorithms (T1–T4).
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(a)

(b)

Figure 9: DECS-TAPS: 2D search trajectories.

2.5. Test procedure and validation methods
As listed in Table 1, 14 problems were tested based on 12 complex
functions selected from COCO—a black-box optimization plat-
form (Hansen et al., 2021) and the literature (Price et al., 2005; Jamil
& Yang, 2013). These functions included at least one in five differ-
ent function categories of COCO. T1–5 were prepared to compare
the performances of the 11 classic algorithms in 2D space, and
T10–14 were employed to identify the dimensional impacts at an
intermediate (nd = 5–10) or relatively large scales (nd ≥ 30). Uni-
modal functions characterize how algorithms respond to changes
in space dimensions. From Szynkiewicz’s findings (Szynkiewicz,
2018), Discus, Bent Cigar, Griewank, and the high-multimodal Lu-
nacek bi-Rastrigin functions were considered to compare DECS-
TAPS with the CMA-ES hybrids. To indicate the convergence speed
and accuracy, the average number of fitness evaluations and its
deviation were measured by running 30 simulations per test. 31

existing hybrid algorithms were also tested to demonstrate DECS-
TAPS performance. Table 2 shows the pairwise combinations of
the major MHOAs, including the PS and TS, used in this study
and their hybridization types (A, B, and C, shown in Fig. 2). Ta-
ble 3 presents the parameter values of the standard algorithms
investigated in this study.

Note that every algorithm presented in this work was coded
in IronPython 2.7 by the authors, except for CMA-ES, for which
we decided to use Hansen’s Python open-source code of the
bare CMA-ES (Source Code for Module barecmaes2, 2014). To in-
vestigate different algorithms on the same basis, each was im-
plemented through a visual scripting component of the Rhino
Grasshopper (GH, version 1.0.0007, Robert McNeel & Associates,
USA)—an application programming interface in architecture. All
the experiments were run on a PC of a 64-bit windows system with
Intel(R) Core(TM) i7-7700 CPU (3.60GHz) and 32 GB RAM.
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Table 5: Performance test results of hybrid algorithms (T6, nd = 5).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 14 222 52 37.683 0 0 0
TS-PS 132 2719 810 720.570 0 0 0
TS-CS 23 115 41 541 40 501 3837.122 0.239 1.857 3.76
TS-GA 20 040 20 040 20 040 0 0.575 12.398 12.42
TS-SA 9169 9169 9169 0 0.622 13.148 6.03
PS-DE 1581 20 445 5131 6865.351 0.117 2.935 0.75
PS-CS 12 329 48 041 40 572 11 916.958 0.023 0.179 0.36
PS-FA 26 962 27 027 27 012 17.143 0.812 14.981 20.23
PS-GA 26 449 26 540 26 505 24.240 0.468 8.638 11.45
PS-SA 32 089 32 089 32 089 0 1.222 35.779 57.41
DE-CMA-ES 256 256 256 0 0 0 0
PSO-DE 7681 34 081 29 446 9375.166 0.605 0.246 0.36
DE-CS 3212 61 040 7832 14 224.967 0.028 0.181 0.07
FA-DE 30 040 30 040 30 040 0 0.059 0.193 0.29
GA-DE 1120 60 040 40 648 27 425.389 0.018 0.016 0.03
SA-DE 2200 3080 2629 194.301 0.001 0 0
PSO-CMA-ES 8 504 487 89.035 0.036 0.146 0
PSO-ACO 8090 19 038 13 081 2294.274 0.002 0 0
PSO-CS 20 541 20 541 20 541 0 0.753 12.955 13.31
PSO-CE 19 953 21 034 20 959 256.761 0.547 0.068 0.07
PSO-GA 19 900 25 420 23 194 1422.169 0 0 0
PSO-SA 8524 9855 9703 223.494 0.277 0.091 0.04
ACO-CS 4590 91 040 74 035 34 014.389 0.585 6.760 25.02
ACO-GA 7320 11 120 9158 913.606 0.001 0 0
FA-CS 20 040 20 040 20 040 0 1.059 22.767 22.81
GA-CS 20 500 20 500 20 500 0.000 0.162 1.165 1.19
CS-SA 16 112 17 998 17 933 344.130 0.338 2.742 2.46
FA-CE 20 501 20 501 20 501 0 0.048 0.315 0.32
FA-GA 22 040 22 040 22 040 0 0.975 24.432 26.92
FA-SA 20 916 20 916 20 916 0 0.888 22.443 23.47
GA-CE 20 520 20 520 20 520 0 0.283 4.606 4.73
GA-SA 35 080 35 080 35 080 0 0.529 12.201 21.40

Note: Min/Max – minimum/maximum count of fitness evaluation, μ – mean of fitness evaluation count, and σ – standard deviation of fitness evaluation count.

Table 6: Performance test results of hybrid algorithms (T7, nd = 5).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 656 9398 1693 2450.169 0.268 24.680 2.09
TS-PS 119 4006 785 858.195 0.006 0 0
TS-CS 10 997 41 541 36 497 10 180.928 2.287 352.836 643.88
TS-GA 20 040 20 040 20 040 0 0.872 359.162 359.88
TS-SA 9169 9169 9169 0 1.162 425.450 195.05
PS-DE 1533 20 541 17 498 6412.820 2.295 387.698 339.20
PS-CS 7145 48 041 42 348 13 097.960 2.629 466.013 986.74
PS-FA 26 949 27 027 27 008 18.287 1.925 564.096 761.77
PS-GA 26 462 26 540 26 513 18.185 0.485 126.943 168.28
PS-SA 32 089 32 089 32 089 0 3.551 1450.958 2327.99
DE-CMA-ES 144 256 238 27.476 0.799 79.856 0.95
PSO-DE 34 081 34 081 34 081 0 2.825 472.757 805.60
DE-CS 2846 61 040 43 712 26 469.567 1.910 219.624 480.01
FA-DE 30 040 30 040 30 040 0 2.890 35 775.029 53 734.09
GA-DE 60 040 60 040 60 040 0 3.058 4157.467 12 480.72
SA-DE 2040 35 960 16 168 15 891.842 0.854 106.024 85.71
PSO-CMA-ES 504 504 504 0 3.086 1091.090 27.50
PSO-ACO 6319 80 540 35 659 34 185.819 1.133 206.367 367.94
PSO-CS 20 541 20 541 20 541 0 2.604 1335.709 1371.84
PSO-CE 17 609 21 033 20 816 781.278 2.895 542.655 564.81
PSO-GA 19 420 30 040 27 432 3552.005 1.673 166.384 228.21
PSO-SA 19 910 20 185 20 040 55.879 2.994 683.086 684.45
ACO-CS 2588 91 040 82 237 26 408.632 2.980 725.703 2983.99
ACO-GA 4800 50 240 16 699 16 864.613 0.547 59.896 50.01
FA-CS 20 040 20 040 20 040 0 3.180 3652.501 3659.81
GA-CS 3506 3506 3506 0 1.788 481.729 97.74
CS-SA 16 440 17 998 17 946 279.670 2.721 454.469 407.80
FA-CE 20 501 20 501 20 501 0 2.054 7606.007 7796.54
FA-GA 22 040 22 040 22 040 0 2.454 1860.052 2049.78
FA-SA 20 916 20 916 20 916 0 2.098 1441.033 1507.03
GA-CE 20 520 20 520 20 520 0 1.256 569.496 584.30
GA-SA 35 080 35 080 35 080 0 1.314 485.022 850.73

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/9/5/2103/6708374 by guest on 20 April 2024



Journal of Computational Design and Engineering | 2115

Table 7: Performance test results of hybrid algorithms (T8, nd = 5).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 14 82 36 16.466 0 0 0
TS-PS 834 6502 3264 1552.946 0.004 2.837E + 09 4.63E + 08
TS-CS 41 541 41 541 41 541 0 15.292 3.191E + 09 6.63E + 09
TS-GA 20 040 20 040 20 040 0 20.522 2.852E + 18 2.86E + 18
TS-SA 18 377 18 377 18 377 0 23.801 4.485E + 18 4.12E + 18
PS-DE 2853 20 313 19 154 4335.383 15.002 1.865E + 12 1.79E + 12
PS-CS 48 041 48 041 48 041 0 44.721 1.000E + 08 2.40E + 08
PS-FA 26 559 27 027 26 875 121.680 45.141 5.705E + 20 7.67E + 20
PS-GA 26 423 26 527 26 477 25.360 26.563 3.648E + 18 4.83E + 18
PS-SA 32 089 32 089 32 089 0 61.540 2.109E + 22 3.38E + 22
DE-CMA-ES 256 256 256 0 9.854 4.671E + 06 5.98E + 04
PSO-DE 34 081 34 081 34 081 0 19.950 4.743E + 09 8.08E + 09
DE-CS 8214 12 240 10 337 1152.927 0.011 0 0
FA-DE 30 040 30 040 30 040 0.000 21.167 2.467E + 09 3.70E + 09
GA-DE 3280 60 040 37 908 27 113.179 0.319 7.333E + 13 1.39E + 14
SA-DE 4760 35 960 30 792 11 556.121 9.549 3.291E + 06 5.07E + 06
PSO-CMA-ES 504 504 504 0 0.116 2.233E + 11 5.63E + 09
PSO-ACO 24 351 45 442 33 287 4665.621 0.009 0 0
PSO-CS 20 541 20 541 20 541 0 24.945 9.401E + 19 9.66E + 19
PSO-CE 20 977 21 020 21 006 10.873 20.414 5.310E + 08 5.58E + 08
PSO-GA 27 220 30 040 29 822 671.086 18.290 1.339E + 07 2.00E + 07
PSO-SA 20 385 20 635 20 539 65.410 25.913 3.109E + 08 3.19E + 08
ACO-CS 15 874 91 040 63 546 33 784.676 9.418 3.711E + 19 1.18E + 20
ACO-GA 18 320 27 800 22 365 2504.176 0.010 0 0
FA-CS 20 040 20 040 20 040 0 27.620 1.526E + 20 1.53E + 20
GA-CS 3506 3506 3506 0 14.979 3.517E + 17 4.47E + 14
CS-SA 17 998 17 998 17 998 0 17.666 8.805E + 11 7.92E + 11
FA-CE 20 501 20 501 20 501 0 9.363 7.572E + 17 7.76E + 17
FA-GA 22 040 22 040 22 040 0 29.243 1.493E + 20 1.65E + 20
FA-SA 20 916 20 916 20 916 0 22.877 2.918E + 19 3.05E + 19
GA-CE 20 520 20 520 20 520 0 23.442 5.956E + 18 6.11E + 18
GA-SA 35 080 35 080 35 080 0 23.078 2.120E + 18 3.72E + 18

3. Differential Evolutionary
Cuckoo-Search-Integrated Tabu-Adaptive
Pattern Search (DECS-TAPS)
A central idea of DECS-TAPS is to incorporate TS and the random
walking mechanism (Yang & Suash, 2009) of CS into adaptive PS
and DE by mixing hybridization schemes A and B so that diversifi-
cation can be accelerated in early-phase exploration and adaptive
DE prevents incomplete convergence. Although the mesh-based
discrete move of candidates in TAPS enhances random search, it
increases the risk of staying in local optima, whereby the converg-
ing robustness depends on the choice of the initial random solu-
tion. DE can improve solution quality, but the population-based
mechanism consumes computation resources.

Accordingly, DECS-TAPS divides an optimization scheme into
two sequential phases: (i) CS-integrated TAPS and (ii) adaptive
DE. In the first phase, TAPS is performed to find successful candi-
dates as quickly as possible over the entire domain. If it remains
stagnant at a local optimum for some time, DE starts from the
best local solution (Fig. 5). This strategy allows for DE-based ex-
ploitation with far more reduced computation and increased ro-
bustness against multimodal/multifunnel functions. Depending
on the CS ratio γcs ∈ (0, 1), we implemented the Lévy flight mech-
anism to form random walk mesh bases of TAPS to accelerate ex-
ploration. Since the four different algorithms (TS, PS, CS, and DE)
are cooperatively synthesized, proper default parameter setting is
crucial. From our preliminary testing, the TS memory (ltb) was set
to 25, and the phase switching threshold (the stagnation factor)

was 50. The population size (np) was 20 (0.5np in other MHOAs),
and the step length was computed from equation (9) with λ of 1.5
and α = 1, by following Mantegna’s algorithm (Mantegna, 1994).
Figures 5–7 illustrate the search mechanism, a pseudo-code, and
a flow chart.

4. Results and Discussion
4.1. Benchmark function tests
4.1.1. Comparison of standard algorithms
Prior to testing the hybrid algorithms, we performed white-box
optimization (T1–5) with various low-dimensional test functions
(f1–f5) to briefly characterize the performance of the classic al-
gorithms. The egg-holder function (f5) was employed to identify
the DECS-TAPS search mechanism in a very irregularly structured
multimodal function. The maximum number of iterations per test
run was set to 500 so that the maximum number of fitness eval-
uations did not exceed 20 000. The initial mesh size in MADS was
2.5 in T5 and 1 in the other tests. Table 4 and Fig. 8 show the test
results with graphical representations of the test functions. HJA’s
poor accuracy (< 22%) indicates that it was not suitable even for
well-structured functions (T1 and T2), and we discounted the per-
formance comparison in Fig. 8a–e. It was also found that, in all the
tests, the standard SA and GA slowly converged with weak robust-
ness (high deviation and low accuracy). The PBAs (PSO, CS, ACO,
and DE) were moderately performed than the non-PBAs. Upon
comparing T1 and T3 with T2, the results suggested that the struc-
tural topology had a more significant impact than modality. We
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Table 8: Performance test results of hybrid algorithms (T9, nd = 5).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 14 208 44 38.577 0 0 0
TS-PS 535 6502 5480 1827.573 4.356 0.098 0.03
TS-CS 41 541 41 541 41 541 0 18.300 0.337 0.70
TS-GA 20 040 20 040 20 040 0 59.001 36.352 36.43
TS-SA 18 377 18 377 18 377 0 58.888 32.325 29.70
PS-DE 11 493 20 313 20 019 1583.238 5.922 0.003 0
PS-CS 48 041 48 041 48 041 0 16.767 0.221 0.53
PS-FA 26 195 27 014 26 728 183.893 181.835 2138.948 2858.44
PS-GA 26 410 26 540 26 479 28.511 65.391 46.112 61.05
PS-SA 32 089 32 089 32 089 0.000 377.765 37 043.205 59 433.97
DE-CMA-ES 72 256 234 51.491 3.331 0 0
PSO-DE 34 081 34 081 34 081 0 59.956 78.743 134.18
DE-CS 61 040 61 040 61 040 0 9.131 0.013 0.04
FA-DE 30 040 30 040 30 040 0 6.142 0.005 0.01
GA-DE 60 040 60 040 60 040 0 4.790 0.081 0.24
SA-DE 16 520 35 960 34 104 4740.718 2.783 0 0
PSO-CMA-ES 24 504 359 196.903 0.891 0.028 0
PSO-ACO 80 540 80 540 80 540 0 8.364 1.661 6.69
PSO-CS 20 541 20 541 20 541 0 75.950 289.060 296.88
PSO-CE 20 969 21 035 21 009 14.182 66.564 200.676 210.80
PSO-GA 30 040 30 040 30 040 0 41.955 13.919 20.91
PSO-SA 19 035 19 535 19 391 126.012 99.364 1300.104 1260.48
ACO-CS 91 040 91 040 91 040 0 90.402 242.577 1104.21
ACO-GA 50 120 50 240 50 128 24.000 5.113 0.017 0.04
FA-CS 20 040 20 040 20 040 0 50.096 215.333 215.76
GA-CS 3506 3506 3506 0 29.113 4.718 0.65
CS-SA 36 858 36 858 36 858 0 18.040 0.295 0.54
FA-CE 20 501 20 501 20 501 0 32.082 5.755 5.90
FA-GA 22 040 22 040 22 040 0 113.467 381.153 420.03
FA-SA 20 916 20 916 20 916 0 104.867 276.437 289.10
GA-CE 20 520 20 520 20 520 0 66.866 59.422 60.97
GA-SA 35 080 35 080 35 080 0 63.153 42.942 75.32

found that irregularity in objective distribution (f2) led to a sig-
nificant degradation of CS performance. PSO performed well in
the asymmetrically shaped function (f4, T4), but the PSO evolu-
tion exposed a risk for regularly clustered distribution with a rel-
atively high-conditioned global optimum (T1). Meanwhile, we no-
ticed that stochastic algorithms, such as CE and CMA-ES, were re-
markably successful in all the tests except T5. However, CE was
degraded by the crude morphology of a function. As addressed in
Li et al. (2020), the standard CMA-ES was superior to others. Nev-
ertheless, in Fig. 8e, we found that it was prone to the morpho-
logical complexity of an objective, like Benhamou et al.’s findings
(Benhamou et al., 2019). The performance of DE, although it of-
fers simplicity in computational implementation, bears compari-
son with CMA-ES. This reveals that DE was highly competitive in
terms of achieving accuracy for all tests and had a far lower num-
ber of evaluations in the multifunnel function (T5).

4.1.2. DECS-TAPS search behavior
In 4.1.1, the T1–T5 results suggest that stochastic or local-search
algorithms are less robust (significant differences between total
and successful trials). Nevertheless, PS is advantageous in reduc-
ing the converging time by limiting random movement in a mesh
although it may degrade search resolution. Most basic algorithms
suffer from premature convergence in large dimensional multi-
modal inseparable problems. By running 30 times each for T4 and
T5, DECS-TAPS located a global optimum in much fewer itera-
tions (no greater than 20 and 150 iterations). Figure 9a illustrates
the searching trajectories of DECS-TAPS in the 2D space. Tracking

the changes in the early and later phases of the iterations indi-
cates that the combinatorial search of Lévy flight and TS-PS was
effective in rapid exploration, and the extensive tabu list, TAL, pre-
vented falling in local minima.

Figure 9b also shows that the DE particles evolved to exploit the
concentrated areas and that diversity was maintained. CS works
for diversification directed by random walks, preventing the pit-
fall of choosing the local minima. Rather than spreading random
solutions for diversity, TRs guide exploration more efficiently.

4.1.3. Comparison of hybrid algorithms with DECS-TAPS
Tables 5–13 show the statistical results of T6–T14. For each al-
gorithm, the iteration number was constrained to np × 500 and
20 000. The accuracy of the final solution (x∗) and fitness (f) was
indicated by their root mean square error (RMSE) values after run-
ning 30 simulations. The γ -value was introduced to represent an
adjusted fitness error augmented by the number of iterations such
that

γ -value = RMSE ( f ) × μ/20 000. (10)

If no error occurs, the γ -value becomes zero. Otherwise, a
greater γ -value of an algorithm indicates that it is relatively in-
efficient. Overall, in all the results, DECS-TAPS far outperformed
other major pairwise hybrid algorithms. DECS-TAPS significantly
reduced μ to about 98–99% on average compared to the popular
PBAs. As PSO and ACO were superior to other traditional algo-
rithms in the prior tests (Fig. 8), PSO-ACO was noticeably accurate
except DE and CMA-ES. However, it should be noted that CS, FA,
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Table 9: Performance test results of hybrid algorithms (T10, nd = 10).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 24 238 73 52.512 0 0 0
TS-PS 600 11 502 3329 3043.584 0.001 0 0
TS-CS 41 541 41 541 41 541 0 1.356 661.860 1374.72
TS-GA 20 040 20 040 20 040 0 1.853 5605.526 5616.74
TS-SA 18 377 18 377 18 377 0 1.817 4876.791 4481.04
PS-DE 11 001 20 727 18 744 3871.787 1.303 3201.317 3000.34
PS-CS 53 041 53 041 53 041 0 1.562 972.006 2577.81
PS-FA 31 925 32 017 31 992 29.002 1.872 4848.162 7755.05
PS-GA 31 448 31 540 31 502 27.480 1.705 3603.010 5675.11
PS-SA 55 009 55 009 55 009 0 2.695 11 749.122 32 315.37
DE-CMA-ES 250 250 250 0 0.804 232.710 2.91
PSO-DE 34 081 34 081 34 081 0 2.185 2384.905 4064.00
DE-CS 61 040 61 040 61 040 0 1.134 233.488 712.60
FA-DE 30 040 30 040 30 040 0 1.085 1240.261 1862.87
GA-DE 60 040 60 040 60 040 0 0.034 5.340 16.03
SA-DE 35 960 35 960 35 960 0 0.689 42.332 76.11
PSO-CMA-ES 500 500 500 0 0.412 1352.949 33.82
PSO-ACO 66 372 80 540 78 667 4077.219 0.506 252.337 992.53
PSO-CS 20 541 20 541 20 541 0 1.890 5427.375 5574.19
PSO-CE 21 022 21 036 21 031 4.409 2.208 1764.132 1855.04
PSO-GA 30 040 30 040 30 040 0 0.931 104.478 156.93
PSO-SA 20 040 20 200 20 147 44.331 2.167 2034.408 2049.31
ACO-CS 91 040 91 040 91 040 0.000 1.982 2100.222 9560.21
ACO-GA 50 120 50 200 50 140 34.641 0.702 467.669 1172.45
FA-CS 20 040 20 040 20 040 0 1.925 5836.625 5848.30
GA-CS 3506 3506 3506 0 1.519 4341.682 1607.06
CS-SA 36 858 36 858 36 858 0 1.295 560.102 1032.21
FA-CE 20 501 20 501 20 501 0 0.954 2228.502 2284.33
FA-GA 22 040 22 040 22 040 0 2.145 8886.097 9792.48
FA-SA 20 916 20 916 20 916 0 1.908 8054.235 8423.12
GA-CE 20 520 20 520 20 520 0 0.972 2219.913 2277.63
GA-SA 35 080 35 080 35 080 0 1.819 5850.945 10 262.56

and ACO hybrids increased μ by up to 2–4 times compared to the
preset number since their operators required a large number of
fitness evaluations. In particular, the ant-based production of so-
lutions with the pheromone update and optional daemon actions
caused slow convergence in ACO metaheuristics.

Similar to other studies (Hansen et al., 2008; Krause et al., 2016;
Szynkiewicz, 2018) investigating the excellent performance of
CMA-ES, our experiments also showed that CMA-ES hybrids were
very successful. In T6, a PSO-CMA-ES test was completed with
the smallest evaluation number, and in large-dimensional tests
(T12–T14), DE-CMA-ES and PSO-CMA-ES converged even more
quickly than DECS-TAPS (Tables 11–13). Nevertheless, T13 and T14
showed that their performance was significantly undermined by
their functional complexity due to large-dimensional and multi-
funnel distribution with a weak global shape, while DECS-TAPS
converged with 100% accuracy in every test.

4.1.4. Performance analysis
From the data in Tables 5–13, Fig. 10 shows the changes in the indi-
cator values according to the different characteristics of the target
functions (multimodal functions only), including the dimensional
growth of search space, formal complexity, and condition number
on the hybrids. In Fig. 10a and b, most PBAs reached the maximum
iteration number even in low-dimensional problems, and the μ

values tended to increase in PS hybrids. This reveals that they are
prone to exploration in large space. The sharp increases of μ at
nd = 30 and 50 in PS-SA suggest that the SA operators are not well
suited for escaping local optima. It is worth noting that GA-CS

was occasionally better than PSO-ACO (T7, 8, and 11) or PSO-GA
(T9 and 12) in some separable functions (f6, f8, f9, and f10). How-
ever, it was not always successful in finding real solutions. This, in
effect, parallels the known finding (Forbes & Teli, 2006; Sutton et
al., 2006) that PSO is deficient in solving irregularly shaped multi-
funnel functions even if it works relatively well with multifunnel
functions with regular shape structures (e.g., Rastrigin’s) at low
or intermediate dimensions (Sutton et al., 2006) (Fig. 10c). Specifi-
cally, due to the PSO’s “flying” mechanism (Salahi et al., 2013), the
hybridization of GA or ACO often results in mean-biased stagna-
tion, thereby lacking search diversity.

The MHOA performance was critically affected by neighbor
search methods. Ineffective integration of FA, GA, or SA became
the worst choice in intricate functions (T6–T8). Despite the in-
creased number of evaluations, PS-FA/-GA fell into local min-
ima in complex and high-dimensional problems, whereas DE or
CS showed moderate performance, as seen in DE-CS. However,
the satisfactory performance of TS-PS (Fig. 10b) strongly sug-
gests that adaptive random exploration well suited to the topol-
ogy of a problem significantly improves the solution quality and
efficiency.

Figure 10b also clearly shows that DE-/PSO-CMA-ES performed
exceedingly well in low and moderate space dimensions, but un-
like DECS-TAPS, their γ -values sharply increased in a larger space
(nd = 50). As Jin et al. (Jin et al., 2020) point out, standard CMA-ES is
prone to high functional complexity and premature stagnation in
large-scale problems. Also, it was recently found that if the popu-
lation size is large, CMA-ES often encounters certain termination
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Table 10: Performance test results of hybrid algorithms (T11, nd = 30).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 64 382 201 83.882 0 0 0
TS-PS 821 31 502 5984 7340.337 0.001 1.203E-05 0
TS-CS 41 541 41 541 41 541 0 1.266 1.922E + 04 3.99E + 04
TS-GA 20 040 20 040 20 040 0 2.334 1.277E + 05 1.28E + 05
TS-SA 18 377 18 377 18 377 0 2.251 1.238E + 05 1.14E + 05
PS-DE 22 481 31 001 25 992 4090.485 2.014 5.088E + 04 6.61E + 04
PS-CS 73 041 73 041 73 041 0 1.324 8.349E + 03 3.05E + 04
PS-FA 51 851 51 977 51 918 36.130 2.526 1.298E + 05 3.37E + 05
PS-GA 51 162 51 540 51 388 101.122 2.211 1.156E + 05 2.97E + 05
PS-SA 146 689 146 689 146 689 0 2.643 9.911E + 04 7.27E + 05
DE-CMA-ES 252 252 252 0 1.156 1.498E + 04 1.89E + 02
PSO-DE 34 081 34 081 34 081 0 2.301 4.420E + 04 7.53E + 04
DE-CS 61 040 61 040 61 040 0 1.291 2.862E + 03 8.73E + 03
FA-DE 30 040 30 040 30 040 0 1.414 4.600E + 04 6.91E + 04
GA-DE 60 040 60 040 60 040 0 0.041 1.017E + 02 3.05E + 02
SA-DE 35 960 35 960 35 960 0 1.274 9.161E + 03 1.65E + 04
PSO-CMA-ES 504 504 504 0 0.502 4.808E + 04 1.21E + 03
PSO-ACO 80 540 80 540 80 540 0 1.331 3.804E + 04 1.53E + 05
PSO-CS 20 541 20 541 20 541 0 2.047 1.063E + 05 1.09E + 05
PSO-CE 20 976 21 039 21 028 17.796 2.635 6.801E + 04 7.15E + 04
PSO-GA 30 040 30 040 30 040 0 1.551 6.443E + 03 9.68E + 03
PSO-SA 19 900 20 250 20 150 100.585 2.473 7.316E + 04 7.37E + 04
ACO-CS 91 040 91 040 91 040 0 1.851 1.199E + 04 5.46E + 04
ACO-GA 50 120 50 120 50 120 0 1.244 4.415E + 04 1.11E + 05
FA-CS 20 040 20 040 20 040 0 2.201 1.196E + 05 1.20E + 05
GA-CS 3506 3506 3506 0 1.356 6.479E + 04 5.60E + 04
CS-SA 36 858 36 858 36 858 0 1.363 2.179E + 04 4.02E + 04
FA-CE 20 501 20 501 20 501 0 1.070 4.861E + 04 4.98E + 04
FA-GA 22 040 22 040 22 040 0 2.417 1.584E + 05 1.75E + 05
FA-SA 20 916 20 916 20 916 0 2.453 1.535E + 05 1.60E + 05
GA-CE 20 520 20 520 20 520 0 1.131 5.231E + 04 5.37E + 04
GA-SA 35 080 35 080 35 080 0 2.213 1.239E + 05 2.17E + 05

errors in cases when the active step-size update does not guaran-
tee the positive definiteness of the covariance matrix (Akimoto &
Hansen, 2020). Meanwhile, it is known that DE is weak at high-
conditioned functions. Comparing Fig. 10c and d, we found that
the morphology of fitness distribution affected the PSO hybrids,
while the DE hybrids were relatively more sensitive to the condi-
tion number.

From these findings, we obtain Fig. 11, which graphically illus-
trates the effectiveness of the pairwise algorithm combinations
based on the log-scale γ -values. PS-SA and FA-DE were the worst
at nd = 5. Figure 11b indicates that most combinations were desir-
able except FA-DE. In higher dimensions, pairing the individual al-
gorithms was unsatisfactory in most cases, but TS-PS, GA-DE, DE-
CMA-ES, and PSO-CMA-ES were better, while FA/SA/GA-centered
algorithms degraded. Convergence depending on stochastic al-
location of parameters may become unstably sluggish, particu-
larly when dealing with high-conditioned multimodal objective
functions with a large number of variables. In these results, the
computation efficiency and robustness of DECS-TAPS, with lit-
tle regard to changes in space dimension or function complex-
ity, confirm that fine-tuned DS hybridized with well-designed ran-
dom movement significantly contributes to reducing convergence
time.

4.2. Parametric sensitivity analysis
Multiplicative hybrids that blend different phases and assorted
operators may increase the number of hyperparameters, which
need to be fine-tuned before execution. DECS-TAPS incorporated

the hyperparameters of DE, CS, TS, and PS, as listed in Tables 3
and 14. To identify the parametric sensitivity of the operational
factors, we performed a global sensitivity analysis of CS, DE, and
DECS-TAPS at nd = 10 and 30, employing the variance-based Sobol
method and Python SALib 1.4.5. The number of iterations and
Latin hypercube sampling (LHS) size were set to 3000 and 512, re-
spectively, and simulations were repeated 30 times per test. In this
analysis, the parametric uncertainty was measured by the total-
order/-Sobol index (ST), first-order index (S1), and second-order
index (S2). ST is a comprehensive indicator of the model output
variance caused by parameter input, while S1 and S2 indicate in-
fluences from individual factors and interactions of the two fac-
tors, respectively. Table 14 and Fig. 12 show that STs in DECS-TAPS
became lower than its important ingredients (CS and DE) in all
the cases. In the original CS, rcs and λ critically affected its per-
formance, but their impact was notably mitigated in DECS-TAPS
(Fig. 13). This suggests that dependence between the algorithm
performance and the parameter values was weakened in the mul-
tihybrid algorithm, which alleviated hyperparameter tuning more
than the standard MHOAs. However, this suggestion may not be
confirmed unless an extended comparative investigation on other
MHOAs is conducted.

4.3. Application to architectural design
optimization and validation

4.3.1. Multi-objective ADO
To characterize the performance of the suggested algorithms
in actual building design practice, we chose a simple shoebox
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Table 11: Performance test results of hybrid algorithms (T12, nd = 50).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 104 1662 380 300.227 0 0 0
TS-PS 26 473 51 502 46 496 7889.540 0.998 3.293E + 04 7.66E + 04
TS-CS 41 541 41 541 41 541 0 46.844 1.407E + 10 2.92E + 10
TS-GA 20 040 20 040 20 040 0 426.409 8.320E + 13 8.34E + 13
TS-SA 18 377 18 377 18 377 0 425.034 8.176E + 13 7.51E + 13
PS-DE 22 653 22 653 22 653 0 167.685 2.122E + 12 2.40E + 12
PS-CS 93 041 93 041 93 041 0 52.013 2.037E + 10 9.48E + 10
PS-FA 64 933 71 628 69 671 2207.503 491.627 1.479E + 14 5.15E + 14
PS-GA 70 613 71 334 70 933 202.796 431.432 8.701E + 13 3.09E + 14
PS-SA 238 369 238 369 238 369 0 573.272 2.780E + 14 3.31E + 15
DE-CMA-ES 255 255 255 0 112.092 4.006E + 11 5.11E + 09
PSO-DE 34 081 34 081 34 081 0 330.531 4.466E + 13 7.61E + 13
DE-CS 61 040 61 040 61 040 0 9.346 3.493E + 07 1.07E + 08
FA-DE 30 040 30 040 30 040 0 24.491 1.684E + 09 2.53E + 09
GA-DE 60 040 60 040 60 040 0 7.527 8.376E + 06 2.51E + 07
SA-DE 35 960 35 960 35 960 0 120.217 6.018E + 11 1.08E + 12
PSO-CMA-ES 510 510 510 0 0.272 27.194 0.69
PSO-ACO 80 540 80 540 80 540 0 23.994 3.283E + 09 1.32E + 10
PSO-CS 20 541 20 541 20 541 0 430.945 9.252E + 13 9.50E + 13
PSO-CE 20 599 20 627 20 615 7.048 329.289 4.672E + 13 4.82E + 13
PSO-GA 30 040 30 040 30 040 0 232.090 9.521E + 12 1.43E + 13
PSO-SA 18 730 19 045 18 867 86.712 237.845 1.449E + 13 1.37E + 13
ACO-CS 91 040 91 040 91 040 0 249.507 1.238E + 13 5.64E + 13
ACO-GA 50 120 50 160 50 124 12.571 21.040 6.255E + 08 1.57E + 09
FA-CS 20 040 20 040 20 040 0 293.686 4.036E + 13 4.04E + 13
GA-CS 3506 3506 3506 0 124.673 6.715E + 11 7.92E + 10
CS-SA 36 858 36 858 36 858 0 57.191 2.813E + 10 5.18E + 10
FA-CE 20 501 20 501 20 501 0 179.799 2.682E + 12 2.75E + 12
FA-GA 22 040 22 040 22 040 0 460.723 1.144E + 14 1.26E + 14
FA-SA 20 916 20 916 20 916 0 449.222 1.025E + 14 1.07E + 14
GA-CE 20 520 20 520 20 520 0 212.247 5.154E + 12 5.29E + 12
GA-SA 35 080 35 080 35 080 0 433.905 8.893E + 13 1.56E + 14

building model (Fig. 14). For comparison, we selected the four best
standard algorithms (GA, ACO, DE, and CMA-ES) from Section 4.1.1
and the eight best performative hybrids from Section 4.2, includ-
ing DECS-TAPS.

The design goal was to find an optimal form of the building
space defined by seven geometric variables x1–x7 to minimize an-
nual energy usage and maximize indoor daylight up to a desirable
level, 500 lx in this case. Every parameter was interdependent, x1,
x2 ∈[10, 20]m, x4–x7 ∈[0.2, 0.9]. Note that x3 was defined depend-
ing on the floor area to constrain the total space volume (1800 m3).
The annual energy use was represented as the energy use inten-
sity (EUI, kWh/m2 yr) and the daylight as the annual daylight au-
tonomy (DA, %). DA accounts for the total percentage of annually
occupied hours that receive more than the illumination threshold
(500 lx). Using the min–max normalization method, the ranges of
EUI and DA output were scaled in [0, (Loftness et al., 2005)] and
[−1, 0] so that the multi-objective fitness values ranged within [0,
(Hensen & Lamberts, 2011)].

In the interest of building simulation time, the target func-
tions were modeled using machine learning (ML). The random
forest regression (RFR) technique from scikit-learn 1.1 was em-
ployed to model the EUI and DA. Two different datasets of 800
training and 200 test LHS samples each were generated by running
EnergyPlus and Radiance simulation with default settings from
the Climate Studio and the Honeybee GH plugins. The R2 values
of the final RFR models were 0.9698 and 0.9593 for EUI and DA,
respectively.

Figure 15 depicts the resulting convergence plots of the test
algorithms. The fitness evaluation number of an algorithm rep-
resents an average after running 30 repetitions. This shows that
most of the hybrids performed better than the non-hybrid MHOAs.
However, as seen in Table 15, GA-DE and PSO-CMA-ES showed
relatively large errors (μ = 52.65, 43.41), while DE converged
rapidly (11.87 s). PSO-GA, TS-PS, and DE-CMA-ES showed only
small errors (μ ≤ 0.05). A gradual improving tendency toward
convergence was found in SA-DE. As described in Section 4.1.3,
ACO hybrids exhibited the slowest converging time. In the worst
case, ACO-GA was finished after 1 min, whereas DECS-TAPS con-
verged in only 1–15 s. As expected, DECS-TAPS showed remark-
ably better performance. In Fig. 15, the greater fitness variance
of DECS-TAPS in the early process demonstrated the successful
active exploration of the TS-based adaptive PS in the premature
stage.

The convergence of multi-objective metaheuristics can also be
characterized by the property of the Pareto optimal set (Pasha
et al., 2022), Accordingly, we analyzed the test algorithm perfor-
mances with the recently developed metrics of multi-objective op-
timization: the number of Pareto front solutions (NPS), mean ideal
distance (MID), and spread of non-dominance solutions (SNSs)
(Fathollahi-Fard et al., 2020; Pasha et al., 2022). NPS and SNS re-
late to the diversification capacity and quality, respectively, while
MID measures the closeness to the best solution and the capabil-
ity of Pareto exploitation. In this test, MID and SNS were obtained
after computing NPS, such as
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Table 12: Performance test results of hybrid algorithms (T13, nd = 50).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 518 21 998 3439 4636.066 0 0 0
TS-PS 1856 51 502 7617 12 382.437 0.002 4.430E-06 0
TS-CS 41 541 41 541 41 541 0 1.328 3.822E + 09 7.94E + 09
TS-GA 20 040 20 040 20 040 0 3.412 3.547E + 12 3.55E + 12
TS-SA 18 377 18 377 18 377 0 3.422 2.486E + 12 2.28E + 12
PS-DE 36 729 38 667 37 762 729.206 0.917 6.336E + 05 1.20E + 06
PS-CS 93 041 93 041 93 041 0 0.805 2.268E + 05 1.06E + 06
PS-FA 71 319 71 937 71 845 190.817 3.587 2.722E + 12 9.78E + 12
PS-GA 71 231 71 540 71 448 102.362 3.308 1.402E + 12 5.01E + 12
PS-SA 238 369 238 369 238 369 0 1.021 5.403E + 05 6.44E + 06
DE-CMA-ES 255 255 255 0 1.158 3.731E + 08 4.76E + 06
PSO-DE 34 081 34 081 34 081 0 1.886 4.341E + 08 7.40E + 08
DE-CS 61 040 61 040 61 040 0 0.707 8.173E + 05 2.49E + 06
FA-DE 30 040 30 040 30 040 0 0.676 3.025E + 06 4.54E + 06
GA-DE 60 040 60 040 60 040 0 0.949 3.366E + 03 1.01E + 04
SA-DE 35 960 35 960 35 960 0 1.488 1.024E + 10 1.84E + 10
PSO-CMA-ES 510 510 510 0 1.038 1.004E + 06 2.56E + 04
PSO-ACO 80 540 80 540 80 540 0 0.996 3.813E + 06 1.54E + 07
PSO-CS 20 541 20 541 20 541 0 2.852 3.318E + 12 3.41E + 12
PSO-CE 20 842 20 998 20 930 55.870 1.410 4.051E + 07 4.24E + 07
PSO-GA 30 040 30 040 30 040 0 1.054 1.262E + 04 1.90E + 04
PSO-SA 19 810 20 445 20 205 213.334 1.263 1.215E + 08 1.23E + 08
ACO-CS 91 040 91 040 91 040 0 0.700 9.855E + 04 4.49E + 05
ACO-GA 50 120 50 200 50 133 26.667 1.052 5.538E + 06 1.39E + 07
FA-CS 20 040 20 040 20 040 0 2.765 2.659E + 12 2.66E + 12
GA-CS 3506 3506 3506 0 1.451 2.016E + 10 3.53E + 09
CS-SA 36 858 36 858 36 858 0 1.361 4.737E + 09 8.73E + 09
FA-CE 20 501 20 501 20 501 0 1.489 3.930E + 09 4.03E + 09
FA-GA 22 040 22 040 22 040 0 3.712 6.764E + 12 7.45E + 12
FA-SA 20 916 20 916 20 916 0 3.580 5.196E + 12 5.43E + 12
GA-CE 20 520 20 520 20 520 0 1.489 6.517E + 09 6.69E + 09
GA-SA 35 080 35 080 35 080 0 3.424 2.783E + 12 4.88E + 12

Table 13: Performance test results of hybrid algorithms (T14, nd = 50).

Hybrids Min Max μ σ RMSE(x∗) RMSE(f) γ-value

DECS-TAPS 872 5603 1996 1645.492 0 0 0
TS-PS 2474 15 658 6738 5051.664 0.001 3.014E-06 1.02E-06
TS-CS 41 541 41 541 41 541 0 1.133 3.101E + 05 5.75E + 05
TS-GA 20 040 20 040 20 040 0 2.658 6.361E + 05 6.37E + 05
TS-SA 18 377 18 377 18 377 0 2.565 5.868E + 05 5.39E + 05
PS-DE 26 631 26 631 26 631 0 2.420 1.851E + 05 3.16E + 05
PS-CS 93 041 93 041 93 041 0 1.716 1.307E + 05 5.68E + 05
PS-FA 71 422 71 937 71 823 149.217 3.760 4.051E + 12 7.27E + 12
PS-GA 71 231 71 540 71 448 102.362 3.276 1.395E + 12 4.08E + 12
PS-SA 46 697 46 697 46 697 0 1.117 7.499E + 05 1.60E + 06
DE-CMA-ES 255 255 255 0 1.265 1.885E + 08 2.40E + 06
PSO-DE 34 081 34 081 34 081 0 1.798 4.815E + 08 8.20E + 08
DE-CS 61 040 61 040 61 040 0 0.677 2.174E + 05 6.64E + 05
FA-DE 30 040 30 040 30 040 0 0.674 3.189E + 06 4.79E + 06
GA-DE 60 040 60 040 60 040 0 0.949 3.395E + 03 1.02E + 04
SA-DE 35 960 35 960 35 960 0 1.454 7.798E + 09 1.40E + 10
PSO-CMA-ES 510 510 510 0 0.916 5.448E + 05 1.39E + 04
PSO-ACO 80 540 80 540 80 540 0 2.452 1.916E + 05 7.71E + 05
PSO-CS 20 541 20 541 20 541 0 2.092 5.368E + 05 5.51E + 05
PSO-CE 20 959 21 035 21 017 22.509 2.739 2.972E + 05 3.12E + 05
PSO-GA 30 040 30 040 30 040 0 1.871 9.007E + 04 1.35E + 05
PSO-SA 19 830 20 295 20 156 132.470 2.825 3.243E + 05 3.27E + 05
ACO-CS 91 040 91 040 91 040 0 0.764 5.992E + 09 2.73E + 10
ACO-GA 50 120 50 160 50 129 16.630 2.646 1.653E + 05 4.14E + 05
FA-CS 20 040 20 040 20 040 0 1.994 5.032E + 05 5.04E + 05
GA-CS 3506 3506 3506 0 1.515 4.722E + 05 4.33E + 05
CS-SA 36 858 36 858 36 858 0 1.541 2.925E + 05 5.39E + 05
FA-CE 20 501 20 501 20 501 0 1.668 2.797E + 05 2.87E + 05
FA-GA 22 040 22 040 22 040 0 2.734 7.278E + 05 8.02E + 05
FA-SA 20 916 20 916 20 916 0 2.696 7.141E + 05 7.47E + 05
GA-CE 20 520 20 520 20 520 0 1.457 3.440E + 05 3.53E + 05
GA-SA 35 080 35 080 35 080 0 2.705 6.043E + 05 1.06E + 06
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(a)

(b)

(c)

Figure 10: Influence of dimension and function complexity on convergence quality.
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(d)

Figure 10 – continued.

(a) (b)

(c) (d)

Figure 11: Heatmap: dimensional effect in pairwise hybridization (log-scale γ -values).
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Table 14: Sensitivity analysis—average total-order indices.

np ltb rcs λ α F CR sf

nd = 10

CS 0.721 1.363 0.880 0.578
DE 0.804 0.437 0.383
DECS-TAPS 0.416 0.301 0.256 0.228 0.520 0.264 0.084

nd = 30

CS 1.107 6.916 1.961 2.316
DE 0.928 1.249 1.891
DECS-TAPS 0.659 0.943 1.137 0.874 1.049 0.743 0.498

Figure 12: Parametric sensitivity (nd = 10, ST/S1/S2: total/first-/second-order index).
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Figure 13: Parametric sensitivity (nd = 30, ST/S1/S2: total/first-/second-order index).

MID = 1
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min

)2
⎞
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SNS =

√√√√√ 1
NPS − 1

∑NPS

i=1

⎛
⎝MID −

2∑
j=1

f j
i

⎞
⎠

2

, (12)

where f j
i and f j

best are the i-th and ideal Pareto front solution

value for the j-th objective, respectively. f j
min and f j

max denote
the minimum and maximum values in all Pareto front solutions

per objective, respectively. Note that the lower MID value indi-
cates better performance and the higher is the better for NPS
and SNS.

The assessment results (Table 16) show the larger NPS values
(> 10) of DE, DE-CMA-ES, and PSO-GA. However, NPS polls a Pareto
front set regardless of the population size or the iteration number.
In our investigation, NPS was complemented by NPS∗, NPS divided
by the total number of entry evaluations, to estimate the likeli-
hood of finding a Pareto solution in a one-time search. Nonethe-
less, NPS∗ results suggest that DECS-TAPS diversifies the Pareto
front solutions very efficiently (NPS∗ = 36.27) than DE, CMA-ES
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Figure 14: Shoebox test building geometry and design variables.

Figure 15: Convergence charts: algorithm comparison.

Table 15: Multi-objective ADO test results.

GA SA DE ACO
CMA-

ES
DECS-
TAPS

TS-
PS

DE-
CMAES

PSO-
CMAES

PSO-
GA

GA-
DE

SA-
DE

ACO-
GA

Iterations

μ 2000 2000 776 1935 563 246 1634 981 1134 703 2000 1360 1980
Min 2000 2000 520 1340 99 78 77 410 36 100 2000 300 1620
Max 2000 2000 1480 2000 2000 1026 2000 1610 2000 2000 2000 2000 2000
σ 0.00 0.00 200.38 225.89 483.81 168.38 782.68 405.06 820.77 655.96 0.00 753.60 80.52

RMSE(f), × E-6

μ 2.49 6.95 0.00 0.40 0.03 0.00 0.01 0.01 43.41 0.05 52.65 0.67 1.30
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.00
Max 7.60 19.61 0.00 3.83 0.21 0.00 0.02 0.15 1301.21 0.59 133.54 5.61 12.41
σ 2.69 6.67 0.00 0.95 0.06 0.00 0.01 0.03 237.56 0.15 46.40 1.40 3.24

Time(s)

μ 31.11 38.40 11.87 28.64 12.98 3.42 23.83 16.33 36.04 10.33 27.91 21.38 41.47
Min 25.23 24.42 7.17 18.11 1.83 1.01 1.09 5.76 0.68 1.43 27.01 4.08 23.60
Max 44.07 49.83 22.23 72.84 36.58 14.55 30.99 57.91 101.22 29.89 36.84 47.52 90.18
σ 8.30 12.05 3.72 10.82 11.02 2.39 11.42 10.73 34.93 9.42 1.78 12.28 21.19
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Table 16: Assessment of Pareto optimal sets.

GA SA DE ACO
CMA-

ES
DECS-
TAPS

TS-
PS

DE-
CMAES

PSO-
CMAES

PSO-
GA

GA-
DE

SA-
DE

ACO-
GA

NPS

μ 7.93 8.97 10.33 9.77 3.73 8.92 6.60 10.97 2.27 10.53 3.21 8.93 9
Min 4 6 6 5 2 5 3 7 2 5 2 4 3
Max 11 15 18 15 5 15 10 17 3 24 7 16 15

NPS∗ (weighted NPS, ×1E-3)

μ 3.97 4.48 13.32 5.05 6.63 36.27 4.04 11.18 2.00 14.98 1.60 6.57 4.55
Min 2.00 3.00 7.73 2.58 3.55 20.33 1.84 7.14 1.76 7.11 1.00 2.94 1.52
Max 5.50 7.50 23.20 7.75 8.88 60.98 6.12 17.33 2.65 34.14 3.50 11.76 7.58

MID

μ 0.66 0.99 0.46 0.53 0.64 0.45 0.42 0.43 2.93 0.39 0.69 0.51 0.52
Min 0.39 0.36 0.30 0.29 0.46 0.30 0.26 0.31 0.52 0.20 0.48 0.31 0.33
Max 0.84 2.19 0.66 1.12 0.81 0.82 0.77 0.66 30.93 0.68 0.83 0.88 0.75

SNS

μ 0.68 1.04 0.47 0.55 0.75 0.47 0.44 0.44 4.09 0.40 0.84 0.53 0.54
Min 0.39 0.36 0.31 0.29 0.50 0.30 0.27 0.32 0.62 0.20 0.54 0.32 0.33
Max 0.87 2.29 0.68 1.21 0.98 0.86 0.83 0.69 43.72 0.72 0.98 1.00 0.90

Figure 16: Experiment setup of dynamic ADO.
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Figure 17: Convergence charts.

Table 17: Numeric results of kinetic building skin optimization.

DE CMA-ES DECS-TAPS DE-CMA-ES PSO-GA

RMSE(f) μ 2.60E-03 5.19E-05 7.93E-05 1.81E-04 4.89E-04
Min 4.43E-04 1.17E-06 5.48E-06 2.04E-06 1.60E-04
Max 8.74E-03 2.23E-04 1.89E-04 7.03E-04 1.00E-03

σ 2.50E-03 8.48E-05 6.00E-05 2.35E-04 3.00E-04
Converging
time (s) at
f ≤ 0.0005

μ 9.90 3.49 2.46 6.95 7.76
Min 9.00 2.20 1.00 3.40 2.00
Max 10.00 4.30 4.50 10.00 10.00

σ 0.30 0.57 0.95 2.09 2.96

hybrids, and PSO-GA. In their intensification, PSO-GA slightly out-
performed DECS-TAPS, but the DECS-TAPS’s MID of 0.45 was as
satisfactory as competing hybrid algorithms. DE and TS-PS were
advantageous in multi-objective exploration and exploitation, re-

spectively, and it explains the improved performance of their hy-
bridization in DECS-TAPS. In SNS, PSO-CMA-ES was outstanding
(SNS = 4.09), and SA (SNS = 1.04) showed a good spread quality.
Despite the weak SNS of DECS-TAPS (SNS = 0.47), we suppose that
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it was due to the intensive localization, as identified in Fig. 9, to
increase accuracy during the latter stage of convergence. These
results show that there is no single best algorithm satisfying ev-
ery index. Nonetheless, we find that DECS-TAPS overwhelms other
MHOAs in terms of rapid exploration.

4.3.2. Time-sequential ADO: responsive building shading
For advanced applications, we applied the five best algorithms
in 4.3.1—DE, CMA-ES, DECS-TAPS, DE-CMA-ES, and PSO-GA—to
the time-limited shape optimization of kinetic window shading.
In EPBD, kinetic architectural design can improve environmental
performance by dynamically morphing the building form. A criti-
cal concern in the construction of kinetic building systems is the
optimal control of geometry change because highly rapid optimal
decision making is required after sensing complex building infor-
mation. As depicted in Fig. 16, we simulated a small office room
with a kinetic shading skin [width (W) × height (H) = 1.73 × 1.1 m]
over a front window.

13 kinetic modules comprising triangular movable panels pop-
ulated the shading surface. Our design task was to create a desir-
able indoor work environment by minimizing both daylight glare
on the computer screen and maximizing daylight illuminance by
up to 500 lx on the desk plane area. No artificial lighting or building
systems were considered in this experiment. The goal of this ADO
was to find an optimal panel motion angle (θ ) that minimizes the
objective value under constantly varying solar position and out-
side illuminance. Note that RFR surrogate models were used in
the same manner as Section 4.3.1 for simulating rapid daylight. By
employing LHS and Radiance simulation, 1000 input–output data
were used to create ML models of glare and illuminance, respec-
tively. R2 of the glare model was 0.7548 and that of the illuminance
was 0.8371. The total test duration was 100 s. The time step was
set to 10 s and the stopping criterion was set to f(x∗) ≤ 1E − 4.

Figure 17 and Table 17 show that the test algorithms except DE
successfully converged in each time window. Our results reveal
that although DECS-TAPS and DE-/PSO-CMA-ES underwent large
fluctuations in the early phases, they quickly searched global op-
tima in all the sequences. The CMA-ES’s μ of RMSE(f) indicates
that it can be slightly more accurate than DECS-TAPS. However,
Table 17 shows that it risks taking relatively more time to process
computation than DECS-TAPS.

5. Conclusions
The development of a high-performance optimization algorithm
becomes an integral part of EPBD study in architecture be-
cause the use of a large number of geometric variables and
exhaustive building performance simulation in EPBD practice
calls for an advanced technique of mathematical optimization.
Although GA or other standard EAs are widely employed in
EPBD, the repetitive evaluation of populations often becomes the
most prohibitive obstacle. In this study, by considering a mul-
tiple hybridization strategy, we sought to propose an alterna-
tive time-efficient hybrid algorithm by building on the knowl-
edge of low-level (computationally uncomplicated) metaheuristic
schemes.

DECS-TAPS was designed by adaptively integrating TS, CS,
PS, and DE. This quadratic algorithmic synthesis, including a
proper compromise between non-population-based search and
DE, showed remarkable improvement in computation speed, ac-
curacy, and robustness compared to the existing standard MHOAs
and other pairwise hybrids. Our findings validated that the CS-
enabled MADS mechanism reduced the exploration time in al-

most all types of complex problems. We also found that the quick
early exploration followed by DE leads to robust exploitation to-
ward convergence.

Compared to the well-established CMA-ES hybrids, a few large-
dimensional test results showed that DECS-TAPS may not always
ensure the best time-efficient performance, but it effectively im-
proves solution quality. Additionally, reduced parametric sensitiv-
ity is another advantage. The global sensitivity analysis of DECS-
TPAS suggests that an appropriate combination of the standard
algorithms can prove competitive by relaxing the parametric de-
pendence of the search mechanism.

Despite our efforts to prove the performative competence
of DECS-TAPS through benchmark tests and architectural
applications, many other complex problems remain untapped.
These limitations will be addressed in a future study.
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Appendix
This appendix presents a new add-on architectural design opti-
mizer developed in this study.

Zebroid
The developed algorithms were implemented in a parametric de-
sign interface using Rhino GH. DECS-TAS especially, the most
robust and efficient algorithm in this work, was compiled as a
GH add-on component entitled “Zebroid” for public distribution
(Fig. A1). A tutorial video, examples, and a Zebroid1.0.1.ghpy file
are publicly accessible at https://drive.google.com/drive/folders/1
5PWok_KYRIlRF3VfgWxjuGvoWnL7UGcv?usp = sharing. The Ze-
broid optimizer can be installed through the Food4Rhino at https:
//www.food4rhino.com/en/app/zebroid.

Figure A1: Zebroid: add-on GH multihybrid optimizer.
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