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Abstract 

Diabetes is a global epidemic, of which type 2 diabetes makes up the majority of cases. 
Nonetheless, for some individuals, type 2 diabetes is eminently preventable and treatable via 
lifestyle interventions. Glucose uptake into skeletal muscle increases during and in recovery 
from exercise, with exercise effective at controlling glucose homeostasis in individuals with 
type 2 diabetes. Furthermore, acute and chronic exercise sensitizes skeletal muscle to insulin. 
A complex network of signals converge and interact to regulate glucose metabolism and in-
sulin sensitivity in response to exercise. Numerous forms of post-translational modifications 
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(eg, phosphorylation, ubiquitination, acetylation, ribosylation, and more) are regulated by exer-
cise. Here we review the current state of the art of the role of post-translational modifications in 
transducing exercise-induced signals to modulate glucose uptake and insulin sensitivity within 
skeletal muscle. Furthermore, we consider emerging evidence for noncanonical signaling in 
the control of glucose homeostasis and the potential for regulation by exercise. While exercise 
is clearly an effective intervention to reduce glycemia and improve insulin sensitivity, the in-
sulin- and exercise-sensitive signaling networks orchestrating this biology are not fully clarified. 
Elucidation of the complex proteome-wide interactions between post-translational modifications 
and the associated functional implications will identify mechanisms by which exercise regulates 
glucose homeostasis and insulin sensitivity. In doing so, this knowledge should illuminate novel 
therapeutic targets to enhance insulin sensitivity for the clinical management of type 2 diabetes.

Key Words: exercise, glucose, insulin, phosphorylation, ubiquitination, acetylation
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ESSENTIAL POINTS

 • Exercise training improves insulin sensitivity and glycemic control in type 2 diabetes.
 • Insulin and exercise regulate a range of phospho-signaling pathways to control insulin sensitivity, glucose uptake, 

and metabolism.
 • Exercise- and insulin-sensitive signals converge on the Rab GTPase-activating proteins TBC1 domain family 

member 1 (TBC1D1) and 4 (TBC1D4; aka AS160) to facilitate GLUT4 translocation and glucose uptake.
 • Exercise regulates the ubiquitination or ubiquitin-like modification of glycolytic enzymes in skeletal muscle.
 • Proteins involved in the regulation of skeletal muscle glucose metabolism are acetylated in response to insulin 

stimulation or exercise training.
 • Insulin and exercise regulate the ADP ribosylome and thereby regulate energy metabolism, glucose homeostasis, 

and insulin sensitivity.
 • A deeper understanding of the wider regulatory signals that control glucose homeostasis may lead to the development 

of novel therapeutic strategies to improve insulin sensitivity in type 2 diabetes.
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Diabetes is a global epidemic, affecting approximately 451 
million adults worldwide (9% of the adult population), of 
which approximately 90% of the cases are type 2 diabetes. 
This figure is rising and is predicted to continue to do so in 
the subsequent decades (1, 2). People with diabetes have 
an almost 2-fold increase in all-cause mortality, including 
increased risk of death from renal disease, liver disorders, 
cardiovascular disease, infectious diseases, multiple forms 
of cancer, and mental health disorders (3). These data in-
dicate the urgent need to develop and implement effective 
strategies to prevent and treat type 2 diabetes.

Type 2 diabetes pathogenesis is multifaceted. Alongside 
a genetic component (4), type 2 diabetes has a number 
of lifestyle-related risk factors, including inactivity, over-
eating, and being overweight or obese (5-7). In terms 
of pathophysiology, type 2 diabetes is characterized 
by altered whole-body and tissue-specific metabolism, 
hyperglycemia, hyperinsulinemia, and peripheral in-
sulin resistance. Insulin resistance in metabolically ac-
tive tissues, including skeletal muscle, adipose tissue, and 
liver, impairs glucose disposal, which, alongside reduced 
insulin-mediated suppression of hepatic glucose pro-
duction, results in hyperglycemia. As skeletal muscle is 
the predominant site for insulin-stimulated glucose dis-
posal (8), insulin resistance in this tissue is critical to the 

development of type 2 diabetes (9, 10). Thus, interven-
tions targeting skeletal muscle are effective at opposing 
type 2 diabetes pathogenesis.

Physical activity and exercise training improve insulin 
sensitivity and glycemic control in a range of populations, 
including those with obesity, prediabetes, or type 2 dia-
betes (11-16) (Fig. 1A). Indeed, lifestyle interventions that 
include exercise are effective at reducing the incidence of 
type 2 diabetes in individuals with elevated plasma glucose 
(17). Furthermore, diet and exercise intervention can lead 
to disease remission in a substantial proportion of the type 
2 diabetic cases (18). For the purposes of this review, we 
will focus on the mechanisms by which endurance exercise 
(ie, moderate-intensity continuous exercise, high-intensity 
exhaustive exercise, and high-intensity interval training 
Fig. 1B) regulates glucose uptake and insulin sensitivity.

Cellular Mechanisms of Exercise-induced 
Glucose Uptake and Insulin Sensitivity in 
Skeletal Muscle

Acute Exercise

Exercise causes a large increase in energy utilization (19). 
Carbohydrates, in the form of plasma glucose and skel-
etal muscle glycogen, are predominant fuel sources in 

Figure 1. Exercise training, insulin sensitivity, and glycemic control in type 2 diabetes. (A) Repeated endurance exercise training improves insulin 
sensitivity and glycemic control, often leading to type 2 diabetes remission. (B) Endurance exercise training is an umbrella term for various forms 
of exercise that lead to improvements in aerobic capacity. For example, endurance exercise encompasses moderate-intensity continuous exercise, 
in which a constant load is maintained for an extended period of time (ie, 50-70% Wmax for >30 minutes), high-intensity interval training, in which 
periods of high (ie, >90% Wmax), and low (ie, <50% Wmax) intensities are alternated for numerous intervals, and high-intensity exhaustive exercise, 
in which high-intensity exercise (ie, >80% Wmax) is performed to exhaustion.
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moderate- to high-intensity exercise (19). Thus, acute ex-
ercise increases glucose uptake into skeletal muscle during 
exercise in an insulin-independent manner and post exer-
cise via both insulin-dependent and -independent mechan-
isms to replenish skeletal muscle glycogen stores (20-27). 
The acute increase in skeletal muscle glucose uptake oc-
curs through the modulation of activity and subcellular 
localization of a number of signaling proteins, enzymes, 
and transporters. Therefore, the focus of this review will 
be on these signals.

The discovery of glucose transporter type 4 (GLUT4) 
as an insulin- and contraction-responsive glucose trans-
porter (28-35) has formed the basis for our understanding 
of glucose uptake in skeletal muscle. In unstimulated 
muscle (ie, at rest and without insulin stimulation) 
GLUT4 is predominantly sequestered intracellularly (36) 
and glucose delivery and transport are rate-limiting fac-
tors to glucose uptake. However, upon the commence-
ment of exercise, elevated skeletal muscle blood flow 
(37) and translocation of GLUT4 to the sarcolemma and 
T-tubules (38-44) removes these barriers and increases 
glucose uptake. Exercise-induced signaling cascades (dis-
cussed in subsequent sections) likely increase the rate 
of exocytosis and decrease the rate of endocytosis of 
GLUT4 vesicles (45, 46), although direct data in relation 
to skeletal muscle contraction are missing. Nonetheless, 
we have demonstrated the importance of GLUT4 for 
exercise-induced insulin-independent glucose uptake, 
showing that GLUT4 knockout mice have substantially 
reduced ex vivo glucose uptake following swimming ex-
ercise and during in vitro muscle contraction (47). These 
data have subsequently been recapitulated in GLUT4 
muscle-specific knockout mice (48) and in vivo (49). 
Importantly, and in contrast to insulin-stimulated con-
ditions (9), exercise-induced glucose uptake and GLUT4 
translocation is not impaired in type 2 diabetes (38, 50), 
making exercise an effective glucose-lowering interven-
tion in patients with type 2 diabetes.

Exercise also acutely increases insulin sensitivity. One 
bout of endurance exercise increases insulin-stimulated 
glucose disposal and skeletal muscle glucose uptake during 
the gold standard hyperinsulinemic–euglycemic clamp for 
at least 48 hours (25, 51-56). Furthermore, acute exercise 
improves glucose tolerance in response to the more physio-
logical oral glucose tolerance test (57). Prior exercise in-
creases insulin-stimulated glucose uptake by augmenting 
insulin-induced skeletal muscle perfusion (58, 59) and glu-
cose transport capacity of the myocyte (38-43, 60). In the 
initial hours after exercise (0-2 hours post exercise), the in-
sulin sensitizing effects of acute exercise on the myocyte are 
likely explained by increased GLUT4 content on the plasma 
membrane (38-43), with subsequent exposure to insulin 

slowing the rate of GLUT4 internalization (61). However, 
in the absence of insulin, plasma membrane GLUT4 con-
tent levels return to baseline within ~2 hours of recovery 
(42). Thereafter, prior exercise enhances the translocation 
of GLUT4 in response to insulin (43), suggesting that exer-
cise primes the internal pool of GLUT4 for insulin-action. 
Indeed, exercise results in the redistribution of GLUT4 into 
insulin-responsive GLUT4 storage vesicles, which can more 
readily be activated by insulin (60).

The insulin-sensitizing effects of exercise on skeletal 
muscle are influenced by nutritional status. Carbohydrate 
refeeding abolishes the postexercise increased insulin-
stimulated glucose uptake in humans and rats (51, 62-65), 
an effect that is unrelated to caloric intake in rats (62-
64). Indeed, carbohydrate refeeding ablates the increase 
in insulin-stimulated GLUT4 translocation 18 hours after 
exercise in rats (64). The increased insulin sensitivity with 
carbohydrate deprivation is associated with prolonged de-
pletion of skeletal muscle glycogen content, which is rap-
idly restored during carbohydrate feeding (51, 62-64). 
Furthermore, humans with the glycogen storage disease 
McCardle’s syndrome, who cannot breakdown glycogen 
and have elevated skeletal muscle glycogen content, have 
impaired insulin-stimulated glucose uptake (66). These 
data indicate that carbohydrate availability can influence 
acute exercise-induced insulin sensitivity.

Chronic Exercise Training

Endurance exercise training improves whole-body and 
skeletal muscle insulin sensitivity (11-16, 67, 68). In skel-
etal muscle, enhanced insulin sensitivity following exercise 
training is underpinned by enhancements in glucose delivery 
and the capacity to uptake, utilize, and store glucose as 
glycogen. Increased capillary density of skeletal muscle fol-
lowing exercise training ensures improved nutrient supply 
(69), while augmented GLUT4 and hexokinase 2 abundance 
results in an increased capacity for glucose uptake and con-
version to glucose-6-phosphate for utilization or storage as 
glycogen (68, 70-75). Furthermore, increased mitochon-
drial volume and respiratory capacity with exercise training 
increases the capacity for energy metabolism (67, 76-82), 
which potentially plays a role in promoting insulin sen-
sitivity (67, 83, 84). An additional metabolic outcome of 
exercise training is an altered storage of intramyocellular 
lipids (85). Intramyocellular lipid content and lipid droplet 
size negatively correlate with insulin sensitivity (85-88). 
However, intriguingly, both athletes and individuals with 
type 2 diabetes have elevated intramuscular lipid accumula-
tion, despite being on opposite ends of the insulin sensitivity 
continuum (86). An explanation for this apparent paradox 
lies in how these lipids are stored within skeletal muscle of 

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/43/4/654/6420158 by guest on 24 April 2024



658  Endocrine Reviews, 2022, Vol. 43, No. 4

individuals who are either exercise-trained or type 2 diabetic. 
Individuals with type 2 diabetes predominantly store lipids 
in large subsarcolemmal droplets in type II fibers, while ath-
letes store lipids in small intramyofibrillar droplets close to 
the mitochondria of type I  fibers (85). Encouragingly, 12 
weeks of combined exercise training (endurance and resist-
ance) can reduce lipid droplet size in individuals with type 2 
diabetes (85). Thus, these data suggest that localization and 
size of lipid droplets are sensitive to physical activity level 
and can contribute to insulin sensitivity.

Overall, exercise increases glucose uptake and insulin 
sensitivity of skeletal muscle and these effects are primarily 
mediated by increased GLUT4 translocation. In subsequent 
sections, mechanisms by which intracellular signaling con-
verge on GLUT4 to induce glucose uptake and sensitize 
skeletal muscle to insulin are discussed.

Post-translational Modifications at the 
Intersection of Exercise and Insulin Sensitivity

Post-translational modifications refer to reversible or irre-
versible chemical alterations to a protein that occur after 
translation. There is a wide range of post-translational modi-
fications including phosphorylation, ubiquitination and 
ubiquitin-like modifications, various forms of acylation (eg, 
acetylation, succinylation, malonylation, and palmitoylation), 
ribosylation, and many more. Post-translational modifica-
tions are crucial in controlling the function of proteins, by 
regulating conformation, localization, stability, complexing, 
and activity. Therefore, post-translational modifications rep-
resent major intracellular (and likely extracellular) signals.

Despite decades of research into post-translational modi-
fications and their regulatory role, the comprehensive under-
standing of this biochemistry is still evolving. The sheer number 
of different modifications and the likelihood of multiple modi-
fications on each protein give rise to an exponential number of 
permutations for modifications on even a single protein. Indeed, 
multiple modifications on a protein likely cooperate to govern 
protein function, while a coordinated regulation of modifi-
cations in a network of proteins is required to regulate any 
given biological process. Nonetheless, the functional relevance 
of a considerable number of site-specific post-translational 
modifications are known within intracellular signaling path-
ways, including insulin signaling (89). Furthermore, advances 
in modification-specific proteomic technologies are rapidly 
advancing the mapping and cartography of various post-
translational modifications on an “omics” scale (90).

Phosphorylation

Phosphorylation is the reversible addition of a phos-
phoryl group (PO3

2–) to amino acids, principally serine, 

threonine, and tyrosine. Phosphorylation is the most 
well-characterized post-translational modification within 
intracellular signaling, particularly in response to insulin. 
Phosphorylation is pervasive across the proteome with an 
estimated 75% of proteins reported to be phosphorylated 
(91).

Signals transduced by phosphorylation are critical 
to insulin action (Fig. 2A). Upon insulin binding, the in-
sulin receptor (INSR) undergoes autophosphorylation and 
subsequently phosphorylates insulin receptor substrate 
1 (IRS1), leading to phosphatidylinositol 3-kinase (PI3K) 
activation. PI3K activates protein kinase B (AKT), via 
3-phosphoinositide-dependent protein kinase 1 and mam-
malian target of rapamycin complex 2 (mTORC2), and 
ras-related protein Rac1 (RAC1), which transmit parallel 
signals to affect GLUT4 translocation (92-96). AKT phos-
phorylates the Rab GTPase-activating proteins Tre-2, Bub2, 
and Cdc16 (TBC)1 domain family member 1 (TBC1D1) 
and 4 (TBC1D4; aka AS160), which relieve their inhibitory 
action on GLUT4 translocating Rab GTPases (97-101). 
In concert, PI3K activation of RAC1 orchestrates actin 
remodeling at the plasma membrane via actin-related pro-
tein 2 (ARP2) and 3 (ARP3) and cofilin (94-96, 102-106).

Acute exercise influences a substantial proportion of 
the phosphoproteome (107-109), with exhaustive high-
intensity cycling regulating approximately 10% of the 
phosphoproteome within human skeletal muscle (108). 
Pathway enrichment analysis within this exercise-induced 
human skeletal muscle phosphoproteome has identified 
various phosphorylation pathways that were regulated 
by exercise, including those of the canonical exercise re-
sponse kinases 5′-adenosine monophosphate–activated 
protein kinase (AMPK), mitogen-activated protein kinases 
(MAPKs), protein kinase A (PKA), mTOR, ribosomal pro-
tein S6 kinase (p70S6K) and Ca2+/calmodulin-dependent 
protein kinases (CAMKs) (Fig. 2B), as well as pathways 
related to insulin signaling such as INSR, PI3K, AKT, and 
Rho signaling pathways (108). Indeed, the endurance ex-
ercise/contraction-induced regulation of these pathways 
are typically highly conserved across different species (ie, 
human, rat, and mouse) (107).

For the most part, exercise alone does not influence the 
activity of proximal proteins within the insulin signaling 
cascade (24, 44, 110-112), although phosphorylation of 
IRS1 at Ser 36, Ser 374, Ser 560, Ser 629, and Ser 1100 
is increased following an exhaustive bout of high-intensity 
cycling (108). Nonetheless, insulin receptor knockout or 
inhibition of PI3K does not impair glucose uptake during 
exercise or contraction (24, 113, 114). Thus, alternative 
mechanisms must regulate contraction-induced insulin-
independent glucose uptake. However, the insulin-induced 
activity of proteins within the proximal insulin signaling 
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ARP2/3

Figure 2. Insulin- and exercise-sensitive phospho-signaling in skeletal muscle. (A) Insulin stimulation induces autophosphorylation on the insulin 
receptor, which results in the recruitment and phosphorylation of IRS1, leading to PI3K activation (92). PI3K indirectly activates AKT via mTORC2 
and PDK1 (92-94). AKT phosphorylates TBC1D1 and TBC1D4, which prevents their inhibition of the GLUT4 translocating Rab GTPases (97-101). 
Furthermore, AKT phosphorylates GSK3 leading to the activation of glycogen synthase (GS) and synthesis of glycogen. PI3K also activates RAC1, 
which promotes GLUT4 translocation via ARP2/3- and cofilin-mediated actin remodeling (95, 96). (B) Exercise regulates a range of phospho-signaling 
pathways. AMPK is phosphorylated and activated by CAMKK and liver kinase B1 (LKB1) (170, 255-259). AMPK orchestrates a shift towards catabolic 
processes: GLUT4 translocation is promoted via phosphorylation of TBC1D1 and TBC1D4 (97-99, 119, 123, 129), net glycogen breakdown via inhibition 
of GS (260), fatty acid oxidation via inhibition of acetyl-CoA carboxylase (ACC) (261), and inhibition of protein synthesis through negative regulation 
of mTORC1 activity (262). AMPK also promotes the expression of metabolic genes, including GLUT4, through myocyte enhancer factor 2 (MEF2) and 
peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) activation (202, 263, 264), which can also be activated via CAMKII 
and p38MAPK (265-267). Accumulation of cyclic AMP (cAMP) activates PKA, which phosphorylates cyclic AMP-responsive element binding protein 
(CREB) and promotes transcription of metabolic genes (268, 269).
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pathway (eg, PI3K and AKT) can be augmented following 
exercise in vivo (24, 44, 110, 112), although this is a far 
from consistent finding (54, 55, 113, 115, 116). Indeed, 
augmented proximal insulin signaling would be consistent 
with increased skeletal muscle blood flow and insulin de-
livery post exercise (58, 59).

Exercise and contraction per se increase the phosphor-
ylation of TBC1D4 on multiple sites (Ser 318, Ser 341, Ser 
588, Ser 600, Thr 642, Ser 704, and Ser 751)  (107, 108, 
117-122), although decreased phosphorylation of sites on 
TBC1D4 (Ser 318, Ser 597, Ser 666, and Thr 642) has also 
been reported immediately post exercise (107, 108). These 
apparent inconsistencies may be reflective of differences in 
the methodology of measurement (eg, total phosphorylation 

of TBC1D4 vs phospho-site–specific changes), the species, 
the exercise intensity, and/or the postexercise timepoint in-
vestigated. For example, although a time course analysis 
has yet to be performed within a single investigation in 
humans, phosphorylation of TBC1D4 on Ser 318 and Thr 
642 decreases immediately after high-intensity exhaustive 
cycling (108), while it is increased 4 hours after 1 hour 
of single-legged kicking at 80% of peak power output 
(117), indicating a possible temporal regulation. In add-
ition to phosphorylation by AKT, TBC1D4 is also a target 
of AMPK (119, 123). AMPK is activated during exercise 
via phosphorylation of the catalytic α-subunit on Thr 172 
(107, 108, 120, 124-128), subsequently phosphorylating 
TBC1D4. AMPK also phosphorylates TBC1D1, another 

Figure 3. Exercise- and insulin-sensitive signals converge on TBC1D1 and TBC1D4 to facilitate GLUT4 translocation. Exercise- and insulin-signaling 
cascades converge on TBC1D1 and TBC1D4. Insulin promotes AKT-mediated phosphorylation of TBC1D1 and TBC1D4, while AMPK and CAMKII me-
diate the exercise-induced phosphorylation of TBC1D1 and TBC1D4 on independent and overlapping sites to those targeted by AKT. Yellow phospho-
sites represent insulin-induced phosphorylation. Red phospho-sites represent exercise-induced phosphorylation.
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Rab inhibiting enzyme (97-99, 129), with the phosphoryl-
ation of TBC1D1 increased at Ser 108, Ser 159, Ser 231, Ser 
301, Ser 614, Ser 660, and Ser 700 during exercise and con-
traction (97, 107, 108, 130). Phosphorylation of TBC1D1 
and TBC1D4 persist for hours after exercise (115, 117, 
121), potentially priming these proteins for further inhib-
ition by insulin, thereby augmenting Rab GTPase activity. 
Indeed, insulin-induced TBC1D1 and TBC1D4 phosphor-
ylation is augmented in the hours following an acute bout 
of exercise (115, 117, 121, 122, 131). Thus, TBC1D1 and 
TBC1D4 may represent a convergence point for insulin- 
and exercise-induced signals to promote GLUT4 transloca-
tion and glucose uptake (Fig. 3).

The importance of the AMPK–TBC1D1/TBC1D4 axes 
for increased glucose uptake and insulin sensitization has 
been demonstrated in the postexercise period. Knockout of 
AMPK isoforms impairs elevated glucose uptake following 
contraction and reduces the insulin-sensitizing effects of 
prior exercise and contraction (132-137). Furthermore, hu-
mans harboring a rare AMPK-activating mutation (R225W) 
display a trend toward elevated exercise-induced glucose 
uptake during a period that spanned exercise and recovery 
(138). Knockout of TBC1D1 reduces skeletal muscle glu-
cose uptake following exercise (139, 140), while TBC1D4 is 
required for exercise to enhance skeletal muscle insulin sen-
sitivity 3 hours after contraction (130). Electroporation of 
nonphosphorylatable TBC1D1/TBC1D4 mutants also im-
pair contraction-stimulated glucose uptake (97, 123, 141). 
However, glucose uptake during contraction and exercise 
is normal in AMPKα1α2 and TBC1D1 knockout mice 
(140, 142). Furthermore, exercise-induced glucose uptake 
precedes the activation of AMPK in humans (143), while 
moderate-intensity exercise increases whole-body glucose 
disposal in the absence of AMPK activation after short-
term exercise training in humans (144). Together, these 
data indicate that while AMPK and TBC1D1/TBC1D4 
are critical in the regulation of glucose uptake and insulin 
sensitivity in the postexercise period, these signaling axes 
are not required for the increase in glucose uptake during 
contraction and exercise. However, whether these data 
point towards a limited involvement of AMPK in glucose 
uptake during exercise or a substantial redundancy with 
other pathways within this physiological system remains 
up for debate.

An additional target of AMPK is the phosphoinositide 
kinase, FYVE-type zinc finger containing (PIKFYVE) 
protein. Phosphorylation of PIKFYVE increases during 
ex vivo contraction, which occurs alongside the trans-
location of PIKFYVE to intracellular membranes (145). 
Although specific phosphorylation site(s) and upstream 
kinase(s) remain to be elucidated with respect to contrac-
tion, AMPK phosphorylates PIKFYVE on Ser 307, which 

promotes PIKFYVE colocalization with endosomes (145). 
Inhibition of PIKFYVE reduces insulin, contraction, and 
5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside 
(AICAR)-stimulated glucose uptake in vitro (145), while 
skeletal muscle-specific knockdown of PIKFYVE reduces 
insulin-stimulated glucose uptake in soleus and extensor 
digitorum longus muscles (146). Nonetheless, the specific 
mechanism of PIKFYVE-mediated glucose uptake remains 
unclear. Furthermore, the phosphorylation of Ser 307 re-
mains unchanged following endurance exercise in humans 
and mice (107, 108). Thus, the relevance of PIKFYVE to 
exercise-induced glucose uptake in vivo remains elusive.

AMPK may provide the link between glycogen content 
and glucose uptake into skeletal muscle. Exercise-induced 
AMPK activity and Thr 172 phosphorylation correlate with 
glycogen content in skeletal muscle (147-154). Indeed, AMPK 
physically binds to glycogen via its β-subunit (155-159). 
Autophosphorylation of AMPKβ on Thr 148, which lies in 
the carbohydrate binding domain, releases the AMPK com-
plex from glycogen (157-159), increasing free AMPK and 
enhancing the activating phosphorylation of Thr 172 on the 
catalytic α-subunit. Glucose uptake, GLUT4 translocation, 
and AMPK activity are elevated when contraction is com-
menced with low glycogen in murine fast-twitch muscle (153, 
154, 160). However, contraction increases glucose uptake 
independently of glycogen content and AMPK activation in 
slow-twitch muscle (153, 154). Therefore, while AMPK acti-
vation and glycogen content may regulate glucose uptake in 
fast-twitch muscle, AMPK is not the only regulator of exer-
cise- or contraction-induced glucose uptake in skeletal muscle. 
The picture regarding glycogen content and exercise-induced 
glucose uptake is further complicated when considering data 
from human studies. When exercise was commenced with 
low skeletal muscle glycogen content, induced by 1-legged 
glycogen-depleting exercise performed the previous evening 
(16 hours prior), glucose uptake during exercise was en-
hanced in the prior exercised leg (low glycogen) compared 
with the control leg (normal glycogen) (161). However, when 
the same degree of glycogen depletion was induced by dietary 
means (ie, no prior exercise), leg glucose uptake during the 
first 90 minutes of exercise was not different between high 
and low carbohydrate (glycogen) trials. In fact, glucose up-
take was reduced in the low carbohydrate trial (low muscle 
glycogen) after 120 minutes of exercise, likely owing to the 
low systemic glucose availability (161). However, the effects 
of skeletal muscle glycogen concentration are difficult to iso-
late from the confounding effects of prior exercise and dietary 
manipulation, including altered circulating metabolites and 
hormones. Therefore, the influence of glycogen on exercise-
induced glucose uptake remains controversial.

Contraction of skeletal muscle is initiated by Ca2+ release 
from the sarcoplasmic reticulum. In addition to initiating 
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contraction, elevated Ca2+ concentrations are sensed by 
CAMKs. The transduction of signals through this cascade 
are mediated by phosphorylation. Exercise increases the 
autophosphorylation of CAMKII on Thr 286, which is 
highly correlated with CAMKII activity in human skeletal 
muscle (162-164), and on a number of additional phospho-
sites on various CAMKII subunits (107, 108). The activa-
tion of CAMKII may be necessary for contraction-induced 
glucose uptake. Inhibition of CAMKII reduces contraction-
induced glucose uptake and GLUT4 translocation (165-
167). Furthermore, inhibition of calmodulin and Ca2+/
calmodulin-dependent protein kinase kinase (CAMKK), an 
upstream kinase of CAMKII, impairs contraction-induced 
glucose uptake (168, 169), an effect that may be partially 
mediated by reduced CAMKK phosphorylation of AMPK 
(166, 170). CAMKII- and AMPK-mediated glucose uptake 
are independent but not additive, suggesting a downstream 
convergence of these pathways (167). Indeed, similarly to 
AMPK, knockdown of CAMKII reduces the contraction-
induced phosphorylation of TBC1D1 on Ser 231 and 
TBC1D4 on Thr 642 (167), providing a putative mech-
anism for CAMKII-mediated GLUT4 translocation and 
glucose uptake.

Ubiquitination and Ubiquitin-like Modifications

Protein turnover is critical for quality control and cellular 
homeostasis. Degradation is under the control of autophagy 
and the ubiquitin-proteasome system, both via ubiquitin 
signaling. Ubiquitin is a small 8.6 kDa protein that can be 
attached to proteins, principally via lysine residues. Protein 
ubiquitination is regulated by a 3-step cascade; ubiquitin 
activation by ubiquitin-activating (E1) enzymes, conjuga-
tion by ubiquitin-conjugating (E2) enzymes and ligation by 
ubiquitin-ligases (E3 ligases). In the ubiquitin-proteasome 
system the 26S proteasome recognizes, unfolds, and de-
grades short-lived proteins with K48-linked polyubiquitin 
chains. In addition, multiple other chains of ubiquitin-
ation and ubiquitin-like modifications occur, such as 
NEDDylation, allowing for a diversity of signals including 
enzyme activation and sub-cellular localization. Thus, ubi-
quitination is a major post-translational modification in the 
control of cellular homeostasis.

Dysregulation of the ubiquitin–proteasome system is 
implicated in the pathogenesis of many diseases (171), 
including type 2 diabetes (172-175). Aberrant ubiquitin-
ation in beta-cells impairs insulin secretion (176), while 
dysregulated ubiquitin–proteasome system activity in 
peripheral tissues (eg, liver and skeletal muscle) inhibits 
insulin-stimulated glucose metabolism (174), mitochon-
drial function (177), and muscle mass (178). Using 2-di-
mensional difference gel electrophoresis mass spectrometry 

we have identified dysregulated ubiquitin–proteasome 
system proteins within primary myotubes from individ-
uals with type 2 diabetes, such as the proteasomal subunits 
alpha 1 (PSMA1), alpha 6 (PSMA6), and beta 2 (PSMB2) 
(179). Furthermore, siRNA silencing of PSMA1, PSMA6, 
and PSMB2 and proteasomal inhibition in human primary 
myotubes impaired basal and insulin-stimulated glucose 
incorporation into glycogen, recapitulating the diabetic 
phenotype (179). Indeed, there is growing evidence for the 
regulatory role of ubiquitination in the insulin signaling 
pathway (172). For example, INSR is ubiquitinated by mul-
tiple E3 ligases resulting in a diversity of signals mediating 
receptor internalization as well as proteasomal and lyso-
somal degradation (174, 180-182). Consequently, the meta-
bolic role of several ligases and deubiquitinases has been 
investigated. For example, skeletal muscle overexpression 
of tripartite motif-containing protein 72 (MG53) induces 
insulin resistance via the degradation of INSR and IRS1 
(174), while kelch-like ECH-associated protein 1 (KEAP1) 
knockdown stabilizes nuclear factor erythroid 2–related 
factor 2 (NRF2) and activates the NRF2 gene program, 
opposing the development of type 2 diabetes (175).

Acute endurance exercise alters proteasome activity and 
the skeletal muscle ubiquitinome (183, 184). Exhaustive 
high-intensity cycling activates the 26S proteasome through 
PKA-mediated phosphorylation of 26S proteasome non-
ATPase regulatory subunit 11 (PSMD11) on Ser 14, which 
leads to a reduction in global ubiquitination (108, 183, 184) 
as damaged proteins are degraded. CAMKII can also regu-
late proteasomal activity via phosphorylation of 26S prote-
asome regulatory subunit 8 (PSMC5), albeit in HEK293T 
cells (185), providing an additional hypothetical avenue of 
contraction-regulated proteasomal activation. Furthermore, 
these data indicate the interplay between phosphorylation 
and ubiquitination in controlling protein degradation.

The effect of high-intensity exercise (~10 minutes of 
cycling at 77% to 88% Wmax to exhaustion) on ubiqui-
tination and ubiquitin-like modifications in skeletal muscle 
was investigated by enrichment of K-GG (lysine-glycine/
glycine)–modified peptides followed by mass spectrometry 
(184). During digestion by trypsin, ubiquitin and ubiquitin-
like modifications are cleaved at their initial arginine, 
leaving a K-GG remnant on the modified peptide, which 
can be enriched by immunoprecipitation and detected by 
mass spectrometry (186). This poses a unique challenge 
when studying ubiquitination and ubiquitin-like modifi-
cations in this manner as the specific type of modification 
(eg, ubiquitin, NEDD8, or ISG15) cannot be discriminated, 
nor can chain length or branching be determined. Of the 
1536 quantified K-GG-modified sites, 391 were regulated 
immediately after exercise (275 downregulated and 116 
upregulated), with all sites returning to pre-exercise levels 
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within 2 hours of recovery (184). Ubiquitin itself displayed 
site-specific regulation following exercise, with K-GG mo-
tifs decreased on K6, K11, K29, K48, and K63, while K27 
increased, suggesting that exercise may differentially regu-
late specific ubiquitin chains (184).

Enriched within the proteins with regulated K-GG sites 
were proteins related to glycolysis (184). To illuminate how 
ubiquitin and ubiquitin-like modifications may regulate 
glucose homeostasis we reinterrogated this dataset with a 
specific focus on glucose metabolism and insulin signaling. 
INSR is ubiquitinated on Ser 1057 in human skeletal 
muscle, although this was not quantified sufficiently to 
assess the effect of exercise on this modification. The 
glycolytic proteins with exercise-regulated ubiquitination 

included fructose biphosphate aldolase a (ALDOA), beta-
enolase (ENO3), glyceraldehyde-3-phosphate dehydro-
genase (GAPDH), phosphoglycerate mutase 1 (PGAM1), 
and phosphoglycerate mutase 1 (PGAM2) (Fig. 4). Of the 
regulated sites, ubiquitination was typically downregulated 
on these proteins, pointing towards a stabilization of glyco-
lytic enzymes during high-intensity exercise. Aldolase also 
plays a regulatory role in GLUT4 translocation (187). 
Aldolase interacts with GLUT4 in 3T3L1 adipocytes, regu-
lating the interaction between GLUT4 and filamentous 
actin and consequently insulin-stimulated GLUT4 exo-
cytosis (187). Furthermore, calcium promotes the binding 
of aldolase to the cytoskeleton in skeletal muscle (188). 
Deubiquitination of glycolytic enzymes including ALDOA 
and GAPDH is mediated by joshepin-2 in cancer cells, 
which stabilizes these enzymes and promotes glycolysis 
(189). However, whether joshepin-2 is responsible for the 
deubiquitination of glycolytic enzymes during exercise re-
mains unknown. Future investigations should delineate the 
specific ubiquitin and/or ubiquitin-like modifications on 
glycolytic enzymes that are regulated by exercise, as well as 
the ligases and/or deubiquitinating enzymes that mediate 
these effects.

AMPKα2 is ubiquitinated by the E3 ligases MG53 and 
E3 ubiquitin-protein ligase makorin-1 (MKRN1) leading 
to degradation (190, 191). Ubiquitination of AMPKα 
is increased in skeletal muscle of obese mice, while high 
glucose availability induces MG53-mediated degradation 
of AMPKα (190). Stabilization of AMPK via knockout 
of MKRN1 increases glucose uptake in mouse embry-
onic fibroblasts, while MKRN1 knockout mice display 
resistance to high fat diet–induced metabolic syndrome 
(191). Phosphorylation of AMPKα2 on Ser 491, a site 
of autophosphorylation and the target site of p70S6K1 
(192, 193), is required for the interaction between AMPK 
and MG53, and the subsequent ubiquitin-mediated deg-
radation of AMPKα2 (190). Indeed, phosphorylation of 
AMPKα2 on Ser 491 is inhibitory in biological systems 
(190, 192). Interestingly, acute endurance exercise and 
contraction increases phosphorylation of AMPKα2 on Ser 
491 (107-109), advancing the hypothesis that AMPKα2 is 
ubiquitinated and degraded during exercise. Despite this, 
the AMPK complex was still activated following exercise 
(as assessed by the downstream phosphorylation of target 
proteins) (108), suggesting that Ser 491 either has add-
itional functions or that activating phosphorylation (Thr 
172)  outweighs inhibitory phosphorylation (Ser 491)  on 
AMPK during exercise.

Evidence is emerging for an interplay between phosphor-
ylation, ubiquitination, and NEDDylation during exercise 
(184). Global NEDDylation increases and ubiquitination 
decreases in response to exercise and forskolin-stimulated 

Figure 4. Exercise regulates the ubiquitination or ubiquitin-like modifi-
cation of glycolytic enzymes in skeletal muscle. Glycolytic enzymes are 
enriched within proteins with K-GG remnants (ubiquitin and ubiquitin-
like modifications) regulated by exercise (184). K-GG remnants on 
ALDOA, GAPDH, PGAM1, PGAM2, and ENO3 are regulated by exer-
cise. Blue ubiquitin sites represent K-GG remnants downregulated by 
exercise. Red ubiquitin sites represent K-GG remnants upregulated by 
exercise.
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PKA activation, with ubiquitination returning to base-
line within 1 to 2 hours. However, when NEDDylation 
is inhibited, ubiquitination remains depressed following 
forskolin treatment, indicating that NEDDylation is re-
quired for the activation of E3 ligases to promote ubiquitin-
ation and continued flux through the ubiquitin–proteasome 
system (184). Nonetheless, whether and indeed how this 
interplay may influence insulin sensitivity remains unclear.

Acylation

Acylation is the process of adding an acyl group to a com-
pound (eg, a protein), of which there are various forms, 
including succinylation, malonylation, palmitoylation, and 
more. The most well-studied form of protein acylation is 

acetylation. Acetylation is the reversible addition of an 
acetyl group from acetyl-coenzyme A (CoA) to an amino 
acid, the best characterized being lysine. Acetyltransferases 
catalyze the transfer of acetyl groups to the ε-amino acid 
side chain of lysine, while deacetylases remove them. 
Alternatively, acetylation can occur nonenzymatically from 
acetyl-CoA. Initially identified on histones, acetylation is 
pervasive across the proteome. In skeletal muscle, mito-
chondrial proteins, in particular those of the tricarboxylic 
cycle and the electron transport chain, make up the ma-
jority of acetylated proteins and also show elevated acetyl-
ation stoichiometry (194, 195). Furthermore, acetylation is 
sensitive to the cellular energetic state (196, 197), poten-
tially linking metabolic flux to protein function and enzyme 
activity.

Figure 5. Acetylation and palmitoylation in insulin signaling, GLUT4 translocation, and mitochondria. Acetylation and palmitoylation are apparent 
on numerous proteins in the insulin signaling cascade. Palmitoylation of GLUT4 by the palmitoyltransferase DHHC7 is critical for insulin-stimulated 
membrane translocation in adipocytes. Mitochondrial proteins are highly acetylated in skeletal muscle. Endurance exercise increases mitochondrial 
protein acetylation, including PDH, which the mitochondrial deacetylase SIRT3 opposes. Acetylation of PDH may regulate the flexibility between 
glucose and fatty acid oxidation. Exercise also increases histone acetylation, concomitant with the nuclear export of HDAC5, which may play a role 
in MEF2 activation and GLUT4 transcription.
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A regulatory role for acetylation on various components 
of the insulin signaling cascade has been reported (198) 
(Fig. 5). For example, the class I and II histone deacetylase 
inhibitor trichostatin A  increases insulin-stimulated glu-
cose uptake and glycogen synthesis in C2C12 cells via 
increased phosphorylation of INSR Tyr 1146, AKT Ser 
473, and glycogen synthase kinase-3 beta (GSK3β) Ser 
9 (199). Furthermore, insulin reduces the acetylation of 
AKT in skeletal muscle of fasted, but not fed, mice (200). 
However, acetylated peptides from proteins within the in-
sulin signaling pathways have mostly been undetectable 
via mass spectrometry-based proteomics performed in rat 
and human skeletal muscle (194, 195), which might reflect 
technical challenges in their enrichment or their low abun-
dance/absence. Conversely, proteins involved in glycolysis 
are abundantly acetylated within skeletal muscle (194, 195).

In accordance with the initial characterization of acetyl-
ation on histones, this process also plays a regulatory role 
in transcription. Acetylation of histones can regulate chro-
matin conformation and therefore accessibility of regu-
latory factors (ie, transcription factors, coactivators and 
repressors) to DNA (201). As such, acetylation is likely to 
be involved in the transcriptional control of insulin sensi-
tivity and the adaptive responses to exercise training. For 
example, dissociation of histone deacetylase 5 (HDAC5) 
from the transcription factor myocyte enhancer factor 2 
(MEF2) and the MEF2 binding domain of the GLUT4 gene 
promoter induces GLUT4 transcription in human primary 
myotubes, an effect that is regulated by AMPK-mediated 
phosphorylation of HDAC5 (202). In vivo, skeletal muscle–
specific knockout of histone deacetylase 3 (HDAC3) and 
loss of HDAC3 deacetylase activity impairs insulin sensi-
tivity, although paradoxically this occurs alongside an in-
crease in exercise capacity (203, 204). Furthermore, the 
deacetylase activity of sirtuin 1 (SIRT1), which has been 
proposed as a central regulator of mitochondrial biogen-
esis in skeletal muscle via its ability to regulate PGC1α 
cotranscriptional activity (205), is required for the insulin 
sensitizing effects of calorie restriction (206). Conversely, 
overexpression of SIRT1 does not prevent high-fat diet 
induced insulin resistance (207), while SIRT1 is also dis-
pensable for contraction-induced glucose uptake (208) and 
the mitochondrial adaptations to exercise training (209). 
Metabolism and the development of insulin resistance are 
also predominantly unaffected by the individual knockout 
of nuclear-localized acetyltransferases. For example, skel-
etal muscle-specific deletion of general control of amino 
acid synthesis protein 5 (GCN5), which opposes SIRT1 by 
transferring an acetyl moiety to PGC1α, does not influence 
the metabolic adaptations to endurance exercise training 
(210). Furthermore, skeletal muscle-specific knockout of 
E1A binding protein p300 (p300) or CREB-binding protein 

(CBP) do not influence skeletal muscle insulin sensitivity 
(211), while p300 is not required for the metabolic adapta-
tions to endurance exercise training (212). However, skel-
etal muscle-specific double knockout of p300 and CBP is 
lethal even when induced in adult mice (213), demonstrating 
both the importance of acetylation and the inherent redun-
dancy within these systems. The series of studies identifying 
no discernible phenotype with individual knockout of 
p300 and CBP, but lethality with double knockout (211-
213) also serve to highlight the experimental difficulty in 
probing these complex physiological systems.

Evidence for a role of acetylation in regulating skel-
etal muscle glucose metabolism and insulin sensitivity in 
vivo predominantly come from knockout and transgenic 
mouse models in which hyperacetylation of mitochon-
drial proteins are induced. Elevations in skeletal muscle 
acetylation can be achieved by individual and combined 
knockout of proteins controlling acetyl-CoA buffering 
(carnitine acetyltransferase; CrAT) and mitochondrial ly-
sine acetylation (sirtuin 3; SIRT3) (197). Indeed, mice with 
skeletal muscle hyperacetylation display increased suscep-
tibility to diet-induced insulin resistance (197, 214-216). 
However, this effect is independent of insulin signaling 
and GLUT4 translocation (216). The defect may lie at the 
level of glucose oxidation, which is reduced in skeletal 
muscle of SIRT3 knockout mice (217). Indeed, pyruvate 
dehydrogenase E1 component subunit alpha (PDH E1a) 
is hyperacetylated on Lys 336 and its enzyme activity is 
suppressed in SIRT3 knockout mice (217). Furthermore, 
pyruvate-linked respiration is impaired in CrAT knockout 
mice (214). By catalyzing the reaction of pyruvate to acetyl-
CoA, PDH provides the link between glycolysis and the tri-
carboxylic acid cycle, and therefore the flexibility between 
carbohydrate and fat metabolism (218). Given that the 
product of PDH activity is acetyl-CoA, it is probably un-
surprising that acetylation can mediate a negative feedback 
loop, preventing excess acetyl-CoA production from glu-
cose metabolism.

In spite of mitochondrial acetylation being linked to in-
sulin resistance (197, 214-216), we have shown that 5 weeks 
of high-intensity interval training increases acetylation within 
human skeletal muscle, predominantly within the mitochon-
dria (195). Furthermore, increased acetylation of PDH E1a 
on Lys 336 was within the top 5 most regulated acetyl sites 
with exercise training (195). As exercise training increases in-
sulin sensitivity (11-16), elevated acetylation within skeletal 
muscle is unlikely to cause insulin resistance. Rather, physio-
logical hyperacetylation of PDH E1a may play a role in the 
increased preference for fatty acid oxidation following exer-
cise training, which likely opposes the development of insulin 
resistance. Indeed, mitochondrial hyperacetylation increases 
the capacity for mitochondrial fatty acid metabolism (197).
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In contrast to chronic exercise in humans, acute ex-
ercise in rodents decreases mitochondrial acetylation in 
skeletal muscle, particularly targets of the mitochondrial 
deacetylase SIRT3 (196). Whether acute exercise regulates 
the acetylome in human skeletal muscle remains to be de-
termined. However, targeted analysis of individual acetyl 
sites suggests that, in contrast to rodents (196, 209), SIRT1 
and SIRT3 are not activated during moderate-intensity 
endurance exercise in humans, nor is pan-acetylation 
regulated by acute exercise (219). Sirtuins are an NAD+-
dependent class of protein deacetylases. The discrepancy 
in exercise-induced sirtuin activation between rodents and 
humans likely arises from differences in NAD+ flux during 
exercise. In rodents, NAD+ increases during swimming ex-
ercise (220), while skeletal muscle NAD+ content remains 
unchanged during exercise in humans (219, 221-223). 
However, acetylation of histone 3 Lys 36 is increased im-
mediately after 1 hour of moderate-to-high intensity cyc-
ling, which occurred concomitantly with a reduced nuclear 
abundance of HDAC4 and HDAC5, the latter of which 
was ubiquitinated by exercise (224). Further investigation 
into the skeletal muscle acetylome following acute exer-
cise in humans is warranted, particularly as acetylation 
is regulated by numerous NAD+-dependent and -inde-
pendent deacetylases and acetyltransferases, as well as via 
nonenzymatic mechanisms, of which many are yet to be 
investigated during exercise in human skeletal muscle.

One major consideration when assessing the con-
tribution of protein acetylation to metabolic control 
is that acetylation stoichiometry is very low, even on 
mitochondrial proteins. In the liver, median acetyl stoi-
chiometry is 0.05%, increasing to 0.11% in mitochon-
dria (225). Thus, whether a relatively modest reduction 
or a chronic doubling (median fold change) in acetyl-
ation is sufficient to alter metabolism remains question-
able. Nonetheless, physiological levels of mitochondrial 
malate dehydrogenase acetylation negatively correlate 
with its enzyme activity (196), indicating that acetyl-
ation can regulate the activity of individual metabolic 
enzymes in vivo.

In addition to acetylation, various other forms of acyl-
ation can modify lysine residues on proteins. Proteins 
can be post-translationally modified by succinylation, 
malonylation, glutarylation, and palmitoylation (226, 
227). Like acetyl-CoA, the acyl substrates for these modi-
fications (succinyl-CoA, malonyl-CoA, glutaryl-CoA, and 
palmitoyl-CoA) can be regulated by cellular energy status, 
exercise, insulin, and type 2 diabetes (228-231). As many of 
these modifications are directly related to fatty acid avail-
ability and oxidation, acylation is likely to be substantially 
disturbed in conditions of excess nutrient supply such as in 
obesity and type 2 diabetes.

The functional role of palmitoylation in the regulation of 
insulin-sensitive proteins has been explored, predominantly 
in adipocytes. Palmitoylation of cysteine residues occurs via 
reversible transfer of palmitate by palmitoyltransferases and 
removal by protein palmitoyl thioesterases. Palmitoylation 
adds a hydrophobic moiety to a protein that serves as a 
lipid anchor, aiding the membrane localization of proteins, 
thus it is of considerable interest in the context of glucose 
transport. Proteomic and targeted analyses of palmitoylated 
proteins in 3T3L1 adipocytes revealed palmitoylation of 
GLUT4, proteins involved in GLUT4 translocation (eg, 
vesicle associated membrane protein 2, TBC1D4, and ras-
related protein rab14), and related signaling cascades (eg, 
AMPKα) (226). GLUT4 palmitoylation has subsequently 
been confirmed in skeletal muscle (232). Palmitoylation 
of GLUT4 at Cys 233 by palmitoyltransferase zinc finger 
DHHC-type containing 7 (DHHC7) is critical for insulin-
stimulated membrane translocation (232, 233). Indeed, si-
lencing of DHHC7 or serine substitution of Cys 233 (that 
cannot undergo palmitoylation) ablates GLUT4 transloca-
tion in 3T3L1 and primary adipocytes (232, 233). While it is 
currently unclear whether this mechanism translates to skel-
etal muscle, the regulation of skeletal muscle palmitoylation 
in response to insulin and exercise should be of considerable 
interest owing to its demonstrated role in GLUT4 transloca-
tion in adipocytes.

Adenosine Diphosphate Ribosylation

Adenosine diphosphate (ADP) ribosylation is a post-
translational modification in which ADP ribose moieties 
are cleaved from NAD+ and covalently transferred to pro-
teins either as mono-ADP-ribosylation (MARylation) or 
poly-ADP-ribosylation (PARylation). Poly-ADP ribose 
polymerases (PARP) 1 and 2 are enzymes whose nuclear 
poly-ADP-ribosylation activity regulate energy metabolism, 
glucose homeostasis and insulin sensitivity (234-237). 

Figure 6. ADP ribosylation via the TNKS family of PARPs may regulate 
metabolism via GLUT4 translocation and inhibition PGC1α. TNKS ADP-
ribosylates the GLUT4 storage vehicle-related protein IRAP and inhib-
ition of TNKS PARP activity impairs GLUT4 translocation in adipocytes. 
Conversely, TNKS impairs skeletal muscle oxidative metabolism via 
PGC1α PARylation and degradation.
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However, as PARPs are NAD+ consumers, much of the 
metabolic adaptations resulting from altered PARP activity 
have been attributed to modulation of sirtuin activity, par-
ticularly SIRT1 (234-237), rather than ADP ribosylation per 
se. Nonetheless, ADP ribosylation is pervasive across the 
proteome and in various cellular compartments, with ADP 
ribosylation detected on proteins from various metabolic 
pathways within skeletal muscle (238, 239). Tankyrases 
(TNKSs) are a predominantly cytosolic family of PARP 
enzymes that may more directly regulate metabolism (Fig. 
6). In humans, the TNKS gene, which encodes TNKS1, lies 
within a susceptibility locus for type 2 diabetes (240), and 
TNKS gene variants are associated with early-onset obesity 
(241). Oral dosing with the TNKS inhibitor G007-LK im-
proves glucose tolerance and insulin sensitivity independ-
ently of body and fat mass in mice fed a high-fat diet (242). 
In obese diabetic db/db mice, G007-LK reduces body mass 
gain, fat mass and hepatic steatosis, which occurred along-
side increased mitochondrial protein content and fatty 
acid oxidation in skeletal muscle (243). TNKS1/2 interacts 
with, and PARylates, PGC1α in skeletal muscle, which was 
speculated to mediate the effects on energy metabolism 
(243). In adipocytes, TNKS interacts with leucyl-cistinyl 
aminopeptidase (IRAP) on GLUT4 storage vesicles, and in-
sulin induces MAPK-mediated phosphorylation of TNKS 
that increases the PARylation of IRAP (244). Furthermore, 
knockdown and inhibition of TNKS impairs GLUT4 trans-
location (245). Thus, PARylation, and in particular TNKS, 
can regulate metabolism and insulin sensitivity.

To date, investigations into the effect of exercise on ADP 
ribosylation have primarily focused upon PARylation and 
PARP1 activation. In skeletal muscle, global PARylation 
increases following electrically evoked isometric contrac-
tions in mice (246), whereas autoPARylation of PARP1 is 
unaffected by moderate-intensity cycling in humans (247). 
PARP1 protein content increases following an acute bout of 
high-intensity interval training in young healthy males (248), 
and displays a trend to increase following moderate inten-
sity exercise in a similar cohort (247). Conversely, in older 
individuals high-intensity interval training acutely decreases 
PARP1 protein content (248). Thus, while some studies have 
investigated PARylation in response to exercise this remains 
an immature field. Future studies should take advantage of 
emerging proteomic technologies to investigate how insulin 
and exercise regulate the ADP ribosylome (238, 239).

Future Directions

Despite the wealth of data collected regarding insulin signal 
transduction, and the interplay with exercise-sensitive 
cascades, the understanding of the signals that mediate 
exercise-induced glucose uptake and insulin sensitization is 

limited. Indeed, the identity of the signals that mediate glu-
cose uptake during exercise remain unclear. Furthermore, 
the knowledge of signals transduced from insulin and 
exercise via post-translational modifications, aside from 
phosphorylation, is sparse. Future research efforts should 
be directed at decoding the diversity of ubiquitin and 
ubiquitin-like signals on metabolic enzymes, transporters, 
and signaling proteins. In addition, how fluxes in acyl-
metabolites regulate protein acylation and consequently 
metabolism during exercise is of considerable interest, par-
ticularly in the context of palmitoylation and GLUT4 trans-
location. Furthermore, while the functional implications of 
canonical post-translational modifications in insulin- and 
exercise-sensitive signaling cascades are typically well char-
acterized (for example phosphorylation on AKT Thr 308 
and Ser 473, AMPK Thr172, and CAMKII Thr 286), little is 
known about the majority of insulin- and exercise-sensitive 
post-translational modifications. Exercise alone regulates 
over 1000 phospho-sites, nearly 400 ubiquitin-sites, and 
nearly 300 acetyl-sites (108, 184, 195). To truly understand 
how insulin and exercise induce glucose uptake in skeletal 
muscle, it is important to expand the understanding of the 
functional roles of post-translational modifications over 
and above canonical sites. Indeed, an understanding of the 
wider regulatory signals that control glucose homeostasis 
may lead to the development of new therapeutic targets.

Technical advances are enabling proteome-wide in-
vestigations of post-translational modifications (90). 
Nonetheless, skeletal muscle remains a challenging tissue 
for proteomic analyses, with the high dynamic range of 
protein abundance within skeletal muscle compromising 
quantification depth (249). However, advancing mass 
spectrometry technologies, emerging new acquisition 
methods, improving quantification algorithms, and the in-
creased availability of effective enrichment techniques for 
a swathe of post-translational modifications (250-254) 
are collectively providing a powerful platform to study 
diverse signaling cascades and their responses to physio-
logical stimuli on an “omics” scale (108, 184, 195-197, 
238). Future studies should leverage these approaches to 
investigate the skeletal muscle landscape of previously 
underinvestigated post-translational modifications, as well 
as to provide multi-omic insights into the interplay between 
post-translational modifications, such as between phos-
phorylation and ubiquitination.

Owing to the nascent nature of techniques to study 
proteome-wide post-translational modifications, the wealth 
of data related to global changes in post-translational 
modifications in response to exercise stems from only a 
small number of studies (108, 184, 195, 196). This rep-
resents a limitation in terms of the diversity of the parti-
cipants and the range of exercise interventions studied. 
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Specifically, proteomic data into post-translational modi-
fications following acute (phosphorylation and ubiquitin-
ation) or chronic (acetylation) exercise in humans currently 
arise from only 3 studies and a small number of male par-
ticipants (108, 184, 195). Furthermore, the proteome-wide 
modifications that result from exercise other than acute 
high-intensity exhaustive cycling (108, 184) or chronic 
high-intensity interval training (195) remain unknown. 
Future studies should expand the mapping of exercise-
induced post-translational modifications by investigating 
a range of exercise modalities, intensities, durations, and 
intermittency of exercise, as well as individuals of different 
ages, sex, race, and at various stages of metabolic disease 
development.

Conclusions

Exercise and skeletal muscle have a central role in pro-
moting whole-body insulin sensitivity and opposing the 
development of type 2 diabetes. Exercise increases glucose 
uptake and insulin sensitivity through a range of mech-
anisms, though principally via GLUT4 translocation. 

A  complex network of signals converge and interact to 
regulate glucose metabolism and insulin sensitivity in re-
sponse to exercise (Fig. 7). Indeed, exercise regulates thou-
sands of post-translational modifications on hundreds of 
proteins, though the functional relevance of such modifi-
cations is not always known. The field is poised to decode 
how numerous forms of post-translational modifications 
confer exercise-induced signals to modulate glucose up-
take and insulin sensitivity. Further mapping of the prote-
omic and proteome-wide post-translational modification 
landscape will provide additional clarity into mechanisms 
orchestrating the development of peripheral insulin resist-
ance and the adaptive responses to exercise.
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