
 1

Fast Bias-Removed Thêo1 Calculation with R

W.J. Riley

Hamilton Technical Services

Beaufort, SC 29907 USA

Rev. A June 28, 2020

• Introduction

This document describes a fast bias-removed Thêo1 calculation (ThêoBR) for the R statistical

computing environment [1]. Some information about using R for frequency stability analysis will be

found in Reference [2]. Thêo1 is an advanced statistic for analyzing frequency stability that provides

results out to 75% of the phase data record length [3]. Some background about the evolution of the

Thêo1, ThêoBR, and ThêoH statistics is given in Appendix 1. The ThêoBR calculation is implemented

in C++ and is called from R using the Rcpp package [4]. It uses the fast Lewis recursive Thêo1

algorithm [5] along with the Taylor and Howe fast ThêoBR method [6]. Data sets of tens of thousands

of points require only a few seconds rather than many minutes with the naive method. The calculation

includes determination of one or two-sided error bars at a selected confidence factor. Tabulation and

plotting of the results can be done within R, or an R driver function can be used for that purpose.

• ThêoBR Function

The ThêoBR function is defined as follows, and its C++ code is shown in Appendix 2.

double TheoBR(NumericVector x, NumericVector t, NumericVector u,
 NumericVector l, NumericVector tau, double tau0=1.0, double cf=0.683,
 int br=1)

Arguments:
 x = NumericVector = Phase data input
 t = NumericVector = Theo1BR output
 u = NumericVector = Upper Theo1BR error bar
 l = NumericVector = Lower Theo1BR error bar
 tau = NumericVector = Tau output
 tau0 = double = Data sampling time input (default=1)
 cf = double = Confidence factor
 Negative = Single-Sided (default=0.683)
 br = integer = Bias remove flag (0=n0, 1=yes, default=1)

Return = double = Theo1 Bias Factor
 or 1.0 if no bias correction
 or 0 if error

The five NumericVectors are Rcpp data types comprise the input and output arrays, and they must be

created in R before calling the TheoBR() function. The N point x array is the phase data, and the

(N-1)/2 point t, u and l arrays are respectively the raw Thêo1 or ThêoBR, upper and lower error bar,

and tau results. The cf parameter sets the confidence factor (negative for single-sided error bars) and

the br flag determines whether the t output array is raw Thêo1 or bias-corrected ThêoBR. The phase

data array is unchanged.

 2

• ThêoBR Calculation

The TheoBR() function (see Appendix 2) begins with an “all tau” Thêo1 calculation using the Lewis

method (pasted directly from his Reference [5] paper except that the linear slope removal is moved

inline), along with the corresponding tau values. While raw Thêo1 values are not required at every tau

for the fast ThêoBR calculation, they are necessary for the fast recursive algorithm, and they can be

made available without bias correction by setting the br argument to 0. The function then uses the

Taylor and Howe fast ThêoBR method to determine the bias correction factor. That is applied to the

raw Thêo1 values, and is also used to find the dominant integer power law noise type. Next, the noise

type and number of data points is used to determine the edf, the number of equivalent chi-squared

degrees of freedom that apply. Finally, the edf and confidence factor are used to calculate the applicable

chi-square values and calculate the upper and lower error bars (the latter set equal to the nominal value

for the single-ended case). The function ends by returning the correction factor.

• Overall Analysis

The overall ThêoBR analysis is performed in R, and a typical procedure is as follows (R console

commands are shown in red – beware of using the wrong quote character):

To set up
 Install Rcpp with:
 > library(Rcpp)
 Compile with:
 > sourceCpp("TheoBR.cpp")
 after adding full path to filename e.g., "C:\\R\\Theo1BR.cpp"

To use
 Load phase data into vector x (the tau0 must be known)
 For example:
 > x<-scan("C:\\Data\\phase.dat")
 Determine the # of phase data points with > N=length(x)
 Allocate results vector t with:
 > t<-numeric((N-1)/2)
 Allocate u vector tau with:
 > u<-numeric((N-1)/2)
 Allocate l vector tau with:
 > l<-numeric((N-1)/2)
 Allocate tau vector tau with:
 > tau<-numeric((N-1)/2)

Call with
> Theo1BR(x, t, u, l, tau, tau0, cf, br)
where tau0, cf and br have defaults of 1.0, 0.683 and 1 respectively
(either set their values or use the defaults)

Display results
 > t

or create a data frame
 > r<-data.frame(tau,l,t,u)

 3

To tabulate the tau, minimum, nominal and maximum Theo1, and display it with:
 > r

or plot the results with (for example, red line, no error bars):
 > plot(tau,t,type="l",main="Theo1BR Plot",xlab="Tau",ylab="Theo1BR",
 + log="xy", col="red")

To add lines representing upper and lower error bounds:
 > points(tau, u, type="l", col="blue")
 > points(tau, l, type="l", col="blue")

To show the error bounds as a grey area on the plot:
 > plot(tau,t,type="l",main="Theo1BR Plot",xlab="Tau",ylab="Theo1BR",
 + log="xy", col="red")
 > polygon(c(tau, rev(tau)), c(u, rev(l)), col = "grey70", border = NA)
 > points(tau,t,type="l",col="red")

Other R plot formats can be used as desired. An R driver function can encapsulate the complete analysis

process (see Appendix 4).

• Examples

Note: These examples assume that the basic setup and array allocation has been done. If the results

arrays are larger than required, the extra values should be ignored.

1. Check a basic Thêo1 calculation using test values from Reference [2].

 Enter test values into x array.
> ttest<-c(1.00,2.50,0.65,-3.71,-3.30,1.08,0.50,2.20,4.68,3.29)

 Call ThêoBR() with br=0.
> TheoBR(ttest,t,u,l,tau,1.0,0.683,0)

 Examine the results in t array. The four raw Thêo1 results are for even averaging factors m

from 2 to 8. The latter agrees with the m=8 value in the paper.
> t
[1] 2.055700408 1.509405466 1.412349249 1.148758425

2. Check the results of a ThêoBR() calculation using the 1000-point test suite of Reference [6] after

conversion to 1001 points of phase data as compared with Stable32.

• Conclusions

The naïve Thêo1 algorithm that closely follows its definition is fine for determinations at a single tau or

over a tau range for data set sizes up to 10,000 points or so. For example, an “All Tau” Thêo1 analysis

for that number of phase data points takes about 20 seconds. But for 100,000 data points, the calculation

takes about 30 minutes. Similar times apply to ThêoBR and ThêoH. The new Lewis fast Thêo1

algorithm changes that, making Thêo1 runs practical for very large data sets, as demonstrated here. The

R/RStudio statistical computing environment combined with C++ via Rtools/Rcpp allows the Lewis

Thêo1 algorithm to be implemented in a convenient way.

 4

• References

1. The R Project for Statistical Computing.

2. W.J. Riley, “Frequency Stability Analysis Using R,” Hamilton Technical Services web site, June

2020. This paper has information about using R, Rcpp, and Rtools.

3. D.A. Howe and T.K. Peppler, "Very Long Term Frequency Stability: Estimation Using a Special

Purpose Statistic," Proceedings of the 2003 IEEE International Frequency Control Symposium

and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, May 2003, pp.

233-238. This paper introduced the Thêo1 statistic.

4. The easiest way to use C/C++ code in R is with the Rcpp and Rtools tool chain. Rcpp supports

calling C++ from R, while Rtools compiles C++ code under R. Rcpp.

5. B. Lewis, "Fast Algorithm for Calculation of Theo1," Submitted to IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control, May 2020. This paper presents a fast,

recursive algorithm for “all tau” Thêo1 calculations.

6. J. A. Taylor and D.A. Howe, "Fast TheoBR: A Method for Long Data Set Stability Analysis,"

IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, Vol. 57, No. 9. pp. 2091-

2094, September 2010. This paper describes the “final” method for determining the Thêo1 bias

factor.

7. D. A. Howe, J. McGee-Taylor, and T. Tassett, “TheoH Bias-Removal Method,” in 2006 IEEE

International Frequency Control Symposium Exposition, June. 2006, pp. 788–792, iSSN: 2327-

1914. This paper describes the original Thêo1 bias factor determination.

8. D.A. Howe, “ThêoH: A Hybrid, High-Confidence Statistic that Improves on the Allan

Deviation,”, Metrologia, Vol. 43, pp. S322-S331, 2006. This paper effectively summarizes the

work on devising the Thêo1, ThêoBR and ThêoH statistics.

9. D.A. Howe and T.N Tasset, “Thêo1: Characterization of Very long-Term Frequency Stability,”

Proceedings of the 2004 European Frequency and Time Forum. Thêo1 introduction in Europe,

10. W.J. Riley, Handbook of Frequency Stability Analysis, NIST Special Publication 1065, July

2008, Sections 5.2.15 – 5.2.16.

11. T.N Tasset, D.A. Howe, and D.B. Percival, “Thêo1 Confidence Intervals,” Proceedings of the

2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50
th

Anniversary Conference, pp. 725-728.

12. J.A. McGee and D.A. Howe, “ThêoH and Allan Deviation as Power-Law Noise Estimators,”

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, No. 2,

February 2007, pp. 448-452.

13. W.J. Riley, “A Test Suite for the Calculation of Time Domain Frequency Stability”, Proceedings of

the 1995 IEEE International Frequency Control Symposium, June 1995, pp. 360-366.

https://www.r-project.org/
http://www.wriley.com/Frequency%20Stability%20Analysis%20Using%20R.pdf
https://tf.nist.gov/general/pdf/1894.pdf
https://tf.nist.gov/general/pdf/1894.pdf
https://cran.r-project.org/bin/windows/Rtools/
https://arxiv.org/abs/2005.11531
https://tf.nist.gov/general/pdf/2262.pdf
https://tf.nist.gov/general/pdf/2165.pdf
https://tf.nist.gov/general/pdf/2109.pdf
https://tf.nist.gov/general/pdf/2109.pdf
https://tf.nist.gov/general/pdf/1990.pdf
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://tf.nist.gov/general/pdf/1979.pdf
https://tf.nist.gov/general/pdf/2116.pdf
https://ieeexplore.ieee.org/abstract/document/483922

 5

Appendix 1

Notes for Thêo1, ThêoBR, and ThêoH

The Thêo1 statistic was formally introduced in the May 2003 Howe and Peppler paper of Reference [3],

and by that time had been the subject of “discussions, interpretations and tests”, including

implementation into the Stable32 program. That code was created and running in early February 2003

and was revised to the paper’s “final” version by the end of April of that year. The 2003 Howe and

Peppler paper described Thêo1 as applying tor even averaging factors, m, from 10 to N-1 (where N is

the number of phase data points – the Lewis fast Thêo1 algorithm covers m from 2). It discussed its

stride of 0.75*m*tau0 where tau0 is the data sampling interval (and thus provides results out to 75% of

the record length), compared its frequency response to that of the Allan variance, AVAR, gave simple

estimates for its bias versus AVAR for various power law noise processes which ranged from factors

between 0.77 to 1.50 for ADEV, and gave empirical formulae for its equivalent number of Chi-squared

degrees of freedom (edf). Reference [9] followed with more details in 2004. Note that the Thêo1 name

generally applies to the variance, while most usage is for its square root, the Thêo1 deviation, and it is

important to keep that distinction in mind when discussing it.

Thêo1 is a biased estimator of the Allan variance for other than white FM noise, and, if the noise type is

known, one way to determine the necessary correction factor is to use an empirical formula. References

[3] and [7] included a preliminary version of that, and a later improved version is given in Reference

[10], which also supported Thêo1 calculations down to m=2. The latter appears in the Stable32 as the

Theo1Bias() function, and that Thêo1 bias expression also shown on page 30 of the Handbook of

Frequency Stability Analysis [10].

Work continued on Thêo1, particularly regarding ways to determine its bias without knowledge of the

power law noise type (or mixtures). The best approach was to simply calculate the average ratio of

Thêo1 to AVAR over a range of averaging factors. That is the method used for bias-removed ThêoBR

herein. The final approach for that is described in Reference [6].

However it is still necessary to know the dominant power law noise type in order to determine the edf

and to set Chi-squared confidence limits for a Thêo1/BR result. The Thêo1/BR bias factor can be used

to determine the noise type, and a function for that purpose was incorporated into Stable32 in December

2003 based on the T.N. Tasset & D.A. Howe paper, "A Practical Thêo1 Algorithm". Then the

expressions in Reference [2] can be used to determine the edf, and the desired single or double-sided

error bars set accordingly. Thêo1 and ThêoH actually have narrower confidence limits as discussed in

References [11] and [12].

The ThêoBR calculation in Stable32 does phase averaging to speed up the bias factor determination.

That process was the subject of several e-mails between D.A. Howe and T.N. Tassset and the author

between May 2003 and July 2004, and their (unpublished?) paper mentioned above. The July 2004

Stable32 code for automatically determining the ThêoBR bias correction includes the following notes:

/* This bias factor is the ratio of AVAR to Thêo1 */
/* To correct the Thêo1 deviation, multiply it by the sqrt */
/* of this bias factor. */
/* */
/* Thêo1 is the original biased statistic of that name. */
/* NewThêo1 was the original bias-corrected version of */
/* Thêo1, and that bias correction was found with the */
/* AutoTheo1Bias() function. This bias-corrected version */

 6

/* of Thêo1 is called ThêoBR (for "Thêo1 Bias Removed") */
/* and uses a wider range of n. When combined with Avar, */
/* ThêoBR becomes ThêoH (for "Hybrid"). */
/* */
/* The minimum # of phase data points, N, necessary to */
/* find a Thêo1 bias value is determined by the overlapping */
/* Allan variance calculation, which is carried out at a */
/* minimum averaging factor of m=9, and which must yield */
/* one analysis point whose number is given by N-2m. Thus */
/* N-2m=N-2*9=N-18=1, or N(min)=19. */

The ThêoBR bias correction function was later changed to calculate the bias correction from the longest

averaging factor downwards.

The ThêoH statistic (see Reference [8]) is a combination of the overlapping Allan and ThêoBR

deviations whereby bias-removed Thêo1 is used to extend an ADEV analysis to longer averaging

factors. The combination is used instead of a purely ThêoBR analysis mainly because the ADEV

computation is faster for the shorter averaging times where it applies. The advent of the fast Lewis

Thêo1 algorithm, which has a speed advantage factor on the order of N (even though its recursive nature

requires an “all tau” calculation), offers the possibility of replacing ThêoH with a bias-removed Thêo1

run like that described herein. In effect, the fast ThêoBR deviation becomes a better ADEV (at least for

a compete analysis run).

The reason for this discussion is to point out that, as the family of Thêo1 statistics evolved, slightly

different versions were developed from the same core Thêo1 definition that use varying averaging factor

ranges, bias correction methods and other details. The fast Lewis algorithm produces (very nearly) the

same Thêo1 estimate but the subsequent ThêoBR bias corrections and ThêoH presentations may differ

between implementations.

The R ThêoBR results are obtained essentially instantly for N=10
3
, and nearly so for N=10

4
, while the

latter takes about 20 seconds for a Stable32 “All Tau” (really “Many Tau”) Thêo1 run, thus

demonstrating the benefit of the Lewis fast algorithm. An N=10
5
 run takes a reasonable 12 seconds

for the R ThêoBR results, while it is a rather impractical 30 minutes for the naive method in Stable32.

This ThêoBR C++ code from Reference [5] does not use 128-bit integers to avoid potential numerical

issues for large data sets (see that paper for details).

It is worth emphasizing that there is nothing inherently wrong about using a biased estimator of a

statistic when it offers superior properties like wider applicable range or better confidence provided that

the bias can be removed. Similarly, there is no disadvantage for a more complicated estimator as long as

it can be implemented effectively (e.g., the fast Lewis algorithm for Thêo1).

As an aside, the R/RStudio computing environment, while it may not be ideal for most routine frequency

stability analysis, is, along with Rcpp, an attractive experimental environment for developing C++

analysis software where the interactive R user interface serves as an effective top-level means for

editing, compiling, test and evaluation.

 7

Appendix 2

C++ Code for ThêoBR with R

The following C++ code may be copied, pasted into a text editor, and saved as TheoBR.cpp in an

appropriate folder, e.g., C:\R\ on a Windows ® system, where it can be accessed from R.

/***/
/* TheoBR.cpp */
/* All Tau Bias Removed Theo1 Calculation for R */
/* Using Fast Lewis Theo1 and Taylor/Howe Fast TheoBR Methods */
/* */
/* This code calculates a bias-removed all tau version of Theo1 for R, */
/* based on the Lewis fast Theo1 algorithm and the Taylor/Howe fast Theo1 */
/* method. It is completely contained within this file. The N point phase */
/* data x[], and the (N-1)/2 point Theo1 t[], upper [u] and lower [l] error */
/* bar, and Theo1 tau[] array arguments are NumericVectors. The data */
/* sampling interval tau0 is input as a double with a default value of 1, */
/* the confidence factor as a double with default value 0.683, and the bias */
/* removal flag as an integer (0 or 1) with defalut value 1. The x[] is */
/* unchanged, t[] receives the Theo1BR results, u[] and l[] receive the */
/* upper and lower Theo1 error bar values, tau[] receives the corresponding */
/* Theo1 tau values, and the function returns a double, either the Theo1 */
/* bias factor, 0 if no correction, or an error code. The tau values are */
/* 0.75 * tau0 * even averaging factors. If the last br argument is 0, */
/* the function returns 1.0 with the raw uncorrected Theo1 values. Chi- */
/* squared error bars are calculated for each AF based on the # of data */
/* points, the Theo1 EDF, and the desired CF. A negative CF entry denotes */
/* use of single-sided confidence limits. */
/* */
/* To set up: */
/* Install Rcpp with: > library(Rcpp) */
/* Compile with: > sourceCpp(“Theo1BR.cpp”) */
/* after adding full path to filename e.g., "C:\\R\\Theo1BR.cpp" */
/* */
/* To use: */
/* Load phase data into vector x (the tau0 must be known) */
/* e.g., > x<-scan("C:\\Data\\phase.dat") */
/* Determine the # of phase data points with > N=length(x) */
/* Allocate results vector t with: > t<-numeric((N-1)/2) */
/* Allocate u vector tau with: > u<-numeric((N-1)/2) */
/* Allocate l vector tau with: > l<-numeric((N-1)/2) */
/* Allocate tau vector tau with: > tau<-numeric((N-1)/2) */
/* */
/* Call with: */
/* > Theo1BR(x, t, u, l, tau, tau0, cf, br) */
/* where tau0, cf and br have defaults of 1.0, 0.683 and 1 respectively */
/* */
/* Display results with: */
/* > t or create a data frame */
/* > r<-data.frame(t,u,l,tau) and display it with > r */

 8

/* or plot the results with (for example, red line, no error bars): */
/* > plot(tau,t,type="l",main="Theo1BR Plot",xlab="Tau",ylab="Theo1BR", */
/* + log="xy", col="red") */
/* To add lines representing upper and lower error bounds: */
/* > points(tau, u, type="l", col="blue") */
/* > points(tau, l, type="l", col="blue") */
/* */
/* To show the error bounds as a grey area on the plot: */
/* > plot(tau,t,type="l",main="Theo1BR Plot",xlab="Tau",ylab="Theo1BR", */
/* + log="xy", col="red") */
/* > polygon(c(tau, rev(tau)), c(u, rev(l)), col = "grey70", border = NA) */
/* > points(tau,t,type="l",col="red") */
/* */
/* Other R plot formats can be used as desired */
/* An R wrapper function can encapsulate the complete analysis process */
/* */
/* References: */
/* [1] B. Lewis, "W Fast Algorithm for Calculation of Theo1", Submitted */
/* to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency */
/* Control, May 2020. */
/* [2] J.A. Taylor and D.A. Howe, "Fast Theo1BR: A Method for Long Data */
/* Set Stability Analysis", IEEE Transactions on Ultrasonics, Ferro- */
/* electrics, and Frequency Control, September 2010. I */
/* */
/* Revision Record: */
/* 06/10/20 Created and running */
/* 06/16/20 Added draft error bar code */
/* 06/17/20 Editing and debugging */
/* 06/18/20 Changed name to TheoBR() */
/* 06/19/20 Added provisions for single-sided confidence limits */
/* 06/23/20 Validated and documented */
/* */
/* W.J. Riley, Hamilton Technical Services, Beaufort, SC 29907 USA © 2020 */
/* E-mail: bill@wriley.com License: MIT */
/* */
/***/

#include <Rcpp.h>
using namespace Rcpp;

/***/
/* Calculate TheoBR for a phase dataset taken at time increments tau0. The */
/* phase data are copied to a working array X, and any linear component to */
/* the dataset is removed as a first step. The raw all tau Theo1 values are */
/* are calculated using the Lewis fast algorithm of Reference [1], the */
/* corresponding tau values are written, and Theo1BR bias corrections are */
/* made per Reference [2]. Chi-squared upper and lower error bars are */
/* returned in the u and l arrays for the given confidence factor. The # of */
/* Theo1 results is (N-1)/2. This code should preferably be compiled with: */
/* -O3 -ffast-math. */
/* */
/* Arguments: */
/* x = NumericVector = Phase data input */

 9

/* t = NumericVector = Theo1BR output */
/* u = NumericVector = Upper Theo1BR error bar */
/* l = NumericVector = Lower Theo1BR error bar */
/* tau = NumericVector = Tau output */
/* tau0 = double = Data sampling time input (default=1) */
/* cf = double = Confidence factor */
/* Negative = Single-Sided (default=0.683) */
/* br = integer = Bias remove flag (0=no, 1=yes, default=1) */
/* */
/* Return = double = Theo1 Bias Factor */
/* or 1.0 is no bias correction */
/* or 0 if error */
/***/

// [[Rcpp::export]]

// The core Theo1BR computational routine was created by
// Ben Lewis of the University of Strathclyde UK
// b.lewis@strayh.ac.uk per Reference [1] above © 2020 IEEE

// TheoBR function
double TheoBR(NumericVector x, NumericVector t, NumericVector u,
 NumericVector l, NumericVector tau, double tau0=1.0, double cf=0.683,
 int br=1){

 // Find phase array size
 int N=x.size();

 // Copy phase data to working array
 double* X = new double[N];
 for(int i = 0; i < N; i++){
 X[i] = x[i];
 }

 // Initializations
 int k_max = (N-1)/2;
 int single = 0; // Flag for single-sided confidence limits
 if(cf<0){
 single=1;
 cf = -cf;
 }
 double* C1 = new double[N];
 double* C3 = new double[k_max+1];
 double* C4 = new double[k_max*2];

 // Preprocess by removing linear part
 double midpoint = ((double) (N-1))/2;
 long double sum1 = 0;
 long double sum2 = 0;
 for(int i = 0; i < N; i++){
 sum1 += X[i];
 sum2 += X[i]*(i-midpoint);
 }

 10

 double a = sum1/N;
 double b = sum2/N*12/((double)N*N-1);
 for(int i = 0; i < N; i++){
 X[i] -= a + b*(i-midpoint);
 }

 // Calculate C1
 double s=0;
 for(int i = 0; i < N; i++){
 s += (X[i]*X[i]);
 C1[i] = s;
 }

 // Main loop
 C3[0] = C1[N-1];
 for(int k=1; k<=k_max; k++){
 //Calculate C2 values
 double C2_2k = 0;
 double C2_2k_1 = 0;
 for(int j = 0; j <= N-2*k-1; j++){
 C2_2k += (X[j]*X[j+2*k]);
 C2_2k_1 += (X[j]*X[j+2*k-1]);
 }
 C2_2k_1 += (X[N-2*k]*X[N-1]);

 // Update C3, C4 in place
 for(int v=0; v < k; v++){
 C3[v] -= (X[k-1-v]*X[k-1+v])
 + (X[N-k+v]*X[N-k-v]);
 }
 for(int v = 1;v<=2*k-2;v++){
 C4[v-1] -= (X[2*k-1-v]*X[2*k-1])
 + (X[2*k-2-v]*X[2*k-2])
 + (X[N-2*k]*X[N-2*k+v])
 + (X[N-2*k+1]*X[N-2*k+1+v]);
 }
 C3[k] = C2_2k;
 C4[2*k-2] = 2*C2_2k_1 - (X[0]*X[2*k-1])
 - (X[N-2*k]*X[N-1]);
 C4[2*k-1] = 2*C2_2k;

 //Calculate un-normalised T_k from C1-C4
 double T_k = 0;
 double A0 = C1[N-1] - C1[2*k-1]
 + C1[N-2*k-1] + 2*C2_2k;
 for(int v = 1;v<=k;v++){
 double A1 = A0 - C1[v-1]
 + C1[N-1-v] - C1[2*k-v-1]
 + C1[N-1-2*k+v];
 double A2 = C3[k-v] - C4[v-1]
 - C4[2*k-v-1];
 T_k += (A1+2*A2)/v;
 }

 11

 // For testing - check for negative Theo1
 // if(T_k<0) return 0;

 // Apply normalisation to get Theo1
 // t[k-1] = (T_k/(3*(double)(N-2*k)*k*k));
 t[k-1] = (T_k/(3*(double)(N-2*k)*k*k*tau0*tau0));
 if(br==0){
 // Take square root for Theo1 deviation
 t[k-1] = sqrt(t[k-1]);
 }

 // Enter tau = averaging factor * tau0
 tau[k-1] = 0.75*2*k*tau0;
 }

 //Release memory
 delete[] C1;
 delete[] C3;
 delete[] C4;

 // Return raw Theo1 if no bias correction
 if(br==0){
 return 1.0;
 }

 // Now have raw all tau Theo1 variances and their corresponding tau values.
 // Next need to determine the bias correction factor kf using n=(0.1*N/3)-3
 // AVAR/Theo1 variance ratio averages per Ref [2] (other n's have been used,
 // e.g., (N/6)-3). The AVAR and Theo1 variance values used are for the same
 // taus, with AFs of 9+3i and 12+4i respectively where i goes from 0 to n
 // (sometimes n to 0 has been used instead). The Theo1 variance values come
 // from the t[] array with the index above.
 double kf = 0.0;
 int n = ((0.1*N)/3)-3;
 int m; // Averaging factor

 // Correction factor summation loop
 for(int i=0; i<=n; i++){
 // Calculate AVAR at AF=m=9+3i
 m=9+3*i;
 double avar = 0.0;
 for(int j=0; j<N-2*m; j++){
 // avar += pow((X[j+2*m] - 2*X[j+m] + X[j]), 2);
 avar += ((X[j+2*m] - 2*X[j+m] + X[j])*(X[j+2*m] - 2*X[j+m] + X[j]));
 }

 // Apply scale factor
 double M=m;
 avar /= (2*M*M*(N-2*M)*tau0*tau0);

 // For testing

 12

 // Rprintf("i=%d, m=%d, adev=%e, theo1 dev=%e\n",
i,m,sqrt(avar),sqrt(t[5+2*i]));

 // Divide AVAR by corresponding Theo1 variance
 // and add that to correction factor sum
 kf += (avar / t[5+2*i]);
 }
 // Divide kf sum by # ratios
 kf /= (n+1);

 // For testing
 // Rprintf("kf=%e\n", kf);

 // For testing - Force kf=1.0
 // kf=1.0;

 // Apply bias corrections and convert to Theo1 deviation.
 for(int i=0; i < k_max; i++){
 t[i] *= kf;
 t[i] = sqrt(t[i]);
 }

 // To set error bars, must determine
 // dominant power law noise type from
 // Theo1 bias correction factor, then
 // calculate Theo1 edf, and use that to
 // determine upper and lower chi-squared
 // confidence limits at (say) 68%
 // 1-sigma Confidence Factor

 // Use Theo1 bias factor to determine noise type
 // There is one bias factor value and one noise
 // type determination for the whole run
 // Thresholds for noise sorting are geometric means
 // of nominal Theo1 variance bias values

 // Note: Nominal Theo1 variance bias factors in
 // original 2003 FCS paper were:
 // WPM=0.4, FPM=0.6, WFM=1.0, FFM=1.71, RWFM=2.24
 // These are not used here

 // Error bar determination loop
 for(int i=0; i < k_max; i++){
 // Get nominal Theo1 var bias factors for various
 // power law noise types versus averaging factor
 m=i+1;
 // double mm = 0.75*m;
 double mm = 0.75*2*m;
 double bWPM = (0.09 + (0.74/pow(mm, 0.40)));
 double bFPM = (0.14 + (0.82/pow(mm, 0.30)));
 double bWFM = 1.00;
 double bFFM = (1.87 + (-1.05/pow(mm, 0.79)));
 double bRWFM = (2.70 + (-1.53/pow(mm, 0.85)));

 13

 // For testing
 // Display the nominal bias factors
 // Rprintf("mm=%d, WPM=%f, FPM=%f, WFM=%f, FFM=%f, RWFM=%f\n",
 // mm,bWPM,bFPM,bWFM,bFFM,bRWFM);

 // Find noise type
 int a; // Power law noise exponent alpha
 if(kf<sqrt(bWPM*bFPM)) a=2;
 else if(kf<sqrt(bFPM*bWFM)) a=1;
 else if(kf<sqrt(bWFM*bFFM)) a=0;
 else if(kf<sqrt(bFFM*bRWFM))a=-1;
 else a=-2;

 // Find edf
 // N is # phase data points
 // mm is tau-s the Theo1 stride = 0.75*m
 double edf; // Theo1 EDF
 if(a==2) edf=(0.86*(N+1)*(N-((4.0/3.0)*mm)))/
 ((N-mm)*(mm/(mm+1.14)));
 if(a==1) edf=((4.798*N*N)-(6.374*N*mm)+(12.387*mm))/
 (sqrt(mm+36.6)*(N-mm)*(mm/(mm+0.3)));
 if(a==0) edf=(((4.1*N+0.8)/mm)-((3.1*N+6.5)/N))*
 (pow(mm,1.5)/(pow(mm,1.5)+5.2));
 if(a==-1) edf=(2.0*N*N-1.3*N*mm-3.5*mm)/
 (N*mm)*((mm*mm*mm)/(mm*mm*mm+2.3));
 if(a==-2) edf=(4.4*N-2)/(2.9*mm)*(((4.4*N-1)*
 (4.4*N-1)-8.6*mm*(4.4*N-1)+
 11.4*mm*mm)/((4.4*N-3)*(4.4*N-3)));

 edf=((((4.1*N)+0.8)/mm)-(((3.1*N)+6.5)/N))*(pow(mm,1.5)/(pow(mm,1.5)+5.2));

 // Find inverse upper and lower Chi-squared values for given confidence
 // factor and edf with an embedded R calls.
 // See: https://teuder.github.io/rcpp4everyone_en/
 // 220_dpqr_functions.html#chi-squared-distribution
 // Set confidence interval and fill in upper and lower error bar arrays
 // Lower error bar equals nominal TheoBR for single-sided conf interval
 if(single){
 double upper = R::qchisq((cf),edf,0,0);
 u[i] = sqrt(t[i]*t[i]*edf/upper);
 l[i] = t[i];
 }
 else{ // Double-sided confidence intervals:
 double lower = R::qchisq((1-cf)/2,edf,0,0);
 double upper = R::qchisq(1-(1-cf)/2,edf,0,0);
 u[i] = sqrt(t[i]*t[i]*edf/upper);
 l[i] = sqrt(t[i]*t[i]*edf/lower);
 }

 // For testing
 // if(i==4) Rprintf("tau=%f, min=%f, nom=%f, max=%f\n", tau[i],l[i],t[i],u[i]);
 }

 14

 // Done
 return kf;
}

 15

Appendix 3

Validation of the ThêoBR() Function

1. Comparison of (raw, no bias correction, W FM) Thêo1 deviation results at m=10, tau=7.5 for 12-

point test suite of Reference [8] with that paper, Stable32, and this ThêoBR() function with br=0:

All results agree (0.6623816).

2. Comparison of (raw, no bias correction, W FM) Thêo1 deviation results for 1000-point test suite of

Reference [13] converted to 1001 points of phase data between Stable32, and this ThêoBR()

function with br=0: All results agree.

Note that these Stable32 Thêo1 results begin at AF=10

> TheoBR(x,t,u,l,tau,1.0,0.683,0)
[1] 1
> r<-data.frame(tau,t)
> r
 tau t
1 1.5 0.238606329
2 3.0 0.165495896
3 4.5 0.135919826
4 6.0 0.119990934
5 7.5 0.107573989
6 9.0 0.098141065
7 10.5 0.090859630
8 12.0 0.085040334
9 13.5 0.078842085
10 15.0 0.072762345
11 16.5 0.067875271
12 18.0 0.064020929
13 19.5 0.061185935
14 21.0 0.058311245
15 22.5 0.056095559
16 24.0 0.054258251
17 25.5 0.052309314
18 27.0 0.050993418
19 28.5 0.049763631

Stable32 Results Thru tau=28,5 ThêoBR()Results thru tau=28.5

Note that these Stable32 Thêo1 results are spaced for “Many Tau”

rather than “All Tau”

405 607.5 0.009300453
406 609.0 0.009332935
407 610.5 0.009386774
408 612.0 0.009458310
409 613.5 0.009544457
410 615.0 0.009592978
411 616.5 0.009657847
412 618.0 0.009737940
413 619.5 0.009799095
414 621.0 0.009865181
415 622.5 0.009918776
416 624.0 0.009965051
417 625.5 0.009984786
418 627.0 0.009997636
419 628.5 0.009993586
420 630.0 0.009971768
421 631.5 0.009986769
422 633.0 0.010041175
423 634.5 0.010067155
424 636.0 0.010108137
425 637.5 0.010146816
426 639.0 0.010170753
427 640.5 0.010180560
428 642.0 0.010213050
429 643.5 0.010196017
430 645.0 0.010169830
431 646.5 0.010105974
432 648.0 0.010082754
433 649.5 0.010081004
434 651.0 0.010090376
435 652.5 0.010110674
436 654.0 0.010145663
437 655.5 0.010179714
438 657.0 0.010216115
439 658.5 0.010214143
440 660.0 0.010187944
441 661.5 0.010138962
442 663.0 0.010094536
443 664.5 0.010080277
444 666.0 0.010038586
445 667.5 0.009990607
446 669.0 0.009941371
447 670.5 0.009858708
448 672.0 0.009761737
449 673.5 0.009638484
450 675.0 0.009499602
451 676.5 0.009349175
452 678.0 0.009216360

453 679.5 0.009072138
454 681.0 0.008969255
455 682.5 0.008867328
456 684.0 0.008775413
457 685.5 0.008677284
458 687.0 0.008564149
459 688.5 0.008396734
460 690.0 0.008218497
461 691.5 0.008099450
462 693.0 0.008040388
463 694.5 0.007988755
464 696.0 0.007961929
465 697.5 0.007922637
466 699.0 0.007917815
467 700.5 0.007917877
468 702.0 0.007908711
469 703.5 0.007814565
470 705.0 0.007785950
471 706.5 0.007764972
472 708.0 0.007731564
473 709.5 0.007679465
474 711.0 0.007594388
475 712.5 0.007446931
476 714.0 0.007334288
477 715.5 0.007282217
478 717.0 0.007133738
479 718.5 0.006946253
480 720.0 0.006798398
481 721.5 0.006676008
482 723.0 0.006561134
483 724.5 0.006419391
484 726.0 0.006267325
485 727.5 0.006072483
486 729.0 0.005891612
487 730.5 0.005787067
488 732.0 0.005739924
489 733.5 0.005720128
490 735.0 0.005671489
491 736.5 0.005632529
492 738.0 0.005518350
493 739.5 0.005428192
494 741.0 0.005338444
495 742.5 0.005281195
496 744.0 0.005199800
497 745.5 0.005111238
498 747.0 0.005040579
499 748.5 0.005023363
500 750.0 0.005052400

Stable32 Results at largest taus ThêoBR()Results at largest taus

 16

3. Add a test code statement to show the ADEV values used for the ThêoBR bias factor determination:

Rprintf("i=%d, m=%d, adev=%e\n", i,m,sqrt(avar)); The ADEV loop goes from

i=0 to n where n = ((0.1*N)/3)-3 = 30 and N=# phase data points (1001). The AVAR values used

for the average bias factor ratio are at m=9+3i (9 thru 99) and the Thêo1 variance are at m=12+4i (12

thru 132) which correspond to 0-bases t[] array indices 5+2i (5 thru 65). The Stable32 results are

edited to remove AFs not applicable. Note that some ThêoBR AFs (m) are missing from the

Stable32 “Many Tau” AFs. All results agree.

AF Tau # Alpha Min Sigma Sigma Max Sigma
 9 9.0000e+00 983 0 0.0000e+00 9.8404e-02 0.0000e+00
 12 1.2000e+01 977 0 0.0000e+00 7.9314e-02 0.0000e+00
 15 1.5000e+01 971 0 0.0000e+00 6.5606e-02 0.0000e+00
 18 1.8000e+01 965 0 0.0000e+00 5.6539e-02 0.0000e+00
 21 2.1000e+01 959 0 0.0000e+00 5.2900e-02 0.0000e+00
 24 2.4000e+01 953 0 0.0000e+00 5.1584e-02 0.0000e+00
 27 2.7000e+01 947 0 0.0000e+00 5.0223e-02 0.0000e+00
 30 3.0000e+01 941 0 0.0000e+00 4.8872e-02 0.0000e+00
 33 3.3000e+01 935 0 0.0000e+00 4.7873e-02 0.0000e+00
 36 3.6000e+01 929 0 0.0000e+00 4.6902e-02 0.0000e+00
 39 3.9000e+01 923 0 0.0000e+00 4.5898e-02 0.0000e+00
 42 4.2000e+01 917 0 0.0000e+00 4.4347e-02 0.0000e+00
 45 4.5000e+01 911 0 0.0000e+00 4.2290e-02 0.0000e+00
 48 4.8000e+01 905 0 0.0000e+00 4.0434e-02 0.0000e+00
 51 5.1000e+01 899 0 0.0000e+00 3.9042e-02 0.0000e+00
 54 5.4000e+01 893 0 0.0000e+00 3.8031e-02 0.0000e+00
 57 5.7000e+01 887 0 0.0000e+00 3.7372e-02 0.0000e+00
 60 6.0000e+01 881 0 0.0000e+00 3.6771e-02 0.0000e+00
 63 6.3000e+01 875 0 0.0000e+00 3.6339e-02 0.0000e+00
 66 6.6000e+01 869 0 0.0000e+00 3.6055e-02 0.0000e+00
 69 6.9000e+01 863 0 0.0000e+00 3.5795e-02 0.0000e+00
 75 7.5000e+01 851 0 0.0000e+00 3.5429e-02 0.0000e+00
 81 8.1000e+01 839 0 0.0000e+00 3.5100e-02 0.0000e+00
 87 8.7000e+01 827 0 0.0000e+00 3.4528e-02 0.0000e+00
 93 9.3000e+01 815 0 0.0000e+00 3.3540e-02 0.0000e+00
 99 9.9000e+01 803 0 0.0000e+00 3.2616e-02 0.0000e+00

> TheoBR(x,t,u,l,tau,1.0,0.683,1)
i=0, m=9, adev=9.840403e-02
i=1, m=12, adev=7.931448e-02
i=2, m=15, adev=6.560594e-02
i=3, m=18, adev=5.653874e-02
i=4, m=21, adev=5.290013e-02
i=5, m=24, adev=5.158361e-02
i=6, m=27, adev=5.022271e-02
i=7, m=30, adev=4.887241e-02
i=8, m=33, adev=4.787326e-02
i=9, m=36, adev=4.690239e-02
i=10, m=39, adev=4.589837e-02
i=11, m=42, adev=4.434722e-02
i=12, m=45, adev=4.228999e-02
i=13, m=48, adev=4.043448e-02
i=14, m=51, adev=3.904201e-02
i=15, m=54, adev=3.803126e-02
i=16, m=57, adev=3.737163e-02
i=17, m=60, adev=3.677058e-02
i=18, m=63, adev=3.633950e-02
i=19, m=66, adev=3.605453e-02
i=20, m=69, adev=3.579533e-02
i=21, m=72, adev=3.558817e-02
i=22, m=75, adev=3.542898e-02
i=23, m=78, adev=3.526787e-02
i=24, m=81, adev=3.509985e-02
i=25, m=84, adev=3.483282e-02
i=26, m=87, adev=3.452850e-02
i=27, m=90, adev=3.411870e-02
i=28, m=93, adev=3.354003e-02
i=29, m=96, adev=3.307885e-02
i=30, m=99, adev=3.261585e-02

Edited Overlapping ADEV Results for Test Suite Phase Data ThêoBR()Results

4. For this white FM noise test data, the ADEV and Thêo1 deviation values at the same tau should be

approximately the same. At the minimum =9, they are 9.8404e-2 and 9.8141e-2 respectively, close

to the same, and have an Allan/ Thêo1 variance ratio of 1.0054, very close to the expected 1. At the

maximum =99, they are 3.2616e-02 and 2.9858e-2 respectively, quite close to the same, and have

an Allan/ Thêo1 variance ratio of 1.1933, reasonably close to 1. The complete set of these values is

shown below.

i=0, m=9, adev=9.840403e-02, theo1 dev=9.814106e-02
i=1, m=12, adev=7.931448e-02, theo1 dev=8.504033e-02
i=2, m=15, adev=6.560594e-02, theo1 dev=7.276234e-02
i=3, m=18, adev=5.653874e-02, theo1 dev=6.402093e-02
i=4, m=21, adev=5.290013e-02, theo1 dev=5.831125e-02
i=5, m=24, adev=5.158361e-02, theo1 dev=5.425825e-02
i=6, m=27, adev=5.022271e-02, theo1 dev=5.099342e-02
i=7, m=30, adev=4.887241e-02, theo1 dev=4.865169e-02
i=8, m=33, adev=4.787326e-02, theo1 dev=4.682970e-02
i=9, m=36, adev=4.690239e-02, theo1 dev=4.572499e-02
i=10, m=39, adev=4.589837e-02, theo1 dev=4.402408e-02
i=11, m=42, adev=4.434722e-02, theo1 dev=4.220960e-02
i=12, m=45, adev=4.228999e-02, theo1 dev=4.070391e-02
i=13, m=48, adev=4.043448e-02, theo1 dev=3.979878e-02
i=14, m=51, adev=3.904201e-02, theo1 dev=3.874388e-02
i=15, m=54, adev=3.803126e-02, theo1 dev=3.771616e-02

i=16, m=57, adev=3.737163e-02, theo1 dev=3.697014e-02
i=17, m=60, adev=3.677058e-02, theo1 dev=3.571784e-02
i=18, m=63, adev=3.633950e-02, theo1 dev=3.454916e-02
i=19, m=66, adev=3.605453e-02, theo1 dev=3.376912e-02
i=20, m=69, adev=3.579533e-02, theo1 dev=3.313844e-02
i=21, m=72, adev=3.558817e-02, theo1 dev=3.245458e-02
i=22, m=75, adev=3.542898e-02, theo1 dev=3.178931e-02
i=23, m=78, adev=3.526787e-02, theo1 dev=3.142167e-02
i=24, m=81, adev=3.509985e-02, theo1 dev=3.088395e-02
i=25, m=84, adev=3.483282e-02, theo1 dev=3.062463e-02
i=26, m=87, adev=3.452850e-02, theo1 dev=3.030143e-02
i=27, m=90, adev=3.411870e-02, theo1 dev=2.993241e-02
i=28, m=93, adev=3.354003e-02, theo1 dev=2.993314e-02
i=29, m=96, adev=3.307885e-02, theo1 dev=2.996312e-02
i=30, m=99, adev=3.261585e-02, theo1 dev=2.985803e-02

ADEV and Thêo1 Deviation Values Used for Bias Factor Determination

 17

5. The computed Thêo1 bias factor (as returned by the ThêoBR() function) for the 1001 phase data

point test suite is 1.085666, consistent with its white FM noise type.

6. Simulated 1001-point phase data sets were generated for each of the five power law noise types, and

the resulting Thêo1 bias factors were compared with their original values as given in Reference [3],

the range of their more accurate ones that have a slight dependence on m as given in Reference [8]

for m=12 thru 132, and the bias factor results of Stable32:

Noise Type W PM F PM W FM F FM RW FM

Thêo1

Bias

Factor

Original 0.4 0.6 1.0 1.71 2.24

Accurate 0.364-0.195 0.529 -0.330 1.000 1.722 -1.848 2.515 -2.676

Stable32 0.191 0.356 0.733 1.600 1.854

Actual 0.255 0.428 1.180 1.515 2.339

There clearly is a wide variation in the bias factor results, but they all have the same general trend.

7. The edfs for setting ThêoBR confidence limits are computed with the same C code as used in

Stable32. They were verified as the same.

8. The Chi-squared values for setting single and double-sided error bars are computed using the

qchisq() R function. That function’s usage was confirmed against published tables and verified

against the Stable32 values.

9. Selected single and double-sided ThêoBR minimum, nominal, and maximum values were verified

against Stable32.

10. Regardless of all of the above checks, this program is new and it should be used with care. Please

report any problems to bill@wriley.com.

mailto:bill@wriley.com

 18

Appendix 4

R Top-Level Driver Function for a ThêoBR Run

With R, it is easy to write a top-level driver function for a ThêoBR run according to your preferences.

This is especially convenient for processing phase data files of differing sizes, and to display and/or plot

the analysis results. An example of such an R driver function is shown below:

The trun() “ThêoBR Run” function requires the x argument with the phase data array name (one

assumes that it has already been read into R with, for example, > x<-scan("C:\\Data\\phase.dat").

The trun() function has optional arguments for setting the data sampling interval and error bar

confidence interval. It always sets br=1 for bias removal and generates double-sided error bars. The

ThêoBR results are plotted along with their error bar region, and a data frame with the tabulated tau,

minimum, nominal, and maximum. The bias correction factor and estimated power law noise type

exponent are printed, and the ThêoBR results are returned invisibly. To get those results, assign the

function return to a variable name, e.g., > r<-trun(x). The x array is not changed and the tau, l,t, and

u arrays are not returned or visible to the caller. The printed bias correction factor implies the dominant

noise type. This driver function can be invoked on the R command line and saved as a trun.R file.

trun <- function(x, tau0=1.0, ci=0.683)
{
 # Allocate arrays
 N=length(x)
 t<-1:((N-1)/2)-1
 u<-1:((N-1)/2)-1
 l<-1:((N-1)/2)-1
 tau<-1:((N-1)/2)-1

 # Call TheoBR()
 cf=TheoBR(x,t,u,l,tau,tau0,ci,1)

 # Print the bias correction factor
 print(cf)

 # Crudely estimate noise type using original nominal cf
 # WPM=0.4, FPM=0.6, WFM=1.0, FFM=1.71, RWFM=2.24
 if(cf<sqrt(0.4*0.6)) a=2
 else if(cf<sqrt(0.6*1.0)) a=1
 else if(cf<sqrt(1.0*1.71)) a=0
 else if(cf<sqrt(1.71*2.24))a=-1
 else a=-2

 # Print power law noise exponent
 print(a)

 # Create data frame for results
 r<-data.frame(tau,l,t,u)

 # Get plot y scale
 top=10^(ceiling(log10(max(t))))
 bot=10^(floor(log10(min(t))))

 # Plot results
 plot(tau,t,type="l",ylim=c(bot,top),main="Theo1BR Plot",xlab="Tau",
ylab="Theo1BR",log="xy",col="red")
 polygon(c(tau, rev(tau)), c(u, rev(l)), col = "grey70", border = NA)
 points(tau,t,type="l",col="red")
 grid()

 19

 # Return data frame without printing it
 invisible(r)
}

If desired, log scale ticks can then be added to the plot with another R function and example (not used in

the following plots):

logtics <- function(x, y)
{
 # Get log scale limits
 left = floor(log10(min(x)))
 right = ceiling(log10(max(x)))
 bot = floor(log10(min(y)))
 top = ceiling(log10(max(y)))
 # Draw X-Axis Tics
 for(xx in left:right)
 {
 axis(side=1,at=(2:9)*10^xx,labels=FALSE)
 }
 # Draw Y-Axis Tics
 for(yy in bot:top)
 {
 axis(side=2,at=(2:9)*10^yy,labels=FALSE)
 }
}

This function was invoked for the 1001-point phase data test suite with the confidence interval set to

95% to emphasize the error bars. The resulting ThêoBR plot is shown below where the grey shading

denotes the 2-sigma (95%) confidence interval region. More elaborate plot formats are, of course,

possible. The ThêoBR bias factor was 1.085666 (W FM).

 20

Create and display the first few rows of the data frame with the ThêoBR results (tau, minimum, nominal

and maximum ThêoBR):

> r<-data.frame(tau,l,t,u)
> r
 tau l t u
1 1.5 0.236361199 0.24861662 0.26222248
2 3.0 0.163755974 0.17243897 0.18210164
3 4.5 0.133973395 0.14162209 0.15020401
4 6.0 0.117754145 0.12502493 0.13325995
5 7.5 0.105102919 0.11208706 0.12007305
6 9.0 0.095475220 0.10225839 0.11008707
7 10.5 0.088026711 0.09467148 0.10240968
8 12.0 0.082062725 0.08860804 0.09629674
9 13.5 0.075792700 0.08214976 0.08967987
10 15.0 0.069693163 0.07581495 0.08312496
11 16.5 0.064784317 0.07072285 0.07786934
12 18.0 0.060899059 0.06670681 0.07374865
13 19.5 0.058012463 0.06375288 0.07076398
14 21.0 0.055112441 0.06075759 0.06770129

 21

15 22.5 0.052856231 0.05844895 0.06537565

The same data set was analyzed in Stable32 which produced similar ThêoBR results.

 22

Note that this is actually a “Many Tau” plot with N=500.

 23

Appendix 5

Additional Examples

White PM wpm.phd wpm

> r<-trun(wpm)
[1] 0.2546437
[1] 2
> r
 tau l t u
1 1.5 0.390243138 0.400441682 0.411483464
2 3.0 0.215129195 0.220876926 0.227111109
3 4.5 0.150534255 0.154860301 0.159581855
4 6.0 0.121114878 0.124874884 0.129008079
5 7.5 0.098608189 0.101898904 0.105542464
6 9.0 0.085560115 0.088609398 0.092009566
7 10.5 0.076077409 0.078954987 0.082185663
8 12.0 0.065410399 0.068021821 0.070973019
9 13.5 0.059140764 0.061621141 0.064442045
10 15.0 0.054863471 0.057270859 0.060025515

 24

The ThêoBR and Stable32 Sigma functions produce the same nominal Thêo1 and bias factor for the W

PM noise, and nearly the same 1-sigma error bars.

 25

The Stable32 ThêoBR Run and Plot produce slightly different results because of a different bias factor.

 26

Flicker PM fpm.phd fpm

> r<-trun(fpm)
[1] 0.3737958
[1] 2
> r
 tau l t u
1 1.5 0.505634967 0.518849140 0.533155890
2 3.0 0.315628560 0.324061390 0.333207922
3 4.5 0.233480032 0.240189769 0.247512944
4 6.0 0.189619689 0.195506425 0.201977430
5 7.5 0.162435703 0.167856446 0.173858425
6 9.0 0.142895464 0.147988126 0.153666807
7 10.5 0.127386652 0.132204967 0.137614524
8 12.0 0.113034665 0.117547423 0.122647341
9 13.5 0.104683239 0.109073678 0.114066873
10 15.0 0.094632242 0.098784669 0.103536086

 27

The ThêoBR and Stable32 Sigma functions produce the same nominal Thêo1 and bias factor for the F

PM noise, and nearly the same 1-sigma error bars. The noise is identified as W PM rather than F PM.

 28

The Stable32 ThêoBR Run and Plot produce slightly different results because of a different bias factor.

 29

White FM wfm.phd wfm

> r<-trun(wfm)
[1] 1.180065
[1] 0
> r
 tau l t u
1 1.5 0.86912455 0.89183809 0.91642964
2 3.0 0.61581492 0.63226801 0.65011358
3 4.5 0.49274597 0.50690647 0.52236161
4 6.0 0.42333857 0.43648110 0.45092805
5 7.5 0.37369928 0.38617023 0.39997837
6 9.0 0.34062912 0.35276883 0.36630546
7 10.5 0.31630424 0.32826824 0.34170030
8 12.0 0.29588356 0.30769631 0.32104604
9 13.5 0.27515789 0.28669808 0.29982259
10 15.0 0.25982648 0.27122757 0.28427327

 30

The ThêoBR and Stable32 Sigma functions produce the same nominal Thêo1 and bias factor for the W

FM noise, nearly the same 1-sigma error bars.

 31

The Stable32 ThêoBR Run and Plot produce slightly different results because of a different bias factor.

 32

Flicker FM ffm.phd ffm

> r<-trun(ffm)
[1] 1.514804
[1] -1
> r
 tau l t u
1 1.5 1.1546793 1.1848555 1.2175267
2 3.0 0.9838932 1.0101804 1.0386924
3 4.5 0.9474265 0.9746536 1.0043700
4 6.0 0.9425662 0.9718281 1.0039944
5 7.5 0.9468058 0.9784023 1.0133866
6 9.0 0.9584494 0.9926077 1.0306966
7 10.5 0.9618735 0.9982557 1.0391023
8 12.0 0.9649376 1.0034615 1.0469977
9 13.5 0.9609765 1.0012801 1.0471169
10 15.0 0.9496628 0.9913337 1.0390156

 33

The ThêoBR and Stable32 Sigma functions produce the same nominal Thêo1 and bias factor for the F

FM noise, nearly the same 1-sigma error bars.

 34

The Stable32 ThêoBR Run and Plot produce slightly different results because of a different bias factor.

 35

Random Walk FM rwfm.phd rwfm

> r<-trun(rwfm)
[1] 2.339171
[1] -2

 tau l t u
1 1.5 1.496699 1.535814 1.578162
2 3.0 1.829164 1.878034 1.931041
3 4.5 2.099929 2.160276 2.226141
4 6.0 2.343586 2.416342 2.496320
5 7.5 2.558800 2.644191 2.738738
6 9.0 2.747783 2.845712 2.954909
7 10.5 2.914554 3.024795 3.148563
8 12.0 3.060710 3.182905 3.320998
9 13.5 3.192064 3.325940 3.478196
10 15.0 3.309724 3.454953 3.621132

 36

The ThêoBR and Stable32 Sigma functions produce the same nominal Thêo1 and bias factor for the RW

FM noise, nearly the same 1-sigma error bars.

 37

The Stable32 ThêoBR Run and Plot produce slightly different results because of a different bias factor.

 38

Simulated Rubidium Frequency Standard Noise

10 Days (86,400 points) of 10-second W and F FM data:

y()=1x10
-11

-1/2
+2x10

-13
 No Drift

 39

> trun(rb,10)
[1] 1.250157
[1] 0

 40

This basic 86,400 point All Tau Thêo1 calculation (no bias removal or error bars) in R using the Lewis

fast algorithm takes about 5 seconds, while the same calculation using the naïve method in Stable32

takes 1317 seconds (22 minutes), about x260 times longer. An All Tau Thêo1 calculation takes longer

than a ThêoH calculation because most of the points are ADEV values in the latter.

The otherwise same ThêoBR calculation and plot is nearly identical, with a Bias Factor of 1.039 (=0,

W FM noise) and calculation time (1311s), and, for practical purposes, the same as the R results.

 41

The 86,400-point ADEV calculation is practically instantaneous, the 8640-point x10 averaged ThêoH

calculation takes a brief 9 seconds, and the un-averaged ThêoH calculation is calculation takes a bit over

11 minutes. The averaging does not affect the longer tau ThêoH results, which extend to about 600,000

seconds compared with about 200,000 seconds for ADEV.

 42

Performing the un-averaged ThêoH run in Stable32 at octave tau increments takes only 20 seconds.

 43

As a final example, this plot shows the results of a 1 million point, =1s, y(1)=1.0 ThêoBR run under

R. The simulated white FM phase noise was generated in Stable32, and it took about 40 minutes to

process, representing the practical size limit to this approach, one that would be totally impractical with

the naïve algorithm. The plot shows that the instability falls somewhat faster that
-1/2

, and the analysis

identifies it as closest to F PM noise.

> trun(big)
[1] 0.7210418
[1] 1

The corresponding overlapping Allan deviation plot, shown below, is, of course, similar but covers a

smaller tau range. It takes only about 7 seconds to compute in Stable32, so would be the analysis

method of choice unless results were needed at large tau. If they were, the fast ThêoBR analysis is quite

practical, especially compared with extending the data run.

The ADEV slopes show the noise to be W FM in the short term, becoming close to F FM and then F PM

in the medium term, and tending toward F FM in the long term.

Thêo1 is known to be less prone to having oscillatory variations, but those are about the same as for

ADEV in this run, so they are probably artifacts in the simulated data.

The same 1-sigma error bars in the octave ADEV plot are corresponding larger than those for the

ThêoBR run, especially since those are for F FM rather than W FM noise.

 44

