
occam® 2
REFERENCE MANUAL

INMOS Limited

PRENTICE HALL

NEW YORK LONDON TORONTO SYDNEY TOKYO

First published 1988 by
Prentice Hall International (UK) Ltd,
66 Wood Land End, Hemel Hempstead,
Hertfordshire, HP2 4RG
A division of
Simon & Schuster International Group

© 1988 INMOS Limited

INMOS reserves the right to make changes in
specifications at any time and without notice. The
information furnished by INMOS in this publication is
believed to be accurate, however no responsibilty is
assumed for its use, nor for any infringement of patents
or other rights of third parties resulting from its use. No
licence is granted under any patents, trademarks or
other rights of INMOS.

INMOS logo, inmos, IMS and occam are registered
trademarks of the INMOS Group of Companies.

INMOS document number: 72 occ 45 01

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or trans
mitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without prior permission, in writing, from the
publisher. For permission within the United States of
America contact Prentice Hall Inc. , Englewood Cliffs,
NJ 07632.

Printed and bound in Great Britain at the University
Press, Cambridge.

CIP data are available.

1 2 3 4 5 91 90 89 88 87

ISBN 0-13-629312-3

2

3

4

5

Contents

Contents overview

Preface

Introduction

Syntax and program format

Primitive processes
1.1 Assignment
1.2 Communication

1.2.1 Input
1.2.2 Output

1.3 SKIP and STOP

Combining processes
2.1 Sequence

2.1.1 Replicated sequence
2.2 Conditional

2.2.1 Replicated conditional
2.3 Selection
2.4 Loop
2.5 Parallel

2.5.1 Replicated parallel
2.6 Alternation

2.6.1 Replicated alternation

Data types
3.1 Data types

Rounding of real values
3.1.1 Arrays

3.2 Literals
3.3 Variables

Channels
4.1 Channel type
4.2 Declaring a channel
4.3 Channel protocol

4.3.1 Simple protocols
4.3.2 Naming a protocol
4.3.3 Sequential protocol
4.3.4 Variant protocol

Input on a channel with variant protocol
Variants in alternatives

4.3.5 Anarchic protocol

Timers

3

5
5
6
6
6
7

9
9

10
11
12
13
14
15
16
18
20

23
23
24
24
25
26

29
29
29
29
30
31
31
32
33
34
35

37
5.1
5.2
5.3

Timer type
Declaring a timer
Timer input

37
37
38

vi Contents

6 Arrays and elements 39
6.1 Data type arrays 39
6.2 Channel arrays and timer arrays 40
6.3 Elements 41

7 Expressions 43
7.1 Tables 44
7.2 Operations 44

7.2.1 Arithmetic operators 45
Rounding the results of real operations 46

7.2.2 Modulo arithmetic operators 46
7.2.3 MOSTPOS and MOSTNEG (integer range) 46
7.2.4 Bit operations 47
7.2.5 Shift operations 47
7.2.6 Boolean operations 48
7.2.7 Relational operations 48

AFTER (later than) 49
7.2.8 SIZE (number of components in an array) 49

7.3 Data type conversion 49

8 Scope 53
8.1 Names in the scope of parallel constructs 54

9 Abbreviation 57
9.1 Abbreviation of expressions 57
9.2 Abbreviation of elements 58
9.3 Disjoint arrays in parallels 59

10 Procedures 61

11 Functions 65

Appendices 69

A Configuration 71
A.1 Execution on multiple processors 71
A.2 Execution priority on a single processor 71

A.2.1 Priority parallel 71
A.2.2 Priority alternation 72

A.3 Allocation to memory 73

B Ports 74

C Usage rules check list 75
C.1 Usage in parallel 75
C.2 The rules for abbreviations 75
C.3 The rules for procedures 76
C.4 The rules for value processes and functions 76

D Mapping types 77

E Invalid processes 78

Contents vii

F Rounding errors 79

G Syntax summary 80
G.1 Syntax in context 80

G.1.1 Processes 80
G.1.2 Construction 80
G.1.3 Replicator 81
G.1.4 Types 81
G.1.5 Literal 81
G.1.6 Declaration 82
G.1.7 Protocol 82
G.1.8 Timer access 82
G.1.9 Element 83
G.1.10 Expression 83
G.1.11 Abbreviation 83
G.1.12 Scope 83
G.1.13 Procedure 84
G.1.14 Function 84
G.1.15 Configuration 85

G.2 Ordered syntax 86

H Keywords and symbols 91

Character set 92

J Standard libraries 94
J.1 Multiple length integer arithmetic functions 94
J.2 Floating point functions 95
J.3 Full IEEE arithmetic functions 95
J.4 Elementary function library 96
J.5 Value, string conversion procedures 97

K Floating point functions 98
K.1 Not-a-Number values 98
K.2 Absolute 99
K.3 Square root 99
K.4 Test for Not-a-Number 99
K.5 Test for Not-a-Number or infinity 99
K.6 Scale by power of two 100
K.7 Return exponent 100
K.8 Unpack floating point value 100
K.9 Negate 101
K.10 Copy sign 101
K.11 Next representable value 101
K.12 Test for orderability 102
K.13 Perform range reduction 102
K.14 Fast multiply by two 102
K.15 Fast divide by two 103
K.16 Round to floating point integer 103

viii Contents

L Multiple length arithmetic functions 104
L.1 The integer arithmetic functions 106
L.2 Arithmetic shifts 112
L.3 Word rotation 113

M IEEE floating point arithmetic 114
M.1 ANSI/IEEE real comparison 115

N Elementary function library 116
N.1 Logarithm 117
N.2 Base 10 logarithm 117
N.3 Exponential 117
N.4 X to the power of V 117
N.5 Sine 118
N.6 Cosine 118
N.7 Tangent 119
N.S Arcsine 119
N.9 Arccosine 119
N.10 Arctangent 120
N.11 Polar Angle 120
N.12 Hyperbolic sine 120
N.13 Hyperbolic cosine 120
N.14 Hyperbolic tangent 121
N.15 Pseudo-random numbers 121

0 Value, string conversion routines 122
0.1 Integer, string conversions 122
0.2 Boolean, string conversion 123
0.3 Real, string conversion 123

P Glossary of terms 125

Inde"x 129

Preface

The occam programming language is a high level language, designed to express concurrent algorithms and
their implementation on a network of processing components.

The occam reference manual serves to provide a single reference, and definition of the language occam.
The manual describes each aspect of the language, starting with the most primitive components of an occam
program, and moving on to cover the whole language in detail. The manual is addressed to the wider audience,
including not only the computer scientist, software engineer and programmer, but also the electronics engineer
and system designer.

Programming in occam is easy. occam enables an application to be described as a collection of processes,
where each process executes concurrently, and communicates with other processes through channels. Each
process in such an application describes the behaviour of a particular aspect of the implementation, and
each channel describes the connection between each of the processes. This approach has two important
consequences. Firstly, it gives the program a clearly defined and simple structure. Secondly, it allows the
application to exploit the performance of a system which consists of many parts.

Concurrency and communication are the prime concepts of the occam model. occam captures the hier
archical structure of a system by allowing an interconnected set of processes to be regarded as a unified,
single process. At any level of detail, the programmer is only concerned with a small, manageable set of
processes.

occam is an ideal introduction to a number of key methodologies in modern computer science. occam
programs can provide a degree of security unknown in conventional programming languages such as C,
FORTRAN or Pascal. occam simplifies the task of program verification, by allowing application of mathe
matical proof techniques to prove the correctness of programs. Transformations, which convert a process
from one form to a directly equivalent form, can be applied to the source of an occam program to improve its
efficiency in any particular environment. occam makes an ideal language for specification and behavioural
description. occam programs are easily configured onto the hardware of a system or indeed, may specify
the hardware of a system.

The founding principle of occam is a minimalist approach which avoids unnecessary duplication of language
mechanism, and is named after the 14th century philosopher William of Occam who proposed that invented
entities should not be duplicated beyond necessity. This proposition has become known as "Occam's razor".

The occam programming language arises from the concepts founded by David May in EPL (Experimental
Programming Language) and Tony Hoare in CSP.(Communicating Sequential Processes). Since its concep
tion in 1982 occam has been, and continues to be under development at INMOS Ltd, in the United Kingdom,
under the direction of David May. The development of the INMOS transputer, a device which places a mi
crocomputer on a single chip, has been closely related to occam, its design and implementation. The
transputer reflects the occam architectural model, and may be considered an occam machine. occam
is the language of the transputer and as such, when used to program a single transputer or a network of
transputers, provides the equivalent efficiency to programming a conventional computer at assembler level.
However, this manual does not make any assumptions about the hardware implementation of the language
or the target system.

occam is a trademark of the INMOS group of companies.

Contents overview

The preliminaries

Preface
Introduction
Syntax and program format

The chapters

1 Primitive processes
2 Combining processes

3 Data types

4 Channels

5 Timers

6 Arrays and elements

7 Expressions

8 Scope

9 Abbreviation

10 Procedures
11 Functions

The appendices

A Configuration

B Ports
C Usage check list

D Mapping types
E Invalid processes
F Rounding errors

G Syntax summary

H Keywords and symbols
I Character set
J Libraries
K Real functions
L Long arithmetic
M Real arithmetic
N Elementary functions
0 Value/string conversion
P Glossary

THE INDEX

A few words about the language.
A few words about the book.
Describes the modified BNF used in occam syntax, and details
program format and annotation.

Describes the basic building blocks of occam programs.
Describes how smaller processes may be combined into larger
processes to make programs.
Describes the data types of values, detailing literals, variables, and the
declaration of variables.
Describes channel types, detailing the declaration of channels, channel
protocol, and the definition of channel protocol.
Describes timer types, detailing the declaration of timers, timer input,
and delayed input.
Describes arrays and elements, which allow variables, channels, and
timers to be selected from arrays.
Describes expressions in occam, arithmetic and other operators, type
conversions etc..
Describes the regions of an occam program where the names spec
ified in declarations, abbreviations, and definitions are valid.
Describes abbreviations; the means of specifying a name as an alias
for an element or expression.
Describes the method of giving names to occam processes.
Describes value processes, and the method of giving a name to value
processes.

Describes how to allocate processes to individual processors, how to
give priority to processes running on a single processor, and place
elements at absolute locations in memory.
Describes how to communicate with memory mapped devices.
A check list of the rules which apply to names used in parallel
processes, and abbreviations.
Describes how to convert the data type of a bit pattern.
Describes the three modes of existence for invalid processes.
Describes the rounding modes of the ANSI/IEEE standard.
A complete list of the occam syntax. Each syntactic object
is presented in context, and also alphabetically.
A complete list of the keywords and symbols used in occam.
The occam character set, ASCII table.
A complete list of all the procedures and functions in standard libraries.
Describes the routines available for floating point operations.
Describes the routines available for multiple length arithmetic.
Describes the routines available for floating point operations.
Describes the routines in the elementary function library.
Describes the routines to convert between values and strings.
A complete glossary of terms.
A comprehensive index

Introduction

This manual describes the programming language occam 2, which differs in a number of ways from the
prototype language occam 1. The prototype language gave programmers and designers an early introduc
tion to the concepts of concurrency in programming and design. occam 2 introduces a number of new
aspects to the language that extend both its use and facility. In particular, occam 2 introduces floating point
representation of real numbers, functions and a data typing system.

This manual was completed during 1986 and 1987 as a part of the final development of occam 2 at the
INMOS Microcomputer Centre, Bristol, UK..

Using this manual

This book is designed primarily to be used as a reference text for the programming language occam.
However, the manual should also serve as an introduction to the language for someone with a reasonable
understanding of programming languages. The primitive aspects of the language are presented at the start
of the manual, with as few forward references as possible. It is therefore possible to read the manual from
cover to cover, giving the reader an insight into the language as a whole. The manual is cross referenced
throughout, and a full index and glossary of terms are provided at the end of the manual.

Keywords and example program fragments appear in a bold program font throughout, for example:

-- example program fragment
IF

occam
programming := easy

Words which appear in italic indicate a syntactic object, but may also serve to emphasise a need to cross
reference and encourage referral to the index. Mathematical symbols and names referring to a mathematical
values use a roman italic font.

Figures are used in a number of places to illustrate examples, they use the following conventions: an arrowed
line represents a channel, a round cornered box represents a process (refered to here as a process box),
a lighter coloured process box combines a number of smaller processes. The conventions are illustrated in
figure 1.1.

a process

a channel

Figure 1.1 Figure conventions

a process

combined processes

2

Syntax and program format

Syntactic notation

The syntax of occam programs is described in a modified Backus-Naur Form (BNF). As an example, the
following shows the syntax of assignment, discussed on page 5:

assignment = variable: = expression

This means "An assignment is a variable followed by the symbol : =, followed by an expression". A vertical
bar (I) means "or", so for example:

action = assignment
input
output

is the same as
action
action
action

assignment
input
output

The meaning of this syntax is "An action is an assignment, an input, or an output".

The written structure of occam programs is specified by the syntax. Each statement in an occam program
normally occupies a single line, and the indentation of each statement forms an intrinsic part of the syntax of
the language. The following example shows the syntax for sequence discussed on page 9:

sequence = SEQ
{ process}

The syntax here means "A sequence is the keyword SEQ followed by zero or more processes, each on a
separate line, and indented two spaces beyond SEQ". Curly brackets { and} are used to indicate the number
of times some syntactic object occurs. {process } means, "zero or more processes, each on a separate
line". Similarly, {o , expression}, means "A list of zero or more expressions, separated by commas", and
{1 , expression}, means "A list of one or more expressions, separated by commas".

A complete summary of the syntax of the language is given at the end of the main body of the manual (starting
on page 80).

Continuation lines

A long statement may be broken immediately after one of the following:

an operator
a comma
a semi-colon
assignment
the keyword

Le. +, - , *, / etc ..

IS, FROM or FOR

A statement can be broken over several lines providing the continuation is indented at least as much as the
first line of the statement.

The annotation of occam programs

As the format of occam programs is significant, there are a number of rules concerning how programs are
annotated. A comment is introduced by a double dash symbol (--), and extends to the end of the line.

4

Consider the following sequence:

SEQ

Syntax and program format

This example illustrates the use of comments
A comment may not be indented less than

the following statement

SEQ -- A sequence

Comments may not be indented less than the following statement.

Names and keywords used in occam programs

Names used in occam programs must begin with an alphabetic character. Names consist of a sequence of
alphanumeric characters and dots. There is no length restriction. occam is sensitive to the case of names,
Le. Say is considered different from say. With the exception of the names of channels protocols, names
in the examples presented in this manual are all lower case. However, the following are all valid names in
occam:

PACKETS
vector6
LinkOut
NOT.A.NUMBER
transputer
terminal. in
terminalOut

All keywords are upper case (e.g. SEQ). All keywords are reserved, and thus may not be used by the
programmer. A full list of the keywords appear on page 91. The names of library routines are given in the
appendix starting on page 94.

1 Primitive processes

1.1 Assignment

occam programs are built from processes. The simplest process in an occam program is an action. An
action is either an assignment, an input or an output. Consider the following example:

x := y + 2

This simple example is an assignment, which assigns the value of the expression y + 2 to the variable x.
The syntax of an assignment is:

assignment = variable : = expression

The variable on the left of the assignment symbol (: =) is assigned the value of the expression on the right
of the symbol. The value of the expression must be of the same data type as the variable to which it is to be
assigned, otherwise the assignment is not valid.

Variables are discussed on page 26, data types are discussed on page 23, and expressions on page 43.

A multiple assignment assigns values to several variables, as illustrated in the following example:

a, b, C := x, y + 1, z + 2

This assignment assigns the values of x, y + 1 and z + 2 to the variables a, band C respectively. The
expressions on the right of the assignment are evaluated, and the assignments are then performed in parallel.
Consider the following example:

x, y := y, x

The effect of this multiple assignment is to swap the values of the variables x and y.

The syntax of multiple assignment extends the syntax for assignment:

assignment
\.'3riable.list
expression. list

variable. list : = expression. list
{1 , variable}
{1 , expression}

A list of expressions appearing to the right of the assignment symbol (: =) are evaluated in parallel, and then
each value is assigned (in parallel) to the corresponding variable of the list to the left of the symbol. The
rules which govern the names used in a multiple assignment therefore follow from those for names used
in parallel constructions (see page 54). Practically, this means that no name may appear twice on the left
side of a multiple assignment, as the name of a variable or as the name of a varaible and the name of a
subscript expression which selects a component from an array (arrays are explained in chapter 6 which starts
on page 39).

\

The expression on the right of the assignment symbol (: =) may be a function. A multiple result function can
be an expression list in a multiple assignment. Functions are discussed in chapter 11 starting on page 65.

6 Primitive processes

1.2 Communication

Communication is an essential part of occam programming. Values are passed between concurrent pro
cesses by communication on channels. Each channel provides unbuffered, unidirectional point-to-point com
munication between two concurrent processes. The format and type of communication on a channel is
specified by a channel protocol given in the declaration of a channel. Channel protocols are discussed in
chapter 4, which starts on page 29, and channel declarations are discussed in the same chapter on page 29.

Two actions exist in occam which perform communication on a channel. They are: input and output.

1.2.1 Input

An input receives a value from a channel and assigns the received value to a variable. Consider the following
example:

keyboard ? char

This simple example receives a value from the channel named keyboard and assigns the value to the
variable char. The input waits until a value is received.

The syntax of an input is:

input = channel ? variable

An input receives a value from the channel on the left of the input symbol (?), and assigns that value to
the variable on the right of the symbol. The value input must be of the same data type as the variable to
which it is assigned, otherwise the input is not valid. Variables are discussed on page 26, and data types are
discussed on page 23.

1.2.2 Output

An output transmits the value of an expression to a channel. Consider the following example:

screen ! char

This simple example transmits the value of the variable char to the channel named screen. The output
waits until the value has been received by a corresponding input.

The syntax of an output is:

output = channel ! expression

An output transmits the value of the expression on the right of the output symbol (!) to the channel named
on the left of the symbol.

Variables are discussed on page 26 and expressions on page 43.

Primitive processes

1.3 SKIP and STOP

The primitive process SKIP starts, performs no action and terminates.

The primitive process STOP starts, performs no action and never terminates.

To explain how SKIP behaves, consider the following sequence:

SEQ
keyboard ? char
SKIP
screen char

7

This sequence executes the input keyboard ? char, then executes SKIP, which performs no action.
The sequence continues, and the output screen ! char is executed. The behaviour of STOP is illustrated
by the following sequence:

SEQ
keyboard ? char
STOP
screen char

This sequence performs the input keyboard ? char before, then executes STOP, which starts but does
not terminate and so does not allow the sequence to continue. The output screen ! char is never
executed.

8

2 Combining processes

occam programs are built from processes. Primitive processes are described in the previous chapter. Larger
processes are built by combining smaller processes in a construction. A construction builds a process of one
of the following kind:

SEQ sequence
IF conditional
CASE selection
WHILE loop

PAR parallel
ALT alternation

A sequential process is built by combining processes in a sequence, conditional or selection construction.
A loop is built by combining processes in a WHILE loop. Concurrent processes are built with parallel and
alternation constructions, and communicate using channels, inputs and outputs.

The constructions SEQ, IF, PAR and ALT can all be replicated. A replicated construction replicates the
constructed process, choice or alternative a specified number of times. Details of replication applied to each
of these constructions is given in the following sections.

2.1 Sequence

A sequence combines processes into a construction in which one process follows another. Consider the
following example:

SEQ
keyboard ? char
screen ! char

This process combines two actions which are performed sequentially. The input keyboard ? char
receives a value which is assigned to the variaple char, then the following output screen ! char is
performed.

Programs are built by constructing larger processes from smaller ones. Thus a construction may contain
other constructions, as shown in the following example:

SEQ
SEQ

screen
keyboard

SEQ
screen
screen
screen

, ?'
? char

char
cr
If

This simple example combines five actions, and suggests how embedded sequences may be used to show
the hierarchical structure of a program. Embedding constructions of the same kind has no effect on the
behaviour of the process. This example is equivalent to the following:

SEQ
screen ! '?'
keyboard ? char
screen ! char
screen ! cr
screen ! If

10

The syntax for a sequence is:

2 Combining processes

sequence SEQ
{ process

The keyword SEQ is followed by zero or more processes at an indentation of two spaces.

2.1.1 Replicated sequence

A sequence can be replicated to produce a number of similar processes which are performed in sequence,
and behave like a conventional counted loop. Consider the following:

SEQ i = 0 FOR array. size
stream! data. array [i]

This process performs the output stream ! data. array [i] the number of times specified by the value
of array. size. The initial value of the index i is specified by a base value (in this case 0). In the above
sequence the value of i for the first output is 0, and for each successive output performed the value of the
index is an increment of its previous value. If array. size has the value 2, the example can be expanded
to show the effect of the replication as follows:

SEQ
stream! data. array [0]
stream! data.array[l]

Consider the following example in which the base value is 14:

SEQ i = 14 FOR 2
stream! data.array[i]

This example may also be expanded to show the value of the index for each replication, as follows:

SEQ
stream! data.array[14]
stream! data. array [15]

This example uses an array; arrays (page 39) are explained later in the manual.

The syntax for a replicated sequence extends the syntax for sequences:

sequence

replicator
base
count

SEQ replicator
process

name =base FOR count
expression
expression

The keyword SEQ and a replicator are followed by a process which is indented two spaces. The replicator
appears to the right of the keyword SEQ. The replicator specifies a name for the index (i.e. the name does
not need to be declared elsewhere). The value of the index for the first replication is the value of the base
expression, and the number of times the process is replicated is the value of the count expression at the
start of the sequence.

The index may be used in expressions but cannot be assigned to by an input or assignment. The index has a
value of type INT. The base and count expressions must also be of data type INT. Data types (page 23) are
explained later in the the manual. A negative value count expression is invalid. See appendix E, page 78 for
an explanation of how invalid processes behave. If the value of the count expression is zero, the replicated
sequence behaves like the primitive process SKIP (page 7).

2 Combining processes

2.2 Conditional

11

A conditional combines a number of processes each of which is guarded by a boolean expression. The
conditional evaluates each boolean expression in sequence; if a boolean expression is found to be true the
associated process is performed, and the conditional terminates. If none of the boolean expressions are true
the conditional behaves like the primitive process STOP (page 7), for example:

IF
x < Y

x := x + 1
x >= y

SKIP

Consider this example in detail: if x < y is true, the associated process x := x + 1 is performed,
however if the expression x < y is false, the next boolean expression x >= y is evaluated. If x >= y is
true, then the associated process SKIP is performed. In this example, one of the boolean expressions must
be true. However, consider the next example:

IF
x < Y

x := x + 1

This conditional has a single component. If the expression x < y is false then the conditional will behave
like the primitive process STOP (page 7). It is often convenient to use a form of conditional where the final
choice is guaranteed to be performed, as illustrated by the following example:

IF
x > y

order gt
x < y

order It
TRUE

order eq

The expressions x > y and x < y will each be either true or false. The final expression uses the boolean
constant TRUE which is always true, and acts as a catch-all which causes the associated process to be
performed if none of the previous boolean expressions are true. In this context TRUE may be read as
"otherwise".

The syntax for a conditional is:

conditional

choice
guarded. choice

boolean

IF
{ choice }

guarded.choice I conditional
boolean

process
expression

The keyword IF is followed by zero or more choices, indented two spaces. A choice is either a guarded
choice or another conditional. A guarded choice is a boolean expression followed by a process, indented two
spaces.

A choice which is itself a conditional has the same behaviour if "flattened out" in a similar way to the embedded
sequences shown earlier (page 9). Consider the following example:

IF
IF

x > Y
x := x + 1

TRUE
SKIP

12

This has the same effect as:

IF
x > y

x := x + 1
TRUE

SKIP

Boolean expressions (page 48) are discussed later in the manual.

2 Combining processes

2.2.1 Replicated conditional

A conditional may also be replicated, just as a sequence may (page 10). A replicated conditional constructs
a number of similar choices. The following example compares the two strings string and object:

IF
IF i = 1 FOR length

string[i] <> object[i]
found := FALSE

TRUE
found := TRUE

The first choice in this example is a replicated conditional. This has created a number of similar choices each
guarded by a boolean expression comparing a component of the array string and the array object. The
replication may be expanded to show its meaning. If length has a constant value 2, this example has the
same effect as:

IF
IF

string[l] <> object[l]
found := FALSE

string[2] <> object[2]
found := FALSE

TRUE
found := TRUE

The syntax for the replicated conditional is:

or

IF
string[l] <> object[l]

found := FALSE
string[2] <> object[2]

found .- FALSE
TRUE

found .- TRUE

conditional

replicator
base
count

IF replicator
choice

name =base FOR count
expression
expression

The keyword IF and a replicator are followed by a choice which is indented two spaces. The replicator
appears to the right of the keyword IF. The replicator specifies a name for the index. The value of the index
for the first replication is the value of the base expression, and the number of times the choice is replicated
is the value of the count expression.

The index may be used in expressions but cannot be assigned to by an input or assignment. The index is
of data type INT. The data type of the base and the count expressions must also be of type INT. Data
types (page 23) are explained later in the the manual. A negative value count expression is invalid. See
appendix E, page 78 for an explanation of how invalid processes behave. If the value of the count expression
is zero, the replicated conditional behaves like the primitive process STOP (page 7).

2 Combining processes

2.3 Selection

13

A selection combines a number of options, one of which is selected by matching the value of a selector
with the value of a constant expression (called a case expression) associated with the option. Consider the
following example:

CASE direction
up

x := x + 1
down

x := x - 1

In this example the value of direction is compared to the value of the case expressions up and down. If
direction has a value equal to up then x : = x + 1 is performed, if direction has a value equal to
down then x : = x - 1 is performed, however if no match is found, the selection behaves like the primitive
process STOP (page 7). Several case expressions may be associated with a single option, for example:

CASE letter
'a', 'e', 'i', '0', 'u'

vowel := TRUE

If letter has the value ' a', ' e', ' i', ' 0' , or ' u' , then the variable vowel is assigned the value
TRUE, otherwise the selection behaves like the primitive process STOP. Here it is useful to use a special
form of selection where one of the options is guaranteed to be performed, as illustrated below:

CASE letter
'a', 'e', 'i', '0', 'u'

vowel TRUE
ELSE

vowel FALSE

The process associated with ELSE in a selection will be performed if none of the case expressions match
the selector.

The syntax for a selection is:

selection

option

selector
case. expression

CASE selector
{ option }

{1 , case. expression}
process

ELSE
process

expression
expression

The keyword CASE is followed by zero or more options, indented two spaces. An option starts with either a
list of case expressions or the keyword ELSE. This is followed by a process, indented two spaces. All case
expressions used in a selection must have distinct constant values (that is, each must be a different value
from the other expressions used). The selector and the case expressions must be the same data type, which
may be either an integer or a byte data type. A selection can have only one ELSE option.

Constant expressions may be given a name in an abbreviation (page 57). Data types (page 23) and expres
sions (page 43) are also discussed later.

14

2.4 Loop

2 Combining processes

A loop repeats a process while an associated boolean expression is true. Consider the following example:

WHILE buffer <> eof
SEQ

in ? buffer
out ! buffer

This loop repeatedly copies a value from the channel in to the channel out. The copying continues while
the boolean expression buffer <> eof is true. The sequence is not performed if the boolean expression
is initially false.

To further illustrate how processes combine, consider the following process:

SEQ
-- initialise variables
pointer 0
finished := FALSE
found := FALSE
-- search until found or end of string
WHILE NOT finished

IF
string [pointer] <> char

IF
pointer < end.of.string

pointer := pointer + 1
pointer = end.of.string

finished := TRUE
string [pointer] = char

SEQ
found TRUE
finished TRUE

This example searches the array string for a character (char). Note how the process is built from primitive
processes and constructions. In fact it is simpler and easier to write this example using a replicated conditional
(page 12) as follows:

IF
IF i = 0 FOR string. size

string[i] = char
found := TRUE

TRUE
found := FALSE

The syntax for a loop is:

loop

boolean

WHILE boolean
process

expression

The keyword WHILE and a boolean expression are followed by a process which is indented two spaces. The
boolean expression appears to the right of the keyword WHILE.

2 Combining processes

2.5 Parallel

15

The parallel is one of the most useful constructs of the occam language. A parallel combines a number of
processes which are performed concurrently. Consider the following example:

PAR
editor (term. in, term. out)
keyboard (term. in)
screen (term. out)

This parallel combines three named processes (known as procedures, page 61), which are performed to
gether. They start together and terminate when all three processes have terminated. The editor and key
board process communicate using channel term. in, the screen and editor communicate using channel
term. out.

term. out

editor

term. in keyboard

Figure 2.1 Communicating concurrent processes

Values are passed between concurrent processes by communication on channels (page 29) using input
and output (page 6). Each channel provides unbuffered unidirectional point-to-point communication between
two concurrent processes. Figure 2.1 illustrates the channels connecting the three processes in the above
example.

The example above shows the parallel being used to tie .together the major components of a system. However,
a parallel may also be used simply to allow communication and computation to proceed together, as in the
following example:

WHILE next <> eof
SEQ

x .- next
PAR

in ? next
out ! x * x

The parallel in this example inputs the next value to be processed from one channel while the last value is
being processed and output on another.

The syntax of a parallel is similar to that of a sequence:

parallel = PAR
{ process }

The keyword PAR is followed by zero or rnore processes at an indentation of two spaces.

Parallels may be nested to form the hierarchical structure of a program. The behaviour of the following

16

process is the same as the earlier example:

PAR
editor (term. in, term. out)
PAR

keyboard (term. in)
screen (term. out)

2 Combining processes

message
message
message
message

Writing a parallel like this helps later in program development when a program must be configured to its
environment (when its processes are allocated to physical devices).

A parallel construction which specifies a priority of execution on a single processing device able to perform
several tasks (Le. a multi-tasking processor) is described in appendix A.2.1, page 71.

Rules concerning the use of names in parallels are given in chapter 8 on scope starting on page 53, and are
summarised in the appendix (page 75).

2.5.1 Replicated parallel

A parallel' can be replicated, in the same way as sequences and conditionals described earlier. A replicated
parallel constructs a number of similar concurrent processes, as shown in the following example:

PAR i = 3 FOR 4
user[i] ! message

This replication performs the four outputs concurrently, and is equivalent to

PAR
user[3]
user[4]
user[5]
user[6]

Now consider the following example:

PAR
farmer ()
PAR i = 0 FOR 4

worker (i)

farmer

PAR i 0 FOR 4

Figure 2.2 A farm of parallel processes

The replicated parallel in this example starts 4 processes, each a copy of the procedure worker, and
terminates when all four processes are finished. Figure 2.2 shows the structure of this process, which is
elaborated upon in the following section. Unlike sequence and conditional replications, the base and count
values (here 0 and 4) must be constant. The procedure worker takes a single parameter (page 61), for

2 Combining processes 17

each instance (page 61) of the procedure the value of the index i is passed. Expanding the replication
shows that the above example is equivalent to the following:

PAR
farmer ()
PAR

worker (0)
worker (1)
worker (2)
worker (3)

The syntax of a replicated parallel is similar to that of the replicated sequence shown earlier in the manual:

parallel

replicator
base
count

PAR replicator
process

name =base FOR count
expression
expression

The keyword PAR and a replicator are followed by a process, indented two spaces. The replicator appears
to the right of the keyword PAR. The replicator specifies a name for the index. The value of the index for the
first replication is the value of the base expression, and the number of times the process is replicated is the
value of the count expression.

The index may be used in expressions but cannot be assigned to by an input or assignment. A negative value
count expression is invalid (see appendix E, page 78 for an explanation of how invalid processes behave).
If the value of the count expression is zero, the parallel replication behaves like the primitive process SKIP
(page 7). The base and count expressions of a replicated PAR must be constant values.

The index has a value of type INT. The data type of the base and the count expressions must also be of
type INT. Data types (page 23) are explained later in the manual.

18

2.6 Alternation

2 Combining processes

An alternation combines a number of processes guarded by inputs. The alternation performs the process
associated with a guard which is ready. Consider the following example:

ALT
left ? packet

stream ! packet
right ? packet

stream ! packet

The effect of this example is to merge the input from the two channels named left and right, on to the
channel stream. The alternation (illustrated in figure 2.3) receives an input from either channel left or
channel right. A ready input is selected, and the associated process is performed. Consider this example
in detail. If the channel left is ready, and the channel right is not ready, then the input left ? packet is
selected. If the channel right is ready, and the channel left is not ready, then the input right ? packet
is selected. If neither channel is ready then the alternation waits until an input becomes ready. If both inputs
are ready, only one of the inputs and its associated process are performed.

ALT

..... left?packet...
left

stream! packet
stream

.....
right?packet...

right

Figure 2.3 Merging the flow of data

A boolean expression may be included in an alternation to selectively exclude inputs from being considered
ready, as shown in the following example:

ALT
left.enabled & left ? packet

stream ! packet
right ? packet

stream ! packet

This alternation places the boolean variable (page 26) left. enabled before the second input. If
left. enabled is true, the input is included for consideration by the alternation. If left. enabled
is false, the input is excluded. To clarify this behaviour, consider the following example:

Regulator:
regulate flow of work into a networked farm

SEQ
idle := processors
WHILE running

ALT
from. workers ? result

SEQ
from. farm ! result
idle .- idle + 1

(idle >= 1) & to. farm ? packet
SEQ

to.workers ! packet
idle := idle - 1

2 Combining processes 19

fr

from. worker

to.worker

Figure 2.4 Regulating the flow of data

This is an example (part of the farmer process first illustrated in figure 2.~ and fully illustrated in figure 2.4)
of a process which regulates the flow of work into a processor farm. A processor farm can be thought of as
a number of machines (worker processes), microcomputers perhaps, each able to perform some task and
output a result. The above example controls the amount of work (as packets of data) given to a farm which
consists of a network of worker processes. Work may be received by the input to. farm ? packet, and
is only considered if a member of the farm is idle (Le. (idle >= 1»). As a packet of work is sent to
the farm, the counter idle is decremented to indicate the number of worker processes which are idle. The
worker processes are sent work on the channel to. workers (see figure 2.2), and the variable idle is
decremented to keep a count of the idle machines in the farm. If a worker is busy, the work packet is passed
on until a non-busy worker is found.

The syntax for alternation is:

alternation

alternative
guarded. alternative

guard

ALT
{ alternative }

guarded. alternative I alternation
guard

process
input
boolean & input
boolean & SKIP

The keyword ALT is followed by zero or more alternatives, indented two spaces. An alternative is either a
guarded alternative or another alternation. A guarded alternative is an input, or a boolean expression to the
left of an ampersand (&) with an input or SKIP on the right. SKIP can take the place of an input in a guard
which includes a boolean expression, as shown in the following example:

ALT
in ? data

out ! data
monday & SKIP

out ! no.data

If the boolean monday is true then SKIP is treated as though it where a ready input, and may be selected
immediately. If the input in ? data is also ready, only one of the processes is performed, which process
will be performed is undefined.

Alternation with priority selection is explained in appendix A.2.1, page 72. Delayed inputs explained on
page 38 will delay before they become ready, and may be used in guards wherever an input may be used.

Inputs (page 6) and SKIP (page 7) are discussed in chapter 1. Expressions (page 43) are discussed later
in the manual. Details of boolean expressions are given on page 48.

20

2.6.1 Replicated alternation

2 Combining processes

An alternation can be replicated in the same way as sequences, conditionals and parallels described earlier
in the manual. A replicated alternation constructs a number of similar alternatives. Consider the following
example:

ALT
ALT i = 0 FOR number.of.workers

free.worker[i] & to. farm ? packet
SEQ

to.worker[i] ! packet
free.worker[i] := FALSE

ALT i = 0 FOR number.of.workers
from.worker[i] ? result

SEQ
from. farm ! result
free.worker[i] .- TRUE

ALT

ALT i = 0 FOR 2

free. worker [0]

free. worker [1]

ALT i = 0 FOR 2

to. worker [0]

to. worker [1]

from. worker [0]

from. worker [1]

Figure 2.5 A tree structured farm of parallel processes

This example presents an alternate version of the process farmer discussed in the previous section and is
illustrated in figure 2.5. This version also regulates the flow of work into the farm, but does so by maintaining an
array of booleans (free. worker) which indicate when a worker is busy. This version of the farmer process
is most suitable where several worker processes in the farm are able to input directly from the process. Work
packets are input on the channel to. farm and distributed to an array of worker processes. The completed
result is returned to the farmer process via the channel from. worker. Consider first the upper half of
this alternation. Each alternative is guarded by a boolean free. worker [i] (which has the value true if
the worker process is idle), and an input to. farm ? packet which inputs packets of work. A selected
component of this replication will, after completing the input of a packet, perform the output to . worker [i]
! packet (Le. pass work to an idle worker process), and then set the boolean free. worker [i] to
false, indicating the worker is no longer idle.

Now consider the lower half of this example, which handles the results returning from worker processes.
Each component of the replication is guarded by an input from. worker [i] ? result which receives
results from a worker process. A selected component of this replication will, after completing the input from
the worker process, perform the output from. farm ! result (Le. pass the result back to the process
which sent the work), and reset the boolean free. worker to true to indicate the worker is now idle.

A number of these farmer processes in parallel can form a tree of worker processes (see figure 2.5), enabling
large and effective farms to be built.

2 Combining processes

If number. of . workers has the value 2, the example has the same effect as:

ALT
ALT

free.worker[O] & to. farm ? packet
SEQ

to.worker[O] ! packet
free.worker[O] := FALSE

free.worker[l] & to. farm ? packet
SEQ

to.worker[l] ! packet
free. worker [1] := FALSE

21

ALT
from. worker [0] ? result

SEQ
from. farm ! result
free.worker[O] := TRUE

from. worker [1] ? result
SEQ

from. farm ! result
free.worker[l] := TRUE

As for the earlier descriptions of replication, the value of the index for the first replication is the value of the
base expression, and the number of replications is the value of the count expression. The syntax for the
replicated alternation is:

alternation

replicator
base
count

ALT replicator
alternative

name =base FOR count
expression
expression

The keyword ALT and a replicator are followed by an alternative which is indented two spaces. The replicator
appears to the right of the keyword ALT. The replicator specifies a name for the index.

The index may be used in expressions but cannot be assigned to by an input or assignment. A negative value
count expression is invalid. See appendix E, page 78 for an explanation of how invalid processes behave. If
the value of the count expression is zero, the replicated alternation behaves like the primitive process STOP
(page 7).

The index has a value of data type INT. The data type of the base and the count expressions must also be
an integer of type INT. Data types (page 23) are explained later in the the manual.

22

3 Data types
occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

This chapter describes the data type of values, also literal representations of known values, and the declaration
of variables.

Channels are discussed on page 29 and timers are discussed on page 37.

3.1 Data types

Values are classified by their data type. A data type determines the set of values that may be taken by objects
of that type.

These are the primitive data types available in occam:

BOOL Boolean values true and false.
BYTE Integer values from 0 to 255.
INT Signed integer values represented in twos complement form using the word size most effi-

ciently provided by the implementation.
INT16 Signed integer values in the range -32768 to 32767, represented in twos complement form

using 16 bits.

INT32 Signed integer values in the range _231 to (231
- 1), represented in twos complement form

using 32 bits.

INT64 Signed integer values in the range _263 to (263
- 1), represented in twos complement form

using 64 bits.
REAL32 Floating point numbers stored using a sign bit, 8 bit exponent and 23 bit fraction in ANSIIIEEE

Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. The magnitude of the value is:

(2(ex p onent-127)) * 1·fraction if 0 < exponent and exponent < 255
(2- 126

) * O·fraction if exponent =0 and fraction i 0
0 if exponent =0 and fraction =0

REAL 64 Floating point numbers stored using a sign bit, 11 bit exponent and 52 bit fraction in ANSIIIEEE
Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. The magnitude of the value is:

(2(ex p onent-1023)) * 1·fraction if 0 < exponent and exponent < 2047
(2- 1022

) * O·fraction if exponent =0 and fraction i 0
0 if exponent =0 and fraction =0

As the above list shows, all signed integer values are represented in twos complement form using the number
of bits indicated by the type. All real values are represented according to the representation specified by the
ANSIII EEE standard 754-1985, for binary floating-point arithmetic.

Objects which have values in occam have one of the following forms:

Literals
Constants
Variables
Index

Textual representation of known values
Symbolic names which have a constant value
Symbolic names which have a value, and may be assigned to by input or assignment
Replication index value

24 3 Data types

A literal is a known value (1, 2, ' H', "Hello", etc..). A variable has a value of a specified type, and
may be assigned a new value by an input or assignment. Names with a constant value are specified by an
abbreviation (page 57). Expressions (page 43) and functions (page 65) also have a data type and value.
The name specified as the index of a replication has a different value for each component of the replication.

The syntax of primitive data types is:

primitive. type = BOOL
BYTE
INT
INT16
INT32
INT64
REAL32
REAL 64

Rounding of real values

An accepted limitation in the use of floating point representations of real values is that only a finite set of all
possible real values can be represented, thus any real value will be rounded to produce a result which is
the nearest value that can be represented by the type. For example, where the type is REAL32 , the next
representable value after 1.0 is the value 1.00000019209 (to the nearest 11 digits past the decimal point),
any value lying between 1.0 and this value cannot be exactly represented using the representation of type
REAL32. Thus, values which do lie between 1.0 and 1.00000019209 which are of type REAL32 must be
rounded to one of these values.

The rounding of real numbers occurs in arithmetic expression evaluation (page 43), in explicit type conversions
(page 49), and also when literals are converted to the IEEE representation. An explanation of the IEEE
rounding modes, is given in the appendix (page 79).

3.1.1 Arrays

The previous section describes primitive types. Non-primitive data types are array types. Arrays and their
declaration are described in detail in chapter 6 on page 39. Arrays are briefly described here for completeness,
as an understanding of them is necessary in the following chapter which describes channel protocols. An
array has a number of components of the same primitive type .. An example of an array type is:

[5]INT

Arrays of this type have components each of type INT. The components are numbered 0, 1, 2, 3, 4. Arrays
may have several dimensions. The following example is an array type with two dimensions:

[4] [5] INT

An array of this type has four components each of type [5] INT. Array types with any number of dimensions
may be constructed. Here are some further examples of array types:

[n]BYTE
[3] [3] [3]REAL32
[50] BOOL

The syntax for array types is:

byte arrays with n components
arrays of real numbers, with three dimensions
arrays with boolean components.

array. type = [expression] type

The syntax for array types shows that any type can be preceded by a value (of type INT) in square brackets,
that value specifying the number of components of the type. Primitive and non-primitive types are collectively
called types (types include channels and timers, as shown later). The above syntax is recursive, and this

3 Data types

allows it to cater for multidimensional arrays, as illustrated in the examples above.

3.2 Literals

25

A literal is a textual representation of a known value, and has a data type. For example, the following are all
valid literals:

42 an integer literal in decimal
#2A an integer literal in hexadecimal
, T' a byte literal
" zen" a string literal
TRUE a boolean literal

A number (e.g. 42) representing a decimal value, or a hexadecimal value introduced by the hash symbol
(#), is an integer of type INT. A character enclosed within a pair of quotation marks (e.g. ' z') has a value
of type BYTE. A string is an array of bytes, thus the string "zen" is an array of type [3] BYTE.

Literal values of other types are expressed by stating the type explicitly, for example:

42 (BYTE)
, T' (INT)
42 (INT64)
42.0 (REAL32)
386.54 (REAL64)
587.0E-20(REAL64)
+1.0E+123(REAL64)
16777217.0 (REAL32)

a byte value
an integer value
an integer value with 64 bit representation
a 32 bit floating point value
a 64 bit floating point value
a 64 bit floating point value
a 64 bit floating point value
a 32 bit floating point value

The type of all real number literals must be stated explicitly in parentheses after the real number. A literal
of type REAL32 or REAL64 will be rounded (page 24) when the value is converted into the representation
of the type. The effect of this rounding can be seen particularly in the last example shown here. The value
16777216.0 is 224 and can be represented precisely in the representation of 32 bit real numbers with a
fraction of 23 bits. However, the value 16777217.0 is (224 + 1) and cannot be represented precisely in this
representation, and will round to the value 16777216.0. The nearest unique value of a conversion of a literal
of type REAL32 can be determined from the first 9 significant digits, and from the first 17 significant digits
of a literal of type REAL64 . The routines which perform these conversions will use all the digits given in a
literal, but further digits will have no affect on the value, for example:

54321765439.54 (REAL32)
54321765400.00 (REAL32)

has a nearest representable value of 54321766400.0
also has a nearest representable value of 54321766400.0

An explanation of the IEEE rounding is given in the appendix (page 79).

26

The syntax for literals is:

3 Data types

literal

integer
byte
real
exponent
digit
hex.digit

integer
byte
integer (type)
byte (type)
real (type)
string
TRUE 1 FALSE
digits 1 #hex.digits
, character'
digits. digits 1 digits. digits Eexponent
+digits 1 -digits
0111213141516171819
digit 1A 1B 1CID 1ElF

All characters are coded according to their ASCII code. The character A, for example, has a value 65, and so
on. A table of the ASCII character set is given in the appendix (appendix I, page 92). A character enclosed in
a pair of quotes (e.g. 'T') is a byte value, unless explicitly stated otherwise by placing a type in parentheses
to the right of the enclosing quotes.

Strings are a sequence of characters enclosed by double quotes (e.g. "zen"). The type of a string is an
array of type BYTE. Each component of the array is the ASCII value of the corresponding character in the
string. Special character sequences allow control values such as Tabulation and Carriage Return values to be
included in strings. Full details of the occam character set and special characters are given in the appendix
(page 92).

A string may be broken over several lines by terminating broken lines with an asterisk, and starting the
continuation on the following line with another asterisk. The indentation of the continuation should be no less
than the current indentation, as illustrated in the following example:

occam := "Beware the jabberwock my son, the jaws that bite, the*
* claws that catch, beware the jubjub bird, and shun the*
* frumious bandersnatch."

The literals TRUE and FALSE represent the boolean values true and false respectively.

3.3 Variables

The declaration of a variable declares the data type and name of the variable. Consider the following example:

INT n :

This declaration declares an integer variable of type INT, and identifies the variable with the name n. The
variable is not initialised, and therefore the value of the variable is unspecified until assigned to by an input
or assignment. An assignment or input to a variable is valid only if the value to be assigned is the same data
type as the variable. Here is a sequence of variable declarations:

BOOL
BYTE
INT64
REAL32

flag :
char :
big :
x :

The syntax for a declaration is :

declaration = type {1 , name}

This syntax applies also to the declaration of channels (page 29) and timers (page 37). A variable declaration

3 Data types 27

consists of the data type, and a name to identify the variable. The declaration appears on a single line, and is
terminated by a colon. Where a number of variables of the same type need to be declared, occam permits
a single declaration for several names, as shown in the following example:

REAL64 a, b, c :

The type of the declaration is determined, and then the declarations are performed. This declaration is
equivalent to the following sequence of declarations:

REAL64 a
REAL64 b :
REAL64 c :

The variable names specified in a multiple declaration are separated by commas. A line break is permitted
after a comma. Here are a few more multiple declarations:

BOOL flag, switch
INT16 i, j, k :
REAL64 x, y :
INT64 chains,

more. chains

Details of arrays and their declaration are given on page 39.

28

4 Channels

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

This chapter describes channels, the declaration of channels, and the specification of the format and data
type of communication.

Variables (page 23) and timers (page 37) are discussed elsewhere in the manual.

Channels provide unbuffered, unidirectional point-to-point communication of values between two concurrent
processes. The format and type of values passed on a channel is specified by the channel protocol. The
name and protocol of a channel are specified in a channel declaration.

4.1 Channel type

The type of a channel is:

CHAN OF protocol

As the syntax shows, channels are a primitive type, just like data types and timers:

primitive. type CHAN OF protocol

4.2 Declaring a channel

A channel is declared in just the same way as variables are declared. Consider the following example:

CHAN OF BYTE screen :

This declaration declares a channel named screen with a protocol of type BYTE. The protocol in this
example specifies that each communication on this channel must be a value of type BYTE. An output on this
channel could be:

screen! ' H'

Several channels with the same protocol can be declared together, for example:

CHAN OF BYTE screen, keyboard :

The type of the declarations is determined, and then the declarations are made.

Arrays are described in chapter 6 which starts on page 39.

4.3 Channel protocol

A channel communicates values between two concurrent processes. The format and data type of these
values is specified by the channel protocol. The channel protocol is specified when the channel is declared.
Each input and output must be compatible with the protocol of the channel used. Channel protocols enable
the compiler to check the usage of channels.

30

4.3.1 Simple protocols

4 Channels

The simplest protocols consist of a primitive data type, or an array data type. An example of a channel with
a byte protocol has already been given. A protocol with an array type can be declared in the same way, for
example:

cHAN OF [36]BYTE message :

This declaration declares a channel with a byte array protocol which is identified by the name message.
The protocol of this channel specifies that the channel is able to pass byte arrays with 36 components. For
example, consider this output:

message! "The vorpal blade went snicker-snack."

It is often desirable to have a channel that will pass arrays of values, where the number of components in the
array is not known until the output occurs. A special protocol, called a counted array protocol, enables this
kind of array communication by passing a length first, and then that number of components from the array.
A declaration for such a channel looks like this:

CHAN OF INT:: []BYTE message :

This declaration declares a channel which passes an integer value first, then that number of components
from the array. An output on this channel will look like this:

message! 16::"The vorpal blade went snicker-snack."

This has the effect of outputting the string "The vorpal blade"; the first 16 characters of the array.
The associated input could look like this:

message? len: :buffer

This input will first receive an integer value (16 in this example) which is assigned to the variable len, then
that number of components are input and assigned to the first components of the array buffer. The input
is invalid if the number of components in buffer is less than len.

All the above protocols are called simple protocols, their sy.ntax is:

simple.protocol

input
input. item

output
output. item

protocol

type
primitive. type: : [] type
channel? input.item
variable
variable : : variable
channel ! output. item
expression
expression : : expression
simple.protocol

This syntax has extended the syntax for input and output (see page 6). A simple protocol is either a data
type or a counted array as described above, and is specified by the data type of the count (which may be
either an integer or byte), followed by a double colon, square brackets (: : []), and the specifier indicating
the the type of the components.

4 Channels

4.3.2 Naming a protocol

A protocol can be given a name in a protocol definition, as shown in the following example:

PROTOCOL CHAR IS BYTE :

A channel can now be declared with the protocol CHAR, for example:

CHAN OF CHAR screen :

31

A protocol definition must be used if more complex protocols, like the sequential protocol described in the
following section are required. The syntax for protocol definition is:

definition

protocol

PROTOCOL name IS simple.protocol :
PROTOCOL name IS sequential.protocol :
name

A protocol definition defines a name for the simple protocol or sequential protocol (described in the following
section) which appears to the right of the keyword IS. A protocol definition appears on a single line, and is
terminated by a colon. The line may be broken after the keyword I S or after a semi-colon in a sequential
protocol. It is recommended that the names of protocols be uppercase.

4.3.3 Sequential protocol

Simple protocols have been discussed earlier. Sequential protocols specify a protocol for communication
which consists of a sequence of simple protocols. Consider the following example:

PROTOCOL COMPLEX IS REAL 64 ; REAL64 :

Channels declared with this protocol (CHAN OF COMPLEX) pass pairs of values. An input or output on a
channel with sequential protocol is a sequence of distinct inputs or outputs. An input on a channel with the
above protocol complex is shown below:

items? real.part; imaginary.part

Each value is input in sequence and assigned to each variable in turn. Here are some more examples of
sequential protocol definitions:

PROTOCOL DIR.ENTRY IS INT16; [14]BYTE :
PROTOCOL INODE IS INT16;INT16;INT32;INT32;INT16; [7]INT16;INT16;INT16
PROTOCOL RECORD IS INT16:: []BYTE :

Declarations of channels with these protocols would look like this:

CHAN OF DIR.ENTRY directory
CHAN OF INODE sys :
CHAN OF RECORD blocks

The syntax for sequential protocol is:

sequential.protocol
input
output

{1 ; simple.protoco/}
channel? {1 ; input. item }
channel ! {1 ; output. item }

A sequential protocol is one or more simple protocols separated by semi-colons. The communication on a
channel with a sequential protocol is valid provided the type of each item input or output is compatible with
the corresponding component of the protocol.

32

4.3.4 Variant protocol

4 Channels

BYTE
[14]BYTE
INT16
INT32; INT16:: []BYTE
INT16; BYTE:: []BYTE

It is often convenient to use a single channel to communicate messages with different formats. A variant
protocol specifies a number of possible formats for communication on a single channel. Consider the following
example:

PROTOCOL FILES
CASE

request;
filename;
word;
record;
error;
halt

This example defines a variant protocol named FILES. CASE combines a number of tags, each of which
may identify a sequential protocol. The variant protocol defined here has six variants. It is important to note
that this protocol definition defines seven new names, the name of the protocol FILES, and the names of
the six tags, request, filename, word, record, error, halt. A channel declared with this protocol
would look like this:

CHAN OF FILES to.dfs :

A communication on this channel first sends a tag to inform the receiving process of the format for the rest
of the communication. So, for example

to.dfs ! request; get.record

first sends the tag request followed by a BYTE value (get. record). Consider the output:

to.dfs ! halt

This output sends only the tag halt and according to the above variant protocol definition requires no further
output.

The syntax for a variant protocol and the associated output is:

definition

tagged.protocol

tag
output

PROTOCOL name
CASE

{ tagged.protocol }

tag
tag ; sequential.protocol
name
channel ! tag
channel ! tag ; {1 ; output.item}

In a definition of a variant protocol the name which identifies the protocol appears to the right of the keyword
PROTOCOL, this is followed at an indentation of two spaces by the keyword CASE, which in turn is followed
at a further indentation of two spaces by a number of tagged protocols. The definition of a variant protocol
is terminated by a colon, which appears on a line by itself, at the same level of indentation as the P of
the keyword PROTOCOL. A tagged protocol is either a tag by itself or a tag followed by a semi-colon, and
sequential protocol. Tags are a name like any other name, they must be distinct and are specified (that is,
brought into existence) by the variant protocol definition.

An output on a channel of variant protocol is a tag by itself or a tag followed by a number of output items
separated by semi-colons. The output is valid only if the tag and the associated output items are compatible
with one of the tagged protocols specified in the definition.

4 Channels

Input on a channel with variant protocol

33

So far only output on a channel with variant protocol has been shown. A special form of input is required
(called case input) to provide for input on channels with a variant protocol. The previous example is suggestive
of a conversation with a disc filing system, and is a reminder that channels are unidirectional. So, for a user
process to "listen to" the other side of this conversation, another channel must be declared, as shown below:

CHAN OF FILES from.dfs :

This example declares another channel with the protocol FILES. The process which outputs request;
get. record, might reasonably expect to receive a reply on a channel with this protocol. Consider a more
complete example of this conversation:

SEQ
to.dfs ! request; get.record
from.dfs ? CASE

record; rnumber; rlen::buffer
. .. do whatever

error; enumber; elen::buffer
. .. handle error

Illustrated in the above example is a case input on the channel from. dfs. This accepts a variant input with
either the tag r~cord or the tag error, any other tag would be invalid and the input would behave like the
primitive process STOP.

A special form of case input simply receives a tag from the channel named on the left of the case input
symbol (? CASE), and then compares the tag for equality with the tag of the tagged list which appears to
the right of the symbol. A tag is input, then if the tags match the process next inputs the remainder of the
tagged list, if the tags do not match the process next behaves like the primitive process STOP, for example:

from.dfs ? CASE filename; name.buffer

This process inputs a tag, if the tag is filename the input is completed, and a value assigned to the variable
name. buffer. Otherwise, no further input is performed, and the input behaves like the primitive process
STOP (page 7). A case input is valid only if the tagged lists are compatible with one of the tagged protocols
specified in the definition.

Consider the following:

PROTOCOL COMMS
CASE

packet;INT:: []BYTE
sync

CHAN OF COMMS route :
PAR

SEQ
route packet; 11::"Hello world"
R ()

SEQ
route ? CASE sync
S ()

In this example the input route ? CASE sync will behave like the primitive process STOP as the tags
do not match. The associated output will also behave like STOP, for although the output of the tag packet
succeeds, the output 11: : "Hello world" does not. In this example the procedures R () and S () will

34

not be performed. Also consider the following:

PAR
SEQ

route sync
P ()

SEQ
route ? CASE packet; length: :message
Q ()

4 Channels

Each communication of sequential protocol, or of a tagged sequential protocol is in fact a sequence of separate
communications. So, in the above example, the input route ? CASE packet; length:: message
will behave like the primitive process STOP because the tags do not match. However, the associated output
route ! sync will succeed as the output of the tag has completed, and the variant requires no further
output. Thus, the procedure (page 61) P () will be performed, and the procedure Q() will not be performed.
The syntax for case input is:

case. input

variant

tagged. list

process
input

channel? CASE
{ variant }

tagged. list
process

specification
variant
tag
tag ; {1 ; input. item }
case. input
channel? CASE tagged. list

A case input receives a tag from the channel named on the left of the case input symbol (? CASE), and then
the tag is used to select one of the variants. These appear on the following lines, indented by two spaces. A
tag is input, then if a variant with that tag is present the process next inputs the remainder of the tagged list,
and an associated process, indented a further two spaces, is performed. If no variant with that tag is found
the process next behaves like the primitive process STOP.

A case input may consist of a tagged list only, as shown in the earlier examples.

Variants in alternatives

Case inputs may also be used as an input in an alternation (chapter 2, page 18). Consider the following
example:

ALT
from.dfs ? CASE

request; query
· .. do query

error; enumber; elen: :buffer
... handle dfs error

record; rnumber; rlen::buffer
· .. accept record

from. network ? CASE
request; query

· .. do query
error; enumber; elen: :buffer

· .. handle network error
record; rnumber; rlen: :buffer

· .. accept record

This alternation accepts input from either of the two channels (from. dfs and from. network). These
inputs are explained in the previous section. This alternation could have included a mix of case inputs, and

4 Channels

the alternatives described on page 18. The syntax for case inputs in an alternative is:

35

alternative = channel? CASE
{ variant }

boolean & channel? CASE
{ variant }

A case input as an alternative is either a case input with variants as described in the earlier syntax, or such
a case input preceded by a boolean guard and an ampersand (&) to the left of the channel name. The case
input is not considered by the alternation if the boolean guard is false.

4.3.5 Anarchic protocol

In some situations it may be necessary to specify a channel protocol where the format of the protocol for some
reason cannot be defined. Such situations are rare, and are likely to occur only when communicating with
an external device such as a printer, terminal or other device controller. Such a device can be considered an
alien process where the protocol for communication with that process is dictated by the nature of the device.
A special protocol exists which allows the input and output of any format without checking. The protocol is
specified by the keyword ANY, as illustrated in the following example:

CHAN OF ANY printer :

A channel with this protocol can only input or output values of data type. The effect of an output on a channel
with the ANY protocol is that the value is mapped down into its constituent bytes, and output as an array
of bytes. An input on a channel with the ANY protocol inputs the array of bytes and converts (by retyping
conversion, see page 77) the value to the type of the receiving variable.

36

5 Timers

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

This chapter describes timers, the declaration of timers, and access to them.

Channels are discussed on page 29 and variables are discussed on page 23.

A timer provides a clock which can be accessed by any number of concurrent processes.

5.1 Timer type

The type of a timer is:

TIMER

Timers are a primitive type, just like channels and data types. Here is the syntax:

primitive. type TIMER

5.2 Declaring a timer

A timer is declared in a manner similar to channels and variables. Consider the following example:

TIMER clock :

This declaration declares a timer which is identified by the name clock. Several timers may be declared
together, for example:

TIMER clockA, clockB :

The type of the declarations are determined, and then the declarations are made. Arrays of timers are
discussed later in the manual (page 40).

A value input from a timer provides an integer value of type INT representing the time. The value is derived
from a clock, which changes by an increment at regular intervals. The value of the clock is. cyclic (Le. when
the value reaches the most positive integer value, an increment results in the most negative integer value).
The special operator AFTER can be used to compare times even though the value may have crossed from
most positive to most negative, just as one o'clock pm may be considered later than eleven o'clock am. If
tl and t2 are successive inputs from the same timer, then the expression tl AFTER t2 is true if tl is
later than t2. This behaviour is only sensible if the second value (t2) is input within one cycle of the timer.
AFTER is also explained in the chapter on expressions (page 43).

The rate at which a timer is incremented is implementation dependent.

38

5.3 Timer input

5 Timers

Timers are accessed by special forms of input called timer inputs, which are similar to channel inputs, for
example:

clock ? t

This example inputs a value from the timer clock and assigns the value to the variable t. Unlike channels,
inputs from the same timer may appear in any number of components of a parallel.

Another special input (called a delayed input) specifies a time, after which the input terminates, for example:

clock ? AFTER t

This input waits until the value of the timer clock is later than the value of t. In other words, if c is the
value of the timer clock, then the input will wait until (c AFTER t) is true. The value of t is unchanged.

More usefully perhaps, a delay can be caused by this sequence:

SEQ
clock ? now
clock ? AFTER now PLUS delay

This sequence inputs a value representing the current time and assigns it to the variable now. The following
delayed input waits until the value input from clock is later than the value of now PLUS delay. PLUS
(page 46) is a modulo operator.

The syntax for timer inputs is:

input

timer input
delayed input

timer input
delayed input
timer? variable
timer? AFTER expression

A timer input receives a value from the timer named on the left of the input symbol (?), and assigns that value
to the variable named on the right of the symbol. A delayed input waits until the value of the timer named on
the left of the input symbol (?) is later than the value of the expression on the right of the keyword AFTER.

6 Arrays and elements

Previous chapters have described types in occam and the declaration of variables, channels and timers.
This chapter describes arrays, and the syntactic components of a program which describe elements of these
types.

An array has a number of consecutively numbered components of the same primitive type. Elements enable
channels, timers, variables or arrays to be selected from arrays. An element is either a name, a subscripted
name, or a segment. An element which is a name identifies a variable or array of variables, a channel or
array of channels, a timer or array of timers.

6.1 Data type arrays

Primitive types have already been discussed in some detail. Non-primitive data types are array types. An
example of an array type is:

[5]INT

Arrays of this type have components each of type INT. The components are numbered 0, 1, 2, 3, 4. The
declaration of an array follows the same form as other declarations, for example:

[5]INT x :

This declaration declares an integer array x with five components. Arrays may have further dimensions
specified by simply adding the size of the dimension, enclosed in square brackets, to the type. The following
is an array type with two dimensions:

[4] [5] INT

An array of this type has four components each of type [5] INT. Equally, an array of type [3] [4] [5] INT
is an array with three components of type [4] [5] INT, and so on. In this way, arrays with any number
of dimensions may be constructed. The declaration of an array with multiple dimensions is similar to other
declarations, as shown in the following example:

[4] [5] INT x :

In theory there is no limit to the number of dimensions an array type may have. In practice however, arrays
of data type require memory, and therein lies the limit. Here are some more array types:

[n]BYTE
[3] [3] [3] REAL32
[50] BOOL

a byte array with n components
a three dimensional array of real numbers
an array with boolean components.

The size of each dimension in an array declaration must be specified by a value of type INT, and be a
value greater than zero. Two arrays of data type are considered to have the same type if they have the
same number and type of components. An array may be assigned to by input or assignment. An input or
assignment to an array is valid only if the value to be assigned is of the same type as the array. Here are a
few more examples of array declarations:

[4]BOOL flag :
[5]INT vl, v2 :
[maxlen]BYTE string
[xsize] [ysize] REAL64 matrix
[3] [3] [3] INT16 cube :

40

The syntax for array types is:

6 Arrays and elements

type

array type

primitive. type
array. type
[expression] type

The syntax for array types shows that any type can be preceded by a value (of type INT) in square brackets,
that value specifying the number of components of the type. Primitive and non-primitive types are collectively
called types (types include channels and timers, as shown in the next section). The syntax is defined
recursively, and this allows the syntax to cater for multidimensional arrays, as illustrated in the examples
above.

The declaration of arrays follows from the syntax for declaration described on page 26. Several arrays of the
same type can be declared together, for example:

[users]INT id, privilege ,:

The type of the declarations are determined, and then the declarations are made. This is especially important
in the declaration of arrays. Consider the following rather silly declaration:

[forms]INT forms, teachers:

This example is therefore equivalent to the following sequence:

SEQ
t := forms
[t] INT forms
[t]INT teachers

6.2 Channel arrays and timer arrays

The previous section has described arrays of data type. Arrays of channels and arrays of timers can be
declared in the same way. The following, for example, declares an array of channels:

[4]CHAN OF BYTE screens :

This declaration declares an array screens of four channels. The following declares an array of timers:

[4]TIMER clock:

This declaration declares an array clock of four timers.

Multidimensional arrays of channels and timers are built in the same way as multidimensional arrays of
variables, for example:

[3] [4] TIMER clock. clock :
[5] [5]CHAN OF PACKETS node

There is a subtle semantic distinction to be made between an array of data type and arrays of channels and
timers. An array of variables is itself a variable (it may be assigned to by assignment or input), however,
an array of channels is not itself a channel (that is, only single components of the array may be used in
input/output) but a means of referencing a number of distinct channels identified by consecutive subscripts.
The same is true for arrays of timers.

Several arrays of the same type can be declared together. Consider the following example:

[users]CHAN OF BYTE screen, keyboard:

The type of the declarations are determined, and then the declarations are made.

6 Arrays and elements

6.3 Elements

41

Elements have a type. Elements which have a data type are variables, and also have a value. Elements of
channel type are used for input and output (page 6). Elements of timer type are used in a timer input or
delayed input (page 37).

Subscripted names select a component of an array. Suppose clock, user. in and data are declared as
follows:

[9]TIMER clock :
[12]CHAN OF MESSAGES user.in
[8] [8] [8]REAL32 data

Consider these examples:

clock[O]
user.in[9]
data[O]
data[3] [0]

the first component of the array clock, of type TIMER.
the tenth component of the array user. in, of type CHAN OF MESSAGES.
the first component of a dimension of data, of type [8] [8] REAL32.
the first component of another dimension of data, of type [8] REAL32.

A subscript appears in square brackets after the name of an array. The component selected has one dimen
sion less than its type for each subscript. Subscripts must be an expression of integer type INT. A subscript
is valid only if the value of the expression is within the bounds of the array, and so a negative value subscript
is always invalid. That is, the value of a subscript must be in the range 0 to (n - 1), where n is the number
of components in the array.

A segment of an array is itself an array. The segment has zero or more components, as shown in the following
examples:

[clock FROM 0 FOR 1]
[user.in FROM 9 FOR 1]

[user.in FROM 9 FOR 3]

[data FROM 0 FOR n]

[data FROM n FOR 6]

[data FROM 1 FOR 0]

the first compon.ent of the array clock, of type [1] TIMER.
the tenth component of the array user. in,
of type [1] CHAN OF MESSAGES.
the tenth, eleventh and twelfth components of the array user. in,
of type [3]CHAN OF MESSAGES.
the first n components of data,
of type [n] [8] [8] REAL32.
six components of the array data from n,
of type [6] [8] [8] REAL32.
an "empty" segment,
compatible with a specifier [] [8] [8] REAL32.

A segment of an array has the same number of dimensions as the array.

The syntax for elements is:

element

subscript =

element [subscript]
[element FROM subscript FOR count]
name
expression

The syntax is defined recursively, and shows how more complex elements can be built. The simplest sub
scripted element is a name followed by a single subscript in square brackets to the right of the name. This
is itself an element and may also be followed by a subscript in square brackets, and so on, limited by the
number of dimensions in the array. A segment begins with a square bracket, followed on the right by an
element and the keyword FROM. This is followed by a subscript, which must be an integer of type INT,
indicating the first component of the segment, this in turn is followed by the keyword FOR and a count, which
is a value of type INT which specifies the number of components in the segment. Line breaks are permitted

42 6 Arrays and elements

immediately after the keyword FROM and the keyword FOR. The segment is valid only if the value of the count
is not negative, and does not violate the bounds of the array. That is, the value must be in the range 0 to
((subscript + count) - 1). Here is another example to consider:

[[c FROM j FOR i] FROM 0 FOR 5]

This complex looking segment selects the first five components of an element which is itself a segment, it is in
fact equivalent to [c FROM j FOR 5] provided i ~ 5. Segments may also be subscripted, for example:

[x FROM n FOR 8] [3]

The subscript in this example selects component number 3 from the associated segment.

An assignment to a variable selected by a subscript is an assignment to that component of the array, and
has no effect on any other component in the array. Consider the following example:

x[3] := 42

Assignment to a segment of a variable which is an array, is not valid if a component of the expression is also
a component of the array to which it is to be assigned. Thus, the following assignment is not valid:

[x FROM 6 FOR 6] := [x FROM 8 FOR 6] -- INVALID!

Both these segments share the component x [8]. The effect of an assignment to an array or a segment of
an array, is to assign to each component the value of the corresponding component of the expression.

The combined effect of an input and output on a channel of an array or a segment of an array is equivalent
to an assignment from the outputting process to the inputting process. Consider the following example:

[x FROM 0 FOR 10] := [y FROM 0 FOR 10]

This is a valid assignment, and has the same effect as the following:

PAR
c ! [y FROM 0 FOR 10]
c ? [x FROM 0 FOR 10]

Also consider the following assignment of v1 to v2, where both are arrays of type [12] INT:

v1 := v2

This assignment assigns each component of the array v2 to each respective component of the array v1,
and has the same effect as the following communication:

PAR
c ! v1
c ? v2

Assignment is discussed earlier on page 5, input and output are also described earlier on page 6. See the
appendix (page 78) to discover how invalid processes behave.

7 Expressions

This chapter is about expressions, and describes the range of operators provided by occam. The chapter
also describes data type conversions and tables.

An expression is evaluated and produces a result. The result of an expression has a value and a data
type. The simplest expressions are literals and variables. More complex expressions are constructed from
operands, operators and parentheses. An operand is either an element (page 39) of data type, a literal, a
table, or another expression enclosed in parentheses. An operator performs an operation, for example an
addition, upon its operand(s). The following are all valid expressions:

5 (INT64)
x
6 * 4
x * Y
NOT TRUE

a literal value
a variable
multiplication of two literal operands
multiplication of two variable operands
a boolean expression

An expression may itself be an operand in an expression. In this way larger expressions are built, as shown
in the following examples:

(1 + 2) - 1
(x * y) * (w * z)

subtract 1 from the result of (1 + 2)
multiply the results of the expressions (x * y) and (w * z)

There is no operator precedence as the hierarchical structure of a large expression is clearly defined by
parentheses. With the exception of shift operations, where the number of bits shifted is indicated by a value
of type INT, the data type of the two operands in a dyadic expression must be of the same type. In an
assignment the value of the expression must be of the same data type as the variable to which it is to be
assigned. Consider in detail the following example:

y := (m * x) ~ c

Each of the elements in this expression (y, m, x and c) must be of the same data type. The result of an
expression is of the same type as its operand(s). The expression in this example - (m * x) + c - has
two operators. The parentheses indicate that the expression (m * x) is an operand of the operator +, and
thus must be evaluated before the + operation can be performed.

The syntax for expressions is:

expression =

operand

monadic.operator operand
operand dyadic.operator operand
conversion
operand
element
literal
table
(expression)

Tables, operators and conversions are detailed in the following sections. Elements (page 39) and literals
(page 25) have been explained earlier.

44

7.1 Tables

7 Expressions

A table constructs an array of values from a number of expressions which must yield values of the same data
type. The value of each component of the array is the value of the corresponding expression. Consider the
following example:

[1, 2, 3]

This example constructs an array with three components, each of type INT. Here are some more examples:

[' a', , b', , c']
[x, y, z]
[x * y, x + 4]
[(a * b) + c]
[6(INT64), 8888(INT64)]

a table of three bytes (equivalent to "abc")
a table of three values
a table of with two component values
a table with a single component
a table of two INT64 integers

If the variables a, band c are of type INT, then the table [(a * b) + c] is an expression whose type
is [1] INT. [' a', , b', , c'] is an expression whose type is [3] BYTE, and so on.

The syntax for tables is:

table = table [subscript]
[{1 , expression}]
[table FROM subscript FOR count]

A table is one or more expressions of the same data type, separated by commas, and enclosed in square
brackets. Line breaks are permitted after a comma. The meanings of subscript and count are given earlier
in the description of elements (page 39).

7.2 Operations

An operation evaluates its operand(s) and produces a result. The result of an operation has a value and a
data type.

+ addition - bitwise not
- subtraction » shift right

* multiplication « shift left
/ division AND boolean and
REM remainder OR boolean or
\ remainder NOT boolean not
PLUS modulo addition = equal
MINUS modulo subtraction <> not equal
TIMES modulo multiplication < less than
MOSTNEG most negative > greater than
MOSTPOS most positive <= less than or equal
/\ bitwise and >= greater than or equal
\/ bitwise or AFTER later than
>< bitwise exclusive or SIZE array size

7 Expressions

7.2.1 Arithmetic operators

The arithmetic operators are:

+ addition
subtraction

* multiplication
/ division
REM remainder

45

Arithmetic operators perform an arithmetic operation upon operands of the same integer or real data type
(not on bytes or booleans), for example:

39 + 3
45 - 3
6 * 7
126 / 3
128 REM 3

produces a value of 42
produces a value of 42
produces a value of 42
produces a value of 42
produces a value of 2

The final example in this list may also be written: 128 \ 3. The symbols REM and \ both signify the
remainder operation. A remainder operation produces a value which is the remainder of the division of the
two operands. The sign of a remainder operation is the sign oflhe left hand expression (except where the
result is zero) regardless of the sign of the right hand value. The result of an integer division is rounded
toward zero (Le. truncated), for example:

3/2
(-3) / 2
(-9) / 4
(-9) REM 4

produces a value of 1
produces a value of -1
produces a value of -2
ptoduces a value of -1

The operator - is also a monadic negation operator, which has the effect of negating the value of its operand,
for example:

- x has the value (0 - x)
- 5 minus 5

The result of an arithmetic operation produces a result of the same data type as the operands. An arithmetic
operation is not valid if the resulting value cannot be represented by the same data type as the operands, for
example where the result of a multiplication of two large integers produces a value which exceeds the range
of the type (arithmetic overflow). Division by zero is also treated as invalid.

Remainder operations on both integers and reals, obeys the following law:

((x/y) * y) + (xREMy) = x

Here are some examples of real expressions, in which x is a value of 39 . 0 (REAL32) , and y is a value of
3.0 (REAL32):

x + Y
x - Y
x * Y
x / y
x REM Y

produces a value of 42.0 of type REAL32
produces a value of 36.0 of type REAL32
produces a value of 117.0 of type REAL32
produces a value of 13.0 of type REAL32
produces a value of 0.0 of type REAL32

46 7 Expressions

Rounding the results of real operations

The result of a real arithmetic expression (which is considered to be infinitely precise) is rounded to the
nearest value which can be represented by the type. That is, the value will be adjusted, if necessary, to fit
into the representation of its type. The precision of an operation is that of the type of the operands.

It is possible for the result of a real remainder operation to be negative. Consider the following example:

1.5 (REAL32) REM 2.0 (REAL32)

The result of this expression is (-0.5). If x and y are real values, the result of x REM y is (x - (y *n)), where n
is the result of dividing x and y rounded toward zero. Applying this to the above example, n is 0.75 rounded
to the nearest integer (1), leaving: (1.5 - (2.0 * 1) = (-0.5).

Full details of IEEE rounding modes are given in the appendix (page 79).

7.2.2 Modulo arithmetic operators

The modulo arithmetic operators are:

PLUS
MINUS
TIMES

modulo addition
modulo subtraction
modulo multiplication

These modulo arithmetic operators perform an operation upon operands of the same integer data type (not
on reals, bytes or booleans). Whilst the effect of these operations is similar to the corresponding arithmetic
operations, no overflow checking takes place, and thus the values are cyclic. For example, adding one to the
most positive integer will produce a value equal to the most negative integer (Le. (MOSTPOS PLUS 1) =
MOSTN EG), and subtracting one from the most negative integer will produce a value equal to the most
postive integer (Le. (MOSTN EG MINUS 1) = MOSTPOS). Consider these examples:

32767 (INT16) + 1(INT16)
32767 (INT16) PLUS 1(INT16)
(-32768(INT16» - 1(INT16)
(-32768(INT16» MINUS 1(INT16)
20000 (INT16) * 10(INT16)
20000 (INT16) TIMES 10(INT16)

MINUS is also a valid monadic operator.

7.2.3 MOSTPOS and MOSTNEG (integer range)

causes an arithmetic overflow. INVALID!
produces the value -32768.
causes an arithmetic overflow. INVALID! •
produces the value 32767.
causes an arithmetic overfJow. INVALID!
produces the value 3392

The operator MOSTPOS produces the most positive value of an integer type. The operator MOSTNEG pro
duces the most negative value of an integer type. Consider the following examples:

MOSTNEG INT16
MOSTPOS INT16

The syntax for these operators is:

has the value -32768
has the value 32767

expression = MOSTPOS type
MOSTNEG type

The keyword (MOSTPOS or MOSTNEG) appears to the left of a type.

7 Expressions

7.2.4 Bit operations

47

Bitwise operators perform operations on the bit pattern of a value of integer type. The bitwise operators are:

/ \ bitwise and
\ / bitwise or
>< bitwise exclusive or

bitwise not

Here are some example expressions using the bitwise operators. The results shown are true if the value of
pixel is #1010, and the value of pattern is #FFFF, and their type is INT16:

pixel /\ pattern
- pixel
pixel \/ pattern
pixel >< pattern

produces a result # 1 0 1 0 (INT16)
produces a result #EFEF (INT16)
produces a result #FFFF (INT16)
produces a result #EFEF (INT16)

The operands of /\, \/ and >< must both be of the same integer type. The following table illustrates how
each bit of the result is produced from the corresponding bits in the operand.

1 >< 0=1 1 /\ 0 = 0 1 \/ 0 = 1
0 >< 0=0 o/\ 0 = 0 o\/ 0 = 0
1 >< 1 = 0 1 /\ 1 = 1 1 \/ 1 = 1
0 >< 1 = 1 o/\ 1 = 0 o\/ 1 = 1

The bitwise not operator (-) has a single operand which must be an integer type. Each bit of the result is
the inverse of the corresponding bit in the operand, as shown in the following table:

The result of a bitwise operation is of the same integer type as the operand(s). The keywords BITAND, BITOR
and BITNOT are equivalent to /\, \/, - respectively, and are included especially for implementations which
have a restricted character set.

7.2.5 Shift operations

the shift operators perform a logical shift on the value of an integer type. The shift operators are:

The shift operators shift the bit pattern of a value of any integer type by a number of places determined by a
count value of type INT. For example, if the value of n is #FFFF, and of type INT16:

produces a -result #FFFO (INT16)
produces a result #OFFF (INT16)

The result is of the same integer type as n. The bits vacated by the shift become zero, the bits shifted out of
the pattern are lost. The left shift operator shifts toward the most significant end of the pattern, the right shift
operator shifts toward the least significant end of the pattern.

48

Consider these further examples, where n is a value of type INT32:

7 Expressions

n « 0
n » 0
n » 32
n « 32

produces the value n
produces the value n
produces the value 0
produces the value 0

A shift by a negative value, or by a value which exceeds the number of bits in the representation, is invalid.

7.2.6 Boolean operations

The boolean operators combine operands of boolean type, and produce a boolean result. The boolean
operators are:

AND boolean and
OR boolean or
NOT boolean not

The following table shows the results for each operation:

false AND true =false false OR true =true NOT false =true
false AND false =false false OR false =false NOT true =false
true AND false =false true OR false =true
true AND true =true true OR true =true

The operand to the left of a boolean operator is evaluated, and if the result of the operation can be determined
evaluation ceases. This differs from the behaviour of other expressions. Consider the following example:

IF
«ch >= 'a') AND (ch <= 'z'» OR «ch >= 'A') AND (ch <= 'Z'»

(ch = er) OR (ch down) OR (ch = up)

«ch = escape) AND shift» OR «ch = escape) AND control»

Note that parentheses may be omitted between expressions containing adjacent AND or OR operators. The
evaluation of the boolean expression « ch >= ' a') AND (ch <= ' z' » ceases if the expression
(ch >= ' a') is false, the evaluation of the expression (ch <= ' z') does not take place. If the result
is true, the expression « ch >= ' A') AND (ch <= ' Z' » to the right of OR is' not evaluated. The
rule is that evaluation of a boolean expression will cease if the operand to the left of AND is false, or if the
operand to the left of OR is true.

7.2.7 Relational operations

The relational operators perform a comparison of their operands, and produce a boolean result. The relational
operators are:

equal
<> not equal
< less than
> greater than
<= less than or equal
>= greater than or equal

7 Expressions 49

Here are examples of relational expressions using =and <>. In these examples the operands, x and y, can
be any primitive data type:

x = y is true if the value of x is equal to the value of y
the result is false otherwise

x <> y is true if the value of x is not equal to the value of y
the result is false otherwise

The following are examples using the other relational operators. In these examples the operands, x and y,
can be an integer, byte or real type, but may not be a boolean:

x < y is true if the value of x is less than the value of y
the result is false otherwise

x > y is true if the value of x is greater than the value of y
the result is false otherwise

x <= y is true if the value of x is less than or equal to the value of y
the result is false otherwise

x >= y is true if the value of x is greater than or equal the value of y
the result is false otherwise

AFTER (later than)

The special modulo operator AFTER performs a comparison operation, and returns a boolean result, for
example:

(a AFTER b)

This expression is true if a is later in a cyclic sequence than b, just as one o'clock pm can be considered
later than eleven o'clock am. The first operand is considered the starting point on a "clock face" of integer
values. If the shortest route to the value of the second operator is clockwise, then the value is later than the
first operand and the result of the expression is true. If the shortest route to the value of the second operand
is anticlockwise, then the value of the second operand is earlier, and the result of the expression is false.

(aAFTERb) produces the same value as (a MINUS b) > O.

7.2.8 SIZE (number of components in an array)

The special operator SIZE has a single operand of array type, and produces an integer value of type INT,
equal to the number of components in the array. For example, if a is an array of type [8] INT, then:

I SIZE a I produces the value 8 I

If a is of type [8] [4] INT, then:

SIZE a
SIZE a[l]

7.3 Data type conversion

produces the value 8
produces the value 4

With the exception of logical shifts (where the number of bits to shift must be of type INT), the types of
the operands in an expression must be of the same type. Operands may explicitly have their data type
converted. A data type conversion permits a value of a primitive data type (not array types) to be converted
to a numerically similar value of another primitive data type. A data type conversion produces the value of its

50 7 Expressions

operand as a value of the specified data type, for example:

j := (k * 4.5(REAL64» * (REAL64 n)

The value of n in this example is converted to a value of type REAL 64 . Note that 4 . 5 (REAL64) is a literal
value of type REAL 64 , whereas (REAL64 n) is a data type conversion of the value of n.

The syntax for data type conversions is:

conversion = primitive. type operand
primitive. type ROUND operand
primitive.type TRUNC operand

The type must be a primitive data type, and appears to the left of the operand. A data type conversion which
includes the keyword ROUND as described by the syntax, produces a value rounded to the nearest value of
the specified type. Where two values are equally near, the value is rounded toward the nearest even number.
A data type conversion which includes the keyword TRUNC as described by the syntax, produces a value
truncated (rounded toward zero) to a value of the specified type.

A conversion between any of the integer types, and conversions between those types and type BYTE, is valid
only if the value produced is within the range of the receiving type. Byte and integer values may be converted
to boolean values if their value is one or zero. The boolean value is true if the value is one, and false if the
value is zero. That is:

BOOL 1
BOOL 0
INT TRUE
INT FALSE

evaluates to TRUE
evaluates to FALSE
evaluates to 1
evaluates to 0

Conversions from integer values to real values, and vice versa, must specify whether the result is to be
rounded or truncated. A value of type REAL32 can be extended to an exact value of type REAL64. Values
of type REAL64 can be converted to values of type REAL32 , providing the value is in the range of the
REAL32 type. The conversion must specify if the value is to be rounded or truncated. Consider these
examples, where n, and m are integers of type INT64, and n has a value 255 and m has a value 3:

BYTE n
REAL32 ROUND n
REAL64 TRUNC n
REAL64 ROUND (n * m)
(REAL64 ROUND n) * (REAL64 ROUND m)

produces a byte value 255
produces a REAL32 value 255.0
produces a REAL64 value 255.0
produces a REAL64 value 765.0
produces a REAL64 value 765.0

hex #200000333554435 (INT32)
REAL32 ROUND i
REAL32 TRUNC i

Conversions may be applied to operands of the same type, but will have no effect. The truncation and
rounding of integer types to real types occurs where the integer cannot be exactly represented as a value of
the real type. Consider the following example:

SEQ
i
a .-
b

The value in this example has been chosen specifically to illustrate the behaviour of explicitly rounding an
integer value which cannot be directly represented in the floating point representation of REAL32. The value
of a after this sequence is 33554436.0, and the value of b is 33554432.0. For b, the two least significant
bits of the integer representation have been lost they had held the value 3. For a the value of those bits has
been rounded to the next nearest representable value. Further detail of rounding is given in the appendix on
page 79.

7 Expressions

Conversion of real values to integers has the effect illustrated by the following examples:

51

INT32 ROUND 0.75(REAL32)
INT32 ROUND 0.25 (REAL32)
INT32 TRUNC 0.75(REAL32)
INT32 TRUNC 0.25(REAL32)

produces a value of 1
produces a value of 0
produces a value of 0
produces a value of 0

Consider these examples, where x, and y are type REAL32, x has a value 3.5, y has a value 2.5.:

INT16 TRUNC Y produces the value 2, y truncated
INT16 ROUND Y produces the value 2, y rounded (even)
INT32 ROUND x produces the value 4, x rounded (even)
INT16 TRUNC (x / y) produces the value 1
(INT ROUND x) * 10 produces the value 40

REAL64 x produces the value 3.5

A full explanation of the IEEE rounding modes is given in the appendix (page 79).

52

8 Scope

Earlier chapters of this manual describe how occam programs are built from processes (page 9), and how
smaller processes are combined to form larger processes. The manual has also described ways that names
may be specified. A name in an occam program denotes one of the following:

Variable page 26
Channel page 29
Timer page 37
Protocol page 31
Tag page 32
Abbreviation page 57
Procedure page 61
Function page 65
Replication index page 9

Associated with each name is a region of the program in which the name is valid, called the scope, for
example:

INT n :
SEQ

n := 0
WHILE n < 10

n :=n + 1

declare variable n
scope of n

This example performs a count of ten using the variable n which is declared for the sequence. This variable
exists only within the associated scope (illustrated by the comments), and has no existence outside that
scope. In the following example two unrelated variables are given the same name (x), each variable exists
independently within its own scope.

TIMER t :
PAR

REAL32 x
SEQ

x := y + 1

INT x
SEQ

t ? x

real variable
scope

integer variable
scope

declare timer
scope

The scope of a name is illustrated by the level of program indentation. The scope of a name includes any other
specification which may immediately follow at the same level of indentation, and encompasses all greater
levels of indentation in the program. The illustrated scope concludes when the level of indentation returns to
the same or lesser level, as the following example shows:

SEQ
INT max
INT min
SEQ

c ? max; min
IF

p < max
p := p + 1

P max
p := min

SEQ

specify max
scope of max specify min

scope of min

54 8 Scope

This example increments p if it is less than the value specified by max, and uses abbreviations (discussed in
chapter 9 starting on page 57) to specify names for the values max and min. The scope associated with the
variable p in this example begins at the declaration of p earlier in the program. The association of a name
with any particular scope is either local, that is, it is specified at the start of the scope under consideration,
or the name is free of local association. That is, the name is specified at an outer level of scope (as for p in
the above example) which includes the scope under consideration. If a specification is made which uses an
existing name then the new meaning supersedes the old meaning for the duration of the scope of the new
specification, as illustrated by the following example:

INT x :
SEQ

dm ? x
ALT

REAL32 x
rs ? x

dm ? Y

integer variable x
-- scope

real x hides integer variable x
scope

The second declaration of x in the above example, has the effect of "hiding" the earlier use of the name x for
the duration of its scope. All names within a scope in occam are distinct. That is, a name may only have
one meaning within any scope.

Names of keywords may not be used in specifications.

The following syntax specifies at which point in a program a declaration, abbreviation, or definition may occur,
and the scope associated with each:

process

choice

option

alternative

variant

valof

specification

specification
process
specification
choice
specification
option
specification
alternative
specification
variant
specification
valof
declaration
abbreviation
definition

A specification is a declaration, an abbreviation (page 57) or a definition (e.g. Protocol definition, page 29).
A specificiation may appear before a process, choice, option, alternative, variant, or valof (See functions
page 65). The region of the program in which a specified name is valid includes any other specification
that may immediately follow at the same level of indentation, and the corresponding process, choice, option,
alternative, variant or valof.

8.1 Names in the scope of parallel constructs

Component processes of a parallel must not to violate the rules which govern the use of variables and
channels. This section describes the usage rules which are checked by the occam compiler.

Variables which are assigned to by input or assignment in one of the processes of a parallel may not appear
in any other process in the parallel. Also, an array can be used in only one component of a parallel if
components of the array are selected by a variable subscript, i.e. a subscript which is dependent on a

8 Scope 55

variable, or a replication index with a variable base or count. A variable may appear in an expression in
any component of a parallel, provided the variable is not assigned to by input or assignment in any other
component in the parallel. Consider the following example:

INT mice
PAR

SEQ
mice 42
c ! 42

c ? mice

-- THIS PARALLEL IS INVALID!

cannot assign to the same variable

in more than one process in a parallel

-- THIS PARALLEL "MAY" BE INVALID!

This process is invalid because it assigns to the variable mice in the assignment mice := 42 in one
component of the parallel, and also in the input c ? mice in a second component. Also consider the
following example:

PAR
cl ? data[i]
c2 ? data[j]

The validity of this parallel is dependent upon i and j. If the value of either i or j may change, for example
if one is a variable or a replicator index with a variable base or count, then the parallel is invalid. If the value
of both are constant, the parallel is valid provided i and j select different components of the array data.
This ensures that no component of an array is misused. An array may be divided between several parallel
processes, and components of those disjoint parts may be selected using variable subscripts, provided each
part of the array is referenced by an abbreviation discussed in the following chapter.

A check list of the usage rules which apply to parallel processes is given in the appendix on page 75.

56

9 Abbreviation
This chapter describes occam abbreviations. There are two kinds of abbreviations: abbreviations which
specify a name for an expression (page 43), and abbreviations which specify a name for an element (page 39).
The name specified in an abbreviation is an alias for the expression or element.

9.1 Abbreviation of expressions

The first kind of abbreviation to consider is the abbreviation of an expression. This kind of abbreviation can
be used to specify a name for a constant value. Consider the following example:

VAL INT days.in.week IS 7 :

This abbreviation specifies the name days. in. week for the constant value 7. Here are some more ab
breviations for expressions:

VAL REAL32 Y IS (rn * x) + c
VAL INT n IS rn :
VAL []BYTE vowels IS
['a', 'e', 'i', '0', 'u'] :

specifies a name for the current value of an expression
specifies a name for the current value of the element rn

specifies a name for a table of constant values

The abbreviated expression must be a valid expression, that is, it must not overflow, and all subscripts must
be in range. Variables used in an abbreviated expression may not be assigned to by an input or assignment
within the scope (page 53, the region of a program where a name is valid) of the abbreviation. This ensures
that the value of the expression remains constant for the scope of the abbreviation. For example, in the
following abbreviation

VAL REAL32 Y IS (rn * x) + c :

no assignment or input may be made to rn, x, or c within the scope of y of this abbreviation. The effect of
the abbreviation is the same as each instance of y being replaced by the abbreviated expression. Similarly
for the following abbreviation of the expression [screep FROM line FOR length]

VAL []INT scan IS [screen FROM line FOR length] :

no assignment or input may be made to screen, line, or length, within the scope of scan. The effect
of the abbreviation is the same as each instance of scan being replaced by the abbreviated expression, thus

VAL []INT scan IS [screen FROM line FOR length] :
SEQ

row .- scan

is equivalent to

SEQ
row := [screen FROM line FOR length]

The syntax for abbreviations of expressions is:

abbreviation

specifier

VAL specifier name I S expression :
VAL name I S expression :
primitive. type
[] specifier
[expression] specifier

The abbreviation of a value begins with the keyword VAL. An optional specifier, (which specifies the data type
of the abbreviation.) aooears to the riaht of VAL. followed bv the name. and the keyword IS. The abbreviated

58 9 Abbreviation

expression appears to the right of the keyword IS. Line breaks are permitted after the keyword IS. The type
of the expression must be of the same data type as the specifier. The specifier can usually be omitted from
the abbreviation, as the type can be inferred from the type of the expression. A specifier [] type simply
defines the abbreviation as being an array with components of the specified type.

9.2 Abbreviation of elements

occam abbreviations may also specify a name for an element of any type. A variable, channel, timer, or
array that is within the current scope may be given a name in an abbreviation of this kind, for example:

INT n IS m :

This abbreviation specifies the name n as the new name for m. Also, consider the following example:

CHAN OF INT user IS lines[8] :

This abbreviation specifies the name user for a component of the array lines. All subscript expressions
used in an abbreviation must be valid. The type of the abbreviated element must be the same as the specifier,
so in this example, lines has to be an array of CHAN OF INT. Other components of the array lines may
be used only in abbreviations within the scope (page· 53) of user, but they must not include the component
lines [8]. Here are some more examples of abbreviations:

x IS Y :
INT c IS a[l]
[]REAL32 s IS [a FROM 8 FOR n]
TIMER my.time IS clock[me] :

specifies a new name x for y
specifies a name for a component of the array a
specifies a name for a segment of a
specifies a name for an element of an array of timers

An abbreviation simply provides a name to identify an existing element. The name my . time in the above
example identifies the existing element clock [me]. In the scope of the abbreviation, my. time ? t is
a timer input from the original timer clock [me] .A variable used in a subscript to select a component
or components of an array may not be assigned to within the scope of the abbreviation. For example, no
assignment or input can be made to me within the scope of my . time. As a result the abbreviation always
refers to the same variable throughout its scope. This allows various optimisations to be provided, such as
evaluating any expression within the abbreviated element only once. The original element clock [me] may
not be used within the scope of the abbreviation my. time. Where the abbreviation is of an element of
an array no other reference may be made to any other part of that array, except in a further abbreviation.
Consider the following example:

[60] [72]INT page:

first.line IS page[O]
last.line IS page[59]
SEQ

first.line last. line
last.line .- page[58]

next.to.last.line IS page[58]
last. line := next.to.last.line

Also consider the following example:

WHILE i < limit
this.line IS page[i]
next.line IS page[i+l]
SEQ

this. line .- next.line

This assignment is INVALID!

This abbreviation is valid
and so too, this assignment

i = i + 1 -- this assignment is INVALID!

9 Abbreviation 59

The assignment in the above example is invalid as i is used to select components of the array page in an
abbreviation within the scope of the assignment. This is how the above should be written:

WHILE i < limit
SEQ

this.line IS page[i] :
next.line IS page[i+1]
SEQ

this.line .- next.line

i = i + 1

It is important to ensure that all the components of an array remain identified by a single name within any
given scope. Identification of any component of an array by more than one name constitutes an invalid usage
of the component, and it is especially important to be aware this of when abbreviating components of an
array. Once any component of an array is abbreviated then reference to other components of the array must
be made by further abbreviation. Checks are made to ensure that two abbreviations which identify segments
from the same array do not overlap. Further discussion on abbreviation is given in the chapter on procedures
(page 61).

The syntax for abbreviations of elements is:

abbreviation

speeifier

speeifier name I S element :
name I S element :
primitive. type
[] speeifier
[expression] speeifier

The abbreviation of an element begins with an optional specifier. The name specified appears to the right of
the optional specifier followed by the keyword IS, the abbreviated element appears to the right of the keyword
IS. The line on which the abbreviation occurs may be broken after the keyword IS or at some valid point in
the element. The type of the element must be the same as the type of the specifier. As for abbreviations of
values, the specifier can usually be omitted from the abbreviation, as the type can be inferred from the type
of the element. A specifier [] type simply defines the abbreviation as being an array with components of
the specified type.

9.3 Disjoint arrays in parallels

Abbreviations may be used to decompose an array into a number of disjoint parts, so that each part may
have a unique name in all or several processes in parallel. Components of each disjoint part may then be
selected by a variable subscript (a subscript whose value is dependent on a procedure parameter, a variable,
or a replicator index whose base or count is not a constant value), for example:

frame1 IS [page FROM 0 FOR 512] :
frame2 IS [page FROM 512 FOR 512] :
PAR

INT i
SEQ

cl ? frame1[i]

INT j :
SEQ

c2 ? frame2[j]

This example divides the array page into two parts, and provides a name for those parts in each of the two
parallel processes. These parts may then be selected by using variable subscripts.

60

10 Procedures
This chapter describes procedures in occam. A procedure definition in occam defines a name for a
process. Consider the following example:

PROC increment (INT x)
x := x + 1

This example defines increment as the name for the process, x := x + 1. Formal parameters of a
procedure are specified in parentheses after the procedure name. In this example, x is a formal parameter,
and is of type INT. The procedure increment may be used as shown in the following example:

INT y :
SEQ

increment (y)

A formal parameter is an abbreviation (page 57) of the actual parameter used in an instance of a procedure.
An instance of a procedure has the same effect as the substitution of the process named in the procedure's
definition. This instance of increment can be expanded to show its effect:

INT Y :
SEQ

x IS Y
x := x + 1

which is equivalent to

INT Y
SEQ

y := y + 1

Here is a further example:

PROC writes (CHAN OF BYTE stream, VAL []BYTE string)
SEQ i = 0 FOR SIZE string

stream ! string[i]

This procedure takes a channel (stream) and an array (string) as parameters, and outputs the compo
nents of the array to the channel. An instance of the procedure looks like this:

SEQ

writes (screen, "Hello world")

Again, this instance can be expanded to show the effect:

SEQ

CHAN OF BYTE stream IS screen :
VAL []BYTE string IS "Hello world"
SEQ i = 0 FOR SIZE string

stream ! string[i]

The rules for procedure parameters follow from those for abbreviations. There are two kinds of abbreviation:
abbreviations which specify a name for the value of an expression (page 43), and abbreviations which specify
a name for an element (page 39) of an existing variable, channel, timer, or array. Abbreviations have already
been discussed in chapter 9 which starts on page 57. A name which is free in the body of the procedure is

62

statically bound to the name used in the procedure definition, for example:

INT step :
SEQ

step := 39
PROC next.item (INT next, VAL INT present)

next := present + step

10 Procedures

INT g, step
SEQ

step := 7
next.item (g, 3)

-- at this point the value of 9 is 42

The free variable step, in scope when the procedure next. item was defined, is bound to the procedure
next. item. The rules of occam state that all names identify distinct objects. In the example, the scope
and binding of the elements can be seen more clearly by making systematic changes of name. Once this is
done, the example is equivalent to:

INT step :
SEQ

step := 39
INT g, curb name changed
SEQ

curb := 7
next IS 9 -- expand instance of next.item
VAL present IS 3 :
next := present + step

-- at this point the value of 9 is 42

In this transformation of the earlier example, it can be seen that the variable used in the instance of
next . item is the variable named step declared before the procedure definition of next. item, and
not the second variable declared with the same name. Consider this example:

INT x, y, step :
PROC next.item (INT next, VAL INT present)

next := present + step

And now consider the following equivalences of instances that may appear in the scope of the procedure:

next.item (x, y)

next.item (x, step)

next.item (step, x)

next.item (x, x)

is equivalent to:

is equivalent to:

is equivalent to:
which is INVALIDI

is equivalent to:
which is INVALIDI

INT next IS x :
VAL INT present IS y :
next := present + step

INT next IS x :
VAL INT present IS step
next := present + step

INT next IS step :
VAL INT present IS x :
next := present + step

INT next IS x :
VAL INT present IS x :
next := present + step

Here it can be seen how the meaning of each procedure parameter is defined in terms of an abbreviation, the
ordering of parameters corresponds to a sequence of abbreviations. next. item (step, x) is invalid
because the element step is used in the expression next := present + step, after it has been

10 Procedures 63

abbreviated, and the example next. item (x, x) is invalid as x has already been used in the previous
abbreviation of the element x (and the rules state [abbreviations on page 57] that an element used in such an
abbreviation may not be used within the associated scope). Notice also the effect with the order of parameters
used in next. item changed:

INT x, y, step :
PROC next.item (VAL INT present, INT next)

next := present + step

With this re-ordering, next. item (x, x) is still invalid, although now for a different reason, as follows:

next.item (x, x) is equivalent to:
which is INVALIDI

VAL INT present IS x :
INT next IS x :
next := present + step

next. item (x, x) is invalid here as there is an assignment to x (via next) within the scope of the first
abbreviation. Now consider the following example:

PROC nonsense (INT x, VAL INT y)
SEQ

x x + Y
x .- x - y

This procedure should leave the value of the variable used as the actual parameter for x, unchanged, as the
following expansion shows:

nonsense (n, 3) is equivalent to: INT x IS n :
VAL INT Y IS 3
SEQ

x .- x + y
x .- x - y

and by substitution SEQ
n .- n + 3
n .- n - 3

The value of n after this instance is n, as might be expected. However, the following instance is invalid,
which is just as well, as the effect is non-intuitive:

nonsense (n, n) is equivalent to: INT x IS n :
which is INVALIDI VAL INT Y IS n

SEQ
x .- x + y
x .- x - y

and by substitution SEQ
a non-intuitive effect! n .- n + n

n .- n - n

The value of n after this instance, if it were valid, would be 0, which is counter intuitive. The following example

64

highlights the problem further.

nonsense (i , v [i]) is equivalent to:
which is INVALIDI

INT x IS i :
VAL INT Y IS v[i]
SEQ

x .- x + y
x x - y

10 Procedures

and by substitution
a non-intuitive effect!

SEQ
i .
i

i + v[i]
i - v[i]

If this instance were valid, the value of i after the instance of nonsense would be difficult to predict, as
in each of the assignments v [i] will probably reference a different component of v, as the value of the
subscript i may be changed by the first assignment.

The syntax for a procedure definition is:

definition

formal

procedure.body

PROC name ({o , formal})
procedure.body

specifier {1 , name}
VAL specifier {1 , name}
process

The keyword PROC, the name of the procedure, and a formal parameter list enclosed in parentheses is
followed by a process, indented two spaces, which is the body of the procedure. The procedure definition is
terminated by a colon which appears on a new line at the same indentation level as the start of the definition.

The syntax for procedure instance is:

instance
actual

name ({o , actual})
element
expression

An instance of a procedure is the procedure name followed by a list of zero or more actual parameters
in parentheses. An actual parameter is either an element or expression. The list of actual parameters
must correspond directly to the list of formal parameters used in the definition of the procedure. The actual
parameter list must have the same number of entries, each of which must be the compatible with the kind
(VAL or non-VAL) and type of the corresponding formal parameter. In a program in which all names are
distinct, an instance of a procedure behaves like the substitution of the procedure body. Notice that all
programs can be expressed in a form in which all names are made distinct by systematic changes of name.
Procedures in occam 2 are not recursive. A channel parameter or free channel may only be used for input
or output (not both) in the procedure.

An instance of a procedure defined with zero parameters must be followed by empty parentheses. Where a
number of parameters of the same type appear in the parameter list, a single specifier may specify several
names. For example:

PROC snark (VAL INT butcher, beaver, REAL64 boojum, jubjub)

This example, is equivalent to:

PROC snark (VAL INT butcher, VAL INT beaver,
REAL64 boojum, REAL64 jubjub)

11 Functions

The previous chapter discusses named processes (called procedures). This chapter describes functions
in occam. A function defines a name for a special kind of process, called a value process. A value
process produces a result of primitive data type (but not of array type), and may appear in expressions.
Value processes may also produce more than one result, which may be assigned in a multiple assignment.
occam functions are side effect free, as they are forbidden to communicate or assign to free variables. This
helps to ensure that programs are clear and easy to maintain.

A value process, performs an enclosed process, and produces a result. Consider the following example:

total := subtotal + (INT sum
VALOF

SEQ
sum := 0
SEQ i = 0 FOR SIZE v

sum := sum + v[i]
RESULT sum

In the example shown here, the value process produces the sum of the array v, and is equivalent to
SIZEv

(L v)
i=O

More commonly however, the value process is the body of a function definition, as illustrated in the following
example:

INT FUNCTION sum (VAL []INT values)
INT accumulator
VALOF

SEQ
accumulator := 0
SEQ i = 0 FOR SIZE values

accumulator := accumulator + values[i]
RESULT accumulator

This function definition defines the name sum for the associated value process. The type of the result is
INT, specified by INT FUNCTION. Just as the behaviour of procedures is defined by the substitution of the
procedure body, functions behave like the substitution of the function body. It follows that the example which
starts this chapter is an expansion of the following:

total := subtotal + sum (n)

A function definition may also define a name for an expression list, so that simple, single line, functions can
be defined in the following fashion:

BOOL FUNCTION lowercase (VAL BYTE ch) IS (ch >= 'a') AND (ch <= 'z') :
BOOL FUNCTION uppercase (VAL BYTE ch) IS (ch >= 'A') AND (ch <= 'Z') :
BOOL FUNCTION ischar (VAL BYTE ch) IS uppercase (ch) OR lowercase (ch)

Each of these functions returns a single boolean result. The definition of the function ischar is equivalent
to the followi ng:

BOOL FUNCTION ischar (VAL BYTE ch)
VALOF

SKIP
RESULT uppercase (ch) OR lowercase (ch)

A number of rules apply to functions to ensure they are side effect free. As for procedures, the correspondence

66 11 Functions

between the formal and actual parameters of a function is defined in terms of abbreviations, and follows the
associated scope rules. However, an argument of a function may only be a value parameter. Only variables
declared within the scope of a value process or function may be assigned to. Also, value processes may not
contain inputs or outputs, nor may they contain alternations, or parallels. The body of any procedure used
within a function must also obey the above rules. A name which is free within the value process (Scope,
page 53) can be used only in expressions within the value process or function body, they may not be assigned
to by input or assignment. Consider the following:

INT.FUNCTION read.top.of.stack () IS stack [stack.pointer] :
BOOL FUNCTION empty () IS stack.pointer = 0 :

A value process may produce more than one result, which may then be assigned using a multiple assignment.
Consider the following example:

point, found := (VAL BYTE char IS 'g'
VAL []BYTE string IS message
BOOL ok
INT ptr
VALOF

IF
IF i = 0 FOR SIZE string

string[i] = char
SEQ

ok := TRUE
ptr .- i

TRUE
SEQ

ok := FALSE
ptr := -1

RESULT ptr, ok

11 Functions 67

.This value process searches the byte array string for the character' g' . The result is produced from the
expression list which follows RESULT, and is then assigned to point, and found. This value process can
be given a name in a function definition, as follows:

INT, BOOL FUNCTION instr (VAL BYTE char, VAL []BYTE string)
BOOL ok
INT ptr
VALOF

IF
IF i = 0 FOR SIZE string

string[i] = char
SEQ

ok := TRUE
ptr .- i

TRUE
SEQ

ok := FALSE
ptr := -1

RESULT ptr, ok

VAL message IS "Twas brillig and the slithy toves"
INT point :
BOOL found :
SEQ

point, found := instr ("g", message)

This example finds the position of g in the string message. After the multiple assignment in this example,
the value of point will be 11, and the value of found will be TRUE. Single line functions with multiple results
may also be defined:

INT, INT FUNCTION div.rem (VAL INT x, y) IS x / y, x REM y :

This function produces the division, and remainder of x and y. If an error occurs within a function or value
process, it will behave like the primitive process STOP. This behaviour is equivalent to the behaviour of
a mathematical overflow in an arithmetic expression (see page 78 for details of the behaviour of invalid
processes). Consider the behaviour of an instance of the following partial function:

INT FUNCTION factorial (VAL INT n)
INT product
VALOF

IF
n >= 0

SEQ
product := 1
SEQ i = 1 FOR n

product := product * i
RESULT product

This function will behave like the primitive process STOP if n is less than zero, or if an overflow occurs in
the evaluation of the factorial. In either case the behaviour is equivalent to the behaviour of any other invalid
expression (page 78).

68

The syntax for functions is:

11 Functions

value.process
valof

operand

expression. list

definition

function. body

operand
expression. list

definition

valof
VALOF

process
RESULT expression. list

specification
valof

(value.process
)
(value.process
)

{1 , primitive. type } FUNCTION name ({o , formal})
function. body

value.process

name ({o , expression})
name ({o , expression})

{1 , primitive. type } FUNCTION name ({o , formal}) IS expression. list :

A value process consists of zero or more specifications which precede the keyword VALOF, followed by a
process at an indentation of two spaces, and the keyword RESULT at the same indentation. The keyword
RESULT is followed by an expression list on the same line. The line may be broken after a comma, or at a
valid point in an expression. An operand of an expression may consist of a left parentheses, a value process,
followed by a right parentheses. The structured parentheses appear at the same indentation as each other,
and are equivalent to the left hand and right hand parentheses of a bracketed expression respectively. So,
where the value process produces a single result, the upper bracket may be preceded by an operator, or the
lower bracket may be followed by an operator.

The heading of a function definition consists of the keyword FUNCTION, preceded by the type(s) of the
result(s) produced by the function. The name of the function and a formal parameter list enclosed by paren
theses follows the keyword FUNCTION on the same line. This is followed by a value process, indented two
spaces, which forms the body of the function. The function definition is terminated by a colon which appears
on a new line at the same indentation level as the start of the definition. Alternatively, a function definition
may consist of the function heading followed by the keyword IS, an expression list, and a colon, on the same
line. The line may be broken after the keyword IS, a comma, or at a valid point in an expression.

An instance of a function defined to have zero parameters must be followed by empty parentheses. Where a
number of parameters of the same type appear in the parameter list, a single specifier may specify several
names. For example:

INT FUNCTION alice (VAL REAL64 tweedle.dum, tweedle.dee,
INT cheshire. cat)

This example, is equivalent to:

INT FUNCTION alice (VAL REAL64 tweedle.dum,
VAI, REAL64 tweedle. dee,
INT cheshire.cat)

Appendices

70

A Configuration 71

This appendix describes the aspects of occam which specify the configuration of an occam program.
Configuration associates the components of an occam program with a set of physical resources. During
configuration the processes which make up an occam program are distributed over the number of intercon
nected processing devices available in the environment in which the program will execute. The processes
which execute on a single processor may be given a priority of execution, and the channels which intercon
nect the distributed processes may be mapped onto the physical communication links between processing
devices. It is expected that the program is logically correct before configuration is used to optimise perfor
mance. Configuration does not affect the logical behaviour of a program.

A.1 Execution on multiple processors

The component processes of a parallel may each be executed on an individual processor. This can be
specified by a placed parallel which assigns a process for execution on a specified processor. Consider the
following example:

PLACED PAR
PROCESSOR 1

terminal (term. in, term. out)
PROCESSOR 2

editor (term. in, term. out, files. in, files.out)
PROCESSOR 3

network (files.in, files.out)

In this example, the processes terminal, editor and network, are placed on three individual proces
sors numbered 1, 2 and 3. Each process is executed on the assigned processor, each process uses local
memory, and communicates with the other processes via channels.

The syntax for a placed par is:

placedpar =

parallel

PLACED PAR
{ placedpar }

PLACED PAR replicator
placedpar

PROCESSOR expression
process

placedpar

The keywords PLACED PAR are followed by zero or more processor allocations. A processor allocation is
the keyword PROCESSOR, and an expression of type INT which serves to identify the processor on which the
associated process is to be placed. As for normal parallels (page 16), the placed parallel may be replicated.
An implementation may extend this syntax to identify the type of processor on which the process is placed.
All variables and timers used within the placement must be declared within it.

A.2 Execution priority on a single processor

A.2.1 Priority parallel

The component processes of a parallel (page 15) executing on a single processor may be assigned a priority
of execution. Consider the following example:

PRI PAR
terminal (term. in, term. out)
editor (term. in, term. out)

This process will always execute the process terminal in preference to the process editor. Each
process executes at a separate priority, the first process is the highest priority, the last is the lowest. Lower
priority processes may only continue when all higher priority processes are unable to. The process may also

72

be replicated, as shown in the following example:

PRI PAR i = 0 FOR 8
users (term.in[i], term.out[i])

The process with the highest index is executed at the lowest priority.

The syntax for priority execution is:

A Configuration

parallel = PRI PAR
{ process}

PRI PAR replicator
process

The keywords PRI PAR are followed by zero or more processes at an indentation of two spaces. As for
parallels detailed in the main body of the manual (page 16), the process may be replicated.

A.2.2 Priority alternation

The inputs which guard alternatives in an alternation (page 18) may also be given a selection priority. Consider
the following example:

PRI ALT
disk ? block

d ()
keyboard ? char

k ()

This priority alternation will input values from the channel disk in preference to inputs from the channel
keyboard. If both channels disk and keyboard become ready then disk will be selected as it has the
highest priority.

Consider the following example:

PRI ALT
stream ? data

P ()
busy & SKIP

Q ()

This process inputs data if an input from stream is ready, and performs the process P, otherwise if the
boolean busy is true the process Q is performed.

The syntax for priority alternation is:

alternation PRI ALT
{ alternative }

PRI ALT replicator
alternative

The keywords PRI ALT are followed by zero or more processes at an indentation of two spaces. As for
alternations detailed earlier in the manual (page 20) the alternative may be replicated.

A Configuration

A.3 Allocation to memory

73

This section explains how a variable, channel, timer or array may be placed at an absolute location in
memory. occam presents a consistent view of a processor's memory map. Memory is considered to be an
array of type INT, each address in memory is considered a subscript into that array. Consider the following
example:

PLACE te~.in AT linklin :

This allocation places the element te~. in at the location specified by linklin. Here are some further
examples:

[80]INT buffer:
PLACE buffer AT #0400

[5]REAL32 points :
PLACE points AT #0800

CHAN OF INT te~.out :
PLACE te~.out AT 3 :

The syntax for allocation is:

process

allocation

allocation:
process
PLACE name AT expression :

An allocation begins with the keyword PLACE, followed by the name of the variable, channel, timer or array
to be placed. This in turn is followed by an expression of type INT which indicates the absolute location in
memory.

An allocation must allocate an element to a compatible location. That is, a timer should be placed at a
location which acts as a timer, and a channel should be placed at the location which implements a channel.
Also, arrays must not be placed so that the components of an array overlap other allocations.

74 B Ports

This appendix describes how memory mapped devices may be addressed in occam. A process may
communicate with external devices which are mapped into the processor's memory map, using a special
input or output in a way similar to communication on channels. A special type declares a port which must
then be placed using an allocation (page 73). Consider the following example:

PORT OF INT16 status :
PLACE status AT uart.status :
SEQ

status ? state
status ! reset

This example declares a port which is then allocated to a location uart. status in memory. The following
sequence includes an input which reads the value of the port, and also an output which writes a value reset
to the port location. Consider the following examples of port declarations:

PORT OF [8]INT uart :
[8]PORT OF BYTE transducer

one port of type [8] INT
eight ports of byte type

A port declaration is simila[to a channel declaration, and must obey the same rules of scope (page 53). That
is, a port may not be used for input or output in more than one component process in a parallel.

The syntax for ports is:

primitive. type
port
input
output

PORT OF type
element
port? variable
port ! expression

The syntax shows that ports are a primitive type, just like data types, channels and timers. A port is declared
in just the same way as a channel. Instead of a defined protocol (page 29) the port definition specifies a
type, which must be a data type, as the type for communication.

C Usage rules check list 75

This appendix summarises the rules which govern the use of variables, channels, timers, ports (page 74) and
arrays in parallel constructions, and the rules which govern abbreviations and parameters. These rules are
discussed in context throughout the manual, and are gathered here as a check list.

C.1 Usage in parallel

The purpose of these rules is to prevent parallel processes from sharing variables, to ensure that each
channel connects only two parallel processes, and to ensure that the connection of channels is unidirectional.
The rules allow most of the checking for valid usage to be performed by a compiler, thus reducing runtime
overheads.

A channel implements a point-to-point communication between two parallel processes. The name
of a channel may only be used in one component of a parallel for input, and in one other component
of the parallel for output.

A timer may be used for input by any number of components of a parallel.

A variable or component of an array of variables, which is assigned to in a component of a parallel,
may not appear in any other component of the parallel.

An array may be used in more than one component of a parallel, if and only if the subscripts used
to select components of the array can be determined at compile time. Otherwise the array may only
be used in one component of the parallel.

Several abbreviations can decompose an array into non-overlapping disjoint parts; components of
these parts may then be selected using variable subscripts.

A port may be used in only one component of a parallel.

C.2 The rules for abbreviations

The purpose of these rules is to ensure that each name identifies a unique object, and that the substitution
semantics are maintained.

All reference to an abbreviated element must be via the abbreviation only, with the exception that ar
ray elements may be further abbreviated providing the later abbreviations do not include components
of the array already abbreviated.

Variables used in an abbreviated expression may not be assigned to by input or assignment within
the scope of the abbreviation.

The abbreviated expression must be valid, i.e. in range and not subject to overflow, and all subscript
expressions must be in range.

All subscript expressions used in an element abbreviation must be valid, i.e. not subject to overflow
and in range.

All reference to a retyped element must be via the new name only, with the exception that array
elements may be further retyped providing the later retyping conversions do not include components
of the array already retyped.

Variables used in a retyping conversion may not be assigned to by input or assignment within the
scope of the new name.

76

C.3 The rules for procedures

C Usage rules check list

The rules for procedure parameters follow from those for abbreviations, but in addition a channel
parameter or free channel may not be used for both input or output in a procedure.

C.4 The rules for value processes and functions

Functions may only have value parameters.

Only variables declared within the scope of a value process may be assigned to. Free names may
be used in expressions.

A value process may not contain inputs, outputs, parallels or alternations.

The body of a procedure used within a function must also obey these rules.

D Mapping types 77

This appendix describes retyping conversion. A retyping conversion changes the data type of a bit pattern,
from one data type to another. There are two kinds of retyping conversions: conversions which convert an
element, and conversions which convert the value of an expression. The length (Le. the number of bits) of
the new type specified must be the same as the length of the bit pattern. A retyping conversion has no effect
upon the bit pattern, and differs from type conversion (page 49) where the value of one type is represented
as an equivalent value of another type.

The retyping conversion of a value may be used to specify a name for a particular bit pattern described by a
hexadecimal constant. Consider the following example:

VAL REAL32 root.NaN RETYPES #7F840000(INT32) :

The advantage of the above conversion is that it has been possible to specify the exact representation of a
value otherwise difficult to represent. Consider also the following example:

VAL INT64 pattern RETYPES 42.0(REAL64) :

The bit pattern for the real representation of the value 42.0 is mapped to a name pattern of type INT. As
for the abbreviations (page 57) of expressions, no variable used in the expression may be assigned to by
input or assignment within the scope of the conversion.

The retyping conversion may also specify a name of a new type for an existing element of the same length.
For example:

INT64 condition

[8]BYTE state RETYPES condition :

In this example, condition, a variable of type INT64, is converted into an array of 8 bytes. Each byte is
accessible via subscript, any change to the bit pattern as a result of an assignment or input will directly affect
the value_ of the original element.

The same rules apply to names specified by retyping conversions as apply to abbreviations. That is, no
variable used in a subscript or count expression which selects a component or segment of an array may be
assigned to by an input or assignment within the seope (page 53, the region of a program where a name is
valid) of the conversion. The element converted may not be be used within the scope of the conversion. See
the rules which affect abbreviations on page 58.

The syntax for retyping conversion is:

definition speeifier name RETYPES element :
VAL speeifier name RETYPES expression :

The retyping conversion of a value begins with the keyword VAL, a specifier appears to the right of VAL,
followed by the name specified, and the keyword RETYPES, the expression appears to the right of the keyword
RETYPES. The line on which the conversion occurs may not be broken after the keyword RETYPES, but
may be broken at some valid point in the expression.

78 E 'Invalid processes

Processes which become invalid during program execution may behave in one of three ways, determined by
a compiler option. An invalid process may behave in one of these ways: the process may stop, the system
may halt, or the behaviour of the process may be undefined.

The three modes of existence in detail are:

Stop process mode In this mode, processes which become invalid behave like the primitive process STOP,
thus allowing other processes to continue. The invalid process stops, and in particular does not make
erroneous outputs to other processes. Other processes continue until they become dependent upon
data from the stopped process. In this mode it is therefore possible to write communications which
will timeout to warn of a stopped process, and to construct a system with redundancy in which a
number of processes performing the same task may be used to enable the system to continue after
one of the processes has failed.

Halt system mode In this mode an invalid process may cause the whole system to halt, and is useful for
the development of programs, particularly when debugging concurrent systems. In this mode the
primitive process STOP will also cause the whole system to halt.

Undefined mode In this mode, an invalid process may have an arbitrary effect, and is only useful for opti
mising programs known to be correct!

F Rounding errors 79

Earlier sections of this manual have discussed rounding and the possibilty of rounding errors. These occur
because the types REAL32 and REAL64 only contain a subset of the real numbers. This is because it
is not possible to store all the possible real values in the format for real numbers available on a machine.
Rounding takes a value, which is considered infinitely precise and, if necessary, modifies it to a value which
is representable by the type. By default, values are rounded to the nearest value of the type, if the nearest
greater value and the nearest smaller value are equally near, then the result which has the least significant
bit zero is chosen. Other modes of rounding are selectable using the IEEEOP library routine, these modes
round values toward plus infinity, minus infinity or toward zero. A value rounded to plus infinity is the value
nearest to and not less than the value to be represented, a value rounded to minus infinity is the value nearest
to and not greater than the value to be represented, a value rounded toward zero is the value no greater in
magnitude than the value to be represented.

A value is rounded to the precision of its type. A value of type REAL32 is equivalent to IEEE single precision,
and a value of type REAL64 is equivalent to IEEE double precision.

Values in the REAL32 and REAL64 formats are stored in the following formats

o exp I frac

where 5 is the sign bit, exp is the exponent and frac is the fraction. For the REAL32 type 5 is 1 bit wide, exp
is 8 bits wide and frac is 23 bits wide. For the REAL64 type 5 is 1 bit wide, exp is 11 bits wide and frac is
52 bits wide. Whenever the exp field is not 0 the actual fraction of the number represented has an "implied"
1 placed on the left of the frac value.

The value of finite REALs is given by

va'0 exp I frac
1

= {(-1)~ x 1·frac x 2exp~bia~, if exp iO;
. (-1)~xO.fracx21-bta~, ifexp=O;

where bias is 127 for REAL32_and 1023 for REAL64

In the REAL32 type the value 1.0 is represented by an unset sign bit 5, an exp equal to 127, and a frac of O.
The next larger number has an unset signbit, exp of 127 and a frac of 1. This has the value 1.00000019209
Hence any number lying between 1.0 and this value cannot be exactly represented in the REAL32 type
such values have to be rounded to one of these values. Now consider the assignment:

X := 1.0(REAL32) + 1.0E-7(REAL32)

The previous sections show that the result of this operation cannot be exactly represented by the type
REAL32. The exact result has to be rounded to "fit" the type. Here the exact result will be rounded to the
nearest REAL32 value 1.00000019209 ...

Other rounding modes - Round to Zero (truncation), Round to Plus infinity and Round to Minus infinity - can
be obtained through the use of the IEEEOP function. Because of the presence of rounding, programmers
should be wary of using equality tests on real types. Consider the following example:

SEQ
X := 1.0(REAL32)
WHILE X <> 1.000001(REAL32)

X := X + 0.0000005(REAL32)

never terminates as rounding errors cause 1.000001 and 1.0 + 0.0000005 + 0.0000005 to differ.

The nearest unique value of a conversion of a literal of type REAL32 can be determined from the first 9
significant digits, and from the first 17 significant digits of a literal of type REAL64. Complete details of the
IEEE Standard for Binary Floating-Point Arithmetic can be found in the published ANSI/IEEE Std 754-1985
standard.

80

G.1 Syntax in context

G Syntax summary

The following tables present the syntax of occam 2. Each syntactic object appears in context. However,
the following BNF should not be read in isolation. The syntactic objects are kept to a minimum, and must
be considered in association with the semantic rules given in the definition. Thus, for example, the use of
primitive. type and type in the syntax

simple.protocol = primitive. type: : [] type

is clarified by the semantics which point out that the primitive. type must be an integer or byte type, and that
type must be a data type.

G.1.1 Processes

process SKIP I STOP
action
construction
instance

action assignment I input I output

assignment

input
output

assignment
variable. list
expression. list

variable : =expression

channel? variable
channel ! expression

variable. list : =expression. list
{1 , variable}
{1 , expression}

G.1.2 Construction

construction

sequence

conditional

choice
guarded.choice

boolean

selection

option

selector
case. expression

sequence I conditional I selection I loop
parallel I alternation

SEQ
{ process

IF
{ choice }

guarded. choice I conditional
boolean

process
expression

CASE selector
{ option }

{1 , case. expression }
process

ELSE
process

expression
expression

loop

parallel

WHILE boolean
process

PAR
{ process

G Syntax summary

alternation

alternative
guarded.alternative

guard

G.1.3 Replicator

ALT
{ alternative }

guarded.alternative 1 alternation
guard

process
input
boolean & input
boolean & SKIP

81

sequence

conditional

parallel

alternation

replicator
base
count

G.1.4 Types

type

primitive. type

array. type

G.1.5 Literal

literal

integer
byte
real
exponent
digit
hex.digit

SEQ replicator
process

IF replicator
choice

PAR replicator
process

ALT replicator
alternative

name =base FOR count
expression
expression

primitive. type
array. type
CHAN OF protocol
TIMER
BOOL
BYTE
INT
INT16
INT32
INT64
REAL32
REAL64
[expression] type

integer
byte
integer (type)
byte (type)
rea/(type)
string
TRUE 1 FALSE
digits 1 #hex.digits
, character'
digits. digits 1 digits. digitsEexponent
+digits 1 - digits
0111213141516171819
digit 1 A 1 B 1 CID 1 ElF

82

G.1.6 Declaration

declaration = type {1 , name}

G.1.7 Protocol

G Syntax summary

definition

protocol

simple.protocol

input
input. item

output
output. item

protocol

sequential.protocol
input
output

definition

tagged.protocol

tag

output

case. input

variant

tagged. list

process
input

alternative

PROTOCOL name IS simple.protocol :
PROTOCOL name IS sequential.protocol :
name

type
primitive. type : : [] type
channel? input. item
variable
variable : : variable
channel ! output. item
expression
expression : : expression
simple.protocol

{1 ; simple.protocol }
channel? {1 ; input.item}
channel ! {1 ; output. item }

PROTOCOL name
CASE

{ tagged.protocol

tag
tag ; sequential.protocol
name

channel ! tag
channel ! tag ; {1 output. item }

channel? CASE
{ variant }

tagged. list
process

specification
variant
tag
tag ; {1 ; input. item }
case. input
channel? CASE tagged. list

channel? CASE
{ variant}

boolean & channel? CASE
{ variant}

G.1.8 Timer access

input

timer. input
delayed. input

timer. input
delayed. input
timer? variable
timer? AFTER expression

G Syntax summary

G.1.9 Element

83

element

subscript
variable
channel
timer

element [subscript]
[element FROM subscript FOR subscript]
name
expression
element
element
element

G.1.10 Expression

operand

expression

table

expression

conversion

element
literal
table
(expression)
monadic.operator operand
operand dyadic.operator operand
conversion
operand
table [subscript]
[{1 , expression}]
[table FROM subscript FOR count]

MOSTPOS type
MOSTNEG type
primitive. type operand
primitive. type ROUND operand
primitive.type TRUNC operand

G.1.11 Abbreviation

abbreviation

specifier

G.1.12 Scope

specifier name IS element:
name I S element :
VAL specifier name I S expression :
VAL name I S expression :
primitive. type
[] specifier
[expression] specifier

process

choice

option

alternative

variant

valof

specification

specification
process
specification
choice
specification
option
specification
alternative
specification
variant
specification
valof
declaration I abbreviation I definition

84

G.1.13 Procedure

definition

formal

procedure.body
instance
actual

G.1.14 Function

value.process
valof

operand

expression. list

definition

function. body
operand
expression. list
definition

G Syntax summary

PROC name ({o , formal})
procedure.body

specifier {1 , name}
VAL specifier {1 , name}
process
name ({o , actual})
element
expression

valof
VALOF

process
RESULT expression. list

specification
valof
(value.process
)
(value.process
)

{1 , primitive. type} FUNCTION name ({o , formal})
function .body

value.process
name ({o , expression})
name ({o , expression})
{1 , primitive. type } FUNCTION name ({o , formal}) IS expression. list :

G Syntax summary

G.1.15 Configuration

piacedpar

parallel

parallel

alternation

process

allocation

definition

primitive. type
port
input
output
protocol

PLACED PAR
{ placedpar }

PLACED PAR replicator
placedpar

PROCESSOR expression
process

placedpar

PRI PAR
{ process}

PRI PAR replicator
process

PRI ALT
{ alternative }

PRI ALT replicator
alternative

allocation
process
PLACE name AT expression :

specifier name RETYPES element :
VAL specifier name RETYPES expression :

PORT OF type
element
port? variable
port ! expression
ANY

85

86

G.2 Ordered syntax

G Syntax summary

The following tables present the syntax of occam with each syntactic object placed in alphabetical order.

abbreviation specifier name IS element:
name IS element:
VAL specifier name I S expression :
VAL name I S expression :

action assignment
input
output

actual element
expression

allocation PLACE name AT expression :

alternation ALT
{ alternative

ALT replicator
alternative

PRI ALT
{ alternative }

PRI ALT replicator
alternative

alternative guarded. alternative I alternation
specification
alternative
channel? CASE

{ variant}
boolean & channel? CASE

{ variant}

array type [expression] type

assignment variable : =expression
variable. list : = expression. list

base expression

boolean expression

byte ' character'

case.expression expression

case. input channel? CASE
{ variant}

channel =

choice

element

guarded.choice I conditional
specification
choice

G Syntax summary

conditional IF
{ choice}

IF replicator
choice

construction sequence 1 conditional 1 selection 1 loop
parallel 1 alternation

conversion primitive. type operand
primitive. type ROUND operand
primitive. type TRUNC operand

count = expression

declaration type {1 , name} :

definition = PROTOCOL name IS simple.protocol :
PROTOCOL name IS sequential.protocol :
PROTOCOL name

CASE
{ tagged.protocol }

PROC name ({o , formal})
procedure.body

{1 , primitive.type} FUNCTION name ({o , formal})
function. body

{1 , primitive. type } FUNCTION name ({o , formal}) IS expression. list :
specifier name RETYPES element :
VAL specifier name RETYPES expression :

87

delayed. input timer? AFTER expression

d~ = 0111213141516171819

element element [subscript]
[element FROM subscript FOR subscript]
name

exponent = +digits 1 - digits

expression = monadic.operator operand
operand dyadic.operator operand
conversion
operand
MOSTPOS type 1MOSTNEG type

expression. list (value.process
)
name ({o , expression})
{1 , expression}

formal specifier {1 , name}
VAL specifier {1 , name}

function. body value.process

88

guard input
boolean & input
boolean & SKIP

G Syntax summary

guarded.alternative guard
process

guarded.choice = boolean
process

hex.digit digit I A I B I CID I ElF

input ~ channel? variable
channel? input.item
channel? {1 ; input. item }
channel? CASE tagged.list
timer.input
delayed.input
port? variable

input. item variable
variable : : variable

instance = name ({o , actual})

integer = digits I #hex.digits

literal = integer
byte
integer (type)
byte (type)
real (type)
string
TRUE I FALSE

loop = WHILE boolean
process

operand element
literal
table
(expression)
(value.process
)
name ({o , expression})

option {1 , case.expression }
process

ELSE
process

specification
option

output channel ! expression
channel ! output. item
channel ! {1 ; output.item}
channel ! tag
channel ! tag ; {1 ; output. item }
port ! expression

G Syntax summary

output. item expression
expression : : expression

parallel PAR
{ process}

PAR replicator
process

PRI PAR
{ process}

PRI PAR replicator
process

placedpar

placedpar PLACED PAR
{ placedpar }

PLACED PAR replicator
placedpar

PROCESSOR expression
process

port = element

primitive. type = CHAN OF protocol
TIMER
BOOL
BYTE
INT
INT16
INT32
INT64
REAL32
REAL64
PORT OF type

procedure.body process

process = SKIP I STOP
action
construction
instance
case. input
specification
process
allocation
process

protocol name
simple.protocol
ANY

real digits. digits I digits. digitsEexponent

replicator name =base FOR count

selection CASE selector
{ option }

selector expression

89

90

sequence SEQ
{ process }

SEQ replicator
process

sequential.protocol {1 ; simple.protocol }

simple.protocol type
primitive. type: : [] type

specification declaration I abbreviation I definition

specifier primitive. type
[] specifier
[expression] specifier

subscript expression

table = table [subscript]
[{1 , expression}]
[table FROM subscript FOR count]

tag name

G Syntax summary

tagged. list =

tagged.protocol

timer = element

tag
tag; {1 ; input.item}

tag
tag; sequential.protocol

timer. input timer? variable

type primitive. type
array. type

valof VALOF
process
RESULT expression. list

specification
valof

value.process valof

variable = element

variable. list {1 , variable}

variant = tagged. list
process

specification
variant

H Keywords and symbols

This section provides a complete list of occam symbols and keywords.

Arithmetic operators Communication symbols
+ plus ! Input
- minus ? Output

* times
/ divide

Other symbols
Hexadecimal

\ remainder
& Ampersand; used in a guard

Bit operators (Parentheses; used to delimit expressions,
/\ and) the type of literals and a parameter list
\/ or [Square brackets; used to delimit array subscripts,
>< exclusive or] and to construct segments and tables
,., not [] Array type specifier
« left shift .. Counted array communication
» right shift .- Assignment symbol
Relational operators " Double quote; used to construct a string byte table
= equal

, Single quote; used to delimit character byte literal

< less than , Separator for specifications, parameters, and table

> greater than ; Sequential protocol separator

<= less than or equal to : Specification terminator
>= greater than or equal to -- Comment introduction

<> not equal

AFTER later than operator PAR parallel
ALT alternation PLACE allocation
AND boolean and operator PLACED placed processes
ANY anarchic protocol PLUS modulo addition operator
AT at location PORT OF port type
BITAND bitwise and operator PRI prioritised construction
BITNOT bitwise not operator PROC procedure
BITOR bitwise or operator PROCESSOR processor allocation
BOOL boolean type PROTOCOL protocol definition
BYTE byte type REAL32 32bit real type
CASE selection, variant protocol, case input REAL 64 64bit real type
CHAN OF channel type REM remainder operator
ELSE default selection RESULT value process result
FALSE boolean constant RETYPES retyping conversion
FOR count ROUND rounding operator
FROM base SEQ sequence
FUNCTION function definition SIZE array size operator
IF conditional SKIP skip process
IS specification introduction STOP stop process
INT integer type TIMER timer type
INT16 16bit integer type TIMES modulo multiplication operator
INT32 32bit integer type TRUE boolean constant
INT64 64bit integer type TRUNC truncation operator
MINUS modulo subtraction/negation operator VAL value
MOSTNEG most negative VALOF value process
MOSTPOS most positive WHILE loop
NOT boolean not operator
OR boolean or operator

91

If an implementation adds further reserved words, then the names used must not include lower case letters.

92 Character set

Characters in occam are represented according to the American Standard Code for Information Interchange
(ASCII). Where the full character set is not available occam guarantees the following subset:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
! "#&' () *+, - . / : ; <=>? []

For reference, here is a table of all printable ASCII characters, and their values:

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex
SPACE 32 20 @ 64 40 ,

96 60
! 33 21 A 65 41 a 97 61
" 34 22 B 66 42 b 98 62
35 23 C 67 43 c 99 63
$ 36 24 D 68 44 d 100 64
% 37 25 E 69 45 e 101 65
& 38 26 F 70 46 f 102 66,

39 27 G 71 47 9 103 67
(40 28 H 72 48 h 104 68
) 41 29 I 73 49 i 105 69

* 42 2A J 74 4A j 106 6A
+ 43 28 K 75 48 k 107 68
, 44 2C L 76 4C 1 108 6C
- 45 20 M 77 40 m 109 60

46 2E N 78 4E n 110 6E
/ 47 2F 0 79 4F 0 111 6F
0 48 30 P 80 50 P 112 70
1 49 31 Q 81 51 q 113 71
2 50 32 R 82 52 r 114 72
3 51 33 S 83 53 s 115 73
4 52 34 T 84 54 t 116 74
5 53 35 U 85 55 u 117 75
6 54 36 V 86 56 v 118 76
7 55 37 w 87 57 w 119 77
8 56 38 X 88 58 x 120 78
9 57 39 Y 89 59 y 121 79
: 58 3A Z 90 5A z 122 7A
; 59 38 [91 58 { 123 78
< 60 3C \ 92 5C I 124 7C
= 61 30] 93 50 } 125 70
> 62 3E A. 94 5E - 126 7E
? 63 3F - 95 5F

The characters *, ' and " may not be used directly in strings or as character constants. These and non
printable characters (such as carriage return, tab etc..) can be included in strings, or used as character
constants, in the following form:

*c *C carriage return = *#00
*n *N newline = *#OA
*t *T tab = *#08
*s *S space = *#20
*, quotation mark
*" double quotation mark
** asterisk

Character set

In addition, any byte value can be represented by *# followed by two hexadecimal digits, for example:

I soh . - ' *#01' , *#01' is a byte constant. I

93

94 J Standard libraries

This appendix provides a complete list of the standard library routines. The behaviour of routines is described
in detail in the following appendices. Library routines (typically the most primitive routines) may be predefined
in an implementation, that is, they may be known to the compiler and do not need to be explicitly referenced
by the programmer. Other libraries must be explicitly referenced by the programmer, and the name used in
their specification has the same property as any other specification. However, programmers are discouraged
from using the names of any library routine for any specification other than that of naming the routine in
question. The following tables include the name of the routine, and a specifier which indicates the type of
each of the parameters to the routine.

J.1 Multiple length integer arithmetic functions

The arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct multiple length
arithmetic and multiple length shift operations.

Result Function Parameter specifiers

INT LONGADD (VAL INT, VAL INT, VAL INT)
INT LONGSUB (VAL INT, VAL INT, VAL INT)
INT ASHIFTRIGHT (VAL INT, VAL INT)
INT ASHIFTLEFT (VAL INT, VAL INT)
INT ROTATERIGHT (VAL INT, VAL INT)
INT ROTATELEFT (VAL INT, VAL INT)
INT,INT LONGSUM (VAL INT, VAL INT, VAL INT)
INT,INT LONDIFF (VAL INT, VAL INT, VAL INT)
INT,INT LONGPROD (VAL INT, VAL INT, VAL INT)
INT, INT LONGDIV (VAL INT, VAL INT, VAL INT)
INT,INT SHIFTLEFT (VAL INT, VAL INT, VAL INT)
INT,INT SHIFTRIGHT (VAL INT, VAL INT, VAL INT)
INT, INT, INT NORMALISE (VAL INT, VAL INT)

J Standard libraries

J.2 Floating point functions

The floating point functions provide the list of facilities suggested by the ANSI/IEEE standard 754-1985.

95

Result Function Parameter specifiers

REAL32 ABS (VAL REAL32)
REAL 64 DABS (VAL REAL 64)
REAL32 SCALEB (VAL REAL32, VAL INT)
REAL 64 DSCALEB (VAL REAL 64 , VAL INT)
REAL32 COPYSIGN (VAL REAL32, VAL REAL32)
REAL64 DCOPYSIGN (VAL REAL 64 , VAL REAL64)
REAL32 SQRT (VAL REAL32)
REAL 64 DSQRT (VAL REAL 64)
REAL32 MINUSX (VAL REAL32)
REAL64 DMINUSX (VAL REAL 64)
REAL32 NEXTAFTER (VAL REAL32, VAL REAL32)
REAL 64 DNEXTAFTER (VAL REAL 64 , VAL REAL64)
REAL32 MULBY2 (VAL REAL32)
REAL 64 DMULBY2 (VAL REAL 64)
REAL32 DIVBY2 (VAL REAL32)
REAL64 DDIVBY2 (VAL REAL 64)
REAL32 LOGB (VAL REAL32)
REAL64 DLOGB (VAL REAL 64)
BOOL ISNAN (VAL REAL32)
BOOL DISNAN (VAL REAL 64)
BOOL NOTFINITE (VAL REAL32)
BOOL DNOTFINITE (VAL REAL 64)
BOOL ORDERED (VAL REAL32, VAL REAL32)
BOOL DORDERED (VAL REAL 64 , VAL REAL64)
INT,REAL32 FLOATING. UNPACK (VAL REAL32)
INT,REAL64 DFLOATING.UNPACK (VAL REAL 64)
BOOL,INT32,REAL32 ARGUMENT.REDUCE (VAL REAL32, VAL REAL32,VAL REAL32)
BOOL,INT32,REAL64 DARGUMENT.REDUCE (VAL REAL 64 , VAL REAL64, VAL REAL64)
REAL32 FPINT (VAL REAL32)
REAL64 DFPINT (VAL REAL 64)

J.3 Full IEEE arithmetic functions

Result Function Parameter specifiers

REAL32 REAL320P (VAL REAL32,VAL INT,VAL REAL32)
REAL 64 REAL 640P (VAL REAL64, VAL INT,VAL REAL64)
REAL32 IEEE320P (VAL REAL32,VAL INT,VAL INT,VAL REAL32)
REAL 64 IEEE640P (VAL REAL64, VAL INT,VAL INT,VAL REAL64)
REAL32 REAL32REM (VAL REAL32,VAL REAL32)
REAL 64 REAL 64REM (VAL REAL64, VAL REAL64)
REAL32 REAL32EQ (VAL REAL32,VAL REAL32)
REAL 64 REAL64EQ (VAL REAL64, VAL REAL64)
REAL32 REAL32GT (VAL REAL32,VAL REAL32)
REAL 64 REAL64GT (VAL REAL64, VAL REAL64)
INT IEEECOMPARE (VAL REAL32,VAL REAL32)
INT DIEEECOMPARE (VAL REAL64, VAL REAL64)

96

J.4 Elementary function library

J Standard libraries

All the functions which begin with the letter D return a value of type REAL64 , with the exception of DRAN
which returns an INT64 value. All other functions return a value of type REAL32 , with the exception of RAN
which returns a value of type INT32

Result Function Parameter specifiers

REAL32 ALOG (VAL REAL32)
REAL64 DALOG (VAL REAL64)
REAL32 ALOG1O (VAL REAL32)
REAL64 DALOG1O (VAL REAL64)
REAL32 EXP (VAL REAL32)
REAL64 DEXP (VAL REAL64)
REAL32 TAN (VAL REAL32)
REAL64 DTAN (VAL REAL64)
REAL32 SIN (VAL REAL32)
REAL64 DSIN (VAL REAL64)
REAL32 ASIN (VAL REAL32)
REAL64 DASIN (VAL REAL64)
REAL32 COS (VAL REAL32)
REAL64 DCOS (VAL REAL64)
REAL32 ACOS (VAL REAL32)
REAL64 DACOS (VAL REAL64)
REAL32 SINH (VAL REAL32)
REAL64 DSINH (VAL REAL64)
REAL32 COSH (VAL REAL32)
REAL64 DCOSH (VAL REAL64)
REAL32 TANH (VAL ~AL32)

REAL64 DTANH (VAL REAL64)
REAL32 ATAN (VAL REAL32)
REAL64 DATAN (VAL REAL64)
REAL32 ATAN2 (VAL REAL32 , VAL REAL32)
REAL64 DATAN2 (VAL REAL64 , VAL REAL64)
INT32 RAN (VAL INT32)
INT64 DRAN (VAL INT64)
REAL32 POWER (VAL REAL32 , VAL REAL32)
REAL64 DPOWER (VAL REAL64 , VAL REAL64)

J Standard libraries

J.5 Value, string conversion procedures

97

The library provides primitive procedures to convert a value to and from decimal or hexadecimal representa
tions.

Procedure Parameter specifiers

INTTOSTRING (INT, []BYTE, VAL INT)
INT16TOSTRING (INT, []BYTE, VAL INT16)
INT32TOSTRING (INT, []BYTE, VAL INT32)
INT64TOSTRING (INT, []BYTE, VAL INT64)
STRINGTOINT (BOOL, INT, VAL [] BYTE)
STRINGTOINT16 (BOOL, INT16, VAL []BYTE)
STRINGTOINT32 (BOOL, INT32, VAL []BYTE)
STRINGTOINT64 (BOOL, INT64, VAL []BYTE)
HEXTOSTRING (INT, []BYTE, VAL INT)
HEX16TOSTRING (INT, []BYTE, VAL INT16)
HEX32TOSTRING (INT, []BYTE, VAL INT32)
HEX64TOSTRING (INT, []BYTE, VAL INT64)
STRINGTOHEX (BOOL, INT, VAL [] BYTE)
STRINGTOHEX16 (BOOL, INT16, VAL []BYTE)
STRINGTOHEX32 (BOOL, INT32, VAL []BYTE)
STRINGTOHEX64 (BOOL, INT64, VAL []BYTE)
STRINGTOREAL32 (BOOL, REAL32, VAL []BYTE)
STRINGTOREAL64 (BOOL, REAL64, VAL []BYTE)
REAL32TOSTRING (INT, []BYTE, VAL REAL32, VAL INT)
REAL 64TOSTRING (INT, []BYTE, VAL REAL64, VAL INT)
STRINGTOBOOL (BOOL, BOOL, VAL [] BYTE)
BOOLTOSTRING (INT, []BYTE, VAL BOOL)

98 K Floating point functions

The floating point functions described in this appendix provide the jistof facilities suggested by the ANSI/IEEE
standard 754-1985.

Each function is specified by a skeletal function declaration, a predicate stating the relationship between the
actual parameters after the function call and an informal textual description of the operation. All functions are
implemented in a way which allows the same variable to be used as both the input and receiving variable in
an assignment. The predicate gives the formal definition of the operation, although for most purposes the
text will be an adequate explanation.

NaN and Inf are the sets of all Not-a-Numbers and all infinities in the format.

K.1 Not-a-number values

Floating point arithmetic implementations will return the following valued Not-a-Numbers to signify the various
errors that can occur in evaluations.

Error Single length value Double length value

Divide zero by zero #7FCOOOOO #7FF80000 00000000
Divide infinity by infinity #7FAOOOOO #7FF40000 00000000
Multiply zero by infinity #7F900000 #7FF20000 00000000
Addition of opposite signed infinities #7F880000 #7FF10000 00000000
Subtraction of same signed infinities #7F880000 #7FF10000 00000000
Negative square root #7F840000 #7FF08000 00000000
REAL64 to- REAL32 NaN conversion #7F820000 #7FF04000 00000000
Remainder from infinity #7F804000 #7FF00800 00000000
Remainder by zero #7F802000 #7FF00400 00000000

K Floating point functions

K.2 Absolute

REAL32 FUNCTION ABS (VAL REAL32 X)

REAL64 FUNCTION DABS (VAL REAL64 X)

ABS(X) = IXI

99

This returns the absolute value of X. This is implemented clearing the sign bit so that - 0 . 0 becomes +0 . 0
and even though Not-a-Numbers (NaNs) have no signed-ness the sign bit in their representation will be
cleared.

K.3 Square root

REAL32 FUNCTION SQRT (VAL REAL32 X)

REAL64 FUNCTION DSQRT (VAL REAL64 X)

SQRT (X) = JX.

This returns the square root of x. Negative arguments produce a Negative square root Not-a-Number, and
infinity produces an infinity.

K.4 Test for Not-a-Number

BOOL FUNCTION ISNAN (VAL REAL32 X)

BOOL FUNCTION DISNAN(VAL REAL64 X)

ISNAN(X) =TRUE {:> X E NaN

This returns TRUE if X is a Not-a-Number and FALSE otherwise.

K.5 Test for Not-a-Number or infinity

BOOL FUNCTION NOTFINITE(VAL REAL32 X)

BOOL FUNCTION DNOTFINITE(VAL REAL64 X)

NOTFINITE(X) = TRUE {:> X E NaN U In!

This returns TRUE if X is a Not-a-Number or an infinity and FALSE otherwise.

100 K Floating point functions

K.6 Scale by power of two

REAL32 FUNCTION SCALEB (VAL REAL32 X, VAL INT n)

REAL64 FUNCTION DSCALEB (VAL REAL64 X, VAL INT n)

SCALEB(X, n) = X x 2n

This multiplies X by 2n . Overflow and underflow behaviour is as for normal multiplication under the ANSI/IEEE
standard 754-1985. n can take any value as the operation will return the correct result even when 2n cannot
be represented in the format.

K.7 Return exponent

REAL32 FUNCTION LOGB(VAL REAL32 X)

REAL64 FUNCTION DLOGB (VAL REAL64 X)

LOGB (X) = result
where X tt Inf U NaN 1\ X -=I 0 => result = REAL32(X.exp - Bias)

X = 0 => result = -inf
X E I nf => result = +inf
X E NaN => result =X

This returns the exponent of X as an integer valued floating point number; special cases for Infs, NaNs and
zero. NOTE that all denormalised numbers return the same value - this is not equivalent to rounding the
logarithm to an integer value. If X is a NaN then it is returned as the result, if X is an infinity then the result
is plus infinity and if X is zero then the result is minus infinity.

K.8 Unpack floating point value

INT, REAL32 FUNCTION FLOATING. UNPACK (VAL REAL32 X)

INT, REAL64 FUNCTION DFLOATING. UNPACK (VAL REAL64 X)

FLOATING. UNPACK (X) = (n, r)
where
"otherwise"

X = 0 v X E I nf U N aN => r E N aN 1\ n = RealExp - Bias
X = r x 2n 1\ r E [1 , 2)

This "unpacks" X into a real (r) and an integer (n) so that r lies between 1 and 2 and that X = r x 2n . This is
useful for reducing a value to the primary range for "exponential" type functions. If X is an infinity or a NaN
then a NaN is returned in rand n holds MaxExp - the exponent of a NaN. If X is zero then a NaN is returned
in rand MaxExp in n - this is because the methods used to evaluate a function in its primary range will not
be defined for 0.0 which should have already been dealt with as a special case. The use of a NaN in these
cases signals an error in the attempt to produce a "primary range" value and offset from X.

K Floating point functions

K.9 Negate

REAL32 FUNCTION MINUSX(VAL REAL32 X)

REAL64 FUNCTION DMINUSX (VAL REAL64 X)

MINUSX (X) = result
where result.sign = toggleX.sign, result.frac = X.frac, result.exp = X.exp

101

This returns X with the sign bit toggled. This is not the same as (0 - X) as it has different behaviour on zero
and NaNs. This should not be used as a unary negation where (0 - X) should be used. As with ABS it does
affect the representation of NaNs even though they have no sign in their interpretation.

K.10 Copy sign

REAL32 FUNCTION COPYSIGN(VAL REAL32 X, Y)

REAL64 FUNCTION DCOPYSIGN(VAL REAL64 X, Y)

COPYSIGN (X, Y) = result
where result.sign = Y.sign, result.frac = X.frac, result.exp = X.exp

This returns X with the sign bit from Y.

K.11 Next representable value

REAL32 FUNCTION NEXTAFTER(VAL REAL32 X,Y)

REAL64 FUNCTION DNEXTAFTER(VAL REAL64 X,Y)

NEXTAFTER (X, Y) = result
where X E NaN v YE NaN => result E NaN n {X, Y}

X=Y=>X
X I Y => "result is next real after X in the direction of Y"

This can be specified precisely but as several subsidiary definitions are required first the informal third line of
the "predicate" is used for brevity.

This returns the first floating point number from X in the direction of Y. The major area where this will be
used is in interval arithmetic. If either or both of X or Y is a NaN then a NaN equal to X or Y is returned. An
overflow from a finite X to an infinite result is handled in the same way as an arithmetic overflow.

102

K.12 Test for orderability

BOOL FUNCTION ORDERED (VAL REAL32 X, Y)

BOOL FUNCTION DORDERED (VAL REAL64 X, Y)

K Floating point functions

ORDERED(X, Y) = TRUE {:} X ~ N aN /\ Y ~ N aN

This returns TRUE if X and Y are "orderable" as defined by the ANSI/IEEE standard 754-1985. This imple
ments the negation of the unordered comparison in ANSI/IEEE 754-1985 §5.7 and enables the full IEEE style
comparison to be derived from the standard <, >, ... comparisons of real types in occam.

K.13 Perform range reduction

BOOL, INT32 , REAL32 FUNCTION ARGUMENT. REDUCE (VAL REAL32 X, Y, Y. err)

BOOL,INT32,REAL64 FUNCTION DARGUMENT.REDUCE(VAL REAL64 X, Y, Y.err)

ARGUMENT.REDUCE(X, Y, error) = (b, n, r)

where X.exp ~ Y.exp + maxexpdil I * b /\ X = n x (Y + error) + r
/\(r < (Y + error)/2 V (r = (Y + error)/2/\ n MOD 2 = 0))

X.exp > Y.exp + maxexpdilI * 3m: Z
--,b /\ X = m x Y + r
/\(r < Y/2 V (r = Y/2/\ mMOD2 = 0))
/\n = unde lined

where maxexpdilI is 20 for ARGUMENT. REDUCE and 30 for DARGUMENT . REDUCE.

This performs a more accurate remainder X REM Y by using an extended precision value for Y where
possible. It is assumed that error is no larger than a last bit error in Y. TRUE is returned as the boolean
result b to indicate that the more accurate remainder has been done and the integer result n will then be the
quotient. If the more accurate remainder cannot be done a normal remainder is performed and the quotient
n must be calculated separately. This is designed to be used to reduce an argument to the primary range for
cyclical functions - such as the trigonometric functions.

K.14 Fast multiply by two

REAL32 FUNCTION MULBY2(VAL REAL32 X)

REAL64 FUNCTION DMULBY2(VAL REAL64 X)

MULBY2(X) = X x 2

This returns 2 times X with overflow handling as defined in the ANSI/IEEE standard 754-1985.

K Floating point functions

K.15 Fast divide by two

REAL32 FUNCTION DIVBY2 (VAL REAL32 X)

REAL64 FUNCTION DDIVBY2 (VAL REAL64 X)

DIVBY2(X) = X -72

This returns X divided by 2 with underflow handling as defined in the ANSI/IEEE standard 754-1985.

K.16 Round to floating point integer

REAL32 FUNCTION FPINT (VAL REAL32 X)

REAL64 FUNCTION DFPINT(VAL REAL64 X)

FPINT (X) = result
where IXI ~ 2bit8perword => result = X

IXI < 2bit8perword => result = REAL32 (INT ROUND X)

This returns X rounded to a floating point integer value.

103

104 L MUltiple length arithmetic functions

The following arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct
multiple length integer arithmetic and multiple length shift operations.

LONGADD
LONGSUM
LONGSUB
LONGDIFF
LONGPROD
LONGDIV
SHIFTRIGHT
SHIFTLEFT
NORMALISE
ASHIFTRIGHT
ASHIFTLEFT
ROTATERIGHT
ROTATELEFT

signed addition with a carry in.
unsigned addition with a carry in and a carry out.
signed subtraction with a borrow in.
unsigned subtraction with a borrow in and a borrow out.
unsigned multiplication with a carry in, producing a double length result.
unsigned division of a double length number, producing a single length result.
right shift on a double length quantity.
left shift on a double length quantity.
normalise a double length quantity.
arithmetic right shift on a double length quantity.
arithmetic left shift on a double length quantity.
rotate a word right.
rotate a word left.

For the purpose of explanation imagine a new type INTEGER, and the associated conversion. This imaginary
type is capable of representing the complete set of integers and is presumed to be represented as an infinite
bit two's complement number. With this one exception the following are occam descriptions of the various
arithmetic functions.

- - constants used in the following description
VAL bitsperword IS machine.wordsize(INTEGER)
VAL range IS storeable.values(INTEGER)

range = 2bitsperword

VAL maxint IS INTEGER (MOSTPOS INT)
maxint = (range/2 - 1)

VAL minint IS INTEGER (MOSTNEG INT)
minint = -(range/2)

-- INTEGER literals
VAL one
VAL two
-- mask
VAL wordmask

IS 1(INTEGER) :
IS 2(INTEGER) :

IS range - one

In occam, values are considered to be signed. However, in these functions the concern is with other
interpretations. In the construction of multiple length arithmetic the need is to interpret words as containing
both signed and unsigned integers. In the following the new INTEGER type is used to manipulate these
values, and other values which may require more than a single word to store.

L Multiple length arithmetic functions 105

The sign conversion of a value is defined in the functions unsign and sign. These are used in the
description following but they are NOT functions themselves.

INTEGER FUNCTION unsign (VAL INT operand)

-- Returns the value of operand as an unsigned integer value.
- - for example, on a 32 bit word machine:
- - unsign (1) = 1
- - unsign (-1) = 232 - 1

INTEGER operand. i
VALOF

IF
operand < 0

operand. i . - (INTEGER operand) + range
operand >= 0

operand. i : = INTEGER operand
RESULT operand.i

INT FUNCTION sign (VAL INTEGER result. i)

-- Takes the INTEGER result. i and returns the signed type INT.
-- for example, on a 32 bit word machine:

231 - 1 becomes 231 - 1
-- 231 becomes _231

INT result
VALOF

IF
(result.i > maxint) AND (result.i < range)

result INT (result.i - range)
TRUE

result INT result.i
RESULT result

106

L.1 The integer arithmetic functions

L MUltiple length arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The function is invalid if arithmetic
overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONGADD (VAL INT left, right, carry. in)

-- Adds (signed) left word to right word with least significant bit of carry. in.

INTEGER sum.i, carry.i, left.i, right.i :
VALOF

SEQ
carry.i .- INTEGER (carry.in /\ 1)
left. i . - INTEGER left
right. i INTEGER right
sum.i .- (left.i + right.i) + carry.i

- - overflow may occur in the following conversion
- - resulting in an invalid process
RESULT INT sum.i

LONGSUM performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGSUM (VAL INT left, right, carry. in)

-- Adds (unsigned) left word to right word with the least significant bit of carry. in.
- - Returns two results, the first value is one if a carry occurs, zero otherwise,
- - the second result is the sum.

INT carry.out
INTEGER sum.i, left.i, right.i
VALOF

SEQ
left.i .- unsign (left)
right.i := unsign (right)
sum.i := (left.i + right.i) + INTEGER (carry.in /\ 1)
IF -- assign carry

sum.i >= range
SEQ

sum.i := sum.i - range
carry. out := 1

TRUE
carry.out := 0

RESULT carry. out, sign (sum.i)

L Multiple length arithmetic functions 107

LONGSUB performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONGSUB (VAL INT left, right, borrow. in)

-- Subtracts (signed) right word from left word and subtracts borrow. in from the result.

INTEGER diff.i, borrow.i, left.i, right.i :
VALOF

SEQ
borrow.i .- INTEGER (borrow.in /\ 1)
left. i . - INTEGER left
right. i . - INTEGER right
diff.i .- (left.i - right.i) - borrow.i

-- overflow may occur in the following conversion
- - resulting in an invalid process
RESULT INT diff.i

LONGDIFF performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow. in)

-- Subtracts (unsigned) right word from left word and subtracts borrow. in from the result.
- - Returns two results, the first is one if a borrow occurs, zero otherwise,
- - the second result is the difference.

INTEGER diff.i, left.i, right.i
VALOF

SEQ
left.i .- unsign (left)
right.i := unsign (right)
diff.i := (left.i - right.i) - INTEGER (borrow.in /\ 1)
IF - - assign borrow

diff.i < 0
SEQ

diff.i := diff.i + range
borrow. out := 1

TRUE
borrow.out := 0

RESULT borrow.out, sign (diff.i)

108 L Multiple length arithmetic functions

unsign (carry. in)
unsign (left)
unsign (right)

(left.i * right.i) + carry.i
:= prod.i REM range
:= prod.i / range
(prod.hi.i), sign (prod.lo.i)

LONGPROD performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Pro
duces a double length unsigned result. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry. in)

-- Multiplies (unsigned) left word by right word and adds carry. in.
-- Returns the result as two integers most significant word first.

INTEGER prod.i, prod.lo.i, prod.hi.i, left.i, right.i, carry.i
VALOF

SEQ
carry.i .
left.i .
right.i .
prod.i
prod.lo.i
prod.hi.i

RESULT sign

LONGDIV divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.

The action of the function is defined as follows:

INT, INT FUNCTION LONGDIV (VAL INT dividend. hi, dividend. 10, divisor)

-- Divides (unsigned) dividend. hi and dividend. 10 by divisor.
-- Returns two results the first is the quotient and the second is the remainder.

INTEGER divisor.i, dividend.i, hi, 10, quot.i, rem.i :
VALOF

SEQ
hi unsign (dividend. hi)
10 unsign (dividend. 10)
divisor.i := unsign (divisor)
dividend.i := (hi * range) + 10
quot.i := dividend.i / divisor.i
rem.i := dividend.i REM divisor.i

-- overflow may occur in the following conversion of quot.i
-- resulting in an invalid process
RESULT sign (quot.i), sign (rem.i)

L MUltiple length arithmetic functions 109

SHIFTRIGHT performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

Le. 0 <= places <= 2*bitsperword

The action of the function is defined as follows:

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi. in, lo.in, places)

-- Shifts the value in hi. in and 10. in right by the given number of places.
- - Bits shifted in are set to zero.
- - Returns the result as two integers most significant word first.

INT hi.out, lo.out :
VALOF

IF
(places < 0) OR (places> (two*bitsperword»

SEQ
hi.out 0
lo.out .- 0

TRUE
INTEGER operand, result, hi, 10
SEQ

hi := unsign (hi.in)
10 := unsign (lo.in)
operand := (hi « bitsperword) + 10
result := operand » places
10 := result /\ wordmask
hi := result » bitsperword
hi.out := sign (hi)
lo.out := sign (10)

RESULT hi.out, lo.out

110 L Multiple length arithmetic functions

SHIFTLEFT performs a left shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

Le. 0 <= places <= 2*bitsperword

The action of the function is defined as follows:

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)

-- Shifts the value in hi. in and 10. in left by the given number of places.
- - Bits shifted in are set to zero.

- - Returns the result as two integers most significant word first.

VALOF
IF

(places < 0) OR (places> (two*bitsperword»
SEQ

hi.out .- 0
lo.out .- 0

TRUE
INTEGER operand, result, hi, 10
SEQ

hi := unsign (hi. in)
10 := unsign (lo.in)
operand := (hi « bitsperword) + 10
result := operand « places
10 := result /\ wordmask
hi := result » bitsperword
hi.out := sign (hi)
lo.out := sign (10)

RESULT hi.out, lo.out

L Multiple length arithmetic functions

NORMALI SE normalises a double length quantity. No overflow can occur.

The action of the function is defined as follows :

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

-- Shifts the value in hi. in and 10. in left until the highest bit is set.
-- The function returns three integer results
-- The first returns the number of places shifted.
-- The second and third return the result as two integers with the least significant word first;
-- If the input value was zero, the first result is 2*bitsperword.

INT places, hi.out, lo.out :
VALOF

IF
(hi.in 0) AND (lo.in = 0)

places .- INT (two*bitsperword)
TRUE

VAL msb IS one « «two*bitsperword) - one)
INTEGER operand, hi, 10
SEQ

10 := unsign (lo.in)
hi := unsign (hi.in)
operand := (hi « bitsperword) + 10
places := 0
WHILE (operand /\ msb) = 0

SEQ
operand := operand « one
places := places + 1

hi := operand / range
10 := operand REM range
hi.out := sign (hi)
lo.out := sign (10)

RESULT places, hi.out, lo.out

111

112

L.2 Arithmetic shifts

L Multiple length arithmetic functions

ASHIFTRIGHT performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

Le. 0 <= places <= bitsperword

No overflow can occur.

N.B the result of this function is NOT the same as division by a power of two.

e.g. -1/2 = 0
ASHIFTRIGHT (-1, 1) =-1

The action of the function is defined as follows:
\

-- Shifts the value in operand right by the given number of places.
- - The status of the high bit is maintained

INT FUNCTION ASHIFTRIGHT (VAL INT operand, places) IS
INT(INTEGER (operand) »places) :

ASHIFTLEFT performs an arithmetic left shift. The function is invalid if significant bits are shifted out,
signalling an overflow. The function must be called with the number of places in range, otherwise the
implementation can produce unexpected effects.

Le. 0 <= places <= bitsperword

N.B the result of this function is the same as multiplication by a power of two.

The action of the function is defined as follows:

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)

-- Shifts the value in argument left by the given number of places.
- - Bits shifted in are set to zero.

INTEGER result. i :
VALOF

result.i := INTEGER (argument) « places
-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT result.i

L Multiple length arithmetic functions

L.3 Word rotation

113

ROTATERIGHT rotates a word right. Bits shifted out of the word on the right, re-enter the word on the left.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 <= places <= bitsperword

No overflow can occur.

The action of the function is defined as follows:

INT FUNCTION ROTATERIGHT (VAL INT argument, places)

- - Rotates the value in argument by the given number of places.

INTEGER high, low, argument.i :
VALOF

SEQ
argument.i := unsign(argument)
argument.i := (argument.i * range) » places
high := argument.i / range
low := argument.i REM range

RESULT INT(high \/ low)

ROTATELEFT rotates a word left. Bits shifted out of the word on the left, re-enter the word on the right.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 <= places <= bitsperword

The action of the function is defined as follows:

INT FUNCTION ROTATELEFT (VAL INT argument, places)

- - Rotates the value in argument by the given number of places.

INTEGER high, low, argument.i :
VALOF

SEQ
argument.i := unsign(argument)
argument.i := argument.i « places
high := argument.i / range
low := argument.i REM range

RESULT INT(high \/ low)

114 M IEEE floating point arithmetic

REALOP and REALREM are implementations of the ANSI/IEEE 754-1985 floating point arithmetic standard.
An implementation should comply to the requirements of the standard in as much as all results returned by
them should be correct as defined in the standard. Most programmers will not need to use these functions
directly as most occam implementations will compile all real arithmetic as calls to these functions. In some
applications, such as interval arithmetic, the rounding modes are needed so the functions will need to be
explicitly called in those cases. Also, in some applications, the IEEE standards use of infinities and Not-a
number to handle errors and overflows may be required in preference to the standard occam treatment of
them as invalid expressions.

The functions for REAL32 operands are

REAL32 FUNCTION REAL320P (VAL REAL32 X, VAL INT Op, VAL REAL32 Y)

REAL32 FUNCTION REAL32REM (VAL REAL32 X, VAL REAL32 Y)

REAL320P (X, Op, Y) evaluates X Gp Y according to the standard witholltJerror checking, using the
conventional rounding mode. The various operations are coded in Op where:

op = 0 +
= 1
=2 *
=3 I

REAL32REM (X, Y) evaluates XREMY according to the standard without error checking.

REAL640P and REAL64REM are defined in an similar manner to operate on REAL64s.

IEEEOP (X, Rm, Op, Y) evaluates X Gp Y according to the standard without error checking. The
rounding mode to be used is indicated by Rm where:

round_mode = 0
round_mode = 1
round_mode = 2
round_mode = 3

The function is:

Round to Zero
Round to Nearest
Round to Plus Infinity
Round to Minus Infinity

BOOL, REAL32 FUNCTION IEEE320P (VAL REAL32 X,
VAL INT Rm, Op, VAL REAL32 Y)

BOOL, REAL64 FUNCTION IEEE640P (VAL REAL64 X,
VAL INT Rm, Op, VAL REAL64 Y)

These functions return two results, a boolean which is true if an error has occurred, and false otherwise, and
the result.

M IEEE floating point arithmetic

M.1 ANSI/IEEE real comparison

115

The comparisons on the real types provided in the occam language should suffice for most purposes.
However, if the comparisons detailed in the ANSI/IEEE 754-1985 standard are required then they can be
generated from the set of primitive comparisons.

SOOL FUNCTION REAL32EQ (VAL REAL32 X, Y)
-- result (X = Y) in the IEEE sense

SOOL FUNCTION REAL32GT (VAL REAL32 X, Y)
-- result (X > Y) in the IEEE sense

A standard function IEEECOMPARE will return a value which indicates which of the relations less than, greater
than, equals or unordered as defined by IEEE 754 paragraph 5.7. This procedure is

INT FUNCTION IEEECOMPARE (VAL REAL32 X, Y)
INT result
VALOF

IF
ORDERED (X, Y)

IF
REAL32EQ (X, Y)

result := °
REAL32GT (X, Y)

result .- 1
TRUE

result .- -1
TRUE

result := 2
RESULT result

Then, if really necessary, any of the 26 varieties of comparision suggested by the IEEE standard can be
derived. For instance the ? >= predicate could be implemented by

SOOL, SOOL FUNCTION IEEE.UGE. (VAL REAL32 X,Y)
VAL LT IS -1, EQ IS 0, GT IS 1, UN IS 2:
INT relation:
VALOF

relation := IEEECOMPARE (X, Y)
RESULT FALSE,

(relation=GT) OR «relation=EQ) OR (relation=UN»

Similarily NOT«» could be implemented as

SOOL, SOOL FUNCTION IEEENOT.LG. (VAL REAL32 X,Y)
VAL LT IS -1, EQ IS 0, GT IS 1, UN IS 2:
INT relation:
VALOF

relation := IEEECOMPARE (X, Y)
RESULT (relation=UN), (relation=EQ) OR (relation=UN)

In either of these cases the value returned in the first boolean is equivalent to the invalid operation flag being
set according to the ANSI/I EEE standard 754-1985.

The double length version DIEEECOMPARE is defined in a similar manner to IEEECOMPARE.

116 N Elementary function library

The elementary function library provides a set of routines which provide elementary functions compatible with
the ANSI/I EEE standard 754-1985 for binary floating-point arithmetic.

All single length functions other than POWER, ATAN2 and RAN have one parameter which is a VAL REAL32
taking the argument of the function. POWER and ATAN2 have two parameters. They are both VAL REAL32s
which receive the arguments of the function. RAN has a single parameter which is a VAL INT32. In each
case the double-length version is obtained by prefixing a D onto the function name, whose parameters are
VAL REAL64 or, in the case of DRAN, VAL INT64.

Accompanying the description of each function is the specification of the function's Domain and Range. The
Domain specifies the range of valid inputs, i.e. those for which the output is a normal or denormal floating
point number. The Range specifies the range of outputs produced by all arguments in the Domain. The
given endpoints are not exceeded. Note that some of the domains specified are implementation dependent.

Ranges are given as intervals, using the convention that a square bracket { [or] } means that the adjacent
endpoint is included in the range, whilst a round bracket { (or) } means that it is excluded. Endpoints are
given to a few significant figures only. Where the range depends on the floating-point format, single-length is
indicated with an S and double-length with a D.

For functions with two arguments the complete range of both arguments is given. This means that for each
number in one range, there is at least one (though sometimes only one) number in the other range such that
the pair of arguments is valid. Both ranges are shown, linked by an 'x'.

In the specifications, XMAX is the largest representable floating-point number: in single-length it is approx
imately 3.4 * 1038 , and in double-length it is approximately 1.8 * 10308 . Pi means the closest floating-point
representation of the transcendental number 1r, In(2) the closest representation of loge(2), and so on. In
describing the algorithm, X is used generically to designate the argument, and "result" to designate the
output.

The routines will accept any value, as specified by the IEEE standard, including special values representing
NaNs ('Not a Number') and Infs ('Infinity'). NaNs are copied directly to the result, whilst Infs mayor may not
be valid arguments. Valid arguments are those for which the result is a normal (or denormalised) floating-point
number.

Arguments outside the domain (apart from NaNs which are simply copied to the result) give rise to exceptional
results, which may be NaN, +Inf, or -Inf. Infs mean that the result is mathematically well-defined but too
large to be represented in the floating-point format.

Error conditions are reported by means of three distinct NaNs :

undefined. NaN This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.

unstable. NaN This means that a small change in the argument would cause a large change in the
value of the function, so any error in the input will render the output meaningless.

inexact. NaN This means that although the mathematical function is well-defined, its value is in
range, and it is stable with respect to input errors at this argument, the limitations of
word-length (and reasonable cost of the algorithm) make it impossible to compute
the correct value.

Implementations will return the following values for these Not-a-Numbers:

Error Single length value Double length value

undefined.NaN #7F800010 #7FF00002 00000000
unstable.NaN #7F800008 #7FF00001 00000000
inexact.NaN #7F800004 #7FFOOOOO 80000000

In all cases, the function returns a NaN if given a NaN.

N Elementary function library

N.1 Logarithm

REAL32 FUNCTION ALOG (VAL REAL32 X)

REAL64 FUNCTION DALOG (VAL REAL64 X)

These compute: result = 10ge(X).

Domain: (0, XMAX]
Range: [MinLog, MaxLog] = [-103.28,88.72]8 = [-745.2, 709.78]D

All arguments outside the domain generate an undefined.NaN.

N.2 Base 10 logarithm

REAL32 FUNCTION ALOG10 (VAL REAL32 X)

REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute : result = 10910(X)

Domain: (0, XMAX]
Range: [MinLog10, MaxLog10] = [-44.85,38.53]8 = [-323.6,308.25]D

All arguments outside the domain generate an undefined.NaN.

N.3 Exponential

REAL32 FUNCTION EXP (VAL REAL32 X)

REAL64 FUNCTION DEXP (VAL REAL64 X)

These compute : result = eX.

Domain: [-Inf, MaxLog) = [-In!, 88.72)8, =[-In!, 709.78)D
Range: [0, XMAX)

If the result is too large to be represented in the floating-point format, Inf is returned.

N.4 X to the power of Y

REAL32 FUNCTION POWER (VAL REAL32 X, Y)

REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

117

118

These compute : result = X Y .

Domain: [0, Inf] x [-Inf, Inf]
Range: [-Inf, Inf]

N Elementary function library

If the result is too large to be represented in the floating-point format, Inf is returned. If X or Y is NaN, NaN
is returned. Other special cases are as follows :

First Input (X) Second Input (V) Result

X< 0 any undefined.NaN
0 ~O undefined.NaN
0 0< y ~ XMAX 0
0 Inf unstable.NaN

0< X < 1 Inf 0
0< X < 1 -Inf Inf

1 -XMAX ~ y ~ XMAX 1
1 ± Inf unstable.NaN

1 < X ~ XMAX Inf Inf
1 < X ~ XMAX -Inf 0

Inf 1 ~ Y ~ Inf Inf
Inf -Inf~ y ~ -1 0
Inf -1 < Y < 1 undefined.NaN

otherwise 0 1
otherwise 1 X

N.5 Sine

REAL32 FUNCTION SIN (VAL REAL32 X)

REAL64·FUNCTION DSIN (VAL REAL64 X)

These compute: result = sine(X) (where X is in radians).

Domain: [-Smax, Smax] =[-12868.0, 12868.0]8, =[-2.1 * 108 ,2.1 * 108]D
Range: [-1.0, 1.0]

All arguments outside the domain generate an inexact.NaN. Implementations may provide a larger domain.

N.6 Cosine

REAL32 FUNCTION COS (VAL REAL32 X)

REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: result = cosine(X) (where X is in radians).

Domain:
Range:

[-Smax, Smax] =[-12868.0, 12868.0]8, =[-2.1 * 108 ,2.1 * 108]D
[-1.0, 1.0]

N Elementary function library 119

All arguments outside the domain generate an inexact.NaN. Implementations may provide a larger domain.

N.7 Tangent

REAL32 FUNCTION TAN (VAL REAL32 X)

REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: result = tan(X) (where X is in radians).

Domain: [-Tmax, Tmax] = [-6434.0, 6434.0]8, = [-1.05 * 108 , 1.05 * 108]D
Range : (-Inf, Inf)

All arguments outside the domain generate an inexact.NaN. Implementations may provide a larger domain.

N.8 Arcsine

REAL32 FUNCTION ASIN (VAL REAL32 X)

REAL64 FUNCTION DASIN (VAL REAL64 X)

These compute: result = sine- 1(X) (in radians).

Domain: [-1.0, 1.0]
Range : [-Pi/2, Pi/2]

All arguments outside the domain generate an undefined.NaN.

N.9 Arccosine

REAL32 FUNCTION ACOS (VAL REAL32 X)

REAL64 FUNCTION DACOS (VAL REAL64 X)

These compute: result = cosine- 1(X) (in radians).

Domain: [-1.0,1.0]
Range : [0, Pi]

All arguments outside the domain generate an undefined.NaN.

120

N.10 Arctangent

REAL32 FUNCTION ATAN (VAL REAL32 X)

REAL64 FUNCTION DATAN (VAL REAL64 X)

These compute: result = tan- 1(X) (in radians).

N Elementary function library

Domain:
Range:

[-Inf, Inf]
[- Pil2, Pi/2]

N.11 Polar Angle

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)

REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

These compute the angular co-ordinate tan- 1(Yj X) (in radians) of a point whose X and Y co-ordinates are
given.

Domain: [-Inf, Inf] x [-Inf, Inf]
Range: (-Pi, Pi]

(0, 0) and (±lnf,±lnf) give undefined.NaN.

N.12 Hyperbolic sine

REAL32 FUNCTION SINH (VAL REAL32 X)

REAL64 FUNCTION DSINH (VAL REAL64 X)

These compute: result = sinh(X).

Domain: [-Hmax, Hmax] = [-89.4,89.4]8, = [-710.5,71 0.5]D
Range : (-Inf, Inf)

X < -Hmax gives -Inf, and X > Hmax gives Inf.

N.13 Hyperbolic cosine

REAL32 FUNCTION COSH (VAL REAL32 X)

REAL64 FUNCTION DCOSH (VAL REAL64 X)

These compute: result = cosh(X).

N Elementary function library 121

Domain:
Range:

[-Hmax, Hmax] = [-89.4,89.4]8, = [-710.5,71 0.5]D
[1.0, Inf)

IXI > Hmax gives Inf.

N.14 Hyperbolic tangent

REAL32 FUNCTION TANH (VAL REAL32 X)

REAL64 FUNCTION DTANH (VAL REAL64 X)

These compute: result = tanh(X).

Domain:
Range:

[-lnf,lnf]
[-1.0,1.0]

N.15 Pseudo-random numbers

REAL32, INT32 FUNCTION RAN (VAL INT32 N)

REAL64, INT64 FUNCTION DRAN (VAL INT64 N)

This function returns two results, the first is a real between 0.0 and 1.0, and the second is an integer. The
integer, which must be used as the parameter in the next call to the function, carries a pseudo-random linear
congruential sequence Nk , and must be kept in scope for as long as the function is used. It should be
initialised before the first call to the function but not modified thereafter except by the function itself. Consider
the following sequence:

SEQ
x, seed
y, seed
z, seed

.- RAN

.- RAN

.- RAN

(8) -- initialise seed
(seed)
(seed)

In this example x, y, and z are each assigned a psuedo- random value.

Domain:
Range:

Integers
[0.0, 1.0) x Integers

122 o Value, string conversion routines

This appendix describes the standard library of string to value, value to string routines. The library provides
primitive procedures to convert a value to and from decimal or hexadecimal representations. High input/output
routines can be easily built using these simple procedures, and a number will typically be provided in an
implementation.

0.1 Integer, string conversions

The procedures described here provide conversion between integer values and their decimal or hexadecimal
representations held as a string of characters, for example:

PROC INTTOSTRING (INT len, []BYTE string, VAL INT n)

The procedure INTTOSTRING returns the decimal representation of n in string and the number of
characters in the representation in len.

PROC STRINGTOINT (BOOL error, INT n, VAL []BYTE string)

The procedure STRINGTOINT returns in n the value represented by string. error is set to TRUE if a
non numeric character is found in string. + or a - are allowed in the first character position. n will be the
value of the the portion of string up to any illegal character with the convention that the value of an empty
string is O. error is also set if the value of string overflows the range of INT, in this case n will contain
the low order bits of the binary representation of string. error is set to FALSE in all other cases.

PROC HEXTOSTRING (INT len, []BYTE string, VAL INT n)

The procedure HEXTOSTRING returns the hexadecimal representation of n in string and the number of
characters in the representation in len. All the nibbles (a nibble is a word 4 bits wide) of n are output so
that leading zeros are included. The number of characters will be the number of bits in an INT divided by 4.

PROC STRINGTOHEX (BOOL error, INT n, VAL []BYTE string)

The procedure STRINGTOHEX returns in n the value represented by the hexadecimal string. error is
set to TRUE if a non hexadecimal character is found in string. Here n will be the value of the the portion
of string up to the illegal character with the convention that the value of an empty string is O. error is
also set to TRUE if the value represented by string overflows the range of INT. In this case n will contain
the low order bits of the binary representation of string. In all other cases error is set to FALSE.

Similar procedures are provided for the types INT16, INT32 and INT64. These procedures use equivalent
parameters of the appropriate type. The procedures are:

INTTOSTRING INT16TOSTRING INT32TOSTRING INT64TOSTRING
STRINGTOINT STRINGTOINT16 STRINGTOINT32 STRINGTOINT64
HEXTOSTRING HEX16TOSTRING HEX32TOSTRING HEX64TOSTRING
STRINGTOHEX STRINGTOHEX16 STRINGTOHEX32 STRINGTOHEX64

o Value, string conversion routines

0.2 8001ean, string conversion

123

The procedures described here provide conversion between boolean values and their textual representation
"TRUE" and "FALSE".

PROC BOOLTOSTRING (INT len, []BYTE string, VAL BOOL b)

The procedure BOOLTOSTRING returns "TRUE" in string if b is TRUE and "FALSE" otherwise. len
contains the number of characters in the string returned.

PROC STRINGTOBOOL (BOOL error, b, VAL []BYTE string)

The procedure STRINGTOBOOL returns TRUE in b if first 4 characters of string are "TRUE", FALSE if
first 5 characters are "FALSE" and b is undefined in other cases. TRUE is returned in error if string is
not exactly "TRUE" or "FALSE".

0.3 Real, string conversion

The procedures described here provide conversion between real values and their representation as strings,
for example:

PROC STRINGTOREAL32 (BOOL error, REAL32 r, VAL []BYTE string)

PROC STRINGTOREAL64 (BOOL error, REAL64 r, VAL []BYTE string)

These two procedures each take a string containing a decimal representation of a real number and convert it
into the corresponding real value. If the value represented by string overflows the range of the type then
an appropriately signed infinity is returned. Errors in the syntax of string are signalled by a Not-a-Number
being returned and error being set to TRUE. The string is scanned from the left as far as possible while
the syntax is still valid. If there any characters after the end of the longest correct string then error is set
to TRUE, otherwise it is FALSE. For example if string was "12. 34E+2+1. 0" then the value returned
would be 12.34 x 102 with error set to TRUE. Strings which represent real values are those specified by
the syntax for real literals, for example:

12.34
587.0E-20
+1.0E+123
-3.05

Further examples are given in the section on literals on page 25.

PROC REAL32TOSTRING (INT len, []BYTE string,
VAL REAL32 r, VAL INT rn, n)

PROC REAL64TOSTRING (INT len, []BYTE string,
VAL REAL64 r, VAL INT rn, n)

These two procedures return a string representing the value r in the first len BYTEs of string. The
format of the representation is determined by rn and n .. Free format is selected by passing 0 in rn and n
into the procedure. Where possible a fixed point representation is used when this does not indicate more

124 o Value, string conversion routines

accuracy than is available and does not have more than 3 "O"s after the decimal point before significant digits.
Otherwise exponential form is used. The number of characters returned in string here depends on the
input but will be no more than 15 in REALTOSTRING32 and 24 in REALTOSTRING64. string is left
justified in free format.

If m is non-zero then if possible the procedure returns a fixed point representation of r with m digits before the
decimal point and n places after with padding spaces being added when needed. If this is not possible then
an exponential representation is returned with the same field width as the fixed point representation would
have had. If m and n are both very small then an exponential representation may not fit in the field width so
two special values "Un" and "Ov" with a sign are returned to indicate a value under or over the representable
fixed point values. In all these cases string is padded with spaces so that it contains (m+ n + 2) characters
- m before the decimal point, n after, as well as the sign and decimal point characters.

If m is zero but n is not then an exponential representation is returned where the number of digits of fraction
returned is n. The form of the fraction is digit.digits except when n is 1. In this case the output is not a
proper representation as the fraction will be of the form (, digit where the padding space is added due to the
absence of a decimal point. For this reason the case m = 0, n = 1 should not be used in general. When m is
o string will contain (n + 6) characters for REALTOSTRING32 and (n + 7) for REALTOSTRING64.

Each procedure returns a string "Inf" preceded by a sign character for infinities and a string "NaN" for
Not-a-Numbers. In free format a leading space on either string is dropped. Both these will be padded on the
right with spaces to fill the field width when free format output is not being used.

P Glossary of terms 125

Abbreviation An abbreviation specifies a name as an alias for an existing element or for the value of
an expression. The meaning of the alias is defined by substitution of the abbreviated element or
expression.

Actual parameter A parameter used in an instance of a procedure.

Alias A name specified by an abbreviation.

Alias check Ensure all elements are identified by a single name within a given scope.

Allocation Place a variable, channel, timer, array or port at an absolute location in memory.

Alternation Combines a number of processes guarded by inputs, and performs the process associated with
an input which is ready.

Alternative A component of an alternation.

Argument A parameter used in an instance of a function.

Array A number of components of the same type.

Assignment Evaluates an expression or list of expressions, and assigns each result to a corresponding
variable.

Bitwise operation Operation on the individual bits in the representation of a value.

Boolean operation Logical evaluation of truth values.

Case input Selects the protocol of an input on a single channel with variant protocol.

Channel Unbuffered, uni-directional point-to-point connection for communication between two processes
executing in parallel.

Channel protocol The format of communication on a channel. Communication is valid only if the output and
input are compatible; Le. each communication is of the type specified by the channel protocol.

Choice A component of a conditional.

Communication The communication of values between concurrent processes.

Concurrency Processes acting and existing together.

Conditional A construction (IF) which combines a number of processes each of which is guarded by a
boolean.

Configuration Configuration associates the components of an occam program with a set of physical re
sources.

Construction A construction combines processes. occam programs are built from processes, by combining
primitive processes and other constructions to form constructions of sequence (SEQ), conditional
(IF), selection (CASE), loop (WHILE), parallel (PAR) or alternation (ALT).

Deadlock A state in which two or more concurrent processes can no longer proceed due to a communication
interdependency.

Declaration Specifies the name, type and scope of a variable, channel, timer or array.

Delayed input A special timer input which will wait until the timer has incremented beyond a specified time
before terminating. Useful for adding a simple delay in a process.

Element A syntactic structure (a name, subscripted name or segment) which selects variables, channels,
timers or arrays.

Expression list A list of expressions separated by commas; used in multiple assignment and functions.

Formal parameter Parameter specified in the definition of a procedure or function. A formal parameter acts
as an abbreviation for the actual parameter used in an instance of a procedure.

Free channel A variable whose name is free name.

Free name A name which occurs within a process, but is not specified within the process.

126

Free variable A variable whose name is a free name.

Function definition Specifies a name for a value process or expression list.

P Glossary of terms

Guard Determines the execution of an associated process in a choice (boolean guard) or alternative (input
guard).

Indentation. An offset from the left hand edge of the page. In occam indentation is critical, and serves to
define the structure of processes.

Input Receive a value from a channel and assign the value to a variable.

Input guard An input which guards an alternative in an alternation.

Instance The occurrence of a procedure or application of a function.

Invalid process A process whose behaviour has for some reason become undefined, and as a result may
lead to the failure of a system. Most invalid processes will be found by the compiler, and may be
corrected during program development. The behaviour of an invalid process not detected by the
compiler may be set to behave in one of three ways; the process may behave like the primitive
process STOP, allowing other processes to continue, or the process may cause the whole system
to halt, or the process may behave in an undefined way.

Literal A literal is a textual representation of a known value, and has a data type.

Livelock A divergent process, one which remains internally active but does not perform further communica
tion, i.e. it behaves like the following process:

WHILE TRUE
SKIP

Modulo operator A modulo operator performs its operation (PLUS, MINUS, TIMES) with no check for
overflow. The value returned as a result is the cyclic value within the range of the operand type.

Network a network consists of a number of processing devices, microcomputers perhaps, with the facility to
communicate with each other.

Operand Yields a value in an expression.

Operator (monadic or dyadic) performs an operation on its operand(s).

Output Send the value of an expression to a channel.

Placement A configuration statement which places a process on a particular processing device.

Primitive type A primitive type is a channel, timer, integer, boolean, byte or real type. A port is also a
primitive type.

Priority Priority can be given to a parallel executing on a single processing device. Lower priority processes
on such a device may only continue when all higher priority processes are unable to. The inputs
which guard alternatives in an alternation may be given a selection priority. If two or more inputs are
ready, the the input with the highest priority is selected.

Procedure definition A procedure definition specifies a name for a process.

Procedure instance An instance of a procedure is a use of the procedure, and behaves like a substitution
of the process named in the procedure definition. The phrase "procedure call" is used in many other
languages, to indicate the use of a procedure, and has a similar meaning. Although the behaviour
of an occam procedure is clearly defined as the substitution of the procedure body, a procedure
may be implemented as either a substitution or as a call to a closed subroutine.

Process A process starts, performs a number of actions, and then either stops without completing or ter
minates complete. occam programs are built from the primitive processes assignment (: =), input
(?), output (!), SKIP and STOP. These primitives are combined in SEQ, IF, CASE, WHILE, PAR
and ALT constructions.

Protocol The format and type of values passed on a channel.

P Glossary of terms 127

Real time The actual time taken for a physical process to occur.

Relational operation A relational operation compares its operands and yields a boolean result.

Repetitive process A repetitive process (WHILE) executes the associated process as long as the specified
condition is true; if the condition is initially false the associated process is not executed.

Replication A replicator produces a number of similar components of a construction.

Retyping conversion A retyping conversion changes the data type of a bit pattern, from one data type to
another. There are two kinds of retyping conversions: conversions which convert an element, and
conversions which convert the value of an expression. Such a conversion has no effect upon the bit
pattern, and differs from type conversion where the value of one type is represented as an equivalent
value of another type.

Scope The region of a program associated with the specification of a name.

Segment A segment is one or more components of an array.

Selection A selection process (CASE) executes a process from a list of associated options. The options are
selected by matching a selector with a constant expression associated with the option.

Sequence A sequential process (SEQ) is one where one action follows another.

Sequential protocol A sequential protocol specifies a sequence of simple protocols as the format of com-
munication on a channel.

Shift operation Perform logical shift of the bit pattern of a value.

Skip Start, perform no action and terminate immediately.

Specification A specification is either a declaration, an abbreviation or a definition and specifies a name
which may be used within the associated scope.

Specifier Identifies the type of an alias given in an abbreviation or definition.

Stop Start, perform no further action and do not terminate.

String A sequence of ASCII characters equivalent to a table of bytes.

Subscript An expression which selects a component of an array.

Table An array of values of the same type, used in expressions.

Tag Identifier of a protocol variant specified in a variant protocol definition.

Timer A timer is a clock which can accessed by any number of concurrent processes.

Timer input A timer input inputs a value from a timer.

Type conversion A type conversion converts the value of an expression of one data type into a similar value
of another data type.

Value process A value process produces one or more results, each of primitive data type.

Variable A variable is an element of data type which may be assigned to by input or assignment.

Variable list A list of variables used in a multiple assignment.

Variable subscript A variable subscript is a subscript whose value depends on a variable, a procedure
parameter, or the index of a replicator with a base or count which is not a constant or constant
expression.

Variant protocol Specifies a list of possible protocols for communication on a single channel.

128

Index

[44, 91
[] 91
\ 44,45,91
\/ 44,47,91
] 44, 91
,.., 44,47,91

6,91
" 91
91
& 81, 91
, 91
(91
) 91
* 44,45,91
+ 44,45,91
, 91
- 44,45,91
-- 91
/ 44,45,91
/\ 44,47,91
: 83,91
:: 30,82,91
: : [] 30,82
:= 5,91
; 31, 91
< 44,48,91
« 44,47,91
<= 44,48,91
<> 44,48,91
= 44,48,91
> 44,48,91
>< 44,47,91
>= 44,48,91
» 44,47, 91
? 6,91
? AFTER 82
? CASE 33, 34, 82

Abbreviation 24, 54, 57, 59, 61, 75, 77, 83, 125
element 58
expression 57
rules 75

ABS 99
Absolute 99
ACOS 119
Action 5, 80, 86
Actual parameter 64, 84, 86, 125
Addition 44
AFTER 37,44,49,91
Alias 125
Alias check 125
Allocation 73, 74, 85, 86, 125
ALOG 117
ALOG10 117
ALT 18,81,91

Alternation 18, 19, 21, 72, 80, 81 , 85, 86, 125
priority 72

Alternative 18, 19, 34, 35, 54, 81, 82, 83, 85,
86, 125

Anarchic protocol 35
AND 44, 48, 91
ANSI/IEEE standard 754-1985 23, 24, 79, 98,

115
ANY 35, 85, 91
Arccosine 119
Arcsine 119
Arctangent 120
Argument 66, 125
ARGUMENT. REDUCE 102
Arithmetic operator 45
Arithmetic operators 91
Arithmetic overflow 45
Arithmetic shifts 112
Array 30, 39, 75, 125

allocation 73
assignment 39, 42
channel 40
data type 24, 39
parallel 59
SIZE 49
table 44
timer 40
variable 39

Array protocol 30
Array size 44
Array type 24, 40, 81, 86
ASCII 26,92
~SHIFTLEFT 112
ASHIFTRIGHT 112
ASIN 119
Assignment 5, 26, 42, 80, 86, 125

multiple 5, 66
AT 91
ATAN 120
ATAN2 120

Base 10, 12, 17, 21, 81 , 86
Base 10 logarithm 117
Bit operation 47
Bit operators 91
Bit pattern 77
BITAND 91
BITNOT 91
BITOR 91
Bitwise and 44, 47
Bitwise exclusive or 44, 47
Bitwise not 44, 47
Bitwise operation 125
Bitwise or 44, 47
BOOL 23, 81, 91
Boolean 11, 14, 80, 81, 82, 86

130

Boolean and 44, 48
Boolean expression 11, 18
Boolean not 44,48
Boolean operation 48, 125
Boolean or 44, 48
Boolean to string 123
Boolean type 23
BOOLTOSTRING 123
Byte 26, 81, 86
BYTE 23, 81, 91
Byte type 23

CASE 80, 82, 91
Case expression 13, 80, 86
Case input 33,34,82,86, 125
CHAN OF 29, 81, 91
Channel 6,23,29,31,39,40,61,75,80,82,

86,91, 125
Channel array 40
Channel declaration 29, 30, 31
Channel protocol 29,125
Channel type 29, 41
Character 81
Character set 92
Checking usage 75
Choice 11, 54, 80, 83, 86, 125
Clock 37
Combining processes 9
Comment 3
Communication 6, 15, 29, 71, 125
Concurrency 125
Concurrent processes 9
Conditional 11, 12, 80, 81, 87, 125
Configuration 71, 125
Constant 23, 57
Construction 9, 80, 87, 125
Continuation line 3
Conversion 50, 83, 87
COPYSIGN 101
COS 118
COSH 120
Cosine 118
Count 10,12,17,21,44,81,87
Counted array protocol 30
Counted loop 10

DACOS 119
DALOG 117
DALOGIO 117
DASIN 119
Data type 5, 6, 23, 41

conversion 49
Data type conversion 43
DATAN 120
DATAN2 120
DCOS 118
DCOSH 120
Deadlock 125
Declaration 26, 54, 82, 83, 87, 125

PORT 74

Index

Definition 31,32, 54, 64, 68, 77, 82, 83, 84, 85,
87

Delayed input 38, 82, 87, 125
DEXP 117
DIEEECOMPARE 115
Digit 26, 81, 87
Disjoint array 59
Distributed processor 71
DIVBY2 103
Division 44
DPOWER 117
DRAN 121
DSIN 118
DSINH 120
DTANH 121
Dyadic operator 83

Element 39, 41, 57, 61, 83, 84, 85, 86, 87, 125
abbreviation 58

Elementary function library 96, 116
ELSE 13, 80, 91
Equal operation 44, 48
Error handling 78
EXP 117
Exponent 26,81,87
Exponential 117
Expression 5, 24, 43, 46, 57, 61, 80, 81, 82,

83, 84, 85, 86, 87
abbreviation 57

Expression list 5, 68, 80, 84, 87, 125
External device 74

FALSE 81,91
Farm 19,20
Fast divide 103
Floating point 23, 24,95
Floating point arithmetic 114
Floating point functions 98
Floating-point 23, 79
FLOATING. UNPACK 100
FOR 44, 81, 83, 91
Formal parameter 64, 84, 87, 125
Format

protocol 29
FPINT 103
Free channel 125
Free name 66, 125
Free variable 125
FROM 44, 83, 91
Function 24, 58, 65, 76, 84

multiple result 66
FUNCTION 68, 84, 91
Function body 68, 84, 87
Function definition 126

Greater than 44, 48
Guard 19, 81, 88, 126
Guarded alternative 19, 81, 88
Guarded choice 11, 80, 88

Index

Halt system mode 78
Hex digit 26, 81, 88
Hex to string 122
HEXTOSTRING 122
Hyperbolic cosine 120
Hyperbolic sine 120
Hyperbolic tangent 121

lEEE arithmetic 95
IEEE320P 114
IEEE640P 114
IEEECOMPARE 115
IEEEOP 79
IF 11, 80, 81, 91
Indentation 53, 126
INMOS 1
Input 6,26,30,31,33,34,38,74,80,81,82,

85,88, 126
Input guard 126
Input item 30, 82, 88
Instance 61, 64, 80, 84, 88, 126
INT 23, 81, 91
INT16 23, 81, 91
INT32 23, 81, 91
INT64 23, 81, 91
Integer 23, 26, 81, 88
Integer range 46
Integer to string 122
Integer type 23
INTTOSTRING 122
Invalid process 78, 126
IS 57,83,91
ISNAN 99

Keywords 4, 54, 91

Later than 44, 49
Less than 44, 48
Less than or equal 44, 48
Libraries 94
Line break 3
Literal 23, 25, 26, 81, 83, 88, 126
Livelock 126
Local scope 54
Logarithm 117
LOGB 100
LONGADD 106
LONGDIFF 107
LONGDIV 108
LONGPROD 108
LONGSUB 107
LONGSUM 106
Loop 14, 80, 88

Memory
allocation 73

Memory map 73
Memory mapped device 74
MINUS 44, 46, 91
MINUSX 101

Modulo
addition 44
multiplication 44
subtraction 44

Modulo operator 46, 126
Monadic operator 83
MOSTNEG 44, 46, 83, 91
MOSTPOS 44, 46, 83, 91
MULBY2 102
Multiple assignment 5, 65, 66, 80
Multiple length arithmetic functions 104
Multiplication 44

Name 4, 39, 81, 82, 83, 84, 85, 86
Named process 61
Names

in parallel 54
scope 54

Network 19, 126
NEXTAFTER 101
Nonsense 63
NORMALISE 111
NOT 44, 48, 91
Not equal operation 44, 48
Not-A-Number 98, 99, 116
Notation

syntax 3
NOTFINITE 99

Operand 43, 68, 83, 84, 88, 126
Operation 44
Operator 43, 126
Option 13, 54, 80, 83, 88
OR 44,48,91
ORDERED 102
O~p~ 6,30,31,32,74,80,82,85,88,126
Output item 30, 82, 89

PAR 15, 80, 81, 91
Parallel 15, 17, 71, 72, 75, 80, 81, 85, 89

array 59
placed 71
priority 71

Parameter 61, 66
actual 64
formal 64

Parentheses 43
Physical resource 71
PLACE 85,91
PLACED 91
PLACED PAR 71,85
Placed parallel 71, 85, 89
Placement 126
PLUS 38, 44, 46, 91
Polar angle 120
Port 74, 75, 85, 89
PORT 91
PORT OF 85
POWER 117
PRI 91

131

132

PRI ALT 72
PRI PAR 71, 85
Primitive type 23, 24, 29, 37, 74, 81, 83, 84, 85,

89, 126
Priority 71, 72, 126

alternation 72
execution 71
level 71
parallel 71

PROC 84,91
Procedure 61, 75, 84
Procedure body 64, 84, 89
Procedure definition 126
Procedure instance 126
Process 34, 54, 73, 80, 81, 82, 83, 84, 85, 89,

126
named 61

Processes 5, 80
PROCESSOR 71, 85, 91
Processor allocation 71
Protocol 29, 30, 31, 82, 85, 89, 126

ANY 35
simple 30
variant 32

PROTOCOL 31, 82, 91
Protocol definition 31, 32
Protocol name 31
Prototype Occam 1
Pseudo-random numbers 121

RAN 121
Real 26,81,89
Real arithmetic 46
Real comparision 115
Real number 23, 24
Real time 127
Real to string 123
Real type 23
REAL32 23, 81, 91
REAL32EQ 115
REAL32GT 115
REAL320P 114
REAL32REM 114
REAL64 23, 81, 91
REAL64EQ 115
REAL64GT 115
REAL640P 114
REAL64REM 114
REALnnTOSTRING 123
REALOP 114
REALREM 114
Relational operation 48, 127
Relational operators 91
REM 44, 45, 91
Remainder 44
Repetitive process 127
Replicated alternation 20
Replicated conditional 12
Replicated parallel 16
Replicated sequence 10

Replication 9, 10, 12, 16, 20, 127
Replication index 10, 23, 24
Replicator 10, 12, 17, 21, 81, 85, 89
Representation 24
Reserved words 91
RESULT 68, 84, 91
Return exponent 100
RETYPES 77, 85, 91
Retyping conversion 77, 127
ROTATELEFT 113
ROTATERIGHT 113
ROUND 50, 83, 91
Rounding 24, 46, 79, 103

SCALEB 100
Scope 53,57,58,59,66,77,83,127
Segment 39, 127
Selection 13, 80, 89, 127

CASE 13
Selector 13, 80, 89
SEQ 9,80,91
Sequence 9, 10, 80, 81, 90, 127
Sequential protocol 31, 82, 90, 127
Shift left 44, 47
Shift operation 47, 127
Shift right 44, 47
SHIFTLEFT 110
SHIFTRIGHT 109
Simple protocol 30, 82, 90
SIN 118
Sine 118
SINH 120
SIZE 44, 49, 91
Skip 127
SKIP 7, 80, 81, 91
Specification 54, 82, 83, 84, 90, 127
Specifier 57, 59, 83, 84, 85, 86, 90, 127
SQRT 99
Square root 99
Standard libraries 94
Stop 127
STOP 7, 78, 80, 91
Stop process mode 78
String 26, 81, 127
String to boolean 123
String to hex 122
String to integer 122
String to real 123
String to value conversion 122
STRINGTOBOOL 123
STRINGTOHEX 122
STRINGTOINT 122
STRINGTOREALnn 123
Subscript 41, 44, 75, 83, 90, 127
Subscripted name 39
Subtraction 44
Symbols 91
Syntactic notation 3
Syntax 3, 80, 86
System requirement 71

Index

Index

Table 43, 44, 83, 90, 127
Tag 32, 82, 90, 127
Tagged list 34, 82, 90
Tagged protocol 32, 82, 90
Tangent 119
TANH 121
Timer 23,29,37,39,40,61,75,82,83,90,127
TIMER 81,91
Timer access 82
Timer array 40
Timer input 37, 38, 82, 90, 127
Timer type 41
TIMES 44, 46, 91
TRUE 12,81,91
TRUNC 50, 83, 91
Type 23,29,37,40,81,82,83,90
Type conversion 49, 127

Undefined mode 78
Usage rules 55, 75

133

Using the manual 1

VAL 57, 64, 77, 91
Valof 54, 68, 83, 84, 90
VALOF 68,91
Value 23, 29, 37
Value process 65, 68, 76, 84, 90, 127
Value to string conversion 97, 122
Variable 5,23,26,29,37,39,54,61,75,80,

82,85,90, 127
array 39

Variable declaration 26
Variable list 5, 80, 90, 127
Variable subscript 59, 127
Variant 34, 54, 82, 83, 90
Variant input 33, 34
Variant protocol 32, 127

WHILE 14, 80, 91
Word rotation 113

	Preface
	Contents overview
	Introduction
	Syntax and program format
	1 Primitive processes
	1.1 Assignment
	1.2 Communication
	1.2.1 Input
	1.2.2 Output

	1.3 SKIP and STOP

	2 Combining processes
	2.1 Sequence
	2.1.1 Replicated sequence

	2.2 Conditional
	2.2.1 Replicated conditional

	2.3 Selection
	2.4 Loop
	2.5 Parallel
	2.5.1 Replicated parallel

	2.6 Alternation
	2.6.1 Replicated alternation

	3 Data types
	3.1 Data types
	 Rounding of real values
	3.1.1 Arrays

	3.2 Literals
	3.3 Variables

	4 Channels
	4.1 Channel type
	4.2 Declaring a channel
	4.3 Channel protocol
	4.3.1 Simple protocols
	4.3.2 Naming a protocol
	4.3.3 Sequential protocol
	4.3.4 Variant protocol
	 Input on a channel with variant protocol
	 Variants in alternatives
	4.3.5 Anarchic protocol

	5 Timers
	5.1 Timer type
	5.2 Declaring a timer
	5.3 Timer input

	6 Arrays and elements
	6.1 Data type arrays
	6.2 Channel arrays and timer arrays
	6.3 Elements

	7 Expressions
	7.1 Tables
	7.2 Operations
	7.2.1 Arithmetic operators
	 Rounding the results of real operations
	7.2.2 Modulo arithmetic operators
	7.2.3 MOSTPOS and MOSTNEG (integer range)
	7.2.4 Bit operations
	7.2.5 Shift operations
	7.2.6 Boolean operations
	7.2.7 Relational operations
	 AFTER (later than)
	7.2.8 SIZE (number of components in an array)The special operator SIZE has a single operand of array type

	7.3 Data type conversion

	8 Scope
	8.1 Names in the scope of parallel constructs

	9 Abbreviation
	9.1 Abbreviation of expressions
	9.2 Abbreviation of elements
	9.3 Disjoint arrays in parallels

	10 Procedures
	11 Functions
	Appendices
	A Configuration
	A.1 Execution on multiple processors
	A.2 Execution priority on a single processor
	A.2.1 Priority parallel
	A.2.2 Priority alternation

	A.3 Allocation to memory

	B Ports
	C Usage rules check list
	C.1 Usage in parallel
	C.2 The rules for abbreviations
	C.3 The rules for procedures
	C.4 The rules for value processes and functions

	D Mapping types
	E Invalid processes
	F Rounding errors
	G Syntax summary
	G.1 Syntax in context
	G.1.1 Processes
	G.1.2 Construction
	G.1.3 Replicator
	G.1.4 Types
	G.1.5 Literal
	G.1.6 Declaration
	G.1.7 Protocol
	G.1.8 Timer access
	G.1.9 Element
	G.1.10 Expression
	G.1.11 Abbreviation
	G.1.12 Scope
	G.1.13 Procedure
	G.1.14 Function
	G.1.15 Configuration

	G.2 Ordered syntax

	H Keywords and symbols
	I Character set
	J Standard libraries
	J.1 Multiple length integer arithmetic functions
	J.2 Floating point functions
	J.3 Full IEEE arithmetic functions
	J.4 Elementary function library
	J.5 Value, string conversion procedures

	K Floating point functions
	K.1 Not-a-number values
	K.2 Absolute
	K.3 Square root
	K.4 Test for Not-a-Number
	K.5 Test for Not-a-Number or infinity
	K.6 Scale by power of two
	K.7 Return exponent
	K.8 Unpack floating point value
	K.9 Negate
	K.10 Copy sign
	K.11 Next representable value
	K.12 Test for orderability
	K.13 Perform range reduction
	K.14 Fast multiply by two
	K.15 Fast divide by two
	K.16 Round to floating point integer

	L Multiple length arithmetic functions
	L.1 The integer arithmetic functions
	L.2 Arithmetic shifts
	L.3 Word rotation

	M IEEE floating point arithmetic
	M.1 ANSI/IEEE real comparison

	N Elementary function library
	N.1 Logarithm
	N.2 Base 10 logarithm
	N.3 Exponential
	N.4 X to the power of Y
	N.5 Sine
	N.6 Cosine
	N.7 Tangent
	N.8 Arcsine
	N.9 Arccosine
	N.10 Arctangent
	N.11 Polar Angle
	N.12 Hyperbolic sine
	N.13 Hyperbolic cosine
	N.14 Hyperbolic tangent
	N.15 Pseudo-random numbers

	O Value, string conversion routines
	O.1 Integer, string conversions
	O.2 Boolean, string conversion
	O.3 Real, string conversion

	P Glossary of terms
	Index

