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   1
Class-Specific

Driver Development

1.1 About VxBus Driver Classes 1

1.2 Before You Begin 2

1.3 About this Document 2

1.1  About VxBus Driver Classes 

As explained in VxWorks Device Driver Developer’s Guide (Vol. 1): Device Driver 
Fundamentals, devices, and the drivers that manage them, can be divided into 
categories or classes based on the particular function the device and driver are 
expected to perform. 

For example, even though they are very different devices, a simple VGA controller 
(typical of older PCs) and a modern display controller running on PCI Express 
provide the same functionality in a system. That is, both devices are responsible for 
displaying graphical information on a video device. This makes both of these 
devices, as well as the drivers that control them, part of the same class. 
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1.2  Before You Begin 

This document assumes you are familiar with the concepts presented in VxWorks 
Device Driver Developer’s Guide, Volume 1: Fundamentals of Writing Device Drivers. If 
you are not an experienced VxWorks device driver developer or you do not have 
experience with the VxBus driver model, you must review the information 
provided in Volume 1 before using this document. 

If you are migrating or maintaining VxWorks device drivers based on the legacy 
device driver model, see VxWorks Device Driver Developer’s Guide, Volume 3: Legacy 
Drivers and Migration. This volume does not apply to legacy model device drivers. 

1.3  About this Document 

This document provides information on the driver requirements for specific VxBus 
driver classes (see 1.1 About VxBus Driver Classes, p.1). The information presented 
in this document is intended to supplement the information provided in VxWorks 
Device Driver Developer’s Guide, Volume 1: Fundamentals of Writing Device Drivers.

Navigating this Documentation Set 

For information on navigating this documentation set, documentation 
conventions, and other available documentation resources, see VxWorks Device 
Driver Developer’s Guide (Vol. 1): Getting Started with Device Driver Development. 

NOTE:  Concepts and procedures presented in Volume 1 apply to class-specific 
VxBus model device drivers in general, regardless of class. 
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Bus Controller Drivers

2.1 Introduction 3

2.2 Overview 4

2.3 VxBus Driver Methods 5

2.4 Header Files 17

2.5 BSP Configuration 17

2.6 Available Utility Routines 20

2.7 Initialization 23

2.8 Debugging 26

2.1  Introduction 

This chapter describes VxBus bus controller drivers. This chapter assumes that you 
are familiar with the contents of the VxWorks Device Driver Developer's Guide, 
Volume 1: Fundamentals of Writing Device Drivers, which discusses generic driver 
concepts as well as details of VxBus that are not specific to any driver class.



VxWorks
Device Driver Developer's Guide, 6.6 

4

2.2  Overview 

Bus controller drivers provide the support services that are required to enable 
other drivers attached to downstream devices to communicate with their 
associated hardware in a uniform way. Functionally, a bus controller driver acts as 
an abstraction layer between a device driver and the hardware that it controls, 
ensuring that the I/O operations that need to occur between the driver and its 
device occur correctly on the target hardware. 

In addition, a bus controller driver provides support services to VxBus, allowing 
VxBus to configure the bus for proper operation, discover devices on the bus, and 
perform other operations that are outside the scope of normal communication that 
occurs between a driver and its target hardware.

Graphically, a bus controller can be viewed as an interconnect between a driver 
and its target hardware, and another interconnect between VxBus and the bus 
being controlled. Figure 2-1 illustrates this communication. 

All systems must have at least one bus controller driver. This is because even 
devices that are directly connected to a CPU must have a parent bus controller. The 
top-level bus controller is referred to as the processor local bus (PLB) bus 
controller.

From the PLB, subordinate bus controllers are often available to connect the CPU 
to devices that are not local to the CPU itself. An example of this is a PCI bus 
controller located on the PLB bus, which serves as a bridge between the PLB 
hardware and the PCI bus hardware. The PCI bus controller driver allows the CPU 
to access the downstream device.

Within VxBus, bus controller drivers are treated like standard drivers in most 
ways. However, there is a fundamental difference between bus controller drivers 
and standard drivers; standard drivers typically provide a service to the operating 
system or to middleware, while bus controller drivers provide a service to other 
drivers.

Bus controller drivers are relatively complex when compared with other drivers 
within VxWorks. While the text in this chapter provides information that is 
necessary in order to successfully develop a driver, you should also refer to the 
existing bus controller drivers, located in 
installDir/vxworks-6.x/target/src/hwif/busCtlr, to see actual implementations and 
to understand how bus controller drivers interact with VxWorks.
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2

2.3  VxBus Driver Methods 

Bus controller drivers use a variety of different driver methods, depending on the 
type of bus that is being controlled by the driver. In this release, the majority of 
methods are designed for use with either the PLB or PCI bus types. Each driver 
method listed in this section lists the bus types that the method is designed to 
support. Each section also notes if support for the given driver method is optional.

Figure 2-1 Bus Controller Communication

DriverDevice

VxBus 

Support

bus

controller Driver

CPU

busCtlr

Hardware Software

I/O operations
to target
hardware

I/O operations
to target
hardware

(bus cycles) (vxbRead32( ), 
vxbWrite32( )...)

Bus
(PCI, PLB, ...)

Controller operations
to target hardware
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2.3.1  {busCtlrCfgRead}( )

The {busCtlrCfgRead}( ) method is used to read 8, 16, or 32-byte quantities from 
the configuration space of the bus. Currently, this method is used exclusively on 
the PCI bus by the PCI bus support code.

Within a bus controller driver, the {busCtlrCfgRead}( ) method is implemented 
using a driver-provided routine with the following prototype:

LOCAL STATUS func{busCtlrCfgRead}
(
VXB_DEVICE_ID pInst, /* device info */
int bus, /* bus number */
int dev, /* device number */
int func, /* function number */
UINT32 byteOffset, /* offset into config space */
UINT32 transactionSize,/* transaction size, in bytes */
char * pDstBuf, /* buffer to write to */
UINT32 * pFlags /* flags */
)

The parameters to func{busCtlrCfgRead}( ) are:

pInst 
The VXB_DEVICE_ID for the bus controller instance. 

bus 
The PCI bus number of the target hardware

dev 
The PCI device number of the target hardware

func 
The PCI function number of the target hardware

byteOffset 
The offset into the configuration space where the read is performed. Because 
non-aligned configuration accesses are not allowed, byteOffset must be an 
even multiple of the transaction size.

transactionSize 
The data size to read, in bits. Valid values are 8, 16, and 32.

pDstBuf 
A pointer to the buffer used to store the value read from configuration space.

pFlags 
Reserved.
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2

The func{busCtlrCfgRead}( ) routine performs whatever device-specific 
operations are required to perform the requested read operation from the bus 
configuration space. 

2.3.2  {busCtlrCfgWrite}( ) 

The {busCtlrCfgWrite}( ) method is used to write 8, 16, or 32-byte quantities to the 
configuration space of the bus. Currently, this method is used exclusively on the 
PCI bus by the PCI bus support code.

Within a bus controller driver, the {busCtlrCfgWrite}( ) method is implemented 
using a driver-provided routine with the following prototype:

LOCAL STATUS func{busCtlrCfgWrite}
(
VXB_DEVICE_ID pInst, /* device info */
int bus, /* bus number */
int dev, /* device number */
int func, /* function number */
UINT32 byteOffset, /* offset into config space */
UINT32 transactionSize,/* transaction size, in bytes */
char * pSrcBuf, /* buffer to read from */
UINT32 * pFlags /* flags */
)

The parameters to func{busCtlrCfgWrite}( ) are:

pInst 
The VXB_DEVICE_ID for the bus controller instance. 

bus 
The PCI bus number of the target hardware

dev 
The PCI device number of the target hardware

func 
The PCI function number of the target hardware

byteOffset 
The offset into the configuration space where the write is performed. Because 
non-aligned configuration accesses are not allowed, byteOffset must be an 
even multiple of the transaction size.

transactionSize 
The data size to write, in bits. Valid values are 8, 16, and 32.
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pSrcBuf 
A pointer to the data that will be written to configuration space.

pFlags 
Reserved.

The func{busCtlrCfgWrite}( ) routine performs whatever device-specific 
operations are required to perform the requested write operation to the bus 
configuration space.

2.3.3  {busCtlrAccessOverride}( ) 

When a bus controller is installed into VxWorks, some service routines are 
automatically associated with the bus controller, and are made available to device 
drivers for devices that reside on the bus. These default service routines are not 
always appropriate for the installed bus. Therefore, you may wish to provide 
alternate implementations of the services in your bus controller driver. The 
{busCtlrAccessOverride}( ) method provides your bus controller driver with a 
means of overriding selected service routines.

Within a bus controller driver, the {busCtlrAccessOverride}( ) method is 
implemented using a driver-provided routine with the following prototype:

LOCAL STATUS  func{busCtlrAccessOverride}()
(
VXB_DEVICE_ID pInst, /* device info */
VXB_ACCESS_LIST * pAccess /* access structure pointer */
)

A pointer to the VXB_ACCESS_LIST data structure is passed to the method. This 
allows the bus controller driver to replace any of the function pointers that are 
contained within this data structure with alternate implementations. 
VXB_ACCESS_LIST is declared in 
installDir/vxworks-6.x/target/src/hwif/h/vxbus/vxbAccess.h. 

Although VXB_ACCESS_LIST contains a large collection of function pointers, only 
three of the function pointers should be modified by the bus controller driver. 
These pointers are (*busCfgRead)( ), (*busCfgWrite)( ), and (*vxbDevControl)( ). 
Other fields are considered reserved fields and must be left unchanged by this 
method. The remainder of this section discusses the fields that can be overridden, 
reserved fields are not discussed.
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Override for (*busCfgRead)( ) 

The prototype for (*busCfgRead)( ) is:

STATUS (*busCfgRead)
(
VXB_DEVICE_ID devID, /* device info */
UINT32 byteOffset, /* offset into config space */
UINT32 transactionSize,/* transaction size, in bytes */
char * pDataBuf, /* buffer to write to */
UINT32 * pFlags /* flags */
);

This routine reads from the bus configuration space. It is used by drivers for 
devices that reside directly on the bus that is being controlled by the bus controller 
driver. The [bus, device, function] tuple is not provided directly. Instead, this tuple 
must be extracted by de-referencing the instance-specific data available using 
devID.

Override for (*busCfgWrite)( )

The prototype for (*busCfgWrite)( ) is: 

STATUS (*busCfgWrite)
(
VXB_DEVICE_ID devID, /* device info */
UINT32 byteOffset, /* offset into config space */
UINT32 transactionSize,/* transaction size, in bytes */
char * pDataBuf, /* buffer to read from */
UINT32 * pFlags /* flags */
);

This routine writes to the bus configuration space. It is used by drivers for devices 
that reside directly on the bus that is being controlled by the bus controller driver. 
The [bus, device, function] tuple is not provided directly. Instead, this tuple must be 
extracted by de-referencing the instance-specific data available using devID.

Override for (*vxbDevControl)( )

This routine provides a service similar to an ioctl( ), allowing specialized control 
requests to be delivered to a bus controller driver. In previous releases of VxBus, 
this routine is used for interrupt management and for device register access. With 
VxBus version 3, these functions are provided by other modules. Because of this, 
the (*vxbDevControl)( ) routine is no longer required, provided that VxBus 
interrupt controller drivers are used to manage interrupts. 
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The prototype for (*vxbDevControl)( ) is:

STATUS (*vxbDevControl)
(
VXB_DEVICE_ID devID, /* device info */
pVXB_DEVCTL_HDR pBusDevControl /* parameter */
);

VxBus version 3 simplified the method used for register access. Because of this 
change, you do not need to provide support for register access routines in your bus 
controller driver unless some part of bus controller driver code needs to be 
executed in order to perform the register operation. For more information on this 
register access, see 2.3.6 {vxbDevRegMap}( ), p.11.

In past releases, the (*vxbDevControl)( ) routine was used to allow a bus controller 
driver to support the configuration of interrupts for devices on the bus being 
controlled. This service was in keeping with the design goals for bus controller 
drivers for several releases of VxWorks. However, in this release, bus controller 
drivers are not responsible for interrupt management for their subordinate 
devices. Instead, the responsibility for this type of operation has been migrated to 
interrupt controller device drivers (see 4. Interrupt Controller Drivers). 

2.3.4  {busCtlrCfgInfo}( ) 

VxBus provides a utility library that bus controller drivers can use to support the 
generation of configuration transactions on the target bus. The utility library 
makes use of an instance-specific data structure to accomplish its operations. The 
{busCtlrCfgInfo}( ) method provides a way for your bus controller driver to 
export a pointer to this data structure so that the utility library can make use of it.

Within a bus controller driver, the {busCtlrCfgInfo}( ) method is implemented 
using a driver-provided routine with the following prototype: 

LOCAL STATUS {busCtlrCfgInfo}()
(
VXB_DEVICE_ID pInst, /* device info */
char * pArgs /* buffer to write to */
)

The implementation of {busCtlrCfgInfo}( ) is straightforward. The bus controller 
driver simply returns a pointer to a bus-type specific information structure. For 
example, see the following PCI code: 

*(struct vxbPciConfig *) pArgs = pInst->pDrvCtrl->pPciConfig;

In this example, the bus controller driver has already allocated the vxbPciConfig 
data structure and stored a pointer to it in its pDrvCtrl data area. (For further 



2  Bus Controller Drivers
2.3  VxBus Driver Methods

11

2

details about the use of the vxbPciConfig data structure, see 2.6.1 PCI 
Configuration, p.20.)

2.3.5  {busCtlrBaseAddrCvt}( ) 

The {busCtlrBaseAddrCvt}( ) method gives a bus controller driver the 
opportunity to modify the address of a bus transaction to account for address 
space differences that happen through the bus controller. At present, only PCI bus 
controllers use this service.

Within a bus controller driver, the {busCtlrBaseAddrCvt}( ) method is 
implemented using a driver-provided routine with the following prototype:

LOCAL STATUS func{busCtlrBaseAddrCvt}
(
VXB_DEVICE_ID devID, /* device info */
UINT32 * pBaseAddr /* pointer to base address */
)

The PCI bus is a memory-mapped bus, with the bus controller acting as an arbiter 
to forward memory transactions from the originating CPU across the bus so that 
they are delivered to the target hardware on the bus. When this forwarding occurs, 
it is common for some type of address translation to take place as the requested 
transaction crosses the PCI bus controller. The {busCtlrBaseAddrCvt}( ) method 
gives the PCI bus controller driver the ability to describe the address translation 
that takes place.

The pBaseAddr pointer that is passed to the method is both an input and an output 
parameter. On input, it contains a value from one of the base address registers 
(BARs) of a device on the PCI bus. The driver should modify this value so that it 
contains a pointer that, when de-referenced, properly points to the location in the 
CPU address space where the target device is mapped.

2.3.6  {vxbDevRegMap}( )

Device drivers use a standard set of routines to read and write to device registers. 
(This is described in VxWorks Device Driver Developer’s Guide (Vol. 1): Device Driver 
Fundamentals.) The standard routines are:

■ vxbRead8( ) 
■ vxbRead16( ) 
■ vxbRead32( ) 
■ vxbRead64( ) 
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■ vxbWrite8( ) 
■ vxbWrite16( ) 
■ vxbWrite32( ) 
■ vxbWrite64( ) 

Unless an alternate implementation is explicitly specified by the bus controller 
driver, a default implementation for each of these routines is used.

The {vxbDevRegMap}( ) method is used by a bus controller driver when the driver 
needs to override the implementation for the various vxbRead*( ) and 
vxbWrite*( ) register access routines. Within a bus controller driver, the 
{vxbDevRegMap}( ) method is implemented using a driver-provided routine with 
the following prototype:

LOCAL STATUS func{vxbDevRegMap){}
(
VXB_DEVICE_ID pInst, /* bus controller instance */
VXB_DEVICE_ID pChild, /* instance for child of this controller */
int index, /* index into pChild->regBase[] */
void ** pHandle /* buffer to store handle */
)

For each supported processor architecture family, the vxbRead*( ) and 
vxbWrite*( ) routines support six predefined transaction types as follows:

■ memory mapped access (no ordering enforced)
■ memory mapped access (ordering enforced)
■ I/O space access (ordering implied)
■ byte swapped memory mapped access (no ordering enforced)
■ byte swapped memory mapped access (ordering enforced)
■ byte swapped I/O space access (ordering implied)

When a device driver maps in a portion of its address space by calling 
vxbRegMap( ), the routine checks to see if the parent bus controller associated 
with the driver instance supports the {vxbDevRegMap}( ) method. If the bus 
controller supports this method, vxbRegMap( ) invokes the bus controller 
method. If this method is not provided by the bus controller driver, vxbRegMap( ) 
provides a reasonable default implementation for the access routine. The default 
implementation that is chosen is dependent on the target architecture.

The bus controller method {vxbDevRegMap}( ) is responsible for creating a handle 
to describe the type of transaction to be performed when the driver makes 
subsequent calls to any of the vxbRead*( ) or vxbWrite*( ) routines.

NOTE:  In the remainder of this section, these routines as referred to as vxbRead*( ) 
and vxbWrite*( ).
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There are two scenarios that the bus controller driver must deal with when 
implementing this method:

■ One of the six predefined transaction types can be used. In this case, the bus 
controller driver only specifies which transaction type to employ. 

■ None of the six predefined transaction types can be used. In this case, the bus 
controller driver provides its own implementation of the service. 

Regardless of the scenario, the bus controller is responsible for creating a handle 
that accurately describes the transaction type that is required to support the 
underlying hardware. 

The handle value that is provided to the vxbRead*( ) and vxbWrite*( ) routines is 
used as an opaque value by the individual device drivers, but a bus controller 
driver must understand exactly how the handle is used to control the type of 
transaction that is performed using the vxbRead*( ) or vxbWrite*( ) routines. In a 
typical situation, the handle is treated as a void * data type. Because VxWorks is a 
32-bit operating system, the handle is encoded using 32-bits. If the 32 bits of the 
handle are cast to a UINT32 data type, the integer value of the handle can be 
inspected to determine the type of transaction to perform. The available options 
are:

■ If the handle is arithmetically less than the value 256, the handle directly 
encodes one of the six predefined transaction types.

■ If handle is arithmetically greater than the value 256, the handle is interpreted 
as a pointer to a bus controller routine that is used to implement the 
transaction.

These two forms of support are discussed in the following sections. 

Specifying a Predefined Transaction Type 

If a bus controller driver does not provide an implementation for 
{vxbDevRegMap}( ), a default transaction type for the eight vxbRead*( ) and 
vxbWrite*( ) routines is provided as shown in Table 2-1.
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These defaults suffice for the majority of target platforms. When these defaults are 
not appropriate, the bus controller must implement the {vxbDevRegMap}( ) 
method in order to override the default access model. 

If the bus controller provides the {vxbDevRegMap}( ) method, this method is 
invoked by the vxbRegMap( ) utility routine whenever a device driver residing on 
the controlled bus invokes vxbRegMap( ). vxbRegMap( ) finds the bus controller 
instance, and calls the func{vxbDevRegMap}( ) routine using the parameter list 
described in the routine prototype. The index parameter passed to the method is 
the index into the device regBase[ ]. Within func{vxbDevRegMap}( ), the driver 
must determine, based on the register window being mapped by the driver, which 
of the six predefined transaction types to select for access into that register 
window. Based on the desired access, func{vxbDevRegMap}( ) creates a handle 
value that describes the requested access type as shown in Table 2-2.

The preprocessor macros that are used to create the handle values are found in 
installDir/vxworks-6.x/target/src/hwif/h/vxbus/vxbAccess.h. 

Table 2-1 Available Transaction Types

Architecture I/O Space Memory Space

PowerPC I/O access Ordered memory access 

All others (little-endian) I/O access Memory access 

All others (big-endian) Byte-swapped I/O 
access 

Byte-swapped memory access 

Table 2-2 Handle Values for Access Types

Type of Access Value for Handle 

Memory access VXB_HANDLE_MEM 

Ordered memory access VXB_HANDLE_ORDERED 

I/O access VXB_HANDLE_IO 

Byte-swapped memory access VXB_HANDLE_SWAP(VXB_HANDLE_MEM) 

Byte-swapped order memory 
access 

VXB_HANDLE_SWAP(VXB_HANDLE_ORDERED) 

Byte-swapped I/O access VXB_HANDLE_SWAP(VXB_HANDLE_IO) 
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For example, if you want func{vxbDevRegMap}( ) to perform strictly ordered 
memory accesses for all memory regions, and simple I/O operations for all I/O 
regions, you can implement the following code:

if (pChild->regBaseFlags[index] == VXB_REG_MEM)
*pHandle = (void *) VXB_HANDLE_ORDERED;

else
*pHandle = (void *) VXB_HANDLE_IO;

And if you need the same condition, but with the data values swapped for a 
big-endian processor, you can implement the following code:

if (pChild->regBaseFlags[index] == VXB_REG_MEM)
*pHandle = (void *) VXB_HANDLE_SWAP(VXB_HANDLE_ORDERED);

else
*pHandle = (void *) VXB_HANDLE_SWAP(VXB_HANDLE_IO); 

Providing a New Transaction Type 

For some processor architectures, none of the six predefined transaction types 
work correctly. For example, a hardware architecture that uses keyhole memory 
cannot be supported by any of the six predefined transaction types. In this 
situation, your bus controller driver must implement its own access routine, and 
provide a pointer to that access routine to its subordinate driver instances. When 
these driver instances perform I/O operations to the target hardware using any of 
the vxbRead*( ) or vxbWrite*( ) routines, a callback is made to the routine 
provided by the bus controller driver, and this callback routine implements the 
request. 

If your bus controller driver needs to provide a custom access routine, return a 
pointer to the driver access routine using the *pHandle parameter passed to 
func{vxbDevRegMap}( ). For example:

if (index == KEYHOLE_MEMORY_SPACE)
*pHandle = (void *) driverAccessFunc;

else
*pHandle = VXB_HANDLE_MEM;

NOTE:  If your bus controller driver advertises a func{vxbDevRegMap}( ) routine, 
it must return a correct handle value every time it is called. There is no way for this 
method to return a handle for only a subset of the device register windows.
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The bus controller access routine has the following prototype: 

LOCAL VOID driverAccessFunc
(
int iodesc, /* a descriptor for the requested IO operation */
void * pBuf, /* pointer to buffer to read to or write from */
UINT8 * offset /* offset into the address space */
)

The driverAccessFunc( ) routine must be implemented to handle both read and 
write transactions, with bus widths of 8, 16, and 32 bits. If the bus supports 64-bit 
transactions, this routine must support 64-bit read and write transactions. 

The iodesc parameter encodes the I/O operation to be performed. This parameter 
is broken apart into the read/write and width parameters using the following 
macros from installDir/vxworks-6.x/target/src/hwif/h/vxbus/vxbAccess.h:

■ VXB_HANDLE_OP(iodesc)—indicates whether it is a read operation or a write 
operation. 

■ VXB_HANDLE_WIDTH(iodesc)—indicates the size to read or write, in bytes. 

VXB_HANDLE_OP( ) can be used as follows: 

If ( VXB_HANDLE_OP(iodesc) == VXB_HANDLE_OP_READ )
{
/* this is a read operation */
...
}

else if ( VXB_HANDLE_OP(iodesc) == VXB_HANDLE_OP_WRITE )
{
/* this is a write operation */
...
}

Once the transaction direction (read or write) and transaction width (1, 2, 4, or 8 
bytes) is determined, driverAccessFunc( ) performs whatever operations are 
required to complete the requested operation.

NOTE:  Device drivers can perform the various vxbRead*( ) or vxbWrite*( ) 
operations while holding a spinlock. Because nesting of spinlocks is prohibited, 
driverAccessFunc( ) cannot use spinlocks in its implementation.
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2.3.7  {vxbIntDynaVecProgram}( ) 

Provides support for dynamic interrupt vector assignment. 

STATUS func{vxbIntDynaVecProgram}
(
VXB_DEVICE_ID instID,
struct vxbIntDynaVecInfo * dynaVec
)

For more information on dynamic vectors, see Programming Dynamic Vectors, p.64.

2.4  Header Files 

The following header files are typically used for all bus controller drivers:

#include <vxBusLib.h>
#include <hwif/vxbus/vxBus.h>
#include <hwif/vxbus/vxbPlbLib.h>
#include <hwif/vxbus/hwConf.h>
#include <hwif/util/hwMemLib.h>
#include "../h/vxbus/vxbAccess.h"

The following additional header files are used for PCI bus controller drivers:

#include <hwif/vxbus/vxbPciLib.h>
#include <drv/pci/pciConfigLib.h>
#include <drv/pci/pciAutoConfigLib.h> 
#include <drv/pci/pciIntLib.h>

2.5  BSP Configuration 

A general-purpose bus controller driver must obtain a substantial amount of 
information from the BSP before it can function correctly. This section describes the 
configuration fields that are expected by bus controller drivers. 

The BSP configuration for a bus controller driver tends to be highly tailored to the 
needs of the particular bus controller in question. After several bus controller 
drivers have been developed for a particular bus type, common configuration 
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parameters become evident. At present, the majority of configuration parameters 
that are used for more than one bus controller driver are those that are used to 
configure the PCI bus. Table 2-3 lists the commonly used resources for the PCI bus 
along with a brief description of the resource. For more complete information 
about a particular resource, refer to the existing bus controller device drivers 
provided by Wind River. 

Individual bus controller drivers may define additional fields that are useful for 
the particular hardware. The resources that are defined by a particular bus 
controller driver are, by definition, tailored to the unique needs of the particular 
hardware.

2.5.1  PCI Configuration 

In order to support the generation of PCI configuration cycles according to the PCI 
specification, a utility library is available to bus controller drivers. This library is 
located in installDir/vxworks-6.x/target/src/hwif/vxbus/vxPci.c. 

Table 2-3 Common Resources for a PCI Bus

Type Name Description 

HCF_RES_ADDR  mem32Addr Specifies the 32-bit pre-fetchable 
memory pool base address. 

HCF_RES_INT  mem32Size Specifies the 32-bit pre-fetchable 
memory pool size. 

HCF_RES_ADDR  memIo32Addr Specifies the 32-bit non-prefetchable 
memory pool base address. 

HCF_RES_INT  memIo32Size Specifies the 32-bit non-prefetchable 
memory pool size. 

HCF_RES_ADDR  io32Addr Specifies the 32-bit I/O pool base 
address. 

HCF_RES_INT  io32Size Specifies the 32-bit I/O pool size. 

HCF_RES_ADDR  io16Addr Specifies the 16-bit I/O pool base 
address. 

HCF_RES_INT  pciIo16Size Specifies the 16-bit I/O pool size.
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The choice of configuration method to use (method 0, method 1, or method 2) is 
often made configurable in the driver, so that a BSP can specify the configuration 
method (and perhaps also the correct addresses for the configuration registers 
used by these methods). If you want your bus controller driver to allow the BSP to 
choose the method to be used for the generation of PCI configuration cycles, be 
sure your driver exports the resource listed in Table 2-4. 

2.5.2  PCI Autoconfiguration 

PCI bus controllers often use the PCI autoconfiguration services that are included 
with VxWorks. If a bus controller driver uses this service, the related BSP must 
ensure that the resources required to support PCI autoconfiguration are defined in 
the BSP hwconf.c file. The following resources are used directly by 
vxbPciAutoConfig( ): 

In most cases, the bus controller does not need to manipulate these resources 
directly. 

For details about the semantics of each of the PCI autoconfiguration resource, see 
the reference entry for vxbPciAutoConfig( ).

Table 2-4 Configuration Resources for PCI Bus 

Type Name Description 

HCF_RES_INT  pciConfigMechanism A value between 0 and 2. 

autoIntRouteSet io16Addr maxLatencyFuncSet 
bridgePostConfigFuncSet io16Size mem32Addr 
bridgePreConfigFuncSet io32Addr mem32Size 
cacheSize io32Size memIo32Addr 
fbbEnable maxBusSet memIo32Size 
includeFuncSet maxLatAllSet msgLogSet 
intAssignFuncSet maxLatencyArgSet rollcallFuncSet 
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2.6  Available Utility Routines 

The various utility services available to bus controller drivers are described in this 
section. The majority of the support described in this section is for PCI bus 
controller drivers, because this is the most prevalent bus type used in devices 
today. 

2.6.1  PCI Configuration 

A utility library is available to bus controller drivers to support the generation of 
PCI configuration cycles according to the PCI specification. The utility library is 
located in installDir/vxworks-6.x/target/src/hwif/vxbus/vxPci.c. To initialize the 
library, the bus controller driver must call vxbPciConfigLibInit( ). The prototype 
for vxbPciConfigLibInit( ) is as follows:

STATUS vxbPciConfigLibInit
(
struct vxbPciConfig *pPciConfig,
int pciConfAddr0, /* used by method 1 & method 2 */
int pciConfAddr1, /* used by method 1 & method 2 */
int pciConfAddr2, /* used by method 2 only */
int pciConfigMech, /* 1=method-1, 2=method-2 */
int pciMaxBus /* Max number of sub-busses */
)

vxbPciConfigLibInit( ) initializes the memory pointed to by pPciConfig, so that 
this data structure can be used by the utility library when the utility library 
generates PCI configuration cycles. The bus controller driver is responsible for 
allocating the memory area used to store this data structure. After this data 
structure is initialized, the utility library can invoke the driver {busCtlrCfgInfo}( ) 
method in order to retrieve the pointer to the data structure.

VxBus utility services that perform PCI autoconfiguration expect to be able to use 
PCI configuration utility services to perform the required configuration cycles. If 
PCI autoconfiguration is supported by the bus controller driver, the PCI 
configuration library must be properly initialized before autoconfiguration is 
performed.

For further details on the use of the PCI configuration library, see the reference 
entry for vxbPci.
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2.6.2  PCI Autoconfiguration 

On some hardware platforms, the devices that are available on the PCI bus are 
initialized before VxWorks begins operation. In other environments, device 
configuration is performed by VxWorks. Bus controller drivers for the PCI bus 
should support the configuration of the devices on the bus, unless they will only 
be executed in hardware environments where the PCI bus is configured before 
VxWorks starts.

The interface to PCI autoconfiguration is straightforward, consisting of only a 
single call to vxbPciAutoConfig( ). The prototype for vxbPciAutoConfig( ) is:

STATUS vxbPciAutoConfig
(
VXB_DEVICE_ID busCtrlID
)

The simplicity of this interface hides a great deal of configurability and complexity. 
As seen in 2.5.2 PCI Autoconfiguration, p.19, PCI autoconfiguration requires a large 
number of configuration resources from the BSP. As such, many of the 
configuration requirements for PCI autoconfiguration are BSP requirements 
instead of bus controller driver requirements. If a bus controller driver makes use 
of PCI autoconfiguration, this creates an implicit dependency on the resources that 
PCI autoconfiguration requires.

2.6.3  vxbBusAnnounce( ) 

Each bus controller driver must inform VxBus that there is a bus downstream from 
it. This must occur early in the initialization process, typically during phase 1 
initialization immediately after it allocates and initializes the per-driver data 
structures that it wants to maintain. The call to make VxBus aware of the 
downstream bus is vxbBusAnnounce( ). The prototype for vxbBusAnnounce( ) is:

STATUS vxbBusAnnounce
(
VXB_DEVICE_ID pBusDev, /* bus controller */
UINT32 busID /* bus type */
)

The pBusDev parameter refers to the bus controller instance, and is provided to 
the initialization routine that invokes vxbBusAnnounce( ). The second parameter 
(busID) identifies the type of bus being announced. Table 2-5 lists the available 
macros and their descriptions. 
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The list of supported bus types is likely to increase in future releases. For a 
complete list of the available bus types, refer to the BUSID definitions found in 
installDir/vxworks-6.x/target/h/hwif/vxbus/vxBus.h.

2.6.4  vxbPciBusTypeInit( ) 

Once a PCI bus is configured so that subordinate devices on the bus are visible, 
each bus controller driver must call vxbPciBusTypeInit( ), to allow VxBus to 
perform any required connection operations to associate the discovered devices 
with their bus controller. The prototype for vxbPciBusTypeInit( ) is:

STATUS vxbPciBusTypeInit
(
VXB_DEVICE_ID pBusDev
)

The pBusDev parameter refers to the bus controller instance, and is provided to 
the initialization routine that invokes vxbPciBusTypeInit( ).

2.6.5  vxbPciDeviceAnnounce( )

Once vxbPciBusTypeInit( ) is invoked, the bus controller driver invokes 
vxbPciDeviceAnnounce( ) in order to make the discovered devices on the bus 
visible to VxBus. The prototype for vxbPciDeviceAnnounce( ) is:

STATUS vxbPciDeviceAnnounce
(
VXB_DEVICE_ID pBusDev
)

Table 2-5 Bus Type Macros 

Name Description 

VXB_BUSID_PLB Processor Local Bus

VXB_BUSID_PCI PCI 

VXB_BUSID_RAPIDIO RapidIO

VXB_BUSID_MII Media Independent Interface (MII) 

VXB_BUSID_VIRTUAL virtual bus 
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The pBusDev parameter refers to the bus controller instance, and is provided to 
the initialization routine that invokes vxbPciDeviceAnnounce( ).

2.7  Initialization 

The initialization steps for a bus controller are similar, but not identical, to the 
initialization steps that occur for other drivers. This section discusses the various 
steps in the initialization of a bus controller driver.

Bus controller drivers must register themselves with VxBus during the boot 
process, as is the case with all VxBus drivers. The primary difference between bus 
controller drivers and other drivers is that bus controller drivers describe 
themselves differently in their vxbDevRegInfo initialization structure. Whereas 
most drivers declare themselves as being of type VXB_DEVID_DEVICE, bus 
controllers describe themselves as VXB_DEVID_BUSCTRL. 

As with service drivers (see A. Glossary), bus controller drivers are initialized in 
three distinct phases. Typically, bus controller drivers are initialized during system 
boot. However, during early development, you may choose to delay the 
initialization of a bus controller driver until after the system is running. This 
provides a more robust debugging environment during bus controller driver 
development. When debugging is complete, be sure to restore your driver 
initialization to the earliest possible initialization phase. For more information, see 
2.8 Debugging, p.26.

The initialization of a bus controller can be thought of in terms of a driver's internal 
requirements, and of external requirements that are imposed on the driver by the 
VxBus bus controller driver model. Internal requirements are operations that the 
bus controller needs to perform in order to create a suitable run-time environment 
for itself. This typically includes:

■ Allocating memory to hold per-instance data structures, and initializing them 
according to the driver's unique requirements.

■ Reading in resource information from the environment, and programming the 
bus controller hardware to reflect the desired configuration.

■ Initializing utility libraries that the bus controller driver will put to subsequent 
use within the driver. 
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Note that this list is not meant to be exhaustive. In some cases, device drivers will 
have unique requirements that occur along with the above examples. 

In addition to the internal requirements of the bus controller driver, bus controller 
drivers have additional requirements in the way that they connect themselves to 
VxBus. This includes: 

■ Announcing the availability of the bus to VxBus.

■ Scanning the bus (where possible), in order to find devices that are available 
on the bus, so that they can be paired with drivers to form additional instances.

■ Performing bus-type specific operations, such as announcing the availability 
of a new PCI bus to VxBus.

VxWorks provides utility routines that help to provide support for a PCI bus. More 
specifically, utility services are provided to support PCI bus configuration. For 
more information on these utility services, see 2.6 Available Utility Routines, p.20. 

2.7.1  Initialization Example 

While each bus controller driver may have unique initialization requirements, 
most requirements fall broadly into the steps outlined in this section. 

For this example, the following steps are taken from the g64120aPci.c bus 
controller:

1. Allocate the per-instance data area used by the driver. 

pDrvCtrl = hwMemAlloc (sizeof(*pDrvCtrl));

2. Query required resources from the BSP, and store them locally. 

devResourceGet(pHcf, "maxBusSet", 
HCF_RES_INT, (void *)&pDrvCtrl->pciMaxBus);

devResourceGet(pHcf, "pciConfigMechanism", 
HCF_RES_INT, (void *)&pDrvCtrl->pciConfigMech)

/* etc. */

3. Initialize the support library used for PCI configuration handling. 

vxbPciConfigLibInit(pDrvCtrl->pPciConfig, /*…*/ );

4. Initialize the bus controller hardware itself. 

g64120aPciBridgeInit (pInst);
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5. Inform VxBus about the availability of the new bus. 

vxbBusAnnounce (pInst, VXB_BUSID_PCI);

6. If the BSP has requested PCI autoconfiguration, perform the autoconfigure 
now.

if (pDrvCtrl->autoConfig)
vxbPciAutoConfig(pInst);

7. Complete VxBus initialization. 

vxbPciBusTypeInit (pInst);
vxbSubDevAction (pInst,vxbUpdateDeviceInfo,0,              

VXB_ITERATE_ORPHANS);
vxbPciDeviceAnnounce(pInst);

The first-pass driver initialization routine is intended primarily for bus controller 
devices. Bus controller devices can allocate a DRV_CTRL structure using the 
hwMemAlloc( ) routine. The bus controller must be initialized, and the bus must 
be announced to VxBus with a call to vxbBusAnnounce( ). The bus controller 
device driver is responsible for device enumeration1. Depending on the system 
configuration options, one of three versions can be present: dynamic discovery and 
configuration, table-based static discovery and configuration, and external 
configuration. However, as devices are discovered, each new device must be 
announced to VxBus with a call to vxbDeviceAnnounce( ).

The following sections describe the routines that are provided by VxBus for 
registration of devices and bus types. 

vxbBusAnnounce( ) 

vxbBusAnnounce( ) creates a new structure to represent an example of the 
specified bus type. A device driver representing a bus controller calls this routine 
to announce to VxBus that it is a bus controller and that there is a bus downstream 
from the controller.

STATUS vxbBusAnnounce
(
VXB_DEVICE_ID pBusDev, /* bus controller */
UINT32 busID /* bus type */
)

1. PCI Bus controller drivers call vxbPciDeviceAnnounce( ), which provides device 
enumeration on behalf of the caller. Therefore, no additional code is required in the PCI bus 
controller driver to perform device enumeration. 
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vxbDeviceAnnounce( ) 

vxbDeviceAnnounce( ) announces that a new device has been discovered. Bus 
controller device drivers must call this routine when they discover additional 
devices. If a driver matches the device, an instance is created. If no driver matches 
the device, VxBus keeps information about the device in case a driver is later 
downloaded. The prototype is: 

STATUS vxbDeviceAnnounce
(
VXB_DEVICE_ID pBusDev
)

vxbDevStructAlloc( ) 

Each bus controller driver is responsible for enumerating the devices on the bus 
and announcing them to VxBus. The vxbDevStructAlloc( ) routine allocates a 
device structure. The bus controller driver fills in the fields of the structure and 
then announces the newly discovered device to VxBus with a call to 
vxbDeviceAnnounce( ). The prototype is: 

VXB_DEVICE_ID vxbDevStructAlloc(void); 

vxbDevStructFree( ) 

vxbDevStructFree( ) returns the device structure to the pool, making it available 
for future device allocation. The prototype is: 

void vxbDevStructFree(VXB_DEVICE_ID devID); 

2.8  Debugging 

Bus controller drivers can be quite complex, and by design they should initialize 
themselves as early as possible during the VxWorks boot process, so that devices 
on the bus can themselves be initialized and become available to the operating 
system. However, because no devices are available that can be used to aid in the 
debug process, the run-time environment that exists when a bus controller driver 
is doing its initialization is very limited. For example, because no console or other 
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serial devices are available, services like logMsg( ) are not helpful in the debug 
process.

Fortunately, it is not mandatory that a bus controller driver be initialized during 
the first phase of VxBus initialization. During the development process, you may 
wish to delay the initialization of a bus controller driver until much later in the 
system boot process, so that operating system services (such as printf( ) and 
logMsg( )) can be used to aid in the debugging process. 

For details about deferring initialization and enabling debug support within a 
driver, refer to VxWorks Device Driver Developer’s Guide (Vol.1): Development 
Strategies. 
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3.1  Introduction 

This chapter describes direct memory access (DMA) drivers. This chapter assumes 
that you are familiar with the contents of the VxWorks Device Driver Developer's 
Guide, Volume 1: Fundamentals of Writing Device Drivers, which discusses generic 
driver concepts as well as details of VxBus that are not specific to any driver class.
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3.2  Overview

Some hardware designs include a general-purpose direct memory access (DMA) 
engine that handles DMA accesses from, or to, external devices or from memory to 
memory. These DMA engines are often found integrated in system-on-chip CPU 
designs. The DMA driver class provides a standard method for presenting the 
services of these DMA engines to other drivers in the system.

The vxbDmaLib library is provided for drivers that wish to use a DMA engine. 
The routines provided by this DMA library are vxbDmaChanAlloc( ) and 
vxbDmaChanFree( ). (For more information on these routines, see VxWorks Device 
Driver Developer’s Guide (Vol. 1): Device Driver Fundamentals.) 

3.3  VxBus Driver Methods 

The routines provided by vxbDmaLib make use of three VxBus driver methods:

■ {vxbDmaResourceGet}( ) 
■ {vxbDmaResourceRelease}( ) 
■ {vxbDmaResDedicatedGet}( ) 

DMA drivers provide access to their services by associating routines with these 
methods.

3.3.1  {vxbDmaResourceGet}( ) 

The {vxbDmaResourceGet}( ) method is used by the DMA library to allocate a 
DMA channel on the device managed by the DMA driver. The prototype is as 
follows:

STATUS {vxbDmaResourceGet}
(
VXB_DEVICE_ID pInst,
VXB_DEVICE_ID pReqDev, 
VXB_DMA_REQUEST * pReq 
)

In this prototype, pInst refers to the DMA device itself, pReqDev refers to the 
device requesting a DMA channel, and pReq is a pointer to a structure describing 
the desired attributes for the DMA channel.
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The VXB_DMA_REQUEST structure is defined in 
installDir/vxworks-6.x/target/src/hwif/h/util/vxbDmaDriverLib.h as follows:

typedef struct vxbDmaRequest
{
VXB_DEVICE_ID instance; /* DMA requestor device id */
UINT32 minQueueDepth; /* minimum queue depth 

requested */
UINT32 flags; /* flags used during DMA 

allocation */
VXB_DMA_RESOURCE_ID pChan; /* DMA channel id */
void * pDedicatedChanInfo; /* dedicated channel 

information */
} VXB_DMA_REQUEST;

This structure largely corresponds to the parameters passed to 
vxbDmaChanAlloc( ). DMA device drivers normally select a DMA channel based 
on minQueueDepth and flags, and return a pointer to the channel in pChan. 
Device drivers making a call to the DMA driver's channel allocation code, whether 
through func{vxbDmaResourceGet}( ) or through 
func{vxbDmaResDedicatedGet}( ) can optionally pass a pointer to a structure 
containing information specific to the expected DMA channel dedicated to the 
requestor. The DMA driver can make use of this information to set up a dedicated 
DMA channel. 

3.3.2  {vxbDmaResourceRelease}( ) 

The {vxbDmaResourceRelease}( ) method is used by the DMA library to free a 
DMA channel on the device managed by the DMA driver. The prototype is as 
follows: 

STATUS {vxbDmaResourceRelease}
(
VXB_DEVICE_ID pInst,
VXB_DMA_RESOURCE_ID pChan
)

In most cases, the only requirement for the driver is to free the particular DMA 
channel allocated to the device identified by pChan. pInst refers to the VxBus 
device ID of the DMA device.

3.3.3  {vxbDmaResDedicatedGet}( ) 

The {vxbDmaResDedicatedGet}( ) method is used by the DMA library to allocate 
a DMA channel dedicated to the particular device that called the method. This 
method is functionally similar to {vxbDmaResourceGet}( ). However, due to 
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hardware constraints or other considerations, you may wish to use it to ensure that 
particular devices are allocated to particular channels. This can be accomplished, 
for example, by checking the device name associated with the device instance 
identified by pReqDev, or by checking information passed in using the 
pDedicatedChanInfo member of pReq. The prototype is as follows:

STATUS {vxbDmaResDedicatedGet}
(
VXB_DEVICE_ID pReqDev,
VXB_DMA_REQUEST * pReq
)

3.4  Header Files 

DMA drivers must include the following header files:

#include <hwif/util/vxbDmaLib.h> 
#include "../h/util/vxbDmaDriverLib.h" 

Other drivers that wish to use vxbDmaLib may need to include the following: 

#include <hwif/util/vxbDmaLib.h>

These drivers may also need to include the header files for specific DMA drivers, 
in order to use the dedicated channel functionality.

3.5  BSP Configuration 

DMA drivers do not typically require configuration information from a BSP that is 
above and beyond the normal device-specific information provided for all drivers. 
For more information on BSP configuration, see VxWorks Device Driver Developer’s 
Guide (Vol.1): Device Driver Fundamentals. 
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3.6  Available Utility Routines 

There are no class-specific utility routines required or available for DMA drivers.

3.7  Initialization 

The initialization of DMA device drivers is generally device-specific. Initialization 
should be completed before or during VxBus initialization phase 2, so that other 
drivers are guaranteed that vxbDmaLib is available during initialization phase 3.

3.8  DMA System Structures and Routines 

The routines and methods described in previous sections make use of 
VXB_DMA_RESOURCE_ID to identify a particular DMA channel. This identifier is 
a pointer to a vxbDmaResource structure, and is defined as follows:

struct vxbDmaResource
{
struct vxbDmaFuncs dmaFuncs;/* structure holding dma 

function pointers */
void * pDmaChan;/* channel specific data-used by DMA 

driver */
VXB_DEVICE_ID dmaInst; /* dma engine instance ID */
};

The dmaFuncs member of this structure contains function pointers that are used 
for various DMA operations. Device drivers can access these routines through the 
VXB_DMA_RESOURCE_ID identification returned to them using a call to 
vxbDmaChanAlloc( ). These function pointers should be filled in by DMA 
drivers. Depending on the flags argument passed to the vxbDmaChanAlloc( ) 
routine, vxbDmaLib may initialize the read and write routines with software 
versions. The vxbDmaFuncs structure is defined in vxbDmaLib.h, and contains 
pointers to the routines described in the following sections.
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3.8.1  (*dmaRead)( ) 

(*dmaRead)( ) queues a read from the buffer or register on the device to a buffer in 
system memory. Control is returned immediately to the caller, with an OK status if 
the transaction can be queued, or ERROR if the DMA device queue is full. 
pDmaComplete and pArg can be used to specify a callback routine for when the 
transaction is complete.

STATUS (*dmaRead)
(
VXB_DMA_RESOURCE_ID dmaChan,
char * src,
char * dest,
int transferSize,
int unitSize,
UINT32 flags,
pVXB_DMA_COMPLETE_FN pDmaComplete,
void * pArg
);

3.8.2  (*dmaReadAndWait)( ) 

(*dmaReadAndWait)( ) is similar to (*dmaRead)( ) except that control is not 
returned to the caller until the transaction is complete.

STATUS (*dmaReadAndWait)
(
VXB_DMA_RESOURCE_ID dmaChan,
char * src,
char * dest,
int * pTransferSize,
int unitSize,
UINT32 flags
);

3.8.3  (*dmaWrite)( ) 

(*dmaWrite)( ) queues a write from the buffer or register on the device, to a buffer 
in system memory. Control is returned immediately to the caller, with an OK status 
if the transaction can be queued, or ERROR if the DMA device queue is full. 
pDmaComplete and pArg can be used to specify a callback routine for when the 
transaction is complete.
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STATUS (*dmaWrite)
(
VXB_DMA_RESOURCE_ID dmaChan,
char * src,
char * dest,
int transferSize,
int unitSize,
UINT32 flags,
pVXB_DMA_COMPLETE_FN pDmaComplete,
void * pArg
);

3.8.4  (*dmaWriteAndWait)( ) 

(*dmaWriteAndWait)( ) is similar to (*dmaWrite)( ) except that control is not 
returned to the caller until the transaction is complete.

STATUS (*dmaWriteAndWait)
(
VXB_DMA_RESOURCE_ID dmaChan,
char * src,
char * dest,
int * pTransferSize,
int unitSize,
UINT32 flags
);

3.8.5  (*dmaCancel)( ) 

(*dmaCancel)( ) cancels a read or write operation that was previously started on a 
given channel. This prevents any further I/O from occurring on the channel until 
a new read or write operation is queued. 

STATUS (*dmaCancel)
(
VXB_DMA_RESOURCE_ID dmaChan
);

3.8.6  (*dmaPause)( ) 

(*dmaPause)( ) pauses a DMA channel that previously started a transfer. Pausing 
a channel allows the caller to safely manipulate any underlying DMA descriptor 
or buffer structures associated with the channel without cancelling the DMA 
operation completely. A paused channel can be resumed with (*dmaResume)( ).
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STATUS (*dmaPause)
(
VXB_DMA_RESOURCE_ID dmaChan
);

3.8.7  (*dmaResume)( ) 

(*dmaResume)( ) resumes a DMA channel that has been paused, or which has 
gone idle.

STATUS (*dmaResume)
(
VXB_DMA_RESOURCE_ID dmaChan
);

3.8.8  (*dmaStatus)( ) 

(*dmaStatus)( ) returns the status of the specified DMA channel. The valid return 
value are: DMA_NOT_USED, DMA_IDLE, DMA_RUNNING, or DMA_PAUSED.

int (*dmaStatus)
(
VXB_DMA_RESOURCE_ID dmaChan
);

3.9  Debugging 

Because they can be tested when the VxWorks system is fully initialized, 
debugging DMA drivers is generally straightforward. When debugging DMA 
drivers, the full debug capabilities of VxWorks, as well as conventional 
instrumentation techniques such as logMsg( ), can be used effectively. 

The only complicating factor is that DMA drivers cannot be tested in a vacuum. 
Because they provide a service to other drivers in the system, they must be tested 
with another driver. For debugging purposes, you may wish to write a dummy 
driver that calls the routines in vxbDmaLib to allocate a DMA channel and initiate 
mock DMA transfers. 

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies.
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4.1  Introduction 

This chapter describes interrupt controller drivers. This chapter assumes that you 
are familiar with the contents of the VxWorks Device Driver Developer's Guide, 
Volume 1: Fundamentals of Writing Device Drivers, which discusses generic driver 
concepts as well as details of VxBus that are not specific to any driver class.

4.2  Overview 

This chapter provides information on interrupt identification, driver 
responsibilities, interrupt controller configurations, dynamic vector assignment, 
and multiprocessing systems as they relate to VxBus model interrupt controller 
drivers. This section describes these topics briefly. The remainder of the chapter 
provides the detailed information necessary to understand VxBus model interrupt 
controller drivers. 

Within the VxBus framework, interrupt controller hardware management can be 
implemented with a VxBus driver. 

Interrupt controller drivers are among the most difficult device drivers to create, 
debug, and maintain. When writing a VxBus interrupt controller driver, Wind 
River recommends that you first understand the information in the VxWorks Device 
Driver Developer's Guide, Volume 1. Then, read and understand this chapter. Finally, 
review the VxBus interrupt controller drivers provided by Wind River to find the 
one that most closely matches the hardware you are working with, use that driver 
as a model for your development. 

NOTE:  For use with the VxWorks SMP product, the interrupt controller code must 
be implemented as a VxBus driver.

NOTE:  The OpenPIC interrupt controller driver, vxbEpicIntCtlr.c, and the 
PowerPC CPU-specific interrupt controller driver, vxbPpcIntCtlr.c provided by 
Wind River are generally appropriate to use as models for interrupt controller 
driver development. However, because these drivers are subject to Wind River 
guidelines for backward compatibility, they may include code that is not necessary 
for your development situation. In this case, you may wish to create an entirely 
new interrupt controller driver in order to simplify the driver code. 
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Interrupt Identification 

Within the context of VxBus, an interrupt is considered to be an entity specific to 
the device that generates the interrupt. That is, in VxBus, all interrupts are 
identified by the VxBus device and an interrupt index. This uniquely identifies 
every interrupt source on the system based on what generates the interrupt. 

From the perspective of an interrupt controller, you must also refer to interrupts 
by the input pins on which the interrupt arrives. When discussing interrupt 
controllers, this is referred to as the interrupt input. 

Interrupt identification is discussed further in 4.12 Internal Representation of 
Interrupt Inputs, p.65. 

Interrupt Controller Driver Responsibilities 

The interrupt controller driver is responsible for maintaining interrupt routing 
information, managing interrupt input characteristics such as trigger type (edge 
trigger or level trigger), trigger value (active high or active low), and other 
characteristics of the interrupt source.

Interrupt controller drivers are also responsible for maintaining ISRs for each 
interrupt input, and for the argument that is passed to each ISR. The library 
vxbIntCtlrLib provides routines to help manage ISR connections. The library 
attempts to dispatch ISRs in the most efficient manner possible. When a single ISR 
is connected, the ISR is dispatched directly. When multiple ISRs are connected, 
vxbIntCtlrLib creates a chain of ISR handlers to call when an interrupt occurs.

When any driver makes a call to vxbIntConnect( ), each interrupt controller on the 
system is given a chance to claim the interrupt. Once the interrupt is claimed, that 
interrupt controller is responsible for managing the interrupt as required by the 
hardware and as directed by calls to vxbIntEnable( ), vxbIntDisable( ), and 
vxbIntDisconnect( ). These calls map into interrupt controller methods.

Driver responsibilities are discussed further in 4.3 VxBus Driver Methods, p.41. 

Interrupt Controller Configurations 

Many CPUs have the ability to wire multiple interrupts directly to the CPU. Other 
CPUs can wire only a single interrupt directly to the CPU, and any interrupt 
management must be handled by an external interrupt controller device. Other 
CPUs have the capability for interrupts to be indicated as messages on a separate 
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bus of some kind, so that no interrupts need to be hard-wired directly to the CPU. 
Some external interrupt controllers also provide this functionality separate from 
the CPU. VxBus interrupt controller drivers support all of these configurations.

Interrupt controllers can also have a hierarchy of connectivity, where the inputs of 
some interrupt controllers are connected to the outputs of other interrupt 
controllers. 

Interrupt controller configurations are discussed further in 4.8 Interrupt Controller 
Typologies and Hierarchies, p.57.

Dynamic Vectors 

Some hardware allows dynamic assignment of interrupt identifiers. Individual 
bus types, such as PCI, may define a bus-specific mechanism for handling dynamic 
vectors. For a PCI bus, this includes MSI and MSI-X. Even without any bus-specific 
dynamic vector assignment, individual devices can provide a mechanism for 
software to write a vector into a device register, to be used when the device 
generates an interrupt. In modern hardware, this sometimes happens when an 
interrupt controller is part of the same multifunction chip as other devices. One 
example of this is the OpenPIC timer. In this case, the timer device sits on the same 
chip as the interrupt controller and the hardware requires you to write a register 
on the timer device that contains the interrupt input number on the interrupt 
controller device. 

Some VxBus interrupt controller drivers handle dynamic vector assignment for 
both of these conditions. 

Dynamic vector management is discussed further in 4.11 Managing Dynamic 
Interrupt Vectors, p.62. 

Interrupt Controller Drivers and Multiprocessing 

There are several areas of functionality relevant to multiprocessor systems that are 
handled by the interrupt controller driver. This includes assignment of a given 
interrupt to a specified CPU, and generation and management of interprocessor 
interrupts (IPIs). 

Multiprocessor issues are discussed further in 4.13 Multiprocessor Issues with 
VxWorks SMP, p.66.
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4.3  VxBus Driver Methods 

There are three groups of driver methods relevant to interrupt controller drivers. 
The first group is required for basic interrupt controller functionality. The second 
group deals with issues related to dynamic vector assignment. The last group 
deals with issues related to multiprocessor systems.

4.3.1  Basic Methods 

The methods listed in this section are required for basic interrupt controller 
functionality. 

{vxbIntCtlrConnect}( ) 

The func{vxbIntCtlrConnect}( ) routine configures the hardware for the specified 
interrupt and attaches the supplied routine and argument to the appropriate 
interrupt input.

LOCAL STATUS func{vxbIntCtlrConnect}
(
VXB_DEVICE_ID pIntCtlr, /* interrupt controller VxBus 

device ptr */
VXB_DEVICE_ID pInst, /* interrupt source VxBus 

device ptr */
int indx, /* device interrupt index */
void (*pIsr)(void * pArg), /* routine to be called */
void * pArg, /* parameter to be passed 

to routine */
int * pInputPin /* found input pin for specified 

device */
)

{vxbIntCtlrDisconnect}( ) 

The func{vxbIntCtlrDisconnect}( ) routine disconnects the specified ISR and 
argument from the interrupt input and disables the interrupt input if it is not 
shared with other ISRs.

LOCAL STATUS func{vxbIntCtlrDisconnect}
(
VXB_DEVICE_ID pIntCtlr, /* interrupt controller VxBus 

device ptr */
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VXB_DEVICE_ID pInst, /* interrupt source VxBus 
device ptr */

int indx, /* device interrupt index */
void (*pIsr)(void * pArg), /* routine to be called */
void * pArg /* parameter to be passed 

to routine */
)

{vxbIntCtlrEnable}( ) 

The func{vxbIntCtlrEnable}( ) enables the interrupt input and marks the specified 
ISR as enabled.

LOCAL STATUS func{vxbIntCtlrEnable}
(
VXB_DEVICE_ID pIntCtlr, /* interrupt controller VxBus 

device ptr */
VXB_DEVICE_ID pInst, /* interrupt source VxBus 

device ptr */
int indx, /* device interrupt index */
void (*pIsr)(void * pArg), /* routine to be called */
void * pArg /* parameter to be passed 

to routine */
)

{vxbIntCtlrDisable}( ) 

The func{vxbIntCtlrDisable}( ) marks the specified ISR as disabled. If there are no 
other enabled ISRs chained to the same interrupt input, the routine disables the 
input.

LOCAL STATUS func{vxbIntCtlrDisable}
(
VXB_DEVICE_ID pIntCtlr, /* interrupt controller VxBus 

device ptr */
VXB_DEVICE_ID pInst, /* interrupt source VxBus 

device ptr */
int indx, /* device interrupt index */
void (*pIsr)(void * pArg), /* routine to be called */
void * pArg /* parameter to be passed 

to routine */
)
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4.3.2  Dynamic Vector Methods 

The method listed in this section is used for dynamic vector assignment. 

{vxbIntDynaVecConnect}( ) 

The {vxbIntDynaVecConnect}( ) method allows a driver to request that multiple 
interrupts be assigned for use by the caller’s device and a specified ISR/argument 
be attached to each.

When called, the func{vxbIntDynaVecConnect}( ) routine causes interrupt vectors 
to be assigned to the requested device and connects the specified ISRs and 
arguments to the interrupts.

LOCAL STATUS func{vxbIntDynaVecConnect}
(
VXB_DEVICE_ID pIntCtlr,
VXB_DEVICE_ID pInst,
int vecCount,
struct vxbIntDynaVecInfo* dynaVec
)

Dynamic vector assignment currently requires that the driver call a special routine 
to assign dynamic vectors, or that the BSP be configured to use dynamic vectors. 
For more information, see 4.5 BSP Configuration, p.45.

4.3.3  Multiprocessor Methods 

The methods listed in this section are available for use in multiprocessor systems. 

{vxbIntCtlrIntReroute}( ) 

The func{vxbIntCtlrIntReroute}( ) routine reroutes a specified interrupt from the 
CPU to which it is currently routed, to the CPU specified by the destCpu 
argument.

LOCAL STATUS func{vxbIntCtlrIntReroute}
(
VXB_DEVICE_ID pInst,
int index,
cpuset_t destCpu
)



VxWorks
Device Driver Developer's Guide, 6.6 

44

The interrupt is specified by the device and index indicated in the arguments. All 
interrupts connected to the same input are rerouted together.

{vxbIntCtlrCpuReroute}( ) 

The func{vxbIntCtlrCpuReroute}( ) routine reroutes interrupts from the CPU to 
which they are currently routed, to the CPU or CPUs specified by the destCpu 
argument.

LOCAL STATUS func{vxbIntCtlrCpuReroute}
(
VXB_DEVICE_ID pInst,
void * destCpu
)

While {vxbIntCtlrIntReroute}( ) is specific to a single interrupt input, 
{vxbIntCtlrCpuReroute}( ) routes all interrupts configured for a different CPU to 
that CPU as a block. That is, if the BSP configures four interrupt inputs as routed 
to CPU 1 using the CPU routing table in hwconf.c, then a single call to 
func{vxbIntCtlrCpuReroute}( ) must reroute all four of those interrupts that are 
routed to CPU 1.

{vxIpiControlGet}( ) 

Interprocessor interrupts (IPIs) are used for various purposes in multiprocessor 
systems. The func{vxIpiControlGet}( ) routine returns a pointer to a structure, 
VXIPI_CTRL_INIT, containing information to manage IPIs.

LOCAL VXIPI_CTRL_INIT * func{vxIpiControlGet}
(
VXB_DEVICE_ID pInst,
void * pArg
)

For more information on IPIs, see 4.13.2 Interprocessor Interrupts, p.68.
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4.4  Header Files 

There are two header files available to VxBus interrupt controller drivers.

vxbIntrCtlr.h 

The file vxbIntrCtlr.h contains information needed for retrieving interrupt routing 
information from the BSP. Include this file as follows: 

#include <hwif/vxbus/vxbIntrCtlr.h>

vxbIntCtlrLib.h 

Interrupt controller drivers should also include vxbIntCtlrLib.h when they use 
vxbIntCtlrLib routines, which is strongly recommended. This header file is 
located in installDir/vxworks-6.x/target/src/hwif/intCtlr, therefore Wind River 
interrupt controller drivers simply include it using quotation marks.

#include "vxbIntCtlrLib.h"

When a third-party interrupt controller driver is released, the driver should be 
located in the directory installDir/vxworks-6.x/target/3rdparty/vendor/driver. In 
order to include vxbIntCtlrLib.h, the makefile in this directory should be modified 
to add -I$(TGT_DIR)/src/hwif/intCtlr to the EXTRA_INCLUDE macro as follows: 

EXTRA_INCLUDE=-I$(TGT_DIR)/h -I$(TGT_DIR)/src/hwif/intCtlr

This modification allows third-party interrupt controller drivers to use angle 
brackets in the include line: 

#include <vxbIntCtlrLib.h> 

4.5  BSP Configuration 

The device registers for almost all interrupt controllers are located logically on the 
processor bus. For this reason, interrupt controller drivers almost always need to 
have entries in the BSP hwconf.c file. Interrupt controller drivers require the 
standard hwconf.c entries. (For more information about hwconf.c, see VxWorks 
Device Driver Developer’s Guide (Vol. 1): Device Driver Fundamentals.) However, 
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interrupt controller drivers also require additional entries to describe interrupt 
routing and configuration. The remainder of this section discusses these additional 
requirements. 

Interrupt descriptions are represented by a series of tables in hwconf.c. For each 
table required by a given interrupt controller driver, a resource entry containing a 
pointer to the head of the table and a resource entry containing the size of the table 
are included in the interrupt controller's resource table. 

The tables in hwconf.c include:

■ an interrupt routing table, input, which lists devices that are connected to a 
specific interrupt input on the interrupt controller

■ a priority table, priority, which lists the non-default priority of individual 
interrupt inputs

■ a dynamic vector table, dynamicInterrupt or dynamicInterruptTable, which 
lists devices requiring dynamic vector assignment 

■ a CPU routing table, cpuRoute, which lists devices routed to processors other 
than the boot processor in a multiprocessor system 

■ a cross connect routing table, crossBar, that lists the input pin to output pin 
routing for each interrupt source to the interrupt controller 

You may wish to use additional tables. This option is available, but not 
recommended by Wind River.

4.5.1  Interrupt Input Table 

Interrupt input information is obtained from tables in the BSP hwconf.c file. The 
input information is represented by a table of structures of type intrCtlrInputs, 
which is defined in installDir/vxworks.6.x/target/h/hwif/vxbus/vxbIntrCtlr.h. 
While you may not need to know the representation of information in hwconf.c to 
develop your driver, you do need to know this information in order to test the 
driver. 

/*
* intrCtlrInputs structure is used to associate a device with
* the interrupt controller to which the device's interrupt
* output is connected.  Note that multiple devices can be
* connected to a single input pin; therefore, multiple
* intrCtlrInputs table entries can be present for a single
* input pin.  Also note that some input pins may not be
* connected, which may leave holes in the table, where no
* entry is present for a specific input pin.
*/
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struct intrCtlrInputs
{
int inputPin;
char * drvName;
int drvUnit;
int drvIndex;
};

A pointer to the beginning of the table is provided in the device resource list with 
the name input of type HCF_RES_ADDR. The size of the table is provided with a 
resource name inputTableSize of type HCF_RES_INT.

When your driver initializes the ISR handle, vxbIntCtlrLib reads this table 
automatically.

Each device interrupt output that is connected to an interrupt input is listed in the 
table. In the following example, modified from the hpcNet8641 BSP, macros are 
expanded to show the numeric values. Other modifications have been made for 
demonstration purposes.

struct intrCtlrInputs epicInputs[] = {
{ 19, "pciSlot", 0, 0 },
{ 20, "pciSlot", 0, 1 },
{ 21, "pciSlot", 0, 2 },
{ 22, "pciSlot", 0, 3 },
{ 22, "pciexpress", 0, 0 },
{ 38, "ns16550", 0, 0},
{ 24, "ns16550", 1, 0 }, 
{ 25, "mottsec", 0, 0 }, 
{ 26, "mottsec", 0, 1 }, 
{ 30, "mottsec", 0, 2 }, 
{ 31, "mottsec", 1, 0 }, 
{ 32, "mottsec", 1, 1 }, 
{ 36, "mottsec", 1, 2 }, 
{ 27, "mottsec", 2, 0 }, 
{ 28, "mottsec", 2, 1 }, 
{ 29, "mottsec", 2, 2 }, 
{ 33, "mottsec", 3, 0 }, 
{ 34, "mottsec", 3, 1 }, 
{ 35, "mottsec", 3, 2 }, 
{ 68, "ipi", 0, 0 }
{ 68, "dshmBusCtlr8641", 0, 0 }

};

Multiple interrupt sources can be listed for a single interrupt input. In this 
example, note that the PCI slot 0 interrupt output 3 (int-D) is wired to the same 
interrupt controller input pin, 22, as the PCI Express interrupt output. This is 
indicated by the following lines:

{ 22, "pciSlot", 0, 3 },
{ 22, "pciexpress", 0, 0 },
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The order that input pins are listed in is not relevant. In this example, the order of 
inputs has been rearranged so that the outputs of each interrupt source are 
grouped together. This means that the input pin numbering shown in the example 
is sorted by input pin. In the released version, the entries are not sorted.

Note that the same interrupt input can be used for more than one purpose. In the 
example, "ipi" and "dshmBusCtlr8641" are both connected to the same interrupt 
input. These two interrupts do not occur in the same configuration. However, even 
when they do occur in the same configuration, they can both be present in the same 
image, with no functional adverse effects. 

4.5.2  Dynamic Vector Table 

There are several kinds of dynamic vectors that can exist in a system (see 
4.11 Managing Dynamic Interrupt Vectors, p.62) including bus-specific dynamic 
vectors such as message signalled interrupts (MSIs) on PCI bus types, as well as 
custom dynamic vector support on some multifunction chips that contain an 
interrupt controller device. The interrupt controller driver for systems that support 
dynamic vector table functionality must be created to support dynamic vectors.

In general, there are two ways of configuring a system to perform dynamic vector 
assignment. The first way is for your device driver to call a special routine to install 
dynamic vectors. If you need to install multiple ISRs to dynamic vectors, you must 
use this interface. This option is handled by a special driver method to support 
dynamic vector assignment.

The second way is available from the BSP. In this case, the driver does need to 
understand the implementation. The interrupt input is configured in the input 
table in the BSP hwconf.c file where it is specified using a device name, a device 
unit number, and a device interrupt output. The indication that this is a 
dynamically assigned vector is shown by the use of VXB_INTR_DYNAMIC as the 
input pin. 

For example, in order to specify that the PCI network device yn0 output 0 should 
use a dynamically generated vector, the following line is included in the table 
specified with the input resource.

{ VXB_INTR_DYNAMIC, "yn", 0, 0 },

Any number of interrupt sources can be specified with VXB_INTR_DYNAMIC as 
the input pin, and each of them must have a dynamic vector assigned when the ISR 
is connected.
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4.5.3  CPU Routing Table 

In some cases, the interrupt controller driver is expected to be used in a 
multiprocessor environment, and the interrupt controller hardware is able to route 
interrupt inputs to processors other than the boot processor. In this environment, 
the BSP can be configured to route interrupt inputs to the additional processors. 
The following discussion focuses on the optional VxWorks SMP product, but may 
be applicable to asymmetric multiprocessing (AMP) environments as well. 

Routing interrupt inputs to non-default CPUs is configured by the presence of a 
table in the interrupt controller resources list. Because the interrupt controller can 
only route inputs, and because all interrupt sources on the same input must be 
routed to the same CPU at the same time, the interrupt inputs are identified by 
interrupt input pin number and not the normal interrupt identification mechanism 
consisting of VXB_DEVICE_ID and the interrupt output. The structure used for this 
is the intCtlrCpu structure, which is defined in 
installDir/vxworks-6.x/target/h/hwif/vxbus/vxbIntrCtlr.h as follows:

/*
* intrCtlrCpu is used on SMP systems only.  It indicates
* which CPU the interrupt controller should route the
* input pin to
*/

struct intrCtlrCpu
{
int inputPin;
int cpuNum;
};

The following is an example of the CPU interrupt routing table taken from the 
hpcNet8641 BSP, with macros left in place for clarity. It has been created as an 
example with minimal effects on system configuration and performance, and not 
for maximizing interrupt performance.

struct intrCtlrCpu epicCpu[] = {
{ EPIC_TSEC3ERR_INT_VEC, 1 },
{ EPIC_TSEC1ERR_INT_VEC, 1 },
{ EPIC_TSEC4ERR_INT_VEC, 1 },
{ EPIC_TSEC2ERR_INT_VEC, 1 }

};
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4.5.4  Interrupt Priority 

Within the VxBus interrupt controller design, each interrupt input can be assigned 
a priority. This section describes the tables used to assign interrupt priority to 
specific interrupt inputs at the interrupt controller. For more information on 
interrupt priority and how it affects interrupt controller drivers, see 4.9 Interrupt 
Priority, p.58.

As with other interrupt input configurations, the priority of interrupt inputs is 
defined as a table in the interrupt controller resource table, with a resource entry 
named priority to point to the first element of the table, and an entry named 
priorityTableSize to show the size of the priority table. The table is of type 
intrCtlrPriority, which is defined in 
installDir/vxworks-6.x/target/h/hwif/vxbus/vxbIntrCtlr.h as follows:

/*
* intrCtlrPriority is used to set the priority of
* a specified input pin on an interrupt controller
*/

struct intrCtlrPriority
{
int inputPin;
int priority;
};

The default value of 15 does not need to be specified, but all other values are 
required. The following is an example of the priority assignment for the EPIC 
interrupt controller, as used in the hpcNet8641 BSP.

struct intrCtlrPriority epicPriority[] = {
{ EPIC_DUART2_INT_VEC, 100 },
{ EPIC_DUART_INT_VEC, 100 }

};

4.5.5  Crossbar Routing Table 

For crossbar interrupt controllers, there is an additional structure definition and 
table to hold the input pin and correlation to the output pin. If not specified, every 
input pin is assigned to the default output, which is output zero unless otherwise 
documented in the interrupt controller driver documentation. Do not route a 
single input pin to multiple output pins. This results in unpredictable behavior. 

struct intrCtlrCpu
{
int inputPin;
int outputPin;
};



4  Interrupt Controller Drivers
4.6  Available Utility Routines

51

4

4.6  Available Utility Routines 

There are a number of utility routines available to interrupt controller drivers. 
These routines are available from vxbIntCtlrLib. The utility routines fall into one 
of four categories: routines used during normal operation, show routines, special 
purpose routines not normally needed for interrupt controller drivers, and callable 
macros that are useful to the interrupt controller driver.

Routines used during normal operation are: 

■ intCtlrHwConfGet( ) 
■ intCtlrISRAdd( ) 
■ intCtlrISRDisable( ) 
■ intCtlrISREnable( ) 
■ intCtlrISRRemove( ) 
■ intCtlrPinFind( ) 
■ intCtlrTableArgGet( ) 
■ intCtlrTableFlagsGet( ) 
■ intCtlrTableIsrGet( ) 

The show routine is: 

■ intCtlrHwConfShow( ) 

The special purpose routines are: 

■ intCtlrTableCreate( ) 
■ intCtlrTableFlagsSet( ) 
■ intCtlrTableUserSet( ) 

The callable macros are: 

■ VXB_INTCTLR_ISR_CALL( ) 
■ VXB_INTCTLR_PINENTRY_ENABLED( ) 
■ VXB_INTCTLR_PINENTRY_ALLOCATED( ) 

The routines available to interrupt controller drivers are described in the following 
sections. For the prototypes, see the reference entry for the individual routines or 
the forward declarations in installDir/vxworks-6.x/target/src/hwif/intCtlr/
vxbIntCtlrLib.h.



VxWorks
Device Driver Developer's Guide, 6.6 

52

4.6.1  intCtlrHwConfGet( ) 

intCtlrHwConfGet( ) reads the interrupt controller resources listed in the BSP 
hwconf.c file. It follows the pointers and reads tables describing interrupt inputs, 
interrupt input priority, dynamic interrupt routing information (if any), and CPU 
configuration. When interrupt inputs are described, isrHandle is updated to 
reflect that the input is present. isrHandle also contains information about the 
input. For more information on isrHandle, see 4.12 Internal Representation of 
Interrupt Inputs, p.65. 

This routine should be called once, early in the phase 1 initialization routine, and 
not called subsequently.

4.6.2  intCtlrISRAdd( ) 

intCtlrISRAdd( ) is called when a service driver connects an ISR to its interrupt. 
To start this process, the service driver makes a call to vxbIntConnect( ) or 
vxbDynaIntConnect( ). Eventually, the interrupt controller driver's connect 
routine is called. From within its connect routine, the interrupt controller driver 
must take care of any required interrupt controller hardware management, and call 
intCtlrISRAdd( ) to update isrHandle and to install the service driver’s ISR.

4.6.3  intCtlrISRDisable( ) 

intCtlrISRDisable( ) is called when a service driver disables its ISR. The interrupt 
controller driver must keep the interrupt input enabled if any service device ISR is 
enabled, and only disable the input if all ISRs connected to the interrupt input are 
disabled. The interrupt controller disable routine must call this routine to disable 
the ISR in isrHandle and save the return value. If the return value is TRUE, all ISRs 
on the input are disabled, and the interrupt controller can disable the interrupt 
input.

4.6.4  intCtlrISREnable( ) 

intCtlrISREnable( ) is called when a service driver enables its ISR. This routine 
updates isrHandle, which results in the specified ISR being called when interrupts 
occur on the interrupt input.
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4.6.5  intCtlrISRRemove( ) 

intCtlrISRRemove( ) removes the specified ISR from isrHandle.

4.6.6  intCtlrPinFind( ) 

intCtlrPinFind( ) is used to find the interrupt input the specified service device 
interrupt is connected to. The interrupt input can then be used as an argument to 
the other isrHandle support routines, and to update any tables the interrupt 
controller driver keeps outside of isrHandle. This routine is typically called once 
at the beginning of each routine that requires the interrupt input number, such as 
the routines to connect, disconnect, enable, and disable an ISR.

4.6.7  intCtlrTableArgGet( ) 

intCtlrTableArgGet( ) retrieves the argument to the ISR for a given interrupt 
input. Most interrupt controller drivers do not need to call this routine. However, 
it is available for drivers that need to perform some action, such as moving an 
entire interrupt from one place to another. 

4.6.8  intCtlrTableFlagsGet( ) 

intCtlrTableFlagsGet( ) retrieves the flags for a given interrupt input. Most 
interrupt controller drivers do not need to call this routine.

4.6.9  intCtlrTableIsrGet( ) 

intCtlrTableIsrGet( ) retrieves the ISR function pointer for a given interrupt input. 
The value returned by intCtlrTableIsrGet( ) is a function pointer, which can 
contain one of three values: intCtlrStrayISR( ), intCtlrChainISR( ), or a user ISR. 
Most interrupt controller drivers do not need to call this routine.

4.6.10  intCtlrHwConfShow( ) 

intCtlrHwConfShow( ) prints the contents of isrHandle, formatted according to 
the verbose level specified. This routine is always available. However, if show 
routines are not included in the system configuration, no output is generated. 
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As with all VxBus capable device drivers, each interrupt controller driver can 
advertise the {busDevShow}( ) driver method. If the driver is configured to do 
this, the func{busDevShow}( ) routine should make a call to 
intCtlrHwConfShow( ) to provide output related to isrHandle. 

4.6.11  intCtlrTableCreate( ) 

intCtlrTableCreate( ) ensures that a table entry exists for the specified interrupt 
input. Most interrupt controller drivers do not need to call this routine.

4.6.12  intCtlrTableFlagsSet( ) 

intCtlrTableFlagsSet( ) sets the flags variable in the isrHandle table for the 
specified interrupt input. The flags field is an unsigned integer. Most of the flags 
fields are used by vxbIntCtlrLib.c or reserved for future use. However, there are 
two bits available to the interrupt controller driver to use for any purpose. These 
are VXB_INTCTLR_SPECIFIC_1 and VXB_INTCTLR_SPECIFIC_2.

4.6.13  intCtlrTableUserSet( ) 

intCtlrTableUserSet( ) fills a table entry in isrHandle for a specified interrupt 
input. This routine fills in the specified information about the device connected to 
the interrupt input. The routine is called from within the vxbIntCtlrLib routines. 
Most interrupt controller drivers do not need to call this routine.

4.6.14  VXB_INTCTLR_ISR_CALL( ) 

The VXB_INTCTLR_ISR_CALL( ) macro makes the appropriate calls to ISRs 
connected to a specified interrupt input. If only one ISR is connected to the 
interrupt input, this macro calls that ISR. If several ISRs are connected to the 
interrupt input, the macro walks the chain and calls each enabled ISR in turn. 

For typical interrupt controller drivers, this macro should be used from within the 
interrupt controller driver's ISR handler, which the interrupt controller connected 
to the upstream interrupt controller when it called vxbIntConnect( ) for its own 
interrupt outputs. For special processor architecture-specific CPU interrupt 
controller drivers, this macro should be used for those routines connected to the 
architecture-specific interrupt management code.
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4.6.15  VXB_INTCTLR_PINENTRY_ENABLED( ) 

The VXB_INTCTLR_PINENTRY_ENABLED( ) macro determines whether a specific 
interrupt input is enabled at the top level. 

When interrupts are chained, each ISR can be enabled and disabled independently. 
This macro does not check the individual ISRs, but only checks the top level flag. 
Most interrupt controller drivers do not need to use this macro.

4.6.16  VXB_INTCTLR_PINENTRY_ALLOCATED( ) 

The VXB_INTCTLR_PINENTRY_ALLOCATED( ) macro determines whether an 
isrHandle table entry is present for a specific interrupt input. This information is 
useful when generating dynamic interrupt vectors. 

4.6.17  Dispatch Routines 

In addition to the utility routines list previously, there are two routines provided 
by vxbIntCtlrLib that deserve special attention. These routines are the dispatch 
routines that the interrupt controller driver calls to dispatch ISRs for devices that 
are connected to the interrupt controller device. These routines are not called 
directly from the interrupt controller driver. Instead, one of the routines may be 
called when the interrupt controller driver makes a call to 
VXB_INTCTLR_ISR_CALL( ), depending on whether or not the ISRs are attached to 
the interrupt input. 

The routine intCtlrStrayISR( ) is called when no ISR is attached to the interrupt 
input. The routine intCtlrChainISR( ) is called when more than one ISR is attached 
to the interrupt input. If your driver meeds to know how many ISRs are connected 
to an interrupt input, the driver can call intCtlrTableIsrGet( ). If the value returned 
is intCtlrStrayISR( ), no ISRs are connected. If the value returned is 
intCtlrChainISR( ), more than one ISR is connected. If the value is any other 
non-null value, a single ISR is connected to the specified interrupt input.

In most cases, your interrupt controller driver does not need to know this 
information. However, in some cases, such as those dealing with dynamic vector 
assignment, this information can be useful.

In addition to these dispatch routines, there are routines available to help the 
interrupt controller driver manage dynamically assigned vectors. If the dynamic 
support library is included in the system configuration, these routines are available 
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as function pointers. The function pointers include vxbIntDynaCtlrInputInit( ) 
and vxbIntDynaConnect( ).

vxbIntDynaCtlrInputInit( ) 

In some cases, the interrupt controller driver may wish to provide one or more 
separate interrupt tables for dynamic interrupt sources. The 
vxbIntDynaCtlrInputInit( ) routine initializes these tables.

STATUS (*_func_vxbIntDynaCtlrInputInit)

struct intCtlrHwConf *isrHandle,
struct dynamicIntrTable *entry, 
void *dynamicIsr

vxbIntDynaVecProgram( ) 

When necessary, your interrupt controller driver must program dynamically 
generated interrupts into the devices that have dynamically generated vectors 
assigned to them. This is accomplished by calling vxbIntDynaVecProgram( ).

STATUS (*_func_vxbIntDynaVecProgram)
(
VXB_DEVICE_ID pVectorOwner,
VXB_DEVICE_ID serviceInstance,
struct vxbIntDynaVecInfo * pDynaVec
)

4.7  Initialization 

By the beginning of VxBus initialization phase 2, interrupt controller drivers must 
be able to connect ISRs at the request of other drivers. Because the phase 2 
initialization routine for an interrupt controller driver may not run before other 
drivers attempt to connect their ISRs, interrupt controllers must do all of their 
initialization in phase 1. 
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4.8  Interrupt Controller Typologies and Hierarchies 

Every interrupt controller has some number of interrupt inputs. The number of 
inputs may be one, or it may be a large number of inputs. In addition to interrupt 
inputs, each interrupt controller has one or more interrupt outputs. This is where 
interrupts are generated. Most interrupt controllers treat their interrupt outputs in 
the same manner that other drivers handle interrupt generation. That is, the 
controllers connect an ISR using vxbIntConnect( ). When any vxbIntConnect( ) 
call is made, an interrupt controller in the system claims the interrupt. This 
response is the same, whether the caller to vxbIntConnect( ) is an interrupt 
controller instance or an instance from some other device class. This implies that 
interrupt controllers have a hierarchy of connectivity, where the inputs of some 
interrupt controllers are connected to the outputs of other interrupt controllers. 
The management of each interrupt controller device is separated, because each 
interrupt controller is represented by a separate VxBus instance.

Within this hierarchy, each CPU can be considered to be an interrupt controller 
device at the top of the interrupt controller device tree. CPU interrupt controller 
devices are special in a number of ways. Although these drivers handle interrupt 
inputs in a manner similar to other drivers, they handle interrupt outputs in a 
special manner. The drivers do not try to connect interrupt outputs using the 
VxBus interrupt connection mechanism. Instead, they connect to the 
architecture-specific code that is provided for interrupt connection.

Interrupts can be delivered as messages rather than values on a physical wire. This 
may be the case for interrupt handling on the CPU. It can also be the case when an 
external bus controller and interrupt controller are included on the same device, 
such as with the PCI-X and PCIe bus controller devices used on some PowerPC 
processors. Typically, there are several things that the interrupt controller instance 
must do differently when interrupts are delivered as messages versus when they 
are hard-wired interrupts. This can include assignment of a vector (which in this 
context is simply an identification number) for each device that generates interrupt 
messages.
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4.9  Interrupt Priority 

Within the VxBus interrupt controller design, each interrupt input can be assigned 
a software priority value. The priority is represented as a 32-bit unsigned integer, 
which allows a larger range of interrupt priorities than any existing hardware 
provides. Each driver needs to map the priority ranges available in hardware to the 
range allowed for software.

The highest software priority value is zero. Where the hardware supports different 
priority levels, the hardware priority level of any software priority level must be 
equal to or less than the hardware priority level of the next higher software priority 
number, as follows: 

hwPrio(swPrio(N)) <= hwPrio(swPrio(N-1))

Table 4-1 shows the possible mappings between hardware priority and software 
priority for a an example where the given piece of hardware provides 32 hardware 
priority levels and 0 is the highest priority. In the table, N is some starting point 
determined by a device parameter. 

There are many reasonable priority mapping schemes, and an interleave of 4, as 
shown in Table 4-1 is only one valid scheme. The only important consideration is 
that each software priority level be mapped to a hardware priority level with the 
same priority or greater priority than each lower-numbered software priority 
level.

In some cases, the hardware has a fixed hardware priority scheme (for example, 
the I8259 interrupt controller device).When there is a fixed hardware priority 
scheme, the only software priority that can be assigned is the priority of the first 
interrupt input. All other interrupt input priority levels are determined by the first 
interrupt input. However, mapping between hardware and software priority 

Table 4-1 Hardware and Software Priority Mappings 

Hardware Priority Software Priority 

0 N through N+3 

1 N+4 through N+7 

2 N+8 through N+11 

... ...

31 N+256 through 0xffffffff 
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levels must still be performed, because the user may perform some actions on 
devices with specific interrupt priority levels. 

Where software assigned priority is available, the default priority must be set at 15. 
Due to special considerations on some hardware, priority levels of 0 and 1 should 
never be used for external devices. 

4.10  ISR Dispatch 

In order to understand how ISR dispatch works, you must understand the 
interrupt controller layers involved. This section discusses these layers, how they 
interact, and the terminology associated with them. It also discusses the ISR 
dispatch process itself.

In this section, the CPU-specific driver is referred to as tier 0, the interrupt 
controller driver(s) connected directly to the CPU-specific interrupt controller are 
referred to as tier 1, interrupt controllers connected to tier 1 are referred to as tier 
2, and so on.

Tier 0 interrupt controller drivers are always architecture-dependent or 
CPU-dependent. Devices used as tier 1 interrupt controllers are typically, though 
not necessarily, used only on a single processor architecture. Devices used as tier 
2 and lower interrupt controllers are not typically architecture specific. 

Figure 4-1 illustrates this layering. 
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Every interrupt controller driver, regardless of the tier on which it resides, 
dispatches downstream ISRs by invoking the VXB_INTCTLR_ISR_CALL( ) macro. 
In general1, the tier 1 interrupt controller ISR must:

1. Mask off interrupts from the source that generated the interrupt. 

2. Re-enable interrupts with a call to intCpuUnlock( ).

3. Invoke VXB_INTCTLR_ISR_CALL( ). 

4. Disable interrupts with a call to intCpuLock( ).

Because there is no previous intCpuLock( ) call to return the appropriate lock 
value, it is difficult for the system to determine what argument to use for 

Figure 4-1 Interrupt Controller Tier Mapping 

CPU-Specific Interrupt Controller Driver

Interrupt Controller

Interrupt Controller

intCtlr

intCtlr

intCtlr

Devices

Tier 0

Tier 1

Tier 2

1. Where the architecture already re-enables interrupts of higher priority, the interrupt 
controller driver does not need to do so. This currently happens on the MIPS architecture 
only.
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intCpuUnlock( ). Because tier 1 interrupt controller devices are typically used 
with only a single architecture, interrupt controller drivers for those devices can 
use architecture-specific information for the argument to intCpuUnlock( ). 
However, for good programming practice, the value of the argument should be 
available as a macro that can be set differently according to the CPU macro, and an 
error generated if the driver is compiled for any unsupported architecture. For 
example:

#if CPU==PPC32 IMPORT int vxPpcIntMask;
#define SAMPLE_INTCTLR_INTMASK vxPpcIntMask 
#else /* CPU==PPC32 */ 
#error vxbSampleIntCtlr not available for this architecture 
#endif /* CPU==PPC32 */

In accordance with the design goal of minimizing the number of interrupts that 
occur, interrupt controller drivers should process all pending unmasked 
interrupts whenever the interrupt controller driver ISR is called. Often, this means 
that the driver reads a register to determine which inputs have pending interrupts, 
and processes each interrupt source in a loop.

The following example is modified from the EPIC interrupt controller driver:

/* lock interrupts and find key */

key = intCpuLock();

/* start with input 0 */

inputNo = 0;

/* find pending interrupts */

pendSet = vxbRead32(...);

while ( pendSet != 0 )
{

if ( pendSet & 1 )
{
/* pending: dispatch downstream ISRs */

intCpuUnlock(vxPpcIntMask);
VXB_INTCTLR_ISR_CALL(isrHandle, i);
dontCare = intCpuLock();
}

/* find next input and adjust pendSet */

inputNo++;
pendSet >>= 1;
}

intCpuUnlock(key);



VxWorks
Device Driver Developer's Guide, 6.6 

62

By using the intCpuUnlock( ) and intCpuLock( ) calls in the tier 1 interrupt 
controller ISR, the system provides priority dispatching of interrupts for devices 
connected directly to tier 1 interrupt controller devices. Currently, VxWorks does 
not provide a mechanism to perform similar priority dispatching at other tiers.

If your application requires priority dispatching at other tiers, see the Wind River 
Online Support Web site for supplemental documentation and for the most recent 
interrupt controller drivers. 

4.11  Managing Dynamic Interrupt Vectors 

Some bus types allow dynamic assignment of interrupt values, often referred to as 
vectors. For example, variants of PCI bus may provide message signalled 
interrupts (MSI), which require firmware or software to assign the vector. There is 
also an MSI-X variant, which is a different representation of dynamic interrupt 
vectors on variants of the PCI bus type.

In addition, some interrupt controller devices reside on multifunction chips. 
Multifunction chips can include an interrupt controller device in addition to other 
devices, and may have a register containing the interrupt vector to use when the 
device generates an interrupt. The driver software can, and often must, write a 
valid vector to this register in order for the device to generate an interrupt. And the 
vector used must be generated somehow, possibly dynamically at runtime.

The VxBus interrupt controller driver design provides the ability for interrupt 
controller drivers to manage dynamically generated interrupts.

There are two ways that a dynamically generated vector can be assigned to a 
specific device. The first method is used when the driver makes a call to a special 
API for connecting ISRs to dynamically generated interrupts. The second method 
is used when a BSP is configured with devices connected to VXB_INTR_DYNAMIC 
as described in 4.5.2 Dynamic Vector Table, p.48.
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Configuring Dynamic Vectors Using the Service Driver Routines 

The service driver can call vxbIntDynaConnect( ) to connect an ISR to a 
dynamically assigned interrupt. For clarity, the vxbMsiConnect( ) alias is available 
for MSI on PCI bus. These routines allow the service driver to provide a list of ISRs 
and arguments to connect to multiple dynamically assigned interrupts.

The vxbIntDynaConnect( ) routine can be used when a driver configures the 
device to use multiple interrupts, where the bus type otherwise prevents multiple 
interrupts from being used. For example, normal PCI bus operation requires that a 
single interrupt be used for each function on a PCI card. In a network device, all 
interrupt types (transmit, receive, and error) share the same interrupt. To increase 
performance, your driver can split transmit, receive, and error interrupts into 
separate interrupts and provide a customized ISR for each interrupt type. This 
reduces the overhead of checking whether each type of condition occurs. That is, 
when only the transmit interrupt is active, the driver does not need to check for 
receive conditions or error conditions. 

When vxbIntDynaConnect( ) is called, the dynamic interrupt library finds an 
interrupt controller that publishes the {vxbIntDynaVecConnect}( ) driver method. 
An internal routine then calls func{vxbIntDynaVecConnect}( ) for the interrupt 
controller that responded. This routine must assign vectors to use for the device, 
connect the ISRs provided by the driver, configure the interrupt controller 
hardware to accept the newly assigned vectors, and program the vectors into the 
requesting service device as described in Programming Dynamic Vectors, p.64.

Configuring Dynamic Vectors in the BSP 

The BSP can configure any device to be connected to the interrupt controller 
VXB_INTR_DYNAMIC input. When this is the case, the service driver calls 
vxbIntConnect( ) to connect a single ISR as usual. The vxbIntConnect( ) routine 
follows the normal procedure to identify the interrupt controller to which the 
device is connected and calls the func{vxbIntCtlrConnect}( ) provided by the 
interrupt controller driver.

In order to support BSP configuration of dynamic vectors, the 
func{vxbIntCtlrConnect}( ) in the interrupt controller driver must find the input 
pin to which the device is connected, using intCtlrPinFind( ). It must then check 
the value returned by intCtlrPinFind( ) to see if the value is VXB_INTR_DYNAMIC. 

NOTE:  The interrupt controller driver is responsible for programming the dynamic 
vectors into the device.
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If so, the routine follows the same procedure it does when the 
func{vxbIntDynaVecConnect}( ) routine is called, That is, it assign vectors to use 
for the device, connects the ISRs provided by the driver, configures the interrupt 
controller hardware to accept the newly assigned vectors, and programs the 
vectors into the requesting service device as described in Programming Dynamic 
Vectors, p.64.

Programming Dynamic Vectors 

The last stage of dynamic vector installation is to program the dynamic vector into 
the device. The interrupt controller is responsible for initiating this process, but the 
interrupt controller is not expected to know how to do so. Instead, one of two 
entities on the system must know how to program the dynamic vectors into the 
device. Those two entities are the service device itself, and the bus controller 
immediately upstream from the device. One or both of these entities must indicate 
that they know how to program the dynamic vector into the device by publishing 
the {vxbIntDynaVecProgram}( ) driver method. PCI bus controller drivers 
normally publish this method. However, because the code to program the vectors 
into an MSI-capable device is independent of the bus controller, the PCI library 
provides the routine vxbPciMSIProgram( ) to perform the actions. When the bus 
type does not support dynamic vectors, the device itself must provide a custom 
routine to program the dynamic vector.

The interrupt controller can perform the actions to check for the 
{vxbIntDynaVecProgram}( ) driver method and call it, by simply calling through 
the function pointer _func_vxbIntDynaVecProgram:

if ( _func_vxbIntDynaVecProgram != NULL )
{
(*_func_vxbIntDynaVecProgram)(devID, dynaVec);
}

The prototypes for the driver method and _func_vxbIntDynaVecProgram are as 
follows:

STATUS func{vxbIntDynaVecProgram}
(
VXB_DEVICE_ID pInst,
struct vxbIntDynaVecInfo *dynaVec
)

NOTE:  The interrupt controller is responsible for programming the dynamic 
vectors into the device.



4  Interrupt Controller Drivers
4.12  Internal Representation of Interrupt Inputs

65

4

STATUS _func_vxbIntDynaVecProgram
(
VXB_DEVICE_ID pInst,
struct vxbIntDynaVecInfo *dynaVec
)

Determining Dynamic Vector Values 

The interrupt controller driver must choose the dynamic vector according to 
constraints in the hardware. Within this range, there are several things to keep in 
mind.

The best system performance is obtained when ISRs are not chained. Therefore, 
dynamically assigned vectors should be unassigned to other devices whenever 
possible.

When multiple dynamically assigned vectors are available, they should be 
sequential. The interrupt controller driver may be able to scatter multiple 
dynamically assigned vectors throughout the range of acceptable vectors, but 
VxWorks does not support this functionality. 

4.12  Internal Representation of Interrupt Inputs 

When interrupt controller drivers use vxbIntCtlrLib functionality, the interrupt 
inputs must be represented by the structures used by vxbIntCtlrLib. The data are 
kept in a structure, referred to as the isrHandle, which contains information about 
all interrupt inputs and the ISRs that are connected to them.

The information kept in the isrHandle includes a two tier system, where the lower 
tier consists of an array of structures, each containing information about a single 
interrupt input. Each entry in this array is referred to as an interrupt input table 
entry. The upper array consists of a simple pointer to the first element of the second 
tier array.

In order to improve memory efficiency for the most common interrupt controllers, 
the current implementation limits the low level table to eight inputs. In order to be 
able to support the maximum number of inputs, the top level table size is 496. 
These values may change in a future release, therefore the macros 
VXB_INTCTLRLIB_LOWLVL_SIZE and VXB_INTCTLRLIB_TOPLVL_SIZE should be 
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used whenever the code needs to know the maximum number of interrupt inputs 
that can be represented. 

The current values for these macros result in the ability for each table to represent 
up to 3968 interrupt inputs. If you are working with an interrupt controller that has 
more 3968 inputs, you can choose one of two options.

Where possible, you should limit the number of supported inputs to a value less 
than the value described by the following formula:

( VXB_INTCTLRLIB_TOPLVL_SIZE * VXB_INTCTLRLIB_LOWLVL_SIZE ).

This may be possible for interrupt controllers that use a small number of 
hard-wired inputs, and also allow for many dynamically assigned interrupts. In 
this case, you can simply choose to not support the full range of dynamically 
assigned interrupts supported by the hardware.

When the driver needs to support all of the inputs provided by the hardware, you 
can choose to represent the inputs in more than one input table. The utility routines 
in vxbIntCtlrLib support this option, because they require the input table as an 
argument, rather than some other structure. However, adding this support in your 
interrupt controller driver is more complex and may, in some cases, result in 
slower interrupt performance. 

4.13  Multiprocessor Issues with VxWorks SMP 

A multiprocessor (MP) system is a computer system with more than one processor. 
There are several common configurations of MP systems.

The most common multiprocessing configuration is referred to as asymmetric 
multiprocessing (AMP). There are two variations of this. In one configuration, 
there are different kinds of processors on the system, possibly with different 
instruction sets. Typically, one processor is considered the master system, and 
other processors perform dedicated assignments. 

NOTE:  The table sizes listed in this section represent the sizes used at the time of 
publication and are subject to change. For the current sizes, refer to the values of 
VXB_INTCTLRLIB_TOPLVL_SIZE and VXB_INTCTLRLIB_LOWLVL_SIZE defined 
in installDir/vxworks-6.x/target/src/hwif/intCtlr/vxbIntCtlrLib.h. 
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The second AMP configuration includes some number of identical processors with 
each processor running a separate OS or a separate invocation of the same OS. 

There is a third option for systems with multiple identical processors. When all of 
the processors in a system are identical, and a single OS is running on all 
processors at the same time, the system is called a symmetric multiprocessing 
(SMP) system.

There are some aspects of MP systems that require special handling from the 
interrupt controller driver. This section describes those special MP considerations.

4.13.1  Routing Interrupt Inputs to Individual CPUs 

With the optional VxWorks SMP product, individual interrupts can be routed to 
processors other than the boot processor. However, the system requires that 
peripheral devices be initialized before additional processors are brought online. 
For this reason, when VxWorks SMP boots, all interrupts are initially routed to the 
boot processor, and a sequence of events is used to reroute interrupts from the boot 
processor to other processors.

The additional processors are brought online with a call to usrEnableCpu( ). This 
routine iterates through the additional processors and enables each in turn. As 
each processor is brought online, the system reroutes all interrupts destined for 
that processor to it with a call to vxbIntToCpuRoute( ). This routine walks the list 
of devices and runs the {vxbIntCtlrCpuReroute}( ) method for each one.

STATUS func{vxbIntCtlrCpuReroute}
(
VXB_DEVICE_ID pInst,
void * destCpu
)

When an interrupt controller driver's func{vxbIntCtlrCpuReroute}( ) routine is 
called, this routine needs to check each interrupt input to see whether it is 
configured for the specified destination CPU, destCpu. If so, it configures the 
hardware so that destCpu receives all interrupts that arrive on that interrupt input. 
The VXB_INTCTLR_PINENTRY_ALLOCATED( ) macro and the 
vxbIntCtlrPinEntryGet( ) routine are useful for accomplishing this task. The 
driver first checks whether any entry is allocated for the specified interrupt input. 
If an entry is allocated, the driver finds the table entry with 
vxbIntCtlrPinEntryGet( ) and reads the pinCpu field of the table structure. If the 
pinCpu field matches the destCpu argument, then that interrupt input is rerouted 
to destCpu.
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The interrupt controller driver is not finished at this point. Some service drivers 
defer servicing the device interrupt in the ISR. Instead of performing all of the 
operations that are required when the interrupt occurs, these drivers simply 
configure the device so that it does not generate interrupts, and then enable a task 
to run, which services the interrupt.

When the interrupt input is rerouted to destCpu, the actual interrupt may be 
processed on destCpu, but the defer task can be running on a different CPU. This 
is unlikely to result in the intended system performance, therefore each service 
driver with an ISR connected to the interrupt input should be instructed to set an 
appropriate CPU affinity for the defer task.

The interrupt controller driver makes a call to isrRerouteNotify( ). This routine 
walks the chain of ISRs connected to the interrupt input, and checks each 
connected instance for the {isrRerouteNotify}( ) driver method. If the instance 
publishes this method, the func{isrRerouteNotify}( ) routine is called. The 
func{isrDeferIsrRerouteNotify}( ) routine must perform whatever device-specific 
operations that are required to accommodate the rerouting of its interrupt to a 
different CPU. For example, if the driver uses the isrDeferLib library, it calls that 
library's isrDeferIsrReroute( ) routine to announce the rerouting of its interrupt to 
the library2. 

4.13.2  Interprocessor Interrupts 

On multiprocessor systems, there are several OS modules that must be able to 
interrupt individual processors on the system. The OS modules that require this 
functionality include the scheduler (and any other module that manages tasks), the 
OS debug support module, and, potentially, every module that requires 
management of cache and MMU. The mechanism to interrupt individual 
processors is called interprocessor interrupts, or IPIs. 

NOTE:  The isrDeferLib routines can be used to assist with this situation, but other 
mechanisms are possible. For the purpose of this discussion, the service driver 
uses isrDeferLib. 

2. For additional information about the use of isrDeferLib in an SMP environment, see 
VxWorks Device Driver Developer’s Guide (Vol. 1): Device Driver Fundamentals. 
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In the optional VxWorks SMP product, kernel debug support modules use 
vxIpiLib to generate IPIs. The routines in vxIpiLib rely on VxBus interrupt 
controller drivers to perform the actual work. Other kernel modules, such as the 
scheduler, use an internal library to perform inter-processor interactions, which 
resolve to vxIpiLib calls. In all of these cases, the system ends up calling a routine 
provided by an interrupt controller driver in order to generate the IPI.

The mechanism used to support IPIs relies on a single driver method, 
{vxIpiControlGet}( ). This method returns a pointer to a structure that describes 
the kinds of IPIs that the interrupt controller driver can generate. The structure 
contains: 

■ several function pointers that are called to perform various operations related 
to IPIs 

■ a list of CPUs that this interrupt controller device can interrupt 
■ a count of the number of different IPIs that this interrupt controller can 

generate 

The structure is the VXIPI_CTRL_INIT structure, which is defined in 
installDir/vxworks-6.x/target/h/vxIpiLib.h as follows: 

typedef struct vxIpiCntrlInit
{
SL_NODE ipiList; /* Next IPI structure */
cpuset_t pCpus; /* destination CPUs */
VXIPI_EMIT_FUNC ipiEmitFunc; /* Trigger an IPI int */
VXIPI_CONNECT_FUNC ipiConnectFunc; /* Install an IPI int handler */
VXIPI_ENABLE_FUNC ipiEnableFunc; /* Enable int */
VXIPI_DISABLE_FUNC ipiDisableFunc; /* Disable int */
VXIPI_DISCONN_FUNC ipiDisconnFunc; /* Disconnect handler */
VXIPI_PRIOGET_FUNC ipiPrioGetFunc; /* Get IPI priority */
VXIPI_PRIOSET_FUNC ipiPrioSetFunc; /* Set IPI priority */
INT32 ipiCount; /* Number of IPIs available */
VXB_DEVICE_ID pCtlr; /* Interrupt Controller */
} VXIPI_CTRL_INIT, * VXIPI_CTRL_INIT_PTR;

VXIPI_CTRL_INIT * func{vxIpiControlGet}
(
VXB_DEVICE_ID pInst,
void * ignored
)

NOTE:  What the kernel modules do when they invoke IPIs is beyond the scope of 
this document. This document focuses only on generating IPIs, which is the 
responsibility of interrupt controller drivers. For more information, see the 
VxWorks Kernel Programmer’s Guide: VxWorks SMP. 



VxWorks
Device Driver Developer's Guide, 6.6 

70

The routines pointed to by the VXIPI_CTRL_INIT structure function pointers—
which the interrupt controller driver must provide—have the following 
prototypes:

/****************************************************************************
*
* ipiGen - Generate Inter Processor Interrupt
*
* This functions generates a IPI interrupt at the target CPU sets specified 
* by the second argument. The first arguments can be of the four IPI channels
* available at the EPIC.
*/

LOCAL STATUS ipiGen
(
VXB_DEVICE_ID pCtlr,
INT32 ipiId,
cpuset_t cpus
)

/****************************************************************************
*
* ipiConnect - Connect ISR to IPI
*
* This routine connects the specified ISR and argument to the IPI specified
* by the ipiId argument.  The pCtlr argument refers to the interrupt 
* controller.
*/

LOCAL STATUS ipiConnect
(
VXB_DEVICE_ID pCtlr,
INT32 ipiId,
IPI_HANDLER_FUNC ipiHandler,
void * ipiArg
)

/****************************************************************************
*
* ipiEnable - Enable specified IPI
*
* This routine enables generation of the IPI specified by the ipiId argument.
*
*/

LOCAL STATUS ipiEnable
(
VXB_DEVICE_ID pCtlr,
INT32 ipiId
)
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/****************************************************************************
*
* ipiDisable - Disable specified IPI
*
* This routine disables the IPI specified by the ipiId argument.
*
*/

LOCAL STATUS ipiDisable
(
VXB_DEVICE_ID pCtlr,
INT32 ipiId
)

/****************************************************************************
*
* ipiDisconn - Disconnect ISR from IPI
*
* This routine disconnects the specified ISR and argument from the IPI 
* specified by the ipiId argument.  The pCtlr argument refers to the
* interrupt controller.
*
*/

LOCAL STATUS ipiDisconn
(
VXB_DEVICE_ID pCtlr,
INT32 ipiId,
IPI_HANDLER_FUNC ipiHandler,
void * ipiArg
)

/****************************************************************************
*
* ipiPrioGet - Retrieve IPI priority
*
* This routine returns the interrupt priority of the IPI specified by the
* ipiId argument.  Note that the priority is a software priority, which
* may not correspond directly to hardware priority.
*
*/

LOCAL INT32 ipiPrioGet
(
VXB_DEVICE_ID pCtlr,
INT32 ipiId
)
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/****************************************************************************
*
* ipiPrioSet - Set IPI priority
*
* This routine changes the interrupt priority of the IPI specified by the
* ipiId argument to the value specified by the prio argument.  Note that the
* priority is a software priority, which may not correspond directly to
* hardware priority.
*/

LOCAL STATUS ipiPrioSet
(
VXB_DEVICE_ID pCtlr,
INT32 ipiId,
INT32 prio
)

Within the VxBus interrupt controller design, IPIs are represented outside the 
interrupt controller driver by a simple integer value. This value is an index of the 
IPI. The value may reflect some vector information. However, any relationship 
between the IPI ID and any vector should be hidden in the interrupt controller 
driver. An interrupt controller device that can generate eight distinct IPIs has 
ipiID values ranging from zero to seven.

Depending on the system configuration, one or more ipiID values are reserved for 
system use. The remainder may be available for application use. ipiID 1 is always 
reserved for debug support, and is not available to applications. When the optional 
VxWorks SMP product is used, ipiID 0 is reserved for CPC calls used by the OS, 
and all remaining IPIs are reserved and therefore not available for application use. 

In addition, there may be special considerations on some BSP or hardware 
platforms that require the interrupt controller to reserve additional interrupts for 
other purposes. These interrupts are an exception to the reserved interrupts for 
VxWorks SMP. This situation is rare and should not be required in most cases. 

4.13.3  Limitations in Multiprocessor Systems 

For certain limitations in multiprocessor systems, interrupt controllers may be 
required to assist in a workaround. The category of limitation described here 
contains those issues related to the use of SMP on hardware that is not truly 
symmetric. That is, the system includes some devices that cannot be managed 
equally by all processors.

As stated previously, the system is configured and all peripheral devices are 
initialized before any additional processors are brought online. However, in some 
systems there are devices that the boot processor does not have access to. These 
devices cannot be brought online until after some other processor is brought up. In 
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order to support these devices, a special BSP configuration may be used to allow 
the devices to be started. However, when the ISRs for the devices are connected, 
the interrupt controller must be able to route the ISRs to one of the processors to 
which the device is connected. If VxWorks SMP must be used on this type of 
asymmetric hardware platform, the interrupt controller can choose to have 
special-purpose resources provided by the BSP to indicate restrictions of this 
nature.

A similar situation can occur for devices connected directly to the boot processor 
and unavailable to other processors. However, in this situation, the problem is 
reversed. The system works fine as long as those devices are not rerouted to other 
processors. In this case, the best solution is to ignore the issue. If applications 
attempt to reroute those devices to processors that do not have access to the device 
registers, the device simply fails. Application developers should consider this 
situation during their development.

4.14  Debugging 

Interrupt controller drivers are one of the most difficult driver classes to debug. 
Because the serial console and network interfaces are not available until the 
interrupt controller driver is available, it is not normally possible to defer driver 
registration. Therefore, it is not possible to establish a debug session with a 
working VxWorks system until after the interrupt controller driver is working 
correctly.

The recommended debugging mechanism for interrupt controller drivers is to use 
a hardware debugger. When the hardware debugger is combined with a suitable 
graphical interface that includes knowledge of source code, interrupt controller 
drivers can be debugged more efficiently.

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies. 
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5.1  Introduction 

This chapter describes multifunction drivers. This chapter assumes that you are 
familiar with the contents of the VxWorks Device Driver Developer's Guide, Volume 1: 
Fundamentals of Writing Device Drivers, which discusses generic driver concepts as 
well as details of VxBus that are not specific to any driver class.
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5.2  Overview 

One trend in hardware design is to combine more and more devices onto a single 
chip. This has led to the development of ASIC chips that combine multiple devices 
of different types into a single piece of silicon. Currently, designers are only limited 
by imagination in the ways they can combine silicon building blocks.

A single large monolithic driver for an entire ASIC is opposed to the goal of system 
scalability. Application developers should be able to exclude features that are not 
needed by their application, including device support. Therefore, rather than write 
a driver for a complete ASIC, you should instead write your drivers as though each 
subsection is a separate device.

The VxBus framework assists in this process by allowing you to create a driver for 
each component on the chip, and then provide a single multifunction driver for the 
entire chip. The purpose of the single multifunction driver is to inform VxWorks 
and VxBus of the presence of the different devices on the chip so that they can be 
individually matched with a driver. Using a multifunction driver significantly 
reduces the complexity of your BSP configuration. In most cases, the configuration 
can be simplified such that it provides only a single hwconf.c file entry for the 
entire chip.

Subdivision of the device registers and creation of subordinate devices is also 
handled by the multifunction driver.

5.3  VxBus Driver Methods 

Multifunction drivers do not use or supply any VxBus driver methods. During VxBus 
initialization, the driver initializes the multifunction chip (if required) and announces 
the devices on the chip to VxBus. 
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5.4  Header Files 

There are no custom header files available for use with multifunction drivers. 
However, in some ways, the functionality provided by multifunction drivers is 
similar to that provided by bus controller drivers. For this reason, multifunction 
drivers must include vxBus.h in order to create device structures for the individual 
devices on the chip. For example:

#include <hwif/vxbus/vxBus.h> 

5.5  BSP Configuration 

Multifunction drivers do not typically require configuration information from a 
BSP that is above and beyond the normal device-specific information provided for 
all drivers. One exception is when not all devices available on the chip are 
supported by a driver in the system (see Limited Device Support in the Driver, p.77). 

For more information on BSP configuration, see VxWorks Device Driver Developer’s 
Guide (Vol.1): Device Driver Fundamentals. 

Limited Device Support in the Driver 

Although most multifunction devices require no class-specific BSP configuration 
steps, there is one possible exception. If your target system is configured with 
drivers for only one or two of the devices on the chip, your multifunction driver 
can choose not to inform VxBus of devices for which no driver is present. In this 
case, the data space for the device structures is not allocated leading to a smaller 
footprint. However, the benefit of reduced footprint is often outweighed by the 
increased size and complexity of the multifunction driver. This configuration also 
requires that the driver be compiled at VxWorks build time. For these reasons, 
Wind River does not recommend using this configuration. 
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5.6  Available Utility Routines 

The primary purpose of a multifunction driver is to allocate the required device 
structures and fill in the data fields of each device structure. The available utility 
routines for a multifunction driver is discussed in this section. For more 
information on these routines, see the reference entries for vxBus.c. 

vxbDevStructAlloc( ) 

The prototype for vxbDevStructAlloc( ) is as follows: 

VXB_DEVICE_ID vxbDevStructAlloc( ) 

This routine allocates a device structure.

vxbDeviceAnnounce( ) 

The prototype for vxbDeviceAnnounce( ) is as follows: 

STATUS vxbDeviceAnnounce(VXB_DEVICE_ID devID) 

This routine announces a new device to VxWorks and VxBus. The device structure 
must already be allocated and the data filled in. 

vxbDevRemovalAnnounce( ) 

The prototype for vxbDevRemovalAnnounce( ) is as follows: 

STATUS vxbDevRemovalAnnounce(VXB_DEVICE_ID devID)

This routine informs VxWorks and VxBus that a device is being removed from the 
system. 

vxbDevStructFree( ) 

The prototype for vxbDevStructFree( ) is as follows: 

void vxbDevStructFree(VXB_DEVICE_ID devID)

This routine returns a device structure to the pool, making it available for future 
device allocation. 
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vxbBusAnnounce( ) 

The prototype for vxbBusAnnounce( ) is as follows: 

STATUS vxbBusAnnounce
(
struct vxbDev * pBusDev, /* bus controller */
UINT32 busID /* bus type */ 
)

The vxbBusAnnounce( ) routine is used to create a new bus —subordinate to the 
multifunction device—on which any downstream devices reside. 

5.7  Initialization 

There are no class-specific initialization restrictions on multifunction drivers. 
However, subordinate devices should be announced to VxBus as early in the 
initialization process as possible.

5.8  Device Interconnections 

Within multifunction devices, it is common for there to be interactions between the 
subordinate devices. This usually takes one of two forms—interleaved registers or 
shared resources— but other kinds of interactions are also possible. This section 
addresses these interaction types. 

5.8.1  Interleaved Registers 

In some multifunction chips, registers for individual device parts are interleaved 
in the address space assigned to the chip. For example, there may be registers 
located at base+0x00000000 through base+0x0000ffe0, additional registers located 
at base+0x00010040 through base+0x000100ff, and other registers scattered 
through base+0x00020000 to base+0x0003ffff. Your multifunction driver must 
handle this condition. 
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Interleaved registers can be supported by the driver in two ways. The first method 
you can use to handle this condition in your driver is to provide register access 
routines that remap the registers of the subordinate devices so that they look like a 
single bank of registers. This method results in slower performance due to longer 
time to access device registers. However, when one or more subordinate devices 
use pre-existing drivers that assume a single uniform register block, this is the 
preferred mechanism. Otherwise, use the second method.

The second method you can employ in your driver to handle the condition of 
interleaved registers for subordinate devices requires cooperation with the drivers 
for the affected subordinate devices. For this method, the multifunction driver can 
choose to define small banks of specific registers for each subordinate device.

There are ten register base addresses available to VxBus drivers. (For more 
information on register access, see the hardware access section of VxWorks Device 
Driver Developer’s Guide (Vol. 1): Device Driver Fundamentals.) Using the example 
described earlier in this section, the multifunction driver can assign the 
subordinate device register bases as follows:

The multifunction driver and the drivers for the individual devices must agree 
regarding which pRegBase[ ] entry to use for each register, as well as the offset.

To achieve this agreement, you can assign the appropriate values to the 
pRegBase[ ] entries in the structure. Using the previous example, the code might 
look similar to the following:

devID = vxbDevStructAlloc()
...
base = myDevID->pRegBase[0] + CURRENT_DEVICE_OFFSET;
devID->pRegBase[0] = base;
devID->pRegBase[1] = base + 0x207e0;
devID->pRegBase[2] = base + 0x10040;
devID->pRegBase[3] = base + 0x20914;
devID->pRegBase[4] = base + 0x23ff0;

Base Address Size 

pRegBase[0] base+0x00000000 0x0000ffe0 / 65504 

pRegBase[1] base+0x000207e0 0x00000020 / 32 

pRegBase[2] base+0x00010040 0x000000c0 / 192 

pRegBase[3] base+0x00020914 0x00000004 / 4 

pRegBase[4] base+0x00023ff0 0x00000010 / 16 
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55.8.2  Shared Resources 

When multiple devices on a single multifunction chip share a set of resources also 
available on the same chip, you may find it useful to create a driver to manage 
those resources. This is called a resource driver (see 8. Resource Drivers). This driver 
can simply allocate a resource to one of the other drivers, assuming that the other 
driver knows how to make use of the resource, or it can provide an API to manage 
the resource on behalf of the user. If a resource driver is used, the multifunction 
driver should be configured so that it requires the resource driver to be present in 
the system. 

5.8.3  Other Interactions 

In some cases, hardware designs require interactions among the subordinate 
devices on a multifunction chip that do not fall into either of the categories 
described previously. These interactions are varied, and therefore difficult to 
describe in a general discussion. These interactions can include reduced or 
increased functionality for the multifunction version of the device compared 
against non-multifunction versions of the device, or there may be hardware bugs 
due to unforeseen interactions of the component parts of a multifunction chip. In 
all cases, the interactions must be handled as appropriate for the chip, in 
whichever driver or drivers are appropriate. 

5.9  Logical Location of Subordinate Devices 

You can write your multifunction driver in such a way that the devices are seen as 
located either on the parent bus of the multifunction device, or on a bus 
subordinate to the multifunction device. If you choose a subordinate bus, it can be 
either a multifunction bus type or the same type as the parent bus. 

NOTE:  Wind River strongly recommends that multifunction drivers do not simply 
make the entire register bank available to all subordinate drivers. This increases 
the probability of a condition where a bug in one driver can result in symptoms 
that show up in another driver. This is difficult to debug.
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Drivers written for subordinate devices should be written to accept devices on 
either a multifunction bus or on the upstream bus type such as PLB or PCI. If you 
need to use pre-existing drivers that do not provide this flexibility and cannot be 
modified, your multifunction driver may be forced to locate subordinate devices 
on the upstream bus. 

5.10  Debugging 

Typically, multifunction drivers can be debugged easily after the system is booted. 
Simply download the driver object module and run the registration routine. Use 
vxBusShow( ) to see whether the downstream devices show up as instances or as 
orphans. 

Custom drivers for subordinate parts of a multifunction chip are debugged based 
on the driver class to which they belong. 

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies. 
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6.1  Introduction 

This chapter describes several types of VxWorks network drivers. This chapter 
includes the primary documentation for network interface drivers (also known as 
VxbEnd drivers or MAC drivers) and PHY drivers. It also includes a brief 
overview and pointer to additional information for Wind River Wireless Ethernet 
Drivers. The final section briefly discusses hierarchical END drivers, which are 
deprecated. 
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6.1.1  Terminology 

Media access controller (MAC) devices are commonly thought of as network 
interfaces. In this document, the term media access controller and the acronym MAC 
are used to describe network interfaces. In addition, the term MAC driver is used 
to describe network interface drivers. 

Although it is not common when discussing VxBus model device drivers, 
Wind River documentation also uses the term enhanced network driver (or END 
driver). The term END driver refers to a combination that includes both MAC and 
PHY interfaces. In VxBus, MAC and PHY devices and drivers are handled 
separately so the term END driver is not generally used. 

6.1.2  Networking Overview 

This section discusses basic networking concepts that are relevant to device driver 
development. For a more complete discussion of networking in VxWorks and for 
more information on networking interfaces, see the Wind River Network Stack for 
VxWorks 6 Programmer’s Guide, Volume 3: Interfaces and Drivers. 

Seven Layer OSI Model 

Open Systems Interconnection (OSI) is an organization that defines and publishes 
a model of network software. The published model consists of seven layers, as 
shown in Figure 6-3. This definition of layers is used throughout Wind River 
documentation when discussing network stacks and drivers. 

Figure 6-1 Seven Layer OSI Model 

Layer 7 – Application

Layer 6 – Presentation

Layer 5 – Session

Layer 4 – Transport (for example, TCP and UDP)

Layer 3 – Network

Layer 2 – Data Link (MAC and LLC)

Layer 1 – Physical
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Transmission Media and VxWorks 

The majority of VxWorks networks use Ethernet as the transmission media. Wind 
River also supports VxWorks network drivers and configurations for shared 
memory and for serial network transports. While other network transports are 
possible, this document focuses primarily on Ethernet as the transport. 

Most modern VxWorks Ethernet drivers1 are split into two parts: a MAC driver 
and a PHY driver. Together, the MAC driver and the PHY driver manage the data 
link layer within the OSI model. The MAC sub-layer of the data link layer manages 
protocol access to the physical network medium. This sub-layer deals with 
extracting data from the wire to send to the protocol, gaining access to the wire to 
send protocol data, and certain other aspects regarding the transmission of already 
packetized protocol data. 

The PHY sub-layer deals with frame synchronization, flow control, error checking, 
and other aspects of manipulating individual bits and bytes during transmission.

Protocols 

Within VxWorks, network drivers are written to be largely decoupled from the 
protocol that is being used. This is done by a layer of software between the protocol 
and the driver. In VxWorks, this is called the multiplexor (MUX). The MUX sits 
between the network (OSI layer 3) and the data link layer (OSI layer 2).

The purpose of the MUX is to de-couple the network driver from the network 
protocols, thus making the network driver and network protocols nearly 
independent from each other. This independence makes it easier to add new 
drivers or protocols. For example, if you add a new VxWorks network driver, all 
existing MUX-based protocols can use the new driver. Likewise, if you add a new 
MUX-based protocol, any existing network driver can use the MUX to access the 
new protocol.

1. Some devices are only capable of a single mode and do not support software link sensing. 
For example, NE2000 (and compatible) devices support only 10 Mb/s half-duplex links. 
MAC drivers for such devices do not require the use of any PHY device or PHY driver. 

NOTE:  The prevalent model of Ethernet network interface devices available today 
is the direct memory access (DMA) engine. This document assumes the use of 
devices that are DMA engines. If you are developing a driver for a device that uses 
programmed I/O or some other proprietary shared memory technique, the 
DMA-specific portions of this text may not be directly applicable to your driver.
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For example, after receiving a packet, the MAC driver does not directly access any 
structure within the protocol. Instead, the driver calls a MUX-supplied routine that 
handles the details of passing the data up to the protocol.

6.2  Network Interface Drivers 

This section assumes that you are familiar with the contents of the VxWorks Device 
Driver Developer's Guide, Volume 1: Fundamentals of Writing Device Drivers, which 
discusses generic driver concepts as well as details of VxBus that are not specific to 
any driver class. You should also be familiar with the Wind River Network Stack 
and its associated documentation. 

6.2.1  Network Interface Driver Overview 

This section presents a basic overview of how network interface drivers function 
in a VxWorks system. 

Functional Modules 

A MAC driver's basic components include:

■ a receiver 
■ a transmitter 
■ a command and control module 

These basic functions are described further in the following sections. 

NOTE:  Network interface drivers are commonly referred to in this document as 
MAC drivers. 
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Reception 

The driver receiver is composed of the routines that execute an algorithm to:

■ Accept incoming frames from a DMA engine. 

■ Pass the incoming frames to the MUX. 

■ Provide the DMA engine with a continuous supply of DMA buffers. 

A MAC driver receiver is stimulated by a device-generated interrupt. The driver 
does not directly service incoming frames in the interrupt context but defers the 
work to a routine run in a task context. 

Each instance of a MAC driver has a private buffer pool into which incoming 
DMAs are directed. A MAC driver loans individual buffers from its pool to the 
stack. There is no guarantee that any individual buffer will be returned to the 
driver after having been loaned to the network stack.

Transmission 

The driver transmitter is composed of the routines that execute an algorithm to: 

■ Accept packets from the MUX and transfer them to the device's transmit DMA 
engine. 

■ Reclaim the resources associated with a transmitted packet. 

A protocol requests that a MAC driver transmit a frame by calling the muxSend( ) 
routine, which in turn calls the driver’s registered send routine. Sends can occur at 
any time, and may occur before previous sends are complete. 

Resource reclamation of DMA buffers and control structures is generally 
stimulated by a device-generated transmit-packet-complete interrupt. This 
interrupt announces that the device has sent a complete frame and that the driver 
can now return the memory resources back to the pool. 

Command and Control Module 

The command and control module provides configuration, initialization, and 
control interfaces for the device. 

The MAC driver command and control module is the part of the driver that parses 
the driver configuration parameters, quiesces the device, and configures the device 
in the prescribed mode. It incorporates the driver’s load, unload, start, stop, and 
ioctl( ) routines, as well as routines for querying and modifying the multicast filter. 
In essence, the driver’s command and control provides the driver's external 
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interface, with the exception of send and receive. The driver interrupt service 
routine (ISR is considered a part of the driver command and control module.

Network Driver Interrupts 

There are several limitations on network interrupts in VxWorks. These limitations 
impact the way drivers are written.

The interrupt handler generally serves three functions. These functions include:

■ Handling receive interrupts. 

■ Returning resources to the pool after a packet is transmitted. 

■ Handling error conditions. 

There are two common configurations of interrupts for network devices. Network 
devices can provide a single interrupt line for all types of interrupts. Or they can 
provide one interrupt line each for transmit events, receive events, and error 
events.

When your network device provides only a single interrupt line for all types of 
interrupts, only a single ISR can be called to service all types of interrupts. When 
this ISR is called, it must check a register to see what type of action is required. The 
ISR reads the device register and invokes the appropriate routines to handle each 
type of exception that has occurred. 

The task-level routines for each type of interrupt should process all the work that 
is available for that particular type, as discussed in Receive Handler Interlocking Flag, 
p.115 and Fair Received Packet Handling, p.116.

6.2.2  VxBus Driver Methods for Network Interface Drivers 

MAC drivers are required to support the {muxDevConnect}( ) driver method. This 
driver type is also likely to use several other methods including: 
{vxbDrvUnlink}( ), {miiMediaUpdate}( ), {miiRead}( ), {miiWrite}( ), and 
{miiLinkUpdate}( ).

The media independent interface (MII) driver methods provide a means of 
communication between a MAC driver and a PHY driver. The full interface 
involves driver methods provided by MAC drivers and invoked by PHY drivers 
(described here) and additional driver methods provided by PHY drivers and 
invoked by MAC drivers (see 6.3.2 VxBus Driver Methods for PHY Drivers, p.126). 
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{muxDevConnect}( ) 

The {muxDevConnect}( ) driver method provides the mechanism for binding the 
network device to the network stack. This method is invoked on every MAC 
instance during the network stack initialization. The contents of 
func{muxDevConnect}( ) are nearly identical in all MAC drivers. 

The following is an example from the ns83902VxbEnd driver:

/****************************************************************************
*
* nicMuxConnect - muxConnect method handler
*
* This function handles muxConnect() events, which may be triggered
* manually or (more likely) by the bootstrap code. Most VxBus
* initialization occurs before the MUX has been fully initialized,
* so the usual muxDevLoad()/muxDevStart() sequence must be defered
* until the networking subsystem is ready. This routine will ultimately
* trigger a call to nicEndLoad() to create the END interface instance.
*
* RETURNS: N/A
*
* ERRNO: N/A
*/

LOCAL void nicMuxConnect
(
VXB_DEVICE_ID pInst,
void * unused
)
{
NIC_DRV_CTRL *pDrvCtrl;

pDrvCtrl = pInst->pDrvCtrl;

/* Save the cookie. */

pDrvCtrl->nicMuxDevCookie = muxDevLoad (pInst->unitNumber,
nicEndLoad, "", TRUE, pInst);

if (pDrvCtrl->nicMuxDevCookie != NULL)
muxDevStart (pDrvCtrl->nicMuxDevCookie);

return;
}

The differences between drivers typically include: 

■ Changing NIC_DRV_CTRL to the pDrvCtrl structure definition used by the 
driver. 

■ Changing necEndLoad( ) to the load routine defined in the driver. 
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■ Changing the references of pDrvCtrl->nicMuxDevCookie to whatever is 
appropriate for the driver.

In addition, the func{muxDevConnect}( ) routine may deal with MIB2 statistics, 
with creation of the MII bus, or with the presence of multiple links on a single 
device.

{vxbDrvUnlink}( ) 

The {vxbDrvUnlink}( ) driver method requests that an instance be shut down. This 
can occur if your VxBus instance is terminated, or if the driver is unloaded. When 
an unlink event occurs, you must do the following: 

■ Shut down and unload the driver interface associated with this device 
instance. 

■ Release all the resources allocated during instance creation, such as vxbDma 
memory and maps. 

■ Shut down and unload all interrupt handles associated with this instance. 

If the driver created an MII bus, you must also destroy the child miiBus and PHY 
devices.

{miiMediaUpdate}( ) 

The {miiMediaUpdate}( ) driver method allows the miiMonitor task to notify 
your driver of link state changes. The func{miiMediaUpdate}( ) routine is invoked 
by the miiMonitor task when it detects a change in link status. Normally, the 
miiMonitor task checks for link events every two seconds. 

Once you have determined the new link state, you must announce the change to 
any bound protocols using muxError( ). You must also update the ifSpeed fields 
in the MIB2 structures, if used, so that any SNMP queries can detect the correct link 
speed.

{miiRead}( ) 

The {miiRead}( ) driver method allows PHYs on the MII bus to access your device's 
MII management registers. The {miiRead}( ) method is defined as follows:
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LOCAL STATUS miiRead
(
VXB_DEVICE_ID pInst,
UINT8 phyAddr,
UINT8 regAddr,
UINT16 * dataVal
)
{
return (OK);
}

Each MAC driver should provide an MII bus read routine so that the MII bus code 
can perform management data input/output (MDIO) read accesses to connected 
PHYs. The pInst parameter supplied as an argument to the {miiRead}( ) method is 
that of the parent MAC device (which is provided when the parent MAC driver 
creates a bus with the miiBusCreate( ) routine). The phyAddr argument indicates 
which PHY address is to be queried, and can be any value from 0 to 31. The 
regAddr argument indicates which register is to be read, and can also be any value 
from 0 to 31. The dataVal argument points to a 16-bit storage location where the 
func{miiRead}( ) routine will place the value read from the specified register. If the 
func{miiRead}( ) method fails and returns ERROR, then dataVal is set to 0xFFFF. 

It is possible for the {miiRead}( ) method to return successfully but not return any 
valid data. For example, if a request is made to read register 1 on the PHY at 
address 10, but there is no PHY actually available at that address, then the MDIO 
access may succeed, but no valid register information is obtained. In this case, the 
hardware typically returns a value of 0xFFFF. The MII bus probe code checks for 
this case and only assumes that valid data is returned if both the {miiRead}( ) 
method succeeds and the register value is not 0xFFFF.

{miiWrite}( ) 

The {miiWrite}( ) driver method allows PHYs on the MII bus to access the device 
MII management registers. The {miiWrite}( ) method is defined as follows:

LOCAL STATUS miiWrite
(
VXB_DEVICE_ID pInst,
UINT8 phyAddr,
UINT8 regAddr,
UINT16 dataVal
)
{
return (OK);
}

The {miiWrite}( ) method is the complement to the {miiRead}( ) method, allowing 
the miiBus to perform MDIO write accesses to connected PHYs. The pInst, 
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phyAddr, and regAddr arguments are the same as they are for {miiRead}( ). The 
dataVal argument is the value to be written into the register. The func{miiWrite}( ) 
routine should only return OK if the register is successfully updated.

{miiLinkUpdate}( ) 

The {miiLinkUpdate}( ) method is defined as follows:

LOCAL STATUS miiLinkUpdate
(
VXB_DEVICE_ID pInst
)
{
return (OK);
}

This method is invoked by the MII bus layer whenever miiBusMonitor task 
detects a link state change, which is either a transition from link up to link down, 
or from link down to link up. The pInst argument is a pointer to the MAC driver's 
instance handle. The MAC driver can use the {miiLinkUpdate}( ) method to 
perform any operations that are required when a link state change occurs. This can 
include setting the MAC speed to match the link speed, enabling or disabling full 
duplex mode, or configuring flow control. (If the hardware is designed to handle 
link state changes automatically and does not need any software assistance, these 
steps can be omitted.) The driver can query the current link state using the 
miiBusModeGet( ) routine.

The {miiLinkUpdate}( ) method is also typically used by drivers to notify bound 
protocols of link state changes. The VxBus MAC drivers included with VxWorks 
use the muxError( ) routine to send either an END_ERR_LINKUP or 
END_ERR_LINKDOWN notification to the MUX, which is propagated to all 
protocols currently bound to the interface.

In addition, MAC drivers can optionally use the {miiLinkUpdate}( ) method to 
update MIB information so that the correct interface speed values are reported to 
SNMP queries.

6.2.3  Header Files for Network Interface Drivers 

There are several header files typically included for MAC drivers. They fall, 
loosely, into three categories. The groupings are as follows: 
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■ Network Stack Interface

#include <end.h>
#include <endLib.h>
#include <endMedia.h>
#include <etherMultiLib.h>
#include <in_cksum.h>
#include <muxLib.h>
#include <netBufLib.h>
#include <net/if.h>
#include <netinet/if_ether.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netLib.h>
#include <net/mbuf.h>
#include <net/protosw.h>
#include <net/route.h>

■ MIB2 Interface

#include <m2IfLib.h>
#include <m2Lib.h>

■ VxBus Utilities

#include <hwif/util/vxbDmaBufLib.h>
#include <hwif/util/vxbDmaLib.h>
#include <hwif/util/vxbParamSys.h>

6.2.4  BSP Configuration for Network Interface Drivers 

There are three standard BSP resources for network devices, all dealing with the 
interface between MAC drivers and PHY devices. These are: phyAddr, 
miiIfName, and miiIfUnit.

phyAddr

Each Ethernet network device must be connected to one or more PHY devices in 
order for information to be transmitted out of the hardware. The PHY devices 
reside on a separate MII bus, and each PHY device has an address associated with 
it. The connection between the network interface and PHY devices can be 
hardwired on the target hardware.

NOTE:  Not all MAC drivers are required to include all of the header files listed in 
this section. 
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The phyAddr resource contains the MII bus address of the PHY device (or set of 
PHY devices) to which the MAC driver is connected. This information is used 
when communicating with the PHY driver.

Multiple PHY devices can be connected to a single network interface. If only one 
is connected, the resource is called phyAddr. If more than one PHY is connected to 
a single network interface, the devices are referred to as phyAddrN, where N is a 
small number indicating where in the sequence the device is connected.

For more information, see 6.3 PHY Drivers, p.123.

miiIfName and miiIfUnit

In many cases where the network interface is included in a multifunction chip or 
on a processor chip, the PHY is a completely separate device on the target 
hardware. In this situation, the PHY is identified by name so that the network 
interface can find it when the system is booted. The miiIfName and miiIfUnit 
resources are used to identify this device.

The code to gain access to the PHY device is as follows:

VXB_DEVICE_ID miiDev;
char * miiIfName;
int miiIfUnit;
...
devResourceGet (pHcf, "miiIfName", HCF_RES_STRING, (void *)&miiIfName);
devResourceGet (pHcf, "miiIfUnit", HCF_RES_INT, (void *)&miiIfUnit);
miiDev = vxbInstByNameFind (miiIfName, miiIfUnit); 

Once VXB_DEVICE_ID is known, the MAC driver can find the PHY read and write 
routines as follows:

fccMiiPhyRead = vxbDevMethodGet (miiDev, DEVMETHOD_CALL(miiRead_desc));
fccMiiPhyWrite = vxbDevMethodGet (miiDev, DEVMETHOD_CALL(miiWrite_desc)); 

6.2.5  Available Utility Routines for Network Interface Drivers 

There are several libraries that provide utility routines for network drivers 
including: 

■ MUX interactions (muxLib) 
■ job queueing (jobQueueLib) 
■ buffer management (netBufLib) 
■ DMA support (vxbDmaBufLib) 

These libraries are discussed further in the following sections.
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MUX Interactions 

Your driver can use the routines and data structures presented in this section to 
interact with the MUX. As shown in Figure 6-2, additional MUX routines are 
available to the network stack. However, those routines are not used by network 
device drivers. 

The routines available to MAC drivers are as follows:

muxDevLoad( ) 
Loads a device into the MUX. 

Figure 6-2 The MUX Interface 

muxReceive( )stackRcvRtn( )

devSend( )

muxIoctl( ) devIoctl( )

muxBind( )

muxSend( )

devLoad( )

devMCastAddrAdd( )

devPollSend( )

devPollReceive( )

devMCastAddrDel( )

devMCastAddrGet( )

muxMCastAddrAdd( )

muxMCastAddrDel( )

muxMCastAddrGet( )

devUnload( )

stackShutdownRtn( ) muxUnbind( )

muxDevLoad( )

devStart( )

devStop( )

muxDevUnload( )

muxPollSend( )

muxPollReceive( )

Protocol MUX MAC

muxError( )stackError( )

stackTxRestartRtn( ) muxTxRestartRtn( ) devTxRestartRtn( )

muxDevStart( )

muxDevStop( )
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muxDevStart( ) 
Starts a device from the MUX. 

muxIoctl( ) 
Accesses control routines. 

muxDevStop( ) 
Stops a device. 

muxDevUnload( ) 
Unloads a device. 

muxTxRestart( ) 
If a device unblocks transmission after having blocked it, this routine calls the 
stackTxRestartRtn( ) routine associated with each interested protocol. 

Job Queueing 

VxWorks provides the jobQueueLib library, which network drivers can use to 
queue interrupt-driven work to task context. Your driver should do the minimum 
amount of work in its ISR, and defer most work to task level using jobQUeueLib.

The primary jobQueueLib routine used by drivers is jobQueuePost( ). The 
prototype for this routine is as follows:

STATUS jobQueuePost (JOB_QUEUE_ID jobQueueId, QJOB * pJob) 

This routine causes the job specified by the pJob argument to be executed from the 
context of a network processing task such as tNet0.

The first argument to jobQueuePost( ) is a queue ID. Your MAC driver should 
default to using the default queue ID, netJobQueueId. The parameters rxQueue00 
and txQueue00, if specified by the BSP or application, are used to find the queue 

NOTE:  Many desktop and mainframe operating systems use network drivers, 
which dispatch incoming packets directly to the application that receives the 
packets. This operation is done in the lower half of the OS, from within interrupt 
context. Therefore, much of the network stack is executed from within interrupt 
service routines (ISRs). This architecture conflicts with real-time application 
design. All VxWorks network device drivers must defer packet processing to task 
context. 

NOTE:  In previous versions of VxWorks, the network processing task was 
tNetTask instead of tNet0. 
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in place of netJobQueueId. The value of the rxQueue00 and txQueue00 
parameters is a pointer to a structure of type HEND_RX_QUEUE_PARAM.

The jobQueueStdPost( ) routine can be used instead of jobQueuePost( ) when 
additional flexibility is required. However, Wind River does not recommend using 
this routine for performance reasons. For more information, see the reference entry 
for jobQueueStdPost( ).

If there is a requirement for a custom job queue, the jobQueueCreate( ) and 
jobQueueInit( ) routines can be used to create and initialize the custom job queue. 
However, the standard job queue is sufficient for most network drivers. For more 
information on jobQueueCreate( ) and jobQueueInit( ), see the corresponding 
reference entries.

Buffer Management 

The routines in netBufLib are used to manage a pool of buffers, along with 
buffer-specific information contained in structures known as mBlks and clBlks. 
The mBlk and clBlk describe the packet data, and are the structures used by the 
network stack. The mBlk, clBlk, and cluster (data buffer) are known collectively as 
a tuple. All data transmitted from the driver to the MUX—for eventual 
consumption by a network stack—must be held in tuples.

A simplified interface to netBufLib is provided by the routines in 
installDir/vxworks-6.x/target/src/drv/end/endLib.c. This library provides routines 
customized to network drivers. These routines are: endPoolCreate( ), 
endPoolDestroy( ), endPoolTupleGet( ), and endPoolTupleFree( ).

The endPoolCreate( ) utility routine is provided to create a pool suitable for use in 
a standard network driver. Create the pool as follows: 

STATUS endPoolCreate
(
int tupleCnt,
NET_POOL_ID * ppNetPool
)

The tupleCnt argument specifies the number of tuples required. The ppNetPool 
argument provides a pointer to a storage location to contain the pool ID, for 
subsequent use by the driver. When jumbo frames are supported, 
endPoolJumboCreate( ) can be used in place of endPoolCreate( ) in order to use 
9 KB jumbo clusters instead of the normal 1500 byte clusters.
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When the MAC driver is unloaded, it must free the pool resources by calling 
endPoolDestroy( ). The same routine is used whether the pool is configured for 
standard clusters or jumbo clusters.

STATUS endPoolDestroy
(
NET_POOL_ID pNetPool
)

Use endPoolTupleGet( ) and endPoolTupleFree( ) to allocate and free tuples.

M_BLK_ID endPoolTupleGet
(
NET_POOL_ID pNetPool
)

void endPoolTupleFree
(
M_BLK_ID pMblk
)

If the simplified interface to netBufLib (provided by endLib) does not provide 
sufficient flexibility, the following routines can be used as an alternative: 

netTupleGet( ) 
Allocate a tuple from the pool. 

netTupleFree( ) 
Return a tuple to the pool. 

netPoolCreate( ) 
Create a pool of buffers to hold received packet data.

netPoolRelease( ) 
Release a pool of buffers when unloading the driver.

netBufLib also includes routines to allocate individual mBlks, clBlks, and 
clusters, which the driver can then link together to form a tuple. However, for 
performance reasons, Wind River recommends that the driver deal only with 
tuples where possible. For more information on the additional routines, see the 
reference entry for netBufLib. 

DMA Support 

The routines in vxbDmaBufLib are used to handle address translation and cache 
issues required by the network device to support DMA operations. These routines 
are described in VxWorks Device Driver Guide (Vol. 1): Device Driver Fundamentals. 
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PHY and MII bus interactions 

When MAC drivers initialize the link, part of the required initialization includes 
determining what PHY device is present and configuring that PHY device. A 
common procedure is to create a subordinate MII bus, create a list of PHY devices 
on the MII bus, and determine which devices are present and which device is 
connected to the network. The following routines are available to help with this 
MII bus management. For more information, see the reference documentation for 
miiBus.c.

miiBusCreate( ) 

The miiBusCreate( ) routine is defined as follows:

STATUS miiBusCreate
(
VXB_DEVICE_ID pInst,
VXB_DEVICE_ID *pBus
)

This routine creates an MII bus (miiBus) instance that is a child of an existing 
Ethernet device. A pointer to the VxBus instance object representing the device is 
returned through the pBus argument. This bus handle should be saved so that it 
can be used with other routines. Once the MII bus instance is created, the bus is 
probed for all PHY devices. When any PHY device is discovered, a VxBus instance 
is created for it automatically. The miiBusCreate( ) routine should not be called 
until the MAC driver's {miiRead}( ) and {miiWrite}( ) methods are able to perform 
MDIO read and write accesses. (That is, the hardware is sufficiently initialized that 
these accesses succeed.)

This routine is normally called during MAC driver initialization. Once created, the 
bus should remain until the MAC driver is unloaded.

miiBusDelete( ) 

The miiBusDelete( ) routine is defined as follows:

STATUS miiBusDelete
(
VXB_DEVICE_ID pInst
)

This routine deletes an miiBus object from VxBus, along with all of its child PHY 
device objects. The pInst argument is a pointer to the miiBus device instance that 

NOTE:  The first time miiBusCreate( ) is invoked, it spawns the miiBusMonitor 
task. 
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was originally provided to the caller by the miiBusCreate( ) routine. This routine 
should be called as part of a MAC driver's unlink process. Once all child devices 
have been removed, the storage for the miiBus is also released.

miiBusModeGet( ) 

The miiBusModeGet( ) routine is defined as follows:

STATUS miiBusModeGet
(
VXB_DEVICE_ID pInst,
UINT32 * pMode,
UINT32 * pSts
)

This routine is provided as an interface to the {miiModeGet}( ) methods exported 
by individual PHY drivers. The pMode and pSts arguments are specified in 
exactly the same manner as the arguments to func{miiModeGet}( ) described in 
6.3.2 VxBus Driver Methods for PHY Drivers, p.126. However, the pInst argument in 
this case is a pointer to the miiBus instance context rather than the PHY instance 
context. This routine is used by Ethernet MAC drivers to query the current link 
state and characteristics. This in turn leads to calls to the MAC driver's {miiRead}( ) 
method to access the PHY.

miiBusModeSet( ) 

The miiBusModeSet( ) routine is defined as follows:

STATUS miiBusModeSet
(
VXB_DEVICE_ID pInst,
UINT32 mode
)

Like miiBusModeGet( ), this routine provides an interface to the {miiModeSet}( ) 
methods exported by individual PHY drivers. This routine is typically called from 
a MAC driver's start routine to initialize the link to a known state (typically 
autoneg). It can be called to change the link state to any desired settings at any 
time.

Note that in order to reduce the number of register accesses performed, you should 
call miiBusModeGet( ) and miiBusModeSet( ) as infrequently as possible. For 
example, your MAC driver could call miiBusModeGet( ) only when its 
{miiLinkUpdate}( ) method is invoked and then cache the results, rather than 
calling miiBusModeGet( ) every time its EIOCGIFMEDIA ioctl( ) handler is called.

NOTE:  When the last miiBus in the system is deleted, the miiBusMonitor task is 
also deleted.
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miiBusMediaListGet( ) 

The miiBusMediaListGet( ) routine is defined as follows:

STATUS miiBusMediaListGet
(
VXB_DEVICE_ID pInst,
END_MEDIALIST ** ppMediaList
)

This routine returns a pointer to an END_MEDIALIST structure that contains 
entries for all of the media supported by the PHYs on the specified MII bus. A 
MAC driver can use this information when providing responses to 
EIOCGIFMEDIALIST ioctl( ) queries. This structure also includes a default media 
setting which specifies the default media type for this bus. Typically, the default 
value is IFM_AUTO.

6.2.6  Initialization for Network Interface Drivers 

In initialization phase 1, network drivers should be sure to disable interrupts for 
any device that could generate interrupts before an ISR is connected. The 
remaining network device initialization occurs in phase 2. During phase 2, the 
kernel is up and kernel features such as standard memory allocation are available.

The final phase of network device initialization is to connect the device to the MUX 
so that the network stack can gain access to it. This is performed outside the normal 
VxBus initialization scheme, using the {muxDevConnect}( ) method (see 
{muxDevConnect}( ), p.89). The actual initialization occurs from the network 
initialization code. For more information, see 6.2.7 MUX: Connecting to Networking 
Code, p.102.

When the network stack initialization code calls the driver's 
func{muxDevConnect}( ) routine, the routine calls muxDevLoad( ), specifying the 
endLoad( ) entry point into the driver. The muxDevLoad( ) routine calls the 
specified endLoad( ) entry point two times. The first time the endLoad( ) entry is 
called, the argument contains a pointer to an empty string. The driver must write 
the driver name into the string for use by the MUX. In the second call, the 
argument contains a pointer to a non-empty string. At this time, the driver should 
complete any remaining initialization.

After control returns from endLoad( ) to muxDevLoad( ), the MUX completes the 
END_OBJ structure (by giving it a pointer to a routine your driver can use to pass 
packets up to the MUX). The MUX then adds the returned END_OBJ to a linked list 
of END_OBJ structures. This list maintains the state of all currently active network 
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devices on the system. After control returns from muxDevLoad( ), your driver is 
loaded and ready to use.

6.2.7  MUX: Connecting to Networking Code 

The multiplexor (usually known as the MUX, and referred to as the MUX in this 
document) is an interface that joins the data link and protocol layers. A MAC 
driver does not directly interface with the data link layer, but rather interfaces with 
the MUX, which is an abstraction layer that de-couples the driver from any 
particular protocol. This API multiplexes access to the networking hardware for 
multiple network protocols. Figure 6-3 shows the MUX in relationship to the 
protocol and data link layers. 

Network driver initialization is done outside of the normal VxBus initialization 
phases. This is because the driver connects to the MUX. The MUX is initialized 
during network configuration, and network drivers must be connected to the 
MUX during network configuration in order for a network device to be used as a 
boot device. Therefore, the network driver must not attempt to connect to the MUX 

Figure 6-3 The MUX Interface Between Data Link and Protocol Layers 

Ethernet CSLIPBackplane

MUX

IP + ICMP

(other)

Protocol Layer:

Data Link Layer:

(custom
protocol)

NOTE:  The data link layer is an abstraction. A network interface driver is code that 
implements the functionality described by that abstraction. Likewise, the protocol 
layer is an abstraction. The code that implements the functionality of the protocol 
layer could be called a protocol interface driver. However, this document refers to 
such code simply as “the protocol.”
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until network initialization has initialized the MUX. Driver initialization must be 
completed before network initialization is complete. 

The solution to this is the use of the {muxDevConnect}( ) driver method. This 
method is called for all network devices from the network initialization code, after 
the MUX is initialized. The legacy network initialization using endDevTbl[ ] is 
performed after VxBus network drivers have initialized. 

6.2.8  jobQueueLib: Deferring ISRs 

When working with VxWorks network drivers, you must understand why 
network drivers defer their ISR processing to task context, and how they 
accomplish this. 

Many desktop and mainframe operating systems use network drivers that 
dispatch incoming packets directly to the application that receives the packets. 
This operation is done in the lower half of the OS, from within interrupt context. 
Therefore, much of the network stack is executed from within interrupt service 
routines (ISRs). 

Because VxWorks is intended for real-time applications, ISRs must be kept short. 
Wind River does not recommend use of long ISRs for network packet processing. 
For this reason, most of the network stack processing for incoming packets—
processing that would typically be done from within an ISR—is pushed to a task 
context in VxWorks. This is accomplished with the use of jobQueueLib. 

Interrupt Handlers 

Upon arrival of an interrupt on a network device, VxWorks invokes the driver’s 
previously registered ISR. Your driver ISR should do the minimum amount of 
work necessary to get the packet off of the local hardware. To minimize interrupt 
lock-out time, the ISR should handle only those tasks that require minimal 
execution time, such as error or status change. The ISR should queue all 
time-consuming work for processing at the task level. 

Aside from the general practice of limiting the amount of work done in an ISR, in 
VxWorks, it is not possible to directly call the MUX receive entry point from an ISR. 
Instead, it must be called from a task context.

To queue packet-reception work for processing at the task level, your ISR must call 
jobQueuePost( ). (For information on jobQueuePost( ), see Job Queueing, p.96.)
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6.2.9  netBufLib: Transferring Data with mBlks 

Network drivers pass received packet data to the MUX and receive packet data to 
transmit from the MUX. The data are kept in structures called mBlks. The routines 
in netBufLib provide a means of managing the mBlks structures and the data they 
contain.

Each network interface requires its own memory pool for data and mBlks. 
Received data is put in the data blocks allocated from this pool, and sent to the 
MUX. Data for transmission is allocated from the system pool. Once the data are 
sent, the driver must free data blocks and mBlks, so they can be returned to the 
system pool.

The term cluster is used to refer to buffers containing packet data. 

Setting Up a Memory Pool 

Each MAC driver unit requires its own memory pool. Network interface drivers 
typically use a pool with a single fixed block size, so that a single cluster is large 
enough to hold an entire received packet with little or no wasted space. The 
exception is when scatter-gather is supported, in which a smaller cluster size can 
be used. (For more information on scatter-gather, see Supporting Scatter-Gather, 
p.105.) An Ethernet network's MTU is typically 1500 bytes unless jumbo frames are 
supported and configured, and a typical network driver cluster size is 1500 or 1540 
bytes. (For more information on memory pools, see the reference entry for 
netBufLib.)

The following code is a simplified version of the code in the mvYukonIIVxbEnd 
driver used to create a driver pool. This code checks whether the driver should be 
configured to use jumbo frames, and allocates a pool based on this information.

stat = vxbInstParamByNameGet(pDev, "jumboEnable", 
VXB_PARAM_INT32, &jumboSupported);

NOTE:  You can also use jobQueuePost( ) to queue up work other than processing 
of received packets. 

! CAUTION:  Use jobQueuePost( ) sparingly. The ring buffer used to queue jobs is a 
finite resource that is also used by the network stack. If it overflows, the network 
stack may be corrupted.
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if (stat != OK || jumboSupported == 0)
{
pDrvCtrl->ynMaxMtu = YN_MTU; 
stat = endPoolCreate (768, &pDrvCtrl->ynEndObj.pNetPool);
}

else 
{
pDrvCtrl->ynMaxMtu = YN_JUMBO_MTU;
stat = endPoolJumboCreate (768, &pDrvCtrl->ynEndObj.pNetPool);
}

/* Allocate a buffer pool */ 

if (stat == ERROR)
{
logMsg("%s%d: pool creation failed\n", (int)YN_NAME,

pDev->unitNumber, 0, 0, 0, 0);
return (NULL); 
}

Regardless of whether or not jumbo frames are enabled, this driver specifies the 
constant value of 768 tuples. A further enhancement would be to make this a 
configurable parameter.

Once the pool is created, the driver can allocate tuples with a call to 
endPoolTupleGet( ). 

pMblk = endPoolTupleGet (pDrvCtrl->ynEndObj.pNetPool);

Supporting Scatter-Gather 

Scatter-gather is a DMA technique that allows for a single large block of data to be 
distributed among multiple clusters. When data is being sent, the DMA engine 
within the device gathers data from each cluster in turn, and sends it out to the 
output stream. When data is being received, the DMA engine within the device 
scatters data into multiple clusters, filling each cluster in turn. For performance 
reasons, if a device supports scatter-gather, the driver for the device should 
support scatter-gather as well, at least for output.

When transmitting packets, the network stack is often unable to find a single 
cluster that is large enough to hold a large packet. When this happens, it obtains 
multiple tuples with clusters that have sufficient total space to hold the packet and 
links them together to form an mBlk chain. The network stack copies the data into 
the chained clusters, then sends the fragmented packet to the driver as an mBlk 
chain.

When scatter-gather is not supported and the network stack sends a fragmented 
packet to the driver, the driver must coalesce the mBlk chain. This involves 
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allocating a cluster from the driver pool and copying the packet fragments from 
the mBlk chain into the newly allocated cluster. Because VxWorks network drivers 
typically create pools with clusters large enough to hold an entire packet, the 
fragmented data fits within a single cluster. However, this copy operation is time 
consuming and results in lower network throughput.

When a device supports scatter-gather for transmit, it can continue DMA across 
multiple fragments by following a list of fragment buffer pointer and size pairs. A 
driver written for such a device walks the mBlk chain, extracts the cluster buffer 
pointers and the fragment sizes, and then forms a gather list according to the 
device's specification. This is typically faster than the copy operation required 
when the mBlk chain is coalesced.

Each fragment, or link of the mBlk chain, requires a DMA descriptor or a portion 
of a DMA descriptor, depending on the design of the device. If there are not 
enough free descriptors to hold the mBlk chain, or if there are not enough 
scatter-gather slots in the descriptor, then the mBlk chain cannot be sent using 
scatter-gather, but must be coalesced into a single cluster. The driver send routine 
is responsible for determining whether the mBlk chain can be sent using 
scatter-gather, or whether it needs to be coalesced.

To determine whether or not there are sufficient resources available to hold the 
packet data, a send routine must count the number of fragments in the mBlk chain, 
and compare that number with the number of available descriptors or the number 
of scatter-gather slots available in a descriptor. If the mBlk chain cannot be sent 
using scatter-gather, the driver must either coalesce the mBlk chain into a single 
cluster allocated from the driver's pool, or it must discard the packet.

In most VxWorks network drivers, scatter-gather is not a concern for packet 
reception. This is because the driver's buffers are all of a single size and are 
sufficient to hold the maximum incoming frame (MTU). Therefore, VxWorks 
network drivers do not fragment incoming frames. However, if the device 
supports segmenting incoming frames across multiple clusters, and if the driver's 
memory consumption is more important than throughput, the driver can be 
written to take advantage of this feature thus reducing the pool memory 
requirement at the risk of reducing throughput.

6.2.10  vxbDmaBufLib: Managing DMA 

Most network devices provide built-in DMA engines, which the driver must 
manage. There are several issues related to supporting these DMA engines, 
primarily related to address translation of data buffers and of CPU cache 
configuration.
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VxBus provides support for drivers to manage both of these considerations in the 
vxbDmaBufLib library. For more information on this library, see VxWorks Device 
Driver Developer’s Guide (Vol. 1): Device Driver Fundamentals.

6.2.11  Protocol Impact on Drivers 

Although the MUX enforces a distinction between the driver and the protocol, 
there are nevertheless a few restrictions that the protocol imposes on drivers and a 
few protocol-specific optimizations available to drivers for use where appropriate. 
This section lists these restrictions and optimizations.

IPv4 and IPv6 Checksum Offloading 

TCP/IP checksum offloading eliminates host-side check summing overheads by 
performing checksum computation with hardware assist. Many devices provide 
support for this feature. 

The device and the host-side driver must act in concert to implement checksum 
offloading. The device supports checksum offloading in the DMA engine. The 
DMA engine computes the raw 16-bit ones-complement checksum of each DMA 
transfer as it moves the data to and from host memory. Using this checksum 
requires setting CSUM flags in the packet’s mBlk to either bypass the software 
checksum computation for received packets, or to alert the device that it needs to 
compute and insert checksums before transmitting a frame. 

TCP or UDP checksumming actually involves two checksums—one for the IP 
header (including fields overlapping with the TCP or UDP header) and a second 
end-to-end checksum covering the TCP or UDP header and packet data. In a 
conventional system, TCP or UDP computes its end-to-end checksum before IP 
fills in its overlapping IP header fields (for example, options) on the sender, and 
after the IP layer restores these fields on the receiver. Checksum offloading 
involves computing these checksums below the IP stack; thus, the driver or device 
firmware must partially dismantle the IP header in order to compute a correct 
checksum. Instead of computing the checksum over the actual data fields of the 
TCP segment only, a 12-byte TCP pseudo header is created prior to checksum 
calculation. This header contains important information taken from fields in the 
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TCP header, as well as the IP header into which the TCP segment is encapsulated. 
These fields include:

source address 
The 32-bit IP address of the originator of the datagram, taken from the IP 
header.

destination address 
The 32-bit IP address of the intended recipient of the datagram, also from the 
IP header.

reserved 
Eight bits of zeroes. 

protocol 
The protocol field from the IP header. This indicates what higher-layer 
protocol is carried in the IP datagram. The protocol, TCP, is already known, 
therefore this field normally has a value of 6.

TCP length 
The length of the TCP segment, including both header and data. 

The checksum offloading API consists of the END_CAPABILITIES structure 
defined in end.h, the csum_flags and csum_data fields in the mBlkPktHdr 
structure in the mBlk, and the EIOCGIFCAP and EIOCSIFCAP ioctl( ) routines in 
the driver. 

The driver configures the device hardware registers to enable checksum 
offloading. The driver then initializes the END_CAPABILITIES structure with the 
capabilities that the device supports and has enabled. The fields of the 
END_CAPABILITIES structure hold the capabilities available, those currently 
enabled, and the CSUM flags for receive and transmit. 

typedef struct _END_CAPABILITIES 
{
uint64_t cap_available; /* supported capabilities (RO) */
uint64_t cap_enabled; /* subset of above which are enabled (RW) */
uint32_t csum_flags_tx; /* cap_enabled mapped to CSUM 

flags for TX (RO) */
uint32_t csum_flags_rx; /* cap_enabled mapped to CSUM 

flags for RX (RO) */
} END_CAPABILITIES;

The cap_available field reflects the capabilities supported by the driver. The 
cap_enabled field reflects the capabilities supported by the network stack. The 

NOTE:  The TCP length is not a specified field in the TCP header, but is 
computed.
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driver loads the cap_available field with the capabilities supported by the device 
and initializes the cap_enabled field with the same values. Later, the network stack 
uses the driver ioctl( ) to determine what capabilities the driver supports. The 
network stack can then change the cap_enabled field to request capabilities that it 
supports. It is not an error if the stack requests cap_enabled capabilities that the 
driver does not have available. However, the capabilities are not provided. 

The csum_flags_tx and csum_flags_rx fields contain translations of cap_available 
and cap_enabled into CSUM flags. The CSUM flags provide more detailed 
information about the particular operations supported. 

The END_CAPABILITIES structure is initialized in the driver endLoad( ) routine. 
The driver uses the capability flags defined in end.h to initialize the cap_available 
and cap_enabled fields and the CSUM flags defined in mbuf.h to initialize the 
csum_flags_tx and csum_flags_rx fields.

For example, if the network stack requests transmit checksum support by setting 
IFCAP_TXCSUM in cap_enabled and the cap_available field reflects that the driver 
supports transmit checksumming by also having the IFCAP_TXCSUM bit set. The 
driver might set the csum_flags_tx field as follows:

(CSUM_IP|CSUM_TCP|CSUM_UDP)

Interface capability flags for the cap_available and cap_enabled fields are listed in 
Table 6-1. 

Table 6-1 Interface Capability Flags for cap_available and cap_enabled 

Flag Description 

IFCAP_RXCSUM Supports IPv4 receive checksum offload 

IFCAP_TXCSUM Supports IPv4 transmit checksum offload 

IFCAP_NETCONS Supports being a network console 

IFCAP_VLAN_MTU Supports VLAN-compatible MTU 

IFCAP_VLAN_HWTAGGING Supports hardware VLAN tags 

IFCAP_JUMBO_MTU Supports 9000 byte MTU 

IFCAP_TCPSEG Supports IPv4/TCP segmentation 

IFCAP_IPSEC Supports IPsec 

IFCAP_RXCSUMv6 Supports IPv6 receive checksum offload 
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Flags indicating hardware checksum support and software checksum 
requirements are listed in Table 6-2. 

IFCAP_TXCSUMv6 Supports IPv6 transmit checksum offload 

IFCAP_TCPSEGv6 Supports IPv6/TCP segmentation 

IFCAP_IPCOMP Supports IPcomp 

IFCAP_CAP0 Vendor specific capability #0 

IFCAP_CAP1 Vendor specific capability #1 

IFCAP_CAP2 Vendor specific capability #2 

Table 6-1 Interface Capability Flags for cap_available and cap_enabled  (cont’d)

Flag Description 

Table 6-2 Hardware and Software Checksum Support Flags 

Flag Description 

CSUM_IP Enable IP checksum 

CSUM_TCP Enable TCP checksum 

CSUM_UDP Enable UDP checksum 

CSUM_IP_FRAGS Enable checksum of IP fragments 
(currently not supported) 

CSUM_FRAGMENT Stack can fragment IP packets 

CSUM_TCP_SEG Stack can segment TCP/IPv4 

CSUM_TCPv6 Enable checksum for TCP/IPv6 

CSUM_UDPv6 Enable checksum for UDP/IPv6 

CSUM_TCPv6_SEG Stack can segment TCP/IPv6 

CSUM_IP_CHECKED IP checksum done 

CSUM_IP_VALID IP checksum is valid 

CSUM_DATA_VALID csum_data field is valid 
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The END_CAPABILITIES structure is used by the driver’s interface capabilities set 
and get ioctl( ) routines: 

EIOCSIFCAP 
Interface capabilities set ioctl( ). 

EIOCGIFCAP 
Interface capabilities get ioctl( ). 

For EIOCGIFCAP, the driver returns all fields according to its current settings. The 
stack does not need to initialize any of the fields. 

EIOCGIFCAP example:

case EIOCGIFCAP:
hwCaps = (END_CAPABILITIES *)data;

if (hwCaps == NULL)
{
error = EINVAL;
break;
}

CSUM_PSEUDO_HDR csum_data has pseudo header 

CSUM_DELAY_DATA (CSUM_TCP | CSUM_UDP) 

CSUM_DELAY_IP (CSUM_IP) 

CSUM_DELAY_DATA6 (CSUM_TCPv6 | CSUM_UDPv6) 

CSUM_RESULTS (CSUM_IP_CHECKED | CSUM_IP_VALID | CSU
M_DATA_VALID | CSUM_PSEUDO_HDR) 

CSUM_IP_HDRLEN (pMblk) ((pMblk)->mBlkHdr.offset1) 
Used to determine the actual IP header length 

CSUM_XPORT_HDRLEN (pMblk) (((pMblk)->mBlkPktHdr.csum_data
& 0xff00) >> 8) 
Location of TCP or UDP checksum field 

CSUM_XPORT_CSUM_OFF (pMblk) ((pMblk)->mBlkPktHdr.csum_data) & 

Table 6-2 Hardware and Software Checksum Support Flags  (cont’d)

Flag Description 
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hwCaps->csum_flags_tx = pDrvCtrl->hwCaps.csum_flags_tx;
hwCaps->csum_flags_rx = pDrvCtrl->hwCaps.csum_flags_rx;
hwCaps->cap_available = pDrvCtrl->hwCaps.cap_available;
hwCaps->cap_enabled = pDrvCtrl->hwCaps.cap_enabled;
break;

For EIOCSIFCAP, the stack sets the capabilities that it wants enabled in 
cap_enabled. This allows the stack to turn capabilities on or off as required. The 
stack can request any capability that it is capable of supporting. If the stack 
requests capabilities that are not supported by the device, it is not an error. 
However, the driver only allows those capabilities that are set in the cap_available 
field, all other capabilities are ignored. 

EIOCSIFCAP example: 

case EIOCSIFCAP:
hwCaps = (END_CAPABILITIES *)data;

if (hwCaps == NULL)
{
error = EINVAL;
break;
}

pDrvCtrl->hwCaps.cap_enabled = hwCaps->cap_enabled;
break;

Checksum Offloading and Receiving 

The driver’s receive routine does the following: 

1. Checks if the network stack has requested that the device-calculated checksum 
be passed to the stack. This is accomplished by testing to see if IFCAP_RXCSUM 
is set in the cap_enabled field in driver’s copy of the END_CAPABILITIES 
structure. 

2. If receive checksumming is enabled, the driver reads the device’s checksum 
status register and does the following: 

■ Determines if the device calculated the IP checksum. 

If the device calculated the IP header checksum, the driver sets 
CSUM_IP_CHECKED in the packet mBlk->mBlkPktHdr.csum_flags to 
indicate that the IP header checksum was calculated. 

■ Tests to see if the device determined that the IP header is valid. 

If the IP header is valid, the driver sets CSUM_IP_VALID in the packet 
mBlk->mBlkPktHdr.csum_flags to indicate that the IP header is valid. 
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■ Tests if the device calculated the TCP or UDP checksum. It also tests to see 
that the checksum is valid, which indicates that the packet is uncorrupted.

– If the device calculated the TCP or UDP checksum and determined 
that the packet is valid, the driver sets CSUM_DATA_VALID in the 
packet mBlk->mBlkPktHdr.csum_flags to indicate that the TCP or 
UDP checksum has been calculated and that the packet is valid.

– If the device also computed the pseudo header, the driver sets 
CSUM_PSEUDO_HDR in the packet mBlk->mBlkPktHdr.csum_flags 
to indicate that the pseudo header has been computed.

– If the driver determines that the packet and checksum are valid, it 
writes the checksum into the mBlk at pMblk->m_pkthdr.csum_data. 
The driver does not need to read the calculated checksum from a 
device register. A valid checksum value is 0xffff, the driver can write 
this value into the mBlk. 

Handling Corrupt Packets 

If a packet is corrupted, the driver has two options. It can chose to not set the CSUM 
flags in the mBlk or it can insert an invalid checksum value into the mBlk. In either 
case, the network stack recalculates the checksum. For example: 

/* Do RX checksum offload, if enabled. */

if (pDrvCtrl->hwCaps.cap_enabled & IFCAP_RXCSUM)
{
/* Read the device checksum status register */ 
RFD_BYTE_RD (pRbdTag->pRFD, RFD_CSUMSTS_OFFSET, csumStatus);

/* Determine if IP checksum calculated */

if (csumStatus & RFD_CS_IP_CHECKSUM_BIT_VALID)
{
/* Set mBlk check sum flags to indicate checksum calculated */
pRbdTag->pMblk->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
}

/* Determine if IP checksum valid

if (csumStatus & RFD_CS_IP_CHECKSUM_VALID)
{
/* Set mBlk check sum flags to indicate a valid IP header */
pRbdTag->pMblk->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
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if (csumStatus & RFD_CS_TCPUDP_CHECKSUM_BIT_VALID &&
csumStatus & RFD_CS_TCPUDP_CHECKSUM_VALID)
{
pRbdTag->pMblk->m_pkthdr.csum_flags |=

CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
pRbdTag->pMblk->m_pkthdr.csum_data = 0xFFFF;
}

}

Checksum Offloading and Transition 

The stack always computes the pseudo header. The device can overwrite it but the 
stack always calculates it. This cannot be turned off.

The network stack communicates to the driver about whether or not to instruct the 
device to calculate a checksum for a given packet through CSUM flags in 
pMblk->m_pkthdr.csum_flags. 

The checksums are stored in the headers at the front of each IP packet, the device 
must complete the checksum before it can transmit the packet headers. Because the 
checksums are computed by the device’s DMA engine, the last byte of the packet 
must arrive in the device before it can determine the complete checksum. That is, 
in order for the device to calculate a checksum on a packet, it must delay 
transmission of any part of the packet until after it has processed the entire packet.

The driver’s send routine must:

1. Determine whether or not the network stack needs the device to calculate 
checksums for the packet it is processing. To do this, the routine reads 
pMblk->m_pkthdr.csum_flags. 

■ If the network stack requests that the device calculate the IP checksum, the 
driver prepares to set the device accordingly.

■ If the network stack requests that the device calculate the TCP or UDP 
checksum, the driver prepares to set the device accordingly.

2. After the driver interprets the CSUM flags and prepares to set the device 
accordingly, it writes the appropriate settings into the device’s register.

For example:

/* Do TX checksum offload. */

if (pDrvCtrl->csumOffload)
{
txCsum = 0;
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if (pMblkHead->m_pkthdr.csum_flags)
{
txCsum = (IPCB_HARDWAREPARSING_ENABLE << 8);
if (pMblkHead->m_pkthdr.csum_flags & CSUM_IP)

txCsum |= IPCB_IP_CHECKSUM_ENABLE;
if (pMblkHead->m_pkthdr.csum_flags & CSUM_DELAY_DATA)

txCsum |= IPCB_TCPUDP_CHECKSUM_ENABLE;
if (pMblkHead->m_pkthdr.csum_flags & CSUM_TCP)

txCsum |= IPCB_TCP_PACKET;
}

CFD_WORD_WR (pCFD, CFD_IPSCHED_OFFSET, txCsum);
}

6.2.12  Other Network Interface Driver Issues 

This section discusses additional issues that must be handled by your driver. 

Receive Handler Interlocking Flag 

VxWorks network drivers defer much of the work related to servicing interrupt 
conditions to code executing in a task level context by calling jobQueuePost( ).

Because interrupts are relatively costly in terms of overall system performance, 
one goal of a network interface driver is to minimize the number of interrupts that 
occur. This can be handled, in part, in the task-level service routine executed from 
jobQueuePost( ). This routine should continue to service pending events for as 
long as work is available. The ISR configures the device so that it does not generate 
interrupts and then makes the call to jobQueuePost( ) to schedule the task-level 
service routine. The task-level service routine continues running as long as there 
are incoming packets to dispatch to the stack.

The ring buffer used to implement the jobQueuePost( ) facility is a limited 
resource therefore, when writing your device driver, you must take great care to 
safeguard against overflowing the ring buffer. If the ring is allowed to overflow, 
the network stack can be corrupted. When the network device does not share its 
interrupt line with any other device, there are no problems safeguarding the ring 
buffer, because the device is configured not to generate interrupts. However, when 
the interrupt line is shared with some other device, the network driver's ISR can be 
called even when the device has not generated an interrupt. Unless something is 
done to prevent the call, the ISR calls jobQueuePost( ) a second time, even though 
one copy of the task-level service routine is already scheduled or running. If many 
of these events occur in the system, the ring buffer overflows, and stack corruption 
occurs.
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The solution to this problem is to provide a receive handler interlock flag. This is a 
simple boolean flag, kept in the instance's pDrvCtrl structure. This flag indicates 
whether the task-level service routine is already scheduled. If the interlock flag is 
set, the ISR does not make a second, superfluous call to jobQueuePost( ).

The order of execution for use of the receive handler interlock flag is as follows:

1. Within the ISR, the code takes a spinlock.

2. The code checks the interlock flag. 

a. If the receive handler interlock flag is set, the ISR releases the spinlock and 
returns.

b. If the receive handler interlock flag is not already set, the ISR sets the flag, 
releases the spinlock, and schedules the task-level service routine with a 
call to jobQueuePost( ).

3. Within the task-level service routine, the code processes received packets2. 

4. When all received packets are processed3, the task-level service routine takes 
the spinlock. 

5. The task-level service routine checks whether there are additional incoming 
packets that have been received since the previous check.

a. If there are additional incoming packets, the task-level service routine 
releases the spinlock and reschedules itself with a call to jobQueuePost( ).

b. If there are no additional incoming packets, the task-level service routine 
clears the receive handler interlock flag and releases the spinlock.

Fair Received Packet Handling 

In the basic implementation, a task-level service routine processes all incoming 
packets before exiting. However, during periods of peak traffic on high bandwidth 
networks, this can result in a performance bottleneck that degrades the overall 
system performance. Because the driver sends packets until no additional packets 
are available, it can take quite a while for the entire descriptor queue to be 
processed. During that time, the network stack and all other drivers may not be 

2. The driver can choose to process received packets until there are no more to be done, or it 
can choose to implement the fair received packet handling scheme (see Fair Received Packet 
Handling, p.116).

3. If fair received packet handling is implemented, received packets may not be processed 
until after several calls to jobQueuePost( ) are made. 
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able to perform any work. For this reason, you should limit the number of received 
packets to a fixed maximum that can be specified with a driver parameter.

To implement this scheme, the driver's task-level service routine must process 
incoming packets until either there are no additional incoming packets, or until the 
maximum number is reached. Upon completion of this loop, if there are additional 
received packets, the task-level service routine reschedules itself by calling 
jobQueuePost( ) to complete the remaining packets. During the time between the 
original call to jobQueuePost( ) and the subsequent call, the network stack and 
other drivers can queue their own work, which will have a chance to execute 
before the current driver finishes processing all of its input packets. This generally 
results in better system performance.

You should also avoid calling taskDelay( )—or any other delay mechanism—from 
the driver task-level service routine. Such a delay prevents processing of packets 
from other interfaces. For this reason, you must carefully consider the use of delays 
in your driver. Instead, consider rescheduling the job with another 
jobQueuePost( ) call instead of delaying with taskDelay( ). This allows other 
interfaces, as well as the network stack, to perform other work while the driver is 
waiting.

Receive Stall Handling 

When a device is receiving data packets, it copies the data into buffers (clusters) 
provided by the driver. Because of the design of the descriptors, the device usually 
keeps copying data when it arrives, even if some data are being processed at the 
same time. However, it is possible to receive enough packets to fill the available 
clusters before the driver has a chance to process the received packets and make 
additional clusters available. When this happens, the device stops copying into the 
receive clusters. This condition is known as a receive stall.

When this occurs, devices typically behave in one of two ways:

■ Some devices require that the next descriptor in the sequence be cleared, and 
no additional driver intervention is required. That is, the descriptor's status 
must be set to free or available. In this case, the device automatically detects 
that the stall is cleared and resumes operation without any other action on the 
part of the driver.

■ Other devices place their receiver into a halted state by setting a bit in a control 
register. This type of device often requires the driver to clear the control 
register bit in addition to freeing the next descriptor, before operation resumes.
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6.2.13  Debugging Network Interface Drivers 

The normal debugging strategies discussed in VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies apply to network interface drivers. However, 
there are a number of additional debugging strategies and methodologies 
available.

In general, when working with a VxWorks network interface driver, you must 
have some way to boot the VxWorks image without using the driver you are 
attempting to debug. You can do this by using some other network device on the 
target hardware, or you can use an image programmed into ROM by some form of 
hardware debugger. 

Using VxBus Show Routines 

Network driver debugging makes more use of the VxBus show routines than any 
other driver classes. These routines are used in the usual way to find whether the 
driver matches the device, to find whether the device exists, and so on. However, 
because PHY device configuration is sometimes performed as part of the network 
device initialization, PHY debugging is also relevant to network device 
initialization and VxBus show routines can also be used to help some kinds of PHY 
debugging.

For example, use vxBusShow( ) to find whether the appropriate PHY device is 
connected. To do this, run vxBusShow(1) to show the pRegBase[ ] entries for each 
device. The PHY instance entry for pRegBase[0] contains the PHY ID of the PHY 
device.

Deferring Driver Registration 

As with all VxBus drivers, it is helpful to defer driver registration when debugging 
network drivers. However, in order for the driver to work, you must connect the 
instance to the MUX and the network stack. In a normal system, these actions are 
done automatically, once, during system startup, and never done again. Therefore, 
during testing, you must perform these actions manually.

NOTE:  The debugging methods described in this section require that you have 
some means of booting the VxWorks image without using the driver you are 
debugging. 
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The easiest way to accomplish this is to use a vxWorks.st image, or a project-built 
image with networking included but disabled. When you are ready to test your 
driver, call usrNetInit( ) to perform network initialization, including initialization 
of your driver. 

Attaching to the Mux 

After registering your driver with VxBus, you need to connect the instance(s) it 
forms to the MUX. During normal system initialization, this is done automatically 
from within usrNetInit( ). However, if the network is already initialized, this does 
not work. Instead, you need to call your driver's func{muxDevConnect}( ) routine 
manually, passing the instance ID as a parameter. This allows access to your driver 
from protocols included in the system, but does not attach the protocols.

Attaching to the IPv4 Stack 

To attach to the IPv4 stack, use a sequence of calls to ipcom_drv_eth_init( ) and 
ifconfig( ) to configure the device and attach to the stack. The routine 
ipcom_drv_eth_init( ) uses three arguments: the driver name, the unit number, 
and a third argument that can always be zero. The routine ifconfig( ) is similar to 
ifconfig( ) on UNIX and similar computers. However, you must include the 
argument list in quotes. (For a more detailed discussion of the arguments to 
ifconfig( ), see the related reference entry.) 

For example, if connecting YN0 to IPv4 at address 10.0.0.1, use the following 
commands from the VxWorks development shell:

-> ipcom_drv_eth_init("yn", 0, 0) 
-> ifconfig("yn0 10.0.0.1 netmask 255.255.255.0 up") 

Pairing with a PHY instance 

For PHY devices, the pRegBase[ ] entries contain the MII addresses of the PHY 
device. Use vxBusShow(1) to show the pRegBase[ ] entries and verify that the 
appropriate PHY device is connected to the MAC instance.

NOTE:  When you initialize your driver using usrNetInit( ) as described above, 
you do not need to connect to the MUX or to the network stack, as described in the 
following sections.
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Stress Testing 

Wind River strongly recommends the use of hardware debug tools in order to 
create reliable network drivers. Using a debug tool such as SmartBits or IXIA, 
generally allows you to create a better high stress environment for testing and 
generally leads to a more reliable and robust driver. In many cases, it is not possible 
to create an adequate test environment without the use of hardware debug tools. 

Netperf Test Suite 

In addition to the use of hardware debug tools, a software test platform is can also 
prove valuable. One such platform, used widely in the industry, is netperf. For 
information about netperf, and to download the test software, visit the following 
URL:

http://www.netperf.org/netperf/.

Interrupt Validation 

During early parts of debugging, you should instrument the driver's ISR by 
adding an output message using logMsg( ). This lets you know if the device 
generates interrupts correctly and if the ISR is connected correctly. It also lets you 
know what types of interrupts are occurring and how the interrupts are being 
processed.

Additional Tests 

Once your driver provides basic functionality, there are a number of additional 
tests that can be run. Many of these tests can be used without special hardware or 
software platforms.

Ping-of-Death 

Ping-of-death is an attack on drivers based on the value of an unsigned 16-bit field 
in the ping packet. When the ping packet size is larger than 32 KB (32768 bytes), 
some drivers and network stacks cannot handle the packet. To generate a 
ping-of-death, specify a 64 KB ping packet using any ping client.

http://www.netperf.org/netperf/
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Driver Start and Stop 

Test starting and stopping your driver. To stop the driver, you can use ifconfig( ) 
with the down argument and muxDevStop( ). The argument to muxDevStop( ) is 
the cookie returned by the muxDevLoad( ) call when you initialize your driver. For 
example, if your driver's cookie is 0x97830, you can stop the driver as follows:

-> ynCookie = 0x97830 
-> ifconfig("yn0 down") 
-> muxDevStop(ynCookie) 

To restart the driver, call muxDevStart( ) and call ifconfig( ) with the up argument:

-> muxDevStart(ynCookie) 
-> ifconfig("yn0 up") 

Driver Load and Unload 

Test unloading and reloading your driver from the protocol and MUX. To unload 
the driver, stop the driver as specified in Driver Start and Stop, p.121, then call 
muxDevUnload( ). The routine muxDevUnload( ) requires the driver name and 
unit number as arguments. For example: 

-> ifconfig("yn0 down") 
-> muxDevStop(ynCookie) 
-> muxDevUnload("yn", 0) 

To reload the driver, call muxDevLoad( ) from your driver's 
func{muxDevConnect}( ) routine.

You should also test your driver's func{vxbDrvUnlink}( ) routine if you provided 
one. Testing this routine can be simplified if you can have the network available 
using a different driver because this situation allows you to debug your driver 
without rebuilding the entire VxWorks image.

To test func{vxbDrvUnlink}( ), build a VxWorks image without your driver and 
boot it. Then, download your driver using the ld command from the VxWorks 
development shell. Register your driver with VxBus and connect to the MUX as 
described in Deferring Driver Registration, p.118, then do your testing. 

To test any modifications you make during your testing, unload your driver from 
the MUX, then unload the driver's object module. Next, build a new version of the 
driver and load the new driver's object module with the ld command and perform 
any additional debugging.
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Polled Mode 

You should test your driver's polled mode operation. Typically, the only use of 
polled mode is by WDB and for core dumps. To test WDB polled mode operation, 
you can use the WTX test described in WTX Test, p.122 to perform some testing.

You should also perform more basic testing before running the WTX test. To do 
this, write a simple application that makes the ioctl( ) call to put the instance into 
polled mode operation. The application should read from the interface using 
polled mode, modify the packet data, and send the modified packet. This can be 
testing using ping from your development host.

When polled mode is used to save core dump data, the network is put under heavy 
load. For this reason, you should run the basic testing with heavy traffic. For 
example, run ping with large packet sizes from multiple hosts, to ensure that many 
large packets can be received and transmitted. Additional testing can be done by 
performing an actual core dump save. For more information on core dump, see the 
VxWorks Kernel Programmer’s Guide: Error Detection and Reporting. 

Receive Error Path 

Be sure to test the receive error path for your driver. This testing is often 
overlooked when hardware debug tools are not available, because it is difficult to 
generate receive error conditions without those tools. You cannot fully validate the 
receive error path without the assistance of hardware tools. 

WTX Test 

You can run a test related to polled mode using WTX. The WTXTest uses the target 
server to connect to the target and performs various stress tests on the driver's 
polled mode operation. For more information on using WTX test, see Wind River 
Workbench User's Guide: Troubleshooting. 

Multicast Filter Test 

If your driver supports multicast, test to see whether the multicast filter works 
correctly. To do this, you need to write a simple test application that runs on 
VxWorks, which configures the interface with one or more multicast addresses and 
sends and receives multicast traffic. You may need host software or multiple 
VxWorks targets in order to perform this type of test.
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6.3  PHY Drivers 

All 10/100/1000 Ethernet interfaces incorporate a physical layer of some type, 
commonly known as a PHY. The PHY component may be integrated directly with 
the MAC, or it may be a separate device connected to the MAC using one of several 
MAC/PHY media connection types (such as MII, GMII, RGMII, TBI, and so forth). 
Software interaction with the PHY is necessary in order to properly implement link 
autoconfiguration and link state change notification within VxWorks.

The MII specification for PHY devices defines a management interface with a total 
of 32 registers. The first 16 are defined by the specification itself and are common 
to all devices that comply with the specification. The latter 16 registers are 
vendor-defined, and vary from one implementation to another. While it is possible 
to use only the standardized registers to control most devices, there are many cases 
where use of the vendor-specific API is required. In those cases, it is necessary to 
implement device-specific PHY software.

Traditionally, both vendor-specific PHY management and link management in 
general have been implemented largely in an ad-hoc manner. The MII bus and 
PHY driver mechanism attempts to address this issue by providing both a simple 
way for Ethernet drivers to handle link management, and for different PHY chips 
to be handled with discrete, reusable drivers.

6.3.1  PHY Driver Overview 

The MII bus and PHY layer includes the miiBus.o module (which is configured 
into the system using the INCLUDE_MII_BUS component) and various PHY 
drivers. A given image configuration need only include those PHY drivers that are 
required to handle the PHY hardware actually present in the system. In many 
cases, only the genericPhy driver is necessary. 

The link management functions of MII bus are carried out in the context of the 
miiBusMonitor task. This task periodically checks the state of every interface 
configured into the system and issues a callback to the corresponding VxBus MAC 
instance whenever the link state changes.

PHY interrupts are not currently supported. To understand why, consider that 
acknowledging and cancelling a PHY interrupt requires reading or writing to a 
PHY register, and that to correctly follow VxWorks driver guidelines, this 
operation must be done in an ISR. However, PHY register accesses are typically 
done indirectly through an MDIO port and are not atomic. This means that they 
must use mutual exclusion protection to prevent overlapping accesses. The 
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problem with this is that the only mutual exclusion mechanism that works in both 
task context and interrupt context is intLock( ) and intCpuLock( ) (or a spinlock, 
in VxWorks SMP product), but in some cases a PHY register access can be very 
slow, and keeping interrupts blocked for the entire period can negatively impact 
system behavior. (This is especially true where MDIO accesses are performed 
using serial bitbang I/O in software.)

Consequently, PHY register accesses are never done in interrupt context, and 
polling is used to monitor link state changes instead. The current polling period is 
two seconds, and miiBusMonitor tasks runs at priority 254, in order to reduce load 
on the system as much as possible.

PHY Device Probing and Discovery 

In a typical system, each MAC instance creates an MII bus, and the MII bus in turn 
creates one or more PHY instances. The PHY instances are auto-discovered by 
probing the MII bus. The MII specification allows for up to 32 devices to be 
uniquely addressed using the MDIO interface. Probing is done by performing a 
read request of the basic mode status register (register 1) at each of the 32 MII 
addresses. If reading the register yields a value other than 0 or 0xFFFF, the probe 
code considers a PHY device to have been found. The probe then creates and 
announces a VxBus node corresponding to this device. At the time the device 
instance is created, the PHY ID registers are also read and saved.

Once a PHY instance is announced, VxBus attempts to match a driver to it. This 
process occurs in two steps. First, VxBus calls the MII bus miiBusDevMatch( ) 
routine, which decides whether or not to accept the instance and driver as valid for 
an MII bus. The miiBusDevMatch( ) routine almost always returns success as long 
as the instance declares its bus to be of type VXB_BUSID_MII. However, there is one 
special case. A genericPhy driver is available that should work for most MII 
compliant PHYs. However, there may be a case where both generic PHY and 
another PHY driver are both registered. The desired behavior is for the genericPhy 
driver to be selected only if no specific driver match is found. However, the 
genericPhy probe routine always returns success. To prevent it from claiming PHY 
instances unexpectedly, miiBusDevMatch( ) checks to see if a driver that 
specifically handles the PHY device is also registered with VxBus. If it finds such a 
driver, it prevents genericPhy from claiming the device so that the other driver can 
claim it instead.

Once miiBusDevMatch( ) is called, VxBus invokes the PHY driver probe routine. 
The probe routine then tests the PHY vendor and device ID against a list of values 
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supported by the driver. If the driver chooses to claim the device, the probe routine 
returns TRUE.

MAC and MII Bus Relationship 

Each Ethernet MAC driver typically has one MII bus, which the Ethernet driver 
itself creates using the miiBusCreate( ) routine. This bus in turn has one or 
possibly more child PHY devices attached to it. (The simplest and most common 
case is one Ethernet device instance, with one child MII bus, with one child 
genericPhy instance.)

Originally, the reason for supporting multiple PHYs on a single MII bus was to 
allow for the design of network controllers with more than one media type. For 
example, a dual media copper and fiber Ethernet adapter could be built using one 
Ethernet MAC with two different PHYs (one copper and one fiber). Driver 
software could set the interface for copper mode by using the MII management 
interface to isolate or power down the fiber PHY while activating the copper one. 
Switching to fiber mode could be done using the opposite procedure (isolating the 
copper PHY and then re-enabling the fiber one). In this configuration, only one 
PHY is active at a time, and the idle one must be isolated from the MAC data pins.

This configuration is not commonly used (several vendors now support both 
copper and fiber media in a single PHY chip instead, using vendor-specific 
programming to switch modes). However, what is more common is the use of a 
single MDIO port for controlling multiple PHYs connected to different MACs. For 
example, the Freescale MPC8560 has two built-in TSEC gigabit Ethernet MACs. 
However, only one of them has a functional MDIO port. This means that software 
can only access the management registers on the two PHY chips by using the 
MDIO registers on only one of the TSECs (typically TSEC0).

This configuration presents a problem, because it can result in the MII bus for one 
TSEC device having two child PHY instances, while the MII bus on the other TSEC 
has none. The Ethernet MAC driver software must be carefully written in order to 
deal with this condition. 

Generic PHY Driver Support 

A special driver, called genericPhy, is included with the MII bus subsystem, which 
is designed to support most 10/100/1000 Mb/s copper PHYs. The genericPhy 
driver uses only those registers defined in the MII specification for controlling the 
underlying PHY device, and should work with the majority of PHY chips without 
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modification. The genericPhy driver probe routine always succeeds, and acts as a 
“catch-all” for any PHYs discovered on an MII bus that are not specifically claimed 
by another driver registered with VxBus.

The genericPhy driver always assumes that the PHY device supports at least 
10 Mb/s and 100 Mb/s modes in full and half duplex. It also tests for the extended 
capabilities bit in the status register and, if this bit is set, it enables support for 
autonegotiation as well.

The genericPhy driver is included using the INCLUDE_GENERICPHY component.

Generic TBI Driver Support 

Many fiber optic controllers use a ten bit interface (TBI) as their MAC/PHY media 
connection. The TBI management interface is similar to that of an ordinary 10/100 
copper PHY. However, a TBI PHY supports only 1000 Mb/s. A MAC driver can be 
written such that the routines in the MII bus library (see the reference 
documentation for miiBus) can discover the TBI management interface and 
manage the link just like that of an ordinary PHY. Most devices that implement TBI 
use the same management interface, therefore a genericTbiPhy driver is also 
provided to handle these cases.

Unlike the genericPhy driver, the genericTbiPhy driver only attaches to a MAC 
driver that reports the correct vendor and device ID values. The genericTbiPhy.h 
header defines two values, TBI_ID1 and TBI_ID2. If a MAC driver's 
{miiBusRead}( ) method returns these values when a caller reads the ID registers, 
the genericTbiPhy driver successfully attaches to the TBI PHY instance.

The genericTbiPhy driver is included using the INCLUDE_GENERICTBIPHY 
component.

6.3.2  VxBus Driver Methods for PHY Drivers 

The MII bus layer has two sets of VxBus methods: upper edge methods, which 
must be provided by Ethernet MAC drivers, and lower edge methods, which must 
be provided by child PHY devices that reside on an MII bus.
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6Upper Edge Methods 

Upper edge MII bus methods are typically all exported by the MAC driver that 
instantiates the MII bus. In most cases, access to the PHY management registers is 
provided through an MDIO port that is part of the Ethernet MAC itself. This can 
either be a low level bitbang interface to the MDIO pins, or it can be a set of 
“shortcut” registers that permit read and write accesses to the PHY, while the MAC 
hardware implements the bitbang MDIO protocol internally. The miiBus code 
must be able to read and write to these management registers, therefore the MAC 
driver must export read and write methods to miiBus.

Many MACs must be explicitly programmed to match the link speed (10, 100, or 
1000 Mb/s) and the duplex state (full or half) of the PHY in order to function 
correctly. A MAC driver for such a device must be notified when the link state 
changes, so that it can synchronize its state with that of the PHY. To do this, the 
MAC driver must export a link update method, {miiLinkUpdate}( ), so that the 
miiBusMonitor task (or the tNet0 task) can notify the MAC driver when the link 
state changes.

When a MAC driver publishes the {miiLinkUpdate}( ) method, it usually 
publishes the {miiRead}( ) and {miiWrite}( ) methods as well. These methods are 
always called from task context. For more information on these methods, see 
6.2.2 VxBus Driver Methods for Network Interface Drivers, p.88.

Lower Edge Methods 

The lower edge MII bus methods are exported by PHY drivers only. Currently, 
there are only two methods available: {miiModeSet}( ) and {miiModeGet}( ). 
These methods are used to get and set the PHY media mode and are used 
internally by the miiBusModeGet( ) and miiBusModeSet( ) routines provided by 
miiBus. Each PHY driver must export these methods in order for the miiBus code 
to properly use the driver to manage the link.

NOTE:  These methods typically perform operations that are not atomic. In 
particular, performing MDIO reads and writes usually requires multiple accesses 
to MAC registers. Consequently, it is important that these routines internally 
provide some form of mutual exclusion in order to prevent overlapping accesses. 
Most VxBus Ethernet drivers do this using a mutex semaphore.
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{miiModeSet}( ) 

The {miiModeSet}( ) method is defined as follows:

LOCAL STATUS miiModeSet
(
VXB_DEVICE_ID pInst,
UINT32 mode
)
{
return (OK);
}

The {miiModeSet}( ) method is used to set the PHY link to a particular mode. The 
pInst argument is a pointer to the PHY instance context. The mode argument is an 
encoded value using the definitions from the endMedia.h header file. The 
following example illustrates how to decode the mode value to obtain the speed 
and duplex values:

switch(IFM_SUBTYPE(mode)) {
case IFM_AUTO:

/* Autonegotiation */
break;

case IFM_1000_SX:
/* 1000baseSX, fiber */
break;

case IFM_1000_T:
/* 1000baseT, copper */
break;

case IFM_100_TX:
/* 100baseTX, copper */
break;

case IFM_10_T:
/* 10baseT, copper */
break;

default:
return (ERROR);
break;

} 

if ((mode & IFM_GMASK) == IFM_FDX)
/* full duplex mode */

else
/* half duplex mode */

Prior to setting the link state, the func{miiModeSet}( ) routine should also reset the 
PHY and perform any required initialization. This can include applying software 
workarounds for hardware bugs, such as DSP fix ups. Forcing a reset typically 
causes a momentary link drop, which forces the link partner to also re-sense the 
link. This is useful for insuring that the link partner actually detects changes made 
to the PHY media settings.
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When attempting to explicitly specify a link speed or duplex setting (rather than 
using autonegotiation), Wind River recommends that it be done while keeping 
autonegotiation enabled. While it is possible to disable autonegotiation and 
manually configure the PHY for a specific mode, this method can cause problems 
in some situations. For example, if the PHY is forced to 100 Mb/s full duplex with 
autonegotiation disabled, but the PHY is connected to a link partner that still has 
autonegotiation enabled, the link partner will use parallel detection to sense the 
link speed and default to half duplex. This results in a duplex mismatch that 
seriously degrades network performance. In addition, manual link configuration 
is not normally recommended for 1000 Mb/s links.

A more reliable method is to leave autonegotiation enabled, but only advertise the 
particular mode that is desired. For example, to force the link to 10 Mb/s full 
duplex, the autonegotiation advertisement register (ANAR) can be programed to 
only have the 10FD bit set. Then, the autoneg session restart bit is set in the control 
register. This causes the current PHY and its link partner to agree that 10 Mb/s full 
duplex is the best common mode for the link. Tests show that this method is fairly 
interoperable among a wide variety of PHY devices. Consequently, this is the 
mechanism that the genericPhy driver uses.

{miiModeGet}( ) 

The {miiModeGet}( ) method is defined as follows:

LOCAL STATUS miiModeGet
(
VXB_DEVICE_ID pInst,
UINT32 * mode,
UINT32 * status
)
{
return (OK);
}

The {miiModeGet}( ) method is used to return the current link state information. 
As with the func{miiModeSet}( ) routine, the pInst is a pointer to the PHY instance 
context. The mode and status arguments point to storage where the 
{miiModeGet}( ) method returns the current link settings, and the link status. The 
mode value is specified in terms of the macros defined in the endMedia.h header 
file. The status field sets the IFM_AVALID bit if it contains valid data, and the 
IFM_ACTIVE bit is set if the link is up.

NOTE:  The {miiModeSet}( ) method should be called at least once to initialize the 
PHY before the {miiModeGet}( ) method is used to check the link state.
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6.3.3  Header Files for PHY Drivers 

The MII bus APIs and function prototypes are all defined in the miiBus.h header 
file. VxBus MAC drivers and PHY drivers should include it as follows:

#include <../src/hwif/h/mii/miiBus.h>

Individual PHY drivers may have their own header files located in the 
installDir/vxworks-6.x/target/src/hwif/h/mii directory as well.

6.3.4  BSP Configuration for PHY Drivers 

Because MII bus and PHY instances are autodiscovered, little BSP configuration is 
required. No changes to the hwconf.c file are normally needed. The config.h file 
should include the MII bus component and the necessary PHY drivers, as follows:

#define INCLUDE_PARAM_SYS 
#define INCLUDE_MII_BUS 
#define INCLUDE_GENERICPHY 
#define INCLUDE_GENERICTBIPHY 

6.3.5  Available Utility Routines for PHY Drivers 

The MII bus module provides two sets of routines: upper edge routines, which are 
used by Ethernet MAC drivers, and lower edge routines, which are used by PHY 
drivers themselves. The upper edge routines are typically used to create an MII bus 
and manage the link. The lower edge routines are used by the PHY drivers to 
connect themselves to the MII bus subsystem.

Upper Edge Utility Routines 

There are a number of upper edge utility routines available. These include: 
miiBusCreate( ), miiBusDelete( ), miiBusModeGet( ), miiBusModeSet( ), and 
miiBusMediaListGet( ). For more information on these routines, see 6.2.5 Available 
Utility Routines for Network Interface Drivers, p.94. 



6  Network Drivers
6.3  PHY Drivers

131

6

Lower Edge Utility Routines 

The following lower edge utility routines are available: 

miiBusMediaAdd( ) 

The miiBusMediaAdd( ) routine is defined as follows:

STATUS miiBusMediaAdd
(
VXB_DEVICE_ID pInst,
UINT32 media
)

This routine is used by PHY drivers to notify the MII bus about the media types 
that they support. The routine is normally called by a PHY driver's initialization 
code, and is used to populate the media list information that is returned by the 
miiBusMediaListGet( ) routine described in miiBusMediaListGet( ), p.101. A 
typical 10/100 Ethernet PHY might specify its media support as shown in the 
following example:

miiBusMediaAdd (pBus, IFM_ETHER|IFM_100_TX);
miiBusMediaAdd (pBus, IFM_ETHER|IFM_100_TX|IFM_FDX);
miiBusMediaAdd (pBus, IFM_ETHER|IFM_10_T);
miiBusMediaAdd (pBus, IFM_ETHER|IFM_10_T|IFM_FDX);
miiBusMediaAdd (pBus, IFM_ETHER|IFM_AUTO);

miiBusMediaDel( ) 

The miiBusMediaDel( ) routine is defined as follows:

STATUS miiBusMediaDel
(
VXB_DEVICE_ID pInst,
UINT32 media
)

This routine is used by PHY drivers to remove their supported media types from 
their parent bus' media list when the device is unloaded.

miiBusMediaDefaultSet( ) 

The miiBusMediaDefaultSet( ) routine is defined as follows:

STATUS miiBusMediaDefaultSet
(
VXB_DEVICE_ID pInst,
UINT32 media
)
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This routine is used by PHY drivers to specify the default media selection that 
should be listed in the media list for a given bus. Typically, the default media type 
is IFM_AUTO.

miiBusRead( ) 

The miiBusRead( ) routine is defined as follows:

STATUS miiBusRead
(
VXB_DEVICE_ID pInst,
int phyAddr,
int phyReg,
UINT16 * regVal
)

This routine is used by a PHY instance to read its own registers. The pInst 
argument is a pointer to the parent MII bus. This routine in turn invokes the 
{miiRead}( ) method exported by the parent Ethernet MAC driver.

miiBusWrite( ) 

The miiBusWrite( ) routine is defined as follows:

STATUS miiBusWrite
(
VXB_DEVICE_ID pInst,
int phyAddr,
int phyReg,
UINT16 regVal
)

This routine is used by a PHY instance to write its own registers. The pInst 
argument is a pointer to the parent MII bus. This routine in turn invokes the 
{miiWrite}( ) method exported by the parent Ethernet MAC driver.

6.3.6  Initialization for PHY Drivers 

Any initialization that needs to be done for this driver type should be done in 
VxBus initialization phase 2 (devInstanceInit2( )). 

NOTE:  Register values are always in native byte order. 
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6.3.7  Debugging PHY Drivers 

Most problems with PHY drivers occur due to problems with the {miiRead}( ) and 
{miiWrite}( ) methods exported by the parent Ethernet MAC driver. This code can 
be difficult to write, particularly when serial bitbang I/O is required. When 
writing a new MAC driver, it is often useful to add instrumentation to the 
{miiRead}( ) method to print out the results of the read access in order to see what 
registers are being read, and what the contents are. During normal operation, these 
messages are generated whenever the miiBusMonitor tasks invokes the 
{miiRead}( ) method.

It is also useful to instrument the MAC driver {miiLinkUpdate}( ) method in order 
to obtain a visual indication of when link change events are triggered.

Debugging PHY driver startup can be complicated by the fact that normally a 
MAC driver's initialization routines are invoked well before the system is ready to 
display messages on the console. Invoking the miiBusCreate( ) routine at this time 
makes it difficult to observe any debug instrumentation in PHY drivers. To avoid 
this, Wind River recommends that you call the miiBusCreate( ) routine from the 
MAC driver {muxConnect}( ) method, because this method is always invoked as 
part of network initialization, well after the console device is initialized.

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies.

6.4  Wireless Ethernet Drivers 

Wireless Ethernet drivers do not conform to the VxBus device driver model and 
are not covered as part of this manual. Wind River provides 802.11 technology as 
part of the Wind River Wireless Ethernet Drivers product. The Wireless Ethernet 
Drivers product focuses mainly on drivers for the Atheros and Broadcom chipsets. 
For information on writing and using wireless Ethernet drivers, see the Wind River 
Wireless Ethernet Drivers for VxWorks 6 User’s Guide. 
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6.5  Hierarchical END Drivers 

In a previous release, Wind River introduced a model for network drivers called 
hEND, or Hierarchical END. The hEND model provided a mechanism for driver 
developers to write network interface drivers for the subset of devices that 
conform well to the hEND model.

The hEND model divided the END driver into two levels. The SL, or system level, 
which interfaced with a protocol layer, such as IP, and with the VxBus 
infrastructure. The DL, or device-specific level, handled all hardware-specific 
accesses.

The hEND model has been deprecated. Due to the cost of testing modifications to 
the SL, the difficulty of adapting the DL to devices that do not conform well to the 
model, and for better performance, current network drivers provided by 
Wind River do not use this model. 
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7.1  Introduction 

This chapter describes non-volatile RAM (NVRAM) drivers and the VxWorks 
TrueFFS flash file system product. This chapter assumes that you are familiar with 
the contents of the VxWorks Device Driver Developer's Guide, Volume 1: Fundamentals 
of Writing Device Drivers, which discusses generic driver concepts as well as details 
of VxBus that are not specific to any driver class.

NVRAM Drivers and TrueFFS 

VxWorks can be configured to maintain several types of information in various 
types of non-volatile RAM devices. This typically includes the boot image, 
information used to configure the boot image (bootline), network interface 
hardware addresses, and flash file systems. Other kinds of information can be 
maintained on NVRAM devices as well.
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Within the VxBus framework, NVRAM drivers are used to manage the NVRAM 
devices. The management tasks include allocating individual sectors to a specific 
purpose, writing data to sectors, and making sector data available to other parts of 
the system. NVRAM drivers do not maintain any information for file systems 
other than, possibly, allocation of space to the file system. 

Wind River also provides the TrueFFS flash file system product. This is a file 
system support layer for use with the DosFS file system on flash devices. Other 
than file system support functions, TrueFFS does not manage allocation of 
NVRAM devices to other parts of the system. 

At the time of this writing, these two mechanisms are not integrated with each 
other. However, both NVRAM drivers and TrueFFS are documented in this 
chapter. The first part of the chapter discusses NVRAM drivers, which conform to 
the VxBus model. The remainder of the chapter discusses TrueFFS flash file system 
development. 

7.2  Non-Volatile RAM Drivers 

VxBus NVRAM drivers provide a low-level interface for allocating NVRAM 
sectors to other parts of the system and for reading and writing NVRAM devices.

7.2.1  NVRAM Driver Overview 

VxBus drivers for NVRAM devices are used to allocate blocks of NVRAM for use 
by other drivers and modules. These drivers also provide interfaces for other 
drivers and modules to read and write the data contained in the blocks of NVRAM. 
The types of information stored in NVRAM typically include bootline information, 
hardware (MAC) addresses for some network interface, vendor-provided 
firmware, bootrom images, space used by applications, and so forth.

NVRAM drivers divide the available non-volatile memory into blocks for 
allocation to other drivers and modules. Each driver or module is identified by a 
pair consisting of a name string and a unit number. 

NOTE:  TrueFFS does not conform to the VxBus device driver model.
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7.2.2  VxBus Driver Methods for NVRAM Drivers 

There are two VxBus driver methods used by NVRAM drivers: {nonVolGet}( ) and 
{nonVolSet}( ).

{nonVolGet}( ) 

{nonVolGet}( ) is called from the general-purpose routine vxbNonVolGet( ). The 
routine associated with this method, func{nonVolGet}( ), copies data from the 
appropriate block of the NVRAM device into a user-provided buffer.

STATUS func{nonVolGet}
(
VXB_DEVICE_ID pInst, /* VXB_DEVICE_ID of vxbFileNvRam */
char * drvName,/* name of requestor */
int drvUnit,/* unit of requestor */
char * buff, /* location to write to */
int len /* size of buff */ 
)

{nonVolSet}( ) 

{nonVolSet}( ) is called from the general-purpose routine vxbNonVolSet( ). The 
routine associated with this method, func{nonVolSet}( ), copies data from a 
user-provided buffer into the appropriate block of the NVRAM device. 

STATUS func{nonVolSet}
(
VXB_DEVICE_ID pInst, /* VXB_DEVICE_ID of vxbFileNvRam */
char * drvName,/* name of requestor */
int drvUnit,/* unit of requestor */
char * buff, /* location to write to */
int len /* size of buff */
)

7.2.3  Header Files 

Only one driver-class specific header file is used for NVRAM drivers. This is the 
vxbNonVol.h header:

#include <hwif/util/vxbNonVol.h>
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7.2.4  BSP Configuration for NVRAM Drivers 

When non-volatile RAM drivers are used, the BSP should be configured to include 
INCLUDE_NON_VOLATILE_RAM.

#define INCLUDE_NON_VOLATILE_RAM

To configure individual NVRAM drivers, there are two resource names used: 
segments and numSegments. The segments resource points to the beginning of a 
table containing information about each segment of the NVRAM device. The table 
consists of records of the struct nvRamSegment type. The nvRamSegment 
structure contains four fields: 

segAddr
Indicates the address of the segment as a byte offset from the beginning of the 
NVRAM device. 

segSize
Indicates the size of the segment in bytes. 

name
Indicates the name of the driver or other module to which the segment is 
allocated. 

unit
Indicates the unit number of the driver or other module to which the segment 
is allocated. 

For example: 

typedef struct nvRamSegment NVRAM_SEGMENT;
struct nvRamSegment

{
void * segAddr;
int segSize;
char * name;
int unit;
};

The following is a sample of the hwconf.c record for the NVRAM of a hypothetical 
D1643 device.

const struct nvRamSegment d16430Segments[] = {
/* IBM Eval kit software use */
{ 0, 1024, "IBMEvalKit", 0 },

/* bootline */
{ NV_BOOT_OFFSET, BOOT_LINE_SIZE, "BOOTLINE", 0 },
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/* emac 0 and 1 */
{ (NV_BOOT_OFFSET + NV_ENET_OFFSET_0), 6, "emac" 0 },
{ (NV_BOOT_OFFSET + NV_ENET_OFFSET_1), 6, "emac" 1 },

};

const struct hcfResource d16430Resources[] = {
{ "regBase", HCF_RES_INT, { (void *)NV_RAM_ADRS } },
{ "segments", HCF_RES_ADDR, { (void *)&d16430Segments[0] } },
{ "numSegments",HCF_RES_INT, { (void *)NELEMENTS(d16430Segments } },

};
#define d16430Num NELEMENTS(d16430Resources)

As for every resource table, the hcfDeviceList[ ] table must have an entry for the 
specific resource table:

{ "d1643", 0, VXB_BUSID_PLB, 0, d1643Num, d1643Resources }, 

7.2.5  Utility Routines for NVRAM Drivers 

There are no general-purpose utility routines required for NVRAM drivers.

NVRAM drivers get a pointer to the head of the nvRamSegment table, and the size 
of the table, using devResourceGet( ). For example: 

devResourceGet(pHcf, "segments", HCF_RES_ADDR, (void*)&(pDrvCtrl->segTable));
devResourceGet(pHcf, "numSegments", HCF_RES_INT, 

(void*)&(pDrvCtrl->segTblSize));

7.2.6  Initialization for NVRAM Drivers 

In most cases, NVRAM drivers perform all initialization in the first phase of VxBus 
initialization (devInstanceInit( )). As a service, NVRAM drivers sometimes 
provide NVRAM information contents to other drivers. This includes items such 
as network device hardware addresses. Other drivers require this information 
during their own phase 2 initialization routines. For this reason, NVRAM drivers 
generally complete their initialization during VxBus phase 1 initialization. 

7.2.7  NVRAM Block Sizes 

The size and arrangement of the NVRAM blocks is usually determined by the 
hardware. With flash parts, each block consists of a single erase unit. For example, 
a single Am29LV320D flash part provides eight 8 KB erase units and 63 64 KB erase 
units, where each erase unit can be treated by the driver as a separately allocatable 
block.
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Battery-backed RAM is an exception to this rule. Typically, each byte of 
battery-backed RAM can be separately written, therefore the block sizes of these 
devices can be set to any number of bytes.

A single block must be allocated to exactly one driver or other module. Do not 
attempt to split a block into smaller allocations as this can result in large system 
overhead. For example, if a network hardware address needs to be stored on the 
Am29LV320D flash part described previously, the BSP must allocate at least one 
8 KB erase unit to store the six bytes of information required. 

If NVRAM flash storage is at a premium in your system, no battery-backed RAM 
is available, and RAM is readily available, see 7.2.8 Stacking NVRAM Instances, 
p.140 for an alternative allocation method.

While the device typically determines the sizes and layout of the blocks, the BSP 
determines what each block is allocated to. From the perspective of the BSP, a 
single allocation can cover more than one block. Your driver must be able to 
recognize and handle this situation.

7.2.8  Stacking NVRAM Instances 

In some situations, it is possible to write a shim NVRAM driver that does not 
manage any physical hardware. Instead, the shim driver allocates one or more 
blocks on some other NVRAM device.

The shim driver provides arbitrary sized block allocations for drivers and other 
modules. This means that the shim driver reads the flash into RAM and maintains 
the contents in RAM. At a time that is appropriate for the application, the shim 
driver writes the contents back to the flash segments using vxbNonVolSet( ). For 
more information on vxbNonVolSet( ), see VxWorks Device Driver Developer’s Guide 
(Vol. 1): Device Driver Fundamentals. 

NOTE:  Once the NVRAM allocations are set, they must be maintained in the same 
places. Changing the locations of NVRAM allocations results in corrupt data 
unless the NVRAM device is erased and completely rewritten with the new 
organization.
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7.2.9  Debugging NVRAM Drivers 

During early stages of system initialization, NVRAM drivers are not typically 
required in order for the system to boot and for devices such as the console to 
work. Therefore, no special debugging requirements exist. 

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies.

7.3  Flash File System Support with TrueFFS 

TrueFFS is an optional product that allows a file system to be used and maintained 
on flash media. The TrueFFS module is not a driver in the traditional sense and is 
not integrated with the VxBus driver model. TrueFFS provides a number of 
features that enhance the performance of the flash media that is used to contain the 
file system, and also allow the same flash bank to contain bootable images or other 
constant data. For more information on TrueFFS features, see the VxWorks 
Hardware Considerations Guide. For details on configuring and using TrueFFS with 
a BSP that includes TrueFFS support, see the VxWorks Kernel Programmer's Guide.

This chapter contains information necessary to write routines for TrueFFS support 
of new devices. 

7.3.1  TrueFFS Overview 

This section provides a brief overview of the TrueFFS layers. The individual layers 
are discussed in greater detail in later sections. For a graphical presentation of a 
flash device layout, see Figure 7-9. 

TrueFFS is composed of a core layer and three functional layers–the translation 
layer, the memory technology driver (MTD) layer, and the socket layer–as 
illustrated in Figure 7-1. The three functional layers are provided in source code 
form, in binary form, or in both, as noted in the following sections. 
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Core Layer 

The core layer connects other layers to each other. In addition, this layer channels 
work to the other layers and handles global issues, such as backgrounding, 
garbage collection, timers, and other system resources. The core layer is provided 
in binary form only. 

MTD Layer 

The memory technology driver (MTD) implements the low-level programming of 
the flash medium. This includes map, read, write, and erase functionality. MTDs 
are provided in both source and binary form.

Socket Layer 

The socket layer provides the interface between TrueFFS and the board hardware, 
providing board-specific hardware access routines. This layer is responsible for 
power management, card detection, window management, and socket 
registration. TrueFFS socket drivers are provided in source code only. 

Figure 7-1 TrueFFS Layers 

dosFs

Translation Layer

MTDs

Socket Layer Flash Memory

TrueFFSCore Layer
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Flash Translation Layer 

The flash translation layer (FTL) maintains the map that associates the file system’s 
view of the storage medium with the erase blocks in flash. The block allocation 
map (BAM) is the basic building block for implementing wear-leveling and error 
recovery. The translation layer is media specific (NOR or SSFDC) and is provided 
in binary form only. 

7.3.2  TrueFFS Driver Development Process 

This section provides detailed information on the MTD, socket, and flash 
translation layers of TrueFFS. This information is intended to aid you in the 
TrueFFS driver development process. Detailed TrueFFS usage information is 
available in the VxWorks Kernel Programmer’s Guide: Flash File System Support with 
TrueFFS.

Using MTD-Supported Flash Devices 

Standard MTDs are written to support multiple device types and multiple 
configurations, without change to the source code. This feature comes with a cost 
to performance. If you choose to customize your MTD to a specific flash device and 
configuration, you can greatly increase performance when compared to the 
generic MTDs provided with this product.

When customization of TrueFFS is required, the most common modification is to 
provide a custom MTD. This usually occurs because the standard product does not 
support the flash parts chosen for the project, but it may also be because enhanced 
performance is required. If you are customizing an existing, working MTD, you 
can use the standard version as a reference and remove extraneous material as 
necessary.

The following sections list the flash devices that are supported by the MTDs 
provided with TrueFFS. 

NOTE:  File systems are typically slow. In most cases, the performance increase that 
can be obtained by optimizing the MTD does not merit the effort to produce and 
support the optimized version.
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Supporting the Common Flash Interface (CFI) 

TrueFFS supports devices that conform to the common flash interface (CFI) 
specification. This includes the following command sets: 

■ Intel/Sharp CFI Command Set: This is the CFI specification listing for the scalable 
command set (CFI/SCS). The driver file for this MTD is 
installDir/vxworks-6.x/target/src/drv/tffs/cfiscs.c. Support for this command 
set is largely derived from Application Note 646, available at the Intel Web site.

■ AMD/Fujitsu CFI Command Set: This is the Embedded Program Algorithm and 
flexible sector architecture listing for the SCS command set. The driver file for 
this MTD is installDir/vxworks-6.x/target/src/drv/tffs/cfiamd.c. Support 
details for this MTD are described in AMD/Fujitsu CFI Flash Support, p.145.

Devices that require support for both command sets are rare. Therefore, to facilitate 
code readability, Wind River provides support for each command set in a separate 
MTD. To support both command sets, you must configure your system to include 
both MTDs. (For more information, see the VxWorks Kernel Programmer’s Guide: 
Flash File System Support with TrueFFS). 

Common Functionality 

Both MTDs support 8- and 16-bit devices, and 8- and 16-bit wide interleaves. 
Configuration macros (which are described in the code) are used to control 
configuration settings, and must be defined specifically for your system. If you 
modify the MTD code, it must be rebuilt. In particular, you may need to address 
the following macros:

INTERLEAVED_MODE_REQUIRES_32BIT_WRITES 
Must be defined for systems that have 16-bit interleaves and require support 
for the “write-to-buffer” command. 

SAVE_NVRAM_REGION 
Excludes the last erase block on each flash device in the system that is used by 
TrueFFS; this is so that the region can be used for non-volatile storage of boot 
parameters.

CFI_DEBUG 
Makes the driver verbose by using the I/O routine defined by DEBUG_PRINT. 

BUFFER_WRITE_BROKEN 
Introduced to support systems that registered a buffer size greater than 1, yet 
could not support writing more than a byte or word at a time. When defined, 
it forces the buffer size to 1.
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DEBUG_PRINT 
If defined, makes the driver verbose by using its value. 

■ CFI/SCS Flash Support

The MTD defined in cfiscs.c supports flash components that follow the CFI/SCS 
specification. CFI is a standard method for querying flash components for their 
characteristics. SCS is a second layer built on the CFI specification. This lets a single 
MTD handle all CFI/SCS flash technology in a common manner.

The joint CFI/SCS specification is currently used by Intel Corporation and Sharp 
Corporation for all new flash components (starting in 1997). 

The CFI document can be downloaded from:

http://www.intel.com/design/flcomp/applnots/292204.htm 

or can be found by searching for CFI at:

http://www.intel.com/design 

You must define the INCLUDE_MTD_CFISCS macro in your BSP sysTffs.c file to 
include this MTD in TrueFFS. 

On some more recent target boards, non-volatile RAM circuitry does not exist and 
BSP developers have opted to use the high end of flash for this purpose. In this 
case, the last erase block of each flash part is used to make up this region. The 
CFI/SCS MTD supports this concept by providing the compiler constant 
SAVE_NVRAM_REGION. If this constant is defined, the driver reduces the device’s 
size by a value equal to the erase block size times the number of devices; this 
results in an NVRAM region that is preserved and never over-written. ARM BSPs, 
in particular, use flash for NVRAM and for the boot image.

AMD/Fujitsu CFI Flash Support

In AMD and Fujitsu devices, the flexible sector architecture, also called boot block, 
is only supported when erasing blocks. However, because the MTD presents this 
division transparently, the TrueFFS core and translation layers have no knowledge 
of the subdivision. According to the data sheet for a 29LV160 device, the device is 
comprised of 35 sectors. However, the four boot block sectors appear to the core 

NOTE:  These macros can only be configured by defining them in the MTD source 
file, they cannot be configured using the project facility.

NOTE:  The cfiscs.c file is provided as an example only. Any current BSP that uses 
an MTD for one of these chips provides a custom MTD in the BSP directory. 

http://www.intel.com/design/flcomp/applnots/292204.htm
http://www.intel.com/design
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and translation layer as yet another, single (64 KB) sector. Thus, the TrueFFS core 
detects only 32 sectors. Consequently, the code that supports boot images also has 
no knowledge of the boot block, and cannot provide direct support for it. 

AMD and Fujitsu devices also include a concept of top and bottom boot devices. 
However, the CFI interrogation process does not provide a facility for 
distinguishing between these two boot device types. Thus, in order to determine 
the boot block type, the driver for these devices embeds a Joint Electronic Device 
Engineering Council (JEDEC) device ID. This limits the number of supported 
devices to those that are registered in the driver and requires verification that the 
device in use is listed in the registry. 

Supporting Other MTDs 

If you are not using a CFI-compliant MTD, Wind River also provides the following 
MTDs.

Intel 28F016 Flash Support

The MTD defined in i28f016.c supports Intel 28F016SA and Intel 28F008SV flash 
components. Any flash array or card based on these chips is recognized and 
supported by this MTD. This MTD also supports interleaving factors of 2 and 4 for 
BYTE-mode 28F016 component access. 

For WORD-mode component access, only non-interleaved (interleave 1) mode is 
supported. The list of supported flash media includes the following:

■ Intel Series-2+ PC Cards
■ M-Systems Series-2+ PC Cards

Define INCLUDE_MTD_I28F016 in your BSP sysTffs.c file to include this MTD in 
TrueFFS. 

Intel 28F008 Flash Support

The MTD defined in I28F008.c supports the Intel 28F008SA, Intel 28F008SC, and 
Intel 28F016SA/SV (in 8 Mb compatibility mode) flash components. Any flash 
array or card based on these chips is recognized and supported by this MTD. 
However, the WORD-mode of 28F016SA/SV is not supported (BYTE-mode only). 
This MTD also supports all interleaving factors (1, 2, 4, ...). Interleaving of more 
than 4 is recognized, although the MTD does not access more than 4 flash parts 
simultaneously. The list of supported flash media includes the following: 
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■ M-Systems D-Series PC Cards 
■ M-Systems S-Series PC Cards
■ Intel Series-2 (8-mbit family) PC Cards 
■ Intel Series-2+ (16-mbit family) PC Cards
■ Intel Value Series 100 PC Cards 
■ Intel Miniature cards
■ M-Systems PC-FD, PC-104-FD, Tiny-FD flash disks 

Define INCLUDE_MTD_I28F008 in your BSP sysTffs.c file to include this MTD in 
TrueFFS. 

AMD/Fujitsu Flash Support 

The MTD defined in amdmtd.c (8-bit) supports AMD flash components of the 
AMD Series-C and Series-D flash technology family, as well as the equivalent 
Fujitsu flash components. The flash types supported are:

■ Am29F040 (JEDEC IDs 01a4h, 04a4h)
■ Am29F080 (JEDEC IDs 01d5h, 04d5h)
■ Am29LV080 (JEDEC IDs 0138h, 0438h)
■ Am29LV008 (JEDEC IDs 0137h, 0437h)
■ Am29F016 (JEDEC IDs 01adh, 04adh)
■ Am29F016C (JEDEC IDs 013dh, 043dh)

Any flash array or card based on these chips is recognized and supported by this 
MTD. The MTD supports interleaving factors of 1, 2, and 4. The list of supported 
flash media includes the following:

■ AMD and Fujitsu Series-C PC cards 
■ AMD and Fujitsu Series-D PC cards 
■ AMD and Fujitsu miniature cards 

Define INCLUDE_MTD_AMD in your BSP sysTffs.c file to include the 8-bit MTD 
in TrueFFS.

Obtaining Disk-On-Chip Support

The previous demand for NAND devices has been in one of two forms: SSFDC/ 
Smart Media devices and Disk On Chip from M-Systems. Each of these forms is 
supported by a separate translation layer. Support for M-Systems devices must 
now be obtained directly from M-Systems and is no longer distributed with the 
VxWorks product. This allows M-Systems to add Disk On Chip specific 
optimizations within TrueFFS without affecting other supported devices. Current 
versions of VxWorks only support NAND devices that conform to the SSFDC 
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specification (for more information, see the VxWorks Kernel Programmer’s Guide: 
Flash File System Support with TrueFFS).

Writing MTD Components 

An MTD is a software module that provides TrueFFS with data, and with pointers 
to the routines that it uses to program the flash memory. All MTDs must provide 
the following three routines: a write routine, an erase routine, and an identification 
routine. The MTD module uses an identification routine to evaluate whether the 
type of the flash device is appropriate for the MTD. If you are writing your own 
MTD, you need to define it as a component and register the identification routine. 

For source code examples of MTDs, see the 
installDir/vxworks-6.x/target/src/drv/tffs directory.

Writing the MTD Identification Routine 

TrueFFS provides a flash structure in which information about each flash part is 
maintained. The identification process is responsible for setting up the flash 
structure correctly. 

In the process of creating a logical block device for a flash memory array, TrueFFS 
tries to match an MTD to the flash device. To do this, TrueFFS calls the 
identification routine from each MTD until one reports a match. The first reported 
match is the one taken. If no MTD reports a match, TrueFFS falls back on a default 
read-only MTD that reads from the flash device by copying from the socket 
window. 

The MTD identification routine is guaranteed to be called prior to any other 
routine in the MTD. An MTD identification routine is of the following format: 

FLStatus xxxIdentify(FLFlash vol) 

Within an MTD identify routine, you must probe the device to determine its type. 
How you do this depends on the hardware. If the type is not appropriate to this 
MTD, return a failure. Otherwise, set the members of the FLFlash structure listed 
below (see Initializing the FLFLash Structure Members, p.149).

NOTE:  Many of the MTDs previously developed by M-Systems or Wind River are 
provided in source form as examples of how you should write an MTD (in 
installDir/vxworks-6.x/target/src/drv/tffs). This section provides additional 
information about writing identification routines.
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The identification routine for every MTD must be registered in mtdTable[ ] 
defined in installDir/vxworks-6.x/target/src/drv/tffs/tffsConfig.c. Each time a 
volume is mounted, the list of identification routines is traversed to find the MTD 
suitable for the volume. This provides better service for hot-swap devices; no 
assumption is made about a previously identified device being the only device that 
works for a given volume.

Device identification can be done in a variety of ways. If your device conforms to 
JEDEC or CFI standards, you can use the identification process provided for the 
device. You may want your MTD to identify many versions of the device, or only 
one.

Initializing the FLFLash Structure Members

At the end of the identification process, the ID routine needs to set all data elements 
in the FLFLash structure, except the socket member. The socket member is set by 
routines internal to TrueFFS. The FLFlash structure is defined in 
installDir/vxworks-6.x/target/h/tffs/flflash.h. Members of this structure are the 
following:

type 
The JEDEC ID for the flash memory hardware. This member is set by the MTD 
identification routine.

erasableBlockSize 
The size, in bytes, of an erase block for the attached flash memory hardware. 
This value takes interleaving into account. Thus, when setting this value in an 
MTD, the code is often of the following form:

vol.erasableBlockSize = aValue * vol.interleaving;

Where aValue is the erasable block size of a flash chip that is not interleaved 
with another.

chipSize 
The size (storage capacity), in bytes, of one of the flash memory chips used to 
construct the flash memory array. This value is set by the MTD, using your 
flFitInSocketWindow( ) global routine.

noOfChips 
The number of flash memory chips used to construct the flash memory array.

interleaving 
The interleaving factor of the flash memory array. This is the number of 
devices that span the data bus. For example, on a 32-bit bus we can have four 
8-bit devices or two 16-bit devices.
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flags 
Bits 0-7 are reserved for TrueFFS use (TrueFFS uses these flags to track items 
such as the volume mount state). Bits 8-15 are reserved for MTD use.

mtdVars 
This field, if used by the MTD, is initialized by the MTD identification routine 
to point to a private storage area. These are instance-specific. For example, 
suppose you have an Intel RFA based on the I28F016 flash part and you also 
have a PCMCIA socket into which you decide to plug a card that has the same 
flash part. The same MTD is used for both devices, and the mtdVars are used 
for the variables that are instance-specific, so that an MTD may be used more 
than once in a system.

socket 
This member is a pointer to the FLSocket structure for your hardware device. 
This structure contains data and pointers to the socket layer routines that 
TrueFFS needs to manage the board interface for the flash memory hardware. 
The routines referenced in this structure are installed when you register your 
socket driver (see Socket Drivers, p.157). Further, because TrueFFS uses these 
socket driver routines to access the flash memory hardware, you must register 
your socket driver before you try to run the MTD identify routine that initializes 
the bulk of this structure.

map 
A pointer to the flash memory map routine, the routine that maps flash into an 
area of memory. Internally, TrueFFS initializes this member to point to a 
default map routine appropriate for all NOR (linear) flash memory types. This 
default routine maps flash memory through simple socket mapping. Flash 
should replace this pointer to the default routine with a reference to a routine 
that uses map-through-copy emulation.

read 
A pointer to the flash memory read routine. On entry to the MTD identification 
routine, this member has already been initialized to point to a default read 
routine that is appropriate for all NOR (linear) flash memory types. This 
routine reads from flash memory by copying from a mapped window. If this 
is appropriate for your flash device, leave read unchanged. Otherwise, your 
MTD identify routine must update this member to point to a more appropriate 
routine.

write 
A pointer to the flash memory write routine. Because of the dangers associated 
with an inappropriate write routine, the default routine for this member 
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returns a write-protect error. The MTD identification routine must supply an 
appropriate function pointer for this member.

erase 
A pointer to the flash memory erase routine. Because of the dangers associated 
with an inappropriate erase routine, the default routine for this member 
returns a write-protect error. The MTD identification routine must supply an 
appropriate function pointer for this member.

setPowerOnCallback 
A pointer to the routine TrueFFS should execute after the flash hardware 
device powers up. TrueFFS calls this routine when it tries to mount a flash 
device. Do not confuse this member of FLFlash with the powerOnCallback 
member of the FLSocket structure. For many flash memory devices, no such 
routine is necessary. 

Return Value 

The identification routine must return flOK or an appropriate error code defined 
in flbase.h. The stub provided is:

FLStatus myMTDIdentification
(
FLFlash vol
)
{
/* Do what is needed for identification */

/* If identification fails return appropriate error */

return flOK;
}

After setting the members listed above, this routine should return flOK. 

Call Sequence

Upon success, the identification routine updates the FLFlash structure, which also 
completes the initialization of the FLSocket structure referenced within this 
FLFlash structure.
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Writing the MTD Map Routine 

MTDs need to provide a map routine only when a RAM buffer is required for 
windowing. No MTDs are provided for devices of this kind in this release. If the 
device you are using requires such support, you need to add a map routine to your 
MTD and assign a pointer to it in FLFlash.map. The routine takes three arguments, 
a pointer to the volume structure, a “card address”, and a length field, and returns 
a void pointer.

static void FAR0 * Map
(FLFlash vol,
 CardAddress address,
int length
)
{
/* implement function */
}

Figure 7-2 Identifying an MTD for the Flash Technology

aaaIdentify( )
bbbIdentify( )
cccIdentify( )
...

tffsDevCreate( ) 

flMountVolume( )

flMount( )

flIdentifyFlash( )
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Writing the MTD Read, Write, and Erase Routines 

Typically, your read, write, and erase routines should be as generic as possible. 
This means that they should:

■ Read, write, or erase only a byte, a word, or a long word at a time.

■ Be able to handle an unaligned read or write. 

■ Be able to handle a read, write, or erase that crosses chip boundaries. 

When writing these routines, you probably want to use the MTD helper routines 
flNeedVpp( ), flDontNeedVpp( ), and flWriteProtected( ). The interfaces for 
these routines are as follows:

FLStatus flNeedVpp(FLSocket vol)
void flDontNeedVpp(FLSocket vol)
FLBoolean flWriteProtected(FLSocket vol)

Use flNeedVpp( ) if you need to turn on the Vpp (the programming voltage) for 
the chip. Internally, flNeedVpp( ) bumps a counter, FLSocket.VppUsers, and then 
calls the routine referenced in FLSocket.VppOn. After calling flNeedVpp( ), check 
its return status to verify that it succeeded in turning on Vpp.

When done with the write or erase that required Vpp, call flDontNeedVpp( ) to 
decrement the FLSocket.VppUsers counter. This FLSocket.VppUsers counter is 
part of a delayed-off system. While the chip is busy, TrueFFS keeps the chip 
continuously powered. When the chip is idle, TrueFFS turns off the voltage to 
conserve power. 1

Use flWriteProtected( ) to test that the flash device is not write protected. The MTD 
write and erase routines must not do any flash programming before checking that 
writing to the card is allowed. The boolean routine flWriteProtected( ) returns 
TRUE if the card is write-protected and FALSE otherwise.

Read Routine 

If the flash device can be mapped directly into flash memory, it is generally a 
simple matter to read from it. TrueFFS supplies a default routine that performs a 
remap, and simple memory copy, to retrieve the data from the specified area. 
However, if the mapping is done through a buffer, you must provide your own 
read routine. 

1. An MTD does not need to touch Vcc. TrueFFS turns Vcc on before calling an MTD routine. 



VxWorks
Device Driver Developer's Guide, 6.6 

154

Write Routine 

The write routine must write a given block at a specified address in flash. Its 
arguments are a pointer to the flash device, the address in flash to write to, a 
pointer to the buffer that must be written, and the buffer length. The last parameter 
is boolean, and if set to TRUE implies that the destination has not been erased prior 
to the write request. The routine is declared as static because it is only called from 
the volume descriptor. The stub provided is:

static FLStatus myMTDWrite
(
FLFlash vol,
CardAddress address,
const void FAR1 *buffer,
int length,
FLBoolean overwrite
)
{
/* Write routine */
return flOK;
}

The write routine must do the following:

■ Check to see if the device is write protected.

■ Turn on Vpp by calling flNeedVpp( ).

■ Always “map” the “card address” provided to a flashPtr before you write.

When implementing the write routine, iterate through the buffer in a way that is 
appropriate for your environment. If writes are permitted only on word or double 
word boundaries, check to see whether the buffer address and the card address are 
so aligned. Return an error if they are not.

The correct algorithms usually follow a sequence in which you:

■ Issue a “write setup” command at the card address. 

■ Copy the data to that address.

■ Loop on the status register until either the status turns OK or you time out. 

Device data sheets usually provide flow charts for this type of algorithm. AMD 
devices require an unlock sequence to be performed as well.

The write routine is responsible for verifying that what was written matches the 
content of the buffer from which you are writing. The file flsystem.h has 
prototypes of compare routines that can be used for this purpose.
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Erase Routine 

The erase routine must erase one or more contiguous blocks of a specified size. 
This routine is given a flash volume pointer, the block number of the first erasable 
block and the number of erasable blocks. The stub provided is:

Static FLStatus myMTDErase
(
FLFlash vol,
int firstBlock,
int numOfBlocks
)
{
volatile UINT32 * flashPtr;
int iBlock;

if (flWriteProtected(vol.socket))
return flWriteProtected;

for (iBlock = firstBlock; iBlock < iBlock + numOfBlocks; Iblock++)
{
flashPtr = vol.map (&vol, iBlock * vol.erasableBlockSize, 0);

/* Perform erase operation here */

/* Verify if erase succeeded */

/* return flWriteFault if failed*/
}

return flOK;
}

As input, the erase can expect a block number. Use the value of the 
erasableBlockSize member of the FLFlash structure to translate this block number 
to the offset within the flash array. 

Defining Your MTD as a Component 

Once you have completed the MTD, you need to add it as a component to your 
system project. By convention, MTD components are named 
INCLUDE_MTD_someName; for example, INCLUDE_MTD_USR. You can include 
the MTD component either through the project facility or, for a command-line 
configuration and build, by defining it in the socket driver file, sysTffs.c. 

Adding Your MTD to the Project Facility 

In order to have the MTD recognized by the project facility, a component 
description of the MTD is required. To add your own MTD component to your 
system by using the project facility, edit the file installDir/vxworks-6.x/target/
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config/comps/vxworks/00tffs.cdf to include it. MTD components are defined in 
that file using the following format:

Component INCLUDE_MTD_type 
{
NAME name 
SYNOPSIS type devices
MODULES filename.o
HDR_FILES tffs/flflash.h tffs/backdrnd.h
REQUIRES INCLUDE_TFFS \

INCLUDE_TL_type 
}

Once you define your MTD component in the 00tffs.cdf file, it appears in the 
project facility the next time you run Workbench. 

Defining the MTD in the Socket Driver File 

For a command-line configuration and build, you can include the MTD component 
simply by defining it in the socket driver file, sysTffs.c, as follows:

#define INCLUDE_MTD_USR 

Add your MTD definition to the list of those defined between the conditional 
clause, as described in the VxWorks Kernel Programmer’s Guide: Flash File System 
Support with TrueFFS. Then, define the correct translation layer for your MTD. If 
both translation layers are defined in the socket driver file, undefine the one you 
are not using. If both are undefined, define the correct one. For other examples, see 
the type-sysTffs.c files in installDir/vxworks-6.x/target/src/drv/tffs/sockets.

Registering the Identification Routine 

The identification routine for every MTD must be registered in mtdTable[ ]. Each 
time a volume is mounted, TrueFFS searches this list to find an MTD suitable for 
the volume (flash device). For each component that has been defined for your 
system, TrueFFS executes the identification routine referenced in mtdTable[ ], until 
it finds a match to the flash device. The current mtdTable[ ] as defined in 
installDir/vxworks-6.x/target/src/drv/tffs/tffsConfig.c is: 

MTDidentifyRoutine mtdTable[] = /* MTD tables */
{

#ifdef INCLUDE_MTD_I28F016
i28f016Identify,

#endif /* INCLUDE_MTD_I28F016 */

! CAUTION:  Be sure that you have the correct sysTffs.c file before changing the 
defines. For more information, see Porting the Socket Driver Stub File, p.158.
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#ifdef INCLUDE_MTD_I28F008
i28f008Identify,

#endif /* INCLUDE_MTD_I28F008 */

#ifdef INCLUDE_MTD_AMD
amdMTDIdentify,

#endif /* INCLUDE_MTD_AMD */

#ifdef INCLUDE_MTD_CDSN
cdsnIdentify,

#endif /* INCLUDE_MTD_CDSN */

#ifdef INCLUDE_MTD_DOC2
doc2Identify,

#endif /* INCLUDE_MTD_DOC2 */

#ifdef INCLUDE_MTD_CFISCS
cfiscsIdentify,

#endif /* INCLUDE_MTD_CFISCS */
};

If you write a new MTD, list its identification routine in mtdTable[ ]. For example:

#ifdef INCLUDE_MTD_USR
usrMTDIdenitfy,

#endif /* INCLUDE_MTD_USR */

It is recommended that you surround the component name with conditional 
include statements, as shown above. The symbolic constants that control these 
conditional includes are defined in the BSP config.h file. Using these constants, 
your end users can conditionally include specific MTDs. 

When you add your MTD identification routine to this table, you should also add 
a new constant to the BSP config.h file. 

Socket Drivers 

The socket driver is implemented in the file sysTffs.c. TrueFFS provides a stub 
version of the socket driver file for BSPs that do not include one. As a writer of the 
socket driver, your primary focus is on the following key contents of the socket 
driver file:

■ The sysTffsInit( ) routine, the main routine. This routine calls the socket 
registration routine. 

■ The xxxRegister( ) routine, the socket registration routine. This routine is 
responsible for assigning routines to the member functions of the socket 
structure.
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■ The routines assigned by the registration routine. 

■ The macro values that should reflect your hardware.

In this stub file, all of the required routines are declared. Most of these routines are 
defined completely, although some use generic or fictional macro values that you 
may need to modify. 

The socket register routine in the stub file is written for RFA (resident flash array) 
sockets only. There is no stub version of the registration routine for PCMCIA socket 
drivers. If you are writing a socket driver for RFA, you can use this stub file and 
follow the steps described in the following section. If you are writing a PCMCIA 
socket driver, see the example in 
installDir/vxworks-6.x/target/src/drv/tffs/sockets/pc386-sysTffs.c and the general 
information in Understanding Socket Driver Functionality, p.162. 

Porting the Socket Driver Stub File 

If you are writing your own socket driver, it is assumed that your BSP does not 
provide one. When you run the build, a stub version of the socket driver, sysTffs.c, 
is copied from installDir/vxworks-6.x/target/config/comps /src to your BSP 
directory. Alternatively, you can copy this version manually to your BSP directory 
before you run a build. In either case, edit only the file copied to the BSP directory; 
do not modify the original stub file. 

This stub version is the starting point to help you port the socket driver to your 
BSP. As such, it contains incomplete code and does not compile. The modifications 
you need to make are listed below. The modifications are not extensive and all are 
noted by /* TODO */ clauses. 

1. Replace “fictional” macro values, such as FLASH_BASE_ADRS, with correct 
values that reflect your hardware. Then, remove the following line:

#error sysTffs: "Verify system macros and function before first use"

2. Add calls to the registration routine for each additional device that your BSP 
supports. Therefore, if you have only one device, you do not need to do 
anything for this step. For details, see the following section.

3. Review the implementation for the two routines marked /* TODO */. You may 
or may not need to add code for them. For details, see Implementing the Socket 
Structure Member Functions, p.159.

NOTE:  Examples of other RFA socket drivers are in 
installDir/vxworks-6.x/target/src/drv/tffs/sockets. 
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Calling the Socket Registration Routines 

The main routine in sysTffs.c is sysTffsInit( ), which is automatically called at 
boot time. The last lines of this routine call the socket register routines for each 
device supported by your system. The stub sysTffs.c file specifically calls the 
socket register routine rfaRegister( ).

If your BSP supports only one (RFA) flash device, you do not need to edit this 
section. However, if your BSP supports several flash devices, you must edit the 
stub file to add calls for each socket’s register routine. The place to do this is 
indicated by the /* TODO */ comments in the sysTffsInit( ) routine. 

If you have several socket drivers, you can encapsulate each xxxRegister( ) call in 
pre-processor conditional statements, as in the following example:

#ifdef INCLUDE_SOCKET_PCIC0 
(void) pcRegister (0, PC_BASE_ADRS_0); /* flash card on socket 0 */

#endif /* INCLUDE_SOCKET_PCIC0 */

#ifdef INCLUDE_SOCKET_PCIC1
(void) pcRegister (1, PC_BASE_ADRS_1); /* flash card on socket 1 */

#endif /* INCLUDE_SOCKET_PCIC1 */

Define the constants in the BSP sysTffs.c. Then, you can use them to selectively 
control which calls are included in sysTffsInit( ) at compile time. 

Implementing the Socket Structure Member Functions 

The stub socket driver file also contains the implementation for the rfaRegister( ) 
routine. This routine assigns routines to the member functions of the FLSocket 
structure, vol. TrueFFS uses this structure to store the data and function pointers 
that handle the hardware (socket) interface to the flash device. For the most part, 
you need not be concerned with the FLSocket structure, only with the routines 
assigned to it. Once these routines are implemented, you never call them directly. 
They are called automatically by TrueFFS.

All of the routines assigned to the socket structure member functions by the 
registration routine are defined in the stub socket driver module. However, only 
the rfaSocketInit( ) and rfaSetWindow( ) routines are incomplete. When you are 
editing the stub file, note the #error and /* TODO */ comments in the code. These 
indicate where and how you need to modify the code. 

! CAUTION:  Do not edit the original copy of the stub version of sysTffs.c in 
installDir/vxworks-6.x/target/config/comps /src. You may need it for future ports.
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Following is a list of all of the routines assigned by the registration routine, along 
with a description of how each is implemented in the stub file. The two routines 
that require your attention are listed with descriptions of how they should be 
implemented. 

rfaCardDetected( ) 
This routine always returns TRUE in RFA environments because the device is 
not removable. Implementation is complete in the stub file.

rfaVccOn( ) 
Vcc must be known to be good on exit. It is assumed to be ON constantly in 
RFA environments. This routine is simply a wrapper. While the 
implementation is complete in the stub file, you may want to add code as 
described below.

When switching Vcc on, the rfaVccOn( ) routine must not return until Vcc has 
stabilized at the proper operating voltage. If necessary, your routine should 
delay execution with an idle loop, or with a call to the flDelayMsec( ) routine, 
until the Vcc has stabilized.

rfaVccOff( ) 
Vcc is assumed to be ON constantly in RFA environments. This routine is 
simply a wrapper and is complete in the stub file.

rfaVppOn( ) 
Vpp must be known to be good on exit and is assumed to be ON constantly in 
RFA environments. This routine is not optional, and must always be 
implemented. Do not delete this routine. While the implementation in the stub 
file is complete, you may want to add code, as described below.

When switching Vpp on, the rfaVppOn( ) routine must not return until Vpp 
has stabilized at the proper voltage. If necessary, your VppOn( ) routine 
should delay execution with an idle loop or with a call to the flDelayMsec( ) 
routine, until the Vpp has stabilized. 

rfaVppOff( ) 
Vpp is assumed to be ON constantly in RFA environments. This routine is 
complete in the stub file; however, it is not optional, and must always be 
implemented. Therefore, do not delete this routine.

NOTE:  More detailed information on the functionality of each routine is provided 
in Understanding Socket Driver Functionality, p.162. However, this information is not 
necessary for you to port the socket driver.
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rfaSocketInit( ) 
Contains a /* TODO */ clause. 

This routine is called each time TrueFFS is initialized (the drive is accessed). It 
is responsible for ensuring that the flash is in a usable state (that is, board-level 
initialization). If, for any reason, there is something that must be done prior to 
such an access, this is the routine in which you perform that action. For more 
information, see rfaSocketInit( ) in Socket Member Functions, p.163.

rfaSetWindow( ) 
Contains a /* TODO */ clause. 

This routine uses the FLASH_BASE_ADRS and FLASH_SIZE values that you set 
in the stub file. As long as those values are correct, the implementation for this 
routine in the stub file is complete. 

TrueFFS calls this routine to initialize key members of the window structure, 
which is a member of the FLSocket structure. For most hardware, the 
setWindow( ) routine does the following, which is already implemented in the 
stub file: 

Sets the window.baseAddress to the base address in terms of 4 KB pages.

Calls flSetWindowSize( ), specifying the window size in 4 KB units 
(window.baseAddress). Internally, the call to flSetWindowSize( ) sets 
window.size, window.base, and window.currentPage for you. 

This routine sets current window hardware attributes: base address, size, 
speed and bus width. The requested settings are given in the vol.window 
structure. If it is not possible to set the window size requested in 
vol.window.size, the window size should be set to a larger value, if possible. 
In any case, vol.window.size should contain the actual window size (in 4 KB 
units) on exit.

For more information, see rfaSetWindow( ) in Socket Member Functions, p.163 
and Socket Windowing and Address Mapping, p.165. 

rfaSetMappingContext( ) 
TrueFFS calls this routine to set the window mapping register. Because 
board-resident flash arrays usually map the entire flash in memory, they do 

! CAUTION:  On systems with multiple socket drivers (to handle multiple flash 
devices), make sure that the window base address is different for each socket. 
In addition, the window size must be taken into account to verify that the 
windows do not overlap.
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not need this routine. In the stub file it is a wrapper, thus implementation is 
complete.

rfaGetAndClearChangeIndicator( ) 
This routine always returns FALSE in RFA environments because the device is 
not removable. This routine is complete in the stub file.

rfaWriteProtected( ) 
This routine always returns FALSE for RFA environments. It is completely 
implemented in the stub file.

Understanding Socket Driver Functionality 

Socket drivers in TrueFFS are modeled after the PCMCIA socket services. They 
must provide the following:

■ services that control power to the socket (be it PCMCIA, RFA, or any other 
type) 

■ criteria for setting up the memory windowing environment 

■ support for card change detection 

■ a socket initialization routine 

This section describes details about socket registration, socket member functions, 
and the windowing and address mapping set by those routines. This information 
is not necessary to port the stub RFA file; however, it may be useful for writers of 
PCMCIA socket drivers.

Socket Registration 

The first task the registration routine performs is to assign drive numbers to the 
socket structures. This is fully implemented in the stub file. You only need to be 
aware of the drive number when formatting the drives (for more information, see 
the VxWorks Kernel Programmer’s Guide: Flash File System Support with TrueFFS). 

The drive numbers are index numbers into a pre-allocated array of FLSocket 
structures. The registration sequence dictates the drive number associated with a 
drive, as indicated in the first line of code from the rfaRegister( ) routine:

FLSocket vol = flSocketOf (noOfDrives);

Here, noOfDrives is the running count of drives attached to the system. The 
routine flSocketOf( ) returns a pointer to socket structure, which is used as the 
volume description and is incremented by each socket registration routine called 
by the system. Thus, the TrueFFS core in the socket structures are allocated for each 
of the (up to) 5 drives supported for the system.2 When TrueFFS invokes the 
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routines that you implement to handle its hardware interface needs, it uses the 
drive number as an index into the array to access the socket hardware for a 
particular flash device.

Socket Member Functions 

■ rfaCardDetected( ) 

This routine reports whether there is a flash memory card in the PCMCIA slot 
associated with this device. For non-removable media, this routine should always 
return TRUE. Internally, TrueFFS calls this routine every 100 milliseconds to check 
that flash media is still there. If this routine returns FALSE, TrueFFS sets 
cardChanged to TRUE. 

■ rfaVccOn( ) 

TrueFFS can call this routine to turn on Vcc, which is the operating voltage. For the 
flash memory hardware, Vcc is usually either 5 or 3.3 Volts. When the media is idle, 
TrueFFS conserves power by turning Vcc off at the completion of an operation. 
Prior to making a call that accesses flash memory, TrueFFS uses this routine to turn 
the power back on. 

When socket polling is active, a delayed Vcc-off mechanism is used, in which Vcc 
is turned off only after at least one interval has passed. If several flash-accessing 
operations are executed in rapid sequence, Vcc remains on during the sequence, 
and is turned off only when TrueFFS goes into a relatively idle state.

■ rfaVccOff( ) 

TrueFFS can call this routine to turn off the operating voltage for the flash memory 
hardware. When the media is idle, TrueFFS conserves power by turning Vcc off. 
However, when socket polling is active, Vcc is turned off only after a delay. Thus, 
if several flags accessing operations are executed in rapid sequence, Vcc is left on 
during the sequence. Vcc is turned off only when TrueFFS goes into an idle state. 
Vcc is assumed to be ON constantly in RFA environments.

■ rfaVppOn( ) 

This routine is not optional, and must always be implemented. TrueFFS calls this 
routine to apply Vpp, which is the programming voltage. Vpp is usually 12 Volts 
to the flash chip. Because not all flash chips require this voltage, the member is 
included only if SOCKET_12_VOLTS is defined. 

Vpp must be known to be good on exit and is assumed to be ON constantly in RFA 
environments. 

2. TrueFFS only supports a maximum of 5 drives numbered 0-4. 
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■ rfaVppOff( ) 

TrueFFS calls this routine to turn off a programming voltage (Vpp, usually 12 
Volts) to the flash chip. Because not all flash chips require this voltage, the member 
is included only if SOCKET_12_VOLTS is defined. This routine is not optional, and 
must always be implemented. Vpp is assumed to be ON constantly in RFA 
environments.

■ rfaSocketInit( ) 

TrueFFS calls this routine before it tries to access the socket. TrueFFS uses this 
routine to handle any initialization that is necessary before accessing the socket, 
especially if that initialization was not possible at socket registration time. For 
example, if no hardware detection was performed at socket registration time, or if 
the flash memory medium is removable, this routine should detect the flash 
memory medium and respond appropriately, including setting cardDetected to 
FALSE if it is missing. 

■ rfaSetWindow( ) 

TrueFFS uses window.base to store the base address of the memory window on the 
flash memory, and window.size to store the size of the memory window. TrueFFS 
assumes that it has exclusive access to the window. That is, after it sets one of these 
window characteristics, it does not expect your application to directly change any 
of them, and could crash if you do. An exception to this is the mapping register. 
Because TrueFFS always reestablishes this register when it accesses flash memory, 
your application may map the window for purposes other than TrueFFS. However, 
do not do this from an interrupt routine. 

■ rfaSetMappingContext( ) 

TrueFFS calls this routine to set the window mapping register. This routine 
performs the sliding action by setting the mapping register to an appropriate 
value. Therefore, this routine is meaningful only in environments such as 
PCMCIA, that use the sliding window mechanism to view flash memory. Flash 
cards in the PCMCIA slot use this routine to access or set a mapping register that 
moves the effective flash address into the host’s memory window. The mapping 
process takes a “card address”, an offset in flash, and produces a real address from 
it. It also wraps the address around to the start of flash if the offset exceeds flash 
length. The latter is the only reason why the flash size is a required entity in the 
socket driver. On entry to setMappingContext, vol.window.currentPage is the 

NOTE:  The macro SOCKET_12_VOLTS is only alterable by users that have source 
code for the TrueFFS core. 
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page already mapped into the window (meaning that it was mapped in by the last 
call to setMappingContext). 

■ rfaGetAndClearChangeIndicator( ) 

This routine reads the hardware card-change indication and clears it. It serves as a 
basis for detecting media-change events. If you have no such hardware capability, 
return FALSE for this routine (set this function pointer to NULL).

■ rfaWriteProtected( ) 

TrueFFS can call this routine to get the current state of the media’s write-protect 
switch (if available). This routine returns the write-protect state of the media, if 
available, and always returns FALSE for RFA environments. For more information, 
see the VxWorks Kernel Programmer’s Guide: Flash File System Support with TrueFFS.

Socket Windowing and Address Mapping 

The FLSocket structure (defined in installDir/vxworks-6.x/target/h/tffs/flsocket.h) 
contains an internal window state structure. If you are porting the socket driver, 
the following background information about this window structure may be useful 
when implementing the xxxSetWindow( ) and xxxSetMappingContext( ) 
routines.

The concept of windowing derives from the PCMCIA world, which formulated 
the idea of a host bus adapter. The host could allow one of the following situations 
to exist:

■ The PCMCIA bus could be entirely visible in the host’s address range.

■ Only a segment of the PCMCIA address range could be visible in the host’s 
address space.

■ Only a segment of the host’s address space could be visible to the PCMCIA.

To support these concepts, PCMCIA specified the use of a “window base register” 
that may be altered to adjust the view from the window. In typical RFA scenarios, 
where the device logic is NOR, the window size is that of the amount of flash on 
the board. In the PCMCIA situation, the window size is implementation-specific. 
The book PCMCIA Systems Architecture by Don Anderson provides an explanation 
of this concept, with illustrations. 
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Flash Translation Layer

This section provides a detailed discussion of the flash translation layer (FTL). 

Terminology 

Due to the complex nature of the FTL layer, you may find the following definitions 
useful as a reference for the remainder of this section.

virtual sector number 
The virtual sector number is what the upper software layers see as a sector 
number. The virtual sector number is used to reference sectors the upper 
software layers want to access. The virtual sector number can be decoded into 
page number and sector in page. These decoded numbers are used to find the 
logical sector number.

virtual sector address 
The virtual sector address is the virtual sector number shifted left by 9. This 
gives a byte offset into the flash array corresponding to a 512 byte sector size. 
A block allocation map (BAM) entry can contain the virtual sector address for 
logical sectors that contain data. 

virtual sector 
The data the virtual sector number references. 

Figure 7-3 Virtual Sector Number 
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Figure 7-4 Virtual Sector Address 
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logical sector number 
The logical sector number can be decoded to determine the physical sector 
address. It decodes to the logical unit number and the sector in unit. 

logical sector address 
The logical sector address is the logical sector number shifted left by 9 (512 
byte sectors). This address is used for the virtual block map (VBM) entries. 

logical sector 
If the logical sector term is used, it is referring to the physical sector. 

physical sector address 
The physical sector address is the memory address in the flash volume where 
the data that is being referenced by a virtual sector number resides.

physical sector 
The physical sector is the data that a virtual sector number references. 

garbage sector 
This is a physical sector that has been marked as garbage in the BAM. This 
garbage sector becomes a free sector when a unit transfer happens on the erase 
unit that contains this garbage sector. 

sector in unit 
Sector in unit is the number of sectors into the physical erase unit where the 
physical sector resides. 

Figure 7-5 Logical Sector Number 
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Figure 7-6 Logical Sector Address
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logical unit number 
The logical unit number refers to the number assigned to a physical erase unit 
when it becomes part of a flash volume. This logical unit number is located in 
the erase unit header. Transfer units do not have a logical unit number 
assigned to them. The logical unit number is used to index into the 
vol.logicalUnits[ ] array. The vol.logicalUnits[ ] array contains pointers into 
the vol.physicalUnits[ ] array.

logical erase unit 
Not all erase units are logical erase units. Only erase units that have been 
assigned a logical unit number are logical erase units. 

physical unit number 
The physical unit number can be used to traverse the vol.physicalUnits[ ] 
array. Generally, the physical unit number is generated when using a logical 
unit number along with the vol.logicalUnits[ ] array and then using pointer 
arithmetic off of the pointer into the vol.physicalUnits[ ] array.

physical erase unit 
This is the same as an erase unit.

erase unit 
An erase unit is the smallest area on the flash device that can be erased. Each 
erase unit in the flash volume is divided into several physical sectors and 
includes a header called an erase unit header.

erase unit header 
The erase unit header contains information about the FLT volume. It also 
contains some current information about the erase unit, such as wear-leveling 
and logical unit number. 

virtual block map 
A virtual block map (VBM) table is a map of virtual sector numbers to logical 
sector addresses. Each VBM page takes up one physical sector. The logical 
sector number of the physical sector that contains a VBM page is stored in the 
vol.pageTable[ ] array at the time the flash volume is mounted. A virtual 
sector number is decoded into a page number to be used with the 
vol.pageTable[ ] array and the sector in page. Each VBM entry contains one of 
the following: a logical sector address or a designated free sector or deleted 
sector. 
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block allocation map 
There is a block allocation map (BAM) in each logical erase unit. The BAM 
starts immediately after the erase unit header. There is a BAM entry for each 
sector in the erase unit. Each physical sector in the erase unit is labeled in the 
BAM based on the type of data stored in that sector. The lower 7 bits of each 
BAM entry is the block allocation type, which states what type of data is 
located in the physical sector associated with the BAM entry. 

block allocation type 
Block allocation type is a number specifying what type of data is stored in the 
physical sector associated with the BAM entry.

page table 
Page table is synonymous with the vol.pageTable[ ] array. This array contains 
each VBM page and some directly addressable sectors. It has logical sector 
numbers to these VBM pages and directly addressable sectors.

page number 
Page number is an index into the vol.pageTable[ ] array. This page number can 
be generated using the virtual sector number. When the page number is used 
with the vol.pageTable[ ] array, it finds the logical sector number of the VBM 
page. 

Figure 7-7 Virtual Block Map (VBM)
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Figure 7-8 Block Allocation Map (BAM) 
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sector in page 
After the page number is used to get the logical sector number of the VBM 
page, the VBM entry located at the sector in page is used to find the logical 
sector address of virtual sector number in question.

replacement page 
The replacement page is used to increase the speed of the FTL. When a VBM 
entry has been used and the entry needs to be replaced, a replacement page is 
used for the new entry. In this manner, a new VBM page is not needed every 
time an entry must be overwritten.

transfer unit 
When a unit gets full and has garbage sectors, it can be transferred to a clean 
erase unit. This clean erase unit is called a transfer unit. After the transfer, the 
transfer unit takes on the logical unit number of the erase unit that was 
transferred. The old erase unit is then erased.

unit transfer 
Unit transfer refers to the act of transferring valid data from a logical unit to a 
transfer unit. 

directly addressable sectors 
Directly addressable sectors are virtual sectors that are not mapped through 
the VBM pages. These sectors are added to the end of the vol.pageTable[ ] 
array for direct access. These directly addressable sectors are set up to be the 
beginning of the virtual disk. Because the FAT is at the beginning of the virtual 
disk, this results in a modest speed increase. All sectors can be set up to go 
through this direct addressing. However, this results in the vol.pageTable[ ] 
taking up additional physical memory. 

flash volume 
The flash volume is composed of all erase units associated with the flash 
device, including reserved flash. 

Overview 

Flash can only be written once before it must be erased. Because an erase unit is 
larger than a sector, FTL cannot erase a single sector. Instead, it must erase an entire 
erase unit. This is the primary reasons for having a flash translation layer. In 
addition to this primary responsibility, the FTL is also responsible for 
wear-leveling.

The FTL keeps track of sectors and their physical sector addresses through several 
tables stored on the flash device. Virtual sectors are mapped to logical sectors 
through these tables. Virtual sectors are what the upper software layers use to 
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reference their sectors. Logical sectors are what the FTL uses to find the physical 
sector. Virtual sectors map to logical sectors, while logical sectors map to physical 
sectors.

As an example, the FTL is needed when a sector is being overwritten. In this case, 
the virtual sector requires a new physical sector to store this new data because it 
cannot write over the old data. So, a new logical sector, referencing the new 
physical sector, is allocated. The data is then written to this new physical sector. 
The new logical sector is mapped to the virtual sector in question. The old logical 
sector is then deleted by marking it as a garbage sector. Marking as a garbage 
sector allows the old physical sector to be reclaimed at a later time, as part of 
garbage collection.

Special care must be taken to reclaim garbage sectors. This reclamation of garbage 
sectors is done by transferring valid data from an erase unit to an erase unit that 
has already been erased. This erased erase unit is called a transfer unit. 

As mentioned previously, in order to erase even a single bit of flash, an entire erase 
unit must be erased. (For more information on erase units, see Erase Units, p.177.) 
The flash translation layer controls erasing and the movement of data around the 
flash device. 

Structures 

The Flare structure contains information about the physical device. Before more 
detail of the Flare structure is shown, some type defines and other structures must 
be explained.

typedef unsigned long SectorNo; 
typedef long int LogicalAddress; 
typedef long int VirtualAddress; 
typedef SectorNo LogicalSectorNo; 
typedef SectorNo VirtualSectorNo; 
typedef unsigned short UnitNo; 
typedef unsigned long CardAddress;

Each of the typedefs serves a particular purpose. The type defines are as follows: 

SectorNo 
SectorNo is used for both virtual and logical sector numbers. It can be type 
defined differently based on the maximum volume size. If the maximum 
volume size is 32 MB or less, SectorNo is defined as an unsigned short. If the 
maximum volume size is more than 32 MB, SectorNo is defined as an 
unsigned long. All versions of VxWorks have the maximum volume size set 
greater than 32 MB. 
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LogicalSectorNo 
LogicalSectorNo is used for logical sector numbers.

VirtualSectorNo 
VirtualSectorNo is used for virtual sector number.

LogicalAddress 
LogicalAddress is used for logical sector addresses.

VirtualAddress 
VirtualAddress is used for virtual sector addresses.

UnitNo 
UnitNo is used to store logical unit numbers.

CardAddress 
CardAddress is used to store the physical address of the flash in question. This 
address does not need to align with anything.  

There is a structure called Unit that is used to reference units in the Flare structure. 

typedef struct 
{ 
short noOfFreeSectors; 
short noOfGarbageSectors; 
} Unit; 

The Flare structure is really the structure Tlrec therefore both structures are 
declared. This Flare structure is used in ftllite.c in the vols[ ] array. 

typedef TLrec Flare; 
struct tTLrec { 
FLBoolean badFormat; /* true if FTL format is bad */ 
VirtualSectorNo totalFreeSectors; /* Free sectors on volume */ 
SectorNo virtualSectors; /* size of virtual volume */ 
unsigned int unitSizeBits; /* log2 of unit size */
unsigned int erasableBlockSizeBits; /* log2 of erasable block size */
UnitNo noOfUnits; 
UnitNo noOfTransferUnits; 
UnitNo firstPhysicalEUN; 
int noOfPages; 
VirtualSectorNo directAddressingSectors; /* no. of directly addressable sectors */ 
VirtualAddress directAddressingMemory; /* end of directly addressable memory */ 
CardAddress unitOffsetMask; /* = 1 << unitSizeBits - 1 */ 
CardAddress bamOffset; 
unsigned int sectorsPerUnit; 
unsigned int unitHeaderSectors; /* sectors used by unit header */ 

NOTE:  Unfortunately, the above type defines, when used in the source code, 
do not always follow the names described. For example, there are several 
places where a VirtualSectorNo holds a virtual sector address. 
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Unit * physicalUnits; /* unit table by physical no. */ 
Unit ** logicalUnits; /* unit table by logical no. */ 
Unit * transferUnit; /* The active transfer unit */ 
LogicalSectorNo * pageTable; /* page translation table */ 

/* directly addressable sectors */ 
LogicalSectorNo replacementPageAddress; 
VirtualSectorNo replacementPageNo; 
SectorNo mappedSectorNo; 
const void FAR0 * mappedSector; 
CardAddress mappedSectorAddress; 
unsigned long currWearLevelingInfo; 

#ifdef BACKGROUND 
Unit * unitEraseInProgress; /* Unit currently being formatted */ 
FLStatus garbageCollectStatus; /* Status of garbage collection 
/* 
* When unit transfer is in the background, and is currently in progress, 
* all write operations done on the 'from' unit must be mirrored on the 
* transfer unit. If so, 'mirrorOffset' will be non-zero and is the 
* offset of the alternate address from the original. 'mirrorFrom' and 
* 'mirrorTo' are the limits of the original addresses to mirror. 
*/ 
long int mirrorOffset; 
CardAddress mirrorFrom, mirrorTo; 

#endif 
#ifndef SINGLE_BUFFER 
FLBuffer * volBuffer; /* Define a sector buffer */ 

#endif 
FLFlash flash; 

#ifndef MALLOC_TFFS 
char heap[HEAP_SIZE]; 

#endif 
}; 

Each field is defined as described below. These values represent the whole flash 
volume.

badFormat 
If the flash volume does not mount correctly, badFormat is set to TRUE. Several 
routines check this value before continuing.

totalFreeSectors 
The number of physical sectors in the volume that are set to FREE_SECTOR in 
the BAM tables. This is not the number of physical sectors not in use, because 
this would also include garbage sectors in the total.

virtualSectors 
virtualSectors is the number of physical sectors available to the upper 
software layers. This is not the total number of physical sectors. Physical 
sectors that do not get counted are physical sectors in transfer units, physical 
sectors that are part of the FTL control structures (such as the BAM and erase 
unit headers), and physical sectors that are used by the VBM pages. Other 
physical sectors that are not considered are those that are reserved for the FTL 
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layer to increase its efficiency. These reserved physical sectors are user defined 
with percentUse in the tffsFormatParms structure passed when formatting 
the flash volume.

vol.sectorsPerUnit = (1 << (vol.unitSizeBits - SECTOR_SIZE_BITS)); 
vol.unitHeaderSectors = (((vol.bamOffset + sizeof(VirtualAddress) *

vol.sectorPerUnit - 1) >> 
SECTOR_SIZE_BITS) + 1); 

vol.virtualSectors = ((vol.noOfUnits - vol.firstPhysicalEUN – 
formatParams->noOfSpareUnits) * 
(vol.sectorsPerUnit - vol.unitHeaderSectors) * 
formatParams->percentUse / 100) – 
(vol.noOfPages + 1);

unitSizeBits 
unitSizeBits is the number of bits it takes to store the erase unit size. The 
outcome of the calculation is (ln(vol.flash.erasableBlockSize) / ln(2)). 

unitSizeBits = vol.erasableBlockSizeBits;

erasableBlockSizeBits 
erasableBlockSizeBits is the number of bits it takes to store the erasable block 
size. This erasable block size is the same as erase unit size. Because the size of 
an erase unit is flash-device dependent, there is no quick calculation. The 
initFTL( ) routine uses an optimized routine to calculate 
vol.erasableBlockSizeBits through vol.flash.erasableBlockSize. The size of 
the erase unit, vol.flash.erasableBlockSize, is setup by the MTD. The outcome 
of the calculation is (ln(vol.flash.erasableBlockSize) / ln(2)) 

noOfUnits 
noOfUnits is the total number of units in the volume, including transfer units, 
and reserved units. Do not confuse Flare structure noOfUnits with the unit 
headers of the noOfUnits field. These values are different. 

noOfUnits = ((vol.flash.noOfChips * vol.flash.chipSize) >>
vol.unitSizeBits);

noOfTransferUnits 
noOfTransferUnits is the number of transfer units on the flash volume. This 
value is user defined when the flash volume is formatted as noOfSpareUnits 
in the structure tffsFormatParams. 

firstPhysicalEUN 
firstPhysicalEUN is the physical unit number of the file system on the flash 
volume. This number is necessary because some of the flash volume can be 
reserved for use by the user.

firstPhysicalEUN  = (((formatParams->bootImageLen - 1) >>
vol.unitSizeBits) + 1);
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noOfPages 
noOfPages is the number of VBM pages needed to map all of the virtual 
sectors that the upper software layers can access. 

noOfPages = ((vol.virtualSectors * SECTOR_SIZE - 1) >> 
PAGE_SIZE_BITS) + 1;

directAddressingSectors 
directAddressingSectors are logical sectors that are directly mapped. These 
logical sectors are not mapped through the VBM pages. Since VBM pages are 
not virtual sectors, they too are part of this number. The number of virtual 
sectors that are part of directAddressingSectors is based on a user defined 
value when the flash volume is formatted. This user defined value is 
vmAddressingLimit in the structure tffsFormatParams.

directAddressingSectors = (formatParams->vmAddressingLimit / 
SECTOR_SIZE) + vol.noOfPages;

directAddressingMemory 
directAddressingMemory is the amount of flash that is directly mapped 
through the pageTable[ ] array and not through the VBM pages. This increases 
the speed to these virtual sectors. This value is user defined when the flash 
volume is formatted as vmAddressingLimit in the structure 
tffsFormatParams. 

directAddressingMemory = formatParams->vmAddressingLimit;

unitOffsetMask 
unitOffsetMask is used in one calculation in the source code. The routine 
logical2Physical( ) is used to calculate the physical sector address of a logical 
sector.

unitOffsetMask = (1L << vol.unitSizeBits) - 1;

bamOffset 
bamOffset is the offset of the BAM with reference to the beginning of the erase 
unit header. Typically bamOffset is just sizeof(UnitHeader) which is 0x44 
(68). If embeddedCIS of formatParams is anything but 0, the calculation 
becomes difficult.

bamOffset = sizeof(UnitHeader);

or this if formatParams->embeddedCISlength is not 0

bamOffset = sizeof(UnitHeader) – (sizeof uh->embeddedCIS) + 
(formatParams->embeddedCISlength + 3) / 4 * 4;

sectorsPerUnit 
sectorsPerUnit is the number of physical sectors in an erase unit.

sectorsPerUnit = (1 << (vol.unitSizeBits - SECTOR_SIZE_BITS));
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unitHeaderSectors 
unitHeaderSectors is the number of physical sectors that are taken up by the 
erase unit header and the BAM table for a single erase unit. Note that 
allocEntryOffset( ) returns offset of the BAM entry from the beginning of the 
erase unit.

unitHeaderSectors = ((allocEntryOffset(&vol,vol.sectorsPerUnit) - 1) >>
SECTOR_SIZE_BITS) + 1;

physicalUnits 
physicalUnits[ ] array stores information about each physical unit. This 
information is the simple structure called Unit (defined earlier). It is filled out 
when the flash volume is mounted. &physicalUnits[x] is passed into many 
routines, which is used to find the index into the physicalUnits[ ] array. The 
index into the physicalUnits[ ] array is the physical unit number.

logicalUnits 
logicalUnits[ ] array stores pointers to an index into the physicalUnits[ ] 
array. The logicalUnits[ ] array index is the logical unit number. This is used 
when converting from logical unit numbers to physical unit numbers. 
logicalUnits[x] maps to &physicalUnits[y]. The physical unit number can be 
determined using pointer arithmetic off of &physicalUnits[y].

transferUnit 
transferUnit is the pointer &physicalUnits[x] where x is the physical unit 
number of the transfer unit.

pageTable 
pageTable[ ] array is a list of logical sector numbers that reference the directly 
addressable sectors and the VBM pages. pageTable[0] up to 
pageTable[noOfPages - 1] are VBM pages, while pageTable[noOfPages] to 
pageTable[directAddressingSectors – 1] are part of the directly addressable 
memory. 

replacementPageAddress 
The logical sector number of the replacement page. When browsing the 
replacementPageAddress get assigned sectorAddress. sectorAddress is not a 
logical sector address, but a logical sector number.

replacementPageNo 
replacementPageNo is the VBM page number that the replacement page is 
replacing. 

mappedSectorNo 
mappedSectorNo is the logical sector number that is mapped to a global 
buffer. 
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mappedSector 
mappedSector is the physical address of the mapped sector. 

mappedSectorAddress 
mappedSectorAddress is the physical sector address of mappedSectorNo.

currWearLevelingInfo 
currWearLevelingInfo is the wear-leveling information about the whole 
volume. This number is incremented every time an erase unit is erased.

unitEraseInProgress 
Not used. For background garbage collection only.

garbageCollectStatus 
Not used. For background garbage collection only.

mirrorOffset 
Not used. For background garbage collection only.

mirrorFrom 
Not used. For background garbage collection only. 

mirrorTo 
Not used. For background garbage collection only.

volBuffer 
volBuffer is a pointer to a buffer that is used by all vol structures. This buffer 
is defined as the structure FLBuffer. This buffer can hold the data of a single 
sector. 

flash 
Structure to get access to the flash primitives. This is accessible to the MTD.

heap[HEAP_SIZE] 
Not used. For operating systems that do not support malloc( ).

Erase Units 

In VxWorks, an erase unit is the smallest area that can be erased on the flash device. 
Typical sizes for an erase unit are 64 KB and 128 KB. The size of an erase unit 
depends on the type of flash chips used, and if they are interleaved together. 

Interleaved Flash Chips 

Flash chips are sometimes interleaved to allow larger word access to flash. That is, 
two 8-bit flash chips can be interleaved together to allow 16-bit access. When 
working with interleaved flash, the smallest area that can be erased is increased. 
This smallest erasable area is called an erase unit.
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The minimum erase area is increased by a factor of the number of flash chips 
interleaved together. In the case of two 8-bit flash chips interleaved to allow 16-bit 
access to the flash device, two erase blocks would make up one erase unit. 
Therefore, in this case, if the erase block size is 64 KB, the erase unit size is 128 KB. 

A flash device is split up into erase units, while the erase units are sub divided into 
physical sectors. These physical sectors are sometimes called read/write blocks in 
other documentation. A physical sector is 512 bytes in size and is hard coded into 
the FTL. 

An erase unit is also split up into 3 other sections. These sections overlay the 
physical sectors. These 3 sections are the erase unit header, block allocation map 
(BAM), and the data area. The BAM starts immediately after the erase unit header, 
and may not align on a physical sector boundary. The data area always aligns with 
a physical sector. 

NOTE:  As a note, erasing an erase unit is sometimes called formatting. This is not 
the same as a DOS format. 

Figure 7-9 Flash Device Layout 
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Erase Unit Header 

The erase unit header contains data about the flash volume and the current erase 
unit. The erase unit header is defined as UnitHeader in fltlite.c. Note that the erase 
unit header is only a part of the erase units that are part of the file system The erase 
unit header is not part of the erase units in the user reserved area. 

typedef struct 
{ 
char formatPattern[15]; 
unsigned char noOfTransferUnits; /* no. of transfer units */ 
LEulong wearLevelingInfo; 
LEushort logicalUnitNo; 
unsigned char log2SectorSize; 
unsigned char log2UnitSize; 
LEushort firstPhysicalEUN; /* units reserved for boot

image */
LEushort noOfUnits; /* no. of formatted units */ 
LEulong virtualMediumSize; /* virtual size of volume */ 
LEulong directAddressingMemory; /* directly addressable memory */
LEushort noOfPages; /* no. of virtual pages */ 
unsigned char flags; 
unsigned char eccCode; 
LEulong serialNumber; 
LEulong altEUHoffset; 
LEulong BAMoffset; 
char reserved[12]; 
char embeddedCIS[4]; /* Actual length may be larger. 

By default, this contains FF's */
} UnitHeader;

A detailed description of the parameters in the erase unit header follows this 
introduction. The following description also includes some calculations that 

Figure 7-10 Erase Unit Layout 
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require other structures. formatParams, which is described in a previous section, 
is used. Information used from the Flare structure is accessed through vol. For 
more information on the Flare structure, see Structures, p.171. 

formatPattern 
formatPattern consists of the PCMCIA link target tuple (first 5 bytes) and the 
PCMCIA data organization tuple (last 10 bytes). This formatPattern in the 
erase unit header is used to verify that the erase unit is valid by calling the 
verifyFormat( ) routine. FORMAT_PATTERN is defined in ftllite.c as a 
comparison string used by verifyFormat( ). The first 2 bytes and the 6th byte 
are ignored by verifyFormat( ).

static char FORMAT_PATTERN[15] = {0x13, 3, 'C', 'I', 'S',
0x46, 57, 0, 'F', 'T', 'L', '1', '0', '0', 0};

noOfTransferUnits 
The noOfTranferUnits is set by the user when the flash volume is formatted. 
For more information, refer to noOfSpareUnits in tffsFormatParams.

noOfTransferUnits = formatParams->noOfSpareUnits;

wearLevelingInfo 
wearLevelingInfo is used to keep track wear-leveling for the flash volume. 
This parameter is specific to each erase unit. This allows the FTL to keep track 
of the order in which erase units are erased. When an erase unit is erased, 
wearLevelingInfo increments the value of vol.currWearLevelingInfo. 
vol.currWearLevelingInfo keeps track of the number of times any of the erase 
units have been erased on a flash volume. 

logicalUnitNo 
logicalUnitNo is the logical unit number of an erase unit. This number is 
unique for each logical erase unit. logicalUnitNo is used as an index into 
vol.logicalUnits[ ] array. When mounting a flash volume, the physical unit 
associated with &vol.physcialUnits[ ] is assigned to 
vol.logicalUnits[logicalUnitNo]. If the erase unit is not mapped into the 
vol.logicalUnits[ ] array, logicalUnitNo has a value of 
UNASSIGNED_UNIT_NO (0xffff) or MARKED_FOR_ERASE (0x7fff). If the 
value is UNASSIGNED_UNIT_NO the erase unit is a transfer unit. If the value 
is MARKED_FOR_ERASE then the erase unit is in the process of a unit transfer. 
For a very short period of time during a unit transfer there can be 2 erase units 
with the same logicalUnitNo. 

log2SectorSize 
log2SectorSize is the number of bits needed to store the physical sector size. 
Because the sector size is 512 bytes, the calculation is (ln(512) / ln(2)) which is 
9. 
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#define SECTOR_SIZE_BITS 9 
log2SectorSize = SECTOR_SIZE_BITS;

log2UnitSize 
Similar to the calculation of log2SectorSize, but instead of using the size of a 
physical sector, it uses the size of an erase unit. Because the size of an erase unit 
is flash device dependent, there is no quick calculation. The initFTL( ) uses an 
optimized routine to calculate vol.erasableBlockSizeBits through 
vol.flash.erasableBlockSize. The vol.flash.erasableBlockSize, which is the 
size of the erase unit, is set up by the MTD. The end result is that log2UnitSize 
is set to (ln(vol.flash.erasableBlockSize) / ln(2)).

vol.unitSizeBits = vol.erasableBlockSizeBits; 
log2UnitSize = vol.unitSizeBits;

firstPhysicalEUN 
firstPhysicalEUN is the physical unit number of the file system on the flash 
volume. This number is necessary since some of the flash volume can be 
reserved for user use. vol.firstPhysicalEUN is first calculated during a format 
of the FTL partition. 

vol.firstPhysicalEUN  = (((formatParams->bootImageLen - 1) >> 
vol.unitSizeBits) + 1); 

firstPhysicalEUN = vol.firstPhysicalEUN; 

noOfUnits 
noOfUnits is the number of erase units used by the file system. Note that this 
number may not include all of the erase units on the flash volume, since 
reserved flash is not counted. This calculation uses vol.noOfUnits, which is 
not the same as the erase unit header's noOfUnits. vol.noOfUnits is the total 
number of erase units for the flash volume.

vol.noOfUnits = ((vol.flash.noOfChips * vol.flash.chipSize) >> 
vol.unitSizeBits); 

noOfUnits =(vol.noOfUnits - vol.firstPhysicalEUN);

virtualMediumSize 
virtualMediumSize is the total number of physical sectors that can be used by 
the file system, and thus the number of sectors available to the upper software 
layers. This is sometimes called the formatted size. This calculation is very 
complex, since it has to exclude transfer units, BAM, erase unit headers, page 
tables, and so forth. 

vol.sectorsPerUnit = (1 << (vol.unitSizeBits - SECTOR_SIZE_BITS)); 
vol.unitHeaderSectors = (((vol.bamOffset + sizeof(VirtualAddress) * 

vol.sectorPerUnit - 1) >> SECTOR_SIZE_BITS) + 1);
vol.virtualSectors = ((vol.noOfUnits - vol.firstPhysicalEUN – 

formatParams->noOfSpareUnits) * 
(vol.sectorsPerUnit - vol.unitHeaderSectors) *
formatParams->percentUse / 100) – (vol.noOfPages + 1);
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#define SECTOR_SIZE 512 
virtualMediumSize = (vol.virtualSectors * SECTOR_SIZE); 

directAddressingMemory 
directAddressingMemory is based off of vmAddressingLimit from the 
tffsFormatParams structure. vmAddressingLimit has already been discussed.

vol.directAddressingMemory = formatParams->vmAddressingLimit; 
directAddressingMemory = vol.directAddressingMemory;

noOfPages 
noOfPages is the number of physical sectors needed for all the VBM pages. 
Part of this calculation is somewhat confusing. Because each entry in a VBM 
page is 4 bytes in size, (SECTOR_SIZE_BITS - 2) is used. A simpler calculation 
would be ((vol.virtualSectors – 1) >> (SECTOR_SIZE_BITS - 2) + 1) rather than 
what is used in the source code. 

#define PAGE_SIZE_BITS (SECTOR_SIZE_BITS + (SECTOR_SIZE_BITS - 2)) 
vol.noOfPages = ((vol.virtualSectors * SECTOR_SIZE - 1) >> 

PAGE_SIZE_BITS) + 1; 
noOfPages = vol.noOfPages;

flags 
flags is not used and is set to 0 during the format of the flash volume. If any 
other value is found in this field, the erase unit is considered bad by the 
software. 

eccCode 
eccCode is the Error Detection and Correction (EDAC) type. Set to 0xff as the 
default value. Must be either 0xff or 0x00 or the erase unit is considered bad.

serialNumber 
This field is not used, and is zeroed out.

altEUHOffset 
This is the offset to the alternate erase unit header. Note that this value is not 
used in any calculation. altEUHOffset is set to 0 during the format of the flash 
volume. 

BAMoffset 
BAMoffset is the offset of the BAM with reference to the beginning of the erase 
unit header. Typically BAMoffset is just sizeof(UnitHeader) which is 0x44 (68). 
If embeddedCIS of formatParams is anything but 0, the calculation becomes 
difficult. 

vol.bamOffset = sizeof(UnitHeader);
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or this if formatParams->embeddedCISlength is not 0

vol.bamOffset = sizeof(UnitHeader) – (sizeof uh->embeddedCIS) + 
(formatParams->embeddedCISlength + 3) / 4 * 4; 

BAMoffset = vol.bamOffset;

reserved 
12 bytes. Reserved for future use.

embeddedCIS 
embeddedCIS is the location of the embedded CIS information. The default 
size is 4 bytes, which the user can override.

The above fields are derived when the flash volume is formatted. All of these fields 
are the same for each erase unit in the flash volume except wearLevelingInfo and 
logicalUnitNo which are specific to an erase unit. When an erase unit is being 
formatted (or erased), all of these fields are copied from another valid erase unit, 
except wearLevelingInfo and logicalUnitNo.
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8.1  Introduction 

This chapter describes resource drivers. This chapter assumes that you are familiar 
with the contents of the VxWorks Device Driver Developer's Guide, Volume 1: 
Fundamentals of Writing Device Drivers, which discusses generic driver concepts as 
well as details of VxBus that are not specific to any driver class.
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8.2  Overview 

Many target systems include special purpose resources that can be allocated in one 
of several ways for use by other devices and drivers. Special purpose resources are 
typically available when there is a resource in the system that can be used by 
multiple devices, when a resource is expensive, or when there are more consumer 
devices for the resource than there are resources available. These resources include 
hardware elements such as switching and routing systems to transfer bus traffic 
from a bus controller to the bus it manages.

Management of these resources should be done by a resource driver dedicated to 
managing the resource. The management can involve allocation of the resource to 
other drivers, startup configuration, or run-time management of a limited 
resource.

As a rule, resource drivers are highly custom. You can think of these drivers as the 
glue code that makes the system work correctly.

8.3  VxBus Driver Methods 

There are generally two operations that resource drivers perform. First, the driver 
can allocate some resource. Second, the driver can manage a resource on behalf of 
some other entity on the system, which may or may not involve allocation to the 
requestor. 

Wind River provides custom methods for resource drivers, for example, 
{cpmCommand}( ) and {m85xxLawBarAlloc}( ). These custom methods should 
not be advertised by new drivers, as they are custom-defined for the drivers that 
already use them, and creating new drivers that advertise these methods causes an 
adverse impact for other drivers.

The only method that can be used by developers of third-party resource drivers is 
the generic {driverControl}( ) method. This method is described in 13. Other Driver 
Classes. 
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8.4  Header Files 

There are no header files that are applicable to resource drivers as a class. However, 
when a resource driver is written specifically for a single chip, there may be header 
files shared by the devices on that chip. 

8.5  BSP Configuration 

Because resource drivers are highly customized, there can be custom BSP 
requirements for a resource driver. In some cases, this involves allowing the BSP to 
configure the allocation of resources to drivers that require use of the resources.

For more information on BSP configuration, see VxWorks Device Driver Developer’s 
Guide (Vol.1): Device Driver Fundamentals.

8.6  Available Utility Routines 

There are no utility routines available that are specific to resource drivers.

8.7  Initialization 

Other drivers in the system may be dependent on resource drivers and may have 
initialization restrictions of their own. For this reason, resource drivers are often 
required to complete their initialization in VxBus initialization phase 1 
(devInstanceInit( )).
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8.8  Debugging 

For most development, resource drivers are simple to debug because the system 
can be completely up before the resource driver is loaded. However, if the system 
cannot be booted without the resource driver, or if the resource driver is required 
in order for all peripheral devices to be available for use as a debug interface, then 
debugging resource drivers can be more complex. 

One way of handling this situation is to develop the resource driver as the BSP is 
being developed. In this case, the BSP developer may be able to hard-wire the 
resource allocation during initial development. The system can then be booted to 
a point where normal debug tools are available, and the resource driver completed 
at that point. To maximize your ability to reuse a given resource driver, be sure to 
restructure the BSP and resource driver so that the resource driver, and not the BSP, 
allocates the resources in the deployed system. 

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies.
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9.1  Introduction 

This chapter describes VxBus serial drivers that support RS232, RS422, and other 
similar devices. This chapter assumes that you are familiar with the contents of the 
VxWorks Device Driver Developer's Guide, Volume 1: Fundamentals of Writing Device 
Drivers, which discusses generic driver concepts as well as details of VxBus that are 
not specific to any driver class.

9.2  Overview 

VxBus serial drivers provide an interface to the I/O system similar to the 
pre-VxBus multi-mode (SIO) serial drivers, but also provide an enhanced 
initialization mechanism and a simplified interface to the BSP. 

These drivers provide an interface for setting hardware options, such as the 
number of start bits, stop bits, data bits, parity, and so on. In addition, they provide 
an interface for polled communication that can provide external mode debugging 
(such as ROM-monitor style debugging) over a serial line. 

Each serial port is associated with an SIO_CHAN structure. When a single device 
supports more than one port, the device must be able to provide a separate 
SIO_CHAN structure for each supported port. The contents of the SIO_CHAN 
structure are defined in installDir/vxworks-6.x/target/h/sioLib.h. Many drivers 
append additional fields to the end of the SIO_CHAN structure, to contain 
additional information required by the driver. 

9.3  VxBus Driver Methods 

There are two VxBus driver methods used by serial drivers: {sioChanGet}( ) and 
{sioChanConnect}( ). Both func{sioChanGet}( ) and func{sioChanConnect}( ) use 
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an SIO_CHANNEL_INFO structure as their second argument. This structure 
contains two pieces of information: 

sioChanNo
An integer value indicating which channel on the system to use. 

This corresponds to the number N in the channel name used by the I/O 
system: /tyCo/N. That is, 0 for /tyCo/0 or 3 for /tyCo/3.

pChan
Holds the SIO_CHAN structure pointer discussed in 9.9 SIO_CHAN and 
SIO_DRV_FUNCS, p.194. 

9.3.1  {sioChanGet}( ) 

The func{sioChanGet}( ) routine retrieves the SIO_CHAN structure associated 
with the specified serial port.

void func{sioChanGet}
(
VXB_DEVICE_ID pDev,
SIO_CHANNEL_INFO * pInfo
)

The SIO_CHANNEL_INFO structure contains fields to specify a port and to return 
a pointer to the SIO_CHAN structure associated with the port. If the instance 
manages the specified port, the func{sioChanGet}( ) routine must assign 
pInfo->pChan with a pointer to the SIO_CHAN structure associated with that port.

9.3.2  {sioChanConnect}( ) 

This driver method is used to connect the specified channel number to the I/O 
subsystem. There are two alternate forms of this driver method, depending on the 
channel selected in the SIO_CHANNEL_INFO structure specified as the argument 
to func{sioChanConnect}( ).

NOTE:  The port specified in the SIO_CHANNEL_INFO structure is identified by the 
channel number of the serial port on the entire system. Do not assume that the 
identification is related only to your device. For example, if your device supports 
four serial ports, and the first port on your device corresponds to /tyCo/2, then the 
pChan->channelNo field values of 0 and 1 are not intended for your device, and 
the values of 2 through 5 correspond to the 0, 1, 2, and 3 ports on your device. 
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In the first form, a single channel is specified. In this case, the specified channel is 
connected to the I/O subsystem. 

In the second form, the channel value is specified as -1. This value indicates that 
the driver should connect all channels associated with this instance.

The prototype for the func{sioChanConnect}( ) driver method is:

LOCAL void func{sioChanConnect}
(
VXB_DEVICE_ID pInst,
void * pArg
)
{
SIO_CHANNEL_INFO * pInfo = (SIO_CHANNEL_INFO *)pArg;
...
}

This routine does not return any value, either directly or through the 
SIO_CHANNEL_INFO structure. 

9.4  Header Files 

VxBus serial drivers should include the following serial driver header files, in 
addition to the generic VxBus and other system header files as well as any 
driver-specific header files.

#include <sioLib.h>
#include <hwif/util/sioChanUtil.h>

NOTE:  Recall that an instance is the pairing between a driver and a single device. 
However, in some cases, a device such as a PCI card may include multiple serial 
ports. In this case, there are multiple ports for a single instance. Do not confuse this 
with multiple instances. Only the ports associated with the specified instance 
should be connected when the func{sioChanConnect}( ) driver method routine is 
called.
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9.5  BSP Configuration 

Serial drivers do not typically require configuration information from a BSP that is 
above and beyond the normal device-specific information provided for all drivers. 
For more information on BSP configuration, see VxWorks Device Driver Developer’s 
Guide (Vol.1): Device Driver Fundamentals. 

9.6  Available Utility Routines 

There are no class-specific utility routines required for serial drivers. However, 
some of the inline macros defined in installDir/vxworks-6.x/target/h/sioLib.h may 
be useful for your development. For a complete list of available routines, see the 
sioLib.h file.

9.7  Initialization 

There are two primary consumers of serial devices, both of which impose 
initialization constraints. 

When phase 1 initialization is complete, VxWorks chooses a serial port to be used 
as a console. Your driver must complete its initialization during phase 1 in order to 
be used as a console. 

Serial ports can also be used for WDB connections for system-mode debugging. 
The serial port that is used for this purpose is selected after phase 1 initialization is 
complete. When used for system-mode debugging, polled-mode input and output 
are required before phase 2 initialization begins.

NOTE:  The serial port is not used for input or output until the end of phase 2 
initialization. 
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During initialization, the device should be configured in interrupt mode unless 
explicitly set to polled-mode using SIO_MODE_SET as specified in 9.9 SIO_CHAN 
and SIO_DRV_FUNCS, p.194. 

For additional information on serial driver initialization, see 9.11 Serial Drivers, 
Initialization, and Interrupts, p.198. 

9.8  Polled Mode Versus Interrupt-Driven Mode 

VxWorks serial drivers must provide an interrupt-driven mode for normal 
operation. Serial drivers can also provide a polled mode for use with WDB, polled 
mode console output, and other polled operations. However, although support for 
polled mode is encouraged, it is not required. 

Several of the remaining sections in this chapter contain information about the 
requirements and implications of providing polled mode support.

9.9  SIO_CHAN and SIO_DRV_FUNCS 

Every SIO port is associated with an SIO_CHAN structure. When an instance only 
provides one port, serial drivers typically put the SIO_CHAN structure at the 
beginning of the driver-specific data structure pDrvCtrl. This allows the pDrvCtrl 
structure pointer to be identical to the SIO_CHAN structure. This structure 
contains a single member, a pointer to an SIO_DRV_FUNCS structure. These 
structures are defined in installDir/vxworks-6.x/target/h/sioLib.h as follows:

typedef struct sio_drv_funcs SIO_DRV_FUNCS;

typedef struct sio_chan /* a serial channel */
{
SIO_DRV_FUNCS * pDrvFuncs;
/* device data */ 
} SIO_CHAN;
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struct sio_drv_funcs /* driver functions */
{
int (*ioctl)

(
SIO_CHAN * pSioChan,
int cmd,
void * arg
);

int (*txStartup)
(
SIO_CHAN * pSioChan
);

int (*callbackInstall)
(
SIO_CHAN * pSioChan,
int callbackType,
STATUS (*callback)(),
void * callbackArg
);

int (*pollInput)
(
SIO_CHAN * pSioChan,
char * inChar
);

int (*pollOutput)
(
SIO_CHAN * pSioChan,
char outChar
);

};

The members of the SIO_DRV_FUNCS structure function as follows:

ioctl( ) 
Points to the standard I/O control interface routine. This routine provides the 
primary control interface for the driver. To access the I/O control services for 
a standard SIO device, use the following symbolic constants:

SIO_BAUD_SET, SIO_BAUD_GET 
Sets and retrieves the port baud rate.

SIO_HW_OPTS_SET, SIO_HW_OPTS_GET 
Sets and retrieves the port hardware options. The available options are: 
CLOCAL, HUPCL, CREAD, CSIZE, PARENB, and PARODD. 

For more information on these options, see 
installDir/vxworks-6.x/target/h/sioLibCommon.h. 
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SIO_MODE_SET, SIO_MODE_GET, SIO_AVAIL_MODES_GET 
Sets and retrieves the port mode to switch between polled mode and 
interrupt driven mode, and find which modes are available. Polled mode 
is specified as SIO_MODE_POLL and interrupt driven mode is specified 
with SIO_MODE_INT. When SIO_AVAIL_MODES_GET is used, the values 
of SIO_MODE_POLL and SIO_MODE_INT are logically or-d together as 
follows:

*(int *)arg = SIO_MODE_INT | SIO_MODE_POLL;

SIO_OPEN 
Sets modem control lines (RTS and DTR) to TRUE if not already set, and 
initializes the device for user operation. Only valid if SIO_HUP is 
supported. 

SIO_HUP 
Resets RTS and DTR signals.

Other ioctl( ) commands can be supported as well. For a more complete list of 
ioctl( ) commands that can be supported by serial drivers (such as keyboard 
modes and keyboard LED states), see 
installDir/vxworks-6.x/target/h/sioLibCommon.h.

txStartup( ) 
Provides a pointer to the routine that the system calls when new data is 
available for transmission. Typically, this routine is called only from the 
ttyDrv.o module. This module provides a level of functionality that allows a 
raw serial channel to behave with line control and canonical character 
processing. 

callbackInstall( ) 
Provides the driver with pointers to callback routines that the driver can call 
asynchronously to handle character puts and gets. The driver is responsible 
for saving the callback routines and arguments that it receives from the 
callbackInstall( ) routine. The available callbacks are 
SIO_CALLBACK_GET_TX_CHAR and SIO_CALLBACK_PUT_RCV_CHAR.

■ Define SIO_CALLBACK_GET_TX_CHAR to point to a routine that fetches a 
new character for output. The driver calls this callback routine with the 
supplied argument and an additional argument that is the address to 
receive the new output character (if any). The called routine returns OK to 
indicate that a character was delivered, or ERROR to indicate that no more 
characters are available. 

■ Define SIO_CALLBACK_PUT_RCV_CHAR to point to a routine the driver 
can use to pass characters to the system. For each incoming character, the 
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callback routine is called with the supplied argument, and the new 
character as a second argument. Drivers normally do not care about the 
return value from this call. In most cases, there is nothing that a driver can 
do but drop a character if the I/O system is not able to receive it.

pollInput( ) and pollOutput( ) 
Provide an interface to polled mode operations of the driver. These routines 
are not called unless the device has already been placed into polled mode by 
an SIO_MODE_SET operation.

9.10  WDB 

WDB can be configured to use a serial port for communication between the host 
and target by specifying WDB_COMM_TYPE with the value WDB_COMM_SERIAL. 
The primary impact of this on serial driver development is that WDB uses polled 
mode for this communication, therefore a driver without polled mode cannot 
support this configuration.

9.10.1  WDB and Kernel Initialization 

When WDB is used over a serial channel, it puts the SIO driver into polled mode. 
This mode disables interrupts and performs I/O operations. Eventually, WDB 
returns the driver to normal interrupt mode operation.

During BSP development, it is possible to use WDB in polled mode before the 
kernel is available (see VxWorks BSP Developer's Guide: Porting a BSP to Custom 
Hardware). In this case, the WDB target agent issues an ioctl( ) with 
SIO_MODE_SET as the command in order to set the device into polled mode. Later, 
the agent puts the driver back into normal interrupt mode. For more information 
on WDB, see the VxWorks Kernel Programmer's Guide: Kernel.
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9.11  Serial Drivers, Initialization, and Interrupts 

There are several issues related to initialization and interrupts that are particular 
to serial drivers.

9.11.1  WDB and Interrupts 

As a serial driver developer, you must be aware of interactions between serial ports 
and a WDB connection in addition to kernel initialization. These issues are related 
to interrupts and the order of system initialization.

When using a serial port for a WDB connection, WDB switches the port between 
polled mode and normal operation, depending on what WDB is doing at any given 
time. During system mode debugging—the only debug mode available during 
system bringup—WDB puts the serial port into polled mode. However, at other 
times, WDB puts the serial port into normal operation, which usually implies an 
interrupt-driven mode.

If WDB places the driver into polled mode during system bringup, then later 
switches to interrupt driven mode, the driver may not have a chance to attach an 
ISR to the device interrupt. To avoid a stray interrupt—which can cause serious 
problems with the system—your driver must ensure that the switch from polled 
mode to interrupt mode does not assume that instance initialization is complete.

Connecting an interrupt requires that the system memory pool be available. 
However, during the early phases of system initialization, the system memory 
pool is not available. Your driver must wait until the second phase of VxBus 
initialization, devInstanceInit2( ), before it can successfully connect an ISR to the 
device interrupt. Your driver must not switch from polled mode to interrupt mode 
until this initialization is complete.

The normal calling sequence is as follows:

1. usrRoot( ) 

2. sysClkConnect( ) 

3. sysHwInit2( ) 

4. vxbDevInit( ) 

5. the driver's devInstanceInit2( ) routine 

6. vxbIntConnect( )
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If the driver attempts to connect an ISR before usrRoot( ) runs, the attempt fails. 
Any subsequent interrupts are stray interrupts. These stray interrupts cause 
problems during system initialization.

9.11.2  Initialization Order and Interrupts 

Another issue for serial driver developers is related to the behavior of the actual 
driver if it attempts to connect interrupts before the kernel is started. When this 
happens, the SIO driver sometimes loses the ability to function in interrupt mode 
thereafter, though it generally continues to work in polled mode. This is because 
the system is likely to overwrite any interrupt connectivity information written 
before the driver's devInstanceInit2( ) routine. Alternatively, the system can crash 
during bootup, due to attempts to configure interrupt connectivity before the 
interrupt subsystem is initialized. As mentioned previously, interrupts cannot be 
connected before the kernel is started.

9.11.3  Initialization Order 

For various reasons, VxBus serial drivers must perform the majority of their 
required initialization in the first phase of the VxBus initialization sequence. This 
makes them available—in polled mode—to WDB, polled mode console output, 
and other operations before the I/O system is available. The only initialization that 
required for serial drivers after the first initialization phase is connection and 
enabling of interrupts.

9.12  Debugging 

When debugging a serial driver, as with all driver development, it is often most 
convenient to have a fully functional system to test the driver on. This allows the 
driver developer full access to the debug capabilities of VxWorks and the VxBus 
show routines, which are helpful when debugging.

This is relatively simple to accomplish for serial drivers, if you are able to develop 
on a target hardware platform with working PCI. When PCI support is available, 
you can use one of the PCI serial cards supported by the ns16550 serial driver. You 
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can then change the console to the PCI serial card. This provides you with full 
access to the VxWorks system when you start debugging your custom serial driver.

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies.



201

   10
Storage Drivers

10.1 Introduction 201

10.2 Overview 202

10.3 VxBus Driver Methods 202

10.4 Header Files 202

10.5 BSP Configuration 203

10.6 Available Utility Routines 203

10.7 Initialization 204

10.8 Interface with VxWorks File Systems 205

10.9 Writing New Storage Drivers 210

10.10 Debugging 211

10.1  Introduction 

This chapter describes storage drivers. This chapter assumes that you are familiar 
with the contents of the VxWorks Device Driver Developer's Guide, Volume 1: 
Fundamentals of Writing Device Drivers, which discusses generic driver concepts as 
well as details of VxBus that are not specific to any driver class.
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10.2  Overview 

The VxBus storage driver class currently encompasses parallel and serial ATA 
(SATA) drivers. These drivers pair with ATA or SATA host controllers to form 
VxBus instances. While a host controller can have multiple devices connected to it, 
only the host controller is a VxBus instance.

As in previous VxWorks releases, a monolithic approach has been taken in 
developing these drivers. Each driver is responsible for providing block device 
management routines, spawning device monitoring and job handling tasks, and 
performing low-level device access.

VxBus storage drivers provide block device management routines so that various 
VxWorks file systems can be mounted on the connected device(s). Device 
monitoring, such as handling connect and disconnect events and interrupts, must 
also be provided by the storage driver.

10.3  VxBus Driver Methods 

VxBus storage drivers do not use or supply any VxBus driver methods. During VxBus 
initialization phase 3 (devInstanceConnect( )), the driver initializes the controller 
device and sets up the ability to recognize storage media and announce the media to 
the XBD block device abstraction layer described in 10.8 Interface with VxWorks File 
Systems, p.205 and in 10.7 Initialization, p.204.

10.4  Header Files 

Although there are no class-specific header files for storage drivers, each storage 
driver must include the following header files in order to use the higher-level block 
device and event handling utilities. 

#include <drv/xbd/xbd.h>
#include <drv/erf/erfLib.h>
#include <drv/xbd/bio.h> 
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10.5  BSP Configuration 

Storage drivers do not typically require configuration information from a BSP that 
is above and beyond the normal device-specific information provided for all 
drivers. 

There are two storage-class specific structures required for this class: 
ATA_RESOURCE and ATA_TYPE. Some drivers require these structures to be 
provided by the BSP. If this is the case for your driver, use ataResources and 
ataTypes as the resource names. 

For more information on BSP configuration, see VxWorks Device Driver Developer’s 
Guide (Vol.1): Device Driver Fundamentals.

10.6  Available Utility Routines 

This section briefly describes the utility routines available for storage class drivers. 
These routines are discussed further in 10.8 Interface with VxWorks File Systems, 
p.205. 

erfHandlerRegister( ) and erfHandlerUnregister( ) 

The erfHandlerRegister( ) routine registers a routine with the error reporting 
framework (ERF) that is called when the XBD is fully initialized. 
erfHandlerUnregister( ) de-registers the routine registered by 
erfHandlerRegister( ). 

For more information on these routines, see ERF Registration, p.205. 

erfEventRaise( )

The erfEventRaise( ) routine announces to the system that a new device has been 
added and that it is ready for file system mounting. 

For more information on this routine, see 10.8.3 Event Reporting, p.208. 
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xbdAttach( ) 

The xbdAttach( ) routine advertises the xbd_funcs structure to the system. The 
xbd_funcs structure provides the following routines: 

■ (*xf_ioctl)( )—provides a single interface to various driver functions such as 
device eject. 

■ (*xf_strategy)( )—queues writes and reads to a given storage device (see 
10.8.2 Processing, p.208). 

■ (*xf_dump)( )—allows the driver to provide a method for writing data to a 
device in the event of a system failure.

For more information, see Advertisement of XBD Methods, p.206. 

bio_done( ) 

The bio_done( ) routine is used to mark the bio structure as processed. For more 
information, see 10.8.2 Processing, p.208. 

10.7  Initialization 

Because storage drivers depend on the XBD library and other parts of the VxWorks 
I/O system, they must normally wait until these services are initialized before they 
are initialized. This implies that the bulk of the storage driver initialization must 
be done in the VxBus initialization phase 3 (devInstanceConnect( )).

Generally, any initialization tasks that make calls—or may potentially lead to 
calls—to the XBD or ERF libraries must be done no earlier than VxBus initialization 
phase 3. The is most obvious in the case where device creation is triggered by a 
device change interrupt.
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10.8  Interface with VxWorks File Systems 

The storage class drivers utilize two interrelated VxWorks subsystem libraries: 
eXtended Block Device (XBD) and Event Reporting Framework (ERF). These 
libraries facilitate the interface between the device drivers and the VxWorks file 
systems. This section discusses how storage class drivers should use these libraries 
in different areas of operation.

10.8.1  Device Creation 

Storage class drivers typically provide a routine that creates the XBD block device 
structures and reports to the XBD layer when the underlying device is ready to be 
used. There are two ways to implement this functionality. The Intel ICH driver 
presents one implementation. This driver is configured to call this routine during 
system initialization, based on data contained in the BSP hwconf.c file. The Silicon 
Image driver uses another implementation. This driver uses a port monitoring task 
to dynamically create block device structures upon device detection. The preferred 
method for new development is the implementation found in the Silicon Image 
driver. 

The creation routine, regardless of how it is called, is responsible for the following 
initialization duties:

■ Allocating and initializing the block device structure. 

■ Spawning the device service task. 

■ Initializing semaphore(s) needed for task synchronization. 

■ Registering with the ERF. 

■ Advertising XBD methods. 

■ Notifying the ERF of a new device. 

The last three items are discussed further in the following sections.

ERF Registration 

The ERF provides a means for notifying the storage driver that the XBD 
initialization for the device being created is complete. Your driver should use the 



VxWorks
Device Driver Developer's Guide, 6.6 

206

routine erfHandlerRegister( ) to register a routine with the ERF. This routine is 
then called when the XBD is fully initialized. For example:

erfHandlerRegister(xbdEventCategory, xbdEventInstantiated,
myDeviceXbdReadyHandler, pMyXbd, 0);

The first two arguments to this routine (xbdEventCategory and 
xbdEventInstantiated) are global variables defined in the XBD library that 
correspond to this event being associated with XBD and triggered when the XBD 
is instantiated. The third argument (myDeviceXbdReadyHandler) is a pointer to 
the driver routine that is called when this event occurs. The fourth argument 
(pMyXbd) is the parameter that is passed to the routine. In this case, pMyXbd is a 
pointer to the driver-specific device structure. The fifth argument is for option 
flags, and can normally be left as 0.

In most cases, the routine pointed to by myDeviceXbdReadyHandler simply 
needs to unregister itself from the ERF—using erfHandlerUnregister( )—to avoid 
being triggered again and then unblock the device creation routine. In this way, the 
device creation routine does not exit until the XBD initialization, which may occur 
in a different task context, is complete.

Advertisement of XBD Methods 

The xbd_funcs structure is advertised using a call to xbdAttach( ):

int xbdAttach
(
XBD * xbd,
struct xbd_funcs * funcs,
const char * name,
unsigned blocksize,
sector_t nblocks,
device_t * result
)

The xbd parameter is a pointer to an XBD structure that can be allocated as part of 
a larger structure describing the device being created. The funcs parameter is a 
pointer to the xbd_funcs structure described previously. The next three parameters 
are self-explanatory. The last parameter, result, is a handle for the device that is 
used, by ERF routines in particular, to identify the device. This parameter is filled 
in by the xbdAttach( ) routine.
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xbd_funcs Structure

The XBD library expects that drivers supply a set of function pointers to provide 
the XBD library with access to devices. These methods are specified in xbd.h in the 
xbd_funcs structure as follows:

struct xbd_funcs
{
int (*xf_ioctl) (struct xbd * dev, int cmd, void * arg);
int (*xf_strategy) (struct xbd * dev, struct bio * bio);
int (*xf_dump) (struct xbd * dev, sector_t pos, void * data, size_t 

size);
};

(*xf_ioctl)( ) 

The (*xf_ioctl)( ) routine provides a single interface to various driver functions 
such as device eject, power management, and diagnostic reporting. Much of this 
functionality is optional and may not apply in all cases. The ioctl( ) codes used by 
XBD are defined in xbd.h.

(*xf_strategy)( ) 

The (*xf_strategy)( ) routine provides a way to queue work to the storage driver. 
As such, you only need to be concerned with managing linked lists containing the 
queued work for each device under control of your driver. The work to be done is 
contained in a bio structure that is defined in bio.h.

(*xf_dump)( ) 

The (*xf_dump)( ) routine allows the driver to provide a method for writing data 
to a device in the event of a catastrophic system failure. The underlying routines in 
your driver must not use any OS services or rely on any interrupt handling.

ERF New Device Notification 

The upper layers of software need to be notified about device creation in the 
system. This is done by raising an event using the ERF routine erfEventRaise( ). 
For example:

erfEventRaise(xbdEventCategory, xbdEventPrimaryInsert, ERF_ASYNC_PROC,
(void *) pDevice, NULL);

The first two arguments (xbdEventCategory and xbdEventPrimaryInsert) are 
similar to the first two arguments in erfHandlerRegister( ). 
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The third argument contains a flag indicating what kind of processing is to be 
performed. The value ERF_ASYNC_PROC indicates that this event can be handled 
asynchronously, and should be used in most cases. If synchronous handling is 
required, you must specify ERF_SYNC_PROC.

The fourth argument (pDevice) is the pointer returned in the call to xbdAttach( ). 
The fifth argument is for providing a routine to free the memory pointed to by the 
fourth argument. Because, in this case, you do not want to free the device pointer, 
this argument is left as NULL.

10.8.2  Processing 

In addition to providing the (*xf_strategy)( ) routine, which the XBD layer uses to 
queue writes and reads to a storage device, the storage class driver must also 
contain code to process this queued work. In current implementations, this 
consists of a task that is awakened through a semaphore given at the end of the 
(*xf_strategy)( ) routine. This task traverses the linked list of bio structures (which 
contain details on the access to be performed), and executes each one sequentially. 

The storage driver typically extracts the sector number, transaction size (in bytes), 
and transaction direction (read or write) from the bio structure. After any 
necessary checking or conversion of this data (for example, converting the 
transaction size from bytes to sectors), the driver then calls its low-level read or 
write routines to complete the transaction.

To mark the bio structure as processed, the driver must call the bio_done( ) routine 
with a pointer to the bio being processed and an errno value indicating the result 
of the processing.

10.8.3  Event Reporting 

The ERF provides routines that drivers can use to alert higher-level software that 
events have occurred on the system devices and that these events may require their 
attention.

An example of this is when a storage device is inserted into the system. In response 
to this event, the storage controller typically raises an interrupt. As part of the 
handling of this interrupt, the storage driver ISR can wake up a monitoring task 
that calls the driver device creation routine. Near the end of this routine, a call to 
erfEventRaise( ) should be made to indicate that a new device has been added to 
the system and is ready for file system mounting.
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Similarly, your driver should also use the ERF when a device is removed from the 
system. One notable difference is that device removal can originate from the 
operating system as well as the physical connection to the device. The former case 
is preferred in systems where data integrity is important, as the operating system 
delays device removal until all device access has stopped. As the driver developer, 
you can handle this case in the (*xf_ioctl)( ) routine, by calling the erfEventRaise( ) 
routine when handling the XBD_HARD_EJECT or XBD_SOFT_EJECT ioctl( ) 
routines.

Events are raised by making a call to erfEventRaise( ) as follows:

STATUS erfEventRaise
(
UINT16 eventCat, /* Event Category */
UINT16 eventType, /* Event Type */
int procType, /* Processing Type */
void * pEventData, /* Pointer to Event Data */
erfFreePrototype * pFreeFunc /* Function to free Event Data 

when done */
)

The XBD library includes several defined event types for use with the ERF. The 
following event types are passed as the second argument (eventType) to 
erfEventRaise( ):

xbdEventPrimaryInsert 
This event should be raised near the end of the driver's device creation routine 
to indicate that a new device has been added to the system.

xbdEventRemove
This event should be raised during the driver's device deletion routine to 
indicate that a device has been removed from the system.

xbdEventInstantiated 
This event should be raised in response to the XBD_STACK_COMPLETE 
(*xf_ioctl)( ) routine, to acknowledge that the driver is ready for access using 
the XBD interface.

xbdEventMediaChanged 
This event should be raised when the driver detects that the device's 
removable media has been removed or replaced.
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10.9  Writing New Storage Drivers 

There is currently no template for storage drivers. For new PCI-based SATA 
controller drivers, the Silicon Image driver, vxbSI31xxStorage.c can be used as a 
reference. For most on-board Intel ATA/SATA controllers, vxbIntelIchStorage.c 
can be used without modification.

If you are writing a new driver, one strategy is to start with issuing ATA 
commands. In most cases, you must write a minimum of two routines to handle 
commands. This includes:

■ Command issue—This routine should take (as parameters) the device to 
which the command is targeted, the command opcode, the desired sector 
offset, a pointer to a data buffer, and so forth. The routine should then put this 
information into the format required by the controller. The routine must then 
complete the necessary register or descriptor accesses to queue this command 
on the controller.

■ Command result—This routine is called when a command is completed. The 
result of this command may be to fill in a structure with data returned by the 
controller. In the course of writing this routine, you may also be required to 
write an ISR that detects a command complete interrupt and calls this routine, 
or unblocks a task that calls this routine. In some cases, a polling loop can be 
used instead.

Once these routines are in place, other routines can be included. For example:

■ Identify—This routine issues a command to retrieve the physical attributes of 
the connected device. Because retrieval of physical attributes may be required 
in several places throughout the driver (for example, when a new device is 
connected), you may want to put this code into a dedicated routine.

■ Read/Write—This routine or set of routines issue either read or write 
commands. Current Wind River driver implementations use one routine for 
both read and write. The routine takes a read/write flag as one of its 
arguments. This implementation reduces redundant code and fits well with 
the XBD layer, which stores the transaction direction in the bio structure. 

Once these routines are implemented, the XBD and ERF interfaces can be added to 
your driver piece by piece. During this stage of development, some of the routines 
may need to be altered, and you may need to write the monitoring task if you have 
not done so already.

Your driver should employ the concept of deferring work to a dedicated task. This 
method produces several advantages, especially if a task (or set of tasks) is 
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dedicated to each connected device. In this situation, system throughput can be 
maximized in multiprocessing configurations. However, one important guideline 
is to ensure that each dedicated task can access only the data structures that belong 
to it. If this cannot be achieved, some mutual exclusion is required. You may also 
need to protect accesses to the registers on the controller.

For information on ISR deferral, see the interrupt handling information in VxWorks 
Device Driver Developer’s Guide (Vol. 1): Device Driver Fundamentals. 

Once the XBD and ERF interfaces are in place, your driver should be ready for use 
with VxWorks file systems.

10.10  Debugging 

When the file system is bypassed, the complexity of debugging storage drivers is 
decreased. For this reason, the storage driver class includes public low-level access 
routines. 

For example, the Silicon Image driver provides the following sector read/write 
routine:

STATUS sil31xxSectorRW
(
int ctrl, /* controller number */
int port, /* port number */
sector_t sector, /* sector from which to start access */
uint32_t numSecs, /* number of sectors to access */
char *data, /* data buffer for read or write */
BOOL isRead /* TRUE for read, FALSE for write */
);

Additionally, the routines for block device creation and deletion should be 
provided by the driver as public routines to aid in debugging. 

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies.
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11.1  Introduction 

This chapter describes timer drivers. This chapter assumes that you are familiar 
with the contents of the VxWorks Device Driver Developer's Guide, Volume 1: 
Fundamentals of Writing Device Drivers, which discusses generic driver concepts as 
well as details of VxBus that are not specific to any driver class.

11.2  Overview 

Timer drivers are used to provide a functional interface between hardware timers 
and the various operating system services that make use of them.

In VxWorks, timer drivers are used to provide two distinct types of timing services. 

■ a periodic interrupt timer 
■ a timestamp timer

Timestamp drivers are used to allow middleware to quickly read a timestamp 
value from a device, in order to place a timestamp value on an event that has 
occurred in the system. Timestamp drivers typically provide a high degree of 
precision, with resolutions of a microsecond or less. 

Periodic interrupt timer drivers are used to deliver periodic interrupts to an 
attached interrupt service routine (ISR). This type of driver is used as the basic 
heartbeat interrupt source for VxWorks. Because VxWorks requires periodic 
interrupts to perform its scheduling operations, each VxWorks system must 
include at least one timer driver that supports the generation of periodic 
interrupts.

This chapter presents the model for both timestamp and periodic interrupt timer 
drivers. Support for both timestamp and period interrupts can be provided within 
a single driver, or a driver can choose to provide just one of the two services. A 
timer driver advertises the services that its hardware supports to the system. 
Operating system middleware chooses from among the available timers at run 
time based upon the advertised capabilities of the timer drivers in the system.

Timing hardware often contains more than one timer within a single device. Your 
timer driver should normally be written so that a single instance supports all of the 
timers provided by the device hardware. 
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11.3  VxBus Driver Methods 

All timer drivers written in accordance with the VxBus model publish a single 
driver method, {vxbTimerFuncGet}( ). 

Within a timer driver, the {vxbTimerFuncGet}( ) method is implemented using a 
driver-provided routine with the following prototype:

LOCAL STATUS func{vxbTimerFuncGet}
(
VXB_DEVICE_ID pInst,
struct vxbTimerFunctionality ** ppTimerFunc,
int timerNo
)

The VXB_DEVICE_ID parameter describes the specific instance (timer device 
associated with a driver) within the system. Because a single instance of a timer 
driver can support more than one timer, a timerNo parameter is provided in order 
to identify the specific timer that is being requested within the instance. If a timer 
driver supports only a single timer, timerNo should be tested, and ERROR should 
be returned for all nonzero values of timerNo.

Within func{vxbTimerFuncGet}( ), the driver fills in the contents of the 
vxbTimerFunctionality structure to describe the capabilities of the requested 
timer. The fields of the structure are listed in this section, along with a description 
of each field's use. Refer to installDir/vxworks-6.x/target/h/vxbTimerLib.h for the 
type definition for vxbTimerFunctionality, and for the following macro 
definitions:

BOOL allocated
This field holds a value that is maintained by the driver. The default value for 
“allocated” is FALSE. When a timer is allocated (using the (*timerAllocate)( ) 
function pointer, see 11.9.1 (*timerAllocate)( ), p.221), the driver sets this field to 
TRUE. When a timer is released (using the (*timerRelease)( ) function pointer, 
see 11.9.2 (*timerRelease)( ), p.222), the driver sets this field to FALSE.

UINT32 clkFrequency
This field holds a value that describes the frequency (in counts per second) that 
the timer's hardware counter increments (or decrements) when it is running.

UINT32 minFrequency
This fields holds a value that describes the minimum frequency (in interrupts 
per second) that a periodic interrupt timer can support. For timestamp drivers 
this field is not used.
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UINT32 maxFrequency
This field holds a value that describes the maximum frequency (in interrupts 
per second) that a period interrupt timer can support. For timestamp drivers 
this field is not used.

UINT32 features
This field holds a bit-significant value that describes the capabilities of the 
timer. This value is constructed by performing a logical OR operation on the 
appropriate values from the following #define values found in 
vxbTimerLib.h:

■ VXB_TIMER_CAN_INTERRUPT—Set if the timer can generate interrupts.

■ VXB_TIMER_INTERMEDIATE_COUNT—Set if the timer allows the 
hardware to read values while the counter is running without introducing 
any skew into the timing results.

■ VXB_TIMER_SIZE_16, VXB_TIMER_SIZE_23, VXB_TIMER_SIZE_32—Set if 
the timer's counter register is 16, 23, or 32 bits (respectively). 

■ VXB_TIMER_SIZE_64—Set if the timer's counter register is 64 bits. When 
this value is set, the driver must also ensure that non-null values are 
provided for the (*timerEnable64)( ), (*timerRolloverGet64)( ), and 
(*timerCountGet64)( ) function pointers (see 11.9 Implementing Driver 
Service Routines, p.221).

■ VXB_TIMER_CANNOT_DISABLE—Set if the underlying hardware timer 
cannot be disabled.

■ VXB_TIMER_STOP_WHILE_READ—Set if the underlying hardware timer 
stops incrementing (or decrementing) while the timer is being read.

■ VXB_TIMER_AUTO_RELOAD—Set if the underlying hardware timer 
automatically reloads itself when it reaches its terminal count, rather than 
requiring software intervention to restart the timer.

■ VXB_TIMER_CANNOT_MODIFY_ROLLOVER—Set if the underlying 
hardware timer's rollover value is fixed at a single value. This is true for 
timers that (for example) always count from 0 to their maximum value, 
rather than to a software-controllable intermediate value.

■ VXB_TIMER_CANNOT_SUPPORT_ALL_FREQS—Set if the underlying 
hardware timer cannot be configured to support interrupt frequencies 
continuously between minFrequency and maxFrequency.
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UINT32 ticksPerSecond
This field holds a value that describes the current configuration of the timer 
hardware, in terms of interrupts per second that the hardware will generate. 
A timer driver sets this value to a reasonable default (typically between 60 and 
100), and maintains the value whenever the requested interrupt delivery rate 
changes. See the (*timerEnable)( ) function pointer (see 11.9.6 (*timerEnable)( ), 
p.224) for further information.

char timerName[20]
This field holds the name of the timer driver. It is used for debug purposes. 
Timer drivers that support more than one timer within a single driver can 
choose to create a name that combines the name for the driver with the timer 
number. Timer drivers that only support a single timer should set this field to 
the name of the driver. 

UINT32 rolloverPeriod
This field holds a UINT32 that describes how long the timer takes to roll over, 
in seconds. Timers that count quickly have a shorter rollover period than those 
that count more slowly.

The following function pointers are described in 11.9 Implementing Driver Service 
Routines, p.221:

■ STATUS (*timerAllocate)
■ STATUS (*timerRelease) 
■ STATUS (*timerRolloverGet) 
■ STATUS (*timerCountGet) 
■ STATUS (*timerDisable) 
■ STATUS (*timerEnable) 
■ STATUS (*timerISRSet) 
■ STATUS (*timerEnable64) 
■ STATUS (*timerRolloverGet64) 
■ STATUS (*timerCountGet64) 

After the driver's func{vxbTimerFuncGet}( ) routine is called, the various 
supported timer devices associated with the driver are available for allocation. 
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11.4  Header Files 

All timer drivers written in accordance with the VxBus model need to include a 
single header file to provide the data types required for the driver:

#include <vxbTimerLib.h>

11.5  BSP Configuration 

Timer drivers do not typically require configuration information from a BSP that is 
above and beyond the normal device-specific information provided for all drivers. 
However, when writing a device driver, you should adhere to the existing 
standard when choosing resource names. The following resource names are used 
frequently within the existing set of Wind River timer drivers. If your driver allows 
any of the properties described for these resources to be configured using a BSP 
resource file, the following strings should be used to query those resources:

cpuClkRate
The frequency of the CPU clock, in ticks per second. This is useful in timer 
drivers where the timing hardware runs at a rate that is correlated with the 
CPU clock. 

clkRateMin
The minimum number of interrupts per second that the timer driver hardware 
can be configured for.

clkRateMax
The maximum number of interrupts per second that the timer driver hardware 
can be configured for. 

clkFreq
The frequency of the hardware timer.
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11.6  Available Utility Routines 

There are no class-specific utility routines required or available for timer drivers.

11.7  Initialization 

Timer drivers perform their initialization during the first two phases of VxBus 
initialization:

■ During VxBus initialization phase 1 (devInstanceInit( )), timer drivers should 
initialize all of their internal data structures, and perform any required 
initialization of the timer hardware.

■ During VxBus initialization phase 2 (devInstanceInit2( )), timer drivers 
should connect their driver-specific ISR to the timer interrupt source(s).

Because any periodic interrupt timer driver can potentially be used as the 
heartbeat interrupt for the VxWorks kernel, the timer driver must be fully 
configured by the end of initialization phase 2.

11.8  Data Structure Layout 

Figure 11-1 describes a recommended layout for the time driver data structure.
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The two principal elements to this data structure are the VXB_DEVICE_ID instance 
data (by convention referred to as pInst), and the driver-specific data structure, 
which in this figure is labeled as struct myTimerData. Note that each of these data 
structures contains a pointer to the other; the pInst->pDrvCtrl field contains a 
pointer to the driver-specific data structure, and the driver-specific data structure 
contains a pointer back to the pInst.

When a timer driver initializes itself, it typically allocates its struct myTimer using 
hwMemAlloc( ), and then initializes the various data structures contained within 
it. This includes initializing the pointer(s) to pInst. Because the VXB_DEVICE_ID 
pInst pointer is not provided to the service routines, the stored pointer(s) to pInst 
is useful to the timer driver service routines.

This documentation in this chapter assumes that the service routines are capable 
of accessing data within VXB_DEVICE_ID, even when VXB_DEVICE_ID is not 
provided as a passed-in parameter to the service routine.

Figure 11-1 Recommended Timer Driver Data Structure Layout
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11.9  Implementing Driver Service Routines 

Once a driver is registered with VxBus and a call is made to the driver's 
func{vxbTimerFuncGet}( ) routine, all subsequent interaction between the system 
and the driver occurs through the routines whose pointers are returned within the 
vxbTimerFunctionality data structure. In the following sections, each of the 
service routines that can be supported by a timer driver are described. Not all of 
the service routines need to be implemented in a single driver. For each service 
routine, a note describing whether the service routine is required for a periodic 
interrupt driver, a timestamp driver, or for both types of drivers is provided.

11.9.1  (*timerAllocate)( ) 

The (*timerAllocate)( ) routine is used to allocate a specific timer within a running 
VxWorks system. Both periodic interrupt and timestamp drivers are required to 
support this routine. 

The prototype for this routine is:

STATUS (*timerAllocate)
(
VXB_DEVICE_ID pInst, /* IN */
UINT32 flags, /* IN */
void ** pCookie, /* OUT */
UINT32 timerNo /* IN */
);

This routine tests its input parameters to ensure that it can comply with the 
requested allocation. If the requested timer (specified by timerNo) is available, and 
if the requested timer supports the requested services (specified by the flags 
parameter), the driver:

■ Marks the driver as allocated by setting the allocated field to TRUE within the 
vxbTimerFunctionality field associated with the timer hardware.

■ Configures the timer hardware (if required, based on the flags parameter).

■ Sets *pCookie to the base address of the per-timer data area.

■ Returns OK.

If the requested timer does not exist, or if the timer cannot be configured according 
to the properties described in the flags parameter, the driver returns ERROR.
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11.9.2  (*timerRelease)( ) 

The (*timerRelease)( ) routine is used to release a specific timer that was 
previously allocated using (*timerAllocate)( ). Both period interrupt and 
timestamp drivers are required to support this routine. 

The prototype for this routine is:

STATUS (*timerRelease)
(
VXB_DEVICE_ID pInst, /* IN */
void * pCookie /* IN */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The driver verifies that 
the requested timer is allocated. If the timer is allocated, the driver:

■ Clears the allocation of the driver by setting the allocated field to FALSE within 
the vxbTimerFunctionality field associated with the timer hardware.

■ Disables delivery of any interrupts from this timer source.

■ Clears any associated ISR information from the per-timer data area.

■ Returns OK. 

If the requested timer is not currently allocated, the driver returns ERROR.

11.9.3  (*timerRolloverGet)( ) 

The (*timerRolloverGet)( ) routine is used to query the maximum value that the 
timer is capable of returning using its (*timerCountGet)( ) routine (see 
11.9.4 (*timerCountGet)( ), p.223). Timestamp drivers are required to support this 
routine. This routine is not used for periodic interrupt drivers. 

The prototype for this routine is:

STATUS (*timerRolloverGet)
(
void * pCookie, /* IN */
UINT32 * pCount /* OUT */
);

The void * parameter provided through pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The driver should test 
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both pCookie and pCount to ensure that they are both non-null. If both pointers 
are valid, the driver:

■ Sets *pCount to the maximum value returnable from (*timerCountGet)( ).

■ Returns OK

If either pointer is NULL, the driver returns ERROR.

11.9.4  (*timerCountGet)( ) 

The (*timerCountGet)( ) routine is used to query the current value of the timer. 
Timestamp drivers are required to support this routine. This routine is not used for 
periodic interrupt drivers. 

The prototype for this routine is:

STATUS (*timerCountGet)
(
void * pCookie, /* IN */
UINT32 * pCount /* OUT */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). Your driver should test 
both pCookie and pCount to ensure that they are both non-null. If both pointers 
are valid, the driver:

■ Sets *pCount to the current value of the hardware counter, with appropriate 
math operations to ensure that counter appears to be counting towards higher 
values.

■ Returns OK. 

If either pCookie or pCount are NULL, the driver returns ERROR.

NOTE:  In VxWorks, timers always count towards higher numeric values. If the 
underlying hardware on which the timer is based counts downward, the driver 
must perform the appropriate mathematics to ensure that the counter appears to 
count towards higher values from the caller's perspective. 

NOTE:  Because this routine is used to create timestamps for events that can occur 
at a high frequency, it should be implemented as efficiently as possible in order to 
minimize its effect on overall system performance. 
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When a timer driver is used as the timestamp source for Wind River 
System Viewer, the kernel makes calls to (*timerCountGet)( ) at unpredictable 
times, such as when the kernel has interrupts locked, or while a spinlock is held. 
To allow (*timerCountGet)( ) to function correctly when used in this situation, the 
use of spinlocks is not allowed within (*timerCountGet)( ). In addition, the body 
of (*timerCountGet)( ) must not perform any operations that result in a 
Wind River System Viewer event, because this causes an infinite recursion 
between System Viewer and the timer driver. 

For a discussion of event logging and examples of operating system facilities that 
generate System Viewer events, see the Wind River System Viewer User's Guide.

11.9.5  (*timerDisable)( ) 

The (*timerDisable)( ) routine is used to disable interrupts generated by the 
underlying timer hardware. Periodic interrupt drivers are required to support this 
routine. This routine is not used for timestamp drivers.

The prototype for this routine is:

STATUS (*timerDisable)
(
void * pCookie /* IN */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The driver should test 
pCookie to ensure that it is non-null. If pCookie is valid, the driver:

■ Disables interrupt generation for the requested hardware timer.

■ Returns OK.

If pCookie is NULL, the driver returns ERROR.

11.9.6  (*timerEnable)( ) 

The (*timerEnable)( ) routine is used to enable generation of interrupts by the 
underlying timer hardware. Periodic interrupt drivers are required to support this 
routine. This routine is not used for timestamp drivers.



11  Timer Drivers
11.9  Implementing Driver Service Routines

225

11

The prototype for this routine is:

STATUS (*timerEnable)
(
void * pCookie, /* IN */
UINT32 maxTimerCount /* IN */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The driver should test 
pCookie to ensure that it is non-null. If pCookie is valid, the driver:

■ Programs the underlying timer hardware so that it generates an interrupt each 
time maxTimerCount counts have occurred within the timer.

■ Enables interrupt generation for the requested hardware timer.

■ Returns OK.

If pCookie is NULL, the driver returns ERROR.

11.9.7  (*timerISRSet)( ) 

The (*timerISRSet)( ) routine is used to connect an ISR to the underlying timer 
hardware interrupt. Both periodic interrupt and timestamp drivers are required to 
support this routine (if your hardware supports interrupt generation). 

The prototype for this routine is:

STATUS (*timerISRSet)
(
void * pCookie, /* IN */
void (*pIsr)(int), /* IN */
int arg /* IN */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The pIsr and arg 
parameters are caller-provided values that should be stored within the per-timer 
data area so that the values can be retrieved during interrupt handling for the 
timer hardware.

After (*timerISRSet)( ) is called to connect the requested ISR to the timer interrupt, 
the specified ISR is called each time a timer interrupt occurs, using the following 
code fragment:

(*pIsr)(arg);
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11.9.8  (*timerEnable64)( ) 

The (*timerEnable64)( ) routine is used to enable generation of interrupts by the 
underlying timer hardware for timers that support 64-bit counters. Support for 
64-bit timers is optional. As such, neither timestamp drivers nor periodic interrupt 
drivers are required to support this routine. 

If you want to include support for 64-bit timers, this routine should be supported 
by the driver. In addition, the VXB_TIMER_SIZE_64 property should be added to 
the features field of the vxbTimerFunctionality structure that is returned from 
func{vxbTimerFuncGet}( ).

The prototype for this routine is:

STATUS (*timerEnable64)
(
void * pCookie, /* IN */
UINT64 maxTimerCount /* IN */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The driver should test 
pCookie to ensure that it is non-null. If pCookie is valid, the driver:

■ Programs the underlying timer hardware so that it generates an interrupt each 
time maxTimerCount counts occur within the timer.

■ Enables interrupt generation for the requested hardware timer.

■ Returns OK.

If pCookie is NULL, the driver returns ERROR.

11.9.9  (*timerRolloverGet64)( ) 

The (*timerRolloverGet64)( ) routine is used to query the maximum value that the 
timer is capable of returning using its (*timerCountGet64)( ) routine. Support for 
64-bit timers is optional. As such, neither timestamp drivers nor periodic interrupt 
drivers are required to support this routine.

If you want to include support for 64-bit timers, this routine should be supported 
by the driver. In addition, the VXB_TIMER_SIZE_64 property should be added to 
the features field of the vxbTimerFunctionality structure that is returned from 
func{vxbTimerFuncGet}( ).
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The prototype for this routine is:

STATUS (*timerRolloverGet64)
(
void *   pCookie,        /* IN */
UINT64 * pCount          /* OUT */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The driver should test 
both pCookie and pCount to ensure that they are both non-null. If both pointers 
are valid, the driver:

■ Sets *pCount to the maximum value returnable from (*timerCountGet64)( ).

■ Returns OK

If either pointer is NULL, the driver returns ERROR.

11.9.10  (*timerCountGet64)( ) 

The (*timerCountGet64)( ) routine is used to query the current value of the timer 
for 64-bit timers. Support for 64-bit timers is optional. As such, neither timestamp 
drivers nor periodic interrupt drivers are required to support this routine.

The prototype for this routine is:

STATUS (*timerCountGet64)
(
void * pCookie, /* IN */
UINT64 * pCount /* OUT */
);

The void * parameter provided using pCookie points to the per-timer data area 
previously returned through a call to (*timerAllocate)( ). The driver should test 
both pCookie and pCount to ensure that they are both non-null. If both pointers 
are valid, the driver:

■ Sets *pCount to the current value of the hardware counter, with appropriate 
math operations to ensure that counter appears to be counting towards higher 
values.

■ Returns OK. 

NOTE:  In VxWorks, timers always count towards higher numeric values. If the 
underlying hardware on which the timer is based counts downward, the driver 
must perform the appropriate mathematics to ensure that the counter appears to 
count towards higher values from the caller's perspective.
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If either pCookie or pCount are NULL, the driver returns ERROR.

11.10  Integrating a Timer Driver 

Traditionally, VxWorks uses between one and three different timers in a running 
system. All VxWorks operating systems use a standard periodic interrupt timer 
driver to support the kernel's heartbeat interrupt. Additionally, if a system is 
configured to support an auxiliary timer or timestamp driver, these services also 
make use of the timer drivers that are implemented according to this chapter. The 
following sections discuss the integration of timer drivers to the system clock, 
auxiliary clock, and to the timestamp driver.

11.10.1  VxWorks System Clock 

Prior to VxWorks 6.5, the system clock is commonly implemented directly within 
the BSP. The BSP is expected to either directly implement (or to include using a 
#include) the following set of system clock (sysClk*( )) routines:

■ sysClkConnect( ) 
■ sysClkEnable( ) 
■ sysClkDisable( ) 
■ sysClkRateSet( ) 
■ sysClkRateGet( ) 

As of VxWorks 6.6, this model has been enhanced to allow the kernel's system 
clock to be implemented within the BSP, or by using a VxBus timer driver as 
described in this chapter. In this release, one implementation of the system clock 
API is implemented within installDir/vxworks-6.x/target/src/hwif/
util/vxbSysClkLib.c. All of the system clock routines listed previously are 
implemented in vxbSysClkLib.c. In addition to the required system clock 
routines, this library contains code to allocate a periodic interrupt timer driver 
during system startup, and to connect this timer driver to the system clock 
routines. 

NOTE:  Because this routine is used to create timestamps for events that can happen 
at a high frequency, it should be implemented as efficiently as possible in order to 
minimize its effect on overall system performance. 
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Graphically, the system clock consists of three layers as shown in Figure 11-2.

During system initialization, the available periodic interrupt timer sources are 
scanned by the system clock library, and one of the available timer sources is 
selected for use as the timer source for the heartbeat interrupt.

During driver development, you may wish to force the system clock library to 
choose your periodic interrupt timer driver, rather than one of the other available 
timer drivers in the system. The system clock library supports this feature through 
the use of three global variables that are defined within the library as follows:

char *  pSysClkName = NULL; 
UINT32  sysClkDevUnitNo = 0; 
UINT32  sysClkTimerNo  = 0; 

If these global variables are redefined in a BSP during execution of the 
sysHwInit( ) routine, the vxbSysClkLib library uses the timer driver that is 
described by the global variables instead of the one found through its matching 
algorithm. The vxbSysClkLib library performs a case-sensitive string comparison 

Figure 11-2 VxWorks System Clock Hierarchy 
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of pSysClkName with the names of each of the available timer drivers (as 
described by the timerName field in the vxbTimerFunctionality structure 
returned by the driver). If the driver name matches the name specified using 
pSysClkName, the vxbSysClkLib library compares the unit number and the timer 
number of the driver against the values specified by BSP. If an exact match is 
found, the vxbSysClkLib library uses the specified timer.

Note that if an exact match is not found, vxbSysClkLib reverts to using its 
matching algorithm, rather than failing to connect the kernel's system clock to an 
underlying timing source. If this occurs, the vxbSysClkLib library post an error 
detection and reporting message indicating the failure to find the requested timer.

11.10.2  VxWorks Auxiliary Clock 

Prior to VxWorks 6.5, the auxiliary clock is commonly implemented directly within 
the BSP. The BSP is expected to either directly implement (or to include using a 
#include) the following set of sysAuxClk*( ) routines:

■ sysAuxClkConnect( ) 
■ sysAuxClkEnable( ) 
■ sysAuxClkDisable( ) 
■ sysAuxClkRateGet( ) 
■ sysAuxClkRateSet( ) 

As of VxWorks 6.6, this model has been changed to allow the kernel's auxiliary 
clock to be implemented using a VxBus timer driver as described in this chapter. 
In this release, the VxWorks auxiliary clock API is implemented within 
installDir/vxworks-6.x/target/src/hwif/util/vxbAuxClkLib.c. All of the 
sysAuxClk*( ) routines listed previously are implemented in vxbAuxClkLib.c. In 
addition to the required sysAuxClk*( ) routines, this library contains code to 
allocate a periodic interrupt timer driver during system startup, and to connect 
this timer driver to the sysAuxClk*( ) routines. 

During system initialization, the available periodic interrupt timer sources are 
scanned by the vxbAuxClkLib library, and one of the available timer sources is 
selected for use as the timer source for the auxiliary clock.

During driver development, you may wish to force the vxbAuxClkLib library to 
choose your periodic interrupt timer driver, rather than one of the other available 
timer drivers in the system. The vxbAuxClkLib library supports this feature 
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through the use of three global variables that are defined within the library as 
follows:

char *  pAuxClkName = NULL;
UINT32  auxClkDevUnitNo = 0;
UINT32  auxClkTimerNo  = 0;

If these global variables are redefined in a BSP during execution of the BSP 
sysHwInit( ) routine, the vxbAuxClkLib library uses the timer driver that is 
described by the global variables instead of the one found through its matching 
algorithm. The vxbAuxClkLib library performs a case-sensitive string comparison 
of pAuxClkName with the names of each of the available timer drivers (as 
described by the timerName field of the vxbTimerFunctionality returned by the 
driver). If the driver name matches the name specified using pAuxClkName, the 
vxbAuxClkLib library compares the unit number and the timer number of the 
driver against the values specified by the BSP. If an exact match is found, the 
vxbAuxClkLib library uses the specified timer.

Note that if no exact match is found, the vxbAuxClkLib library reverts to using its 
matching algorithm, rather than failing to connect the kernel's system clock to an 
underlying timing source. If this occurs, the vxbAuxClkLib library posts an error 
detection and reporting message indicating the failure to find the requested timer.

11.10.3  VxWorks Timestamp Driver 

Prior to VxWorks 6.5, the system timestamp driver is commonly implemented 
directly within the BSP. The BSP is expected to either directly implement (or to 
include using a #include) the following set of timestamp routines:

■ sysTimestampConnect( ) 
■ sysTimestampEnable( ) 
■ sysTimestampDisable( ) 
■ sysTimestampPeriod( ) 
■ sysTimestampFreq( ) 
■ sysTimestamp( ) 
■ sysTimestampLock( ) 

As of VxWorks 6.6, this model has been changed to allow the system timestamp to 
be implemented using a VxBus timer driver as described in this chapter. In this 
release, the VxWorks timestamp driver API is implemented in 
installDir/vxworks-6.x/target/src/hwif/util/vxbTimestampLib.c. All of the 
routines listed previously are implemented in vxbTimestampLib.c. In addition to 
the required sysTimestamp*( ) routines, this library contains code to allocate a 
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timestamp timer driver during system startup, and to connect this timer driver to 
the sysTimestamp*( ) routines.

During system initialization, the available timestamp timer sources are scanned by 
the vxbTimestampLib library, and one of the available timer sources is selected for 
use as the timer source for the timestamp. 

During driver development, you may wish to force the vxbTimestampLib library 
to choose your timestamp timer driver, rather than one of the other available timer 
drivers in the system. The vxbTimestampLib library supports this feature through 
the use of three global variables that are defined within the library as follows:

char *  pTimestampTimerName = NULL;
UINT32  timestampDevUnitNo = 0;
UINT32  timestampTimerNo = 0;

If these global variables are redefined in a BSP during execution of the BSP 
sysHwInit( ) routine, the vxbTimestampLib library uses the timer driver that is 
described by the global variables instead of the one found through its matching 
algorithm. The vxbTimestampLib library performs a case-sensitive string 
comparison of pSysClkName with the names of each of the available timer drivers 
(as described by the timerName field in the vxbTimerFunctionality structure 
returned by the driver). If the driver name matches the name specified using 
pSysClkName, the vxbTimestampLib library compares the unit number and the 
timer number of the driver against the values specified by BSP. If an exact match is 
found, the vxbTimestampLib library uses the specified timer.

Note that if no exact match is found, the vxbTimestampLib library reverts to its 
matching algorithm, rather than failing to connect the timestamp driver to an 
underlying timing source. If this occurs, the vxbTimestampLib library posts an 
error detection and reporting message indicating the failure to find the requested 
timer.

11.11  Debugging 

When debugging a timer driver, as with all driver development, it is convenient to 
have a fully functional system to test the driver on. A fully functioning system 
provides you with full access to the debug capabilities of VxWorks as well as the 
VxBus show routines. Because timer drivers can be allocated to the VxWorks 
system clock during system boot, use a functional timer driver as the VxWorks 
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system clock, so that VxWorks can boot into a fully functional system that you can 
then use to debug your timer driver. 

The simplest way to prevent your driver from being selected as the system clock is 
to delay the registration of your timer driver until after the system has booted. 
When you delay registration, your driver is unavailable during the period when 
the system clock is evaluated, therefore it cannot be selected as the system clock. 

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies.

11.12  SMP Considerations 

In VxWorks SMP, any CPU in the system can utilize the services of a timestamp 
driver. This can present a unique problem if CPU-specific registers are used to 
implement a timestamp service. For example, on the MIPS architecture, the CPU 
C0_COUNT and C0_COMPARE registers are often used for timestamping. 
However, these registers are not necessarily synchronized across the various cores 
in an SMP system. If these registers are not synchronized in the SMP system, the 
timestamp driver using these registers returns inconsistent results unless it is only 
used on a single CPU within the system. 

If CPU-specific registers are used as a time base for a timer driver, the registers 
must be synchronized across all CPUs in the SMP system. The steps required to 
synchronize these registers is, by definition, architecture and CPU-specific. Unless 
your driver handles this situation, you should not advertise the 
VXB_TIMER_INTERMEDIATE_COUNT capability when compiled for SMP. 

For more information on SMP considerations for drivers, see VxWorks Device 
Driver Developer’s Guide: Device Driver Fundamentals. For more information on the 
optional VxWorks SMP product as a whole, see the VxWorks Kernel Programmer’s 
Guide: VxWorks SMP. 



VxWorks
Device Driver Developer's Guide, 6.6 

234



235

   12
USB Drivers

12.1 Introduction 235

12.2 Wind River USB Overview 236

12.3 Host Controller and Root Hub Class Drivers 237

12.1  Introduction 

This chapter assumes that you are familiar with the contents of the VxWorks Device 
Driver Developer's Guide, Volume 1: Fundamentals of Writing Device Drivers, which 
discusses generic driver concepts as well as details of VxBus that are not specific to 
any driver class.

This chapter includes general information on the Wind River USB product with 
respect to device driver development. The focus of the chapter is on those USB 
device drivers that comply with the VxBus device driver model. Other driver types 
are mentioned briefly. For complete information on Wind River USB, including 
information on device drivers that do not conform to the VxBus driver model, see 
the Wind River USB Programmer’s Guide. 
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12.2  Wind River USB Overview 

Wind River USB provides support for the Universal Serial Bus for both USB 
transaction initiators (USB hosts) and to allow a VxWorks target to act as a USB 
peripheral. The USB host (sometimes called the USB host stack) and the USB 
peripheral (sometimes called the USB peripheral stack) conform to the USB 2.0 
specification and, depending on the hardware, offer data rates up to 480 MB/s. 

12.2.1  USB Host Stack Drivers 

The USB host stack consists of the USB driver (USBD), host controller drivers, hub 
drivers, and class drivers. 

Wind River provides host controller drivers (HCDs) for the Enhanced Host 
Controller Interface (EHCI), the Universal Host Controller Interface (UHCI), and 
the Open Host Controller Interface (OHCI). In addition, Wind River USB provides 
root hub drivers for the USB controllers, a generic hub class driver, and a collection 
of class drivers for various types of USB peripherals.

VxBus Model Drivers 

USB host controller drivers and root hub drivers comply with the VxBus device 
driver model. These drivers are discussed further in, see 12.3 Host Controller and 
Root Hub Class Drivers, p.237. 

Other Host Drivers 

USB class drivers do not adhere to the VxBus model. Instead, they rely on the 
interfaces associated with the USBD to connect USB devices to the appropriate 
class driver. For more information on writing USB class drivers, see the 
Wind River USB Programmer’s Guide.

The USBD is not a true device driver in the sense that it does not directly control 
hardware. Rather it serves as the central interface layer between the various USB 
components. There is one and only one USBD in each VxWorks USB host image. 

NOTE:  The USB host and the USB peripheral code do not support the USB 
On-The-Go (OTG) HNP or SRP protocols. 
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The USBD is not a VxBus model driver. The driver is started in a manner similar to 
an application program.

12.2.2  USB Peripheral Stack Drivers 

The Wind River target or peripheral stack provides drivers for a number of target 
controller drivers (TCDs) as well as emulation software for a variety of target 
devices such as bulk storage, printers, and so forth. TCDs are not VxBus compliant 
and are not discussed in this documentation. For information on writing target 
controller drivers, see the Wind River USB Programmer’s Guide. 

12.3  Host Controller and Root Hub Class Drivers 

USB devices are initially plugged into a USB hub or root hub. The USB host reads 
the configuration descriptors, device descriptors, and interface descriptors from 
the device and attaches the device to the appropriate class driver. The class driver 
then issues commands to the USBD which in turn commands the appropriate host 
controller driver and hub driver to perform the USB transactions necessary for the 
system to use the device. 

USB host controller drivers are VxBus-compliant and are used by the USBD to 
execute USB transactions in conjunction with the hub drivers. 

Root hub drivers are also VxBus compliant. The root hub drivers are subordinate 
to the host controller driver and are loaded by VxBus during the instantiation of 
the host controller. 

Wind River provides a generic hub class driver that is instantiated as needed to 
support downstream hubs. Both the host controller drivers and the hub drivers are 
controlled by the USBD through calls to and from the class drivers. The USBD 
interface software provides an API that is used to interface with both the host 
controller drivers and the hub. Application code is not typically aware of the 
controller or hub on which the transactions take place.

NOTE:  For information on the USBD, consult the USB Specification 2.0 available 
from http://www.usb.org. 

http://www.usb.org
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12.3.1  VxBus Driver Methods 

The host controller drivers and the root hub drivers define the {vxbDrvUnlink}( ) 
driver method. This routine is responsible for the orderly shutdown of the host 
controller hardware and de-registration of the bus with the USBD.

In the case of the VxBus root hub class driver, func{vxbDrvUnlink}( ) is 
responsible for disconnecting all downstream devices as well as the hub itself. This 
routine is called when a hub is disconnected from USB. The 
func{vxbDrvUnlink}( ) routine performs the disconnect by calling the remove 
routine provided by each class driver for each device connected to the hub.

VOID func{vxbDrvUnlink}
(
VXB_DEVICE_ID devID
)

12.3.2  Header Files 

The host controller drivers (HCDs) and root hub class drivers use an operating 
system abstraction layer (OSAL) that provides customized operating system 
services to the drivers. These services are defined in usbOsal.h.

#include <usb/usbOsal.h> 

The HCD and root hub class drivers are responsible for both initiating action on 
and executing commands issued by the USBD. The USBD interface is defined in 
usbHst.h. 

#include <usb/usbHst.h> 

12.3.3  BSP Configuration 

The majority of USB HCDs reside on the PCI bus. For these devices, the VxBus 
integration with the USB HCDs takes care of the HCD registration, host controller 
device detection, base address mapping, interrupt connection, and so forth. This 
leaves the BSP developer to write the address translation routines that translate 
CPU addresses to addresses used by the HCD and vice versa, if necessary.

NOTE:  Care should be taken to use the operating system services provided in the 
OSAL rather than the corresponding VxWorks services. In particular, 
OS_MALLOC( ) should be used rather than the general purpose malloc( ) routine. 
Failure to use these services correctly can result in unpredictable system behavior. 
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Should a mapping be necessary, the default translation methods can be overridden 
in the BSP hwconf.c file with entries as shown in the following example. The 
resource cpuToBus translates a CPU address to an address understandable by the 
HCD. The resource busToCpu translates an HCD address to an address 
understandable by the CPU. 

const struct hcfResource pentiumPci0Resources[] =
{

... 

... 
#ifdef INCLUDE_USB

{ "cpuToBus", HCF_RES_ADDR, {(void *) usbMemToPci}},
{ "busToCpu", HCF_RES_ADDR, {(void *) usbPciToMem}},

#endif
}

Some USB HCDs reside on the PLB rather than the PCI. In these cases, additional 
hwconf.c entries are needed. 

The first of these entries informs VxBus of the existence of the PLB device. 

const struct hcfDevice hcfDeviceList[] = {
... 
... 
{ "vxbPlbUsbXXXX", 0, VXB_BUSID_PLB, 0, vxbPlbUsbXXXDevNum0,
vxbPlbUsbXXXDevResouces0},
{ "vxbPlbUsbXXXX", 1, VXB_BUSID_PLB, 0, vxbPlbUsbXXXDevNum1,
vxbPlbUsbXXXDevResources1},
... 

}

The next entries provide the base address, interrupt vector, interrupt level 
information, and so forth for each of the devices described in hcfDeviceList[ ]. If 
necessary, the address conversion routines are also defined.

const struct hcfResource vxbPlbUsbXXXDevResouces0 [] = {
{ "regBase", HCF_RES_INT, { (void *)0x8000 }},
{ "irq", HCF_RES_INT, {(void *)INUM_TO_IVEC(INT_NUM_0)}},
{ "irqLevel", HCF_RES_INT, {(void *)INT_NUM_0}},
{ "cpuToBus", HCF_RES_ADDR, {(void *) usbMemToBus}},
{ "busToCpu", HCF_RES_ADDR, {(void *) usbBusToMem}},

};
#define vxbPlbUsbXXXDevNum0 NELEMENTS(vxbPlbUsbXXXDevResouces0)

NOTE:  Prior to VxBus implementation, these routines were contained in the 
BSP-specific usbPciStub.c file and were called usbMemToPci( ) and 
usbPciToMem( ). In non-PCI bus versions, these routines were called 
usbMemToBus( ) and usbBusToMem( ). 
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Endian Conversion for USB Data Transfers 

The data sent by the USB host stack over the PCI bus is always in little-endian 
format. This behavior conforms to the USB specification. When a big-endian target 
is used, the data sent to the USB host must be converted from big-endian to 
little-endian in the BSP. Conversely, any data passed from the USB host to the 
target must be converted from little-endian to big-endian format. The HCDs 
handle this conversion. The BSP developer does not need to do anything at the BSP 
level for endianness conversion in either direction.

Prototypes for Address Conversion Routines 

Prototypes for the address conversion routines are as follows: 

/***************************************************************************
*
* usbMemToBus - Convert a memory address to a bus- reachable memory address
*
* Converts <pMem> to an equivalent 32-bit memory address visible from the
* PLB bus. This conversion is necessary to allow PLB bus masters to address
* the same memory viewed by the processor.
*
* RETURNS: converted memory address
*/

UINT32 usbMemToBus
(

pVOID pMem /* memory address to convert */
); 

/************************************************************
* usbBusToMem - Convert a PLB address to a CPU-reachable pointer
*
* Converts <plbAdrs> to an equivalent CPU memory address.
*
* RETURNS: pointer to PLB memory
*/

pVOID usbBusToMem
(

UINT32 plbAdrs /* 32-bit PLB address to be converted */
); 

NOTE:  No endianness conversion is required for data transfer over the PLB bus 
because this bus is directly mapped to the CPU.

NOTE:  If the system memory and the bus on which the HCD resides are mapped 
one-to-one, the BSP developer does not need to provide these routine definitions. 
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12.3.4  Available Utility Routines 

The usbTool utility provides a mechanism to manipulate the USB HCDs and class 
drivers. For more information on this tool, see the Wind River USB Programmer’s 
Guide. 

12.3.5  Initialization 

Initialization takes place in the following phases:

1. Registration with VxBus. 

The initialization code registers the desired controller with VxBus. This makes 
VxBus aware that the hardware driver is available. This registration happens 
during the first phase of VxBus initialization and uses minimal operating 
system support. At this stage, only the host controller drivers (HCDs) are 
registered with VxBus. HCD initialization happens later, once complete 
operating system support is available.

2. Initialization of the USB host controller devices. 

The host controller devices are initialized during the third phase of VxBus 
initialization. Before this initialization, VxBus:

■ Initializes the USB host stack by calling the usbInit( ) routine.

■ Initializes the particular host controller driver by calling the driver 
initialization routine.

3. Initialization of the USB class drivers. 

This happens in VxBus phase 3 initialization. At this stage, the class drivers 
included in the VxWorks configuration are initialized.

Note that the root hubs are discovered by VxBus during phase 3, once the USBs on 
the host controller drivers are instantiated. The phase 3 root hub connect routine is 
responsible for discovering all downstream devices. Because all hubs are 
subordinate to the USB host controller drivers, the initialization and connection 
routines are invoked as the host controller drivers are connected.

The USB host controllers are somewhat unique in that phase 2 device initialization 
relies on data structures and values contained in the USBD. Therefore, the USBD 
must be started prior to phase 2 initialization of the host controller drivers. During 
system startup, this call is made automatically as an artifact of the 
INCLUDE_USB_INIT definition.
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12.3.6  Debugging 

Including the INIT macros in the BSP configuration initializes the USB components 
at boot time. However, you can also defer the USB stack initialization and initialize 
the components from the VxWorks development shell when debug utilities are 
available. 

The macros INCLUDE_UHCI, INCLUDE_EHCI, and INCLUDE_OHCI ensure that 
the corresponding host controller driver initialization is included in the VxWorks 
image. They do not, however, initialize any part of the component. To initialize a 
controller after system start, it is necessary to call the USB stack initialization 
routine, the controller initialization routine, and the VxBus registration routine, in 
that order. 

The following example shows how to use the VxWorks development shell to 
initialize the USB stack and the EHCI controller. 

Initialize the USB stack:

-> usbInit 
value = 0 = 0x0

Initialize the EHCI host controller driver:

-> usbEhcdInit 
value = 0 = 0x0

Register the EHCI driver with VxBus: 

-> vxbUsbEhciRegister 
value = 0 = 0x0

List the USB host controllers and devices: 

-> vxBusShow 
Registered Bus Types:
USB-EHCI_Bus @ 0x02698440
USB-HUB_Bus @ 0x00455708
PCI_Bus @ 0x0044f89c
MII_Bus @ 0x0045243c
Local_Bus @ 0x0044f6b0

NOTE:   USB startup does not need to occur during system boot. It is common to 
invoke the initialization routines from the VxWorks development shell. Most 
importantly, the first step—registration with VxBus—can be deferred.
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Registered Device Drivers:
vxbPciUsbEhci at 0x00455644 on bus PCI_Bus, funcs @ 0x0045559c
vxbPlbUsbEhci at 0x00455604 on bus Local_Bus, funcs @ 0x0045559c
vxbUsbEhciHub at 0x004555c4 on bus USB-EHCI_Bus, funcs @ 0x004555a8
vxbUsbHubClass at 0x0048c198 on bus USB-HUB_Bus, funcs @ 0x004556ec
. 
. 
. 
Busses and Devices Present:
Local_Bus @ 0x00471b70 with bridge @ 0x0044f718
Device Instances:
ns16550 unit 0 on Local_Bus @ 0x00472b30 with busInfo 0x00000000
ns16550 unit 1 on Local_Bus @ 0x00472d30 with busInfo 0x00000000
pentiumPci unit 0 on Local_Bus @ 0x00472f30 with busInfo 0x00471db0
i8253TimerDev unit 0 on Local_Bus @ 0x00476330 with busInfo 0x00000000
fileNvRam unit 0 on Local_Bus @ 0x00476430 with busInfo 0x00000000
. 
. 
. 
USB-EHCI_Bus @ 0x00477470 with bridge @ 0x00473730
Device Instances:
vxbUsbEhciHub unit 1 on USB-EHCI_Bus @ 0x026b24c0 with busInfo 0x004774b0
Orphan Devices:
USB-HUB_Bus @ 0x004774b0 with bridge @ 0x026b24c0
Device Instances:
Orphan Devices:
USB-EHCI_Bus @ 0x00477570 with bridge @ 0x00475b30
Device Instances:
vxbUsbEhciHub unit 1 on USB-EHCI_Bus @ 0x026cca00 with busInfo 0x004775b0
Orphan Devices:
. 
. 
. 

Before registration, the USB devices that are present in the system show up under 
vxBusShow( ) as orphan devices. After being invoked from the shell, the 
registration of the device driver causes VxBus to discover those orphan devices 
and attempt to initialize them. In this situation, the failures that occur during 
initialization can be examined with the tools available from Workbench and in the 
VxWorks development shell. 
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13.1  Introduction 

Earlier chapters in this volume describe the classes of drivers that are already 
defined for use within the VxBus framework. However, there are other kinds of 
devices that do not fit well into any of the supported categories. This chapter 
discusses these drivers, which are referred to as other-class drivers. 

This chapter assumes that you are familiar with the contents of the VxWorks Device 
Driver Developer's Guide, Volume 1: Fundamentals of Writing Device Drivers, which 
discusses generic driver concepts as well as details of VxBus that are not specific to 
any driver class.
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13.2  Overview 

Other-class drivers include devices such as digital-to-analog converters and 
analog-to-digital (D/A and A/D) converters, robot control systems, and so on. 
There are also devices that are completely unique to a given application, such as 
the rock abrasion tool on the Mars rovers.

When writing a driver for one of these devices, there is no existing framework to 
indicate how the driver fits in with the rest of the system. This can cause some 
difficulties while eliminating others when compared to development for 
supported driver classes.

In many cases, an other-class driver is written to manage a device for a single, 
specific application, therefore there is no requirement that the driver be written in 
a portable or cross-platform manner. When this is the case, the application and 
driver can be designed so that they share a set of APIs, and the driver and 
application can communicate using those APIs. These APIs typically have no 
constraints resulting from interactions with other modules.

However, it can also be more difficult to develop these other-class drivers when 
compared with the predefined classes. This is the case when you want your driver 
to be more loosely coupled with the application. You may have a situation where 
multiple drivers of the same type are used, therefore each driver cannot provide 
the global symbols of the API that it would provide if it were the only driver of the 
class on a given system. Or you may have a requirement that the driver be 
available only for high-end configurations.

Requirements such as these place additional constraints on the device driver 
developer. These constraints must be handled in a manner suitable for the 
particular application, and are not described in this manual. 

13.3  VxBus Driver Methods 

When developing an other-class driver, you can make use of the {driverControl}( ) 
driver method to perform any specific functionality that you choose.

The func{driverControl}( ) routine provided by your driver takes an argument of 
a structure pointer, where the structure contains a driver name field, a command 
field, and a pointer field.
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The driver name field must be set to the name of the driver. The command field is 
an integer description of the functionality that is requested, and is driver specific. 
The pointer field is defined as type void *, and can be cast to any structure type 
required by the application and driver.

To use VxBus communication mechanisms between your driver and application, 
your custom driver can advertise the {driverControl}( ) driver method. The 
func{driverControl}( ) routine, when called, checks the functionality name and 
driver name fields to verify that the structure provides the requested information. 
If the requested driver name and functionality match those provided by the driver, 
the driver fills in the fields of the structure with the appropriate data and uses the 
data in the structure to perform some action.

By using this mechanism, your driver can provide an API of function pointers and 
identification arguments to those routines, which are kept in a structure. The 
application gains access to this API by calling vxbDevIterate( ), searching for the 
{driverControl}( ) method and, if there is a match, calling the 
func{driverControl}( ) with the appropriate functionality name and driver name. 
For an example of how to use this mechanism, see the sample driver in 
installDir/vxworks-6.x/target/3rdparty/windriver/sample.

13.4  Header Files 

There are no header files specific to the other-class driver class. 

13.5  BSP Configuration 

Other-class drivers must conform to the normal BSP configuration constraints for 
all drivers. For more information on BSP configuration, see VxWorks Device Driver 
Developer’s Guide (Vol.1): Device Driver Fundamentals.
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13.6  Available Utility Routines 

There are no utility routines specific to this driver class. 

13.7  Initialization 

The normal initialization sequence applies to other-class drivers. There are no 
pre-existing restrictions on when each part of the initialization must occur, other 
than those limiting what external system resources are available, such as the use of 
semaphores and other kernel services prohibited from phase 1 initialization.

In many cases, when developing other-class drivers you may decide to perform 
your initialization during VxBus phase 3 initialization. This allows the kernel to be 
brought up and the application started, while the driver initialization only occurs 
when the kernel or application initialization is blocked. The you or the application 
designer must provide some mechanism for the application to know when the 
driver's services are available.

13.8  Debugging 

There are no debugging hints specific to this class. 

For general driver debugging information, see VxWorks Device Driver Developer’s 
Guide (Vol. 1): Development Strategies. 
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access routine 

A routine provided by VxBus that a driver calls in order to access or manipulate a 
device register.

advertise 

Make available to VxBus, as with a driver method. 

bus 

A hardware mechanism for communication between the processor and a device, 
or between different devices. This term can also apply to processor-to-processor 
communication, such as with RapidIO or the processor local bus (PLB) on SMP 
and AMP systems. 

bus controller 

The hardware device that controls signals on a bus. The bus controller hardware 
must be associated with a bus controller device driver in order for VxBus to make 
use of the device. The service that a bus controller device driver provides is to 
support the devices downstream from the controller. The bus controller driver is 
also responsible for enumerating devices present on the bus. See also device, driver, 
enumeration, and instance. 

bus discovery 

See enumeration.
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bus match 

A VxBus procedure to create an instance whenever a new device or driver is made 
available. This procedure is used to determine if a given driver and device should 
be paired to form an instance. 

bus type 

A kind of bus, such as PCI or RapidIO. See also bus controller.

child 

A device that is attached to a bus.

cluster 

Buffers used by netBufLib to hold packet data. See also mBlk.

descriptor 

For DMA, a descriptor is a data structure shared by the device and driver, which 
communicates the size, location, and other characteristics of data buffers used to 
hold transmit and receive data. The data format is defined by the design of the 
device.

device 

A hardware module that performs some specific action, usually visible (in some 
way) outside the processor or to the external system. See also bus, driver, and 
instance.

downstream 

From the perspective of a device, downstream refers to a point farther from the CPU 
on the bus hierarchy. See also child.

driver 

A compiled software module along with the infrastructure required to make the 
driver visible to Workbench and BSPs. The software module usually includes a text 
segment containing the executable driver code plus a small, static data segment 
containing information that is required to recognize whether the driver can 
manage a particular device. The infrastructure typically includes a CDF that allows 
integration with Workbench and vxprj, and stub files for integration with a BSP. 
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driver method 

A driver method is a published entry point into a driver made available to an API 
in VxBus. Examples of methods include functionality such as connecting network 
interfaces to the MUX and discovery of interrupt routing. See also method ID. 

enumeration 

Enumeration refers to the discovery of devices present on a bus. For some bus 
types such as PCI, the bus contains information about devices that are present. For 
those bus types, dynamic discovery is performed during the enumeration phase. 
For bus types such as VME, which do not have such functionality, tables that 
describe the devices that may be present on the system are maintained in the BSP. 
See also bus discovery.

instance 

A driver and device that are associated with each other. This is the minimal unit 
that is accessible to higher levels of the operating system. See also bus, device, and 
driver.

mBlk

Structure used to organize data buffers. See also cluster.

method ID 

A method ID is the identification of a specific driver method that may be provided 
by a driver. This must be unique for each method (that is, specific functionality 
module) on the system. See also driver method.

parameter

Information about some aspect of device software configuration. For further 
discussion, see VxWorks Device Driver Developer’s Guide (Vol. 1): Device Driver 
Fundamentals. See also resource. 

parent 

The bus to which a device is attached, or the bus controller of that bus.

probe 

See enumeration and probe routine. 
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probe routine 

An entry point into drivers. After the system has tentatively identified a device as 
being associated with a driver, VxBus gives the driver a chance to verify that the 
driver is suitable to control the device. The driver registers the probe routine to 
perform this comparison. This routine is optional. If specified, it is normally safe 
and acceptable for the routine to simply indicate acceptance. 

processor Local bus (PLB)

The bus connected directly to a processor. This term is used in a processor-agnostic 
way in this documentation. 

resource 

information about some aspect of device hardware configuration. For further 
discussion, see VxWorks Device Driver Developer’s Guide (Vol. 1): Device Driver 
Fundamentals. See also parameter. 

serial bitbang 

Serial bitbang describes a scenario where software writes the individual bits of a 
word out on a serial line, often with a corresponding clock, rather than writing the 
entire value into a register and allowing the underlying hardware to take care of 
the delivery of the word. 

service driver 

A device driver that provides a service to the operating system or to middleware, 
instead of a service for another device driver. Examples of service drivers include 
drivers for serial and network devices. 

stall 

A condition that occurs when a network interface device stops operating due to 
momentary lack of resources.

upstream 

From the perspective of a device, upstream refers to a point closer to the CPU on 
the bus hierarchy. See also parent.
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Symbols
(*busCfgRead)( )

overriding 9
(*busCfgWrite)( )

overriding 9
(*dmaCancel)( ) 35
(*dmaPause)( ) 35
(*dmaRead)( ) 34
(*dmaReadAndWait)( ) 34
(*dmaStatus)( ) 36
(*dmaWrite)( ) 34
(*dmaWriteAndWait)( ) 35
(*timerAllocate)( ) 221
(*timerCountGet)( ) 223
(*timerCountGet64)( ) 227
(*timerDisable)( ) 224
(*timerEnable)( ) 224
(*timerEnable64)( ) 226
(*timerISRSet)( ) 225
(*timerRelease)( ) 222
(*timerRolloverGet)( ) 222
(*timerRolloverGet64)( ) 226
(*vxbDevControl)( )

overriding 9
(*xf_dump)( ) 204, 207
(*xf_ioctl)( ) 204, 207, 209
(*xf_strategy)( ) 204, 207, 208
{busCtlrAccessOverride}( ) 8

{busCtlrBaseAddrCvt}( ) 11
{busCtlrCfgInfo}( ) 10
{busCtlrCfgRead}( ) 6
{busCtlrCfgWrite}( ) 7
{busDevShow}( ) 54
{cpmCommand}( ) 186
{driverControl}( ) 186, 246
{isrRerouteNotify}( ) 68
{m85xxLawBarAlloc}( ) 186
{miiBusRead}( ) 126
{miiLinkUpdate}( ) 92, 100, 127, 133
{miiMediaUpdate}( ) 90
{miiModeGet}( ) 100, 129
{miiModeSet}( ) 100, 128
{miiRead}( ) 90, 100, 127, 132, 133
{miiWrite}( ) 91, 127, 132, 133
{muxConnect}( ) 133
{muxDevConnect}( ) 88, 89, 101, 103
{nonVolGet}( ) 137
{nonVolSet}( ) 137
{sioChanConnect}( ) 191
{sioChanGet}( ) 191
{vxbDevRegMap}( ) 11
{vxbDmaResDedicatedGet}( ) 31
{vxbDmaResourceGet}( ) 30
{vxbDmaResourceRelease}( ) 31
{vxbDrvUnlink}( ) 90, 238
{vxbIntCtlrConnect}( ) 41
{vxbIntCtlrCpuReroute}( ) 44, 67
{vxbIntCtlrDisable}( ) 42
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{vxbIntCtlrDisconnect}( ) 41
{vxbIntCtlrEnable}( ) 42
{vxbIntCtlrIntReroute}( ) 43
{vxbIntDynaVecConnect}( ) 43, 63
{vxbIntDynaVecProgram}( ) 17, 64
{vxbTimerFuncGet}( ) 215
{vxIpiControlGet}( ) 44, 69

Numerics
00tffs.cdf 156

A
access routine 249
accessing MII management registers 90
address translation

DMA 98
for USB drivers 238
in bus controller drivers 11

advertise
definition 249

advertising XBD methods 206
allocating

device structures 78
DMA channels 30
system resources 186
timers 215, 221
tuples from the pool 98

AMD/Fujitsu flash devices
CFI 145
non-CFI 147

amdmtd.c 147
analog-to-digital converters 246
announcing

a downstream bus 21
devices to VxBus 22, 26, 78

ATA commands 210
ATA_RESOURCE 203
ATA_TYPE 203
ataResources 203
ataTypes 203

autoIntRouteSet 19
auxiliary clock 230

B
BAM 143, 169
binding a network device to the stack 89
bio 204, 207, 208
bio.h 207
bio_done( ) 204, 208
block allocation map

see BAM
boot block 145
bridgePostConfigFuncSet 19
bridgePreConfigFuncSet 19
BSP configuration

bus controller drivers 17
CPU routing table 49
DMA drivers 32
dynamic vector table 48
dynamic vectors 63
interrupt controller drivers 45
interrupt input table 46
interrupt priority 50
MAC drivers 93
multifunction drivers 77
NVRAM drivers 138
other class drivers 247
PHY drivers 130
resource drivers 187
resources for a PCI bus 18
serial drivers 193
storage drivers 203
timer drivers 218
USB drivers 238

BSP resources
ataResources 203
ataTypes 203
clkFreq 218
clkRateMax 218
clkRateMin 218
cpuClkRate 218
for PCI autoconfiguration 19
inputTableSize 47
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miiIfName 94
miiIfUnit 94
numSegments 138
phyAddr 93
priority 50
priorityTableSize 50
segments 138

buffer management 97, 104
BUFFER_WRITE_BROKEN 144
bus

definition 249
bus controller drivers 3

address translation 11
BSP configuration 17
communication 5
debugging 26
deferring driver initialization 27
driver methods 5
generating configuration transactions 10
header files 17
initialization 23

example 24
location in VxWorks 4
overriding service routines 8
overview 4
utility routines 20

bus controllers
connecting to devices 22
definition 249

bus discovery 249
bus match 250
bus type

definition 250
macros 22
registering with VxBus 25

C
cacheSize 19
callbackInstall( ) 196
calling the socket registration routines 159
cancelling an operation on a DMA channel 35
cap_available 108
cap_enabled 108, 112

CDFs
00tffs.cdf 156

CFI 144
AMD/Fujitsu command set 144
AMD/Fujitsu flash devices 145
Intel/Sharp command set 144

CFI/SCS flash support 145
CFI_DEBUG 144
cfiamd.c 144
cfiscs.c 144, 145
changing the network link state 92
checksum offloading 107

CSUM flags 110
enabling

checksum for IPv6 TCP 110
checksum for IPv6 UDP 110
IP checksum 110
TCP checksum 110
UDP checksum 110

handling corrupt packets 113
interface capability flags 109
IPv4 receive 109
IPv4 transmit 109
IPv6 receive 109
IPv6 transmit 110
receive routine 112
send routine 114

child 250
classes

see driver classes
clkFreq 218
clkRateMax 218
clkRateMin 218
CLOCAL 195
cluster 104, 250
common flash interface

see CFI
communication, bus controller 5
components

adding MTD components 155
INCLUDE_GENERICPHY 126, 130
INCLUDE_GENERICTBIPHY 126, 130
INCLUDE_MII_BUS 123, 130
INCLUDE_NON_VOLATILE_RAM 138
INCLUDE_PARAM_SYS 130
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config.h
MTD identification 157

configuring
BSP resources for PCI bus 18
interrupt controllers 52

connecting
an ISR to a timer 225
bus controllers to devices 22
ISRs 41
networking code 102

copying data to and from NVRAM 137
CPU routing table 49
cpuClkRate 218
CREAD 195
creating

a new bus 79
an MII bus instance 99
an XBD 205
buffer pools 98

crossbar routing table 50
CSIZE 195
CSUM flags 108, 114
CSUM_DATA_VALID 110, 113
CSUM_DELAY_DATA 111
CSUM_DELAY_DATA6 111
CSUM_DELAY_IP 111
csum_flags_rx 109
csum_flags_tx 109
CSUM_FRAGMENT 110
CSUM_IP 110
CSUM_IP_CHECKED 110, 112
CSUM_IP_FRAGS 110
CSUM_IP_HDRLEN 111
CSUM_IP_VALID 110, 112
CSUM_PSEUDO_HDR 111, 113
CSUM_RESULTS 111
CSUM_TCP 110
CSUM_TCP_SEG 110
CSUM_TCPv6 110
CSUM_TCPv6_SEG 110
CSUM_UDP 110
CSUM_UDPv6 110
CSUM_XPORT_CSUM_OFF 111
CSUM_XPORT_HDRLEN 111
custom drivers 246

D
data structures

see structures
DEBUG_PRINT 145
debugging

bus controller drivers 26
DMA drivers 36
interrupt controller drivers 73
MAC drivers 118
multifunction drivers 82
NVRAM drivers 141
other class drivers 248
PHY drivers 133
resource drivers 188
serial drivers 199
storage drivers 211
timer drivers 232
USB drivers 242

deferring
driver registration for MAC drivers 118
ISRs 103

defining MTDs
as VxWorks components 155
in the socket driver file 156

deleting an MII bus 99
descriptor 250
devices

accessing MII management registers 90
AMD/Fujitsu flash, CFI 145
AMD/Fujitsu flash, non-CFI 147
CFI
creating an XBD 205
definition 250
enumeration 25
flash 135, 143
Intel 28F008 flash 146
Intel 28F016 flash 146
interactions on multifunction chips 79
interleaved registers 79
multiple devices on a single chip 75
NAND 147
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network device initialization 101
PHY 99

device probing and discovery 124
registering with VxBus 25
shared resources 81
timers 214

devResourceGet( ) 139
digital-to-analog converters 246
direct memory access drivers

see DMA drivers
disabling

interrupt inputs 41
ISRs 42, 52
timer interrupt generation 224

discovering
devices 22, 26
PHY devices 124

disk-on-chip support 147
dispatching

interrupts 55
ISRs 59

DMA
engines 85, 106
managing 106
scatter-gather 105
support 98

DMA channel
cancelling an operation on 35
getting status of 36
pausing a 35
queueing a read operation 34
queueing a write operation 34

DMA drivers 29
BSP configuration 32
debugging 36
driver methods 30
header files 32
initialization 33
overview 30
structures and routines 33
utility routines 33

DMA_IDLE 36
DMA_NOT_USED 36
DMA_PAUSED 36
DMA_RUNNING 36

documentation
about 2

downstream 250
driver

definition 250
driver classes 1

bus controller 3
direct memory access 29
interrupt controller 38
multifunction 75
network 83
network interface (MAC) 86
NVRAM 136
other 245
PHY 123
resource 81, 185
serial 190
timer 214
USB 235

driver methods
{busCtlrAccessOverride}( ) 8
{busCtlrBaseAddrCvt}( ) 11
{busCtlrCfgInfo}( ) 10
{busCtlrCfgRead}( ) 6
{busCtlrCfgWrite}( ) 7
{busDevShow}( ) 54
{cpmCommand}( ) 186
{driverControl}( ) 186, 246
{isrRerouteNotify}( ) 68
{m85xxLawBarAlloc}( ) 186
{miiBusRead}( ) 126
{miiLinkUpdate}( ) 92, 100, 127, 133
{miiMediaUpdate}( ) 90
{miiModeGet}( ) 100, 129
{miiModeSet}( ) 100, 128
{miiRead}( ) 90, 100, 127, 132, 133
{miiWrite}( ) 91, 127, 132, 133
{muxConnect}( ) 133
{muxDevConnect}( ) 88, 89, 101, 103
{nonVolGet}( ) 137
{nonVolSet}( ) 137
{sioChanConnect}( ) 191
{sioChanGet}( ) 191
{vxbDevRegMap}( ) 11
{vxbDmaResDedicatedGet}( ) 31
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{vxbDmaResourceGet}( ) 30
{vxbDmaResourceRelease}( ) 31
{vxbDrvUnlink}( ) 90, 238
{vxbIntCtlrConnect}( ) 41
{vxbIntCtlrCpuReroute}( ) 44, 67
{vxbIntCtlrDisable}( ) 42
{vxbIntCtlrDisconnect}( ) 41
{vxbIntCtlrEnable}( ) 42
{vxbIntCtlrIntReroute}( ) 43
{vxbIntDynaVecConnect}( ) 43, 63
{vxbIntDynaVecProgram}( ) 17, 64
{vxbTimerFuncGet}( ) 215
{vxIpiControlGet}( ) 44, 69
bus controller drivers 5
definition 251
DMA drivers 30
interrupt controller drivers 41
MAC drivers 88
multifunction drivers 76
multiprocessor systems 43
NVRAM drivers 137
other class drivers 246
PHY drivers 126
resource drivers 186
serial drivers 190
storage drivers 202
timer drivers 215
USB drivers 238

driverAccessFunc( ) 16
DRV_CTRL 25
dynamic vector assignment 43
dynamic vector table 48
dynamic vectors 40

configuring
in the BSP 63
using service driver routines 63

determining values for 65
interrupt assignment 17
programming 64

E
EHCI 236
EIOCGIFCAP 108, 111

EIOCGIFMEDIA 100
EIOCSIFCAP 108, 111
enabling

interrupt inputs 42
IP checksum 110
ISRs 52
TCP checksum 110
timer interrupt generation 224
UDP checksum 110

encoding I/O operations 16
end.h 108
END_CAPABILITIES 108, 111, 112
END_ERR_LINKDOWN 92
END_ERR_LINKUP 92
END_MEDIALIST 101
END_OBJ 101
endian conversion for USB data transfers 240
endLib 98
endLib.c 97
endLoad( ) 101
endMedia.h 128, 129
endPoolCreate( ) 97
endPoolDestroy( ) 97, 98
endPoolJumboCreate( ) 97
endPoolTupleFree( ) 97, 98
endPoolTupleGet( ) 97, 98, 105
Enhanced Host Controller Interface

see EHCI
enhanced network drivers

see END drivers
enumeration 251

device 25, 26
erasableBlockSize 155
erase units 177
ERF 205

event reporting 208
event types 209
new device notification 207
registering 205

ERF_ASYNC_PROC 208
ERF_SYNC_PROC 208
erfEventRaise( ) 203, 207, 208
erfHandlerRegister( ) 203, 206
erfHandlerUnregister( ) 203, 206
Ethernet 85
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event reporting framework
see ERF

extended block device
see XBD

EXTRA_INCLUDE 45

F
fair received packet handling 116
fbbEnable 19
files

00tffs.cdf 156
amdmtd.c 147
cfiamd.c 144
cfiscs.c 144, 145
config.h 157
endLib.c 97
hwconf.c 45, 130
I28F008.c 146
i28f016.c 146
miiBus.c 99
miiBus.o 123
sysTffs.c 145, 146, 147, 155, 156, 157, 158
tffsConfig.c 149, 156
usbPciStub.c 239
vxbAuxClkLib.c 230
vxbIntCtlrLib.c 54
vxbIntelIchStorage.c 210
vxbPci.c 20
vxbSI31xxStorage.c 210
vxbSysClkLib.c 228
vxbTimestampLib.c 231
vxBus.c 78

finding interrupt inputs 53
flags, receive handler interlocking 115
flash

device layout 178
erase units 177
interleaved chips 177

flash file system support
 see TrueFFS

flash translation layer
see FTL

FLASH_BASE_ADRS 161

FLASH_SIZE 161
flbase.h 151
flDelayMsec( ) 160
flDontNeedVpp( ) 153
FLFlash 148, 149, 155
flflash.h 149
flNeedVpp( ) 153
flSetWindowSize( ) 161
FLSocket 151, 159, 165
flSocketOf( ) 162
flsystem.h 154
flWriteProtected( ) 153
freeing a DMA channel 31
FTL 143, 166

overview 170
structures 171
terminology 166

function pointers
(*busCfgRead)( ) 9
(*busCfgWrite)( ) 9
(*dmaCancel)( ) 35
(*dmaPause)( ) 35
(*dmaRead)( ) 34
(*dmaReadAndWait)( ) 34
(*dmaStatus)( ) 36
(*dmaWrite)( ) 34
(*dmaWriteAndWait)( ) 35
(*timerAllocate)( ) 221
(*timerCountGet)( ) 223
(*timerCountGet64)( ) 227
(*timerDisable)( ) 224
(*timerEnable)( ) 224
(*timerEnable64)( ) 226
(*timerISRSet)( ) 225
(*timerRelease)( ) 222
(*timerRolloverGet)( ) 222
(*timerRolloverGet64)( ) 226
(*vxbDevControl)( ) 9
(*xf_dump)( ) 204, 207
(*xf_ioctl)( ) 204, 207, 209
(*xf_strategy)( ) 204, 207, 208
vxbIntDynaCtlrInputInit( ) 56
vxbIntDynaVecProgram( ) 56
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G
generating

bus controller configuration transactions 10
dynamic vectors 55

genericPhy 123, 124, 125, 129
genericTbiPhy 126
genericTbiPhy.h 126
getting

an ISR function pointer 53
arguments for an ISR 53
flags for an interrupt input 53
status of a DMA channel 36

H
handling

interrupts 103
network interrupts 88

HCDs 236, 237
HCF_RES_ADDR 18, 47
HCF_RES_INT 18, 19, 47
header files

bio.h 207
bus controller drivers 17
DMA drivers 32
end.h 108
endMedia.h 128, 129
flbase.h 151
flflash.h 149
flsystem.h 154
genericTbiPhy.h 126
interrupt controller drivers 45
MAC drivers 92
multifunction drivers 77
NVRAM drivers 137
other class drivers 247
PHY drivers 130
resource drivers 187
serial drivers 192
sioLib.h 190, 194
sioLibCommon.h 195
storage drivers 202, 218
USB drivers 238

usbHst.h 238
usbOsal.h 238
vxbAccess.h 8, 14
vxbDmaDriverLib.h 31
vxbDmaLib.h 33
vxbIntCtlrLib.h 45
vxbIntrCtlr.h 45
vxbNonVol.h 137
vxbTimerLib.h 215
vxBus.h 22, 77
xbd.h 207

heartbeat interrupt 214
hEND drivers

see hierarchical END drivers
HEND_RX_QUEUE_PARAM 97
hierarchical END drivers 134
host controller drivers

see HCDs
HUPCL 195
hwconf.c 52, 130

interrupt controller resources 45
NVRAM 138
USB drivers 239

hwMemAlloc( ) 25, 220

I
I28F008.c 146
i28f016.c 146
identifying interrupts 39
IFCAP_CAP0 110
IFCAP_CAP1 110
IFCAP_CAP2 110
IFCAP_IPCOMP 110
IFCAP_IPSEC 109
IFCAP_JUMBO_MTU 109
IFCAP_NETCONS 109
IFCAP_RXCSUM 109, 112
IFCAP_RXCSUMv6 109
IFCAP_TCPSEG 109
IFCAP_TCPSEGv6 110
IFCAP_TXCSUM 109
IFCAP_TXCSUMv6 110
IFCAP_VLAN_HWTAGGING 109
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IFCAP_VLAN_MTU 109
ifconfig( ) 119, 121
IFM_ACTIVE 129
IFM_AUTO 101, 132
IFM_AVALID 129
implementing

timer driver service routines 221
VxWorks auxiliary clock 230
VxWorks system clock 228
VxWorks timestamp drivers 231

INCLUDE_EHCI 242
INCLUDE_GENERICPHY 126, 130
INCLUDE_GENERICTBIPHY 126, 130
INCLUDE_MII_BUS 123, 130
INCLUDE_MTD_AMD 147
INCLUDE_MTD_CFISCS 145
INCLUDE_MTD_I28F008 147
INCLUDE_MTD_I28F016 146
INCLUDE_NON_VOLATILE_RAM 138
INCLUDE_OHCI 242
INCLUDE_PARAM_SYS 130
INCLUDE_UHCI 242
INCLUDE_USB_INIT 241
includeFuncSet 19
initializing

a network 119
bus controller drivers 23
DMA drivers 33
FLFlash structure members 149
interrupt controller drivers 56
MAC drivers 101
multifunction drivers 79
network devices 101
NVRAM drivers 139
other class drivers 248
PHY drivers 132
resource drivers 187
serial drivers 193, 199
storage drivers 204
timer drivers 219
USB drivers 241

inputTableSize 47
instance

definition 251
intAssignFuncSet 19

intCpuUnlock( ) 60
intCtlrChainISR( ) 53, 55
intCtlrCpu 49
intCtlrHwConfGet( ) 51, 52
intCtlrHwConfShow( ) 51, 53
intCtlrISRAdd( ) 51, 52
intCtlrISRDisable( ) 51, 52
intCtlrISREnable( ) 51, 52
intCtlrISRRemove( ) 51, 53
intCtlrPinFind( ) 51, 53, 63
intCtlrStrayISR( ) 53, 55
intCtlrTableArgGet( ) 51, 53
intCtlrTableCreate( ) 51, 54
intCtlrTableFlagsGet( ) 51, 53
intCtlrTableFlagsSet( ) 51, 54
intCtlrTableIsrGet( ) 51, 53, 55
intCtlrTableUserSet( ) 51, 54
integrating a timer driver with VxWorks 228
Intel 28F008 flash devices 146
Intel 28F016 flash devices 146
Intel ICH storage driver 205
interaction

PHY and MII bus 99
serial ports and WDB connection 198

interleaved registers 79
INTERLEAVED_MODE_REQUIRES_32BIT_

WRITES 144
interprocessor interrupts

see IPIs
interrupt controller drivers 38

BSP configuration 45
CPU routing table 49
crossbar routing table 50
debugging 73
dispatch routines 55
driver methods 41
dynamic vector assignment 40, 43
dynamic vector table 48
header files 45
initialization 56
interrupt input table 46
interrupt priority 50, 58
managing dynamic vectors 62
multiprocessing 40, 43, 66
OpenPIC 38
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overview 38
programming dynamic vectors 64
releasing third-party drivers 45
responsibilities 39
typologies 57
utility routines 51
vxbEpicIntCtlr.c 38
vxbPpcIntCtlr.c 38

interrupt controllers
configuration 39, 52
layers 59

interrupt inputs 39
representing internally 65

interrupt-driven mode
serial drivers 194

interrupts
connecting ISRs 52
disabling

interrupt inputs 41
ISRs 52

dispatching 55
dynamic vector assignment 17, 40, 43
dynamic vector management 55
dynamic vector table 48
enabling 55

interrupt inputs 42
ISRs 52

finding inputs 53
getting

an ISR function pointer for 53
flags 53

handlers 103
identifying 39
input table 46
interrupt controller drivers 38
managing dynamic vectors 62
network 88
PHY 123
priority 50, 58
programming dynamic vectors 64
removing an ISR 53
rerouting 43, 44
retrieving ISR arguments 53
routing in an SMP system 67
serial drivers 199

setting flags in isrHandle 54
transmit-packet-complete 87
validating 120

intrCtlrInputs 46
intrCtlrPriority 50
io16Addr 18, 19
io16Size 19
io32Addr 18, 19
io32Size 18, 19
ioctl( ) 195
iodesc 16
ipcom_drv_eth_init( ) 119
IPIs 68

managing 44
IPsec 109
isrDeferIsrReroute( ) 68
isrDeferLib 68
isrHandle 52, 53, 65

printing contents of 53
setting flags in 54

isrRerouteNotify( ) 68
ISRs 103

calling 54
connecting 41

to an interrupt 52
to timer hardware 225

deferring 103
disabling 42, 52
dispatching 59
enabling 52
function pointers 53
removing 53
retrieving arguments to 53

J
jobQueueCreate( ) 97
jobQueueInit( ) 97
jobQueueLib 94, 103
jobQueuePost( ) 96, 103, 115, 117
jobQueueStdPost( ) 97
jumbo frames, support for 97
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L
libraries

endLib 98
isrDeferLib 68
jobQueueLib 94, 103
muxLib 94, 95
netBufLib 94, 97, 104
utility library for PCI configuration 18
vxbAuxClkLib 230
vxbDmaBufLib 94, 98, 106
vxbDmaLib 30, 33
vxbIntCtlrLib 39, 51, 55, 65
vxbSysClkLib 228
vxbTimestampLib 231
vxIpiLib 69

logMsg( ) 120
lower edge methods 127
lower edge utility routines 131

M
MAC drivers 83

attaching
to the IPv4 stack 119
to the MUX 119

binding a device to the stack 89
BSP configuration 93
command and control module 87
connecting networking code 102
debugging 118

with show routines 118
deferring driver registration 118
driver methods 88
fair received packet handling 116
functional modules 86
handling checksum offload 107
header files 92
initialization 101
interrupt handlers 103
loading and unloading 121
lower edge methods 127
lower edge utility routines 131
multicast filter test 122

overview 86
pairing with a PHY instance 119
PHY and MII bus interactions 99
ping-of-death test 120
polled mode testing 122
protocol impact on 107
receive error path testing 122
receive handler interlocking flag 115
receive stall handling 117
reception module 87
relationship to MII bus 125
setting up a memory pool 104
starting and stopping 121
stress testing 120
support for scatter-gather 105
terminating an instance 90
testing with Netperf 120
transmission module 87
upper edge methods 127
upper edge utility routines 130
utility routines 94
validating interrupts 120
WTX test 122

macros
BUFFER_WRITE_BROKEN 144
CFI_DEBUG 144
DEBUG_PRINT 145
INCLUDE_EHCI 242
INCLUDE_MTD_AMD 147
INCLUDE_MTD_CFISCS 145
INCLUDE_MTD_I28F008 147
INCLUDE_MTD_I28F016 146
INCLUDE_OHCI 242
INCLUDE_UHCI 242
INTERLEAVED_MODE_REQUIRES

_32BIT_WRITES 144
SAVE_NVRAM_REGION 144
VXB_BUSID_MII 22
VXB_BUSID_PCI 22
VXB_BUSID_PLB 22
VXB_BUSID_RAPIDIO 22
VXB_BUSID_VIRTUAL 22
VXB_HANDLE( ) 16
VXB_HANDLE_WIDTH( ) 16
VXB_INTCTLR_ISR_CALL( ) 51, 54, 55, 60
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VXB_INTCTLR_PINENTRY
_ALLOCATED( ) 51, 55, 67

VXB_INTCTLR_PINENTRY
_ENABLED( ) 51, 55

VXB_INTCTLRLIB_LOWLVL_SIZE 65
VXB_INTCTLRLIB_TOPLVL_SIZE 65

managing
dynamic vectors 48, 62
system resources 186

mapping
device registers 11

maxBusSet 19
maxLatAllSet 19
maxLatencyArgSet 19
maxLatencyFuncSet 19
mBlk 251
mBlkPktHdr 108
MDIO 91
media access controller

see MAC drivers
media independent interface

see MII
mem32Addr 18, 19
mem32Size 18, 19
memIo32Addr 18, 19
memIo32Size 18, 19
memory technology driver

see MTDs
message signalled interrupt

see MSI
method ID 251
MII 88
MII bus 123

creating 99
deleting 99
interactions with PHY devices 99
lower edge methods 127
lower edge utility routines 131
management 99
relationship to MAC 125
upper edge methods 127
upper edge utility routines 130

miiBus.c 99
miiBus.o 123
miiBusCreate( ) 91, 99, 125, 133

miiBusDelete( ) 99
miiBusDevMatch( ) 124
miiBusMediaAdd( ) 131
miiBusMediaDefaultSet( ) 131
miiBusMediaDel( ) 131
miiBusMediaListGet( ) 101, 131
miiBusModeGet( ) 92, 100, 127
miiBusModeSet( ) 100, 127
miiBusMonitor 92, 99, 123, 127, 133
miiBusRead( ) 132
miiBusWrite( ) 132
miiIfName 94
miiIfUnit 94
miiMonitor 90
msgLogSet 19
MSI 48, 62
MSI-X 62
MTDs 142

customizing 143
defining

as components 155
in the socket driver file 156

erase routine 155
helper routines 153
initializing the FLFlash 

structure members 149
non-CFI 146
read routine 153
registering an identification routine 156
supported flash devices 143
write routine 154
writing 148

a map routine 152
read, write, and erase routines 153
the identification routine 148

mtdTable[ ] 149, 156
MTU

jumbo 109
VLAN-compatible 109

multifunction drivers 75
BSP configuration 77
debugging 82
device interconnections 79
driver methods 76
header files 77
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initialization 79
interleaved registers 79
location of subordinate devices 81
overview 76
reducing footprint 77
shared resources 81
utility routines 78

multiplexor
see MUX

multiprocessor systems
CPU routing table 49
interrupt controller drivers 40
limitations 72
routing interrupts in 67

MUX 85, 95, 102, 107
attaching to 119

muxDevLoad( ) 95, 101, 121
muxDevStart( ) 96
muxDevStop( ) 96, 121
muxDevUnload( ) 96, 121
muxError( ) 90, 92
muxIoctl( ) 96
muxLib 94, 95
muxSend( ) 87
muxTxRestart( ) 96

N
NAND devices 147
necEndLoad( ) 89
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